
Quantitative Evaluation of Model-Driven
Performance Analysis and Simulation of

Component-based Architectures
Fabian Brosig, Philipp Meier, Steffen Becker, Anne Koziolek, Heiko Koziolek, Samuel Kounev

Abstract—During the last decade, researchers have proposed a number of model transformations enabling performance predictions.
These transformations map performance-annotated software architecture models into stochastic models solved by means of analytical
or numerical analysis or by system simulation. However, so far, a detailed quantitative evaluation of the accuracy and efficiency of
different transformations is missing, making it hard to select an adequate transformation for a given context. This paper provides an
in-depth comparison and quantitative evaluation of representative model transformations to, e.g., Queueing Petri Nets and Layered
Queueing Networks. The semantic gaps between typical source model abstractions and the different analysis techniques are revealed.
The accuracy and efficiency of each transformation are evaluated by considering four case studies representing systems of different
size and complexity. The presented results and insights gained from the evaluation help software architects and performance engineers
to select the appropriate transformation for a given context, thus significantly improving the usability of model transformations for
performance prediction.

Index Terms—D.2.11 Software architectures; D.2.10.h Quality analysis and evaluation; D.2.2 Design tools and techniques.

1 INTRODUCTION

To ensure that a software system meets its performance
requirements, the ability to predict its performance un-
der different configurations and workloads is highly
valuable throughout the system life cycle [1], [2]. During
the design phase, performance prediction helps software
architects to evaluate different design alternatives. At
deployment time, it facilitates system sizing and capac-
ity planning. During operation, predicting the effect of
changes in the workload or in the system configura-
tion helps avoiding performance problems such as long
response times or over-utilized resources. Recent per-
formance prediction approaches for component-based
architectures often rely on performance-annotated soft-
ware architecture models (e.g., UML2, AADL), which
are transformed into stochastic performance models, e.g.,
queueing networks (QN), stochastic Petri nets (SPN),
stochastic process algebra (SPA), and then solved to
determine performance metrics of interest (e.g., response
time or throughput) [2], [3], as illustrated in Fig. 1.

The plethora of modeling notations, transformations,

• F. Brosig is with Karlsruhe Institute of Technology (KIT), Am Fasanen-
garten 5, 76131 Karlsruhe, Germany. E-mail: fabian.brosig@kit.edu

• P. Meier is with Exxeta AG, Albert-Nestler-Strasse 11, 76131 Karlsruhe,
Germany. E-mail: philstyler@googlemail.com

• S. Becker is with University of Paderborn, Zukunftsmeile 1, 33102
Paderborn, Germany. E-mail: steffen.becker@upb.de

• A. Koziolek is with Karlsruhe Institute of Technology (KIT), Am Fasanen-
garten 5, 76131 Karlsruhe, Germany. E-mail: koziolek@kit.edu

• H. Koziolek is with ABB Corporate Research, Wallstadter Str. 59, 68526
Ladenburg, Germany. E-mail: heiko.koziolek@de.abb.com

• S. Kounev is with Karlsruhe Institute of Technology (KIT), Am Fasanen-
garten 5, 76131 Karlsruhe, Germany. E-mail: kounev@kit.edu

Performance-

annotated

Software

Architecture

Model

(e.g. UML,

AADL)

Stochastic

Performance

Model

(e.g. QN,

SPN, SPA)

Model

Transformation

Model

Solution

Performance

metrics

(e.g.

response

time,

throughput,

utilization)

Fig. 1. Architecture-based performance prediction pro-
cess.

and solution tools [2], [3] make it hard to choose an
appropriate performance prediction approach in a given
setting. Approaches based on numerical solvers are
known to be fast but often limited in expressiveness to
adequately model many realistic situations. Approaches
based on simulation are known to be more expressive
but often have long execution times leading to high
prediction overhead. The intuitively perceived trade-offs
between prediction accuracy and solution efficiency in
state-of-the-art performance analysis tools are currently
not well understood due to the lack of in-depth quanti-
tative evaluations and comparisons. Trade-off decisions
between prediction accuracy and time-to-result are im-
portant in scenarios i) where a large problem space needs
to be explored or ii) when the prediction results need
to be available within a certain time window.

Existing performance prediction approaches include
transformations from UML into for example layered
queueing networks [4], [5], [6], stochastic well-formed
nets [7], or stochastic process algebra [8]. Quantitative
comparisons of model transformations and/or analysis
tools can be found in [9], [10], [11]. However, Balsamo
et al. [9] do not compare the respective solver execution

Performance-annotated Software Architecture Model (PCM) (Sec. 2)

SimuCom

Model

Transformation:

PCM2SimuCom

(Sec. 3.1)

Layered

Queueing

Network

Transformation:

PCM2LQN

(Sec. 3.5)

Model Solution:

SimuCom

Model Solution:

LQNS

Queueing

Petri Net

Transformation:

PCM2QPN

(Sec. 3.3)

Model Solution:

SimQPN,

SimQPN-MV

Fig. 2. Compared model transformations and perfor-
mance analysis tools.

times, and the comparison conducted by Tribastone et
al. [10], [11] does not involve model transformations as
the stochastic performance models are modeled by hand.

We compare existing performance prediction ap-
proaches that are based on model transformations from
a performance-annotated software architecture model
to different analysis techniques (cf. Fig. 2). The source
model complies to the Palladio Component Model
(PCM) [12], a mature, domain-specific modeling lan-
guage for the performance prediction of component-
based software systems [3]. The comparison involves
transformations to established modeling formalisms
such as Queueing Petri Nets (QPNs) [13], [14] and
Layered Queueing Networks (LQNs) [15], [16] as well
as different model solving strategies ranging from
model simulations to mean-value analysis. We pro-
vide an in-depth quantitative evaluation with regard
to the trade-offs between prediction accuracy and solu-
tion efficiency. Starting with a process-based simulation
(PCM2SimuCom [12]) we compare various model solv-
ing approaches (PCM2QPN [14] and PCM2LQNS [17])
that are expected to gradually improve prediction speed
at the expense of prediction accuracy.

As contributions of this paper (i) we reveal the seman-
tic gaps between typical source model abstractions and
the different analysis techniques, (ii) we evaluate the ef-
fects of the identified semantic gaps on the performance
prediction accuracy, (iii) we evaluate the efficiency of
each transformation and respective analysis tool in the
context of four representative case studies, and (iv)
we consolidate the trade-offs between the performance
transformations and analysis tools to provide practical
guidance on deciding when to use which tool.

The considered transformations and respective model
solution techniques serve as representative examples of
the typical model types and solution techniques used
in practice for performance prediction. The case studies
were chosen to cover different modeling features as well
as different types of systems in terms of size and com-

plexity. The presented results and insights can be used
to help software architects and performance engineers to
select an appropriate model transformation and solution
approach for a given context.

In the remainder of this paper, Section 2 first intro-
duces typical elements of a performance-annotated soft-
ware architecture model. Section 3 introduces the trans-
formations and describes the semantic gaps between
target and source model. Our evaluation and comparison
of the different analysis methods is presented in Section 4
and discussed in detail in Section 5. After reviewing
related work in Section 6, we conclude the paper by
giving an outlook on future research activities.

2 PERFORMANCE-ANNOTATED SOFTWARE
ARCHITECTURE MODEL
Architecture-level performance modeling languages are
powerful tools to describe the performance-influencing
factors of a software system in a concise way. Since the
architecture is reflected, component resource demands,
performance-relevant component control flow and its
dependence on service input parameters can be directly
modeled [2], [3].

We summarize the main concepts of a performance-
annotated software architecture model by means of the
Palladio Component Model (PCM) [18]. It is a mature
modeling language for model-driven quality analysis of
component-based software architectures [3] and has been
used in a number of industry-relevant case studies [19],
[20], [21], [22], [23], [24]. Currently supported quality
predictions include performance, reliability, and main-
tenance costs, however, in this paper the focus is on
performance modeling.

The performance behavior of a component-based soft-
ware system is a result of the assembled components’
performance behavior. In order to capture the behavior
and resource consumption of a component, the following
four factors are taken into account. First, the compo-
nent’s implementation affects its performance. Addi-
tionally, a component may depend on external services
whose performance has to be considered as well. Fur-
thermore, both the way a component is used, i.e., its
usage profile, and its execution environment are taken
into consideration.

PCM models are divided into five sub-models: The
repository model consists of interface and compo-
nent specifications. A component specification defines
which interfaces the component provides and requires.
A component may be either a basic (i.e., atomic)
component or a composite component. A composite
component may contain several child component in-
stances assembled with connectors that link required
interfaces to provided interfaces. For each provided
service, a basic component specification refers to an
abstract description of the service’s internal behav-
ior denoted as ResourceDemandingServiceEffect-
Specification (RDSEFF). The system model de-
scribes how component instances from the repository

are assembled to build an entire system. The resource
environment model specifies the execution environment
in which the system is deployed. The allocation model
describes the mapping of component instances from
the system model to resource containers defined in the
resource environment. The usage model describes the
user behavior. It captures the services that are called, the
frequency (workload intensity) and order in which they
are invoked, and the input parameters passed to them.

We go into detail how PCM allows us to model
service behavior with RDSEFFs. An RDSEFF captures
the control flow and resource consumption of a com-
ponent’s service implementation depending on its input
parameters passed upon invocation. The control flow
is abstracted capturing only performance-relevant ac-
tions. As control flow constructs, there are branches,
loops, forks with and without a synchronization barrier
as well as acquire/release actions for semaphores. An

<<ExternalCallAction>>
requiredService1

<<InternalAction>>
ResourceDemand: 1000 <CPU_Units>

<<BranchAction>>

<<BranchTransition>>
Condition:

number.VALUE >= 0

<<BranchTransition>>
Condition:

number.VALUE < 0

<<LoopAction>>
Loop iteration count:

array.NUMBER_OF_ELEMENTS

<<ExternalCallAction>>
requiredService2

<<ExternalCallAction>>
requiredService3

Fig. 3. RDSEFF of a service with signature
execute(int number, List array) (cf. [18]).

example of an RDSEFF for a service execute(int
number, List array) is shown in Fig. 3. The RD-
SEFF starts with an ExternalCallAction to a re-
quired service, followed by an InternalAction and
a BranchAction with two BranchTransitions.
The first BranchTransition contains a LoopAction
whose body consists of another ExternalCallAction.
The second BranchTransition contains a further
ExternalCallAction. The performance-relevant be-
havior of the service is parameterized with ser-
vice input parameters. Whether the first or second
BranchTransition is called depends on the value of
service input parameter number. This parameter depen-
dency is specified explicitly as a branching condition.
Similarly, the loop iteration count of the LoopAction is
modeled to be equal to the number of elements of the in-
put parameter array. PCM also allows to define param-
eter dependencies stochastically. For instance, branching
conditions can be replaced with branching probabilities.
Furthermore, the distribution of a loop iteration count

can be described with a probability mass function (PMF),
e.g., IntPMF[(9;0.2) (10;0.5) (11;0.3)]. Then,
the loop body would be executed 9 times with a proba-
bility of 20%, 10 times with a probability of 50%, and 11
times with a probability of 30%.

