
Autotuning and Self-Adaptability in Concurrency Libraries

Thomas Karcher
Institute for Program
Structures and Data

Organization
Karlsruhe Institute of

Technology
76128 Karlsruhe, Germany

thomas.karcher@kit.edu

Christopher Guckes
Institute for Program
Structures and Data

Organization
Karlsruhe Institute of

Technology
76128 Karlsruhe, Germany
ulcok@student.kit.edu

Walter F. Tichy
Institute for Program
Structures and Data

Organization
Karlsruhe Institute of

Technology
76128 Karlsruhe, Germany

tichy@kit.edu

ABSTRACT
Autotuning is an established technique for optimizing the
performance of parallel applications. However, programmers
must prepare applications for autotuning, which is tedious
and error prone coding work. We demonstrate how appli-
cations become ready for autotuning with few or no modi-
fications by extending Threading Building Blocks (TBB), a
library for parallel programming, with autotuning. The ex-
tended TBB library optimizes all application-independent
tuning parameters fully automatically. We compare manual
effort, autotuning overhead and performance gains on 17 ex-
amples. While some examples benefit only slightly, others
speed up by 28% over standard TBB.

1. INTRODUCTION
Autotuning is a feedback-directed method that adapts a
(parallel) program to a given hardware/software platform
and input data characteristics, with the goal of optimizing
one or more non-functional properties such as performance
or energy consumption. Originally developed for numerical
applications [5, 19], it is now applied to parallel software of
all kinds [12, 13], including GPU applications [17]. However,
so far it has been the programmer’s task to prepare a pro-
gram for tunability. In this paper, we demonstrate that it
is possible to drastically simplify the work involved in this
preparation. Our approach is to extend the concurrency li-
brary TBB for autotuning. When using this library, an ap-
plication’s source code requires no or very little preparation
for tunability.

1.1 Autotuning
Autotuning is an iterative process illustrated in Fig. 1. It
searches for an optimum by repeatedly executing and mea-
suring an application under varying tuning parameter set-
tings. Tuning parameters affect performance or energy con-
sumption, but not correctness. Typical tuning parameters
are thread count, work grain size, or pipeline stage repli-
cation. The measurements are taken on loops that take a
significant proportion of execution time and whose perfor-
mance is affected by the tuning parameters. The autotuner’s
job is to change tuning parameter values in an intelligent way
so that the search for the optimum converges quickly.

Our autotuner works on-line. i. e. during production runs
of the program. It repeatedly measures hotspots of the pro-
gram under different parameter settings. The alternative,
off-line tuning, is performed on benchmark data before pro-

Figure 1 Autotuning loop. The autotuner receives execu-
tion time measurements from hot spots. Each time a mea-
surement value arrives, the autotuner selects a new config-
uration of tuning parameters, applies this configuration to
the program, and starts a new run.

duction runs. Off-line tuning measures entire program runs,
executed under different parameter settings. On-line tuning
has the advantage that it can adapt to changing input char-
acteristics, but has the disadvantage that tuning overhead
occurs during production runs. Thus, in order to be useful,
an on-line autotuner must find a performance improvement
that amortizes the cost of tuning. It is imperative that an
on-line tuner avoid testing too many bad choices.

The core of any autotuner is an efficient search algorithm.
We employ the Nelder-Mead optimization algorithm [11]
with slight modifications. The original version is designed
for continuous and unlimited parameter spaces. Since tun-
ing parameters are discrete and have bounds, we modified
Nelder-Mead to round to nearest discrete points and to stay
within given value ranges.

In our experience, autotuning excels if common assumptions
about tuning parameters are violated. One common as-
sumption is setting the thread count equal to the core count,
which is often appropriate for CPU-bound applications. In
non-CPU-bound applications, the best thread count is often
harder to predict, so tuning will help in this case. Good val-
ues for other tuning parameters are also sometimes difficult
to predict.

