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Abstract

Environment perception is an important requirement for many applications

for autonomous vehicles and robots. Cameras are often used to provide

visual information similar to the human vision system. However, conven-

tional perspective cameras typically used for environment perception have

only a very limited field of view.

In this thesis, we present a stereoscopic omnidirectional camera system

for autonomous vehicles which resolves the problem of a limited field of

view. The proposed setup consists of two horizontally aligned catadiop-

tric cameras mounted on top of a vehicle and provides a 360◦ panoramic

view of the environment. We show that this camera setup overcomes ma-

jor drawbacks of traditional perspective cameras in many applications for

autonomous systems.

However, due to misalignments between camera and mirror, catadioptric

camera systems are slightly non-central systems even if they are designed

to fulfill the single viewpoint (SVP) condition. There exist two types of

projection models for catadioptric cameras: Central models which have

very cheep computational time but assume that the camera systems fulfill

the SVP condition, and non-central models which are very accurate but

not efficient enough. We propose a novel projection model for slightly

non-central cameras which is both, very accurate and efficient at the same

time. Moreover, a calibration toolbox to calibrate stereoscopic catadioptric

cameras with the proposed projection model was designed. In contrast to

existing toolboxes, the developed calibration toolbox allows for calibrating

multiple catadioptric cameras with different projection models. We show

the benefits of the proposed projection model with extensive experiments

evaluated regarding the calibration results compared to several other pro-

jection models.

Based on the proposed setup and projection model, we present an ego-

motion estimation with catadioptric cameras which yields high precision

estimates. Beyond that, a comparative study of feature matching strategies

which is an input for the ego-motion estimation is given. The precise mo-

tion estimation is used to create high fidelity top view maps of the driven

path and the nearby surrounding. Furthermore, we present an approach to

obtain dense 360◦ panoramic depth images and a dense 3D reconstruction

of the environment. The proposed approach uses the stereoscopic cata-

dioptric setup only and combines motion and spatial stereo for dense 3D

information.





Kurzfassung

Visuelle Umfeldwahrnehmung ist eine elementare Anforderung für viele

Anwendungen im Bereich autonomer Fahrzeuge und Roboter. Zur visu-

ellen Erfassung der Umgebung werden oft Kameras eingesetzt, die eine

Wahrnehmung ähnlich derer des Menschen ermöglichen. Typischerweise

verwendete, fest eingebaute perspektivische Kameras verfügen jedoch nur

über einen sehr beschränkten Sichtbereich.

In dieser Arbeit wird ein stereoskopisch-omnidirektionales Kamerasys-

tem für autonome Fahrzeuge vorgestellt, das das horizontale Sichtfeld nicht

einschränkt. Das vorgestellte Kamerasystem besteht aus zwei oben auf dem

Fahrzeug angebrachten und horizontal ausgerichteten katadioptrischen Ka-

meras und ermöglicht eine 360◦ Rundumsicht. Dieses Kamerasystem wird

im Rahmen der Arbeit auf seine Eignung für mehrere Anwendungen im

Fahrzeug evaluiert und erzielt dabei klare Verbesserungen im Vergleich zu

traditionellen perspektivischen Kameras.

Aufgrund von Verschiebungen zwischen Kamera und Spiegel verletzen

katadioptrische Kamerasysteme die Annahme eines effektiven Projektions-

zentrums (“single viewpoint”, SVP) und werden daher als nicht-zentrale

Systeme bezeichnet. Auch Systeme die dazu ausgelegt werden die SVP-

Bedingung zu erfüllen, verletzen diese normalerweise zumindest geringfü-

gig aufgrund von Fertigungstoleranzen. Es existieren zwei Arten von Pro-

jektionsmodellen für katadioptrische Kameras: Zentrale Modelle, die zwar

nur geringe Rechenzeit benötigen aber voraussetzen, dass die Kameras die

SVP-Bedingung erfüllen, und nicht-zentrale Modelle, die eine sehr genaue

Abbildung erlauben aber entsprechend aufwendig zu berechnen sind. In

dieser Arbeit wird ein neuartiges Projektionsmodell für geringfügig von

der SVP-Bedingung abweichende Systeme vorgestellt, das sehr genau ab-

bildet und gleichzeitig nur geringe Rechenzeit benötigt. Im Rahmen dieser

Arbeit wurde darüber hinaus eine Toolbox zur Kalibrierung stereoskopisch-

katadioptrischer Kameras mit dem vorgestellten Projektionsmodell entwi-

ckelt. Im Vergleich zu existierenden Ansätzen erlaubt die vorgestellte Tool-

box die Kalibrierung mehrerer katadioptrischer Kameras zueinander und

erlaubt die Anwendung verschiedener Projektionsmodelle. Die Vorteile des

vorgestellten Projektionsmodells werden durch umfangreiche Experimente

bestätigt, in dem die Kalibrierergebnisse bezüglich verschiedener Projekti-

onsmodelle ausgewertet werden.



Kurzfassung

Basierend auf dem vorgeschlagenem Aufbau und dem Projektionsmo-

dell wird ein Algorithmus zur Bewegungsschätzung mittels katadioptri-

scher Kameras vorgestellt, der hoch genaue Positionsschätzungen erlaubt.

Ein Vergleich verschiedener Strategien zum Finden von Merkmalskorres-

pondenzen, die als Eingangswerte für die Bewegungsschätzung nötig sind,

wird gezeigt. Anschließend wird die präzise Bewegungsschätzung zur Er-

stellung einer hoch genauen Draufsichtskarte der befahrenen Strecke ge-

nutzt. Weiterhin wird eine Methode vorgestellt um dichte 360◦ Rund-

umsicht-Tiefenbilder und die resultierende dichte 3D Rekonstruktion der

Umgebung zu erhalten. Das vorgestellte Verfahren nutzt ausschließlich

den stereoskopisch-katadioptrischen Aufbau und kombiniert zeitliches und

räumliches Stereo für die dichte 3D Information.
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Notation and Symbols

Acronym

2D/3D 2/3-dimensional

BM Block Matching

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

CS Coordinate System

DOF Degree of Freedom

FAST Features from Accelerated Segment Test

IMU Inertial Measurement Unit

FOV Field of View

GPS Global Positioning System

ORB Oriented FAST and rotated BRIEF

RANSAC Random Sampling Consensus

SGM Semi-Global Matching

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SURF Speeded up Robust Features

SVP Single Viewpoint

WTA Winner Takes All

General Notation

Scalars Regular (greek) lower case a, b, c, σ, λ
Vectors Bold (greek) lower case a, b, c, σ, λ

Matrices Bold upper case A, B, C

Sets Calligraphic upper case A, B, C



Notation and Symbols

Projection

F Mirror focal point

p = [x, y, z]T 3D world point in Cartesian coordinates

p = [ρ, ϕ, θ]T 3D world point in spherical coordinates

q(∗) = [u, v]T 2D image point

where (∗) ∈ {S,D,G,C, P,E} denotes the projection model with S =

Sphere Camera Model, D = Polynomial Distortion Model, G = Geometric

Model, C = Centered Model, P = Perspective Model and E = estimated

from the corner extraction.

K Intrinsic projection matrix

fu, fv Focal lengths

cu, cv Principal point

α Skew parameter

k = [k1, . . . , k5]
T Distortion parameters

Sphere Camera Model

ξ, η Sphere mirror parameters

ζi = fiη Sphere focal lengths (with i ∈ {u, v})

ps 3D point on the unit sphere

pξ 3D point on the unit sphere in mirror coordinates

q
(S)
u Projected point into the normalized plane

q
(S)
d Projected undistorted point

Polynomial Distortion Model

pp Vector through the world point p

q
(D)
s 2D point on the sensor plane

f (D)(ν) Polynomial function with ν = ‖q(D)
s ‖

d0, . . . , dn Polynomial distortion model parameters

AS ∈ R
2×2 Affine transformation matrix

tS ∈ R
2 Affine transformation vector

Non-Central Geometric Model

A,B,C Spherical mirror parameters

a, b Mirror parameters



Notation and Symbols

m = [xm, ym, zm]T Reflection point on the mirror surface

c = [xc, yc, zc]
T Camera location

If the points have no index they are represented in the mirror coordinate

system. The indices C and R denote the camera coordinate system and the

rotated mirror coordinate system, respectively.

wr Mirror reflection ray

wc Mirror incoming ray

n Normal vector on the mirror surface

s Intersection point between surface normal and

z-axis

Π Intersection plane

nΠ Normal vector of the intersection plane

RR Pre-rotation matrix

RC , tC = c Transformation between mirror and camera co-

ordinates

f Polynomial equation

fR Polynomial equation with rotated parameters

a0, . . . , a8 Polynomial coefficients

q
(G)
n = [xn, yn]

T Normalized geometric projection

q
(G)
d Distorted normalized geometric projection

Centered Model

ϕ, θ Viewing ray angles

v Optimal single viewpoint

b = (b1, . . . , bk) Polynomial central-centered model coefficients

Q(ϕ, θ) Central-centered projection function

Calibration

H ∈ R
4×4 Transformation in homogeneous coordinates

Hex =

[
Rex tex

0 1

]
Transformation between left and right camera

(extrinsics)

rex Extrinsic rotation vector

qex Extrinsic quaternion vector

Hcb =

[
Rcb tcb

0 1

]
Transformation between checkerboard and mir-

ror coordinate system

rI Mirror radius in the image

rM Mirror radius



Notation and Symbols

Ego-motion

The indices l and r denote the left and right camera of the stereo rig, re-

spectively. The index t denotes the current and t− 1 the previous frame.

HM Transformation between two frames in the refer-

ence camera (left)

Himu Transformation between two frames in the IMU

coordinate system

Hcam,velo Transformation between the left camera and the

Velodyne

Hvelo,imu Transformation between Velodyne and IMU

λ Parameter (one or two cameras)

ei(j) End-point error for frame i starting at frame i−j

Top View Map

pvip 3D point on the virtual perspective image plane

up, vp Pixels on the virtual perspective image plane

ϕ0, θ0 Position for the virtual image plane

fp Virtual focal length

Reconstruction

e11, e12, e21, e22 Epipoles on the sphere

E12 Essentiell matrix between two frames

γ Spherical disparity

pS = [ρS , ϕS , θS ]
T World point in the spherical rotated coordinate

system

RS Rotation matrix between rotated and original co-

ordinate system

Index 1 denotes the first camera of the image pair and index 2 the second

camera, respectively.

‖t‖ Baseline between the cameras

HV =

[
RV tV

0 1

]
Transformation virtual coordinate system

pV 3D world point in the virtual coordinate system

qV 2D image point in the virtual coordinate system

r =
√
x2
V + y2V Depth in the panoramic inverse depth image

D = 1/r Inverse depth



Notation and Symbols

Plane Estimation

dh Horizontal plane parameter (distance)

dv, αv Vertical plane parameters (distance and angle)

Eu Unary term

Ep Pairwise term

S = {s1, . . . , sM} Superpixel plane correspondence

s ∈ {1, . . . , N} Discrete plane index

M Number of superpixels

N Number of planes

NS Set of neighboring superpixels

Qs Set of valid inverse depth hypotheses

H Set of horizontal planes

wu1
, wu2

Unary weight parameters

wp Smoothness parameter

τu, τp Truncation parameters

Dgt Velodyne ground truth inverse depth

Dest Estimated inverse depth

e Inverse depth error





Chapter 1
Introduction

Autonomous mobile robots are becoming more and more popular, partic-

ularly in the field of service and industrial robots. In the field of mobility,

driver assistance systems, e.g., adaptive cruise control, lane departure warn-

ing, drowsiness detection, self-parking and many more, support the driver

and help to reduce the number of accidents [122]. Consequently, a future

step will be fully autonomous vehicles which will not only reduce the num-

ber of accidents but also prevent traffic jams and reduce pollution. There

have already been many advances in autonomous driving such as the re-

cently presented Bertha Benz Drive [132], the Google Driverless Car, and

the approaches from the DARPA Urban Challenge [14]. First contributions

are already presented by Dickmanns et al. [26] in the 1990s.

For autonomous systems in complex scenarios, environment perception

is a very important task, e.g., for detecting objects or other traffic partici-

pants or for determining the own position in the world. Autonomous sys-

tems are usually equipped with multiple sensor types such as radar sensors,

ultrasonic sensors, and particularly cameras to cover as much of the envi-

ronment as possible. Thereby, cameras have the advantages of low cost

and small construction space. Furthermore, they provide visual informa-

tion similar to humans eyes. However, commonly used perspective cam-

eras capture only a limited field of view. Moreover, these cameras typically

point in frontal direction and objects alongside the sensor platform are not

visible with a single perspective camera.

A panoramic view of the environment is desirable for autonomous sys-

tems since lateral objects often interfere with the ego-vehicle. There are

important applications for autonomous driving and advanced driver assis-

1



1. Introduction

tance systems which also require side view such as blind spot detection or

lane change assistance. In addition, a panoramic view of the surrounding

can improve existing applications as localization, object detection, or lane

tracking and enable new applications such as intersection reconstruction

for autonomous driving in urban environments. Omnidirectional cameras

similar to those used in this work are able to provide such information.

1.1. Omnidirectional Vision

Omnidirectional cameras overcome the problem of the limited field of view

of standard perspective cameras and provide a panoramic image of the en-

vironment. There are several ways to obtain an omnidirectional image:

• From multiple images (mosaicing),

• from cameras with wide angle lenses (fisheye), or

• with the combination of a convex mirror and a lens (catadioptric).

The possibility to create a panoramic image by mosaicing a sequence of im-

ages can be accomplished from one rotating camera or from multiple fixed

cameras. A common camera system for panoramic images obtained from

multiple cameras is the PointGrey Ladybug. This camera system consists

of six single lenses in one construction place as shown in Fig. 1.1c. Such

systems are capable to obtain a high spatial resolution image as depicted

in Fig. 1.1f. However, the possibility to obtain a panoramic view of the

environment of the vehicle by capturing a set of perspective images suffers

from the complexity of stitching the images together, the extensive cross-

calibration of all cameras, and the required space to mount all cameras.

Moreover, violations of the single viewpoint condition while stitching a

panoramic image from multiple images introduces undesirable effects such

as ghosting. Hence, these systems are not suitable for the dynamic environ-

ment of a vehicle.

One possibility to obtain an omnidirectional image with a single shot

are special shaped wide angle lenses which capture a field of view of ap-

proximate 180◦ (e.g., fisheye lenses shown in Fig. 1.1b). However, these

systems do not provide a complete panoramic image of the environment

with a single camera (Fig. 1.1e).

The third possibility to obtain an omnidirectional image is the combi-

nation of a shaped mirror in front of a normal camera lens as shown in

Fig. 1.1a. These systems provide a 360◦ field of view with one single shot

(Fig. 1.1d). This work focuses on omnidirectional cameras composed of a

2



1.1. Omnidirectional Vision

(a) Catadioptric (b) Fisheye (c) Ladybug

(d) Catadioptric Image (e) Fisheye Image

(f) Ladybug Image

Figure 1.1.: Omnidirectional Cameras. This figure shows different camera sys-

tems to obtain an omnidirectional image of the surrounding and their captured im-

ages, particularly a catadioptric camera (a) providing a 360◦ field of view (FOV) (d),

a fisheye camera (b) providing a 180◦ FOV (e), and a Ladybug camera (c) providing

a stitched panoramic image (f).

3



1. Introduction

(a) Catadioptric Image (Resolution 1400×1400, FOV = 360◦)

(b) Perspective Image (Resolution 1392× 512, FOV ∼ 90◦)

(c) Panoramic view of the same intersection scene

Figure 1.2.: Catadioptric vs. Perspective Camera. This figure shows the images

of the same scene captured with a catadioptric camera system (a) and a conven-

tional perspective camera system (b). For an intuitive representation, (c) shows the

unwarped cylindrical panoramic image computed from the captured catadioptric

image. The red boxes denote the respective visible area in the perspective view.

4



1.1. Omnidirectional Vision

mirror and a lens. Such systems combine the principles of refraction (diop-

tric) and reflection (catoptric) in one single optical system and are called

catadioptric cameras. The idea to use refractive as well as reflective sur-

faces which focus light in one single point was already presented 1637 by

René Descartes [25]. In 1970, Rees [91] was the first one who patented the

combination of a hyperbolic mirror with a perspective camera. In the last

decades, catadioptric camera systems have gained wide popularity in the

robotic community ([112, 11]). These camera systems are able to establish

a 360◦ horizontal field of view and a vertical field of view larger than 60◦

with a very flexible geometry as the shape of the reflecting surface is a pow-

erful design factor. For instance, the vertical field of view and the spatial

resolution depend on the type and the parameters of the reflecting surface.

Fig. 1.2a shows the large field of view by capturing a traffic scene with

a catadioptric camera. In comparison, Fig. 1.2b depicts the limited field

of view of an image obtained by capturing the same scene with a perspec-

tive camera. The catadioptric image can be unwarped to the most popular

cylindrical panoramic view representation as shown in Fig. 1.2c. However,

this unwarped panoramic view is used for user convenience as visualiza-

tion only. The red boxes in the catadioptric and in the unwarped panoramic

image show the boundary of the field of view of the perspective camera.

Unfortunately, catadioptric images have a lower spatial resolution with the

same camera due to the fact that a much bigger field of view is mapped

on the camera sensor and the circular image is pictured on a rectangular

imager which leads to the black margin. Besides, the images suffer from

distortions and defocussing blur caused by the use of a curved reflector.

In the robotic research community, catadioptric cameras are very popular

for monoscopic applications. They are often used for robotics indoor per-

ception and navigation [123], particularly in the field of the RoboCup [121],

as well as in outdoor localization and ego-motion estimation tasks [82, 47],

and in the area of video surveillance [83, 85]. Furthermore, there are some

approaches which have considered catadioptric cameras for applications in

driver assistance systems or autonomous vehicles. Catadioptric cameras are

used for lane tracking functions [22], monoscopic visual odometry [95], as

well as capturing the complete environment of the vehicle. Gandhi and

Trivedi propose to use one or multiple catadioptric cameras to analyze the

surrounding outside of a vehicle [37, 38] and inside the vehicle [58, 119]. In

[29], Ehlgen et al. use two catadioptric cameras as a backing-up aid system

by remapping the images in a birds-eye view image to provide an intuitive

overview of the scene. An extension to this system with four catadioptric

cameras for eliminating blind spots for trucks is given in [28].
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Omnidirectional Stereo Vision At least two camera images (binocular)

are necessary to compute 3D information. Stereo vision with two perspec-

tive cameras, similar to the distance estimation of humans, is a well estab-

lished research field. In case of omnidirectional images several configura-

tions are possible to build up a stereoscopic camera system, namely

• with multiple catadioptric cameras,

• with omnidirectional images generated by mosaicing techniques, or

• with a catadioptric camera and another sensor (e.g., a perspective

camera or a laser scanner).

In the approach of Zhu [130] different configurations of omnidirectional

stereo setups with multiple omnidirectional cameras or images captured

with a mosaicing technique are discussed with respect to the numbers and

configuration of viewpoints. Concerning the stereoscopic setup with two

catadioptric cameras, Gluckman et al. [48] present a compact panoramic

stereo camera system with two catadioptric cameras with hyperbolic mir-

rors on top of each other for vertically aligned stereo vision. This config-

uration allows a very simple epipolar geometry. In [74] such a vertically

aligned stereo system is used for object detection and for monitoring blind

spots of vehicles. Many approaches construct a vertically aligned imag-

ing system with only one single camera to reduce the calibration process.

Some authors [17, 31] propose to construct a double lobed mirror for a

single camera catadioptric stereo vision system. Jang et al. [60] use two

hyperbolic mirrors to achieve catadioptric stereo with only one lens and in

[125] a single camera is used in combination with a mirror and a concave

lens to improve the accuracy of the 3D reconstruction. However, single

camera omnidirectional stereo systems have only a small spatial image res-

olution due to the fact that two complete scene images are captured with

one sensor. Moreover, vertically aligned stereo systems with double lobed

or two separate mirrors have the disadvantage that the baseline is very short

and accurate reconstruction is possible in a short range only.

Two horizontally aligned catadioptric cameras avoid the problem of

a short baseline between the cameras, especially, when the cameras are

mounted on the left and right side of a vehicle. However, the accuracy of

the 3D reconstruction with two horizontally aligned cameras depends on

the azimuth angle of the 3D point and therefore varies for different posi-

tions as shown in [105]. Sogo et al. [108] propose to use N-occular stereo

(multiple catadioptric cameras) to compensate the observation error for a

human tracking application. In [40] two horizontally aligned catadioptric

cameras are mounted on the left and right of the rearview mirror for a large
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1.1. Omnidirectional Vision

field of view stereo vision algorithm. However, the 3D measurements are

not very accurate and the images are reconstructed to multiple virtual per-

spective images to apply standard stereo vision algorithms. In [37] and

[29] two catadioptric sensors are also used on the left and right side of the

vehicle. Yet, both approaches do not compute 3D information but rather

give the driver a visualization of the entire environment.

Another approach to recover 3D information is by taking panoramic mo-

saics computed from a rotating camera at different locations [59, 64]. In

[57] a perspective stereo head consisting of two cameras is rotated while

capturing two different panoramic mosaics which results in one panoramic

disparity image. Peleg et al. [87] present a panoramic stereo image with

circular projection from a single off-center rotating camera. Thus, a cam-

era moves on a circular path and has multiple but fixed viewpoints. A dy-

namic omnistereo approach with variable viewpoint and baseline relation

to find the optimal stereo configuration is presented in [131]. However, as

already mentioned, panoramic images obtained by mosaicing techniques

suffer from the complexity to stitch the images together. Thus, they are not

suitable for dynamic environments.

