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1 Overview and Outline

Miniaturization of information storage devices has been an ongoing technological development

and challenge during the past half-century. Only during the last 10 years the memory storage

density of the SD-cards increased by three orders of magnitude. To keep up with this trend,

sustainable technological advances are needed, to ultimately allow storage of a single bit of

information on a single molecule or on a single atom.

The discovery of molecular complexes demonstrating magnetic anisotropy [6] opened oppor-

tunities for research in this direction. A number of single-molecule magnets (SMM), typically

containing multiple magnetic atoms, were reported [7–13]. In the last five years there have also

been an increasing number of reports on SMMs containing only one magnetic atom, so called

single-ion magnets (SIM) [14–20]. The researchers in this field struggle with the short lifetime

of the magnetization state, which currently reaches only few seconds at temperatures above 3K

[6]. One possible solution to this problem are magnetic centers with a high magnetic anisotropy,

i.e. atoms with high spin-orbit coupling. While most of the SMMs and SIMs utilize 3d transition

metals (TMs) and rare earths, 4d and 5d transition metals are rarely reported in SMM. To the best

of our knowledge, no SIMs were reported with 5d transition metals so far, which is caused by

difficulties to synthesize the 4d and 5d compounds [21] or quenching of the magnetic moment

of 5d TMs by the ligand field [22].

Another approach to single molecule information storage are molecular switches which utilize

the spin-crossover effect (SCO), i.e. change of the spin multiplicity by external means. As

the effect is magneto-mechanical, the two distinct spin states of SCO molecules are strongly

decoupled, and therefore much more stable than the states of SMMs. The major limitation

of the application of SCO molecules as molecular storage devices is the state read-out, which

requires low temperature methods.

In the work presented in this thesis I combine the advantages of the SIMs and the SCO

molecules, in order to circumvent their limitations, by introducing a SCO molecule with a

single 5d TM magnetic center and a graphene nanoflake as the ligand. There is a large number

of publications describing graphene as an appropriate substrate for transition metals [23–31],

on which they exhibit a large magnetic anisotropy [23, 24, 27, 29] and even a structural

bistability [31].

In this thesis I apply density functional (DFT) methods [32] to show that 5d TMs not only exhibit

bistability and spin crossover on the graphene flakes, but also a huge magnetic anisotropy, which

changes the preferred magnetic direction upon the spin crossover, allowing an easy read-out of

the magnetic state. Finally, I show that the switching can be controlled by an external electric

field. Combination of these data suggests that the graphene nanoflakes, which have already been

synthesized [33], decorated by transition metals may be the first viable option for single atom
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magnetic storage at room temperature.

Overall, I investigate three topics in this thesis, related to the electronic and magnetic structure of

nanoscale systems: the first is the investigation of the graphene/transition metal single molecule

switches, which constitutes the main line of research in this thesis.

In the second topic I apply DFT methods to characterize ultrasmall gold nanoparticles (usAuNP).

Ultrasmall gold nanoparticles have a significant application potential in a number of areas: in

medicine [34], biomedical imaging [35–38], catalysis [39–43], cancer therapy and diagnosis [36,

44, 45], sensors [46], and photonic devices [47]. High stability of usAuNP makes them particu-

larly attractive for technological purposes. However not every ultrasmall AuNP exhibits a high

stability. There are a number of concepts, in part in agreement with experiment, which predict

the number of gold atoms that results in extraordinary stable usAuNP. These models are based on

concepts of nanocrystal [48, 49] and superatom complexes [50, 51]. However, as many factors,

including ligand composition, are relevant to the stability of the gold nanoclusters, synthesis of

novel clusters and their characterization remains a very active field [34, 39, 43, 52, 53]. It is

particularly interesting when novel clusters are found to defy previous established rules.

In this thesis I investigate a recently synthesized [Au14(PPh3)8](NO3)4 nanoparticle, which

does not fulfill any of the stability criteria, while it is observed to be experimentally stable at

ambient conditions [2]. This structure does fulfill the superatom criterion, which postulates that

four of the 14 gold atoms must be counted to the electron-withdrawing ligands, if the HOMO

and LUMO have a two-dimensional shape. We utilize DFT to calculate the frontier orbitals and

other properties of the cluster to show that it can be decomposed into subsystems which make

the superatom model applicable and explain its stability.

Since in a number of applications the relevant optical properties of gold nanoparticles depend on

the HOMO-LUMO gap, its prediction plays an important role in the development of novel stable

gold nanoparticles and clusters. Applying DFT methods on a series of usAuNPs we calculate

their band gaps, and compare them with the experimental results in order to elucidate trends in

the HOMO-LUMO gap as a function of particle size.

The third part of this thesis is dedicated to method development to solve the Boltzmann trans-

port equation for electron transport in mesoscopic two-dimensional nanodevices, utilizing the

ensemble Monte Carlo technique [54]. Computer simulations are widely used as an aid to cha-

racterize the properties of electronic circuits, e.g. with the software package SPICE [55]. All

of the essential electronic parameters of the relevant electronic components are stored in so-

called compact models and used to simulate the behavior of a complete circuit or device. The

component-specific compact models are usually parametrized from the experiment. However,

for novel components, such as graphene-based transistors on various substrates, microscopic

models, which can predict the IV and VC characteristics would be of great use. These mo-

dels could reduce the development effort for many experimental academic groups as the task to

produce a sufficiently large number of samples to satisfactory parameterize the corresponding

compact models based only on the experimental data remains a formidable challenge.

Electronic transport in bulk materials can be described using the semiclassical Boltzmann trans-
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port equation, BTE [56]. To solve the underlying equations we choose the ensemble Monte Carlo

technique [54], because it allows for simple implementation of the scattering mechanisms and

provides an easy connection with the underlying physics, which is practical at the development

stage. The novelty of our approach is the flexibility and an extended applicability of the method.

We have implemented our code in the framework of ELMER software package [57], which al-

lows us to utilize its control file principle, giving a possibility to change the material properties

and the device shape without a massive implementation effort in the underlying code.

Thesis Outline

The thesis is structured as follows, taking the three topics into account.

Graphene-based Single Molecule Magnetic Switches

Chapter 2: Introduction into single molecule magnets (SMMs) and spin crossover (SCO)

molecules, material properties of graphene, a literature overview of graphene as a substrate for

transition metal atoms, and an introduction of triangular graphene nanoflakes.

Chapter 3: Density functional theory.

Chapter 4: Magnetic properties of pure flakes; binding energies and magnetic anisotropy of

ruthenium on graphene nanoflakes for different flakes edges, sizes and adsorption sites.

Chapter 5: Binding energies and magnetic anisotropy of 5d transition metal adatoms on armchair

graphene nanoflakes for different flake sizes and adsorption sites. Report of the structural bista-

bility, spin-crossover effect, magnetic anisotropy switching, and the influence of external electric

field on this structures. Proof of the results against intrinsic computational details.

Ultrasmall Gold Nanoparticles

Chapter 6: Density functional analysis of ultrasmall gold nanoparticles.

Electronic Transport in Nanodevices

Chapter 7: Introduction in the Boltzmann transport equation and the Ensemble Monte Carlo

technique. Detailed description of the principles of our simulation of the electronic transport in

nanostructures. Comparison of simulated properties with previously reported values.

Summary and Outlook

Chapter 8: Summary and Outlook
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2 Graphene Nanoflakes as Alternative Ligands for Atomic
Memory Device

2.1 Single Molecule and Single Ion Magnets

One approach to build a single-molecule device capable to store one bit of information are single

molecule magnets (SMMs). They are metal-organic compounds containing a transition metal or

rare earth core, surrounded by an organic ligand hull. An SMM can be magnetized in an external

magnetic field and it will keep the magnetization for at least several hours at sufficiently low

temperatures [58]. A wide range of SMMs was found since the first report in 1993 [6]. While

most SMMs discovered to date contain more than one magnetic atom in the core, recently SMMs

were reported which contain only one magnetic center [20]. A bit of information can be stored

in an SMM similarly to the conventional magnetic storage devices: as a magnetization direction

(i.e. spin up or spin down) along a magnetization axis. The information read-out in an SMM is

accomplished by standard magneto-optical reading techniques [59].

In SMMs with multiple magnetic cores, the two magnetic states with the opposite magnetization

result from the ferromagnetic coupling between the magnetic moments of the single atoms,

which can be described in the first order by the Heisenberg model:

EH =
∑
i,j

−Imimj (2.1)

Here I is the interaction prefactor, positive (negative) for ferromagnetic (antiferromagnetic) cou-

pling, and mi is the projection of the spin magnetic moment of the atom i on the preferred mag-

netization axis. In the ferromagnetic case the energy is minimized when the magnetic moments

of all atoms are aligned in one direction. The state where one or more spins are aligned against

the majority is therefore higher in energy and has a reduced lifetime. Since temperature-induced

spin-flips are unlikely to occur simultaneously on multiple atoms, the probability for a system

to flip the total magnetization is sufficiently low for high I . In order to prevent a collective

rotation of the magnetization axis and, therefore, the spontaneous switching, a functional SMM

requires high magnetic anisotropy, i.e. a strong preference of one magnetization direction. The

ligand field and/or the constellation the neighboring atoms perturbs certain atomic orbitals of

the magnetic atom, which leads to quenching of the orbital magnetic moment in the direction

perpendicular to these orbitals. The spin-orbit coupling aligns the otherwise isotropic spin mo-

ment to the spatial direction along which the orbital magnetic moment is maximum, resulting

in a magnetic anisotropy. High magnetic anisotropy leads to higher barriers between the two

magnetic ground states, and therefore to longer magnetic relaxation times.

In a mononuclear SMM, also referred to as a monometallic SMM or as a single ion magnet
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(SIM), the splitting of the energy levels for different spin states is induced purely by the ligand

field. The major problem of SIMs is the quantum-mechanical mixing of different magnetic

states [60]. It was shown [20] that under certain symmetry conditions the two ground states

with the opposite magnetic moments do not mix, but the lifetimes of these states still reduce the

applicability of SIMs to cryogenic temperatures [20].

2.2 Spin-Crossover Molecules

Another approach to use a single magnetic atom as a single bit storage are spin-crossover (SCO)

molecules. The spin-crossover effect takes place when the spin multiplicity of a molecule

changes under external influence. SCO was initially investigated as a bulk effect, where e.g.

pressure and/or temperature addresses the magnetic state. Recently, SCO effects were also re-

ported for single molecules [61], in which the magnetic state can be addressed by e.g. external

electric field or laser pulses [62].

The molecular magnetic state changes between the low-spin (LS) state, i.e. low number or zero

unpaired electrons, and the high-spin (HS) state, i.e. at least two more unpaired electrons than

in the LS state. Therefore, the length of the magnetic moment can be utilized to store one bit of

information. The advantage of this storage method is that the direction of the magnetic moment

does not play a role, in contrast to the SMM. A single magnetic center is therefore enough to set

up a functional SCO molecule. Apart from this, the SCO effect is a magneto-mechanical effect,

i.e. the distance between the ligand and the magnetic center changes upon the transition. Such

structural change mechanically decouples the two states, making them thermally stable, a great

technical advantage over the SMMs and SIMs.

A major drawback of SCO molecular switches is the read-out procedure, since the LS and HS

state are difficult to distinguish experimentally. Utilizing the mechanical character of the effect

requires a high spacial resolution: a typical change in the interatomic distance is only about

0.3 Å [63]. Conductance measurements can also distinguish the states, but again only at low

temperatures [61].

2.3 Combining a Single Ion Magnet with a Spin-Crossover Molecule

Even through the mechanism of information storage is quite different, SIMs and SCO molecules

share a number of common advantages and limitations. They are chemically synthesized [64,

65], which allows in principle large scale production with perfect reproducibility; they have a

high molecular symmetry, allowing the analysis and tuning of their properties. Unfortunately,

they are restricted to 3d transition metals (TMs) and rare earths, as the magnetic moment of

larger 4d and 5d TMs is known to be quenched by the ligand field [22].

Major differences between SIMs and SCO molecules lie in the stability of the states, and the

feasibility of the magnetic state read-out. While the states of a single ion magnet can be read-out
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Figure 2.1: Atomic structure of graphene. Carbon atoms are arranged in a honeycomb lattice.

relatively easily, they are highly instable at higher temperatures. The states of SCO molecules, on

the other hand, are thermally stable, but their read-out is only feasible at low temperatures.

To circumvent these limitations, we suggest that a single ion magnet, which would also switch

its magnetization direction upon spin crossover, could combine the stability of SCO molecules

with a read-out feasibility of SIMs. To avoid any further misunderstanding, we point out that by

the magnetization direction switching we do not mean the flip from spin "up" to spin "down",

but rather a rotation of the preferable magnetic axis by a certain easy measurable angle.

An important property of such kind of spin crossover single ion magnet would be a high mag-

netic anisotropy energy, MAE, which stabilizes the preferred magnetization axis against thermal

fluctuations. While MAE is generally defined as the energy dependence of the magnetic mo-

ment as a function of its direction, here we use the term for the energy difference between the

most and the least energetically preferable magnetization direction. Apart from the ligand field,

the strength of the single atom magnetic anisotropy depends on its spin-orbit coupling, which

grows with the atomic number, making 4d and 5d transition metals good candidates to start the

investigation. Since the conventional organic ligands quench the magnetic moment of 4d and 5d

TM atoms [22], finding an alternative, less interacting ligand was crucial for the project at hand.

Here we focus on graphene and its spatially limited derivatives.

2.4 Graphene: a True Two-Dimensional Material

Graphene is a single-atom thick material comprised of carbon atoms, which are arranged in

a honeycomb lattice (see Figure 2.1). Each carbon atom is connected to three other carbon

atoms with σ-bonds formed of sp2-hybridized atomic orbitals, with the fourth valence electron

contributing to the delocalized π-cloud, making it possible for considerable electric current to

flow in such a system. Basically, well-known graphite, which is used in pencils, is a vast bulk

of graphene sheets stacked upon each other in alternating ABAB sequence and held together by
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van der Waals forces.

Due to its two-dimensional structure, a number of physical properties of graphene are superior

compared to conventional materials, in particular high intrinsic carrier mobility, thermal conduc-

tivity and mechanical stability [66]. Combined with a light transmittance of 97.5% in the infrared

to visible range [67], graphene seems to be the candidate for transparent electronic circuits, such

as touch screens used nowadays in almost every portable electronic device.

We will first introduce a classification of carbon-based structures. Since the terminology of

graphene-based materials is not unique, I will use the terms as they are suggested in the editorial

letter of the journal Carbon in October 2013 [68]. The natural three-dimensional arrangements

of pure carbon are diamond and graphite. The first is perfectly insulating because each of the

sp3 hybridized carbon atoms is connected to four other carbon atoms, leaving no free electrons

available for electric current. The latter, the graphite, consists of carbon sheets, in which sp2

hybridized carbon atoms are connected via σ-bonds in xy-plane, having three nearest neighbors

each. The sheets are held together in z-direction by van der Waals forces. Graphite is more

common in nature as it is the energetically most preferable arrangement of carbon. Special, but

not fully exclusive to carbon is that it also exists as a stable two-dimensional solid. According

to the editorial letter mentioned above, each carbon sheet in the graphite structure, can be called

graphene layer, a term used since the 1980s. If we dissolve the van der Waals interaction holding

graphite together and isolate the topmost graphene layer, it would be called just graphene, or

suspended graphene. Since nowadays people use the term graphene also for few-atoms thick

carbon layers (actually multilayer graphene), a more precise term for one-atom thick sp2 carbon

planes would be single-layer graphene. Further in this thesis, "graphene" is used for "single-

layer graphene", as suggested in [68]. Single-layer graphene, restricted in one direction, is called

graphene (nano-) ribbon. The prefix nano is used for graphene ribbons which have the width

of less than 100 nm. A graphene (nano-)ribbon can also be rolled into a tube, and constitute a

carbon nanotube (CNT). Carbon nanotubes can be single-layer or multi-layer, but they exceed

the scope of this thesis. An island of graphene is called graphene sheet. It can be called graphene

nanosheet, if its radius is smaller than 100 nm, or graphene quantum dot, if it is smaller than

10 nm. In this thesis we will use the term single-layer graphene nanoflake, graphene nanoflake,

or just flake, by analogy with the term graphite nanoflakes suggested for multilayer-graphene

islands less than 100 nm.

2.4.1 Atomic Structure

The graphene crystal lattice is spanned by two unit vectors: a
2
(√3

1
)

and a
2
(√3
−1
)

with the lattice

constant a = 2.46 Å. The elemental cell contains two atoms, which sit at positions
(0
0
)

and

a
(1/√3

0
)
. The nearest neighbor distance is therefore a√

3 = 1.42 Å. Carbon atoms in graphene

are sp2-hybridized. The three sp2 orbitals lie in plane and form an angle of 120o, while the 2pz
orbital is perpendicular to that plane. The overlapping sp2 orbitals of the neighboring atoms

form bonding σ-bonds, while the 2pz orbitals build a π-bond, which has weaker binding energy

than the σ-bonds. The π-bonds form energy bands, which can be described using for example

the tight-binding model.
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Figure 2.2: Band structure of graphene. The conduction band (upper surface) and the valence band
(lower surface) meet at six K-points arranged hexagonally. The dispersion relation is linear in proximity
of the K-points (inset). Taken from [69].

2.4.2 Electronic Properties

Graphene belongs to the so-called semi-metals: although it has no electronic band gap, the

density of states at the Fermi level is zero. The bottom of the conduction band is not at the

Γ-point, as in most semiconductors, but at the K-points (see Figure 2.2). There are six K-

points in the first Brillouin zone, which, due to the hexagonal symmetry, can be subdivided into

two groups, K and K’. The dispersion relation at the K-points is linear, which is quite unique

for graphene. The Hamiltonians HK
0 and HK′

0 for the electrons in the vicinity of K and K’

respectively can be described by the following equations:

HK
0 = vF σ · p

HK′
0 = vF σ′ · p

(2.2)

where p is the two-dimensional momentum vector, σ and σ′ equal to (σx, σy) and (−σx, σy)
respectively, with the Pauli matrices σx and σy, and vF is the prefactor called Fermi velocity. The

equation for HK
0 is the Dirac-Weyl equation, which is a special case of the Dirac equation for

massless particles and therefore usually used to describe e.g. neutrinos. The energy eigenvalues

of the resulting matrices are

E = ±~vF |k| (2.3)

with the wavenumber k = p
~ and the Planck’s constant ~ The positive and negative energies

are the solutions for electrons and holes respectively. The i-th component of the electron group

velocity is defined as

(vg)i = ∂E(k)
~∂ki

(2.4)

which is equal to vF in the vicinity of the Fermi level, allowing the electrons to move with the

constant group velocity of vF ≈ c/300. This is one of the reasons for the high mobility and ther-
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mal conductivity of graphene. Another consequence of the linear dispersion is a strong response

of carrier density to applied gate voltage. These properties theoretically allow graphene-based

electronic devices to work at THz frequencies and make it a very attractive material candidate

for the communication and computing devices. Since graphene is a quite stable membrane with

a free electron gas, it can easily be used for further functionalizations.

2.5 Graphene as a Substrate

The idea of using graphene as an adsorbent for magnetic atoms was motivated by works of Xiao

et al. in which they showed theoretically, that Co [23] and Fe, Ni, Ru, Rh, Pd [24] dimers on

benzene exhibit high magnetic anisotropy, and expect similar behavior on graphene substrate.

Since then a lot of research was done on transition metal (TM) atoms on graphene. For example,

Mao et al. used density functional theory to calculate adsorption of Mn, Fe and Co on graphene.

They demonstrated modification of graphene electronic structure by the adatoms [25]. It was

shown that the hollow site (over the middle of a carbon hexagon in honeycomb lattice) is the

most stable position for these three elements. Cao et al. presented a theoretical work on Fe, Co,

Ni and Cu atoms and dimers on graphene and showed that an effective modulation of graphene

properties can be achieved by transition metal adsorption [26]. Sargolzaei theoretically investi-

gated the binding energies and the magnetic anisotropy of 3d transition metal (from Sc to Ni)

adatoms on graphene and benzene [27]. Zolyomi et al. provided a broad theoretical study of

adsorption energies of 4d and 5d series transition metals on graphene [28], showing that "the

elements with low or near-half occupation of the d-shell bind strongest" to graphene. Zhang

et al. predicted tunable magnetic anisotropy of 5d transition metal adatoms on graphene, which

varies in the range of several meVs [29]. Blonski et al. theoretically investigated platinum sin-

gle atoms and dimers on graphene deposited on Ni(111) surface, showing an anisotropy of the

dimers [30].

Alongside with reports of strong magnetic anisotropy and good adsorption properties, the crucial

point which makes graphene an outstanding candidate for a single molecule SCO magnet is the

spin-crossover of Co atoms on graphene reported in a theoretical work by Virgus et al. [31]. It

indicates a possibility of a similar behavior for 4d and 5d transition metals.

Positioning a large number of magnetic adatoms on graphene sheet in order to build a molecular

storage device potentially can lead to a number of unwanted effects. First, shared substrate and

regular distribution can modify the electronic state of the adatoms and lead to coupling between

their magnetic moments destroying the stored information. Second, the magneto-mechanical

character of SCO may exhibit less stable states and lead to moving of the adatoms along the

surface and finally to their clustering. Third, the adatoms show a strong affinity toward graphene

defects, as was shown both experimentally and theoretically by Cretu et al. [70], which can lead

to both modification of the electronic properties and clustering of the adatoms. At the same

time, graphene edge is an inevitable part of a real graphene sheet and, considering the edge as

an ultimate defect, can also attract the adatoms.

To avoid these complications, we consider utilizing graphene nanoflakes rather than infinite
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Figure 2.3: The structure of two regular types of graphene edge. Red and blue dots represent carbon
atoms in two sublattices. In the case of armchair edge carbon atoms of both sublattices are present at the
very edge. In the zigzag case carbon atoms of only one sublattice are terminating the sheet, which leads
to a breaking of the sublattice symmetry.

graphene. As reported by Treier et al. [33] graphene flakes of controllable size can be produced

in large amounts using bottom up techniques. Usage of nanoflakes can 1) decouple the magnetic

centers, 2) prevent the clustering and 3) introduce the "defect" per construction, forbidding fur-

ther modification of the electronic state of the adatoms. Since the aim of this work is a novel

kind of SCO molecules, the fact that graphene nanoflakes constructed of less than hundred car-

bon atoms are basically large conjugated molecules and can act like a ligand hull makes them

much more attractive candidates than infinite graphene.

