
Atmos. Meas. Tech., 7, 3023–3034, 2014
www.atmos-meas-tech.net/7/3023/2014/
doi:10.5194/amt-7-3023-2014
© Author(s) 2014. CC Attribution 3.0 License.

Smoothing error pitfalls
T. von Clarmann

Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany

Correspondence to:T. von Clarmann (thomas.clarmann@kit.edu)

Received: 28 January 2014 – Published in Atmos. Meas. Tech. Discuss.: 1 April 2014
Revised: 2 July 2014 – Accepted: 15 August 2014 – Published: 18 September 2014

Abstract. The difference due to the content of a priori in-
formation between a constrained retrieval and the true atmo-
spheric state is usually represented by a diagnostic quantity
called smoothing error. In this paper it is shown that, regard-
less of the usefulness of the smoothing error as a diagnostic
tool in its own right, the concept of the smoothing error as
a component of the retrieval error budget is questionable be-
cause it is not compliant with Gaussian error propagation.
The reason for this is that the smoothing error does not rep-
resent the expected deviation of the retrieval from the true
state but the expected deviation of the retrieval from the at-
mospheric state sampled on an arbitrary grid, which is itself
a smoothed representation of the true state; in other words,
to characterize the full loss of information with respect to the
true atmosphere, the effect of the representation of the atmo-
spheric state on a finite grid also needs to be considered. The
idea of a sufficiently fine sampling of this reference atmo-
spheric state is problematic because atmospheric variability
occurs on all scales, implying that there is no limit beyond
which the sampling is fine enough. Even the idealization of
infinitesimally fine sampling of the reference state does not
help, because the smoothing error is applied to quantities
which are only defined in a statistical sense, which implies
that a finite volume of sufficient spatial extent is needed to
meaningfully discuss temperature or concentration. Smooth-
ing differences, however, which play a role when measure-
ments are compared, are still a useful quantity if the covari-
ance matrix involved has been evaluated on the comparison
grid rather than resulting from interpolation and if the averag-
ing kernel matrices have been evaluated on a grid fine enough
to capture all atmospheric variations that the instruments are
sensitive to. This is, under the assumptions stated, because
the undefined component of the smoothing error, which is the
effect of smoothing implied by the finite grid on which the
measurements are compared, cancels out when the difference

is calculated. If the effect of a retrieval constraint is to be di-
agnosed on a grid finer than the native grid of the retrieval
by means of the smoothing error, the latter must be evalu-
ated directly on the fine grid, using an ensemble covariance
matrix which includes all variability on the fine grid. Ideally,
the averaging kernels needed should be calculated directly on
the finer grid, but if the grid of the original averaging kernels
allows for representation of all the structures the instrument
is sensitive to, then their interpolation can be an adequate ap-
proximation.

1 Introduction

The analysis of remotely sensed data of the atmosphere often
leads to ill-posed or even underdetermined inverse problems.
This is because the measurements do not contain enough in-
formation to reconstruct the atmospheric state on a grid as
fine as that chosen by the retrieval scientist. A variety of regu-
larization techniques have been proposed to solve such kinds
of inverse problems, among them regularization methods by
Tikhonov (1963a), Twomey (1963) and Phillips (1962), as
well as the maximum a posteriori scheme, which has been
systematically investigated byRodgers(2000) and which had
formerly been referred to as optimal estimation (Rodgers,
1976). Any of these regularized retrievals, however, contain
formal prior information.

Contrary to its use in analytical philosophy, the term “a
priori” does in this context not denote factual (as opposed to
logical or analytical) knowledge which is so obviously true
that it can be taken for granted (in a Kantian sense). Instead,
in remote sensing theory, “prior” or “a priori” are defined
only relative to a measurement and denote what is known –
or assumed to be known – before the measurement is taken;
in other words, these terms are used here in a Bayesian sense.
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We call prior information “formal” if it is imported via
a formal constraint in the retrieval equation, as opposed to
indirect prior assumptions. Indirect a priori assumptions, or
indirect constraints, can be applied, for example, by simply
using a finite and rather coarse grid for representation of the
atmospheric state and an interpolation rule for determination
of the atmospheric state between the grid points, or by re-
trieving a nonlinear function of the target quantityx which
constrains the result to positive (e.g. by actually retrieving
the logarithm ofx) or otherwise bounded (e.g. by actually
retrieving the sine or cosine ofx values). The interaction of
the chosen grid and regularization is discussed, for example,
in Haario et al.(2004) and references therein.

With a grid coarse enough, maximum likelihood retrievals
which do not require any formal constraint or a priori infor-
mation are often possible. While the effect of finite resolution
is self-evident in the latter case, because nobody reasonably
expects the resolution of, for example, a vertical profile be
better than the grid on which it is represented, regularized
retrievals lead to oversampled profiles, i.e. there are more al-
titude grid points than independent pieces of information. In
this case, it is essential to report the influence of the prior
information on the retrieval to the user. Since the constraint
can push the retrieval away from the actual true state of the
atmosphere towards the prior information, the regularization
causes an additional error term. This term is larger when the
influence of the prior information is stronger, which is the
price to pay for a reduction in the retrieval noise by regular-
ization. This additional error term was initially called “null
space error” (Rodgers, 1990) until it was renamed “smooth-
ing error” (Rodgers, 2000).