The third possibility to achieve an omnidirectional stereo setup is the

combination of different sensor types. Some authors [65, 97] propose to

combine one omnidirectional camera with a laser scanner to obtain color

values for the 3D points. However, the 3D reconstruction is limited to the

field of view of the laser scanner which is in most cases a plane. Laser scan-

ners with a larger field of view are very expensive compared to cameras. An

imaging system that combines the advantages of a 360◦ field of view from

a catadioptric camera and the high resolution from a conventional perspec-

tive camera is proposed by Lauer et al. [67] and Sturm [110]. They suggest

a hybrid camera system combining a catadioptric and a perspective cam-

era. In [1] such a hybrid omnidirectional pinhole sensor is used for stereo

obstacle detection in a robotic environment. In [104] a hybrid camera sys-

tem is compared with a horizontally aligned stereo system for applications

in vehicles. Although such hybrid stereo systems in combinations with an

active movable perspective camera are suitable to provide peripheral and

foveal vision as in [61], they are not capable to provide 3D information of

the complete environment.
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1.2. Contribution

The contributions of this thesis are as follows:

• Stereoscopic catadioptric sensor setups are analyzed regarding their

suitability for autonomous vehicles and their ability for 3D recon-

struction based on a large baseline.

• A new projection model for real catadioptric cameras which are usu-

ally slightly non-central camera systems is proposed. Common pro-

jection models are either accurate but have high computational cost

or efficient but not exact enough for stereo vision. We show that

our proposed projection model which approximates non-central cata-

dioptric cameras is accurate and efficient at the same time.

• A new calibration toolbox is developed which allows calibration us-

ing the proposed projection model and also handles different other

projection models. Moreover, the calibration toolbox allows the ex-

trinsic calibration of multiple cameras with respect to each other,

which was still missing in existing calibration toolboxes for cata-

dioptric cameras.

• Extensive evaluations concerning the calibration results show the ad-

vantages of the proposed projection model compared to the common

central reference models. The evaluation is not only based on the

possibly misleading reprojection error of the calibration targets as

in existing evaluations but also reports end-to-end localization errors

in a localization experiment. Moreover, the influence of deviations

from the single viewpoint condition are analyzed.

• Feature matching strategies for catadioptric images, which are used

as input for the ego-motion estimation, are analyzed. A still missing

comparative study of different feature matching strategies on cata-

dioptric images using high precision ground truth is presented.

• An ego-motion algorithm for autonomous vehicles with a catadiop-

tric stereo camera system is presented. The proposed algorithm,

based on two-frame motion, benefits from the new projection model.

We show that omnidirectional cameras overcome major drawbacks

of traditional perspective cameras for ego-motion estimation. From

the estimated motion high fidelity top view maps of the driven path

and the nearby surrounding are created. The maps are computed by

accurately stitching remapped catadioptric top view images together.
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• An approach to achieve dense panoramic 360◦ depth images result-

ing in dense 3D reconstructions from stereo catadioptric camera se-

tups is proposed. The method refrains from constructing perspective

images from the omnidirectional ones as an intermediate step. Death

angles, which occur for two horizontally aligned cameras, are pre-

vented by combining motion and spatial stereo. Planarity priors are

introduced to achieve smooth 3D reconstructions.

1.3. Overview

This work describes a complete stereoscopic catadioptric camera system

beginning with a new efficient and accurate projection and calibration

model and ending with two applications for vehicles. Therefore, the thesis

regards many different topics for omnidirectional vision and only a general

overview of existing approaches using catadioptric cameras was given at

the beginning. A detailed description of the state-of-the-art of the relevant

topics is given at the beginning of each chapter.

The thesis is structured as follows: Chapter 2 reviews the state-of-the-art

projection models for catadioptric cameras and presents the novel efficient

and at the same time exact projection model. Chapter 3 describes the new

developed calibration toolbox for multiple catadioptric cameras with the

proposed projection model. Moreover, the chapter gives an extensive eval-

uation concerning the calibration results with different projection models.

Chapter 4 describes the stereoscopic catadioptric camera setup used for

applications on autonomous vehicles. Furthermore, the chapter presents

a new ego-motion estimation method for catadioptric stereo cameras and

shows a comparison of the results against the results for ego-motion estima-

tion with perspective cameras. Moreover, a comparative study for feature

matching strategies on catadioptric images is given. Chapter 5 describes

a new approach for dense 3D reconstruction with catadioptric cameras and

explains the construction of 360◦ panoramic disparity images. A conclu-

sion is given in Chapter 6.
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Chapter 2
Projection Models

Projection models describe the relationship between a 3D world point and

a 2D image point. This relationship can be divided in the back projection

and forward projection problem. The back projection formulation describes

the relationship between a given 2D image point position and the resulting

3D ray in the world, which can be used for triangulation of a 3D point, for

example. For applications based on minimization of the reprojection error

in the image, the forward projection formulation is necessary. The forward

projection describes the problem formulation which 2D image point posi-

tion corresponds to a given 3D world point.

In this chapter, we present our novel accurate and efficient centered pro-

jection model for slightly non-central cameras. Before starting with a de-

scription of the centered projection model, we explain the single viewpoint

condition and give an overview of existing projection models for central

and non-central catadioptric cameras. Based on the discussion of existing

projection models, we motivate the necessity of a novel projection function.

2.1. State-of-the-Art

Projection models for catadioptric cameras are more complex than for per-

spective cameras due to the non-linear mapping of a 3D ray via the mirror

surface to a 2D image point. In the literature many different projection

models developed for catadioptric cameras exist. They can be divided in

central and non-central models depending on the cameras fulfill the single

viewpoint condition.
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F

F’

(a) Central Camera

F’

(b) Non-Central Camera

Figure 2.1.: Central vs. Non-Central. This figure shows the reflection rays for

central cameras (a), where all reflection rays intersect in one point (F), and for

non-central cameras (b), where the rays do not intersect in a single point.

2.1.1. Single Viewpoint Condition

Imaging systems are usually designed to closely satisfy the single view-

point (SVP) condition. Thus, all light rays are assumed to intersect in a

single effective viewpoint shown in Fig. 2.1a. Perspective cameras inher-

ently fulfill this condition and also some catadioptric cameras are designed

with the goal to fulfill this condition. Cameras that fulfill the single view-

point condition are called central cameras. Baker and Nayar [6] describe

the whole class of central catadioptric cameras which theoretically can be

achieved with three combinations: a perspective lens in combination with

a hyperbolic or elliptical reflector or a telecentric (orthographic) lens with

a parabolic reflector. In practice, mostly hypercatadioptric systems with

hyperbolic mirrors (Fig. 2.2a) and paracatadiopitric systems with parabolic

mirrors (Fig. 2.2b) are used. Elliptical mirrors (Fig. 2.2c) are not suitable

for panoramic vision since they capture only the upper hemisphere.

In case of a hyperbolic mirror which has two focal points, the focus of

the camera is exactly placed in one focal point (F’) while the second fo-

cal point (F) is the effective viewpoint where all reflection rays intersect as

shown in Fig. 2.2a. For parabolic mirrors the focal point (F) is again the ef-

fective viewpoint. However, the camera is placed on the optical axis under

the mirror on a variable distance as shown in Fig. 2.2b, since all reflected

rays are parallel to the optical axis. The main advantage for cameras that

have a single effective viewpoint is an easier projection function. Moreover,
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(a) Hyperbol

F
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(d)

(b) Parabol

F

d

F’

(c) Ellipsoid

Figure 2.2.: Single Viewpoint Cameras. This figure shows the mirror and camera

combinations which theoretically fulfill the single viewpoint condition. For the

combination with a hyperbolic (a) and elliptical mirror (c) the camera is placed in

the second focal point F’ of the mirror. For a setup with a parabolic mirror (b) the

camera is placed on the optical axis on a variable distance.

central cameras allow for the standard epipolar geometry and the geomet-

rically correct remapping of a catadioptric image to other images, e.g., to

perspective, panoramic, or spherical images.

Unfortunately, in practice it is nearly infeasible to fulfill the single view-

point assumption, since perfect alignment of the camera center with the

optical axis of the mirror is hardly achieved in practice. Furthermore, inac-

curacies in manufacturing the mirrors as well as commonly used varifocal

lenses which means the viewpoint depends non-linearly on the focus and

the focal length, prevent the usage of the single viewpoint assumption. In

this work we call such systems, which slightly deviate from the single view-

point condition, quasi-central or slightly non-central cameras.

Systems where the light rays do not intersect in a single point, shown

in Fig. 2.1b, are called non-central cameras. Such systems have a locus of

viewpoints in three dimensions called caustic [114]. The projection mod-

els are much more complicated, mainly the forward projection, since the

reflecting point on the mirror surface has an unknown position. However,

non-central catadioptric cameras are more flexible in their design [115].

The position of the camera relative to the mirror is not fixed to any posi-

tion and other mirror geometries, e.g., spherical or conical reflectors can be

used. Moreover, special mirror designs which optimize the field of view

or the image properties are possible such as specific image resolution [39],

equiangular projection [20], or a distortion-free perspective projection for

particular scene planes [55].
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Figure 2.3.: Sphere Camera Model. This figure shows the axes convention on

the left side and the projection model of the sphere camera model with the sphere

parameters on the right side. In a first step the world point p is projected onto

the unit sphere ps and then translated and projected into a normalized plane q
(S)
u .

Finally, the point is mapped to an undistorted point q
(S)
d and projected to the image

plane q(S). Note that the radius of the sphere is 1, i.e., the illustration is not at scale.

2.1.2. Central Models

There exist many projection models for central catadioptric cameras. Early

approaches [113, 63] focus on projection models for particular sensor types,

e.g., Svoboda and Pajdla [113] propose different models for different mirror

types. The most common projection model for central catadioptric systems

is the sphere camera model proposed by Geyer and Daniilidis [45] and

extended by Barreto and Araujo [7]. This two-step projection model unifies

all central catadioptric cameras and allows for efficient forward and back

projection. Ying and Hu [126] show that this model also allows the central

fisheye projection. Mei and Rives [75] extend the sphere camera model

with a perspective lens and add radial and tangential distortion parameters

to account for misalignments between the mirror and the camera axis.

Sphere Camera Model In the following the extended sphere camera

model [75] is shortly summarized. The projection is performed in five

steps explained in the following and illustrated in Fig. 2.3:
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1. The 3D world point p in the mirror coordinate system is projected

onto the unit sphere with

ps(xs, ys, zs) =
p

‖p‖ (2.1)

through intersecting the sphere with the line spanned through the

sphere center and the world point.

2. The point ps is transferred to a new coordinate system (Auxiliary

CS)

pξ = (xs, ys, zs + ξ)T (2.2)

located in the focal point of the mirror.

3. The point pξ is projected into a normalized plane Πn

q(S)
u =

[
u(S)

v(S)

]
= (

xs

zs + ξ
,

ys
zs + ξ

)T. (2.3)

4. The undistorted point q
(S)
u is mapped to the distorted point q

(S)
d by

applying radial and tangential distortions

q
(S)
d =

[
u
(S)
d

v
(S)
d

]
= (1 + k1ρ

2 + k2ρ
4 + k5ρ

6)q(S)
u

+

[
2k3u

(S)v(S) + k4(ρ
2 + 2u(S)2)

k3(ρ
2 + 2v(S)2) + 2k4u

(S)v(S)

]
(2.4)

where ρ =
√
u(S)2 + v(S)2 and k = [k1, . . . , k5]

T are the distortion

parameters.

5. Finally, the point q
(S)
d is projected to the image point

[
q(S)

1

]
=

⎡
⎣ fuη fuηα cu

0 fvη cv
0 0 1

⎤
⎦

︸ ︷︷ ︸
K

[
q
(S)
d

1

]
(2.5)

in the image plane Πi with the intrinsic projection matrix K includ-

ing the focal lengths [fu, fv], the principal point [cu, cv], and the skew

factor α. The focal lengths fi with i ∈ {u, v} and the mirror param-

eter η cannot be determined independently and will be denoted as

ζi = fiη.
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The parameters ξ and η depend on the reflecting surface. A table with the

parameters for different mirror types is given in [75]. Note, in difference

to other projection models the Mei implementation does not consider the

image flip and the z-axis of the camera coordinate system indicates the

opposite direction (Fig. 2.3).

Polynomial Distortion Model Another common projection model is the

polynomial based representation from Scaramuzza et al. [96] based on the

formulation from Mičušík and Pajdla [77]. This model handles the system

as a unique compact system and assumes that the catadioptric image is a

highly distorted image. In the following a short summary of the polynomial

model is given and Fig. 2.4 illustrates the relationship.

1. The model assumes that the projection of a 3D world point p onto the

sensor plane q
(D)
s in metric coordinates and its image on the camera

plane q(D) in pixel coordinates are related by an affine transforma-

tion

q(D)
s = ASq

(D) + tS (2.6)

with

AS =

[
c d
e 1

]
and tS =

[
cu
cv

]
(2.7)

to consider small misalignments and the digitizing process.

2. The relationship between a point on the sensor plane q
(D)
s and the

vector pp from the viewpoint F through the 3D point p depends on

the non-linear function f (D)

pp =

[
q
(D)
s

f (D)(‖q(D)
s ‖)

]
(2.8)

where

f (D)(ν) = d0 + d1ν
1 + . . .+ dNνN (2.9)

with ν = ‖q(D)
s ‖ and d0, . . . , dN are the polynomial parameters.

This formulation allows particularly an efficient back projection to solve

the problem which 3D ray corresponds to a given 2D image point. For the

forward projection the polynomial equation needs to be addressed by find-

ing the roots of the polynomial equation which is more time-consuming.

16



2.1. State-of-the-Art

z

x

y

us

vs

p
pp

q
(D)
s

F

u

v

q(D)

As, ts

Figure 2.4.: Polynomial Model. This figure shows the projection model for the

polynomial distortion model, where the vector pp through the focal point F and the

world point p depend on the non-linear function f (D) of the point q
(D)
s . The point

on the sensor plane q
(D)
s and the point on the camera plane q(D) are related by an

affine transformation.

2.1.3. Non-Central Models

There are also several works for non-central catadioptric projection models.

Non-central catadioptric projection models are very accurate, but they suf-

fer from a high computational time. The forward projection for non-central

cameras is very difficult since the reflecting point on the mirror surface

has an unknown position, while the back projection is much simpler [112].

Therefore, some works describe only the back projection with a generic

camera model [51, 111, 90].

For the forward projection, which is necessary for applications based

on minimizing the reprojection error in the image, there is no closed-form

solution. Thus, some researchers [77, 70, 109, 18] propose to solve the

problem to find the reflection point on the mirror surface by a computation-

ally expensive non-linear optimization which requires an initial estimate

of the pixel coordinates. Gonçalves and Nogueira [49] increase efficiency

by reducing the complexity to compute the reflection point to a 1D search

problem. However, they mention that they still require around 200 seconds

for projecting 10 000 3D points to the image plane via a hyperbolic mirror.

Recently, Agrawal et al. [3] presented an analytical forward projection

for axial non-central cameras with quadratic-shaped mirrors. In [2], they

improve their analytical solution for non-axial configuration. They show
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that the reflecting point on the mirror surface can be obtained by solving

an 8th degree polynomial equation. Compared to projection models based

on optimization, they achieve a 40 times speed up. However, due to the

complex root finding problem of the 8th degree polynomial, this projection

model is still not real-time compatible. An overview of the analytical for-

ward projection is given in the next section, since we use the same model

as part of our base model.

In summary it can be stated that central models in general are very ef-

ficient but lack in accuracy when the camera does not exactly fulfill the

single viewpoint condition. Thus, using a central projection model for a

slightly non-central system leads to inaccuracies in the determination of

the reflecting ray and impact the performance for accuracy sensitive tasks

such as 3D reconstruction, ego-motion estimation, or localization. In con-

trast, non-central models are very time-consuming, on the other hand they

are very precise for all types of catadioptric cameras independent of the

mirror to camera placement.

2.2. Centered Projection Model

Common projection models are either efficient but rely on central models

and do not consider misalignments separately or they are accurate complex

non-central models which are not very efficient. In this work, we propose a

novel centered projection model for slightly non-central catadioptric cam-

eras which is accurate and at the same time efficient.

Therefore, we use the fact that the distance to world points in 3D in which

we are interested is often large (> 1 m) compared to the deviations from

the single viewpoint (< 10 cm) as illustrated in Fig. 2.5. This leads us to

the conclusion that getting the orientation of the viewing rays correctly is

more important than considering the translational deviation from the single

viewpoint exactly. Unfortunately, calibrating a slightly non-central cata-

dioptric camera system using efficient central projection models introduces

a bias in the orientation of the viewing rays. This is based on the fact that

for practical reasons the calibration patterns are presented in the vicinity

of the camera (< 1 m). This wrong relationship between the viewing ray

observation and the position on the image plane is responsible for the fact

that central models perform worse for real catadioptric cameras which are

not perfectly aligned. The true viewing ray (red) and a central ray after

calibration ( blue) are illustrated in Fig. 2.5.

Hence, we propose the centered projection method which is divided in

three steps:
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True viewing ray
Central viewing ray

Optical

Mirror

Viewpoint

axis

Catadioptric Mirror and Object of Interest

Calibration Targets (<1m) (>1m away)

Calibration
Target

Figure 2.5.: Viewing Ray Relationship. This figure shows the exact viewing ray

(red) and the calibrated viewing ray using a central camera projection model (blue)

for a slightly non-central system with calibration targets in the vicinity of the cam-

era. The distances to the objects of interest are usually very large compared to the

deviations of the viewing rays from the single viewpoint as well as to the distances

to the calibration targets.

1) Obtain the exact viewing ray orientations by using an exact non-

central base model.

2) Compute an optimal single viewpoint and center the viewing rays

by shifting the viewing rays to intersect the viewpoint but keep their

orientation.

3) Remap the observations by projecting the centered viewing rays with

a simple central projection model.

The relationship between the exact and remapped viewing rays is illustrated

in Fig. 2.6. The exact viewing rays computed with the non-central base

model are depicted in solid lines and the centered viewing rays are shown

in dashed lines going through the optimal viewpoint (black dot). This leads

to a mapping where points at infinity are projected to the same pixels as

in the non-central base model and approximation accuracy gracefully de-

grades in the immediate vicinity of the camera center. After remapping the

observations using a simple central projection model, we only use the sim-

ple and efficient central projection model whenever a projection function

is required. The remapping can be pre-computed and efficiently applied to

the whole image or to individual feature points similar to undistortion or

rectification maps for perspective cameras.

The centered approximation is general and applicable to all slightly non-

central catadioptric systems. In this work, we use a geometric model as
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axis
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Figure 2.6.: Centered Projection Model. This figure shows the true viewing rays

emanating from the optical system computed with a non-central base model (bold).

The black dot shows the optimal centered viewpoint and the dashed lines the view-

ing rays of the centered approximation. Since the distance to the objects is very

large the optimal viewing rays are similar to the true ones.

accurate non-central base model which needs a quadratic description of the

mirror surface. For the simple central model after the centering process,

which we call central-centered model, we use a more general central model

based on the angle representation which needs only the viewing rays. How-

ever, the proposed idea to center slightly non-central cameras can also per-

form with other non-central base models as well as other central-centered

models. In this chapter, we explain the non-central base projection model

and the central-centered projection model which we use in this work as well

as the computation of the optimal viewpoint. The calibration process and

the benefits of calibrating a real catadioptric camera system with the pro-

posed projection model in contrast to existing central models are presented

in Chapter 3.2.

2.2.1. Non-Central Base Model

The non-central base model, to obtain the accurate viewing ray direction,

is based on the geometric analytical forward projection model which was

originally presented by Agrawal et al. [2, 3] and extended by us [106] to

a complete projection model with a perspective camera including lens dis-

tortions. For the geometric model we assume a quadric mirror surface with

the parameters A, B and C that can be described as

x2
m + y2m +Az2m +Bzm − C = 0. (2.10)
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Mirror Spherical Parameter Mirror

Type Parameter Conversion Equation

Hyperboloid
A < 0, C < 0 A = − b2

a2 z2

a2 − x2+y2

b2
= 1B = 0 C = −b2

Ellipsoid
A > 0, C > 0 A = b2

a2 z2

a2 + x2+y2

b2
= 1B = 0 C = b2

Paraboloid A,C = 0 B = −2a z = x2+y2

2a

Table 2.1.: Central Mirror Types. This table provides the parametrization for all

relevant mirror types that fulfill the SVP condition and the relationship between

sphere parameters A,B,C (see Eq. 2.10) and manufacturing mirror parameters a, b.

Mirror

x
y

z
zC

xC

yC

Camera

m

n

q(G)

p

s

c

wc

wr

Π

Figure 2.7.: Geometric Projection Model. This figure shows the non-central geo-

metric base projection model with the parameters which we use to obtain the exact

viewing rays.

This representation includes the standard parametrization for all relevant

mirror types that fulfill the single viewpoint condition as shown in Ta-

ble 2.1.

