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MODEL-AWARE NEWTON-TYPE INVERSION SCHEME

FOR ELECTRICAL IMPEDANCE TOMOGRAPHY

ROBERT WINKLER AND ANDREAS RIEDER

Abstract. Electrical impedance tomography is a non-invasive method for imaging the electri-
cal conductivity of an object from voltage measurements on its surface. This inverse problem
suffers in three respects: It is highly nonlinear, severely ill-posed and highly under-determined.
To obtain yet reasonable reconstructions, maximal information needs to be gathered from the
model and extracted from the data in all stages of the reconstruction procedure. We will
present a holistic reconstruction framework which estimates the unknown model-specific pa-
rameters, i.e. background conductivity, contact impedance, and noise level, before solving the
full nonlinear problem with a Newton-type method. Therein, a novel conductivity transfor-
mation decreases nonlinearity while a weighting scheme resolves the under-determinedness by
promoting the reconstruction of piecewise constant conductivities. This way we increase robust-
ness, speed, and reconstruction accuracy. Moreover, our method is easy to use and applies to
a wide range of settings as it is free of design parameters. Being an absolute imaging method,
no measured calibration data is required. We demonstrate the performance of this concept
numerically for simulated and measured data.

1. Background

Electrical impedance tomography (EIT) is a non-invasive imaging method with applications
in clinical diagnostics, patient monitoring, and process tomography. Its purpose is to deter-
mine the spacial conductivity distribution of an object from measurements on its boundary.
To that end, electrical currents are applied through electrodes attached to the object surface
and the resulting potential distributions are measured on the same electrodes. An accurate
mathematical description of this process is given by the complete electrode model (CEM, [19]),
which incorporates the shunting effect of the electrodes and a contact impedance occurring at
the electrode-object interface.

The mathematical task of EIT is the inverse conductivity problem (ICP), i.e. to determine the
conductivity (or some information about it) from the current-potential measurement pairs—
a highly nonlinear, under-determined and unstable inverse problem. Many popular solution
methods use iterated linearizations of the forward operator (Newton-type methods). In ad-
dition to the measurements, the electrode contact impedance and a good initial guess of the
conductivity are required as Newton’s method converges only locally in general. Moreover,
error related regularization parameters need to be specified, like the smoothing parameter for
Tikhonov regularization, the noise level for Morozov’s discrepancy principle or the parameter
means and covariances in the Bayesian framework.

Aim and structure of this work. Generic Newton-type approaches assume the model parameters
to be known, or chosen manually, to obtain meaningful reconstructions. While the object and
electrode geometry can be accessed from “outside” or by other imaging modalities, parameters
like the contact impedances, the background-conductivity and the noise are difficult to obtain
and highly problem-specific.
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2 R. WINKLER AND A. RIEDER

To overcome these difficulties, we suggest a systematic way to estimate the contact impedances
and the background conductivity using Green’s identity for the CEM in section 3.1. Moreover,
we use a symmetry property of the model to estimate the measurement error in section 3.2.

In section 3.3, we investigate the nonlinearity and constrainedness of the homogeneous con-
ductivity problem, i.e. of determining a constant conductivity by linearization, and consider
various transformations (e.g. the popular log-conductivity [2, 9]) to reduce nonlinearity and to
obtain an unconstrained problem.

In section 3.4, we resolve the under-determinedness of the discretized linearized problem by
introducing a reconstruction prior which encourages the reconstruction of piecewise constant
conductivities whenever conductivity coefficient updates are indistinguishable in the lineariza-
tion. This prior is incorporated as a weighting scheme for the regularized conjugate gradient
iteration REGINN [16] to compute the Newton updates in section 3.5.

All model-specific additions to a generic Newton-type inversion scheme are summarized in a
model-aware Newton-type inversion scheme (MANTIS) in section 3.6.

Finally, the performance of this scheme is demonstrated for noisy simulated data and mea-
sured tank data in section 4.

All following considerations are independent of the spatial dimension. We formulate them
in a two-dimensional setting and present numerical computations in a 2D model, but MANTIS
can readily be applied to three dimensional settings.

2. Preliminaries

A potential u ∈ H1(Ω) on a source-free, simply connected domain Ω ⊂ R2 with piecewise
Lipschitz boundary satisfies the conservation of charge

∇ · σ∇u = 0 on Ω,(2.1)

where σ ∈ L∞+ (Ω) = {ϕ∈L∞(Ω)|ϕ≥ c> 0 a.e. for some c∈R>0} is the isotropic conductivity
coefficient.

2.1. Forward Model. A potential is uniquely defined by its boundary trace f = u|∂Ω or, up
to a constant, by its outer normal boundary current iν =σ∂u/∂ν. A pair

(f, iν) ∈ H−1/2
� (∂Ω)×H1/2

� (∂Ω), where H� := {ϕ ∈ H|〈ϕ, 1〉H,H∗ = 0} ,

is called (continuum) Neumann-Dirichlet (ND) datum. The linear ND operator

H
−1/2
� (∂Ω)→ H

1/2
� (∂Ω), iν 7→ f,(2.2)

is well-defined and one-to-one. The map

F : L∞+ (Ω)→ L
(
H
−1/2
� (∂Ω), H

1/2
� (∂Ω)

)
, σ 7→ (iν 7→ f),

is called the forward operator of the continuum model ; see [1].
In practice, net current patterns I∈RL� are applied and potential vectors U ∈RL� are measured

via simply connected, separated electrodes at the object surface

E1, . . . , EL ⊂ ∂Ω, L ∈ N≥2.

Each electrode-domain interface has a contact impedance zl > 0 causing a potential drop zliν ,
l = 1, ... ,L. The interior and boundary potential (u,U) ∈ H1

� (Ω)×RL� for an applied current
I ∈RL� are given by the CEM as the unique solution of

a
(
(u, U), (w,W )

)
=

L∑
l=1

IlWl for all (w,W ) ∈ H1(Ω)× RL� ,(2.3)
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where a :
(
H1(Ω)×RL�

)
×
(
H1(Ω)×RL�

)
→R,

a
(
(v,W ), (w,W )

)
=

∫
Ω
σ∇v · ∇w dx+

L∑
l=1

1

zl

∫
El

(v − Vl)(w −Wl) dS.(2.4)

For details, see [19]. The ND (or current-to-voltage) map of the CEM is

RL� → RL� , I 7→ U,

and the forward operator of the CEM is

F : L∞+ (Ω) ⊃ D(F )→ L(RL� ), σ 7→ (I 7→ U).

Note that F (σ) ∈ L(RL� ) is symmetric, thus dim(Range(F ))≤ L(L−1)
2 . In practice, the data is

given in a certain measurement basis of M ∈N measurements; that is, we know a set of current

vectors I =
(
I(1),...,I(M)

)
∈
(
RL�
)M

and their corresponding potentials U =
(
U (1),...,U (M)

)
∈(

RL�
)M

satisfying F (σ)I =U .
Moreover, F is Fréchet differentiable. The Fréchet derivative at conductivity σ in direction

η ∈L∞(Ω) is given as

F ′(σ)[η]I = U ′,

where U ′ is the second component of (u′,U ′) solving

a
(
(u′, U ′), (w,W )

)
= −

∫
Ω
η∇u∇w dx for all (w,W ) ∈ H1(Ω)× RL� ,

and (u,U) is the solution of (2.3) for conductivity σ and current I; see [11, 12]. In particular,
the Fréchet derivative entries can be sampled by(

F ′(σ)[η]
)
l,m

= −
∫

Ω
η∇u(l)∇u(m) dx, l,m = 1, . . . , L.

Here, u(l) is the potential corresponding to the lth “virtual” unit current I(l) ∈RL, I
(l)
k = δlk;

see [15, 10] for details.

