
sdnotify

seval

stnotify

[τ i >= τmax]

[|Ri| == 0]/
δ i = δ i + 1;

supdate

init

scheckLOCC

[|Ui| == 0]

[|Ri| != 0]/ eval(Ri);

[|Ui| != 0]/ update(Ui);

[τbound >= τnext]/
τ i = τnext; tnotify(τ i,N

τ
i);

updateT();

[|Nδ
i| != 0]/ dnotify(Nδ

i);

[τ i < τmax]
sdispatch

[|Nδ
i| == 0]/

dispatch();

[|R|==0]/
τnext = nextTime();

τbound= checkLOCC(τnext);

[|Ri|!=0]

[τbound < τnext]/
τ i = τbound;
updateT();
dispatch();

[Event_Absent]/
HLA13_tick

[Event_Update]/
HLA13_A3_12_Action_Update

S_EX

S_ADVANCE

S_

S_SYNC_RE

S_SYNC_

S_S_GRANT

S_START

S_READ

[Event_Absent]

[Event_SetNextBarrier]/
HLA13_A5_12_Action_
NextEventReqAvailable S_UPDATE

[Event

[Even
HLA13_A1_

HLA13_A1_2_Ac

[Even

[Even
[Event_Update]/

HLA13_A3_12_Action_Update

[Event_SetNextBarrier]/HLA13_A5_12_Action_
NextEventReqAvailable

[HLA13_B5_2_Event_Grant]/
Action_SetNextBarrier

[HLA13_B3_4_Event_Discover]/
HLA13_B3_4_Action_Discover

[HLA13_B3_7_Event_Reflect]/
HLA13_B3_7_Action_Reflect

[pass==0]/
pass=checkELOCC(Lin,τi ,θi);

dispatchIn();

[|Ri| == 0 && pass==0]/
θi = skip();updateT();

pass=checkELOCC(Lub,ext,τi ,∞);
dispatchIn();

sdnotify

seval

[|Ri| == 0]/
δi = δi + 1;

supdate

init

[|Ui| == 0]/
dispatchOut();θi = θi + 1;updateT();

[|Ri| != 0]/ evaluate(Ri);

[|Ui| != 0]/ update(Ui);

[|Nδ
i| != 0]/ dnotify(Nδ

i);sELOCC

[|Nδ
i| == 0 && |Ri| != 0]/

pass=0;

sLOBC

sDSC

[pass==1]/
pass=checkDSC();

sELOCC_INFTY

[|Nδ
i| == 0 && |Ri| == 0]/

pass=0;

[|Ri| != 0]

stnotify

[τ i >= τmax]

[pass==1]/
τi = nextEdgeTime();θi = -1;

tnotify(τi,N
τ
i);updateT();

[|Ri| != 0 && τi < τmax]/
pass=0;

[|Ri| == 0 && τi < τmax]/
pass=0;

[|Ri| == 0 && pass==1]/
pass=checkLOBC(Lb,ext);

[pass==1]

[pass==0]

[pass==0]

spostprocess

sschedule

/sendCT();pass=0;

\τsync
i = τsync

i + q;
sleep(q);

[pass==0]/sleep(SC_ZERO_TIME);
pass=checkCT();ssync

[τi < τmax]/
sendCT();pass=0;

[τi == τmax]

[pass==1]/update();
popCT();

supdate

/pre(P)

spreprocess

[τi < τsync
i]/

pre(P);

/exec(P)

/post(P);incLocal();

[τi == τsync
i]

sexecute

Christoph Roth

Parallele und kooperative Simulation für
eingebettete Multiprozessorsysteme

Die Entwicklung von eingebetteten Systemen wird durch die stetig
steigende Anzahl und Integrationsdichte neuer Funktionen in
Kombination mit einem erhöhten Interaktionsgrad zunehmend zur
Herausforderung. Vor diesem Hintergrund stellen Methoden zur
Simulationsbeschleunigung sowie zur Verbesserung der
Interoperabilität zwei zentrale Teilaspekte von zukünftigen
simulationsbasierten Entwicklungsprozessen dar.

Hinsichtlich des ersten Teilaspekts werden in dieser Arbeit
unterschiedliche Strategien für die SystemC-basierte parallele
Simulation von eingebetteten Multiprozessorsystemen auf
zukünftigen Manycore Architekturen entwickelt. Dabei stehen
zyklenakkurate und zyklenapproximative Modelle im Fokus der
Betrachtung. Die verschiedenen Strategien werden implementiert,
experimentell untersucht und bewertet.

Bezüglich des zweiten Teilaspekts wird eine neuartige
modellbasierte Methode zur Verbesserung der Interoperabilität
zwischen heterogenen Simulationswerkzeugen vorgestellt.
Realisierbarkeit und Anwendbarkeit der Methode werden anhand
einer Werkzeugkette und verschiedener Fallstudien demonstriert.

C
hr

is
to

ph
 R

ot
h

Pa
ra

lle
le

 u
nd

 k
oo

pe
ra

tiv
e

Si
m

ul
at

io
n

fü
r

ei
ng

eb
et

te
te

 M
ul

tip
ro

ze
ss

or
sy

st
em

e

Parallele und kooperative Simulation

für eingebettete

Multiprozessorsysteme

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der Fakultät für
Elektrotechnik und Informationstechnik

am Karlsruher Institut für Technologie (KIT)
genehmigte

DISSERTATION

von

Dipl.-Ing. Christoph Roth

geb. in Frankenthal (Pfalz)

Tag der mündlichen Prüfung:
16.12.2014

Hauptreferent: Prof. Dr.-Ing. Dr. h.c. Jürgen Becker
Korreferent: Prof. Dr. rer. nat. Bernhard Bauer

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung ‐
Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz.
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

https://creativecommons.org/licenses/by-sa/3.0/de/

Vorwort

Diese Arbeit entstand während meiner Zeit als wissenschaftlicher Assistent am
Institut für Technik der Informationsverarbeitung (ITIV) des Karlsruher Instituts
für Technologie (KIT), welche sich nun ihrem Ende neigt. In den vergangenen
Jahren habe ich viele wertvolle Erfahrungen sammeln dürfen, sowohl innerhalb
meines Tätigkeitsbereichs am ITIV als auch im persönlichen und privaten Um-
feld. An dieser Stelle möchte ich mich deswegen bei all jenen Menschen bedan-
ken, die mich während dieses intensiven und bereichernden aber auch anstren-
genden und bewegten Lebensabschnitts begleitet haben.

Einen besonderen Dank möchte ich Herrn Prof. Jürgen Becker dafür ausspre-
chen, dass er mir die Möglichkeit eröffnet hat, das von mir gewählte Forschungs-
thema in einem großartigen Umfeld von hochmotivierten Kollegen zu erarbei-
ten. Des Weiteren danke ich Herrn Prof. Bernhard Bauer von der Universität
Augsburg für die Übernahme des Korreferats sowie den Mitgliedern der Prü-
fungskommission, den Herren Prof. Hohmann, Prof. Lemmer und Prof. Trom-
mer.

Ohne die Freunde, Kollegen und Studenten am ITIV und das dort existierende
ganz spezielle Arbeitsumfeld, das von toller Zusammenarbeit, hoher Motivati-
on, vielen guten Diskussionen und nicht zuletzt viel Humor geprägt war, wä-
re diese Arbeit nicht entstanden. Dafür möchte ich mich besonders bei meinen
unmittelbaren „Mitbewohnern“ den „Guys“ Harald Bucher und Simon Reder so-
wie Mahtab Niknahad, dem restlichen „Kellerkommando“ und nicht zuletzt Flori-
an Buciuman bedanken. Meinem langjährigen Wegbereiter und -begleiter Oliver
Sander möchte ich einen speziellen Dank dafür aussprechen, dass er mir seit mei-
ner Studentenzeit am ITIV mit Rat und Tat zur Seite stand. Dies hat maßgeblich
zum Gelingen dieser Arbeit beigetragen.

Meiner gesamten Familie danke herzlich für die große Unterstützung während
der vergangenen Jahre abseits des beruflichen Alltags. Speziell meinen Eltern
bin ich sehr dankbar dafür, dass sie mir den Weg zu meiner Ausbildung und
meiner Promotion erst möglich gemacht haben. Mein allergrößter Dank aber gilt
meiner geliebten Frau Lena und meiner Tochter Luise, die nicht enden wollende
Geduld hatten, wenn der Arbeitstag schon wieder länger war, das Wochenende
dran glauben musste oder ich meine Gedanken mal wieder nicht von den The-

i

men lösen konnte, die mich gerade beschäftigten. Ich darf mich außerordentlich
glücklich schätzen, dass es euch gibt.

Fußgönheim, im Februar 2015
Christoph Roth

ii

Inhaltsverzeichnis

1. Einleitung 1
1.1. Motivation . 1

1.1.1. Beschleunigung durch parallele Simulation 2
1.1.2. Interdisziplinäre Entwicklung durch kooperative Simulation 4

1.2. Zielsetzung der Dissertation . 5
1.3. Aufbau der Arbeit . 6

2. Grundlagen 9
2.1. Entwurf eingebetteter elektronischer Systeme 9

2.1.1. Klassifikation von Entwurfsmethoden 10
2.1.2. Validierung und Verifikation 13

2.2. Modellbildung und Simulation . 16
2.2.1. Modell und Modellbildung 16
2.2.2. Simulation . 17
2.2.3. Berechnungsmodelle . 19
2.2.4. Heterogenität . 30

2.3. Sprachen für den Systementwurf . 32
2.3.1. Sprachen zur Modellierung von Hardware und Software . . 32
2.3.2. SystemC . 33
2.3.3. Sprachen zur Modellierung heterogener eingebetteter Sys-

teme . 42
2.3.4. Ptolemy II . 44

2.4. Prozessorarchitekturen und Parallelität 49
2.4.1. Taxonomie für Prozessorarchitekturen 49
2.4.2. Klassifikation von Parallelität 50
2.4.3. Single-chip Cloud Computer 54
2.4.4. Performanzanalyse . 57

3. Stand von Forschung und Technik 63
3.1. Parallele Simulation von Multiprozessoren 63

3.1.1. Anwendungsbereiche . 63
3.1.2. Forschungsansätze basierend auf SystemC 64
3.1.3. SystemC Front-Ends . 68
3.1.4. Forschungsansätze basierend auf SpecC 69

iii

Inhaltsverzeichnis

3.2. Interdisziplinäre Co-Simulation . 69
3.2.1. Allgemeiner Überblick . 70
3.2.2. Interoperabilität . 71
3.2.3. Standardisierung . 72

4. Parallele SystemC Simulation für Multiprozessoren 77
4.1. Allgemeine Anforderungen . 77
4.2. Konzept und Methodik . 78

4.2.1. Perspektiven und Abstraktion 78
4.2.2. Architekturmodell für eine parallele Simulation 79
4.2.3. Simulationssynthese . 80
4.2.4. Strategien zur Parallelisierung von SystemC 86
4.2.5. Überblick über implementierte Komponenten 91

4.3. Asymmetrische synchrone Strategie 93
4.3.1. Anforderungen und Konzept 94
4.3.2. Datenpartitionierung . 95
4.3.3. Globale Barriersynchronisation 96
4.3.4. Integration von Kommunikation und Synchronisation . . . 97
4.3.5. Abbildung auf die Speicherarchitektur des SCC 98
4.3.6. Weiterführende Strategien . 101
4.3.7. Bewertung . 106

4.4. Symmetrische asynchrone Strategie 112
4.4.1. Anforderungen und Konzept 112
4.4.2. Datenpartitionierung auf Kernelebene 114
4.4.3. Logische Ebene . 114
4.4.4. Integration nachrichtenbasierter Kommunikation 121
4.4.5. Integration des Synchronisationsverfahrens 122
4.4.6. Manuelle Partitionierung des Simulationsmodells 125
4.4.7. Abbildung auf die Speicherarchitektur des SCC 125
4.4.8. Teilautomatisierte Werkzeugunterstützung 125
4.4.9. Bewertung . 129

4.5. Adaptive symmetrische Strategie . 134
4.5.1. Anforderungen . 134
4.5.2. Adaptive logische Ebene . 134
4.5.3. Deltazyklengenaue nachrichtenbasierte Kommunikation . . 145
4.5.4. Integration adaptiver Synchronisation 147
4.5.5. Abbildung auf die Speicherarchitektur SCC 148
4.5.6. Vollautomatisierte Werkzeugunterstützung 150
4.5.7. Bewertung . 161

4.6. Strategie zur Simulation auf Transaktionsebene 170
4.6.1. Allgemeine Anforderungen 170
4.6.2. Basismethode . 171

iv

Inhaltsverzeichnis

4.6.3. Dynamische Latenzprädiktion 182
4.6.4. Integration transaktionsbasierter Kommunikation 189
4.6.5. Fallstudie I . 191
4.6.6. Fallstudie II . 198

4.7. Einordnung in verwandte Arbeiten und Fazit 206

5. Interdisziplinäre verteilte Co-Simulation 209
5.1. Beispiel: Automobile E/E Architekturen 209

5.1.1. Einfluss neuer Technologien auf die E/E Architektur 210
5.1.2. Auswirkungen auf den Entwicklungsprozess 211

5.2. Anforderungen an die entwickelnde Simulationsumgebung 213
5.3. Konzept . 214

5.3.1. Simulatorarchitektur . 215
5.3.2. Methode zur Etablierung einer Simulatorkopplung 218

5.4. Implementierung der Simulatorarchitektur 223
5.4.1. CERTI HLA . 223
5.4.2. Simulation Data Exchange Metamodel 224

5.5. Umsetzung der semi-automatischen Werkzeugkopplung 230
5.5.1. Konfiguration des Datenaustauschs 231
5.5.2. Generierung von Schnittstellen 234
5.5.3. Integration und Test . 237

5.6. Fallstudie I: System/Netzwerk Co-Simulation 244
5.6.1. Beispiel: OMNeT++ . 245
5.6.2. Konzept . 245
5.6.3. Single-Federation . 246
5.6.4. Szenario I: Performanzanalyse für venetzte MPSoCs 249
5.6.5. Szenario II: Verteilte Ausführung 252

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen . . . 254
5.7.1. E/E Architektur . 254
5.7.2. V2X Kommunikation und physikalische Umwelt 255
5.7.3. Multi-Federation . 259
5.7.4. Szenario I: Test einer ACC Funktion 264
5.7.5. Szenario II: Verifikation einer ACC Implementierung 270
5.7.6. Spezifikation von Funktionsabbildungen durch Aspekte . . 272

5.8. Einordnung in verwandte Arbeiten und Fazit 273

6. Schlussfolgerung und Ausblick 277
6.1. Zusammenfassung und Schlussfolgerung 277
6.2. Ausblick . 279

A. On-Chip Kommunikation auf dem SCC 281
A.1. Existierende leichtgewichtige Lösungen 281

v

Inhaltsverzeichnis

A.2. Implementierung . 282
A.2.1. Send Buffer . 283
A.2.2. Stream Proxy . 283
A.2.3. Message Buffer . 284

B. Services der HLA 287
B.1. Kategorien . 287
B.2. Verwendete HLA 1.3 Services . 288

Verzeichnisse 291
Abbildungen . 291
Tabellen . 294
Abkürzungen . 297

Literatur- und Quellennachweise 303

Betreute studentische Arbeiten 325

Verö�entlichungen 327

vi

1. Einleitung

1.1. Motivation

Systeme der Informations- und Kommunikationstechnologie (IKT) sind heute inte-
graler Bestandteil des täglichen Lebens. Dies ist nicht zuletzt auf den andau-
ernden Trend zur Miniaturisierung im Bereich der Halbleiterentwicklung zu-
rückzuführen [202, 231]. Die Bedeutung der IKT wird auch in Zukunft immer
weiter zunehmen, was durch aktuelle Forschungstrends verdeutlicht wird, wel-
che durch Begriffe wie Ambient Intelligence, Ubiquitous Computing oder Pervasive
Computing charakterisiert werden können [264, 127, 31]: Zukünftige Applikatio-
nen sollen eine gewisse Umgebungsintelligenz (Ambient Intelligence) zur Un-
terstützung des Menschen im Alltag bereitstellen. Zur Realisierung dieser Ap-
plikationen muss Information jederzeit und allgegenwärtig verfügbar sein (Ubi-
quitous). Dies geschieht unter Ausnutzung und Vernetzung bereits vorhandener
Technologien (Pervasive). Zu den Bereichen, die durch die neuen Ansätze im
Umfeld der IKT maßgeblich beeinflusst werden, gehören u.a. die Automobil-
elektronik, die Avionik, der Schienenverkehr, die Telekommunikation, die Auto-
matisierungstechnik oder die Medizintechnik.

Zwei bereits existierende grundlegende Basistechnologien zu Realisierung zu-
künftiger IKT Systeme bilden eingebettete Systeme und Kommunikationstech-
nologien [174, 195]. In [248] werden eingebettete Systeme definiert als

„heterogene technische Systeme, die sich durch verschiedenartige Kompo-
nenten und Interaktionen auszeichnen, die auf einen ganz bestimmten An-
wendungsbereich zugeschnitten und die in einem technischen Kontext ein-
gebettet sind“.

In der Regel müssen sie eine Reihe von Anforderungen wie Echtzeitfähigkeit,
Zuverlässigkeit, Robustheit und/oder Effizienz erfüllen. Ein eingebettetes Sys-
tem besteht im Kern typischerweise aus Hardware- und Softwarekomponenten.
Aufgrund der Notwendigkeit zur Interaktion mit der physikalischen Umwelt
sind eingebettete Systeme mit Sensoren und/oder Aktoren ausgestattet. Kom-
munikationstechnologien schaffen schließlich die Basis dafür, dass Interaktio-
nen eines eingebetteten Systems mit der Umwelt auch über einen räumlich be-
schränkten Horizont hinaus möglich werden.

1

1. Einleitung

Die Umsetzung der oben genannten neuartigen Konzepte trägt zu einer enormen
Steigerung der Vielfalt und Komplexität von eingebetteten Systemen bei. Diese
Komplexität äußert sich insbesondere in

1. einer gesteigerten Rechenkomplexität zukünftiger Anwendungen. In Ver-
bindung mit der hohen Anzahl neuer Funktionen resultiert dies in erhöh-
ten Anforderungen an die verfügbare Performanz.

2. einer erhöhten Interaktion von Anwendungen und zugrunde liegenden
Systemkomponenten nicht nur mit der heterogenen physischen Umwelt,
sondern auch mit einer weitreichenden und vernetzten IKT Infrastruktur.

Wegen der Einkopplung der physikalischen Umwelt in eine umfangreich ver-
netzte IKT Infrastruktur wird die beschriebene Art des resultierenden Gesamt-
systems heutzutage oft auch allgemein unter dem Oberbegriff Cyber-Physical Sys-
tem (CPS) [246, 174, 32] oder Internet of Things [38, 197] zusammengefasst.

Durch die Komplexitätssteigerung von Funktionen, Anwendungen und Syste-
men entstehen unmittelbar neue Herausforderungen an Entwicklungsprozesse.
Konkrete Herausforderungen im Bereich der Simulation, die aktuell entweder
gar nicht oder nicht im notwendigen Maße berücksichtigt werden, seien im Fol-
genden kurz skizziert.

1.1.1. Beschleunigung durch parallele Simulation

Betrachtet man ausschließlich den Entwicklungsprozess für Hardware/Software
(HW/SW) Systeme, den Teil eines eingebetteten Systems, der für die Informati-
onsverarbeitung verantwortlich ist, so basiert dieser schon seit den 1980er Jah-
ren auf automatisierten rechnergestützten Entwurfsmethoden. Nur dadurch ist
es möglich, solche Systeme in akzeptabler Zeit und mit annehmbaren Kosten zu
entwickeln [115, 172, 248].

Die steigenden Anforderungen an die verfügbare Performanz in Verbindung
mit der Notwendigkeit zur energetischen Effizienz resultieren nun darin, dass
solche eingebetteten HW/SW Systeme immer öfter als Multiprocessor System-on-
Chip (MPSoC) realisiert werden [56]. MPSoCs integrieren immer mehr homoge-
ne oder heterogene Rechenkerne auf einem einzigen Chip. Dies wiederum hat
einen wachsenden Umfang von Modellen und Spezifikationen zur Folge, die
im Verlauf des Entwicklungsprozesses erstellt werden. Umfangreichere Spezifi-
kationen erzeugen Mehraufwand für die Verifikation und infolgedessen höhere
Kosten. Beispielsweise haben stetig wachsende Simulationsmodelle immer län-
gere Laufzeiten einer simulationsbasierten Verifikation zur Folge [180].

Ein oft gewählter Ansatz zur Beschleunigung von MPSoC Simulationen ist es,
die Rechenkomplexität von vollständig zyklenakkuraten Simulationsmodellen

2

1.1. Motivation

durch Abstraktion zu verringern. Dadurch sind beträchtliche Performanzsteige-
rungen möglich. Ein solche Abstraktion hat jedoch den Nachteil, dass Modelle je
nach Abstraktionsgrad nur für bestimmte Anwendungsfälle geeignet sind. Ein
zur Abstraktion alternativer Lösungsansatz ist deswegen die parallele Simulati-
on.

Im Bereich der Mehrzweck Central Processing Units (CPUs) hat sich der Paradig-
menwechsel von einkernigen Prozessoren hin zu Multiprozessoren bereits im
Jahr 2004 vollzogen [243]. Die Ursache war das Überschreiten der oft als „Power
Wall“ bezeichneten Barriere (siehe Abb. 1.1). Diese führt dazu, dass Performanz-
steigerungen nicht mehr durch eine reine Skalierung der Taktfrequenz, sondern
nur noch durch Architekturtechniken wie Hyperthreading, Caching oder eben
dem Übergang zu Multiprozessoren erreicht werden können [243]. Aktuell geht
der Trend im Mehrzweckbereich bereits in Richtung Manycore Prozessoren, wel-
che mehrere zehn oder gar hundert Rechenkerne integrieren. Ein Beispiel aus
der Forschung ist der im Jahr 2009 angekündigte sog. Single-chip Cloud Computer
(SCC) [144] mit 48 Kernen. Ein seit dem Jahr 2011 kommerziell erhältlicher Ma-
nycore Prozessor ist die Intel Many-Integrated-Core (MIC) Architektur mit aktuell
bis zu 72 Kernen [91].

Abbildung 1.1.: Intel CPUs zwischen 1970 und 2010 (Quelle: [243])

Um Multicore oder Manycore CPUs zur Beschleunigung einer MPSoC Simulati-
on nutzen zu können, müssen existierende Simulatoren für die Parallelverarbei-
tung tauglich gemacht werden. Für einschlägige Simulatoren wie beispielsweise

3

1. Einleitung

den SystemC Simulator [27, 1] existiert aktuell noch keine Unterstützung für par-
allele Ausführung.

Zukünftige Entwicklungsprozesse sollten folglich neue Methoden nutzen, wel-
che die Möglichkeit zur parallelen Simulation komplexer Simulationsmodelle er-
öffnen. Die Kombination von Parallelisierung und Abstraktion kann ein adäqua-
tes Mittel sein, um einen besseren Trade-off zwischen hoher Genauigkeit und ho-
her Performanz zu erzielen. Aus Gründen der Komplexitätsreduktion sollte der
Prozess der Parallelisierung eines Modells zugleich möglichst automatisiert und
versteckt vor dem Anwender erfolgen.

1.1.2. Interdisziplinäre Entwicklung durch kooperative
Simulation

Durch den Trend in Richtung MPSoCs in Kombination mit dem hohen Vernet-
zungsgrad lassen sich zukünftige Anwendungen im Bereich der eingebetteten
Systeme oft nicht mehr eindeutig bestimmten HW/SW Komponenten zuord-
nen. Durch die Integration von (vormals vollständig geschlossenen Netzwerken
aus) Teilsystemen in eine prinzipiell offene IKT Infrastruktur, entstehen deswe-
gen zusätzliche Herausforderungen bzgl. der Erfüllung von Anforderungen wie
Echtzeitfähigkeit, Zuverlässigkeit und Sicherheit.

Um die Erfüllung solcher Anforderungen zu verifizieren, genügt es nicht mehr,
Teilsysteme als abgeschlossene Einheiten zu betrachten und erst in einer späten
Phase des Entwicklungsprozesses miteinander zu integrieren. Vielmehr muss
die Entwicklung eines Teilsystems bereits in frühen Phasen des Entwurfspro-
zesses und durchgängig bis zur Implementierungsphase unter Berücksichtigung
von Randbedingungen erfolgen, die durch andere Teilsysteme erzeugt werden
[20]. Nur auf diese Weise können ein Fehlschlagen einer späten Integration so-
wie teure Iterationen im Entwurfsprozess vermieden werden.

Für die Verifikation bedeutet dies, dass der wechselseitige Einfluss verschiede-
ner Teilsysteme sowie der physikalischen Umwelt so früh wie möglich durch
kooperative Simulation (Co-Simulation) von disziplinspezifischen Modellen be-
rücksichtigt werden sollte. Als Voraussetzung dafür müssen Schnittstellen zur
Kopplung der Modelle oder der zugrundeliegenden Simulationswerkzeuge exis-
tieren. Sollen Modelle wiederverwendet werden, so müssen diese Schnittstellen
u.U. neu entwickelt oder adaptiert werden. Neben dem hohen Entwicklungsauf-
wand ist ein weiteres Problem, dass das resultierende heterogene Gesamtsimu-
lationsmodell aufgrund unstrukturierter Komposition ein unerwartetes emer-
gentes Verhalten aufweisen kann [102]. Eine alternative Lösung sind heterogene
Simulationswerkzeuge, welche bereits nativ eine Simulation von heterogenen

4

1.2. Zielsetzung der Dissertation

Modellen unterstützen. Diese Werkzeuge stehen allerdings dem Wiederverwen-
dungsaspekt entgegen.

Zukünftige Entwicklungsprozesse sollten der beschriebenen Problematik daher
durch den Einsatz neuer Methoden zur heterogenen Co-Simulation sowie zur
Verbesserung der Interoperabilität zwischen existierenden heterogenen Model-
len entgegenwirken, welche eine möglichst schnelle aber strukturierte Integrati-
on von Simulationsmodellen ermöglichen.

1.2. Zielsetzung der Dissertation

Die vorliegende Dissertation widmet sich der Entwicklung von Lösungsansät-
zen, um den zuvor skizzierten Herausforderungen im Bereich der Simulation
eingebetteter Systeme zu begegnen. Dabei sollen möglichst automatisierte Me-
thoden bereitgestellt werden, die einen simulationsbasierten Verifikationspro-
zess für eingebettete Multiprozessorsysteme durch Beschleunigung und Inter-
operabilität unterstützen.

Bei den im Kontext der Simulationsbeschleunigung betrachteten Techniken und
Methoden steht die Kompatibilität für zukünftige Manycore Prozessoren im Vor-
dergrund. Dies ist ein Hauptunterscheidungsmerkmal zu anderen existierenden
Forschungsansätzen im Bereich der parallelen MPSoC Simulation. Folgende Fra-
gestellungen werden dabei erörtert:

• Wie können zukünftige Manycore Prozessoren wie der Single-chip Cloud
Computer für die parallele Simulation und insbesondere die Beschleuni-
gung von zyklenakkuraten und zyklenapproximativen MPSoC Simulatio-
nen nutzbar gemacht werden?

• Welche Charakteristika muss ein paralleler Simulator besitzen, um An-
forderungen, wie Skalierbarkeit, Erweiterbarkeit, Portierbarkeit, Handhab-
barkeit und Kompatibilität zu relevanten Modellierungsstilen zu erfüllen?

• Wie sehen Ansätze für eine automatisierte Werkzeugkette aus, um den Par-
allelisierungsprozess weitgehend bis vollständig vor dem Anwender zu
verstecken?

• Welche Möglichkeiten bestehen, um bei einer MPSoC Simulation eine Per-
formanzsteigerung durch Parallelisierung und Abstraktion zu erreichen
aber gleichzeitig den Genauigkeitsverlust gering zu halten?

Um die Herausforderungen bzgl. der Interoperabilität von Simulationsmodellen
in zukünftigen Entwicklungsprozessen weiter zu konkretisieren, werden sie in
dieser Arbeit am Beispiel der Entwicklung zukünftiger automobiler elektrisch/-

5

1. Einleitung

elektronischer (E/E) Architekturen betrachtet. Dabei wird auf folgende Kernfrage-
stellungen eingegangen:

• Welche Implikationen von neuartigen Technologien auf zukünftige E/E
Architekturen sind zu erwarten? Welche Anforderungen lassen sich dar-
aus für zukünftige Entwicklungsprozesse im Automobilbereich ableiten?

• Wie sieht eine Simulatorarchitektur zur Co-Simulation aus, die Anforde-
rungen wie bessere Interoperabilität, heterogene Modellierung, struktu-
rierte Komposition, Wiederverwendbarkeit und Erweiterbarkeit erfüllt?

• Welche Möglichkeiten bestehen, um den Prozess der Kopplung heteroge-
ner Simulationsmodelle zu beschleunigen, die Handhabbarkeit zu verbes-
sern und die Gefahr vor unerwartetem Verhalten zu reduzieren?

Zur Beantwortung der genannten Fragestellungen wurden verschiedene Metho-
den und Werkzeuge entwickelt, die im Folgenden vorgestellt werden. Dies bein-
haltet die Beschreibung und Analyse zugrundeliegender Konzepte sowie die
quantitative Bewertung und kritische Diskussion von Grenzen und möglicher
Ansätze zur weiteren Optimierung.

1.3. Aufbau der Arbeit

Kapitel 2 gibt einen kurzen Überblick über die Grundlagen dieser Arbeit. Das
Kapitel beginnt mit einem Überblick über Entwurfsprozesse für eingebettete Sys-
teme. Anschließend werden Grundbegriffe der Modellbildung und Simulation
mit einem speziellen Fokus auf (parallelen) diskreten ereignisbasierten Berech-
nungsmodellen erläutert. Darauf aufbauend werden einschlägige Sprachen und
Werkzeuge, insbesondere SystemC [27] und Ptolemy II [102], vorgestellt. Das
Kapitel schließt mit einer Zusammenfassung existierender Techniken im Bereich
Prozessorarchitekturen, einer Beschreibung der Architektur des SCC sowie einer
Klärung grundlegender Begriffe der Performanzanalyse.

Kapitel 3 beschreibt den Stand von Forschung und Technik. Im Bereich der par-
allelen Simulation von Multiprozessoren liegt der Schwerpunkt zunächst auf
proprietären Forschungsansätzen und bereits existierenden kommerziellen Lö-
sungen. Danach werden Ansätze betrachtet, welche SystemC als Grundlage ver-
wenden. Anschließend wird der Stand von Forschung und Technik im Bereich
heterogener Co-Simulation, insbesondere auch im Hinblick auf Methoden zur
Verbesserung der Interoperabilität existierender Simulationswerkzeuge, disku-
tiert.

In Kapitel 4 wird zunächst eine allgemeine Methodik für die parallele SystemC-
basierte Simulation von eingebetteten MPSoCs auf Manycore Architekturen her-

6

1.3. Aufbau der Arbeit

geleitet. Anschließend werden Strategien zur Parallelisierung des SystemC Ker-
nels analysiert und klassifiziert. Darauf aufbauend wird die Umsetzung drei-
er ausgewählter Strategien zur zyklenakkuraten Simulation auf dem sog. Regis-
ter Transfer Level (RTL) beschrieben. Zwei der drei Strategien werden durch eine
teil- bzw. vollautomatisierte Werkzeugkette ergänzt. Darauf aufbauend wird ei-
ne Modellierungsstrategie auf dem sog. Transaction Level (TL) entwickelt, welche
es gestattet, die parallele Ausführung durch gezielte Abstraktion zusätzlich zu
beschleunigen. Jede der genannten Strategien wird mit Hilfe verschiedener Fall-
studien hinsichtlich ihrer Leistungsfähigkeit und der Erfüllung an sie gestellter
Anforderungen bewertet.

Kapitel 5 beschreibt einen methodischen Ansatz, welcher eine simulationsba-
sierte Verifikation anhand interdisziplinärer kooperativer Simulation möglich
macht. Die Notwendigkeit dazu wird zunächst am Beispiel des Entwicklungs-
prozesses automobiler E/E Architekturen verdeutlicht. Aus dem Beispiel wer-
den Anforderungen an eine geeignete Simulationsumgebung für die interdis-
ziplinäre kooperative Simulation abgeleitet. Darauf basierend wird ein Konzept
für eine Simulatorarchitektur sowie eine Methode für die Anwendung der Simu-
latorarchitektur entwickelt. Realisierbarkeit und Anwendbarkeit der Methode
werden schließlich anhand einer Werkzeugkette und verschiedener Fallstudien
demonstriert.

In Kapitel 6 werden die entwickelten Ansätze in einer abschließenden Betrach-
tung noch einmal zusammengefasst. Ein kurzer Ausblick auf mögliche Weiter-
entwicklungen, Optimierungen und zukünftiges Forschungspotential vervoll-
ständigen die Arbeit.

7

2. Grundlagen

2.1. Entwurf eingebetteter elektronischer Systeme

Die kontinuierliche Weiterentwicklung der Halbleitertechnologie ist die Grund-
lage für die Entwicklung immer komplexerer eingebetteter Systeme. Die Be-
herrschung dieser stetig steigenden Komplexität stellt eine große Herausforde-
rung während des Entwurfsprozesses dar. Tatsächlich ist zu beobachten, dass
die Lücke zwischen den verfügbaren Basistechnologien und der Produktivität
der Entwurfsverfahren für digitale Hardware/Software Systeme, die die Basis-
technologien ausnutzen, immer größer wird [99]. In [99] wird diese Lücke als
System Design Gap bezeichnet.

Das stetig wachsende System Design Gap ist auf die Notwendigkeit sog. Hard-
ware-dependent Software (HdS) [148, 99] und den mit der Entwicklung von HdS
verbundenen zusätzlichen Anstieg im Entwicklungsaufwand zurückzuführen.
Im Allgemeinen dient HdS der Abstraktion verfügbarer Hardwareressourcen
durch eine zusätzliche Softwareschicht.

Darüber hinaus wird das System Design Gap dadurch verstärkt, dass aktuelle
und zukünftige System-on-Chip (SoC) Lösungen immer mehr Rechenkerne auf
einem einzigen Chip integrieren. Solche Multi- oder Manycore SoCs können
von unterschiedlichster Ausprägung sein (homogen, heterogen, generisch, ap-
plikationsspezifisch, ...) [180]. Zusätzlich steigt die Anzahl an Anforderungen
hinsichtlich unterstützter Applikationen, Funktionen, Zuverlässigkeit und Echt-
zeitfähigkeit. HdS muss dieser Vielfalt möglicher Hardwarearchitekturen und
Funktionen gerecht werden.

Aus dieser Beschreibung wird deutlich, dass ein hoher Bedarf an neuen Ansät-
zen in Form von neuen Entwurfsmethoden existiert, die zur Verbesserung von
Entwicklungsprozessen im Bereich eingebetteter elektronischer Systeme beitra-
gen. Das Ziel einer solchen Entwurfsmethode kann wie folgt formuliert werden
(vgl. [107]):

„Minimierung der Entwicklungszeit sowie Entwicklungs- und Produkti-
onskosten nach Maßgabe der Anforderungen an Performanz und Funktio-
nalität des Systems“.

9

2. Grundlagen

Zur Erreichung dieses Ziels stellt eine Entwurfsmethode typischerweise Werk-
zeuge in Form von Electronic Design Automation (EDA) Tools zur Verfügung, die
die einzelnen Schritte der Entwurfsmethode durch Automatisierung unterstüt-
zen. Solche automatisierten Verfahren ermöglichen kürzere Entwurfszyklen und
reduzieren Entwurfsfehler durch Verbesserung von Verifikations-, Validierungs-
und Explorationsprozessen [130]. All diese Teilaspekte kommen wiederum einer
Minimierung der Entwicklungszeit zugute. Im Folgenden werden die Grundla-
gen der heutzutage angewendeten Entwurfsmethoden erläutert.

2.1.1. Klassi�kation von Entwurfsmethoden

Unterschiedliche Entwurfsmethoden im Bereich elektronischer Systeme lassen
sich anhand des von Gajski und Kuhn im Jahr 1983 entwickelten Y-Diagramms
[116] klassifizieren (siehe Abb. 2.1). Das Y-Diagramm besteht aus drei Achsen,
die verhaltens-, struktur- und physikorientierte Aspekte eines Systems repräsen-
tieren. Aus der Perspektive des Verhaltens wird ein System als Blackbox betrach-
tet und anhand der Wirkung von Eingängen auf Ausgänge über der Zeit spezifi-
ziert. Aus struktureller Sicht wird ein System als eine Kombination von Subsys-
temen und Verbindungen zwischen Subsystemen spezifiziert. Mit dem physika-
lischen Aspekt ist die Beschreibung der tatsächlichen räumlichen Beschaffenheit
gemeint.

Alle drei Achsen sind in unterschiedliche Abstraktionsebenen unterteilt. Diese
sind durch konzentrische Kreise dargestellt. Abb. 2.1 beinhaltet die Systemebe-
ne, die Prozessorebene, die Logikebene und die Schaltkreisebene. Die Namen
leiten sich von den Komponenten ab, die typischerweise auf der entsprechen-
den Abstraktionsebene im Fokus der Entwicklung stehen. Eine Entwurfsmetho-
de entspricht einem Pfad im Y-Diagramm, der sich immer mehr dem Zentrum
nähert. Er beginnt typischerweise bei der Spezifikation des Verhaltens und be-
wegt sich von dort in Richtung Spezifikation der Geometrie.

2.1.1.1. Synthese

Ein essentieller Teil einer Entwurfsmethode ist die Synthese. Der Begriff der Syn-
these lässt sich im Y-Diagramm auf jeder Abstraktionsebene als eine „Konvertie-
rung einer gegebenen Verhaltensspezifikation in eine strukturelle Spezifikation“ [115]
darstellen. Jede Teilkomponente einer strukturellen Spezifikation, kann auf der
darunterliegenden Abstraktionsebene wieder aus der Perspektive des Verhaltens
der Struktur oder der Geometrie betrachtet werden. Eine Synthese kann manuell
erfolgen oder durch automatisierte Syntheseverfahren unterstützt werden. Au-
tomatische Verfahren setzen voraus, dass das Verhalten auf Basis sog. Berech-
nungsmodelle (vgl. Abschnitt 2.2.3) eindeutig spezifiziert ist.

10

2.1. Entwurf eingebetteter elektronischer Systeme

Behavior Structure

Physical

System

Processor

Circuit

Logic

Abbildung 2.1.: Y-Diagramm nach Gajski und Kuhn [115]

Abhängig davon, auf welcher Abstraktionsebene eine Synthese ansetzt, kann sie
in unterschiedliche Teilschritte untergliedert werden. Der typische Schritt der
sog. Systemsynthese ist die Abbildung (engl. Mapping) einer Verhaltensspezifi-
kation in Form einer Funktion oder Applikation auf eine strukturelle Spezifika-
tion in Form eines beliebigen Netzwerks von Prozessoren. Typische Teilschritte
eine Synthese auf den darunterliegenden Ebenen sind I) die Allokation II) die
Ablaufplanung und III) die Bindung [248, 115].

2.1.1.2. Beispiele für Entwurfsmethoden

Noch bis in die späten 1990er Jahre begannen Entwurfsmethoden für elektroni-
sche Systeme unmittelbar mit der Spezifikation des Verhaltens auf dem RTL. Im
Gegensatz dazu lassen sich Entwurfsmethoden heutzutage mit der Umschrei-
bung „Specify, Explore-and-Refine“ [115] charakterisieren. Solche Ansätze werden
auch als System-Level Design (SLD) Methoden bezeichnet. Nur durch die Anhe-
bung der Abstraktionsebene über RTL hinaus auf das sog. Electronic System Level
(ESL), ist es möglich, die steigende Komplexität zukünftiger eingebetteter Sys-
teme in der Phase des Entwurfs in den Griff zu bekommen [228]. Gajski nennt
und erläutert in [115] drei Basismethodiken, die grundsätzlich auf jeder Abstrak-
tionsebene (ESL, RTL, etc.) angewendet werden können:

11

2. Grundlagen

1. Bottom-up Methodik: In einer Bottom-up Methode existiert auf einer be-
stimmten Abstraktionsebene eine Bibliothek von Komponenten (inkl. der
Spezifikation von Verhalten, Struktur und Geometrie). Aus Komponenten
dieser Abstraktionsebene werden sukzessive Komponenten der nächsthö-
heren Abstraktionsebene erstellt (Komposition) und hinsichtlich der drei
Entwurfsaspekte aus Abb. 2.1 spezifiziert. Diese können dann ebenfalls
wieder in einer Bibliothek hinterlegt werden. Ein Vorteil ist die klare Tren-
nung von Abstraktionsebenen durch Bibliotheken. der Hauptnachteil ist,
dass für die Komposition einer Komponente auf einer höheren Abstrakti-
onsebene alle notwendigen Komponenten auf den niedrigeren Abstrakti-
onsebenen bereits vorhanden sein müssen.

2. Top-down Methodik: Eine Top-down Methode beginnt auf einer hohen
Abstraktionsebene, üblicherweise bei der Spezifikation des Verhaltens. Die
abstrakte Verhaltensspezifikation wird dann sukzessive in Teilkomponen-
ten niedrigerer Abstraktionsebenen zerlegt (Dekomposition) und bzgl. Ver-
halten, Struktur und letztlich Geometrie detailliert (Verfeinerung). Die Not-
wendigkeit von Bibliothekskomponenten niedrigerer Abstraktionsebenen
wird dadurch vermieden. Umgekehrt ist man während des Entwurfspro-
zesses auf Schätzungen der Entwurfsqualität auf niedrigeren Abstraktions-
ebenen angewiesen.

3. Meet-In-The-Middle Methodik: Diese kombiniert die beiden zuvor ge-
nannten Methoden und nutzt so die Vorteile beider Ansätze. Typischer-
weise wird auf höheren Abstraktionsebenen eine Spezifikation in einem
ein Top-down Verfahren dekomponiert. Auf niedrigeren Abstraktionsebe-
nen werden Komponenten in ein Bottom-up Verfahren komponiert. Oft lie-
gen beispielsweise Komponenten in einer RTL Bibliothek vor, die zuvor in
einem Bottom-up Prozess generiert wurden. In einem Top-down Prozess
wird dann eine abstrakte Verhaltensspezifikation sukzessive in Richtung
einer Architektur verfeinert, die ausschließlich aus Komponenten der RTL
Bibliothek besteht. Die Entwurfsqualität wird mit Hilfe von Metriken ge-
schätzt, die aus den Bibliotheken extrahiert werden können.

2.1.1.3. Plattformbasierte Entwurfsmethodik auf Systemebene

Die plattformbasierte Entwurfsmethodik (engl. Platform-based Design (PBD)) auf
Systemebene ist ein Sonderfall der Meet-In-The-Middle Methodik, welcher stark
produktorientiert ist und an spezifische industrielle Anforderungen angepasst
werden kann [115][107][120]. PBD auf Systemebene reduziert die Komplexität
während des Entwurfsprozesses durch die Separation von Belangen (z.B. Sepa-
ration von Funktion und Architektur oder Berechnung und Kommunikation)

12

2.1. Entwurf eingebetteter elektronischer Systeme

[163][224] und die Einschränkung des theoretisch unendlich große Entwurfs-
raum auf eine handhabbare Größe.

Die sog. Systemplattform besteht aus einer Hardware- und einer Softwareplatt-
form. Sie wurde zuvor in einem Bottom-up Prozess entwickelt. Die Hardware-
plattform umfasst eine begrenzte Anzahl an Hardwarekomponenten, die bis zu
einem gewissen Grad (Typ, Anzahl, Verbindung, etc.) konfigurierbar sind. Die
Softwareplattform erfüllt den Zweck der weiter oben bereits erwähnten HdS
und abstrahiert von der darunterliegenden Hardware. Typische Komponenten
der Softwareplattform sind z.B. ein Real-time Operating System (RTOS) oder Trei-
bersoftware. Für größtmögliche Flexibilität ist sie meist in Form einer Schichten-
architektur realisiert. Die Funktionalität der Systemplattform wird in Form eines
Application Programming Interface (API) genannt Plattform API zur Verfügung ge-
stellt (vgl. [163][230]).

In einer PBD Methodik auf Systemebene wird, ausgehend von einer abstrak-
ten Verhaltensspezifikation (Application Instance), die Implementierung in ei-
nem iterativen Prozess entwickelt. Der essentielle Schritt ist die Abbildung der
Verhaltensspezifikation auf eine bestimmte Plattforminstanz (Platform Instan-
ce). Diese ist eine Konfiguration aus der Menge aller möglichen Konfigurationen
der Systemplattform (Architectural Space). Die Kosten einer Entwurfsentschei-
dung basierend auf einer Abbildung werden anhand von Kostenmodellen ge-
schätzt und bewertet. Im Rahmen des Abbildungsprozesses wird die Spezifika-
tion schrittweise in Richtung Implementierung verfeinert. Die Exploration findet
insgesamt auf Abstraktionsebenen statt, die sich irgendwo zwischen vollständig
abstrakter Spezifikation und finaler Implementierung bewegen.

Bis zu einer gewissen Ebene entspricht der Prozess der Abbildung und Verfei-
nerung einer semi-automatischen Synthese. Dabei spielt der Einsatz von Simu-
lationen zur Kostenschätzung oft eine dominante Rolle. Auch die Korrektheit
eines durchgeführten Syntheseschrittes bzw. die Erfüllung gegebener funktio-
naler und nicht-funktionaler Anforderungen muss verifiziert werden. Der ite-
rative Prozess endet auf einer gewissen Ebene. Ab diesem Punkt werden typi-
scherweise vollständig automatische Syntheseverfahren für die Generierung der
Hardware- und Softwareplattform verwendet. Abb. 2.2 illustriert den beschrie-
benen typischen Entwurfsfluss. Eine Verifikation erfolgt für gewöhnlich nach je-
dem Syntheseschritt, insbesondere auch nach Erreichen der finalen Implemen-
tierung.

2.1.2. Validierung und Veri�kation

In einem kompletten Entwicklungsprozess kann im Allgemeinen zwischen dem
Prozess der Validierung und dem Prozess der Verifikation unterschieden wer-
den. Der IEEE Standard 1012-1012 [28] definiert Validierung wie folgt:

13

2. Grundlagen

Application space

Architectural space

Application instance

Platform instance

Platform
specification

Platform
design-space

exploration

System
platform

Abbildung 2.2.: Plattformbasierter Entwurf (Quelle: [230])

„The process of evaluating a system or component during or at the end of
the development to determine whether it satisfies specified requirements. The
process of providing evidence that the system, software, or hardware and its
associated products ... solve the right problem ..., and satisfy intended use
and user needs.“

Bei der Validierung wird die Erfüllung von Anforderungen überprüft, die der
Anwender oder Kunde an das zu entwickelnde System stellt. Es wird sicherstellt,
dass überhaupt das richtige System entwickelt wird. Verifikation wird in [28] als

„process of evaluating a system or component to determine whether the pro-
ducts of a given development phase satisfy the conditions imposed at the
start of that phase“

definiert. Oft wird die Verifikation auch als der Prozess umschrieben, der sicher-
stellt, dass ein System oder ein Teilsystem entsprechend einer gegebenen Spe-
zifikation umgesetzt wird, die zu Beginn eines Teilprozesses im Entwicklungs-
prozess definiert wurde. Im Vergleich zur Validierung ist die Verifikation daher
meist ein interner Prozess [25], der nicht unmittelbar in Verbindung zum Anwen-
der steht. Die Spezifikation ergibt sich dabei indirekt aus den Anforderungen
des Anwenders. Aus dieser Perspektive kann die Validierung als der Sonderfall
einer Verifikation betrachtet werden, bei dem eine Spezifikation eines Systems
hinsichtlich der Erfüllung von Anforderungen des Anwenders verifiziert wird.

14

2.1. Entwurf eingebetteter elektronischer Systeme

2.1.2.1. Methoden zur Veri�kation

Entsprechend [130] können drei grundlegende Ansätze zur Verifikation unter-
schieden werden, formale Verifikationsmethoden, simulative Verifikationsme-
thoden und prototypische Implementierungen.

• Formale Verifikationsmethoden: Formale Verifikationsmethoden basieren
auf mathematischen Beweisen und setzen, wie die Synthese, unter Verwen-
dung von Berechnungsmodellen (vgl. Abschnitt 2.2.3) eindeutig definier-
te Verhaltensspezifikationen voraus. Formale Methoden sind vollständig
bzgl. der Abdeckung des Zustandsraumes einer zu verifizierenden Spezi-
fikation. Dazu muss die Spezifikation selbst ebenfalls vollständig sein, was
die Anwendbarkeit formaler Methoden auf kleine (vollständig spezifizier-
te) Teilsysteme limitiert [130]. Komplexe Systeme, die u.U. nicht-determi-
nistischen Störungen unterliegen und deswegen nicht vollständig formal
beschrieben werden können, lassen sich beispielsweise nur schwer oder
gar nicht formal verifizieren.

• Simulative Verifikationsmethoden: Diese basieren auf ausführbaren Si-
mulationsmodellen, deren Verhalten auch durch Berechnungsmodelle (vgl.
Abschnitt 2.2.2) restriktiert ist. Während der Ausführung wird ein Simula-
tionsmodell dann mit einer Menge von zuvor innerhalb eines Testfalls spe-
zifizierten Mustern (Testpatterns) angeregt. Die Verifikation erfolgt durch
Vergleich der Ausgabe des Simulationsmodells mit der erwarteten Ausga-
be. Dieser Ansatz resultiert in der Regel in einer unvollständigen Abde-
ckung des Zustandsraumes, da es aufgrund der Systemkomplexität nor-
malerweise nicht möglich ist, alle relevanten Testfälle zu simulieren. Ur-
sachen sind entweder schlicht die Unmöglichkeit, alle relevanten Testfäl-
le überhaupt identifizieren zu können oder ein zu hoher Zeitaufwand für
die Simulation bei hohem Detailgrad. Anstelle eines vollständigen Korrekt-
heitsbeweises ist deswegen nur eine Falsifikation [130] (d.h. ein selektiver
Ausschluss von Fehlern) möglich. Da die Spezifikation nicht vollständig
sein muss, können im Unterschied zur formalen Verifikation allerdings
auch komplexe Systeme simuliert werden.

• Prototypische Implementierungen: Diese können den Geschwindigkeits-
nachteil bei der Ausführung von detaillierten Simulationsmodellen aus-
gleichen. Allerdings ist der Aufwand zur Erstellung einer prototypischen
Implementierung mit dem Aufwand für eine tatsächliche Realisierung ver-
gleichbar, wodurch prototypische Implementierungen im Allgemeinen nur
sehr spät im Entwicklungsprozess verwendet werden. Darüber hinaus sind
die Möglichkeiten zum Debuggen und Testen beschränkt.

In Abb. 2.3 ist der Unterschied zwischen formalen und simulativen Verifikations-
methoden visuell dargestellt. Beide Methoden können als eine Abtastung eines

15

2. Grundlagen

sog. Ausgaberaumes angesehen werden. Punkte im Ausgaberaum repräsentie-
ren alle möglichen Systemausgaben, die als Antwort auf Systemeingaben aus
einem Eingaberaum erzeugt werden können.

Bei simulativer Verifikation entsprechen einzelne Punkte im Eingaberaum Test-
patterns, die durch Testfälle erzeugt werden. Ein einzelner Punkt im Ausgabe-
raum wird erst dann abgetastet, wenn das zugehörige Testpattern durch einen
passenden Testfall generiert wird. Existiert kein passender Testfall, so findet auch
keine Abtastung statt.

Bei einer Beweisführung im Rahmen einer formalen Verifikation wird hingegen
eine Menge von Eingaben auf einmal berücksichtigt. Dadurch wird in der Re-
gel eine zusammenhängende Menge von Punkten im Ausgaberaum auf einmal
abgetastet.

a) b)

verifizierte Punkte verifizierte Eigenschaften

Abbildung 2.3.: Abtastung des Ausgaberaums bei a) simulativer und b) formaler
Verifikation (Quelle: [130])

2.2. Modellbildung und Simulation

2.2.1. Modell und Modellbildung

Die Grundlage der im vorigen Abschnitt beschriebenen Entwurfs- und Verifika-
tionsmethoden ist die Existenz von Modellen. Nach Stachoviak [240] besitzt ein
Modell drei Hauptmerkmale, das Abbildungsmerkmal, das Verkürzungsmerk-
mal und das pragmatische Merkmal:

16

2.2. Modellbildung und Simulation

Ein Modell ist grundsätzlich eine natürliche oder künstliche Abbildung oder Re-
präsentation eines Originals. Dieses Original kann real existieren oder ein fikti-
ves bzw. hypothetisches Original sein. Die Repräsentation des Originals ist „ver-
kürzt“, d.h. sie erfasst nicht alle Attribute des Originals, sondern nur die, die
dem Ersteller des Modells als relevant erscheinen. Ein Modell ist pragmatisch,
da es aufgrund seiner Verkürzungseigenschaft und der damit verbundenen Ab-
straktion einem bestimmten Original nicht mehr eindeutig zugeordnet werden
kann. Zusammengefasst ist ein Modell damit eine vereinfachte Darstellung ei-
nes Originals, die bestimmte, als relevant betrachtete Aspekte, möglichst akkurat
wiedergeben soll.

Unter dem Begriff der Modellbildung oder Modellierung versteht man den Pro-
zess der Erstellung eines Modells [191]. Das Ziel ist dabei, eine Repräsentation
zu entwickeln, die aus Gründen der Komplexitätsreduktion so weit wie möglich
vom Original abstrahiert und nur die für eine bestimmte Analyse wesentlichen
Attribute beinhaltet.

Übertragen auf den hier betrachteten Bereich der eingebetteten Systeme bedeu-
tet Modellbildung die (verkürzte) Spezifikation aller der zur Entwicklung eines
eingebetteten Systems notwendigen Aspekte. Ein Modell kann beispielsweise
mehrere oder nur einen der in Abb. 2.1 dargestellten Entwurfsaspekte abdecken.
Die Vernachlässigung oder zusätzliche Einbeziehung eines Entwurfsaspekts hat
eine weiteren Verlust oder Gewinn an Genauigkeit zur Folge. Je weiter der Ent-
wurfsprozess fortgeschritten ist, desto detaillierter und näher an der finalen Im-
plementierung ist im Allgemeinen das Modell. Die Aufgabe des Entwicklers ist
es, auf Basis existierender Anforderungen zu entscheiden, welcher Grad an Ge-
nauigkeit für eine Spezifikation während einer bestimmten Phase des Entwurfs
notwendig ist und welche Details bei der Modellbildung vernachlässigt werden
können.

2.2.2. Simulation

In der VDI Richtlinie 3633 wird der Begriff der Simulation definiert als das

„Nachbilden eines Systems mit seinen dynamischen Prozessen in einem ex-
perimentierfähigen Modell, um zu Erkenntnissen zu gelangen, die auf die
Wirklichkeit übertragbar sind“.

Die Voraussetzung für eine Simulation ist also die Eigenschaft der Experimen-
tierfähigkeit des Modells und die Möglichkeit, das Verhalten eines (originalen)
physikalischen Systems zu imitieren. In einer Computersimulation geschieht die-
se Nachbildung des Verhaltens durch ein Computer-aided Engineering (CAE) Werk-
zeug genannt Simulator.

17

2. Grundlagen

Ein Simulator basiert auf einer Modellierungssprache, welche ein syntaktisches
und semantisches Regelwerk zur Spezifikation und Ausführung von Simulati-
onsmodellen zur Verfügung stellt. Neben Syntax (wie wird ein Modell repräsen-
tiert, mit welchen Symbolen) und Semantik (was bedeutet ein Modell) ist eine
Modellierungssprache im Allgemeinen auch durch Pragmatik (was bedeutet ein
Modell in einem konkreten Kontext und wie wird es verwendet) definiert [217].

Neben der Festlegung der statischen Bedeutung von syntaktischen Elementen
(statische Semantik) beinhaltet das semantische Regelwerk einer ausführbaren Mo-
dellierungssprache wie der eines Simulators insbesondere eine Beschreibung des
erlaubten Verhaltens (dynamische Semantik) [128, 129]. Dieser Teil des semanti-
schen Regelwerks wird auch als Berechnungsmodell (siehe Abschnitt 2.2.3) be-
zeichnet und ist für alle Simulationsmodelle gültig, welche in der Modellierungs-
sprache beschrieben werden können. Abb. 2.4 zeigt die für einen Simulator typi-
sche Grundstruktur.

Simulator

Simulation Model

Simulation Kernel

Kernel
Interface

Abbildung 2.4.: Grundstruktur eines Simulators

Ein Simulationsmodell wird üblicherweise durch Instanziierung syntaktischer
Basiskonstrukte (z.B. Prozesse, Kanäle oder Module) erzeugt. Diese sind in Form
einer Bibliothek hinterlegt. Sie bilden den Ausgangspunkt für eine Spezialisie-
rung im Sinne einer verhaltens- und/oder strukturorientierten Modellierung.
Die resultierende Spezifikation repräsentiert zunächst eine statische Abbildung
eines physikalischen Systems. Erst die Ausführung des Modells durch einen
Simulationskernel erzeugt eine dynamische Abbildung. Der Simulationskernel
implementiert dazu ein bestimmtes Berechnungsmodell. Kernel und Modell in-
teragieren über eine Schnittstelle miteinander. Über diese Schnittstelle steuert
der Kernel die Ausführung des Simulationsmodells entsprechend dem imple-
mentierten Berechnungsmodell.

Der Vorteil der Trennung in Simulationsmodell und -kernel liegt in der Flexi-
bilität: Während das Modell eine spezifische Beschreibung des zu analysieren-
den Systems enthält, implementiert der Kernel sämtliche modellübergreifenden
Aspekte. Grundsätzlich ist die Implementierung des Kernels unabhängig von

18

2.2. Modellbildung und Simulation

dem konkreten System, das durch das Simulationsmodell repräsentiert wird. Al-
lerdings schränkt das Berechnungsmodell des Kernels dessen Anwendbarkeit
auf eine bestimmte Klasse von Simulationsmodellen ein.

2.2.3. Berechnungsmodelle

Der Begriff des Berechnungsmodells (engl. Model of Computation (MoC)) hat sei-
ne Wurzeln in der theoretischen Informatik und hier speziell in der Erforschung
der Berechenbarkeit von mathematischen Funktionen [106]. In den 1930er Jah-
ren wurde die Berechenbarkeit von Funktionen erstmals anhand von abstrak-
ten Berechnungsmodellen untersucht. Beispiele für solche Berechnungsmodelle
sind der von Alonzo Church eingeführte Lambda-Kalkül [87] oder die von Alan
Turing entwickelte Turingmaschine [256]. Letztere ist ein abstraktes Rechnermo-
dell, das die Arbeitsweise eines Computers anhand der schrittweisen Ausfüh-
rung eines Automaten beschreibt.

In Anlehnung an den Begriff des Entwurfsmusters, wie er von Gamma et al. in
[117] im Kontext objektorientierter Programmiersprachen verwendet wird, bil-
den Berechnungsmodelle nach Lee et al. [178] Entwurfsmuster für Interaktionen
zwischen Komponenten eines Systems. Die Regeln eines Berechnungsmodells
schränken das erlaubte Verhalten eines Modells auf eine gültige Teilmenge aller
möglichen Verhaltensweisen ein. Neben der Simulation werden Berechnungs-
modelle auch zur formalen Spezifikation der Interaktion von Komponenten ei-
nes zu entwickelnden Systems genutzt und sind elementarer Bestandteil auto-
matisierter Syntheseverfahren (vgl. Abschnitte 2.1.1.1 und 2.1.2.1).

2.2.3.1. Klassi�kation von Berechnungsmodellen

Verschiedene Berechnungsmodelle unterscheiden sich dahingehend, wie gut oder
wie schlecht sich bestimmte Charakteristika eines Systems erfassen und analy-
sieren lassen. Dies beinhaltet Eigenschaften wie Parallelität, Ausführungsreihen-
folge von Operationen, Scheduling, Synchronisation, etc. In [217] werden Regeln,
welche ein bestimmtes Berechnungsmodell spezifizieren, in drei Kategorien ein-
geteilt:

1. Regeln, die spezifizieren was eine Komponente ist,

2. Regeln, die den Kommunikationsmechanismus zwischen Komponenten
spezifizieren und

3. Regeln, die den Ausführungsmechanismus von Komponenten spezifizie-
ren.

19

2. Grundlagen

Ein Simulationskernel als die Implementierung eines Berechnungsmodells kon-
trolliert somit die Art und Weise, wie das Verhalten von Komponenten eines Si-
mulationsmodells und Interaktionen zwischen diesen Komponenten auf einem
Computer berechnet werden. Es legt die Gemeinsamkeiten im Verhalten all der
Simulationsmodelle fest, die mit dem Kernel ausgeführt werden können.

In Abb. 2.5 ist eine mögliche (informelle) Klassifikation von typischen Berech-
nungsmodellen wie State Machines (SM), Discrete Event (DE) oder Continuous Ti-
me (CT) dargestellt, die sich aus den genannten Regeln ergibt. Je weiter unten
sich ein Berechnungsmodell in der Hierarchie befindet, desto spezieller und um-
fangreicher sind die Regeln, die es charakterisieren.

Abbildung 2.5.: Klassifikation von Berechnungsmodellen (Quelle: [217])

In Abb. 2.5 werden Berechnungsmodelle z.B. dahingehend unterschieden, ob
die zugrunde liegenden Ausführungs- und Kommunikationsmechanismen die
Spezifikation von gleichzeitiger oder nur von sequentieller Ausführung erlauben.
Gleichzeitige Berechnungsmodelle werden weiter in zeitbasiert und nicht zeitba-
siert unterteilt. Die Möglichkeiten zur Spezifikation von Zeit und Gleichzeitigkeit
entscheiden darüber, inwieweit bestimmte Reihenfolgen von Aktionen spezifi-
ziert werden können, die während einer Ausführung entstehen dürfen.

Generell lassen sich aus einer solchen Klassifikation Regeln ableiten, wie Be-
rechnungsmodelle miteinander kombiniert werden können [122]. Ein formaler
Ansatz zur Klassifikation findet sich z.B. in [175]. Die Klassifikation basiert auf
einem denotationellen mathematischen Formalismus namens Tagged Signal Mo-
del, bei dem das Berechnungsmodell induktiv mit Hilfe der Mengentheorie be-

20

2.2. Modellbildung und Simulation

schrieben wird. Eine andere Möglichkeit zur Klassifikation ist eine operationelle
Beschreibungsform wie in [255]. Diese ist näher an der Implementierung und
erfasst schrittweise Zustandsänderungen.

2.2.3.2. Der Zeitbegri� in einer Simulation

Im Allgemeinen existieren im Kontext der Simulation unterschiedliche Begriffe
und Definitionen von Zeit. Fujimoto unterscheidet in [113] zwischen drei grund-
legenden Typen:

• Physikalische Zeit: Bezeichnet die Zeit des modellierten physikalischen
Systems.

• Simulationszeit: Die Simulationszeit ist eine Abstraktion, die vom Simu-
lator bzw. dem Simulationsmodell zur Repräsentation der physikalischen
Zeit verwendet wird.

• Reale Zeit: Fujimoto nennt diese Zeit Wallclock Time. Sie bezeichnet die
Zeit, die während der Ausführung eines Simulators vergeht.

Für die Simulationszeit und deren Verhältnis zur physikalischen Zeit gibt Fuji-
moto folgende allgemeine Definition, die eine lineare Beziehung zwischen Inter-
vallen in der Simulationszeit und der physikalischen Zeit herstellt:

Definition 2.1 (Simulationszeit): Die Simulationszeit ist definiert als eine vollstän-
dig geordnete Menge von Werten, wobei jeder Wert einen Zeitpunkt der physikalischen
Zeit repräsentiert, die modelliert wird. Des Weiteren gilt für beliebige Simulationszeiten
T1 und T2, die physikalische Zeiten P1 und P2 repräsentieren: Wenn T1 < T2, dann tritt
P1 vor P2 auf und (T2 − T1) ist identisch zu (P2 − P1)× K mit einer bestimmten Kon-
stanten K. Falls T1 < T2, dann sagt man, dass T1 vor T2 auftritt, und wenn T1 > T2,
dann sagt man, dass T1 nach T2 auftritt.

In der Literatur existieren weitere speziellere Definitionen für die Simulations-
zeit und die Modellierung der physikalischen Zeit. Während obige Definition
sehr allgemein gehalten ist, legen andere Zeitmodelle, wie das Modell der Su-
perdense Time [76][190], den Schwerpunkt auf die Möglichkeit zur Spezifikation
einer eindeutigen Definition von Gleichzeitigkeit. Die Superdense Time wird bei-
spielsweise im Ptolemy II Simulator [217, 179] angewendet und ist die Grundla-
ge für eine deterministische Ausführung. Ein ähnlicher Ansatz zur Modellierung
von Gleichzeitigkeit existiert auch im SystemC Simulator [27].

Neben der Modellierung der physikalischen Zeit ist die Art und Weise der Re-
präsentation der Simulationszeit innerhalb eines Berechnungsmodells ebenfalls

21

2. Grundlagen

ein kritischer Punkt. Die Simulationszeit kann beispielsweise als eine verteilte
oder eine globale Variable repräsentiert sein (vgl. Abschnitte 2.2.3.3 und 2.2.3.4).
Im Folgenden werden die Grundlagen der für diese Arbeit relevanten Berech-
nungsmodelle, insbesondere auch im Hinblick auf die Repräsentation der Simu-
lationszeit, kurz erläutert.

2.2.3.3. Discrete Event (DE)

Diskrete ereignisbasierte Berechnungsmodelle dienen zur Simulation zeitdiskre-
ter Systeme. Varianten von DE Berechnungsmodellen sind weit verbreitet und in
vielen Werkzeugen zur Modellierung und Simulation von technischen Systemen
implementiert. Dies ist der Tatsache geschuldet, dass viele technische Systeme
von Natur aus diskret sind oder zumindest diskrete Anteile besitzen.

In einer Discrete Event Simulation (DES) wird das Verhalten eines Systems über
der Zeit durch Sequenzen von diskreten Ereignissen (Events) modelliert. Ein Er-
eignis entspricht einem bestimmten Simulationszeitpunkt von unendlich kurzer
Dauer, an dem sich der Zustand des modellierten Systems (möglicherweise) än-
dert. Grundlegende Konzepte eines DE Simulators, bestehend aus Simulations-
modell und Simulationskernel sind (vgl. [173][113]):

• Zustandsvariablen: Variablen, die den Zustand des modellierten physika-
lischen Systems speichern.

• Globale Zeitvariable: Eine globale Variable, die die aktuelle Simulations-
zeit speichert.

• Globale Ereignisliste: Eine globale Liste, die die in Zukunft auftretenden
Ereignisse inkl. deren Zeitpunkt des Auftretens (Zeitstempel) speichert.

• Zeitroutine: Ein Unterprogramm, das das nächste zu verarbeitende Ereig-
nis in der Ereignisliste bestimmt und anschließend die globale Zeitvariable
auf den Zeitpunkt dieses Ereignisses setzt.

• Ereignisroutinen: Dies sind Unterprogramme in Form von Verhaltensbe-
schreibungen, die den Systemzustand aktualisieren, wenn ein bestimmtes
Ereignis auftritt. Sie erfüllen den Zweck der in Abschnitt 2.2.3.1 im Rah-
men der Klassifikation von Berechnungsmodellen erwähnten Komponen-
ten. Die meisten DE Simulatoren implementieren heutzutage Ereignisrou-
tinen, die auf sog. Prozessen basieren. Ein Prozess ist eine komplexe Ereig-
nisroutine, die nicht nur das Verhalten in Reaktion auf ein einziges Ereig-
nis, sondern auf eine Menge von Ereignissen implementieren kann.

• Initialisierungs-/Terminierungsroutinen: Unterprogramme, die zur Initia-
lisierung und Terminierung der Gesamtsimulation dienen.

22

2.2. Modellbildung und Simulation

• Hauptroutine: Ein Unterprogramm, das auf Basis der Zeitroutine das Sche-
duling von Ereignissen durchführt und durch Aufruf von Ereignisroutinen
den Zustandswechsel des Modells initiiert. Die Hauptroutine prüft auch,
ob die Simulation beendet werden kann. Dies ist der Fall, wenn die ma-
ximale Simulationszeit erreicht ist oder die Ereignisliste keine Ereignisse
mehr enthält.

Die Elemente und deren Beziehungen untereinander sind in Abb 2.6 illustriert.
Entsprechend der Beschreibung aus Abschnitt 2.2.2 sind die Komponenten auf-
geteilt in Modell und Kernel. Die Schnittstelle zwischen beiden ist durch die Be-
ziehungspfeile dargestellt, die den grauen und den blauen Bereich verbinden.
Der Ablauf der gesamten Simulationsausführung wird von der Hauptroutine
gesteuert. Eine mögliche Variante des DE Berechnungsmodells ist anhand einer
entsprechenden Implementierung von Hauptroutine und Zeitroutine in Algo-
rithmus 2.1 dargestellt.

Kernel

Model

Model State

Global Time

Ev
en

tli
st

Timing
Routine

Event
Routines

Main
Routine

Initialization &
Termination

Routines

Update

Add Events Invoke

Advance

Get Next
Event

Invoke

Invoke

Init

Init/Shutdown

Abbildung 2.6.: Komponenten einer DE Simulation und deren Beziehungen
(Quelle: [173], modifiziert)

Nach der Initialisierung durchläuft die Hauptroutine eine Schleife. Mit jeder Ite-
ration der Schleife wird mit Hilfe der Zeitroutine das nächste auszuführende
Ereignis bestimmt und durch Aufruf des zugehörigen Prozesses ausgeführt. Das
nächste auszuführende Ereignis entspricht dem Ereignis in der Ereignisliste, das
den kleinsten Zeitstempel besitzt. Nur, wenn alle Ereignisse mit dem gleichen

23

2. Grundlagen

Algorithm 2.1

1: function MAINPROGRAM()
2: INITIALIZATIONROUTINE()
3: while (SimulationClock < MaxTime) do
4: nextEvent = TIMINGROUTINE()
5: EventRoutines[nextEvent].EXECUTE()
6: end while
7: TERMINATIONROUTINE()
8: end function
9:

10: function TIMINGROUTINE()
11: nextEvent = EventList.GETNEXTEVENT()
12: SimulationClock = SimulationClock + nextEvent.GETTIME()
13: return nextEvent
14: end function

Zeitstempel abgearbeitet sind, schreitet die Simulation in der Simulationszeit
voran. Die Ausführung terminiert, sobald die maximale Simulationszeit erreicht
ist. Abb. 2.7 illustriert hierzu ein Beispiel.

Der Zustand des Systems wird anhand von vier Zustandsvariabeln S0− S3 mo-
delliert. Ein senkrechter Strich entspricht einem Zeitfortschritt, ein blauer Punkt
einer Wert- bzw. Zustandsänderung aufgrund eines Ereignisses und dem Aufruf
eines Prozesses. Die Anzahl der in einem bestimmten Zeitintervall auftretenden
Ereignisse ist direkt vom Modell abhängig. Iterationen durch die Schleife in der
Hauptroutine erfolgen nur an markanten Punkten innerhalb der Simulationszeit.
Diese sind direkt durch die Ereignisse definiert. Falls über ein längeres Zeitin-
tervall kein Ereignis auftritt, so wird dieses Zeitintervall einfach übersprungen.
Dadurch wird unnötiger Overhead vermieden. Umgekehrt macht die Hauptrou-
tine Zum Zeitpunkt „7.5“ aufgrund der drei Ereignisse drei Iterationen, bevor sie
zum Zeitpunkt „9“ voranschreitet.

2.2.3.4. Parallel Discrete Event (PDE)

Parallele diskrete ereignisbasierte (engl. Parallel Discrete Event (PDE)) Berech-
nungsmodelle sind eine umfangreiche Klasse von speziellen DE Berechnungs-
modellen, deren Hauptmotivation die Beschleunigung einer DE Simulation durch
parallele Ausführung ist.

Eine Parallel Discrete Event Simulation (PDES) besteht typischerweise aus sog. lo-
gischen Prozessen (engl. logical Processes). Ein logischer Prozess wird, äquivalent
zum einem gewöhnlichen Prozess in einer DE Simulation, zur Verhaltensmo-

24

2.2. Modellbildung und Simulation

0.9 3 3.75 5 7.5 9 10.3 11.5 12.20St
at

e
Va

ri
ab

le

Simulation
Time (s)

S0

S1

S2

S3

Event

Abbildung 2.7.: Diskrete ereignisbasierte Simulation

dellierung eingesetzt. Entsprechend der Definition von Chandy und Misra [78]
bilden logische Prozesse untereinander ein Netzwerk und kommunizieren aus-
schließlich anhand von Nachrichten über Verbindungen, die oft auch als logische
Verbindungen (engl. logical Links) bezeichnet werden. Logische Verbindungen re-
präsentieren eine gerichtete Punkt-zu-Punkt Kommunikation auf Basis von FI-
FOs. Über sie können die logischen Prozesse Nachrichten (typischerweise zeitge-
stempelte Ereignisse) austauschen und sich dabei miteinander zeitlich synchro-
nisieren.

Im Unterschied zu Prozessen in einer DES simuliert ein logischer Prozess häu-
fig ein ganzes Subsystem des modellierten physikalischen Gesamtsystems [108].
Ein logischer Prozess fasst dann mehrere gewöhnliche DE Prozesse zu einem
komplexen Prozess zusammen. Er kann dann in erster Instanz als ein erweiter-
ter sequentieller DE Simulator betrachtet werden, der nur auf einen Teil der ins-
gesamt vorhandenen Zustandsvariablen Zugriff hat. In Abb. 2.8 ist beispielhaft
ein Prozessnetzwerks bestehend aus vier logischen Prozessen LP1 bis LP4 illus-
triert. Für jeden logischen Link ist im Empfänger ein zugehöriger Eingangs-FIFO
eingezeichnet. Zudem besitzt jeder logische Prozess eine lokale Ereignisliste, die
Teil einer lokalen DES ist.

Damit ein PDE Berechnungsmodell, dessen logische Prozesse ausschließlich an-
hand von Nachrichten über logische Links kommunizieren, in der Lage ist, kor-
rekte Simulationsergebnisse zu liefern, ist die Einhaltung der sog. lokalen Kausa-
litätsbedingung notwendig. Fujimoto formuliert diese Bedingung in [112] folgen-
dermaßen:

25

2. Grundlagen

Logical Link

LP1

LP3

LP2

LP4

Event List

Abbildung 2.8.: Beispiel eines Prozessnetzwerks bestehend aus vier logischen
Prozessen

Definition 2.2 (Lokale Kausalitätsbedingung): Eine diskrete ereignisbasierte Simu-
lation, die aus logischen Prozessen besteht, welche ausschließlich durch den Austausch
von Nachrichten interagieren, hält die lokale Kausalitätsbedingung dann und nur dann
ein, wenn jeder logische Prozess Ereignisse in der Reihenfolge ihrer Zeitstempel verar-
beitet.

Anders ausgedrückt, kann eine PDES im Sinne von Definition 2.2 dann als kau-
sal korrekt bezeichnet werden, wenn deren Ausführung das gleiche Ergebnis
liefert, wie eine entsprechende sequentielle DES. Die Entwicklung und Untersu-
chung von Mechanismen zur Synchronisation der Simulationszeit und zur Ein-
haltung der lokalen Kausalitätsbedingung bildet einen zentralen Aspekt in der
Forschung im Bereich PDES. Dabei definiert das Netzwerk aus logischen Pro-
zessen und logischen Links die Grundstruktur eines parallelen Simulators und
bildet einen Rahmen für die Implementierung verschiedener PDE Berechnungs-
modelle.

Viele dieser PDE Varianten sind nicht auf eine nachrichtenbasierte Kommunika-
tion und Synchronisation limitiert. Der nachrichtenbasierte Ansatz kann jedoch
als ein erstes Hilfsmittel für die Vermeidung von kausalen Fehlern betrachtet
werden, die durch eine falsche Zugriffsreihenfolge von mehreren logischen Pro-
zessen auf gleiche Zustandsvariablen entstehen können (vgl. [112]). Die Schwie-
rigkeit bei der Entwicklung eines Synchronisationsverfahrens besteht dann meist
darin, dass die Forderung nach Einhaltung der lokalen Kausalitätsbedingung

26

2.2. Modellbildung und Simulation

der Forderung nach Performanz, Effizienz oder Flexibilität oftmals auf den ers-
ten Blick konträr gegenübersteht.

Existierende Synchronisationsalgorithmen zur PDES lassen sich auf unterschied-
liche Art und Weise klassifizieren (ein umfangreicher Überblick ist in [149] zu
finden):

• Die am weitesten verbreitete Klassifikation ist die Unterscheidung hinsicht-
lich konservativer und optimistischer Algorithmen zur Synchronisation. Kon-
servative Algorithmen vermeiden die Verletzung der lokalen Kausalitäts-
bedingung. Sie garantieren, dass innerhalb eines logischen Prozesses Events
immer in der kausal korrekten Reihenfolge verarbeitet werden. Fundamen-
tal in konservativen Algorithmen für die Einhaltung der lokalen Kausali-
tätsbedingung und die Vermeidung von Deadlocks ist eine Größe namens
Lookahead, welche ein Zeitintervall beschreibt, um die ein logischer Prozess
in die Zukunft schauen kann. Beispiele für konservative Algorithmen sind
der sog. Null Message Algorithmus (NMA) oder Chandy-Misra-Bryant (CMB)
Algorithmus [78, 69] oder der Bounded Lag Algorithmus von Lubachevs-
ky [187]. [241] oder [207] sind weitere konservative Beispiele. Im Gegensatz
zu konservativen Ansätzen erlauben optimistische Algorithmen, die Kau-
salitätsbedingung zu verletzen. Sie stellen allerdings Mechanismen zur Er-
kennung von Kausalitätsverletzungen und zur Wiederherstellung frühe-
rer valider Systemzustände zur Verfügung. In diese Kategorie gehören bei-
spielsweise der Time-Warp Algorithmus von Jefferson et. al [150] oder der
Global Virtual Time Algorithmus von Mattern [196].

• Eine andere Möglichkeit ist die Einteilung der Synchronisationsalgorith-
men in synchrone und asynchrone Ansätze [44]. Synchrone Algorithmen er-
zeugen eine regelmäßige globale Synchronisation zwischen logischen Pro-
zessen. Dies resultiert darin, dass die gesamte Simulation an bestimmten
Punkten in der Realzeit regelmäßig pausiert und wieder losläuft (siehe
Abb. 2.9 oben). Der Abstand dieser globalen Synchronisationspunkte wird
häufig durch eine sog. global Reduction bestimmt. dazu ist eine globale Sicht
über den aktuellen Zustand aller beteiligten logischen Prozesse notwendig.
Die Synchronisationspunkte selbst werden typischerweise durch Barriers
implementiert.

Im Unterschied zu synchronen Algorithmen erlauben asynchrone Algo-
rithmen den logischen Prozessen in der Simulationszeit voranzuschreiten,
ohne zwangsläufig global zu synchronisieren. Stattdessen wird für einzel-
ne logische Prozesse der Zeitfortschritt separat berechnet (siehe Abb. 2.9
unten). In die Berechnung des Zeitfortschritts eines logischen Prozess p
muss ausschließlich der Zustand der logischen Prozesse einbezogen wer-
den, die potentiell das Verhalten von p beeinflussen können. Globale War-
tezustände entsprechen daher Deadlocks, die es soweit wie möglich zu ver-

27

2. Grundlagen

meiden gilt. Falls das Auftreten von Deadlocks nicht verhindert werden
kann, beispielsweise im Fall eines Lookahead von Null (Zero Lookahead),
können diese mit Hilfe von sog. Deadlock Detection und Deadlock Recove-
ry Mechanismen aufgelöst werden [113]. In [78],[69],[150], [196] oder [43]
finden sich Beispiele für asynchrone Ansätze. [241], [187] und [207] sind
Beispiele für synchrone Algorithmen.

• Eine dritte oft verwendete Einteilung fokussiert stärker auf die logische
Struktur, die sich aus dem Synchronisationsalgorithmus ergibt. Dabei wird
zwischen zentralen und dezentralen Ansätzen unterschieden [44]. Eine glo-
bale Reduktion in Kombination mit globalen Barriers wird im einfachsten
Fall mit Hilfe eines zentralen Controllers umgesetzt. Dies entspricht einer
sog. Centralized Barrier [113]. Da der Controller schnell zu einem Hot-Spot
in der Kommunikation werden kann, wurden in der Literatur verschiedene
dezentrale Alternativen vorgeschlagen, wie z.B. Tree- oder Butterfly-Barriers
[267][68].

Zentralisierte Ansätze sind dann von Vorteil, wenn für einen Algorithmus
eine globale Sichtweise notwendig ist. Viele synchrone Algorithmen benö-
tigen eine solche globale Sichtweise, um einen möglichst großen Abstand
der globalen Barriers berechnen zu können. Es existieren auch Beispiele
von asynchronen Algorithmen, die auf zentralisierte Strukturen zurück-
greifen, beispielsweise wird in [79] ein zentraler Controller zur Erkennung
und Auflösung von Deadlocks verwendet.

Prinzip des Null Message Algorithmus
Als Beispiel wird im Folgenden das dem Null Message Algorithmus zugrunde-
liegende Prinzip erläutert. Ein besonderes Augenmerk gilt dabei der Repräsen-
tation und Synchronisation der Simulationszeit. Während in einer gewöhnlichen
DES die Zeit durch eine allen Simulationsprozessen bekannte globale Zeitvaria-
ble repräsentiert wird, existiert bei einer PDES auf Basis des NMA in jedem lo-
gischen Prozess lpi eine separate lokale Zeitvariable tlocal

i . Ein logischer Link lij
von lpi nach lpj existiert nur dann, wenn das Teilmodell in lpi das Teilmodell in
lpj über Ereignisse kausal beeinflussen kann. Jedes Ereignis e, das in Form einer
Nachricht über eine logische Verbindung übertragen wird, trägt einen Zeitstem-
pel ts(e). Dieser spezifiziert den (zukünftigen) Simulationszeitpunkt, an dem das
Ereignis verarbeitet werden soll.

Unter der Voraussetzung, dass Ereignisse zwischen logischen Prozessen immer
in zeitlich aufsteigender Reihenfolge übertragen werden und folglich auch in
zeitlich aufsteigender Reihenfolge in den FIFOs der logischen Links gespeichert
sind, hält ein logischer Prozess lpi die kausal richtige Verarbeitungsreihenfolge
von Ereignissen ein, wenn er im Rahmen des Schedulings immer genau das Er-
eignis als das nächste zu verarbeitende Ereignis enext auswählt, das von allen Er-

28

2.2. Modellbildung und Simulation

Lo
gi

ca
l

Pr
oc

es
se

s

Wallclock
Time (s)

LP1

LP2

LP3

LP4

Lo
gi

ca
l

Pr
oc

es
se

s

Wallclock
Time (s)

LP1

LP2

LP3

LP4

Abbildung 2.9.: Gegenüberstellung von synchronen (oben) und asynchronen
(unten) Algorithmen

29

2. Grundlagen

eignissen Ecur
i , die aktuell in den FIFOs und der lokalen Ereignisliste vorhanden

sind, den kleinsten Zeitstempel besitzt. Dies bedeutet:

enext = emin, wobei ts(emin) = min
∀e∈Ecur

(ts(e)), (2.1)

Nach der Bestimmung von enext wird tlocal
i auf den Zeitstempel ts(enext) gesetzt

und enext wird durch Aufruf der zugehörigen Ereignisroutine ausgeführt. Diese
Methode funktioniert solange, wie sich in jedem FIFO mindestens ein Ereignis
befindet. Ist dies nicht der Fall, so kann der logische Prozess vorhandene Er-
eignisse nicht verarbeiten, da u.U. noch Ereignisse über momentan leere FIFOs
eintreffen können, die früher verarbeitet werden müssten. Der logische Prozess
muss dann warten, bis jeder FIFO ein Ereignis enthält. Problematisch wird es
insbesondere dann, wenn eine zirkuläre Abhängigkeit zwischen mehreren Pro-
zessen besteht. In diesem Fall kann ein Deadlock genau dann auftreten, wenn
logische Prozesse gegenseitig auf die Übertragung eines Ereignisses warten.

Beim NMA werden solche Situation durch den regelmäßigen Versand sog. Null
Messages und die Einführung einer Größe namens Lookahead verhindert. Der
Lookahead bezeichnet die Latenz einer logischen Verbindung bzgl. der Simula-
tionszeit. Er wird für jede logische Verbindung statisch festgelegt. Der Wert des
Lookaheads einer logischen Verbindung muss aus dem Simulationsmodell ab-
geleitet werden. Der Zeitstempel ts einer jeden Nachricht (auch der von Null
Messages) wird von einem Sender lpi aus der Summe seiner aktuellen lokalen
Zeit tlocal

i und dem Lookahead ∆lij des logischen Links lij gebildet, über den die
Nachricht verschickt werden soll: ts = tlocal

i + ∆lij (eine Alternative ist die Be-
rechnung der Summe im Empfänger). Der Zeitstempel einer Null Message defi-
niert dann eine untere Schranke für den Zeitstempel, den ein in Zukunft über lij
übertragenes Ereignis haben kann. Algorithmus 2.2 illustriert das beschriebene
Verfahren durch Erweiterung des Pseudocodes aus Algorithmus 2.1.

2.2.4. Heterogenität

Ein Simulationswerkzeug basiert idealerweise auf einem Berechnungsmodell,
welches optimal an die Bedürfnisse des Modellerstellers oder Applikationsent-
wicklers angepasst ist. In bestimmten Fällen ist es zudem notwendig oder von
Vorteil, unterschiedliche Spezifikationen, die unterschiedlichen Berechnungsmo-
dellen folgen, miteinander in Beziehung zu setzen. In diesem Kontext kann man
zwischen vertikaler und horizontaler Heterogenität unterscheiden [136, 184]:

30

2.2. Modellbildung und Simulation

Algorithm 2.2

1: function MAINPROGRAM()
2: INITIALIZATIONROUTINE()
3: while (SimulationClock < MaxTime) do
4: WAITFIFOS()
5: nextEvent = TIMINGROUTINE()
6: EventRoutines[nextEvent].EXECUTE()
7: SENDNM()
8: end while
9: TERMINATIONROUTINE()

10: end function
11:
12: function TIMINGROUTINE()
13: nextEvent = GETMINTIMEEVENT()
14: SimulationClock = SimulationClock + nextEvent.GETTIME()
15: return nextEvent
16: end function

• Vertikale Heterogenität: Vertikale Heterogenität wird in [136] als die Mög-
lichkeit beschrieben, Berechnungsmodelle entlang eines Entwicklungspro-
zesses zu transformieren. Sie ist z.B. innerhalb einer SLD Entwurfsmetho-
dik von großer Bedeutung, bei der Modelle / Spezifikationen unterschied-
licher Abstraktionsebenen Schritt für Schritt durch Synthese und damit
verbundener Transformation zugrundeliegender Spezifikationen ineinan-
der überführt werden.

• Horizontale Heterogenität: Bezeichnet die Heterogenität zwischen mitein-
ander integrierten Modellen. Beispielsweise sind Modelle von eingebette-
ten Systemen von Natur aus horizontal heterogen, da deren Teilsysteme
oft unterschiedlichen Anwendungsdomänen entstammen und sehr unter-
schiedliche Charakteristika hinsichtlich des Verhaltens aufweisen. Neben
Komponenten aus Hardware oder Software können Teile eines eingebet-
teten Systems z.B. auch aus mechanischen, hydraulischen oder analogen
Komponenten bestehen [102]. Auch die Integration von Teilsystemmodel-
len ein und derselben Anwendungsdisziplin, die aber auf unterschiedli-
chen Abstraktionsebenen spezifiziert sind, führt zu horizontaler Heteroge-
nität.

Horizontale Heterogenität kann die Folge vertikaler Heterogenität sein, beispiels-
weise wenn im Zuge einer vertikalen Verfeinerung Teile eines vormals homoge-
nen Modells durch Teilmodelle niedrigerer Abstraktionsebenen ersetzt werden.

31

2. Grundlagen

Umgekehrt kann vertikale Heterogenität auch die Folge horizontaler Heteroge-
nität sein (z.B. im Fall von Ptolemy II, siehe Abschnitt 2.3.4).

Die dynamische Kombination von Simulationswerkzeugen, die unterschiedli-
chen Anwendungsdisziplinen entstammen und verschiedenen Berechnungsmo-
dellen folgen, entspricht einer Co-Simulation. Eine Alternative zur Co-Simulation
sind Simulationswerkzeuge basierend auf sog. formalen Frameworks (siehe Ab-
schnitt 2.3.3). Mit diesen können heterogene Systeme in ein und derselben Spra-
che spezifiziert und simuliert werden.

2.3. Sprachen für den Systementwurf

Um die innerhalb von Entwurfsprozessen für elektronische Systeme (vgl. Ab-
schnitt 2.1) typischerweise anfallenden Aufgaben wie Spezifikation, Exploration,
Synthese oder Verifikation optimal zu unterstützen, haben sich sowohl in der In-
dustrie als auch im Bereich der Forschung eine ganze Reihe unterschiedlichster
Modellierungssprachen und Simulationswerkzeuge herausgebildet. Diese un-
terscheiden sich stark hinsichtlich der Abdeckung von Anwendungsdomänen
und Anwendungsmöglichkeiten.

Im Folgenden werden zunächst Sprachen für den Entwurf von digitalen Hard-
ware- und Softwaresystemen vorgestellt. Anschließend werden Werkzeuge be-
schrieben, welche es zusätzlich gestatten, Wechselwirkungen zwischen hetero-
genen Teilsystemen (z.B. Hardware/Software und physikalischer Umwelt) zu
spezifizieren. Diese bilden die Grundlage zur Entwicklung heterogener einge-
betteter Systeme.

2.3.1. Sprachen zur Modellierung von Hardware und Software

Zur Entwicklung von Software existieren Sprachen wie z.B. C/C++, Java oder
C#. Im Bereich der eingebetteten Systeme ist C/C++ die wohl verbreitetste Spra-
che. Die genannten Sprachen sind allesamt sog. Hochsprachen, d.h. sie abstrahie-
ren stark von der Hardware, auf der ein Programm letztendlich ausgeführt wird.
Eine Spezifikation kann deswegen u.U. vollständig unabhängig von der zugrun-
deliegenden Hardware sein. Die genannten Sprachen eignen sich insbesondere
deswegen nicht zur Spezifikation von Hardware, weil sie keine Möglichkeiten
zur Beschreibung spezieller Charakteristika von Hardware wie signalbasierte
Kommunikation, Zeitverhalten und Parallelität bieten.

Einschlägige Sprachen im Bereich der industriellen Hardwareentwicklung sind
z.B. VHDL [19] oder Verilog [17]. Diese werden allgemein auch als Hardware De-
scription Languages (HDLs) bezeichnet. VHDL und Verilog basieren beide auf ei-

32

2.3. Sprachen für den Systementwurf

nem DE Berechnungsmodell und bilden die Grundlage zur zyklengenauen Spe-
zifikation und Simulation von diskreten Hardwareschaltungen. Wegen der Li-
mitierung auf Hardware und der Beschränkung des Abstraktionsgrades auf das
RTL, eignen sich diese Sprachen allerdings nicht für die Anwendung im Rahmen
einer SLD Methodik, welche Hardware und Software einschließt.

Die bekanntesten sog. System Level Design Languages (SLDLs) sind SystemC [27]
und SpecC [114] [119] [98]. SystemC ist eine Erweiterung von C/C++, SpecC ba-
siert auf ANSI-C. SystemC und SpecC besitzen die notwendigen syntaktischen
und semantischen Eigenschaften, um sowohl Hardware als auch Software be-
schreiben zu können. Wie VHDL und Verilog besitzen beide Sprachspezifikatio-
nen als Grundlage ein DE Berechnungsmodell. In beiden Sprachen existiert keine
Beschränkung bzgl. Register Transfer (RT) Ebene. Deswegen sind diese Sprachen
grundsätzlich für die Anwendung innerhalb einer SLD Methodik geeignet. Im
Unterschied zu SpecC wird SystemC nicht nur im Bereich der Forschung, son-
dern auch in der Industrie verwendet. Aufgrund der Relevanz in den nachfol-
genden Kapiteln, wird nun eine Einführung in die SystemC Syntax und die für
SystemC Modelle gültige dynamische Semantik gegeben.

2.3.2. SystemC

SystemC [27] wurde Ende der 90er Jahre von der Open SystemC Initiative (OS-
CI) entwickelt. Die OSCI ging im Jahr 2011 in die Accelera Systems Initiative
[1] über. SystemC ist seit dem Jahr 2005 ein IEEE Standard [27]. SystemC wird
aktuell von vielen CAE Werkzeugen einschlägiger EDA Firmen unterstützt. Die
Accelera Systems Initiativestellt stellt eine C/C++ Klassenbibliothek frei zur Ver-
fügung, welche die Sprache implementiert. Dies ist der Grund, weshalb SystemC
auch im Bereich der Forschung weit verbreitet ist. Abb. 2.10 gibt einen Überblick
über die Komponenten der SystemC Bibliothek.

SystemC erlaubt die Spezifikation und Simulation von Hardware und Software.
Da die Modellierung von Software größtenteils bereits durch C++ selbst abge-
deckt wird, beinhaltet die Bibliothek hauptsächlich Artefakte zur Modellierung
von Hardware [55]. Ähnlich zu HDLs wie VHDL oder Verilog kann mit SystemC
struktur- und verhaltensorientiert modelliert werden. Im Folgenden werden zu-
nächst die grundlegenden syntaktischen Komponenten allgemein erläutert. An-
schließend wird das dem SystemC Kernel zugrundeliegende Berechnungsmo-
dell beschrieben (eine detaillierte Einführung ist z.B. in [55] zu finden).

33

2. Grundlagen

Simulation
Kernel

Threads & Methods Channels &
Interfaces

Events, Sensitivity &
Notifications

Modules &
Hierarchy

Data types;
Logic,

Integers,
Fixed point

Predefined Primitive Channels: Mutexes, FIFOs & Signals

C++ STL

User Libraries SCV Other IP

Sy
st

em
C

Abbildung 2.10.: Architektur der SystemC Bibliothek (Quelle: [55])

2.3.2.1. Syntaktische Komponenten

Das Grundelement der Syntax von SystemC zur Erzeugung von hierarchischen
Strukturen ist das Modul. Ein Modul kann Prozesse, Ereignisobjekte, Channels, Ports,
Variablen, Funktionen oder beliebige andere Module enthalten. All diese Kompo-
nenten sind in der SystemC Bibliothek als C++ Klassen implementiert.

Prozesse dienen zur Spezifikation von Verhalten. Das Scheduling von Prozes-
sen wird im Zusammenspiel von Prozessen und Simulationskernel über Ereig-
nisobjekte gesteuert (vgl. Abschnitt 2.3.2.2). Prozesse können durch Lesen und
Schreiben von/auf Channels oder direkt über Variablen und beliebige Funkti-
onsaufrufe kommunizieren. Kommunikation anhand von Channels erfolgt im-
mer über definierte Schnittstellen. Kommunikation über Modulhierarchien hin-
weg ist über Ports möglich. Ports dienen als Stellvertreter für verbundene Chan-
nels. Die Aufteilung in Prozesse / Module und Channels vereinfacht die Separa-
tion von Belangen, wie sie bereits in Abschnitt 2.1.1.3 als Grundlage einer platt-
formbasierten SLD Methodik erwähnt wurde.

Grundsätzlich können zwei Typen von Channels unterschieden werden, Primi-
tive Channels und Hierarchical Channels. Primitive Channels implementieren das
sog. Evaluate / Update (E/U) Paradigma, das für die deterministische Simulation
von Gleichzeitigkeit grundlegend ist (vgl. Abschnitt 2.3.2.2). Im Gegensatz zu
Primitive Channels sind Hierarchical Channels Module und besitzen dement-
sprechend die gleichen Möglichkeiten zur Implementierung wie ein Modul. Ein
Hierarchical Channel kann z.B. die Spezifikation eines komplexen Kommunika-
tionsprotokolls beinhalten.

34

2.3. Sprachen für den Systementwurf

2.3.2.2. Berechnungsmodell

Das SystemC zugrundeliegende Berechnungsmodell ist eine Variante des DE Be-
rechnungsmodells. Es wird im Folgenden anhand der vier Aspekte Zeitmodell,
Prozesse, Kommunikationsmechanismen und Ausführungsmechanismus erläu-
tert.

Zeitmodell
Das Zeitmodell von SystemC besitzt die Besonderheit, dass die Simulationszeit
kein Skalar, sondern ein Tupel tτ,δ = (τ, δ) ist. Neben der eigentlichen Zeit τ
existiert eine zweite unabhängige Variable δ, die die Anzahl der sog. Deltacy-
cles seit dem Beginn der Simulation zählt. Deltacycles haben per Definition eine
Zeitdauer bzgl. τ von Null.