In this paper it will be shown that this constraint diagnostic
has a particular characteristic which makes the related con-
cept questionable in the context of error budget. In Sect.2
the formal environment will be presented in which the dis-
cussion will take place and the notation and terminology will
be clarified. In Sect.3 the error propagation of the smoothing
error will be discussed and related problems will be identi-
fied. Section4 is dedicated to the critical discussion of the
attempt to save the smoothing error concept by evaluating it
on a fine enough grid, and, in Sect.5, alternative approaches
to characterize the impact of prior information on the pro-
file are discussed. In Sect.6 an application will be identified
for which, despite all criticism, a concept closely related to
the smoothing error concept is still appropriate. Finally, in
Sect.7, the main lessons learned will be summarized and the
implications on the appropriate representation of remotely
sensed data will be discussed.

2 Background and notation

For formulation of a constrained retrieval we use the con-
cept and notation ofRodgers(2000) with some minor ad-
justments byvon Clarmann et al.(2003). We minimize a

two-component cost functionc

c = (y −F(x))T S−1
y (y −F(x))+ (x −xa)

T R(x −xa), (1)

where y is the m-dimensional vector of measurements,
F the Rn

→ Rm signal transfer forward model,x the n-
dimensional vector of the unknown components of the at-
mospheric state,Sy the m × m measurement error covari-
ance matrix,xa the n-dimensional a priori information on
the atmospheric state andR an n × n regularization ma-
trix. This leads, after linear replacement toF(x) by xa+

K(x − xa), whereK is the Jacobian matrix with elements
ki,j = ∂yi/∂xj , to the following retrieval equation:

x̂ = xa+ (KT S−1
y K + R)−1KT S−1

y (y − F(xa)) (2)

= xa+ G(y − F(xa)),

where thê symbol denotes the estimated profile, and where
the so-called gain functionG, which will later be used for
brevity, is implicitly defined by the second line of the equa-
tion. Various choices ofR are possible:R = S−1

a , whereSa
is the a priori covariance matrix, leads to a maximum a pos-
teriori retrieval (Rodgers, 2000), while squared and scaled
kth-order finite difference matrices have been suggested by
Phillips (1962), Tikhonov (1963b, a) and Twomey (1963)
and have systematically been investigated for remote sensing
applications by, for example,Schimpf and Schreier(1997) or
Steck and von Clarmann(2001). Nonlinear variants of these
retrieval approaches are common but not relevant to the topic
of this paper.

The dependence of the solution on the true state is charac-
terized by the so-called averaging kernel matrix of dimension
n × n

A =
∂x̂

∂x
= (KT S−1

y K + R)−1(KT S−1
y K). (3)

With this we can rewrite Eq. (2) as

x̂ = Ax + (I − A)xa, (4)

whereI is then × n identity matrix.Rodgers(1990, 2000)
suggests the application of generalized Gaussian error prop-
agation (cf. next section) to estimate a diagnostic quantity,
which is the mapping of the expected deviation ofxa from
the actualx:

Ssmoothing= (I − A)Se(I − A)T . (5)

Se is the covariance matrix of the atmospheric state around
the mean state. The diagnostic quantitySsmoothingis the ex-
pected deviation of the retrieval from the true state which is
caused by the constraint term in Eq. (2) and is directly com-
parable to other retrieval errors, e.g. noise. Thus, this con-
straint diagnostic is called “smoothing error”. It is an intu-
itive quantity used to characterize the uncertainty due to the
difference between the actual atmospheric state and the prior
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information. The appropriateness to include this quantity in
the error budget, however, requires closer inspection. Before
this, some more general caveats in the context of the smooth-
ing error are summarized.

The linear estimate presented in Eq. (5) holds only if in-
deedxa =< x >, where<> denotes the expectation value.
More precisely, it is required thatSe represents the covari-
ance around< x >, and not the covariance aroundxa if the
latter happens not to be chosen to equal< x >, or around any
other arbitrarily chosen a priori state. The use of arbitrarily
chosen covariance matrices for the evaluation of the smooth-
ing error is critically discussed inRodgers(2000, p. 49),
while the need to consider a possible bias between the cor-
rect expectation value of the atmospheric state and the ad
hoc prior chosen to constrain the retrieval is outlined, for ex-
ample, invon Clarmann and Grabowski(2007). In the latter
case the effect of the formal constraint is not only smoothing
of the true atmospheric state, and as a consequence the so-
called smoothing error has to be complemented by the addi-
tional component

(I − A)(xa− < x >)(xa− < x >)T (I − A)T , (6)

which accounts for the bias ofxa.
Further, it is important that theSe matrix includes atmo-

spheric variability on all of the scales which can be repre-
sented on the grid on which it is evaluated.Se matrices con-
structed from real data often happen to be singular. This can
hint at a situation where the parent data do not resolve atmo-
spheric variability on the small scales corresponding to the
grid on which theSe is represented. In this case, Eq. (5) will
underestimate the smoothing error. The same is, of course,
true if the parent data do not fully cover the true spatial and
temporal atmospheric variability.

Moreover, the term “smoothing error” can be misleading,
because, depending on the retrieval scheme chosen, the re-
trieved profile is not necessarily a smoothed version of the
true profile but can also be a combination of the a priori pro-
file and the profile the unregularized retrieval would tend to-
wards. While in many cases the profile obtained by means of
Eq. (2) is smoother than the true profile, there is no reason
that this should always be the case. The retrieved profile can
also be shifted with respect to the true profile, or, depending
on the actual prior information used, it can also have artificial
structure.