2.2. Inverse Model. The ICP for the CEM is to find a (regularized) solution to the nonlinear
system

F (σ)I = U , σ ∈ D(F ).(2.5)

To that end, the conductivity space is usually restricted to piecewise constant functions on a
partition P = {Ω1,...,ΩP }, P ∈N, of Ω. For DP = span{χΩ1 ,...,χΩP }, we define

D(F ) := DP+ := DP ∩ L∞+ (Ω), DP+ ⊃ σ =̂ σ = (σ1, . . . ,σP )> ∈ RP+,

where we identify1 a conductivity σ with its coefficient vector σ. Often, P is chosen as a finite
element triangulation of Ω, although other, more problem-specific discretizations have been
suggested [22, 4, 13, 3]. Note that even in this finite-dimensional setting, (2.5) is usually under-

determined, that is P > L(L−1)
2 . Denoting by col(·) the operation of stacking a matrix into a

column vector column-wise, we define the sensitivity matrix S ∈RLM×P column-wise by

(S)p = col
(
F ′(σ)[χΩp ]I

)
for p = 1, . . . , P.

Discretization of the inverse problem. As the forward operator F is Fréchet differentiable, regu-
larized Newton-type methods are a natural choice for solving (2.5) numerically; that is, a locally
linearized problem is solved in each iteration to solve the nonlinear problem. A basic scheme
is shown in Algorithm 1. The evaluation of the forward operator and its Fréchet derivative in
each iteration can be obtained using the finite element method (FEM); see [15].

1Coefficient vectors in RP+ and RP are denoted by the boldface symbols of their continuum correspondences
in DP+ and DP , respectively, throughout this work.
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Algorithm 1: Basic Newton-type inversion algorithm for the CEM

input : Current-voltage set (I,U), initial conductivity σ(0), contact impedances, tolerance
tol.

output: Conductivity σ.

1 Set k= 0, d(0) =U−F (σ(0))I;

2 while
∥∥d(k)

∥∥> tol do

3 Compute S(k) =S(σ(k));

4 Find regularized solution s(k) of linearized problem S(k)s(k) = d(k);

5 Set σ(k+1) =σ(k) +s(k) ;

6 Set d(k+1) =U−F (σ(k+1))I;

7 Set k← k+1;

8 end

9 Set σ=
∑P

p=1σ
(k)
p χΩp ;

3. Model-specific modifications for Newton-type algorithms

Our goal is to incorporate a set of modifications and extensions to Algorithm 1 in light
of available CEM model information for a given setting. To that end, we proceed in several
steps: First, we introduce a “best constant” conductivity and contact impedance estimate
and determine a tolerance level by estimating the data noise level from the measurements
(Algorithm 1 initialization). Next, we suggest a transformation of the forward problem to solve
an equivalent problem with better linearization and constraint properties (lines 3–5). Finally,
we present a sensitivity-based weighting scheme for each Newton-step which resolves the under-
determinedness of the linearized problem (line 4). The resulting Newton update is independent
of the underlying conductivity discretization and reflects the prior assumption of a piecewise
constant conductivity.

3.1. Conductivity and contact impedance initialization. As Newton-type algorithms
only convergence locally in general, a proper initial guess is crucial. Most commonly, the
conductivity is initialized to a known—or guessed—background conductivity manually, or it is
estimated from the data as a best matching constant.

Continuum model approximation. A well-known [4] initial guess of the conductivity is based on
the continuum model, more precisely on the fact that (2.1) is Laplace’s equation for constant
conductivities. Determining the constant can be transformed to a linear problem: The constant
conductivity to ND operator

R>0 3 σ 7→ (iν 7→ f) = (σ∇νu 7→ u|∂Ω)(3.1)

is linear in the resistivity coefficient ρ= 1
σ . Assume that for σ≡σ0>0, we apply current densities

i
(m)
ν , m= 1,...,M , on ∂Ω, and for each current we consider L∈N point-evaluations U (m) ∈RL�

of the boundary potential f (m). Likewise, denote by V =
(
V (1),...,V (M)

)
another set of the

potential evaluations under unit-conductivity σ≡ 1 for the same currents. Then, exploiting the
linearity in 1

σ0
, we get the initial guess

σcont
0 (I,U) :=

∑L
l=1

∑M
m=1

(
V

(m)
l

)2

∑L
l=1

∑M
m=1 U

(m)
l V

(m)
l

(3.2)
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which minimizes the functional

L∑
l=1

M∑
m=1

(
U

(m)
l − 1

σ0
V

(m)
l

)2

;

see [4]. When approximating the continuum model with electrode measurements, U (m) are

measured electrode potentials for current densities i
(m)
ν which are generated by current vectors

I(m), m= 1,...,M .

Shunt model approximation. To motivate a CEM variant, we first consider the shunt electrode
model which is free of contact impedances and assumes that u ≡ Ul on each electrode El for
l= 1,...,L, and iν = 0 on the gaps. Green’s identity for harmonic functions yields∫

Ω
∇u∇v dx =

∫
∂Ω
v∇νudS =

∫
∂Ω
u∇νv dS.

Here, u and v are solutions to Laplace’s equation (2.1) with σ≡ σ0 and σ≡ 1, respectively, for
identical Neumann data, that is iν = σ0

∂u
∂ν = ∂v

∂ν . Solving for σ0 and averaging over M current
patterns, the resulting conductivity estimate reads

σ0 =
1

M

M∑
m=1

∫
∂Ω v

(m)i
(m)
ν dS∫

∂Ω u
(m)i

(m)
ν dS

=
1

M

M∑
m=1

∑L
l=1 V

(m)
l I

(m)
l∑L

l=1 U
(m)
l I

(m)
l

=: σshunt
0 (I,U),(3.3)

where I
(m)
l =

∫
El
i
(m)
ν dS is an applied electrode current.

CEM approximation. Because of the aforementioned potential drop at the electrode surface, the
conductivity estimates of (3.2) and (3.3) become increasingly inaccurate for the CEM as the
contact impedance increases. We propose a modified version of equation (3.3), incorporating
the electrode contact impedance. In the CEM, we have on each electrode El that

u+ zliν = Ul and

∫
El

iν dS = Il, l = 1, . . . , L,

while iν = 0 on the gaps [19]. Assuming that the interior potential u is approximately constant

along each electrode, we get u=Ul−zliν ≈Ul−zl |El|−1Il, and substitute this term in (3.3) for

u(m) and v(m), respectively. Then, the CEM approximation of (3.3) reads

σ0 ≈
1

M

M∑
m=1

∑L
l=1

(
V

(m)
l − zl |El|−1 I

(m)
l

)
I

(m)
l∑L

l=1

(
U

(m)
l − zl |El|−1 I

(m)
l

)
I

(m)
l

=: σCEM
0 (I,U).(3.4)

Table 1 lists the conductivity estimates σcont
0 , σshunt

0 and σCEM
0 from CEM data for various

contact impedances. The estimates of σCEM
0 are accurate even for very high contact impedances,

where the continuum and shunt approximations fail.

zl≡ 0.001 0.01 0.1 1 10

σcont
0 0.251 0.266 0.367 0.736 0.962

σshunt
0 0.251 0.268 0.375 0.739 0.962
σCEM
0 0.250 0.253 0.255 0.251 0.255

Table 1. Conductivitiy estimates for a wide range of contact impedances on the
unit disk with conductivity σ ≡ 0.25 and 16 equally spaced electrodes covering
50% of the boundary. Data was simulated using the FEM for a full set of
normalized adjacent current patterns.
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Contact impedance estimation. The contact impedances are usually unknown. If they can be
assumed to be constant, zl ≡ z > 0, l = 1, ... ,L, then they can be estimated along with the
background conductivity with the above method. Denoting by w > 0 an arbitrary contact
impedance for the simulated data V, we get from (3.4) a linear system of equations in z and
ρ0 = 1

σ0
as

amρ0 + bmz = cm, m = 1, . . . ,M, where(3.5)

am =

L∑
l=1

(
V m
l − w |El|

−1 Iml

)
Iml , bm =

L∑
l=1

|El|−1 (Iml )2, cm =

L∑
l=1

Uml I
m
l .