2.6 Triangular Graphene Nanoflakes

Considering that the majority of studies on magnetic properties of TM adsorbed onto graphene

neglect the edge, a study of TMs on graphene nanoflakes is even more promising, as it provides

an opportunity to investigate the influence of graphene edge on properties of the adatoms. There

are two regular edge types graphene lattice can have: armchair and zigzag (see Figure 2.3). The

simplest geometrical shape maintaining one edge type on all sides of a graphene flake is the

triangular shape. Graphene nanoflakes of this shape are used throughout the study. We vary

the flake size as the parameter that effectively tunes the dimensionality of the system from zero

(benzene) to two dimensions (graphene) [3].

The structures of the flakes investigated in this work are shown in Figure 2.4. They are labeled

by the number of carbon atoms: the flakes with armchair edges are C18 (triphenylene), C36

(tribenzo[fgh,pqr,za1b1]trinaphthylene) and C90, and the flakes with zigzag edges are C33 and

C97. The labels are not to be confused with the chemical structure formula, since the flakes also

contain hydrogen to saturate the carbon atoms at the edges. The complete chemical formulas

are: C18H12, C36H18, C90H30, C97H27, and C33H15. Following this nomenclature, benzene

and an infinite graphene sheet are labeled with C6 and C∞ respectively.

The following magnetic atoms are investigated in this work: Ru, as a representative example
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Figure 2.4: The atomic structures of the investigated graphene nanoflakes and the benzene molecule. The
labels accord to the number of carbon atoms (black spheres). The edges of the flakes are saturated with
hydrogen (white spheres). The flakes C18, C36 and C90 have armchair edges. C33 and C97 have zigzag
edges. Adsorption sites with distinctive symmetry are labeled with blue numbers, using the following
scheme: Apex site is always 1; Center site, or the site closest to the center (in the case of C97) is always
2; Edge site (the site closest to the middle of the edge for C33 and C97) is always 3; the rest is numbered
in ascending order starting from the apex of the triangle.

of 4d TMs, and the elements of the 5d TM row from Hf to Ir. According to [28] the preferred

position for Ru, as well as for all 5d TMs from Hf to Os is the hollow site, i.e. over the center of a

carbon hexagon, compared to the top site, i.e. over a carbon atom, and to the bridge site, i.e. over

the middle of a carbon-carbon bond. For Ir the bridge site was found to be equally favorable as

the hollow site [28]. The hollow site was used as an adsorption site throughout the study.

Since the finite size of the flakes breaks the symmetry between the possible adsorption sites,

compared to graphene, all sites with different symmetries were investigated, as indicated in

Figure 2.4. The sites of higher symmetry are at the apex of the triangle, labeled as 1 in Figure 2.4,

in the center, labeled as 2 in Figure 2.4 (on C97 flake there are three sites around the flake center,

so that the symmetry is lower compared to C90), and in the middle of an edge, labeled as 3 in

Figure 2.4. We call them Apex, Center, and Edge respectively. All other sites are labeled

according to the Figure 2.4.
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3 Density Functional Theory

The density functional theory (DFT) is a method for determining the ground state of a many-

body system, more specifically of solids, molecules, and even atoms. As the name suggests, the

concept of a functional of spatially distributed electron density is used throughout the theory.

Since its inception in 1964, DFT has been very popular in solid state physics; and after im-

provements of treatment of exchange and correlation (see below) in the 1990s, it got established

even in quantum chemistry and chemical physics. For the development of DFT Walter Kohn,

although physicist by education, was awarded a Nobel Prize in chemistry in 1998.

Before DFT was invented, the de facto calculation method for the electronic structure in quantum

chemistry was Hartree-Fock (HF) [71]. Within HF the many-body, multi-electron Schrödinger

equation is approximated to a set of single-electron wave functions moving in a self-consistent

mean field created by all other electrons in the system. Thus, the stationary N -electron wave

function depends on 3N variables (the spatial coordinates for each of the constituting elec-

trons), which rendered it computationally expensive with increasing number of electrons in the

system.

The main advantage of DFT over HF is that it describes the electronic system in form of an

electron density functional, significantly reducing the number of variables regardless the size of

the system. The most important principle of the density functional theory is Hohenberg-Kohn

Theorems, which are described below.

3.1 Hohenberg-Kohn-Theorem

The Hohenberg-Kohn theorem, published in 1964, is an, expressed more generally, exact theory

for a system of interacting electrons (here Born-Oppenheimer approximation is assumed to be

applicable for the system at hand), where the Hamiltonian can be written as

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) + 1
2
∑
i 6=j

e2

|ri − rj |
(3.1)

with reduced Planck’s constant ~, electron mass me, external potential Vext(ri), electron charge

e, and electron position r.

P. Hohenberg and W. Kohn formulated two theorems. The first Hohenberg-Kohn theorem can

very intuitively be described by a schematic in Figure 3.1. It says: For any system of interacting

electrons in an external potential Vext(r), the potential Vext(r) is determined uniquely, except

for a constant, by the ground state electron density n0(r) [32].
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Figure 3.1: A schematic of the Konh-Sham approach [32].

As a consequence, all states, which are determined by the Hamiltonian, that varies only by the

external potential, are completely determined by the ground state density n0(r). Therefore, also

the total energyEtot[n] of the system is also a functional of n0(r), as well as its parts: the kinetic

energy T [n] and the potential energy Eext[n] +ENe[n] +Eee[n], with the potential energy Eext
and ENe of electrons in the external potential Vext and in the potential of the nuclei VNe, and the

electron-electron interaction energy Eee. Since the potential of the nuclei VNe and an external

potential Vext behave in very similar fashion, they both can be represented by VNe (now it can

be read as [N]uclei and [e]xternal). The total energy can therefore be written as:

Etot[n] = Eext[n] + ENe[n] + Eee[n] + T [n] =

=
∫
n(r)VNe(r) + Eee[n] + T [n]

=
∫
n(r)VNe(r) + FHK [n]

(3.2)

with Hohenberg-Kohn functional FHK [n] = Eee[n]+T [n], explicit form of which is completely

unknown, except for the classical part of the electron-electron interaction energy J [n]

Eee = 1
2

∫ ∫
n(r1)n(r2)

r12
dr1dr2 + Encl = J [n] + Encl[n] (3.3)

with non-classical contributionEncl[n] responsible for electron exchange and correlation energy.

Hohenberg-Kohn functional in its commonly used form is:

FHK = J [n] + Encl[n] + T [n] (3.4)

The second Hohenberg-Kohn theorem says thatEtot[n] delivers the lowest energyE0 if and only

if the density n is the true ground state density n0.

E0 ≤ Etot[n] = ENe[n] + FHK [n] (3.5)

Since the proof of Hohenberg-Kohn theorem is not relevant for the topic of this thesis, and

it can easily be found in any book on DFT, e.g. [72], it will not be presented here. While

Hohenberg and Kohn proved that the properties of the whole system depend only on the ground

state density through a universal functional FHK [n], their theorem provides no hints on how

the functional could look like, leaving it an interesting theoretical finding with initially little

practical use. The way how to determine the ground state density came a year later by W. Kohn
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and L. J. Sham [73].

3.2 Kohn-Sham Approach

The Kohn-Sham approach simplifies the solution of the Schrödinger equation assuming that the

ground state density of a many body system n can emerge from an auxiliary system of non-

interacting particles. With ϕi(r, σ) being single-particle wave functions of the non-interacting

particles with spin σ, the density is calculated as

n(r) =
N∑
i

∑
σ

|ϕi(r, σ)|2 (3.6)

Independent particles moving in an auxiliary potential Vaux follow the Schrödinger equa-

tion

[− ~
2m∇

2 + Vaux(r)]ϕi(r, σ) = εiϕi(r, σ) (3.7)

and have the total energy

ES [n] = TS [n] +
∫
Vaux(r)n(r)dr (3.8)

with the kinetic energy of non-interacting particles

TS [n] = − ~
2m

N∑
i

< ϕi|∇2|ϕi >= − ~
2m

N∑
i

∑
σ

∫
ϕi(r, σ)∇2ϕi(r, σ)dr (3.9)

where the subscript S stands for "single-particle". A direct formulation of TS in terms of n is not

known, but the expression T [n] is still correct, since, according to the Hohenberg-Kohn theorem,

the ground state of the system, including the ground state wave functions, is a functional of n:

ϕi = ϕi[n]. According to the second Hohenberg-Kohn theorem, this functional Etot[n] has to

be minimized in order to find the ground state density n0. Solving the Euler-Lagrange equations

with a boundary condition N =
∫
n(r)d(r) and the Lagrange multiplier λ, one obtains

0 = δ

δn(r)

[
ES [n]− λ

(∫
n(r)dr−N

)]
= δTS [n]

δn(r) + Vaux(r)− λ (3.10)

Keeping this equation for an auxiliary system in mind, we focus our attention to the system of

interacting particles.

Kohn and Sham reformulated the Eq. 3.4, splitting the kinetic term T [n] in two parts. First part

is the classical kinetic energy TS [n] (see Eq.3.9) of a system of independent particles with the

density n. An expression for the second part TC [n] = T [n] − TS [n] (’c’ for ’correlation’) is

unknown, so Kohn and Sham combined it with also unknown Encl[n] to a so-called exchange-

correlation potential EXC [n], which is therefore

EXC [n] ≡ (T [n]− TS [n]) + (Eee[n]− J [n]) (3.11)

.
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Using this reformulation, the number of unknown terms in Eq.3.2 is reduced to EXC :

Etot[n] = TS [n] + ENe[n] + J [n] + EXC [n]

= −1
2

N∑
i

∫
< ϕi(r1)|∇2|ϕi(r1) > dr1

−
∫
VNe(r)n(r1)dr1

+ 1
2

∫ ∫
n(r1) 1

r12
n(r2)dr1dr2

+ EXC [n]

(3.12)

Minimizing this energy, again using Euler-Lagrange equations, one gets

0 = δ

δn(r)

[
Etot[n]− λ

(∫
n(r)dr−N

)]
= δTS [n]

δn(r) + δENe[n]
δn(r) + δJ [n]

δn(r) + δEXC [n]
δn(r) − λ

= δTS [n]
δn(r) + VNe(r) +

∫ 1
|r− r2|

n(r2)dr2 + δEXC [n]
δn(r) − λ

(3.13)

If now we compare this equation with Eq.3.10, it can be seen, that one can define

Vaux(r) = VNe(r) +
∫ 1
|r− r2|

n(r2)dr2 + δEXC [n]
δn(r) , (3.14)

and then the auxiliary system of non-interacting particles can deliver the same ground state den-

sity, as the original interacting system, as presented in Figure 3.1. The single-particle equation

to solve is

εiϕi(r, σ) = [− ~
2m∇

2 + Vaux(r)]ϕi(r, σ)

= [− ~
2m∇

2 + VNe(r) +
∫ 1
|r− r2|

n(r2)dr2 + δEXC [n]
δn(r) ]ϕi(r, σ)

= [− ~
2m∇

2 + VNe(r) +
∫ 1
|r− r2|

n(r2)dr2 + VXC(r)]ϕi(r, σ)

(3.15)

In the last line we replaced δEXC [n]
δn(r) with VXC(r) = d(n(r)εXC(n(r))

dn , under assumption

that

EXC [n] =
∫
n(r)εXC(n(r))dr (3.16)

where εXC(n) is the "exchange and correlation energy per electron of a uniform electron gas

density n"[73]. It can be shown [74] that this assumption 3.16 is valid for sufficiently slowly

varying n(r).

Now, since Vaux(r) in Kohn-Sham equations 3.15 depends on the density, these equations have

to be solved self-consistently, in combination with Eq.3.6. As being computationally quite de-

manding and non-trivial to optimize, this step is usually done by a DFT-software package.
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3.3 Density Functionals

Generally speaking, the exact expression for EXC is unknown, and in last 30 years a plethora

of different numerical, approximative formulations have been suggested [75–78]. The above

mentioned form EXC [n] =
∫
n(r)εXC(n(r))dr is one possible (approximative) formulation,

called local density approximation (LDA), because here εXC depends only on the density at

the position r, or locally. Results, delivered by LDA were astonishing good for many systems

in solid state physics, especially considering the fact that it was already mentioined by Kohn

and Sham [73], but they themselves were rather reserved regarding its possible usefulness. In

an extension of LDA, called local spin-density approximation (LSDA), the energy density ε

depends on n↑ and n↓, separate electron densities for spin-up and spin-down electrons [73,

79].

Generally considered as more precise form for EXC is delivered by the Generalized Gradient

Approximation (GGA) for EXC , commonly used nowadays. Here, except for the spin density

n↑,↓, ε also depends on its gradient:

EGGAXC =
∫
n(r)ε(n↑(r), n↓(r),∇rn↑(r),∇rn↓(r)) (3.17)

The next advanced widely used density functional type is a hybrid functional (without abbrevia-

tion). It uses another term in the EXC – the Hartree-Fock exact exchange function EHFX :

EHFX = −1
2
∑
i,j

∫ ∫
ϕ∗i (r1)ϕ∗j (r1) 1

r12
ϕi(r2)ϕj(r2)dr1dr2 (3.18)

The hybrid functional is a linear combination of EHFX and any other known density functional,

e.g. EGGAXC , weighted with coefficients α, which are usually fitted to experimental data, or theo-

retically obtained using more sophtisticated methods. A simple example would be:

EHybridXC = αEHFX + (1− α)EGGAXC (3.19)

There are also more sophisticated hybrid functionals, for example the widely used B3-LYP

(Becke, three-parameter, Lee-Yang-Parr) functional:

EB3−LY P
XC = ELSDAX +α0(EHFX −ELDAX )+αx(EGGAX −ELDAX )+ELDAC +αc(EGGAC −ELDAC )

(3.20)

Where the GGA exchange EGGAX and correlation EGGAC functionals were developed by, re-

spectively, Becke [76], and Lee, Yand and Parr [80], and the LDA correlation functional ELDAC

was developed by Vosko, Wilk and Nusair [81]. The LDA exchange here is the Slater exchange

functional[76] (in atomic units):

ELSDAX [n] = −3
2

( 3
4π

)1/3∑
σ

∫
n(r, σ)4/3dr (3.21)
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3.4 Two-Component Density Functional Theory

In order to calculate the magnetic anisotropy, magnetization direction ~M of the system has to be

defined. It can be calculated from the magnetization density ~m(r), which is a three-dimensional

vector field (note that both ~X and X are indicators that X is a vector), and is defined in terms of

two-component wave functions

ϕi(r) =
(
ϕ↑i (r)
ϕ↓i (r)

)
(3.22)

where ϕ↑i (r) and ϕ↓i (r) are complex spin up and spin down components of the wave function

ϕi(r). Using the Pauli matrices

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
(3.23)

the vector field ~m(r) is defined as

~m(r) =
∑
i

ϕi(r)†~σϕi(r) (3.24)

The magnetization direction M of the whole system is obviously

~M =
∫
~m(r)dr (3.25)

The density n(r) of the system in this terms is defined the same way as before (see Eq. 3.6) with

a note, that ϕi(r) is now a two-dimensional vector with two complex components:

n(r) =
N∑
i

|ϕi(r)|2 =
N∑
i

ϕ†i (r)ϕi(r) (3.26)

Now, we go back to the Kohn-Sham approach, and see that the only spin-dependent component

in the total energy (Eq. 3.12)

Etot[n] = TS [n] + ENe[n] + J [n] + EXC [n], (3.27)

is EXC [n], which is now a functional of two spin densities, while for the other components

the two spin-densities are decoupled. The two spin-densities can be replaced my the total spin

density n and the magnetization density ~m, so that EXC = EXC [n,m].

The two-component Kohn-Sham equations get the following shape:

εiϕi(r) = [− ~
2m∇

2 + VNe(r) +
∫ 1
|r− r2|

n(r2)dr2 + VXC(r) + bXC(r)]ϕi(r, σ) (3.28)

with the two-component wave function ϕi(r), and an additional functional derivative

bXC(r) = −δEXC [n,m]
δ ~m(r) (3.29)
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Same as for one-component Kohn-Sham equations, with the choice of a proper functional

EXC [n,m], the equation system can be solved self-consistently, which was done in the scope

of my work by the quantum-mechanical software TURBOMOLE [82].

In TURBOMOLE the wave function ϕi(r) is represented by a basis set of Slater-type orbitals.

Large basis sets give a better approximation to the real wave functions. Small basis sets allow

smaller calculation times, and can be used for preliminary results or for initial calculations,

bringing the density faster to the desired shape before using the large basis sets. To start self-

consistent calculations, an initial guess is needed. Usually a Hückel guess [85] is used, an

approximation based on tight-binding model.

3.5 Determining the Magnetic Anisotropy

The preliminary two-component calculations on the underlying system showed, that the con-

vergence to the state of the true magnetic direction was too CPU-time intensive, as we were

observing very small variations of the energy with the changing magnetic direction within few

degrees. Additionally, to determine the magnetic anisotropy energy, one has to determine the

energy of the system state with magnetic moment pointing in a reference direction, which can be

chosen arbitrary (usually this is one of the symmetry axes of the system). Running DFT calcula-

tion with the initial magnetization in a reference direction (which is not necessarily representing

the minimum energy of the system), can often lead to the relaxation of the system in another

magnetization direction, giving a wrong reference energy.

As a solution to both problems, the following technique was applied. First, a usual one-

component calculation was carried out. When it was well converged, the wave functions were

projected on a two-component wave function with the same density n. A two-component

calculation requires an initial guess for the magnetization direction. To calculate the magnetic

anisotropy, two reference magnetization directions are chosen as an initial guess for two calcu-

lations on a system with the same density n. The relaxation to a different magnetic state was

prevented without modifying the DFT code, by increasing the damping coefficient.

Now we consider which directions can be taken as reference. On a graphene layer, a magnetic

adatom with a magnetic anisotropy can have a magnetic moment pointing either perpendicular

to the carbon plane (the out-of-plane magnetization), or parallel to the carbon plane (the in-plane

magnetization). In the latter case, all in-plane magnetization directions are equivalent, as long

as the substrate is infinite, due to its symmetry (or rather three directions are degenerate as the

graphene sheet still has a locally non-uniform structure, i.e. the atomic structure, unlike an ideal

2D sheet). The magnetic anisotropy energy EMAE could be defined as

EMAE = Eout−of−plane − Ein−plane (3.30)

In the case of a finite graphene flake with an adatom above one carbon ring, the in-plane sym-

metry is much stronger broken by the edges and the three-fold symmetry is lifted. Among all
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possible magnetization directions, there has to be, usually only one, preferred in-plane direc-

tion and, of course, one least favorable in-plane direction. If we call the corresponding energies

Ein−plane,min and Ein−plane,max, we can define a second anisotropy energy, so-called in-plane

anisotropy energy EIP which would be valid only for non-infinite substrate:

EIP = Ein−plane,max − Ein−plane,min (3.31)

In order to avoid any misunderstandings, we call the anisotropy energy defined in the previous

paragraph the in- vs. out-of-plane anisotropy energy EIOP and define it as

EIOP = Eout−of−plane − Ein−plane,min (3.32)

3.6 Grimme Dispersive Correction

3.6.1 DFT-D

The local density functionals, like GGA and LDA, are unable to take into account the long-range

interactions, such as van der Waals (dispersive, vdW) interaction. To include the vdW interac-

tion, Stefan Grimme, convinced [86] that rigorous non-empirical approaches would necessarily

end up in very complex and numerically intensive methods, introduced in 2004 an empirical

dispersive (DFT-D) correction to the energies calculated directly with DFT or HF:

EDFT−D = EDFT + Edisp (3.33)

The correction Edisp is calculated as follows [86]:

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

Cij6
R6
ij

fdmp(Rij) (3.34)

with the number of atoms in the system Nat, the dispersion coefficient Cij6 for atom pair ij, the

inter-atomic distance Rij , the global scaling factor s6 and the damping function fdmp(Rij) to

avoid near-singularities at small distances. fdmp is defined as:

fdmp(Rij) = 1
1 + e−β(Rij/R0,ij−1) (3.35)

where R0,ij is sum of the vdW radii of both atoms within the pair and the prefactor β = 23.0
is determined from the requirement fdmp(Rij = 1.2R0,ij) = 0.99, as proposed in [87]. The

vdW radii are derived from the theoretical calculations by multiplying the radius of the 0.1 au

isosurface of the electron density of the atoms, calculated by using the restricted open-shell

Hartree-Fock (ROHF) with TZV basis set, with an empirical factor lr = 1.22.

The dispersion coefficients Cij6 are calculated from the atomic C6 as follows:

Cij6 = 2 Ci6C
j
6

Ci6 + Cj6
(3.36)
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The C6 coefficients are taken from [87], but are averaged over the hybridization states (in [87]

different C6 coefficients are introduced, e.g. for carbon in sp3, sp2 and sp hybridization states)

to improve the generality of the correction.

The global scaling factor s6 depends on the used exchange-correlation functional, and is deter-

mined in [86] using a "fit-set" of molecules.

3.6.2 DFT-D2

Two years later Grimme published an improved version of the DFT-D, called DFT-D2 [88]. It

still utilizes Equation 3.34, but certain parameter modifications were included to improve the

computed energies and inter-atomic distances, and expand the applicability of the correction to

a larger part of the periodic table of elements.

The factor lr used for the determination of the vdW radii is set to lr =1.10. The prefactor β

used in the damping function (see Equation 3.35) is reduced to β =20. A major change is the

determination of the dispersion coefficients Cij6 , which is calculated as

Cij6 =
√
Ci6C

j
6 (3.37)

in DFT-D2, which required refitting of the scaling factors s6.