Examples of error budget estimates including the smooth-
ing error or with the smoothing error as a supplemental
diagnostic quantity can be found inWorden et al.(2004),
Bowman et al.(2006) andKramarova et al.(2013).

3 Error propagation

3.1 General linear or moderately nonlinear case

Let

v = f (u) (7)

for any real vectorial argumentu and any real vectorial result
v. The uncertainties ofu map onto the uncertainties ofv as

Sv ≈ KSuKT , (8)

whereSu andSv are the error covariance matrices of vectors
u andv, respectively, and whereK is the Jacobian matrix of
v = f (u) with elements

∂vj

∂ui
. Equation (8) is a generalization

of the Gaussian error propagation law1

σ 2
vj

≈

∑
i

(
∂vj

∂ui

)2

σ 2
ui

, (9)

where σui
and σvj

are the standard deviations represent-
ing the uncertainties ofvj andui , respectively. Contrary to
the latter equation, which assumes uncorrelatedui , Eq. (8)
is valid also for intercorrelated errors ofui , which are ac-
counted for by the related off-diagonal elements of covari-
ance matrixSu. These error propagation rules are generally
accepted in all cases except for grossly nonlinear functions
f (u).

Application of this formalism to the mapping of measure-
ment noise onto retrieved atmospheric state variables gives

Snoise≈ GSyGT . (10)

3.2 Application to retrieved profiles

Typical linear operations performed with retrieved vertical
profiles are transformation from one altitude grid to another,
e.g. by interpolation from a coarse grid to a finer grid (cf.
Rodgers, 2000, p. 162) by

x̂fine = Wx̂coarse, (11)

of which a possible inverse operation is

x̂coarse= Vx̂fine = (WT W)−1WT xfine. (12)

Here,x̂coarseandx̂fine are of dimensionsn andñ, andW and
V areñ×n- andn× ñ-dimensional transformation matrices,
respectively. In this context it is important to note that trans-
formation from the coarse to the fine grid is reversible be-
causeVW = Icoarse, i.e. back transformation from the fine to

1Although its name may suggest the contrary, this error propa-
gation scheme is independent of the particular error distribution and
does not depend on a Gaussian error distribution.
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the coarse grid will fully restore the original coarse-grid pro-
file. In contrast, transformation from the fine to the coarse
grid implies an irreversible loss of information; because of
WV 6= Ifine, back transformation to the fine grid will not re-
store the original profile.

According to Eq. (8), retrieval noise is propagated from
the coarse to the fine grid as

Snoise,fine = WSnoise,coarseWT (13)

and from the fine grid to the coarse grid as

Snoise,coarse= VSnoise,fineVT . (14)

The same equations apply to the propagation of the parame-
ter error estimate. The latter is the response of the retrieval to
uncertainties in the forward model parameters.

As has already been mentioned byRodgers(2000), the en-
semble covariance matrixSe cannot be transformed from a
coarser to a finer grid by means of Eq. (13), because it does
not represent the variability on any scale finer than that rep-
resented on its original grid. It has, however, never been dis-
cussed that, as a direct consequence of this, the smoothing
error as evaluated using Eq. (5) also cannot be interpolated
from its native grid to any finer grid. The smoothing error of
x̂ represents smoothing error components only with respect
to variability which can be represented on the native grid of
Se.

The striking consequence of this, which has, to the best
knowledge of the author, never been mentioned, is that the
generalized Gaussian error propagation does not generally
apply to the smoothing error. Even for linear functionsf (x),
error propagation laws fail when applied to the smoothing
error as soon as the linear function involves any kind of in-
terpolation to any grid finer than that on which the smooth-
ing error has been evaluated. Interpolation of retrieved data
to grids different from (often: finer than) the initial retrieval
grid are a frequent task, e.g. when databases are created in
which results of different instruments are represented in a
common format and on a common grid (e.g.Sofieva et al.,
2013; Hegglin et al., 2013; Tegtmeier et al., 2013).

While Gaussian error propagation (Eq.8) of the smoothing
error would give

Ssmoothing,fine = WSsmoothing,coarseWT (15)

= W(Icoarse− A)Se,coarse(Icoarse− A)T WT

= (Ifine− WAcoarseV)WVSe,fine(WV)T

(Ifine− WAcoarseV)T

(cf. Rodgers, 2014, for the representation shown in the third
and fourth lines of this equation), the correct linear estimate
is

Ssmoothing,fine = (Ifine− Afine)Se,fine(Ifine− Afine)
T , (16)

with Afine = WGcoarseKfine (Rodgers, 2000, p. 161). Equa-
tion (16) cannot be inferred via Eq. (8) from Ssmoothing,coarse.

Here,Se,fine is the ensemble covariance matrix evaluated on
the fine grid and including small-scale variability which can-
not be represented on the coarse grid,Kfine is the Jacobian
which represents the sensitivities of the measurements to at-
mospheric variability on the fine grid andIcoarseandIfine are
the identity matrices on the respective grids.

The problem is caused by the fact that the smoothing er-
ror does not characterize the full smoothing effect but in-
stead only that part which is caused by the constraint term
in Eq. (2). The additional smoothing caused by the finite grid
which cannot resolve all atmospheric variability remains un-
accounted for. This representation error term is assumed to
be practically zero in the idealized framework byRodgers
(2000), but this assumption will be challenged in the next
section.