1.2 Threading Building Blocks (TBB)
Intel’s TBB concurrency library provides an API for express-
ing high-level parallelism. Constructs for pipelines, data and
task parallelism allow the programmer to feed parallel jobs

Copyright is held by the author/owner(s).
1st Workshop on Resource Awareness and Adaptivity in Multi-Core
Computing (Racing 2014), May 29–30, 2014, Paderborn, Germany.

57

to TBB’s scheduler. TBB distributes the jobs among the
cores and splits the jobs into smaller partitions if necessary.
Load balancing by work stealing ensures short waiting times
and avoids wasted CPU time.

Applications that employ TBB usually achieve acceptable
parallel performance “out of the box”, especially for CPU-
bound applications. TBB’s API forces the programmer to
express an application’s work in divisible jobs, e. g. a func-
tion body that is executed for each item in a data collection.

TBB already includes tuning parameters: The thread count
for TBB’s worker pool and the grain size for divisible jobs.
The grain size specifies the amount of work per thread before
contacting the scheduler for more work. The default value
for the worker pool thread count is the core count on the
system, while the default value for the grain size is 1000
(no unit given in the documentation; the number roughly
corresponds to the size of the smallest task that a thread
can get from the TBB scheduler).

2. PREPARING APPLICATIONS
An autotuner must be informed by the application about
application-dependent tuning parameters and their value
ranges. TBB provides generic tuning parameters. These
can be tuned by generic code added to the library. If there
are no application specific tuning parameters, the applica-
tion source code does not need to be touched.

2.1 TBB Example Applications
We use the 17 examples shipped by Intel with TBB for eval-
uating our approach. Table 1 lists the examples and their
properties. They are meant to demonstrate how TBB’s API
works and how to use TBB’s constructs for data parallelism,
pipelines, task management, and parallel data structures.
Most of the examples focus on maximizing performance. An
exception is LogicSim, a simulation of a logical circuit, which
has fixed waiting times for certain circuit parts, thus sim-
ulating switching times. These waiting times dominate the
run-time of the program.

2.2 Tuning Parameters
Applications usually aren’t ready for autotuning. An on-line
autotuner needs at least a single tuning parameter and a sin-
gle measurement section. Applications that use TBB offer
an elegant option: TBB’s tuning parameters can be made
accessible to the autotuner once and for all. The TBB con-
currency constructs also contain sections that can be used
for measurement. With our extended TBB, applications
that use TBB become ready for on-line autotuning with-
out touching their source code. Autotuning becomes truly
automatic.

TBB provides an API with high-level concurrency constructs
such as parallel_for, parallel_reduce or pipelines with
filters. Most of these constructs take a collection of data
items and a C++ functor as arguments. A TBB partitioner
splits a collection into two. The TBB scheduler manages a
pool of worker threads and assigns collections of appropriate
size to workers, along with the functor. A worker invokes
the functor for each data item in its collection. The sched-
uler decides whether a collection should be split because of

load balancing. All of this happens under the hood of the
concurrency constructs.

In the following, we concentrate on two tuning parameters:
The number of worker threads and the amount of work per
thread, called grain size. The default value for the number
of worker threads is the number of cores and is determined
upon application startup. This simple heuristic works well
for CPU-bound jobs, but may be suboptimal for memory
bound jobs or applications with I/O. Autotuning finds a
good choice in all situations. Intel’s recommendation for
grain size ([8], section 3.2.1) is as follows: “Grainsize speci-
fies the number of iterations for a ’reasonable size’ chunk to
deal out to a processor [...] A rule of thumb is that grainsize
iterations of operator() should take at least 10,000–100,000
instructions to execute.” Obviously, this recommendation is
difficult to implement without some experimentation. Au-
totuning performs this experimentation automatically.

We explain the introduction of tuning parameters, the mea-
surement loop, and how the autotuner works with the exam-
ple named Tachyon. Tachyon is a ray tracing software. It
calculates the color values of pixels in a 3D scene from a cam-
era position, a light setting, and positions and sizes of ob-
jects and surfaces [15]. Tachyon uses TBB’s parallel_for

construct and thus uses the number of threads in TBB’s
worker pool and the grain size implicitly. The grain size in-
fluences how many pixels a single thread computes before it
requests more work from the TBB scheduler.

