
Modeling and Selection
of Software Service Variants

J.
E

. W
it

t
e

r
n

M
od

el
in

g
an

d
Se

lec
tio

n
of

 S
of

tw
ar

e
Se

rv
ice

 V
ar

ia
nt

s

John Erik Wittern

John Erik Wittern

Modeling and Selection of Software Service Variants

Modeling and Selection
of Software Service Variants

by

John Erik Wittern

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Wirtschaftswissenschaften

Tag der mündlichen Prüfung: 14. Mai 2014
Referenten: Prof. Dr.-Ing. Stefan Tai, Prof. Dr.-Ing. Stefan Jähnichen

Print on Demand 2015

ISBN	 978-3-7315-0349-1
DOI	 10.5445/KSP/1000045936

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Acknowledgments

First version

This thesis could not have been completed, had it not been for numerous people
who supported and influenced me during the last 4 years.

Firstly, a big thank you to my supervisor, Prof. Dr.-Ing. Stefan Tai. He
considerably shaped the way I think about research and computer science in
particular. His contributions to both my work and my understanding of research
always combined deep technical knowledge with the urge to motivate one’s work
based on relevant problems in relevant contexts. Stefan’s approach to conducting
research will always be the gold standard for me.

I further thank Prof. Dr.-Ing. Stefan Jähnichen, who kindly acted as my Kor-
referent and provided me with the opportunity to present and discuss especially
the feature modeling aspects of this work with him and his team at TU Berlin.
I also thank Prof. Dr. Rudi Studer and Prof. Dr. Ir. Marc Wouters, who
completed the thesis committee.

Dr. Christian Zirpins helped me shape this work from the beginning. I thank
him for the great time working in the COCKPIT project together, the fantastic
journeys we undertook in this context, and his valuable advice and guidance
that expanded beyond his time at our research group.

I started my time at eOrganization writing my Diplomarbeit in 2009. I thank
my two supervisors, Robin Fischer and Dr. Ulrich Scholten, who invoked my
scientific curiosity, ensured a smooth transition into my time as a doctorand,
and became dear friends.

I thank my eOrganization colleagues in Karlsruhe, Dr.-Ing. David Bermbach,
Bugra Derre, Dr. Christian Janiesch, Jörn Kuhlenkamp, Markus Klems,
Tilmann Kopp, Michael Menzel, Steffen Müller, Dr.-Ing. Nelly Schuster, and
Raffael Stein for providing such a great environment to work in and for the
various, fruitful collaborations. I thank my FZI colleagues Dr. Gregory Kat-
saros, Luise Kranich, Alexander Lenk, David Müller, Prof. Dr.-Ing. Frank
Pallas, and Mandy Schneider in Berlin, who made the Aussenstelle a great
place to work and taught me a lot about Tischfussball. I further thank all my
colleagues from AIFB, FZI/IPE, and KSRI. I am especially thankful for the

i

great administrative support I received from Heike Döhmer and Rita Schmidt.
I thank my collaborators from the COCKPIT project and the many students I
had the pleasure to work with.

I thank my family and friends - they supported me throughout these years and
gave me the strength and perseverance required to finish this work. I especially
appreciated the inspiring discussions about my work and its context with my
father, Prof. Dr. Klaus-Peter Wittern, and with Dr. Timm Gudehus.

Finally, I thank my great love Gesina.

Berlin, May 2014 Erik Wittern

Second version

The first version of this dissertation was published at the EVA STAR-catalog of
the Karlsruhe Institute of Technology1 in May 2014, rapidly, to adhere to the
time constraints for completing my PhD. This second version primarily provides
improved typesetting and layout, achieving higher readability throughout. It
further includes minor improvements on the first version (making it a version,
actually, rather than a variant): A new appendix B shows screenshots of an
implementation of the SFM tool suite. References that had been under review
when the first version was published have been updated to point to the now
accepted publications. Finally, the consistency of the language used throughout
this thesis has been improved.

New York City, Februrary 2015 Erik Wittern

1http://nbn-resolving.org/urn:nbn:de:swb:90-411324

ii

http://nbn-resolving.org/urn:nbn:de:swb:90-411324

Abstract

Providers and consumers have to deal with variants during the development and
the delivery of software services. Variants are alternative instances of a service’s
design, implementation, deployment, or operation. Making decisions about vari-
ants is parts of any software service development activities. Providers need to
deliver variants to address diverse or changing consumer needs, which are best
served by a specific variant. Approaches to deal with variants from software
product line engineering lack desirable capabilities for representing characteris-
tics, collaboration in modeling, and (participatory) selection of variants, even
among services. This thesis presents service feature modeling, a novel approach
consisting of a variability modeling language and a set of methods to address
these challenges in modeling and selecting software service variants.

The service feature modeling language extends standard feature modeling from
software product line engineering. A typology of feature types differentiates their
semantics with the goal to utilize service feature models (SFMs) in novel ways,
like realizing comparability of variants across services. Attribute types represent
concerns common to multiple attributes within an SFM to reduce modeling
efforts and for attribute aggregation. A novel modeling method considers SFMs
to be composed by services, addressing the collaboration of experts in modeling
and the integration of dynamic or complex attribute values.

Making use of SFMs, a structured selection process flexibly combines a set of
methods for decision-makers to determine which variant to develop or deliver.
A configuration set determination method, extending existing approaches with
attribute aggregation, produces all valid service variants represented by an SFM.
Determined configuration sets are narrowed down with a novel, fuzzy require-
ments filter. Skyline filtering, adapted from database systems, dismisses service
variants that are dominated by others. Preference-based ranking applies a well-
known multi-criteria decision making approach to rank service variants based on
their fulfillment of preferences. Through abstractions, it aims to enable partici-
pation by involving non-technical decision-makers in service variant selection.

This thesis presents an evaluation of the outlined concepts, consisting of mul-
tiple parts. A proof-of-concept implementation and a performance evaluation
of a SFM tool suite show the realizability and applicability of service feature

iii

modeling, including the composition of SFMs from services and all outlined us-
age methods. A first use case concerns the development of public services under
consideration of service variants, whose selection was driven by citizen participa-
tion. A second use case concerns the modeling and selection of Infrastructure as
a Service (IaaS) variants and their automatic consumption and usage. Finally,
an empirical evaluation indicates good usability, expressiveness, and usefulness
and interpretability of service feature modeling.

iv

Contents

1. Introduction 1
1.1. Examples for Variants in Software Services 2

1.1.1. Public Service Design . 2
1.1.2. Financial Web Service Consumption 4
1.1.3. IaaS Consumption . 6

1.2. Motivations for Software Service Variants 9
1.3. Problem Statement . 10

1.3.1. Problems Regarding Modeling Service Variants 11
1.3.2. Problems Regarding Selecting Service Variants 13

1.4. Research Design and Contributions 16
1.4.1. Concepts and Methodology 17
1.4.2. Modeling Language . 17
1.4.3. Methods . 18
1.4.4. Tools . 19

1.5. Structure of this Dissertation . 20

2. Concepts and Methodology 23
2.1. Service Concept . 23

2.1.1. Generic Services . 23
2.1.2. Software Services . 25

2.2. Software Service Life-Cycle Model 27
2.2.1. Software Life-Cycle Models 28
2.2.2. Service Life-Cycle Models 28
2.2.3. Our Software Service Life-Cycle 30

2.3. Service Variants and Variability 36
2.3.1. Origins of Service Variability 38
2.3.2. Variability Subject . 38
2.3.3. Affected Service Roles . 39
2.3.4. Time of Occurrence . 39
2.3.5. Realization of Variability 41

2.4. Fundamentals of Modeling . 44
2.4.1. Characteristics of Modeling 44
2.4.2. Generic Modeling Process 45

2.5. Methodology of Service Feature Modeling 46

v

Contents

3. Modeling Service Variants 49
3.1. Standard Feature Modeling . 49

3.1.1. Appeal of Feature Modeling 50
3.2. Service Feature Modeling Language 50

3.2.1. Basics of the Service Feature Modeling Language 51
3.2.2. Feature Types in Service Feature Modeling 58
3.2.3. Representation of Service Variability with Feature Types 61
3.2.4. Attribute Types in Service Feature Modeling 62

3.3. Service Feature Modeling Process 66
3.3.1. Involved Stakeholders . 66
3.3.2. Modeling Procedure . 67
3.3.3. Modeling SFMs with Similar Structure 68

3.4. Coordinated Composition of Service Feature Models 70
3.4.1. Composition Model . 72
3.4.2. Roles . 74
3.4.3. Coordination Rules . 75
3.4.4. Service Binding . 76

3.5. Related Work on Modeling Service Variants 77
3.5.1. Variability Modeling Languages 78
3.5.2. Feature-based Modeling of Service Variability 79
3.5.3. Other Approaches to Represent Service Variability 82
3.5.4. Collaborative Modeling 85

3.6. Discussion . 87

4. Using Service Feature Models 91
4.1. Usage Process . 91

4.1.1. Goals of Usage . 91
4.1.2. Usage Overview . 93
4.1.3. Involved Stakeholders . 94

4.2. Automatic Determination of Variants 95
4.2.1. Mapping of SFMs to Constraint Satisfaction Problems . . 95
4.2.2. Attribute Aggregation . 99

4.3. Requirements Filtering . 100
4.3.1. Stating Requirements . 100
4.3.2. Matching Requirements to Variants 103

4.4. Preference-Based Ranking of Variants 106
4.4.1. Ranking Overview . 107
4.4.2. Skyline Filtering . 108
4.4.3. SFM to Poll Transformation 110
4.4.4. Stakeholder Preferences Collection 111
4.4.5. Configuration Ranking Determination 112
4.4.6. Participatory Ranking . 117

4.5. Usage with Multiple SFMs . 120

vi

Contents

4.6. Related Work on Variant Selection 121
4.6.1. Feature Model Configuration 121
4.6.2. Variant Selection in Service Development 123
4.6.3. Variant Selection in Service Delivery 126
4.6.4. Service Selection . 126

4.7. Discussion . 129

5. Evaluation 131
5.1. Proof of Concept - Design and Implementation 133

5.1.1. Requirements . 133
5.1.2. SFM Meta Model . 134
5.1.3. Architecture . 137
5.1.4. Implementation . 144
5.1.5. Discussion . 146

5.2. Performance Evaluation . 147
5.2.1. Design of Performance Evaluation 147
5.2.2. Evaluation Models . 148
5.2.3. Results of Performance Evaluation 150
5.2.4. Discussion . 156

5.3. Use Case - Public Service Design 157
5.3.1. Use Case Description . 157
5.3.2. Modeling . 160
5.3.3. Usage . 162
5.3.4. Realization . 163
5.3.5. Discussion . 164

5.4. Use Case - IaaS Consumption . 164
5.4.1. Use Case Description . 165
5.4.2. Modeling . 166
5.4.3. Usage . 169
5.4.4. Realization . 170
5.4.5. Discussion . 173

5.5. Empirical Evaluation . 174
5.5.1. Design of Empirical Evaluation 174
5.5.2. Data Collection . 175
5.5.3. Results of Empirical Evaluation 176
5.5.4. Discussion . 179

6. Conclusion 181
6.1. Summary . 181
6.2. Future work . 185

vii

Contents

Appendix 189

A. Appendix A 191
A.1. Sets of SFM elements . 191
A.2. Information about performance evaluation of the skyline filter . . 192
A.3. Information about performance evaluation of the requirements filter193

B. Appendix B 195
B.1. Screenshots requirements filter implementation 195
B.2. Screenshots preference-based ranking implementation 197

viii

1. Introduction

Software services1 provide deployed capabilities, which are realized by software,
and can be consumed on demand over networks. They play an ever-increasing
role in businesses, culture, and personal life. For example, companies use soft-
ware services to manage customer relationships [Sal], to run business processes
like purchasing, production, human resources, or distribution [SAP], or to host
their IT [Ama]. Public administrations provide software services to offer public
services [U.S]. Or, end users use software services offered by social networks to
communicate or share their private lives [Fac], they consume movies [Net] and
music [Spo], or plan and book their holidays [Tri]. Web services are a common
type of software services, which are consumed over the Internet. They enable in-
teroperation and composition even across organizational borders [Pap03]. Cloud
services are another common type of software services, which provision scalable,
abstracted IT infrastructures, platforms and applications with a pay-per-use
model [BKNT11].

Stakeholders, acting in the role of either service provider or service consumer,
perform different activities across a software service’s lifespan. Service develop-
ment consists of specification, design, and implementation activities. In general,
service providers perform these activities while consumers are only involved if
participatory approaches are used [HJR+10]. Service delivery is the combina-
tion of provision and consumption activities to fulfill a service request. Provision
activities are performed by the service provider while consumption activities are
performed by the consumer. In some business models, further roles exist as-
sociated with additional activities. For example, in Web service marketplaces
a service broker intermediates between consumers and providers [BD06]. How-
ever, we focus here on the two fundamental roles involved in any type of software
services.

Both, in the development and the delivery of software services, providers and
consumers have to deal with variants. Variants are alternative instances of a
service’s design, implementation, deployment, or operation. Variants exist in
parallel and do not supersede each other, in contrast to versions which are or-
dered in time [ABKS13] and are thus often subsumed as part of change manage-

1In the following, we use the term service interchangeably for the term software service.

1

1. Introduction

ment [Som11]2. Related to the notion of versions, software configuration man-
agement (SCM) focuses on the development and evolution of a system [CW98],
whereas variants are about multiple instances existing in parallel. Making deci-
sions about variants is part of any software service development activities. There
are alternative designs to evaluate, different technologies exist for implementing
a software service, or it can be deployed in different ways. The definition and
subsequent selection of variants, supporting decision-making regarding the real-
ization of a service, is therefore essential. Neglecting to assess variants during
development in a structured way tempts developers to use the first alternative
that comes to mind [Sha12] and increases the risk of causing cost for revers-
ing faulty design decisions later on [Bos13]. Providers need to deliver variants
to address diverse or changing consumer needs, which are best served by a
specific variant [MMLP09, NCTH11]. If providers would just deliver a single
variant, they risk addressing only a limited target customer group. Reversely,
consumers need to select suitable variants for consumption that match their spe-
cific needs [SM10]. Neglecting this step can cause (costly) over-delivery [LNSJ12]
or risks service delivery to deviate from needs [RA11]. Businesses, thus, cannot
neglect dealing with software service variants.

Modeling can be used to define, communicate, experiment, or decide about
aspects of a system [Lud03, Rot89], in this case a service’s variants. This thesis
proposes a modeling language, allowing to represent service variants, and a set
of methods that, utilizing the modeling language, select a single or a subgroup
of variants based on stakeholder requirements and preferences.

1.1. Examples for Variants in Software Services

Within this section, we provide three examples to illustrate that software service
variants exist and are relevant in different contexts. These examples provide
furthermore a basis to, in the following sections, discuss benefits and motivate
challenges of variants.

1.1.1. Public Service Design

The Citizens Collaboration and Co-Creation in Public Service Delivery (COCK-
PIT) project presents the challenge to define and select variants regarding the

2Note: Versions which are branches of a software service may exist in parallel and may thus
be referred to as variants [CW98]. Reversely, variants existing in parallel may have a
version history and may thus be referred to as a version. The important notion for us to
denote variants is that they are intended to exist in parallel, cf. section 2.3.

2

1.1. Examples for Variants in Software Services

design of public services [KKKP10]. The project aims to enable citizens to par-
ticipate in public service design to increase the fit of the service with citizens’
needs. The COCKPIT project researches a model-based service design method-
ology. In it, multiple models are used to describe certain aspects of the service. A
generic model for public services, for example, captures information like the ser-
vice’s goals, requirements towards it, or the resources it involves [DHJ09]. Pro-
cess models describe the service delivery using the Business Model and Notation
(BPMN) [BPM10], or costs are described in models following an activity-based
cost approach [CA10]. In addition to these models, the methodology includes
several approaches to automatically create parts of the models or to utilize them.
For example, policy and law retrieval methods crawl public databases for rel-
evant information regarding the service, an opinion mining component reveals
opinions stated in Web 2.0 sources about the service in design or similar ser-
vices, or a simulation engine visualizes and analyzes service designs based on the
process models.

Alternative workflows

Alternative technologies /
resources Alternative

access channels

Figure 1.1.: Typical sources of variants when designing public services in the
COCKPIT project

Within the project, public administrations designed or re-designed actual public
services they offer using the outlined methodology. In this process, experts
from the participating administrations concerned with the public service design
identified multiple design variants. Typical sources driving these variants are
illustrated in figure 1.1.

In a first scenario, the Greek ministry of interior designed the “access extracts
of insurance records in social security organization” service. It allows citizens
to access their insurance records, which is required if they want to check the
payment status of their health insurance or if they apply for a loan or for a new
job. The service engineers identified possible design variants of this service, for
example, with regard to triggering the process either via Website, telephone, or
by visiting a social security office. The retrieval of the requested record can be
performed manually by designated clerks, resulting in a delivery of the record via
post. Alternatively, the retrieval can be performed using a database system and
the delivery can be performed using email. These variants impact the service’s

3

1. Introduction

properties like the delivery cost, the required execution time, or the validity of
the delivered record - for example, some situations may demand for physical,
signed copies of a record.

In a second scenario, the City of Venice redesigned the “Internet reporting infor-
mation system” service. It is implemented as a Web application and accessible
to all citizens of Venice. The service allows citizens to report civic issues, for ex-
ample, occurrences of vandalism, decay, or unreasonable regulations, and track
how the city addresses them. In this scenario, engineers concerned with the
design identified variants with regard to, for example, designing interfaces to
report issues from different devices, for example, personal computers or mobile
phones, whether to open the service to other cities or not, or whether to notify
tracking reports via short messages or not. These variants impact the service’s
properties like costs for the public administration or the frequency of in which
tracking reports are made available.

The consideration of design variants has been proposed in multiple service design
methodologies as means to conceptualize and assess different ways to develop
a service [PVDH06, DHJ09, MNDF+10, TÖD11]. While these works moti-
vate dealing with variants during service design, they do not present specific
approaches on how to pursue it. In COCKPIT, variants result from variable
concerns scattered across models describing processes, resources, or costs. No
means exist to explicitly represent these variants and use them to improve the
service design. This challenge is further complicated due to the multiple stake-
holders involved in public service design, including the participation of citizens.
Approaches to represent and assess variants need to enable the participation of
these stakeholders.

Overall, ideally, engineers designing public services would have an approach
at hand to model service design variants, which integrates with other modeling
approaches and limits additional efforts. Based on the resulting models, different
stakeholders would be supported in stating their preferences and requirements
to select the variants to further develop. Section 5.3 provides details on how we
address these issues with this work’s contributions.

1.1.2. Financial Web Service Consumption

Financial data services offer consumers a variety of financial data to use in their
applications. Common types of data include stock quotes or company finan-
cial data, which provides an overview over the financial performance of compa-
nies, including information on balance sheets, cash flows, or income statements.
Providers like Xignite [Xig] or QuoteMedia [Quo] offer such data via Web APIs.

4

1.1. Examples for Variants in Software Services

Web APIs are application programming interfaces that provide consumers data
or services via endpoints accessible in the Web.

Web APIs denote variants regarding, for example, data formats, the interface im-
plementation, or authentication mechanisms [DBM13]. Common data formats
provided by Web APIs include XML and JSON. The interfaces of Web APIs
are typically implemented either using SOAP or in a RESTful way. Further
variants exist with regard to the data provided by the Web API. The provided
data depends on the endpoint that consumers invoke and on the parameters
provided in a request to that endpoint. Data can be historical, here describing
past financial situations, or real-time, giving insights into latest developments.

Figure 1.2 illustrates variants to select by consumers of the Xignite’s Get Com-
panies Financial service. The corresponding API can be invoked by providing
different types of identifiers for the company whose financial data a consumer is
interested in, being for example the company’s symbol or the Central Index Key
(CIK). Provided financial reports can be of different type, for example, quarterly
or annual, and cover a definable time period. In addition, data can be provided
in different data formats like XML, JSON, or CVS.

Figure 1.2.: Screenshot showing variants of Xignite’s financial data
service, source: http://www.xignite.com/product/
company-financials/api/GetCompaniesFinancial/, accessed:
4th March 2014

Current descriptions of Web APIs, as illustrated for the case of financial Web
APIs in figure 1.2, are heterogeneous and dispersed in nature [PCP+12]. Vari-
ants are implicitly included in the descriptions, but not stated in a structured,
analyzable way. In consequence, (potential) consumers have to manually gather
and structure this information. One scenario where structured data is required

5

http://www.xignite.com/product/company-financials/api/GetCompaniesFinancial/
http://www.xignite.com/product/company-financials/api/GetCompaniesFinancial/

1. Introduction

is the selection among variants, considering for example trade-offs between cur-
rentness of data and cost for invoking an API. As it is the case in the example
about consuming IaaS (cf. section 1.1.3), selection of variants of Web APIs pro-
viding financial data ideally spans across comparable services offered by different
providers.

Overall, potential consumers would ideally have a structured representation
about the variants offered by financial Web APIs at hand. Using this represen-
tation, the consumers would be supported in selecting a suitable variant among
multiple, competing services based on their requirements and preferences. We
use this scenario throughout the thesis to illustrate how this work’s contributions
can practically be applied.

1.1.3. IaaS Consumption

The consumption of Infrastructure as a Service (IaaS) presents consumers with
the challenge to select suitable IaaS variants. IaaS provides virtualized hardware
to consumers. Consider, for example, a developer who wants to use a Couchbase3
NoSQL datastore on top of IaaS. By doing so, the developer, acting as an IaaS
consumer, does not have to physically own infrastructure but can rent it on-
demand.

In this scenario, the IaaS consumer is presented with variants. There are multi-
ple IaaS services from different providers to choose from, for example Amazon
EC2 [Ama] or Rackspace [Rac]. While being independent services, the consumer
would like to treat their offers as variants to another as long as they provide the
desired capabilities. If the selection of the provider is not predetermined, for
example, because the consumer already uses one provider in other contexts, the
consumer wants to compare the providers’ offers against each other. Looking at
an individual IaaS, it denotes further variants because it allows consumers to
specify a configuration. Here, a configuration is a set of information, for example,
configuration parameters, that determines a service variant within a pre-defined
scope [SZG+08]4. A configurable service is capable of taking a configuration as
input and providing a corresponding service variant5.

3http://www.couchbase.com/
4Note: The field of software configuration management considers a configuration, divergently,
as a set of components, that can themselves be configurations or configuration items,
which are the smallest units of individual change [Tic03]. The term configuration is thus
overloaded and needs to be considered in dependence of the context, cf. section 3.2.1.

5Note: Service variants can also be realized with alternative methods, for example, through
dedicated implementations (also referred to as customization) or through adaptation, cf.
section 2.3.5.

6

http://www.couchbase.com/

1.1. Examples for Variants in Software Services

Figure 1.3.: Screenshot depicting different virtual machine types offered by Ama-
zon EC2, https://aws.amazon.com/ec2/instance-types/, ac-
cessed: 25th February 2014

In the case of IaaS, one source of configuration options is the selection of the
type of virtual machine (VM) to consume. A virtual machine maps arbitrary,
software-defined interfaces and resources on the interface and resources of a
physical machine. Offered types of VMs typically differ with regard to the
amount of CPU cores, memory, disk space and price [Bar13]. Consumers chose
VM types based on the requirements of the software components or applications
to deploy on the VM. In this case, for example, the NoSQL datastore can profit
from large memory to increase the available cache and therefore avoid random,
slow disk I/O. Figure 1.3 illustrates properties of some of the VM types offered
by Amazon EC2.

The number of variants further increases from the choice of images to load onto
the rented VM. Images contain fundamental software to use a VM, including the
operating system. Additionally, images may contain pre-packed software, for ex-
ample, there are images that already contain the Couchbase NoSQL datastore.
Pre-packed software enables out-of-the box functionality and releases the con-
sumer of having to manually install software. Images vary further with regard to
terms and conditions. Some images, for example, do not allow commercial use
or they induce additional cost. Figure 1.4 illustrates some of the images offered
by Amazon EC2 that have the Couchbase NoSQL datastore pre-pakced.

Finally, the number of variants to consume further increases as consumers may
install additional software on top of an image hosted by a VM. Additional soft-
ware may include monitoring tools, the network time protocol (NTP), or con-
figuration management tools.

7

https://aws.amazon.com/ec2/instance-types/

1. Introduction

Figure 1.4.: Screenshot depicting different Couchbase images of-
fered by Amazon EC2, https://aws.amazon.com/
marketplace/seller-profile/ref=dtl_pcp_sold_by?id=
1a064a14-5ac2-4980-9167-15746aabde72, accessed: 25th
February 2014

Currently, IaaS providers communicate the outlined variants only in an unstruc-
tured way in form of HTML descriptions. Correspondingly, consumers select
variants based on intuition or experience. Such approaches, however, fall short
when the consumer desires a more structured, reproducible way to select vari-
ants. In the current way of consuming IaaS, the consumer does not explicitly
state his requirements and preferences and can thus not document or iteratively
revise them. Automations regarding the selection of variants are currently not
supported, thus prohibiting unexpected or repeated selections. For example, a
consumer may also wish support in re-evaluating his variant selection in reac-
tion to changing offers, which currently requires repeated manual effort. Finally,
while consumption of IaaS can be performed automatically with automation
tools like Chef6, these methods are not integrated with means for structured
IaaS variant selection.

Overall, ideally, the consumer would state his requirements and preferences re-
garding the consumption of Couchbase on IaaS, would be supported in selecting
the most suitable variant, and its consumption would automatically be initiated.
Section 5.4 provides details on how we address these issues with this work’s con-
tributions.

6http://www.getchef.com/chef/

8

https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
http://www.getchef.com/chef/

1.2. Motivations for Software Service Variants

1.2. Motivations for Software Service Variants

The three examples presented in section 1.1 motivate dealing with software ser-
vice variants. We differentiate motivations broadly into whether service variants
are considered for the development (cf. example 1.1.1) or for the delivery of soft-
ware services (cf. examples 1.1.3 and 1.1.2).

In service development, variants are defined by the service provider during spec-
ification and design activities. The purpose of defining variants during devel-
opment, as it is motivated in the example about public service design in sec-
tion 1.1.1 and in related work [DHJ09, PVDH06, MNDF+10], is to assess al-
ternative ways of how to further develop and deliver a service. The variant
definition process needs to capture the requirements of the provider and con-
sumer stakeholders involved with the service. Empirical studies from software
engineering show that insufficient consideration of stakeholder requirements is
the single biggest cause for software projects to fail [HL01]. Following the ba-
sic systems engineering process process [Lev00], design variants can be assessed
regarding objectives and criteria to chose which variant to implement. Variants
can thus be used to perform thorough business case analysis and provide basis
for decisions on the service design. In this sense, the definition and later selec-
tion of variants corresponds to design space approaches [Sha12]. Design spaces
encompass a set of decisions to choose an artifact, in this case a service design
variant, that best satisfies consumer needs. Not assessing variants tempts de-
velopers to stick with the first variant that comes to mind, it avoids building
up knowledge about families of designs, and it impedes identifying suitable and
innovative designs [Sha12]. In addition, neglecting the assessment of variants
increases the risk of having to costly reverse design decisions [Bos13].

Challenges for such approaches result from the negative impacts that considering
variants during development induces. Variants need to be defined and managed,
which creates efforts and increase complexities in design and implementation
activities. Artifacts to support these tasks require creation and maintenance.
Furthermore, corresponding methods need to be learned, applied, and possibly
be supported by dedicated systems.

In service delivery, the provision of variants allows providers to deal with diverse
requirements and preferences of consumers [MMLP09, NCTH11]. Providers of-
fer multiple variants of their service and consumers select those variants that
best meet their individual needs. These needs can address the functionalities or
qualities of a service [MMLP09]. In the IaaS example from section 1.1.3, dif-
ferent consumers will have different requirements regarding the computational
performance of VMs, depending on CPU cores and memory, or the software pro-
vided by images. Neglecting the consideration of these requirements to select
variants can cause (costly) over-delivery [LNSJ12] or it risks service delivery to

9

1. Introduction

deviate from needs [RA11]. In addressing individual consumer needs, the deliv-
ery of service variants is a means for customization. Multiple positive effects of
service customization have been identified, including increased customer satisfac-
tion [WWMQ10] and perceived quality [PS00]. These, in consequence, positively
impact consumers’ willingness to pay and recommend the service, and increase
consumer loyalty to the service and its provider [RC06, HKH05, AFR97].

Another motivation for delivering service variants is to react to changes in con-
text. Context, generically, is “[...] any information that can be used to char-
acterize the situation of an entity” [Dey01, page 5]. With regard to services,
common context changes concern requirements, preferences, or environmen-
tal conditions, for example, changed competition, technologies, or legal reg-
ulations [DNGM+08]. Service variants allow for reaction to such changes, if
consumers are enabled to switch to variants that are more suitable in light of
the changed context while ensuring continuous service provision. Switching vari-
ants, for the consumer, avoids efforts for adapting systems or even exchanging
services. The provider, in this scenario, can continue provisioning the service to
consumers even in the face of contextual change.

As it is the case in development, delivering service variants also induces negative
impacts. Multiple variants need to be deployed in parallel or the adaptation of
a single service is required. Again, variants need to be managed, requiring
corresponding artifacts, methods, and systems. In the case of delivery, these
effects not only concern the service provider, but also the consumer who needs
to select the variant to consume.

Overall, both in development and delivery, whether and to what extend consid-
ering variants is beneficial depends on the comparison of the outlined advantages
with the outlined disadvantages.

1.3. Problem Statement

As already outlined in the motivation in section 1.2, dealing with variants also
causes problems, which we discuss in detail in this section. We consider problems
to fall into three major categories, for each of which extensive related work exists
in the context of software engineering: 1) the definition of variants, using mod-
eling methods [SD07], 2) the management and selection of variants [CABA09],
and 3) the realization of variants [SVGB05]. The main contributions of this the-
sis focus on the first two problems. Thus, the problems addressed in this thesis
are how to model and select software service variants. In the following subsec-
tions, we outline these problems in more detail and identify concrete challenges
not jet addressed by related work.

10

1.3. Problem Statement

1.3.1. Problems Regarding Modeling Service Variants

The first problem concerns the definition of service variants using modeling ap-
proaches. The description of IaaS variants is provided unstructured in HTML
(cf. images 1.3 and 1.4). Similar, the descriptions of Web API variants (cf.
image 1.2) are typically heterogeneous and dispersed [PCP+12]. In the example
about public service design, variants result from information contained in dif-
ferent artifacts like process or resource descriptions. In all examples, no explicit
representation of variants exists, thus impeding efforts to systematically reason
about them. Modeling variants results in a structured representation, which
enables automatic analysis and usage [BSRC10]. Defining each service variant
independently from another causes redundancies, resulting in maintenance ef-
forts and fostering inconsistencies. For example, concerns that are common to
multiple variants would be modeled repeatedly and changes to them would re-
quire dealing with in multiple instances. In consequence, dedicated languages
and modeling methods are required to efficiently represent service variants. To
be efficient, these languages and methods need to differentiate between variable
and common concerns of service variants.

The so-far outlined problems, while relevant, are rather generic in nature and
are not novel to software services - they have been addressed in software en-
gineering (SE): variability modeling is a well-researched [SD07] and practically
applied [BRN+13] technique used in SE. It is “[...] the discipline of explicitly
representing variability in dedicated models that describe the common and vari-
able characteristics of products in a software product line” [BRN+13, page 1].
Variability modeling approaches have already been used for specific types of soft-
ware services. For example, the variability of Web services has been represented
with feature models [NC10, NCH14, GA13]. Or, variability modeling approaches
have been applied to support customization of cloud services [MMLP09, BB13].
However, the outlined approaches do not address all challenges regarding mod-
eling software service variants that result from the three examples in section 1.1.
Specifically, we identify the following challenges, which we aim to address in this
thesis:

Challenge 1. Representation of characteristics of variants

All three examples motivate the representation of characteristics of variants.
Characteristics result for consumers or providers from developing or delivering a
variant. They are typically measurable, meaning that a number can be assigned
to them, or boolean in nature, meaning that they can either be true or false.
When representing IaaS variants, for example, characteristics denote the number
of CPU cores or the disc space of virtual machines. Public service design vari-
ants denote different cost for delivering the service or different execution times.

11

1. Introduction

Or, financial Web APIs have different cost depending on the requested infor-
mation. The representation of characteristics aims to document and communi-
cate the capabilities of variants, for example with regards to Quality of Service
(QoS) [GL09]. Representing this information allows to use it for the selection
of software service variants, as it is already common in approaches to select
software services without the consideration of variants, cf. [ARDN09, ZZZ09]7.
In related work, variability modeling approaches like feature modeling already
address the representation of characteristics [BTRC05]. In these approaches,
however, characteristics are only used to describe individual model elements, for
example features. To obtain insights into the characteristics of complete vari-
ants, aggregation of individual values is required and currently not addressed.
The challenge is thus to introduce means to variability modeling that enable
to represent characteristics of variants. While motivated in this context, such
means are not only relevant for software services, but also with regard to software
systems in general.

Challenge 2. Including dynamic or complex characteristics

While the representation of characteristics of variants is important, statically
provided characteristics do not suffice to describe service variants. Software ser-
vices underly an open-world assumption, in which context is constantly chang-
ing [DNGM+08]. For example, the performance of virtual machines provided by
IaaS is found in related work to considerably change over time [LMLT11, IYE11].
Or, the availability of data-providing APIs is also a function of time and the cur-
rent availability status might be of interest to consumers. Many characteristics
undergo constant change, impeding their static definition during modeling ac-
tivities. Other characteristics are complex in nature, again impeding their static
definition. For example, the cost of IaaS in many cases depend on how it is
consumed - next to the bare fees for renting VMs, additional cost result de-
pending on the amount of data transferred from or to the VM or the number
of input/output operations [Ama]. In existing variability modeling approaches,
service quality attributes are modeled statically, which does not suffice to de-
scribe their dynamic or complex nature [LK13]. Thus, the challenge arises to
include dynamic or complex characteristics when representing software service
variants. Again, while being motivated in the context of services, this challenge
is also relevant in the context of software systems in general.

Challenge 3. Support for expert collaboration in defining variants

In the design of public service variants as described in the example in sec-
tion 1.1.1, we were confronted with the challenge to enable expert collaboration

7Note: This challenge solely addresses the representation of characteristics. Their selection,
definition, metrics, or the means to perform measurements are outside of the scope of this
work.

12

1.3. Problem Statement

in defining variants. In service development, this need is especially relevant due
to the involvement of stakeholders from multiple disciplines [SMBG07]. Collab-
oration in this context includes the definition and communication of variable
concerns and the definition of dependencies between them. In defining variants,
experts involved in developing software or a service delimit the solution space
of the design and express their individual concerns in terms of concern-specific
variants [WSKT12]. These concerns, for example technical, business-related, or
legal ones, may be dependent on another. In the end, variants of the overall
software or service are derived that consider the specified dependencies. The
resulting challenge for variability modeling approaches is to provide methods
that enable collaboration by coordinating the (concurrent) creation or revision
of models without conflicts. In related work, we find no approaches that ad-
dress the collaborative definition of service variants. Some variability modeling
approaches address fundamentals for supporting collaboration. For example,
feature models defined by various stakeholders can be composed [ACLF10] or
stakeholder-specific views on them can be realized [HAT+13]. However, these
approaches have so far neither, to our best knowledge, addressed a conflict-free
collaborative modeling process nor have they been applied to the development
of software services specifically. The challenge is thus to enable expert collabora-
tion in the definition of software service variants. Here, again, we see beneficial
applications also for variability modeling of software in general.

1.3.2. Problems Regarding Selecting Service Variants

The second problem addressed in this thesis concerns the selection of service
variants in development and delivery. In the examples about IaaS and Web API
consumptions, consumers need to select their desired variant before consump-
tion or if they desire to switch to another variant during consumption. In the
example about variant selection during public service design, providers select
the variant to further develop, i.e., design, implement, or deploy. The funda-
mental requirement towards selection methods is to take as input the needs
or preferences of decision-makers as well as possible variants and to output a
recommendation of the variant(s) to select. If such methods are not available,
decision-makers who select variants for development or delivery are bound to
their intuitions and experiences only in their manual efforts to find the variant
meeting their requirements and preferences. Disadvantages of such approaches
are missing documentations of the decisions made and impeded repeatability.
When understanding and having modeled variants to result from variability in
individual concerns, the number of variants grows exponentially whenever new
variable concerns are added. This introduces the need for selection support
methods that are capable of comparing, filtering and ranking large numbers of
variants.

13

1. Introduction

As in the case of modeling variants, related work also exists with regard to
selecting them. Variability modeling encompasses approaches for selecting vari-
ants [CABA09, BSRC10]. Again, existing approaches do not address all chal-
lenges regarding selecting software service variants that result from the three
examples in section 1.1. We identify the following challenges, which we aim to
address in this thesis:

Challenge 4. Selection process

For selecting software service variants based on representations fulfilling the
above outlined challenges, a selection process is needed. In the context of ser-
vices, where selection can be used to decide among variants for delivery as in the
IaaS example in section 1.1.3, the selection process should be able to perform
automatically. Automation in selection enables consumers to switch between
service variants on a request basis8. Similar approaches are proposed in the
context of Web services as dynamic or late binding [AP07]. Even if selection
is not performed for every request, other triggers to re-perform software service
variant selection exist, like periodic assessments or promoted changes in the of-
fered service variants. To base selection on meaningful information, requirements
and preferences of relevant stakeholders need to be considered in this process.
Their explicit representation allows to revise or document them and is another
important factor in enabling automation in performing the selection process. In
related work, approaches focus either on requirements-based feature selection,
for example in staged configuration [CHE04], or on preference-based selection,
for example in the stratified analytical hierarchy process [BAGS10]. These ap-
proaches rely on manual efforts and thus impede automation. In contrast, we see
the challenge in providing a comprehensive, automatically performable selection
process, considering both requirements and preferences.

Challenge 5. Comparability of variants from different services

When consumers select variants of a service to consume, they might not only
be interested in the variants offered by a single provider. If services are compa-
rable, a common problem is to select among these services. Related approaches
address, for example, the selection among functionally equivalent Web services
based on quality of service characteristics [ARDN09] or the selection of compa-
rable cloud services [RHH13]. Incorporating the concept of variants into this
task, consumers are presented with the challenge of selecting among variants
offered by multiple services. Consider, for example, the consumption of IaaS. A
consumer may be agnostic to the provider from which to consume IaaS but only

8The applicability of this approach depends on whether switching a service variant can be
performed without excessive effort, which depends, for example, on required data migration
or integration.

14

1.3. Problem Statement

focus on certain requirements and preferences that can be fulfilled by multiple
services of offered by different providers. Or, when consuming financial Web ser-
vices to obtain stock quotes, consumers need to select among different services
offered, for example, by Xignite or QuoteMedia that provide the same data but
have different interface implementations, data formats, or prices. A necessary
precondition to realize such selections is to ensure comparability between service
variants offered by different providers. For representations of variants to act as
basis in such approaches, they need to address the same variable aspects of a
service and be described regarding the same characteristics. Variant selection,
then, methodically is performed as in the case of a single variable service, but
considers the superset of all comparable services’ variants. To our best knowl-
edge, comparability between variability models or the variants represented in
them has not yet been addressed in related work. The challenge is thus to en-
sure comparability of variants offered by different providers and represented in
different variability models.

Challenge 6. User participation in variant selection

During development of software services, design variants can be assessed by
consumers, allowing for participatory service design [WZ11b], which is a posi-
tively considered method when developing services [HJR+10]. Empirical studies
within the last 30 years report positive impacts of user involvement in software
development on system success [BZ13]. Advantages from user involvement in
the design of new services are original solution approaches with higher value
for the consumers [Mag03]. Using variability models for participatory design
is promising given their suitability as a communication medium. For exam-
ple, feature models have a level of abstraction that is understandable both by
technicians and customers [LKL02]. A challenge for participation methods is to
present participants with meaningful and relevant information about software or
service variants but also abstract from technical, deterrent details. Variability
modeling needs to be combined with other abstractions and interaction methods
that allow otherwise not involved and potentially non-technical stakeholders,
for example users, to engage in variant selection. We do not find approaches
supporting participation of consumers in software service development that
are based upon variability modeling. This gap is especially evident given that
variability modeling’s main elements, i.e. features, are commonly defined to
be characteristics visible to end-users [ABKS13], rendering such approaches
suitable for end-user integration.

In sum, in this thesis, we address all the outlined challenges regarding modeling
and selecting software service variants, the ones specific to software service en-
gineering and the ones also applicable to software engineering in general. The
examples in section 1.1 create even further challenges, concerning for example

15

1. Introduction

the mapping of representation of variants to other service-related artifacts or
the automatic realization of selected variants. This work illustrates how we ad-
dressed some of these challenges, presenting for example a mapping of service
variant representations with other models for public service design in section 5.3
or showing how IaaS variants can automatically be consumed in section 5.4.
Because these approaches are bound to specific use cases and not necessarily
generalizable, however, we do not explicitly mark their underlying challenges to
be addressed in this work.

1.4. Research Design and Contributions

In this work, we apply variability modeling to model service variants and se-
lect among them during development and delivery. We focus on the following
activities that make use of variability modeling:

1. The (collaborative) definition of service variants by providers and con-
sumers during design activities of development.

2. The selection of service variants for development - selected variants are
further considered in design, implementation, deployment, and operation
activities - by providers under participation of consumers.

3. The (repeated) selection of service variants by consumers for service de-
livery.

To address the above-mentioned activities, we introduce service feature modeling.
Service feature modeling is about the representation of service variants in a
Service Feature Model (SFM) and the usage of SFMs to select service variants.
Correspondingly, the hypothesis underlying this thesis is:

Hypothesis 1. Service feature modeling (a) provides an expressive and us-
able language to represent service variants, (b) enables experts to collaborate in
specifying service variants, (c) provides useful methods to (participatorily) select
service variants.

To satisfy this hypothesis, we conceptualize a modeling language and selection
methods utilizing models based on this language. The conceptualization was ini-
tially driven by requirements from public service providers within the research
project about public service design presented in section 1.1.1. Early within our
work, we started developing proof-of-concept tools, implementing service feature
modeling. The concepts and tools were iteratively refined based on the public
service providers’ feedback and our findings. The research project provided a use
case that we used to evaluate the modeling language and parts of the selection

16

1.4. Research Design and Contributions

methods. Subsequently, we applied service feature modeling in other contexts.
We performed a second use case, covering again the modeling language and
a more complete set of selection methods, addressing the representation and
selection of IaaS variants as motivated in section 1.1.3. The second use case
furthermore provided the possibility to assess the realization of service variants
based on models described in our language. Overall, through this thesis’ contri-
butions, we define a novel approach to model and select service variants. The
approach is rooted in and builds upon software engineering, using for example
classical feature modeling, while considering the characteristics and challenges
of services. We outline the contributions in more detail in the following.

1.4.1. Concepts and Methodology

An initial contribution of this thesis is a specification of concepts related to
services and service variants. Definitions for services and their perceptions are
manifold [Alt08] so that the understanding underlying this thesis needs to be
defined. We focus on and present common types of software services, which we
differentiate from generic services. We then discuss service variability, which
we define to be the ability of a service to a) be delivered in one of multiple
preplanned ways or b) adapt in a preplanned manner. We address fundamental
questions related to service variability: who is affected by, controls, benefits or is
worse off by service variability? When does it appear? How can it be realized?

We furthermore present a software service life-cycle model that is used through-
out this thesis to denote the occurrence and involved stakeholders of service
feature modeling activities. Building upon the so far introduced concepts, we
present service feature modeling’s methodology. It uses a modeling language to
represent service variants and combines corresponding methods to model and
select service variants.

1.4.2. Modeling Language

A central contribution of this work is the definition of the service feature mod-
eling language. It is based upon classical feature modeling from software en-
gineering [KCH+90]. The models created with this language, SFMs, represent
multiple variants of a service in a single model. SFMs can represent diverse vari-
able concerns of a service, including, for example, technical, business-related, or
legal ones. Their inclusion in a single representation allows modelers to interre-
late these concerns, for example, to state dependencies between legal regulations
and technical properties. We design the service feature modeling language to
suffice multiple quality properties, which we evaluate within this thesis.

17

1. Introduction

First, we design the modeling language to be expressive. Expressiveness refers
to the capability of SFMs to capture relevant variable concerns and define de-
pendencies between them. To achieve expressiveness, we introduce attribute
types, containing information common to multiple attributes of the same type.
Attribute types provide the basis for determining characteristics of variants as
it is motivated by challenge 1. Another extension introduced by the service
feature modeling language are feature types to clearly define the semantics of
features. Feature types further provide the basis to define domain models, which
enable comparability of variants defined in different SFMs as motivated by chal-
lenge 5.

Furthermore, we assess the usability of the service feature modeling language.
Usability refers to how easy it is to learn and use the service feature modeling
language. We assess how service engineers assess the usability of the service
feature modeling language in an empirical evaluation based upon one of the
performed use cases.

Finally, we also address the applicability of service feature modeling in this the-
sis. Applicability refers to the ability of our approach to be used in realistic
scenarios. Given the possibly large amount of scenarios in which service feature
modeling can be used, we cannot assess applicability in absolute terms. How-
ever, we illustrate applicability exemplarily by applying the language to model
software variants of financial Web APIs throughout this thesis and by apply-
ing it to the two use cases addressing the scenarios outlined in sections 1.1.3
and 1.1.1.

1.4.3. Methods

We present a set of methods to create SFMs and use them to select service
variants. A first method concerns the modeling of SFMs - that is, the process of
defining service variants. To ensure that the combination of different concerns
modeled in an SFM remains useful, their abstractions must be meaningful and
compatible. To this end, we exemplarily integrate service feature modeling into
larger service engineering methodologies in two use cases. We define mappings
between service features and artifacts from other methodologies. Examples are
work flow elements and cloud service configuration options. Where possible,
based on the mappings, automatic creation of model parts or reuse of existing
parts is used to decrease modeling efforts.

Another method addresses challenge 3 about supporting collaboration of stake-
holders, i.e., experts, in modeling. Methods to realize collaboration include com-
position of SFMs from services and corresponding coordination for composition

18

1.4. Research Design and Contributions

to be efficient and conflict-free. Our approach renders SFMs to act as cen-
tral, structure-providing artifacts that compose diverse concerns, which can be
provided by human or software services. Through composition, service feature
modeling further allows modelers to integrate dynamic or complex attributes
on-demand, as motivated by challenge 2.

Another set of methods concerns the usage of SFMs for selecting service vari-
ants. We provide a selection process as motivated by challenge 4 that flexibly
combines methods allowing service providers and consumers to determine service
variants that match requirements and preferences. Configuration set determina-
tion, which extends existing approaches with attribute aggregation, produces all
service variants represented by a given SFM. A novel requirements filtering ap-
proach is used to exclude variants from further consideration that do not meet
minimal needs. Preference-based ranking applies a well-known multi-criteria
decision making approach [Saa90] to rank remaining variants based on stake-
holders’ individual preferences regarding modeled attributes. Before preference-
based ranking, skyline filtering, adapted from database systems [BKS01], can be
used to dismiss variants that are dominated by others. SFMs represent concerns
of, among other stakeholders, a service’s consumers and can thus support par-
ticipation in development activities: service feature modeling’s usage methods
allow consumers to participate in development by selecting service variants to
further design, implement, and deploy, thus addressing challenge 6.

The usage methods aim to be useful, which we evaluate in this thesis from the
users’ perspective. Usefulness depends on whether users perceive the selection
of variants modeled in an SFMs to be relevant and its outcomes beneficial.
Usefulness needs to be assessed in light of utilizing service feature modeling
in addition to other service engineering approaches and as opposed to other
selection methods.

1.4.4. Tools

The final contribution provided by this thesis are tools implementing service
feature modeling’s modeling language and methods. These tools are available
as open source9. The primary intention behind the tools is to act as a proof-of-
concept for the realizability of service feature modeling. In addition, the tools
allow for assessment of the application of service feature modeling to real world
use cases.

The SFM designer is an Eclipse-based editor that allows modelers to model
SFMs. The SFM designer furthermore provides capabilities to select service
variants specified in an SFM using the methods for requirements and skyline

9https://github.com/ErikWittern/sfm-toolsuite

19

https://github.com/ErikWittern/sfm-toolsuite

1. Introduction

filtering and preference-based ranking. To enable collaborative service feature
modeling, the SFM designer interacts with the collaboration server. This sever
stores models that multiple stakeholders work on, composes these models on de-
mand, and coordinates stakeholders’ activities to edit them. A valuation server
exposes the preference-based ranking method to select variants of an SFM. It
transfers given SFMs to evaluations which are made accessible to diverse stake-
holders on a interaction platform. The interaction platform provides a graphical
interface where stakeholders state their preferences regarding service variants
using the evaluations. In combination with the valuation server, a stakeholder’s
preferred service variant can thus be determined.

The tools are combinable to form concrete systems, which can be utilized in spe-
cific application scenarios. For that purpose, the tools denote service interfaces
to enable their flexible composition. The result is a modular architecture where
parts can be used independently. Additionally, the architecture can be extended
to fulfill so-far unforeseen needs.

1.5. Structure of this Dissertation

Chapter 2 introduces terms and concepts relevant throughout this thesis, in-
cluding a service concept and life-cycle model, and concepts related to variants
and variability. The chapter also provides an overview of the service feature
modeling methodology. The first chapter thus acts as a basis for the remainder
of this dissertation.

Chapter 3 describes this work’s contributions with regard to modeling soft-
ware service variants. It introduces feature modeling, upon which our approach
builds, and the extensions denoting the service feature modeling language. Its
modeling elements refer back to the variability concepts introduced in chap-
ter 2. The modeling chapter further discusses the process for creating service
feature models, both for individuals as well as through composing SFMs from
services. At the end, the chapter presents related work on modeling software
service variants before concluding with a discussion.

Chapter 4 presents methods to use SFMs to select software service variants. Ini-
tially, an overview of the usage process, combining the multiple usage methods
introduced by this work, is presented. The methods are discussed individu-
ally in the following sections, including the configuration set determination, the
requirements filter, the preference-based ranking and skyline filter. As in the
previous chapter, at the end, related work on selecting software service variants
is presented, followed by a discussion.

20

1.5. Structure of this Dissertation

Chapter 5 presents the evaluation of service feature modeling, consisting of mul-
tiple parts. Initially, the proof-of-concept implementation is described, which
shows the realizability of all methods presented in this dissertation and acts as
a basis for further evaluations. Based on the proof-of-concept implementation,
a performance evaluation presents the applicability of the usage methods to dif-
ferently sized SFMs. Two use cases are presented, showing how service feature
modeling was applied to realistic scenarios. Finally, an empirical evaluation
based on one of the use cases is presented.

Chapter 6 completes this thesis by summing up and discussing the previous
chapters. The chapter further provides an outlook to future work extending
service feature modeling.

The reader should start with the fundamentals chapter 2, which provides a ba-
sis for understanding the subsequent chapters. Chapter 3 about modeling and
chapter 4 about using SFMs can theoretically be read independently from an-
other or in reverse order. Some usage methods presented in chapter 4, though,
are enabled only by modeling elements presented as part of the service feature
modeling language in chapter 3. For the convenience of readers who skipped
chapter 3, corresponding cross-references are provided. The evaluation in chap-
ter 5 and the conclusion in chapter 6 build upon the previous chapters and
should thus only be read subsequently.

21

2. Concepts and Methodology

In this chapter, we present the concepts fundamental to this thesis and the
methodology underlying service feature modeling. This thesis’ service concept
differentiates between generic services and software services as discussed in sec-
tion 2.1. An important part of service feature modeling’s methodology is the
service life-cycle model, building upon the priorly defined service concept, pre-
sented in section 2.2. It enables to define when, how, and by whom service
feature modeling is utilized. The model is applied to describe the development
and delivery of software services with variants and used throughout this thesis
to describe and classify presented methods in a coherent way. In section 2.3, we
present concepts and a discussion of service variants. In section 2.4, we outline
the general purpose of modeling approaches in software and service engineering
and present the generic modeling process. Building upon this generic version,
we introduce service feature modeling’s methodology in section 2.5.

2.1. Service Concept

Within this section we define in detail our understanding of service and re-
lated concepts, which builds upon our previous work [WF13]. This section thus
provides the fundamental understanding and vocabulary used throughout this
thesis. The term service has gained a lot of attention in the last years. Because
of its generality and broad adoption, the understanding of the term depends on
the point of view and context. To depict which services are targeted by service
feature modeling, we discuss relevant service characteristics in this section.

2.1.1. Generic Services

Various generic service definitions have been proposed. For example, the World
Wide Web consortium (W3C) defines a service, generically, as “[...] an abstract
resource that represents a capability of performing tasks that form a coherent
functionality from the point of view of providers entities and requesters entities.
To be used, a service must be realized by a concrete provider agent.” [W3C04].
Or, from a business perspective, services denote “[...] activities provided by

23

2. Concepts and Methodology

a service provider to a service consumer to create value for a service con-
sumer” [CVW09, page 17]. The field of service science, which sets out to re-
consider nowadays economic activities under the umbrella of services, defines a
service as “[...] the application of competences for the benefit of another, mean-
ing that service is a kind of action, performance, or promise that’s exchanged for
value between provider and client.” [SMBG07, page 72]. In their generic nature,
these definitions aim to incorporate the diverse views upon services. The range
of disciplines involved in generic services is very broad, including for example
computer science, operations research, economics and law, industrial engineer-
ing, or even urban planning [Spo08]. The attempt to accommodate all these
fields rises the risk of service definitions to become meaningless. They do nei-
ther clearly delimit what services are, nor do they capture all characteristics of
the diverse types of existing services. In consequence, we will not attempt to
provide a concise service definition. Rather, in this section we will present those
characteristics common to different kinds of services that influenced the creation
of service feature modeling.

The range of definitions from different disciplines illustrates themultidisciplinary
nature of service engineering for generic services. We perceive service engineering
to be the systematic application of methods and tools for the development and
delivery of a service. The diversity of involved stakeholders creates the need
for methods and tools that foster these stakeholders’ collaboration in service
engineering.

The above definitions emphasize a universal characteristic of a service, namely
the involved roles. Services involve the service provider and the service con-
sumer. Generically, the service provider performs activities for the sake of the
service consumer. In return, the service consumer compensates the service
provider, for example in form of payments. Some authors identify additional
roles, like service creator in cloud computing [IBM11] or the service broker in
Web services [BD06]. However, because these roles might only be sensible in cer-
tain service contexts, we concentrate on the two fundamental roles of provider
(who is also assumed to have developed the service) and consumer.

Considering services as activities reveals their procedural nature. Services take
an input, often provided by the consumer in the form of information or physical
goods and transform it. Correspondingly, procedural methods and tools, for
example work flow models based on the Business Process Model and Notation
(BMPN) [BPM10], can be used in designing and operating services.

Services enable consumption on-demand. Service consumers can invoke a ser-
vice (only) when they actually need them. This service characteristic induces
flexibility. If the need for a service does not occur, no consumption occurs, and
correspondingly no efforts and cost arise.

