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Abstract. The difference due to the content of a priori in- is calculated. If the effect of a retrieval constraint is to be di-
formation between a constrained retrieval and the true atmoagnosed on a grid finer than the native grid of the retrieval
spheric state is usually represented by a diagnostic quantithy means of the smoothing error, the latter must be evalu-
called smoothing error. In this paper it is shown that, regard-ated directly on the fine grid, using an ensemble covariance
less of the usefulness of the smoothing error as a diagnostimatrix which includes all variability on the fine grid. Ideally,
tool in its own right, the concept of the smoothing error as the averaging kernels needed should be calculated directly on
a component of the retrieval error budget is questionable bethe finer grid, but if the grid of the original averaging kernels
cause it is not compliant with Gaussian error propagation.allows for representation of all the structures the instrument
The reason for this is that the smoothing error does not repis sensitive to, then their interpolation can be an adequate ap-
resent the expected deviation of the retrieval from the truegproximation.

state but the expected deviation of the retrieval from the at-

mospheric state sampled on an arbitrary grid, which is itself

a smoothed representation of the true state; in other words,

to characterize the full loss of information with respectto the 1 Introduction

true atmosphere, the effect of the representation of the atmo- .

spheric state on a finite grid also needs to be considered. TheN€ analysis of remotely sensed data of the atmosphere often
idea of a sufficiently fine sampling of this reference atmo- Iea_ds_ to ill-posed or even underdetermined inverse problem_s.
spheric state is problematic because atmospheric variabilit) NS IS because the measurements do not contain enough in-
occurs on all scales, implying that there is no limit beyondfprmanon to reconstruct the _atmosp_her!c state on a grid as
which the sampling is fine enough. Even the idealization Offmg as that cho§en by the retrieval scientist. A variety of regu-
infinitesimally fine sampling of the reference state does not@rization techniques have been proposed to solve such kinds
help, because the smoothing error is applied to quantitieQf inverse problems, among them regularization methods by
which are only defined in a statistical sense, which implies Tikhonov (19633, Twomey (1963 and Phillips (1962, as

that a finite volume of sufficient spatial extent is needed toWell as the maximum a posteriori scheme, which has been
meaningfully discuss temperature or concentration. SmoothSystematically investigated tijodger¢2000 and which had

ing differences, however, which play a role when measureformerly been referred to as optimal estimatidRodgers
ments are compared, are still a useful quantity if the covari-1979- Any of these regularized retrievals, however, contain
ance matrix involved has been evaluated on the comparisofPrmal prior information. _ _

grid rather than resulting from interpolation and if the averag-  Contrary to its use in analytical philosophy, the term “a
ing kernel matrices have been evaluated on a grid fine enougRror” does in this context not denote factual (as opposed to
to capture all atmospheric variations that the instruments aréfgical or analytical) knowledge which is so obviously true
sensitive to. This is, under the assumptions stated, becaudat it can be taken for granted (in a Kantian sense). Instead,
the undefined component of the smoothing error, which is thdn rémote sensing theory, “prior” or “a priori” are defined
effect of smoothing implied by the finite grid on which the only relative to a measurement and denote what is known —

measurements are compared, cancels out when the differen©& @ssumed to be known — before the measurement is taken;
in other words, these terms are used here in a Bayesian sense.
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3024 T. von Clarmann: Smoothing error pitfalls

We call prior information “formal” if it is imported via two-component cost function
a formal constraint in the retrieval equation, as opposed to
indirect prior assumptions. Indirect a priori assumptions, or¢ = (¥ — Fax)'S;My— F(x) +(x —xa) R(x —xa), (1)
indirect constraints, can be applied, for example, by simply . . .
using a finite and rather coarse grid for representation of thé’"here yn IS thi m.-d|menS|ona| vector of measurements,
atmospheric state and an interpolation rule for determinatiorf. the R — R™ signal transfer forward modek the n-
of the atmospheric state between the grid points, or by re_dlmenS|o.naI vector of the unknown components of the.at—
trieving a nonlinear function of the target quantitywhich mospherlc. states, the'm xm measurgmept error covarl-
constrains the result to positive (e.g. by actually retrievingalnce matrlx,xa_the n-dimensional a priori mfprm_atlon on
the logarithm ofx) or otherwise bounded (e.g. by actually th_e atmospherlc state_ arid an » x n regularization ma-
retrieving the sine or cosine afvalues). The interaction of trix. This leads, aftgr linear repIgcementBix_) by xa-+
the chosen grid and regularization is discussed, for example}f(x —¥a), WhereK is the .Jacob@n matrix V.V'th elements
in Haario et al(2004 and references therein. ki, j = 8y /8x;, 1o the following retrieval equation:

With a grid coarse enough, maximum likelihood retrievals . Tl 1, Tl
which dognot require any f%rmal constraint or a priori infor- ¥ =xa+ (KIS, "K+R)THKES, Ny — Fxa) (2)
mation are often possible. While the effect of finite resolution = xa+G(y — F(xa)),
is self-evident in the latter case, because nobody reasonably R ) i
expects the resolution of, for example, a vertical profile benere theé symbol denotes the estimated profile, and where

better than the grid on which it is represented, regularizedn® so-called gain functios, which will later be used for
retrievals lead to oversampled profiles, i.e. there are more alPreVity. is implicitly defined by the second “nf of the equa-
titude grid points than independent pieces of information. Intion- Various choices oR are possibleR = S;, whereS,