The geometric projection model maps a 3D world point p via the point of

reflection m = [xm, ym, zm]T on the mirror surface to a pixel q(G) on the

image plane depending on the camera pose c. This relation is depicted in

Fig. 2.7. The points are represented in the mirror coordinate system if they

have no index. The index C denotes the camera coordinate system. The

point of reflection on the mirror surface m can be obtained analytically

from the law of reflection and the pre-condition that the point of reflection
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2. Projection Models

is located on the mirror surface. This induces two constraints. The first

constraint can be derived from the law of reflection

wr = wc −
2n(wT

c n)

nTn
(2.11)

with the normal vector n = [xm, ym, Azm + B/2]T of the mirror surface

at point m, the incoming ray wc = (m − c) and the reflecting ray wr

with wr × (p−m) = 0. The second constraint can be derived from the

reflection plane Π on which the world point p, the camera c and reflection

point m are located. The plane Π can be represented by p, c and the inter-

section point between the normal vector n and the z-axis, which is given

as s = (0, 0, zm −Azm −B/2)T. The normal vector of the plane nΠ is

given as

nΠ = (p− c)× (s− c). (2.12)

Since (m− s) is orthogonal to the normal of Π, the plane can be described

by

(m− s)T · nΠ = 0. (2.13)

By substituting the mirror equation (Eq. 2.10) to both constraints from

Eq. 2.11 and Eq. 2.13 and combining them, we achieve a polynomial equa-

tion

f(zm, A,B,C, c,p) = 0 (2.14)

with the only unknown parameter zm from the reflecting mirror point m.

In [2], a pre-rotation is proposed to reduce the order of the resulting

polynomial projection function f . It is suggested to rotate the camera loca-

tion c = [xc, yc, zc]
T around the z-axis in the way that the rotated camera

cR = (0, yc,R, zc,R)
T aligns with the y-z-plane. Here, the index R de-

notes the rotated mirror coordinate system. This could be achieved with the

pre-rotation matrix RR(c)

RR(c) =

⎡
⎣ κ (yc + ε) −κ xc 0

κ xc κ (yc + ε) 0
0 0 1

⎤
⎦ (2.15)

with κ =
√
x2
c + (yc + ε)2. Thus, the rotated world point pR = RR p and

the rotated camera position cR = RR c are obtained. In contrast to [2],

we introduce a small positive scalar ε which regularizes RR against the

identity matrix and prevents singularities in case xc and yc are both small.
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2.2. Centered Projection Model

Using the rotated points pR, cR and mR in the three equations Eq. 2.10,

Eq. 2.11 and Eq. 2.13 instead of the points p, c and m to obtain the poly-

nomial equation, Eq. 2.14 simplifies to an 8th degree polynomial

fR(zm,R, A,B,C, cR,pR) = a0(A,B,C, cR,pR)+

a1(A,B,C, cR,pR)zm,R + . . .+

a8(A,B,C, cR,pR)z
8
m,R = 0 (2.16)

with the unknown parameter zm,R. The coefficients of the polynomial

equation a0, . . . , a8 only depend on known parameters, namely the sphere

parameters, the rotated camera position, and the rotated world point po-

sition. A detailed description how to obtain the polynomial equation and

parameters is given in Appendix A.1. The roots of fR can be computed

numerically via an eigenvalue decomposition of the companion matrix re-

sulting in mR = (xm,R, ym,R, zm,R)
T.

After computing the rotated reflection point on the mirror surface mR,

we project the point to the image plane. Therefore, the reflection point mR

is back rotated in the original mirror coordinate system and transformed

into the camera coordinate system with

mC = (xm,C , ym,C , zm,C)
T = RCR

−1
R mR + tC (2.17)

where RC and tC = c denote the transformation between mirror and cam-

era coordinates.

The normalized projection with the geometric base model q
(G)
n of the

point mC on the mirror surface in the camera coordinate system is given

by

q(G)
n =

[
xn

yn

]
=

[
xm,C/zm,C

ym,C/zm,C

]
. (2.18)

The distorted point q
(G)
d is computed from

q
(G)
d = (1 + k1r

2
n + k2r

4
n + k5r

6
n) q

(G)
n

+

[
2k3xnyn + k4(r

2
n + 2x2

n)
k3(r

2
n + 2y2n) + 2k4xnyn

]
(2.19)

with rn =
√
x2
n + y2n and k = [k1, . . . , k5]

T denote the distortion parame-

ters.
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2. Projection Models

Finally, the point q
(G)
d is projected to the image plane via

[
q(G)

1

]
=

⎡
⎣fu αfu cu
0 fv cv
0 0 1

⎤
⎦

︸ ︷︷ ︸
K

·
[
q
(G)
d

1

]
. (2.20)

Here, q(G) = (u, v)T denotes a pixel in the image plane and K is the intrin-

sic projection matrix depending on the intrinsic parameters of the camera,

the focal lengths fu, fv , the principal point cu, cv , and the skew parame-

ter α. These intrinsic projection parameters and the distortion parameters k

combined with the mirror parameters A, B, C and the camera location c

and rotation RC define the set of all intrinsic parameters of the non-central

geometric base projection model.

2.2.2. Optimal Viewpoint

After obtaining all exact viewing rays, we compute the optimal single view-

point v, which is the point that is closest to all viewing rays as shown in

Fig. 2.8. The set of all reflected rays can be described by

{m+ λwr(m) | m ∈ M} (2.21)

where M is the set of all points on the mirror surface. To find the op-

timal viewpoint v, we minimize the squared distance between the single

viewpoint and the set of all reflected rays. The distance d is given as

d =
‖(v −m)×wr‖

‖wr‖
. (2.22)

With

(a× b) · (a× b) = ‖a‖2‖b‖2 − (a · b)2 (2.23)

we compute the squared distance as

d2 =
‖(v −m)‖2 ‖wr‖2 −

∥∥(v −m)Twr

∥∥2
‖wr‖2

. (2.24)

Thus, our minimization criteria can be formalized for all rays as
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2.2. Centered Projection Model
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Figure 2.8.: Optimal Viewpoint. This figure shows the optimal viewpoint for a

non-central projection where the camera location (blue cross) is laterally and axially

displaced. The optimal viewpoint (red cross) is obtained by minimizing the distance

to all reflected rays (red).

v = argmin
ṽ

∫
M

d2dm (2.25)

= argmin
ṽ

∫
M

(
‖ṽ −m‖2 − ([ṽ −m]Twr(m))2

)
dm (2.26)

with normalized reflected ray ‖wr‖2 = 1. To compute the optimal v that

minimizes the integral, its derivative with respect to v should be zero.

This yields the integral equation∫
M

(
v −m−wr(m) (v −m)T wr(m)

)
dm = 0 (2.27)

which is linear in v. This integral can be approximated to arbitrary preci-

sion by a summation over a discretized set of surface points M. Hence, the

optimal viewpoint v can be computed with a linear least square algorithm

bl = Hlv (2.28)
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ϕ

x

y

z

ρ
θ

p(ρ, ϕ, θ)

Figure 2.9.: Spherical coordinates. This figure shows the relationship for a 3D

world point p between Cartesian coordinates (x, y, z) and spherical coordinates

(ρ, ϕ, θ).

with

bl = −m+wrm
Twr (2.29)

Hl = 1 −wrw
T

r . (2.30)

2.2.3. Central-Centered Model

After estimating the optimal viewpoint, we center the exact viewing rays

and remap each pixel position with a central model. Therefore, we use a

simple and efficient central model based on the angle representation which

we call central-centered projection model. For this representation, the light

rays through a 3D world point p = (x, y, z)T are only defined by the az-

imuth angle ϕ

ϕ(p) = arctan
(y
x

)
(2.31)

and the inclination angle θ

θ(p) = arctan

(√
x2 + y2

z

)
. (2.32)

The relationship between spherical and Cartesian coordinates is shown in

Fig. 2.9.
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2.2. Centered Projection Model
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Figure 2.10.: Central-Centered Model. This figure shows the projection model for

the central-centered model, where the world point p is projected to the point q(C)

on the image plane.

For the central-centered projection model (Fig. 2.10), the image point q(C)

corresponding to the world point p(ρ, ϕ, θ) is defined as

q(C) =

[
u
v

]
= Q(ϕ, θ)|cu,cv,b =

[
cu
cv

]
+

k∑
i=0

biθ
i

[
cosϕ
sinϕ

]
(2.33)

where cu, cv are the location of the image center, b = (b1, . . . , bk)
T are the

polynomial coefficients which describe the relationship between the angle θ
and the distance from the image center, and k ≥ 1 denotes the polynomial

order.

After centering the exact viewing rays through the optimal viewpoint

and remapping them with the central-centered projection model, we only

use this central-centered projection model any time we use the proposed

centered projection function. Note, the central-centered model exactly rep-

resents all other central models by remapping the image points (see Ap-

pendix A.2). Therefore, the polynomial order k is chosen to obtain a suffi-

cient vertical field of view. The quality of the approximation is independent

from order k which only impacts the smoothness of the displacement field

shown in Chapter 3.2.3. Furthermore, the central-centered model maps 3D

world points at infinity, estimated with any non-central base model exactly,

i.e., equivalent to the projection it is derived from (see Appendix A.2).

This projection function Q(ϕ, θ) describes a very efficient forward pro-

jection from a known 3D point to an image point. For the inverse back
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2. Projection Models

projection Q−1(u, v), to compute the viewing ray to a corresponding 2D

image position, we find the roots of the polynomial equation

[
(cu − u)/ cosϕ
(cv − v)/ sinϕ

]
+

k∑
i=0

biθ
i = 0 (2.34)

with

ϕ = arctan
v

u
. (2.35)

Compared to the forward projection, the inverse projection is a rather slow,

similar to the forward projection step of the Scaramuzza model.
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Chapter 3
Calibration

A calibration process is required to estimate the intrinsic and extrinsic pa-

rameters of a projection model, before performing any application with the

camera setup which needs metric scene measurements. The calibration task

is very import since the accuracy of further applications depends mainly on

the accuracy of the calibration result.

In this work, we develop a novel catadioptric stereo camera calibration

toolbox for multiple quasi-central catadioptric cameras. The toolbox allows

the calibration of camera parameters with the proposed centered projection

model and can also handle other projection models. Before we explain

the calibration toolbox, we review existing methods to calibrate omnidirec-

tional cameras. In the end of this chapter, we evaluate the presented calibra-

tion process involving the proposed centered projection model in simulation

and in real-world experiments in comparison to state-of-the-art catadioptric

calibration models.

3.1. State-of-the-Art

Many works exist which are focusing on calibrating monoscopic catadiop-

tric cameras with various projection models and different calibration meth-

ods. Most of them consider the catadioptric camera setup as an overall

system. Recently, Puig et al. [89] have given an overview of existing cata-

dioptric calibration methods and propose a taxonomy for omnidirectional

camera calibration methods which classifies calibration methods depend-

ing on the calibration technique into five categories: Line-based calibration

[44, 8, 127], 2D pattern calibration [96, 75], 3D pattern calibration [88],
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3. Calibration

self-calibration [77], and polarization imaging [81]. Moreover, the authors

present a comparison of four open source available toolboxes: Two based

on planar patterns from Scaramuzza et al. [96] and from Mei and Rives [75],

one based on a 3D pattern from Puig et al. [88], and one based on lines in

the image from Barreto and Araujo [8]. While former calibration compar-

isons analyzed only the reprojection error in the image, this comparison

evaluates the calibration methods by analyzing the reprojection error and

an error of a structure from motion experiment with two images. The ana-

lyzed toolboxes use different projection functions but all are based on the

assumption of a central model. The authors conclude that all methods per-

form similar and give an accurate reconstruction result for central cameras.

However, they do not consider the fact that the central catadioptric cameras

do not exactly fulfill the single viewpoint condition.

There are also some approaches for calibrating non-central catadiop-

tric cameras based on accurate but time-consuming non-central projection

models. However, to the best of our knowledge there is no public available

toolbox for non-central catadioptric cameras.

Concerning the calibration method, in this work we focus on planar

checkerboards as calibration targets since 2D patterns are easy to employ

and constrain the problem sufficiently well. Such calibration methods need

several images of planar checkerboards at different unknown orientations

and positions with a sufficient distribution over the complete catadioptric

image. The calibration methods presented by Mei and Rives [75] and by

Scaramuzza et al. [96, 98] also use planar checkerboards. Both models can

cope with all kinds of central catadioptric cameras and with fisheye cam-

eras. Both approaches assume a central camera even if the authors mention

that small deviations from the single viewpoint can be handled. However,

both toolboxes are only adaptable for monoscopic camera calibration and

need further extensions for multiple cameras. Anyway, both calibration

toolboxes are very popular and many researchers use them for further appli-

cations. In this work, we use both calibration models as reference methods.

Therefore, we summarize both calibration models in the following.

The Mei Toolbox: The Mei toolbox [75] is based on the extended sphere

camera model (see Section 2.1.2) with distortion parameters that consider

real-world errors such as misalignments between the mirror and camera

axis. The projection model has 17 parameters: seven extrinisic parameters

to describe the position of the 3D point relative to the camera coordinate

system (rotation as quaternion qex ∈ R
4 and translation tex ∈ R

3), one

mirror parameter ξ, four distortion parameters ki (two tangential, two ra-
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dial), and five camera parameters (two spherical focal lengths ζi, two com-

ponents for the principal point (cu, cv), and one skew parameter α).

After initialization, the model parameters are estimated with a non-linear

minimization of the reprojection error with the Levenberg-Marquardt algo-

rithm. For initialization, the authors assume small deviations from the the-

oretical model and initialize the distortion and skew parameters to zero. To

obtain initial values for the other camera parameters and the 2D calibration

grid parameters, some user input is necessary. For an initial principal point,

the user has to select the image center and the border of the catadioptric

image, and for the initial focal lengths, at least three non-radial points must

be selected. Besides, the toolbox contains a semi-automatic corner extrac-

tion which only needs manually labeled four edge corners. Moreover, this

toolbox is also valid for fisheye lenses and spherical mirrors.

The Scaramuzza Toolbox: The Scaramuzza toolbox [96] is based on the

polynomial model (see Section 2.1.2). The parameters of the model are the

n polynomial coefficients dn and the parameters c, d, e and cu, cv of the

affine transformation matrices AS and tS which account for misalignments

and the image center. Moreover, for each 3D point six extrinsic parameters

are necessary, a rotation vector rex ∈ R
3, related to the rotation matrix

by the rodrigues formula, and a translation vector tex ∈ R
3. The authors

propose a 4th order polynomial (n = 4) as sufficient.

The approach assumes the catadioptric image as a highly distorted im-

age. The parameters are estimated with a four-step linear least square mini-

mization problem, ignoring the affine transformations. Afterwards, they are

refined by a two-step non-linear least square minimization problem. In the

first non-linear minimization step, the extrinsic parameters of the checker-

boards are estimated by ignoring the intrinsic camera parameters. In the

second non-linear step, the intrinsic parameters are optimized with the pre-

viously computed checkerboard positions. The authors suggest this two-

step minimization to speed up the convergence and conclude that the two-

step minimization does not affect the final results. Moreover, they point out

that the toolbox requires no prior knowledge about the mirror shape. The

detection of the image center and border as well as of the checkerboards

performs automatically without any user interaction. In addition, the tool-

box can also be applied for fisheye lenses.

In the following we denote the projection model and calibration toolbox

presented by Mei and Rives the Mei model and Mei toolbox. The projection

and calibration model proposed by Scaramuzza et al. is called Scaramuzza

model and Scaramuzza toolbox.
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3.2. Catadioptric Stereo Calibration Toolbox

Previously existing catadioptric toolboxes as explained can only handle

monoscopic cameras and are only compatible with their corresponding pro-

jection function. Since we use a stereoscopic catadioptric setup with two

cameras for our applications, we developed a novel catadioptric stereo cal-

ibration toolbox for multiple slightly non-central catadioptric cameras in

this work. Moreover, the developed toolbox allows the usage of the pre-

sented centered projection function which is efficient and accurate at the

same time.

The proposed toolbox allows simultaneously for the intrinsic and extrin-

sic calibration of one or more cameras and contains the implementation of

different projection methods. Note, for the proposed centered projection

model we need the exact non-central base model and an efficient central-

centered projection model. Thus, for calibrating the centered model we

estimate the parameters of the fast central-centered model as well as the

parameters for the non-central base model. Different parameter sets for the

geometric model which we use as non-central base model can be calibrated.

The calibration result for the geometric model can be used as a complete

and exact but very slow projection model or as we suggest as base function

for the centered model. Furthermore, the toolbox contains the most rele-

vant central reference calibration models ([75, 96]) to evaluate the calibra-

tion results against them. The original reference toolboxes cannot be used

to compare the results, because they are designed for monoscopic camera

calibration only. Therefore, we transfer the calibration models in our tool-

box and extend them for more than one camera. The user selects which

projection model is used for the calibration.

In general, except for the central-centered projection model, the calibra-

tion process includes three main parts: A fully automatic corner extraction,

the parameter initialization, and a non-linear optimization of the parame-

ters by minimizing the reprojection error of checkerboard corners. Before

starting the calibration process multiple images of known planar checker-

boards are captured at different poses. To obtain an accurate description of

the complete mirror and not only of parts of the mirror, the checkerboards

should cover as many parts of the catadioptric image as possible and should

be distributed uniformly over the image. Similar to the Scaramuzza tool-

box, only little user input for the initialization is necessary, which is given

in form of a configuration file in the beginning.

For the centered projection model, we first run the calibration process of

the non-central base model to obtain the exact viewing rays to each pixel.

Afterwards, we compute the optimal viewpoint and center the viewing rays.
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From the centered viewing rays, we estimate the parameters of the central-

centered projection model. Finally, the observations are remapped and the

efficient central-centered projection function is used. Note that any time we

use the centered model after the calibration process, we only have to remap

the pixel positions and apply the central-centered function.

In the following, we explain the corner extraction, the calibration of the

base model and the central-centered model as well as the changes to the

central reference models which are added to the toolbox.

3.2.1. Corner Extraction

The first step of the calibration process is the extraction of the checkerboard

corners in all images. We use an automatic corner extraction based on the

approach presented in [43] for checkerboards in perspective images. We

apply this detector on two image scales and predict corners non-linearly in

the association stage for a better handling of catadioptric image distortions.

For the stereo calibration, the detected checkerboard corners are automat-

ically tracked in the images of multiple cameras by sorting the corners as

shown in Fig. 3.1a. In order to do so, the edge corners are represented in

the polar coordinate system (ϕ,r) and sorted corresponding to their azimuth

angle ϕ and radius r. The sorting algorithm constrains the position of the

checkerboard in the way that all corners are visible in the image and the

rotation of the checkerboard is smaller than 90◦. In our calibration images

this sorting always works as long as all corners were detected, otherwise

the calibration image is not used for the calibration process.

3.2.2. Non-Central Base Model

For calibrating the non-central base model, we observe the non-central ge-

ometric model (see Eq. 2.16 - Eq. 2.20)

q(G) = K · q(G)
d (A,B,C,k, c,RC ,p) (3.1)

where the image point q(G) depends on

• three spherical mirror parameters (A,B,C),

• five intrinsic camera parameters of the calibration matrix K (focal

lengths fu,fv , principal point cu, cv , skew parameter α),

• four distortion parameters k = [k1, k2, k3, k4]
T,

• six parameters for the camera position c and rotation RC ,
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Figure 3.1.: Calibration Initialization. This figure (a) shows the result of the cor-

ner extraction with sorted corners, where 1 always denotes the left upper corner of

the checkerboard. In (b) the relationship between the points on the mirror surface

and the planar checkerboard for the checkerboard initialization is illustrated.

• and a three-dimensional world point p.

The 3D world point p again depends on

• six extrinsic parameters rex and tex for each camera and

• six extrinsic parameters for each checkerboard rcb and tcb.

For the representation of a rotation matrix R, we use the Rodrigues for-

mula which represents the rotation with a three-dimensional rotation vector

r ∈ R
3, describing the three degrees of freedom of the rotation. The cam-

era transformations are given with respect to the mirror coordinate system

which is chosen as the world coordinate system.

Initialization Before we estimate the parameters of the non-central ge-

ometric model by optimization, the model parameters and the unknown

positions of the checkerboards in 3D must be initialized. For initialization,

we assume the camera as a perfect central one. Hence, the camera has

no distortions (k = 0, α = 0), is perfectly aligned with the mirror axis

(rc = 0) and placed in the second focal point in case of a hyperbolic mir-

ror (tc = [0, 0,
√
C/A−A]T). This assumption simplifies the geometric

model significantly. Besides, some manual information concerning the size

of the squares of the checkerboards and the initial mirror geometry parame-

ters A,B,C as well as the radius of the mirror rM are necessary. Moreover,
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the user has to select two points on an image to compute the principal point

(cu, cv) and radius of the image rI . The initial focal lengths

fu = fv =
2
√
C/A−A

rM
rI (3.2)

can be computed with the assumption of a central model.

The initial parameters for the checkerboard positions (rcb, tcb) are com-

puted with a homography [53] similar to the initialization of calibration

patterns for the calibration of perspective cameras. However, the points on

the image plane are not directly used to compute the homography. Instead,

we use the corresponding points on the mirror surface with the approxi-

mation that the points lie on a planar plane which generates an acceptable

error for initialization. Accordingly, the homography is computed between

points on the mirror surface and points on the planar checkerboard as vi-

sualized in Fig. 3.1b. The points on the mirror surface are again computed

from the corresponding image points with the assumption of a central geo-

metric model. We obtain the points on the mirror surface m by intersecting

the mirror surface with the incoming rays wc = tc + λ · q(G)
n . This yields

m = tc + λ(A,B,C, f, cu, cv) · q(G)
n (f, cu, cv) (3.3)

where q
(G)
n is the normalized projected image point computed with the

inverse function of Eq. 2.20.

Thereby, the checkerboard positions in all cameras where the checker-

boards are visible are computed. The initial camera transformation (rex,tex)

between the cameras is calculated as the mean camera transformation be-

tween the checkerboards in the different cameras.