24

2.1. Service Concept

Services also denote a pay per use model. The amount that the consumer has
to reimburse to the provider depends on the number and type of service invo-
cations. This characteristic creates potential for cost savings. The consumer
can adapt his consumption in reaction to changing requirements. If the demand
for an activity is high, consumption can be increased (given sufficient services
are provided). If the demand for an activity is low, consumption can be de-
creased, avoiding under-utilization of related resources. The advantage of this
characteristic becomes especially clear when a service is used in compensation of
otherwise required self-fulfillment. For example, in cloud computing, consumers
use resources as they need them instead of having to acquire them upfront (i.e.,
in form of physical hardware) and risking to over- or under-utilize them. Here,
the pay-per-use model creates cost savings 1) by avoiding initial acquisition cost
(please note: the service consumption, however, likely induces set-up costs) and
2) by avoiding opportunity costs in case of under-utilization and loss in case of
over-utilization, which leads eventually to the breakdown of operation.

2.1.2. Software Services

Having presented fundamental characteristics of generic services in section 2.1.1,
we here focus on software services. Software services denote an increasing im-
portance in nowadays service delivery (cf. chapter 1). The development and
delivery of software services involves the utilization of software engineering tech-
niques, from which service feature modeling stems. Software services are thus an
ideal context for the utilization of service feature modeling. We define software
services in the following way:

Definition 1. A software service is a deployed capability that is realized by
software and consumed / provided on-demand over networks.

This conceptual view of software services is illustrated in figure 2.1. Software
depicts the implementation of a capability to be provided as a service. This
software artifact contains the implementation or specification of interfaces. The
interfaces are, however, not accessible before the software is deployed as a service.
The provided capability may be an application, a platform or even infrastructure.
Required is only that these capabilities are realized by software. Our definition
does thus not correspond to definitions that consider software services to be equal
to the concept of Software as a Service (SaaS) solely. To our understanding,
SaaS covers only software on the application level, which is provided to end-
users [LKN+09].

Through deployment, the capability is made accessible to consumers, transform-
ing software into a software service. Technically, through deployment the soft-
ware is packed (for example, within a Java ARchive (JAR) or an image) and

25

2. Concepts and Methodology

Execution environment

Software

= interface = exposed interface
Key:

Figure 2.1.: Software service concept, based on [WF13]

loaded into an execution environment. An execution environment is software
that enables the execution of, in this case, services [UML11]. Exemplary execu-
tion environments are an operating system, a Web server, or a virtual machine.
The interfaces defined as part of the software are exposed and thus made acces-
sible to consumers by the execution environment. Furthermore, deployment can
be recursive, as indicated in figure 2.1 by the round arrow. For example, a Web
service can be packed as a JAR and deployed to a Web server, for example a
Tomcat server. The Web server, again, can then be packed in an image and de-
ployed to a virtual machine. The necessity of software services to be deployed is
important to differentiate them from classical software products. The latter are
typically sold using a license-model, whereas deployment by the provider implies
service characteristics like consumption on-demand and pay-per-use billing (cf.
section 2.1.1). The provision over networks is a logical consequence of software
services being deployed by the provider.

Given our definition, software services denote a set of characteristics that do
not necessarily hold for generic services. Due to the provisioning over networks
in combination with the ubiquitous Web, software services can (theoretically)
be accessed globally. Constraints to this capability are legal frameworks or
technical limitations (for example, regarding high latencies for distantly deployed
services). In contrast to traditional software products, software service updates
can much easier be rolled out because the service provider (who we assume to be
also the service developer) controls the deployment and can thus simultaneously
update the service for all consumers.

Various types of software services exist that we want to introduce in the fol-
lowing. These types are neither mutually exclusive nor do they collectively
exhaustive cover software services. Rather, they address different service as-
pects, for example, their deployment environment or their interfaces. Thus, the
following definitions cannot be used for clear classification of software services,
but exemplify the changing paradigms and concerns in services computing.

26

2.2. Software Service Life-Cycle Model

The field of service-oriented computing deals with Web services. Web services
denote software that provides interoperable machine-to-machine interaction over
a network [W3C04]. We denote Web services to be a more specific type of
software services in that the network they are provided over is the Internet.
Atomar Web services provide a single functionality, whereas composite services
make use of Web service’s interoperability by composing them. Web service
compositions are commonly captured in business process notations, such as the
Business Process Execution Language (BPEL) [BPE07] or the Business Process
Model and Notation (BPMN) [BPM10]. Composite Web services can, again,
be offered as a service, making composition a recursive operation [CKM+03].
While its definition is rather broad (it includes, for example, cloud services as
described below), the term Web services is nowadays closely related with the
usage of technologies from the Web services stack [Wee08]. For example, we
term software services as Web services if they are made available using SOAP /
WSDL.

Another type of of software services are cloud services. Cloud computing is about
on-demand provisioning of scalable, abstracted IT infrastructures, platforms and
applications with a pay-per-use model [BKNT11]. Within Cloud computing, dif-
ferent service classes can be distinguished [LKN+09]: Infrastructure as a Service
(IaaS) provides virtualized hardware to consumers (cf. section 1.1.3). Typical
examples of IaaS include compute or storage services. Infrastructure as a Ser-
vice can thus be used to deploy other services on, for example Web services as
described above. Platform as a Service (PaaS) provides integrated development
environments on top of virtualized hardware. For example, Google’s App Engine
runs various runtime environments and libraries on top of their infrastructure
whose APIs developers can use for building applications [Goo]. Software as a
Service provides applications to end users (instead of to developers). Other,
less commonly used, classes of Cloud services include, for example, Human as a
Service (HuaaS) [LKN+09], or Database as a Service (DBaaS) [PC12].

2.2. Software Service Life-Cycle Model

Service life-cycle models typically define phases that a service goes through from
its earliest conceptualization to its shutdown. The goal of such models is to pro-
vide an overview and order of the relevant activities for developing and delivering
a service. Within this thesis, a software service life-cycle model is used to discuss
when service feature modeling can be applied, by whom, and for what purpose.
The life-cycle focuses on engineering activities only. Other activities, concerning
for example customer relationship management, marketing, or sales, are left out

27

2. Concepts and Methodology

of the model to keep it focused. The presented life-cycle model builds upon and
extends the one presented in our previous work [WF13].

2.2.1. Software Life-Cycle Models

Software life-cycle models (also known as software process models) have been
guiding the practice in the software engineering domain for decades. Software
life-cycle models define related activities that lead to the production of a software
product [Som11]. These models typically split a life-cycle into phases like speci-
fication, design and implementation, validation, and evolution. Sequential, non-
iterative descriptions of software development processes, often referred to as wa-
terfall models, were first formally described in the 1970ies [Roy70]. Rather than
recommending how software development processes should look like, sequential
approaches presented observed (mal-) practice. On the other hand, recommend-
ing approaches commonly depict iterative structures. They foresee that life-
cycle phases are repeatedly entered to refine software or continuously improve
and adapt it. For example, the correspondingly named spiral model [Boe88]
is cyclic in nature. The rational unified process (RUP) includes three perspec-
tives on software development [Kru04]. The dynamic perspective defines four
distinct phases. Each phase as well as the overall process can be iterated. The
static perspective defines the activities performed during the development pro-
cess, denoted in RUP as work flows. By separating phases from work flows, it
is compliant with the RUP to perform work flows during any phase, making the
model very flexible and capturing the realities of modern development methods,
for example agile development [DD09]. Finally, the RUP’s practice perspective
describes six recommended software engineering practices.

While software life-cycle models indicate phases relevant also for services (es-
pecially software services), they do not embrace service characteristics (cf. sec-
tion 2.1) sufficiently to be seamlessly reused in that context. Software life-cycle
models are used by developers and focus on the development of software prod-
ucts. In services, the consumer’s activities should also be considered. Moreover,
in services the provider does not only have to develop, but also to deploy and
operate the service. Life-cycle models suited for services need to consider these
activities.

2.2.2. Service Life-Cycle Models

While the presented software life-cycle models focus on engineering tasks, ser-
vice life-cycle models are more diverse in nature as they address different types
of services and have a different scope. Life-cycle models in the context of IT

28

2.2. Software Service Life-Cycle Model

governance of service-oriented architectures (SOA) include the introduction and
enforcement of company-wide policies for adopting and operating SOA [JNS11].
Thus, they denote a holistic view upon services and related activities. For exam-
ple, the SOA service life-cycle management approach presented by IBM includes
people, processes, and technology [McB]. In the context of IT service manage-
ment, the service life-cycle defined in the Information Technology Infrastructure
Library (ITIL) encompasses the phases service design, transition, and operation
as well as a variety of related processes [ITI07]. Other models focus more clearly
on software service engineering. For example, the Web service development life
cycle denotes a methodology to foster analysis, change, and evolution of Web ser-
vices [PVDH06]. It’s phases includes planning, analysis and design, construction
and testing, provisioning, deployment, and execution and monitoring. Or, the
integrated life-cycle for IT services in a cloud environment covers the five phases
requirements, discovery, negotiation, orchestration, and consumption and mon-
itoring [JFY09]. These phases are performed iteratively and imply sub-phases
with activities for both providers and consumers.

Evaluating the presented approaches, we notice some drawbacks:

Mixing of different concerns: The plethora of models from IT governance
and management (e.g., [ITI07, McB, OBB+09]) provide a very holistic
view that encompasses also organizational aspects. In contrast, we aim to
provide a model that focuses on engineering-related aspects of providing
and consuming services.

Rigid order of activities: Service life-cycle models are based on ordered
phases, which imply corresponding activities to be performed in this or-
der as well (e.g. [JFY09]). In the case of sequential phases, corresponding
activities can also only be performed sequentially. This neglects the con-
current and dynamic order of activities in real life service engineering.
For example, design and implementation activities are inseparable in agile
development and evolve iteratively [DD09], which we aim to be able to
express with our life-cycle model.

Coupling activities with service status: Life-cycle phases imply a (single)
status in which a subject, in this case the service, is in at any given time.
Correspondingly, in service life-cycle model that couple status to activities
(e.g., [McB]), only activities related to this status can be performed. This
capability has advantages when it comes to prescribing activities. On the
other hand, this coupling delimits flexibility to describe that many activ-
ities can be performed independent of the service’s status. For example,
while a service’s status is deployed, providers and consumers may perform
design activities to evolve the service or, respectively, plan its consumption.

29

2. Concepts and Methodology

We aim to describe the usage of service feature modeling with our life-cycle
model and thus avoid coupling of activities with the service status.

Implied longevity of service phases: The term “phase” used in many life-
cycle models (e.g., [Som11, Boe88, ITI07]) implies that a service remains
in a corresponding status for long time. However, what is described as a
phase in service life-cycle models may in reality only be short-lived. For
example, deploying a software service on Cloud infrastructure in many
cases only takes a few seconds (i.e., it is a matter of a single command).

To avoid these pitfalls and provide a precise wording, we define our own service
life-cycle model in the following.

2.2.3. Our Software Service Life-Cycle

The software service life-cycle used in this thesis is influenced by approaches
from software engineering, especially the rational unified process, and (Web)
service engineering. It assumes an engineering-centric view on software services,
leaving out aspects concerning, for example, organizational operation, strategy,
marketing, or controlling. In our model we differentiate 1) two status, 2) five
activities performed by providers and consumers, and 3) the two roles involved
in services. Corresponding with the characteristic roles in services (cf. sec-
tion 2.1.1), we differentiate providers and consumers. In the following, we offer
a more detailed description of the status and activities in consideration of the
two roles.

Status

The two status a service can be in are offline and deployed. While a service is
offline, it is not yet deployed and can therefore not be consumed. For example, a
service might still be in development before being initially deployed. Both status
can be further divided into sub-status. For example, while offline, a service may
be in development or testing, it can be deployed for testing or production, it can
be temporarily unavailable due to maintenance, or even discontinued. However,
because a further differentiation does not add to the fundamental propositions
of our life-cycle model, we only focus on the two presented status. The two
status are mutually exclusive, i.e. a service may only be in one of them at a
given time. The consideration of a service’s status is relevant in software service
engineering because it has impact on how activities are performed. For example,
changing a deployed service requires deployment activities to be performed to
ensure continuous service availability. A service’s status is global in that it
affects both provider and consumer activities.

30

2.2. Software Service Life-Cycle Model

Activities

We further differentiate five types of activities, namely specification, design, im-
plementation, deployment, and operation. Figure 2.2 illustrates how the dimen-
sions status and activities relate to the software service concept introduced in
section 2.1.2. The gray arrows indicate activities on the service. While the ser-

Software
(status: offline)

Execution environment

Software
(status: deployed)

Specification,
design,

implementation

Specification,
design,

implementation,
deployment,

operation

Deployment

= interface = exposed interface
Key:

Figure 2.2.: Relation of status and activities to the software service concept,
based on [WF13]

vice is offline, specification, design, implementation activities can be performed.
Deployment activities lead to a transition to the deployed status. While the
service is in deployed status, any activities can be performed. Thus, except
from operation activities, which are not possible while the service is offline, any
activity can be performed at either service status. Performing undeployment
transfers the software service back into the offline status. We perceive undeploy-
ment to be one of the deployment activities (compare figure 2.3), which explains
the double arrow.

It is important to note that activities are generally not determined by the ser-
vice’s status. This characteristic of our model allows it, for example, to depict
that a consumer performs design time activities while a service is deployed,
which is only unintuitively possible in existing life-cycle models. Furthermore,
while there is a typical sequence of the type of activities, their timely occurrence
can be switched or can overlap. For example, considering agile software develop-
ment methods, design and implementation activities can be concurrent. When
activities occur and whether they overlap depends on the methods used in them
and on the type of service. For example, when applying participatory design
methods, providers and consumers perform design activities. It has to be noted
that not all activities must be pursued when developing or delivering a service.
Their individual utilization depends on the type of service and on the context.

31

2. Concepts and Methodology

An overview of the types of activities and their typical sequence is provided in
figure 2.3. In the following, we will describe the activities in detail.

Consumer
- Feasibility study
- Requirements analysis,
specification, & validation
- Identify service
candidates

Provider
- Feasibility study
- Requirements analysis,
specification, & validation

Specification

Consumer
- Select service
- Conceptualize
consumption
- Participate in provider's
design

Provider
- Define service concept
(e.g., ontology, workflows,
architecture, components,
interfaces)

Design

Consumer
- Implement client
- Integrate service (e.g.,
migrate data)

Provider
- Implement software
- Test & validate software

Implementation

Consumer Provider
- Deploy software
- Undeploy service
- Redeploy service

Deployment

Consumer
- Invoke service
- Monitor operation (QoS)
- Terminate consumption

Provider
- Customer support
- Monitor & maintain
service
- Ensure QoS
- Discontinue service

Operation

Figure 2.3.: Overview of providers’ and consumers’ activities throughout service
life-cycle and their typical sequence [WF13]

Similar to software engineering [Som11, page 36], specification activities for
services aim to define requirements and constraints on the service provision or
consumption. Both, providers and consumers check the technical and business-
related feasibility of offering / consuming the service and perform requirements
analysis, specification, and validation. In these activities, providers will focus on
the realizability of a service, while consumers will, for example, analyze whether
to consume a service vs. in-house realization. Consumers also perform a ser-
vice candidate identification in cohesion with the feasibility and requirements
activities. The service candidate identification allows them to assess the general
applicability of service consumption to fulfill the required functionalities.

Using design activities, service providers conceptualize the service and how
it will be provided. For software services, design activities match largely those
performed in software design. They include the description of the service’s ar-
chitecture, components, data models, interfaces, or algorithms [Som11, page 38].
In contrast to software design, software service design further includes design of
service interfaces, deployment, and operation methods and tools (for example,
how to monitor or maintain the service). Consumers’ design activities aim to
plan and conceptualize service consumption. Based on requirements, prefer-
ences, and/or optimizable goals (for example, cost) and the identified service
candidates, service selection is performed. The consumers’ design activities also

32

2.2. Software Service Life-Cycle Model

include the conceptualization of how the service will be used. Required changes
to existing systems that will interact with the service need to be determined.
New interfaces or even systems to work with the service are conceptualized. A
special case is participatory service design, where consumers participate in the
design activities usually fulfilled solely by providers. In an exemplary use case
from the public services domain, opinions of citizens (i.e., public service con-
sumers) expressed in Web 2.0 media and their explicit statements regarding the
service design are considered [KKP+12].

Implementation activities of the service providers aim to realize the service
based on the priorly defined design. In the case of software services, implementa-
tion includes the development of the software artifact, its testing and validation.
Depending on the utilized implementation methodology, the activities’ order
may differ. For example, test-driven development starts with defining tests be-
fore actually implementing. From the consumers’ point of view, the envisioned
service consumption must be realized. Contracting must be performed with the
provider, specifying for example the service’s price or service level agreements
(SLAs). In the case of software services, the consumers’ implementation activ-
ities also include the creation of client components. Integration efforts may be
required to utilize a new service with existing services or systems. When utiliz-
ing services to host systems or data, for example cloud infrastructure services,
their migration is required [MR12].

Deployment activities aim to transfer the service implementation to a de-
ployed status. Exemplary deployment activities include the packaging of soft-
ware artifacts and loading them to execution environments. We differentiate
deployment activities from implementation activities because they do not neces-
sarily co-occur. For example, recurring deployment of once implemented cloud
services is a common approach to realize horizontal scalability [BKNT11, page
2]. Prevalent deployment approaches are manual, script-based, language-based,
or model-based ones [TMW+05]. The deployment of services is performed by
service providers alone. For this statement to hold, the service that the life-
cycle model describes and the role of stakeholders regarding that service are
fundamental. For example, if the life-cycle model is applied to an IaaS offer,
deployment activities concern the provider’s setting up of the IaaS, including
the installation and configuration of hardware and hypervisors for virtual ma-
chines to run on. When an IaaS consumer rents a virtual machine from the
IaaS and loads an image on top of it, this is an operation activity (=invoke
service) regarding the IaaS itself. The IaaS might be used by the consumer to
host another service - when applying the life-cycle service to this other service,
the renting of a VM and loading an image on top of it may be deployment activ-
ities. In this case, however, the IaaS consumer acts as the provider of the other
service. In consequence, in our model, deployment activities are only performed
by providers.

33

2. Concepts and Methodology

Operation activities of providers aim to ensure ongoing service provision con-
sidering targeted quality of service (QoS) properties. Providers maintain the
service, reacting for example to errors, changing numbers of requests and re-
sulting performance impacts, or adaptation needs. A typical approach to detect
the need for such interventions is monitoring. For example, based on the mon-
itored development of demand, scaling might be required to cope with rising
numbers of requests or, reversely, to remove sparse resources when the num-
ber of requests declines. Additionally, customer support needs to be provided.
When the provider decides to discontinue the service provision, corresponding
activities, for example data retrieval or consumer notification, may be required.
Consumers’ operation activities include, foremost, the actual invocation of the
service. Consumers may additionally perform activities to ensure smooth con-
sumption, for example by monitoring the service. When terminating consump-
tion, consumers may have to retrieve their data or actively dissolute running
contracts.

Example

Figure 2.4 shows the service’s status and activities performed by a provider and
consumer in dependence of time for an exemplary service.

Status

Provider activities

Consumer activities

Offline Deployed

Spec. Design
Impl.

Deploy. Operation

Spec. Design Impl. Operation

time

Impl. Deploy.

Spec. Design

t=0 t=2t=1 t=3 t=4 t=6t=5 t=7

Figure 2.4.: Example of our service life-cycle model

At t=0, the service provider starts with specification activities. Subsequently,
at t=1, embracing agile development techniques, the provider simultaneously
performs design and implementation activities. Using the implementation, in
t=2 deployment activities are initiated which result in t=3 in an operating ser-
vice, thus the service status changes to deployed. The provider, from now on,
performs operation activities. At t=4, the consumer initializes his consumption
process with specification activities, followed by design and implementation ac-
tivities and eventually the service operation activities. At t=5, the consumer

34

2.2. Software Service Life-Cycle Model

again performs specification and design activities, leading for example to an
adaptation of the service consumption. At t=6, the provider also begins new
design and implementation activities, resulting finally in a (re-) deployment of
the service in t=7. In this example, the service never leaves the deployed status,
while diverse activities are repeatedly performed, some of them concurrently and
not necessarily in a predetermined order.

Derived Service Concept Definitions

Based on our service life-cycle model, we define further terms associated with
services. First, we define service development in the following way:

Definition 2. Service development encompasses a service provider’s specifica-
tion, design, and implementation activities.

Next, we define service provision in the following way:

Definition 3. Service provision encompasses a service provider’s 1) deployment
and operation activities of a service in general, and 2) operation activities in
reaction to a service request.

Service provision thus depends on a priorly created service as the subject for
deployment and operation. This definition allows us to explicit reveal the dif-
ferentiation between software services and software components: the latter are
provisioned by their user (i.e., the consumer).

Similar to provision, we define service consumption in the following way:

Definition 4. Service consumption encompasses a service consumer’s 1) ac-
tivities of all kind throughout the service life-cycle, and 2) operation activities
concerned with a service request.

Finally, we define service delivery in the following way:

Definition 5. Service delivery encompasses a service provider’s and consumer’s
operation activities concerned with a service request.

This notion corresponds to the idea that value in service delivery depends on
co-creation, thus including providers and consumers [VMA08]. Note that the
provider’s part in service delivery can also be denoted as service provision and
the consumer’s part in service delivery can be denoted as service consumption
based on definitions 3 and 4.

35

2. Concepts and Methodology

2.3. Service Variants and Variability

In this section we aim to define our understanding of service variant and service
variability. Again, the terms introduced here will provide the foundation for
subsequent chapters. Furthermore, this section will allow us to classify this
work within and delimit it from related work.

We define service variability in the following way, based on the definitions given
in [BC05, MHGA13] and making use of our definitions of service development
and delivery in section 2.2.3:

Definition 6. Service variability is the ability of a service for a specific context
to be developed or delivered in one of multiple preplanned ways.

We consider service variability to affect both service status, namely offline and
deployed. In contrast to our definition, the definitions found in [BC05, MHGA13]
focus solely on the adaptation of services. They neglect service variability that
is dealt with in development activities while the service is offline.

Having defined the concept of service variability, we denote the subject it is
applied to, a variable service, in the following way:

Definition 7. A variable service is a service that denotes service variability.

Thus, a variable service can, for a specific context, be consumed or provided in
one of multiple preplanned ways or it can be adapted in a pre-planned manner.

Finally, we define service variant within this thesis in the following way:

Definition 8. Service variants are alternative instances of a variable service’s
design, implementation, deployment, or operation.

Variants should not be confused with versions (also referred to as revisions
[CSFP04]). Variants exist in parallel, while versions are ordered variants over
time [ABKS13]. Thus, versions refer to different states in the evolution of soft-
ware, so that version management is sometimes subsumed as part of change
management [Som11]. Following our definition, service variants may result from
different development activities and can thus also be referred to as versions,
which is also proposed in related work [CW98]. In contrast, however, a ser-
vice that exists in multiple versions does not denote variants if these versions
are not made accessible in parallel. In version management, the concept of
branches exist, which are copies of the same artifact that are maintained sep-
arately from another [CSFP04]. In the case that branches exist in parallel, it
is feasible to denote them as variants [ABKS13]. Consequently, version control

36

2.3. Service Variants and Variability

for software that denotes variability and the related field of software configura-
tion management (SCM) is a topic of research, addressing questions like if it is
necessary to introduce new versions of every variant if their common variation
point changes [BLP04]. Research on the relationship between versions and vari-
ants and their evolution, however, is out of scope of this thesis. Summarizing,
versions may be denoted as variants and variants may be denoted as versions -
the important question to ask is whether they are created to exist in parallel or
not.

Another important differentiation concerns variability and agile development
methods. Agile development methods were developed in response to traditional
engineering methods, which incorporate extensive planning, especially with re-
gards to defining requirements before implementing software. Such traditional
approaches are infeasible in many scenarios because requirements only become
clear while using software and underly constant change [Som11, page 57]. In
consequence, agile methods aim for an adaptive, flexible, and responsive de-
velopment approach [DD09]. They apply an iterative development process, in
which requirements engineering and the design and implementation of software
are concurrent [Som11, page 63]. As a result, agile methods like extreme pro-
gramming allow developers to rapidly adapt software to changing requirements,
leading to the frequent release of new versions. The differentiation between ag-
ile development methods and variability is relevant, because they both address
the reaction to changes in context (cf. section 1.2). However, agile methods
address this but fostering a fast iteration of versions, while variability is about
the co-existence of variants. Thus, agile development methods do not address
scenarios where multiple consumer groups co-exist with different needs. Over-
all, agile methods and variability are not opposites of another but orthogonal
to another - agile methods may well be used when developing variable software
services. The exploration of such synergies, however, lies outside of the scope of
this thesis.

Variability of software services is a widely researched problem, also with regard
to our focus on intentionally implemented variability. The understanding of
variability and how it is addressed, however, differs. While the given definition
of service variability contributes to our understanding of the term, it is not
suitable to sufficiently classify service feature modeling or delimit it from other
service variability approaches. To obtain a clear understanding of the nature
of service variability and corresponding approaches, we address their individual
characteristics in the following subsections.

37

2. Concepts and Methodology

2.3.1. Origins of Service Variability

A fundamental differentiator of different types of service variability is the ques-
tion why it appears. In its general meaning, variability can occur on purpose or
by chance. These two kinds of service variability and the approaches addressing
them differ significantly.

Variability by chance is often considered an undesirable characteristic of a ser-
vice. For example, variability by chance denotes that the response time of a
Web service varies over time. Approaches addressing variability by chance aim
to measure or eliminate it to ensure a uniform service experience or to be com-
pliant with service level agreements. For example, existing related work in this
area aims to measure the volatility of cloud service performance [IYE11]. Vir-
tual machine provisioning policies are designed to reduce the variability of cloud
service performance [BSCB13]. Or, various approaches are researched that aim
to diminish the variability of large-scale Web services’ latency [DB13].

On the contrary, variability on purpose may be a desirable service character-
istic, as we already discussed in section 1.2. Summarizing, in development, it
allows for decision-making on alternative designs, fosters reuse of artifacts, and
can drive collaboration and participation. In delivery, it enables consumption of
requirements- and preferences-matching variants and to react to changes in con-
text. Many approaches aim to implement variability on purpose in a service. For
example, cloud services may offer customization to their consumers [MMLP09]
or Web services are provided in variants [NCH14].

In this thesis, we associate the term service variability with variability on pur-
pose. The occurrence of uncontrollable service variants, for example due to
changing response times, availability, or generally volatile QoS properties, is
excluded from our understanding of service variability.

2.3.2. Variability Subject

Variability can concern different variability subjects or parts of subjects. A
variability subject is “[...] a variable item of the real world or a variable property
of such an item” [PuFvdL05, page 60]. For each variability subject, multiple
variability objects exist. A variability object is “[...] a particular instance of a
variability subject” [PuFvdL05, page 60].

Variability that denotes a single service or property of a single service can be
denoted as intra-service variability. In composite services, which compose mul-
tiple (atomic) services (cf. section 2.1.2), the variability subject may also be the
composition itself. In this case, the variability object can be a specific work flow
instance. Such variability, affecting the interactions of multiple services, can be

38

2.3. Service Variants and Variability

denoted as inter-service variability. Inter-service variability also encompasses
the selection of a service among multiple candidates from the consumer point of
view.

Based on the here made definitions, we outline in detail the variability subject
represented by service feature models in section 3.2.1.

2.3.3. Affected Service Roles

As outlined in section 2.1.1, services include the roles of provider and consumer.
Service providers have to define and implement service variability and manage
it. On the other hand, consumers resolve service variability by choosing which
service variant should be implemented or which variant to consume. Consumers
define the context in which a service is utilized. This context influences which
service variant is consumed, affecting, for example, requirements for the quality
of service properties like security mechanisms or availability rates.

A more detailed breakdown of the providers’ and consumers’ activities with
regard to service variability results from the distinction of the different times
when it occurs.

2.3.4. Time of Occurrence

Software services undergo a life-cycle and induce diverse activities as presented in
section 2.2. Depending on the service status and the activities pursued, service
variability creates new challenges and corresponding activities, extending the
ones stated in section 2.2. Figure 2.5 illustrates typical service variability-related
activities for providers and consumers mapped to our life-cycle model.

During specification activities, providers identify the need for service variability,
for example during the requirements analysis. Reasons may include diverse con-
sumer groups or the need to provide multiple access channels. Simultaneously,
the consumer may consider offered service variability in the service candidate
identification.

During design activities, service providers conceptualize which service variants
to provide. They define a set of variants and iteratively expand it or narrow
it down. When using participatory design methods, consumers can be involved
in these activities [HJR+10]. Consumers, during their design activities, resolve
service variability by determining which variant to consume. This process re-
quires matchmaking of requirements and preferences with the service variants’
capabilities.

39

2. Concepts and Methodology

Consumer
- Consider impact of
variability on service
consumption

Provider
- Assess feasibility of
providing service variability

Specification

Consumer
- Select service,
considering variability
- Select service variant
(e.g., by configuration)
- Compose service variants

Provider
- Define & assess variants
(e.g., utilizing modeling)
- Select variant(s) to
provide

Design

Consumer
- Implement variant-
specific interfaces

Provider
- Implement variants to
provide (to any consumer)
- Implement consumer-
specific variants
(customization)

Implementation

Consumer
- Monitor and assess
variant consumption
- Switch to consume other
variant
- Trigger service adoption

Provider
- Adapt service on demand

Operation

Consumer Provider
- (Re-) deploy selected
variant

Deployment

Figure 2.5.: Service variability-related provider and consumer activities through-
out the service life-cycle [WF13]

Service providers develop service variants during the implementation activities.
Either, the designed service variants are implemented as individual services, or
mechanisms are implemented allowing to transition between variants based on
deployment or operation activities (cf. section 2.3.5). Simultaneously, consumers
perform implementation activities to consume individual variants or trigger the
transition between variants. For example, consumers implement an interface
to consume a specific service variant or a monitoring device that dynamically
triggers the consumption of a variant through re-deployment.

The deployment activities regarding service variability are performed by providers
and aim to deploy a (set of) service variant(s). The variant(s) to deploy can
either result from prior implementation activities or can be determined by con-
sumers. Deployment activities regarding service variability can also include the
re-deployment of services or variants, again, potentially on consumer request.

Operation activities regarding service variability concern both providers and
consumers. For providers, they include the transition between service variants
utilizing priorly implemented mechanisms. Also, the providers’ generic operation
activities are affected by service variability: support, monitoring, and mainte-
nance must address the provided variant(s). For consumers, operation activities
include the monitoring of the consumption. Eventually, consumers initiate the
consumption of a different variant or trigger adaptation if possible.

Summarizing, variants induce various new activities to be performed - for exam-

40

2.3. Service Variants and Variability

ple, providers need to implement, deploy and operate variants and consumers
need to select among them or switch them during operation. Other activities
(cf. figure 2.3) need adaptation or extension when considering variants. For
example, the providers’ assessment of feasibility of providing a service needs to
consider multiple variants instead of a single service. Variants overall introduce
new or adapt existing activities, thus emphasizing the need for methods and
tools to efficiently support these activities.

2.3.5. Realization of Variability

A plethora of approaches exists to realize service variability, sometimes referred
to as variability mechanisms [SD07]. In this section, we cannot conclusively
present all realization approaches. Rather, we aim to present an overview of and
discuss typical approaches. Consolidated characteristics of these approaches are
presented in table 2.1.

Multiple approaches model service variability. Modeling service variability is a
design activity. Service variability models aim to define and communicate service
variability. They are used by providers as a basis for implementation or deploy-
ment activities or by consumers to select variants in specification, design, or op-
eration activities. Thus, modeling is integral part of multiple other service vari-
ability realization approaches and is consequently considered here. Exemplary
approaches capture variability in work flow models. For example, the “Provop”
approach allows users to specify options on a basic process model [HBR10].
These options allow modelers to alter the work flow model to derive a process
variant by deletion, insertion, moving, or modification operations on process
elements. Or, variability modeling approaches from software engineering are
commonly used to represent variability. For example, feature models can be
used to represent variability of Web services with regard to their composition
and their intra-service variability [NCH11]. Feature models are also used to
represent the configuration options that cloud services offer [SMML12].

Customization aims to provide a service that matches requirements and pref-
erences of an individual consumer or a subset of consumers. Customization
can include all activities defined in our life-cycle model. For example, a service
that meets consumer requirements can be designed, implemented, deployed, and
operated. Customization involves both service providers and consumers (who
accompany the service provisioning, stating for example requirements or as-
sessing implementations). An advantage of customization is a high degree of
flexibility because providers and consumers can closely work together to deliver
a tailored software service. However, customization also induces the risk for the
providers to deal with redundant implementations, which complicates testing
and maintenance and easily causes inconsistencies.

41

2. Concepts and Methodology

Realization
approach

Involved
life-cycle
activities

Involved
roles

Goals

Modeling
service vari-
ants

Design Provider,
consumer

Capture, assess, select, com-
municate variants, provide in-
put for implementation, de-
ployment, and operation

Customization Specification,
design, im-
plemen-
tation,
deployment,
operation

Provider,
consumer

Develop and provide a service
variant that meets individual
consumer’s requirements and
preferences

Configuration Deployment,
operation

Provider,
consumer

Determine a service variant
through the provision of infor-
mation

Deployment Deployment Provider Provide requested service
variant

Adaptation Operation Provider Transition between variants
during delivery

Service selec-
tion

Design Consumer Determine service that best
fulfills consumer needs

Composition Operation Consumer Determine how a set of ser-
vices collectively best fulfills
consumer needs

Table 2.1.: Overview of service variability realization approaches

Configuration aims to determine a service variant through “[...] setting pre-
defined parameters, or leveraging tools to change application functions within
pre-defined scope” [SZG+08]. In contrast to customization, configuration does
not require to change the service’s implementation [SZG+08]. The actual re-
alization of a configuration by a variant can be based on adaptation or re-
deployment mechanisms. Providers perform configuration in deployment or op-
eration activities to define how their service will be provided, for example by
stating deployment parameters. Providers also pass on configuration options to
their consumers. Consumers provide configuration information, triggering, for
example, the re-deployment of a service. For example, cloud infrastructure ser-
vices typically allow consumers in a design activity to configure firewall settings
or the preferred pricing scheme [Ama] (cf. section 1.1.3). Or, in Software-
as-a-Service (SaaS), multi-tenancy allows multiple consumers to be served by
configured variants of the same service without conflicts or mutual insights in

42

2.3. Service Variants and Variability

their data [BKNT11, MMLP09]. A configurable service is capable of taking a
configuration, i.e. the set of information about pre-determined parameters, as
input and providing a corresponding service variant.

Deployment activities realize variability by deploying multiple service variants
in parallel. A major disadvantage of this approach is that operation activi-
ties, for example maintenance, monitoring, or scaling, must be performed for
multiple variants instead of a single service. Alternatively, redeployment can
realize service variability. For example, VMs hosted by IaaS can be rede-
ployed in differently located data centers in reaction to monitored performance
changes [KZZL11]. Re-deployment is a viable approach to realize variability in
reaction to changes in a service’s configuration.

Adaptation is an operation activity provided by the service provider to transition
between service variants during service delivery. Adaptation mechanisms need
to be implemented and deployed to enable transitions. Three common classes of
adaptation approaches can be distinguished in software services, namely 1) dy-
namic aspect-oriented programming or delegation models, 2) fractal components,
and 3) implementation replacement [IFMW08]. The advantage of utilizing adap-
tation mechanisms instead of, for example, deploying multiple service variants in
parallel is that only a single service must be operated while realizing variability.
For example, while a service is in operation, the combination of model-driven
engineering and aspect-oriented development allows users to transition between
service variants that were defined in design activities [MBJ+09]. Adaptation is
often automatically triggered based on contextual change. For self-adaptive sys-
tems, for example, control loops are commonly used to collect information about
the system and its context and trigger adaptation if needed [DNGM+08].

Consumers perform service selection as a design activity performed by consumers
to chose a service that best fulfills their needs. To do so, consumers identify ser-
vice candidates and evaluate them, for example using matchmaking of require-
ments with the candidates’ capabilities. Selecting a service is an inter-service
variability approach rather than a distinct consumption, if, from the consumer’s
point of view, the service candidates are functionally equal. For example, Web
services, due to their standardized interface abstractions, can dynamically be
selected for every service request to optimize quality of service [ASR10]. Even
though this selection is performed while the candidate services are in operation,
we consider it a design activity because it is performed (immediately) before
service consumption.

Consumers perform composition as a design activity to determine how a set
of services collectively best fulfills their needs. The result of compositions are
composite services that fulfill complex functionalities. Variability in composi-
tion results from service selection approaches that bind multiple Web services
in a composition dynamically based on changing quality of service attributes,

43

2. Concepts and Methodology

for example, response time or availability [ASR10]. Also, variability in composi-
tions results from changing the underlying business processes, using for example
composition languages that are extended with variability elements [KaSSA09].

As seen, there are diverse software service variability realization approaches.
Many of these approaches involve different activities throughout the service life-
cycle. Typically, variability is specified in design activities, corresponding mech-
anisms are implemented, and the variability is resolved during consumer design
or operation activities. This observation underpins the importance of methods
and tools to represent service variants and select among them.

2.4. Fundamentals of Modeling

Modeling is at the core of service feature modeling. We thus outline charac-
teristics of modeling and present the generic modeling process. Based on this
discussion, we derive service feature modeling’s methodology in section 2.5.

2.4.1. Characteristics of Modeling

There is no, and cannot be, a generally approved definition of the term “model”
due to their omnipresence throughout human history and their resulting appear-
ance in the most diverse contexts [Lud03]. In this section, we focus on models
from the software and service engineering perspective. Even in this specific con-
text various definitions of the term model exist [MFBC10], but an absolute or
agreed on definition does not. In the following, we focus on relevant character-
istics of models.

An agreed upon characteristic of models is that they abstract from reality. They
present a less detailed view upon a real world entity (for example, a system),
making it thus possible to deal with its complexity [Sel03]. The same real entity
can be represented by different models focusing on different aspects. For exam-
ple, system modeling languages rely heavily on the Unified Modeling Language
(UML) [Obj]. Its various sub languages address the structure, behavior, and
architecture of systems, as well as business processes and data structures. In
software engineering, correspondingly, different models present different views
on a system [Som11, page 119]. A quality addressing the abstracting nature
of models is their accuracy. Useful models must “[...] provide a true-to-life
representation of the modeled system’s features of interest” [Sel03, page 22].

Another agreed upon characteristic of models is that they denote a purpose.
Their creation is driven having a goal in mind. Two generic classes of purpose can

44

2.4. Fundamentals of Modeling

be differentiated, namely models being descriptive or prescriptive [Lud03]. Mod-
els that change between these two purposes during their life-cycle are denoted
as transient. In software engineering, transient models are common [Hes06]. For
example, a class diagram is initially used to design a software and later is reused
for documentation.

Descriptive models do not intend to influence the real world entity they rep-
resent. A typical usage of descriptive models is the documentation of sys-
tems [Som11, page 120]. Due to their abstractive nature, models allow users to
focus on relevant aspects of a system. An important quality of descriptive mod-
els is their understandability. This characteristic is especially important when
documenting software because of the difficult to parse textual, syntactically com-
plex programming statements they are described in [Sel03]. Descriptive models
in consequence rely on graphical notations that ease their interpretation.

Prescriptive models intend to influence the real world entity they represent. In
software engineering, prescriptive models are typically used in requirements en-
gineering and design activities [Som11] (cf. section 2.2). Basing design activities
on models is useful because it allows modelers to “[...] better understand both a
complex problem and its potential solution before undertaking the expense end
effort of a full implementation” [Sel03, page 21]. For this argument to hold, pre-
scriptive models require to be inexpensive. Inexpensiveness is impacted on the
one hand by the complexity of the used modeling language and how its modeling
process is designed and on the other hand by the tools supporting modeling.

2.4.2. Generic Modeling Process

The generic modeling process is depicted in figure 2.6. It consists of three
activities, namely modeling, usage, and realization.

The basis for any modeling activities are either a real world system or the idea
of such a system. The modeling activity is the process of creating an abstract
representation of this system [Som11, page 119]. Depending on the modeler’s
goals, modeling will concentrate on certain aspects of the system, for example on
requirements, components, interfaces, or work flows. The aspects in focus will
influence which stakeholders are involved in the modeling process. For example,
modeling of requirements likely includes (input of) the intended users of the
system. Or, the definition of a system’s architecture includes the developer,
while business analysts might be concerned with specifying work flows. Modeling
in itself can play an important role in the design of a system because it requires
and ideally guides modelers to externalize their ideas about the system.

The created model is used corresponding to its purpose (cf. section 2.4.1). For
example, it provides basis to communicate and discuss aspects of a system or

45

2. Concepts and Methodology

(Idea of) system (Adapted) system

R
ea

l w
or

ld
R

ep
re

se
nt

at
io

n

M
od

el
in

g

R
ea

liz
at

io
n

Discuss / reason

Document
system

Model

Figure 2.6.: Generic process of modeling

to reason about them. The model can also be used to document an existing
system. A study finds that practitioners consider the four modeling purposes
1) database design and management, 2) business process documentation, 3) im-
provement of internal business processes, and 4) software development to be the
most important ones in software engineering [DGR+06].

Prescriptive models provide input for the realization or adaption of the system.
Models act as plans or blueprints for the system or provide input for (automatic)
realization methods. An exemplary method is model-driven engineering, where
artifacts (for example, software components) are synthesized from models using
transformation engines and generators [Sch06]. An advantage of this approach
is to ensure “[...] consistency between application implementations and analy-
sis information associated with functional and QoS requirements captured by
models.” [Sch06].

2.5. Methodology of Service Feature Modeling

Based on the fundamental characteristics of modeling and the generic modeling
process presented in section 2.4 we here provide an overview of service fea-
ture modeling’s goals and methodology. The outlined service feature modeling
methodology closely relates to the basic systems engineering process [Lev00]. In
it, after defining objectives and criteria for assessment, alternative system de-
signs are created. These designs are evaluated against the objectives and criteria
and one (or a subset) of alternatives is chosen for implementation.

46

2.5. Methodology of Service Feature Modeling

Service feature modeling is designed to address challenges related to service vari-
ability and to foster its advantages (cf. chapter 1). SFMs capture the variants
of a service, or, consequently, service variability. The nature of SFMs is pre-
scriptive (see section 2.4.1) in that they aim to induce change in the service they
represent. Figure 2.7 provides a high-level view on the service feature modeling
methodology to indicate the approach’s different purposes. This view corre-
sponds with the generic process of modeling depicted in figure 2.6. We aim to
enable the utilization of SFMs during different activities of the software service
life cycle defined in section 2.2.

(Concept of) service (adapted) service
variant

R
ea

l w
or

ld
R

ep
re

se
nt

at
io

n

M
od

el
in

g

Usage
R

ea
liz

at
io

n

SFM Preferred configuration

Figure 2.7.: Generic process of service feature modeling

Modeling aims to create an SFM that represents a service’s variants. The process
and intention of modeling depends upon whether the service is already designed
or not. If the service is not jet designed, service feature modeling supports the
conceptualization of the service’s variants. It supports the modeler in keeping
hold of and sorting out ideas about the variants. Alternatively, if the service is
already designed, service feature modeling is used to document variants. In both
cases, the fundamental reason for modeling SFMs is to use them to select among
service variants. Modeling is performed as a design activity (see section 2.2.3).
It is performed primarily by the service provider stakeholders (cf. section 3.3.1).
These stakeholders can have diverse backgrounds and correspondingly address
diverse concerns in modeling. For example, technicians denote the interface
variants a service offers while business analysis are concerned with work flow
variants. Modeling can either be performed by a single stakeholder or collabora-
tively by multiple stakeholders. We present service feature modeling’s language
and the (collaborative) modeling process in chapter 3.

Created SFMs are used to communicate, evaluate, and resolve service variability,
that is, to select service configurations, reflecting variants in the real world

47

2. Concepts and Methodology

system1. Selection of variants has two purposes depending on the scenario it is
performed in:

• Usage for service development Service providers use SFMs in design
activities to determine a (set of) service variants to further design, im-
plement, deploy and operate. To support the determination of variants,
provider stakeholders state their requirements or preferences with regard
to the service variants to create. Service feature modeling’s usage methods
delimit inappropriate service variants and suggest feasible and preferred
ones. Participatory methods allow future consumers to take part in the
provider’s design activities. Here, SFMs communicate service variants fea-
sible from the providers’ point of view. Consumers state their requirements
and preferences regarding these variants and thus help providers to decide
which variant(s) develop.

• Usage for service delivery Service providers and consumers together
use SFMs to customize the delivery of a service. Service providers, having
priorly modeled the service’s variants in an SFM, provide this model to
consumers. Consumers, in design activities regarding the service consump-
tion, use the SFM to determine the service variant best matching their re-
quirements and preferences. The determined variant is communicated to
the provider and delivery of the variant is initiated. The providers’ com-
munication of variants and receiving of the consumers’ preferred variants
are operation activities.

We present details on service feature modeling’s methods for variant selection
in chapter 4.

Given a (set of) service variant(s) has been selected using service feature mod-
eling, either for development or delivery, these variants need to be realized. Re-
alization in the case of using SFMs for development encompasses design, imple-
mentation, and/or deployment activities. Realization in the case of using SFMs
for delivery encompasses deployment and/or operation activities. Realization for
development is performed by providers, whereas realization for delivery includes
both, providers and consumers. Realization of service variants is not in focus in
this thesis. We presented possible realization approaches in section 2.3.5. We
further illustrate exemplary realization of service variants during development
in section 5.3.4 and for delivery in section 5.4.4.

1For simplicity, we speak of selection of service variants in the following.

48

3. Modeling Service Variants

In this chapter we present the service feature modeling language and modeling
process. In section 3.1 we introduce standard feature modeling from the soft-
ware engineering domain, which is the basis for service feature modeling. In this
chapter’s main part, in section 3.2, we present the service feature modeling lan-
guage’s elements and their relations. We then present the processes for creating
service feature models in section 3.3. We present a special case of this process in
section 3.4, which addresses the composition of SFMs from services, allowing for
collaborative service feature modeling. In section 3.5, we discuss related work
on modeling service variants. Finally, we sum up and discuss service feature
modeling’s language and process in section 3.6

3.1. Standard Feature Modeling

Before presenting service feature modeling’s language, we here introduce stan-
dard feature modeling, which is the basis of our approach. Standard feature
modeling stems from the software engineering domain. Feature models were orig-
inally used to capture the commonalities and differences of a domain [KCH+90],
which is understood to be a set of related software systems, or system vari-
ants. Typical feature model processes encompass two phases [SD07]: domain
engineering concerns the creation and maintenance of reusable artifacts, denot-
ing a product family, represented as a feature model. Application engineering
concerns the selection and reuse of the reusable artifacts to create a product,
commonly started by configuring a feature model. Nowadays, feature models are
used in various contexts like software development, including model-driven devel-
opment [TBD07], feature-oriented programming, software factories, or genera-
tive programming [BSRC10]. Furthermore, feature models are increasingly used
in non-implementation activities. They are used in requirements dependency
analysis [ZMZ06], they denote configuration options for virtual machine image
provisioning [LNSJ12], or they support Web service customization [NC10].

49

3. Modeling Service Variants

3.1.1. Appeal of Feature Modeling

Different characteristics of feature modeling cause its broad uptake. First, fea-
ture modeling’s appeal stems from its applicability to different problem domains.
Industrial practitioners value feature modeling primarily for its application to the
management of existing variability, product configuration, requirements specifi-
cation, derivation of products, and design / architecture [BRN+13].

Another major appeal of feature models is the capability to perform automatic
analysis operations on them. Automatic analysis operations are understood as
computer-aided extraction of information from feature-models [BSRC10]. They
are important to deal with large productive feature models that can denote hun-
dreds or thousands of features. Further, automatic analysis operations help in
dealing with the numerous and eventually complex feature relations [KOD10].
Consistency of (especially large) feature models can be ensured using automatic
analysis operations, a process which is error-prone and tedious if performed man-
ually [BSRC10]. Various analysis operations have been introduced [BSRC10].
They include, for example, checking the validity of a feature model by ensuring
that no contradictory constraints are specified. Or, they allow to determine the
complete set of system variants captured by a feature model.

Features are an effective communication medium [LKL02]. The term “fea-
ture” is used both by customers as well as engineers. As they are meaningful
to different stakeholders, features bear potential for use in participatory ap-
proaches [WZ11a].

We use feature models as a basis for our approach due to a combination of fac-
tors: feature models are designed to represent system variants, which goes in
line with the intention behind service feature modeling. The potential of feature
modeling to communicate variants renders it suitable as a basis for participatory
approaches. Feature models are widely known and applied in practice [BRN+13],
increasing the chances that service or software engineers have some basic famil-
iarity with the approach before using service feature modeling. Feature models
have successfully applied to different domains [BRN+13], indicating their poten-
tial to be applied to services as well. The extensive research existing on feature
models [BSRC10] has produced various methods and tools that can be used with
service feature modeling as well.

3.2. Service Feature Modeling Language

The service feature modeling language comprises the elements that depict a
service feature model (SFM) and the relationships between them. Service feature

50

3.2. Service Feature Modeling Language

modeling’s language builds upon and extends that of standard feature modeling
in the following aspects:

1. It extends the notion of features through feature types

2. It introduces attribute types

A language consists of a syntactic notation (the syntax) and the relation of the
syntax to a semantic domain (the semantics) [HR04]. The syntactic notation
consists of syntactic elements. Service feature modeling is a diagrammatic lan-
guage (or visual formalism, in contrast to being a textual language) because its
syntactic elements are, next to the models (SFMs) themselves, different boxes
and lines or arrows relating them. The definition of service feature modeling’s
syntax is provided in the English language and mathematical expressions in
the following and, for computers to be able to process it, in a meta model in
section 5.1.2. The semantic domain serves as an “[...] abstraction of reality, cap-
turing decisions about the kinds of things the language should express” [HR04,
page 67]. Service feature modeling’s semantic domain is described in English lan-
guage in the discussions of service variability, variable service, service variant,
variability subject and object in chapter 2. The following subsections further-
more provide a semantic mapping between the semantic domain and syntac-
tic elements. Especially, section 3.2.3 explicitly presents the mapping between
service feature modeling’s feature types and configurations to elements of the
semantic domain presented in chapter 2.

3.2.1. Basics of the Service Feature Modeling Language

In this section, we present the basics of service feature modeling’s language.
They correspond to the language of standard feature modeling as outlined in sec-
tion 3.1. We also present a formalization of this language’s syntax (cf. [Kuh11,
WKM12]), which we will extend for service feature modeling in subsequent sec-
tions. The here presented language is based upon the extended feature model
language [BTRC05].

Service feature model

Service feature models (SFMs) are the modeling artifact created in service fea-
ture modeling. Service feature modeling is a variability modeling language, thus
representing variability subjects and variability objects. The variability subject
represented by an SFM is a variable service (cf. definition 7) and the variability
object is a particular instance of that service, which we denote as service variant
(cf. definition 8). Each SFM addresses the intra-service variability of a variable

51

3. Modeling Service Variants

service (cf. section 2.3.2). Using dedicated methods, service feature modeling
can also be applied to inter-service variability, allowing for example to select
among service candidates (cf. section 4.5).

An important question is what denotes service variants in contrast to being
separate services. To answer this question, in software product line engineer-
ing, domain engineering is concerned with defining the limits of a domain for
which related software products exist. Defining the scope of a domain involves
a trade-off: “The broader the domain of a product line is the larger is the num-
ber of possible stakeholders’ requirements that can be covered in the form of
individually tailored products. However, the broader the domain, the smaller is
the set of similarities among products.” [ABKS13, page 20]. Ultimately, there is
not (and cannot) be a predefined answer to the question of how broad to define
the domain. Service providers need to define for themselves what they consider
a service variant and what not. Doing so does not only depend on technical
arguments, but is also driven by business-related (for example, marketing) or
economic considerations [Cap13], product portfolio considerations, competition,
organizational, or legal constraints.

As variable services evolve over time, so do the SFMs describing their variants.
Modelers need to adapt or refactor SFMs to keep them in line with the service.
Given SFMs are persisted in textual data formats like XML, their versions can
be managed using systems like Subversion [CSFP04] or Git [Git]. As with ver-
sions in general [ABKS13], SFM versions supersede each other and reflect the
evolution of the SFM. Version control for software that denotes variability and
the related field of software configuration management (SCM) (cf. [BLP04]) as
well as version management for SFMs specifically are outside of the scope of this
work, as already stated in section 2.3.

Another consideration is how to deal with variants of SFMs themselves. Chang-
ing the variability of a service, typically, requires the SFM describing its variants
to be adapted, leading eventually to a new SFM version (see above). There are,
however, situations where variants of an SFM may occur: consider an SFM that
does not describe variants based on alternative deployments of a variable ser-
vice. If this service is deployed in multiple instances and the variability of these
instances evolves differently, variants of the SFM may result. In such cases,
these SFMs can either be merged to denote the superset of variants [SBRCT08].
Alternatively, the SFMs can be kept separate and their commonalities and differ-
ences can be managed using, again, variability modeling approaches like service
feature modeling, marking it a recursive operation. Approaches to manage vari-
ability of models with feature modeling have already been presented in related
work [AGGR07]. Given the very context-specific nature of this situation, we do
not further consider it within the scope of this work.

52

3.2. Service Feature Modeling Language

Feature diagram

Feature diagrams are graphical representations of an SFM. An SFM’s feature
diagram SFMdiag is a directed graph G = (V,E) with the set of vertices V
representing features and attributes and the set of edges E representing re-
lationships between features as well as attributes and features [Kuh11]. In a
feature diagram, higher level features denote a higher level of abstraction.

Features

Features are the main artifacts to capture multiple system variants in a single
model. In their first appearance in software engineering, in the feature-oriented
domain analysis (FODA), features were defined to represent “[...] a prominent
or distinctive user-visible aspect, quality or characteristic of a software system
or systems” [KCH+90]. Since this introduction, the meaning of features has
been redefined frequently. A proposed classification of the definitions considers
whether features address a system’s problem space (requirements, goals etc.),
its solution space (functionalities, implementations etc.), or a combination of
both [CHS08]. An example for an entirely problem-oriented definition of fea-
tures states that a feature represents “[...] a product characteristics from user or
customer views, which essentially consists of a cohesive set of individual require-
ments” [CZZM05]. On the other hand, a solution-oriented definition states that a
feature represents an “[...] increment in product functionality” [Bat05, BSRC10].
As pointed out in studies about different meanings of the term feature, there
is not one correct definition - rather, they make each sense in their specific
context [CHS08].

One of service feature modeling’s contributions is a typology of features, which
we present in section 3.2.2. The meaning of features in service feature modeling,
correspondingly, depends on their type. Before going into details about these
meanings in section 3.2.2, we here just note that the meaning of features in
service feature modeling is solution-oriented. Features can thus, for example,
represent a service’s work flow activity, a software component used in the service,
or a utilized resource.

We denote the set of features as F ⊆ V . A feature model contains a single root
feature froot ∈ F which contains all further features.

