The Karlsruhe Series on
Software Design
and Quality

18

Scientific
Publishing

Omar-Qais Noorshams

Modeling and Prediction of I/0 Performance
in Virtualized Environments

The Karlsruhe Series on Software Design and Quality
Volume 18

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Modeling and Prediction
of 1/0 Performance in
Virtualized Environments

by
Omar-Qais Noorshams

ST bisnin

Dissertation, Karlsruher Institut ftr Technologie (KIT)
Fakultat fur Informatik

Tag der mundlichen Prafung: 12. Februar 2015

Referenten: Prof. Dr. Ralf Reussner, Prof. Dr. Samuel Kounev

Impressum

ﬂ(l Scientific

Publishing
Karlsruher Institut fur Technologie (KIT)
KIT Scientific Publishing

StraBe am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

This document — excluding the cover, pictures and graphs — is licensed

under the Creative Commons Attribution-Share Alike 3.0 DE License
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

@@@@ The cover page is licensed under the Creative Commons
BY NC ND

Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):
http://creativecommons.org/licenses/by-nd/3.0/de/

Print on Demand 2017

ISSN 1867-0067
ISBN 978-3-7315-0359-0
DOI: 10.5445/KSP/1000046300

Modeling and Prediction of I/O
Performance in Virtualized
Environments

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
der Fakultit fiir Informatik

des Karlsruher Instituts fiir Technologie

genehmigte
Dissertation

von
Omar-Qais Noorshams
aus Kabul, Afghanistan

Tag der miindlichen Priifung: 12. Februar 2015
Erster Gutachter: Prof. Dr. Ralf Reussner
Zweiter Gutachter: Prof. Dr. Samuel Kounev

Fiir meine Mutter

Abstract

Modern, future-oriented data centers increasingly rely on virtualization tech-
nology to host their services and applications efficiently and flexibly by shar-
ing the resources and allocating them on-demand. The dramatically increasing
amount of data generated and stored by today’s applications, however, poses
significant challenges for the data center operators to respect Service-Level
Agreements (SLAs) and guarantee adequate performance for their users. To
cope with such challenges, storage resources in today’s data centers have
evolved from simple disk-based arrays to sophisticated tiered systems with
complex caching and optimization strategies. Still, the storage resources are
usually highly underutilized and overprovisioned to avoid bottlenecks along
the infrastructure’s data I/O path, thus leaving highly expensive resources lie
waste. Performance modeling techniques in the area of performance engi-
neering can usually support to anticipate I/O performance bottlenecks and
employ the storage resources more reasonably. For a practical applicability,
however, these techniques need to be refined and tailored to capture the I/O
performance in modern virtualized environments. The increasing complex-
ity of the I/O infrastructure is a major challenge for practical performance
engineering approaches. Existing approaches usually address this issue at a
low modeling abstraction level and with specific focus on certain application
scenarios such that important capacity planning questions frequently remain
unanswered.

In this thesis, we present a novel performance modeling approach tailored
to I/O performance prediction in virtualized environments. The main idea
is to identify important performance-influencing factors and model them at
a practical abstraction level. Capturing these factors, we develop tailored
storage-level I/O performance models using complementary modeling for-
malisms based on statistical regression analysis and queueing theory. To
increase the practical applicability of these models, we combine the low-level

Abstract

I/O performance models with high-level software architecture models bridg-
ing the gap between the two abstraction levels. In summary, the contribution
of this thesis is a novel, systematic I/O performance modeling approach using
multiple complementary formalisms for practical performance predictions in
virtualized environments. Our approach is validated in a variety of case stud-
ies in state-of-the-art, real-world environments based on IBM System z and
Sun Fire hardware. Throughout the case studies, we successfully predict the
performance of I/O-intensive applications within the required accuracy of less
than 30 % mean prediction error. In general, our approach is designed for dif-
ferent application scenarios, such as answering capacity planning and system
sizing questions, evaluating the effect of system configuration and hardware
design decisions, and analyzing the scalability and the impact of workload
consolidation on shared resources in virtualized environments. Hereby, our
approach is targeted at an efficient resource usage and the continuous SLA
compliance with respect to I/O performance.

ii

Kurzfassung

Moderne Rechenzentren setzen zunehmend Virtualisierungstechnologien ein,
um die verfiigbaren Ressourcen zu teilen und sie gezielt bei Bedarf zuzuwei-
sen. Die immens steigende Menge an Daten, die von den heutigen Anwen-
dungen erzeugt und gespeichert werden, stellen die Betreiber der Rechen-
zentren jedoch vor grofle Herausforderungen, die Dienstgiitevereinbarungen
und die Performanzanforderungen der Anwendungen zu gewéhrleisten. Um
diesen hohen Anforderungen gerecht zu werden, haben sich die heutigen
Speicherressourcen von einfachen Festplattensammlungen hin zu komplexen,
vielschichtigen Systemen mit ausgekliigelten Zwischenspeicher- und Optimie-
rungsstrategien entwickelt. Dennoch verbleiben die Speicherressourcen fiir
gewohnlich hochgradig unausgelastet und iiberdimensioniert, um Performanz-
Flaschenhilse entlang des Daten-1/O-Pfades zu vermeiden, wodurch wertvol-
le Ressourcen verschwendet werden. Allgemein helfen die Modellierungs-
und Vorhersage-Techniken aus dem Bereich des Performance Engineering,
Performanz-Probleme vorauszusehen bevor sie auftreten, um die Speicherres-
sourcen effizient einzusetzen. Fiir die praktische Anwendbarkeit miissen diese
Techniken allerdings zur Bestimmung der I/O-Performanz in modernen vir-
tualisierten Umgebungen aufgrund der Komplexitit der Systemumgebung
und der Virtualisierungsschichten erweitert und verfeinert werden. In der
Forschung gibt es lediglich vereinzelte Ansitze, die die I/O-Performanz in
virtualisierten Umgebungen vorhersagen. Diese sind allerdings bei der Mo-
dellierung hiufig auf einem niedrigen Abstraktionsniveau und beschrinken
sich auf die Betrachtung ausgewihlter Szenarien, so dass wichtige Fragen zur
Kapazititsplanung unbeantwortet bleiben.

Diese Arbeit prasentiert einen neuen und speziell entwickelten Ansatz zur
Modellierung von I/O-Performanz in virtualisierten Umgebungen. The Ker-
nidee ist hierbei, die wichtigsten Einflussfaktoren zu identifizieren und diese
zur Performanzvorhersage auf einem angemessenen Abstraktionsniveau zu
modellieren. Zu diesem Zweck entwickelt diese Arbeit maBgeschneiderte,

ii

Kurzfassung

speicherorientierte I/O-Performanzmodelle mit Hilfe komplementirer For-
malismen aus den Bereichen der statistischen Regressionsanalyse sowie der
Warteschlangentheorie. Um die Anwendbarkeit dieser Modelle zu erhohen,
werden diese speichorientierten Modelle in anwendungsorientierte Modelle
von Software-Architekturen eingebettet, indem die Liicke der Abstraktionsni-
veaus dieser Modelle tiberbriickt wird. Zusammengefasst ist der Beitrag dieser
Arbeit ein neuer, systematischer Ansatz zur Modellierung von I/O-Performanz
mit Hilfe komplementirer Formalismen zur praktikablen Performanzvorhersa-
ge in virtualisierten Umgebungen. Der Ansatz wird im Rahmen von mehreren
Fallstudien in repréisentativen, realen Systemumgebungen basierend auf IBM
System z sowie Sun Fire Servern validiert. Hierbei wird die Performanz
von datenintensiven Anwendungen erfolgreich innerhalb der erforderlichen
Genauigkeit von bis zu 30 % durchschnittlicher Abweichung vorhergesagt.
Im Allgemeinen verspricht der Ansatz mehrere Einsatzmoglichkeiten, wie
Fragen zur Kapazitdtsplanung und Systemdimensionierung zu beantworten,
verschiedene Systemkonfigurationen und Hardware-Entscheidungen zu be-
werten, sowie die Skalierbarkeit und den Einfluss bei der Konsolidierung
von Arbeitslasten in virtualisierten Umgebungen zu untersuchen. Das Ziel
des Ansatzes ist einen effizienten Ressourceneinsatz sowie die durchgingige
Gewihrleistung von Dienstgiitevereinbarungen hinsichtlich I/O-Performanz
zu ermdoglichen.

iv

Danksagung

Diese Arbeit ist das Ergebnis, was erst durch die Unterstiitzung vieler Men-
schen moglich gemacht wurde.

Ein grofler Dank gilt meinen Betreuern Ralf Reussner und Samuel Kounev.
Ralf hat mich bereits in meiner Zeit als Student mit seiner einzigartigen Art
fasziniert und war einer der Hauptgriinde fiir meinen Verbleib in Karlsruhe,
als ich nach dem Studium schon fast auf dem Weg in die weite Welt war.
Fiir die einzigartige Unterstiitzung wéihrend der Promotion méchte ich mich
sehr bedanken. Samuel hat mich in den unzihligen Treffen und Diskussionen
wihrend den vergangenen Jahren sehr inspiriert und bei jeglichen Fragen stets
unterstiitzt. Fiir die intensive Zusammenarbeit und Hilfe, wie ich es selbst nie
erwartet hitte, bin ich sehr dankbar.

Weiterhin mochte ich mich bei allen Kollegen am SDQ und der Descartes-
Gruppe bedanken, mit denen ich zusammenarbeiten durfte. Einige mochte
ich an dieser Stelle fiir die Zusammenarbeiten, Diskussionen und die Un-
terstiitzung besonders erwihnen. Den ersten Schritt in die Gruppe habe ich
dank Anne Koziolek geschafft, die mich wihrend der Diplomarbeit super
betreut hat. Ich mochte mich auch bei Andreas Rentschler bedanken, der es
mit mir wihrend der Promotion in einem Biiro aushalten musste und mir bei
Projekten und Zusammenarbeiten ein toller Kollege war. Ebenso mochte ich
mich bei Robert Vaupel fiir die Zusammenarbeit bei verschiedensten Projek-
ten und den Blick aus der Industrie bedanken. Dank Philipp Merkle habe ich
es geschafft, verschiedene ,,architekturelle” Probleme zu 16sen und auch so
manch Diskussion am Abend in einer sportlichen Atmosphire fortzufiihren.
Vielen Dank insbesondere auch an Alexander Wert fiir das Gegenlesen der
Ausarbeitung.

Dariiberhinaus mdchte ich mich auch bei den von mir betreuten Abschluss-
arbeitern und Studenten fiir die spannende Zusammenarbeit und Hilfe bei

Danksagung

Publikationen bedanken: Axel Busch, Dominik Bruhn, Kiana Rostami, Ro-
land Reeb, Safa Omri. Es freut mich auch zu sehen, dass sich Axel und Kiana
auch fiir eine Promotion in unserer Gruppe entschieden haben.

SchlieBlich gilt ein ganz besonderer Dank meiner Mutter, ohne die diese
Arbeit nicht entstanden wire und der ich diese Arbeit widme.

Karlsruhe, im Februar 2015 Qais Noorshams

vi

Contents

Abstract.
Kurzfassung
Danksagung
1. Introductiono
1.1, Motivation
1.2. Thesis Goal and Research Questions
1.3. Existing Approaches
1.4. EvaluationCriteria
1.5. Approach and Contributions
1.6. Application Scenarios
1.7. Outline

l. Foundations

2. \Virtualization Technology
2.1. Server Virtualization

2.2. Storage Virtualization
2.2.1. SNIA Shared Storage Model

2.2.2. Storage Paradigms in Virtualized Environments

2.2.3. Discussion

3. Performance Engineering
3.1. Performance Modeling

3.2. Regression Analysis-based Modeling
3.2.1. Regression Model Creation.

vii

Contents

viii

3.3.
3.4.

3.2.2. Regression Model Evaluation
Queueing Theory-based Modeling
Software Architecture Modeling with the Palladio

Component Model (PCM)

Versatile I/O Performance Analysis in
Virtualized Environments

Methodology
4.1. Approach Overview
4.2. Reference System Environment
4.3. Outlook on Core Approach
Systematic Analysis of /O Performance-influencing Factors
5.1. Scientific Challenges
5.2. Classification of I/O Performance-influencing Factors .
5.2.1. Workload-relevant Factors
5.2.2. System-relevant Factors
5.3. I/O Workload Characterization for Performance Modeling . .
5.3.1. Workload Intensity
5.3.2. RequestSize
5.33. Request Mix
5.3.4. Request AccessPattern
5.3.5. Workload Locality
5.4. Automation of I/O Performance Evaluation and Workload
Characterization
5.4.1. Architectural View
5.4.2. Dynamic Sequence View
5.5, Summary
Creating Regression Analysis-based Models with Optimal
Parameterization
6.1. Scientific Challenges

6.2.

Regression Parameterization as an Optimization Problem . .
6.2.1. Problem Formulation
6.2.2. Stepwise Sampling Search (S3)

49
50

.52

52
54
56
56
58
58
58
60

62
62
63
63

Contents

6.3. Regression Model Selection
6.3.1. Survey of Popular Regression Techniques
6.3.2. Evaluation of Overhead and Complexity
6.3.3. Process for Regression Model Selection

6.4. Process for Modeling of I/O Performance in Virtualized
Environments Lo

6.5. Summary

Queueing Theory-based Modeling of I/0 Hardware and
Scheduling Aspects
7.1. Scientific Challenges
7.2. Methodology
7.3. System Environment Analysis
7.3.1. SystemSetup
7.3.2. Identification of Performance-Relevant System
ASPECES
7.3.3. Workload Characterization
7.4. 1/O Performance Models of Storage Hardware Aspects . . .
74.1. Planning
7.4.2. Cache Resource Model
7.4.3. Cache and RAID Resource Model
7.4.4. Prediction Process
7.5. 1/O Performance Models of Scheduling and Interference
ASDPECES . . o v o e e e e
7.5.1. Planning oL
7.5.2. Heterogeneous Workload Model
7.5.3. Multi-VMModel
7.5.4. Variable Workload Model
7.5.5. Prediction Process
7.6. Evaluation
7.6.1. Goals and Questions
7.6.2. 1/O Performance Models of Storage Hardware
ASPECES
7.6.3. 1/O Performance Models of Scheduling and
Interference Aspects
7. Summary

Contents

8.

Integrating Storage-level Models into Architecture-level
Modeling Approaches

8.1.
8.2.

8.3.

8.4.

Scientific Challenges
Methodology
8.2.1. Extending the Model-based Performance Prediction
Process
8.2.2. Refinement Transformation for Performance
Predictions
Realization of I/O Performance Prediction in the PCM . . .
8.3.1. Modeling Concept
8.3.2. I/O AnalysisModel
8.3.3. Simulation for Solving the Analysis Model
8.3.4. Prediction Process
Summary

Validation

9.1.
9.2.

9.3.

94.

9.5.

Goalsand Questions
Experimental Setup
9.2.1. Tools and Benchmarks
9.2.2. System Environments
Case Studies on Workload Characterization
9.3.1. Overview
9.3.2. Case Study I: Workload Characterization
9.3.3. Case Study II: Workload Migration & Consolidation
9.3.4. Summary and Discussion
Case Studies on Storage-level Modeling
94.1. Overview
9.4.2. Case Study I: Modeling Performance-influencing
Factors
9.4.3. Case Study II: Modeling Application Workload . . .
9.4.4. Case Study III: Modeling Performance Interference
9.4.5. Summary and Discussion
Case Studies on Software Architecture-level Modeling . . .
95.1. Overview
9.5.2. Case Study I: File Serveron SunFire
9.5.3. Case Study II: Mail Server on Sun Fire
9.5.4. Case Study III: File Server on Systemz
9.5.5. Case Study IV: File and Mail Server on System z . .

179
179
182
182
184
187
187
189
193
196
197
198

199
202
205
211
214
214
215
218
220
222

Contents

9.5.6. Summary and Discussion 224
9.6. Discussion of the Approach 225
9.6.1. Automation 226
9.6.2. Modeling Abstraction 226
9.6.3. Complementary Formalisms 227
9.6.4. Predicting the Performance without our Approach 228
9.6.5. Discussion of the Evaluation Criteria 231
9.6.6. Assumptions and Limitations 232

lll. Related Work and Conclusion

10. RelatedWork 239
10.1. Overview o oo 239
10.2. I/O Performance Analysis and Modeling 241
10.3. I/O Performance Interference Modeling 242
10.4. Architecture-level I/O Performance Modeling 244
10.5. Disk-based I/O Performance Modeling 246
10.6. Systems Performance Evaluation and Modeling 247
10.7. Summary 248

11. Conclusion. oo o oL 249
I1.1. Summary 249
11.2. Limitations and Outlook on Future Research 252
11.3. Concluding Remarks 254

A. Related WorkataGlance. 255

Glossary 261

Acronyms L 263

Bibliography 265

X1

List of Figures

1.1.

2.1.
2.2.
2.3.
2.4.

3.1
3.2.

3.3.
3.4.
3.5.
3.6.

3.7.
3.8.

4.1.
4.2.

5.1.
5.2.
5.3.

6.1.
6.2.

Thesis ApproachataGlance

Native System Environment
Types of Virtualization Hypervisors
SNIA Shared Storage Model (simplified)
Example Realizations of the Storage Paradigms (derived from
Troppens et al. (2009) and the SNIA Shared Storage Model

(Md)) . oo

Illustration of Regression Modeling
Illustration of 5-fold Cross-Validation (based on Kuhn et al.,
2013) ..
Illustration of Bootstrapping (based on Kuhn et al., 2013)
A Queue comprised of a Waiting Line and a Server
A Petri Net before and after Transition Firing
A Queueing Place and its Notation (Source: Kounev et al.,
2010b).
PCM Model Instance (Source: Becker, 2008)
Model-based Performance Prediction (Source: Becker, 2008)

General Overview of the Thesis Approach and Structure
Reference System Environment comprised of IBM System z and
IBMDS8700

Performance Influences (derived from Noorshams et al., 2013b)
Automation Components
Experiment and Workload Characterization Sequence

Ilustration of the S3 Algorithm
Time Evaluation for Regression Model Creation and Evaluation

36
37
38

42

45

65
66
67

78
87

Xiii

List of Figures

6.3.
6.4.

6.5.

6.6.
6.7.
6.8.

7.1.
7.2.
7.3.

7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

7.10.

7.11.

7.12.
7.13.
7.14.
7.15.
7.16.
7.17.
7.18.
7.19.

7.20.

7.21.

7.22.

X1v

Time Evaluation for Regression Model Prediction
Time Evaluation for Regression Model Optimization — Single
Evaluation Time
Time Evaluation for Regression Model Optimization — Total
Optimization Time (logarithmic y-axis)
Relation between the Regression Techniques
Model Selection Process (dashed: dataflow)
Performance Modeling Process (dashed: data flow)

Performance Model Building Methodology in Three Phases
Workload Characterization (simplified from Figure 5.1)

Model Creation Plan for I/O Performance Models of Hardware
ASDPECES . . . o e e e e e
General QPN Model
Cache Resource Model
Calibration Error for the Initial Model
Cache and RAID Resource Model forr,
Calibration Error for the Refined Model
Cache and RAID Resource Model forrg, w,
Prediction Process for I/O Performance Models of Hardware
ASPECtS
Model Creation Plan for I/O Performance Models of Scheduling
ASPECES e
QPN Model for Heterogeneous Workload
Calibration Error for Heterogeneous Workload Model
Client Places in Multi-VM Model
Calibration Error for Multi-VM Model
Client Places in Variable Workload Model
Calibration Error after Service Time Recalibration
Final Calibration Error for Variable Workload Model
Prediction Process for I/O Performance Models of Scheduling
ASDPECES e .
Interpolation Error for I/O Performance Models of Hardware
ASDPECES e e e
Extrapolation Error (Clients) for I/O Performance Models of
Hardware Aspects
Extrapolation Error (2 VMs) for I/O Performance Models of
Hardware Aspects oL .

93
94
97
100

. 107
111

List of Figures

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

8.1.

8.2.

8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.

9.7.
9.8.
9.9.

9.10.
9.11.

Extrapolation Error (3 VMs) for I/O Performance Models of

Hardware Aspects 149
Interpolation Error for I/O Performance Models of Scheduling
Aspects —Scenariol 153
Interpolation Error for I/O Performance Models of Scheduling
Aspects—ScenarioIl 153
Extrapolation Error for I/O Performance Models of Scheduling
Aspects —ScenarioIIl 156
Extrapolation Error for I/O Performance Models of Scheduling
Aspects —ScenarioIV o oo 156
Extrapolation Error for I/O Performance Models of Scheduling
Aspects—ScenarioV 157
Overview of Combining an I/O Analysis Model with a Software
Architecture Model (cf. Figure 4.1) 164
Refinement Transformation from Software Architecture Model

to Target AnalysisModel 166
Modeling Concept Overview (derived from Hauck et al., 2009) 167
Extended I/O Interface for /O Requests 168
Feature Tree of the I/O Analysis Model (cf. Section5.2) 170
Gap between the Abstraction Levels of the Models 172
Transformation of the PCM Model 172
Storage Resource Simulation 175
Performance Prediction Steps 176
Evaluation Overview (cf. Figure 4.1) 180
Schematic Illustration of Sun Fire X4440 186
Schematic Illustration of IBM System z and DS8700 187
Workload Characterization Overview 188
Workload Characterization Process 189
Mean Response Time Difference ART with Standard Error in
CaseStudyl 192
Workload Migration Process 193
Workload Consolidation Process 194
Mean Response Time Difference ART with Standard Error in
CaseStudy I oL 196
Prediction Quality (Case StudyI) 201
Prediction Quality (Case Study II) 204

XV

List of Figures

9.12.
9.13.
9.14.
9.15.
9.16.

9.17.
9.18.
9.19.
9.20.
9.21.
9.22.

10.1.

XVi

Prediction Quality VM1 (Case Study III)
Prediction Quality VM2 (Case Study III)
Performance Interference Impact
Optimization Length Summary
Ilustration of the Application Modeled with the PCM
(simplified)
Prediction Error in Case Study I
Prediction Errorin Case Study IT.
Prediction Errorin Case Study IIT
Prediction Error in Case Study IV — File Server
Prediction Error in Case Study IV — Mail Server
Prediction Error of the Standard PCM and the PCM with our
Extension

Areas of Related Work with the Center I/O Performance
Analysis and Modeling in Virtualized Environments

List of Tables

6.1. Evaluation Overview of Regression Techniques on a Relative
S5-PointScale

7.1. Interpolation Configurations for I/O Performance Models of
Hardware Aspects L.
7.2. Extrapolation Configurations (Clients) for I/O Performance
Models of Hardware Aspects
7.3. Extrapolation Configurations (2 VMs) for I/O Performance
Models of Hardware Aspects
7.4. Extrapolation Configurations (3 VMs) for I/O Performance
Models of Hardware Aspects
7.5. Mean Prediction Error for I/O Performance Models of Hardware
Aspects (%) . . . o e
7.6. Interpolation Configurations for I/O Performance Models of
Scheduling Aspects —Scenariol
7.7. Interpolation Configurations for I/O Performance Models of
Scheduling Aspects — ScenarioIl
7.8. Extrapolation Configurations for I/O Performance Models of
Scheduling Aspects — ScenarioIIT
7.9. Extrapolation Configurations for I/O Performance Models of
Scheduling Aspects — Scenario IV
7.10. Extrapolation Configurations for I/O Performance Models of
Scheduling Aspects — ScenarioV
7.11. Mean Prediction Error for I/O Performance Models of
Scheduling Aspects (%)

9.1. Workload Characterization for the File Server across 20 runs . .
9.2. Workload Characterization for the Mail Server across 20 runs
9.3. Mean and Standard Deviation of the Mean Response Times

190
190
192

XVvii

List of Tables

94.

9.5.
9.6.
9.7.

Al
A2
A3.
A4
AS.

Xviii

Mean and Standard Deviation of the Mean Application

Response Times 195
FFSB Experimental Setup Configuration 199
Filebench Experimental Setup Configuration 203
Hybrid Experimental Setup Configuration 205
Summary of Related Work in Areai) 256
Summary of Related Work in Areaii) 257
Summary of Related Work in Areaiii) 258
Summary of Related Work in Areaiv) 259
Summary of Related Work in Areav) 260

1. Introduction

1.1. Motivation

Today’s data centers are at the core of any IT-related activities as they host
a large number of both public and private enterprise software applications.
The data centers provide the four IT resource types comprised of processing,
memory, communication, and storage resources in form of CPU, RAM, net-
work, and disk hardware, respectively. As the application of IT in business
processes increases, for example because of higher process automation or
more extensive data analysis, the demand for data center capacity is expected
to grow steadily. This growth consequently results in higher IT operating
costs that have been estimated in 2008 to already account for approximately
25 % of the total corporate IT budget (Kaplan et al., 2008). With all the
demand in capacity, analysts have estimated that the global Information and
Communications Technology (ICT) systems currently consume roughly as
much electricity as was used for global illumination in 1985 (Mills, 2013).

In recent years, virtualization technology has emerged to face and mitigate
the trend in increasing IT costs and energy consumption in data centers.
By enabling to pool physical resources and share them among multiple,
consolidated applications running in virtual machines (VMs), virtualization
technology is a key factor for decreasing management overhead as well
as increasing resource efficiency. Virtualization technology has meanwhile
become a central part of today’s data centers and keeps gaining in importance
as the server virtualization market is expected to grow annually by more than
31 % in the next years (TechNavio, 2013). In parallel to these developments,
latest trends, such as Big Data and Cloud Computing, as well as the ever-
increasing amount of data generated and processed in today’s applications are
contributing to the exponential growth of demand in modern environments
for storage resources (Oliveira et al., 2012). Overall from 2005 to 2020, the

1. Introduction

amount of digital data is expected to grow by a factor of 300 (Gantz et al.,
2012). Furthermore, virtualization introduces I/O workload patterns for which
traditional storage systems were not designed (InformationAge, 2011) and as
a consequence, storage resources have evolved from simple disk collections
to sophisticated tiered systems with complex scheduling and optimization
algorithms.

Overall, the escalating amount of data as well as the increasing complexity
of modern IT infrastructures pose significant concerns for data center oper-
ators. A central challenge is to manage the available resources efficiently
while at the same time guaranteeing Service-Level Agreements (SLAs) and
performance requirements. This is especially due to the complex performance
effects between the multiple, consolidated application workloads along the
infrastructure’s data I/O path. The many performance-influencing factors as
well as the shared storage resources struggling to provide a robust perfor-
mance isolation among different workloads lead to complex I/O performance
and interference effects for the applications disturbing the overall system
performance in a non-trivial manner. In general, performance evaluation and
modeling techniques can help to cope with such challenges to anticipate and
mitigate the relevant performance effects before SLA violations occur. For
their applicability and practical parameterization in virtualized environments,
however, these techniques need to be refined and tailored to the I/O perfor-
mance issue at hand. This is not only due to the complexity in the virtualized
system infrastructure, but also due to the many logical layers and physical
tiers from the application to the physical storage resources that need to be
captured effectively.

Major obstacles of typical performance modeling approaches for software
applications are that they are either too fine-grained or too coarse-grained,
thus struggling to provide a practical balance between abstraction level and
prediction accuracy. On the one hand, fine-grained performance modeling ap-
proaches may require an in-depth instrumentation and analysis of the system
environment to create and calibrate the performance models, which is in gen-
eral technically and practically infeasible. For example, low-level queueing
theory-based models are well-established because of their expressiveness and
modeling power, however, classical I/O queueing model approaches require
detailed system information and monitoring data inside the physical tiers
and logical layers along the data I/O path. On the other hand, too coarse-
grained performance modeling approaches may not be able to capture the

1.2. Thesis Goal and Research Questions

I/O performance of an application with sufficient accuracy. For instance,
predictive modeling approaches at the software architecture level are pop-
ular approaches allowing to model applications at a high abstraction level.
However, such approaches usually abstract from many system details intro-
ducing performance-relevant gaps between the modeled system and its real
behavior. This results not only in lacking to reflect the influence of specific
performance-relevant factors, but also in causing potential for critical pre-
diction inaccuracies. As a consequence of such observations, developing
practical performance modeling approaches is the main goal of this thesis and
addressed with multiple techniques throughout the main parts of this work.

1.2. Thesis Goal and Research Questions

The system infrastructures in virtualized environments are becoming increas-
ingly complex in order to cope with the high requirements to serve many
applications simultaneously and efficiently. In our work, we develop ap-
proaches for extracting performance models supporting to employ resources
in virtualized environment efficiently while respecting SLA requirements. In
general, predictive performance models are created with the goal to abstract
from specific details and to be applicable in realistic setups. To address the
I/O performance issues in virtualized environments, we formulate the goal of
this thesis as follows:

The goal of this thesis is to develop practical performance engineering
approaches tailored to model and predict the I/O performance of
software applications in virtualized environments.

We employ two steps in this thesis to realize this goal. We first develop
reproducible I/O performance modeling approaches at a reasonable abstraction
level that balances practicability and prediction accuracy. Second, we use the
I/O performance models and develop techniques for performance prediction
at the software architecture level to increase the applicability of our approach.
To this end, we formulate the two high-level research questions addressed in
this thesis as follows:

1. Introduction

1. What is an appropriate approach to practically model and predict the

1.3.

1/0 performance in virtualized environments?

An important challenge is to first identify the required input parameters
for a performance modeling approach at an appropriate abstraction level
such that the parameters can be reasonably specified and included in
I/0O performance modeling approaches. Furthermore, an appropriate
formalism with reasonable abstraction level is then required for the
performance models to hide the complexity of the system environment
while still predicting the I/O performance with sufficient accuracy. For
the practical applicability, a modeling approach should be automated to
a high extent and provide reproducible concepts and processes.

. How can the I/O performance models be employed in software archi-

tecture-level modeling approaches?

Performance prediction approaches at the software architecture level
are a powerful and practical mechanism because of the high modeling
abstraction level and largely intuitive modeling constructs. To increase
the applicability of the I/O performance models, they need to be con-
structed ideally in a way that they can be used in software architecture-
level modeling approaches. A central challenge to achieve this is to
bridge the gap between the abstraction levels of the two modeling ap-
proaches. While software architecture models describe the high-level
structure of a software application, I/O performance models typically
provide a low-level representation of the I/O performance along the in-
frastructure’s data I/O path from the application through to the physical
storage resources.

Existing Approaches

There are multiple existing approaches related to the approach presented in
this thesis. In summary, however, the major distinguishing factor is that we are,
to the best of our knowledge, the first work to model the performance of I/O-
intensive applications in virtualized environments at the software architecture
level. Furthermore, we create practical performance modeling abstractions and
provide highly automated and reproducible processes to reasonably abstract

1.3. Existing Approaches

real-world system environments and capture their I/O performance, which is
addressed rudimentarily by existing approaches.

The existing approaches closely related to the approach of this thesis can be
grouped into five general areas:

o The first area is focused on I/O performance analysis and modeling in
virtualized environments. The existing approaches in this area (Kraft
et al., 2012; Ahmad et al., 2003; Kundu et al., 2012; Gulati et al.,
2009) model the I/O performance at a low abstraction level and it is
unclear if the models can be used in software architecture models,
since the required information and parameterization between the two
modeling abstractions need to be synchronized. This synchronization is
required to allow for a combined modeling and model solving approach.
Furthermore, the approaches are usually focused on certain scenarios,
for instance, the consolidation of VMs (Kraft et al., 2012), leaving
important capacity planning questions unanswered as, for example, the
impact of an increasing number of users on the application performance
remains unclear.

e Analyzing I/O performance interference, approaches in the second area
model the effects of multiple I/O-intensive applications competing for
the shared resources in virtualized environments and causing mutual
performance deteriorations. Similar to the previous area, the approaches
in this area (Chiang et al., 2011; Koh et al., 2007; Groot et al., 2013;
Yang et al., 2012; Pu et al., 2010) are addressing the analysis at a low
abstraction level without considering the performance at the architecture
level. Furthermore, some approaches use system-specific monitoring
tools to obtain a global view of the system environment (e.g., Chiang
et al., 2011), which is not necessarily always possible.

e Approaches in the third area address I/O performance modeling at the
architecture level (Becker et al., 2009; Huber et al., 2010) and using
low-level models in architecture-level models (Wert et al., 2012; Wood-
side et al., 2001; Shanthikumar et al., 1983). Among these works is a
case study for modeling I/O performance in virtualized environments
(Huber et al., 2010), however, the goal of this case study is to evaluate
the expressiveness of the modeling approach to answer system design
decisions. In general, modeling I/O performance in virtualized environ-
ments for capacity planning, i.e., defining a representative workload for

1. Introduction

modeling I/O-intensive applications and predicting their performance
impacts, is not addressed by existing approaches.

e In the final two areas, approaches for I/O performance prediction in
native, disk-based environments (Bucy et al., 2008; Harrison et al.,
2007; Lebrecht et al., 2011; Lee et al., 1993; Varki et al., 2000) as well
as general performance evaluation and modeling approaches not specif-
ically focusing on I/O performance (Balsamo et al., 2004; Koziolek,
2010; Huber et al., 2012; Hauck et al., 2013; Barham et al., 2003; Iyer
et al., 2009) are more distantly related to our approach and not specific
to the I/O performance modeling challenges in virtualized environments
addressed in this work.

At a later point in this thesis, the approaches highlighted in this section are
presented and discussed in Chapter 10 in more detail.

1.4. Evaluation Criteria

In this thesis, we present a novel approach to model I/O performance captur-
ing its influencing factors in virtualized environments. The goal is to enable
practical performance predictions as well as to include the models into soft-
ware architecture-level modeling approaches. The main technical challenge is
the increasing complexity of today’s system environments. Furthermore, the
main conceptual challenge is to find an appropriate abstraction level for the
models that allows a reasonable parameterization and provides accurate pre-
dictions. Despite these challenges, our approach aims to fulfill the following
evaluation criteria that are considered essential for the success of a modeling
and prediction approach (cf. Rathfelder, 2012; Brosig, 2014):

1. Abstraction: The modeling approach and I/O performance models
should be able to hide the complexity of the IT infrastructure and allow
for a practical use and parameterization.

2. Accuracy: The I/O performance models should provide accurate predic-
tions close to measurements on the real system to allow for performance
analysis and capacity planning. For the models, we are primarily fo-
cused on response time as the performance metric, where a prediction
error of up to 30 % is generally acceptable (cf. Menascé et al., 2000).

1.5. Approach and Contributions

3. Efficiency: The modeling approach should increase the overall model
building efficiency without introducing a higher modeling overhead
compared to other approaches.

4. Scalability: It should be possible to model and predict the I/O perfor-
mance of realistic and non-trivial system environments.

5. Automation: To increase the applicability and reduce the risk of manual
errors, the approach should have a high degree of automation and be
tool-supported whenever possible. This also enables non-performance
engineering experts to apply the approach.

1.5. Approach and Contributions

We will address the goal of this thesis and propose a novel, versatile perfor-
mance modeling approach to capture the influencing factors of I/O perfor-
mance in virtualized environments. To this end, we develop tailored modeling
approaches using complementary formalisms based on statistical regression
analysis and queueing theory. To increase the applicability of the models, the
I/O performance models are created at an appropriate abstraction level to allow
for their combination with software architecture-level modeling approaches.
The approach of this thesis is summarized in Figure 1.1. To capture the I/O
performance, we analyze I/O-intensive applications deployed in virtualized
environments and identify the performance-influencing factors. The factors
are modeled in I/O performance models, for which we employ both statistical
regression analysis and queueing theory, to predict the I/O performance of the
application. Finally, the I/O performance models are integrated into software
architecture models that consider the performance-influencing factors and that
model the application at a higher level of abstraction to hide the complexity.
This process is realized by extending the model-based performance predic-
tion process (Becker, 2008), a concept employed to allow for performance
evaluations of software architecture models, as detailed in the main part of
this thesis in Chapter 4. Overall, the process is supported by providing a high
degree of automation to increase the applicability and reproducibility of our
work.

1. Introduction

models
i
I/O-intensive . Software
Application in 1/0 Performance | Mtegrate Architecture
Virtualized Model Model
Environment
3 [
model }
\
\
analyze Performance- | considers }
> Influencing |[&--——------- 4
Factors

Legend

Artifact ————» Relation ——>» Activity

Figure 1.1.: Thesis Approach at a Glance

The main practical benefits of our approach can be summarized as follows.
First, we enable accurate I/O performance predictions in non-trivial, complex
virtualized environments. Second, we employ multiple, complementary for-
malisms beneficial in different situations and conditions, i.e., depending on
the available expertise and time, to increase the applicability and efficiency
of our work. Finally, the high degree of automation throughout our approach
as well as the abstraction level hiding the complexity of the infrastructure
reduce the effort and expertise required to analyze and understand the system
environment and modeling concepts, thereby allowing also non-experts to
effectively and productively apply our approach.

In brief, the scientific contribution of this thesis is a systematic approach for
modeling and predicting the I/O performance in virtualized environments
using multiple, complementary formalisms at an appropriate abstraction level
to allow for a practical parameterization and a combination with software
architecture-level modeling approaches. Moreover, our approach is validated
in representative, state-of-the-art system environments in a variety of case
studies demonstrating the effectiveness of our approach. More specifically,
the core contributions of this thesis are summarized in the following four
items:

1.5. Approach and Contributions

1. Identification and Analysis of I/O Performance-influencing Factors in
Virtualized Environments
We systematically identify and classify the major performance-influenc-
ing factors. The factors are determined at a reasonable abstraction level
to derive an appropriate workload characterization that is the basis for
the I/O performance modeling approaches. Furthermore, we develop an
automated approach for quantitative evaluation of the factors enabling
an efficient I/O performance analysis and modeling.

Scientifically, the main insight is that we identify major I/O performance-
influencing factors such that they can be specified and derived without
requiring system-specific or possibly invasive monitoring mechanisms.
Furthermore, based on these factors we derive a workload characteriza-
tion that can be extracted from running applications in an automated
process and that captures the I/O behavior of I/O-intensive applications.

The respective parts of this contribution were highlighted and published
in Noorshams et al. (2013b), Noorshams et al. (2015), and Busch et al.
(2015).

2. Efficient Optimal Parameterization of Statistical Regression Techniques
for I/O Performance Modeling

Statistical regression techniques are a practical formalism for perfor-
mance modeling, since they are able to statistically derive the rela-
tionship between the influencing factors and the performance from
observations. Since regression techniques often have tuning and con-
figuration parameters that affect the prediction accuracy for a given
scenario, we develop a deterministic search algorithm with bounded
runtime complexity for the efficient parameterization of statistical re-
gression techniques. We tailor and fully automate the approach for
creating and selecting regression models for I/O performance predic-
tion. Nonetheless, the approach is general and not limited to the target
domain per se.

Here, the scientific insights can be summarized as follows. We develop
a novel, efficient regression technique parameterization approach that
significantly increases the prediction accuracy of regression models.
Furthermore, we create regression analysis-based models while nei-
ther needing to assume specific relationships between the modeled

1. Introduction

10

factors and the I/O performance nor requiring to manually analyze the
regression techniques and their characteristics.

The optimization approach and its automation were published in Noor-
shams et al. (2013a) and Noorshams et al. (2014a).

. Tailored Systematic Approach based on Queueing Theory for Modeling

the I/O Performance in Virtualized Environments

To gain a deeper knowledge and understanding of the modeled envi-
ronment, we develop a systematic approach to create queueing theory-
based models tailored to I/O performance prediction in virtualized
environments. The approach does not require possibly invasive monitor-
ing tools and is calibrated with end-to-end response time measurements
only. In comparison to the automated regression analysis-based mod-
eling approach, the queueing theory-based models require a higher
degree of expertise and manual effort for their creation initially. How-
ever, the queueing theory-based models simplify reuse and adaptability,
since only their calibration parameters need be adjusted if the system
environment changes or a similar system is to be modeled.

In short, the main scientific novelty is a tailored, iterative queueing
theory-based modeling approach for virtualized environments relying
on end-to-end response time measurements only.

The overall modeling approach was published in Noorshams et al.
(2013d) and Noorshams et al. (2014c¢)

. Combination of Low-level I/O Performance Models with High-level

Software Architecture Models for Performance Prediction

To increase the applicability and usability of the I/O performance mod-
els, we extend the model-based performance prediction process to
combine low-level I/O performance models with high-level software
architecture-level modeling approaches. To bridge the gap between the
two abstraction levels, we analyze and identify the required parameters
at the software architecture level. The parameters are used during a
simulation-based analysis and mapped on the required parameters of
the I/O performance models. The latter in turn are solved during the
simulation to estimate the contention at the storage resource and to
obtain the delays of the I/O requests.

1.6. Application Scenarios

The main scientific insight of this novel approach for software architec-
ture-level I/O performance prediction is twofold. First, we embed the
storage-level I/O performance models into a software architecture-level
modeling approach using a well-defined encapsulation concept. Second,
we analyze the combined modeling approach in a simulation-based
model solution, thereby successfully coupling low-level I/O perfor-
mance models and high-level software architecture models to obtain
performance predictions.

The general process and the concrete realization were the focus of our
publications in Noorshams et al. (2013c) and Noorshams et al. (2014b).

The contributions of this thesis are validated in multiple case studies using
real-world, representative system environments based on IBM System z and
Sun Fire server hardware. We present a variety of case studies to demonstrate
the effectiveness of our approach, where we specifically analyze our workload
characterization, our storage-level models, and our software architecture-level
models. With the case studies, we address our evaluation criteria and demon-
strate that i) we are able to abstract sufficiently complex system infrastructures
with reasonably parameterizable models, ii) we are able to successfully pre-
dict the performance of I/O-intensive applications with an average prediction
error in response time of less than 30 %, iii) we provide efficient approaches
for performance modeling without increasing the model building effort, iv)
we are able to model and predict the performance of state-of-the-art system
environments that are not straightforward to capture in traditional modeling
approaches, and v) we provide a high degree of automation throughout our
approach for an increased applicability and reproducibility of our work.

1.6. Application Scenarios

The modeling approach in this thesis has multiple practical application sce-
narios to enable I/O performance predictions for different requirements. The
application scenarios are grouped into the following three areas:

1. Capacity Planning and System Sizing.

To run the IT infrastructure efficiently, the I/O performance models can
be used for capacity planning of the required storage resources and for

11

1. Introduction

12

sizing the storage systems accordingly. Typical questions that can be
answered are:

e Is the storage environment sufficient for the applications to meet
the SLAs?

e [s it required to balance increasing load onto multiple storage
systems?

e Should the storage systems be upgraded to a newer model?

2. System Configuration and Hardware Design Decisions.

Usually, there are many configuration possibilities that can be con-
sidered to optimize the overall performance. However, disturbing the
applications and evaluating the options in the production system is
not possible. On a model basis, it is usually much easier to answer
configuration questions, such as:

e What operating system and storage system configurations are
best for the applications? Does changing the setup improve or
deteriorate the performance?

e Does upgrading the storage resources to faster disks provide a
reasonable speed-up in performance?

e Is it worth introducing an additional caching tier to speed-up
performance? How much cache is required?

. Scalability and Impact Analysis of Workload Consolidation.

In virtualized environments, consolidating applications has non-trivial
implications on all the workloads that share the resources. Not only
does this increase the workload intensity on the storage resources, it also
introduces performance interference effects among the co-located ap-
plications. Multiple question arise when applications are consolidated,
for example:

e Are the applications that are consolidated still able to conform to
the SLAs?

e Does an application disturb the performance of co-located
applications?

1.7. Outline

e On which system should an application be deployed to optimize
overall performance?

1.7. Outline

To address the overall goal and application scenarios introduced in the previ-
ous sections, this thesis is organized into three parts. The next two chapters
in Part I present the foundations of this thesis. First, Chapter 2 introduces
the technical foundations discussing both server virtualization and storage
virtualization to define the context of this work. Then, Chapter 3 introduces
the theoretical foundations of the thesis. The chapter presents the performance
modeling formalisms used in this thesis, in particular, statistical regression
analysis and queueing theory. Furthermore, we introduce our target software
architecture-level modeling approach. To this end, the Palladio Component
Model (PCM) and its concepts are presented, which concludes the chapter.

As the largest part containing Chapters 4 — 9, Part II constitutes the core of this
thesis. To introduce the big picture of our work, Chapter 4 gives an overview
of the approach and the general methodology on which the main chapters are
built. Furthermore, this chapter introduces our reference system environment
to elaborate on the specific challenges when addressing I/O performance mod-
eling in virtualized environments. Chapter 5 is the initial part and the basis
for I/O performance evaluation and modeling. We analyze 1/O performance-
influencing factors and develop a workload characterization as a basis for the
I/O performance models. Furthermore, we introduce our automation approach
for measuring the I/O performance, monitoring the system environment, and
employing statistical analysis of the results. In Chapter 6, we introduce our
modeling approach based on statistical regression analysis. We address the
problem how to create optimally parameterized regression models and we
develop a search algorithm to find optimal parameterization candidates effi-
ciently. Furthermore, we analyze a representative set of statistical regression
techniques to select from multiple models created with the techniques. This
selection approach is used to identify our I/O performance modeling process.
In Chapter 7, we identify our I/O performance modeling process based on
queueing theory and tailored to virtualized environments. We elaborately

13

1. Introduction

demonstrate how to use this process and create queueing Petri net (QPN) mod-
els of the I/O performance in our reference system environment. The QPN
models capture both tiered hardware aspects and scheduling aspects across
heterogeneous virtual machines. Then, Chapter 8 shows how to integrate the
I/O performance models into software architecture-level modeling approaches.
To realize this, we extend the model-based performance prediction process
and demonstrate our approach using the PCM as example. We will present
the modeling concepts as well as the required design of the I/O performance
models such that they can be integrated into the PCM and solved using a
simulation-based approach. To conclude the main part, Chapter 9 validates our
approach along multiple dimensions in a variety of case studies. We present
case studies on our workload characterization as well as on the storage-level
and software architecture-level performance models. Furthermore, we discuss
the scope and applicability of our approach including its assumptions and
limitations.

In the final part, we systematically highlight related work and conclude the
thesis in Part III. First, Chapter 10 surveys the approaches related to the
concepts presented in this thesis. The approaches are grouped into five areas.
We first highlight I/O performance analysis and modeling approaches. Second,
we specifically review approaches focusing on analyzing and modeling of
I/O performance interference effects observed in virtualized environments.
Then, we discuss I/O performance modeling approaches at the software
architecture level. Furthermore, we highlight approaches for modeling I/O
performance for disk-based systems in native environments. Finally, we
present performance evaluation and modeling approaches not specifically
focusing on I/O performance. As the final chapter of this thesis, Chapter 11
summarizes the thesis by highlighting the main aspects and results of our work.
Furthermore, we address open issues and directions for future research.

14

Part I.

Foundations

2. Virtualization Technology

The basic technology for many new concepts and emerging trends is virtualiza-
tion. It is generally a broad field and the terminology is at times ambiguously
used. In this first foundations chapter, we present the technical concepts and
terminology in the area of virtualization technology on which this work is
based. The goal is to introduce the context of our work highlighting its links to
related fields. To keep this chapter compact, we refer to foundational work for
more information where appropriate. This chapter is divided into two parts.
First in Section 2.1, we introduce general terms and information on virtualiza-
tion technology. Then, Section 2.2 focuses on storage virtualization concepts
highlighting the relevant aspects for analyzing storage I/O performance as
presented in this thesis.

2.1. Server Virtualization

The concepts for virtualization technology reach multiple decades back with
the beginning of mainframe computing systems in the 1960/70ies (cf. Vau-
pel, 2013) and has already then been academically relevant (cf. Goldberg,
1974). In general, virtualization abstracts physical resources by creating an
additional abstraction layer and providing virtual (logical) resources to use by
an application (Wolf et al., 2005). This abstraction layer is called hypervisor
or virtual machine monitor (VMM) and is responsible for decoupling the
physical and logical resources as well as for managing the mapping between
them. The server system running in such a virtualized environment is called
virtual machine (VM).

A hypervisor is typically classified as fype-1 or a type-2 hypervisor (cf. Hauck,
2013; Baun et al., 2011). In a native environment, a server is run directly on
dedicated hardware, cf. Figure 2.1. In a virtualized environment employing a

17

2. Virtualization Technology

type-1 hypervisor as illustrated in Figure 2.2a, the hypervisor is run on the
hardware and manages one or more VMs. By contrast, the type-2 hypervi-
sor is hosted by an operating system running on the hardware, where the
hypervisor can manage the VMs, cf. Figure 2.2b. The virtualization type that
is typically employed in server environments is the type-1 hypervisor (such
as the hypervisor in our reference environment, which is introduced later in
Section 4.2).

System

Server

Operating System

Hardware

Figure 2.1.: Native System Environment

Virtualization is a key technology for service-oriented and modern Cloud-
based IT environments and provides multiple benefits for both the service
provider and consumer (cf. Baun et al., 2011), such as, for instance:

e Management: The IT landscape can be managed more easily through a
collective administration interface. For instance, VMs can be migrated,
replicated, and saved on demand within a short period of time, since
such VM operations can be handled in software.

e Consolidation: Applications can be consolidated and share physical
resources, thus reducing the required number of physical systems and
hardware. This in turn saves data center space and hardware adminis-
tration overhead.

e Resource efficiency: By sharing the physical resources, operating the
IT landscape at a higher utilization results in a more efficient resource
usage leading to reduced energy and data center cooling costs.

18

2.1. Server Virtualization

System

VM

VM

Operating

System

Operating
System

Hypervisor

Hardware

System

VM

(a) Type-1
VM

Operating
System

[

Operating
System

]

)

Hypervisor

Op

erating System

Hardware

(b) Type-2

Figure 2.2.: Types of Virtualization Hypervisors

While these benefits provide the basis for a substantial amount of cost savings,
virtualization usually comes at the price of performance if the performance
considerations in the system environments affected by the increased com-
plexity and workload intensity are not addressed and carefully studied. This
is because the applications are no longer run on dedicated hardware as they
share the physical resources and the resource consumptions need to be man-
aged by the hypervisor in a non-trivial manner. As the focus of our work is
I/0O performance, we will dedicate special attention to storage virtualization
concepts in the next section.

19

2. Virtualization Technology

2.2. Storage Virtualization

The term storage virtualization is usually loosely defined and generally de-
notes the abstraction from physical storage systems and storage networks to
logical storage resources (cf., e.g., Clark, 2005). In this thesis, we refer to
storage virtualization as the storage infrastructures employed in virtualized
environments. Still, there are different types of storage virtualization with dif-
ferent concepts for data access. In the following of this section, we highlight
storage paradigms and scalable, networked storage infrastructures used in vir-
tualized environments, specifically block-based, file-based, and object-based
storage, to discuss the focus of this thesis. To lay the foundation, we first
introduce the SNIA Shared Storage Model (n.d.), a standardized descriptive
model developed by the Storage Networking Industry Association (SNIA). For
further information on storage virtualization, we refer to the work of Troppens
et al. (2009), Clark (2005), and Massiglia et al. (2003).