Optimization After initialization, we estimate the parameters of the com-

plete non-central geometric model

Γ = (A,B,C,K,k, rc, tc, rex, tex)
T (3.4)

with a non-linear least square algorithm minimizing the reprojection error

for all n checkerboard corners and l cameras. Thus, we minimize

Γ = argmin
Γ̃

∑
n

∑
l

‖q(E)
n,l − q

(G)
n,l (Γ̃)‖

2

2
(3.5)

with q(E) the image position of the checkerboard corners estimated from

the corner extraction and q(G) the computed image position with the non-
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central geometric model. To run the optimization, we use the Levenberg-

Marquardt algorithm [73] as implemented in MATLAB. The toolbox al-

lows for optimization of different parameter sets of the geometric model

which we evaluate in our experiments.

3.2.3. Centered Model

Depending on the calibration parameters for the non-central base model,

we compute the parameters of the central-centered projection model and

remap the observations to use only the efficient central-centered method in

the following. Therefore, we first compute the reflecting ray to each pixel

in the original catadioptric image with the non-central base model. From

the reflected rays, we compute the optimal single viewpoint by solving the

linear least square algorithm (see Eq. 2.28). In practice, we use equidis-

tantly sampled rays to estimate the optimal single viewpoint. Afterwards,

we center the viewing rays by shifting them to the optimal viewpoint while

keeping their direction. We compute the new image position of the centered

viewing rays with the central-centered model corresponding to the image

points q(G) in the original catadioptric image computed with the geometric

model, which yields a residual displacement field.

We estimate the parameters of the centered model (cu, cv,b) with a non-

linear least square minimization. Therefore, we compute the viewing ray

parameters ϕ and θ to each pixel in the original image from the calibrated

geometric non-central camera model and minimize

cu, cv,b = argmin
c̃u,c̃v,b̃

∑
ϕ,θ

‖q(G)
ϕ,θ − q(C)(ϕ, θ; c̃u, c̃v, b̃)‖

2

2
, (3.6)

the error between the original image point q(G) and the computed image

point q(C) with the central-centered projection model (see Eq. 2.33).

The image residual q(G) − q(C) after optimization defines the residual

displacement field which is applied to the original image observations be-

fore using the central-centered model. The degree of the polynomial equa-

tion (Eq. 2.33) from the central-centered projection model does not impact

the quality of the approximation but only affects the smoothness of the

residual displacement field. In Fig. 3.2 displacement fields for polynomial

equations of differing order are illustrated. In the top row, the displacement

fields for remapping the observations of a central camera with the central-

centered model, which were originally described with the geometric model,

are shown. In the bottom row, the displacement fields for remapping a non-

central camera, where the position deviates 5 mm in axial and lateral di-
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(a) Order: 1,

Residual: 25.6 px

(b) Order: 2,

Residual: 8.2 px

(c) Order: 3,

Residual: 2.5 px

(d) Order: 4,

Residual: 0.8 px

(e) Order: 1,

Residual: 39.8 px

(f) Order: 2,

Residual: 24.3 px

(g) Order: 3,

Residual: 20.3 px

(h) Order: 4,

Residual: 20.3 px

Figure 3.2.: Displacement Fields. This figure shows the residual displacement

fields for remapping the observations with the central-centered model for polyno-

mials of different order (k = [1, . . . , 4]). The residual value below the image state

the mean residual value of the image. Top row: Remapping of a central camera.

Bottom: Remapping of a non-central camera with 5 mm deviation from the single

viewpoint in axial and lateral direction.

rection, are depicted. Experimentally, we found a third order polynomial

(k = 3) sufficient for providing smooth displacement fields. For successful

convergence, we initialize the parameters cu, cv to half of the image size

and the polynomial coefficients b to zero.

After estimating the central-centered projection parameters, the displace-

ment field can be densely precomputed once. This remapping is similar to

the undistortion task for perspective cameras. When using the centered

projection model in a first step all observations are mapped by the precom-

puted displacement field before the central-centered projection function is

applied. In practice, we stored only every fourth point in the displacement

map and use cubic interpolation for remapping the observations. Note that

the centered model is exact for all points at infinity and all central models

(see Appendix A.2).
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3.2.4. Reference Models

As already mentioned, the Mei and Scaramuzza models are added to the

toolbox as common reference calibration models. Moreover, we add a third

method, called Geyer method [45], which is the sphere camera model as

used for the Mei toolbox without distortion parameters. Since we cannot

use the original toolboxes, which are designed for monoscopic camera cal-

ibration only, some extensions are necessary. Therefore, we add the ex-

trinsic parameters for multiple cameras to the optimization step. For sim-

plification, we use the corner extraction from our toolbox likewise for the

reference models, since the Mei toolbox does not provide a completely au-

tomatic corner extraction and the automatic corner extraction from Scara-

muzza does not work reliable in our images, which was also observed in the

comparison of Puig et al. [89].

Concerning the Mei and Geyer methods, only small additional changes

are necessary. Instead of using the original checkerboard initialization, we

use the homography based initialization for the checkerboards extrinsics

and camera extrinsics which does not affect the calibration result. Hence,

we use the same formulation of the rotation parameters by a 3D rotation

vector as in our models instead of quaternions. For comparability, we

remap the direction of the Mei coordinate system to the axes directions of

our coordinate system. We take the focal lengths and principal point from

the initialization with the central geometric model to initialize the sphere

model parameter ξ and the spherical focal lengths ζi. For the optimization

step, we only add the transformation between the cameras to the projection

function.

For the Scaramuzza model, we propose larger changes to improve the

calibration result and run a fair comparison between the different projec-

tion functions. By applying the original two-step method and the original

initialization from Scaramuzza et al. to our setup, we achieve larger errors.

We observe that the method is sensitive with respect to the initialization

when deviating from the single viewpoint condition. We found the reason

for this to be mainly numerical instabilities which can be mitigated by nor-

malizing the polynomial coefficients appropriately. For the evaluation, we

regard the original Scaramuzza model and an improved Scaramuzza model.

For both models, we add the extrinsic camera parameters and change the

optimization to optimize all parameters together in one single optimization

run. For the original model, we use the original initialization proposed by

the authors. However, for the improved model, we again use the homog-

raphy based initialization of the checkerboards and the transformation be-
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tween the cameras. The polynomial parameters are initialized with a linear

least square algorithm.

For all three central reference models the optimization function is similar

to the one from the non-central base model. We minimize the reprojection

error of the checkerboard corners (see Eq. 3.5) with a parameter list Γ cor-

responding to the projection models.

3.3. Evaluation

In this chapter, we evaluate the calibration results for the proposed centered

projection model calibrated with the presented catadioptric stereo calibra-

tion toolbox. The proposed model is evaluated against the popular central

calibration models from Scaramuzza, Mei and Geyer which are also added

to the calibration toolbox. The advantage of the centered projection func-

tion for real catadioptric cameras which are usually slightly non-central is

shown in simulation and on real-world experiments. The evaluation does

not only rely on the quality of the reprojection error from the checkerboards

but also on a localization experiment. Moreover, we evaluate the approx-

imation accuracy of the centered model and the runtimes of the different

projection models.

3.3.1. Sensor Setup

For the evaluation of the calibration and projection models, we use a cata-

dioptric stereo camera system consisting of two catadioptric cameras with

hyperbolic mirrors (hypercatadioptric cameras) mounted on top of the ex-

perimental vehicle. The cameras are mounted similarly to the camera setup

which we later use for the real-world applications. We use the mirror type

VS-C450 with a varifocal lens provided by ITRobotics. The hypercatadiop-

tric camera system is shown in Fig. 3.3. The mirror has a vertical field of

view of 75◦ (upper side +15◦, lower side −60◦) and the hyperbolic pa-

rameters are a = 20.8485 mm and b = 26.8578 mm. The black needle

in the middle of the camera system prevents internal reflections. We use

PointGrey Flea2 color cameras with an image resolution of 5 Megapixels.

Our catadioptric camera systems are slightly non-central cameras. Ex-

periments show the deviation from the optimal position by approximately

20 mm in axial and 1 mm in lateral direction. In Fig. 3.3 both, the optimal

viewpoint in red and the real deviated camera focal point in orange, are

shown. For a catadioptric camera which perfectly fulfills the single view-

point condition the distance between the camera and mirror or the varifocal

lens should be adjusted in the way that the real and theoretical viewpoint
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Needle

Mirror

Lens

Camera

Mirror
Focal Point

Camera
Focal Point

68 mm

(theoretical)

Camera
Focal Point
(real)

Figure 3.3.: Slightly Non-Central Hypercatadioptric Camera. This figure shows

the hypercatadioptric camera system which we use for the calibration experiments

and further real-world applications. The red dot depicts where the focal point of

the camera should be to fulfill the single viewpoint condition and the orange dot

shows the approximatively determined position of the focal point in our slightly

non-central cameras.

coincide. The 3D world points are represented in the mirror coordinate

system located between the mirror and camera with the z-axis along the

positive optical axis.

3.3.2. Camera Calibration

For the experiments in simulation and with real-world data we calibrate our

sensor setup with 67 calibration images each with one calibration pattern in

the image. The reconstructed world positions of all calibration patterns are

shown in Fig. 3.4. We use the toolbox to calibrate

• two central geometric models with different parameter sets (1-2),

• four non-central geometric models with different parameter sets (3-6),

• the proposed centered model (7), and

• four central reference models, improved Scaramuzza (8), original

Scaramuzza (9), Mei (10), and Geyer (11).
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Figure 3.4.: Calibration Pattern Positions. This figure shows the 3D position of

the 67 calibration targets in different colors around the stereoscopic camera setup,

denoted as the two black dots.

The central geometric model is similar to the non-central geometric model,

with the difference of a fixed camera position and fixed mirror parameters.

In case of the central and non-central geometric models different parameter

sets are optimized. For every geometric model the focal lengths (fu, fv),

the principal point (cu, cv), and the extrinsics of the camera (rex, tex) are

calibrated. The distortion parameters (k), the camera location (rc, tc), and

the mirror parameters (A,B,C) are only optimized if indicated. In Table 3.1

an overview of the different projection models and the related optimized

parameters are given. The numbers of the projection models given in the

numeration above are the same as in the table.

As a first indicator to evaluate the quality of the projection model and the

corresponding calibration result, we use the reprojection error

ec = ‖q(E) − q(∗)‖ (3.7)

between the detected q(E) and estimated q(∗) corners of the checkerboards.

For all projection models except the centered model this is the value which

is minimized during the calibration process. Note, the centered model

uses a calibrated non-central base model and minimizes the residual be-

tween the original and remapped pixels. In Fig. 3.5 a boxplot shows the

remaining reprojection error over all calibration images after the calibra-

tion process for the different projection models which use the minimiza-

tion of the reprojection error of the corners to achieve a calibration results.

41



3. Calibration
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Geyer (11)
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Non-Central (4)

Non-Central (3)

Central (2)

Central (1)

Figure 3.5.: Reprojection Error Checkerboards. The figure shows a boxplot rep-

resenting the reprojection error ec in pixels of the different projection models after

the calibration process. The smallest reprojection error is achieved with the non-

central models. The numbers of the projection models are the same as given in

Table 3.1.

The smallest mean reprojection error for the corners after the calibration

process, also shown in Table 3.1, is achieved with the entire non-central

geometric model (6) which optimizes the mirror parameters (A,B,C), the

distortions (k), and the camera location (rc, tc) except the z-component.

Estimating the z-component and the mirror parameters together is not rea-

sonable, since the mirror parameters comprise the distance between camera

and mirror, which is equivalent to the z-position of the camera.

The calibration result of the centered model are not reviewed on the crite-

ria based on the reprojection error of the checkerboard corners which is very

large since the centered model is optimized for a different distance than the

distance of the calibration patterns. The distance to the calibration targets

with around 1 m is much smaller than the distance to the objects of interest

for applications after the calibration process. Hence, the model parameters

of the other projection models are optimized for a different distance than

the distance of interest. To represent the distance of interest during the cali-

bration process, the checkerboards have to be far away and therefore should

be very large which makes the calibration impractical. Thus, only regarding

the reprojection error of the checkerboard corners is not a sufficient criteria

to evaluate the projection models and corresponding calibration results. A

second reason why the reprojection error is not a sufficient value is over-
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(a) Localization Setup (b) Captured Camera Image

Figure 3.6.: Localization Experiment. In (a) the setup for the localization exper-

iment with the position of the landmarks (red circles), the footpoints of the land-

marks and cameras (black crosses), and the camera positions (blue) are shown. In

(b) the captured camera image of the scene with the detected landmarks (red) is

depicted.

fitting which means the calibration reprojection error can be reduced by

adding more parameters while the unobserved real-world error increases,

which we show in our localization experiments.

3.3.3. Localization Experiment

We perform a localization experiment to evaluate the calibration results be-

yond evaluating the reprojection error. In the following, we explain the

localization setup and experiment before we discuss the results in simula-

tion and real-world experiments.

Localization Setup We perform a localization experiment where the

camera positions are estimated and we accurately know the ground truth

positions. We build up a localization setup consisting of 17 landmarks (red

circles in Fig. 3.6a) around the stereoscopic camera setup (marked in blue).

The landmarks are mounted on various heights (0 - 2.5 m) and various

distances from the cameras (2.5 - 10 m). We measure the distances be-

tween all pairwise combinations of cameras and landmarks and their height

over ground level (black line in Fig. 3.6a) with a high precision laser range

finder. Hence, we can accurately estimate the 3D ground truth positions

of all landmarks around the camera setup. We compute the 3D positions
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of the cameras and landmarks by minimizing all distance and height er-

rors between the measured and computed distances with non-linear least

squares, after manually initializing the positions. As landmarks we use

printed 2 × 2 checkerboards randomly distributed in several positions in a

room. The landmarks are accurately detected with the same corner detec-

tor as used for the corner extraction in the calibration toolbox. An image

captured with the catadioptric camera containing the landmarks is depicted

in Fig. 3.6b.

Localization Experiment Within this setup, we select 29 non-collinear

landmark triplets as minimum sets for localization of the two cameras us-

ing the different projection methods. We localize our camera position by

minimizing the reprojection error between the three detected landmark im-

age positions q(E) and the calculated points q(∗) with the corresponding

model. We use a non-linear optimization similar to the optimization of the

calibration parameters in Eq. 3.5 while only optimizing the extrinsic camera

parameters. This yields

rex, tex = argmin
r̃ex,t̃ex

∑
l

3∑
i=1

‖q(E)
l,i − q

(∗)
l,i (r̃ex, t̃ex)‖

2

2
(3.8)

where the camera extrinsics rex, tex denote the position of the cameras. We

perform this localization experiment using both, a monocular (one camera,

l = 1) and a stereoscopic (two cameras, l = 2) setup. For evaluating the

calibration results, we consider the mean localization performance over all

29 landmark triplets for all methods.

3.3.3.1. Non Single Viewpoint Simulation

The sensitivity of projection models to deviations from the single view-

point condition in axial and lateral direction is shown in simulation, since

the pure effect caused by the deviations is hard to observe in real environ-

ment experiments. To validate the results for the single viewpoint devia-

tion, we observe the reprojection error of the checkerboards corners after

the calibration process as well as the error of the localization experiment.

We simulate a set of scenarios assuming the non-central geometric model

(3) as exact ground truth model. We use the intrinsic camera parameters

and extrinsic checkerboard parameters from the calibrated central geomet-

ric model (1). The mirror parameters are defined to perfect hyperbolic

parameters. The only deviation from the single viewpoint assumption is

the camera position which we vary in axial direction along the mirror axis
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(±20 mm in z-direction) and in lateral direction (±10 mm in x-direction).

We use an increment of 1 mm to achieve sets only distinguished by the

camera position.

For every setting, we project the 3D points from the calibration patterns

as well as from the localization landmarks to the image plane with the non-

central geometric model selected as ground truth model. Thus, we achieve

new simulated checkerboard corners and localization landmarks. After-

wards, we perform the calibration and the monoscopic localization experi-

ment for the different projection models with the simulated calibration cor-

ners and landmark positions in the images.

Hence, for every set with a different camera position we obtain a calibra-

tion and localization result. In Fig. 3.7 the reprojection error of the checker-

boards after calibration in pixels (top) and the mean monoscopic localiza-

tion error in millimeters (bottom) are depicted. The errors are shown for

different deviations from the single viewpoint condition in axial direction

(left) and lateral direction (right). As expected, the central models without

any distortion term (Central (1) and Geyer (11)) perform poorly for any

deviation from the single viewpoint in axial or lateral direction. The simu-

lation results show that mainly axial deviation can by adjusted with distor-

tion parameters (Central (2) and Mei (10)). However, lateral displacements

impact the performance much stronger. The affine transformation from the

improved Scaramuzza model (8) also adjusts axial deviation well but can-

not handle any lateral deviation.

Obviously, the localization error shows that the proposed centered mo-

del (7) handles deviations in axial and lateral direction much better than

the central reference models. The fact that the reprojection errors of the

checkerboards of the centered model are larger than those of the other mod-

els can be attributed to the proximity of the calibration patterns to the cam-

era (< 1 m) compared to the localization landmarks (> 2.5 m). However,

this does not effect the performance of the proposed centered model where

the points of interest are more than 2.5 meters away. Here, it is clearly

visible that small reprojection errors are not a sufficient indicator for a well

calibrated camera with respect to some target application, e.g., localization.

This confirms the assumption for the centered projection model of getting

the right viewing ray direction is much more important since small orienta-

tion errors propagate to large translation errors at distance.

3.3.3.2. Real-World Experiments

We perform the same localization experiment with real-world data as de-

scribed in Section 3.3.3 with both, a monoscopic and stereoscopic camera
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Figure 3.7.: Simulated Displacements from the Single Viewpoint Condition.

This figure shows the reprojection errors of the checkerboard corners after cali-

bration (top row) and the mean localization errors over all landmark triplets from

the localization experiment (bottom row) when displacing the camera center axially

(left) and laterally (right).
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No Method Parameter Repro. Localization Error

Error Mono Stereo

[Pixels] [mm] [mm]

(1) Geometric 1.5944 207.23 166.83

(2) Central Model k 0.6241 50.89 45.56

(3) rc,tc 0.5989 42.11 36.21

(4) Geometric Non- rc,tc,k 0.5864 40.04 34.64

(5) Central Model rc,tc,A,B,C 0.5977 43.39 38.15

(6) rc,tc,A,B,C,k 0.5850 89.31 86.43

(7) Centered Model - 42.14 36.26

(8)
Scaramuzza

Improved 0.6241 49.51 48.08

(9) Original 3.4143 771.93 687.86

(10) Mei 0.6229 50.48 44.78

(11) Geyer 0.6421 127.45 122.17

Table 3.1.: Calibration and Localization Experiments. This table shows our ex-

periments on real data in terms of the reprojection errors of the checkerboard cor-

ners after calibration and the monoscopic as well as stereoscopic localization errors,

averaged over all triplets. Moreover, the table shows the parameters which are op-

timized for the different geometric central and non-central models mentioned in

Chapter 3.3.2.

setup. In the real-world experiments we can also evaluate the non-central

geometric model which was chosen as ground truth model for the simu-

lation. Table 3.1 shows the mean localization error of the triplets for the

localization experiment with the monocular and stereoscopic setup for the

different projection models and various parameter sets. Moreover, the ta-

ble shows the remaining reprojection error for the checkerboards after the

calibration process. An overview of the localization error for all landmark

triplets and projection models for the monoscopic and stereoscopic local-

ization is given in Fig. 3.10 and Fig. 3.11. In both figures each diagram

shows the error (y-axis) for each of the 29 landmark triplets (x-axis). The

rows show the different projection models while the columns depict the er-

ror in x-, y-, z-direction and the absolute error in meters. The numbers of

the methods are the same as given in Table 3.1 and mentioned in Chap-

ter 3.3.2.

The best localization performance is achieved using the non-central ge-

ometric model. In particular, model (4) with optimized camera location
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(rc, tc) and distortion parameters (k) yields the smallest localization er-

ror. As expected, the non-central geometric model (6) which achieved the

smallest calibration reprojection error performs worse for the localization

than the other non-central models. Experiments show that minimizing the

mirror parameters (A,B,C) or the distortion parameters (k) leads to simi-

lar results but optimizing both together induces overfitting.

Due to the deviation from the single viewpoint in axial direction, the

central models without any distortion model, namely the geometric central

model (1) and the Geyer model (11), completely fail in computing the cam-

era positions. Introducing distortion parameters to the models, as for the

central geometric model (2) or the Mei model (10), adjusts the deviations

and improves the result for the camera localization and therefore provides a

better calibration result. This confirms the results obtained from simulation.

As already mentioned, the original Scaramuzza model (9) fails completely

due to numerical instabilities for non-negligible deviations from the single

viewpoint condition, while the improved Scaramuzza model (8) performs

similar to the Mei model (10) or the geometric model with distortions (2).

In fact, the models adjusting the deviations by some parameters, such as

the central model with distortions (2) or the central reference models from

Scaramuzza (8) and Mei (10) perform better than central models without

any deviation parameter but worse than the non-central geometric mod-

els. Accordingly, the localization result is improved around 10 mm with

the non-central models. More precisely, the non-central model reduces the

stereo localization error by 23 percent with respect to Mei and 28 percent

with respect to Scaramuzza.

We use the accurate non-central geometric model as base model for the

proposed centered projection model. For the centered model (7), the non-

central geometric model with optimized camera location (3) is selected as

base model. The localization performance for the centered model is nearly

the same as for the base model, while being significantly faster as shown in

Section 3.3.5. Note that a reprojection error after calibration is not denoted,

since the centered model uses the calibration result from the non-central

base model and does not minimize the reprojection error of the checker-

board corners itself. After remapping the checkerboard observations the

reprojection error would be very large, since the checkerboards are very

close to the camera which is not the distance for objects in which we are

interested later. This effect is analyzed in the following section.
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3.3.4. Approximation Results

In this section, we analyze the approximation error of the centered model

experimentally. Again, we use the non-central geometric model (3) from

our real experiments as ground truth model to create a simulated test set.