Configurations

Configurations denote valid selections of features from an SFM. Each configu-
ration represents a variant of the service represented by an SFM. The set of

53

3. Modeling Service Variants

all valid configurations of an SFM is denoted as the configuration set C, which
thus denotes the set of all variants of the represented service. A configuration
c ∈ C denotes a subset of features F c ∈ F so that all relationships R (cf. next
section) of the SFM are fulfilled. It has to be noted that in feature modeling the
term configuration also refers to the process of determining a variant through
feature selection [CHE04]. The term configuration thus has a different meaning
depending on the context: with regard to feature modeling, (1) it denotes a set
of features and (2) it denotes the process of selecting features. Additionally,
with regard to realizing a service variant, it (3) denotes the determination of a
service variant through provision of predetermined information (cf. 2.3.5). In
the context of software configuration management, it (4) denotes a set of com-
ponents, that can themselves be configurations or configuration items, which are
the smallest units of individual change [Tic03].

Relationships

Relationships express constraints between features. These constraints delimit
valid combinations of features from a feature diagram as part of the configuration
process [MC10]. The set of relationships R is part of a feature diagram’s edges:

R ⊆ E (3.1)

A relationship r ∈ R is described by the initial vertex init(r) ∈ F and the
terminal vertex ter(r) ∈ F :

r = {init(r) , ter(r)} (3.2)

We distinguish between two types of relationships [KOD10].

In decomposition relationships Rde ⊆ R we denote the initial vertex init(r) as a
parent feature and the terminal vertex ter(r) as child feature. We differentiate
four types of decomposition relationships (Rman, Ropt, RXOR, ROR ⊆ Rde):

• Mandatory decomposition relationships Rman(i, j) | i, j ∈ F, i 6= j state
that the relationship’s child feature j needs to be selected if the relation-
ship’s parent feature i is selected.

• Optional decomposition relationships Ropt(i, j) | i, j ∈ F, i 6= j state that
the relationship’s parent feature i needs to be selected if the relationship’s
child feature j is selected.

• Alternative decomposition relationships (also referred to as XOR-decompositions)
RXOR | i ∈ F, J ⊂ F, i 6∈ J state that a parent feature i must be selected if
any of the child features of the relationship j ∈ J is selected. Furthermore,
only one child feature j ∈ J can be selected. Because it involves a set of

54

3.2. Service Feature Modeling Language

child features, we classify the alternative decomposition relationship as a
group relationship.

• OR decomposition relationships ROR | i ∈ F, J ⊂ F, i 6∈ J state that
a parent feature i must be selected if a child feature of the relationship
j ∈ J is selected. Furthermore, at least one (but potentially multiple)
child features j ∈ J needs to be selected. Because it involves a set of
child features, we classify the OR decomposition relationship as a group
relationship.

Cardinality-based feature models enrich decomposition relationships between
features with cardinalities, thus increasing feature model’s conceptual complete-
ness [CHE04]. While service feature modeling can be extended to incorporate
cardinalities, we focus on standard decomposition relationships for sake of eas-
iness in the following. Having introduced decomposition relationships, we can
now define that a feature model’s root feature does not have a parent feature:

froot ∈ F : @Rde ⊆ R | init(f) ∧ term(froot) ; ∀f ∈ F (3.3)

In cross-tree relationships Rcr ⊆ R, the initial vertex init(r) and the terminal
vertex ter(r) do not need to be in a parent-child relationship. Rather, they
can be arbitrary features in the feature diagram. We differentiate two types of
cross-tree relationships (Rrequires(i, j), Rexcludes ⊆ Ecr):

• Requires cross-tree relationships Rrequires(i, j) | i, j inF, i 6= j state that if
i is selected, j needs also to be selected.

• Excludes cross-tree relationships Rexcludes(i, j) | i, j inF, i 6= j state that
is i is selected, j cannot also be selected.

Attributes

Attributes are elements of extended feature models [BTRC05]. We define at-
tributes in the following way based on existing definitions [BTRC05]:

Definition 9. Attributes represent characteristics of a feature or configuration.

Attributes can be of different nature: on the one hand, they can express mea-
surable, quantitative characteristics of features and configurations, for example
cost, availability, or response time. On the other hand, they can express qual-
itative characteristics of features and configurations, for example accessibility,
usability, security. Concrete instances of qualitative characteristics, for example
“home delivery”, “touch input”, or “encryption”, are either true or not - they are
boolean in nature. The features denoting these characteristics can, for example,

55

3. Modeling Service Variants

represent a work flow activity “send documents home”, a source code library to
enable touch input, or an encryption algorithm. While features are mappable
to entities of the service, attributes describe characteristics induced by these
entities.

Despite the lack of a formalization of attributes and their exact seman-
tics [Kuh11], common building blocks can be identified [BSRC10]: attributes
have a name that is used to describe, identify, and reference them [Kuh11].
Further, attributes denote a domain. It states the space of possible values
where attributes take their values [BTRC05]. Thus, domains restrict the set of
valid values. Further, they provide additional semantics on the attributes. An
exemplary domain might state that the value of an attribute must be a positive
integer. Finally, the value denotes the specific characteristic denoted by an
attribute. An exemplary value of an attribute named “cost” might be “5e”.

We define A ⊂ V to be the set of vertices representing attributes. Attributes
cannot solely define the set of vertices in a feature diagram because they are
bound to features. Every attribute a ∈ A denotes a belongs-to relationship
ar(n,m) ∈ AR to the feature or configuration it describes:

∀a ∈ A : ∃ar(n,m) | n = a;m ∈ (F ∨ C) (3.4)

We denote the set of belongs-to relationships as AR. An additional constraint
for attributes is that they cannot belong to multiple features:

∀ara,f : @ar(n,m) | f = n, a 6= m ; i,m ∈ F ; f, n ∈ AT (3.5)

A novelty in service feature modeling is that attributes cannot only describe
features, but also configurations. The motivation for this capability lies in the
methods to select configurations (and thus service variants) which rely on config-
urations being comparable based on attributes (cf. chapter 4). A resulting chal-
lenge, which we address with the notion of attribute types in section 3.2.4, is how
to derive overall values for attributes describing configurations from the values
of attributes describing features (cf. challenge 1 motivated in section 1.3.1).

Formalization of sets

Having introduced the elements of feature diagrams, we can now more clearly
define their building blocks. In a graphG = (V,E), representing a service feature
model’s feature diagram SFMdiag, the set of vertices V encompasses the set of
features and attributes, where a single vertice can only represent one of those:

V = {F ∪AT} | F ∩AT = ∅ (3.6)

56

3.2. Service Feature Modeling Language

Similarly, we can now define the elements of the edges set more clearly to con-
tain relationships between features and relationships between attributes and
features:

E = {R ∪AR} | R ∩AR = ∅ (3.7)

Simple example

A simple example of an SFM utilizing the so far introduced concepts is rep-
resented in figure 3.1. The shown model builds upon the example about vari-
ants in financial data Web APIs motivated in section 1.1.2. The example is
used throughout chapter 3 and 4 to illustrate the applicability of service feature
modeling. The SFM in figure 3.1 models variants for delivering a “stock quotes

Feature

Key:

= mandatory
 feature

= optional
 feature

= XOR = OR

= Requires= ExcludesAttribute

Data delivery
options

Inclusion of
quote history

Real time
quote updates

Stock quotes API

Interface

SOAP REST

Price / 10k
requests:
100.00 €

WS-*
specifications:

true

Price / 10k
requests: 80.00

€

Price / 10k
requests: 40.00

€

Real time data:
true

Quote history
provided: true

Figure 3.1.: Simple example of an SFM

API”, like the ones offered by Xignite [Xig] or QuoteMedia [Quo]. Using such
services accessible via Web APIs, consumers obtain the current or historic stock
quotes of specified companies. The variants that consumers have to deal with in
such services are manifold, including data formats or types of identifiers for the
companies of interest (cf. section 1.1.2). We concentrate on a subset of variable
aspects here for illustration purposes. The stock quotes API has variants re-
garding its “interface”, which is implemented either using “SOAP” or following
the “REST” architectural style. Attributes express characteristics of these vari-
ants. The “SOAP” interface allows consumers to use “WS-* specifications” in
conjunction with the API. They include, for example, WS-Security, addressing

57

3. Modeling Service Variants

integrity and confidentiality of SOAP messages, or WS-ReliableMessaging, ad-
dressing the reliable delivery of messages. The “SOAP” interface further induces
a price for every 10, 000 requests of 100.00 e. On the other hand, the “REST”
interface induces a smaller price for every 100, 000 requests of 80.00 e. Variants
of the service result furthermore from “data delivery options”. On the one hand,
“real time quote updates” can optionally be selected. They induce a price of
40.00 efor every 10, 000 requests but also set the attribute “real time data” to
true. A cross-tree relationship models that “real time quote updates” can only
be delivered via the “REST” interface. Another optional selection concerns the
“inclusion of quote history”. An attribute “history provided” with the value true
models the inclusion of historic data on the stock quote.

3.2.2. Feature Types in Service Feature Modeling

The main goal of service feature modeling’s language is to represent service
variants. Therefore, SFMs need to represent a service’s variability subjects and
corresponding variability objects (see section 2.3.2). Both, variability subjects
and objects, can concern the design, implementation, deployment, or operation
of the service. Variability subjects may appear at different abstraction levels of
a service. Thus, service feature modeling must equally support their representa-
tion on different levels. Additionally, parts of the service that are not subject to
variability must be captured in an SFM. These parts can also be denoted to be
common to all, or a set of, service variants. Despite SFM’s purpose to capture
service variants, the representation of common concerns is nonetheless required
because common service parts can denote relations to variability objects. For
example, variants can imply other concerns, which are common to a group of
service variants.

The main elements of an SFM, namely features, address the outlined require-
ments regarding the representation of variability. In service feature modeling,
features act in different roles: they represent both variability subjects and vari-
ability objects. Features have thus a solution-oriented semantic (cf. 3.2.1), they
represent variable concerns of the service’s design, implementation, deployment,
or operation. Additionally, features are used to structure an SFM’s feature dia-
gram. Consider, for example, the root feature “stock quotes API” in figure 3.1.
For service feature modeling, we aim to more clearly differentiate these diverse
semantics. Thus, as has been proposed comparably in related work [CHE04],
we differentiate three feature types: grouping features, abstract features, and in-
stance features [WKM12]. The semantics of features becomes clearer through
differentiation. These additional semantics do not impact the applicability of
automated analysis operations on SFMs as compared to standard feature mod-
els [CHE05]. For example, a standard feature model analyzer to determine all

58

3.2. Service Feature Modeling Language

configurations of an SFM will produce the same result whether feature types
are considered or not. The reasoner will only consider the relationships between
features and ignore the typing. We argue that a clearer semantic increases un-
ambiguous understandability of SFMs. Additionally, through additional rules
on the three feature types, we delimit the number of valid modeling choices,
thus guiding the modeling process. Furthermore, we perceive potentials for
better automated processing of SFMs that denote feature types. For example,
deriving the superset of instantiable features only requires selecting all instance
features in an SFM. Or, the superset of abstract features denotes the variability
points a represented service possesses. Another reason for the feature typology
is enabling comparability of SFMs. Multiple SFMs that possess the same struc-
ture with regard to their grouping and abstract features, though having diverse
instance features, can be compared to one another. We make use of this capa-
bility to model SFMs with similar structure (cf. section 3.3.3) and use them for
requirements filtering and preference-based ranking across multiple SFMs (cf.
section 4.5). In the following, we outline each feature type in detail.

Grouping features FG ⊆ F contain further features, which all address the
same concern. We define grouping features in the following way:

Definition 10. A grouping feature represents a category of related variability
points and their variants.

Their purpose is to organize and structure an SFM. Because grouping features
contain further features addressing a similar concern, they provide a compre-
hensive view for different stakeholders. For example, a grouping feature can be
used to contain all other features concerning the technical implementation of
security. The root feature of an SFM is a grouping feature, which represents
the service in focus. The contained features, thus, all concern this service. The
parent features of a grouping feature can be other grouping features or instance
features. The child features of a grouping feature are either other grouping fea-
tures, abstract features, or instance features. Because their purpose is solely
to provide structure, grouping features are always mandatory. Correspondingly,
grouping features do not increase the number of configurations represented by
an SFM.

Abstract features FA ⊆ F denote variation points. A variation point is “[...] a
representation of a variability subject within domain artefacts [...]” [PuFvdL05,
page 62]. Correspondingly, we define abstract features in the following way:

Definition 11. An abstract feature represents a variation point with regard to
(parts of) the design, implementation, deployment, or operation of a service.

An abstract feature can, for example, represent an abstract activity of a work
flow, a type of security mechanism like encryption, a type of service to invoke, or

59

3. Modeling Service Variants

an interface to implement. The parent features of abstract features are grouping
features or instance features. The variation point represented by an abstract
feature can be fulfilled by one of potentially multiple ways. Thus, in the course
of a configuration process, abstract features must be instantiated by selecting a
child instance feature.

Instance features F I ⊆ F denote concrete instantiations of a variation point
- they represent variants. Here, a variant is “[...] a representation of a variabil-
ity object within domain artefacts” [PuFvdL05, page 62]. Correspondingly, we
define instance features in the following way:

Definition 12. An instance feature represents a variant regarding (parts of) the
design, implementation, deployment, or operation of a service.

In software services, instance features can, for example, represent source code like
a module or an aspect, (a set of) configuration parameters, protocols, or data. In
generic services, instance features can, for example, represent resources (human
or physical), work flow elements, activities, a software component, or a human re-
source. Instance features do not need to be directly mappable to a single artifact
of the service’s design, implementation, deployment or operation. An instance
feature can also be realized in the service through combination of artifacts or by
parts of them. For example, an instance feature representing a service’s security
mechanism may depend on source code in different service components and the
existence of policies. Thus, feature diagrams should not be confused with part-of
hierarchies or the decomposition of software modules [CHE04].

Parent feature
types

Child
feature
types

Parent-
decom-
positions

Child-
decom-
positions

Group-
ing
feature

none (for root
feature),
grouping,
instance

grouping,
abstract,
instance

mandatory mandatory,
optional

Ab-
stract
feature

grouping,
instance

instance mandatory,
optional

mandatory,
optional,
XOR, OR

In-
stance
feature

grouping,
abstract

grouping,
abstract

mandatory,
optional,
XOR, Or

mandatory

Table 3.1.: Constraints on service feature modeling’s three feature types

By including deployment and operational aspects into the definition of abstract
and instance features, they can also concern the service environment. For exam-

60

3.2. Service Feature Modeling Language

ple, features can represent legal restrictions for using the service, the geographic
location a service runs in, or technical properties of the execution environment.

Collectively, the three types of features denote all features in an SFM:

F = {FG ∪ FA ∪ F I} | FG ∩ FA ∩ F I = ∅ (3.8)

Table 3.1 presents an overview of the constraints on the three feature types.

Figure 3.2 extends the simple example from figure 3.1 with feature types. We
introduce different outline styles and text styles to graphically differentiate the
feature types. The root feature “stock quotes API” is a grouping feature whose
purpose is solely to unite all further features addressing the service. “Interface” is
an abstract feature, that can be instantiated by one of the two instance features
“SOAP” or “REST”. Similarly, “data delivery options” is an abstract features,
which can be instantiated either by “real time quote updates” or “inclusion of
quote history” or both.

Grouping
feature

Key:

= mandatory
 feature

= optional
 feature

= XOR = OR

= Requires
= ExcludesAttributeAbstract

feature
Instance
feature

Data delivery
options

Inclusion of
quote history

Real time
quote updates

Stock quotes API

Interface

SOAP REST

Price / 10k
requests:
100.00 €

WS-*
specifications:

true

Price / 10k
requests: 80.00

€

Price / 10k
requests: 40.00

€

Real time data:
true

Quote history
provided: true

Figure 3.2.: Simple example of an SFM with feature types

3.2.3. Representation of Service Variability with Feature Types

We have now introduced concepts of service variability (see section 2.3) and
the representation of service variability generically and using service feature
modeling in section 3.2.2. The relations between these concepts are illustrated in
figure 3.3. These relations thus correspond to the semantic mapping between the
semantic domain (variable services etc.) and syntactic elements in an SFM.

61

3. Modeling Service Variants

With regard to real-world artifacts, service variability implies the existence of
variable services. Such services denote at least one but potentially many vari-
ability subjects, that can be instantiated by one of multiple variability objects. A
service variant of a variable service denotes a specific combination of variability
objects.

On a generic representational level, the variable service is represented by a vari-
ability model. In the context of software, such models are, for example, feature
models or orthogonal variability models [PuFvdL05]. Variability subjects and
variability objects are represented by variation points or variants. The relation-
ships between these representational elements reflect those of their real world
counterparts.

Service feature modeling is a concrete instance of a variability modeling ap-
proach. Here, the variability model is denoted as a service feature model. Its
abstract features relate to variation points and its instance features to variants.
The real world concept of a service variant is reflected by a configuration that
relates to a selection of instance features.

Real world Representation (generic) Service feature modeling

Variable service

Variability subject

Variability object

Variability model

Variation point

Variant

SFM

Abstract feature

Instance feature

0…*

0…* 0…* 0…*

0…*0…*

Service variant

0…*

0…*

Configuration

0…*

0…*

Figure 3.3.: Concepts of service variability and their representation, generically
and in service feature modeling

3.2.4. Attribute Types in Service Feature Modeling

To enhance the usage of attributes in service feature modeling we introduce
attribute types. Attribute types model properties that are common to all asso-
ciated attributes. By defining an aggregation rule (see below), attribute types
provide the basis to express characteristics in SFMs not only with regard to
features, but also with regard to configurations representing service variants as
motivated by challenge 1 in section 1.3.1. Another motivation for attribute types
is to store recurring information centrally, for example, the name of all attributes

62

3.2. Service Feature Modeling Language

of a type. Storing information centrally reduces modeling effort when adding
attributes of the same type: they are associated with an existing attribute type
without having to enter the information again. Additionally, changing informa-
tion for multiple attributes only has to be performed once for the attribute type.
Doing so avoids potential inconsistencies because changes do not manually have
to be executed in multiple places.

The following information is stored in attribute types in service feature model-
ing:

• The name of the attributes related to this type. Denoting multiple at-
tributes’ names centrally secures their consistency throughout an SFM,
enabling, for example, their comparison. In contrast, storing names per
attribute might, through typos or miscommunication between multiple
modelers, lead to semantically equivalent but differently named attributes.
Such errors impact and eventually distort automatic operations on feature
models.

• An attribute type further denotes the domain of all attributes relating to
it. The domain defines, as in standard feature modeling, the range of values
an attribute can take. Continuous domains are used, for example, for the
attributes “cost” or “performance”. Integer domains are used, for example,
for the attributes “‘number of users” or “storage”. Boolean domains are
used, for example, for attributes that denote functional capabilities such
as “home access” or “personal assistance”.

• An attribute type denotes the measurement unit for the attribute val-
ues. For example, an attribute type “cost” defines the measurement unit
as “Euro”. The measurement unit supports interpretability of attribute
values for both, human actors and computers. The latter can, for ex-
ample, perform conversions as part of automatic operations based on the
measurement unit provided.

• A description is also stored in the attribute type. It is used to capture
human-understandable explanations about the attributes. Capturing such
information is especially relevant for SFMs, whose methods include col-
laborative modeling (cf. section 3.4). When multiple stakeholders work
on the same model, unambiguous understanding of the semantics of at-
tributes is relevant to ensure their correct utilization. An attribute type’s
description fulfills this purpose.

• Attribute types also capture the aggregation rule for attributes. In
standard feature modeling, attributes only concern individual features. In
service feature modeling, however, we also use attributes to describe con-
figurations (cf. section 3.2.1). The resulting configuration attributes play

63

3. Modeling Service Variants

an important role in the selection among configurations and respectively
service variants (cf. chapter 4). Difficulties of achieving this goal with
standard feature modeling’s language become clear when looking back at
the way attributes are represented in figure 3.1: “price / 10k requests” is
defined in multiple features. However, it is not defined how to combine or
interpret these values in configurations where multiple attributes “price /
10k requests” are present. One solution would be to define within each
attribute how its value impacts a configuration’s overall value. However,
this solution bears potential for contradictory statements among similar
attributes. Thus, we define an aggregation rule centrally within an at-
tribute type. The aggregation rule specifies how to aggregate individual
values in cases where configurations contain multiple attributes of the same
type. The resulting value can be associated with the configuration. Possi-
ble aggregation rules are sum, product, minimum, maximum and at least
once. For example, the attribute type “cost” has an aggregation rule sum
given that the cost of multiple features are additive. Aggregation based
on the aggregation rule at least once results in true if at least one con-
sidered attribute has a value of true. This aggregation rule is designed to
aggregate qualitative attributes. For the aggregation rules minimum and
maximum, the overall value equals the lowest or highest observed value.
We discuss the aggregation of attributes and the aggregation rules in detail
in section 4.2.2.

The so far introduced information is relevant for attributes irrespective of the
intended usage of SFMs. For the sake of completeness, we here introduce addi-
tional information stored in attribute types that is relevant for the preference-
based ranking approaches presented in section 4.4.

• The scale order defines how to interpret the values of associated at-
tributes in the ranking process. Higher is better denotes that higher val-
ues are considered to be better. Lower is better denotes that lower values
are considered to be better. For example, for attributes denoting “cost”
a lower value is generally considered positive. Finally, existence is better
denotes that a value of true is considered to be better in cases where the
attribute type’s domain is boolean.

• The boolean property to be evaluated denotes whether an attribute type
should be considered in the ranking process.

• The custom attribute type priority denotes how much better features
/ configurations are to be interpreted in the ranking process if they have
an attribute with boolean domain whose value is true compared to if it is
false.

64

3.2. Service Feature Modeling Language

Capturing the stated information, including name and domain, in attribute types
rather than attributes themselves, attributes consequently only denote a value.
We denote this value in service feature modeling as instantiation value. An
attribute’s instantiation value depends on the feature or configuration that the
attribute relates to. Thus, values cannot be centrally stored but must remain
with a single attribute. We define the instantiation value as iv(m, at), m ∈
(F ∨ C), a ∈ A.

We define the set of a feature model’s attribute types as AT . Each attribute
a ∈ A is associated with one attribute type at with an attribute type relationship
atr(a, at):

∀a ∈ A : ∃ atr(a, at) | a ∈ A, at ∈ AT (3.9)

Consequently, we can access the type of an attribute with type(a) = at.

Figure 3.4 extends figure 3.2 with attribute types1. The four attribute types

Grouping
feature

Key:

= mandatory
 feature

= optional
 feature

= XOR = OR
= Requires
= Excludes

Attribute typeAbstract
feature

Instance
feature Attribute

Data delivery
options

Inclusion of
quote history

Real time
quote updates

name: Real time data
domain: boolean

measurementUnit: -
agg. rule: at least once

true

Stock quotes API

Interface

SOAP REST

100.00 80.00

name: Price / 10k
requests

domain: real
measurementUnit: €

agg. rule: sum

name: WS-*
specifications

domain: boolean
measurementUnit: -

agg. rule: atLeastOnce

true 40.00

name: Quote history
provided

domain: boolean
measurementUnit: -

agg. rule: at least once

true

Figure 3.4.: Simple example of an SFM with feature types and attribute types

contain a richer set of information compared to the information stored in the
attributes in figure 3.2. Attribute type “price / 10k requests” additionally avoids
redundant modeling of this information because multiple attributes are related
to that type.

1Note that for better readability, we do not show all information stored in an attribute type
in the figure.

65

3. Modeling Service Variants

3.3. Service Feature Modeling Process

In this section, we describe how service feature modeling’s language is used to
model service variants. We discuss involved stakeholders (cf. section 3.3.1) as
well as how to perform service feature modeling (cf. section 3.3.2). We also
present an approach of using domain models to ensure comparability between
multiple SFMs (cf. section 3.3.3).

3.3.1. Involved Stakeholders

The stakeholders involved in the creation of SFMs must fulfill requirements.
They must obtain knowledge about the the service’s variability subjects and ob-
jects. This knowledge concerns either the whole service or addresses only certain
service aspects, for example technical properties or access channels. Stakeholders
concerned with modeling furthermore require modeling experience. The degree
to which modeling knowledge is necessary is impacted, at least partly, by the
support provided by the utilized modeling tools (cf. section 5.1).

The stakeholders involved in service feature modeling can be diverse, provided
they fulfill the stated requirements. They can thus, for example, include tech-
nicians, decision-makers, legal experts, managers, or marketers. Given that the
variability subject represented by SFMs is a variable service, a service engineer
is an obvious stakeholder involved in service feature modeling. The role of ser-
vice engineers, however, is only vaguely defined in related work (cf., for example
the definition of generic skills required by service engineers [LG10]). Service en-
gineers can thus be understood to be characterized by their involvement in the
service development or delivery process, rather than by their background and
qualification or specific tasks they fulfill.

A more concrete group of stakeholders likely to be involved in service feature
modeling are software engineers. Due to the distribution of standard feature
modeling in software engineering, they are likely to be familiar with service fea-
ture modeling’s concepts as well. In service feature modeling, software engineers
typically act both as domain and application engineers [SVGB05] in that they
define service variants but are also involved in their selection.

In the following, we refer to the creator of a service feature model as modeler.
The modeler can be any of the above-mentioned stakeholders.

66

3.3. Service Feature Modeling Process

3.3.2. Modeling Procedure

Creating SFMs can be performed manually. Given the tree-structure of an
SFM, modeling is performed top-down. The modeler identifies and represents
with corresponding abstract and instance features the variability subjects and
related variability objects of the service. Iteratively, the modeler also specifies
grouping features to structure the feature diagram. If service feature modeling
is performed as part of conceptualizing a new service, the outlined steps are
likely to be repeated, revised, or even reversed. Thus, an SFM is continuously
refactored during modeling.

Service feature modeling, similar to standard feature modeling, comprises vari-
ous challenges for the modeler: the domain, that is the scope in which variants
are considered to belong to the same service, must be defined (cf. section 3.2.1).
Features need to be identified, named and organized. To ease these tasks, con-
cepts and guidelines have been proposed in related work on standard feature
modeling [LKL02, TÖ13]. These concepts are applicable to manual service fea-
ture modeling as well.

Next to manual service feature modeling, automatic methods ease or comple-
ment modeling. Automatic methods synthesize SFMs based on provided input
artifacts. For example, existing work flow definitions can be used to derive an
SFM representing work flow variants [WZ14]. We provide an example for the
automatic modeling of SFMs based on previously defined work flow variants in
section 5.3.2. Automatic modeling methods depend on the service being already
(partly) conceptualized. Thus, the modeling of SFMs in this case does not assist
in the initial definition of service variability, but results in the explicit representa-
tion of variability. In the artifact from which SFMs are derived, in contrast, vari-
ability might only be an afterthought. For example, multiple approaches exist to
define work flow variants in a single work flow model [RvdA07, GVDAJVLR08].
In these approaches, however, the representation of variability is mixed with
the primarily targeted representation of work flows. Separating these repre-
sentations by automatically deriving SFMs that focus on variability result in
increased separation of concerns. Furthermore, within SFMs, cross-tree rela-
tionships can be used to constrain variability, which might not be possible in
mixed representations. Automatic modeling reduces modeling effort and can be
used to obtain desired and predictable model structures.

Overall, the exact nature of how modeling SFMs is conducted depends on its
integration into broader service design methodologies. We present two use cases
in which SFMs were modeled in sections 5.3 and 5.4.

67

3. Modeling Service Variants

3.3.3. Modeling SFMs with Similar Structure

In many applications, a desirable characteristic is that SFMs follow a common
structure. Similarly structured SFMs enable modelers to more easily familiarize
themselves with new models. If a structure is provided to the modeler, he can
use it as input for the modeling process, thus reducing efforts. Additionally,
(automatic) comparisons between similarly structured models and their config-
urations are possible, as motivated in challenge 5 in section 1.3.1. We present
methods to select service variants using different SFMs that are based on the
same structure in section 4.5. A similar structure is achievable for services of
types where the same variability subjects and objects appear. For example, a
study of the configuration options of IaaS reveals configuration options that are
common to different providers, allowing for derivation of a shared SFM struc-
ture [Bar13, page 31 ff.]. On the other hand, specific contexts might impede the
opportunity to create similarly structured SFMs, for example because a modeled
service is unique in its variants.

One way to achieve similar structures are automatic modeling capabilities (cf.
section 3.3.2). For a well-formated input, they synthesize SFMs with a pre-
dictable structure. Another approach to create multiple SFMs with similar
structure is to use a blueprint or domain model [WKM12]. The domain model’s
goal is to provide a common structure for other models. It defines the scope of
what to express in other models derived from the domain model and structures
of features in all of these models’ feature diagrams. The domain model thus
pre-defines which concerns and variability subjects to consider in the modeling
process. For example, a specific selection of technical, business-related, legal, or
organizational concerns are captured in the domain model. For this purpose,
the feature diagram of a domain model GD = (VD, ED) has a reduced set of
vertices and edges. It consists of grouping and abstract features only, it does
not include any instance features or attributes:

VD = V \ F I ∪A = FG ∪ FA (3.10)

A domain model does further not contain cross-tree relationships and does not
contain relations between features and attributes (it only contains decomposition
relationships):

ED = E \Rcr ∪AR = Rde (3.11)

The domain model does further define attribute types for all models derived
from it.

68

3.3. Service Feature Modeling Process

The feature diagram of an SFM based on the domain model, GSF M(D) =
(VSF M(D), ESF M(D)), contains the same structure and exhibit attributes of the
attribute types defined in the domain model. It captures service variants with
regard to the concerns defined in the domain model. For this purpose, the SFM
contains the same abstract and grouping features as the domain model:

FG
SF M(D) ⊆ F

G
D ∧ FA

SF M(D) ⊆ F
A
D (3.12)

An SFM based on the domain model further contains the same attribute types:

ATSF M(D) ⊆ ATD (3.13)

Additional grouping, abstract, or instance features as well as attribute types can
be defined in the SFM. Thus, the comparability between different SFMs based
on the same domain model is only guaranteed for the structure defined in the
domain model. In addition to the domain model, an SFM based on it contains
instance features and attributes, thus denoting the same elements as any other
SFM.

An example of a domain model and two SFMs derived from it is illustrated
in figure 3.5. The domain model defines a grouping feature “Financial API”
as the root feature. It also defines the concerns “interface” and “data delivery
options” to be relevant variability points using abstract features. Three at-
tribute types, “WS-* specifications”, “price / 10k requests”, and “quote history
provided” are defined. The two SFMs derived from this domain model, repre-
senting services “Stock quotes API” and “REST Quotes Service”, denote the
same structure. They have, however, specific instance features and attributes
extending the common structure. For example, while “Stock quotes API” of-
fers two interfaces “SOAP” and “REST”, service “REST Quotes Service” has
“REST” as its mandatory interface. In consequence, service “REST Quotes
Service”’s SFM has no attribute of the type “WS-* specifications”. Due to this
attribute type’s aggregation rule of “at least once”, no configuration of service
“REST Quotes Service” offers this characteristic.

Noteworthy is that even though the derived SFMs follow the same structure,
their comparison based on features is impeded by different naming conventions
(consider the feature named “inclusion of quotes history” in contrast to “include
history”). This obstacle to comparability could be addressed by agreeing on
a shared name space across SFMs. Approaches to address this shortcoming
include the definition of namespaces or the utilization of semantic technologies
like ontologies, which lie outside of the scope of this work. We believe, however,
that these problem primarily highlights the necessity to provide usage methods

69

3. Modeling Service Variants

Financial API

Interface

name: Price / 10k
requests

domain: real
measurementUnit: €

agg. rule: sum

name: WS-*
specifications

domain: boolean
measurementUnit: -

agg. rule: atLeastOnce

Data delivery
options

name: Quote history
provided

domain: boolean
measurementUnit: -

agg. rule: at least once

Domain model:

Grouping
feature

Key:

= mandatory
 feature

= optional
 feature

= XOR = OR
= Requires
= Excludes

Attribute typeAbstract
feature

Instance
feature Attribute

SFM for service B:SFM for service A:

Data delivery
options

Inclusion of
quote history

Real time
quote updates

Stock quotes API

Interface

SOAP REST

100.00 80.00

name: Price / 10k
requests

domain: real
measurementUnit: €

agg. rule: sum

name: WS-*
specifications

domain: boolean
measurementUnit: -

agg. rule: atLeastOnce

true 40.00

name: Quote history
provided

domain: boolean
measurementUnit: -

agg. rule: at least once

true

Data delivery
options

Include historyReal time
quote updates

REST Quotes
Service

Interface

REST

75.00

name: Price / 10k
requests

domain: real
measurementUnit: €

agg. rule: sum

name: WS-*
specifications

domain: boolean
measurementUnit: -

agg. rule: atLeastOnce

50.00

name: Quote history
provided

domain: boolean
measurementUnit: -

agg. rule: at least once

true

Broker bids

Figure 3.5.: Example domain model for cloud data storage and two SFMs based
on it

in service feature modeling that rely on comparable characteristics represented
by attributes for variant selection (cf. section 4).

Modeling SFMs with similar structure underpins the important role that feature
types play in service feature modeling: they allow modelers to clearly differen-
tiate the scope of domain models.

3.4. Coordinated Composition of Service Feature
Models

The modeling process outlined in section 3.3 is similar to that used for stan-
dard feature modeling. For service feature modeling, however, we propose an

70

3.4. Coordinated Composition of Service Feature Models

extended modeling procedure: the multidisciplinary nature of services (cf. sec-
tion 2.1.1) requires multiple, diverse stakeholders to take part in service design
activities. Here, SFMs are an ideal artifact to interrelate design concerns because
features can represent various variability subjects of a service (see section 3.2.2).
Thus, service feature modeling should allow multiple stakeholders to create a
single SFM collaboratively as motivated in challenge 3 in section 1.3.1. Each
stakeholder can contribute relevant concerns, which can be interrelated using
relationships in the SFM. We refer to the resulting process, in which multiple
stakeholders as well as software services participate in the creation of an SFM,
as collaborative service feature modeling.

Furthermore, the purpose of SFMs is to select service variants for further de-
velopment or delivery. Decision-relevant information needs to be incorporated
into an SFM during modeling. Such information often changes over time or
results from complex calculations. For example, attributes denoting the cost
or the performance of a service request vary over time. When using SFMs for
variant selection delayed in time from modeling the SFM, such information is
likely to be outdated, thus impeding the correctness of the made decision. Thus,
we aim to incorporate changing, complex information into SFMs on demand as
motivated in challenge 2 in section 1.3.1.

To realize these requirements, we propose to compose SFMs from services so
that the overall SFM is a combination of model parts, which are contributed by
human or software services. For example, a legal expert provides a SFM branch
representing the alternative options with regard to realizing encryption for a
service. Or, a Web service provides the latest benchmark results denoting the
performance of a cloud infrastructure service. The solution approach presented
here has been published in previous work [WSKT12].

An example of composing SFMs from services is illustrated in figure 3.62. A
software engineer starts modeling the stock quotes API service. He defines a
feature “data delivery options”. Because the software engineer is not responsi-
ble for data delivery options in his organization, he requests a data engineer to
provide input. The data engineer defines the service’s options for data delivery
to be “real time quote updates” and “include history”. The software engineer
further defines the two “interface” variants “SOAP” and “REST”, each denoted
by an attribute of type “price / 10k requests”. To retrieve up-to-date pricing in-
formation, he includes a “pricing service” that provides the required information
on demand. The overall SFM will eventually be a result of the software engineer,
the data engineer, and the pricing service each providing model parts.

Composing SFMs from services introduces challenges. The contribution of SFM
parts must be coordinated to detect and resolve potential inconsistencies between

2For readability of the image, we do not display attribute types.

71

3. Modeling Service Variants

Stock quotes API

Data delivery
options

Data delivery
options

Data engineerPricing
service

Price / 10k
requests = 100

Price / 10k
requests = 80 Real time

quote updates
Inclusion of

quote history

call
PricingService
/interface/rest

call
LegalExpert

call
PricingService
/interface/soap

Interface

SOAP REST

Price / 10k
requests

Price / 10k
requests

Software engineer

Figure 3.6.: Example of composing SFMs from services, based on [WSKT12]

model parts. Consider the example illustrated in figure 3.6. The data engineer
defines a requires cross-tree relationship between the features “real time quote
updates” and “REST”. However, when the software engineer, who is responsible
for the root part of the SFM, later changes or even deletes the required feature,
inconsistencies or errors may arise. Thus, coordination of the composition is re-
quired. To ensure coordinated composition of SFMs, we introduce a composition
model which defines what constitutes a composed SFM. We define roles involved
in the creation of composed SFMs. Finally, we define coordination rules that
ensure coordinated composition.

3.4.1. Composition Model

The composition model defines the elements involved in composing SFMs from
services. These elements and their structure are illustrated in figure 3.7.

Services represent human or software services. Services interact through
machine-understandable interfaces. In the case of software services, these
interfaces can be invoked through corresponding clients. In the case of human
services, invocation of corresponding software interfaces triggers human interac-

72

3.4. Coordinated Composition of Service Feature Models

Contribution Result

Service

sub result

0…1

*

*
*

*

* 0…1
input

output

Attribute value

SFM

1

*

*

Figure 3.7.: Service composition model [WSKT12]

tion. For example, notification mechanisms like e-mails can be invoked through
software, which again notify the corresponding human about the invocation.

Individual parts of an SFM composed from services relate to results. Results
can be instantiated by SFMs themselves. Thus, a feature structure decomposed
according to the definitions in section 3.2 can be a result. The sub result associa-
tion ensures that results of type SFM can be nested. In the example in figure 3.6,
one SFM result is created by the software engineer, containing the root feature
“stock quotes API”, features for the “interface” and the feature for “data delivery
options”. The second SFM result contains the features representing the service’s
variability with regard to “data delivery options” and is created by the data engi-
neer. Alternatively, results can be instantiated as attribute values. These results
are used to store individual attribute values, denoting, for example, a service’s
up to date performance or cost information. Attribute value results themselves
must be contained by an SFM result. For example, in figure 3.6, two attribute
value results for “price / 10k requests” are created by the pricing service. They
both are contained in the software engineer’s SFM result. Provision of attribute
values is either motivated by the need to include complexly derived values into
a SFM (cf. challenge 2), which cannot solely be calculated with service feature
modeling’s aggregation rules (see section 3.2.4). For example, values for “cost”
frequently derive from a complex calculation scheme, which considers the total
consumption of a service. Alternatively, provision of attribute types is motivated
by the need to include dynamic, temporal values. For example, benchmarking
results or usage counts change over time (cf. section 1.1.3). Results themselves
inherit from service elements in the composition model, allowing them to be
offered as a service.

Finally, contributions relate services and results with one another. Contribu-
tions denote activities by a service that produce a result, denoted by the output
relationship. Contributions themselves can rely on existing results provided as
input. For example, the data engineer’s contribution in figure 3.6, which out-
puts the “data delivery options” SFM result, depends on the “stock quotes API”
result as input as to define the requires relationship between the features “real

73

3. Modeling Service Variants

time quote updates” and “REST”. A contribution is associated to a service re-
sponsible for its completion.

3.4.2. Roles

When composing SFMs from services, participants act in different roles. Each
role is defined by a set of related activities. Every participant can engage in one
or multiple roles at the same time or change roles over time.

• Modelers are concerned with hierarchically decomposing a design con-
cern into features. Modelers define features, parent-child and cross-tree
relationships between them, and their attributes and corresponding at-
tribute types. The activities performed by modelers thus are similar to
the modeling activities of standard feature modeling (cf. section 3.3.2).
Correspondingly, either human actors or software components can per-
form the role of a modeler. The result of modelers’ activities are SFMs,
which are contributed to the collaborative modeling process.

• Attribute value providers, as their name suggests, provide attribute
values to SFMs. As in the case of modelers, this role can either be fulfilled
by human actors or software components. Depending on the required
frequency of delivering (updated) attribute values, software components
are more suited to fulfill this role.

• Coordinators perform two activities. First, they identify contributions
whose results should be provided by modelers other than themselves and
assign modeling tasks for both SFMs and attribute values to them. This
activity requires coordinators to have a basic understanding of the model-
ing process in order to correctly interpret an SFM. Second, coordinators
assign suited services to the identified contributions. This activity requires
coordinators to possess knowledge about the stakeholders involved with de-
signing the service to be aware of potential contributors and how to reach
them. Services can be assigned either in the role of modelers or attribute
value providers, depending on the nature of the required contribution. Co-
ordinators can further also delegate coordination activities with respect to
a single result. This allows the assigned participant to further split up
and delegate a contribution, depending on his (possibly concern-specific)
knowledge. For example, the participant concerned with “data delivery op-
tions” aspects may be best suited to knowing which participant to involve
with regard to specific sub-concerns regarding data delivery. Additionally,
the capability to assign coordination activities marks composition of SFMs
from services a recursive and thus flexible process.

74

3.4. Coordinated Composition of Service Feature Models

3.4.3. Coordination Rules

Coordination rules aim to ensure error- and conflict-free composition of SFMs
from services. They are created, updated, and deleted automatically during the
composition to denote all constraints necessary for a specific SFM at a specific
modeling stage. Alternatively, they can be instantiated manually to ensure the
adherence of the composition process to specific requirements. Coordination
rules follow the event-condition-action (ECA) pattern, which originally stems
from the area of active database management systems [MD89]. Coordination
rules specify an event upon whose occurrence a condition is checked. Depending
on the outcome of this check, an action specified in the coordination rule is
performed. Coordination rules are expressed in a computer-understandable way.
This allows software components to detect the occurrence of an event, to check
the condition, and to trigger an (automated) action.

Coordinating changes to cross-tree relationships

A first set of coordination rules is concerned with handling inconsistencies re-
sulting from cross-tree relationships. As defined in section 3.2.1, cross-tree re-
lationships define dependencies between any features in an SFM, irrespective of
their position in the feature diagram. Thus, they can be defined between fea-
tures belonging to different results (of types SFM) when composing SFMs from
services. This capability renders cross-tree relationships as potential sources for
inconsistencies or conflicts: consider a cross-tree relationship r ∈ Rcr defined in
SFM A to target a feature i = tar(r) defined in SFM B. The modeler of B
may not be aware of feature i being part of a cross-tree relationship and might
change or delete it without intention of harm. The validity of r, however, might
be impeded by such actions. For example, as the semantics of feature i are
changed, the cross-tree relationship might be obsolete.

To deal with such inconsistencies, upon creation of a cross-tree relationship
in SFM A with tar(r) 6∈ FA, a rule is established that triggers a corrective
action upon edit or deletion of the targeted feature. Having defined events
FeatureUpdated and FeatureDeleted, the modeler of the cross-tree relation-
ship can be notified about a potential inconsistency:

EVERY FeatureUpdated(tar(r)) OR FeatureDeleted(tar(r))
DO notify(modeler(r));

75

3. Modeling Service Variants

Coordinating changes to attribute types

As in the case of cross-tree relationships, composing SFMs from services can
result in conflicts when it comes to attributes and attribute types. Attribute
types can be defined in any result of type SFM. Consider attribute type at ∈ AT
being defined in SFM A. Embracing their role to avoid redundant modeling,
however, attributes associated to at can be defined in another SFM. For example,
attribute a ∈ A, defined in SFM B, is associated to at so that atr(a, at). If the
modeler of A decides to change or even delete at, the association atr(a, at) might
be wrong or obsolete.

To deal with such inconsistencies, upon creation of an attribute in SFM A
with atr(a, at) : at 6∈ FA, a rule is established that triggers a corrective
action upon edit or deletion of the attribute type. Having defined events
AttributeTypeUpdated and AttributeTypeDeleted, the modeler of the at-
tribute can be notified about a potential inconsistency:

EVERY AttributeTypeUpdated(at) OR AttributeTypeDeleted(at)
DO notify(modeler(a));

3.4.4. Service Binding

To allow services to contribute results to SFMs, they need to be bound. Fig-
ure 3.8 illustrates the service binding protocol used for this purpose, which is
derived from previous work [SZS11, WSKT12]. Initially, the state of the binding
is open. When a coordinator assigns a contribution to a service, the state changes
to asked for binding. This request corresponds to asking the service to commit
to contribute a result. Either if this process is aborted by the coordinator or if
the service declines the request, the binding is again open. On the other hand, if
the service accepts the binding, its state is set to accepted. Software services are
expected to accept requests for binding automatically. In this case, the correct
selection of services to contribute results relies on the coordinator. Human ser-
vices need to assess their capabilities to deliver the requested result and respond
respectively. Once a service is bound it can deliver results related to assigned
contributions. This can be done repeatedly to update delivered results. While
being bound, the service can additionally be contacted by the coordinator, for
example to send reminders to contribute results. From the accepted state, the
binding can again be transferred to the open state if either the coordinator or
the service deletes the binding. The coordinator deletes the binding typically
upon approving of the contributed results.

To take part in the described interactions, a service must implement the service
binding protocol. As mentioned, software services will implement the protocol

76

3.5. Related Work on Modeling Service Variants

Binding
open

Asked for
binding

Binding
accepted

ask for binding

abort

accept bindingdelete binding

delete binding

decline binding

coordinator service
Key:

Figure 3.8.: Service binding protocol, based on [SZS11]

in a way so that binding requests are automatically accepted (or declined based
on pre-defined conditions). The interface of the protocol for services will likely
consist of endpoints to invoke by the coordinator. For human services, the
protocol will rely on a user interface that allows the human actor to review
requests for binding and accept or decline them. Details on the implementation
of service adapters that realize this protocol are presented in section 5.1.4.

3.5. Related Work on Modeling Service Variants

Within this section, we present related work on modeling service variants. We
outline work on variability modeling languages in general in section 3.5.1. In
section 3.5.2, we focus on the utilization of feature modeling for services, which
denotes the bulk of related approaches. We specifically address common use
cases in related work dealing with feature-based modeling of the variability of
Web and cloud services. For each approach, we present a short discussion as
compared to service feature modeling. We furthermore present other approaches
apart from feature modeling to represent service variability in section 3.5.3. In
section 3.5.4, we present related work with regards to composing SFM from
services, which is a means for collaborative modeling (cf. section 3.4).

77

3. Modeling Service Variants

3.5.1. Variability Modeling Languages

A set of related work addresses variability modeling approaches in general and
their application in different contexts (not necessarily services).

Selected variability modeling approaches for software product line engineering
have been classified [SD07]. Different types of variability modeling are iden-
tified, focusing either on features, use cases, or (for the rest) other aspects.
Six exemplary approaches are selected and classified regarding the categories
modeling (considering the language and its abstraction) and tools (considering
tool-support provided with regard to domain and application engineering).

A systematic review of variability management approaches, comprising modeling
and reasoning facilities, in software engineering has been conducted [CABA09].
This study provides a chronological overview of how variability management
approaches have been developed, starting from the earliest approach of feature-
oriented design-analysis [KCH+90]. The authors state the life-cycle phases that
the approaches support and what variability models they utilize. Here, the
omnipresent role of feature modeling is reflected and its utilization by various
management approaches throughout the software life-cycle is illustrated.

Another study addresses the utilization of variability modeling approaches in
industrial practice [BRN+13]. The authors present the results of an empirical
study sent to 42 industrial practitioners. The questions asked address typical
application scenarios for variability modeling, its perceived benefits and chal-
lenges, used notations and tools, and the scale of industrial models. The authors
find that feature modeling is by far the most utilized variability modeling nota-
tion, being used by nearly three quarters of respondents. Variability modeling
approaches are used in a wide field of applications, including management of
existing variability, product configuration, requirements specification, or design
/ architecture.

The presented works underpin our choice to utilize feature modeling to repre-
sent service variability: feature modeling is a highly researched and in prac-
tice utilized variability modeling approach. Thus, a strong basis of experience
and approaches exists that can beneficially be utilized. Further, feature mod-
eling’s dissemination in industrial practice lowers entry barriers for using this
technology. Given their broad utilization across application domains, feature
modeling-based approaches seem an suitable starting-point for utilizing vari-
ability modeling for service development and delivery, as we propose in this
work.

78

3.5. Related Work on Modeling Service Variants

3.5.2. Feature-based Modeling of Service Variability

Feature modeling approaches, given their broad utilization across domains (cf.
section 3.5.1), have previously been utilized to model service variability. The
majority of these approaches addresses either modeling variability of Web ser-
vices or of cloud services. We thus present related work for modeling variants
of these types of services in the following.

Modeling Web Service Variability

The use of feature modeling to represent Web service variability has been moti-
vated with fast and automatic creation of consumer-specific variants [RF03]. In
this approach, exemplary feature models are presented that address variability
of utilized communication technologies, the Web service itself, or the consumer.
However, the complete scope of the models is not exhaustively discussed, their
utilization is only motivated, and more elaborate modeling elements like at-
tributes are not used.

Feature modeling has been utilized to represent functional characteristics
and Quality of Service (QoS) attributes of Web services in electronic con-
tracts [FdSGdT07]. A main motivation behind the approach is to foster struc-
ture and reuse of contractual clauses across multiple contracts. However, Quality
of Service characteristics are only represented coarsely using features that rep-
resent QoS levels. No quantitative values, using for example attributes, are
considered, thus limiting the approach’s expressiveness.

Runtime customization of Web services with explicit modeling of the variabil-
ity has also been addressed [NC10]. The authors propose to extend WSDL
documents to depict interfaces of service variants. Variability points and corre-
sponding variants, denoting for example the inclusion of further services to fulfill
subtasks of the service delivery, are explicitly modeled in a feature model. In
further work, the same authors focus on explicitly modeling variability of Web
service compositions [NCH14]. They consider dependencies between variability
in the composition and within the services used in the composition. Again, fea-
ture modeling is used to express variability. Additionally, a methodology for
developing corresponding processes is presented. It uses an extended version
of the Business Process and Model Notation 2.0. However, feature modeling’s
capabilities to model characteristics of features with attributes are not used.

Other approaches focus solely on variability resulting from selecting different
services in a service orchestration [KSB+10]. Here, no variability is considered
within individual services or with regard to the order of abstract tasks in the
orchestration, but only with regard to selecting services to fulfill these abstract

79

3. Modeling Service Variants

tasks. Thus, this approach is comparable to service feature modeling only in
cases where features are used to represent services that collectively denote the
overall modeled service.

Some authors motivate the need for handling variability in Web services primar-
ily by their utilization in dynamic contexts, where variability is a precondition
for reusing services [GA13]. The authors enumerate Web service specifics, which
make dedicated variability handling necessary, including a dynamic execution
environment, organizational issues, or the relevance of QoS. Different variabil-
ity subjects in Web services are identified and shortly discussed. The outlined
specifics of Web services correspond to those we identified for software services
in general in section 2.1.2. The authors outline the handling of Web service vari-
ability with (feature-based) variability modeling approaches and extensions of
typical Web service artifacts (WSDL or BPEL documents) with variation points
and variants. However, no specifications on how to represent the identified vari-
ability subjects with feature models are made.

The application of feature modeling to model Web service variability has not
yet made use of feature modeling’s full potential. Some approaches focus solely
on features and neglect attributes ([RF03, FdSGdT07]). Others lack specifica-
tion of what the feature models should look like ([NC10, NCH14]). In contrast,
service feature modeling makes use of recent advances in feature modeling like
attributes and even extends its language with feature and attribute types, re-
flecting the important role quality attributes play for services [LK13]. We also
propose concrete blueprints that indicate what service feature models for specific
domains like IaaS should look like (cf. section 5.4.2) or integrate the approach
to automatically derive feature structures (cf. section 5.3.2).

Modeling Cloud Service Variability

The utilization of variability modeling approaches for cloud services is moti-
vated by the need to configure them. Software-as-a-Service (SaaS) frequently
utilizes multi-tenancy so that tenant-specific configurations need to defined.
Infrastructure-as-a-Service (IaaS) offers various configuration options when it
comes to consuming virtual machines, for example with regard to geographical
placement, machine size, or pricing [Bar13]. Variability modeling approaches
can be used to represent the configuration options and provide the basis for
configuration processes by the consumer.

Some authors assume a common reference architecture underlying Software as a
Service (SaaS) applications [TÖ13]. The authors propose to capture design de-
cisions regarding applications based on this architecture in a feature model.
The structure of this model is correspondingly described. On a high level,

80

3.5. Related Work on Modeling Service Variants

features represent the layers of the SaaS reference architecture. Within each
layer, features represent (alternative) components, for example “load balancer”
or “firewall” in the “distribution layer”. Each component can be decomposed
into further features, representing sub-components, functionalities, or utilized
methods.

Similarly, a collection of cloud service reference architectures represented as
feature models has been published [GJNS13]. Considered reference architectures
include those of public organizations (for example, the National Institute of
Technology (NIST)), industry (for example, Amazon, Microsoft or IBM), and
research. In the resulting models, features represent various concepts, including
layers, functionalities and non-functionalities, technical properties, or software
components. While this flexibility is in line with what features in service feature
modeling can represent, a structure underlying the various models is missing. As
a result, the models are not comparable to another and express different levels
ob abstraction.

In the so far presented approaches, cloud architectures can be derived from the
reference architectures by configuring the feature model. However, the result
architecture is merely a basis for implementing a Cloud solution. In contrast,
service feature modeling aims to model the variability of a concrete service, not
its underlying architecture.

Other approaches focus on modeling the variability of individual Cloud services.
It has been proposed to utilize feature modeling to support the deployment of
applications on cloud services [QDH+12]. Feature models represent software
components and technologies both of the application to be deployed and of
potential cloud services (IaaS or PaaS). Cross-tree constraints between features
of these models denote constraints on the selection of cloud service features for
given selections of application features. For example, if a certain data-base type
is selected for the application, only cloud services that provide this database
type can be selected. Attributes are used to express concerns related to the
software components or technologies. For example, “SSL” encryption addresses
the concern for “security”.

Other approaches aim to represent Software as a Service variants using feature
models [MTW+12]. Here, SaaS applications are assumed to be composed of
services that fulfill certain functionalities. In the feature model, each feature
represents one of these services.

The outlined approaches, similar to the modeling subject of service feature mod-
eling, model variability of concrete services. As in the utilization of feature
modeling for Web services, attributes are not utilized in the approaches [TÖ13,
GJNS13] or their usage is mentioned but not illustrated [QDH+12]. Some
approaches do not prescribe how the feature models should be structured at

81

3. Modeling Service Variants

all [QDH+12], while others prescribe incomparable structures with different lev-
els of abstraction [GJNS13].

3.5.3. Other Approaches to Represent Service Variability

While feature-based variability modeling approaches denote the biggest group
of related work on modeling service variability, other modeling approaches have
also been suggested.

Orthogonal Variability Modeling (OVM) was created to explicitly model
variability in software products [PuFvdL05]. The variability defined in orthogo-
nal variability models can be related to any other software development models,
such as feature models, use case models, or component models, thus provid-
ing an orthogonal view of variability across all software development artifacts.
OVM has been applied to model variability of Web services to support their
adaptation to different contexts [KD08]. Architectural and behavioral variation
points are identified, addressing the service interface, the work flow underlying
Web service-based systems, and the service level agreements. The decision to
use OVM is not discussed. OVM is also used to model variability of Software
as a Service applications to enable customization and deployment for multiple
tenants [MMLP09]. The SaaS variability model differentiates between external
variability, which is visible to service consumers (for example, the capability to
send E-mails, availability) and internal variability, which is visible only to the
provider (for example, the used database). Apart from this differentiation, no
further constraints exist with regard to the structure of the variability model or
how it is derived.