2.2.1. SNIA Shared Storage Model

The SNIA is a non-profit association for advancing IT technologies and
standards in the storage domain. The SNIA proposed the SNIA Shared
Storage Model (n.d.), which can be compared to the seven-tier Open System
Interconnection (OSI) model for computer networks, in order to unify the
terminology used for storage environments. The second version of the model
is illustrated in Figure 2.3. The model has been published some years before
the time of this writing and is briefly summarized in the following. For
more information, please refer to the web representation of the SNIA Shared
Storage Model (n.d.) and Troppens et al. (2009), on which this section is
based.

The SNIA Shared Storage Model is in parts straightforward and basically
consists of an application layer and four layers in the storage domain, which
can be grouped into a file layer and a block layer comprised of two layers
each (cf. Figure 2.3):

1. Block subsystem
The first layer consists of the physical, low-level storage devices.

20

2.2. Storage Virtualization

2. Block virtualization

The physical storage is virtualized into logical block storage. This
abstraction can be realized in the device, the network, or the host, for
example, using a RAID controller, specialized servers in the network,
or a logical volume manager (LVM), respectively.

3. File/record subsystem

The first file layer uses the block-level storage and contains a database,
a file system, or a database using a file system.

4. File/record/namespace virtualization

The second file layer may employ another virtualization in form of
logical abstraction.

5. Application
Finally, the application layer uses the storage to save data.

2.2.2. Storage Paradigms in Virtualized Environments

The storage paradigms employed in virtualized environments can be classified
into the categories block-based, file-based, and object-based storage, which
also have an implication on the storage infrastructure. In traditional environ-
ments, disks or disk arrays are used by one system exclusively. In complex
environments, the storage resources are pooled usually using a dedicated
storage network to process the increased storage requirements (cf. Troppens
et al., 2009). Furthermore, the storage systems themselves are increasingly
complex, tiered systems. In the following, we introduce the typical storage
paradigms and the infrastructures associated with them.

Block-based Storage and Storage Area Networks (SAN) In traditional
systems, an operating system addresses its storage in logical blocks instead of,
for instance, the physical addressing scheme of a disk device that is comprised
of cylinder, head, and sector information (cf. Massiglia et al., 2003). An
operating system uses a logical block storage at the block layer (cf. first
example in Figure 2.4) and typically allows the applications to use the storage
using a database or a file system. The translation from the file layer to the
block layer is then realized in the operating system.

21

2. Virtualization Technology

Application

File/record/namespace
virtualization (optional)
5}
: 2
File/record subsystem -
=
Database File system
£ (optional)
< —
£
=}
=l
@ Block Host
g
& | Network |
5
Device Virtualization E‘
(optional) Eo)
m
Block subsystem
| Storage devices (disks, etc.)

Figure 2.3.: SNIA Shared Storage Model (simplified)

Regarding the infrastructure, a logical block storage may be created from hard
disks, whose firmware is responsible for the translation of logical to physical
addresses. Modern systems also use RAID arrays (cf., e.g., Troppens et al.,
2009), which group a number of storage devices to pool the storage space
and possibly implement redundancy mechanisms to increase the reliability of
the storage in case of disk failures. In a more sophisticated environment, the
pooling of storage devices can be realized in a typically dedicated storage area
network (SAN). A SAN can be physically based on Fibre Channel or Ethernet,
for example, and employ the Fibre Channel Protocol (FCP) or TCP/IP to
issue SCSI commands for data access. For an operating system using a SAN,
the storage access is block-based and appears as a traditional logical block
storage. While the overall physical storage is shared for multiple applications,
the logical block storage is exclusive for a system and the data access is
not shared. Example realizations of block-based storage are illustrated in

22

2.2. Storage Virtualization

Figure 2.4 (first and second example). The realization can also be stacked,
e.g., a SAN environment may also contain RAID arrays.

Direct RAID Storage SAN Storage NAS Storage Object Storage
| Application | | Application | | Application | | Application

I I I
| File System | | File System | | NAS client |

Hypervisor

Server

NAS Gateway

RAID controller

SAN

— ==
OSD
Storage Storage device
devices devices

Block-based Data Access

O
3
Storage
devices

File/Object-based Data Access

Figure 2.4.: Example Realizations of the Storage Paradigms (derived from Troppens
et al. (2009) and the SNIA Shared Storage Model (n.d.))

File-based Storage and Network Attached Storage (NAS) File-based
storage runs on top of block-based storage at the file layer and an operating
system accesses the data with file system operations. A traditional example
for file-based access is using a file server with the File Transfer Protocol
(FTP). In virtualized environments, the typical file-based storage is network
attached storage (NAS) (cf., e.g., Troppens et al., 2009). A NAS server or
NAS gateway runs a file system on top of block-based storage and provides
file-based data access over TCP/IP Ethernet using, for example, the NFS

23

2. Virtualization Technology

(network file system) protocol. In general, there are dedicated NAS systems,
but also traditional servers can be configured as NAS gateways and expose
the file-based storage to other systems. In contrast to block-based storage,
the access at the file layer can be shared, i.e., multiple systems can access
the same data. An example of a NAS-based storage structure is shown in
Figure 2.4 (third example).

Object-based Storage and Cloud Computing While there is also block-
based storage concepts in Cloud Computing, a paradigm frequently employed
in Cloud environments is object storage. In general as defined by Mesnier
et al. (2003), storage objects are logical collections that have attributes and
are variable in size. They can be used to store entire data structures, such as
files, database tables, or multimedia. In contrast to files, storage objects are
units of storage and a concept on a lower level such as blocks. The SNIA
Shared Storage Model also defines the Object-based Storage Device (OSD),
which is described as a storage device that incorporates the object concept
and whose access is on the file layer, cf. Figure 2.4 (fourth example).

The object storage concept is popular in Cloud environments and used to
implement a scalable and reliable storage infrastructure. Clouds are designed
to run on traditional hardware and, e.g., the popular Open Stack Object Storage
(Swift) (n.d.) is realized by an object server saving the objects as binary files
on the file system. The Cloud management replicates the data and stores them
redundantly in the background to account for hardware failures. The object
storage is focused on serving static data, such as backups and archives, and
OpenStack uses block-based storage for performance-sensitive applications
(cf. Open Stack Object Storage (Swift) n.d.).

2.2.3. Discussion

Similar to Cloud storage, there are new technologies and trends emerging.
Trends, such as Big Data, for example, introduce new programming models
and storage usage scenarios. The common MapReduce programming model
(Dean et al., 2008) for Big Data applications uses a cluster of nodes and a
distributed file system to analyze large amounts of data. It is not unusual that
the nodes are deployed in a virtualized environment. Another storage usage

24

2.2. Storage Virtualization

scenario is based on in-memory databases that use the memory of a system as
a storage resource to increase performance.

To put our work into context, the focus of this thesis is I/O performance of
storage resources in virtualized environments. More specifically regarding the
storage paradigm, we analyze block-based storage employed in virtualized
environments, which is illustrated in the second example in Figure 2.4. The
main distinguishing factor to, e.g., the new paradigms mentioned above is that
there can be domain-specific application logic and further resources that affect
the I/O performance. In other words, our work can be used and extended to
account for such scenarios at a higher level, but we will not elaborate on these
trends in the following.

25

3. Performance Engineering

In this chapter, we present the theoretical foundations of this thesis as well
as the terminology and concepts used in this context in the remainder of this
work. The general foundations are in the area of performance engineering and,
in particular, concerned with performance modeling for predictive analysis.
For the sake of understandability, we refrain from presenting complete formal
definitions and refer to well-established work where applicable. Overall,
this chapter is structured as follows. We begin in Section 3.1 with a brief
introduction to performance modeling. In Section 3.2, we introduce the main
concepts and terminology on regression analysis as well as on the evaluation
of regression models. Then, Section 3.3 presents the foundations on queueing
theory-based modeling. Finally, important concepts for software architecture-
level modeling is explained in Section 3.4 taking the Palladio Component
Model (PCM) as example.

3.1. Performance Modeling

The term Software Performance Engineering (SPE), also referred to as Perfor-
mance Engineering (PE), has been coined by some frequently cited authors,
such as Smith (1990) and Woodside et al. (2007), for instance, and can be
defined as follows:

Software Performance Engineering (SPE) represents the entire collection
of software engineering activities and related analyses used throughout
the software development cycle, which are directed to meeting perfor-
mance requirements. (Woodside et al., 2007)

In the SPE methodology (Smith, 1990), creating and evaluating performance
models is a central concept to quantitatively evaluate the performance of a sys-
tem design and predict the performance of design alternatives. A performance

27

3. Performance Engineering

model captures the performance-relevant behavior of a system to identify the
effect of workload or configuration changes on the overall performance. It
allows to predict the effect of such changes without physically implementing
and deploying the system stack, which can be not only costly, but also waste-
ful if the acquired hardware environment proves to be insufficient to support a
required workload intensity.

The form of a performance model can be diverse comprising mathematical
functions, structural modeling formalisms, and simulation models, for exam-
ple. These models vary in their key characteristics, e.g., modeling assumptions
of the formalisms, required modeling effort, and abstraction level. In the fol-
lowing sections, we introduce the modeling formalisms employed in this
thesis. At this point, we merely present the main concepts of the formalisms
and in the main part of this work, we will show why and how the approaches
are used for I/O performance modeling.

3.2. Regression Analysis-based Modeling

Regression analysis is a statistical approach to model the effect of one or more
independent variables (as input) on a dependent variable (as output), e.g., the
effect of an I/O request size and a request type on the request response time at
a storage system. In general, there are many regression techniques to create a
specific regression model for given training data. Creating a regression model
is a supervised learning problem, where the correct outcome of the training
data is known in advance. By contrast, unsupervised learning techniques
aim to find relationships without knowledge of the correct outcome, e.g.,
clustering techniques for classification of data sets.

3.2.1. Regression Model Creation

Regression techniques aim to learn and model the underlying structure of the
training data and the more information and domain knowledge is employed
to choose the appropriate regression technique, the closer can the model
represent and generalize to predict the outcome of previously unseen data.
For example, if a given variable is known to have a quadratic effect on another

28

3.2. Regression Analysis-based Modeling

variable, it is most reasonable to represent the effect with a quadratic model
and not, for example, with a logarithmic one. Usually, however, the actual
relationship between given variables is not known in advance. Consequently,
there are many techniques to regression modeling that address the learning
problem reaching up into the area of machine learning, such as artificial
neural networks, for example. Furthermore, the regression techniques usually
have configuration parameters that effect the resulting regression model that
a given technique creates for a given set of training data. For example, the
number of hidden units in an artificial neural network can be a configurable
parameter (cf., e.g., Kuhn et al., 2013).

Training Data

, JL \
AV

>
Independent g . Dependent
. > Regression Model —> .
Variables : g Variable
e.g., Request Size, L e.g., Response Time
Request Type

Regression Technique

ip

Configuration
Parameters

Figure 3.1.: Illustration of Regression Modeling

The concept of regression modeling is illustrated in Figure 3.1. Formally,
a regression model is a function f that maps values for the independent
variables X on a value for a dependent variable y and is parameterized with a
vector of configuration parameters p, i.e.,

y=f7(®. 3.1

The regression model f is created from training data {(¥X;,y;)};. This is
usually realized in a form that minimizes a metric of error, such as the squared
difference between the model and the training data, for example.

29

3. Performance Engineering

Obviously, different configuration parameters j and ¢ may lead to different
regression models, i.e.,

35.4:#GN 7 # 17 (3.2)
In general, the best choice for a regression technique and its configuration

parameters is not straightforward and the prediction accuracy differs for
different domains and the training data at hand.

For formal definitions and more information on regression analysis, the reader
can refer to the works of Kuhn et al. (2013), Izenman (2009), Hastie et al.
(2008), and Walpole et al. (2007).

3.2.2. Regression Model Evaluation

In general, regression models can be more or less complex depending on their
configuration, i.e., the parameterization of a regression technique affects the
resulting model. While this is not an issue per se, an overly complex regression
model may suffer from over-fitting. An over-fitted regression model may be
excessively fitted to the training data at hand, such that the model resembles
the training data perfectly, but does not represent the underlying structure of
the data. Thereby, the regression model is not able to generalize and accurately
predict unseen data. By contrast, a regression model that is too simple may
not be able to even represent the training data sufficiently, let alone capture
the underlying structure of the data.

Based on the established work of Hastie et al. (2008), Izenman (2009), and
Kuhn et al. (2013), this section compares and discusses main concepts for
evaluating the prediction quality of regression models by estimating their
generalization error. Typical metrics for the generalization error of a regres-
sion model are based on resampling techniques. Here, multiple subsets of
the training data, which are often overlapping, are used to create multiple
regression models. Then, the remaining data of the respective subset is used to
predict the outcome using the respective regression model, hereby estimating
the prediction error for unseen data. The prediction errors of all subsets are
finally aggregated to obtain the quality estimation of the regression technique
and its parameterization. The metrics can be usually categorized into two
groups, cross-validation and bootstrapping. The two groups are introduced
next and briefly discussed afterwards.

30

3.2. Regression Analysis-based Modeling

Cross-Validation The basic idea of cross-validation is to divide the avail-
able training data into two disjoint sets, a learning set and an evaluation set. A
regression model is created using the learning set first, then the evaluation set
is predicted, and finally the difference between the outcomes of the evaluation
set and the actual values is determined. The main question of cross-validation
is how to define the learning and the evaluation set?

There are generally different variants and special forms for certain regression
techniques (e.g., for linear regression models, cf. Kuhn et al., 2013), however,
they are not discussed at this point. The most typical form of cross-validation
is k-fold cross-validation. Here, the training data is split randomly into
k partitions of approximately equal size. Each of the partitions is used once as
evaluation set, while the rest of the data is used as learning set, cf. Figure 3.2.
The prediction errors of all partitions are aggregated to evaluate the regression
model. A special case for k equal to the size of the training data is called
leave-one-out cross-validation. In the process of a k-fold cross-validation
evaluation, k regression models are created to obtain the evaluation of a
certain regression technique and its parameterization. Once the training data
is partitioned into the folds, the k regression model creations are independent,
i.e., from a practical point of view, the models can be created in parallel. In
general, k is set to 5 or 10 (Hastie et al., 2008; Kuhn et al., 2013), which
appears to be a better choice than leave-one-out cross-validation (Izenman,
2009).

Original Data @@@@@@@@@

Build Model with Predict on

sowtt QOOOOOOO® | OO
w2 (HOOOOOOO | OO
sows QOOOOOOO | OO
sowis. DOOOOOOO | OO
owts (DOOOGOOOO | OO

Figure 3.2.: [llustration of 5-fold Cross-Validation (based on Kuhn et al., 2013)

31

3. Performance Engineering

Bootstrap Bootstrapping employs a similar idea as cross-validation in a
slightly different approach. A bootstrap sample is a random sample with
replacement of the training data. The bootstrap sample is of the same size as
the training data, but may contain duplicates, whereas the training data may
contain elements that are not in the bootstrap sample. Hereby, the partition
of the training data into the learning set and the evaluation set is defined
implicitly. The bootstrap sample is the learning set, the remaining training
data that is not contained in the bootstrap sample is the evaluation set, cf.
Figure 3.3. Overall, the process is repeated by creating b bootstrap samples,
where it is not unusual that b = 100 or b = 1000 (cf., e.g., Hastie et al., 2008;
Izenman, 2009), and the prediction errors of the samples are aggregated. Thus,
in the bootstrap process, b regression models are created to evaluate a certain
regression technique and its parameterization. Again, the b model creations
are independent.

Original Data @@@@@@@@@

Build Model with Predict on

pospst ()OOOOOOOOO | OOO
pasep 2 (DO OOOOOOOO | ©OO
b s (DOOOOOOOOO | ®O

s (DOOOOOO@OO®O | OO

Figure 3.3.: Illustration of Bootstrapping (based on Kuhn et al., 2013)

Discussion Based on Hastie et al. (2008), Izenman (2009), and Kuhn et al.
(2013), important aspects of a resampling technique are bias and variance.
Here, bias refers to the difference between the estimated and the true predic-
tion error of a given regression technique and its parameterization, whereas
variance is the difference in estimated prediction error when the evaluation
process is repeated. For k-fold cross-validation, for example, a larger value of
k results in a smaller difference in size between the training data and the learn-

32

3.3. Queueing Theory-based Modeling

ing set, thereby the bias of the technique becomes smaller if £ gets larger. In
comparison, k-fold cross-validation tends to have a higher variance than other
methods (Kuhn et al., 2013). For a large set of training data, however, the
considerations of variance and bias become negligible (Kuhn et al., 2013).

It can be said that, in general, no resampling method is universally better than
another (Kuhn et al., 2013). Depending on the regression technique, creating
a regression model for a given set of data can be computationally expensive.
Since the focus in our work is to create practical models and, thus, to evaluate
the regression models efficiently, our goal is to limit the number of regression
model creations. As noted by Kuhn et al. (2013), 10-fold cross-validation
provides acceptable variance, low bias, and is comparably efficient to compute.
Therefore, later in our work we will focus on using k-fold cross-validation as
a quality criterion for regression models, where we keep in mind that & is set
to 10 in general.

3.3. Queueing Theory-based Modeling

Clients =— O—)

Wa}tmg Server
Line

Figure 3.4.: A Queue comprised of a Waiting Line and a Server

Queueing theory is a broad field with different specializations and extensions,
in all their core is the concept of a queue (cf., e.g., Menascé et al., 2004; Bolch
et al., 2006). As illustrated in Figure 3.4, a queue consists of a waiting line,
where arriving clients are held until they are handled by a server according
to its scheduling strategy, e.g., First-Come-First-Served (FCFS), where the
clients are served in arriving order, or Infinite Server (IS), where a client is
served immediately after arriving at the queue. A queueing network (ON) is a
graph, where different clients travel through a set of interconnected queues. A
queueing model can be open, where clients arrive at the model with a given
interarrival time and leave the model after they have been served, or closed,

33

3. Performance Engineering

where there is a fixed number of clients that need to be served by the model
and, after a client has been processed, the client waits for a given think time
before it needs to be served again.

The main queueing theory-based modeling approach used in this work is
an extension of basic queueing networks and their combination with the
Petri net formalism resulting in queueing Petri nets (QPNs). Petri nets (PN)
are bipartite directed graphs and are comprised of places containing tokens
(clients) that use transitions, whose behavior is defined in incidence functions,
to travel through the net, which describes a certain behavior. As illustrated in
Figure 3.5, the places are connected over the transitions that fire and execute
their incident functions when they are enabled, i.e., when the required tokens
are available. In the example in Figure 3.5, the transition uses one token from
two places each to produce one new token when it fires.

Place Transition
(a) Before
1
1 1
Place Transition
(b) After

Figure 3.5.: A Petri Net before and after Transition Firing

34

3.3. Queueing Theory-based Modeling

PNs have been extended with concepts such as colored tokens in Colored
PNs (CPNs) introduced by Jensen (1981), which also play a role in QPNs.
CPNs use typed tokens whose colors define different types or classes. In
addition to introducing token colors, CPNs can also contain transitions that
fire in different modes (transition colors).

Further extensions to PNs introduce temporal (timing) aspects to the net model
in addition to the behavioral description. Here, Stochastic PNs (SPNs) (Bause
et al., 2002) contain transitions that have an exponentially distributed firing
delay, which specifies the time the transition is delayed after being enabled
before it fires. Generalized Stochastic PNs (GSPNs) use both types of transi-
tions, i.e., immediate and timed transitions. Immediate transitions fire as soon
as they are enabled. The immediate transitions can have firing weights that
decide which transition fires if multiple immediate transitions are enabled at
the same time in the GSPN. The timed transitions fire after an exponentially
distributed delay and the firing of immediate transitions is prioritized over the
firing of timed transitions.

The Queueing PNs (QPNs) extend the Colored GSPNs (CGSPNs) by means
to represent queueing strategies and introduce queueing places. A queueing
place represents an intuitive form of contention for a server (or resource) and
consists of two parts as illustrated in Figure 3.6, a queue and a depository for
tokens that were served by the queue. If a token is fired into a queueing place
by any of the queueing place’s input transitions, the token is inserted into
the queue, where the token is processed according to the queue’s scheduling
strategy. After the token has been served, it is put in the depository. In contrast
to tokens in the queue, only the tokens in the depository can be used by the
output transitions. If the servers have a service time, the place is called a
timed queueing place. If the place only represents scheduling aspects it is
called an immediate queueing place. To obtain timing results, a QPN model is
typically solved in a simulation-based approach (cf. Kounev et al., 2010b).

Further information on queueing theory is given by Bolch et al. (2006) and
Menascé et al. (2004). The introduction of QPNs in this section is based on
Kounev (2006), more information and formal definitions of QPN is provided
by Bause (1993).

35

3. Performance Engineering

Input Queueing Output
Transition Place Transition

=0l

{

110>

Queue Depository

Figure 3.6.: A Queueing Place and its Notation (Source: Kounev et al., 2010b).

3.4. Software Architecture Modeling with the
Palladio Component Model (PCM)

The Palladio Component Model (PCM) (Reussner et al., 2011; Becker et
al., 2009) is a modeling approach for component-based software architec-
tures allowing a model-based performance prediction. The PCM supports
the component-based software engineering (CBSE) development process
and provides modeling concepts to describe the i) software components, ii)
software architecture, iii) component deployment, and iv) usage profile of a
component-based software system in different sub-models, cf. Figure 3.7:

e Component specifications are an abstract, parametric description of
software components at a type level. In the component specifications,
an abstract description of the internal behavior of a component as well as
its resource demands are provided in RDSEFF's (Resource Demanding
Service EFFect specifications) in a UML (Object Management Group
(OMG), n.d.) activity diagram-like syntax.

36

3.4. Software Architecture Modeling with the Palladio Component Model (PCM)

e An assembly model specifies which component types are used at an
instance level in the modeled application and if the component instances
are replicated. Furthermore, it defines how the component instances are
connected representing the software architecture.

e The execution environment and resources as well as the deployment
of component instances to such resource containers are defined in an
allocation model.

e The usage model specifies the interaction of users with the system also
in a UML activity diagram-like syntax providing an abstract description
of the sequence and frequency of users triggering the system operations
that are available.

Component Specifications

[i 5D

o e ,C RDSEFF
Assembly Model
3] 3]
| 7%(} 7C \
Allocation Model
1] / / PCM Instance
o (e >

Usage Model

Figure 3.7.: PCM Model Instance (Source: Becker, 2008)

A PCM model abstracts a software system at the architecture level and it is
annotated with measured or estimated resource consumptions. The model
can then be used in model-to-model or model-to-text transformations to a
required analysis model (e.g., to queueing networks or to simulation code)

37

3. Performance Engineering

that can be analytically solved or simulated to obtain performance results and
predictions of the modeled system. The performance results and predictions
can be used as feedback to evaluate and improve the initial design, thus
allowing a quality assessment of software systems on a model basis. The
general model-based performance prediction process employed in the PCM
is shown in Figure 3.8.

More analysis of the PCM in the context of our work is provided at a later
point in Chapter 8 and is also available in our work (Noorshams et al., 2014b),
on which this section is based. Further information on the PCM in general is
available by Reussner et al. (2011) and Becker et al. (2009).

Response Time,
UML, ADL, ... Throughput, ...
.l A

feedback

Architecture <:| Prediction
M Model Results

Software

models estimate/measure analysis/
System resource consumption simulation

R Annotated transform .
|:1‘> Analysis

Architecture
Model
Model ode
R} X
UML Performance Profile, Queueing Networks, Algebras,
PCM, QML, ... Stochastic Petri Nets, ...

Legend

Artifact |:> Relation |::> Activity

Figure 3.8.: Model-based Performance Prediction (Source: Becker, 2008)

38

Part Il.

Versatile I/0 Performance
Analysis in Virtualized
Environments

4. Methodology

Typically, performance considerations concerning storage I/O in virtualized
environments have a multitude of implications on the overall applications’
performance, the hardware costs, and beyond. These considerations usually
require an in-depth analysis of the infrastructure environment as well as the
impact of software and hardware design decisions on the I/O performance of
all the applications that share the storage resources.

The goal of this thesis is to develop practical performance modeling and
prediction techniques tailored to support I/O performance considerations
in virtualized environments. By developing a portfolio of approaches, we
allow for a versatile I/O performance analysis using storage-level as well as
software architecture-level performance models tailored to the target domain,
i.e., for virtualized environments. This chapter provides an overview of
this thesis’ I/O performance modeling approaches. Aligned with the model-
based performance prediction process, we develop implicit and explicit I/O
analysis models based on statistical regression analysis and queueing theory,
respectively. Furthermore, we show how these I/O analysis models can be
integrated into software architecture-level performance modeling approaches
to increase the applicability of our approach.

Before going into details on the I/O performance modeling approaches, in
the following in Section 4.1 we present an overview of the approach we
pursue in this thesis. Then, we introduce our reference system environment
in Section 4.2 to illustrate the storage infrastructure challenges arising in
virtualized environments. Furthermore, we briefly introduce the infrastructure
aspects that are to be considered in performance modeling approaches. Finally
in Section 4.3, we give an outlook on the structure of the thesis and its main
parts, where the I/O performance models are developed and validated in
multiple case studies.

41

4. Methodology

(" 7 Model-based Performance Prediction Process \1
| Response Time, ‘

‘ PCM Throughput, ...
‘
‘ feedback |
| Architecture i:’ Prediction |
Performance Prediction Model Results |

Target T
1/O-intensive | !
Application in models estimate/measure analysis/ ‘
Virtualized s | resource consumption simulation |
Environment | ‘
transfc
Rb Annotated ransform Analysic |
Architecture |::> M g’l |
[Model ode \
analyze ‘ Y Ry ‘
include PCM intearate Simulation Model |
e L _
Performance Prediction (Chapter 8)
(Chapter 5) Mechanism
model
Pf;ggi:‘:e 1/O Analysis
e Model
Factors
ﬁ alternatives I%
(Chapter 6) (Chapter 7)
Implicit Analysis Explicit Analysis
Model Model
Statistical Regression Queueing Models
Models
Legend

l:' Artifact |::> Relation |::> Activity

Figure 4.1.: General Overview of the Thesis Approach and Structure

4.1. Approach Overview

The high-level overview of this thesis for our I/O performance modeling
approach is given in Figure 4.1 (cf. Noorshams et al., 2013c; Noorshams
et al., 2014b), which is the realization of the approach summary shown in
Figure 1.1. The performance prediction target is an I/O-intensive application

42

4.1. Approach Overview

deployed in a virtualized environment producing I/O workload on the storage
resource. The background of our approach is the model-based performance
prediction process (cf. Becker, 2008 and Section 3.4), indicated by the dashed
box in Figure 4.1. Starting point is an architecture model of the performance
prediction target comprised of a static and dynamic representation of the
application and a description of the target environment. For this architec-
ture model, we employ the Palladio Component Model (PCM) designed for
component-based software architectures (cf. Section 3.4), since it is a mature
approach with a large amount of validation case studies, e.g., Becker (2008),
Becker et al. (2009), Hauck et al. (2009), Huber et al. (2010), Krogmann
(2010), and Kuperberg et al. (2008). The PCM incorporates the model-based
performance prediction process to obtain performance prediction results from
application models at the software architecture level. The architecture model
is annotated with estimated or measured resource consumptions. The anno-
tated architecture model is transformed into an analysis model, for which we
use a simulation model. In general, the analysis model can be any formalism
and it can be solved analytically or using simulation-based approaches to
obtain performance prediction results, e.g., for response time, throughput,
and resource utilization. The prediction results serve as feedback for the
architecture model to evaluate design and deployment alternatives.

To refine this process focusing on the I/O performance, which constitutes the
prediction target of this thesis, we first identify the performance-influencing
factors of 1/O-intensive applications in virtualized environments. We analyze
the workload of the application as well as the system environment providing
and managing the storage resources. To develop the performance prediction
mechanism, we model the performance-influencing factors in /O analysis
models with different alternative formalisms. We use implicit analysis models
based on statistical regression analysis that are able to learn the behavior
from measurements implicitly without correlating the observed performance
effects to a specific cause in the system environment. Furthermore, we use
explicit analysis models based on queueing theory that need to be created by
an expert such that they explicitly capture the observed and expected system
behavior. The two analysis model formalisms can be seen as complementary
approaches: On the one hand, regression analysis-based models can be created
in an automated process, however, the required amount of measurements
grows exponentially with the number of factors that should be included in
the model. On the other hand, queueing theory-based models need to be

43

4. Methodology

created manually and require knowledge of the environment and performance
modeling expertise, but once created, they can be applied and reused with a
small number of calibration measurements.

Since the I/O analysis models created with the two formalisms capture the I/O
performance at a low abstraction level, we integrate the I/O analysis models
into the higher-level architecture models aiming to increase the applicabil-
ity of our modeling and prediction approach. To this end, we include the
performance-influencing factors into the architecture model, in particular the
PCM, such that the required information can be specified during architecture
model building. Then, we combine the analysis model of the architecture
model, in particular the simulation model, with the I/O analysis model. After a
PCM model is transformed to the simulation model, the I/O analysis model is
used during simulation to evaluate and predict the I/O performance, whereas
the simulation model captures the general behavior of the application and
the contention of other resources such as CPUs, for example. The combined
analysis model is used to obtain performance predictions that can be used to
evaluate the application and system design.

4.2. Reference System Environment

To describe a typical virtualized environment including the inherently emerg-
ing complexity and challenges, in this section we present our reference system
environment as a representative basis for our analysis, cf. Noorshams et al.
(2013b). However, while we demonstrate our approach in a representative,
sufficiently complex environment, the approach and concepts of this thesis
are of general nature and not dependent on a specific environment.

In today’s modern data centers, a typical virtualized environment is com-
prised of servers providing computational resources connected to a set of
storage systems. Such storage systems typically differ significantly from
traditional hard disks and RAID-based arrays to address the challenges vir-
tualization technology entails, for instance, the increased workload intensity
due to workload consolidation, which aims for a high resource utilization to
run the infrastructure more efficiently. Purely disk-based storage is rapidly
overburdened with the competing requests because of its mechanical nature

44

4.2. Reference System Environment

constantly seeking to the required disk sectors such that the requests magnify
the storage latency.

In this thesis, we analyze a representative virtualized environment based on the
IBM System z server and the DS8700 storage system. These are state-of-the-
art high-performance virtualized systems with redundant and hot swappable
resources for high availability. The System z combined with the DS8700
represent a typical virtualized environment that is used as a building block
of a data center in large companies. The environment supports on-demand
scale-up and scale-out of pooled resources. The structure of this environment
is illustrated in Figure 4.2.

IBM System z IBM DS8700
LPAR | (VM) LPAR 2 (VM)
>| Storage Server VC
z/Linux z/Linux - NVC
Switched
Fibre Channel
PR/SM (Hypervisor) B v oRE (IS
Processors Fibre
Memory Channel RAID Arrays SSD/
Y CPU, RAM HDD

Figure 4.2.: Reference System Environment comprised of IBM System z and IBM
DS8700

The System z provides processors and memory and is connected via fibre
channel to the DS8700 providing storage space. The environment is virtual-
ized by the Processor Resource and System Manager (PR/SM) hypervisor,
which manages the logical partitions (LPARs), i.e., virtual machines (VMs), of
the system. The System z supports the classical mainframe operating system
Z/0S and special Linux ports for System z commonly denoted as z/Linux.

In the DS8700, storage requests are handled by a storage server having a
volatile cache (VC) and a non-volatile cache (NVC). The storage server is
connected via switched fibre channel with SSD-based or HDD-based RAID
arrays. As explained by Dufrasne et al. (2010), the storage server combines
several pre-fetching and destaging algorithms for optimal performance, such

45

4. Methodology

as Sequential Adaptive Replacement Cache (SARC), Adaptive Multi-stream
Prefetching (AMP), and Intelligent Write Caching (IWC). Summarizing these
algorithms, read-requests are served from the volatile cache if possible, other-
wise they are served from the RAID arrays and stored in the volatile cache for
future requests. Write-requests are written to the volatile as well as the non-
volatile cache, but they are destaged to the RAID arrays asynchronously.

In conclusion, modeling the I/O performance in such an environment is
not straightforward. The I/O workloads may be merged and are subject to
scheduling and optimization policies on multiple tiers and layers starting from
the operating system through to the physical storage. At the same time, it is
not practically and technically feasible to observe and monitor the complete
environment to capture all aspects throughout all physical tiers and logical
layers in the I/O performance models. A central challenge of this thesis is
to be able to model the I/O performance in such complex environments at a
reasonable abstraction level that allows a practical model creation and at the
same time provides a sufficient prediction accuracy.

4.3. Outlook on Core Approach

The main part of this thesis is aligned with the extending steps of the model-
based performance prediction process as shown in the overview in Figure 4.1.
Next in Chapter 5, we analyze the performance-influencing factors of I/O-
intensive applications. At this point, we keep in mind that the performance
factors are eventually integrated into a software architecture-level modeling
approach. Thus, the factors need to be identified at a level of abstraction
such that they can be reasonably specified and determined, still allowing for
accurate performance predictions. We use the factors as a basis to derive a
workload characterization to be included and used as input for the I/O analysis
models. In Chapter 6, we present an automated I/O performance modeling
approach with statistical regression techniques. The chapter addresses the
regression modeling question more generally by presenting a regression opti-
mization approach for regression technique parameterization. We survey a
representative set of techniques ranging from linear regression to machine
learning and show how to select and parameterize a regression model. To cre-
ate I/O queueing models, Chapter 7 describes a general process for queueing

46

4.3. Outlook on Core Approach

theory-based modeling of I/O performance. The process is tailored to virtu-
alized environments by two main ideas, i) we use end-to-end measurements
instead of monitoring and instrumentation data for model parameterization
to avoid possibly unreliable or system-specific monitoring tools and ii) we
start from a simple model that is extended step-by-step to cope with the com-
plexity of the system environment. Using the I/O analysis models within the
model-based performance prediction process is detailed in Chapter 8. We
combine the I/O analysis models with the software architecture-level model-
ing approach realized in the PCM and show how the transformation process
is extended to integrate the I/O analysis model into the analysis model trans-
formed from the software architecture model. Finally, Chapter 9 presents a
variety of validation case studies along multiple aspects. We first evaluate the
workload characterization used for our approach to show that it can reasonably
capture the workload of an I/O-intensive application. We then evaluate the
prediction accuracy of the I/O performance modeling approach in different
scenarios considering the I/O analysis model in isolation as well as combined
with the software architecture-level modeling approach. To conclude the
validation, we discuss the applicability of our work. The overall, high-level
evaluation goal is to show that we can obtain practical performance models
with sufficient prediction accuracy.

47

5. Systematic Analysis of I/0
Performance-influencing
Factors

After introducing the big picture of our approach in the previous chapter, this
chapter is the first part of our approach for I/O performance modeling in virtu-
alized environments. We lay the foundation for I/O performance evaluation
by identifying the major factors that need to be considered when creating
I/O performance models. More specifically, in this chapter we identify the
important influencing factors of I/O performance in virtualized environments.
Here, we consider both workload-relevant and system-relevant factors. The
main challenge is to identify the factors at an appropriate abstraction level,
such that they can be reasonably determined and included in I/O performance
modeling approaches and yet allow the models to capture the I/O performance
at a sufficient level of accuracy. We use the workload-relevant factors as a
basis to establish a workload characterization for the I/O performance models,
i.e., the workload information that describes an I/O-intensive application and
is used as input for the models to obtain a prediction for the given requests.
Since obtaining such workload information of an existing application may
require detailed knowledge of the application, we develop an automated char-
acterization approach for running applications by monitoring the workload of
the application and calculating the required information.

This chapter is structured along these steps indicated above: Next in Sec-
tion 5.1, we first emphasize the scientific challenges of this chapter. As
a basis of our work, in Section 5.2 we identify and classify important in-
fluencing factors of I/O performance in virtualized environments. Using
the workload-relevant performance-influencing factors, we derive a unified
workload characterization in Section 5.3, which is later used for our I/O per-
formance models as workload information. Section 5.4 shows how to obtain

49

5. Systematic Analysis of I/O Performance-influencing Factors

the workload characterization automatically to map a given application to the
required modeling parameters. Finally, Section 5.5 summarizes the chapter.

5.1. Scientific Challenges

This chapter deals with the following challenges, where the results of this
chapter have appeared in our publications (Noorshams et al., 2013b; Noor-
shams et al., 2015; Busch et al., 2015) and the thesis we supervised (Busch,
2013):

Challenge 1 — What are major influencing factors of I/O performance in
virtualized environments?

An important prerequisite for performance evaluation is the
identification of performance influences. The systematic
identification of I/O performance influences in virtualized en-
vironments lays the foundation for both performance analysis
and performance modeling.

Challenge 2 — What is an appropriate abstraction level for the influencing
factors?

Generally, many factors may affect the performance of an
I/0O intensive application to a certain extent. Identifying an
appropriate abstraction level for the factors is key to develop
performance analysis approaches that allow both a practical
characterization of the factors and accurate performance
evaluations.

Challenge 3 — What is an appropriate workload characterization to ad-
equately capture I/O-intensive applications in virtualized
environments?

50

5.1. Scientific Challenges

Derivable from the performance-influencing factors, the work-
load characterization of I/O-intensive applications describes

the application’s I/O behavior. Furthermore, the workload

characterization is the direct input for performance analy-
sis approaches defining the required information for perfor-
mance modeling. An adequate workload characterization

with respect to the considered characteristics and their ab-
straction level is needed. This is to be able to obtain the

characterization with appropriate effort as well as to avoid

introducing to much overhead in form of both amount of
manual work and technical monitoring overhead during the

characterization process.

Challenge 4 — How can the workload of a running application be character-

ized automatically?

In general, a manual workload characterization of an existing
application is cuambersome and error-prone. Thus to increase
applicability and reproducibility, an automated and system-
independent characterization approach is desirable. This
facilitates to apply the performance evaluation approaches to
existing I/O-intensive applications.

Based on these challenges, we derive the following four hypotheses that are
demonstrated in the course of this chapter:

HI: We can categorize the performance-influencing factors hierarchically

H2:

H3:

H4:

and group them along workload-relevant and system-relevant factors.

We can identify the performance-influencing factors in a way that allows
to specify and derive the factors with standard monitoring mechanisms.

Similar to the performance-influencing factors, we can define the work-
load characterization in a way that allows to derive it with standard
monitoring mechanisms.

We can extract the workload characterization for running applications in
an automated process.

51

5. Systematic Analysis of I/O Performance-influencing Factors

5.2. Classification of /0
Performance-influencing Factors

In a virtualized environment, there are a wide variety of heterogeneous
performance-influencing factors. By systematically and hierarchically ana-
lyzing our reference system as a representative virtualized environment, we
identify and classify significant performance-influencing factors (cf. Noor-
shams et al., 2013b). In multiple cases, the factors have a different effect
in virtualized environments than in traditional, disk-based storage devices
because of the many complex abstraction layers and optimization algorithms
employed in multi-tiered storage systems typically used in virtualized envi-
ronments. Figure 5.1 illustrates our hierarchical classification of the major
I/O performance-influencing factors in form of feature trees, which are a
graphical representation of hierarchical configurations or properties and their
relationships (cf. Czarnecki, 1998). The factors we present are of general
nature and not limited to a specific system. Overall, we distinguish workload-
relevant and system-relevant factors, which are explained in more detail in
the following.

5.2.1. Workload-relevant Factors

Workload factors are classified into three groups, i) workload intensity, ii)
request information, and iii) workload locality, cf. Figure 5.1a. The former
two are generally affecting I/O performance. The latter affects the storage
cache effectiveness and caching optimization algorithms. The factors are
elaborated in the following:

e Workload Intensity: The intensity can be represented in form of closed
or open workload. In a closed workload, the requests are created by
a certain number of clients (physical or logical users, e.g., threads or
processes). After the completion of a request, a client may have a
certain think time (e.g., to process the requested data) before issuing
another request. Open workload is characterized by the interarrival
time between consecutive users arriving at the system and issuing a
request. The workload intensity affects the performance by the number

52

5.2. Classification of I/O Performance-influencing Factors

of concurrent requests that require scheduling and introduce resource
contention.

Request Size: Most I/0 optimization strategies in the various layers of
the infrastructure’s I/O path aim at maximizing throughput by merging
subsequent requests if possible. Serving many small requests results
in a lower throughput than serving fewer large requests. Thus, small
requests may be held back at times by the scheduling policies hoping
for a mergeable request to follow.

Request Mix: While read requests are usually synchronous, write re-
quests may be served asynchronously without blocking the application.
This leads to complex optimization strategies, such as request reorder-
ing, when having mixed requests. Still, the optimizations must preserve
the integrity of an application and prevent, e.g., read accesses to already
overwritten data.

Request Access Pattern: The access pattern affects performance because
of the physical access of the data as well as the optimization strategies in
the various layers from the application to the physical storage. Typical
request access patterns are random or sequential requests. Because
of the mechanical nature of traditional storage devices, requests can
only speed up performance of such devices if the requests are strictly
sequential, i.e., all requests are immediately subsequent. By contrast,
many sophisticated storage systems are able to recognize interleaved
sequential requests, e.g., caused by multiple users each with strictly
sequential requests, thereby anticipating and prefetching data to caches
in order to increase the I/O performance.

Workload Locality: The locality of the workload and of the requests has
an impact on the effectiveness of caching algorithms and data placement
strategies. The locality can be estimated using the file set size, i.e., the
size of the files from which the applications read and into which the
applications write, as well as the access distribution, e.g., uniform
(if all files are accessed equally of randomly) or Gaussian or similar
distributions (if there are hot spots).

53

5. Systematic Analysis of I/O Performance-influencing Factors

5.2.2. System-relevant Factors

System factors are also classified into three groups comprising i) operating
system (OS), ii) virtualization architecture, and iii) hardware configurations,
cf. Figure 5.1b. Among the factors, especially the virtualization architecture
and hardware caching factors are distinctive for virtualized environments. In
the following, the factors are explained in more detail:

e Operating System: The major I/O configuration factors of a host OS
are the file system and the I/O scheduler. The factors are discussed for
Linux distributions here, but other operating systems have comparable
factors.

— File System: Modern file systems, e.g., EXT4 as the de facto stan-
dard for Linux or XFS, exhibit performance differences under the
same workload as they are implemented and optimized differently.
Furthermore, the recordings of journaling file systems usually
introduce additional overhead compared to non-journaling file
systems.

— /O Scheduler': Aiming to optimize throughput, the current Linux
standard CFQ (Completely Fair Queueing) scheduler performs
several optimizations (e.g., splitting/merging and request reorder-
ing) to minimize disk seek times, which account for a major part
of I/O service times in disk-based storage systems. The Deadline
scheduler imposes a deadline on requests to prevent request star-
vation with read requests having a significantly shorter deadline
than write requests. The NOOP (NO OPeration) scheduler only
merges and splits I/O requests and has been increasingly used as
the standard scheduler in virtualized environments to defer I/O
scheduling to the hypervisor and storage systems (cf. Ling et al.,
2013).

o Virtualization Architecture: There are different hypervisors with individ-
ual virtualization concepts and architectures. For instance, Xen-based
hypervisors translate disk devices to the VMs (cf. Barham et al., 2003),

! Note: The Anticipatory scheduler was removed from recent Linux distributions and is highly
discouraged in virtualized environments.

54

5.2. Classification of I/O Performance-influencing Factors

whereas DS8700 volumes undergo multiple layers of logical abstraction
(cf. Dufrasne et al., 2010). Understanding the architecture is important
for performance evaluation and modeling to identify the involved I/O
scheduling aspects in the hypervisor and the storage systems for the
environment.

e Hardware: Considerations on a hardware level are generally not only
focused on maximizing performance, but are rather a trade-off between
multiple dimensions, e.g., performance and costs, and the detailed setup
is usually specific to the implemented environment. The most typical
hardware factors include the disk type, RAID configuration, caching
and scheduling, and storage connection and network.

— Disk Type: A volume used in a VM can be created with disks
of a specific type advantageous for different usages: Fast, but
more expensive SSDs for higher performance requirements or
regular HDDs (usually between 7.2k r/min and 15k r/min) for
lower cost per storage space. In contrast to HDDs, SSDs have
no mechanical arms, thus reducing the seek time to a negligible
minimum. Tape storage is intentionally left out of scope at this
point as it is usually used for, e.g., data archiving and backups
rather than active application data.

— RAID: The different RAID types offer a trade-off between perfor-
mance, reliability and resource efficiency. Typical RAID configu-
rations are RAID 5 (or RAID 6) and RAID 10 (a combination of
RAID 1 and RAID 0), either using parity information or mirroring
for data redundancy.

— Caching/Scheduling: Modern storage systems that are designed
for virtualized environments include a tiered caching architec-
ture as well as sophisticated, adaptive management and request
scheduling to handle intensive, parallel workloads. Usually, read
caches are used to buffer frequently requested and anticipated data,
write caches are used to buffer write requests with asynchronous
destaging to physical storage.

— Storage Network: The connection between servers and storage
systems as well as the storage network topology is an important
factor and is usually dedicated and designed to not become the bot-

55

5. Systematic Analysis of I/O Performance-influencing Factors

tleneck. Still, there can be significant differences in performance,
e.g., between iSCSI over Ethernet and Fibre Channel-based con-
nections.

5.3. 1/0 Workload Characterization for
Performance Modeling

In this section, we derive an I/O workload characterization from the workload-
relevant performance-influencing factors presented in Section 5.2. Further-
more, we formalize workload characteristics and derive representations that
can be used in automation using monitoring mechanisms to obtain the work-
load characterization from existing applications. The following workload
characteristics will be extracted from the applications, cf. Figure 5.1a:

e Workload intensity: Number of clients issuing requests or requests
arriving per unit of time.

e Request size: Average size of issued requests.

Request mix: Proportion of read and write requests.

Request access pattern: Proportion of (interleaved) sequential requests.

Workload locality: The file set size comprised of the average file size
and number of files.

While we explicitly account for fluctuations of the workload along these
dimensions, we assume the workload to be steady without, e.g., variable or
bursty elements, and calculate mean values for each workload characteristic.

5.3.1. Workload Intensity

In a typical workload, the workload intensity may vary over time. For closed
workload, we capture the number of clients accessing the system over time
and average the value over the observation period. For open workload, we
estimate the mean interarrival time of the clients using the mean number of
requests per time averaged over the observation period.

56

5.3. I/O Workload Characterization for Performance Modeling

Formally, let [0, T], where T € R, be the observation period. The workload
intensity for closed workload is estimated by

T
workloadlntensity?}’fsed ::/ @dr 5.1
0
T
1 X (k)
_flglc}o]; T Aty 5.2)
1 Ti"l i ZAs %) 5.3
= lim _— 5.3)
97120 p=1 T¢
| T=1 9 P
~— x@t+>), 5.4)
T 5 pg’l ¢

where y(t) is the number of active clients at time ¢, & := {([tx_1,1],%), 1 <
k < 1} is a tagged partition of the interval [0,7T],i.e.,0=:1) <x; <1 <xp <
. Zx¢ <tp:=T,and Aty :=t; — ;. In Equation (5.1) to Equation (5.4), the
integral is transformed to the Riemann sum using %2 and approximated using
equidistant points in time with sampling frequency ¢. This transformation
is required, since practical monitoring mechanisms merely provide discrete
observation points in general. Consequently, T¢ is the number of actual
observation points in the observation period.

The workload intensity for open workload is characterized by the average ar-
rival rate of requests using the average number of requests per time. Assuming
a sampling frequency ¢, we obtain

T % t
workloadIntensityg %, ::/ Zall)dt (5.5)
0 T
17zl ¢ P
~7 Y Y nte+5). (5.6)
t=0 p=1 ¢

where x*(¢) is the interarrival rate of clients at time ¢ that is approximated
using the number of requests arriving n?(¢) in the last % time units at time ¢.

57

5. Systematic Analysis of I/O Performance-influencing Factors

5.3.2. Request Size

To calculate the average request size, we calculate the average size per request
type over the observation period. Let I', and I, be the non-empty sets of
observed read and write request sizes, respectively. The average request size
for read and write requests is determined as follows:

ay, Z‘rr‘ r
requestSizereagd = 0| 5.7)
avg Z‘r |F
requestSize, 5, =————- T (5.8)
5.3.3. Request Mix
The request mix is determined as the read and write proportion
| Tl
ro = —————— and propyrite \= = ———- 59
PrOPDread IT,|+ Tl PrOPywrite T, |+ Tl (5.9

By definition, propeqq + propwrite = 1.

5.3.4. Request Access Pattern

Classical algorithms for the recognition of request access patterns classify
every disk seek, i.e., any address difference in subsequent requests, as a
random access event (cf., e.g., Gregg, 2005). To account for the ability of
modern storage systems to anticipate parallel, strictly sequential requests by
multiple users, we propose a heuristic algorithm for request pattern recognition
shown in Algorithm 1 to identify interleaved sequential workload (cf. Busch
et al., 2015). Our algorithm determines the percentage of requests that are
accessed sequentially regardless of interrupting requests or time delays. The
result is used to estimate the ratio of sequential requests, which can be used
to classify the access pattern of the workload as (interleaved) sequential or
random. To do so, we compare the requested block addresses and search
for requests with matching start and end addresses representing subsequent

58

5.3. I/O Workload Characterization for Performance Modeling

requests. To distinguish between the access pattern of read and write requests,
the request space can be divided into separate read and write request lists.

Algorithm 1 getAccPat(S) — Access Pattern Recognition Algorithm (Busch
etal., 2015)

Configuration:

S < Sequence of request pairs

Init:
req < |S| // Number of requests
5. req_seq <0

Algorithm:
for (i < 0,i < req, i++) do
block_end = S;» // End block of request S;
for (j«i+1,j€(i,req), j++) do
10: block_start =S //Start block of request S
if block_end = block_start then
req_seq < req_seq+2 // Count both S; and S

S+ S\ {S,‘, Sj}
// Correct outer loop counters:
15: req < req—?2
i--
break;
end if
end for
20: end for
Return:
req_seq

req

More formally, the algorithm’s input parameter is a list S of n block address
pairs, i.e., S := {R;}i=0....n—1, €ach pair R; representing a request. The pairs
are defined as

R; := (block_start;,block_end,), (5.10)

where Vi : 0 < block_start; < block_end;, and block_start; and block_end,;

represent the start and end block number of the i-th request, respectively.

59

5. Systematic Analysis of I/O Performance-influencing Factors

The algorithm compares the end block numbers of one request with the start
block numbers of the following requests to search for sequential accesses and
returns the proportion of sequential requests in the list S.

To avoid overestimation of sequential requests that are too far apart, we

enhance the algorithm to analyze specific windows by dividing the observation

space into @ subsets S, i.e.,

Ryrnqy,...,R o1, G+ D[E]<

S, = { g (t+1)-[5] i (&1 _n7 (5.11)
{Rl_(%] yeeosRuz1}y else

where 1 € {0,..., 0 —1}.