To demonstrate that the quality of the centered model for objects which are

at the distance of interest is sufficient, we evaluate the projection error of

the remapped observations for 3D points in different distances. Therefore,

we estimate the viewing rays to various image points with different radii

to the image center using the non-central ground truth model. On every

viewing ray we compute 3D points for different distances. Afterwards, we

compute the error between the remapped observations for a 3D point and

the estimated observations by applying the centered model to the 3D points

directly. This error is the approximation error we achieve by using the

centered projection model to non-central systems since the centered model

is only perfect for central systems and points at infinity.

In Fig. 3.8 the reprojection error with respect to the distance of the 3D

point for various radii, i.e., distances from image center, is illustrated in

solid lines. For reference, we also show the reprojection with respect to the

original unwarped observations which corresponds to applying a central

model without any distortion model to the non-central problem in dashed

lines. In (a) the approximation error is illustrated for our real catadiop-

tric system which approximately deviates the single viewpoint condition

by 20 mm in axial and 1 mm in lateral direction. Moreover, the approx-

imation errors for a simulated non-central system in lateral direction with

10 mm deviation (c) and in axial direction with 20 mm deviation (d) are

shown. In (b) the different radii on the residual field are depicted, with the

smallest circle with 100 pixels radius and the largest with a radius of 700
pixels.

The figure shows that the error with the centered model for distances

smaller than 100 mm is similar to the error with a central model, but for

distances above 1 m the error falls below 0.1 pixel and below 0.01 pixel

at 10 meters distance, even though the single viewpoint has been violated

by 20 millimeters. Thus, the quality of the centered model degrades enor-

mously and errors introduced by the approximation are very small for the

distance of interest.

Further results concerning the centering idea for our real experimental

setup are shown in Fig. 3.9. In (a) the viewings rays and the optimal view-

point for this configuration are depicted, while (b) shows the translation

error due to the optimal viewpoint depending on the pixel radius in the im-

age. The residual field for this configuration is illustrated in (c) and the
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(a) Approximation for our slightly non-central real
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(c) Approximation for simulated

deviation in lateral direction (10 mm)
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(d) Approximation for simulated

deviation in axial direction (20 mm)

Figure 3.8.: Approximation Error. This figure shows the average approximation

error of the centered projection model in pixels over the distance of the 3D point

cloud for our real catadioptric system (a) as well as for a simulated non-central

system in lateral (c) and axial direction (d). The corresponding colors to the radii in

the image are shown in (b) with the smallest circle radius with 100 pixels and the

largest with 700 pixels.
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Figure 3.9.: Centered Approximation for our Real Camera. This figure shows

the optimal viewpoint (a) for our real experimental setup, the translation error of

the viewpoint depending on the radius of the image points (b) as well as the resid-

ual field (c) and the original catadioptric image before (d) and after remapping the

observations (e). Note, due to the small displacement field the difference between

the remapped and the original image is rather small.

residual field applied to the original catadioptric image (d) is shown as the

centered catadioptric image in (e). For the deviation in our real experiments

which are primarily in axial direction the residuals are very small and the

remapped image looks similar to original one. The residuals increase par-

ticularly for larger deviation in lateral direction as shown in Fig. 3.2.

3.3.5. Runtimes

In robotics or autonomous applications real-time performance is desirable.

Therefore, the projection function which is frequently needed whenever the

reprojection error is computed and optimized, e.g., during localization, ego-
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Runtime

Numeric Non-Central [49] ∼ 185,000.00 ms

Geometric Model* 2,919.98 ms

Scaramuzza et al. [96] 913.93 ms

Mei & Rives [75] 6.58 ms

Centered Model 3.42 ms

Centered Model* 1.79 ms

Table 3.2.: Runtime. This table shows the runtimes for projecting 10 000 points in

MATLAB with the different projection models. Methods marked with an asterisk

(*) are wrapped in C++. The proposed centered model which is as accurate as the

geometric non-central model is more than three orders of magnitude faster.

motion estimation, or 3D reconstruction, should be very fast. We analyze

the required computation time for the proposed centered projection model

and the reference models. For completeness we also present the runtime

for a fast numeric non-central model taken from [49] and considered as

approximate. To compare the methods, we measure the time to project

10 000 randomly selected 3D points to the image plane. The results are

shown in Table 3.2. We compute the runtimes on a standard laptop using

a single core with the projection function being MATLAB code. For the

geometric model some parts are wrapped in C++ as well as for the centered

model marked with an asterisk.

The geometric non-central model is much faster than the numeric non-

central model, but it is still very slow. The runtime of the geometric model

is heavily dominated by the analytical computation of the reflection point

on the mirror surface which involves the computation of the polynomial

coefficients and the evaluation of MATLAB’s roots function for finding the

polynomial roots. The latter one is also responsible for the relatively slow

evaluation of the central reference function from Scaramuzza et al. [96].

In contrast, the proposed centered projection function as well as the cen-

tral projection function from Mei and Rives [75] are very fast and project

10 000 3D points in less than 7 milliseconds only.

Thus, the proposed centered catadioptric projection model is as fast as a

central catadioptric projection model and has the accuracy of a non-central

model. More precisely, the centered model has nearly the same accuracy as

the non-central geometric model, which is used as base model, but speeds-

up the projection of more than three orders of magnitude compared to the

geometric model.
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Figure 3.10.: Mono Localization. Each diagram shows the error for all 29 (non-

collinear) landmark triplets in case of mono localization with the different projec-

tion models.
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Figure 3.11.: Stereo Localization. Each diagram shows the error for all 29 (non-

collinear) landmark triplets in case of stereo localization with the different projec-

tion models.
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Chapter 4
Ego-motion Estimation

In this chapter, we present an ego-motion estimation algorithm for cata-

dioptric stereo cameras which benefits from the proposed novel projection

model. Ego-motion estimation is the process to determine the motion of an

ego-vehicle between two poses and is a highly relevant application for au-

tonomous vehicles. We show that omnidirectional cameras overcome major

drawbacks of traditional perspective cameras for this task. This advantage

stems from the greatly extended field of view which we show is crucial for

achieving high accuracy motion estimates.

There have been many approaches investigating motion estimation with

perspective cameras. However, these approaches suffer from the limited

field of view and most approaches capture only the area in front of the ego-

vehicle. In this chapter, we show the advantage of ego-motion estimation

with catadioptric cameras which provide a 360◦ field of view. In particu-

lar, we use the ego-motion application in outdoor scenarios with real cata-

dioptric cameras which are slightly non-central in most cases, to show the

advantages of the proposed centered projection model in contrast to ego-

motion estimation with common central catadioptric projection models.

We start this chapter with a brief overview of existing ego-motion estima-

tion methods for omnidirectional cameras. Afterwards, we present the sen-

sor setup for our real-world experiments and explain the proposed motion

estimation method for catadioptric cameras. Finally, we conduct a compar-

ative study on different feature matching techniques which is a prerequisite

for any motion estimator. We show motion estimation results obtained with

catadioptric cameras and the proposed projection model in contrast to re-

sults obtained with perspective cameras and with catadioptric cameras with
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4. Ego-motion Estimation

central projection models. The proposed high precision motion estimator

allows to accurately stitch top view images computed from catadioptric im-

ages. We present some experimental results of several such high fidelity

top view maps.

4.1. State-of-the-Art

Perspective cameras, either as monocular or stereoscopic setup, are very

popular for visual ego-motion estimation which is also called visual odom-

etry [86]. Moreover, there are many approaches using perspective cameras

for the related topic structure from motion [53] where the camera poses

as well as the 3D structure is recovered. Simultaneous localization and

mapping (SLAM) [27], which is the estimation of the ego-motion while

simultaneously updating the map of the surrounding, and high precision

ego-vehicle localization [66] has attracted considerable attention lately.

Recently, numerous approaches which propose to use omnidirectional

cameras for motion estimation were presented and obtain suitable results.

The works include applications for visual odometry [47, 23, 15], structure

from motion [21, 70] and SLAM [117, 92]. In [21] the authors demonstrate

that omnidirectional cameras outperform perspective cameras for structure

from motion particularly in estimating the translation part if the objects are

far away. They use a criteria based on the epipolar geometry to estimate the

ego-motion. In difference Lhuiller [70] proposes bundle adjustment mini-

mizing an angle and reprojection image error to optimize the ego-motion.

A similar approach was used in [78] where the authors minimize the 3D

point error for bundle adjustment. Some authors [117, 10] suggest to de-

couple the estimation of the rotation and translation to increase efficiency

and accuracy.

However, most works on omnidirectional cameras use only monoscopic

camera setups to estimate the motion from 2D bearing data where scale can-

not be estimated from two frames only. There has been little work on stereo

omnidirectional motion estimation with catadioptric cameras. In Chap-

ter 1.1 some works using vertical or horizontal stereoscopic catadioptric

camera systems are mentioned. However, the approaches using a horizon-

tal stereo setup [40, 37, 29] which is suitable for applications for vehicles

are not used to recover motion or 3D structure from the catadioptric image

directly.

In general, the existing approaches to estimate motion between two

poses can be divided in feature based [23, 70, 95, 117] and appearance

based methods [100]. The feature based approaches from Corke et al. [23],

Lhuiller [70] and Scaramuzza et al. [95] use a catadioptric camera to cap-
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4.2. Sensor Setup

ture the whole environment, while Tardif et al. [117] use a Ladybug as

omnidirectional camera. In this work, we focus on stereoscopic feature

based motion estimation. In context with feature based methods for cata-

dioptric cameras there are some approaches [95, 120, 70] which use com-

mon local feature detectors, like scale invariant feature transform (SIFT)

[72], speeded up robust features (SURF) [9], or Harris corners, and obtain

sufficient feature matches. There are also some approaches [99, 30] using

simple line features for the feature extraction. Arican and Frossard [4] and

Hansen et al. [52] suggest special local feature detectors and descriptors

for catadioptric images mostly based on the classical feature detectors and

descriptors.

There are several methods to improve the ego-motion estimation result

more or less independently from the different estimation approaches. Mo-

tion constraints can be used to decrease computational time and improve

the accuracy. In [95] the authors assume a planar and circular motion to

parameterize the motion with only one feature correspondence. Moreover,

outliers can be removed with the random sampling consensus (RANSAC)

algorithm [32] which has been established as an iteratively standard method

to obtain model parameters from data with outliers. Since the motion is

estimated incrementally, the errors are accumulated over time which intro-

duces drift of the estimated trajectory compared to the real trajectory. This

drift can be reduced by bundle adjustment [118], the local optimization over

the last frames, or by loop closure [24], the detection of previously visited

places.

However, in this work we focus on the two-frame unconstraint motion

estimation. We refrain from using any bundle adjustment or loop closure

detection as our primary goal is to demonstrate the feasibility of using a

catadioptric stereo camera setup with our novel proposed centered projec-

tion model.

4.2. Sensor Setup

For the applications, more precisely the ego-motion estimation presented

in this chapter and the dense 3D reconstruction presented in the next chap-

ter, we use a similar sensor setup as for the calibration evaluation (Chap-

ter 3.3.1). In particular, we use the same hypercatadioptric cameras where

the camera position deviates from the optimal position approximately by

20 mm in axial direction. We mounted two of these cameras on top of

our driving platform AnnieWAY such that they are horizontally aligned as

shown in Fig. 4.1a. The baseline between the cameras is approximately 0.8
meters.
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4. Ego-motion Estimation

(a) Driving Platform AnnieWAY (b) Projected Velodyne Points
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(c) Sensor Setup

Figure 4.1.: Recording Platform. This figure (a) shows our driving platform An-

nieWAY with two horizontally aligned hypercatadioptric cameras. In (b) the repro-

jected Velodyne point cloud to the catadioptric image is shown, where the color de-

notes the depth of the point. A top view of the sensor setup with the corresponding

coordinate systems as well as the transformations between the sensors is depicted

in (c).

Furthermore, the platform is equipped with a high precision GPS/IMU

system that delivers ground truth motion and a Velodyne HDL-64E rotating

3D laser scanner that provides laser scans with a horizontal field of view of

360◦ and a vertical resolution of 64 laser beams. Thus, the laser scanner

delivers a 3D point cloud of the environment. We use the 3D point cloud of

the laser scanner as accurate ground truth 3D information.
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4.3. Ego-motion Estimation

Moreover, the vehicle contains a perspective stereo camera system fac-

ing in frontal direction of the ego-vehicle. The perspective cameras are

Flea2 1.4 Megapixels color cameras and have a baseline of approximately

0.6 meters. All cameras are triggered by the Velodyne when it is facing

forward. This induces a frame rate of 10 Hz (fps) for the cameras. The

IMU has a frame rate of 100 Hz and the closest time stamp is chosen for

synchronization. With these setup of two catadioptric and two perspective

cameras, a laser scanner and the IMU/GPS system we captured different

urban scenarios.

The different sensors need to be intrinsically and extrinsically calibrated

with respect to the reference coordinate system which we have chosen to

be the left catadioptric camera coordinate system. The transformation be-

tween the sensors as well as the coordinate systems of the different sensors

are shown in Fig. 4.1c. The catadioptric camera calibration is achieved with

the presented catadioptric stereo calibration toolbox using planar checker-

boards in different positions and orientations. The extrinsic calibration

(rotation and translation) between the two catadioptric cameras is denoted

as Hex.

For the extrinsic calibration Hcam,velo of the Velodyne with respect to

the catadioptric reference camera, we reproject the laser scanner point cloud

to the corresponding catadioptric image with a manually chosen initial

transformation. We obtain the exact transformation by a non-linear opti-

mization with the Levenberg-Marquardt algorithm similar to the optimiza-

tion of the catadioptric camera parameters. We minimize the Euclidean er-

ror between the catadioptric image points and the reprojected image points

from the 3D laser points of 50 manually selected correspondence points.

For the correspondence points we choose corners which are visible in the

reprojected point cloud from the laser scanner and in the catadioptric image.

The projected laser point cloud in the catadioptric camera image is shown

in Fig. 4.1b, where the color of the projected point denotes the depth. The

transformation between the GPS/IMU and the Velodyne Hvelo,imu as well

as the calibration of the perspective cameras Hpex are obtained with the

approaches in [41, 42].

4.3. Ego-motion Estimation

In this work, we present a stereo ego-motion estimation method with two

catadioptric cameras which estimates the motion between the poses of two

consecutive frames. We refrain from using any sophisticated method such

as bundle adjustment, loop closure, or a motion model and focus on two-

frame motion only to demonstrate the feasibility of using catadioptric cam-
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4. Ego-motion Estimation

Figure 4.2.: Ego-motion Estimation. This figure shows the ego-motion estimation

method divided into the two steps: Sparse 3D point cloud estimation and the motion

estimation process. The input of the method are two consecutive stereo image pairs

and the intrinsic and extrinsic calibration of the stereo camera. The result of the

method is a six DOF motion vector.

eras with the proposed projection model. However, we expect that improve-

ments in the simple task directly translate into improvements when using

more advanced algorithms. In particular, loop closure detection in cata-

dioptric images, where also loops in the opposite driving direction could be

detected, reduces the drift of the resulting trajectories.

An overview of the presented ego-motion estimation method is shown in

Fig. 4.2. We use two consecutive stereo image pairs (for time step t−1 and

t) as well as the proposed intrinsic and extrinsic catadioptric calibration

result as input for the method. The ego-motion estimation method with

a stereoscopic catadioptric camera system is divided into two main parts.

In a first step a sparse 3D point cloud from the previous frame (t − 1) is

estimated and in the second part we calculate the ego-motion between the

poses in the current (t) and previous frame. Finally, we achieve a six degree

of freedom (DOF) motion vector not constrained to planar motion. Thus,

we estimate a 3D translation vector tM in x-, y- and z-direction as well as

3D rotation vector rM which represents a rotation matrix in the Rodrigues

formulation. In the following the two main parts are explained in detail.

4.3.1. Sparse 3D Point Cloud

In the first part, we compute a sparse 3D point cloud from two consecutive

stereo image pairs. Therefore, corresponding features in all four catadiop-

tric images are matched. A similar matching strategy to the circle matches

for perspective images in [43] is applied. Hence, we initially find a match

between the previous left and previous right image. Then, we search for the
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4.3. Ego-motion Estimation

corresponding match for the selected feature point in the previous right im-

age in the current right image, then for the corresponding matches between

the current right and current left image and finally for the match between

the current left and previous left image. A feature match is only taken as a

valid candidate, if the feature point in the previous left image from the last

matching step coincide with the feature point from the first matching step.

We concentrate on local point features for the correspondence search

between the images which allow the computation of a 3D position. In con-

trast, line features allow the computation of a 2D position without the height

of the world point only. For the feature detection and matching we use com-

mon matching strategies which achieve good performance in perspective

image pairs [79, 80]. Some works [95, 120] partly use this features in cata-

dioptric images, however, an evaluation concerning the performance of this

features in catadioptric images against ground truth is still missing. We fill

this gap and conduct a comparative study on feature matching on catadiop-

tric images using high precision ground truth. We evaluate the performance

of different common feature detector and descriptor combinations on cata-

dioptric images.

For the detection of interesting feature points, we use the popular SIFT

(Scale Invariant Feature Transform) [72] and the similar but faster SURF

(Speeded Up Robust Features) [9] detector. We also use the very efficient

FAST (Features from Accelerated Segment Test) [93] feature detector and

his extensions ORB (oriented FAST and rotated BRIEF) [94], which also

computes the orientation, and BRISK (Binary Robust Invariant Scalable

Keypoints) [68], which search maximas in the 3D scale space. To describe

the feature points, we use the rotation and scale invariant common SIFT

and SURF descriptors which are unfortunately too slow for real-time appli-

cations due to the expensive calculation of gradients. We also evaluate the

recently proposed binary descriptors BRIEF (Binary Robust Independent

Elementary Features) [19], ORB, and BRISK, which are very fast to com-

pute and match, since they use simple binary tests between pixels and the

Hamming distance instead of the L2-norm as a distance measure value. In

Chapter 4.4.1 we show the performance evaluation of the different feature

matching strategies. For the evaluation of our motion estimation method

we use an appropriately performing feature detector.

As we do not have any prior knowledge about the movement in tempo-

ral direction, we cannot use the epipolar geometry to simplify the corre-

spondence search. Consequently, we search feature matches in the whole

catadioptric image, accept for the black margin and the ego-vehicle itself.

Since we do not use bundle adjustment over a larger number of frames and

observe only feature matches between two neighboring frames, we reduce
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4. Ego-motion Estimation

(a) Matches before Bucketing (b) Matches after Bucketing

Figure 4.3.: Feature Matching. In (a) the catadioptric image with corresponding

feature matches from all four images is depicted. The spatial stereo correspon-

dences are shown in green and the temporal correspondences in magenta. In (b)

the remaining feature matches after bucketing are shown as well as the cells for the

bucketing algorithm in blue. Feature matches in the red area are ignored due to the

bad reconstruction accuracy in this area.

the outliers (false matches) by constraining the movement of corresponding

points in the images with a maximum distance between matching features.

Moreover, we use a bucketing technique to reduce the number of corre-

spondences and achieve a uniform distribution of the feature points in the

image. The reduced feature number speeds up the ego-motion estimation

while a better distribution improves the result of the ego-motion avoiding

biases. In practice, we divide the catadioptric image in 16 cells depending

on the azimuth angle shown in Fig. 4.3b. For each cell we allow a maxi-

mum of 12 feature matches. Consequently, we have a maximum number

of 192 matches for further processing. In Fig. 4.3 the result of the corre-

spondence search in spatial and temporal direction before (a) and after (b)

bucketing is depicted. The spatial stereo matches are shown in green and

the temporal matches in magenta.

Afterwards, we estimate the initial 3D world points from the 2D image

correspondences from the previous left and right image with triangulation.

A 3D point can be computed as the midpoint of the shortest distance be-

tween the left and right reflecting viewing rays. Thus, we compute for each

image point the reflecting ray on the mirror surface going through the op-
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4.3. Ego-motion Estimation

timal single viewpoint. To compute the reflection rays we use the inverse

central-centered projection function Q−1(u, v) (see Eq. 2.34).

Reconstruction Accuracy The reconstruction accuracy of the triangula-

tion from two horizontally aligned catadioptric cameras depends on the 3D

world point position of the estimated point, particularly on the azimuth an-

gle ϕ of the viewing rays. We have presented a detailed analysis for this

dependency for two [104] and three [105] cameras. To show this depen-

dency, we simulate a 3D environment and perform a Monte Carlo simula-

tion. Herein, we simulate a circular point cloud with constant height around

the midpoint of the camera baseline and project the 3D points to the image

plane. Afterwards, we create 100 samples of each image point and disturb

each sample with Gaussian noise of standard deviation 1.5 pixels. Then,

we perform the triangulation of each sample to achieve the 3D point and

subsequently reconstruct each 3D point to the image plane. We interpret

the accuracy by computing mean and standard deviation of the Euclidean

error between the reconstructed and the ground truth image point.

Fig. 4.4b shows the normalized mean Euclidean error for a circular point

cloud with radius eight meters around the cameras and constant height de-

pending on the azimuth angle. The distribution of the 3D reconstruction for

all samples of the point cloud is depicted in Fig. 4.4a. The error is maximal

at ϕ = 90◦ and ϕ = 270◦ respectively, which coincide with the baseline

between the cameras. Subsequently, a reconstruction along the baseline be-

tween the two cameras is not possible as expected. The simulation results

allow us to make a judicious selection of the area used for feature matches.

In Fig. 4.3b we mark this area where we do not use the feature matches in

red.