Then, the estimates are σCEM,z
0 := (ρ̂0)−1 and zCEM,z

0 := ẑ, where ρ̂0 and ẑ are the least-squares
solutions of the linear regression problem (3.5). However, one must take care that the system
is not under-determined. This is the case, for example, for a rotation-invariant setting and
a rotational set of current patterns, like adjacent currents, in which case am, bm and cm are
constant in m. Instead, one can use reduced discrete cosine2 or Haar3 basis currents, or linearly
combine adjacent measurements to remove rotation invariance.

Choosing w small improves the assumption of almost constant interior potentials in the
nominator of (3.4). Table 2 lists estimates for various contact impedances: Rows 1–2 show
estimates for constant contact impedances, rows 3–4 show estimates for contact impedances
varying by ±10%, i.e.

zl = z + 0.1znl,(3.6)

where nl∼u[−1,1] are independent uniformly distributed numbers for l= 1,...,L.

variance z 1.00e-3 1.00e-2 1.00e-1 1.00 1.00e+1

0%
zCEM,z
0 7.15e-4 1.61e-2 1.20e-1 1.03 1.00e+1

σCEM,z
0 0.250 0.250 0.247 0.243 0.242

±10%
zCEM,z
0 6.30e-4 1.57e-2 1.19e-1 1.05 9.99e+0

σCEM,z
0 0.250 0.250 0.247 0.243 0.242

Table 2. Conductivitiy and contact impedance estimates for a wide range of
contact impedances. Setting as in Table 1. Potentials from adjacent currents
are linearly transformed to the Haar basis (results for cosine currents are almost
identical). The contact impedance for the reference data V is w= 10−3.

Note that (3.5) has at most M ≤ L degrees of freedom, so estimating σ0 and all individual

contact impedances zl, l = 1, ... ,L, simultaneously is not directly possible, but σCEM,z
0 and

zCEM,z
0 can be useful initial guesses for other estimation techniques; see [21]. However, (3.5) can

be easily extended to estimate each single contact impedance in turn, which can be useful for
detecting bad contacts of a measurement setup. We do not carry out this modification here.

3.2. Noise level estimation. As the ICP is ill-posed, measurement noise is a main reason for
its instability, and knowing the total measurement error

δ := ‖Uv − U‖Fro

for a set of noisy measurements Uv is helpful for applying regularization. In practice, δ is
unknown, but we can observe the effect of the noise on the symmetry of the ND data. For
noiseless ND data (I,U), where I forms a basis of RL� and I+ denotes its pseudo-inverse, the

2Discrete cosine transform basis, omitting the constant vector. Provided by the rows of dctmtx in MATLAB.
3Discrete Haar-wavelet basis, omitting the constant vector. L must be a power of 2.
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matrix UI+ = F (σ) is symmetric. However, for potentials perturbed by (additive) noise, that
is,

Uv = U +Nv

for some noise matrix Nv ∈RL×M , we observe a symmetry error

ev :=
∥∥UvI+ −

(
UvI+

)>∥∥2

Fro
.

Assuming that all entries of Nv are independent and identically distributed (iid) with zero mean
and variance v > 0, we show in Appendix A that the expected value of the symmetry error is

Eev = 2(L− 1)
∥∥I+

∥∥2

Fro
v.(3.7)

If the noise is Gaussian, i.e. Nv
l,m

iid∼ N (0,v) for l= 1,...,L, m= 1,...,M , the expected value of
the measurement error δ is

Eδ = E
∥∥Nv

∥∥
Fro

=
√

2
Γ
(
ML+1

2

)
Γ
(
ML

2

) √v ≈ √MLv(3.8)

with Euler’s gamma function Γ; see standard literature. Replacing the expected value of the
symmetry error in (3.7) by the observed one (ev) and substituting (3.8) into (3.7), we get an
estimator of the total measurement error by

δCEM(I,Uv) :=

√
ML

2(L− 1)
ev
∥∥I+

∥∥−1

Fro
≈ Eδ.(3.9)

Testing the estimator. To evaluate the quality of the estimator, we simulate noisy data Uv
and compare the true data error δ with the estimate δCEM. In principle, we could specify a
variance v > 0 explicitly and generate a realization of additive noise Nv. However, for a single
measurement Uv∈RL� , the typical error ‖Uv−U‖2 of a measurement system is often proportional
to the magnitude ‖Uv‖2 of the measurement. To generate “meaningful” noise in our numerical
experiments for an average relative measurement precision η > 0, we thus determine a variance
v such that

η ≈ E
∥∥(Uv)(m) − U (m)

∥∥
2∥∥U (m)

∥∥
2

=
1∥∥U (m)
∥∥

2

E
∥∥(Nv)(m)

∥∥
2

=

√
2v∥∥U (m)
∥∥

2

Γ
(
L+1

2

)
Γ
(
L
2

) , m = 1, . . . ,M.(3.10)

Assuming that all potentials have roughly the same norm,
∥∥U (m)

∥∥
2
≈ 1

M

∑M
i=1

∥∥U (i)
∥∥

2
, we thus

set

v = v(η) :=
1

2

(
ηΓ
(
L
2

)∑M
m=1 ‖U (m)‖2

MΓ
(
L+1

2

) )2

for a given η > 0. With the noise model

Uv = U +Nv(η), N
v(η)
l,m

iid∼ N (0, v(η)) for l = 1, . . . , L, m = 1, . . . ,M,(3.11)

we simulate noisy data and validate the accuracy of our error estimator δCEM. Table 3 lists the
true error δ and the estimated error δCEM from single realizations of Nv(η) for various η and
current patterns. All estimates are within relative distance |1− δ/δCEM|< 5% of the true error.
This will be relevant for defining a stopping rule of our Algorithm in section 3.6.
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η δadjacent δCEM
adjacent δcosine δCEM

cosine δHaar δCEM
Haar |1−δ/δCEM|

1.0e-4 1.34e-3 1.32e-3 1.85e-3 1.77e-3 1.85e-3 1.93e-3 < 5%

1.0e-3 1.36e-2 1.42e-2 1.85e-2 1.79e-2 1.93e-2 1.87e-2 < 5%

1.0e-2 1.30e-1 1.29e-1 1.75e-1 1.81e-1 1.83e-1 1.82e-1 < 4%

1.0e-1 1.35e-0 1.29e-0 1.82e-3 1.79e-0 1.91e-0 1.99e-0 < 5%

Table 3. Noise estimates δCEM for simulated data with additive pseudo-random
normal noise of variance v(η) using adjacent, cosine and Haar current patterns.
Setting as in Table 1.

3.3. Constant conductivity considerations. The ICP is a constrained (σ > 0) and highly
nonlinear problem. This can lead to several problems for Newton-type algorithms as they
solve unconstrained problems by linearization. Firstly, a Newton update can result in negative
conductivities or—if the step size is reduced accordingly—in very slow convergence. This is
particularly bad since the nonlinearity of the forward map and thus the linearization error
increases as the conductivity approaches zero (Algorithm 1, line 4). Our numerical examples
will illustrate this effect (Figure 3a).

A classical and popular method to obtain an unconstrained problem is to recover the loga-
rithm of the conductivity logσ, or −logσ = log 1

σ ; see [2]. This approach is also motivated by
the filtered back-projection approach for EIT [20].

