KIT | KIT-Bibliothek | Impressum | Datenschutz

Applying Bayesian model averaging for uncertainty estimation of input data in energy modelling

Culka, Monika 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Background

Energy scenarios that are used for policy advice have ecological and social impact on society. Policy measures that are based on modelling exercises may lead to far reaching financial and ecological consequences. The purpose of this study is to raise awareness that energy modelling results are accompanied with uncertainties that should be addressed explicitly.

Methods

With view to existing approaches of uncertainty assessment in energy economics and climate science, relevant requirements for an uncertainty assessment are defined. An uncertainty assessment should be explicit, independent of the assessor’s expertise, applicable to different models, including subjective quantitative and statistical quantitative aspects, intuitively understandable and be reproducible. Bayesian model averaging for input variables of energy models is discussed as method that satisfies these requirements. A definition of uncertainty based on posterior model probabilities of input variables to energy models is presented.

Results

The main findings are that (1) expert elicitation as predominant assessment method does not satisfy all requirements, (2) Bayesian model averaging for input variable modelling meets the requirements and allows evaluating a vast amount of potentially relevant influences on input variables and (3) posterior model probabilities of input variable models can be translated in uncertainty associated with the input variable.
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000046377
Veröffentlicht am 12.11.2018
Originalveröffentlichung
DOI: 10.1186/s13705-014-0021-9
Scopus
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Geistes- und Sozialwissenschaften – Institut für Philosophie (PHIL)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2014
Sprache Englisch
Identifikator ISSN: 2192-0567
urn:nbn:de:swb:90-463776
KITopen-ID: 1000046377
Erschienen in Energy, Sustainability and Society
Verlag Springer Fachmedien Wiesbaden
Band 4
Heft 1
Seiten 1-17
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagwörter Uncertainty; Energy modelling; Assessment methods; Bayesian model averaging
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page