The atomic C6 coefficients are also redefined in DFT-D2 [88] as

Ci6 = 0.05NIipαi (3.38)

with the atomic ionization potential Ip and the static dipole polarizability α, calculated using the

DFT with PBE0 hybrid exchange-correlation functional. Depending on the row of the periodic

table, the number N acquires the values 2, 10, 18, 36, and 54 for atoms from rows 1-5.
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4 Ruthenium as a Magnetic Center on Graphene
Nanoflake-Based Single Ion Magnets

In order to construct a functional single molecule switch, as it was introduced in Chapter 2, we

consider graphene nanoflakes as ligands for a single transition metal (TM) atom as magnetic

center. There is a number of studies on TM atoms adsorbed on graphene-based structures [23–

31] reporting good adsorption properties and large magnetic anisotropies [23, 24, 27, 29], which

could be utilized e.g. to build a single ion magnet (SIM). In our study we consider using 4d TMs

as magnetic centers, because the spin-orbit coupling of 4d TMs is expected to be high enough

to provide a significant anisotropy. Among the 4d TMs ruthenium (Ru) was chosen for a case

study, as this element is isoelectronic to iron, which is one of the most widely used elements in

single molecule magnets [89–93] and spin-crossover molecules [22, 61, 94–97].

Considering that the edge of graphene is also an inevitable part of experiments, here we inves-

tigate the influence of the graphene edge on the adsorption and magnetic properties of Ru on

triangular graphene nanoflakes, which is in clear contrast to the previous studies that present,

to the best of our knowledge, either infinite graphene sheet or a single benzene ring as adsor-

bent. For Ru on different adsorption positions (sites) on the zigzag flakes C33 and C97 and the

armchair flakes C36 and C90 (introduced in Figure 2.4) we calculate the binding energy Eb, the

magnetic moment m and the magnetic anisotropy energies EIP and EIOP .

4.1 Magnetic Properties of Pure Graphene Nanoflakes

We start with an investigation of influence of both edge types on the electronic and magnetic

properties of non-decorated (pure) triangular graphene nanoflakes. It is known [98] that trian-

gular zigzag nanoflakes are magnetic. This can, further, lead to instability of the system in the

given shape. To investigate this question, DFT calculations were done on pure armchair-edged

and zigzag-edged graphene flakes C90 and C97. Their calculated spin densities are shown in

Figure 4.1.

The zigzag flake shows a strong magnetic moment of 7 µB, where µB is Bohr magneton (1 µB is

the magnetic moment of one unpaired electron). The state of the flake is ferrimagnetic: the total

magnetic moment of C atoms is 12.6 µB in one sublattice and −5.6 µB in the other sublattice,

summing up to 7.0 µB. Additional calculations on the zigzag flake 1 show that if the zigzag flake

is forced to a state with magnetic moment of 1 µB, the total energy is 1.237 eV higher, indicating

the strong stability of the 7 µB state.

1Calculation details: BP86 [76, 77, 81, 99, 100] exchange-correlation functional and the dhf-TZVP-2c two-
component basis set
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Figure 4.1: The structure and the spin density of triangular nanoflakes C90 with armchair (a) and C97
with zigzag (b) edge type. The carbon atoms and the hydrogen atoms are represented by black and white
spheres respectively. The spin density is the local charge density difference between spin-up and spin-
down charge densities. It is shown as an isosurface at the value of 0.003 e/a0

3 (blue) and −0.003 e/a0
3

(red) with electron charge e = 1.602× 10−19 C and the Bohr radius a0 = 5.292× 10−11 m. The
zigzag flake shows a clear intrinsic magnetic moment, with a magnetization asymmetry between the two
graphene sublattices and magnetization being strongest at the edge. The armchair flake shows no intrinsic
magnetic moment.

Two-component calculations are also performed in order to check the magnetic anisotropy and

a possible non-collinearity of the magnetic moments of single carbon atoms. They show that

all atomic magnetic moments in the system are aligned along the same axis and that there is

no difference in the energy if this axis is rotated by 90 degrees (from out-of-plane to in-plane

direction with respect to the flake plane).

The high magnetic moment of triangular zigzag flakes can be explained by considering the

symmetry of this flake. Since the honeycomb structure of graphene has two sublattices, for

atoms at the positions (0;0) and ( 1√
3 ;0) in the elemental cell respectively, a broken symmetry

between them leads to magnetic moment, according to the theorem of magnetism in a bipartite

lattice at half filling by Lieb [101]. The magnetic moment of 7 µB exactly equals the difference

of atom numbers between the two sublattices. The carbon atoms at the very edge belong to the

same sublattice and have the same magnetization direction (blue spin density in Figure 4.1b),

while the other sublattice is in minority and has the opposite magnetization (red spin density in

Figure 4.1b). In the case of armchair triangular flake, the symmetry between the sublattices is

preserved, leading to zero magnetic moment.

4.2 Binding Energies

To characterize the adsorption properties of single ruthenium adatom on graphene nanoflakes,

the binding energies were calculated at symmetry non-equivalent sites (carbon rings), as in-

troduced in Figure 2.4. The flake is considered lying in the x-y-plane. Further we call the

z-coordinate of the adatom the adatom-flake distance, or the elevation. The binding energy Eb
is defined here as the total energy difference between the adatom at 99 Å elevation above the
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flake and the adatom at the most stable elevation over the current site:

Eb = Etot(99Å)−min(Etot(z)) (4.1)

In the case of binding, Eb is, therefore, positive. The binding energies of Ru on different sites

of the zigzag flakes C33 and C97 and the armchair flakes C36 and C90 are shown in Figure 4.2.

For the DFT calculations we used the BP86 exchange-correlation functional with dhf-TZVP-

2c basis set. In accordance with previous reports [70, 102, 103], the edge sites are the most

preferable for the adatom regardless the edge type. Apex was found to be the most preferable

adsorption site for the Ru adatom.

Figure 4.2: Binding energy Eb of a single Ru atom on graphene nanoflakes with zigzag (C33 and C97)
and armchair (C36 and C90) edge as a function of the adsorption site. The apex site is the most binding
for all flakes regardless the size and the edge type. The binding energies vary between 1.3 eV and 2.5 eV.

On the zigzag flakes Eb is higher than on the armchair flakes. A clear trend is visible on zigzag

flakes that the further from the edge the adsorption site is, the lower the binding energy is. This

trend is less clear on the armchair flakes. For example, the site 5 on C90 (see Figure 2.4 for

the site labeling) provides a weaker binding, than the Center, while 5 is closer to the edge. At

the same time, the strongest binding among the off-edge sites on C90 is calculated on the site 8,

which is not close to the edge.

For the zigzag flakes,Eb at the edge is independent of the flake size, while at the CenterEb goes

deeper on the bigger flake as this site is farther from the edge there. On the armchair flakes the

Eb is stronger on the bigger flakes regardless the position. This finding indicates that the binding

mechanism at the edge of a zigzag flake is more localized around the adatom. The interaction

of the adsorbate with the armchair flake has a stronger long-range character, which leads to the
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binding energy fluctuations from site to site among the off-edge sites, and to the size dependence

of Eb even on the edge sites.

In order to investigate the presence of the spin-crossover behavior, as reported by Virgus et al.

[31] for Co on benzene ring and graphene, we calculate the total energy for the C36 flake with Ru

atom as a function of the adatom-flake distance. The resulting energy profiles for four adsorption

sites are shown in Figure 4.3. A second energetic minimum at ≈2.8 Å distance is clearly seen

for Ru on the Center site and the site 4. To investigate the potential of such bistability for a

single molecule magnetic switch, in the next section we focus on the magnetic properties of Ru

adsorbed on the graphene flakes. We first focus on the Ru state in the global energetic minimum.

Figure 4.3: The total energy (relative to the free state) of the C36 nanoflake with Ru adatom as function
of the vertical distance between the Ru atom and the flake plane. The energy profiles are calculated for
Ru adsorbed on four symmetry inequivalent sites. The DFT calculation is done using the BP86 GGA
exchange-correlation functional with def2-SVP basis set and the DFT-D2 dispersion correction. Two
metastable positions are clearly distinguishable at the sites 4 and Center.

4.3 Magnetic Properties of Ru Atom on Graphene Nanoflakes

Upon adsorption on the graphene flake the electronic state of Ru atom changes from the atomic

state 4d7 5s1 with four unpaired electrons to the adsorbed state 4d8 5s0 with two unpaired elec-

trons. The electronic state of Ru at the metastable distance above the flake was found to be

4d7 5s1, i.e. equivalent to the atomic state. This confirms the spin-crossover nature of the bista-

bility which was reported in the previous section. In the global energetic minimum the magnetic

moment localized at Ru is reduced due to the hybridization of the half-filled d-character molec-

ular orbitals of Ru with the flake molecular orbitals, accompanied by an oxidation of Ru by the

flake.
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Figure 4.4: Spin density of the zigzag graphene flake C97 decorated with a Ru adatom on Apex site. The
magnetization direction of Ru is opposite to the overall magnetization of the flake, indicating antiferro-
magnetic coupling between the flake and the adatom.

4.3.1 Magnetization Relative to the Flake

To characterize the interaction between the flake and the adatom, we first investigate the relative

magnetization of the adatom with respect to the flake. The calculated spin-density of Ru on

C97 flake is shown in Figure 4.4. The ferrimagnetic alignment of the magnetic momenta of

graphene sublattices we found for a pure flake (Figure 4.1) is also clearly visible in presence of

the adatom. The Ru atom aligns its magnetic moment against the flake majority spin, therefore

reducing the total magnetic moment of the compound from 7 µB to 5 µB, contributing −2 µB.

A similar behavior is observed for C33 zigzag flake. Its intrinsic magnetic moment of 3 µB is

partly compensated by Ru resulting in the total magnetic moment of 1 µB.

As an additional test of such antiparallel alignment of the magnetic moment of ruthenium with

respect to the flake magnetic moment, we force C33 with Ru into a ferromagnetic state where

the magnetic moments of the flake and of Ru are oriented in the same direction (i.e. total mag-

netic moment of 5 µB) (see Figure 4.5). This is done by rearranging the Kohn-Sham orbitals in

such a way that all half-filled molecular orbitals located at Ru are moved from the minority to

the majority channel, using an internal "flip" tool provided in the TURBOMOLE package [82].

This state is subsequently self-consistently relaxed without allowing the system to switch the to-

tal magnetic moment, and its energy is compared with the antiferromagnetic configuration. The

ferromagnetic state shows 0.56 eV higher total energy, confirming the stability of the antiferro-

magnetic state. The calculations show that the preferred antiferromagnetic coupling between Ru

atom and the flake is not dependent on the adsorption site.

The antiferromagnetic coupling of Ru magnetic moment and the intrinsic magnetic moment

of the flake results in an additional diminishing of the Ru magnetic moment. The calculated

magnetic moments for Ru on armchair flakes vary between 1.7 and 1.8 µB, while on the zigzag
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Figure 4.5: Antiferromagnetism vs. ferromagnetism: the spin density of the C33 flake with Ru adsorbed
on the Edge site. (a) The total magnetic moment is 1 µB. (b) The total magnetic moment is 5 µB. In (a)
the magnetic moment produced by two unpaired electrons of Ru is aligned antiparallel to the magnetic
moment of the flake (intrinsic magnetic moment is 3 µB), while in (b) they are parallelly aligned. The
state (a) is more stable than (b) by 0.56 eV.

flakes it reaches values of only 0.8 - 1.4 µB with the highest values calculated at the Center
sites of C33 and C97. It might be also the reason for a stronger binding of Ru to the zigzag

flake.

4.3.2 Magnetic Anisotropy

The in- vs. out-of-plane anisotropy energy EIOP , as defined in Equation 3.32, is shown in Fi-

gure 4.6. Its value varies between 1.1 meV on Edge and 2.2 meV on Center on C97 and between

1.1 meV (Edge) and 1.7 meV (Center) on C33. EIOP is positive on all sites, meaning that the

preferred magnetization direction is in-plane. The preferred in-plane directions are shown in

Figure 4.7 together with the corresponding in-plane magnetic anisotropy energy EIP . The red

arrows in Figure 4.7 point along the preferred magnetization axis, and their length is propor-

tional to the magnetic moment of the Ru atom. Due to higher flake magnetization at the edge

(see Figure 4.1) of zigzag nanoflakes, the magnetic moment of Ru is stronger reduced at the

edges, which explains lower EIOP there. The reason for higher EIP at the edge is lowering

of the symmetry, which induces pinning of the magnetization axis. The local symmetry at the

central sites is higher, which leads to less pronounced pinning of the preferred magnetization

direction. The maximum value of EIP is 0.16 meV on Edge of C97.

In contrast to the strongly magnetic zigzag flakes, on the armchair flakes the only source of

magnetism is the adatom itself (see Figure 4.8). Its magnetic moment is only slightly reduced

by electron transfer between the Ru and the flake. This results in higher EIOP values, which

vary between 2.0 and 3.4 eV for C90 and between 1.9 and 3.5 eV for C36 (Figure 4.6). Opposite

to the zigzag flake, the highest EIOP values are not on the Center, but on the corresponding

Apex. The in-plane pinning of the magnetization EIP , though, is weaker than for the zigzag

flake, reaching maximum values of 0.06 meV on C90 and 0.08 meV on C36 (Figure 4.7). The
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Figure 4.6: In- vs. out-of-plane magnetic anisotropy energy EIOP for a single Ru atom adsorbed to
graphene nanoflakes C33, C36, C90 and C97 as a function of the adsorption site. EIOP is posi-
tive(negative) when the preferred magnetization direction is in-plane (out-of-plane).

highest values are determined on the edge sites as result of broken symmetry. On C36 the highest

EIP value is achieved at the site 4.

Our general observation is that the EIP is an order of magnitude smaller than EIOP . We also

note that the calculated preferred directions at the sites with the lowest EIP values are less

reliable, being very small numbers, which can be biased by numerical errors in the calculations.

Otherwise, the preferred magnetization direction is perpendicular to the edge of the flake.

4.4 Discussion and Conclusions

For the study of Ru on the graphene nanoflakes following assumptions are made. First, after an

initial geometry optimization of the pure flake no geometry optimizations are done after putting

the adatom on it, assuming that the flake is fixed by a substrate. The second assumption is that

the elevation of the adatom above the flake plane is constant for all sites. The optimal values

determined by calculating of the total energies while varying the elevation of Ru above the flake,

are 1.72 Å for C97, 1.71 Å for C33, 1.73 Å for C90 and 1.70 Å on C36. These assumptions allow

us to reduce the computational effort while estimating the magnetic and energetic properties of

Ru on graphene nanoflakes.

Our study allows us to well describe the magnetic interaction between Ru and the flake along

with an estimate for the magnetic anisotropy energy in such compounds. We found that the

magnetic moment of 4 µB of atomic Ru is reduced to 2 µB upon the adsorption. The interplay
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Figure 4.7: In-plane magnetic anisotropy energy EIP for a single Ru atom adsorbed to graphene
nanoflakes C33, C36, C90 and C97 as a function of the adsorption site. EIP is always positive. The
preferred in-plane direction is indicated by red arrows. The arrow length is proportional to the magnetic
moment of the Ru adatom.

between the two electronic states results in structural bistability with two adsorption distances

of 1.8 Å and 2.8 Å for Ru adsorbed on the off-edge sites of the C36 flake.

The values of the magnetic anisotropy energy for Ru on graphene nanoflakes are relatively small

compared to room temperature. While the in- vs. out-of-plane anisotropy energy of 3.4 meV

corresponds to the thermal energy of T =37 K (Ethermal = kBT with the Boltzmann constant

kB), and can be measured at cryogenic conditions, the in-plane pinning of the magnetic axis of

0.06 meV corresponds to 0.7 K, which is still achievable, but requires considerable experimental

effort, and restricts the application of such structures to basic research.

In order to achieve higher anisotropy values, we focus our study on 5d transition metals, because

of their higher spin orbit coupling providing potentially higher magnetic anisotropies. Our

aim in the following chapter is to focus first on the interaction between a magnetic adatom and a

nonmagnetic flake, leaving the investigation of a more complex interaction between the magnetic

flake and a magnetic adatom for future research. Apart from that, an experimental evidence of

triangular zigzag nanoflakes have not been reported yet to the best of our knowledge, while there

is an experimental report on synthesis of triangular armchair nanoflakes [33].
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Figure 4.8: Spin density of a single Ru adatom at the apex site of the graphene nanoflake C90 with
armchair edge type. The presented shapes are the isosurfaces at 0.001 e/a3

0 (blue) and -0.001 e/a3
0 (red).
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5 5d Transition Metals on Graphene Nanoflakes: an
Alternative Single Molecule Magnetic Switch

As we pointed out in Chapter 2, combining properties of single ion magnets (SIM) and spin-

crossover (SCO) molecules may result in a single molecule magnetic switch (SMMS) with at

least two states, which are potentially stable at high temperatures and can provide an easy infor-

mation read out. As a potential candidate for SMMS we introduced graphene nanoflakes with a

single transition metal (TM) atom adsorbed on top. Adsorbed atom (adatom) plays a role of a

magnetic center, while the nanoflake acts as a ligand hull.

In Chapter 4 we showed that usage of ruthenium atoms as magnetic centers leads to a technologi-

cally insufficient anisotropy for room temperature devices due to the too low spin-orbit coupling.

To achieve higher spin-orbit coupling, here we investigate 5d transition metal atoms as magnetic

centers. As a representative example of the 5d TM, we choose osmium, which is isoelectronic

to ruthenium and iron. We perform most of the calculations and method optimizations using

osmium, before extending the calculations to the rest of 5d TM series.

This chapter is structured as follows: In Section 5.1 we calculate the binding energies of Os on

graphene nanoflakes. In Section 5.2 we investigate the magnetic anisotropy of all 5d transition

metals on graphene nanoflakes. Section 5.3 shows that the energy profile of Os upon annealing

to the flake exhibits a double well. We explain this structural bistability by calculating the

distance-dependent occupation of molecular orbitals close to HOMO, their atomic contributions,

and hybridization (Section 5.3.1). In 5.3.2 we show how the bistability depends on the choice of

the flake size and the adsorption site. In 5.3.3 we demonstrate a way to control the bistability by

means of external electric field, before in 5.3.4 the rest of 5d TM series is found to show similar

SCO behaviour. Finally, in the Section 5.4 we test the robustness of our findings against details

of computational methods.

5.1 Binding Energies

We study the binding energies of Os on the armchair graphene nanoflakes introduced in Sec-

tion 2.6: C18, C36 and C90 (the structures are shown in Figure 2.4). We do not fix the adatom

over the exact middle of the carbon ring and allow the ionic relaxation of the flake. For each

adsorption site the whole flake is energetically optimized utilizing VASP [104–107] DFT code

with PBE [75, 99, 100, 108] exchange-correlation (XC) functional and DFT-D2 [88] dispersion

correction. The resulting structures are used in the subsequent DFT calculations using TURBO-

MOLE code.
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Figure 5.1: Binding energy of a single Os atom as a function of the adsorption site on graphene armchair
nanoflakes C18, C36 and C90. The total energy of Os at 99 Å distance from the corresponding nanoflake
was used as the reference. Calculations were done using the BP86 exchange-correlation functional with
the def2-TZVP-2c basis set. Apex is the most binding site for all flakes, regardless the size. The binding
energies vary between 1.5 and 2.9 eV.

As in the Ru study, the binding energy Eb is defined as

Eb = E(99 Å)−min(E(z)) (5.1)

and is positive for the binding case. The BP86 [76, 77, 81, 99, 100] XC functional with dhf-

TZVP-2c [109] basis set is used to calculate Eb. Calculated Eb values for Os adatom are shown

in Figure 5.1. The trends of the binding energy as function of the flake size and of the position

of the adsorption site relative to the flake edge are similar to Ru:

• Eb grows with the flake size;

• Eb is significantly higher at the edge;

• the most preferable adsorption site is Apex.

Similar to Ru, the highest Eb among the off-edge sites on C90 is at the site 8 (as defined in

Figure 2.4).

The calculations of the binding energy of other 5d TMs (see Table 5.1) show that the most

energetically preferable adsorption site is Apex as well. The total energies of other 5d TM atoms

were only compared between the sites, but not withE(99 Å). For this reason no absolute binding

energies are listed for the rest of 5d TM series. Calculations of the adsorption energy profiles

show that 5d TM atoms exhibit a similar structural bistability as we reported in Section 4.2 for

Ru. We carefully investigate the details of the bistability in Section 5.3, but first we analyze

the magnetic anisotropy of 5d TM atoms and its applicability for single molecule magnets to
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Element Hf Ta W Re Os Ir
Site Etot[eV]

C36
1(Apex) 0.00 0.00 0.00 0.00 0.00 0.00
2(Center) -1.03 -1.13 -0.95 -0.62 -0.80 -0.53
3(Edge) -0.26 -0.26 -0.26 -0.23 -0.05 -0.07
4 -0.77 -1.02 -0.98 -0.65 -0.64 -0.45

C90
1(Apex) 0.00 0.00 0.00 0.00 0.00 0.00
2(Center) -0.72 -0.80 -1.04 -1.05 -0.52 -0.26
3(Edge) -0.19 -0.27 -0.25 -0.23 -0.08 0.00

Table 5.1: Relative binding energies of 5d transition metal atoms onto symmetry non-equivalent sites of
C36 and C90 graphene flakes. The given number is the total energy difference between the most stable site
(which is Apex for all cases) of the corresponding flake for the corresponding element and the current
site. Negative values indicate weaker binding. The off-edge sites provide significantly weaker binding
compared to Apex and Edge.

motivate further investigations of the bistability.

5.2 Magnetic Anisotropy

5.2.1 Osmium

The magnetic anisotropy of osmium on armchair nanoflakes is calculated using BP86 XC func-

tional with the two-component basis set dhf-TZVP-2c. Similar to Ru, the magnetic moment of

Os decreases upon the adsorption on the non-magnetic armchair flakes. From 4 µB in the atomic

state it is reduced to 2 µB (total magnetization of the decorated flake) in the adsorbed state, but

is not quenched completely. The anisotropy values EIOP and EIP are shown in Figure 5.2 and

Figure 5.3 respectively.

A trend of the in- vs. out-of-plane anisotropyEIOP as a function of the distance of the adsorption

site from the flake edge is not visible. On C90 high EIOP values are calculated both at Apex
(22.7 meV) and at the off-edge sites 8 (23.1 meV) and 9 (22.8 meV). The lowest values are

provided by Edge (15.0 meV) and by the off-edge site 4 (13.8 meV). On C36, EIOP reaches its

highest values of 31.4 meV and 31.2 meV at Apex and Center respectively, while the values of

Edge and the site 4 are significantly lower: 17.4 meV and 19.4 meV respectively. On the C18

flake the EIOP values are 24.4 meV and 8.4 meV for Apex and Center respectively. Os on C6

shows an extraordinary high value of EIOP = 75.1 meV (not shown in Figure 5.2 to keep the

color scale appropriate for all flakes).