Throughout this paper a simplified customer relation-
ship system (CRM) will serve as a running example to
explain both the model notations and the transforma-
tions. Fig. 4 depicts this CRM system as a PCM model
in a compact UML-like notation. The components Cus-
tomer Service and Marketing System offer the operations
IUser.ProvideService and ISales.Query, respectively, and
are deployed on separate nodes Application Server 1 and
Application Server 2, respectively. The third component
offers two services IDBStats.Get and IDBQuery.Update
and is deployed on a separate Database Server node. The
RDSEFFs (activity diagrams) show the control flow of
the respective operations and their resource demands.
The processing rates of the three server nodes are shown
as annotations. Finally, the system usage model is in-

Application Server 2

Database Server

Application Server 1

Customer

Service

Marketing

System

Data

Warehouse

User Population = 10

Think time = 5 s

Customer arrival rate

= 0.069 / second

<<InternalAction>>

Handle Customer Case

<<External

CallAction>>

IDBQuery.Update

<<InternalAction>>

UpdateData

<<Internal

Action>>

RefreshPartitioning

<<InternalAction>>

ExecuteQuery

<<InternalAction>>

GenerateStatistic

<<Internal

Action>>

PreprocessQuery

<<External

CallAction>>

IDBStats.Get

<<Internal

Action>>

UpdateCache

Processing Rate =

3.0E+9 Instr./sec

Processing Rate =

2.5E+9 Instr./sec

Processing Rate =

2.5E+9 Instr./sec

IDBQuery

IDBStat

IUser

ISales

<<Parametric

ResourceDemand>>

2E+6 CPU Instr.

requires

DbUpdate

= TRUE

requires

DbUpdate

= FALSE

<<RDSEFF>>

IUser.ProvideService

<<implements>> <<implements>>

<<implements>>

<<RDSEFF>>

IDBQuery.Update

<<RDSEFF>>

IDBStats.Get

<<Parametric

ResourceDemand>>

6.7E+5 CPU Instr.

<<Parametric

ResourceDemand>>

2.3E+6 CPU Instr.

<<LoopAction>>

loopCount =

nbPartitions

 <<Parametric

ResourceDemand>>

4.4E+5 CPU Instr.

<<Parametric

ResourceDemand>>

1.7E+6 CPU Instr.

<<Parametric

ResourceDemand>>

8.9E+5 CPU Instr.

<<RDSEFF>> ISales.Query
<<Parametric

ResourceDemand>>

9.2E+4 CPU Instr.

<<implements>>

Fig. 4. PCM running example.

dicated by the annotated use case actors with respec-
tive workload specifications. Notice that the model is
simplified for illustration purposes and neglects several
PCM concepts, such as passive resources, component
parameters, or composite components.

3 MODEL TRANSFORMATIONS

This section describes different ways to derive perfor-
mance predictions from a performance-annotated soft-
ware architecture model. We ask for a prediction that is
both accurate and fast. We denote the prediction accuracy
as the degree to which the prediction reflects the model,
i.e., not the model representativeness.

We present model transformations that map
performance-annotated software architecture models
to different analysis models solved by simulation or
analytical techniques. Based on existing PCM model
transformations [14], [16], [18] we describe the semantic
gaps between typical source model abstractions and the
different analysis approaches. Having the semantic gaps
identified, we evaluate their impact on the prediction
accuracy and time-to-result in Section 4.

Starting with a process-based simulation, which serves
as the PCM reference solver, we present various model
solving approaches that are expected to gradually im-
prove prediction speed at the expense of prediction
accuracy.

3.1 PCM2SimuCom

SimuCom [18] is PCM’s reference solver, which sup-
ports the full range of PCM concepts. It is based on a
transformation of the PCM instance to a process-based
discrete-event simulation. The latter simulates the users
specified in PCM usage model and derives performance
metrics, such as response times, throughput, and uti-
lization. Technically, PCM2SimuCom is a model-to-text
transformation, which maps PCM models into Java code.
This code is loaded by SimuCom and executed during a
simulation run. Due to its full support of PCM features,
we use SimuCom throughout this paper as reference
solver.

3.2 Solving Parameter Dependencies

Modeling parameter dependencies means describing the
performance-relevant behavior of a service’s implemen-
tation depending on its input parameters passed upon
service invocation. With common performance modeling
formalisms such as queueing networks (QNs), (i) it is not
possible to annotate individual requests with a payload,
e.g., parameter settings, and (ii) it is not possible to re-
calculate model parameters such as resource demands
with, e.g., arithmetic expressions on-the-fly at solving
time. Parameter dependencies can thus not be directly
translated to such modeling formalisms.

However, such modeling formalisms often come with
mature model solving tools. Therefore, we apply a pre-
processing step to allow using already existing, estab-
lished solver tools. The pre-processing step aims at
resolving parameter dependencies before model solving.
Starting with the usage model, the parameter settings
are propagated through the behavior descriptions. As a
result of the pre-processing step we denote as Dependency

<<ExternalCallAction>>
requiredService1

<<InternalAction>>
ResourceDemand: 1000 <CPU_Units>

<<BranchAction>>

<<BranchTransition>>
Condition:

number.VALUE >= 0

<<BranchTransition>>
Condition:

number.VALUE < 0

<<LoopAction>>
Loop iteration count:

array.NUMBER_OF_ELEMENTS

<<ExternalCallAction>>
requiredService2

<<ExternalCallAction>>
requiredService3

<<Context>>

number.VALUE=IntPMF[(-1;0.2)(1;0.5)(2;0.3)]

array.NUMBER_OF_ELEMENTS=10

probability=0.8 probability=0.2

iterations=10

Fig. 5. Solving parameter dependencies.

Solving [25], the model parameter descriptions are char-
acterized with probability distributions but independent
of service input parameters.

To illustrate the step of dependency solving, we pro-
vide an example in Fig. 5. The figure shows the RDSEFF
of Fig. 3 after the pre-processing step. Using parame-
ter settings provided in the Context when calling the
RDSEFF’s service, branch conditions and loop iteration
numbers are replaced with expressions that do not refer
to parameters anymore. In the example, the two branch
transitions get assigned a probability, the loop iteration
number is replaced with the concrete number of array el-
ements. Parameter dependencies may not only occur on
branch probabilities or loop counts, but also on resource
demands, and even propagated parameters supplied to
other components. After pre-processing, the model con-
tains concrete resource demands, branch probabilities,
and loop counts. It is thus ready to be transformed as if
it were a monolithic (i.e., not component-based) model.
Note that the full simulation SimuCom does not require
the dependency solver, because it inserts the necessary
parameter values during the simulation run. This comes
at the cost that the simulation must run at least as
many times as there are values in the parameter range
to provide reliable results, because it uses one concrete
(randomly chosen) value in each simulation run.

Semantic Gap
The parameter propagation makes a simplification re-
garding dependencies between stochastic variables. Sub-
sequent uses of the same variable are treated as they
were independent but should be stochastically depen-
dent. This leads to only partial support of parameter
dependencies for the solving approaches other than
SimuCom. In the evaluation in Section 4.2, we discuss
an example.

3.3 PCM2QPN
While SimuCom (cf. Section 3.1) provides accurate re-
sults, the simulation is not optimized towards time-
to-result of the prediction. In this section, we present

PCM2QPN, a model transformation from PCM models
to Queueing Petri Nets (QPNs).

We use Queueing Petri Nets since they are a general-
purpose modeling formalism that has been shown to
lend itself well to modeling and analyzing the perfor-
mance of distributed systems [26], [27], [28], [29]. As a
combination of Queueing Networks and Colored Gener-
alized Stochastic Petri Nets (CGSPNs), QPNs can easily
model hardware contention and scheduling strategies as
well as software contention, simultaneous resource pos-
session, synchronization, blocking, and asynchronous
processing. A mature and highly optimized simulation
engine (SimQPN, which is part of the Queueing Petri
net Modeling Environment (QPME) [30]) is available.
Employing QPNs and SimQPN, compared to SimuCom,
we expect a faster performance prediction to the price
of only minor inaccuracies.

Queueing Petri Nets (QPNs)

Fig. 6 shows the notation used for QPNs. There are or-
dinary places, queueing places, transitions and so-called
subnet places that contain nested QPNs. While ordinary
places, transitions and transition modes correspond to
the places of CGSPNs, a queueing place is a combination
of a queue (service station) and a place. The behavior
of a queueing place is as follows: tokens, when fired
into a queueing place by any of its input transitions,
are inserted into the queue according to the queue’s
scheduling strategy. The time tokens spend in the queue
includes the time spent waiting for service and the time
receiving service which depends on the queue’s service
time distribution. While residing in the queue, tokens
are not available for output transitions of the queueing
place. After completion of its service at the queue, a
token is immediately moved to the depository, where
it becomes available for output transitions of the place.
The rest of a QPN behaves like a normal CGSPN. A more
detailed treatment of the subject and formal definitions
can be found in [13]. Queueing places are normally used
to model system resources such as CPUs, disk drives, or
network links. Ordinary places are used to implement
semaphore and blocking semantics required to model,
e.g., thread pools. Tokens in the QPN are used to model
requests or transactions processed by the system. Tokens
can be distinguished by their color. Thus, token colors
are typically used to map request classes. However, note
that individual tokens have no identity and the order of
tokens is not defined in QPNs.

Transformation and Semantic Gaps

Transforming performance-annotated software architec-
ture models to QPNs requires a pre-processing step to
resolve parameter dependencies as described in Sec-
tion 3.2. Fig. 7 shows an excerpt of the transformed
running example that employs a limited number of
mapping elements. Together with a specification of a
closed workload, it shows how the service behavior

Queueing

Place

Subnet

Place

Queue Depository

Ordinary

Place

Nested QPN

oo o o o o

Timed

Transition

Multiple tokens

of color ‘o’

o
o o

Immediate

Transition

Fig. 6. QPN notation.

c

c

c

c

c

c s1

s1 s1

s1 s1s1 s1

s1

u1

s1 e1 e1

s1

s1

ClosedWorkload

InternalAction Handle Customer Case

BranchAction

DbUpdate

ExternalCallAction

IDBQuery.update

c: client color s1: color for system call IUser.ProvideService e1: color for external call IDBQuery.Update

UsageScenario

Customer
SEFF for IUser.ProvideService

Fig. 7. QPN result of transforming IUser.ProvideService
of the running example.

for IUser.ProvideService of the running example is trans-
formed to a QPN. The service behavior mapping for ID-
BQuery.Update referenced in one of the branches within
ProvideService is represented by a subnet place. The
branch itself is implemented by a transition with one
transition mode for each branch. The transition mode
is weighted with the corresponding branch probability.
The example further shows that a new color is used each
time a service call is traversed. Details of the mapping of
PCM to QPN can be found in [14], [31]. In the following
we focus on the semantic gaps between the source model
and the QPN mappings on a conceptual level.