In order to demonstrate that this difference is not only of
academic interest,Ssmoothing,fine has been evaluated both via
generalized Gaussian error propagation (Eq.15) and directly
on the fine grid (Eq.16) (Fig. 1). The grid widths of the fine
and the coarse grids have been chosen to be 1 and 3 km, re-
spectively. For simplicity, the coarse grid was chosen to be a
subset of the fine grid. The averaging kernels were assumed
to be triangular in the fine grid, where the sum over the aver-
aging kernel elements was unity. They were transformed into
the coarse grid via

Acoarse= VAfineW (17)

(bottom left panel in Fig.1). The ensemble covariance matrix
Se,fine was constructed with diagonal values of 1 (in arbitrary
units), and exponentially decreasing all positive off-diagonal
values, where the correlation length was varied from values
of 1 to 20 km (upper left panel in Fig.1). Construction of
Se,coarserelies on theV matrix (upper right panel in Fig.1).
Averaging kernels and climatological variabilities were cho-
sen to be altitude-independent.

First, a test case with a correlation length of 1 km and a
vertical resolution of the retrieval of 6 km is discussed in
more detail. The resulting smoothing error on the coarse grid
is, in terms of variances, 0.38, and the covariances between
adjacent profile points are as negative as−0.24 (dark-blue
curve in the lower right panel in Fig.1, which is hardly dis-
cernable because it is overplotted by the central red curve).
This anticorrelation is intuitive because smoothing means
that if, for example, a profile maximum is smeared, the re-
trieved values at the maximum will be too low while values
at adjacent profile points will be too high. Generalized Gaus-
sian error propagation of the smoothing error to the fine grid
according Eq. (15) reproduces the errors at the grid points
of the fine grid which are also part of the coarse grid, but at
interjacent grid points the propagated smoothing error vari-
ances are calculated to be as low as 0.10 (red lines/symbols
in the lower right panel in Fig.1). This is computationally in-
tuitive, because interpolation between values with anticorre-
lated errors leads to error cancellation; physically, however,
this is counterintuitive because interpolation cannot reduce
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Figure 1. Case study: the upper left panel shows the ensemble co-
variances on the fine grid (grid spacing 1 km). Only the symbols are
significant – the lines are only plotted to guide the eye. The large
asterisks are the variances. The variance and covariances referring
to 25 km are highlighted for clarity. The top right panel shows the
covariances on the coarse (grid width 3 km) grid. The lower left
panel shows the averaging kernels on the coarse grid. The lower
right panel shows the estimated smoothing errors (in terms of vari-
ances/covariances) at 24, 25 and 26 km altitude: the smoothing er-
rors on the fine grid estimated by Gaussian error estimation (red)
are largest at 25 km, an altitude which coincides with an altitude of
the coarse grid, and are smaller for 24 and 26 km, where the values
on the fine grid depend on interpolation. The opposite is true for the
direct estimates of the smoothing error on the fine grid (light blue):
here the smoothing error is smallest at 25 km and larger at 24 and
26 km. More importantly, the directly estimated smoothing errors
are considerably larger. This is because the relevant ensemble co-
variance matrix contains larger atmospheric variability (cf. top pan-
els). The original smoothing error estimate on the coarse grid (dark
blue) is hardly visible because it is identical to that represented on
the fine grid.

the smoothing error. The direct evaluation on the fine grid via
Eq. (16) gives smoothing error variances of 0.61 (light-blue
lines/symbols in the lower right panel). The smoothing errors
are larger because they account for the additional variability
which can be represented only on the fine grid but which is
lost when smoothing errors are evaluated on the coarse grid.

For larger correlation lengths inSe,fine, the smoothing er-
rors decrease but the contrast between the two ways to esti-
mate it on the fine grid remains large. For a correlation length
of 20 km and a vertical resolution of the retrieval of 6 km,
the correctly calculated smoothing error on the fine grid is
still more than 3 times larger than that estimated via Gaus-
sian error propagation. For inferior altitude resolutions, this
ratio becomes smaller, but even for a correlation length of
20 km and a vertical resolution of 22 km, the correctly calcu-
lated smoothing error is still higher by 37 % compared to the
estimate using Gaussian error propagation. Obviously, the

difference between the two ways to estimate the smoothing
error does not fully disappear even if the original retrieval
has been considerably oversampled (Table 1). Putting the-
oretical concerns aside, dissemination of diagnostic matri-
ces sampled fine enough to keep the inaccuracy implied by
any further interpolation tolerably small can easily be beyond
reach for reasons of the pure amount of data to be commu-
nicated, and in many real applications the grid on which the
diagnostic quantities are provided is defined in a way that the
scales which the instrument can measure are resolved (weak
gridding criterion) rather than all the scales on which atmo-
spheric variability still occurs (strong gridding criterion).

Therefore either Gaussian error propagation has to be
abandoned or the smoothing error problem has to be fixed in
a way that the smoothing error concept becomes consistent
with the generalized Gaussian error propagation law. Since
Gaussian error propagation is an essential part of linear the-
ory and even of quantitative empirical research in general,
it might not be acceptable to drop it in favour of the cur-
rent smoothing error concept. Instead, either a way needs to
be determined by which the smoothing error concept can be
modified such that it becomes compatible with established
error propagation laws, as will be attempted in the next sec-
tion, or otherwise an alternative way to report the a priori
content of the retrieval which makes no use of the smoothing
error concept is needed.