Regarding the influence of the flake size, the highest EIOP among the three flakes is provided

by the C36 flake (31.2 meV at Apex). The EIOP on C18 reaches the second-best value among

the flake at Apex (24.4 meV). The lowest EIOP among the three flakes is also found on C18

(8.4 meV, Center).

We observe that Apex provides generally high anisotropy values. At the same time, EIOP
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Figure 5.2: In- vs. out-of-plane anisotropy energy EIOP of a single Os atom on different adsorption sites
of armchair graphene nanoflakes C18, C36 and C90. The highest EIOP values are provided by the C36
flake. For the sake of clarity, the site labels introduced in Figure 2.4 are shown here again.

on the sites closest to the apex is one of the lowest on the whole flake, regardless the flake

size. To make further statements about the dependence of EIOP on the position relative to the

edge, investigations on other flake sizes have to be done, which are not within the scope of this

work.

The EIOP is positive on all adsorption sites and therefore indicates that the preferred magneti-

zation direction is parallel to the flake plane. Due to lower symmetry of the flake compared to

infinite graphene, the magnetization directions in plane are not degenerate, and may exhibit an

easy axis. Figure 5.3 shows the calculated in-plane directions and the in-plane anisotropy EIP
for Os on C18, C36 and C90.

We see that regardless the choice of the flake, Apex provides the highest EIP . At the same time

EIP varies with the flake size, but no trend is visible within the set of flakes investigated here:

the highest value of 11.1 meV is achieved on the C18 flake (Apex), followed by 8.2 meV on

the C90 flake (Apex), while the lowest Apex value is found on the C36 flake (6.3 meV). On the

non-apex sites the pinning of the easy axis is significantly lower compared to Apex, except for

the site 4 on the C36 flake (6.1 meV) and the site 9 on the C90 flake (3.0 meV). We note that in

contrast to Ru, the preferred anisotropy direction for edge sites is parallel to the triangle edge,

which is possibly the consequence of the ionic relaxation of the system. The in-plane anisotropy

of 1.6 meV at Center of C18 indicates that the magnetic moment of Os atom preferably points

towards the C-C bridge. This is different for C6, where the total energy is 0.2 meV lower when

the magnetic moment of the Os atom points towards a C atom, compared to the energy when the

magnetic moment points towards a C-C bridge.

In general, the in-plane magnetic anisotropy of Os is about two orders of magnitude higher than

of Ru. The significantly higher EIOP and EIP values compared to the values calculated for Ru
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Figure 5.3: In-plane anisotropy energy EIP of a single Os atom on different adsorption sites of armchair
graphene nanoflakes C18, C36 and C90. The red arrows indicate the calculated preferred magnetization
axis at each site. The strongest pinning of the magnetic moment is achieved on the Apex of the C18 flake.

magnetic center confirm our expectations about the 5d TM elements, and motivate for further

investigations of the whole 5d TM series.

5.2.2 Other 5d Transition Metals

The anisotropy values are calculated for the series of 5d transition metal atoms from Hf to Ir

on the three sites of high symmetry on the C90 armchair flake: Apex, Center and Edge. Cal-

culations of Pt show zero magnetic moment, and any further investigations of Pt are stopped

at this point. The Table 5.2 shows the calculated magnetic anisotropies. The angle αapex is

the angle between the preferred magnetization axis on Apex and the bisecting line of the corre-

sponding angle of the triangle. Zero αapex means that preferred magnetization axis points away

(or, equally, towards) the center, i.e. along the bisector. Our findings show that αapex varies from

element to element.

Hf provides the lowest anisotropy values for both EIOP (between 2.0 meV and 2.9 meV) and

EIP (up to 1.4 meV). The anisotropy values and trends of Ta are similar to Os: EIOP ranges

from 12.5 to 17.6 meV and EIP is up to 5.2 meV. The anisotropy energies is even lower for W:

EIOP ranges between 1.6 meV on the Center site and 11.4 meV and 11.5 meV on Apex and

Edge respectively, while EIP goes up to only 2.7 meV. The EIOP of Re is strongly negative

(-33.7 meV) on Center indicating preferable out-of-plane magnetization, weakly negative (-

0.6 meV) on Apex, and weakly positive (1.9 meV) on Edge, where the in-plane anisotropy is

4.0 meV.

Ir also provides negative EIOP on Center (-7.0 meV), but the positive value on Apex is much

stronger (17.3 meV) than for Re. The EIP reaches for Ir the highest values among the in-
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vestigated 5d TMs with 16.4 meV on Apex and 11.3 meV on Edge. Comparable EIOP and

EIP values on Apex indicate that the preferred magnetization direction (which is in-plane and

perpendicular to the triangle bisector) is comparably stable with respect to the least preferable

in-plane direction (along the triangle bisector) and with respect to the out-of-plane direction.

The two latter directions span a hard plane perpendicular to the preferable magnetization direc-

tion, which is the easy axis. The hard plane is perpendicular to the flake plane and cuts the flake

through the center.

Element Hf Ta W Re Os Ir
EIOP

EIOP,Apex[meV] 2.1 16.7 11.4 -0.6 22.9 17.3
EIOP,Center[meV] 2.9 17.6 1.6 -33.7 20.0 -7.0
EIOP,Edge[meV] 2.0 12.5 11.5 1.9 15.0 4.9

EIP
EIP,Apex[meV] 0.1 5.2 2.0 5.4? 9.6 16.4
EIP,Center[meV] 1.4 5.2 1.0 2.0? 0.4 0.3?

EIP,Edge[meV] 0.4 3.8 2.7 4.0 1.5 11.3
αapex[◦] 0 90 90 0? 0 90

Table 5.2: Magnetic anisotropy energies EIOP and EIP for 5d transition metal atoms from Hf to Ir ad-
sorbed onto three high-symmetry sites (Apex, Center and Edge) of C90 nanoflake. The last row contains
the angle αapex between the preferred magnetization direction on Apex and the triangle bisector. The
highest EIOP with preferred in-plane magnetization is provided by Os, Ir and Ta sitting on Apex. Re on
Center shows the strongest anisotropy with preferred out-of-plane magnetization. The strongest in-plane
pinning of the magnetization axis is observed for Ir on Apex.
? value is irrelevant due to negative EIOP , i.e. preferred magnetization direction out of plane.

Concluding, Os and other 5d TM element atoms used as magnetic centers on the graphene

nanoflake substrate show strong magnetic anisotropy, which varies depending on the position of

the adsorption site on the flake and on the flake size. In- vs. out-of-plane magnetic anisotropy

values of 31.4 meV of Os adatom on the C36 flake and 75.1 meV on benzene molecule, which

exceed the thermal energy of the room temperature (25 meV) make it a good candidate for single

molecule magnetic switches. As we describe in the Chapter 2, a molecular switch requires a spin

crossover effect, i.e. multiple and decoupled magnetic states. The alternation of the spin state

upon adsorption, as we report in the Section 5.2.1, from 4 µB to 2 µB is the result of energy level

crossing, which may be an indication of the SCO effect. In the next section we investigate this

effect carefully.

5.3 Structural Bistability

The magnetic moment of Os atom diminishes upon adsorption onto graphene nanoflakes from

4 µB to 2 µB. Considering this transition as an indicator for possible spin-crossover, we carry

out a gradual annealing of the adatom towards the flake. For each annealing step we calculate

the following electronic and magnetic properties of the system: the total energy, the magnetic

moment of the adatom, the charge of the adatom, occupations of the valence atomic orbitals, as

well as magnetic anisotropies. This is done on Center of C36 flake, since the adatom stays above

the middle of the carbon ring on this site due to the C3v symmetry. The flake is assumed as rigid
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upon the annealing. C36 is preferred to C90 to reduce the computational effort. Furthermore,

C36 provides the highest magnetic anisotropy among the investigated nanoflakes, and the effect

described below is more pronounced on C36. Smaller structures on the other hand, such as C18,

experience a stronger structural change upon annealing (as we show later in Section 5.4.2) and

the assumption of flake rigidity would not be as valid as for C36.

Figure 5.4: The total energy (relative to the free state) of Os adatom upon vertical annealing to the center
site of C36 graphene nanoflake lying in the horizontal plane. The x-axis is the adatom elevation above
the flake plane. The DFT calculations are done using the PBE GGA exchange-correlation functional
with def2-TZVP basis set and the DFT-D2 dispersion correction. Three metastable positions are clearly
distinguishable in the plot.

The energy profile (Figure 5.4) of the annealing exhibits multiple minima at three different

elevations of the Os atom above the flake. Apart from the first minimum at 1.72 Å, which

is primary, there is also a second minimum and 2.0 Å and a third minimum at 2.9 Å Os-flake

distance. The barrier between the third and the second minimum is 7.9 meV. The barrier between

the second and the first minimum is 29.8 meV. Since, to our best knowledge, no such bistability

of 5d transition metal adatoms on graphene has been reported before and the height of the barrier

is of the order of kBT of room temperature (29.8 meV = kBT of T=346K), which makes it

interesting beyond only fundamental research, we are encouraged to investigate the three minima

more carefully.

5.3.1 Spin-Crossover Effect

The magnetization of the Os adatom is calculated as a function of the distance between Os and

the flake plane. Between 1.86 Å and 1.96 Å, the magnetization changes from 2 to 4 unpaired

electrons, indicating a spin crossover. The anisotropy calculations show that the preferred mag-

netization direction also switches upon this transition: the anisotropy EIOP of 33.3 meV at

1.72 Å elevation changes its sign to -36.1 meV at 2.0 Å, and grows to -42.4 meV at 2.9 Å.
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Figure 5.5: The occupation of the atomic orbitals (AOs) of Os atom as a function of its elevation above
Center of the C36 nanoflake. The occupation is calculated by the projection of the Kohn-Sham molecular
orbitals on the Os atomic orbitals. The cyan dashed line is the energy profile, indicating the metastable
positions as local energetic minima. At 1.9 Å one electron is transferred from the almost (due to the
hybridization with the flake orbitals) full 5dxy AO to the empty 6s AO, resulting in an increase of the total
magnetic moment by 2 µB. The figure was previously published in [3].

Orbital Occupation Analysis

To investigate the change of the magnetic properties upon the 1→2 transition, the Kohn-Sham

molecular orbitals (MOs) are projected on the atomic orbitals (AOs) of Os atom and the occupa-

tion analysis is done for the valence atomic orbitals of Os. The Figure 5.5 shows the occupation

of the atomic orbitals as a function of the adatom-flake distance. The dashed line is the corre-

sponding energy profile and indicates the position of the energetic minima.

At the first energetic minimum the 6s orbital is almost empty, the orbitals 5dxz and 5dyz are half-

filled (two unpaired electrons), and the orbitals 5dz2 , 5dxy and 5dx2−y2 are fully occupied. Note

that the occupation of 5dxy and 5dx2−y2 is reduced due to the hybridization and charge transfer

between the adatom and the flake. The two unpaired electrons from 5dxz and 5dyz result in total

magnetic moment of 2 µB.

Upon the transition 1→2 the 6s orbital gains one electron, which comes mostly from the 5dxy
orbital. Since the increase in 6s occupation is noticeably higher than the decrease in the 5dxy
occupation, part of the charge must be withdrawn from the flake. This is substantiated by the

calculation of the charge transfer between the Os and the flake: the local charge of the adatom

changes from 0.495 e+ at the first minimum to 0.149 e+ at the second minimum.
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The resulting occupation is then: two filled orbitals (5dz2 and 5dx2−y2) and four half-filled

orbitals (6s and the rest of 5d orbitals). The total magnetic moment of the system at the second

minimum is therefore 4 µB. Upon the 2→3 transition, the 5dz2 and the 6s orbital switch places

in this formation, but the total magnetic moment remains unchanged.

In the following we call the first minimum the ’d’ minimum, because the only occupied valence

orbitals are the 5d orbitals there. The second minimum will be referenced as the ’s’ minimum,

because here one 6s orbital becomes occupied, and the third minimum as the ’vdW’ minimum,

because of the weakness of the chemical bonding, indicating that van der Waals interaction is

responsible for the binding at this distance.

Molecular Orbital Analysis

To understand the reason for the abrupt occupation change of the 6s orbital of Os, we analyze the

molecular orbitals close to the HOMO (highest occupied molecular orbital) by extracting their

energies and the contributions from the atomic-type functions (s-, p-, d-, f-functions) located at

the Os atom and at the flake.

Figure 5.6 shows the energies (y-axis) of the molecular orbitals (MO), the contribution of the

corresponding atomic orbital (AO) type (dot thickness) and the type (in case of d orbitals: the

most pronounced type) of the atomic orbital (dot color) as a function of distance (x-axis). The

distances, at which the energetic minima are found, are indicated by the dashed line. Spin-up, or

majority (α), and spin-down, or minority(β), orbitals are depicted separately. The unoccupied

orbitals are those at and above the LUMO (lowest unoccupied molecular orbital) line.

Both majority (α) and minority (β) 6s-orbitals are empty at the ’d’ minimum (Figure 5.6c),

but upon the ’d’→’s’ transition 6sα crosses the 5dxyβ (Figure 5.6b) orbital, so that 5dxyβ is

unoccupied at the ’s’ minimum, while 6sα is occupied. Since one electron jumps from the

minority to the majority channel, the total magnetic moment of the system increases: A spin

transition takes place.

Further towards the ’vdW’ minimum, one of the occupied MOs loses its 5dz2β character (the

dots become smaller), while an unoccupied one gains it (both are visible in Figure 5.6b). These

two MOs are also recognizable in Figure 5.6c, where the unoccupied orbital looses the 6sβ
character upon ’s’→’vdW’ transition, while the occupied one gains it. In such a manner one

electron changes from the 5dz2β to the 6sβ orbital, restoring the atomic orbital occupation of

Os: 5d66s2. Since the electron stays in the minority channel, the total magnetic moment of the

system is maintained upon the ’s’→’vdW’ transition: no spin transition takes place.

The possible reason for the destabilization of the 6s orbitals, and therefore increase in energy

close to the flake, is that the s orbitals are not hybridizing well with the π-cloud of the flake.

This leads to a strong Coulomb repulsion between them, making the 6s orbitals less favorable at

close distances than the 5d orbitals, which hybridize well with the flake orbitals.

The hybridization can be seen in Figure 5.6. Large (small) dots in (a) and (b) indicate that

the particular atomic orbital contributes significantly (insignificantly) to the particular molecular
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orbital. Medium-sized dots indicate a hybridization, meaning that some other AO (s orbital of

Os, or p orbitals from C) also contributes to this MO to the similar extent. In this case there

will be a dot at the same coordinates in one of the other plots: in (c), if the second contribution

comes from 6s AO, or in (d), if the second contribution comes from the p AO located on the

flake. At the ’d’ minimum the 6sα and 6sβ orbitals are not hybridized at all, as well as the

both 5dz2 orbitals (large dots), while the other MOs with 5d character are strongly hybridized

with the flake orbitals (medium dots in Figure 5.6a/b and d). Upon ’s’→’vdW’ transition the

6sβ orbital mixes with the 5dz2β (medium dots at the same energy in (c) and (b)), but is clearly

absent in the d) plot, meaning that it still does not hybridize with the flake orbitals. Farther from

the flake, the Coulomb repulsion between the electrons in the Os 6s orbital and the flake π-cloud

decreases, restoring the natural orbital order of atomic Os and the flake.

Figure 5.6: The energies of the Kohn-Sham molecular orbitals (MOs) of Os over the center site of C36
nanoflake as a function of the vertical Os - flake distance. The dot thickness indicates the contribution
of the following atomic orbitals (AOs) to the corresponding MO: d type AOs located at the Os atom
(a and b), s type AOs located at the Os atom (c), and AOs located not at Os (d). For the purpose of
clarity, the d contributions are plotted separately for the majority (α) MOs (a) and for the minority (β)
MOs(b). Note: each plot shows all the MOs within the energy range, but they may be not visible if the
corresponding contribution is near zero. The color coding in the (a) and (b) plots represents the 5d AOs,
which are closest in shape to the corresponding MO, evaluated visually from the 3D plots of the MOs.
The dashed vertical lines indicate the position of the three metastable distances of Os above the flake.
The level-crossing between the 6sα MO and the 5dxyβ MO is clearly visible around 1.9 Å. The figure
was previously published in [3].
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Figure 5.7: (a) The energy profiles of Os annealing to the Center site of graphene nanoflakes C18, C36
and C90, as well as to a benzene molecule (C6) and a carbon ring in an infinite graphene sheet (C∞).
The inset shows a zoomed in region marked with a red box in the main figure, emphasizing multiple
energy minima upon annealing. In the inset a barrier between the minima at ≈2.0 Å (’s’ minimum) and
at≈1.7 Å (’d’ minimum) is defined as the difference between the energy of the ’s’ minimum and the energy
at the peak between the ’s’ and ’d’ minima. The barrier defined in (a) for Os at all sites of the considered
nanoflakes is shown in (b). The barrier vanishes at the flake edge, as well as on C6 and C∞.

5.3.2 Flake Size Impact

Since our findings do not include anything that is specific for the C36 flake, it is reasonable to

assume similar behavior for other flakes, and on graphene in general. To test this, we calculate

the energy profiles on C6, C18, C90, and, using VASP DFT code [104–107], which utilizes

periodic boundary conditions, also on infinite graphene sheet C∞. Figure 5.7a shows the profiles

on Center of the corresponding flakes, as well as on C6 and C∞. The bistability was clearly

visible on the flakes, while on C6 and C∞ the profiles show only shoulders at the positions of

otherwise secondary minima and do not feature a barrier. The anisotropy measurement of Os at

3 Å elevation above C6 show that a massive anisotropy switching takes place here also, but the

bistability profile is missing. The global minimum ’d’ is so deep and wide, that it absorbs the ’s’

minimum and flattens the ’vdW’ minimum.

To characterize the bistability quantitatively, the barrier for the transition ’s’→’d’ is evaluated,

as shown in the inset of Figure 5.7a. Figure 5.7b shows the barrier heights for adsorption on all

sites (annealing above the middle of the corresponding carbon ring) of carbon structures C6 -

C∞. Apart from C6 and C∞ the barrier also vanishes at the edge sites of the graphene flakes,

which are, as showed before, more energetically preferable, i.e. have a deeper ’d’ minimum.

At the off-edge sites the barrier decreases with the increasing size of the flake, accompanied

by a stronger binding energy, as was mentioned in Section 5.1. The highest barrier among the

investigated structures is found to be 45 meV on Center of the C18 flake and is higher than the

thermal energy at the room temperature (25.6 meV).
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Figure 5.8: The total energy profiles of an Os adatom upon annealing to the center site of C36 nanoflake,
as a function of the Os - flake distance and the external electric field applied perpendicular to the flake
plane. At high negative electric field, the ’d’ energetic minimum (indicated as low spin, LS valley) be-
comes less energetically preferably than the ’s’ minimum (high spin, HS valley). The barrier between the
valleys restrict the switching in absence of the external field. The figure was previously published in [3].

5.3.3 Control by Mean of an External Electric Field

The bistability of Os adatom on graphene nanoflake accompanied by a strong anisotropy change

mentioned in Section 5.3.1 makes this structure an attractive candidate for a single molecule

switch, presuming that there is a way to switch between the metastable states. Since the first

two energetic minima come from the interplay of two electronic states – the atomic 5d66s2

state of Os and the adsorbed state 5d86s0 with 5d orbitals strongly hybridized with the flake

– the way to switch between the two states would be to stabilize or destabilize one of them.

An external electric field applied perpendicular to the flake plane can for instance reduce the

hybridization by moving the electron cloud from the flake towards the Os atom. Figure 5.8

shows this behavior for sufficiently high negative electric field applied perpendicular to the flake

plane. The ’d’ minimum becomes higher in energy than the ’s’ minimum, so that the latter

becomes the global minimum. In order to reach this minimum the system has to overcome a

barrier of about 44.5 meV (at the field of -0.46 V/Å), e.g. by external light impulse, or thermal

phonons. Switching the electric field off would keep the system in the state 2, as long as the

barrier 2→1 is not overcome. Switching back to 1 can occur by interaction with phonons at

room temperature, or by positive electric field, which would reduce the 2→1 barrier. Figure 5.9
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shows that the positive charge of Os is actually reduced by a negative electric field, making the

S=2 state more preferable. Since the influence of the electric field is independent on the flake

parameters, we expect a similar behavior on all graphene structures mentioned in this study. The

dependence of the barrier height on the flake size, shape and site allows to tune the parameters

of the molecular switch.

Figure 5.9: The charge transfer between the Os adatom and the C36 nanoflake at three different
metastable adatom-flake-distances above the center site of the flake as a function of an external elec-
tric field applied perpendicular to the flake plane. Negative electric field pushes the negative charge from
the flake to the adatom, decreasing the charge transfer at the ’d’ (black) and ’s’ (red) positions. The
calculations were done using PBE exchange-correlation functional with def2-TZVP basis set. The figure
was previously published in [3].

5.3.4 Other 5d Transition Metals

The energy profiles of Os shown in the previous subsection are only bistable if Os is not placed

on the flake edge. However, the Apex was found as the most stable site. For that reason we also

calculate the energy profiles on Apex, while investigating the bistability on the rest of the 5d TM

series.

Using the BP86 functional and the def2-SVP basis set to reduce the computational effort, we

calculated the adsorption profiles for other 5d transition metals (Hf to Ir) on the C36 flake.

Figure 5.10 demonstrates the energy profiles and the absolute values of the magnetic moment

of the corresponding adatom as a function of adatom-flake distance while annealing to the sites

Center (a) and Apex (b). The calculations show that each of the investigated adatoms undergo

a spin transition upon annealing to the flake: the magnetic moment is reduced close to the
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Figure 5.10: The total energy (upper half of a) and b) respectively) and the magnetic moment (lower
half) of 5d transition metal (TM) adatoms as a function of the adatom z-position, while annealing to
Center (a) and Apex (b) of the C36 nanoflake lying in the x-y plane. The circles in the lower part indicate
the position of the local energy minima shown in the upper part. The filled circles indicate the global
energy minimum of the particular energy profile. Most of the energy profiles show a structural bistability,
demonstrating the generality of the spin crossover effect for the 5d TMs on graphene nanoflakes. For all
5d TMs, the magnetic moment decreases closer to the flake.

flake.