this case, it is essential to report the influence of the prior

is the a priori covariance matrix, leads to a maximum a pos-
information on the retrieval to the user. Since the constraint€Mior retrieval Rodgers 2000, while squared and scaled

can push the retrieval away from the actual true state of théth-order finite difference matrices have been suggested by
atmosphere towards the prior information, the regularization” Nllips (1962, Tikhonov (1963h & and Twomey (1963
causes an additional error term. This term is larger when thénd have systematically been investigated for remote sensing
influence of the prior information is stronger, which is the &Pplications by, for exampl&chimpf and Schreigd 997) or
price to pay for a reduction in the retrieval noise by regular- Steck and von Clarman200]). Nonlinear variants of these
ization. This additional error term was initially called “null "€triéval approaches are common but not relevant to the topic

space error’ Rodgers 1990 until it was renamed “smooth-  ©f this paper. , ,
ing error’ (Rodgers2000). The dependence of the solution on the true state is charac-

In this paper it will be shown that this constraint diagnostic terized by the so-called averaging kernel matrix of dimension

has a particular characteristic which makes the related con’? * "

cept questionable in the context of error budget. In S2ct. 9% — e

the formal environment will be presented in which the dis- A = Py (KTS"K+R)™* (K" S °K). (3)
cussion will take place and the notation and terminology will

be clarified. In SecB the error propagation of the smoothing With this we can rewrite Eq2j as

error will be discussed and related problems will be identi-

fied. Sectiond is dedicated to the critical discussion of the * =A¥ + (I —A)xa, )
attempt to save the smoothing error concept by evaluating i
on a fine enough grid, and, in Sebt.alternative approaches
to characterize the impact of prior information on the pro-

therel is then x n identity matrix. Rodgers(199Q 2000

suggests the application of generalized Gaussian error prop-
ti f. t ti t timat di ti tity,

file are discussed. In Se@&.an application will be identified agation (cf. next section) to estimate a diagnostic quantity

. X e hich is the mapping of the expected deviatiorvgffrom
for which, despite all criticism, a concept closely related toW en ! ppIng xP viationra

. R : . .~ the actualy:
the smoothing error concept is still appropriate. Finally, in

Sect.7, the main lessons learned will be summarized and th%moothmg: (1 —A)S(l —A)T. (5)
implications on the appropriate representation of remotely
sensed data will be discussed. Se is the covariance matrix of the atmospheric state around

the mean state. The diagnostic quan8yhoothingis the ex-

pected deviation of the retrieval from the true state which is
2 Background and notation caused by the constraint term in E@) énd is directly com-

parable to other retrieval errors, e.g. noise. Thus, this con-
For formulation of a constrained retrieval we use the con-straint diagnostic is called “smoothing error”. It is an intu-
cept and notation oRodgers(2000 with some minor ad- itive quantity used to characterize the uncertainty due to the
justments byvon Clarmann et al(2003. We minimize a  difference between the actual atmospheric state and the prior
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information. The appropriateness to include this quantity in3 Error propagation

the error budget, however, requires closer inspection. Before

this, some more general caveats in the context of the smooth3.1  General linear or moderately nonlinear case
ing error are summarized.

The linear estimate presented in E§) folds only if in-
deedx,; =< x >, where<> denotes the expectation value.
More precisely, it is required th& represents the covari-
ance around< x >, and not the covariance arourgd if the
latter happens not to be chosen to equal >, or around any
other arbitrarily chosen a priori state. The use of arbitrarily
chosen covariance matrices for the evaluation of the smoothg ~ ks K7, (8)
ing error is critically discussed iRRodgers(2000, p. 49),
while the need to consider a possible bias between the cofwhereS, andS, are the error covariance matrices of vectors
rect expectation value of the atmospheric state and the ag andwv, respectively, and whet€ is the Jacobian matrix of

hoc prior chosen to constrain the retrieval is outlined, for ex-, _ £ (w) with elementsa—j. Equation 8) is a generalization
ample, invon Clarmann and Grabows{g007. In the latter i .
of the Gaussian error propagation faw

case the effect of the formal constraint is not only smoothing
of the true atmospheric state, and as a consequence the so- (80. 2
/) 2

Let

v=f(u) (7)

for any real vectorial argumentand any real vectorial result
v. The uncertainties af map onto the uncertainties ofas

called smoothing error has to be complemented by the addler ~ Z O 9)

tional component duj

(1 —A)(xa— <x >)xa— <x >)7 (1 —A)T (6) where o,, and o,; are the standard deviations represent-
ing the uncertainties of; andu;, respectively. Contrary to
which accounts for the bias af,. the latter equation, which assumes uncorrelated=q. @)

Further, it is important that th& matrix includes atmo- is valid also for intercorrelated errors of, which are ac-
spheric variability on all of the scales which can be repre-counted for by the related off-diagonal elements of covari-
sented on the grid on which it is evaluat&d.matrices con- ~ ance matrixS,. These error propagation rules are generally
structed from real data often happen to be singular. This ca@ccepted in all cases except for grossly nonlinear functions
hint at a situation where the parent data do not resolve atmof ().
spheric variability on the small scales corresponding to the Application of this formalism to the mapping of measure-
grid on which theS; is represented. In this case, Ef) will ment noise onto retrieved atmospheric state variables gives
underestimate the smoothing error. The same is, of course,
true if the parent data do not fully cover the true spatial and
temporal atmospheric variability. Shoise™ GS,G” . (10)

Moreover, the term “smoothing error” can be misleading,
because, depending on the retrieval scheme chosen, the r

trieved profile is not necessarily a smoothed version of theTypical linear operations performed with retrieved vertical

;irlltjeea‘r)]rc?fulr!i blictngintﬁlesﬁr?ree au(I:;)nn;zlgar‘g?r?e\(;Llﬂ\:\/eoilgr'zg:ll dpig'profiles are transformation from one altitude grid to another,
P 9 .g. by interpolation from a coarse grid to a finer grid (cf.

wards. While in many cases the profile obtained by means o

Eq. (2) is smoother than the true profile, there is no reason 0dgers2000 p. 162) by

that this should always be the case. The retrieved profile CaR. . — W#coarse (11)

also be shifted with respect to the true profile, or, depending

on the actual prior information used, it can also have artificial of which a possible inverse operation is

structure.