4 The nature of the retrieved quantities

Having understood the source of the problem and accept-
ing that there exists natural variability on all physical scales
(Richardson, 1920), the natural approach would appear to
be to evaluate the smoothing error on an infinitesimally fine
grid. This would assure that the smoothing error represents
atmospheric variation on all possible scales. Of course, this
ideal cannot be reached within finite-dimension algebra, but
one could at least try to evaluate the smoothing error on a grid
fine enough that further refinement of the grid does not im-
ply additional variability. In other words, the problem should
be diagnosed on a grid on which the full variability of the
atmosphere can be represented (strong gridding criterion).
This approach is based on the assumption that the residual
smoothing error not accounted for on a finite grid converges
towards zero for a grid spacing approaching zero. In the fol-
lowing it will be shown that this assumption is false.

For an air volume of the size of a molecule, i.e. still
much larger than the infinitesimal scale, the mixing ratio of
a species is not a meaningful quantity: either, at the given
point, there is a target molecule, and thus the mixing ratio is
one; there is a molecule of another species, and thus the mix-
ing ratio is zero; or there is no molecule at all and thus the
mixing ratio is fully undefined because this would involve di-
vision by zero. For number densities and temperature, there
are similar problems with the definition of these quantities
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Table 1.Ratio of correctly calculated smoothing errors and smoothing errors calculated via Gaussian error propagation.

Correlation
Resolution [km]

length [km] 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000

1000 11.186 5.933 4.377 3.724 3.389 3.184 3.047 2.956 2.894 2.849
2000 7.751 4.225 3.114 2.636 2.388 2.237 2.139 2.075 2.032 2.001
3000 6.741 3.698 2.722 2.296 2.072 1.937 1.849 1.792 1.755 1.728
4000 6.304 3.463 2.545 2.143 1.929 1.800 1.716 1.662 1.627 1.603
5000 6.074 3.336 2.449 2.059 1.851 1.724 1.642 1.590 1.556 1.533
6000 5.937 3.260 2.391 2.007 1.802 1.677 1.597 1.546 1.512 1.490
7000 5.848 3.209 2.352 1.973 1.770 1.646 1.566 1.516 1.483 1.461
8000 5.788 3.175 2.325 1.949 1.747 1.623 1.544 1.495 1.462 1.440
9000 5.744 3.150 2.306 1.932 1.730 1.607 1.528 1.479 1.447 1.425

10 000 5.712 3.131 2.291 1.918 1.718 1.595 1.516 1.467 1.435 1.414
11 000 5.688 3.117 2.280 1.908 1.708 1.585 1.507 1.458 1.426 1.405
12 000 5.669 3.105 2.271 1.900 1.700 1.578 1.499 1.451 1.419 1.398
13 000 5.654 3.096 2.264 1.894 1.694 1.572 1.493 1.445 1.413 1.392
14 000 5.641 3.089 2.258 1.889 1.689 1.566 1.488 1.440 1.408 1.387
15 000 5.631 3.083 2.253 1.884 1.685 1.562 1.484 1.436 1.404 1.383
16 000 5.623 3.078 2.249 1.881 1.681 1.559 1.481 1.432 1.401 1.380
17 000 5.616 3.074 2.246 1.877 1.678 1.556 1.478 1.429 1.398 1.377
18 000 5.610 3.070 2.243 1.875 1.676 1.553 1.475 1.427 1.395 1.374
19 000 5.605 3.067 2.240 1.873 1.673 1.551 1.473 1.425 1.393 1.372
20 000 5.601 3.065 2.238 1.871 1.672 1.549 1.471 1.423 1.391 1.370

in any meaningful manner infinitesimal point on this small
scale; quantities which characterize an air parcel in a statis-
tical sense are not applicable any more. The characterization
of the atmosphere by statistical terms implies a certain in-
herent smoothing and thus the true unsmoothed state of the
atmosphere is ill-defined. It is not clear with respect to which
quantity the expected differences should be characterized by
the smoothing error.

Admittedly, the scales discussed here are of no concern
in remote sensing. However, it is not the intent here to dis-
cuss the state of single molecules but simply to show that
there exists no reasonable limit to which mixing ratios, num-
ber densities or temperature converge for steadily decreasing
scale lengths, i.e. that convergence of the smoothing error
cannot safely be expected when the grid spacing approaches
zero: for example, mixing of air parcels of different com-
position range from planetary waves down to the molecular
scale. Thus, for any finite grid, there exist sub-grid processes
causing their own variability in the atmospheric state not rep-
resented bySe until we reach the molecular scale on which
the pathological cases discussed above occur.

In conclusion, the attempt to solve the propagation prob-
lem of the smoothing error by use of a grid fine enough that
it is guaranteed that interpolation will never occur must be
considered as failed. In more practical terms, it is fair to say
that if sufficient information is available to constructSe on
a certain fine grid, then there will be scientists who are in-
terested in atmospheric processes on even finer scales which
have their own variability.