The Configuration in Industrial Product Families Variability Model-
ing Framework (COVAMOF) was developed to explicitly represent vari-
ability in software product families [SDNB04]. In contrast to feature model-
ing, COVAMOF allows for n-to-n dependencies between represented variants
and to model relations between dependencies. COVAMOF has been applied to
model the variability of Web service-based systems [SRS+10]. The approach
uses an UML profile, which is compatible with COVAMOF, to represent ar-
chitectural variability of Web service-based systems. Architectural variability
includes replacing services with the same or with different interfaces, changing
service parameters, changing the composition of services, and creating complex
dependencies between them. A runtime management method allows for per-
forming these changes while the service is deployed, resulting in adaptation of
the service delivery.

Both, OVM and COVAMOF, in contrast to service feature modeling, do not
support the notion of attributes, which we consider fundamental for services.

82

3.5. Related Work on Modeling Service Variants

While OVM is motivated by separating variability modeling from other concerns,
feature modeling can and is often used equally for the sole purpose of modeling
variability [CGR+12]. Furthermore, feature modeling is much more used in
practice [BRN+13] and denotes a much richer set of related work [CABA09]. We
thus consider the choice to utilize feature modeling as a basis for our approach
feasible.

Goal modeling approaches from the field requirements engineering (RE) are
typically used in early software development activities [CA09]. They aim to
capture relevant goals and support reasoning about goal achievement strate-
gies [LKSL13]. Goal models capture objectives of diverse stakeholders for a sys-
tem in design. Goals can be either functional (denoted as hard) or non-functional
(denoted as soft / fuzzy). Functional goals have different levels of abstractions,
allowing for decomposition by defining sub goals. Goal models also capture al-
ternative ways on how to achieve goals, for example by specifying that sub goals
are alternatives to one another. In some languages, corresponding variability
points are explicitly modeled [YdPLLM08]. Between functional goals and soft
goals, contribution links capture the impact of the functional goal on the soft
goal. The extent of positive or negative impact on a soft goal can be expressed
using values (for example, “++”, “+”, “-”, and “- -”). Typical languages include
i*, which is designed to “[...] model and analyze stakeholder interests and how
they might be addressed, or compromised, by various system-and-environment
alternatives” [Yu97]. Similar to goal models, SFMs can be used in early service
design activities. Attributes with boolean domains, denoting functional charac-
teristics induced by features, are comparable to goals in goal modeling. Decom-
positions of attributes cannot be expressed as in goal modeling. Dependencies
between attributes can be expressed only by defining dependencies between their
containing features. Attributes representing non-functionalities are comparable
to soft goals in goal modeling. In goal modeling, soft goals are only specified
once and distribution links denote the extend of impact functionalities have on
them. In contrast, in service feature modeling, multiple attributes of the same
type can be defined whose overall value results from aggregation. This approach
allows SFMs to express more fine-granularly how service variants perform with
regard to soft goals. Another difference between the approaches is that config-
urations in service feature modeling relate to realizable service variants. Thus,
no further integration between goal models that typically capture the problem
domain and approaches that capture the solution domain (for example, software
product line engineering approaches) is required, which is a common challenge
in goal modeling [YdPLLM08, LKSL13].

As part of the WS-* stack, Web service policies are used to express condi-
tions on an interaction between two Web service endpoints [Wor07]. Policies
denote multiple alternatives, which are (potentially empty) sets of policy asser-
tions. Each assertion represents a requirement, capability, or other property of a

83

3. Modeling Service Variants

service’s behavior. The existence of multiple alternatives implies a choice in re-
quirements or capabilities expressed through assertions. Thus, policies denoting
multiple alternatives model variability where alternatives correspond to different
service variants. In contrast to feature modeling-based approaches, expressibil-
ity of WS policies is low. No dependencies between assertions can be expressed
above them being contained in the same alternative. If assertions are contained
within multiple alternatives, they must repeatedly be specified. Extensions of
standardized WS policies have been proposed that focus on customization of
Web services [LSZJ06]. Here, providers state customization options for Web
services in customization policies. Using these policies, consumers select their
desired customization, which leads to the deployment of a corresponding service
variant. As in standard WS policies, the expressiveness of this approach is lim-
ited. Overall, some policy-related approaches include the notion of variability.
However, the expressiveness of these approaches is, again, limited, lacking means
to express XOR or OR relationships or more complex dependencies between vari-
ants. Each variant of how to use a service is represented by an alternative. With
a rising number of variants, this representation mechanism results in increased
workloads and is error-prone if changes are required that address multiple vari-
ants. Furthermore, variability is not modeled explicitly, but integrated with
other modeling subjects. This makes the explicit handling of variability more
difficult, for example when checking the validity of variants, which is especially
important if the number of variants rises.

A common source of variability in the context of Web services is their compo-
sition. Composition approaches typically define an abstract process in which
multiple Web services are invoked to collectively accomplish a task [ASR10]. The
binding of Web services is performed for each invocation of this process, typi-
cally in reaction to a service request. The Web services to bind are then selected
based on request-specific quality requirements, current availability of function-
ally matching services, and their recent fulfillment of desired qualities. Many
approaches to deal with variability resulting from Web service composition do
not model this variability. Rather, they denote algorithms that select Web ser-
vices from a set of candidates considering Quality of Service goals (cf. [ASR10]).
Or, modeling is understood as applying mixed integer linear programming or
loops peeling [AP07]. Some approaches introduce variability into the defini-
tion of abstract work flows or compositions. It has been proposed to represent
alternative compositions using variability modeling approaches [PBP06]. The
resulting variability models can be used to communicate composition options to
consumers. Selection of the services to fulfill the abstract tasks in the compo-
sitions, however, is not supported. The Business Process Execution Language
(BPEL) is extended in VxBPEL to incorporate variability [KaSSA09]. VxBPEL
allows modelers to specify variation points, variants, and realization relations by
extending standard BPEL documents. While dependencies between variants can

84

3.5. Related Work on Modeling Service Variants

be expressed, the mix of variability with other concerns in the BPEL diagram
delimits means for automatic processing. The utilization of service feature mod-
eling to represent work flow variants (cf. 5.3) is similar to the here presented
approaches. In contrast to VxBPEL, service feature modeling explicitly mod-
els variability, allowing its users to perform dedicated reasoning on the models
and fostering separation of concerns. Service feature modeling can be used to
represent work flow variants (cf. section 5.3), however, its main focus lies on
representing the variability of a single service. Service feature modeling addi-
tionally can be used to represent variable concerns beyond work flows, allowing
for a broader application of the approach.

Another method to model variability of Web services proposes to extend com-
mon Web service artifacts [CK07]. The authors identify four types of
variability relevant for Web services, namely work flow variability, composi-
tion variability, interface variability, and logic variability. Variability concerning
interfaces is represented by extending the Web Service Description Language
(WSDL). These extensions enable different work flow variants, compositions, or
interfaces to be used while a service is operating based on changing context.
Variability is not explicitly modeled separately from other modeling subjects
and no dependencies between variable objects in different artifacts can be ex-
pressed.

3.5.4. Collaborative Modeling

The creation of SFMs based on their coordinated composition as presented
in section 3.4 is a means for expert collaboration in defining service variants.
This related work section is an extension of the one presented in previous
work [WSKT12].

The need for collaborative approaches for software engineering projects has been
attested to their inherent cooperative nature [Whi07]. The authors character-
ize collaboration in software engineering to be frequently driven by engineer-
ing artifacts, for example models. This goes in line with collaboration enabled
by composition of SFMs from services, where the SFM is the artifact driving
collaboration. Collaboration methods are presented, addressing different activ-
ities throughout a service life-cycle. However, no approaches based on feature-
modeling are presented even though feature modeling is named as a future area
in which collaboration could beneficially be applied.

Regarding collaborative modeling, some approaches discuss the creation of mod-
els in the computer aided design (CAD) domain where several experts work
together to derive a graphical model of a product. For instance, the authors
of [BBB01] present an approach for collaborative editing of a central model

85

3. Modeling Service Variants

maintained on a server, also addressing basic coordination problems, for exam-
ple concurrency and synchronization. They do not consider a human coordinator
or the creation of model parts by services. In contrast, we aim to allow a coor-
dinator to split the model into parts to be delegated to responsible experts. We
thus provide a coordination mechanism on an application level.

Several works address how multiple feature models can be combined. [ACLF10]
proposes to compose feature models that address specific domains, aiming to
better deal with rising complexity for large feature models, to foster the models’
evolution, and to engage diverse stakeholders in modeling. In [BEGB11], a rep-
resentation of feature models using description logics and a corresponding con-
figuration method are presented to allow multiple experts to model and configure
feature models. Graph transformations, based upon a catalog of merging rules,
are utilized to support the automatic merging of feature models [SBRCT08].
However, the implied semantics of the presented merging rules to solve conflicts
between two models do not account for special cases presented in our approach,
for example continuously updated attribute values. All presented works focus
on how to combine multiple models but do not address the coordinated creation
of models or the integration of up-to-date values. Methodologies addressing
the modeling of modular feature models are named as an intended future work.
In contrast, we focus on the coordination of creating modular feature models
collaboratively.

In software engineering, an approach to realize collaborative modeling with the
unified modeling language (UML) has been presented [DLFST07]. It allows soft-
ware engineers to decompose UML diagrams into fine-grained design model parts
that can be modified by distributed participants. The approach has some simi-
larities to our approach, for example, it hierarchically breaks down models into
parts, it uses event-based notifications and coordination mechanisms to manage
concurrent access and dependencies between model parts. In [ZKL+09] a model
and tool are presented that enable software architects to collaboratively capture
architectural decision alternatives and decision outcomes in a specialized Wiki.
In the modeling phase, architects can define dependencies between decisions.
Alternatives are used to ensure consistent and correct decision-making during
the configuration phase. Despite some similarities, both presented approaches
do not (yet) support delegation of modeling parts through a coordinator and
do not enable the integration of content provided by software services into the
models.

Flexible composition of services through end-users has been discussed in the
mashups area [YBCD08]. Mashups allow end-users to easily compose and inte-
grate (Web) services into artifacts. In addition, approaches for the integration
of human-provided services into collaboration exist [STD08]. However, we are

86

3.6. Discussion

not aware of any approach that allows participants to create models through a
mashup mechanism.

Overall, having analyzed related work in various research areas, we believe that
our approach uniquely combines coordination and service-composition concepts
to support the participation of various experts in defining variability models.

3.6. Discussion

Service feature modeling’s language sets out to capture the variants for devel-
oping or delivering a service. Various approaches exist that equally aim to
represent service variability (cf. section 3.5.3). Many of them, while address-
ing variability of services, mix statements about variability with other concerns
(cf. [LSZJ06, CK07, KaSSA09]). This impedes a clear separation of concerns,
making communication of variants and reasoning about them harder. Service
feature modeling focuses on representing variability with the purpose of allowing
modelers to design, communicate and reason about it. If required, artifacts ad-
dressing other concerns can be associated with SFMs (cf. section 5.3 and 5.4).

Given the dissemination of feature modeling, we consider it to be an ideal basis
for service feature modeling as well (cf. section 3.5.1). Feature modeling has
successfully been applied in various domains and provides a large base of related
work. Using feature modeling to represent services, most notably Web and cloud
services, has already been proposed (cf. section 3.5.2). However, we find that
service feature modeling is different from these approaches in multiple regards.

The utilization of feature modeling approaches for services frequently focuses
on specific aspects. For example, feature models are used to represent work
flow or composition variants of Web services (cf. [PBP06, KaSSA09]) or archi-
tectures of cloud services (cf. [RA11, SMML12, GJNS13]). Narrowing down
the variability subject under consideration has advantages: it allows us to de-
fine concrete mappings to artifacts of the solutions design, for example other
models, source code, or configuration parameters. This enables the automatic
creation, update, or validation of feature models based on these artifacts. Fur-
ther, the realization of service variants profits from relationships between feature
modeling elements (features, attributes etc.) and other design artifacts. With
service feature modeling, however, we aim to provide more flexibility regarding
the variability subject. We illustrate how service feature models can relate to
other design elements like work flow variants (cf. section 5.3.3) or deployment
configurations (cf. section 5.4.3). Not limiting service feature modeling to one
of these contexts allows its broader application. This flexibility has already led
classical feature modeling, where it is reflected by the generic definition of what a

87

3. Modeling Service Variants

feature is, to be beneficially utilized in various contexts (cf. [BRN+13]). Service
feature modeling should similarly be applied to represent variability of diverse
subjects in the context of services, and add mappings to specific artifacts where
needed.

In contrast to many of the presented approaches [RF03, FdSGdT07, NC10,
NCH14, TÖ13, MTW+12], service feature modeling makes use of the notion
of attributes from feature modeling. They allow to specify functional or non-
functional characteristics that result from the inclusion of features in a service
variant. Attributes play an important role for selection among service variants
(cf. section 4) and should thus be considered. Different from all other feature
modeling approaches, we introduce attribute types. Typing of attributes has
been proposed in previous work, but only concerned the data type of an at-
tribute’s value [CHE05]. In contrast, attribute types in service feature modeling
contain much richer information, including descriptions, scale orders, or mea-
surement units. Attribute types reduce efforts in specifying similar attributes.
They further specify aggregation rules. They allow to determine instantiation
values for attributes describing configurations by aggregating the instantiation
values of the attributes describing features in a configuration as motivated in
challenge 1 in section 1.3.1. This novel approach enables the annotation of
configurations with attributes, thus supporting the comparison between config-
urations in service feature modeling’s usage methods (cf. chapter 4).

Service feature modeling further introduces feature types. In related work, a
comparable typing of features has been proposed [CHE04]. Here, features are
typed as concrete (being realized by individual components), aspectual (being
realized by a number of components or modularized using aspect technologies),
abstract (representing requirements mapped to component and or aspects), and
grouping (representing variation points or having a pure organizational purpose).
We find the semantics of this typing unclear, especially with regard to the dou-
ble role played by grouping features. In contrast, we aim to make clear how
service feature modeling’s feature types relate to variability concepts like vari-
ability subject and variability object (cf. section 3.2.3). We also clearly separate
solution-oriented semantics of features from problem-oriented attributes. Our
introduction of feature types aims to increase the understandability of SFMs and
the modeling process, guiding modelers on how to define features. Furthermore,
feature types in service feature modeling support unambiguous (automatic) in-
terpretation of SFMs, enabling for example requirements filtering for multiple
SFMs (cf. section 4.5).

Our approach for composing SFMs from services (cf. section 3.4) is novel and
unique. Enabling expert collaboration in service feature modeling, as mo-
tivated in challenge 3 in section 1.3.1, through composing SFMs from ser-
vices is directly derived from the identified need for such mechanisms in ser-

88

3.6. Discussion

vice development (cf. section 1.2). Existing approaches addressing collabora-
tive variability modeling outline how to combine, for example, feature mod-
els [ACLF10, BEGB11, SBRCT08]. The required methods for performing col-
laborative modeling, however, are either neglected or mentioned as future work.
Other approaches address the methods for collaborative modeling, but focus on
different types of models [BBB01, DLFST07, ZKL+09].

Another advantage of composing SFMs from services is the possibility to include
attribute values provided by services as motivated in challenge 2 in section 1.3.1.
A limitation of any feature modeling-based approach is how to deal with dynamic
or complexly derived values. Here, composition from services enhances service
feature modeling’s capabilities to consider such values compared to standard
feature modeling approaches.

89

4. Using Service Feature Models

In this chapter, we describe the intended usage of service feature models within
software service engineering. We assume an SFMs as input that depict the
variants of a service, either deployed or not. Within this chapter, to illustrate
the usage methods, we rely on the SFM illustrated in figure 3.4, representing a
financial data service motivated in section 1.1.2 and used throughout chapter 3.
First, we outline the goals of using service feature modeling and the proposed
usage process in section 4.1. Next, we discuss in detail the individual methods
denoting the usage process: we start with the automatic determination of service
variants from an SFM in section 4.2. We then discuss means for requirements
filtering to reduce the set of variants to ones adhering to minimal consumer needs
in section 4.3. We discuss our approach to rank remaining variants based on
preferences in section 4.4. We show how the presented methods can be applied
to select service variants from multiple SFMs in section 4.5. We discuss related
approaches for variant selection in section 4.6. Finally, we summarize and discuss
service feature modeling’s usage in section 4.7.

4.1. Usage Process

In this section, we present the process of using SFMs. The process directly
addresses the corresponding challenge 4 motivated in section 1.3.2. We outline
the goals of the usage process in section 4.1.1. Usage methods are applied in
two scenarios, either for variant selection during development or for variant
selection for delivery. We further present an overview of the usage procedure in
section 4.1.2. It encompasses the different usage methods and illustrates their
recommended flow. Finally, we discuss the stakeholders involved in the usage
process in section 4.1.3.

4.1.1. Goals of Usage

It can be argued that intention is a first-class property in the modeling pro-
cess [MFBC10]. Correspondingly, service feature modeling’s appeal and useful-
ness will only show in the usage of SFMs. The intention and thus goal of using

91

4. Using Service Feature Models

SFMs is to select one or a subset of the service variants it represents. Select-
ing service variants can have different purposes depending on the scenario it is
performed in:

• Variant selection for development Variant selection for development
is a design activity performed by the service provider. The goal is to deter-
mine a (subset of) service variant(s) from those represented in an SFM that
should further be developed. In this sense, usage is similar to approaches
in goal modeling that aim to support reasoning about goal achievement
strategies [LKSL13]. Another way to look at this use of service feature
models is the design-time approach of handling of variability in consumer
requirements [NC10]: because requirements differ among consumers, suit-
ing service variants to address a majority of them need to be provisioned.
Or, usage in this context is comparable to the dealing with design spaces,
which encompass a set of decisions to choose an artifact (service design
variant) that best satisfies needs [Sha12]. In this usage scenario, potential
for participation of future consumers arises. They can specify their needs
and wishes while the provider develops the service. The provider can con-
sider this input to develop (the) variant(s) that best satisfy consumers,
leading eventually to higher profits.

• Variant selection for delivery On the other hand, variant selection
for delivery is performed as a consumer design activity. The goal is to
determine a service variant to deliver that best matches consumer needs.
The assumption here is that a candidate service to consume denotes vari-
ants and that these variants can be realized in delivery. The realization
of variants for in delivery can be achieved by providing one single cus-
tomizable service (e.g., [NC10]) or by deploying individual service variants
on-demand (e.g., [LNSJ12]).

The selection of service variants adheres to sub goals. A functional subgoal
for the usage process is to provide consider consumer requirements. Require-
ments define what stakeholders like users, customers, suppliers, developers, or
businesses want from a system [HJD11], in our case from service variants. If
a variant does not fulfill requirements, its consumption is not feasible from the
consumer point of view. Thus, requirements in the following denote necessary
prerequisites for designing or consuming service variants. The usage process
needs to provide means to 1) identify whether variants adhere to consumer re-
quirements or not and 2) exclude variants not fulfilling requirements from further
consideration. Another functional subgoal for the usage process is to incorpo-
rate consumer preferences. Preferences relate to desirable, but not inevitable
characteristics of a service variant. The adherence to preferences is thus, in con-
trast to that of requirements, negotiable. Typically, multiple preferences denote

92

4.1. Usage Process

trade-off relationships to another: if the adherence to one preferred character-
istics is increased enough, certain dismissal of other preferred characteristics is
acceptable in return. Another subgoal of the usage process is to provide the right
amount of structure. Providing structure reduces the risk of dismissing relevant
steps in service variant selection. On the other hand, too narrow structure can
restrict benefits or applicability of the usage process. The process should thus
offer structure to assist, while not restricting users. Finally, another subgoal
for the selection process is automation. Given the required input (i.e., an SFM,
requirements and preferences), the selection should be performed automatically
and thus be repeatable. Automation increases the applicability of using SFMs
for variant selection in scenarios where manual intervention cannot be guaran-
teed. For example, automation is necessary if selection needs to be performed
unexpectedly, like in the case of a disaster. Performing selection again instead
of just relying on previous selection results is necessary in light of eventually
changed attributes composed into SFMs (cf. section 3.4).

4.1.2. Usage Overview

The usage process in service feature modeling consists of multiple steps, which
are illustrated in figure 4.1.

Configuration set
determination

Skyline filtering

Preference-
based ranking

SFM

Configuration
set

Configuration
ranking

1. 2. ...
Preferences

Reduced
configuration

set

Requirements
filtering

Requirements

Key:

= OR

= XOR

Figure 4.1.: Overview of the usage process of service feature models

Usage starts with an SFM, whose feature structure, cross-tree relationships,
attribute types and attributes are defined. The SFM does not need to be com-
pleted - the usage process can also be performed on intermediary SFMs. The
first step of the usage is the configuration set determination. It produces a set

93

4. Using Service Feature Models

of all configurations valid according to the SFM. Depending on the size and
structure of the model, this set can contain thousands of configurations. Config-
uration set determination can be repeated on-demand, for example in reaction
to changes in the SFM. Having determined the configuration set, requirements
filtering and / or skyline filtering can be applied. Requirements filtering, based
on the notion of requirements as necessities, dismisses configurations that do
not fulfill stated requirements from the configuration set. To perform this step,
a priorly defined set of configurations and specified requirements are necessary
input. Skyline filtering compares configurations based on their attributes and
releases the configuration set of ones that are strictly dominated by others. Sky-
line filtering is especially relevant to reduce the problem size when performing
preference-based ranking. Requirements and skyline filtering can be performed
in combination or repeatedly, for example, in reaction to changes in require-
ments. Preference-based ranking produces a ranking of configurations based
on provided preferences. Thus, as input it requires a set of configurations, ei-
ther produced by the configuration set determination or a reduced one resulting
from the skyline and / or requirements filtering, and stated preferences. Again,
preference-based ranking can be performed repeatedly, for example in reaction
to changes in preferences. The resulting configuration ranking has to be eval-
uated in light of the previously performed steps. If requirements filtering was
performed, it denotes a ranking of feasible configurations only. Otherwise, it
denotes a ranking of any configuration, feasible or not. The ranking can either
be assessed manually by human actors, who consider it as a recommendation for
the service variants to develop, deploy and operate from a provider’s point of
view or to consume from a consumer’s point of view. Alternatively, the ranking
can be automatically processed, selecting for example the highest ranked service
variant for development or delivery.

Depending on the utilization in either provider or consumer design activities (cf.
section 4.1.1), additional sub steps are required. To enable participation, SFM
need to be transformed and transfered to make them available to participants in
dedicated abstractions. We discuss the necessary steps as part of the participa-
tory preference-based ranking approach in section 4.4.6. When usage addresses
variant selection for delivery, SFMs stating realizable service variants need to be
send from the provider to consumers. In reverse, selected variants need to be
communicated from the consumer to the provider for realization.

4.1.3. Involved Stakeholders

The stakeholders involved in service feature modeling’s usage process depend
on the pursued goals (cf. section 4.1.1). When usage addresses variant selec-
tion during development, it is likely performed by the same stakeholders who

94

4.2. Automatic Determination of Variants

modeled the SFM. Thus, typical users are service or software engineers (cf. sec-
tion 3.3.1). Next to requiring background in modeling to be able to deal with
SFMs, these stakeholders need to be capable and authorized to state require-
ments and preferences for variant selection, for example as representatives of
the institution developing the service. In the case that SFMs are used for par-
ticipatory development, stakeholders who are typically not involved in software
service development also perform usage activities. These stakeholder include, for
example, citizens in case of public services [HJR+10] or end users [SC04]. Given
they may be non-technicians, dedicated abstractions from technical details are
required to enable their involvement in the development process. When usage
addresses variant selection for delivery, involved stakeholders are consumers or
prospect consumers. If they interact directly with SFMs for variant selection,
for example using skyline or requirements filtering, they require knowledge in
modeling. Other required skills depend on the concerns modeled in an SFM
based upon which variant selection is performed. The SFM may contain tech-
nical, business, legal, or other concerns, which require corresponding knowledge
and decision-making powers. For example, a consumer’s legal department may
have to check the compatibility of terms of services represented by features with
their own regulations.

In every case, stakeholders apply usage methods to select service variants, in
other words, to decide among them. In the following, we thus refer to a stake-
holder involved with the usage process as decision-maker.

4.2. Automatic Determination of Variants

The automatic determination of variants produces the set of all valid configura-
tions for a given SFM. It consists of two steps: first, it transfers the SFM to a
constraint satisfaction problem (CSP) and solves it as described in section 4.2.1.
Second, it aggregates the attributes for each configuration, as described in sec-
tion 4.2.2.

4.2.1. Mapping of SFMs to Constraint Satisfaction Problems

To automatically determine the configurations of an SFM, similar to standard
feature models, it needs to be represented in a computer-understandable way.
Various formalization approaches have been proposed for this purpose [BSRC10].
The most common approaches are to represent feature models as constraint sat-
isfaction problems (CSP) [BTRC05], in terms of propositional logic [Bat05], or
using description logic [WLS+05]. While the formalization using propositional

95

4. Using Service Feature Models

logic builds upon binary variables only, the formalization as a CSP includes in-
teger and interval ones [PLP11]. Propositional logic-based formalizations make
use of binary decision diagrams (BDD) or satisfiability solvers (SAT) to per-
form analysis operations. One differentiator between these approaches is their
expressiveness with regard to the supported analysis operations but also with
regard to the specific feature model language, for example, cardinality-based,
extended [BSRC10]. Another factor for using one approach over the other is
the performance of corresponding solvers with regard to computational effort.
Extensive studies have been performed to determine each approaches perfor-
mance in different contexts, i.e., different model sizes, different analysis opera-
tions [PLP11]. The authors find that CSP solvers perform especially good for
“small” model sizes, defined as having up to 100 configurations, and in scenarios
where the solver is called frequently. Based on the good performance with small
models and due to their capability to be extended to use integer and interval
variables, we choose constraint satisfaction problems (CSP) as the formalization
to use for service feature modeling.

SFM
element

CSP constraint

Mandatory
feature

P is a parent feature and C is a child feature in a mandatory
relationship. Then: C.sel⇔ P.sel

Optional
feature

P is a parent feature and C is a child feature in a mandatory
relationship. Then: C.sel⇒ P.sel

OR
constraint

P is a parent feature and C1, C2...Cn are child features in a OR
relationship. Then: C1.sel ∨ C2.sel ∨ ... ∨ Cn.sel⇔ P.sel

XOR
constraint

P is a parent feature and C1, C2...Cn are child features in a XOR
relationship. Then: (C1.sel ⇔ (¬C2.sel ∧ ... ∧ ¬Cn.sel ∧ P.sel))
∧...∧ (Cn.sel⇔ (¬C1.sel ∧ ... ∧ ¬Cn − 1.sel ∧ P.sel))

Requires
relation-
ship

X and Y are features in a requires relationship Rrequires(X,Y).
Then: X.sel⇒ Y.sel

Excludes
relation-
ship

X and Y are features in an excludes relationship Rexcludes(X,Y).
Then: ¬(X.sel ∧ Y.sel)

Table 4.1.: CSP constraints for SFM elements, based on [KOD10]

The mapping of an SFM to a CSP follows the rules defined in related work
[KOD10]. The formalizations for decomposition and cross-tree relationships are
outlined in section 3.2.1. Table 4.1 lists the corresponding constraints to be
created in the CSP depending on the type of node traversed, based on [KOD10].
The notion .sel indicates that a feature is selected.

96

4.2. Automatic Determination of Variants

Our mapping algorithm is described in listing 1. It iterates a given SFM twice.
In the first iteration, for every feature f ∈ SFM , a binary variable is created in
an object CSP representing the constraint satisfaction problem. In addition, the
mapping between every feature and the corresponding binary variable is stored
in a map. In the second iteration, for every relationship r, depending on this
relationship’s type, constraints between the binary variables are created. The
constraints adhere to our definitions in table 4.1. To create the constraints, the
mapping between features and priorly created binary variables is conducted as
to identify the correct variables in the constraint satisfaction problem. In the
end, the completely modeled CSP object is returned.

Having mapped a SFM in this way to a CSP, it can be solved. Solving results
in any possible (if existent) combination of setting all binary variables to true
or false that adheres to all defined constraints. Each combination is a valid
solution of the CSP and represents one valid configuration of the SFM. Empirical
analyses of the performance of different CSP solvers applied to feature modeling
have been presented in related work [PLP11].

Id Selected
instance
features

WS-*
speci-
fications

Price/10k
requests

Real
time
data

Quote
history
provided

c1 SOAP 1 100.00 0 0
c2 SOAP, inclusion of

quote history
1 100.00 0 1

c3 REST 0 80.00 0 0
c4 REST, real time

quote updates
0 120.00 1 0

c5 REST, inclusion of
quote history

0 80.00 0 1

c6 REST, real time
quote updates,
inclusion of quite
history

0 120.00 1 1

Table 4.2.: Configurations of example in figure 4.2

Table 4.2 lists all valid configurations from the example presented in image 3.4.
Specifically, column two states the selected instance features for each configura-
tion. The root feature “stock quotes API” and abstract feature “interface” are
selected in every configuration. Abstract feature “data delivery options” is se-
lected given that either “real time quote updates” or “inclusion of quote history”
is also selected.

97

4. Using Service Feature Models

Algorithm 1 Mapping SFM to CSP
1: procedure MapSFMtoCSP(SFM)
2: CSP ← ∅ . variable to hold constraint satisfaction problem
3: fv ← { } . map to store relationship between features and CSP

variables
4: for all Feature f ∈ SFM do
5: x← new BinaryVariable()
6: fv.put(f , x)
7: CSP .addVariable(x)
8: for all Relationship r ∈ SFM do
9: switch type(r) do
10: case Rman

11: CSP .addConstraint(fv.get(ter(r)).sel⇔ fv.get(init(r)).sel)
12: case Ropt

13: CSP .addConstraint(fv.get(ter(r)).sel⇒ fv.get(init(r)).sel)
14: case ROR

15: cf ← ter(r) . array to store all child features of OR rel.
16: CSP .addConstraint(

fv.get(cf [0]).sel ∨ ...∨
fv.get(cf [n]).sel⇔ fv.get(init(r)).sel)

17: case RXOR

18: cf ← ter(r) . array to store all child features of XOR rel.
19: CSP .addConstraint(

(fv.get(cf [0]).sel⇔
(¬fv.get(cf [1]).sel ∧ ...
∧¬fv.get(cf [n]).sel ∧ fv.get(init(r)).sel))

∧...∧
(fv.get(cf [n]).sel⇔
(¬fv.get(cf [0]).sel ∧ ...
∧¬fv.get(cf [n− 1]).sel ∧ fv.get(init(r)).sel))

20: case Rrequires

21: CSP .addConstraint(fv.get(init(r)).sel⇒ fv.get(ter(r)).sel)
22: case Rexcludes

23: CSP .addConstraint(fv.get(init(r)).sel ∧ fv.get(ter(r)).sel)
24: return CSP

98

4.2. Automatic Determination of Variants

4.2.2. Attribute Aggregation

Having determined an SFM’s valid configurations, attributes are aggregated for
each one. The service feature modeling language, as described in section 3.2.4,
allows multiple attributes in an SFM to be associated with the same attribute
type. The attribute type, among other things, defines the aggregation rule
AR(at) for attributes of that type at. Table 4.3 provides an overview of the
available aggregation rules.

Name Aggregation rule
Sum If the aggregation rule AR(at) of attribute type at equals sum,

the overall aggregated attribute’s instantiation value iv(c, a) for
configuration c ∈ C is calculated as follows:
iv(c, a) =

∑
i(ak), ∀ak ∈ A such that ∃arak,f , f ∈ c

Product If the aggregation rule AR(at) of attribute type at equals
product, the overall aggregated attribute’s instantiation value
iv(c, a) for configuration c ∈ C is calculated as follow:
iv(c, a) =

∏
i(ak), ∀ak ∈ A such that ∃arak,f , f ∈ c

Minimum If the aggregation rule AR(at) of attribute type at equals
minimum, the overall aggregated attribute’s instantiation value
iv(c, a) for configuration c ∈ C is calculated as follows:
iv(c, a) = min(i(ak)), ∀ak ∈ A such that ∃arak,f , f ∈ c

Maximum If the aggregation rule AR(at) of attribute type at equals
maximum, the overall aggregated attribute’s instantiation value
iv(c, a) for configuration c ∈ C is calculated as follows:
iv(c, a) = max(i(ak)), ∀ak ∈ A such that ∃arak,f , f ∈ c

At least
once

If the aggregation rule AR(at) of attribute type at equals
at least once, the overall aggregated attribute’s instantiation
value iv(c, a) for configuration c ∈ C is calculated as follows:

iv(c, a) =
{

1 , if ∃ak = 1 such that ∃arak,f , f ∈ c
0 , else.

Table 4.3.: Overview of aggregation rules

The aggregation of attributes is dependent on the provision of aggregation rules,
which is a major capability that attribute types add to service feature modeling.
Listing 2 illustrates the procedure. It takes as input an SFM whose configuration
set C is already determined. Initially, a values map is created that contains
additional maps for every attribute type. The SFM’s attributes are iterated and
for every one of them, the feature they describe and their instantiation value
iv(f, a) are stored in the map of the corresponding attribute type. The values
data structure thus represents a matrix whose rows are the SFM’s attribute

99

4. Using Service Feature Models

types and whose columns are the features contained in the SFM. The entries of
this matrix are the instantiation values (if existent) that the column’s feature
has regarding the row’s attribute type. The purpose of creating the values data
structure is to speed up look-ups for instantiation values, which would otherwise
require expensive iterations of the SFM. In consequence, the SFM’s configuration
are iterated per attribute type. Depending on the aggregation rule and using
the values data structure, each configuration’s instantiation value iv(c, a) is
calculated and stored.

After attribute aggregation, every configuration denotes exactly one attribute of
each type, whose instantiation value iv(c, a) is the result of the aggregation for
that attribute type: ∀c ∈ C ∧ at ∈ AT : ∃!a, atr(a, at), iv(c, a).

In the example from figure 3.4, the aggregated attributes for each configuration
are described in columns 3 to 6 in table 4.2. For example, configuration c6
contains instance features “REST” with an instantiation value for “price / 10k
requests” of 80.00 and “real time quote updates” with an instantiation value
for “price / 10k requests” of 40.00. In result, based on the aggregation rule of
“price / 10k requests” being “sum”, these values are added up, resulting in an
instantiation value of iv(c6,price / 10k requests) = 120.00.

4.3. Requirements Filtering

Requirements filtering allows decision-makers to dismiss configurations from a
configuration set that do not fulfill certain minimum requirements. To realize
this mechanism, we present a way to state and represent requirements in sec-
tion 4.3.1. We then discuss how such statements are applied to the configuration
set of an SFM in section 4.3.2.

4.3.1. Stating Requirements

Requirements req ∈ Req can be stated within an SFM as we propose in previous
work [WKM12]. Requirements Reqf ⊆ Req concern the existence of features
in configurations. Alternatively, requirements Reqa ⊆ Req concern the instan-
tiation values of configurations’ attributes. These are the only two types of
requirement: Req = Reqf ∪Reqa. They do not overlap: Reqf ∩Reqa = ∅. The
number of all requirements is denoted as |Req| and the number of feature and
attribute requirements is, correspondingly, denoted as |Reqf | and |Reqa|.

Requirements for features reqf ∈ Reqf are represented by marking the corre-
sponding features as required. This information can, for example, be captured

100

4.3. Requirements Filtering

Algorithm 2 Attribute aggregation
1: procedure AggregateAttributes(SFM)
2: values← { }
3: for all at ∈ AT do
4: values.put(at, {}) . put empty hashmap per attribute type
5: for all a ∈ SFM do
6: f ← atr(f, a) . obtain the feature containing attribute a
7: values.get(type(a)).put(f, iv(f, a)) . store f ’s instantiation value in

attribute a in values
8: for all Configuration c ∈ C do
9: for all AttributeType at ∈ AT do
10: switch AR(at) do
11: case sum
12: v ← 0.0
13: for all Feature f ∈ c do
14: v ← v + values.get(at).get(f)
15: case product
16: v ← 0.0
17: for all Feature f ∈ c do
18: v ← v ∗ values.get(at).get(f)
19: case maximum
20: v ← Double.MIN_VALUE . start with smallest value
21: for all Feature f ∈ c do
22: if values.get(at).get(f) > v then
23: v ← values.get(at).get(f)
24: case minimum
25: v ← Double.MAX_VALUE . start with largest value
26: for all Feature f ∈ c do
27: if values.get(at).get(f) < v then
28: v ← values.get(at).get(f)
29: case atleastonce
30: v ← 0.0
31: for all Feature f ∈ c do
32: if values.get(at).get(f) = 1.0 then
33: v ← 1.0
34: break
35: iv(c, a)← v . assign calculated instantiation value

101

4. Using Service Feature Models

in a boolean property added to each feature. The following statements are pos-
sible:

• Requiring an instance feature A requirement regarding an instance
feature req(f I) ∈ Reqf states that the instance feature f I is required.
Thus, only configurations containing this feature fulfill this requirement.
The value v(req(f I), c) of such a requirement regarding a configuration c
is calculated as follows:

v(req(f I), c) =
{

1 , if f I ∈ c
0 , else. (4.1)

Thus, v(req(f I), c) = 1 means that the requirement is fulfilled while
v(req(f I), c) = 0 means that the requirement is not fulfilled by configura-
tion c. Using this approach, for example, optional features can be required
so that only configurations remain that denote this feature. Or, a certain
instance feature within an XOR or OR grouping decomposition can be set
as required. For example, in the SFM from figure 3.4, the instance feature
“SOAP” can be required.

• Requiring an abstract feature A requirement regarding an abstract
feature req(fA) ∈ Reqf states that it must be instantiated (in any way).
Thus, at least one child instance features of the required abstracted feature
must be present in a configuration to fulfill this requirement. The value
v(req(fA), c) of such a requirement regarding a configuration c is calculated
as follows:

v(req(fA), c) =
{

1 , if ∃r|init(r) = fA ∧ ter(r) = f I , r ∈ Rde, fA, f I ∈ c
0 , else.

(4.2)
Again, v(req(fA), c) = 1 means that the requirement is fulfilled while
v(req(fA), c) = 0 means that the requirement is not fulfilled by configu-
ration c. For example, in the SFM from figure 3.4, the abstract feature
“data delivery options” can be required. In consequence, either the “real
time data updates” or “inclusion of quote history” need to be present in
requirements-fulfilling configurations.

Requirements for attributes reqa ∈ Reqa can be set by defining the valid instan-
tiation values of an attribute. Requirements for attributes always relate to the
instantiation values of the aggregated attributes in configurations. The require-
ments can be modeled, for example, within a property “required values” added
to each attribute type1. The following statements are possible:

1Note: after aggregation, each configuration denotes only one attribute per attribute type,
expressing the aggregated instantiation value. Thus, attribute types are a suited place to
state requirements valid for all configurations of an SFM centrally.

102

4.3. Requirements Filtering

• Requiring a specific value A requirement regarding a specific attribute
value req(a, x) ∈ Reqa states that the attribute must denote value x. Con-
figurations fulfill this requirement only if their value for attribute a equals
x. The value v(req(a, x), c) of such a requirement regarding attribute a
and configuration c is calculated as follows:

v(req(a, x), c) =
{

1 , if iv(c, a) = x
0 , else. (4.3)

For example, in the SFM from figure 3.4, “WS-* specifications” can be
required to equal 1 (= true) to delimit configurations that do not denote
this qualitative characteristic.

• Requiring a threshold for an attribute value A requirement regard-
ing a threshold for an attribute value req(a, �, x) ∈ Reqa states that the
attribute’s instantiation value must lie within the range specified by the
threshold. The value v(req(a, �, x), c) of such a requirement regarding at-
tribute a and configuration c is calculated as follows:

v(req(a, �, x), c) =
{

1 , if iv(c, a) � x, � ∈ {<,≤,≥, >}
0 , else. (4.4)

If a threshold is required, configurations fulfill this requirement if they
denote an instantiation value within the interval specified by this threshold.
For example, in the SFM from figure 3.4, “price / 10k requests” can be
required to be smaller than 100.00 to delimit configurations that are more
expensive.

A requirement is further specified with a weight wreq that expresses its impor-
tance. Weights lie between wreq = 0, meaning that the requirement req does
not matter to the decision-maker at all, and wreq = 1, meaning that the require-
ment req denotes a hard constraint. Weights in between 0 and 1 thus express
a relative importance. Similar to requirements, weights can be represented in
dedicated properties of features and attribute types.

4.3.2. Matching Requirements to Variants

To process configuration sets against stated requirements, we propose a match-
making approach. Our approach performs goal-based matchmaking to determine
solutions that satisfy specified constraints [Aga07], in this case the requirements
specified as described in section 4.3.1. It works by assessing every configuration
in a configuration set regarding the stated requirements. The idea behind our
matchmaking method is to be fuzzy. In fuzzy sets, elements are assessed grad-
ually to be member of a set, typically by use of a membership function valued

103

4. Using Service Feature Models

in the real unit interval [0, 1] [PSD13]. Instead of just denoting binary whether
a configuration fulfills all requirements stated in Req or not, we aim to express
their degree of fulfillment. The degree of fulfillment results from summing up the
fulfillment gaps that express to what extend an individual requirement req ∈ Req
is not met. The algorithmic procedure of the requirements matchmaking method
to achieve this goal is described in listing 3.

Algorithm 3 Filtering requirements
1: procedure FilterRequirements(SFM, Req)
2: degList . list of deg(c,Req) values
3: for all Configuration c ∈ SFM do
4: fv . map of non-fulfilled feature requirements
5: aMap . map of non-fulfilled attribute requirements
6: deg(c,Req) ← 0 . degree deg(c,Req) to which c differs from reqs.
7: for all FeatureRequirement reqf ∈ Req do
8: calculate v(reqf)
9: if v(reqf , c) = 1 then
10: gap(reqf)← 0
11: else
12: gap(reqf)← 1
13: fv.add(reqf , wreqf ∗ gap(reqf))
14: for all AttributeRequirement reqa ∈ Req do
15: calculate v(reqa)
16: if v(reqa, c) = 1 then
17: gap(req(a, o, x), iv(c, a))← 0
18: else
19: calculate gap(req(a, o, x), iv(c, a))
20: aMap.add(req(a, o, x), wreqa ∗ gap(req(a, o, x), iv(c, a)))
21: calculate deg(c,Req) . uses aMap and fv as input
22: degList.add(deg(c,Req))

For all requirements for features, the requirements filtering algorithm checks the
current configuration for the existence of required features, resulting in v(reqf , c)
being 0 or 1. Using this value, we define the fulfillment gap for requirement reqf

as follows:
gap(reqf) = 1− v(reqf , c) (4.5)

Thus, gap(reqf) = 1 if the requirement reqf is not met and gap(reqf) = 0 if
it is met. The fulfillment gap of every feature requirement is stored in a map
multiplied by the weight wreqf for that requirement.

104

4.3. Requirements Filtering

Similarly, for all requirements for attributes, the requirements filtering algorithm
checks the current configuration for the value of attributes regarding which re-
quirements were specified, resulting in v(reqa, c) being 0 or 1. The fulfillment
gap gap(req(a, o, x), iv(c, a)) to which the required value x is not met by the
actual value iv(c, a) of configuration c in attribute a is calculated as follows:

gap(req(a, o, x), iv(c, a)) =
{

0 , if v(reqa, c) = 1
|x−iv(c,a)|

x , else. (4.6)

For example, a requirement states that the attribute value for “development
cost” needs to be equal or smaller than 800, so that req(“developmentcost′′, <
, 800). A configuration has “development cost” of “700”. In this case, because
the requirement is met, the fulfillment gap is 0. Another configuration has
“development cost” of “1000”. In this case, the fulfillment gap equals |(800 −
1000)|/800 = 0.25. The fulfillment gap of every attribute requirement is stored
in a map multiplied by the weight wreqa for that requirement.

Having assessed every feature and attribute requirement for a configuration, the
overall degree of fulfillment deg(c,Req) is calculated and stored. The calcula-
tion of the degree of fulfillment uses simple additive weighting (SAW) [YH95].
In SAW, an evaluation score is calculated as a weighted average for each alter-
native. The evaluation score results from multiplying an alternative’s value for
a criteria with the weights of relative importance directly assigned by decision-
maker to that criteria. The products are in consequence summed up. For every
configuration c, the degree of fulfillment deg(c,Req) results from summing up the
fulfillment gaps for required features or attributes, multiplied by their weights.
The resulting value is normalized by dividing it with the number of requirements.
Subtracting this value from 1, one obtains the degree of fulfillment:

deg(c,Req) = σ

(
1− 1
|Req|

[∑
reqf∈Reqf

gap(reqf) ∗ wreqf

+
∑

reqa∈Reqa

gap(reqa, iv(c, a)) ∗ wreqa

]) (4.7)

The factor σ denotes whether there exists a requirement req that is not fulfilled
but that is weighted to be mandatory to the decision-maker, so that wreq = 1.0.
If that is the case, the overall degree of fulfillment is set to 0.

σ =
{

0 , if ∃req ∈ Req : v(req, c) = 0 ∧ wreq = 1.0
1 , else. (4.8)

105

4. Using Service Feature Models

Factor σ acts as a safety mechanism to avoid consideration of infeasible config-
urations.

An advantage of our fuzzy approach is to avoid cases in which no configurations
fulfill requirements. When no configuration fulfills all requirements, strict (or
in terms of fuzzy logic crisp [PSD13]) matchmaking approaches produce no
result. In contrast, fuzzy matchmaking reveals which configuration come closest
to fulfilling requirements. Furthermore, decision-makers can be presented with
the requirements that were not fulfilled (using fv and aMap from listing 3),
allowing them to revise and eventually lighten them. The decision-maker can
also define a threshold for the degree of fulfillment stating until what point a
configuration is still relevant enough to further consider it.

In the SFM from figure 3.4, consider requirements Req exist for abstract feature
“data delivery options” to be realized, so that req1 := req(“data delivery options”) ∈
Req with a weight of wreq1 = 0.9. A second requirement states that attribute
“price / 10k requests” needs to be smaller than or equal to 60.00, so that
req2 := req(“price / 10k requests”,≤, 60.00) ∈ Req with a weight of wreq2 = 0.5.
For configuration c3, the degree of fulfillment calculated with equation 4.7 results
in deg(c3, Req) = 1∗

(
1− 1

2
[
1∗0.9 + (|60.00−80.00|/60.00)∗0.5

])
= 0.467. For

configuration c5, the degree of fulfillment calculated with equation 4.7 results in
deg(c5, Req) = 1 ∗

(
1− 1

2
[
0 ∗ 0.9 + (|60− 80|/60) ∗ 0.5

])
= 0.917. This example

illustrates that, while both configurations do not completely fulfill the stated
requirements, c5 does come much closer in doing so, because it fulfills the highly
weighted requirement for a “data delivery options”.

4.4. Preference-Based Ranking of Variants

Requirements filtering allows decision-makers to delimit configurations that do
not meet what is needed. However, there may remain multiple configurations
that all fulfill requirements and among which still a selection needs to be made.
We aim to make use of the comparability of configurations that results from their
annotation with attributes (cf. section 3.2.1). Given that each configuration is
characterized by one attribute for every defined attribute type, multi-criteria
decision making (MCDM) approaches can be applied. In them, multiple deci-
sion alternatives are compared and assessed in the presence of multiple, usually
conflicting criteria or objectives [RZ13]. When applying MCDM approaches to
service feature modeling, an SFM’s configurations c1...cn are the MCDM prob-
lem’s decision alternatives, denoting the problem space D := C = {c1, ..., cn}.
On the other hand, the SFM’s attribute types at1...atm are the MCDM prob-
lem’s conflicting objectives or criteria, denoting the solution space O := AT =
{at1, ..., atm}. Every decision alternative has a value regarding each criteria,

106

4.4. Preference-Based Ranking of Variants

which in service feature modeling is the instantiation value iv(c, a) of configu-
ration c regarding attribute a of type atj (cf. section 3.2.4). As in any MCDM
method, we aim to apply a mapping of the decision space to the solution space
that allows for the assessment of every alternative regarding the value of every
objective [RZ13]. For preference-based ranking of configurations, we use the
analytical hierarchy process (AHP) [Saa90]. It is heavily researched [WDF+08]
and frequently used in practice [VK06].

4.4.1. Ranking Overview

An overview of the preference-based ranking process’s three steps is illustrated
in figure 4.2.

SFM

1. SFM to Poll
Transformation

2. Stakeholder
Preference Collection

Poll

WS-*
specifications

Price / 10k
requests

WS-*
specifications

Real time
data

Price / 10k
requests

Real time
data

Grouping
feature

Key:

= mandatory
 feature

= optional
 feature

= XOR = OR
= Requires
= Excludes

Attribute typeAbstract
feature

Instance
feature Attribute

Rank 1: Rank 2: Rank 3:

3. Configuration
Ranking

Determination

Data delivery
options

Inclusion of
quote history

Real time
quote updates

Real time data

true

Stock quotes API

Interface

SOAP REST

100.00 80.00

Price / 10k
requests

WS-*
specifications

true 40.00

Data delivery
options

Inclusion of
quote history

Real time
quote updates

Real time data

true

Stock quotes API

Interface

SOAP REST

100.00 80.00

Price / 10k
requests

WS-*
specifications

true 40.00

Data delivery
options

Inclusion of
quote history

Real time
quote updates

Real time data

true

Stock quotes API

Interface

SOAP REST

100.00 80.00

Price / 10k
requests

WS-*
specifications

true 40.00

Data delivery
options

Inclusion of
quote history

Real time
quote updates

Real time data

true

Stock quotes API

Interface

SOAP REST

100.00 80.00

Price / 10k
requests

WS-*
specifications

true 40.00

Figure 4.2.: Process of (participatory) configuration ranking, based on [WZ14]

The input for the method is a an SFM, including feature decompositions, cross-
tree relationships, attribute types, and attributes. To derive decision alternatives

107

4. Using Service Feature Models

from this SFM, its configuration set must have been determined. The configu-
ration set may already have been released of configurations that do not fulfill
requirements (cf. figure 4.1). To reduce the number of decision alternatives to
consider in preference-based ranking, skyline filtering can be applied. It dis-
misses configurations that are dominated by others and can thus not achieve
a high ranking in preference-based ranking. The first step of preference-based
ranking is to transform the SFM into a poll. A poll consists of pairwise compar-
isons of the attribute types defined in the SFM. Polls thus provide an interface for
preference-statement regarding an SFM. Using the poll, decision-makers state
their preferences for the SFM’s attribute types using the pairwise comparisons.
Interaction with polls can be realized outside of SFM modeling tools, bearing po-
tential to make polls accessible to non-experts and thus using them as a vehicle
to enable participation (cf. section 4.4.6). Preferences stated by multiple stake-
holders can be aggregated to obtain an insight into majority preferences. Using
collected preferences, a ranking is determined reflecting how much the decision-
maker(s) prefer the the attribute types relative to another. Similarly, rankings
of configurations expressing their fulfillment of each attribute type are created.
By combining these rankings, the relative fulfillment of the decision-maker’s
preferences for attribute types by configurations is determined. The higher the
rank of a configuration, the better it meets the decision-maker’s preferences as
compared to all other configurations. The highest ranked configuration(s) can
be selected for service development or delivery.

The following subsections outline the involved steps in detail. The content of
the following subsections includes material currently under review [WZ14].

4.4.2. Skyline Filtering

Skyline filtering aims to reduce the number of alternatives to consider in
preference-based ranking. It is based on the concepts of dominance [RZ13],
which can be applied to service feature modeling in the following way: a config-
uration ci dominates another configuration cj if the following conditions both
hold:

• Every instantiation value of ci is equal or larger than the corresponding in-
stantiation value of of cj for all attribute types whose scale order is “higher
is better” or “existence is better”. Formally: iv(ci, a) ≥ iv(cj , a), ∀a :
∃atr(a, at), scaleOrder(at) = “higher is better” ∨ scaleOrder(at) = “exis-
tence is better”.

• Every instantiation value of ci is equal or smaller than the corresponding
instantiation value of of cj for all attribute types whose scale order is “lower

108

4.4. Preference-Based Ranking of Variants

is better”. Formally: iv(ci, a) ≤ iv(cj , a), ∀a : ∃atr(a, at), scaleOrder(at) =
“lower is better”.

We denote the dominance of configuration ci over configuration cj as ci � cj .
If ci is strictly larger/smaller (and not equal) in every instantiation value, the
dominance is referred to as strong, otherwise it is referred to as weak. A decision
alternative that is not dominated by any other decision alternative belongs to
the skyline of the problem space D [SM09].

The most basic approach to determine the skyline, also referred to as basic
loop [BKS01], is to perform complete enumeration by comparing each decision
alternative against every other one with regard to every decision objective. To
improve performance, presorting can be performed [CGGL03]. The assumption
behind presorting is that decision alternatives with a high sum of normalized
objective values are likely to dominate others, while decision alternatives with a
low sum are likely to be dominated. Sorting based on the sums allows skyline fil-
ters to more easily dismiss dominated decision alternatives. Further approaches
presort based on the number of objectives, in which decision alternatives domi-
nate others [SM09]. Skyline filtering approaches apart from the basic loop one
include block-nested loop (BNL) algorithms, divide and conquer algorithms, or
binary tree algorithms [BKS01].

Algorithm 4 Block-nested loop skyline filtering for service feature modeling
1: procedure SkylineFiltering(C) . C is the list of configurations
2: window ← ∅ . window of objects not yet dominated
3: for all p ∈ C do . go through all configurations, denoted as p
4: window.add(p)
5: for all q ∈ window \ {p} do
6: if p ≺ q then
7: window.remove(p)
8: break
9: else if p � q then
10: window.remove(q)
11: return window

We utilize a modified version of the BNL algorithm for service feature modeling
as illustrated in listing 4. The algorithm works by defining a window, which
stores not yet dominated configurations. Every additional configuration from
the original configuration list is compared with the ones already in the window.
If the new configuration is dominated by one from the window, the former is
dismissed and comparison continues with the next configuration. If the new
configuration dominates one from the window, the latter is dismissed and the
comparison continues with remaining configurations in the window. If neither

109

4. Using Service Feature Models

configuration dominates the other, both are kept in the window. In contrast to
typical BNL algorithms, our algorithm refrains from writing results temporarily
to disk [BKS01] because we assume memory of today’s computers to be able
to handle the required dataset sizes. The algorithm reveals the advantage of
presorting: if configurations that are likely to dominate others are added early
to the window, additional configurations from the original configuration list are
likely to be dominated and dismissed early on. This reduces necessary compar-
isons.

The advantage of selecting skyline configurations is to reduce the problem size
for subsequent preference-based ranking, which leads to two advantages: first,
a reduced problem size results in more expressive results. In the configuration
rankings determined in preference-based ranking, every configuration is ranked
as compared to all other configurations. If the number of configurations is high,
ranking values are likely to be similar. Additionally, the decision-maker has
to assess a large number of ranking values. Second, reducing the number of
decision alternatives has positive impact on the performance of preference-based
ranking implementations, as our performance evaluation shows, presented in
section 5.2.

Applying skyline filtering to the configurations of the example SFM presented in
figure 3.4 (cf. table 4.2), 3 configurations are dominated: c1 is dominated by c2,
which realizes “quote history provided” while having equal instantiation values
for all other attributes. Additionally, c5 dominates c3 because the former has
“quote history provided” information while having equal instantiation values for
all other attributes. Finally, c6 dominates c4, again, based on the provision of
quote history. Overall, skyline filtering emphasizes that providing quote history
is beneficial in any case because the feature realizing this characteristic does not
induce any negative impacts on the resulting service variant.