The autotuning measurement loop in the example starts by
invoking parallel_for and ends upon its return. With this
simple approach, the autotuner receives a measurement after
each complete 3D scene and thus advances one optimization
iteration before the next scene starts to compute. A recalcu-
lation of a 3D scene happens each time the camera position
changes, the light settings change, or objects move.

3. SPEEDUPS
With the number of worker threads and the grain size as
tuning parameters within TBB, all programs receive free
autotuning capability as long as they use a concurrency con-
struct that include at least a single tuning parameter. We
executed and measured the TBB examples in Tab. 1. First
we explored the tuning potential without intelligent opti-
mization, i. e. what are the worst and best tuning parameter
values for a particular application. Afterwards we observe
how the autotuner employs the Nelder-Mead algorithm to
explore the search space and how well it performs.

We executed all experiments on a computer with 16 GB
memory and two AMD Opteron 6168 processors with twelve
cores each, clocked at 1.9 GHz.

3.1 Tuning Potential
Each tuning parameter is one dimension in a k-dimensional
search space. Each point in that search space represents a
particular tuning parameter configuration, i. e. a single value
for each tuning parameter. The number of configurations
per example is given in Tab. 1. By actually measuring the
performance of each tuning parameter configuration, we get
an exhaustive exploration of the search space. Many of the

58

Table 1 Intel ships these example programs with Threading Building Blocks. For the performance numbers, the number
before the slash is the run-time, the second one the speedup. (LogicSim is not suited for performance optimization because
of fixed chronological delays in simulated circuits.)

Name

Purpose

Parallel
Architecture

Tuning
Parameters

Number of
configurations

Sequential
Time

Worst Case

Best Case

TBB time

Autotuned
Ideal
Time

Autotuned
Average
Time

Amortisation
after
Iteration

B
in

P
a
ck
in
g

P
a
ck

o
b
je
ct
s
o
f
d
if
-

fe
re
n
t
si
ze

in
a
s
fe
w

a
s
p
o
ss
ib
le

b
in
s

F
l o
w

g
ra
p
h

#
t h
re
a
d
s,

#
p
a
ck
er

th
re
a
d
s
(g
ra
in

si
ze
)

3
2
x
3
2

3
.2
0

4
2
.6
9
/

0
.0
7

3
.2
0

/
1

2
4
.6
9
/

0
.1
3

3
. 1
4

/
1
.0
2

3
.4
8

/
0
.9
2

5
4

C
o
n
v
ex

H
u
ll

..
.
o
f
a
co
ll
ec
ti
o
n
o
f

p
o
in
ts

D
a
t a

p
a
ra
ll
el
is
m
,

p
a
ra
ll
el

re
d
u
ct
io
n

#
t h
re
a
d
s,

#
p
o
in
ts

p
er

ta
sk

(g
ra
in

si
ze
)

3
2
x
4

1
0
.1
6

1
0
.1
6
/

1
0
.0
7

/
1
4
6
.1
3

0
. 0
9

/
1
1
1
.5
3

0
. 6
2

/
1
6
.3
4

0
.8
8

/
1
1
.4
8

n
e v
er

C
o
u
n
t

S
tr
in
g
s

..
.
in

a
te
x
t

D
a
t a

p
a
ra
ll
el
is
m

#
t h
re
a
d
s,

#
ch
a
ra
c-

te
rs

p
er

ta
sk

(g
ra
in

si
ze
)