Loops: A loop action in usage scenarios or service
behaviors can be described by a child behavior that is
executed multiple times according to an expression that
evaluates to an integer constant I or to an integer type
probability mass function (IntPMF). The latter has N
possible integer values Vi each with a given probability
Pi. The constant case is treated as N = 1, Vi = I and
Pi = 1.0. The next loop iteration does not start until
the previous request has completed the execution of
the child behavior. The QPN representation of a loop
(cf. Fig. 8) can be divided into an inner and an outer
part. The outer part consists of the Loop-Entry and Loop-
Exit transitions, as well as of the Loop-Pool and Loop-
Depository places. The inner part consists of the Loop-
Inner-Entry and Loop-Inner-Exit transitions, as well as of

PCM Model Element (source):
QPN element or subnet (target)

Loop:
i i

i

i

i

i

i

ForkAction, SynchronisationPoint:
ForkAction-

Asynchronous-
Behavior-1

ForkAction-
Asynchronous-

Behavior-2

ForkAction-
Asynchronous-

Behavior-N

Source-
Behavior

ForkAction-Split

o

ForkAction-
Synchronous-

Behavior-1

ForkAction-
Synchronous-

Behavior-2

ForkAction-
Synchronous-
Behavior-M

ForkAction-
Consume-

Asynchronous

ForkAction-Join-
Synchronous

o

o

o

o

o

o

o

o
o

o

o
o

o

Fig. 8. Conceptual overview of the transformation
PCM2QPN. Initial marking and queue/transition configu-
ration omitted for brevity.

the Loop-Inner-ColorCode place. The outer part handles
the token input from the predecessor subnet and the token
output to the successor subnet. The inner part handles the
input and output to and from the child behavior subnet,
denoted as LoopBehavior, whose input and output tokens
are referred to as the loop input color.

The number of loop iterations is decided at the loop
entry and encoded into a new color. For each of the N
possibilities of iteration counts, one color Ci and one
mode Mi is generated in the Loop-Entry transition. The
firing weight of each mode is set to Pi. The Loop-Inner-
Entry transition takes a token of color Ci from the Loop-
Pool, generates a token of the loop input color in the loop
child behavior denoted as LoopBehavior, and generates
a token of color Ci in place Loop-Inner-ColorCode. The
loop input color is used in the LoopBehavior to limit the
number of modes and colors in the child behavior subnet
to a minimum. The iteration count information encoded
in Ci is needed only locally in this part of the mapping
and is irrelevant inside the subnet representing the child
behavior. The Loop-Inner-ColorCode place is necessary so
that the Loop-Inner-Exit transition knows which color Ci

to generate in the Loop-Depository after the loop input
color token exits LoopBehavior. The Loop-Exit transition
contains two different modes for each color Ci. One
mode to leave the loop and one mode to return the
token of color Ci to the Loop-Pool for another child
behavior iteration. The exit mode has a firing weight
of Pn where n is the iteration count of color Ci. The
return mode has a firing weight of 1− Pn. The random
selection between the two modes for color Ci at the Loop-

Exit transition behaves like a Bernoulli random variable.
The number of loop iterations is therefore geometrically
distributed with an expected value of 1/Pn. Therefore,
we choose Pn = 1/n so that the mean number of times
that the child behavior is executed equals the expected
value 1/Pn = 1/(1/n) = n. The limitation is that for
an individual request the number of times the internal
behavior is executed does not necessarily equal n.

Forks with Synchronization Barrier: The second row
of Fig. 8) shows the mapping of M synchronous re-
spectively N asynchronous fork actions to QPNs. Both
actions can be described with a number of M respec-
tively N ForkedBehaviors. A synchronous fork action ends
at a SynchronizationPoint. Mapped to QPNs, there are
three transitions. ForkAction-Split consumes a token from
the predecessor subnet and creates a token in each of
the M +N child behavior subnets. ForkAction-Consume-
Asynchronous consumes tokens from the N asynchronous
child behavior subnets, but does not create any new
tokens. ForkAction-Join-Synchronous waits until a token is
available in each of the M synchronous child behavior
subnets. It then consumes all of them and creates a new
token in the successor subnet. When M = 0, a dummy
ordinary place is created for the synchronized client
behavior subnet to prevent the request from getting
lost. A limitation applies to the mapping of synchro-
nized forked behavior. The synchronization of two sub-
requests generated by a single parent request cannot be
represented in a semantically equivalent fashion using
QPN constructs. Individual tokens carry no identity and
it cannot be decided for two tokens whether or not
they belong to the same parent request. The tokens
are consumed without considering their parent request,
introducing an error. The extent of the error depends
both on the number of parallel behaviors and on the
properties of the child behavior subnets. In summary,
besides the inaccuracies introduced by the dependency
solver, the QPN mappings of both loops and synchro-
nized forks introduce differences in model semantics.

3.4 PCM2QPN-MV

SimQPN allows the simulation using model parameters
characterized with empirical distributions, and can pro-
vide prediction results as distributions. However, this
comes at the cost of prediction speed, since each request
has to be logged during simulation. In this section
we describe PCM2QPN-MeanValue (PCM2QPN-MV).
PCM2QPN-MV is based on transformation PCM2QPN
(cf. Section 3.3) but uses SimQPN-MV as simulator.
SimQPN-MV is a variant of SimQPN that limits the
simulation to collect only statistics necessary for estimat-
ing the mean values of the considered metrics without
any information on their probability distribution. Due
to the reduced logging overhead during simulation, we
expect PCM2QPN-MV to be significantly faster than
PCM2QPN.

Transformation and Semantic Gaps

Instead of logging token residence time statistics at
each ordinary place and queueing place, SimQPN-MV
introduces measurement places. Measurement places are
ordinary places that are connected in parallel to service
behavior subnets. They collect only statistics about mean
token population N and mean token departure rate X .
Using Little’s Law N/X [32], the mean token residence
time in the measurement place can then be obtained.
This equals to the mean response time of the connected
service behavior.

Probability Distributions: If average metrics such
as average service response times are sufficient,
PCM2QPN-MV is a valid alternative to derive perfor-
mance predictions. Thus, if percentiles such as the 90th
percentile of a response time are of interest, PCM2QPN-
MV is not appropriate. Furthermore, skewness or multi-
modality of probability distributions remain undetected.

3.5 PCM2LQN

In order to further improve prediction speed, we apply
an analytical solving method providing mean values. To
this end, we transform to Layered Queueing Networks
(LQNs) [33], [34]. LQNs target the performance analysis
of distributed business information systems. With LQNS,
there is an analytical solver available that is based on an
enhanced version of the Method of Layers [35] solution
algorithm that internally relies on the Linearizer approxi-
mative Mean Value Analysis (MVA) algorithm including
M/M/n queues.

Layered Queueing Networks (LQNs)

In addition to the elements of plain queueing networks,
LQNs model software entities and their communication
explicitly in a hierarchical structure. An LQN (cf. exam-
ple in Fig. 9) is an acyclic graph and consists of processors
(circles) and tasks (parallelograms). Processors model
hardware entities such as CPUs, hard disks, or networks.
Tasks model software entities, such as components, ap-
plication servers, databases, threads, or buffers. Tasks are
arranged in a layered hierarchy, where tasks from upper
layers may send requests to tasks from lower layers.
Both processors and tasks contain a request queue, from
which they serve waiting requests according to a specific
scheduling discipline (e.g., FCFS or Processor Sharing).
A task can contain multiple entries modeling the services
provided by the software entity. Entries either directly
specify a resource demand to the underlying processor
of the tasks, or include a control flow graph containing
multiple activities that issue such demands. Both entries
and activities can also make calls to the entries of tasks
at lower layers of the LQNs. The control flow graphs for
activities support sequences, branches, loops, and forks.

Entry

[10]

WebServer[5]

WebServer

Processor

Entry1

[2]

Entry

[0.05]

Database

Database

Processor

Entry2 Entry3

[0.2]

AppServer

Processor

+

&

A2

[0.5]

A3

[0.3]

A4

[0.09]

A5

[1 2]

A6

[0.002]

A1

[0 01]

ApplicationServer

(0.08)
(0.22)(0.7)

(1)
0.850.15

(1)

Processor

Task

Entry

Activity

Branch

(OR)

Fork

(AND)

Resource

demand

(sec)

Number of calls

Task multiplicity Transition probability

Resource demand (sec) Dual processor

Resource

demand

(sec)

Fig. 9. An example LQN model.

Transformation and Semantic Gaps
Analog to QPNs, transforming performance-annotated
software architecture models to LQNs requires a pre-
processing step to resolve parameter dependencies as
previously described in Section 3.2. Fig. 10 shows a part
of the transformed running example in detail. Service
behavior IUser.ProvideService, directly invoked from the
Customer usage scenario, is mapped into an LQN task
with a task activity graph. For each resource demanding
action and resource type, the transformation creates an
activity that synchronously calls a task running on the
corresponding LQN processor with the corresponding
resource demand. The tasks created for service behaviors
itself run on dummy LQN processors. Control flow
constructs such as sequences, branches, loops can be
mapped to their counterparts in LQN task graphs. For
example, the branch DbUpdate is annotated with proba-
bilities 0.8 and 0.2 in Fig. 10. Calls to other services such
as the call to IDBQuery.Update are transformed into an
LQN activity with zero host demand and a synchronous
call to the task representing the called service. A detailed
description of the transformation can be found in [16].

Both SimQPN and LQNS abstract away from individ-
ual request semantics and use request class semantics
instead. For example, it is still known which service each
request originated from, but two such requests cannot
be distinguished any further. For this reason, request
tracking as used to limit loop iterations in loop actions
cannot be adequately mapped in LQNS or SimQPN.

Forks with Synchronization Barrier: Because LQNs
do not contain individual request semantics, LQNS uses
an approximation to estimate the join delays of syn-
chronous fork and join actions [34, Sec. 4.2].

Flexible Parameter Characterizations: Both SimQPN-
MV and LQNS provide only mean value predictions,
however, with LQNS, all model parameters have to
be defined as exponential distributions. Thus, the di-
verse probability distributions of the input model are
reduced to their mean values. Model parameters include

Modeling feature SimuCom SimQPN SimQPN-MV LQNS
Loops X (X) (X) (X)
Forks with synchronization barrier X (X) (X) (X)
Parameter dependencies X (X) (X) (X)
Response time distributions X X - -
Flexible parameter characterizations X X X -
Blocking behavior X X X (X)

X support (X) partial support - no support

TABLE 1
Semantic gaps.