Mit Hilfe von δ ist es möglich, eine partielle Ordnung für SystemC Ereignisse
(sog. Notifications) zu generieren, die bei gleichem τ eintreten. Notifications kön-
nen dann unterschiedlichen Deltacycles zugeordnet werden. Für zwei Zeitpunk-
te tτ,δ

1 und tτ,δ
2 lässt sich dabei folgende Ordnungsrelation definieren:

tτ,δ
1 > tτ,δ

2 ⇔ τ1 > τ2 ∨ (τ1 = τ2 ∧ δ1 > δ2) (2.2)

In Anlehnung an die Superdense Time aus dem Ptolemy II (vgl. Abschnitt 2.3.4.2)
können Notifications, die bei gleichem τ auftreten, auch als schwach gleichzeitig
bezeichnet werden. Falls sie auch beim gleichen δ auftreten, so kann man sie als
stark gleichzeitig bezeichnen. Notifications können entsprechend [27] folgender-
maßen klassifiziert werden:

• Zeitverzögert (Timed Notifications): Das Ereignis hat einen um ∆τ verzöger-
ten Eintrittszeitpunkt τ := τ + ∆τ mit ∆δ = 0.

• Deltaverzögert (Delta Notifications): Das Ereignis hat einen um ∆δ = 1 ver-
zögerten Eintrittszeitpunkt δ := δ + 1 mit ∆τ = 0.

• Keine Verzögerung (Immediate Notifications): Der Eintrittszeitpunkt des Er-
eignisses ist nicht verzögert, d.h. ∆τ = 0 und ∆δ = 0.

Spezi�kation von Verhalten durch Prozesse
Die zentrale Komponente zur Verhaltensspezifikation ist der Prozess. Die Aus-
führung von Prozessen wird vom Simulationskernel anhand eines kooperativen
Multitaskings und mit Hilfe von Notifications gesteuert. Notifications werden
innerhalb von Prozessen erzeugt. Dies entspricht dem Aufruf der Methode no-
tify() auf einem Ereignisobjekt ω aus der Menge aller Ereignisobjekte Ω.

35

2. Grundlagen

Das Eintreten einer Notification kann wiederum zur Ausführung von Prozessen
führen, sofern diese Prozesse sensitiv auf die Notification sind. Sensitivität für
Notifications kann dynamisch mit Hilfe der Funktionen wait() oder next_trigger()
oder statisch mit Hilfe des Schlüsselworts sensitive spezifiziert werden. Auch ge-
zielte Timeouts können durch Aufruf von wait() oder next_trigger() auf dem Ker-
nel erzeugt werden.

Wurde die Ausführung eines SystemC Prozesses einmal initiiert, so ist dieser
aufgrund des kooperativen Multitaskings danach eigenständig dafür verantwort-
lich, den Kontext wieder an den Kernelscheduler zurückzugeben. Dabei können
zwei Typen von Prozessen unterschieden werden: SC_METHOD Prozesse sind
simple Callback-Funktionen. SC_THREAD Prozesse sind Co-Routinen und be-
sitzen einen Stack. Ein SC_METHOD Prozess gibt die Kontrolle durch ein simp-
les return an den Kernelscheduler zurück. SC_THREAD Prozesse implementie-
ren normalerweise eine Endlosschleife. Sie geben die Kontrolle explizit durch
Aufruf von wait() an den Kernel zurück.

Kommunikationsmechanismen
Die Semantik des Datenaustauschs zwischen SystemC Prozessen kann entspre-
chend der Kontrollierbarkeit durch den Kernel klassifiziert werden. Kontrolle
durch den Kernel impliziert eine gewisse Restriktivität:

• Restriktierte Kommunikation: Diese Art der Kommunikation basiert auf
der Verwendung von Primitive Channels wie z.B. Signalen (sc_signal) oder
Fifos (sc_fifo). Signale werden typischerweise in RTL Modellen eingesetzt.
Lese- oder Schreibzugriff von einem Prozess auf ein Signal muss mit Hilfe
der read() oder write() Methoden erfolgen. Das E/U Paradigma von Primi-
tive Channels beschränkt die Art und Weise der Weiterleitung von Daten
zwischen SystemC Prozessen: Daten, die zu einem bestimmten Simulati-
onszeitpunkt in einen Primitive Channel geschrieben werden, sind immer
deltaverzögert am Ausgang sichtbar.

Die Implementierung eines Primitive Channels ch basiert dazu auf den
Methoden request_update(), update(), zwei Datenstrukturen vcur und vnext

sowie einem Ereignisobjekt ω. Ein Lesezugriff per read() resultiert in der
Rückgabe des Wertes von vcur, ein Schreibzugriff per write() in der Modi-
fikation von vnext. Dabei registriert request_update() eine Aktualisierungs-
anfrage im Kernel. update() wird vom Kernel aufgerufen, um eine Aktua-
lisierungsanfrage zu bearbeiten. Die Aktualisierung beinhaltet das Setzen
von vcur = vnext und den Aufruf von notify() auf ω, wodurch eine Delta-
Notification generiert wird.

• Nicht-Restriktierte Kommunikation: Bei dieser Art der Kommunikation
wird auf das E/U Paradigma und die Verwendung entsprechender Primi-

36

2.3. Sprachen für den Systementwurf

tive Channels verzichtet. Der Kernel hat damit keine Kontrolle mehr über
die Kommunikation. Die Kommunikation erfolgt vielmehr direkt über Va-
riablen oder Funktionsaufrufe im Modell. Ein Prozess greift u.U. auf belie-
bige C++ Variablen unmittelbar lesend und schreibend zu. Simulationser-
gebnisse hängen dann von der Zugriffsreihenfolge auf die Variablen und
damit vom Scheduling der SystemC Prozesse ab. Diese Art der Kommuni-
kation wird typischerweise in sog. Transaction Level Models (TLMs) verwen-
det.

Input/Output Port

Module

read()

update()

to Kernel

read()

write()

Vcur

Vnext

ω

request_update()

from Kernel

Module

Primitive Channel

Abbildung 2.11.: Kommunikation über einen Primitive Channel

Ausführungsmechanismus
Der sequentielle SystemC Scheduler durchläuft während der Ausführung die
Elaboration Phase und die Simulation Phase. Die Elaboration Phase dient zur In-
stanziierung des Modells und zur Herstellung von Modulverbindungen. Zur
Erläuterung des Schedulingverfahrens ist sie nicht relevant. Es genügt daher die
Betrachtung des iterativen Teils der Simulation Phase. Dieser besteht aus unter-
schiedlichen Teilphasen namens Evaluation Phase, Update Phase, Delta Notification
Phase und Timed Notification Phase. Um die Beschreibung des iterativen Ablaufs
der Teilphasen zu vereinfachen, werden zunächst folgende Variablen und Men-
gen definiert:

• state: Speichert den aktuellen Basiszustand des Schedulers, wobei state nur
Werte aus der Menge S = {seval , supdate, sdnoti f y, stnoti f y} annehmen kann.

• τ: Speichert den Wert der Simulationszeit im aktuellen Timedcycle. Dabei
ist τ ∈ R≥0.

• δ: Zählt die Anzahl der in der gesamten Simulation bereits ausgeführten
Deltacycles, dabei ist δ ∈N0.

• P: Menge aller SystemC Prozesse p.

• R: Menge der lauffähigen SystemC Prozesse r, dabei gilt: R ⊆ P.

37

2. Grundlagen

• U: Menge der Aktualisierungsanfragen u.

• Nδ: Menge der Delta Notifications und Timeouts nδ zum aktuellen Delta-
zyklus δ.

• Nτ : Menge der Timed Notifications und Timeouts nτ zum aktuellen und
zu zukünftigen Zeitpunkten τ.

Die Gesamtfunktionsweise des SystemC Schedulers lässt sich anhand folgender
grundlegender Basisaktionen beschreiben:

• get(SET): Wähle ein beliebiges Element aus der Menge SET.

• del(SET1,SET2): Lösche alle Elemente in Menge SET1 aus Menge SET2.

• run(p): Führe Prozess p aus.

• eval(R): Führe folgende Sequenz aus, solange |R| 6= 0:

– p=get(R); run(p); del(p,R);

• update(U): Führe folgende Sequenz aus, solange |U| 6= 0:

– u=get(U); Führe das Update u durch Aufruf von update() auf dem zu-
gehörigen Primitive Channel ch aus; del(u,U);

• dnotify(Nδ): Führe folgende Sequenz aus, solange |Nδ| 6= 0:

– nδ=get(Nδ); ∀p ∈ P: Falls p sensitiv auf nδ ist, dann füge p in R ein;
del(nδ,Nδ);

• nextTime(): Gib die Simulationszeit τnext der frühesten Timed Notification
/ des frühesten Timeouts zurück.

• getNext(): Gib aus der Menge Nτ dasjenige nτ mit dem kleinsten Zeitstem-
pel zurück.

• tnotify(τ,Nτ): Führe folgende Sequenz aus solange nextTime()≡ τ:

– nτ=getNext(); ∀p ∈ P: Falls p sensitiv auf nτ ist, dann füge p in R ein;
del(nτ ,Nτ);

Das SystemC Scheduling ist in Abb. 2.12 anhand einer Zustandsmaschine dar-
gestellt. Die Zustandsmaschine modelliert jede Kernelphase mit einem separaten
Zustand. Immediate Notifications sind implizit durch die Rückkopplung im seval

Zustand modelliert. Die Abarbeitung von Delta Notifications entspricht dem
Durchlaufen der sog. inneren Schleife von sdnoti f y nach seval . Die Abarbeitung von
Timed Notifications entspricht dem Durchlaufen der äußeren Schleife von stnoti f y

nach seval .

38

2.3. Sprachen für den Systementwurf

sdnotify

seval

stnotify

[|U| = 0]

[|R| = 0]

[τ >= τmax]

[|R| = 0]/
δ:=δ+1;

supdate

sinit

[|R| != 0]/eval(R);

[|U| != 0]/update(U);

[|R| != 0]

[|Nδ| != 0]/dnotify(Nδ); [|R| != 0 && τ < τmax]

[|Nτ| != 0]/
τ:=nextTime();tnotify(τ ,Nτ);

Abbildung 2.12.: Sequentieller SystemC Scheduler

39

2. Grundlagen

2.3.2.3. Modellierung auf Transaktionsebene

Transaction Level Modeling [74, 100] ist eine Methode zur Anhebung der Ab-
straktionsebene über das RTL hinaus auf das ESL (vgl. Abschnitt 2.1.1.2). Der
Begriff entstammt der Domäne der SLD Sprachen wie SpecC oder SystemC, wes-
halb TLM insbesondere in Kombination mit diesen Sprachen verbreitet ist [74].
TLM Konzepte bilden dabei die Basis unterschiedlichster SLD Entwurfsmetho-
diken (z.B. [114, 77, 213, 60]). Ein guter Überblick über existierende akademische
SLD Ansätze unter Verwendung von TLM ist in [120] zu finden.

Die grundlegende Idee von TLMs besteht darin, Kommunikation zwischen Kom-
ponenten nicht mehr wie in einem RTL Modell mit Hilfe einzelner Signale zu
modellieren, sondern mit Hilfe von Transaktionen. Eine Transaktion wird in [72]
als

„... the longest communication during which the invariant data, as set by a
system master, remains valid“

definiert. Dabei werden direkte Methodenaufrufe verwendet, durch die Transak-
tionsobjekte zwischen Modulen ausgetauscht werden können (nicht-restriktierte
Kommunikation). Neben den zu übertragenden Daten können solche Transakti-
onsobjekte u.a. einen Zeitstempel enthalten, der die Dauer einer oder mehrerer
Phasen einer Transaktion spezifiziert. Da die Kommunikation nicht mehr unter
der Kontrolle des Kernels ist, müssen Zeitinformationen aus den Zeitstempeln
abgeleitet werden. Der Vorteil des TL gegenüber dem RTL liegt vor allem in der
weit besseren Performanz, da Synchronisationsaufwand mit dem Kernel einge-
spart wird.

Syntaktische Komponenten
Abb. 2.13 illustriert ein typisches TL Modell bestehend aus drei Modulen. Diese
können in Initiator und Target Module klassifiziert werden. Das als Interconnect
bezeichnete Modul ist Initiator und Target zugleich. Der Modultyp wird durch
den Typ des/der Sockets bestimmt, auf das/die ein Modul Zugriff hat.

Die Art und Weise der Modellierung innerhalb eines Moduls ist im System-
C/TLM Standard nicht definiert. Typischerweise werden Initiator mit einem oder
mehreren SC_THREAD Prozessen modelliert. Target Module können abhängig
vom Modellierungsstil (siehe unten) auch rein passiv sein, d.h. sie enthalten kei-
nen Prozess, sondern nur Schnittstellenmethoden.

Kommunikation erfolgt durch direkte Methodenaufrufe auf dem Vorwärtspfad
oder auf dem Rückwärtspfad über Sockets. Ein Initiator Socket stellt einen Port
zum Aufruf von Schnittstellenmethoden im Target unter Nutzung des Vorwärts-
pfades zur Verfügung. Zugleich stellt es eine weitere Schnittstelle bereit, über die

40

2.3. Sprachen für den Systementwurf

das Target auf dem Rückwärtspfad Schnittstellenmethoden im Initiator aufrufen
kann. Ein Target Socket ist das Gegenstück zum Initiator Socket [27].

Initiator Socket Target Socket

Interconnect
(Initiator & Target)Initiator Target

Forward
Path

Backward
Path

Forward
Path

Backward
Path

Transaction
Object

Abbildung 2.13.: Kommunikation zwischen Initiator und Target (Quelle: [27])

Modellierungsstile
Der Begriff des Transaction Levels steht nicht für eine bestimmte Abstraktions-
ebene mit einem bestimmten Detaillierungsgrad, sondern bezeichnet vielmehr
ein Kontinuum unterschiedlicher Abstraktionsgrade. Ein TL Modell kann durch
einen Punkt innerhalb dieses Kontinuums charakterisiert werden [100, 72]. Zum
aktuellen Zeitpunkt existiert keine allgemein anerkannte Terminologie zur präzi-
sen Definition und Charakterisierung solcher Punkte innerhalb dieses Kontinu-
ums [219]. Mit anderen Worten: Es existiert kein eindeutig spezifiziertes Berech-
nungsmodell für TL Modelle. Die TLM 2.0 Spezifikation des SystemC Standards
[27] unterscheidet allerdings zwischen sog. Modellierungsstilen oder Coding Sty-
les (Abb. 2.14 mitte), mit deren Hilfe TL Modelle genauer eingeordnet werden
können.

Coding Styles beschreiben Alternativen zur Nutzung der vom TLM Standard zur
Verfügung gestellten API (vgl. Abb. 2.14 unten). Jeder Coding Style beschreibt ei-
ne Reihe von Möglichkeiten, um bis zu einem gewissen Grad zwischen höherer
und geringerer (zeitlicher) Genauigkeit zu skalieren. Dadurch lassen sich Model-
le realisieren, die für unterschiedliche Anwendungsfälle geeignet sind (Abb. 2.14
oben). Die in [27] beschriebenen Coding Styles sind:

• Loosely-Timed (LT): Dieser Coding Style nutzt das Blocking Transport In-
terface (b_transport() Methode) zur Kommunikation. Transaktionen sind
blockierend, d.h. die Methodenaufrufe blockieren solange, bis eine Trans-
aktion abgeschlossen ist. Diese Dauer kann durch einen Zeitstempel an-
notiert werden. Synchronisation mit dem Kernel oder anderen Prozessen
erfolgt durch wait() Aufrufe. Mit Hilfe von Temporal Decoupling können Pro-
zesse in der Simulationszeit maximal bis zu einem sog. Global Quantum vor-
auseilen, ohne mit anderen Prozessen bzw. dem Kernel zu synchronisieren.

41

2. Grundlagen

Ähnlich einem asynchronen PDES Algorithmus (siehe Abschnitt 2.2.3.4)
besitzen Module zu diesem Zweck eine lokale Zeit, die im Fall von Tem-
poral Decoupling bis zum Erreichen des globalen Quantums inkrementiert
wird. Der reduzierte Synchronisationsoverhead resultiert in einer höheren
Performanz.

Die Verwendung des LT Coding Styles ist in der Regel mit einem hohen
Genauigkeitsverlust verbunden, da durch die blockierenden Methoden-
aufrufe keine simultanen Transaktionen modelliert werden können. Der
Genauigkeitsverlust wird durch Temporal Decoupling weiter erhöht. Auf-
grund der geringen zeitlichen Akkuratheit ist der LT Coding Style für die
Entwicklung virtueller Plattformen zur Softwareentwicklung und weniger
zur Exploration oder Verifikation von Hardware geeignet.

• Approximately-Timed (AT): Dieser Coding Style nutzt das Non-Blocking
Transport Interface (nb_transport_fw(), nb_transport_bw() Methoden). Trans-
aktionen sind in mehrere Phasen eingeteilt. Diese sind durch nicht-block-
ierende Funktionsaufrufe markiert. Die Phasen spezifizieren die Synchro-
nisationspunkte mit dem Kernel. Dazu muss für jede Phase separat eine
Zeitdauer festgelegt werden. Die Phasenaufteilung ermöglicht die Model-
lierung simultaner Transaktionen. Temporal Decoupling wird in der Regel
nicht unterstützt. Durch die höhere zeitliche Genauigkeit, die aus dem AT
Coding Style resultiert, ist dieser zur Architekturexploration und Analy-
se gut geeignet. Die geringe Geschwindigkeit macht AT Modelle weniger
geeignet für die Softwareentwicklung.

Eine rein funktionale Spezifikation (Untimed (UT) Coding Style) ist ein Sonder-
fall des LT Coding Styles, bei dem auf eine Modellierung der Zeit grundsätzlich
verzichtet wird. Vollständig zyklenakkurate Modellierung ist nicht Teil von TLM
2.0. Ein zyklenakkurater Codingstyle könnte laut SystemC/TLM Standard [27]
als Erweiterung des AT Coding Styles definiert werden.

Alternative Klassifikationen von TL Modellen finden sich z.B. in [74] oder [100].
Cai und Gajski charakterisieren TL Modelle in [74] separat hinsichtlich der zeit-
lichen Genauigkeit von Kommunikation und Berechnung und unterscheiden
diesbezgl. zwischen fünf verschiedenen Modellierungsstilen. Donlin differen-
ziert in [100] explizit zwischen RTL Modellen und zyklenakkuraten Modellen.
Nach seiner Klassifikation sind zyklenakkurate Modelle Teil des TL.

2.3.3. Sprachen zur Modellierung heterogener eingebetteter
Systeme

Um das Verhalten von heterogenen Systemen eindeutig spezifizieren und ve-
rifizieren zu können, bedarf es einer Möglichkeit, Kompositionen und Interak-

42

2.3. Sprachen für den Systementwurf

Software
development

Software
performance

Architectural
analysis

Hardware
verification

Non-blocking
interface

PhasesGeneric
payload

SocketsQuantumDMIBlocking
interface

Mechanisms

Loosely-timed

Approximately-timed

TLM-2 Coding Styles Each style supports a range of abstractions

Use cases

Abbildung 2.14.: Anwendungsfälle, Coding Styles und Mechanismen von TLM
2.0 (Quelle: [27])

tionen zwischen Modellen, die auf unterschiedlichen Berechnungsmodellen ba-
sieren, möglichst exakt zu beschreiben. Lee und Vincentelli führen in diesem
Zusammenhang in [176] an, dass die Verwendung von nur einem einzigen all-
gemeingültigen Berechnungsmodell zur vollständigen Beschreibung eines Sys-
tems zur Folge hätte, dass Eigenschaften des zu entwickelnden Systems nur
noch durch umfangreiche Simulationen und nicht mehr durch formale Metho-
den überprüfbar wären. Umgekehrt argumentieren Eker et al. in [102], dass ei-
ne unorganisierte amorphe Heterogenität von Komponenten die Analyse von
Wechselwirkungen zwischen Teilsystemen außerordentlich schwierig gestalten
kann, da die Komposition heterogener Modelle u.U. in nicht vorhersehbarem
emergentem Verhalten resultiert. Ein solches Verhalten kann sich entsprechend
[102] z.B. dann einstellen, wenn eine „brute-force“ Komposition heterogener Si-
mulationsmodelle aufgrund nicht vorhersehbarer Charakteristika verschiedener
Berechnungsmodelle ungewollte Wechselwirkungen auslöst. Insbesondere eine
Co-Simulation (vgl. Abschnitt 2.2.4) ist anfällig dafür.

Aus den genannten Gründen ist die exakte Beschreibung von Beziehungen zwi-
schen heterogenen Berechnungsmodellen und die Untersuchung von Eigenschaf-
ten unterschiedlich heterogener Berechnungsmodelle und deren Interaktionen
ein aktuelles Forschungsthema. Aus unterschiedlichen Projekten sind in diesem
Zusammenhang bereits eine ganze Reihe sog. formaler Frameworks hervorge-
gangen. Diese basieren meist auf einem

43

2. Grundlagen

1. mathematischen Formalismus, der sich zur Beschreibung, formalen Verifi-
kation, Synthese (von Teilen) und Simulation eines Modells eignet, das auf
Basis heterogener Berechnungsmodelle spezifiziert wurde. Der mathema-
tische Formalismus definiert typischerweise ein einheitliches Metamodell
für verschiedene Berechnungsmodelle.

2. heterogenen Werkzeug zur Modellierung und Simulation (M&S), das zur ex-
perimentellen simulationsbasierten Analyse eines Modells dient. Die dem
Werkzeug zugrundeliegende Sprache basiert auf dem mathematischen For-
malismus.

Im Unterschied zu SLDL Ansätzen wie z.B. SystemC/TLM, existiert in diesen
Frameworks eine eindeutige Definition für verschiedene Berechnungmodelle so-
wie deren Interaktionen. Beispiele formaler Frameworks sind Ptolemy II [102,
255, 175] und dessen Vorgänger Ptolemy [70], Metro II [95, 94] und dessen Vor-
gänger Metropolis [45, 175] sowie ForSyDe [226]. Beispiele für heterogene Erwei-
terungen von SystemC sind HetSC [136] oder die Arbeit von Patel und Shukla in
[212]. Aufgrund der Relevanz in Kapitel 5, werden im Folgenden die wichtigsten
Grundlagen von Ptolemy II erläutert.

2.3.4. Ptolemy II

Ptolemy II (PtII) [102] ist ein Werkzeug zur Modellierung und Simulation hete-
rogener Systeme in Java. Das PtII zugrundeliegende Konzept zum Management
der Heterogenität wird als hierarchische Heterogenität bezeichnet. Diese ist ein
spezieller Ansatz zum Management horizontaler Heterogenität (vgl. Abschnitt
2.2.4), bei dem heterogene Teilmodelle nur durch hierarchische Komposition mit
der Folge zusätzlicher vertikaler Heterogenität kombiniert werden können.

2.3.4.1. Syntaktische Komponenten

Die abstrakte Syntax von PtII erlaubt (ähnlich wie die SystemC Syntax) eine
Strukturierung von Modellen in hierarchisch geclusterte Graphen [185]. Die Kno-
ten eines solchen Graphen bilden sog. Actors, die über Ports, Links und Relations
miteinander verknüpft sind. Die abstrakte Syntax kann durch unterschiedliche
Formen einer konkreten Syntax repräsentiert werden. In PtII existiert eine kon-
krete visuelle Syntax (siehe Abb. 2.15) sowie ein XML Dialekt namens Modeling
Markup Language (MoML) [177].

Actors können atomare (B, D und E in Abb. 2.15) oder komposite Actors (TopLevel,
A und C) sein. Am unteren Ende der Hierarchie befinden sich ausschließlich
atomare Actors. Ein Netzwerk von (kompositen) Actors kann wiederum in einen
kompositen Actor eingebettet sein. Ein kompositer Actor erlaubt so die hierarchi-

44

2.3. Sprachen für den Systementwurf

sche Verschachtelung von beliebigen (atomaren und kompositen) Actors. Jeder
komposite Actor besitzt entweder genau ein Director Attribut oder keines. Die
Toplevelebene besitzt immer einen Director.

Abbildung 2.15.: Konkrete visuelle Syntax von Ptolemy II (Quelle: [217])

2.3.4.2. Abstrakte Semantik

PtII unterscheidet zwischen abstrakter und konkreter Semantik [217]. Die ab-
strakte Semantik spezifiziert Regeln zur Ausführung und Kommunikation zwi-
schen Actors, die allgemein gültig sind. Sie wird auch als Actor Semantics be-
zeichnet. Ein Berechnungsmodell entspricht einer konkreten Semantik. Deren
Implementierung wird auch als Domäne oder Domain bezeichnet. Die Existenz
einer abstrakten Semantik ist grundlegend für die eindeutige Beschreibung der
Interaktion zwischen heterogenen Domänen. Im Folgenden werden die grund-
legenden Aspekte der abstrakten PtII Semantik erläutert.

Zeitmodell
Das Zeitmodell von PtII wird als Superdense Time bezeichnet. Dabei wird die
Zeit, ähnlich zum Zeitmodell aus Kapitel 4.5, als ein Tupel tτ,µ = (τ, µ) reprä-
sentiert. τ ist die sog. Modeltime und µ der Microstep. Zwei Zeitstempel (τ1, µ1)
und (τ2, µ2) heißen schwach gleichzeitig, wenn τ1 = τ2 und stark gleichzeitig wenn
zusätzlich µ1 = µ2 gilt. Bzgl. der zeitlichen Dauer ist ein Microstep in PtII damit
identisch zu einem Deltacycle in SystemC (vgl. Abschnitt 2.3.2). Das Zeitmodell

45

2. Grundlagen

ist die Grundlage für den Erhalt von Determinismus, indem die Ausführungs-
reihenfolge der Actors vollständig geordnet wird.

Auf Grundlage der Superdense Time wird der Zeitverlauf innerhalb eines PtII
Modells hierarchisch gesteuert: Typischerweise wird ein Zeitfortschritt nur auf
der obersten Hierarchieebene durchgeführt. Untere Ebenen erhalten den aktuel-
len Zeitwert tτ,µ des Modells dann vom höheren Ebenen [217].

Spezi�kation von Verhalten durch Actors
Aktors sind prinzipiell ausführbare nebenläufige Komponenten. Sie kommuni-
zieren über Relationen. Interaktionen entsprechen dem Austausch sog. Tokens.
Die Art und Weise der Ausführung und Kommunikation ist durch die Domäne
in dem kompositen Actors definiert, in der der Actor instanziiert ist. Komposi-
te Actors können als undurchlässig (engl. opaque) oder als transparent definiert
werden. Im ersten Fall verhalten sie sich wie eine Blackbox, bei der die interne
Spezifikation der Struktur und des Verhaltens nach außen hin nicht sichtbar ist.
Im zweiten Fall ist die komplette interne strukturelle Spezifikation nach außen
hin sichtbar. Die konkrete Semantik entspricht der des umgebenden kompositen
Actors.

Kommunikationsmechanismen
Die Art und Weise der Kommunikation ist in der abstrakten Semantik noch nicht
festgelegt. Mit Hilfe unterschiedlicher Typen von sog. Receiver können Ports
auf einen für eine bestimmte Domäne geeigneten Kommunikationsmechanis-
mus spezialisiert werden. Dazu wird Senden eines Tokens per Aufruf von send()
auf dem Ausgangsport an die put() Methode des zugehörigen Receivers dele-
giert (siehe Abb. 2.16). Beispiele unterschiedlicher Kommunikationsmechanis-
men sind FIFOs, Mailboxen oder Queues [217].

Abbildung 2.16.: Kommunikation in Ptolemy II (Quelle: [217])

46

2.3. Sprachen für den Systementwurf

Ausführungsmechanismus
Der Ausführungsmechanismus einer Domäne wird innerhalb eines kompositen
Actors durch einen Director festgelegt. Das abstrakte Ausführungsschema aller
Directors von PtII ist in Abb. 2.17 anhand eines Beispiels dargestellt. Die Aus-
führung lässt sich, ähnlich wie die Ausführung eines SystemC Modells (vgl. Ab-
schnitt 2.3.2.2), in verschiedene Ausführungsphasen einteilen, die Initialization
Phase, die Execution Phase und die Wrapup Phase. Diese Phasen lassen sich wieder-
um in Teilphasen untergliedern, für die jeder Actor und Director entsprechende
Callback-Methoden (Action Methods) besitzt.42

Ptolem
y II

A
ctor Package

D
ire

ct
or

op
aq

ue
C

om
po

si
te

Ac
to

r
D

ire
ct

or
to

p
le

ve
l

C
om

po
si

te
Ac

to
r

M
an

ag
er

Execution Sequence: Manager.run()

initialize
top level

process
mutations

initialization

check
types

prefire
top level ready?

no

fire
top levelyes postfire

top level
done?

no

yes

execution

prefire
director

fire
director

postfire
director

request
transfer
inputs

prefire
director

fire
director

request
transfer
outputs

transfer
inputs

postfire
actor... done?

no

prefire prefire
actor

fire
actor

postfire
actor... done?

no

prefire prefire
actor

fire
actor postfire

postfire
director

postfire

initialize
actors

initialize
director

initialize
director

initialize
actors

wrapup
actors

wrapup
director

wrapup
director

wrapup
actors

select an
actor

transfer
outputs

wrapup

no more actors

not ready

wrapup
top level

FIGURE 2.14. Example execution sequence implemented by run() method of the Director class.

Abbildung 2.17.: Ausführung eines PtII Modells (Quelle: [217])

Die Initialization Phase besteht aus preinitialize() und initialize(). Deren Aufgabe
ist die Initialisierung von Modellparametern und Zuständen. In der Execution
Phase wird das Modell durch wiederholte Iteration über die Aktionen prefire(),
fire() und postfire() ausgeführt. In prefire() werden mögliche Vorbedingungen für
den Aufruf von fire() getestet. Das eigentliche Verhalten eines Actors (lesen von
Tokens, Berechnung, Schreiben von Tokens) ist in fire() implementiert. In postfi-
re() wird der lokale Zustand des Actors aktualisiert. Die Tatsache, dass der Zu-
stand eines Actors erst in postfire() aktualisiert wird, ist grundlegend für die Exis-
tenz sog. domänenpolymorpher Actors (vgl. [217]). Die Ausführung der Wrapup

47

2. Grundlagen

Phase erfolgt durch Aufruf der wrapup() Aktion. Sie signalisiert das Ende der
Ausführung eines Actors oder Directors.

2.3.4.3. Konkrete Semantik

Spezialisierte Domänen können grundsätzlich auf Basis bereits existierender we-
niger spezieller Domänen entwickelt werden. Ein Ansatz dazu ist es, durch ob-
jektorientierte Ableitung von den relevanten Klassen (insbesondere von einer
geeigneten Director Klasse) eine neue Variante zu implementieren. Durch den
Mechanismus der Ableitung wird sichergestellt, dass die Eigenschaften der ur-
sprünglichen Domäne sowie deren Kompatibilität zur anderen Domänen erhal-
ten bleibt. Wegen ihrer besonderen Relevanz in Kapitel 5 werden im Folgenden
einige wichtige Besonderheiten der DE Domäne von PtII kurz erläutert.

2.3.4.4. Spezi�ka der DE Domäne

Das DE Berechnungsmodell von PtII ist, wie das SystemC Berechnungsmodell,
eine Variante des Basisalgorithmus aus Abschnitt 2.2.3.3). Details zur Implemen-
tierung sind in [67] zu finden. In der DE Domäne kommunizieren Actors über
Events. Ein Event ist eine Kombination aus einem Token und einem Tag. Das To-
ken speichert Daten und der Tag speichert einen Zeitstempel entsprechend dem
Zeitmodell aus Abschnitt 2.3.4.2.

Der DE Director verwaltet eine globale Eventqueue. Das Auftreten eines Ereig-
nisses ist äquivalent zum Empfang eines Tokens über einen mit dem DE Receiver
spezialisierten Port (vgl. Abschnitt 2.2.3.3). Daneben gibt es sog. Pure Events. Mit
deren Hilfe kann ein Actor zu einem späteren Zeitpunkt erneut gefeuert werden,
ohne dass dies mit dem Empfang eines Tokens verbunden ist.

In einer SystemC RTL Simulation genügt ein Zweiertupel bestehend aus Simula-
tionszeit und Deltacycle, um deterministische Simulationsergebnisse zu erzielen.
Der Grund ist das Evaluate/Update Paradigma: Dieses sorgt dafür, dass alle in
einem Deltacycle n generierten Wertänderungen eines Signals grundsätzlich erst
im Deltacycle n + 1 (gleichzeitig) sichtbar werden.

Würde man in PtII DE ausschließlich Actors mit einer minimalen Verzögerung
von einem Microstep verwenden, so genügte ebenfalls die Berücksichtigung von
Model Time und Microstep bei der Sortierung von Ereignissen. In einem PtII
Modell existieren jedoch meist auch Actors, die weder eine Verzögerung bzgl.
τ noch eine Verzögerung bzgl. µ erzeugen. Dadurch kann es passieren, dass
das Simulationsergebnis bei Existenz mehrerer Ereignisse mit gleichem τ und
gleichem µ von der Reihenfolge abhängt, in der Actors gefeuert werden. Um
dennoch deterministische Simulationsergebnisse garantieren zu können, wird in

48

2.4. Prozessorarchitekturen und Parallelität

der DE Domäne zusätzlich der Level von Actors berücksichtigt, wodurch eine
vollständige Ordnung mit einer eindeutigen Ausführungsreihenfolge von Ac-
tors entsteht. Das DE Berechnungsmodell erweitert dazu das Superdense Time
Zeitmodell zu einem Dreiertupel (τ, µ, λ). Dabei spezifiziert λ den Level.

Der Level von Actors wird statisch durch eine topologische Sortierung der Ac-
tors bestimmt, die Teil des Actor-Graphen GA(A, R) im betrachteten DE Modell
sind. Eine Sortierung ist nur dann möglich, wenn die Topologie einen gerichte-
ten azyklischen Graphen (engl. Directed Acyclic Graph (DAG)) aufspannt [67, 152].
Existiert der DAG eines DE Modells, dann ist der Level eines Actors durch des-
sen Position innerhalb des DAG definiert. Dabei hat ein sog. Upstream Actor (ein
Actor, der sich näher an der Wurzel des DAG befindet) einen kleineren Level
als ein Downstream Actor. Ein DAG existiert nicht, wenn innerhalb der Topolo-
gie verzögerungsfreie Zyklen zwischen Actors existieren. Ein solches Modell ist
in PtII grundsätzlich nicht ausführbar. PtII verweigert in diesem Fall die Aus-
führung. Die Ausführbarkeit kann hergestellt werden, indem verzögerungsfreie
Zyklen mit Verzögerungsgliedern von mindestens einem Microstep in verzöge-
rungsbehaftete Zyklen umgewandelt werden.

2.4. Prozessorarchitekturen und Parallelität

2.4.1. Taxonomie für Prozessorarchitekturen

Eine der ersten Klassifikationen für Prozessorarchitekturen stammt aus dem Jahr
1966 von Michael J. Flynn [109]. Flynn klassifiziert Computersysteme entspre-
chend der Matrix aus Abb. 2.18. Die Klassifikation leitet sich von der Anzahl der
innerhalb einer Architektur vorhandenen parallelen Kontroll- und Datenflüsse
ab. Im Falle mehrerer paralleler Kontroll- und/oder Datenflüsse existieren ent-
sprechend mehrere parallele Recheneinheiten zu deren Verarbeitung.

• Single Instruction Single Data (SISD): Das SISD Paradigma ist die Grund-
lage traditioneller Prozessorarchitekturen, die entweder entsprechend ei-
ner Von-Neumann oder Harvard-Architektur aufgebaut sind. Es wird we-
der Parallelität im Datenstrom noch im Befehlsstrom genutzt. Es existiert
nur ein einziger Datenstrom als Eingang in eine zentrale Recheneinheit.
Während eines Taktzyklus wird von der zentralen Recheneinheit nur ein
einziger Befehl ausgeführt.

• Single Instruction Multiple Data (SIMD): Alle Recheneinheiten führen
in jedem Takt den gleichen Befehl aus. Dabei kann jede Recheneinheit auf
unterschiedlichen Daten arbeiten. Die Synchronität der Befehlsausführung

49

2. Grundlagen

SISD

Single
Instruction

Multiple
Instruction

Single
Data

Multiple
Data SIMD

MISD

MIMD

Abbildung 2.18.: Klassifikation von Computerarchitekturen nach Flynn

ist die Basis für Determinismus. Aktuelle Grafikprozessoren arbeiten nach
diesem Prinzip.

• Multiple Instruction Single Data (MISD): Jede Recheneinheit führt an-
dere Befehle auf einem für alle Recheneinheiten gleichen Datenstrom aus.
Bisher existieren wenige Beispiele für Architekturen, die diesem Typ zuge-
ordnet werden können.

• Multiple Instruction Multiple Data (MIMD): Jede Recheneinheit führt ei-
nen eigenen Befehlsstrom aus und arbeitet zugleich auf einem separaten
Datenstrom. Abhängig von der Art der Implementierung arbeiten MIMD
Architekturen synchron oder asynchron. Wenn keine entsprechenden Vor-
kehrungen im Sinne der Synchronisation und Koordination paralleler Re-
cheneinheiten getroffen werden, ist eine korrekte Funktion nicht garantiert.
MIMD Architekturen sind die am weitesten verbreiteten parallelen Archi-
tekturen.

2.4.2. Klassi�kation von Parallelität

Mit den genannten Klassen von Prozessorarchitekturen können verschiedene
Arten von Parallelität innerhalb einer Applikation mehr oder weniger effizient
ausgenutzt werden. Hennessy und Patterson unterscheiden in [133] zwei grund-
legende Klassen von Parallelität innerhalb von Applikationen, Data-Level Paral-
lelism (DLP) und Task-Level Parallelism (TLP).

DLP entsteht durch voneinander unabhängige Datenelemente, die aufgrund ih-
rer Unabhängigkeit zur gleichen Zeit verarbeitet werden können. Im Gegensatz
dazu spricht man von TLP im Kontext von Funktionen, die aufgrund ihrer funk-
tionalen Unabhängigkeit weitgehend parallel ausgeführt werden können. DLP
und TLP lassen sich in einem bestimmten betrachteten Kontext weiter verfei-

50

2.4. Prozessorarchitekturen und Parallelität

nern. Hennessy und Patterson nennen orthogonal zur Klassifikation von Flynn
mehrere mehr hardwarespezifische Typen von Parallelität, die sich von DLP und
TLP ableiten. Zu den hier relevanten gehören:

• Instruction Level Parallelism (ILP): Diese Art der Parallelität nutzt DLP
zur Extraktion von feinkörniger Parallelität innerhalb eines Befehlsstroms.
Entsprechende Techniken hierzu finden sich in Mikroarchitekturen von
Prozessoren wieder. Beispiele sind Pipelining, spekulative Befehlsausfüh-
rung oder Hardwareseitiges Multithreading (HMT) bzw. Hyper-Threading [101].

• Thread-Level Parallelism (THLP): THLP nutzt die in einer Applikation
vorhandene DLP oder TLP zur parallelen Ausführung der Applikation
verteilt auf mehrere grobkörnige Funktionen, die Thread oder Prozess ge-
nannt werden.

Die in dieser Arbeit für die Simulation eingesetzten Zielplattformen lassen sich
als MIMD Architekturen klassifizieren und implementieren Techniken zur Nut-
zung von ILP und THLP. Der Fokus der entwickelten Softwaretechniken liegt
hingegen ausschließlich auf der Verbesserung des THLP.

2.4.2.1. Parallelität auf Threadebene

Ein Thread oder Prozess ist ein separater Befehlsstrom, der auf einem oder meh-
reren Datenströmen arbeitet. Die Ausnutzung von Parallelität auf Threadebene
setzt voraus, dass eine Applikation in mehrere Threads zerlegbar ist. Je nach Ap-
plikation können diese dann mehr oder weniger unabhängig voneinander ab-
gearbeitet werden. Der Grad der Unabhängigkeit steht in direkter Relation zur
vorhandenen Parallelität. Durch spezielle Synchronisationsmechanismen muss
die parallele Ausführung gezielt limitiert werden, um Datenabhängigkeiten kor-
rekt aufzulösen und funktionale Korrektheit herzustellen.

Techniken zur Ausnutzung von Parallelität auf Threadebene basieren typischer-
weise auf MIMD Architekturen, da diese eine Infrastruktur für mehrere paral-
lele Befehls- und Datenströme bereitstellen. Betrachtet man die Implementie-
rung von MIMD Architekturen etwas genauer, so werden im Allgemeinen meh-
rere Recheneinheiten und Speichermodule über ein Verbindungsnetzwerk mit-
einander gekoppelt. MIMD Architekturen können in die Klasse der Distributed-
Memory (DM) Architekturen sowie der Shared Memory (SHM) Architekturen un-
terteilt werden [247, 103] (siehe Abb. 2.19). Erstere werden auch als Multiprozes-
soren oder Multicore Prozessoren, letztere als Multicomputer oder Distributed
Memory Multiprozessoren bezeichnet [247, 139, 211].

51

2. Grundlagen

SHM
(Multiprocessor)

MIMD Architecture

DM
(Multicomputer)

NUMAUMACOMA MPP

CC-NUMA NCC-NUMACC-UMA NCC-UMA

COW NOW

Abbildung 2.19.: Verfeinerte Klassifikation von MIMD Architekturen (nach
[247])

2.4.2.2. Distributed-Memory MIMD Architekturen

In einem DM System ist jede Recheneinheit mit einem lokal zugreifbaren Spei-
cher ausgestattet. Kommunikation zwischen Recheneinheiten wird über den Aus-
tausch von Nachrichten realisiert. Das Verbindungsnetzwerk zum Austausch
der Nachrichten kann auf unterschiedlichste Weise realisiert sein, beispielsweise
als als Computernetzwerk, das geografisch verteilte Rechner miteinander ver-
bindet. In die Klasse der DM Architekturen gehören u.a. sog. Massively Paral-
lel Processors (MPP), Clusters of Workstations (COW) und Networks of Workstations
(NOW).

Zum Nachrichtenaustausch muss dem Programmierer eine spezielle API zur
Verfügung gestellt werden. Eine der bekanntesten APIs ist der Message Passing
Interface (MPI) Standard [110]. Kommunikation und Synchronisation erfolgt über
definierte Methodenaufrufe. Mit deren Hilfe können unterschiedliche sog. Kom-
munikationsmuster wie One-Sided Communication, Two-Sided Communication oder
Collective Communication zwischen parallelen Prozessen realisiert werden. Kom-
munikationsmuster sind durch Syntax und Semantik des Datenaustauschs zwi-
schen einzelnen oder einer Gruppe von beteiligten MPI Prozessen definiert1.

1Aus dem Blickwinkel der Beschreibung aus Abschnitt 2.2.3 definiert der MPI Standard damit ein
(sehr allgemeines) Berechnungsmodell zur verteilten Ausführung.

52

2.4. Prozessorarchitekturen und Parallelität

2.4.2.3. Shared-Memory MIMD Architekturen

In einer SHM Architektur kommunizieren mehrere Recheneinheiten über einen
globalen Speicherbereich und einen gemeinsamen logischen Adressraum. Dieser
ist allen Recheneinheiten über normale Speicheradressierung zugänglich. Der
globale Speicher kann aus mehreren Speicherelementen bestehen, die mit den
Recheneinheiten über ein mehr oder weniger komplexes Netzwerk verbunden
sind. Im einfachsten Fall ist das Verbindungsnetzwerk ein Bus. Komplexere Ver-
bindungsnetzwerke bestehen aus mehreren hierarchisch organisierten Bussen,
einer Crossbar oder einem Network-on-Chip (NoC) [50].

Jede Recheneinheit hat typischerweise die gleichen Zugriffsrechte auf den glo-
balen Speicher. Bei zugleich identischen Zugriffszeiten spricht man auch von ei-
nem Unified Memory Access (UMA) System. Im Gegensatz dazu spricht man von
einem Non-Unified Memory Access (NUMA) System, wenn sich die Zugriffszei-
ten von verschiedenen Recheneinheiten auf den Speicher unterscheiden. NUMA
Architekturen werden auch als Distributed Shared Memory (DSM) Architekturen
bezeichnet [208]. Tatsächlich sind sie eine Hybridlösung, die DM Prinzipien mit
SHM Prinzipien verbindet. Abhängig davon, ob ein sog. Cachekohärenzproto-
koll in Hardware implementiert ist oder nicht, können UMA und NUMA Pro-
zessoren in weitere Unterkategorien eingeteilt werden[139]:

• Cache-Coherent / Non-Cache-Coherent UMA (CC/NCC-UMA)

• Cache-Coherent / Non-Cache-Coherent NUMA (CC/NCC-NUMA)

Cachekohärenz bedeutet, dass Prozessoren eine gemeinsame Sicht auf bestimm-
te Stellen im Speicher haben müssen. Sie wird durch das Cachekohärenzproto-
koll (z.B. MESI [133]) sichergestellt. Ist kein Cachekohärenzprotokoll implemen-
tiert, muss die Kohärenz softwareseitig sichergestellt werden. Eine Cache Only
Memory Access (COMA) Architektur ist ein Sonderfall einer CC-NUMA Archi-
tektur, bei dem jeglicher Shared Memory im System ein Cache ist.

Architekturtechniken zur Synchronisation
Die korrekte Funktion einer parallelen Applikationen basiert meist auf der Exis-
tenz einer partiellen Ordnung von Interaktionen bzw. Speicherzugriffen von par-
allelen Threads [236]. Eine solche partielle Ordnung kann durch eine gezielte
Synchronisation zwischen Threads und sog. wechselseitigen Ausschluss [37] von
Zugriffen auf ein und dieselbe Speicherstelle hergestellt werden. Im Bereich der
Multiprozessoren existieren unterschiedliche Basislösungen in Form spezieller
sog. Read Modify Write (RMW) Instruktionen, die als Ausgangspunkt für kom-
plexere Synchronisationsmethoden genutzt werden können. RMW Instruktio-
nen sind eine Klasse von atomaren Befehlen, die es ermöglichen, gleichzeitig

53

2. Grundlagen

von einer Speicheradresse zu lesen und auf sie zu schreiben. Beispiele für RMW
Instruktionen sind:

• Test-and-Set (TNS): Eine TNS Instruktion erlaubt das Schreiben eines Wer-
tes auf eine Speicheradresse bei gleichzeitigem Lesen des alten Wertes. Eine
mögliche Anwendung ist die Bereitstellung einer Critical Section.

• Compare-and-Set (CAS): Eine CAS Instruktion vergleicht den Inhalt einer
Speicheradresse mit einem gegebenen Wert. Wenn beide übereinstimmen,
dann wird der gegebene Wert an die Speicheradresse geschrieben. Anhand
eines boolschen Rückgabewertes erkennt ein Prozess, ob das Schreiben er-
folgreich war.

2.4.3. Single-chip Cloud Computer

Der Single-chip Cloud Computer [46] ist ein von Intel Labs entwickelter experi-
menteller Prozessor, der als Forschungsplattform im Kontext der Programmie-
rung von paralleler Software für zukünftige Manycore Architekturen dient. Als
Manycore werden Prozessoren bezeichnet, die viel mehr Kerne besitzen, als dies
in traditionellen Architekturen üblich ist.

Abbildung 2.20.: Wafer des SCC (Quelle: www.intel.com)

Die Architektur des SCC kann als NCC-NUMA klassifiziert werden. Ein im Ver-
gleich zu herkömmlichen cachekohärenten SHM Architekturen neuartiges Fea-
ture ist die Unterstützung von schneller On-Chip Kommunikation, basierend auf
nicht cachekohärentem SHM. Es wurde bewusst auf eine Hardwareimplemen-
tierung eines Cachekohärenzprotokolls zu Gunsten einer in Software verwalte-
ten Cachekohärenz verzichtet.

54

2.4. Prozessorarchitekturen und Parallelität

Abb. 2.21 gibt einen Überblick über die Gesamtarchitektur des SCC anhand eines
Blockdiagramms. Er besteht aus 24 Tiles. Diese sind über ein zweidimensionales
6x4 Mesh NoC mit 256 GB/s Bisektionsbandbreite. Jedes Tile besteht wiederum
aus zwei P54C PentiumTM Kernen, 16 kB L1 Cache jeweils für Daten und Befehle
pro Kern, einen für Daten und Befehle gemeinsamen 256 kB großen L2 Cache pro
Kern eine Mesh Interface Unit (MIU), zwei TNS Register und einen 16 kB SRAM
basierten sog. Message Passing Buffer (MPB). Die MIU verbindet jedes Tile mit
einem Router, der einen XY-Routingalgorithmus implementiert [225]. Der Rou-
ter wiederum integriert das Tile in das NoC. Der SCC ist ausgestattet mit vier
integrierten DDR3 Memorycontrollern (IMCs), über die bis zu 64 GB Hauptspei-
cher adressiert werden kann. Zusätzlich existiert ein 8 Byte breites bidirektiona-
les Highspeed I/O Interface, das für die Off-Chip-Kommunikation genutzt wird
[92].

Die Kerne des SCC lassen sich entweder mit jeweils sparatem Linux Operating
System (OS) (einem modifizierten 2.6.16 Linuxkernel) oder im sog. „BareMetalC“
Modus (ohne OS) betreiben [198]. In dieser Arbeit wurden die Kerne des SCC
grundsätzlich mit OS betrieben.

MC

MC

MC

MC
Bus to PCI

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

TileR

Tile

To
Router

Copyright ©Intel Corporation

MIU
Message Passing

Buffer
16 KB

IA-32
16 KB L1 ICache
16 KB L1 DCache

IA-32
16 KB L1 ICache
16 KB L1 DCache

256 KB
unified L2

Cache

256 KB
unified L2

Cache

Abbildung 2.21.: SCC Architektur Blockdiagramm

2.4.3.1. Flexible Speicherarchitektur

Der SCC besteht aus mehreren unterschiedlichen Speicherbereichen. Sie wird
durch den externen DDR Speicher, sowie den durch die MPB bereitgestellten
On-Chip Speicher aufgespannt. Dabei können sowohl der DDR3 als auch der
MPB Speicherbereich als Private Memory oder als Shared Memory deklariert
werden. Durch Nutzung von Lookuptables (LUTs) kann der komplette Speicher-
bereich flexibel auf unterschiedliche Adressräume abgebildet werden. Zugriffe
auf externen DDR3 oder MPB Speicher erfolgen immer über die MIU[198].

55

2. Grundlagen

2.4.3.2. Prozessorkerne

Die P54C Kerne des SCC sind eine erweiterte Version von 32 bit Pentium Kernen
der zweiten Generation [235]. Sie unterstützen keine Out-of-Order Ausführung
von Befehlen. Die ursprünglichen 8 kB L1 Daten- und Befehlscaches wurden
durch 16 kB 4-Wege satzassoziative Caches mit Write-Through und Write-Back
Unterstützung ausgetauscht. Wie jede x86 Architektur basiert das Speicherma-
nagement auch bei den SCC Kernen auf einem Pagetable Ansatz. Physikalische
Speicheradressen eines Kerns werden mit Hilfe der Pagetable in systemweite
Adressen übersetzt. Dies geschieht mit einer Granularität einer Page von 4 kB.

Für jede Page kann anhand spezieller Konfigurationsbits separat festgelegt wer-
den, ob der Speicherzugriff mit oder ohne Cacheunterstützung erfolgen soll [198].
Die Wahl hängt davon ab, ob ein Speicherbereich ausschließlich als Private Me-
mory oder gemeinsam mit anderen Kernen als Shared Memory verwendet wer-
den soll. Falls nur Private Memory verwendet wird, so kann die vollständige L1
und L2 Cacheunterstützung aktiviert werden. Daten werden mit einer Granula-
rität von 32 bit zwischen Caches und Speicher bewegt. Eine Kohärenzsicherung
ist nicht notwendig. Falls Shared Memory verwendet wird, so muss die Kohä-
renz zwischen dem Speicher und den Caches der Kerne softwareseitig sicherge-
stellt werden. Dazu existieren folgende Alternativen:

1. Cached Mode (CM): Vollständige Aktivierung der L1 und L2 Cacheun-
terstützung. Sowohl L1 als auch L2 Cache werden zum Lesen und/oder
Schreiben von Daten verwendet. Die einzige Möglichkeit, um Konsistenz
herzustellen ist die Ausführung teurer L2 Cache Flushes.

2. Uncached Mode (UCM): Vollständige Deaktivierung der L1 und L2 Ca-
cheunterstützung: Weder L1 noch L2 Cache werden zum Lesen und/oder
Schreiben von Daten verwendet. Speicherzugriffe werden direkt auf die
Zielsystemadresse gemappt. In diesem Modus ist ein Speicherzugriff mit
einer Granularität von 1, 2, 4 oder 8 Byte möglich.

3. Gemischter Modus: Verwendung von L1 und L2 Cacheunterstützung für
Private Memory Zugriffe und den sog. Message Passing Memory Type (MPMT)
in Verbindung mit unterschiedlichen Konfigurationen des L1 Cache für
Shared Memory Zugriffe: Daten, die in der Pagetable als MPMT markiert
sind, werden bei einem Schreibzugriff zunächst in einem sog. Write-Combine
Buffer (WCB) zwischengepuffert und erst an die Zieladresse geschrieben,
wenn der WCB eine volle Cacheline (32 Byte) enthält. Der L2 Cache wird
bei MPMT Zugriffen grundsätzlich umgangen. Die Benutzung von L2 Ca-
che in Verbindung mit der in Software verwalteten Cachekohärenz ist nicht
möglich. Zur Nutzung des MPMT existieren folgende Varianten:

• MPMT + L1CM: MPMT mit L1 Cacheunterstützung. Um dies zu er-
möglichen, wurde der Befehlssatz des Pentium um einen neuen Be-

56

2.4. Prozessorarchitekturen und Parallelität

fehl namens CL1INVMB erweitert. In Verbindung mit dem MPMT ist
dieser Befehl die Grundlage für die in Software verwaltete Cacheko-
härenz, für den Fall, dass Teile des MPB oder externen Speichers als
SHM genutzt werden. Wenn der CL1INVMB Befehl ausgeführt wird,
werden alle als MPMT markierten L1 Cachezeilen innerhalb eines Tak-
tes invalidiert (ungültig gemacht). Darauffolgende Lese- oder Schreib-
zugriffe auf MPMT Zeilen resultieren in einem garantierten Cache
Miss. Bei einem Lesezugriff wird die jeweilige Zeile direkt aus dem
SHM geholt. Bei einem Schreibzugriff werden Daten zunächst im WCB
zwischengespeichert, bis eine Cachezeile voll ist und dann erst in den
Shared Memory geschrieben.

• MPMT + L1UCM: MPMT ohne L1 Cacheunterstützung. In diesem
Fall durchlaufen Uncached Schreibzugriffe zusätzlich den WCB. Die-
se können so beschleunigt werden, da sie im Gegensatz zu Lesezu-
griffen nicht mit einer Granularität von 1, 2, 4 oder 8 Byte erfolgen
müssen, sondern mit bis zu 32 Byte Breite erfolgen können.

Anhand der flexiblen Speicherarchitektur können unterschiedliche Programmier-
modelle experimentell untersucht werden. Die von Intel zur Verfügung gestell-
te Rapidly Communicating Cores Environment (RCCE) Softwarebibliothek [198, 15]
implementiert bereits grundlegende Mechanismen zur Umsetzung von verteil-
ten Anwendungen auf Basis von Shared Memory oder Message Passing. Ak-
tuell nutzt RCCE den nicht cachekohärenten MPB für ein synchrones On-Chip
Message Passing, kann aber auch als Ausgangspunkt für die Entwicklung neuer
Protokolle verwendet werden. Alternative Lösungen zum synchronen Message
Passing Protokoll von RCCE sind z.B. in [144] oder in Anhang A zu finden.

2.4.4. Performanzanalyse

Zur Bewertung und zum Vergleich paralleler Algorithmen existieren verschie-
dene Leistungsmaße und Metriken. Der Nutzen einzelner Leistungsmaße ist ab-
hängig vom betrachteten Anwendungsfall und dem Ziel der Leistungsbewer-
tung. Im Rahmen dieser Arbeit ist das Primärziel der Parallelverarbeitung, ei-
ne Steigerung der Performanz im Sinne einer höheren Ausführungsgeschwin-
digkeit bzw. einer geringeren Simulationslaufzeit im Vergleich zur sequentiellen
Ausführung zu erreichen. Ein weiteres damit eng verknüpftes Ziel ist die Errei-
chung einer guten Skalierbarkeit auf einer bestimmten Zielplattform.

Im Allgemeinen gehören Laufzeit und Skalierbarkeit zu den wichtigsten Krite-
rien bei der Bewertung von parallelen Algorithmen und Systemen [111]. Die im
Folgenden beschriebenen Leistungsmetriken zielen daher auf eine Bewertung

57

2. Grundlagen

der Leistungsfähigkeit im Hinblick auf Laufzeit und Skalierbarkeit. Die Beschrei-
bungen basieren auf [111][49][133].

2.4.4.1. Sequentielle Laufzeit

Im Kontext von Prozessoren und Mikroarchitekturen wird die Laufzeit oft in Ab-
hängigkeit der notwendigen Taktzyklen für die Abarbeitung eines Algorithmus
oder Programms definiert [133], d.h.

Ts = CC× tcycle. (2.3)

Dabei ist Ts die Laufzeit, CC die Anzahl notwendiger Taktzyklen (engl. Cycle
Count) zur Abarbeitung eines Programms und tcycle die Taktzykluszeit. Ein alter-
nativer Ansatz ist es, für die Bestimmung der Laufzeit das Zeitintervall, vom Be-
ginn der Berechnung bis zu deren Beendigung zu messen. Diese Methode wurde
in dieser Arbeit angewendet.

2.4.4.2. Parallele Laufzeit

Die Definition der Laufzeit über Gleichung 2.3 eignet sich für eine Performanz-
analyse von einkernigen Prozessoren. Im parallelen Fall gibt es allerdings viele
weitere zu berücksichtigende Parameter. Die Laufzeit eines parallelen Programms
Tp auf einer bestimmten Zielplattform ist u.a. eine Funktion der Problemgröße
N, der Anzahl der Prozessoren P und der Anzahl an Tasks U [111]:

Tp = f (N, P, U, ...) (2.4)

Ein möglicher Ansatz zur näherungsweisen Bestimmung von Tp ist es, die Lauf-
zeit als das Zeitintervall, vom Beginn der Berechnung eines parallelen Programms
bis zu deren Beendigung zu definieren. Der Beginn der Berechnung ist dabei spe-
zifiziert als der Zeitpunkt, an dem der erste Prozessor mit der Abarbeitung star-
tet. Das Ende der Berechnung ist der Zeitpunkt, an dem der letzte Prozessor mit
der Abarbeitung endet [111]. Diese Vorgehensweise wurde auch in dieser Arbeit
zur Bestimmung von Tp verwendet.

58

2.4. Prozessorarchitekturen und Parallelität

2.4.4.3. Beschleunigung

Die Beschleunigung (engl. Speedup) bezeichnet den Faktor, um den die Laufzeit
bei paralleler Ausführung gegenüber der sequentiellen Ausführung reduziert
wird. Sie ist der Quotient der sequentiellen und parallelen Laufzeiten für ein
gegebenes Problem [111, 49]:

Sp =
Ts

Tp
(2.5)

Dabei ist Ts die Laufzeit der sequentiellen Implementierung auf einem einzigen
Prozessor und Tp die Laufzeit der parallelen Implementierung auf P Prozesso-
ren. Wenn Sp = P, dann spricht man von einer linearen Beschleunigung. Wenn
Sp > P, so spricht man von einer superlinearen Beschleunigung. Letztere kommt
in der Realität äußerst selten vor. In den meisten Fällen ist die Beschleunigung
durch die Anzahl P der Prozessoren nach oben beschränkt, d.h. Sp ≤ P.

Ein Grund für eine superlineare Beschleunigung können Cacheeffekte sein: Durch
einen größeren Parallelisierungsgrad ist im Gesamtsystem mehr Cache verfüg-
bar. Dadurch können mehr Daten im Cache anstelle des langsameren Hauptspei-
chers vorgehalten werden. Als Folge wird die parallele Laufzeit im Vergleich zur
sequentiellen Laufzeit noch einmal zusätzlich reduziert.

2.4.4.4. Kosten, Overhead und E�zienz

Mit den Kosten eines parallelen Programms wird die von den Prozessoren bei der
Problemlösung durchgeführte Arbeit gemessen [49]. Die Kosten können geschrie-
ben werden als

Cp = Tp × P (2.6)

Dabei gilt ein paralleles Programm als kostenoptimal [49], wenn die einzelnen
Prozesse der parallelen Implementierung insgesamt die gleiche Anzahl an Ope-
rationen ausführen wie die sequentielle Implementierung, d.h. wenn

Cp = Ts. (2.7)

59

2. Grundlagen

Der Overhead entspricht der Differenz zwischen den Kosten des parallelen und
denen des sequentiellen Programms:

Hp = Cp − Ts = P× Tp − Ts (2.8)

Im kostenoptimalen Fall gilt Hp = 0. Die Effizienz ist ein Maß für die zusätzlich,
durch die Parallelisierung erzeugte Last einzelner Prozessoren. Sie gibt die Verar-
beitungsgeschwindigkeit im Vergleich zu einer sequentiellen Implementierung
bezogen auf einen einzelnen Prozessor an. Sie sagt aus, wie nah ein bestimmter
paralleler Algorithmus an das Optimum (maximal möglicher Speedup) heran-
kommt. Die Effizienz kann aus der Beschleunigung durch Normierung auf die
Anzahl P der Prozessoren wie folgt berechnet werden:

Ep =
Sp

P
=

Ts

P× Tp
=

Ts

Cp
(2.9)

Es können folgende drei Fälle unterschieden werden [49, 35]:

• Ep < 1: Die Parallelisierung ist suboptimal bzgl. ihrer Kosten. Dies ist in
der Praxis der Normallfall. Es liegt eine Beschleunigung unterhalb einer
linearen Beschleunigung vor.

• Ep > 1: Die Parallelisierung ist kostenoptimal. Es liegt eine lineare Beschleu-
nigung im Vergleich zur sequentiellen Implementierung vor.

• Ep > 1: Die Parallelisierung ist besser als kostenoptimal. Es liegt eine superli-
neare Beschleunigung vor.

2.4.4.5. Amdahlsches Gesetz

Das sog. Amdahlsche Gesetz geht zurück auf eine Veröffentlichung von Gene M.
Amdahl aus dem Jahre 1967 [36]. Es erfasst die oft gültige Tatsache, dass Al-
gorithmen aus einem parallelisierbaren und einem nicht zu vernachlässigenden
rein sequentiellen Anteil bestehen. Der sequentielle Anteil ist nach Amdahl für
die Limitierung der Beschleunigung durch parallele Ausführung verantwortlich.
Über den sequentiellen Anteil kann eine theoretische Obergrenze der erzielbaren
Beschleunigung für einen bestimmten parallelen Algorithmus geschätzt werden.
Das Gesetz kann geschrieben werden als:

60

2.4. Prozessorarchitekturen und Parallelität

Sp =
Ts

Tp
=

Ts

Ts × (fs + (1− fs
P))

=
1

fs +
fp
P

. (2.10)

Dabei gilt:

• Sp ist die Beschleunigung,

• fs ist der sequentielle Anteil des Algorithmus,

• fp ist der parallelisierbare Anteil des Algorithmus,

• P ist die Anzahl der Prozessoren,

• fs + fp = 1 mit 0 ≤ fs/p ≤ 1.

Im Idealfall ist Sp = P (mit fs = 0 und fp = 1). In der Realität ist 1 ≤ Sp ≤
P. Sp ist dabei durch den sequentiellen Anteil fs beschränkt, da dieser durch
Parallelisierung nicht verringert werden kann (für den Grenzfall von P → ∞ ist
Sp = 1

fs
).

Als Beispiel ist in Abb. 2.22 der Speedup in Abhängigkeit der Anzahl vorhan-
dener Prozessorkerne aufgetragen. Wenn der sequentielle Anteil in einem Pro-
gramm groß ist, dann tritt eine Sättigung des erreichbaren Speedups schon bei
einer kleinen Anzahl von Kernen ein. Im Beispiel ist zu sehen, dass bei Ausfüh-
rung einer Applikation auf 16 Kernen schon ein sequentieller Anteil von ledig-
lich 6.7% in einem maximalen theoretischen Speedup von nur acht resultiert.

0

2

4

6

8

10

0 10 20 30

Number of Cores

Sp
ee

du
p

Serial% = 6.7%
N = 16, N1/2 = 8

16 Cores, Perf = 8

Serial% = 20%
N = 6, N1/2 = 3

6 Cores, Perf = 3
0

2

4

6

8

10

0 10 20 30

Number of Cores

Sp
ee

du
p

Serial% = 6.7%
N = 16, N1/2 = 8

16 Cores, Perf = 8

Serial% = 20%
N = 6, N1/2 = 3

6 Cores, Perf = 3

Abbildung 2.22.: Limitierung der Beschleunigung nach Amdahl (Quelle: [63])

61

3. Stand von Forschung und

Technik

3.1. Parallele Simulation von Multiprozessoren

Da eingebettete Systeme immer öfter als MPSoC realisiert werden, nimmt die
Größe und Komplexität entsprechender Simulationsmodelle immer weiter zu.
Dies verursacht einen stetigen Anstieg der Simulationslaufzeiten. Durch Ab-
straktion können Simulationen zwar beschleunigt werden, die Abstraktion geht
aber auf Kosten der Genauigkeit. Die parallele Simulation ist daher eine Mög-
lichkeit, um die stetig steigende Diskrepanz zwischen Performanz und verfüg-
barer/notwendiger Genauigkeit zu verringern [180].

Im Folgenden wird zunächst ein allgemeiner Überblick über existierende Ansät-
ze zur parallelen MPSoC Simulation gegeben und diese entsprechend ihrem An-
wendungsbereich eingeordnet. Anschließend werden SystemC spezifische For-
schungsansätze im Detail klassifiziert.

3.1.1. Anwendungsbereiche

In Abb. 2.14 aus Abschnitt 2.3.2.3 werden unterschiedliche Anwendungsfälle
für die Simulation mit SystemC/TLM genannt: Softwareentwicklung, Perfor-
manzanalyse von Software, Architekturanalyse und Verifikation von Hardware.
Die notwendige zeitliche Genauigkeit eines Simulators wird durch den Anwen-
dungsfall bestimmt. Das Schema eignet sich daher gut, um einen Überblick über
existierende (auch SystemC unabhängige) Werkzeuge zur parallelen MPSoC Si-
mulation zu geben und diese initial zu klassifizieren.

Für die Softwareentwicklung steht weniger die zeitliche Genauigkeit als viel-
mehr die Möglichkeit im Vordergrund, die funktionale Korrektheit von Soft-
ware zu verifizieren. Erste Performanzabschätzungen sollten dennoch möglich
sein. Zu den bereits existierenden parallelen Simulatoren, die hierfür geeignet
sind, gehören z.B. Parallel SimOS [169] oder Graphite [201]. Ein kommerzielles
Beispiel ist Simics [104]. Neben abstrakter Modellierung von Hardwarekompo-

63

3. Stand von Forschung und Technik

nenten und speziellen Techniken wie Dynamic Binary Translation [10] wird die
Simulation typischerweise durch starke temporäre Entkopplung von parallelen
Threads um mehrere hundert bis tausend Taktzyklen, zusätzlich beschleunigt.
Dies hat eine enorme Reduktion des Synchronisationsaufwands gegenüber zy-
klengenauer Simulation zur Folge und macht es möglich, sogar komplette Be-
triebssysteme in akzeptabler Zeit auf einem MPSoC Modell zu booten.

Slacksim [81], Darsim/Hornet [183][182], gem5/GEMS [194, 54]1 oder SystemC
spezifische Ansätze wie Transaction Level Modeling with Distributed Time (TLM-
DT) [199] und die Arbeit von Yi et al. [268] sind Beispiele, welche besser für eine
detailliertere Performanzanalyse geeignet sind. Hardwarekomponenten werden
akkurater modelliert als in den zuvor genannten Beispielen, so dass bestimmte
architekturspezifische Effekte wie z.B. Zugriffszeiten auf den Speicher genau-
er wiedergegeben werden können. Dies führt dazu, dass diese Simulatoren um
mehrere Größenordnungen langsamer sind. Temporäre Entkopplung ist mög-
lich, wird aber für eine detaillierte Performanzanalyse typischerweise auf weni-
ge zehn oder hundert Taktzyklen beschränkt. Ein quantitative Analyse für den
gem5 Simulator [54] ist in [73] zu finden.

Für den Anwendungsfall der Hardwareverifikation muss eine zyklenakkura-
te Simulation möglich sein, z.B. um Timingfehler und Hardwarebugs erkennen
zu können. Arbeiten, welche dies explizit als Fokus haben, sind beispielsweise
[215, 260, 105, 232, 206, 188, 181]. [215] basiert auf einem proprietären Simula-
tor namens LSE. Die Arbeiten in [206, 188, 181] basieren auf VHDL bzw. Verilog
und sind damit auf zyklenakkurate oder subzyklenakkurate Simulation (auf der
Ebene von Gates) beschränkt. Die Ansätze in [215, 260, 105, 232] basieren auf
SystemC.

Der Fokus der vorliegenden Arbeit ist die zyklenakkurate und -approximative
parallele Simulation von MPSoC Modellen, die sich für Performanzanalysen und
Hardwareverifikation eignet. Dazu wurde SystemC als Grundlage gewählt. Im
Folgenden werden existierende Forschungsansätze zur Parallelisierung von Sys-
temC weiter vertieft betrachtet.

3.1.2. Forschungsansätze basierend auf SystemC

Die aktuelle SystemC Referenzimplementierung der Accelera Systems Initiative
[1] arbeitet rein sequentiell und implementiert ausschließlich ein kooperatives
Mulitasking zur Simulation von paralleler Hardware- oder Software (vgl. Ab-
schnitt 2.3.2.2). Daher ist die Untersuchung von Möglichkeiten zur Parallelisie-
rung des SystemC Schedulers schon seit einiger Zeit in den Fokus der Forschung
geraten. Existierende Ansätze lassen sich neben dem Modellierungsstil orthogo-

1Laut [118] existiert eine initiale parallele Implementierung von gem5.

64

3.1. Parallele Simulation von Multiprozessoren

nal hinsichtlich Zielplattformen, Synchronisationsverfahren und Kernelpartitio-
nierung klassifizieren.

3.1.2.1. Modellierungsstile und Zielapplikationen

Die Unterstützung unterschiedlicher Modellierungsstile ist die Voraussetzung
zur Modellbildung auf verschiedenen Abstraktionsebenen. Die Arbeiten in [93],
[86], [90], [205] und [260] unterstützen nur Kommunikation basierend auf dem
Evaluate/Update Paradigma. Damit ist die Anwendbarkeit auf RTL und ähnli-
che Modellierungstile beschränkt. Umgekehrt unterstützen die Arbeiten in [214]
und [199] nur transaktionsbasierte Kommunikation und sind daher nur für die
Simulation auf Transaktionsebene, nicht aber auf Registertransferebene geeig-
net. [105], [232] und [237] sind die einzigen unter den genannten Arbeiten, die
sowohl die sowohl RTL Modelle, als auch TL Modelle unterstützen. Außer [205]
und [237] fokussieren alle genannten Beispiele explizit auch auf die Simulation
vollständiger SoCs. In [232] und [199] liegt der Schwerpunkt explizit auf der Si-
mulation von MPSoCs.

3.1.2.2. Zielplattformen

Als Zielplattformen zur parallelen SystemC Simulation kommen in der Litera-
tur insbesondere COWs, cachekohärente SHM Multiprozessoren oder Grafik-
prozessoren (engl. Graphics Processing Units (GPUs)) zum Einsatz (vgl. Abschnitt
2.4). [93], [86], [90] oder [214] sind Beispiele für Arbeiten, die auf die parallele
Ausführung von SystemC Modellen auf einem Workstation Cluster abzielen. Sie
sind grundsätzlich geeignet für Architekturen, die nur über einen verteilten und
keinen gemeinsam nutzbaren Speicher verfügen. Dies impliziert typischerweise
eine statische Modellpartitionierung, eine verteilte Ausführung innerhalb meh-
rerer Betriebssystemprozesse, sowie eine nachrichtenbasierte Kommunikation.

Die in [105], [199] und [232] beschriebenen Ansätze sind spezialisiert für die
Ausführung auf cachekohärenten SHM Multiprozessoren. Dabei wird die Si-
mulation nicht auf Betriebssystemprozesse, sondern auf Threads aufgeteilt, die
einen gemeinsamen virtuellen Adressraum besitzen. Dies hat auf cachekohären-
ten SHM Maschinen den Vorteil eines sehr geringen Kommunikationsoverheads.
Wegen der Abhängigkeit von einem gemeinsamen virtuellen Adressraum sind
diese Verfahren normalerweise nicht auf Architekturen mit ausschließlich ver-
teiltem Speicher anwendbar.

[205], [260]) oder [237] beschreiben sog. General Purpose Computation on Graphics
Processing Unit (GPGPU) Ansätze zur Nutzung von GPUs für die SystemC Be-
schleunigung. Während die ersten beiden Arbeiten nur eine homogene GPU

65

3. Stand von Forschung und Technik

Plattform betrachten, steht bei [237] eine heterogene Plattform bestehend aus ca-
chekohärentem SHM Multiprozessor und GPU im Fokus. Einen aktuellen Über-
blick über verschiedene GPU Ansätze gibt [53].

3.1.2.3. Synchronisationsverfahren

Eine allgemeine Klassifikation von Synchronisationsalgorithmen zur PDES in
konservativ/optimistisch, synchron/asynchron, oder zentral/dezentral wurde
bereits in Abschnitt 2.2.3.4 gegeben. Existierende Ansätze zur SystemC Paralleli-
sierung lassen darin wie folgt einordnen:

• Konservativ versus optimistisch: Alle bekannten Ansätze können in die
Klasse der konservativen Strategien eingeordnet werden, da sie versuchen,
kausale Abhängigkeiten zwischen Ereignissen, soweit sie durch die Mo-
dellspezifikation definiert sind, soweit wie möglich nicht zu verletzen.

• Synchron versus asynchron: [105],[232] und [237] sind Beispiele für voll-
ständig synchrone Verfahren: Die Simulation startet und stoppt phasen-
weise an globalen Barrieren. In allen drei Fällen erfolgt die Synchronisation
bis zu einer Granularität von Deltazyklen, was einen hohen Overhead zur
Folge hat.

[93, 86, 90, 199] können als asynchrone Verfahren klassifiziert werden. [93],
[86] und [90] nutzen globale Synchronisation zur Auflösung von Dead-
locks. In [199] wird auf globale Synchronisation auf Kosten einer Limitie-
rung der verwendbaren Modellierungsstile verzichtet.

[214] kann als eine Mischung aus einem synchronen und einem asynchro-
nen Ansatz betrachtet werden: Logische Prozesse synchronisieren nur lo-
kal mit ihren jeweiligen Nachbarn. In dieser Hinsicht ist das Verfahren
asynchron. Diese Synchronisation efolgt allerdings durch explizite Hands-
hakes in global definierten, regelmäßigen Abständen und abwechselnd mit
den Ausführungsphasen, was typisch für synchrone Verfahren ist.

• Zentral versus dezentral: [105], [232], [205], [86], [260] und [237] basieren
auf einem zentralisierten Synchronisationsverfahren. In allen Fällen exis-
tiert ein Master, der die Synchronisation zentral steuert. Auch die GPU ba-
sierten Ansätze in [205], [260]) und [237] basieren auf einem zentralisierten
Verfahren. Diese ergibt sich zwangsläufig daraus, dass eine GPU innerhalb
eines PCs eine I/O Ressource ist, die phasenweise vom Host mit neuen Da-
ten (zu evaluierenden SystemC Prozessen) versorgt werden muss, um die-
se in SIMD Manier (vgl. Abschnitt 2.4.2) zu verarbeiten. In [237] wird ein
zentralisiertes Synchronisationsverfahren auf einem Multiprozessor mit ei-
nem zentralisierten Verfahren für eine GPU kombiniert. Die Synchronisati-

66

3.1. Parallele Simulation von Multiprozessoren

on zwischen beiden erfolgt mit einer Granularität von bis zu einem Delta-
zyklus.

Die Ansätze in [93], [86], [90], [214] und [199] können als dezentral klas-
sifiziert werden. In [214] und [199] synchronisieren logische Prozesse aus-
schließlich mit benachbarten Prozessen. In [90] wird ein zentralisiertes Ver-
fahren durch globale Synchronisation vermieden.

3.1.2.4. Kernelpartitionierung

Unter dem Begriff der Kernelpartitionierung ist zu verstehen, in welcher Art
und Weise die Phasen des sequentiellen SystemC Schedulings (vgl. Abschnitt
2.3.2.2) auf parallele Prozesse verteilt werden. Dabei kann man zwischen einer
asymmetrischen und einer symmetrischen Partitionierung unterscheiden: In einem
asymmetrischen Kernel implementieren parallele Prozesse jeweils unterschied-
liche Phasen des sequentiellen Schedulings. U.U. werden nicht alle Phasen repli-
ziert. In einem symmetrischen Kernel implementieren alle Prozesse alle Phasen.
Dabei werden alle Kernelphasen repliziert (siehe auch Abschnitt 4.2.4).

[105, 232, 205, 260, 237] sind allesamt Beispiele für asymmetrische Kernelpar-
titionierung. Der zugrundeliegende Mechanismus wird auch als Master/Worker
Schema bezeichnet (vgl. [49]). Der Master führt alle Phasen des SystemC Schedu-
lings aus, die Worker nur die Evaluation Phase. Dabei werden zu evaluierende
SystemC Prozessen vom Master auf die Worker verteilt. Der Vorteil des Verfah-
rens ist die globale Sicht des Masters auf die Simulation und die Möglichkeit zu
einfachen Umsetzung einer zentral gesteuerten dynamischen Lastverteilung.

Das Master/Worker Schema eignet sich besonders zur Nutzung auf cacheköhä-
renten SHM Multiprozessoren, da hier eine dynamische Lastverteilung ohne die
Notwendigkeit einer aufwändigen Umverteilung von Daten erfolgen kann. In
allen Fällen ist entweder ein Thread oder Prozess auf einem Multiprozessor der
Master. In [105] und [232] sind Worker durch andere Threads gegeben. In [205]
und [260] können alle Threads auf der GPU als Worker betrachtet werden. In
[237] existieren sowohl Workerthreads auf dem Multiprozessor als auch auf der
GPU.

In [93], [86], [90] und [214] wird eine symmetrische Kernelpartitionierung ver-
wendet. D.h. alle vorhandenen parallelen Prozesse führen jeweils alle Kernel-
phasen aus. Ein ganz anderer Ansatz wird in [199] verfolgt: Hier wird zugunsten
der Performanz auf die Implementierung des Evaluate/Update Paradigmas und
damit auf die Implementierung der Update Phase vollständig verzichtet.

67

3. Stand von Forschung und Technik

3.1.3. SystemC Front-Ends

Die bisher im Kontext der parallelen SystemC Simulation genannten Arbeiten
bieten eine unterschiedlich umfangreiche Werkzeugunterstützung, um Simula-
tionsmodelle und -kernel für eine parallele Simulation zu präparieren. In [93],
[86], [90], [214] oder [199] existiert keinerlei Werkzeugunterstützung zur auto-
matisierten Präparation von Modell und Kernel. Die Partitionierung muss ma-
nuell erfolgen. Außer in [199] ist sie beschränkt auf grobgranulare Module der
obersten Hierarchieebene eines Modells. [105] und [232] sind aufgrund des Mas-
ter/Worker Schemas und der Beschränkung auf cachekohärente SHM Multipro-
zessoren prinzipiell nicht auf eine statische Modellpartitionierung angewiesen.
Im Kontext von SystemC existieren damit aktuell nur in Verbindung mit GPUs
Arbeiten, bei denen verschiedene automatisierte Optimierungsschritte vor der
eigentlichen Simulationslaufzeit vorgenommen werden (z.B. [205] und [260]).
Dies kann Schritte wie eine automatisierte Modellpartitionierung und -transfor-
mation oder Kernelkonfiguration beinhalten.

Entsprechende Werkzeugketten basieren auf einer automatischen Extraktion ei-
ner formalen abstrakten Repräsentation (AR) oder vollständigen Zwischenre-
präsentation (engl. Intermediate Representation (IR)) anhand eines sog. SystemC
Front-Ends [192]. Eine solche Modellrepräsentation enthält alle für eine Präpara-
tion notwendigen struktur- und verhaltensorientierten Informationen. Das Front-
End bietet Funktionen, die das Parsen und das Generieren einer IR unterstüt-
zen. Zu den bekanntesten freien SystemC Front-Ends gehören Pinapa [204], Pi-
naVM [193], Scoot [57], SystemCXML [52] oder KaSCPar [7]. HIFSuite [59] ist
ein Beispiel für ein kommerzielles Softwarepaket. Mögliche allgemeine Anwen-
dungsfälle für SystemC Front-Ends sind formale Verifikation, Synthese, opti-
mierte Kompilierung und Simulation, Debugging oder Visualisierung [193].

SystemC Front-Ends können in rein statische und hybride Ansätze klassifiziert
werden. Während erstere die IR ausschließlich durch statische Codeanalyse ex-
trahieren, nutzen letztere auch die Möglichkeit, SystemC Code mit dem Kernel
auszuführen und auf diese Art zusätzliche Informationen zu gewinnen. Bei-
spielsweise ist es schwer bis gar nicht möglich, dynamisch instanziierte Archi-
tekturen vollständig statisch zu erkennen, da entsprechende Informationen nur
zur Laufzeit zur Verfügung stehen [192]. Zu den rein statischen Front-Ends ge-
hören Scoot [57], SystemCXML [52] und KaSCPar [7], zu den Front-Ends, die
zusätzlich dynamische Ausführung nutzen, gehören Pinapa [204] und PinaVM
[193].

Die Methoden zum Parsen von SystemC Code unterscheiden sich stark. Die
Spannweite reicht vom Parsen mit Hilfe von Doxygen [52][2] bis hin zur Nut-
zung von C/C++ Compiler-Suites wie GCC [57, 204, 5] oder Low Level Virtual Ma-
chine (LLVM) [186, 193]. PinaVM [193] basiert z.B. auf LLVM und nutzt die LLVM

68

3.2. Interdisziplinäre Co-Simulation

IR sowohl zur statischen Extraktion von Verhaltensbeschreibungen, als auch zur
dynamischen Extraktion der Modellstruktur anhand von Just-in-Time Compila-
tion (JITC). Ein erst kürzlich veröffentlichtes rein statisches SystemC Front-End
ist SystemC-clang [158], welches als Plug-in für das LLVM Front-End clang [88]
implementiert ist. Keines der genannten SystemC Front-Ends nutzt die Analyse
zur Extraktion von Informationen zur Performanzabschätzung.

3.1.4. Forschungsansätze basierend auf SpecC

Auch im Bereich von SpecC existieren einige Forschungsansatze zur parallelen
Simulation, aufgrund der geringen Verbreitung von SpecC allerdings nicht im
gleichen Umfang wie im Fall von SystemC. Zu erwähnen wären hier die Arbei-
ten von Chen et al. in [84, 85] sowie Chen und Dömer in [82] und [83]. Der Ansatz
in [84] kann als weitgehend äquivalent zu dem SystemC-basierten voll synchro-
nen Master/Worker Ansatz aus [232] eingeordnet werden, welcher speziell für
cachekohärente SHM Architekturen entwickelt wurde. In beiden Fällen werden
TLM und RTL Modelle unterstützt

Die Methode in [82] dient zur parallelen Simulation von TL Modellen und kann
ähnlich wie der SystemC/TLM Simulator in [214] klassifiziert werden. Im Un-
terschied zu [214] ist der Synchronisationsmechanismus in [84] vollständig asyn-
chron.

Die Ansätze in [85] und [83] sind als Erweiterungen des zentralisierten Ansatzes
aus [84] zu verstehen. Auf Basis einer statischen compilerbasierten Modellanaly-
se wird der parallele SpecC Kernel so konfiguriert, dass Prozesse ohne Kausali-
tätsverletzungen vom Master bis zu einem gewissen Grad außerhalb der durch
die Zeitstempel definierten Reihenfolge auf die Worker verteilt werden können.
Das synchrone Verfahren aus [84] wird damit zu einem asynchronen Verfahren
erweitert.

3.2. Interdisziplinäre Co-Simulation

In verschiedenen Anwendungsdisziplinen wie Informatik, Elektrotechnik oder
Mechatronik haben sich unterschiedliche Modellierungsformalismen etabliert,
die sich durch unterschiedliche Berechnungsmodelle charakterisieren lassen. Um
Wechselwirkungen zwischen Anwendungsdisziplinen zu untersuchen, wird ty-
pischerweise Co-Simulation eingesetzt. Die Heterogenität der Berechnungsmo-
delle resultiert in Heterogenität in der Co-Simulation (vgl. Abschnitt 2.2.4). Das
Management dieser Heterogenität ist eine Herausforderung, die aktuell von vie-
len Entwurfsmethodiken und Sprachen noch nicht hinreichend unterstützt wird

69

3. Stand von Forschung und Technik

[176]. Nachfolgend wird zunächst ein allgemeiner Überblick über existierende
Forschungsarbeiten zur heterogenen Co-Simulation gegeben. Anschließend wer-
den einschlägige Interoperabilitätsstandards genauer betrachtet.

3.2.1. Allgemeiner Überblick

Existierende Ansätze zur heterogenen Simulation können allgemein in forma-
le und kopplungsbasierte Ansätze eingeteilt werden. Formale heterogene Frame-
works aus dem Bereich der eingebetteten Systeme wurden bereits in Abschnitt
2.3.3 erwähnt. Zu diesen gehören z.B. Ptolemy II [102], Metro II [95] oder ForSy-
De [226]. Diese Werkzeuge basieren auf einer Sprache, welche es erlaubt, Wech-
selwirkungen zwischen beliebigen heterogenen Berechnungsmodellen mathe-
matisch eindeutig zu beschreiben.

Neben diesen vollständig heterogenen Frameworks existieren verschiedene An-
sätze, welche auf einer festen Kombination einiger weniger Berechnungsmodel-
le basieren. Dazu gehören Formalismen wie Hybrid Automata [134] oder Giotto
[135]. Beispiele aus dem Bereich der Simulationswerkzeuge sind VHDL-AMS
[18] und SystemC-AMS [1] oder Simulink/Stateflow [8]. Alle drei kombinieren
diskrete mit kontinuierlichen Berechungsmodellen. Eine solche Simulation wird
auch als hybrid bezeichnet [179].

Alternativ existieren in der Literatur Arbeiten, welche Simulatorkopplungen zur
Untersuchung von Wechselwirkungen zwischen Anwendungsdisziplinen nut-
zen (z.B. [64, 242, 131, 200]). Dabei werden disziplinspezifische Simulatoren oder
Modelle über eine zusätzliche Schnittstelle zur Co-Simulation miteinander ge-
koppelt. Im Unterschied zu den formalen Methoden ermöglicht dies die einfache
Wiederverwendung bereits existierender disziplinspezifischer Modelle.

Technische Lösungen zur Kopplung sind vielfältig und reichen von Ansätzen
auf Basis von TCP/IP [265] bis hin zur Integration per Shared Memory [164].
Unabhängig von der technischen Umsetzung sind bei kopplungsbasierten An-
sätzen zwei Architekturtrends zu beobachten: Im ersten Fall dienen formale Fra-
meworks wie Ptolemy II [102] oder ForSyDe [226] als zentraler Koordinator für
eine Co-Simulation. Zu diesen Arbeiten gehören [184], [39] oder [40]. Simulato-
ren kommunizieren über das formale Framework, welches heterogene Simulato-
ren miteinander kombiniert und die kooperative Ausführung steuert. In zweiten
Fall bildet eine Middleware die Grundlage (z.B. [65, 242, 170]). Simulatoren müs-
sen dann eine Schnittstelle implementieren und dafür sorgen, dass das Berech-
nungsmodell der Simulationswerkzeugs in das Berechnungsmodell der Middle-
ware übersetzt wird und umgekehrt. Für diesen Fall existieren bereits Standards
wie die High Level Architecture (HLA) [22] oder das Functional Mock-up Inter-
face (FMI) [29].

70

3.2. Interdisziplinäre Co-Simulation

Alle genannten technischen und architekturspezifischen Lösungen sind Ansätze
zur Herstellung besserer Interoperabilität. Im Folgenden wird der Begriff der
Interoperabilität daher genauer erläutert.

3.2.2. Interoperabilität

Tolk und Muguira definieren in [251] und [250] den Begriff der Interoperabilität
anhand des sog. Levels of Conceptual Interoperability Model (LCIM). Das LCIM wird
stetig weiterentwickelt und setzt sich aktuell aus sechs Ebenen zusammen [262]
(siehe Abb. 3.1). Die Ebenen des LCIM entsprechen unterschiedlichen Abstrakti-
onsschichten, welche es ermöglichen, den Begriff der Interoperabilität differen-
zierter zu beschreiben und das Problem der Herstellung von Interoperabilität in
mehrere Teilprobleme zu zerlegen. Auf den untersten beiden Ebenen liegt der
Fokus auf der technischen Infrastruktur zum Datenaustausch, auf den Ebenen
2 bis 4 auf der Implementierung des Simulationssystems und auf den Ebenen 5
und 6 auf der Modellierung.

Entsprechend Abb. 3.1 lässt sich Interoperabilität aus Sicht der Implementie-
rung in syntaktische Interoperabilität (es gibt ein gemeinsames Verständnis über
die Struktur von Daten), semantische Interoperabilität (es gibt ein gemeinsames
Verständnis über die Bedeutung von Daten) und pragmatische Interoperabilität (es
gibt ein gemeinsames Verständnis über den Kontext, in dem Daten verwendet
werden) aufteilen. Aufgrund ihrer Relevanz in dieser Arbeit, wird im Folgenden
näher auf die syntaktische und die semantische Interoperabilität eingegangen,
wobei insbesondere zwischen statischer und dynamischer Semantik unterschie-
den wird (vgl. Abschnitt 2.2.2).

Abbildung 3.1.: Levels of Conceptual Interoperability Model (Quelle: [262])

Während für die Herstellung syntaktischer sowie statischer semantischer Inter-
operabiliät in der Literatur bereits diverse Lösungsansätze existieren (z.B. [154,

71

3. Stand von Forschung und Technik

131, 242]), wird die dynamische semantische Interoperabilität zwischen Berech-
nungsmodellen oft nicht im notwendigen Maße berücksichtigt [176, 252]. Die-
se Tatsache ist verantwortlich für eines der Kernprobleme kopplungsbasierter
Simulationsansätze: Nicht dokumentierte oder unklare Semantik, insbesondere
die dynamische Semantik von gekoppelten Simulationswerkzeugen, hat amor-
phe Heterogenität zur Folge (vgl. Abschnitt 2.2.4), was die Kopplung enorm er-
schweren kann.

Vergleicht man standardisierte Middlewarelösungen wie die High Level Architec-
ture (HLA) [22] oder das Functional Mock-up Interface (FMI) [29] mit einem for-
malen Framework wie PtII [102], so bieten beide eine ausgereifte statische se-
mantische Interoperabilität. Eine Middleware bietet typischerweise die Möglich-
keit zur verteilten Ausführung. Ist sie standardisiert, so bietet dies zudem den
Vorteil einer größeren Verbreitung sowie u.U. bereits vordefinierte Dienste, die
nicht von Grund auf neu implementiert werden müssen. Die Kopplung über ein
formales Framework hingegen bietet im Allgemeinen den Vorteil einer besse-
ren dynamischen semantischen Interoperabilität, da die Heterogenität durch das
formale Framework koordiniert wird. Im Folgenden sollen die zwei aktuell am
weitesten Verbreiteten Standards zur Herstellung von Interoperabilität zwischen
Simulationswerkzeugen näher betrachtet werden.

3.2.3. Standardisierung

3.2.3.1. Functional Mock-up Interface

Das Functional Mock-up Interface ist ein werkzeugunabhängiger Standard [29],
welcher Schnittstellen zum Austausch und zur Co-Simulation von dynamischen
Modellen definiert. Das FMI ist dabei auf Modelle spezialisiert, die durch kon-
tinuierliche und diskrete Differentialgleichungen beschrieben werden können.
Abb. 3.2 skizziert das dem FMI zugrundeliegende Konzept anhand eines Bei-
spiels aus der Automobilindustrie.

Die Entwicklung von FMI wurde von der Daimler AG mit dem Ziel initiiert, den
Austausch von Simulationsmodellen zwischen Zulieferern und Erstausrüstern
(Original Equipment Manufacturers (OEMs)) zu verbessern. Das FMI wird stetig
weiterentwickelt. Die aktuelle Version ist FMI 2.0 vom Juli 2014 [29]. Das FMI
Konsortium besteht aktuell aus 16 Partnern aus Industrie und Forschung. Der
FMI Standard ist in drei Teile untergliedert:

1. Gemeinsame Konzepte: Hier werden allgemeingültige Prinzipien des FMI
spezifiziert. Das grundlegende Konzept ist die sog. Functional Mock-up Unit
(FMU). Eine FMU ist äquivalent zu einem austauschbaren Modell oder ei-
nem Wrapper für einen sog. Slave zur Co-Simulation. Sie besteht aus einem

72

3.2. Interdisziplinäre Co-Simulation

dynamischen Modell in Form von C Code und einer XML Datei, die Me-
tainformation der FMU wie Definitionen von Variablen, Eingängen, Aus-
gängen oder Zuständen beinhaltet.

2. FMI für den Modellaustausch: In diesem Teil des Standards werden die
notwendigen Prinzipien zum Austausch von FMUs zwischen Simulations-
werkzeugen definiert. Dies beinhaltet die Definition von Methoden in Form
von C Code sowie die Definition gültiger Interaktionen mit der FMU in
Form einer Zustandsmaschine. Dabei wird vorausgesetzt, dass Werkzeuge
C Code einer dynamischen Modellbeschreibung generieren können. Die
FMU kann dann von anderen Werkzeugen integriert werden. Je nach Grö-
ße können Modelle entweder in einem Simulator oder auf einer eingebet-
teten Plattform (z.B. Microcontroller) ausgeführt werden.

3. FMI für die Co-Simulation: In diesem Teil werden die Schnittstellen einer
FMU spezifiziert, die für eine Kopplung verschiedener Simulationswerk-
zeuge notwendig sind. Die FMU dient als Wrapper für einen Slave und
verbindet diesen mit einem Master. Die Spezifikation beinhaltet die Defini-
tion von Methoden in Form von C Code sowie die Definition gültiger Inter-
aktionen mit der FMU in Form einer Zustandsmaschine. Datenaustausch
und Synchronisation zwischen Slaves werden durch den Master gesteu-
ert. Der Datenaustausch erfolgt an diskreten Punkten. Dazwischen werden
gekoppelte Simulatoren unabhängig voneinander ausgeführt. Der exakte
Algorithmus des Masters ist nicht Teil der FMI Spezifikation.

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling

Abbildung 3.2.: Konzept des Functional Mock-up Interface (FMI) (Quelle: [29])

Insgesamt spezifiziert der FMI Standard damit eine für einen Modellaustausch
oder eine Co-Simulation von zeitkontinuierlichen oder zeitdiskreten Systemen
geeignete Semantik der Schnittstelle einer FMU. Dadurch, dass der Master nicht
spezifiziert ist, existieren viele Freiheitsgrade für die Umsetzung verschiedener
Algorithmen zur Co-Simulation. Da der Standard noch sehr jung ist und sich ak-
tuell noch in der Entwicklung befindet, werden diskrete ereignisbasierte Modelle
laut [42] nur beschränkt unterstützt. Bis auf eine Absichtserklärung schließt der
Standard bisher keine Lösungsansätze für eine verteilte Ausführung mit ein.

73

3. Stand von Forschung und Technik

3.2.3.2. High Level Architecture

Die HLA ist eine generische Softwarearchitektur für verteilte Simulation. Sie
wurde zunächst durch das Defense Modeling and Simulation Office (DMSO) für das
U.S. Department of Defense (DoD) spezifiziert [257] und ist seit dem Jahr 2000 ein
IEEE Standard [22]. Die HLA ist keine Implementierung einer solchen Architek-
tur. Das Anwendungsfeld ist ursprünglich der Bereich militärischer Trainingssi-
mulationen. In HLA Terminologie entspricht eine verteilte Simulation einer Fe-
deration [23]. Eine Federation ist ein Zusammenschluss von Federates. Prinzipiell
entspricht ein Federate einem Simulator. Federates sind über eine sog. Runti-
me Infrastructure (RTI) miteinander gekoppelt. Die Schnittstellen zur RTI werden
durch sog. Ambassador bereitgestellt (vgl. Abb. 3.3). Der HLA Standard besteht
aus vier Dokumenten. Diese definieren

• Regeln, welche die Verantwortlichkeiten von HLA Federates und Federati-
ons zur Sicherstellung einer konsistenten Implementierung definieren [22].