4.4.3. SFM to Poll Transformation

Taking as input an SFM whose configuration set is determined and poten-
tially reduced through requirements and/or skyline filtering, the preference-
based ranking requires a poll for stakeholders to state their preferences regarding
the capabilities of the configurations. The idea of a poll is to enable stakeholders
to rank criteria (= attribute types) based on their preferences, thus enabling to
rank decision alternatives (= configurations) high that perform well with regard
to important criteria. As proposed in the analytical hierarchy process (AHP),
our polls make use of pairwise comparisons to order attribute types [Saa90].
Thus, for poll creation, each attribute type is opposed to every other attribute.
We define the set of attribute types to consider in pairwise comparisons as:

110

4.4. Preference-Based Ranking of Variants

AT eval = {at1, ..., atn} (4.9)

where ati represents an individual attribute type to be evaluated. A poll con-
siders only those

∣∣AT eval
∣∣ attribute types of an SFM whose to be evaluated

property is set to true (cf. section 3.2.4). The order of the pairwise comparisons
is random. The resulting number K of pair-wise comparisons is:

K =
∣∣AT eval

∣∣ ∗ (
∣∣AT eval

∣∣− 1)
2 (4.10)

Being able to exclude attribute types from an evaluation using the to be evaluated
property is useful considering that high numbers of comparisons likely discourage
stakeholders from stating their preferences thoroughly.

In the example SFM presented in figure 3.4, only the 3 attribute types “WS-*
specifications”, “price / 10k requests”, and “real time data” are considered in
preference-based ranking. The to be evaluated property of “quote history pro-
vided” is set to “false”, because the inclusion of quote history is without negative
impacts, as already identified in the skyline filtering (cf. section 4.4.2). A poll of
the selected attribute types results in the 3 comparisons “WS-* specifications”
vs. “price / 10k requests”, “WS-* specifications” vs. “real time data”, and
“price / 10k requests” vs. “real time data”.

4.4.4. Stakeholder Preferences Collection

We use the fundamental scale of absolute values for stakeholders to compare
their preference among attribute types [Saa08]. For each pairwise comparison
of attribute type ati and atj (ati, atj ∈ AT eval), a stakeholder’s preference for
one of the attribute types is expressed in terms of the intensity of importance
I(ati, atj). Values range from 1, meaning that attribute types ai and aj are con-
sidered equally important, to 9, meaning that attribute type ati is considered
extremely more important than attribute type atj . A precise definition of the
meaning of different values, following related work [Saa08], is given in table 4.4.
Reciprocal values indicate reverse importance. A common validation of collected
preferences is to evaluate their consistency. In a consistent preference statement,
transitivity between statements holds. The typical approach to ensure consis-
tency is to calculate and evaluate the consistency index (CI) [Saa13].

In the case that preferences of multiple stakeholders are of interest, an aggrega-
tion of their individual preferences is required. To do so, the geometric mean of
the all stated intensity of importance values can be determined:

111

4. Using Service Feature Models

I(ati, atj) Definition
-9 atj is considered extremely more important than ati
-7 atj is considered very strongly more important than ati
-5 atj is considered strongly more important than ati
-3 atj is considered slightly more important than ati
1 atj and ati are considered equally important
3 ati is considered slightly more important than atj
5 ati is considered strongly more important than atj
7 ati is considered very strongly more important than atj
9 ati is considered extremely more important than atj

Table 4.4.: Meaning of intensity of importance values, following the scale of ab-
solute values [Saa08]

I(ati, atj) =
(

L∏
l=1

I(ati, atj)l

) 1
L

(4.11)

where I(ati, atj) is the resulting mean intensity of importance value for com-
paring attribute types ati and atj , I(ati, atj)i is a single intensity of importance
value for stakeholder l, and L is the number of stakeholders.

In the example SFM illustrated in figure 3.4, sample intensity of importance val-
ues of a stakeholder who considers “WS-* specifications” to be very important,
are:

I(“WS-* specifications”, “price / 10k requests”) = 5,

I(“WS-* specifications”, “real time data”) = 3,

I(“price / 10k requests”, “real time data”) = 3.

4.4.5. Configuration Ranking Determination

The determination of the configuration ranking consists of three sub-steps. First,
the attribute type priority vector wAT is determined. It represents the order of
attribute types by stating how much stakeholders value each attribute type if
compared to all other attribute types. Because the attribute type priority vector
is derived from the stakeholders’ stated preferences, it needs to be recalculated
each time a stakeholder submits new preferences. Second, configuration com-
parison ranking vectors are determined. They state how configurations perform
compared to each other with regard to each attribute type. These vectors need

112

4.4. Preference-Based Ranking of Variants

only to be calculated once because they depend on the modeled configurations
and not on the stated preferences. Third, the previously calculated vectors are
aggregated to determine the configuration ranking based on the stakeholders’
preferences. The following subsections present details on the three steps.

Determination of attribute type priority vector

To determine a ranking for the attribute types based on the received preference
values, the following K by K matrix of pairwise comparisons is determined
from the intensity of importance values that a stakeholder provides in a vote.
K denotes the number of collected intensity of importance values:

MPC =



1 · · · w1,j · · · w1,|AT |
...

.
...

1
w1,j

1 wi,|AT |
...

. . . 1
. . .

...
1

w1,|AT |
· · · 1

wi,|AT |
· · · 1


(4.12)

where:
wi,j =

{
I(ati, atj) if I(ati, atj) ≥ 0

1
−I(ati,atj) if I(ati, atj) < 0 (4.13)

Matrix MPC has positive values everywhere and is reciprocal. Thus, for every
entry ai,j the following is true: ai,j = 1

aj,i
. The principal eigenvector of matrix

MPC corresponds to a priority vector that ranks the importance of each attribute
type for the stakeholder [SH98]. The principal eigenvector can be calculated by
first squaring the matrix MPC. For the squared matrix the rows are summed
to result in an eigenvector whose elements are normalized to sum up to 1.0 by
dividing them by the rows total. Starting with the squared matrix this process is
repeated iteratively until the difference between the latest calculated eigenvector
and the priorly calculated one is ε (= sufficiently close to 0).

In the example SFM illustrated in figure 3.4, and based on the sample intensity
of importance values given in section 4.4.4, matrix MPC is:

MPC =


WS-* spec. price/10k reqs. real time data

WS-* spec. 1 5 3
price/10k reqs. 1/5 1 3
real time data 1/3 1/3 1


(4.14)

113

4. Using Service Feature Models

Calculating the normalized principal eigenvector wAT of matrix MPC results
in:

wAT = {“WS-* spec.” : 0.651, “price/10k reqs.” : 0.223, “real time data” : 0.127}
(4.15)

Determination of configuration comparison ranking vectors

Next, for every attribute type ati, a configuration comparison ranking vector
wati

is determined based on a matrix MPC(ati) of pairwise comparisons for
every attribute type. In matrix MPC(ati), the instantiation value of every
configuration cl ∈ C as compared to another configuration ck ∈ C is captured
for attribute type ati. In the case of a continuous attribute type ati (defined
in the corresponding attribute type’s domain property, see section 3.2.4) this
matrix is obtained as follows:

MPC(ati) =



1 · · · v1,k · · · v1,|C|
...

.
...

1
v1,k

1 vl,|C|
...

. . . 1
. . .

...
1

v1,|C|
· · · 1

vl,|C|
· · · 1


, if domain(ati)
is continuous (4.16)

where vcl,k is a result of relating the instantiation values iv(cl, a) and Iv(ck, a)
of configuration cl and ck with regard to attribute a of type type(a) = ati in the
following way:

vl,k =


iv(cl,a)
iv(ck,a) , if scaleOrder(type(a)) = “higher is better”

iv(ck,a)
iv(cl,a) , if scaleOrder(type(a)) = “lower is better”

(4.17)

In the above case, configurations can easily be related because of the comparabil-
ity of attribute with numerical domain, for example “cost” or “throughput”. In
the case of an attribute type with boolean domain, matrixMPC(ai) is obtained
as follows:

114

4.4. Preference-Based Ranking of Variants

MPC(ati) =



1 · · · v1,k · · · v1,|C|
...

.
...

1
v1,k

1 vl,|C|
...

. . . 1
. . .

...
1

v1,|C|
· · · 1

vl,|C|
· · · 1


, if domain(ati)

is boolean (4.18)

where vl,k depends on the instantiation values iv(cl, a) and iv(ck, a) of configura-
tion cl and ck with regard to attribute a of type type(a) and cp(a) is the custom
attribute type priority (see section 3.2.4) that defines how much better a service
configuration is if iv(c, a) = 1 compared to a configuration where iv(c, a) = 0:

vl,k =


1 , if iv(cl, a) = iv(ck, a)

cp(ai) , if iv(cl, a) = 1 ∧ iv(ck, a) = 0

1
cp(ai) , if iv(cl, a) = 0 ∧ iv(ck, a) = 1

(4.19)

For every attribute type, the priority vector for the configurations can be deter-
mined using the eigenvector method. As mentioned earlier, the determination
of configuration comparison ranking vectors needs only to be performed once
within a preference-based ranking process, even if attribute type ranking vec-
tors are determined multiple times based on repeated statement of preferences
by one or multiple decision-makers.

In the example SFM illustrated in figure 3.4, in the following, we only con-
sider the skyline configurations c2, c5, and c6 (cf. section 4.4.2). The matrix
MPC(“WS-* specifications”), given a custom attribute type priority for “WS-*
specifications” is 3, is:

MPC(“platform ind.”) =


c2 c5 c6

c2 1 3 3
c5 1/3 1 1
c6 1/3 1 1

 (4.20)

Calculating the normalized principal eigenvector wWS-* specifications of matrix
MPC(“WS-* specifications”) results in: wWS-* specifications = {c2 : 0.6, c5 :
0.2, c6 : 0.2}.

115

4. Using Service Feature Models

The matrix MPC(“price/10k”) is (consider: the domain of “price / 10k re-
quests” is lower is better):

MPC(“price/10k”) =


c2 c5 c6

c2 1 80/100 = 0.8 120/100 = 1.2
c5 100/80 = 1.25 1 120/80 = 1.5
c6 100/120 = 0.833 80/120 = 0.667 1


(4.21)

Calculating the normalized principal eigenvector wprice / 10k requests of matrix
MPC(“price / 10k requests”) results in: wprice / 10k requests = {c2 : 0.324, c5 :
0.405, c6 : 0.270}.

Finally, the matrix MPC(“real time data”), given a custom attribute type pri-
ority for “real time data” is 5, is:

MPC(“location-based inf.”) =


c2 c5 c6

c2 1 1 1/5
c4 1 1 1/5
c6 5 5 1

 (4.22)

Calculating the normalized principal eigenvector wreal time data of matrix MPC
(“real time data”) results in: wreal time data = {c2 : 0.143, c5 : 0.143, c6 :
0.714}.

Calculation of overall configuration ranking

After calculating one attribute type priority vector and |AT | configuration com-
parison ranking vectors for the attribute types, these vectors can be combined to
determine the configuration ranking for the stated preferences. The ranking of a
single configuration is calculated by summing up its ranking values from all con-
figuration comparison ranking vectors, weighted by the corresponding attribute
type priority within the respective vector. The rankings of all configurations
sum up to 1. The configuration with the highest value relatively best matches
the stakeholder preferences with regard to the attribute types in focus.

In the example SFM illustrated in figure 3.4, the ranking of c2 for the exemplary
preferences from section 4.4.4 results in c2 = 0.651 ∗ 0.6 + 0.223 ∗ 0.324 + 0.127 ∗
0.143 = 0.481. The ranking of c5 results in c5 = 0.651 ∗ 0.2 + 0.223 ∗ 0.405 +
0.127∗0.143 = 0.238. The ranking of c6 results in c6 = 0.651∗0.2+0.223∗0.270+
0.127∗0.714 = 0.281. As a result, configuration c2 is most preferred compared to
the other configurations. The result is driven by the high importance of “WS-*
specifications” stated in the preferences, which is only addressed by configuration
c2.

116

4.4. Preference-Based Ranking of Variants

4.4.6. Participatory Ranking

Preference-based ranking provides means for participation in selecting variants,
addressing challenge 6 motivated in section 1.3.2. We understand participation
as “[...] a set of behaviours or activities performed by users in the system de-
velopment process” [BH89, page 53]2. As this definition suggests, participation
concerns the usage of SFMs for service development (cf. section 4.1). The goal
of participatory preference-based ranking is to allow users to rank configura-
tions based on their preferences. The ranking information drives the subsequent
design, implementation, deployment, and operation of highly preferred service
variants.

Advantages of user participation in early stages of service design have been
proposed in related work [Mag03]. They include integration of more original
ideas with greater value for the users. These ideas can be used directly to impact
service design, they help to better understand user needs, and they provide
inspiration for the experts concerned with designing the service. Participation
in service design is additionally argued to increase the fit between service offer
and consumer needs [SMDK11]. While user participation in service design leads
to original, highly valued solutions, the realizability of participatory designs
is simultaneously found to be lower than if services are designed by experts
only [Mag03]. The here presented participatory preference-based ranking, rather
than collecting novel ideas, focuses on receiving input from users on service
variants that are actually realizable. It can be combined with other approaches
that enable more open participation (cf. section 5.3.1).

In this section, we present how preference-based ranking is used to enable partic-
ipation in service development. As described in the previous section, the concept
of polls allows users to state their preferences regarding the characteristics of
services variants, represented as attribute types. Polls thus abstract from con-
cerns about a service’s design, implementation, deployment, or operation, which
are represented by features. Thus, polls enable also non-technical or non-experts
to state their preferences. We introduce the concepts required for participatory
preference-based ranking. We furthermore discuss the life-cycle of an evaluation,
which is the main artifact of participatory ranking.

Concepts of Service Design Alternative Ranking

Participatory ranking incorporates different elements as illustrated in fig-
ure 4.3.

2We follow the authors’ suggestion to differentiate participation from involvement, which is
“[...] a subjective psychological state reflecting the importance and personal relevance of a
system to the user” [BH89, page 53].

117

4. Using Service Feature Models

id : Long
lastUpdate : Timestamp
serviceId : String
name : String
version : String
description : String
stakeholderGroup : String
state : State

Evaluation

aggregationType : String
clusterId : String

AggregatedVote

0…*

singleVotes

id : Long
lastUpdate : Timestamp
featureAttributeType1 : String
featureAttributeType2 : String
preference1over2 : Integer

Preference
0…*

preferences

aggregatedVotes

0…*

id : Long
lastUpdate : Timestamp
stakeholderGroup : String
description : String

Vote
voderId : String

SingleVote

1

SFM
1

0...*

id : String
pollDeadLine : Date

Poll
1

1

Created
Running
Aborted
Finished

<<enumeration>>
State

Figure 4.3.: Meta model of service feature modeling’s participatory ranking
concepts

An evaluation is the main artifact of the ranking approach. Semantically, an
evaluation reflects the assessment of the service variants modeled in an SFM
regarding one stakeholder group, for example consumers. Thus, an evaluation is
associated with a single SFM and encompasses all further artifacts used through-
out one ranking process. An evaluation is described by a set of properties, in-
cluding its name, description, the stakeholder group it addresses or its current
state. Details about the state of an evaluation are provided in section 4.4.6.
An evaluation is associated to a single poll, which provides the interface for
stakeholder participation. A poll is created from the SFM associated to the
evaluation SFM as explained in section 4.4.3. The reason for separating the
evaluation from the poll is that both can exist in and be controlled by differ-
ent components (cf. section 5.1.3). A vote is a set of preferences regarding the
importance of attribute types stated in a poll. A single vote is associated with
a single stakeholder, whereas an aggregated vote results from the combination
of multiple single votes. Aggregated votes, for example, reflect the preferences
of all individual stakeholders belonging to a stakeholder group. Details about
the collection of votes and their aggregation are presented in section 4.4.4. A
preference is a statement made by a stakeholder about how much he values one
attribute type if compared to another attribute type. Preferences thus reflect in-
tensity of importance values. The set of preferences for all pairwise comparisons
for one SFM’s attribute types is combined in a vote.

Evaluation Lifecycle

An evaluation is created at the beginning of the participatory ranking process
and typically ends with the decision-maker retrieving the evaluation results after

118

4.4. Preference-Based Ranking of Variants

the corresponding poll has completed. The existence of data objects representing
evaluations is implementation-dependent. To control validity of the interactions
that stakeholders can perform with an evaluation’s poll, evaluations denote the
four states created, running, aborted, and finished. The states and the transitions
between them are illustrated in figure 4.4.

Key:

= eval state

= end state

= eval creation

= eval operation = corresponding poll
invisible

= no corresponding
poll exists

= corresponding poll
visible & active

= corresponding poll
visible & deactivated

running (1),
enddate>now

created (0),
enddate>now

finished (3) running (1),
enddate<now

aborted (2)
enddate<now

aborted (2),
enddate>now

post/put/del
model

post/put/del vote,
get config

put/del vote
get config

put/del vote
get configput/del vote

get config

Deleted

put/del vote
get config

put eval

Figure 4.4.: States of an evaluation

After an evaluation has been created, its properties can be updated or an SFM
corresponding to the evaluation can be created, updated or deleted without im-
pacting the state. In addition, the evaluation can be deleted. During all these
actions, no poll is created. By setting an evaluation’s state to running, a poll
corresponding to the evaluation is created and published, for example on an
interaction platform (cf. section 5.1.3). This poll remains visible and active
(meaning that stakeholders can state their preferences) as long as the evalu-
ation is kept in state running. The poll becomes deactivated, meaning that
stakeholders can no longer submit new votes but still view existing ones, if the
end date specified in the evaluation’s properties is reached. To reactivate an
evaluation’s poll, a new, future end date can be provided, thus extending the
evaluation. While the evaluation is running, configuration rankings can be re-
trieved without changing the visibility or accessibility of the corresponding poll.
If an evaluation’s state is changed from running to aborted, the corresponding
poll becomes invisible on the interaction platform. If the end date passes, an
aborted evaluation can be reactivated by providing a new, future end date. In
the aborted state, votes can be updated, retrieved, this is important to retrieve
the latest aggregated vote, and deleted. However, no new votes can be created.

119

4. Using Service Feature Models

Configuration rankings can still be retrieved. To make a completed poll visible,
its evaluation’s state can be set to finished, thus allowing stakeholders to use
it as illustrative material for future evaluations or to continue discussing the
service variants. In the finished state, similar to the aborted state, votes can be
updated or deleted and configuration rankings can be retrieved. The finished
state is an end state that cannot be left without deleting the evaluation.

Overall, the presented concepts and lifecycle provide the basis for participatory
ranking. An exemplary implementation of these concepts, defining for example
how to present stakeholders with polls or how to retrieve evaluation results, is
presented in section 5.1.3.

4.5. Usage with Multiple SFMs

The selection of service variants by consumers for delivery can be based not only
on a single variable service, but also on multiple ones. In this case, the selection
of a variant corresponds to two decision: 1) the selection of the variable service
among a set of candidates and 2) the selection of a variant of the service selected
in 1). To enable such selection with service feature modeling, multiple SFMs
are required, each representing the variants of one candidate service.

A problem for using multiple SFMs is that they need to be comparable as mo-
tivated in challenge 5 in section 1.3.2. In section 3.3.3, we describe how com-
parability across SFMs is achieved by basing them on the same domain model.
As a result, all derived models denote the same structure of grouping and ab-
stract features as well as attribute types. The similarity of feature structure
and names in SFMs based on the same domain model enables filtering regard-
ing features requirements Rf across these SFMs. In this case, the requirements
filtering procedure shown in listing 3 takes as input a combined list of all SFMs’
configurations instead of a single ones. Abstract features are named and placed
equally across SFMs based on the same domain model, making this approach
feasible. On the other hand, instance features in multiple SFMs can follow dif-
ferent naming conventions, despite a shared domain model. Here, problems from
semantically equal but syntactically different instance features may result. For
example, the fulfillment of an instance feature requirement req(“Encryption”) by
a configuration c may mistakingly be considered false, because c only contains a
feature “encryption mechanism”, which does not match syntactically. To avoid
such pitfalls, vocabularies across SFMs can be prescribed, semantic technologies
can be applied to detect synonyms, or implementations can promote naming
conventions, for example through auto-completion mechanisms. The similarity
of attribute types in SFMs based on the same domain model enables filtering re-
garding attribute requirements Ra across these SFMs. Again, the requirements

120

4.6. Related Work on Variant Selection

filtering procedure needs to be provided with a combined list of configurations
from multiple SFMs. The instantiation values for attributes are comparable
across SFMs because they relate to the same attribute types specified in the do-
main model. For the same reason, skyline filtering and preference-based ranking
can be performed across SFMs, given they as well receive a combined configu-
ration list as input.

Ultimately, using domain models as basis and thus ensuring comparability, ser-
vice feature modeling’s usage methods can be applied to multiple SFMs at the
same time.

4.6. Related Work on Variant Selection

In this section, we present work related to service feature modeling’s usage meth-
ods. In standard feature modeling, multiple approaches have been presented for
configuration, meaning in this context the selection of features. This part of re-
lated work is characterized by the similarity to service feature modeling’s usage
methods. We discuss feature modeling configuration approaches in section 4.6.1.
In addition, we select related work based on similar intention. We consider ap-
proaches for selecting variants during service development in section 4.6.2. This
related work includes requirements engineering approaches as well as service de-
velopment methodologies. We also discuss selecting variants for service delivery
in section 4.6.3, focusing on selection in service variability approaches. Finally,
we present related work with regard to service selection in section 4.6.4.

4.6.1. Feature Model Configuration

The determination of a configuration is a common and well researched task in
feature modeling. In software product line engineering, configuration is per-
formed as an initial step in application engineering, which is about selection and
reuse of the reusable artifacts to create a product [SD07]. The application of
feature model configuration methods for services, thus, is best suited for variant
selection during development. The here presented discussion of related work is
based on and extends previous contributions [WZ14].

A widespread approach to determine a feature model configuration is staged con-
figuration [CHE04]. It proposes step-wise specialization of a feature model by
representing each specialized stage in a separate feature model. Specialization is
performed by selecting features, which eventually causes further selections due to
cross-tree relationships. One goal of staged configuration is to enable different
decision-makers to participate in different stages of the configuration process.

121

4. Using Service Feature Models

Methods to support staged configuration through automated reasoning, for ex-
ample utilizing constraint satisfaction problems, have been presented [WDSB09].
Staged configuration does not depend on determining the configuration set but
rather derives a single configuration from a feature model. Our usage meth-
ods differ because they are not based on directly selecting features. Rather,
the requirements and preferences of the decision-maker in conjunction with fea-
tures and attributes in configurations drive selection. Service feature modeling’s
ranking approach selects features based on preferences for their characteristics,
represented by attributes. This abstraction enables to hide complexity from the
decision-maker who focuses solely on characteristics, thus also enabling less ex-
perienced or non-technical decision-makers to participate in the ranking process.
Furthermore, we allow multiple decision-makers to perform configuration and to
aggregate their preferences as described in section 4.4.4 to obtain an overall
ranking of configurations.

Another approach for feature model configuration is optimization [BTRC05,
TRC09]. In optimization a configuration is chosen that optimizes a given ob-
jective function, for example, minimizes cost or maximizes throughput. For
optimization to be applicable, numeric characteristics about features or con-
figurations needs be stored in a feature model. In consequence, optimization
approaches address extended feature models that include attributes [BSRC10].
In this work we present some of the concepts also required for optimization,
for example the aggregation of attributes and the specification of an objective
function which we perform by means of pairwise comparison of attribute types
to derive ranking vectors as discussed in section 4.4.5.

Multi-criteria decision making approaches have been proposed for feature model
configuration [BAGS10]. Fuzzy linguistic variables are attached to features to
state their impact on business concerns (for example, “security”) being, for ex-
ample, “high”, “medium” or “low”. Using stratified analytical hierarchy process,
first, business objectives are ranked via pairwise comparisons and second, fea-
tures are ranked with regard to their impact on the business concerns, again via
pairwise comparisons. To reduce the number of pairwise comparisons, the sec-
ond step only considers highly ranked business concerns. Similar to attributes
in our approach business concerns abstract characteristics from features. The
impact of features on these concerns is expressed linguistically. In contrast,
we allow attributes to express capabilities quantitatively using numeric values
and qualitatively using Boolean values. Doing so allows decision-makers to ef-
ficiently compare configurations against each other without additional pairwise
comparisons of configurations and thus also without having to dismiss concerns.
Building on staged configuration, the same authors present a semi-automatic
configuration method [BNGR12]. Features are, again, annotated with their im-
pact on concerns. Based on stakeholders’ hard constraints, annotated feature
models are configured, reducing variability. Configuration options remaining

122

4.6. Related Work on Variant Selection

are then assessed in light of soft constraints, where the proposed method rec-
ommends a final feature selection, which can be revised by the decision-maker
if desired. The authors motivate the problems of multiple experts aiming to
select different, contradicting features (for example, selecting ones that exclude
each other) and how to select features that maximize intended and minimizes
unintended consequences. In service feature modeling’s selection methods, the
validity of configurations to consider is ensured by the automatic configuration
set determination and selection of configurations best meeting requirements and
preferences is ensured.

It has been proposed to allow stakeholders to collaboratively configure feature
models [MC10]. The challenge here is to handle decision conflicts, which appear
if locally valid configuration decisions are invalid globally. For example, config-
uring a branch of a feature model that has cross-tree relationships to another
branch, which is configured by another stakeholder, can cause such conflicts.
The proposed collaborative product configuration aims to avoid conflicts by plan-
ning the configuration process with work flows. The specified work flow avoids
conflicts resulting from concurrent decisions by different stakeholders. Building
upon a work flow definition, however, decreases flexibility in the configuration
process. For example, already performed configurations of parts of the feature
model might need to be revised in consequence of configurations in other parts.
In service feature modeling, requirements can be stated as properties within
an SFM (cf. section 4.3.1), allowing decision-makers to define requirements
using service feature modeling’s collaborative modeling approach presented in
section 3.4. Service feature modeling’s preference ranking allows for aggregation
of different stakeholder preferences, resulting in an overall configuration rank-
ing. However, we do not support the collaborative configuration where each
stakeholder addresses only parts of an SFM.

4.6.2. Variant Selection in Service Development

The selection of software service variants during development is performed in
requirements engineering (RE). RE addresses the development of software
under consideration of stakeholder requirements and preferences. RE, stemming
from the systems engineering domain, is the process of identifying, analyzing,
documenting, and checking the requirements (in the sense of capacities) and
constraints for systems [Som11, page 101]. Requirements encompass needs and
wishes of stakeholders on the one hand and detailed descriptions of a system’s
functionality on the other hand [HJD11]. RE is typically performed as an early
activity in software development. The tasks of RE can be classified as elicita-
tion, modeling, analysis, validation and verification, and management [CA09].

123

4. Using Service Feature Models

Elicitation is concerned with discovering the goals and motives behind the cre-
ation of a software system and identifying requirements that must be fulfilled to
achieve these goals. Elicitation approaches aim to identify relevant stakehold-
ers [SFG99] and support them in precisely and accurately stating their require-
ments, using, for example, use cases [Coc01] or specifying the intentions behind
systems [Lev00]. Modeling aims to specify elicitated requirements more for-
mally. While modeling techniques can also be used in elicitation, the modeling
task focuses more at precision and completeness. For example, i* allows model-
ers to capture the domain of a system in terms of its stakeholders, their objec-
tives and relationships, resulting in current processes that motivate the need for
new systems [Yu97]. Analysis approaches (automatically) assess requirements
with regard to trade-offs, conflicts, variability, ambiguity, completeness, or risks.
Approaches aim, for example, to reveal potential interdependencies between re-
quirements [CSL+01]. Validation aims to ensure at the more informal level that
modeled / specified requirements reflect actual stakeholder needs. Verification
aims to check that a developed system meets priorly stated requirements, using
for example model checking approaches [CAB+98]. Finally, management is con-
cerned with the evolution of requirements, their application to products of the
same family, or dealing with very large numbers of requirements.

Within requirements engineering, multiple approaches address the selection of
variants. The specification of software in requirements engineering has been
described in a basic systems engineering process [Lev00]. It starts with the
identification of objectives and criteria, based upon which alternative designs
are generated. These alternative designs are then evaluated against objectives
and criteria, resulting in the selection of one alternative to implement. While no
specifics on how to perform the selection are provided, the process underlines the
central role that alternative selection plays in requirements engineering. Goal-
oriented analysis concerns the exploration and evaluation of system design alter-
natives regarding goals, for example, business or technical objectives [MCL+01].
The basis for goal-oriented analysis are goal models, in which functional goals
and non-functional goals (softgoals) are decomposed into alternatives. For ex-
ample, the non-functional requirements (NFR) framework allows modelers to
capture and decompose non-functional requirements and to define design alter-
natives to meet them [CPL09]. Goals can be interrelated and the trade-offs
between them can be made explicit. The positive or negative impact of alterna-
tives on non-functional goals is expressed qualitatively, using “-” or “+” symbols
(cf. section 3.5.3). In these approaches, the evaluation and subsequent selection
of alternatives is informally described and is a manual process. Manual selection
can become infeasible in light of large numbers of alternatives and delimits re-
peated variant selection for delivery. Other approaches propose to quantify the
impact of alternatives on goals by numerical weights. They support selection
of alternatives by assessing how they satisfy goals based on weighted average

124

4.6. Related Work on Variant Selection

of the degree of satisfaction of subgoals [Rob90]. In more recent quantitative
goal models, partial degrees of goal satisfaction are stated and the quantita-
tive impact of alternatives on high-level goals can be derived [LVL04]. Selec-
tion support is based on computing objective functions of higher level goals for
each alternative by bottom-up propagation of probabilistic distribution of non-
functionalities. Similar ideas influenced service feature modeling’s requirements
filtering method that quantitatively measures the degree to which requirements
with different weights are met by a service variant. Other techniques for selection
from requirements engineering are, for example, feedback techniques to collect
and elicit positive and negative statements about early system representations
using models, animations, simulations, or storyboards [CA09].

The application of requirements engineering approaches, in general, for soft-
ware service development is hindered by differences as compared to software
products [LYM09, QP10, BELK10, BI10]. For example, means for selecting ser-
vices, the notion of services being black-boxes from consumers’ point of view,
or the important role of quality attributes need to be addressed by dedicated
approaches [FMÁ+10]. The requirements of providers, that deploy and operate
services, need to be considered in addition to those of consumers [BELK10]. Or,
for cloud services, RE approaches require a higher degree of automation and
need to be remotely applicable [TSG13]. Considering the selection of variants,
the manual effort required in requirements engineering approaches hinders their
application for delivery in many scenarios. The manual utilization of more com-
plex methods can be feasible only if the intended consumption of a service is
long lasting.

Multiple service development methodologies consider the definition and
selection of variants. The service-oriented design and development methodol-
ogy defines a life-cycle model with different phases [PVDH06]. In the analysis
and design phase, multiple business processes are defined. The methodology
proposes to perform business case analysis to select the business process to im-
plement. However, no specifics about the selection process are given. In the
model for designing generic services, the modeling of design variants is moti-
vated by faster derivation of service solutions from variants [DHJ09]. Again, no
specifics about the variant selection process are provided. The design method-
ology for real services considers variability to be a key factor for service design
methodologies [MNDF+10]. Variants address the different goals and preferences
of stakeholders and are expressed in alternative control flows. The methodology
mentions the expression of preferences in terms of soft goals to reason about and
ultimately select variants as future work. It has been proposed to model and
reason about Software as a Service reference architectures to faster derive new
application architectures [TÖD11]. Feature modeling is used to represent the
reference architecture. The derivation of an application feature model, and thus
the selection of a architecture variant, is based on feature selection. The specifics

125

4. Using Service Feature Models

of how to perform feature selection are not presented. In sum, we find that ser-
vice development methodologies promote the definition of variants. However, we
also find that they lack in supporting variant selection with concrete methods.
Service feature modeling’s selection process and methods address this gap.

4.6.3. Variant Selection in Service Delivery

In related work, service variability approaches address the realization of match-
ing service delivery to stakeholder needs. Two fundamental approaches can
be differentiated for dealing with varying consumer requirements [NC10]: in
design-time approaches, multiple instances of the same service are deployed,
each addressing a specific consumer’s needs. For example, in Web services, cus-
tomization options can be specified in customization policies [LSZJ06]. After the
consumer customizes the Web service based on this policies, a corresponding ser-
vice implementation is derived and deployed for consumption. Or, cloud services
are redeployed in configurations that best match user experiences with regard
to latency [KZZL11]. In runtime-approaches, service instances can be adapted
to meet requirements and preferences. For example, in multi-tenancy cloud ser-
vices, only one service instance is deployed that serves multiple consumers, each
having a tenant-specific configuration [BKNT11, MMLP09, RA11]. Other ap-
proaches realize variability through exchanging the implementation of Web ser-
vices at runtime [IFMW08]. Compositions of Web services can be formed based
on requirements for Quality of Service [ASR10]. Or, the work flows underlying a
service can be enhanced with configuration options [GVDAJVLR08, HBR10].

One challenge that service variability approaches need to address is how to
select variants for delivery. Service variability approaches that make use of
feature modeling frequently propose simple feature selection to derive variants,
for example [LNSJ12, RA11]. The usage of optimization techniques has been
proposed for selecting feature-based configurations of Infrastructure as a Service
that minimize energy consumption [DWS12]. Overall, we notice a gap in service
variability approaches with regard to the resolution of variability, i.e., variant
selection. If variability modeling approaches are used, selection is frequently not
addressed at all (cf. [RF03]), mentioned as a necessary step without providing
details on how to perform it (cf. [NCH11]), or only discussed vaguely, stating
for example that features need to be selected (cf. [NC10, SM10]).

4.6.4. Service Selection

Service selection is a field similar to service variant selection for delivery. Con-
sumers perform service selection to chose a service that best matches their re-

126

4.6. Related Work on Variant Selection

quirements and preferences from a set of candidates. Selection approaches as-
sume candidate services as given input, being, for example, based on the same
functionality. Service selection approaches are relevant related work because
they apply methods comparable to those used in service feature modeling and
because usage of multiple SFMs (cf. section 4.5) allows decision-makers to select
service variants from different services.

In Web services, matchmaking is performed to select services for delivery by
matching consumer requirements with service capabilities [WTM+04, LSZJ06].
Matchmaking approaches aim to apply a sorting to multiple service contracts, for
example expressed as policies, regarding requested contractual terms [CPPP14].
Several approaches focus on Quality of Service (QoS) aspects expressed in nu-
meric values. For example, a framework has been proposed that matches poli-
cies consisting only of generic as well as domain specific quality criteria against
user requirements [LNZ04]. Similar to scale orders in service feature modeling’s
attribute types, the impact of rising values being positive or negative can be
considered. Also similar to service feature modeling’s requirements filtering, the
fulfillment of requirements is not only binary but graded. Or, the QoS-based
selection problem can be mapped to smaller sub-problems, which can be heuristi-
cally solved to increase performance [ARDN09]. Extending the so-far presented
approaches, semantic technologies are used to correctly deal with differing vo-
cabulary and data models [CPPP14]. However, these approaches take as input a
single QoS vector for every service. In service feature modeling, different variants
of a service are ranked and variants of multiple services can be considered given
their SFMs are comparable (cf. section 4.5). Qualities of variants, expressed in
SFMs using attributes, are furthermore aggregated from feature characteristics
(cf. section 4.2.2), allowing modelers to model their origin fine-granularly. Over-
all, policies are typically designed to be used by computers and thus expressed in
XML, making them difficult to utilize for human users. No means are presented
that support humans in expressing their needs, which requires a higher level of
abstraction. Service feature modeling’s preference-based ranking, in contrast,
abstracts from technical details and bases variant selection on characteristics
represented by attributes.

Cloud service selection approaches typically make use of multi-criteria de-
cision making methods. Cloud service selection can be formulated as a multi-
criteria decision making problem [RHH11]. Cloud services are defined as alter-
natives, which are assessed regarding multiple criteria. Selection is based on
requirements, stating thresholds on criteria if they are measurable, and weights,
stating the importance of criteria. One proposed selection method compares
cloud services regarding cost and gains, for example response time, traffic vol-
ume, or storage price [ZZZ09]. The approach uses simple additive weighting
(SAW) to either minimize cost or maximize one gain. In other approaches,
SAW is used to assess service candidates based on weights provided for criteria

127

4. Using Service Feature Models

by the decision-maker [SP11]. Or, the analytical hierarchy process is utilized
to support decision-makers in ranking criteria and consequently service candi-
dates [GM09, GVB13]. Other cloud service selection frameworks combine multi-
criteria decision making approaches with prior requirements filtering [MST11].
The filtering, however, considers requirements only to be mandatory constraints
and excludes alternatives immediately given they do not fulfill a requirement.
In contrast, service feature modeling’s requirements filter allows decision-makers
to define the importance of requirements and calculates a degree of fulfillment,
allowing for more differentiated assessment of requirements. A comparison of
cloud service providers based on monitored performance and cost has also been
proposed [LYKZ10]. The authors propose various performance metrics, depend-
ing on the type of cloud service, and describe how to measure them. While no
structured means are presented to select a service based on the measured cri-
teria, the approach is relevant because it describes how attribute values can be
obtained that can be integrated into SFMs through composition (cf. section 3.4).
A methodology for cloud service selection that considers QoS history has been
proposed [RHH13]. The underlying assumption is that qualities of cloud services
change over time, weakening the validity of selection decisions that only consider
qualities at a single point in time. Multi-criteria decision making approaches are
used to rank service candidates based on decision-makers’ preferences at different
time periods. These approaches use parallel algorithms to increase performance.
In the end, results for all periods are aggregated to obtain an insight into the
long-term fulfillment of the consumer’s preferences. The application of the out-
lined approaches to cloud service selection, most notably in the case of IaaS,
can be explained by the difference in consumption as compared to Web services.
While Web services, enabled by their uniform interface abstractions, can be
re-selected or exchanged for each request, cloud service utilization is typically
longer lasting. Exchanging infrastructure services causes considerable migra-
tion efforts, for example regarding re-deployment or data transfer [MR12]. The
resulting consumption longevity makes the application of rather complex multi-
criteria decision making approaches feasible. A hurdle of many multi-criteria
decision making approaches is the required manual effort for performing pair-
wise comparisons. Approaches that purely based on such methods thus denote
limitations with regard to the number of criteria that can be assessed with feasi-
ble effort. Service feature modeling’s usage approach addresses this shortcoming
by combining a set of methods. The problem size can be reduced using weighted
requirements and skyline filtering before preference-based ranking, using as well
pairwise comparisons, is applied.

128

4.7. Discussion

4.7. Discussion

Service feature modeling’s usage methods aim to support the selection of service
variants, represented as configurations in an SFM. The methods can flexibly be
combined in a usage process (cf. section 4.1.2), addressing challenge 4 motivated
in section 1.3.2.

The automatic determination of configurations translates an SFM into a con-
straint satisfaction problem. Solving this problem produces the set of all valid
feature combinations, or configurations, representing service variants. Con-
straint satisfaction problems are commonly used for feature models [BRN+13]
and our translation builds upon established rules [KOD10]. The subsequent
attribute aggregation is based upon the aggregation rules defined in attribute
types (cf. section 3.2.4). Denoting configurations with comparable characteris-
tics that result from attribute aggregation is prerequisite for their subsequent
selection. A drawback from determining all possible configurations upfront and
then narrowing them down are large problem sizes if many configurations ex-
ist. To address this problem, skyline and requirements filtering aim to reduce
configuration sets.

Service feature modeling’s requirements filtering dismisses configurations that do
not meet the decision-makers needs. While requirements filtering in related work
is frequently understood binary (cf. [MST11, WTM+04]), our method calculates
a degree to which requirements are fulfilled. The degree allows decision-makers
to be more flexible with regard to dismissing configurations, which is especially
relevant if no configuration can completely fulfill requirements. Here, our method
reveals configurations that come closest to meeting requirements, allowing to
consider the revision of requirements. The requirements filter emphasizes the
advantage of feature types in the service feature modeling language. Requiring
an abstract feature means that any of its child instance features needs to be
selected to fulfill this requirement. We are not aware of approaches to state such
requirements based on the standard feature modeling language.

In skyline filtering, configurations that are dominated by others are dismissed
from the configuration set. Dominance is based on the comparable characteris-
tics of configurations determined in attribute aggregation. It has to be noted,
though, that skyline filtering should be used with attention because it can dis-
miss configurations based on their attributes despite these configurations being
desirable based on the features they contain.

While requirements filtering dismisses inadequate configurations, preference-
based ranking orders configurations depending on how well they fulfill pref-
erences. The multi-criteria decision making method it uses considers configura-
tions’ attributes as decision criteria. The preference collection is based on polls

129

4. Using Service Feature Models

derived from SFMs, abstracting from their technicalities. Thus, preference-based
ranking is an ideal candidate for including consumer preferences into variant
selection, enabling participation in service development as motivated in chal-
lenge 6 in section 1.3.2. We support this approach with a set of concepts that
drive participatory preference-based ranking. We furthermore present a method
to aggregate preferences stated by multiple stakeholders (see section 4.4.4).

Enabled by the differentiation of feature types (cf. section 3.2.2), usage methods
can be applied to multiple SFMs, given they are based on the same domain
model. This capability paves the way to use service feature modeling for service
selection and to compare variants across services as motivated in challenge 5 in
section 1.3.2.

Comparing service feature modeling’s usage methods and the complete usage
process against related work, we find the following: some related approaches for
feature-based variant selection focus on requirements (cf. [CHE04]) while others
only consider preferences (cf. [BAGS10]). In contrast, service feature modeling’s
usage methods are combinable to address requirements and skyline filtering as
well as preference-based ranking (cf. section 4.1). One of the most cited feature
model configuration approaches, staged configuration, is a manual process that
requires repeated input by the decision-maker [CHE04]. In contrast, service fea-
ture modeling’s usage methods can be performed automatically and repeatedly
given the required input in terms of requirements and preferences is available.
This capability allows for variant selection to be performed, for example, to
react to changes in context in service delivery. Or, when using service feature
modeling’s methods to incorporate dynamic attribute values (cf. section 3.4), re-
selections can repeated to consider latest values. Participation of non-technical
stakeholders is basically enabled by the abstractions from feature models in some
related work (for example, [BAGS10, BNGR12]), but not explicitly addressed or
discussed. Service feature modeling thus provides a new perspective on the uti-
lization of variability modeling for participatory service development. Existing
service selection approaches (including policy-based approaches) consider each
service to be a single alternative (cf. [ASR10, GVB13, LNZ04, MST11]). Service
feature modeling’s usage methods, in contrast, allow decision-makers to select in-
dividual variants from multiple services, each described by one SFM [WKM12].
In related work about considering variants in service development (for exam-
ple, [DHJ09, MNDF+10]) and delivery (for example, [DWS12, LNSJ12]), se-
lection is mentioned but no specifics on how to perform it are presented. Here,
service feature modeling’s usage methods provide a novel way of selecting service
variants.

130

5. Evaluation

The evaluation of service feature modeling builds upon different elements as
illustrated in table 5.1. We denote the evaluated contribution, the evaluation
method, and the specific instrument used for the evaluation.

Contribution Eval. method Evaluation instrument & section
Modeling
language

Proof of
concept (POC)

Meta model (5.1.2), SFM designer
(5.1.3)

Use case Public service development (5.3.2),
IaaS consumption (5.4.2)

Empirical Service engineer survey (5.5)
Determining
SFM configs.

POC SFM designer (5.1.3)

Performance Benchmark (5.2)
Use case Public service/IaaS SFMs (5.4.3, 5.3.3)

SFM composition POC Collaboration server (5.1.3)
Skyline filtering POC SFM designer (5.1.3)
Requirements
filtering

POC Requirements filter component (5.1.3)

Use case IaaS consumption (5.4.3)
Preference-based
ranking

POC Preference-based ranking component
(5.1.3)

Performance Benchmark (5.2)
Use case Public service development

(participatory approach, 5.3.3), IaaS
consumption (5.4.3)

Empirical Citizen survey (5.5)
Variant
realization

POC IaaS deployment middleware
(interaction service component, 5.1.3)

Use case IaaS consumption (5.4.4)

Table 5.1.: How contributions of service feature modeling were evaluated

The evaluation is based on four methods, each addressing different aspects of
the overall evaluation:

131

5. Evaluation

• Proof of concept (POC): We present the architecture and a prototyp-
ical implementation of a service feature modeling tool suite in section 5.1.
It aims to illustrate the realizability of the envisioned concepts, showing
that models based on the service feature modeling language can be cre-
ated, that they can be composed from services, and that they can be used
with the conceptualized usage methods. We thus denote the evaluation
based on implemented components as proof of concept (POC). Another
reason for implementing a prototype is to enable further evaluation meth-
ods like the use cases or the empirical evaluation. It further, being devel-
oped early within our research, provided basis to assess design options for
systems realizing service feature modeling and to collect knowledge about
them [Som11, page 45].

• Performance evaluation: We evaluate the performance of the imple-
mentation for performance-critical tasks in section 5.2. The performance
evaluation is based on benchmarks with SFMs from the use cases and syn-
thetic models of varying sizes. The performance evaluation aims to show
the applicability of the usage methods (cf. chapter 4) to models of varying
sizes.

• Use cases: We use the prototypical implementation as a basis to apply
service feature modeling to two use cases in sections 5.3 and 5.4. We de-
fine a use case, as proposed in software product line engineering, as “[...] a
description of system behaviour in terms of scenarios illustrating different
ways to succeed or fail in attaining one or more goals.” [PuFvdL05, page
93]. We assume a scenario to be “[...] a concrete description of system us-
age which provides a clear benefit for the actor of the system.” [PuFvdL05,
page 93]. The service feature modeling evaluation is based upon two sce-
narios, namely the application to public service design within the COCK-
PIT project and the application for IaaS consumption. The use cases
aim to show applicability of service feature modeling, in this context with
regard to applying it in real-life contexts [WRH+12, page 14].

• Empirical evaluation: We present an empirical evaluation in section 5.5.
It is based on surveys answered by users within the COCKPIT project,
which is an established method to evaluate software [HPSVA95]. The
intent of the empirical evaluation is to assess the perceived quality of
exemplary targeted users of service feature modeling. Perceived quality
is broken down into usability, expressiveness, and usefulness and inter-
pretability, addressing the characteristics stated in this work’s hypothesis.
We thus use surveys in a descriptive manner, where they aim to assert
the distribution of these characteristics based on the interviewers’ percep-
tions [WRH+12, page 13].

132

5.1. Proof of Concept - Design and Implementation

Overall, the evaluation aims to assess the realizability of service feature modeling
and its applicability, first with regard to models of different sizes and second
with regard to two real use cases. The evaluation aims, furthermore, to draw
inferences about the perceived quality of the characteristics of service feature
modeling described in the hypothesis (cf. section 1.4).

5.1. Proof of Concept - Design and Implementation

The foundation for service feature modeling’s evaluation is a proof of concept
implementation. The proof of concept’s purpose is to demonstrate the realiz-
ability of feature modeling’s concepts. One main artifact created as part of the
proof of concept implementation is the service feature modeling meta model
described in section 5.1.2. It prescribes the syntax that SFMs, based on this
meta model, have. The architecture of the service feature modeling tool suite
is described in section 5.1.3. Its parts - the SFM designer, the valuation server,
and the collaboration server - make use of the previously defined meta model
to create or edit SFMs and perform usage methods. Finally, we discuss the
prototypical implementation of the architecture in section 5.1.4. This section
includes and extends previously published work about individual parts of the
tool suite, presented in [WZR+11, WSKT12] and under review in [WZ14].

5.1.1. Requirements

We identify a set of requirements for the implementation of the service feature
modeling tool suite. A functional requirement for the tool suite is to support all
activities and methods foreseen in service feature modeling’s methodology. On
a high level, they include the modeling of SFMs as described in chapter 3 and
the selection of variants as described in chapter 4. Modeling requires tools that
support single modelers to create and edit SFMs. The tools need to support all
elements contained in an SFM and be aware of the restrictions among them (cf.
section 3.2). Modeling tools should support model persistence, copy and paste,
model validation, and integration with version control tools. Graphical tools
ease the modeling process. Modeling should further support the composition of
SFMs from services (cf. section 3.4). The introduced coordination mechanisms
need to be implemented and central supervision of their compliance needs to be
guaranteed. To enable shared access to SFM results and asynchronous model-
ing, results need to be made available independent from whether their modelers
are currently active. With regard to usage of SFMs, the configuration set deter-
mination is required, including attribute aggregation. It needs to be performed

133

5. Evaluation

automatically because SFMs, similar to feature models, can become large, mak-
ing manual reasoning on them infeasible [BSRC10]. Information about the con-
figuration set, like the number of configurations and their aggregated attributes,
should be made available to modelers on-demand to allow them to immediately
react to this feedback. Skyline and requirements filtering need to be integrated
with the modeling tools for modelers to apply these filters to determined con-
figuration sets. Similarly, preference-based ranking needs to be integrated with
the modeling tools. To enable participation, polls derived from SFMs need to
be made available within evaluations (cf. section 4.4.6). Evaluations can poten-
tially be long running so that they need to be made available independent from
interactive modeling sessions. To support different types of participants, dif-
ferent user interfaces should be implementable. Further, retrieval of evaluation
results back into the modeling tools needs to be enabled.

Apart from the outlined functional requirements, we identify further non-
functional ones. The tool suite needs to be customizable and extensible.
Customization allows the application of SFMs to different domains, while
extensibility allows to add previously unforeseen capabilities. In addition, the
integration with other service or software engineering artifacts needs to be en-
abled. Exemplary approaches to implement integration are model mappings or
transformations. Finally, the performance of the implementation needs to be
sufficient to handle realistically sized SFMs.

5.1.2. SFM Meta Model

A meta model is the model of another model [Küh06] and defines a diagrammatic
language’s syntax [HR04]. The term “meta” implies the double application of
an operation (for example, a meta-discussion is a discussion about a discussion),
in this case modeling. An SFM is an instance of the SFM meta model. Ser-
vice feature modeling’s meta model defines which elements are contained in an
SFM and how they relate to another. The SFM meta model is illustrated in
figure 5.1.

The meta model is specified as an Eclipse Modeling Framework (EMF) model
[SBPM08]. EMF itself is a subset of UML. EMF models consist of classes,
attributes1 to describe these classes, and references between classes [SBPM08,
page 124]. The parts of the SFM meta model which relate to basic feature
modeling elements were inspired by related work [FFB02]. These parts are
complemented on the one hand by service-specific elements and on the other

1We refer to them as “properties” in the following to avoid confusions with attributes in
service feature modeling.

134

5.1. Proof of Concept - Design and Implementation

name : String
id : String
description : String

Service

name : String
id : String
description : String

Configuration
name : String
id : String
description : String

FeatureDiagram

AttributeType
name : String
id : String
description : String
measurementUnit : String
domain : AttributeDomain
aggregationRule : AggregationRules
scaleOrder : ScaleOrders
toBeEvaluated : boolean
customAttributeTypePriority : Int
required : String
requirementWeight : double

name : String
id : String
description : String
featureType : FeatureType
required : boolean
requirementWeight : double

Feature

id : String
instantiationValue : String

Attribute

Mandatory
Feature

Optional
Feature

Group-
Relationship

XOR
minFeatures : Int
maxFeatures : Int

OR
ExcludesRequires

Sum
Product
AtLeastOnce
Minimum
Maximum

<<enumeration>>
AggregationRules

HigherIsBetter
LowerIsBetter
ExistenceIsBetter

<<enumeration>>
ScaleOrders

Continuous
Boolean

<<enumeration>>
AttributeDomain

1 0…*

0…*

attributeTypesfeatureDiagram

features

features

attributes

attributes

ofAttributeType
0…*

0…*
0…* 0…*

fe
at

ur
es

op
tio

na
l

Fe
at

ur
es

0…*0…*

1 1

fe
at

ur
e

fe
at

ur
e

2…*

excludes

requires

0…1

group
Relationship

configurations

1

Grouping
Abstract
Instance

<<enumeration>>
FeatureType

0…*

Figure 5.1.: The meta model underlying service feature modeling, based
on [WZ14]

hand by service feature modeling’s extensions, compared to standard feature
modeling, presented in section 3.2.2 and 3.2.4.

The highest level element of each SFM is a single service element. It corre-
sponds to the overall variable service that an SFM represents and groups all
further elements of the SFM. The properties name, id and description capture
corresponding details about the service. It possesses containment references to
the feature digram, the configurations, and the attribute types.

The feature diagram contains all features of an SFM. As in standard feature
modeling, feature diagrams are tree structures whose nodes are features and

135

5. Evaluation

attributes. This structure is represented by the corresponding containment re-
lationship. Differing from the diagram, the overall SFM contains additional
information (cf. [CHE04]) like configurations.

Features are described, again, by the properties name, id, and description. Their
type (grouping, abstract, or instance) is denoted by an enumerable property.
Within an SFM, it can be stated that a feature is required and the weight of
this requirement can be stated using requirement weight. Features possess a
self-containment reference, which enables their decomposition into tree struc-
tures. They can further require or exclude other features, representing cross-tree
relationships. The feature class itself is defined as abstract. The two concrete
classes mandatory feature and optional feature inherit from it. This differentia-
tion allows automated reasoners to assess whether the feature must be contained
in each configuration or not.

Features may also contain a single group relationship, being either instantiated
as XOR (an alternative group relationship) or OR. A group relationship contains
at least two optional features. In the case of a XOR group relationship, exactly
one of these features can be selected for a configuration. In the case of an OR
group relationship, the minimum and maximum numbers of features to select
for a configuration can be specified in corresponding properties.

Attributes are referenced from a feature. They denote a an id and an instanti-
ation value property. All other information describing the attribute are defined
in the referenced attribute type. It defines, as discussed in section 3.2.4, com-
mon properties of multiple attribute of the type. Correspondingly, information
like the name, description, measurement unit, or domain are defined here. One
of the aggregation rules predefined in a corresponding enumeration can be se-
lected, corresponding to the description in table 4.3. The properties scale order,
to be evaluated, and custom attribute type priority are used for preference-based
ranking as described in section 4.4. As in the case of features, requirements
regarding attributes can be stated in an SFM. The required property is of type
String, allowing to state requirements regarding the range of attribute values,
using for example “< x” or “= y”. Again, the weight of a requirement can be
stated using requirement weight.

The service node references to configurations with a containment reference. A
configuration references to a selection of service features. Configurations further
contain attributes, specifying characteristics that result from aggregating the
attributes of the configuration’s features.

The SFM meta model provides the basic structure to derive SFMs from. Ad-
ditional constraints, restricting for example parent and child feature depending
on the feature type, cannot easily be defined within the meta-model without
cluttering it or creating ambiguity. These constraints are thus defined within

136

5.1. Proof of Concept - Design and Implementation

the implemented logic. The meta model provides the basis for addressing the re-
quirement to support all elements and their relations defined for service feature
modeling as described in section 5.1.1.

5.1.3. Architecture

An overview of the service feature modeling tool suite’s architecture is illustrated
in figure 5.2.