Finally, we use the average of the request pattern recognition algorithm for
each subset to obtain the proportion of (interleaved) sequential requests, which
we can use as a metric to classify a workload as (interleaved) sequential or
random:

Y, getAccPat(S,)

accPatternRatio(S) : >

(5.12)

sequential, accPatternRatio(S) > 0.5 (5.13)
<05

accPattern(S) := :
random, accPatternRatio(S)

As we iterate through the subsequences in two nested loops to find matching
pairs, the complexity of the request pattern recognition approach in Algo-
rithm 1 w.r.t. the length n of the sequence S is Q(n) and &(w[27?), which is
the best and worst case complexity, respectively.

5.3.5. Workload Locality

For the workload locality, we usually assume to have a uniform distribution
over all files representing random file accesses, since we do not expect specific
access patterns among the files. In case there are certain hot spots expected in
the file set, a certain distribution may be assumed, e.g., a Gaussian distribution.
The distribution can then be compared with or estimated from monitored data
of the requested I/O block addresses for evaluation. Then, the significant
subset of the files can be used to adjust the workload locality estimation. Since

60

5.3. I/O Workload Characterization for Performance Modeling

we estimate the locality of requests using the file set size comprised of the
number of files and their respective file size, we formalize the average key
estimates over the observation period taking into account typical file system
operations, such as file creation and deletion, which modify the file set during
application run. Thus, we have

T vn) e
fileSize™8 :2/0 ZLTZIrILIZt)()dt (5.14)
i B Tt) 515)
7rglgo]§1 T - n(x) , ’

= lim (5.16)
‘ZH""z;)pZ:"l To-n(t+5)
<Ly f "y vito) (5.17)
T¢ t=0 p=1 1=1 n(t+%) ’ ‘
and
T vilt) (s
fileSetSize™® := / Mdt (5.18)
0 T
(%) 0
T lel V/ (xk)
_Tlggk; 7 Aty (5.19)
nt+£)
T-1 Z_ ¢ l[+B
—lim Y) &4 vitty) (5.20)
¢H°°t:0p:1 To
1T—1i¢:”(’+5) .
N vi(t4), (5.21)
T¢ t=0 p=1 1=1 (P

where y'(z) is the size of the i-th file at time ¢ and n(¢) is the number of
files at time 7. The integral in the equations is transformed similar to the
Equations (5.1) — (5.4) above.

61

5. Systematic Analysis of I/O Performance-influencing Factors

5.4. Automation of I/0 Performance
Evaluation and Workload
Characterization

To increase the applicability and reproducibility of our approach, we auto-
mated our I/O performance evaluation and workload characterization as part
of our Storage Performance Analyzer (SPA) framework (cf. Noorshams et al.,
2015). In this section, we first introduce the static view and the architecture
of SPA, then we present the process of the experiments for performance
evaluation and workload characterization.

5.4.1. Architectural View

As illustrated in Figure 5.2, our framework basically consists of a benchmark
harness that coordinates and controls the execution of I/O benchmarks for
performance measurements as well as monitors and a tailored analysis library
used to process and evaluate the collected data.

The benchmark harness component, which is realized in Java, contains a
benchmark controller that automatically explores the configuration space and
coordinates the benchmark runs accordingly. The benchmark controller is
connected to the benchmark driver, which is used to configure and execute
the integrated and attached benchmarks. The experimental evaluations in
this thesis are based on benchmarks integrated in SPA. In addition to the
benchmarks, the measurement process can be monitored using a given monitor
driver to analyze the system environment during measurements and extract
the workload characterization presented in Section 5.3. A dummy benchmark
can be used, for example, if a running application should be monitored
without producing additional load. The actual monitors are provided by the
operating system as well as tailored scripts that have a maximum sampling
frequency of 1 Hz. The benchmark controller and the drivers are deployed on
a controller machine managing the measurement process. The drivers use a
remote execution mechanism to communicate with the actual benchmarks and
monitors, which are deployed on the targets, for example multiple VMs on a
physical host. In our realization, the remote execution is achieved using SSH
connections, but it could be easily modified to use another connection type.

62

5.5. Summary

The benchmark controller saves the results using the persistence component,
which is realized with a lightweight database. The analysis library can then
load and prepare the measurement data, e.g., by filtering and aggregating the
data, to evaluate the results. Thereby, the measurements can be post-processed
for further evaluation and statistical analysis as employed in this thesis for our
performance modeling approaches.

5.4.2. Dynamic Sequence View

The measurement and workload characterization process is illustrated in
Figure 5.3. The starting point is the benchmark controller, which is configured
with the experiment setup and the configurations that should be executed.
The process is repeated for every configuration. The persistent data store,
i.e., the database in our realization, is prepared by initializing the setup.
Then, the experiment is prepared using the benchmark driver by configuring
the target and starting a warm-up phase of the actual, physically deployed
benchmark. Since there can be multiple targets, the calls to a specific driver
at any given phase are in parallel for all enabled drivers, which is indicated
by the covered drivers and the parallel blocks in Figure 5.3. Before the
measurements begin, the monitors are started on all targets to collect data.
After the monitors are active, the experiments are started on all targets and
return a set of measurement results after they are finished. The monitors
can then be stopped and the required metrics and results are calculated from
the monitoring data. The results are stored and, finally, all experiments and
monitors are concluded, e.g., by cleaning up temporary data, and the data
store can be closed. After the process has been completed, the results in the
data store can be evaluated to analyze the system environment.

5.5. Summary

In this chapter, we have established the basis for creating I/O performance
models in virtualized environments. We first identified and classified the major
performance-influencing factors of I/O performance in virtualized environ-
ments in a systematic analysis and grouped them hierarchically into workload-
relevant and system-relevant factors. Based on the workload-relevant factors,

63

5. Systematic Analysis of I/O Performance-influencing Factors

we defined a workload characterization along five dimensions: workload
intensity, request size, request mix, request access pattern, and workload
locality. We defined average estimates for these dimensions and showed how
the estimates can be calculated from observations obtained with standard
monitoring mechanisms. Finally, to increase the applicability of our approach
we presented an automated process for I/O performance evaluation and ex-
traction of the workload characterization for running applications. The main
part of our automation is a benchmark harness coordinating the experiment
executions and the monitoring mechanisms automatically. The benchmark
harness is enhanced with a tailored analysis library to evaluate the collected
data.

Building upon this chapter in the following chapters of this thesis, we use
the performance-influencing factors and the workload characterization for
I/O performance modeling. In the next two chapters, we will use separate
formalisms to capture the I/O performance. We first show how we can learn
and derive regression analysis-based performance models from measurement
data. Using our automation presented in this chapter, we have automated the
process of regression analysis-based performance modeling. This process,
however, may require a potentially large amount of training data. We therefore
afterwards show how we can systematically create queueing theory-based
performance models. Once created, such models can be reused in similar
environments by recalibrating with a much smaller number of calibration
measurements in contrast to the regression analysis-based models. After the
creation of these two types of I/O performance models, we will show how to
integrate the performance-influencing factors into software architecture-level
performance modeling approaches and demonstrate the combination with the
I/O performance models to obtain performance results. The key question
along these chapters is how to effectively capture the I/O performance in
virtualized environments while respecting the performance factors presented
here.

64

5.5. Summary

(Q€T0T T8 19 SWEYSIOON WIOIJ PIALIOP) SOUINPU] dOUBWIONI] :*L°G 94nbBi4

$10)08] WASAS (q)

[]

o1 avyd 7 adH ; 7 ass ; 7 dOON

7 s avd

SOMION
oFeiorg

19[npayas
o/l

wasAS g

Sunnpoyos

Aurons odAL ¥s10

woysks
Sunesndo

AIMOAIYIIY

QIRMPIRE]

510j08 4 WAISAS

s10108,] peopiiom (e)

uorodoig
peay

uonodoig
apm

[enuanbag
Apomng

[enuanbag
paAeajIau]

Quin, Yury L,

7 J—

woned
90V Jsanbayy

2715 198 A1 Joon

7 ETS)

uoneuLIOyu]
Jsonboy

propjiom peoppiom

SI0198.] PEOPHOM

(10x)
aAnewIE

0 g
Kiopuew @

reuondo O
puagay

65

5. Systematic Analysis of I/O Performance-influencing Factors

sjusuodwo)) uonewony g G ainbi4

K1e1qr sisA[euy

Sseqeied jusuodwo)) N
Q0UQ)SISIO] //O ~)
;- T - —_—_—_ - - ~
| | _
| |
| == ! _
| <\ | AL |O | /
| IOJUOTA <t--- Surio)TuoIN ,/k _ _
|
|
|

@ﬁ

yrewyouag

uonnoaxXy
joway

¢|+|
< Lt--

(s)1081e], uo Suruuny

IOALI(T
SIeuryouog

Io[[01U0))
Srewryoudg

(&

O

juouodwo))
SSouIRH
Srewyouag

66

5.5. Summary

cal»
tor

«physi
Moni

:Monitor
Driver

«physical»
:Benchmark

:Benchmark
Driver
L)
[
L)
[}
[}
L)
1

Experiment()

prepare

Fommmmm el - -

start

Monitoring()

B et R IV

»

execute()

start

Experiment()

stop

Monitoring()

results
Experiment()

finish

o A T

finish

Monitoring()

]

»
>

[Py

JEPIPRE UL g

parallel

parallel

|
1
e

parallel

parallel

parallel

parallel

startSetup()

:Persistent :Benchmark
DataStore Controller

storeResults()

finishSetup()

Figure 5.3.: Experiment and Workload Characterization Sequence

67

6. Creating Regression
Analysis-based Models with
Optimal Parameterization

I/0O performance prediction requires models that are able to capture the rela-
tionship between the I/O performance-influencing factors, as input variables,
and the I/O performance, as output variable. One approach is to employ
statistical regression analysis-based models (or short, regression models) that
can be created from a wide range of regression techniques. In general, most
techniques have a variety of parameters with tuning opportunities that signifi-
cantly affect the models’ ability to predict unseen data. Finding an appropriate
regression technique and parameterization, however, is not straightforward
and is dependent on the actual data that should be modeled. When certain re-
gression techniques are chosen, common practice is to leave their parameters
at the standard values (e.g., Elish et al., 2009), which however might result in
underperforming models. Some approaches may use an educated guess (e.g.,
Guo et al., 2013), which requires expert knowledge, or apply an exhaustive
search to find good parameters (e.g., Yigitbasi et al., 2013), which is usually
computationally expensive. The question is whether regression techniques
can be parameterized and selected efficiently to increase the prediction quality
with decreased computational overhead?

To address this question, in this chapter we develop a regression technique
parameterization and model selection approach that is generally not limited to
a certain domain and has been used and fully automated for I/O performance
modeling in virtualized environments. The specific goal we pursue is to
efficiently create high quality models, i.e., to create regression models with
high predictive power within a limited amount of time. To achieve this goal,
we formulate it as an optimization problem and develop a search algorithm that
is able to find a good parameterization for regression techniques. Furthermore,

69

6. Creating Regression Analysis-based Models with Optimal Parameterization

we survey and evaluate a representative set of regression techniques for their
computational overhead and complexity. Based on these results we develop
a general regression model selection process. Finally, the model selection
approach is then embedded into the I/O performance modeling process to
obtain performance models in the target domain.

This chapter is aligned with the steps presented above and structured as
follows: We next in Section 6.1 elaborate on the scientific challenges of
this chapter. In Section 6.2, we formulate the parameterization of regression
techniques as an optimization problem and introduce our Stepwise Sampling
Search (S3) algorithm to efficiently solve the problem. Section 6.3 surveys
and evaluates a selected set of regression techniques to identify a regression
model selection process. The model selection approach of that section is
embedded in Section 6.4 in an I/O performance modeling process. Finally,
this chapter is concluded in Section 6.5 with a summary.

6.1. Scientific Challenges

This chapter is based on our publications (Noorshams et al., 2013a; Noor-
shams et al., 2014a) and the thesis we supervised (Bruhn, 2012) and addresses
the following challenges:

Challenge 1 — How can regression techniques be parameterized to obtain
1/O performance models with high prediction accuracy?

Regression techniques typically have multiple configuration
parameters for various purposes and goals. Choosing the
appropriate parameters is not straightforward, since the best
choice is usually both problem-specific and data-specific.
The parameters are usually just left to their standard values
or either chosen based on an educated guess or an exhaustive
search. We aim to find appropriate parameters automatically
and efficiently to increase the prediction accuracy of the
regression models without requiring expertise and knowledge
of a given regression technique and the parameters’ effects
in the algorithm of the technique.

70

6.1. Scientific Challenges

Challenge 2 —

Challenge 3 —

What is the process to create a regression analysis-based 1/0
performance model in a virtualized environment?

In general, regression analysis-based models are applied in
various domains, however, what performs well in one do-
main does not necessarily suit other domains. For example,
linear regression models are popular because of their sim-
plicity and efficient calculation, yet it is unclear if linear
regression models are able to capture both workload-relevant
and system-relevant factors influencing the I/O performance
in virtualized environments. Therefore, we define a process
creating performance models with different regression tech-
niques and parameterization options, which consequently
leads to the next challenge.

How can an appropriate I/0 performance model be selected
from a range of models and their parameterization?

From a set of regression techniques and their parameteri-
zation options, choosing the appropriate regression model
depends on multiple objectives and constraints. The tradi-
tional model selection problem addresses linear regression
models and the choice of their coefficients. In contrast to
the typical problem formulation, we address the problem to
select a model across multiple regression techniques and to
find their parameterization.

This chapter addresses these challenges and demonstrates the following three

hypotheses:

HI: We can efficiently optimize the parameterization of regression tech-
niques, hereby significantly increasing the prediction accuracy of the
resulting models.

71

6. Creating Regression Analysis-based Models with Optimal Parameterization

H2: We can create regression models of I/O performance without assum-
ing any specific relationships between the modeled factors and the I/O
performance.

H3: We can choose from a set of regression techniques and their parameter-
ization without requiring to manually analyze the resulting regression
models.

6.2. Regression Parameterization as an
Optimization Problem

The configuration parameters of a regression technique have an important im-
pact on the eventually created regression model. Most notably, an appropriate
parameterization varies for different data. In this section, we will treat this
regression technique parameterization as an optimization problem and first
state the problem formulation based on an appropriate quality criterion for
regression models. We will then show how to solve the problem using an
efficient search algorithm.

6.2.1. Problem Formulation

As our goal is to build a model with high prediction accuracy for unseen
configurations, we define the regression optimization problem as a single-
objective optimization problem to minimize the generalization error of the
regression model. More specifically, as a metric for the generalization error,
we average the root mean squared error of a model with its parameterization
over a k-fold cross-validation, where k is set to 10 (cf. Section 3.2.2). The
k-fold cross-validation has the practical benefit that the calculation can be
parallelized (at least) k-times. Formally, the problem is defined as follows (cf.
Izenman, 2009):

Definition 1. Let &2 be a random partition of the training data D, D :=
{(X},¥)) }r< j<oor With k disjoint elements of approximately equal size, i.e.,
P = {Si}lgigk and S; C D, |J;Si=D,Vi,j:i# j= SiNS;=0,and Vi, j:
ISi| <|Sj|+ 1. Let ffé 1 — T be the regression model parameterized with

72

6.2. Regression Parameterization as an Optimization Problem

the vector of | parameters p := (p1,pa,...,p1) and created with the learning
data s Si. The regression optimization problem is

R 5o \2
mn Y | X (- sT) 6.1)

subject to
pi € P,Vi 6.2)

where P; is the domain of the i-th parameter p;, . is the source space of the
training data, i.e., X; € 7, and T is the target space of the training data, i.e.,
yjeﬂ, with 7 C R.

6.2.2. Stepwise Sampling Search (S3)

As there is no closed form for the optimization problem, it is therefore not
differentiable and typical solution approaches, such as classical steepest de-
scent (cf. Snyman, 2005), cannot be applied. Other approaches, such as
genetic algorithms or tailored searches (cf. Kuhn et al., 2013) are either too
computationally expensive or problem-specific. Therefore, we have designed
a general metaheuristic search algorithm called Stepwise Sampling Search
(S3). The S3 algorithm was designed with the following four objectives:

o Deterministic search

If the search is deterministic, it does not have to be repeated to obtain
stable results, which reduces the runtime and computational cost of
the search. As long as the evaluation of the regression optimization
problem is deterministic, which is the case for a deterministic regression
technique and fixed training data partition &7, the search is not supposed
to exhibit a stochastic behavior.

o Assessable runtime complexity

If the complexity of the algorithm is known, an upper bound for the
search time can be estimated before actually running the algorithm.

73

6. Creating Regression Analysis-based Models with Optimal Parameterization

e Global search

A global search reduces the risk that the search is trapped in a locally
optimal region. Consequently, it does not require actions to mitigate
such a risk, e.g., using random restarts, which would again increase the
computational cost of the search.

e Guaranteed local optimum
As the properties of the objective function are unknown, globally op-
timal solutions cannot be easily discovered. Still, a locally optimal
solution is desirable from a theoretical point of view.

The former two objectives allow to estimate the computational cost of the
search in order to find a solution efficiently. This makes the search also
interesting for runtime sensitive scenarios, such as online approaches, for
instance, where a solution needs to be found in a given period of time. The
algorithm does not have to be repeated as it provides the same solution for a
given data. The latter two objectives allow to evaluate the quality of a solution,
such that the search is global and given a long enough search, at least a locally
optimal solution is found. Although the search time is limited in practice, the
property is interesting theoretically.

The design of the S3 algorithm is shown in Algorithm 2 and illustrated in
Figure 6.1. The core idea is to split the search space into multiple subspaces
and then stepwise refine the search in the most promising regions. The
algorithm has two configuration parameters to regulate the search and its
computational complexity, the number of splits (i.e., splitting points) { and
the number of subspace explorations 1 in each iteration. The number of splits
configures the sampling frequency of the search space and the subspaces. It
can be set to a high value if multiple narrow optima can be assumed, such that
the potential optima can be detected early to explore the subspaces around
the optima. The number of explorations determines how many potential
solutions are analyzed in their adjacent area. It can be set to a high value
if many local optima can be assumed, such that not only the best, but also
suboptimal solutions are explored. The algorithm can be configured with
any stopping criterion, e.g., when the improvement between iterations falls
below a certain threshold or when a certain maximum number of iterations
is reached. The algorithm operates on a bounded search space, such that for
each of the given parameters p;, a reasonable range p; € [a;,b;] needs to be
defined to limit the search space. The lower bound usually exists for most

74

6.2. Regression Parameterization as an Optimization Problem

Algorithm 2 Stepwise Sampling Search (S3)

10:

20:

25:

Configuration:

¢ < Number of splits

1 < Number of explorations
€ // Stopping criterion

: Definitions:

p:=(p1,....,p), L:={1,...,1} //l parameters

pi € [ai,bi], ai,b; € P,¥i € L //Ranges of parameters

¢(P) := Objective function, cf. Equation (6.3)

Init:

E <+ {(d:=(a1,...,a1),9(d))} // Evaluate first border parameters
M < E //M: Set of best parameters

Algorithm:
for j < 1, =%, j++ do
for all (V(h), yEMdo // h-th pivot
foralli € L do '
Ai < {pil (pi,") EEApPi <V}
if A; # 0 then a} < maxA;
else af + q;
Bi«—{pi|(pi) EENPi > V{}
ifBl' 7é (then b;(— minB,-
else b} + b;
ST C+1 ,Vl e L // Step width
S;'k<_{al7a +si7 a+csl7 z}
for all s € S* do
if s invalid then round s to next valid value
end for
end for
// Evaluate parameters if not evaluated yet:
E <—{(x¢ X)) | Xe Sy x...xS}
end for .
E+~FEU UhE(jh) // Set of all evaluated parameters
M < n best tuples in E (w.r.t. ¢)
end for

75

6. Creating Regression Analysis-based Models with Optimal Parameterization

parameters and the upper bound can be derived based on the used training data.
The objective function ¢ : X;P; — R is the regression optimization problem
defined in Equation (6.1), i.e.,

k
¢(P) ::%Z)3 (yjffi’g(a?j))z. (6.3)

The search first evaluates one initial point in the search space. As this is the
only evaluated point in the initial step, it is the only candidate in the set M of
intended exploration points in the next iteration. During the exploration phase
in each iteration, every point X in the set M containing the 1 best candidates
is explored by splitting the unevaluated space around X bounded by the search
space X;[a;,b;] into (¢ + 1) subspaces. Initially, the whole search space is
explored. The objective function is then evaluated for each corner point of the
subspaces and the best 1] candidates found so far are held in M to be explored
in the next iteration. During the search, a set E of all evaluated candidates is
maintained. The algorithm repeats the exploration and evaluation until the
stopping criterion applies.

Figure 6.1 illustrates the first iterations of the search configured with { =3
and N = 2 in a 2-dimensional search space, i.e., [= 2. The search starts
evaluating one corner point. This pivot V<ll), marked with a dark gray circle,
is explored in the first iteration. Since the initial pivot is not bounded by
other evaluated points, the whole parameter space is subdivided with { =3
splits for each parameter as indicated by the grid lines. Each of the grid
intersection points is evaluated indicated as small light gray points at the
Iteration 2 level. Then the best n = 2 evaluated points are held in M and
become the pivots V(21> and V%z) being explored successively in the second

iteration. First, when V%l) is explored, the unevaluated space around the
pivot limited by the neighboring points evaluated in the previous iterations is
explored, cf. dashed lines between Iteration 2 and Iteration 3. Then, the same
is done for the second pivot v %2) unaffected by the newly evaluated points in
the current iteration. This exploration and evaluation process is repeated in
the next iterations and the best parameters found during the search are used
for model building. In the iterations, the algorithm is designed to split the
unevaluated subspaces as determined by the configuration parameter {, such

76

6.2. Regression Parameterization as an Optimization Problem

that the space does not necessarily have to be split equidistantly across all
parameters, cf. V?l) in Figure 6.1.

Evaluating a point in the search space requires to build k regression models,
which is the most computationally expensive part of the algorithm. The
complexity of the S3 algorithm is therefore specified in the required number
of evaluated points.

Theorem 1. Let 6 be the maximum number of iterations of the S3 algorithm,
i.e., 0 :=max j. The complexity of the S3 algorithm is

oeng). (6.4)

Proof. In every iteration, the S3 algorithm evaluates for every pivot at most
every set of parameter values except the initial corner one in the first iteration
and the 2! corner ones in every other iteration. This leads to at most &+
2) —¢ ;j evaluated points for every pivot in every iteration j in the worst case,
where cy =l and ¢; = 2/ for j > 1. Thus, for the complexity of the algorithm
in terms of the total number of evaluated points ¥, it holds that

21+ ((E+2) =) +(6-1)-n((§+2)-2),

which establishes the theorem. O

Consequently, by configuring £, 17, and 0, the overhead of the algorithm can
be controlled and kept within required bounds. In terms of model creations,
from Theorem 1 follows:

Corollary 1. Let 0 be the maximum number of iterations of the S3 algorithm,
i.e., 0 :=max j. The overall number of regression model creations is in

okengh. (6.5)
The search is generally designed to find reasonable solutions in a limited
amount of time. Theoretically, if the algorithm is allowed to search long

enough, the search converges to a locally optimal solution. To show this, we
first require the following lemma:

77

S3 Algorithm

78

6.2. Regression Parameterization as an Optimization Problem

Lemma 1. Let { > 1 and n > 0. It holds that
lims* =0, Vi€ {1,...,1}. (6.6)

J—ree

Proof. The proof is straightforward for [= 1. Without loss of generality,
let [a;,b1] = [0,1] C R. Furthermore, we require a consistent ranking of
evaluated points in case of equal quality, i.e., a point cannot become a pivot
if it did not become one before because of a point with equal quality. At
iteration j it holds for the first pivot 2z = 1 as well as for all pivots & > 1 if the
number of pivots does not increase that

1/ 2\
) . 6.7
=2 (C +1) ©7
J
We will proof the worst case s} = % (ﬁ) by induction.
Initial step: For j =1, s = ﬁ by definition.
Induction step: For j =n+1, by — aj is at most twice the step width of the
previous iteration, i.e.,
1 2 \"
bi—ai=2=|+—) . 6.8
1T (C + 1) ©9
By definition,
1/ 2 \" 1 1/ 2 \""!
§1=2-= . == . (6.9)
2\¢+1 C+1 2\ C+1
Having established the worst case for s7, it holds that
1/ 2\
lim=-{——) =0. 6.10
jrm 2 (C + 1) (6.10)

For [> 1, the pivots can, theoretically, travel through the search space if they
are a newly evaluated point at the borders of the subspaces. For [= 1, this
cannot occur as otherwise the border point would have been a pivot in the
previous iteration. Still, the Lemma also holds for / > 1 and for all the pivots
as the search space is bounded and there is a finite number of times the step
width can increase. O

79

6. Creating Regression Analysis-based Models with Optimal Parameterization

Theorem 2. Let § > 1 and n > 0. The S3 algorithm finds at least one locally
optimal solution.

Proof. Without loss of generality, let [= 1. The proof follows a similar
pattern for / > 1. Using Lemma 1, we distinguish two cases:

1. Let P; be discrete. Without loss of generality, let P, = [n],n2] "\N,n; €
N ,np < np.

hmﬁmﬁ <1 = 3n3j": ¢(h/)<¢(h/)NP(h)<¢(AW 1)
(v h,,~),(Vis -) € E, where vh, = mln{vh,+1 b1} and v,, = max{vh,f
17al}

2. Let Py be continuous. Assume VjV(ei,-) € E\{(b1,-)}V(e2,-) € E\
{(a1,-)}3e' > 0Ve € (0,€]: p(e1) > d(e1+€)V(e2) > P(e2—€).
limj st =0 = Jj*3IWVH" : sl (0,1 A (v (*) < o h,,)
(v(*) 9, (vfh,(;r),), (fh,()))GE(J) - Where VZh’<)+) 7m1n{vh,+s1,b1}
and v(2,<>+) = max{ vi/ —s7,a1}, in contradiction to the assumption.

O

Consequently, since for convex problems a locally optimal solution is also
globally optimal, our approach guarantees globally optimal solutions if the
search space is convex.

6.3. Regression Model Selection

To select from a set of regression models, it is important to understand the
regression techniques used to create the models. In this section, we establish a
regression selection process by first analyzing and surveying a representative
set of regression techniques. Afterwards, the techniques are evaluated with
regard to their computational overhead and complexity. Finally, we use the
computational overhead, the complexity, and the model quality as criteria to
define the selection process.

80

6.3. Regression Model Selection

6.3.1. Survey of Popular Regression Techniques

In this section, we analyze and survey a selected set of regression techniques
that can be used in the model selection process. We selected regression
techniques that are popular and frequently used, however, this section is
neither intended as a comprehensive knowledge base nor is our approach
limited to the given set of techniques. The intention of this section is to present
a methodology how to evaluate the different techniques and the resulting
models that is a basis for our regression model selection process.

6.3.1.1. Linear Regression Model (LRM)

A simple and popular approach is creating a linear regression model (LRM)
(Hastie et al., 2008). LRM assumes a linear relationship between the inde-
pendent variables and the dependent variable, i.e., the dependent variable is
modeled as a linear combination of the independent variables with an additive

constant. Formally, for a vector of independent variables X := (x1,...,x,) a
model f with coefficients By, ..., B, is created of the form
f® =B+ Y Bixi. (6.11)
i=1

The model f is linear in the independent variables, however, it does not
necessarily have to be a first degree function. The representation of the
independent variables can be derived, e.g., x, = x% or x3 = x1xp. For the sake
of clarity, we explicitly consider two forms: The linear regression models
are first degree functions. The linear regression models with interactions (IA)
can include terms expressing the interaction between independent variables,
e.g., x;x2. Such models have a maximum degree n, but the effects of the
independent variables x; remain linear in the model. In general, higher degree
polynomials and other terms, such as ¢* and In(x;), are possible, however,
denoting the resulting models as linear regression models might be confusing
and they are disregarded at this point.

To create a model based on given training data, the coefficients of the model
are determined to minimize the difference between the model and the training
data. A typical approach is to minimize the squared difference creating a

81

6. Creating Regression Analysis-based Models with Optimal Parameterization

model using the method of least squares. Formally, for a set of training data
{(X1,3),..., (%, yn)}, where Vj: Xj := (xj1,...,X},), this method finds the
coefficients B := (Po,...,Bu) such that the residual sum of squares (RSS)
defined as

=

RSS(B):=Y (v — f(%}))? (6.12)
j=1

is minimized. To find the minimum, the derivative of RSS is set to zero
and solved for . Since the RSS is a quadratic function, the minimum is
guaranteed to always exist.

6.3.1.2. Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) consist
of piecewise linear functions comprised of hinge functions. Formally, the
hinge functions with knor ¢ are defined as (x —¢)4 := max{0,x — ¢} and
(t —x)+ := max{0,r — x}. For model creation, let X = (xj,...,x,) be the
vector of independent variables as above, H; := {(x; —;), (t; —x;)+ }j and
tj € T;, where T; is the set of values of the i-th independent variable in the
training data, i.e., 7; := {x j,i} ; for the training data defined as above, and
H :=J; H;. Then, MARS constructs a model f of the form

FE = Bot Y B (6.13)
k=1

with h € H and coefficients Py, ..., ,. Similar to the linear regression
models, we explicitly distinguish between MARS and MARS with interactions
(IA). The latter also includes terms that are a product of one or more hinge
functions in H.

The parameters f3; are determined based on the method of least squares, similar
to the linear regression models. The model first grows greedily in a forward
step. Starting from a constant function, the MARS algorithm iteratively adds
the hinge functions in H that result in the highest reduction of the residual
squared error. If interactions are allowed, the algorithm can also choose a
hinge function as a factor, however, each variable can only appear once in a
term, i.e., higher-degree powers of a variable are excluded. This process stops

82

6.3. Regression Model Selection

if a predefined number of maximum terms is reached or if the residual error
falls below a predefined threshold. Then, the model is pruned in a second step
to avoid overfitting. The terms that produce the smallest increase in residual
squared error are removed iteratively until the model contains a predefined
maximum number of terms after pruning. The pruning process may also
consider the model complexity in combination with the residual squared error.
This allows for a trade-off between accuracy and complexity of the model.

6.3.1.3. Classification and Regression Trees (CART)

Classification and Regression Trees (CART) (Breiman et al., 1984) create
a model of the training data in form of a tree-based representation. CART
models are binary trees with conditions in their inner, non-leaf nodes and
constant values in their leaf nodes. For a given set of values of the independent
variables, the evaluation starts at the root to determine the value of the depen-
dent variable. The condition in the respective node is checked and one of the
child nodes is followed depending on the evaluation of the node condition.
This process is repeated until a leaf is reached.

The CART algorithm comprises a forward and a pruning step to create a
model. In the forward step, an initial tree with a single node is created. The
leaves in the tree are split iteratively at a certain splitting variable and a
splitting condition. The splitting condition is determined greedily such that
the residual squared error is minimized. The algorithm splits a leaf until it
contains less samples of the training data than a predefined value. The forward
step ends if no leaf can be split any further. In the pruning step, the tree is
reduced using cost-complexity pruning (cf. Hastie et al., 2008). Let m be the
m-th leaf, R,, be the region specified by the conditions to the m-th leaf, and
I(T) be the number of leaves in the tree 7. Furthermore, for the training data
{(Xj,y;)};, let the number of observations in a region n,, = [{X; |X; € Rn}|,
the mean of the observations values ¢, = n,,! ije Rr,, Y j» and the mean squared
difference between each observed value and the mean of the observations
values ¢,,(T) = n;,! Yojer, (Vi — ¢én)?. The cost-complexity criterion with
parameter « is defined as

I(T)
ca(T) =Y nugm(T)+al(T) (6.14)
m=1

83

6. Creating Regression Analysis-based Models with Optimal Parameterization

that is to be minimized. The parameter « is a trade-off between complexity
and goodness-of-fit to the training data. It is determined by the algorithm
according to the residual sum of squares with cross-validation, which splits
the training data into two partitions consisting of a learning and an evaluation
set. For a given «, the tree is greedily pruned using weakest link pruning,
where the nodes with the smallest per-node increase in Zf,si)l nmgm(T) are
collapsed iteratively.

6.3.1.4. M5 Trees

Figuratively speaking, M5 trees (Quinlan, 1992) combine CART trees with
linear regression models. M5 models are also binary decision trees with
conditions in their inner, non-leaf nodes. In contrast to CART trees containing
constant values in the leaf nodes, the leaf nodes of M5 trees contain linear
regression models. To evaluate a value, the conditions are evaluated starting in
the root node until a linear regression model in a leaf is reached. This model
is then used and evaluated.

Similar to the previous techniques, the M5 tree is first built in a forward step
and then pruned afterwards. To build an M5 tree, the initial model consists of
atree T with a single node. The tree is split iteratively into subtrees 7; until a
predefined maximum number of splits is reached. M5 splits the tree greedily
at the condition that maximizes the expected reduction in error Ae with

73|

Ae = c(T)—Zmo(T,»), (6.15)

where o is the standard deviation of the observations values {y;}; that are
contained in the respective tree. After the creation of the tree, a linear regres-
sion model is created for each leaf. In the pruning step, the M5 model f is
greedily simplified to decrease the complexity ¢ with

n+p
n—p’

o(T)i=n""Y Iy = F(%)] (6.16)
J

where {(X;,y;)}; is the training data (i.e., the observations), n is the number
of samples in the training data and p is the number of parameters in the model.

The term Zfz allows an increase in error if the complexity is decreased. For

84

6.3. Regression Model Selection

each leaf node, parameters of the linear model are removed, whereas for every
non-leaf node, the node is collapsed if this reduces ¢(7T').

6.3.1.5. Cubist Forests

Cubist forests (RuleQuest Research Pty Ltd, 2012; Kuhn et al., 2012) are an
extension of M5 trees. Cubist forests are based on rule-based model trees
with linear regression models in the leaves. Cubist extends M5 by two aspects.
First, it introduces a boosting-like approach, i.e., it creates multiple trees
instead of a single tree. To obtain a single value, the tree predictions are
aggregated using their arithmetic mean. Second, it combines model-based and
instance-based learning (cf. Quinlan, 1993), i.e., it can adjust the prediction
of unseen configurations by the values of the neighboring training data.

Before the algorithm begins, the maximum number of trees in the model
is defined to construct a forest. The initial tree is created using the M5
algorithm. The following trees are created to correct the predictions of the
training data by the previous tree f;(X). Each value of a training point y; is
adjusted by ¥; := 2y; — f;(¥) to compensate for over- and under-estimations.
Then, the tree building is repeated and another tree is created using the M5
algorithm. For prediction, Cubist aggregates the values predicted by each
tree using their mean value. Finally, the prediction of unseen configurations
can be adjusted by the values of a possibly dynamically determined number
of samples in the training data using instance-based correction, cf. Quinlan
(1993). The prediction of a configuration X is adjusted by the weighted mean
of its neighbors, i.e., the nearest samples, in the training data, with weight
wi := 1/(m(¥,#) 4 0.5) for every neighbor #, where m(¥,7) is the Manhattan
distance of X and 7i. M5 is a special case of Cubist with one tree and no
instance-based correction.

6.3.2. Evaluation of Overhead and Complexity

As part of our selection process, we evaluate the computational overhead and
the complexity of the considered regression techniques. For the evaluation,
we analyze the following four dimensions:

85

6. Creating Regression Analysis-based Models with Optimal Parameterization

1. Model Creation and Evaluation Time

We measure the time required to create and evaluate a model with
standard parameters.

2. Prediction Time

We evaluate the time required to predict a set of data with the standard
model.

3. Optimization Overhead

We evaluate the optimization overhead for the techniques across their
parameterization.

4. Model Complexity

Finally, we discuss the algorithms w.r.t. their complexity and inter-
pretability.

6.3.2.1. Setup

To measure the execution times for the dimensions, we run our evaluation
process using a hyper-threaded Intel core i7 clocked at 2.66 GHz. The process
is automated with the statistics framework R (R Core Team, 2013) and paral-
lelized using the doMC library. Measuring the execution times is realized using
the rbenchmark library, where the evaluations can be automatically replicated
and the respective code is executed once before the time measurement begins.
For all the techniques, we use the method train in the caret library, which
serves as a fagcade to the actual implementations. During the model creation,
the method train also evaluates the model using a 10-fold cross validation,
such that 11 models are created in total for each method invocation. Thus, the
model creation time also includes the model evaluation time, which helps to
assess the quality of the model before actually employing it.

For the evaluation, we use two data sets from real measurements’:

1. Data Set I: The first data set consists of 576 measurement configurations
and three independent variables for each model.

! The measurements from Data Set I and Data Set II are given in Table 9.5 and 9.6 in Chapter 9.
The respective models and predictions are discussed in Section 9.4.

86

6.3. Regression Model Selection

2. Data Set II: The second data set consists of 960 measurement configu-
rations and five independent variables for each model.

Furthermore, four dependent variables are used for the evaluations for each
data set, i.e., every model evaluation is inherently repeated 4 times — once for
each dependent variable.

2.0 7
1.5 7
o
2
o
1.0 5 &
~~
<z
Q i
§ 0.5
E
=]
S J
=t 0.0 R
3
< 2.0 -
m
=]
<
5]
= 15- T
o
2
o
w1
1.0 5 @
=
0.5
0.0 T T T T I I

LRM LRM MARS MARS CART M5/
w/ 1A w/ 1A Cubist
Regression Technique

Figure 6.2.: Time Evaluation for Regression Model Creation and Evaluation

87

6. Creating Regression Analysis-based Models with Optimal Parameterization

6.3.2.2. Model Creation and Evaluation Time

In this section, we measure the model creation and evaluation time with the
considered regression techniques using their standard parameters and use 30
replications to obtain stable results, since the execution times are small. We
use the two data sets and average the results for each technique across the
repetitions and the four dependent variables. Furthermore, we distinguish
for LRM and MARS between the models with and without interactions (IA).
Finally, as Cubist equals M5 for the standard parameters, the two techniques
are not distinguished.

The mean execution times for each model creation and evaluation are given in
Figure 6.2, where the error bars (intervals) illustrate the standard error across
the four models for each dependent variable, i.e., the distance from the lower
end to the upper end is two times the standard error. Interestingly, while there
are some trends, the regression techniques have similar runtimes for Data Set
L. In general, the CART models are created fastest with 0.58 s, whereas the
MS5/Cubist models are created slowest with 0.88 s. For the more complex
Data Set II, the trends indicated in the first data set become more apparent.
While most techniques require around 0.75 s, the CART models are created
again fastest with 0.64 s, whereas the MARS models with interactions and the
MS5/Cubist models with 1.76 s and 1.48 s, respectively, run more than twice
as long as CART.

6.3.2.3. Prediction Time

In general, the required time to create a regression model outweighs the time
for a model to predict data by several orders of magnitude. In this section,
we evaluate for each model the time required to predict 100 random samples.
We replicate the executions 30 times to obtain stable results for the short
measurements and average the execution times for both data sets. The results
are presented similar to the previous section and shown in Figure 6.3.

For Data Set I, there is a similar trend as in the previous evaluation. The
predictions are generally fast, especially for LRM and CART models with
4.4 ms and 5 ms, respectively, for 100 samples. The slowest predictions
originate from MARS with interactions and M5/Cubist models with 8.9 ms
and 7.1 ms, respectively. Regarding Data Set II, the general trend is similar,

88

6.3. Regression Model Selection

where fastest predictions can be made with LRM and CART models having
a prediction time of 5.9 ms and 6.6 ms, respectively. For this data set, the
MARS models with interactions are slowest with 25.3 ms and require over
2.5 times more time than the second slowest models, which are the M5/Cubist
models.

0.03 =
0.02 = o
£
g
w2
<3
=2 001+
Qo
£
E -. -
: -
2 i L
=] 0.00
Q
2 003+
]
g =
[}
=
0.02 - g
=1
&
w2
<3
0.01 -
0.00 —~ I I I I I I -

LRM LRM MARS MARS CART M5/
w/ IA w/ 1A Cubist
Regression Technique

Figure 6.3.: Time Evaluation for Regression Model Prediction

89

6. Creating Regression Analysis-based Models with Optimal Parameterization

6.3.2.4. Optimization Overhead

The two key factors for the optimization overhead are i) the model creation and
evaluation time and ii) the number of model creations and evaluations. Regard-
ing the former, the model creation time also depends on the parameterization
itself, e.g., the number of trees created in a Cubist forest is a direct multiplier
of the model creation time. For the latter, while the number of model creations
and evaluations can be adjusted by the search configuration, cf. Theorem 1,
an important factor is the overall number of parameters that are to be explored.
As the parameters span the search space, the number of parameters affects
the number of model creations and evaluations exponentially. Moreover, the
actual parameters may vary depending on the implementation.

Keeping in mind that the optimization overhead can be adjusted through
careful configuration based on the techniques’ algorithms presented in Sec-
tion 6.3.1, we will in this section measure the time required to optimize the
regression techniques with a representative set of parameters chosen based
on the recommendations in the caret library and the implementations of the
techniques in R. We measure one optimization step as well as the average
model creation and evaluation time using the S3 algorithm configured with
{=3,1=1,and 6 = 1. We will optimize the techniques using our two data
sets with the following parameters:

1. LRM with/without interactions: The techniques have no apparent pa-
rameters, thus, they are not optimized.

2. MARS with/without interactions: The parameters are i) the maximum
number of terms in the forward step, ii) the maximum number of terms
after pruning, and iii) the minimum improvement in the goodness-of-fit
(estimated by the coefficient of determination R?) for a term to be added
in the forward step.

3. CART: The two parameters are i) the minimum number of observations
in a node for the respective node to be considered as a splitting candidate
and ii) the minimum amount in lack of fit (estimated by the coefficient
of determination R?) a split must reduce for it to be considered.

4. MS5: The only parameter is the maximum number of conditions, i.e.,
inner nodes.

90

6.3. Regression Model Selection

5. Cubist: The parameters are i) the parameter of the M5 algorithm as well
as ii) the number of trees in the forest and iii) the number of neighbors
considered in the instance-based correction during prediction.

For the techniques that can be optimized, the measurement results are sum-
marized in Figure 6.4 and Figure 6.5. As the search has a different number
of evaluation points depending on the number of parameters (cf. Theorem 1),
Figure 6.4 illustrates the average execution time per evaluation point in the
optimization, whereas Figure 6.5 shows the total execution time for the opti-
mization. Overall, CART and M5 show very fast execution times, since CART
evaluations are very fast in general and we only optimized one parameter
of the M5 algorithm. We can observe higher execution times for MARS,
especially in Data Set I when the interaction terms are considered. The by
far most computationally expensive algorithm appears to be Cubist. This is
especially due to the fact that Cubist repeats the M5 algorithm for every tree
in the forest.

91

6. Creating Regression Analysis-based Models with Optimal Parameterization

75 —
v
50 — §
w
aQ
@ 25 —
[}
£
: EX
=
8
=t 0 E—
Q
51
s
= 75 = '|'
S
[}
= i
v
50 - g
w2
<3
25 —
0- I I T o

! !
MARS MARS CART M5 Cubist
w/ 1A
Regression Technique

Figure 6.4.: Time Evaluation for Regression Model Optimization — Single Evaluation
Time

92

6.3. Regression Model Selection

104 -
10°
=
g
10% &
@
) 101 -
£
=
5
= 0 - |
3 10
2 10* — ==
8a)
g8
(]
= 100+
)
:
102 — &
101 -
10° I I I i 1

MARS MARS CART M5 Cubist
w/ TIA

Regression Technique

Figure 6.5.: Time Evaluation for Regression Model Optimization — Total Optimization
Time (logarithmic y-axis)

93

6. Creating Regression Analysis-based Models with Optimal Parameterization

6.3.2.5. Model Complexity

To evaluate the complexity of the regression techniques, more specifically, how
simple the regression models can be interpreted by, e.g., an analyst, we discuss
the considered regression techniques highlighting the relationships among
them as illustrated in Figure 6.6 based on our analysis in Section 6.3.1.

Piecewise
linearity

Tree structure

CART
Step function

Combination

¥

Boosting
Inst.-based

Figure 6.6.: Relation between the Regression Techniques

The basic models are LRM as well as LRM with interaction terms. The
models have an inherently limited number of terms, i.e., n+ 1 and 2" for the
models without and including interaction terms, respectively, where # is the
number of independent variables. Using these models, the effect and influence
of a certain term on the overall modeled performance can be analyzed. The
MARS algorithm can be seen as an extension of LRM by allowing piecewise
linear terms. Unlike LRM, however, MARS models can grow arbitrarily large.
If its parameterization permits, MARS models can contain up to one term for
every measurement point. While this may be relatively easy to understand
for an analyst if the dimensions are independent as the dimension can be
analyzed in isolation, allowing interaction terms increases the number of
terms exponentially as every combination of the terms may be included. In
comparison, the algorithms of MARS and CART may seem very different,

94

6.3. Regression Model Selection

however, the forward step of MARS can be transformed into the one of CART
by using a tree-based structure with step functions, cf. Hastie et al. (2008).
By using a tree-based structure that group constant values, CART models are
very popular because of their simplicity allowing to understand and visualize
the information relatively easily. One of their weak points, however, is that
CART models do not easily represent linear relationships among data as
the predictions are merely constant values. To be able to capture a linear
relationship for such data, a CART model would be overly branched. This
issue may be overcome with the M5 algorithm, whose models can be seen as
a combination of LRM and CART models. Algorithmically, M5 differs from
CART in the error metric, the complexity criterion, and the pruning procedure.
If the M5 models are not overly branched, they are easy to understand similar
to the LRM and the CART models, otherwise it might become more difficult
to understand the many separate subspaces and the effects of the independent
variables. Finally, Cubist extends M5 by introducing a boosting-like approach
and creating multiple trees whose predictions are aggregated. Furthermore,
Cubist introduces an instance-based correction to take the training data into
consideration for the prediction of unseen data. These extensions enable very
powerful and complex models, however, this hinders the interpretability of
the models significantly.

6.3.2.6. Overview

To summarize the evaluation results of the previous sections, Table 6.1 shows a
compact overview of the regression techniques and their evaluation across the
different aspects. Since the absolute evaluation also depends on the training
data, the overview is to be understood as a ranking with relative scores on
a 5-point scale, where more points indicate a better score. This evaluation
can be used as a quick and an initial assessment of the regression techniques
and, if required, can be refined with available training data to obtain absolute
results using our evaluation process shown in the previous sections.

In general, LRM can be considered a simple and fast technique that does
not require parameter optimization. Another simple and fast technique is
CART, which can be quickly optimized. A more computationally expensive
technique is MARS, especially MARS models with interaction terms can
grow large. Similar, M5 models can be relatively simple and fast to create. Its

95

6. Creating Regression Analysis-based Models with Optimal Parameterization

extension, however, Cubist can grow significantly complex and is the most
computationally expensive of the considered techniques to optimize.

Aside from the considerations that the regression techniques have an overhead
to create an optimized model with a certain complexity, the key factor is
the prediction error and the ability to generalize from observations, which
is, however, dependent on the training data at hand and cannot be evaluated
independently. For example, more complex relationships are more likely to
be adequately captured by more complex regression techniques. Still, the
overview in Table 6.1 is used as a basis guiding the regression model selection
process presented in the next section.

Model Creation / Prediction Time Optimization Model
Technique Evaluation Time Overhead Complexity
LRM 2.2.8.2.0 . 1 2.0.8.9.¢ - 2.2.8.8.0.9
LRM w/ 1A 2. 8. 8.8 844 2. 8.0.6. 844 _ F ek kK
MARS 2.2.8.2.0 . 1 2.8, 8 9%¢ 2.8, 8.0 044 2.8, 8.8 0%¢
MARS w/ 1A b 2.8 8% 0%e ok e 8.0 83044 L 8 % SAR%s
CART 2.2.8.2.8 .9 1 2.0.8.0.¢ 2.2.8.0.9.9 2.2.8.0.0.9
M5 2.8, 8 GARAS 1.8, 8. 8. 9¢ 2.8, 8.0 044 2.8, 8.8 0%¢
Cubist 2.8, 8 SARAS 1.8, 8. 8. 9¢) SXAQkOAS KV YW

Table 6.1.: Evaluation Overview of Regression Techniques on a Relative 5-Point Scale

6.3.3. Process for Regression Model Selection

Guided by the analysis in the previous sections, we define a process for
regression model parameterization and selection. The process is illustrated in
Figure 6.7 and is comprised of the following steps:

la. Relative Ranking with Prepared Data
For a quick or an initial assessment, the relative ranking shown in
the previous section with the prepared data can be used as a criterion
to evaluate the regression techniques. The ranking is created with
representative and real measurement data and sufficient to characterize
the computational cost and complexity of the regression techniques.

96

6.3. Regression Model Selection

Model Selection

? [OR]

Relative Ranking with Absolute Ranking for
Prepared Data Available Data
Example:
Qualitative Y Opotlmllfatlgn
. verhea
i C_on_str_alrfs_} A prio'ri Reg'ress%on min: Jkk v
Technique Filtering Cubi
Search ‘1’
Configuration Regression Technique F"rea?h
1—-———- Optimization Regression
Training Data pumiza Technique
Trade-off ‘1’
Constraints A - . Example:
|- posteriori Regression Model C. loxi
Technique Filtering odel Complexity
vs.
\1, Generalization Error

Regression Technique > MARS

Ranking by
Generalization Error

¥

®

Figure 6.7.: Model Selection Process (dashed: data flow)

1b. Absolute Ranking for Available Data
Since the absolute evaluation, such as model creation and evaluation
time, depends on the training data, the ranking approach of this chapter
can be applied to available data to tailor the selection process to a given
scenario. This allows to incorporate absolute constraints in the selection
process.

2. A priori Regression Technique Filtering

From the set of candidate regression techniques, we use the evaluation
and filter the techniques that are not applicable or that do not meet a

97

6. Creating Regression Analysis-based Models with Optimal Parameterization

6.4.

qualitative requirement. For example, if a simple model is needed, the
more complex techniques can be discarded. Furthermore, techniques
with a higher optimization overhead may be discarded to save resources
required for finding their appropriate parameterization.

. Regression Technique Optimization

For each of the candidate regression techniques, the parameters are
optimized for the training data at hand to minimize the generalization
error of the models. Since this results in usually hundreds of regression
model creations, the search configuration of the optimization algorithm
is used to regulate the overall number of model creations. For the
evaluation, the same fold (data partition) of the training data is used
throughout the search as well as across the techniques to ensure a fair
comparison.

. A posteriori Regression Technique Filtering

After the techniques are optimized and their generalization error for
the given data is evaluated, they can be analyzed and the quality can
be compared to their characteristics to possibly identify trade-offs. As
also advised by Kuhn et al. (2013), for example, a more complex
technique may be disregarded if it only provides a smaller decrease in
generalization error than a simpler technique.