• Dienste und Schnittstellen zur RTI. Diese Dienste werden von interagie-
renden Simulationen genutzt, um einen koordinierten Austausch von In-
formationen in einer verteilten Federation zu ermöglichen [23].

• ein Object Model Template (OMT). Dies beinhaltet Format und Syntax (aber
nicht Inhalt, d.h. statische Semantik) eines HLA Object Models (OM) [24].
Das OM spezifiziert die Eigenschaften der Daten, die in einer Federation
ausgetauscht werden können.

• Empfohlene Prozesse und Vorgehensweisen, die von Anwendern der HLA
beim Entwurf und der Ausführung von Federations befolgt werden sollten
[26].

Runtime Infrastructure (RTI)

RTI Ambassador Federate Ambassador

Federate 1

RTI Ambassador Federate Ambassador

Federate 2

RTI Ambassador Federate Ambassador

Federate 3

Abbildung 3.3.: High Level Architecture (HLA)

Die durch die Ambassador zu implementierenden HLA Schnittstellen sind in
[23] in sieben Kategorien unterteilt: Federation Management (FM), Declaration Ma-
nagement (DM), Object Management (OM), Ownership Management (OWM), Time

74

3.2. Interdisziplinäre Co-Simulation

Management (TM), Data Distribution Management (DDM) und Support Services.
Ein detaillierteter Überblick ist in Anhand B zu finden.

Ein konkretes Object Model, welches auf dem OMT basiert, definiert die in einer
Federation existierenden Typen in Form von sog. Objektklassen (Object Classes)
und Interaktionsklassen (Interaction Classes) sowie deren Attributen (Attributes),
Parametern (Parameters) und Datentypen (Datatypes). Zu Beginn oder während
einer Simulation werden dann Instanzen von Object Classes (Object Instances)
und Interaction Classes (Interaction Instances) erzeugt. Im Allgemeinen wird zwi-
schen einem Federation Object Model (FOM) und einem Simulation Object Model
(SOM) unterschieden. Während das FOM alle Eigenschaften einer gesamten Fe-
deration beschreibt, beinhaltet das SOM nur die Beschreibung von Eigenschaften
eines einzelnen Federates.

Ein Teil der Informationen, die das FOM einer Federation beinhaltet, muss mit
der sog. Federation Object Model Document Data (FDD) Datei (im ursprünglichen
DoD Standard [257] heißt diese Datei Federation Execution Data (FED)) für eine
Ausführung explizit spezifiziert werden. Dies beinhaltet u.a. Namen und Struk-
tur von Object Classes, Interaction Classes, Attributes und Parameters sowie Pu-
blish und Subscribe Beziehungen auf den Klassen und deren Attributen/Para-
metern. Die FDD Datei beinhaltet bestenfalls das komplette FOM, aber nicht not-
wendigerweise.

Durch die Möglichkeit das FOM einer Federation anhand des OMT vollständig
zu spezifizieren [24], wird die Spezifikation der Art und Weise der Repräsenta-
tion von Daten (statische Semantik) explizit zur Aufgabe des Erstellers der Fe-
deration. Die Spezifikation der dynamischen Semantik der Kommunikation ist
hingegen nicht Teil des FOM und damit nicht explizit Aufgabe des Erstellers.
Aufgrund der umfangreichen Schnittstellendefinition der HLA existiert daher
im Allgemeinen eine Menge an Freiheitsgraden für die Implementierung der dy-
namischen Semantik des Datenaustauschs.

Eine Hilfestellung für die Entwicklung von HLA Federations bietet der Distri-
buted Simulation Engineering and Execution Process (DSEEP) [26]. Der DSEEP er-
streckt sich über sieben Schritte von der Vorgehensweise bei der Ziel- und Kon-
zeptanalyse einer Simulation bis hin zur Vorgehensweise bei der Evaluation von
Simulationsergebnissen (siehe Abb. 3.4). Der DSEEP ist in erster Linie als ein
Leitfaden zu verstehen, der auf einen speziellen Anwendungsfall angepasst wer-
den kann.

Im DSEEP [26] wird eine Spezifikation, welche die zur Laufzeit ausgetausch-
ten Daten definiert um ein bestimmtes Simulationsziel zu erreichen, als Simula-
tion Data Exchange Model (SDEM) bezeichnet. Dies beinhaltet laut [26] Klassen-
beziehungen, Datenstrukturen, Parameter und andere relevante Information. Es
ist nicht exakt spezifiziert, wie ein solches SDEM auszusehen hat. Im Zusam-
menhang mit dem SDEM werden sog. Base Object Model (BOM) Spezifikationen

75

3. Stand von Forschung und Technik

[125, 126] als mögliche Elemente eines SDEM erwähnt. Ein BOM fokussiert auf
die abstrakten konzeptorientierten Ebenen fünf und sechs des LCIM (vgl. [262])
und nicht auf die implementierungsorientierte Ebene der semantischen Inter-
operabilität, welche Fokus dieser Arbeit ist.

Corrective Actions / Iterative Development

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Simulation

Environment
Objectives

Design
Simulation

Environment

Develop
Simulation

Environment

Integrate
and Test

Simulation
Environment

Execute
Simulation

Abbildung 3.4.: Distributed Simulation Engineering and Execution Process
(Quelle: [26])

76

4. Parallele SystemC Simulation

für Multiprozessoren

Der Paradigmenwechsel von einer immer weiteren Erhöhung der Taktfrequenz
in Richtung Multiprozessoren macht eine Parallelisierung existierender Simula-
tionswerkzeuge unausweichlich, um das stetig größer werdende System Design
Gap zu verringern (vgl. Abschnitt 2.1). Bei einer parallelen Simulation ist die Be-
schleunigung zum einen durch den Grad an Parallelität limitiert, der aus dem
Simulator und dem ausgeführten Simulationsmodell extrahiert werden kann.
Zum anderen hat die Ausführungsplattform einen großen Einfluss auf den er-
zielbaren Gewinn. Eine zusätzliche Anhebung der Abstraktionsebene kann u.U.
zu einer starken Ausführungsbeschleunigung beitragen, ist aber meist mit einem
Verlust an Genauigkeit verbunden.

Innerhalb dieses Spannungsfeldes sollen im folgenden Kapitel Möglichkeiten
zur parallelen SystemC-basierten Simulation von eingebetteten MPSoCs unter-
sucht werden. Der Schwerpunkt liegt dabei auf Modellen, deren zeitliche Genau-
igkeit bis auf Zyklenebene skaliert werden kann und die für Anwendungsfälle
wie Hardwareverifikation und Debugging geeignet sind. Als Ausführungsplatt-
form dient in erster Linie der Single-chip Cloud Computer, dessen Architektur
als Blaupause für zukünftige Manycore Chips angesehen werden kann.

4.1. Allgemeine Anforderungen

Aus dem angestrebten Anwendungsfall und den beschriebenen Zielen ergeben
sich folgende allgemeine Anforderungen für den Entwurf des parallelen Simu-
lationsverfahrens:

• Geschwindigkeit und Skalierbarkeit: Die Parallelisierungsstrategie soll
die Laufzeit von MPSoC Simulationen verkürzen und damit zu höherer
Produktivität beitragen. Das Verfahren soll skalierbar sein und die Aus-
führung kleinerer und größerer MPSoC Modelle beschleunigen.

• Kompatibilität zu relevanten Modellierungsstilen: Für eine zyklengenaue
Simulation im Kontext der Hardwareverifikation muss mindestens das RTL

77

4. Parallele SystemC Simulation für Multiprozessoren

Subset von SystemC unterstützt werden. Um auch die Performanzvorteile
abstrakterer Simulationen nutzen zu können, sollte die Möglichkeit beste-
hen, zyklenapproximativ zu modellieren.

• Erweiterbarkeit: Der zu entwickelnde Simulator sollte anpassbar und er-
weiterbar an neue und zukünftige Anforderungen sein. Diese kann z.B.
neue Modellierungsstile, Synchronisationsverfahren, oder Zielplattformen
betreffen.

• Kompatibilität zum SCC und Portierbarkeit: Das Verfahren soll sich für
die Ausführung auf dem SCC eignen. Die Portierbarkeit auf Multicore und
zukünftige Manycore CPUs soll möglich sein.

• Handhabbarkeit: Die zur Parallelisierung notwendigen Schritte sollen nach
Möglichkeit vor dem Anwender verborgen bleiben und automatisiert er-
folgen.

4.2. Konzept und Methodik

4.2.1. Perspektiven und Abstraktion

In Analogie zur plattformbasierten Entwurfsmethodik auf Systemebene aus Ab-
schnitt 2.1.1 wird das zu entwickelnde parallele Simulationssystem im Folgen-
den auf der Systemebene betrachtet. Um auf dieser Ebene unterschiedliche As-
pekte des Gesamtsystems genauer beschreiben zu können, ist eine weitere Un-
terteilung in Zwischenebenen sinnvoll (vgl. [115]). Im Allgemeinen ist dann eine
Betrachtung des Simulationssystems aus einer horizontalen und einer vertikalen
Perspektive möglich. Die Betrachtung aus einer horizontalen Perspektive ent-
spricht der Betrachtung auf einer bestimmten Abstraktionsebene. Die Betrach-
tung aus einer vertikalen Perspektive entspricht der Fokussierung auf Beziehun-
gen zwischen Abstraktionsebenen.

Will man in einer Software eine Trennung von Abstraktionsebenen aus Gründen
der Erweiterbarkeit und der Komplexitätsreduktion dauerhaft beibehalten, so ist
die Verwendung einer Schichtenarchitektur eine mögliche Lösung. Dabei wird
die Software in vertikal angeordnete Schichten aufgeteilt, von denen jede eine
begrenzte Anzahl an Funktionen erfüllt. Existieren eindeutig definierte Schnitt-
stellen, so können unterschiedliche Implementierungen leicht ausgetauscht wer-
den.

Der theoretische Zusammenhang zwischen Abstraktion und Schichtenbildung
im Kontext von Kommunikationssystemen wurde von Herzberg und Broy in
[137] und [138] erläutert. Demnach besteht jede Schicht aus Komponenten und

78

4.2. Konzept und Methodik

sog. komplexen Konnektoren, die die Komponenten verbinden1. Die Verfeine-
rung einer Schicht entspricht der Verfeinerung von komplexen Konnektoren die-
ser Schicht mit Komponenten und Konnektoren der darunterliegenden Schicht.
Das wohl bekannteste Beispiel einer Schichtenarchitektur aus dem Bereich der
Kommunikationssysteme ist das ISO/OSI Referenzmodell (OSI-RM) [270, 147]. Wie
bereits in Abschnitt 2.1 dargelegt, ist die Schichtenbildung auch ein fundamen-
tales Prinzip beim plattformbasierten Entwurf.

Im Rahmen dieser Arbeit soll das Prinzip der Schichtenbildung einerseits als
Hilfsmittel für die Erläuterung der Prinzipien des entwickelten parallelen Simu-
lators eingesetzt werden. Andererseits diente die Schichtenbildung als Funda-
ment für eine strukturierte Umsetzung im Hinblick auf die oben genannten An-
forderungen.

4.2.2. Architekturmodell für eine parallele Simulation

Für die Beschreibung der Verfahren in den weiteren Abschnitten sowie als Basis
für die Implementierung, dient das folgende Schichtenmodell als Grundlage:

Definition 4.1 (Parallele Simulation): Eine parallele Simulation ist ein Tupel
S = (Si)i∈4,...,0 = (M,K,L,B,A). Dabei gilt:

• M ist die Modellebene,

• K ist die Kernelebene,

• L ist die logische Ebene,

• B ist die Basisdienstebene,

• A ist die Ausführungsplattformebene.

Die Ebenen K, L und B repräsentieren den parallelen Simulator PS: PS = {K,L,B}.

Definition 4.1 wird im Folgenden auch als Referenzmodell für die parallele Sys-
temC Simulation bezeichnet. Im Unterschied zum LCIM aus Abschnitt 3.2.2 fo-
kussiert das Referenzmodell aus Definition 4.1 ausschließlich auf Implementie-
rungsaspekte. Die Ebenen haben folgende Bedeutung:

• Modellebene: Die Modellebene bildet die Schnittstelle zum Anwender ei-
nes Simulators. Sie wird im Folgenden auch einfach als Simulationsmodell
bezeichnet. Üblicherweise wird das Simulationsmodell durch Instanzbil-
dung von Komponenten- und Konnektorprototypen aus einer Klassenbi-

1Nach [138] sind komplexe Konnektoren ebenfalls Komponenten, wenn auch eine spezielle Form.

79

4. Parallele SystemC Simulation für Multiprozessoren

bliothek, deren Verknüpfung und Implementierung erstellt. Die Implemen-
tierung beinhaltet typischerweise die Spezialisierung der Prototypen auf
eine bestimmte Funktion und damit die finale Festlegung der dynamischen
Semantik.

• Kernelebene: Die Kernelebene implementiert die Syntax und Semantik ei-
ner bestimmten Modellierungssprache zur Beschreibung von Simulations-
modellen (in diesem Fall SystemC). Sie stellt zudem eine Infrastruktur in
Form unterschiedlich partitionierter Kernelkomponenten und Kernelkon-
nektoren (siehe Abschnitt 4.2.4.4) zur Ausführung eines Simulationsmo-
dells zur Verfügung.

• Logische Ebene: Die logische Ebene ist die Infrastruktur zur Ausführung
und Synchronisation von Kernelkomponenten. Auf der logischen Ebene
werden Komponenten und Konnektoren als logische Prozesse und logi-
sche Links bezeichnet. Die logische Ebene implementiert ein bestimmtes
Synchronisationsverfahren und versteckt deren konkrete Funktion vor der
Kernelebene. Diese Separation ist insbesondere für komplexe (z.B. topolo-
gieabhängige Verfahren) von Vorteil.

• Basisdienstebene: Die Basisdienstebene ist die unterste Ebene des paral-
lelen Simulators PS. Die konkrete Ausprägung ist von der Ausführungs-
plattform abhängig. Auf einem Multiprozessor entsprechen Komponen-
ten und Konnektoren z.B. Prozessen des Betriebssystems und APIs zur
Interprozesskommunikation. Typische Aufgaben dieser Ebene sind die In-
itialisierung, Einbindung und Bereitstellung plattformspezifischer Biblio-
theken, welche verschiedene Typen grundlegender Synchronisations- und
Transportmechanismen für den verlustfreien Datenaustausch zur Verfü-
gung stellen.

• Ausführungsplattformebene: Hier sind alle Komponenten vereint, wel-
che nicht Teil des parallelen Simulators PS sind. Diese Ebene repräsentiert
die Infrastruktur in Form von Hardware und Software, zur Ausführung
des parallelen Simulators. Komponenten können Prozessorkerne inkl. ei-
nes darauf ausgeführten Betriebssystems oder ganze Workstations sein. Zu
den Konnektoren gehören beispielsweise On-Chip Netzwerke oder Local
Area Networks (LANs) sowie zugehörige Software APIs.

4.2.3. Simulationssynthese

In Abschnitt 2.1 wurde der Begriff der Synthese im Kontext eines Entwurfspro-
zesses für eingebettete Systeme als der Prozess der „Konvertierung einer gegebe-
nen Verhaltensspezifikation in eine strukturelle Spezifikation“ [115] eingeführt. Dabei
wurde das Mapping als der essentielle Schritt der Systemsynthese identifiziert.

80

4.2. Konzept und Methodik

Diese Sichtweise der Systemsynthese kann 1:1 auf den Prozess der Präparation
einer Simulation für die parallele Ausführung übertragen werden. Letzterer ist
dabei mit einem plattformbasierten Entwurfsprozess auf Systemebene vergleich-
bar (Abschnitt 2.1.1.3). Eine Simulationssynthese beschreibt demnach den Prozess
der (automatisierten) Abbildung eines SimulationsmodellsM auf eine Ausfüh-
rungsplattform A mit Hilfe eines parallelen Simulators PS . Liegt der Fokus auf
der simulationsbasierten Verifikation eines MPSoC Modells, so lässt sich die Si-
mulationssynthese entsprechend Abb. 4.1 in zwei Schritte gliedern:

• I) Abbildung der ApplikationAP auf das (MPSoC) SimulationsmodellM.

• II) Abbildung des SimulationsmodellsM auf die AusführungsplattformA
mit Hilfe des parallelen Simulators PS.

4.2.3.1. Abbildung der Applikation auf das Simulationsmodell

Die Abbildung der Applikation auf das Simulationsmodell findet noch außer-
halb des Referenzmodells aus Definition 4.1 statt. Dieser Schritt ist typischer-
weise Teil der Verifikation in einem plattformbasierten Entwicklungsprozess für
MPSoCs [75, 261, 151, 145, 189]. Da die Applikation das Verhalten des Simulati-
onsmodells beeinflusst, hat sie auch Einfluss auf die Performanz, wenn das Mo-
dell auf einer bestimmten Ausführungsplattform simuliert wird. Im Folgenden
wird beispielhaft das Hermes Multiprocessor System (HeMPS) [75] und der zuge-
hörige Entwurfsfluss erläutert, da HeMPS in den weiteren Kapiteln als Grundla-
ge zur experimentellen Evaluation dient.

HeMPS (siehe Abb. 4.2) ist ein homogenes MPSoC, das aus einer konfigurier-
baren Anzahl von Processing Elements (PE) basierend auf einem MIPS Prozes-
sor namens Plasma [220] besteht. Diese sind über ein Mesh NoC namens Her-
mes [203] miteinander verbunden. Jedes PE ist über ein Network Interface (NI)
an einen dedizierten Router (RO) des NoCs angebunden. Die Router vollziehen
ein XY Routing in Kombination mit Round Robin Scheduling und Wormhole
Switching. HeMPS hat eine Distributed Memory Architektur. Datentransfers ba-
sieren auf einem Message Passing Protokoll. Die Plasmakerne führen ein RTOS
aus, welches Multithreading unterstützt. Applikationen für HeMPS können als
Prozessnetzwerk [153] spezifiziert werden. Prozesse/Tasks werden in einem Task
Repository (TP) abgelegt. Nur der Master hat Zugriff auf das TP. In der Initialisie-
rungsphase verteilt er die Tasks an die Slaves, bevor diese mit der Ausführung
der Applikation beginnen.

Der grundlegende Ablauf des Entwurfsflusses von HeMPS (siehe Abb. 4.3) ist ty-
pisch für viele MPSoC Entwurfsmethoden [75, 261, 151, 145, 189]. Er beginnt mit
der Spezifikation der Softwareapplikation(en) und der Konfiguration der Ziel-
plattform, bestehend aus Hardware- und Softwarekomponenten. Im Rahmen

81

4. Parallele SystemC Simulation für Multiprozessoren

Basic Services Layer

SystemC Kernel Layer

Logical Layer

II) Map model to
execution platform

I) Map application
to model

Target Platform

SystemC Model

Abbildung 4.1.: Synthese einer parallelen MPSoC Simulation

82

4.2. Konzept und Methodik

HeMPS

Ta
sk

Re

po
si

to
ry

R R

R R

Slave

Master Slave

Slave

R

Slave

R

Slave

R

R

R

Slave

Slave

Slave

RAM

N
et

w
or

k
In

te
rf

ac
e DMA

Plasma

RA
M

RTOS

Task 1

Task n

PE

Abbildung 4.2.: Hermes Multiprocessor System (HeMPS) [75]

�

������	
�
��
����������

������	
��
������
�������	���������

�������������
��
��
�����������

�����
�
	�����������

������������	�

����
������� �!���!�

�����������	�

��
	�
���������	�"
	��!�������

��#���
���
�	������

$"��%�������
&���'������

(��)���
%����	*

!������
(�)��	�+��
��%	
* ��
�
�������

�

Abbildung 4.3.: HeMPS Entwurfsfluss (Quelle: [75])

83

4. Parallele SystemC Simulation für Multiprozessoren

des Mappingschritts werden die Tasks der Applikation(en) auf eine bestimm-
te Plattformkonfiguration abgebildet. Daraus wird ein Simulationsmodell M
generiert und zu Verifikationszwecken ausgeführt. Dieser Prozess wird solan-
ge iteriert, bis eine gültige Abbildung gefunden ist. Der beschriebene Prozess
wird durch eine grafische Benutzeroberfläche (HeMPS Editor) und diverse an-
dere Softwaretools unterstützt2.

4.2.3.2. Abbildung des Simulationsmodells auf die Ausführungsplattform

Dieser (wie prinzipiell auch der vorangegangene) Teilschritt lässt sich vereinfa-
chend auf ein Graphpartitonierungsproblem [152][248] zurückführen. Dazu können
Komponentennetzwerke, die mit Hilfe der Ebenen des Referenzmodells reali-
siert sind, als Graph Gn(Pn, Vn) modelliert werden, der für jede realisierte Kom-
ponente einen Knoten in Pn enthält. Zwischen pn

a und pn
b existiert eine Kante

vn
ab ∈ Vn, wenn mindestens eine gerichtete Kommunikationsbeziehung zwi-

schen pn
a und pn

b existiert.

Mit der vereinfachenden Annahme, dass alle Graphen unterhalb der Modelle-
bene identisch sind, kann die Partitionierung eines Modells als Abbildung von
Knoten und Kanten des Graphen G4 des Modells auf Knoten und Kanten eines
beliebigen der vier darunterliegenden Graphen modelliert wird. Die Abbildung
erfolgt im Allg. unter bestimmten Randbedingungen, die bei der Partitionierung
eingehalten werden müssen (z.B. möglichst optimaler Lastausgleich oder gerin-
ger Kommunikationsaufwand) [49]. Zur Schätzung entstehender Kosten müs-
sen Kostenfunktionen entwickelt werden, die als Entscheidungsgrundlage für
die Art und Weise der Abbildung dienen.

Erfolgt die Abbildung statisch und ändert sich diese nicht mehr zur Laufzeit, so
kann die Erstellung einer Kostenfunktion mit Hilfe von Profiling [120][124] vor
der eigentlichen Simulationslaufzeit unterstützt werden. Falls die Abbildung dy-
namisch zur Laufzeit geändert werden kann, so müssen Performanzwerte wäh-
rend der Ausführung beobachtet und unmittelbar in eine geeignete Lastvertei-
lung umgesetzt werden. Dies entspricht in etwa den Aufgaben eines Regelkrei-
ses [49]. Eine statische Abbildung hat den Vorteil, dass die räumliche Datenver-
fügbarkeit dauerhaft eingeschränkt werden kann (siehe auch Abschnitt 4.2.4.5).
Dies reduziert u.U. den Kommunikations- und Synchronisationsaufwand. Sta-
tische Abbildung hat den Nachteil, dass mögliche dynamisch auftretende Un-
gleichgewichte in der Auslastung nicht automatisch ausgeglichen werden kön-
nen. Bei dynamischer Abbildung liegt der genau entgegengesetzte Fall vor.

2Die Originalversion von HeMPS basiert auf einer VHDL RTL Beschreibung. Nur für den Plasma-
kern existiert zusätzlich ein zyklenapproximativer Instruktionssatzsimulator in SystemC. Daher
wurden im Rahmen dieser Arbeit alle existierenden VHDL Teile manuell in äquivalente SystemC
RTL Beschreibungen übersetzt und der HeMPS Editor entsprechend angepasst.

84

4.2. Konzept und Methodik

Formulierung des Partitionierungsproblems für SystemC
Da SystemC unterschiedliche Modellierungsstile und Abstraktionsgrade unter-
stützt (vgl. Abschnitt 2.3.2), die unterschiedliche syntaktische Elemente verwen-
den, ist der Graph G4 der Modellebene vom verwendeten Modellierungsstil ab-
hängig. In reinen RTL oder ähnlichen Modellen macht es Sinn, Instanzen von
Prozessen als Modellkomponenten und Instanzen von sc_signal als Modellkon-
nektoren zu interpretieren. Vernachlässigt man die hierarchische Struktur, so
kann ein reines RTL Modell dann als ein Prozess-Signalgraph GPS(P, S) model-
liert werden:

Definition 4.2 (Prozess-Signal Graph): Ein Prozess-Signal Graph GPS(P, S) ist
ein gerichteter Graph mit Knoten p ∈ P und Kanten s ∈ S. Jeder Knoten repräsentiert
genau einen SystemC Prozess. Zwei Knoten px und py sind durch eine Kante sxy ver-
bunden, wenn die Prozesse, die durch die Knoten px und py repräsentiert werden, durch
mindestens ein Signal verbunden sind, wobei der durch px repräsentierte Prozess auf das
Signal schreibt und der durch py repräsentierte Prozess von diesem Signal ausschließlich
liest.

In TL Modellen ist es hingegen sinnvoller, SystemC Module als Modellkompo-
nenten und Socket- oder Transportverbindungen als Modellkonnektoren zu in-
terpretieren. Ein reines TL Modell kann dann z.B. als ein Modul-Transport Graph
GMT(M, T) modelliert werden:

Definition 4.3 (Modul-Transport Graph): Ein Modul-Transport Graph
GMT(M, T) ist ein gerichteter Graph mit Knoten m ∈ M und Kanten t ∈ T. Jeder Kno-
ten repräsentiert genau ein SystemC Modul. Zwei Knoten mx und my sind durch eine
Kante txy verbunden, wenn das durch mx repräsentierte Modul anhand einer Transport-
methode den Zustand in dem durch my repräsentierten Modul modifizieren kann3.

Ein gemischtes RTL/TL Modell, das sowohl RTL als auch TL Anteile enthält,
kann durch zwei Teilgraphen GPS und GMT beschrieben werden. Beide Teilgra-
phen sind dann durch Knoten aus einer Menge A verbunden, wobei P∩M = A.
Ein Knoten a ∈ A repräsentiert ein gemischtes Modul, das sowohl über Signale
als auch Sockets kommuniziert. Ein Modul aus A repräsentiert damit ein TL Mo-
dul und zugleich einen durch das Modul aggregierten Prozess (eine Menge von
Prozessen), der nicht weiter zerlegt werden kann. Darauf basierend lässt sich das
Partitionierungsproblem für ein SystemC Modell wie folgt formulieren:

3Auf welche Art und Weise diese Modifikation exakt geschieht, ist absichtlich nicht spezifiziert.
Diese kann z.B. durch das Schreiben eines Parameters innerhalb einer Transportmethode erfolgen
oder umgekehrt, durch Rückgabe eines Wertes bei Verlassen der Methode.

85

4. Parallele SystemC Simulation für Multiprozessoren

Definition 4.4 (SystemC Partitionierungsproblem): Bei der Partitionierung eines
SystemC Modells ist eine Graphenpartitionierung gesucht, die den Graphen GPS ∪GMT

partitioniert. Eine Partitionierung beinhaltet die Abbildung von Knoten des Graphen
GPS ∪ GMT auf Knoten eines beliebigen Graphen Gtarget einer darunterliegenden Ebene
und die Abbildung von Kanten der Graphen GPS ∪ GMT auf Knoten und Kanten von
Gtarget.

4.2.4. Strategien zur Parallelisierung von SystemC

Als erste Voraussetzung für die Abbildung eines SystemC Modells auf einen
Multi- oder Manycoreprozessor müssen Kernelkomponenten bereitgestellt wer-
den, die SystemC Modellpartitionen ausführen können. Zur Umsetzung dieser
Kernelkomponenten gibt es eine Reihe von Möglichkeiten. In Abschnitt 3.1.2.4
wurde bereits der Begriff der Kernelpartitionierung eingeführt und existieren-
de Ansätze in asymmetrisch und symmetrisch klassifiziert. Im nun folgenden Ab-
schnitt soll dieser und weitere Freiheitsgrade sowie Auswirkungen von Ent-
wurfsentscheidungen auch im Hinblick auf die Erfüllung der in Abschnitt 4.1
genannten allgemeinen Anforderungen genauer betrachtet werden.

4.2.4.1. Datenabhängigkeiten bei sequentiellem Scheduling

Der sequentielle SystemC Scheduler implementiert ein dynamisches Schedu-
ling [248]: Welche SystemC Prozesse wie oft und in welcher Reihenfolge aus-
geführt werden, steht vor der Laufzeit noch nicht (vollständig) fest. Zu einem
bestimmten Simulationszeitpunkt sind nur ein Bruchteil aller zukünftigen Ereig-
nisse bekannt. Diese Dynamik äußert sich in der Existenz zweier Schleifen in der
Zustandsmaschine aus Abb. 2.12, der Deltacycle-Schleife und der Timedcycle-
Schleife4.

Die Phasen, die während des sequentiellen Schedulings durchlaufen werden,
sind atomar (vgl. Abschnitt 2.3.2.2): Um die kausalen Abhängigkeiten zwischen
Ereignissen korrekt aufzulösen, beginnt eine neue Phase immer erst dann, wenn
die vorausgehende Phase vollständig beendet ist. Der Grund dafür sind Abhän-
gigkeiten zwischen Phasen auf den in Abschnitt 2.3.2.2 aufgeführten Mengen
und Variablen, die aber erst zur Laufzeit bekannt sind. Abhängigkeiten in ei-
nem Softwareprogramm können im Allg. in Datenabhängigkeiten, Kontrollfluss-
abhängigkeiten und Resourcenabhängigkeiten klassifiziert werden [41]. Erste-
re lassen sich wiederum in Read-After-Write (RAW), Write-After-Read (WAR) und
Write-After-Write (WAW) Abhängigkeiten einteilen. Werden solche Abhängigkei-

4Immediate Notifications werden in der Zustandsmaschine aus Abb. 2.12 nicht explizit modelliert.

86

4.2. Konzept und Methodik

ten nicht beachtet, so wird das Simulationsmodell u.U. nicht kausal (d.h. zeitlich)
korrekt ausgeführt (vgl. Definition 2.1).

Um Abhängigkeiten der genannten Typen zu visualisieren, eignet sich die Dar-
stellung anhand eines dynamischen Abhängigkeitsgraphen (engl. Dynamic De-
pendency Graph (DDG)) [34, 41]. Ein DDG ist ein partiell geordneter DAG, dessen
Knoten die Ausführung von Instruktionen repräsentieren und dessen Kanten
die Abhängigkeiten zwischen den Instruktionen modellieren, die während der
dynamischen Ausführung eines Programms entstehen [41].

Aus einer grobgranularen Perspektive können die Kernelphasen des sequentiel-
len SystemC Schedulers, die innerhalb eines Simulationslaufs ausgeführt wur-
den, als komplexe Makroinstruktionen und damit Knoten eines DDG in Form
einer gerichteten Kette interpretiert werden. Da jede Kernelphase zu jedem Si-
mulationszeitpunkt t = (τ, δ) maximal einmal ausgeführt wird, können ausge-
führte Kernelphasen mit einem Zeitstempel indiziert werden. Abb. 4.4 illustriert
ein Beispiel für einen DDG einer sequentiellen SystemC Ausführung, die vom
Zeitpunkt (0, 0) bis zum Zeitpunkt (7, 2) reicht.

eval(0,0) update(0,1)

update(0,2)eval(0,1) dnotify(0,2) tnotify(0,2)

eval(7,2)

dnotify(0,1)

Abbildung 4.4.: DDG einer Ausführung des sequentiellen SystemC Schedulers

Damit eine Strategie zur Parallelisierung des sequentiellen SystemC Kernels ge-
währleisten kann, dass die Kausalitätsbeziehungen zwischen Ereignissen, wie
sie durch sequentielle Ausführung eines Simulationsmodells definiert sind, auch
bei paralleler Ausführung desselben Simulationsmodells erhalten bleiben, muss
die Strategie im Allg. die Abhängigkeiten berücksichtigen, die durch den DDG
der sequentiellen Ausführung spezifiziert sind.

Neben dem DDG aus Abb. 4.4 sind auch andere feingranularere Darstellun-
gen der dynamisch auftretenden Abhängigkeiten möglich. Ein feingranularerer
DDG kann z.B. nicht nur komplette Kernelphasen und deren Abhängigkeiten vi-
sualisieren, sondern u.U. auch Instruktionen und Abhängigkeiten, die innerhalb

87

4. Parallele SystemC Simulation für Multiprozessoren

der komplexen sequentiellen Kernelphasen aus Abb. 4.4 selbst existieren. Dies
hat den Vorteil einer besseren Analysierbarkeit, erhöht aber die Komplexität.

Um die in einem DDG enthaltenene dynamische Information konservativ zu ap-
proximieren, eignen sich im Allg. statische Abhängigkeitsmodelle [96, 210, 141],
die typischerweise im Rahmen einer Compileranalyse erstellt werden können.
Ebenso wie die Komplexität eines DDG steigt in einer statischen Approximation
die Komplexität mit der Verfeinerung der Granularität an.

4.2.4.2. Datenabhängigkeiten bei parallelem Scheduling

Ausgehend vom grobgranularen DDG der sequentiellen Ausführung aus Abb.
4.4 ist der naheliegendste Ansatz zur Parallelisierung, die Vervielfachung ein-
zelner oder aller Knoten und damit, entsprechend der verfügbaren Ressourcen,
die Erzeugung jeweils paralleler komplexer Instruktionen gleichen Typs. In ei-
ner parallelisierten Phase wird dann Rechenaufwand gleichzeitig bewältigt, der
in der ursprünglichen Phase sequentiell abgearbeitet wurde. Die Vervielfachung
von Knoten im DDG bzw. von Phasen setzt voraus, dass der Rechenaufwand
einer Phase auf parallele Teilphasen gleichen Typs aufgeteilt werden kann. Im
Allgemeinen entstehen dabei, orthogonal zu den in Abschnitt 4.2.4.1 erwähnten
Typen von Datenabhängigkeiten, folgende neue Typen von Datenabhängigkei-
ten:

1. Inter-Phasen-Abhängigkeiten (IRA): Abhängigkeiten zwischen aufeinan-
derfolgenden Teilphasen.

2. Intra-Phasen-Abhängigkeiten (IAA): Abhängigkeiten zwischen paralle-
len Teilphasen des gleichen Typs.

IRA existierten als Sonderfall bereits bei sequentieller Ausführung. Im paralle-
len Fall lassen sie sich am einfachsten durch eine zeitliche Partitionierung bzw.
die Einführung zusätzlicher Kontrollflussabhängigkeiten in Form globaler Syn-
chronisation nach jeder parallelisierten Phase auflösen. Dieser Ansatz ist sehr
konservativ und nur dann notwendig, wenn keine Kenntnisse über Datenparti-
tionierungen (vgl. Abschnitt 4.2.4.5) oder Eigenschaften des Simulationsmodells
(vgl. Abschnitt 4.2.4.6) vorhanden sind. Solches Wissen könnte beispielsweise
aus einer detaillierteren statischen Approximation des DDG aus Abb. 4.4 extra-
hiert werden. Als Beispiel für eine IAA denke man an das gleichzeitige Auslesen
von lauffähigen SystemC Prozessen aus einer global verfügbaren Menge lauffä-
higer Prozesse R während einer parallelisierten Evaluation Phase. Im einfachs-
ten Fall genügt für solche Zugriffe simples Locking, wobei dann die Ausfüh-
rungsreihenfolge von SystemC Prozessen innerhalb eines Deltacycles evtl. nicht-
deterministisch sein kann.

88

4.2. Konzept und Methodik

4.2.4.3. Determinismus

Sobald die Zugriffsreihenfolge auf Variablen nicht mehr kontrolliert wird und
von zufälligen Verarbeitungs- oder Kommunikationslatenzen abhängt, so ist ei-
ne Parallelisierungsstrategie eine potentielle Quelle für nicht-deterministisches
Verhalten. Im Fall von SystemC wird die Gefahr von nicht-deterministischem
Verhalten dadurch verstärkt, dass die Modellierung auf höheren Abstraktions-
ebenen oft auf der direkten Kommunikation von SystemC Prozessen über ge-
meinsam genutzte Variablen basiert (vgl. Abschnitt 2.3.2.3). Dadurch steigt die
Wahrscheinlichkeit für sog. nicht-deterministische Anomalien (vgl. [234, 233].
Falls der Kernel keine entsprechende Unterstützung bietet, liegt es in der Ver-
antwortung des Anwenders, explizit Gegenmaßnahmen zu ergreifen.

Da in dieser Arbeit die Untersuchung von Methoden zur parallelen Ausführung
zyklenakkurater und -approximativer Modelle auf Manycore Architekturen und
weniger eine holistische Betrachtung einer deterministischen Ausführung aller
Typen von Modellen im Fokus steht, wird eine Betrachtung von Determinismus
nur insoweit mit einbezogen, wie dies für die in dieser Arbeit verwendeten Ty-
pen von Modellen und Modellierungstechniken notwendig ist.

4.2.4.4. Kernelpartitionierung

Durch Gruppierung von vervielfältigten Teilphasen unterschiedlichen Typs wer-
den Kernelkomponenten K erzeugt. Dieser Vorgang wird im Folgenden auch
als Kernelpartitionierung bezeichnet. Angenommen, nur die Evaluation Phase
eval() ist parallelisiert. Eine Möglichkeit zur Gruppierung ist dann die asymme-
trische Aufteilung des SystemC Kernels in unterschiedliche Typen von Kernel-
komponenten, z.B. eine Master Komponente km und mehrere Worker Kompo-
nenten Kw =

⋃
1≤i≤N kw

i , wobei K = km ∪ Kw. Eine mögliche Phasenaufteilung
wäre beispielsweise folgende:

P(km) = {init(), update(), dnoti f y(), tnoti f y()} (4.1)
∀i : P(kw

i) = {evali()} (4.2)

Eine asymmetrische Partitionierung hat den Nachteil, dass der Master mit zu-
nehmender Modellgröße und Anzahl an Workern zu einem Flaschenhals wer-
den kann: Zum einen steigt der Berechnungsaufwand innerhalb der sequenti-
ellen Phasen des Masters mit der Modellgröße. Zum anderen steigt bei wach-
sender Anzahl an Workern der Kommunikationsaufwand im Master. Dies kann
durch eine Parallelisierung aller Phasen und symmetrische Partitionierung ent-

89

4. Parallele SystemC Simulation für Multiprozessoren

schärft werden: Sei Ks =
⋃

1≤i≤N ks
i die Menge aller Kernelkomponenten und N

deren Anzahl, so gilt:

∀i : P(ks
i) = {initi(), evali(), updatei(), dnoti f yi(), tnoti f yi()} (4.3)

Variablen und Datenstrukturen des sequentiellen Kernels werden zu Kernelkon-
nektoren, sofern Kernelkomponenten sie gemeinsam nutzen. Dazu gehören U,
R, Nδ, Nτ oder Datenstrukturen innerhalb von Instanzen des Modells. Im Fall
eines Signals sind dies z.B. vcur, vnext oder das in einem Signal enthaltene Ereig-
nisobjekt ω.

4.2.4.5. Datenpartitionierung

Im Unterschied zur zeitlichen Partitionierung von Datenzugriffen durch Synchro-
nisation entsteht durch Datenpartitionierung eine räumliche Partitionierung der
Daten und Datenzugriffe. Datenpartitionierung ist ein weiterer Schritt, um Da-
tenabhängigkeiten über den in Abschnitt 4.2.4.2 beschriebenen Ansatz hinaus zu
reduzieren. Der in Abschnitt 4.2.4.2 beschriebene IAA Konflikt, der beim gleich-
zeitigen Zugriff auf die Menge der lauffähigen Prozesse R durch mehrere par-
allele Teilphasen entsteht, kann z.B. durch Partitionierung von R und Beschrän-
kung des Zugriffs von Teilphasen auf jeweils eine Partition von R gelöst werden.

Als Folge einer Datenpartitionierung können Variablen und Datenstrukturen als
intern oder extern deklariert werden. Auf interne Variablen hat nur eine einzi-
ge Kernelkomponente Zugriff, auf externe Variablen mehrere. Externe Variablen
können wiederum in lokal extern und global extern eingeteilt werden. Auf lokal ex-
terne Variablen hat nur eine Teilmenge aller Kernelkomponenten Zugriff, global
externe Variablen sind hingegen für alle Kernelkomponenten erreichbar.

Die global externe Verfügbarmachung von Variablen erhöht einerseits die Flexi-
bilität enorm, andererseits aber auch den Aufwand für die korrekte Behandlung
von Datenabhängigkeiten. Eine gezielte Einschränkung der Verfügbarkeit führt
zu geringerem Aufwand in der Behandlung von Datenabhängigkeiten aber we-
niger Flexibilität. Welche Variablen wie deklariert werden können oder müssen,
ist letztendlich von der Ausführungsplattform abhängig (siehe auch Abschnitt
2.4).

4.2.4.6. Weiterführende PDES Optimierungsstrategien

Konservative PDES Verfahren (siehe Abschnitt 2.2.3.4) zeichnen sich insbesonde-
re dadurch aus, dass sie Methoden zur Reduktion von kausalen Abhängigkeiten

90

4.2. Konzept und Methodik

zwischen Ereignissen und folglich zur Steigerung der Parallelität bereitstellen,
die über eine reine Datenpartitionierung hinausgehen. Diese Verfahren basieren
insbesondere auf der effizienten Ausnutzung von modellspezifischer Informati-
on zur Reduktion des Synchronisationsaufwands [113]. Im Vergleich zum Ansatz
aus Abschnitt 4.2.4.2 ermöglicht die Ausnutzung modellspezifischer Informatio-
nen, Datenabhängigkeiten zwischen aufeinanderfolgenden parallelisierten Ker-
nelphasen eines grobgranularen DDG genauer zu identifizieren und die globale
Synchronität durch die feingranularere Betrachtungsweise zu durchbrechen. Da-
bei können bestimmte Strategien der Datenpartitionierung von Vorteil sein. Eine
Optimierung im Sinne der PDES lässt sich im Allg. in drei Schritte einteilen:

1. Extraktion modellspezifischer Information: Dies geschieht entweder ma-
nuell oder automatisiert. Die manuelle Extraktion hat den Vorteil, dass
durch Anwenderwissen auch spezielle modellspezifische Datenabhängig-
keiten und komplexere Zusammenhänge berücksichtigt werden können,
kann allerdings zeitaufwändig sein. Eine automatisierte Extraktion ist ef-
fizienter, funktioniert aber nur so gut, wie es das verwendete Werkzeug
zulässt. Können komplexe Datenabhängigkeiten nicht erkannt werden, so
können kausale Fehler nur durch geringere Parallelität vermieden werden.

2. Vorhersage von Garantien für kausale Unabhängigkeit: Auf Basis der ex-
trahierten Informationen werden Garantien für existierende kausale Unab-
hängigkeiten berechnet. Diese Berechnung kann entweder statisch vor der
Laufzeit oder dynamisch zur Laufzeit erfolgen. Eine statische Berechnung
erzeugt keinen zusätzlichen Laufzeitoverhead, kann aber evtl. zu konser-
vative Vorhersagen zur Folge haben. Eine dynamische Berechnung erzeugt
zusätzlichen Laufzeitoverhead, kann aber aktuelle Laufzeitinformationen
in die Berechnung mit einfließen lassen, was möglicherweise zu weniger
konservativen Vorhersagen führt.

3. Adaption von Modell und parallelem Simulator: Wünschenswert ist es,
dass das Modell und der paralleler Simulator bis zu einem gewissen Grad
anpassbar bzw. konfigurierbar sind und die Vorhersagen aus Schritt 2) ge-
zielt zur Reduktion des Kommunikationsaufwands genutzt werden kön-
nen. Eine geeignete Abbildung des Simulationsmodells kann z.B. zu einer
besseren Lastverteilung, besserer Datenlokalität und besseren Garantien
für kausale Unabhängigkeit führen. Eine solche Adaption kann ebenfalls
manuell oder automatisiert erfolgen, wobei in komplexen Fällen eine auto-
matisierte Adaption grundsätzlich vorzuziehen ist.

4.2.5. Überblick über implementierte Komponenten

Abb. 4.5 gibt einen Überblick über Verfahren, die auf den einzelnen Ebenen des
Referenzmodells entwickelt wurden. Die Verfahren wurden als Erweiterung des

91

4. Parallele SystemC Simulation für Multiprozessoren

freien SystemC Kernels [1] in Form einer Klassenbibliothek umgesetzt. Von die-
ser Bibliothek wurden schrittweise neue Versionen entwickelt, welche die aufge-
führten Verfahren (teilweise gleichzeitig) unterstützen.

Kernel Layer

Shared ObjectCircular Buffer B/Nb Barrier

SymmetricAsymmetric

Register Transfer Level Cycle Approx. Transaction Level

Model Layer

Execution Platform Layer

Single-chip Cloud Computer Conventional SHM Multiprocessor

Basic Services Layer

composed with ...

Asynchronous AdaptiveSynchronousUnsynchronized

Logical Layer

Abbildung 4.5.: Implementierte Konzepte

Da der Fokus auf der parallelen Simulation zyklenakkurater und zyklenapproxi-
mativer Modelle liegt, wird auf Modellebene generell mindestens das RTL Sub-
set von SystemC [244] unterstützt. In Abschnitt 4.6 wird darüber hinaus eine TL
Modellierungsmethode vorgestellt, die es erlaubt, die Genauigkeit von Modellen
statisch oder dynamisch zu skalieren.

Der sequentielle SystemC Kernel wurde in zwei verschiedenen Varianten parti-
tioniert. Dem Verfahren aus Abschnitt 4.3 liegt eine asymmetrische Kernelparti-
tionierung zugrunde. Die Verfahren aus den Abschnitten 4.4, 4.5 und 4.6 basieren
auf einer symmetrischen Partitionierung.

92

4.3. Asymmetrische synchrone Strategie

Auf der logischen Ebene wurden vier verschiedene Synchronisationsverfahren
implementiert, asynchron (vgl. Abschnitt 4.4), adaptiv (vgl. Abschnitt 4.5) syn-
chron und unsynchronisiert (Abschnitt 4.6). Die synchrone Variante auf der lo-
gischen Ebene wurde zum Verfahren aus Abschnitt 4.5 als Vergleichsfall imple-
mentiert (vgl. Abschnitt 4.5.7) und entspricht einer durch statische Partitionie-
rung optimierten Version des asymmetrischen Verfahrens aus Abschnitt 4.3.

Der Simulator kann mit Hilfe zweier verschiedener Backends auf Basisdienstebe-
ne sowohl auf den SCC als auch auf gewöhnliche cachekohärenten SHM Multi-
prozessoren abgebildet werden. Das SCC Backend ist eine objektorientierte Er-
weiterung der SCC-spezifischen RCCE Bibliothek [198, 15]. Die Erweiterungen
beinhalten in der Hauptsache neue Schnittstellen, z.B. zur einfacheren Instanziie-
rung gemeinsam genutzter Datenstrukturen in verschiedenen Speicherbereichen
(Shared Objects) sowie zur Implementierung zentral koordinierter blockieren-
der oder nicht-blockierender Barrieren (B/Nb Barrier). In beiden Fällen wurden
bereits existierende Funktionen der RCCE API wiederverwendet. Des Weiteren
wurde als neues Verfahren ein statischer/dynamischer Ringpuffer (Circular Buf-
fer) zur asynchronen einseitigen On-Chip Kommunikation entwickelt (vgl. An-
hang A). Das SHM Backend ist eine 1:1 Übertragung des SCC Backends durch
Austausch von RCCE spezifischen Funktionen und Nutzung von herkömmli-
chem SHM zur Implementierung der genannten Datenstrukturen.

4.3. Asymmetrische synchrone Strategie

Im folgenden Abschnitt soll die Eignung einer asymmetrischen Kernelpartitio-
nierung in Kombination mit einem vollständig synchronen Synchronisationsver-
fahren für den SCC untersucht werden. Ähnliche Verfahren haben sich auf ca-
chekohärenten SHM Multiprozessoren als nützlich erwiesen: Die geringe Kom-
munikationslatenz auf diesen Architekturen erlaubt es, den hohen Synchronisa-
tionsaufwand vollständig synchroner Verfahren in Kauf zu nehmen [232, 105].
Durch die diesen Verfahren typischerweise zugrundeliegende asymmetrische
Master/Worker Architektur ist auf einfache Weise eine dynamische Lastvertei-
lung möglich. Weiterführende Optimierungen im Sinne einer Kausalitätsanalyse
werden bei vollständig synchronen Verfahren nicht vorausgesetzt [44].

Im Folgenden werden zugrundeliegende Konzepte und Entwurfsentscheidun-
gen erläutert. Anschließend werden Aspekte der Implementierung und Opti-
mierungspotentiale beschrieben. Die Leistungsfähigkeit des Ansatzes wird an-
hand mehrerer Fallstudien untersucht und bewertet. Die Ergebnisse dieses Ab-
schnitts wurden im Rahmen einer vom Autor betreuten Bachelorarbeit [Red11]
erarbeitet und sind somit in Zusammenarbeit entstanden. Sie sind in [RRS+12]
publiziert.

93

4. Parallele SystemC Simulation für Multiprozessoren

4.3.1. Anforderungen und Konzept

Ausgehend von bekannten Arbeiten zu vollständig synchroner Parallelisierung
[232, 105], lagen dem entwickelten Konzept folgende spezielle Anforderungen
zugrunde:

I) Modellierungsmethode: Es soll zumindest das RTL Subset von SystemC
[244] unterstützt werden. Das Modell soll dabei prinzipiell als ein Prozess-
Signal Graph GPS beschreibbar sein (vgl. Definition 4.2).

II) Abbildung des Simulationsmodells: Es soll eine einfache dynamische Ab-
bildung des Simulationsmodells auf die Ausführungsplattform möglich sein.

III) Datenpartitionierung: Auf eine Datenpartitionierung in interne und exter-
ne Daten soll zugunsten der einfachen dynamischen Lastverteilung und ei-
ner generellen global externen Deklaration verzichtet werden.

IV) Kernelpartitionierung: Der Kernel soll asymmetrisch partitioniert werden.
Dabei sollen ausschließlich die eval() und die update() Phase parallelisiert
sein. Kernelkomponenten sind in einen Master km und n Worker kw

1 ...kw
n

unterteilt. Dabei gilt:

P(km) = {init(), dnoti f y(), tnoti f y()} (4.4)
∀i > 0 : P(kw

i) = {evali(), updatei()} (4.5)

V) Synchronisation: Die Kernelkomponenten sollen synchron in der Zeit vor-
anschreiten.

Das resultierende Konzept ist in Abb. 4.6 illustriert. Da in Anforderung I nur das
RTL Subset vorausgesetzt wird, hat die Ausführungsreihenfolge von SystemC
Prozessen während eines Deltacycles keinen Einfluss auf das Ergebnis der Si-
mulation5. Zur Sicherstellung der Kausalität müssen deswegen nur IRA berück-
sichtigt werden. Bei gleichzeitigem Zugriff auf ein und dieselbe Datenstruktur
innerhalb einer Phase (IAA) genügt es, wenn wechselseitiger Ausschluss garan-
tiert ist. Wegen der Anforderungen II und III benötigen alle Kernelkomponenten
Zugriff auf einen global zugänglichen Zustandspeicher. Der Verzicht auf eine
statische Partitionierung von Daten reduziert die dynamische Abbildung des Si-
mulationsmodells auf die dynamische Abbildung von SystemC Prozessen. We-
gen Anforderung V erfolgt nach jeder Kernelphase eine globale Synchronisation.
Entstehende globale Wartezustände ermöglichen eine zentral gesteuerte dyna-

5Da SystemC Prozesse durch das E/U Paradigma grundsätzlich um mindestens einen Deltacycle
voneinander entkoppelt sind, genügt die Herstellung der durch die Deltacycles definierten par-
tiellen Ordnung von Prozessaktivierungen.

94

4.3. Asymmetrische synchrone Strategie

mische Verteilung von Prozessen durch einen zentralen Master (Anforderung
IV).

Worker n

Master

Worker 1

Globally Shared State

Initialization
U

pd
at

e

Ev
al

ua
te U

pdate

Evaluate
Delta/Timed
Notification

Abbildung 4.6.: Architekturkonzept der asymmetrischen synchronen Strategie

4.3.2. Datenpartitionierung

Als Basis für die Umsetzung einer jeden Kernelkomponente dient jeweils ein se-
parater sequentieller SystemC Kernel. Damit existieren für U, Nτ und Nδ, R, τ
und δ (vgl. Abschnitt 2.3.2.2) bereits in jeder Kernelkomponente interne Duplika-
te. Im Folgenden werden Varianten zur Umsetzung einer Datenpartitionierung
anhand der genannten Variablen und Mengen diskutiert.

• Aktualisierungsanfragen: Diese werden von Workern kw
i in den evali()

Phasen generiert und in den updatei() Phasen verarbeitet. Wenn ein Wor-
ker kw

i immer für die Durchführung genau der Updates verantwortlich ist,
die er selbst generiert hat, können die n internen Datenstrukturen U1...Un
in den Workern komplett unabhängig voneinander verwendet werden. Teu-
re gleichzeitige Zugriffe auf eine globale Datenstruktur U in der evali()
oder updatei() Phase werden dadurch vermieden.

• Lauffähige Prozesse: Diese werden vom Master in dnoti f y() bzw. tnoti f y()
erzeugt und von den Workern in den evali() Phasen verarbeitet. Selektiert

95

4. Parallele SystemC Simulation für Multiprozessoren

jeder Worker kw
i die von ihm auszuführenden Prozesse in der evali() Pha-

se selbstständig aus einem globalen R, verteilt sich die Rechenkomplexi-
tät automatisch gleichmäßig (sog. Work-Stealing [58]). Dies hat allerdings
den Nachteil, dass zu viele gleichzeitige Zugriffe aufgrund des Koordina-
tionsaufwands evtl. zu einem Flaschenhals werden können. Durch Vertei-
lung der Einträge auf n Nachrichtenwarteschlangen Rmq

1 ...Rmq
n wird daher

die Verfügbarkeit insgesamt auf lokal extern eingeschränkt und so der Fla-
schenhals verringert: Der Master ist so für den Lastausgleich und die Zutei-
lung von lauffähigen SystemC Prozessen auf die Rmq

1 ...Rmq
n zu den Workern

verantwortlich (sog. Work-Sharing [97]).

• Timed-/Delta-Notifications: Diese werden von Workern in den evali() und
updatei() Phasen generiert und vom Master in der dnoti f y() bzw. tnoti f y()
Phase verarbeitet. Datenstrukuren zur Speicherung können als gemeinsam
genutzte Strukturen Nτ und Nδ realisiert werden, mit dem bereits erwähn-
ten Risiko, dass viele Workerzugriffe einen Flaschenhals verursachen. Zu-
dem benötigen die Worker keinen Zugriff auf in der Zukunft liegende No-
tifications in Nτ . Als Alternative werden die Notifications daher wieder
über n lokal externe Nachrichtenwarteschlangen Nmq

1 ...Nmq
n von den kw

i an
den Master übermittelt.

• Simulationszeit τ und Deltacycle δ: τ muss extern verfügbar sein. Da nur
der Master in der tnoti f y() Phase auf τ schreiben kann, wird τ global ex-
tern deklariert. Die δ Variable wird vollständig als interne Kopie in jeder
Kernelkomponente vorgehalten und separat inkrementiert.

• Übrige Datenstrukturen des Modells: Diese beinhalten z.B. Ereignisobjek-
te, Channel-, Modul- und Prozessinstanzen, etc. Aufgrund der Anforde-
rungen II und III werden zunächst nur Datenstrukturen als intern klassifi-
ziert, die während der Evaluation, Update und Notification Phasen nicht
veränderlich sind. Die restlichen Variablen sind initial global extern ver-
fügbar.

4.3.3. Globale Barriersynchronisation

Eine einfache Möglichkeit zur Realisierung globaler Synchronisation ist ein ge-
nerischer Ansatz basierend auf globalen Barrieren. Ein solcher ist unabhängig
von einer bestimmten Topologie des Simulationsmodells bzw. dessen Abbildung
auf die Kernelkomponenten. Durch globale Barrieren wird die Simulation regel-
mäßig in einen global definierten Zustand überführt. Entstehende globale War-
tezustände können zur zentral gesteuerten Lastumverteilung genutzt werden.
Folgende Barrieren sind notwendig:

96

4.3. Asymmetrische synchrone Strategie

• Evaluation nach Update: Stellt das E/U Paradigma sicher: Worker dürfen
Primitive Channels erst aktualisieren, wenn sichergestellt ist, dass sich kein
Worker mehr in der Evaluation Phase befindet.

• Update nach Notification: Stellt sicher, dass mit Ende der Update Phase
alle Notifications von den Workern an den Master übermittelt wurden.

• Notification nach Evaluation: Mit dieser Barrier initiiert der Master die
Evaluation Phase und teilt den Workern die neue Simulationszeit mit.

4.3.4. Integration von Kommunikation und Synchronisation

Für die Prüfung von binären Entscheidungen und des Terminierungszustandes
werden neben den im vorigen Abschnitt erwähnten neuen Datenstrukturen in
jeder Kernelkomponente binäre Variablen pass und term eingeführt. Zum reinen
Datenaustausch sind im Master km folgende Aktionen implementiert:

• readNotifications(): Lese vorhandene Notifications aus den Nmq
i aus und fü-

ge sie entsprechend ihrem Typ in Nτ
0 oder Nδ

0 ein. Prüfe gleichzeitig, ob alle
SystemC Prozesse evaluiert sind. Wenn ja, dann gib eine 1 zurück, wenn
nein, dann eine 0 6.

• distWork(): Falls |R0| 6= 0, dann verteile die lauffähigen Prozesse auf die
Worker. Gib eine 1 zurück, sobald |R0| = 0, ansonsten eine 0.

• terminate(): Sende ein Terminierungssignal an die Worker, welches das En-
de der Simulation anzeigt.

In einem Worker kw
i werden zum Datenaustausch folgende zusätzliche Aktionen

benötigt:

• readRunnables(): Kopiere alle in Rmq
i vorhandenen Handles von lauffähigen

Prozessen nach Ri.

• nb/b_sendNotifications(): Versuche, alle aktuell vorhandenen Notifications
über Nmq

i an den Master zu versenden. Falls nicht ausreichend Speicher
vorhanden ist, gib die Kontrolle an die Zustandsmaschine zurück (nb) oder
warte, bis ausreichend Speicher vorhanden ist (b).

• b_send_notify(): Sende alle aktuell vorhandenen Notifications über Nmq
i an

den Master. Blockiere solange, bis alle Notifications verschickt sind.

• check_terminate(): Prüfe, ob das Terminierungssignal gesetzt ist, wenn ja,
dann gib eine 1 zurück, wenn nicht, dann eine 0.

6Damit ein Worker dem Master die erfolgreiche Evaluation von SystemC Prozesses mitteilen kann,
existieren zusätzlich sog. Confirmation Notifications, welche ebenfalls über die Nmq

i verschickt wer-
den.

97

4. Parallele SystemC Simulation für Multiprozessoren

Zur Barriersynchronisation existieren sowohl im Master km als auch in einem
Worker kw

i folgende Aktionen:

• b_barrier(): Initialisiere eine Barriere. Im Fall eines Workers, trete der Bar-
riere bei und warte bis der Master sie freigibt. Im Fall des Masters, warte
bis alle Worker der Barriere beigetreten sind und gib die Barriere dann frei.

• nb_checkIn(): Initialisiere eine Barriere. Im Fall eines Workers, trete der Bar-
riere zusätzlich direkt bei. Verlasse die Aktion anschließend (Master und
Worker).

• barrier_passed(): Im Fall eines Workers, warte bis der Master die Barriere
freigibt. Im Fall des Masters, warte bis alle Worker der Barriere beigetreten
sind und gib die Barriere dann frei.

Die im Master und den Workern implementierten endlichen Zustandsautomaten
(engl. Finite State Machines (FSM)) sind in den Abb. 4.7 und 4.8 dargestellt.

4.3.5. Abbildung auf die Speicherarchitektur des SCC

Da die Mechanismen zur Kommunikation und Synchronisation nicht von der To-
pologie abhängig sind, kann auf eine logische Ebene verzichtet werden. Master
und Worker werden direkt mit RCCE Units of Execution (UEs) [15] als Betriebssy-
stemprozesse implementiert. Die Synchronisationsaktionen werden unmittelbar
mit Hilfe blockierender und nicht-blockierender Barrierprimitive (B/Nb Barrier,
vgl. Abschnitt 4.2.5) der Basisdienstebene umgesetzt. Vorhandene Datenstruktu-
ren werden mit Primitiven der Basisdienstebene auf unterschiedliche Weise in
die Speicherbereiche des SCC abgebildet. Abb. 4.9 illustriert die initiale Vertei-
lung.

Im privaten Speicher jedes beteiligten SCC Kerns befindet sich ein vollständi-
ges Duplikat des Programmcodes. Auch von statischen Variablen wird in jeder
Kernelkomponente eine Kopie im privaten Speicher angelegt. Zu den statischen
Variablen werden auch solche gezählt, die sich nur einmal in der Initialization
Phase ändern. Deren Wert wird u.U. während der Initialisierung einmal aus dem
SHM aktualisiert. Die in Abschnitt 4.3.2 erwähnten Nachrichtenwarteschlangen
werden unter Verwendung von statischen Ringpuffern (Circular Buffer Primiti-
ve, vgl. Abschnitt 4.2.5 und Anhang A) auf den MPB abgebildet. Die Variable τ
wird als Shared Object im MPB abgelegt. Dynamisch veränderliche Variablen des
Modells werden zunächst vollständig als Shared Objects in den externen SHM
ausgelagert.

Da sich der Cached Mode des SCC wegen der Notwendigkeit vieler teurer L2
Cache Flushes (vgl. Abschnitt 2.4.3.2) im Verlauf der Implementierung als sehr
langsam herausgestellt hat (siehe hierzu auch [223] oder [249]), bleibt die Ca-

98

4.3. Asymmetrische synchrone Strategie

[|R0| == 0]

[τ >= τmax || |R0| == 0]/
terminate();
b_barrier();

[pass == 1]/
b_barrier();δ=δ+1;

nb_checkIn();pass=0;

[pass == 1]

sdnotify

swait_eval

stnotify

swait_update

[|R0| != 0]/
b_barrier();pass=0;

[|R0| != 0 && τ < τmax]/
b_barrier();pass=0;

init

[pass == 0]/
pass=readNotifications && distWork();

[pass == 0]/
pass = barrier_passed();

readNotifications();

[|Nδ
0| != 0]/dnotify(Nδ

0);

[|Nτ
0 | != 0]/

τ = nextTime();tnotify(Nτ
0);

BI

BII

BIII

BIII

BIII

Abbildung 4.7.: Zustandsmaschine im Master km

99

4. Parallele SystemC Simulation für Multiprozessoren

[|Ri
mq| != 0 || pass == 0]/

pass = barrier_passed();
readRunnables();eval(Ri);

nb_sendNotifications();

[term == 1]

swait_notify

seval

supdate

[|Ri| == 0 && pass ==1]/
δ=δ+1;

[|Ui| != 0]/update(Ui);

[|Ui| == 0]/
b_sendNotifications();

b_barrier();

scheck_term

[term == 0]/
τ = nextTime();

nb_checkIn();pass=0;

/b_barrier();
term = check_terminate();

init

BI

BII

BIII

Abbildung 4.8.: Zustandsmaschine in einem Worker kw
i

100

4.3. Asymmetrische synchrone Strategie

cheunterstützung für Zugriffe auf den externen SHM vollständig deaktiviert
(UCM).

Shared off-chip DRAM

Private DRAM

Shared on-chip SRAM (MPB)

Private DRAM

Rmq
1Nmq

1 Rmq
2Nmq

2

Dynamic Model Data (event, channel, process instances,,etc.) and Initialization Data

τ

External variables and data structures

All others (static variables, data structures and program code)

Core 1
(Worker 1)

Core 2
(Worker 2)

Private DRAM Core n
(Master)

Abbildung 4.9.: Speichernutzung bei asymmetrischer Kernelpartitionierung

4.3.6. Weiterführende Strategien

4.3.6.1. Verbesserter dynamischer Lastausgleich

Eine der Hauptaufgaben des Masters ist die gleichmäßige Verteilung der zu eva-
luierenden Prozesse auf die Ri der Worker kw

i (Work Sharing). In der Zustands-
maschine aus Abb. 4.7 geschieht dies innerhalb der Aktion distWork(). In der
Grundversion legt der Master mit jeder neuen Evaluation Phase zunächst eine
initiale Verteilung fest.

Da verschiedene SystemC Prozesse unterschiedliche Last erzeugen, kann es vor-
kommen, dass ein Worker während der Evaluation Phase leerläuft und ande-
re Worker noch beschäftigt sind. Der dynamische Lastausgleich kann deswegen
dahingehend verbessert werden, dass der Master auch während der Evaluati-
on Phase die Last dynamisch umverteilt. Um einen Leerlauf nach Möglichkeit
zu vermeiden, beobachtet der Master in der aktuellen Implementierung die Rmq

i
Warteschlangen und verteilt noch zu bearbeitende Prozesse in den Warteschlan-
gen bei Bedarf um.

Ein zusätzlich zum Work Sharing überlagertes Work Stealing wird dann ange-
wendet, wenn eine der Warteschlangen tatsächlich leerläuft, ohne dass der Mas-

101

4. Parallele SystemC Simulation für Multiprozessoren

ter schnell genug aktiv wurde, um diesen Fall zu vermeiden. Der entsprechende
Worker versucht dann selbstständig, Prozesse aus den Warteschlangen der an-
deren Worker zu „stehlen“.

4.3.6.2. Statische Abbildung von SC_THREAD Prozessen

Da jeder SystemC Prozess auf einem beliebigen Worker ausgeführt werden kann,
werden die Stacks von SC_THREAD Prozessen in der Grundversion im externen
SHM abgelegt. Durch die Größe der Stacks von 64 KB kann die auf dem SCC
fehlende hardwareseitige Cachekohärenz die Ausführungsperformanz negativ
beeinflussen. Um die Anzahl der Zugriffe auf den als UCM konfigurierten ex-
ternen SHM zu reduzieren, kann der Master deswegen so eingestellt werden,
dass er lauffähige SC_THREAD Prozesse immer dem gleichen Worker zuordnet
und auf dynamische Verteilung von SC_THREAD Prozessen verzichtet. Damit
kann der Stack eines Prozesses im privaten Speicherbereich des entsprechenden
Workers abgelegt werden.

Existieren nur SC_METHOD Prozesse, was in RTL u.ä. Modellen typisch ist, wird
die dynamische Lastverteilung anhand von Work Stealing und Work Sharing
durch die statische Abbildung von SC_THREAD Prozessen nicht beeinflusst.
Auch bei Existenz von SC_METHOD und SC_THREAD Prozessen wird eine
vollständige Aushebelung der dynamischen Lastverteilung dadurch vermieden,
dass die aktuelle Implementierung immer zuerst die SC_THREAD Prozesse und
erst dann die SC_METHOD Prozesse in die Rmq

i eingefügt. Dies lässt sich wie
folgt erklären: Da das Work Sharing Verfahren immer auf den zuletzt in die War-
teschlangen eingefügten Prozessen arbeitet, sind diese aller Wahscheinlichkeit
nach vom Typ SC_METHOD. Da das Work Stealing Verfahren erst dann aktiv
wird, wenn bereits eine Warteschlange leergelaufen ist, sind die statisch abgebil-
deten SC_THREAD Prozesse mit hoher Wahrscheinlichkeit bereits verarbeitet.

4.3.6.3. Lokale Zustandspu�erung

Treten innerhalb eines Deltacycles auf einem Kern mehrere Schreib- oder Lesezu-
griffe auf eine bestimmte vnext oder vcur Variable eines Primitive Channels auf,
so kann dies mehrere teure aber unnötige SHM Zugriffe zur Folge haben. Die
Ursache ist, dass der dynamische Zustand des Modells in der Grundversion der
Parallelisierungsstrategie, insbesondere die vnext und vcur Variablen, vollständig
im externen SHM abgelegt werden (vgl. Abschnitt 4.3.5).

Durch Ausnutzung des E/U Paradigmas (vgl. Abschnitt 2.3.2.2) ist es möglich,
die L1 und L2 Hardware Caches der SCC Kerne zu verwenden und den be-
schriebenen Sachverhalt zu entschärfen. Dazu werden zusätzlich zu den stati-

102

4.3. Asymmetrische synchrone Strategie

schen Modelldaten (vgl. Abschnitt 4.3.5) lokale Kopien vcur,cpy und vnext,cpy aller
vcur und vnext Variablen im privaten Speicherbereich eines jeden SCC Kerns ab-
gelegt. Diese Kopien erlauben während eines Deltacycles eine weitgehend rein
lokale Ausführung von SystemC Prozessen. Die Kohärenz zwischen den Kopien
in den Caches der SCC Kerne wird softwareseitig hergestellt. Zu diesem Zweck
müssen die read(), write() und update() Methoden der SystemC Channels entspre-
chend adaptiert werden. Die Funktionsweise ist wie folgt (vgl. Abbildung 4.10):

Bei einem Schreibzugriff durch Aufruf von write() wird der neue Wert eines
Channels zunächst in der lokalen vnext,cpy Kopie abgelegt. Erst in der Update-
phase wird durch den Aufruf von update() sowohl die lokale Kopie vcur,cpy als
auch die vcur Variable im SHM mit dem Wert der vnext,cpy Variablen aktualisiert.
Bei einem Lesezugriff durch Aufruf von read() wird der Wert der vcur,cpy Varia-
blen immer nur beim ersten Auslesen innerhalb eines Deltacycles mit dem Wert
des zugehörigen vcur aus dem externen SHM aktualisiert7.

4.3.6.4. Statische Abbildung von beliebigen SystemC Prozessen

Typischerweise haben nur wenige im Modell vorhandene SystemC Prozesse di-
rekten Zugriff auf ein und dieselbe Menge von Zustandsvariablen. Werden alle
Prozesse, die potentiell auf eine Zustandsvariable zugreifen, auf den gleichen
SCC Kern statisch abgebildet, so kann diese Zustandsvariable in dessen priva-
ten Speicher abgebildet werden8. Dadurch wird der Kommunikationsaufwand
noch weiter verringert. Dabei sollte jedoch beachtet werden, dass durch die sta-
tische Abbildung beliebiger Prozesstypen der dynamische Lastausgleich weiter
eingeschränkt wird.

Die Umsetzung basiert auf einer Anwenderschnittstelle, mit deren Hilfe Prozess-
gruppen manuell definiert werden können. Die in einer Prozessgruppe befindli-
chen Prozesse werden dann immer auf ein und demselben SCC Kern evaluiert.
Da eine externe Vorhaltung von Zustandsvariablen, auf die nur die Prozesse ei-
ner Gruppe zugreifen, nicht mehr notwendig ist, können diese dauerhaft als in-
terne Variablen in den privaten Speicher des ausführenden Workers abgebildet
werden. Zur Klassifikation von Channels in intern oder extern existiert deswe-
gen ebenfalls eine Anwenderschnittstelle.

7Die aktuelle Implementierung setzt diesen Mechanismus ausschließlich für Signale vom Typ
sc_signal um. Bei anderen Primitive Channels, welche z.B. mehrere Writer unterstützen, kann ei-
ne verteilte Koordination der Aktualisierung z.B. dadurch verhindert werden, dass alle Prozesse,
die gleichzeitig schreibenden Zugriff auf ein und dasselbe Signal haben, immer auf den gleichen
Worker abgebildet werden.

8Prozesse, die potentiell auf einen Primitive Channel bzw. dessen Zustandsvariablen zugreifen,
können dadurch identifiziert werden, dass in ihrem Rumpf ein read() oder write() Aufruf auf dem
betreffenden Channel erfolgt.

103

4. Parallele SystemC Simulation für Multiprozessoren

Core 0 Private Memory

Channel 0

Core 1

Evaluate

Process 0 write()

Update
update()

vnext,cpy

vcur,cpy

Shared Memory

Channel 0

vnext

vcur

Evaluate

Process 1 read()

Update

Process 2

Private Memory

Channel 0

vnext,cpy

vcur,cpyread()

Function call

Data transfer

1

2

3

4

Sequence over wallclock time

Abbildung 4.10.: Pufferung beim Evaluate/Update Paradigma (Quelle: [Red11])

104

4.3. Asymmetrische synchrone Strategie

Für die Gruppierung und Klassifikation von Prozessen und Channels wurde be-
wusst eine für den Anwender sichtbare Schnittstelle gewählt. Als Erweiterung
könnte entsprechender Quellcode bei Bedarf auch automatisch auf Basis einer
Analyse des Prozess-Signal Graphen GPS erzeugt werden. Eine dafür geeignete
Werkzeugkette wurde in Kombination mit einer anderen Parallelisierungsstra-
tegie entwickelt (vgl. Abschnitt 4.5.6). An dieser Stelle wird allerdings auf eine
Automatisierung verzichtet.

4.3.6.5. Optimierung von sc_clock Channels

Taktsignale können in SystemC anhand eines spezialisierten sc_signal Channels
namens sc_clock modelliert werden. Ein sc_clock Channel besitzt die Besonder-
heit, dass der Signalwert zu äquidistanten Zeitpunkten automatisch zwischen 0
und 1 alterniert wird. Der Umschaltvorgang wird durch einen sc_clock-internen
Prozess gesteuert. Dieser generiert regelmäßig eine Timed Notification, auf die
ist er selbst sensitiv ist. Wird er durch eine Timed Notification getriggert, legt
er den zukünftigen Signalwert fest, ruft dabei request_update() auf und generiert
eine Delta Notification. Durch den Aufruf von request_update() wird der Signal-
wert letztlich aktualisiert. Erst durch die Delta Notification wird einem empfan-
genden Prozess die Existenz der Taktflanke signalisiert und dieser mit einem
Deltacycle Verzögerung evaluiert.

Die beschriebene Implementierung hat den Nebeneffekt, dass in den Timedcy-
cles, die durch den sc_clock Channel erzeugt werden, u.U. ausschließlich der
sc_clock-interne Prozess selbst ausgeführt wird. Ein solcher Timedcycle ist daher
schlecht bis gar nicht parallelisierbar.

Eine Optimierung besteht deswegen darin, die Taktflanke bereits im Timedcycle
per Timed Notification zu signalisieren und den sc_clock-internen Prozess ge-
meinsam mit allen anderen auf den sc_clock Channel sensitiven Prozessen zu
evaluieren. Der damit erzielbare Performanzgewinn ist umso größer, je geringer
die Anzahl an Deltacycles pro Timedcycle ist.

Durch die beschriebene Optimierung ist nicht mehr sichergestellt, dass der im
sc_clock Channel intern vorhandene Prozess vor den anderen sensitiven Prozes-
sen evaluiert wird. Um dennoch auszuschließen, dass die auf den Channel sen-
sitiven Prozesse einen veralteten Wert des Taktsignals lesen, wird dieser beim
Aufruf von read() nicht mehr aus der entsprechenden Zustandsvariablen gele-
sen, sondern direkt aus der aktuellen Simulationszeit abgeleitet.

105

4. Parallele SystemC Simulation für Multiprozessoren

4.3.7. Bewertung

In den folgenden Abschnitten wird die Leistungsfähigkeit des beschriebenen
Parallelisierungsansatzes untersucht und bewertet. Das Augenmerk liegt dabei
auf Ausführungsperformanz und Skalierbarkeit auf dem SCC.

Da sich die lokale Pufferung von Zustandsdaten sowie die statische Abbildung
von SC_THREAD Prozessen als essentiell für einen Performanzgewinn heraus-
gestellt haben, werden sie als fester Bestandteil der Implementierung betrachtet.
Die restlichen in Abschnitt 4.3.6 aufgeführten Strategien werden auf ihren zu-
sätzlichen Nutzen hin anhand unterschiedlicher Modelle untersucht.

Für die experimentelle Bewertung wurden zwei verschiedene SystemC Modelle
eingesetzt, I) eine synthetische Ringpipeline sowie II) ein detailliertes RTL Mo-
dell des HeMPS [75] (siehe Abschnitt 4.2.3.1). Die Rechenkerne des SCC wurden
bei 533 MHz, das Mesh bei 800 MHz und der DDR3 Speicher ebenfalls bei 800
MHz betrieben.

4.3.7.1. Synthetisches Szenario

Das Ziel der Simulation mit dem synthetischen Simulationsmodell war es, ein
erstes Gefühl für existierende Performanzgrenzen des asymmetrischen synchro-
nen Simulationsansatzes sowie der parallelen Simulation auf dem SCC über-
haupt zu bekommen. Die Struktur des synthetischen Pipelinemodells ist in Abb.
4.11 dargestellt.

Das Modell besteht aus zwei Modulen Component_1 und Component_2, die durch
eine konfigurierbare Anzahl m an Signalen vom Typ sc_uint<8> verbunden sind.
Jedes dieser beiden Module umfasst wiederum n Submodule, die als Pipeline-
stufen stage_1 ... stage_n bezeichnet sind. Jede Stufe besteht aus einem SystemC
Prozess vom Typ SC_METHOD oder SC_THREAD. Das Modell ist vollständig
synchron. In jedem Deltacycle führt jede Stufe eine konfigurierbare Anzahl c
an Fließkommaoperationen aus, liest die Werte der Eingangssignale, inkremen-
tiert diese um eins und schreibt sie in die Ausgangssignale. Aufgrund der vielen
existierenden Freiheitsgrade wurde die Untersuchung anhand des synthetischen
Modells auf den einfachen Fall eines Masters und zweier Worker beschränkt.

Konstante Anzahl an SystemC Prozessen
Zunächst wurde die Beschleunigung in Abhängigkeit der Modellparameter m
und c, der Prozesstypen SC_METHOD und SC_THREAD sowie der Kernelpa-
rameter DYNAMIC, FIX und MANUAL, welche aktivierten/deaktivierten dy-
namischen Lastausgleich sowie manuelle Gruppierung bezeichnen, gemessen.
Die Abb. 4.12 und 4.13 illustrieren die gemessene Beschleunigung durch Par-

106

4.3. Asymmetrische synchrone Strategie

Toplevel
Component_1

1

Stage_1 Stage_n

O

O

I

I

I

I

O

Om

1

m

1

m

Component_2
1

Stage_1 Stage_n

I

I

O

O

O

O

I

I

1

m

1

m

Abbildung 4.11.: Struktur des synthetischen Pipelinemodells

allelisierung im Vergleich zu sequentieller Ausführung auf einem SCC Kern in
Abhängigkeit der erwähnten Parameter.

Sowohl für m = 1 als auch für m = 100 ist ein deutlicher Anstieg der Beschleu-
nigung mit steigender Berechnungskomplexität c in den SystemC Prozessen zu
verzeichnen. Für kleine Werte von c ist die parallele Ausführung allerdings si-
gnifikant langsamer als die serielle. Die Berechnungskomplexität während der
Evaluation Phase ist in diesen Fällen offensichtlich zu klein, um den Kommuni-
kationsaufwand auszugleichen.

Der Einfluss der anderen Parameter ist stark von der Anzahl der Signale m zwi-
schen den Pipelinestufen abhängig. Im Allgemeinen skaliert die Implementie-
rung im Falle einer großen Anzahl an Signalen (m = 100) besser. Man würde
vermuten, dass sich eine große Anzahl an Signalen wegen häufiger SHM Zu-
griffe eher negativ auf die Performanz auswirkt. Offensichtlich überwiegen aber
sowohl bei statischer als auch auch bei dynamischer Abbildung zusätzlich ent-
stehende parallelisierbare Anteile, die dann in der parallelen Update Phase ge-
nutzt werden können.

Deaktivierter dynamischer Lastausgleich (FIX) und manuelle Gruppierung (MA-
NUAL) führen zu einer zusätzlichen Verbesserung der Beschleunigungswerte.
Dies wird speziell bei m = 100 deutlich (siehe Abb. 4.13). Die Verschiebung von
Teilen des Modellzustands in den privaten Speicherbereich und die Reduktion
von SHM Zugriffen erweist sich damit als vorteilhaft. Umgekehrt wird deutlich,
dass der dynamische Lastausgleich nicht zu einer besseren Performanz beitragen
kann.

Bei Verwendung von SC_THREAD Prozessen anstelle von SC_METHOD Pro-
zessen liegt die gemessene Beschleunigung generell um einige Prozentpunkte

107

4. Parallele SystemC Simulation für Multiprozessoren

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1 10 100 1000 10000 100000

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

Complexity (c)

DYNAMIC, SC_THREAD
DYNAMIC, SC_METHOD
FIX, MANUAL, SC_THREAD
FIX, MANUAL, SC_METHOD

Abbildung 4.12.: Beschleunigung der synthetischen Ringpipeline mit m = 1 und
n = 5

höher, da der Wechsel zum Stack einer SC_THREAD Co-Routine mehr Rechen-
aufwand generiert als der simple Aufruf einer SC_METHOD Callback-Funktion.
Dieser zusätzliche Rechenaufwand gehört zu den parallelisierbaren Anteilen ei-
nes Modells, da er auf den Workern erzeugt wird. Er wirkt sich vor allem für klei-
ne Werte von c aus. Für große Werte von c überwiegt hingegen der Berechnungs-
aufwand innerhalb der Prozesse, weswegen die Differenz in der Beschleunigung
zwischen der SC_THREAD und der SC_METHOD Variante verschwindet.

Variation der Anzahl an SystemC Prozessen
Schließlich wurde der Einfluss untersucht, den die Anzahl von SystemC Pro-
zessen n auf die Ausführungsperformanz hat. Als feste Modellparameter wurde
m = 10 und c = 10 gesetzt und SC_METHOD Prozesse ausgewählt. Dynami-
scher Lastausgleich wurde deaktiviert, und die Verteilung von Prozessen wurde
durch manuelle Gruppierung optimiert. Die Messergebnisse sind in Abb. 4.14
dargestellt.

Mit steigender Prozessanzahl steigt auch der Anteil des parallelisierbaren Re-
chenaufwands in der Evaluation Phase. Bei der gegebenen Konfiguration ist eine
relativ große Anzahl an Prozessen notwendig, um eine Beschleunigung > 0 zu
erzielen.

Der Abfall der Beschleunigung für n > 100 ist auf den mit wachsendem n stei-
genden Verwaltungsaufwand im Master und den steigenden Kommunikations-
aufwand mit dem Master zurückzuführen: Bei kleinen Werten für c müssen sehr
viele Prozesse in kurzen Zeitabständen vom Master geschedult werden. Auch
bei statischer Lastverteilung ist der Master für das Scheduling auf die Worker
verantwortlich. Die Zuteilung führt zu vielen Zugriffen auf die durch Master

108

4.3. Asymmetrische synchrone Strategie

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1 10 100 1000 10000 100000

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

Complexity (c)

DYNAMIC, SC_THREAD
DYNAMIC, SC_METHOD
FIX, MANUAL, SC_THREAD
FIX, MANUAL, SC_METHOD

Abbildung 4.13.: Beschleunigung der synthetischen Ringpipeline mit m = 100
und n = 5

und Worker gemeinsam genutzten Prozess-Warteschlangen. Da jeder Prozess in
jedem Deltacycle ausgeführt wird und neue Notifications erzeugt, müssen die-
se Notifications umgekehrt von den Workern an den Master zur Verarbeitung
übermittelt werden.

Die abfallende Beschleunigung für n > 100 hängt nicht mit der steigenden An-
zahl an Signalen zusammen, die ebenfalls durch die wachsende Anzahl an Pipe-
linestufen entstehen. Die zusätzlichen Signale werden, aufgrund der manuellen
Gruppierung, vollständig im privaten Speicher abgelegt. Sie verursachen deswe-
gen ausschließlich parallelisierbare Anteile. Die Anzahl an Signalen im externen
SHM bleibt hingegen konstant.

4.3.7.2. Reales Szenario

Im zweiten Experiment wurde die Ausführungsperformanz anhand einer RTL
Beschreibung des HeMPS evaluiert. In den durchgeführten Testläufen wurde auf
den Plasmakernen eine Dummy-Applikation ausgeführt: Jeder Plasmakern führt
wiederholt eine Anzahl an Ganzzahladditionen in einem Task aus. Anschließend
wird eine Nachricht über das simulierte NoC an einen benachbarten Plasmakern
verschickt.

Um eine Beschleunigung zu erzielen, mussten für die Messungen sämtliche Op-
timierungen angewendet werden, die in den vorangegangenen Abschnitten be-
schrieben wurden. Die Prozesse der einzelnen Plasma-Prozessoren wurden je-
weils zu einer Gruppe zusammengefasst. Das Hermes NoC mit den Routern
wurde in zwei Prozessgruppen zusammengefasst. Die die Gruppen verbinden-
den Signale wurden in den externen SHM abgebildet. Die Beschleunigungswer-

109

4. Parallele SystemC Simulation für Multiprozessoren

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

1 10 100 1000

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

Processes (n)

Abbildung 4.14.: Beschleunigung der synthetischen Ringpipeline in Abhängig-
keit der Anzahl an SystemC Prozessen

te, die bei der Ausführung eines 2x2 und eines 4x4 HeMPS Modells auf bis zu 16
Workern gemessen wurden, sind in Abb. 4.15 zu sehen.

Beim 2x2 Modell ist durch Parallelisierung keine Beschleunigung > 1 möglich.
Beim 4x4 Modell wird mit sechs Workern eine maximale Beschleunigung von
27% erreicht. Die Skalierbarkeit des Simulators auf eine größere Anzahl an SCC
Kernen ist deutlich limitiert: Die Beschleunigung beider Modelle stagniert zwi-
schen sechs und acht Workern und nimmt danach ab.

Die schlechte Skalierbarkeit kann zum einen auf den Schedulingaufwand im
Master, den Kommunikationsaufwand mit dem Master und den verhältnismä-
ßig geringen Berechnungsaufwand in jedem Worker zurückgeführt werden. Bei
stärkerer Parallelisierung kommt der Master der schnellen Parallelverarbeitung
in den Workern nicht mehr hinterher. Zum anderen wird mit steigender Anzahl
an Workern die globale Barriersynchronisation immer kostspieliger. Schließlich
ist die Beschleunigung durch die unterschiedlich großen Prozessgruppen und
die damit einhergehende ungleichmäßige statische Lastverteilung limitiert.

4.3.7.3. Diskussion

Die beschriebene Strategie wurde insbesondere unter der Prämisse implemen-
tiert, eine einfache dynamische Lastverteilung von SystemC Prozessen auf Ker-
nelkomponenten zu ermöglichen. Dies hat sich auf cachekohärenten SHM Mul-
tiprozessoren in Verbindung mit einem barrierbasierten Master/Worker Schema
als nützlich erwiesen. Daher wurde in dieser Arbeit ein zu bekannten Ansätzen
[232, 105] ähnliches Programmiermodell umgesetzt, das stark auf die Nutzung

110

4.3. Asymmetrische synchrone Strategie

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2 4 6 8 16

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

Number of Workers

2x2
4x4

Abbildung 4.15.: Beschleunigung der HeMPS Modells in Abhängigkeit von Mo-
dellgröße und Anzahl an Workern

von Shared Memory ausgelegt ist. Dieses hat sich auf dem SCC allerdings aus
folgenden Gründen als ungünstig herausgestellt:

1. Mangels hardwareseitiger Cachekohärenz existieren hohe Zugriffslatenzen
auf den externen SHM. Daher ist es schwer möglich, den Kommunikations-
aufwand durch den Berechnungsaufwand auszugleichen. Die dynamische
Lastverteilung ist dadurch nahezu wirkungslos.

2. Die zentralisierte Softwarearchitektur hat einen nicht zu vernachlässigen-
den Kommunikations- und Berechnungsaufwand im Master zur Folge, der
mit steigender Kernanzahl sehr schnell zum Flaschenhals wird.

3. Die globale Barriersynchronisation in Verbindung mit ungleicher statischer
Lastverteilung limitiert die Parallelität.

Wie sich bei den experimentellen Untersuchungen herausgestellt hat, sind eine
Vielzahl an Optimierungen notwendig, um mit dem beschriebenen Ansatz eine
messbare Beschleunigung der parallelen Simulation gegenüber der sequentiel-
len Simulation zu erzielen. Aus Sicht des Modells hat vor allem die Anzahl an
SystemC Prozessen, deren Rechenkomplexität und die damit eng verbundene
Zugriffsfrequenz auf Daten, die sich in gemeinsam genutzten Speicherbereichen
befinden, großen Einfluss auf die Effizienz.

Durch geeignete modellspezifische Optimierungen wie Gruppierung von Sys-
temC Prozessen, Einschränkung der Verfügbarkeit und Verschiebung von Daten
in den privaten Speicher konnte der Umfang an gemeinsam genutzten Daten
und die Zugriffsfrequenz auf diese Daten reduziert werden. Im folgenden Ab-
schnitt soll daher untersucht werden, inwieweit ein vollständiger Verzicht auf

111

4. Parallele SystemC Simulation für Multiprozessoren

globale Verfügbarkeit in Verbindung mit einer dezentralen Softwarearchitektur
zu besserer Effizienz beitragen kann.

4.4. Symmetrische asynchrone Strategie

In der Untersuchung im vorigen Abschnitt hat sich herausgestellt, dass sich die
asymmetrische Master/Worker Architektur in Verbindung mit der vollständig
synchronen Ausführung auf dem SCC schnell zu einem Flaschenhals entwickeln
kann. Die Anwendung dynamischer Lastverteilung konnte nicht signifikant zu
einem Ausgleich des Kommunikations- und Synchronisationsoverheads beitra-
gen. Vielmehr hat sich die Einschränkung der Datenverfügbarkeit in Verbindung
mit der statischen Abbildung des Simulationsmodells als eine Maßnahme mit
Potential zur Steigerung der Effizienz erwiesen.

Der in diesem Abschnitt beschriebene Ansatz zielt daher in erster Linie auf die
Erhöhung der Datenlokalität und die Vermeidung zentralisierter Kommunika-
tions- und Synchronisationsstrukturen ab. Dazu wird ein auf dem asynchronen
Null Message Algorithmus (vgl. Abschnitt 2.2.3.4) basierendes Verfahren entwi-
ckelt. Es werden Bedingungen hergeleitet, die zur Ausführung von RTL ähnli-
chen SystemC Modellen mit Hilfe des NMA erfüllt sein müssen. Anschließend
wird anhand einer prototypischen Implementierung die Leistungsfähigkeit be-
wertet. Der Ansatz wird durch eine teilautomatisierte Werkzeugkette ergänzt.
Teile dieses Abschnitts sind bereits in [RRE+12] publiziert. Die Werkzeugkette
wurde im Rahmen einer vom Autor betreuten Studienarbeit [Erd12] umgesetzt
und ist in Zusammenarbeit entstanden.

4.4.1. Anforderungen und Konzept

Folgende Anforderungen liegen der beschriebenen Strategie zugrunde:

I) Modellierungsmethode: Es soll zumindest das RTL Subset von SystemC
[244] unterstützt werden. Das Modell soll prinzipiell als ein Prozess-Signal
Graph GPS beschreibbar sein (vgl. Definition 4.2).

II) Abbildung des Simulationsmodells: Eine statische Abbildung des Simu-
lationsmodells auf die Ausführungsplattform ist ausreichend.

III) Datenpartitionierung: Gemeinsam genutzte Datenstrukturen sollen so weit
wie möglich in intern und lokal extern partitioniert werden.

IV) Kernelpartitionierung: Es soll eine symmetrische Kernelpartitionierung in
n identische Kernelkomponenten ks erfolgen, die jeweils alle Kernelphasen
implementieren:

112

4.4. Symmetrische asynchrone Strategie

∀i ∈ 1...n : P(ks
i) = {initi(), evali(), updatei(), (4.6)

dnoti f yi(), tnoti f yi()}

V) Synchronisation: Globale Synchronisation soll strikt vermieden werden.

Abb. 4.16 illustriert das resultierende Konzept. Wegen Anforderung I genügt es,
IRA korrekt aufzulösen. Wegen der Anforderungen II und III können bereits
in der Konzeptionsphase des parallelen Simulators weitergehende Optimierun-
gen (vgl. Abschnitt 4.2.4.6) zur Erhöhung der Datenlokalität eingeplant werden.
Beispielsweise kann statisch bestimmt werden, welche Variablen welche Kernel-
komponenten miteinander „verbinden“. Dies ermöglicht unmittelbar die Ablei-
tung der Kommunikationstopologie zwischen den Kernelkomponenten und die
Identifikation interner und lokal externer Variablen vor der Laufzeit (siehe Abb.
4.16). Wegen Anforderung IV implementiert jede Kernelkomponente alle Kernel-
phasen. Bis auf Anforderung V existieren keine Einschränkungen für die Wahl
des Synchronisationsverfahrens zwischen den Kernelkomponenten.

Kernel 1

In
te

rn
al

 D
at

a

External Local Data

Kernel n
Notification

Evaluate

Update

External Local Data

Notification

Evaluate

Update

External Local Data

Kernel 0
Notification

Evaluate

UpdateIn
te

rn
al

 D
at

a Internal D
ata

Abbildung 4.16.: Architekturkonzept der symmetrischen synchronen Strategie

113

4. Parallele SystemC Simulation für Multiprozessoren

4.4.2. Datenpartitionierung auf Kernelebene

Wie beim asymmetrischen Verfahren wird für die Umsetzung der Kernelkom-
ponenten jeweils ein vollständiger sequentieller Kernel verwendet, so dass auch
hier bereits interne Duplikate von U, Nτ , Nδ, R, τ und δ existieren. Da Kernel-
komponenten generell nur mit Nachbarn kommunizieren, genügt für die betrof-
fenen Variablen lokal externe Verfügbarkeit. Für die Realisierung von Kommu-
nikation und Synchronisation eignet sich ein nachrichtenbasierter Mechanismus.
Zur Umsetzung des nachrichtenbasierten Mechanismus wird im Gegensatz zur
asymmetrischen Strategie eine separate logische Ebene verwendet, mit der topo-
logieabhängige Funktionalität verwaltet werden kann. Im Fall von τ wird als
Alternative direkt gemeinsam genutzter Speicher verwendet (siehe Abschnitt
4.4.3.2).

Im Modell können bis auf eine Teilmenge der Signale, welche lokal extern ver-
fügbar sein müssen (vgl. Definition 4.4), alle Datenstrukturen als intern dekla-
riert werden. Um möglichst viel Spielraum für ein bestimmtes Synchronisations-
verfahren zu lassen, kann für ein lokal externes Signal ein vollständiges internes
Duplikat in jeder Kernelkomponente vorgehalten werden, welche auf das Signal
Zugriff hat.

4.4.3. Logische Ebene

Um globale Synchronisation zu vermeiden wird ein asynchrones PDES Verfah-
rens ähnlich dem NMA verwendet. Bei asynchroner PDES wird die Gesamtsi-
mulation nicht gezielt in einen global gültigen Zustand überführt (vgl. Abschnitt
2.2.3.4). Es gilt vielmehr, globale Wartezustände soweit als möglich zu vermei-
den. Typischerweise ist eine asynchrone PDES von der Topologie eines Modells
abhängig. Daher ist es sinnvoll, eine zusätzliche logische Ebene einzuführen, die
die topologieabhängige Funktionalität verwaltet.

Die logische Ebene besteht aus logischen Prozessen und logischen Links. Ein
logischer Prozess lpi kapselt genau eine Kernelkomponente ks

i (vgl. Abschnitt
4.2.3.2). Die SystemC Prozesse und internen Signale, die auf ks

i bzw. lpi abgebil-
det werden, sind daher identisch. Ein logischer Link lij von lpi nach lpj existiert
genau dann, wenn ein auf lpi abgebildeter SystemC Prozess auf ein externes Si-
gnal schreibt, das von einem auf lpj abgebildeten SystemC Prozess gelesen wird.
Das Netzwerk auf logischer Ebene kann insgesamt als ein Logischer-Prozess
Graph GLP(LP, L) modelliert werden:

Definition 4.5 (Logischer-Prozess Graph): Ein Logischer-Prozess Graph
GLP(LP, L) ist ein gerichteter Graph mit Knoten lp ∈ LP und Kanten l ∈ L. Jeder
Knoten repräsentiert genau einen logischen Prozess und jede Kante einen gerichteten

114

4.4. Symmetrische asynchrone Strategie

logischen Link. Zwei Knoten lpi und lpj sind durch eine Kante lij verbunden, wenn ein
Nachrichtenaustausch von lpi in Richtung lpj möglich ist. lpi wird dann als adjazent
zu lpj bezeichnet.

4.4.3.1. Nachrichtenbasierte Kommunikation über logische Links

Da Prozesse in RTL Modellen nur über Signale kommunizieren, lassen sich alle
extern ausgelösten Änderungen am internen Zustand einer Kernelkomponente
auf Änderungen am Zustand externer Signale zurückführen. In einer parallelen
SystemC RTL Simulation dient ein logischer Link daher ausschließlich zur Über-
tragung von Signalnachrichten für alle auf ihn abgebildeten externen Signale:

Definition 4.6 (Signalnachricht): Eine Signalnachricht, die von lpi an lpj über lij
übertragen wird, enthält folgende Informationen:

• Eine id des zugehörigen externen SystemC Signals s,

• eine Variable vmsg, welche den Wert der vnext Variablen des Signals übermittelt,

• einen Zeitstempel τ
msg
i des Sendezeitpunkts in lpi.

Mit der id können Nachrichten einem bestimmten externen Signal zugeordnet
werden. Mit der vmsg Variable wird die neue Zustandsinformation eines Signals
in Form des nächsten gültigen Signalwerts vnext übermittelt. Der Zeitstempel
τ

msg
i dient zur Ableitung des Zeitpunktes der Aktualisierung des sichtbaren Si-

gnalzustandes (vcur) im Empfänger.