Dummy

AppServer1

Processor

StartStart

Call LAN.latency

Branch DbUpdate

Start

Internal HandleCase

Stop

Call IDBQuery.Update

Call LAN.latency

Stop

+

+

Stop

Entry

IUser.provideService

to Task IDBQuery.Update

0.80.2

from Task UsageScenario_Customer

to Task LAN.latency

to Task LAN.latency

to Task

AppServer_CPU,

Entry InternalAction_

HandleCase

Fig. 10. LQN result of transforming User.ProvideService
of the running example.

inter-arrival times of open workloads, think times of
closed workloads, loop iteration numbers and resource
demands.

Blocking Behavior: Blocking behavior that corre-
sponds to the layer structure of an LQN can be captured
by using the multiplicity of a task. Thus, a task can
represent software resources such as threads of control
or buffers [34, Sec. 2.3]. LQNS cannot handle cases where
the acquire and release steps are performed by different
tasks [36].

3.6 Summary

We identified various semantic gaps between target
and source model of the presented transformation-based
approaches. Tab. 1 shows an overview, it summarizes
which prediction approach supports which modeling
feature. While SimuCom provides full support for all
mentioned modeling features, SimQPN provides only
partial support of synchronous forks and joins, loops
as well as parameter dependencies. SimQPN-MV ad-
ditionally does not return response time distributions.
LQNS only partially supports blocking behavior and
requires model parameters such as resource demands
and inter-arrival times to be exponentially distributed.
In the next section, on the hand we evaluate the effect of
the individual semantic gaps on the prediction accuracy,

on the other hand we evaluate the time-to-result of
the presented prediction approach in representative case
studies.

4 EVALUATION

In this section we first introduce our evaluation goals
(Section 4.1). Then we investigate the effects of the
identified semantic gaps (Section 4.2). In Section 4.3,
we present several case studies to provide end-to-end
evaluations of the different model transformations.

4.1 Evaluation Goals
In order to evaluate and compare the advantages and
disadvantages of the model transformations and solution
techniques introduced in this paper, we ask the following
questions:
• What effects have the semantic gaps on the accuracy
of performance predictions?

• What is the efficiency of each transformation and
respective analysis tool?
To evaluate the first question we compare (a) the

performance predictions obtained using the various
transformations to different target models with (b) the
respective reference results obtained using a complete
simulation of the original source model. As source model
we use PCM (cf. Section 2). For our experiments we use
SimuCom’s results as a reference since, due to the use of
simulation techniques, it is the only solver that supports
the full PCM meta-model. This is in contrast to using
measurements on the real system as reference which is
used to evaluate model accuracies. However, we want
to compare the accuracy of the different transformation-
based analysis tools independent of the considered mod-
els’ accuracies themselves.

A metric to evaluate the second question is the ex-
ecution time for each transformation and analysis tool
chain. For the simulation-based solvers SimuCom and
SimQPN, in order to ensure a fair comparison, the
respective simulation times and confidence intervals are
aligned.

A quantitative comparison of the transformations in-
troduced in this paper to related transformation-based
approaches is not in the scope of our evaluation. Other
transformations are either not intended for component-
based systems or lack stable implementations for a fair

<<InternalAction>>
ResourceDemand [ms]: Exp(1.11)

<<LoopAction>>
Loop Iterations:

IntPMF[(2;0.3)(3;0.1)(4;0.2)(5;0.4)]

<<InternalAction>>
ResourceDemand [ms]: Exp(0.5)

<<ExternalCallAction>>
sendLineItem()

Fig. 11. Loop as part of service sendOrdersTo-
Manufacturing.

comparison (cf. Section 6). We also do not validate the
benefit of component-based modeling here, which has
been demonstrated in previous publications [12], [37].

4.2 Semantic Gaps
For each semantic gap between the different
transformation-based prediction approaches as they are
shown in Tab. 1, we investigate a typical prediction
scenario to assess the semantic gap’s effect on the
prediction accuracy.

Loops
Fig. 11 shows a behavior specification of a service named
sendOrdersToManufacturing. An order consisting
of multiple line items is sent to the manufacturing
domain. After a short pre-processing step (an internal
action), the service loops through the list of line items
and sends them separately to manufacturing. The exam-
ple is an adapted newOrder service of the SPECjEnter-
prise2010 benchmark1 (cf. Section 4.3.1). The loop itera-
tion number is described by a PMF. With a probability of
30%, the loop iterates 2 times. Loop counts 3 and 4 have
a probability of 10% respectively 20%, 5 loop counts have
a probability of 40%. While SimuCom is able to simulate
exactly the given PMF, SimQPN introduces inaccuracies
because of the geometric distribution of the individual
loop iteration numbers in the transformed QPN (cf.
Section 3.3). In Fig. 12, we see the PMF obtained using
SimuCom in the left diagram. The right diagram shows
the PMF of loop iteration numbers when using SimQPN.
It is more spread out compared to the original PMF. Note
that the resulting average of loop iteration numbers is
3.7, it is the same for both SimuCom and SimQPN. In
general, the higher the loop iteration numbers, the more
visible is the semantic gap of the loop mapping to QPNs.

Fig. 13 and Tab. 2 compare the response time predic-
tions for service sendOrdersToManufacturing de-
rived with SimuCom respectively SimQPN. As expected,
the predicted average response times are comparable.

1. SPECjEnterprise2010 is a trademark of the Standard Performance
Evaluation Corporation (SPEC). The SPECjEnterprise2010 results or
findings in this publication have not been reviewed or accepted by
SPEC, therefore no comparison nor performance inference can be made
against any published SPEC result. The official web site for SPECjEn-
terprise2010 is located at http://www.spec.org/jEnterprise2010.

Predicted Response Simu- Sim-
Time (RT) [ms] Com QPN
average 8.28 8.35
90th percentile 14.47 18.58
95th percentile 16.73 25.03

TABLE 2
Predictions of sendOrdersToManufacturing:

SimuCom vs. SimQPN.

<<ForkAction>>

<<ForkedBehavior>>
sychronizationPoint=true

<<BranchAction>>

<<BranchTransition>>
probability: 0.5

<<ExternalCallAction>>
requiredService2

<<BranchTransition>>
probability: 0.5

<<ExternalCallAction>>
requiredService1

<<ForkedBehavior>>
sychronizationPoint=true

<<InternalAction>>
ResourceDemand [ms]: 5

Response Time: 1ms

Response Time: 10ms

Fig. 14. Two Forks with a synchronization barrier.

The response time distribution is more spread out with
SimQPN than with SimuCom although in the example
the exponentially distributed resource demands tend to
smooth the differences of the predictions.

Forks with Synchronization Barrier
To analyze the semantic gap when modeling forks with
a synchronization barrier, we describe an illustrative ex-
ample. Fig. 14 shows a behavior specification involving
a synchronized fork of two threads. One thread (first
ForkedBehavior) contains a branch of two equiproba-
ble external service calls. The external service calls have a
response time of either 1 or 10ms. The other thread (sec-
ond ForkedBehavior) contains an internal action that
consumes a resource demand of 5ms. When deriving the
response time predictions of SimuCom and SimQPN, we
run a closed workload with a low resource utilization
level (the resource demand of the internal action of
5ms thus translates into a response time of 5ms). As
expected, SimuCom returns an average response time
of (10ms + 5ms)/2 = 7.5ms for the overall fork action.
SimQPN however returns an average response time of
5.9ms with 10 concurrent users. In the transformed QPN,
since individual tokens carry no identity, the synchro-
nization barrier cannot distinguish (cf. Section 3.3) if two
sub-requests stem from the same parent request or not.
The extent of the error depends on the response time
variability of the individual forked behaviors and the
level of concurrency in the system.

Parameter Dependencies
When resolving parameter dependencies to probability
distributions as described in Section 3.2, subsequent
uses of the same variable are treated as they were

http://www.spec.org/jEnterprise2010.

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

SimuCom

Loop Iteration Number

P
ro

ba
bi

lit
y

●

●

●

●

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

SimQPN

Loop Iteration Number

P
ro

ba
bi

lit
y

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

Fig. 12. Loop iteration numbers: SimuCom vs. SimQPN.

SimuCom

Service Response Time

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

SimQPN

Service Response Time

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Fig. 13. Response time predictions of service sendOrdersToManufacturing: SimuCom vs. SimQPN.

independent but should be stochastically dependent. In
the following we investigate the performance-relevant
behavior of a time-consuming computation. The resource
demand for the computation depends on a parameter X ,
more specifically, the resource demand is estimated to be
100ms times the value of X . The service implementation
illustrated in Fig. 15 does a lookup in a hashtable for
small values of X (values smaller than 100) and triggers
the computation only for large values of X (values
greater or equal to 100). In the example, the value of X is
characterized with a PMF. Parameter X has values of 10
and 50 with a probability of 70% respectively 20%. We
run a closed workload in a scenario with a low resource
utilization. Because there are no waiting times, the re-
source demands of the internal actions directly translate
to response times. Using SimuCom we obtain an average
service response time of 1500.9ms as expected. SimQPN
however returns an average service response time of
320.9ms. This is because the resource demand of the
internal action in the branch transition for values greater
or equal 100 is only approximated. The PMF of input

<<BranchAction>>

<<BranchTransition>>
Lookup

Condition:
X.VALUE < 100

<<InternalAction>>

ResourceDemand [ms]: 1

<<BranchTransition>>
Computation

Condition:
X.VALUE >= 100

<<InternalAction>>

ResourceDemand [ms]: 100 * X.VALUE

Parameter Setting:

X.VALUE=IntPMF[(10;0.7)(50;0.2)(150;0.1)]

Fig. 15. Resolved parameter dependencies.

parameter X is directly used to characterize the internal
action’s resource demand without considering the branch
condition. Solving parameter dependencies without con-
sidering subsequent uses of the same variable thus may
lead to notable prediction errors.

Response Time Distributions
Restricting the analysis to mean value metrics obviously
can be misleading as shown in Fig. 16 for the Media Store
(cf. Section 4.3.1). Considering only the mean response
time of 1.31 seconds, we omit all information about the
complex underlying probability distribution.

0,000

0,002

0,004

0,006

0,008

0,010

0,0 0,5 1,0 1,5 2,0 2,5 3,0

P
ro

b
ab

ili
ty

Response time (seconds)

Histogram

Mean value

Fig. 16. Response time histogram of the Media Store
Scenario 1.