. Regression Technique Ranking by Generalization Error

The remaining techniques are ranked according to their quality, i.e., the
generalization error for the data at hand. The techniques may be post-
processed, e.g., to evaluate the goodness-of-fit of the models. Finally,
the technique and its parameterization with the highest quality can be
selected.

Process for Modeling of I/O Performance
in Virtualized Environments

After the more general presentation in the previous sections, in the following
we elaborate on how the regression model selection approach fits in the I/O
performance modeling process. We have automated the process to a large
extent using our performance evaluation approach introduced in Section 5.4.

98

6.4. Process for Modeling of I/O Performance in Virtualized Environments

Shown in Figure 6.8, the process is comprised of five steps, where steps 3 — 5
are fully automated:

1. Modeling Target Specification

First, the system environment and configuration as well as the main
modeling goals are specified. In general, we consider three scenarios:
A first scenario is interested in a detailed analysis and evaluation of I/O
performance-influencing factors, cf. Section 5.2. A second scenario
focuses on a general view of an application workload having application-
specific factors. A third scenario analyzes I/O performance interference
among multiple virtual machines with a possibly mixed setup of the
previous scenarios. For the first scenario when evaluating and modeling
the I/O performance-influencing factors, we will show in Chapter 8 how
such a model is integrated into software architecture-level performance
modeling approaches as part of our big picture presented in Chapter 4.
Furthermore, we demonstrate the three scenarios in separate case studies
in Section 9.

2. Measurement Space Configuration
Depending on the modeling goals and the system environment config-
uration, the measurement space or configuration is defined. This is
used to perform the measurements in the next step, and based on it, the
independent variables used in the following steps are determined as the
configuration parameters that are explored in the measurement process.

3. Systematic Measurements

After the measurement space and the scenario are identified, the mea-
surement space is explored using systematic measurements. For the
exploration, we use a full factorial design. At this point, heuristics to
reduce the number of measurements, e.g., presented by Westermann
(2014), could be integrated if required. The performance metrics, e.g.,
response time and throughput, are used as dependent variables in the
following steps.

4. Regression Model Selection

The measurements as well as the identification of independent and de-
pendent variables are used as the training data for the regression model
selection process, cf. Section 6.7. The selection process will provide a

99

6. Creating Regression Analysis-based Models with Optimal Parameterization

set of optimally parameterized regression techniques with their gener-
alization error for the training data for each dependent variable. If the
generalization error is acceptable, the process can continue, otherwise
the source of the error needs to be identified and the process is repeated
by either refining the measurement space configuration or, if applicable,
allowing more complex regression techniques.

5. Regression-based Performance Modeling
Finally, the performance models are created with the whole training
data using the best regression technique, where a model is created for
each dependent variable.

Modeling Target
Specification
Measurement Space
Configuration -;
|
Automated \l, |
|
| Systematic <] Independent
;- Measurements | Variables
| | (Configuration)
|] !
| |
|
:9 Model Selection <
I ™7
I ‘l’ Generalization : I
: NO — | : Optimized
Dependent | acceptable? | | l}reglrleS.Smn
Variables | YES | | Technique
(Measurements) | J| |
l [

Regression-based
Performance Modeling

!
®

Figure 6.8.: Performance Modeling Process (dashed: data flow)

100

6.5. Summary

6.5. Summary

In this chapter, we developed an approach to model the I/O performance in
virtualized environments with regression models in an automated process. The
main idea is to choose a set of regression techniques, optimally parameterize
the techniques for the available training data, and select the best resulting
model. To this end, we first formulated the regression technique parame-
terization as an optimization problem based on k-fold cross-validation. We
then developed Stepwise Sampling Search (S3), a deterministic and global
search algorithm, to find an optimal parameterization. The benefit of the S3
algorithm is that the number of evaluations and computational complexity
can be estimated in advance and adjusted using its configuration if required.
Using k-fold cross-validation as a basis, which was our evaluation criterion for
the quality of regression models, we analyzed a set of popular regression tech-
niques for their computational overhead and complexity. The model selection
process is developed with respect to the evaluated dimensions and chooses
from a set of regression models the one with the highest quality. Finally for
our I/O performance modeling approach, we constructed the process around
the model selection approach automating the steps from i) measuring the
system, to ii) optimally parameterizing and selecting a regression technique,
through to iii) modeling the system from the measurements.

One notable aspect is the number of measurements required to create a regres-
sion model. Since the regression techniques learn the underlying structure
of the measurements and create a statistical model, many measurements are
needed to cover the measurement space and the possible configurations. In an
ideal scenario, the measurements might be provided by the system manufac-
turer when the hardware infrastructure is developed. An alternative approach
to creating the regression models is explicitly modeling the I/O performance
of the considered environment, which is the goal of the next chapter. We will
show in the following chapter how a complex environment can be analyzed
and captured in queueing theory-based models that require more manual effort
at first, but allow for reuse of the models with fewer measurements required
for model calibration.

101

7. Using a Tailored Process for
Queueing Theory-based
Modeling of I/O Hardware
and Scheduling Aspects

The previous chapter demonstrated how we optimally learn the I/O perfor-
mance in virtualized environments from training data using statistical regres-
sion analysis. While this approach benefits from its high degree of automation,
the caveat of such statistical modeling approaches is that they require a po-
tentially large number of measurements as training data — for every modeled
system. To not solely rely on the regression analysis-based models, we also
use a queueing theory-based modeling approach to capture the 1/O perfor-
mance in virtualized environments. Such models require a higher amount of
manual effort and expertise for their creation, but provide a deeper understand-
ing of the modeled environment and higher reusability by recalibrating the
model parameters if the performance in a similar system environment should
be captured.

In this chapter, we present a general process tailored to virtualized envi-
ronments for creating I/O performance models using queueing theory. The
specific challenge is to cope with the increasing complexity of the system en-
vironment and, despite limited monitoring possibilities, yet to create practical
and sufficiently accurate I/O performance models such that the models are
able to abstract from the system details. We apply our process and show step-
by-step how we use it to model our reference system environment and capture
the I/O performance-relevant aspects using only few queueing stations in a
queueing Petri net (QPN) model. The key idea is to create I/O performance
models using the QPN formalism by observing the I/O performance with
measurements and matching the observations to the performance-relevant

103

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

factors of the system environment to capture them in the model. Overall, the
process is demonstrated in a representative environment, but not limited to
specific hardware or software.

Before we introduce our approach, in Section 7.1 we first highlight the scien-
tific challenges of the chapter as well as the specific challenges when creating
a queueing model of the I/O performance in virtualized environments. We
then propose a general, three-phase methodology in Section 7.2 that we use
for performance modeling. As part of our methodology, we revisit our refer-
ence system environment in Section 7.3 with a focused analysis highlighting
the model-relevant aspects of the environment. Section 7.4 and Section 7.5
constitute the main part of this chapter applying our methodology to the
system under study to create queueing models capturing the hardware and
scheduling aspects, respectively, using the QPN formalism. The prediction
accuracy achieved with our modeling approach is evaluated in Section 7.6.
The chapter concludes with a summary in Section 7.7.

7.1. Scientific Challenges

The scientific relevance of this chapter is reflected by the publications (Noor-
shams et al., 2013d; Noorshams et al., 2014c) and the theses we super-
vised (Rostami, 2012; Rostami, 2014), on which this chapter is based. More
specifically, we address the following scientific challenges in this chapter:

Challenge 1 — What is an appropriate abstraction level for the /O perfor-
mance model?

Finding a good trade-off between complexity and model
accuracy is important. On the one hand, too fine-grained
models might be difficult to create and calibrate in different
environments. On the other hand, too coarse-grained models
might be insufficient to predict the performance accurately.
As indicated, the abstraction level is also reflected by the
required calibration parameters of the model. If there are
detailed system parameters and monitoring mechanisms re-
quired, for example, the model becomes more complex and

104

7.1. Scientific Challenges

this suggests that the model does not abstract enough from
specific details.

Challenge 2 — What is the process to create a queueing theory-based model
of I/0 performance in virtualized environments?

In the literature, there are many high-level guidelines how
to create a queueing model in general (e.g., Menascé et al.,
1994). However, such guidelines are usually relatively ab-
stract to be domain-independent and provide limited insight
how to address the specific problem of creating an I/O per-
formance model in virtualized environments, where there is
a gap between the increasing complexity of the system envi-
ronment and the limited monitoring possibilities that are both
practically and technically feasible. Here, the challenge is to
provide a reproducible, step-by-step process how to tackle
this problem and create the I/O performance models.

Challenge 3 — How can the I/O performance model be created independent
from specific hardware environments or monitoring tools?

Different vendors employ different virtualization architec-
tures as well as monitoring tools with different granularity,
details, and observed metrics. To maximize the applicability
of our work, it is important not to depend on certain vendors
and be independent from specific hardware and software as
otherwise the approach might be limited to a specific type of
environment.

Using these challenges as a basis, we investigate and demonstrate the follow-
ing three hypotheses along this chapter:

HI: We can create queueing models that require a small amount of calibration
parameters and we can calibrate the models using end-to-end response
time measurements only.

105

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

H2: We can create queueing theory-based models of I/O performance in
virtualized environments in an iterative process.

H3: We can realize the model building process without requiring in-depth or
system-specific monitoring tools.

7.2. Methodology

Creating explicit, queueing theory-based I/O performance models in virtu-
alized environments is a non-trivial task. The systems employed in such an
environment are typically comprised of multiple physical tiers and even more
logical abstraction layers. At the same time, it is often impractical and usually
impossible to monitor the entire system environment and the activities inside
the layers in full detail.

In this section, we present a step-by-step methodology tailored to the specific
problem of I/O performance modeling in virtualized environments. The goal
is to provide a reproducible approach for creating the I/O performance models.
The main concept is a systematic, iterative process that starts from a simple
model and extends it stepwise to capture more and more application scenarios.
We will later employ our methodology and demonstrate how it can be used
by creating QPN models of our reference system environment. We use the
QPN formalism because of its expressive power combining queueing models
with Petri net models (cf. Section 3.3). Our three-phased methodology is
illustrated in Figure 7.1, where the phases are depicted as gray areas, and
is based on established approaches from Menascé et al. (2004) and Bolch
et al. (2006). After a system environment analysis and a planning phase,
we create an initial model that we iteratively extend to account for more
complex scenarios. Each iteration follows the common generic steps in
classical performance engineering comprised of performance model creation,
calibration, and validation (cf. Kounev, 2006; Menascé et al., 2000; Menascé
et al., 2004).

The first phase of our methodology comprises a system environment analysis.
We analyze the system setup and identify the performance-relevant system
aspects that need to be captured in the model. Typically, these comprise
hardware resources, e.g., storage tiers, as well as logical resources, e.g.,

106

7.2. Methodology

Phase 1: System Environment

o —

System Setup

Identification of
Performance-Relevant
System Aspects

J

S

Workload Characterization

Phase 2: Planning

Identification of Minimal

Model Creation Plan ~ ——=| Workload Scenarios
I /
S
/
Identification of Request /
Classes
Zdescribes»
Phase 3: Iterative Model e
reation 2
s
_—
Ve
Identification of Minimal
Topology |
«describesy»
b == ==

Determination of Service

Times [_h

—r—

Analysis of
Goodness-of-Fit

Refinement of Topology
and/or Request
Classes (revise)

Model
acceptable?

NO
YES

Model
finished?

Extension of Workload
Scenarios

Refinement of Topology

and/or Request
Classes [‘h

Validation of Model

Identification of Minimal Topology

¢

S A

Identification of
Number of Queues

———

Identification of
Topology Type

Identification of Queue
Characteristics

¥

Identification of
Network Structure

—

® +

Determination of Service Times
(Foreach =~~~ """""""7"
! Queue

Determination of
Service Time
Distribution

Determination of

!
i
i
!
!
!
i
'
!
'
.
!
i
' Server Characteristics
i
!
.
i
'
'
!

Refinement of Topology and/or Request Classes

Analysis of Scenario

i]

Refinement of
Topology

Refinement of Request
Classes

¥ ¥

Propagation of

Changes

Figure 7.1.: Performance Model Building Methodology in Three Phases

107

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

I/O schedulers within the layers along the path from the application to the
physical storage. The phase concludes with deriving an appropriate workload
characterization.

In the next phase, we plan the creation of the queueing models and define
the iterations in the process describing the workload scenarios that should
be captured in the models. For the initial iteration, we identify the minimal
workload scenarios that should be included in the model as a start. Based on
the identified workload scenarios described in the iterations, we define the
request classes of the model. Typically, different request types (e.g., read or
write requests) as well as further workload properties (e.g., sequential and
random requests or requests from different virtual machines) are mapped to
different classes.

Finally in the third and main phase, we iteratively create and calibrate the
performance model. Based on the minimal workload scenarios and the result-
ing performance-relevant resources that are involved in their processing, we
create an initial QPN model topology. This requires to identify the topology
type (i.e., open or closed model), the required queues and their characteristics
(e.g., the capacity and scheduling strategy), and the connection and routing
between the queues (i.e., the transitions and incidence functions in the model).
For each queue, the scheduling strategy is determined either empirically or
based on heuristics.

After the structure of the QPN model is created, the model is calibrated by
quantifying the service times of each request type at the queueing places. This
requires to estimate the service time distribution as well as the server charac-
teristics of the queues, e.g., number of load-independent or load-dependent
service stations. To conclude the iteration, the goodness-of-fit of the resulting
QPN model is analyzed by comparing the model results with the measure-
ments used to calibrate the model. If the model fits sufficiently well to the
measurements, it can be extended to cover further workload scenarios and
respective resources involved in their processing. Such extensions might
require to refine the model topology and the request classes, which in turn
might require to re-calibrate the model.

Finally, we validate the performance model by evaluating the prediction
accuracy of the model for workload scenarios that have not been used during
the calibration of the model. The workload scenarios typically include both
interpolation and extrapolation scenarios using workload configurations within

108

7.3. System Environment Analysis

and beyond the calibrated ranges, respectively. We stop if the model is valid,
i.e., if the performance predictions by the model reflect the measurements on
the real system within a certain acceptable margin of error (Kounev, 2006;
Menascé et al., 2004). We consider the model valid if the relative prediction
error is below 30 % (cf. Menascé et al., 2000). Otherwise, the model needs
to be analyzed and refined to better match the system behavior. If the QPN
model is changed, it needs to be re-calibrated and re-validated.

7.3. System Environment Analysis

We next apply our methodology introduced in the previous section to create
I/0 performance models of our reference system environment introduced in
Section 4.2 considering the generic performance-influencing factors identified
in Section 5.2. To recall, our reference environment consists of the main-
frame IBM System z and the storage server IBM DS8700, cf. Figure 4.2.
In this section, we highlight the system setup and the aspects relevant for
our I/O performance building process. Furthermore, we derive the workload
characterization to consider in the next sections during model building.

7.3.1. System Setup

In our system environment, the storage system DS8700 contains 2 GB non-
volatile cache (NVC) and 50 GB volatile cache (VC) and the data is stored
in a RAID-5 array comprised of seven disks. Calibration and validation mea-
surements are obtained in z/Linux VMs equipped with multiple shared cores
and 4 GB of memory. In order to measure and model the I/O performance and
not, e.g., the operating system cache and memory performance, we use direct
I/O (using the O_DIRECT flag, cf. open — Linux man page n.d.) to focus our
measurements on the storage performance.

For our calibration and validation measurements, we use the Flexible File
System Benchmark (FFSB) (n.d.) because of its fine-grained configuration
possibilities allowing the evaluation of specific workload effects on the I/O
performance. FFSB runs at the application layer and measures the end-to-end
response time covering all logical layers and physical tiers beginning from the

109

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

application and operating system layers to the physical storage at the storage
system. For any configuration, the measurements of FFSB run in two phases.
First, a set of 16 MB files is created until the target file set size is reached.
Then, the required workload threads are started and they begin to repeatedly
issue the specified read or write requests to the previously created file set.
The requests of each workload thread are comprised of 256 subsequent read
or write requests of a specified size to a randomly chosen file within the file
set. If the access pattern of a request type is configured to be sequential, the
subsequent requests of each workload thread are directed to consecutive block
addresses within the file. Each workload thread issues a request after the
previous one has been completed. For any configuration of the measurements
with FFSB, we use a measurement time of five minutes. During this time,
the benchmark collects multiple millions of measurement samples, typically
more than two million.

7.3.2. Identification of Performance-Relevant
System Aspects

The performance-relevant aspects that need to be captured in the QPN model
can be classified into two groups, physical hardware aspects, which process
the requests and cause request queueing, and logical scheduling aspects, which
affect the sequence in which the requests are processed. The hardware aspects
of our system environment that should be represented in the model are the
physical tiers schematically illustrated in Figure 4.2. We consider the two
tiers comprised of the caches of the storage server and the RAID array.

The logical aspects can be identified on multiple layers. More specifically,
I/O request scheduling typically occurs in the operating system I/O scheduler,
the hypervisor, and the storage system. The I/O scheduler needs to be chosen
carefully as the default schedulers are not necessarily best suited to virtualized
environments (cf. Boutcher et al., 2010). Current understanding is to minimize
the scheduling overhead at the operating system-level (cf. Ling et al., 2013).
Instead, it is more efficient to use the hypervisor and storage system scheduling
algorithms as they are more aware of both the sources of the overall I/O
requests as well as the physical layout and topology of the storage tiers. Often,
even the hypervisor leaves the scheduling of requests to the storage system

110

7.3. System Environment Analysis

because of the aforementioned reasons, which is also the case in our system
environment.

Therefore, we split the QPN model building into two parts in the next sections,
we model the physical hardware tiers in a homogeneous model first, and
then extend it to the logical scheduling aspects of different request types and
applications in a heterogeneous model.

7.3.3. Workload Characterization

From the analysis of the performance-influencing factors in Section 5.2, we
can derive the general workload characterization as detailed in Section 5.3,
which is summarized in Figure 7.2. In general, we characterize the workload
along three general dimensions: the intensity of the workload, the requests the
workload issues, and the locality of the workload. The workload intensity is
accountable for the contention at the storage system, i.e., how many requests
are competing for the storage resources. A given request is further character-
ized by the type of the request (i.e., read or write requests), the access pattern
(i.e., sequential or random requests), and the request size. The locality of
requests affects the storage caching effectiveness and can be estimated by the
overall amount of data that is accessed in the workloads in combination with
the access pattern of the requests. Assuming an approximately uniform distri-
bution of requests among the files (or a dominant subset of the files), more
specifically, that the requests address the data randomly, the amount of data
affects the requests that can be served from cache and from the RAID array.
A sequential access pattern of requests can negate this effect by allowing the
storage system to anticipate the requested data and staging the data to cache
before they are requested.

‘ Workload Characterization ‘

‘ Intensity ‘ ‘ Requests ‘ ‘ Locality ‘

Figure 7.2.: Workload Characterization (simplified from Figure 5.1)

111

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

7.4. 1/0 Performance Models of Storage
Hardware Aspects

After analyzing the system environment, in this section we apply our perfor-
mance model building methodology to our system environment following the
steps shown in Figure 7.1. In this section, we are first focused on modeling
the physical hardware aspects of the system environment in homogeneous,
i.e., single class, models. We will in the next section extend our model consid-
ering the scheduling aspects and create a heterogeneous model capturing the
scheduling effects between different types of requests and VMs. For model
solving, we use a simulation-based approach.

7.4.1. Planning

Iteration 1
Modeled Resources:
- Cache Resource
Workload Scenarios:
- Read, Write

Iteration 2
Modeled Resources:
- Cache Resource
- RAID Resource
Workload Scenarios:

~@®

- Random, Sequential - Read, Write
- Variable Size - Random, Sequential
- Variable Size

Figure 7.3.: Model Creation Plan for I/O Performance Models of Hardware Aspects

Before creating the performance models, we start planning the model building
process. We develop a model creation plan to describe the iterations where
we begin with a simple QPN model that is stepwise extended. Based on the
results from the previous phase in Section 7.3, we follow the two-step model
creation plan shown in Figure 7.3 to create the I/O performance models that
capture the performance-relevant system behavior. We analyze the storage
system tiers by evaluating the effect of the overall size of data accessed in
our workloads on the observed performance. Initially, we only model the
cache resource. We consider read and write as well as random and sequential
requests. We then add the RAID resource to the models and extend the
workload scenarios of the previous step by increasing the overall size of data
accessed in the workloads, hereby decreasing the locality of the workload.

112

7.4. 1/0O Performance Models of Storage Hardware Aspects

In every step, we create the QPN topology and stepwise scale the workload
intensity, i.e., the number of clients (threads) configured repeatedly issuing
the requests, for calibration.

To create the initial model, we first consider the minimal workload scenarios.
We begin with a fixed request size, which we vary in the next step, and only
distinguish the request type and the access pattern. To analyze the behavior
of the cache resource, we configure the set of files accessed by the workload
(i.e., the file set) to 1.25 GB so that it fits in the caches completely. Thus, for
the models in this section, we use the following four classes to encode the
requests of a given size:

e Random read requests, 7,
e Sequential read requests, r
e Random write requests, w,

e Sequential write requests, wg

7.4.2. Cache Resource Model

We begin creating the queueing model of the storage system by capturing
the performance of the cache resource. More specifically, in this section we
describe the first iteration of our model creation plan.

As network topology type, we use a closed model as indicated in Figure 7.4.
In general, closed models are the most popular for software systems, since
the interactions between application layers are subject to admission control or
finite threading limits (W. Wang et al., 2013). The Clients queueing place with
infinite server queue and service time equal to the client think time represents
the arriving requests at the system. The Storage System subnet place captures
the I/O performance in a separate queueing Petri net. Initially, this subnet
consists of one queueing place with unlimited capacity and First-Come-
First-Served (FCFS) scheduling strategy representing the cache resource, cf.
Figure 7.5. The places are connected using immediate transitions that fire as
soon as they are enabled.

113

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

0

Clients Storage System

Figure 7.4.: General QPN Model

0.

Storage System

4

Cache

Figure 7.5.: Cache Resource Model

We model the read request and write request service times using gamma
distributions whose parameters (k¢ , 0¢) are estimated from the measurements
for each request class &. To estimate the standard deviations Og, We measure
the system under low workload intensity with one thread. Then, we scale the
load up to 100 threads in steps of 10 for both read and write requests and
vary the request size using 4 KB, 8§ KB, 16 KB, 32 KB, and 64 KB requests,
i.e., we use the set {(tz,s¢) | & € {ry,ry,wr,ws}; g = 10,20,...,100; s¢ =
4KB,8 KB, 16 KB,...,64 KB}, where f¢ and s¢ are the number of requests
and the request size, respectively, as configuration. Since the requests are
served from the random access cache resource, we observe that the mean
response times of random and sequential workload are approximately equal.
Furthermore, we observe a strong correlation between the number of workload
threads le, the request size Sgs and the mean read and write response time
measurements pg‘, respectively, with coefficient of determination R> of 0.9958
and 0.9966 for random and sequential read requests, respectively, and 0.9999
for random and sequential write requests in the form

114

7.4. 1/0O Performance Models of Storage Hardware Aspects

pg’z Z c,-jtésé (7.1)
i€{0,1} je{0,1}
= Y at- Y bist, (1.2)
ic{0,1} je{o.1}
aj,bi,cij €R,

i.e., the measurements are linear in the request size s¢. Using mean value
analysis (MVA), we can estimate the mean read and write request service time
Me (s‘g), respectively, for a given request size s¢ using the arrival theorem

pg(te) = pe [l +1(1 — 1)], (7.3)

where 7(tz — 1) is the average number of threads found in the queue by an
arriving thread. Applying MVA to our topology and solving for p, it holds
that

(7.4)

We measure the read and write response times, respectively, for request
sizes sg of 4 KB, 8 KB, 16 KB, 32 KB, and 64 KB with a given value of Ie
and fit the mean service times depending on the request size:

He(sg) = Z cis%, ci € R. (7.5)
i€{0,1}

Then, the parameters of the respective gamma distribution of read and write
requests, respectively, are simply

2 o2
kg = ('u');) and 6¢ := —é. (7.6)
O¢ He

To evaluate the goodness-of-fit, Figure 7.6 shows the relative calibration error
between the queueing model and the measurements on the system when the
number of threads varies between 10 and 100 by increments of 10. For larger
read requests (16 KB, 32 KB, 64 KB), the mean error (indicated by small

115

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

crosses) is less than 7.5 %. For smaller read requests (4 KB, 8 KB), the error
is up to approximately 18 %. This is because we use the method of least
squares (cf. Section 6.3.1), which minimizes the absolute squared error, to
fit the measurements to Equation (7.5), thereby reducing the relative error in
these scenarios for larger request sizes at the cost of increased relative errors
for smaller request sizes. However, since the measurements are in the range
of a few milliseconds, the absolute calibration error for these request sizes is
very small. For write requests, fitting the measurements results in very small
deviations and the calibration error is always less than 2.5 %.

Random Sequential
25 o
(o]
20 — o
(o]
- o — o
15 §
0+ ¢ lil =
5 o o)
< © E o %
s 0 o [it ==
= L
g 10.0 — ¢
m o]
7.5 - ¢ o
O
=
—]
5.0 s o4 |&
G o
2.5
HeE
00 @ == | 0 — =g
' I I I I I I I I I [
4 8 16 32 64 4 8 16 32 64

Request Size (KB)

Figure 7.6.: Calibration Error for the Initial Model

116

7.4. 1/0O Performance Models of Storage Hardware Aspects

7.4.3. Cache and RAID Resource Model

We next extend the cache resource model and describe the second iteration
of our model creation plan in which the RAID system is integrated into the
queueing model. The goal is to account for scenarios in which the requested
data cannot be fully held in the cache. To analyze the behavior of the RAID
resource, we configure the file set to be significantly larger (up to 180 GB)
than the cache size so that the RAID system needs to be accessed frequently.
Since the type of a request has an impact on the QPN topology and the service
times, we show the extension stepwise for every request class.

7.4.3.1. Random Read Requests (r;)

Random read requests are served from the cache if the requested data is
available, otherwise they are served from the RAID system and the data is
stored in the cache for future accesses. We thus extend the topology by a
second queueing place with unlimited capacity and FCFS scheduling strategy
representing the RAID resource. Initially, the requests arrive at the cache
queue. After being served by the cache, two alternatives are possible for
each request: Either the request arrives at the RAID queue with probability
p1 or the request is completed and leaves with probability p» = 1 — p;. The
topology is illustrated in Figure 7.7.

Clients

ptp,=1
Figure 7.7.: Cache and RAID Resource Model for 7,
Recall that read requests are served by the 50 GB VC if possible. The exact
cache hit rate of the workload, however, cannot be easily estimated because

of the complex pre-fetching algorithm. Therefore, to estimate p; and p»,
we scale the workload up to 100 threads in steps of 10 and the file set size

117

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

between 80 GB and 180 GB in steps of 20 GB. We observe two different
situations, one for a number of threads between 1 and 30, and one for a
number of threads between 40 and 100. If the number of threads is between
1 and 30, we observe that the response times follow two clearly separate
distributions, one for requests served by the cache and one for requests served
by the RAID array. The requests served by the cache can be identified by
response times close to the response times when having a fully cached file set.
Separating the distributions and calculating the relative number of requests
for the two distributions leads to (p;, p2) of (48.32 %,51.68 %) on average
with a standard deviation of 9.64 %. If the threads are between 40 and 100,
however, we observe a significant change in the two distributions. If we apply
the separation strategy as above, we obtain for p; a value of 99.91 % on
average with a standard deviation of 0.03 %. We explain this behavior with
the increased contention and the cache pre-fetching algorithm as the storage
system tries to anticipate future requests and pre-fetches data from the RAID
array to the cache. If the load is higher, which is the case for more than 30
threads, the requests served by the cache and RAID resources are no longer
clearly distinguishable solely by the distribution of the response times, thus
resulting in such a dominant value for p;.

Before estimating the service times, we analyze the impact of the request
locality in a preparation step. Therefore, we scale the file set size between
60 GB and 180 GB in steps of 20 GB such that it exceeds the volatile cache
size. We then evaluate the mean response times for 50 and 100 threads with
request sizes of 4 KB and 8 KB. For each number of threads and request
size combination, interestingly, we observe a strongly natural logarithmic
correlation between the file set size and the mean response time. For 50
threads, we observe an R? of 0.9902 and 0.9932 for 4 KB and 8 KB requests,
respectively. For 100 threads, we observe an R* of 0.9803 and 0.9957 for
4 KB and 8 KB requests, respectively. To reflect this in the model, we include
the file set size in the service times logarithmically as part of the next step.

To estimate the service times of the second queue, we measure the response
times under low workload intensity and scale the intensity stepwise. We
again model the second server with gamma-distributed service times. For
the calibration, we distinguish between the two situations explained above
when discussing the topology. More specifically, we distinguish between
case S1, where the number of threads is less than or equal to 30, and case
S>, where the number of threads is greater than 30. We analyze the response

118

7.4. 1/0O Performance Models of Storage Hardware Aspects

time distributions for number of threads ¢,,, request sizes s,,, and file set sizes
fr, represented by the tuple set {(¢,,s,, f,) | t-. = 10,30,50,80,100; s, =
4 KB,8 KB, 16 KB,...,64 KB; f,, = 80 GB,100 GB,...,160 GB}. Note
that the file set cannot be fully cached leading to regular cache misses. We
separate the response time distributions in cache and RAID array response
times. For each case S1,S5, and each queue, we parameterize the mean service
times (i, /J,f; at the cache and RAID queue, respectively, with the file set
size f;, and fit the mean service times to the cache and RAID response time

. R
measurements p,., pr" such that

i~ Y Y Y aptlsh In(f,)5 ce R (7.7
i€{0,1} je{0,1} ke{0,1}

To simplify the service time parameterization, we prune insignificant terms,
i.e., if the p-value of a term in the parameterization is greater than 0.05. We
obtain R? values of 0.9327, 0.9937, 0.9951, and 0.9917 for the cache(S)),
cache(S,), RAID(S;), and RAID(S,) queues and case S;, respectively.

Evaluating the goodness-of-fit, Figure 7.8 shows the calibration error for 10,
30, 50, 80, and 100 threads and file set sizes between 80 GB and 160 GB in
steps of 20 GB. The mean calibration error is between 8.01 % and 10.21 %
depending on the request size, thus, indicating a good fit.

119

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

‘ Random Sequential
]
60 —
¢ @ o o i @
¢ o o) o
- o ~
40 5 %
[0}] 8 ?
20 — 5 o py o
S Hods | TFa+
§ 0- —— == =2
-
o 20 =]
(=
&8 o
]
15 = o o o
[0}
10 — 8 §
. 8 8 :
X o)
5 -_—
— ﬁ j
CJ L 11 =+ e e 8 —
07 | | | | | | | | | | -
4 8 16 32 64 4 8 16 32 64
Request Size (KB)

Figure 7.8.: Calibration Error for the Refined Model

7.4.3.2. Sequential Read Requests (r;)

To determine the topology for sequential read requests, we analyze the effect of
the file set size similar to the previous section and scale the file set size between
1.25 GB and until 160 GB by doubling the size. We observe that the requests
appear to be almost entirely served by the storage server cache because of the
effective pre-fetching algorithm. For large file set sizes significantly exceeding
the storage cache, we observe only a slight decrease in performance due to
some cache misses. Therefore, we model the system using two cases S; and
S> representing the cache without pre-fetching (i.e., when the file set is fully

120

7.4. 1/0O Performance Models of Storage Hardware Aspects

cached) and the cache with pre-fetching and frequent RAID array accesses
(i.e., when the file set size exceeds the cache size significantly), respectively.
We use two separate queueing places to represent the cases each. The QPN
topology is illustrated in Figure 7.9.

To parameterize the model, we analyze the mean response times similar to
the previous analysis and use the tuple set

{(ty, v, f,) | £, = 10,30,50,80, 100;
s,, =4 KB,8 KB, 16 KB,...,64 KB; f,, =80 GB,100 GB,...,160 GB},

where ¢, is the number of threads, s, is the request size, and f,, is the file set
size.

The cases S7 and S apply for cached data and data exceeding the cache size
significantly, respectively. For the queueing place in case S;, we fit the mean
service time of the server ,u,Ss‘ to the measurements p," in the form shown in
Equation (7.1). For the queueing place in case S», we account for the cache
misses due to the file set size f,, and fit the mean service time of the server
/.L;i2 to the measurements p;? such that:

Py & Z Z c,-jtissfs +c-In(fy,); ¢c,cij €R. (7.8)
ie{0,1} je{0,1}

Again, we prune insignificant terms and obtain R” values for the queues in
cases S1 and S> of 0.9962 and 0.9954, respectively.

For the measurement set used during calibration, we obtain an error as shown
in Figure 7.8. While for 4 KB requests, the mean calibration error is 17.56 %,
for larger requests, the error is less than 10.84 %. Since the absolute calibra-
tion error constitutes only a fraction of a millisecond, we can conclude that
the model exhibits a reasonable fit.

7.4.3.3. Random Write Requests (w;)

Unlike read requests, write requests are always served by the cache and stored
asynchronously on the RAID array. We analyze this effect similar to the
previous sections and measure the response times of random write requests

121

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

while scaling the file set size between 1.25 GB and 160 GB by doubling the
file set size stepwise. We observe that the cache is able to buffer the requests
for a file set size of up to 5 GB without affecting the performance. If the file
set size is exceeds the cache size further, the mean response time increases
logarithmically. This effect is similar to the observed effect for sequential read
requests. Therefore, we use the same QPN topology as depicted in Figure 7.9.
For random write requests, the cases S| and S, define cached data (i.e., the
file set size is up to 5 GB) and uncached data with frequent destaging (i.e.,
the file set size is greater than 5 GB), respectively.

For the service time estimation, we use the tuple set {(#,,Sw,, fw,) | tw, =
10,20,...,100; s,, =4 KB,8 KB,16 KB, ...,64 KB; f,,, =1.25GB,2.5 GB,
..., 160 GB}. We parameterize the mean service times of the queue in case S|
as shown in Equation (7.1). For the queue in case S, we use Equation (7.7).
For both, we again prune insignificant terms. For the queues in cases S| and
S,, we obtain R” values of 1 and 0.993, respectively.

Figure 7.8 shows a very good fit of the model to the calibrated measure-
ments with an average error of 5.89 % for 4 KB requests and less for larger
requests.

Clients

Cache with
RAID access

Figure 7.9.: Cache and RAID Resource Model for rg, w,

122

7.4. 1/0O Performance Models of Storage Hardware Aspects

7.4.3.4. Sequential Write Requests ()

Repeating the analysis of the previous section for sequential write requests,
we observe that the requests are almost completely buffered by the cache even
when we scale the file set size up to 160 GB. Therefore, we keep the QPN
topology for sequential write requests as shown in Figure 7.5.

We calibrate the system using a number of threads ¢, , request sizes s,,,, and
file set sizes f,,, represented by the tuple set { (#,,Sw,, fw,) | fw, = 10,30, 50,
80,100; s,,, = 4 KB,8 KB, 16 KB,...,64 KB; f,,, = 1.25 GB,2.5 GB,.. .,
160 GB} and fit the service times to the measurements of the similar form
shown in Equation (7.8). We obtain an R? of 1.0000.

Overall, we obtain an almost perfect fit with a mean calibration error for each
request size of up to 2.55 %, cf. Figure 7.8.

123

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

?

?

Determination of Workload Scenario

Determination of Caching Behavior

[OR] !

v

v v

Read- or Write-
Dominant Workload?

(]

Random or Sequential
Workload?

Read:
File Set > 60

=

y

GB?

Write:
File Set > 5 GB?

y I

rh

|
®

rh

Determination of Relevant Model

Y
T

|

Specification of Prediction Scenario

v

v

Specify Specify Specify
Number of Clients Request Size File Set Size

O

rh

—~@®

Specification of Model Input Parameters

Figure 7.10.: Prediction Process for I/O Performance Models of Hardware Aspects

124

7.5. 1/O Performance Models of Scheduling and Interference Aspects

7.4.4. Prediction Process

After the models are created, Figure 7.10 illustrates the process when using
the homogeneous QPN models for prediction. First the workload scenarios as
well as the caching behavior needs to be determined to use the relevant model.
Then, the prediction scenario has to be specified, which is comprised of the
parameters used as input for the model.

The workload scenario can be read or write and sequential or random work-
load. The caching behavior is derived by the file set size. The empirically
determined thresholds are 60 GB and 5 GB for read and write workloads,
respectively. If the workload scenario comprises random write requests, for
example, the relevant model is the w, model as illustrated in Figure 7.9 with
the respective service time parameterization for write requests. Furthermore,
case S applies for the QPN if the file set size is less than or equal to 5 GB;
case S, applies otherwise.

The parameters used as input for the model are the number of clients, the
request size, and the overall size of the file set accessed by the clients. The
model then predicts the mean response time for the specified prediction
scenario.

7.5. 1/0 Performance Models of Scheduling
and Interference Aspects

In this section, we use the homogeneous QPN model as a starting point and
iteratively extend it by applying our performance model building methodology
shown in Figure 7.1 to account for scheduling effects among mixed workloads
and multiple VMs with differing workload intensities. The goal is to predict
the performance of mixed applications as well as to estimate how co-located
workloads affect the performance of one another causing I/O performance
interference. Before creating the model, we begin with a preparation step.

125

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

7.5.1. Planning

We again plan creating the performance models in multiple iterations as
preparation for the modeling process. Building upon the model of the previous
section, we stepwise extend the model to integrate the scheduling aspects of
the environment across different request types as well as different VMs. The
steps of the iterations are illustrated in Figure 7.11. Since our goal is to model
the scheduling aspects between different types of requests, we can focus the
model on capturing the cache resource of the storage system. Consequently,
we do not need to distinguish between random and sequential workload as
revealed during the model creation of the cache resource in the previous
section. We first model mixed read/write requests of a fixed size from one
VM. Then, we extend the model to account for workloads on two VMs. In
the final step, we relax the request size restriction and account for different
read and write request sizes. For each iteration, we create the QPN topology
and scale the workload intensity stepwise to estimate the required parameters
for calibration.

For the minimal workload scenario in the initial iteration, we consider read
and write clients issuing random requests of a fixed size. We configure the
set of files so that it fits into the caches. Overall, we distinguish the following
aspects in different request classes having all combinations as a given request
class:

e VM of the request
e Type of the request (read or write)

e Read and write request size

Iteration 1 Iteration 2 Iteration 3

Modeled Resources:
- Cache Resource
Workload Scenarios:

Modeled Resources:

- Cache Resource

Workload Scenarios:

Modeled Resources:

- Cache Resource

Workload Scenarios:

- One VM - Two VMs - Two VMs

- Read & Write - Read & Write - Read & Write
- Random - Random - Random

- Fixed Size - Fixed Size - Variable Size

~@

Figure 7.11.: Model Creation Plan for I/O Performance Models of Scheduling Aspects

126

7.5. 1/O Performance Models of Scheduling and Interference Aspects

7.5.2. Heterogeneous Workload Model

The starting point for our heterogeneous I/O performance model is the homo-
geneous, single-class queueing model as extracted in Section 7.4 and shown
in Figure 7.4 and Figure 7.5. In this section, we extend the QPN model to
account for performance and interference effects of mixed read/write requests,
where we consolidate read and write workloads with different workload inten-
sities, i.e., number of threads. We use the service times estimated as described
in Section 7.4.2 and extend the network topology of our initial QPN model.

The workload that is used to create the model consists of different numbers of
read and write threads 7, and t,, within one VM. Both are varied between 10
and 50, i.e., we use the set {(t,,1,) |tz = 10,20,...,50} as configuration. At
this point, we use a read and write request size s,, s,, of 4 KB. The request
size restriction is relaxed at a later stage of the model building process.

As previously mentioned, the request types are distinguished using different
token classes. For the two request types, we first introduce separate client
places for the tokens. When mixing the requests, we observe that the mean
response time predictions of the read and write requests are systematically
over- and underestimated, respectively, by the previous model (shown in
Figure 7.5). We account for this observation in our QPN model by assigning
relative priorities ¢ and f3 to the read and write requests, respectively, during
the processing of the respective request type. More specifically, if requests
of both types are waiting to be served at the storage system, a read request
is served with probability ﬁ and similarly, a write request is served with

probability aﬁjﬁ. We realize this priority scheduling in the model by separating
the queueing place of the storage system into a Waiting place and a Storage
queueing place with a connecting transition whose modes of the incidence
function are weighted. The complete topology is illustrated in Figure 7.12.
The incidence functions of the two transitions at the storage queueing place
are shown explicitly, where & and 3 are the firing weight that the respective
mode of the incidence function fires if both are enabled, and * denotes a
wildcard token.

127

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

PeOPIOA\ SNOQURS0IJOH 10) [OPOIAN NdO :"g1°2 @inbi4

ERIAIN

BEYIELIpIN

SJURTD) AMIM

Sunrepm Keroq

SJuat) peay

oo

no - ur

128

7.5. 1/O Performance Models of Scheduling and Interference Aspects

To determine o and 3, we search for appropriate values using our iterative
parameterization algorithm shown in Algorithm 3 for each configuration in
our workload scenario. We iteratively search for values for «, 8 to account
for systematic over- and underestimations of the respective mean read and
write response times and adjust the priorities accordingly. As input to the
algorithm, we use finite ranges [Onin, Cmax] and [Bmin, Bmax] for a and B,
respectively, which constitute the search space. While the ranges may be
arbitrarily large, they help to focus the search. Furthermore, the search can
be parameterized with a precision for the weights 6 and a value for the
acceptable error error,,. Similarly, both values can be used to reduce the
time required for the parameterization. The search then finds values for o and
B that minimize the average prediction error of the QPN model for the given
measurement data by systematically correcting the weights, more specifically,
the relative weight ¢ := %.

To predict the performance of configurations that were not used for calibration,
we need a generalization for the weights, i.e., a function for o and 8 depending
on the workload threads 7 of request type £. To build this function, we use a
statistical modeling approach using Multivariate Adaptive Regression Splines
(MARS), cf. Section 3.2 and Section 6.3.1. As independent variable, we
use the quotient l% and as dependent variable, we use the relative weight ¢.
Lines 21 and 22 in Algorithm 3 show how @ and 3 are obtained from ¢. We
use MARS models and optimize the parameterization of the model creation
using our S3 algorithm as explained in Section 6.2. For the MARS model, we
obtain the function ¢ (z,,1,) with

w

n 1
O(tr,ty) := ﬁo-l-i;lihi <t> , Ai €R, (7.9)

where the &; are the hinge functions.

For the evaluation of the goodness-of-fit of the resulting QPN model, Fig-
ure 7.13 shows a very good fit of the model to the calibrated measurements
with an average error of the mean response times of 3.36 % for read requests
and 4.80 % for write requests.

129

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Algorithm 3 Parameterization of Request Weights (based on Rostami, 2014)

Configuration:
errorygy <— Acceptable error
[Qnins Omax] (C A) < Range for the read weight
[Bimins Bmax] (S B) + Range for the write weight
5: 8 < Weights precision
// Measurement data:
tr by (€ T) < Read and write clients
sry5w (€ S) < Read and write request sizes
p,pit (€ P) < Mean read and write response time measurements
10: //A,B,P,S,TQR>()

Definition:
W:T?xS*xAxB—P?
// Prediction function to predict mean read and write response times
// for a given configuration with the QPN model
15: Algorithm:

(Pmin — gmm
max

(Pmax <_ %
¢ < %(‘pmin + @max) // Pivot
erroreyy < €rroryeyy <—
20: do
o+ 9105 +0.5]
B« 109
(pE,p5) < Wty by, Sry Sy, O, B)
erroreyr <— erroryey

[
Pente | +

if errorye,, < errory,, then)
if (p/" > p;) and (p}}! < p;,) then
¢max — ¢
¢ <~ %(q)min + q)max)
30: else if (p]" < p;) and (p]] > p;,) then
¢min < ¢
¢ <~ %(q&min + q)max)
else
break // Exit do-while loop
35: end if
end if
while errorye,, < errory,, and errorye,, > erroryy
return (a,f3)

pr—py

o

25: errorpey = % (

130

7.5. 1/O Performance Models of Scheduling and Interference Aspects

Error (%)

Read Write
o
10 ©
(¢}
37 |
X
N !

Figure 7.13.: Calibration Error for Heterogeneous Workload Model

Read Clients VM,

Write Clients VM|

Read Clients VM,

Write Clients VM,

Figure 7.14.: Client Places in Multi-VM Model

131

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

7.5.3. Multi-VM Model

We will next extend our model to reflect workloads from multiple VMs and
predict their performance behavior. We evaluate the interference how the
consolidation of multiple workloads affects the performance of the different
requests. To calibrate the model at this point, we use measurements from two
virtual machines. We vary the number of threads of each request type and each
VM between 10 and 30 in steps of 10. More formally, we use the configuration

set {(?, = ()},7 = (tv’v)]) \ té = 10,20, 30}, where j € {1,...,v}and v
is the number of VMs. The request sizes s,, s, of 4 KB are used for the
request types.

We extend our topology that is illustrated in Figure 7.12 to integrate the
multiple request types of each VM into our model, each modeled as a separate
tokens class. Therefore, we will replace the read and write client places
with multiple client places for each request type and each VM as shown in
Figure 7.14. As a consequence, we have multiple scheduling priorities, i.e.,
firing weights & := (¢t;); and B := (B;),, that define the priority of a read
and write request, respectively, of VM j to be served at the storage system.

To obtain an initial estimation of the firing weights, we use the statistical model
shown in Equation (7.9), where we use the aggregated number of threads
e =Y, té as configuration parameters such that (o, 8) = ¢(¥;#/,¥ ;) and

obtain & := (@, ...,) and f§ := (B,...,B). We observe in the measurements
that the mean response time of requests within a request class with more
clients are overestimated and vice versa. To account for this observation, we
adjust the weights individually for each request class using Algorithm 4 such
that requests from request classes with more clients have a higher weight.
We use sorting permutation to order the weights according to the number
of the corresponding clients. Then, we reduce the weights proportionally
depending on the initial weight estimations to have a descent between the
request priorities.

The resulting calibration error is summarized in Figure 7.15. For read requests,
the average error is 18.05 %. For write requests, the average error is 17.08 %.
Generally, the model exhibits a good fit to the measurements obtained using
two VMs. In the evaluation, we will extrapolate the number of VMs to
evaluate the prediction accuracy of the model.

132

7.5. 1/O Performance Models of Scheduling and Interference Aspects

Algorithm 4 Parameterization of Multi-VM Request Weights (based on Ros-
tami, 2014)

Configuration:

.6y (€ TV) + Read and write clients /T C R

// Pre-calculation:
o, (€ A,B) < Read and write weight determined with the statistical model,
5: ie., oYXl Yt /ABCR.,
Definition: .
Ty Mot {1 V= {1 v @) = (F V),
such that 7g (k) < 7 (1) = tgé

(k) o me)

Zté

. . . —1 .
// Sorting permutations, i.e., T exists

10: Algorithm:

o+ (v-a,...,v-@) MMy 1
B<—(v~ﬁ,...,v~ﬁ) for i+ 2 to v do
7 m(t) ifr;; #17, | then
B e (fy) 40: o; < o — &My
15: if o = 3 then nr++
n<+1 else
for i< 2tovdo O < Q|
ift; #1t7; | then end if
o 0 —1 45: ifr,; #1,;_, then
20: n++ Bi < Bi — &wnw
end if Nw++
end for else
fori<—2tovdo Bi + Bi-1
if tj,’i # [:3,1'71 then 50: end if
25: Bi< Bi—n end for
n++ end if
end if a n;l((jc)
end for B(—ﬂ,’;l(ﬁ)
else 55: return (&,f)
30: if a > then
8 &b
Oy g
else
O < %
35: 8, B2
end if

133

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Read Write
8
60 —
[e]
$ 40— i
=
2
S
m ‘
20 — %
O -—

Figure 7.15.: Calibration Error for Multi-VM Model

7.5.4. Variable Workload Model

Finally in the last iteration of our model building process, we will extend
our model in this section and integrate variable request sizes. We start with
increasing the read and write request sizes simultaneously using measurements
in one VM. We then relax the restriction in the next step to allow for differing
read and write request sizes. Finally, we extend the model to account for both
differing request sizes and multiple VMs.

For the calibration measurements, we use up to two virtual machines and vary
the number of threads of each request type and each VM between 10 and 50
in steps of 10 represented by the set

{(?, = (t]) ;T = (;{;),) o] = 10,20,...,50},

where j € {1,...,v} and v is the number of VMs. The read and write request
sizes s;, Sy, are both varied from 4 KB to 64 KB by doubling the request sizes,
i.e., we use the tuple set {(s,,sw) | s¢ =4 KB, 8 KB, 16 KB, 32 KB, 64 KB}.

134

7.5. 1/O Performance Models of Scheduling and Interference Aspects

Since the total configuration set is very large (5° configurations with 5 minutes
measurement time each results in more than 7 weeks of total measurement

time alone), we use a subset of 60 configurations representative for the configu-
ration space to limit the time required for calibration. More configurations can
be considered iteratively as required to further refine the model and improve
the prediction accuracy.

The topology of the QPN model is extended similar to the previous extensions
to integrate the different request types of each VM distinguishing the request
classes and request sizes with separate tokens classes. We use multiple client
places, one for each request type and each VM as illustrated in Figure 7.16.
For the scheduling of the request classes, we have firing weights & := (@;);

and B := (;); that define the priority of a read and write request, respectively,
of the j-th VM at the storage system.

Read Clients VM;
\ with Request Size s,

Write Clients VM
with Request Size s,

Figure 7.16.: Client Places in Variable Workload Model

As mentioned above, we first analyze measurements where == = 1 and v = 1
using the model obtained in the previous section and cahbrate the model
with service times obtained as described in Section 7.4.2. Interestingly, what
was well-suited for the homogeneous model does not fit well for a mixed
workload and we observe a systematic overestimation for increasing request
sizes, which is especially significant for read requests. More specifically,

135

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

s m

. Pe—P,
the request size and the prediction error correlate logarithmically: % ~
g

Yic{o,1)cei-In(sg)’, cg; € R. We explain this observation with the internal

optimizations in the storage system and the fact that two different physical
caches are involved in the processing of the requests. The read requests affect
only the volatile cache, while write requests affect both the volatile and the
non-volatile cache, cf. Section 4.2 and Section 7.3. Thus, we account for this
observation and re-adjust the modeled read and write service times [, L,
correcting the overestimation to better reflect the measurements:

Mg (sg) == pe (sg) - (1 —Ag(sg)), where (7.10)
Ag (Sé) = Z c57i-ln(s§)i, Ce;i € R.
i€{0,1}

Figure 7.17 shows that the recalibration was successful with a mean error of
8.19 % and 11.64 % for read and write requests, respectively.