Für eine asynchrone PDES auf Basis von Signalnachrichten muss ein logischer
Link das FIFO Prinzip auf der gesamten Kommunikationsstrecke zwischen zwei
logischen Prozessen implementieren (vgl. Abschnitt 2.2.3.4). Vorausgesetzt, die
Basisdienstebene garantiert bereits eine FIFO-basierte Übertragung zwischen Pro-
zessorkernen, so sind die Hauptaufgaben der logischen Ebene bzgl. Kommuni-
kation:

1. Zuordnung von ausgehenden Signalnachrichten zu logischen Links,

2. Zuordnung von auf logischen Links eingehenden Signalnachrichten zu Si-
gnalen und deren Zwischenpufferung entsprechend dem umgesetzten Syn-
chronisationsverfahren.

4.4.3.2. Basisverfahren zur Synchronisation

Das Basisverfahren zur Synchronisation auf logischer Ebene ist eine abgewan-
delte Form des NMA. Es basiert (im Unterschied zum SystemC Kernel) auf ei-

115

4. Parallele SystemC Simulation für Multiprozessoren

nem einfachen skalaren Zeitmodell. Logische Prozesse besitzen lokale Zeiten τi.
Jedem logischen Link lij wird eine interne Variable genannt Linkzeit τlink

ij und
ein Lookahead ∆lτ

ij zugeordnet:

Definition 4.7 (Linkzeit): Die Linkzeit τlink
ij eines logischen Links lij von lpi nach

lpj entspricht der letzten in lpj bekannten lokalen Zeit τi von lpi.

Zur Ableitung der Linkzeit kann der Zeitstempel τmsg von Signalnachrichten
verwendet. Unter der Voraussetzung, dass Nachrichten in der Reihenfolge ihrer
Zeitstempel übertragen werden, gibt der Zeitstempel den frühesten Zeitpunkt
an, an dem in Zukunft eine Nachricht von lpi verschickt werden kann. Beim
Empfang in lpj entspricht der Zeitstempel τ

msg
i dem letzten bekannten Wert der

Linkzeit τlink
ij .

Der Lookahead eines logischen Links lij spezifiziert dessen zeitliche Verzöge-
rung und ist eine Konstante. Entsprechend dem NMA [78] darf ein logischer
Prozess immer dann in der Zeit voranschreiten, wenn seine lokale Zeit kleiner
ist als das Minimum aus der Summe von Linkzeiten und Lookaheads ∆τ aller
eingehenden logischen Links. Diese Bedingung für den Zeitfortschritt lässt sich
im Kontext von SystemC anhand einer spezialisierten Fassung der lokalen Kau-
salitätsbedingung aus Definition 2.2 wie folgt schreiben:

Definition 4.8 (LOCC: Local Causality Condition): Ein logischer Prozess lpj darf
die nächste Notification bei τnext

j verarbeiten, wenn

∀lpi ∈ LPadj
j : τnext

j ≤ τlink
i + ∆lτ

ij. (4.7)

Für den maximal möglichen Zeitfortschritt gilt:

τmax
j = min

∀i
(τlink

i + ∆lτ
ij) (4.8)

Damit die Linkzeit τlink
ij auch ohne Nachrichten von lpi abgeleitet werden kann

und Deadlocks vermieden werden, muss lpi regelmäßig seine lokale Zeit τi ver-
fügbar machen. Im NMA werden dazu Null Messages verwendet. In dieser Ar-
beit wird ein alternativer Ansatz gewählt: Es wird eine lokal externe Variable
τlink

i deklariert, die für alle adjazenten logischen Prozesse zugänglich ist. lpi
muss den Wert von τi dann regelmäßig in τlink

i schreiben. τlink
i muss von lpi

immer dann auf τi aktualisiert werden, wenn sicher ist, dass (trotz evtl. interner
Nachrichtenpufferung) tatsächlich keine Nachrichten mit einem kleineren Zeit-
stempel als τi verschickt werden können.

116

4.4. Symmetrische asynchrone Strategie

Voraussetzung für die beschriebene Methode ist, dass die Zielplattform die Rei-
henfolge von Speicherzugriffen eines einzelnen Prozessors auf beliebige gemein-
sam genutzte Bereiche erhält. Dies ist beim SCC und gewöhnlichen cachekohä-
renten Architekturen gegeben.

4.4.3.3. Deadlocks durch Deltacycles

Durch die Anforderung, dass Kommunikation nur mit benachbarten Prozessen
stattfinden sein soll, entsteht die Einschränkung, dass keine Zyklen aus logischen
Links mit einem Zero Lookahead (vgl. Abschnitt 2.2.3.4) von ∆lτ = 0 existieren
dürfen, da diese zu Deadlocks führen [78]. Dies sei an folgendem Beispiel ver-
deutlicht:

Eine parallele Simulation bestehe aus drei logischen Prozessen lp0 bis lp2, die
entsprechend Abb. 4.17 über logische Links miteinander in einem Zyklus ver-
bunden sind. Jeder logische Link habe einen Lookahead von ∆lτ = 0. Ein Zeit-
fortschritt ∆τ > 0 kann nur durchgeführt werden, wenn alle eingezeichneten
Ungleichungen gleichzeitig erfüllt sind, was niemals möglich ist.

l01

l12l20

τ1 < τ0

τ2 < τ1

τ0 < τ2

lp0 lp1

lp2

Abbildung 4.17.: Entstehung von Deadlocks beim Null Message Algorithmus

Das gleiche Problem tritt auch auf, wenn man den NMA auf eine parallele Sys-
temC Simulation mit vektoriellem Zeitmodell (vgl. Abschnitt 2.3.2.2) anwenden
möchte. Durch die Verzögerung eines Signals von nur einem Deltacycle exis-
tiert bzgl. τ generell ein Lookahead von ∆lτ = 0. Zirkuläre Abhängigkeiten im
Netzwerk logischer Prozesse führen dann dazu, dass die Simulation nicht in Ti-
medcycles voranschreiten kann. Darüber hinaus geht die partielle Ordnung von
Notifications während eines Timedcycles verloren. Ohne geeignete Maßnahmen
ist der NMA daher nicht auf SystemC RTL Modelle u.ä. anwendbar.

117

4. Parallele SystemC Simulation für Multiprozessoren

4.4.3.4. Elimination zirkulärer Abhängigkeiten

Der gewählte Lösungsansatz basiert auf der kontrollierten Relaxation der Syn-
chronität zwischen adjazenten logischen Prozessen von der Ebene der Delta-
cycles auf die Ebene der Timedcycles. Im Folgenden wird gezeigt, dass durch
Elimination von zirkulären Abhängigkeiten mit ∆lτ = 0 auf Basis gezielter La-
tenzannotationen dennoch Zyklengenauigkeit einer NMA basierten parallelen
RTL Simulation erreicht werden kann. Das Verfahren setzt sich aus zwei Schrit-
ten zusammen:

1. Klassifikation von logischen Links hinsichtlich einer sog. Kritikalitätsei-
genschaft.

2. Gezielte Annotation zeitlicher Verzögerungen und Einschränkung der Ab-
bildung des Simulationsmodells.

Klassi�kation logischer Links
Im Folgenden wird angenommen, dass logische Links in deadlock-kritisch und
deadlock-unkritisch klassifizierbar sind und nur kritische Zyklen bestehend aus dead-
lock-kritischen logischen Links zum Deadlock führen. In diesem Fall können kri-
tische Zyklen durch geeignete Abbildung eines Simulationsmodells ausgeschlos-
sen werden. Abb. 4.18 illustriert dazu ein Beispiel.

Die linke Seite von Abb. 4.18 zeigt einen logischen Prozessgraphen GLP(LP, L).
O.B.d.A. sind logische Prozesse lp ∈ LP über logische Links l ∈ L in einer Mesh-
Topologie verbunden. Wenn keine Klassifikation logischer Links vorgenommen
wird, existieren zirkuläre Abhängigkeiten mit einem Lookahead von ∆lτ = 0
zwischen jedem Paar logischer Prozesse. Genauer gesagt: Der gesamte Graph
GLP ist stark zusammenhängend [152]. Die logischen Prozesse können folglich
niemals in Timedcycles voranschreiten.

Ist es hingegen möglich, logische links in kritisch (c) und nicht-kritisch (nc) zu
klassifizieren, so können zirkuläre Abhängigkeiten u.U. eliminiert werden, da
diese nur noch für kritische Links berücksichtigt werden müssen. Dies wird auf
der rechten Seite von Abb. 4.18 deutlich, in der nur noch der Graph Gcrit

LP (LP, Lc),
ein Teilgraph von GLP mit Lc ⊆ L, dargestellt ist.

Im Fall von SystemC RTL bündelt ein logischer Link ausschließlich Signale. Da-
her muss die Kritikalitätseigenschaft eines logischen Links aus den Eigenschaf-
ten der Signale abgeleitet werden, die auf ihn abgebildet sind. Beispielsweise
gilt:

Definition 4.9 (LDP: Link Delay Property): Der Lookahead δlτ
ij eines logischen Links

lij entspricht der minimalen Verzögerung ∆smin
ij aller SystemC Signale s ∈ Sij, die lij

118

4.4. Symmetrische asynchrone Strategie

bündelt. Der logische Link lij wird als delta-verzögert bezeichnet, wenn ∆lτ
ij = 0. Er

wird als zeitverzögert bezeichnet, wenn ∆lτ
ij > 0.

Mit Definition 4.9 folgt für die Kritikalität eines logischen Links:

Definition 4.10 (LCC1: First Link Criticality Condition): Ein logischer Link ist
deadlock-kritisch, wenn er delta-verzögert ist. Ansonsten ist er deadlock-unkritisch.

Um kritische Zyklen zu vermeiden, muss ein Modell derart auf logische Prozesse
abgebildet werden, dass keine delta-verzögerten und damit kritischen logischen
Links entstehen, die Zyklen in Gcrit

LP erzeugen. Da ein SystemC Signal normaler-
weise aber immer delta-verzögert ist, existieren nach Definition 4.10 weiterhin
nur kritische logische Links. Um dieses Dilemma zu lösen, werden Signale in
einem zweiten Schritt gezielt mit zeitlichen Verzögerungen ∆sτ > 0 annotiert.

nc ncncnc

ncncncncnc

nc
lp0 lp1 lp2

lp3 lp4 lp5

lp6 lp7 lp8

c

c

c

c

c

c

nc

nc

nc

nc

nc

ncnc

nc

lp0 lp1 lp2

lp3 lp4 lp5

lp6 lp7 lp8

c

c

c

c

c

c

Abbildung 4.18.: GLP (links) und Gcrit
LP (rechts) ohne zirkuläre Abhängigkeiten

zwischen deadlock-kritischen logischen Links

Annotation von Verzögerungen und Modellabbildung
Grundsätzlich erfolgt eine Annotation von Verzögerungen nur an externe Signa-
le. Externe Signale sind daran zu erkennen, dass sie im Verlauf der Partitionie-
rung (siehe Definition 4.4) auf logische Links abgebildet werden. Zyklengenaue
Simulation einer Partitionierung ist möglich, wenn nach der Annotation folgen-
de Bedingungen erfüllt sind:

119

4. Parallele SystemC Simulation für Multiprozessoren

• Bedingung I: Wenn ein externes Signal Teil einer Menge von externen Si-
gnalen ist, die sich im gleichen kombinatorischen Pfad befinden, so muss
die Summe der annotierten Verzögerungen ∑ ∆sτ

i aller externen Signale in-
nerhalb dieses Pfades kleiner als die minimale Aktivierungsperiode ∆τperiod

des Modells9 sein.

• Bedingung II: Kombinatorische SystemC Prozesse10 müssen immer eine
vollständige Sensitivitätsliste besitzen.

• Bedingung III: Zwischen logischen Prozessen dürfen keine kritischen Zy-
klen existieren.

Bedingung I ist für den Erhalt der Zyklengenauigkeit notwendig. Sie garan-
tiert, dass kombinatorische Prozesse in jedem Fall rechtzeitig vor der nächsten
Taktflanke einen stabilen Endzustand erreichen. Die Erfüllung von Bedingung I
schließt somit aus, dass Annotationen nicht zu einer Verzögerung bis nach der
nächsten Taktflanke führen. Die partielle Ordnung, die durch die Deltacycles de-
finiert ist, bleibt dabei nur insoweit erhalten, wie es für zyklengenaue Simulation
notwendig ist.

Bedingung II garantiert, dass neue Signalwerte nicht gespeichert werden, bevor
deren Änderung zu einem späteren Zeitpunkt von einem lesenden Prozess re-
gistriert wird. Durch unvollständige Sensitivitätslisten gespeicherte Werte sind
im Allg. von der durch die Deltacycles definierten partiellen Ordnung von Pro-
zessaktivierungen abhängig. Ändert sich diese, so ändern sich die gespeicherten
Werte und damit u.U. der Endzustand der Signale, der im nächsten Taktzyklus
gelesen wird.

Generell würden bei einer Logiksynthese von Modellen mit unvollständiger Sen-
sitivitätsliste sog. Latches entstehen. Latches werden nur in wenigen Spezialfäl-
len benötigt und in synchronen Schaltwerken normalerweise gemieden, da sie in
der späteren Implementierung meist zu Glitches und Timingfehlern führen. Pro-
zesse mit unvollständiger Sensitivitätsliste können daher ausgeschlossen wer-
den.

Bedingung III ist schließlich notwendig, um Deadlocks zu verhindern. Kritische
Zyklen sind in jedem Fall ausgeschlossen, wenn alle vorhandenen externen Si-
gnale mit Werten ∆sτ > 0 annotiert werden können.

Sind alle Bedingungen erfüllt, kann das partitionierte und annotierte RTL Modell
unmittelbar mit dem NMA basierten Verfahren aus Abschnitt 4.4.3.2 parallel und
zyklengenau ausgeführt werden. Dabei ist zu beachten, dass Taktsignale grund-
sätzlich nicht verteilt werden können. Eine Propagation des Taktsignals durch

9Die minimale Aktivierungsperiode ∆τperiod entspricht üblicherweise einem oder einem halben
Taktzyklus.

10Kombinatorische Prozesse sind SystemC Prozesse, die (auch) asynchron durch beliebige Signale
und nicht nur durch das Taktsignal aktiviert werden können.

120

4.4. Symmetrische asynchrone Strategie

mehrere logische Prozesse würde dazu führen, dass jeder vom Taktsignal durch-
laufene logische Prozess dieses um den Betrag des Lookahead verzögert. Dieses
Problem kann dadurch umgangen werden, dass jede Modellpartition mit einem
separaten SystemC Prozess für die Taktgenerierung ausgestattet wird.

4.4.4. Integration nachrichtenbasierter Kommunikation

Zur Integration der Abschnitt 4.4.3.1 beschriebenen nachrichtenbasierten Kom-
munikation mit dem SystemC Kernel wird ein neuer Channeltyp namens PDES-
Signal eingeführt. Eingehende und ausgehende logische Links werden innerhalb
der logischen Prozesse mit Hilfe sog. Sockets repräsentiert. Aktualisierungen
ausgehender externer Signale des Typs PDESSignal werden in Signalnachrich-
ten verpackt und mit Aufruf der write() Methode direkt an das zugehörige Aus-
gangssocket übermittelt. Eingehende Signalnachrichten werden von einem Ein-
gangssocket an einen InputAdaptor weitergeleitet. Für jedes externe Eingangssi-
gnal existiert ein separater Adapter im empfangenden logischen Prozess. Dessen
Aufgabe ist nicht nur die reine Zwischenpufferung. Vielmehr dient er zur kausal
korrekten Integration eingehender Kommunikation in den SystemC Kernel.

In Abb. 4.19 ist die Implementierung eines Adapters für einen logischen Pro-
zess lpi dargestellt. Nachrichten werden durch Aufruf von insert_message() vom
Eingangssocket gelesen. Die Behandlung der Signalnachricht hängt dann vom
Zeitstempel der Nachricht und der lokalen Zeit des empfangenden logischen
Prozesses lpi ab:

1. τmsg + ∆sτ = τi: In diesem Fall erfolgt die Aktualisierung des zugehörigen
Signals durch Aufruf von imm() und Erzeugung einer Immediate Notifica-
tion direkt.

2. τmsg + ∆sτ > τi: Dieser Fall erfordert eine Verzögerung der Aktualisie-
rung bzgl. τ. Dies erfolgt mit Hilfe der Methode timed() und einem Update
FIFO. Falls der FIFO bei Aufruf von timed() leer ist, so wird zum Zeitstem-
pel τmsg einer Nachricht die Verzögerung ∆sτ des zugehörigen Signals ad-
diert und auf ω eine Timed Notification registriert. Anschließend wird die
Nachricht in den Update FIFO geschrieben. Zusätzlich zu den normalen
SystemC Prozessen im Modell existiert innerhalb des Adapters ein Prozess
namens update_process(), welcher auf Notifications von ω sensitiv ist. So-
bald τi = τmsg + ∆sτ erreicht ist, existieren zwei Möglichkeiten:

a) Ein lesender Prozess im Modell wird bei τi vor update_process() aus-
geführt: In diesem Fall wird die Aktualisierung durch Aufruf von up-
date_process() aus der read() Methode heraus und Einlesen des Wertes
der obersten Signalnachricht im FIFO durchgeführt.

121

4. Parallele SystemC Simulation für Multiprozessoren

b) update_process() wird bei τi vor allen lesenden Prozessen im Modell
ausgeführt: In diesem Fall erfolgt die Aktualisierung durch den Auf-
ruf von update_process() vom SystemC Kernel.

Nach der Aktualisierung wird innerhalb von update_process() die oberste
Signalnachricht im Update FIFO gelöscht. Falls der FIFO nicht leer ist, wird
der Zeitstempel der nächsten Signalnachricht zur Registrierung einer neu-
en Timed Notification auf ω verwendet.

Input/Output Port

Module

read() Vcur

Vnext

ω

PDES Signal

Input A
daptor

Update
FIFO

update()

From Kernel Layer

Output
Socket

Input
Socket

From Logical Layer

To Kernel Layer

insert_message()

timed() imm()

update_process()

request_update()

write()

Abbildung 4.19.: Integration nachrichtenbasierter Kommunikation

4.4.5. Integration des Synchronisationsverfahrens

Zur detaillierten Beschreibung des Verfahrens werden zunächst folgende zusätz-
liche Variablen eingeführt:

• τnext: Speichert den (skalaren) Zeitstempel der nächsten lokal vorhandenen
Timed Notification / des nächsten lokal vorhandenen Timeouts.

• τbound: Speichert den den Zeitstempel, der entsprechend Ausdruck 4.8 den
nächsten maximal möglichen Zeitfortschritt spezifiziert.

122

4.4. Symmetrische asynchrone Strategie

Die Integration der Synchronisationsverfahrens mit einer Kernelkomponente ks
i

in einen logischen Prozess lpi kann anhand folgender Aktionen beschrieben wer-
den:

• checkLOCC(τnext): Prüfe, ob für lpi ein Zeitfortschritt entsprechend der LOC
Bedingung aus Definition 4.8 möglich ist. Gib anschließend die maximale
Zeitgrenze τbound entsprechend Ausdruck 4.8 zurück, bis zu der ohne Ver-
letzung kausaler Abhängigkeiten ein Zeitfortschritt durchgeführt werden
kann.

• updateT(): Aktualisiere die τlink
i Variable. Prüfe dabei, ob sich noch Nach-

richten in lokalen Ausgangspuffern der Sockets befinden (falls beim letzten
Aufruf von dispatch() nicht alle Nachrichten verschickt werden konnten).
Wenn nein, setze τlink

i auf τi. Wenn ja, setze τlink
i auf den Zeitstempel der

zuletzt versendeten Nachricht.

Folgende Aktion modelliert den Zugriff auf logische Links:

• dispatch(): Leite von der lokalen Simulation generierte und evtl. noch im lo-
kalen Senderpuffer (vgl. Anhang A.2) zwischengespeicherte Nachrichten
an die logischen Prozesse weiter, für die die Nachrichten bestimmt sind.
Lese dann alle aktuell in den Eingangssockets verfügbaren Nachrichten
aus. Identifiziere das zu einer Signalnachricht gehörige Signal und füge
den empfangenen neuen Signalwert vmsg durch Aufruf der insert_message()
Methode auf dem zugehörigen Input Adaptor in die Simulation ein. Setze
die Linkzeit der durch die Eingangssockets repräsentierten eingehenden
logischen Links auf den Zeitstempel der Nachricht, die zuletzt von einem
zu ihm gehörigen Eingangssocket gelesen wurde. Falls auf einem Link kei-
ne Nachricht empfangen wurde, so verwende die lokal externe τlink Varia-
ble des zugehörigen benachbarten logischen Prozesses zur Ableitung der
Linkzeit.

Abb. 4.20 illustriert den Zustandautomaten. Die zeitliche Synchronisation mit
anderen logischen Prozessen in scheckLOCC kann wegen der Annotation von Ver-
zögerungen bzgl. τ an Signale mit dem Empfang von Aktualisierungen verbun-
den sein kann (Rückwärtspfad von scheckLOCC nach sdispatch). Wenn diese unmit-
telbar lauffähige Prozesse erzeugen (|R| 6= 0 im Rückwärtspfad von sdispatch nach
seval) wird sofort ein weiterer Deltacycle durchgeführt. Dadurch ist vollständi-
ger Empfang aller Nachrichten eines Deltacycles nicht garantiert und es wird
eine nicht-deterministische Anzahl an Deltacycles per Timedcycle generiert. Da
das RTL Subset vorausgesetzt wird und unvollständige Sensitivitätslisten ausge-
schlossen sind, bleibt die Zyklengenauigkeit dennoch erhalten.

123

4. Parallele SystemC Simulation für Multiprozessoren

sdnotify

seval

stnotify

[τ i >= τmax]

[|Ri| == 0]/
δ i = δ i + 1;

supdate

init

scheckLOCC

[|Ui| == 0]

[|Ri| != 0]/ eval(Ri);

[|Ui| != 0]/ update(Ui);

[τbound >= τnext]/
τ i = τnext; tnotify(τ i,N

τ
i);

updateT();

[|Nδ
i| != 0]/ dnotify(Nδ

i);

[τ i < τmax]
sdispatch

[|Nδ
i| == 0]/

dispatch();

[|Ri|==0]/
τnext = nextTime();

τbound= checkLOCC(τnext);

[|Ri|!=0]

[τbound < τnext]/
τ i = τbound;
updateT();
dispatch();

Abbildung 4.20.: Asynchrone Zustandsmaschine in einer Kernelkomponente ks
i

124

4.4. Symmetrische asynchrone Strategie

4.4.6. Manuelle Partitionierung des Simulationsmodells

Die Partitionierung des Simulationsmodells muss manuell spezifiziert werden.
Dies beinhaltet die I) Zuweisung von SystemC Prozessen zu Partitionen und II)
die Deklaration von Signalen als interne und externe Signale.

Zur Umsetzung von Punkt I) wird eine neue Wrapper-Basisklasse zur Verfü-
gung gestellt. Diese erlaubt eine Partitionierung des Modells auf dem Tople-
vel mit einer Granularität von Modulen. Für jeden Modultyp auf dem Tople-
vel muss durch Ableitung von der neuen Basisklasse ein Wrapper entwickelt
werden. Instanzen der Module müssen dann durch Instanzen der spezialisier-
ten Wrapper ausgetauscht werden. Ein Wrapper erlaubt die bedingte Instanzi-
ierung des gekapselten Moduls anhand eines Flags. Auf diese Art und Weise
kann ein Modell grundsätzlich mit Modulgranularität verteilt werden. Durch
Nummerierung werden Wrapper-Instanzen Modellpartitionen zugeordnet. Zur
Umsetzung von Punkt II) müssen alle Signale, die Wrapper-Instanzen verbin-
den, durch den neuen PDESSignal Channeltyp ausgetauscht werden. Anhand
der Schnittstelle des PDESSignal Channeltyps kann der Lookahead spezifiziert
werden.

4.4.7. Abbildung auf die Speicherarchitektur des SCC

Zur Abbildung auf die SCC Speicherarchitektur werden logische Prozesse wie
in Abschnitt 4.3.5 mit RCCE UEs [15] als Betriebssystemprozesse implementiert.
Im privaten Speicher jedes beteiligten SCC Kerns befindet sich ein vollständi-
ges Duplikat des Programmcodes. Im Unterschied zum asymmetrischen Ansatz
wird für die Speicherung der Daten kein externer SHM genutzt. Diese sind fast
vollständig im privaten Speicher der SCC Kerne hinterlegt. Nur im MPB Bereich
eines jeden logischen Prozesses lpi existiert jeweils eine Instanz eines Shared Ob-
ject und eines Circular Buffer Primitivs. Ersteres dient zur Speicherung der Link-
zeit in Form der τlink

i Variablen. Letzteres dient zur Realisierung der abstrakten
FIFOs der logischen Links. Abb. 4.21 illustriert die resultierende Verteilung auf
die Speicherarchitektur des SCC.

4.4.8. Teilautomatisierte Werkzeugunterstützung

Zur Unterstützung der beschriebenen symmetrischen Parallelisierungsstrategie
ist eine teilautomatisierte Werkzeugkette entstanden, die beide Schritte der in
Abschnitt 4.2.3 beschriebenen Methodik zur Simulationssynthese implementiert.
Für das in dieser Arbeit verwendete HeMPS MPSoC [75] existierte bereits eine
Generator (HeMPS Editor) mit einer grafischen Benutzeroberfläche zur manu-

125

4. Parallele SystemC Simulation für Multiprozessoren

Shared off-chip DRAM

Private DRAM

Shared on-chip SRAM (MPB)

Private DRAM

τlink
1FIFO1

External variables and data structures

All others (internal variables, data structures and program code)

Core 1
ks

1

Core 2
ks

2

Private DRAM Core n
ks

n

τlink
2FIFO2 τlink

nFIFOn

Abbildung 4.21.: Speichernutzung bei symmetrischer Kernelpartitionierung

ellen Abbildung der Applikation auf das MPSoC Modell. Dieser wurde um die
notwendigen Funktionen erweitert.

4.4.8.1. Originaler HeMPS Editor

Mit der originalen Version des Generatorwerkzeugs kann sowohl eine HeMPS
Hardwareplattform in Form von Anzahl der PEs, Topologie, Speichergröße, etc.
als auch die Abbildung von Tasks einer oder mehrerer Applikationen auf die
HeMPS Plattform spezifiziert werden. Als Ergebnis erhält man zunächst eine
Konfigurationsdatei (SimulationModelInfoFile.hmp Datei), in der die Plattforms-
pezifikation und die Abbildungsinformation in einem proprietären Format hin-
terlegt sind.

Mit Hilfe der SimulationModelInfo.hmp Datei und der HeMPS Komponentenbi-
bliothek (HeMPS Library) wird das Modell der Hardwareplattform generiert. Mit
der Abbildungsinformation in der SimulationModelInfo.hmp Datei, dem Applika-
tionscode und den Templatedateien für das Plasma RTOS (Tasks and RTOS) wird
die Softwareplattform erzeugt. Die Software wird anschließend kompiliert und
das Task Repository des HeMPS Masters mit den resultierenden Binärdaten in-
itialisiert. Das Ergebnis ist ein vollständiges Simulationsmodell, das Hardware
und Software beinhaltet.

126

4.4. Symmetrische asynchrone Strategie

4.4.8.2. Erweiterter HeMPS Editor

Der beschriebene Prozess der Abbildung der Applikation auf das Simulations-
modell wurde direkt mit dem Prozess der Abbildung des Simulationsmodells
auf die Ausführungsplattform kombiniert und in einen Extended HeMPS Genera-
tor integriert. Damit liegt die Durchführung beider Schritte prinzipiell im Aufga-
benbereich des Modellerstellers. Der gesamte Ablauf ist in Abb. 4.22 dargestellt.

alternative
Extended
Model
Code
*.h
*.cpp

C/C++ Compiler/Linker Map & Run Simulation

Parallel
Execu-
table

Sequential
SystemC
Kernel
*.h
*.cpp

PDES
Kernel
Extension
*.h
*.cpp

Extended HeMPS
Generator

Simulation
Model
Info
.hmp

Executable

Abstract Data

C++ Code Static Library

CCMP
IPC
Backend
*.h
*.cpp

SCC IPC
Backend
*.h
*.cpp

HeMPS
Library
*.h
*.cpp

Tasks
and
RTOS
*.h
*.c

Abbildung 4.22.: Teilautomatisierte Werkzeugkette

Die entwickelte Lösung nutzt die in Abschnitt 4.4.6 beschriebene API zur ma-
nuellen Modellpartitionierung. Für jedes Toplevel Modul des HeMPS Modells
(PEs, NIs, ROs) wurde ein Wrapper entwickelt. Sowohl die grafische Benutze-
roberfläche des originalen HeMPS Editors als auch das proprietäre Format der
Konfigurationsdatei wurden so erweitert, dass Partitionen aus Toplevelmodulen
anhand von IDs spezifiziert werden können. Mit Hilfe von Platzhaltern, die ma-
nuell in ein Template der Topleveldatei des SystemC Modells eingefügt wurden,
kann das Generatorwerkzeug den Code zur Instanziierung automatisch modifi-
zieren und damit die Modellpartitionierung ändern. Das Ergebnis des Generie-
rungsvorgangs ist der sog. Extended Model Code.

In Kombination mit den Quellcodedateien des parallelen SystemC Kernels (Bi-
bliotheken der Kernelebene, der logischen Ebene und der Basisdienstebene) kann
anschließend durch Kompilation und Verlinkung das ParallelExecutable erzeugt
werden. In Abhängigkeit des gewählten Backends zur Inter-Process Communicati-
on (IPC) auf Basisdienstebene ist dieses auf dem SCC oder einem cachekohären-
ten SHM Multiprozessor ausführbar. Mit Hilfe eines simplen Skripts wird das

127

4. Parallele SystemC Simulation für Multiprozessoren

Parallel Executable auf der Zielplattform gestartet. Abb. 4.23 zeigt beispielhaft
die erweiterte grafische Benutzeroberfläche des erweiterten HeMPS Generators.
Im Beispiel existieren drei Partitionen. Module, die ein und derselben Partition
angehören, sind farblich identisch unterlegt.

Abbildung 4.23.: Erweiterter HeMPS Editor

4.4.8.3. Randbedingungen zur Verteilung von HeMPS

Damit HeMPS korrekt ausgeführt wird, muss die Verteilung von Toplevel Mo-
dulen auf logische Prozesse und die Annotation von externen Signale so erfol-
gen, dass die Bedingungen aus Abschnitt 4.4.3.4 erfüllt sind. Eine Analyse des
Quellcodes des Simulationsmodells lässt folgende Schlüsse zu:

• Bedingung I: Um das HeMPS Modell zwischen einem Network Interface
und dem zugehörigen Router zu partitionieren, muss ∆sτ einen beliebigen
Wert aus folgendem Intervall besitzen: 0 < ∆sτ < ∆τcycle

2 . Dies ist möglich,
da sich keines der Signale zwischen einem Network Interface und dem zu-
gehörigen Router auf ein und demselben kombinatorischen Pfad befindet.

128

4.4. Symmetrische asynchrone Strategie

Die Schranke von ∆τcycle

2 ist durch das Kommunikationsprotokoll zwischen
den NoC Routern gegeben, welches die positive und die negative Taktflan-
ke nutzt. Um das sog. Time Creep Problem [113] zu vermeiden und einen
maximalen Lookahead zu erhalten, sollte ∆sτ auf den maximal möglichen
Wert gesetzt werden.

Zwischen Processing Element und Network Interface ist Bedingung I mit
der Einschränkung 0 < ∆sτ < ∆τcycle

2 noch nicht erfüllt. Um den Looka-
head nicht weiter reduzieren zu müssen und den Aufwand für die manuel-
le Partitionierung zu reduzieren, wurde auf eine Partitionierung zwischen
Processing Elements und zugehörigen Network Interfaces verzichtet.

• Bedingung II: Da das HeMPS Modell keine unvollständigen Sensitivitäts-
listen besitzt, ist diese Bedingung immer erfüllt.

• Bedingung III: Da grundsätzlich alle externen Signale mit 0 < ∆sτ <
∆τcycle

2 annotiert sind und auf Annotationen mit ∆sτ = 0 verzichtet wird,
existieren generell keine kritische Zyklen zwischen logischen Prozessen.

4.4.9. Bewertung

4.4.9.1. Evaluation der Skalierbarkeit

Zur Bewertung der Skalierbarkeit wurde die Dauer der parallelen Ausführung
unterschiedlich großer HeMPS Modelle auf einer unterschiedlichen Anzahl an
SCC Kernen gemessen. Mit Hilfe der sequentiellen Ausführungsdauer auf ei-
nem SCC Kern wurde jeweils die erzielte Beschleunigung berechnet. Für die
PEs kamen reine RTL Modelle und zyklenapproximative Simulatoren, sog. Cycle-
Approximate Simulators (CAS), zum Einsatz. Letztere können exakter auch als Pin-
Accurate Cycle-Approximate Level (PA-CAL) Modelle bezeichnet werden. Sie besit-
zen eine signalbasierte Schnittstelle, modellieren Pipelinekonflikte intern aber
nicht zeitlich akkurat. Dies resultiert in einem optimistischen Modell mit einem
geringeren Anzahl an Cycles per Instruction (CPI) [RAS+11].

Auf den PEs von HeMPS wurde eine unterschiedliche Anzahl an fünfstufigen
MPEG Decoder Pipelines ausgeführt. TASK 1 einer Pipeline erzeugt 8x8 MPEG
Blöcke. Diese werden von einem Variable Length Decoder in TASK 2, einer Inver-
se Quantization Stufe in TASK 3, einer Inverse Discrete Cosine Transformation
Stufe in TASK 4 und einem Ausgabetask (TASK 5) verarbeitet.

Die Tasks der Pipelines wurden zeilenweise auf die PEs abgebildet. Anschlie-
ßend wurde das Modell mit einer Granularität von Tiles (1 Tile = 1 PE + 1 NI + 1
RO) partitioniert und möglichst gleichmäßig auf logische Prozesse verteilt. Dabei
wurde darauf geachtet, dass sich möglichst immer benachbarte Tiles in einer Mo-

129

4. Parallele SystemC Simulation für Multiprozessoren

dellpartition befinden. Auf jedem SCC Kern wurde dann ein logischer Prozess
ausgeführt. Falls die Anzahl an logischen Prozessen kleiner war als die Anzahl
an SCC Kernen, so wurden die übrigen SCC Kerne nicht verwendet. Die Simu-
lation wurde bei einer simulierten Taktfrequenz von 100 MHz ausgeführt. Dies
resultierte generell in einer annotierten Verzögerung von tc

2 = 5ns und damit
einem generellen Lookahead von ∆lτ = 4.9ns. Die gemessenen Charakteristika
der Beschleunigung sind in den Abb. 4.24 und 4.25 dargestellt.

0

5

10

15

20

25

2x2 3x3 4x4 5x5 6x6 7x7 8x8

Sp
ee

du
p

(R
TL

 p
ar

al
le

l v
s.

RT
L

se
ri

al
 o

n
1

SC
C

 c
or

e)

Model Size

2 SCC cores
4 SCC cores
8 SCC cores
16 SCC cores
32 SCC cores
48 SCC cores

Abbildung 4.24.: Beschleunigung RTL parallel vs. RTL seriell

Abb. 4.24 zeigt die Beschleunigung reiner RTL Modelle mit Dimensionen von
2x2 bis 8x8. Im Unterschied zum asymmetrischen Verfahren war die Beschleuni-
gung in allen gemessenen Fällen größer als 1.0x. Die Beschleunigung kleinerer
Modelle ist aus zwei Gründen limitiert: Zum einen beschränkt die grobgranu-
lare Partitionierung die maximale Anzahl möglicher Partitionen (im Fall eines
2x2 Modells ist diese Limitiert auf vier). Nimmt man eine konstante Anzahl an
Partitionen an, so bieten große Modelle ein besseres Verhältnis zwischen paralle-
lisierbaren und nicht parallelisierbaren Anteilen bzw. von Berechnungsanteilen
zu Kommunikationsanteilen. Beispielsweise steigt die Beschleunigung von 2.5x
auf 3.6x, wenn man anstelle eines 2x2 Modells ein 4x4 Modell auf vier Partitionen
verteilt simuliert.

Die größte Beschleunigung wurde im Fall eines 8x8 Modells gemessen, das auf
48 SCC Kernen ausgeführt wurde. Sie beträgt 25.3x. Dieser Wert ist nahezu iden-
tisch zu dem Wert, der für das gleiche Modell auf nur 32 SCC Kernen gemessen
wurde. Ein Grund dafür ist, dass mit 48 SCC Kernen das Limit der verfügbaren
Kerne erreicht ist. Die Anzahl der in beiden Fällen genutzten SCC Kerne un-
terscheidet sich nur noch um den Faktor 1.5 und nicht um den Faktor 2.0, wie
in allen anderen Fällen. Außerdem resultiert die Nutzung von 32 SCC Kernen
in Kombination mit einem 8x8 Modell in einer idealen Partitionierung, bei der

130

4.4. Symmetrische asynchrone Strategie

jeder SCC Kern zwei HeMPS Tiles simuliert. Im Gegensatz dazu ist die Partitio-
nierung im Fall von 48 SCC Kernen unausgewogen: 32 SCC Kerne simulieren
nur ein Tile während die übrigen 16 Kerne zwei Tiles ausführen müssen.

0

10

20

30

40

50

2x2 3x3 4x4 5x5 6x6 7x7 8x8

Sp
ee

du
p

(C
AS

 p
ar

al
le

l v
s.

RT
L

se
ri

al
 o

n
1

SC
C

 c
or

e)

Model Size

2 SCC cores
4 SCC sores
8 SCC cores
16 SCC cores
32 SCC cores
48 SCC cores

Abbildung 4.25.: Beschleunigung CAS parallel vs. RTL seriell

Tauscht man die auf RT Level modellierten Plasmakerne gegen die CAS aus,
so kann die Beschleunigung im Vergleich zur reinen RTL Simulation weiter ge-
steigert werden. Die Messergebnisse sind in Abb. 4.25 dargestellt. Im Vergleich
zu sequentieller RTL Simulation wurde bei CAS-basierter Simulation für ein 8x8
Modell auf 32 SCC Kernen eine Beschleunigung von 56.3x gemessen. Die zusätz-
liche Beschleunigung ist auf die höhere Abstraktion der CAS zurückzuführen.
Eine interessante Beobachtung ist die Tatsache, dass die Beschleunigung auf 32
SCC Kernen größer war als auf 48 Kernen. Dies kann auf die gleiche Ursache zu-
rückgeführt werden wie die limitierte Beschleunigung des reinen RTL Modells
auf 48 SCC Kernen. Im Fall der CAS tritt der Effekt wegen der geringeren paral-
lelisierbaren Anteile im Modell stärker in Erscheinung.

4.4.9.2. Evaluation des Ein�usses der Modellabbildung

In einer zweiten Untersuchung wurde der Einfluss betrachtet, den die Art und
Weise der Abbildung I) von Tasks der simulierten Anwendung auf das Simula-
tionsmodell II) des Simulationsmodells auf den SCC hat. Dafür wurde zunächst
eine fünf Tasks umfassende Dummy Applikation geschrieben. Ähnlich wie bei
der MPEG Applikation aus dem vorigen Abschnitt, bilden die Tasks eine Pipe-
line, bei der jeder Task nur mit seinem Vorgänger und seinem Nachfolger kom-
muniziert. Die Tasks führen eine Endlosschleife aus, in der so viele Nachrichten
wie möglich über das NoC an den jeweiligen Nachfolgetask geschickt werden.

131

4. Parallele SystemC Simulation für Multiprozessoren

Fünf Instanzen dieser Applikation wurden horizontal und zeilenweise auf ein
5x5 HeMPS Modell abgebildet. Dies ist in Abb. 4.26 dargestellt.

A1 A2 A5A3 A4

B1 B2 B5B3 B4

C1 C2 C5C3 C4

D1 D2 D5D3 D4

E1 E2 E5E3 E4

Horizontal PartitioningVertical Partitioning

Abbildung 4.26.: Abbildung von Tasks und Modellpartitionen

Anschließend wurde das Modell zunächst ebenfalls horizontal (identisch zur
Orientierung der Pipelines) und dann vertikal (orthogonal zur Orientierung der
Pipelines) partitioniert. Wegen des XY Routings des Hermes NoCs war im ersten
Fall die Kommunikation zwischen Tasks ausschließlich auf Modellpartitionen
beschränkt und damit rein intern. Im zweiten Fall kommunizierten hingegen nur
Tasks miteinander, die in unterschiedlichen Modellpartitionen ausgeführt wur-
den. Die fünf logischen Prozesse wurden schließlich in einer Reihe nebeneinan-
der auf fünf SCC Kerne abgebildet. Die Simulation wurde für 107 simulierte Zy-
klen unter Verwendung von RTL und CAS-basierten Plasmakernen ausgeführt.
Tabelle 4.1 zeigt die gemessenen Laufzeiten der beschriebenen vier Fälle (Fälle
A-D) relativ zu CAS-basierter Simulation mit horizontaler Partitionierung (Fall
A).

Durch den Wechsel von den CAS zur RTL Beschreibung wird die Laufzeit erwar-
tungsgemäß mehr als verdoppelt. Vergleicht man für beide Fälle die Partitionie-
rung, so resultiert eine vertikale im Vergleich zur einer horizontalen Partitionie-
rung in einer Erhöhung der Laufzeit um nur 1% für die CAS basierte Modell
und um 3,7% für das RTL Modell. In beiden Fällen, CAS und RTL überwiegt
auch für vertikale Partitionierung offensichtlich weiterhin der Aufwand für die
Berechnung des Simulationsmodells gegenüber der Kommunikation zwischen
logischen Prozessen.

132

4.4. Symmetrische asynchrone Strategie

4.4.9.3. Diskussion

Die Messergebnisse zeigen, dass der Übergang vom asymmetrischen zum sym-
metrischen Verfahren in Kombination mit statischer Partitionierung zu einer si-
gnifikanten Steigerung der Effizienz zyklenakkurater MPSoC Simulationen bei-
tragen kann. Dies ist zum einen auf die Reduktion des Synchronisationsaufwan-
des zurückzuführen, die mit der Relaxation auf die Ebene von Timed Notificati-
ons einhergeht. Zum anderen wird die Skalierbarkeit durch den Übergang von
einem zentralen zu einem dezentralen Verfahren verbessert, welches ausschließ-
lich nachrichtenbasierte On-Chip Kommunikation nutzt.

Darüber hinaus konnte gezeigt werden, dass bei zyklenakkuraten signalbasier-
ten Modellen eine leichte Abhängigkeit der Ausführungsperformanz von der
auf dem MPSoC Modell ausgeführten Software existiert. In diesem Zusammen-
hang soll später untersucht werden, inwieweit dies auch für abstraktere MPSoC
Modelle gilt.

Ein Nachteil der verwendeten Annotationsmethode ist die Tatsache, dass kriti-
sche Zyklen zwischen logischen Prozessen unbedingt vermieden werden müs-
sen. Dadurch ist die Anzahl möglicher Partitionierungen beschränkt. Außerdem
geht durch die Annotationsmethode Genauigkeit verloren: Beispielsweise kann
in Abhängigkeit von Partitionierung und Annotationen eine unterschiedliche
Anzahl an Deltacycles und Timedcycles auftreten. Auch die parallele Simulation
eines RTL Modells mit unvollständigen Sensitivitätslisten führt u.U. zu anderen
Ergebnissen als eine sequentielle Simulation des Modells.

Die beschriebene Kernelimplementierung verursacht zusätzlich eine nicht-deter-
ministische Anzahl an Deltacycles pro Timedcycle. Deltaereignisse werden über
mehrere Timed- und Deltacycles verschmiert. Dies ist evtl. nicht für alle denkba-
ren Verifikationsszenarien wünschenswert. Die Kernel API zur Partitionierung
eines Simulationsmodells limitiert die Granularität auf Toplevel Module. In Ver-
bindung mit der teilautomatisierten der Werkzeugkette ist die Flexibilität be-
schränkt, da der Generator im Falle eines anderen Modells adaptiert oder kom-
plett neu entwickelt werden muss.

Tabelle 4.1.: Einfluss von Task- und Modellabbildung
Fall Partitionierung Plasma Modell Relative Laufzeit
A horizontal CAS 1
B vertikal CAS 1.01
C horizontal RTL 2.42
D vertikal RTL 2.51

133

4. Parallele SystemC Simulation für Multiprozessoren

4.5. Adaptive symmetrische Strategie

Im folgenden Abschnitt wird ein adaptiver Ansatz vorgestellt, der mit dem Ziel
entwickelt wurde, die Nachteile bzgl. Annotation, Partitionierung und Determi-
nismus der symmetrischen asynchronen Strategie aus dem vorigen Abschnitt
auszugleichen. Globale Synchronisation wird so weit wie möglich vermieden.
Dazu wird eine Kombination aus rein lokaler und kollektiver Synchronisation
in abgeschlossenen Bereichen der logischen Prozesstopologie angewendet. Dies
erfordert eine umfassende modell- und plattformadaptive Konfiguration der Si-
mulationsumgebung. Als Voraussetzung dafür ist eine tiefgreifende Modellana-
lyse erforderlich. Zur Unterstützung von Konfiguration und Modellanalyse wird
der Ansatz daher durch eine vollständig automatisierte Werkzeugkette ergänzt.
Im folgenden Abschnitt werden zunächst Konzepte und Implementierungsa-
spekte beleuchtet. Anschließend wird der Ansatz in einer umfangreichen Fall-
studie bewertet. Ein Großteil der Ergebnisse dieses Abschnitts wurde im Rah-
men einer vom Autor betreuten Masterarbeit [Red14] erarbeitet und ist in Zu-
sammenarbeit entstanden. Teile sind in [RRB+14] publiziert.

4.5.1. Anforderungen

Für die adaptive symmetrische Strategie wurde Anforderung V aus Abschnitt
4.4.1 in folgender Form modifiziert:

V) Synchronisation: Eine globale Synchronisation soll soweit wie möglich ver-
mieden werden.

Daneben wird eine zusätzliche Anforderung gestellt:

VI) Delta Notifications: Die durch die Deltacycles definierte partielle Ordnung
soll erhalten bleiben.

4.5.2. Adaptive logische Ebene

Bei der symmetrischen asynchronen Strategie aus Abschnitt 4.4 wird auf die de-
terministische Synchronisation des Deltacyclezählers δ zugunsten eines skalaren
Zeitmodells verzichtet. Um die durch die Deltacycles definierte partielle Ord-
nung zu erhalten, ist eine Synchronisation des Deltacyclezählers δ allerdings un-
verzichtbar. Um dies auch ohne globale Synchronisation zu ermöglichen, wird
zunächst ein angepasstes Zeitmodell eingeführt. Darauf basierend werden an-
schließend weitere geeignete Modelleigenschaften formuliert, die eine genaue-
re Klassifikation von logischen Links als in Abschnitt 4.4.3.4 erlauben. Dies ist
die Voraussetzung für die Ableitung unterschiedlicher Kausalitätsbedingungen

134

4.5. Adaptive symmetrische Strategie

innerhalb logischer Prozesse und die (weitgehende) Vermeidung globaler Syn-
chronisation bei gleichzeitig deltazyklengenauer paralleler Ausführung.

4.5.2.1. Angepasstes SystemC Zeitmodell

Beim Zeitmodell des SystemC Standards [27] zählt δ die innerhalb eines gesam-
ten Simulationslaufes ausgeführten Deltacycles und ist unabhängig von τ (vgl.
Abschnitt 2.3.2.2). Zur vollständigen Vermeidung globaler Synchronisation ist
es vorteilhaft, von diesem Modell auf eine Variante überzugehen, bei der nicht
mehr die Deltacycles einer gesamten Simulationsausführung, sondern mit einer
Variablen θ jeweils die Deltacycles innerhalb einzelner Zeitschritte bzgl. τ ge-
zählt werden. θ wird dann zu Beginn eines jeden Zeitschritts auf null gesetzt. In
dieser Weise ist beispielsweise auch das Zeitmodell der DE Domäne von Ptole-
my II [217] implementiert.

Durch das Zurücksetzen von θ mit jedem Zeitfortschritt bzgl. τ wird eine Bezie-
hung zwischen τ und θ hergestellt, anhand derer man auftretende Notifications
in einer parallelen Simulation bestehend aus mehreren logischen Prozessen bis
auf die Ebene von Deltacycles leichter partiell ordnen kann. Insbesondere er-
möglicht es diese Art der Zeitmodellierung den logischen Prozessen, zu einem
Simulationszeitpunkt τ eine unterschiedliche Anzahl an Deltacycles ausführen,
ohne miteinander explizit synchronisieren zu müssen. Man denke hier an zwei
logische Prozesse lp1 und lp2, die ausschließlich über einen logischen Link l12
von lp1 nach lp2 miteinander verbunden sind. In diesem Fall kann lp2 u.U. eine
größere Anzahl an Deltacycles bei einem bestimmten τ ausführen als lp1, ohne
die Notwendigkeit, dies lp1 mitteilen zu müssen.

4.5.2.2. Deterministisches Basisverfahren zur Synchronisation

Mit dem vektoriellen Zeitmodell müssen Zeitstempel (z.B. von Signalnachrich-
ten) sowie der Lookahead um θ ergänzt werden. Die Linkzeit aus Definition 4.7
und die LOC Bedingung aus Definition 4.8 werden dann durch eine erweiterte
Linkzeit und eine erweiterte LOC Bedingung ersetzt:

Definition 4.11 (Erweiterte Linkzeit): Die erweiterte Linkzeit tlink
ij = (τij, θij)

eines logischen Links lij von lpi nach lpj entspricht der letzten in lpj bekannten lokalen
Zeit ti = (τi, θi) von lpi.

Definition 4.12 (ELOCC: Extended Local Causality Condition): Ein logischer Pro-
zess lpj darf das nächste Ereignis bei tnext

j = (τnext
j , θnext

j) verarbeiten, wenn

135

4. Parallele SystemC Simulation für Multiprozessoren

∀lpi ∈ LPadj
j : tnext

j ≤ tlink
ij + ∆lτ,θ

ij . (4.9)

Für den maximal möglichen Zeitfortschritt gilt:

tmax
j = min

∀i
(tlink

ij + ∆lτ,θ
ij) (4.10)

Um das Evaluate/Update Paradigma korrekt und deterministisch auszuführen,
muss garantiert sein, dass alle Signalnachrichten für einen Deltacycle empfan-
gen wurden, bevor dieser ausgeführt wird. Angenommen, der Lookahead eines
logischen Links ist generell durch ∆lτ,θ = (0, 1) gegeben. Neben einem kausal
korrekten Zeitfortschritt garantiert die Einhaltung der erweiterten lokalen Kau-
salitätsbedingung genau dann zusätzlich den vollständigen Empfang aller Si-
gnalnachrichten für einen Deltacycle in lpj, bevor dieser ausgeführt wird, wenn

1. lpj die Linkzeit im Unterschied zu Abschnitt 4.4.3.2 nur noch über eine lo-
kal externe Variable tlink

i ableitet und nicht mehr zusätzlich den Zeitstempel
von Signalnachrichten nutzt.

2. lpi die Variable tlink
i immer nur dann auf den Wert des gerade ausgeführ-

ten Deltacycles inkrementiert, wenn bereits alle Signalnachrichten, die im
gerade ausgeführten Deltacycle generiert wurden, verschickt sind.

Basierend auf dem angepassten Zeitmodell und dem beschriebenen Basisverfah-
ren werden in den weiteren Abschnitten spezielle Eigenschaften von RTL u.ä. si-
gnalbasierten Modellen identifiziert, die für eine genauere Klassifikation von lo-
gischen Links in deadlock-kritisch und -unkritisch genutzt werden können. Die
neue Klassifikation ist die Voraussetzung für die Vermeidung globaler Synchro-
nisation trotz eines generellen Lookaheads von ∆lτ,θ = (0, 1). Bei den folgenden
Definitionen wird daher einer genereller Lookahead von ∆lτ,θ = (0, 1) voraus-
gesetzt.

4.5.2.3. Kanalaktivität

Eine geeignete Modelleigenschaft, die als Grundlage zur Klassifikation logischer
Links im Hinblick auf den Erhalt der durch die Deltacycles definierten partiellen
Ordnung dienen kann, ist die Kanalaktivität:

136

4.5. Adaptive symmetrische Strategie

Definition 4.13 (CAP: Channel Activity Property): Ein SystemC Primitive Chan-
nel ch wie z.B. ein Signal ist aktiv (bzgl. des SystemC Prozesses p), wenn p sensitiv auf
ch ist. Ansonsten ist ch passiv (bzgl. p).

In einem RTL Modell ist ein Signal s aktiv bzgl. Prozess p, wenn das Signal Teil
der statischen Sensitivitätsliste von p ist. Passive Signale treten typischerweise in
synchronen Prozessen auf, die nur auf ein Taktsignal sensitiv sind. In diesem Fall
sind alle Signale außer dem Taktsignal passiv bzgl. des synchronen Prozesses, da
deren Wertänderung nur infolge einer bzgl. τ verzögerten Taktflanke ausgelesen
werden kann.

Mit der CAP kann aus dem Prozess-Signal Graphen GPS(P, S) aus Definition 4.2
der sog. Sensitivitätsgraph GS(P, E) abgeleitet werden. Dieser ist später für die
Identifikation weiterer Modelleigenschaften notwendig. Im Gegensatz zu GPS
enthält GS nur dann eine gerichtete Kante eab von Knoten pa nach pb, wenn pb
auf mindestens eines der Signale, die pa und pb verbinden, zusätzlich sensitiv ist.
Dabei sind Taktsignale nicht Teil von GS. Abb. 4.27 illustriert beispielhaft einen
Sensitivitätsgraphen mit Prozessen p1 bis p7. In der Abbildung werden die Pro-
zesse p1 und p2 durch ein zeitverzögerndes Taktsignal (zeitgesteuertes Ereignis-
objekt ωτ) aktiviert. Infolge der Aktivität von Signalen können u.U. alle anderen
(sensitiven) Prozesse auch ausgeführt werden. Aus der Aktivität von Signalen
kann folgende Definition für die Aktivität eines logischen Links abgeleitet wer-
den:

Definition 4.14 (LAP: Link Activity Property): Ein logischer Link lij heißt aktiv
(bzgl. lpj), wenn die Kernelkomponente in lpj durch eine über lij übertragene Nachricht
eine Aktivierung eines SystemC Prozesses auslösen kann, ansonsten heißt lij passiv.
Bzgl. SystemC RTL heißt lij folglich aktiv, wenn lij mindestens ein Signal bündelt, das
durch eine Kante e ∈ GS(P, E) repräsentiert wird. Ansonsten heißt lij passiv.

Da passive logische Links SystemC Prozesse nicht aktivieren können, müssen
sie im Empfänger bei der Prüfung der ELOCC im Kontext des Zeitfortschritts
nicht berücksichtigt werden, sondern nur im Kontext einer deterministischen
Nachrichtenübertragung. Ersteres ist möglich, da die Generierung zyklischer
Abhängigkeiten auf der Ebene von Deltacycles über passive logische Links aus-
geschlossen ist. Letzteres ist möglich, wenn die in Abschnitt 4.5.2.2 beschriebe-
nen Änderungen am Basisverfahren verwendet werden. Dies führt zur modifi-
zierten ersten Bedingung für Link Kritikalität (vgl. Definition 4.10):

Definition 4.15 (MLCC1: Modified First Link Criticality Condition): Ein delta-
verzögerter logischer Link ist deadlock-unkritisch, wenn er passiv ist.

137

4. Parallele SystemC Simulation für Multiprozessoren

In der Implementierung kann die unterschiedliche Art der Nutzung der ELOCC
durch zwei aufeinanderfolgende Prüfungen der ELOCC realisiert werden, wobei
passive und damit unkritische logische Links zwar bei der Prüfung der vollstän-
digen Übermittlung von Nachrichten für einen Deltacycle vor der Ausführung
dieses Deltacycles berücksichtigt werden müssen, nicht aber bei der Prüfung ei-
nes möglichen Zeitfortschritts bzgl. τ.

4.5.2.4. Delta-Beschränktheit

Um die Chance für deadlock-unkritische logische Links weiter zu vergrößern
und damit die Anzahl valider Partitionierungen des Modells zu erhöhen, wird
eine weitere Modelleigenschaft in Betracht gezogen. Diese wird als Delta-Be-
schränktheit oder schlicht Beschränktheit von SystemC Prozessen oder SystemC
Signalen bezeichnet:

Definition 4.16 (DBP: Delta-Boundedness Property): Ein Prozess p heißt delta-
beschränkt bzgl. eines zeitgesteuerten Ereignisobjekts ωτ , wenn es möglich ist, aus-
gehend von einer Timed Notification nτ

ω von ωτ eine maximale Anzahl an Deltacycles
∆bound

p (ωτ) < ∞ zu bestimmen, ab der Aktivierungen von p bis zur nächsten Timed
Notification ausgeschlossen werden können. ∆bound

p (ωτ) wird als Delta-Schranke von
Prozess p bzgl. ωτ bezeichnet.

Ein SystemC Signal s heißt delta-beschränkt bzgl. eines zeitgesteuerten Ereignisob-
jekts ωτ , wenn es möglich ist, ausgehend von einer Timed Notification nτ

ω von ωτ eine
maximale Anzahl an Deltacycles ∆bound

s (ωτ) < ∞ zu bestimmen, ab der schreiben-
de Zugriffe auf s bis zur nächsten Timed Notification ausgeschlossen werden können.
∆bound

s (ωτ) wird als Delta-Schranke von Signal s bzgl. ωτ bezeichnet.

Da wegen MLCC1 bereits ausgeschlossen ist, dass passive logische Links zu ei-
nem Deadlock führen können, ist die Eigenschaft der Delta-Beschränktheit letzt-
lich nur für aktive Signale relevant. Daher genügt es, diese Eigenschaft anhand
des im vorigen Abschnitt eingeführten Sensitivitätsgraphen GS herzuleiten.

Bestimmung der Delta-Beschränktheit von Prozessen
Man betrachte erneut den Sensitivitätsgraphen GS aus Abb. 4.27. Die Prozesse
p1 und p2 werden aufgrund eines zeitverzögernden Taktsignals clk aktiviert. Die
Zeitverzögerung wird signalintern mit Hilfe des zeitgesteuerten Ereignisobjekts
ωτ erreicht. Prozesse, die unmittelbar auf zeitgesteuerte Ereignisobjekte sensi-
tiv sind, werden immer im ersten Deltacycle (θ = 0) nach dem Auftreten der
zugehörigen Timed Notification ausgeführt. Folglich ist für jedes zeitgesteuerte

138

4.5. Adaptive symmetrische Strategie

Ereignisobjekt ωτ ∈ Ω eine Menge R(ωτ , θ = 0) ⊆ R von lauffähigen Prozessen
definiert, die nach der Timed Notification von ωτ in Deltacycle θ = 0 garantiert
evaluiert werden.

Bei bekanntem Ereignisobjekt ωτ kann man die Beschaffenheit von R(ωτ , θ = 0)
durch statische Analyse vollständig herleiten. Für θ > 0 lässt sich R(ωτ , θ) al-
lerdings vor der Laufzeit nicht mehr exakt vorherbestimmen. Eine genaue Be-
stimmung von R(ωτ , θ) ist nur noch durch eine dynamische Analyse möglich,
wie sie typischerweise zur Generierung eines DDG verwendet wird (vgl. Ab-
schnitt 4.2.4.1). Ein DDG ist allerdings deswegen nicht für die Herleitung von
Delta-Schranken geeignet, da er nur einen einzigen, meist zeitlich beschränkten
Ausführungspfad und nicht alle möglichen Ausführungspfade vollständig be-
schreibt.

Alternativ kann man im Rahmen einer statischen Abhängigkeitsanalyse jedoch
die Mengen der Prozesse R(ωτ , θ) bestimmen, die im Zyklus θ potentiell evalu-
iert werden. Beginnend bei der bereits bekannten Menge R(ωτ , 0) können die
Mengen für θ > 0 somit konservativ geschätzt werden. Für den Deltacycle θ gilt
dann im Allgemeinen R(ωτ , θ) ⊆ R(ωτ , θ).

Aufgrund der Sensitivität müssen Prozesse in R(ωτ , θ + 1) von einer Delta No-
tification aktiviert worden sein, die einer der Prozesse in R(ωτ , θ) generiert hat.
Die Evaluation eines Prozesses, der durch einen Knoten pj in GS repräsentiert
wird, kann nur dann per Delta Notification von einem Prozess ausgelöst wor-
den sein, der durch einen Knoten pi in GS repräsentiert wird, wenn von pi zu
pj eine gerichtete Kante existiert. Dieser Zusammenhang kann allgemein durch
den folgenden Ausdruck beschrieben werden:

R(ωτ , θ + 1) = {pj : ∃eij ∈ E ∧ pi ∈ R(ωτ , θ)} (4.11)

Damit Prozesse einer beliebigen Menge R(ωτ , θ + n) mit n ∈ N\{0} von Pro-
zessen der Menge R(ωτ , θ) direkt oder indirekt aktiviert werden können, müs-
sen erstere über einen Pfad in GS von letzteren aus erreichbar sein. Oder anders
ausgedrückt: Zu einem beliebigen Prozess pi ∈ R(ωτ , θ), der potentiell bei Del-
tacycle θ evaluiert wird, muss ein sog. Aktivierungspfad der Länge θ im Graphen
GS existieren, der bei einem durch ωτ aktivierten Prozess beginnt. Die Mengen
R(ωτ , θ) können mit Hilfe einer Tiefensuche [152] bestimmt werden, die für je-
den Prozess pi ∈ R(ωτ , 0) mit pi als Startknoten wiederholt wird.

Für einen bestimmten Prozess pi kann u.U. ein unendlich langer Aktivierungs-
pfad existieren, nämlich dann, wenn pi Teil eines Zyklus in GS ist oder von einem
Zyklus aus erreichbar ist. pi ist dann in unendlich vielen Mengen R(ωτ , θ) ent-
halten.

139

4. Parallele SystemC Simulation für Multiprozessoren

Sofern pi nicht von einem Zyklus aus erreichbar ist, kann man eine obere Schran-
ke ∆bound

pi
(ωτ) für den letztmöglichen Deltacycle angeben, in dem pi evaluiert

wird. Der Wert von ∆bound
pi

(ωτ) entspricht der Länge des längsten Aktivierungs-
pfades, der in pi endet. Falls ∆bound

pi
(ωτ) < ∞, so gilt allgemein:

θ > ∆bound
pi

(ωτ)⇒ pi 6∈ R(ωτ , θ)⇒ pi 6∈ R(ωτ , θ). (4.12)

Die Auflistung aller Mengen R(ωτ , θ), in denen ein SystemC Prozess pi enthal-
ten ist, zusammen mit dem Wert der Delta-Schranke ∆bound

pi
(ωτ), sofern diese

existiert, wird im Folgenden auch als das sog. Aktivitätsmuster von pi bzgl. ωτ

bezeichnet.

Im Beispiel aus Abb. 4.27 sind die Prozesse p4, p5 und p6 Teil eines unend-
lich langen Aktivierungspfades. Für den Prozess p3 aus Abb. 4.27 gilt hingegen
∆bound

p3
(ωτ) = 1.

Bestimmung der Delta-Beschränktheit von aktiven Signalen
Kommunikation über Signale besteht immer aus einem Schreib- und einem zu-
gehörigen Lesevorgang. Die Kommunikation eines Prozesses pi mit einem Pro-
zess pj über ein aktives Signal, welches durch eine Kante eij im Graphen GS re-
präsentiert wird, ist erst dann vollständig abgeschlossen, wenn das Signal nach
einem Schreibvorgang von pi zum ersten Mal von pj gelesen wird. Etwas for-
meller ausgedrückt, muss für eine Kommunikation bei ein und demselben τ
ein Schreibvorgang bei einem twrite

eij
= (τ, θwrite

eij
) und ein Lesevorgang bei ei-

nem tread
eij

= (τ, θread
eij

) erfolgen. Wegen der Delta-Verzögerung von Signalen muss

twrite
eij

< tread
eij

gelten. Im Allgemeinen ist bei gleichem τ potentiell Kommunikation
über ein aktives Signal möglich, das durch eine Kante eij ∈ GS(E, P) repräsen-
tiert wird, wenn

pi ∈ R(ωτ , θwrite
eij

) ∧ pj ∈ R(ωτ , θread
eij

) mit θwrite
eij

< θread
eij

. (4.13)

Um für ein durch eij repräsentiertes aktives Signal eine Delta-Schranke bzgl. ωτ

herzuleiten, muss der letzte Deltacycle θ bestimmt werden, in dem Kommuni-
kation über eij innerhalb eines durch ωτ ausgelösten Timedcycles möglich ist.
Dieser kann mit Hilfe der Delta-Schranke ∆bound

pi
(ωτ) des auf eij schreibenden

Prozesses pi berechnet werden. Spezifiziert man die Delta-Schranke von eij mit
dem letztmöglichen Schreibzeitpunkt (der Lesezeitpunkt ergibt sich aufgrund

140

4.5. Adaptive symmetrische Strategie

R(ωτ,1)

R(ωτ,3)

R(ωτ,2)

R(ωτ,0)

clk(ωτ)

p1 p2

p3

p4

p6 p5

p7

Abbildung 4.27.: Sensitivitätsgraph GS mit den Mengen R(ωτ , θ) (Quelle:
[Red14])

141

4. Parallele SystemC Simulation für Multiprozessoren

der Aktivitätseigenschaft durch Addition von eins), so kann ∆bound
eij

(ωτ) wie folgt
bestimmt werden:

∆bound
eij

(ωτ) = ∆bound
pi

(ωτ). (4.14)

Basierend auf der Definition der Delta-Beschränktheit von einzelnen Signalen
lässt sich die Eigenschaft der Delta-Beschränktheit für einen logischen Link wie
folgt definieren:

Definition 4.17 (LBP: Link Boundedness Property): Ein logischer Link l heißt delta-
beschränkt bzgl. eines Ereignisobjekts ωτ , wenn auf l delta-beschränkte aber keine un-
beschränkten aktiven Signale abgebildet sind. ∆bound

l (ωτ), die Delta-Schranke von l
bzgl. ωτ , entspricht dem Maximum der Delta-Schranken aller auf l abgebildeten aktiven
Signale bzw. der sie repräsentierenden Kanten aus dem Sensitivitätsgraphen GS:

∆bound
l (ωτ) = max

∀e∈E(l)
(∆bound

e (ωτ)). (4.15)

Dabei bezeichnet E(l) ⊆ E hier die Teilmenge der Signalkanten aus GS, die auf
l abgebildet sind. Aus der Delta-Beschränktheit folgt für die Kritikalität aktiver
logischer Links:

Definition 4.18 (LCC2: Second Link Criticality Condition): Ein delta-verzögerter
und aktiver logischer Link ist deadlock-unkritisch, wenn er delta-beschränkt ist. Ansons-
ten ist er deadlock-kritisch.

Angenommen lpi und lpj sind durch einen delta-beschränkten logischen Link
lij verbunden. Um kausale Korrektheit während der parallelen Simulation zu
gewährleisten, muss innerhalb eines Timedcycles exakt nach dem Deltacycle,
welcher durch die Delta-Schranke ∆bound

lij
spezifiziert ist, zum letzten Mal zwi-

schen lpi und lpj synchronisiert werden, bevor der nächste Zeitfortschritt bzgl.
τ durchgeführt werden kann. Anschließend existieren dann keine echten Da-
tenabhängigkeiten mehr auf lij zum aktuellen Zeitpunkt τ. Im Allgemeinen gilt
folgende zusätzliche Kausalitätsbedingung:

142

4.5. Adaptive symmetrische Strategie

Definition 4.19 (LOBC: Local Bound Condition): Ein logischer Prozess lpj hat die
Delta-Schranke überschritten, sobald folgende Bedingung für alle eingehenden aktiven,
delta-verzögerten aber delta-beschränkten logischen Links lij ∈ Lb

j erfüllt ist:

∀i, i 6= j : tlink
lij > (τj, ∆bound

lij (ωτ)). (4.16)

Wird das SystemC Modell so auf logische Prozesse abgebildet, dass keine kriti-
schen Zyklen existieren, dann ist die Erfüllung der LOBC ein weiteres notwendi-
ges Kriterium für einen Zeitfortschritt bzgl. τ. Hinreichend ist nur die Erfüllung
von beiden Kausalitätsbedingungen, der ELOCC und der LOBC.

4.5.2.5. Dynamische Au�ösung zirkulärer Abhängigkeiten

Deadlock-unkritische logische Links sind fundamental für die Vermeidung von
kritischen Zyklen im Graphen der logischen Prozesse GLP. In manchen Fällen
kann die Abbildung eines Modells auf logische Prozesse, ohne dabei kritische
Zyklen zu generieren, u.U. aber zu einer unausgeglichenen Partitionierung füh-
ren, die die Performanz negativ beeinflusst. Aus diesem Grund ist es wünschens-
wert, Zyklen in manchen Regionen der Topologie von GLP zu erlauben aber
gleichzeitig Mechanismen bereitzustellen, mit deren Hilfe Deadlocks während
der Laufzeit aufgelöst werden können.

Als ein Beispiel betrachte man die logischen Prozessgraphen GLP and Gcrit
LP in

Abb. 4.28. Im Unterschied zu GLP aus Abb. 4.18 sind die Links l01 and l74 nun
deadlock-kritisch. Dies resultiert in der Existenz von zwei disjunkten stark zu-
sammenhängenden Komponenten (engl. Strongly Connected Components (SCC))
in Gcrit

LP mit einer Kardinalität größer oder gleich zwei, nämlich {lp0, lp1} und
{lp4, lp5, lp7, lp8}. Diese werden als Domänen (engl. Domain) bezeichnet:

Definition 4.20 (Domäne / Domänenprozess): Gegeben sei ein logischer Prozess-
graph GLP und dessen Teilgraph Gcrit

LP , der nur deadlock-kritische logische Links beinhal-
tet. Mit der Menge der stark zusammenhängenden Komponenten SCC(Gcrit

LP) von Gcrit
LP

ist die Menge der disjunkten Domänen durch

DOM = {dom0, ...domn} = {scc ∈ SCC(Gcrit
LP : |scc| > 1)

gegeben. Ein logischer Prozess lp ist Teil einer Domäne domk, wenn eine Abbildung
domain(lp) existiert, sodass

143

4. Parallele SystemC Simulation für Multiprozessoren

domain(lp) = [domk ∈ DOM : lp ∈ domk]

gilt. lp wird dann als Domänenprozess bezeichnet.

ncncnc

ncncncncnc

c
lp0 lp1 lp2

lp3 lp4 lp5

lp6 lp7 lp8

c

c

c

c

c

c

c

nc

nc

nc

nc

nc

ncnc

nc

dom1

dom0c
lp0 lp1 lp2

lp3 lp4 lp5

lp6 lp7 lp8

c

c

c

c

c

c

c

Circular
dependency loop
of critical links

Abbildung 4.28.: GLP (links) und Gcrit
LP (rechts) mit zirkulären Abhängigkeiten

zwischen deadlock-kritischen logischen Links

Bei Existenz von kritischen Zyklen kann ein Domänenprozess lpj ∈ domk keine
Rückschlüsse mehr über die maximale Anzahl an Deltacycles ziehen, bis zu der
er mit adjazenten logischen Prozessen auf der Ebene von Deltacycles synchroni-
sieren muss, bevor er einen Zeitfortschritt bzgl. τ durchführen darf. Ausschließ-
lich das Wissen über den lokalen Zustand eingehender logischer Links reicht in
diesem Fall für die Erkennung eines validen Zeitfortschritts bzgl. τ nicht aus.
Beispielsweise kann lp4 in Gcrit

LP aus Abb. 4.28 nicht wissen, ob lp5 in einem be-
stimmten Deltacycle θ eine Nachricht an lp7 verschickt hat, die lp7 dazu veran-
lasst, in Deltacycle θ + 1 an lp4 eine weitere Nachricht zu senden.

Folglich ist es die Aufgabe eines Domänenprozesses, trotz kritischer Zyklen in
Gcrit

LP zu verhindern, dass innerhalb des Zeitschritts τ eine unendliche Anzahl an
Deltacycles θ ausgeführt wird und somit ein Deadlock entsteht. Die gewählte
Lösung basiert auf einer domäneninternen kollektiven Deadlockerkennung zur
Laufzeit. Dazu wird ein einzelner Domänenprozess als Master auf logischer Ebe-
ne deklariert (z.B. lp5 für dom1 in Abb. 4.28), alle anderen als Slaves.

Sobald sich ein Slave im lokalen Wartezustand befindet, informiert er den Master
seiner Domäne über einen aus seiner lokalen Sicht möglichen Zeitfortschritt bzgl.

144

4.5. Adaptive symmetrische Strategie

τ. Mit Hilfe der lokalen Sichten der Slaves generiert der Master eine domänenweite
Sicht. Mit dieser kann der Master prüfen, ob ein Zeitfortschritt bzgl. τ tatsächlich
möglich ist. Die domänenweite Sicht kann z.B. anhand gemeinsam genutzter Va-
riablen erzeugt werden. Aktuell existieren dazu für jeden Domänenprozess lpi
zwei lokal externe Datenfelder, tsync

i = (τ
sync
i , θ

sync
i) und tmsg

i = (τ
msg
i , θ

msg
i). Im

ersten Datenfeld legt ein Slave lpi, der sich im lokalen Wartezustand befindet,
seine aktuelle lokale Zeit ti ab, in zweiten Datenfeld den Zeitstempel der zu-
letzt übertragenen Nachricht. Anhand dieser Information prüft der Master ob
sog. transiente Nachrichten irgendwo in der Domäne existieren. Dies sind Nach-
richten, die von einem Sender bereits verschickt worden sind, vom Empfänger
allerdings nicht rechtzeitig registriert wurden, so dass dieser aufgrund des loka-
len Wartezustands bereits eine Anfrage an den Master gestellt hat. Wenn keine
transienten Nachrichten existieren, dann liegt der Verklemmungszustand vor:

Definition 4.21 (DSC: Domain Starvation Condition): Befinden sich alle logischen
Prozesse einer Domäne domk ∈ DOM im lokalen Wartezustand, so befindet sich die
Domäne domk insgesamt im Verklemmungszustand, wenn folgende Bedingung erfüllt
ist:

[
∀lpi ∈ domk : Ri = ∅ ∧Ui = ∅ ∧ Nδ

i = ∅
]

∧
[

min
∀lpi∈domk

{tsync
i } > max

∀lpi∈domk
{tmsg

i }+ (0, 1)
] (4.17)

Der obere Teil von Ausdruck 4.17 definiert den lokalen Wartezustand, den jeder
logische Prozess lpi zum Zeitpunkt der Anfrage erreicht haben muss. Mit dem
unteren Teil werden transiente Nachrichten ausgeschlossen. Nur wenn beide Tei-
le von Ausdruck 4.17 erfüllt sind, teilt der Master dies den Slaves mit Hilfe eines
Datenfeldes tgrant = (τgrant, δgrant) mit. In dieses schreibt er den Zeitstempel des
nächsten Zeitschritts.

4.5.3. Deltazyklengenaue nachrichtenbasierte Kommunikation

Zur deltazyklengenauen Integration nachrichtenbasierter Kommunikation wird
der in Abschnitt 4.4.4 beschriebene adapterbasierte Mechanismus entsprechend
Abb. 4.29 erweitert. Die Behandlung einer Signalnachricht in insert_message()
hängt wieder vom Zeitstempel der Nachricht und der lokalen Zeit des empfan-
genden logischen Prozesses lpi ab:

145

4. Parallele SystemC Simulation für Multiprozessoren

Input/Output Port

Module

read()

write()

Vcur

Vnext

ω

request_update()

Signal
Input A

daptorimm()

update_process()

Update
FIFO

delta() timed()

insert_message()

update()

From Kernel Leyer

ωskip

Output
Socket

Input
Socket

From Logical
Layer

Abbildung 4.29.: Integration nachrichtenbasierter Kommunikation

1. tmsg = ti: In diesem Fall erfolgt die Aktualisierung des zugehörigen Signals
durch Aufruf von imm() und Erzeugung einer Immediate Notification di-
rekt.

2. τmsg = τi ∧ θmsg > θi: In diesem Fall wird die Aktualisierung mit delta() um
ein ∆θ verzögert. Falls ∆θ = 1, so wird durch Aufruf von request_update()
ein normaler E/U basierter Schreibvorgang durchgeführt. Falls ∆θ > 1,
so wird die Nachricht zunächst an den Update FIFO weitergeleitet und
dort zwischengepuffert. Die Aktualisierung wird dann mit Hilfe von up-
date_process() gesteuert, welcher sensitiv auf ein Ereignisobjekt ωskip ist.
Mit Hilfe von ωskip werden solange Überbrückungsereignisse durch Del-
ta Notifications generiert, bis der Deltacycle θtop der obersten Nachricht
im Update FIFO erreicht ist. Dann erst wird die Aktualisierung von upda-
te_process() durch Aufruf von request_update() vorgenommen.

3. τmsg > τi: Um die Aktualisierung (zusätzlich) bzgl. τ zu verzögern, er-
zeugt die Methode timed() in ähnlicher Weise wie im vorigen Fall ein Über-
brückungsereignis in Form einer Timed Notification auf ωskip.

146

4.5. Adaptive symmetrische Strategie

4.5.4. Integration adaptiver Synchronisation

Zur Beschreibung der Integration des adaptiven Synchronisationsverfahrens mit
einem Kernel ks

i in einen logischen Prozess lpi werden neben der binären Varia-
ble pass zunächst folgende zusätzliche Mengen definiert:

• Lin = Ldom ∪ Lext: Menge aller Eingangslinks eines logischen Prozesses.

• Ldom: Teilmenge aller Eingangslinks von adjazenten logischen Prozessen
innerhalb der eigenen Domäne.

• Lext = Lpa,ext ∪ Lub,ext ∪ Lb,ext: Teilmenge der Eingangslinks von adjazenten
logischen Prozessen außerhalb der eigenen Domäne.

• Lpa,ext: Teilmenge der passiven Eingangslinks von Lext.

• Lub,ext: Teilmenge der delta-unbeschränkten aktiven Eingangslinks von Lext.

• Lb,ext: Teilmenge der delta-beschränkten aktiven Eingangslinks von Lext.

Folgende zusätzliche Aktionen sind notwendig:

• checkELOCC(L,τnext,θnext): Prüfe, ob in lpi die ELOC Bedingung aus Defini-
tion 4.12 erfüllt ist. Beziehe dabei nur die durch die Menge L spezifizierten
logischen Links in die Prüfung mit ein. Gib anschließend eine 1 zurück,
falls die ELOC Bedingung erfüllt ist, ansonsten eine 0.

• checkLOBC(L): Prüfe, ob in lpi die LOB Bedingung aus Definition 4.16 er-
füllt ist. Beziehe dabei nur die durch die Menge L spezifizierten logischen
Links in die Prüfung mit ein. Gib anschließend eine 1 zurück, falls die LOB
Bedingung erfüllt ist, ansonsten eine 0.

• checkDSC(): Prüfe, ob für alle logischen Prozesse, welche Teil der eigenen
Domäne sind, die DSC aus Definition 4.21 erfüllt ist. Mit Erfüllung der DSC
ist aus Sicht der logischen Links der Menge Ldom ein Zeitfortschritt bzgl. τ
möglich. Gib eine 1 zurück, falls die DSC erfüllt ist, ansonsten eine 0.

• dispatchOut(): Leite alle von der lokalen Simulation generierten und evtl.
im lokalen Senderpuffer (vgl. Anhang A.2) zwischengespeicherten Nach-
richten an die logischen Prozesse weiter, für die die Nachrichten bestimmt
sind. Falls eine Weiterleitung nicht möglich ist, rufe intern dispatchIn() auf
und iteriere solange, bis alle Nachrichten weitergeleitet sind.

• dispatchIn(): Setze zunächst die Linkzeit jedes eingehenden logischen Links
auf den Wert der lokal externen tlink Variablen des zugehörigen logischen
Prozesses. Lese dann alle aktuell in den Eingangssockets der eingehenden
logischen Links vorhandenen Nachrichten aus. Identifiziere das zu einer
Signalnachricht gehörige Signal und füge den empfangenen neuen Signal-
wert vmsg durch Aufruf der insert_message() Methode auf dem zugehörigen
Input Adaptor in die Simulation ein. Im Fall passiver Signale kann es vor-

147

4. Parallele SystemC Simulation für Multiprozessoren

kommen, dass tmsg < ti. Dieser Fall wird genauso behandelt wie tmsg = ti
in Abschnitt 4.5.3.

• skip(): Sei tmax
i = min∀lji∈Lin

i
(tlink

ji + ∆lτ,θ
ji). Falls τmax

i > τi, dann setze θi =

∞. Falls tmax
i > ti ∧ τmax

i ≤ τi, dann setze θi = θmax
i .

• nextEdgeTime(): Gib den Zeitpunkt τedge der nächsten Taktflanke zurück.

• updateT(): Aktualisiere die tlink
i Variable durch Kopieren des Wertes der lo-

kalen Zeit ti in tlink
i .

Abb. 4.30 illustriert den Zustandsautomaten des Verfahrens. Wegen des ange-
passten Zeitmodells wird der Zähler für den lokalen Deltacycle δi durch den
synchronisierten Deltacyclezähler θi ergänzt. Im Vergleich zu den vorangegan-
genen Verfahren existiert eine weitaus komplexere Kausalitätsprüfung. Die ent-
sprechenden Prüfaktionen checkELOCC(), checkLOBC(), checkDSC() arbeiten
auf den oben genannten Mengen.

Nur wenn im sdnoti f y Zustand keine lauffähigen Prozesse mehr vorhanden sind,
ist u.U. ein Zeitfortschritt bzgl. τ möglich (lokaler Wartezustand). Dazu müssen
ELOCC, LOBC und DSC für relevante logische Links erfüllt sein. Rein passive
logische Links können bei der Prüfung auf einen Zeitfortschritt grundsätzlich
vernachlässigt werden (vgl. Abschnitt 4.5.2.3).

Im sELOCC_INFTY Zustand wird checkELOCC() nur auf der Teilmenge Lub,ext aus-
geführt. Diese Links sind zwar allesamt kritisch, da Lub,ext ∩ Ldom = ∅, sind sie
allerdings nicht Teil eines Zyklus der eigenen Domäne. Damit ist garantiert, dass
die Linkzeit dieser Links vom Sender nach einer endlichen Anzahl Deltacycles
bzgl. τ inkrementiert wird. Daher kann die Prüfung von ELOCC in sLOCC_INFTY

mit θ = ∞ erfolgen. Ist die ELOCC in sLOCC_INFTY erfüllt, wird die LOBC in
sLOBC auf der Teilmenge Lb,ext geprüft. Ist diese auch erfüllt, wird zuletzt in sDSC

die DSC auf der Teilmenge Ldom geprüft. Sind alle drei Bedingungen erfüllt, wird
der Zeitfortschritt durchgeführt.

Bevor der nächste Timed- oder Deltacycle tatsächlich ausgeführt werden darf,
muss in sELOCC noch einmal die ELOCC auf allen Eingangslinks Lin geprüft
werden. Dies dient nicht mehr einem kausal korrekten Zeitfortschritt 11, son-
dern ausschließlich dem vollständigen und damit deterministischen Empfang
aller Nachrichten für den nächsten Zyklus.

4.5.5. Abbildung auf die Speicherarchitektur SCC

Die Methode der Abbildung auf den SCC ist weitgehend identisch zur Methode,
die bei der symmetrischen asynchronen Strategie aus Abschnitt 4.4 verwendet

11Der Zeitfortschritt ist mit dem Ausführen von tnotify() bereits abgeschlossen.

148

4.5. Adaptive symmetrische Strategie

[pass==0]/
pass=checkELOCC(Lin,τi ,θi);

dispatchIn();

[|Ri| == 0 && pass==0]/
θi = skip();updateT();

pass=checkELOCC(Lub,ext,τi ,∞);
dispatchIn();

sdnotify

seval

[|Ri| == 0]/
δi = δi + 1;

supdate

init

[|Ui| == 0]/
dispatchOut();θi = θi + 1;updateT();

[|Ri| != 0]/ evaluate(Ri);

[|Ui| != 0]/ update(Ui);

[|Nδ
i| != 0]/ dnotify(Nδ

i);sELOCC

[|Nδ
i| == 0 && |Ri| != 0]/

pass=0;

sLOBC

sDSC

[pass==1]/
pass=checkDSC();

sELOCC_INFTY

[|Nδ
i| == 0 && |Ri| == 0]/

pass=0;

[|Ri| != 0]

stnotify

[τ i >= τmax]

[pass==1]/
τi = nextEdgeTime();θi = -1;

tnotify(τi,N
τ
i);updateT();

[|Ri| != 0 && τi < τmax]/
pass=0;

[|Ri| == 0 && τi < τmax]/
pass=0;

[|Ri| == 0 && pass==1]/
pass=checkLOBC(Lb,ext);

[pass==1]

[pass==0]

[pass==0]

Abbildung 4.30.: Adaptive Zustandsmaschine in einer Kernelkomponente ks
i

149

4. Parallele SystemC Simulation für Multiprozessoren

wurde. Anstelle der τlink
i Variablen, die mit Hilfe von Shared Object Primitiven

im MPB allokiert wurden, existieren nun im MPB Shared Object Instanzen für die
tlink
i , tsync

i , tmsg
i und tgrant. Abb. 4.31 illustriert die Verteilung auf die Speicherar-

chitektur des SCC. Kernel ks
2 fungiert im Beispiel als Master, die anderen Kernel

als Slaves.

Shared off-chip DRAM

Private DRAM

Shared on-chip SRAM (MPB)

Private DRAM

tlink
1FIFO1

External variables and data structures

All others (internal variables, data structures and program code)

Core 1
ks

1

Core 2
ks

2

Private DRAM Core n
ks

n

tsync
1 tmsg

1 tlink
nFIFOn tsync

n tmsg
ntlink

2FIFO2 tgrant
2

Abbildung 4.31.: Speichernutzung bei adaptiver Synchronisation

4.5.6. Vollautomatisierte Werkzeugunterstützung

Die vollautomatisierte Werkzeugkette wurde speziell für den adaptiven paral-
lelen SystemC Kernel entwickelt. Volle Automatisierung bedeutet, dass Schritt
II der Simulationssynthese aus Abschnitt 4.2.3 komplett versteckt vor dem Mo-
dellersteller erfolgt. Dies ist insofern wünschenswert, als dass ein solcher Ansatz
unabhängig vom Simulationsmodell ist. Er ist daher unmittelbar auch auf an-
dere RTL u.ä. Modelle anwendbar. Vollautomatisierung ist darüber hinaus not-
wendig, weil eine manuelle Modellanalyse und Konfiguration, wie sie im Fall
des Kernels aus Abschnitt 4.4 noch ausreichend war, im Hinblick auf die kom-
plexen Zusammenhänge zwischen Modelleigenschaften und Synchronisations-
methoden als nicht mehr handhabbar betrachtet werden kann. Ein weiterer Vor-
teil ist die Aufhebung der Partitionierungsbeschränkung auf dem Toplevel, wo-
durch Modelle flexibel verteilt werden können.

150

4.5. Adaptive symmetrische Strategie

4.5.6.1. Überblick

Der gesamte Ablauf ist in Abb. 4.32 illustriert. Da der HeMPS Editor infolge der
vollen Automatisierung nicht mehr modifiziert werden muss, kann für die Ge-
nerierung des HeMPS Simulationsmodells der originale Editor verwendet wer-
den. Als Voraussetzung für die Abbildung des Modells auf eine parallele Aus-
führungsplattform muss dann zunächst eine Modellanalyse erfolgen. Anhand
der Analyse werden relevante Eigenschaften des Simulationsmodells identifi-
ziert und gespeichert. Auf Basis dieser gespeicherten Informationen kann die
parallele Simulation, bestehend aus Modell und parallelem Simulator, für die
Ausführung auf der Zielplattform konfiguriert werden.

Die vorgelagerte Modellanalyse gliedert sich in einen statischen und einen dy-
namischen Teil. Die statische Analyse dient der Extraktion von deklarativer In-
formation und Aspekten, die das Modellverhalten betreffen. Sie nutzt dazu das
Compiler Frontend Clang [88], das Teil der LLVM Compiler Infrastruktur [186]
ist. Mit [158] existiert seit Kurzem ein weiteres Werkzeug auf Basis von Clang
für die Analyse von SystemC Modellen, das ungefähr im gleichen Zeitraum zu
dieser Arbeit entstanden ist. In [158] wird allerdings nur eine rein statische Ana-
lyse unterstützt. Da sich die statische Analyse in dieser Arbeit auf die Extrakti-
on deklarativer Informationen beschränkt, kann sie deutlich einfacher aufgebaut
werden. Die restlichen Informationen werden in der dynamischen Analyse ge-
wonnen.

Die dynamische Analyse dient der Extraktion von Information, die zur Laufzeit
unmittelbar verfügbar ist und schwer oder gar nicht statisch extrahiert werden
kann. Dazu gehört beispielsweise die vollständige parametrisierte Struktur der
Instanz der modellierten Hardwarearchitektur. Außerdem integriert die dyna-
mische Analyse direkt ein dynamisches Profiling, das zur Optimierung der Par-
titionierung genutzt wird. Die dynamische Analyseroutine kann nativ in die aus-
führbare Datei der Simulation integriert werden, sodass die Analyse, anders als
bei [193], ohne virtuelle Maschine und Just-in-Time Kompilierung durchgeführt
werden kann. Durch die Kombination aus statischer und dynamischer Analyse
erhält man ein möglichst vollständiges Abbild des Simulationsmodells. Im Fol-
genden werden die statische und die dynamische Analyse näher betrachtet.

4.5.6.2. Statische Analyse

Ausgehend vom ursprünglichen Modell wird zunächst die statische Analyse
durchgeführt (siehe Abb. 4.32). Diese besteht aus der Quellcodeanalyse selbst
(Generate SAR), in der die SystemC-spezifische Static Abstract Representation (SAR)
generiert wird und einer Codegenerierungsphase (Generate Extended Model Code).

151

4. Parallele SystemC Simulation für Multiprozessoren

D
ynam

ic Analysis
Static Analysis

E
xtended

M
odel

C
ode

*.h
*.cpp

G
enerate SA

R
(using clang Plugin)

G
enerate E

xtended
M

odel C
ode

C
/C

++ C
om

piler/Linker

G
enerate D

A
R

M
ap &

 R
un Sim

ulation

Partial
M

odel
Info F

iles
*.xm

l

M
odel

C
ode

*.h
*.cpp

SA
R

.xm
l

A
nalyzer

E
xecu-

table

D
A

R
.xm

l

Parallel
E

xecu-
table

K
ernel

C
onfig

.xm
l

Executable

Abstract D
ata

C
+

+
 C

ode

C
/C

++ C
om

piler/Linker

G
enerate Sim

ulator
C

onfiguration

Static Library

Saved
K

ernel
C

onfig
.xm

l

optional

PD
E

S
K

ernel
E

xtension
*.h
*.cpp

Sequential
System

C
K

ernel
*.h
*.cpp

Analysis
Kernel
Extension
*.h
*.cpp

alternative

C
C

M
P

IPC

B
ackend

*.h
*.cpp

SC
C

 IPC

B
ackend

*.h
*.cpp

H
eM

PS E
ditor

Sim
ulation

M
odel

Info F
ile

.hm
p

H
eM

PS
Library
*.h
*.cpp

Tasks
and
R

TO
S

*.h
*.c

Abbildung 4.32.: Vollautomatisierte Werkzeugkette

152

4.5. Adaptive symmetrische Strategie

Generierung der statischen abstrakten Darstellung
Die statische Quellcodeanalyse nutzt das bereits erwähnte Clang LLVM Com-
piler Frontend. Clang bietet eine Programmierschnittstelle zur Integration von
Plug-ins und bildet damit eine flexible Grundlage für die Implementierung der
Software zur Quellcodeanalyse, auch im Hinblick auf zukünftige Erweiterungen.

Ein Clang Plug-in arbeitet auf dem Abstract Syntax Tree (AST) des eingelesenen
Quellcodes. Dieser ist eine vollständige Darstellung der im C++ Quelltext vor-
gefundenen Sprachkonstrukte. Eine vollständige Darstellung ist notwendig, da
der AST den Ausgangspunkt für alle weiteren Schritte zur Erzeugung von Ma-
schinencode bildet. Im Clang AST sind jedoch bereits die Ergebnisse einiger Ver-
arbeitungsschritte wie der Namensauflösung und der Klassifikation von Aus-
drücken und Deklarationen enthalten. Zur Speicherung der Sprachkonstrukte
basiert der Clang AST auf einer geeigneten Datenstruktur.

Neben der Datenstruktur zur Speicherung des AST stellt Clang eine Program-
mierschnittstelle zur Verfügung, anhand derer innerhalb eines Plug-ins über Ty-
pen von Deklarationen und Ausdrücken im AST iteriert werden kann. Mit Hilfe
dieser Schnittstelle werden folgende Informationen extrahiert und in der Sys-
temC-spezifischen SAR gespeichert:

• Modul-Deklarationen: Für jede gefundene Moduldeklaration wird deren
Position in der Quelldatei für die spätere Code-Modifikation identifiziert.

• Ports und Channels: Alle innerhalb von Modulen deklarierten SystemC
Ports und Channels werden ermittelt.

• Prozesse: Definitionen von SystemC Prozessen innerhalb von Modulkon-
struktoren, deren Typ (z.B. SC_THREAD oder SC_METHOD) sowie deren
Sensitivitätslisten werden aktuell identifiziert. Auch Aufrufe der wait() und
next_trigger() Methoden innerhalb von Prozessen werden ermittelt. Die-
se können entweder eine dynamische Sensitivität verursachen oder eine
Timed-/Delta Notification erzeugen, wodurch der den Aufruf beinhalten-
de Prozess zu einem späteren Zeitpunkt wieder aktiviert wird. Im ersten
Fall wird die Notification wie ein Eintrag in der Sensitivitätsliste behandelt.
Im zweiten Fall wird der Prozess als Quelle für Notifications markiert.

• Lese- und Schreibzugriffe: Voraussetzung für die Extraktion sämtlicher
Lese- und Schreibzugriffe auf Channels oder Ports innerhalb von identi-
fizierten SystemC Prozessen ist, dass die verwendeten Port bzw. Channel
Variablen direkt aus dem Quellcode ermittelt werden können. Da bei der
Verwendung von Zeigern die verwendete Variable im Allgemeinen erst zur
Laufzeit feststeht, dürfen solche Zugriffe im Modell aktuell nicht auftreten.
Im Fall von Arrays aus Ports oder Channels können variable Indizes ver-
wendet werden. Das Analysewerkzeug geht dann jedoch von einem Zu-
griff auf alle Einträge des Arrays aus.

153

4. Parallele SystemC Simulation für Multiprozessoren

Die durch die SAR extrahierten Informationen sind in Abb. 4.33 anhand eines
Unified Modeling Language (UML) Klassendiagramms dargestellt. Da das Clang
Plug-in in den Compiler eingebunden ist, wird die Analyse für jede Kompilier-
Einheit und damit für jede Quelldatei einzeln ausgeführt. Als Ausgabe sind nach
einem Analysedurchlauf über die verschiedenen Quelldateien mehrere XML (Ex-
tensible Markup Language) Dateien vorhanden, über die die extrahierte SAR In-
formation modulweise verteilt gespeichert ist. In Abb. 4.32 werden diese Dateien
als Partial Model Info Files bezeichnet.

1

*

module_class

+string:name
+file_loc:source_location

constructor_info
+file_loc:source_location

ctor_argument

+string:type
+string:name

systemc_process

+string:name
+bool:is_sc_thread
+bool:uses_wait
+sc_time[]:timed_delays
+int[]:delta_delays

module_member
+string:name
+file_full:type_name
+member_type:type
+file_loc:source_location

<<enumeration>>
member_type

port_member
channel_member
submodule_member

static_model_info

1 1

1

*

1

*

1

*

writes

* * *

* * *

sensitivity

reads

Abbildung 4.33.: Klassendiagramm der statischen abstrakten Darstellung (Quel-
le: [Red14])

Generierung des erweiterten Modellcodes
Die mit dem Clang Plug-in erzeugten XML Dateien dienen als Eingangsdaten für
das Werkzeug zur Generierung des erweiterten Modellcodes (Generate Extended
Model Code Block in Abb. 4.32). Dieses fasst zunächst die statischen Informatio-
nen, die auf die verschiedenen Partial Model Info Files verteilt sind, zusammen
und speichert sie in einer einzelnen Datei namens SAR.xml. Die extrahierte SAR
wird anschließend zur Generierung der folgenden drei Artefakte verwendet:

• Modulwrapper: Für jedes Modul der gesamten Modulhierarchie wird ein
Wrapper generiert. Wie bei den Wrappern aus Abschnitt 4.4.6 ist eine be-
dingte Instanziierung von gekapselten Moduls anhand von Flags und ei-

154

4.5. Adaptive symmetrische Strategie

ne Modellverteilung mit Modulgranularität möglich. Im Unterschied zu
den Wrappern aus Abschnitt 4.4.6 ist die Verteilung allerdings nicht mehr
auf das Toplevel beschränkt. Module niedrigerer Hierarchieebenen können
unabhängig von Modulen höherer Hierarchieebenen auf unterschiedliche
Kerne der Ausführungsplattform verteilt werden. Eine Erweiterung von
Modul- auf Prozessgranularität ist leicht integrierbar: Dazu müsste ein Mo-
dul auf verschiedenen Kernen mehrfach instanziiert werden. Die Prozesse
innerhalb des Moduls müssten dann selektiv ausgeführt werden.