Valuation serverService Feature Model Designer

SFM model & editUI

Configuration set
determination

Preference-based
ranking

Poll manager

Interaction Platform

Evaluation
Manager

Evaluation wizards

Poll Data Store

Polling manager

Polling interface

Interaction
Services

Collaboration server
Requirements filter

Artificial SFM
generator

SFM manager

Coordination
engine

Service & user
repository

Coordination
adapter

Decision-makers
(non-experts,
consumers,
citizens etc.)

Modelers,
decison-
makers,

coordinators
Skyline filter

Preference-based
ranking SFM model & edit

SFM model & edit

Figure 5.2.: Overview of the architecture of the SFM tool suite

The architecture consists of four parts marked by white boxes, namely the SFM
designer, the valuation server, the collaboration server, and the interaction plat-
form. Every part consists of further components marked by gray boxes, which
contain subcomponents as illustrated in figures 5.3, 5.4, and 5.5. Arrows indi-
cate communication between parts and components within them. Components
that stand out from their containing parts indicate service interfaces or clients
to such interfaces. We describe the SFM tool suite’s four parts in the following
subsections.

SFM Designer

The SFM designer is the modeling environment to create and edit SFMs. It
further integrates service feature modeling’s usage methods and provides means
to interact with other parts of the tool suite. The SFM designer is intended

137

5. Evaluation

to be used by technically skilled stakeholders who use it in the roles of mod-
eler (cf. section 3.3.1) or decision-maker (cf. section 4.1.3). An overview of
the SFM designer’s architecture is provided in figure 5.3. Components are il-
lustrated in gray and subcomponents in white. Subcomponents that stand out
from their containing component, again, indicate service interfaces or clients of
such interfaces.

SFM designer

Evaluation wizards

Evaluation
management

wizard

Evaluation
results wizard

Preference-based ranking

Valuation
controller

SFM to AHP
adapter

Requirements filter

Requirements
calculation engine

Configuration set determination

SFM to CSP
mapper CSP solver Attribute

Aggregator
Configuration

builder

Skyline filter

Skyline engine

Interaction services

SFM instance
accessor

Artificial SFM
generator

SFM generation
engine

Valuation server

Evaluation
interface

Collaboration
server

Model interface

Coordination
interface

Coordination adapter

Coordination
interface

Model interface

User interface(UI)

Requirements
filter wizard

Skyline filter
wizard

Preference-
based ranking

wizard

SFM Editor

SFM model & edit

SFM persistencyItem providers Model

AHP engine

Figure 5.3.: Architecture of the SFM designer

The SFM model & edit component implements the meta model underlying
service feature modeling described in section 5.1.2, thus providing the modeling
facilities. The model subcomponent provides all classes with attributes and
relationships as described in the meta model. Item provider classes enable access
to a model instance’s elements. The SFM persistency stores and retrieves SFMs
on the hard disk. The SFM model & edit component is used in every part of the
SFM tool suite. Furthermore, the item providers are used by every component
or subcomponent that interacts with SFMs within the SFM designer. To keep
the architecture diagrams readable, we do not illustrate all relationships between
the item provider and all other components.

Driven by the modeling facilities, the user interface (UI) component provides
means for modelers, decision-makers, and coordinators to interact with SFMs.
The heart of the UI is the SFM editor, which provides capabilities for creating
and editing SFMs. The editor is furthermore the starting point for invoking
wizards for interacting with SFMs.

138

5.1. Proof of Concept - Design and Implementation

Invoking the configuration set determination component results in multiple
actions: the SFM to CSP mapper transfers the SFM currently in focus into a con-
straint satisfaction problem as described in listing 1. A CSP solver component
determines all valid solutions of the CSP. The attribute aggregator component
determines attribute values for every CSP solution as described in listing 2. Fi-
nally, the configuration builder component uses the information resulting from
the CSP solver and the attribute aggregator to create corresponding configura-
tion elements and attributes (cf. meta model in figure 5.1) in the SFM.

The requirements filter component is invoked via the requirements filter wiz-
ard. The user selects the SFM to apply the filter to and another SFM stating the
requirements as described in section 4.3.1. The requirements filter component
implements the algorithm described in listing 3. Screenshots of the requirements
filter component’s user interface (UI) are presented in appendix B.

Similarly, the skyline filter component is invoked by the skyline filter wizard.
The skyline filter component implements the block-nested loop algorithm de-
scribed in listing 4. The user selects the SFM to apply the filter to and confirms
the dismissal of dominated configurations.

The preference-based ranking component is invoked by the preference-based
ranking wizard. The user, acting in the role of a decision-maker (cf. sec-
tion 4.1.3), performs pairwise comparisons of attribute types in the wizard. The
valuation controller initiates the SFM to AHP adapter to create a multi-criteria
decision making problem from a given SFM as described in section 4.4.3. The
AHP engine component determines the ranking of configurations for the stated
preferences. Results are presented in the wizard and can be fed back into the
SFM. Screenshots of the preference-based ranking wizard’s user interface (UI)
are presented in appendix B.

The evaluation wizards allow to interact with the valuation server part of
the SFM tool suite. The evaluation management wizard allows users to create,
retrieve, update, and delete evaluations on the valuation server. For example,
the evaluation’s state can be changed with this wizard. The evaluation results
wizard allows to retrieve (aggregated) results form an evaluation and to display
them to the decision-maker.

The SFM designer denotes a coordination adapter for composition of SFMs
from services. The coordination interface allows users to define new results
and assign them to services through interacting with the collaboration server’s
coordination interface. The model interface allows to post and retrieve model
results to, and respectively from, the collaboration server.

The artificial SFM generator allows to create synthetic, randomized SFMs.
Their purpose is primarily to drive performance evaluations with differently

139

5. Evaluation

sized models (cf. section 5.2). The creation of the artificial SFMs is based on
an algorithm described in related work [TBK09].

Finally, the interaction services component provides an SFM interaction ac-
cessor. It allows further editing tools, outside of the SFM designer, to access
and eventually edit SFMs.

Collaboration Server

The collaboration server implements the logic required for composing SFMs
from services as described in section 3.4, thus enabling collaboration in mod-
eling SFMs. The description of the collaboration server is based on previously
published work [WSKT12].

Collaboration server

Adapter

REST modeler
interface

Coordination
interface

Adapter

REST modeler
interface

Coordination
interface

SFM manager

Model interface

Model Integrator

Coordination engine

Coordination
interface

Rule
repository

Rule creator

Rule engine

Contribution
/ Service
mapping

Protocol engine

Adapter

Model interface

Coordination
interface

Rule interface

Event interface

Service &
user

repository

SFM designer

Web services

SFM model & edit

SFM persistency

Item providers

Model

Figure 5.4.: Architecture of the collaboration server, based on [WSKT12]

Similar to the SFM designer, the collaboration server contains the SFM model
& edit component. It allows all other components to interact with and persist
SFMs to hard disk. Again, the relationships to all other components using it
are not illustrated in figure 5.4 to keep it readable.

140

5.1. Proof of Concept - Design and Implementation

The SFM manager stores contributed results, namely SFMs and attribute val-
ues, in the SFM persistency component. Using the model interface, any service
bound via adapters (cf. description below) can create, retrieve, update or delete
results - thus, for both SFM and attribute value results, CRUD methods are
provided. Results sent or requested pass through the model integrator. It checks
committed results for a) model elements that require coordination rules to be
defined - for example, attributes relating to attribute types outside of the result
- and b) changes with regard to model elements that require coordination - for
example, changes to cross-tree relationships. In such cases, the model integrator
triggers the coordination engine to create rules or trigger events. Further, if a
result from the collaboration server is requested, the model integrator composes
it by integrating all sub results into one coherent SFM.

The coordination engine contains the coordination logic. The coordination
interface allows services to participate in the coordination via adapters. A co-
ordinator consults the service & user repository to find an adequate service to
associate with a contribution. The association is stored in the contribution /
service mapping. The protocol engine controls the binding and the service re-
quest / response protocol of the service based on information found in both the
contribution / service mapping and the service & user repository. The rule in-
terface triggers the rule creator when new model elements are contributed that
require creation of a new coordination rule. Additionally, it can be used by any
coordinator to manually define rules. Rules are stored in the rule repository.
Through the event interface, events are sent to the rule engine. On receiving
an event, the rule engine checks existing rules and, where appropriate, triggers
an action. For example, if an attribute type is changed, the “AttributeType-
Updated” event triggers a previously specified rule which notifies all depending
modelers. Notifications are sent via the protocol engine that communicates with
the respective service adapters via the coordination interface.

The collaboration server foresees numerous adapters that allow services to par-
ticipate in the collaboration. Adapters ensure compatibility of the service in-
terfaces and the collaboration server’s interfaces - for example, they implement
the coordination protocols described in section 3.4. For every service interface,
a dedicated adapter is required. Adapters have two interfaces to communicate
with our system: via the coordination interface, services are asked for binding
and then are requested to contribute or update results. The model interface is
used to retrieve existing results of the model in focus and to contribute (create,
update, or delete) results. The adapter of the SFM designer, the coordination
adapter, is described in section 5.1.3.

141

5. Evaluation

Valuation Server

The valuation server exposes preference-based ranking (cf. section 4.4) for par-
ticipatory usage. Its architecture is illustrated in figure 5.5.

Valuation server

SFM designer

Evaluation
management

wizard

Interaction
platform

Polling manager

Evaluation manager

Evaluation
interface

Life-cycle
manager

Evaluation
controller

Poll data store

Evaluation
persistency

Preference
persistency

Poll manager

Poll interface Opinion
aggregation

Poll controllerPoll generator

Preference-based
ranking

Valuation
controller

SFM to AHP
adapter

AHP engine

Evaluation
results wizard

SFM model & edit

SFM persistencyItem providers Model

Figure 5.5.: Architecture of the valuation server

The evaluation manager is responsible for creating, controlling, accessing, and
ultimately deleting evaluations (cf. section 4.4.6). SFM designers communicate
with the valuation manager using the evaluation interface to create, update
or delete evaluations or to retrieve their results. The evaluation interface is
connected to the evaluation controller. It drives the valuation manager’s logic
in reaction to user commands received via the evaluation interface or due to
events fired by the life-cycle manager. The life-cycle manager triggers actions in
the evaluation controller based on events defined within the evaluation. These
events are most notably state changes that are defined in an evaluation (cf.
section 4.4.6). For example, if an end date is specified in an evaluation, the life-
cycle manager will trigger the interaction manager to end the evaluation at the
given date. The evaluation controller stores information about the evaluation in
the poll data store component (cf. below) upon creation. If evaluation results
are requested via the evaluation interface, the evaluation controller forwards this
request to the poll manager and delivers the received results back through the
evaluation interface.

142

5.1. Proof of Concept - Design and Implementation

The poll data store denotes a collection of persistence components to store
artifacts required for evaluations. The SFM persistence is responsible for stor-
ing SFMs on the valuation server and accessing them if required. It uses the
EMF SFM meta model & edit component also used within the SFM designer (cf.
section 5.1.3) to process SFMs. The evaluation persistence stores meta informa-
tion about evaluations. This information includes the stakeholder who initiated
the evaluation, its creation date, its defined end-date, and its current state. A
complete description of the information is provided in section 4.4.6. The pref-
erence persistence stores votes from stakeholders about their preferences and
aggregated votes.

The poll manager is responsible for managing polls on the interaction platform
(cf. section 5.1.3) and for reacting to requests for configuration rankings. The
poll interface allows for communication with the interaction platform and the
evaluation manager. The poll generator is responsible for creating the poll for a
given SFM. It stores the poll to the poll data store. If triggered by the evalua-
tion manager, the poll interface posts new polls to the interaction platform. The
poll controller handles the logic required to determine a configuration ranking.
If the poll interface receives a vote from the interaction platform or a request
for evaluation results from the evaluation manager, the poll controller performs
all actions necessary to provide the required configuration ranking using the
preference-based ranking component (cf. below). The poll controller triggers
the valuation service component to determine the ranking for the given vote and
corresponding evaluation and returns the result to the poll interface. If the eval-
uation manager requests an aggregated configuration ranking (cf. section 4.4.4),
the poll controller requests the opinion aggregator to derive an aggregated vote
before triggering the valuation service with this vote.

The preference-based ranking component is responsible for determining the con-
figuration ranking. It functions similar to the same component in the SFM
designer (cf. section 5.1.3). The resulting ranking is fed back to the poll man-
ager.

The collaboration server denotes, again, the SFM model & edit component
to edit and persist SFMs.

Interaction Platform

The interaction platform provides user interfaces allowing stakeholders to ex-
press their preferences with respect to an SFM’s attribute types. Stakeholders
(most importantly consumers) express their preferences by means of interactive
surveys that we refer to as polls.

143

5. Evaluation

The interaction platform includes a poll manager component that provides
services for the valuation server to define and control polls. The poll manager
also implements a protocol to send tentative poll results to the valuation server
and in turn receive feedback information including a representation of the highest
ranked configuration.

A polling interface is responsible for presenting valuation polls and interacting
with stakeholders including input of their poll answers and output of feedback
information. Different application scenarios pose different requirements on the
realization of the user interface for service consumer participation. Likely vari-
ants include Web, desktop or mobile applications that can be stand-alone or
integrated into other applications. For this reason, the SFM tool suite does not
include a specific UI implementation.

5.1.4. Implementation

The SFM tool suite is implemented in Java. Thus, if not stated otherwise in the
following, plain Java is used to implement components.

We implemented the SFM designer based on the Eclipse Modeling Framework
(EMF), which is part of the Eclipse Modeling Project2. For a given data model
- in this case the meta model underlying service feature modeling as described
in section 5.1.2 - EMF generates Java classes for the model, adapter classes for
viewing and command-based editing of the model (the item providers described
in section 5.1.3), and a basic Eclipse-based editor (the SFM editor described
in section 5.1.3). The generated model and adapter classes act as the SFM
model & edit component used throughout the SFM tool suite’s parts. The SFM
persistency is XMI-based. The editor provides capabilities to create and edit
SFMs within Eclipse, making use of many other capabilities provided in Eclipse
like plug-ins for version control (cf. section 3.2.1) or for collaboration, thus
addressing this requirement from section 5.1.1. Figure 5.6 illustrates a screenshot
of the basic SFM designer’s UI. Features are decomposed in tree structures and
properties can be changed in dedicated property-views, illustrated at the bottom
of the screen.

The user interface’s wizards for invoking further components are implemented
as JFace wizards3. All service interfaces and clients, for example, the evaluation
wizards and the collaboration adapter, are implemented in a RESTful way, us-
ing the Jersey framework that implements the Java API for RESTful Services
(JAX-RS API) specification4. Implementing service interfaces in a RESTful way

2http://projects.eclipse.org/projects/modeling.emf
3http://wiki.eclipse.org/JFace
4https://jersey.java.net/

144

http://projects.eclipse.org/projects/modeling.emf
http://wiki.eclipse.org/JFace
https://jersey.java.net/

5.1. Proof of Concept - Design and Implementation

Figure 5.6.: Screenshot of the SFM designer

promotes the customizability and extensibility of the tool suite as required in
section 5.1.1. The configuration set determination component uses the CHOCO
solver as the CSP solver5. It has been used extensively in related work, for
example, [DWS12, MC10, WDSB09], and has been found to perform well for
feature model analysis [PLP11]. The preference-based ranking component uses
the aotearoaLib for solving Analytical Hierarchy Process problems 6.

The collaboration server is implemented using Grails Web application frame-
work7 and RESTful design principles. The server components are implemented
both with Java and Groovy8. The service repository, rule repository and con-
tribution/service mapping persist data in a MySQL database. The rule en-
gine is implemented using ESPER9. Correspondingly, the coordination rules
described in section 3.4.3 are expressed with the ESPER Event Processing Lan-
guage (EPL).

The valuation server is implemented as a set of RESTful Web services. The eval-
5www.emn.fr/z-info/choco-solver/
6https://github.com/mugglmenzel/aotearoaLib/
7http://www.grails.org
8http://groovy.codehaus.org/
9http://esper.codehaus.org/

145

5. Evaluation

uation manager and the poll manager are mapped on resource sets of evaluations,
models and votes described in section 4.4.6. In terms of infrastructure, the server
uses a JPA-based persistence layer on top of a Derby database10. Furthermore,
it uses the JAX-RS API provided by Jersey11 resulting in a servlet-based Web
application hosted in a Tomcat container12.

In terms of the interaction platform, the service feature modeling tool suite
is technology agnostic. Different application scenarios are likely to pose very
different requirements on the realization of the user interface for service consumer
participation. Based on the service under consideration, the consumer group
might differ in size and/or preferred interface style. Likely variants include
Web, desktop or mobile applications that can be stand-alone or integrated into
other applications. For this reason, the service feature modeling tool suite only
contains a definition of the interaction platform service interface that is offered
to the valuation server as well as its client API. This interface denotes RESTful
Web service interfaces on poll resources. A concrete example of a Web-based
interaction platform is presented in section 5.3.

5.1.5. Discussion

The here presented proof of concept implementation allows us to assert the
realizability and functionality of the methods of the service feature modeling
methodology. The meta model, representing the syntax of the service feature
modeling language presented in section 3.2, and the SFM editor derived from it
allow the modeling of SFMs as described in section 3.3.2. Using the collabora-
tion server, the coordinated composition of SFMs as described in section 3.4 is
equally feasible. The SFM designer’s coordination adapters allow modelers to
assign contributions to human-based and Web services. For SFM results, cor-
responding resources are created, updated, retrieved, and deleted by the SFM
manager on the collaboration server. On updating SFMs, the model integrator
triggers the creation of rules and triggers events with regard to existing rules as
conceptualized in section 3.4.3. Notifications in case of detected inconsistencies
are sent to humans acting as services services via e-mail. Thus, the SFM designer
in combination with the collaboration server enables collaborative service feature
modeling (cf. challenge 3) and the integration of dynamic or complex attribute
values (cf. challenge 2). Regarding usage methods, all methods denoting the se-
lection process (cf. challenge 4) were implemented. The proof of concept shows
that the determination of configurations described in section 4.2 including the
attribute aggregation described in section 4.2.2 is feasible (cf. challenge 1). A
10db.apache.org/derby/
11https://jersey.java.net
12tomcat.apache.org

146

db.apache.org/derby/
https://jersey.java.net
tomcat.apache.org

5.2. Performance Evaluation

more detailed analysis of the performance of this step is provided in section 5.2.
The requirements filtering described in section 4.3 and the skyline filtering de-
scribed in section 4.4.2 function as conceptualized. Preference-based ranking of
configurations, using the transfer of SFMs to polls described in section 4.4.3 and
the determination of rankings described in section 4.4.5, produces the expected
results. For participatory ranking, the concepts and the corresponding evalua-
tion life cycle, both described in section 4.4.6, were implemented in the valuation
server. Polls can be made accessible with the interaction platform to stakehold-
ers and results can be fed back to the SFM designer using the evaluation wizards.
Thus, the participatory ranking of configurations is feasible.

In sum, the proof of concept implementation shows that all conceptualized meth-
ods of service feature modeling’s methodology can be implemented and used. In
the following sections, we present a performance evaluation, two use cases, and
an empirical evaluation from one of the use cases to further assess the quality
of service feature modeling.

5.2. Performance Evaluation

To assess the applicability of the implementation to SFMs of different sizes, we
conduct a performance evaluation. It assesses the performance of parts of the
implementation critical with regard to computation times using SFMs created
within use cases (cf. section 5.3 and 5.4) and synthetic SFMs created with the
artificial SFM generator (cf. section 5.1.3). The here presented performance
evaluation is based upon and extends work currently under review in briefer
form [WZ14].

5.2.1. Design of Performance Evaluation

We consider four main scenarios that depend on performance. Firstly, the auto-
matic determination of an SFM’s configuration set, i.e. the represented service
variants, is time-critical. If this step takes too long, it impairs the modeling
process, where the determination of the configuration set is a common task.
Secondly and thirdly, the skyline and the requirements filter need to perform
sufficiently because they are, again, eventually performed multiple times upon
model changes. Fourthly, the determination of the configuration ranking needs
to perform well, because we require to provide immediate feedback for stake-
holders voting on the interaction platform.

147

5. Evaluation

The performance of configuration set determination depends on three steps:
first, the SFM is translated from its EMF representation to a constraint satis-
faction problem (CSP). In this step, all features in the SFM are iterated and
corresponding constraints are created as described in related work [KOD10].
The performance of this step thus depends on the number of features and con-
straints in the SFM. Second, the CSP is solved. This step, as described above,
is performed by the CHOCO off-the-shelf CSP solver. Its performance, again,
depends on the number of features and constraints in the SFM. Third, based on
the CSP’s solutions, configurations are created, including the attribute aggrega-
tion. In this step, all solutions found for a CSP (corresponding to configurations
of an SFM) are iterated and for each attribute type, an aggregation of the cor-
responding attributes is performed. Thus, the performance of this step depends
on the one hand on the number of configurations and on the other hand on the
number of attribute types in the SFM.

The skyline filter’s single critical step is the block nested loop algorithm pre-
sented in listing 4. This algorithm’s performance depends on the size of the
configuration set that needs to be iterated. In addition, it depends on the num-
ber of attribute types because they are considered in every comparison of two
configurations to check for dominance.

Similar to the skyline filter, the requirements filter’s single critical step is the
matching algorithm presented in listing 3. The algorithm depends on the number
of configurations and on the number of requirements.

The performance of the configuration ranking depends on two steps: first, the
SFM is translated to the domain model of the utilized AHP implementation
aotearoaLib. The performance of this step depends upon the number of con-
figurations and attribute types in the SFM. Second, aotearoaLib performs the
actual ranking based on the input model and the preferences stated in form
of a vote (see section 4.4.6). Again, this step’s performance depends upon the
number of configurations and attribute types in the SFM.

We ran the performance benchmarks on a notebook with a 2.4Ghz Core i5
Processor and 8GByte memory. Every run for every model was repeated 100
times and the mean values of these runs are presented in section 5.2.3.

5.2.2. Evaluation Models

Table 5.2 presents information about the SFMs created in the use cases (“GR01”
and “IRIS01” as described in section 5.3.2 and “Amazon EC2” and “Rackspace”
as described in section 5.4.2). This information indicates realistic dimensions
of SFMs when used in practice. The comparatively small size of the SFMs
“GR01” and “IRIS01” with regard to the number of configurations results from

148

5.2. Performance Evaluation

the model’s focus on selected work flow variants which the decision-makers de-
sired to select among.

Model ID Features Cross-
tree

Confi-
gurations

Attribute
types

Attributes

GR01 32 0 9 5 35
IRIS01 94 0 18 4 24
Amazon EC2 45 4 1280 4 20
Rackspace 32 2 896 4 28
Model 98 conf. 10 1 98 4 20
Model 952 conf. 20 2 952 4 20
Model 9450 conf. 30 3 9450 4 20
Model 21168 conf. 40 4 21168 4 20

Table 5.2.: Descriptions of use case and synthetic SFMs with rising number of
configurations, based on [WZ14]

Additionally, we created artificial models of varying sizes. These models are
designed corresponding to the considerations described in section 5.2.1 to test
the limits of our implementation with regard to varying model dimensions that
impact performance. The artificial models have a) an increasing number of
configurations but fixed number of attribute types and attributes (described in
table 5.2) and b) an increasing number of attribute types and attributes, while
the number of configurations remains fixed (described in table 5.3). The models
were defined based on the method proposed in [TBK09]. The probabilities for
added child nodes being either mandatory, optional, XOR or OR nodes are each
25%. We defined a maximum branch factor of 5, meaning that every service
feature has 5 children at most. Similar to [TBK09], we defined 1 cross-tree
relationship per 10 service features. We also randomly defined attribute types
and attributes, similar to the method described in [SGB+12]. The instantiation
value per attribute is uniformly distributed between 0 and 100.

With regard to evaluating the requirements filter, we defined requirements in
two ways. First, to assess the performance with regard to SFMs with rising
configuration sets, we defined the same number of requirements for every SFM.
We required 2 instance feature and 1 abstract feature to be required with weight
1.0. The features were selected randomly. In addition, we required for 2 attribute
types to have values below or above a randomly selected value. Second, to assess
the performance with regard to a rising number of requirements, we defined
varying numbers of requirements for attribute types in SFM “Model 12 att.”.
Table A.3 provides details on the numbers of requirements for every model.

149

5. Evaluation

Model ID Features Cross-
tree

Confi-
gurations

Attribute
types

Attributes

Model 2 att. 20 2 952 2 10
Model 4 att. 20 2 952 4 20
Model 6 att. 20 2 952 6 30
Model 8 att. 20 2 952 8 40
Model 10 att. 20 2 952 10 50
Model 12 att. 20 2 952 12 60

Table 5.3.: Performance test models with rising number of attribute types and
attributes [WZ14]

5.2.3. Results of Performance Evaluation

The processing times for determining configurations of the test models with
rising numbers of configurations are illustrated in figure 5.7 (note: the axis
scale is logarithmic for better visibility of the values). The results show that a
higher number of features and constraints, resulting in more configurations in the
test models, does not considerably impact processing times for transferring the
SFM to a CSP. This step’s very small impact on the overall performance of the
configuration set determination renders it negligible. For both, the CSP solving
and the attribute aggregation steps, the processing time increases approximately
linear with an increasing number of configurations. Because the performance of
the CSP solver lies outside our area of influence, we will not further discuss its
performance. In general, we found that the performance of the CSP solving
step corresponds to that reported in related work for this step [PLP11]. With
regard to the aggregation of attributes, our findings are sensible because every
configuration must be traversed to calculate its overall attribute value for every
attribute type.

The processing times for determining configurations of the test models with ris-
ing attribute types and attributes are illustrated in figure 5.8. Attribute types
and attributes neither play a role in the transfer of the SFM to a CSP nor in
solving the CSP, which is also reflected in our findings. However, the processing
times for attribute aggregation rises linear with an increasing number of at-
tribute types and attributes. This finding is sensible because for each additional
attribute type, an additional aggregation of its attributes has to be performed
for every configuration.

Overall, the aggregation of attributes is the most expensive step of the con-
figuration set determination. Its complexity is O(n ∗m), where n denotes the
number of configurations and m the number of attribute types.

150

5.2. Performance Evaluation

Figure 5.7.: Processing times for determining the configuration set of models
with rising number of configurations, based on [WZ14]

Figure 5.8.: Processing times for determining the configuration set of models
with rising number of attribute types and attributes [WZ14]

The processing times for applying the skyline filter to the use case SFMs and
ones with rising number of configurations is illustrated in figure 5.9. As can
be seen, the computation time is highly dependent on the number of configu-

151

3
2

5
2 2 2

3
5

2
4

10
6

1

4

36

142

1
1

41
28

3

26

323

843

1

5

50

500

GR01

IR
IS

01

Amaz
on

 E
C2

Rac
ks

pa
ce

Mod
el

98
 co

nf

Mod
el

95
2 c

on
f

Mod
el

94
50

 co
nf

Mod
el

21
16

8 c
on

f

C
om

pu
ta

tio
n

tim
e

[m
ill

is
ec

on
ds

]

SFM to CSP CSP Solving Attribute Aggregation

3 2 2 2 2 1
5 5 5 5 4 4

20

34

46

62

76

86

0

20

40

60

80

100

Mod
el

2 a
tt

Mod
el

4 a
tt

Mod
el

6 a
tt

Mod
el

8 a
tt

Mod
el

10
 at

t

Mod
el

12
 at

t

C
om

pu
ta

tio
n

tim
e

[m
ill

is
ec

on
ds

]

SFM to CSP CSP Solving Attribute Aggregation

5. Evaluation

rations. Our findings reflect discussions of the complexity of the block-nested
loop algorithm in related work [BKS01]. The complexity ranges from O(n) to
O(n2), where n denotes the number of configurations. The best performance is
achieved if the skyline is small, because in this case the window in the logarithm
stays small and many configurations are immediately dismissed. Table A.2 in
the appendix illustrates this case: models that denote a comparatively small
skyline, for example “Model 952 conf.” with only 4 configurations out of 952 in
the skyline, require a small number of comparisons, thus resulting in compara-
tively small computation times. On the other hand, the models “Amazon EC2”
and “Rackspace” do not denote any skyline configuration13. In consequence,
n ∗ (n − 1) comparisons need to be performed, resulting in high computation
times.

Figure 5.9.: Processing times for skyline filtering of use case models and ones
with increasing numbers of configurations

The processing times for applying the skyline filter to SFMs with rising num-
bers of attribute types and attributes are illustrated in figure 5.10 (note: the
axis scale is logarithmic for better visibility of the values). In general, there
is a trend for computation times to increase with rising number of attribute
types and attributes. This trend can be explained by each comparison between
two configurations becoming more complex for every additional attribute type.
Looking at table A.2 in the appendix, however, reveals also a reverse impact:
more attribute types, in this case, result in a smaller skyline, thus reducing the
13This is caused by the pricing of the IaaS providers: VMs with high attribute values for

“CPU cores”, “memory”, and “disk space” have equally higher “cost per hour”.

152

0,06 0,05

1055,91
522,48

0,25

1,56

412,42

5345,20

0,01

0,10

1,00

10,00

100,00

1000,00

10000,00

GR01

IR
IS

01

Amaz
on

 E
C2

Rac
ks

pa
ce

Mod
el

98
 co

nf

Mod
el

95
2 c

on
f

Mod
el

94
50

 co
nf

Mod
el

21
16

8 c
on

f

C
om

pu
ta

tio
n

tim
e

[m
ill

is
ec

on
ds

]

Skyline filter

5.2. Performance Evaluation

number of comparisons. For example, “Model 2 att.” with a skyline including 48
configurations requires 3160 comparisons while “Model 12 att.” with a skyline
including only 1 configuration requires just 951 comparisons. In this case, the
increased complexity for each comparison in the latter model even overcompen-
sates the gainings from the smaller number of comparisons.

Figure 5.10.: Processing times for skyline filtering of models with rising numbers
of attribute types and attributes

The processing times for applying the requirements filter to the use case SFMs
and ones with rising numbers of configurations are illustrated in figure 5.11. The
processing times grow roughly linearly with rising number of configurations. As
illustrated in table A.3 in the appendix, the number of requirements was left
fixed for this analysis.

On the other hand, figure 5.12 illustrates the processing times for applying
the requirements filter to “Model 12 att.” with different numbers of attribute
type requirements. The processing times rise linear with the rising numbers of
requirements.

Overall, these findings confirm that the complexity of the requirements filter
is O(n,m), where n denotes the number of configurations and m denotes the
number of requirements.

The processing times for ranking configurations of the test models with rising
configurations are illustrated in figure 5.13 (note: the axis scale is logarithmic
for better visibility of the values). The results indicate that the biggest part
of the processing time depends upon the transfer of the SFM to an AHP prob-
lem. Specifically, the creation of the matricesMPC andMPC(ai) is expensive.
Every matrix MPC(ai) obtains an additional row and column for every config-
uration. In consequence, SFMs with many configurations result in very large

153

2,43
1,99

2,95 3,06

3,77

4,50

0,00

1,00

2,00

3,00

4,00

5,00

Mod
el

2 a
tt

Mod
el

4 a
tt

Mod
el

6 a
tt

Mod
el

8 a
tt

Mod
el

10
 at

t

Mod
el

12
 at

t

C
om

pu
ta

tio
n

tim
e

[m
ill

is
ec

on
ds

]

Skyline filter

5. Evaluation

Figure 5.11.: Processing times for requirements filtering of use case models and
ones with rising numbers of configurations

Figure 5.12.: Processing times for requirements filtering depending on different
numbers of requirements

matrices. Thus, processing times for the model with 9450 configurations are
just over two minutes, making it impossible to perform the complete calcula-
tion, for example, in Web applications where immediate response to user requests
is important. In the case of the test model with 21168 configurations, a calcu-
lation was not possible due to memory limitations on the test machine. This
performance bottleneck, however, can easily be addressed: the SFM to AHP

154

0,27 0,22
7,01 5,47 0,23 3,76

53,92

162,71

0,00

50,00

100,00

150,00

200,00

GR01

IR
IS

01

Amaz
on

 E
C2

Rac
ks

pa
ce

Mod
el

98
 co

nf

Mod
el

95
2 c

on
f

Mod
el

94
50

 co
nf

Mod
el

21
16

8 c
on

f

C
om

pu
ta

tio
n

tim
e

[m
ill

is
ec

on
ds

]

Requirements filter

4,89 5,44 6,02 6,73
7,39 8,11

0,00

2,00

4,00

6,00

8,00

10,00

Mod
el

12
 at

t 2
 at

t re
q

Mod
el

12
 at

t 4
 at

t re
q

Mod
el

12
 at

t 6
 at

t re
q

Mod
el

12
 at

t 8
 at

t re
q

Mod
el

12
 at

t 1
0 a

tt r
eq

Mod
el

12
 at

t 1
2 a

tt r
eq

C
om

pu
ta

tio
n

tim
e

[m
ill

is
ec

on
ds

]

Requirements filter

5.2. Performance Evaluation

translation needs only be performed once for every preference-based ranking
process. The required times in the use of Web applications, thus, depends only
on solving the AHP, which is sufficiently fast. Furthermore, also the determi-
nation of configuration comparison ranking vectors needs only to be performed
once for every preference-based ranking process (cf. section 4.4.5). This cal-
culation produces one vector for every attribute type, each of them having one
element for every configuration. When pre-calculating them, only the attribute
type priority vector needs to be determined repeatedly, which is comparatively
small as it contains only one element for every attribute type. Considering these
performance optimization potentials, preference-based ranking can be applied
also to large SFMs to be used, for example, in Web applications.

Figure 5.13.: Processing times for ranking configurations of use case models and
ones with rising numbers of configurations, based on [WZ14]

The processing times for ranking configurations of the test models with rising
numbers of attribute types and attributes are illustrated in figure 5.14. The
processing time for the transfer of the SFM to an AHP problem increases linearly
for increasing numbers of attribute types and corresponding attributes. This
result is sensible because for each additional attribute type ai, an additional
matrix MPC(ai) needs to be created. The processing time for solving the AHP
problem merely increases sublinearly for increased numbers of attribute types
and attributes.

155

1
0

1698
769

13

1044

122263

10 15 24 20
9

17

469

0

1

10

100

1000

10000

100000

GR01

IR
IS

01

Amaz
on

 E
C2

Rac
ks

pa
ce

Mod
el

98
 co

nf

Mod
el

95
2 c

on
f

Mod
el

94
50

 co
nf

Mod
el

21
16

8 c
on

f

C
om

pu
ta

tio
n

tim
e

[m
ill

is
ec

on
ds

]

SFM to AHP AHP solving

5. Evaluation

Figure 5.14.: Processing times for ranking configurations of models with rising
numbers of attribute types and attributes [WZ14]

5.2.4. Discussion

The performance evaluation indicates the limits with regard to size of the SFMs
to be applicable in real-life scenarios.

For determining the configuration set of an SFM, even the largest model with
regard to configurations (21168) can be processed in under one second. While
rising numbers of attribute types and attributes also increase processing times
of the attribute aggregation, the impact is linear. We thus conclude that our ap-
proach is capable of handling considerably large models in a reasonable amount
of time.

The performance of the skyline filter is hard to determine due to its dependence
on the skyline size. Comparatively small skylines result in little numbers of
comparisons while the other way round, large skylines can induce considerable
performance impacts. Looking especially at the use case models, their skylines
are all calculated in at most one second, with only the model with the most
configurations requiring over 5 seconds. We thus consider the performance good
enough to apply skyline filtering repeatedly during modeling.

The performance of the requirements filter is directly impacted, on the one
hand, by the number of configurations and, on the other hand, by the number
of requirements. In both cases, the processing time rises linearly with a linear
increase in these numbers alone. For every assessed model, the processing times
remained well under 200 ms, making the approach perform well even if it needs
to be applied repeatedly.

156

527

1048

1585

2113

2616

3194

10 17 23 30 38 46
0

500

1000

1500

2000

2500

3000

3500

Mod
el

2 a
tt

Mod
el

4 a
tt

Mod
el

6 a
tt

Mod
el

8 a
tt

Mod
el

10
 at

t

Mod
el

12
 at

t

C
om

pu
ta

tio
n

tim
e

[m
ill

is
ec

on
ds

]

SFM to AHP AHP solving

5.3. Use Case - Public Service Design

For the configuration ranking, our evaluation shows that reasonable processing
times are reachable for models with up to 1000 configurations. Beyond that,
processing times and demand for memory increase disproportionately. While
the impact of rising numbers of attribute types is linear, it can push processing
times into unfeasible heights. We already presented potential optimization ap-
proaches, based on pre-calculating configuration priority vectors, in section 5.2.3.
Alternatively, before applying preference-based ranking to an SFM’s configura-
tions, decision-makers should ensure appropriate model size. This argument is
not only driven by performance considerations, but also by general usability of
the approach: too many configurations will result in very similar ranking values,
thus complicating the interpretation of results. Additionally, the number of at-
tribute types should be low for the number of necessary pairwise comparisons to
remain manageable (n attribute types result in 0.5∗n∗(n−1) comparisons). The
realistic SFMs “GR01”, “IRIS01”, “Amazon EC2”, and “Rackspace” generated
in the use cases illustrate that service feature modeling is applicable despite the
performance boundaries. Decision-makers can use the participatory approach to
focus on specific aspects of the service on which to obtain preferences from stake-
holders, thus keeping models reasonably sized. For larger models, approaches
like the proposed skyline filter can be used to decrease model size.

5.3. Use Case - Public Service Design

To illustrate the applicability of modeling service variants with service feature
modeling, we here present two use cases. The first use case addresses the design
of public services considering variants, as motivated in section 1.1.1. Modeling
SFMs was performed to represent service design alternatives for public services in
the COCKPIT EU project [COC12]. The goal of COCKPIT is to enable citizens
to participate in the (re-) design of public services. Public services, here, are
not limited to mere software services but also include human actors performing
manual tasks. This use case is part of work currently in review [WZ14].

5.3.1. Use Case Description

Service feature modeling was applied to two scenarios about public service design
in the COCKPIT project [KKKP10].

The redesigning social security record retrieval service scenario was provided by
the Greek Ministry of Interior. It aims to redesign the “Access extracts of in-
surance records in social security organization” service, abbreviated GR01. The
background of the service is that in Greece, as in other EU countries, social
security is paid for in part by employees and in part by employers. Employers

157

5. Evaluation

retain part of their employees’ income and pay it to the social security organiza-
tion. Service GR01 allows employees to view their employer’s payments. Doing
so is needed on the one hand to ensure that employers perform the required
payments. On the other hand, employees need statements about their social
security fees being paid if they want, for example, to prove their work experi-
ence when applying for a job, to apply for permits to exercise professions that
require work experience, or if they want to apply for loans. GR01 is provided to
6 Million employees across Greece. The existing service provides two variants:
in the “conventional” service variant, citizens visit a department of the Social
Security Institute, where they are provided with the latest excerpt from their
social security record. Alternatively, citizens use the “electronic” service variant,
where they have to register at a Social Security Office. Registration currently
takes about 4 working days. Once registered, citizens can access their social
security records on a Web site. The primary goal of the redesign is, for both
service variants, to decrease execution times of the service.

The Internet reporting information system scenario was provided by the city of
Venice. It aims to redesign the accordingly named service (abbreviated “IRIS”).
IRIS allows citizens to submit and track civic issues, for example defect street
lights, potholes, vandalism, or breaching of parking regulations. In IRIS, citizens
use the Multimedia Messaging Service (MMS) from their smart phones or IRIS’
portal to submit evidence of such issues. IRIS has to cope with approximately
3000 requests per year. One goal of the redesign is to improve the transparency
on how the public administration processes submitted issues. Another goal is
for the responsible public administration to react faster to submitted issues.

Service Feature Modeling in Public Service Design

We here outline the service engineering methodology in which service feature
modeling was integrated. It has already been briefly introduced in section 1.1.1.
The COCKPIT project’s overall methodology, as illustrated in figure 5.15, en-
compasses a set of integrated methods. To illustrate the context in which service
feature modeling was applied, we will roughly outline the different methods and
their interactions.

Public service information abstraction aims to collect existing information rele-
vant for the (re-) design of a public service. Policy and legal information is au-
tomatically extracted from corresponding Web sources, for example EUR-Lex14
and national legal texts, for example the German “Gesetze im Internet”15. Cit-
izens’ stated opinions about the service are mined from Web 2.0 sources and
structured, using for example sentiment analysis.
14http://eur-lex.europa.eu/en/index.html
15http://www.gesetze-im-internet.de/

158

http://eur- lex.europa.eu/en/index.html
http://www.gesetze-im-internet.de/

5.3. Use Case - Public Service Design

Citizen deliberation engagementPublic service
information
extraction

Public service delivery modeling

Citizens' opinion
mining

Policy and legal
information

retrieval

Service design
evaluations

Public service
simulation and
visualization

Cost estimation

Public service
modeling

Service feature
modeling

Workflow
definition

Discussion
forums

Sentiment /
rating

mechanisms

Figure 5.15.: Overview of COCKPIT’s methodology, methods directly con-
cerned with service feature modeling are marked in gray [WZ14]

Public service delivery modeling is concerned with conceptualizing the public ser-
vice using modeling techniques. Generic public service modeling allows modelers
to capture information like involved stakeholders, requirements, goals, involved
resources, or cost figures of the service. Together with the generic modeling,
work flows are defined that specify the actions performed by different stake-
holders to deliver the service. Work flow definitions are specified in the Business
Process Model and Notation (BPMN) [BPM10]. Work flow definitions make use
of information contained in generic public service models. For example, defined
stakeholders or resources are used as actors in the work flows. Cost estimation
provides methods to determine the estimated mean cost of an individual service
invocation for the service provider.

Citizen deliberation engagement aims at participation of citizens during the (re-)
design process. Simulation and visualizations are used to communicate (prelim-
inary) results of the public service design. Based on these findings, in discussion
forums, citizens can state requirements or proposals on how to improve the
service design. Sentiment and rating mechanisms allow for more formalized
provision of feedback.

Service feature modeling is tightly integrated in this methodology in two ways:
modeling is performed to capture design alternatives of the public service, and
the modeled design alternatives are used in citizen deliberation engagement as
a basis for citizens to evaluate service designs.

159

5. Evaluation

5.3.2. Modeling

Service feature modeling is tightly integrated with other methods of COCKPIT’s
public service design methodology, most notably with the method to define work
flows. The work flow definition method provides two mechanisms to represent
service design variants [Wit12]:

• Inter-process variability means that for a single request, multiple work
flows exist describing the service delivery. As a design activity, one of these
work flows is selected to deliver the service during operation.

• Intra-process variability means that within a single work flow, multiple
flows are specified. To realize intra-process variability, design-time decision
gateways extend the BPMN. A design-time decision gateway specifies more
than one outgoing path, similar to standard BPMN decision gateways.
However, as the name suggests, within a design activity, one of these paths
is chosen to be implemented and only this path operates once the service
is deployed. In contrast, standard BPMN decision gateways dynamically
result in an outgoing path while the work flow is executed, based on the
fulfillment of certain conditions.

A mapping between these two variability mechanisms and service feature mod-
eling allows modelers to automatically create an SFM that represents the public
service’s work flow variants. Representing work flow variants with an SFM
allows modelers to specify dependencies between them using cross-tree relation-
ships (cf. section 3.2.1). Attributes can be used to specify characteristics of
work flow variants. Finally, service feature modeling’s usage methods can be
used to select work flow variants to implement (cf. chapter 4).

An exemplary mapping between the described work flow variability and SFMs
is illustrated in figure 5.16. Upon triggering the automatic creation of an SFM
for a given work flow, a feature grouping all work flows is created. It contains
all further features addressing work flow variability. Underneath, for every spec-
ified service request, an abstract feature is created. The abstract feature must
be instantiated by one instance feature, each representing a work flow defined
for the service request. Per work flow feature, for every design-time decision
gateway within the work flow (if any), an abstract feature represents an alter-
native flow. In the alternative flow, a feature grouping all tasks within the flow,
represented using instance features, is defined. Using this mapping, SFMs repre-
senting work flow variability can automatically, and thus repeatedly, be created.
This capability is highly important to delimit the effort for creating SFMs.

Figure 5.17 illustrates an excerpt from the SFM modeled while redesigning the
GR01 service. Within one of the work flows, a design-time decision gateway
denoted “way of submission” is specified. Originating from it are flows that

160

5.3. Use Case - Public Service Design

Pu
bl

ic
Ad

m
in

ist
ra

tio
n

Print record
Deliver

record per
mail

Send record
per e-mail

= mandatory
feature

= XOR

Grouping
feature

Abstract
feature

Instance
feature

Key:

Work flows for service request "deliver record":

Work flow y:

Work flow x:

Work flow z:

Derived SFM:

Deliver record

Decision
Gateway

Alternative 0 Alternative 1

Print record Send record
per e-mail

...

Work flow x Work flow y

Deliver record
per mail

Work flows

Tasks Tasks

... ...

Figure 5.16.: Exemplary mapping of work flow elements to SFM

describe different ways of how citizens can request and obtain their social security
records. Four flows originate, which are correspondingly denoted by the instance
features “alternative 0” to “alternative 3”. These alternatives, following the
mapping between work flows and SFMs described above, contain features named
“tasks”, which group the flow’s tasks. For example, one way is for citizens to
request and obtain the record within the ERMIS portal16, which acts as an
unique access point for various public services in Greece. In an alternative
service design, citizens contact an existing call center to request the record. The
subsequent delivery of the record can either be performed by the Hellenic postal
service (Greece’s postal service) or by handing out the record to citizens in a
service center. This structure is automatically created based on a previously
defined work flow. As illustrated in figure 5.17, the modelers defined attribute
types and associated corresponding attributes to the created features. Attribute
types and attributes are the basis for using the SFM for selecting (a set of)
service variants to implement (cf. chapter 4). A boolean attribute represents
the capability for the citizens to submit the application for a social security
record from home. Features (representing tasks) that realize this capability
contain a corresponding attribute. Similarly, the capability to deliver the record
to citizens’ homes is represented with an attribute type and attributes. The
“application time” denotes in minutes how long certain tasks approximately
take. This attribute type is directly related to the main goal of the service

16Named after the Olympian god “Hermes” who acted as a messenger of the gods.

161

5. Evaluation

Way of
submission

Alternative 0 Alternative 3

Log in ERMIS,
submit application
and retrieve record

Alternative 1

Call 1500
call center

Provide
Requested
Information

Call center
delivery
method

Alternative 0 Alternative 1

Receive and
Authenticate by
Hellenic Postal

Service

Go to citizen service
center

...

...

4

5

true 1440

true

2 true

5760

Alternative 2
...

name: Submit application
from home

domain: boolean
measurementUnit: -

agg. rule: at least once

name: Application time
domain: integer

measurementUnit: minutes
agg. rule: sum

name: Home delivery
domain: boolean

measurementUnit: -
agg. rule: at least once

true

Tasks Tasks

Tasks Tasks

Grouping
feature

Key:

Attribute type

= mandatory
 feature

= optional
 feature

= XOR = OR
= Requires
= Excludes

Attribute

Abstract
feature

Instance
feature

Figure 5.17.: Excerpt of SFM for service GR01 created in the public service use
case, based on [WZ14]

redesign to reduce execution time (cf. section 5.3.1).

5.3.3. Usage

Within this use-case, participatory preference-based ranking was performed to
obtain decision-makers’ (in this case citizens’) opinions about the alternative
designs. On the implemented valuation server, evaluations were created for each
of the two SFMs created in the use case scenarios by the corresponding public
administrations. On the evaluation server, corresponding polls were automat-

162

5.3. Use Case - Public Service Design

ically created as described in section 4.4.3. The public administrations, using
SFM designers, activated the polls to make them accessible on the interaction
platform. Figure 5.18 illustrates a screen shot of the poll for the GR01 service
displayed on the evaluation platform.

Figure 5.18.: Screenshot of the GR01 poll on the interaction platform [WZ14]

Using this poll, citizens stated their preferences regarding the attribute types
defined in the SFMs. 59 citizens stated their preferences regarding GR01 and
43 regarding IRIS. The collected preferences were, at the end of the evaluation,
aggregated using the method described in section 4.4.4 and retrieved from the
valuation server via the SFM designer.

5.3.4. Realization

To realize service variants based on the ranked configurations, decision-makers
of the public administrations assessed highly ranked ones. They ultimately man-
ually selected a single configuration based on the evaluation’s input, reflecting
a work flow alternative of the public service in design. The decision-makers
form the public administrations transferred this configuration to the work flow
design by manually resolving the design time decision gateway: they removed
1) the gateway itself and 2) all flows originating from this gateway that were
not present in the selected configuration. As a result, a work flow remains that

163

5. Evaluation

only contains elements found in standard BPMN [BPM10]. This work flow was
then used in further design activities, which in the COCKPIT methodology
(cf. section 5.3.1) include simulation and visualization of the service design and
ultimately implementing, deploying, and operating the service.

5.3.5. Discussion

The here presented modeling use case illustrates the applicability of service fea-
ture modeling to represent service variants during service development. The uti-
lization of service feature modeling within a larger service engineering method-
ology and the presented mapping of features to work flow elements show how
service feature modeling can be utilized in combination with established service
engineering approaches. The mapping between features and work flow elements
further enables automatic generation of SFMs for given work flow definitions,
illustrating how automatic model creation can be performed. Representing work
flow variants explicitly in SFMs allows to define dependencies between them or
their elements (i.e., activities) or to specify their characteristics with attributes
as motivated in challenge 1. Regarding the usage, this work flow shows the
applicability of preference-based ranking, specifically in a participatory manner
as motivated in challenge 6. In both scenarios, evaluations and corresponding
polls were successfully created and operated and actual citizen preferences were
selected. We discuss the assessment of the collected preferences and their impact
on the latter service design activities in section 5.5.3. Regarding the realization
of service variants in this use case, only manual methods were applied. The
here presented use case further provided the basis for an empirical evaluation of
service feature modeling, which is presented in section 5.5.

5.4. Use Case - IaaS Consumption

In the second use case, we use SFMs to configure Infrastructure as a Service
(IaaS) for consumption and automatically deploy a Web application on top of
it, as motivated in section 1.1.3. Configuration in this context refers to, as we
describe in section 2.3.5, an approach to realize service variability through the
provision of pre-determined information. This use case addresses the consumer
of IaaS, who uses service feature modeling for IaaS configuration and subsequent
automatic deployment of the Web application on top of IaaS. This use case
further illustrates exemplarily the realization of service variants based on the
variant selection made using an SFM. This use case is part of work currently
under review [WLBB14].

164

5.4. Use Case - IaaS Consumption

5.4.1. Use Case Description

IaaS provides consumers with abstracted, virtualized hardware, for example for
compute or storage purposes [BKNT11]. IaaS consists of virtual machines (VMs)
that are hosted on the IaaS provider’s physical infrastructure. Consumers rent
VMs in different configurations (regarding, for example, number of CPU cores or
memory size) and load images on them. Images can contain either only basic op-
erating systems or include complete software stacks, depending on the intended
use of the VM. On top of the image, consumers install additional software if
required. These options result in a complex decision problem for consumers
to solve when consuming IaaS. Descriptions of these options are currently pro-
vided in HTML (cf. [Ama, Rac]), impeding automated analysis and structured
decision-making.

In this use case, SFMs represent the configuration options offered by different
IaaS offers (also referred to as clouds in the following), for example the VM sizes
and available images. The configuration options for each cloud are modeled in
a single SFM. These SFMs can be modeled by the providers, to communicate
their configuration options to consumers and allow them to select among them
using the SFM, or by the consumers themselves. The SFMs are used by IaaS
consumers in design activities to configure the IaaS based on their requirements
and preferences. The requirements and preferences are driven by the intended
use of the IaaS by the consumer, in this case the deployment of a Web application
that consists of multiple components, each imposing unique requirements on the
IaaS. The usage of SFMs is based upon the methods described in chapter 4. In
this use case, we exemplarily show how actual service variants, selected through
using SFMs, can be realized. Realization is performed though automatically
consuming the selected IaaS configuration with the help of a deployment model
and middleware and by deploying the Web application on top of it.

We perform the above-mentioned steps to ultimately deploy the Web application
of the German start-up Barcoo17 on IaaS. Barcoo provides community-enriched
data on a plethora of products, for example, packaged groceries or cosmetics.
Using a mobile application and the cameras of their smart phones, consumers
scan the bar codes of products they are interested in. Barcoo provides informa-
tion about the scanned product, including alternative prices, nutrition informa-
tion, user ratings, and comments. Though only in operation since 2009, Barcoo
reached 10 Million application downloads in April 2013 [Bar].

To provide their mobile applications with product information, Barcoo runs a
Web application whose architecture with regard to the different components is
illustrated in figure 5.19. The load balancer allocates requests to one of multiple
17http://www.barcoo.com

165

http://www.barcoo.com

5. Evaluation

Load balancer
Application

serverApplication
serverApplication

server

MySQL
datastore

NoSQL
datastore

Figure 5.19.: Overview of Barcoo’s architecture [WLBB14]

application servers. Barcoo’s architecture enables horizontal scaling by switch-
ing application servers on and off in reaction to changing workloads. This is,
for example, done every night because request amounts regularly drop at that
time of day. The information to be sent to consumers is persisted in a MySQL
database. For better performance, an additional in-memory NoSQL database
caches the results of common queries to external services. These four compo-
nents are currently hosted on Amazon Web Services. The motivation for Barcoo
to model its Web application is to automatically re-deploy it, for example in case
of a desaster. In such cases, Barcoo has to ensure fast delivery of a compensatory
back-end to ensure ongoing service to avoid the loss of users.

5.4.2. Modeling

Modeling, in this use case, aims to represent the configuration options of IaaS
offers. The configuration options of every IaaS offer to consider are represented
by a single SFM. We first present a domain model for representing IaaS, en-
abling comparability between models as described in section 3.3.3. We then
describe how we used this domain model to model the IaaS offers of two com-
mon providers.

IaaS Domain Model

We propose a domain model for IaaS feature models that captures the con-
figuration options of IaaS to consider. An IaaS feature model represents the
configuration options offered by one cloud, for example the AWS Elastic Com-
pute Cloud [Ama]. A domain model serves multiple purposes: first, it prescribes
the structure and relevant variation points to consider when modeling IaaS with
service feature modeling. This decreases modeling effort because modelers use
the structure as a starting point instead of beginning from scratch. Second, the
domain model ensures comparability between different IaaS feature models as
discussed in section 4.5. Comparability makes it easier to communicate different
IaaS feature models and eventually allows for their (automatic) comparison.

166

5.4. Use Case - IaaS Consumption

The domain model is based on findings in previous work we performed to identify
typical IaaS configuration options by assessing 11 IaaS offers [Bar13]. Initially,
for every individual IaaS offer, all configuration parameters were collected and
grouped. In the following, the collected parameters were filtered to contain only
parameters that are present in at least two IaaS offers. Additionally, for every
parameter, it was determined whether a) the parameter is controllable by the
user, b) whether the user can select among variants for the parameter, c) what
the range of the parameter is (alternative selection, interval, free choice), and
d) whether the parameter is dependent on other parameters. In the following,
every IaaS offer was described based on this scheme. Consolidating the 11
derived schemes provides an overview of the parameters in which IaaS offers are
configurable and of the nature of the configuration options.