Read ‘ Write
25 =
20 — o ‘
AV
o]
o
§ 5= o —
=
g o)
- (o] X
[8a} 10 '#‘ X
o X ¢
5- o o
ﬁ o o
0- 0 P 9
I I I I I I I I I I
4 8 16 32 64 4 8 16 32 64

Request Size (KB)

Figure 7.17.: Calibration Error after Service Time Recalibration

136

7.5. 1/O Performance Models of Scheduling and Interference Aspects

To allow differing read and write request sizes, we next also consider the
measurements where <= 7 1. Similarly, we need to find ¢ and B for the read
and write requests, respectlvely We will proceed as explained in the earlier
section and apply Algorithm 3. To again generalize the weights for prediction,
we again use the statistical modeling technique and create a MARS model
with independent variables ” and -, and dependent variable ¢. Thus, we
obtain a relative weight dependlng on the number of clients and request sizes
in the form

¢(tr>tvv'7sr7sw :)-0+th (:r)+ Z Aih; (SW)

w i=n+1
Z Z x,,h() (> (7.11)
i=1 j=n+1 Sw
;Li,lijER

We also allow interaction terms in the model as shown above and again
optimally parameterize the model creation.

Finally, we use measurements from two VMs. To estimate the priorities
for the individual request classes that capture the performance interference
effects across the workloads, we propose the calibration algorithm shown
in Algorithm 5. The algorithm generalizes the observations similar to the
idea of the previous algorithm and calibrates the weights by calculating local
weights for each VM and adjusting the weights according to a global view of
all workloads. In the algorithm, we use calibration coefficients € and ¢ that
describe the performance interference effect of the read and write requests,
respectively. The coefficients can be estimated from the measurements and
we use € = 0.3 and ¢ = 2. After estimating the read weights, the algorithm
adjusts the write weights of two special cases observed in the measurements,
where either the sum of the clients differ in all VMs or there is a single VM
with a low number of clients. In the first case, the write weights are adjusted
if the weights are not in the same relative order as the aggregated number
of clients. In the second case, the write weight of the VM with the single
smallest number of aggregated clients is slightly increased.

137

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

As a final observation, we include a priority inversion effect we observed in
the measurements. If the read request sizes are much larger then the write
request sizes (by a factor of four), than the priority of the read and write
requests of the VM with the smallest number of read clients are adjusted and
inverted.

To conclude the model building process, we analyze the calibration error
of the final variable workload model illustrated in Figure 7.18. Across the
request sizes, the average error for read and write requests is 21.61 % and
19.11 %, respectively. Thus, the resulting QPN model fits sufficiently well to
the measurements such that we can evaluate the models.

Read ‘ Write
(o]
60 = 5
0]
— (0]
R 40+ ‘
N
=
o
: | |
X x X
20 ‘ . X X
N | | |
| | | | | | | | | |
4 8 16 32 64 4 8 16 32 64
Request Size (KB)

Figure 7.18.: Final Calibration Error for Variable Workload Model

138

7.5. 1/O Performance Models of Scheduling and Interference Aspects

Algorithm 5 Parameterization of Variable Workload Request Weights (based
on Rostami, 2014)

10: =,

15:

20:

25:

30:

35:

40:

Configuration:
fr,0w (€ TV) < Read and write clients /T C R+
os, 38 (€ A,B) < Global read and write weight determined with the statistical model,

Le, (X, X, thsr,5w) /ABC R

s al, ﬁI (€ AY,BY) + Local read and write weights within each VM j determined with the

statistical model, i.e., ¢;(tf,t£,,s,,sw)
€(€(0,1)),c (e N*) // parameterization coefficients
Definition:
AL V= L v m() = (1 ")),, such that 7, (k) < 7, (/) = L) Sty
z er{elt _\é}J}W{l,...,v}, () := (¢} (j))J, such that 7, (k) < m,(I) :>t;d(k) Zt;;d(l)’
// Sorting permutations, i.e., ﬂg] exists

Algorithm:
a <« 0" O 01— O
B« [31 end if
Y ﬁ— end for
o <y max; {ﬁ } 45: end.lf
B max; {Bl } for.z <—2tov—1do
Iﬁ<—{l|ﬁ’—max~ﬁ’} if o; = 0 then
t LR 0 < Oi—1
op o, i e [P end if
6« \{t’:mLHi m‘{: =t}-c 50: end for
O — % // Adjust write weights in special cases:
7 7 (F+ 1) Tyt + 1)
// Fit read weights: Bemy (B)
o+ 7, () kK [{'|3id =1}
n + m,(minIh) 55: if v = k and
ifn # 1 then Ji,j i jAtE <17 AP > Bj then
fori<+ (n—1)to1do for i < 1to v do
ifr; =1, | then Bi< Bi-(1—¢)
O < Oy if i > 1 then
else =1
0 < Ot + O 60: end if
end if end for
end for else if k =2 and
end if Jivj: B < Bj = i=jthen
n < my(max1P) Bv <+ Bv-(1+¢)
if n # v then end if
fori+ (n+1)tovdo 65: &« m, (@)
if7f =17 | then B« ;' (B)
elseat Qi return (@, f3)

139

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

7.5.5. Prediction Process

?

Determination of Workload Scenario

?

Specify Number of Specify Read and Write
Clients and VMs Request Sizes

)
® h
!

Determination of Model Parameters

?

Determine Global and
Local Priorities

Determine Service
Times -
Refine Priorities for

each Request Class
using Algorithm 5

Figure 7.19.: Prediction Process for I/O Performance Models of Scheduling Aspects

The prediction process for using the QPN model is illustrated in Figure 7.19.
First, the workload scenario has to be specified, which is used as input for the
model. Then, the required model parameters need to be determined such that
the model can be solved to obtain the results.

To determine the workload scenario, the number of read and write clients and
the number of VMs as well as the read and write request sizes are specified.
This information is used as input for the QPN model. For the requests of the

140

7.6. Evaluation

workload scenario, the QPN model is parameterized with the service times
using Equation (7.5) and Equation (7.10). To capture the scheduling effects
with the request class prioritization, first the global and local priorities are
determined using the weight model function in Equation (7.11) as indicated
in Lines 3 and 5 of Algorithm 5. Finally, Algorithm 5 refines the priorities for
the request classes. Using the workload scenario information as well as the
model parameterization, the QPN model can be solved to predict the mean
response times individually for each request class in the workload scenario.
The prediction can be used to predict the performance of a given workload as
well as its effect on the co-located workloads.

7.6. Evaluation

In this section, we evaluate our QPN models along multiple dimensions in
different scenarios. Similar to the presentation of the I/O queueing models, the
evaluation scenarios are grouped targeting the evaluation of the I/O queueing
models capturing the hardware aspects and the scheduling aspects. Before
presenting the evaluation, we formulate the goals of the evaluation and the
questions we address.

7.6.1. Goals and Questions

The main goal of the evaluation is to confirm that the QPN models exhibit a
sufficient prediction accuracy for unseen system configurations. Therefore, we
set the following two goals regarding the two modeling aspects addressing the
respective questions to evaluate the prediction accuracy in both interpolation
and extrapolation scenarios:
Goal 1 — Evaluation of the 1/0O performance models capturing the storage
hardware aspects.

Q1: What is the response time prediction accuracy when varying
the configurations within the calibrated ranges in interpolation
scenarios?

02: What is the response time prediction accuracy when varying
the configurations beyond the calibrated ranges in extrapolation
scenarios?

141

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Goal 2 — Evaluation of the I/0 performance models capturing the schedul-
ing and interference aspects.

Q1: What is the response time prediction accuracy when varying
the configurations within the calibrated ranges in interpolation
scenarios?

02: What is the response time prediction accuracy when varying
the configurations beyond the calibrated ranges in extrapolation
scenarios?

7.6.2. 1/0 Performance Models of Storage
Hardware Aspects

As indicated above, we evaluate the predictive power of our homogeneous
I/O performance models in both interpolation and extrapolation scenarios.
For the extrapolation scenarios, we consider extrapolation with respect to the
number of clients and extrapolation with respect to the number of VMs. We
present the results in full detail for the different request classes and explicitly
distinguish between cached and uncached data. An overview of the results is
given in Figures 7.20, 7.21, 7.22 and 7.23 as well as Table 7.5.

7.6.2.1. Interpolation

First, we evaluate the I/O performance models in interpolation scenarios
where the workload configuration is within the calibrated ranges. For every
evaluated workload scenario, we compare mean response time measurements
of 200 completely random configurations within the ranges indicated in Ta-
ble 7.1 with the simulation results obtained using the QPN models. Overall
in this section, we evaluate 1200 completely random measurement configu-
rations in total. Regarding the absolute response times, the mean read and
write measurements are in the ranges of [0.51 ms, 30.58 ms] and [0.68 ms,
36.05 ms], respectively, depending on the configuration. The prediction results
are illustrated in Figure 7.20 and Table 7.5.

For cached data of random read requests, i.e., if the file set size is up to
60 GB, we obtain a mean error of 8.40 %. There are a few higher error
values occurring when the file set size is close to 60 GB. We conclude that

142

7.6. Evaluation

Parameter Range
Request type {read, write}
Access pattern {random, sequential }
Request size [4 KB, 64 KB]
rounded to multiples of 512 bytes
Clients [10, 100]
File set size [1.25 GB, 180 GB]

rounded to multiples of 16 MB

Table 7.1.: Interpolation Configurations for I/O Performance Models of Hardware
Aspects

Parameter Extrapolation Clients

Request type {read, write}

Access pattern {random, sequential}

Request size {4 KB, 8 KB, 16 KB, 32 KB, 64 KB}
Clients {125, 150}

File set size {2.5 GB, 40 GB, 80 GB, 160 GB}

Table 7.2.: Extrapolation Configurations (Clients) for I/O Performance Models of
Hardware Aspects

for some configurations, the caching effects can be observed already for such
file set sizes. For uncached data, we observe a mean error of 8.25 %. A few
higher error values can be observed, mainly occurring for low load when
the number of threads is less than 20. For such configurations, every small
absolute deviation results in a high relative error. For sequential read requests,
the mean error is 5.00 %.

For cached data of random write requests, i.e., if the file set size is up to 5 GB,
the model yields a mean error of 0.97 % for the evaluated configurations. For
uncached data, the model exhibits a high prediction quality. The mean error
is 5.19 %. For sequential write requests, the model exhibits a mean error of
1.02 %.

143

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Parameter Extrapolation 2 VMs

Request type {read, write}

Access pattern {random, sequential}

Request size {4 KB, 8 KB, 16 KB, 32 KB, 64 KB}
Clients {50, 75, 100}

File set size {2.5 GB, 40 GB, 80 GB, 160 GB} / #VMs,

rounded to multiples of 16 MB

Table 7.3.: Extrapolation Configurations (2 VMs) for I/O Performance Models of
Hardware Aspects

Parameter Extrapolation 2 VMs

Request type {read, write}

Access pattern {random, sequential}

Request size {4 KB, 8 KB, 16 KB, 32 KB, 64 KB}
Clients {33, 50, 100}

File set size {2.5 GB, 40 GB, 80 GB, 160 GB} / #VMs,

rounded to multiples of 16 MB

Table 7.4.: Extrapolation Configurations (3 VMs) for I/O Performance Models of
Hardware Aspects

7.6.2.2. Extrapolation

We next evaluate the prediction accuracy of QPN models in two extrapola-
tion scenarios whose configuration parameters exceed the calibrated ranges
significantly.

Extrapolation Clients In the first extrapolation scenario, we increase the
workload intensity and set the number of threads to 25 % and 50 % beyond
the calibrated range. More specifically, we compare 160 mean response time
measurements for all combinations of parameters shown in Table 7.2 against
the simulation results obtained using the QPN models. Overall depending on
the configuration, the mean read and write measurements are in the ranges

144

7.6. Evaluation

of [2.74 ms, 44.86 ms] and [5.29 ms, 59.05 ms], respectively. The prediction
results are shown in Figure 7.21 and Table 7.5.

For cached data of random read requests, the model yields a mean error
of 7.98 %. It can be observed that in general, the model exhibits a higher
accuracy for larger request sizes. Still, for small request sizes, the absolute
error is less than 1 ms. For uncached data, the mean error is 4.41 %. For
sequential read requests, the model yields a mean error of 5.76 %. The model
again exhibits a higher accuracy for larger request sizes.

For cached data of random write requests, the model exhibits a high prediction
accuracy. The mean error is 0.60 %. For uncached data, we observe a mean
error of 4.11 %. Overall for sequential write requests, a mean error of 0.60 %
shows that the model exhibits an excellent accuracy for this scenario.

Extrapolation VMs In this scenario, we increase the load on the system
up to 300 % of the calibrated range by using two and three virtual machines.
More specifically, we compare 480 mean response time measurements for
all combinations of the parameters shown in Tables 7.3 and 7.4 against the
simulation results obtained using the QPN models. Depending on the configu-
ration, the mean read and write measurements are in the ranges of [2.12 ms,
90.33 ms] and [4.10 ms, 148.20 ms], respectively. The prediction results are
given in Figures 7.22 and 7.23 and Table 7.5.

For cached data of random read requests, the model exhibits a mean error of
9.01 %. For uncached data, the model yields a mean error of 7.62 %. For
sequential read requests, the model predicts also well with a mean error of
8.12 %.

For cached data of random write requests, the model exhibits an excellent
prediction accuracy with a mean error of 0.62 %. For uncached data, the mean
error is 6.32 %. Considering sequential write requests, the model yields a
mean error of 0.59 %.

145

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

s3100dsy arempIeH JO S[OPOJA] @OUBMLIOJId] O/ 10§ Joxrg uonejodrouy :*0g-Z 24nbi4

ele(
v payoedur) payoen v paypoeduf) - payden
| | | | | |
| -0 i -0 -0
VA
M X -¢ e 8 - S¢
e X g - g e -
o
- o1 & —os 2
[¢] o) =
8 o 3
1 - —o1 i 8 3 <
8 -GS o - SL
8
e
o
9 _ar o -0z — 001
[e] [e] (0] [e]
[enuanbag ‘oIIp wopuey ‘I [enuanbag ‘peay wopuey ‘pedy

146

7.6. Evaluation

s100dsy aIempIeH JO S[OPOJAl OUBWIOJId] O/ 10F (SIUSI[)) Jo1rg uonejodenxy :*1g"Z 9inbi4

rlR(
v payoedun) payose) v payoedun) payde)
| | | | | |
-00 —00 -0 7 Lo
) —-ST -G ~S
X X -
x g
=t
o1 -0 ot ~ 0l %
-SL S
| - Sl
o}
renuanbag ‘Qum wopuey ‘AU [enuanbag ‘peay wopuey ‘peay]

147

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

s100dsy oIempIeH JO S[OPOIA QoURWIOJIdd O/ 10 (SINA ¢) Jo1rg uonejodenxy :*gg-Z 9inbi4

rlRq
nv payoedu(] payde) v payorduf] payde)
| | | | | | 0
- 00 == o 0 -
[y - S
-¢
X L c
S0 X % % m._
-0l . — 01 S
—_
- o1 5
~01
! oz o
o — ST o B
Tenuenbag ‘I wopuey “OIIMN [enuanbag ‘peay wopuey peay

148

7.6. Evaluation

s100dsy aIemMpIBH JO S[OPOIA QdURWIOJIdd O/ 10 (SINA ¢€) Joxrg uonejodenxy :*¢g"Z 2inbi4

ele(q
nv payoroun payoe) v payoroun) payoe)
| | | | L0 | |
-0 -0 | =0
| =& _
X
— ¢ _
X
-1
~ 01 X ~ 01 es!
. =
~ 0T 8 o
lo) =
@ ~~
o _ N /%
° 4 ik — 0T
0]
- | Loz
(0] (e]
[enuanbag ‘@ wopuey QI Tenuanbag ‘peay wopuey ‘peay

149

(%) s100dsy a1BMPIRH JO S[OPOJA 9OUBWLIONS] (/] J0F JOLIF UONIIPAId UBIA "G/ d|qeL

9T L0 869 89°0 68 65 2001 SIA ¢ uonejodenxy
1Y Ly0 99°¢ SSo 69°L G901 10°8 SINA ¢ uonejodenxy
16°¢ 09°0 Iy 09°0 9L’S Ity 86°L sjua1[) uonejodenxy
8% 201 61°S L6°0 00°S ST'8 0r'8 uonejodiouy
Nm — UBIN nv payoeou) payoe) nv payoeoun) payoe) OLIBRUQOS
m im Im] 44 4y

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

150

7.6. Evaluation

7.6.3. 1/0 Performance Models of Scheduling and
Interference Aspects

Similar to the previous section, we present multiple interpolation and extrapo-
lation scenarios to comprehensively analyze the heterogeneous QPN model.
Note that since the workload is heterogeneous, the predictions are individual
for each request class. For the sake of presentation, we evaluate the average
prediction error across the request classes and present the average errors of the
configurations for each scenario. The results are presented next, an overview
of the results is given in Figures 7.24, 7.25, 7.26, 7.27 and 7.28 as well as
Table 7.11.

7.6.3.1. Interpolation

To evaluate the interpolation quality of the model, we use random work-
load configurations whose parameters are within the calibrated ranges in the
following two scenarios.

Parameter Scenario |
VMs / Request types per VM 2/1

Clients per request type [10, 50]

Read request size [4 KB, 64 KB]
Write request size [4 KB, 64 KB]

(Request sizes in multiples of 512 bytes)

Table 7.6.: Interpolation Configurations for I/O Performance Models of Scheduling
Aspects — Scenario [

Scenario | In our first scenario, we use two VMs each running a read-
intensive and a write-intensive workload, respectively. As the VMs are sharing
the resources, the I/0 requests are mixed at the storage system. We compare
mean response time measurements of 100 completely random configurations
within the ranges indicated in Table 7.6 against results obtained using the
QPN model. Depending on the configuration, the mean read and write mea-
surements are in the ranges of [1.33 ms, 9.84 ms] and [2.72 ms, 23.29 ms],

151

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

respectively. The prediction results are given in Figure 7.24 and Table 7.11.
In this scenario, the QPN model exhibits a very high prediction accuracy. The
mean prediction error for read and write requests is 6.49 % and 12.88 %,
respectively.

Parameter Scenario 11
VMs / Request types per VM 2/2

Clients per request type [10, 50]

Read request size [4 KB, 64 KB]
Write request size [4 KB, 64 KB]

(Request sizes in multiples of 512 bytes)

Table 7.7.: Interpolation Configurations for I/O Performance Models of Scheduling
Aspects — Scenario 11

Scenario Il In the next scenario, use two VMs with each running mixed
read and write workloads competing for the shared storage system. We
again compare mean response time measurements of 100 completely random
configurations against simulation results obtained with the QPN model. The
configuration ranges are shown in Table 7.7. The overall mean read and
write measurements are in the ranges of [1.76 ms, 16.55 ms] and [3.27 ms,
62.16 ms], respectively. As shown in Figure 7.25 and Table 7.11, the QPN
model also exhibits a high prediction accuracy in this scenario. The mean
prediction error for read requests is 21.64 %, while it is 19.51 % for write
requests.

152

7.6. Evaluation

Read Write
(e}
40 —
8
/a\ 30
S .)
St
@]
= 20
m
10
X
0- ! o

Figure 7.24.: Interpolation Error for I/O Performance Models of Scheduling Aspects —
Scenario I

Read ‘Write
8
60 — 8
]
8
e
& 40-
N
St
o
=)
M
20 — i
O —

Figure 7.25.: Interpolation Error for I/O Performance Models of Scheduling Aspects —
Scenario II

153

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Parameter Scenario III
VMs / Request types per VM 2/2

Clients per request type (50, 90]

Read request size [4 KB, 64 KB]
Write request size [4 KB, 64 KB]

(Request sizes in multiples of 512 bytes)

Table 7.8.: Extrapolation Configurations for I/O Performance Models of Scheduling
Aspects — Scenario 11T

7.6.3.2. Extrapolation

To evaluate the extrapolation quality, we predict random workload configura-
tions whose parameters exceed the configuration ranges used during calibra-
tion in three scenarios.

Scenario Il To extrapolate the workload intensity, we increase the num-
ber of clients running in each of the VMs. We use 100 completely random
configurations using two VMs with mixed workloads and their configuration
ranges shown in Table 7.8. For the requests, the mean read and write measure-
ments are in the ranges of [6.94 ms, 28.80 ms] and [24.98 ms, 121.20 ms],
respectively. As illustrated in Figure 7.26 and shown in Table 7.11, the
mean prediction error for read and write requests is 27.48 % and 27.93 %,
respectively.

Scenario IV To extrapolate the number of VMs in this scenario, we add
an additional VM, such that three VMs are running in total with mixed
workloads each. Overall, we evaluate mean response time measurements of
100 completely random configurations in three VMs with the configuration
ranges indicated in Table 7.9. The absolute mean read and write measurements
are in the ranges of [3.06 ms, 25.40 ms] and [4.22 ms, 87.93 ms], respectively.
For this scenario, the QPN model exhibits a decent prediction accuracy as
shown in Figure 7.27 and Table 7.11. The mean read request prediction error
is 29.03 %, while the error is 23.35 % for write requests.

154

7.6. Evaluation

Parameter Scenario IV
VMs / Request types per VM 3/2

Clients per request type [10, 50]

Read request size [4 KB, 64 KB]
Write request size [4 KB, 64 KB]

(Request sizes in multiples of 512 bytes)

Table 7.9.: Extrapolation Configurations for I/O Performance Models of Scheduling
Aspects — Scenario IV

Parameter Scenario V

VMs / Request types per VM 2/2

Clients per request type [10, 50]

Read request size (64 KB, 128 KB]
Write request size (64 KB, 128 KB]

(Request sizes in multiples of 512 bytes)

Table 7.10.: Extrapolation Configurations for I/O Performance Models of Scheduling
Aspects — Scenario V

Scenario V In our final scenario, we extrapolate the request sizes and run
two VMs with mixed large requests. We use mean response time measure-
ments of 100 completely random configurations with the configuration ranges
indicated in Table 7.10. The absolute mean read and write measurements are
in the ranges of [7.01 ms, 30.27 ms] and [21.47 ms, 107.50 ms], respectively.
For large requests, the QPN model exhibits a good prediction accuracy as
summarized in Figure 7.28. The mean read and write request prediction error
is 20.11 % and 23.43 %, respectively, as also summarized in Table 7.11.

155

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Read Write
80 —
60 —
8
[e]
~ [e]
IS
=40 -
e
Y
. x ——
20 —
‘ :
(e}
O —_]

Figure 7.26.: Extrapolation Error for I/O Performance Models of Scheduling Aspects
— Scenario IIT

Read Write
8
[e]
(¢}
75 = fe)
]
(e}
S
T 50—
@]
=
m
X
25 —
O -_—

Figure 7.27.: Extrapolation Error for I/O Performance Models of Scheduling Aspects
— Scenario IV

156

7.6. Evaluation

Read Write ‘

60 —

40 —
S
=
o
£ <
M- X

O -

Figure 7.28.: Extrapolation Error for I/O Performance Models of Scheduling Aspects

— Scenario V
Scenario Read Write Mean — %Z
Interpolation 15.13
Scenario I 6.49 12.88 9.69
Scenario II 21.64 19.51 20.58
Extrapolation 25.22
Scenario 111 27.48 27.93 27.71
Scenario IV 29.03 23.35 26.19
Scenario V 20.11 23.43 21.77

Table 7.11.: Mean Prediction Error for I/O Performance Models of

Scheduling Aspects (%)

157

7. Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

7.7. Summary

In this chapter, we proposed a generic, step-by-step process to create explicit,
queueing theory-based models of I/O performance in virtualized environment,
where there is a limited amount of information for the creation and calibration
of a performance model. We applied our process needing end-to-end response
time measurements only and showed how it can be used to create QPN models
capturing both the hardware aspects and the scheduling aspects between dif-
ferent request types and VMs observed in the considered system environment.
The main idea throughout the model building process was to start from a
simple model and iteratively extend it to capture more workload scenarios
and system aspects. Overall, we were able to model a sufficiently complex
system environment using only a few queueing stations and parameters that
require calibration if a similar system environment should be captured.

We evaluated our QPN models to predict the mean I/O request response
times in both interpolation and extrapolation scenarios for completely random,
unseen configurations. Across the different scenarios, the mean prediction
error for the I/O performance model capturing the hardware aspects was
approximately 5 % in both interpolation and extrapolation scenarios. For the
I/O performance model capturing the scheduling aspects, the mean prediction
error was approximately 15 % and 25 % for the interpolation and extrapolation
scenarios, respectively. Overall, the prediction accuracy is within the required
range such that, in conclusion, the explicit model building process relying on
measurement information successfully captured the I/O performance effects
observed in the considered system environment and can be used as a guideline
for creating similar models in other environments.

In this and in the previous chapter, we showed how to create models of
the I/O performance in virtualized environments. In the next chapter, we
will show how we can use such I/O performance models in approaches for
software architecture-level modeling. More specifically, we show how our
I/0 performance models can be used when modeling software architectures,
where there is limited information that can be provided to the models as input
about the actual workload running in the environment. Thereby, the created
I/O performance models will benefit from an increased applicability. The key
question will be how to combine the two abstraction levels, the low-level I/O
performance models and the high-level software architecture models.

158

8. Integrating Storage-level
Models into Software
Architecture-level
Modeling Approaches

Model-based performance prediction approaches at the software architecture
level have an increasingly high level of importance. They provide a powerful
and practical mechanism for both evaluating design decisions and capacity
planning because of the high modeling abstraction level and largely intuitive
modeling constructs. The current state-of-the-art software architecture-level
modeling approaches, however, struggle to account for the influencing factors
of I/O performance in virtualized environments. They are not well-suited
for the complex storage infrastructures employed in virtualized environments
due to overly simplistic assumptions, which consequently lead to inaccurate
performance predictions in that domain.

Our goal in this chapter is to overcome this issue and introduce a novel I/O
performance modeling approach at the software architecture level. More
specifically, we will focus on component-based software architectures for em-
bedding our performance modeling and prediction approach in a modular and
reusable manner. To this end, we employ the storage-level I/O performance
models, i.e., the I/O analysis models, created in the previous chapters and
combine them with a software architecture-level modeling approach. While,
on the one hand, the software architecture model captures and represents the
high-level structure of a software application, the I/O analysis model, on the
other hand, captures and predicts the I/O performance at the low operating
system, hypervisor, and storage infrastructure level. The main question is how
to bridge the gap between the two abstraction levels to obtain performance

159

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

results. For the solution of this discrepancy, we exploit the model-based perfor-
mance prediction process, where a software architecture model is transformed
into a target analysis model, which is a simulation model in our approach.
This simulation model is then extended to use the I/O analysis model we
developed. Finally, the two models are solved in combination to obtain per-
formance predictions. In the following, the concepts of this combination are
elaborated and demonstrated in this chapter.

The outline of this chapter is as follows: Similar to the previous main chapters,
we first present the scientific challenges of this chapter in Section 8.1. We
then in Section 8.2 introduce the general methodology for the combination of
software architecture-level models and I/O analysis models using the model-
based performance prediction process as a basis. In Section 8.3, we elaborate
on the realization of the combination using the Palladio Component Model
(PCM) as a representative software architecture-level performance modeling
approach as example. In the end, Section 8.4 summarizes and concludes this
chapter.

8.1. Scientific Challenges

Based on the publications (Noorshams et al., 2013c; Noorshams et al., 2014b)
and thesis we supervised (Reeb, 2014), this chapter is concerned with the
following challenges:

Challenge 1 — How can software architecture models be combined with I/O
analysis models?

Combining software architecture models and I/O analysis
models is not straightforward due to their different abstrac-
tion levels. While the software architecture model represents
the high-level components and behavior of a software ap-
plication, the I/O analysis model captures the performance
of the low-level I/O requests to a virtualized storage system.
They thus differ in the required parameterization and contain-
ing information and it is required to bridge the gap between

160

8.1. Scientific Challenges

the two model types. It is unclear if the two modeling ab-
stractions can be combined to obtain accurate performance
results or, if possible, one of the abstractions needs to be
translated or automatically transformed to the other.

Challenge 2 — How can the I/O analysis models be captured in the software
architecture models to be encapsulated and to allow for
reuse?

While a translation or transformation approach might be suc-
cessful as well, we aim to embed the I/O performance mod-
eling concepts into component-based software architecture
models in a combination approach. To this end, an appropri-
ate component concept and interface need to be identified for
using the I/O analysis model. This is to ensure the integrity
and concepts of component-based software architectures. To
increase component reuse, the system-relevant information
should be decoupled from the general model with adequate
mechanisms.

Challenge 3 — What is the appropriate abstraction level to model I/O re-
quests at the software architecture level?

The interface of the I/O analysis model is invoked by I/O
requests modeled at the software architecture level. On the
one hand, an overly abstract interface specifying only few
characteristics of the I/O requests is too coarse-grained to
sufficiently parameterize the I/O analysis model and to ob-
tain accurate prediction results. An example of an abstract
interface is to specify the mere demand of the I/O request.
On the other hand, an overly specific interface requiring too
detailed characteristics of the I/O requests is too fine-grained
to reasonably obtain the required information. An overly
specific interface may require low-level information, such
as the targeted device block addresses of the requested data,
the mapping of the files to the device block addresses, and
the mapping from virtual to physical device block addresses,

161

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

for instance. Thus, the I/O requests need to be modeled at
a balanced abstraction level to allow for their specification
by software architects while still sufficient to allow for the
derivation of the required parameters for the I/O analysis
model.

Challenge 4 — How can the combined model be solved to obtain performance

results?

Combining the software architecture model with the I/O
analysis model might result in coupling different modeling
formalisms that need to be solved to obtain performance
predictions. Thus, an appropriate coupling of the model
formalisms as well as a coupled solution mechanism are
required. Such a coupling might require to solve the involved
models individually and transfer the results of one model
to the other, which can be an iterative process. Another
approach might be able to solve the combined models in
parallel to integrate the result of one model into the other.

Overall, we can formulate the following four hypotheses that are demonstrated
in this chapter addressing the challenges:

HI: We can use the storage-level I/O performance models described in the

H2:

H3:

HA4:

162

previous two chapters as I/O analysis model within software architecture-
level modeling approaches in a combined modeling approach.

We can encapsulate the I/O analysis model in a well-defined component
that can be accessed over its interface.

We can model I/O requests at the software architecture level such that
their specification does not require in-depth analysis or system-specific
monitoring tools.

We can map the I/O request information provided at the software archi-
tecture level on the required parameters of the I/O analysis model in a
parallel, simulation-based model solution.

8.2. Methodology

8.2. Methodology

Software architecture models describe the structural and behavioral aspects
of an application at a high abstraction level. Performance-aware software
architecture modeling approaches use such a description as well as the in-
formation on the system infrastructure and resource consumptions of the
application, which may be estimated or measured, to predict the performance
characteristics of the application. The PCM, as a performance modeling ap-
proach of component-based software architectures, uses such information in
the model-based performance prediction process to estimate the performance
of an application (cf. Section 3.4). Using model transformations to an analysis
model, e.g., a simulation model or a queueing model, a PCM model is solved
to predict the performance, for example, to evaluate design alternatives and to
answer capacity planning questions.

In this chapter, we demonstrate our software architecture-level modeling
approach of I/O performance in virtualized environments using the PCM as
example, since it is a mature approach with a large amount of validation case
studies, e.g., Becker (2008), Becker et al. (2009), Hauck et al. (2009), Huber
et al. (2010), Krogmann (2010), and Kuperberg et al. (2008). In the PCM,
storage resources are mapped to a single- or multi-server queue, typically
with FCFS (First-Come-First-Served) scheduling strategy, and I/O requests
are represented merely by their demands that need to be estimated manually
for each request type. While this has been shown to be a reasonable degree
of abstraction for basic hardware environments (cf. Becker, 2008), storage
systems in virtualized environments are much more complex and have diverse
influencing factors, cf. Section 5.2. In this section, as part of our big picture
introduced in Chapter 4, we first describe how we extend the model-based
performance prediction process to realize our approach. Then, we elaborate
on how a software architecture model is transformed into a combined analysis
model integrating an I/O analysis model as created in the previous chapters to
obtain performance results.

163

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

Performance Prediction

Target
1/ O—i'mer'lsivle models Software transform
Application in Architecture Analysis
Virtualized Model Model
Environment ode

include
ana]yzc Performance Prediction integrate
Mechanism using refinement

transformation

model
Pﬁfﬁ;ﬁi?gg- |::> /O Analysis
Factors Model

Figure 8.1.: Overview of Combining an I/O Analysis Model with a Software Archi-
tecture Model (cf. Figure 4.1)

8.2.1. Extending the Model-based Performance
Prediction Process

Our goal is to allow performance modeling approaches at the software ar-
chitecture level to predict the performance of an I/O-intensive application in
a virtualized environment, which is our performance prediction target. To
realize our goal, we extend the model-based performance prediction process
as illustrated in Figure 8.1. More specifically, we combine the I/O analysis
model created in the previous chapters, which is the required performance pre-
diction mechanism, with the target analysis model of the software architecture
model to obtain a combined, typically hybrid analysis model.

As part of our methodology, we start extending the process by analyzing I/O-
intensive applications and the system environments to identify the influencing
factors of I/O performance in virtualized environments. We then use the
factors to create I/O analysis models that capture the performance effects of
the factors. To evaluate the factors in the analysis model to which the software
architecture model is transformed, the factors also have to be included into the
software architecture model. This is achieved by allowing to specify both the
static I/O-relevant information, e.g., the configuration of the operating system,
and the dynamic I/O request information.

164

8.2. Methodology

To exploit the additional information in the software architecture model, a
prerequisite for the combination of the two modeling abstractions is the design
of an I/O interface at the software architecture level. The I/O interface defines
the I/O requests, whose performance is determined using the I/O analysis
model combined with the target analysis model of the software architecture
model. The I/O interface includes the required dynamic I/O request infor-
mation in the software architecture model that is passed as input to the I/O
analysis model (e.g., the distinction between read and write requests and their
access patterns). Furthermore, the set of static I/O-relevant information is
used to parameterize or choose the appropriate I/O analysis model. While the
static information needs to be used only once, e.g., when initializing the I/O
analysis model, the dynamic I/O request information needs to be passed with
every 1/O request.

For the combination approach of the high-level software architecture model
and its target analysis model with the low-level I/O analysis model, we use
refinement transformations described next in more detail.

8.2.2. Refinement Transformation for
Performance Predictions

To obtain performance predictions with the software architecture model, we
use a refine transformation approach as illustrated in Figure 8.2. The refine-
ment transformation integrates the static I/O information into the software
architecture model and transforms the software architecture model into an
analysis model that is combined with the I/O analysis model. The over-
all process includes both i) a completion transformation (Woodside et al.,
2002) enriching the software architecture model as well as ii) an analysis
transformation to the target analysis model.

The completion transformation takes a software architecture model and gen-
erates a refined software architecture model. Here, the software architecture
model is refined with the static I/O-relevant information and can be configured,
e.g., using feature tree models (cf. Kapova et al., 2009). Depending on the
required information, the completion may be realized using a sophisticated
higher-order transformation (HOT) (Kapova et al., 2009) or by simply adding
the static information where required.

165

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

Static Storage
Information

/0O Analysis
Model

analysis
Software completion Software* ransformation Analysis*
Architecture Architecture Mo}(]iel
Model Y Model
Configured
with Feature Y i use
Tree Model Refined with Target Analysis

Model Combined
with I/O Analysis
Model over

/0O Interface

Figure 8.2.: Refinement Transformation from Software Architecture Model to Target
Analysis Model

The analysis transformation uses the software architecture model and gen-
erates the target analysis model to predict the system performance as in the
standard model-based performance prediction process, cf. Figure 3.8. This
transformation is extended to use the refined software architecture model
and to combine its target analysis model with the I/O analysis model. The
combination is realized over the I/O interface using a bridge or adapter de-
pending on the formalisms of the target analysis model and the I/O analysis
model. Similar formalisms allow to bridge the requests, different formalisms
require to adapt and translate the information of the one formalism to the other.
Finally, the combined analysis model is analytically solved or simulated to
obtain the performance results of the modeled software architecture.

8.3. Realization of 1/0 Performance

Prediction in the PCM

After the schematic overview and presentation of the general approach, in
this section we show how we realize our approach by combining a software
architecture model with an I/O analysis model. We present the concepts of
the realization using the PCM as example, however, as we do not depend on
specific details or implementations of the PCM, our approach can generally be
applied to any software architecture modeling approach supporting a model-
based performance prediction.

166

8.3. Realization of I/O Performance Prediction in the PCM

The realization of our approach is structured along four aspects. We start
by presenting the modeling concept in the PCM into which we embed our
approach. Then, we revisit the I/O analysis model we created in the previous
chapters and show how it is defined such that it can be integrated into the soft-
ware architecture modeling approach. We show how the software architecture
model is combined with the I/O analysis model and how it is solved to obtain
performance results. Finally, we outline the process how to use our approach
for performance prediction.

8.3.1. Modeling Concept

ResourceContainer
Business Business
———> (M —((—

Component Component -
S
K
Usage E
&
| | <

v v

T T
| |
I%l «Resource Interface» I%l

«Resource» «Resource» :‘%
a
Virtualized g
CPU 3
Storage System g
Z
&
|

Figure 8.3.: Modeling Concept Overview (derived from Hauck et al., 2009)

To integrate our approach into the PCM, we use the modeling concept of
layered execution environments of the PCM introduced by Hauck et al. (2009)
and illustrated in Figure 8.3. In general for the components comprising
the software architecture, we distinguish business components running at

167

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

the application layer and resource components running at the infrastructure
layer. The interface of one or more business components may be exposed
to users accessing the application and issuing requests to the system. The
business components, which capture the application logic, access the CPU and
storage as well as further resources in the infrastructure layer using resource
interfaces, represented by the square interfaces in Figure 8.3. We use the
resource concept to capture a virtualized storage system, which accepts the I/O
requests issued by the business components, as a storage resource providing
its interface as the I/O interface introduced in the previous section to combine
the software architecture model with the I/O analysis model.

Business «specifies»
O_ < ---
Component

RDSEFF

1/0 Request

Request size
Request type
Sequentiality

File set

Figure 8.4.: Extended I/O Interface for I/O Requests

The I/0 interface captures the representation of an I/O request of a business
component. Before our extension, the requests were abstracted as one pa-
rameter, the demand to the storage resource. To use the I/O interface, which
is extended for approach, the I/O requests of the business components are
modeled in the RDSEFF as illustrated in Figure 8.4. Instead of specifying just
the I/O demand, which was needed to be estimated manually, the I/O interface
is designed comprising the following four parameters, which can be specified
from the I/O requests of an application:

® Request size: the notion of I/O demand is represented by the I/O request
size

168

8.3. Realization of I/O Performance Prediction in the PCM

® Request type: the type of an I/O request can be either a read or write
request

e Sequentiality: the percentage (or probability) of a sequential access
e File set: the name and size of the file set the request is accessing

The need for the former two parameters is apparent, e.g., to distinguish
between small read requests and big write requests. The latter two parameters
are required to estimate the impact on the caching hierarchy at the storage
system. For instance, the parameters indicate if the file set is too large to
be held in the caches resulting in regular cache misses or if the requests are
sufficiently sequential such that the requested data can be anticipated and pre-
fetched by the storage system and the file set size affects the I/O performance
only marginally, cf. Section 5.2. The four parameters of the I/O requests
can usually be specified by analyzing the workload profile either manually
or using monitoring and automated workload characterization techniques, cf.
Section 5.4. Even if the application is not available, for example at software
design time, because of the tangible nature of the parameters, they can be
estimated more easily than the eventual demand the requests will induce at
the storage resource.

The storage resource encapsulates the I/O analysis model that is used to
capture the I/O performance of the modeled environment. The exact model
and its parameterization depends on a number of factors, e.g., which target
environment is used and how it is configured. As introduced in the previous
section, we use a feature tree model to define the static I/O information, which
in our case is used to determine and parameterize the appropriate I/O analysis
model. The feature tree model we employ that leads to the I/O analysis model
and parameterization is illustrated in Figure 8.5. The system under study,
i.e., the virtualization architecture and hardware environment, and the system
setup, i.e., I/0O scheduler and file system, are relevant factors, cf. Section 5.2.
Furthermore as shown in the previous chapters, the I/O analysis model can be
created with different formalisms with different strengths and weaknesses (cf.
Chapter 6 and Chapter 7).

169

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

Legend
QO optional
@ mandatory

or

Features

alternative
(xor)

Static
Information

Model
Formalism
O @)
Regression Queueing
Model Model

System
Under Test
7>
’) ‘

’ CFQ ‘ ’ Deadline

/0
Scheduler

System A System B File System ’ MARS ‘ ’ CART ‘ ’ () ‘

’ Noor H v H XFs H) ‘

Figure 8.5.: Feature Tree of the I/O Analysis Model (cf. Section 5.2)

8.3.2. 1/0 Analysis Model

In Chapters 6 and 7, we showed how to create I/O performance models
in virtualized environments using regression analysis and queueing theory,
respectively. We use these models as I/O analysis models to enhance the
software architecture model for performance prediction.

For the I/0 analysis model, we identify the workload parameters we need
to include based on the workload characterization in Section 5.3. To obtain
the I/O analysis model, the performance model is created as presented in the
previous chapters. The following eight parameters are captured as workload
factors describing the I/O requests that access the storage resource. They are
used as input for the I/O analysis models within the storage resource of the
software architecture model:

e Number of concurrent requests: The contention at the resource is cap-
tured by specifying the pending requests as input.

e Request type (read or write): The type of a request affects its scheduling
impact and its demand at the storage resource.

170

8.3. Realization of I/O Performance Prediction in the PCM

o Mean read request size: Depending on the type of the currently analyzed
request, this size indicates the average demand of either the same or the
opposite requests.

o Mean write request size: similar as above

e Read access pattern (random or sequential): Indicates if the request
can be anticipated and possibly served from caches.

o Write access pattern (random or sequential): similar as above

e Read/write ratio: Requests are typically scheduled and prioritized
depending on the current request mix.

e File set size: Indicates if the accessed files can be possibly cached,
thereby serving the requests from caches.

The output of the model is the prediction for the response time of the read and
write requests of the modeled applications. This prediction constitutes the
delay of the I/0 requests including the contention at the storage resource.

8.3.3. Simulation for Solving the Analysis Model

For the two abstraction levels, the software architecture model describes the
structure and behavior of the application, whereas the integrated I/O analy-
sis model captures the I/O performance. On the one hand, the information
provided at the software architecture level is in form of I/O request descrip-
tions. On the other hand, the information required at the storage resource
level is beyond a single I/O request and rather in form of workload currently
accessing the storage. To obtain the performance results of the modeled
application, it is required to bridge the gap between the two abstraction levels
summarized in Figure 8.6. To this end, we use a simulation approach to solve
the enhanced PCM model and map the information provided at the software
architecture level on the information required at the storage resource level
during simulation.

171

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

Software Architecture Level

Business «specifies»
o ==

Component !

Request size RDSEFF

Request type

Sequentiality v@
File set

Request Parameters

Parameters:

Storage Resource Level

‘Workload Parameters
Parameters: 1/0 Analysis Model
Number of requests
Request type (read / write)
Mean read request size
Mean write request size
Read access pattern
Write access pattern
Read/write ratio
File set size

Figure 8.6.: Gap between the Abstraction Levels of the Models

As indicated in Figure 8.2 and realized as schematically shown in Figure 8.7,
we transform the PCM Model, which was refined with the static I/O infor-

Analysis Model*

analysis si PC}V[
transformation imulator
PCM Model* |:>
1/0

Analysis
Model

Figure 8.7.: Transformation of the PCM Model

mation as indicated by the *, during the analysis transformation to the target

analysis model, which is a simulation model in our approach. In the simula-

tion, we integrate the I/O analysis model that is used over the I/O interface
to predict the I/O performance. More specifically, we have extended the
PCM simulator SimuCom (Becker, 2008) by a virtualized storage system
scheduler that maps the information provided by the software architecture

172

8.3. Realization of I/O Performance Prediction in the PCM

model on the information required by the I/O analysis model as illustrated in
Figure 8.8 to simulate the I/O delay at the storage resource. The simulation in
the virtualized storage system scheduler is comprised of the following five
steps:

L

IL.

IIL.

Initially, the I/O requests of the business components issued in the appli-
cation layer (which are modeled as shown in Figure 8.4 and Figure 8.6)
arrive at the storage resource in the infrastructure layer. At this point, all
the I/O requests accessing the same storage resource are consolidated
even if they originate from different business components or VMs as
long as they are sharing the resource component, cf. Figure 8.3.

The information of an arriving request is added to an internal status
list maintained by the simulation, where the information of the last n
requests is stored in order to determine and derive the current state of
the I/O workload accessing the virtualized storage system (e.g., the
current read/write ratio of all requests accessing the virtualized storage
system from the application and across the VMs), since such information
is not given by a single request itself. The value of n determines the
memory length and can be estimated from the workload using the average
1/O delay delay?;g and the number of I/O requests arriving per time

Intensity
requestsl/o as

n:i= delay?/v‘g . requestsﬁ';toenmy . (8.1)
While this may not always be the best choice, the value of the memory
length n can also be calibrated for a given application model.

The workload state information is calculated and passed together with
the request information to the I/O analysis model. For the calculation,
let I, and I',, be the stored read and write request sizes, respectively, in
the status list. Furthermore, let I, and IT,, be the sequentiality of the
stored read and write request, respectively, in the status list. Apparently,
it holds that

Ty + T = |TL| + TL,| < n. 8.2)

The inequality holds in the beginning of the simulation, where the
number of I/O requests has not reached n yet. From the n-th request

173

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

IV.

174

on, the equation becomes an equality. The exact information (i.e., the
workload parameters) required by the I/O analysis model as given in
Section 8.3.2 and Figure 8.6 is passed and calculated from the arriving
I/O requests as follows (cf. Section 5.3):

o Number of concurrent requests: currently active I/O requests,
which are delayed at the storage resource at the current simulation
time

e Request type: passed by the request

\Fr
Y.
e Mean read request size: IF \ o />0
0, else
[Tw|
Z Fw J
o Mean write request size: \le , Tw[>0
0, else
§i,
. j= F,
e Read access pattern: sequential, [II,[> 0A ITT, | 2 0.5
random, else
Z‘Hw‘ I1,, i
o Write access pattern: sequential, |T1,[>0A I,y | 20.5

random, else

Ty |

. . .
Read/write ratio: I

o File set size: passed by the request

The I/0 analysis model, which is encapsulated by the resource com-
ponent in the infrastructure layer, uses the parameters of the workload
state and the arriving request to predict the actual I/O delay for the given
request. The I/O analysis model can be the regression model or the
queueing model as introduced in the previous chapters.

. By using the workload state information of the storage resource, in

particular the number of concurrent requests, the I/O analysis model
inherently captures the contention at the storage resource. Thus, the
predicted response time is assigned to the arriving request such that the
I/O request is delayed by this calculated value.

8.3. Realization of I/O Performance Prediction in the PCM

«Resource»

1/0O Analysis Model

addto | Status

@ Tist List State A~ "
s

Request s

/0
Request > D_ 3

1/O Delay)

Calculate
Delay

Virtualized Storage System

Figure 8.8.: Storage Resource Simulation

8.3.4. Prediction Process

Overall to use the extended PCM, Figure 8.9 illustrates the process to obtain
performance predictions of a software architecture model with our approach.
The process consists of the following five steps:

1. The initial step is creating the PCM model comprised of the software
architecture and its abstract description of the application whose per-
formance should be evaluated. The model is comprised of the four
sub-models as before our extension specifying the components and
their behavior, the software architecture, the resource environment,
and the usage of the system (cf. Figure 3.7). In the description of the
component behavior, the information on the I/O requests, which are the
parameters of the I/O interface (cf. Figure 8.4), is added.

2. Using an instance of the feature tree model shown in Figure 8.5, i.e.,
a feature configuration, the required I/O analysis model is determined.
The feature tree is used by evaluating the given system configurations
and simply choosing the appropriate modeling formalism whose advan-
tages and disadvantages have been highlighted in the previous chapters.
For regression models, for instance, the models can be stored in a repos-
itory or created with measurements when they are needed, e.g., for
a new environment or with another configuration. If a new model is
created, it can be created incrementally by leaving some parameters
fixed when measuring the environment. For instance, if an application

175

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

176

is known to access a file set of a certain size, this parameter and its
effect are not needed to be fully evaluated and the exploration of the
parameter can be postponed to save measurement time.

After the structural and behavioral model of the application is created,
the resource demands of the non-I/O operations of the software architec-
ture model need to be estimated and calibrated, e.g., for CPU resources.
For existing applications, this can be achieved using existing techniques
for resource demand estimation (cf., e.g., Spinner et al., 2014). Alterna-
tively, the resource demands can be approximated by fitting them to the
measured or expected response times of the operations.

Additionally, the parameters used for the resource component of the
virtualized storage system as illustrated in Figure 8.8 might be calibrated
for the application model, e.g., the memory length can be adapted if

required.

Create Software
Architecture Model of
Application

1

Determine required
1/0 Analysis Model
with Feature Tree

b

Calibrate Non-1/0
Operations

Calibrate Storage
Resource
Parameterization

1

Solve Model to Predict
Performance of
Application

e
®

Figure 8.9.: Performance Prediction Steps

8.4. Summary

5. After the model creation and calibration steps have been completed,
the transformation of the software architecture model to the simulation
model, which is fully automated, can be triggered to simulate the
combined model and obtain performance results. The results can be
used to predict the performance of the application, e.g., to predict the
effect of an increasing number of users on the application performance.

8.4. Summary

In this chapter, we introduced a generic approach for software architecture-
level modeling and prediction of I/O performance in virtualized environments.
The main idea is to extend the model-based performance prediction process
employed in performance-aware software architecture modeling approaches
and integrate I/O analysis models, which we created in the previous chapters,
into the target analysis models generated from software architecture models.
The degrees of freedom of the I/O analysis model can be expressed in form of
a feature tree model, whose instance can be used to determine the required
model and its parameterization.

We realized our approach by extending the Palladio Component Model (PCM),
a model-based performance prediction approach for component-based soft-
ware architectures. We introduced a scheduler for virtualized storage systems
that uses the I/O analysis model to capture the behavior of I/O requests mod-
eled at the software architecture level and to estimate the storage resource
contention. We exploited the concept of layered execution environments
employed in the PCM to encapsulate our virtualized storage system scheduler
in a resource component that can be used over its resource interface. Based
on the analysis of I/O performance-influencing factors in the beginning of this
thesis, we identified the required parameters at the resource interface and at
the I/0 analysis model. To solve the model and obtain performance results,
we use a simulation approach, where a PCM model is transformed into a
simulation model. During the simulation, we calculate state information of
the I/0O workload currently accessing the storage (e.g., the read/write ratio)
from the I/O requests. The state and the I/O request information is then used
as input for the I/O analysis model to determine the delay of a given I/O
request at the storage resource.