Flexible Parameter Characterizations
With LQNS, all model parameters have to be defined as
exponential distributions. Model parameters include in-
terarrival times of open workloads, think times of closed
workloads, loop iteration numbers and resource de-
mands. All probability distributions of the input model
are thus reduced to their mean values. For loop iteration
numbers, this reduction has no effect on the predicted
mean response times. However, for the other mentioned
model parameters, this reduction has an impact on the
accuracy of mean response time predictions. Let us
assume there is a simple Queueing Network consisting
of only one single server queue and one workload class
with an open workload. For a constant inter-arrival time
of 2 seconds (i.e., an arrival rate λ of 0.5 requests per sec-
ond) and a constant resource demand D of 1 second, the
predicted mean response time R equals to D = 1. If inter-
arrival time and resource demand are not constant but
exponentially distributed, the predicted mean response
time then is R = D

1−U = D
1−(D∗X) = 1

1−0.5 = 2, where U ,
X are the queue utilization respectively throughput [32],
[38]. Thus, using LQNS introduces prediction errors if
input model parameters need to be converted to expo-
nential distributions.

4.3 Case Studies
In this section we provide end-to-end evaluations of the
different model transformations in various case studies.
The system under study are described in Section 4.3.1.
Section 4.3.2 and Section 4.3.3 describe the experiment
setup respectively the experiment results.

4.3.1 Systems Under Study

To increase the evaluation’s external validity, we ap-
plied the model transformations to four distributed,
component-based systems. They represent different do-
mains, such as enterprise systems, web applications, and
industrial automation:
• Media Store is a plain Java web application for
storing and retrieving audio or video files using a
MySQL database. The model reflects a use case where
a digital watermark is added to downloaded files
for copy protection. The model contains a hard disk
resource, which is accessed when retrieving files. Re-
source demands for the Media Store RDSEFFs have
been measured using manual instrumentation of the
Java implementation [39].

• SPECjEnterprise2010 is an industry-standard bench-
mark designed to measure the performance of ap-
plication servers conforming to the Java EE 5.0 or
later specifications. It is modeled after an automobile
manufacturer, where dealers place customer orders or
interact with suppliers. The system is implemented
as a Java Enterprise application deployed on two
servers using an Oracle database. Resource demands
have been determined using an estimation technique
based on measured response times and resource uti-
lization [22].

• Process Control System (PCS) is a distributed system
to manage industrial processes, such as power gener-
ation, oil refinement, or pulp and paper processing.
The model focuses on the server-side part of the
system, which is implemented in C++ using Microsoft
technologies. It features four usage scenarios, for ex-
ample for transferring sensor data or managing alarm
events. Resource demands were determined using the
Windows Performance Monitor [20].

• Business Reporting System (BRS) is loosely mod-
eled after a management information system formerly
analyzed at Carlton University [40]. The analyzed
configuration comprises two usage scenarios, nine
components, and four servers. Users can retrieve live
business data from the system and run statistical
analyses. Resource demands of the BRS are based
on estimations. To better highlight differences of the
analysis tools, we analyze two workload scenarios.
Scenario 1 has a constant interarrival time of 1 second
(abbr. cons1), while Scenario 2 has an exponentially
distributed interarrival time with mean value of 1
second (abbr. Exp(1)).
Fig. 17 shows a component deployment view of each

model. Each modeled component may include multiple
RDSEFFs which are not shown here for brevity. The
complete models can be retrieved from our website2.
The models range from small size (e.g., Media Store) to
large size (e.g., PCS) to demonstrate the scalability of the
transformations and analysis tools.

2. https://sdqweb.ipd.kit.edu/wiki/QuanEval MDSPE

Oracle WebLogic Server Oracle Database ServerApplication Server MySQL

Database

Server

Server 1

Server 2

Server 3

Business Reporting System

Core

Online

Engine

Cache

Scheduler

Database

Graphical

Reporting

Online

Reporting

User

Management

Tomcat

Webserver

Core

Graphics

Engine

Media Store

Process Control System

SPECjEnterprise2010

WebGUI MediaStore

Digital

Watermarking

Database

Cache

Media

Database

Delegate

Work Order

Session

Work

Order

Session

JDBC Driver

JDBC

Connection Pool
Mfg

Session

Message

Sender

Session

C28

C1

C2C3

C4

C5

C7

C6

C8

C9 C10

C11

C12

C13

C14

Server 1 Server 2 Server 3

C16

C15

C17

C18 C19

C20 C21

C22 C23

C24 C25

C26 C27

150 requests/

sec

1 request/

sec

1 request/sec

15 requests/

sec

1 user in closed workload

45 requests/

sec

48 request/

sec

3 CPU cores
48 request/

sec

Fig. 17. Combined component and deployment views of the four case study systems evaluated with the introduced
transformations and analysis tools. The inter-arrival time of all open workloads is exponentially distributed.

Model Usg.Sc. Comp. RDSEFFs Int. Act. Res. Dem. Ext. Act. Loops Branches

Media Store 1 5 14 19 19 11 3 2

SPECjEnterprise2010 1 7 33 33 28 20 1 4

Process Control System 4 39 33 28 28 42 0 10

Business Reporting System 1 9 38 37 37 40 5 4

Key: Usg.Sc. = Usage Scenarios, Comp. = Components, Int. Act. = Internal Actions, Res. Dem. = Resource Demands, Ext. Act. = External Actions

TABLE 3
Comparison of the complexity of the considered models.

Tab. 3 shows a number of model complexity metrics.
The number of calls, branches, and loops refer to the
number of entities that are instantiated during the model
traversal of both the usage model and the system assem-
bly.

To give the reader an idea of the performance analysis
models generated by the transformations, Fig. 18 shows
the generated LQN model for the BRS. Furthermore,
Tab. 4 compares the size and complexity of the gener-
ated LQN and QPN models for the various modeled
systems. These models are hidden from the user and the
performance metrics resulting from the analysis can be
retrieved without knowing the details of each modeling
notation.

4.3.2 Experiments

All experiments executing the transformations and anal-
ysis tools on the case study models were conducted
using Eclipse Galileo 3.5.2 with the following features
installed: EMF 2.5.0, Eclipse QVT Operational 2.01, PCM
3.2 Development Build, QPME 1.5.2 Development Build.
The system and hardware configuration included: Mi-
crosoft Windows XP, JDK 1.6.0 (Update 26), Intel Core2
Duo CPU T9500 at 2.6 GHz. LQNS was available in
version 4.1.

For the simulation analyses, we used the same
number of measurements for each case study to
achieve comparable results. Of the available simula-
tion methods offered by QPME/SimQPN [41], [42],
the batch means method was used for all simu-
lation runs, which is the standard method recom-

Pl. Tr. Cn. Col. Qs Tasks Proc. Entr. Act.

Media Store 51 48 105 17 5 14 14 25 62

SPECjEnterprise2010 102 98 217 40 5 25 25 45 134

Process Control System 170 150 359 53 10 36 36 91 188

Business Reporting System 315 251 710 105 6 50 50 88 290

QPN LQN

Key: Pl. = Places, Tr. = Transitions, Cn. = Connections, Col. = Colors, Qs = Queues,

Proc. = Processors, Entr. = Entries, Act. = Activities

TABLE 4
Model elements in the resulting QPNs and LQNs.