The thus obtained information was the basis for deriving two SFM domain mod-
els: one representing standard IaaS configuration options and one representing
extended IaaS configuration options. The selection of configuration parameters
to consider in every domain model is based on the frequency in which they are
available in the assessed IaaS offers. To derive SFMs, mapping rules between
the identified parameters and features were defined so that a) groups of parame-
ters are represented by grouping features, b) independent parameters are repre-
sented by abstract features (with instance features representing the choices for
the parameter), and c) dependent parameters are represented as feature bundles
underneath a grouping feature. Additionally, for dependent parameters whose
options are numeric, attributes and corresponding attribute types are created.

Figure 5.20 illustrates the proposed domain model for standard IaaS configura-
tion options. The first configuration option concerns the virtual machine, which
can be of different types, for example referred to as “small” or “large” [Ama].
Attributes characterize each virtual machine type, stating its memory, disk size,
cost / hour, and CPU cores. These values are either added manually by the
modeler or they could be provided dynamically through composition of SFMs
(cf. section 3.4). The next configuration concerns the selection of a basic image.
Prepacked software of the image is modeled in a mandatory abstract feature. Po-
tential dependencies or incompatibilities between VMs and images are expressed
using requires and excludes relationships. Potential costs of images are stored in
attributes cost / hour. The software environment contains features representing
installation tasks for software that can be installed on top of images. Both, im-
ages and installation tasks can be annotated with attributes stating deployment
times, allowing decision-makers to consider these values in configuration.

167

5. Evaluation

Cloud n

Software
environment

Installation
task 1

Installation
task Z...

Basic image

Basic
image 1

Basic
image Y...

Packaged
software

...

Grouping
Feature

Abstract
Feature

Instance
Feature

Key:

Attribute type Attribute

= mandatory
feature

= optional
feature

= XOR = OR
= Requires
= Excludes

Virtual
machine

Type 1 Type X...

name: CPU cores
domain: integer

measurement unit:
cores

agg. rule: sum

name: Memory
domain: integer

measurement unit:
GByte

agg. rule: sum

name: Hard disk
domain: integer

measurement unit:
GByte

agg. rule: sum

name: Cost / hour
domain: double

measurement unit: €
agg. rule: sum

name: Depl. time
domain: double

measurement unit:
sec.

agg. rule: sum

Figure 5.20.: Proposed domain model to represent IaaS [WLBB14]

Modeling IaaS Offers

Based on the presented domain model, we modeled two exemplary IaaS offers,
namely those of Amazon EC2 [Ama] and Rackspace [Rac]. Figure 5.21 illustrates
an excerpt for the SFM representing Amazon EC2.

In both SFMs, we modeled VMs of different sizes for the two IaaS providers, 6
for Amazon EC2 and 7 for Rackspace, as instance features. For each VM, we
captured the number of CPU cores, the memory in GByte, the hard disk size
in GByte, and the cost per hour in Euro using attributes associated with the
attribute types defined in the domain model. The models values were derived
from the publicly available descriptions of the IaaS services [Ama, Rac]. We
further modeled basic images with correspondingly named instance features, 6
for Amazon EC2 and 3 for Rackspace. We use additional instance features to
represent the prepacked software of the image, for example the operating system.
In both SFMs, we modeled 6 software installation tasks, including MySQL, Git
version control, or the Network Time Protocol (NTP). Cross-tree relationships
are used to exclude redundant installation of software. For example, if an im-
age is selected that already comes with MySQL installed, additional selection
of the MySQL installation task is prohibited. Attributes represent the deploy-
ment time in seconds measured for starting VMs with selected images and for
installing software on top of VMs. These attributes were derived from our own
measurements of these times. Overall, the SFMs denote 1280 configurations

168

5.4. Use Case - IaaS Consumption

Basic image

Amazon EC2

DB

Virtual
machine

AWS M1 Small
Instance

AWS High-
CPU Extra

Large Instance
... AWS Ubuntu

10.04 LTS
(Lucid Lynx)

AWS MySQL...

Software
environment

S3
client

1

1.7 160

0.065 2

3.75 410

0.13 Prepacked
software

NTP

Ubuntu
10.04

...

Grouping
Feature

Abstract
Feature

Instance
Feature

Key:

Attribute
type Attribute = mandatory

feature
= optional

feature
= XOR = OR

= Requires
= Excludes

4.149.5

MySQL Redis

58.8 1.16263.5

name: CPU cores
domain: integer

measurement unit: cores
agg. rule: sum

name: Memory
domain: integer

measurement unit: GByte
agg. rule: sum

name: Hard disk
domain: integer

measurement unit: GByte
agg. rule: sum

name: Cost / hour
domain: double

measurement unit: €
agg. rule: sum

name: Depl. time
domain: double

measurement unit: sec.
agg. rule: sum

Prepacked
software

Ubuntu
10.04 MySQL

Figure 5.21.: Excerpt of the IaaS feature model representing Amazon
EC2 [WLBB14]

for AWS and 896 for Rackspace. Details about the two models are provided in
table 5.2.

5.4.3. Usage

The usage of the outlined SFMs followed the usage process described in sec-
tion 4.1. The configurations for both SFMs were determined and narrowed
down with requirements filtering, and ultimately preference-based ranking was
used to select the configuration to consume. No skyline filter was applied be-
cause of how the IaaS offers are constructed: no configurations are dominated
(cf. section 5.2.3). The Web application to deploy on IaaS, however, consists of
multiple components as described in section 5.4.1. Every component requires a
different configuration based on the functionalities it aims to fulfill and the non-
functionalities. The usage methods are thus applied once for every component
of the Web application, resulting possibly in different configurations for every
component.

We defined exemplary requirements and preferences for the IaaS configuration
for every component. In every case, we require the software responsible for de-
livering the required functionality to be present. For example, for the MySQL

169

5. Evaluation

component, an instance feature “MySQL” is required. Additionally, for the ap-
plication server and load balancer components, which are logic intensive, we
required more than 8 CPU cores and for the two database components we re-
quired more than 1000 GByte disk space and more or equal to 8 GByte memory.
The application server further requires installation of an Amazon Simple Stor-
age Solution (S3) client, GIT for version control, and running the Network Time
Protocol. All requirements have a weight of 1.0 assigned, indicating their non-
negotiable nature. Filtering the configuration set for the stated requirements,
we derived a reduced configuration set as depicted in column two in table 5.4.
We stated exemplary preferences for the used attribute types. For the applica-
tion server and load balancer components, we denoted the number CPU cores as
most important, followed by low cost, memory, disk size, and lastly deployment
time. For the database components, we prefer low cost, followed by CPU cores,
memory, disk space, and lastly deployment time. Performing the preference-
based ranking, we determined the highest-ranked configuration per component
and fed it back into the IaaS deployment model.

Component Configurations Mean deployment time [sec] Depl.
meeting req.[#] overall inst. start installation steps

App. server 10 AWS, 0 Rack. 801 63 738 8
MySQL DB 96 AWS, 48 Rack. 122 62 60 3
NoSQL DB 64 AWS, 0 Rack. 135 65 70 3
Load balancer 160 AWS, 0 Rack. 93 63 30 3

Table 5.4.: Overview of characteristics for configuration and deployment use
case [WLBB14]

5.4.4. Realization

In this use case, we exemplarily show the realization of selected service variants.
Realization includes the automatic consumption of the selected VMs, loading
the selected images on them, and installing software on top of these images,
in this case resulting in the deployment of the Barcoo Web application. To
automate these steps, we utilize an IaaS deployment model presented in previous
work currently under review [WLBB14]. The deployment model’s meta model
is illustrated in figure 5.22.

The IaaS deployment model’s application part models a distributed system, for
example a Web application, to be deployed on IaaS. A distributed system con-
sists of a set of components, representing, for example, a Web application’s Web
server or load balancer. A requires relationship models potential dependencies
between components. Each component can be realized in multiple instances,

170

5.4. Use Case - IaaS Consumption

Ap
pl

ic
at

io
n

pa
rt

Fe
de

ra
tio

n
pa

rt
In

fra
st

ru
ct

ur
e

pa
rt

Federated
Image

Federated
Virtual Machine

ComponentInstance
1..*

Distributed
System

1..*

Installation Task

Configured
Image

Basic
Image

Virtual
Machine

1..*1..*

Cloud

1..*

1..*

*

1..*

*

Image

requires
ru

ns
 o

n

Figure 5.22.: Meta model of the IaaS deployment model [WLBB14]

171

5. Evaluation

running a configured operating system with predefined software stacks. Using
the component element to group instances ensures they all have the same virtual
machine type, image, and software stack. The varying numbers of instances
deployable for each component results in horizontal scalability. The dynamic
deployment or undeployment of instances in reaction to or in anticipation of
changing load is outside of the scope of our approach and typically performed
by a load balancer component.

The IaaS deployment model’s federation part abstracts from underlying IaaS of-
fers. This abstraction allows the modeler to specify that the distributed system’s
components run on different IaaS offers. Components are assigned to federated
virtual machines, grouping similar VMs, and a federated image, grouping func-
tionally equivalent images.

Finally, the infrastructure part contains information about different IaaS offers
to run the application on. Each IaaS offer is represented by a cloud, which is
operated by a single provider. Every component from the application part runs
on a cloud. Clouds contain a set of virtual machines and a set of basic images.
Basic images contain an operating system and packages software. A configured
image represents a basic image with additional installation tasks to be executed
during deployment. Configured images thus present increased deployment ef-
forts, resulting in longer deployment times.

For our use case, we defined the application and the infrastructure part of the
IaaS deployment model. As in the IaaS feature models, we defined 5 VMs and
6 basic images for Amazon AWS and 7 VMs and 3 basic images for Rackspace.
We defined 6 software installation tasks to perform on top of basic images.

Having the IaaS deployment model in place and having obtained the information
about the selected configuration for every component from the IaaS feature
model, we defined the federation layer of the deployment model. Federated
virtual machine elements were created for the selected VM and federated images
were created for the selected basic image and additional software installation
tasks for every component.

Using the thus completed deployment model, we ran the automatic deployment
10 times for every component to assert its proper functioning and reliably mea-
sure required times for the deployment. The deployment was performed using a
deployment middleware as described in previous work [WLBB14]. It takes as in-
put the completely modeled IaaS deployment models and performs deployment,
including VM startup, image loading, and software installation via Secure Shell
(SSH) commands. The measured mean times for deploying every component
are illustrated in table 5.4.

172

5.4. Use Case - IaaS Consumption

5.4.5. Discussion

The application of model-based approaches to the configuration of IaaS and
the deployment of a Web application on top of it has multiple advantages: the
large number of configuration options (1280 for AWS and 896 for Rackspace)
emphasizes the complexity of the decisions to be made, which we address with
systematic support through requirements filtering and preference-based ranking.
The application of service feature modeling and the IaaS deployment model
allows users further to automate consumption of the selected IaaS configuration
and deployment on top of it. This allows systems, for example, to deploy Web
applications unexpectedly in reaction to a disaster. Given that requirements and
preferences are stated, selection can automatically be re-performed on demand,
based on service feature modeling’s selection process, as motivated in challenge 4.
If varying attributes are composed into the IaaS feature models (cf. section 3.4),
re-selection of variants just before deployment might lead to different results and
is thus desirable. Table 5.4 illustrates the many involved steps - for instance start
up, updates, or installation of software - that produce effort and are error-prone
if performed manually. Using the IaaS deployment model, we a) capture all
relevant information for the deployment and b) perform it automatically with
regard to starting selected VMs and images and installing the required software
on top of them. While the measured execution times per component are high in
some cases, we argue that the execution time of manual performance, requiring
reactions and provision of input, is likely to be even higher.

In this use case, the representation of IaaS with SFMs allows the user to capture
the many configuration options it offers. The use case does, though, also reveal
limitations of applying service feature modeling [Bar13]: features and attributes
are suitable to represent distinct concerns or values. However, when variable
objects are very fine-granular and / or manifold, representation via features and
attributes becomes cumbersome. For example, if memory or hard disk space
is configurable on a megabyte level, an overwhelming and unfeasible number
of features to represent the resulting variants is required. We discuss possible
approaches to address this shortcoming in section 6.2.

This use case further exemplifies the role domain models play in service feature
modeling. We want to make configuration decisions, regarding virtual machine
types, images, and installed software, across clouds (cf. challenge 5). Thus, we
require a common structure to make these decisions comparable among clouds.
Furthermore, the domain model allows the user to map IaaS feature models to
the IaaS deployment model. Using the mapping, IaaS feature models can auto-
matically be created from an IaaS deployment model, given it already contains
information about IaaS offers. This automatic SFM generation significantly de-
creases manual modeling efforts. It is enabled by a correspondingly designed

173

5. Evaluation

interaction service within the SFM designer (cf. section 5.1.3). Based on the
mapping, after using the IaaS feature model for configuration, the decisions made
can be fed back into the IaaS deployment model. This results in the creation
of federated virtual machines and federated images elements in the deployment
model.

5.5. Empirical Evaluation

In addition to the so far outlined evaluation types, we performed an empirical
evaluation. While the proof-of-concept implementation illustrates the realizabil-
ity of service feature modeling and the use cases show its applicability to realistic
scenarios, the empirical evaluation aims to provide insights into the perceived
quality of our approach. The empirical evaluation was performed in the con-
text of the use case presented in section 5.3. It consists of two surveys that
address a) how the modelers and decision-makers from the public administra-
tions (in the following denoted as service engineers for simplicity) who modeled
and used SFMs perceived the approach and b) how the citizens participating
in the preference-based ranking by answering the polls on the interaction plat-
form perceived this method. Surveys of this kind are an established method
to evaluate software or designs [HPSVA95]. In this section, we describe how
we designed the surveys, we discuss the data we collected, and the results we
draw from this data. The empirical evaluation is described in work currently in
review [WZ14].

5.5.1. Design of Empirical Evaluation

The first survey was distributed to the service engineers from the use case
partners. Its results thus provide a focused set of expert insights from a select
group of highly suitable respondents (the backgrounds of the respondents can
be seen in figure 5.5). A first set of attitude questions (with standardized or-
dinal scale of strongly agree, somewhat agree, somewhat disagree and strongly
disagree), indicated with A in figure 5.23, addresses the usability of service fea-
ture modeling, namely, whether the approach was understood by the service
engineer and what effort was required to adopt this new approach. A second
set of attitude questions, indicated with B, addresses the expressibility of SFMs.
Expressibility is addressed generically (is it possible to model all desired service
alternatives?) and specifically with regard to attribute types for modeling prop-
erties of alternatives and dependencies for delimiting the set of valid alternatives.
A third set of attitude questions, indicated with C, addresses the interpretation

174

5.5. Empirical Evaluation

and usefulness of the rankings of service alternatives for the subsequent ser-
vice design. The overall question addressed is whether the information on the
ranking of service alternatives enables decision-makers to incorporate citizens’
preferences into public service design. The individual questions aim to determine
whether the presented rankings allow decision-makers to determine the prefer-
ences by the citizens. Further, it was asked whether properties of relevance
for the citizens can be derived from the collected data. Finally, the compre-
hensibility and (from the service engineer’s perspective) reasonableness of the
determined suggestions is addressed. The service engineer survey further allowed
service engineers to provide open feedback on service feature modeling to state
concerns or comments that are not addressed by the attitude questions.

The second survey, consisting entirely of attitude questions, addresses the citi-
zens who participated in the polls on the interaction platform. We have to note
that, while addressing the SFM approach, these questions are biased by the cre-
ated SFMs and by the design and implementation of the interaction platform,
which in the COCKPIT project lay outside of our control area. However, the
questions try to focus on those aspects that depend on the SFM approach per
se and not its presentation on the interaction platform. A set of questions, indi-
cated with D in figure 5.24, addresses the usability of the pairwise comparison
method to state preferences on public service design variants. These questions
address, on the one hand, how easy it was for citizens to perform these tasks, its
effectiveness, and number of comparisons. A second set of questions, indicated
with E, addresses the usefulness of stating preferences and evaluating public
service design alternatives.

5.5.2. Data Collection

We collected 6 filled out service engineer surveys from the use case partners.
Information on the background of the involved service engineers is provided in
table 5.5. The collected data contained 6 missing values that we dealt with
by mean imputation, meaning that we used the arithmetic mean to replace the
missing value [Göt09].

We made the citizens survey available on the interaction platform. The survey
was available in English, Italian and Greek to increase its reach. We collected
overall 25 filled out surveys from citizens, 5 for the English, 11 for the Italian
and 9 for the Greek version. The collected data contained 12 missing values that
we dealt with, again, by mean imputation.

175

5. Evaluation

User Experience in
service design
(years)

Experience with
ICT tools (*)

Confidence w.r.t.
the provided an-
swers (*)

Greece 1 2 5 4
Greece 2 2.5 3 3
Greece 3 1 2 3
Greece 4 2 4 4
Greece 5 4 4 4
Venice 0 3 3
Mean 1.92 3.5 3.5

Table 5.5.: Information on service engineers participating in evaluation; *: 5=ex-
pert, 4=high, 3=medium, 2=low, 1=none [WZ14]

5.5.3. Results of Empirical Evaluation

The data collected from the service engineers hints, overall, at how useful
service feature modeling is for usage in public service design. However, the
data is, of course, the result of the individual experiences of the questioned
service engineers. As table 5.5 illustrates, having on average around 1.9 years of
experience in service design and self-assessing their experience with ICT tools
and their confidence with regard to the provided answers both between medium
and high, the consulted service engineers can be considered suitable for collecting
data on service engineering.

With regard to the usability of service feature modeling, the service engineers
found it takes getting used to the new approach - as indicated by the results
for questions A1 to A3 that stagger between moderate agreement and moderate
disagreement. The perception of how easy the modeling of SFMs is with the
provided tools seems to depend on the experience with ICT tools: those service
engineers that state to have “high” or “expert” experience with ICT tools found
modeling of service alternatives rather easy, while those that assessed themselves
as having lower ICT experience did not agree. To make service feature modeling
usable also for service engineers with little ICT experience, its integration into
larger service design methodologies, dedicated training, and strong user docu-
mentation, for example in the form of help mechanisms within the SFM designer,
are fundamental.

The answers to questions B1 to B3 show in each case moderate to strong agree-
ment with the claims that service feature modeling is expressive when it comes to
capturing service design alternatives and their properties. The capability to de-
limit the set of alternatives using requires or excludes dependencies is considered

176

5.5. Empirical Evaluation

Figure 5.23.: Evaluation results of the service engineer survey [WZ14]

especially useful.

The answers to questions indicated with C, addressing the interpretation and
usefulness of the ranking of service alternatives for the subsequent service de-
sign, are quite homogeneous. All 6 service engineers moderately to strongly
agree that the provided information on ranking of service alternatives and at-
tribute types is useful. Especially interesting is how the approach helped service
engineers to determine not only the most preferred alternative, but also the
subsequent ones in the form of a ranking. As one service engineer states in the
open comments: “I think it is very useful indeed to be able to get the citizens’
preferences automatically and sorted. It is not so much about the first choice
as the order of the choices, especially if you have many votes.". Another service
engineer agrees: “[...] it’s not only the top ranked option but also all the order
of the preferred configurations.”. These answers indicate that it is advantageous
to consider multiple service design alternatives, as advocated by service feature
modeling. Again, a service engineer supports this notion: “I think the ability to
have all alternatives in the same model is quite useful.”.

177

1 2 3 4

A1: I found it easy to model service alternatives with SFM

A2: I was quickly able to understand SFM

A3: I found it easy to identify the attribute types to model

B1: SFM allowed me to model all desired service alternatives

B2: Attribute types allowed me to specify all relevant
properties of service alternatives

B3: Dependencies (i.e. requires and excludes) allowed me to
delimit the possible service alternatives

C1: The ranking of service alternatives revealed to me the
citizens’ preferences

C2: The ranking of service alternatives helped me identify
which service properties the citizens prefer

C3: I could clearly understand why the top-ranked service
configuration was suggested

C4: The ranking of service alternatives matches with my
assessment of the service alternatives

Assessment
1 = strongly agree 2 = somewhat agree
3 = somewhat disagree 4 = strongly disagree

Q
ue

st
io

ns

5. Evaluation

The mean values for all answers indicate in all questions moderate agreement
of the citizens with statements about the usability and usefulness of express-
ing opinions on service design alternatives with the service feature modeling
approach. Figure 5.24 illustrates the results. These findings are not fully satis-
factory and need to be taken seriously because they show how applicable service
feature modeling’s ranking approach is for participatory service design. It has to
be noted, though, that the presented perceptions depend on how service feature
modeling was utilized (for example, how well the meaning of attribute types
was communicated to the citizens) and on the performance of the interaction
platform in presenting the polls and their results.

Figure 5.24.: Evaluation results of the citizen survey, based on [WZ14]

To improve the means of allowing citizens to state preferences on service design
alternatives, more efficient statement techniques could be used, for example re-
lying on spider diagrams [ABHV10] or by using iterative AHP to reduce the
number of required pairwise comparisons [LS93]. Further, by means of checking
hard constraints, for example that a certain budget threshold must be consid-
ered, the number of possible configurations could be reduced prior to evaluations
on the interaction platform, thus allowing to present only very distinct service
design alternatives.

178

1 2 3 4

D1: I could understand the meaning of each presented service
property

D2: I could easily understand what to do to express my preferences

D3: Pairwise comparison is an effective method for stating my
preferences among service alternatives

D4: The number of pairwise comparisons was adequate

E1: I could express all my essential concerns regarding the public
service design with the presented service properties

E2: The service alternative presented after initially sending
preferences reflected my preference regarding the service design

E3: The service alternative presented after subsequently sending
preferences reflected my preference regarding the service design

Assessment
1 = strongly agree 2 = somewhat agree
3 = somewhat disagree 4 = strongly disagree

Q
ue

st
io

ns

5.5. Empirical Evaluation

5.5.4. Discussion

The results of the empirical evaluation have to be considered with caution, most
notably due to the small sample size of answers by both service engineers and
citizens. Due to this small size, the results should be perceived as indications
or hints on how the utilized service feature modeling methods are perceived
rather than as facts. We perceive the results relevant nonetheless in that they,
especially the qualitative statements, hint on whether our original design goals
were reached and what areas of future research might be of interest18. Another
potential threat to the validity of the results is that the questioned service engi-
neers may have been biased when providing their answers. This can be ruled out
however, as they are affiliated with different institutions from different countries.
Furthermore, the polled service engineers are unrelated to the authors of this
thesis and were not part of the COCKPIT project in which this evaluation was
performed.

Overall, service engineers with minor experience in ICT tools found service fea-
ture modeling rather demanding to get into, while those with more experience
had less problems in this regard. All service engineers polled the approach
good expressibility and rank the interpretation and usefulness of the informa-
tion provided by service feature modeling as especially good, which supports
corresponding claims in this work’s hypothesis. This can be taken to show that
service feature modeling was a valuable addition to established service design
instruments in the context of public service design. Within the polled sample,
citizens’ assessment of usability and usefulness was only moderate. As discussed
in section 5.5.3, these results may depend on the implementation of the interac-
tion platform, which lay outside of our control. Thus, to obtain reliable results,
further analyses need to be conducted, which we consider to be a relevant field
for future work, as discussed in section 6.2.

18For example, in the course of the COCKPIT project, we received feedback that not only the
participation of consumers through ranking in service design, but also the collaboration of
experts in defining SFMs would be of value. This feedback largely motivated our approach
to compose SFMs from services (cf. section 3.4).

179

6. Conclusion

To conclude this thesis, we summarize the presented contributions, especially
with respect to the challenges presented in section 1.3 and the hypothesis pre-
sented in section 1.4. We furthermore provide an overview of future research
directions that we identified throughout or work.

6.1. Summary

Within this thesis, we present our research regarding the modeling and selection
of software service variants. Service feature modeling provides a modeling lan-
guage and a set of methods to address the claims made in our hypothesis. The
hypothesis consists of multiple parts that we address in the following:

• Service feature modeling provides an expressive and usable language to
represent service variants, presented in chapter 3. To address this goal,
feature modeling from software product line engineering acts as a basis for
designing the service feature modeling language. Feature modeling is both
well researched [BSRC10] and widely applied in practice [BRN+13]. This
makes it more likely that users of service feature modeling feel already
familiar with basic concepts of the language, for example the hierarchi-
cal decomposition into features and the types of relationships between
them. Its foundation in feature modeling thus increases service feature
modeling’s usability. It furthermore allows modelers and decision-makers
to make use of and build upon a broad set of related methods, address-
ing the extension of the language, for example with attributes [BTRC05]
or cardinalities [CHE05], or related usage methods, for example staged
configuration [CHE04] or the utilization of multi-criteria decision making
methods [BAGS10]. Service feature modeling extends standard feature
modeling via its addition of feature types. Feature types introduce more
fine-grained semantics to features, which are generally understood in a
solution-oriented way in service feature modeling. We specify how fea-
tures of different types relate to service variants in section 3.2.3. The
differentiated semantics of features based on their type positively impacts
the understanding of SFMs and eases their creation. Feature types also

181

6. Conclusion

play an important role for requirements filtering. They allow decision-
makers to specify requirements regarding abstract features, whose fulfill-
ment through the selection of a child instance feature cannot be expressed
without differentiating between types. Finally, feature types allow to de-
fine domain models as described in section 3.3.3. They act as a common
basis to derive similarly structured, comparable SFMs, enabling use cases
like variant selection across SFMs, thus increasing the applicability of the
language. Domain models thus address challenge 5 regarding comparabil-
ity of variants from different services, which is motivated in section 1.3.2.
We furthermore extended standard feature modeling with attribute types
to capture information that is common to multiple attributes associated
to that type. Attribute types increase the usability of modeling SFMs
because they avoid redundant specification of information, which creates
efforts and is error-prone. Attribute types furthermore increase the ex-
pressiveness of SFMs as compared to standard feature models, in that
they allow the capturing of before unregarded information like standard
aggregation rules or scale orders. Through the definition of aggregation
rules, attribute types provide basis for expressing characteristics of ser-
vice variants represented by configurations. Attribute types thus address
challenge 1 regarding expressing characteristics of variants motivated in
section 1.3.1. Overall, in contrast to languages from related work, ser-
vice feature modeling is applicable to a broad set of services, makes use of
advanced elements like attributes and even extends them with attribute
types, and introduces feature types to differentiate the semantics of fea-
tures and enable new usage methods.

• Service feature modeling enables experts to collaborate in specifying ser-
vice variants. While service feature modeling is well capable of being used
similarly to standard feature modeling (cf. section 3.3), it furthermore pro-
vides means to compose SFMs from services as presented in section 3.4.
Through a composition model, specified roles, and coordination rules, this
method allows services to contribute results to an SFM while detecting
and triggering the resolution of conflicts. Dedicated service adapters allow
humans to act as services in this process, being notified for example via e-
mail about potential conflicts to resolve. Thus, composition of SFMs from
services enables collaborative modeling, addressing the corresponding chal-
lenge 3 motivated in section 1.3.1. In addition, otherwise static elements
of an SFM like attribute values can dynamically be provided on-demand
through this method. For example, at the beginning of a usage process,
up to date performance values describing service non-functionalities can
be contributed. Composition of SFMs from service thus also addresses
challenge 2 regarding the inclusion of dynamic or complex characteristics
in SFMs as motivated in section 1.3.1. This composition method, in con-

182

6.1. Summary

trast to related work, does not only address the composition of SFMs but
also the process of coordinating stakeholders in doing so.

• Service feature modeling provides a set of useful methods to use SFMs with
the goal of (participatorily) selecting service variants, presented in chap-
ter 4. The methods are subsumed by a service feature modeling usage
process that allows to flexibly combine them for variant selection. The us-
age process addresses challenge 4 regarding a structured selection process
motivated in section 1.3.2. Initially, the process starts with the deter-
mination of an SFM’s configuration set. Each configuration represents a
variant of the variable service modeled in the SFM. The mapping of SFMs
to constraint satisfaction problems and their solving follow established
approaches from related work [KOD10]. Extending existing approaches,
attributes for each attribute type are aggregated for every configuration as
defined by the corresponding aggregation rule. A novel requirements filter
allows decision-makers to delimit the configuration set of configurations
that do not fulfill desired functionalities or non-functionalities. Require-
ments can be stated regarding the existence of features in a configuration
as well as regarding the values of the configuration’s attributes. In contrast
to many requirements filters presented in related work, this filter performs
matchmaking between configurations and requirements in a fuzzy way. It
determines the degree of fulfillment of configurations regarding weighted
requirements. A fuzzy approach is especially useful where no configuration
completely fulfills stated requirements. Service feature modeling further-
more provides a method for preference-based ranking of configurations. It
applies a well-known multi-criteria decision making approach to service
feature modeling. SFMs are transferred to polls consisting of pairwise
comparisons among defined attribute types. Such comparisons result in a
ranking of the importance of attribute types for stakeholders. In combi-
nation with a ranking of configuration performances regarding attribute
types, an overall stakeholder preference ranking is derived. To decrease
the number of configurations to consider in the preference-based ranking,
prior skyline filtering dismisses dominated configurations from the config-
uration set. The description of the skyline filter, which is adapted from
database systems, includes the mapping of SFMs to the skyline opera-
tor and the procedure on how to perform it. Preference-based ranking
provides the basis for participatory service variant selection because it
abstracts from (technical details defined in) SFMs. The concepts of eval-
uations, polls, votes, and preferences as well as an evaluation life-cycle
lay the foundations for the participatory ranking of configurations. Par-
ticipatory preference-based ranking addresses challenge 6 regarding user
participation in variant selection as motivated in section 1.3.2. In contrast
to approaches from related work, service feature modeling thus presents a

183

6. Conclusion

comprehensive set of combinable methods for service variant selection.

To assess the outlined contributions, this thesis presents multiple evaluation
methods in chapter 5. A proof-of-concept implementation of the SFM tool suite
illustrates that the outlined methods, addressing in sum all challenges outlined
in section 1.3, are realizable. The proof-of-concept includes the design of the
SFM tool suite’s architecture. It consists of an SFM designer that modelers and
decision-makers use to create and edit SFMs and apply the different usage meth-
ods to it. Composition of SFMs from services is enabled by a collaboration server
that stores results and ensures coordination of their contribution. The valuation
server exposes polls for preference-based ranking to potentially non-technical
stakeholders to allow them to participate in service variant selection. These
parts of the architecture implement RESTful service interfaces, allowing their
loose coupling and extension with novel, unforeseen components. A performance
analysis of our implementation shows that it performs sufficiently to be utilized
with SFMs of varying sizes. Both for realistic SFMs created in use cases as well
as synthetic models of different sizes, configuration set determination, skyline
and requirements filter, and preference-based ranking perform fast enough to
be used in practice. Two use cases illustrate the applicability of service feature
modeling, both regarding the modeling language and the selection methods.
The first use case addresses the modeling and selection of variants during public
service design. Here, modeling strongly builds upon a mapping between work
flows defining the public service in design and SFM elements. Configuration set
determination and participatory preference-based ranking are the usage meth-
ods applied in this use case. In participatory preference-based ranking, citizens
state their preferences leading to the selection of a best-matching configuration
and thus service variant. The second use case addresses the modeling, selection,
and realization of IaaS variants. Multiple SFMs, based on the same IaaS domain
model, are modeled to represent the configuration options offered by IaaS, which
drive the realization of IaaS variants. The usage methods configuration-set de-
termination, requirements filtering, and preference-based ranking are applied to
select suitable IaaS configurations for every component of a Web application.
This use case furthermore illustrates the realization of IaaS variants through au-
tomatic consumption of the configured variants and the subsequent automatic
deployment of the Web application on top of them. Based on the first use case,
an empirical evaluation presented in section 5.5 assesses how service feature mod-
eling is perceived on the one hand by service engineers and on the other hand
by citizens participating in variant selection through preference-based ranking.
Results indicate that service feature modeling is easier to adopt for engineers
with longer experience. The results underpin that the service feature modeling
language is usable. Good expressibility of the service feature modeling language
and usefulness of the preference-based ranking are attested both in survey rat-
ings as well as in qualitative comments by the service engineers. The citizens

184

6.2. Future work

on average judge the usability and usefulness of the preference-based ranking
moderately positively. This is to be addressed in future work.

Overall, we find that service feature modeling is realizable with sufficient perfor-
mance, is applicable to realistic scenarios, and is a strong method to model and
select service variants. Service feature modeling thus constitutes a meaningful
novel contribution that is beneficial to both modelers and decision-makers.

6.2. Future work

The research presented in this thesis can be extended into different directions.

• Representing configuration parameters with a large range: A
shortcoming of feature-based representation is how to deal with config-
urable parameters that denote a large range, in the mathematical sense of
the set of values a parameter may take. Representing every value of such
a range with a dedicated instance feature and corresponding attributes
would create an unfeasibly large SFM with an equally large configuration
set. For example, IaaS offerings like that from ProfitBricks allow users to
select IaaS configurations very fine-granularly. Users can, for a VM, select
any number of CPU cores ranging from 1 to 48, any number of memory
ranging from 1 up to 240 GBytes, and any number of GByte for storage up
to 5000. Representing these options each with individual features would
require 5288 features, and the resulting configuration set would include
over 56 million configurations, considering these options alone. To address
this expressibility issue, two solution strategies come to mind. On the
one hand, solution approaches that aim to represent a reduced number
of variants in an SFM have been presented [Bar13]. Here, experts are
asked to delimit features and their combinations based on domain knowl-
edge. For example, a VM with 48 cores but only 1 GByte of memory
might be theoretically realizable but practically infeasible. A related ap-
proach is to narrow down variability based on profiles derived from best
practices. For example, if a VM is intended to host a database, certain
constraints on the variants might be deducible. Finally, clustering tech-
niques or segmentation may be applied to combine multiple variants, thus
reducing variability. On the other hand, different selection methods may
be used that avoid having to represent every variant within an SFM. For
example, parameters with a large range may be specified in artifacts used
in conjunction with SFMs. Selection methods in this scenario, however,
need to address potential dependencies between the parameter configura-
tion and the SFM-based variant selection. This may lead to an iterative

185

6. Conclusion

selection process that switches between parameter configuration and SFM-
based variant selection. Both solution strategies are currently only roughly
thought out and further research on their individual advantages and dis-
advantages, or even their combinability, needs to be conducted.

• Representing complex attributes: Attribute values in feature model-
ing as well as in service feature modeling are deterministic in nature and
modeled independently from one another. In the variants of a variable
service, however, dependencies between attribute values may exist. For
example, attributes denoting “cost” induced by a feature may change in
reaction to other features also being selected, in the case of discounts com-
plex pricing functions. One approach to address dependencies between
attributes are modify relationships [Kuh11]. Based on a generic definition
of modify relationships [FFB02], in this context, they capture the effect
that the change of an attribute value has on another feature’s attribute
value [Kuh11]. Modify relationships are cross-tree relationships that model
value influences between features and attributes, allowing, for example, to
state that the selection of a feature induces a linear transformation on
a specific attribute value. Modify relationships have been formalized, a
graphical syntax for them has been presented, analysis operations have
been adapted to make use of them, and tool support exists in form of a
proof-of-concept implementation. Existing shortcomings of the approach
include dealing with cyclic modify relationships or representing influences
that result from more complex triggers (for example, modifications are ap-
plied only if a set of features is selected). Another approach for dealing
with dependencies between attributes is to make use of composing SFMs
from services as presented in section 3.4. Rather than attempting to rep-
resent dependencies within an SFM, services are used to provide attribute
values on demand, implementing arbitrary functionality to derive the re-
quired values. While this thesis lays the foundations for this approach,
extensions can be considered in future work. For example, the contribu-
tion of results may be integrated into the determination of configurations
as part of attribute aggregation. For every configuration, services could
be invoked to provide configuration-specific, aggregated attribute values.
Such an approach would lift configuration determination to be an orches-
tration of service invocations, driven by an SFM.

• Aggregation of multiple preferences: In participatory preference-
based ranking, when multiple stakeholders state their individual prefer-
ences for attribute types, service feature modeling currently uses the geo-
metric mean to aggregate the preferences. However, using mean values for
the aggregation has limitations: in a worst case scenario, opposite opinions
level each other out, producing a meaningless result. The utilization of al-
ternative preference aggregation methods is thus future work. It has been

186

6.2. Future work

proposed to verify that decision-makers have similar views as a precon-
dition to aggregating individual preferences [O’L93]. However, given the
potentially open nature of participatory approaches, including a diverse
group of decision-makers, this precondition cannot necessarily be fulfilled.
Another approach to deal with this problem is consensus voting, where
every stakeholder needs to be present for all of them to agree to a shared
set of preferences [Bol01]. Given the potentially long-running nature of
evaluations, the required presence of all participating stakeholders cannot
be guaranteed. Again another approach to look into when the assump-
tion that preferences within a group are homogeneous does not hold is
cluster analysis [Zah99]. Cluster analysis, as is its generic purpose [HK06,
page 383], produces different sets (i.e., clusters) of stakeholders so that
the preferences between any stakeholders within a set are similar to one
another while the ones from stakeholders across sets are dissimilar. When
using service feature modeling during development, depending on the size
of clusters (relative to the overall number of stakeholders), cluster analysis
provides insights into the number of variants that should be further devel-
oped and delivered. For example, if one cluster is significantly the largest,
a single service variant might suffice, whereas multiple clusters of roughly
the same size might correspondingly demand for delivering multiple vari-
ants.

• SFM-based realization of service variants: Service feature model-
ing is a prescriptive modeling approach, aiming to induce change in the
subject (i.e., a variable service) it represents (cf. section 2.5). This the-
sis focuses on modeling and selection of service variants, two activities
which are fundamental in a larger methodology before change can be ap-
plied. The actual realization of service variants is illustrated in a use case
when it comes to automatically consuming IaaS variants and deploying
a Web application on top of it (cf. section 5.4). In future work, further
realization methods in conjunction with service feature modeling should
be assessed. An overview of common service variant realization methods
is provided in section 2.3.5. Various approaches from related work al-
ready address the realization of service variants based on feature models.
They include the automatic deployment of Web service variants [NC10],
the tenant-specific customization of SaaS [RA11], or the configuration of
IaaS [LNSJ12]. These approaches, on the one hand, provide a basis for re-
searching further variant realization techniques to use with service feature
modeling. On the other hand, these approaches could benefit especially
from service feature modeling’s usage methods, as they currently address
selection only peripherally (cf. section 4.6).

• Implementation of own interaction platform: As outlined in sec-
tion 5.1.4, we did not within the scope of this thesis implement our own

187

6. Conclusion

interaction platform. The results of the empirical evaluation provided by
the citizens participating in polls through the interaction platform, how-
ever, indicates an only moderately positive assessment (cf. section 5.5.3).
To obtain less biased results, an implementation controlled by us directly
rather than a third party would allow for a better understanding of the
reasons behind the assessment and for the iterative adaption of the imple-
mentation to improve it. Based on an own implementation, a rerun of this
part of the empirical implementation would be desirable.

This thesis presents service feature modeling to model and select service vari-
ants. Modeling is based on an extend feature modeling language and includes
means for expert collaboration and integration of results from services. Selection
consists of a set of flexibly combinable methods that consider requirements and
preferences of decision-makers. Thus, in sum, service feature modeling provides
a set of contributions that would function on their own, but are here integrated
into a comprehensive approach. The research directions outlined in this sec-
tion, however, show that significant challenges remain to be addressed in future
work. Solving these challenges will play an important role in further establishing
the consideration of variants as a natural component in the development and
delivery of software services.

188

Appendix

189

A. Appendix A

A.1. Sets of SFM elements

Table A.1 provides an overview of the sets of SFM elements:

Element Set
Service Feature Model SFM = {F,A,AT,C,R,AR}
Service feature diagram SFMdiag = {V,E}
Vertices in a service fea-
ture diagram

V = {F,A}

Features F = {FG ∪ FA ∪ F I}|FG ∩ FA ∩ F I = ∅
Attribute types AT
Attribute type relation-
ships

AR

Attributes A ⊆ V , ∀a ∈ A : ∃ar(n,m) | n = a;m ∈
(F ∨ C)

Edges in a service feature
diagram

E = {R,AR}

Relationships R = {Rde ∪Rcr}|Rde ∩Rcr = ∅
Decomposition relation-
ships

Rde = {Rman ∪Ropt ∪RXOR ∪ROR} ⊂ R

Configurations C

Table A.1.: Sets of SFM elements

191

A. Appendix A

A.2. Information about performance evaluation of
the skyline filter

Table A.2 provides an overview of detailed information about the performance
evaluation of the skyline filter.

Model ID Confi-
gurations

Skyline
configura-
tion

Dominated
configura-
tions

Performed
compar-
isons

GR01 9 5 4 54
IRIS01 18 6 12 42
Amazon EC2 1280 1280 0 1637120
Rackspace 896 896 0 801920
Model 98 conf. 98 2 96 112
Model 952 conf. 952 4 948 960
Model 9450 conf. 9450 288 9162 530538
Model 21168 conf. 21168 504 20664 12215844
Model 2 att. 952 48 904 3160
Model 4 att. 952 8 944 1000
Model 6 att. 952 4 948 960
Model 8 att. 952 1 951 951
Model 10 att. 952 1 951 951
Model 12 att. 952 1 951 951

Table A.2.: Information about the results of applying the skyline filter to the
performance evaluation models

192

A.3. Information about performance evaluation of the requirements filter

A.3. Information about performance evaluation of
the requirements filter

Table A.3 provides an overview of detailed information about the performance
evaluation of the requirements filter.

Model ID Configs. Requirements Degree of fulfillment deg
reqI reqA reqAtt 1.0 1 > deg > 0 0.0

GR01 9 2 1 2 0 1 8
IRIS01 18 2 1 2 1 10 7
Amazon EC2 1280 2 1 2 0 160 1120
Rackspace 896 2 1 2 80 0 816
Model 98 conf. 98 2 1 2 13 15 70
Model 952
conf.

952 2 1 2 44 220 688

Model 9450
conf.

9450 2 1 2 72 1818 7560

Model 21168
conf.

21168 2 1 2 864 5184 15120

Model 12 att 2
req

952 2 1 2 112 119 721

Model 12 att 4
req

952 2 1 4 0 231 721

Model 12 att 6
req

952 2 1 6 0 231 721

Model 12 att 8
req

952 2 1 8 0 231 721

Model 12 att
10 req

952 2 1 10 0 231 721

Model 12 att
12 req

952 2 1 12 0 231 721

Table A.3.: Information about the results of applying the requirements filter to
the performance evaluation models

193

B. Appendix B

B.1. Screenshots requirements filter implementation

Screenshot B.1 shows the part of requirement filter’s UI that displays an overview
of requirements extracted from a given SFM.

Figure B.1.: Screenshot of the requirements filter’s UI - extracted requirements

195

B. Appendix B

Screenshot B.2 shows the part of requirement filter’s UI that displays the results
of applying requirements to narrow down a configuration set.

Figure B.2.: Screenshot of the requirements filter’s UI - results of applying the
requirements filter

196

B.2. Screenshots preference-based ranking implementation

B.2. Screenshots preference-based ranking
implementation

Screenshot B.3 shows the part of preference-based ranking’s UI that displays the
input of preferences for attribute types.

Figure B.3.: Screenshot of the preference-based ranking’s UI - input of prefer-
ences for attribute types

197

B. Appendix B

Screenshot B.4 shows the part of preference-based ranking’s UI that displays the
results of applying the ranking to a configuration set.

Figure B.4.: Screenshot of the preference-based ranking’s UI - results

198

List of Figures

1.1. Typical sources of variants when designing public services in the
COCKPIT project . 3

1.2. Screenshot showing variants of Xignite’s financial data service,
source: http://www.xignite.com/product/company-financials/
api/GetCompaniesFinancial/, accessed: 4th March 2014 5

1.3. Screenshot depicting different virtual machine types offered by
Amazon EC2, https://aws.amazon.com/ec2/instance-types/,
accessed: 25th February 2014 . 7

1.4. Screenshot depicting different Couchbase images offered by Ama-
zon EC2, https://aws.amazon.com/marketplace/seller-profile/
ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72,
accessed: 25th February 2014 . 8

2.1. Software service concept, based on [WF13] 26
2.2. Relation of status and activities to the software service concept,

based on [WF13] . 31
2.3. Overview of providers’ and consumers’ activities throughout ser-

vice life-cycle and their typical sequence [WF13] 32
2.4. Example of our service life-cycle model 34
2.5. Service variability-related provider and consumer activities through-

out the service life-cycle [WF13] 40
2.6. Generic process of modeling . 46
2.7. Generic process of service feature modeling 47

3.1. Simple example of an SFM . 57
3.2. Simple example of an SFM with feature types 61
3.3. Concepts of service variability and their representation, generi-

cally and in service feature modeling 62
3.4. Simple example of an SFM with feature types and attribute types 65
3.5. Example domain model for cloud data storage and two SFMs

based on it . 70
3.6. Example of composing SFMs from services, based on [WSKT12] 72
3.7. Service composition model [WSKT12] 73
3.8. Service binding protocol, based on [SZS11] 77

199

http://www.xignite.com/product/company-financials/api/GetCompaniesFinancial/
http://www.xignite.com/product/company-financials/api/GetCompaniesFinancial/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72

List of Figures

4.1. Overview of the usage process of service feature models 93
4.2. Process of (participatory) configuration ranking, based on [WZ14] 107
4.3. Meta model of service feature modeling’s participatory ranking

concepts . 118
4.4. States of an evaluation . 119

5.1. The meta model underlying service feature modeling, based
on [WZ14] . 135

5.2. Overview of the architecture of the SFM tool suite 137
5.3. Architecture of the SFM designer 138
5.4. Architecture of the collaboration server, based on [WSKT12] . . 140
5.5. Architecture of the valuation server 142
5.6. Screenshot of the SFM designer 145
5.7. Processing times for determining the configuration set of models

with rising number of configurations, based on [WZ14] 151
5.8. Processing times for determining the configuration set of models

with rising number of attribute types and attributes [WZ14] . . . 151
5.9. Processing times for skyline filtering of use case models and ones

with increasing numbers of configurations 152
5.10. Processing times for skyline filtering of models with rising num-

bers of attribute types and attributes 153
5.11. Processing times for requirements filtering of use case models and

ones with rising numbers of configurations 154
5.12. Processing times for requirements filtering depending on different

numbers of requirements . 154
5.13. Processing times for ranking configurations of use case models

and ones with rising numbers of configurations, based on [WZ14] 155
5.14. Processing times for ranking configurations of models with rising

numbers of attribute types and attributes [WZ14] 156
5.15. Overview of COCKPIT’s methodology, methods directly con-

cerned with service feature modeling are marked in gray [WZ14] 159
5.16. Exemplary mapping of work flow elements to SFM 161
5.17. Excerpt of SFM for service GR01 created in the public service

use case, based on [WZ14] . 162
5.18. Screenshot of the GR01 poll on the interaction platform [WZ14] 163
5.19. Overview of Barcoo’s architecture [WLBB14] 166
5.20. Proposed domain model to represent IaaS [WLBB14] 168
5.21. Excerpt of the IaaS feature model representing Amazon EC2 [WLBB14]169
5.22. Meta model of the IaaS deployment model [WLBB14] 171
5.23. Evaluation results of the service engineer survey [WZ14] 177
5.24. Evaluation results of the citizen survey, based on [WZ14] 178

B.1. Screenshot of the requirements filter’s UI - extracted requirements 195

200

List of Figures

B.2. Screenshot of the requirements filter’s UI - results of applying the
requirements filter . 196

B.3. Screenshot of the preference-based ranking’s UI - input of prefer-
ences for attribute types . 197

B.4. Screenshot of the preference-based ranking’s UI - results 198

201

List of Tables

2.1. Overview of service variability realization approaches 42

3.1. Constraints on service feature modeling’s three feature types . . 60

4.1. CSP constraints for SFM elements, based on [KOD10] 96
4.2. Configurations of example in figure 4.2 97
4.3. Overview of aggregation rules . 99
4.4. Meaning of intensity of importance values, following the scale of

absolute values [Saa08] . 112

5.1. How contributions of service feature modeling were evaluated . . 131
5.2. Descriptions of use case and synthetic SFMs with rising number

of configurations, based on [WZ14] 149
5.3. Performance test models with rising number of attribute types

and attributes [WZ14] . 150
5.4. Overview of characteristics for configuration and deployment use

case [WLBB14] . 170
5.5. Information on service engineers participating in evaluation; *:

5=expert, 4=high, 3=medium, 2=low, 1=none [WZ14] 176

A.1. Sets of SFM elements . 191
A.2. Information about the results of applying the skyline filter to the

performance evaluation models 192
A.3. Information about the results of applying the requirements filter

to the performance evaluation models 193

203

Bibliography

[ABHV10] Boris Agarski, Igor Budak, Janki Hodolic, and Dorde Vuke-
lic. Multicriteria Approach for Assessment of Environmental
Quality. International Journal for Quality Research, 4(2):131–
137, 2010.

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake.
Feature-Oriented Software Product Lines: Concepts and Im-
plementation. Springer Berlin / Heidelberg, 2013.

[ACLF10] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert
France. Composing Feature Models. In Mark van den Brand,
Dragan Gaševic, and Jeff Gray, editors, Software Language
Engineering, volume 5969 of LNCS, pages 62–81. Springer,
Berlin / Heidelberg, 2010.

[AFR97] Eugene W Anderson, Claes Fornell, and Roland T Rust. Cus-
tomer satisfaction, productivity, and profitability: Differences
between goods and services. Marketing Science, 16(2):129–145,
1997.

[Aga07] Sudhir Agarwal. Formal Description of Web Services for Ex-
pressive Matchmaking. PhD thesis, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany, May 2007.

[AGGR07] Orlando Avila-García, Antonio Estévez García, and E. Vic-
tor Sánchez Rebull. Using Software Product Lines to Manage
Model Families in Model-driven Engineering. In Proceedings of
the 2007 ACM Symposium on Applied Computing (SAC ’07),
pages 1006–1011, New York, NY, USA, 2007. ACM.

[Alt08] Steven Alter. Service system fundamentals: Work system,
value chain, and life cycle. IBM Systems Journal, 47(1):71–85,
2008.

[Ama] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.
amazon.com/ec2/. (accessed January 11th, 2013).

205

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

Bibliography

[AP07] D. Ardagna and B. Pernici. Adaptive Service Composition in
Flexible Processes. Software Engineering, IEEE Transactions
on, 33(6):369–384, 2007.

[ARDN09] Mohammad Alrifai, Thomas Risse, Peter Dolog, and Wolf-
gang Nejdl. A Scalable Approach for QoS-Based Web Service
Selection. In George Feuerlicht and Winfried Lamersdorf, ed-
itors, Service-Oriented Computing – ICSOC 2008 Workshops,
volume 5472 of Lecture Notes in Computer Science, pages 190–
199. Springer Berlin Heidelberg, 2009.

[ASR10] M. Alrifai, D. Skoutas, and T. Risse. Selecting skyline services
for QoS-based web service composition. In Proceedings of the
19th International Conference on World Wide Web (WWW
’10), pages 11–20, 2010.

[BAGS10] Ebrahim Bagheri, Mohsen Asadi, Dragan Gaševic, and
Samaneh Soltani. Stratified Analytic Hierarchy Process: Pri-
oritization and Selection of Software Features. In Software
Product Lines: Going Beyond, volume 6287 of Lecture Notes
in Computer Science, pages 300–315. Springer Berlin / Hei-
delberg, 2010.

[Bar] Die Konsum-Revolution! barcoo durchbricht 10 Millionen-
Marke bei Downloads. http://www.barcoo.com/blog/2013/
04/15/. (accessed May 6th, 2013).

[Bar13] Sebastian Bartenbach. Einsatz von Variabilitäts-Modellen zur
Absicherung von Cloud Infrastrukturen. Master’s thesis, Karl-
sruhe Institute of Technology (KIT), Karlsruhe, Germany,
June 2013.

[Bat05] Don Batory. Feature models, grammars, and propositional for-
mulas. In Proceedings of the 9th international conference on
Software Product Lines, SPLC’05, pages 7–20, Berlin, Heidel-
berg, 2005. Springer-Verlag.

[BB13] Anir Benlachgar and Fatima-Zahra Belouadha. Review of Soft-
ware Product Line Models used to Model Cloud Applications.
In Proceedings of the ACS International Conference on Com-
puter Systems and Applications (AICCSA), pages 1–4, 2013.

[BBB01] Rafael Bidarra, Eelco Van Den Berg, and Willem F.
Bronsvoort. Collaborative Modeling with Features. In Proc.
of the 2001 ASME Design Engineering Technical Conferences
(DETC ’01), Pittsburgh, Pennsylvania, 2001.

206

http://www.barcoo.com/blog/2013/04/15/
http://www.barcoo.com/blog/2013/04/15/

Bibliography

[BC05] Felix Bachmann and Paul C Clements. Variability in Soft-
ware Product Lines. Technical report, Software Engineering
Institute, Carnegie Mellon University, September 2005.

[BD06] A.P. Barros and M. Dumas. The Rise of Web Service Ecosys-
tems. IT Professional, 8(5):31 –37, September 2006.

[BEGB11] Ebrahim Bagheri, Faezeh Ensan, Dragan Gasevic, and Marko
Boskovic. Modular Feature Models: Representation and Con-
figuration. Journal of Research and Practice in Information
Technology, 43(2):109–140, 2011.

[BELK10] Marina Berkovich, Sebastian Esch, Jan Marco Leimeister, and
Helmut Krcmar. Towards Requirements Engineering for “Soft-
ware as a Service”. In Multikonferenz Wirtschaftsinformatik
(MKWI ’10), pages 517–528, Göttingen, 2010.

[BH89] H Barki and J Hartwick. Rethinking the concept of user in-
volvement. Mis Quarterly, 13(1):53, March 1989.

[BI10] Muneera Bano and Naveed Ikram. Issues and Challenges of
Requirement Engineering in Service Oriented Software Devel-
opment. In Proceedings of the 5th International Conference
on Software Engineering Advances (ICSEA ’10), pages 64–69.
IEEE Computer Society, 2010.

[BKNT11] Christian Baun, Marcel Kunze, Jens Nimis, and Stefan Tai.
Cloud Computing. Web-Basierte Dynamische IT-Services.
Springer-Verlag New York Incorporated, March 2011.

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker.
The Skyline Operator. In Proceedings of the 17th International
Conference on Data Engineering, pages 421–430, Washington,
DC, USA, 2001. IEEE Computer Society.

[BLP04] S. Bühne, K Lauenroth, and K Pohl. Why is it not sufficient
to model requirements variability with feature models. In Pro-
ceedings of Workshop: Automotive Requirements Engineering
(AURE04), pages 5–12, Los Alamitos, CA, USA, 2004. IEEE
Computer Society Press.

[BNGR12] Ebrahim Bagheri, Tommaso Di Noia, Dragan Gasevic, and
Azzurra Ragone. Formalizing interactive staged feature model
configuration. Journal of Software: Evolution and Process,
24(4):375–400, 2012.

207

Bibliography

[Boe88] B. W. Boehm. A Spiral Model of Software Development and
Enhancement. Computer, 21(5):61–72, 1988.

[Bol01] N. Bolloju. Aggregation of Analytic Hierarchy Process Models
based on Similarities in Decision Makers’ Preferences. Euro-
pean Journal of Operational Research, 128(3):499–508, 2001.

[Bos13] Jan Bosch. Software Product Line Engineering. In Rafael
Capilla, Jan Bosch, and Kyo-Chul Kang, editors, Systems and
Software Variability Management: Concepts, Tools and Expe-
riences, chapter 1, pages 3–24. Springer Berlin / Heidelberg,
Berlin / Heidelberg, 2013.