177

8. Integrating Storage-level Models into Architecture-level Modeling Approaches

After this final chapter of our I/O performance prediction approach, we present
the validation of this thesis in the next chapter. We present case studies along
the path of the thesis contributions as indicated in the big picture of our
approach. Put together, the case studies constitute the end-to-end validation
starting from the validation of our workload characterization approach until
the creation of the I/O analysis models and its integration into the software
architecture-level modeling approach as presented in this chapter. Moreover,
the validation chapter discusses the applicability of our work reflecting both
the strengths and the limitations of our approach.

178

9. Validation

In this validation chapter, we evaluate our goal of this thesis to enable I/O
performance predictions in virtualized environments. For the evaluation of our
goal and this thesis, in the following we present multiple case studies along
the overall steps of this work presented in the previous chapters beginning
from the workload characterization, to the storage-level I/O analysis models,
through to the software architecture-level models. A subset of the case studies
have been part of our publications (Noorshams et al., 2013a; Noorshams et al.,
2014a; Noorshams et al., 2014b; Busch et al., 2015) based on the theses we
supervised (Bruhn, 2012; Busch, 2013; Reeb, 2014).

Before presenting the case studies in this chapter in full detail, Section 9.1
first introduces the goals and questions addressed in the case studies. Then,
Section 9.2 gives an overview of the experimental setup of the case studies.
The first part of the case studies is presented in Section 9.3 evaluating our
workload characterization approach. Then, Section 9.4 presents case studies
on the storage-level performance predictions based on regression analysis.
In Section 9.5, we show a set of case studies for evaluating the performance
predictions with our software architecture-level modeling approach. Finally,
Section 9.6 discusses the scope and the applicability of our approach.

9.1. Goals and Questions

The goal of this thesis is to allow for performance predictions of I/O-intensive
applications in virtualized environments with both practical performance engi-
neering approaches and intuitive software architecture-level performance mod-
eling techniques. We evaluate our approach in multiple case studies grouped
into multiple parts. The case studies constitute the end-to-end validation of
our work with explicit focus on the proposed aspects of our approach.

179

9. Validation

Performance Prediction
Target — e —— N

I/O-intensive [models transform |
Lo Annotated .
Application in \ . Analysis
. . Architecture \
Virtualized Model
. Model |
Environment

X
. Simulation Model
[integrate
‘ analyze‘ \ include PART III/
| o - _ - - \ Software Architecture-level Modeling
‘ model
Performance- :

\ ‘ | 1/O Analysis |

Influencing \ Model \
\ Factors | ‘ |
| I |
\ I’4Rl 1 ‘ I’4RTII) PART IV

Wm/\/(mc/ Characterization Storage-level Modeling Discussion of the Approach
Legend

Artifact |:> Relation |:1‘> Activity

Figure 9.1.: Evaluation Overview (cf. Figure 4.1)

Figure 9.1 shows the four evaluation parts of this chapter along the steps of
our big picture given in Chapter 4, where we have abstracted and simplified
the big picture showing the extending steps of our work, which are evaluated
in this chapter. We first evaluate the workload characterization we obtained
from the performance-influencing factors in Part I. We then in Part II evaluate
our I/O analysis model and the storage-level performance prediction with
regression analysis-based models. Finally, we present case studies evaluating
the performance predictions at the software architecture level in Part III.
To conclude in Part IV, we discuss the scope of our work addressing the
applicability and the limitations.

Each evaluation part is structured hierarchically as elaborated in the following
to give an overview of the validation goals and the questions addressed in the
validation:

180

9.1. Goals and Questions

PART I: Workload Characterization — Section 9.3
Goal 1 — Abstraction level of the workload characterization.

Q1: Can the workload characterization of a running I/O-intensive
application be extracted by the automated process?

Q2: Is the chosen abstraction level of the workload characteriza-
tion sufficient to capture the influences of an I/O-intensive
application on the I/O performance?

Goal 2 — Feasibility of performance evaluation using the workload char-
acterization.

Q1I: Can the characterized workload that is captured be used to
estimate the performance of an I/O-intensive application?

Q2: Can the characterized workload that is captured be used to
estimate the performance of consolidated I/O-intensive appli-
cations?

PART II: Storage-level Modeling — Section 9.4
Goal 1 — Prediction accuracy of the regression models.
Q1I: What is the prediction accuracy for I/O performance when
using different regression techniques?
Q2: What is the prediction accuracy for I/O performance interfer-
ence when using different regression techniques?
Goal 2 — Regression technique optimization.
Q1I: Is the regression technique optimization significantly increasing
the model prediction accuracy?
02: How many iterations are required to find an optimal parameter-
ization for the regression techniques?

PART III: Software Architecture-level Modeling — Section 9.5
Goal 1 — Prediction accuracy of the combined model for capacity plan-

ning.

Q1: What is the prediction accuracy for an increasing number of
clients when calibrated for a certain number of clients?

Q2: Can the combined model be used to predict the performance
of multiple I/O-intensive applications that share the environ-
ment?

181

9. Validation

Goal 2 — Model overhead and transferability.
Q1: What is the modeling overhead to predict the performance of
an application?
02: What is the modeling overhead if the system environment is
changed?

PART 1V: Discussion of the Approach — Section 9.6

Goal 1 — Approach applicability.

Q1I: What are the aspects that increase the applicability of the
approach?

02: What is the prediction accuracy without our approach?

Goal 2 — Approach conclusions.
Q1: What evaluation criteria of the approach are fulfilled?
Q2: What are the assumptions and limitations of the approach?

9.2. Experimental Setup

Before presenting our case studies, in this section we introduce the soft-
ware as well as the system environments employed for the validation of our
approach.

9.2.1. Tools and Benchmarks

The experimental evaluation in the case studies is fully automated and realized
with the Storage Performance Analyzer (SPA) (Noorshams et al., 2015), cf.
Section 5.4. SPA coordinates and controls the measurements and, if required,
monitors the system environment during the measurements. The collected
measurements are stored for analysis and used to create regression models in
an automated process as needed. SPA has integrated the two benchmarks that
are used in the case studies, both use direct I/O (using the O_DIRECT flag, cf.
open — Linux man page n.d.) to specifically measure the I/O performance.

182

9.2. Experimental Setup

For measurements with fine-grained configurations, we use the Flexible File
System Benchmark (FFSB) (n.d.) because of its configuration possibilities
allowing to evaluate the effects of the I/O performance-influencing factors
(cf. Section 5.2). Furthermore, we use FFSB as a basis for the I/O analysis
model that is integrated into the PCM, which is the software architecture-level
model used in this work (cf. Section 3.4), since the benchmark allows to
evaluate the required parameters. Running at the application layer, FFSB
measures the end-to-end response time in two phases. First, the target file set
of the required size is created using 16 MB files. Then, the specified number
of workload threads (clients) are started and they start issuing read or write
requests to the file set, where any thread issues a request after its previous
one has been completed. The requests of each workload thread are comprised
of 256 subsequent read or write requests of a specified size to a randomly
chosen file. For a sequentially configured access pattern of a request type, the
subsequent requests of the workload threads are directed to consecutive block
addresses within a file.

To evaluate composite application workloads, we use the Filebench (n.d.)
framework. Filebench employs a workload definition language to define
and emulate typical I/O-intensive applications. The application workload is
comprised of a sequence of file system operations, e.g., a file in a file set
is opened, read, and then closed. The sequence is executed repeatedly by
a number of workload threads (clients) during the measurement period. To
define the application workload, Filebench uses, among others, the following
operations:

e openfile: Opens a randomly chosen file in the file set.
o closefile: Closes an opened file.

e createfile: Creates an empty file.

o deletefile: Deletes a randomly chosen file.

o statfile: Requests the meta information of a file.

o readwholefile: Reads a file in one request.

o writewholefile: Writes a file in one request.

o appendfilerand: Appends a random amount of data (with specified
mean size) to a file.

183

9. Validation

Listing 9.1: File Server Workload

File set:
- number of files = 10000
- mean file size = 128 KB
- file preallocation = 80 %
5 Threads:
- 50 (default)
Operations:
- createfile
- writewholefile
10 - closefile
- openfile
- appendfilerand, mean size = 16 KB
- closefile
- openfile
15 - readwholefile
- closefile
- deletefile
- statfile

In the case studies, we use a file server and a mail server application that are
defined using the above operations as shown in Listing 9.1 and Listing 9.2,
respectively. In contrast to FFSB, the file sets of the workloads in Filebench
are not necessarily fully created before the workload threads start issuing the
requests.

9.2.2. System Environments
In the case studies, we use two representative, state-of-the-art server environ-

ments to validate our approach: A Sun Fire environment and an IBM System z
environment introduced in the next two sections.

184

9.2. Experimental Setup

Listing 9.2: Mail Server Workload

File set:
- number of files = 50000
- mean file size = 16 KB
- file preallocation = 80 %
5 Threads:
- 16 (default)
Operations:
- deletefile
- createfile
10 - appendfilerand, mean size = 16 KB
- closefile
openfile
readwholefile
closefile
openfile
appendfilerand, mean size = 16 KB
closefile
openfile
readwholefile
20 - closefile

15

9.2.2.1. Sun Fire

The first environment is a Sun Fire X4440 x64 server system and is schemat-
ically shown in Figure 9.2. The server contains four 6-core processors and
128 GB of main memory. The storage subsystem consists of a RAID array
with 8 Serial Attached SCSI (SAS) hard disks. The array contains a 256 MB
battery-backed, non-volatile cache (NVC) for write requests. The system is
virtualized using a Citrix XenServer hypervisor and the applications run in
Linux guest VMs. The scheduler of the hypervisor manages the access of the
guest VM to the resources. In contrast to accesses to the CPUs, XenServer
uses for I/O requests accessing the storage resource a privileged host VM
(Dom0) able to access the physical devices. The guest VMs are equipped
with multiple cores and sufficient memory. The file system is configured to
the de facto standard EX74 and as I/O scheduler, we use the default scheduler
in virtualized environments (Ling et al., 2013).

185

9. Validation

Sun Fire X4440

Guest VM Host VM (Dom0)

Linux Linux
[J [vy J

A'$ Citrix XenServer 4 A
A
Y

CPUs, RAID Array

Figure 9.2.: Schematic [llustration of Sun Fire X4440

9.2.2.2. IBM System z

The second environment is based on the IBM mainframe System z and the
storage system DS8700 first introduced in Section 4.2. To briefly summa-
rize, Figure 9.3 illustrates that the System z provides processors and memory
resources and the DS8700 provides storage space. The environment is virtual-
ized using the Processor Resource and System Manager (PR/SM) hypervisor
creating logical partitions (LPARs, i.e., VMs) that use the resources. To
optimize I/O performance, the storage system DS8700 contains a storage
server having a volatile cache (VC) and a non-volatile cache (NVC) that are
enhanced with several pre-fetching and destaging algorithms for increased
performance (Dufrasne et al. (2010), cf. Section 4.2). In our environment, the
DS8700 contains 2 GB NVC and 50 GB VC with a RAID-5 array containing
seven HDDs and measurements are obtained in z/Linux LPARs equipped with
multiple cores. The I/O-related operating system configurations are similar to
the ones of our previous environment.

186

9.3. Case Studies on Workload Characterization

IBM System z IBM DS8700
LPAR 1 (VM) LPAR 2 (VM)
>| Storage Server ve
z/Linux z/Linux Y nve
Switched
Fibre Ch: |
T J ibre Channe
Processors Fibre
Mome > Channel RAID Arrays SSD/
Y CPU, RAM (RIDID)

Figure 9.3.: Schematic Illustration of IBM System z and DS8700

9.3. Case Studies on Workload
Characterization

In this section, we evaluate our workload characterization introduced in
Chapter 5. We focus on our two evaluation goals to analyze the abstraction
level of the workload characterization as well as its performance evaluation
possibilities. The workload characterization steps shown in the following
two case studies are fully automated. Before we begin with the case studies,
we introduce the overall evaluation process. After presenting the case study
results, we summarize and discuss the evaluations.

9.3.1. Overview

The general process for the case studies is illustrated in Figure 9.4 and is
comprised of the following five steps: i) We analyze an I/O-intensive applica-
tion, e.g., a file server, whose users generate a high-level workload, e.g., by
uploading and downloading files. ii) The high-level workload translates to
low-level 1/0 workload comprised of simple read and write operations. iii) We
observe and monitor this low-level workload to calculate the metrics of our
workload characterization, cf. Section 5.3, where we use a closed workload
intensity characterization. iv) We use the calculated metrics as input for a
reference benchmark to mimic the captured low-level workload. v) We finally

187

9. Validation

compare the response times obtained using the reference benchmark with the
response times of the low-level I/O workload of the application. For every run
(i.e., repetition), we calculate the response time difference ART between the
reference benchmark and the application’s I/O workload using

RTAPP — RTRef

R | ©.1)

ART := ’

where RTAPP and RTR¢/ denote the mean response time of the application and
the reference benchmark, respectively. For the I/O-intensive application, we
use Filebench to measure the considered application workloads as introduced
in Section 9.2. Furthermore, we use FFSB as reference benchmark. In the case
studies, we use our two system environments comprised of the IBM System z
and the Sun Fire system, cf. Section 9.2. All measurements, monitoring, and
data collection are automated and the measurements are repeated 20 times
each running five minutes with a warm-up period of one minute.

| High-level
1 Workload, e.g.,
: Upload Files

, 1/O-intensive

1 Application,
—l— === 3 'e.g., File server/
_____ ' .
————=3> Mail server
1
... s | Low-leyel Monitoring
D Workload, i.e.,
Response reads/writes
Times | -------
Workload
Comparison Characterization:
) - Workload Intensity
Storage - Request Mix
Regponse 4 - Request Size
Times - Access Pattern
- File Size
A - File Set Size

Mapping to
Reference
Benchmark

Figure 9.4.: Workload Characterization Overview

188

9.3. Case Studies on Workload Characterization

System
Application
_ pp <,
- | Workload |
S |
98 | | 7
S N %]
S5 g
= 2 s 5
s 9 | 'S &
N =
o | Reference I (Eb

L> Benchmark

Figure 9.5.: Workload Characterization Process

9.3.2. Case Study I: Workload Characterization

In our first case study, we characterize the two considered applications, a
file server and a mail server application measured using Filebench. In this
case study, we use our IBM System z and IBM DS8700 environment. The
evaluation process as introduced in Section 9.3.1 is realized in this case study
as schematically illustrated in Figure 9.5. To characterize the application
workload, the application is first run and monitored to extract the performance
and workload characteristics for the configuration of the reference benchmark.
Then, we run the reference benchmark and compare its response times with
the response times of the original workload to evaluate the difference.

The application workloads comprise a set of file system operations, e.g., a file
is opened, read, and finally closed, where the file server and the mail server
workload are defined as shown in Listing 9.1 and Listing 9.2, respectively.
Running the two application workloads and extracting the workload charac-
teristics, Tables 9.1 and 9.2 show both the average of the mean characteristics
as well as the standard deviation of the mean characteristics across the 20
repetitions for the considered workloads. Furthermore, the table indicates that
we obtain a stable characterization across all metrics given the small standard
deviations in relation to the mean values.

189

9. Validation

File server

Mean Std. dev.
File Size 129.76 KB 391 KB
File Set Size 1163.49MB 591 MB
Workload Intensity 50 Threads O Threads
Request Size Read 105152.00B 166.67 B
Request Size Write 80473.09B 190.77B
Request Mix 41.85 % 0.37 %
Access Pattern Ratio (Read) 97.00 % 2.30 %
Access Pattern Ratio (Write) 99.23 % 0.27 %

Table 9.1.: Workload Characterization for the File Server across 20 runs

Mail server

Mean Std. dev.
File Size 16.62 KB 0.74 KB
File Set Size 683.68§ MB 58.37 MB
Workload Intensity 16 Threads 0 Threads
Request Size Read 14151.17B 31.63B
Request Size Write 15639.04 B 81.59 B
Request Mix 55.96 % 0.11 %
Access Pattern Ratio (Read) 28.74 % 0.52 %
Access Pattern Ratio (Write) 57.24 % 1.22 %

Table 9.2.: Workload Characterization for the Mail Server across 20 runs

Next, we use the characteristics obtained from the applications in Tables 9.1
and 9.2 as input for the reference benchmark. We run our reference benchmark
and compare the response time measurements with the results obtained using
Filebench. For the file server application, the response time measurements
of the I/O operations are shown in Table 9.3. For the file server workload,
we have two types of write operations, write and append. For the read and
write operations, we obtain a mean response time of 11.21 ms and 11.65 ms,
respectively. Mimicking the file server application with our reference bench-
mark, we measure a mean response time of 11.67 ms and 18.48 ms with a

190

9.3. Case Studies on Workload Characterization

mean standard deviation & (i.e., the standard deviation averaged over the 20
runs) of 21.13 ms and 20.77 ms for the read and write requests, respectively.
Overall across the repetitions, we obtain a response time difference ART in
the ranges of [1.18 %, 9.62 %] and [33.89 %, 41.06 %] for the read and write
requests, respectively. While the response time difference is very low for read
requests, it is higher for write requests because of the mixed write/append
operations of the application. Illustrated in Figure 9.6, the mean response time
difference is 3.93 % and 36.96 % for the read and write requests, respectively.
The response time measurements of the I/O operations of the mail server
application are shown in Table 9.3. Here, each operation is measured twice
as shown in the workload description (cf. Listing 9.2). For the read and
append (i.e., write) operation, we obtain a mean response time of 0.98 ms
and 0.83 ms, respectively. Now, using FFSB with the extracted configuration
to mimic the application, we obtain a mean read response time of 0.81 ms
with a mean standard deviation ¢ of 2.78 ms. Further, we obtain a mean
write response time of 1.29 ms with a mean standard deviation & of 2.94 ms.
In comparison, the response time difference ART for read requests is in the
ranges of [17.01 %, 25.87 %] and in the ranges of [31.25 %, 38.54 %] for
write requests. Since the absolute response times are relatively small, the
results are considered acceptable. On average, as shown in Figure 9.6, the
response time difference is 20.82 % and 35.72 % for the read and write re-
quests, respectively. The results show that the I/O workload characterization
of the considered workloads can be obtained in an automated process and are
sufficient to capture the key characteristics of the I/O workloads and their I/O
performance.

191

9. Validation

Workload Operation Resp. Time Std. dev.
ReadWholeFile 1121 ms 0.26 ms
File server AppendFileRand 936 ms 0.25 ms
WriteWholeFile 1393 ms 0.47 ms

098 ms 0.03ms
098 ms 0.03 ms

0.66 ms 0.01 ms
1.00ms 0.03 ms

ReadWholeFile
Mail server

AppendFileRand

Table 9.3.: Mean and Standard Deviation of the Mean Response Times

File Server Mail Server

30 —
<

< 20 —
H
[a4
<

10 —

O -_—

Read Write Read Write
Operation

Figure 9.6.: Mean Response Time Difference ART with Standard Error in
Case Study I

192

9.3. Case Studies on Workload Characterization

9.3.3. Case Study II: Workload Migration &
Consolidation

Base System Target System
Original ? Original
— | e <
- | Workload > Workload -:
3 % : I 7
s N R
= 5 | 5 8
= 5 s 32
S 2 < 8
22 o
© IL Reference Migration Reference | %
— > _
> Benchmark Benchmark

Figure 9.7.: Workload Migration Process

In this case study, we use our workload characterization to estimate the impact
of migrating an application from a base to a target system. We employ the
process described in Section 9.3.1 in two scenarios in this case study as
schematically illustrated in Figure 9.7 and Figure 9.8. As the base system, we
use the IBM System z and IBM DS8700 environment. We use the Sun Fire
environment as the target system. In our migration scenario, we characterize
our application on the base system. In particular, we use the file server
application in this scenario. Then, we use our reference benchmark and
migrate to the target system. We run the reference benchmark and, finally,
we use the response times obtained with our reference benchmark to estimate
the response times of the original workload on the target system. In our
consolidation scenario, we characterize two applications on the base system
in isolation, where we use both the file and the mail server application in a
heterogeneous scenario, i.e., using two different applications. We then use
the reference benchmark and migrate to the target system, where we run two
instances of the benchmark in two virtual machines in consolidation. Finally,
we use the measurements of the reference benchmark to estimate the impact
of consolidating the applications in respective virtual machines on the target
system. We use the workload characterization of the applications in isolation
obtained in our first case study as shown in Tables 9.1 and 9.2.

193

9. Validation

Base System Target System
- Original = > Original
™| Workload A* L7 1| Workload A**
r — ———— — <
= | Original | | Original I
- £ “=| WorkloadB* |- >| Workload B** | 7
g8 | > 5
% 3 | | g =
§ 8 | Reference Reference I's. &
= | 8 Benchmark* S Benchmark®* | =
O L_l} Migration & enchmar ., B
I Reference Consolidatiorf Reference
> Benchmark* Benchmark**
* separated execution ** consolidated execution
on dedicated hardware on one machine

Figure 9.8.: Workload Consolidation Process

We configure the reference benchmark with the workload characterization to
estimate the performance of the applications in the target environment in the
migration and consolidation scenario. For both scenarios, we calculate the
response time difference as shown in Equation (9.1).

Workload Migration. The response time measurements of the application’s
I/O operations in the migration scenario are shown in Table 9.4. Having again
two write operations in the file server application, in the target environment
we obtain a mean response time of 67.21 ms and 33.32 ms for the read and
write requests, respectively. Using the reference benchmark in the target
environment, the mean response time is 55.29 ms (¢ = 20.61 ms) for the
read requests and 42.21 ms (G = 14.49 ms) for the write requests. Overall,
the response time difference of the file server workload for read requests is
in the ranges of [19.12 %, 28.02 %] and for write requests in the ranges of
[12.77 %, 24.12 %]. Averaging the response time difference, we obtain a
mean response time difference of 21.59 % for read request and 20.98 % for
write request as shown in Figure 9.9.

194

9.3. Case Studies on Workload Characterization

Workload Consolidation. For the two applications in consolidation, the
response times of the I/O operations are shown in Table 9.4. The read and write
operations are averaged and we obtain a mean response time of 77.75 ms and
59.71 ms for the read and write requests, respectively. For the measurements
of our reference benchmark, the mean response time is 89.34 ms for the read
requests and 79.12 ms for the write requests. Comparing the response time
measurements, the response time difference for read requests is in the ranges
of [9.23 %, 17.32 %], while it is in the ranges of [21.46 %, 28.28 %] for write
requests. Overall, the mean response time difference is 12.95 % and 24.51 %
for the read and write requests, respectively, cf. Figure 9.9.

In both scenarios, the measurement results between the workloads show
sufficient agreement such that, in conclusion, we are able to automatically
obtain the I/O workload characterization of an application and can use it to
successfully estimate the impact of workload migration and consolidation.

Workload Operation Resp. Time Std. dev.
ReadWholeFile 6721 ms 0.55 ms
File server AppendFileRand 3496 ms 0.44 ms

WriteWholeFile 31.68ms 0.47 ms

85.00ms 2.08 ms

AppendFileRand 30.57ms 0.87 ms

. 2994 ms 0.69 ms
File and

Mail Server WriteWholeFile 93.43ms 2.46 ms

139.48 ms 2.56 ms
ReadWholeFile 47.67ms 1.22 ms
46.11 ms 1.20 ms

Table 9.4.: Mean and Standard Deviation of the Mean Application Response Times

195

9. Validation

File Server File and Mail Server

25 —

ART (%)

Read Write Read Write

Operation

Figure 9.9.: Mean Response Time Difference ART with Standard Error in
Case Study 1I

9.3.4. Summary and Discussion

In this section, we presented two case studies to show that our workload
characterization of I/O-intensive applications is a reasonable abstraction of an
application workload. In two case studies, we extracted the workload char-
acterization of a mail and a file server application measured with Filebench
in an automated manner. We compared the applications’ response times to
the ones obtain with our reference benchmark FFSB that uses the workload
characterization as input to mimic the application. Addressing Goal 1 of
the evaluation, the first case study demonstrates the automated applicability
and appropriateness of our workload characterization approach to capture
performance-relevant aspects of the considered applications. We measured
the two considered applications in our System z environment, obtained the
workload metrics while monitoring the environment, and evaluated the re-
sponse time difference between the application and the reference benchmark.
While the response time difference was relatively low for read requests and

196

9.4. Case Studies on Storage-level Modeling

higher for write requests, the response time difference was mostly caused
by abstracting the variations in the requests and request sizes simply using
averaged request sizes with our reference benchmark. This can cause higher
variations when having multiple different operations of one workload type,
for instance, having multiple append and write file system operations that are
translated to write requests at the storage level. Still, the response times of the
application and the reference benchmark were in the same order of magnitude
for both types of requests, thus, the characterization provided a reasonable
abstraction of the more complex workloads considered in the case study. In
our second case study, we addressed both the first and the second goal of the
evaluation. We showed that the workload characterization approach is able to
capture the performance-relevant aspects of the considered applications in an
automated process. Furthermore, we showed how our approach can be used
to estimate the impact of application migration and consolidation as we esti-
mated the I/O performance of the applications in a migrated, new environment.
For this estimation, our approach is more flexible as, for instance, a simple
record/replay mechanism, since we are able to capture an application as well
as vary specific parameters (e.g., the workload intensity) if required, which
would be difficult and sometimes impossible for production workloads. In the
case study, we were able to reuse the characterization of the previous case
study, thus, there was no additional overhead for the process as we migrated to
another environment. Overall, the performance estimation in the unknown en-
vironment was acceptable, even when the workloads were mixed and different
applications consolidated with response times of operations between 30 ms
and 140 ms and a maximum response time difference of 25 %. While, in
general, the estimation accuracy could be improved with a more fine-grained
representation and characterization, it would introduce additional complexity
and our approach showed to be a reasonable compromise between complexity
and accuracy to use for automated performance evaluation.

9.4. Case Studies on Storage-level Modeling

In the following, we evaluate our storage-level modeling approach using the
regression analysis-based performance prediction introduced in Chapter 6.
We address our two evaluation goals and analyze the prediction accuracy
achieved with our approach as well as the reduction in prediction error with our

197

9. Validation

regression technique parameterization approach. Overall, the measurements
as well as the regression modeling steps shown in the case studies are fully
automated. In this section, we present three different case studies using
our IBM System z environment for the evaluation. We first present a brief
overview of the approach and conclude with a summary and discussion of the
results after the case studies.

9.4.1. Overview

In our case studies, we employ the I/O performance modeling process in-
troduced in Section 6.4, where in the case studies we will first specify the
respective modeling target. For each case study, we choose a representative
measurement space configuration, which is then explored with measurements
in an automated manner. We then select a set of regression models and search
for their optimal configuration. From the set of studied regression techniques,
we choose to create models using MARS with interaction terms, CART, and
Cubist, since MARS models can be seen as an extension of linear regression
models and the Cubist models are a direct extension of M5 trees. Furthermore,
the Cubist algorithm is equal to the M5 algorithm for Cubist’s standard param-
eterization. To search for the optimal configuration, the regression technique
parameterization step is configured reasonably (S3 algorithm with number
of splits { = 4, number of explorations 11 = 5, and maximum number of
iterations 8 = 10). The considered parameters of the regression techniques
are described in Section 6.3. Finally, for each regression technique we use the
measurement data to create the regression models, which are finally evaluated
with new configurations that are not used in the modeling process. For the
evaluation, we calculate the prediction error as the

) metric%g - metricgvg
relative error .= , 9.2)

oM
Merricg,,

where the metric is either response time or throughput, such that we com-

pare the measured aﬁerage performance metric%g with the average predicted

performance metric,,,.

198

9.4. Case Studies on Storage-level Modeling

I/0 scheduler CFQ, NOOP

Threads 100

File set size 1 GB, 25 GB, 50 GB, 75 GB, 100 GB

Request size 4 KB, 8 KB, 12 KB, 16 KB, 20 KB, 24 KB, 28 KB,
32 KB

Access pattern random, sequential

Read percentage 0 %, 25 %, 30 %, 50 %, 70 %, 75 %, 100 %

Table 9.5.: FFSB Experimental Setup Configuration

9.4.2. Case Study I:
Modeling Performance-influencing Factors

In our initial case study, we model major I/O performance-influencing factors
introduced in Section 5.2. To this end, we employ the FFSB benchmark to
systematically measure the system environment with the required fine-grained
configurations and use the measurements to create optimized regression mod-
els. The explicit setup configuration is chosen representatively and given in
Table 9.5. The parameter space is explored in a full factorial design leading to
a total of 1120 measurement configurations. For each configuration, in the
measurements we use a one minute warm-up and a five minute measurement
phase. In one minute, the benchmark collects approximately 575000 measure-
ment samples on average and between approximately 90000 and 2 800000
measurement samples depending on the configuration. Overall, the mean
response times of the read and write requests are in the ranges of [2.2 ms,
70.4 ms] and [2.8 ms, 60.7 ms], respectively, and the throughputs of the
read and write requests are in the ranges of [4.02 MB/s, 386.70 MB/s] and
[2.99 MB/s, 171.1 MB/s], respectively.

For each of the considered regression techniques, we create four different
models to capture the I/O performance: A read response time model (RT),),
a write response time model (RT,,), a read throughput model (TP,), and a
write throughput model (TP,,). Thus using the three regression techniques,
we create a total of 12 regression models. We evaluate 100 measurement
configurations with parameter values chosen completely randomly within the
configured ranges (e.g., 90 GB file set size, 30 KB request size, etc.). For
each configuration, we compare the model predictions with measurements

199

9. Validation

on the real system. For the 100 configurations, Figure 9.10 illustrates the
prediction errors, the mean prediction errors are shown in the bars in the upper
part and as the small crosses in the lower part. Overall, the models perform
very well and especially MARS and Cubist have a high prediction quality
with less than 7 % and 8 % mean prediction error, respectively. After the
parameterization of the models, the CART trees are highly branched, but their
prediction accuracy with approximately 10 % mean error is good. Averaging
the four models of the techniques, the mean of the 95th percentile of the
prediction error is 20.89 %, 24.32 %, and 27.48 % for MARS, Cubist, and
CART, respectively.

Finally, we evaluate the improvements in prediction accuracy achieved with
our optimized regression parameterization and compare the optimized models
with models created with standard parameters. We evaluate the performance
prediction error for each model with the 100 completely random configura-
tions similar to the evaluation above. In summary, especially MARS and
CART benefit significantly from the parameter optimization approach and
show an average reduction in prediction error of 66.30 % and 74.08 %, respec-
tively. The reduction in prediction error for Cubist is 15.7 %. To support these
results, we evaluate the statistical significance of the reduction in prediction
error in a set of paired t-tests. In these tests, the p-value of both MARS
and CART is less than 2.2e !¢ and the p-value of Cubist is 3.39¢~*, hereby
confirming that the parameter optimization is statistically significant for every
considered regression technique. In conclusion, our parameter optimization
approach is key to significantly reduce the prediction errors of the regression
models.

200

9.4. Case Studies on Storage-level Modeling

Mean Relative Error (%)

Relative Error (%)

MARS

CART

Cubist

90 —

60 —

30

RT, RT, TP, TP, RT, RT, TP, TP, RT, RT, TP, TP,
MARS CART Cubist
o)
¢ o
o)
& o o
o o o
[} o o) o
5 0 8 P9
(] o 8 8 o o} e
8 ° ¢ 8 Q 8
@ o oo 3
X
x B
X X
| | | |

RT, RT, TP, TP,

RT, RT, TP, TP,

RT, RT, TP, TP,

Figure 9.10.: Prediction Quality (Case Study I)

201

9. Validation

9.4.3. Case Study II: Modeling Application Workload

For our second case study, we use Filebench to measure and model an applica-
tion workload and predict its I/O performance. We use a mail server workload
with configurations as indicated in Table 9.6 triggering a set of mixed file
system operations, such as file creation and deletion as well as whole file
reads and append operations of random size, cf. Listing 9.2. We evaluate
all configuration combinations and vary the number of clients (threads), the
number of files, and the mean file sizes as shown in Table 9.6 in a full fac-
torial design leading to a total of 576 measurement configurations. Similar
to the previous case study, we use a one minute warm-up phase and a five
minute measurement phase for each measurement configuration. During the
measurements, the benchmark collects approximately 980000 read and ap-
pend samples on average and between approximately 825000 and 1100000
samples depending on the configuration. Furthermore, the absolute mean
response times of the read and append requests are in the ranges of [0.36 ms,
2.74 ms] and [0.40 ms, 1.70 ms], respectively, and the throughputs of the
read and append requests are in the ranges of [5.95 MB/s, 62.95 MB/s] and
[5.60 MB/s, 7.60 MB/s], respectively.

Using each considered regression technique, we create different models for
each I/O performance metric: A read response time model (RT,), an append
response time model (RT,), a read throughput model (TP,), and an append
throughput model (TP,) resulting in a total of 12 regression models. Each
model is evaluated using 100 measurement configurations with parameter
values chosen randomly within the configured ranges. For each configuration,
we compare the model predictions with measurements on the system. Fig-
ure 9.11 illustrates the prediction errors for the various models. Overall, the
models exhibit a very high prediction accuracy and especially MARS shows
excellent results with less than 4 % mean error. The Cubist and CART models
perform also very well with approximately 7 % and 8 % mean prediction
error, respectively. Across the four I/O performance metrics, the mean of the
95th percentile of the prediction error is very good for MARS with 9.66 %. It
is higher for Cubist and CART with 20.78 % and 20.88 %, respectively.

202

9.4. Case Studies on Storage-level Modeling

Workload type Mail server workload

Threads 16), 32, 48, 64, 80, 96

Files 1000), 5000, 10000, 20000, 30000, 40000, 50000,
60000, 70000, 80000, 90000, 100000

Mean file size 4 KB, 16 KB™*), 32 KB, 48 KB, 64 KB, 96 KB,
128 KB, 192 KB

*) default value

Table 9.6.: Filebench Experimental Setup Configuration

To again evaluate the improvements in model accuracy achieved with our op-
timized regression parameterization, we compare the accuracy of the models
when using the optimized regression parameters with those configured with
the standard parameters. We evaluate the performance prediction error of
the models with 100 random configurations similar to the evaluation above.
For this case study, the optimization approach reduces the prediction error
by 4.2 %, 27.3 %, and 8.7 % for MARS, CART, and Cubist, respectively.
Evaluating the results in a paired t-test, the p-value of MARS, CART, and
Cubist is 5.26e 4, 9.63e 4, and 2.19¢ 3, respectively, thus confirming that
the reduction in prediction error is again statistically significant for every
considered regression technique.

203

9. Validation

Mean Relative Error (%)

Relative Error (%)

204

MARS

CART

Cubist

10 =

=

n

m

O_
RT, RT, TP, TP, RT, RT, TP, TP, RT, RT, TP, TP,
MARS CART Cubist
8
o]
[0}
o]
40 — o
]
o o
o]
® 8 o o
o] o]
[0}
]
20 —

Bl
0'&1&

RT, RT, TP, TP,

RT, RT, TP, TP,

RT, RT, TP, TP,

Figure 9.11.: Prediction Quality (Case Study II)

9.4. Case Studies on Storage-level Modeling

Filebench Workload Parameters @ VM1

Workload type File server workload

Threads 50()

Files 100000

Mean file size 128 KB™)

FFSB Workload Parameters @ VM2

Threads 50

File set size 1GB, 2 GB, 5 GB, 10 GB

Request size 4 KB, 8 KB, 16 KB, 32 KB, 64 KB
Access pattern random, sequential

Read percentage 10 %, 30 %, 50 %, 70 %, 90 %

*) default value

Table 9.7.: Hybrid Experimental Setup Configuration

9.4.4. Case Study lll: Modeling Performance Interference

In the final case study of this evaluation part, we analyze the I/O performance
interference between applications running in separate VMs, i.e., we analyze
how the performance of one application is directly affected by the workload
of an application running in a co-located VM as the applications are sharing
the storage resources. In this case study, we focus on applications with a
constant and equal workload intensity and vary the workload type (e.g., read-
or write-intensive workload) in one VM to evaluate how the performance is
affected by the characteristics of the workload. In general, I/O performance
isolation in virtualized environments is widely an open issue, thus varying the
workload intensity would lead to obvious performance interference. For the
measurements, we use both the FFSB benchmark and Filebench running a file
server workload, which consists of mixed file system operations, such as file
creation and deletion as well as whole file reads, whole file writes, and append
operations of random size, cf. Listing 9.1. The workloads run in two separate
virtual machines with the configurations chosen representatively as listed in
Table 9.7. We evaluate all combinations in a full factorial design leading to a
total of 200 measurement configurations. Similar to our previous case studies,
we use a one minute warm-up phase and a five minute measurement phase.

205

9. Validation

Before modeling the performance interference, we analyze the absolute num-
ber of operations and the I/O performance. An initial indication for the
performance interference between the applications is the number of read,
append, and write operations of the file server workload generated with
Filebench in VM1. Depending on the configuration of the FFSB workload
in VM2, the number of operations in VM1 varies between approximately
375000 and 700000 with a mean of approximately 550000 operations, while
the number of operations in VM2 varies between approximately 420000 and
3100000 with a mean of approximately 1300000 operations. For VM1, the
mean response times of the read, append, and write requests are in the ranges
of [13.08 ms, 34.08 ms], [11.63 ms, 32.12 ms], and [17.90 ms, 52.81 ms],
respectively, and the throughputs of the read, append, and write requests are
in the ranges of [54.80 MB/s, 108.30 MB/s], [3.40 MB/s, 6.20 MB/s], and
[55.30 MB/s, 109.10 MB/s], respectively, depending on the configuration.
For VM2, the mean response times of the read and write requests are in the
ranges of [4.34 ms, 26.75 ms] and [7.45 ms, 37.59 ms], respectively, and the
throughputs of the read and write requests are in the ranges of [1.38 MB/s,
218.00 MB/s] and [2.21 MB/s, 95.20 MB/s], respectively, depending on the
configuration. These values indicate that the performance of both applications
strongly depends on the type of workloads running in the VMs, which is obvi-
ous for the workload that is changed (VM2), but also applies to the co-located
workload that remains constant (VM1).

206

9.4. Case Studies on Storage-level Modeling

Mean Relative Error (%)

Relative Error (%)

MARS CART Cubist

| !
RT!RTIRT)TP! TP, TP! RT!RT!RT!TP!TP.TP! RT!RT!RT!TP!TP.TP!

MARS CART Cubist
0]
0]
20 3 7
<] 5) g 8
80] o ©
o © o 0
8
5 g~ 8|
: 8
104 9 8 ° g o §
§ . 8.8 8
8 o 8 8
S 8 © © X 0
h
>< . X X
B e HEDEEE
0_
| | | | | | | | |

| | | | | | | |
RT!RT!RT,TP!TP!TP! RT!RT!RT.TP!TP.TP! RT!RT!RT!TP!TP.TP!

Figure 9.12.: Prediction Quality VM1 (Case Study III)

207

9. Validation

Mean Relative Error (%)

Relative Error (%)

208

MARS

CART

Cubist

20 —
15 -
10
5 -_—
0- I I I
RT? RT?2 TP? TP? RT? RT2 TP? TP2, RT? RT? TP? TP
MARS CART Cubist
o]
8
60 —
[0}
o]
40 ®
o
lo) o] 0]
® o]
8
o 8 °
20— o X g a | X
8 8 X i
1 H
X
<]
== ; - —
O_
| | | |

RT? RT2 TP? TP?

| | | |
RT? RT?2 TP? TP?

| | | |
RT? RT? TP? TP?

Figure 9.13.: Prediction Quality VM2 (Case Study III)

9.4. Case Studies on Storage-level Modeling

Modeling the interference effects with the considered regression techniques,
we create a total of 10 models for each technique: For VM1, we use the
configuration in VM2 as independent variables and create a read response
time model (RT}), an append response time model (RT}I), a write response
time model (RT)), a read throughput model (TP!), an append throughput
model (TP}l), and a write throughput model (TPVIV). Since the configuration
in VM1 remains constant in this case study, for VM2 we do not need to use
the configuration in VM1 as independent variables explicitly. We create a
read response time model (RT?), a write response time model (RT2), a read
throughput model (TP?), and a write throughput model (TP2) using the config-
uration in VM2 as independent variables. Thus, we create a total of 30 models
and evaluate 100 configuration scenarios with parameter values chosen ran-
domly within the configured ranges. We use these random parameter values
as configuration for the FFSB benchmark and predict both the performance
of the FFSB benchmark and the performance interference on the co-located
VM running the file server application. For each scenario, we compare the
model predictions with measurements on the real system. The prediction
results are given in Figures 9.12 and 9.13 for the various models. Particularly
interesting are the prediction errors shown in Figure 9.12 indicating that the
models are able to predict very accurately how different workload types (e.g.,
read-intensive or write-intensive) affect the application performance on the
co-located VM. This is not obvious, since the performance interference is sig-
nificant as analyzed above. As illustrated in Figure 9.14, even if the workload
remains constant, the response times of the I/O operations spread by between
261 % and 295 % depending on the workload produced by the co-located
VM. Overall, the models exhibit a very high prediction accuracy for both
VMs. In general, the MARS models show the highest performance prediction
accuracy with approximately 2.1 % and 5.0 % mean prediction error for VM1
and VM2, respectively. The Cubist models also exhibit low prediction errors
with approximately 2.6 % and 10.0 % mean prediction error for VM1 and
VM2, respectively. Finally, the CART models appear to have the highest error
in this case study with approximately 5.2 % and 13.5 % mean prediction error
for VM1 and VM2, respectively. For VM1, the mean of the 95th percentile of
the prediction error across the six models is very low for MARS and Cubist
with 8.39 % and 9.99 %, respectively, while it is slightly higher with 15.14 %
for CART. For VM2, the mean of the 95th percentile of the prediction error
across the four models is 16.15 %, 27.39 %, and 34.00 % for MARS, Cubist,
and CART, respectively.

209

9. Validation

50 =
)
g 40-
N—'
Q
£
; i X
2 30
o
o
72}
[}
[
20 - ~
10 - I I I
Read Append Write

Figure 9.14.: Performance Interference Impact

Finally, we evaluate the improvements in model accuracy achieved through
our optimized regression parameterization approach comparing the accuracy
of the models when using the optimized regression parameters with the models
created with standard parameters. We evaluate the performance prediction
error for each model with 100 random configurations similar to the analysis
above. Depending on the scenario and the regression technique, we obtain a
reduction in prediction error with the optimization approach between 5.0 %
and 32.3 %. Furthermore, the p-value is at most 1.46e~3, thus confirming
that the optimization is statistically significant for every considered regression
technique.

210

9.4. Case Studies on Storage-level Modeling

9.4.5. Summary and Discussion

In this section, we presented three case studies on the creation of optimized
regression models using three regression techniques to analyze and predict
the I/O performance and interference effects in virtualized environments. We
evaluated the prediction accuracy in the case studies creating performance
models with two different I/O benchmarks. The three case studies comprised
models of major I/O performance-influencing factors, of application work-
loads, and of I/O performance interference effects of workloads sharing the
storage resources. We used our IBM System z environment and created the
performance models in a fully automated process. Overall, we effectively
created performance models with high predictive power. Notably, out of the
three considered regression techniques, MARS exhibited the highest predic-
tion accuracy in comparison with CART and Cubist in every case study. The
mean prediction error of MARS was between 2.1 % and 7 % in the case
studies, while it was between 5.2 % and 13.5 % for CART and between 2.6 %
and 10 % for Cubist. In summary, we can conclude with regard to our first
evaluation goal that we are able to extract accurate regression models with
low prediction errors.

In the case studies, the low prediction errors are especially due to our regres-
sion parameter optimization approach reducing the error of MARS, CART,
and Cubist by up to 66.3 %, 74.08 %, and 21.9 %, respectively. Furthermore,
the regression parameter optimization approach reduced the prediction error
of every considered technique with statistical significance in every case study.
Elaborating on our second evaluation goal, the optimization was key to obtain
the accurate models. For the optimization runs, Figure 9.15 summarizes for
all the case studies the earliest iterations in which the best regression param-
eterizations for the regression models were found. Here, we can observe
some interesting aspects. First, the Cubist optimization rarely required all ten
iterations to find the best optimization, which is particularly relevant, since
the optimization of Cubist is computationally expensive (cf. Section 6.3).
However, Cubist was also optimized along discrete parameters, which means
that if interesting candidates are found, the adjacent areas can be evaluated
exhaustively, i.e., the search will not continue infinitely as in the case for
continuous parameters. The second observation is that the best parameteriza-
tion for CART was for multiple models the initial starting point (Iteration 0),
which results in the most branched, most complex CART model. This may be

211

9. Validation

because the CART models were not able to sufficiently abstract and model
the underlying structure of the data for these scenarios'. If we set aside these
cases, the CART parameterization was then usually requiring more iterations,
which is however not overly computationally expensive (cf. Section 6.3). The
final observation for MARS is that the best parameterization is often found in
later iterations. In 14 out of 18 cases, the earliest iteration with the best pa-
rameterization was Iteration 7 or above. Overall, if the regression techniques
have continuous parameters, the optimization process might require more
iterations to find the best parameterization. The parameter values, however,
might not differ significantly in the later iterations as the step widths in the
search decrease, such that a good enough model might also be found and
considerable within fewer iterations of the optimization. Overall, merely ten
iterations of our S3 algorithm sufficed to significantly improve the prediction
accuracy of the regression techniques in our case studies.

! Actually, these are not the only scenarios in which the CART models are highly branched,
however, this can only be seen by analyzing the resulting regression parameter values and is
not obvious from Figure 9.15.

212

9.4. Case Studies on Storage-level Modeling

Earliest Iteration of Optimal Model

Case Study I Case Study II
10 —
8 - —
6 -
4 —
] II II
0- [B |l [[[
MARS CART Cubist MARS CART Cubist
Case Study III (VM1) | Case Study III (VM2)
10 — M
8 - —
6 . —
4 —
2 .
N i |
MARS CART Cubist MARS CART Cubist

Regression Models

Figure 9.15.: Optimization Length Summary

213

9. Validation

9.5. Case Studies on Software
Architecture-level Modeling

In this section, we evaluate our software architecture-level modeling approach
detailed in Chapter 8 with respect to our two evaluation goals, the prediction
accuracy and the modeling overhead. We use the PCM as software architecture
modeling approach. We have integrated regression models into the PCM as
I/O analysis model to capture the I/O performance, since they can be obtained
in a fully automated manner. In the following, we present four case studies
using our two considered system environments to evaluate our combined
modeling approach. We first give a brief overview of the evaluation next.
After the case studies, we summarize and discuss the results.

9.5.1. Overview

In the case studies, we model the software architecture of the considered
applications using the PCM, where we have integrated the I/O analysis model
to predict the delays of the I/O requests. As I/O analysis model, we use sepa-
rate regression models for the read and write requests based on Multivariate
Adaptive Regression Splines (MARS), cf. Section 6.3, as they have been the
best predicting regression techniques in this domain in our case studies in
Section 9.4. In general, however, the approach is not limited to the MARS
models and the regression modeling formalism as I/O analysis model. We
use FFSB to measure the required parameters of the I/O analysis model listed
in Section 8.3.2 and use the measurements to create the regression models,
whose parameters are optimized using our S3 algorithm (cf. Section 6.2).

For our measurements of the applications that are modeled with the PCM,
we use the file server and the mail server applications provided by Filebench
deployed in our two system environments based on the Sun Fire as well as the
IBM System z servers, cf. Section 9.2. We run the applications multiple times
with one minute warm-up time and five minutes measurement time and then
average the measurements across the repetitions. We use three repetitions,
where the measurements exhibit sufficiently stable results in our environments.
We model the applications as well as the system environments with the PCM.
For the requests of the applications, we model the create and delete operations

214

9.5. Case Studies on Software Architecture-level Modeling

as requests to the CPU resource. We model the open, close, and stat operations
as requests to a Delay resource (infinite server resource). We model the I/O
operations read, write, and append as requests to the virtualized storage system
resource whose performance is captured by the I/O analysis model.

To evaluate the prediction accuracy, we use the following two metrics, 1) the
mean I/O response time prediction error err! /0 and i) the end-to-end response
time prediction error errf?E that are defined as

1 & 10M — opsIOF
err!/0 = Yy | 2222 Oﬁs : 9.3)
n% opslO;
and
onsM —Y.opsP
errF2E = ‘Zzopgops%fwsl , 9.4)
1 i

respectively, where ops/ O{VI and opsI OIP is the measured and predicted re-
sponse time of the i-th I/O operation (i.e., read, write, or append), respectively,
and ops! and ops? is the measured and predicted response time of the i-th
operation, respectively.

9.5.2. Case Study I: File Server on Sun Fire

In our initial case study, we measure and model the file server application in the
Sun Fire environment. To get an impression of the PCM model, Figure 9.16
illustrates the modeled application using the PCM in two simplified views,
which are captured in the PCM in different submodels (cf. Section 3.4).
Figure 9.16a shows the components and resources as well as the interface of
the application, which is exposed to the users. The interface of the application
is modeled according to the operations provided by Filebench. The application
component maps the operations on the respective resource, where we employ
a CPU, a Delay, and the Virtualized Storage System resource. Operations to
the CPU and Delay resource specify their demand, which is a simple decimal
number (double), operations to the storage resource are determined by the
extended parameters, which also include more complex data types such as
enumerations (enum) and composite data types (composite). Figure 9.16b
illustrates the usage model describing the sequence in which the users invoke

215

9. Validation

the operations of the application. This model is obtained from the Filebench
workloads, where in the file server we have a population of 50 users with no
think time, which describes a closed workload. Furthermore, the sequence of
operations in this case study is determined from the workload definition as
given in Listing 9.1. The operations are either calibrated with their demand or
parameterized according to the workload definition.

To capture the application in the PCM, we calibrate the architecture model
of the file server with 40 clients (threads), which is a value below the default
value to also predict the default number of clients. To this end, we calibrate the
resource demands of the operations using the CPU and Delay resource as well
as the memory length for the I/O analysis model and the passed parameters.
For the prediction, we increase the number of clients and evaluate both the
mean I/O response time prediction error as well as the end-to-end response
time prediction error.

We increase the number of clients up to 70 and observe that the end-to-end re-
sponse time measurements increase from 103.09 ms (40 clients) to 188.51 ms
(70 clients). For the configurations, Figure 9.17 illustrates the prediction
error with the software architecture model. In general, the architecture model
exhibits a very high prediction accuracy in this case study with approximately
between 5 % and 8 % prediction error for both the mean I/O response time
and the end-to-end response time. The prediction accuracy is notably high
especially considering the fact that two different types of write operations, i.e.,
128 KB write and 16 KB append requests, are predicted using the same 1/0O
analysis model in the simulation that takes as input the mean write request
size of requests currently accessing the storage, cf. Section 8.3.

