KIT | KIT-Bibliothek | Impressum | Datenschutz

Paper O. Bayesian Active Object Recognition via Gaussian Process Regression. Edited version of the paper: M. F. Huber, T. Dencker, M. Roschani, and J. Beyerer. Bayesian Active Object Recognition via Gaussian Process Regression. In Proceedings of the 15th International Conference on Information Fusion (Fusion), pages 1718-1725, Singapore, July 2012

Huber, Marco F.; Dencker, Tobias; Roschani, Masoud; Beyerer, Jürgen

This paper is concerned with a Bayesian approach of actively selecting camera parameters in order to recognize a given object from a finite set of object classes. Gaussian process regression is applied to learn the likelihood of image features given the object classes and camera parameters. In doing so, the object recognition task can be treated as Bayesian state estimation problem. For improving the recognition accuracy and speed, the selection of appropriate camera parameters is formulated as a sequential optimization problem. Mutual information is considered as optimization criterion, which aims at maximizing the information from camera observations or equivalently atminimizing the uncertainty of the state estimate.

Volltext §
DOI: 10.5445/IR/1000046060
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Buchaufsatz
Publikationsjahr 2015
Sprache Englisch
Identifikator urn:nbn:de:swb:90-460763
KITopen-ID: 1000046076
Erschienen in Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications. Ed.: M. Huber
Verlag Karlsruher Institut für Technologie (KIT)
Seiten 530-551
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page