=

S S ∞

S S

S
0

S
0

S
0

S
0

S
0

S
0

S
0

S V
0

0
0

S V
0

B S

S k

S

S
0

S
0

S
0

S
0

S
0

S
0

S
0

S ∞

S Y 9
0

0
0

V 9
0

V 9
0

V Y
0

V 9
0

S ∞

S

S S T
0

B S
0

S V 9S
0

V S
0

S 0 V J S
0

V 9S C
0

V S n
0

S
0

S {

S n

S
0

S 4
0

0 S
0

S V S
0

S 0V V S
0

S V 9S Y
0

S 9S
0

S S
0

S _ ∞

S E

S
0

S
0

S
0

S V

S 9

S
0

0

S
0

S
0

S
0

S
0

S 9

9 9
0

90
0

9 9
0

V 9 9
0

9 SY
0

9 9
0

S

S B S 9 ∞

S B S

S S 9
0

0 9 B 90
0

S 9
0

B 9
0

S V 9
0

9
0

S 9
0

S S 9
0

S

S B S

S B SS 9

S 0 V 9S 9
0

V V S 90
0

V SY V 9S 9
0

S V V 9S 9
0

SS

S SS 9

S S V 9S 9
0

V 9S 90
0

S V 9S 9
0

S S V V S 9
0

S ∞

S V E

0

V
0

0

S
0

0

0

S B S 0 ∞

S B S 0

S 0 0
0

0 9 B 0
0

V S 0
0

0
0

S V 0
0

0 Y 0
0

S S 0
0

S 0 0
0

S 9

S B S 0 ∞

S B S

S S 0
0

0 9 B 0
0

S
0

B
0

0

0

S V
0

S S 0
0

S 9 0
0

00
0

Y 0
0

00
0

S 9
0

Y 0 Y
0

Y 0
0

B S 9

S B 9

0

S 0 9S 0
0

V S 0
0

S V 9 0
0

S B S 9

0 }

0 1

S 0 S 0
0

B V 9S
0

S 0V V S
0

B S 9 ∞

S SS

0 9
0

0 9 B 0
0

V 9S 9
0

B
0

0 9
0

S
0

S 0 V
0

S 0 S 9
0

S

 ∞

V 0
0 00
V 4 90

0 00
9 0

0 0
9

0 0 0
S B S 0

S 9 V
0

0

Y 9 0
0

S 9
0

S
0

0

S B S 0

S 0
0

0 0 0
0

0
0

S 0
0

0 YN
0

0
0

0

 ∞

S
0

0
0

B S
0

S Y
0

A 0
0

o V
0

0 0
0

09 9
0

0

S
0

0
0

0 S
0

S
0

S 0 0
0

0 sS B S

0

0

S V 0
0

Y 0
0

0

0
0

0
0

V 0
0

S
0

Y 0 SY
0

Y 0 0
0

9S 0
0

V 9 0 0
0

V V 9S 0
0

V

S
0

V Y
0

0

S
0

 ∞

y

Y S
0

0
0

S
0

o
0

A 0
0

o 1 V
0

0 0
0

9 9
0

S
0

0
0

S 0
0

0 S
0

S
0

S 0 0
0

0

B S ∞

S B S

S
0

0

S 6
0

 9 9 ∞

 0 9 R

S 8
0

0

S
0

S B B ∞

S B

S
0

 Y
0

S
0

 ∞

V S 0 0
0 0

V S _ 8
0

V J 9S 1 0
0 0

V 9 8 0
0 0

V H 1 0 y
0 0
V Y 0 o 0 20

0 00
0 9 B
0 0

20 E
0 0

0 9 B _ 00
0 0

Y 9 4
0

9 B 0
0 00

0 9 B 90
0 0

- 0 0
0 0

y
0

9 0
0 0

V

Y E
0

V Y 2 2
0

0

_26
0

 2

2

S V
0

V0 0
0

S 0
0

Y 0 0
0

YV0 2
0

Y ∞

Y

S 0 0
0

B 0 0
0

S V 0
0

B 0 0
0

B 0 0
0

0 0 V

B S

S B S

S
0

0

S 5

 9 9

 0 9 R

S 8
0

0

S
0

S B ∞

S B

S 2
0

 Y
0

S
0

S B S

S
0

0

S
0

Y
0

0

0 9
Y

S Y
0

0
0

S Y
0

0 SY
0

0
0

B B

9 ∞

9

S 9
0

0B d V 9S
0

V S 9
0

S V 8
0

0 0

0

B V V 9
0

B 0
0

S 9
0

S V 9
0

S 9 SY
0

S 9
0

9

 ∞

S 0 0 2
0

S V 0
0

 ∞

V

S B 0
0

V 0 0 0
0

S 0 B V 0
0

Y 0S B S

S
0

0

S
0

SY
0

0

0 0 9 _ _B B
 Y

Y
0

0
0

Y
0

0 Y
0

0
0

Y

9

B 0

B

S 0
0

B 0 0
0

S 9 0
0

S

S SY
0 00 0 9

Y C
0 00 0 9

A n
0

 ∞

B U V _ 0
0 00
B E

0 00
V Y p F 0

0 00 0
P 8 2 0

0
V 0 0 _

00
V _

000 0
S N F 5 0 y

0
S 0

000
5 0

0 00
B d y 0

00
S N F 0 y

0
S 0

000
0

0 00
B

00 0
V V

B S 0

B S 0

S
0

S B B 0 0
0

S 0
0

B B 0

B

S S 0
0

B B 0 0
0

S S 0
0

 Y

B 0

 ∞

B 0 0
0 0

S o B B 0
0 00

B
0 0 0

B S 0 B B

Fig. 18. Generated LQN for the BRS.

mended by SimQPN. For LQNS, the default settings
were used: convergence = 0.00001, iteration
Limit = 50, and underrelaxation = 0.5.

4.3.3 Results
Tab. 5 shows the prediction results for the different anal-
ysis tools. The table shows response times, throughputs,
and resource utilizations for each case study system. For
simulation-based solvers, point estimates of the consid-
ered metrics are shown. All results were very stable
with the variation of reported metrics from multiple
simulation runs being negligible. The accuracy of the
transformations and analysis tools can be derived from
the columns labelled ‘relDiff’, which include the per-
centaged deviation of each performance metric from the
reference metric provided by SimuCom. Performance

metrics with a deviation higher than 15 percent from
the reference value are marked in light grey in the table.

From the simulators and the analytical solver, there
is only one larger deviation: For the BRS system, the
predicted response time differs in Scenario 1. While
the SimQPN solvers have a slight deviation, the LQNS
solver deviates significantly: Both predict a higher re-
sponse time than SimuCom. The reason for the deviation
is the constant interarrival time in this scenario: LQNS
does not support constant interarrival times, so the
PCM2LQN transformation maps it to an exponentially
distributed arrival rate, leading to the strong deviation.

In summary, the prediction results of the analytical
and simulation solvers show only a low deviation (< 10
percent) from the reference results in most cases. Thus,
in our case studies the identified semantic gaps often do
not have a significant impact on the overall performance.

To answer our second question from the beginning
of Section 4.1 concerning the efficiency of the various
analysis tools, Tab. 6 shows some statistics about the
execution times of the analysis tools. In general, SimQPN
and LQNS deliver results much faster than SimuCom.
SimQPN exhibited a 2 to 9 times shorter execution time,
whereas SimQPN-MV was even faster with up to 24
times shorter execution time in some cases. Furthermore,
although being a simulation-based solver, SimQPN has
been shown to scale well to models of significant size
and complexity [43]. LQNS, being an analytical solver,
is faster than the other solvers. It exhibited at least 10
times and up to 50 times shorter execution times.

5 DISCUSSION

This section summarizes the trade-offs between the var-
ious performance transformations and analysis tools we
uncovered in Section 3 and Section 4. We provide prac-
tical guidance on deciding when to use which analysis
tool. Users can select a suitable transformation and re-
spective solver according to their required features from
Tab. 1, as well as their constraints concerning the pre-
diction accuracy and overhead. For example, if response
time distributions are needed as part of the prediction,
then SimuCom provides the best support at the cost
of higher prediction overhead. In situations where the
prediction overhead is an important factor, SimQPN is
the preferred solver as it executes significantly faster
than SimuCom and provides a good balance between

SimuCom

(reference)

SimQPN SimQPN

(relDiff)

SimQPN-MV SimQPN-MV

(relDiff)

LQNS LQNS

(relDiff)

Media Store

RT(Scenario1) 1,332 1,331 0,0% 1,324 -0,6% 1,288 -3,3%

TP(Scenario1) 0,751 0,751 0,0% 0,755 0,6% 0,753 0,3%

U(AppServer_CPU) 0,341 0,345 1,2% 0,340 -0,3% 0,342 0,2%

U(DBServer_CPU) 1,4% 1,4% 1,6% 1,4% 2,6% 1,4% 2,2%

U(DBServer_HDD) 64,4% 64,0% -0,6% 64,5% 0,2% 64,4% -0,1%

SPECjEnterprise2010

RT(Scenario1) 1,060 1,058 -0,2% 1,065 0,4% 1,065 0,4%

TP(Scenario1) 24,567 24,970 1,6% 24,792 0,9% 25,000 1,8%

U(Oracle_CPU) 29,1% 29,6% 1,7% 29,5% 1,3% 29,6% 1,8%

U(WLS_CPU) 51,2% 52,0% 1,5% 51,9% 1,3% 52,2% 2,0%

Process Control System

RT(Scenario1) 0,00787 0,00764 -2,9% 0,00763 -3,0% 0,00790 0,4%

RT(Scenario2) 0,06690 0,06636 -0,8% 0,06903 3,2% 0,06710 0,3%

TP(Scenario1) 149,258 149,254 0,0% 149,254 0,0% 149,254 0,0%

TP(Scenario2) 15,001 15,000 0,0% 15,000 0,0% 14,999 0,0%

U(Server1_CPU) 6,5% 6,4% -2,2% 6,4% -2,0% 6,5% -0,5%

U(Server1_HDD) 45,0% 45,0% 0,0% 45,0% 0,0% 45,0% 0,0%

U(Server2_CPU) 1,1% 1,1% -4,0% 1,1% -4,0% 1,1% -4,0%

U(Server3_CPU) 55,0% 54,1% -1,6% 54,0% -1,8% 55,1% 0,2%

Business Reporting System

RT(Scenario1 - cons1) 5,223 5,918 13,3% 5,921 13,4% 7,391 41,5%

TP(Scenario1 - cons1) 1,000 1,000 0,0% 1,000 0,0% 1,000 0,0%

U(Server1_CPU) Scen. 1 45,0% 44,8% -0,5% 44,9% -0,2% 45,0% 0,0%

U(Server2_CPU) Scen. 1 68,8% 68,6% -0,3% 68,8% -0,1% 68,9% 0,1%

U(Server3_CPU) Scen. 1 74,3% 74,8% 0,7% 74,5% 0,3% 74,3% 0,0%

U(Server4_CPU) Scen. 1 23,5% 23,5% -0,2% 23,5% 0,1% 23,5% 0,2%

RT(Scenario2 - Exp(1)) 7,302 7,256 -0,6% 7,500 2,7% 7,391 1,2%

TP(Scenario2 - Exp(1)) 1,002 1,000 -0,2% 0,996 -0,6% 1,000 -0,2%

KEY: RT = Response Time (sec), TP = Throughput (requests / sec), U = Utilization (%), relDiff = relative difference

TABLE 5
Results accuracy of the various analysis tools compared to SimuCom.

SimuCom

(reference)

SimQPN SimQPN

(relDiff)

SimQPN-MV SimQPN-MV

(relDiff)
LQNS LQNS

(relDiff)

Media Store

Logical Simulation Time 25000 25000 0,0% 25000 0,0% n/a n/a

Number of Measurements 18773 18775 0,0% 18775 0,0% n/a n/a

Total Execution Time 31,4 6,4 -79,6% 3,6 -88,5% 1,3 -96,0%

Wall-clock Sim./Ana. Time 25,6 1,7 -93,4% 0,9 -96,5% 0,2 -99,1%

SPECjEnterprise2010

Logical Simulation Time 500 500 0,0% 500 0,0% n/a n/a

Number of Measurements 12257 12485 1,9% 12485 1,9% n/a n/a

Total Execution Time 72,6 7,9 -89,1% 5,6 -92,3% 1,8 -97,6%

Wall-clock Sim./Ana. Time 55,6 3,8 -93,3% 2,1 -96,3% 0,5 -99,2%

Process Control System

Logical Simulation Time 500 500 0,0% 500 0,0% n/a n/a

Number of Measurements 74627 74627 0,0% 74627 0,0% n/a n/a

Total Execution Time 96,7 11,9 -87,7% 7,2 -92,6% 3,9 -95,9%

Wall-clock Sim./Ana. Time 65,4 1,6 -97,6% 2,6 -96,0% 2,0 -96,9%

Business Reporting System

Logical Simulation Time 9994 10000 0,1% 10000 0,1% n/a n/a

Number of Measurements 10016 9997 -0,2% 9997 -0,2% n/a n/a

Total Execution Time 591,5 74,5 -87,4% 34,1 -94,2% 4,0 -99,3%

Wall-clock Sim./Ana. Time 587,6 35,4 -94,0% 26,6 -95,5% 1,8 -99,7%

All times in seconds

TABLE 6
Comparison of the efficiency of the various analysis tools.

Response time

distributions or

response time percentiles

required?

Approximated fork-join

behavior

leads to significant

inaccuracies?

Approximation with

exponential distribution

leads to significant

inaccuracies?

Source model contains

forks with synchronization

barrier?

Approximated loop

iteration numbers

lead to significant

inaccuracies?

Source model contains

loops?

Approximated parameter

propagation

leads to significant

inaccuracies?

Source model contains

parameter dependencies?

Source model contains

flexible parameter

characterizations?

Source model contains

blocking behavior?

Use SimuCom

yes

yes

no

no yes

no

no
yes

Use SimQPN Use LQNSUse SimQPN-MV

no

no

no

no

no

yes

yes yes

yes

yes

no

yes

Blocking behavior is

captured by LQN task

multiplicity?

yes

no

Fig. 19. Decision tree for selecting suitable transformation
and analysis tool.

prediction accuracy and overhead. LQNS and SimQPN-
MV are most efficient in terms of prediction overhead,
however, they only provide mean value metrics.