To improve the convergence speed of a Newton-type method and to increase its convergence
radius, we aim to reduce the nonlinearity of the ICP. Although recovering non-constant conduc-
tivities in the CEM is always a nonlinear problem, we are encouraged by the fact that recovering
a constant conductivity in the continuum model can be transformed to the linear problem of
recovering ρ = 1

σ ; see (3.1). When recovering inclusions in a constant background, ND data
is most sensitive to the background conductivity, thus improving the linearity with respect to
the background conductivity is reasonable. The improved linearity is particularly useful when
recovering inclusions in an unknown constant background by linear (one-step) methods. This
has been investigated in detail for lung EIT [9], where reconstructions of σ, logσ and ρ with the
(one-step) NOSER algorithm [4] are compared. However, recovering the resistivity is again a
constrained problem (ρ> 0). Conversely to the conductivity case, linearization error increases
for very large conductivities in the non-constant (nonlinear) case.

Coefficient transformation. Instead of linearizing F directly, we want to apply the Newton
step to a transformation of the conductivity coefficient. To that end, we consider injective
C1-transformations

t∗ : (0,∞)→ R, σ 7→ t∗(σ) =: t,

and their corresponding transformed forward operators defined as

F∗(t∗(σ)) = F (σ), that is, F∗(t) = F (t−1
∗ (t)) =: F (σ∗(t)).(3.12)

We first investigate the constrainedness and linearity of transformed forward operators F∗,
i.e. in the continuum setting defined analogeously to (3.12), for constant conductivities. Al-
though the following relations do not hold for non-constant conductivities or for the CEM, they
are still helpful in reducing the nonlinearity of the CEM since it behaves similar to the contin-
uum model for small contact impedances, and since the measured potentials are most sensitive
to the background conductivity. Considering σ > 0 as a constant function on Ω, we have that

F(σ) =
1

σ
F(1), thus F ′(σ) =

−1

σ2
F(1) (in a slight abuse of notation)(3.13)

for the derivative in unit direction. Under transformation, we get

F ′∗(t) = [F(σ∗(t))]
′ =
−σ′∗(t)
σ2
∗(t)

F(1) =: s∗(t)F(1).
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In that sense, |s′∗(t∗(σ))| is a measure of the nonlinearity of F∗ at conductivity σ: If s′∗ = 0,
then s∗ and F ′∗ are constant, thus F∗ is linear. Table 4 lists the relevant properties of the
aforementioned transformations tId(σ) = σ, tlog(σ) = − log(σ) and tρ(σ) = 1

σ . We observe, as
expected, that FId = F is highly nonlinear for small conductivities and asymptotically linear
for very high conductivities. Flog is also nonlinear, although of lower order, and leads to
an unconstrained inverse problem. Finally, recovering constant resistivities by Fρ is a linear,
although constrained problem.

∗ |s′∗(t∗(σ))| σ∗(t) σ′∗(t∗(σ)) t∗((0,∞))

Id 2σ−3 t 1 (0,∞)
log σ−1 e−t −σ (∞,−∞)
ρ 0 t−1 −σ2 (∞,0)

α
2ασ3

(1+α(σ2−1))3

√
4α(1−α)+ t2− t

2α

−σ2

(1−α)+ασ2
(∞,−∞)

Table 4. Properties (nonlinearity, inverse map, Jacobian amplification and
range) of various conductivity transformations.

Our goal is to combine both advantages and to obtain an unconstrained problem with limited
nonlinearity. To that end, we introduce the transformation

tα(σ) :=
1− α
σ
− ασ

for some parameter α∈ (0,1). Being the sum of two strictly decreasing C1 functions on (0,∞),
tα is clearly injective. Moreover, the nonlinearity of its corresponding forward operator Fα is
bounded, see Table 4. The parameter α is a trade-off between reconstructing the resistivity
(α→0) and the conductivity (α→1). It controls the maximum nonlinearity and its occurrence:

max
σ∈(0,∞)

∣∣s′α(tα(σ))
∣∣ = s′α(0) =

α

4 (α(1− α))
3
2

, arg max
σ∈(0,∞)

∣∣s′α(tα(σ))
∣∣ =

√
α−1 − 1.

The maximum nonlinearity is minimized at α̂= 0.25, so in a sense, this is an optimal choice.
Figure 1a shows the transformations −tId, tlog, tρ, and tα̂. Figure 1b shows various nonlinearity
distributions. In the following, we will consider these transformations for the CEM.

Transformation of the Newton step. To solve the linearized equation (Algorithm 1, line 4) in
the transformed setting, we need to compute the transformed sensitivity matrix S∗ defined by
the Fréchet derivative of F∗. Using the chain rule, we get the Jacobian—evaluated in the pth
unit direction of the discretized conductivity space—by

∂F∗(t)

(∂t)p

∣∣∣∣
t∗(σ)

=
∂F (σ∗(t))

(∂t)p

∣∣∣∣
t∗(σ)

=
∂F (σ)

(∂σ)p

∣∣∣∣
σ

∂σ∗(t)

(∂t)p

∣∣∣∣
t∗(σ)

=
[
F ′(σ)

]
p

(
σ′∗(t∗(σ))

)
p
.

Table 4 lists σ′∗(t∗(σ)) for the aforementioned transformations. In the transformed setting, lines
3–5 of Algorithm 1 are substituted by lines 3∗–5∗ of Algorithm 2, respectively.

Algorithm 2: Newton update of the transformed problem, replaces lines 3–5 in Alg. 1

3∗ Compute t(k) = t∗(σ
(k)) and S(k)

∗ =S∗(t(k));

4∗ Find regularized solution s
(k)
∗ of the linearized problem S(k)

∗ s
(k)
∗ = d(k);

5∗ Set σ(k+1) =σ∗(t
(k) +s(k));
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(a) Conductivity transformations −tId ( ),
tlog ( ), tρ ( ), and tα̂ ( ) on a logarithmic
conductivity scale. tα̂ behaves like tρ for small
conductivities and like −tId for large conduc-
tivities.
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2.5

(b) Nonlinearity distributions |s′log(tlog(·))| ( )

and |s′α(tα(·))| for α= 1 ( ), α= 0.75 ( ),
α= α̂ ( ), and α= 0.05 ( ).
Note that ( ) has the smallest maximum, ( )
approaches ( ) as α→1 and ( ) approaches 0
pointwise as α→0 (the peak moves to infinity).

Figure 1. Transformation properties on a logarithmic conductivity scale.

3.4. Non-constant conductivity considerations. The linearized problem

Find η∗ ∈ L∞(Ω) satisfying F ′∗(t∗(σ))[η∗]I = U − F∗(t∗(σ))I(3.14)

is highly under-determined and severely ill-posed. We solve its discretization

S∗s∗ = d, s∗ ∈ RP , s∗ =̂ s∗ ∈ DP ,(3.15)

in each Newton step. A regularization strategy to handle the ill-posedness is discussed in
section 3.5. To resolve the under-determinedness of (3.15), we introduce a prior assumption on
the conductivity. For the untransformed case S∗= S, we consider the case of two columns p,q
of S being collinear, that is, Sq =βSp for some β∈R\{0}. Then, the linear combination of unit
vectors eq−βep is in the Null space of S. This means we have (at least) one degree of freedom
in choosing sq versus sp in the solution of (3.15). Physically, the conductivity is a material
property represented by a piecewise constant function. Starting from a constant initial guess,
it is thus reasonable to update indistinguishable coefficients by the same amount. We postulate
this in the following prior:

Reconstruction prior. Assume that Sq =βSp for some p,q ∈{1,...,P} and β ∈R\{0},
i.e. (3.15) is under-determined in the coefficients s{p,q} for all d ∈ RLM . Then, s{p,q}

should be chosen proportional to their local conductivities σ{p,q}, that is,
sp
σp

=
sign(β)sq

σq
.

The proportionality of the update to the local conductivity value is motivated by the inverse
proportionality of the forward operator for constant conductivities (3.13).