5 The way out of the dilemma

Since generalized Gaussian error propagation is one of the
most essential principles of linear theory, it seems unaccept-
able to define an error which, even for a linear operation, is
not propagated by Eq. (8). The problem can be avoided by
changing the notion of what an atmospheric state variable
actually represents. All problems discussed above originate
from the fact that an ideal measurement of an atmospheric
state value represents an ideally resolved, and thus extension-
less, point in the atmosphere, and that every measurement of
finite spatial resolution is less than ideal and thus affected
by a smoothing error representing the expectation of the de-
viation of the finite-resolution measurement from the fictive
true actual value at infinitesimal resolution.Rodgers(2000,
p. 48) mentions an alternative understanding of the measure-
ments of the atmospheric state as representing an extended
air volume and characterizing the measurement by its mea-
surement and parameter errors (excluding the smoothing er-
ror) plus a characterization of the spatial resolution (e.g. via
communicating the averaging kernel to the data user). As a
result of the discussion above, the dichotomy of understand-
ing the retrieval either as an estimate of the “state smoothed
by the averaging kernel” or an “estimate of the true state”
Rodgers(2000, p. 48, lines 2–4 in Sect. 3.2.1) does not hold,
because any representation of the atmosphere refers to finite
air volumes or any other finite representation in both cases.
As a consequence of this, the alternative approach of regard-
ing the retrieval as an estimate of the smoothed state is not
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only an option but in fact seems to be the only reasonable
choice because the concept of the ideally infinitesimally fine
resolved atmospheric state has been shown to be untenable.
The smoothing error concept which assumes a “true”, i.e. un-
smoothed, atmosphere contradicts itself, because the evalua-
tion of the smoothing error on a finite grid with its implicit
smoothing through finite representation gives the notion of
the retrieval characterizing a finite air volume access through
the back door again; in other words it breaks with its own
assumption that the “smoothing error” represents the entire
smoothing component of the retrieval error relative to the
“true” atmosphere in absolute, i.e. grid-independent, terms
without grid-dependent representation errors.

The decision to distribute the averaging kernel matrix in-
stead of the smoothing error as the main diagnostic to char-
acterize the impact of the constraint of the retrieval needs
further discussion. To compare the effect of the constraint to
the effect of measurement errors on a grid finer than that on
which the data are distributed, the user might wish to cal-
culate the smoothing error on the finer grid. The user might
have anSe matrix available or can construct one from known
energy cascades between scales or knowledge on relevant
small-scale processes. The user can do so becauseSe is not
an instrument-dependent quantity, i.e. its construction does
not require expert knowledge on the particular instrument.
However, the user will have the averaging kernels available
only on the original (coarser) grid. In this case the user would
use

Ssmoothing,fine = (Ifine− WAV )Se,fine(Ifine− WAV )T , (18)

which is incorrect becauseWV 6= Ifine. If, however, the orig-
inal grid had been chosen fine enough to represent all the at-
mospheric variability that the instrument is sensitive to (weak
gridding criterion), the error caused by the interpolation of
the averaging kernel matrix can remain tolerably small. Ta-
ble2 shows the ratios of smoothing errors calculated with the
correct averaging kernel matrix and those calculated accord-
ing to Eq. (18) for the series of case studies from Sect.3.2.
In all cases the approximation used leads to an overestima-
tion of the smoothing error, but for cases when the original
coarse grid is more than 3 times finer than the resolution of
the retrieval, related errors of the estimated smoothing error
are smaller than 5 %. In all cases, the inaccuracy of the es-
timated smoothing error due to interpolation of the averag-
ing kernel is orders of magnitude smaller than inaccuracies
by application of Gaussian error propagation to the coarse-
grid smoothing error. Thus, it seems to be, in agreement with
Rodgers(2000, Sect. 11.2.6), preferable to distribute the av-
eraging kernel instead of the smoothing error.

Once having accepted the failure of the smoothing error
concept as a grid-independent tool to characterize the full
smoothing component of the difference between the retrieved
and the true atmospheric state, it is comforting that the finite-
resolution concept offers at least three further advantages:

first, the estimate of the error budget for any retrieval involv-
ing a givenR (which may or may not be an approximation
to, or coarse sampling of,S−1

e ) no longer depends via Eq. (5)
on the choice2 of the ensemble covariance matrix. Often no
reliable estimate ofSe is available, but any arbitrary choice
is in conflict with the smoothing error concept (cf.Rodgers,
2000, p. 48). Second, the averaging kernel is needed for a
number of applications of measured data regardless, and to
provide it instead of the smoothing error is advantageous for
the data user. Third, error budgets of instruments whose re-
trievals are performed on different grids become intercom-
parable, which was not the case when the error budget still
included the smoothing error. The latter is again related to the
core of the problem, viz. that smoothing errors evaluated on
different grids actually represent different error components.
Although meaningless, it is indeed common practice to com-
pare total error bars (including the smoothing component) of
retrievals performed on different grids.

One implication of abandoning the smoothing error con-
cept as part of the error budget is that the usual estimate
of the retrieval error covariance matrix shown below is no
longer valid, at least not in a general sense where transfor-
mation between grids are an issue.Rodgers(1976) states that
the retrieval error covariance matrix is

Sx =

(
KT S−1

y K + S−1
a

)−1
. (19)

This covariance matrix which uses the a priori covariance
matrix Sa as an approximation for the ensemble covari-
ance matrixSe contains both the measurement noise and the
smoothing error component (cf.Rodgers, 2000, p. 58). Thus,
all caveats discussed for the smoothing error apply equally
to the error estimate of Eq. (19). An error estimate free of
smoothing error contributions can be made by direct appli-
cation of Eq. (10) to the various error sources, viz. noise and
parameter errors.

Moreover, Eq. (19) is, regardless of the discussion of the
smoothing error in this paper, inapplicable to any choice of
the Sa matrix except for the true climatological a priori co-
variance matrixSe. While reasonable retrievals can be per-
formed with ad hoc choices of the regularization term in
Eq. (2), Eq. (19) does not provide a valid error estimate in
these cases. The inadequacy of an ad hoc choice ofSe which
has been already highlighted byRodgers(2000, p. 48) also
makes Eq. (19) inadequate for all choices ofSa except for the
true covariance of the atmospheric state under investigation.