Fig. 19 depicts a decision tree that is based on the gaps
between the presented prediction approaches as they
are shown in Tab. 1. In scenarios where the prediction
overhead is important, this decision tree guides the se-
lection of a specific transformation and respective solver.
The less complex modeling features are used, the faster
prediction approaches can be selected without losing
prediction accuracy. There are prediction approaches that
support some modeling features only partially, i.e., the
approaches approximate the modeling features. If the ap-
proximation leads to acceptable prediction inaccuracies
or not, differs from scenario to scenario. In Fig. 19, we
mark such decisions using italic font. For instance, the
decision if the approximation of loop iteration numbers
(as it is presented in Section 3) leads to significant
inaccuracies cannot be taken without knowing (i) the
loop iteration number distribution, (ii) the performance-
relevance of the loop body, (iii) the actual performance
metrics that need to be predicted, and (iv) the accuracy
a given scenario requires. However, the explanation of
the semantic gaps in Section 3 and their individual
evaluation in Section 4 provide assistance to answer such
questions.

The selected transformations considered in this paper
as well as the respective model solution techniques serve
as representative examples of the typical model types
and solution techniques used for performance prediction
in practical studies. The considered case studies were
carefully chosen to cover different modeling features and
to represent systems of different size and complexity.
Thus, even though the results were presented in the con-
text of the Palladio Component Model (PCM), the gained

insights from the evaluation are easily generalizable to
other systems, both in terms of the expressiveness and
limitations of the various transformation approaches,
as well as in terms of the accuracy and efficiency of
the various solution techniques. The presented results
and insights help software architects and performance
engineers to select an appropriate model transformation
and solution approach for a given context.

6 RELATED WORK

The main contribution of this paper is related to other
quantitative comparisons between transformation ap-
proaches and analysis tools. The compared transforma-
tions themselves are related to a variety of approaches
in software performance engineering.

6.1 Quantitative Comparisons
There are only a few works quantitatively comparing
different model transformations and analysis tools. Bal-
samo et al. [9] transformed an annotated UML model
of a naval communications system both into Aemilia, a
notation based on stochastic process algebras, and a sim-
ulation model. Although they executed both solvers and
discussed their different scalabilities, the authors did not
provide the deviations between the numerical solutions
and the simulations results nor did they compare the
respective solver execution times.

Tribastone [10] compared the solutions of LQNS and
the numerical solution of the Markov chain underlying
an PEPA model for a distributed system. He found a
prediction error below 15 percent in most of the analyzed
cases and showed that the LQN solver was orders of
magnitude faster in cases with low concurrency levels.
In another paper, Tribastone et al. [11] demonstrated that
the solution of the PEPA model of a three tier distributed
system was up to four orders of magnitude faster based
on ordinary differential equations than based on a con-
tinuous time Markov chain analysis. However these
approaches did not involve model transformations as
both variants were modeled by hand.

Other papers involving multiple model transforma-
tions into different performance models [6], [44] do not
provide quantitative prediction results, but rather focus
on the proof-of-concept feasibility of the transformation
approach itself.

6.2 SPE Approaches
Numerous authors have proposed model transforma-
tions from higher-level software models to performance
models [2]. Such approaches enable developers to reuse
existing design models and keep the mathematical in-
trinsics of the performance models hidden and may thus
lower the barrier to conduct model-based performance
analyses in practice.

One common approach is to employ UML with exten-
sions to support performance analysis. Early approaches

use proprietary UML extensions [2], later the OMG stan-
dardized the UML SPT profile [45] and UML MARTE
profile [46]. They have been applied for transformations
into many different target languages ranging from lay-
ered queueing models to stochastic process algebra and
stochastic Petri nets [4] [7], [8], [47], [48], [49]. However,
UML lacks concepts to specify parameterizable, reusable
models, which make an application in a component-
based development scenario difficult. Thus, these ap-
proaches should only be applied if the system under
analysis does not follow the component-paradigm.

To specifically support the performance analysis
of component-based systems and exploit features of
component-based software engineering (CBSE) such as
reusability, division of work, and hierarchical composi-
tion, several research groups proposed special modeling
languages [3]. However, Hissam et al. [50] specifically
targets embedded systems, while the authors in [51]
provide a restricted resource model. Bertolino et al. [52]
provides limited support for parameterized component
performance models and restricts the class of analyzable
systems because of hard assumptions in the analysis
model. The approach presented in [40] lacks the capa-
bility to change the control flow within a component
depending on the parameter input and has limited tool
support. Other approaches remain at a conceptual stage
and have not been supported by tools, which compli-
cates applying them in practice [53], [54], [55], [56].

The potentially large number of model transforma-
tions in software performance engineering from multiple
high-level modeling notations into multiple low-level
performance models have led to the creation of interme-
diate or kernel modeling languages [57]. However, Smith
et al. [58], [59] tailor their approach towards a data inter-
change format making it less applicable in a performance
analysis scenario. The KLAPER approach [6] lacks the
concept of parameter dependencies and transformations
have been proposed but not yet implemented. The pro-
totypical model transformation from the Core Scenario
Model (CSM) to LQNs described in [5] was not yet
available for third-party use.

7 CONCLUSIONS

This paper presents a comparison of different transfor-
mations of performance-annotated software architecture
models into stochastic performance models which apply
both analytical and simulation-based solution strategies.
It briefly introduces each transformation and describes
the semantic gaps between typical source model abstrac-
tions and the different analysis techniques. We present
a detailed evaluation of the effects of the identified
semantic gaps on the prediction accuracy as well as
several case studies to provide end-to-end evaluations
of the different model transformations. We discuss the
results in detail and give recommendations to select
the right transformation and analysis tool for different
analysis contexts. Even though the results involve the

proprietary PCM, the gained insights from the evalua-
tion are generalizable to other models and systems, both
in terms of the expressiveness and limitations of the
various transformation approaches, as well as in terms
of the accuracy and efficiency of the various solution
techniques.

As such, the results presented in this paper help
performance analysts to select the right transformation
depending on the analysis context or the degree of
maturity of the model of the system under study. An-
alytical models can help to quickly guide the design
process with early but more coarse-grained performance
metrics while simulation helps for detailed performance
analyses. Also the results presented in this paper help
performance analysts to estimate the loss in accuracy
implied by the use of analytic solvers.

One direction to extend the results presented in this
paper is to derive an automatic selection method which
decides on the transformation to use depending on the
analysis context, i.e., automating taking the decision for a
transformation according to the decision tree presented
in this paper. The automated decision can include the
level of details of the model of the system under study,
available time until the performance prediction results
are required, or the level of detail of modeling infras-
tructure aspects in the models.

ACKNOWLEDGMENTS

This work was partially supported by the German Re-
search Foundation (DFG) within the Collaborative Re-
search Center ”On-The-Fly Computing” (SFB 901) and
by DFG grant No ”KO 3445/6-1”.

REFERENCES

[1] C. U. Smith, Performance Solutions: A Practical Guide To Creating
Responsive, Scalable Software. Addison-Wesley, 2002.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: A sur-
vey,” Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp.
295–310, 2004.

[3] H. Koziolek, “Performance Evaluation of Component-based Soft-
ware Systems: A Survey,” Performance Evaluation, vol. 67, no. 8,
pp. 634–658, August 2010.

[4] G. Gu and D. Petriu, “XSLT transformation from UML models to
LQN performance models,” in Proc. 3rd Int. Workshop on Software
and Performance (WOSP’02). ACM, 2002, pp. 227–234.

[5] D. B. Petriu and M. Woodside, “An intermediate metamodel with
scenarios and resources for generating performance models from
UML designs,” Journal of Software and Systems Modeling, vol. 6,
no. 2, pp. 163–184, June 2006.

[6] V. Grassi, R. Mirandola, and A. Sabetta, “Filling the gap between
design and performance/reliability models of component-based
systems: A model-driven approach,” Journal on Systems and Soft-
ware, vol. 80, no. 4, pp. 528–558, 2007.

[7] S. Bernardi and J. Merseguer, “Performance evaluation of UML
design with Stochastic Well-formed Nets,” Journal of Systems and
Software, vol. 80, no. 11, pp. 1843–1865, 2007.

[8] M. Tribastone and S. Gilmore, “Automatic extraction of pepa
performance models from uml activity diagrams annotated with
the marte profile,” in Proc. 7th Int. Workshop on Software and
Performance (WOSP’08), ser. WOSP ’08. New York, NY, USA:
ACM, 2008, pp. 67–78.

[9] S. Balsamo, M. Marzolla, A. D. Marco, and P. Inverardi, “Experi-
menting different software architectures performance techniques:
a case study,” in Proc. 4th International Workshop on Software and
Performance (WOSP’04). New York, NY, USA: ACM, 2004, pp.
115–119.

[10] M. Tribastone, “Relating layered queueing networks and process
algebra models,” in Proc. 1st Joint WOSP/SIPEW Int. Conf. on
Performance engineering, ser. WOSP/SIPEW ’10. New York, NY,
USA: ACM, 2010, pp. 183–194.

[11] M. Tribastone, S. Gilmore, and J. Hillston, “Scalable differential
analysis of process algebra models,” IEEE Trans. on Softw. Eng.,
vol. TBD, 2012.

[12] S. Becker, H. Koziolek, and R. Reussner, “The Palladio compo-
nent model for model-driven performance prediction,” Journal of
Systems and Software, vol. 82, no. 1, pp. 3–22, January 2009.

[13] F. Bause, “Queueing Petri Nets˜- A formalism for the combined
qualitative and quantitative analysis of systems,” in Proceedings of
the 5th International Workshop on Petri Nets and Performance Models,
Toulouse, France, October 19-22, 1993.

[14] P. Meier, S. Kounev, and H. Koziolek, “Automated Transformation
of Palladio Component Models to Queueing Petri Nets,” in In
19th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS
2011), July 25-27 2011.

[15] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and
M. Woodside, “Performance analysis of distributed server sys-
tems,” in Proc. 6th International Conference on Software Quality
(ICSQ’96), 1996, pp. 15–26.

[16] H. Koziolek, “Parameter dependencies for reusable performance
specifications of software components,” Ph.D. dissertation, Uni-
versity of Oldenburg, Germany, March 2008.

[17] H. Koziolek and R. Reussner, “A model-transformation from the
palladio component model to layered queueing networks,” in
Proc. of the SPEC International Workshop on Performance Engineering
(SIPEW’08), ser. LNCS, vol. 5119. Springer, June 2008, pp. 58–78.

[18] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” vol. 82, pp. 3–
22, 2009.

[19] N. Huber, S. Becker, C. Rathfelder, J. Schweflinghaus, and
R. Reussner, “Performance Modeling in Industry: A Case Study
on Storage Virtualization,” in ACM/IEEE 32nd International Confer-
ence on Software Engineering, Software Engineering in Practice Track,
Capetown, South Africa. ACM, 2010, pp. 1–10.