• Helfermethoden und Helferklassen: Durch die Helfermethoden und Hel-
ferklassen können statisch gewonnene und in der SAR hinterlegte Infor-
mationen in der nachfolgenden dynamischen Analyse oder Ausführung
verwendet werden. Die Helfermethoden sind für eine typspezifische Inspi-
zierung von SystemC Modulen in der dynamischen Analyse notwendig.
Die Helferklassen werden für die dynamische Instanziierung der Modul-
wrapper und SystemC Channels während der Laufzeit benötigt, wenn das
übergeordnete Modul auf einem anderen Kern ausgeführt wird.

• Modifikation der Header: Die Modifikation der originalen Quelltexte be-
schränkt sich auf das Hinzufügen von Typdefinitionen und Präprozessor-
konstrukten, wodurch die originalen Module durch die Modulwrapper
ausgetauscht werden. Da der in Abschnitt 4.5.3 beschriebene Kommuni-
kationsmechanismus direkt in die Basisklasse für Primitive Channels inte-
griert wurde, werden notwendige Modifikationen am originalen Quelltext
insgesamt auf ein Minimum reduziert.

4.5.6.3. Dynamische Analyse

Während der dynamischen Analyse werden alle Aspekte extrahiert, die von ei-
ner konkreten Modellausführung abhängen und in der sog. Dynamic Abstract
Representation (DAR) gespeichert. Dies hat den Vorteil, dass jegliche Parametrie-
rung, die von einem bestimmten Simulationslauf abhängt, automatisch erkannt
werden kann. Abb. 4.34 illustriert das einer DAR zugrundeliegende Klassendia-
gramm. Um die DAR zu erzeugen, muss der im Rahmen der statischen Analyse
generierte/modifizierte Quellcode zunächst kompiliert und mit den für die Ana-
lyse notwendigen Bibliotheken gelinkt werden. Letztere beinhalten den sequen-
tiellen SystemC Kernel sowie eine sog. Analyzer Kernel Extension, die sämtlichen
für die dynamische Analyse notwendigen Analysecode beinhaltet (siehe Abb.
4.32).

Als Ergebnis erhält man das Analyzer Executable, durch dessen Ausführung die
dynamische Analyse erfolgt. Dabei wird die Elaboration Phase des SystemC Ker-
nels zur Extraktion der simulierten Architektur und die Simulation Phase zur
Extraktion von Profilinginformation genutzt.

155

4. Parallele SystemC Simulation für Multiprozessoren

Extraktion der Modellarchitektur
In der Elaboration Phase werden Objekte der Module, Ports und Channels eines
SystemC Designs instanziiert und die Verknüpfungen zwischen diesen herge-
stellt. Mit dem Ende der Elaboration Phase ist das komplette Modell instanziiert
und bereit zur Ausführung. Der SystemC Kernel speichert dabei die genannten
SystemC Objekte in einer internen Datenstruktur. Diese Datenstruktur wird zur
Iteration über die Objekte und zu deren Inspektion genutzt.

Da die Objekte in der Datenstruktur nur durch Zeiger auf polymorphe Basisklas-
sen (sc_module, sc_prim_channel oder sc_port_base) referenziert werden (vgl. [27]),
müssen für die Extraktion der Verknüpfungen von Objekten zunächst die spe-
zialisierten Datentypen der einzelnen Objekte identifiziert werden. Dazu werden
die während der statischen Analyse generierten Helfermethoden eingesetzt (vgl.
Abschnitt 4.5.6.2).

Mit Unterstützung der Helfermethoden werden die Klassennamen der Modu-
linstanzen und die Membervariablen von Modulen inklusive Typ und Name
erkannt. Anhand der Namen von Modulklassen und Membervariablen können
den einzelnen Instanzen dann die zugehörigen Daten aus der statischen Analyse
zugeordnet werden. Darauf basierend ist es schließlich möglich, Verbindungs-
strukturen zwischen Prozessen, Port- und Channelinstanzen zu identifizieren,
indem die an Ports angebundenen Channelinstanzen ermittelt und Zugriffe von
Prozessen auf Channels und Ports den jeweiligen Instanzen zugeordnet werden.

Die Helfermethoden setzen sich aus einer Methode namens get_module_members()
und einer Menge von überladenen Methoden namens get_members() zusammen.
Von letzteren existiert jeweils eine Version für jede Modulklasse des Modells.
Innerhalb von get_module_members() wird der Klassenname einer Modulinstanz
über deren dynamischen Typ mit Hilfe von Typecasts bestimmt. Wurde der Typ
identifiziert, so können mit der zugehörigen get_members() Methode alle im Mo-
dul instanziierten Member wie Ports, Channels inklusive Typ und Name ermit-
telt werden.

Insgesamt wird mit den extrahierten Informationen eine abstrakte Beschreibung
der dynamisch erzeugten Modellstruktur generiert. Diese wird mit Hilfe der
Klassenstruktur aus Abb. 4.34 abgespeichert. Die Beschreibung umfasst die Mo-
dulhierarchie mit allen Ports, Channels und Prozessen und deren Relationen.
Speziell für sc_clock Channels werden aktuell zusätzlich noch Informationen über
deren Zeitverhalten erfasst und für die Nutzung in den nachfolgenden Analyse-
schritten abgespeichert.

Extraktion von Pro�lingdaten
In der Simulation Phase werden für SystemC Prozesse und für SystemC Chan-
nels Profilinginformationen aufgezeichnet. Für jeden SystemC Prozess pi ∈ P
wird die Anzahl der Ausführungen Neval

i (θ) und die mittlere Ausführungszeit

156

4.5. Adaptive symmetrische Strategie

Teval
i in Abhängigkeit des Deltacyclezählers θ erfasst. In der Implementierung

muss mit θmax eine Grenze festgelegt werden, bis zu der Neval
i (θ) maximal be-

stimmt werden soll. Mit Hilfe von

n̄eval
i (θ) =

{
Neval

i (θ), θ < θmax

∑∞
k=θmax Neval

i (k), θ = θmax (4.18)

kann für jeden SystemC Prozess pi ein Vektor ~neval
i angegeben werden, der die

Ausführungshäufigkeiten für θ ≤ θmax wie folgt annähert:

~neval
i =

[
n̄eval

i (0), n̄eval
i (1), ..., n̄eval

i (θmax)
]T

(4.19)

Auf Basis von ~neval
i wird der Lastvektor ~wload

i definiert, welcher die Verteilung
der mittleren Ausführungszeit eines SystemC Prozesses pi auf die Deltacycles
beschreibt. Für ~wload

i gilt:

~wload
i = Teval

i ×
(

n̂eval
i

~neval
i

)
. (4.20)

Dabei ist die Gesamtzahl der Evaluationen n̂eval
i eines Prozesses pi näherungs-

weise durch

n̂eval
i =

θmax

∑
θ=0

n̄eval
i (θ) (4.21)

gegeben. Neben den Profilingdaten für SystemC Prozesse wird aktuell für jeden
Channel chj ∈ CH die Gesamtanzahl der Aktualisierungen Nupdate

j in der Update
Phase aufgezeichnet.

Die Profilingdaten werden, neben den weiter oben bereits genannten Informa-
tionen über das Modell, ebenfalls in der DAR hinterlegt. Die vollständige DAR
kann abschließend in einer XML Datei namens DAR.xml exportiert werden. DAR
und SAR liefern somit ein Abbild des Modells, das Verhalten, Struktur und Per-

157

4. Parallele SystemC Simulation für Multiprozessoren

1

*

module_instance

+string:class_name
+string:instance_name

channel_instance

+string:module_member_name
+string:instance_name

port_instance

+string:module_member_name
+int:port_index

process_instance

+string:instance_name
+string:method_name

dynamic_model_info

* * *

clock_data
+sc_time:period
+double:duty_cycle
+sc_time:start_time
+bool:posedge_first

1

0..1

reads
writes

sensitivity

**

binding
interface

1

*

parent module

submodule

profiling_eval_counters

+int[MAX_PROF_DELTA]:eval_count

+int:profiling_update_count +float:profiling_average_runtime

1 *

Abbildung 4.34.: Klassendiagramm der dynamischen abstrakten Darstellung
(Quelle: [Red14], erweitert)

158

4.5. Adaptive symmetrische Strategie

formanzinformation beinhaltet. Diese Informationen dienen als Grundlage für
die Modellpartitionierung und die Kernelkonfiguration im nun folgenden Schritt.

4.5.6.4. Abbildung auf die Ausführungsplattform

Die Abbildung des Simulationsmodells auf die Ausführungsplattform geschieht
mit Hilfe eines gesonderten Werkzeugs. In Abb. 4.32 wird dieses Werkzeug durch
den Block Generate Simulator Configuration repräsentiert. Der Prozess der Ab-
bildung lässt sich in die drei Teilschritte Vorverarbeitung, Partitionierung und
Nachverarbeitung gliedern.

Vorverarbeitung
Das Werkzeug liest zunächst die XML Dateien ein, welche die statische und
dynamische abstrakte Darstellung enthalten und erzeugt daraus den Prozess-
Signal-Graphen GPS(P, S) und den Sensitivitätsgraphen GS(P, E) des Simulati-
onsmodells. Auf Basis einer Analyse von GS werden Knoten P aus GPS mit Akti-
vitätsmustern (vgl. Abschnitt 4.5.2.4) annotiert. Knoten P und Kanten S werden
zudem mit Profilingdaten (vgl. Abschnitt 4.5.6.3) aus der DAR annotiert.

Partitionierung
Ausgehend vom Graphen GPS wird der logische Prozessgraph GLP(LP, L) syn-
thetisiert. Letzterer entspricht mit Definition 4.4 einer Partitionierung aller vor-
handenen SystemC Prozesse p ∈ P in logische Prozesse lp ∈ LP.

Aktuell existiert für die Partitionierung die zusätzliche Nebenbedingung, dass
alle SystemC Prozesse einer Modulinstanz in derselben Partition liegen müs-
sen (vgl. Abschnitt 4.5.6.2). Diese Bedingung kann dadurch eingehalten werden,
dass Prozesse derselben Modulinstanz vor der eigentlichen Partitionierung zu
einem Knoten zusammengefasst werden. Damit erhält man ein Graphenparti-
tionierungsproblem ohne Nebenbedingungen, für dessen Lösung bereits viele
unterschiedliche Algorithmen existieren. Geeeignete Lösungsalgorithmen sind
in der METIS Bibliothek [155] implementiert, weshalb METIS in dieser Arbeit
verwendet wird. METIS wurde speziell für die Partitionierung unregelmäßiger
Graphen oder großer Mesh-Netzwerke entwickelt. Die Algorithmen basieren auf
dem Paradigma der sog. Multilevel Graphpartitionierung [156, 157].

Als Eingabedaten benötigt die Bibliothek Gewichte für die Knoten und Kan-
ten des zu partitionierenden Graphen. Der Partitionierungsalgorithmus versucht
dann, die Knoten so auf die Partitionen zu verteilen, dass die Summe aller Kno-
tengewichte in den einzelnen Partitionen möglichst nahe an eine vorgegebene
Verteilung heran kommt. Gleichzeitig wird versucht die Summe der Gewichte
aller Kanten, die zwischen zwei Partitionen verlaufen, zu minimieren.

159

4. Parallele SystemC Simulation für Multiprozessoren

Als Knotengewichte können in METIS Vektoren verwendet werden. Dies ist die
Basis für eine Optimierung bzgl. eines jeden Vektorelements (Mehrzieloptimie-
rung). Für einen SystemC Prozess werden die an die Knoten pi ∈ GPS anno-
tierten Lastvektoren ~wload

i als vektorielle Knotengewichte verwendet. Daneben
kann ein Toleranzvektor ~ϑ definiert werden, der das erlaubte Ungleichgewicht
bzgl. einzelner Elemente des Knotengewichtsvektors zwischen Partitionen spe-
zifiziert [155]. Als Kantengewicht für eine Kante sj ∈ GPS wird unmittelbar die

Summe aus der Anzahl der Aktualisierungen Nupdate
k all der SystemC Channels

chk verwendet, die durch die Kante repräsentiert sind.

Nachverarbeitung
Ist eine Partitionierung gefunden, werden mit Hilfe der Klassifikation aus Ab-
schnitt 4.5.2) und der Graphen GPS und GS die Eigenschaften der logischen Links
und deren Kritikalitätstypen extrahiert. Als Ergebnis erhält man Gcrit

LP . Über die
Suche von stark zusammenhängenden Komponenten [152] in Gcrit

LP werden Do-
mänen identifiziert und logische Prozesse in Master und Slaves eingeteilt. Schlus-
sendlich wird die komplette Konfiguration inkl. Modellpartitionierung, Aktivi-
tätsmuster, Position von Domänen und die Master/Slave Einteilung logischer
Prozesse als XML Datei (KernelConfig.xml) exportiert. Das Werkzeug ist außer-
dem in der Lage, eine vereinfachte Repräsentation der generierten Partitionie-
rung zu exportieren (SavedKernelConfig.xml Datei). Die abgespeicherte Partitio-
nierung kann daraufhin gegebenenfalls modifiziert und bei einem späteren Auf-
ruf des Werkzeugs wieder importiert werden. Dadurch ist es möglich, auch ma-
nuell erstellte oder modifizierte Partitionierungen anstelle einer automatisch ge-
nerierten Partitionierung zu verwenden.

Ausführung
Für die parallele Ausführung muss zunächst das ParallelExecutable erzeugt wer-
den. Dazu muss der in Abb. 4.32 oberhalb zur dynamischen Analyse parallel
verlaufende Pfad durchschritten werden. Das ParallelExecutable wird dann unter
Verwendung der zuvor generierten KernelConfig.xml Datei gestartet. Diese kon-
figuriert das ParallelExecutable zur Simulationslaufzeit mit den vorher erstellten
Konfigurationsdaten. Mit Hilfe unterschiedlicher Backends ist eine Ausführung
dabei sowohl auf dem SCC als auch auf gewöhnlichen cachekohärenten SHM
Multiprozessoren möglich.

160

4.5. Adaptive symmetrische Strategie

4.5.7. Bewertung

4.5.7.1. Adaptive Synchronisation und Lastverteilung

In diesem Abschnitt soll untersucht werden, welchen Einfluss die adaptive Syn-
chronisation auf die Beschleunigung der Simulation hat. Dies beinhaltet eine Be-
trachtung des Einflusses der dynamischen Verklemmungserkennung als auch
einen Vergleich mit einem rein synchronen Verfahren.

Für die Messungen wurden für verschieden große HeMPS Modelle unterschied-
liche Partitionierungen manuell erstellt. Die HeMPS Modelle führten dabei die
bereits bekannte MPEG Applikation aus. Die gewählten Partitionierungen wa-
ren frei von Zyklen kritischer logischer Links, so dass eine dynamische Erken-
nung von Verklemmungen und die Einführung von Domänen prinzipiell ei-
gentlich nicht notwendig war. Ausgehend von diesem Basisfall wurden die logi-
schen Prozesse anschießend dennoch auf gleich große künstliche Domänen auf-
geteilt. Innerhalb dieser Domänen blieb die Verklemmungserkennung aktiviert.
Beginnend bei einer maximalen Anzahl von drei logischen Prozesen pro Domä-
ne wurde die Anzahl an logischen Prozessen innerhalb einer Domäne sukzessive
erhöht. Im Umkehrschluss reduzierte sich dadurch die Gesamtanzahl vorhande-
ner Domänen. Im letzten Schritt befanden sich dann alle logischen Prozesse in
einer einzigen Domäne. Dies entspricht einer globalen Synchronisation für einen
Zeitschritt bzgl. τ.

Für den ersten Teil des Experiments wurden ein 8x8 und ein 6x8 HeMPS RTL
Modell manuell in jeweils 48 Partitionen aufgeteilt. Da das 6x8 Modell aus genau
48 Tiles besteht, konnten alle Submodule eines Tiles jeweils in einer separaten
Partition zusammengefasst waren. Weil alle Partitionen einen Satz gleichartiger
Modulinstanzen enthielten, war die Partitionierung des 6x8 Modells homogen.
Bei der Partitionierung des 8x8 Modells enthielten 32 Partitionen je ein Proces-
sing Element und die restlichen 16 Partitionen je vier Router und vier Network
Interfaces. Aufgrund dieser ungleichen Zusammensetzung war die Partitionie-
rung inhomogen. Abb. 4.35 illustriert die Messergebnisse12.

Am auffälligsten an den Messergebnissen ist die Tatsache, dass die Beschleuni-
gung der Simulation des 6x8 Modells trotz der geringeren Modellgröße generell
deutlich höher ausfällt als die Beschleunigung der Simulation des 8x8 Modells.
Die Ursache ist die weniger gleichmäßige Verteilung der Rechenlast bei inho-
mogener Partitionierung. Dadurch kann es mit höherer Wahrscheinlichkeit zu
permanent größeren Differenzen in der Ausführungszeit von Deltazyklen auf
unterschiedlichen logischen Prozessen kommen.

12Um statistische Schwankungen auszugleichen, wurden die Messungen mehrfach wiederholt und
Mittelwerte gebildet.

161

4. Parallele SystemC Simulation für Multiprozessoren

none 3 6 12 24 48
25

26

27

28

29

30

31

32

33

34

Logical Processes per Domain

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

HeMPS 8x8, 48 SCC Cores
HeMPS 6x8, 48 SCC Cores

Abbildung 4.35.: Beschleunigung bei fester Partitionierung und variabler
Domänengröße

Des Weiteren ist zu erkennen, dass die Beschleunigung mit zunehmender Do-
mänengröße abnimmt. Der größte Abfall ist bei maximaler Domänengröße zu
verzeichnen. Ein Grund für den Abfall ist der durch die dynamische Verklem-
mungserkennung verursachte zusätzliche Synchronisationssaufwand: Innerhalb
der künstlichen Domänen entstehen nicht notwendige domänenweite Wartezei-
ten. Logische Prozesse müssen beim Zeitfortschritt u.U. auf andere logische Pro-
zesse warten, obwohl keine kausalen Abhängigkeiten bestehen.

Bei inhomogener Partitionierung (8x8 Modell) fällt der relative Verlust, d.h. die
relative Verlängerung der Ausführungsdauer, bei Verwendung einer globalen
Domäne mit 11.07% nahezu doppelt so stark aus wie bei homogener Partitionie-
rung (6x8 Modell) mit 5,95%. Die auftretenden Wartezeiten werden offensicht-
lich durch die ungleiche Lastverteilung weiter vergrößert, da die schnelleren lo-
gischen Prozesse länger auf die langsameren warten müssen.

Tab. 4.2 beinhaltet einige zusätzliche Messergebnisse, um den Zusammenhang
zwischen der Lastverteilung und dem Verlust durch globale Synchronisation
weiter zu verdeutlichen. Sie zeigt für verschiedene Modellkonfigurationen (ein
2x2, ein 4x4 und die beiden bekannten Modelle) den Verlust, der durch eine glo-
bale Domäne und durch vollständig synchrone Ausführung entsteht13.

Wie erwartet verursacht eine globale Domäne weiterhin bei den inhomogenen
Partitionierungen stärkere Verluste. Im Unterschied dazu ist bei voll synchroner
Simulation nicht die Homogenität der Partitionierung der dominierende Ein-

13Die Prozentangaben beziehen sich auf die Ausführungsdauer. Angegeben ist jeweils das Verhältnis
zur Ausführungsdauer bei adaptiver Synchronisation ohne künstliche Domänen.

162

4.5. Adaptive symmetrische Strategie

flussfaktor. Hier ist eher ein Zusammenhang zwischen der Modellgröße/SCC
Kernen und dem Verlust erkennbar: Letzterer steigt mit der Anzahl an SCC Ker-
nen. Bei gleichbleibender Anzahl an SCC Kernen (48) sinkt er mit der Modell-
größe. Die Verluste sind bei synchroner Ausführung zudem insgesamt deutlich
größer als im Fall von asynchroner Ausführung und einer globalen Domäne.

Tabelle 4.2.: Laufzeitverlust durch globale Synchronisation
Modellgröße/SCC Kerne 2x2/9 4x4/16 6x8/ 48 8x8/48
Homogene Partitionierung nein ja ja nein
Verlust durch globale Domäne 9.47 % 2.87 % 5.95 % 11.07 %
Verlust durch synchrone Ausführung 24.94 % 36.05 % 76.05 % 67.07 %

4.5.7.2. Feingranulare Partitionierung

Bei der teilautomatisierten Werkzeugkette aus Abschnitt 4.4.8 ist die Partitionie-
rung auf die oberste Ebene der Modulhierarchie beschränkt. Dies limitiert die
maximale Anzahl logischer Prozesse. Beispielsweise können im Fall eines 2x2
HeMPS Modells bestehend aus zwölf Toplevel Modulen (PEs, NIs und ROs) ma-
ximal zwölf logische Prozesse erzeugt werden. Da die Processing Elements den
Hauptanteil der Rechenlast erzeugen, kann eine weitere Partitionierung dieser
Module zu zusätzlichen Performanzverbesserungen beitragen. Dies ist in Abb.
4.36 illustriert.

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

4 8 12 13 18 22 26

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

SCC Core Count

2x2 HeMPS

Fined Grained Coarse Grained

Abbildung 4.36.: Grobgranulare versus feingranulare Partitionierung

Durch die feingranulare Partitionierung ist es möglich ein 2x2 HeMPS Modell
über zwölf Partitionen hinaus auf bis zu 26 Partitionen zu verteilen. (alle Mess-

163

4. Parallele SystemC Simulation für Multiprozessoren

punkte rechts der roten Linie). Dadurch kann die Beschleunigung ausgehend
von 3.63x bei 12 Partitionen auf bis zu 4.62x bei 26 Partitionen gesteigert werden.

Darüber hinaus eröffnet die Möglichkeit zur feineren Partitionierung noch weite-
re Freiheitsgrade zur Optimierung. Im Fall von HeMPS lässt sich beispielsweise
der Kommunikationsaufwand zwischen logischen Prozessen in Form der Del-
taschranken von existierenden beschränkten logischer Links durch Umverteilen
einzelner Submodule reduzieren. Um dies zu demonstrieren, wurden zunächst
verschiedene homogene Toplevel Partitionierungen mit einer Granularität von
Tiles erzeugt. Dabei wurden nur Signale geschnitten, die zwischen benachbar-
ten Routern verlaufen. Die HeMPS Router verfügen über einen separaten Emp-
fangspuffer für jeden benachbarten Router. Diese Puffer sind in einem eigenen
Submodul implementiert. Im Zuge der Optimierung wurden diese Empfangs-
puffer jeweils in die Partition des sendenden Routers verschoben.

Messergebnisse, welche die optimierte Variante der nicht optimierten Variante
für verschiedene Modellgrößen gegenüberstellen, sind in Abb. 4.37 dargestellt.
Die Optimierung bewirkt generell eine höhere Beschleunigung. Wie man der Ab-
bildung auch entnehmen kann, konnte die höchste beim adaptiven Verfahren
gemessene Beschleunigung von 33.13x beim 6x8 Modell auf 48 SCC Kernen nur
mit dieser Art der Optimierung erreicht werden.

2,6 2,83

14,24 15,28

31,04
33,13

0

5

10

15

20

25

30

35

no opt. opt. no opt. opt no opt. opt.

2x2/4 8x8/16 6x8/48

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

Partitioning (Model Size / SCC Cores)

Abbildung 4.37.: Optimierte versus Toplevel Partitionierung

4.5.7.3. Automatische Partitionierung

Zur Demonstration von Funktion und Anwendbarkeit der automatischen Par-
titionierung wurden abschließend mehrere umfangreiche Messreihen mit ver-

164

4.5. Adaptive symmetrische Strategie

schiedenen HeMPS Modellen (unter Verwendung von reinen RTL und Cycle-
Approximate Level (CAL) PEs) durchgeführt. Unter Vorgabe der Anzahl zu ver-
wendender SCC Kerne wurden die Modelle mit der Werkzeugkette aus Ab-
schnitt 4.5.6 jeweils automatisch analysiert, partitioniert und anschließend aus-
geführt. Für die automatische Partitionierung wurden zwei unterschiedliche An-
sätze verwendet:

• Strategie I: Knoten- und Kantengewichte werden durch Compileranalyse
ermittelt. Für ~neval

i von Prozess pi aus Ausdruck 4.19 werden dessen Ak-
tivitätsmuster (vgl. Abschnitt 4.5.2.4) in Form eines binären Vektors ver-
wendet. Teval

i wird auf 1 und n̂eval
i auf 0 gesetzt. Als Toleranzwert für das

Lastungleichgewicht wird generell 1.2 angenommen. Für SystemC Signale
wird der Betrag des Aktivitätsmustervektors des jeweils schreibenden Pro-
zesses als Kantengewicht benutzt. Aktive Signale werden zusätzlich mit
einem Faktor 3x gewichtet. Als METIS Partitionierungsmethode wird Mul-
tilevel k-Way Partitioning gewählt.

• Strategie II: Knoten- und Kantengewichte werden durch Profiling ermit-
telt. Diese entspricht der in Abschnitt 4.5.6.3 beschriebenen Methode. Zu-
dem wird das erste Element der Lastvektoren ~wload

i mit einer Toleranz von
1.15 behandelt, die restlichen Vektorelemente mit einer Toleranz von 1.4.
Als METIS Partitionierungsmethode wird Multilevel Recursive Bisectioning
gewählt.

Für alle Untersuchungen wurde θmax = 8 gesetzt. Die erzielten Beschleunigun-
gen bei Verwendung von Strategie I und adapativer Synchronisation sind in den
Abb. 4.38 und 4.39 in Abhängigkeit der verwendeten SCC Kerne und der ver-
schiedenen Modellkonfigurationen dargestellt14. Bei den kleineren Modellen ist
wegen der geringeren Rechenkomplexität generell ein schnellere Sättigung der
Beschleunigung zu verzeichnen. Vergleicht man den Verlauf der Kurven der RTL
und CAL basierten Simulationen, so liegen die Gewinne durchweg in ähnlichen
Größenordnungen, trotz der geringeren Rechenkomplexität der CAL PEs.

Im Mittel steigt die Beschleunigung mit der Anzahl der SCC Kerne an. Es sind
allerdings deutliche Schwankungen und Ausreißer zu erkennen. Beim RTL Mo-
dell sind diese noch stärker als beim CAL basierten Modell. Dabei fällt auf, dass
meist nur in einigen Sonderfällen, insbesondere beim 4x4, 5x5 und 6x6 RTL Mo-
dell, wenn die Anzahl der HeMPS Tiles identisch zur Anzahl der SCC Kerne ist,
gute Beschleunigungen erzielt werden. Dies ist mit der 3x Gewichtung der ak-
tiven Signale zu erklären. Zwischen den HeMPS Tiles existieren wenige aktive
Signale, so dass eine Partitionierung an Tile Grenzen bevorzugt wird.

14Bei Verwendung von Strategie I in Kombination mit dem 2x2 Modell und bei Vorgabe vieler SCC
Kerne > 25 resultierte die Partitionierung mit METIS teilweise in der Auslassung von SCC Ker-
nen. Dabei blieben maximal fünf SCC Kerne ungenutzt.

165

4. Parallele SystemC Simulation für Multiprozessoren

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

SCC Core Count

HeMPS 2x2 RTL

HeMPS 3x3 RTL

HeMPS 4x4 RTL

HeMPS 5x5 RTL

HeMPS 6x6 RTL

HeMPS 7x7 RTL

HeMPS 8x8 RTL

Abbildung 4.38.: Beschleunigung von HeMPS (RTL PEs) mit Strategie I und ad-
aptiver Synchronisation

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

SCC Core Count

HeMPS 2x2 CAL

HeMPS 3x3 CAL

HeMPS 4x4 CAL

HeMPS 5x5 CAL

HeMPS 6x6 CAL

HeMPS 7x7 CAL

HeMPS 8x8 CAL

Abbildung 4.39.: Beschleunigung von HeMPS (CAL PEs) mit Strategie I und ad-
aptiver Synchronisation

166

4.5. Adaptive symmetrische Strategie

In Abb. 4.40 sind die Messergebnisse der parallelen RTL Simulation mit Strategie
II und adaptiver Synchronisation dargestellt. Vergleicht man Abb. 4.40 mit Abb.
4.38, so kommen die Kurven viel näher an den durch das Amdahlsche Gesetz
(vgl. Abschnitt 2.4.4.5) theoretisch beschriebenen Verlauf heran.

Durch den Austausch der Partitionierungsmethode und der per Compileranaly-
se ermittelten Schätzwerte mit realen Profilingdaten ist es offensichtlich möglich,
die Schwankungen in der Beschleunigung bis zu einem gewissen Grad auszu-
gleichen. Auffällig ist außerdem, dass die starken Maxima, die bei Partitionie-
rung des RTL Modells mit Strategie I entstanden sind, mit Strategie II nicht mehr
auftreten. Allerdings kann mit Strategie II auch außerhalb der Sonderfälle eine
relativ gute Lastverteilung erzielt werden.

Sowohl bei Strategie I als auch bei Strategie II fällt die Beschleunigung bei au-
tomatischer Partitionierung im Durchschnitt niedriger als bei manueller Opti-
mierung aus. Beispielsweise konnte das 8x8 HeMPS RTL Modell mit manueller
Partitionierung und manueller Optimierung maximal um einen Faktor 30.81x
beschleunigt werden. Bei automatischer Partitionierung wurde dagegen nur ei-
ne maximale Beschleunigung von 20.54x (Strategie I) bzw. 29.28x (Strategie II)
erreicht. Dies ist auf die suboptimale Gewichtung von Signalen und Prozessen
während der automatischen Partitionierung zurückzuführen. Offensichtlich ist
noch weiteres Optimierungspotential vorhanden.

Um den Vorteil der adaptiven Synchronisation weiter zu verdeutlichen, ist in
Abb. 4.41 schließlich die Beschleunigung illustriert, wenn vollsynchrone Aus-
führung auf Basis globaler Barriers verwendet wird15. Insgesamt liegt die ma-
ximal erzielte Beschleunigung deutlich unter 20x, was signifikant kleiner ist als
die mit adaptiver Synchronisation maximal erreichten Werte.

Des Weiteren ist ein deutlicher Rückgang der Beschleunigung mit steigendem
Parallelisierungsgrad zu erkennen, der bei adaptiver Synchronisation nicht so
deutlich auftritt. Die vollsynchrone Ausführung skaliert offensichtlich nicht so
gut mit der Anzahl an SCC Kernen wie die adaptive Synchronisation. Dieser
Effekt wird durch die Implementierung der Barrier verstärkt, welche einen zen-
tralen Master nutzt.

4.5.7.4. Diskussion

Anhand der verschiedenen Fallstudien konnte gezeigt werden, dass es durch
einen erhöhten Grad an Automatisierung möglich ist, asynchrone PDES für die
deltazyklengenaue Parallelisierung von SystemC RTL Modellen nutzbar zu ma-
15Die Implementierung des vollsynchronen Ansatzes, der hier als Vergleichsfall verwendet wird,

entspricht weitgehend dem Verfahren, das innerhalb einer großen globalen Domäne angewendet
wird. Der Unterschied besteht darin, dass alle Slaves vor jedem neuen Timed- oder Deltacycle
immer mit dem Master synchronisieren und blockieren, während sie auf den Master warten.

167

4. Parallele SystemC Simulation für Multiprozessoren

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 C
or

e)

SCC Core Count

HeMPS 2x2 RTL

HeMPS 3x3 RTL

HeMPS 4x4 RTL

HeMPS 5x5 RTL

HeMPS 6x6 RTL

HeMPS 7x7 RTL

HeMPS 8x8 RTL

Abbildung 4.40.: Beschleunigung von HeMPS (RTL PEs) mit Strategie II und ad-
aptiver Synchronisation

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

SCC Core Count

HeMPS 2x2 RTL

HeMPS 3x3 RTL

HeMPS 4x4 RTL

HeMPS 5x5 RTL

HeMPS 6x6 RTL

HeMPS 7x7 RTL

HeMPS 8x8 RTL

Abbildung 4.41.: Beschleunigung von HeMPS (RTL PEs) mit Strategie II und glo-
balen Barriers

168

4.5. Adaptive symmetrische Strategie

chen. Die erzielten Beschleunigungswerte liegen trotz feinerer Synchronisation
in etwa in der gleichen Größenordnung wie beim Verfahren aus Abschnitt 4.4.
Durch gezielte Optimierungen konnten sie sogar übertroffen werden.

Die automatische Partitionierung bietet noch Potential für Verbesserungen. Ins-
besondere für die Kanten des Graphen GPS können u.U. bessere Gewichtun-
gen gefunden werden, um die Qualität der mit METIS erzeugten Partitionierun-
gen weiter zu erhöhen. Insbesondere muss das Gewicht einer Kante besser mit
der Klassifikation (aktiv/passiv, delta-beschränkt/unbeschränkt, etc.) der Kan-
te korrelieren, um so den Effekt auf die Performanz detaillierter zu beschreiben,
der durch die Klassifikation entsteht. Dazu ist der Einfluss der Klassen von Kan-
ten auf die Leistungsfähigkeit der Simulation genauer zu untersuchen und die
Klassen anhand einer skalaren Kostenmetrik zueinander in Beziehung zu setzen.

Die Haupteinschränkung des beschriebenen Ansatzes ist die Limitierung auf
RTL und ähnliche Modelle. Um die Anwendbarkeit auch auf andere Modellie-
rungsstile (z.B. TLM) auszudehnen, müssen spezifische Modellierungsartefakte
und Modellcharakteristika von den Analyse- und Transformationswerkzeugen
sowie der Laufzeitumgebung unterstützt werden. Ein Grund für die Limitie-
rung auf das RTL o.ä. ist die Voraussetzung, dass Partitionen um mindestens
einen Deltacycle entkoppelt sind und die durch die Aktion nextEdgetime() zu-
rückgegebene Zeit τedge bei der Berücksichtigung delta-beschränkter Links lokal
bekannt ist. Bei RTL Modellen kann dieser Wert unmittelbar lokal vorhergesagt
werden. Kommen im Modell aber beliebige Aufrufe von wait() oder next_trigger
mit Zeitargument vor, so sind die jeweiligen Verzögerungszeiten im Allgemei-
nen erst zur Laufzeit bekannt. Darüber hinaus ist die Verzögerung zunächst nur
dem logischen Prozess bekannt, in dem der Aufruf stattfindet.

Um trotz des beschriebenen Sachverhalts nicht auf dezentrale Synchronisation
verzichten zu müssen, ist ein möglicher Ansatz, die Zeitpunkte zukünftiger No-
tifications im Rahmen der Synchronisation zwischen (statisch oder dynamisch
zu bestimmenden) ausgewählten logischen Prozessen auszutauschen. Auf Basis
der ausgetauschten Informationen könnte dann in jedem logischen Prozess eine
allgemeingültigere nextTime() Aktion realisiert werden.

Neben der Optimierung von Partitionierung und Synchronisation könnten ex-
trahierte Modellinformationen auch zur Optimierung des lokalen Schedulings
genutzt werden. Beispielsweise könnte die Reihenfolge, in der aktive SystemC
Prozesse während der Evaluation Phase abgearbeitet werden, mit Hilfe der Ana-
lysedaten verbessert werden 16. SystemC Prozesse, die nicht von Datenabhän-
gigkeiten betroffen sind, könnten bereits vor dem Prüfen der ELOCC ausführen.

16Da laut SystemC Standard die Ausführungsreihenfolge in der Evaluations Phase nicht festgelegt
ist, ist das Umsortieren der Prozesse grundsätzlich erlaubt. Dies kann aber u.U. mit einem Verlust
von Determinismus einhergehen. In diesem Fall wäre z.B. vom Anwender zu entscheiden, ob er
dies in Kauf nehmen kann oder nicht.

169

4. Parallele SystemC Simulation für Multiprozessoren

Umgekehrt könnte man die Ausführung von SystemC Prozesse priorisiert be-
handeln, wenn diese in der Lage sind, Daten an andere logische Prozesse zu
versenden. Auf diese Weise können sich Wartezeiten auf benachbarte logische
Prozesse gegebenenfalls verringern.

4.6. Strategie zur Simulation auf

Transaktionsebene

Eine Hauptanforderung an die in den Abschnitten 4.3 bis 4.5 vorgestellten Paral-
lelisierungsstrategien war die Unterstützung des RTL Subsets von SystemC und
eine zyklenakkurate Ausführung. Es wurde unter anderem gezeigt, dass die Ef-
fizienz durch geschickte Ausnutzung von Modelleigenschaften gesteigert wer-
den kann. Allerdings war die erzielbare Simulationsbeschleunigung aufgrund
der engen kausalen Kopplung zyklenakkurater Teilmodelle grundsätzlich be-
schränkt.

Im Folgenden soll daher untersucht werden, inwieweit es möglich ist, die Perfor-
manz durch gezielte Abstraktion weiter zu steigern, jedoch den Verlust an zeit-
licher Genauigkeit möglichst gering zu halten. Dazu wird zunächst eine neue
Methode für die Modellierung und Simulation von NoC-basierten MPSoCs auf
Transaktionsebene entwickelt, welche typische mikroskopische Effekte solcher
NoC-basierten Architekturen wiedergeben kann. Gleichzeitig wird die kausale
Kopplung von Prozessen von Deltacycles auf Timedcycles reduziert17. Anschlie-
ßend wird ein Ansatz zur Integration dieser Methode mit einem parallelen Sys-
temC Kernel vorgestellt. Schließlich wird die Performanz der Gesamtmethodik
bewertet. Im Rahmen einer vom Autor betreuten Bachelorarbeit [Buc12] wurden
einige Vorarbeiten zum hier beschriebenen Verfahren gemacht. Teile der folgen-
den Unterabschnitte sind publiziert in [RBR+13a] und [RBR+13b].

4.6.1. Allgemeine Anforderungen

Die zu entwickelnde Modellierungstechnik soll hauptsächlich zur Modellierung
von Verbindungsstrukturen und Elementen von Verbindungsstrukturen wie z.B.
Routermodulen eines NoCs dienen. Sie sollte aber nicht notwendigerweise auf
diesen Bereich beschränkt sein und bei Bedarf auch die Modellierung anderer
Elemente einer MPSoC Architektur ermöglichen. Die wiederholte Ausführung
ein und desselben TL Modells soll identische Ergebnisse liefern und damit für
entsprechende Verifikationsfälle geeignet sein.
17Eine Kopplung mit einer Genauigkeit von einem Takt wird im Folgenden, in Abgrenzung zur

deltazyklenweisen Synchronisation, als zyklenweise Synchronisation bezeichnet.

170

4.6. Strategie zur Simulation auf Transaktionsebene

Die Implementierung eines Packet-Switched NoC Routers [50] wie dem Her-
mes Router [203] umfasst üblicherweise die Schichten 1 bis 3 des ISO/OSI Refe-
renzmodells (Bitübertragungs-, Sicherungs- und Vermittlungsschicht) [270]. Die
grundlegende Dateneinheit auf der Vermittlungsschicht ist ein Paket, auf der
Sicherungsschicht ein Flit und auf der Bitübertragungsschicht ein Signal. Um
bei der Modellierung der Kommunikation zwischen Routermodulen mikrosko-
pische Effekte wie Pufferkongestion oder Ressourcenkonflikte akkurat reprodu-
zieren zu können, muss die Modellierung mindestens mit einer Granularität von
Flits erfolgen und daher auf der Sicherungsschicht ansetzen. Dabei genügt es,
wenn Effekte der Bitübertragungsschicht durch synchrone Ausführungs- und
Kommunikationsmechanismen in Erscheinung treten.

4.6.2. Basismethode

Den Kern der Modellierungstechnik bilden sog. leichtgewichtige Module, Sche-
duler und Prozesse. In Abb. 4.42 ist ein Szenario für eine parallele Simulation
bestehend aus zwei logischen Prozessen lp0 und lp1 dargestellt, in dem die Mo-
dellierungstechnik verwendet wird. Jeder der beiden logischen Prozesse kapselt
einen sequentiellen SystemC Kernel. Jeder Kernel führt wiederum jeweils ein
Teilmodell, bestehend aus zwei Modulen aus. Das Teilmodell auf Kernel k0 be-
steht aus einem leichtgewichtigen Modul µ0 und einem konventionellen Modul
m0.

Parallel Simulator with SystemC Kernel k0

Lightweight
Scheduler σ

Lightweight
Processes Π

SC_THREAD/
SC_METHOD

Processes

μ0

Processor A

Parallel Simulator with SystemC Kernel k1

Lightweight
Scheduler σ

Lightweight
Processes Π

Lightweight
Scheduler σ

Lightweight
Processes Π

Processor B

SC_THREAD/
SC_METHOD

ProcessesP
ur

e
L

ig
ht

w
ei

gh
t M

od
ul

e

C
on

ve
nt

io
na

l M
od

ul
e m0

μ1 μ2

P
ur

e
L

ig
ht

w
ei

gh
t M

od
ul

e

M
ix

ed
 M

od
ul

e

Abbildung 4.42.: Prinzip der TL Modellierungsstrategie

Ein leichtgewichtiges Modul ist ein spezieller Typ eines normalen SystemC Mo-
duls, das auf Basis eines leichtgewichtigen Schedulers und leichtgewichtigen
Prozessen ein hierarchisches Scheduling implementiert. Der Aufruf eines leicht-
gewichtigen Schedulers liegt in der Verantwortung des SystemC Kernels, der

171

4. Parallele SystemC Simulation für Multiprozessoren

Aufruf eines leichtgewichtigen Prozesses liegt in der Verantwortung des leicht-
gewichtigen Schedulers. Kommunikation und Synchronisation zwischen leicht-
gewichtigen Modulen erfolgt anhand von Transaktionen. Dabei werden für die
parallele Simulation sowie für die Reproduktion mikroskopischer NoC Effekte
geeignete Mechanismen für das Scheduling und die Kommunikation benutzt.

Im Gegensatz zu µ0 besteht m0 ausschließlich aus gewöhnlichen SystemC Pro-
zessen. Auf Kernel k1 befindet sich ein leichtgewichtiges Modul µ1 und ein ge-
mischt modelliertes Modul µ2. Eine gemischte Modellierung kann dann not-
wendig sein, wenn verschiedene Modellierungstechniken miteinander gekop-
pelt werden müssen. Ein gemischtes Modul dient dann als Adapter, welcher
zwischen Syntax und Semantik der beiden Modellierungstechniken übersetzt.

Vor dem Hintergrund des in Abschnitt 4.2.2 eingeführten Schichtenmodells wird
durch das Konzept prinzipiell eine weitere Schicht oberhalb der traditionellen
SystemC Modellebene eingeführt, wodurch die zusätzliche Hierarchisierung ent-
steht. Dies hat verschiedene Vorteile: Kommunikation zwischen leichtgewichti-
gen Prozessen innerhalb eines Moduls kann vollständig lokal über den leicht-
gewichtigen Scheduler abgewickelt werden. Wie später gezeigt wird, können
in Modulen enthaltene leichtgewichtige Prozesse vom SystemC Kernel und von
anderen leichtgewichtigen Prozessen zudem (kontrolliert) temporär entkoppelt
werden. Eine solche temporäre Entkopplung reduziert den Synchronisations-
aufwand sowohl zwischen leichtgewichtigen Schedulern und lokalem SystemC
Kernel (vertikal), als auch zwischen verteilten logischen Prozessen (horizontal)
und kann so zu einer allgemeinen Performanzsteigerung beitragen.

4.6.2.1. Komponenten

Die zur Modellierung notwendigen Komponenten sind in der folgenden Defini-
tion eines leichtgewichtigen Moduls zusammengefasst:

Definition 4.22 (Leichtgewichtiges Modul): Ein leichtgewichtiges Modul µ ∈ M
ist ein SystemC Modul, das den Regeln der Modellierungsmethodik folgt. µ ist ein Tupel
(σ, τ, P, V, FI, FO, C, S), wobei folgendes gilt:

• σ ist ein leichtgewichtiger Scheduler,

• τ ist eine lokale Variable zur Speicherung der lokalen Zeit eines leichtgewichtigen
Moduls,

• P ist die Menge aller leichtgewichtigen Prozesse des Moduls,

• V ist die Menge der Variablen (Variablencontainer),

• FI ist die Menge der Eingangsartefakte aller logischen Puffer,

172

4.6. Strategie zur Simulation auf Transaktionsebene

• FO ist die Menge der Ausgangsartefakte aller logischen Puffer,

• C ist die Menge der Kontrollpuffer,

• S ist die Menge aller eingehenden TLM Socketverbindungen über Target-Sockets
Starget und ausgehenden TLM Socketverbindungen über Initiator-Sockets Sinit.

Abb. 4.43 zeigt ein Beispiel, anhand dessen die Bedeutung der einzelnen Kom-
ponenten deutlich gemacht werden soll. In der folgenden Beschreibung wird zu-
nächst auf die Modellierung von Verhalten und Kommunikation innerhalb eines
leichtgewichtigen Moduls und anschließend auf die Modellierung von Kommu-
nikation zwischen Modulen eingegangen. Anschließend wird ein Ausführungs-
mechanismus beschrieben, der beides miteinander kombiniert.

Initiator Socket Target Socket

Socket Links S

Lightweight
Scheduler σ

Lightweight
Processes Pfi

Lightweight
Scheduler σ

Lightweight
Processes P fo

fi

V
ar

ia
bl

e
C

on
ta

in
er

 V
L

oc
al

C

lo
ck

 τ

c

fo

c

i j

V
a ri ab le

C
o n ta in er V

L
ocal

C
lock τ

Transaction Objects
θ (data,phase,τ)

Abbildung 4.43.: Grundlegende Bausteine der Modellierungsstrategie

4.6.2.2. Verhalten und Kommunikation innerhalb leichtgewichtiger Module

Für die Verhaltensmodellierung innerhalb von Modulen stehen die Artefakte σ,
P, V und τ zur Verfügung. Ein leichtgewichtiger Scheduler σ ist ein herkömm-
licher SystemC Prozess und zugleich der einzige richtige SystemC Prozess in-
nerhalb eines Moduls. Er kann entweder als SC_METHOD oder SC_THREAD
implementiert werden. Ein Scheduler σ ist verantwortlich für die Ausführung
von leichtgewichtigen Prozessen P.

Leichtgewichtige Prozesse werden als normale C++ Klassen realisiert, die mit
einer speziellen dem Scheduler bekannten Schnittstelle ausgestattet sind. Leicht-

173

4. Parallele SystemC Simulation für Multiprozessoren

gewichtige Prozesse ersetzen konventionelle SC_METHOD oder SC_THREAD
basierte SystemC Prozesse. Durch sie kann eine prozessbasierte Strukturierung
von Verhaltensbeschreibungen innerhalb von Modulen erfolgen. Der Scheduler
σ und die Prozesse P implementieren zusammen ein kooperatives Multitasking:
Die Prozesse werden regelmäßig vom Scheduler über ihre Schnittstelle getrig-
gert und sind anschließend selbst dafür verantwortlich, den Kontext wieder an
den Scheduler zurückzugeben.

Die Variablen V des Variablencontainers dienen zur Implementierung einer effi-
zienten modulinternen Kommunikation zwischen leichtgewichtigen Prozessen.
Der Variablencontainer kann beispielsweise als simpler C++ Container realisiert
werden. Er dient als Ersatz für SystemC Channels wie z.B. sc_signal. Die lokale
Zeitvariable τ ist eine separate (ganzzahlige) C++ Variable. Sie dient zur Spei-
cherung der aktuellen lokalen Zeit eines leichtgewichtigen Moduls.

Die Verteilung der Verhaltensbeschreibung auf mehrere leichtgewichtige Prozes-
se ist die Grundlage für die Modellierung von modulinterner Parallelität. Die
Verwendung von leichtgewichtigen Schedulern gestattet prinzipiell eine Verhal-
tensmodellierung auf Basis unterschiedlicher Berechnungsmodelle. Für die Mo-
dellierung parallel ausführender und kommunizierender Zustandsautomaten ist
eine synchrone dynamische Semantik mit zyklenweiser Synchronisation gut ge-
eignet.

Zur Realisierung zyklenweiser Synchronisation besitzt jeder leichtgewichtige Pro-
zess p ∈ P drei öffentliche Schnittstellenmethoden mit dem Namen pre(), exec()
und post(). Diese dienen als Callback-Methoden und werden vom leichtgewichti-
gen Scheduler innerhalb einer leichtgewichtigen Iteration sukzessive jeweils ge-
nau einmal aufgerufen, d.h. zunächst alle pre() Methoden, dann alle exec() Me-
thoden und zuletzt alle post() Methoden. Ein Simulationslauf umfasst dann viele
solcher Iterationen nacheinander. Nach jeder Iteration wird die lokale Zeit τ um
ein ∆τ erhöht, welches dem Taktzykluszeit entspricht. Die Callback-Methoden
eines Prozesses p haben folgende Aufgaben:

• pre(): Durch diese Methode wird sichergestellt, dass p auf einem rein loka-
len Zustandsspeicher arbeitet. Relevante Variablen aus V werden dazu als
Parameter (Kopie) übergeben. Die Werte der übergebenen Parameter wer-
den entweder direkt in internen Eingangsvariablen von p gespeichert oder
in eine geeignete Darstellung transformiert (Vorverarbeitung anhand von
Teilen einer modellierten kombinatorischen Eingangslogik) und dann erst
intern gespeichert.

• exec(): Diese Methode implementiert eine Verhaltensbeschreibung in Form
eines endlichen Zustandsautomaten. Jeder Aufruf der exec() Methode be-
wirkt die Berechnung eines Schritts (Taktes) des Zustandsautomaten auf
Basis der in pre() gelesenen Eingangsvariablen und evtl. zusätzlicher in-

174

4.6. Strategie zur Simulation auf Transaktionsebene

terner Variablen. Neu berechnete Ausgangswerte werden in internen Aus-
gangsvariablen von Prozess p abgelegt.

• post(): Mit dieser Methode werden die Werte der internen Ausgangsvaria-
blen von p in entsprechende Variablen in V kopiert. Ausgangsvariablen
werden dabei als Parameter übergeben. Als Alternative kann diese Metho-
de, äquivalent zur pre() Methode, auch zur Modellierung kombinatorischer
Ausgangslogik genutzt werden, wodurch interne Ausgangsvariablen in ei-
ne geeignete Darstellung transformiert werden.

Stellt man sicher, dass jede Variable v ∈ V nur von genau einem leichtgewichti-
gen Prozess geschrieben werden kann, so ist das Ergebnis einer Iteration unab-
hängig von der Ausführungsreihenfolge der Prozesse P während der Iteration.
Grundsätzlich könnte für synchrone Ausführung auch die pre() mit der exec()
Methode zu einer Methode kombiniert werden. In Verlauf der Implementierung
hat sich die Verschiebung von Teilen der kombinatorischen Eingangslogik in eine
separate pre() Methode allerdings als vorteilhaft für die Strukturierung heraus-
gestellt.

4.6.2.3. Kommunikation zwischen leichtgewichtigen Modulen

TLM Socketverbindungen und Transaktionen
In einem TL Modell kommunizieren ein Initiator und ein Target-Modul im Allge-
meinen über eine Socketverbindung, wobei der Initiator Zugriff auf ein Initiator
Socket und das Target Zugriff auf ein Target Socket hat. Der Initiator übermit-
telt durch nb_transport_fw() Aufrufe Transaktionen auf dem Vorwärtspfad, das
Target antwortet durch Aufrufe von nb_transport_bw() auf dem Rückwärtspfad.
Dadurch wird der Initiator über den neuen Zustand im Target informiert (vgl.
Abschnitt 2.3.2.3).

In einem NoC ist jeder Router Initiator und Target zugleich. Diese Unterschei-
dung ist damit (zumindest für diesen Anwendungsfall) hinfällig. Daher wurde
in dieser Arbeit eine Alternative gewählt: Zwischen Routermodulen µi und µj
werden grundsätzlich zwei Socketverbindungen auf Basis von Initiator und Tar-
get Sockets von entgegengesetzter Orientierung instanziiert. Auf jeder Socket-
verbindung werden ausschließlich nb_transport_fw() Methodenaufrufe verwen-
det. Ein solcher Aufruf kann dann sowohl Transaktionen mit vorwärtsgerichteter
als auch rückwärtsgerichteter Information übertragen. in Anlehnung an [27] ist
eine Transaktion wie folgt aufgebaut:

Definition 4.23 (Transaktion): Eine Transaktion θ dient zum Informationsaustausch
auf einer bestimmten Protokollschicht zwischen leichtgewichtigen Modulen. θ ist ein
Tupel (data, phase, τ) mit:

175

4. Parallele SystemC Simulation für Multiprozessoren

• data: Bezeichnet eine Datenstruktur zur Übertragung von Nutzdaten der model-
lierten Protokollschicht.

• phase: Bezeichnet eine Variable, die die Protokollphase spezifiziert.

• τ: Bezeichnet eine Variable, die den Zeitpunkt spezifiziert, an dem θ im Empfänger
verarbeitet werden muss.

Im Allgemeinen können Transaktionen zur Simulationslaufzeit dynamisch erzeugt und
wieder gelöscht werden. Dabei bezeichnet Θ die Menge der zu einer bestimmten Simula-
tionszeit in einem logischen Prozess erzeugten und existierenden Transaktionen θ. Dy-
namisch erzeugte Transaktionen werden auch als Transaktionsobjekte bezeichnet.

Zur Modellierung auf der Sicherungsschicht wird zwischen zwei Phasen unter-
schieden, einer Kontrollphase und einer Datenphase: θ.phase ∈ (CTRL, DATA).
Falls θ.phase ≡ CTRL, so heißt θ Kontrolltransaktion, falls θ.phase ≡ DATA, so
heißt θ Datentransaktion. In der Kontrollphase werden mit θ.data Kontrollinfor-
mationen wie z.B. Pufferfüllstände oder Zählerstände zur Datenflusskontrolle
übertragen, in der Datenphase Flits.

Der Zeitstempel θ.τ dient als Hilfsmittel für die zeitliche Synchronisation mitein-
ander kommunizierender leichtgewichtiger Module. Der Zeitstempel ist Teil der
Modellierungstechnik und nicht Teil der modellierten Funktion. Seine Verwen-
dung ist dennoch optional. Sie hängt im Allgemeinen vom Synchronisations-
verfahren ab, das in einem leichtgewichtigen Scheduler implementiert ist (vgl.
Abschnitt 4.6.3).

Pu�erung von Flits auf der Sicherungsschicht
Die Artefakte aus den Mengen FI und FO dienen zur Modellierung eines ver-
teilten Pufferungsmechanismus für Datentransaktionen bzw. Flits:

Definition 4.24 (Logischer Puffer): Ein logischer Puffer besteht aus einem Pufferein-
gangsartefakt f i und einem Pufferausgangsartefakt f o. Das f i Artefakt befindet sich im
Sendermodul und ist die Schnittstelle zum Schreiben von Datentransaktionen. Das f o
Artefakt befindet sich im Empfängermodul und ist die Schnittstelle zum Lesen. Eingangs-
und Ausgangsartefakt verwalten gemeinsam den Zustand des logischen Puffers. Nur
das Pufferausgangsartefakt f o speichert tatsächlich Datentransaktionen in einer inter-
nen FIFO Struktur.

Zur gemeinsamen verteilten Verwaltung des Pufferzustands verfügen beide Ar-
tefakte über jeweils drei Zustandsvariablen. In einem f i Artefakt sind dies f s,

176

4.6. Strategie zur Simulation auf Transaktionsebene

f f i und f f o. In einem f o Artefakt sind dies f s, f f o und f f i. Die Variablen haben
folgende Bedeutung:

• f s ist der synchronisierte Füllstandwert.

• f f i ist der im f i Artefakt sichtbare Füllstandswert.

• f f o ist der im f o Artefakt sichtbare Füllstandswert.

• f f i ist der letzte bekannte Wert von f f i auf Empfängerseite.

• f f o ist der letzte bekannte Wert von f f o auf Senderseite.

Außer f s können sich die Variablen im Laufe der Simulationsausführung sowohl
innerhalb eines Artefakts als auch zwischen den Artefakten unterscheiden. Nur
an bestimmten Synchronisationspunkten zwischen Modulen ist die Identität al-
ler Variablen gegeben:

Definition 4.25 (Synchronisationspunkt eines logischen Puffers): Gegeben seien
die Module µi und µj. µi enthält ein f i Artefakt und µj ein f o Artefakt. Ein Simulati-
on bestehend aus µi und µj hat den Synchronisationspunkt τsync überschritten, wenn
τsync = τi = τj und alle sechs Zustandsvariablen in den f i und f o Artefakten nach
Durchführung der folgenden Berechnungen den gleichen Wert haben:

Auf der Senderseite (in f i von µi):

f f i ← f f i + f f o − f s (4.22)

f s ← f f i (4.23)

Auf der Empfängerseite (in f o von µj):

f f o ← f f o + f f i − f s (4.24)

f s ← f f o (4.25)

Vor der Überschreitung eines Synchronisationspunktes muss der Wert von f f i

vom Sender zum Empfänger übermittelt worden sein. Dies kann z.B. dadurch
geschehen, dass der Empfänger alle seit dem letzten Synchronisationspunkt ein-
gegangenen Datentransaktionen zählt. Eine Alternative ist die Übermittlung von
f f i in einer Kontrolltransaktion. Genauso muss der gestrichene Wert f f o vom
Empfänger zum Sender per Kontrolltransaktion übermittelt worden sein. Ein
undirektionaler Datenfluss hat so einen bidirektionalen Kontrollfluss zur Folge.

177

4. Parallele SystemC Simulation für Multiprozessoren

Im Fall eines Eingangsartefakts f i werden an einem Synchronisationspunkt al-
le Datentransaktionen sichtbar, die seit dem letzten Synchronisationspunkt vom
logischen Puffer gelesen wurden. Im Fall eines Ausgangsartefakts f o werden an
einem Synchronisationspunkt alle Datentransaktionen sichtbar, die seit dem letz-
ten Synchronisationspunkt auf den logischen Puffer geschrieben wurden. Dieses
Verhalten ist vergleichbar mit dem E/U Paradigma und fundamental für die
Realisierung von zyklenweise synchronen Modellen sowie deterministischem
Zeitverhalten im parallelisierten Fall.

Synchronisierte Kommunikation
Mit Hilfe von Kontrolltransaktionen ist es möglich, einen in zeitlicher Genauig-
keit und Performanz skalierbaren Mechanismus für die Kommunikation über lo-
gische Puffer zu implementieren. Beim hier zunächst beschriebenen Basisverfah-
ren kann dazu die Kommunikationslatenz zwischen leichtgewichtigen Modulen
vor Beginn der Simulation statisch festgelegt werden. Legt man die Kommunika-
tionslatenz gleichzeitig global fest, so entspricht dies einem globalen Quantum,
ähnlich dem globalen Quantum aus dem SystemC/TLM Standard (vgl. [27]):

Definition 4.26 (Globales Quantum): Das globale Quantum q ist ein maximales,
global festgelegtes Zeitintervall, das den zeitlichen Abstand von Synchronisationpunk-
ten zwischen leichtgewichtigen Modulen spezifiziert.

Durch das globale Quantum ist die Anzahl N der Synchronisationspunkte, die
auf jedem verteilten Puffer während eines Simulationslaufs auftreten, gleich groß
und lässt sich mit der maximalen Simulationszeit τmax über N = τmax/q berech-
nen. Um eine zyklenweise Synchronisation zu erreichen, muss das globale Quan-
tum einem Taktzyklus entsprechen, d.h. q = τcycle. Durch größere Werte von q
kann eine zeitliche Entkopplung bei gleichzeitigem Erhalt des Determinismus
erzielt werden.

Angenommen, ein leichtgewichtiges Modul µ hat gerade mit allen benachbarten
Modulen den n-ten Synchronisationsvorgang erfolgreich abgeschlossen und be-
findet sich bei der lokalen Zeit τ(n). Nach Abarbeitung des globalen Quantums q
und Erreichen des Zeitpunkts τ(n + 1) = τ(n) + q beinhaltet die Durchführung
des nächsten Synchronisationsvorgangs drei Schritte:

1. µ sendet jeweils genau eine Kontrolltransaktion an alle benachbarten Mo-
dule. Die Kontrolltransaktionen signalisieren, dass das letzte globale Quan-
tum von µ durchschritten wurde, µ alle Datentransaktionen für das letzte
Quantum verschickt hat und die empfangenden Module aus Sicht von µ
autorisiert sind, mit der Abarbeitung des nächsten globalen Quantums zu
beginnen.

178

4.6. Strategie zur Simulation auf Transaktionsebene

2. Anschließend wartet µ selbst so lange, bis sich von jedem benachbarten
Modul mindestens eine Kontrolltransaktion in jedem Kontrollpuffer c ∈ C
befindet. Dies autorisiert µ zur Aktualisierung der Füllstände aller logi-
schen Puffer.

3. Auf Basis der gestrichenen Füllstandswerte, die mit den Kontrolltransak-
tionen empfangen wurden, kann µ den Zustand der eingehenden und aus-
gehenden logischen Puffer durch Anwendung der Ausdrücke 4.22 und
4.24 aktualisieren. Dann kann µ das nächste globale Quantums q abarbei-
ten.

Kontrolltransaktionen erfüllen damit drei Aufgaben gleichzeitig: Übermittlung
von Kontrollinformation, Ausschluss transienter Transaktionen und Zeitsynchro-
nisation. Da wegen des konstanten globalen Quantums ein Zeitfortschritt un-
mittelbar durch den Empfang einer Kontrolltransaktion signalisiert wird, ist im
Basisverfahren der Zeitstempel der Transaktion prinzipiell überflüssig.

Globales Quantum versus statischer Lookahead
Der zeitliche Fehler gegenüber zyklenweiser Synchronisation zwischen Modu-
len ist durch die Größe des globalen Quantums beschränkt. Wird für das globale
Quantum die minimale zwischen leichtgewichtigen Modulen auftretende Kom-
munikationslatenz gewählt, so wird der Genauigkeitsverlust im Vergleich zum
RTL Modell auf ein Minimum reduziert. Das globale Quantum kommt dann ei-
nem statischen Lookahead gleich. Wenn das globale Quantum größer als der
statische Lookahead gewählt wird, so hat das Verfahren die Eigenschaft, die
tatsächliche Latenz einzelner Datentransaktionen (Flits) um ein oder mehrere
Quanta zu verschmieren.

Betrachtet man das originale signalbasierte RTL Modell des Hermes NoC, so ist
die Kontrollinformation immer um einen halben Takt verzögert zu den Daten
verfügbar. Dadurch wird eine verlustlose taktweise Übertragung der Daten rea-
lisiert. Die halbtaktweise Verschiebung hatte zur Folge, dass in Abschnitt 4.4.8.3
ein statischer Lookahead für das Hermes NoC von ∆lτ < τcycle

2 hergeleitet wer-
den konnte. Bei transaktionsbasierter Modellierung des Hermes NoC kann der
statische Lookahead für eine zyklenweise Datenübertragung aus zwei Gründen
auf τcycle erhöht werden: Zum einen führen die Daten- und die Kontrollphase
prinzipbedingt immer abwechselnd aus, weshalb eine halbtaktweise Synchroni-
sation bereits explizit modelliert ist. Zum anderen wartet ein leichtgewichtiger
Scheduler immer den Empfang aller Kontrolltransaktion für die aktuelle leicht-
gewichtige Iteration ab, bevor er die Datentransaktionen verarbeitet. Der Looka-
head muss daher nicht mehr kleiner als τcycle gewählt werden, um garantieren
zu können, dass für τcycle alle Datentransaktionen eingetroffen sind.

179

4. Parallele SystemC Simulation für Multiprozessoren

4.6.2.4. Kombinierter Ausführungsmechanismus beim Basisverfahren

Zur Beschreibung der kombinierten Ausführungsmechanimus in einem leicht-
gewichtigen Modul µi werden folgende Zeitvariablen verwendet:

• τi ist die aktuelle lokale Simulationszeit eines leichtgewichtigen Moduls.

• τcycle ist die Taktzykluszeit.

• τmax ist die maximale Simulationszeit.

• τsync ist der nächste Synchronisationszeitpunkt.

Innerhalb eines leichtgewichtigen Schedulers sind folgende Aktionen definiert:

• sendCT(): Sende eine Kontrolltransaktion an jedes benachbarte Modul. Eine
Kontrolltransaktion signalisiert, dass ein global und statisch spezifiziertes
Zeitquantum q erreicht wurde. Daneben überträgt eine Kontrolltransakti-
on von µi nach µj die aktuellen lokalen Füllstandswerte jedes logischen
Puffers zwischen µi und µj.

• checkCT(): Gib die Anzahl der Kontrollpuffer aus C zurück, die im aktuellen
Zyklus mindestens eine Kontrolltransaktion speichern.

• sleep(∆τs): Gib die Kontrolle an den SystemC Kernel zurück. Dies ist not-
wendig, um den Ausführungskontext zu wechseln oder um den SystemC
Kernel um die spezifizierte Zeit ∆τs voranschreiten zu lassen. Im Fall einer
Simulation auf gemischten Abstraktionsebenen (TLM und RTL) werden
dadurch die RTL Anteile ausgeführt.

• update(): ∀ f i ∈ FI ∧ ∀ f o ∈ FO: Aktualisiere den Zustand der lokal vor-
handenen f i bzw. f o Instanz entsprechend der Ausdrücke 4.22 und 4.24.
Die gestrichenen Werte wurden mit der letzten Kontrolltransaktion emp-
fangen.

• popCT(): ∀c ∈ C: Lösche die oberste Kontrolltransaktion.

• pre(P): ∀p ∈ P: Führe die pre() Methode des leichtgewichtigen Prozesses
p aus. Übergebe zusätzlich einen Zeiger auf alle f o ∈ FO bzw. f i ∈ FI
Artefakte, auf die p lesenden bzw. schreibenden Zugriff hat.

• exec(P): ∀p ∈ P: Führe die exec() Methode des leichtgewichtigen Prozesses
p aus. Führe bei Bedarf Lese- bzw. Schreibzugriffe von p auf f o bzw. f i
Artefakte unter Verwendung von Datentransaktionen durch.

• post(P): ∀p ∈ P: Führe die post() Methode des leichtgewichtigen Prozesses
p aus.

• incLocal(): Inkrementiere τi um τcycle.

In Abbildung 4.44 ist die Zustandsmaschine des leichtgewichtigen Schedulers
illustriert. Sie besteht aus zwei Teilen:

180

4.6. Strategie zur Simulation auf Transaktionsebene

In den beiden Toplevel-Zuständen ssync und supdate ist die Synchronisation mit
benachbarten Modulen implementiert. Synchronisation erfolgt mit einer Schritt-
weite q, dem globalen Quantum. Zwischen den Zuständen ssync und supdate kann
der Scheduler optional durch Aufruf von sleep() dem SystemC Kernel-Scheduler
den Kontext übergeben, um diesen ebenfalls um q voranschreiten zu lassen.

der hierarchische sschedule Zustand ist verantwortlich für das lokale Scheduling
der leichtgewichtigen Prozesse. Während der Ausführung eines Quantums q
vollzieht der Scheduler der q

τcycle Iterationen durch die drei Zustände spreprocess,
sexecute und spostprocess. Während einer Iteration werden die drei Callback Metho-
den pre(), exec() und post() eines jeden leichtgewichtigen Prozesses genau einmal
aufgerufen.

spostprocess

sschedule

/sendCT();pass=0;

\τsync
i = τsync

i + q;
sleep(q);

[pass==0]/sleep(SC_ZERO_TIME);
pass=checkCT();ssync

[τi < τmax]/
sendCT();pass=0;

[τi == τmax]

[pass==1]/update();
popCT();

supdate

/pre(P)

spreprocess

[τi < τsync
i]/

pre(P);

/exec(P)

/post(P);incLocal();

[τi == τsync
i]

sexecute

Abbildung 4.44.: Zustandsmaschine Basisvariante

181

4. Parallele SystemC Simulation für Multiprozessoren

4.6.3. Dynamische Latenzprädiktion

Das im vorigen Abschnitt beschriebene Basisverfahren ermöglicht eine tempo-
räre Entkopplung auf Kosten der zeitlichen Genauigkeit. Ein Kommunikations-
vorgang wird mit größer werdendem globalen Quantum über ein oder evtl. auch
mehrere Quanta verschmiert. In diesem Kapitel wird daher eine optionale Vari-
ante vorgestellt, die den Grad der temporären Entkopplung zwischen leichtge-
wichtigen Modulen zur Laufzeit dynamisch anpassen kann. Diese dynamische La-
tenzprädiktion (DLP) verhindert den Verlust von zeitlicher Präzision im Vergleich
zu nicht entkoppelter zyklenweiser Ausführung mit dem Basisverfahren.

Anstatt ein immer gleich großes Zeitquantum global und statisch zu definieren,
existieren bei DLP für jede Modulverbindung anpassbare lokale Zeitquanta. Auf
Basis von Latenzannotationen innerhalb von Modulen sowie aktueller Laufzeit-
parameter wie Zuständen von Automaten oder Zählern, können Kommunika-
tionslatenzen zwischen Modulen dynamisch vorhergesagt werden. Diese Vor-
hersagen dienen als Garantien für temporäre kausale Unabhängigkeit. Eine tem-
poräre Entkopplung ohne Genauigkeitsverlust wird erreicht, wenn die lokalen
Zeitquanta entsprechend der bereitgestellten Prädiktionen angepasst werden.
Durch die Integration des Prädiktionsmechanismus in die Modellspezifikation
ist ein einfacher Zugriff auf Modellparameter möglich.

4.6.3.1. Modellierung der Latenz

Bei DLP wird der Lookahead nicht mehr nur statisch bestimmt, sondern dy-
namisch. Dies ist möglich, da Module nicht mehr nur als Blackboxes betrach-
tet werden. Vielmehr werden funktionsabhängige Latenzen, die innerhalb von
Modulen auftreten, für eine dynamische Berechnung des Lookaheads genutzt.
Im Kontext eines NoC Routers werden dadurch insbesondere Latenzen unter-
schiedlicher Protokollschichten für die kontrollierte Adaption der temporären
Entkopplung nutzbar gemacht. Zur Beschreibung von DLP eignet sich die Dar-
stellung anhand eines dynamischen Latenzgraphen:

Definition 4.27 (Dynamischer Latenzgraph: Ein dynamischer Latenzgraph ist
ein gerichteter Graph GL(FI, FO, E, D(τ)) mit Knoten f i ∈ FI und f o ∈ FO, Kanten
e ∈ E und Kantengewichten d(τ) ∈ D(τ). Er beschreibt den Zustand eines Netzwerks
leichtgewichtiger Module zu diskreten äquidistanten Zeitpunkten τ(n) mit n ∈ N. Je-
der Knoten repräsentiert genau ein f i oder ein f o Artefakt eines leichtgewichtigen Mo-
duls. Zwei Knoten f ii und f oj sind über eine gerichtete Kante eij bzw. eji verbunden,
wenn eine kausale Abhängigkeit von f ii nach f oj bzw. von f oj nach f ii existiert. Das

182

4.6. Strategie zur Simulation auf Transaktionsebene

Gewicht dij einer Kante eij spezifiziert die Latenz ab dem Zeitpunkt τ(n), nach deren
Ablauf der Knoten mit Index j von Knoten mit Index i kausal beeinflusst wird.

Mit Hilfe des dynamischen Latenzgraphen kann das zeitliche Verhalten von Mo-
dulen im Sinne von auftretenden zeitlichen Verzögerungen zwischen Pufferarte-
fakten des gleichen Moduls oder benachbarter Module modelliert werden. Durch
die Limitierung des Latenzgraphen auf Knoten, die Pufferartefakte repräsentie-
ren, richtet sich der Fokus automatisch auf das für die Modellierung von Routern
in einem NoC wichtige reaktive Eingangs- und Ausgangsverhalten. Die Model-
lierung anhand zweier Typen von Knoten erlaubt die getrennte Betrachtung von
statischen und dynamisch erzeugten Anteilen des Lookahead.

4.6.3.2. Latenzgraph für das Hermes NoC

Um die Beschreibung des Prädiktionsmechanismus zu erleichtern, wird im Fol-
genden das bereits bekannte Hermes NoC [203] betrachtet. Dessen TL Modell
ist in Abbildung 4.45 links illustriert (Kontrollpuffer wurden im Bild aus Grün-
den der Übersichtlichkeit ausgelassen). Das Routermodell besteht aus typischen
Elementen wie

• Puffer: Diese dienen zur Zwischenspeicherung von Flits. Puffer existieren
für jede der vier Himmelsrichtungen Norden, Osten, Süden, Westen und
für die lokale Schnittstelle. Sie werden durch logische Puffer modelliert.

• Crossbar: Die Crossbar erlaubt es, Eingänge auf beliebige Ausgänge durch-
zuschalten. Dies geschieht entsprechend einem XY Routing. Die Crossbar
ist mit Hilfe von simplen C++ Variablenfeldern modelliert.

• Input Controller: Diese sind verantwortlich für die Flusskontrolle beim
Transport von Flits. Die Input Controller werden durch leichtgewichtige
Prozesse modelliert.

• Switch Controller: Der Switch Controller steuert den Datenfluss durch
den Router anhand eines Round Robin Schedulings. Der Switch Controller
wird ebenfalls durch einen leichtgewichtigen Prozess modelliert.

Puffer und Crossbar repräsentieren die Bitübertragungsschicht, Input Control-
ler repräsentieren die Sicherungsschicht und der Switch Controller die Vermitt-
lungsschicht des ISO/OSI Referenzmodells [270].

Abb. 4.45 rechts zeigt den Latenzgraphen innerhalb eines einzelnen Hermes Rou-
ters. Die sog. Vorwärtskanten von f o zu f i Artefakten sind schwarz gezeichnet,
sog. Rückwärtskanten von f i zu f o Artefakten rot. Mit Vorwärtskanten wird die
zeitliche Vorwärtswirkung modelliert. Die Richtung der Vorwärtswirkung ent-
spricht dem Fluss von Flits durch das NoC. Mit den Rückwärtskanten wird die

183

4. Parallele SystemC Simulation für Multiprozessoren

zeitliche Rückwärtswirkung modelliert, welche dem Datenfluss bzw. dem Fluss
von Flits entgegengerichtet ist. Die Rückwärtswirkung wird durch Pufferkon-
gestion oder Zugriffskonflikte ausgelöst und hat großen Einfluss auf die Perfor-
manz der vorwärtsgerichteten Datenübertragung.

C
ro

ss
ba

r

Switch
Control

fo

fo

fo

Ctrl
Signals

Input
Control

Input
Control

Input
Control

fi

fi

fi

Lightweight
Scheduler

fo01

fo00

fi01

fi00

fo04 fi04

Vorwärtskanten Rückwärtskanten

d(fo00,fi01)

d(fo00,fi04)

d(fi01,fo00)

d(fi04,fo00)

Abbildung 4.45.: TL Modell des Hermes Routers (links) und dessen Latenzgraph
GL (rechts)

Eine Verknüpfung zwischen Routermodulen über logische Puffer beliebiger An-
zahl und Orientierung wird im Folgenden als Verbindung conij oder conji be-
zeichnet, wobei conij ≡ conji. Eine Verbindung conij repräsentiert damit alle
zwischen µi und µj verlaufenden Vorwärts- und Rückwärtskanten des Graphen
GL. Beim Hermes Router gilt für jede Verbindung zu einem benachbarten Router
|con| = 4.

Pfade von Vorwärtskanten (Vorwärtspfade) und Pfade von Rückwärtskanten
(Rückwärtspfade) durch ein Netzwerk von Routermodulen können separat an-
hand der Teilgraphen Gv

L(P, Ev
L) und Gr

L(P, Er
L) beschrieben werden. Dabei ist

EL ≡ Ev
L ∪ Er

L mit Ev
L ∩ Er

L ≡ ∅. Abb. 4.46 illustriert beispielhaft die beiden Gra-
phen Gv

L und Gr
L für einen Auschnitt aus einem kompletten NoC Modell.

An den Graphen Gv
L und Gr

L ist die Vorwärts- bzw. Rückwärtswirkung durch
das komplette NoC zu erkennen. Die Vorwärtswirkung verläuft zwischen Mo-
dulen von f i in Richtung f o Artefakten und innerhalb von Modulen von f o in
Richtung f i Artefakten. Die Rückwärtswirkung durch das NoC verläuft reziprok
dazu, d.h. entgegen der vorwärtsgerichteten Übertragung von Flits: Sie verläuft
zwischen Modulen von f o in Richtung f i Artefakten und innerhalb von Modu-
len von f i in Richtung f o Artefakten.

184

4.6. Strategie zur Simulation auf Transaktionsebene

μ0 μ2μ1

fo01

fi01

fi10

fo10

fi12

fo12 fi21

fo21 fo23

fi23fi00

fo00

Vorwärtspfad

d(fo01,fi00)

d(fo00,fi01)

d(fi01,fo10)

d(fi10,fo01)

d(fo10,fi12)

d(fo12,fi10)

d(fi21,fo12)

d(fi12,fo21) d(fo21,fi23)

d(fo23,fi21)

μ0 μ2μ1

fo1

fi1

fi2

fo2

fi3

fo3 fi4

fo4 fo5

fi5fi0

fo0

Rückwärtspfad

fo01

fi01

fi10

fo10

fi12

fo12 fi21

fo21 fo23

fi23fi00

fo00
d(fi01,fo00)

d(fi00,fo01)

d(fo10,fi01)

d(fo01,fi10)

d(fi12,fo10)

d(fi10,fo12)

d(fo12,fi21)

d(fo21,fi12) d(fi23,fo21)

d(fi21,fo23)

Abbildung 4.46.: Graph Gv
L für die Vorwärtspfade (oben) und Graph Gr

L für die
Rückwärtspfade (unten)

4.6.3.3. Statische Latenzmodellierung

Zwischen Knoten in GL, die unterschiedlichen Routermodulen µi und µj zuge-
ordnet sind, kann eine externe Pfadlatenz für Verbindung conij definiert werden.
Diese entspricht dem im Basisverfahren bereits verwendeten globalen Quantum
q und ist daher für jede Verbindung con ∈ CON identisch und statisch festgelegt.

Wird für das globale Quantum die zwischen Modulen minimal auftretende Kom-
munikationslatenz auf dem Vorwärts- und dem Rückwärtspfad des Graphen GL
gewählt, so entspricht das globale Quantum q einem statischen Lookahead (vgl.
Abschnitt 4.6.2.3) bzw. der Latenz der Bitübertragungsschicht. Der statische Loo-
kahead wird im Folgenden auch als minimale externe Pfadlatenz dext

ij bezeichnet:

dext
ij = qmin. (4.26)

4.6.3.4. Dynamische Latenzmodellierung

Neben der Modellierung der statischen Latenz der Bitübertragungsschicht kann
der Latenzgraph GL zur Modellierung der dynamischen Latenzen höherer Pro-
tokollschichten genutzt werden. Dies ist die Grundlage für die Vergrößerung der
temporären Entkopplung über den statischen Lookahead hinaus, ohne die Kau-
salität zu verletzen. Zur Beschreibung der Methode werden zunächst die Teil-
graphen Gv

L und Gr
L von GL separat betrachtet.

185

4. Parallele SystemC Simulation für Multiprozessoren

Mit Hilfe des Graphen Gv
L können für ein Routermodul µi zum lokalen Zeitpunkt

τi die minimalen internen Vorwärtspfadlatenzen d f wd,int(τi) bzgl. der Pufferartefak-
te f iij ∈ FIi berechnet werden. Unter der Annahme, dass generell von jedem
Pufferartefakt f oik ∈ FOi eine kausale Abhängigkeit zu jedem f iij ∈ FIi existiert,

berechnet sich d f wd,int
ij (τi) für ein Artefakt f iij über das Minimum der Latenzen

aller in f iij eingehenden Kanten des Graphen Gv
L:

d f wd,int
ij (τi) = min

∀ f oik∈FOi
{d(f oik, f iij)(τi)}. (4.27)

Äquivalent dazu können mit Gr
L die minimalen internen Rückwärtspfadlatenzen

dbwd,int
ij (τi) für Artefakte f oij über

dbwd,int
ij (τi) = min

∀ f iik∈FIi
{d(f iik, f oij)(τi)} (4.28)

berechnet werden. Mit der für einen NoC Router typischen Eigenschaft, dass
Flits, die über einen logischen Puffer einer Verbindung conij in µi eintreffen, nicht
wieder direkt über diese Verbindung zurückgeschickt werden können, gilt für
j ≡ k:

d(f oik, f iij) ≡ d(f iik, f oij) ≡ ∞.

Unter der Voraussetzung das alle anderen Latenzen endlich sind, reduziert sich
die Menge der in Ausdruck 4.27 zu berücksichtigenden ausgehenden Puffer-
artefakte FOi auf die Teilmenge FOi\{ f oik}i=k. Äquivalent reduziert sich die
Menge der in Ausdruck 4.28 zu berücksichtigenden Puffereingangsartefakte auf
FIi\{ f iik}i=k.

Bei alleiniger Betrachtung von µi ist eine Beeinflussung des für µi sichtbaren Zu-
stands der logischen Puffer genau dann vorhanden, wenn µi selbst eine beliebige
Zustandsvariable seiner Pufferartefakte modifiziert. Mit den für die Pufferarte-
fakte einer Verbindung conij bestimmten internen Latenzen auf dem Vorwärts-
und auf dem Rückwärtspfad kann das diskrete Zeitintervall ab dem lokalen Zeit-
punkt τi dynamisch bestimmt werden, für das auf beiden Pfaden eine solche Be-
einflussung des Zustands der Verbindung conij ausgeschlossen ist. Für dieses
Zeitintervall gilt:

186

4.6. Strategie zur Simulation auf Transaktionsebene

dint
ij (τi) = min{d f wd,int

ij (τi), dbwd,int
ij (τi)} (4.29)

dint
ij (τi) wird als minimale interne Pfadlatenz von Router µi in Richtung von Verbin-

dung conij zum lokalen Zeitpunkt τi bezeichnet. Diese entspricht den Latenzen,
welche durch die Sicherungs- und die Vermittlungsschicht erzeugt werden.

4.6.3.5. Dynamischer Lookahead und lokales Quantum

Mit Hilfe der internen und externen Pfadlatenzen kann in einem Modul µi für
jede Verbindung, conij auf die µi Zugriff hat, ein dynamischer Lookahead berechnet
werden. Der dynamische Lookahead einer Verbindung conij im Modul µi spe-
zifiziert das diskrete Zeitintervall ausgehend von einem diskreten lokalen Zeit-
punkt τi, für das auf dem Vorwärts- und auf dem Rückwärtspfad eine Beein-
flussung des für Modul µj sichtbaren Zustands durch Modul µi ausgeschlossen
werden kann. Der dynamische Lookahead einer Verbindung conij im Modul µi
entspricht damit der Summe aus der internen Pfadlatenz von µi in Richtung conij
und der externen Pfadlatenz von conij:

∆lij(µi, τi) = dint
ij (τi) + dext

ij = dint
ij (τi) + q. (4.30)

Unter der Voraussetzung, dass zwei Module µi und µj, die über conij miteinan-
der verbunden sind, die gleiche lokale Zeit τ = τi = τj erreicht haben, kann der
diskrete Zeitpunkt τnext

ij , nach dessen Ablauf der Zustand von conij zwischen µi
und µj das nächste Mal synchronisiert werden muss, über die Summe aus der
aktuellen Zeit τ und dem sog. lokalen Quantum qij(τ) berechnet werden:

τnext
ij = τ + qij(τ) = τ + min{∆lij(µi, τ), ∆lij(µj, τ)}. (4.31)

Das lokale Quantum qij(τ) muss generell durch µi und µj kooperativ bestimmt
werden. Mit kooperativer Berechnung ist hier gemeint, dass benachbarte Mo-
dule sich gegenseitig zunächst alle notwendigen Informationen zur Verfügung
stellen müssen, um dann unabhängig voneinander ein identisches lokales Quantum
bestimmen zu können. In Ergänzung zum Basisverfahren aus Abschnitt 4.6 muss
dabei der Zeitstempel einer Kontrolltransaktion immer auf den lokal vorhande-
nen dynamischen Lookahead gesetzt werden. In Analogie zum Basisverfahren

187

4. Parallele SystemC Simulation für Multiprozessoren

kann die kooperative Bestimmung zwischen µi und µj in drei Schritten gesche-
hen:

1. Das Modul µi sendet nach Abarbeitung des letzten lokalen Quantums ge-
nau eine Kontrolltransaktion an µj. Diese signalisiert µj, dass das letzte
lokale Quantum durchschritten wurde.

2. µi wartet so lange, bis sich von µj mindestens eine Kontrolltransaktion im
zugehörigen Kontrollpuffer cij ∈ C befindet.

3. Auf Basis der gestrichenen Füllstandswerte, die mit der Kontrolltransakti-
on empfangen wurden, kann µi den Zustand der eingehenden und aus-
gehenden logischen Puffer von conij durch Anwendung der Ausdrücke
4.22 und 4.24 aktualisieren. Dann berechnet µi das nächste lokale Quan-
tum qij(τ) entsprechend Ausdruck 4.31. Danach kann µi aus Sicht von µj
das lokale Quantum qij(τ) bis zur Erreichung von τnext

ij abarbeiten.

4.6.3.6. Kombinierter Ausführungsmechanismus bei Latenzprädiktion

Im Detail kann der kombinierte Ausführungsmechanismus mit Latenzprädikti-
on für Modul µi anhand folgender neuer oder modifizierter Aktionen beschrie-
ben werden:

• calcDL(): ∀conij ∈ CONi|τnext
ij = τi: Berechne den dynamischen Lookahead

qij(τ) entsprechend Ausdruck 4.30.

• sendCT(): ∀conij ∈ CONi|τnext
ij = τi: Sende eine Kontrolltransaktion an das

Modul µj über conij. Setze dabei den Zeitstempel der Kontrolltransaktion
auf den zuletzt mit calcDL() für conij berechneten dynamischen Lookahead
∆lij(µi, τi). Daneben überträgt die Kontrolltransaktion nach µj die aktuel-
len lokalen Füllstandswerte jedes logischen Puffers zwischen µi und µj.

• checkCTD(): ∀conij ∈ CONi|τnext
ij = τi: Gib eine 0 zurück, falls ein Kontroll-

puffer cij ∈ Ci existiert mit |cij| = 0. Ansonsten gibt eine 1 zurück.

• updateD(): ∀conij ∈ CONi|τnext
ij = τi: Berechne den nächsten Synchroni-

sationspunkt τnext
ij für alle logischen Puffer von conij entsprechend Aus-

druck 4.31. Aktualisiere anschließend den Zustand von f iij bzw. f oij ent-
sprechend der Ausdrücke 4.22 und 4.24. Die gestrichenen Werte wurden
mit der letzten Kontrolltransaktion empfangen.

• popCTD(): ∀conij ∈ CONi|τnext
ij = τi: Lösche die oberste Kontrolltransakti-

on aus cij.

• setNextModuleSyncTime(): Setze den nächsten Synchronisationspunkt des
Moduls τ

sync
i auf min∀conij∈CONi{τ

next
ij }.

188

4.6. Strategie zur Simulation auf Transaktionsebene

Abb. 4.47 illustriert den modifizierten leichtgewichtigen Scheduler. Im neuen
Scheduler existiert prinzipiell die gleiche Zustandsfolge wie beim Basisverfah-
ren. Insbesondere die Implementierung des hierarchischen sschedule Zustands ist
identisch zum Basisverfahren. Für den neuen Ausführungsmechamismus ist da-
her ausschließlich die neue Funktionalität innerhalb der Aktionen auf dem To-
plevel verantwortlich.

sschedule

/calcDL();sendCT();pass=0;

\setNextModuleSyncTime();
sleep(τsync

i - τi);

[pass == 0]/sleep(SC_ZERO_TIME);
pass=checkCTD();

ssync

[τi < τmax]/
calcDL();sendCT();

pass=0;

[τi == τmax]

[pass==1]/
updateD();popCDT();

supdate

Abbildung 4.47.: Zustandsmaschine bei Latenzprädiktion

4.6.4. Integration transaktionsbasierter Kommunikation

Die Modellierungsstrategie wurde mit dem symmetrischen asynchronen Kernel
aus Abschnitt 4.4 kombiniert. Dazu waren einige wenige Ergänzungen am par-
allelen SystemC Kernel notwendig.

Während die Partitionierung eines RTL Modells das Schneiden von externen Si-
gnalen und eine Duplikation der Datenstrukturen geschnittener Signale zur Fol-
ge hat (vgl. Abschnitte 4.4.2 und 4.4.4), resultiert die Partitionierung eines TLM
Modells hingegen im Schneiden von Socketverbindungen, die bereits aus zwei
separaten Artefakten in Form eines Initiator und eines Target Sockets bestehen.

189

4. Parallele SystemC Simulation für Multiprozessoren

Folglich ist keine Duplikation notwendig, sondern nur eine Adaption. In der
aktuellen Implementierung existiert dazu eine verteilte Version der nb_ trans-
port_fw() Methode. Bei Aufruf von nb_transport_fw() auf einem TLM Initiator
Socket wird der Inhalt der übergebenen Transaktion zunächst in eine Transak-
tionsnachricht kopiert:

Definition 4.28 (Transaktionsnachricht): Eine Transaktionsnachricht, die von lpi

an lpj über lij übertragen wird, enthält folgende Informationen:

• eine id, welche die TLM Socketverbindung identifiziert,

• ein Datenfeld data, welches die Transaktion speichert.

Die Nachricht wird dann in das Ausgangssocket eines logischen Links kopiert.
Der durch die Transaktion im Modell dynamisch reservierte Speicher wird dabei
deallokiert. Beim Empfang wird die Transaktionsnachricht im Target Socket vom
Eingangssocket des logischen Links gelesen. Anschließend wird eine neue Trans-
aktion lokal allokiert. Diese Transaktion wird zum zugehörigen Modul anhand
der dort lokal implementierten nb_transport_fw() Methode direkt übermittelt.

Für die Umsetzung des Verfahrens wurde die insert_message() Methode des Ad-
apters aus Abb. 4.19 so erweitert, dass sie neben dem synchronisierten Modus
einen weiteren unsynchronisierten Modus unterstützt. Während im synchroni-
sierten Modus Nachrichten entsprechend ihres Zeitstempels weitergeleitet wer-
den, ist im neuen unsynchronisierten Modus die Zeitsynchronisation vollstän-
dig deaktiviert. Daten werden dann direkt weitergeleitet, sobald der Kernel den
Kontext vom Modell erhalten hat und das nächste Mal die dispatch() Aktion aus-
führt (z.B. bei Aufruf von sleep()). Die ist möglich, weil TL Modelle, die ent-
sprechend der beschriebenen Modellierungstechnik beschrieben sind, sich selbst
synchronisieren.

Aktuell ist für Signalnachrichten standardmäßig die synchronisierte Weiterlei-
tung aktiviert. Transaktionsnachrichten werden hingegen standardmäßig unsyn-
chronisiert weitergeleitet. Ein logischer Link, der Nachrichten ausschließlich im
unsynchronisierten Modus überträgt, kann als deadlock-unkritisch klassifiziert
werden, da die Vermeidung von Deadlocks nicht in der Verantwortung des Ker-
nels liegt. Ansonsten ergibt sich die Kritikalität aus Definition 4.10.

Die Implementierung von sleep() ist vollständig identisch zu Implementierung
der originalen wait() bzw. next_trigger() Methoden des sequentiellen Kernels. We-
gen der Reduktion der kausalen Kopplung von Deltacycles auf Timedcyles ge-
nügt eine rein lokale Implementierung, eine Synchronisation mit anderen logi-
schen Prozessen erfolgt nicht.

190

4.6. Strategie zur Simulation auf Transaktionsebene

4.6.5. Fallstudie I

In der ersten Fallstudie wurde die Basisvariante des Modellierungsansatzes hin-
sichtlich der zwei Aspekte I) Genauigkeit und II) Performanz betrachtet. In Be-
zug auf die Genauigkeit wurde zunächst untersucht, inwieweit es mit dem Mo-
dellierungsansatz überhaupt möglich ist, spezielle NoC Charakteristika wieder-
zugeben. Darauf basierend wurde der Trade-off zwischen erzielbarer Genauig-
keit und erzielbarer Performanz näher beleuchtet. Als Grundlage für die Unter-
suchung diente das in Abb. 4.6.3.2 bereits illustrierte und neu entwickelte TL
Modell des Hermes Routers [203] sowie das um die TL Router ergänzte HeMPS
Modell [75].

4.6.5.1. Wiedergabe typischer Network-on-Chip Charakteristika

Ein Effekt, der typischerweise auftritt, sobald ein NoC-basiertes MPSoC an die
Grenzen seiner Leistungsfähigkeit stößt, ist die Kongestion der Puffer im NoC.
Diese tritt dann auf, wenn Nachrichten mit einer höheren Datenrate in das Netz-
werk injiziert werden, als sie von diesem übertragen werden können. Eine limi-
tierte Übertragungsrate kann sowohl durch die empfangenden Verarbeitungs-
einheiten, als auch durch die Implementierung des NoCs selbst hervorgerufen
werden. Im ersten Fall bilden die Empfänger aufgrund ihrer hohen Verarbei-
tungslatenz den Flaschenhals. In zweiten Fall bildet das NoC den Flaschenhals.
Ursache ist beispielsweise ein ineffizientes Routingverfahren, welches zu Zu-
griffskonflikten während der Übertragung führt. Im Rahmen dieser Untersu-
chung lag der Fokus auf dem NoC.

Kongestion der Routerpu�er
In einem ersten Experiment wurden in jeden Hermes Router eines 4x4 NoCs
Nachrichten mit unterschiedlichen Flit-Injektionsraten (Flit-IR) injiziert18. Bei den
Messungen wurden zwei unterschiedliche Traffic Patterns verwendet. Beim sog.
Single Sender Pattern wurden nur Pakete in Router 0/0 injiziert mit Router 3/3
als Zieladresse. Beim sog. Transpose Pattern wurden in jeden Router Pakete mit
folgendem Adressierungsschema injiziert: destX = sourceY und destY = sourceX.

In den Empfängerroutern wurden eingehende Pakete generell ohne Verarbei-
tungslatenz direkt wieder ausgelesen. Die Erzeugung des Netzwerkverkehrs er-
folgte anhand abstrakter verzögerungsfreier Prozessoreinheiten. Für die Mes-
sungen wurden Puffergröße und Paketlänge jeweils auf 16 Flits gesetzt. Das glo-

18Eine Injektionsrate von 100% (50%, 25%...) entspricht der Generierung eines Flits in jedem (jedem
2., jedem 4., ...) Taktzyklus und dessen sofortiger Injektion, sobald der Ausgangspuffer des Net-
work Interfaces genügend Speicherplatz bietet.

191

4. Parallele SystemC Simulation für Multiprozessoren

bale Quantum wurde nicht variiert und entsprach der Taktzykluszeit. Die Mess-
ergebnisse sind in den Abbildungen 4.48 und 4.49 illustriert.

(a) 10% Flit-IR (b) 25% Flit-IR (c) 50% Flit-IR (d) 100% Flit-IR

Abbildung 4.48.: Kongestion der Puffer beim Single Sender Pattern

(a) 10% Flit-IR (b) 25% Flit-IR (c) 50% Flit-IR (d) 100% Flit-IR

Abbildung 4.49.: Kongestion der Puffer beim Transpose Pattern

Die farblich unterlegten Quadrate repräsentieren die Eingangspuffer der Router.
Je dunkler die Farbgebung eines Puffers, desto größer ist der gemessene durch-
schnittliche Füllstand über die gesamte Simulationsausführung. In beiden Ab-
bildungen ist deutlich der Zusammenhang zwischen steigender Injektionsrate
und steigenden Pufferfüllständen in Abhängigkeit des Traffic Patterns zu erken-
nen. Aufgrund der Übertragungslatenz des Hermesrouters ist es nicht möglich,
die Puffer zwischen den Routern mit einem einzigen Datenstrom und 100% In-
jektionsrate voll auszulasten (siehe Abb. 4.48 (d)). Erst mit dem Vorhandensein
mehrerer gleichzeitiger Datenströme (vgl. Abb. 4.49), die sich gegenseitig kreu-
zen, ist dies möglich.