3
2
x
4

6
.4
6

6
. 4
6

/
1

0
.5
6

/
1
1
.4
9

0
. 5
6

/
1
1
.4
4

0
. 5
6

/
1
1
.4
4

1
.2
3

/
5
.2
4

n
e v
er

D
in
in
g

P
h
il
o
so
-

p
h
er
s

S
im

u
la
ti
o
n

F
l o
w

g
ra
p
h

#
t h
re
a
d
s

3
2

3
2
.0
1

3
2
.0
1
/

1
5
.0
0

/
6
.4
0

6
. 0
1

/
5
.3
2

6
. 0
1

/
5
.3
3

8
.4
4

/
3
.7
9

7
0
4
6

F
ib
o
n
a
cc
i

9
im

p
le
m
en
ta
ti
o
n
s

D
a
ta

p
a
ra
l-

le
li
sm

,
d
iv
id
e-

a
n
d
-c
o
n
q
u
er

#
th
re
a
d
s,

im
p
le
-

m
en
ta
ti
o
n
se
le
ct
io
n

3
2
x
9

0
.0
3
6

1
.6
7

/
0
.0
2

0
.0
3

/
1
.2
9

0
.5
3

/
0
.0
7

0
.0
4

/
0
.8

0
.3
2

/
0
.1
1

7

F
ra
ct
a
l

M
a
n
d
el
b
ro
t

D
a
ta

p
a
ra
ll
el
is
m

#
th
re
a
d
s

3
2

9
.6
2

9
.6
2

/
1

0
.4
2

/
2
2
.9
8

0
.4
2

/
2
2
.7
5

0
.4
2

/
2
2
.8
8

2
.2
6

/
4
.2
6

3
9
2
5

L
o
g
ic
S
im

S
im

u
la
ti
o
n

o
f

lo
g
ic

ci
rc
u
it

F
l o
w

g
ra
p
h

#
t h
re
a
d
s

3
2

1
0
.0
1

1
0
.0
1
/

1
.0
0

1
0
.0
1
/

1
.0
0

1
0
.0
1
/

1
.0
0

1
0
.0
1
/

1
.0
0

1
0
.0
1
/

1
.0
0

n
e v
er

P
a
ra
ll
el

P
re
o
rd
er

G
ra
p
h
tr
av
er
sa
l

D
a
ta

p
a
ra
ll
el
is
m
,

ta
sk

m
a
n
a
g
em

en
t

#
th
re
a
d
s

3
2

1
2
.9
9

1
2
.9
9
/

1
0
.7
4

/
1
7
.6
0

0
.7
7

/
1
6
.8
8

0
.7
5

/
1
7
.2
3

2
.2
0

/
5
.9
1

8
2
6

P
o
ly
g
o
n

O
v
er
la
y

O
v
er
la
y
o
f
tw

o
p
o
ly
-

g
o
n
m
a
p
s

D
a
ta

p
a
ra
ll
el
is
m

#
th
re
a
d
s,

#
p
o
in
ts

p
er

ta
sk

(g
ra
in

si
ze
)

3
2
x
1
0

0
.5
6

6
.1
6

/
0
.0
9

0
.0
7

/
8
.1
7

1
.6
0

/
0
.3
5

0
.1
1

/
5
.0
1

0
.9
1

/
0
.6
1

1

P
ri
m
es

S
ie
v
e

o
f

E
ra
th
o
st
en

es
D
a
t a

p
a
ra
ll
el
is
m
,

p
a
ra
ll
el

re
d
u
ct
io
n

#
t h
re
a
d
s,

n
u
m
b
er
s

to
te
st

p
er

ta
sk

(g
ra
in

si
ze
)