We first analyze the annealing to the center site (Figure 5.10a). The low spin (LS) state is

only stable for Os and Hf (which demonstrates only one energy minimum). For Ir, the first
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(LS) and the second (high spin, HS) minima are almost equal in energy and very close to each

other in space (0.12 Å). The barrier between them is only 7 meV. The LS state as a metastable

minimum is only present for Re, but is non-binding. Remarkably, below certain distance to the

flake, Ta (natural state S=1.5, 5d36s2) switches to HS state (S=2.5, 5d46s1), and keeps it in the

global minimum of its energy profile, while the magnetic moment is reduced again closer to the

flake.

The ’vdW’ minimum is present for all elements except for Hf and is the global minimum for Re

and W. Since the def2-SVP basis underestimates the binding energy of the ’s’ and ’d’ minimum

(see Figure 5.11), we expect a secondary, ’s’, minimum for W with the same magnetic state as

the ’v’ minimum. As this bistability does not contain a spin transition, we leave this question

open for future investigations and focus on Os.

At Apex (Figure 5.10b), the energy profiles of the investigated 5d elements also exhibit a bista-

bility, while the ’vdW’ minimum is less pronounced. The LS state is stable for W, Re and Os,

while the HS state is stable for Hf, Ta and Ir. Such variation of the magnetic properties com-

bined with the bistability allows to tune the properties of the single molecule magnetic switch in

a wide range.

5.4 Robustness of the Results Against the Intrinsic Calculation
Parameters

5.4.1 Bistability

In order to prove the existence of structural, accompanied by magnetic, bistability of Os on

graphene nanoflakes, we calculate the energy profiles using different methods and test them

with respect to the calculation parameters: the size of the basis set, the exchange-correlation

functional, the method (Hartree-Fock with Møller-Plesset correction of the second order, MP2),

and the van der Waals interaction correction.

Size of the Basis Set

In the DFT calculations the charge density is expressed by sets of basis functions. The precision

of the density representation directly depends on the size of basis set, i.e. on the number of basis

functions. Too small basis sets may cause imprecise results of the whole calculation. Large

basis sets, on the other hand, lead to increased simulation times, so that at certain basis set size

handling of even small systems requires substantial calculation times.

To estimate the influence of the basis set on the energy profiles and the binding energies, we

calculate the energy profiles using three basis sets: def2-SVP [110, 111] (the smallest), def2-

TZVP [111, 112], and def2-QZVP [113] (the largest). Since we are only interested in the differ-

ence between the basis sets, we choose the smallest flake (C18) to perform the test. The energy

profiles are shown in Figure 5.11. To take the van der Waals interaction into account, the basis
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set-independent DFT-D2 [88] correction is added to the total energies. The energy profiles ex-

hibit three minima, regardless the choice of the basis set. The binding energies of the ’d’ and the

’s’ minima provided by the def2-SVP are 0.25 eV and 0.20 eV lower (i.e. weaker binding) than

those provided by the def2-TZVP and def2-QZVP basis sets.

Figure 5.11: The total energy profiles of Os annealing onto the C18 graphene nanoflake calculated
using three different basis sets and the PBE exchange-correlation functional. Additionally, dispersion
correction DFT-D2 [88] was applied. The basis sets are labeled as implemented in TURBOMOLE [82].
The smallest basis set def2-SVP provides a different binding energy closer to the flake, while the overall
trends, such as bistability and barrier height, remain unchanged by the choice of the basis set.

Transition 1→2 2→1 2→3 3→2
Basis set Barrier height [eV]
def2-SVP 0.249 0.079 0.094 0.069

def2-TZVP 0.273 0.046 0.243 0.019
def2-QZVP 0.281 0.045 0.244 0.015

Table 5.3: Energetic barriers for the transitions between the metastable Os-flake-distances on the Center
site of C18, calculated using the PBE exchange-correlation functional, DFT-D2 dispersion correction
and three different basis sets. The def2-TZVP and def2-QZVP basis sets produce similar values, while
def2-SVP underestimates the 2→3 barrier, as a consequence of the underestimated binding energy.

For qualitative comparison, the energetic barrier height for the three basis sets is shown in Ta-

ble 5.3. The barriers calculated with def2-TZVP and def2-QZVP are almost the same. The

barriers provided by the def2-SVP differ from the others by a factor of up to 3, depending on the

position and the direction of the transition. Therefore we conclude that for our calculations the

def2-TZVP basis set provides enough precision to be used throughout the study, instead of the

time-costly def2-QZVP basis set, or the imprecise def2-SVP basis set.

Compared to the def2-TZVP, the def2-SVP basis set provides a weaker binding for the first and
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Figure 5.12: The difference between the total energies calculated with def2-SVP and def2-TZVP basis
sets as a function of distance between the Os adatom and the center site of the graphene nanoflake. The
difference appears to be independent from the nanoflake (C18 or C36), and from the exchange-correlation
functional (PBE and BP86), and therefore can be used to estimate the error (assuming that def2-TZVP
produces the more realistic energies) in the energy profiles calculated with the def2-SVP basis set.

the second energetic minima: by 0.25 and 0.20 eV respectively on the C18 flake, and by 0.23

and 0.19 eV respectively on the C36 flake, as additional tests show (def2-QZVP is not tested on

C36). The binding energies at the ’vdW’ minimum change insignificantly with the size of the set.

We calculate the difference between the def2-SVP and def2-TZVP energy profiles as a function

of Os-flake distance (see Figure 5.12). Since this difference is similar for both flake sizes and

both XC functionals, it allows us to estimate the "true" (e.g. calculated with def2-TZVP basis

set) binding energies based on the preliminary def2-SVP results.

Dispersion Correction

The van der Waals (vdW) interaction is a problematic issue in the density functional theory,

because the local exchange-correlation (LDA and GGA), being the most popular exchange-

correlation functionals type, do not include this long range dynamic correlation. Since in our

case the vdW interaction is responsible for the third energetic minimum, it is essential to find

a way to take it into account. One of the popular methods is the semi-empirical DFT-D [86]

correction, which was improved by Stephan Grimme to DFT-D2 [88] and later to DFT-D3 [114].

For that reason we call the DFT-D corrections the Grimme corrections.

To investigate the influence of the semiempirical approach, we calculate the energy profiles using

1) no vdW correction, 2) DFT-D2 method and 3) DFT-D3 method, with two GGA functionals
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Figure 5.13: Energy profiles for Os annealing to the C36 flake (center site), calculated with two different
GGA functionals – PBE (dashed lines) and BP86 (full lines), without correction to take the van der Waals
interaction into account (black curves), as well as using two types of semi-empirical vdW corrections:
DFT-D2 (red) and DFT-D3 (blue). The total energy of the system with a large (9 Å) Os-flake separation
was subtracted from the total energy at each point, so that the resulting plots show negative binding
energies. See the text for the detailed analysis.

PBE and BP86, as presented in the Figure 5.13. Without the Grimme correction (black curves),

the binding energies are much weaker, and differ by ≈ 0.3 eV between the two functionals.

At the same time, as expected, the profiles exhibit no vdW energetic minimum, confirming its

nature.

Including of the Grimme corrections reduces the difference in binding energies at 1.72 Å be-

tween two XC functionals efficiently to maximum 0.03 eV (DFT-D3, blue curves) and 0.08 eV

(DFT-D2, red curves). At the same time the difference between the binding energies produced

with DFT-D2 and DFT-D3 Grimme corrections is 0.2 eV to 0.3 eV (depending on the func-

tional). The positions of the vdW minimum is also different for DFT-D2 and DFT-D3: 2.9 Å

and 2.5 Å respectively.

Despite of the major differences in the binding energies and the vdW minimum position between

the tested vdW corrections, in general, the bistability, the position of the two closest to the flake

energetic minima and the energetic barriers between them are similar and confirm the SCO

effect, chemisorbed nature of the binding and the switching behavior.
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Density Functional and Hartree-Fock Method

In order to compare different computational methods, we calculate the energy profiles using

DFT with different exchange-correlation functionals, as well as using the Hartree-Fock method

with Møller-Plesset correction of the second order (MP2) [115] (see Figure 5.14).

Figure 5.14: Total energy profiles of Os annealing to the center site of the C18 graphene nanoflake as
a function of Os - flake distance. The profiles are calculated using the code TURBOMOLE, utilizing the
HF-MP2 method with def2-SVP basis set, the DFT method with the hybrid B3-LYP exchange-correlation
functional, the DFT with GGA PBE XC functional, as well as the code VASP with PBE XC functional.
Except for the HF-MP2 method, the DFT-D2 correction was included into the DFT calculation to take
the van der Waals interaction into account. For better comparison, we introduce the curve for HF-MP2
with def2-TZVP basis set (red) estimated using the correction introduced in Figure 5.12.

The XC functionals we test here are the GGA-type PBE functional and the hybrid-type B3-LYP

functional. The basis set def2-TZVP is used, except for the computationally expensive HF-

MP2 method, where we have to use def2-SVP basis set. We utilize the def2-SVP vs. def2-TZVP

correction presented in Figure 5.12 to estimate the HF-MP2 energy profile with def2-TZVP basis

set. The van der Waals interaction is included in the DFT calculation by the DFT-D2 dispersion

correction. The PBE XC functional with DFT-D2 is also used to compare the energy profiles

calculated on different codes: TURBOMOLE, which utilizes atomic orbitals as basis set, and

VASP, where plane wave functions are used as basis set.

The energy profile calculated with the hybrid B3-LYP functional shows a non-binding ’d’ and

’s’ minima, but a binding ’vdW’ minimum. Shifting of the low-spin state up in energy by the

B3-LYP exchange-correlation functional is known from earlier studies [63]. The PBE energy

profiles calculated with VASP and TURBOMOLE show similar trends, with the ’d’ minimum

as the global minimum. The barrier between the ’d’ and the ’s’ minima vanishes in the VASP
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Figure 5.15: Structure of Os adsorbed on the apex (a) and the center (b) site of the C18 nanoflake after
geometry optimization. The optimization of the adsorption energy results in visible distortions of the
flake.

profile, turning the ’s’ minimum into a shoulder. The corrected HF-MP2 calculations, which we

use as a benchmark, show that the most preferable energetic minimum is the ’s’ minimum, while

the ’d’ and ’vdW’ minima are similar in energy. While the energies at the ’d’ and ’s’ minima

strongly depend on the method, all energy profiles show similarities, which are the presence of

the ’d’ and ’vdW’ minima, at least a shoulder at the ’s’ minimum and significant barriers between

the minima.

We conclude that, despite the differences in the results provided by different computational

methods, the bistability of Os on graphene nanoflakes is either present and can be reproduced

in experiment directly, or can be created by a number of control parameters: the flake size, the

adsorption site, the magnetic core material, or the applied external electric field.

5.4.2 Magnetic Anisotropy

Geometry Optimization

During the geometry optimizations of Os on C18 we noticed that the flake was visibly deformed

(Figure 5.15). If the flake was positioned on a substrate, such distortion could be restricted by the

interaction with the layer underneath. This raises the question of the stability of the anisotropy

values against such distortions.

The Table 5.4 shows the calculated magnetic anisotropies for two cases: 1) all atoms are involved

in the geometrical relaxation ("Flake free"), and 2) carbon atoms are fixed at their positions

during the relaxation, while H and Os are free to move ("Flake fixed"). For the second case

the positions of the carbon atoms are determined by geometry relaxation of the flake without an

adatom. The calculations were done for Os adsorbed on Apex and Center. TheEIOP turned out

to be less sensitive to the geometry variation (less than 3% change inEIOP ), whileEIP increases

by the factor of 10 upon free flake relaxation. This sets a wide error bar on the EIP values

presented in this chapter, but on the other hand discovers a way to detect geometry distortions

by the magnetic anisotropy measurements. In the next section we consider the influence of the

choice of the XC functional on the anisotropy values.
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Position EIOP [meV] EIP [meV] Mag. mom [µB]
Apex, Flake fixed 24.1 1.45 1.83
Apex, Flake free 23.5 10.21 1.79

Center, Flake fixed 8.6 0.17 1.76
Center, Flake free 8.4 1.62 1.80

Table 5.4: Magnetic anisotropy energies and the magnetic moment after geometry optimization of Os
atom adsorbed to C18 nanoflake. In one case the carbon atoms were allowed to move (Flake free), while
in the other only Os and the hydrogen atoms were allowed to change their positions (Flake fixed). The
influence of the flake optimization on EIOP is insignificant, while EIP alters by an order of magnitude,
allowing an easy detection of geometry distortions by measuring of in-plane anisotropy.

Density Functional and Hartree-Fock Method

After we showed a high sensitivity of the in-plane anisotropy EIP against the geometry modifi-

cations, we consider its dependence on the choice of the XC functional. The magnetic anisotropy

for Os on Apex of C36 is calculated using the following XC functionals:

• LDA-functional S-VWN [81, 99, 100];

• GGA-functionals BP86 [76, 77, 81, 99, 100] and PBE [75, 99, 100, 108];

• Meta-GGA-functional TPSS [75, 99, 100, 116];

• hybrid functional B3-LYP [76, 78, 81, 99, 100, 117]

and shown in Table 5.5. The hybrid and the metaGGA functionals show high magnetic moments,

but reduced anisotropy values. The LDA functional shows an opposite trend: low magnetic

moments together with high EIOP . The EIOP and the magnetic moment values calculated with

both GGA functionals lie close to each other and between the LDA and metaGGA values. The

highest EIP values are provided by the GGA functionals.

In summary, the EIOP values lie between 20.0 and 55.1 meV (factor 2.8), and the EIP vary

between 1.2 and 6.5 meV (factor 5.4), depending on the functional. Although such variation

sets a high error bar to the anisotropy energies, the general trend (for all functionals the preferred

anisotropy direction is in-plane), and the magnitude still indicate a high magnetic anisotropy for

Os on graphene flakes.

Functional EIOP [meV] EIP [meV] Mag. mom [µB]
B-P (GGA) 31.5 6.5 1.77
PBE (GGA) 32.2 5.5 1.77

B3-LYP (Hybrid) 20.0 1.2 1.84
S-VWN (LDA) 55.1 3.7 1.67

TPSS (metaGGA) 23.7 3.2 1.82

Table 5.5: Magnetic anisotropy energies and the magnetic moment of Os atom adsorbed at the apex site of
the C36 nanoflake calculated with five different exchange-correlation functionals: two GGA functionals,
BP86 [76, 77, 81, 99, 100] and PBE [75, 99, 100, 108], one hybrid functional, B3-LYP [76, 78, 81, 99,
100, 117], one LDA functional, S-VWN [81, 99, 100], and one metaGGA functional, TPSS [75, 99, 100,
116]. Both GGA functionals produce similar results. The anisotropy calculated with the hybrid functional
is about 50% of the GGA EIOP .
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5.5 Conclusions

Using density functional theory methods we calculated the adsorption energies of 5d transition

metal atoms on armchair-edge graphene nanoflakes of various sizes. The most preferable site

on all flakes is the apex site. On armchair flakes the adsorption energy decreases with the flake

size.

We discovered spin-crossover effect upon adsorption of 5d transition metal atoms onto graphene

nanoflakes, which manifests itself in a structural bistability and is accompanied by a massive

switching of the magnetic anisotropy. For Os, which was in the focus of our study, the bistabil-

ity becomes less pronounced with increasing flake size and for positions closer from the edge.

We performed a detailed study of the level-crossing on Os adsorbed on the center site of the

C36 nanoflake, including the occupation, the energetic and the atomic orbital character of near-

HOMO molecular orbitals. An interplay between the adatom atomic orbitals which hybridize

and do not hybridize with the carbon π-cloud was identified as the reason for the multiple ener-

getic minima upon adsorption. An additional metastable distance is introduced by the van der

Waals interaction.

To justify our findings we tested the calculated energy profiles using different basis sets, disper-

sion corrections, XC functionals, and quantum chemistry methods, i.e. DFT and Hartree-Fock

with Møller-Plesset correction of the second order. The spin crossover effect was found to

be present regardless the calculation details, while the exact binding energies turned out to be

strongly sensitive on the used method.

We demonstrated how the spin-crossover properties can be tuned by the flake size, the adsorption

position, and the choice of the adsorbate. We showed that the switching between the bistable

states can be controlled by an external electric field along the Os-flake binding axis.

In- vs. out-of-plane magnetic anisotropyEIOP shows a high robustness with respect to geometry

variations, which can be induced by introducing a substrate underneath the flake, and to the

choice of the XC functional. The in-plane anisotropy EIP is more sensitive towards the flake

modifications, changing by an order of magnitude when the flake is allowed to relax without

constrains. Usage of different exchange-correlation functionals for the EIP determination can

alter its value by a factor of up to 5.4.
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6 Electronic Properties of Ultrasmall Gold Nanoparticles

As of late, ultrasmall gold nanoparticles (usAuNP) are gaining increased attention in research

and industry as potentially powerful tools in medicine [34], biomedical imaging [35–38], cataly-

sis [39–43], cancer therapy and diagnosis [36, 44, 45], sensors [46], photonic devices [47], and

printed electronics [118]. Thus, unsurprisingly much research is currently being performed, aim-

ing at the synthesis and characterization of gold nanoparticles. Utilizing density functional the-

ory (DFT) in our work, we calculate electronic properties of several examples of gold nanopar-

ticles, aiming at better understanding and characterization of them. Gold nanoparticles consist

of a core, containing a variable number of gold atoms, and an organic ligand hull, not unlike the

adatom-decorated nanoflakes, as shown in Figure 6.1.

Figure 6.1: The atomic structure of the [Au14(PPh3)8](NO3)4 nanoparticle. The cluster of 14 gold
atoms in the middle is surrounded by 8 P (C6H5)3 (i.e. PPh3) and 4 (NO3) ligands. The elements are
colored as follows: H - grey, C - black, N - blue, O - red, P - green, Au - yellow.
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6.1 Stability of the Au14 Nanocluster

The number of gold atoms in AuNP is variable, but it was shown that certain combinations

of gold atoms and ligands can form nanoparticles which exhibit an outstanding stability. One

model explaining this observations considers the golden core as a part of the fcc bulk [48, 49],

so that the central atom is packed in the shells containing (10n2 + 2) gold atoms, where n is

the shell number. The outstanding stability is then predicted for the clusters with full shells, i.e.

with 13, 55, 147, 309, ... atoms.

According to another model [50, 51], the nanoparticles are to be considered as superatom com-

plexes which are most stable when they have full electron shells, similar to the atomic electron

shells. The shell-closing number of electrons n∗ is

n∗ = 2, 6, 12, 20, 30, . . . (6.1)

for flat (2D) clusters [119], and

n∗ = 2, 8, 18, 34, 58, . . . (6.2)

for the 3D clusters (similar to the atomic electron shells of the inert gases). The number n∗ of

electrons contributing to the superatom shells is equal to the number vm of the valence electrons

of N metal atoms minus the number lew of electron-withdrawing ligands. If the charge of the

nanoparticle is z, then n∗ is

n∗ = Nvm − lew − z (6.3)

Recently, B. Gutrath experimentally synthesized the gold nanoparticle [Au14 (PPh3)8

(NO3)4] · (MeOH)6 (further called Au14, shown in Figure 6.1) and demonstrated its high

stability [2]. The number n∗ of the superatom-shell electrons is 10 for this compound, which

fulfills the stability criteria neither for the 2D nor for the 3D clusters.

We suggest that an unexpectedly high stability of Au14 can be explained considering the fact,

that four of the total 14 gold atoms are located very close to the NO3 ligands (Au-O distance

of about 2.1 Å, which is untypical for AuNP [2]), which allows them to be counted as parts of

the electron-withdrawing ligands Au(NO3), resulting in the shell-closing electron number of

n∗ = 6. This number fulfills the stability criterion for the two-dimensional nanoparticles, while

the Au14 cluster has a three-dimensional structure, as it has been shown by means of the X-ray

diffraction [2]. It was suggested, that the HOMO (highest occupied molecular orbital) and the

LUMO (lowest unoccupied molecular orbital), also called the frontier orbitals, might be planar

in this nanocluster. It is known that the frontier orbitals are decisive for binding properties of

the molecule [120], because electrons in HOMO and vacancies in LUMO are most available for

a reaction. The shape of HOMO and LUMO has an impact on the electronic coupling between

the molecule and a reaction partner and therefore determines whether the molecule acts as a

two-dimensional or three-dimensional object.

We perform density functional theory calculations on Au14 and visualize the HOMO and the
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LUMO. For the calculation, we use both the BP86 and the B3-LYP exchange-correlation (XC)

functionals with def2-SVP and def2-TZVP basis sets. The Au14 structure with isosurfaces

indicating the HOMO and the LUMO is shown in the Figure 6.2. Visually no difference between

the frontier orbital shapes calculated using different methods can be recognized. A strongly

two-dimensional character of the frontier orbitals supports the hypothesis that, despite the three-

dimensional Au atom arrangement in Au14, its electronic structure possesses a two-dimensional

character, which justifies its stability according to the superatom model.

As an additional analysis, which might justify the consideration of four gold atoms as parts

of electron-withdrawing ligands, we calculate the nuclei partial charges using the electrostatic

potential fit, as implemented in TURBOMOLE [82]. It shows that a Au(NO3) moiety has a

negative charge of approximately 0.5 e−.

Figure 6.2: The structure of the Au14 nanocluster with the HOMO (a and b) and the LUMO (c and d)
orbitals from the side view (a and c) and the top view (b and d). The orbitals are represented by the
equipotential surface of the corresponding charge distribution with the charge density of 0.03 e/a3

0. The
atoms are colored as following: white (H), gray (C), green (P), cyan (N), pink (O) and yellow (Au). The
two phases of the molecular orbitals are represented by red and blue. Both HOMO and LUMO show a
strongly planar distribution. The figure is previously published in [2].

6.2 HOMO-LUMO Gap of Au8 and Au9 Nanoparticles

The ultrasmall gold nanoparticles owe a large part of the technological and academic interest

to their nonmetallic properties, i.e. a nonzero HOMO-LUMO energy gap ∆HOMO−LUMO. A
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controllable tuning of ∆HOMO−LUMO allows the adjustment of properties of such structures

to suit a particular purpose. Therefore, finding a way to determine and ultimately design the

∆HOMO−LUMO is crucial for research and engineering of usAuNP.