Reconstruction prior and the pseudo-inverse. We will first consider the untransformed setting
F∗ = F . A popular solution strategy for (3.15) is to approximate the Moore-Penrose pseudo-
inverse

s+ = s+(d) = S+d = arg min
s∈N (S)⊥

‖Ss− d‖2 ,(3.16)

where the condition s ∈N (S)⊥ resolves the under-determinedness. However, N (S)⊥ depends
on the scaling of each column of S, which in turn depends on the local sensitivity and the
(arbitrary) choice of the conductivity update discretization space DP . Fortunately, (3.16) can
be modified to reflect the reconstruction prior by introducing a weighted inner product on the
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conductivity update coefficient space RP . To that end we denote, for 0<W ∈RP×P , a weighted
inner product and its corresponding norm by

〈 ·1, ·2〉W := 〈 ·1,W ·2〉RP and ‖ · ‖W =
∥∥∥W 1

2 ·
∥∥∥

2
,

respectively, and define a weighted pseudo-inverse by

s+W = s+W (d) = S+W d = arg min
s∈N (S)⊥W

‖Ss− d‖2 ,(3.17)

where ⊥W denotes orthogonality with respect to the weighted inner product. The effect of
a diagonal weighting matrix on the pseudo-inverse solution is summarized in the following
theorem, which is proved in Appendix B.1.

Theorem 1. Consider the situation of (3.16) and (3.17) and assume that Sq = βSp for some
β ∈R\{0}. Further, let W = diag(w1,...,wP )> 0. Then, we have the following proportionality
relations for all d∈RLM :

(a) s+
q (d) =βs+

p (d),

(b)
wp
‖Sp‖2

s+W
p (d) =

sign(β)wq
‖Sq‖2

s+W
q (d),

An immediate consequence of Theorem 1b is

Corollary 2. For

W = WS,σ := diag
(
‖S1‖2 σ

−1
1 , . . . , ‖SP ‖2 σ

−1
P

)
,(3.18)

the weighted pseudo-inverse satisfies the reconstruction prior.

Roughly speaking, the weighting can be used to “stretch” orthogonality to compensate for the
scaling differences of the columns of S. As the pseudo-inverse is unique, we resolve under-
determinedness and satisfy the reconstruction prior simultaneously by choosing s

+WS,σ as the
Newton update. We also get the following estimate for almost collinear columns of S, which is
proved in Appendix B.2:

Corollary 3. Assume that Sp and Sq are almost collinear, that is Sq =βSp+κk, Sp⊥k∈RP ,
‖k‖2 = 1, β ∈R\{0}, κ> 0. Then,∣∣∣∣ wp

‖Sp‖2
s+W
p (d)− sign(β)wq

‖Sq‖2
s+W
q (d)

∣∣∣∣ ≤ σ−1
min

(
κσ−1

min ‖Sq‖
−1 + cκ

)
‖d‖2 .

where σmin is the smallest non-zero singular value of S and cκ =O(κ2) as κ→ 0. In particular,
the right-hand side vanishes as κ→ 0 if and only if k∈ span{Sl : l∈{1,...,P}\q}.

Note that Sp ⊥ k is not a restriction since k can be split into orthogonal parts otherwise, and
Corollary 3 holds for modified constants β and κ.

For W = WS,σ, Corollary 3 states that if two columns of S are almost collinear relative
to the rest of the columns, then their coefficients in the weighted pseudo-inverse are almost
proportional to the local conductivity.

In section 4, we will also investigate the individual impacts of normalizing by the sensitivity
and the background conductivity only, using the weights

WS := diag (‖S1‖2 , . . . , ‖SP ‖2) and Wσ := diag
(
σ−1

1 , . . . ,σ−1
P

)
,(3.19)

respectively. The positive effect of WS on conductivity updates has been observed in [5, 18, 14],
although without a thorough analysis of the reasons4. To our knowledge, using WS,σ is novel.

4In [18], the improved reconstructions when using the weights WS are explained by an observed decrease
3 ·1017→ 1 ·1017 of the condition of eq. (3.17). Although improving the condition helps to stabilize the solution,
we feel that the main impact of these weights is how they shift orthogonality to the Null space, and thus which
types of solutions are promoted in case of under-determinedness.
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Sensitivity and discretization. To see the connection between the reconstruction prior and the
choice of discretization P, we recall the definition of the sensitivity matrix

Sp = col(
(
F ′(σ)[χΩp ]

)
I) = col

(
−
∫

Ωp

w(x)I dx

)
, w(x) =

(
∇u(l)(x)∇u(m)(x)

)
l,m=1,...,L

.

For piecewise constant conductivities, (2.1) is the Laplacian on each cell Ωp, p= 1,...,P , and
thus the sensitivity function w̄I(x) :=‖w(x)I‖Fro is piecewise continuous, hence for Ωp small, we
get the approximation ‖Sp‖2≈ w̄I(xp)|Ωp| for any xp∈Ωp. We can thus interpret the weighting

matrices WS and WS,σ on the conductivity update coefficient space RP as normalizations with
respect to the local mesh size |Ωp| and sensitivity w̄I(xp).

Thus, the reconstruction prior—incorporated by WS,σ—results in unique Newton updates
which are independent of the discretization geometry, assuming it is sufficiently fine.

The reconstruction prior in the transformed setting. When reconstructing a transformation t∗ of
the conductivity coefficient, the scaling imposed by the reconstruction prior must be translated
into the transformed setting. By the chain rule, the weight σ−1

p of sp in the conductivity setting
is amplified by σ′∗(t∗(σp)) in the transformed setting. Thus, the transformed weighting matrix
reads

WS∗,σ = diag
{
σ′∗(t∗(σ1)) ‖(S∗)1‖2 σ1

−1, . . . , σ′∗(t∗(σP )) ‖(S∗)P ‖2 σP
−1
}
.(3.20)

Note that ‖(S∗)p‖2 =σ′∗(t∗(σp))‖Sp‖2. An interesting observation is that |σ′log(tlog(σ))σ−1|≡1.
This means that the log-transform inherits the conductivity-scaling implicitly: WSlog,σ =WSlog .

3.5. Ill-posedness and regularization. To account for the ill-posedness of (3.14), we need
a regularization strategy when solving the conductivity update equation (3.17) which inherits
its ill-posedness. Common approaches are the Landweber regularization, the Tikhonov-Phillips
regularization and the truncated singular value decomposition.

Following [16, 12, 22], we will use a (nonlinear) regularized conjugate gradient (cg) method
to approximate (3.17) in the transformed setting. The regularization strategy is to stop the
pursuit of cg directions “early”, when the linear residual is reached to a certain relative tolerance
θ ∈ (0,1]; see Algorithm 3. Therein, S ′∗ = S>∗ W−1

S∗,σ is the adjoint matrix of S∗ with respect to

〈·, ·〉WS∗,σ , i.e. satisfying x>S ′∗WS∗,σy= 〈x,S ′∗y〉WS∗,σ = 〈S∗x,y〉RLM = x>S>∗ y for all x∈RP ,y ∈
RLM . The regularization effect of this method was studied in detail in [16, 17].

Algorithm 3: Regularized cg method

input : S∗, d, WS∗,σ; tolerance θ∈ (0,1], iteration limit jmax ∈N.
output: Regularized conductivity update s, relative decrease r, number of iterations j.