2Ideally, contrary to the a priori covariance matrixSa, there is
no “choice” in the construction ofSe, because it is not an ad hoc
regularization matrix but instead a real ensemble covariance matrix.
In practice, however, there remains some ambiguity with respect to
the selection of the data source and the definition of the ensemble.
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Table 2.Ratio of correctly calculated smoothing errors and smoothing errors calculated using interpolated averaging kernels.

Correlation
Resolution [km]

length [km] 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000

1000 0.810 0.927 0.961 0.975 0.983 0.988 0.991 0.993 0.994 0.995
2000 0.782 0.918 0.958 0.974 0.982 0.988 0.991 0.993 0.994 0.995
3000 0.771 0.913 0.956 0.973 0.982 0.987 0.991 0.993 0.994 0.995
4000 0.766 0.911 0.955 0.972 0.981 0.987 0.991 0.994 0.995 0.995
5000 0.763 0.909 0.953 0.971 0.981 0.987 0.991 0.994 0.995 0.995
6000 0.761 0.908 0.953 0.971 0.981 0.987 0.991 0.994 0.995 0.996
7000 0.760 0.907 0.952 0.970 0.980 0.987 0.991 0.994 0.995 0.996
8000 0.759 0.906 0.952 0.970 0.980 0.986 0.991 0.994 0.995 0.996
9000 0.759 0.906 0.951 0.970 0.980 0.986 0.991 0.994 0.995 0.996

10 000 0.758 0.906 0.951 0.970 0.980 0.986 0.991 0.994 0.995 0.996
11 000 0.758 0.905 0.951 0.970 0.980 0.986 0.991 0.994 0.995 0.996
12 000 0.758 0.905 0.951 0.969 0.980 0.986 0.991 0.994 0.995 0.996
13 000 0.758 0.905 0.951 0.969 0.979 0.986 0.991 0.994 0.995 0.996
14 000 0.758 0.905 0.951 0.969 0.979 0.986 0.991 0.994 0.995 0.996
15 000 0.757 0.905 0.951 0.969 0.979 0.986 0.991 0.994 0.995 0.996
16 000 0.757 0.905 0.950 0.969 0.979 0.986 0.991 0.994 0.995 0.996
17 000 0.757 0.905 0.950 0.969 0.979 0.986 0.991 0.994 0.995 0.996
18 000 0.757 0.905 0.950 0.969 0.979 0.986 0.991 0.994 0.995 0.996
19 000 0.757 0.905 0.950 0.969 0.979 0.986 0.991 0.994 0.995 0.996
20 000 0.757 0.904 0.950 0.969 0.979 0.986 0.991 0.994 0.995 0.996

6 Implication for comparison of retrievals

An exception where a quantity calculated on the basis of a
concept closely related to the smoothing error is still a use-
ful and powerful tool is comparison of remotely sensed data
according toRodgers and Connor(2003, their Eqs. 10 to
14). These authors suggest that profiles be validated against
each other by testing whether their difference,x̂1 − x̂2, is
significant in terms ofχ2 statistics. The covariance matrix
of the difference,Sδ, needed for this test, however, must not
include interdependent components of the smoothing error.
Thus, these authors suggest thatSδ be calculated as

Sδ = (A1 − A2)Sc(A1 − A2)
T

+ Sx1 + Sx2, (20)

where A1, A2, Sx1 and Sx2 are the respective averaging
kernel and retrieval noise covariance matrices and where
Sc is the comparison ensemble covariance matrix. The first
term on the right-hand side of this equation characterizes the
smoothing difference between both these retrievals.

This estimate of the smoothing difference between two
instruments’ results is necessary to judge whether the dif-
ference between the retrievals is significant or whether it
can be attributed to the different smoothing characteristics
of the retrievals. In this context, it is not necessary to know
the smoothing error relative to the true atmospheric state
as it is sufficient to characterize the difference between the
smoothing characteristics. Following theRodgers and Con-
nor(2003) scheme, the difference is calculated on a common
so-called “intercomparison grid”, which should generally be

at least as fine as the parent grids. When the difference
x̂1 − x̂2 between the profiles is calculated on this grid, any
degradation of the knowledge of the atmospheric state due
to the representation on a finite grid is the same for both pro-
files and thus cancels out, provided thatSc has been evaluated
on the intercomparison grid or any grid finer than that but is
not a result of interpolation, and the grid is fine enough to
ensure that the averaging kernels represent all the scales that
the instruments are sensitive to (weak gridding criterion) (see
Appendix). This implies that, when differences of profiles
are considered, the problematic component of the smoothing
error, which is the difference between the true atmosphere
sampled on the comparison grid and the true atmosphere at
“infinite resolution”, has no relevance anymore, and theχ2

analysis is still valid.
The approach ofRodgers and Connor(2003), however, is

not without pitfalls: it is essential that the a priori covariance
matrix of the comparison ensemble,Sc, represents all vari-
ability of the atmospheric state on the comparison grid. For
reasons discussed in Sect.3.2, the a priori covariance matrix
cannot simply be interpolated to the comparison grid.

In summary, the smoothing difference, if calculated cor-
rectly, is still a useful quantity, while the parent smoothing
errors of the original profiles are affected by the problems
discussed in the previous sections and thus should not be part
of an error budget.