Examples of error budget estimates including the smooth= coarse= V&fine = (W7 W) W7 xfine. (12)

ing error or with the smoothing error as a supplemental

diagnostic quantity can be found Worden et al.(2004,  Here,Xcoarse@ndXxfine are of dimensions ands, andW and

Bowman et al(2006§ andKramarova et al(2013. V aren x n- andn x ii-dimensional transformation matrices,
respectively. In this context it is important to note that trans-
formation from the coarse to the fine grid is reversible be-
causeVW = Icoarse i.€. back transformation from the fine to

g._z Application to retrieved profiles

1Although its name may suggest the contrary, this error propa-
gation scheme is independent of the particular error distribution and
does not depend on a Gaussian error distribution.
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3026 T. von Clarmann: Smoothing error pitfalls

the coarse grid will fully restore the original coarse-grid pro- Here, Sg fine is the ensemble covariance matrix evaluated on
file. In contrast, transformation from the fine to the coarsethe fine grid and including small-scale variability which can-
grid implies an irreversible loss of information; because of not be represented on the coarse gKépe is the Jacobian
WV # lfine, back transformation to the fine grid will not re- which represents the sensitivities of the measurements to at-

store the original profile. mospheric variability on the fine grid amgyarseandline are
According to Eq. 8), retrieval noise is propagated from the identity matrices on the respective grids.
the coarse to the fine grid as The problem is caused by the fact that the smoothing er-
T ror does not characterize the full smoothing effect but in-
Shoisefine = WSnoisecoarsdV/ 13)  stead only that part which is caused by the constraint term
and from the fine grid to the coarse grid as in Eq. (2). The additional smoothing caused by the finite grid
which cannot resolve all atmospheric variability remains un-
Shoisecoarse= VSnoisefineV " - (14) accounted for. This representation error term is assumed to

The same equations apply to the propagation of the parameQe practically zero in the idealized framework Bpdgers

ter error estimate. The latter is the response of the retrieval t(éze?;ggn but this assumption will be challenged in the next

uncertainties in the forward model parameters. | q q hat this diff . v of
As has already been mentionedRydgerg2000, the en- n or .er.to emonstrate that this difference is not on yo
academic interesBsmoothingine has been evaluated both via

semble covariance matri® cannot be transformed from a X > - .
coarser to a finer grid by means of EG3), because it does generaI!zed Qaussmn error propagatlpn (E)and dwec;ly
not represent the variability on any scale finer than that rep-on(;[hﬁ fine grid (E%16L(F|g.b1). Thig”d W'dtbhs ff thg) :];'rll(e
resented on its original grid. It has, however, never been dis&" t_ € coarse grids have been chosen tobe 1an m, re-
cussed that, as a direct consequence of this, the smoothi ectively. For_5|mpl_|C|ty, the coarse grid was chosen to be a
error as evaluated using Ed) (@lso cannot be interpolated bset_of the fln_e gr|d._ The averaging kernels were assumed
fto be triangular in the fine grid, where the sum over the aver-

from its native grid to any finer grid. The smoothing error o ) ; .
% represents smoothing error components only with respecf9ind kernel elements was unity. They were transformed into

to variability which can be represented on the native grid of /'€ C0arse grid via

Se. o ) i Acoarse= VAfineW (17)
The striking consequence of this, which has, to the bestb lef lin Fial). Th bl . .
knowledge of the author, never been mentioned, is that théPOttom left panelin Figl). The ensemble covariance matrix

generalized Gaussian error propagation does not generallyefine was constructgd with diagonal values'o'f 1(in afbitrary
apply to the smoothing error. Even for linear functighs), nits), and exponentially decreasing all positive off-diagonal

error propagation laws fail when applied to the smoothingvalues’ where the correlation Iength_was varied frqm values
error as soon as the linear function involves any kind of in—Of 1to 20|.km (upﬁer let p.anel n F@)H Constlrl_Jcthn of
terpolation to any grid finer than that on which the smooth- Se.coarser€lies on thev' matrix (upper right panel in Fidl).

ing error has been evaluated. Interpolation of retrieved datéé\veragmg kernels and climatological variabilities were cho-

to grids different from (often: finer than) the initial retrieval seg'to be alt|tude-|ndgpr(]andent. lation | h of 1K d
grid are a frequent task, e.g. when databases are created in Irst, & test case with a correlation length o M and a

which results of different instruments are represented in avertical resolution of the retrieval of 6 km is discussed in

common format and on a common grid (eSpfieva et al more detail. The resulting smoothing error on the coarse grid
2013 Hegglin et al, 2013 Tegtmeier et J.2013 " is, in terms of variances, 0.38, and the covariances between