1 Set s(0) = 0, d(0) := d, u(1) := v(0) :=S ′∗d(0), j := 0;

2 repeat
3 j := j+1;

4 y(j) :=S∗u(j), α(j) :=
∥∥v(j−1)

∥∥2

WS∗,σ
/
∥∥y(j)

∥∥2

2
;

5 s(j) := s(j−1) +α(j)u(j), d(j) := d(j−1)−α(j)y(j);

6 q(j) :=S ′∗d(j), β(j) :=
∥∥v(j)

∥∥2

WS∗,σ
/
∥∥v(j−1)

∥∥2

WS∗,σ
;

7 u(j+1) := v(j) +β(j)u(j);

8 until
∥∥d(j)

∥∥
2
≤ θ‖d‖2 or j= jmax;

9 Set s= s(j), r=
∥∥d(j)

∥∥
2
/‖d‖2;

The parameters θ = θ(k) and jmax = j
(k)
max of Algorithm 3 can be chosen dynamically each

time (3.15) is solved, i.e. in the kth iteration of Algorithm (2). For example, the special case
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j
(k)
max≡ 1 yields the steepest descent method. We will use the parameter strategy of [16, section

6] with some modifications. The first Newton-step suffers most from the nonlinearity of the

problem, thus we let j
(0)
max = 1, θ(0) = 1 to maximize regularization. For the next iteration, we

set θ(1) := r(0) (relative decrease of the previous Newton step) and j
(1)
max := 2. For k≥ 2, we use

the parameter strategy of [16] for the tolerances, which yields

θ(k) :=


1, k = 0,

r(0), k = 1,

θmax

(
1− j(k−2)

j(k−1)

(
1− θ(k−1)

))
, k ≥ 2 and j(k−1) > j(k−2),

θmaxγθ
(k−1), otherwise.

(3.21)

The parameters γ and θmax should be chosen close to 1, but the exact choice is uncritical. We let

γ :=0.99 and θmax :=
√
γ. Further, we set j

(k)
max :=j(k−1)+j(k−2) for k≥2, i.e. we limit the number

of cg iterations relative to those in the previous Newton steps. This prevents “iteration peaks”
when the Newton method is close to convergence and replaces the safeguarding-technique of
[16, section 6]. In all, we have

j(k)
max =


1, k = 0,

2, k = 1,

j(k−1) + j(k−2), k ≥ 2.

(3.22)

3.6. A model-aware Newton-type inversion scheme. We have now gathered all ingredi-
ents for a modification of Algorithm 1 which takes into account model properties of the CEM
and a reconstruction prior based on a material property of the conductivity. The whole in-
version process is shown in Algorithm 4 (MANTIS). Therein, U (k) denotes the approximation

of F (σ(k))I computed by the FEM on a suitable5 triangulation P of Ω, and S(k)
∗ denotes the

corresponding transformed Jacobian approximation (line 1). To avoid instability of the FEM
forward solver, we require bounds for the contact impedances zl ≥ zmin, l = 1, ... ,L, and the
conductivity σmin ≤ σ ≤ σ−1

min (zmin = σmin := 10−4 in all of our computations). The MANTIS
algorithm terminates by Morozov’s discrepancy principle (line 6). The parameter τ > 1 should
be chosen to reflect the uncertainty of the measurement error estimate δCEM. We set τ :=1.1 for
all reconstructions as δCEM was within 5% distance of δ in all of our tests; see section 3.2. Thus,
we consider τ as a constant rather than a design parameter, which needs to be increased only if
convergence issues occur due to modelling errors, e.g. in case of domain or electrode geometry
mis-modelling or for high contact impedance variations.

To further encourage piecewise constant conductivities, one could add a nonlinear filter (me-
dian, total variation, etc.) after line 11. We did not find this necessary in our experiments.

4. Numerical results

Here we demonstrate the performance of the proposed inversion scheme MANTIS, in partic-
ular the impact of the weighting schemes WS , Wσ and WS,σ in section 4.2 and the impact of
the conductivity transformations tlog and tα̂ in section 4.3.

4.1. Numerical setting. All simulated measurement data are generated using the FEM on
very fine triangulations (≈ 50000 triangles). To avoid inverse crime, these triangulations are
not refinements of the discretizations P (≈ 18000 triangles) used for inversion6. Noisy data

5FEM triangulations should be refined near the electrodes and should not be too irregular.
6We use extremely fine FEM meshes to minimize discretization effects of the forward solver when comparing

the results. In practice, far fewer triangles are sufficient.
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Algorithm 4: MANTIS algorithm for the CEM

input : Current-voltage pairs (I,Uv), domain geometry ∂Ω, electrode geometry
E1,...,EL, conductivity transformation t∗, conductivity bound σmin> 0, contact
impedance bound zmin> 0.

output: Conductivity estimate σ.

1 Initialize triangulation P of Ω;

2 Set σ(0)≡min
(

max
(
σCEM,z

0 ,σmin

)
,σ−1

min

)
and z1,...,zL = max

(
zCEM,z

0 ,zmin

)
by (3.5);

3 Set δ= δCEM(I,Uv) as in (3.9);

4 Compute d(0) = col
(
Uv−F (σ(0))I

)
;

5 Set k= 0;

6 while ‖d(k)‖2>τδ do

7 Compute t(k) = t∗(σ
(k)) and S(k)

∗ ;

8 Set weights WS∗,σ(k) as in (3.20);

9 Set cg parameters θ(k) and j
(k)
max as in (3.21) and (3.22);

10 Compute s
(k)
∗ = s

(k)
∗ (S(k)

∗ ,d(k),WS∗,σ(k) ,θ(k),j
(k)
max) as in Algorithm 3;

11 Compute σ(k+1) =σ∗(t
(k) +s

(k)
∗ );

12 Set σ(k+1) = min
(

max
(
σ(k+1),σmin

)
,σ−1

min

)
component-wise;

13 Compute d(k+1) = col
(
Uv−F (σ(k+1))I

)
;

14 Set k← k+1;

15 end

16 Set σ=
∑P

p=1σ
(k)
p χΩp ;

Uv = U +Nv(η) is generated as in section 3.2. The relative error between a reconstructed
conductivity σrec and the exact solution σ is computed numerically as

ε =
1

|∆|

∫
∆

|P∆σrec(x)− P∆σ(x)|
|P∆σ(x)|

dx,

where P∆ is a piecewise constant interpolation on a very fine triangulation ∆ of Ω with area |∆|.
We denote the total count of Newton and cg iterations by nNt and ncg, respectively. To avoid
constrainedness in untransformed reconstruction, we approximate tId by tασ with ασ =1−10−4.

Test conductivity. To investigate the capability of reconstructing both low and high contrasts,
we consider the test conductivity of Figure 2 with two background conductivities which differ
by a factor of 2 and three inclusions which differ by a factor of 100. Conductivity plots are
truncated to the interval [0.9 ·10−1,1.1 ·101] in logarithmic scale.

Measurement settings. We assume typical measurement equipment to have 16–64 channels and
η≈ 0.1–0.3% relative error per measurement. To study the impact of the measurement setting,
we consider two configurations: Setting A with few electrodes and moderate contact impedances
and measurement error, and setting B (gray, in brackets) with more electrodes and lower contact
impedances and measurement error. Setting A (B) consists of 16 (64) electrodes covering 50% of
the boundary and contact impedances zl =1.0e-1 (2.5e-2) ±10%, l= 1,...,L, as in (3.6). We use
a full set of adjacent currents and simulate noisy measurements by (3.11) for η= 0.3% (0.1%).

The resulting initial guesses for these settings are zCEM,z
0 =9.63e-2 (2.51e-2) and σCEM,z

0 =0.84
(0.87). The true and estimated errors are δ =1.54e-2 (1.02e-2) and δCEM =1.51e-2 (1.05e-2),
respectively.
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Figure 2. High-contrast test conductivity. Background σ=
√

2 (top-left, light
green) and σ= 1√

2
(bottom-right, turquoise), inclusions σ=10 (bottom-left, red)

and σ= 10−1 (others, blue).