Genauigkeitsverlust bei Aufzeichung typischer NoC Charakteristika
In einem zweiten Experiment wurden in jeden Hermes Router eines 8x8 NoCs
Nachrichten mit einer 50% Flit-Injektionsrate injiziert. Die Adressen der Ziel-
router wurden dabei per Zufall gewählt und waren gleichverteilt (Random Pat-

192

4.6. Strategie zur Simulation auf Transaktionsebene

tern). Für die Messungen wurden Modellparameter wie Puffergröße, Paketgrö-
ße und das globale Quantum variiert. Die abstrakten Prozessoreinheiten wurden
zur Aufzeichnung von Performanzdaten wie der Verzögerung einzelner Pakete
und dem Datendurchsatz genutzt.

Die Abb. 4.50 und 4.51 zeigen die gemessene durchschnittliche Abweichung
der Paketverzögerung und des Durchsatzes, die entsteht, wenn anstatt einer
zyklenweisen Synchronisation mit einem globalen Quantum von q = τcycle =
10 ns größere Werte für q gewählt werden. In den Abbildungen sind einzelne
vertikale Segmente, welche unterschiedliche Paketgrößen repräsentieren, nicht-
kumulativ.

Wie erwartet steigt die durchschnittliche Abweichung in beiden Fällen mit der
Größe des globalen Quantums an. Für eine Puffergröße von acht Flits und einer
Paketgröße von 32 Flits resultiert eine Vergrößerung des globalen Quantums von
20 ns auf 80 ns in einem Anstieg der Abweichung von Verzögerung und Durch-
satz von ±4.0% auf ±57.4% bzw. ±3.8% auf ±35.6%. Die Ursache für den An-
stieg ist die Generierung zusätzlicher synthetischer Kongestion, welche durch die
temporäre Entkopplung ausgelöst wird. Da die Pufferfüllstände nur einmal pro
Quantum synchronisiert werden, werden bereits volle Puffer mit erhöhter Wahr-
scheinlichkeit zu spät ausgelesen. Umgekehrt werden bereits leere oder nicht
mehr volle Puffer mit erhöhter Wahrscheinlichkeit zu spät beschrieben.

0

50

100

150

200

250

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

20 40 80 160 320

Re
la

tiv
e

Er
ro

r [
%

]

Quantum [ns]

Packetsize 32

Packetsize 16
Packetsize 8

Abbildung 4.50.: Durchschnittliche Abweichung der Paketverzögerung (Ran-
dom Pattern)

Wie sich den Abbildungen auch entnehmen lässt, sinkt die durchschnittliche Ab-
weichung mit steigender Pufferkapazität. Offensichtlich reduzieren größere Puf-
fer die Gefahr von (synthetischer) Kongestion. Beispielsweise reduziert sich die
durchschnittliche Abweichung der Verzögerung, im Fall eines globalen Quan-

193

4. Parallele SystemC Simulation für Multiprozessoren

0

200

400

600

800

1000

1200

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

Bu
fS

iz
e

8

Bu
fS

iz
e

16

Bu
fS

iz
e

32

20 40 80 160 320

Re
la

tiv
e

Er
ro

r [
%

]

Quantum [ns]

Packetsize 32

Packetsize 16

Packetsize 8

Abbildung 4.51.: Durchschnittliche Abweichung des Durchsatzes (Random
Pattern)

tums von q = 20 ns und einer Paketgröße von 32 Flits, von ±4.0% auf nur
±0.49%, wenn man die Pufferkapazität von acht auf 32 Flits anhebt. Entspre-
chend reduziert sich die Abweichung des Durchsatzes von ±3.8% auf ±0.37%.

Mit den gegebenen Paketgrößen wurden kleinere durchschnittliche Abweichun-
gen im einstelligen Prozentbereich für Fmax < Fb

2 gemessen. Dabei ist Fmax die
Anzahl an Flits, die maximal zwischen zwei Routern innerhalb eines Quantums
q übertragen werden können und Fb die Kapazität der Puffer. Kleinere Paketgrö-
ßen resultierten meist in kleineren Abweichungen. Im speziellen Fall des Hermes
NoC gilt:

Fmax =
q

τcycle <
Fb
2

. (4.32)

4.6.5.2. Performanz und zeitliche Genauigkeit

Um den Trade-off zwischen Performanz und zeitlicher Genauigkeit im Fall einer
vollständigen MPSoC Simulation zu untersuchen, wurden unterschiedliche Va-
rianten eines 8x8 HeMPS Modells auf einer unterschiedlichen Anzahl an Kernen
einer bestimmten Zielplattform ausgeführt. Die Module und deren verfügbare
Abstraktionsebenen (RTL, TL, PA-CAL und Mixed Level (ML)) sind in Tab. 4.3
zusammengefasst.

Sowohl für den Router als auch für das Network Interface existieren transakti-
onsbasierte Modelle. Die ML Beschreibung des Network Interfaces dient als Ad-

194

4.6. Strategie zur Simulation auf Transaktionsebene

apter zur Übersetzung zwischen einem signalbasierten PE und dem TL Router.
Dabei werden intern zwei SC_METHOD Prozesse zur Übersetzung von Signalen
in Transaktionen verwendet. Der leichtgewichtige Scheduler dient ausschließlich
zur Synchronisation.

Modul Abstraktionsebene
Processing Element (PE) RTL, PA-CAL
Network Interface (NI) RTL, ML

Router (RO) RTL, TL

Tabelle 4.3.: Modellelemente und Abstraktionebenen

Die Module wurden soweit wie möglich in gleich große Partitionen aufgeteilt.
Die Simulation wurde für 106 Taktzyklen bei einer simulierten Taktfrequenz von
100 MHz und entsprechend einer Zykluszeit von τcycle = 10 ns ausgeführt. Die
PEs führten dabei mehrere MPEG Decoder Pipelines aus.

Als Zielplattformen kamen sowohl der SCC als auch ein cachkohärenter SHM
Multiprozessor (Core i7 930) mit vier physikalischen und acht virtuellen (Hy-
perthreading) Kernen zum Einsatz. Der Core i7 930 war mit 2.8GHz getaktet
und verfügte im Unterschied zum SCC über Hardware Cachekohärenz. Da die
Kernelimplementierung auf dem asynchronen Kernel aus Abschnitt 4.4 basiert,
wurde für die Konfiguration der Simulation die teilautomatisierte Werkzeugket-
te aus Abschnitt 4.4.8 verwendet.

Zur Quantifizierung der zeitlichen Genauigkeit unterschiedlich konfigurierter
Modelle im Vergleich zur RTL Referenz wurden Zeitstempel signifikanter Er-
eignisse wie z.B. Empfangszeiten von Nachrichten aufgezeichnet. Diese Zeit-
stempel wurden dann zur Bestimmung der relativen zeitlichen Abweichung der
abstrakteren Simulationsmodelle von der RTL Referenz verwendet. Dazu wur-
de der zeitliche Fehler jeweils identischer Ereignisse berechnet und daraus der
Durchschnitt gebildet.

Die Messergebnisse auf dem SCC und dem Core i7 930 sind in den Abb. 4.52 und
4.53 dargestellt. In beiden Fällen ist sowohl die Beschleunigung rein sequentiel-
ler Simulation als auch die durch Parallelisierung zusätzlich erzielte Beschleuni-
gung dargestellt. Bei der Core i 930 Workstation wird außerdem zwischen einer
Simulation auf vier Kernen (ohne Hyperthreading) und acht Kernen (mit Hy-
perthreading) unterschieden.

Sowohl auf dem SCC als auch auf dem Core i 930 wird mit reiner RTL Simu-
lation maximale Genauigkeit aber generell die geringste Beschleunigung erzielt
(22.6x/1.0 auf dem SCC respektive 4.6x/2.9/1.0 auf dem Core i7 930). Der Grund
für die signifikant bessere Beschleunigung auf dem SCC ist die vergleichsweise

195

4. Parallele SystemC Simulation für Multiprozessoren

22,6
26,4 27,8

109,0
136,6

193,4
249,5

291,8

1,0
1,12

1,3

4,9

8,5
10,5 12,0 12,9

90

92

94

96

98

100

1

10

100

PE: RTL
NOC: RTL

P: -
Q: -

PE: RTL
NOC: TL

P: SC_THR
Q: 10 ns

PE: RTL
NOC: TL

P: SC_ME
Q: 10 ns

PE: PA-CAL
NOC: TL

P: SC_THR
Q: 10 ns

PE: PA-CAL
NOC: TL

P: SC_ME
Q: 10 ns

PE: PA-CAL
NOC: TL

P: SC_ME
Q: 20 ns

PE: PA-CAL
NOC: TL

P: SC_ME
Q: 40 ns

PE: PA-CAL
NOC: TL

P: SC_ME
Q: 80 ns

Ac
cu

ra
cy

 [%
]

Sp
ee

du
p

(r
el

at
iv

e
to

 p
ur

e
RT

L
on

 1
 S

C
C

 c
or

e)

[l
og

10
]

Model Configuration

SCC (48 cores)
SCC (1 core)
Accuracy [%]

Abbildung 4.52.: Charakteristika von Performanz und Genauigkeit der Simula-
tion eines 8x8 HeMPS Modells auf dem SCC

4,6
5,2

9,8

19,1

40,6

68,8
91,0

104,5

2,9
2,5

4,1

11,2

16,7

25,8

41,5
48,2

1,0 1,05

1,3

4,5

11,4
13,5 14,8 15,7

90

92

94

96

98

100

1

10

100

PE: RTL
NOC: RTL

P: -
Q: -

PE: RTL
NOC: TL

P: SC_THR
Q: 10 ns

PE: RTL
NOC: TL

P: SC_ME
Q: 10 ns

PE: PA-CAL
NOC: TL

P: SC_THR
Q: 10 ns

PE: PA-CAL
NOC: TL

P: SC_ME
Q: 10 ns

PE: PA-CAL
NOC: TL

P: SC_ME
Q: 20 ns

PE: PA-CAL
NOC: TL

P: SC_ME
Q: 40 ns

PE: PA-CAL
NOC: TL

P: SC_ME
Q: 80 ns

Ac
cu

ra
cy

 [%
]

Sp
ee

du
p

(r
el

at
iv

e
to

 p
ur

e
RT

L
on

 1
 C

or
e

i7
 9

30
 c

or
e

)
[l

og
10

]

Model Configuration

Core i7 930 (8 cores)

Core i7 930 (4 cores)

Core i7 930 (1 core)

Accuracy [%]

Abbildung 4.53.: Charakteristika von Performanz und Genauigkeit der Simula-
tion eines 8x8 HeMPS Modells auf dem Core i7 930

196

4.6. Strategie zur Simulation auf Transaktionsebene

geringe Rechenleistung der SCC Kerne in Verbindung mit der insgesamt höhe-
ren Anzahl an Kernen.

Tauscht man die RTL Beschreibungen der Router und Network Interfaces durch
deren TL bzw. ML Beschreibungen aus und belässt das Quantum bei der Zy-
kluszeit, so tritt ein leichter durchschnittlicher Genauigkeitsverlust von 0.005%
auf. Dieser ist auf die synchrone Semantik der leichtgewichtigen Scheduler zu-
rückzuführen, welche keine Deltacycles unterstützt, wodurch es evtl. zu kleinen
Timingfehlern im Vergleich zur RTL Referenz kommen kann.

Mit SC_THREAD Schedulern ist in fast allen Fällen ein leichter Performanzge-
winn zu verzeichnen. Nur auf dem Core i 930 geht die Beschleunigung bei vier
Kernen von 2.9x auf 2.5x zurück. Eine Ursache dieses Rückgangs ist der hohe
Overhead für das Scheduling der SC_THREAD Co-Routinen. Bei Verwendung
der effizienteren SC_METHOD Callbacks konnte hingegen in allen Fällen eine
signifikant bessere Beschleunigung gemessen werden (27.8x/1.3x auf dem SCC
respektive 9.8x/4.1x/1.3x auf dem Core i7 930). Die Zuwächse im rein sequenti-
ellen Fall sind generell beschränkt, da die Hauptrechenlast weiterhin durch die
RTL Plasmakerne generiert wird. Dieser Overhead ist um einiges Größer als die
durch den Austausch der Router und Network Interfaces erzeugte Varianz in
der Rechenlast.

Tauscht man die RTL PEs durch PA-CAL Beschreibungen aus, so resultiert dies
in einem Rückgang der Genauigkeit auf ca. 99.6% und in einem generellen Zu-
wachs der Beschleunigung, selbst wenn in den Routern und Network Interfa-
ces SC_THREAD Scheduler eingesetzt werden. Ein Austausch von SC_THREAD
Schedulern durch SC_METHOD Scheduler fällt wegen der geringeren Rechen-
last der PA-CAL Beschreibungen nun viel stärker ins Gewicht: Während bei-
spielsweise die parallele Beschleunigung mit RTL PEs auf dem SCC nur von
26.4x auf 27.8x zunimmt, steigt sie mit PA-CAL PEs von 109.0x auf 136,6x.

Wendet man nun zusätzlich temporäre Entkopplung an und vergrößert das glo-
bale Quantum, so wird im Fall von q = 80 ns eine maximale Beschleunigung von
291.8x auf dem SCC und 104.5x auf dem Core i7 930 erreicht. Dabei sinkt die Ge-
nauigkeit im betrachteten Szenario im Vergleich zur RTL Referenz lediglich auf
99.09% ab. Der nur geringe Verlust ist auf die eher rechenintensiven MPEG Pipe-
lines zurückzuführen. Aufgrund der relativ seltenen Kommunikation über das
NoC ist der zeitliche Genauigkeitsverlust im Vergleich zur RTL Referenz auch
bei einem Quantum von q = 80 ns stark limitiert.

197

4. Parallele SystemC Simulation für Multiprozessoren

4.6.6. Fallstudie II

In der zweiten Fallstudie wurde die Anwendbarkeit der Methode zur dynami-
schen Latenzprädiktion untersucht. Zur Anwendung der Methode auf das Her-
mes NoC müssen folgende drei Schritte durchgeführt werden:

1. Analyse des Verhaltens.

2. Annotation von Verzögerungen an die Verhaltensbeschreibungen der leicht-
gewichtigen Prozesse.

3. Entwicklung einer Funktion zur Berechnung des dynamischen Lookaheads
auf Basis der annotierten Verzögerungen.

Dabei ist insbesondere hervorzuheben, dass der dynamische Lookahead, im Ge-
gensatz zur allgemeinen Beschreibung aus den vorigen Abschnitten, nicht akku-
rat berechnet, sondern konservativ geschätzt wird. Die mögliche Performanzstei-
gerung durch temporäre Entkopplung ist dadurch zusätzlich limitiert, im Ver-
gleich zum Basisverfahren werden Kausalitätsverletzungen jedoch vollständig
verhindert.

4.6.6.1. Analyse des Verhaltens im Hermes Router

Die Aufgaben der einzelnen Elemente des Hermes Routers (Puffer, Crossbar, In-
put Controllern und Switch Controller) wurden bereits in Abschnitt 4.6.3.2 grob
erläutert. Abb. 4.54 illustriert auf das Notwendigste reduzierte Versionen der bei-
den Controller FSMs. Im Detail ist das Verhalten wie folgt:

Angenommen, ein Input Controller befindet sich im S_IDLE Zustand. Sobald
sich ein Header Flit eines Pakets im zugehörigen Eingangspuffer befindet, sendet
der Input Controller eine Anfrage zur Weiterleitung aller Flits des Pakets zum
Switch Controller. Der Input Controller wechselt dann in den S_WAIT Zustand
und wartet auf eine Bestätigung durch den Switch Controller.

Ein Arbitrierungs- und Routingzyklus für einen beliebigen Input Controller ist
erst nach mindestens einer vollständigen Iteration von S_IDLE nach S_END des
Switch Controllers abgeschlossen: Der Switch Controller kann sich zum Zeit-
punkt der Anfrage eines Input Controllers A in einem beliebigen Zustand zwi-
schen S_IDLE und S_END befinden. Dies ist dann der Fall, wenn der Switch
Controller bereits eine Anfrage eines Input Controllers B bearbeitet, während
die Anfrage des Input Controllers A eintrifft. Mehr als eine Iteration des Switch
Controller ist möglich, wenn andere Input Controller trotz der Anfrage des In-
put Controllers A aufgrund des Schedulingschemas mit höherer Priorität aus-
gewählt werden. Ein weiterer Grund für mehr als eine Iteration ist ein bereits
belegter Ausgang, was in einem Abbruch des Routingvorgangs im Switch Con-
troller im Zustand S_ROUTE resultiert.

198

4.6. Strategie zur Simulation auf Transaktionsebene

Sobald ein Input Controller erfolgreich arbitriert wurde, werden die Header und
Payload Flits in den Zuständen S_HEAD und S_PAYLOAD übertragen. Im Fall
von Pufferkongestion ist es möglich, dass der Input Controller längere Zeit in
einem dieser Zustände verharrt. In den Zuständen S_END und S_END2 signa-
lisiert der Input Controller das Ende der Übertragung an den Switch Controller
und wechselt schließlich zurück in S_IDLE.

S_INIT

S_IDLE

S_ARBITRATE

S_ROUTE

S_CONNECT

S_END

S_IDLE

S_WAIT

S_HEAD

S_PL

S_END

S_END2

Abbildung 4.54.: Input Controller FSM (links) und Switch Controller FSM
(rechts)

4.6.6.2. Annotation von Verzögerungen

Wie bereits erwähnt, können die Elemente des Hermes Routers den unteren drei
Schichten des OSI Referenzmodells zugeordnet werden. In diesem Kontext wird
eine annotierte Latenz an eine der genannten Komponenten als ein Zeitfenster in
der Größenordnung von Taktzyklen definiert, für das eine Interaktion mit dem
darunterliegenden OSI Layer (im Fall der untersten Schicht mit dem benachbar-
ten Router) ausgeschlossen ist. Annotationen auf einer konkreten Schicht haben
folgende Bedeutung:

• Bitübertragungsschicht: Diese Schicht wird durch eine konstante Verzöge-
rung dbu f von einem Taktzyklus modelliert. Eine zustandsabhängige An-
notation ist nicht notwendig.

• Sicherungsschicht: Angenommen, die FSM eines Input Controllers befin-
det sich in einem beliebigen der in Abb. 4.54 gezeigten Zustände. Dann re-
präsentiert eine Annotation an eine Transition die konservativ geschätzte

199

4. Parallele SystemC Simulation für Multiprozessoren

minimale Anzahl an Taktzyklen, bis zur nächsten verlustlosen Flitübertra-
gung (Übergang nach S_HEAD oder S_PL). Arbitrierungsverzögerungen
werden noch nicht berücksichtigt. Der aktuelle Schätzwert der Verzöge-
rung dic(τ) einer Input Control FSM ist durch den Wert der Annotation an
der nächsten zu nehmenden Transition gegeben.

• Vermittlungsschicht: Angenommen, die FSM des Switch Controllers be-
findet sich in einem beliebigen der in Abb. 4.54 gezeigten Zustände. Dann
repräsentiert eine Annotation an eine Transition die konservativ geschätzte
minimale Anzahl an Taktzyklen, bis der aktuelle Arbitrierungszyklus vor-
bei ist (Übergang nach S_END). Der aktuelle Schätzwert der Verzögerung
dsc(τ) der Switch Control FSM ist durch den Wert der Annotation an der
nächsten zu nehmenden Transition gegeben.

Die Layer 1 Verzögerung dbu f ist identisch zur externen Pfadlatenz dext bzw. zum
statischen Lookahead (vgl. Abschnitt 4.6.3.3). dbu f sowie die Schätzwerte dic(τ)
und dsc(τ) können widerum zur Schätzung der Pfadlatenzen bzw. des dynami-
schen Lookaheads genutzt werden (vgl. Abschnitt 4.6.3.4).

4.6.6.3. Schätzung des dynamischen Lookaheads

Alg. 4.1 illustriert die in der Fallstudie verwendete Schätzfunktion. Die Funktion
ist Teil des leichtgewichtigen Schedulers und wird innerhalb der Aktion calcDL()
angewendet (vgl. Abschnitt 4.6.3.6). Die Funktion schätzt ausschließlich die La-
tenz auf dem Vorwärtspfad. Auf eine separate Schätzung des Rückwärtspfades
kann verzichtet werden. Der Grund sind folgende spezielle Eigenschaften des
Hermes Routers:

Zum einen werden im Switch Controller Entscheidungen bzgl. Arbitrierung und
Routing grundsätzlich unabhängig von den Pufferfüllstandswerten gefällt. Die-
se haben keinen Einfluss auf die Funktion des Switch Controllers. Des Weiteren
stützt ein Input Controller die Entscheidung, ob im aktuellen Takt ein Flit über-
tragen werden kann, nur auf die im unmittelbar vorangegangenen Taktzyklus
empfangene binäre Zustandsinformation über die Pufferfüllstände (voll/nicht
voll).

Für die Berücksichtigung des Rückwärtspfades genügt es daher, wenn man da-
für sorgt, dass auf dem Vorwärtspfad nicht nur nach jedem tatsächlich durchge-
führten Schreibzugriff auf ein f i Artefakt, sondern zusätzlich vor jedem potenti-
ellen Schreibzugriff eine Synchronisation erfolgt. Zu diesem Zweck wurden die
Annotationen in der Input Controller FSM insgesamt um einen Takt zusätzlich
dekrementiert. Damit kann die Berechnung der minimalen internen Pfadlatenz
in Ausdruck 4.29 wie folgt vereinfacht werden:

200

4.6. Strategie zur Simulation auf Transaktionsebene

dint
ij (τi) = min{d f wd,int

ij (τi), dbwd,int
ij (τi)} = d f wd,int

ij (τi). (4.33)

Algorithm 4.1 Schätzfunktion für den dynamischen Lookahead

1: function ESTIMATE_LOOKAHEAD(InputArtifact f i)
2: lookahead l = ∞
3: for all x ∈ InputController do
4: dint ← 0
5: if s(x) = S_WAIT then
6: dint ← dsc(τ)
7: else if s(x) = S_HEAD ∨ s(x) = S_PL then
8: if out(x) = f i then
9: dint ← dic

x (τ)
10: else
11: dint ← pc(x) + dsc

min
12: end if
13: else
14: //all other states:
15: dint ← dic

x (τ) + dsc
min

16: end if
17: l ← min(l, dint)
18: end for
19: l ← l + dbu f

20: end function

Auf dieser Basis führt die Funktion in Alg. 4.1 eine Reduktion des Lookaheads
von ∞ auf einen gültigen Wert durch. Zunächst wird durch Iteration über alle In-
put Controller mit Ausdruck 4.33 die minimale interne Vorwärtspfadlatenz wie
folgt berechnet:

Falls sich der Input Controller x im Zustand S_WAIT befindet, so wird für dint
ij (τi)

die konservative Schätzung der aktuellen Latenz des Switch Controllers dsc(τ)
herangezogen. In den Zuständen S_HEAD bzw. S_PL hängt der geschätzte La-
tenzwert vom betrachteten f i Artefakt ab. Ist dieses identisch zu dem logischen
Puffer, auf den der Input Controller x gerade schreibt (identifiziert durch out(x)),
so wird als Latenz dic

x (τ) angenommen. Andernfalls, ist die Latenz pc(x) + dsc
min.

pc(x) gibt dabei die Anzahl der zur Übertragung ausstehenden Payload Flits
zurück und dsc

min entspricht der minimalen Dauer eines Routingvorgangs durch
den Switch Controller (vier Taktzyklen). In allen anderen Zuständen (S_IDLE,
S_END und S_END2) wird die Latenz zu dic

x (τ) + dsc
min angenommen: In diesen

201

4. Parallele SystemC Simulation für Multiprozessoren

Fällen kann eine aktive Übertragung ausgeschlossen werden. Für die nächste
Übertragung eines Flits muss mindestens ein kompletter Routingvorgang erfol-
gen. Zu guter Letzt wird in Zeile 19 die Berechnung durch Addition der externen
Pfadlatenz bzw. dbu f vervollständigt.

4.6.6.4. Experimentelle Evaluation

Zur experimentellen Bewertung wurden mehrere Simulationsläufe mit unter-
schiedlichen Varianten des HeMPS durchgeführt. Zunächst wurden dazu ver-
schiedene Konfigurationen einer Applikation, die ein Transpose Pattern imple-
mentiert, auf die PEs des Modells abgebildet. Dabei wurde jedem PE ein Task
mit einem festen Kommunikationspartner auf einem anderen Kern zugeordnet.
Mit Hilfe eines Zählers war es möglich, die Wartezyklen zwischen der Übertra-
gung aufeinanderfolgender Pakete einzustellen. Anschließend wurde die Mo-
dellierungstechnik für die verwendeten Module ausgewählt. Die Umsetzung des
Prädiktionsmechanismus beschränkte sich auf das Routermodell.

Die Module wurden mit einer Granularität von Tiles soweit wie möglich in gleich
große Partitionen gruppiert. Jeder dieser Partitionen wurde einem Kern der Ziel-
plattform zugeordnet. Als Zielplattform dienten der SCC und eine Core i7 930
Workstation mit bis zu acht virtuellen Kernen mit jeweils 2.8 GHz. Die Simu-
lation wurde für 106 Zyklen bei einer simulierten Taktfrequenz von 100 MHz
ausgeführt.

Plattformunabhängige Charakteristika
Tabelle 4.4 fasst gemessene plattformunabhängige Charakteristika zusammen.
Sobald ein Synchronisationspunkt einer Verbindung erreicht ist, warten benach-
barte Module auf den gegenseitigen Austausch von genau einer Kontrolltrans-
aktion. Dies resultiert darin, dass auch mit aktivierter Prädiktion die Anzahl der
insgesamt in der Simulation ausgetauschten Kontrolltransaktionen unabhängig
von der Zielplattform und dem Ausführungsmodus (sequentiell oder parallel)
ist.

Der Tabelle ist zu entnehmen, dass die durchschnittliche Anzahl der Kontroll-
transaktionen θctrl die bei deaktivierter Prädiktion pro Router und Socket Link
verschickt wird, exakt der Anzahl der simulierten Taktzyklen (1× 106) entspricht.
Die Anwendung von DLP resultiert im Allgemeinen in einer Reduktion der
durchschnittlichen Anzahl an Kontrolltransaktionen um 57% bis 66%. Damit
steigt die durchschnittliche Anzahl an Taktzyklen, die ein Modul ausführen kann,
ohne mit einem benachbarten Modul synchronisieren zu müssen, von 1.0 auf
Werte ≥ 2.38.

202

4.6. Strategie zur Simulation auf Transaktionsebene

Tabelle 4.4.: Plattformunabhängige Charakteristika
Modell Wartezyklen Prädiktion θ.ctrl/Router/Link Zyklen/θ.ctrl

4x4 100 aus 1× 106 1.0

4x4 100 an 4.21× 105 2.38

4x4 102 aus 1× 106 1.0

4x4 102 an 4.06× 105 2.46

4x4 105 aus 1× 106 1.0

4x4 105 an 3.58× 105 2.79

8x8 100 aus 1× 106 1.0

8x8 100 an 3.90× 105 2.56

8x8 102 aus 1× 106 1.0

8x8 102 an 3.83× 105 2.61

8x8 105 aus 1× 106 1.0

8x8 105 an 3.37× 105 2.97

Die tatsächliche Effektivität hängt von der auf dem HeMPS ausgeführten Ap-
plikation ab. Im Fall von geringem Aufkommen an Datentransaktionen (größere
Anzahl Wartezyklen) ist die durchschnittliche Anzahl an Kontrolltransaktionen
generell kleiner als im Fall von hohem Aufkommen (kleinere Anzahl Wartezy-
klen). Viele Datentransaktionen einer aktiven Übertragung über einen bestimm-
ten routerinternen Pfad erhöhen die Wahrscheinlichkeit, dass sich die betroffe-
nen Input Controller im Zustand S_HEAD oder S_PL befinden und die Latenz
dieses Pfades über Zeile neun in Alg. 4.1 berechnet wird. Da sich die Werte der
Annotationen an Transitionen im Input Controller in den Zuständen S_HEAD
oder S_PL nur zwischen null und einem Taktzyklus bewegen, führt dies zu ei-
nem erhöhten Aufkommen von Kontrolltransaktionen.

Für alle anderen internen Pfade, die nicht von der aktiven Übertragung betroffen
sind und über die aktuell keine Datentransaktionen übermittelt werden, berech-
net sich die interne Pfadlatenz ausgehend von einem aktiven Input Controller,
über Zeile elf. Dadurch bewegen sich die geschätzten Latenzen in der Größen-
ordnung des Payloads. Allerdings werden diese verhältnismäßig hohen Schätz-
werte in nahezu allen Fällen durch geringere Schätzwerte anderer passiver In-
put Controller im Zustand S_ILDE, S_END oder S_END2 wieder reduziert: In

203

4. Parallele SystemC Simulation für Multiprozessoren

diesem Fall bestimmt sich die Latenz über Zeile 15. Aufgrund der annotierten
Werte, die sich in jeder FSM nur im Bereich von ein bis maximal vier Zyklen
bewegen, resultiert dies in Gesamtverzögerungen ≤ 7 Zyklen.

Die durchschnittliche Anzahl an Kontrolltransaktionen ist bei aktiver Prädiktion
beim 8x8 Modell generell kleiner als beim 4x4 Modell. Der Grund ist die Initiali-
sierungsphase des HeMPS Modells, in der die Tasks zunächst von einem Master
PE auf Slave PEs verteilt werden, bevor letztere mit der Ausführung beginnen.
In dieser Phase wird die Transpose Anwendung nicht vollständig ausgeführt. Da
die Taskverteilung auf einem 8x8 System länger dauert als auf einem 4x4 Sys-
tem, befinden sich die Input Controller der Router länger im S_IDLE Zustand.
Dadurch entstehen größere dynamische Lookaheads und lokale Quanta.

Plattformabhängige Charakteristika
Zur Bewertung plattformabhängiger Charakteristika wird zunächst die Ausfüh-
rung auf der Core i7 930 Workstation betrachtet. In Abb. 4.55 ist die gemessene
Beschleunigung von paralleler im Vergleich zu sequentieller Simulation illus-
triert. Bei der sequentiellen Simulation wurde zyklenweise Synchronisation oh-
ne Prädiktion verwendet. Im parallelen Fall wurde die Ausführungsdauer mit
und ohne Prädiktion gemessen.

0

1

2

3

4

5

6

Sync: Baseline
Size: 4x4

Sync: Prediction
Size: 4x4

Sync: Baseline
Size: 8x8

Sync: Predicition
Size:8x8

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 C

or
e

i7
 9

30
 c

or
e)

Model Configuration

Delay Count: 1x10^0
Delay Count: 1x10^2
Delay Count: 1x10^5

Abbildung 4.55.: Beschleunigung auf dem Core i7 930

Wegen des höheren parallelisierbaren Berechnungsaufwands ist die Beschleuni-
gung beim 8x8 Modell generell höher als beim 4x4 Modell. In beiden Fällen hat
DLP eine merkliche Verbesserung der Beschleunigung zur Folge. Beispielsweise
beträgt sie beim 8x8 Modell mit zyklenweiser Synchronisation, ohne DLP und
1 × 105 Wartezyklen, 3.08x. Mit aktivierter DLP steigt die Beschleunigung auf
5.07x an. Dies ist gleichzeitig der höchste Wert, der auf der Core i7 930 Worksta-
tion gemessen wurde.

204

4.6. Strategie zur Simulation auf Transaktionsebene

Insbesondere bei aktivierter DLP ist eine Abhängigkeit der Beschleunigung vom
Datenaufkommen zu erkennen, das durch die Transpose Applikation generiert
wird. Beispielsweise reduziert sich die Beschleunigung beim 8x8 Modell und ak-
tivierter DLP von 5.07x auf 4.79x bzw. 4.72x, wenn die Anzahl der Wartezyklen
in der Applikation von 1× 105 auf 1× 102 bzw. 1× 100 verringert wird.

Für die Untersuchungen auf dem SCC konnten die Modelle stärker zerlegt wer-
den, da der SCC mehr Kerne als die SHM Workstation besitzt. Insgesamt kamen
für das 4x4 Modell 16 Partitionen und für das 8x8 Modell 48 Partitionen und
damit alle SCC Kerne zum Einsatz. Da mit Tile Granularität partitioniert wurde,
bestanden beim 8x8 Modell 16 Partitionen aus zwei Tiles. Abb. 4.56 illustriert die
Messergebnisse.

0

5

10

15

20

25

30

Sync: Baseline
Size: 4x4

Sync: Prediction
Size: 4x4

Sync: Baseline
Size: 8x8

Sync: Predicition
Size:8x8

Sp
ee

du
p

(r
el

at
iv

e
to

 1
 S

C
C

 c
or

e)

Model Configuration

Delay Count: 1x10^0
Delay Count: 1x10^2
Delay Count: 1x10^5

Abbildung 4.56.: Beschleunigung auf dem SCC

Auch auf dem SCC führt DLP zu einer merklichen Verbesserung der Beschleu-
nigung im Vergleich zu zyklenweiser Synchronisation. Während die insgesamt
erzielten Beschleunigungen um einiges größer sind als auf dem Core i7 930, be-
wegen sich die durch DLP zusätzlich erzielten Verbesserungen in der gleichen
Größenordnung.

Beim 4x4 Modell mit 1× 105 Wartezyklen steigt die Beschleunigung durch Ein-
satz von DLP von 5.8x auf 8.22x. Beim 8x8 und gleicher Anzahl Wartezyklen
steigt sie von 19.64x auf 24.91x. Wie bereits in Abschnitt 4.6.5.2 erläutert, sind
die Beschleunigungen auf dem SCC, wegen der vergleichsweise geringen Re-
chenleistung in Kombination mit der höheren Kernanzahl, generell höher.

Die Gegenüberstellung in Abb. 4.57 macht deutlich, dass eine höhere Beschleu-
nigung nicht zwangsläufig einen besseren Absolutwert der Laufzeit zur Folge
hat. Simuliert wurde ein 8x8 Modell bei 1× 100 Wartezyklen. Sowohl im sequen-
tiellen als auch im parallelen Fall sind Laufzeitverbesserungen durch DLP zu
verzeichnen. Die geringe Taktfrequenz von 533 MHz der SCC Kerne hat aber

205

4. Parallele SystemC Simulation für Multiprozessoren

vergleichsweise lange Laufzeiten bei sequentieller Ausführung in der Größen-
ordnung von 104 s zur Folge (im Vergleich zu nur 103 s auf dem Core i7 930).
Durch aggressive Parallelisierung wird der Nachteil der geringen Rechenleis-
tung der SCC Kerne allerdings nahezu ausgeglichen: Im betrachteten Szenario
kann die Laufzeit auf dem SCC von 12468 s bzw. 11604 s (mit aktiver DLP) auf
nur 675 s bzw. 509 s reduziert werden. Die absoluten parallelen Laufzeiten auf
dem SCC bewegen sich dann zwischen den absoluten sequentiellen und paral-
lelen Laufzeiten auf dem Core i7 930.

0

200

400

600

800

1000

1200

Sequential Parallel

Ru
nt

im
e

(s
)

Execution Type

Baseline
Prediction

(a) Laufzeit auf dem Core i7 930

0

2000

4000

6000

8000

10000

12000

14000

Sequential Parallel

Ru
nt

im
e

(s
)

Execution Type

Baseline
Prediction

(b) Laufzeit auf dem SCC

Abbildung 4.57.: Vergleich der Laufzeiten

4.7. Einordnung in verwandte Arbeiten und Fazit

Die hier vorliegende Arbeit ist die erste Arbeit, in der die Parallelisierung von
SystemC auf Manycore Architekturen untersucht wurde. Dem Autor sind dar-
über hinaus keine Arbeiten bekannt, dies das Problem der Parallelisierung von
SystemC mit Hilfe von Schichtenbildung zerlegen. Auch Gegenüberstellungen
unterschiedlicher Verfahren und Plattformen (z.B. asymmetrische versus sym-
metrische Strategie auf logischer Ebene, SCC versus cachkohärentem SHM Mul-
tiprozessor auf Ausführungsplattformebene) sind in der Literatur eher selten zu
finden. Ausnahmen sind [260] und [61], wo eine GPU Parallelisierung von Sys-
temC RTL Modellen mit einer Parallelisierung auf einem Multiprozessor bzw.
FPGA verglichen wird.

Die asymmetrische synchrone Strategie aus Abschnitt 4.3 wurde in ähnlicher
Weise in [105] und [232] implementiert, allerdings für konventionelle cacheko-
härente SHM Multiprozessoren. Im Bereich von SpecC existieren die Arbeiten

206

4.7. Einordnung in verwandte Arbeiten und Fazit

von Chen et. al [85, 83], die ebenfalls auf cachekohärente Architekturen speziali-
siert sind. Bei den Untersuchungen in dieser Arbeit hat sich die asymmetrische
Strategie als nur schwer anwendbar auf dem nicht cachekohärenten SCC erwie-
sen.

Vergleichbar mit dem symmetrischen asynchronen Ansatz aus Abschnitt 4.4 sind
z.B. die Arbeiten in [271] und [82]. In beiden Fällen sind die Zielplattformen
allerdings Workstation Cluster. In [271] werden nur synthetische Benchmarks
durchgeführt und keine realistischen Simulationen. Das Verfahren in [82] wurde
für SpecC TL Modelle implementiert. In [188], [206] und [181] werden Ansätze
zur parallelen VHDL und Verilog Simulation beschrieben. Die Arbeiten erlau-
ben aber entweder keine Relaxation der Synchronisation auf die Ebene von Ti-
medcycles [188], fokussieren auf die Gatterebene [206] oder nutzen optimistische
Synchronisation [188, 181].

Die größte Ähnlichkeit mit dem adaptiven Synchronisationsverfahren aus Ab-
schnitt 4.5 haben die SystemC-basierten parallelen Simulatoren von Cox [93] und
Combes et. al [90] sowie der parallele VHDL Simulator von Lungeanu und Shi
[188]. Keine der genannten Arbeiten zielt jedoch auf Manycore Architekturen als
Zielplattformen ab. Alle sind auf globale Synchronisation zwischen logischen
Prozessen angewiesen. Zudem bieten Cox und Combes keine Werkzeugkette
welche es erlaubt, SystemC Modelle automatisch zu analysieren, zu partitionie-
ren und zu verteilen. Weder in [93], [90] noch in [188] wird eine statische Kausa-
litätsanalyse zur Vermeidung globaler Synchronisation genutzt.

Die einzigen bekannten Arbeiten im Bereich von SystemC, die eine statische
compilergestützte Modellanalyse verwenden, sind die GPU basierten Lösungen
aus [205], [237] und [260]. Nur die im Kontext von SpecC entstandenen Arbeiten
von Chen et. al [85, 83] nutzen ebenfalls eine statische Compileranalyse, aller-
dings für eine zentralisierte Parallelisierung auf cachekohärenten Multiprozes-
soren. Keine der bekannten Arbeiten kombiniert eine statische mit einer dyna-
mischen Analyse vor der Simulationslaufzeit, ähnlich dem Ansatz von PinaVM
[193].

Die TL Modellierungsstrategie aus dem vorigen Abschnitt ist durch die Softwa-
rearchitektur von Ptolemy II [217] inspiriert (vgl. Abschnitt 2.3.4), insbesondere
die hierarchische Verschachtelung von Schedulern. Während die Hierarchisie-
rung in PtII als Grundlage für die strukturierte Komposition von heterogenen
Simulationsmodellen dient, wird sie in der beschriebenen TL Methodik aller-
dings als Basis für die Simulationsbeschleunigung eingesetzt. Ein möglicher An-
satz zur Nutzung von sog. Microschedulern im Kontext von SystemC/TLM mit
dem Ziel der Simulationsbeschleunigung wird in [142] und [143] beschrieben.
Jedoch wird in diesen Arbeiten keine Methode für die parallele Ausführung sol-
cher Modelle hergeleitet.

207

4. Parallele SystemC Simulation für Multiprozessoren

In [259, 199] wird eine SystemC TL Modellierungsmethodik namens TLM/T
bzw. deren Erweiterung TLM-DT vorgestellt, die auf Basis von Transaktionen
ein PDES Protokoll umsetzt. TLM-DT Modelle sind mit einem speziellen Ker-
nel parallel ausführbar. Der Kernel ist allerdings für die parallele Simulation von
TLM-DT Modellen auf cachekohärenten SHM Multiprozessoren beschränkt. We-
der in [259] noch in [199] werden leichtgewichtige Scheduler eingesetzt, um mi-
kroskopische Effekte wie Kongestion einzelner Puffer in einem NoC Router ak-
kurat zu simulieren. Zudem wird weder eine Lösung zur deterministischen TLM
Simulation noch zur kontrollierten Beschränkung von temporärer Entkopplung
beschrieben.

Insgesamt konnte in diesem Kapitel gezeigt werden, dass sich asynchrone Syn-
chronisationsverfahren gut für die parallele Simulation von zyklenakkuraten MP-
SoC Simulationsmodellen eignen. Auf Architekturen wie dem SCC hat sich ei-
ne statische Partitionierung des Modells als notwendig erwiesen, um signifikan-
te Beschleunigungen zu erreichen. Durch die Kombination aus Parallelisierung
und Abstraktion ist ein weiterer Grad an Beschleunigung möglich. Neben der
Partitionierung und dem Abstraktionsgrad hängt die Effizienz stark von der
Größe des Simulationsmodells ab. Die Präpäration eines Modells kann anhand
entsprechender Werkzeugunterstützung erfolgen. Dies wurde anhand ein teil-
und einer vollautomatisierten Werkzeugkette demonstriert.

Ziel zukünftiger Arbeiten kann es sein, die Anwendbarkeit der beschriebenen
Methoden auf eines größeres Spektrum von Modellierungsstilen sowie eine Kom-
bination aus heterogenen Ausführungsplattformen (GPUs, Intel MIC, FPGAs, ...)
zu erweitern. Dazu sind die Eigenschaften von Modellen, Modellierungsstilen
und Ausführungsplattformen zu analysieren, um daraus Schlussfolgerungen für
notwendige Adaptionen der Laufzeitumgebung und der Modelle zu ziehen. In
Kombination mit einer entsprechenden Erweiterung der teil- oder vollautoma-
tisierten Werkzeugkette könnten SystemC Simulationsmodelle automatisiert auf
heterogenen Ausführungsplattformen verteilt werden. Die beschriebene Erwei-
terung ist eng verknüpft mit der Entwicklung von neuen Strategien zur Simula-
tionssynthese auf Basis von Modelltransformationen sowie der Entwicklung von
Methoden zur Bewertung verschiedener Parallelisierungsansätze.

208

5. Interdisziplinäre verteilte

Co-Simulation

Neben der Notwendigkeit von Methoden zur Nutzung von Multi- und Manyco-
re Prozessoren für die parallele Simulation, wurde in Kapitel 1 die Unterstüt-
zung neuer Methoden zur kooperativen Simulation als elementarer Bestand-
teil zukünftiger interdisziplinärer Entwicklungsprozesse identifiziert. Einer der
Hauptgründe dafür ist der erhöhte Grad an Interaktionen von zukünftigen An-
wendungen und zugrundeliegenden Systemkomponenten, nicht nur mit der he-
terogenen physikalischen Umwelt, sondern auch mit einer weitreichenden und
vernetzten IKT Infrastruktur.

In diesem Kapitel wird ein Ansatz zur Unterstützung eines interdisziplinären
und simulationsbasierten Verifikationsprozesses für zukünftige eingebettete Sys-
teme vorgestellt. Der Ansatz basiert auf einer Simulatorarchitektur und einer
Methode zur Werkzeugkopplung. Am Beispiel automobiler elektrisch/elektro-
nischer (E/E) Architekturen werden allgemeingültige Zusammenhänge zunächst
konkretisiert1. Darauf aufbauend werden Anforderungen und Konzepte herge-
leitet. Anschließend werden implementierte Konzepte beschrieben und die An-
wendbarkeit anhand unterschiedlicher Prototypen demonstriert. Grundlagen zu
diesem Kapitel wurden in zwei vom Autor betreuten Studienarbeiten [LZ10,
Sch13] erarbeitet und sind somit in Zusammenarbeit entstanden. Konzepte und
Ergebnisse sind in mehreren Publikationen veröffentlicht [RSHB10a, RSHB10b,
RMR+12, BNR+13, RBB+14].

5.1. Beispiel: Automobile E/E Architekturen

Die E/E Architektur eines modernen Fahrzeugs ist heutzutage ein verteiltes Netz-
werk, das aus mehreren Bussystemen, duzenden Steuergeräten (engl. Electronic
Control Units (ECUs)) und hunderten von Sensoren und Aktuatoren besteht. An
dieses System werden hohe Anforderungen bzgl. Zuverlässigkeit und Echtzeit-
fähigkeit gestellt. Die Erfüllung dieser Anforderungen ist die Grundlage für Si-

1Die Darstellung der Zusammenhänge basiert auf [71] und [51].

209

5. Interdisziplinäre verteilte Co-Simulation

cherheit in verschiedensten Fahr- und Gefahrensituationen. Zur Erfüllung der
Anforderungen wird das Zeitverhalten einzelner Teilsysteme sowie die Art und
Weise der Kommunikation innerhalb des Fahrzeugs in der Entwurfsphase weit-
gehend statisch festgelegt. Dies ist möglich, da die E/E Architektur ein nahezu
vollständig abgeschlossenes System bildet.

Verursacht durch die evolutionsartige Entwicklung und der dadurch entstan-
denen funktionalen Fragmentierung, übersteigt die Komplexität heutiger E/E
Architekturen deutlich die Komplexität, die eigentlich für die existierende Funk-
tionsdichte ausreichend wäre [51]. Traditionelle E/E Architekturen werden des-
wegen und aufgrund der stetig steigenden Funktionsdichte immer anfälliger für
Fehler und so nach und nach zu einer „Innovationsbarriere“ [71]. Darüber hin-
aus sind Applikationen zunehmend von unterschiedlichsten Daten aus verschie-
densten Quellen wie diversen Sensoren oder fahrzeuginternen und -externen
Kommunikationsnetzwerken abhängig. Die genannten Defizite der E/E Archi-
tektur sind nicht zuletzt auf den stark Bottom-up geprägten Entwicklungspro-
zess zwischen Zulieferern (Tier 1 und Tier 2 Supplier) und OEMs zurückzufüh-
ren [51].

OEMs (z.B. Daimler, VW oder Toyota) produzieren das Gesamtfahrzeug. Tier
1 Zulieferer (z.B. Bosch oder Siemens) produzieren Teilsysteme wie ECUs oder
Bussysteme und stellen diese dem OEM zur Verfügung. Tier 2 Zulieferer (z.B.
Chiphersteller wie Freescale oder Infineon oder Hersteller von Betriebssystemen
wie WindRiver) stellen den Tier 1 Zulieferern wiederum die Basistechnologien
zur ECU Entwicklung zur Verfügung. Einzelne Teilsysteme werden weitgehend
unabhängig voneinander entwickelt.

Das konkrete Vorgehen während Entwicklung und Test wird durch das sog. V-
Modell [140] definiert. Dabei erfolgen Entwicklung und Test heutzutage weit-
gehend sequentiell. Im Ergebnis tauchen Fehler oft erst in der späten Phase der
Integration von ECUs und E/E Architektur auf. Eine anschließende Ursachen-
forschung kann sehr zeitintensiv sein und erhebliche Kosten verursachen. Des
Weiteren finden Optimierungen von Steuergerätefunktionen meist ausschließ-
lich bei einem Zulieferer und losgelöst vom OEM oder anderen Zulieferern statt.
Dadurch werden mögliche (implizite) Wechselwirkungen mit anderen Funktio-
nen und Teilsystemen oft nicht berücksichtigt.

5.1.1. Ein�uss neuer Technologien auf die E/E Architektur

Die beschriebene Situation im Bereich der E/E Architekturen wird durch die In-
tegration neuartiger Technologien wie beispielsweise Drive-by-Wire (DbW) Sys-
temen [146] oder Fahrzeug-zu-Fahrzeug bzw. Fahrzeug-zu-X Kommunikation
(engl. Vehicle-to-X Communication (V2XC)) [30][227] weiter verschärft. Diese zeich-

210

5.1. Beispiel: Automobile E/E Architekturen

nen sich durch eine gesteigerte Abhängigkeit von mehreren oder vielen verteil-
ten Informationsquellen und -senken aus.

DbW Systeme basieren auf voneinander separierten hochintegrierten mechatro-
nischen Antriebsmodulen, die klassische Radnabenmotoren ersetzen [123]. Die-
se Antriebsmodule sind intelligente Module, die Sensordaten bereits intern vor-
verarbeiten, um eine Regelung zunächst lokal zu optimieren. Alle im Fahrzeug
vorhandenen Antriebsmodule (in der Regel eines pro Rad) werden dann schließ-
lich durch eine fahrzeugübergreifende Regelung, die beispielsweise auf einer
zentralen leistungsfähigen Rechnerplattform ausgeführt wird, aufeinander ab-
gestimmt.

V2XC bildet die Basis für zukünftige Anwendungen und Dienste, für die eine
ausschließliche Berücksichtigung von im Sichtbereich des Fahrzeugs verfügba-
rer Information nicht mehr ausreichend ist. Der Großteil der Anwendungen wird
vielmehr auf der Verfügbarkeit von Informationen aus räumlich weit verteilten
Quellen basieren, um beispielsweise eine automatisierte globale Verkehrsfluss-
regelung vornehmen zu können. In erster Näherung muss die E/E Architektur
dazu mit einer neuen Funkschnittstelle „geöffnet“ werden (z.B. über eine dafür
vorgesehene ECU). Diese erlaubt es dann, mit anderen Fahrzeugen oder der ex-
ternen IKT Infrastruktur in Kontakt zu treten [227]. Die Öffnung des internen
Fahrzeugnetzwerks nach außen erzeugt neue zusätzliche Abhängigkeiten und
Wechselwirkungen und erhöht nicht zuletzt die Gefahr von Störungen sicher-
heitskritischer Funktionen oder Angriffen auf das interne Fahrzeugnetz [121].

Um E/E Architekturen für solch neue Technologien tauglich zu machen und
gleichzeitig existierende Limitierungen hinsichtlich Erweiterbarkeit für zukünf-
tige Innovationen aufzuheben, ist eine grundlegende Überarbeitung existieren-
der Konzepte notwendig [51]. Dies beinhaltet eine stringentere Anwendung von
Entwurfsparadigmen wie Modularität, Kapselung, Standardisierung und Zen-
tralisierung. In [51] werden diese Paradigmen unter dem Oberbegriff der Vir-
tualisierung zusammengefasst. Ein vergleichbarer Prozess wurde schon einmal
in den 1980er Jahren durchlaufen, als die direkte Verkabelung zwischen ECUs
durch Bussysteme ersetzt wurde [51] (siehe Abb. 5.1).

5.1.2. Auswirkungen auf den Entwicklungsprozess

Anhand den beiden beschriebenen Technologien DbW und V2XC lassen sich
wichtige Schlussfolgerungen an zukünftige Entwicklungsprozesse und an dar-
in zu verwendende Werkzeuge ableiten. Wechselwirkungen zwischen verschie-
denen Teilsystemen sollten so früh wie möglich bei den Entwicklungsaktivitä-
ten Beachtung finden. Dazu müssen existierende Bottom-up geprägte Entwick-
lungsprozesse durch neue Meet-in-the-Middle Ansätze ergänzt werden. Dies er-
öffnet dann die Möglichkeit für eine durchgängige modellbasierte Herangehens-

211

5. Interdisziplinäre verteilte Co-Simulation

Zeit

Ko
m

pl
ex

itä
t u

nd
 A

nz
ah

l d
er

 F
un

kt
io

ne
n

Zeitalter des Kabels
~40 Jahre

Produktion des
einmillionsten

VW Käfer

1955 1965 1975 1985 1995 2005 2015 2025 2035

Zeitalter der Busse und ECUs
~26 Jahre

Zeitalter der Services
~17 Jahre

Einführung von ABS in
der Mercedes-S-Klasse

durch Bosch (1978)

Zentralisierte
IKT-Architektur

~10 EUCs
(z.B. im Passat

B5, 1996)

Einführung von CAN
als Bus-Standard (1987)

g

Cloud-/
schwarmorientierte

IKT-Architektur

~70 EUCs
(2010)

~43 EUCs
(z.B. im Passat

B6, 2005)

Anzahl der
Funktionen

(~notwendige
Komplexität)

Abbildung 5.1.: Evolution der Komplexität von E/E Architekturen (Quelle: [51])

weise und die Verifikation von Teilsystemen und deren Interaktionen, ohne alle
Details der finalen Implementierung kennen zu müssen.

Die plattformbasierte Entwurfsmethodik (vgl. Abschnitt 2.1.1.3) ist ein vielver-
sprechender Lösungsansatz, um die erwähnten Defizite innerhalb automobiler
Entwicklungsprozesse zu eliminieren [229]. Die Etablierung von Prinzipien des
PBD im automobilen Kontext bedeutet zunächst, Anwendungen vollständig als
Software zu „virtualisieren“2 und von ihrer ursprünglich festen Verknüpfung mit
einer bestimmten ECU zu lösen. Funktion und Architektur sind damit von Be-
ginn an voneinander separiert. Dies gestattet eine flexible Abbildung von Funk-
tionen auf die E/E Architektur. Zudem können abstrakte modellbasierte Funk-
tionsspezifikationen und deren Zusammenspiel bereits in frühen Entwicklungs-
stadien z.B. durch Simulation modellbasiert verifiziert werden, ohne die exakte
Implementierung der Architektur zu kennen. Dies ist die Grundlage für eine
iterative Verfeinerung des Systems und dessen durchgängige Verifikation und
resultiert in erhöhter Zuverlässigkeit und reduzierten Kosten [229].

Zusätzlich zu den beschriebenen PBD Prinzipien sind insbesondere die technolo-
gische Heterogenität neuartiger Systeme wie DbW oder V2XC und die durch die
starke Vernetzung zusätzlich entstehenden Wechselwirkungen bereits in frühen
Phasen des Entwurfsprozesses zu berücksichtigen. Diese Notwendigkeit wird

2Für den Begriff der Virtualisierung wird an dieser Stelle die Definition aus [51] vorausgesetzt.

212

5.2. Anforderungen an die entwickelnde Simulationsumgebung

dadurch verstärkt, dass es immer schwieriger wird, klare Systemgrenzen zu defi-
nieren. Dadurch können bestimmte Wechselwirkungen (z.B. mit dem V2X Netz-
werk) nicht einfach ausgeschlossen werden.

Aus technologischer Sicht entstehen diese Wechselwirkungen zwischen verschie-
denen Anwendungsdisziplinen. Da sich innerhalb einzelner Disziplinen wie In-
formationstechnik, Kommunikationstechnik oder Mechatronik bereits speziali-
sierte Modellierungs- und Simulationswerkzeuge etabliert haben, ist die Mög-
lichkeit zur Wiederverwendung dieser zueinander heterogenen Werkzeuge ein
grundlegendes Kriterium für den Erfolg einer Entwicklungsmethodik [20].

Darüber hinaus entstehen aus organisatorischer Sicht Wechselwirkungen zwi-
schen Zulieferern und OEM: Bestimmte Simulationswerkzeuge oder Modelle
sind z.B. aus lizenzrechtlichen Gründen nur bei einem Zulieferer verfügbar. Eine
verteilte Kopplung kann eine Lösung sein, um trotzdem Untersuchungen von
Wechselwirkungen zwischen diesen Modellen zu ermöglichen.

Aus den genannten Gründen ist es notwendig, neue PBD Ansätze zu entwi-
ckeln, welche eine heterogene Modellierung gestatteten und existierende Simu-
lationswerkzeuge koppeln können. Komplikationen, die durch Inkompatibili-
täten zwischen heterogenen Simulationswerkzeugen entstehen können, sollten
soweit wie möglich reduziert werden. Aus organisatorischen Gründen ist eine
verteilte Koppelbarkeit vorteilhaft.

5.2. Anforderungen an die entwickelnde

Simulationsumgebung

Aus dem beschriebenen Szenario der automobilen E/E Architekturen und den
daraus abgeleiteten Auswirkungen auf den Entwicklungsprozess ergeben sich
folgende konkrete Anforderungen an die zu entwickelnde Simulationsumge-
bung:

I) Interdisziplinäre Modellierung und Simulation: Es sollte eine Modellie-
rung und Simulation unter gleichzeitiger Verwendung disziplinspezifischer
Simulationswerkzeuge möglich sein.

II) Verbesserte Interoperabilität: Aus der vorherigen Anforderung ergibt sich
unmittelbar die Notwendigkeit für Interoperabilität. Die Voraussetzung da-
für sind eindeutig definierte syntaktische und semantische Schnittstellen
zur Co-Simulation.

III) Heterogene Modellierung: Die Simulationsumgebung sollte eine formale
Grundlage besitzen, die es erlaubt, eine Kombination aus heterogenen Teil-
systemen und deren Interaktionen so genau wie möglich zu spezifizieren.

213

5. Interdisziplinäre verteilte Co-Simulation

IV) Wiederverwendbarkeit und Erweiterbarkeit: Die Simulationsumgebung
sollte flexibel und strukturiert erweiterbar sein. Durch die Integration dis-
ziplinspezifischer Modelle sollte die Spezifikation des Restsystems unange-
tastet bleiben.

V) Handhabbarkeit: Es soll die Möglichkeit bestehen, Schnittstellen zu erzeu-
gen und dadurch Interoperabilität bis zu einem gewissen Grad automatisch
herzustellen. Eine solche Automatisierung beschleunigt den Prozess der In-
tegration. Die Möglichkeit zur verteilten Ausführung fördert die Handhab-
keit zusätzlich.

VI) Platformbasierter Entwurfsprozess: Die Simulationsumgebung sollte für
die Anwendung einer Meet-in-the-Middle Methodik wie der PBD Metho-
dik (vgl. Abschnitt 2.1.1.3) geeignet sein. Dies beinhaltet die Möglichkeit
zur Spezifikation von Funktion-zu-Architektur Abbildungen sowie deren
durchgängige Verifikation innerhalb eines iterativen Verfeinerungsprozes-
ses, unter Berücksichtigung existierender Wechselwirkungen mit anderen
Teilsystemen.

5.3. Konzept

Im Allgemeinen sind die Aufgaben einer Schnittstelle zur Co-Simulation ver-
gleichbar mit den Aufgaben der logischen Ebene des Referenzmodells zur par-
allelen Simulation (vgl. z.B. Abschnitt 4.4). Der prinzipielle Unterschied liegt
darin, dass bei einer Co-Simulation unterschiedliche Simulationswerkzeuge ge-
nutzt werden, die auf unterschiedlichen Sprachen basieren und unterschiedli-
che heterogene Berechnungsmodelle implementieren (vgl. Abschnitt 2.2.2). Ei-
ne Co-Simulation ist auch dann heterogen, wenn verschiedene Simulatoren ei-
ner Klasse (z.B. DE) gekoppelt werden, da sich deren Funktion meist im De-
tail unterscheidet. Die Heterogenität wird spätestens dann zum Problem, wenn
Berechnungsmodelle von kommerziellen Werkzeugen nicht offengelegt werden
und somit nicht eindeutig definiert sind. Im schlimmsten Fall liegtim Fall einer
Kopplung ein unerwartetes nicht nachvollziehbares Verhalten vor.

In Abschnitt 3.2 wurde die beschriebene Problematik auf die unzureichende se-
mantische Interoperabilität zwischen heterogenen Simulationswerkzeugen zu-
rückgeführt. Semantische Interoperabilität wird in den aktuell verfügbaren Stan-
dards zur Co-Simulation wie HLA [22] oder FMI [29] nicht im notwendigen Um-
fang adressiert. Deren Nutzung ist entweder auf bestimmte Klassen von Berech-
nungsmodellen limitiert, oder sie erlauben keine hinreichend genaue (d.h. ex-
plizite) Spezifikation der erlaubten statischen und dynamischen Semantik des
Datenaustauschs (vgl. Abschnitt 3.2.2).

214

5.3. Konzept

Das Konzept, mit dessen Hilfe der beschriebenen Problematik unter Berücksich-
tigung der Anforderungen aus Abschnitt 5.2 begegnet werden soll, besteht aus
einer Simulatorarchitektur und einer Methode zur Werkzeugkopplung. Für die
Umsetzung der Methode wird in einem späteren Abschnitt eine auf der Simula-
torarchitektur aufsetzende Werkzeugkette vorgeschlagen und prototypisch im-
plementiert. Simulatorarchitektur und Methode werden im Folgenden erläutert.

5.3.1. Simulatorarchitektur

Das Konzept der Simulatorarchitektur ist in Abb. 5.2 dargestellt. Der gewählte
Ansatz basiert auf einem heterogenen Backbone zur Co-Simulation. Heterogene
Simulationswerkzeuge werden über diesen Backbone gekoppelt. Der Backbone
selbst besteht aus drei Komponenten:

1. Einer Simulationsmiddleware wie der HLA [22] (vgl. Abschnitt 3.2.3.2),
die es erlaubt, eines oder mehrere Simulationswerkzeuge als Federates in-
nerhalb einer verteilten Federation auszuführen.

2. Einem SDEM Metamodell namens Simulation Data Exchange Metamodel
(SDEMM)3: Das SDEMM dient zur flexiblen Spezifikation der Semantik
des Datenaustauschs zwischen Simulationswerkzeugen und HLA. Eine In-
stanz des SDEMM entspricht dem im DSEEP des HLA Standards [26] vage
formulierten Konzepts des SDEM (vgl. Abschnitt 3.2.3.2).

3. Einem heterogenen M&S Werkzeug, welches eine mathematisch forma-
le Basis besitzt (vgl. Abschnitt 2.3.3 ff.). Das in dieser Arbeit verwendete
Werkzeug ist Ptolemy II [102].

5.3.1.1. Hierarchische Kopplung von PtII und HLA

PtII und die HLA unterscheiden sich in einer Hinsicht grundlegend voneinan-
der: Innerhalb einer HLA Federation können u.U. unterschiedliche Kommunika-
tionsmechanismen zur gleichen Zeit verwendet werden. HLA Federations sind
bzgl. der dynamischen Semantik nicht strukturiert. In PtII Modellen ist die Bil-
dung von Komponentenhierarchien hingegen fundamental für die Spezifikation
von Modellen, die bzgl. des Berechnungsmodells heterogen sind.

Ein Ansatz, diese beiden gegensätzlichen Konzepte dennoch miteinander zu kom-
binieren, ist die Integration von HLA Federations in jeweils abgeschlossene ho-

3Der Begriff des Metamodells wird hier entsprechend [154, 245] verwendet. Ein Metamodell ist
somit äquivalent zur Definition einer Modellierungssprache und kann anhand von UML Klas-
sendiagrammen dargestellt werden. Dies steht im Gegensatz zur Definition eines Metamodells
im MDA [9] Kontext, wo ein UML Klassendiagramm grundsätzlich nur als Modell und nicht als
Metamodell bezeichnet wird.

215

5. Interdisziplinäre verteilte Co-Simulation

Sim Tool 2Sim Tool 1

Formal Heterogeneous M&S Framework (Ptolemy II)

Sim Tool 3

HLA Federation B

Sim Tool 4

Heterogeneous
Co-Simulation

Backbone

Part of Kernel LayerPart of Kernel Layer

Part of Logical LayerPart of Logical Layer

BothBoth

HLA Federation C

...

HLA Federation A

Contracts based on SDEMMContracts based on SDEMM

Abbildung 5.2.: Architekturkonzept zur interdisziplinären Co-Simulation

216

5.3. Konzept

mogene PtII Domänen. Dies kann beispielsweise durch Ableitung von einem
bereits existierenden Director erfolgen. Die HLA Erweiterung des Directors ist
dann nur in genau dem kompositen Actor sichtbar, in dem der neue Director
auch verwendet wird. Die Heterogenität von PtII Modellen bleibt erhalten. Auf
diese Weise kann die Teilanforderung der Wiederverwendbarkeit, durch Modi-
fikation eines Teilmodells die Spezifikation des Restsystems nicht anzutasten,
auch im Fall einer Co-Simulation erfüllt werden (vgl. Abschnitt 5.2).

5.3.1.2. Aufgaben der Komponenten innerhalb der Architektur

Die HLA ist die technologische Grundlage für die Einbindung verschiedener dis-
ziplinspezifischer Simulationswerkzeuge und -modelle in eine verteilte Gesamt-
simulation. Sie stellt flexible Schnittstellen für eine auf mehrere Ausführungs-
plattformen verteilte Simulation zur Verfügung.

Das SDEMM ist die Basis für Spezifikation der statischen und dynamischen Se-
mantik des Datenaustauschs für jeden beteiligten Simulator anhand eines SDEM.
Das SDEMM besteht dazu aus einem sog. Simulation Object Metamodel (SOMM)
und einem Behavioral Interface Metamodel (BIMM). SOMM und BIMM definieren
die erlaubte Syntax eines SOM und eines sog. Behavioral Interface Model (BIM).
Das SDEMM bildet zugleich die Schnittstelle zu einer C++ Bibliothek namens
SDEMMlib. SDEMMlib implementiert eine semantische Abbildung [128] von Kom-
ponenten des SDEMM auf die semantische Domäne der HLA.

Auf Basis der durch die SDEMMlib Bibliothek festgelegten semantischen Abbil-
dung von SDEMM Komponenten auf die HLA Domäne definiert ein konkre-
tes SDEM wiederum eine semantische Abbildung der HLA in eine bestimmte
Anwendungsdomäne. Diese entspricht der Festlegung eines Vertrags (engl. Con-
tract) zwischen Simulationswerkzeugen und HLA bzgl. der erlaubten statischen
und dynamischen Semantik des Datenaustauschs. Ein SDEM stellt sicher, dass
zwischen Simulator und HLA nur Interaktionen erfolgen, die laut Vertrag auch
gestattet sind. Mehrere SDEMs in Kombination stellen sicher, dass über die HLA
nur erlaubte Interaktionsmuster erfolgen. Sie limitieren alle möglichen Interak-
tionsmuster auf eine gültige Teilmenge. SDEMs vereinfachen so die verteilte In-
tegration verschiedener Werkzeuge z.B. zwischen verschiedenen Entwicklungs-
teams in verschiedenen Firmen (Zulieferer und OEM). Ausführbare SDEMs kön-
nen während der Implementierung der verteilten Simulation bei der Fehlersuche
nützlich sein. Die dazu umgesetzte Bibliothek SDEMMlib (siehe Abschnitt 5.4)
kann zusammen mit PtII dazu beitragen, unerwartetes Verhalten zu vermeiden.

PtII hat insgesamt drei Aufgaben innerhalb der Architektur:

1. PtII dient als Anwenderschnittstelle zur Unterstützung der Werkzeugkopp-
lung vor der Simulationslaufzeit. Dies beinhaltet die Konfiguration von

217

5. Interdisziplinäre verteilte Co-Simulation

statischer und dynamischer Semantik zwischen einzubindenden Simula-
tionswerkzeugen und HLA in visueller PtII Syntax (vgl. Abb. 2.15) und die
anschließende Generierung von HLA Schnittstellen.

2. PtII dient als Koordinator während der heterogenen Co-Simulation. Dies
beinhaltet die Steuerung des Datenaustauschs zwischen gekoppelten hete-
rogenen Simulationswerkzeugen während der Simulationslaufzeit. Diese
Aufgabe ist Vergleichbar mit der Rolle eines Schedulers in einem gewöhn-
lichen Simulator.

3. Aufgrund seiner Fähigkeiten zur strukturierten Komposition von hetero-
genen Modellen dient PtII als zentrales Entwurfswerkzeug für die Umset-
zung einer bestimmten Entwurfsmethodik für eingebettete Systeme (vgl.
Abschnitt 2.1). Durch die Möglicheit zur Simulation auf abstrakter Ebe-
ne kann PtII insbesondere als Ausgangspunkt für eine Meet-in-the-Middle
Entwurfsmethodik auf Systemebene genutzt werden.

PtII vereint damit Aufgaben einer Schnittstelle zur Co-Simulation mit Aufga-
ben eines reinen Simulators. Bzgl. des Aufgabenspektrums kann PtII also nicht
eindeutig der logischen Ebene oder der Kernelebene im Referenzmodell für die
parallele SystemC Simulation aus Abschnitt 4.1 zugeordnet werden. Dies soll
anhand der Farbgebung in Abb. 5.2 deutlich werden.

5.3.2. Methode zur Etablierung einer Simulatorkopplung

Die Vorgehensweise für die Herstellung einer Simulatorkopplung mit Hilfe der
beschriebenen Simulatorarchitektur ergibt sich prinzipiell aus der Entwurfsme-
thodik für eingebettete Systeme, innerhalb derer die Simulatorarchitektur ver-
wendet wird. Im Folgenden wird beispielhaft die Kombination mit einer inter-
disziplinären Meet-in-the-Middle Entwurfsmethodik skizziert.

5.3.2.1. Interdisziplinäre Entwurfsmethodik für eingebettete Systeme

Eine typische Meet-in-the-Middle Entwurfsmethodik beginnt in PtII mit der Ver-
haltensspezifikation auf abstrakter Ebene unter Verwendung geeigneter Berech-
nungsmodelle. Da sich die Systemgrenzen für zukünftige eingebettete Systeme
nicht mehr ohne weiteres definieren lassen, müssen diese zu Beginn in geeig-
neter Weise festgelegt werden. Eine gute Wahl ist die durch die physikalische
Ausdehnung des zu entwickelnden Teilsystems definierte Grenze. Alles außer-
halb dieser Grenze wird als Systemumwelt betrachtet. Durch die Berücksichti-
gung der Systemumwelt ist es möglich, Wechselwirkungen des Zielsystems mit
der Umgebung zu spezifizieren und zu untersuchen. Die verschiedenen in PtII

218

5.3. Konzept

verfügbaren Berechnungsmodelle erlauben dabei von Beginn an eine heterogene
Modellierung von Teilen des Gesamtsystems in einem geeigneten Formalismus.

In PtII kann das zu entwickelnde Zielsystem z.B. durch einen Target Actor und
dessen Umgebung durch mehrere Environment Actors modelliert werden. Die
Environment Actors enthalten Modelle der Systemumwelt, welche als Testben-
ches für Target dienen. Im Verlauf der Entwicklung wird Target sukzessive de-
komponiert und verfeinert. Dies bedeutet in PtII, dass der Actor Target durch
einen kompositen Actor (gleichen Namens) ersetzt wird. Dieser enthält selbst
wiederum beliebige Hierarchien von Actors. Mit Hilfe der Testbenches in den
Environment Actors können unterschiedliche Versionen von Target unter Berück-
sichtigung von Wechselwirkungen mit der Systemumwelt durchgängig auf Kor-
rektheit verifiziert werden.

Ab einer gewissen Verfeinerungsstufe genügt eine Spezifikation von Teilsyste-
men im kompositen Actor Target durch einen oder mehrere reine PtII Actors
nicht mehr. Um Details der Implementierung berücksichtigen zu können, müs-
sen Actors durch bereits existierende (z.B. in einem Bottom-up Ansatz bereits
entwickelte) detaillierte Teilmodelle verfeinert werden. Diese liegen typischer-
weise in disziplinspezifischen Sprachen vor.

5.3.2.2. Entwicklung von HLA Federations

Unabhängig davon, ob es sich bei einem Actor um ein Modell der Systemumwelt
oder ein Modell des zu entwickelnden Systems handelt, kann folgende sechs-
stufige Vorgehensweise zur Etablierung einer Co-Simulation zwischen PtII und
externen Simulationswerkzeugen via HLA verwendet werden (siehe Abb. 5.3):

1. Identifikation von Federates: In einem ersten Schritt werden sog Federate
Actors F1...Fn identifiziert, welche durch Co-Simulation verfeinert werden
sollen. Außerdem werden die externen Simulationswerkzeuge S1...Sn aus-
gewählt, die zur Verfeinerung genutzt werden sollen. Dabei muss für jeden
Actor Fi genau ein Werkzeug Si existieren.

2. Klassifikation von Berechnungsmodellen: Im zweiten Schritt werden die
Berechnungsmodelle der Simulatoren klassifiziert. Dies beinhaltet

a) die Identifikation von Regeln, welche die Komponenten, Kommuni-
kations- und Ausführungsmechanismen eines Berechnungsmodells be-
schreiben (vgl. Abschnitt 2.2.3).

b) die Klassifikation des Berechnungsmodells durch Vergleich der ge-
nannten Regeln mit den Regeln all der Berechnungsmodelle, die in
PtII als Domänen implementiert sind. Ein mathematischer Ansatz zur
Klassifikation wird in [175] beschrieben. Ein Simulator Si wird durch

219

5. Interdisziplinäre verteilte Co-Simulation

genau die Domäne von PtII am besten charakterisiert, deren Berech-
nungsmodell dem von Si am nächsten kommt.

3. Identifikation von Federations: Die Actors F1 ... Fn werden in Federation-
modelle FM1...FMm gruppiert. Dabei ist jeder Actor Fi Teil genau eines Fe-
derationmodells FMk. Im einfachsten Fall ist n = m, d.h. jede Federati-
on enthält genau einen externen Simulator. Die Gruppierung erfolgt durch
Erzeugung von kompositen Actors, welche eine Teilmenge {Fi, ..., Fj} der
Actors kapseln. Als ein notwendiges Kriterium, um Actors Fi und Fj in
eine Federation FMk zu gruppieren, kann die „Kompatibilität“ der Be-
rechnungsmodelle von Fi und Fj herangezogen werden, d.h. beide müssen
durch die gleiche PtII Domäne charakterisiert sein. Damit kann eine Fe-
deration einer PtII Domäne zugeordnet werden. Durch die hierarchische
Struktur von PtII ist die Gruppierung zusätzlich auf Actors limitiert, die
sich auf der gleichen Hierarchieebene befinden. Insgesamt kann zwischen
zwei möglichen Modi zur kooperativen Simulation unterschieden werden:

a) Single-Federation Modus: Die zu koppelnden Simulatoren sind Teil
ein und derselben Federation. Dieser Modus ist insbesondere dann
sinnvoll, wenn alle Simulatoren dem gleichen oder einem ähnlichen
Berechnungsmodell folgen. Beispielsweise ist eine Kopplung mehre-
rer identischer DE Simulatoren relativ unkompliziert, da der HLA
Standard bereits einen diskreten ereignisbasierten Time Management
Service spezifiziert (vgl. Anhang B).

b) Multi-Federation Modus: In diesem Modus werden mehrere Single-
Federations über PtII gekoppelt. Einzelne oder mehrere Simulatoren
werden dann mit PtII innerhalb separater kompositer Actors co-simu-
liert. Die kompositen Actors folgen u.U. verschiedenen Berechnungs-
modellen. PtII dient als Gateway zwischen (nahezu) homogenen Fe-
derations und koordiniert deren Ausführung. Dieser Modus eignet
sich insbesondere zur Unterstützung der RTI bei der Koordination der
Heterogenität. Zudem hat eine hierarchische Komposition von Fede-
rations eine strukturiertere Implementierung zur Folge.

4. Konfiguration des Datenaustauschs durch semantische Abbildung: Um
einen kontrollierten Datenaustausch zwischen Simulatoren über die HLA
zu ermöglichen, muss die erlaubte Semantik definiert werden. Dieser Vor-
gang kann entsprechend [128] allgemein als semantische Abbildung be-
zeichnet werden. In dieser Arbeit beinhaltet die semantische Abbildung
die Spezifikation der statischen und der dynamischen Semantik des Da-
tenaustauschs:

a) Statische Semantik des Datenaustauschs: Die Spezifikation der stati-
schen Semantik des Datenaustauschs ergibt sich aus den auszutau-
schenden Daten in einer HLA Federation. Die explizite Festlegung

220

5.3. Konzept

geschieht durch Ersetzen von PtII Relationen und Links durch Ac-
tors, welche konkrete HLA Object Classes und Interaction Classes,
deren Attribute, Parameter und Datentypen repräsentieren. Als Er-
gebnis erhält man eine Spezifikation der statischen Semantik des Da-
tenaustauschs zwischen Simulatoren, die durch Actors eines Federa-
tionmodells FM repräsentiert sind. Aus dem FM können unmittelbar
SOMs und FOM abgeleitet werden, indem die visuelle PtII Syntax auf
SOM/FOM Syntax abgebildet wird.

b) Dynamische Semantik des Datenaustauschs: Die Spezifikation der
dynamischen Semantik des Datenaustauschs ergibt sich aus den er-
laubten Interaktionen in einer HLA Federation. Sie beinhaltet eine
explizite Beschreibung des erlaubten Verhaltens, die sich von der In-
itialisierung, über die eigentliche Ausführung der Simulation bis zu
deren Terminierung erstreckt. Die dynamische Semantik des Daten-
austauschs während der Ausführung resultiert aus den Berechnungs-
modellen der Simulatoren, zwischen denen der Datenaustausch statt-
finden soll. Wenn alle Simulatoren einer Federation durch die gleiche
PtII Domäne charakterisiert sind, reduziert sich der Aufwand für die
Anpassung. Die Spezifikation kann durch Annotation von Parame-
tern an die Federate und Object Class Actors erfolgen (insbesondere
durch Annotation von BIMs an Federate Actors4).

5. Generierung von Schnittstellen: Aus der vollständigen Konfiguration ei-
nes Federationmodells FM werden geeignete HLA Schnittstellen (Interface
Wrapper (IFW)) für die einzelnen Simulationswerkzeuge der Federation
abgeleitet und automatisch generiert. In den nächsten Abschnitten wird
dazu ein Bibliotheksansatz vorgestellt, der im nachfolgenden Integrations-
schritt zum Testen und Debuggen von Federations sowie zum Aufdecken
von Integrationsfehlern hilfreich ist.

6. Integration und Test: Im letzten Schritt werden die generierten Schnitt-
stellen in die Simulationswerkzeuge integriert, so dass eine kooperative
Ausführung möglich ist. Abhängig von Werkzeug, Modell und Automa-
tisierungsgrad, kann/muss dieser Schritt automatisch/manuell erfolgen.
In PtII beinhaltet dies die Erweiterung von Director und Actor Klassen in
geeigneter Weise.

Da ein Federationmodell ein PtII Modell ist, kann es in dem PtII spezifischen
XML Dialekt MoML [177] abgespeichert werden. Es ist somit in zukünftigen Co-
Simulationen auch innerhalb anderer PtII Modelle direkt wiederverwendbar. Die
Schritte drei bis sechs können dann entfallen.

4Für das durch PtII selbst gegebene Federate kann die Spezifikation durch Annotation an den das
Federationmodell umgebenden kompositen Actor erfolgen.

221

5. Interdisziplinäre verteilte Co-Simulation

Actor F4

O
bj

C
ls

sH

ObjClssI

FM2

BIM4

BIM_FM2

Toplevel Composite

Simtool
SA

Simtool
SC

Step 1)

Simtool SA

Simtool
SC

Discrete Event (DE)
Continuous Time (CT)

Step 2)

Simtool
SB

Simtool SB Discrete Event (DE)

Step 3)

Actor F1 Actor F2

Actor F3 Actor F4

FM1

FM
2

Actor F2

Actor F3 Actor F4

Step 4)

Step 5)

Step 6)

FM1 FM2

F1 IFW

FM1 IFW

ObjClssW

ObjClssX
Actor F1 Actor F2

O
bj

C
ls

sY

O
bj

C
ls

sZ

FM1

BIM2BIM1

BIM_FM1

Actor F1

Simtool A

F2 IFW F4 IFW FM2 IFW

F1 IFW

Simtool B

F2 IFW

Simtool C

F4 IFW

Ptolemy II

F1 IFW FM2 IFW

F1 IFW

Abbildung 5.3.: Vorgehensweise zur Werkzeugkopplung

222

5.4. Implementierung der Simulatorarchitektur

Insgesamt existieren mit dem beschriebenen Ansatz zwei miteinander kombi-
nierte Mechanismen zu Verbesserung semantischer Interoperabilität: Innerhalb
einer Federation dienen die BIMs dazu, die erlaubte dynamische Semantik des
Datenaustauschs so gut wie möglich an die dynamische Semantik der Simulato-
ren in der Federation anzupassen. Über Domänen hinweg wird die Heterogeni-
tät von Berechnungsmodellen vollständig von PtII koordiniert.

An dieser Stelle soll noch einmal explizit angemerkt werden, dass es nicht der
Anspruch der vorgeschlagenen Methode ist, die Problematik der Interoperabi-
lität vollständig zu lösen. Die oben geschilderten Probleme, die beim Zusam-
menschalten heterogener und verteilter Simulationswerkzeuge auftreten kön-
nen, sind nicht immer vermeidbar. Dies ist aus den genannten Gründen auch
gar nicht möglich. Die Methodik soll allerdings eine Hilfestellung bieten, um
mögliche Komplikationen auf ein Minimum zu reduzieren.

5.4. Implementierung der Simulatorarchitektur

5.4.1. CERTI HLA

Da die HLA ein Standard ist und keine Implementierung, muss für die Um-
setzung der Simulatorarchitektur zunächst eine geeignete RTI Implementierung
ausgewählt werden. Im Rahmen einer Recherche wurden diverse existierende
freie und kommerzielle Implementierungen einer HLA RTI wie CERTI [209],
poRTIco [12], MÄC [16] oder pRTI [11] ausfindig gemacht. Im Zuge der Unter-
suchungen hat sich CERTI als die am meisten ausgereifte freie Implementierung
erwiesen und wurde deswegen für die prototypische Implementierung verwen-
det. Grundsätzlich ist die RTI Implementierung aber austauschbar.

Die Softwarearchitektur von CERTI [209] ist in Abb. 5.4 dargestellt. Die RTI ist
ein verteiltes System bestehend aus zwei Typen von Prozessen, einem lokalen
namens RTI Ambassador (RTIA) und einem globalen namens RTI Gateway (RTIG).
Jeder Federate Prozess interagiert lokal mit einem RTIA Prozess über ein Unix
Domain Socket. Er muss dazu die Ambassador Schnittstellen implementieren.
Diese werden durch eine Bibliothek namens libRTI zur Verfügung gestellt. Ein
RTIA Prozess selbst ist wiederum über TCP und UDP Sockets mit dem RTIG Pro-
zess verbunden. Sämtliche Kommunikation und Synchronisation erfolgt über
das RTIG. Eine einzige RTIG Instanz kann mehrere voneinander unabhängige
logische Federations gleichzeitig steuern.

CERTI stellt sowohl die HLA Schnittstellen nach dem IEEE 1516 Standard [22]
als auch nach dem Originalen DoD HLA 1.3 Standard [257] zur Verfügung. Bis
auf einige kleine Unterschiede sind die Standards weitgehend deckungsgleich.

223

5. Interdisziplinäre verteilte Co-Simulation

RTIA 3

libRTI

Federate 3

RTIA 1

libRTI

Federate 1

HLA Interface

RTIA 2

libRTI

Federate 2

Unix Socket

RTIG WAN

TCP Socket

Abbildung 5.4.: Softwarearchitektur von CERTI (Quelle: [209])

Die im Folgenden beschriebene Implementierung basiert auf dem DoD HLA 1.3
Standard. Aufgrund der Modularität der SDEMMlib ist eine einfache Portierung
auf den IEEE 1516 Standard möglich.

5.4.2. Simulation Data Exchange Metamodel

Das SDEMM ist die Schnittstelle der SDEMMlib C++ Bibliothek. SDEMMlib ist
ein Baukasten, der eine modellbasierte Beschreibung der Semantik des Daten-
austauschs zwischen einem Simulationswerkzeug und der HLA erlaubt. Das
SDEMM ist dazu in ein SOMM und ein BIMM aufgeteilt, mit deren Hilfe ein
SOM und ein BIM erstellt werden können.

Eine konkrete modellbasierte Beschreibung in Form eines SOM und eines BIM
in Kombination mit der von SDEMMlib bereitgestellten Klassenbibliothek bil-
det die Grundlage für eine semi-automatische Erzeugung einer funktionsfähigen
HLA Schnittstelle für einen bestimmten Simulator. Die Komponenten der Klas-
senbibliothek abstrahieren dazu von den standardmäßigen HLA Schnittstellen
und lassen sich strukturiert miteinander kombinieren. Abb. 5.5 zeigt das Tople-
vel Klassendiagramm von SDEMMLib.

Die Federate Klasse aggregiert alle anderen Toplevelklassen. Das SOMM wird
durch die SimulationObjectModel Klasse repräsentiert, das BIMM durch die Be-
havioralInterfaceModel Klasse.

Die ToolAdaptor Klasse stellt eine Verbindung von einem Simulationswerkzeug
zu einem konkreten SOM (Instanz der SimulationObjectModel Klasse) und zu ei-
nem BIM (Instanz der BehavioralInterfaceModel Klasse) her. Die ToolAdaptor Klasse
stellt kontrollflussrelevante Methoden zur Verfügung, die vom angebundenen

224

5.4. Implementierung der Simulatorarchitektur

Federate

1

SimulationObjectModel

ToolAdaptor

Ambassador

HLAAdaptor

IOSocket

EventQueue

BehavioralInterfaceModel

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

*

Abbildung 5.5.: Toplevel Klassendiagramm von SDEMMlib

Simulationswerkzeug aufgerufen werden. Daneben kapselt der ToolAdaptor In-
stanzen vom Typ IOSocket, welche zum Datenaustausch zwischen HLA und Si-
mulationswerkzeug notwendig sind. IOSockets sind intern mit einem FIFO aus-
gestattet, in dem von der HLA empfangene Daten zwischengepuffert werden
können.

Auf der entgegengesetzten Seite bietet die Ambassador Klasse Zugriff auf die RTI
Ambassador Schnittstellen und implementiert zugleich die Federate Ambassa-
dor Callback Methoden. Die HLA Ambassador Schnittstellen werden schließlich
durch die HLAAdaptor Klasse gekapselt.

5.4.2.1. Simulation Object Metamodel

Abb. 5.6 zeigt einen Auszug der Klassenstruktur des SOMM. Die Klassen bilden
eine objektorientierte Metarepräsentation eines SOM. Ein solches wird durch In-
stanziierung der SimulationObjectModel Klasse erzeugt, welche das SOMM ent-
hält. Die Speicherung von Daten im SOM erfolgt dynamisch.

Die Struktur des SOMM wurde in Anlehnung an die OMT Spezifikation des
HLA Standards [24] entwickelt. Im HLA OMT sind Komponenten in Tabellen

225

5. Interdisziplinäre verteilte Co-Simulation

strukturiert. Objektklassen im OMT können hierarchisch verschachtelt werden,
was äquivalent zur Vererbung in einer objektorientierten Programmiersprache
ist. Komponenten einer OMT Tabelle können zudem Komponenten anderer Ta-
bellen referenzieren. Beispielsweise muss ein Attribut in der Attributtabelle die
Objektklasse referenzieren, zu der es gehört. Zusätzlich muss jedem Attribut ein
Datentyp einer Datentyptabelle zugewiesen werden. Jede Datentyptabelle bein-
haltet Typen mit identischen Charakteristika, wie z.B. einfache Datentypen oder
Arraytypen.

OMClass

ObjectClass InteractionClass

AbstractArgument

SyncPoint

1

*

1

*

OMAttr

Attribute Parameter

DataType1 1

BasicType ArrayType

SimulationObjectModel* 1

1 1

* *

Abbildung 5.6.: Simulation Object Metamodel

Relationen zwischen Objektklassen eines SOM werden mit Hilfe der ObjectClass
und InteractionClass C++ Klassen auf objektorientierte Aggregations- und/oder
Vererbungsbeziehungen abgebildet (siehe Abb. 5.6):

Hierarchische Verschachtelung wird durch Selbstaggregation modelliert. Zuge-
hörigkeiten von Attributen und Parametern werden ebenfalls durch Aggregati-
on zwischen Object/InteractionClass Klassen und Attribute/Parameter Klassen mo-
delliert. Attribute und Parameter besitzen eine Referenz auf exakt einen Daten-
typen. Für die Erzeugung von Polymorphie bei zusammengesetzten Datentypen
wie Arrays wird Vererbung eingesetzt.

In der aktuellen Implementierung der SOMMlib können SOM Tabellen in einer
leicht lesbaren Form anhand von verschachtelten C++ Methodenaufrufen spezi-
fiziert werden (siehe Listing 5.1). Zu diesem Zweck muss man von der Simula-
tionObjectModel Klasse erben und die generateObjectModel() Methode implemen-

226

5.4. Implementierung der Simulatorarchitektur

tieren. Eine Alternative wäre die Repräsentation eines SOM in XML Syntax. Zur
Laufzeit dienen Objekte der Datentypklassen zum Konvertieren zwischen C++
und HLA Datentypen und umgekehrt.

v i r t u a l void generateObjectModel ()
{

/ / S y n c h r o n i z a t i o n t a b l e
SYNCPOINT("READY_TO_RUN" , . . .) ;
. . .
/ / B a s i c d a t a r e p r e s e n t a t i o n t a b l e
BASICTYPE (" HLAinteger32LE " , " 32 " , . . .) ;
. . .
/ / Array d a t a t y p e t a b l e

ARRAYTYPE(" HLAInteger32LEArray " , " HLAAInteger32LE " , . . .) ;
. . .
/ / O b j e c t c l a s s s t r u c t u r e t a b l e
OBJECTCLASS(" ObjectRoot " , "N" ,

OBJECTCLASSL(" wifiDownMsg " , " S ") ,
OBJECTCLASSL(" wifiUpMsg " , "P") ,
OBJECTCLASSL(" internalSetMsg " , " S ") ,
OBJECTCLASSL(" internalGetMsg " , "P")

) ;
/ / A t t r i b u t e t a b l e
OBJECT(" ObjectRoot . wifiDownMsg " ,

ATTRIBUTE(" vehic le ID " , " HLAinteger32LE " , . . .) ,
ATTRIBUTE(" s i z e " , " HLAinteger32LE " , . . .) ,
ATTRIBUTE(" payload " , " HLAinteger32LEArray " , . . .)

) ;
. . .

}

Listing 5.1: Beispiel C++ Code zur SOM Instanziierung

5.4.2.2. Behavioral Interface Metamodel

Die Klassenstruktur des BIMM ist in Abb. 5.7 illustriert. Äquivalent zu einem
SOM wird ein BIM durch Instanziierung der BehavioralInterfaceModel Klasse er-
zeugt, welche das BIMM enthält. Die Speicherung eines BIM erfolgt dynamisch.

Durch Ableitung von der BehavioralInterfaceModel Klasse kann ein endlicher Zu-
standsautomat namens BIM FSM spezifiziert werden. Eine BIM FSM legt das
erlaubte Schnittstellenverhalten fest. BIM FSMs definieren eine valide Aufruf-
reihenfolge von Schnittstellenmethoden der ToolAdaptor und IOSocket Klassen
sowie Methoden der HLAAdaptor Klasse. Dadurch können unterschiedliche In-
teraktions- und Synchronisationsmechanismen modelliert werden. Die semanti-
sche Abbildung von BIM Syntax auf die HLA erfolgt durch Spezialisierung der
in Abb. 5.7 gezeigten Basisklassen und einen Scheduler. Durch die Vererbung

227

5. Interdisziplinäre verteilte Co-Simulation

wird eine statische Abbildung festgelegt, durch den Scheduler wird die statische
um eine dynamische Abbildung ergänzt.

Mit Hilfe des Schedulers sind BIM FSM Spezifikationen ausführbar. Sie kön-
nen damit zur Laufzeit unmittelbar zur Sicherstellung korrekter dynamischer
Semantik verwendet werden. Insbesondere ist eine BIM FSM während der dyna-
mischen Integrations- und Testphase einer Federation zum Debugging nützlich.

Vernachlässigt man Besonderheiten wie hierarchische Zustände5 oder abstrak-
te Argumente6, so kann die Implementierung des Verhaltens einer BIM FSM im
Scheduler der SDEMMlib mathematisch als ein Tupel (S, Σ, Ω, δ, s0, se, Sint) be-
schrieben werden. Dabei ist S die Menge der Zustände, Σ das Eingangsalpha-
bet, Ω das Ausgangsalphabet, δ : S× Σ→ S×Ω die Transitionsfunktion, s0 der
Startzustand, se der Endzustand und Sint die Menge der sog. Interaktionszustän-
de, deren besondere Bedeutung weiter unten erläutert wird.

Event

FSMElement

Guard

BehavioralInterfaceModel
* 1AbstractArgument

Action

*1

State

Transition *

1

*

1 0..1

1

1

2

1

1

1
0..1

EventQueue

1

1

*

1

+exec()
+post()

Abbildung 5.7.: Behavioral Interface Metamodel

Die Transitionsfunktion beschreibt den Übergang von Ausgangszuständen in
Zielzustände. In der BehavioralInterfaceModel Klasse ist die Transitionsfunktion
mit Hilfe einer Transitionstabelle realisiert. Diese speichert Einträge vom Typ
Transition. Eine einzelne Transition beschreibt den Übergang von einem Ausgangs-
zustand s1 in einen Zielzustand s2. Zustände sind durch die State Klasse reali-
siert. Die Nutzung einer Transition ist durch einen Guard geschützt und mit der
Ausführung einer Aktion vom Typ Action verbunden. Durch die explizite Spezi-

5BIM FSMs erlauben die Definition von hierarchischen Zuständen: Ein Zustand kann selbst wieder
eine vollständige FSM enthalten. Dadurch wird eine Zustandsexplosion vermieden.

6Abstrakte Argumente dienen zur Referenzierung von Elementen des SOM.

228

5.4. Implementierung der Simulatorarchitektur

fikation erlaubter Ereignisse anhand von Guards wird garantiert, dass nur valide
(d.h. spezifizierte) Ereignisse während der gesamten Ausführung auftreten.

Eingangswerte Σ in die Transitionsfunktion entsprechen Ereignissen (Instanzen
der Event Klasse). Das aktuelle Ereignis entspricht immer dem obersten Event in
der EventQueue (siehe Abb. 5.7). Ereignisse können beim Aufruf von Schnittstel-
lenmethoden der ToolAdaptor oder HLAAdaptor Klassen oder durch die Ausfüh-
rung einer Action generiert werden. Die Erzeugung eines Ereignisses, der Auf-
ruf einer Schnittstellenmethode oder der Schreibzugriff auf ein AbstractArgument
durch eine Action sind äquivalent zur Generierung eines Ausgangswertes aus Ω.

Der Begriff des Interaktionszustandes wird klar, wenn man den im Scheduler
implementierten Ausführungsmechanismus für BIM FSMs genauer betrachtet.
Dieser basiert auf einer iterativen Ausführung zweier Methoden exec() und post().
Diese Methoden sind durch die Action Methods fire() und postfire() von PtII in-
spiriert. Eine BIM Iteration besteht aus einem Aufruf von exec() und einem dar-
auffolgenden Aufruf von post(). Dabei geschieht Folgendes:

• exec(): Nimm das vorderste Event von der Event Queue und wähle die
Transition, deren Guard den Wert „true“ zurückliefert. Die gewählte Tran-
sition wird als aktive Transition bezeichnet. Stelle sicher, dass immer nur
eine aktive Transition existiert. Falls aufgrund einer fehlerhaften Spezifi-
kation mehrere aktive Transitionen existieren sollten, so brich die Ausfüh-
rung ab.

• post(): Führe einen Zustandswechsel aus und setze dazu den aktuellen Zu-
stand auf den Zielzustand der aktiven Transition. Wenn der Zielzustand
der Toplevel Endzustand oder ein Interaktionszustand ist, dann gib eine 0
zurück um zu signalisieren, dass der Simulator entweder terminieren soll
oder die Kontrolle zeitweise an den Simulator übergeben werden soll. Gib
in allen anderen Fällen eine 1 zurück um zu signalisieren, dass eine weitere
Iteration durchgeführt werden soll.

Insgesamt ist ein Interaktionszustand damit ein Label, an dem die Ausführung
der BIM FSM unterbrochen wird, um die Kontrolle temporär dem umgebenden
Simulator zu überlassen (z.B. zur Ausführung der lokalen Simulation). Der Zu-
stand, in dem die Ausführung zuletzt unterbrochen wurde, entspricht dem Ein-
trittspunkt bei der nächsten Iteration.

Aktuell erfolgt die Modellierung einer BIM FSM ähnlich wie die Modellierung
eines SOM, nämlich durch Ableitung von BehavioralInterfaceModel und Imple-
mentierung der generateBIM() mit verschachtelten Methodenaufrufen (siehe Co-
debeispiel 5.2). Auch hier ist XML als konkrete Syntax eine denkbare Alternative.

v i r t u a l void generateBIM ()
{

/ / S t a t e t a b l e

229

5. Interdisziplinäre verteilte Co-Simulation

STATE("S_START") ;
STATE("S_READ") ;
STATE("S_UPDATE") ;
STATE("S_ADVANCE") ;
STATE("S_GRANT") ;
. . .
/ / S p e c i a l s t a t e s
START_STATE("S_START") ;
INTERACTION_STATE("S_READ") ;
END_STATE("S_GRANT") ;
. . .
/ / T r a n s i t i o n t a b l e
TRANSITION(

STATEREF("S_READ") ,
STATEREF("S_ADVANCE") ,
ACTION(" HLA13_A5_12_Action_NextEventReqAvailable ") ,
EG(" Event_SetNextBarr ier ")

) ,
. . .