While Gaussian error propagation (B)of the smoothing adjacent profile poi'nts are as negative—.e($2.4 (dark-blye
error would give curve in the lower r_|g_ht panel in Fid,, which is hardly dis-
cernable because it is overplotted by the central red curve).
SsmoothingﬁnezWSsmoothingcoarséNT (15) This anticorrelation is intuitive because smoothing means
— W (l coarse— A)Se.coarsd] coarse— A) T W that if, for example, a prqfile ma>§imum is smeargd, the re-
trieved values at the maximum will be too low while values
= (fine — WA coarsd/ )WV Se fine(WV) " at adjacent profile points will be too high. Generalized Gaus-
(fine — WA coarsd/) " sian error propagation of the smoothing error to the fine grid
according Eq. 15) reproduces the errors at the grid points
(cf. Rodgers2014 for the representation shown in the third of the fine grid which are also part of the coarse grid, but at
gnd fourth lines of this equation), the correct linear estimateinterjacent grid points the propagated smoothing error vari-
1S ances are calculated to be as low as 0.10 (red lines/symbols
(16) in the lower right panel in Fidl). This is computationally in-
tuitive, because interpolation between values with anticorre-
with Afine = WGcoars&iine (Rodgers 200Q p. 161). Equa- lated errors leads to error cancellation; physically, however,
tion (16) cannot be inferred via Eq8) from Ssmoothingcoarse this is counterintuitive because interpolation cannot reduce

T
Ssmoothingfine = (Ifine — Afine)Se,fine(l fine — Afine) " ,
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35 SOvaNIaNCES, fine grid o5 S0variances, coarse grid_ difference between the two ways to estimate the smoothing
error does not fully disappear even if the original retrieval
c e 1 has been considerably oversampled (Table 1). Putting the-
% 2 % 25f 1 oretical concerns aside, dissemination of diagnostic matri-
2 " E ol ces sampled fine enough to keep the inaccuracy implied by
any further interpolation tolerably small can easily be beyond
B 02 01 o8 o8 1o B 03 o1 o6 o8 1o reach for reasons of the pure amount of data to be commu-
Covariancesfarbitrary units Covariancesfarbitrary units nicated, and in many real applications the grid on which the
45— OW of averaging kernel 45— Smoothing error_ diagnostic quantities are provided is defined in a way that the
ol ] ol /;{‘g ,9:9‘ ] scales which the instrument can measure are resolved (weak
£ <&l ‘ gridding criterion) rather than all the scales on which atmo-
g 25f g 25f e 1 spheric variability still occurs (strong gridding criterion).
< b 3 <k ‘i‘\{' % varance 1 Therefore either Gaussian error propagation has to be
. > - sl ?f o coatance abandoned or the smopthing error problem has to be fix_ed in
01 00 01 02 03 04 05 06 02 00 02 04 06 08 a way that the smoothing error concept becomes consistent
Averaging kernel Smoothing error/arbitrary units

with the generalized Gaussian error propagation law. Since
Figure 1. Case study: the upper left panel shows the ensemble coGaussian error propagation is an essential part of linear the-
variances on the fine grid (grid spacing 1 km). Only the symbols areory and even of quantitative empirical research in general,
significant — the lines are only plotted to guide the eye. The largeit might not be acceptable to drop it in favour of the cur-

asterisks are the variances. The variance and covariances referringnt smoothing error concept. Instead, either a way needs to
to 25km are highlighted for clarity. The top right panel shows the pe getermined by which the smoothing error concept can be
covariances on the coarse (grid width 3km) grid. The lower left g ified such that it becomes compatible with established

panel shows the averaging kernels on the coarse grid. The loweg, o oronaqation laws, as will be attempted in the next sec-
right panel shows the estimated smoothing errors (in terms of vari-. . - o
tion, or otherwise an alternative way to report the a priori

ances/covariances) at 24, 25 and 26 km altitude: the smoothing er- tent of th i | which K f1h thi
rors on the fine grid estimated by Gaussian error estimation (red)cOn entottne retrieval which makes no use ot the smoothing

are largest at 25 km, an altitude which coincides with an altitude of€/TOr conceptis needed.

the coarse grid, and are smaller for 24 and 26 km, where the values

on the fine grid depend on interpolation. The opposite is true for the

direct estimates of the smoothing error on the fine grid (light blue):4  The nature of the retrieved quantities

here the smoothing error is smallest at 25km and larger at 24 and

26 km. More importantly, the directly estimated smoothing errors Having understood the source of the problem and accept-
are considerably larger. This is because the relevant ensemble cong that there exists natural variability on all physical scales
variance matrix contains larger atmospheric variability (cf. top pan'(Richardson 1920, the natural approach would appear to

els). The original smoothing error estimate on the coarse grid (darlbe to evaluate the smoothing error on an infinitesimally fine

?A:?r:z Sﬁ;dly visible because it is identical to that represented ongrid. This would assure that the smoothing error represents