[20] H. Koziolek, B. Schlich, C. Bilich, R. Weiss, S. Becker, K. Krog-
mann, M. Trifu, R. Mirandola, and A. Martens, “An industrial
case study on quality impact prediction for evolving service-
oriented software,” in Proc. 33rd ACM/IEEE Int. Conf. on Software
Engineering (ICSE’11) Software Engineering in Practice Track. ACM,
May 2011, pp. 776–785.

[21] J. Happe, H. Koziolek, and R. Reussner, “Facilitating performance
predictions using software components,” IEEE Software, vol. 28,
no. 3, pp. 27–33, May 2011.

[22] F. Brosig, N. Huber, and S. Kounev, “Automated Extrac-
tion of Architecture-Level Performance Models of Distributed
Component-Based Systems,” in 26th IEEE/ACM Intl. Conference
On Automated Software Engineering (ASE), November 2011.

[23] C. Rathfelder, S. Kounev, and D. Evans, “Capacity Planning for
Event-based Systems using Automated Performance Predictions,”
in 26th IEEE/ACM Intl. Conference On Automated Software Engineer-
ing (ASE), November 2011.

[24] T. de Gooijer, A. Jansen, H. Koziolek, and A. Koziolek, “An
industrial case study of performance and cost design space ex-
ploration,” in Proceedings of the third joint ACM/SPEC international
conference on Performance Engineering (ICPE 2012), L. Kurian John
and D. Krishnamurthy, Eds., New York, NY, USA, 2012.

[25] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner,
“Architecture-Based Reliability Prediction with the Palladio
Component Model,” IEEE Trans. on Softw. Eng., 2012.

[26] S. Kounev, “Performance Modeling and Evaluation of Distributed
Component-Based Systems using Queueing Petri Nets,” IEEE
Transactions on Software Engineering, vol. 32, no. 7, pp. 486–502,
July 2006.

[27] S. Kounev, K. Bender, F. Brosig, N. Huber, and R. Okamoto,
“Automated Simulation-Based Capacity Planning for Enterprise
Data Fabrics,” in 4th Intl. ICST Conference on Simulation Tools and
Techniques (SIMUTools), Mar. 2011.

[28] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann, “A Methodology
for Performance Modeling of Distributed Event-Based Systems,”
in 11th IEEE Intl. Symposium on Object Oriented Real-Time Dis-
tributed Computing (ISORC), 2008, pp. 13–22.

[29] R. Nou, S. Kounev, F. Julia, and J. Torres, “Autonomic QoS control
in enterprise Grid environments using online simulation,” Journal
of Systems and Software, vol. 82, no. 3, pp. 486–502, Mar. 2009.

[30] S. Spinner, S. Kounev, and P. Meier, “Stochastic Modeling
and Analysis using QPME: Queueing Petri Net Modeling
Environment v2.0,” in Proceedings of the 33rd International
Conference on Application and Theory of Petri Nets and Concurrency
(Petri Nets 2012), ser. Lecture Notes in Computer Science (LNCS),
S. Haddad and L. Pomello, Eds., vol. 7347. Berlin, Heidelberg:
Springer-Verlag, June 2012, pp. 388–397. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31131-4 21

[31] P. Meier, “Automated Transformation of Palladio Component
Models to Queueing Petri Nets,” Master’s thesis, Karlsruhe In-
stitute of Technology (KIT), 2010.

[32] G. Bolch, Ed., Queueing networks and Markov chains : Modeling and
Performance Evaluation with Computer Science Applications, 2nd ed.
Hoboken, NJ: Wiley, 2006.

[33] G. Franks, “Performance analysis of distributed server systems,”
Ph.D. dissertation, Department of Systems and Computer Engi-
neering, Carleton University, Ottawa, Ontario, Canada, December
1999.

[34] G. Franks, T. Omari, C. M. Woodside, O. Das, and S. Derisavi, “En-
hanced modeling and solution of layered queueing networks,”
IEEE Trans. on Software Engineering, vol. 35, no. 2, pp. 148–161,
2009.

[35] J. A. Rolia and K. C. Sevcik, “The method of layers,” IEEE Trans.
Softw. Eng., vol. 21, no. 8, pp. 689–700, 1995.

[36] G. Franks, “Simulating layered queueing networks with passive
resources,” in Proceedings of the 2011 Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium, ser.
TMS-DEVS ’11. San Diego, CA, USA: Society for Computer
Simulation International, 2011, pp. 8–15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2048476.2048477

[37] A. Martens, H. Koziolek, L. Prechelt, and R. Reussner, “From
monolithic to component-based performance evaluation of soft-
ware architectures,” Empirical Software Engineering, vol. 16, no. 5,
pp. 587–622, 2011.

[38] D. Menasce, V. Almeida, and L. Dowdy, Capacity Planning and
Performance Modeling: From Mainframes to Client-Server Systems.
New Jersey: Prentice-Hall, Mar. 1994, $44.

[39] H. Koziolek, S. Becker, and J. Happe, “Predicting the Performance
of Component-based Software Architectures with different Usage
Profiles,” in Proc. 3rd International Conference on the Quality of
Software Architectures (QoSA’07), ser. LNCS, vol. 4880. Springer,
Juli 2007, pp. 145–163.

[40] X. Wu and M. Woodside, “Performance Modeling from Software
Components,” in Proc. 4th International Workshop on Software and
Performance (WOSP’04), vol. 29, no. 1. New York, NY, USA: ACM
Press, 2004, pp. 290–301.

[41] S. Kounev, S. Spinner, and P. Meier, “QPME 2.0 - A Tool for
Stochastic Modeling and Analysis Using Queueing Petri Nets,”
in From Active Data Management to Event-Based Systems and More,
ser. LNCS, K. Sachs, I. Petrov, and P. Guerrero, Eds. Springer,
2010, vol. 6462, pp. 293–311.

[42] S. Kounev and A. Buchmann, “SimQPN - a tool and methodology
for analyzing queueing Petri net models by means of simulation,”
Performance Evaluation, vol. 63, no. 4-5, pp. 364–394, May 2006.

[43] K. Sachs, S. Kounev, and A. Buchmann, “Performance Modeling
and Analysis of Message-oriented Event-driven Systems,” Journal
of Software and Systems Modeling (SoSyM), October 2011.

[44] D. C. Petriu, C. M. Woodside, D. B. Petriu, J. Xu, T. Israr,
G. Georg, R. France, J. M. Bieman, S. H. Houmb, and J. Jürjens,
“Performance analysis of security aspects in uml models,” in
WOSP ’07: Proceedings of the 6th international workshop on Software
and performance. New York, NY, USA: ACM, 2007, pp. 91–102.

[45] Object Management Group (OMG), “UML Profile for Schedu-
lability, Performance and Time,” http://www.omg.org/cgi-bin/
doc?formal/2005-01-02, 2005, last retrieved 2008-01-13. [Online].
Available: http://www.omg.org/cgi-bin/doc?formal/2005-01-02

[46] ——, “UML Profile for MARTE, Beta 1,” http://www.omg.org/
cgi-bin/doc?ptc/2007-08-04, August 2007, last retrieved 2008-01-
13. [Online]. Available: http://www.omg.org/cgi-bin/doc?ptc/
2007-08-04

http://dx.doi.org/10.1007/978-3-642-31131-4_21
http://dl.acm.org/citation.cfm?id=2048476.2048477
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04

[47] A. Di Marco and P. Inverardi, “Compositional generation of
software architecture performance QN models,” in Proc. 4th Work-
ing IEEE/IFIP Int. Conference on Software Architecture (WICSA’04).
IEEE, 2004, pp. 37–46.

[48] S. Balsamo, M. Marzolla, and R. Mirandola, “Efficient perfor-
mance models in component-based software engineering,” in
EUROMICRO ’06: Proceedings of the 32nd EUROMICRO Conference
on Software Engineering and Advanced Applications. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 64–71.

[49] S. Distefano, M. Scarpa, and A. Puliafito, “From uml to petri nets:
The pcm-based methodology,” IEEE Trans. Softw. Eng., vol. 37, pp.
65–79, January 2011.

[50] S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C. Wallnau,
“Packaging Predictable Assembly,” in Proc. IFIP/ACM Working
Conference on Component Deployment (CD’02). London, UK:
Springer-Verlag, 2002, pp. 108–124.

[51] E. Bondarev, J. Muskens, P. de With, M. Chaudron, and J. Lukkien,
“Predicting Real-Time Properties of Component Assemblies: A
Scenario-Simulation Approach,” in Proc. 30th EUROMICRO Conf.
(EUROMICRO’04). Washington, DC, USA: IEEE Computer
Society, 2004, pp. 40–47.

[52] A. Bertolino and R. Mirandola, “Cb-spe tool: Putting component-
based performance engineering into practice,” in Proc. 7th Int.
Symposium on Component-based Software Engineering (CBSE’04), ser.
LNCS, no. 3054. Springer, May 2004, pp. 233–248.

[53] M. Sitaraman, G. Kuczycki, J. Krone, W. F. Ogden, and A. Reddy,
“Performance specification of software components,” in Proc. of

SSR ’01, 2001.
[54] Y. Liu, A. Fekete, and I. Gorton, “Design-level performance

prediction of component-based applications,” IEEE Trans. Softw.
Eng., vol. 31, no. 11, pp. 928–941, November 2005, member-Yan
Liu and Member-Alan Fekete and Member-Ian Gorton.

[55] D. Hamlet, “Tools and experiments supporting a testing-based
theory of component composition,” ACM Trans. Softw. Eng.
Methodol., vol. 18, pp. 12:1–12:41, June 2009.

[56] S. Röttger and S. Zschaler, “Tool support for refinement of non-
functional specifications,” Journal on Software and Systems Mod-
elling (SoSyM), vol. 6, no. 2, Jun. 2007.

[57] A. DiMarco and R. Mirandola, “Model transformations in soft-
ware performance engineering,” in Quality of Software Architec-
tures, 2nd International Conference, QoSA 2006, Västerås, Sweden,
June 27 - 29, 2006, Proceedings, ser. Lecture Notes in Computer
Science, C. Hofmeister, I. Crnkovic, R. Reussner, and S. Becker,
Eds., vol. 4214, 2006, pp. 95–110.

[58] C. U. Smith, C. M. Llado, V. Cortellessa, A. D. Marco, and L. G.
Williams, “From UML models to software performance results:
an SPE process based on XML interchange formats,” in Proc.
5th international workshop on Software and performance (WOSP’05).
New York, NY, USA: ACM Press, 2005, pp. 87–98.

[59] C. Smith, C. Lladó, and R. Puigjaner, “Performance Model Inter-
change Format (PMIF 2): A comprehensive approach to Queueing
Network Model interoperability,” Performance Evaluation, vol. 67,
no. 7, pp. 548–568, 2010.