[BPE07] Web Services Business Process Execution Language (BPEL).
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html, 2007. (accessed September 19th 2013).

[BPM10] Business Process Model and Notation (BPMN). http://
www.omg.org/spec/BPMN/2.0/PDF/, 2010. (accessed Febru-
ary 26th 2013).

[BRN+13] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M Atlee,
Martin Becker, Krzysztof Czarnecki, and Andrzej Wąsowski.
A survey of variability modeling in industrial practice. In
Proceedings of the Seventh International Workshop on Vari-
ability Modelling of Software-intensive Systems (VAMOS ’13),
page 7. ACM, 2013.

[BSCB13] Mathias Björkqvist, Sebastiano Spicuglia, Lydia Chen, and
Walter Binder. QoS-Aware Service VM Provisioning in Clouds:
Experiences, Models, and Cost Analysis. In Samik Basu, Ce-
sare Pautasso, Liang Zhang, and Xiang Fu, editors, Service-
Oriented Computing, volume 8274 of Lecture Notes in Com-
puter Science, pages 69–83. Springer Berlin Heidelberg, 2013.

[BSRC10] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated anal-
ysis of feature models 20 years later: A literature review. In-
formation Systems, 35(6):615–636, 2010.

[BTRC05] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated
reasoning on feature models. In Advanced Information Sys-
tems Engineering, volume 3520 of Lecture Notes in Computer
Science, pages 381–390. Springer Berlin / Heidelberg, 2005.

[BZ13] Muneera Bano and Didar Zowghi. User involvement in soft-
ware development and system success: a systematic literature

208

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.omg.org/spec/BPMN/2.0/PDF/

Bibliography

review. In Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering (EASE
’13), New York, New York, USA, April 2013. ACM.

[CA09] Betty H C Cheng and Joanne M Atlee. Current and Future
Research Directions in Requirements Engineering. Design Re-
quirements Engineering: A Ten-Year Perspective, 14(Chapter
2):11–43, 2009.

[CA10] Yannis Charalabidis and Dimitris Askounis. eGOVSIM: A
Model for Calculating the Financial Gains of Governmen-
tal Services Transformation, for Administration and Citizens.
In 43rd Hawaii International Conference on System Sciences
(HICSS), pages 1–10, 2010.

[CAB+98] William Chan, Richard J. Anderson, Paul Beame, Steve
Burns, Francesmary Modugno, David Notkin, and Jon D.
Reese. Model Checking Large Software Specifications. IEEE
Transactions on Software Engineering, 24(7):498–520, July
1998.

[CABA09] Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variabil-
ity management in software product lines: a systematic review.
In Proceedings of the 13th International Software Product Line
Conference, pages 81–90. Carnegie Mellon University, 2009.

[Cap13] Rafael Capilla. Variability Scope. In Rafael Capilla, Jan Bosch,
and Kyo-Chul Kang, editors, Systems and Software Variabil-
ity Management: Concepts, Tools and Experiences, chapter 3,
pages 43–56. Springer Berlin / Heidelberg, Berlin / Heidelberg,
2013.

[CGGL03] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
Presorting. In Proceedings of the 19th International Confer-
ence on Data Engineering (ICDE ’03), pages 717–719, 2003.

[CGR+12] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus
Schmid, and Andrzej Wąsowski. Cool features and tough de-
cisions: a comparison of variability modeling approaches. In
Proceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems (VaMoS ’12), pages
173–182, January 2012.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker.
Staged configuration using feature models. In Robert Nord,
editor, Software Product Lines, volume 3154 of Lecture Notes

209

Bibliography

in Computer Science, pages 162–164. Springer Berlin / Hei-
delberg, 2004.

[CHE05] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
Cardinality-Based Feature Models and Their Specialization.
Software Process: Improvement and Practice, 10(1):7–29,
2005.

[CHS08] Andreas Classen, Patrick Heymans, and Pierre-Yves
Schobbens. What’s in a Feature: A Requirements Engi-
neering Perspective. In Fundamental Approaches to Software
Engineering, volume 4961 of Lecture Notes in Computer
Science, pages 16–30. Springer, 2008.

[CK07] Soo Ho Chang and Soo Dong Kim. A Variability Modeling
Method for Adaptable Services in Service-Oriented Comput-
ing. In Proceedings of the 11th International Software Product
Line Conference (SPLC ’07), pages 261–268, Kyoto, Japan,
2007. IEEE Computer Society.

[CKM+03] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai,
and Sanjiva Weerawarana. The next step in Web services.
Communications of the ACM, 46(10):29–34, October 2003.

[Coc01] Alistair Cockburn. Writing effective use cases. Addison-Wesley
Professional, 2001.

[COC12] COCKPIT Project. Citizens Collaboration and Co-Creation in
Public Service Delivery, September 2012. (accessed September
9th, 2012).

[CPL09] Lawrence Chung and Julio Cesar Prado Leite. On Non-
Functional Requirements in Software Engineering. In Alexan-
der T. Borgida, Vinay K. Chaudhri, Paolo Giorgini, and Eric S.
Yu, editors, Conceptual Modeling: Foundations and Applica-
tions, pages 363–379. Springer Berlin / Heidelberg, 2009.

[CPPP14] Marco Comerio, FlavioDe Paoli, Matteo Palmonari, and Luca
Panziera. Web Service Contracts: Specification and Match-
making. In Athman Bouguettaya, Quan Z. Sheng, and Flo-
rian Daniel, editors, Advanced Web Services, pages 121–146.
Springer New York, 2014.

[CSFP04] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael
Pilato. Version Control with Subversion - Next Generation
Open Source Version Control. O’Reilly Media, 2004.

210

Bibliography

[CSL+01] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and
J. Natt och Dag. An industrial survey of requirements interde-
pendencies in software product release planning. In Proceed-
ings of the 5th IEEE International Symposium onRequirements
Engineering, pages 84–91, 2001.

[CVW09] Jorge Cardoso, Konrad Voigt, and Matthias Winkler. Service
Engineering for the Internet of Services. In Joaquim Filipe,
José Cordeiro, Wil Aalst, John Mylopoulos, Michael Rose-
mann, Michael J. Shaw, and Clemens Szyperski, editors, En-
terprise Information Systems, volume 19 of Lecture Notes in
Business Information Processing, pages 15–27. Springer Berlin
Heidelberg, 2009.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version Models for
Software Configuration Management. ACM Computing Sur-
veys (CSUR), 30(2):232–282, June 1998.

[CZZM05] Kun Chen, Wei Zhang, Haiyan Zhao, and Hong Mei. An ap-
proach to constructing feature models based on requirements
clustering. In Proceedings of the 13th IEEE International Con-
ference on Requirements Engineering (RE ’05), pages 31–40.
IEEE, 2005.

[DB13] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Com-
mun. ACM, 56(2):74–80, February 2013.

[DBM13] Valeria De Antonellis Devis Bianchini and Michele Melchiori.
A Multi-perspective Framework for Web API Search in En-
terprise Mashup Design. In Camille Salinesi, MoiraC. Norrie,
and Óscar Pastor, editors, Advanced Information Systems En-
gineering, number 7908 in Lecture Notes in Computer Science,
pages 353–368. Springer Berlin Heidelberg, May 2013.

[DD09] Tore Dyba and Torgeir Dingsoyr. What Do We Know about
Agile Software Development? IEEE Software, 26(5):6–9, 2009.

[Dey01] Anind K. Dey. Understanding and Using Context. Personal
and Ubiquitous Computing, 5:4–7, 2001.

[DGR+06] Islay Davies, Peter Green, Michael Rosemann, Marta Indulska,
and Stan Gallo. How do practitioners use conceptual modeling
in practice? Data & Knowledge Engineering, 58(3):358–380,
September 2006.

211

Bibliography

[DHJ09] Ketki A Dhanesha, Alan Hartman, and Anshu N Jain. A
Model for Designing Generic Services. In 2009 IEEE Inter-
national Conference on Services Computing, pages 435–442.
IEEE Computer Society, 2009.

[DLFST07] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora. En-
hancing collaborative synchronous UML modelling with fine-
grained versioning of software artefacts. Journal of Visual Lan-
guages and Computing, 18(5):492–503, 2007.

[DNGM+08] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike
Papazoglou, and Klaus Pohl. A journey to highly dynamic,
self-adaptive service-based applications. Automated Software
Engineering, 15(3-4):313–341, September 2008.

[DWS12] Brian Dougherty, Jules White, and Douglas C Schmidt.
Model-driven auto-scaling of green cloud computing infras-
tructure. Future Generation Computer Systems, 28(2):371–
378, February 2012.

[Fac] Facebook.com. Facebook.com. https://www.facebook.com.
(accessed November 6th, 2013).

[FdSGdT07] M. Fantinato, I. de S Gimenes, and M. de Toledo. Supporting
QoS negotiation with feature modeling. In Proceedings of the
5th International Conference on Service-Oriented Computing
(ICSOC ’07), pages 429–434, 2007.

[FFB02] Dániel Fey, Róbert Fajta, and András Boros. Feature Mod-
eling: A Meta-Model to Enhance Usability and Usefulness.
In Gary J. Chastek, editor, Software Product Lines, Lecture
Notes in Computer Science, pages 198–216. Springer Berlin /
Heidelberg, 2002.

[FMÁ+10] Fernando Flores, Manuel Mora, Francisco Álvarez, Laura
Garza, and Héctor Durán. Towards a Systematic Service-
oriented Requirements Engineering Process (S-SoRE). In
JoãoEduardo Quintela Varajão, MariaManuela Cruz-Cunha,
GoranD. Putnik, and António Trigo, editors, ENTERprise In-
formation Systems, volume 109 of Communications in Com-
puter and Information Science, pages 111–120. Springer Berlin
Heidelberg, 2010.

[GA13] Matthias Galster and Paris Avgeriou. Variability in Web Ser-
vices. In Rafael Capilla, Jan Bosch, and Kyo-Chul Kang, ed-
itors, Systems and Software Variability Management: Con-

212

https://www.facebook.com

Bibliography

cepts, Tools and Experiences, chapter 18, pages 269–277.
Springer Berlin / Heidelberg, Berlin / Heidelberg, 2013.

[Git] Git. http://git-scm.com. (accessed April 8th, 2014).

[GJNS13] S. Gudenkauf, M. Josefiok, O. Norkus, and U. Steffens.
Cloud-Computing Referenzkontext. Technical report, acatec
- Deutsche Akademie der Technikwissenschaften, 2013.

[GL09] Qing Gu and Patricia Lago. Exploring service-oriented system
engineering challenges: a systematic literature review. Service
Oriented Computing and Applications, 3(3):171–188, 2009.

[GM09] Manish Godse and Shrikant Mulik. An Approach for Selecting
Software-as-a-Service (SaaS) Product. In 2009 IEEE Interna-
tional Conference on Cloud Computing, pages 155–158. IEEE
Computer Society, 2009.

[Goo] Google App Engine. https://developers.google.com/
appengine/. (accessed March 1st, 2013).

[Göt09] Stephan Göthlich. Zum Umgang mit fehlenden Daten in
großzahligen empirischen Erhebungen. In Sönke Albers, Daniel
Klapper, Udo Konradt, Achim Walter, and Joachim Wolf, ed-
itors, Methoden der empirischen Forschung, pages 119–135.
Deutscher Universitäts-Verlag, Wiesbaden, Germany, 3rd edi-
tion, 2009.

[GVB13] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya.
A framework for ranking of cloud computing services. Future
Generation Computer Systems, 29(4):1012 – 1023, 2013.

[GVDAJVLR08] Florian Gottschalk, Wil MP Van Der Aalst, Monique H
Jansen-Vullers, and Marcello La Rosa. Configurable workflow
models. International Journal of Cooperative Information Sys-
tems, 17(02):177–221, 2008.

[HAT+13] Arnaud Hubaux, Mathieu Acher, Thein Than Tun, Patrick
Heymans, Philippe Collet, and Philippe Lahire. Separating
Concerns in Feature Models: Retrospective and Support for
Multi-Views. In Domain Engineering, pages 3–28. Springer
Berlin Heidelberg, Berlin, Heidelberg, May 2013.

[HBR10] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Cap-
turing variability in business process models - the Provop ap-
proach. Journal of Software Maintenance and Evolution: Re-
search and Practice, 22(6):519–546, 2010.

213

http://git-scm.com
https://developers.google.com/appengine/
https://developers.google.com/appengine/

Bibliography

[Hes06] Wolfgang Hesse. More matters on (meta-) modelling: remarks
on Thomas Kühne’s “matters”. Software and Systems Model-
ing, 5(4):387–394, October 2006.

[HJD11] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements
Engineering. Springer, 2011.

[HJR+10] A. Hartman, A. Jain, J. Ramanathan, A. Ramfos, W.J.
Van der Heuvel, C. Zirpins, S. Tai, Y. Charalabidis, A. Pa-
sic, and T. Johannessen. Participatory design of public sector
services. Electronic Government and the Information Systems
Perspective, pages 219–233, 2010.

[HK06] Jiawei Han and Micheline Kamber. Data Mining - Concepts
and Techniques. The Morgan Kaufmann series in data mange-
ment systems. Morgan Kaufmann, San Francisco, 2nd edition,
2006.

[HKH05] Christian Homburg, Nicole Koschate, and Wayne D Hoyer.
Do satisfied customers really pay more? A study of the rela-
tionship between customer satisfaction and willingness to pay.
Journal of Marketing, pages 84–96, 2005.

[HL01] Hubert F Hofmann and Franz Lehner. Requirements engineer-
ing as a success factor in software projects. IEEE Software,
18(4):58–66, 2001.

[HPSVA95] R. Henderson, J. Podd, M. Smith, and H. Varela-Alvarez. An
Examination of Four User-based Software Evaluation Meth-
ods. Interacting with Computers, 7(4):412–432, 1995.

[HR04] D. Harel and B. Rumpe. Meaningful modeling: what’s the
semantics of “semantics”? Computer, 37(10):64–72, 2004.

[IBM11] Getting cloud computing right. White paper, IBM Global
Technology Services, Armonk, NY, US, April 2011.

[IFMW08] Florian Irmert, Thomas Fischer, and Klaus Meyer-Wegener.
Runtime adaptation in a service-oriented component model.
In Proceedings of the 2008 international workshop on Software
engineering for adaptive and self-managing systems (SEAMS
’08), pages 97–104. ACM, 2008.

[ITI07] ITIL: Service Design. Technical report, The Stationary Office,
2007.

214

Bibliography

[IYE11] A. Iosup, N. Yigitbasi, and D. Epema. On the Performance
Variability of Production Cloud Services. In Cluster, Cloud
and Grid Computing (CCGrid), 2011 11th IEEE/ACM Inter-
national Symposium on, pages 104 –113, may 2011.

[JFY09] Karuna P. Joshi, Tim Finin, and Yelena Yesha. Integrated
Lifecycle of IT Services in a Cloud Environment. In Pro-
ceedings of The Third International Conference on the Virtual
Computing Initiative (ICVCI ’09), Research Triangle Park,
NC, 2009.

[JNS11] Christian Janiesch, Michael Niemann, and Ralf Steinmetz.
The TEXO governance framework. Technical report, SAP Re-
search, 2011.

[KaSSA09] M. Koning, C. a. Sun, M. Sinnema, and P. Avgeriou. VxBPEL:
Supporting variability for Web services in BPEL. Information
and Software Technology, 51(2):258–269, 2009.

[KCH+90] K C Kang, S G Cohen, J A Hess, W E Novak, and A S Pe-
terson. Feature-oriented domain analysis (FODA) feasibility
study. Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania 15213, November 1990.

[KD08] Yukyong Kim and Kyung-Goo Doh. Adaptable Web Services
Modeling Using Variability Analysis. In Convergence and Hy-
brid Information Technology, 2008. ICCIT ’08. Third Interna-
tional Conference on, pages 700–705. IEEE Computer Society,
2008.

[KKKP10] Costas Koutras, Sotiris Koussouris, Panagiotis Kokkinakos,
and Dimitris Panopoulos. COCKPIT Public Service Scenarios.
COCKPIT project deliverable 1.1, National Technical Univer-
sity of Athens (NTUA), Athens, Greece, June 2010.

[KKP+12] P Kokkinakos, S Koussouris, D Panopoulos, D. Askounis,
A. Ramfos, G Georgousopoulos, and Erik Wittern. Citi-
zens Collaboration and Co-Creation in Public Service Delivery:
The COCKPIT Project. International Journal of Electronic
Government Research, 8(3):44–62, 2012.

[KOD10] Ahmet Karataş, Halit Oğuztüzün, and Ali Doğru. Mapping
Extended Feature Models to Constraint Logic Programming
over Finite Domains. In Jan Bosch and Jaejoon Lee, editors,
Software Product Lines: Going Beyond, volume 6287 of LNCS,
pages 286–299. Springer Berlin / Heidelberg, 2010.

215

Bibliography

[Kru04] Philippe Kruchten. The Rational Unified Process: An Intro-
duction. Addison-Wesley, 3rd edition, 2004.

[KSB+10] Ajay Kattepur, S. Sen, B. Baudry, A. Benveniste, and C. Jard.
Variability Modeling and QoS Analysis of Web Services Or-
chestrations. In Web Services (ICWS), 2010 IEEE Interna-
tional Conference on, pages 99–106, 2010.

[Küh06] Thomas Kühne. Matters of (Meta-) Modeling. Software and
Systems Modeling, 5(4):369–385, July 2006.

[Kuh11] Jörn Kuhlenkamp. Service Feature Models: Conceptualiza-
tion of and Automated Reasoning on Feature Attribute Rela-
tionships. Master’s thesis, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany, September 2011.

[KZZL11] Yu Kang, Yangfan Zhou, Zibin Zheng, and M.R. Lyu. A User
Experience-Based Cloud Service Redeployment Mechanism. In
IEEE International Conference on Cloud Computing (CLOUD
’11), pages 227 –234, july 2011.

[Lev00] Nancy G Leveson. Intent specifications: an approach to build-
ing human-centered specifications. IEEE Transactions on Soft-
ware Engineering, 26(1):15–35, 2000.

[LG10] Holger Luczak and Gerhard Gudergan. The Evolution of Ser-
vice Engineering - Toward the Implementation of Designing
Integrative Solutions. In Introduction to Service Engineering,
pages 545–575. John Wiley & Sons, Inc., 2010.

[LK13] Jaejoon Lee and Gerald Kotonya. Service-Oriented Prod-
uct Lines. In Rafael Capilla, Jan Bosch, and Kyo-Chul
Kang, editors, Systems and Software Variability Management:
Concepts, Tools and Experiences, chapter 19, pages 279–285.
Springer Berlin / Heidelberg, Berlin / Heidelberg, 2013.

[LKL02] Kwanwoo Lee, Kyo C Kang, and Jaejoon Lee. Concepts and
guidelines of feature modeling for product line software engi-
neering. In Software Reuse: Methods, Techniques, and Tools:
Proceedings of the Seventh Reuse Conference (ICSR7), pages
62–77. Springer, 2002.

[LKN+09] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and
Thomas Sandholm. What’s inside the Cloud? An architectural
map of the Cloud landscape. In Proceedings of the 2009 ICSE

216

Bibliography

Workshop on Software Engineering Challenges of Cloud Com-
puting (CLOUD ’09), pages 23–31, Washington, DC, USA,
2009. IEEE Computer Society.

[LKSL13] Jaejoon Lee, Kyo C Kang, Pete Sawyer, and Hyesun Lee. A
holistic approach to feature modeling for product line require-
ments engineering. Requirements Engineering, pages 1–19,
2013.

[LMLT11] Alexander Lenk, Michael Menzel, Johannes Lipsky, and Stefan
Tai. What are you paying for? Performance benchmarking for
Infrastructure-as-a-Service offerings. In Proceedings of the 4th
IEEE International Conference on Cloud Computing (CLOUD
2011), pages 484–491, Washington, D. C., Juli 2011. IEEE
Computer Society.

[LNSJ12] Tam Le Nhan, Gerson Sunyé, and Jean-Marc Jézéquel. A
Model-Driven Approach for Virtual Machine Image Provision-
ing in Cloud Computing. Service-Oriented and Cloud Com-
puting (ESOCC ’12), pages 107–121, 2012.

[LNZ04] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. QoS Computation
and Policing in Dynamic Web Service Selection. In Proceed-
ings of the 13th International World Wide Web Conference on
Alternate Track Papers and Posters (WWW Alt. ’04), pages
66–73, New York, NY, USA, 2004. ACM.

[LS93] Kai H. Lim and Scott R. Swenseth. An iterative procedure for
reducing problem size in large scale AHP problems. European
Journal of Operational Research, 67(1):64 – 74, 1993.

[LSZJ06] Haiqi Liang, Wei Sun, Xin Zhang, and Zhongbo Jiang. A Pol-
icy Framework for Collaborative Web Service Customization.
In Proceedings of the 2nd IEEE International Symposium on
Service-Oriented System Engineering (SOSE’06), pages 197–
204. IEEE, October 2006.

[Lud03] Jochen Ludewig. Models in software engineering - an intro-
duction. Software and Systems Modeling, 2(1):5–14, March
2003.

[LVL04] Emmanuel Letier and Axel Van Lamsweerde. Reasoning about
partial goal satisfaction for requirements and design engineer-
ing. In Proceedings of the 12th ACM SIGSOFT twelfth inter-
national symposium on Foundations of software engineering
(SIGSOFT ’04), volume 29, pages 53–62. ACM, 2004.

217

Bibliography

[LYKZ10] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang.
CloudCmp: comparing public cloud providers. In IMC ’10:
Proceedings of the 10th annual conference on Internet mea-
surement. ACM, November 2010.

[LYM09] Lin Liu, Eric Yu, and Hong Mei. Guest Editorial: Special Sec-
tion on Requirements Engineering for Services - Challenges
and Practices. IEEE Transactions on Services Computing,
2(4):318–319, October 2009.

[Mag03] Peter R. Magnusson. Benefits of involving users in service
innovation. European Journal of Innovation Management,
6(4):228–238, 2003.

[MBJ+09] B. Morin, O. Barais, J.M. Jézéquel, F. Fleurey, and A. Solberg.
Models@ run. time to support dynamic adaptation. Computer,
42(10):44–51, 2009.

[MC10] Marcilio Mendonca and Donald Cowan. Decision-making co-
ordination and efficient reasoning techniques for feature-based
configuration. Science of Computer Programming, 75(5):311–
332, May 2010.

[McB] Gary McBride. The Role of SOA Quality Management in
SOA Service Lifecycle Management. http://www.ibm.com/
developerworks/rational/library/mar07/mcbride/. (ac-
cessed February 22nd, 2013).

[MCL+01] John Mylopoulos, Lawrence Chung, Stephen Liao, Huaiqing
Wang, and Eric Yu. Exploring alternatives during require-
ments analysis. IEEE Software, 18(1):92–96, 2001.

[MD89] D. McCarthy and U. Dayal. The Architecture of an Active
Database Management System. In Proceedings of the 1989
ACM SIGMOD International Conference on Management of
Data (SIGMOD ’89), pages 215–224, May 1989.

[MFBC10] Pierre-Alain Muller, Frédéric Fondement, Benoît Baudry, and
Benoît Combemale. Modeling modeling modeling. Software
and Systems Modeling, 11(3):347–359, August 2010.

[MHGA13] Sara Mahdavi-Hezavehi, Matthias Galster, and Paris Avge-
riou. Variability in quality attributes of service-based software
systems: A systematic literature review. Information and Soft-
ware Technology, 55(2):320–343, 2013.

218

http://www.ibm.com/developerworks/rational/library/mar07/mcbride/
http://www.ibm.com/developerworks/rational/library/mar07/mcbride/

Bibliography

[MMLP09] R. Mietzner, A. Metzger, F. Leymann, and K Pohl. Variability
modeling to support customization and deployment of multi-
tenant-aware Software as a Service applications. Proceedings of
the 2009 ICSE Workshop on Principles of Engineering Service
Oriented Systems, pages 18–25, 2009.

[MNDF+10] Alessandro Marchetto, Cu D Nguyen, Chiara Di Francesco-
marino, Nauman A Qureshi, Anna Perini, and Paolo Tonella.
A Design Methodology for Real Services. In Proceedings of
the 2nd International Workshop on Principles of Engineering
Service-Oriented Systems, pages 15–21. ACM, 2010.

[MR12] Michael Menzel and Rajiv Ranjan. CloudGenius: Decision
Support for Web Server Cloud Migration. In Proceedings of
the 21st International Conference on World Wide Web (WWW
’12), pages 979–988, Lyon, France, March 2012.

[MST11] M. Menzel, M. Schönherr, and S. Tai. (MC2) 2: criteria, re-
quirements and a software prototype for Cloud infrastructure
decisions. Software: Practice and Experience, 43(11):1283–
1297, 2011.

[MTW+12] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and
F. De Turck. Developing and managing customizable Software
as a Service using feature model conversion. In IEEE Net-
work Operations and Management Symposium (NOMS), pages
1295–1302. IEEE Computer Society, 2012.

[NC10] Tuan Nguyen and Alan Colman. A Feature-Oriented Approach
for Web Service Customization. In Proceedings of the 2010
IEEE International Conference on Web Services, ICWS ’10,
pages 393–400, Washington, DC, USA, 2010. IEEE.

[NCH11] Tuan Nguyen, Alan Colman, and Jun Han. Modeling and
Managing Variability in Process-Based Service Compositions.
In G. Kappel, Z. Maamar, and H.R. Motahari-Nezhad, editors,
Service-Oriented Computing, pages 404–420. Springer Berlin /
Heidelberg, 2011.

[NCH14] Tuan Nguyen, Alan Colman, and Jun Han. Comprehen-
sive Variability Modeling and Management for Customizable
Process-Based Service Compositions. In Athman Bouguet-
taya, Quan Z. Sheng, and Florian Daniel, editors, Web Services
Foundations, pages 507–533. Springer New York, 2014.

219

Bibliography

[NCTH11] Tuan Nguyen, Alan Colman, Muhammad Adeel Talib, and
Jun Han. Managing Service Variability: State of the Art and
Open Issues. Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, pages 165–173, 2011.

[Net] Netflix Inc. Netflix - Watch TV Shows Online, Watch Movies
Online. http://www.netflix.com/. (accessed November 6th,
2013).

[OBB+09] Daniel Oberle, Dipl-Ing Nadeem Bhatti, Saartje Brockmans,
Dipl-Wirtsch-Ing Michael Niemann, and Christian Janiesch.
Countering service information challenges in the internet
of services. Business & Information Systems Engineering,
1(5):370–390, 2009.

[Obj] Object Management Group. UML Resources Page. http:
//www.uml.org/. (accessed March 13th, 2013).

[O’L93] Daniel E O’Leary. Determining Differences in Expert Judg-
ment: Implications for Knowledge Acquisition and Valida-
tion*. Decision Sciences, 24(2):395–408, 1993.

[Pap03] M.P. Papazoglou. Service-oriented computing: concepts, char-
acteristics and directions. In Web Information Systems Engi-
neering, 2003. WISE 2003. Proceedings of the Fourth Interna-
tional Conference on, pages 3 – 12, 2003.

[PBP06] Kai Petersen, Nadine Bramsiepe, and Klaus Pohl. Applying
Variability Modeling Concepts to Support Decision Making for
Service Composition. In Service-Oriented Computing: Conse-
quences for Engineering Requirements (SOCCER ’06), pages
1–1, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[PC12] Lawrence Pizette and Toby Cabot. Databse as a Service: A
Marketplace Assessment. Technical report, The MITRE Cor-
poration, 2012.

[PCP+12] Luca Panziera, Marco Comerio, Matteo Palmonari, Flavio
De Paoli, and Carlo Batini. Quality-driven extraction, fusion
and matchmaking of semantic web API descriptions. Journal
of Web Engineering, 11(3):247–268, September 2012.

[PLP11] Richard Pohl, Kim Lauenroth, and Klaus Pohl. A performance
comparison of contemporary algorithmic approaches for auto-
mated analysis operations on feature models. In Automated

220

http://www.netflix.com/
http://www.uml.org/
http://www.uml.org/

Bibliography

Software Engineering (ASE), 2011 26th IEEE/ACM Interna-
tional Conference on, pages 313–322. IEEE Computer Society,
2011.

[PS00] Linda Peters and Hasannudin Saidin. IT and the mass cus-
tomization of services: the challenge of implementation. In-
ternational Journal of Information Management, 20(2):103 –
119, 2000.

[PSD13] Costas P. Pappis, Constantinos I. Siettos, and Thomas K.
Dasaklis. Fuzzy Sets, Systems, and Applications. In Saul I.
Gass and Michael C. Fu, editors, Encyclopedia of Operations
Research and Management Science, pages 609–620. Springer
US, 2013.

[PuFvdL05] Klaus Pohl and Günter Bockle und Frank von der Linden.
Software Procut Line Engineering. Springer-Verlag Berlin Hei-
delberg, 2005.

[PVDH06] Michael P Papazoglou and Willem-Jan Van Den Heuvel.
Service-oriented design and development methodology. In-
ternational Journal of Web Engineering and Technology,
2(4):412–442, 2006.

[QDH+12] C. Quinten, L. Duchien, P. Heymans, S. Mouton, and E. Char-
lier. Using Feature Modelling and automations to select among
cloud solutions. In Proceedings of the 3rd International Work-
shop on Product Line Approaches in Software Engineering
(PLEASE), pages 17–20, 2012.

[QP10] N.A. Qureshi and A. Perini. Requirements Engineering for
Adaptive Service Based Applications. In Proceedings of the
18th IEEE International Requirements Engineering Confer-
ence (RE), pages 108–111. IEEE Computer Society, 2010.

[Quo] QuoteMedia, Inc. Stock Quotes and Market Data Provider
> QuoteMedia. http://www.quotemedia.com/. (accessed
March 4th, 2014).

[RA11] Stefan T. Ruehl and Urs Andelfinger. Applying Software Prod-
uct Lines to Create Customizable Software-as-a-Service Ap-
plications. In Proceedings of the 15th International Software
Product Line Conference, Volume 2, SPLC ’11, pages 1–4, New
York, NY, USA, 2011. ACM.

221

http://www.quotemedia.com/

Bibliography

[Rac] Cloud Servers by Rackspace. http://www.rackspace.com/
cloud/servers/. (accessed November 5th, 2013).

[RC06] Roland T. Rust and Tuck Siong Chung. Marketing Models of
Service and Relationships. Marketing Science, 25(6):560–580,
November 2006.

[RF03] S. Robak and B. Franczyk. Modeling Web Services Variability
with Feature Diagrams. In Web, Web-Services, and Database
Systems, volume 2593 of Lecture Notes in Computer Science,
pages 120–128. Springer Berlin / Heidelberg, 2003.

[RHH11] Zia ur Rehman, Farookh K Hussain, and Omar K Hussain.
Towards Multi-Criteria Cloud Service Selection. In Proceedings
of the 5th International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), pages 44–
48. IEEE Computer Society, 2011.

[RHH13] Zia ur Rehman, Omar Khadeer Hussain, and Farookh Khadeer
Hussain. Parallel Cloud Service Selection and Ranking Based
on QoS History. International Journal of Parallel Program-
ming, pages 1–33, October 2013.

[Rob90] W.N. Robinson. Negotiation behavior during requirement
specification. In Proceedings of the 12th International Con-
ference on Software Engineering (ICSE ’90), pages 268–276,
1990.

[Rot89] J. Rothenberg. The Nature of Modeling. In Lawrence E. Wid-
man, Kenneth A. Loparo, and Norman R. Nielsen, editors,
Artificial Intelligence, Simulation & Modeling, pages 75–92.
John Wiley & Sons, Inc., New York, NY, USA, 1989.

[Roy70] Winston W. Royce. Managing the Development of Large Soft-
ware Systems. In Proceedings of IEEE WESCON, pages 1–9,
August 1970.

[RvdA07] Michael Rosemann and Wil MP van der Aalst. A configurable
reference modelling language. Information Systems, 32(1):1–
23, 2007.

[RZ13] Ramaswamy Ramesh and Stanley Zionts. Multi-Criteria Deci-
sion Making (MCDM). In SaulI. Gass and MichaelC. Fu, ed-
itors, Encyclopedia of Operations Research and Management
Science, pages 1007–1013. Springer US, 2013.

222

http://www.rackspace.com/cloud/servers/
http://www.rackspace.com/cloud/servers/

Bibliography

[Saa90] T Saaty. How to Make a Decision: The Analytic Hierarchy
Process. European Journal of Operational Research, 48(1):9–
26, September 1990.

[Saa08] Thomas L. Saaty. Decision making with the analytic hierarchy
process. International Journal of Services Sciences, 1(1):83,
2008.

[Saa13] Thomas L. Saaty. Analytic Hierarchy Process. In Encyclopedia
of Operations Research and Management Science, pages 52–64.
December 2013.

[Sal] Salesforce.com, inc. CRM and Cloud Computing To Grow
Your Business. http://www.salesforce.com/. (accessed
November 6th, 2013).

[SAP] SAP AG. Cloud Suite. http://www.sap.com/pc/tech/
cloud/software/cloud-applications/enterprise-suite.
html. (accessed November 6th, 2013).

[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF - Eclipse Modeling Framework. Addison-
Wesley Professional, 2nd edition, December 2008.

[SBRCT08] Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and
Pablo Trinidad. Automated Merging of Feature Models Using
Graph Transformations. In Post-proceedings Summer School
on Generative and Transformational Techniques in Software
Engineering (GTTSE’07), volume 5235 of LNCS, pages 489–
505, Braga, Portugal, 2008. Springer.

[SC04] Daniela Sangiorgi and Brendon Clark. Toward a Participa-
tory Design Approach to Service Design. In Proceedings of the
Participatory Design Conference (PDC ’04), pages 148–151,
2004.

[Sch06] Douglas C Schmidt. Model-Driven Engineering. IEEE Internet
Computing, 39(2):25–31, 2006.

[SD07] Marco Sinnema and Sybren Deelstra. Classifying variability
modeling techniques. Information and Software Technology,
49(7):717–739, 2007.

[SDNB04] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch.
COVAMOF: A Framework for Modeling Variability in Soft-
ware Product Families. Software Product Lines, pages 197–
213, 2004.

223

http://www.salesforce.com/
http://www.sap.com/pc/tech/cloud/software/cloud-applications/enterprise-suite.html
http://www.sap.com/pc/tech/cloud/software/cloud-applications/enterprise-suite.html
http://www.sap.com/pc/tech/cloud/software/cloud-applications/enterprise-suite.html

Bibliography

[Sel03] Bran Selic. The Pragmatics of Model-Driven Development.
IEEE Software, 20(5):19–25, 2003.

[SFG99] H. Sharp, A. Finkelstein, and G. Galal. Stakeholder identifi-
cation in the requirements engineering process. In Proceedings
of the 10th International Workshop on Database and Expert
Systems Applications, pages 387–391. IEEE Computer Soci-
ety, 1999.

[SGB+12] Sergio Segura, José A Galindo, David Benavides, José A
Parejo, and Antonio Ruiz-Cortés. BeTTy: benchmarking and
testing on the automated analysis of feature models. In Pro-
ceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems, VaMoS ’12, pages 63–
71, New York, NY, USA, January 2012. ACM.

[SH98] T.L. Saaty and G. Hu. Ranking by eigenvector versus other
methods in the analytic hierarchy process. Applied Mathemat-
ics Letters, 11(4):121 – 125, 1998.

[Sha12] Mary Shaw. The Role of Design Spaces. IEEE Software,
29(1):46–50, 2012.

[SM09] Md. Anisuzzaman Siddique and Yasuhiko Morimoto. K-
dominant skyline computation by using sort-filtering method.
In Thanaruk Theeramunkong, Boonserm Kijsirikul, Nick Cer-
cone, and Tu-Bao Ho, editors, Advances in Knowledge Dis-
covery and Data Mining, volume 5476 of Lecture Notes in
Computer Science, pages 839–848. Springer Berlin Heidelberg,
2009.

[SM10] M. Stollberg and M. Muth. Service customization by variabil-
ity modeling. In Proceedings of the 2009 international confer-
ence on Service-oriented computing, pages 425–434, Stckholm,
Sweden, 2010. Springer.

[SMBG07] J. Spohrer, P.P. Maglio, J. Bailey, and D. Gruhl. Steps toward
a science of service systems. Computer, 40(1):71–77, 2007.

[SMDK11] Marc Steen, Menno Manschot, and Nicole De Koning. Benefits
of co-design in service design projects. International Journal
of Design, 5(2):53–60, 2011.

[SMML12] Julia Schroeter, Peter Mucha, Kay Jugel Muth, and Malte
Lochau. Dynamic configuration management of cloud-based
applications. In Proceedings of the 16th International Software

224

Bibliography

Product Line Conference (SPLC ’12), pages 171–178. ACM,
2012.

[Som11] Ian Sommerville. Software Engineering. Addison-Wesley, 9th
edition, 2011.

[SP11] P. Saripalli and G. Pingali. MADMAC: Multiple Attribute
Decision Methodology for Adoption of Clouds. In Proceed-
ings of the 4th International Conference on Cloud Computing
(CLOUD ’11), pages 316–323, 2011.

[Spo] Spotify USA Inc. Music for every moment - Spotify. https:
//www.spotify.com/. (accessed November 6th, 2013).

[Spo08] Jim Spohrer. Services Sciences, Management, and Engineering
(SSME) and Its Relation to Academic Disciplines. In Bernd
Stauss, Kai Engelmann, Anja Kremer, and Achim Luhn, edi-
tors, Services Science, pages 11–40. Springer Berlin / Heidel-
berg, 2008.

[SRS+10] Chang-ai Sun, Rowan Rossing, Marco Sinnema, Pavel Bu-
lanov, and Marco Aiello. Modeling and managing the vari-
ability of Web service-based systems. Journal of Systems and
Software, 83(3):502–516, March 2010.

[STD08] Daniel Schall, Hong-Linh Truong, and Schahram Dustdar.
Unifying human and software services in web-scale collabo-
rations. IEEE Internet Computing, 12(3):62–68, May 2008.

[SVGB05] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. A Taxon-
omy of Variability Realization Techniques. Software: Practice
and Experience, 35(8):705–754, 2005.

[SZG+08] Wei Sun, Xin Zhang, Chang Jie Guo, Pei Sun, and Hui Su.
Software as a Service: Configuration and Customization Per-
spectives. In IEEE Congress on Services Part II (SERVICES-
2), pages 18–25. IEEE Computer Society, 2008.

[SZS11] N. Schuster, C. Zirpins, and U. Scholten. How to balance
flexibility and coordination? Service-oriented model and ar-
chitecture for document-based collaboration on the Web. In
Service-Oriented Computing and Applications (SOCA), 2011
IEEE International Conference on, pages 1–9. IEEE Computer
Society, 2011.

225

https://www.spotify.com/
https://www.spotify.com/

Bibliography

[TBD07] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature ori-
ented model driven development: A case study for portlets. In
29th International Conference on Software Engineering (ICSE
’07), pages 44–53. IEEE Computer Society, 2007.

[TBK09] T Thum, D. Batory, and C. Kästner. Reasoning about edits
to feature models. In Software Engineering, 2009. ICSE 2009.
IEEE 31st International Conference on, ICSE ’09, pages 254–
264, 2009.

[Tic03] Walter F. Tichy. Software Configuration Management. In En-
cyclopedia of Computer Science, pages 1601–1604. John Wiley
and Sons Ltd., Chichester, UK, 2003.

[TMW+05] V Talwar, D Milojicic, Qinyi Wu, C Pu, W Yan, and G Jung.
Approaches for Service Deployment. IEEE Internet Comput-
ing, 9(2), 2005.

[TÖ13] Bedir Tekinerdogan and Karahan Özturk. Feature-Driven
Design of SaaS Architectures. In Zaigham Mahmood and
Saqib Saeed, editors, Software Engineering Frameworks for the
Cloud Computing Paradigm, Computer Communications and
Networks, pages 189–212. Springer London, 2013.

[TÖD11] Bedir Tekinerdogan, Karahan Özturk, and Ali Dogru. Mod-
eling and Reasoning about Design Alternatives of Software as
a Service Architectures. In Proceedings of the 9th Working
IEEE/IFIP Conference on Software Architecture (WICSA),
pages 312–319. IEEE Computer Society, 2011.

[TRC09] Pablo Trinidad and Antonio Ruiz-Cortés. Abductive Reason-
ing and Automated Analysis of Feature Models: How are they
connected? In Proc. of the 3rd Int. Workshop on Variability
Modelling of Software-Intensive Systems (VAMOS ’09), pages
145–153, 2009.

[Tri] TripAdvisor LLC. Reviews of Hotels, Flights and Vacation
Rentals - TripAdvisor. http://www.tripadvisor.com. (ac-
cessed November 6th, 2013).

[TSG13] Irina Todoran, Norbert Seyff, and Martin Glinz. How cloud
providers elicit consumer requirements: An exploratory study
of nineteen companies. In Proceedings of the 21st IEEE In-
ternational Requirements Engineering Conference (RE ’13),
pages 105–114, Rio de Janeiro, Brasil, 2013. IEEE Computer
Society.

226

http://www.tripadvisor.com

Bibliography

[UML11] Unified Modeling Language (OMG UML), Superstructure.
http://www.omg.org/spec/UML/2.4.1/, 2011. (accessed
February 4th, 2014).

[U.S] U.S. government. Get It Done Online! U.S. Government
Online Services. http://www.usa.gov/Citizen/Services.
shtml. (accessed November 6th, 2013).

[VK06] Omkarprasad S. Vaidya and Sushil Kumar. Analytic hierarchy
process: An overview of applications. European Journal of
Operational Research, 169(1):1 – 29, 2006.

[VMA08] Stephen L Vargo, Paul P Maglio, and Melissa Archpru Akaka.
On value and value co-creation: A service systems and service
logic perspective. European Management Journal, 26(3):145–
152, 2008.

[W3C04] W3C Working Group. Web Services Glossary. http://www.
w3.org/TR/ws-gloss/, 2004. (accessed Februrary 21st, 2013).

[WDF+08] Jyrki Wallenius, James S. Dyer, Peter C. Fishburn, Ralph E.
Steuer, Stanley Zionts, and Kalyanmoy Deb. Multiple Criteria
Decision Making, Multiattribute Utility Theory: Recent Ac-
complishments and What Lies Ahead. Management Science,
54(7):1336–1349, 2008.

[WDSB09] Jules White, Brian Dougherty, Doulas C. Schmidt, and David
Benavides. Automated reasoning for multi-step feature model
configuration problems. In Proceedings of the 13th Interna-
tional Software Product Line Conference (SPLC ’09), pages
11–20, Pittsburgh, PA, USA, 2009. Carnegie Mellon Univer-
sity.

[Wee08] Sanjiva Weerawarana, editor. Web services platform architec-
ture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL,
WS-reliable messaging, and more. Pearson Education, Upper
Saddle River, NJ, 5. print. edition, 2008.

[WF13] Erik Wittern and Robin Fischer. A Life-Cycle Model for Soft-
ware Service Engineering. In Proceedings of the 2nd European
Conference on Service-Oriented and Cloud Computing (ES-
OCC ’13), LNCS 8135, pages 164–171. Springer Berlin / Hei-
delberg, 2013.

[Whi07] Jim Whitehead. Collaboration in Software Engineering: A
Roadmap. Future of Software Engineering (FOSE ’07), pages
214–225, 2007.

227

http://www.omg.org/spec/UML/2.4.1/
http://www.usa.gov/Citizen/Services.shtml
http://www.usa.gov/Citizen/Services.shtml
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/

Bibliography

[Wit12] Erik Wittern. Public Service Cost and Valuation Model, 2nd
Version. COCKPIT project deliverable 3.2.2, Karlsruhe Insti-
tute of Technology (KIT), Karlsruhe, Germany, January 2012.

[WKM12] Erik Wittern, Jörn Kuhlenkamp, and Michael Menzel. Cloud
Service Selection Based on Variability Modeling. In Proceed-
ings of the 10th International Conference on Service Oriented
Computing (ICSOC ’12), Lecture Notes in Computer Science,
pages 127–141. Springer Berlin / Heidelberg, 2012.

[WLBB14] Erik Wittern, Alexander Lenk, Sebastian Bartenbach, and
Tobias Braeuer. Feature-based Configuration and Cloud-
independent Deployment on IaaS. In Proceedings of the 18th
International Enterprise Distributed Object Computing Con-
ference (EDOC ’14), short paper, pages 128–135, 2014.

[WLS+05] Hai Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff
Pan. A semantic web approach to feature modeling and ver-
ification. In Workshop on Semantic Web Enabled Software
Engineering (SWESE’05), 2005.

[Wor07] World Wide Web Consortium (W3C). Web Services Policy 1.5
- Framework. http://www.w3.org/TR/ws-policy/, Septem-
ber 2007. (accessed October 1st, 2013).

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohls-
son, Björn Regnell, and Anders Wesslén. Experimentation in
Software Engineering. Springer Berlin / Heidelberg, 2012.

[WSKT12] Erik Wittern, Nelly Schuster, Jörn Kuhlenkamp, and Stefan
Tai. Participatory service design through composed and co-
ordinated service feature models. In ICSOC’12: Proceedings
of the 10th international conference on Service-Oriented Com-
puting. Springer-Verlag, November 2012.

[WTM+04] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P. De-
vanbu. GlueQoS: Middleware to sweeten quality-of-service pol-
icy interactions. Proceedings of the 26th International Con-
ference on Software Engineering (ICSE ’04), pages 189–199,
2004.

[WWMQ10] Guangping Wang, Jianling Wang, Xiaoqin Ma, and Robin G
Qiu. The effect of standardization and customization on ser-
vice satisfaction. Journal of Service Science, 2(1):1–23, June
2010.

228

http://www.w3.org/TR/ws-policy/

Bibliography

[WZ11a] Erik Wittern and Christian Zirpins. On the use of feature mod-
els for service design: the case of value representation. Towards
a Service-Based Internet. ServiceWave 2010 Workshops, pages
110–118, 2011.

[WZ11b] Erik Wittern and Christian Zirpins. Validating Service Value
Propositions Regarding Stakeholder Preferences. In 2011
IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 294–
297, Berlin, May 2011. IEEE.

[WZ14] Erik Wittern and Christian Zirpins. Service Feature Modeling:
Modeling and Participatory Ranking of Service Design Alter-
natives. Software and Systems Modeling (SoSyM), pages 1–26,
May 2014.

[WZR+11] Erik Wittern, Christian Zirpins, Nidhi Rajshree, Anshu N
Jain, Ilias Spais, and Konstantinos Giannakakis. A Tool Suite
to Model Service Variability and Resolve It Based on Stake-
holder Preferences. In The 9th International Conference on
Service Oriented Computing (ICSOC), pages 1–2, 2011.

[Xig] Xignite, Inc. Market Data Feed and API - Financial Web
Service - On-Demand. http://www.xignite.com. (accessed
March 4th, 2014).

[YBCD08] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel.
Understanding Mashup Development. IEEE Internet Comput-
ing, 12(5):44–52, September 2008.

[YdPLLM08] Yijun Yu, Julio Cesar Sampaio do Prado Leite, Alexei
Lapouchnian, and John Mylopoulos. Configuring features with
stakeholder goals. pages 645–649, March 2008.

[YH95] K. P. Yoo and C-L. Hwang. Multiple Attribute Decision-
Making: An Introduction. Sage University Publications, Cali-
fornia, 1995.

[Yu97] Eric S.K. Yu. Towards modelling and reasoning support for
early-phase requirements engineering. In Proceedings of the
Third IEEE International Symposium on Requirements Engi-
neering, pages 226–235. IEEE Computer Society, 1997.

[Zah99] Sajjad Zahir. Clusters in a group: Decision making in the vec-
tor space formulation of the analytic hierarchy process. Euro-
pean journal of operational research, 112(3):620–634, February
1999.

229

http://www.xignite.com

Bibliography

[ZKL+09] Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny
Polley, and Nelly Schuster. Managing Architectural Deci-
sion Models with Dependency Relations, Integrity Constraints,
and Production Rules. Journal of Systems and Software,
82(8):1249–1267, August 2009.

[ZMZ06] Wei Zhang, Hong Mei, and Haiyan Zhao. Feature-driven re-
quirement dependency analysis and high-level software design.
Requirements Engineering, 11(3):205–220, June 2006.

[ZZZ09] Wenying Zeng, Yuelong Zhao, and Junwei Zeng. Cloud Service
and Service Selection Algorithm Research. In Proceedings of
the First ACM/SIGEVO Summit on Genetic and Evolutionary
Computation (GEC ’09), pages 1045–1048, New York, NY,
USA, 2009. ACM.

230

Index

A
adaptation, 43
aggregation rule, 63
agile development, 37
attribute, 55

domain, 63
measurement unit, 63

attribute aggregation, 99
attribute type, 62

C
cloud service, 27

Infrastructure as a Service
(IaaS), 27

Platform as a Service (PaaS),
27

Software as a Service (SaaS),
27

collaboration server, 140
composition

service feature models, 70
variability realization

mechanism, 43
Web services, 27

configuration, 6
process of selecting features,

54
service feature modeling, 53
variability realization

mechanism, 41
constraint satisfaction problem,

95
consumption, service, 35
contribution, 73

coordination rules, 75
custom attribute type priority,

64
customization, 41

D
decision-maker, 95
delivery, service, 35
deployment, 25

variability realization
mechanism, 43

deployment activities, 33
design activities, 32
development, service, 35
domain model, 68

E
evaluation, 117

F
feature, 53, 58

abstract feature, 59
grouping feature, 59
instance feature, 60

feature diagram, 53

G
generic service, 23

I
implementation activities, 33
instantiation value, 65
inter-service variability, 38
interaction platform, 143
intra-service variability, 38

231

INDEX

L
language, 51
life-cycle model

service, 28
service feature modeling, 30
software, 28

M
meta model, 134
model, 44
model-driven engineering, 46
modeler, 66
modeling, 44

generic process, 45
variability realization

mechanism, 41

O
on-demand, 24
operation activities, 33

P
participation, 117
pay per use, 24
poll, 118
preference, 118
preference aggregation, 111, 186
preference-based ranking, 106
provision, service, 35

R
relationship, 54

cross-tree, 55
decomposition, 54

requirements filtering, 100
result, 73

revision, 36
roles

consumer, 24
provider, 24
SFM composition, 74

S
scale order, 64
service engineer, 66
service engineering, 24
service feature model, 50, 51
service roles, 39
service selection

service feature modeling,
120

variability realization
mechanism, 43

service status, 30
service variability, 36
service variant, 36
SFM designer, 137
skyline filtering, 108
software service, 25
specification activities, 32

V
valuation server, 142
variability object, 38
variability subject, 38
variable service, 36
version, 36
vote, 118

W
Web service, 27

232

J.
E

. W
it

t
e

r
n

M
od

el
in

g
an

d
Se

lec
tio

n
of

 S
of

tw
ar

e
Se

rv
ice

 V
ar

ia
nt

s

9 783731 503491

ISBN 978-3-7315-0349-1

In today’s software development projects, the effective use of software service variants is
an increasingly important consideration for both providers und consumers. Variants are
alternative instances of the design, implementation, deployment, and execution of a service.
They enable providers to serve diverse consumer requirements, while allowing consumers
to use services according to their requirements and preferences. Existing product line man-
agement approaches to handle variants lack the capacity to represent characteristics, as
well as for collaborative modeling, and for choosing variants to apply these approaches to
services. To remedy these shortcomings, this work presents the newly developed „Service
Feature Modeling“. This approach encompasses a modeling language developed by the
author which augments existing product line management approaches to be applicable to
services. The proposed modeling language improves, compared to existing languages, the
expressiveness and semantics of service feature models and allows for a novel, collaborative
modeling process. Service feature modeling further comprises a new, modular process for
choosing service variants, which encompasses methods for collaborative selection. The
author comprehensively evaluates his work, analysing its conceptual contributions, and
basing this analysis on a prototypical implementation, two real applications, and an
empirical study.

	Introduction
	Examples for Variants in Software Services
	Public Service Design
	Financial Web Service Consumption
	IaaS Consumption

	Motivations for Software Service Variants
	Problem Statement
	Problems Regarding Modeling Service Variants
	Problems Regarding Selecting Service Variants

	Research Design and Contributions
	Concepts and Methodology
	Modeling Language
	Methods
	Tools

	Structure of this Dissertation

	Concepts and Methodology
	Service Concept
	Generic Services
	Software Services

	Software Service Life-Cycle Model
	Software Life-Cycle Models
	Service Life-Cycle Models
	Our Software Service Life-Cycle

	Service Variants and Variability
	Origins of Service Variability
	Variability Subject
	Affected Service Roles
	Time of Occurrence
	Realization of Variability

	Fundamentals of Modeling
	Characteristics of Modeling
	Generic Modeling Process

	Methodology of Service Feature Modeling

	Modeling Service Variants
	Standard Feature Modeling
	Appeal of Feature Modeling

	Service Feature Modeling Language
	Basics of the Service Feature Modeling Language
	Feature Types in Service Feature Modeling
	Representation of Service Variability with Feature Types
	Attribute Types in Service Feature Modeling

	Service Feature Modeling Process
	Involved Stakeholders
	Modeling Procedure
	Modeling SFMs with Similar Structure

	Coordinated Composition of Service Feature Models
	Composition Model
	Roles
	Coordination Rules
	Service Binding

	Related Work on Modeling Service Variants
	Variability Modeling Languages
	Feature-based Modeling of Service Variability
	Other Approaches to Represent Service Variability
	Collaborative Modeling

	Discussion

	Using Service Feature Models
	Usage Process
	Goals of Usage
	Usage Overview
	Involved Stakeholders

	Automatic Determination of Variants
	Mapping of SFMs to Constraint Satisfaction Problems
	Attribute Aggregation

	Requirements Filtering
	Stating Requirements
	Matching Requirements to Variants

	Preference-Based Ranking of Variants
	Ranking Overview
	Skyline Filtering
	SFM to Poll Transformation
	Stakeholder Preferences Collection
	Configuration Ranking Determination
	Participatory Ranking

	Usage with Multiple SFMs
	Related Work on Variant Selection
	Feature Model Configuration
	Variant Selection in Service Development
	Variant Selection in Service Delivery
	Service Selection

	Discussion

	Evaluation
	Proof of Concept - Design and Implementation
	Requirements
	SFM Meta Model
	Architecture
	Implementation
	Discussion

	Performance Evaluation
	Design of Performance Evaluation
	Evaluation Models
	Results of Performance Evaluation
	Discussion

	Use Case - Public Service Design
	Use Case Description
	Modeling
	Usage
	Realization
	Discussion

	Use Case - IaaS Consumption
	Use Case Description
	Modeling
	Usage
	Realization
	Discussion

	Empirical Evaluation
	Design of Empirical Evaluation
	Data Collection
	Results of Empirical Evaluation
	Discussion

	Conclusion
	Summary
	Future work

	Appendix
	Appendix A
	Sets of SFM elements
	Information about performance evaluation of the skyline filter
	Information about performance evaluation of the requirements filter

	Appendix B
	Screenshots requirements filter implementation
	Screenshots preference-based ranking implementation