atmospheric variation on all possible scales. Of course, this
ideal cannot be reached within finite-dimension algebra, but
one could at least try to evaluate the smoothing error on a grid
the smoothing error. The direct evaluation on the fine grid viafine enough that further refinement of the grid does not im-
Eq. (16) gives smoothing error variances of 0.61 (light-blue ply additional variability. In other words, the problem should
lines/symbols in the lower right panel). The smoothing errorsbe diagnosed on a grid on which the full variability of the
are larger because they account for the additional variabilityatmosphere can be represented (strong gridding criterion).
which can be represented only on the fine grid but which isThis approach is based on the assumption that the residual
lost when smoothing errors are evaluated on the coarse gridssmoothing error not accounted for on a finite grid converges
For larger correlation lengths & fine, the smoothing er-  towards zero for a grid spacing approaching zero. In the fol-
rors decrease but the contrast between the two ways to estiewing it will be shown that this assumption is false.
mate it on the fine grid remains large. For a correlation length For an air volume of the size of a molecule, i.e. still
of 20km and a vertical resolution of the retrieval of 6 km, much larger than the infinitesimal scale, the mixing ratio of
the correctly calculated smoothing error on the fine grid isa species is not a meaningful quantity: either, at the given
still more than 3 times larger than that estimated via Gausjpoint, there is a target molecule, and thus the mixing ratio is
sian error propagation. For inferior altitude resolutions, thisone; there is a molecule of another species, and thus the mix-
ratio becomes smaller, but even for a correlation length ofing ratio is zero; or there is no molecule at all and thus the
20 km and a vertical resolution of 22 km, the correctly calcu- mixing ratio is fully undefined because this would involve di-
lated smoothing error is still higher by 37 % compared to thevision by zero. For number densities and temperature, there
estimate using Gaussian error propagation. Obviously, thare similar problems with the definition of these quantities

www.atmos-meas-tech.net/7/3023/2014/ Atmos. Meas. Tech., 7, 3G&B4 2014
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Table 1.Ratio of correctly calculated smoothing errors and smoothing errors calculated via Gaussian error propagation.

Correlation Resolution [km]

length [km] ~ 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000

1000 11.186 5.933 4.377 3.724  3.389 3.184  3.047 2.956 2.894  2.849
2000 7.751 4.225 3.114 2.636 2.388 2.237 2.139 2.075 2.032 2.001
3000 6.741 3.698 2.722 2.296 2.072 1.937 1.849 1.792 1.755 1.728
4000 6.304 3.463 2.545 2.143 1.929 1.800 1.716 1.662 1.627 1.603
5000 6.074 3.336 2.449 2.059 1.851 1.724 1.642 1.590 1.556 1.533
6000 5937 3.260 2.391 2.007 1.802 1.677 1.597 1.546 1512 1.490
7000 5.848 3.209 2.352 1.973 1.770 1.646 1.566 1516 1.483 1.461
8000 5788 3.175 2.325 1.949 1.747 1.623 1.544 1.495 1.462 1.440
9000 5.744 3.150 2.306 1.932 1.730 1.607 1.528 1.479 1.447 1.425
10000 5.712 3.131 2.291 1.918 1.718 1.595 1.516 1.467 1.435 1.414
11000 5.688 3.117 2.280 1.908 1.708 1.585 1.507 1.458 1.426 1.405
12000 5.669 3.105 2271 1.900 1.700 1.578 1.499 1.451 1.419 1.398
13000 5.654 3.096 2.264 1.894 1.694 1572 1.493 1.445 1.413 1.392
14000 5.641 3.089 2.258 1.889 1.689 1.566 1.488 1.440 1.408 1.387
15000 5.631 3.083 2.253 1.884 1.685 1.562 1.484 1.436 1.404 1.383
16000 5.623 3.078 2.249 1.881 1.681 1.559 1.481 1.432 1.401 1.380
17000 5.616 3.074 2.246 1.877 1.678 1.556 1.478 1.429 1.398 1.377
18000 5.610 3.070 2.243 1.875 1.676 1.553 1.475 1.427 1.395 1.374
19000 5.605 3.067 2.240 1.873 1.673 1.551 1.473 1.425 1.393 1.372
20000 5.601 3.065 2.238 1871 1.672 1.549 1471 1.423 1.391 1.370

in any meaningful manner infinitesimal point on this small 5 The way out of the dilemma
scale; quantities which characterize an air parcel in a statis-

tical sense are not applicable any more. The characterizatiogince generalized Gaussian error propagation is one of the

of the atmosphere by statistical terms implies a certain in- . o ) 7
herent smoothing and thus the true unsmoothed state of th@OSt essential principles of linear theary, it seems unaccept-
able to define an error which, even for a linear operation, is

atmosphere is ill-defined. It is not clear with respect to which ot propagated by Eq8). The problem can be avoided b
quantity the expected differences should be characterized bgharl?ginpg %he notiﬁ)n %f What :n atmospheric state varia)kl)Ie

the smoothing error. . -
Admittedly, the scales discussed here are of no concerr?cwa”y represents. All problems discussed above originate

in remote sensing. However, it is not the intent here to dis-" o' the fact that an ideal measurement of an atmospheric

cuss the state of single molecules but simply to show thaftate val_u?_retr;]res?nts anhldeally :jetsr? I\t/ed, andthus exten5|tonf-
there exists no reasonable limit to which mixing ratios, num- ess, pointinthe atmosphere, and that every measurement o

ber densities or temperature converge for steadily decreasin]c ite spat|al_resolut|on Is less .than ideal and t.hus affected
y a smoothing error representing the expectation of the de-

scale lengths, i.e. that convergence of the smoothing error:

cannot safely be expected when the grid spacing approaché’éation of the finite-resolution measurement from the fictive

zero: for example, mixing of air parcels of different com- true actual value at infinitesimal resolutidRodgers(2000,

position range from planetary waves down to the molecular®: 48t) mfe?;lon? an althern_atn{{etunderstandlng tf)f the meztasu(rie- d
scale. Thus, for any finite grid, there exist sub-grid processe ents of the atmospneric stale as representing an extende

causing their own variability in the atmospheric state not rep-a‘Ir vqumte agd charactterlzmg the mlezz;uretrrr:ent by Ittk? mea-
resented bys: until we reach the molecular scale on which surerr|1en anh parf‘”?e ?.r err?r;](exc ut |Ing ei s;rnoo Ing er-
the pathological cases discussed above occur. ror) plus a characterization of the spatial resolution (e.g. via