4.3.2. Motion Estimation

After estimating the sparse 3D point cloud by triangulation in the previous

frame, we compute the ego-motion of the vehicle between the current (t)
and previous (t− 1) frame by minimizing the reprojection error in the im-

age. As already mentioned, we consider six motion parameters, a 3D trans-

lation vector tM and a 3D rotation vector rM resulting in a rotation ma-

trix RM . We transfer the triangulated 3D points pl,t−1 from the previous

reference frame in the current left frame pl,t and in the current right frame

pr,t with [
pl,t

1

]
= HM

[
pl,t−1

1

]
(4.1)
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Figure 4.4.: Reconstruction Accuracy. This figure shows the dependency of the

reconstruction accuracy from the azimuth angle ϕ of the viewing ray. In (a) the re-

construction result for all samples of a simulated noisy circular point cloud with 8 m

radius and constant height around the cameras is shown. (b) depicts the normalized

mean Euclidean error μd as a function of the azimuth angle ϕ .
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Figure 4.5.: Ego-motion Estimation. This figure shows the rigid motion between

the ego-vehicle at three different time steps where HM is the motion between two

consecutive frames.

[
pr,t

1

]
= HexHM

[
pl,t−1

1

]
(4.2)

where

HM =

[
RM (rM ) tM

0 1

]
(4.3)

is the rigid motion between two frames in homogeneous coordinates and

Hex the transformation between the left and right camera. The relation-

ship between an ego-vehicle at different time steps is illustrated in Fig. 4.5.

The motion parameters rM and tM between two frames are obtained by a

non-linear optimization using the Levenberg-Marquardt algorithm. We iter-

atively minimize the reprojection error for all feature correspondences ncor

yielding

rM , tM = argmin
r̃M ,t̃M

{
ncor∑
i=1

‖q(E)
l,i − q

(∗)
l,i (pl,t(rM , tM ))‖

2

2︸ ︷︷ ︸
left camera

+

λ ‖q(E)
r,i − q

(∗)
r,i (pr,t(rM , tM ))‖

2

2︸ ︷︷ ︸
right camera

}
(4.4)

with λ ∈ {0, 1}. The matched feature points in the left image are denoted

by q
(E)
l , while the projected image points in the left image are q

(∗)
l . The

matched and projected points in the right image are denoted as q
(E)
r and

q
(∗)
r respectively. The projected points are obtained by projecting the es-
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timated 3D points depending on the motion parameters with the centered

projection model (see Eq. 2.33) or the central reference models.

In our experiments we consider two cases: We perform the motion esti-

mation after triangulation from both cameras in the previous frame by min-

imizing the reprojection error in the current left reference camera image

(λ = 0) only and by minimizing in both current camera images (λ = 1).

For both cases we initialize the motion parameters rM and tM to zero

which is sufficient for convergence after few iterations. To achieve ro-

bustness against outliers, we use the motion estimation method within a

RANSAC scheme. Thus, we first estimate the motion parameters for m
iterations independently using three randomly selected correspondences,

since this is the minimum number of feature correspondences to estimate

the six motion parameters. In our experiments we use 50 iterations which

is sufficient to obtain an outlier free subset with adequate probability. For

each RANSAC iteration we compute the reprojected feature points which

have an error smaller than a threshold of five pixels and count these points

as inliers. Afterwards, we use all inliers of the iteration with the maximum

number of inliers and estimate the motion parameters with a final non-linear

optimization step.

4.4. Evaluation

We evaluate the presented motion estimation method on different urban

scenarios captured with the presented sensor setup. In particular, we show

the benefit of the centered projection model compared to common central

projection models with this application.

First of all, we evaluate the feature matching on real catadioptric images

since an evaluation of feature matching strategies on catadioptric images is

missing in the literature. Afterwards, we use an appropriate feature match-

ing method to evaluate the ego-motion estimation for the centered projec-

tion model in comparison to popular state-of-the-art central catadioptric

projection models. For a quantitative result we use the GPS/IMU trajecto-

ries as ground truth. Moreover, we compare the ego-motion results from a

stereoscopic catadioptric camera setup against the results of a perspective

stereo camera setup capturing the same scene. In the end, we show the

resulting accumulated trajectories on high fidelity top view maps created

from the catadioptric images.
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Detector Number Runtime [ms]

SIFT 2118 1646.60

SURF 5058 1145.53

FAST 3081 12.11

ORB 423 83.62

BRISK 1074 132.70

Table 4.1.: Feature Detector Evaluation. This table shows the mean number of

detected keypoints and the mean runtime for different feature detectors evaluated

on 1 000 randomly selected image pairs from different urban sequences.

4.4.1. Feature Matching

Before we evaluate the ego-motion estimation, we analyze which standard

feature matching strategies for perspective images can also handle the large

image distortions and blur in catadioptric images. Therefore, we evaluate

different feature detectors and descriptors which have shown good perfor-

mance for standard perspective cameras [80, 79]. For the different detector

and descriptor methods we use the OpenCV implementation [13]. Since

two consecutive frames are used for the ego-motion estimation, we have

a small baseline between two temporal frames similar to the baseline in a

spatial image pair. Thus, we only evaluate the matching strategies between

two spatial neighboring catadioptric image frames.

The performance of the different matching strategies is evaluated with

the Velodyne laser scanner. We reproject the 3D Velodyne point cloud to

both images of the catadioptric image pair. To achieve a dense 3D ground

truth point cloud, we accumulate the laser point clouds of seven frames

with an ICP point-to-plane fitting [41]. This constrains the evaluation to

static scenes but increases the probability to find a corresponding ground

truth point to the matched feature point. The vertical field of view of the

Velodyne is much smaller than the one of the catadioptric camera as shown

in Fig. 4.1b. Therefore, we evaluate only feature matches in the overlap-

ping area. For every matched feature point in the first catadioptric image,

we estimate the corresponding projected Velodyne point in this image and

compute the corresponding ground truth feature point in the second image.

We calculate the Euclidean distance in the second image between the com-

puted projected Velodyne correspondence point and the matched feature

point as an error of the feature matching.

The detectors and descriptors are evaluated on 1 000 randomly selected

image pairs of different urban sequences. In Table 4.1 we show the mean

number of detected feature points as well as the mean runtime for the fea-
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Detector Descriptor Precision Time Correct All

[s] matches matches

FAST SIFT 0.90 2.33 205 226

FAST SURF 0.12 1.21 136 1152

FAST BRIEF 0.79 0.74 279 354

FAST ORB 0.73 0.75 168 230

FAST BRISK 0.77 1.63 193 250

Table 4.2.: Descriptor Evaluation. This table depicts performance and runtime of

different descriptors for the same number of FAST feature points. The values are

mean values over 1 000 image pairs from different urban sequences.

ture detection in one image pair for different detectors. The largest number

of detected feature points is achieved with the SURF feature detector. How-

ever, this detector needs around 1.1 seconds to detect feature points in both

images of the catadioptric image pair which is not applicable for real-time

applications. The most efficient detector is the FAST detector which also

achieves a sufficient number of matches in around 0.01 seconds per image

pair.

For a fair comparison of different feature descriptors, we use the same

number of keypoints, all extracted by the FAST detector. We evaluate the

precision which is computed by

precision =
correct matches

all matches
(4.5)

and the mean runtime of the descriptors. As correct matches we count the

feature matches which have a smaller error than a threshold of five pixels.

Table 4.2 shows the precision and the runtime as well as the mean number

of all feature matches and the mean number of correct matches.

Concerning the feature matching, we use the distance measure as pro-

posed for the particular descriptor in the OpenCV implementation and take

only the best matches depending on a threshold. For the combination of

FAST features and SURF descriptor this threshold based selection does not

work well, so the precision is very small in this case. However, although

the number of matches is very large only the smallest number of correct

matches is found. The best precision is achieved with the SIFT descrip-

tor followed by the BRIEF descriptor. A high precision is desirable, since

it reduces the number of required RANSAC iterations in the ego-motion

method. Since the BRIEF descriptor is about four times faster than SIFT,

we use the BRIEF descriptor for the ego-motion estimation. Due to the
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small baseline of the image pairs and the involved small deformations in the

image, a non-rotation and scale invariant descriptor is sufficient to achieve

good feature matches in the catadioptric image pairs. Therefore, we use

the FAST corner detector in combination with the BRIEF descriptor for the

ego-motion estimation method with catadioptric cameras.

4.4.2. Motion Results for different Projection Models

We evaluate the results for the ego-motion estimation on three urban se-

quences with different frame lengths in the range of 2 300 to 4 000 frames

against the ground truth GPS/IMU motion Himu. Therefore, we transform

the ground truth motion in the reference camera coordinate system

Hgt = Hcam,velo ·Hvelo,imu ·Himu ·H−1
velo,imu ·H−1

cam,velo (4.6)

with the calibrated transformation between IMU and Velodyne laser scan-

ner Hvelo,imu and the transformation between Velodyne and the left refer-

ence camera Hcam,velo.

We compare the ego-motion estimation results obtained with the pre-

sented centered projection model against the one obtained with the common

central models from Scaramuzza et al. [96] and Mei and Rives [75]. For

the Scaramuzza model we use the improved calibration result instead of the

original one as presented in Section 3.2.4. For each projection model the

same feature matches combining FAST corner detector and BRIEF feature

descriptor are used to compute the motion estimation. We obtain around

1 300 feature matches with the circle matching strategy before bucketing is

used, depending on the scene information.

For comparing the different projection models, we compute the ego-

motion after triangulation with both previous cameras by minimizing the

reprojection error in the left reference camera image only (similar to mini-

mizing in monoscopic motion estimation) and in both camera images. The

influence of using a central model for slightly non-central cameras is partic-

ularly pronounced when minimizing the ego-motion in one camera only. To

evaluate the motion estimation we compute the end-point error ei(j) ∈ R3

of the motion estimation for frame i starting at frame i − j. For minimiz-

ing in one camera image we choose j = 200 frames which approximately

corresponds to a driven path of 200 meters depending on the driving speed.

In Table 4.3 (left side, rows 1 - 4) we show the end-point errors after 200
frames for minimizing in one camera image only. We compute the mean

Euclidean norm end-point error ‖ei‖ for all frames of all sequences as well

as the mean end-point errors eix in x-, eiy in y- and eiz in z-direction. In

Fig. 4.6 we illustrate the end-point errors for the three evaluated sequences
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Error One Camera Two Cameras

[m] Centered Mei Scara. Centered Mei Scara.

j = 200

||ei|| 8.84 14.51 16.53

eix 2.16 1.63 2.07

eiy 2.40 2.48 3.19

eiz 7.72 14.01 15.89

j = 1000

||ei|| 29.51 49.38 61.08 10.61 11.72 16.90

eix 8.54 12.91 22.26 7.16 6.20 11.43

eiy 8.05 11.90 19.81 5.55 4.94 8.96

eiz 24.69 44.04 48.36 2.57 6.04 3.52

Table 4.3.: Motion Estimation Results for Catadioptric Projection Models. This

table shows the end-point error ei(j) for an accumulated trajectory estimated by

ego-motion estimation with minimizing in only one image (left) or in both images

(right) with the different catadioptric projection models. The end-point error is

computed for j = 200 frames (rows 1 - 4) when minimizing in one image and for

j = 1000 frames (rows 5 - 8) when minimizing in both images. The errors are

mean values over all 10 300 frames from all sequences.

for all methods. In Table 4.3 and Fig. 4.6 it is clearly visible that the end-

point error of the trajectories computed with the proposed centered model is

much smaller compared to the estimation with the central reference models.

Mainly the error in z-direction which corresponds to the altitude, is about

two times smaller while the error in x- and y-direction is similar.

The same results can be seen in Fig. 4.7 for the accumulated trajectory

of the first sequence compared to the ground truth GPS trajectory (black).

In (a) a top view of the sequence with 2 300 frames, overlaid on a BING

satellite image, is depicted. A side view of a part (the last 1 000 frames)

of the same trajectory is shown in (b). While the performance of the mo-

tion estimation with all different projection models looks similar in the top

view, it is clearly visible that the proposed centered method (blue) per-

forms much better for estimating the z-component of the trajectory. Over-

all, due to the axial deviation from the single viewpoint condition of ap-

proximately 20 mm, the centered model is able to significantly reduce drift

in z-coordinate direction for the ego-motion estimation method by mini-

mizing in one camera.

In the same way, we compare the results for the motion estimation min-

imizing the reprojection error in both images. As expected the errors be-

tween the ground truth and the estimated trajectories with all projection

models are much smaller than for minimizing in only one camera image
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Figure 4.6.: End-point Error. This figure shows the end-point errors ei(j) for the

ego-motion estimation with one camera (left side) after j = 200 frames and with

two cameras (right side) after j = 1000 frames for three different urban sequences

of varied length.
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Figure 4.7.: Ego-motion Estimation One Camera. This figure shows the estimated

accumulated trajectory by minimizing the reprojection error in only one camera

with the proposed centered projection model and with the central reference models.

The top view of the trajectory (a) shows the whole sequence with 2 300 frames,

while the side view (b) shows only a part (last 1 000 frames) of the sequence.
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Figure 4.8.: Ego-motion Estimation Both Cameras. This figure shows the esti-

mated trajectory of the second sequence (4 000 frames) by minimizing the repro-

jection error in both camera images with the centered projection model and the

central reference models.

as shown in Table 4.3 (rows 5 - 8). Thus, the errors between the ground

truth and the estimated trajectory are mainly effected by the quality of the

ground truth depending on calibration errors between the sensors. To opti-

mize the calibration, we take the first 100 frames of a separate sequence and

optimize the rotation parameters of the transformation between the IMU

and the reference camera by minimizing the reprojection error between all

poses. For a fair comparison, we do this calibration refinement for each

projection method separately and compare the resulting trajectories against

the corresponding ground truth. However, this calibration refinement also

compensates for possibly existing bias in the motion estimation method it-

self. Nevertheless, for long sequences we see the same effect, that the drift

in z-direction and the mean end-point error are smaller with the proposed

73



4. Ego-motion Estimation
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Figure 4.9.: Ego-motion Estimation Both Cameras. This figure shows the esti-

mated trajectory of the third sequence (4 000 frames) by minimizing the reprojec-

tion error in both camera images with the centered projection model and the central

reference models.

centered projection model than with state-of-the-art central projection mod-

els. Therefore, in Table 4.3 on the right side, we only show the end-point

error ei(j) for minimizing the motion parameters in two spatial camera im-

ages for j = 1000 frames. The estimated trajectories by minimizing in

both images for two sequences are shown in Fig. 4.8 and Fig. 4.9 in top

view overlaid on the BING satellite images.

In summary, the proposed centered projection model significantly im-

proves the ego-motion estimation result with real catadioptric cameras

which mainly deviate the single viewpoint condition in axial direction,
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Error [m] Catadioptric Perspective

||ei|| 2.84 8.28

eix 1.70 2.67

eiy 1.84 3.37

eiz 0.50 5.96

Table 4.4.: Comparison Catadioptric vs. Perspective. This table shows the end-

point errors ei for ego-motion estimation with a stereo catadioptric camera setup

compared to a stereo perspective camera setup by minimizing in both images. The

errors are mean values over all frames while the end-point error is computed for

j = 200 frames.

particularly in terms of altitude. Moreover, the computational cost of the

centered model is less than for the Scaramuzza model and similar to the

central Mei projection.

4.4.3. Motion Results compared to Perspective Stereo

We perform the same ego-motion estimation experiments without any mo-

tion constraint or bundle adjustment on perspective stereo images to show

the benefit of using catadioptric cameras for an ego-motion application in

difference to perspective cameras. We use the same approach as presented

(Fig. 4.2) with a perspective projection model (see Appendix A.3) instead

of the catadioptric projection models and minimize the reprojection error

in both images. The bucketing and triangulation steps are adapted to per-

spective images with a bucketing in 16 squares and a direct triangulation

from the rays through the image plane. To compare the motion estimation

results of the different camera setups, we transform the perspective motion

to the left catadioptric reference coordinate system, which means that for

the perspective motion also the x-y-plane presents approximately the top

view plane.

Naturally, the feature matches to compute the ego-motion are in a lim-

ited field of view and only in front of the ego-vehicle. This explains the

larger end-point error as shown in Table 4.4, since the translation part is

more difficult to estimate. The values in Table 4.4 are again the mean norm

end-point error and the mean end-point errors in x-, y- and z-direction for

j = 200 frames over all frames and sequences, as in the previous section

for minimizing the errors in one camera image only.

Thus, we reduce the end-point error for motion estimation with catadiop-

tric cameras and the proposed centered projection model approximately by

factor three compared to perspective cameras. A resulting trajectory with
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Figure 4.10.: Ego-motion Catadioptric vs. Perspective. This figure shows the

estimated trajectories by minimizing the reprojection error in both camera images

with a catadioptric stereo camera setup and a perspective stereo camera setup.

perspective cameras and catadioptric cameras in top view overlaid on the

BING satellite image is shown in Fig. 4.10.

4.4.4. Top View Map

From the resulting accurate trajectories, we compute top view maps of the

driven path and the nearby surrounding. To create a 2D top view map, we

reproject the resulting 3D trajectory on the x-y-ground plane. A top view

map is generated by stitching together generated birds-eye view images

with the motion information. Therefore, we create a distortion free virtual

perspective birds-eye view image from the centered catadioptric image.

76



4.4. Evaluation

In general, a point pvip on a virtual perspective image plane is given by

xvip = (fp sin θ0 − vp cos θ0) cosϕ0 + up sinϕ0 (4.7)

yvip = (fp sin θ0 − vp cos θ0) sinϕ0 − up cosϕ0 (4.8)

zvip = fp cos θ0 + vp sin θ0 (4.9)

where up and vp are the pixels on the image plane, ϕ0 and θ0 is the position

of the origin from the virtual image, and fp the virtual focal length in pixel.

This relationship is denoted in Fig. 4.11a. For the top view image, we remap

a virtual image parallel to the ground plane (ϕ0 = 0, θ0 = −180◦) with

the virtual focal length fv = 200 pixels. In Fig. 4.11 the remapped virtual

image (c) and the corresponding original catadioptric image (b) are shown.

By choosing another focal length, we achieve a different zoom factor of the

perspective birds-eye view image.

Afterwards, we stitch the virtual images of every frame to obtain a high

fidelity top view map of the driven path. Hence, we rotate each virtual

image with respect to the first one and map it to the translated position. A

resulting top view map with a driven path of 600 frames, computed with the

frame-to-frame method and without any bundle adjustment or loop closure,

is shown in Fig. 4.12. Fig. 4.13 presents two further parts of other top

view maps, including lane markings on the street, computed from the visual

estimated motion.
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Figure 4.11.: Virtual Perspective Birds-Eye View Image. In (a) the relationship

and the parameters to create a virtual perspective image from the centered catadiop-

tric image are depicted. In (b) the original catadioptric image is shown from which

we compute the virtual perspective birds-eye view image (c).
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Figure 4.12.: Top View Map. This figure shows a driven trajectory of 600 frames

estimated with the centered projection model in the computed top view map. The

trajectory is entirely computed from two-frame motion with catadioptric camera

images and depicted as green stars.

Figure 4.13.: Top View Parts. This figure shows two further parts of top view maps

computed with the centered projection model including a more complex scenario

with different lane markings.
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Chapter 5
Dense 3D Reconstruction

This chapter presents a second application for autonomous vehicles which

can be improved by the large field of view of catadioptric cameras and

benefits from the proposed efficient and accurate projection model. We

propose a novel method for dense 3D reconstruction of the static parts of

the whole scene around the vehicle with a catadioptric stereo camera setup.

The chapter starts with an overview of existing 3D reconstruction meth-

ods for omnidirectional cameras. Afterwards, we explain the construction

of one 360◦ disparity image from two consecutive frames of a stereoscopic

catadioptric camera. We use planarity priors to improve the disparity im-

age resulting in a smooth omnidirectional depth image. The results of our

approach are compared against laser-based ground truth depth maps in dif-

ferent urban scenarios.

5.1. State-of-the-Art

Similar to visual ego-motion estimation, there is a large body of literature

focusing on dense stereo matching or 3D reconstruction with perspective

cameras. An overview and evaluation of different approaches for perspec-

tive cameras is given in [101, 41]. In general, existing methods can be

divided in local methods, which compute a similarity measure in a small

window, and global methods, which solve an optimization problem and in-

corporate smoothness priors.

However, there exists little work on dense 3D reconstruction with omni-

directional cameras. Some approaches use perfect vertically aligned cata-

dioptric stereo systems which simplifies the epipolar lines to radial lines
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in the catadioptric images [48, 125]. Unfortunately, these systems typi-

cally only allow for accurate reconstruction in a very short range, due to

a small baseline. Svoboda and Pajdla [113] describe the epipolar geome-

try for all kinds and positions of central catadioptric camera systems. They

show that epipolar lines correspond to general conics in the omnidirectional

image. For general camera motion, some authors propose to reproject the

omnidirectional image to multiple perspective images, such as Gehrig [40],

or to one panoramic image on a virtual cylinder, e.g., Bunschoten and

Kröse [16] and Gonzalez and Lacroix [50]. Afterwards, stereo correspon-

dences are established by searching along sinusoidal shaped epipolar curves

[16, 64, 116] in the panoramic images.

Gonzalez and Lacroix [50] rectify the panoramic images resulting in

epipolar curves reduced to straight lines. Thus, the correspondence search

in panoramic images is simplified to a one-dimensional search problem.

Geyer and Daniilidis [46] propose a conformal rectification method for

parabolic images directly applied to the omnidirectional image. They

remap the observations from bipolar coordinates to a rectangular grid to

simplify the search problem. Another rectification method which we use in

this work is the spherical rectification [34, 71, 5]. This rectification method

is very flexible, can handle the existence of more than one epipole, and

does not depend on a particular projection model.