3
2
x
4

1
2
.7
2

1
2
.7
2
/

1
0
.5
4

/
2
3
.6
6

0
. 5
4

/
2
3
.4
3

0
. 5
4

/
2
3
.5
6

1
.5
6

/
8
.1
6

3
9
9
9

S
ei
sm

ic
..
.
w
av
e
si
m
u
la
ti
o
n

D
a
ta

p
a
ra
ll
el
is
m

#
th
re
a
d
s

3
2

0
.0
6

0
.0
6

/
1

0
.0
1

/
8
.9
0

0
.0
1

/
7
.0
5

0
.0
1

/
5
.6
7

0
.0
1

/
3
.7
8

n
ev
er

S
h
o
rt
p
a
th

S
h
o
rt
es
t

p
a
th

w
it
h

A
*

D
a
t a

p
a
ra
ll
el
is
m

#
t h
re
a
d
s,

w
in
d
ow

si
ze

u
p
o
n
m
a
p
g
en

-
er
a
ti
o
n

3
2
x
3

3
.6
7

3
. 6
7

/
1

2
.1
6

/
1
.7
0

3
. 0
3

/
1
.2
1

3
. 0
8

/
1
.1
9

3
.0
2

/
1
.2
1

3

P
i p
el
in
e

S
q
u
a
re

C
a
lc
u
la
te

sq
u
a
re

n
u
m
b
er
s

P
ip
el
in
e

#
t h
re
a
d
s

3
2

0
.3
5

0
. 3
5

/
1

0
.1
4

/
2
.4
4

0
. 2
3

/
1
.5
4

0
. 2
2

/
1
.6

0
.2
4

/
1
.4
6

1
6

S
u
b
st
ri
n
g

F
in
d
er

F
in
d
cl
u
st
er
s
o
f
su
b
-

st
ri
n
g
s

D
a
ta

p
a
ra
ll
el
is
m

#
th
re
a
d
s,
g
ra
in

si
ze

3
2
x
4

5
.0
7

5
.0
7

/
1

0
.2
2

/
2
3
.0
5

0
.2
3

/
2
1
.7
1

0
.2
3

/
2
2
.3
8

0
.9
3

/
5
.4
7

1
4
9
3

S
u
d
o
k
u

C
a
lc
u
la
te

a
ll

so
lu
-

ti
o
n
s

fo
r

a
su
d
o
k
u

fi
el
d

D
a
ta

p
a
ra
ll
el
is
m
,

ta
sk

m
a
n
a
g
em

en
t

#
th
re
a
d
s

3
2

1
5
.9
0

1
5
.9
0
/

1
0
.6
7

/
2
3
.8
5

0
.6
7

/
2
3
.8
4

0
.0
6
7
/

2
3
.7
5

2
.1
9

/
7
.2
5

n
ev
er

T
a
ch
y
o
n

R
ay

tr
a
ce
r

D
a
ta

p
a
ra
ll
el
is
m

#
th
re
a
d
s,

#
ra
y
s

p
er

ta
sk

(g
ra
in

si
ze
)

3
2
x
1
0

3
.4
1

3
.4
3

/
0
.9
9

0
.1
4

/
2
3
.7
7

0
.1
9

/
1
7
.7
3

0
.1
5

/
2
2
.6
0

0
.2
8

/
1
2
.1
1

6
7

T
re
e
S
u
m

S
u
m

o
f
a
ll

tr
ee

el
e-

m
en
ts

D
a
ta

p
a
ra
ll
el
is
m
,

ta
sk

m
a
n
a
g
em

en
t

#
th
re
a
d
s

3
2

0
.3
5

0
.3
7

/
0
.9
2

0
.0
5

/
6
.6
8

0
.0
6

/
6
.1
5

0
.0
5

/
7
.4
3

0
.0
9

/
4
.0
5

3
4

59

TBB examples contain two dimensions, one for the thread
count and one for the grain size.

For each application, we measured sequential execution time,
i. e. thread count set to 1, as a reference for speedups. We
then extracted the worst and best configuration, i. e. the
speedup that the worst and best choice for the tuning pa-
rameter values produce (see columns in Tab. 1). Between
those two extremes lies the default configuration of TBB
that every application runs with if the programmer doesn’t
change it.

We take a closer look at the Tachyon example. Thread count
and grain size span a 2-dimensional search space. Every
point in the search space represents a particular tuning pa-
rameter configuration. We let every example run 5 times
with each configuration, measured the execution times and
plotted the averages in Fig. 2. The single-threaded execution
time, i. e. thread count set to 1, is 3.41 s – this is the refer-
ence point for speedups. The worst configuration achieves a
speedup of 0.99 which suggests that the worst configuration
is close to sequential execution. On the other hand, the best
possible configuration runs with a speedup of 23.77. The
standard TBB configuration already produces a speedup of
17.73 which leaves the autotuner room for improvement.