In conclusion, the attempt to solve the propagation prob_communicating the averaging kernel to the data user). As a
lem of the smoo,thing error by use of a grid fine enough thatresult of the discussion above, the dichotomy of understand-

it is guaranteed that interpolation will never occur must beiNd the retrieval either as an estimate of the “state smoothed
considered as failed. In more practical terms, it is fair to say

by the averaging kernel” or an “estimate of the true state”
that if sufficient information is available to construgs on Rodgerg2000, p. 48, lines 2-4 in Sect. 3.2.1) does not hold,
a certain fine grid, then there will be scientists who are in-

because any representation of the atmosphere refers to finite
terested in atmospheric processes on even finer scales Whi%\r velumes or any other finite representation in both cases.
have their own variability.

s a consequence of this, the alternative approach of regard-
ing the retrieval as an estimate of the smoothed state is not
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only an option but in fact seems to be the only reasonabldirst, the estimate of the error budget for any retrieval involv-
choice because the concept of the ideally infinitesimally fineing a givenR (which may or may not be an approximation
resolved atmospheric state has been shown to be untenabl@, or coarse sampling 08; %) no longer depends via EG)(
The smoothing error concept which assumes a “true”, i.e. unon the choicé of the ensemble covariance matrix. Often no
smoothed, atmosphere contradicts itself, because the evalueeliable estimate 0. is available, but any arbitrary choice
tion of the smoothing error on a finite grid with its implicit is in conflict with the smoothing error concept (Efodgers
smoothing through finite representation gives the notion 0f200Q p. 48). Second, the averaging kernel is needed for a
the retrieval characterizing a finite air volume access througlmumber of applications of measured data regardless, and to
the back door again; in other words it breaks with its own provide it instead of the smoothing error is advantageous for
assumption that the “smoothing error” represents the entirghe data user. Third, error budgets of instruments whose re-
smoothing component of the retrieval error relative to thetrievals are performed on different grids become intercom-
“true” atmosphere in absolute, i.e. grid-independent, termsarable, which was not the case when the error budget still
without grid-dependent representation errors. included the smoothing error. The latter is again related to the
The decision to distribute the averaging kernel matrix in- core of the problem, viz. that smoothing errors evaluated on
stead of the smoothing error as the main diagnostic to chardifferent grids actually represent different error components.
acterize the impact of the constraint of the retrieval needsAlthough meaningless, it is indeed common practice to com-
further discussion. To compare the effect of the constraint tgpare total error bars (including the smoothing component) of
the effect of measurement errors on a grid finer than that ometrievals performed on different grids.
which the data are distributed, the user might wish to cal- One implication of abandoning the smoothing error con-
culate the smoothing error on the finer grid. The user mightcept as part of the error budget is that the usual estimate
have arSe matrix available or can construct one from known of the retrieval error covariance matrix shown below is no
energy cascades between scales or knowledge on relevalanger valid, at least not in a general sense where transfor-
small-scale processes. The user can do so be@useot mation between grids are an issR@dgerg1976 states that
an instrument-dependent quantity, i.e. its construction doeshe retrieval error covariance matrix is
not require expert knowledge on the particular instrument.
However, the user will have the averaging kernels available 1
only on the original (coarser) grid. In this case the user wouldS, = (KTSglK + S;l) . (29)
use

Ssmoothingfine = (Iﬁne—WAV)Se,ﬁne“ﬁne—WAV)T’ (18) This covariance matrix which uses the a priori covariance
matrix S; as an approximation for the ensemble covari-
which is incorrect becaus®/V # liine. If, however, the orig-  ance matrixSe contains both the measurement noise and the
inal grid had been chosen fine enough to represent all the asmoothing error component (¢odgers200Q p. 58). Thus,
mospheric variability that the instrument is sensitive to (weakall caveats discussed for the smoothing error apply equally
gridding criterion), the error caused by the interpolation of to the error estimate of Eq19). An error estimate free of
the averaging kernel matrix can remain tolerably small. Ta-smoothing error contributions can be made by direct appli-
ble 2 shows the ratios of smoothing errors calculated with thecation of Eq. {0) to the various error sources, viz. noise and
correct averaging kernel matrix and those calculated accordparameter errors.
ing to Eg. (L) for the series of case studies from Se&c Moreover, Eq. 19) is, regardless of the discussion of the
In all cases the approximation used leads to an overestimasmoothing error in this paper, inapplicable to any choice of
tion of the smoothing error, but for cases when the originalthe Sy matrix except for the true climatological a priori co-
coarse grid is more than 3 times finer than the resolution ofvariance matrixSe. While reasonable retrievals can be per-
the retrieval, related errors of the estimated smoothing erroformed with ad hoc choices of the regularization term in
are smaller than 5%. In all cases, the inaccuracy of the esEq. (2), Eq. (19) does not provide a valid error estimate in
timated smoothing error due to interpolation of the averag-these cases. The inadequacy of an ad hoc choigwhich
ing kernel is orders of magnitude smaller than inaccuraciedas been already highlighted Bodgers(200Q p. 48) also
by application of Gaussian error propagation to the coarsemakes Eq.19) inadequate for all choices &} except for the
grid smoothing error. Thus, it seems to be, in agreement witrue covariance of the atmospheric state under investigation.
Rodgerq200Q Sect. 11.2.6), preferable to distribute the av-
eraging kernel instead of the smoothing error.