If the contrast in the vertical resolutions of two measure-
ments is large, then the comparison can be carried out by
much simpler means: the better resolved measurement can
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then often be regarded as nearly ideal, andx in Eq. (4) can
be replaced with the high-resolution profile to yield the high-
resolution profile as the poorer resolving instrument would
see it. This transformed high-resolution profile can then be
directly compared to the poorly resolved profile. This ap-
proach has first been proposed and demonstrated byConnor
et al.(1994).

7 Conclusions

The following discussion is limited to retrievals using formal
a priori information. Recommendations are conditional, as-
suming that the decision in favour of a constrained retrieval
has already been made. Alternatives which avoid the whole
problem, such as maximum likelihood retrievals without a
formal constraint (cf., for example,Carlotti, 1988), may be
worthwhile trying but are beyond the scope of this discus-
sion.

The conclusions are split into two parts, the first of which
being theoretical and descriptive, and the second practical
and thus prescriptive.

7.1 Theoretical conclusions

It has been shown in this paper that the quantity called
smoothing error does not represent an estimate of the
regularization-induced difference between the retrieved state
and the “true” state of the atmosphere. Instead it charac-
terizes the difference between the retrieved state and an ar-
bitrary representation of the true state, where this arbitrary
representation itself, being a representation on a finite dis-
crete grid, has its own representation error which can be un-
derstood as an implicit smoothing error. It has further been
shown that this problem cannot be solved by representing the
atmosphere on a “sufficiently fine” grid with zero representa-
tion error, because the estimate of the atmospheric state does
not converge to a useful value when the grid approaches an
infinitesimally fine grid. This is because the quantities used
to characterize the atmosphere in a statistical sense (mixing
ratio, concentration, temperature) are not defined at infinites-
imal resolution, which would require characterization of ex-
tensionless points.

7.2 Practical conclusions

The problem of the smoothing error referring to a finite sam-
pling of the atmospheric state could be considered purely
philosophical and practically irrelevant, and the “smoothing
error” could be treated as a theoretical term without direct
correspondence to the empirical world (e.g.Carnap, 1966,
1974), if the consequence of this problem were not that the
quantity called smoothing error does not, contrary to the
other retrieval error components, comply with generalized

Gaussian error propagation. While the smoothing error is a
valuable and intuitive retrieval diagnostic in its own right,
the problems encountered in the context of error propagation
cause major reservations against the smoothing error concept
in the context of error budget and imply that the quantity cal-
culated according to Eq. (5) thus should not be called an “er-
ror” in terms of error propagation. While, if calculated cor-
rectly, a smoothing difference of two profiles is still a use-
ful quantity, the inclusion of the smoothing error in the error
budget of a retrieval will cause confusion and will lead to in-
adequate operations by data users. The use of the smoothing
error should be restricted to applications where it can safely
be excluded that anybody would propagate this quantity to
finer grids. An option could be to replace the term “smooth-
ing error” with another term which does not suggest applica-
bility of Gaussian error propagation; for example, one could
use the term “constraint diagnostic” instead.

When the quality of two data products is compared, it is
important to evaluate the smoothing error on the same grid.
Otherwise the retrieval evaluated on the finer grid will erro-
neously appear to be more affected by the smoothing error
than that evaluated on the coarser grid.

A useful and safe way to communicate the smoothing
characteristics of the retrieval is to provide the averaging ker-
nel along with the data (Rodgers, 2000, Sect. 11.2.6). While
the interpolation of the averaging kernel matrix to finer grids
also introduces inaccuracies, these seem to be tolerably small
if the original averaging kernel has been evaluated on a grid
fine enough that all the scales that the instrument is sensi-
tive to are resolved (weak gridding criterion). A lot of ap-
plications of the averaging kernel demonstrate its diagnos-
tic power, and solutions to specific related problems are pro-
posed (e.g.Connor et al., 2008; Stiller et al., 2012; Worden
et al., 2013; Neu et al., 2014; Eckert et al., 2014). If for some
debatable reason the smoothing error still is to be supplied as
part of the error budget, then, at the very least, the native grid
on which this error has been evaluated needs to be presented
along with the error estimate, and a caveat is needed to warn
the data user about the smoothing error pitfalls.
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Appendix A: The approximate validity of
the smoothing difference

We start from Eq. (20) but, for simplicity, ignore the noise
terms which are not relevant here. We formulate Eq. (20) on
a grid which is finer than the comparison grid:

Sδ,fine = (A1,fine− A2,fine)Sc,fine× (A1,fine− A2,fine)
T .

(A1)

For the fine-grid averaging kernels, the approximation
Afine ≈ WAcoarseV is used: we get

Sδ,fine ≈ (WA1V − WA2V)Sc,fine (A2)

× (WA1V − WA2V)T .

We are interested to get this on the comparison grid:

Sδ ≈ V(WA1V − WA2V)Sc,fine (A3)

× (WA1V − WA2V)T VT

= (VWA 1V − VWA 2V)Sc,fine

× (VWA 1V − VWA 2V)T

= (A1V − A2V)T Sc,fine(A1V − A2V)

= (A1 − A2)VSc,fineVT (A1 − A2)

= (A1 − A2)Sc(A1 − A2).

This proves that, except for the additional information con-
tained in the fine-grid averaging kernel, nothing is lost when
going from the fine to the coarse grid. The approximation of
the averaging kernel used here is considered justifiable if it
has been evaluated on a grid fine enough to resolve all the in-
formation that the respective instrument is sensitive to (weak
gridding criterion).
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