4.2. Impact of the weights. Figure 3 shows reconstructions using MANTIS without conduc-
tivity transformation and with W =Id (a), WS (b), Wσ (c) and WS,σ (d); see (3.19) and (3.18).
Table 5, rows 1–4 and 9–12 list some numerical information. Clearly, ignoring the sensitivities
and underlying conductivities leads to slow convergence and highly oscillatory solutions. Conse-
quently, the different background conductivities cannot be distinguished well and the inclusions
are not detected reliably. Note that all solutions reach the residual discrepancy τδ, but the
inversion without weights gets unstable before the discrepancy criterion is met.
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Figure 3. Reconstructions of the test conductivity for different weighting
schemes. The reconstruction prior, implemented by WS,σ, encourages piecewise
constant conductivities. The small and large contrasts are resolved.

4.3. Impact of the transformation. Figure 4 shows reconstructions using the transforma-
tions tlog and tα̂ for weights W =Id and WS∗,σ. Table 5, rows 5–8 and 13–16 list the reconstruc-
tion properties. With unit weights, the transformations significantly improve the reconstruction
speed and accuracy; compare Figure 3a with 4a, 4b. Using the weights WS∗,σ, the transforma-
tions improve the reconstructions just slightly; compare Figure 3d with 4c, 4d. This is because
the reconstruction prior diminishes the effect of the particular transform. We observe that the
log transform results in slightly faster convergence while the α̂ transform results in slightly lower
error in our simulations.
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weights transf. rel. error nNt ncg min(σ) max(σ)

S
et

ti
n
g

A

Id tId 74.5% 84 509 1.0e-41 7.3e+0

Wσ tId 60.6% 50 178 1.1e-4 1.4e+1

WS tId 49.0% 11 58 3.3e-4 7.7e+0

WS,σ tId 46.1% 10 43 5.7e-2 1.9e+1

Id tlog 56.6% 15 98 4.8e-2 2.4e+2

Id tα̂ 59.7% 19 135 1.6e-1 1.5e+1

WSlog,σ tlog 46.0% 9 41 6.3e-2 2.4e+1

WSα̂,σ tα̂ 44.9% 10 45 7.0e-2 2.1e+1

Id tId 64.4% 240 5329 1.0e-41 1.1e+1

Wσ tId 47.2% 92 1071 2.5e-4 1.8e+1

WS tId 40.8% 18 103 9.2e-4 1.4e+1

WS,σ tId 40.4% 12 57 3.3e-2 3.5e+1

Id tlog 46.4% 27 366 1.7e-2 1.9e+2

Id tα̂ 46.4% 86 1100 8.8e-2 1.8e+1

WSlog,σ tlog 41.5% 11 48 3.8e-2 4.2e+1

S
et

ti
n
g

B

WSα̂,σ tα̂ 39.8% 12 59 4.1e-2 3.4e+1
1Limited to σmin during inversion.

Table 5. Relative error, Newton and cg iteration count and minimum and
maximum conductivity value for different reconstruction parameters. The re-
construction prior, implemented by WS,σ, significantly improves reconstruction
speed and quality. Untransformed reconstruction (tId) promotes very small con-
ductivity coefficients.
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Figure 4. Reconstructions of the test conductivity for different transformations
with and without weighting.

4.4. Reconstructions with resolution-controlled meshes. In [22], the authors introduced
the concept of adaptive, resolution-controlled conductivity discretizations, which improve the
speed and accuracy of the inversion. These meshes are designed to satisfy∥∥F (1 + χΩp)− F (1)

∥∥ ≈ const. for all p = 1, . . . , P.

Since

‖Sp‖2 =
∥∥F ′(σ)[χΩp ]I

∥∥
Fro

=
∥∥F (σ + χΩp)− F (σ)

∥∥
Fro

+ o(‖χΩp‖∞),

the regularization mechanism of these meshes is similar to using the weights WS . The recon-
structions shown in Figure 5a illustrate how these meshes prevent instability for tId and W =Id,
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but have difficulties with high contrast reconstructions as very small conductivity coefficients
are promoted. As a consequence, very many Newton iterations are needed to reach the discrep-
ancy criterion and recover the conducting inclusion. When using adaptive meshes and applying
the transformation tα̂ and the weights WSα̂,σ, convergence is fast, but no improvement over
using the generic discretization P is achieved (see Table 6). This illustrates the property of the
reconstruction prior to diminish the impact of the particular choice of discretization. For that
reason, further analysis of the different discretization effects is omitted.

(a) tId, W = Id (b) tα̂, WSα̂,σ

Figure 5. Reconstructions on adaptive meshes. The conductivity discretiza-
tions are refined dynamically with 108–1470 (139–3687) cells as described in [22,
section 5.6]. The instability is resolved and low contrasts are detected, but con-
vergence speed and high contrasts still suffer from the nonlinearity.

weights param. rel. error nNt ncg min(σ) max(σ)

A

Id tId 61.4% 422 2097 1.0e-41 5.0e+0

WSα̂,σ tα̂ 45.0% 12 50 6.4e-2 1.6e+1

Id tId 48.5% 1822 16882 1.0e-4 8.3e+0

B

WSα̂,σ tα̂ 41.4% 37 87 3.7e-2 2.7e+1
1Bounded to σmin during inversion.

Table 6. Reconstruction properties when using adaptive meshes.

4.5. Tank data reconstructions. The MANTIS algorithm is particularly tailored for mea-
sured data, where the contact impedances, background conductivity and data noise are un-
known: There are no free design parameters that need to be chosen manually for the particular
setting, and no measured homogeneous calibration data is needed. Figure 6 shows MANTIS re-
constructions (using tα̂ and WSα̂,σ) of various saline tank experiments with metal (conducting)
and plastic (resistive) inclusions. The data were kindly provided by Aku Seppänen (University
of Eastern Finland) and Stratos Staboulis (Aalto University). For details, see [8]. The bound-
ary geometry and the positions of the 16 electrodes are estimated from the photographs. The

data range of each plot is centered about the estimated background conductivity σCEM,z
0 on a

logarithmic scale. The estimated parameters and some reconstruction information are shown in
Table 7. Note that techniques to recover the electrode locations [6] or the boundary shape [7]
can readily be included into MANTIS by computing the Fréchet derivative also with respect to
the electrode positions and the boundary parametrization.

5. Conclusions

Solving the inverse conductivity problem from measured electrode data poses several diffi-
culties: Some model parameters are unknown, the problem is highly nonlinear, ill-posed and
under-determined, the data is corrupted by noise, the problem needs to be discretized for nu-
merical inversion, and there might be inaccuracies when modelling the domain geometry.

Many common approaches, like Tikhonov-regularized inversion, have “abstract” regulariza-
tion or smoothing parameters which handle multiple issues (level of under-determinedness, ill-
posedness, nonlinearity, mis-modelling, etc.) at once. Consequently, such parameters are highly
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Figure 6. Reconstructions from tank experiments. The domain geometry was
estimated from the photographs shown in the top row. The geometry modelling
error leads to oscillations of the solutions near the boundary.

Setting σCEM
0 zCEM

0 δCEM nNt ncg min(σ) max(σ)

(a) 2.64e-1 7.67e-1 1.43e-2 12 55 1.8e-1 6.6e-1
(b) 2.38e-1 6.14e-2 1.98e-2 24 41 1.0e-1 4.1e-1
(c) 2.61e-1 1.00e-41 1.55e-2 13 85 9.4e-2 7.4e-1
(d) 2.78e-1 1.00e-41 1.89e-2 27 158 1.0e-2 3.0e-0

1Initialized to zmin.

Table 7. Reconstruction properties of the tank experiments.

problem-specific and often need to be specified manually over several orders of magnitude to
obtain good results.

In this work, we investigated each issue arising in the ICP individually, and presented a set
of methods to resolve them without introducing abstract design parameters. The result is an
inversion scheme which is simple to implement and applicable to a wide range of settings “out
of the box”, i.e. without manually choosing or fine-tuning parameters. This was achieved by
estimating the contact impedances, background-conductivity and noise level from the measured
data, transforming the problem to reduce nonlinearity, resolving the under-determinedness of
the linearized problem by a prior on the conductivity, and applying an inexact Newton-type
method with Morozov’s discrepancy principle to handle the ill-posedness.