Some approaches use two or multiple views to obtain a dense 3D recon-

struction of the complete environment. Arican and Frossard [5] optimize

a pixel-wise energy function using the graph-cut algorithm to compute a

dense depth image from two rectified omnidirectional images. Similar ap-

proaches were presented by Fleck et al. [33] using three omnidirectional

images and He et al. [54] using two panoramic images to obtain dense

panoramic disparity images. Lhuiller [69] concentrates on the problem

of fusing depth maps from multiple views for larger models from video

sequences. Initially, they reconstructed the scene from three consecutive

frames which are projected onto six faces of a virtual cube in order to al-

low for traditional stereo matching techniques. The local results are fused

into a global model by selecting the most reliable viewpoint for each scene

point and merging the 3D points using their median. This approach has

been extended in [128] towards reconstruction of larger models from video

sequences.

5.2. Dense 3D Reconstruction

In this work, we present a novel dense 3D reconstruction method for omni-

directional images which does not rely on constructing virtual perspective
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Figure 5.1.: Dense 3D Reconstruction. This figure shows an overview over the

presented dense reconstruction method which is separated in three main parts: The

rectification, the computation of a virtual panoramic image, and the plane estima-

tion. The method based on the same camera setup presented in Fig. 4.1c and needs

the result of the ego-motion estimation as well as the calibration and two consecu-

tive stereo frames as input.

images from omnidirectional ones as in [40]. Moreover, we overcome the

problem of depth blind spots induced from reconstructions with only two

cameras as shown in Chapter 4.3.1. We eliminate this problem by using the

same camera setup as for the ego-motion estimation (shown in Fig. 4.1c)

with two catadioptric cameras at two consecutive frames. Thus, we obtain

stereo information from four catadioptric image pairs (2 × 2 images), two

spatial image pairs (spatial stereo) at time t and t + 1 as well as two tem-

poral image pairs (motion / temporal stereo), one for the left and one for

the right camera. Through combination of the catadioptric image pairs into

one unified view, we enable efficient inference and overcome the problems

of blind spots near the epipoles and occluded regions in some parts of the

images. The basics of this approach have been published in [103].

The method to achieve a dense 3D reconstruction of the complete envi-

ronment is divided into three main parts as shown in Fig. 5.1. The inputs

to our method are two consecutive stereo image pairs, the intrinsic and

extrinsic calibration (from Chapter 3.2) and the ego-motion estimation be-

tween two consecutive frames (from Chapter 4.3). In a first step, we rectify

the four catadioptric image pairs to enable efficient scanline methods. To

obtain one 360◦ virtual image, we compute a disparity image from each

rectified image pair by applying efficient matching strategies and combine

these four disparity images to one resulting panoramic depth map. Finally,
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Figure 5.2.: Epipolar Geometry. This figure shows the epipolar conics in a cata-

dioptric image pair. The cyan conics in the right image depict the corresponding

curves to the red dots in the left image. The blue dots, where all curves intersect,

denote the epipoles.

we consider the static parts of the scene to follow the augmented manhattan

world assumption [102], which means that the scene can be described by

vertical and horizontal planes in 3D. We estimate plane hypotheses with a

novel voting scheme for 3D planes in omnidirectional space and obtain an

omnidirectional depth map by selecting the best plane hypothesis for each

pixel solving a discrete energy minimization problem.

5.2.1. Rectification

A rectification process is necessary for an efficient dense 3D reconstruction

to reduce the computational cost and simplify the correspondence search

to a one-dimensional problem. Therefore, the images are remapped such

that corresponding points are located on the same pixel row in a recti-

fied image pair. For perspective image pairs corresponding points lie on

straight lines in the images. All these lines in one image intersect in one

point, the epipole. For common perspective stereo rigs the epipoles are

located outside the image plane. In difference corresponding points in

central catadioptric image pairs lie on conics [113]. Moreover, there ex-

ist two epipoles in each image plane where all conics intersect each other

as shown in Fig. 5.2. The cyan colored conics in the right image corre-

spond to the red dots and green conics in the left image. The blue dots

denote the two epipoles in each image. Since there exist two epipoles in the

image plane, standard rectification methods used for perspective cameras
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which are based on homographies [53] cannot be applied. Besides, the de-

scription of the epipolar geometry as well as an efficient remapping of the

images is only valid for central catadioptric cameras which fulfill the single

viewpoint condition.

As we apply the centered model which simplifies each non-central model

by a central one, we are able to compute the epipolar geometry and remap

the omnidirectional images to a rectified image pair. We use the spherical

rectification similar to [34, 5] in the spherical domain with the 3D world

point p = [ρ, ϕ, θ]T with

ϕ = arctan
y

x
θ = arctan

√
x2 + y2

z
ρ =

√
x2 + y2 + z2 (5.1)

computed from the world point p = [x, y, z]T in the Cartesian coordinate

system. The relationship between Cartesian and spherical coordinates is

depicted in Fig. 2.9. The epipolar constraint in the spherical domain reads

as

mT

1E12m2 = 0 with E12 = [t]×R (5.2)

and is the same as for perspective cameras, with the difference that m1

and m2 are the three-dimensional projections in the first and second cam-

era of the world point p on the mirror surface and not the projected two-

dimensional image points. E12 is the essential matrix depending on the

transformation R and t between the two frames of the image pair. The

four epipoles e11, e12, e21, e22 on the unit sphere can be obtained from the

essential matrix using the singular value decomposition [53].

After computing the symmetric epipoles on the unit sphere, the spherical

images are rotated such that the epipoles coincide with the coordinate poles

(z-axis). Thus, the line connecting both camera centers is the same as the

new z-axis of the rotated coordinate system shown in Fig. 5.3. The remain-

ing degree of freedom of this rotation is chosen to keep the remaining axis

of the rotated coordinate system similar to the one of the original mirror

coordinate system, which depends on the transformation between the two

cameras. Thereafter, in the rotated spherical coordinate system a 3D world

point pS lies on the epipolar plane ΠR with the same azimuth angle ϕS

in both rotated coordinate systems. Thus, epipolar great circles coincide

with the longitudes and disparity estimation reduces to a one-dimesional

search problem with constant azimuth angle ϕS . The rectified spherical

image depends on the azimuth angle ϕS ∈ [0, 2π] and the inclination angle

θSi
∈ [0, π] from the rotated world points

pS = (xS , yS , zS)
T = R−1

Si
· p, (5.3)
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ΠR

e11 e12 e21 e22

ϕs

θs1 θs2

γ
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ys1 ys2

zs1 zs2
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‖t‖

ϕs

xs1

Figure 5.3.: Spherical Rectification. After applying the rectifying rotation, a 3D

point pS lies on the epipolar plane ΠR with the same azimuth angle ϕS in both

rotated spherical coordinate systems. The rotated coordinate system depends on the

relative position of both cameras determined by extrinsic calibration (spatial stereo)

or motion estimation (motion stereo), respectively.

where RSi
is the rotation matrix between the original and the rotated coor-

dinate system. The index i ∈ {1, 2} for θS and RS denotes the first and the

second camera of the image pair.

In this work, we have spatial as well as temporal image pairs. The rel-

ative positions between the cameras are determined from the extrinsic cal-

ibration Hex(Rex, tex) and the ego-motion estimation HM (RM , tM ), re-

spectively. The extrinsic calibration does not change during a sequence of

images which means that the rectification map in the spatial case is com-

puted once at the beginning during the calibration process. Since the trans-

formation for the temporal case changes for every frame, this rectification

map has to be computed at runtime. The rotation matrices RS1
and RS2

for the first and the second image of an image pair in the spatial stereo case

are obtained as

RS1
= [r1, r2, e11]

r2 = y0 − (eT11y0)e11

r1 = r2 × r3

RS2
= RexRS1

where yo denotes the normalized unit vector in y-direction of the original

omnidirectional reference camera coordinate system (before rotation) and

e11 is the epipolar point as illustrated in Fig. 5.3. For the temporal stereo

case the direction of the translation is approximately parallel to the y-axis.

Therefore, to avoid numerical instabilities for the image pair in temporal

direction, we use r2 = x0 − (eT11x0)e11 where xo denotes the normalized
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(a) Spatial Stereo

z0

y0

x0
yS

zS

xS

(b) Temporal Stereo

Figure 5.4.: Rotated Coordinate Systems. This figure shows the reference mirror

coordinate systems (black) and the rotated sphere coordinate systems (colored) for

the spatial stereo (a) and the temporal stereo case (b).

unit vector in original x-direction. The coordinate systems before and after

the rotation are shown in Fig. 5.4 for the spatial stereo case (a) and for the

temporal stereo case (b).

The result of the spherical rectification for a spatial image pair at one

time step (a) and the result for a temporal image pair from the left camera

(b) are depicted in Fig. 5.5. The horizontal lines show scanlines with the

same azimuth angle ϕS on which corresponding points in both images are

located. In case of temporal stereo, we only rectify a part of the image. For

the left temporal case we rectify the region inside the magenta colored box,

since the parts on the other side of the vehicle are better visible in the right

temporal image pair. Consequently, we rectify a similar part for the right

image pair. This limitation speeds-up the computation of the rectification

maps for the temporal image pairs which needs to be done at runtime. We

use bilinear interpolation to achieve smooth rectified image pairs. Note, this

rectification method is also valid for other central image models. In Fig. 5.6

we show the result of the spherical rectification for a temporal fisheye stereo

image pair with the same scanlines as in the catadioptric case.

5.2.2. Virtual Panoramic Image

After spherical rectification, we compute one disparity image for each rec-

tified image pair using Semi-Global Matching [56] which has shown good

performance for perspective image pairs [41]. In Fig. 5.7 the first images

of the four rectified input image pairs are shown for each case. In (a) and

(b) the spatial stereo images for two consecutive frames are depicted, and

(c) and (d) show the rectified parts of the temporal image pairs of the left

and right camera. Moreover, the figure shows the resulting disparity images

(e) - (h) for the corresponding image pairs.
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θS1
θS2

ϕS

(a) Rectified Spatial Stereo Image Pair

θS1
θS2

ϕS

(b) Rectified Temporal Stereo Image Pair

Figure 5.5.: Rectified Catadioptric Stereo Pairs. This figure shows the result of

the spherical rectification for a spatial (a) and a temporal (b) stereo image pair.

The horizontal green lines are scanlines with the same azimuth angle ϕS on which

corresponding points are located. The red circles show corresponding points in both

images. For the temporal image pair we later use only a part of the rectified image

denoted with the magenta box for efficiency.
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θS1
θS2

ϕS

Figure 5.6.: Rectified Fisheye Image Pair. This figure shows the result of the

rectification process for a temporal fisheye stereo image pair. The red dots denote

again corresponding points and the green lines depict horizontal scanlines.

As already shown in Chapter 4.3.1 the accuracy of the 3D reconstruction

depends on the position of the resulting 3D point. Reconstructing points

along the baseline of the cameras is not possible. In the rectified images this

fact leads to highly distorted images near the epipoles which are located at

the margins (θSi
= 0 and θSi

= π) of the rectified images. Therefore,

we clip the margins of the images. For the spatial stereo disparity images

this means that we extract 3D information only in the front (120◦) and

rear (120◦) parts of the ego-vehicle. For the motion stereo disparity we

extract 3D information only from the corresponding side (120◦ each) of

the camera. Furthermore, large parts of the spherically rectified images are

occluded by the recording platform itself. Therefore, we overlay a mask of

the ego-vehicle where we do not compute disparity.

In the spherical domain, the angular disparity is defined as

γ = |θS1
− θS2

|, (5.4)

the difference between the angles θS1
and θS2

of the two viewing rays

from the two images corresponding to the 3D world point pS . For cal-

culating the depth ρS of pS two cases have to be distinguished as illus-

trated in Fig. 5.8. We differentiate the case where the camera moves in

negative z-direction (a) and the case where the camera moves in positive

z-direction (b). In the first case we have

sin γ =
h

ρS
and sin θS2

=
h

‖t‖ . (5.5)
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(a) Spatial (Time t) (b) Spatial (Time t+ 1)

(c) Motion Left

(d) Motion Right

(e) Spatial (Time t) (f) Spatial (Time t+ 1)

(g) Motion Left

(h) Motion Right

Figure 5.7.: Rectified and Disparity Images. This figure shows the rectified images

(a)-(d) as well as the corresponding resulting disparity images (e) - (h) obtained by

Semi-Global Matching for all four image pairs.

Thus, the depth ρS is computed to

ρS =
‖t‖ · sin θS2

sin γ
(5.6)

where ‖t‖ denotes the length of the baseline between the cameras. Sim-

ilarly, for the second case with camera motion in positive z-direction, we

obtain

ρS =
‖t‖ · cos θS2

sin γ
. (5.7)
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(a) Camera moves in negative z-direction

γ
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θS2
θS1

h
ρS
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zS2
zS1‖t‖

cam 2 cam 1

(b) Camera moves in positive z-direction

Figure 5.8.: Reconstruction. This figure shows the derivation of the depth ρS as

a function of γ and θS2
for the two distinguished cases with camera motion in

negative z-direction (a) and in positive z-direction (b).

With the depth ρS we compute the 3D point p in the original Cartesian

coordinate system

p = RS1

⎛
⎝ ρS sin θS cosϕS

ρS sin θS sinϕS

ρS cos θS

⎞
⎠ . (5.8)

After estimating the 3D points from each of the four spherical disparity

images, we combine all information in a single new virtual 360◦ intensity

and depth image. The coordinate system of the new virtual camera is cho-

sen to be in the center between the four original camera centers, namely

between the left and right camera at two consecutive frames as shown in

Fig. 5.9. This coordinate system is chosen to minimize the relative dis-

placements of all reflected rays from all camera pairs. We transform all

3D points to the new coordinate system by first transforming them to the

previous left coordinate system, which is chosen as the reference camera

coordinate system. Next, we shift the 3D points by a pure translation tV to

the new coordinate system in the middle between all four cameras. Further-

more, the x-y-plane of the new virtual camera coordinate system is chosen

parallel to the ground plane. We estimate this rotation RV by computing

the dominant plane below the camera using RANSAC plane fitting of all

3D points.

While merging the four disparity images we are faced with overlapping

regions in 3D space despite already cropped disparity images. Depth values

in the overlapping regions are merged by computing the mean value. This
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Figure 5.9.: Virtual Camera Coordinate System. This figure shows the position

of the virtual camera coordinate system between the left and right camera at two

consecutive frames.

is sufficient since the reconstruction accuracy in the remaining disparity

images is similar over all parts. Through remapping all 3D points to the

new virtual camera coordinate system with

HV =

[
RV tV

0 1

]
, (5.9)

we obtain one single virtual 360◦ intensity image I(ϕV , θV ) and an inverse

depth image D(ϕV , θV ). The inverse depth is defined as

D = 1/r with r =
√
x2
V + y2V

independent of the z-component of each 3D point. Both virtual 360◦ im-

ages, the intensity and inverse depth image, where the color denotes the

depth, are illustrated in Fig. 5.10.

5.2.3. Plane Estimation

After computing the virtual 360◦ inverse depth image, we improve the qual-

ity of the depth image to achieve a smoother 3D reconstruction and reject

remaining outliers. We propose this step since catadioptric images, in par-

ticular, suffer from blur and low contrast. To improve the depth images, we

describe the static part of the 3D world with horizontal and vertical planes

92
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Figure 5.10.: Virtual Panoramic Images. These images show the virtual 360◦ in-

tensity image (top) as well as the virtual 360◦ inverse depth image (bottom), where

the color denotes the inverse depth, computed from the four image pairs.

following the augmented manhattan world assumption [102]. This assump-

tion does not require vertical planes to be orthogonal with respect to each

other as in [35, 36] but only with respect to the horizontal planes. Indoor

scenarios are often composed of mainly vertical and horizontal planes as

in [107, 129], but also many urban scenes follow this assumption. In dif-

ference to perspective cameras, planes in 3D do not correspond to planes

in the catadioptric image. Therefore, we cannot use planarity priors which

have been proposed for stereo matching with traditional perspective cam-

eras [76, 124].

We present a simple representation for vertical and horizontal planes in

catadioptric images. To find plane hypotheses in the image, we first par-

tition the virtual 360◦ image into approximately 1 000 superpixels using

the recently proposed StereoSLIC [124] algorithm. Thus, we reduce the

number of pixels for which plane hypotheses are estimated for efficient in-

ference. This partitioning is illustrated in Fig. 5.11 for one virtual intensity

image. After computing plane hypotheses for the whole image, we estimate

the best plane hypothesis for each superpixel. We formulate the problem as

a discrete energy minimization problem and solve it using belief propaga-

tion.
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Figure 5.11.: Superpixels. This figure depicts the superpixel partitioning computed

with the StereoSLIC algorithm on the virtual 360◦ intensity image.

x, yθV

z

r

dh
ρV

pV

(a) Horizontal Plane (Side View)

x

y

dv

r
αv

pVϕV

(b) Vertical Plane (Top View)

Figure 5.12.: Plane Hypotheses. This figure shows the relationship between a point

pV described by the spherical parameters ϕV , θV , and its depth r and the plane

parameters dh, dv , and αv for horizontal (a) and vertical planes (b) in the coordinate

system of the virtual camera.

Plane Hypotheses For the description of vertical and horizontal planes

we use the fact that the coordinate system of the virtual 360◦ image is par-

allel to the ground plane (x-y-plane). Thus, we are able to describe hori-

zontal planes which are parallel to the ground plane with a single variable

(distance dh) as depicted in Fig. 5.12a. Vertical planes which are perpen-

dicular to the ground plane are described with two variables (angle αv and

distance dv) as illustrated in Fig. 5.12b. Since the depth r from the inverse

depth image D(ϕV , θV ) = 1/r is independent from the z-component of

a 3D point, the relationship between a 3D point pV and the distance of a

horizontal dh and vertical plane dv passing through the point pV are given

by

94



5.2. Dense 3D Reconstruction

(a) Horizontal Hough Array Hh(dh) (b) Vertical Hough Array Hv(dv, αv)

(c) Images with a Horizontal Plane (d) Images with three Vertical Planes

Figure 5.13.: Hough Voting for Planes in Omnidirectional Depth Images. The

images show the results of the hough transformation for horizontal (a) and vertical

planes (b). In (c) and (d) the virtual panoramic intensity (top) and inverse depth im-

age (bottom) are shown with the planes corresponding to the maxima in the hough

space overlaid. The different colors in the vertical case show different plane hy-

potheses corresponding to the same colored maxima.

dh(r, θV ) = r · tan θV (5.10)

dv(r, ϕV , αv) = r · cos (ϕV − αv) (5.11)

where ϕV and θV denote the pixel position in the inverse depth image

D(ϕV , θV ).
This description of the planes suggests a simple hough voting scheme

to estimate all vertical and horizontal planes which exist in the virtual im-

age, similar to the hough transformation for extracting lines. We use a

one-dimensional horizontal plane accumulator array Hh(dh) as shown in

Fig. 5.13a to accumulate the votes for horizontal planes over all superpix-

els in the virtual panoramic inverse depth image. For vertical planes we use

a two-dimensional vertical plane accumulator array Hv(dv, α) as depicted

in Fig. 5.13b. We disambiguate pixels belonging to horizontal and vertical

surfaces to make the votes more discriminative by casting each vote with
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an additional weight. The likelihood of a pixel belonging to a horizontal

or vertical plane is used as weight function. This likelihood is modeled by

logistic regression using the vertical inverse depth image gradient as input.

The parameters of the sigmoid function are estimated using a representa-

tive training image for which all horizontal and vertical planes have been

labeled manually.

We compute the maxima of the horizontal Hh(dh) and vertical Hv(dv, α)
accumulator arrays using an efficient non-maxima suppression implemen-

tation [84] slightly extended to handle panoramic cycle images. Fig. 5.13

shows the resulting maxima in the horizontal (a) and vertical (b) accumula-

tor array as well as the corresponding pixels belonging to the horizontal (c)

and vertical plane hypotheses (d) are depicted as colored pixels in the vir-

tual inverse depth and virtual intensity images. For the vertical case we

show three maxima corresponding to three different plane hypotheses in the

hough space in different color. The superpixels which belong to the corre-

sponding planes are identically colored in the virtual images. On average,

we get 2.3 horizontal plane hypotheses and 46 vertical plane hypotheses

per image depending on the threshold for non-maxima suppression.

Plane Optimization Given the plane hypotheses we find the best plane

hypothesis for each superpixel under the assumption that nearby superpix-

els likely belonging to the same surface. We formulate the problem of as-

signing each superpixel to one of the plane hypotheses as a discrete energy

minimization problem. The minimized energy function is

E(S) =
∑
s∈S

[Eu1
(s) + Eu2

(s)]︸ ︷︷ ︸
unary terms

+
∑

(s1,s2)∈NS

Ep(s1, s2)︸ ︷︷ ︸
pairwise terms

(5.12)

with unary terms Eu and pairwise terms Ep. The variables of interest, each

corresponding to one superpixel is denoted as S = {s1, . . . , sM}, where

s takes a discrete plane index s ∈ {1, . . . , N} as value. Here, M denotes

the total number of superpixels in the image and N is the number of plane

hypotheses, while NS denotes the set of neighboring superpixels, i.e., all

superpixels that share a common boundary.

The first unary energy term models the inverse depth fidelity

Eu1
(s) = wu1

a(s)
∑

qV ∈Qs

⎡
⎢⎣εu(D̂(qV , s)−D(qV )︸ ︷︷ ︸

xu1

)

⎤
⎥⎦ (5.13)
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with weight parameter wu1
. Here, D̂(qV , s) is the inverse depth at pixel

qV = (ϕV , θV )
T predicted from the plane with index s and D(qV ) is the

inverse depth estimate at pixel qV from the virtual inverse depth image.