Once having gcgepted the failure of the smoof[hing error 2IdeaIIy, contrary to the a priori covariance mat@y, there is
concept as a grid-independent tool to characterize the full, «choice” in the construction o, because it is not an ad hoc
smoothing component of the difference between the retrievegegularization matrix but instead a real ensemble covariance matrix.
and the true atmospheric state, itis comforting that the finite-in practice, however, there remains some ambiguity with respect to
resolution concept offers at least three further advantageshe selection of the data source and the definition of the ensemble.
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Table 2. Ratio of correctly calculated smoothing errors and smoothing errors calculated using interpolated averaging kernels.

Correlation Resolution [km]

length [km] 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000

1000 0.810 0.927 0961 0975 0983 0988 0991 0993 0.994 0.995
2000 0.782 0918 0958 0974 0982 0988 0.991 0993 0.994 0.995
3000 0.771 0.913 0.956 0973 0982 0987 0.991 0.993 0.994 0.995
4000 0.766 0.911 0955 0972 0981 0987 0991 0994 0995 0.995
5000 0.763 0.909 0953 0971 0981 0987 0991 0994 0.995 0.995
6000 0.761 0.908 0.953 0971 0981 0987 0.991 0.994 0995 0.996
7000 0.760 0.907 0.952 0970 0980 0987 0.991 0994 0995 0.996
8000 0.759 0906 0952 0970 0980 0986 0.991 0994 0.995 0.996
9000 0.759 0.906 0.951 0970 0980 0986 0.991 0.994 0.995 0.996
10000 0.758 0.906 0.951 0970 0980 0986 0991 0.994 0.995 0.996
11000 0.758 0.905 0.951 0970 0980 0986 0.991 0994 0.995 0.996
12000 0.758 0.905 0.951 0969 0980 0986 0991 0.994 0.995 0.996
13000 0.758 0.905 0.951 0969 0979 0986 0991 0.994 0.995 0.996
14000 0.758 0.905 0.951 0969 0979 0986 0991 0994 0.995 0.996
15000 0.757 0905 0.951 0969 0979 0986 0991 0.994 0.995 0.996
16000 0.757 0905 0.950 0969 0979 0986 0991 0.994 0.995 0.996
17000 0.757 0.905 0.950 0.969 0979 0986 0991 0994 0.995 0.996
18000 0.757 0.905 0.950 0.969 0979 0986 0991 0.994 0.995 0.996
19000 0.757 0905 0.950 0969 0979 0986 0991 0.994 0.995 0.996
20000 0.757 0.904 0950 0969 0979 0986 0.991 0.994 0.995 0.996

6 Implication for comparison of retrievals at least as fine as the parent grids. When the difference
X1 — X2 between the profiles is calculated on this grid, any
An exception where a quantity calculated on the basis of ajegradation of the knowledge of the atmospheric state due
concept closely related to the smoothing error is still a use+o the representation on a finite grid is the same for both pro-
ful and powerful tool is comparison of remotely sensed datafiles and thus cancels out, provided tBahas been evaluated
according toRodgers and Connd2003 their Egs. 10 to  on the intercomparison grid or any grid finer than that but is
14). These authors suggest that profiles be validated againglot a result of interpolation, and the grid is fine enough to
each other by testing whether their differenge,— X2, is  ensure that the averaging kernels represent all the scales that
significant in terms of? statistics. The covariance matrix the instruments are sensitive to (weak gridding criterion) (see
of the differenceS;, needed for this test, however, must not Appendix). This implies that, when differences of profiles
include interdependent components of the smoothing errorare considered, the problematic component of the smoothing

Thus, these authors suggest tBabe calculated as error, which is the difference between the true atmosphere
- sampled on the comparison grid and the true atmosphere at
Ss = (A1 —A2)Sc(A1—A2)" +Si1+ Sz, (20) “infinite resolution”, has no relevance anymore, and #fe

analysis is still valid.

The approach oRodgers and ConndR003, however, is
ot without pitfalls: it is essential that the a priori covariance
atrix of the comparison ensembl&,, represents all vari-
%bility of the atmospheric state on the comparison grid. For

where A1, Az, S;1 and S, are the respective averaging
kernel and retrieval noise covariance matrices and Whel’%
S is the comparison ensemble covariance matrix. The firs
term on the right-hand side of this equation characterizes th

sm_lfnhqthlngt.dlfffrenfc fhbetweer;r?oth ;h;se retnet:/ atl\i/. i reasons discussed in Seg12, the a priori covariance matrix
IS estimate of the smoothing difference DEWeen Wo 4 simply be interpolated to the comparison grid.

instruments’ results is necessary to judge whether the dif- In summary, the smoothing difference, if calculated cor-

ferenbce TF\évieg :hethret(rjlifvals Its S|gn|tf;](?ant ?]r thth-etr. Itrectly, is still a useful quantity, while the parent smoothing
C??h € atl.” ule | 2h' € |terfn.t §moc; Ing ¢ aract: eL'S IC%rrors of the original profiles are affected by the problems

ofthe retrievals. In this context, 1t IS not necessary 10 Know y;q .\ ssaq in the previous sections and thus should not be part
the smoothing error relative to the true atmospheric state

i fficient to ch terize the diff bet h of an error budget.
as It1s sulcient to characterize the difierence between th€ ¢ 1o onirast in the vertical resolutions of two measure-