Using different XC functionals and utilizing the time-dependent DFT (TDDFT) method we

calculate the HOMO-LUMO gap for three usAuNP: [Au14(PPh3)8](NO3)4 (the introduced

Au14), [Au8(PPh3)8](NO3)2 (further: Au8) and [Au9(PPh3)8](NO3)3 (further: Au9). To

validate our methods, we compare the results with the experimental values obtained by our

collaborators. This calculations are to be published soon as "Crystal Structure and Electronic

Properties of [Au8(PPh3)8](NO3)2" by Benjamin S. Gutrath, Frank Schiefer, Ulli Englert,

Mihaela-Diana Şerb, Wolfgang Bettray, Igor Beljakov, Bernd Speiser, Velimir Meded, Wolf-

gang Wenzel and Ulrich Simon [5]. The details of the experimental methods are to be found

therein.

Cluster
HOMO-LUMO Gap (eV)

DFT TDDFT Experiment
PBE B3-LYP PBE B3-LYP ∆EOES ∆Epl ∆Ep

Au8 2.08 3.06 2.12 2.43 1.97 1.69 1.60
Au9 1.59 2.51 1.65 1.87 2.07 1.77 1.77
Au14 0.35 1.05 0.41 - - -

Table 6.1: The simulated and the experimentally determined values of the HOMO-LUMO gap for three
ultrasmall gold nanoparticles Au8, Au9 and Au14. The calculation was performed using DFT and
TDDFT methods with two different types of exchange-correlation functionals: GGA and Hybrid (PBE and
B3-LYP respectively). The basis set is def2-TZVP, except for the TDDFT with B3-LYP functional, where
a smaller basis set, def2-SVP, is used due to excessive computational time requirement. The TDDFT
calculation with B3-LYP did not converge for Au14. The experimental methods are optical extinction
spectroscopy (EOES), photoluminescence (Epl) and voltametry (Ep). The details of the experimental
methods are to be found in the upcoming paper by B. Gutrath et al. [5].

The Table 6.1 contains the calculated as well as the experimentally obtained HOMO-LUMO

gaps. As stated in [5], the energy obtained by the photoluminescence ∆Epl represents the

∆HOMO−LUMO most precisely: upon optical excitation, the electron jumps from the HOMO to

the level above the former LUMO (∆EOES). "After intersystem crossing, the excited electron

relaxes to the former LUMO without radiation and falls back into the former HOMO by emitting

light with ∆Epl" [5].

The theoretically obtained ∆HOMO−LUMO in Table 6.1 is always overestimating the gap for

Au8, compared to ∆Epl. The DFT+PBE calculation overshoots less than the other methods,

namely by 0.39 eV. For Au9 the B3-LYP XC functional overestimates the gap (by 0.74 and

0.10 eV with DFT and TDDFT respectively), while the PBE XC functional underestimates it

slightly (by 0.18 and 0.12 eV with DFT and TDDFT respectively).

It is notable that the experimental value for ∆HOMO−LUMO is smaller for Au8, while the com-

putational values show an opposite trend: regardless the method, the gap is always smaller

for Au9. Such inconsistence can be explained if we take into account that ∆HOMO−LUMO

was calculated for Au8 and Au9 without including the electron-withdrawing ligands (NO3),

i.e. as [Au8(PPh3)8]2+ and [Au9(PPh3)8]3+. The spatial distribution analysis of HOMO and

LUMO (Figure 6.3) indicates that for Au8 they mostly coincide, while for Au9 they hardly over-
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lap. Hence, the electrostatic response to the ligand field might be different for HOMO and for

LUMO of Au9 and lead to a different ∆HOMO−LUMO value for Au9 when ligands are included

into the calculation, while this is unlikely for Au8.

Figure 6.3: The structures of Au8 (a) and Au9 (b) nanoparticles with the HOMO (red and blue) and
the LUMO (yellow and green) orbitals. The orbitals are represented by the equipotential surface of
the corresponding charge distribution with the charge density of ±0.03 e/a0

3. The spatial distribution
of HOMO and LUMO of Au8 mostly coincide, while for Au9 HOMO and LUMO barely overlap. The
electrostatic responses of HOMO and of LUMO may therefore differ for Au9 upon including ligands in
the system and alter the HOMO-LUMO gap.

We conclude that for an effective application of DFT for the HOMO-LUMO gap determination

on nanoparticles, the position of HOMO and LUMO as well as the ligand position might play

an important role. Regarding the choice of the method, the HOMO-LUMO gap calculated with

the time-dependent DFT (TDDFT) with the PBE exchange-correlation functional is on average

closer to the experimental results than the DFT values and the TDDFT result with B3-LYP XC

functional.
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7 Self-Consistent Ensemble Monte Carlo Simulation of
Electronic Transport in Graphene

Electronic devices are increasingly becoming more a commonplace in our everyday lives. Simul-

taneously with the increased importance increases even the device functionality and complexity,

which means that conceptual and technological breakthroughs are constantly being sought for.

Graphene is an obvious example of both conceptual and technological breakthrough. Initially,

it was theoretically studied more than 50 years ago [121], but the synthesis was achieved only

relatively recently [67]. As being the very first literally one-atom-thick material it lead to an

activity explosion in the scientific community. Suddenly, two dimensional systems were not just

an obscure academic invention, but something that might have an impact on our daily existence,

as stability and charge carrier mobility of graphene were found to be superior compared to con-

ventional materials used in electronics. It was predicted that graphene-based transistors could

work at THz frequencies. All these properties, partly confirmed and partly predicted, triggered a

vast number of research projects on graphene [33, 66, 70, 122]. Graphene-based transistors were

produced experimentally by research groups all over the world. However, mobilities measured

in experiments were way below theoretical expectations. Mobility in real devices is suppressed

by intrinsic defects and scattering mechanisms, partly specific for graphene.

Theoretical models and computer simulations are being developed to understand the details

of electronic transport in graphene, but most of the approaches can handle structures of few

nanometers in size. To support the development of graphene-based devices substantially simu-

lations of real-size devices on micrometer scale are required. In my work I develop a code

which performs a self-consistent ensemble Monte Carlo (EMC) simulation to solve the Boltz-

mann transport equation (BTE) and the Poisson equation (PE) for mesoscopic devices up to

micrometer scale. I have been implementing a framework which allows for including scattering

mechanisms relevant for graphene, thus making the method suitable for graphene. Since this

method has a notably high efficiency, it should allow simulations of realistic devices.

As a foundation for simulation framework the software code Elmer developed at CSC (Espoo,

Finland) has been selected. Elmer is a finite-element software package, which is used to simulate

various physical problems by solving differential equations implemented in separate modules

of Elmer. Before we started implementing a module to solve BTE, Elmer already provided a

complete and functional Poisson Solver and Particle Tracker module, where massive particles

can move in a force field and reflect at the walls. Based on the Particle Tracker, I implemented

a module to solve the Boltzmann transport equation.
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7.1 Boltzmann Transport Equation

The main purpose of the Boltzmann transport equation (BTE) is the determination of the proba-

bility density function f = f(x,k, t) of particles as a function of position vector x, wavevector

k and time t. The number of particles dN within the space d3x and the wavevector d3k at time

t is given by

dN(x,k, t) = f(x,k, t)d3x d3k (7.1)

Since the wavevector k is proportional to the particle momentum p via the de Broglie relation

p = ~k, we further use the term momentum for k throughout the chapter. Knowledge of the

probability density function f allows to calculate system properties, e.g. particle density

n(x, t) =
∫ ∞
−∞

f(x,k, t)d3k, (7.2)

or particle current

u(x, t) =
∫ ∞
−∞

f(x,k, t)~k
m
d3k (7.3)

where m is the particle mass. Note, that in the case of electrons moving in crystals, the limits of

integration can be reduced to the first Brillouin zone.

In absence of a force, particle scattering or collisions, i.e. with constant k for each particle, the

distribution function f of particles with constant velocities v propagates as follows:

f(x + v∆t,k, t+ ∆t)d3x d3k = f(x,k, t)d3x d3k (7.4)

The velocity v depends on k and on the corresponding dispersion relation ε(k):

v(k) = ~−1∇kε(k) (7.5)

For a parabolic dispersion relation ε(k) = ~2k2

2m , which is valid for electrons close to the con-

duction band minimum in most materials, the velocity has the classical expression v(k) = ~k
m .

For a linear dispersion relation, e.g. ε(k) = vF~
√
|k|2 in graphene, the absolute value of the

velocity is independent of |k|, and for graphene equals to the Fermi velocity vF ≈ 106 m/s,

while its direction depends on the wavevector: v(k) = k
|k|vF . For the sake of clarity, we will

further omit k in v(k) and use simpler v instead.

To derive the following equation, let us assume a one-dimensional case, where x, v and k are

one-dimensional. Within the time dt the change of the local distribution function f(x0, kx)
in a box with the sides dx and dk, i.e. in a phase-space box, around x0 and k0 is equal to

the difference between the numbers of incoming and the outgoing particles, which are nin =
f(x0 − v0dt, k0)dkdx and nout = f(x0, k0)dkdx (the velocity v0 is v(k0)) The local change of

f(x0, k0) per unit time dt is then

∂f(x0, k0)
∂t

= nin − nout
dt dx dk

=

= f(x0 − vxdt, k0)− f(x0, k0)
dt

(7.6)
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with the substitution

∂f(x, k)
∂x

= f(x+ dx, k)− f(x, k)
dx

⇒ f(x0 − v0dt, k0) = ∂f(x0, k0)
∂x

(−v0dt) + f(x0, k0)
(7.7)

it can be written:

∂f(x0, k0)
∂t

= (∂f(x0, k0)/∂x)(−v0dt) + f(x0, k0)− f(x0, k0)
dt

=

= −v0
∂f(x0, k0)

∂x

(7.8)

which leads to
∂f(x0, k0, t)

∂t
+ v0

∂f(x0, k0, t)
∂x

= 0 (7.9)

Introduction of a force F acting on particles and changing their momentum as ~(∆k) = F∆t
results in the following evolution of f :

f(x + v∆t,k + ~−1F∆t, t+ ∆t)d3xd3k = f(x,k, t)d3xd3k (7.10)

With similar argumentation as before, in the three-dimensional case this leads to

∂f(x,k, t)
∂t

+ v∇xf(x,k, t) + ~−1F∇kf(x,k, t) = 0 (7.11)

Introduction of particle-particle collisions and other scattering sources (e.g. scattering of elec-

trons on phonons) leads to an additional variation of f with time and adds another term to the

Equation 7.11:
(
∂f
∂t

)
Scat

. In the case of particles with charge q moving in an electric field E
and experiencing a force F = qE, Equation 7.11 becomes:

∂f

∂t
+ v∇xf + q

~
E∇kf =

(
∂f

∂t

)
Scat

(7.12)

which is the most common form of the Boltzmann transport equation.

In the case of charged particles, i.e. in simulations on e.g. electrons or plasma, they have a

contribution Eint to the electric field E ≡ Etot = Eint + Eext. Their contribution can be

calculated using the Poisson equation:

Eint(x, t) = −∇xφ(x, t)

∇x[ε∇xφ(x, t)] = qn(x, t)
(7.13)

where n is the particle density, calculated from f (see Equation 7.2), φ is the electric potential,

and ε is the permittivity of the material.

Since f is required to calculate E in Equation 7.13, and E is required to calculate f in Equa-

tion 7.12, these coupled equations need to be solved self-consistently.
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The key component of the BTE is the scattering term
(
∂f
∂t

)
Scat

. In absence of particle-particle

collisions, particles interact with scattering centers of other types (in the case of electrons these

can be phonons, impurities, edges, etc.), which are not included in the BTE per construction, but

are taken into account in the scattering term Q ≡
(
∂f
∂t

)
Scat

, which can be written as

Q =
∫ ∞
−∞

[S(k′,k)f(x,k′, t)− S(k,k′)f(x,k, t)]d3k′ (7.14)

where S(k,k′, t) is the transition probability from the initial state with momentum k to the final

state with momentum k′ provided that the k-state is occupied, and the k′-state can be occupied.

The function f(x,k, t) defines the probability that the k-state is occupied. The factor S(k,k′)
depends on the scattering type.

At low electron densities in the momentum space, which is the case of semiconductors at room

temperatures, the Pauli exclusion principle (PEP) has an insignificant impact on the scattering

procedure and therefore can be neglected in Equation 7.14, which is done in many models solv-

ing BTE. For systems with high electron densities in the momentum space, e.g. in metals or

graphene at low temperatures, when the momentum space is densely populated with electrons

(highly degenerate electron gas), the Pauli exclusion principle has to be taken into account. It

manifests itself in the factor (1 − f(x,k′, t)) in the scattering term Q, which is the probability

that the final state k′ is empty. The resulting scattering term becomes:

Q =
∫ ∞
−∞

[S(k′,k)f(x,k′, t)(1−f(x,k, t))−S(k,k′)f(x,k, t)(1−f(x,k′, t))]d3k′ (7.15)

Since in the 3D case, the BTE is an integro-differential equation in 6 dimensions + time, solving

it in this form is a formidable task. A simpler way to find a solution is to use ensemble Monte

Carlo methods to simulate the movement of particles, which move according to Newton’s law,

and scatter according to the scattering term Q. Each particle has a well-defined position and

velocity. Since the ensemble Monte Carlo can be used to solve BTE on different problems, one

particle can either stand for a single molecule, atom, electron, etc., or represent multiple atoms,

molecules, etc. In the latter case, the particles are called representative particles. As our aim is

simulation of graphene devices, we restricted our simulation to two dimensions both in real and

in momentum space (or 2+2+1 dimensions).

7.2 Implementation Details

7.2.1 Data Structure

To express the probability function f(x,k, t), which plays a central role in the BTE, in the

ensemble Monte Carlo sets of particle properties are used: the position xP of the particle P and

its momentum kP . The probability density function at time t is defined as

f(x,k, t) d2x d2k =
∑
P

(∏
i

δ(xi − xP,i)δ(ki − kP,i)
)
d2x d2k (7.16)
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with i denoting the two directions of x and k. Using this equation, the essential properties of the

system can be extracted in the same way as defined before, see Equations 7.2 and 7.3.

7.2.2 Quantization of Momentum and Position

The finite elements model implies subdividing of the simulated object into a mesh grid in order

to solve differential equations at the nodes of the grid, and consequently project the calculated

values into the grid cells to get a solution at any position. The subdivision is utilized in the

Poisson solver, used to solve Poisson equation and to determine the electric field acting on the

particles at their positions.

We also subdivide the momentum space into momentum cells in order to take the Pauli exclusion

principle (PEP) into account. We determine the size of a momentum cell by considering the

electrons as particles in a box. For a sample with the size ai along the direction i the momentum

quantization ∆ki is

∆ki = 2π
ai

(7.17)

PEP is used in the scattering term Q in the Boltzmann transport model, where it forbids the

scattering into a momentum cell, which is already occupied. In a homogeneous sample, the

probability to scatter from k to k′ is independent from the position, which makes it reasonable

to use a single momentum space throughout the sample. With an applied voltage, or for an

inhomogeneous sample, the momentum distribution varies, which requires a subdivision of the

real space into parts with a separate momentum space for each part. For first tests we use a

single momentum space for the whole sample. To save the computational resources we do not

take the electron spin into account, allowing only single occupation of a momentum cell. In

our simulation we enforce the fulfilling of the Pauli exclusion principle for strongly degenerate

cases at any stage of the simulation to avoid collapse of the Fermi sphere.

7.2.3 Initial Setup

At the calculation start, the particles are distributed randomly in real space, while the moments

are assigned randomly according to the fermion thermal distribution, i.e. the Fermi-Dirac distri-

bution:

ff (ε) = 1

1 + e
ε−εF
kBT

(7.18)

where f(ε) is the ratio of the number of occupied states with energy ε to the number of available

states D(ε) at this energy.

Determination of the Thermal Distribution Using Inverse Transform Sampling
Method

To determine a random energy ε from a Fermi distribution (Equation 7.18) using a random

number r from a uniform distribution, we apply inverse transform sampling (ITS) method [123].
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With parabolic dispersion relation in two-dimensional momentum space the density of states

D(ε) is energy-independent so that the number of electrons at the energy ε is proportional to the

Fermi-Dirac distribution ff (ε). First, we define a continuous distribution function F :

F =
∫
ff (ε)dε = −kBT ln

(
1 + e

− ε−εF
kBT

)
+ C (7.19)

Then we introduce a random number r and set

r = F (ε) (7.20)

The energy ε is extracted from the inverse function:

ε = F−1(r) (7.21)

which satisfies the Fermi distribution.

Since r ∈ [0, 1], the function F (ε) should be normalized to the same range. If we assume a

general case, where the density of states does not start at zero, but at the energy εC , which is the

minimum of the conduction band, the normalization function NF would be

NF =
∫ ∞
εC

ff (ε)dε =
[
−kBT ln

(
1 + e

− ε−εF
kBT

)]∞
εC

=

= kBT ln(1 + e
εF−εC

kBT )
(7.22)

Therefore, the function F (ε) equals:

F (ε) = 1
NF

∫ ε

εC

ffdε =

= 1
NF

(
−kBT ln(1 + e

εF−ε

kBT ) + kBT ln(1 + e
εF−εC

kBT )
)

=

= 1
NF

(
−kBT ln(1 + e

εF−ε

kBT ) +NF

)
!= r

(7.23)

Solving this equation for ε yields:

ε = εF − kBT ln(e
NF (1−r)

kBT − 1) (7.24)

with

e
NF (1−r)

kBT = e(ln(1+e
εF−εC

kBT ))(1−r) = (1 + e
εF−εC

kBT )1−r (7.25)

Since r is pulled from a uniform distribution, the expression (1− r) gives the same distribution

as r, which results in the final expression for the energy:

ε(r) = εF − kBT ln
[(

1 + e
εF−εC

kBT

)r
− 1

]
(7.26)

This method allows for a simple mapping of a random number to particle energy, and therefore
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to its momentum. Applying it on each particle in the initial stage of the program will produce the

Fermi distribution in the momentum space. At the same time, it does not guarantee fulfilling of

the Pauli principle, which can result in double occupied momentum cells (note, we do not take

spin into account, and therefore do not allow double occupation of the momentum cells). To

fulfill the Pauli exclusion principle, we do additionally test whether the momentum cell assigned

to a particle is empty and, if not, apply this procedure to calculate a different momentum for the

current particle.

In the case of graphene, inverse transform sampling can not be applied, because the density of

states D(ε) close to the Fermi level is linear with energy in graphene, and, therefore, has to be

included in the integral in Equation 7.19. The resulting integral

F (ε) = 1
2

(
ε(ε− 2kBT ln(1 + e

ε−εF
kBT )) + 2(kBT )2Li2(−e

ε−εF
kBT )

)
+ C (7.27)

with polylogarithm function Li can not be inverted with analytic methods. For this reason, apart

from the inverse transform sampling method we implemented a different technique to define the

initial state.

Thermal Distribution by Consequent Filling of the Momentum Space

The momentum space is subdivided into momentum cells, which can be enumerated by a se-

quence of integer numbers. During this initiation procedure we go through the momentum cells,

starting from four momentum cells around |k| = 0, as shown in Figure 7.1. Once the iteration

procedure went through all cells in one rectangular shell (shells are indicated with different col-

ors in Figure 7.1), it starts with the next shell. The first cell in a shell is the most top-right cell

(maximum x and maximum y).

For each cell we pull a random momentum kr within the cell and calculate the corresponding

energy ε(kr) = εr and the corresponding value of the Fermi function ff (εr) = ff,r. An

additional random number r1 determines whether the cell is occupied (r1 < ff,r) or not (r1 >

ff,r). The procedure stops when the maximum value of ff,r among the cells in one shell is less

then 10−8, i.e. when the probability for more cells to be occupied is vanishing.

Note that the procedure can also be terminated when the maximum number of particles is

reached, but it may result in a distortion of the Fermi sphere and should be avoided by set-

ting the allowed maximum number of particles to a reasonably high number. This procedure

does not require an exact number of particles in the system to be known in the beginning, as

it actually determines this number from the Fermi level, dispersion relation and the momentum

quantization. In our code we implemented both types of thermal distribution determination:

the inverse transform sampling is used for a weakly degenerate electron gas in systems with

parabolic dispersion relation, while the consequent filling is used for a strongly degenerate elec-

tron gas. In the strongly degenerate case the occupation of the momentum cells is stored and

updated in memory as an extensible list and is used for checking the momentum cell availability

during the scattering procedure.
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Figure 7.1: Enumeration of two-dimensional cells, which allows an unambiguous assignment of an inte-
ger number to a two-dimensional cell and vice versa.

7.2.4 Boundary Conditions

In our simulation we implemented two types of system boundaries: quasi-periodic and reflect-

ing. The quasi-periodic walls represent the electrodes connected to the sample. When a particle

crosses the quasi-periodic wall, it is reinjected at the opposite electrode with a different mo-

mentum k′. The momentum k′ is taken from the Fermi distribution and is determined either by

the inverse transform sampling (weakly degenerate electron gas) or utilizing the stored list of

occupation of momentum cell as follows: each empty momentum cell C is weighted with the

value of the Fermi function ff (kC) for the momentum kC, which points to the center of this

momentum cell; the final momentum cell C is taken from this weighted distribution, and the

corresponding kC is assigned to the particle, i.e. k′ = kC. The cells in which kC points to-

wards the boundary are excluded from the list of considered cells. This method is implemented

in the function DoThermalBackscattering.

When a particle hits the reflecting boundary, its final momentum k′ is also determined using

the DoThermalBackscattering procedure. As k′ is independent from the initial momentum

k, this approach introduces an additional scattering, which incorporates the limited size of the

sample into the simulation.

7.2.5 Flow Chart

One self-consistent loop of the simulation consists of several steps, shown in Figure 7.2. In the

first step, the internal electric field Eint at the nodes of the finite element grid is calculated from

the particle positions utilizing the Poisson Solver implemented in Elmer. In the second step the

internal Eint and the external Eext electric field and the resulting force F are calculated for each

particle from the field values at the grid nodes utilizing the Particle Tracker module of Elmer. In

the third step the particles are accelerated as described in Section 7.2.6 and moved according
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to

x′ = x + v∆t = x + ~−1∇kε(k)∆t (7.28)

In the fourth step the particles are scattered according to the scattering probability defined in

Equation 7.37, which will be explained in more detail in Section 7.2.7.