}

Listing 5.2: Beispiel C++ Code zur BIM Instanziierung

5.5. Umsetzung der semi-automatischen

Werkzeugkopplung

Im Folgenden wird davon ausgegangen, dass die Schritte 1 bis 3 der Vorgehens-
weise aus Abschnitt 5.3.2 bereits erfolgreich durchgeführt worden sind. Für die
Umsetzung der Schritte 4 bis 6 sind einige Erweiterungen zum PtII Framework
hinzuzufügen. Diese Erweiterungen basieren auf den nachfolgend aufgeführten
neuen Modellierungselementen:

• HLAComposite: Ein Actor, der eine HLA Federation repräsentiert.

• HLAFederate: Ein Actor, der ein HLA Federate repräsentiert.

• HLAObjectClass: Basisklasse eines Actors, der eine HLA Object Class reprä-
sentiert7.

• HLADEObjectClass: DE Actor, der eine HLA Object Class in der DE Domä-
ne repräsentiert.

• HLAGenDirector: Ein Director zur Generierung von HLA Schnittstellen.

• HLADEDirector: Ein DE Director mit HLA Schnittstelle.
7Aktuell existiert auch ein HLAInteractionClass Actor, welcher aber im Folgenden nicht weiter be-

trachtet wird.

230

5.5. Umsetzung der semi-automatischen Werkzeugkopplung

Nachfolgend wird die Implementierung der Schritte 4 bis 6 am Beispiel einer
verteilten PtII Simulation und Verwendung zweier PtII Instanzen erläutert. Da-
bei sollen die PtII Instanzen über die DE Domäne gekoppelt sein. Einen Über-
blick über den Entwurfsfluss gibt Abb. 5.8. Die automatische Generierung von
Schnittstellen wurde im Prototypen nur soweit umgesetzt, wie es für eine De-
monstration der Machbarkeit notwendig war.

5.5.1. Kon�guration des Datenaustauschs

Die Konfiguration des Datenaustauschs in einem in PtII Syntax beschriebenen
Federationmodell FM setzt die Spezifikation der erlaubten statischen und dy-
namischen Semantik entsprechend der Schritte 1 bis 3 der Vorgehensweise aus
Abb. 5.3 voraus. Dies beinhaltet, dass das Federationmodell in einem Komposi-
tum des Typs HLAComposite beschrieben wurde und die Actors, welche die Fe-
derates repräsentieren, vom Typ HLAFederate sind. Ist dies nicht der Fall, so müs-
sen die verwendeten Modellierungselemente durch besagte Elemente zunächst
ausgetauscht werden.

5.5.1.1. Statische Semantik des Datenaustauschs

Die innerhalb einer Federation auszutauschenden Daten ergeben sich unmittel-
bar aus den Namen und Typen der Modellierungsartefakte in zugehörigen Fe-
derationmodell und deren Verknüpfung. Die Namen der Actors in einem HLA-
Composite Actor entsprechen den Namen der durch die Actors repräsentierten
HLA FOM/SOM Artefakte.

Die HLA Publish/Subscribe Beziehungen, wie sie im FOM spezifiziert sein müs-
sen, werden aus der Orientierung der Links zwischen HLAFederate, HLAComposi-
te und HLAObjectClass Actors abgeleitet. Der Aufbau der Object Classes, inkl. de-
ren Attribute und Datentypen, wird aus den Datentypen der Ports der verschie-
denen HLAObjectClass Actors hergeleitet. Ein Datenaustausch eines PtII Modells
mit anderen Federates wird über die Ports zum umgebenden HLAComposite Ac-
tor bestimmt. In der aktuellen Implementierung wird keine Unterscheidung zwi-
schen HLA Object Class und HLA Object Instance gemacht.

Im Beispiel aus Abb. 5.8 ist das Federationmodell in der ersten PtII Instanz Ptole-
myII_First zu sehen. Diese soll mit einer zweiten PtII Instanz, welche durch einen
HLAFederate Actor namens PtolemyII_Second repräsentiert wird, co-simuliert wer-
den8. Die Verbindung zum lokalen Modell von PtolemyII_First wird über Ports

8In PtolemyII_Second muss dafür ein analoges Federationmodell existieren, bei dem die Links eine
umgekehrte Flussrichtung aufweisen.

231

5. Interdisziplinäre verteilte Co-Simulation

SWIG Wrapper
Generator SPLib

Sources

C++ Compiler
& Linker

Target Language
Compilers,

Interpreters,
Classloaders, ...

wrap

SOMs
(C++)

BIM FSMs
(C++)

Shared
Federate
Libraries

Target
Language
Wrappers

Target
Language

Models

Federates

HLA
Interface
Wrapper
(C++)

FOM
(XML/
FED)

RTI

HLAComposite

PtolemyII_Second

ObjectY

ObjectX

HLA
Ambass.

Interfaces

C
on

fig
ur

at
io

n
of

 D
at

a
Ex

ch
an

ge
G

en
er

at
io

n
of

 In
te

rf
ac

es
In

te
gr

at
io

n
an

d
Te

st

H
LA

D
ED

ir
ec

to
r

H
LA

G
en

D
ir

ec
to

r

Target Language Models

Generated Files

Libraries

Abbildung 5.8.: Semi-automatische Werkzeugkopplung (PtolemyII_First Sicht)

232

5.5. Umsetzung der semi-automatischen Werkzeugkopplung

am umgebenden HLAComposite hergestellt. Das lokale PtII Modell und der ex-
terne Simulator kommunizieren ausschließlich über die beiden HLAObjectClass
Actors „ObjectX“ und „ObjectY“.

5.5.1.2. Dynamische Semantik des Datenaustauschs

Die erlaubten Interaktionen in einer Federation werden anhand der an die HLA-
Federate Actors annotierten Parameter, insbesondere anhand der durch eine C++
Datei spezifizierten BIM FSM, abgeleitet.

Die abstrakte Semantik von PtII und Spezifika der DE Domäne wurden bereits
in Abschnitt 2.3.4 erläutert. Betrachtet man eine komplette PtII Ausführungsse-
quenz entsprechend Abb. 2.17, so beinhaltet diese (unter Vernachlässigung der
Teilphasen) Initialization Phase, Execution Phase und Wrapup Phase.

Im betrachteten Beispiel ergibt sich die Spezifikation der dynamischen Semantik
des Datenaustauschs aus den Berechnungsmodellen, die jeweils in den beiden
PtII Instanzen zur Kopplung verwendet werden. Wie bereits in Abschnitt 5.3.2
angemerkt, reduziert sich die Komplexität einer BIM FSM, wenn die zu integrie-
renden Simulatoren mit ein und derselben PtII Domäne charakterisiert werden
können. Bei der Kopplung von PtolemyII_First und PtolemyII_Second über die DE
Domäne ist die Charakterisierung trivial: Sie ist DE. Aufgrund der Symmetrie,
genügt die Entwicklung einer einzigen BIM FSM.

Um die erlaubte dynamische Semantik für die drei Ausführungsphasen sepa-
rat modellieren zu können, spiegeln sich die Phasen 1:1 als S_INIT, S_EXECUTE
und S_END Zustände auf dem Toplevel der BIM FSM wider (vgl. Abb. 5.9). Zur
Synchronisation existieren zusätzlich noch die S_SYNC_READY_TO_RUN und
S_SYNC_SHUTDOWN Zustände. Außer dem S_END Zustand sind alle Tople-
vel Zustände hierarchisch, sie besitzen also eine Verfeinerung. Die tatsächliche
Funktionalität ist jeweils durch die Verfeinerungen implementiert.

Die beiden Zustände S_SYNC_READY_TO_RUN und S_SYNC_SHUTDOWN im-
plementieren eine Barriersynchronisation, welche sicherstellt, dass alle Federates
gleichzeitig von S_INIT nach S_EXECUTE und von S_EXECUTE nach S_END
übergehen.

In der Verfeinerung des S_INIT Zustands werden HLA Initialisierungsroutinen
zur Erzeugung der Federation, der Publish/Subscribe Beziehungen sowie zur
Registrierung von HLA Object Instance Attributen ausgeführt. Intern besitzt der
Zustand S_INIT einen Interaktionszustand (vgl. Abschnitt 5.4.2.2), so dass die
Registrierung vom lokalen Simulator getriggert werden kann.

Zur verteilten Kopplung speziell der DE Domäne von PtII muss im S_EXECUTE
Zustand die lokale Kausalitätsbedingung aus Definition 2.2 erfüllt sein. Mög-
lichkeiten hierzu wurden bereits ausführlich im vorigen Kapitel im Kontext von

233

5. Interdisziplinäre verteilte Co-Simulation

SystemC behandelt. Im Unterschied zum vorigen Kapitel kann die lokale Kau-
salitätsbedingung nun mit Unterstützung der „High-level“ Services der HLA er-
füllt werden. Zur Erläuterung ist in Abb. 5.9 die Verfeinerung des S_EXECUTE
Zustands dargestellt.

S_EXECUTE ist ein hierarchischer Zustand und enthält einen Interaktionszu-
stand namens S_READ. Interaktionen mit dem Simulator erfolgen nur dann,
wenn kein Ereignis in der Event Queue der BIM FSM vorhanden ist. Dies wird
durch das Event_Absent Ereignis auf der in S_READ eingehenden Transition sym-
bolisiert. Anschließend wird durch die restliche FSM Spezifikation der Zeitfort-
schritt modelliert.

Die Implementierung basiert auf dem Next_Event_Request_Available (NERA) Ser-
vice, welcher Teil des HLA 1.3 Time Managements ist. Dessen Funktionsweise ist
in Anhang B erläutert. Insbesondere erlaubt NERA einen Lookahead von Null,
wodurch Deadlocks im Fall eines Microsteps µ vermieden werden können. Um
den NERA Service nutzen zu können, müssen alle HLA Object Classes und da-
mit deren Attribute zusätzlich per Parameter als HLAReliable deklariert werden.

Der NERA Service garantiert nicht, dass alle Nachrichten empfangen werden,
deren Zeitstempel, dem durch den Time_Advance_Grant (TAG) Service zurück-
gelieferten Zeitstempel entsprechen. Dies hat eine nicht-deterministische Anzahl
an Microsteps zur Folge. Die hier beschriebene Implementierung ist damit trotz
Zero Lookahead nur bis auf die Modeltime τ genau (vgl. Abschnitt 2.3.4.2).

Sobald das Event_Shutdown Ereignis auftritt (dieses muss von der lokalen Simu-
lation erzeugt werden), wechselt die FSM in den S_SYNC_SHUTDOWN. An-
schließend werden die Shutdown Prozeduren der HLA abgearbeitet. Schließlich
terminiert die FSM im S_END Zustand.

5.5.2. Generierung von Schnittstellen

Mit Hilfe eines Federationmodells und dem durch SDEMMlib bereitgestellten
Baukasten können Schnittstellen zur Co-Simulation für verschiedene Simulati-
onswerkzeuge generiert werden. Dazu muss die PtII Syntax eines Federation-
modells über eine Modellabfrage in C++ bzw. SDEMMlib Syntax übersetzt wer-
den. Anschließend kann mit Hilfe des Simplified Wrapper and Interface Generators
(SWIG) [47] die Einbettung von kompiliertem C++ Code in Java oder diverse
Skriptsprachen automatisiert werden. Folgende Artefakte müssen generiert wer-
den:

• FOM: Das FOM wird als FED Datei (vgl. Abschnitt 3.2.3.2) exportiert. Die
FED Datei dient zur Konfiguration der durch CERTI bereitgestellten HLA
RTI Implementierung.

234

5.5. Umsetzung der semi-automatischen Werkzeugkopplung

[Event_Absent]/
HLA13_tick

[Event_Update]/
HLA13_A3_12_Action_Update

S_EXECUTE

Hierarchical State

S_ADVANCE

S_INIT

S_SYNC_READY_TO_RUN

S_SYNC_SHUTDOWN

S_END

State

Start State

End State

Interaction State

Transition

S_GRANT

S_START

S_READ

[Event_Absent]

[Event_SetNextBarrier]/
HLA13_A5_12_Action_
NextEventReqAvailable S_UPDATE

[Event_Shutdown]

[Event_Sync_OK]/
HLA13_A1_18_Action_Resign;

HLA13_A1_2_Action_DestroyFederation

[Event_Init_OK]

[Event_Sync_OK]
[Event_Update]/

HLA13_A3_12_Action_Update

[Event_SetNextBarrier]/HLA13_A5_12_Action_
NextEventReqAvailable

[HLA13_B5_2_Event_Grant]/
Action_SetNextBarrier

[HLA13_B3_4_Event_Discover]/
HLA13_B3_4_Action_Discover

[HLA13_B3_7_Event_Reflect]/
HLA13_B3_7_Action_Reflect

Abbildung 5.9.: Behavioral Interface Model FSM für die PtII DE Domäne

• SOM: Die SOMs der Federates werden als C++ Code exportiert (vgl. Ab-
schnitt 5.4.2.1).

• BIM: Die BIMs der Federates werden als C++ Code exportiert (vgl. Ab-
schnitt 5.4.2.2). Aktuell werden dazu direkt annotierte BIM C++ Beschrei-
bungen wiederverwendet.

• HLA Interface Wrapper: Diese beinhalten abgeleitete Typen der IOSocket
Klasse sowie einen C++ Wrapper zur vollständigen Kapselung des gesam-
ten C++ Codes. Daneben werden noch SWIG Schnittstellendefinitionen (.i
Dateien) erzeugt. Diese sind notwendig, um den C++ Wrapper in einen
weiteren C++-fremden Wrapper zu verpacken. Die .i Dateien dienen zur
Spezifikation der Abbildung von C++ Datentypen auf Datentypen anderer
Sprachen.

Eine Möglichkeit zur Umsetzung der Modellabfrage und der Schnittstellenge-
nerierung ist die Entwicklung eines speziellen PtII Directors für diesen Zweck.
Die Machbarkeit wurde anhand eines Directors namens HLAGenDirector proto-
tytpisch demonstriert. Dieser muss in den HLAComposite Actor des Federation-
modells eingefügt werden, für das der Schnittstellencode erzeugt werden soll.
Der HLAGenDirector hat Zugriff auf verschiedene ModelInterpreter Klassen. Die-
se liefern konkrete (programmiersprachen-spezifische) Interpretationen für das
in visueller PtII Syntax spezifizierte Modell, mit dem Ziel der Generierung der
oben genannten Artefakte.

235

5. Interdisziplinäre verteilte Co-Simulation

Die Artefakte werden dann zusammen mit den Klassen der SDEMMlib in eine
C++ Shared Library kompiliert. Falls der Zielsimulator in C++ geschrieben ist
(z.B. SystemC), dann kann die Shared Library direkt mit dem Simulationsker-
nel oder dem Modell gelinkt werden. Basiert der Simulator auf einer anderen
Sprache wie Java oder C# (PtII basiert z.B auf Java), dann kann auf SWIG zu-
rückgegriffen werden.

5.5.2.1. HLA Interface Wrapper

Der HLA Interface Wrapper tritt für den Zielsimulator als eine einzelne Klasse in
Erscheinung, die eine feste Anzahl Kontrollflussmethoden und eine variable An-
zahl an Datenflussmethoden besitzt. Erstere werden durch die ToolAdaptor Klas-
se der SDEMMlib bereitgestellt, Letztere durch die zuvor generierten IOSocket
Klassen. Zu den Kontrollflussmethoden gehören aktuell insbesondere

• getState(): Gibt den aktuellen Zustand der BIM FSM zurück.

• setNextBarrier(): Setzte die Zeitbarriere, bis zu welcher der lokale Simulator
voranschreiten kann.

• getNextBarrier(): Gibt den Wert der Zeitbarriere zurück, bis zu welcher der
lokale Simulator tatsächlich voranschreiten darf.

• iterate(): Iteriere die BIM FSM. Ein Aufruf dieser Methode führt solange
Sequenzen von exec() und post() aus, bis post() eine 0 zurück gibt. Diese
Methode muss regelmäßig vom Simulator aufgerufen werden, damit die
BIM FSM voranschreitet.

• end(): Generiere ein Event_Shutdown Ereignis zur Terminierung der BIM
FSM.

Im Unterschied zu den Kontrollflussmethoden haben Datenflussmethoden keine
feste Signatur. Die Methoden zum Lesen und Schreiben beginnen mit read oder
write gefolgt vom Namen der Objektklasse, auf die zugegriffen wird. Anzahl und
Typ der Attribute einer Objektklasse definieren Anzahl und Typ weiterer Metho-
denparameter. Zu den Datenflussmethoden gehören aktuell insbesondere

• readX(): Lese die letzte Aktualisierung von IOSocket/ Objektklasse "X".

• writeX(): Schreibe eine Aktualisierung in IOSocket/Objektklasse "X".

• getSocketQueueSize(): Gib den Füllstand eines spezifizierten IOSockets zu-
rück.

• update(): Erzeuge ein Sim_Event_Update Ereignis für die BIM FSM. Zusätz-
lich muss dem Aufruf der Name des Sockets und ein Zeitstempel überge-
ben werden.

236

5.5. Umsetzung der semi-automatischen Werkzeugkopplung

• popSocket(): Lösche die nächste empfangene Aktualisierung von einem als
Parameter spezifizierten IOSocket.

5.5.3. Integration und Test

Die Art und Weise der Integration ist stark von dem zu integrierenden Zielsi-
mulator und dem zugrundeliegenden Berechnungsmodell abhängig. Hier wird
exemplarisch die Integration eines HLA Interface Wrappers in die DE Domäne
von PtII betrachtet. Für die Integration in PtII dient als Ausgangspunkt die Spe-
zifikation eines Federationmodells. Mit SDEMMlib kann der Prozess der Inte-
gration dann auf die Integration der Kontrollflussmethoden und die Integration
der Datenflussmethoden heruntergebrochen werden.

5.5.3.1. Integration der Kontroll�ussmethoden

Für die Integration der Kontrollflussmethoden müssen die BIM Toplevel Zustän-
de S_INIT, S_EXECUTE und S_END auf die Action Methods preinitialize(), initia-
lize(), prefire(), fire(), postfire() und wrapup() des DE Directors in geeigneter Weise
abgebildet werden. Dadurch werden indirekt auch passende HLA Service Calls
auf die Ausführungsphasen des Simulators abgebildet.

Zu diesem Zweck müssen Aufrufe der iterate() Methode des HLA Interface Wrap-
pers so innerhalb der Action Methods des PtII Directors erfolgen, dass der Zu-
stand der BIM FSM mit den Ausführungsphasen möglichst korrespondiert. Da
die BIM Zustände nicht auf der Ebene der PtII Teilphasen definiert wurden, exis-
tiert hier ein gewisser Freiheitsgrad. Eine exaktere Spezifikation der BIM FSM
könnte daher alle PtII Teilphasen umfassen. Umgekehrt ist die BIM FSM auf die-
se Weise universeller einsetzbar, was innerhalb der noch folgenden Fallstudien
demonstriert wird.

Für die Implementierung wurde ein spezieller HLADEDirector entwickelt. Die-
ser ist vom originalen DEDirector abgeleitet. Da PtII in Java geschrieben ist, wird
der HLA Interface Wrapper ein weiteres Mal mit Hife von SWIG verpackt und
bei der Ausführung dynamisch geladen. Aktuell werden der S_INIT und der
S_SYNC_READY_TO_RUN Zustand der BIM FSM aus Abschnitt 5.5.1.2 in die in-
itialize() Methode abgebildet, der S_EXECUTE Zustand wird in die fire() Methode
abgebildet und der S_SYNC_SHUTDOWN sowie der S_END Zustand werden in
die wrapup() Methode abgebildet. Der Ablauf ist wir folgt (vgl. Beispiel aus Abb.
5.10):

Sobald die fire() Methode des Directors aufgerufen wird, bestimmt dieser, aus-
gehend vom aktuellen Simulationszeitpunkt τcur, den aus seiner Sicht frühesten
Zeitpunkt τmin, an dem das nächste Mal mit der Federation synchronisiert wer-

237

5. Interdisziplinäre verteilte Co-Simulation

den muss. τmin entspricht dem Zeitpunkt, an dem lokal frühestens ein neues
Ereignis auftreten kann. τmin kann durch die PtII Methode getModelNextIterati-
onTime() abgefragt werden. Wenn τmin größer als die mit dem letzten Aufruf von
getNextBarrier() gewährte Zeitbarriere ist, macht der Director eine Anfrage für
einen Zeitfortschritt, indem er setNextBarrier()) aufruft und τreq = τmin als An-
fragewert übergibt.

Anschließend iteriert der Director die BIM FSM per iterate(). Dabei wird τreq dem
HLA NERA Service übergeben. Über den TAG Service und Aufruf von getNext-
Barrier()) wird dem Director schließlich der von der HLA berechnete Zeitpunkt
τgrant mitgeteilt, bis zu dem der Director tatsächlich voranschreiten darf. Im All-
gemeinen ist τgrant ≤ τmin. Durch Einfügen eines Pure Events mit Zeitstempel
τpure = τgrant wird die lokale Simulation zur erneuten Synchronisation bei Er-
reichen von τgrant gezwungen. Dies geschieht durch Setzen des Zeitpunkts, an
dem der Director das nächste Mal „gefeuert“ werden soll per fireContainerAt()
auf τgrant. Danach werden Aktualisierungen von Instanz-Attributen behandelt.

5.5.3.2. Integration der Daten�ussmethoden

Für die Integration der Datenflussmethoden wurde durch Ableitung von HLA-
ObjectClass ein HLADEObjectClass Actor erzeugt. Falls nicht schon geschehen,
müssen die Actors der HLAObjectClass Basisklasse durch Actors vom Typ HLA-
DEObjectClass ausgetauscht werden. Da PtII eine zentrale Rolle innerhalb der
Simulationsumgebung einnimmt, hat Flexibilität bei der Implementierung ho-
he Priorität. Dies wird aktuell durch dynamische Ableitung von Signaturen der
datenflussrelevanten Methoden des HLA Interface Wrappers erreicht.

Die Steuerung des Datenflusses liegt in der Hand des HLADEDirectors in Kom-
bination mit den HLADEObjectClass Actors. Während einer Simulationsausfüh-
rung haben HLADEObjectClass Actors nur dann eine aktive Rolle, wenn sie über
Relationen mit den Ports des umgebenden HLAComposite Actors verbunden sind.
Sie repräsentieren dann die HLA Object Classes, über die das restliche lokale PtII
Modell in die Federation eingekoppelt wird. Alle anderen HLAObjectClass Actors
sowie die HLAFederate Actors sind passiv und werden niemals gefeuert. Der Ab-
lauf beim Empfangen und Senden über aktive HLADEObjectClass Actors ist wie
folgt:

Zum Lesen aus dem HLA Interface Wrapper ist der HLADEDirector mit einer
Methode namens reflectDir() ausgestattet. Diese Methode wird immer dann vom
HLADEDirector aufgerufen, wenn die zuletzt genehmigte Zeitbarriere erreicht
wurde (vgl. Abb. 5.10). Die Methode prüft dann, ob einer der IOSocket Puffer
neue empfangene Aktualisierungen (sog. Reflections) enthält (Aufruf von get-
SocketQueueSize()). Wenn dies der Fall ist, dann wird die vollständige Signatur
der zugehörigen read() Methode mit Hilfe des SOMs und der ModelInterpreter

238

5.5. Umsetzung der semi-automatischen Werkzeugkopplung

Klassen zur Laufzeit hergeleitet. Die Reflection wird dann in ein PtII Token um-
gewandelt und zum entsprechenden HLAObjectClass Actor weitergeleitet. Zu
diesem Zweck ist der HLADEObjectClass Actor mit einer reflectAct(token,time)
Methode ausgestattet. Diese Methode speichert das übergebene Token (ähnlich
wie in Abschnitt 4.5.3) in einer internen Queue und ruft dann die fireAt(time)
Methode auf. Dies stellt sicher, dass der Actor exakt zu dem Zeitpunkt wieder
gefeuert wird, an dem das empfangene Token zum PtII Modell über einen ent-
sprechenden Ausgangsport weitergeleitet werden soll. Der Zeitparameter defi-
niert somit eine zukünftige Zeitbarriere.

Im Sendefall überprüft ein aktiver HLADEObjectClass Actor seine PtII Eingangs-
ports immer dann hinsichtlich neu verfügbarer Tokens, wenn er gefeuert wird.
Wenn Tokens vorhanden sind, so werden diese zum HLADEDirector durch Auf-
ruf von updateDir(token) weitergeleitet. Diese Methode konvertiert das übergebe-
ne Token mit Hilfe der ModelInterpreter Klassen in einen write() und einen update()
Methodenaufruf auf dem HLA Interface Wrapper. Der Zeitstempel der generier-
ten Aktualisierung entspricht der aktuellen lokalen Zeit.

5.5.3.3. Einhaltung der Kausalität

Single-Federation Modus
Im Fall des Single-Federation Modus ist mit dem durch die BIM FSM aus Ab-
schnitt 5.5.1.2 definierten Ablauf eine Verletzung der zeitlichen Kausalität aus-
geschlossen9: Der HLADEDirector kennt vor und während des Synchronisations-
vorgangs alle zukünftigen Ereignisse innerhalb der lokalen PtII Simulation, da
die restliche lokale PtII Simulation während des Synchronisationsvorgangs pau-
siert. Außer durch die vom HLADEDirector kontrollierte Federation kann zum
aktuellen Zeitpunkt τcur innerhalb der PtII Simulation daher kein Ereignis mehr
generiert werden, dessen Zeitstempel kleiner als das per setNextBarrier() an den
HLA Interface Wrapper übergebene τmin ist. Falls nach der Iteration des HLA In-
terface Wrappers τgrant < τmin ist, so wird dies unmittelbar vom HLADEDirector
durch Einfügen des entsprechenden Pure Events mit τpure = τgrant berücksich-
tigt.

Multi-Federation Modus
Im Multi-Federation Modus ist die Anwendung des beschriebenen Schemas in
den vorhandenen HLADEDirectors zwar notwendig, aber nicht in allen Fällen
hinreichend für den Erhalt der Kausalität. Dies soll anhand der Einbettung meh-
rerer HLAComposite Actors der HLA DE Domäne in eine Toplevel DE Domäne
verdeutlicht werden.

9Diese Aussage bezieht sich hier auf eine Kausalitätsverletzung bzgl. τ. Microsteps µ werden an
dieser Stelle vernachlässigt.

239

5. Interdisziplinäre verteilte Co-Simulation

HLADEDirector HLAInterfaceWrapper

fire()

super.fire()

setNextBarrier()

iterate()

ObjectX ObjectY HLA Ambassadors

fire()

updateDir()

write()

update()

updateAttributeValues()

nextEventRequestAvailable()

tick()

reflectAttributeValues()

timeAdvanceGrant()

getNextBarrier()

reflectDir()

read()

popSocket()

reflectAct()

fireAt()

fireContainerAt()

Local Execution
Synchronization

Reception

getModelNextIterationTime()

Abbildung 5.10.: Beispielhafte Aufrufsequenz von Methoden im HLADEDirector
(Sicht von PtolemyII_First)

240

5.5. Umsetzung der semi-automatischen Werkzeugkopplung

Im Folgenden wird angenommen, es existieren HLAComposite Actors ci mit 1 ≤
i ≤ N, N ∈ N und N ≥ 2. Jeder Actor ci beinhaltet einen Director di vom Typ
HLADEDirector sowie ein Federationmodell, das im Single-Federation Modus
korrekt und ohne Kausalitätsverletzungen ausführt. Die Federationmodelle in
Kombination mit den d1...dN koppeln die Federations f1... fN in das restliche PtII
Modell ein. Dies ist in Abb. 5.11 beispielhaft anhand zweier Federationmodelle
cn und cm dargestellt.

Toplevel Composite

Federation fn Federation fm

HLAComposite cn

HLADEDirector dn

HLAComposite cm

HLADEDirector dm

Residual Actor
Network

(GA)

DEDirector

Abbildung 5.11.: Beispiel für eine Multi-Federation

Auf dieser Basis können folgende Fälle für den DAG GA der DE Domäne (vgl.
Abschnitt 2.3.4.4) und Paare cn und cm von HLAComposite Actors auf dem Tople-
vel unterschieden werden:

1. GA ist schleifenfrei: Es wird angenommen, dass nur Pfade von cn in Rich-
tung cm existieren. cn kann dann entweder über a) verzögerungsfreie10 oder
b) verzögerungsbehaftete Pfade Tokens an cm senden.

a) Nur verzögerungsfreie Pfade von cn nach cm: Aufgrund der Schleifen-
und Verzögerungsfreiheit zwischen cn und cm liegt cn in GA garantiert
näher an einer Wurzel als cm. Daher gilt λn < λm. Wenn nun ein Ereig-
nis en auftritt, das cn bei (τn, µn) aktiviert und ein Ereignis em auftritt,
das cm bei (τm, µm) aktiviert und τn = τm sowie µn = µm ist, dann
wird cn wegen λn < λm auch garantiert vor cn ausgeführt. Damit
erfolgt die Synchronisation von dn mit fn über die HLA Schnittstel-
le ebenfalls vor der Ausführung von cm. Im Ergebnis befindet sich
in der Eventqueue von PtII ein durch dn erstelltes Pure Event epure

n

mit τ
pure
n = τ

grant
n . Wenn dm nun mit fm synchronisiert, so wird das

10Dies beinhaltet Verzögerungsfreiheit bzgl. τ und bzgl. µ.

241

5. Interdisziplinäre verteilte Co-Simulation

Limit τ
grant
n bei der Synchronisation bzw. beim Aufruf von getModel-

NextIterationTime() berücksichtigt, da sich dieses in Form von epure
n be-

reits in der Eventqueue befindet. dm wird deswegen dem setNextBar-
rier() Aufruf und damit dem NERA Service niemals einen Zeitstempel
τ

req
m übergeben, der größer ist als τ

grant
n . Es ist somit garantiert, dass

τ
grant
m ≤ τ

grant
n gilt und die Kausalität bleibt erhalten.

b) Verzögerungsbehaftete Pfade von cn nach cm: Beliebige Verzögerun-
gen auf Pfaden von cn nach cm zerschneiden den DAG im Vergleich
zum vorherigen Fall in Teilgraphen. Es ist dann in Abhängigkeit der
Position von Quell- und Verzögerungsactors in der DAG Topologie
nicht mehr garantiert, dass cm im Fall von τn = τm und µn = µm nach
cn ausgeführt wird: Sollten cn und cm als Folge der Verzögerung zu-
fällig den gleichen Level λ haben, so ist die Ausführungsreihenfolge
nicht mehr definiert. U.U. könnte dann τ

grant
m > τ

grant
n werden. Die

Kausalität könnte damit potentiell verletzt werden11.

Eine Lösung um sicherzustellen, dass weiterhin τ
grant
m ≤ τ

grant
n garan-

tiert ist, ist die manuelle Vergabe von Prioritäten, so dass im Fall von
gleichem τ, gleichem µ und gleichem λ der komposite Actor cn in je-
dem Fall vor cm ausgeführt wird. Solche Prioritäten können in PtII für
jeden DE Actor separat gewählt werden (vgl. [217]).

2. GA ist nicht schleifenfrei: Für bestimmte n und m können sich cn und cm
u.U. gegenseitig Tokens senden. Um die durch die PtII DE Domäne fest-
gelegten Regeln der erlaubten dynamischen Semantik nicht zu verletzen,
muss innerhalb einer solchen Schleife in Summe eine minimale Verzöge-
rung von einem Microstep vorhanden sein (vgl. Abschnitt 2.3.4.4). Im Fall
einer Multi-Federation genügt dies nicht. Selbst Verzögerungen bzgl. τ rei-
chen nicht aus. Vielmehr müssen weitere Randbedingungen erfüllt sein,
um Kausalitätsfehler zu vermeiden.

Angenommen, innerhalb der einzigen Schleife zwischen cm und cn existie-
ren beliebige Verzögerungen bzgl. τ auf jedem Teilpfad und es treten Er-
eignisse en und em bei (τn, µn) und (τm, µm) auf mit τn = τm und µn = µm.
Aufgrund der DAG Topologie wird cn vor cm ausgeführt. Die Ursache da-
für, dass trotz der Verzögerungen Kausalitätsverletzungen auftreten kön-
nen ist, dass cm nach der Synchronisation von dn mit fn und dem Einfügen
eines Pure Events epure

n mit τ
pure
n = τ

grant
n auf dem entgegengesetzten Pfad

weiterhin Tokens verschicken kann, die vor τ
grant
n bei cn eintreffen, obwohl

11Diese Kausalitätsverletzung würde allerdings von PtII erkannt werden. Die Ausführung würde
dann in jedem Fall mit einer Exception abbrechen.

242

5.5. Umsetzung der semi-automatischen Werkzeugkopplung

fn schon bis τ
grant
n vorangeschritten ist. Bei umgekehrter Priorisierung gilt

dasselbe reziprok für cn.

Eine mögliche Lösung für dieses Dilemma basiert auf der regelmäßigen
Generierung eines speziellen Pure Events esync

nm mit einem zeitlichen Ab-
stand von ∆τ

sync
nm > 0, beispielsweise durch einen separaten DiscreteClock

Actor, der höchste Priorität besitzt. esync
nm erzeugt dann innerhalb des PtII

Modells regelmäßig eine Synchronisationsbarriere, die weder von dn noch
dm bei der Synchronisation mit fn bzw. fm überschritten werden kann.

∆τ
sync
nm muss größer als Null sein, damit die Simulation nicht in einem Dead-

lock verharrt und eine unendliche Anzahl an Microsteps ausführt. Um
Kausalitätsfehler zu vermeiden, muss ∆τ

sync
nm außerdem gezielt nach oben

hin beschränkt werden. Dies ist möglich für alle Schleifen, die in Summe
mindestens eine zeitliche Verzögerung von ∆τ > 0 enthalten. Dabei sind
folgende Fälle für die Pfadverzögerungen zwischen einem cn und einem
cm zu unterscheiden:

a) ∆τnm > 0 und ∆τmn > 0: Die Kausalität zwischen cn und cm bleibt
gewahrt, wenn ∆τsync = min(∆τnm, ∆τmn).

b) ∆τnm > 0, ∆τmn = 0 und ∆µmn ≥ 0: Die Kausalität zwischen cn und
cm bleibt gewahrt, wenn ∆τsync = ∆τnm und prio(cm) > prio(cn)12.

c) ∆τnm = 0, ∆τmn = 0: Die Kausalität kann mit der beschriebenen Me-
thode nicht hergestellt werden.

Unter der Voraussetzung, dass Fall c) nicht existiert, müssen die Bedingun-
gen aus den Fällen a) und b) für alle Pfade zwischen allen Paaren cn und cm
mit n, m ∈ N und n 6= m erfüllt sein, damit die Multi-Federation insgesamt
kausal korrekt ausführbar ist. Dazu kann beispielsweise ein globales Pure
Event mit dem kleinsten im Gesamtmodell vorhandenen ∆τsync generiert
werden. Eine andere Variante ist es, für jede existierende Schleife ein sepa-
rates Pure Event esync zu generieren. In einem HLA Director müssen dann
nur die Pure Events berücksichtigt werden, die durch Schleifen mit dem
eigenen kompositen Actor ausgelöst werden.

Die Ableitung eines ∆τsync > 0 ist vergleichbar mit der Ableitung eines
Lookaheads größer Null und der Vermeidung von Deadlocks durch Ver-
meidung von kritischen Zyklen beim Null Message Algorithmus (vgl. Ab-
schnitt 4.4.3.3). Die beschriebene Methode ist als Alternative zur Methode
der Priorisierung auch im schleifenfreien Fall anwendbar, führt aber evtl.
zu konservativeren Synchronisationsintervallen.

12Falls ∆µmn = 0, so ist die korrekte Priorisierung wegen der topologischen Sortierung des DAG
bereits automatisch hergestellt. Andernfalls muss die Priorisierung manuell vergeben werden.

243

5. Interdisziplinäre verteilte Co-Simulation

5.6. Fallstudie I: System/Netzwerk Co-Simulation

Werkzeuge zur Modellierung und Simulation von Kommunikationsnetzwerken
erlauben die Spezifikation von Protokollen entsprechend dem ISO/OSI Refe-
renzmodell [147]. Typischerweise wird entlang des zu modellierenden Kommu-
nikationsprotokolls an unterschiedlichen Stellen abstrahiert, um einen geeigne-
ten Trade-off zwischen Performanz und notwendiger Genauigkeit zu erzielen.

Bei den weit verbreiteten diskreten ereignisbasierten Simulatoren wie z.B. OM-
NeT++ [258], ns-2 [66], dessen Nachfolger ns-3 [132] oder OPNET [80] können
unterschiedlich komplexe Modelle von Schichten des Protokollstacks nach Be-
darf zusammengesetzt werden. Entsprechend [263] sind solche Netzwerksimu-
latoren allerdings eher für die Untersuchung von Algorithmen und Kommuni-
kationsprotokollen geeignet und weniger für Funktionstests und Performanz-
analysen von HW/SW Systemen (siehe auch Abb. 5.12). Die Granularität der
zwischen Kommunikationsendpunkten ausgetauschten Dateneinheiten bewegt
sich typischerweise auf der Ebene von Nachrichten und Paketen. Daraus ergibt
sich eine zeitliche Granularität auf der Ebene von Protokolltransaktionen. We-
gen ihrer Effizienz eignen sie sich somit insbesondere auch als Generator von
Testpatterns für detailliertere Teilmodelle von HW/SW Systemen.

Abbildung 5.12.: Trade-offs zwischen der Simulation von Netzwerken und
Hardware/Software (Quelle: [263])

244

5.6. Fallstudie I: System/Netzwerk Co-Simulation

5.6.1. Beispiel: OMNeT++

Die Grundlage des frei verfügbaren Netzwerksimulators OMNeT++ [258] bildet
ein diskreter ereignisbasierter Kernel, dessen Berechnungsmodell vergleichbar
mit der des SystemC Kernels oder der DE Domäne von PtII ist. Der markanteste
Unterschied ist die Tatsache, dass der OMNeT++ Kernel keine Deltacycles bzw.
Microsteps kennt. Mit Hilfe sog. Frameworks wie z.B. INET oder MiXiM [165]
kann der Kernel für verschiedene Anwendungsgebiete wie die Simulation von
Internet Protokoll Stacks oder Wireless Sensor Networks (WSNs) spezialisiert
werden. Diese Frameworks sind in der Hauptsache Bibliotheken, die bereits va-
lidierte Simulationsmodelle zur Verfügung stellen.

Ein Modell in OMNeT++ besteht ähnlich wie ein PtII Modell aus hierarchisch
geschachtelten Modulen. Die Art und Weise der Schachtelung repräsentiert die
logische Struktur eines Netzwerks bestehend aus Knoten und virtuellen draht-
gebundenen oder drahtlosen Netzwerkkanälen. Jeder Knoten implementiert ein
funktionales Modell der simulierten Netzwerkprotokolle in Form von Protokoll-
Zustandsmaschinen. Diese beschreiben das Verhalten beim Senden und Empfan-
gen von Paketen sowie die Art und Weise der Manipulation von Datenstruktu-
ren. Einzelne Protokollschichten lassen sich modular kombinieren. Darüber hin-
aus ist es im Allgemeinen möglich, äußere Umgebungseinflüsse wie z.B. Mo-
bilität oder Hindernisse bis zu einem gewissen Grad zu modellieren. Typische
beobachtbare Parameter sind Datendurchsatz, Übertragungslatenzen, Paketver-
luste oder Übertragungsfehler.

5.6.2. Konzept

Um die grundlegende Funktionsfähigkeit einer HLA basierten Co-Simulation zu
demonstrieren, wurde eine Single-Federation zur Simulation vernetzter Multi-
prozessorsysteme entwickelt. Das den implementierten Szenarien zugrundelie-
gende Konzept ist in Abb. 5.13 dargestellt.

Die Gesamtsimulation besteht aus einem Netzwerkmodell und mehreren detail-
lierten MPSoC Modellen. Das Netzwerkmodell besteht wiederum aus mehre-
ren abstrakten Knotenmodellen, die ein bestimmtes Kommunikationsprotokoll
simulieren. In Abhängigkeit von einem konkreten Anwendungsfall können aus-
gewählte abstrakte Netzwerknoten mit detaillierten MPSoC Modellen verfeinert
werden. Dies resultiert in einer System/Netzwerk Co-Simulation zwischen dem
Netzwerkmodell und den MPSoC Modellen. Ein Anwendungsfall für die Verfei-
nerung eines Knotens ist beispielsweise die Verifikation unterschiedlicher Kno-
tenkonfigurationen hinsichtlich der Erfüllung von Performanzanforderungen,
die zur Ausführung einer Anwendung notwendig sind.

245

5. Interdisziplinäre verteilte Co-Simulation

Refined System Model(s)
(SystemC)

Network Model
(OMNeT++)

T
im

ing A
ccuracy

Abbildung 5.13.: Konzept der System/Netzwerk Co-Simulation

5.6.3. Single-Federation

Die entwickelte Networked MPSoC Federation besteht aus einem Network Federa-
te und ein oder mehreren MPSoC Federates. Abb. 5.14 zeigt ein entsprechendes
Federationmodell in PtII Syntax, welches die existierenden HLA Objektklassen
und Datenflüsse zwischen den Federates über die Objektklassen illustriert. Das
Network Federate implementiert das Netzwerkmodell, die MPSoC Federates ver-
feinerte Systemmodelle. Die Federates kommunizieren über zwei Object Classes
namens upMsg und downMsg. Das Network Federate publiziert upMsg und abon-
niert downMsg Object Classes. Die MPSoC Federates publizieren downMsg und
abonnieren upMsgObject Classes. Die Attribute der Object Classes sind in den
Sprechblasen dargestellt. Da PtII selbst nicht Teil der Federation ist, existieren im
Federationmodell keine externen Ports zum umgebenden PtII Modell.

5.6.3.1. Network Federate

Das Network Federate wurde mit Hilfe von OMNeT++/MiXiM implementiert.
Die Methode der Integration des HLA Interface Wrappers ist in weiten Teilen
äquivalent zur Integrationsmethode in die DE Domäne von PtII (vgl. Abschnitt
5.5.3):

Die BIM FSM des HLADEDirectors von PtII kann vollständig wiederverwendet
werden. Die Kontrollflussmethoden können, vergleichbar zu Integration in den

246

5.6. Fallstudie I: System/Netzwerk Co-Simulation

Network
Federate downMsg1

upMsg

MPSoC1
Federate

MPSoC2
Federate

ATTRIBUTE nodeID
ATTRIBUTE source
ATTRIBUTE dest
ATTRIBUTE length
ATTRIBUTE type
ATTRIBUTE data

MPSoC3
Federate

downMsg2

downMsg3

ATTRIBUTE nodeID
ATTRIBUTE source
ATTRIBUTE dest
ATTRIBUTE length
ATTRIBUTE type
ATTRIBUTE data

ATTRIBUTE nodeID
ATTRIBUTE source
ATTRIBUTE dest
ATTRIBUTE length
ATTRIBUTE type
ATTRIBUTE data

ATTRIBUTE nodeID
ATTRIBUTE source
ATTRIBUTE dest
ATTRIBUTE length
ATTRIBUTE type
ATTRIBUTE data

BIM

MPSoC2
Federate

BIM

MPSoC3
Federate

BIM

Network
Federate

BIM

Abbildung 5.14.: Modell der Networked MPSoC Federation

HLADEDirector, mit Hilfe eines vom OMNeT++ Standardscheduler abgeleiteten
Schedulers in den Kernel integriert werden.

Vergleichbar mit der Integration der Datenflussmethoden in den HLADEDirector
und die HLADEObjectClass Actors, können die Datenflussmethoden im Fall vom
OMNeT++ in den neuen Scheduler und die Knoten des Netzwerkmodells inte-
griert werden. Die Knoten eines Netzwerkmodells werden dazu in lokale Knoten
und verteilte Knoten eingeteilt (siehe Abb. 5.15).

Lokale Knoten besitzen ausschließlich eine Repräsentation innerhalb des Netz-
werkmodells. Sie implementieren den kompletten Protokollstack im Netzwerk-
modell. Verteilte Knoten besitzen zusätzlich eine Repräsentation in Form eines
Systemmodells. sie implementieren nur untere Protokollschichten im Netzwerk-
modell. Protokolle höherer Schichten werden in einem verfeinerten Systemmo-
dell implementiert. Die Schnittkante zwischen oberen und unteren Protokoll-
schichten ist prinzipiell frei wählbar. Im konkreten Fall befindet sie sich zwischen
dem Data Link Layer und dem Network Layer. Welche Knoten lokale und wel-
che verteilte Knoten sind, kann durch einen Parameter in OMNeT++ eingestellt
werden.

Vor dem beschriebenen Hintergrund erklären sich unmittelbar die Namen der
Object Classes im FM aus Abb. 5.14: Eine upMsg / downMsg ist eine Nachricht
von einer niedrigeren / höheren zu einer höheren /niedrigeren Protokollschicht.

247

5. Interdisziplinäre verteilte Co-Simulation

Distributed Node

Network Model

System Model

Upper Protocol
Layers

Lower Protocol
Layers

Local Node
Upper Protocol

Layers

Lower Protocol
Layers

Tim
ing Accuracy

Abbildung 5.15.: Verteilte und lokale Netzwerkknoten

5.6.3.2. MPSoC Federate

Die MPSoC Federates wurden mit Hilfe des SystemC Kernels und einer Erwei-
terung des bereits bekannten HeMPS Modell (Wireless HeMPS) implementiert.
Die Beschreibung einer Methode zur HLA Schnittstellenintegration ähnlich zur
PtII und OMNeT++ Integration findet sich in [RMR+12]. Die hier beschriebene
Methode unterscheidet sich insofern vom Ansatz aus [RMR+12], als dass auf ei-
ne Integration von Kontroll- und Datenflussmethoden des HLA Interface Wrap-
pers in den SystemC Kernel verzichtet wurde. Vielmehr integriert die verfolgte
Variante die Methoden vollständig auf Modellebene. Diese sog. Non-Intrusive
Lösung reduziert die Komplexität der Implementierung. Der Ansatz ist vergleich-
bar mit der Methode zur Synchronisation auf Modellebene, die bereits im Kon-
text der parallelen SystemC/TLM Simulation in Abschnitt 4.6 verwendet wurde.
Er ist insbesondere dann anwendbar, wenn nur eine einzige Modellinstanz (ein
HeMPS Modell) innerhalb des MPSoC Federates existiert.

Ähnlich zu [RMR+12] existiert in Abb. 5.16) in einem der PEs des HeMPS Mo-
dells eine virtuelle drahtlose Netzwerkschnittstelle genannt Virtual Wireless In-
terface (VWI). Das VWI ist über ein Registerinterface an das PE angebunden und
in den Adressbereich des Plasmakerns integriert. Es interagiert sowohl über die
Kontroll- als auch die Datenflussmethoden mit dem HLA Interface Wrapper.
Zum Nachrichtenaustausch existieren Eingangs- und Ausgangspuffer. Der Zu-
griff auf die Puffer wird vom Plasma Prozessor über einen Kontrollblock gesteu-
ert.

Da das VWI das einzige Modul ist, das mit dem HLA Interface Wrapper intera-
giert, kann die zeitliche Synchronisation zwischen SystemC Kernel und HLA In-
terface Wrapper indirekt über wait(time) Aufrufe in einem SC_THREAD Prozess

248

5.6. Fallstudie I: System/Netzwerk Co-Simulation

des Kontrollblocks erfolgen. Der HLA Interface Wrapper selbst basiert weiterhin
auf der bereits aus PtII bekannten BIM FSM des HLADEDirectors.

Wireless HeMPS

R R

R R

PE

PE PE

WPE

R R

PE

R

R

R

PE

PE

PE

Ro
ut

er

In
te

rf
ac

e
Plasma

DMA

RA
M

W
ir

el
es

s P
E Virtual Wireless Interface

HLA Interface Wrapper

Networked MPSoC Federation

PE

Output
Buffer

Input
Buffer

Register Interface

Control
Block

Abbildung 5.16.: MPSoC Federate

5.6.4. Szenario I: Performanzanalyse für venetzte MPSoCs

Das erste Testszenario besteht aus einer Anzahl an Knoten, die in einem Kreis
mit einem Radius von 10 Metern angeordnet sind. In der Mitte des Kreises be-
findet sich ein zusätzlicher Knoten, der alle anderen Knoten im Kreis mit Daten-
paketen unter Verwendung unterschiedlicher Übertragungsraten stimuliert. Das
Übertragungsmedium ist ein IEEE 802.11b Kanal mit 11 Mbps mit einem simu-
lierten Paketverlust von 1%. Ein Knoten aus dem Kreis ist als verteilter Knoten
konfiguriert, alle anderen als lokale Knoten.

Die im MPSoC Federate des verteilten Knotens verwendeten Knotenkonfigura-
tionen des HeMPS Modells führen allesamt bei 100 MHz aus. Sie sind durch die
Anzahl an PEs und die Art der Abbildung von Softwaretasks auf die PEs charak-
terisiert. Die Kombination aus beidem resultiert in unterschiedlichen Verarbei-
tungszeiten und Beschränkungen für den Durchsatz. Da das IEEE 802.11b MAC
Protokoll keine Sicherungsmechanismen zur Verfügung stellt, verursachen un-
terschiedliche Durchsatzbeschränkungen unterschiedliche Paketverlustraten im
VWI, insbesondere dann, wenn vorhandene Daten langsamer verarbeitet wer-
den als neue Daten nachkommen.

249

5. Interdisziplinäre verteilte Co-Simulation

Die Struktur der auf den MPSoCs ausgeführten Software ist in Abb. 5.17 darge-
stellt. Sie besteht grundsätzlich aus sechs Tasks. Der NET Task bildet zusammen
mit dem VWI das Network Layer. Alle restlichen Tasks gehören zum Application
Layer. Die Tasks bilden eine Pipelinestruktur. Als konkrete Applikationen wer-
den eine Dummyapplikation und eine Erweiterung der bereits bekannten MPEG
Applikation verwendet.

NET

TASK 1 TASK 2 TASK NApplication
Layer

Network
Layer

Abbildung 5.17.: Struktur der Beispielanwendungen

Die Application Layer Tasks empfangen Datenpakete vom NET Task und ver-
arbeiten diese. Im Fall der Dummyapplikation wird jedem Netzwerkpaket eine
Rechenkomplexität w in Form von ganzahligen Multiplikationen zugewiesen.
Jeder Task der Applikation verarbeitet 1

5 × w Operationen. Im Fall der MPEG
Applikation übertragen Nachrichten eine konfigurierbare Anzahl an 8x8 Blöcken
eines MPEG Streams. Die MPEG Applikation selbst ist prinzipiell identisch zur
MPEG Pipeline aus Abschnitt 4.4.9.

Abb. 5.18 illustriert die verwendeten Konfigurationen von HeMPS und zugehö-
rige Abbildungen von Tasks. Entsprechend ihrer Größe und der Taskabbildung
sind sie mit 1x2, 2x2a 2x2b und 3x3 bezeichnet. Das VWI befindet sich immer an
genau dem PE, auf dem der NET Task ausgeführt wird. Der mit M markierte
Knoten ist der Master, auf dem keine Tasks ausgeführt werden können.

Die Abb. 5.19 und 5.20 illustrieren die durch die verschiedenen Konfigurationen
entstandenen und gemessenen prozentualen Paketverluste im VWI für die Dum-
my und die MPEG Applikation (nicht zu verwechseln mit den 1% Paketverlust,
die immer durch den drahtlosen Kanal entstehen).

Wie zu erkennen ist, hat die Konfiguration von Hardware und Software starken
Einfluss auf die Höhe des Paketverlusts. Im Fall einer Senderate von 500 Pkt/s
über den drahtlosen Kanal ist das 1x2 System in der Lage, Pakete mit einer Kom-
plexität von 500 Ganzzahlmultiplikationen ohne Verlust zu verarbeiten. Im Ge-
gensatz dazu kann das 3x3 System Pakete mit einer Komplexität von bis zu 4000
Operationen verlustfrei verarbeiten. Eine Verdopplung der Paketrate resultiert
erwartungsgemäß in einer Linksverschiebung des Diagramms.

250

5.6. Fallstudie I: System/Netzwerk Co-Simulation

TASK
5TASK

4APP 3

TASK
2

M M M

TASK
1

NET

TASK
2

TASK
3

TASK
4

TASK
5

TASK
1NET

TASKTASKTASKTASKTASKNET

TASK
5

TASK
4

TASK
2

M

TASK
1

NET TASK
3

1x2 2x2a 2x2b 3x3

Abbildung 5.18.: Verwendete Konfigurationen von Wireless HeMPS

Im Fall der MPEG Applikation ist offensichtlich Variante 2x2b die am besten ge-
eignete, da sie bis zu 4 MPEG Blöcke pro Paket bei 500 Pkt/s und bis zu 2 Blöcke
pro Paket bei 1000 Pkt/s verarbeiten kann. Der beim 3x3 System zusätzlich ent-
stehende interne Kommunikationsoverhead über das NoC ist offensichtlich zu
hoch, um die MPEG Verarbeitung weiter zu beschleunigen. Dies hat einen An-
stieg des Verlusts im Vergleich zum 2x2b System von 19.6% bei 500 Pkt/s und
13% bei 1000 Pkt/s zur Folge.

0

20

40

60

80

100

500 1000 2000 4000 8000

Pa
ck

et
 L

os
s (

%
)

Complexity

1x2 2x2a

2x2b 3x3

(a) 500 Pkt/s

0

20

40

60

80

100

500 1000 2000 4000 8000

Pa
ck

et
 L

os
s (

%
)

Complexity

1x2 2x2a

2x2b 3x3

(b) 1000 Pkt/s

Abbildung 5.19.: Dummy Applikation

251

5. Interdisziplinäre verteilte Co-Simulation

0

20

40

60

80

100

1 2 4 8

Pa
ck

et
 L

os
s (

%
)

8x8 Blocks/Pkt
1x2 2x2a

2x2b 3x3

(a) 500 Pkt/s

0

20

40

60

80

100

1 2 4 8

Pa
ck

et
 L

os
s (

%
)

8x8 Blocks/Pkt
1x2 2x2a

2x2b 3x3

(b) 1000 Pkt/s

Abbildung 5.20.: MPEG Applikation

5.6.5. Szenario II: Verteilte Ausführung

Die folgende Untersuchung soll zeigen, dass die verteilte Ausführung von Fe-
derates auch zur Performanzsteigerung genutzt werden kann. Durch die Vertei-
lung der Federates wird die grobgranulare Parallelität zwischen mehreren dis-
ziplinspezifischen Teilmodellen genutzt: Weder das Netzwerkmodell noch ein
MPSoC Modell selbst werden parallel ausgeführt. Die Kombination mit den An-
sätzen aus Kapitel 4 ist ein möglicher Ansatzpunkt für zukünftige Arbeiten.

Die Untersuchung basiert auf einem Szenario bestehend aus 64 Knoten, die in
einer Meshstruktur angeordnet sind und über einen IEEE 802.11b Kanal kom-
munizieren. Jeder Knoten sendet Datenpakete per Broadcast mit einer Frequenz
von 100 Hz. Die Knoten in der Diagonalen des Meshs sind verteilte Knoten, alle
anderen sind lokale Knoten. Lokale Knoten implementieren die Broadcast Ap-
plikation mit Hilfe eines simplen Traffic Generators auf dem Application Layer.
Im HeMPS System wurde wieder die Task Pipeline aus Abb. 5.17 verwendet:
TASK 5 generiert Pakete. Alle anderen schieben diese weiter bis zum NET Task.

Die Messungen wurden auf einer SHM Workstation mit einer 2.0 GHz Quad-
core CPU, 8 GB RAM und unter Verwendung von SystemC 2.2.0, OMNeT 4.1
und CERTI 3.2 durchgeführt. Bei zwei, drei und vier Workstation Kernen wurde
das Network Federate immer separat auf einem Kern ausgeführt. Die erzielten
parallelen Beschleunigungen im Vergleich zu sequentieller Ausführung aller Fe-
derates auf einem einzigen Kern sind in Abb. 5.21 dargestellt.

Die Beschleunigung auf zwei Kernen ist wegen der ungleichen Lastverteilung
zwischen Netzwerksimulation und MPSoC Simulationen im Allgemeinen stark

252

5.6. Fallstudie I: System/Netzwerk Co-Simulation

beschränkt (teilweise < 1x): Der Hauptanteil des Rechenaufwandes wird, trotz
der 56 lokalen Knoten, durch die MPSoC Modelle generiert. Zudem werden
beim Übergang auf zwei Kerne die acht MPSoC Modelle noch nicht parallel aus-
geführt, da ein Kern vollständig für die Netzwerksimulation reserviert ist. Die
Beschleunigungen der 2x2 und 3x3 Simulationen fallen auf zwei Kernen generell
niedriger aus als die der 1x2 Simulationen. Die vergleichsweise bessere Lastver-
teilung zwischen Netzwerksimulation und MPSoC Simulationen basierend auf
dem 1x2 Modell ist eine Erklärung für diesen Effekt.

0

1

2

3

4

2 3 4

Sp
ee

du
p

Workstation Cores

(a) 1x2 Modelle

0

1

2

3

4

2 3 4

Sp
ee

du
p

Workstation Cores

(b) 2x2 Modelle

0

1

2

3

4

2 3 4

Sp
ee

du
p

Workstation Cores

(c) 3x3 Modelle

Abbildung 5.21.: Gemessene Beschleunigung bei verteilter Ausführung

Trotz der ungleichen Lastverteilung zwischen Netzwerk und MPSoC Federates
erreicht die Beschleunigung bei Verwendung des 1x2 Modells auf drei Kernen
(d.h. nur zwei Kerne sind für die MPSoC Simulationen verfügbar) Werte > 3x.
Ein Grund können Cacheeffekte innerhalb der Speicherhierarchie der verwen-
deten Workstation sein: Bei sequentieller Ausführung der MPSoC Simulatio-
nen übersteigt die Menge der zu speichernden Daten die Größe des verfügba-
ren schnellen Cachespeichers, was zu vielen langsamen Hauptspeicherzugriffen
führt. Werden mehr Kerne für die MPSoC Simulationen verwendet, so ist ins-
gesamt mehr schneller Cachespeicher zur Datenhaltung verfügbar. Unter Um-
ständen können die Modelle dann vollständig im Cache gehalten werden. Die
Anzahl langsamer Hauptspeicherzugriffe wird dadurch reduziert, was in einer
zusätzlichen Beschleunigung resultiert. Bei den 2x2 und 3x3 Modellen ist dies
nicht der Fall, da die Modelle offensichtlich so groß sind, dass ihre Größe die
Kapazität des Caches übersteigt, auch bei drei Kernen.

Im Fall von insgesamt vier Kernen geht die Beschleunigung beim 1x2 Modell
wieder auf 2.4x zurück. Die Beschleunigungen der 2x2 und 3x3 Modelle steigt
an. Dabei wurden ähnliche Werte gemessen. Vernachlässigt man die Netzwerksi-
mulation, so beträgt die theoretisch maximal mögliche Beschleunigung der MP-
SoC Simulationen 3x. Eine Ursache weswegen diese bei allen drei MPSoC Mo-
dellen nicht erreicht wird, ist der durch den höheren Parallelisierungsgrad ent-

253

5. Interdisziplinäre verteilte Co-Simulation

stehende höhere Synchronisationsaufwand in Verbindung mit der nun auch zwi-
schen den MPSoC Simulationen vorhandenen ungleichen Lastverteilung (zwei
Kerne führen drei MPSoC Modelle aus und ein Kern nur zwei). Auch mögliche
positive Cacheeffekte reichen offensichtlich nicht aus, um eine ähnlich hohe Be-
schleunigung zu erzielen, wie zuvor beim 1x2 Modell auf drei Kernen.

5.7. Fallstudie II: Simulation von V2X basierten

E/E Architekturen

Ausgehend von den in Abschnitt 5.1 beschriebenen Zusammenhängen ist die
Abdeckung folgender drei Aspekte grundlegend für eine simulative Verifikati-
on zukünftiger V2X-basierter E/E Architekturen: E/E Architektur, V2X Kommu-
nikation und (restliche) physikalische Umwelt. Generell existieren Wechselwir-
kungen zwischen jedem der drei genannten Aspekte (vgl. Abb. 5.22). Mögliche
und notwendige Detailgrade zur Modellierung der Aspekte und deren Wechsel-
wirkungen werden im Folgenden diskutiert.

E/E Architecture

V2X Communication Physical
Environment

Abbildung 5.22.: Aspekte und Wechselwirkungen in einer Simulation für V2X-
basierte E/E Architekturen

5.7.1. E/E Architektur

Entsprechend den Ausführungen in Abschnitt 5.1 erfolgt die Entwicklung zu-
künftiger E/E Architekturen optimalerweise unter Verwendung einer Meet-in-
the-Middle Entwurfsmethodik wie dem PBD. Eine Voraussetzung für die Über-
tragung von PBD Prinzipien ist die Definition von geeigneten Abstraktionsebe-

254

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

nen für die Spezifikation der Funktion und die Spezifikation der Architektur.
Dabei muss einerseits von den Details einer bestimmten Architekturimplemen-
tierung abstrahiert werden aber andererseits genügend Information vorhanden
sein, um möglichst genaue Vorhersagen über Eigenschaften von Funktionen und
Architektur wie z.B. notwendige/verfügbare Berechnungs- oder Kommunikati-
onsperformanz zu erlauben [229].

Die Selektion der E/E Architektur ist die Hauptaufgabe eines OEM. Vincen-
telli und Di Natale schlagen für die Integration dieser Aufgabe mit einer PBD
Entwurfsmethodik in [229] eine Granularität der Funktionsspezifikation auf der
Ebene einzelner Teilfunktionen und der E/E Architekturspezifikation auf der
Ebene von ECUs und Bussen vor. Einzelne funktionale und architektonische Teil-
komponenten müssen bis zu einem gewissen Grad parametrierbar sein. Für eine
Exploration relevante Parameter von Teilkomponenten müssen von dem jewei-
ligen Verantwortlichen (z.B. dem OEM oder einem Zulieferer) bereitgestellt wer-
den, der diese Teilkomponenten entwickelt. Typische Analysen auf der Ebene
der Gesamtarchitektur beinhalten z.B. (vgl. [229]) Evaluationen von Ende-zu-
Ende Latenzen und Schedulability oder System-Level Simulationen von Funkti-
on und Timing.

Eine detailliertere Exploration einzelner Teilkomponenten sowie deren funktio-
nale Verifikation setzt eine Modellierung der Teilkomponenten mit feinerer Gra-
nularität voraus. Im Verlauf des Entwicklungsprozesses müssen von den Ver-
antwortlichen daher akkuratere Modelle von Teilsystemen wie Funktionen, Be-
triebssystemkomponenten, ECUs oder Bussen bereitgestellt werden, welche für
eine durchgängige Verifikation bis hin zur Implementierung notwendig sind.
Die Gesamtarchitektur kann dann mit diesen Modellen schrittweise verfeinert
werden.

Beispielsweise muss die Granularität von ECUs u.U. auf die Ebene einzelner Ker-
ne aufgebrochen werden, um die Abbildung von Funktionen mit der notwendi-
gen Genauigkeit untersuchen zu können. Dies beinhaltet z.B. die Verifikation
des Schedulings und der Ausführungsdauer auf einzelnen Kernen oder der ent-
stehenden Kommunikationslatenzen zwischen den Kernen unter Verwendung
exakterer zyklenapproximativer Modelle.

5.7.2. V2X Kommunikation und physikalische Umwelt

Durch V2X Kommunikation wird die E/E Architektur über eine Funkschnitt-
stelle „geöffnet“ (vgl. Abschnitt 5.1.1). Funktionen, die auf der E/E Architektur
ausgeführt werden sind u.U. in hohem Maße von Informationen abhängig, die
über den drahtlosen Kanal eintreffen. Umgekehrt sendet das eigene Fahrzeug
über den Funkkanal Informationen an andere Fahrzeuge.

255

5. Interdisziplinäre verteilte Co-Simulation

V2X Kommunikation erzeugt neue Wechselwirkungen des Fahrzeugs, welche in
einem hohen Grad nicht deterministisch sind. Dies betrifft sowohl die Menge
an zu verarbeitenden Nachrichten, die in einem bestimmten Zeitraum eintref-
fen, als auch deren Inhalt. Die beiden Haupteinflussparameter sind der drahtlo-
se Kommunikationskanal in Kombination mit dem Verhalten der umgebenden
Verkehrs.

Zur Simulation des drahtlosen Kommunikationskanals eignen sich paketbasier-
te Netzwerksimulatoren. Dies wurde bereits in Fallstudie I demonstriert. Im Fall
von V2X Kommunikation muss in erster Linie zusätzlich das Bewegungsverhal-
ten des Straßenverkehrs modelliert und simuliert werden.

5.7.2.1. Modellierung und Simulation von Straÿenverkehr

Unter Verkehrssimulation versteht man die Simulation von Straßenverkehr auf
Basis mathematischer Modelle (vgl. [254]). Dies beinhaltet typischerweise die
Modellierung von Straßen, Kreuzungen, Routen etc. sowie die Modellierung des
dynamischen Verhaltens des Verkehrs oder einzelner Fahrzeuge. Die typischer-
weise in Verkehrssimulatoren implementierten Bewegungs- oder Mobilitätsmo-
delle lassen sich inhaltlich in drei Klassen einteilen:

• Submikroskopische Modelle haben einen sehr hohen Detailgrad. Sie be-
schreiben die Längs- und Querdynamik eines einzelnen Fahrzeugs mit Hil-
fe komplexer Differentialgleichungen. Die Gleichungen werden für jeden
Simulationsschritt neu berechnet. Der Rechenaufwand ist daher extrem
hoch. Ein sub-mikroskopisches Bewegungsmodell findet sich beispielswei-
se in der Software CarMaker [6] der Firma IPG.

• Mikroskopische Modelle beschreiben das Verhalten mehrerer Fahrzeuge.
Im Unterschied zu sub-mikroskopischen Modellen, werden Bewegungs-
parameter eines einzelnen Fahrzeugs meist in Abhängigkeit benachbarter
Fahrzeuge bestimmt (sog. Fahrzeugfolgemodelle). Der Detailgrad eines si-
mulierten Fahrzeugs ist um einiges geringer als bei submikroskopischen
Modellen. Die Verhaltensmodellierung beschränkt sich oft auf die Längs-
dynamik. Mikroskopische Modelle sind meistens diskret. Beispiele sind die
Verkehrssimulatoren SUMO [166] oder PTV Vissim [13].

In SUMO werden z.B. Fahrzeugfolgemodelle verwendet, welche das Ver-
halten bzw. den Zustand für jedes einzelne Fahrzeug separat mit Hilfe von
kontinuierlichen Differentialgleichungen berechnen. Zur Ausführung die-
ser Modelle implementiert der Kernel von SUMO ein Berechnungsmodell
(vgl. Abschnitt 2.2.3.3), bei dem sich das Zeitinkrement im Mikrosekunden-
bis Sekundenbereich variieren lässt. Insgesamt ist die Simulation räumlich
kontinuierlich aber zeitdiskret.

256

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

• Makroskopische Modelle basieren auf der Verwendung von Statistik und
Anleihen aus der Strömungslehre zur Verkehrsflussmodellierung. Typische
Parameter sind Dichte und Geschwindigkeit. Da keine einzelnen Fahrzeug-
instanzen mehr vorhanden sind, reduziert sich die Anzahl zu berechnen-
der Ereignisse um ein Vielfaches im Vergleich zu mikroskopischen Model-
len. Makroskopische Modelle werden typischerweise für große innerstäd-
tische Szenarien verwendet, bei denen eine Analyse oder Prognose der Ver-
kehrsbedingungen im Vordergrund steht. PTV Visum [14] ist ein Beispiel
eines makroskopischen Simulators.

Neben den genannten Klassen existieren auch noch gemichte Ansätze (sog. me-
soskopische Modelle), welche mikroskopische und makroskopische Modellie-
rungsmethoden verknüpfen [254]. Im hier betrachteten Kontext sind Verkehrs-
modelle der ersten beiden Kategorien relevant. Aufgrund einer ähnlichen zeitli-
chen Auflösung eignen sich insbesondere mikroskopische Modelle für die Kopp-
lung mit einer paketbasierten Netzwerksimulation. Je stärker der Schwerpunkt
auf einer Betrachtung der durch V2X beeinflussten Fahrdynamik liegt, desto
mehr ist die Verwendung submikroskopischer Bewegungsmodelle notwendig.

5.7.2.2. Bidirektionale Kopplung von Netzwerk- und Verkehrssimulation

Die Notwendigkeit für eine bidirektional gekoppelte Simulation von Netzwerk-
kommunikation und Straßenverkehr wurde von Sommer et al. in [239] aufge-
zeigt. Einer der in [239] genannten Hauptgründe dafür ist die Tatsache, dass V2X
Kommunikationsprotokolle ohne ein entsprechendes Feedback eines Modells
des Straßenverkehrs nicht ausreichend getestet werden können. Umgekehrt er-
laubt eine bidirektionale Kopplung auch die Untersuchung des Einflusses der
Netzwerkkommunikation auf den Straßenverkehr.

Eine solche Kopplung ist im Simulationswerkzeug Veins [239] anhand von OM-
NeT++ und SUMO umgesetzt (siehe Abb. 5.23). Das Ziel dieser Kopplung ist die
Untersuchung von V2X Kommunikationsprotokollen zur dynamischen Routen-
planung oder von sicherheitsrelevanten Applikationen. Die Kopplung zwischen
OMNeT++ und SUMO basiert auf TCP/IP.

Veins stellt verschiedene Modelle der einschlägigen V2X Protokolle wie IEEE
1609.x und 802.11p [30][21] basierend auf dem MiXiM Framework zur Verfü-
gung. SUMO ist als zusätzliches Mobilitätsmodell in MiXiM integriert. Dadurch
ist eine weitaus akkuratere Modellierung und Simulation von Straßenverkehr
möglich, als mit den in MiXiM standardmäßig vorhandenen Mobilitätsmodel-
len. Zudem bietet SUMO die Möglichkeit, Straßenkarten diverser Formate zu
importieren.

257

5. Interdisziplinäre verteilte Co-Simulation

OMNeT++

Veins

MiXiM

Si
m

ul
at

io
n

C
on

tr
ol

PHY Layer

MAC Layer Emissions Behavior

Channel SUMO

Mobility

TC
P/

IP

Ro
ad

 T
ra

ffi
c

Si
m

ul
at

io
n

D
at

a
C

ol
le

ct
io

n

Comfort Application
Traffic Safety Application

Traffic Efficiency Application

Abbildung 5.23.: Architektur des Veins Frameworks (Quelle: [238])

Die Argumentation aus [239] ist unmittelbar auf den Anwendungsfall der E/E
Architektursimulation übertragbar: Aus Sicht von [239] werden der Kommuni-
kations- und der Verkehrsaspekt ein weiteres Mal erweitert und zwar um den
E/E Architekturaspekt, mit dem Ziel, zusätzlich Aussagen über die Ausfüh-
rungsperformanz von V2X Applikationen und Funktionen und deren Wechsel-
wirkungen mit dem drahtlosen Kommunikationskanal machen zu können. Die
durch Veins zur Verfügung gestellte Granularität von Daten und der Zeit reicht
dabei aus, um Stimuli und Testbenches für die Verifikation von Funktionen zu
generieren, die auf der E/E Architektur ausgeführt werden.

5.7.2.3. Modellierung und Simulation der restlichen physikalischen Umwelt

Unter diesen Aspekt fallen alle Komponenten, welche nicht durch die Simulati-
on der V2X Kommunikation und die Simulation des Straßenverkehrs mit Veins
erfasst werden. Dazu gehören vor allem auch Interaktionen mit der restlichen
umgebenden physikalischen Umwelt über Sensor/Aktuator Schnittstellen der
E/E Architektur. Soll beispielsweise zusätzlich die Wechselwirkung der Räder
eines DbW Systems, wie es in Abschnitt 5.1.1 beschrieben ist, mit der Straße be-
rücksichtigt werden, so müssen Sensoren, Aktuatoren und die mechanische In-
teraktion der Räder mit der Straße anhand von Differentialgleichungen model-
liert werden. Für die Modellierung anhand von Differentialgleichungen eignen
sich Werkzeuge wie Matlab/Simulink [8] oder das bereits im Kontext der submi-
kroskopischen Verkehrssimulation erwähnte Werkzeug CarMaker [6]. Auch die
CT Domäne von PtII ist dafür geeignet.

258

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

5.7.3. Multi-Federation

Ausgehend von den zuvor beschriebenen Anforderungen wurde eine Multi-
Federation entwickelt, welche es ermöglicht, Wechselwirkungen innerhalb eines
Systems von vernetzten V2XC-fähigen Fahrzeugen in einer verteilten Simulation
zu untersuchen. Als Beispielanwendung zur Ausführung auf der E/E Architek-
tur und zur Demonstration der Funktionsfähigkeit des Konzepts dient ein V2X
basierter Abstandsregeltempomat (Adaptive Cruise Control (ACC)).

Die Multi-Federation besteht aus einem PtII Federate, einem Veins Federate und
einem HeMPS Federate. Die beiden disziplinspezifischen Simulatoren Veins und
HeMPS werden in jeweils separaten Federations mit PtII co-simuliert. Die Kom-
ponenten der Multi-Federation sind in Abb. 5.24 dargestellt und werden im Fol-
genden erläutert.

5.7.3.1. Gesamtsystemmodell

PtII ist der Ausgangspunkt für die Modellierung des Gesamtsystems. Es wird
angenommen, dass das zu entwickelnde System ein einzelnes Fahrzeug ist. Da-
mit bildet die Fahrzeugkarosserie die Grenze zwischen dem zu entwickelnden
System und der Systemumwelt.

Aus einer Top-down Perspektive besteht das Gesamtsystemmodell in PtII da-
her aus einem internen Fahrzeugmodell und einem Umgebungsmodell. Ersteres
wird innerhalb eines kompositen Actors namens Intra Vehicle Composite model-
liert, Letzteres in einem kompositen Actor namens Inter Vehicle Composite. Beide
Actors kommunizieren über Ports und Relations. Interaktionen zwischen beiden
Actors unterliegen dem DE Berechnungsmodell. Sofern Actors niedrigerer Hier-
archieebenen keinen eigenen Director besitzen, folgen sie automatisch auch dem
DE Berechnungsmodell.

Da ein spezieller Fokus auf der E/E Architektur des Fahrzeugs liegt, repräsen-
tiert das interne Fahrzeugmodell aktuell alleine die E/E Architektur. Das kom-
plette interne Fahrzeugmodell oder einzelne Komponenten (Actors) können be-
liebig verfeinert werden. Mit dem neuen Actor vom Typ HLAComposite können
für die Verfeinerung auch sprachfremde Modelle verwendet werden. Auch das
Umgebungsmodell kann durch beliebige (komposite) Actors bis auf die not-
wendige Modellierungstiefe weiter verfeinert werden (siehe Abb. 5.24).

5.7.3.2. Internes Fahrzeugmodell

Als Grundlage für die Entwicklung des internen Fahrzeugmodells dienten die
Konzepte für zukünftige E/E Architekturen, die bereits in Abschnitt 5.1.1 disku-

259

5. Interdisziplinäre verteilte Co-Simulation

Ptolemy II
Intra Vehicle Composite

V2X HeMPS

R R

R R

PE

PE PE

NPE

R R

PE

R

R

R

PE

PE

PE

R
ou

te
r

In
te

rf
ac

e

Plasma

DMA

R
A

M

W
ir

el
es

s
P

E Virtual Network Interface

HLA Interface Wrapper

PE

Output
Buffer

Input
Buffer

Register Interface

Control
Block

SystemC

OMNeT++

Veins

MiXiM

Si
m

ul
at

io
n

C
on

tr
ol

PHY Layer

MAC Layer Emissions Behavior

Channel SUMO

Mobility

T
C

P
/I

P

R
oa

d
Tr

af
fic

Si

m
ul

at
io

nD
at

a
C

ol
le

ct
io

n
HLA Interface Wrapper

Remote V2X Application

Veins

Intra Vehicle
Composite

Inter Vehicle
Composite

Toplevel Composite
Wheel
ECU

Wheel
ECU

Wheel
ECU

Wheel
ECU

Central
ECU

Radar
ECU

GPS
ECU

Internal
Network

Abbildung 5.24.: Multi-Federation zur Simulation von E/E Architekturen

260

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

tiert wurden. Das daraus abgeleitete abstrakte Grundgerüst einer zukünftigen
E/E Architektur ist in Abb. 5.24 oben dargestellt. Es wird angenommen, dass die
Struktur der Architektur im Großen und Ganzen festgelegt ist, einzelne Kompo-
nenten bzw. Actors aber ausgetauscht oder bis zu einem gewissen Grad variiert
und verfeinert werden können.

In Abb. 5.24 ist jede ECU und das interne Netzwerk durch einen separaten Actor
modelliert. Es existiert eine zentrale Multicore ECU mit Namen Central ECU. Für
jedes Rad existiert ein Actor namens Wheel ECU13. Daneben gibt es noch eine
Radar ECU und eine GPS ECU. Es wird angenommen, dass alle ECUs über einen
standardisierten fahrzeuginternen Kommunikationsbackbone (modelliert durch
einen Actor namens Internal Network) Nachrichten austauschen können.

Central ECU
In Anlehnung an das in [227] beschriebene Konzept für V2XC-fähige Automoti-
ve Gateways, existiert mit der Central ECU ein Steuergerät, welches die Schnitt-
stelle zwischen dem internen Bordnetz und dem externen drahtlosen Kommmu-
nikationsnetzwerk bildet. Der entsprechende Actor in Abb. 5.24 verfügt deswe-
gen über separate Ports für die V2X Kommunikation mit dem Umgebungsmo-
dell.

Für die Central ECU existiert neben einem reinen kompositen PtII Actor auch ein
Actor vom Typ HLAComposite, über den das interne Fahrzeugmodell in PtII mit
einer Erweiterung des bereits bekannten Wireless HeMPS SystemC Modells aus
Abschnitt 5.6 verfeinert werden kann. Das diesem Actor zugrundeliegende Fe-
derationmodell ist in Abb. 5.25 dargestellt. Die Actors mit Namen wifiUpMsg und
wifiDownMsg sind vom Typ HLADEObjectClass und erfüllen den gleichen Zweck
wie die upMsg und downMsg Actors aus der Fallstudie in Abschnitt 5.6. Zusätz-
lich dazu existieren zwei Actors / Object Classes mit Namen internalGetMsg und
internalSetMsg, mit deren Hilfe das Verhalten der Wheel ECU gesteuert werden
kann.

Auf HeMPS Seite wurde das Virtual Wireless Interface Modul zu einem allgemei-
nen Virtual Network Interface (VNI) erweitert, so dass sowohl V2X Datenpake-
te über das externe V2X Netzwerk (via wifiUpMsg und wifiDownMsg), als auch
Datenpakete über das interne Netzwerk (via internalGetMsg und internalSetMsg)
empfangen und versendet werden können.

Wheel ECU
Entsprechend dem in Abschnitt 5.1.1 beschriebenen DbW Ansatz, ist eine Wheel
ECU für Vorverarbeitung von Sensordaten und die Radansteuerung verantwort-
lich. Um die Fallstudie zu vereinfachen, wurde o.B.d.A. nur eine abstrakte Wheel
13In der hier beschriebenen Fallstudie war nur eine der Wheel ECUs aktiv.

261

5. Interdisziplinäre verteilte Co-Simulation

HeMPS

wifiUp
Msg

wifiDown
Msg

internalGet
Msg

internalSet
Msg

ATTRIBUTE vehicleID
ATTRIBUTE size
ATTRIBUTE payload

ATTRIBUTE vehicleID
ATTRIBUTE size
ATTRIBUTE payload

ATTRIBUTE vehicleID
ATTRIBUTE acc
ATTRIBUTE value
ATTRIBUTE posX
ATTRIBUTE posY
ATTRIBUTE posZ

ATTRIBUTE vehicleID
ATTRIBUTE acc
ATTRIBUTE value
ATTRIBUTE posX
ATTRIBUTE posY
ATTRIBUTE posZ

BIM

BIM

Abbildung 5.25.: Modell der HeMPS Federation

ECU umgesetzt. Die Implementierung basiert auf einem CT Director. In Kom-
bination mit dem DE Director wird damit die Möglichkeit zur heterogenen Co-
Simulation demonstriert.

Als Vorgabe erhält der Wheel ECU Actor einen Beschleunigungswert aus dem in-
ternen Bordnetz (Internal Network Actor) und erzeugt daraus durch Integration
eine Geschwindigkeit für das interne Fahrzeugmodell. Über einen externen Port
wird die erzeugte Geschwindigkeit der Repräsentation des internen Fahrzeug-
modells im Umgebungsmodell mitgeteilt. Über die Wheel ECU könnten auch
weitaus komplexere Verhaltenseigenschaften des Fahrzeugs oder Einflussgrö-
ßen der Fahrbahn modelliert werden. Auch die Verfeinerung der Wheel ECUs
mit einem vollständigen submikroskopischen Dynamikmodell eines Fahrzeugs
(beispielsweise anhand von CarMaker [RSG+10]) wäre denkbar.

Radar und GPS ECUs
Neben dem mit dem Wheel ECU Actor implizit modellierten Geschwindigkeits-
sensor sind der Radar ECU und der GPS ECU Actor die einzigen in der Fall-
studie explizit modellierten Sensorkomponenten. Die Radar ECU liefert die Po-
sition und die Geschwindigkeit des vorausfahrenden Fahrzeugs. Die GPS ECU
liefert die Position des eigenen Fahrzeugs. Aktuell werden die genannten Wer-
te durch das Umgebungsmodell berechnet. Aus diesem Grund dienen die bei-
den Steuergerätemodelle ausschließlich als reine Stellvertreterobjekte und rei-
chen die durch das Umgebungsmodell berechneten Werte an den Internal Net-
work Actor einfach durch.

262

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

5.7.3.3. Umgebungsmodell

Das Umgebungsmodell im Inter Vehicle Composite Actor wird vollständig durch
Veins repräsentiert. Veins simuliert den umgebenden Straßenverkehr und die
drahtlose Netzwerkkommunikation zwischen Fahrzeugen. Der Inter Vehicle Com-
posite Actor wurde dazu mit Hilfe eines Actors vom Typ HLAComposite umge-
setzt. Das Federationmodell im Inter Vehicle Composite Actor ist in Abb. 5.26 dar-
gestellt. Im Prinzip ist das Federationmodell der Veins Federation reziprok zum
Federationmodell der HeMPS Federation definiert: Im Unterschied zum HeMPS
Federate empfängt das Veins Federate von PtII Aktualisierungen für wifiUpMsg
und internalGetMsg Object Classes und sendet Aktualisierungen für die wifiDow-
nMsg und internalSetMsg Object Classes.

Veins

wifiDown
Msg

wifiUp
Msg

internalSet
Msg

internalGet
Msg

ATTRIBUTE vehicleID
ATTRIBUTE size
ATTRIBUTE payload

ATTRIBUTE vehicleID
ATTRIBUTE size
ATTRIBUTE payload

ATTRIBUTE vehicleID
ATTRIBUTE value
ATTRIBUTE posX
ATTRIBUTE posY
ATTRIBUTE posZ

ATTRIBUTE vehicleID
ATTRIBUTE value
ATTRIBUTE posX
ATTRIBUTE posY
ATTRIBUTE posZ

BIM

BIM

Abbildung 5.26.: Modell der Veins Federation

Die Integration in Veins entspricht weitgehend der Implementierung des OM-
NeT++ basierten Network Federates aus der ersten Fallstudie. Ein in PtII model-
liertes internes Fahrzeugmodell hat eine Repräsentation in Form eines verteilten
Knotens innerhalb von Veins. Im Unterschied zu Abschnitt 5.6 werden für diesen
verteilten Knoten nicht nur Netzwerkpakete des Network Layer und des MAC
Layer zwischen PtII und Veins übertragen, sondern auch Bewegungsinformatio-
nen zum verteilten Knoten, die über die internalGetMsg Actors / Object Class In-
stanzen in die Sensormodelle des internen Fahrzeugmodells eingespeist werden.
Umgekehrt können Bewegungsparameter wie z.B. die Geschwindigkeit des ver-
teilten Knotens durch Aktualisierung einer internalSetMsg Object Class Instanz
überschrieben werden. Wie bei der OMNeT++ Integration ist einstellbar, ob und
welche Fahrzeuge unter der Kontrolle von PtII oder Veins sind. Grundsätzlich
ist es auch möglich, die abstrakte Verhaltenssimulation mehrerer Fahrzeuge in
Veins durch eine detailliertere Simulation in PtII zu ersetzen.

263

5. Interdisziplinäre verteilte Co-Simulation

5.7.4. Szenario I: Test einer ACC Funktion

Um die Funktionsfähigkeit der heterogenen Co-Simulation zwischen PtII und
Veins zu demonstrieren, wurde der Central ECU Actor zunächst nicht mit dem
HeMPS Modell verfeinert. Stattdessen wurde die ACC Funktion im kompositen
Central ECU Actor auf algorithmischer Ebene (ohne Berücksichtigung von Ar-
chitekturcharakteristika) und unter Verwendung des DE und CT Berechnungs-
modells umgesetzt.

5.7.4.1. Intelligent Driver Model

Die auf der Central ECU implementierte Funktion beschränkt sich auf eine ACC
Implementierung basierend auf dem sog. Intelligent Driver Model (IDM) [253].
Das IDM ist ein kollisionsfreies mikroskopisches Fahrzeugfolgemodell, das auch
als Grundlage für eine echte ACC Implementierung dient [162, 159, 167]. Das
IDM ist eine kontinuierliche Funktion der tatsächlichen Geschwindigkeit v, des
Abstands zum vorausfahrenden Fahrzeug s und der Geschwindigkeitsdifferenz
∆v:

aIDM(v, s, ∆v) =
dv
dt

= a

[
1−

(
v
v0

)δ

−
(

s∗(v, ∆v)
s

)2
]

, (5.1)

s∗(v, ∆v) = s0 + vT +
v∆v

2
√

ab
. (5.2)

Dabei ist s∗ der gewünschte minimale Abstand. Die Bedeutung der übrigen Mo-
dellparameter kann Tab. 5.1 entnommen werden. Hier sind auch typische Para-
metrierungen illustriert. In [254] werden die Modellparameter anhand der fol-
genden drei Standardsituationen veranschaulicht:

• Beschleunigen auf freier Strecke: Dies geschieht zunächst mit der maxi-
malen Beschleunigung bei normalem Verkehr a. Die Beschleinigung geht
bei Annäherung an die Wunschgeschwindigkeit v0 in einer durch den Pa-
rameter δ beschriebenen Weise gegen Null. Je größer δ gewählt wird, desto
später reduziert sich die Beschleunigung.

• Folgefahren: Das Folgefahren geschieht mit dem durch die Folgezeit T cha-
rakterisierten Abstand zuzüglich dem Minimalabstand s0 bei stehendem
Verkehr.

• Annähern: Bei der Annäherung an langsamere Fahrzeuge wird in Normal-
situationen die komfortable Verzögerung b nicht überschritten.

264

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

Parameter Autobahn Stadtverkehr Sinnvoll
Wunschgeschwindigkeit v0 120 km/h 54 km/h 50 - 200 km/h

Folgezeit T 1.0 s 1.0 s 0.9 - 3 s
Minimalabstand s0 2 m 2 m 1 - 5 m

Beschleunigungsexponent δ 4 4 1 - ∞
Beschleunigung a 1.0 m/s2 1.0 m/s2 0.3 - 3 m/s2

Komfortable Verzögerung b 1.5 m/s2 1.5 m/s2 0.5 - 3 m/s2

Tabelle 5.1.: Modellparameter des IDM (Quellen: [254, 160])

5.7.4.2. Funktionsblöcke

Zur Einbettung des IDM in den Central ECU Actor wurden mehrere Funkti-
onsblöcke in Form von kompositen Actors implementiert. Das zu verwendende
Übertragungsmedium, um Informationen über das vorausfahrende Fahrzeug zu
erhalten (Radar ECU oder V2XC Kanal), kann innerhalb der Central ECU durch
Vertauschung der Portanbindung gewechselt werden. Folgende Funktionsblö-
cke existieren (wenn nicht anders angegeben, wurde das DE Berechnungsmodell
verwendet):

• Message Decoder (nur V2X Kanal): Ein über den V2XC Kanal empfange-
nes Paket wird vom Message Decoder Block in seine Bestandteile (Header
und Payload) zerlegt. Die einzelnen Datenfelder werden als PtII Tokens an
den Message Filter weitergeleitet.

• Message Filter (nur V2X Kanal): Dieser Funktionsblock filtert relevante
V2X Pakete aus dem eingehenden Strom von Paketen aus. Ein Paket wird
als relevant klassifiziert, wenn es vom vorausfahrenden Fahrzeug stammt.
Dieses wird anhand einer ID identifiziert. Alle anderen Pakete werden ver-
worfen.

• Environment Picture: Dieser Funktionsblock dient als lokaler Zwischen-
speicher eines aktuellen „Abbildes der Umgebung“ in Form von zuletzt
empfangenen Umgebungsinformationen. Es speichert die über die GPS
ECU und die Wheel ECU eingelesenen Werte für Position und Geschwin-
digkeit des eigenen Fahrzeugs sowie die entweder über die Radar ECU
oder den V2X Funkkanal empfangenen Werte für Position und Geschwin-
digkeit des vorausfahrenden Fahrzeugs.

• IDM Controller: Der IDM Controller Block ist die eigentliche Implemen-
tierung des oben beschriebenen IDM. Auf Basis der Daten des Environment
Picture Blocks gibt das IDM die Beschleunigung a für die Wheel ECU (Re-
gelstrecke) vor. Dieser komposite Actor folgt dem CT Berechnungsmodell.

265

5. Interdisziplinäre verteilte Co-Simulation

Mit der durch das IDM berechneten Beschleunigung aIDM generiert die Wheel
ECU die Geschwindigkeit v. Diese wiederum wird an die Repräsentation des
Fahrzeugs in Veins (den verteilten Knoten) zurück übermittelt.

5.7.4.3. Dynamische Abstandsregelung via Radar und V2X

In Veins wird ein Verkehrsszenario mit zwei Fahrzeugen ausgeführt. Das vor-
ausfahrende Fahrzeug wird von Veins gesteuert. Auf einer geraden Strecke in
x-Richtung passiert es periodisch Straßenkreuzungen mit einem Abstand von
200 m (vgl. Abb. 5.27). Das nachfolgende Fahrzeug wird durch das interne Fahr-
zeugmodell bzw. die IDM Implementierung in PtII gesteuert. SUMO wurde mit
einem Aktualisierungsintervall (Update Time in [161]) von 0.01 s ausgeführt. Die
verwendeten IDM Parameter sind in Tab. 5.2 zusammengestellt. Zu Beginn der
Simulation wurde Veins ein Vorlauf von 10 s Simulationszeit gegeben.

Abbildung 5.27.: Straßenkreuzungen mit einem Abstand von 200 m in Veins

Parameter Gewählter Wert
Wunschgeschwindigkeit v0 54 km/h

Folgezeit T 1.0 s
Minimalabstand s0 2.0 m

Beschleunigungsexponent δ 4
Beschleunigung a 2.6 m/s2

Komfortable Verzögerung b 3.0 m/s2

Tabelle 5.2.: Gewählte IDM Modellparameter

266

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

Radar ACC
Abb. 5.28 zeigt die mit PtII aufgezeichneten Simulationsergebnisse für Geschwin-
digkeit, Beschleunigung, Abstand und Position bei Verwendung einer ACC Funk-
tion basierend auf der Radar ECU. Innerhalb des nachfolgenden Fahrzeugs (im
PtII E/E Architekturmodell sowie zur Synchronisation mit Veins) wurde, wie in
SUMO, generell eine Aktualisierungsrate von 0.01 s verwendet. Die roten Kur-
ven illustrieren das Verhalten des vorausfahrenden und vollständig in Veins si-
mulierten Fahrzeugs, die blauen Kurven das Verhalten des nachfolgenden und
teilweise in PtII simulierten Fahrzeugs. Am Plot der Geschwindigkeit ist sehr gut
das regelmäßige Auftreten der Straßenkreuzungen zu erkennen: Das in Veins
bzw. SUMO verwendete Mobilitätsmodell (eine Erweiterung des IDM) berück-
sichtigt u.a. die Rechts-vor-Links Regel. Dies resultiert in regelmäßigen Abbrems-
und Beschleunigungszyklen des vorausfahrenden Fahrzeugs, sobald dieses eine
Kreuzung passiert. Die Geschwindigkeit des vorausfahrenden Fahrzeugs sinkt
periodisch von 13.9 m/s auf ca. 2.2 m/s ab und steigt dann wieder bis auf 13.9
m/s an. Dazwischen befinden sich Abschnitte von ca. 8 s Dauer, bei denen freie
Fahrt mit konstanter Geschwindigkeit von 13.9 m/s möglich ist.

Aufgrund der in PtII implementierten Basisvariante des IDM, beachtet das nach-
folgende Fahrzeug die Rechts-vor-Links Regel nicht. Es folgt ausschließlich dem
Beschleunigungsverhalten des vorausfahrenden Fahrzeugs und hält dabei eine
in einem gewissen Rahmen variable räumliche Distanz ein. Im gemessenen Zei-
tintervall von 90 s unterschreitet diese niemals den Wert von 11 m, so dass das
vorausfahrende und das nachfolgende Fahrzeug nahezu parallele Trajektorien
in x-Richtung besitzen (siehe Abb. 5.28 unten rechts. Über das gesamte Zeitinter-
vall von 90 s ist im Schnitt dennoch ein leichtes Sinken der Distanz zu beobach-
ten. Diese Verhalten ist auf einen Einschwingvorgang zu Beginn des Szenarios
zurückzuführen, da das nachfolgende Fahrzeug mit einer größeren Distanz hin-
ter dem vorausfahrenden Fahrzeug startet, als durch das durch die Summe aus
Folgezeit T und dem Minimalabstand s0 definierte Minimum vorgegeben ist.

V2X ACC
Um die Funktionsfähigkeit der Netzwerksimulation zu testen und zugleich den
Einfluss verschiedener Sendeintervalle von V2X Nachrichten auf das ACC Ver-
halten zu untersuchen, wurde nicht mehr die Radar ECU, sondern der V2X Kom-
munikationskanal als Übertragungmedium von Umgebungsinformation und zur
Stimulation der ACC Funktion verwendet. Durch Variation des Beaconintervalls
der periodisch verschickten V2X Broadcastnachrichten (sog. Cooperative Awaren-
ess Messages (CAM) [30]) zwischen 0.1 s, 1.0 s und 10.0 s wurden unterschiedliche
Sendeintervalle erzeugt. Gründe für höhere Beaconintervalle könnten beispiels-
weise ein überlasteter Funkkanal sein. Die Aktualisierungsraten innerhalb von
SUMO, PtII und dazwischen betrugen weiterhin 0.01 s. Bei Beaconintervallen
von 0.01 s und 0.1 s waren die Ergebnisse noch weitgehend identisch zu den Plots

267

5. Interdisziplinäre verteilte Co-Simulation

des Radar ACC. Die Verzögerung durch den drahtlosen Kanal resultierte in einer
leichten hochfrequenten Oszillation der Distanz. Die Plots von Geschwindigkeit
und Position für 1.0 s und 10.0 s sind in Abb. 5.29 zu sehen.

Es ist deutlich zu erkennen, dass der Verlauf der Geschwindigkeit des nachfol-
genden Fahrzeugs im Vergleich zu Abb. 5.28 nicht mehr exakt dem des voraus-
fahrenden Fahrzeugs folgt. Die resultierenden Fahrmaneuver lassen sich insbe-
sondere zu Beginn des Szenarios durch größere Ausschläge in der minimalen
und maximalen Geschwindigkeit charakterisieren. Größere Sendeintervalle re-
sultieren zudem in einer zunehmend veränderten Trajektorie des nachfolgenden
Fahrzeugs sowie in einem größeren Abstand der Trajektorien von vorausfah-
rendem und nachfolgendem Fahrzeug. Da bei den betrachteten Simulationen
der Betrag der maximal möglichen Bremsbeschleunigung nicht auf weniger als
9m/s2 limitiert war und außer der Latenz der drahtlosen Kanals keine weiteren
Latenzen modelliert wurden, sind keine Kollisionen zwischen den Fahrzeugen
aufgetreten. Kollisionsfreiheit ist eine grundlegende Eigenschaft des IDM [253].