The effects of each step were evaluated numerically, and the performance of the scheme was
demonstrated for simulated data with high and low conductivity contrasts and for measured
tank data.

Note that all considerations extend to three dimensions, so MANTIS can be used also for 3D
reconstructions.
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Appendix A. Noise estimate from the ND asymmetry

Given the exact current-voltage pairs (I,U) and a noise matrix Nv∈RL×M with independent
identically distributed (i.i.d.) zero mean entries of variance v > 0, consider the matrix

Ev = (U +Nv)I+ −
(
(U +Nv)I+

)>
= UI+ −

(
UI+

)>︸ ︷︷ ︸
=0 (symmetry)

+NvI+ −
(
NvI+

)>
.

The matrix has vanishing diagonal entries, thus

Evk,l =

{
0, k = l,∑L

j=1N
v
k,jI

+
j,l −N

v
l,jI

+
j,k, 1 ≤ k 6= l ≤ L.

In particular, each entry is a sum of i.i.d. zero mean random entries. From the linearity of the
expected value, we get

E ‖Ev‖2Fro =
L∑

k,l=1

E(Evk,l)
2 =

∑
k 6=l

L∑
j=1

(I+
j,l)

2 E(Nv
k,j)

2︸ ︷︷ ︸
=v

+(I+
j,k)

2 E(Nv
l,j)

2︸ ︷︷ ︸
=v

= v
∑
k 6=l

∥∥I+
l

∥∥2

2
+
∥∥I+

k

∥∥2

2
= 2(L− 1)

∥∥I+
∥∥2

Fro
v.

Appendix B. Proof of theorem 1

B.1. Linearly dependent case. LetK,P ∈N, w1,...,wP >0 andW=diag(w1,...,wP ). Further,
let X = RP equipped with the inner product 〈x,y〉W = x>Wy and Y = RK equipped with the
standard inner product. Consider

S =
(
S1, . . . ,SP

)
∈ RK×P

as an operator from X to Y and let N = rank(S)≤min{K,P}.
Denote, for some d ∈ RK , by s+W = s+W (d) ∈ RP the (unique) minimizer of ‖Ss−d‖2 in

N (S)⊥W , the W -orthogonal complement of the Null-space of S. Let S =UΣV ∗ the (reduced)
singular value decomposition of the operator S with singular values σ1>...>σN>0 and singular
vectors v(1),...,v(N) ∈X, u(1),...,u(N) ∈Y , that is

U =
(
u(1)| . . . |u(N)

)
, Σ = diag(σ1, . . . , σN ), V =

(
v(1)| . . . |v(N)

)
,

U unitary in (Range(S),‖·‖2), V unitary in
(
N (S)⊥W ,‖·‖W

)
, thus U∗=U>, V ∗=V >W . Then,

s+W is given by the pseudo-inverse S+W of S as

s+W (d) = S+W d = (V Σ−1U∗)d.

We now want to investigate under which circumstances two coefficients s+W
p (d),s+W

q (d) are

proportional for all d∈Y . Denote by v
(1)
> ,...,v

(P )
> ∈RN the columns of V >. For any αp,αq > 0,

we have the equivalence

0 = αqs
+W
q − αps+W

p = (αqeq − αpep)> S+W d =
(

(S+W )> (αqeq − αpep)
)>

d ∀ d ∈ Y(B.1)

⇐⇒ 0 = (U∗)>Σ−1V >(αqeq − αpep)

⇐⇒ 0 = (U∗)>Σ−1︸ ︷︷ ︸
full rank (=N)

(
αqv

(q)
> − αpv

(p)
>

)
⇐⇒ αpv

(p)
> = αqv

(q)
> .
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Assume now that two columns Sp and Sq are linearly dependent, that is Sq = βSp for some
β ∈R\{0}. We observe that

0 = Sq − βSp = S (eq − βep) = (UΣV ∗) (eq − βep) = UΣ︸︷︷︸
full rank (=N)

V >W (eq − βep)(B.2)

⇐⇒ 0 = V >W (eq − βep)

⇐⇒ βwpv
(p)
> = wqv

(q)
> .

Equivalence between (B.1) and (B.2) holds for
αp
αq

=
βwp
wq

in which case αqs
+W
q = αps

+W
p ⇐⇒

Sq = βSp. Since |β|= ‖Sq‖2
‖Sp‖2

, we get
αp
αq

=
sign(β)‖Sq‖2wp
‖Sp‖2wq

which yields Theorem 1 (b); (a) follows

for w1,...,P ≡ 1.

B.2. Almost linearly dependent case. Now assume that Sp and Sq are almost linearly
dependent, that is

Sq = βSp + κk for β ∈ R \ {0} , Sp ⊥ k ∈ RP , ‖k‖2 = 1, 0 < κ� ‖βSp‖ .

Using above representations, we have that

κk = Sq − βSp = (UΣV ∗) (eq − βep) = UΣ
(
wqv

(q)
> − βwpv

(p)
>

)
.

For αp =
wp
‖Sp‖2

, αq =
sign(β)wq
‖Sq‖2

and since β= sign(β)

√
‖Sq‖22−κ2
‖Sp‖2

here (Pythagoras), it follows that

‖Sq‖2

∥∥∥∥∥∥αqv(q)
> −

√
‖Sq‖22 − κ2

‖Sq‖2
αpv

(p)
>

∥∥∥∥∥∥
2

= κ
∥∥Σ−1Uk

∥∥
2
≤ κ

∥∥Σ−1
∥∥

2
.

Then (using the triangle-inequality),

∥∥∥αqv(q)
> − αpv

(p)
>

∥∥∥
2
≤ κ

∥∥Σ−1
∥∥

2
‖Sq‖−1

2 + cκ, where cκ =

∣∣∣∣∣∣1−
√
‖Sq‖22 − κ2

‖Sq‖2

∣∣∣∣∣∣ |αp|
∥∥∥v(p)
>

∥∥∥
2
,

thus cκ = O(κ2) as κ → 0. Again using the pseudo-inverse representations of the solution
coefficients s+W

p , s+W
q , we get∣∣αqs+W

q − αps+W
p

∣∣ =

∣∣∣∣((U∗)>Σ−1V >(αqeq − αpep)
)>

d

∣∣∣∣
≤
∥∥Σ−1

∥∥
2

∥∥∥αqv(q)
> − αpv

(p)
>

∥∥∥
2
‖d‖2 ≤

∥∥Σ−1
∥∥

2

(
κ
∥∥Σ−1

∥∥
2
‖Sq‖−1

2 + cκ

)
‖d‖2 .

Note that in this expression, the singular values of S and thus Σ−1 depend on k and κ. Recalling
that k= 1

κ(Sq−βSp)∈span{S1,...,SP } and denoting by S0 :=(S1,...,Sp,...Sq−1,βSp,Sq+1,...,SP )
the sensitivity matrix for κ= 0, we have to consider two cases as κ→ 0:

(i) rank(S0)< rank(S):
This occurs if and only if k /∈ span

{
S0

1 ,...,S0
P

}
= span{Sl : l∈{1,...,P}\q}. From the

continuity of the singular values in the matrix entries, we have that the minimum singular
value σmin of S vanishes as κ→ 0, thus

∥∥Σ−1
∥∥

2
=σ−1

min→∞.

(ii) rank(S0) = rank(S):
Again by the continuity of the singular values, σmin approaches the smallest non-zero
singular value of S0 as κ→ 0, thus

∥∥Σ−1
∥∥

2
is bounded and αqs

+W
q →αps

+W
p as κ→ 0.

For αp,q as above, this proves Corollary 3.
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