smog:)héng CﬂaraCt?L'St:;?r' Follow_mg tlmjld?eés and Con- ments is large, then the comparison can be carried out by
nor ( 350 eme, the di erep(:,’e IS calculated on a commony, -, simpler means: the better resolved measurement can
so-called “intercomparison grid”, which should generally be
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then often be regarded as nearly ideal, anid Eq. @) can  Gaussian error propagation. While the smoothing error is a
be replaced with the high-resolution profile to yield the high- valuable and intuitive retrieval diagnostic in its own right,
resolution profile as the poorer resolving instrument wouldthe problems encountered in the context of error propagation
see it. This transformed high-resolution profile can then because major reservations against the smoothing error concept
directly compared to the poorly resolved profile. This ap- in the context of error budget and imply that the quantity cal-
proach has first been proposed and demonstraté&bbyor  culated according to Eqg5) thus should not be called an “er-
et al.(1994. ror” in terms of error propagation. While, if calculated cor-
rectly, a smoothing difference of two profiles is still a use-

. ful quantity, the inclusion of the smoothing error in the error
7 Conclusions budget of a retrieval will cause confusion and will lead to in-
adequate operations by data users. The use of the smoothing
error should be restricted to applications where it can safely

a priori information. Recommendations are conditional, as- . :
: S : .~ be excluded that anybody would propagate this quantity to
suming that the decision in favour of a constrained retrieval; . . ’
finer grids. An option could be to replace the term “smooth-

has already been made. Alternatives which avoid the whole . . .
) Lo . . ing error” with another term which does not suggest applica-
problem, such as maximum likelihood retrievals without a

formal constraint (cf., for exampl&arlotti, 1988, may be bility of Gaussian error propagation; for example, one could

) . o use the term “constraint diagnostic” instead.
worthwhile trying but are beyond the scope of this discus- . . .
sion When the quality of two data products is compared, it is

. o ' ., important to evaluate the smoothing error on the same grid.
The conclusions are split into two parts, the first of which . : ' S
. ; - .__Otherwise the retrieval evaluated on the finer grid will erro-
being theoretical and descriptive, and the second practica )
- neously appear to be more affected by the smoothing error
and thus prescriptive. .
than that evaluated on the coarser grid.
A useful and safe way to communicate the smoothing

characteristics of the retrieval is to provide the averaging ker-
It has been shown in this paper that the quantity callednel along with the dataRodgers200Q Sect. 11.2.6). While
smoothing error does not represent an estimate of thdhe interpolation of the averaging kernel matrix to finer grids
regularization-induced difference between the retrieved stat@lso introduces inaccuracies, these seem to be tolerably small
and the “true” state of the atmosphere. Instead it characif the original averaging kernel has been evaluated on a grid
terizes the difference between the retrieved state and an afine enough that all the scales that the instrument is sensi-
bitrary representation of the true state, where this arbitranytive to are resolved (weak gridding criterion). A lot of ap-
representation itself, being a representation on a finite displications of the averaging kernel demonstrate its diagnos-
crete grid, has its own representation error which can be untic power, and solutions to specific related problems are pro-
derstood as an implicit smoothing error. It has further beenposed (e.gConnor et al.2008 Stiller et al, 2012 Worden
shown that this problem cannot be solved by representing th&t al, 2013 Neu et al, 2014 Eckert et al.2014). If for some
atmosphere on a “sufficiently fine” grid with zero representa-debatable reason the smoothing error still is to be supplied as
tion error, because the estimate of the atmospheric state do@ért of the error budget, then, at the very least, the native grid
not converge to a useful value when the gr|d approaches agn which this error has been evaluated needs to be presented
infinitesimally fine grid. This is because the quantities usedalong with the error estimate, and a caveat is needed to warn
to characterize the atmosphere in a statistical sense (mixin§e data user about the smoothing error pitfalls.
ratio, concentration, temperature) are not defined at infinites-
imal resolution, which would require characterization of ex-
tensionless points.

The following discussion is limited to retrievals using formal

7.1 Theoretical conclusions

7.2 Practical conclusions

The problem of the smoothing error referring to a finite sam-
pling of the atmospheric state could be considered purely
philosophical and practically irrelevant, and the “smoothing
error” could be treated as a theoretical term without direct
correspondence to the empirical world (eGarnap 1966

1974, if the consequence of this problem were not that the
quantity called smoothing error does not, contrary to the
other retrieval error components, comply with generalized
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Appendix A: The approximate validity of
the smoothing difference

o _ Ss ~ V(WA1V — WA2V) S fine (A3)

We start from Eq. Z20) but, for simplicity, ignore the noise % (WA 1V — WA,V)TvT
terms which are not relevant here. We formulate 2g) on
a grid which is finer than the comparison grid: = (VWA 1V — VWA2V) S fine

x (VWA 1V — VWA V)T
(A1) = (A1V —AV) " S fine(A1V — AzV)
= (A1 —A2)VScfineV' (A1—A2)
= (A1—A2)S(A1—A2).

T
S(S,fine = (Al,fine - A2,fine)Sc,fine X (Al,fine - A2,fine) .

For the fine-grid averaging kernels, the approximation
Afine &~ WA coarsd/ is used: we get

This proves that, except for the additional information con-
tained in the fine-grid averaging kernel, nothing is lost when
x (WA1V — WALV)T. going from the fine to the coarse grid. The approximation of
the averaging kernel used here is considered justifiable if it
has been evaluated on a grid fine enough to resolve all the in-
formation that the respective instrument is sensitive to (weak
gridding criterion).

S5 fine & (WA 1V — WA 2V) & fine (A2)

We are interested to get this on the comparison grid:
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