Figure 2 Search space for the tachyon example (seismic
wave simulation). The X and Y axes span the tuning param-
eters thread count and bin packer tasks, the Z axis shows
the run-time. (The vertices mark the discrete configura-
tions; although it is “illegal” to draw edges between vertices
of a discrete space, we consider it illustrating. The black
tiles represent areas of the search space that the autotuner
explored.)

 Grainsize

5
10

15

20

25

30

Th
re

ad
s

2

4

6

8

10
E

xecution tim
e in s 1

2

3

Overall results vary drastically: While e. g. Tachyon seems
scalable but also improvable by autotuning, bin packing
seems to suffer from even considering parallelism. With ac-
tual speed-down from sequential run-time with TBB default
values, the autotuner can rescue some of the performance

by reducing the thread count. Also, the corridor between
the TBB standard configuration and the best configura-
tion is fluctuating from example to example: Programs such
as Convex Hull, Fractal, and Primes execute already near-
optimal without autotuning while others such as Fibonacci,
Polygon Overlay, and Shortpath can profit drastically by
deviating from the TBB standard configuration.

3.2 Performance Improvements
The autotuner’s task is finding the optimal tuning parameter
configuration – or at least some configuration in the neigh-
borhood of it. Our variant of the Nelder-Mead algorithm
works on tuning parameter values, i. e. bounded intervals
of integers, in contrast to the original continuous version
of the algorithm. When executed repeatedly, we start each
time with a simplex of fresh randomly chosen points in the
search space to avoid getting stuck in the same local mini-
mum. With repeated execution, the autotuner may arrive at
different final configurations because of fluctuating system
behavior and the random initialization phase in our variant
of the Nelder-Mead algorithm.

We let each example run 15 times with the autotuner; the
column“Autotuned Ideal Time”in Tab. 1 shows the speedup
of the best configuration that the autotuner ever reached in
any run. On average, the autotuner reached configurations
that result in the speedup given in column “Autotuned Av-
erage Time”.

Autotuning introduces overhead by itself and possibly slow-
down because it lets the application run with bad tuning
parameter configurations. The column “Amortization after
Iteration” indicates the average number of iterations a pro-
gram executes before it gains actual speedup due to autotun-
ing. Some applications leave little or no room for speedup
between the TBB standard configuration and the best con-
figuration but still experience slow-down for bad tuning pa-
rameter values. With those applications, amortizing is hard
to achieve, e. g. Count Strings, Seismic, and Sudoku. The
value “never” indicates either that it is impossible to amor-
tize or that the application ran too short to reach it.

In the Tachyon example, the autotuner doesn’t know any-
thing about the search space (Fig. 2) at first. It takes the au-
totuner 67 iterations to explore the search space sufficiently
to converge to the configuration it considers best and to
amortize the overhead it introduced. Note that the final
configuration found by the autotuner is not guaranteed to
be the best possible configuration in the whole search space.
In the case of Tachyon, the final autotuned configuration
varies heavily from run to run: There are runs where the
autotuned version gets ahead of the TBB version (speedup
22.6 vs. 17.7) while there are also runs where the autotuned
version falls behind with an average speedup of 12.11.

4. RELATED WORK
Performance optimization is a vast field with many solutions.
Autotuning is a part of that field and comes in several fla-
vors: (1) On- and offline, (2) domain-specific and domain-
oblivious, i. e. tailored for a particular application or de-
signed for generic utilization. In all cases, a programmer
usually needs to invest time and effort to get an application

60

ready for autotuning: Exposing tuning parameters, finding
a measurement loop, and attaching the autotuner.

ATLAS [19, 20] established domain-specific autotuning for
matrix multiplications in 1997. At installation time, mi-
crobenchmarks measure hardware properties such as cache
and RAM access times. The results help decide which imple-
mentation variant to choose from and configuring tuning pa-
rameter values. Autotuning matrix multiplication has been
popular ever since [4, 7, 18].