Figure 7.2: Flow diagram of the general Ensemble Monte Carlo Boltzmann-Poisson solver. The detailed
flow charts of the acceleration and the scattering step are shown in Figures 7.3 and 7.4 respectively.

7.2.6 Acceleration Procedure

During the acceleration procedure the momentum kP of a particle P changes to k′P according

to

k′P = kP + ~−1FP∆t (7.29)

for each particle P in the system. The velocity is calculated using the corresponding dispersion

relation:

v′P = v(k′P ) = ~−1∇kε(k′P ) (7.30)
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During the acceleration procedure in this form, a violation of the Pauli exclusion principle (PEP)

may occur, for example when the final momentum k′P is in a different momentum cell C ′ than

kP and C ′ is occupied by a particle R. To avoid the violation of PEP, we forbid acceleration

of P into C ′ as long as C ′ is occupied. The acceleration procedure goes through the particles

sequentially, i.e. if R is handled after P , then R can accelerate and open the vacancy in C ′ in

the same time step. In order to allow P to accelerate within the same time step, the acceleration

procedure repetitively goes through the list of particles, handling only particles which were

blocked in previous attempts, until no particle can accelerate (either because they are blocked or

already accelerated). The flow diagram is shown in Figure 7.3.

Figure 7.3: Flow diagram of the acceleration procedure.

7.2.7 Scattering Procedure

Total Scattering Probability

The scattering term S(k,k′) is the transition probability from the state k to k′ per unit time. The

total scattering rate for a particle with the momentum k is

λ(k) =
∫

Ω
S(k,k′)d3k′ (7.31)

Here for the time being we neglect the Pauli exclusion principle included later. Since the mo-

mentum k changes with time, k = k(t), the total scattering rate is implicitly time-dependent:

λ(k) = λ(k(t)). The scattering probability in the time δt is therefore λ(k(t))δt. The probability

for a particle to move during the time δt without scattering is therefore 1 − λ(k(t))δt. A finite
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time step ∆t can be expressed as a sum of i time intervals δt:

∆t =
∑
i

δt (7.32)

The probability pnoscat to remain unscattered during the time ∆t for the particle with an initial

momentum k(t0) is therefore

pnoscat(k(t),∆t) = (1− λ(k(t0))δt)·

· (1− λ(k(t0 + δt))δt)·

· (1− λ(k(t0 + 2δt))δt)·

. . .

· (1− λ(k(t0 + ∆t))δt)

=
∏
i

(1− λ(k(t0 + iδt))δt)

(7.33)

Taking the logarithm yields

ln (pnoscat(k(t),∆t)) =
∑
i

ln(1− λ(k(t0 + iδt))δt)

≈ −
∑
i

λ(k(t0 + iδt))δt
(7.34)

for 1 � λ(k(t))δt (as ln(1 − x) ≈ −x for x � 1). Replacing the sum with an integral and

taking both sides into exponent yields

pnoscat(k(t),∆t) = exp
(
−
∫ t0+∆t

t0
λ(k(t′))δt′

)
(7.35)

Here we made an assumption that during the time step ∆t the momentum change is small enough

to keep the scattering rate almost constant: λ(k(t′)) ≈ λ(k(t0)). The probability for no scatter-

ing event is then

pnoscat(k(t),∆t) = exp(−λ(k(t0))∆t) = pnoscat(k,∆t) (7.36)

and the resulting probability for a scattering event becomes:

pscat(k,∆t) = 1− pnoscat(k,∆t) = 1− e−λ(k(t0))∆t (7.37)

Time of Flight

In the simulation we allow only one scattering per time step. Therefore, the time of flight ∆t has

to be chosen so that the probability to undergo a scattering is significantly lower than 1:

pscat(k,∆t) = 1− pnoscat(k,∆t)� 1 (7.38)
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If we set the highest allowed value for pscat(k,∆t) to x, we get a formula for ∆t:

∆t < − ln(1− x)
λ(k) ≈ x

λ(k) (7.39)

for x� 1. In our simulation we use the constant time technique, requiring that the this formula

is valid for all k:

∆t < min
(

x

λ(k) ; k
)

(7.40)

Since the scattering rate λ is in most physical cases ever-expanding with growing k ≡ |k|, one

needs to estimate the highest possible k = kmax and calculate λ(kmax), to get a proper value

for ∆t. kmax can be calculated from the invert dispersion relation kmax = ε−1
max(k), while εmax

can be estimated from the Fermi distribution if we set ff (εmax) = 1/N , where N is the number

of particles in the system. Under these conditions, there will be one particle in the system of N

particles with a high enough momentum k >= kmax to have a non-vanishing probability to be

scattered more than once during the flight time ∆t.

Final Momentum

Figure 7.4: Flow diagram of the scattering procedure of the Ensemble Monte Carlo Boltzmann-Poisson
solver.

In our model we consider multiple scattering mechanisms. Each scattering mechanism (indexed

with s) changes the absolute value of the particle momentum |k| by (∆k)s, while the scattering

angle is considered to be independent from the direction of k. For initial tests we take into
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account only the phonon scattering, which can be divided in two subcategories: scattering on

acoustic phonons, and scattering on optical phonons. The change in energy due to the interaction

with acoustic phonons is so insignificant that the final momentum k′ is generally assumed to be

equal k: (∆k)a = 0. In the case of optical phonon scattering, only phonons with discrete energy

values (see Section 7.3.3) are absorbed and emitted, so that the energy, and therefore, the possible

momentum change has discrete values. The scattering term S(k,k′) used in Equation 7.31 can

therefore be expressed as a sum of scattering terms Ss(k,k′):

S(k,k′) =
∑
s

Ss(k,k′) (7.41)

so that the total scattering rate λ(k) can be expressed as

λ(k) =
∫

Ω

∑
s

Ss(k,k′)d3k′ =
∑
s

∫
Ω
Ss(k,k′)d3k′ =

∑
s

λs(k) (7.42)

with the scattering rate λs(k) provided by the scattering type s. We subdivide the scattering

rate of optical phonon scattering into separate parts λso , so that each λso corresponds to only

one (∆k)s and that
∑
so
λso(k) is the scattering rate of optical phonon scattering. Once the

scattering event occurs (with probability defined in according to Equation 7.37), an additional

random number determines the type of the occurred scattering, with probability

pk(s) = λs(k)
λ(k) (7.43)

for the scattering mechanism s. Since each s corresponds to a unique (∆k)s, determination of

s defines the absolute value of the final momentum |k′| = |k| + (∆k)s. The direction of k′

is taken from a uniform distribution. In order to fulfill Pauli exclusion principle into account,

we check whether the momentum cell of k′ is empty and, if not, block the scattering by setting

k′ = k. Figure 7.4 shows the flow chart of the scattering procedure.

7.3 Proof of Principle

We test our model on a silicon sample with previously tested parameters. For this purpose we

take the simulation of 0.4 µm long silicon channel as described by C. L. R. Milazzo [124]. The

device is simulated at the lattice temperature TL = 300 K with the applied voltage U = 2 V.

In our simulation we define a sample width of 0.4 µm. The momentum space quantization is

∆k = 1.571× 107 m−1. The dispersion relation is parabolic with an effective mass m∗ =
0.32me and the electron rest mass me. The real space is subdivided into 10 cells, which are

utilized for calculation of the electric field via Poisson solver. As proposed in [125], to avoid

plasma oscillations, the time step is set to 76 fs. Calculations show that this time step provides a

reasonable overall scattering rate of ≈ 20% per time step.
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7.3.1 Fermi Level and the Number of Particles

In her report, C. L. R. Milazzo uses n-doped silicon channel with doping density ND =
2× 1017 cm−3. As the intrinsic carrier concentration of Si is 1.5× 1010 cm−3 at 300 K, which

is insignificantly small compared to the donor density ND, the resulting carrier concentration

is n ≈ ND. We rescale this 3D carrier density to two dimensions by taking n2D = n2/3, so

that the mean electron-electron distance is conserved, and yield n2D = 3.42× 1015 m−2. For

a 0.16 µm2 sample the corresponding number of electrons is 547. Since we fill the momentum

space neglecting the particle spin, so that one electron is allowed to occupy one momentum

cell, we take only half of these numbers, i.e. assume that one particle represents two electrons

(otherwise having the same mass and charge as a single electron). To achieve this electron

number, the Fermi energy is set to−0.0588 eV relative to the bottom of conduction band.

7.3.2 Fermi Distribution

In order to validate our approach we analyze the distribution of particles in the momentum space

and compare it to the Fermi function at given temperature and Fermi level. First, we consider

the system filled using the inverse transform sampling method (see Page 67), with boundary

conditions described in Section 7.2.4, i.e. after each wall collision, particle momentum is taken

randomly from the Fermi distribution. As Figure 7.5 shows, the resulting energy distribution

strongly deviates from the Fermi function. The reason for such discrepancy is violation of the

detailed balance, which arises from the fact that fast particles hit the wall more often than slow

particles and get on average a lower momentum upon interaction with a wall. This leads to a

redistribution of particle momenta in favor of low momenta.

To preserve the occupation distribution according to Fermi-Dirac statistics, we simulate addi-

tional ghost-cells, which play a role of electron reservoirs, to determine the final momentum k′

of the reflected/reinjected particle. Let us assume that the k′ has to point away from the wall

with a normal nw, i.e. the scalar product nw ·k′ is positive. We simulate a spatial cell of infinite

height (yg coordinate; index g is used to indicate the ghost cell) and a finite length lg (xg coor-

dinate), so that the xg vector is parallel to nw. A number Ng of particles is created at random

positions xg,n within [0; lg]. Particle momenta |kn| are taken from the Fermi distribution by

applying inverse transform sampling, the angle αkn between kn and xg is taken from a uniform

distribution, and only particles moving in positive xg direction, i.e. towards the ghost-cell exit,

are created, so that cos(αkn) > 0. The term tn = lg−xg,n

|kn| cos(αkn ) is used to characterize the time

until the particle reaches the ghost-cell exit. Momentum kn of the particle n with the lowest tn
is taken as the final momentum k′. Once k′ is determined, the ghost cell is eliminated.

In order to estimate a minimum Ng required to provide Fermi-Dirac occupation distribution in

the system, we perform a series of simulations at U = 0 V, T = 300 K and εF = −0.0588 eV

forNg varying between 1 and 1000. Figure 7.6 shows that already atNg = 6 the occupation dis-

tribution mostly coincides with the Ng = 1000 curve, both being close to the Fermi distribution.

Therefore we consider Ng = 6 to be an optimal number of particles per ghost cell.
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Figure 7.5: Ratio of the occupied states to the available states as a function of energy. The inset shows
the same data plotted with logarithmic y-axis. Simulation (blue) is compared to the Fermi distribution
function (red). In both cases the parameters are: temperature T = 300 K and the Fermi energy εF =
−0.0588 eV. In the simulation the only scattering mechanism is the scattering at the walls, with the final
momentum taken from the Fermi distribution. In the simulation the occupation distribution is shifted
towards the low-energy states.

7.3.3 Scattering Rates

The scattering taken into account in [124] is the scattering at acoustic and optical phonons. The

transition rates are

Sacc(k,k′) = K0δ(ε(k′)− ε(k)) (7.44)

for the acoustic scattering, and

Sopt,j(k,k′) = Kj [δ(ε(k′)− ε(k) + ~ωj)(nqj + 1)+

+ δ(ε(k′)− ε(k)− ~ωj)nqj ]
(7.45)

for the inelastic scattering at the j-th optical phonon. As defined in [124, 125], the coefficients

K0 and Kj are

K0 = kBTLΞ2
d

4π2~ρv2
s

(7.46)

Kj = Zf (DtKj)2

8π2ρωj
(7.47)

where Ξd is the acoustic-phonon deformation potential, ρ is the mass density of silicon, vs is the

sound velocity of the longitudinal acoustic mode, Zf is the number of final equivalent valleys for

the inter-valley scattering, (DtKj) is the deformation potential of the j-th optical phonon, ~ωj
is the phonon energy, and nqj is the phonon equilibrium distribution function, defined according
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Figure 7.6: Ratio of the occupied states to the available states as a function of energy. The inset shows
the same data plotted with logarithmic y-axis. In the simulation the only scattering mechanism is the
scattering at the walls, with the final momentum determined using the ghost-cell technique. Simulations
for different number Ng of the particles in the ghost cell are compared to the Fermi distribution function
(red). In both cases the parameters are: temperature T = 300 K and the Fermi energy εF = −0.0588 eV.
Simulation with one particle per ghost cell is equivalent to the simulation in Figure 7.5. With increasing
number of electrons, the occupation distribution approaches the Fermi distribution. The simulations
converge at Ng = 6.

to the Bose-Einstein statistics:

nqj = 1

e
~ωj

kBTL − 1
(7.48)

Tables 7.1 and 7.2 contain the values of the listed variables.

Ξd acoustic-phonon deformation potential 9 eV
ρ mass density of silicon 2330 kg/m3

vs longitudinal sound speed 9180 m/s
m∗ effective electron mass 0.32 me

me electron rest mass 9.1095·10−31 kg

Table 7.1: Scattering parameters for a silicon device. The data is taken from [124].

As equations 7.44 and 7.45 show, the scattering rates Sacc and Sopt are independent from the

scattering angle, and the only momentum-dependent component of the scattering rates are the

Dirac delta-functions. Therefore, the calculation of the scattering rates λs(k) are quite straight-

forward. First, we calculate the scattering rate λacc(k) for the acoustic scattering. In order to uti-

lize the spherical symmetry of Sacc, we switch to spherical coordinates d3k = k2 sin(θ)dθdφdk.

Using the parabolic dispersion relation ε(k) = ~2k2

2m∗ ≡ ηk2, we substitute k′ =
√

ε′

η and
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j ~ωj (meV) (DtKj) (108 eV/cm) Zf
1 12 0.5 1
2 18.5 0.8 1
3 19.0 0.3 4
4 47.4 2.0 4
5 61.2 11.0 1
6 59.0 2.0 4

Table 7.2: Parameters used for inelastic scattering at the j-th optical phonon in the test silicon device:
phonon energies, deformation potentials and number of equivalent valleys. The data is taken from [124].

dk′ = 1
2
√
ε′η
dε′ and yield:

λacc(k) =
∫
Sacc(k,k′)d3k′ = 4π2K0

∫
δ(ε(k′)− ε(k))k′2dk′ =

= 4π2K0

∫
δ(ε′ − ε)ε

′

η

1
2
√
ε′η

dε′ =

= 2π2K0η
−3/2√ε = 4π2K0m

∗~−2k

(7.49)

With similar consideration we calculate the scattering rate at the j-th optical phonon:

λopt,j(k) =
∫
Sopt(k,k′)d3k′ = 4π2Kj ·

·
[
(nqj + 1)

∫
δ(ε(k′)− ε(k) + ~ω + j)k′2dk′ +

+ nqj

∫
δ(ε(k′)− ε(k) + ~ω + j)k′2dk′

]
=

= 4π2Kj
m∗

~2

[
(nqj + 1)

√
k2 − 2m∗ω

~
+ nqj

√
k2 + 2m∗ω

~

]
(7.50)

The total scattering rate λ(k) is the sum of these partial scattering rates:

λ(k) = λacc(k) +
6∑
j=1

λopt,j(k) (7.51)

Electron velocity

Figure 7.7 shows the simulated electron velocity and energy at different distances from the

leads in a 0.4 × 0.4 µm device at T = 300 K and U = 2 V. The electric field accelerates

the electrons towards the right electrode. The velocity values of up to 3.9× 105 m/s are higher

by a factor ≈ 40 than 1× 104 m/s reported in [124]. To compare our simulation with [125], we

also perform simulation at the source-drain voltage U = 1 V. Maximum particle velocities and

energies produced in our simulation and reported in [124] and [125] are listed in Table 7.3. The

resulting particle velocity of up to 2.8× 105 m/s is higher than 1.2× 105 m/s reported in [125]

by a factor of ≈ 2.3. The energy calculated from particle momentum reaches the values of

0.1 eV (U = 1 V) and 0.19 eV (U = 2 V), which is comparable to 0.2 eV (U = 1 V) and 0.3 eV

(U = 2 V) reported in [125] and [124] respectively.
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Figure 7.7: Electron velocity and energy distribution along the sample at an applied voltage of 2 V. The
electric field is applied along the x axis.

Voltage 1V 2V
Published in This work Di Stefano [125] This work Milazzo [124]
|v| [m/s] 2.8× 105 1.2× 105 3.9× 105 1× 104

ε [eV] 0.1 0.2 0.19 0.3

Table 7.3: Comparison of the maximum values of the particle velocity |v| and energy ε per particle
reached in comparable silicon samples in our model and in previously published reports.

7.4 Outlook

Our ongoing work is to expand the created framework with numerous parameters in order to

simulate specific devices. The scattering mechanisms specific for graphene (e.g. flexural scatter-

ing [126], or scattering at charged impurities [127]), the gate voltage and inhomogeneity of the

device (separate k-spaces) are ongoing tasks of our research. The constant time technique will be

compared with the self-scattering technique, to estimate the errors introduced by either methods,

as described in [125]. Multi-valley dispersion relation is also a goal of this project.
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8 Summary and Outlook

Prediction and analysis of structural, electronic and magnetic properties of materials using com-

putational methods has emerged as a standard practice in modern theoretical physics. With the

evermore decreasing size and increasing complexity of a large variety of nanodevices quan-

tum mechanical calculations have become increasingly effective means of designing new ma-

terials, as experimental and analytic approaches are seldom able to scan the whole parameter

space.

Among the most formidable challenges of materials science in the recent years is the improve-

ment of the information processing devices. The winners of the competition of Future and

Emerging Technologies Flagship initiative initiated in 2014 by the European commission il-

lustrate the relevance of computing and information technologies to our society: one flagship

project deals with graphene, a material theoretically capable to drive the microprocessor fre-

quency up to 1 THz; and the other is the Human Brain Project, which utilizes high performance

computing resources to simulate the human brain.

The graphene project targets one of the frontiers of the modern semiconductor technology:

silicon-based semiconductors have reached the physical limit for the frequency, such that new

materials have to be found/designed to accelerate modern CPUs beyond that limit. Another bot-

tleneck for information processing and storage in the next 10 years will be the storage density of

standard information storage devices, which has already increased by three orders of magnitude

during the last decade. To keep up with this trend, fundamental breakthroughs in the basic sci-

ences are necessary to make it possible to store one bit of information in a single molecule. Such

devices require a mechanism for controlled switching (to write the information) between two or

more metastable states, which have to be easily distinguishable (to read-out the information) and

separated by a high energetic barrier (to store the information).

In this thesis I investigated a combination of two types of single-molecule magnetic storage

devices: single molecule magnets (SMM) [7–13] and spin-crossover (SCO) molecules [22, 61,

94]. The basic molecular structure of present-day devices for both types of systems is similar:

a core consisting of transition metal or rare earth atoms (magnetic centers) is stabilized by the

surrounding organic hull (ligand). SMMs usually contain more than one magnetic center, while

molecular magnets with a single magnetic center, so-called single ion magnets (SIM), were also

reported recently [14–20]. A SCO molecule typically requires only one magnetic center.

In SMMs the information can be stored in the magnetization direction, similar to conventional

data storage devices. The direction of the magnetic moment can be read out or written by an ex-

ternal magnetic field. Strong magnetic anisotropy, leading to a well-defined easy magnetization

axis, establishes an energetic barrier between the two states and prevents SMM from thermally

induced switching. In present-day systems, the lifetimes of SMM magnetic states are strongly
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limited by quantum tunneling, which allows transitions through the energy barrier. The function

of present-day SMM is therefore limited to cryogenic temperatures.

In contrast to SMM spin crossover (SCO) systems change their total spin (between low and

high spin multiplicity) under an external influence. Compared to SMM, instead of the direction,

the length of the magnetic moment vector is used to store information in a SCO molecule.

In many cases switching can be controlled by an external electric field. SCO is a magneto-

mechanical effect, i.e. the magnetic center-ligand distance changes upon the transition by ≈
0.3 Å. This feature of SCO decouples the two states in the SCO molecule, prevents quantum state

mixing and hence allows long lifetimes. Reading-out the stored information is a challenging

task, though, since the low-spin and high-spin states are difficult to distinguish experimentally.

The two widely used methods to distinguish the spin states, namely X-ray spectroscopy and

measurement of magnetic susceptibility as function of temperature, are less suitable for magnetic

storage applications. The applicability of SCO is therefore limited by the read-out technique to

very low temperatures.

To circumvent the limitations of SMM and SCO systems, we suggest to combine their prop-

erties to build a molecular switch, which would change the easy magnetization direction (easy

read-out) upon a SCO (stable states). To achieve this, magnetic atoms with a strong magnetic

anisotropy are required. Heavy elements, like 4d and 5d transition metals (TM), which possess

a high spin-orbit coupling, required for magnetic anisotropy, fit this purpose very well. It is

known, though, that conventional ligand cages quench the magnetic moment of these atoms. An

unconventional kind of ligand is therefore needed to preserve the magnetization.

Recently, there has been an increasing number of investigations on adsorption of 4d and 5d

TM on flat surfaces [24, 28–30, 70]. TM atoms adsorbed on graphene showed a high magnetic

anisotropy [23, 24, 29]. For cobalt adatom on graphene even an energetic double well, accom-

panied by a rearrangement of atomic orbital occupation, was reported [31]. These reports made

graphene an attractive candidate for our study.

Most of the theoretical investigations of graphene have not considered the influence of the edge,

which is an inevitable feature of a real graphene sheet in experiment. To investigate the influ-

ence of the edge on the adsorption and magnetic properties of the magnetic center adsorbed on

graphene, we focused our study on finite triangular flakes of graphene, where the variation of

the adsorption sites allowed the analysis of the edge effect. Graphene edge can have two reg-

ular configurations depending on the cutting vector – armchair and zigzag. A triangular shape

of the flakes was chosen as the simplest shape, where the same edge type can be found on all

sides of the flake. From the device perspective it is also sensible to study finite systems to limit

the possible diffusion of the adatoms on the graphene sheet in order to localize the stored in-

formation. To study the energetic, magnetic and electronic properties of graphene nanoflakes

decorated with 4d and 5d transition metals we performed calculations utilizing the density func-

tional theory (DFT), a well-established tool for computing of the quantum mechanical properties

of molecules.