216

9.5. Case Studies on

Software Architecture-level Modeling

Usage

void

ResourceContainer . void
«describes» 4

__-A void
- void

e ;
, void
— > 6_

void
Application

void

void

«Interface»

openfile(double demand)
closefile(double demand)
createfile(double demand)
deletefile(double demand)
statfile(double demand)
readwholefile(double requestSize,
enum requestType, double sequentiality,
composite fileset)
writewholefile(double requestSize,
enum requestType, double sequentiality,
composite fileset)
appendfilerand(double requestSize,
enum requestType, double sequentiality,
composite fileset)

A

i

I

7

«Resource» {l

CPU

«Resource» {l

Delay

«Resource»

Virtualized
Storage System

Infrastructure Layer

(a) Components and Resources (cf. Figure 8.3)

Usage

createfile
demand: x

(calibrated)

«ClosedWorkload»

Population: 50
Think Time: 0

requestSize: 128 KB
requestType: write
sequentiality: 0
fileset: FileServer

writewholefile

closefile
demand: y

(calibrated)

(b) Interaction of the Users with the System

Figure 9.16.: Illustration of the Application Modeled with the PCM (simplified)

217

9. Validation

errl/o errf2E
7.5 7
§ 5.0 -
8
=
84
2.5 -
0.0 —
50 60 70 50 60 70
Clients
Clients 50 60 70
errl/© 4.84 % 7.56 % 6.86 %
errf2E 5.62 % 7.90 % 7.43 %

Figure 9.17.: Prediction Error in Case Study I

9.5.3. Case Study II: Mail Server on Sun Fire

In our second case study, we use another application and model the mail
server in the Sun Fire environment. We adapt the PCM model shown in the
previous case study to fit to the description of the mail server application.
Similar to the previous case study, we calibrate the PCM model of the mail
server with a number of clients below the default value with 10 clients and
calibrate the operations using the CPU and Delay resources as well as the
memory length for the I/O analysis model and the passed parameters. We
increase the number of clients in steps of 10 and evaluate both the mean I/O
response time prediction as well as the end-to-end response time prediction.

218

9.5. Case Studies on Software Architecture-level Modeling

err!/0 errP2E

S
5
g
m
20 30 40 20 30 40
Clients
Clients 20 30 40
errl/© 2031% 1643% 16.68 %
errE2E 2344 % 1836 % 1921 %

Figure 9.18.: Prediction Error in Case Study II

When we increase the number of clients up to 40, we observe that the end-
to-end response time measurements increase from 24.98 ms (10 clients) to
56.40 ms (40 clients). Figure 9.18 illustrates the prediction error with the
PCM model. Compared to our previous case study, the prediction error is
higher, however, we also increased the workload intensity from calibration to
prediction by up to 300 % for this application. Still, the accuracy with an I/O
prediction error between 16 % and 20 % and an end-to-end prediction error
between 18 % and 23 % is well within acceptable ranges.

219

9. Validation

9.5.4. Case Study lll: File Server on System z

In this case study, we use another system environment and model the file
server application considered in our first case study in the IBM System z
environment. Since we use the same application as before, we can reuse
the structural information that is modeled with the PCM. We merely have to
exchange the I/O analysis model and recalibrate the PCM model. Similar to
the first case study, we calibrate the PCM model of the file server with 40
clients and increase the number of clients in steps of 10 to evaluate both the
mean 1/0 response time prediction error err! /0 and the end-to-end response
time prediction error errf2E .

err!/0 errf2E

Error (%)

50 60 70 50 60 70
Clients
Clients 50 60 70
errl/© 1645% 16.02% 18.12 %
errE2E 1533% 1434 % 1493 %

Figure 9.19.: Prediction Error in Case Study III

220

9.5. Case Studies on Software Architecture-level Modeling

Increasing the number of clients up to 70, we observe that the end-to-end
response time measurements increase from 38.66 ms (40 clients) to 68.55 ms
(70 clients). Figure 9.19 shows the prediction error with the PCM model
for the configurations. The prediction error in this case study is encouraging
with a prediction error between 16 % and 18 % for the I/O response time and
a prediction error of approximately 15 % for the end-to-end response time.
Compared to the first case study employing the Sun Fire environment, we
observe higher prediction errors in this case study. This is due to the high
processing speed of the storage system resulting in a software bottleneck in
the Filebench application during the response time measurements, which we
first had to mitigate manually to obtain acceptable results.

221

9. Validation

9.5.5. Case Study IV: File and Mail Server on System z

errl/© Tl

20

Error (%)

50 60 70 50 60 70
Clients
Clients 50 60 70
errl/0 16.62 % 16.77 % 16.64 %
errf2E 15.49 % 16.17 % 16.64 %

Figure 9.20.: Prediction Error in Case Study IV — File Server

In our final case study, we use the System z environment and extend the
application setup modeling the file server as well as the mail server application,
where each application runs in a separate VM. We measure the file and the
mail server with 40 and 10 clients, respectively, and increase the number of
clients for both applications simultaneously in steps of 10 to predict the mean
I/O response time prediction error err! /0 and the end-to-end response time
prediction error errfE.

For the applications, we observe that the end-to-end response time measure-
ments are between 52.67 ms (40 clients) and 106.87 ms (70 clients) for the
file server and between 37.03 ms (10 clients) and 65.25 ms (40 clients) for the
mail server. To predict the I/O performance, we still use a single regression
model integrated into the PCM to capture the I/O performance of the con-

222

9.5. Case Studies on Software Architecture-level Modeling

solidated applications. The prediction errors are summarized in Figure 9.20
and Figure 9.21 for the file and the mail server, respectively. For the file
server, the model exhibits a constant prediction accuracy across the scenarios
with approximately 16 % mean I/O response time prediction error as well as
end-to-end response time prediction error. For the mail server, the prediction
error is again higher than the file server application as the workload intensity
is again increased from calibration to prediction by up to 300 %. Still, the pre-
diction error is acceptable with approximately between 18 % and 25 % mean
I/0O response time prediction error and between 18 % and 28 % end-to-end
response time prediction error.

errl/© errf2E

30

Error (%)

20 30 40 20 30 40
Clients
Clients 20 30 40
errl/0 1754 % 24.09% 24.68 %
errE2E 1810% 2591% 2829 %

Figure 9.21.: Prediction Error in Case Study IV — Mail Server

223

9. Validation

9.5.6. Summary and Discussion

In this section, we presented four case studies modeling a file server and a mail
server application at the software architecture level running in two representa-
tive virtualized environments, whose I/O performance is not easily modeled
manually (cf. Chapter 7). To capture the I/O performance of the system
environments, we employed our regression analysis-based modeling approach
in an automated process to obtain an I/O analysis model with reduced manual
effort. We integrated the regression models into the software architecture
model of the PCM and demonstrated that the combination approach can be
used to predict the performance of the considered I/O-intensive applications.
We evaluated the prediction accuracy for capacity planning scenarios when the
number of users increases and obtained an average end-to-end prediction error
across the prediction scenarios of 6.98 %, 20.34 %, 14.87 %, and 20.39 %
in the four case studies. Overall, this addresses our first evaluation goal and
shows that the combined model can be used to predict the performance with
sufficient accuracy. Furthermore, the case studies showed relevant results
regarding our second evaluation goal and the modeling overhead and trans-
ferability. As the regression models were created in an automated process,
the modeling overhead of the storage infrastructure was minimal. This is
especially beneficial to capture both the I/O performance as well as the mu-
tual performance influences of parallel workloads at the storage resources
as shown in our final case study, where two parallel applications running in
separate VMs share the storage resources. Also, the structural and behavioral
model of the applications captured with the PCM could be reused when the
system environment changed, which increases the transferability of the ar-
chitecture model. Only the regression model capturing the I/O performance
needed to be exchanged and the resource demands in the PCM needed to be
re-calibrated.

Realizing the case studies also revealed some considerations beyond the
prediction results. A first observation is that the prediction accuracy of the
combined model might also depend on the calibration of the I/O analysis
model parameterization. For instance, the overall I/O load produced on the
storage system in our IBM System z environment was reduced as mentioned
above because of a software bottleneck in the Filebench applications during
the response time measurements as a result of very fast I/O request processing
by the storage system, which resulted in overestimations of the I/O delays

224

9.6. Discussion of the Approach

by the combined model. To address this issue, we had to manually identify
the bottleneck in Filebench and mitigate its effect. Furthermore, in our final
case study we reduced the calculated concurrent request parameter by 25 %
when passed to the I/O analysis model during simulation. In general, further
tailoring of the calibration might increase the prediction accuracy, however,
we limited the calibration process in the case studies to a practically reasonable
amount to obtain sufficiently accurate performance predictions. A further
consideration is that the regression models employed in the case studies to
capture the I/O performance are created at a certain abstraction level with the
goal to predict mean response times, thus the models abstract the distributions
of the response times and have an inherent potential for inaccuracies. To
extend the approach to provide response time distributions, the simulation
could use further regression models that model and predict response time
quantiles. However, this also increases the modeling overhead. Finally, a
significant observation in the case studies is that to obtain a regression model
for the I/O performance, a large number of measurements is needed in general
to cover all configuration combinations. In the case studies, we reduced the
number of required measurements for the regression models by first testing the
parameter ranges produced by the application workload. The regions around
those ranges were then explored with measurements to create the regression
model. An alternative approach would be to use our queueing theory-based
modeling approach to predict the I/O response times, however, creating the
model requires more manual effort in general.

9.6. Discussion of the Approach

Overall, the case studies in the previous sections showed that we are able
to obtain reasonable I/O performance predictions in non-trivial virtualized
environments. After the presentation of the prediction results along the previ-
ous case studies, this section highlights the scope of our work by discussing
the applicability and the evaluation criteria as well as the assumptions of the
approach. In the following sections, we elaborate on these considerations
grouping the discussion along multiple aspects: i) Automation, ii) modeling
abstraction, iii) complementary formalisms, iv) predicting the performance
without our approach, v) discussion of the evaluation criteria, and vi) assump-
tions and limitations. Overall, aspects i) and ii) are important aspects that

225

9. Validation

allow to employ our approach by non-performance engineering experts. These
aspects as well as aspect iii) are significant for an increased applicability of
our work.

9.6.1. Automation

One of the key factors for the applicability and reproducibility of the approach
presented in this thesis is its high degree of automation and tool support (cf.
Section 5.4, Noorshams et al. 2015). More specifically, all measurements,
monitoring, and I/O performance model creations presented in the case studies
of this chapter are fully automated. Merely the software architecture-level
model in the PCM was created manually in our case studies, however, existing
approaches showed how to create PCM models from running applications
(e.g., Brosig et al., 2011; Brosig et al., 2009) and from source code (e.g.,
Krogmann, 2010), which was not the focus of our work. As a result, this
supports the applicability and the reproducibility of the approach through
the reduced manual effort and limited vulnerability to manual errors during
the performance evaluation, which in turn increases the efficiency of the
work. Furthermore, this reduces the required expertise for performance model
creation as well as required depth of analysis of the system environment.

9.6.2. Modeling Abstraction

Our overall approach is targeted at obtaining practical performance models
including the modeling and prediction at the software architecture level. As
part of our approach, the storage-level I/O analysis models were generally
developed to provide easily parameterizable abstractions. The regression
analysis-based models introduced in Chapter 6 merely require observations in
form of measurements, which were obtained in our case studies using different
I/O benchmarks. Similarly, the queueing theory-based models presented
in Chapter 7 are calibrated with response time measurements only and do
not require in-depth monitoring data. While the modeling formalisms and
elements of the storage-level I/O analysis models are at a lower abstraction
level, as detailed in Chapter 8 we employ the I/O analysis models and integrate
them into the software architecture-level modeling approach of the PCM,
which is generally characterized by a high modeling abstraction level and

226

9.6. Discussion of the Approach

comprised of largely intuitive modeling constructs. The combined models
in our extension of the PCM as evaluated in Section 9.5 are key for the I/O
performance models at the high abstraction level. Simply the structure and
the behavior of an application need to be specified as indicated in Figure 8.3
and Figure 8.4 as well as Figure 9.16.

Addressing the relevance of this extension of the PCM, Chapter 7 presented
how the modeling of I/O performance can be done explicitly with the use
of modeling formalisms for request scheduling. Modeling such a request
scheduling in the PCM is not intended and it is therefore not natively sup-
ported. Without our extension, it is required to extend the PCM by an explicit
scheduler (e.g., realized by a simulator) to enforce the request scheduling as
needed and identified by example in Chapter 7. This scheduler extension, how-
ever, has to be realized manually, which is not only demanding expertise and
system understanding, but also a significant amount of time. From a practical
point of view, the benefit of our approach combining storage-level models
with software architecture-level models is that it abstracts the complexity and
modeling overhead and hides them into tools and automated processes, since
the target group of the PCM is comprised of software developers that are not
necessarily performance engineering experts. As shown in Chapter 8, the
modeler only provides estimations for the I/O requests without their resource
demands or scheduling behavior at the storage level. All the request infor-
mation from the application level to the storage level is mapped in the PCM
during a simulation-based model solving and our storage scheduler in the
simulation is able to estimate the actual I/O request delays.

9.6.3. Complementary Formalisms

For our I/O performance analysis, we have used and tailored multiple, com-
plementary formalisms to increase the applicability of our work. We used
both an implicit and an explicit modeling approach to create the storage-level
I/0 analysis models. The implicit, regression analysis-based modeling ap-
proach is fully automated. The caveat of this approach is, however, that the
required number of measurements grows exponentially with the number of
modeled factors. Still, a possible use case for such an approach is to create the
regression models automatically by the system manufacturer when deploying
the system environment. In general, newly developed systems are usually

227

9. Validation

evaluated with benchmarks and extending the process by an automated model
creation step can provide a benefit and support the customers to use the re-
sources efficiently. If the required measurements need to be reduced, the
explicit, queueing theory-based modeling approach can be used by a perfor-
mance expert to create the performance model initially. As the measurements
for calibration can be automated as done in our work, the model can be cali-
brated automatically if a similar system environment is to be modeled. Finally,
we use and integrate our I/O analysis models into a software architecture-level
modeling approach developing a high-level modeling approach that is simple
to employ. Overall, these modeling approaches can be used to find the best
fitting system environment for given applications by estimating the applica-
tions’ performance and the required resources to guarantee a certain level of
application responsiveness.

9.6.4. Predicting the Performance without our Approach

The multiple case studies of this chapter showed that our approach is able to
predict the I/O performance in virtualized environments with a high degree of
automation. By extending the PCM, we developed an approach to predict the
I/O performance at the software architecture level, since we claimed that the
existing software architecture-level modeling approaches do not sufficiently
consider the performance-influencing factors. At this point, however, the
questions arise: What is the prediction accuracy of the PCM without our
extension? Are the additional modeling artifacts of our extension justified?
To support our claim that our approach is key to obtain accurate predictions,
we find an example showing that the PCM without our extension struggles
to predict the I/O performance in virtualized environments with sufficient
accuracy.

For this example, we exploit our knowledge gained in Chapter 7. There, we
analyzed the effects of different types of I/O requests on the performance
of the respective requests. More specifically, we observed in our reference
environment that read and write requests are processed depending on the ratio
of the request types. In the PCM without our extension (in the following
denoted PCM Standard), 1/0 requests are abstracted and represented by their
demand. In the PCM with our extension (in the following denoted PCM Ex-
tended), we are able to explicitly distinguish between read and write requests

228

9.6. Discussion of the Approach

and their I/O delay is determined by our I/O analysis model. Consequently,
our hypothesis is that if we change the ratio of read and write requests of an
application deployed in our reference environment, we find an example where
the prediction accuracy of PCM Extended excels the prediction accuracy of
PCM Standard.

To this end, we modify the setup of one of our previous case studies. Similar to
the third case study shown in Section 9.5, we model the file server application
in the IBM System z environment (cf. Section 9.2). For both PCM Extended
and PCM Standard, we calibrate the PCM model of the file server application
with a given number of clients. Then, we predict the effect when the number
of read operations in the file server application is increased by a factor of
five, i.e., we predict the effect of five reads instead of one in the sequence
of the application. The performance predictions of this scenario are given
in Figure 9.22, where we have indicated the target prediction accuracy of
up to 30 % prediction error (cf. Menascé et al., 2000). We evaluated the
mean I/O response time prediction error err’ /0 and the end-to-end response
time prediction error errf2E as defined in Equation (9.3) and Equation (9.4),
respectively. We calibrated the PCM models with 50 clients (default value) as
well as with 60 clients and predicted the performance in each case when the
read proportion increases. As shown in Figure 9.22, PCM Extended exhibits
a good prediction accuracy with approximately 20 % mean I/O response time
prediction error and approximately 12 % end-to-end response time prediction
error. By contrast, the prediction error is significantly higher with PCM
Standard exceeding the prediction error threshold. We purposefully triggered
the high prediction errors of PCM Standard of more than 50 % in these
scenarios. Overall, this confirms our hypothesis showing that our approach is
required and allows for accurate I/O performance predictions in virtualized
environments at the software architecture level.

229

9. Validation

errl/© errf2E
50 —
40 —
S
T ———Ft—————t T 7
1)
G
20 —
0 -
50 60 50 60
Clients
PCM . Extended Standard
(a) PCM Extended (b) PCM Standard
Clients 50 60 Clients 50 60
errl/0 20.72 % 20.25 % errl/0 5149 % 54.05 %
errP£ 1190 % 11.44 % errP?E 5052 % 53.58 %

Figure 9.22.: Prediction Error of the Standard PCM and the PCM with our Extension

230

9.6. Discussion of the Approach

9.6.5. Discussion of the Evaluation Criteria

In the introduction of this work in the first chapter, we highlighted the five
evaluation criteria our approach aims to fulfill, we aim i) to provide an abstrac-
tion of the system environment, ii) to accurately predict the performance, iii)
to create the models efficiently, iv) to scale and model realistic environments,
and v) to provide automation and tool-support:

1. Abstraction: Overall, we can summarize that we abstracted two real-
world, realistic environments with manageable performance models.
Our regression analysis-based approach derives the relationship be-
tween the performance-influencing factors and the I/O performance
statistically and in an automated process. Our queueing theory-based
approach requires an analysis by an expert, but allows for simplified
reuse by only requiring to calibrate a few queueing stations and model
parameters as described in Chapter 7. By allowing to use our I/O perfor-
mance modeling approach at the software architecture level, we enable
to model and predict the I/O performance at a high abstraction level
without demanding deep knowledge of the system details.

2. Accuracy: Across the multiple case studies, we successfully predicted
the I/O performance in different environments and in many scenarios
with the required accuracy of less than 30 % prediction error. As
described in the final case studies, our approach does not only provide
accurate prediction, but also showed to successfully capture the I/O
performance and hide the complexity of virtualized environments at the
software architecture level.

3. Efficiency: In our I/O performance modeling approach, we increase
the model building efficiency by providing a high degree of automation
and clear processes throughout the different aspects. In regard to the
software architecture-level modeling approach, we were even able to
reduce the model parameterization effort while at the same time increas-
ing the prediction accuracy as demonstrated in the final case studies
and the previous section. More specifically, while it was previously
necessary to manually estimate the resource demands of I/O requests,
our approach merely requires to specify parameters of the requests, such
as the request type and size, which can be specified from the workload
description or easily estimated because of the tangible nature of the

231

9. Validation

parameters. Furthermore, using the fully automated regression analysis-
based modeling approach reduces the required expertise and analysis of
the system environment allowing to capture the I/O performance effects
with reduced manual effort. If the number of measurements needs to be
reduced, our queueing theory-based modeling approach can be applied,
where only calibration measurements are required after the structure of
the model is identified.

4. Scalability: Across the case studies, we evaluated our approach in
two realistic, state-of-the-art system environments based on IBM Sys-
tem z and Sun Fire server hardware. The two systems are not only
representative, non-trivial environments, but also heterogeneous in both
virtualization architecture and hardware infrastructure. This allows to
draw the conclusion that our approach can scale to further environments
and in real-world scenarios.

5. Automation: As dedicatedly discussed above, we automated our model-
ing approach to a high extent to simplify the applicability and efficiency
of our approach and reduce the risk for manual errors. More specifically,
all measurements and monitoring data collections as well as the I/O per-
formance model creations as part of our approach that are demonstrated
in the case studies of this chapter are automated and tool-supported.

9.6.6. Assumptions and Limitations

A central challenge of this thesis is to provide I/O performance predictions
with a reasonable trade-off between modeling applicability and prediction
accuracy. For the presented case studies, we have demonstrated that we
are able to obtain sufficiently accurate performance predictions. In general,
however, our modeling approach has assumptions and limitations.

Since the storage-level I/O analysis models are measurement-based, the prob-
ably most apparent assumption for the I/O performance models is that the
regarded system environment needs to be available to obtain measurements
at the time of the model creation. This has implications for performance
evaluations at software design time and requires that at least the target system
or a comparable one can be used to create the I/O analysis models. Estima-
tions may help as well, but are probably less effective. Once such a system

232

9.6. Discussion of the Approach

environment is available, the benefit of our approach is that the storage-
level performance model is represented by the workload characterization in a
generic manner, such that the model can be created once and can be used for
different applications and workload profiles for performance predictions at
the software architecture level.

Regarding the application, our modeling approach was designed to model
stable workload as opposed to, e.g., bursty and fluctuating workload. Although
we have not demonstrated this, we reason that we are able to at least obtain
a reasonable pessimistic performance estimation of bursty and fluctuating
workload. If the application is modeled at the time of the highest load, an
estimation for the worst case performance of the system is still helpful to plan
the system capacity accordingly. For example, an application may have usually
20 users and 50 users during peak hours. Our approach can be used to predict
the performance for 20 users first, and then for 50 users afterwards, such that
the system environment can be optimized for both situations individually.

In the models, we abstracted the workload factors and used mean values for
the dimensions of the workload characterization throughout the modeling
process. Similarly, the I/O performance predictions aim to predict the mean re-
sponse times and throughputs and are not intended to predict the performance
distributions per se. Usually, the average performance is a reasonable indicator
for the overall system performance and a metric that is easy to understand and
interpret. In general, however, SLAs may include worst case performance
guarantees in terms of the maximum response time or the 95th percentile
of the response time, for example. For such cases, our approach needs to
be extended to consider distributions for the workload factors as well as for
the modeling formalisms, for example by using multiple regression analysis
models capturing the relevant performance quantiles or approximating the
distributions of the performance in the queueing models more closely.

In the case studies on our software architecture-level modeling approach, the
applications modeled with the PCM were straightforward to capture at the
architecture level. This is because the focus of our work was not to evalu-
ate if the PCM can capture a complex application, but to analyze how the
I/O performance in complex environments can be predicted by providing
only the architecture-level application information and using this informa-
tion in a combined model solving approach to obtain the results. At this

233

9. Validation

point, more complex applications with bursty and varying behavior, for ex-
ample, might require to extend the models employed within our approach as
discussed above by using response time distributions and possibly refining
the performance-influencing factors. Still, the considered applications are
representative, typical I/O-intensive applications and sufficient as a proof-of-
concept of our approach.

In our performance modeling process, we analyzed the different modeling
approaches assuming to have enough time for the model creation, calibration,
and validation, which is a reasonable assumption at software design time.
During software runtime, further constraints typically arise, such as limited
amount of time and data available for the modeling process. While we
were focused on efficiently creating the performance models, it needs to
be investigated if and how our approach needs to be extended to account
for online performance prediction scenarios. For example, our automated
workload characterization approach can be used to first extract the workload
characteristics of a running application, and then our regression analysis-
based modeling approach specifically focusing on an efficient model creation
can be applied to obtain a performance model. This model created under
online conditions can then be evaluated for its applicability and prediction
accuracy.

Considering the modeled resource, the focus of our work was exclusively
I/O performance of storage resources. While we abstracted some file system
operations as CPU operations, a combined consideration of CPU, memory,
and network resources with the storage resources including mutual perfor-
mance effects is not addressed in our work. Generally, there can be mutual
performance influences and bottlenecks that can be investigated in modeling
approaches analyzing such effects. Still, our work is beneficial for I/O per-
formance analysis when the storage resource is the bottleneck and provides
a basis for extension to account for combined effects with other resources.
Such a combined consideration is useful in heterogeneous environments that
serve different applications that are not necessarily all I/O-intensive as well as
in cases where the bottleneck shifts from resource to resource depending on
the workload profile. For example, light data workload may be served from
memory, thus putting the burden on the CPU and memory resources, whereas
heavy data workload may not be buffered by the memory sufficiently, thus
shifting the bottleneck to the storage resource.

234

9.6. Discussion of the Approach

In the context of storage resources, the focus of our work is block-based
storage as described in Chapter 2. Other storage paradigms, such as file-
based and object-based storage, were not analyzed as part of our work and
may reveal other abstractions and opportunities for performance modeling
approaches. These approaches could in turn be tailored to efficiently obtain
performance results in scenarios that were not in the focus of this work, for
instance, when employing object storage in Cloud environments.

Finally with regard to our system setup, our work was applied to up to three
VMs accessing and sharing a storage system. Typical productive environ-
ments are comprised of many VMs and storage systems and it needs to be
investigated if our work can be applied in such scenarios and possibly how it
needs to be extended to capture larger setups efficiently. Still, the case studies
of our work in the non-trivial environments encourage the applicability of our
work in further, complex scenarios.

In summary, we have shown that our approach is able to predict the perfor-
mance of I/O-intensive applications in sufficiently complex environments with
generally acceptable accuracy. In our approach, we were focused on modeling
mean performance characteristics of block-based storage in cases where the
storage resource is the bottleneck. Given the required time and data, our
modeling approach provides tailored techniques for virtualized environment
using different modeling formalisms to model and predict the performance
depending on the available expertise. For a further applicability, our approach
can serve as a basis for different extensions and investigations along multiple
dimensions as highlighted in this section revealing paths for future research.

235

Part lll.

Related Work and
Conclusion

10. Related Work

There are multiple fields concerned with performance evaluation and mod-
eling that are related to the work presented in this thesis. The focus of this
chapter is to systematically analyze existing approaches and address their
relationship to our work. To this end, in the following we broadly survey
related work grouped into multiple areas. We begin with a brief overview
of the related areas in Section 10.1. We then in Section 10.2 discuss related
approaches that analyze and model I/O performance in virtualized environ-
ments. Section 10.3 summarizes approaches concerned with analyzing and
modeling of I/O performance interference. As part of our work, we integrated
our I/O performance models into software architecture modeling approaches
and we focus on similar approaches in Section 10.4. We further expand the
discussion to more broadly related work. We introduce selected, established
approaches for modeling disk and disk array performance in Section 10.5 and
in Section 10.6, we elaborate on general system performance evaluation and
modeling approaches. To conclude, Section 10.7 summarizes this chapter and
highlights the main distinguishing aspects of this thesis.

10.1. Overview

To give an overview of the performance evaluation and modeling approaches
presented in this chapter, in this section we briefly introduce the areas of
related work. The general areas are illustrated in Figure 10.1, where we
color-coded the areas w.r.t. their relation to our work. The areas are i) I/O
performance analysis and modeling in virtualized environments, ii) I/O per-
formance interference analysis and modeling in virtualized environments,
iii) software architecture-level I/O performance modeling, iv) disk-based
I/0 performance modeling in native environments, and v) general systems
performance evaluation and modeling in virtualized environments. Among

239

10. Related Work

these areas, our work fits into the areas i) — iii) and is highlighted in their
intersection in Figure 10.1.

Kraft et al. (2012)

ii) - o Becker et al. (2009),
1/0 Performance - i \\ Shanthikumar et al. (1983)

Interference Architecture-level 1/0 -
Modeling

V) erformance Modeling)
/ Chiang et al. (2011), iV
/ E%‘/ﬁ;ﬁs Palo&ﬂoﬂd“;e Koh et al. (2007), Wertetd. (2012), Disk-based 1/0
| Evauation e 'ng 32’;::_‘ ((53112;; Woodddeetdl. (2001) Performance Modeling |
Balsamo et . (2004), Puetal. (2010) |
S e oo
uber et al. . g d
Har::(n etal. ((2013)), L?:zh;e; al(. 2(5801)1).
Barham et al. (2003), y = \ . 3
Iyer et al. (2009) J) \ Leeetal. (1993)

1/0 Performance
Arndysis and Mudeling

Ahmad et al. (2003), Kundu et al. (2012)
Gulati et al. (2009)
Huber et al. (2010)

Generally Less Related

Generally More Related _

Figure 10.1.: Areas of Related Work with the Center I/O Performance Analysis and
Modeling in Virtualized Environments

The areas and the related approaches can be roughly classified along the
following three dimensions:

o Modeling in Virtualized Environments — Modeling in Native Environ-
ments

Approaches modeling performance in virtualized environment are in
the areas 1), ii), the intersecting parts of area iii) with areas i) and ii),
and area v). The remaining parts are addressing performance in native
environments.

o Modeling of I/O Performance — Modeling of System Performance

Areas addressing and analyzing I/O performance are areas i) —iv) and
the intersecting part of area v) with area 1).

e Modeling at the Architecture Level — Modeling at the Storage Level
Evaluation approaches at the architecture level are in area iii) and its

240

10.2. I/0O Performance Analysis and Modeling

intersecting parts with areas 1), ii), and iv). The rest is focusing on a
more lower, storage level.

In the following sections, we will discuss the related work within the five
areas. For the sake of clarity, a compact overview of the related work can be
found in Appendix A.

10.2. 1/O Performance Analysis and Modeling

The first area of related work is focused on analyzing and modeling storage
I/O performance in virtualized environments. The approaches in this area are
closely related to the I/O analysis models of our work, however, the approaches
are primarily focused on capturing the I/O performance-influencing factors at
a low abstraction level and it is not straightforward to include such models
into software architecture models, since the required information between the
two modeling abstraction levels needs to be synchronized.

Closest to our work among the approaches in this area, Kraft et al. (2012)
present two queueing theory-based approaches to model and predict the /O
performance in virtualized environments. They focus on scenarios when
consolidating multiple VMs that run I/O-intensive applications. In their first
approach, they develop a simulation model for consolidated homogeneous
workloads. They model the storage resource in the virtualized environment
as a single multi-server queue whose service times are fitted to a Markovian
Arrival Process (MAP) with measurements. They extend their work in a
second approach, where they model and predict the I/O performance when
consolidating heterogeneous workloads. They develop a closed queueing
model where the storage resource is also abstracted as a single queue whose
service times are fitted to a MAP. In both of their approaches, the authors
employ monitored measurements on the block layer abstracting the application
and file layer. Moreover, in contrast to our work the approaches are focused
on I/O performance prediction of VM consolidation scenarios and do not
evaluate, e.g., performance and interference effects due to changes in the
workload intensity in the VMs.

To evaluate the I/O performance of VMware’s ESX Server virtualization,
Ahmad et al. (2003) run I/O benchmarks in multiple environments whose

241

10. Related Work

storage subsystem is comprised of a direct-attached disk, a RAID array, and a
SAN built with a Fibre Channel-attached RAID array, respectively. Their goal
is to evaluate the virtualization overhead and compare the virtual to the native
I/O performance using benchmarks. In one of their case studies, they emulate
a mail server workload with a disk benchmark, which can be compared to our
workload characterization approach. The authors, however, do not compare
the performance of the emulated workload with the original one. They further
derive mathematical models to estimate the virtualization overhead and use it
to predict the resulting I/O performance deterioration.

By applying different machine learning techniques, Kundu et al. (2012) use
artificial neural networks and support vector machines to model the perfor-
mance of applications deployed in virtualized environments. The applications
are obtained from two different benchmarks, whose throughputs are collected.
They predict the performance of the application as a function of the resources
allocated to the host VM. In their models, they use CPU, memory, and I/O
allocation as independent variables and application performance as dependent
variable. The models are then used for capacity planning and VM sizing
scenarios in terms of CPU and memory allocation for a given I/O latency.

In a further work, Gulati et al. (2009) present a study on storage workload
characterization in virtualized environments. The authors analyze four work-
loads generated from both applications and benchmarks. The workloads are
characterized with storage metrics, e.g., seek distances, request sizes, and
burstiness. They also analyze consolidated workloads in separate VMs, but
they do not develop any performance models.

10.3. 1/O Performance Interference Modeling

The second area of related work analyzes and models I/O performance inter-
ference effects in virtualized environments. This area is primarily focused on
evaluating how co-located workloads sharing the physical storage resources
are affecting the performance of one another. This area is also closely related
to the first area and similarly analyzes I/O performance-influencing factors
at a low abstraction level. To further highlight the difference of our work
to the approaches presented next, none of these approaches uses queueing
theory-based or architecture-level modeling approaches to capture the I/O

242

10.3. I/O Performance Interference Modeling

performance interference effects. Furthermore, some of the approaches use
vendor-specific monitoring tools (e.g., xen-top) to obtain internal information
of the global system environment, which is not necessarily always feasible in
every environment.

Closest to our work among the approaches in this area, Chiang et al. (2011)
use linear and second degree polynomials to create models of I/O performance
interference. As independent variables, they use read and write request arrival
rates as well as local and global CPU utilization. In contrast to our work,
however, they do not distinguish between, e.g., request sizes and access
patterns. Our measurements have shown that such factors have a significant
impact on the I/O performance. Furthermore, we observed a logarithmic effect
on the I/O performance for some of the factors we consider (cf. Chapter 7),
which cannot be captured accurately by linear and second degree polynomials.
The models created in their work are used for scheduling algorithms to manage
task assignments in virtualized data centers. Their approach is evaluated using
simulation results.

Koh et al. (2007) analyze performance interference across multiple resources
including storage resources in a Xen-based virtualized environment. They
use benchmarks and applications, such as gzip, running in two VMs — the
physical hardware environment is not detailed. They develop two types of
linear models to predict the performance of an application in consolidation,
which is normalized w.r.t. the application performance in isolation. The first
type is based on principal component analysis. The second type is a linear
regression model using low-level monitoring data across the resources as
independent variables, for example, CPU time, cache hits, VM switches per
second, numbers of read and write requests issued, and time spent for I/O
requests. Similar to the previous approaches, they do not consider, e.g., the
access pattern of the I/O requests.

Addressing 1/0 performance interference for a certain domain, Groot et al.
(2013) model and predict the I/O performance when running multiple pro-
cesses of MapReduce applications simultaneously on the same host. For their
model, they split the tasks of a MapReduce application into multiple phases,
which issue certain read and write requests, and for each phase, the authors de-
velop mathematical models to use for prediction. Overall, while the approach
addresses 1I/0O performance interference among workloads, it differs from our
work primarily in two aspects. First, the focus of their work is modeling

243

10. Related Work

MapReduce applications. Second, they model the I/O performance interfer-
ence among MapReduce processes rather that among workloads running in
co-located VMs.

In more remotely related work, Yang et al. (2012) present a framework that
uses a set of I/0O operations to identify and reveal I/O scheduling characteristics
of the hypervisor. They experiment in Xen-based and in VMware-based
virtualized environments as well as in a public Cloud environment. They
show how the scheduling information can be exploited to slow down the I/O
performance of co-located virtual machines.

Further, Pu et al. (2010) present an experimental study to analyze and evaluate
CPU and network I/O performance interference in a Xen-based virtualized
environment with two VMs. They evaluate different workload combinations
using workloads that access different sized files. They conclude that the least
performance deterioration occurs for the consolidation of workloads with
different resource demands, i.e., CPU-bound and network I/O-bound demand
in the case of mixing small with large file requests.

10.4. Architecture-level /O
Performance Modeling

As a unique distinguishing factor, we are to the best of our knowledge the first
work to address capacity planning questions using performance models of I/O-
intensive applications deployed in virtualized environments at the software
architecture level. We realized our approach by combining architecture-level
with storage-level performance models. In this section, we highlight both
aspects and discuss approaches for architecture-level performance modeling
as well as approaches for combining different types of performance models.

As a basis of our work, we use the PCM as presented by Becker et al. (2009).
As discussed before, storage resources in the PCM are represented as a single
queue with a given scheduling strategy and I/O requests are represented by one
parameter, which is the request demand. While this is a reasonable abstraction
for traditional environments, our analysis revealed that the model of I/O
requests needed to be extended to accurately capture the I/O performance in
virtualized environments.

244

10.4. Architecture-level I/O Performance Modeling

Using the PCM, Huber et al. (2010) present an industrial case study on design
alternatives for storage virtualization. The authors evaluate in the case study
synchronous and asynchronous I/O request handling in the virtualization layer
of a system environment based on an IBM System z server. As emphasized
in their work, the goal of the study is to evaluate whether the PCM can
be applied in industry rather than, in contrast to the goal of our approach,
aiming to generally predict the performance of I/O-intensive applications in
virtualized environments.

The remaining approaches in this section address how low-level performance
models for resources can be used in higher-level performance models. Closest
to our work among those approaches, Wert et al. (2012) develop a con-
cept for combining statistical, measurement-based performance models with
software architecture-level models. Their goal is to support performance
predictions for systems that include parts whose internal structure is unknown,
e.g., external services and legacy systems. The work outlines the general,
domain-independent concept and technical realization to achieve their goal.
Furthermore, they present an example of a statistical model for a MySQL
database to illustrate such a measurement-based performance model, however,
they do not show the result when the model is integrated into the software
architecture model. Moreover, the difference to our work is that we propose
a specific approach for integrating I/O performance models into software
architecture models including a concrete design of relevant parameters that
need to be specified both at the software architecture level and at the storage
level. Thus, we specifically analyzed what information is required for I/O
performance prediction at the architecture level and how it can be realized.

The previous work uses an automated approach to obtain a statistical perfor-
mance model. A similar approach is presented by Woodside et al. (2001)
for abstracting resources. In this work, the authors present an environment
comprised of a measurement harness, a statistical modeling module, and a
model repository. The goal of their approach is to develop statistical models
for resource demands of software components and subsystems. The authors in-
dicate that the resource demand models could be used in a performance model
of the software environment, however without going into specific details how
this could be realized.

In a further work that is related to our work methodologically, Shanthikumar
et al. (1983) present a general classification scheme for hybrid modeling using

245

10. Related Work

analytical and simulation models. In their work, the authors present several
case studies and include ones abstracting simple disks as queues. This is
the typical abstraction level for traditional disks and considered in, e.g., the
PCM before. Our approach extends the I/O performance modeling concepts
allowing to predict the performance in more complex, virtualized system
environments.

10.5. Disk-based I/0O Performance Modeling

There are a number of classical performance modeling approaches for disks
and disk arrays in native environments. The major distinguishing factor in
comparison to our approach is that the disk models typically rely on low-
level instrumentation and monitoring data, such as allocation of data to disk
sectors, disk seek times, disk rotation time, and single disk utilization. In
typical virtualized environments, such information is hardly available for
storage users, if available at all, hampering the practicability and reliable
parameterization of these models. Among the disk-based I/O performance
models, the most prominent approaches are briefly summarized next.

Bucy et al. (2008) have developed DiskSim, a very detailed and accurate
simulator of disk systems. DiskSim particularly simulates fine-grained disk
system components, such as the devices, buses, device drivers, and request
schedulers, for example, to obtain the performance behavior in a high level of
detail. Harrison et al. (2007) use queueing models to capture the performance
behavior of RAID arrays focusing on RAID-01 and RAID-5 systems. They
model the disks analytically, where the disk response time is comprised of
the waiting time in the disk queue, the seek time, the rotational latency, and
the transfer time. Lebrecht et al. (2011) extend the work to RAID arrays with
zoned disks that have more disk sectors on the outer tracks than in the inner
tracks. They also consider key disk characteristics, such as the seek time,
the rotational latency, and the data transfer time, to model the disk response
times. Comparable work has been proposed by Varki et al. (2000) and Lee
et al. (1993) developing analytical, closed queueing models for disk arrays.
Varki et al. (2000) use a network and model the disks as queues similar to
the previous approaches. In their approach, the performance of a request is
derived from single disk response times. Lee et al. (1993) create analytical

246

10.6. Systems Performance Evaluation and Modeling

functions to first estimate the utilization of the disks in the array, which is
then used to derive the response time and the throughput.

10.6. Systems Performance Evaluation
and Modeling

The final area of related work deals with general system performance eval-
uation and modeling in virtualized environments that are not specifically
addressing 1/O performance. The selected approaches presented in this sec-
tion are related from a methodological point of view how the performance is
analyzed for different resources and purposes. As the approaches are more
distantly related to the work presented in this thesis, we only briefly sum-
marize the concepts in this section. A more detailed and general overview
is presented, for example, by Balsamo et al. (2004) and Koziolek (2010),
who broadly survey approaches for performance evaluation and modeling of
software systems without explicitly focusing on I/O performance as in our
work.

Among the approaches in this area, Huber et al. (2012) present an approach for
quantitative evaluation of performance-influencing factors in virtualized envi-
ronments. They employ their approach to evaluate the performance overhead
in VMware-based and in Xen-based virtualized environments. Furthermore,
they create linear regression models for the scalability of virtualized CPU
and memory performance. Comparable to this approach, Hauck et al. (2013)
present an automated approach for goal-oriented measurements to evaluate
performance-relevant infrastructure properties. The measurements are defined
in their approach as experiments with certain workload patterns. In their work,
the authors analyze OS scheduler properties as well as CPU and disk I/O
virtualization overheads. In an earlier work, Barham et al. (2003) have devel-
oped the Xen hypervisor. The authors evaluate the hypervisor and compare its
performance to a native system as well as to other virtualization technologies.
For their evaluation, they use a variety of benchmarks, e.g., a file system
benchmark and a web server benchmark, to stress the system throughout the
resources and analyze key performance indicators, such as the hypervisor
overhead and scalability. Finally in a further work, Iyer et al. (2009) analyze
resource contention and performance interference when sharing resources in

247

10. Related Work

virtualized environments. The authors analyze and evaluate primarily core,
cache, and memory effects in a multi-core environment.

10.7. Summary

In short, there are generally different approaches concerned with I/0 perfor-
mance analysis in virtualized environments. In contrast to our work, however,
the existing approaches capture the I/O performance-influencing factors at a
low abstraction level as well as with focus on specific scenarios only or with
validation limited to basic environments. Moreover, we are to the best of our
knowledge the first work to propose a performance modeling approach of
I/O-intensive applications in virtualized environments at the software archi-
tecture level. Finally, we provide multiple tailored approaches using different
modeling formalisms to practically and reasonably abstract real-world system
environments and capture their I/O performance.

Overall, we surveyed related work and grouped the approaches into five ar-
eas. The approaches in the first and second areas analyze and model I/O
performance as well as I/O performance interference effects in virtualized
environments. Approaches in these areas are typically modeling at a low ab-
straction level and are not intended for their applicability within higher-level
modeling approaches. Moreover, the approaches focus on specific modeling
formalisms, which are subject to inherent limitations regarding their appli-
cability. The third area addresses I/O performance modeling at the software
architecture level as well as combining low-level models with software ar-
chitecture models, where in this thesis we propose a novel approach for
I/O performance modeling in virtualized environments. The final two areas
comprise approaches dealing with disk-based I/O performance analysis and
modeling in native environments, which require low-level instrumentation
and monitoring data for parameterization, and approaches for systems perfor-
mance evaluation and modeling in virtualized environments not specifically
focusing on I/O performance, which consequently do not address the specific
challenges of I/O performance modeling.

248

11. Conclusion

In the final chapter, we conclude the thesis summarizing the results. Further,
we discuss the limits of our work highlighting paths for future research.

11.1. Summary

In this thesis, we presented a novel approach for performance analysis and
modeling of I/O-intensive applications in virtualized environments using
multiple, complementary formalisms and combined them with modeling ap-
proaches at the software architecture level. For the practical use, we identified
the required modeling parameters at a reasonable abstraction level and au-
tomated the modeling process to a high degree. We evaluated the thesis’
contributions in multiple case studies using real-world, representative sys-
tem environments based on IBM System z and Sun Fire server hardware
demonstrating that we are able to successfully predict the performance of
I/O-intensive applications in sufficiently complex system environments.

For our approach, we extended the model-based performance prediction
process by first analyzing important performance-influencing factors. We
then used those factors to create I/O performance models using multiple
formalisms. We finally used these models in software architecture models,
which were extended with the performance-influencing factors and solved in
a simulation combined with the I/O performance models to obtain prediction
results. To realize our approach, we identified major performance-influencing
factors that we have grouped into workload-relevant and system-relevant fac-
tors. Based on these factors, we derived a workload characterization, which
can be obtained from running applications automatically, and used it in the
I/O performance modeling approaches. Here, we created implicit and ex-
plicit performance models based on regression analysis and queueing theory,

249

11. Conclusion

respectively. Regression analysis-based models learn the I/O behavior implic-
itly by generalizing from measurements without modeling the causes for the
performance behavior. To use such models, we have developed an automated
regression technique parameterization and selection approach. As the number
of measurements required for the regression analysis-based models grows
exponentially with the number of modeled factors, we developed a tailored
process based on queueing theory to model the I/O performance explicitly.
Compared to creating regression analysis-based models, this process requires
more manual effort and expertise for the model creation initially. However,
the resulting models can be reused more easily by recalibrating the model
parameters if the system is changed or a similar system is used. To use the
I/O performance models at the software architecture level, we used and ex-
tended the Palladio Component Model, a model-based performance prediction
approach for component-based software architectures. We identified the re-
quired parameters at the software architecture level that can be used during the
simulation of the application’s architecture model to map the parameters on
the required parameters of the I/O performance models. The I/O performance
models are then solved to capture the storage resource contention and to
estimate the I/O request delays of the modeled application.

The evaluation of our approach showed very good results in terms of pre-
diction accuracy across the different case studies. In general, we were able
to successfully predict the I/O performance with close conformance to mea-
surements on the real systems in various scenarios using both our regression
analysis-based and queueing-theory-based approaches. Furthermore, to the
best of our knowledge, we were the first work to predict the performance of
I/O-intensive applications in virtualized environments at the software archi-
tecture level. In the case studies of our software architecture-level modeling
approach, we modeled a file server and a mail server application in the two
environments based on Sun Fire and IBM System z servers. For the prediction
of the applications, we evaluated the mean I/O response time prediction error
and the end-to-end response time prediction error when predicting the applica-
tion performance in typical capacity planning scenarios if the number of users
increases. We used the applications in isolation as well as in consolidation
and were able to predict the response times with the required accuracy and
less than 30 % mean prediction error.

Overall, we were able to fulfill our five evaluation criteria. First, we devel-
oped I/O performance models that were able to abstract the complexity of

250

11.1. Summary

representative, sophisticated virtualized infrastructures into practical perfor-
mance models. Second, as highlighted above, we were able to successfully
capture and predict the I/O performance behavior with sufficient accuracy as
demonstrated across our case studies. Third, we defined clear processes and
automated approaches to increase the efficiency of our approach especially re-
ducing the effort for software architects to model and predict the performance
at the software architecture level. Further, we demonstrated our approaches
throughout our work in representative, state-of-the-art environments to show
the scalability of our work and its applicability to real-world systems. Finally,
we automated the processes and modeling steps to a high extent providing
tool-support where applicable.

In short, the main results of our work for modeling and predicting I/O perfor-
mance and interference effects can be summarized as follows. i) We developed
a workload characterization that can be obtained from running applications
in an automated manner and that can be used to describe the I/O behavior
of typical I/O-intensive applications. ii) We developed a fully automated
regression analysis-based modeling approach that can optimally parameterize
and choose from a set of regression techniques. iii) We developed a tailored
process for queueing theory-based modeling to capture the hardware as well
as request scheduling and optimization aspects of representative storage sys-
tems. We demonstrated our process creating a queueing model, where we
used only few queueing stations and calibrated the model with observations
in form of end-to-end response time measurements only. iv) We combined
our I/O performance models with the Palladio Component Model bridging
the gap between low-level I/O performance models and high-level software
architecture models. v) In various case studies, we successfully predicted the
performance of I/O-intensive applications deployed in sufficiently complex
storage environments with reduced manual effort due to the high degree of
automation throughout our approach.

Our approach is intended for multiple use cases and application scenarios.
Data center operators can use the I/O performance models for an analysis and
evaluation of capacity planning decisions and for system sizing. Furthermore,
they can evaluate the scalability of their infrastructures and the impact of
workload and VM consolidation. Software developers and architects can
predict the performance at the architecture level to evaluate components that
result in bottlenecks or disturb co-located components or applications. Finally,
they can use the models to optimize the system configurations and to evaluate

251

11. Conclusion

resource allocation decisions. In general, our approach supports tailoring
resource allocations as needed as well as evaluating workload deployment
and consolidation decisions and their trade-offs.

11.2. Limitations and Outlook
on Future Research

The approach presented in this thesis was evaluated specifically in realistic
environments with the goal to develop practical prediction models for typical
environments. The prediction results presented throughout the case studies
showed to be promising and accurate such that we can conclude that the
models can be applied in similar contexts. For the approach in general, there
are limits to the applicability as discussed in the validation of the approach.
Thus, we identify multiple options for future research:

e Bursty and Fluctuating Workload

In our work, we focused on steady, non-varying workload. To account
for bursty workloads and workloads fluctuating over time in our ap-
proach, it is first required to find an appropriate metric, which can be a
more sophisticated metric (cf. Mi et al., 2008; M. Wang et al., 2002)
or a rather pragmatic one, e.g., the number of users issuing requests.
Since for our approach the metric is used in our measurements as input
to create the models, this metric needs to be fairly simple enough such
that it can be emulated, i.e., that it can be reasonably reproduced with
measurements. Finally, the models need to be extended to be able to
include such varying workloads.

e Horizontal Scaling of Workloads, VMs, and Storage Systems

While we applied our approach in representative and realistic environ-
ments, our approach is evaluated with up to three virtual machines
running up to two workloads each. Data centers operate many more
applications per storage system and many of them as well. It is an open
question how our approach can scale to such large numbers or how it
needs to be adapted such that it can be applied efficiently.