Active harmony [5] optimizes distributed applications. It
supports domain-oblivious off- and on-line autotuning. Ac-
tive harmony consists of several modules, among them a
module for choosing the best performing library out of a
collection and a tuning daemon that is supposed to run on a
dedicated node. Most of the glue between source code and
tuning daemon is specified in a specially designed language
in a separate file. The tuning daemon uses the parallel rank
ordering (PRO) algorithm [16] to optimize the application
on-line with rapid convergence. PRO is a distributed de-
scendant of the Nelder-Mead search algorithm [11].

FIBER [10] is an off-line autotuning framework targeted
at distributed numerical applications. The programmer ex-
poses tuning parameters via annotations in the source code.
These annotations feed FIBER numerical knowledge about
tuning parameters and measurement loops. FIBER uses
that knowlegde to optimize the numerical application.

MATE [3] is an autotuning solution that focuses on dis-
tributed MPI applications. MATE uses two operational
modes: (1) implicitly tuning MPI-intrinsic parameters such
as buffer sizes for communication and (2) explicitly tuning
application-specific tuning parameters that the programmer
exposes as such. Mode (1) works for every MPI application
without modifying the application’s source code while mode
(2) requires programmer intervention.

Atune [13, 14] uses parallel design patterns for providing the
programmer with frequently used parallel building blocks.
The programmer implicitly uses tuning parameters and mea-
surement loops that are embedded in those building blocks,
thus enabling the application for autotuning without notic-
ing. The off-line autotuner extracts the tuning parameters,
reduces the search space in a preparation step and performs
search-based off-line optimization on the application after-
wards. Atune needs the design patterns to be specified in a
domain-specific configuration language called TADL.

XJava [12] is a Java dialect that provides flexible pipeline
constructs. These constructs allow the programmer to ex-
press many types of high-level concurrency patterns such as
master-worker, worker pool, or pipeline. Nested constructs
are possible. XJava’s source code transformer takes XJava
code and outputs regular Java source code. During trans-
lation, XJava recognizes the concurrency patterns and in-
troduces appropriate tuning parameters and measurement
loops.

Autotuning with GPU-specific tuning parameters [17] shows
promising results. Tillmann et al. exposed common GPU
tuning parameters and attached a domain-oblivious auto-

tuner to GPU applications.

PetaBricks [1, 2] provides a language for expressing algo-
rithmic variants. The PetaBricks autotuner measures each
variant unter laboratory conditions and saves a profile. At
run-time, the autotuner decides based on that profile which
variant to choose.

There are frameworks for algorithmic skeletons that pro-
vide high-level parallelization constructs – similar to those
of TBB – and generate customized program variants for par-
allel CPUs or GPUs, e. g. SkePU [6].

Compilers are a mightier tool to introduce or extract tun-
ing parameters, as well as employing more complex program
transformations than changing a value of a tuning parame-
ter. INSIEME [9] is an example for a compiler with focus
on optimization. Contrary to the majority of autotuners,
INSIEME delivers a pareto front of best-candidate configu-
rations for multiple objectives instead of one best configura-
tion.

5. CONCLUSIONS
We demonstrated how an application can become autotun-
able without programmer intervention. By exposing tuning
parameters in Threading Building Blocks to an autotuner,
applications that use this library tune themselves. Our ap-
proach can be complemented with application-specific tun-
ing parameters, such as alternative algorithms or loop tilings.
The effect of autotuning depends on the application: Some
examples such as Bin Packing and Tachyon improve signif-
icantly, with up to 28% increase in speedup over the TBB
default configuration. Others change their performance only
slightly. There are even programs that slow down somewhat,
because they cannot be accelerated with autotuning, while
the on-line tuning process adds overhead, in particular by
exploring alternatives that run slowly.

The tuning behaviors we observed suggest that a similar
approach may work with other concurrency libraries. Future
work will explore the behavior of other autotuners and their
performance improvements.

6. REFERENCES
[1] J. Ansel and C. Chan. Petabricks. XRDS, 17:32–37,

September 2010.

[2] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski,
Q. Zhao, A. Edelman, and S. Amarasinghe.
Petabricks: A language and compiler for algorithmic
choice. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
Dublin, Ireland, Jun 2009.