While both armchair and zigzag edges can serve as a "ligand" for the adatoms, the intrinsically
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magnetic zigzag edge nanoflakes quench the adatom magnetic moment substantially and make

the adsorption process very complicated, e.g. (anti-)ferromagnetic coupling between the adatom

and the flake, etc. At the same time, Ru (4d TM) adatoms on armchair flakes showed an in-

vs. out-of-plane magnetic anisotropy of only 3.5 meV, a value fairly small when compared to

the room temperature. Therefore we focused our study on heavier 5d transition metals on (non-

magnetic) armchair nanoflakes.

Osmium showed much higher magnetic anisotropy energies of up to 31.4 meV when adsorbed

on flakes consisting of 36 carbon atoms, and 75.1 meV on a single benzene ring. At the same

time, adsorbed Os possesses a different spin state (S=1, low spin) than a free Os atom (S=2, high

spin), which is an indication for a possible spin-crossover. Gradually annealing an Os atom onto

nanoflakes, we calculated the binding energy profile as function of the distance. The energy

profiles on the off-edge carbon rings of finite flakes exhibited a double-well with two metastable

states at 1.7 Å and 2.0 Å distance from the flake. The magnetic anisotropy turned out to change

its preferred direction between the states, i.e. the preferable magnetization direction was in-plane

(out-of-plane) for the low (high) spin state. Realizing that for a true molecular switch we only

need a way to control the spin transition, we applied an electric field perpendicular to the flake

plane, and showed that it can reverse the energetic order of the metastable states, and thus control

the magnetic moment of the atom.

We performed similar calculations with other 5d transition metal atoms as magnetic centers and

showed that the spin-crossover, the bistability, or both are present on all of them and can be tuned

by the choice of the flake size and the adsorption site. The findings were tested with a number of

density functionals, quantum-mechanical methods (DFT and Hartree-Fock with Møller-Plesset

correction of the second order), basis sets and dispersion corrections, and demonstrated that the

bistability is present in the energy profiles regardless the chosen computational methods. Sum-

marizing this investigation we find that 5d transition metal atoms absorbed on finite graphene

flakes combine the attractive features of SMM and SCO systems and may provide the first room

temperature molecular magnetic storage device with the potential to increase the storage density

of magnetic storage devices by several orders of magnitude.

In the second study reported in this thesis I have investigated the electronic structure of ul-

trasmall gold nanoparticles (AuNP). Having a vast number of applications in medicine [34],

biomedical imaging [35–38], catalysis [39–43], cancer therapy and diagnosis [36, 44, 45], sen-

sors [46], and photonic devices [47], investigation of AuNP forms a major field of research. We

used DFT to characterize the electronic state of [Au14(PPh3)8(NO3)4] nanoparticle, which is

particularly interesting because its molecular formula matches neither the nanocrystal [48, 49],

nor the superatom complex [50, 51] stability criterion, while exhibiting good stability at ambi-

ent conditions [2]. We found that four of its gold atoms located unusually close to the (NO3)
ligands can be considered to be part of the electron-withdrawing ligands Au(NO3). Our DFT

calculations with subsequent electrostatic potential projections (ESP) showed a net charge of

0.5 e− per Au(NO3) fragment, supporting this conclusion. In this scenario application of the

superatom counting rules [50, 51] predicts a stability for flat (two-dimensional) gold clusters,

while the X-ray analysis shows that the gold atoms are distributed in three dimensions in Au14.
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Suspecting that its frontier orbitals may have a flat structure, leading to two-dimensional-cluster-

like behavior, we calculated the electron density isosurfaces of HOMO and LUMO of Au14, and

demonstrated their quasi-two-dimensional shape, confirming that Au14 can be considered as flat

Au10 cluster with four Au(NO3) ligands, which explains its extraordinary stability.

In the last part of this thesis we investigated an ensemble Monte Carlo approach on a finite

element grid to solve the Boltzmann transport equation for electrons in two-dimensional nanos-

tructures, with the goal to simulate the transport properties of realistic electronic components.

Our model allows an implementation of a range of scattering terms. To ensure the applicability

of this model for strongly degenerate electron gas, which is relevant for instance in graphene,

we include the Pauli exclusion principle in the scattering mechanism. To show the functionality

of our code we simulated a 0.4× 0.4 µm device with the silicon material parameters.

Outlook

The development of a graphene-based single molecule magnetic switch (GSMMS) demonstrated

in our work opens new possibilities in the field of molecular memory devices. The aim of our

future work is the investigation of spin crossover effect on graphene flakes of different shapes,

e.g. hexagonal or rhomboid, including flakes with both zigzag and armchair edge. Apart from

this, more sophisticated computational methods, like complete active space self consistent field

(CASSCF) or random phase approximation (RPA), will be used and compared to determine ad-

sorption profiles and anisotropy more precisely. Considering a high spin orbit coupling of rare

earth elements, they also will be investigated as potential candidates for GSMMS. It is also inter-

esting to study the influence of substrate underneath the nanoflakes on the magnetic properties

of the adatom, which can provide additional possibilities to tune the GSMMS properties.

Another prospect of our future work is the further development of the ensemble Monte Carlo

model for electronic transport on the mesoscopic scale. The development of this method is still

in progress, in particular with regard to the implementation of the time-dependent gate voltage,

graphene charge puddles and graphene-specific scattering mechanisms. The long-term goal of

this project is to simulate graphene-based electronic components at THz frequencies to be able

to support the design of graphene-based electronic components.
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List of Abbreviations

DFT Density functional theory

XC Exchange-correlation

TM Transition metal

EIOP In- vs. Out-of-plane magnetic anisotropy energy

EIP In-plane magnetic anisotropy energy

SMM Single molecule magnet

SIM Single ion magnet

SCO Spin-crossover

MAE Magnetic anisotropy energy

HF Hartree Fock method

MP2 Møller-Plesset correction of the second order

AuNP Gold nanoparticle

usAuNP Ultrasmall gold nanoparticle

BTE Boltzmann transport equation

au Atomic units

HOMO Highest occupied molecular orbital

LUMO Lowest unoccupied molecular orbital

85





Acknowledgments

PhD studentship at the AG Wenzel has been a very pleasant, interesting, and fruitful time for

me, due to the people who were around me during this time. I would like to thank everybody

who was supporting me in one or another way during my time at KIT.

First, I would like to thank Prof. Wolfgang Wenzel for accepting me as a PhD student into

AG Wenzel and for being my supervisor and mentor. He showed me by example how a proper

leader has to be: inspiring, helpful and effective at the same time. I was astonished by his trust

in each student, and by the fact that I have never witnessed any other but constructive criticism

coming from him. This is a very valuable experience for me. I also appreciate sending me to

various conferences, so that I could see a bit of the world and make a number of very interesting

acquaintances. I also thank Prof. Gerd Schön for reviewing my thesis and for constructive and

fruitful discussion on my work.

I thank Dr. Velimir Meded for being Velimir Meded, a dedicated supervisor and a friendly col-

league. The number of things he has taught me about physics and chemistry can only be beaten

by the number of things not related to science he has taught me, and I am not able to judge

which of them are more valuable for my future life. A lot of valuable thoughts and ideas were

produced in our discussions. Working with Velimir was also a significant improvement for my

spoken English, which I appreciate too.

I thank my roommates Franz Symalla and Pascal Friederich for sharing office with me, for being

helpful when I needed advice, and for fruitful and enlightening discussions. I thank Dr. Timo

Strunk, Dr. Ivan Kondov, and Stefan Bozic for being extraordinary helpful with any technical

and non-technical issue I ever asked them. I thank Dr. Julia Setzler for being the good soul

of the AG Wenzel, and Nana Heilmann for taking this post after Julia was no longer at INT.

I thank Dr. Priya Anand, Dr. Angela Poschlad, Dr. Denis Danilov, Dr. Martin Brieg, Tobias

Neumann, Paul Kleine, Dr. Moritz Wolf, Dr. Konstantin Klenin, Dr. Alex Schug and Claude

Sinner for interesting conversations and good time I had in their company. I thank Peter Råback

and Maged Morsi for a warm reception during the two weeks I spent in Helsinki working on my

project.

I thank my friends Elshad Shirinov, Michael Matveev and Erik Dmitriy Palatnik for not forget-

ting me and still visiting me now, when we are quite far apart. I want to thank my parents for all

the love and support they gave me during my life. I thank my daughter Adelina for keeping me

in a good mood regardless the tiredness or stress. Finally, I want to thank my beloved Alvina for

the patience, support and love through all the years and for making me a most invaluable present

I can imagine.

87



List of Figures

2.1 Atomic structure of graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Band structure of graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Types of graphene edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 All graphene nanoflakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Schematic of the Kohn-Sham approach . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Pure graphene nanoflakes with armchair and zigzag edge . . . . . . . . . . . . 26

4.2 Binding energy of Ru on nanoflakes . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Annealing of Ru adatom on the C36 flake: energy profile . . . . . . . . . . . . 28

4.4 Spin density of Ru on the C97 nanoflake . . . . . . . . . . . . . . . . . . . . . 29

4.5 Antiferromagnetism vs. ferromagnetism of Ru on the C36 flake . . . . . . . . . 30

4.6 In- vs. out-of-plane magnetic anisotropy energy of Ru on graphene flakes . . . 31

4.7 In-plane magnetic anisotropy energy of Ru on graphene flakes . . . . . . . . . 32

4.8 Spin density of Ru adatom on the C90 flake . . . . . . . . . . . . . . . . . . . 33

5.1 Binding energy of Os atom on graphene nanoflakes . . . . . . . . . . . . . . . 36

5.2 In- vs. out-of-plane magnetic anisotropy energy of Os atom on graphene flakes 38

5.3 In-plane magnetic anisotropy energy of Os atom on graphene flakes . . . . . . 39

5.4 Annealing of Os adatom on the C36 flake: energy profile . . . . . . . . . . . . 41

5.5 Annealing of Os adatom on the C36 flake: atomic orbital occupation . . . . . . 42

5.6 Annealing of Os adatom on the C36 flake: molecular orbitals . . . . . . . . . . 44

5.7 Annealing of Os adatom on the C18, C36, C90 flakes, benzene molecule and

infinite graphene: energy profile . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.8 Annealing of Os adatom on the C36 flake: electric field dependence of the en-

ergy profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.9 Charge transfer between the Os atom and the flake as function of external electric

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.10 Annealing of 5d transition metal atoms on the C36 flake: energy profile and the

magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.11 Energy profile of Os on C18 calculated with three different basis sets . . . . . . 50

5.12 Difference between the energy profiles calculated with def2-TZVP and def2-

SVP basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.13 Energy profile of Os on C36 calculated with three different van der Waals cor-

rections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.14 Energy profile of Os on C18 calculated with different methods . . . . . . . . . 53

5.15 Os atom adsorbed on two sites C18 flake: relaxed structures . . . . . . . . . . 54

88



6.1 Atomic structure of the Au14 nanoparticle . . . . . . . . . . . . . . . . . . . . 57

6.2 HOMO and LUMO of the Au14 nanoparticle . . . . . . . . . . . . . . . . . . 59

6.3 HOMO and LUMO of Au8 and Au9 nanoparticles . . . . . . . . . . . . . . . 61

7.1 Projection of two-dimensional momentum space on the integer number line . . 70

7.2 Flow diagram of the ensemble Monte Carlo solver . . . . . . . . . . . . . . . . 71

7.3 Flow diagram of the acceleration procedure of the ensemble Monte Carlo solver 72

7.4 Flow diagram of the scattering procedure of the ensemble Monte Carlo solver . 74

7.5 Ratio of the occupied states compared with the Fermi function . . . . . . . . . 77

7.6 Ratio of the occupied states compared with the Fermi function . . . . . . . . . 78

7.7 Electron velocity and energy as a function of x-position along the sample . . . 80

List of Tables

5.1 Relative binding energies of 5d transition metals on graphene flakes . . . . . . 37

5.2 Magnetic anisotropy energies of 5d transition metals on graphene flakes . . . . 40

5.3 Energetic barriers between the metastable positions of Os on C18 calculated

with different basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Magnetic anisotropy energies of Os on C18 before and after the geometry relax-

ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Magnetic anisotropy energies and the magnetic moment of Os on C36 calculated

with five different exchange-correlation functionals . . . . . . . . . . . . . . . 55

6.1 HOMO-LUMO gap of the Au8, Au9 and Au14 nanoparticles: theoretical and

experimental values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1 Scattering parameters for simulation of a silicon device . . . . . . . . . . . . . 78

7.2 Scattering parameters for inelastic scattering in silicon device . . . . . . . . . . 79

7.3 Comparison of particle velocities and energies produced in this model with pre-

viously reported results on similar devices . . . . . . . . . . . . . . . . . . . . 80

89





Bibliography

[1] Igor Beljakov et al. “Magnetic anisotropy of graphene quantum dots decorated with a
ruthenium adatom”. In: Beilstein Journal of Nanotechnology 4 (2013), pp. 441–445.
ISSN: 2190-4286. DOI: 10.3762/bjnano.4.51.

[2] Benjamin S. Gutrath et al. “[Au14(PPh3)8(NO3)4]: An Example of a New Class
of Au(NO3)-Ligated Superatom Complexes”. In: Angewandte Chemie International
Edition 52.12 (2013), pp. 3529–3532. ISSN: 1521-3773. DOI: 10 . 1002 / anie .
201208681. URL: http://dx.doi.org/10.1002/anie.201208681.

[3] Igor Beljakov et al. “Spin-Crossover and Massive Anisotropy Switching of 5d Transition
Metal Atoms on Graphene Nanoflakes”. In: Nano Letters 14.6 (2014). PMID: 24762041,
pp. 3364–3368. DOI: 10.1021/nl500872c. eprint: http://dx.doi.org/10.
1021/nl500872c. URL: http://dx.doi.org/10.1021/nl500872c.

[4] Franz Symalla et al. “Band Gap Engineering with a Twist: Formation of Intercalant
Super-lattices in Twisted Graphene Bilayers”. Submitted to Phys. Rev. Lett.

[5] Benjamin S. Gutrath et al. “Crystal Structure and Electronic Properties of [Au8(PPh3)8]
(NO3)2”. Preprint for J Phys Chem C.

[6] R. Sessoli et al. “Magnetic bistability in a metal-ion cluster”. In: Nature 365.6442
(1993), pp. 141–143. DOI: 10.1038/365141a0. URL: http://dx.doi.org/
10.1038/365141a0.

[7] Lapo Bogani and Wolfgang Wernsdorfer. “Molecular spintronics using single-molecule
magnets”. In: Nat Mater 7 (3 2008), pp. 179–186. DOI: 10.1038/nmat2133. URL:
http://dx.doi.org/10.1038/nmat2133.

[8] Constantinos J. Milios et al. “A Record Anisotropy Barrier for a Single-Molecule Mag-
net”. In: Journal of the American Chemical Society 129.10 (2007). PMID: 17309264,
pp. 2754–2755. DOI: 10.1021/ja068961m. eprint: http://dx.doi.org/10.
1021/ja068961m. URL: http://dx.doi.org/10.1021/ja068961m.

[9] David P. Mills et al. “A delocalized arene-bridged diuranium single-molecule magnet”.
In: Nat Chem 3 (6 June 2011), pp. 454 –460. DOI: 10.1038/nchem.1028. URL:
http://dx.doi.org/10.1038/nchem.1028.

[10] Robin J. Blagg et al. “Magnetic relaxation pathways in lanthanide single-molecule mag-
nets”. In: Nat Chem 5 (8 Aug. 2013), pp. 673 –678. DOI: 10.1038/nchem.1707.
URL: http://dx.doi.org/10.1038/nchem.1707.

[11] Victor Mougel et al. “Uranium and manganese assembled in a wheel-shaped nanoscale
single-molecule magnet with high spin-reversal barrier”. In: Nat Chem 4 (12 Dec. 2012),
pp. 1011 –1017. DOI: 10.1038/nchem.1494. URL: http://dx.doi.org/10.
1038/nchem.1494.

[12] Yuan-Yuan Zhu et al. “Zero-field slow magnetic relaxation from single Co(ii) ion: a
transition metal single-molecule magnet with high anisotropy barrier”. In: Chem. Sci. 4
(4 2013), pp. 1802–1806. DOI: 10.1039/C3SC21893G. URL: http://dx.doi.
org/10.1039/C3SC21893G.

[13] Matteo Mannini et al. “Magnetic memory of a single-molecule quantum magnet wired
to a gold surface”. In: Nat Mater 8 (3 Mar. 2009), pp. 194 –197. DOI: 10.1038/
nmat2374. URL: http://dx.doi.org/10.1038/nmat2374.

91



[14] Shang-Da Jiang et al. “An Organometallic Single-Ion Magnet”. In: Journal of the Amer-
ican Chemical Society 133.13 (2011). PMID: 21401130, pp. 4730–4733. DOI: 10.
1021/ja200198v. eprint: http://dx.doi.org/10.1021/ja200198v.
URL: http://dx.doi.org/10.1021/ja200198v.

[15] Matthew Jeletic et al. “An Organometallic Sandwich Lanthanide Single-Ion Magnet
with an Unusual Multiple Relaxation Mechanism”. In: Journal of the American Chem-
ical Society 133.48 (2011). PMID: 22032273, pp. 19286–19289. DOI: 10 . 1021 /
ja207891y. eprint: http://dx.doi.org/10.1021/ja207891y. URL:
http://dx.doi.org/10.1021/ja207891y.

[16] Jun-Liang Liu et al. “A Six-Coordinate Ytterbium Complex Exhibiting Easy-Plane
Anisotropy and Field-Induced Single-Ion Magnet Behavior”. In: Inorganic Chemistry
51.15 (2012). PMID: 22799446, pp. 8538–8544. DOI: 10.1021/ic301115b. eprint:
http://dx.doi.org/10.1021/ic301115b. URL: http://dx.doi.org/
10.1021/ic301115b.

[17] Dong-Ping Li et al. “Single-ion magnets based on mononuclear lanthanide complexes
with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy)”. In: Chem.
Commun. 46 (17 2010), pp. 2929–2931. DOI: 10.1039/B924547B. URL: http:
//dx.doi.org/10.1039/B924547B.

[18] Jeffrey D. Rinehart and Jeffrey R. Long. “Exploiting single-ion anisotropy in the de-
sign of f-element single-molecule magnets”. In: Chem. Sci. 2 (11 2011), pp. 2078–
2085. DOI: 10.1039/C1SC00513H. URL: http://dx.doi.org/10.1039/
C1SC00513H.

[19] Jun-Liang Liu et al. “Switching the anisotropy barrier of a single-ion magnet by sym-
metry change from quasi-D5h to quasi-Oh”. In: Chem. Sci. 4 (8 2013), pp. 3310–3316.
DOI: 10 . 1039 / C3SC50843A. URL: http : / / dx . doi . org / 10 . 1039 /
C3SC50843A.

[20] Toshio Miyamachi et al. “Stabilizing the magnetic moment of single holmium atoms
by symmetry”. In: Nature 503 (7475 Nov. 2013), pp. 242 –246. DOI: 10 . 1038 /
nature12759. URL: http://dx.doi.org/10.1038/nature12759.

[21] Bing-Wu Wang et al. “Evolvement of molecular nanomagnets in China”. In: Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 371.2000 (2013). DOI: 10.1098/rsta.2012.0316. eprint: http://
rsta.royalsocietypublishing.org/content/371/2000/20120316.
full.pdf+html. URL: http://rsta.royalsocietypublishing.org/
content/371/2000/20120316.abstract.

[22] Philipp Gütlich, Andreas Hauser, and Hartmut Spiering. “Thermal and Optical Switch-
ing of Iron(II) Complexes”. In: Angewandte Chemie International Edition in English
33.20 (1994), pp. 2024–2054. ISSN: 1521-3773. DOI: 10.1002/anie.199420241.
URL: http://dx.doi.org/10.1002/anie.199420241.

[23] Ruijuan Xiao et al. “Co Dimers on Hexagonal Carbon Rings Proposed as Subnanometer
Magnetic Storage Bits”. In: Phys. Rev. Lett. 103 (18 2009), p. 187201. DOI: 10.1103/
PhysRevLett.103.187201. URL: http://link.aps.org/doi/10.
1103/PhysRevLett.103.187201.

[24] Ruijuan Xiao et al. “Prediction of huge magnetic anisotropies of transition-metal dimer-
benzene complexes from density functional theory calculations”. In: Phys. Rev. B 82 (20
2010), p. 205125. DOI: 10.1103/PhysRevB.82.205125. URL: http://link.
aps.org/doi/10.1103/PhysRevB.82.205125.

92



[25] Yuliang Mao Zhong, Jianmei Yuan, and Jianxin. “Density functional calculation of tran-
sition metal adatom adsorption on graphene”. In: Journal of Physics: Condensed Matter
20.11 (2008), p. 115209. ISSN: 0953-8984. URL: http://stacks.iop.org/
0953-8984/20/i=11/a=115209.

[26] Chao Cao et al. “Transition metal adatom and dimer adsorbed on graphene: Induced
magnetization and electronic structures”. In: Phys. Rev. B 81 (20 2010), p. 205424. DOI:
10.1103/PhysRevB.81.205424. URL: http://link.aps.org/doi/10.
1103/PhysRevB.81.205424.

[27] Mahdi Sargolzaei and Farideh Gudarzi. “Magnetic properties of single 3d transition met-
als adsorbed on graphene and benzene: A density functional theory study”. In: Journal
of Applied Physics 110.6 (2011). DOI: http://dx.doi.org/10.1063/1.
3636112. URL: http://scitation.aip.org/content/aip/journal/
jap/110/6/10.1063/1.3636112.

[28] V. Zólyomi et al. “First Principles Study of the Binding of 4d and 5d Transition Metals to
Graphene”. In: The Journal of Physical Chemistry C 114.43 (2010), pp. 18548–18552.
DOI: 10.1021/jp107669b. eprint: http://pubs.acs.org/doi/pdf/10.
1021/jp107669b. URL: http://pubs.acs.org/doi/abs/10.1021/
jp107669b.

[29] Hongbin Zhang et al. “Electrically Tunable Quantum Anomalous Hall Effect in
Graphene Decorated by 5d Transition-Metal Adatoms”. In: Phys. Rev. Lett. 108 (5
2012), p. 056802. DOI: 10.1103/PhysRevLett.108.056802. URL: http:
//link.aps.org/doi/10.1103/PhysRevLett.108.056802.
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