The function εu(xu1
) = min(|xu1

|, τu) is a robust penalty function with

truncation parameter τu. Furthermore, Qs denotes the set of all pixels with

valid inverse depth hypothesis D(qV ) which are covered by superpixel s.

The function a(s) ∈ [0, 1] predicts the accuracy of the inverse depth map D
averaged over superpixel s from training data. We introduce this function

as we found the reliability of Semi-Global Matching to correlate strongly

with image blur and hence also image location when dealing with omnidi-

rectional images. In practice, we take a(s) as the average ratio of correctly

predicted depth values computed from a held-out training set.

The second unary term models the prior probability for surfaces to be

horizontal or vertical and is given by

Eu2
(s) = wu2

×
{

2 ph(s)− 1 if s ∈ H
1− 2 ph(s) otherwise

(5.14)

where wu2
is a weight parameter and H is the set of horizontal planes with

ph(s) =
1

|Qs|
∑

qV ∈Qs

p′h(qV ) ∈ [0, 1] (5.15)

is the prior probability of superpixel s being horizontal, where p′h(qV ) is

the probability of pixel qV being horizontal. We compute this probability

from a separate training set augmented with manually labeled polygons

of vertical and horizontal surfaces. For plane hypotheses that agree with

the expected plane type, Eq. 5.14 assigns a positive score and otherwise a

negative score.

Our pairwise model encourages neighboring superpixels to agree at their

boundaries

Ep(s1, s2) = wp

∑
qV ∈Bs1,s2

εp(D̂(qV , s1)− D̂(qV , s2)︸ ︷︷ ︸
xp

) (5.16)

where wp is a smoothness parameter and Bs1,s2 is the set of boundary pixels

that are shared between superpixel s1 and s2. Similar to the depth fidelity

term, we take εp = min(|xp|, τp) as the robust penalty function with trun-

cation parameter τp.

We use min-sum loopy belief propagation [12] to approximately min-

imize the energy function and select the best plane for each superpixel.

The parameters of the energy model are estimated using a separate train-
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ing sequence with 80 images with labeled ground truth information. We

use Bayesian optimization [62] to estimate the parameters from the train-

ing data since Eq. 5.12 depends non-linearly on the parameters τu and τp,

yielding in our case wu1
= 1.2, wu2

= 1.0, wp = 1.0, τu = 0.05, and

τp = 0.08.

5.3. Evaluation

We evaluate the dense 3D reconstruction approach on stereo sequences cap-

tured with the sensor setup proposed in Section 4.2. We show quantitative

and qualitative results for different urban scenarios. For the quantitative

results we compare against laser-based ground truth.

5.3.1. Ground Truth

For the quantitative comparison we use the Velodyne laser scanner as a

reference sensor. We captured a dataset with 152 diverse and challenging

urban scenes. The dataset is divided in 80 training and 72 test scenes. To

evaluate the quantitative results we focus on static scenes without any mov-

ing parts. This allows us to accumulate the laser point cloud (±5 frames)

with an ICP point-to-plane fitting to achieve dense ground truth maps. By

remapping the 3D laser points to the virtual camera coordinate system and

to a panoramic image, we obtain a virtual inverse depth image with laser-

based ground truth depth. The panoramic image with the depth from the

Velodyne is shown in Fig. 5.16a (top).

Note that the vertical field of view of the Velodyne is smaller than the

field of view of the catadioptric camera. For the quantitative evaluation we

only consider image parts where image and laser information is provided.

We have also manually labeled all horizontal and vertical planes in the im-

ages to evaluate the quality of depth information depending on surface in-

clination. The presented Hough transformation and the ground truth depth

information from the laser scanner is used to determine the parameters of

the labeled planes.

5.3.2. Quantitative Results

We evaluate the presented dense 3D reconstruction against state-of-the-art

stereo vision algorithms which have shown good performance on stan-

dard perspective stereo tasks [41]. We apply simple Block Matching (BM),

Semi-Global Matching (SGM) [56], as well as the recently proposed Stereo-

SLIC algorithm [124] on the omnidirectional images. For Block Matching
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and Semi-Global Matching we use the OpenCV implementation. We also

implement a simple winner takes all (WTA) plane selection strategy for

the proposed approach as a reference method, which selects the best plane

independently for each superpixel. This plane selection strategy investi-

gates the importance of the proposed plane-based prior. The algorithm

corresponds to minimizing Eq. 5.12 while ignoring the pairwise energies

Ep(s1, s2) and the horizontal prior Eu2
(s).

To compare the results against each other, we compute an inverse depth

error

e = |Dgt(q)−Dest(q)| (5.17)

for each pixel q for which ground truth is available, since the inverse depth

error is independent from the distance to the measured points. Here, Dgt(q)
is the inverse depth in the Velodyne ground truth image at pixel q and

Dest(q) is the estimated inverse depth using the respective method. We

fill in missing values in the estimated resulting inverse depth image using

background interpolation [41, 56] to guarantee a fair comparison.

We report the mean number of bad pixels and the mean inverse depth

error averaged over the full test set. As bad pixels we consider all pixels

with an inverse depth error e larger than 0.05 m−1. In Table 5.1 the mean

percentage of bad pixels for all baseline methods and the proposed method

averaged over the 72 test images is shown. Table 5.2 depicts the mean

values of the inverse depth error for all methods. In both tables the first

column states the errors for all pixels where depth ground truth is available.

The other columns consider planar regions (vertical and/or horizontal) only.

For the winner takes all algorithm we vary the threshold of the non-maxima

suppression stage between 50 and 500 (denoted as WTA 50 / WTA 500 in

the tables). Thereby, we achieve between 5 and 150 plane hypotheses for

the winner takes all algorithm. For the proposed planarity prior method we

set the non-maxima suppression threshold to 150.

The experiments show that the proposed plane-based method is able to

achieve high-quality omnidirectional depth maps and outperforms state-of-

the-art depth estimation techniques in terms of the 3D reconstruction error.

The difference is especially pronounced for horizontal planes where we

reduce the number of bad pixels as well as the mean inverse depth error.

Besides, the proposed method also decreases the number of bad pixels for

vertical planes. In Fig. 5.14 the depth error with the presented plane-based

method is shown which depends exponentially from the measured distance.

The green line shows the mean inverse depth error e = 0.013 m−1 com-

puted depending on the distance and the red boxes depict the mean mea-

sured errors for the different distance ranges. For instance, the mean recon-
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Bad Pixels (%) All Pixel All Planes
Horizontal Vertical

Planes Planes

SGM 11.89 13.41 17.45 2.52

BM 9.52 7.27 6.75 5.81

StereoSLIC 8.95 9.50 12.24 1.85

WTA 50 11.62 13.22 17.48 2.11

WTA 100 11.63 13.16 17.40 2.10

WTA 150 11.59 12.85 17.04 2.20

WTA 200 11.62 12.28 16.33 2.33

WTA 300 12.63 11.96 15.29 6.64

WTA 500 14.66 11.98 13.28 14.10

Ours 4.04 1.24 1.03 1.51

Table 5.1.: Bad Pixels. This table shows the mean percentage of bad pixels (e >

0.05 m−1) for all baseline methods and the proposed method averaged over all 72
test images. The first column depicts the errors for all pixels where depth ground

truth is available, while the other columns consider planar regions (of a specific

type) only.

Mean Error (m−1) All Pixel All Planes
Horizontal Vertical

Planes Planes

SGM 0.026 0.029 0.034 0.008

BM 0.022 0.022 0.023 0.013

StereoSLIC 0.021 0.022 0.026 0.008

WTA 50 0.029 0.033 0.038 0.008

WTA 100 0.029 0.033 0.038 0.008

WTA 150 0.029 0.032 0.037 0.009

WTA 200 0.029 0.031 0.036 0.009

WTA 300 0.030 0.030 0.034 0.016

WTA 500 0.031 0.030 0.032 0.023

Ours 0.013 0.009 0.010 0.008

Table 5.2.: Mean Inverse Depth Error. This table shows the mean inverse depth

error for all baseline methods and the proposed method averaged over all 72 test

images. The first columns depicts the errors for all pixels where depth ground truth

is available, while the other column consider planar regions (of a specific type) only.
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Figure 5.14.: Reconstruction Error. This figure shows the exponential dependency

between the reconstruction error and the measured distance. The green line denotes

the computed mean error from the inverse depth error 0.013 m−1 (see Table 5.2: our

method with all pixels) while the red boxes show the mean measured reconstruction

error for the different distance ranges.

struction error with the presented method is only 30 cm between 3 m and

4 m and the error for points between 10 m and 11 m is 1.3 m.

5.3.3. Qualitative Results

For the qualitative evaluation we show inverse depth images and the result-

ing 3D reconstruction with the different analyzed algorithms. In Fig. 5.15

an inverse depth image (top) and the resulting 3D reconstruction (bottom)

obtained with the proposed plane-based prior approach on 360◦ images is

shown. Fig. 5.16 and Fig. 5.17 depict a comparison of the results for the dif-

ferent techniques to achieve dense 3D information for two different frames.

In (b) - (e) the results for the reference algorithms, Block Matching, Semi-

Global Matching, StereoSLIC and winner takes all with threshold 150 are

shown. In (f) the results from the proposed approach are presented. More-

over, the ground truth depth maps from the laser scanner (a) (top) and the

virtual 360◦ intensity images (a) (bottom) for the related frame are depicted.

In the inverse depth images the color denotes the distance, where green are

close and blue distant points. The 3D reconstruction is obtained when re-

projecting all pixels of the corresponding inverse depth image back into
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5. Dense 3D Reconstruction

Figure 5.15.: Dense 3D Reconstruction. This figure shows the result for the inverse

depth image (top) and the resulting 3D reconstruction (bottom) with the proposed

plane based model on the virtual 360◦ image.

3D. A random selection of challenging 3D scenes reconstructed with the

proposed method is given in Fig. 5.18.

The proposed approach delivers dense 360◦ panoramic inverse depth im-

ages and a resulting 3D reconstruction of the whole environment. In com-

parison to the reference methods the depth images are much cleaner and the

resulting 3D reconstruction is smoother.
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5.3. Evaluation

(a) Ground Truth / Velodyne (b) BM

(c) SGM (d) StereoSLIC

(e) WTA 150 (f) Ours

Figure 5.16.: Inverse Depth Maps and 3D Reconstructions. The figure shows the

inverse depth images and the resulting 3D reconstruction for the same scene for the

baseline algorithms (BM, SGM, StereoSLIC, WTA 150) and the proposed plane

based estimation.

103



5. Dense 3D Reconstruction

(a) Ground Truth / Velodyne (b) BM

(c) SGM (d) StereoSLIC

(e) WTA 150 (f) Ours

Figure 5.17.: Inverse Depth Maps and 3D Reconstructions. The figure shows the

inverse depth images and the resulting 3D reconstruction for the same scene for the

baseline algorithms (BM, SGM, StereoSLIC, WTA 150) and the proposed plane

based estimation.
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5.3. Evaluation

Figure 5.18.: 3D Reconstruction. This figure shows 3D reconstructions for differ-

ent urban scenarios obtained when reprojecting the inverse depth maps produced by

our proposed plane based method into 3D. Note, that the viewpoint of the rendered

3D point clouds deviates significantly from the viewpoint of the four cameras.
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Chapter 6
Conclusion and Outlook

This thesis has proposed a novel stereoscopic omnidirectional camera sys-

tem for autonomous applications which overcomes the problem of the lim-

ited field of view of traditional perspective cameras. Two horizontally

aligned catadioptric cameras which provide a 360◦ panoramic view of the

environment are used on top of our driving platform. This setup improves

many applications for autonomous vehicles which suffer from the limited

field of view from perspective cameras. We have shown the potential of our

system for two relevant applications, ego-motion estimation and dense 3D

reconstruction.

A novel centered projection model for slightly non-central catadioptric

cameras has been proposed which is very accurate and has cheep compu-

tational costs at the same time. The proposed centered model fills the gap

between central models which are efficient but are not accurate enough and

non-central models which are accurate but too slow for real-time applica-

tions. For the proposed centered projection model once a non-central base

model is calibrated to achieve the exact viewing rays. Afterwards, the view-

ing rays are centered and only the efficient central-centered model is used

any time we use a projection function. To compute the parameters of the

centered projection model, we have developed a catadioptric stereo cali-

bration toolbox for calibrating multiple catadioptric cameras. This toolbox

also allows the calibration of different central reference projection mod-

els. We have shown a comparison of the calibration results of the proposed

centered projection model against three common central projection mod-

els. To demonstrate the advantages of the proposed projection model we

have not only analyzed the possibly misleading reprojection error of the
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6. Conclusion and Outlook

calibration targets, but also a localization error of a localization experi-

ment with ground truth has been evaluated. Based on these experiments

and the approximation error of the centered projection model, this thesis

has shown that the proposed centered projection model approximates non-

central catadioptric cameras sufficiently well as long as the distance to the

observed points is relatively large compared to the deviation from the single

viewpoint which is a reasonable assumption in practice.

As first application an ego-motion estimation method for stereoscopic

catadioptric cameras has been presented which overcomes major draw-

backs of perspective cameras. We have shown that the motion estimation

benefits from the proposed centered projection model and the extended field

of view. These benefits have been illustrated with a comparison against the

motion estimation with catadioptric cameras using common central pro-

jection models and with perspective cameras. Furthermore, a compara-

tive study of feature matching strategies on catadioptric images evaluated

against laser-based ground truth has demonstrated that standard feature

matching strategies can also be sufficiently used on omnidirectional im-

ages. Afterwards, we have presented high fidelity top view maps of the

driven path created with the precise ego-motion estimation.

As a second application we show the advantage of the large field of view

for dense 3D reconstruction. We have presented a novel method to obtain

dense 360◦ depth images and the resulting 3D reconstruction. The proposed

method does not rely on constructing virtual perspective images from the

omnidirectional ones and overcomes the depth blind spots by combining

motion and spatial stereo. We have shown that planarity priors improve

the smoothness of the omnidirectional depth maps and outperform state-

of-the art depth estimation techniques in terms of 3D reconstruction error.

The 3D reconstruction for different static urban scenes has been exemplary

presented.

Regarding further extensions, the proposed setup as well as the efficient

and accurate projection model can be used for further applications which

also need precise 3D information of the environment such as tracking or

localization. For both applications the extended field of view promises an

improvement in the results of this tasks. Regarding the dense 3D recon-

struction, extensions towards integrating depth information from more than

two consecutive stereoscopic views allow for urban reconstruction at larger

scales. Moreover, the proposed dense 3D reconstruction combining motion

and spatial stereo is not limited to catadioptric images but can be applied

on all panoramic images, e.g., panoramic images obtained from multiple

fisheye images.
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Appendix A
Projection Models

A.1. Geometric Model

Here the computation of the 8th degree polynomial from the two constraints

(see Eq. 2.11 and Eq. 2.13) is explained in detail. Note, the points are all

represented in the rotated mirror coordinate system. For simplification we

omit the index R.

The first constraint can be derived from the law of reflection

wr = wc −
2n(wT

c n)

nTn
(A.1)

with

n =

⎡
⎣ xm

ym
Azm +B/2

⎤
⎦ , wc = (m− c) =

⎡
⎣ xm

ym − yc
zm − zc

⎤
⎦

and

wr × (p−m) = wr ×

⎡
⎣x− xm

y − ym
z − zm

⎤
⎦ = 0. (A.2)

By solving the reflection equation (Eq. A.2), substituting the mirror equa-

tion (see Eq. 2.10) x2
m + y2m = C −Az2m −Bzm and examine the first row

we achieve

I1 : k11(zm) · y2m + k12(zm) · ym + k13(zm) = 0 (A.3)
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A. Projection Models

with

k11 = − 8ycAzm + 8yczm − 8zyc − 4ycB

k12 = 4yycB + 8AzmC − 4Az2mB + 4zcAz2m − 4zcA
2z2m + 4zAz2m

− 4zBzc − 4zA2z2m + 8yycAzm − 4zcAzmB − 8zAzmzc−
4zAzmB + 4zC + 4z2mB − 8zmC − 2zmB2 + 4zcC − zcB

2−
zB2 + 4BC

k13 = − 4ycAz
2
mB − 8yAzmC + 8yAz2mB + 4yzcAz2m + 4yzczmB+

4yzcA
2z2m − 4zycAz2m − 4zyczmB + 4zycA

2z2m+

4yzcAzmB + 4zycAzmB − 4yAz3m + 4yA2z3m − 4zmycC+

zycB
2 − zmycB

2 + 4ycz
2
mB − 4yBC − 4yzcC − 4ycA

2z3m+

3yzmB2 + yzcB
2 − 4yz2mB + 4zycC + 4yzmC + 4ycAz3m

The second constraint is given by

(m− s)T · nΠ =

⎡
⎣ xm − 0

ym − 0
zm − zm +Azm +B/2

⎤
⎦ · nΠ = 0 (A.4)

with

nΠ = (p− c)× (s− c) =

⎛
⎝ x
y − yc
z − zc

⎞
⎠×

⎛
⎝ 0

−yc
−zc + zm −Azm −B/2

⎞
⎠

From this it follows,

c1(zm) · xm + c2(zm) · ym + c3(zm) = 0 (A.5)

with

c1 = (B + 2Azm)(yc − y) + 2yc(z − zm) + 2y(zm − zc)

c2 = x(B + 2zc − 2zm + 2Azm)

c3 = xyc(B + 2Azm)

Substitute

xm =
−c2ym − c3

c1
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A.2. Centered Projection Model

from Eq. A.5 in the mirror equation x2
m+y2m+Az2m+Bzm−C = 0 leads

to

I2 : (c21 + c22)︸ ︷︷ ︸
k21

y2m + 2c2c3︸ ︷︷ ︸
k22

ym + c23 + c21(Az2 +Bz − C)︸ ︷︷ ︸
k23

= 0 (A.6)

Combining I1 and I2 yields

f(zm) = k21(zm)
(
k23(zm)k12(zm)2 − k22(zm)k12(zm)k13(zm)+

k21(zm)k13(zm)2
)
− k11(zm)

(
− k13(zm)k22(zm)2+

k23(zm)k12(zm)k22(zm) + 2k21(zm)k23(zm)k13(zm)
)
+

k23(zm)2k11(zm)2 = 0.

(A.7)

Since each k depends quadratic from zm the polynomial depends on z8m.

A.2. Centered Projection Model

Since every central projection model can be represented in the form[
u
v

]
=

[
cu
cv

]
+ fc(θ)

[
cosϕ
sinϕ

]
, (A.8)

where (cu, cv) denotes the principal point, ϕ and θ are the angles of the

viewing ray and fc is an arbitrary monotonic and smooth function, it can be

exactly represented by the central-centered projection model. By rearrang-

ing the terms

ϕ = arctan
v

u
(A.9)

θ = f−1
c (

√
(u− cu)2 + (v − cv)2) (A.10)

we can compute the new image location with the central-centered projec-

tion model from the viewing rays.

Moreover, 3D points at infinity are equivalent mapped to the projection

they are derived from. Let p = λc[x, y, z]
T denote a 3D world point and
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A. Projection Models

t = [tx, ty, tz]
T an arbitrary finite translation of the viewing ray. Hence,

the angles are given as

θ = arctan
λcz + tz√

(λcx+ tx)2 + (λcy + ty)2
(A.11)

ϕ = arctan
λcy + ty
λcx+ tx

. (A.12)

For λc → ∞ we obtain

θ = arctan
z√

x2 + y2
(A.13)

ϕ = arctan
y

x
. (A.14)

Thus, we can represent the viewing ray orientation exactly using the central-

centered projection model.

A.3. Perspective Projection Model

For the perspective projection model, we use the normalized projection

similar to Eq. 2.18, using the world point p = [x, y, z]T instead of the

point on the mirror surface by

q(P )
n =

[
xn

yn

]
=

[
x/z
y/z

]
. (A.15)

The projected point q(P ) is given by

[
q(P )

1

]
=

⎡
⎣fu αfu cu
0 fv cv
0 0 1

⎤
⎦

︸ ︷︷ ︸
K

·
[
q
(P )
d

1

]
(A.16)

where fu, fv , cu, cv and α are the perspective calibration parameter and

q
(P )
d is the distorted point computed from

q
(P )
d = (1 + k1r

2
n + k2r

4
n + k5r

6
n) q

(P )
n

+

[
2k3xnyn + k4(r

2
n + 2x2

n)
k3(r

2
n + 2y2n) + 2k4xnyn

]
(A.17)

with rn =
√
x2
n + y2n and the distortion parameters k = [k1, . . . , k5]

T.
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environment perception with camera sensors is an important require-
ment for many applications for autonomous vehicles and robots. how-
ever, conventional perspective cameras have only a very limited field of 
view. In this work, we present a stereoscopic omnidirectional camera 
system for autonomous vehicles which resolves the problem of a limit-
ed field of view and provides a 360° panoramic view of the environment. 
We show that this camera setup overcomes major drawbacks of tradi-
tional perspective cameras in many applications for autonomous systems. 
  
We propose a novel projection model for slightly non-central catadioptric 
cameras which is very accurate and efficient at the same time. Moreo-
ver, a calibration toolbox to calibrate multiple catadioptric cameras with 
the proposed projection model was designed. Based on the proposed 
setup and projection model, we present an ego-motion estimation with 
catadioptric cameras which yields high precision estimates. the precise 
motion estimation is used to create high fidelity top view maps of the 
driven path and the nearby surrounding. furthermore, we present an ap-
proach to obtain dense 360° panoramic depth images and a dense 3d 
reconstruction of the environment from the catadioptric camera images.  
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