252

11.2. Limitations and Outlook on Future Research

e Online Regression Analysis-based Modeling

Our regression analysis-based approach assumes that the I/O perfor-
mance model is created having sufficient time, e.g., by the system
manufacturer when the storage system is deployed. While this is a
reasonable assumption at software design time, it is interesting to inves-
tigate online approaches to collect the required data and measurements
during operation to increase the applicability of the approach pursued
in this thesis. Here, it is unclear how to monitor the system environment
and what data to collect to efficiently create such prediction models.

o File-based and Object-based Storage Services

The focus of our work was block-based storage. There are interesting
storage paradigms, such as file-based and object-based storage. The
latter is also often used in Cloud environments, for instance, to store
static data produced by backups and archives. Evaluating the possibili-
ties to extend our work in these directions can be interesting to provide
more insights and tailored approaches in these areas. To account for
these two paradigms, an additional abstraction layer can be defined
atop our performance models, for instance. Another possibility can be
to develop a tailored workload characterization and then adapt our I/O
performance modeling approaches and processes.

o Virtualization of Memory and Storage Resources

In our work, we specifically modeled I/O performance considering stor-
age virtualization. In general, the storage scheduling and the memory
management of both the operating system and the hypervisor can have
mutual effects that were not subject of our analysis. For example, over-
committed or insufficient memory usually leads to frequent memory
swapping and, thus, to intensive storage accesses.

o Network Performance Effects in Network Virtualization and Storage
Area Networks
The assumption in our work is that the storage resource is the bottleneck.
Usually, network virtualization as evaluated by Rygielski et al. (2014),
for instance, or network effects in storage area networks can impact the
I/0O performance as well, especially in highly distributed environments.

e Big Data and Storage Virtualization

In recent years, the term Big Data for handling massive volumes of
data emerged and its importance motivated new programming models,

253

11. Conclusion

such as MapReduce. In this domain, important aspects are storage
performance as well as efficient storage and network usage in virtualized
environments for Big Data applications that distribute and analyze the
data. Future research can analyze the performance of such Big Data
applications that are based on virtualized resources to improve their
performance and resource efficiency.

e Coupled Simulation of Application and I/O Performance Models
In our work, we integrated solving the I/O performance model into
the software architecture model’s simulation, which in this work is the
SimuCom simulator for PCM models (Becker et al., 2009). In general,
there are several strategies for coupled simulations as discussed by
Shanthikumar et al. (1983) that can be followed to evaluate their effect.

o Self-aware Computing Systems

The long-term vision by Kounev et al. (2010a) is to develop self-aware
computing systems that are able to optimally allocate resources in
an autonomic manner. Elements of their vision are approaches for
online performance prediction (Brosig, 2014) as well as approaches for
autonomic resource management (Huber, 2014). Such approaches are
developed to manage all resources in a data center and can be combined
with the analysis of storage resources and I/O performance as presented
in this work to develop a holistic self-aware system environment.

11.3. Concluding Remarks

I/O performance in virtualized environments is critical for today’s data centers.
It can cause application performance penalties in several orders of magnitude
if the storage resources turn out to become a bottleneck. This risk is typi-
cally addressed by highly overprovisioning the expensive storage resources.
The goal of this work was to develop practical performance engineering
approaches that can be employed to address the I/O performance issues in
virtualized environments. Our vision is that the approach of this thesis can
provide a basis for further research as well as for performance analysis and
efficient resource management in productive environments in the future.

254

A. Related Work at a Glance

In the following, Tables A.1 — A.5 give a compact overview summarizing
the approaches related to the approach presented in this thesis. For a quick
assessment, we summarize how related the approaches are to our work, for
a more detailed discussion please refer to Chapter 10. The approaches are
grouped by the presented areas of related work illustrated in Figure 10.1 and
ordered by their appearance in Chapter 10, which was usually in descending
order of their relation to our work.

255

A. Related Work at a Glance

(1 BAIY UI YIOA\ Paje[ey Jo Arewrwing :*|L°y 9|qeL

‘Surepour oouewIo}1ad INOYIIM INQ ‘PROPIOM (/T 10F
soLnow 93eI0]S A9Y JO SULIS) UT UOTIBZIISIORIBYD PROPIOA
'S90IN0SAI PABOO[[E A} UO Jul

-puadop SjUSUWIUOIIAUS pazifenaiA ut suoredridde jo souewr
-10310d oy Jopowr 01 soyoeoidde Jurures] auryorwW IS
"PBAYISAO UOTIRZI[BNIIIA 9U) [9POW PUB UOTIBZI[BNIIIA
IOAIOS XSH QIeMNA Jo oouewiojrad O/ oY) 9jenjeaq
‘SOLIBUQOS

UOIIEPI[OSU0D JAA UO SNd0J im s[apouwr Jurenanb O/

T o

AN
HALNNN
XEXNN

(6002) 'Te 39 ne[nn

(2102) T8 39 npuny|
(€002) 'Te 19 pewyy

(T100) Te 10 yery|

Q0UIOYI(] UIBJA] PUB ATRWUIWINS

SIoM
mQ 03 pajeey

yoeoiddy

SUIfopoIAl pue SISA[eUY S0UBWIOJId O/

256

Related Work at a Glance

(11 BOXY UI JIOA\ PAIR[oY JO Arewiung :°g'y ajqeL

"QouaIsyIoul douewroyrad O/

y1omlau pue NJdD 9zATeue 0} Apnis [ejuswLIadxa ue Juasald A (0102) T3 ng
“19[NPaYds O] JosiazadAy

9y} JO SOmSIIAORIRYD AJUIUSPI 01 YIomaurelf e dofoasq SIS (Z102) Te 10 Suex
‘suonedrdde aonpaydey

J0 s9s59001d UaMIOq QOURIdLISIUI ddoueULIOJIdd O/ [OPOIN SN (€102) 'Te 319 10010
*SQ0IN0SAI JUIJJIP SSOIOE UOTJEPI[OSUOD

ur 9ouewoyrad pazijeuriou 3o1paid o) s[opour Jeaur| 9s) SN (L00T) 'Te 12 Yoy
"so[qerIeA juspuadapul se SUOTeZIIn

NdD pue sajer [eartre Jsanbax yym sfopour ferwroukjod asn UMLK (1102) Te 30 Suemy)

AI0M

QOUQIOJJI(T UTBJA PUB ATRWIWINSG

Q) 0} parey

yoeoiddy

SUI[OPOTA] @OURIRJIAIU] OUBULIOJIN] O/I

257

(IIT BaIV UI JI0M PaJR[oY Jo Areurung gy ajqey

‘S[opOW UONEB[NWIS pue [eonA[eue Jo pastidwod aIe jey)
S[opouw PLIqAY J0J SUIAYDS UOTJBOYISSL[O [BISUAS B JUISAI] UL (€861) 'Te 10 ITBWMIURYS

"SuIaIsAsqns pue sjuouodwiod aremijos Jo SpuBIAP 20IN0SAI
10J S[epout [eonsnels dofoAap 0) JUSWUOIIAUS UB JUISAIJ SIOAIEK (1002) Te 12 9PISPOOM

‘S[opow 90uetLI0}I9d [9AJ[-2IN}0)YOIe

QIBMIJOS IIM PISEq-JUdUIdINSEIW SUTUIQUIOD JOJ ‘UTewl

-0p urelad e 03 oyroads jou st yorym 1doouod [erousn PE8V8 8 31 (Z1007) 'Te 30 Mop
"Ansnpur ur WOd
ay) Jo Anqiqeosridde oy den(eAd 0) UOHBZI[BNIIIA 9FRIO)S

J10J SoANBUI)[E USISOp U0 Apnjs 9Sed [BLISNPUT UB JUISAIJ JY8585 8 (0102) T& 32 1oqnyH
-ononb 9[3uls ® se pajorIISqR AIB SIIINOSAI

93e101S "I0M INO JOJ SISeq © ST Yorym ‘N 2yl dofeasg SR (6007) ‘Te 10 19302

JI0M
QOURIOYI(J UIB]A pue Arewruung ImQ 03 pAre[y yoeoxddy

SuI[opOIA QouBWIONIS /] [QAS[-AINONIYIIY

A. Related Work at a Glance

258

Related Work at a Glance

(A1 BOXY UI JIOA POIR[Y JO ATewwingG :"p"y ajqeL

‘Aelre oy} ur

SYSIp JO suonezi[nn Surie[no[ed [opow AeLIe YSIp [BonA[euy A (€661) Te 10 997
‘souIn

asuodsar ys1p o[Surs Surpnjour [opow (VY [eoNATRUY AN (0002) e 3° DlIeA
“UOTJRULIOJUI YSIP [QAQ]

-MO] SUIPN[OUT SYSIP PAUOZ (I [9pOW (VY [EINA[eUY SYOXOXOXE 'Y (1102) T8 19 1402199
‘uor

-BULIOJUT YSIP [9AJ]-MO] SUIPN[IUT [9pOW TV Y _mosbm:«« DYOXSXSXE 'S (L00T) T8 19 uosLRy

“IOJR[NUUIS WRISAS YSIP PUTRIS-auy pue payIeIap AIoA AN (8007) 'Te 30 Aong

AI0M

Q0UQIYI(] UIR]A pUR AJewruing

nQ 0} pajey

yoeoiddy

SurfepoN souruLIOfIad O/ PSLq-ISIg

259

A. Related Work at a Glance

(A BTy UT JIOA\ PoIe[ay JO ATewrwuns "Gy d|qeL

“JUSWIUOIIAUS PIZI[ENIIA 9I0D-T) [N

€ UL UOTJUDIUOD 9DIN0SAI AIOWAUW PUE ‘QYOBI ‘9100 AZA[RUY
'S90IN0SAI SSOIO.

ooueuriofrad sit 91en[eAd pue J0sIAIdAY USY) 9onponuy
‘sonradod arnjonnserjur JueAd[I-douewLIOjIod

Amuenb 0} sjuowaInseaw pojudLIo-[eos I0J yoroiddy
‘AI[Iqereds Aloww pue NdD PIZI[BNMIA I0J S[d

-pOouW JB3UI] 98I0 PUE SJUSWIUOIIAUS PIZI[BNIIIA UI SI0)OB]
Surouongur-oouewiofad ajenyead o3 yoeoidde ue jussarg
*SWIQ)SAS aIeMm

-1JOs JO SuI[epow pue uonen[ead dueuriojrad 10y LoAaIng
"SWIQ)SAS aIeM

-1JOs JO SuI[epowl pue uonen[ead dueuriojrad 10y Loaing

R s
R s
R o o

R
R
ARALIENE R

(6002) T® 10 1941
(€007) Te 10 weyreg

(€107) 'Te 19 Yoney

(Z107) "Te 19 1oqny
(0102) Yo101203]

(¥002) 'Te 19 owres[eg

QOUQIOHI(] UTBJA] PUB ATRWUIWUINS

AI0M
InQ 0} pare[y

yoeoiddy

SuI[opOIAl PUE UOnBN[BAY JUBWIOJIQ] SWAISAS

260

Glossary

Analysis Model

Dom0

/0
1/0 Analysis Model

LPAR
PR/SM

Storage

z/Linux
z/0S

performance model that can be analyti-
cally solved or simulated to obtain per-
formance results

Domain 0; privileged VM in Xen-based
environments

data access; storage access
performance model that can be analyt-
ically solved or simulated to obtain re-
sults of I/O performance

Logical PARtition; a virtual machine on
System z

Processor Resource and System Man-
ager; System z hypervisor

one of the main resources of a computer
system: processing, memory, communi-
cation, and storage

Linux distribution for System z
classical System z operating system

261

Acronyms

FCP

HDD

ICT

IT

NAS
NVC

PCM
PE

QN
QPN

RDSEFF

SAN
SCsSI
SPE
SSD

vC
VM
VMM

Fibre Channel Protocol
Hard Disk Drive

Information and Communications Tech-
nology
Information Technology

Network Attached Storage
Non-Volatile Cache

Palladio Component Model
Performance Engineering

Queueing Network
Queueing Petri Net

Resource Demanding Service EFFect
specification

Storage Area Network

Small Computer System Interface
Software Performance Engineering
Solid State Disk

Volatile Cache
Virtual Machine
Virtual Machine Monitor

263

Bibliography

Ahmad, 1., Anderson, J., Holler, A., Kambo, R., and Makhija, V. (2003). ,,An
analysis of disk performance in VMware ESX server virtual machines.*
In: IEEE International Workshop on Workload Characterization, 2003.
WWC-6. Pp. 65-76 (cit. on pp. 5, 241, 256).

Balsamo, S., Di Marco, A., Inverardi, P., and Simeoni, M. (2004). ,,Model-
Based Performance Prediction in Software Development: A Survey.” In:
IEEE TSE 30.5, pp. 295-310 (cit. on pp. 6, 247, 260).

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., and Warfield, A. (2003). ,,Xen and the Art of Virtualization.*
In: SIGOPS Oper. Syst. Rev. 37 (5), pp. 164—177 (cit. on pp. 6, 54, 247,
260).

Baun, C., Kunze, M., Nimis, J., and Tai, S. (2011). Cloud computing: Web-
based dynamic IT services. Springer (cit. on pp. 17, 18).

Bause, F. (1993). ,,Queueing Petri Nets - A formalism for the combined
qualitative and quantitative analysis of systems.* In: Proceedings of the
5th International Workshop on Petri Nets and Performance Models (cit. on
p- 35).

Bause, F. and Kritzinger, F. (2002). Stochastic Petri Nets - An Introduction to
the Theory. Second. Vieweg Verlag (cit. on p. 35).

Becker, S. (2008). ,,Coupled model transformations for QoS enabled component-
based software design.*“ PhD thesis. Universitit Oldenburg (cit. on pp. 7,
37, 38,43, 163, 172).

Becker, S., Koziolek, H., and Reussner, R. (2009). ,,The Palladio component
model for model-driven performance prediction.” In: Journal of Systems
and Software 82.1, pp. 3-22 (cit. on pp. 5, 36, 38, 43, 163, 244, 254, 258).

Bolch, G., Greiner, S., Meer, H. de, and Trivedi, K. (2006). Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications. Wiley-Interscience publication. Wiley (cit. on pp. 33,
35, 106).

265

Bibliography

Boutcher, D. and Chandra, A. (2010). ,,.Does virtualization make disk schedul-
ing passe.“ In: SIGOPS Oper. Syst. Rev. 44.1, pp. 20-24 (cit. on p. 110).
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984). Classifica-
tion and Regression Trees. The Wadsworth and Brooks-Cole statistics-

probability series. Chapman & Hall (cit. on p. 83).

Brosig, F. (2014). ,,Architecture-Level Software Performance Models for On-
line Performance Prediction.” PhD thesis. Karlsruhe Institute of Technology
(KIT) (cit. on pp. 6, 254).

Brosig, F., Huber, N., and Kounev, S. (2011). ,,Automated Extraction of
Architecture-Level Performance Models of Distributed Component-Based
Systems.* In: 26th IEEE/ACM International Conference On Automated Soft-
ware Engineering (ASE 2011). Oread, Lawrence, Kansas (cit. on p. 226).

Brosig, F., Kounev, S., and Krogmann, K. (2009). ,,Automated Extraction of
Palladio Component Models from Running Enterprise Java Applications.*
In: Proceedings of the 1st International Workshop on Run-time mOdels for
Self-managing Systems and Applications (ROSSA 2009). In conjunction
with Fourth International Conference on Performance Evaluation Method-
ologies and Tools (VALUETOOLS 2009), Pisa, Italy, October 19, 2009.
ACM, New York, NY, USA (cit. on p. 226).

Bruhn, D. (2012). ,,Modeling and Experimental Analysis of Virtualized Stor-
age Performance using IBM System z as Example.* Master’s Thesis (Diplo-
marbeit). Karlsruhe Institute of Technology (KIT) (cit. on pp. 70, 179).

Bucy, J. S., Schindler, J., Schlosser, S. W., Ganger, G. R., and Contribu-
tors (2008). The DiskSim Simulation Environment - Version 4.0 Reference
Manual. Carnegie Mellon University, Pittsburgh, PA (cit. on pp. 6, 246,
259).

Busch, A. (2013). ,,Workload Characterization for I/O Performance Analysis
on IBM System z.“ Master’s Thesis. Karlsruhe Institute of Technology
(KIT) (cit. on pp. 50, 179).

Busch, A., Noorshams, Q., Kounev, S., Koziolek, A., Reussner, R., and
Amrehn, E. (2015). ,,Automated Workload Characterization for I/O Per-
formance Analysis in Virtualized Environments.* In: Proceedings of the
ACM/SPEC International Conference on Performance Engineering. ICPE
’15. Austin, Texas, USA: ACM (cit. on pp. 9, 50, 58, 59, 179).

Chiang, R. C. and Huang, H. H. (2011). ,,TRACON: Interference-aware
Scheduling for Data-intensive Applications in Virtualized Environments.*
In: Proceedings of 2011 International Conference for High Performance

266

Bibliography

Computing, Networking, Storage and Analysis. SC’11. Seattle, Washington:
ACM, 47:1-47:12 (cit. on pp. 5, 243, 257).

Clark, T. (2005). Storage virtualization: technologies for simplifying data
storage and management. Addison-Wesley Professional (cit. on p. 20).
Czarnecki, K. (1998). ,,Generative Programming: Principles and Techniques
of Software Engineering Based on Automated Configuration and Fragment-
Based Component Models.* PhD thesis. Technical University of [lmenau

(cit. on p. 52).

Dean, J. and Ghemawat, S. (2008). ,,MapReduce: Simplified Data Processing
on Large Clusters.* In: Communications of the ACM 51.1, pp. 107-113
(cit. on p. 24).

Dufrasne, B., Bauer, W., Careaga, B., Myyrrylainen, J., Rainero, A., and
Usong, P. (2010). IBM System Storage DS8700 Architecture and Imple-
mentation. http://www. redbooks . ibm.com/abstracts/sg248786.html
(cit. on pp. 45, 55, 186).

Elish, M. and Elish, K. (2009). ,,Application of TreeNet in Predicting Object-
Oriented Software Maintainability: A Comparative Study.* In: /3th Eu-
ropean Conference on Software Maintenance and Reengineering, 2009.
CSMR ’09. Pp. 69-78 (cit. on p. 69).

Filebench. https://github. com/Filebench-Revise/Filebench - Revise
(version with fixes of http: // sourceforge . net /apps / mediawiki /
filebench/). [Online; last accessed: Dec 2014] (cit. on p. 183).

Flexible File System Benchmark (FFSB). http://github.com/FFSB-prime
(version with fixes and extensions of http://ffsb.sf.net). [Online; last
accessed: Dec 2014] (cit. on pp. 109, 182).

Friedman, J. H. (1991). ,,Multivariate Adaptive Regression Splines.* In: An-
nals of Statistics 19.1, pp. 1-141 (cit. on p. 82).

Gantz, J. and Reinsel (IDC), D. (2012). THE DIGITAL UNIVERSE IN 2020:
Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East.
http://www.emc.com/collateral/analyst- reports/idc-the-digital-
universe-in-2020.pdf. [Online; last accessed: Dec 2014] (cit. on p. 2).

Goldberg, R. P. (1974). ,,Survey of Virtual Machine Research.* In: Computer
7.9, pp. 3445 (cit. on p. 17).

Gregg, B. (2005). DTrace Tools: iopattern. http://www.dtracebook.com/
index.php/Disk_I0:iopattern. [Online; last accessed: Dec 2014] (cit. on
p- 58).

Groot, S., Goda, K., Yokoyama, D., Nakano, M., and Kitsuregawa, M. (2013).
,,Modeling I/O Interference for Data Intensive Distributed Applications.* In:

267

http://www.redbooks.ibm.com/abstracts/sg248786.html
https://github.com/Filebench-Revise/Filebench-Revise
http://sourceforge.net/apps/mediawiki/filebench/
http://sourceforge.net/apps/mediawiki/filebench/
http://github.com/FFSB-prime
http://ffsb.sf.net
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.dtracebook.com/index.php/Disk_IO:iopattern
http://www.dtracebook.com/index.php/Disk_IO:iopattern

Bibliography

Proceedings of the 28th Annual ACM Symposium on Applied Computing.
SAC ’13. Coimbra, Portugal: ACM, pp. 343-350 (cit. on pp. 5, 243, 257).

Gulati, A., Kumar, C., and Ahmad, I. (2009). ,,Storage workload characteriza-
tion and consolidation in virtualized environments.*“ In: 2nd International
Workshop on Virtualization Performance: Analysis, Characterization, and
Tools (VPACT) (cit. on pp. 5, 242, 256).

Guo, J., Czarnecki, K., Apel, S., Siegmund, N., and Wasowski, A. (2013).
. Variability-Aware Performance Prediction: A Statistical Learning Ap-
proach. In: 28th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). Silicon Valley, California, USA: IEEE (cit. on
p. 69).

Harrison, P. and Zertal, S. (2007). ,,Queueing models of RAID systems with
maxima of waiting times.* In: Performance Evaluation 64 (7-8), pp. 664—
689 (cit. on pp. 6, 246, 259).

Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of Statistical
Learning: Data Mining, Inference and Prediction. 2nd ed. Springer (cit. on
pp- 30-32, 81, 83, 95).

Hauck, M. (2013). ,,Automated Experiments for Deriving Performance-relevant
Properties of Software Execution Environments.* PhD thesis. Karlsruhe
Institute of Technology (KIT) (cit. on p. 17).

Hauck, M., Kuperberg, M., Huber, N., and Reussner, R. (2013). ,,Deriving
performance-relevant infrastructure properties through model-based ex-
periments with Ginpex.* In: Springer Journal of Software and Systems
Modeling, pp. 1-21 (cit. on pp. 6, 247, 260).

Hauck, M., Kuperberg, M., Krogmann, K., and Reussner, R. (2009). ,,Mod-
elling Layered Component Execution Environments for Performance Pre-
diction.” In: Proceedings of the 12th International Symposium on Com-
ponent Based Software Engineering (CBSE 2009). LNCS 5582. Springer,
pp. 191-208 (cit. on pp. 43, 163, 167).

Huber, N. (2014). ,,Autonomic Performance-Aware Resource Management
in Dynamic IT Service Infrastructures.” PhD thesis. Karlsruhe Institute of
Technology (KIT) (cit. on p. 254).

Huber, N., Becker, S., Rathfelder, C., Schweflinghaus, J., and Reussner, R.
(2010). ,,Performance Modeling in Industry: A Case Study on Storage
Virtualization.* In: ACM/IEEE 32nd International Conference on Software
Engineering (ICSE 2010), Software Engineering in Practice Track. Cape
Town, South Africa: ACM, pp. 1-10 (cit. on pp. 5, 43, 163, 245, 258).

268

Bibliography

Huber, N., Quast, M. von, Brosig, F., Hauck, M., and Kounev, S. (2012).
»A Method for Experimental Analysis and Modeling of Virtualization
Performance Overhead.* In: Cloud Computing and Services Science. Ed.
by L. Ivanov, M. van Sinderen, and B. Shishkov. Service Science: Research
and Innovations in the Service Economy. New York: Springer, pp. 353-370
(cit. on pp. 6, 247, 260).

InformationAge (2011). The year of virtual storage. http://www.information-
age . com/ channels/the - cloud - and - virtualization/perspectives -
and - trends/1596523/the-year-of-virtual - storage.thtml. [Online;
last accessed: Dec 2014] (cit. on p. 2).

Iyer, R., Illikkal, R., Tickoo, O., Zhao, L., Apparao, P., and Newell, D. (2009).
»VM3: Measuring, modeling and managing VM shared resources.” In:
Computer Networks 53 (17), pp. 2873-2887 (cit. on pp. 6, 247, 260).

Izenman, A. J. (2009). Modern Multivariate Statistical Techniques: Regres-
sion, Classification, and Manifold Learning. New York, NY: Springer (cit.
on pp. 30-32, 72).

Jensen, K. (1981). ,,Coloured Petri Nets and the Invariant Method.* In: Math-
ematical Foundations on Computer Science, LNCS 118:327-338 (cit. on
p- 35).

Kaplan, J. M., Forrest, W., and Kindler, N. (2008). Revolutionizing Data
Center Energy Efficiency. Tech. rep. McKinsey & Company (cit. on p. 1).

Kapova, L. and Goldschmidt, T. (2009). ,,Automated feature model-based
generation of refinement transformations.* In: Software Engineering and
Advanced Applications, 2009. SEAA’09. 35th Euromicro Conference on.
IEEE, pp. 141-148 (cit. on p. 165).

Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., and Pu, C. (2007).
,»An Analysis of Performance Interference Effects in Virtual Environments.*
In: IEEFE International Symposium on Performance Analysis of Systems
Software, 2007. ISPASS-2007. Pp. 200-209 (cit. on pp. 5, 243, 257).

Kouney, S. (2006). ,,Performance Modeling and Evaluation of Distributed
Component-Based Systems using Queueing Petri Nets.“ In: IEEE TSE 32.7
(cit. on pp. 35, 106, 109).

Kouney, S., Brosig, F., Huber, N., and Reussner, R. (2010a). ,,Towards self-
aware performance and resource management in modern service-oriented
systems.” In: Proceedings of the 7th IEEE International Conference on
Services Computing (SCC 2010), July 5-10, Miami, Florida, USA. Miami,
Florida, USA: IEEE Computer Society (cit. on p. 254).

269

http://www.information-age.com/channels/the-cloud-and-virtualization/perspectives-and-trends/1596523/the-year-of-virtual-storage.thtml
http://www.information-age.com/channels/the-cloud-and-virtualization/perspectives-and-trends/1596523/the-year-of-virtual-storage.thtml
http://www.information-age.com/channels/the-cloud-and-virtualization/perspectives-and-trends/1596523/the-year-of-virtual-storage.thtml

Bibliography

Kounev, S., Spinner, S., and Meier, P. (2010b). ,,QPME 2.0-A Tool for Stochas-
tic Modeling and Analysis Using Queueing Petri Nets.* In: From active
data management to event-based systems and more. Springer, pp. 293-311
(cit. on pp. 35, 36).

Koziolek, H. (2010). ,,Performance Evaluation of Component-based Software
Systems: A Survey.“ In: Performance Evaluation 67.8, pp. 634—-658 (cit. on
pp- 6, 247, 260).

Kraft, S., Casale, G., Krishnamurthy, D., Greer, D., and Kilpatrick, P. (2012).
,,Performance Models of Storage Contention in Cloud Environments.* In:
Springer Journal of Software and Systems Modeling (cit. on pp. 5, 241,
256).

Krogmann, K. (2010). ,,Reconstruction of Software Component Architectures
and Behaviour Models using Static and Dynamic Analysis.” PhD thesis.
Karlsruhe Institute of Technology (KIT) (cit. on pp. 43, 163, 226).

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer
(cit. on pp. 29-33, 73, 98).

Kuhn, M., Witson, S., Keefer, C., and Coulter, N. (2012). Cubist Models
for Regression. http://cran.r-project.org/web/packages/Cubist/
vignettes/cubist.pdf. [Online; last accessed: Dec 2014] (cit. on p. 85).

Kundu, S., Rangaswami, R., Gulati, A., Zhao, M., and Dutta, K. (2012).
,»Modeling Virtualized Applications using Machine Learning Techniques.*
In: Proceedings of the 8th ACM SIGPLAN/ SIGOPS conference on Virtual
Execution Environments. VEE *12. London, England, UK: ACM, pp. 3-14
(cit. on pp. 5, 242, 256).

Kuperberg, M., Krogmann, K., and Reussner, R. (2008). ,,Performance Predic-
tion for Black-Box Components using Reengineered Parametric Behaviour
Models. In: Proceedings of the 11th International Symposium on Com-
ponent Based Software Engineering (CBSE 2008), Karlsruhe, Germany,
14th-17th October 2008. Vol. 5282. Lecture Notes in Computer Science.
Springer-Verlag Berlin Heidelberg, pp. 48—63 (cit. on pp. 43, 163).

Lebrecht, A. S., Dingle, N. J., and Knottenbelt, W. J. (2011). ,,Analytical
and Simulation Modelling of Zoned RAID Systems.* In: The Computer
Journal 54 (5), pp. 691-707 (cit. on pp. 6, 246, 259).

Lee, E. K. and Katz, R. H. (1993). ,,An analytic performance model of disk
arrays.” In: SIGMETRICS Perform. Eval. Rev. 21.1 (cit. on pp. 6, 246, 259).

Ling, X., Ibrahim, S., Jin, H., Wu, S., and Songgqiao, T. (2013). ,,Exploiting
Spatial Locality to Improve Disk Efficiency in Virtualized Environments.*
In: Proceedings of the IEEE 21st International Symposium on Modeling,

270

http://cran.r-project.org/web/packages/Cubist/vignettes/cubist.pdf
http://cran.r-project.org/web/packages/Cubist/vignettes/cubist.pdf

Bibliography

Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2013). San Francisco, USA (cit. on pp. 54, 110, 185).

Massiglia, P. and Bunn, F. (2003). Virtual Storage Redefined: Technologies and
Applications for Storage Virtualization. VERITAS Software Corporation
(cit. on pp. 20, 21).

Menascé, D. and Almeida, V. (2000). Scaling for E-Business: Technologies,
Models, Performance, and Capacity Planning. Prentice Hall (cit. on pp. 6,
106, 109, 229).

Menascé, D., Almeida, V., and Dowdy, L. (1994). Capacity Planning and
Performance Modeling: From Mainframes to Client-Server Systems. New
Jersey: Prentice-Hall (cit. on p. 105).

Menascé, D., Almeida, V., Dowdy, L. W., and Dowdy, L. (2004). Performance
by Design: Computer Capacity Planning by Example. Prentice Hall science
explorer. Prentice Hall (cit. on pp. 33, 35, 106, 109).

Mesnier, M., Ganger, G. R., and Riedel, E. (2003). ,,Object-based storage.*
In: IEEE Communications Magazine 41.8, pp. 84-90 (cit. on p. 24).

Mi, N, Casale, G., Cherkasova, L., and Smirni, E. (2008). ,,Burstiness in multi-
tier applications: symptoms, causes, and new models.* In: Proceedings of
the 9th ACM/IFIP/USENIX International Conference on Middleware. Mid-
dleware ’08. Leuven, Belgium: Springer-Verlag New York, Inc., pp. 265—
286 (cit. on p. 252).

Mills, M. P. (2013). The Cloud Begins with Coal — Big Data, Big Networks,
Big Infrastructure, and Big Power — An Overview of the Electricity used
by the Global Digital Ecosystem. http://www . tech - pundit.com/wp -
content /uploads /2013 /07 / Cloud _Begins _With_Coal . pdf ? c761lac.
[Online; last accessed: Dec 2014] (cit. on p. 1).

Noorshams, Q., Bruhn, D., Kounev, S., and Reussner, R. (2013a). ,,Predictive
Performance Modeling of Virtualized Storage Systems using Optimized
Statistical Regression Techniques.” In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering. ICPE *13. Prague,
Czech Republic: ACM, pp. 283-294 (cit. on pp. 10, 70, 179).

Noorshams, Q., Busch, A., Kounev, S., and Reussner, R. (2015). ,,The Stor-
age Performance Analyzer: Measuring, Monitoring, and Modeling of I/O
Performance in Virtualized Environments.” In: Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering. ICPE
’15. (Invited Demo Paper). Austin, Texas, USA (cit. on pp. 9, 50, 62, 182,
226).

271

http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac
http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac

Bibliography

Noorshams, Q., Busch, A., Rentschler, A., Bruhn, D., Kouneyv, S., Tima,
P., and Reussner, R. (2014a). ,,Automated Modeling of I/O Performance
and Interference Effects in Virtualized Storage Systems.* In: 34th IEEE
International Conference on Distributed Computing Systems Workshops
(ICDCS 2014 Workshops). 4th International Workshop on Data Center
Performance, DCPerf ’14. Madrid, Spain, pp. 88-93 (cit. on pp. 10, 70,
179).

Noorshams, Q., Kouneyv, S., and Reussner, R. (2013b). ,,Experimental Evalu-
ation of the Performance-Influencing Factors of Virtualized Storage Sys-
tems. In: Computer Performance Engineering. 9th European Workshop,
EPEW 2012, Munich, Germany, July 30, 2012, and 28th UK Workshop,
UKPEW 2012, Edinburgh, UK, July 2, 2012, Revised Selected Papers. Ed.
by M. Tribastone and S. Gilmore. Vol. 7587. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 63—79 (cit. on pp. 9, 44, 50, 52,
65).

Noorshams, Q., Reeb, R., Rentschler, A., Kounev, S., and Reussner, R.
(2014b). ,,Enriching Software Architecture Models with Statistical Models
for Performance Prediction in Modern Storage Environments.* In: Pro-
ceedings of the 17th International ACM Sigsoft Symposium on Component-
Based Software Engineering. CBSE ’ 14. Marcq-en-Bareul, France: ACM,
pp. 45-54 (cit. on pp. 11, 38, 42, 160, 179).

Noorshams, Q., Rentschler, A., Kounev, S., and Reussner, R. (2013c¢). ,,A
Generic Approach for Architecture-level Performance Modeling and Pre-
diction of Virtualized Storage Systems.* In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering. ICPE *13. Prague,
Czech Republic: ACM, pp. 339-342 (cit. on pp. 11, 42, 160).

Noorshams, Q., Rostami, K., Kouneyv, S., and Reussner, R. (2014c¢). ,,Modeling
of I/O Performance Interference in Virtualized Environments with Queue-
ing Petri Nets.“ In: Proceedings of the IEEE 22nd International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems. MASCOTS ’14. France, Paris (cit. on pp. 10, 104).

Noorshams, Q., Rostami, K., Kouneyv, S., Tima, P., and Reussner, R. (2013d).
,,J/O Performance Modeling of Virtualized Storage Systems.* In: Proceed-
ings of the IEEE 21st International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems. MASCOTS ’13.
San Francisco, USA, pp. 121-130 (cit. on pp. 10, 104).

272

Bibliography

Object Management Group (OMG). Unified Modeling Language (UML).
http://schema.omg.org/spec/UML/index.htm. [Online; last accessed:
Dec 2014] (cit. on p. 36).

Oliveira, S. F.,, Furlinger, K., and Kranzlmiiller, D. (2012). ,,Trends in Com-
putation, Communication and Storage and the Consequences for Data-
intensive Science.* In: Proceedings of the 2012 IEEE 14th International
Conference on High Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded Software and Systems.
IEEE Computer Society, pp. 572-579 (cit. on p. 1).

open — Linux man page. http://linux.die.net/man/2/open. [Online; last
accessed: Dec 2014] (cit. on pp. 109, 182).

Open Stack Object Storage (Swift). http://www.openstack.org/software/
openstack- storage/, http://docs.openstack.org/developer/swift/
overview_architecture.html. [Online; last accessed: Dec 2014] (cit. on
p. 24).

Pu, X., Liu, L., Mei, Y., Sivathanu, S., Koh, Y., and Pu, C. (2010). ,,Under-
standing Performance Interference of I/O Workload in Virtualized Cloud
Environments.* In: IEEE 3rd International Conference on Cloud Comput-
ing (CLOUD), pp. 51-58 (cit. on pp. 5, 244, 257).

Quinlan, J. R. (1992). ,,Learning with Continuous Classes.“ In: Proceedings
of the 5th Australian joint Conference on Artificial Intelligence. World
Scientific, pp. 343-348 (cit. on p. 84).

— (1993). ,,Combining Instance-Based and Model-Based Learning.” In: ICML
'93, pp- 236-243 (cit. on p. 89).

R Core Team (2013). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing. Vienna, Austria (cit. on
p. 86).

Rathfelder, C. (2012). ,,Modelling Event-Based Interactions in Component-
Based Architectures for Quantitative System Evaluations.” PhD thesis.
Karlsruhe Institute of Technology (KIT) (cit. on p. 6).

Reeb, R. (2014). ,,Modellierung von virtualisierten Speicher-Systemen mit
dem Palladio Component Model.“ Bachelor’s Thesis. Karlsruhe Institute
of Technology (KIT) (cit. on pp. 160, 179).

Reussner, R., Becker, S., Burger, E., Happe, J., Hauck, M., Koziolek, A.,
Koziolek, H., Krogmann, K., and Kuperberg, M. (2011). The Palladio
Component Model. Tech. rep. Karlsruhe Institute of Technology (KIT).
Karlsruhe Reports in Informatics 2011, 14 (cit. on pp. 36, 38).

273

http://schema.omg.org/spec/UML/index.htm
http://linux.die.net/man/2/open
http://www.openstack.org/software/openstack-storage/
http://www.openstack.org/software/openstack-storage/
http://docs.openstack.org/developer/swift/overview_architecture.html
http://docs.openstack.org/developer/swift/overview_architecture.html

Bibliography

Rostami, K. (2012). ,,Workload Characterization for I/O Performance Analysis
on IBM System z.“ Bachelor’s Thesis (Studienarbeit). Karlsruhe Institute
of Technology (KIT) (cit. on p. 104).

— (2014). ,,Modellierung von Performanzinterferenz datenintensiver Anwen-
dungen in virtualisierten Umgebungen am Beispiel IBM System z.“ Mas-
ter’s Thesis (Diplomarbeit). Karlsruhe Institute of Technology (KIT) (cit.
on pp. 104, 130, 133, 139).

RuleQuest Research Pty Ltd (2012). Data Mining with Cubist. http: //
rulequest . com/cubist - info. html. [Online; last accessed: Dec 2014]
(cit. on p. 85).

Rygielski, P. and Kouney, S. (2014). ,,Data Center Network Throughput Anal-
ysis using Queueing Petri Nets.” In: 34th IEEE International Conference
on Distributed Computing Systems Workshops (ICDCS 2014 Workshops).
4th International Workshop on Data Center Performance, (DCPerf 2014).
Madrid, Spain, pp. 100-105 (cit. on p. 253).

Shanthikumar, J. G. and Sargent, R. G. (1983). ,,A Unifying View of Hybrid
Simulation/Analytic Models and Modeling.* In: Operations Research 31.6,
(cit. on pp. 5, 245, 254, 258).

Smith, C. U. (1990). Performance engineering of software systems. Addison-
Wesley Longman Publishing Co., Inc. (cit. on p. 27).

SNIA Shared Storage Model. http://www.snia.org/education/storage_
networking_primer/shared_storage_model. [Online; last accessed: Dec
2014] (cit. on pp. 20, 23).

Snyman, J. (2005). Practical Mathematical Optimization: An Introduction
to Basic Optimization Theory and Classical and New Gradient-Based
Algorithms. Vol. 97. Springer (cit. on p. 73).

Spinner, S., Casale, G., Zhu, X., and Kouney, S. (2014). ,,LibReDE: A Library
for Resource Demand Estimation.* In: Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering. ICPE ’14. Dublin,
Ireland: ACM, pp. 227-228 (cit. on p. 176).

TechNavio (2013). Global Server Virtualization Market 2012-2016. http://
www . technavio.com/content/global- server-virtualization-market-
2012-2016. [Online; last accessed: Dec 2014] (cit. on p. 1).

Troppens, U., Erkens, R., Miiller-Friedt, W., Wolafka, R., and Haustein, N.
(2009). Storage Networks Explained: Basics and Application of Fibre
Channel SAN, NAS, ISCSI, InfiniBand and FCoE. John Wiley & Sons (cit.
on pp. 20-23).

274

http://rulequest.com/cubist-info.html
http://rulequest.com/cubist-info.html
http://www.snia.org/education/storage_networking_primer/shared_storage_model
http://www.snia.org/education/storage_networking_primer/shared_storage_model
http://www.technavio.com/content/global-server-virtualization-market-2012-2016
http://www.technavio.com/content/global-server-virtualization-market-2012-2016
http://www.technavio.com/content/global-server-virtualization-market-2012-2016

Bibliography

Varki, E. and Wang, S. X. (2000). ,,A Performance Model of Disk Array
Storage Systems.” In: Int. CMG Conference, pp. 635-644 (cit. on pp. 6,
246, 259).

Vaupel, R. (2013). High Availability and Scalability of Mainframe Environ-
ments using System z and 7/OS as example. KIT Scientific Publishing (cit.
onp. 17).

Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (2007). Probability
and statistics for engineers and scientists. Upper Saddle River, NJ: Pearson
Prentice Hall (cit. on p. 30).

Wang, M., Ailamaki, A., and Faloutsos, C. (2002). ,,Capturing the Spatio-
Temporal Behavior of Real Traffic Data.* In: IFIP WG 7.3 Symposium on
Computer Performance, pp. 23-27 (cit. on p. 252).

Wang, W. and Casale, G. (2013). ,,Bayesian Service Demand Estimation
Using Gibbs Sampling.” In: Proceedings of the 2013 IEEE 21st Interna-
tional Symposium on Modelling, Analysis and Simulation of Computer and
Telecommunication Systems. MASCOTS ’13. Washington, DC, USA: IEEE
Computer Society, pp. 567-576 (cit. on p. 113).

Wert, A., Happe, J., and Westermann, D. (2012). ,,Integrating Software Per-
formance Curves with the Palladio Component Model.* In: Proceedings of
the 3rd ACM/SPEC International Conference on Performance Engineering.
ICPE ’12. Boston, Massachusetts, USA: ACM, pp. 283-286 (cit. on pp. 5,
245, 258).

Westermann, D. (2014). ,.Deriving Goal-oriented Performance Models by Sys-
tematic Experimentation.” PhD thesis. Karlsruhe Institute of Technology
(KIT) (cit. on p. 99).

Wolf, C. and Halter, E. M. (2005). Virtualization: From the Desktop to the
Enterprise. Apress (cit. on p. 17).

Woodside, M., Petriu, D., and Siddiqui, K. (2002). ,,Performance-related
completions for software specifications.” In: Proceedings of the 24rd Inter-
national Conference on Software Engineering, 2002 (cit. on p. 165).

Woodside, M., Vetland, V., Courtois, M., and Bayarov, S. (2001). ,,Resource
Function Capture for Performance Aspects of Software Components and
Sub-systems.* In: Performance Engineering, State of the Art and Current
Trends. Ed. by R. Dumke, C. Rautenstrauch, A. Scholz, and A. Schmi-
etendorf. Vol. 2047. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 239-256 (cit. on pp. 5, 245, 258).

275

Bibliography

Woodside, M., Franks, G., and Petriu, D. C. (2007). ,,The Future of Soft-
ware Performance Engineering.” In: Future of Software Engineering, 2007.
FOSE’07. 1IEEE, pp. 171-187 (cit. on p. 27).

Yang, Z., Fang, H., Wu, Y., Li, C., Zhao, B., and Huang, H. (2012). ,,Un-
derstanding the Effects of Hypervisor I/O Scheduling for Virtual Machine
Performance Interference.* In: IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 34—41 (cit. on pp. 5,
244, 257).

Yigitbasi, N., Willke, T., Liao, G., and Epema, D. (2013). ,,Towards Machine
Learning-Based Auto-tuning of MapReduce.* In: IEEE 21st International
Symposium on Modeling, Analysis Simulation of Computer and Telecom-
munication Systems (MASCOTS), pp. 11-20 (cit. on p. 69).

276

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

Steffen Becker

Coupled Model Transformations for QoS Enabled
Component-Based Software Design. 2008

ISBN 978-3-86644-271-9

Heiko Koziolek

Parameter Dependencies for Reusable Performance
Specifications of Software Components. 2008
ISBN 978-3-86644-272-6

Jens Happe

Predicting Software Performance in Symmetric
Multi-core and Multiprocessor Environments. 2009
ISBN 978-3-86644-381-5

Klaus Krogmann

Reconstruction of Software Component Architectures and
Behaviour Models using Static and Dynamic Analysis. 2012
ISBN 978-3-86644-804-9

Michael Kuperberg

Quantifying and Predicting the Influence of Execution
Platform on Software Component Performance. 2010
ISBN 978-3-86644-741-7

Thomas Goldschmidt
View-Based Textual Modelling. 2011
ISBN 978-3-86644-642-7

Die Bénde sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Band 7 Anne Koziolek
Automated Improvement of Software Architecture Models
for Performance and Other Quality Attributes. 2013
ISBN 978-3-86644-973-2

Band 8 Lucia Happe
Configurable Software Performance Completions through
Higher-Order Model Transformations. 2013
ISBN 978-3-86644-990-9

Band 9 Franz Brosch
Integrated Software Architecture-Based Reliability
Prediction for IT Systems. 2012
ISBN 978-3-86644-859-9

Band 10 Christoph Rathfelder
Modelling Event-Based Interactions in Component-Based
Architectures for Quantitative System Evaluation. 2013
ISBN 978-3-86644-969-5

Band 11 Henning Groenda
Certifying Software Component
Performance Specifications. 2013
ISBN 978-3-7315-0080-3

Band 12 Dennis Westermann
Deriving Goal-oriented Performance Models
by Systematic Experimentation. 2014
ISBN 978-3-7315-0165-7

Die Bénde sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Band 13

Band 14

Band 15

Band 16

Band 17

Band 18

Michael Hauck

Automated Experiments for Deriving Performance-relevant
Properties of Software Execution Environments. 2014
ISBN 978-3-7315-0138-1

Zoya Durdik

Architectural Design Decision Documentation through
Reuse of Design Patterns. 2016

ISBN 978-3-7315-0292-0

Erik Burger

Flexible Views for View-based
Model-driven Development. 2014
ISBN 978-3-7315-0276-0

Benjamin Klatt

Consolidation of Customized Product Copies
into Software Product Lines. 2016

ISBN 978-3-7315-0368-2

Andreas Rentschler

Model Transformation Languages with
Modular Information Hiding. 2015
ISBN 978-3-7315-0346-0

Omar-Qais Noorshams

Modeling and Prediction of I/O Performance
in Virtualized Environments. 2017

ISBN 978-3-7315-0359-0

Die Bénde sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.

In this book we present a novel performance modeling approach tailored to
I/0 performance prediction in virtualized environments. The main idea is to
identify important performance-influencing factors and to develop different
storage-level 1/0 performance models based on statistical regression analysis
and queueing theory. To increase the practical applicability of these models,
we combine the low-level I/O performance models with high-level software
architecture models. Our approach is validated in a variety of case studies in
state-of-the-art, real-world environments where we successfully predict the
performance of I/O-intensive applications with less than 30 % mean predic-
tion error. In general, our approach is designed for answering capacity plan-
ning questions, evaluating system design decisions, and analyzing the scala-
bility of shared resources in virtualized environments.

ISBN 978-3-7315-0359-0
97783731"503590" >

ISBN 978-3-7315-0359-0

	Abstract
	Kurzfassung
	Danksagung
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Research Questions
	1.3 Existing Approaches
	1.4 Evaluation Criteria
	1.5 Approach and Contributions
	1.6 Application Scenarios
	1.7 Outline

	I Foundations
	2 Virtualization Technology
	2.1 Server Virtualization
	2.2 Storage Virtualization
	2.2.1 SNIA Shared Storage Model
	2.2.2 Storage Paradigms in Virtualized Environments
	2.2.3 Discussion

	3 Performance Engineering
	3.1 Performance Modeling
	3.2 Regression Analysis-based Modeling
	3.2.1 Regression Model Creation
	3.2.2 Regression Model Evaluation

	3.3 Queueing Theory-based Modeling
	3.4 Software Architecture Modeling with the Palladio Component Model (PCM)

	II Versatile I/O Performance Analysis in Virtualized Environments
	4 Methodology
	4.1 Approach Overview
	4.2 Reference System Environment
	4.3 Outlook on Core Approach

	5 Systematic Analysis of I/O Performance-influencing Factors
	5.1 Scientific Challenges
	5.2 Classification of I/O Performance-influencing Factors
	5.2.1 Workload-relevant Factors
	5.2.2 System-relevant Factors

	5.3 I/O Workload Characterization for Performance Modeling
	5.3.1 Workload Intensity
	5.3.2 Request Size
	5.3.3 Request Mix
	5.3.4 Request Access Pattern
	5.3.5 Workload Locality

	5.4 Automation of I/O Performance Evaluation and Workload Characterization
	5.4.1 Architectural View
	5.4.2 Dynamic Sequence View

	5.5 Summary

	6 Creating Regression Analysis-based Models with Optimal Parameterization
	6.1 Scientific Challenges
	6.2 Regression Parameterization as an Optimization Problem
	6.2.1 Problem Formulation
	6.2.2 Stepwise Sampling Search (S3)

	6.3 Regression Model Selection
	6.3.1 Survey of Popular Regression Techniques
	6.3.2 Evaluation of Overhead and Complexity
	6.3.3 Process for Regression Model Selection

	6.4 Process for Modeling of I/O Performance in Virtualized Environments
	6.5 Summary

	7 Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects
	7.1 Scientific Challenges
	7.2 Methodology
	7.3 System Environment Analysis
	7.3.1 System Setup
	7.3.2 Identification of Performance-Relevant System Aspects
	7.3.3 Workload Characterization

	7.4 I/O Performance Models of Storage Hardware Aspects
	7.4.1 Planning
	7.4.2 Cache Resource Model
	7.4.3 Cache and RAID Resource Model
	7.4.4 Prediction Process

	7.5 I/O Performance Models of Scheduling and Interference Aspects
	7.5.1 Planning
	7.5.2 Heterogeneous Workload Model
	7.5.3 Multi-VM Model
	7.5.4 Variable Workload Model
	7.5.5 Prediction Process

	7.6 Evaluation
	7.6.1 Goals and Questions
	7.6.2 I/O Performance Models of Storage Hardware Aspects
	7.6.3 I/O Performance Models of Scheduling and Interference Aspects

	7.7 Summary

	8 Integrating Storage-level Models into Architecture-level Modeling Approaches
	8.1 Scientific Challenges
	8.2 Methodology
	8.2.1 Extending the Model-based Performance Prediction Process
	8.2.2 Refinement Transformation for Performance Predictions

	8.3 Realization of I/O Performance Prediction in the PCM
	8.3.1 Modeling Concept
	8.3.2 I/O Analysis Model
	8.3.3 Simulation for Solving the Analysis Model
	8.3.4 Prediction Process

	8.4 Summary

	9 Validation
	9.1 Goals and Questions
	9.2 Experimental Setup
	9.2.1 Tools and Benchmarks
	9.2.2 System Environments

	9.3 Case Studies on Workload Characterization
	9.3.1 Overview
	9.3.2 Case Study I: Workload Characterization
	9.3.3 Case Study II: Workload Migration & Consolidation
	9.3.4 Summary and Discussion

	9.4 Case Studies on Storage-level Modeling
	9.4.1 Overview
	9.4.2 Case Study I: Modeling Performance-influencing Factors
	9.4.3 Case Study II: Modeling Application Workload
	9.4.4 Case Study III: Modeling Performance Interference
	9.4.5 Summary and Discussion

	9.5 Case Studies on Software Architecture-level Modeling
	9.5.1 Overview
	9.5.2 Case Study I: File Server on Sun Fire
	9.5.3 Case Study II: Mail Server on Sun Fire
	9.5.4 Case Study III: File Server on System z
	9.5.5 Case Study IV: File and Mail Server on System z
	9.5.6 Summary and Discussion

	9.6 Discussion of the Approach
	9.6.1 Automation
	9.6.2 Modeling Abstraction
	9.6.3 Complementary Formalisms
	9.6.4 Predicting the Performance without our Approach
	9.6.5 Discussion of the Evaluation Criteria
	9.6.6 Assumptions and Limitations

	III Related Work and Conclusion
	10 Related Work
	10.1 Overview
	10.2 I/O Performance Analysis and Modeling
	10.3 I/O Performance Interference Modeling
	10.4 Architecture-level I/O Performance Modeling
	10.5 Disk-based I/O Performance Modeling
	10.6 Systems Performance Evaluation and Modeling
	10.7 Summary

	11 Conclusion
	11.1 Summary
	11.2 Limitations and Outlook on Future Research
	11.3 Concluding Remarks

	A Related Work at a Glance
	Glossary
	Acronyms
	Bibliography