[3] P. Caymes-Scutari, A. Morajko, T. Margalef, and
E. Luque. Scalable dynamic monitoring, analysis and
tuning environment for parallel applications. J.
Parallel Distrib. Comput., 70(4):330–337, 2010.

[4] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on GPUs.
In Proceedings of the 15th ACM SIGPLAN symposium
on Principles and practice of parallel programming,
PPoPP ’10, pages 115–126, New York, NY, USA,
2010. ACM.

61

[5] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth.
Active harmony: towards automated performance
tuning. In Supercomputing ’02: Proceedings of the
2002 ACM/IEEE conference on Supercomputing,
pages 1–11, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[6] U. Dastgeer, J. Enmyren, and C. W. Kessler.
Auto-tuning SkePU: A multi-backend skeleton
programming framework for multi-GPU systems. In
Proceedings of the 4th International Workshop on
Multicore Software Engineering, IWMSE ’11, pages
25–32, New York, NY, USA, 2011. ACM.

[7] A. Hartono and S. Ponnuswamy. Annotation-based
empirical performance tuning using Orio. In 23rd
IEEE International Parallel & Distributed Processing
Symposium (IPDPS) Rome, Italy, May 2009.

[8] Intel. Threading building blocks, August 2006.

[9] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini,
P. Gschwandtner, T. Fahringer, and H. Moritsch. A
multi-objective auto-tuning framework for parallel
codes. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 10:1–10:12, Los Alamitos,
CA, USA, 2012. IEEE Computer Society Press.

[10] T. Katagiri, K. Kise, H. Honda, and T. Yuba. Effect
of auto-tuning with user’s knowledge for numerical
software. In CF ’04: Proceedings of the 1st conference
on Computing frontiers, pages 12–25, New York, NY,
USA, 2004. ACM.

[11] J. A. Nelder and R. Mead. A simplex method for
function minimization. The Computer Journal,
7(4):308–313, 1965.

[12] F. Otto, V. Pankratius, and W. F. Tichy. Xjava:
Exploiting parallelism with object-oriented stream
programming. In Proceedings of the 15th International
Euro-Par Conference on Parallel Processing, Euro-Par
’09, pages 875–886, Berlin, Heidelberg, 2009.
Springer-Verlag.

[13] C. A. Schaefer. Reducing search space of auto-tuners
using parallel patterns. In Proceedings of the 2009
ICSE Workshop on Multicore Software Engineering,
IWMSE ’09, pages 17–24, Washington, DC, USA,
2009. IEEE Computer Society.

[14] C. A. Schaefer. Automatisierte Performanzoptimierung
Paralleler Architekturen. PhD thesis, IPD Tichy,
Karlsruhe Institute of Technology, Germany, 2010.

[15] P. Shirley and R. K. Morley. Realistic Ray Tracing. A.
K. Peters, Ltd., Natick, MA, USA, 2 edition, 2003.

[16] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth.
Parallel parameter tuning for applications with
performance variability. In SC ’05: Proceedings of the
2005 ACM/IEEE conference on Supercomputing,
page 57, Washington, DC, USA, 2005. IEEE
Computer Society.

[17] M. Tillmann, T. Karcher, C. Dachsbacher, and W. F.
Tichy. Application-independent autotuning for GPUs.
In M. Bader, A. Bode, H.-J. Bungartz, M. Gerndt,
G. R. Joubert, and F. Peters, editors, Parallel
Computing: Accelerating Computational Science and
Engineering (CSE), number Volume 25 in Advances in
Parallel Computing, pages 626–635. IOS Press, 2014.

[18] R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical

models for empirical search-based performance tuning.
Int. J. High Perform. Comput. Appl., 18:65–94,
February 2004.

[19] R. C. Whaley and J. Dongarra. Automatically tuned
linear algebra software. Technical Report
UT-CS-97-366, University of Tennessee, December
1997.

[20] R. C. Whaley and A. Petitet. Minimizing development
and maintenance costs in supporting persistently
optimized BLAS. Software: Practice and Experience,
35(2):101–121, February 2005.

62