2
x10

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TimedPlotter

Time (s)

S
pe

ed
 (

m
/s

)

(a) Geschwindigkeit

2
x10

10
12

14

16

18

20

22

24

26

28

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Distance

Time (s)

D
is

ta
nc

e
(m

)

(b) Abstand

2
x10

-2.5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Own Acceleration

Time (s)

A
cc

el
er

at
io

n
(m

/s
²)

(c) Beschleunigung

2
x10

0.0

0.2

0.4

0.6

0.8

1.0

x10
3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (s)

P
os

iti
on

 (
m

)

(d) Position

Abbildung 5.28.: Messwerte mit Radar ACC, rot = vorausfahrendes Fahrzeug,
blau = nachfolgendes Fahrzeug

268

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

2
x10

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Speed

Time (s)

S
pe

ed
 (

m
/s

)

(a) Geschwindigkeit (1.0 s Beacons)

2
x10

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Speed

Time (s)

S
pe

ed
 (

m
/s

)

(b) Geschwindigkeit (10.0 s Beacons)

2
x10

0.0

0.2

0.4

0.6

0.8

1.0

x10
3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (s)

P
os

iti
on

 (
m

)

(c) Position (1.0 s Beacons)

2
x10

0.0

0.2

0.4

0.6

0.8

1.0

x10
3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (s)

P
os

iti
on

 (
m

)

(d) Position (10.0 s Beacons)

Abbildung 5.29.: Messwerte mit V2X ACC, rot = vorausfahrendes Fahrzeug,
blau = nachfolgendes Fahrzeug

269

5. Interdisziplinäre verteilte Co-Simulation

5.7.5. Szenario II: Veri�kation einer ACC Implementierung

Mit dem zweiten Szenario soll die Funktionsfähigkeit einer Co-Simulation basie-
rend auf mehreren Federations (Multi-Federation Modus) demonstriert werden.
Dazu wurde die abstrakte Implementierung der V2X ACC Funktion im Central
ECU Actor aus Szenario I durch eine Implementierung auf Basis von HeMPS
ersetzt und mit Hilfe der HeMPS Federation co-simuliert. Die ACC Funktion
wurde dazu als Taskgraph auf das HeMPS System portiert. Das Resultat ist eine
verfeinerte Spezifikation der Implementierung der ACC Funktion, welche Cha-
rakteristika einer möglichen MPSoC Architektur der Central ECU berücksichtigt.
Im Folgenden werden die einzelnen umgesetzten Teilschritte zunächst erläutert.
Anschließend werden Messergebnisse vorgestellt und diskutiert.

5.7.5.1. Verfeinerung der Central ECU mit HeMPS

Zur Portierung der ACC Funktion auf HeMPS wurden die in Abschnitt 5.7.4.2
beschriebenen PtII Funktionsblöcke zunächst manuell in C-Code übersetzt. Jeder
Funktionsblock wurde dazu als ein eigenständiger Softwaretask für das HeMPS
OS implementiert. Zusätzlich wurden folgende Softwaretasks speziell zur Kom-
munikation mit dem VNI entwickelt:

• Sensor Read: Liest in regelmäßigen Abständen alle über das VNI eintref-
fenden Sensordaten ein und leitet sie an den Environment Picture Task wei-
ter.

• Actuator Write: Wenn eine NoC-Nachricht vom IDM Controller Task emp-
fangen wird, so wird der mit der Nachricht übermittelte Beschleunigungs-
wert über das VNI an die Wheel ECU übetragen.

• V2X Receive: Sobald ein V2X Paket über das VNI empfangen wurde, so
wird dies ausgelesen und an den Message Decoder Task weitergeleitet.

• V2X Send: Sendet den aktuellen Fahrzeugzustand per V2X an andere Fahr-
zeuge.

In Summe existieren damit acht Tasks. Diese wurden auf einem 2x2 HeMPS Mo-
dell verteilt. Da das VNI nur an ein einziges PE angebunden ist (vgl. Abb. 5.24
unten), mussten alle vier zusätzlich implementierten Tasks auf ein und densel-
ben Kern abgebildet werden.

5.7.5.2. Integration der Multi-Federation

Zur Integration der Multi-Federation wurde zunächst der bisher verwendete
Central ECU Actor durch einen Actor vom Typ HLAComposite ersetzt. Dieser ent-

270

5.7. Fallstudie II: Simulation von V2X basierten E/E Architekturen

hält das HeMPS Federationmodell. Um den Erhalt der Kausalität zu garantieren,
wurde die in Abschnitt 5.5.3.3 beschriebene Methode zur Ableitung eines stati-
schen Lookaheads im PtII Modell angewendet. Eine Analyse der Modellstruktur
ergab folgende Modellcharakteristika:

Zwischen Inter Vehicle Model und Central ECU existiert eine Schleife. Alle vom
Inter Vehicle Model zur Central ECU verlaufenden Pfade sind vollständig verzö-
gerungsfrei. Von der Central ECU in Richtung Inter Vehicle Model existieren zwei
Pfade, einer verläuft über die Wheel ECU und einer koppelt Central ECU und Inter
Vehicle Model direkt (V2XC Kanal). Die Wheel ECU aktualisiert die Geschwindig-
keit mit einem Intervall von 0.01s. Auf dem Pfad zum V2X Kanal existiert eine
Verzögerung von nur einem Microstep.

Würde von Central ECU zu Inter Vehicle Model nur der Pfad über die Wheel ECU
existieren, könnte mit Bedingung 2b) aus Abschnitt 5.5.3.3 ein für das ganze
PtII Modell gültiges ∆τsync von 0.01s gewählt werden. Da die Wheel ECU die-
ses selbstständig generiert, wäre zudem keine zusätzliche Generierung von Pure
Events z.B. anhand eines DiscreteClock Actors notwendig.

Wegen des zweiten Pfades für den V2X Kanal ist eine Multi-Federation aller-
dings nicht unmittelbar möglich. Besagter Pfad verursacht eine Schleife mit ei-
ner Verzögerung von ∆τ = 0. Entsprechend Bedingung 2c) aus Abschnitt 5.5.3.3
kann also keine Kausalität hergestellt werden. Die gewählte Lösung besteht dar-
in, die Schleife durch gezieltes Einfügen einer zeitlichen Verzögerung in den
zweiten Pfad aufzubrechen. Die Wahl der Verzögerung war dabei bis zu einem
gewissen Grad beliebig, da die ACC Funktion im betrachteten Szenario durch
Nachrichten, die vom eignen Fahrzeug verschickt werden, aktuell nicht beein-
flusst wird. Um Bedingung 2a) für beide Pfade zu erfüllen und gleichzeitig den
Synchronisationsoverhead mit dem co-simulierten Inter Vehicle Model nicht un-
nötig zu vergrößern, sind alle Verzögerungen mit Werten ≥ 0.01s geeignet.

5.7.5.3. Ergebnisse

Abb. 5.30 illustriert die Messergebnisse für ein simuliertes Zeitintervall von 15 s
und 10 s Vorlauf für den Fall, dass die radarbasierte ACC Applikation auf einem
zyklenapproximativen HeMPS Modell (CAL PEs und zeitliche Entkopplung der
NoC Router um acht Takte) ausgeführt wird und das Fahrzeug seinen Zustand
regelmäßig über den V2X Kanal ausgibt. Das Modell wurde mit Taktfrequenzen
von 50 kHz und 100 kHz simuliert. Wie man der Abbildung entnehmen kann,
reagiert die 100 kHz Version etwas schneller als die 50 kHz Variante. Dies re-
sultiert darin, dass die Geschwindigkeit des eigenen Fahrzeugs bereits bei 20 s
wieder ansteigt, während die 50 kHz Variante mit viel größerer Amplitude oszil-
liert, vollständig auf 0 m

s zurückgeht und erst bei ca. 21 s wieder richtig mit dem
Anstieg beginnt. Aufgrund des verhältnismäßig hohen Berechnungsaufwandes

271

5. Interdisziplinäre verteilte Co-Simulation

für das HeMPS Modell, dauerte die detaillierte Simulation von 15 s um einige
Größenordnungen länger als ohne HeMPS. Auf einem Core i5 Dual-Core Rech-
ner mit 2.5 GHz wurden für die 50 kHz Variante ca. 11 min und für die 100 kHz
Variante ca. 22 min Ausführungszeit gemessen. Ohne HeMPS lag die Ausfüh-
rungszeit bei ca. 18 s.

0

2

4

6

8

10

12

14

10 12 14 16 18 20 22 24

Speed

Time (s)

S
pe

ed
 (

m
/s

)

(a) 50 kHz

0

2

4

6

8

10

12

14

10 12 14 16 18 20 22 24

Speed

Time (s)

S
pe

ed
 (

m
/s

)

(b) 100 kHz

Abbildung 5.30.: V2X ACC als Applikation auf HeMPS, rot = vorausfahrendes
Fahrzeug, blau = nachfolgendes Fahrzeug

5.7.6. Spezi�kation von Funktionsabbildungen durch Aspekte

In den vorangegangenen Fallstudien wurde gezeigt, dass der vorgeschlagene
Ansatz eine heterogene Modellierung und Co-Simulation sowie eine struktu-
rierte Komposition von Teilmodellen erlaubt. Teilmodelle können Teilsysteme im
Sinne von funktionalen oder architektonischen Artefakten des zu entwickelnden
Systems oder äußere Umwelteinflüsse repräsentieren und simulieren. Es wurde
demonstriert, dass die hierarchische Struktur von PtII Modellen direkt zur Ver-
feinerung von Teilmodellen mit detaillierteren (co-simulierten) Modellen bis hin
zur finalen Implementierung genutzt werden kann. Die genannten Punkte sind
notwendige Voraussetzung für eine umfassende interdisziplinäre Analyse und
Verifikation des zu entwickelnden Systems.

Entsprechend der in Abschnitt 5.2 identifizierten Anforderungen, ist eine Simu-
lationsumgebung für die Anwendung in einem Entwicklungsprozess für zu-
künftige E/E Architekturen insbesondere dann geeignet, wenn sie neben den be-
reits genannten Punkten auch weitergehende Konzepte eines plattformbasierten
Entwurfsprozesses unterstützt. Ein solcher zeichnet sich insbesondere durch ho-
he Flexibilität bei den Möglichkeiten zur Exploration des Entwurfsraumes aus.
Neben der reinen Verfeinerung von abstrakten Funktionen ist ein weiteres wich-
tiges Kriterium daher die Möglichkeit zur flexiblen Abbildung von Funktions-

272

5.8. Einordnung in verwandte Arbeiten und Fazit

komponenten auf Architekturkomponenten und deren anschließende abstrakte
Simulation (vgl. Abschnitt 2.1.1.3).

Um den Einfluss einer Funktion-zu-Architektur Abbildungen bereits auf hohen
Abstraktionsgraden flexibel modellieren zu können, existieren in PtII speziel-
le Actors vom Typ Aspect [217], welche einen kompositen Actor um die not-
wendige Funktionalität erweitern. Das einem Aspekt zugrundeliegende Prinzip
entspricht dem eines Quantity Managers aus dem METRO II Framework [95].
Ein Aspekt ermöglicht die Spezifikation einer Abbildung mehrerer Funktionen
auf ein und diesselbe Architekturkomponente und die Untersuchung des Ein-
flusses eines daraus resultierenden sequentiellen Schedulings der Funktionen.
Die Änderung einer Abbildung kann dabei ohne die Änderung der Verdrahtung
von Actors erfolgen. Eine kleine Fallstudie, in der PtII Aspects zur Entwurfs-
raumexploration im Kontext des V2X ACC genutzt werden, ist in [RBB+14] zu
finden.

5.8. Einordnung in verwandte Arbeiten und Fazit

Ein allgemeiner Überblick über den Stand der Technik zur heterogenen Co-Si-
mulation wurden bereits in Kapitel 3.2 gegeben. Zu den Arbeiten, welche in die-
sem Kontext am engsten mit dem hier beschriebenen Konzept verwandt sind,
gehört die Arbeit von Liu et al. in [184] sowie die Arbeiten von Niaki und San-
der in [39] und [40].

In [184] wird die Idee, heterogene Simulationswerkzeuge über ein zentrales he-
terogenes M&S Framework (in diesem Fall ebenfalls Ptolemy II) zu integrieren,
zum ersten Mal erwähnt. Als Methode wird die Verwendung von atomaren Ac-
tors als domänenspezifische „Tool Actor“ vorgeschlagen. Ein solcher „Tool Ac-
tor“ dient als Wrapper für ein externes CAE Tool, welches über eine beliebige
proprietäre Schnittstelle eingebunden werden kann. Der Ansatz wird von Wet-
ter in [265] für die Co-Simulation im Kontext sog. Building Control Virtual Test-
beds (BCVTB) aufgegriffen. Die Implementierung von BCVTB fokussiert aus-
schließlich auf die Kopplung externer Simulatoren über das Synchronous Data
Flow (SDF) Berechnungsmodell von PtII.

Das Konzept in [39, 40] ist prinzipiell mit den PtII Ansätzen vergleichbar. Als
Middleware dient allerdings nicht PtII, sondern ForSyDe [226]. Externe Werk-
zeuge werden mit Hilfe von „Wrapper Processes“ in ForSyDe integriert. In [39]
wird vorgeschlagen, die erlaubte dynamische Semantik des Datenaustauschs mit
Hilfe einer Sequenz von „Simulation Functions“ formal zu beschreiben. Die Inte-
gration wird anhand eines synchronen Berechnungsmodells demonstriert. Eine
automatische Generierung von Schnittstellen wird als mögliche Erweiterung er-
wähnt.

273

5. Interdisziplinäre verteilte Co-Simulation

Im Unterschied zu den zuvor genannten Ansätzen kombiniert der in dieser Ar-
beit beschriebene Ansatz ein heterogenes M&S Framework mit einer standardi-
sierten Middleware zur verteilten Co-Simulation. Der Fokus liegt dabei auf der
verteilten Simulation V2X-basierter E/E Architekturen. Weder in [184] noch in
[265] existieren Möglichkeiten zur expliziten Spezifikation der erlaubten stati-
schen und dynamischen Semantik des Datenaustauschs zwischen Simulatoren.
In [39, 40] ist dies zwar möglich, allerdings können mit Sequenzen von „Simu-
lation Functions“ nur sehr einfache Interaktionsmuster modelliert werden. Eine
Spezifikation der statischen Semantik ist in [39, 40] nicht möglich.

Die HLA Toolbox [4] und das HLA Blockset [3] sind zwei kommerzielle Lösun-
gen, welche die HLA mit Matlab/Simulink integrieren. Allerdings besteht weder
die Möglichkeit zur Erstellung von Federationmodellen, noch zur expliziten Be-
schreibung der erlaubten dynamischen Semantik des Datenaustauschs. In [242]
wird ein Ansatz zur hybriden (gemischt diskret/kontinuierlichen) Simulation
zwischen Matlab/Simulink und DEVS [269] unter Verwendung der HLA vorge-
schlagen. Die Adaption der beiden Berechnungsmodelle erfolgt vollständig mit
Hilfe propritärer HLA Adapter und ohne Unterstützung eines heterogenen M&S
Frameworks. Die Erstellung von Federationmodellen ist nicht möglich. Zur glei-
chen Zeit wie diese Arbeit wurde mit [171] eine weitere Kopplung von PtII und
HLA vorgestellt. Die Möglichkeit zur Modellierung von Federations ist in [171]
nicht gegeben. Auch ist der geplante Anwendungsbereich nicht die Simulation
von E/E Architekturen, sondern von industriellen Anlagen.

Im Kontext des Model Integrated Computing (MIC) [245] bzw. der Model-driven Ar-
chitecture (MDA) [9] sind insbesondere die Arbeiten von Karsai et. al [154], Hem-
mingway et al. [131], Topcu et al. [252] und Adak et al. [33] relevant. In [154] wer-
den verschiedene Entwurfsmuster für die Integration von Entwicklungswerk-
zeugen vorgestellt. Eine Lösung zur Spezifikation der erlaubten dynamischen
Semantik des Datenaustauschs wird nicht beschrieben. In [131] wird ein HLA
Metamodell basierend auf dem Generic Modeling Environment (GME) [245] be-
schrieben. Dieses dient als Basis für die Entwicklung von HLA Federations und
zur Generierung von Schnittstellencode. Eine Metamodellierung von Schnittstel-
lenverhalten ist ebenfalls nicht möglich. Dies ist explizit die Motivation der Ar-
beiten in [252, 33], welche auch GME nutzen. Weder in [131] noch in [252, 33]
wird ein formales M&S Framework zum Management von Heterogenität und
strukturierten Komposition von Modellen verwendet.

Neben Veins [239] existieren noch eine Reihe weiterer Simulatoren für die V2X
Kommunikation wie z.B. TraNS [216], MoVES [62], iTETRIS [168, 221] oder V-
SimRTI [218]. Hervorzuheben ist dabei insbesondere das VSimRTI Framework,
welches eine modulare Kopplung von Simulatoren über eine „Runtime Infra-
structure“ erlaubt, welche durch die HLA inspiriert ist. Der Fokus aller genann-
ten V2X Simulatoren liegt auf einer vergleichsweise grobgranularen Betrach-

274

5.8. Einordnung in verwandte Arbeiten und Fazit

tung von V2X Kommunikation im Kontext von Verkehrsmanagement oder Ver-
kehrseffizienz. Dabei werden einzelne Fahrzeuge grundsätzlich als abstrakter
Punkt betrachtet. Für eine simulationsbasierte Verifikation von Komponenten
einer E/E Architektur ist dieser Ansatz daher nicht ausreichend.

Die in diesem Kapitel vorgestellte Methode kombiniert ein heterogenes M&S
Werkzeug (PtII) und eine HLA Implementierung namens CERTI zu einem neu-
en Werkzeug, das sich wie folgt in den DSEEP (vgl. Abschnitt 3.2.3.2) einord-
net: Dadurch, dass PtII sowohl als Werkzeug zur Modellierung von Schnittstel-
len zur Co-Simulation fungiert als auch die Grundlage für die Ausführung ei-
ner heterogenen verteilten Co-Simulation ist, erstreckt sich der Anwendungsbe-
reich des vorgestellten Ansatzes vom Entwurf (DSEEP Schritt 3) über Entwick-
lung (DSEEP Schritt 4), Integration und Test (DSEEP Schritt 5) und die Ausfüh-
rung (DSEEP Schritt 6) bis zur Nutzung von PtII als zentrales Analysewerkzeug
(DSEEP Schritt 7). Die sechs Schritte der Vorgehensweise aus Abschnitt 5.3.2
können als Spezialisierung der Schritte 3 bis 5 des DSEEP betrachtet werden.
SDEMMlib wirkt insbesondere in den DSEEP Schritten 4 und 5 unterstützend.

Die beschriebene Methode ist als erster prinzipieller Ansatz zu verstehen. Ob-
gleich eine heterogene verteilte Co-Simulation verschiedener PtII Domänen be-
reits jetzt möglich ist, ist das zurzeit per BIM FSM modellierte Synchronisations-
verfahren auf die verteilte Kopplung diskreter ereignisbasierter Simulatoren li-
mitiert. Für die Integration weiterer disziplin- und domänenspezifischer Simula-
toren ist es daher notwendig, neue geeignete BIM Spezifikationen zu entwickeln.
In diesem Zusammenhang sind detailliertere Untersuchungen hinsichtlich Cha-
rakteristika von Berechnungsmodellen notwendig, wie diese die dynamische Se-
mantik des Datenaustauschs beeinflussen und in welchen Fällen eine Kopplung
von Werkzeugen via Ptolemy II unabdingbar bzw. verzichtbar ist. Das Ziel könn-
te ein weiterer Grad der Automatisierung sein, bei dem BIM FSMs automatisch
generiert werden können. Schlussendlich wurden bisher keine detaillierten Per-
formanzuntersuchungen im Kontext der Co-Simulation durchgeführt. Auch eine
Kombination aus paralleler und kooperativer Simulationsmethoden ist denkbar.

275

6. Schlussfolgerung und Ausblick

6.1. Zusammenfassung und Schlussfolgerung

Im Rahmen dieser Dissertation wurden neue Methoden und Werkzeuge vorge-
stellt, welche das Ziel haben, den Herausforderungen an Entwicklungsprozesse
für zukünftige eingebettete Systeme zu begegnen. Dazu wurden zu Beginn die-
ser Arbeit zunächst Methoden

1. zur Beschleunigung von Simulationswerkzeugen sowie

2. zur Verbesserung der Interoperabilität zwischen Simulationswerkzeugen

als zentrale Teilaspekte von zukünftigen Entwicklungsprozessen für eingebette-
te Systeme identifiziert. Anschließend wurden neue Methoden und Werkzeuge
vorgestellt, um diesen Herausforderungen zu begegnen.

Hinsichtlich Teilaspekt I wurde ein allgemeiner Ansatz für die parallele Simula-
tion von eingebetteten MPSoCs auf Manycore Architekturen abgeleitet, welcher
sich aus einer schichtenorientierten SystemC-basierten Laufzeitumgebung und
dem Konzept der Simulationssynthese zusammensetzt. Ausgehend davon wur-
den verschiedene alternative Ansätze und Strategien für die parallele SystemC-
basierte Simulation von zyklenakkuraten und zyklenapproximativen Modellen
entwickelt.

Die verschiedenen Strategien wurden implementiert, experimentell untersucht
und anhand verschiedener MPSoC Modelle bewertet. Zyklenakkurate und zy-
klenapproximative Modelle standen dabei im Vordergrund der Betrachtung, da
sie sich typischerweise durch extrem lange Laufzeiten auszeichnen. Begleitend
wurden Möglichkeiten zur Automatisierung des Parallelisierungsprozesses an-
hand einer teil- und einer vollautomatisierten Werkzeugkette entwickelt und
exemplarisch in einen existierenden MPSoC Entwurfsfluss integriert. Insgesamt
sind folgende Beiträge in Bezug auf Teilaspekt I hervorzuheben, da sie über den
aktuellen Forschungsstand hinausgehen:

• Eine in Schichten strukturierte Laufzeitumgebung für die parallele Simu-
lation von SystemC-basierten Simulationsmodellen. Die Schichtenarchitek-
tur ist die Basis für Adaptivität, Konfigurierbarkeit und Optimierung der
parallelen Simulation in Abhängigkeit von Modell und Ausführungsplatt-

277

6. Schlussfolgerung und Ausblick

form. Auf Basis des Konzepts der Schichtenarchitektur wurden diverse
Parallelisierungsstrategien zu Vergleichszwecken umgesetzt.

• Methoden zur semi-automatischen und vollautomatischen Synthese von
parallelen SystemC Simulationen für zukünftige Manycore Architekturen.
Die vollautomatische Synthesemethode basiert auf einer Kombination aus
statischer Compileranalyse und dynamischer Laufzeitanalyse für die Ex-
traktion von Modellinformationen, mit dem Ziel der feingranularen Mo-
dellpartitionierung und der Konfiguration der zugrundeliegenden Lauf-
zeitumgebung.

• Die Klassifikation von logischen Links in zyklenakkuraten und zyklenap-
proximativen parallelen SystemC Simulationen in deadlock-kritisch und
deadlock-unkritisch anhand spezieller Modelleigenschaften. Es wurde ge-
zeigt, dass es möglich ist, zusätzliche Kausalitätsbedingungen für das Ker-
nelscheduling anhand von Eigenschaften logischer Links abzuleiten, deren
Einhaltung eine kausal korrekte und deadlockfreie parallele Ausführung
garantiert1. Der Ansatz dient zudem als Basis für eine Optimierung der
Performanz, insbesondere im Hinblick auf die Vermeidung globaler Syn-
chronisation.

• Eine Modellierungsmethodik für die zyklenapproximative MPSoC Simu-
lation auf Transaktionsebene, bestehend aus einem parallelisierbaren de-
terministischen TLM Kommunikationsprotokoll und einem hierarchischen
Scheduling. Die Kombination aus beidem kann zur adaptiven temporären
Entkopplung auf Basis einer dynamischen Berechnung sog. lokaler Quanta
genutzt werden. Die dynamische Berechnung lokaler Quanta gestattet eine
kontrollierte Beschränkung des zeitlichen Fehlers unter Verwendung von
Informationen über den Modellzustand zur Laufzeit.

• Die Anwendung von Laufzeitumgebung, Synthese- und Modellierungs-
methoden auf dem Single-chip Cloud Computer (SCC) und einem gewöhn-
lichen Shared Memory Multiprozessor und die Durchführung umfassen-
der Messreihen. Die Architektur des SCC dient als Blaupause für zukünf-
tige Manycore Architekturen.

In Bezug auf Teilaspekt II, die Verbesserung der Interoperabilität zwischen exis-
tierenden Simulationswerkzeugen, wurde die Problemstellung zunächst anhand
des Entwicklungsprozesses für zukünftige V2X basierte automobile E/E Archi-
tekturen konkretisiert. Die sich ergebende Haupteinsicht war, dass prinzipiell ei-
ne interdisziplinäre und nicht nur eine multidisziplinäre Herangehensweise not-
wendig ist, um Wechselwirkungen zwischen Teilsystemen möglichst frühzeitig

1Zyklenapproximative Modelle müssen der in Abschnitt 4.6 beschriebenen TL Modellierungsme-
thode folgen. Bei diesen Modellen ist eine Ableitung zusätzlicher Kausalitätsbedingungen für
das Kernelscheduling grundsätzlich nicht notwendig, da sie sich auf der Ebene von Timedcycles
selbst synchronisieren.

278

6.2. Ausblick

berücksichtigen zu können. Für ausführbare Modelle kann eine solche interdis-
ziplinäre Sichtweise durch kooperative Simulation erreicht werden.

Aus diesem Kontext heraus wurde ein methodischer Ansatz abgeleitet, der in
einem Entwicklungsprozess für eingebettete Systeme bei der schnellen Herstel-
lung von Interoperabilität zwischen heterogenen Simulationswerkzeugen hilf-
reich ist. Die Machbarkeit des Ansatzes wurde anhand einer prototypisch imple-
mentierten Werkzeugkette demonstriert und anhand verschiedener Fallstudien
untersucht und bewertet. Geleistete wissenschaftliche Beiträge bzgl. Teilaspekt
II, die über den aktuellen Stand der Forschung hinausgehen, sind:

• Die Verknüpfung eines heterogenen Modellierungs- und Simulationswerk-
zeugs namens Ptolemy II und einer Simulationsmiddleware namens High
Level Architecture zu einer Simulatorarchitektur. Diese dient als Basis für
eine Methode, welche es erlaubt, heterogene Simulationswerkzeuge struk-
turiert zu kombinieren und verteilt auszuführen. Die Methode erlaubt zu-
sätzlich eine explizite modellbasierte Spezifikation eines „Kommunikations-
vertrags“ zwischen Simulationswerkzeugen und HLA, wodurch die erlaub-
te statische und dynamische Semantik des Datenaustauschs festgelegt wird.
Sie lässt sich mit einer simulationsbasierten Entwurfsmethodik für einge-
bettete Systeme kombinieren.

• Die Umsetzung der Methode anhand einer Werkzeugkette, welche Ent-
wurf, Integration und Test einer heterogenen verteilten Co-Simulation teil-
automatisiert unterstützt. Neben der Rolle als Koordinator einer heteroge-
nen Co-Simulation zur Laufzeit dient Ptolemy II insbesondere auch als An-
wenderschnittstelle bei der Realisierung neuer Simulatorkopplungen vor
der Laufzeit. Mit Hilfe eines Simulatoradapters in Form einer eigens im-
plementierten erweiterbaren C++ Bibliothek ist es möglich, Schnittstellen-
spezifikationen direkt auszuführen, was für das Debugging nützlich ist.

• Die Demonstration der Anwendbarkeit des Gesamtkonzepts in verschie-
denen Fallstudien. Diese basieren auf verschiedenen Simulatorkopplun-
gen, welche wiederum aus unterschiedlichen Kombinationen von PtII, dem
Netzwerksimulator OMNeT++, dem V2X Simulator Veins und einem in
SystemC implementierten MPSoC Modell bestehen.

6.2. Ausblick

Die im dieser Dissertation erarbeiteten Konzepte und Methoden sowie die ent-
standenen Werkzeuge können als Ausgangspunkt für weitere Forschungsarbei-
ten im Bereich des rechnergestützten Entwurfs, der Modellierung und der Simu-
lation von zukünftigen eingebetteten elektronischen Systemen angesehen wer-

279

6. Schlussfolgerung und Ausblick

den. Dies schließt sowohl die Entwicklung von Methoden mit ein, welche die
in dieser Dissertation erarbeiteten Methoden weiterentwickeln, als auch die An-
wendung der entstandenen Werkzeuge für die Untersuchung neuer Applikatio-
nen und Funktionen.

Die umgesetzten Strategien zur parallelen SystemC Simulation sind für die Nut-
zung in Verbindung mit zyklenakkuraten und ausgewählten zyklenapproxima-
tiven TL Modellen sowie homogenen Ausführungsplattformen geeignet. Ziel zu-
künftiger kann es sein, die Methoden auf eines größeres Spektrum von Modellie-
rungsstilen sowie eine Kombination aus heterogenen Ausführungsplattformen
zu erweitern.

Auch die entwickelten Ansätze zur Verbesserung der Interoperabilität bieten Po-
tential für zukünftige Arbeiten. Für die Integration weiterer disziplinspezifischer
Simulatoren sind detailliertere Untersuchungen hinsichtlich der Fragestellung
notwendig, welche Charakteristika von Berechnungsmodellen zu welcher dyna-
mischen Semantik des Datenaustauschs führen und wie sich dies auf die Kopp-
lung auswirkt. Aus einer anwendungsorientierten Perspektive ist eine Übertra-
gung der Konzepte auf andere einschlägige Standards wie FMI denkbar. Auch
eine Zusammenführung paralleler und kooperativer Simulationsmethoden ist
erstrebenswert.

Durch die prinzipielle Erweiterbarkeit aller umgesetzten Komponenten sind zu-
künftige Arbeiten im Kontext der Anwendung von paralleler oder kooperativer
Simulation mit Hilfe der entwickelten Werkzeuge nicht auf eine bestimmte An-
wendungsdomäne für eingebettete Systeme beschränkt. Am ITIV werden beide
Werkzeuge in erster Linie für die Forschung im Bereich eingebetteter Multipro-
zessorsysteme sowie V2X basierter automobiler E/E Architekturen dienen.

280

A. On-Chip Kommunikation auf

dem SCC

Da der MPB Speicher des SCC auf 48× 16 KB limitiert ist, eignet er sich weni-
ger für die Anwendung in einem traditionellen SHM Kontext, als vielmehr zum
Zwischenpuffern von Nachrichten beim Message-Passing (MP). Tatsächlich be-
sitzen die Kerne des SCC mit dem MPB eine native Hardwareschnittstelle für
einseitige Kommunikation [110] (vgl. Abschnitt 2.4.2.2). Mechanismen zur

1. Speicherorganisation des MPB,

2. Zugriffssteuerung und Synchronisation sowie

3. Integration mit dem privaten Speicherbereich eines jeden SCC Kerns

stehen jedoch nicht unmittelbar zur Verfügung, sondern müssen softwaresei-
tig in Form eines Protokolls realisiert werden. Der Entwurfsraum für ein sol-
ches Protokoll präsentiert sich als multidimensional. In [222] sind mögliche Ent-
wurfsalternativen für den Spezialfall nicht-blockierender einseitiger Übertragung
von kleinen Nachrichten (< 200 Byte) zusammenfassend dargestellt. Alleine da-
für werden insgesamt sechs Dimensionen aufgeführt.

A.1. Existierende leichtgewichtige Lösungen

Die standardmäßig von Intel für den SCC zur Verfügung gestellte RCCE Biblio-
thek [198][15] umfasst bereits eine einfache MP API zur On-Chip Kommunika-
tion. Dazu teilt RCCE die 16 KB MPB Speicher, die pro Tile vorhanden sind, in
jeweils zwei 8 KB große Blöcke auf. Ein kleiner Teil dieser Blöcke wird für Status-
flags benutzt, der Rest dient als Puffer für das MP. Für den Datenaustausch exis-
tiert die Gory API und die Basic API. Erstere ist einseitig und nicht-blockierend,
Letztere zweiseitig und blockierend. Verlustfreie Kommunikation ist nur mit der
Basic API möglich. Die enge Kopplung von Sende- und Empfangsvorgängen,
die mit der zweiseitigen blockierenden Basic API einhergeht, kann aus folgen-
den Gründen zum Nachteil werden:

281

A. On-Chip Kommunikation auf dem SCC

1. Durch die blockierende Schnittstelle erfolgen Sende-, Empfangs- und Be-
rechnungsvorgänge innerhalb eines Prozesses zwangsläufig sequentiell. Da-
mit muss die Reihenfolge von Sende- und Empfangsvorgängen auch zwi-
schen Prozessen einer Topologie bekannt sein, um Deadlocks zu vermeiden
(vgl. Ringshift-Beispiel in [198]).

2. Durch die implizite Synchronisation während einer einzelnen Übertragung
können mehrere Sende- und Empfangsvorgänge zwischen Prozessen nicht
asynchron zueinander erfolgen.

3. Zu jedem Zeitpunkt kann innerhalb eines 8 KB MPB Blocks immer nur
eine einzige Nachricht gespeichert werden. Bei Übertragung relativ kleiner
Nachrichten kann die Bandbreite einbrechen (vgl. [198]).

In der sog. iRCCE Bibliothek [89] existiert zwar eine nicht-blockierende Schnitt-
stelle. Allerdings erfolgt eine einzelne Datenübertragung mit dieser Schnittstelle
weiterhin zweiseitig und damit synchron. Die hat zur Folge, dass Prozesse wäh-
rend eines Sende- oder Empfangsvorgangs solange aktiv pollen müssen, bis eine
Synchronisation mit dem Kommunikationspartner stattgefunden hat. Auch der
Pipelinemodus von iRCCE basiert auf einer blockierenden Schnittstelle und ar-
beitet prinzipiell synchron. Zudem ist der Pipelinemodus nur für Datenpakete
sinnvoll anwendbar, die größer als 8 KB sind [89].

A.2. Implementierung

Aus den genannten Gründen wurde die RCCE Bibliothek um die Möglichkeit
zur verlustlosen einseitigen Kommunikation erweitert. Diese ist bei unregelmä-
ßigen Kommunikationmustern vorteilhaft [110, 48]. Insbesondere wird die Kom-
munikation von der Synchronisation separiert, was die Grundlage für die Imple-
mentierung einer von der Basisdienstebene unabhängigen logischen Ebene ist.

Im Unterschied zu RCCE und iRCCE basiert das entwickelte Verfahren auf dyna-
mischen Message Queues für jeden SCC Kern. Diese werden im MPB Speicher-
bereich des jeweiligen Tiles instanziiert. Zur Übertragung einer Nachricht muss
ein Sender die Nachricht in die Message Queue des Empfängers schreiben. In ei-
ner Message Queue können gleichzeitig mehrere Nachrichten vorgehalten wer-
den. Sender und Empfänger müssen einen Übertragungsvorgang nicht mehr ak-
tiv koordinieren. Das Prinzip ist in Abb. A.1 am Beispiel der Kommunikation
zwischen zwei SCC Kernen A und B illustriert.

Betrachtet man beispielsweise die Übertragung einer Message von Kern A nach
Kern B, so existiert eine Kette von zwei Puffern, bestehend aus einem Send Buffer
Objekt im privaten Speicherbereich von Kern A und einem als Stream Buffer be-
zeichneten Speicherbereich im gemeinsam genutzten MPB Bereich auf der Seite

282

A.2. Implementierung

des empfangenden Kerns B. Der Datentransfer über diese Kette von Puffern wird
auf Sender- und Empfängerseite jeweils durch ein Message Buffer Objekt gesteu-
ert. Dieses organisiert den Stream Buffer als statischen oder dynamischen Ring-
puffer. Als Grundlage dafür greift das Message Buffer Objekt auf einen Stream
Proxy zurück, welcher den Stream Buffer zunächst als bytebasierten statischen
Ringpuffer organisiert.

Shared MPB Space Core B

Private Memory Space Core A

Message Buffer

Stream Buffer

Send Buffer

Object

Stream Proxy

Message

Shared MPB Space Core A

Stream Buffer

Private Memory Space Core B

Message Buffer

Stream Proxy Send Buffer

Message

Reserved Memory Space

Abbildung A.1.: On-Chip Message-Passing am Beispiel zweier SCC Kerne

A.2.1. Send Bu�er

Der Send Buffer befindet sich im privaten Speicherbereich. Er dient der Zwischen-
speicherung von Nachrichten, bevor eine Übertragung über das NoC zum einem
beliebigen Stream Buffer erfolgt. Ein Send Buffer setzt sich aus mehreren verket-
teten Listen zusammen, einer Receiver List und mehreren Message Lists. In der
Receiver List werden IDs aller erreichbaren SCC Kerne mit Zeigern auf die Mes-
sage Lists abgespeichert. Eine ID identifiziert damit sowohl eine Message List im
privaten Speicher als auch den zugehörigen Stream Buffer im MPB Bereich des
jeweiligen Ziel SCC Kerns. Eine Message List besteht aus Zeigern auf Messages.
Messages werden dabei immer in der Reihenfolge abgespeichert, in der sie einge-
fügt wurden. Die Größe der Message Lists ist allein durch die Größe des verfüg-
baren privaten Speichers eines SCC Kerns beschränkt.

A.2.2. Stream Proxy

Ein Stream Proxy verfügt über einen bufStart Zeiger, mit dem beliebige Stream
Buffer Speicherbereiche referenziert werden können. Im Lesefall referenziert der
bufStart Zeiger den eigenen Stream Buffer. Im Schreibfall referenziert der bufStart
Zeiger einen Stream Buffer eines anderen SCC Kerns.

283

A. On-Chip Kommunikation auf dem SCC

Stream Buffer werden von einem Stream Proxy als statische Ringpuffer zur Über-
tragung von Bytestreams organisiert. Die Implementierung beinhaltet die Cache-
kohärenzsicherung durch Anwendung des SCC-spezifischen Invalidierungsme-
chanismus: Damit L1 Caching beim MPB Zugriff möglich ist (MPMT + L1CM,
vgl. Abschnitt 2.4.3.2), muss sowohl vor einer Lese- als auch vor einer Schreib-
operation zunächst die CL1INVMB Instruktion ausgeführt werden (vgl. Abschnitt
2.4.3.2). Bei einem Schreibvorgang werden dabei nur Daten mit einer Granula-
rität von 32 Byte (Größe einer Cachline) vom vorgeschalteten Write-Combine
Buffer (WCB) unmittelbar in den MPB übertragen (WCB Flush). Um einen WCB
Flush auch bei Daten von geringerer Größe als einer Cacheline auszulösen, ge-
nügt es, Junk-Daten in irgendeine beliebige Cacheline zu schreiben.

In Abb. A.3 ist die Speicherorganisation durch den Stream Proxy anhand der hell-
grau unterlegten Felder dargestellt. Der bufStart Zeiger speichert die Startadres-
se eines Stream Buffers. bufSize entspricht dessen Gesamtgröße in Bytes. bufOffset
spezifiziert die Distanz zu bufStart in Bytes, ab der ein Schreib- bzw. Lesezugriff
erfolgen soll.

• Lesezugriff: Falls readSize ≤ bufSize, so werden die MPMT Zeilen im L1
Cache mit der CL1INVMB Instruktion invalidiert und unter Berücksichti-
gung der Modulo-Arithmetik readSize Bytes vom Stream Buffer eingelesen.
Falls readSize > bufSize, liegt ein Fehlerzustand vor.

• Schreibzugriff: Falls writeSize ≤ bufSize, so werden die MPMT Zeilen im
L1 Cache mit der CL1INVMB Instruktion invalidiert und unter Berücksich-
tigung der Modulo-Arithmetik writeSize Bytes in den zugehörigen Stream
Buffer geschrieben. Falls writeSize > bufSize, so liegt ein Fehlerzustand vor.

A.2.3. Message Bu�er

Der Message Buffer hat drei Aufgaben: I) Verwaltung der Stream Buffer als stati-
sche oder dynamische Ringpuffer mit einer Granularität von sog. Transmissions
II) Garantie eines wechselseitigen Ausschlusses bei Stream Buffer Zugriffen III)
Vermeidung von Stream Buffer Überläufen.

A.2.3.1. Verwaltung statischer oder dynamischer Ringpu�er

Zur Abbildung von Messages auf einen durch den Stream Proxy bereitgestellten
Bytestream verwaltet der Message Buffer einen statischen oder einen dynami-
schen Ringpuffer auf Basis von Transmissions. Transmissions sind immer Vielfache
von einem Byte. Im Fall eines dynamischen Ringpuffers können sie in der Grö-
ße variieren. Da statische Ringpuffer ein vereinfachter Sonderfall dynamischer
Ringpuffer sind, werden im Folgenden nur dynamische Ringpuffer beschrieben.

284

A.2. Implementierung

Eine Transmission besteht aus einem drei Byte Header und einem Payload von va-
riabler Größe (siehe Abb. A.2). Der Header besteht wiederum aus einer processID
und einem size Feld. Die processID identifiziert den sendenden SCC Kern, die size
spezifiziert die Größe des Payloads.

2 Byte 1 Byte size Byte

Transmission
Header

size
Payload

processID ...

Abbildung A.2.: Struktur einer Transmission

In Abb. A.3 ist dargestellt, wie Transmissions im Fall eines dynamischen Ring-
puffers auf einzelne Bytes abgebildet werden. Im Beispiel befindet sich die erste
(am längsten im Puffer befindliche) Transmission rechts und die zuletzt gespei-
cherte Transmission links. Um beide identifizieren zu können, werden zusätzlich
zwei Adresszähler namens first und last im MPB Speicherbereich allokiert. Ers-
terer zeigt auf das erste Byte der ersten Transmission, Letzterer auf das erste Byte
des noch unbelegten Speichers im Stream Buffer. Aufgrund der Tatsache, dass
Transmissions linear in der Reihenfolge der Schreibzugriffe abgelegt werden, ist
es möglich, den bufOffset der nächsten zu lesenden Transmission durch Addition
des bufOffset der letzten gelesenen Transmission mit deren Header- und Payload-
länge wie folgt zu berechnen: bufOffsetnew = bufOffset + 3 + size. Das Gleiche gilt
für die Berechnung des nächsten bufOffset zum Schreiben einer neuen Transmis-
sion.

Stream Buffer
bufSize

bufOffset (write)

Message Buffer

Stream Proxy

bufOffset (read)

bufStart

first last Header Payload empty Header Payload

1B 1B 1B 1B 1B 1B 1B 1B ... 1B 1B 1B 1B 1B 1B 1B 1B 1B ...

Abbildung A.3.: Abbildung statischer und dynamischer Ringpuffer in den MPB

285

A. On-Chip Kommunikation auf dem SCC

A.2.3.2. Wechselseitiger Ausschluss

Ohne garantierten wechselseitigen Ausschluss kann das Ergebnis von Speicher-
zugriffen von einer zufälligen Zugriffsreihenfolge abhängen. Solche sog. Race
Conditions können dann auftreten, wenn Speicherzugriffe nicht atomar sind. Bei
Verwendung des MPMT+L1C Modus ist atomarer Zugriff nur für Schreibopera-
tionen garantiert, die an eine Cachline (32 Byte) angepasst sind und die eine Ca-
cheline in der Größe weder über- noch unterschreiten (vgl. Abschnitt 2.4.3.2). Für
alle anderen Zugriffe muss wechselseitiger Ausschluss mit zusätzlichen Mecha-
nismen hergestellt werden. Die implementierte Methode unterscheidet wechsel-
seitigen Ausschluss zwischen Sendern, die auf ein und denselben Stream Buffer
zugreifen wollen, von wechselseitigem Ausschluss zwischen einem Sender und
einem Empfänger.

Im ersten Fall wir im MPB Bereich eines jeden SCC Kerns ein Datenfeld instanzi-
iert, welches die processID des Senders speichert, der aktuell exklusiven Schreib-
zugriff auf den zugehörigen Stream Buffer hat. Setzen oder Löschen des Daten-
feldes wird über das Test-and-Set Register des jeweiligen Kerns geschützt. Die
Methode entspricht der Implementierung von Synchronization Flags in der RC-
CE Bibliothek [266].

der zweite Fall kann vollständig ohne Test-and-Set Register umgesetzt werden.
Dazu werden die first und last Zeiger ebenfalls in separate Cachelines geschrie-
ben. Da Schreibzugriffe bei Verwendung des MPMT+L1C Modus bis 32 Byte ato-
mar erfolgen, können Sender und Empfänger ohne zusätzliche Synchronisation
auf den Stream Buffer zugreifen.

A.2.3.3. (De-)Serialisierung und Flusssteuerung

Das Senden einer Nachricht beinhaltet die Serialisierung von Daten, die in Mes-
sage Objekten gespeichert sind, in einen Payload, das Hinzufügen eines Headers
und den Transfer in den Stream Buffer mit Hilfe des Stream Proxy Objekts. Ein
Lesezugriff auf Empfängerseite beinhaltet das Auslesen von Daten, die Extrakti-
on von Header und Payload sowie die anschließende Deserialisierung in Message
Objekte.

Um Datenverlust zu vermeiden, werden Nachrichten im Send Buffer zwischen-
gespeichert, sobald der Stream Proxy einen vollen Stream Buffer meldet. Der zwei-
stufige Pufferungsmechanismus mit dem zusätzlichen Puffer im privaten Spei-
cher ist damit Voraussetzung für nicht-blockierende Kommunikation. Eine ge-
nerelle Zwischenpufferung im Send Buffer ist optional möglich.

286

B. Services der HLA

B.1. Kategorien

Die verschiedenen Kategorien der HLA Schnittstellen [23] haben folgende Auf-
gaben:

1. Die Federation Management (FM) Services sind für die Erzeugung, dynami-
sche Kontrolle, Modifikation und Löschung von Federations verantwort-
lich.

2. Die Declaration Management (DM) Services werden von Federates zur De-
klaration von Information genutzt, die von ihnen generiert (published) und
konsumiert (subscribed) werden kann.

3. Die Object Management (OM) Services dienen zur Registrierung, Modifi-
kation und Löschung von Instanzen von HLA Objects und Interactions.
Insbesondere kann für jedes Federate spezifiziert werden, welche Aktuali-
sierungen für welche HLA Object / Interaction Classes es publizieren (pu-
blish) oder abonnieren (subscribe) möchte.

4. Die Ownership Management (OWM) Services werden von Federates und RTI
genutzt, um den Besitz von Instanzen von HLA Attributes zwischen Fede-
rates zu übertragen.

5. Die Time Management (TM) Services stellen Mechanismen bereit, um die
Reihenfolge der Zustellung von Nachrichten während der Ausführung ei-
ner Federation zu ordnen.

6. Die Data Distribution Management (DDM) Services erlauben es den Federa-
tes, die Menge der zu sendenden und emfangenden Informationen anhand
von zusätzlichen Informationen über deren Relevanz gezielt zu reduzieren.

7. Die Support Services fassen sonstige Dienste zusammen, welcher z.B. zur
Transformation von Namen auf Handles und umgekehrt, zum Auslesen
von Variablen oder zum Setzen von Flags dienen.

287

B. Services der HLA

B.2. Verwendete HLA 1.3 Services

Folgende DoD HLA 1.3 Services (einige Support Services ausgenommen) wur-
den im Rahmen dieser Arbeit verwendet (vgl. [257]):

Federation Management:

• A.1.1 createFederationExecution(): Erzeugt eine aktive Federation und regis-
triert diese bei der RTI.

• A.1.2 destroyFederationExecution(): Löscht die Registrierung einer aktiven
Federation bei der RTI und fährt diese herunter.

• A.1.10 joinFederationExecution(): Stellt eine Anfrage zum Beitritt in eine Fe-
deration und initialisiert den RTI Ambassador mit federationspezifischen
Daten (FED Datei).

• A.1.12 registerFederationSynchronizationPoint(): Initiiert die Registrierung ei-
nes Haltepunktes, der zur Synchronisation einiger oder aller Federates dient.
Die Synchronisation selbst erfolgt im Rahmen einer federationspezifischen
Semantik.

• A.1.18 resignFederationExecution(): Beendet die Teilnahme eines Federates
innerhalb einer Federation.

• A.1.22 synchronizationPointAchieved(): Informiert die Federation darüber, dass
das Federate die federationspezifischen Kriterien erfüllt hat, die mit der Er-
reichung des Synchronisationspunktes verbunden sind, der zuletzt regis-
triert wurde.

• B.1.1 announceSynchronizationPoint(): Informiert das Federate darüber, dass
im Rahmen einer federationspezifischen Semantik die Registrierung eines
Synchronisationspunktes angefordert wurde.

• B.1.7 federationSynchronized(): Informiert ein Federate darüber, dass ein zu-
vor beim Federate registrierter Synchronisationspunkt von allen relevanten
Federates erreicht wurde.

• B.1.15 synchronizationPointRegistrationFailed(): Informiert ein Federate dar-
über, dass der Versuch, einen Synchronisationspunkt zu registrieren, fehl-
geschlagen ist.

• B.1.16 synchronizationPointRegistrationSucceeded(): Informiert ein Federate
darüber, dass der Versuch, einen Synchronisationspunkt zu registrieren, er-
folgreich war.

Declaration Management:

• A.2.2 publishObjectClass(): Informiert die RTI über die Absicht eines Fede-
rates, Instanzen von Attributen einer bestimmten Object Class zu erzeugen
und zu aktualisieren.

288

B.2. Verwendete HLA 1.3 Services

• A.2.5 subscribeObjectClassAttributes(): Informiert die RTI über die Absicht ei-
nes Federates, Aktualisierungen (sog. Refelctions) für eine bestimmte Men-
ge von Attributen einer Object Class zu empfangen.

Object Management:

• A.3.7 registerObjectInstance(): Erzeugt eine neue Instanz einer Object Class
innerhalb der Federation. Alle Attribute einer Object Class, die vom Fede-
rate publiziert werden, müssen dann vom Federate auf dieser Instanz auch
aktualisiert werden (sog. Instanz-Attribute).

• A.3.12 updateAttributeValues(): Informiert die Federation über die Ände-
rung des Wertes eines oder mehrerer Instanz-Attribute einer Object Class
Instanz.

• B.3.4 discoverObjectInstance(): Informiert ein Federate über die Existenz ei-
ner HLA Object Instance innerhalb der Federation, welche für das Federa-
te, aufgrund einer zuvor getätigten Subskription, relevant ist.

• B.3.7 reflectAttributeValues(): Informiert ein Federate über die Aktualisie-
rung der Werte einer Menge von Instanz-Attributen, welche für das Fe-
derate, aufgrund einer zuvor getätigten Subskription, relevant ist.

Time Management:

• A.5.7 enableTimeConstrained(): Instruiert die RTI, den Zeitfortschritt eines
Federates unter Berücksichtigung der Zeit der Federation zu beschränken
und Nachrichten mit Zeitstempel in der korrekten Reihenfolge zu übermit-
teln.

• A.5.8 enableTimeRegulation(): Instruiert die Federation, die lokale Zeit des
Federates bei der Berechnung der Zeit der Federation zu berücksichtigen.

• A.5.12 nextEventRequestAvailable(): Fragt einen Zeitfortschritt bis zu einem
als Parameter übergegebenen Zeitstempel an. Bei einem darauffolgenden
timeAdvanceGrant() ist nicht garantiert, dass alle Aktualisierungen für einen
bestimmten Zeitpunkt vollständig übermittelt worden sind.

• B.5.2 timeAdvanceGrant(): Informiert ein Federate darüber, dass eine vor-
ausgegangene Anfrage bzgl. eines Zeitfortschritts abgeschlossen ist. Dabei
wird der neue Wert der lokalen Zeit zurückgeliefert.

• B.5.3 timeConstrainedEnabled(): Informiert das Federate, dass die zuvor per
enableTimeConstrained() getätigte Anfrage erfolgreich war.

• B.5.4 timeRegulationEnabled(): Informiert das Federate, dass die zuvor per
enableTimeRegulation() getätigte Anfrage erfolgreich war.

289

Abbildungsverzeichnis

1.1. Intel CPUs zwischen 1970 und 2010 (Quelle: [243]) 3

2.1. Y-Diagramm nach Gajski und Kuhn [115] 11
2.2. Plattformbasierter Entwurf (Quelle: [230]) 14
2.3. Abtastung des Ausgaberaums bei a) simulativer und b) formaler

Verifikation (Quelle: [130]) . 16
2.4. Grundstruktur eines Simulators . 18
2.5. Klassifikation von Berechnungsmodellen (Quelle: [217]) 20
2.6. Komponenten einer DE Simulation und deren Beziehungen (Quel-

le: [173], modifiziert) . 23
2.7. Diskrete ereignisbasierte Simulation 25
2.8. Beispiel eines Prozessnetzwerks bestehend aus vier logischen Pro-

zessen . 26
2.9. Gegenüberstellung von synchronen (oben) und asynchronen (un-

ten) Algorithmen . 29
2.10. Architektur der SystemC Bibliothek (Quelle: [55]) 34
2.11. Kommunikation über einen Primitive Channel 37
2.12. Sequentieller SystemC Scheduler . 39
2.13. Kommunikation zwischen Initiator und Target (Quelle: [27]) 41
2.14. Anwendungsfälle, Coding Styles und Mechanismen von TLM 2.0

(Quelle: [27]) . 43
2.15. Konkrete visuelle Syntax von Ptolemy II (Quelle: [217]) 45
2.16. Kommunikation in Ptolemy II (Quelle: [217]) 46
2.17. Ausführung eines PtII Modells (Quelle: [217]) 47
2.18. Klassifikation von Computerarchitekturen nach Flynn 50
2.19. Verfeinerte Klassifikation von MIMD Architekturen (nach [247]) . . 52
2.20. Wafer des SCC (Quelle: www.intel.com) 54
2.21. SCC Architektur Blockdiagramm . 55
2.22. Limitierung der Beschleunigung nach Amdahl (Quelle: [63]) 61

3.1. Levels of Conceptual Interoperability Model (Quelle: [262]) 71
3.2. Konzept des Functional Mock-up Interface (FMI) (Quelle: [29]) . . . 73
3.3. High Level Architecture (HLA) . 74

291

Abbildungsverzeichnis

3.4. Distributed Simulation Engineering and Execution Process (Quel-
le: [26]) . 76

4.1. Synthese einer parallelen MPSoC Simulation 82
4.2. Hermes Multiprocessor System (HeMPS) [75] 83
4.3. HeMPS Entwurfsfluss (Quelle: [75]) 83
4.4. DDG einer Ausführung des sequentiellen SystemC Schedulers . . . 87
4.5. Implementierte Konzepte . 92
4.6. Architekturkonzept der asymmetrischen synchronen Strategie . . . 95
4.7. Zustandsmaschine im Master km . 99
4.8. Zustandsmaschine in einem Worker kw

i 100
4.9. Speichernutzung bei asymmetrischer Kernelpartitionierung 101
4.10. Pufferung beim Evaluate/Update Paradigma (Quelle: [Red11]) . . 104
4.11. Struktur des synthetischen Pipelinemodells 107
4.12. Beschleunigung der synthetischen Ringpipeline mit m = 1 und

n = 5 . 108
4.13. Beschleunigung der synthetischen Ringpipeline mit m = 100 und

n = 5 . 109
4.14. Beschleunigung der synthetischen Ringpipeline in Abhängigkeit

der Anzahl an SystemC Prozessen 110
4.15. Beschleunigung der HeMPS Modells in Abhängigkeit von Mo-

dellgröße und Anzahl an Workern 111
4.16. Architekturkonzept der symmetrischen synchronen Strategie . . . 113
4.17. Entstehung von Deadlocks beim Null Message Algorithmus 117
4.18. GLP (links) und Gcrit

LP (rechts) ohne zirkuläre Abhängigkeiten zwi-
schen deadlock-kritischen logischen Links 119

4.19. Integration nachrichtenbasierter Kommunikation 122
4.20. Asynchrone Zustandsmaschine in einer Kernelkomponente ks

i . . . 124
4.21. Speichernutzung bei symmetrischer Kernelpartitionierung 126
4.22. Teilautomatisierte Werkzeugkette . 127
4.23. Erweiterter HeMPS Editor . 128
4.24. Beschleunigung RTL parallel vs. RTL seriell 130
4.25. Beschleunigung CAS parallel vs. RTL seriell 131
4.26. Abbildung von Tasks und Modellpartitionen 132
4.27. Sensitivitätsgraph GS mit den MengenR(ωτ , θ) (Quelle: [Red14]) . 141
4.28. GLP (links) und Gcrit

LP (rechts) mit zirkulären Abhängigkeiten zwi-
schen deadlock-kritischen logischen Links 144

4.29. Integration nachrichtenbasierter Kommunikation 146
4.30. Adaptive Zustandsmaschine in einer Kernelkomponente ks

i 149
4.31. Speichernutzung bei adaptiver Synchronisation 150
4.32. Vollautomatisierte Werkzeugkette 152
4.33. Klassendiagramm der statischen abstrakten Darstellung (Quelle:

[Red14]) . 154

292

Abbildungsverzeichnis

4.34. Klassendiagramm der dynamischen abstrakten Darstellung (Quel-
le: [Red14], erweitert) . 158

4.35. Beschleunigung bei fester Partitionierung und variabler Domä-
nengröße . 162

4.36. Grobgranulare versus feingranulare Partitionierung 163
4.37. Optimierte versus Toplevel Partitionierung 164
4.38. Beschleunigung von HeMPS (RTL PEs) mit Strategie I und adap-

tiver Synchronisation . 166
4.39. Beschleunigung von HeMPS (CAL PEs) mit Strategie I und adap-

tiver Synchronisation . 166
4.40. Beschleunigung von HeMPS (RTL PEs) mit Strategie II und adap-

tiver Synchronisation . 168
4.41. Beschleunigung von HeMPS (RTL PEs) mit Strategie II und globa-

len Barriers . 168
4.42. Prinzip der TL Modellierungsstrategie 171
4.43. Grundlegende Bausteine der Modellierungsstrategie 173
4.44. Zustandsmaschine Basisvariante . 181
4.45. TL Modell des Hermes Routers (links) und dessen Latenzgraph

GL (rechts) . 184
4.46. Graph Gv

L für die Vorwärtspfade (oben) und Graph Gr
L für die

Rückwärtspfade (unten) . 185
4.47. Zustandsmaschine bei Latenzprädiktion 189
4.48. Kongestion der Puffer beim Single Sender Pattern 192
4.49. Kongestion der Puffer beim Transpose Pattern 192
4.50. Durchschnittliche Abweichung der Paketverzögerung (Random

Pattern) . 193
4.51. Durchschnittliche Abweichung des Durchsatzes (Random Pattern) 194
4.52. Charakteristika von Performanz und Genauigkeit der Simulation

eines 8x8 HeMPS Modells auf dem SCC 196
4.53. Charakteristika von Performanz und Genauigkeit der Simulation

eines 8x8 HeMPS Modells auf dem Core i7 930 196
4.54. Input Controller FSM (links) und Switch Controller FSM (rechts) . 199
4.55. Beschleunigung auf dem Core i7 930 204
4.56. Beschleunigung auf dem SCC . 205
4.57. Vergleich der Laufzeiten . 206

5.1. Evolution der Komplexität von E/E Architekturen (Quelle: [51]) . . 212
5.2. Architekturkonzept zur interdisziplinären Co-Simulation 216
5.3. Vorgehensweise zur Werkzeugkopplung 222
5.4. Softwarearchitektur von CERTI (Quelle: [209]) 224
5.5. Toplevel Klassendiagramm von SDEMMlib 225
5.6. Simulation Object Metamodel . 226
5.7. Behavioral Interface Metamodel . 228

293

Abbildungsverzeichnis

5.8. Semi-automatische Werkzeugkopplung (PtolemyII_First Sicht) . . . 232
5.9. Behavioral Interface Model FSM für die PtII DE Domäne 235
5.10. Beispielhafte Aufrufsequenz von Methoden im HLADEDirector (Sicht

von PtolemyII_First) . 240
5.11. Beispiel für eine Multi-Federation . 241
5.12. Trade-offs zwischen der Simulation von Netzwerken und Hard-

ware/Software (Quelle: [263]) . 244
5.13. Konzept der System/Netzwerk Co-Simulation 246
5.14. Modell der Networked MPSoC Federation 247
5.15. Verteilte und lokale Netzwerkknoten 248
5.16. MPSoC Federate . 249
5.17. Struktur der Beispielanwendungen 250
5.18. Verwendete Konfigurationen von Wireless HeMPS 251
5.19. Dummy Applikation . 251
5.20. MPEG Applikation . 252
5.21. Gemessene Beschleunigung bei verteilter Ausführung 253
5.22. Aspekte und Wechselwirkungen in einer Simulation für V2X-basierte

E/E Architekturen . 254
5.23. Architektur des Veins Frameworks (Quelle: [238]) 258
5.24. Multi-Federation zur Simulation von E/E Architekturen 260
5.25. Modell der HeMPS Federation . 262
5.26. Modell der Veins Federation . 263
5.27. Straßenkreuzungen mit einem Abstand von 200 m in Veins 266
5.28. Messwerte mit Radar ACC, rot = vorausfahrendes Fahrzeug, blau

= nachfolgendes Fahrzeug . 268
5.29. Messwerte mit V2X ACC, rot = vorausfahrendes Fahrzeug, blau =

nachfolgendes Fahrzeug . 269
5.30. V2X ACC als Applikation auf HeMPS, rot = vorausfahrendes Fahr-

zeug, blau = nachfolgendes Fahrzeug 272

A.1. On-Chip Message-Passing am Beispiel zweier SCC Kerne 283
A.2. Struktur einer Transmission . 285
A.3. Abbildung statischer und dynamischer Ringpuffer in den MPB . . 285

294

Tabellenverzeichnis

4.1. Einfluss von Task- und Modellabbildung 133
4.2. Laufzeitverlust durch globale Synchronisation 163
4.3. Modellelemente und Abstraktionebenen 195
4.4. Plattformunabhängige Charakteristika 203

5.1. Modellparameter des IDM (Quellen: [254, 160]) 265
5.2. Gewählte IDM Modellparameter . 266

295

Abkürzungsverzeichnis

Abkürzungen
AP Abstract Representation
API Application Programming Interface
AST Abstract Syntax Tree
AT Approximately-Timed
BIM Behavioral Interface Model
BIMM Behavioral Interface Metamodel
BOM Base Object Model
CAE Computer-aided Engineering
CAL Cycle-Approximate Level
CAM Cooperative Awareness Message
CAP Channel Activity Property
CAS Compare-and-Set
CAS Cycle-Approximate Simulator
CC-NUMA Cache-Coherent Non-Unified Memory Access
CC-UMA Cache-Coherent Unified Memory Access
CM Cached Mode
CMB Chandy-Misra-Bryant
COMA Cache Only Memory Access
COW Cluster of Workstations
CPI Cycles Per Instruction
CPS Cyber-Physical-System
CPU Central Processing Unit
CT Continuous Time
DAG Directed Acyclic Graph
DAR Dynamic Abstract Representation
DBP Delta-Boundedness Property
DDG Dynamic Dependency Graph
DDM Data Distribution Management
DdW Drive-by-Wire
DE Discrete Event
DES Discrete Event Simulation
DLP Data-Level Parallelism
DLP Dynamische Latenzprädiktion

297

Abkürzungsverzeichnis

DM Declaration Management
DM Distributed Memory
DMSO Defense Modeling and Simulation Office
DoD Department of Defense
DSC Domain Starvation Condition
DSEEP Distributed Simulation Engineering and Execution Process
DSM Distributed Shared Memory
E/E Elektrik/Elektronik
E/U Evaluate/Update
ECU Electronic Control Unit
EDA Electronic Design Automation
ELOCC Extended Local Causality Condition
ESL Electronic System-Level
FDD Federation Object Model Document Data
FED Federation Execution Data
FIFO First-In-First-Out
FM Federation Management
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
FOM Federation Object Model
FSM Finite State Machine
GME General Modeling Environment
GPGPU General Purpose Computation on Graphics Processing Unit
GPU Graphics Processing Unit
HDL Hardware Description Language
HdS Hardware-dependent Software
HeMPS Hermes Multiprocessor System
HLA High Level Architecture
HMT Hardwareseitiges Multithreading
HW Hardware
I/O Input/Output
IAA Intra-Phasen-Abhängigkeiten
IDM Intelligent Driver Model
IEEE Institute of Electrical and Electronics Engineers
IFW Interface Wrapper
IKT Informations- und Kommunikationstechnologie
ILP Instruction-Level Parallelism
IPC Inter-Process Communication
IR Intermediate Representation
IRA Inter-Phasen-Abhängigkeiten
ISO International Organization for Standardization
JITC Just-in-Time Compilation

298

Abkürzungsverzeichnis

LAN Local Area Network
LAP Link Activity Property
LBP Link Boundedness Property
LCC1 First Link Criticality Condition
LCC2 Second Link Criticality Condition
LCIM Levels of Conceptual Interoperability Model
LDP Link Delay Property
LLVM Low Level Virtual Machine
LOBC Local Bound Condition
LOCC Local Causality Condition
LT Loosely-Timed
LUT Lookup Table
M&S Modellierung und Simulation
MDA Model-driven Architecture
MESI Modified Exclusive Shared Invalid
MIC Many-Integrated-Core
MIC Model Integrated Computing
MIMD Multiple Instruction Multiple Data
MIPS Microprocessor without Interlocked Pipeline Stages
MISD Multiple Instruction Single Data
MIU Mesh Interface Unit
ML Mixed Level
MLCC1 Modified First Link Criticality Condition
MoC Model of Computation
MoML Modeling Markup Language
MP Message Passing
MPB Message Passing Buffer
MPI Message Passing Interface
MPMT Message Passing Memory Type
MPP Massively Parallel Processors
MPSoC Multiprocessor System-on-Chip
NCC-NUMA Non-Cache-Coherent Non-Unified Memory Access
NCC-UMA Non-Cache-Coherent Unified Memory Access
NERA Next Event Request Available
NI Network Interface
NMA Null Message Algorithmus
NoC Network-on-Chip
NOW Network of Workstations
NUMA Non-Unified Memory Access
OEM Original Equipment Manufacturer
OM Object Management
OM Object Model

299

Abkürzungsverzeichnis

OMT Object Model Template
OS Operating System
OSCI Open SystemC Initiative
OSI Open Systems Interconnection
OSI-RM Open Systems Interconnection Reference Model
OWM Ownership Management
PA-CAL Pin Accurate Cycle-Approximate Level
PBD Platform-based Design
PDE Parallel Discrete Event
PDES Parallel Discrete Event Simulation
PE Processing Element
PtII Ptolemy II
RAM Random-Access Memory
RAW Read-After-Write
RCCE Rapidly Communicating Cores Environment
RMW Read Modify Write
RO Router
RT Register Transfer
RTI Runtime Infrastructure
RTIA Runtime Infrastructure Ambassador
RTIG Runtime Infrastructure Gateway
RTL Register Transfer Level
RTOS Real-time Operating System
SAR Static Abstract Representation
SCC Single-chip Cloud Computer
SCC Strongly Connected Component
SDEM Simulation Data Exchange Model
SDEMM Simulation Data Exchange Metamodel
SDF Synchronous Dataflow
SHM Shared Memory
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SLD System-Level Design
SLDL System-Level Design Language
SM State Machine
SoC System-on-Chip
SOM Simulation Object Model
SOMM Simulation Object Metamodel
SW Software
SWIG Simplified Wrapper and Interface Generator
TAG Time Advance Grant
THLP Thread-Level Parallelism

300

Abkürzungsverzeichnis

TL Transaction Level
TLM Transaction Level Model
TLM-DT Transaction Level Modeling with Distributed Time
TLP Task-Level Parallelism
TM Time Management
TNS Test-and-Set
TP Task Repository
UCM Uncached Mode
UE Unit of Execution
UMA Unified Memory Access
UML Unified Modeling Language
UT Untimed
V2X Vehicle-to-X
V2XC Vehicle-to-X Communication
VHDL Very High Speed Integrated Circuit Hardware Description

Language
VNI Virtual Network Interface
VWI Virtual Wireless Interface
WAR Write-After-Read
WAW Write-After-Write
WCB Write-Combine Buffer
XML Extensible Markup Language

301

Literatur- und Quellennachweise

[1] Accelera Systems Initiative. http://www.accellera.org/home/. [Online; accessed
11-July-2014].

[2] Doxygen - Generate documentation from source code. http://www.stack.nl/

~dimitri/doxygen/. [Online; accessed 16-July-2014].

[3] Forwardsim HLA Blockset for Simulink. http://www.forwardsim.com/products/

hla-blockset/. [Online; accessed 14-August-2014].

[4] Forwardsim HLA Toolbox for MATLAB. http://www.forwardsim.com/products/

hla-toolbox/. [Online; accessed 14-August-2014].

[5] GCC, the GNU Compiler Collection. http://gcc.gnu.org/. [Online; accessed
16-July-2014].

[6] IPG CarMaker. http://ipg.de/de/simulationsolutions/carmaker/. [Online; acces-
sed 28-August-2014].

[7] KaSCPar - Karlsruhe SystemC parser suite. http://kmir.de/downloads/sim/

archives/kascpar-documentation.pdf. [Online; accessed 16-July-2014].

[8] The MathWorks: Simulink Simulation and Model-Based Design. http://www.

mathworks.de/products/simulink/. [Online; accessed 15-August-2014].

[9] OMG Model Driven Architecture. http://www.omg.org/mda/. [Online; acces-
sed 15-September-2014].

[10] OVP - Open Virtual Platform. http://www.ovpworld.org/. [Online; accessed
15-August-2014].

[11] Pitch Make Your Systems Work Together. http://www.pitch.se/products/prti.
[Online; accessed 21-August-2014].

[12] The poRTIco project. http://www.porticoproject.org. [Online; accessed 21-
August-2014].

[13] PTV Vissim. http://vision-tra�c.ptvgroup.com/en-us/products/ptv-vissim/. [On-
line; accessed 28-August-2014].

[14] PTV Visum. http://vision-tra�c.ptvgroup.com/en-us/products/ptv-visum/. [On-
line; accessed 28-August-2014].

[15] RCCE: a Small Library for Many-Core Communication. https://communities.

303

http://www.accellera.org/home/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.forwardsim.com/products/hla-blockset/
http://www.forwardsim.com/products/hla-blockset/
http://www.forwardsim.com/products/hla-toolbox/
http://www.forwardsim.com/products/hla-toolbox/
http://gcc.gnu.org/
http://ipg.de/de/simulationsolutions/carmaker/
http://kmir.de/downloads/sim/archives/kascpar-documentation.pdf
http://kmir.de/downloads/sim/archives/kascpar-documentation.pdf
http://www.mathworks.de/products/simulink/
http://www.mathworks.de/products/simulink/
http://www.omg.org/mda/
http://www.ovpworld.org/
http://www.pitch.se/products/prti
http://www.porticoproject.org
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
http://vision-traffic.ptvgroup.com/en-us/products/ptv-visum/
https://communities.intel.com/servlet/JiveServlet/previewBody/5628-102-3-22522/RCCE_Specification.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/5628-102-3-22522/RCCE_Specification.pdf

Literatur- und Quellennachweise

intel.com/servlet/JiveServlet/previewBody/5628-102-3-22522/RCCE_Speci�cation.

pdf. [Online; accessed 13-January-2014].

[16] VT MÄC A company of VT Systems. http://www.mak.com/products.html. [On-
line; accessed 21-August-2014].

[17] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001), 2006.

[18] Behavioural languages - Part 6: VHDL Analog and Mixed-Signal Extensions.
IEEE Std 1076.1 IEC 61691-6 Edition 1.0 2009-12, S. 1–0, Dec 2009.

[19] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Re-
vision of IEEE Std 1076-2002), S. c1–626, Jan 2009.

[20] Nationale Roadmap Embedded Systems. ZVEI Zentralverband Elektrotechnik
und Elektronikindustrie e.V. Kompetenzzentrum Embedded Software &
Systems, 2009.

[21] IEEE Standard for Information technology– Local and metropolitan area
networks– Specific requirements– Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access
in Vehicular Environments. IEEE Std 802.11p-2010 (Amendment to IEEE Std
802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008,
IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009),
S. 1–51, July 2010.

[22] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) – Framework and Rules. IEEE Std 1516-2010 (Revision of IEEE Std
1516-2000), S. 1–38, Aug 2010.

[23] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)– Federate Interface Specification. IEEE Std 1516.1-2010 (Revision of
IEEE Std 1516.1-2000), S. 1–378, Aug 2010.

[24] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)– Object Model Template (OMT) Specification. IEEE Std 1516.2-2010
(Revision of IEEE Std 1516.2-2000), S. 1–110, Aug 2010.

[25] IEEE Guide–Adoption of the Project Management Institute (PMI(R)) Standard
A Guide to the Project Management Body of Knowledge (PMBOK(R) Guide)–
Fourth Edition. IEEE Std 1490-2011, S. 1–508, Nov 2011.

[26] IEEE Recommended Practice for Distributed Simulation Engineering and Exe-
cution Process (DSEEP). IEEE Std 1730-2010 (Revision of IEEE Std 1516.3-
2003), S. 1–79, Jan 2011.

[27] IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std
1666-2011 (Revision of IEEE Std 1666-2005), S. 1–638, 2012.

[28] IEEE Standard for System and Software Verification and Validation. IEEE Std

304

https://communities.intel.com/servlet/JiveServlet/previewBody/5628-102-3-22522/RCCE_Specification.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/5628-102-3-22522/RCCE_Specification.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/5628-102-3-22522/RCCE_Specification.pdf
http://www.mak.com/products.html

Literatur- und Quellennachweise

1012-2012 (Revision of IEEE Std 1012-2004), S. 1–223, May 2012.

[29] Functional Mock-up Interface for Model Exchange and Co-Simulation V2.0.
Techn. Ber., MODELISAR consortium and Modelica Association Project
"FMI", 2014.

[30] IEEE Guide for Wireless Access in Vehicular Environments (WAVE) - Architec-
ture. IEEE Std 1609.0-2013, S. 1–78, March 2014.

[31] AARTS, E. und S. MARZANO: The New Everyday: Views on Ambient Intelli-
gence. 010 Publishers, 2003.

[32] ACATECH: Cyber-physical Systems: Driving Force for Innovation in Mobility,
Health, Energy and Production. Acatech position paper. Springer, 2011.

[33] ADAK, M., O. TOPÇU und H. OGUZTÜZÜN: Model-based code generation for
HLA federates. Software: Practice and Experience, 40(2):149–175, 2010.

[34] AGRAWAL, H. und J. R. HORGAN: Dynamic Program Slicing. SIGPLAN
Not., 25(6):246–256, Juni 1990.

[35] AKL, S. G.: Parallel computation: models and methods. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997.

[36] AMDAHL, G. M.: Validity of the single processor approach to achieving large
scale computing capabilities. In: Proceedings of the April 18-20, 1967, spring
joint computer conference, AFIPS ’67 (Spring), S. 483–485, New York, NY,
USA, 1967. ACM.

[37] ANDERSON, J., Y.-J. KIM und T. HERMAN: Shared-memory mutual exclusi-
on: major research trends since 1986. Distributed Computing, 16(2-3):75–110,
2003.

[38] ASHTON, K.: That Ïnternet of Things"Thing. http://www.r�djournal.com/

articles/view?4986. [Online; accessed 17-October-2014].

[39] ATTARZADEH NIAKI, S. und I. SANDER: Co-simulation of embedded systems
in a heterogeneous MoC-based modeling framework. In: Industrial Embedded
Systems (SIES), 2011 6th IEEE International Symposium on, S. 238–247, June
2011.

[40] ATTARZADEH NIAKI, S. und I. SANDER: Semi-formal refinement of hetero-
geneous embedded systems by foreign model integration. In: Specification and
Design Languages (FDL), 2011 Forum on, S. 1–8, Sept 2011.

[41] AUSTIN, T. M. und G. S. SOHI: Dynamic Dependency Analysis of Ordinary
Programs. In: Proceedings of the 19th Annual International Symposium on Com-
puter Architecture, ISCA ’92, S. 342–351, New York, NY, USA, 1992. ACM.

[42] AWAIS, M., P. PALENSKY, A. ELSHEIKH, E. WIDL und S. MATTHIAS: The
high level architecture RTI as a master to the functional mock-up interface com-
ponents. In: Computing, Networking and Communications (ICNC), 2013 Inter-

305

http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986

Literatur- und Quellennachweise

national Conference on, S. 315–320, Jan 2013.

[43] BAGRODIA, R. L. und M. TAKAI: Performance Evaluation of Conservative Al-
gorithms in Parallel Simulation Languages. IEEE Trans. Parallel Distrib. Syst.,
11(4):395–411, Apr. 2000.

[44] BAILEY, M. L., J. V. BRINER, JR. und R. D. CHAMBERLAIN: Parallel logic
simulation of VLSI systems. ACM Comput. Surv., 26(3):255–294, Sep. 1994.

[45] BALARIN, F., Y. WATANABE, H. HSIEH, L. LAVAGNO, C. PASSERONE und
A. SANGIOVANNI-VINCENTELLI: Metropolis: an integrated electronic system
design environment. Computer, 36(4):45–52, April 2003.

[46] BARON, M.: The Single-chip Cloud Computer. http://www.MPRonline.com, 04
2010.

[47] BEAZLEY, D. M.: Automated Scientific Software Scripting with SWIG. Future
Gener. Comput. Syst., 19(5):599–609, Juli 2003.

[48] BELL, C., D. BONACHEA, R. NISHTALA und K. YELICK: Optimizing band-
width limited problems using one-sided communication and overlap. In: Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,
S. 10 pp.–, April 2006.

[49] BENGEL, G., C. BAUN, M. KUNZE und K.-U. STUCKY: Masterkurs Parallele
und Verteilte Systeme, 2008.

[50] BENINI, L. und G. DE MICHELI: Networks on chips: a new SoC paradigm.
Computer, 35(1):70–78, Jan 2002.

[51] BERNARD, M., C. BUCKL, V. DOERICHT, M. FEHLING, L. FIEGE,
H. VON GROLMAN, N. IVANDIC, C. JANELLO, C. KLEIN, K.-J. KUHN,
C. PATZLAFF, B. C. RIEDL, B. SCHUETZ und C. STANEK: Mehr Software (im)
Wagen: Informations- und Kommunikationstechnik (IKT) als Motor der Elektro-
mobilitaet der Zukunft. Techn. Ber., fortiss GmbH, 2011.

[52] BERNER, D., J. PIERRE TALPIN, H. PATEL, D. A. MATHAIKUTTY und
E. SHUKLA: SystemCXML: An extensible SystemC front end using XML. In:
In Proceedings of the Forum on specification and design languages (FDL, 2005.

[53] BERTACCO, V., D. CHATTERJEE, N. BOMBIERI, F. FUMMI, S. VINCO,
A. KAUSHIK und H. D. PATEL: On the use of GP-GPUs for accelerating
compute-intensive EDA applications. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, S. 1357–1366, March 2013.

[54] BINKERT, N., B. BECKMANN, G. BLACK, S. K. REINHARDT, A. SAIDI,
A. BASU, J. HESTNESS, D. R. HOWER, T. KRISHNA, S. SARDASHTI, R. SEN,
K. SEWELL, M. SHOAIB, N. VAISH, M. D. HILL und D. A. WOOD: The
Gem5 Simulator. SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[55] BLACK, D. C. und J. DONOVAN: SystemC: from the ground up. Springer

306

http://www.MPRonline.com

Literatur- und Quellennachweise

Science+Business Media, LLC, 2004.

[56] BLAKE, G., R. DRESLINSKI und T. MUDGE: A survey of multicore processors.
Signal Processing Magazine, IEEE, 26(6):26–37, November 2009.

[57] BLANC, N., D. KROENING und N. SHARYGINA: Scoot: A Tool for the Ana-
lysis of SystemC Models. In: Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’08/ETAPS’08, S. 467–470, Berlin, Heidelberg,
2008. Springer-Verlag.

[58] BLUMOFE, R. D. und C. E. LEISERSON: Scheduling Multithreaded Computa-
tions by Work Stealing. J. ACM, 46(5):720–748, Sep. 1999.

[59] BOMBIERI, N., G. DI GUGLIELMO, M. FERRARI, F. FUMMI, G. PRAVA-
DELLI, F. STEFANNI und A. VENTURELLI: HIFSuite: Tools for HDL Code
Conversion and Manipulation. EURASIP Journal on Embedded Systems,
2010(1):436328, 2010.

[60] BOMBIERI, N., F. FUMMI und D. QUAGLIA: System/Network Design-space
Exploration Based on TLM for Networked Embedded Systems. ACM Trans. Em-
bed. Comput. Syst., 9(4):37:1–37:32, Apr. 2010.

[61] BOMBIERI, N., F. FUMMI und S. VINCO: On the automatic generation of GPU-
oriented software applications from RTL IPs. In: Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2013 International Conference on, S. 1–
10, Sept 2013.

[62] BONONI, L., M. D. FELICE, G. D‘ANGELO, M. BRACUTO und L. DONA-
TIELLO: MoVES: A framework for parallel and distributed simulation of wireless
vehicular ad hoc networks. Computer Networks, 52(1):155 – 179, 2008. (1)
Performance of Wireless Networks (2) Synergy of Telecommunication and
Broadcasting Networks.

[63] BORKAR, S.: Thousand core chips: a technology perspective. In: Proceedings of
the 44th annual Design Automation Conference, DAC ’07, S. 746–749, New
York, NY, USA, 2007. ACM.

[64] BOUCHHIMA, F., G. NICOLESCU, E. ABOULHAMID und M. ABID: Discrete-
continuous simulation model for accurate validation in component-based hetero-
geneous SoC design. In: Rapid System Prototyping, 2005. (RSP 2005). The 16th
IEEE International Workshop on, S. 181–187, June 2005.

[65] BOUCHHIMA, F., G. NICOLESCU, E. M. ABOULHAMID und M. ABID: Gene-
ric discrete/continuous simulation model for accurate validation in heterogeneous
systems design. Microelectronics Journal, 38:805 – 815, 2007.

[66] BRESLAU, L., D. ESTRIN, K. FALL, S. FLOYD, J. HEIDEMANN, A. HELMY,
P. HUANG, S. MCCANNE, K. VARADHAN, Y. XU und H. YU: Advances in
network simulation. Computer, 33(5):59–67, May 2000.

307

Literatur- und Quellennachweise

[67] BROOKS, C., E. A. LEE, X. LIU, S. NEUENDORFFER, Y. ZHAO und
H. ZHENG: Heterogeneous Concurrent Modeling and Design in Java (Volume
3: Ptolemy II Domains). Techn. Ber. UCB/EECS-2007-9, EECS Department,
University of California, Berkeley, Jan 2007.

[68] BROOKS, III, E. D.: The butterfly barrier. Int. J. Parallel Program., 15(4):295–
307, Okt. 1986.

[69] BRYANT, R. E.: SIMULATION OF PACKET COMMUNICATION ARCHI-
TECTURE COMPUTER SYSTEMS. Techn. Ber., Cambridge, MA, USA,
1977.

[70] BUCK, J., S. HA, E. A. LEE und D. G. MESSERSCHMITT: Ptolemy: A Frame-
work for Simulating and Prototyping Heterogeneous Systems, 1992.

[71] BUCKL, C., A. CAMEK, G. KAINZ, C. SIMON, L. MERCEP, H. STAHLE und
A. KNOLL: The software car: Building ICT architectures for future electric ve-
hicles. In: Electric Vehicle Conference (IEVC), 2012 IEEE International, S. 1–8,
2012.

[72] BURTON, M., J. ALDIS, R. GÜNZEL und W. KLINGAUF: Transaction Level
Modelling: A reflection on what TLM is and how TLMs may be classified. In: Fo-
rum on specification and Design Languages, FDL 2007, September 18-20, 2007,
Barcelona, Spain, Proceedings, S. 92–97, 2007.

[73] BUTKO, A., R. GARIBOTTI, L. OST und G. SASSATELLI: Accuracy evaluation
of GEM5 simulator system. In: Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), 2012 7th International Workshop on, S. 1–7, July 2012.

[74] CAI, L. und D. GAJSKI: Transaction level modeling: an overview. In: Hardwa-
re/Software Codesign and System Synthesis, 2003. First IEEE/ACM/IFIP Inter-
national Conference on, S. 19–24, 2003.

[75] CARARA, E., R. DE OLIVEIRA, N. L. V. CALAZANS und F. MORAES:
HeMPS - a framework for NoC-based MPSoC generation. In: Circuits and
Systems, 2009. ISCAS 2009. IEEE International Symposium on, S. 1345–1348,
2009.

[76] CATALDO, A., E. A. LEE, X. LIU, E. D. MATSIKOUDIS und H. ZHENG: A
Constructive Fixed-Point Theorem and the Feedback Semantics of Timed Systems.
Techn. Ber. UCB/EECS-2006-4, EECS Department, University of Califor-
nia, Berkeley, Jan 2006.

[77] CESARIO, W., D. LYONNARD, G. NICOLESCU, Y. PAVIOT, S. YOO, A. JER-
RAYA, L. GAUTHIER und M. DIAZ-NAVA: Multiprocessor SoC platforms: a
component-based design approach. Design Test of Computers, IEEE, 19(6):52–
63, Nov 2002.

[78] CHANDY, K. und J. MISRA: Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs. Software Engineering, IEEE Tran-

308

Literatur- und Quellennachweise

sactions on, SE-5(5):440–452, 1979.

[79] CHANDY, K. M. und J. MISRA: Asynchronous distributed simulation via a
sequence of parallel computations. Commun. ACM, 24(4):198–206, Apr. 1981.

[80] CHANG, X.: Network Simulations with OPNET. In: Proceedings of the 31st
Conference on Winter Simulation: Simulation—a Bridge to the Future - Volume
1, WSC ’99, S. 307–314, New York, NY, USA, 1999. ACM.

[81] CHEN, J., M. ANNAVARAM und M. DUBOIS: SlackSim: A Platform for Par-
allel Simulations of CMPs on CMPs. SIGARCH Comput. Archit. News,
37(2):20–29, Juli 2009.

[82] CHEN, W. und R. DOEMER: A Distributed Parallel Simulator for Transaction
Level Models with Relaxed Timing. In: Center for Embedded Computer Systems,
University of California, Technical Report, 2011.

[83] CHEN, W. und R. DÖMER: Optimized Out-of-order Parallel Discrete Event
Simulation Using Predictions. In: Proceedings of the Conference on Design, Au-
tomation and Test in Europe, DATE ’13, S. 3–8, San Jose, CA, USA, 2013. EDA
Consortium.

[84] CHEN, W., X. HAN und R. DOEMER: Multicore Simulation of Transaction-
Level Models Using the SoC Environment. IEEE Design&Test of Computers,
28(3):20–31, 2011.

[85] CHEN, W., X. HAN und R. DOMER: Out-of-order parallel simulation for ESL
design. In: Design, Automation Test in Europe Conference Exhibition (DATE),
2012, S. 141–146, March 2012.

[86] CHOPARD, B., P. COMBES und J. ZORY: A Conservative Approach to Systemc
Parallelization. In: Proceedings of the 6th International Conference on Compu-
tational Science - Volume Part IV, ICCS’06, S. 653–660, Berlin, Heidelberg,
2006. Springer-Verlag.

[87] CHURCH, A.: An Unsolvable Problem of Elementary Number Theory. Ameri-
can Journal of Mathematics, 58(2):345–363, April 1936.

[88] CLANG-PROJECT: clang: a C language family frontend for LLVM. http://clang.
llvm.org/. [Online; accessed 21-March-2014].

[89] CLAUSS, C., S. LANKES, T. BEMMERL, J. GALOWICZ und S. PICKARTZ:
iRCCE: A Non-blocking Communication Extension to the RCCE Communica-
tion Library for the Intel Single-Chip Cloud Computer. Chair for Operating
Systems, RWTH Aachen University, 2011.

[90] COMBES, P., E. CARON, F. DESPREZ, B. CHOPARD und J. ZORY: Relaxing
Synchronization in a Parallel SystemC Kernel. In: Parallel and Distributed Pro-
cessing with Applications, 2008. ISPA ’08. International Symposium on, S. 180–
187, 2008.

309

http://clang.llvm.org/
http://clang.llvm.org/

Literatur- und Quellennachweise

[91] CORPORATION, I.: Intel Xeon Phi Produktreihe. http://www.intel.de/

content/www/de/de/processors/xeon/xeon-phi-detail.html. [Online; accessed 12-
August-2014].

[92] CORPORATION, I.: SCC External Architecture Specification (EAS) Revision 1.1.
Techn. Ber., Intel Labs, 2010.

[93] COX, D. R.: RITSim: Distributed SystemC Simulation. Diplomarbeit, Roche-
ster Institute of Technology, 2005.

[94] DAVARE, A., D. DENSMORE, L. GUO, R. PASSERONE, A. L.
SANGIOVANNI-VINCENTELLI, A. SIMALATSAR und Q. ZHU: metroII:
A Design Environment for Cyber-physical Systems. ACM Trans. Embed.
Comput. Syst., 12(1s):49:1–49:31, März 2013.

[95] DAVARE, A., D. DENSMORE, T. MEYEROWITZ, A. PINTO,
A. SANGIOVANNI-VINCENTELLI, G. YANG, H. ZENG und Q. ZHU:
A Next-Generation Design Framework for Platform-based Design. In: DVCon
2007, February 2007.

[96] DENG, F. und J. JONES: Weighted System Dependence Graph. In: Software
Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Con-
ference on, S. 380–389, April 2012.

[97] DINAN, J., S. OLIVIER, G. SABIN, J. PRINS, P. SADAYAPPAN und C.-W.
TSENG: Dynamic Load Balancing of Unbalanced Computations Using Message
Passing. In: Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, S. 1–8, March 2007.

[98] DOEMER, R., A. GERSTLAUER und D. GAJSKI: SpecC Language Reference
Manual, Version 2.0. Techn. Ber., SpecC Technology Open Consortium,
2002.

[99] DOMER, R., A. GERSTLAUER und W. MULLER: Introduction to Hardware-
dependent Software design. In: Design Automation Conference, 2009. ASP-DAC
2009. Asia and South Pacific, S. 290–292, 2009.

[100] DONLIN, A.: Transaction level modeling: flows and use models. In: Hardware/-
Software Codesign and System Synthesis, 2004. CODES + ISSS 2004. Interna-
tional Conference on, S. 75–80, 2004.

[101] EGGERS, S., J. EMER, H. LEBY, J. LO, R. STAMM und D. TULLSEN: Simul-
taneous multithreading: a platform for next-generation processors. Micro, IEEE,
17(5):12–19, 1997.

[102] EKER, J., J. JANNECK, E. LEE, J. LIU, X. LIU, J. LUDVIG, S. NEUENDORF-
FER, S. SACHS und Y. XIONG: Taming heterogeneity - the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, Jan 2003.

[103] EL-REWINI, H. und M. ABD-EL-BARR: Advanced Computer Architecture

310

http://www.intel.de/content/www/de/de/processors/xeon/xeon-phi-detail.html
http://www.intel.de/content/www/de/de/processors/xeon/xeon-phi-detail.html

Literatur- und Quellennachweise

and Parallel Processing (Wiley Series on Parallel and Distributed Computing).
Wiley-Interscience, 2005.

[104] ENGBLOM, J.: Multicore pain (and gain) from a Virtual Platform Perspective.
In: Second Swedish Workshop on Multicore Computing, 2009.

[105] EZUDHEEN, P., P. CHANDRAN, J. CHANDRA, B. SIMON und D. RAVI: Par-
allelizing SystemC Kernel for Fast Hardware Simulation on SMP Machines. In:
Principles of Advanced and Distributed Simulation, 2009. PADS ’09. ACM/IE-
EE/SCS 23rd Workshop on, S. 80–87, June 2009.

[106] FERNANDEZ, M.: Models of Computation: An Introduction to Computability
Theory. Springer Publishing Company, Incorporated, 1st Aufl., 2009.

[107] FERRARI, A. und A. SANGIOVANNI-VINCENTELLI: System design: traditio-
nal concepts and new paradigms. In: Computer Design, 1999. (ICCD ’99) Inter-
national Conference on, S. 2–12, 1999.

[108] FERSCHA, A. und S. K. TRIPATHI: Parallel and distributed simulation of dis-
crete event systems. Techn. Ber., College Park, MD, USA, 1994.

[109] FLYNN, M.: Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901–1909, 1966.

[110] FORUM, M. P. I.: MPI: A Message-Passing Interface Standard Version 3.0, 09
2012. Chapter author for Collective Communication, Process Topologies,
and One Sided Communications.

[111] FOSTER, I.: Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[112] FUJIMOTO, R. M.: Parallel discrete event simulation. Commun. ACM,
33(10):30–53, Okt. 1990.

[113] FUJIMOTO, R. M.: Parallel and Distribution Simulation Systems. John Wiley
& Sons, Inc., New York, NY, USA, 1st Aufl., 1999.

[114] GAJSKI, D. D. (Hrsg.): SPECC : specification language and methodology. Klu-
wer Academic Publishers, Boston, 2. pr. Aufl., 2001. Includes bibliographi-
cal references and index; : £80.00.

[115] GAJSKI, D. D., S. ABDI, A. GERSTLAUER und G. SCHIRNER: Embedded Sys-
tem Design: Modeling, Synthesis and Verification. Springer Publishing Com-
pany, Incorporated, 1st Aufl., 2009.

[116] GAJSKI, D. D. und R. H. KUHN: New VLSI Tools. Computer, 16(12):11–14,
Dez. 1983.

[117] GAMMA, E., R. HELM, R. JOHNSON und J. VLISSIDES: Design Patterns: Ele-
ments of Reusable Object-oriented Software. Addison-Wesley Longman Pu-
blishing Co., Inc., Boston, MA, USA, 1995.

311

Literatur- und Quellennachweise

[118] GEM5-PROJECT: Parallel M5. http://m5sim.org/Parallel_M5. [Online; acces-
sed 07-September-2014].

[119] GERSTLAUER, A. (Hrsg.): System design : a practical guide with SpecC. Klu-
wer, Boston [u.a.], 2001.

[120] GERSTLAUER, A., C. HAUBELT, A. PIMENTEL, T. STEFANOV, D. GAJSKI
und J. TEICH: Electronic System-Level Synthesis Methodologies. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
28(10):1517–1530, 2009.

[121] GLAS, B.: Trusted computing für adaptive Automobilsteuergeräte im Umfeld der
Inter-Fahrzeug-Kommunikation. Steinbuch series on advances in informati-
on technology. KIT Scientific Publ., 2011.

[122] GODERIS, A., C. BROOKS, I. ALTINTAS, E. A. LEE und G. CA-
ROL: Composing Different Models of Computation in Kepler and Ptole-
my II. In: 2007 Proceedings, S. 182–190. International Conference on
Computational Science (ICCS), May 2007. A later version has been
<a href="http://chess.eecs.berkeley.edu/pubs/533.html»published
in Future Generation Computer Systems (FGCS), Elsevier.

[123] GOMBERT, B.: From the intelligent wheel bearing to the "robot wheel". In:
Schaeffler Symposium Book. Schaeffler Technologies GmbH & Co. KG, 2010.

[124] GRAHAM, S. L., P. B. KESSLER und M. K. MCKUSICK: Gprof: A Call Graph
Execution Profiler. In: Proceedings of the 1982 SIGPLAN Symposium on Compi-
ler Construction, SIGPLAN ’82, S. 120–126, New York, NY, USA, 1982. ACM.

[125] GROUP, S. B. O. M. P. D.: Base Object Model (BOM) Template Specification.
Techn. Ber., Simulation Interoperability and Standards Organization, 2006.

[126] GROUP, S. B. O. M. P. D.: Guide for Base Object Model (BOM) Use and Imple-
mentation. Techn. Ber., Simulation Interoperability and Standards Organi-
zation, 2006.

[127] HANSMANN, U.: Pervasive Computing: The Mobile World. Springer Profes-
sional Computing. Springer, 2003.

[128] HAREL, D. und B. RUMPE: Meaningful modeling: what’s the semantics of ße-
mantics"?. Computer, 37(10):64–72, Oct 2004.

[129] HARPER, P. R.: Practical Foundations for Programming Languages. Cam-
bridge University Press, New York, NY, USA, 2012.

[130] HAUBELT, C.: Digitale Hardware/Software-Systeme: Spezifikation und Verifika-
tion. eXamen-press. Springer, 2010.

[131] HEMINGWAY, G., H. NEEMA, H. NINE, J. SZTIPANOVITS und G. KARSAI:
Rapid Synthesis of High-level Architecture-based Heterogeneous Simulation: A
Model-based Integration Approach. Simulation, 88(2):217–232, Feb. 2012.

312

http://m5sim.org/Parallel_M5

Literatur- und Quellennachweise

[132] HENDERSON, T. R., S. ROY, S. FLOYD und G. F. RILEY: Ns-3 Project Goals.
In: Proceeding from the 2006 Workshop on Ns-2: The IP Network Simulator,
WNS2 ’06, New York, NY, USA, 2006. ACM.

[133] HENNESSY, J. und D. PATTERSON: Computer Architecture: A Quantitative
Approach, Fifth Edition. The Morgan Kaufmann Series in Computer Archi-
tecture and Design. Elsevier Science, 2011.

[134] HENZINGER, T.: The theory of hybrid automata. In: Logic in Computer Science,
1996. LICS ’96. Proceedings., Eleventh Annual IEEE Symposium on, S. 278–292,
Jul 1996.

[135] HENZINGER, T., B. HOROWITZ und C. KIRSCH: Giotto: a time-triggered lan-
guage for embedded programming. Proceedings of the IEEE, 91(1):84–99, Jan
2003.

[136] HERRERA, F. und E. VILLAR: A Framework for Heterogeneous Specification
and Design of Electronic Embedded Systems in SystemC. ACM Trans. Des.
Autom. Electron. Syst., 12(3):22:1–22:31, Mai 2008.

[137] HERZBERG, D.: Modeling Telecommunication Systems: From Standards to Sys-
tem Architectures. Doktorarbeit, Rheinisch-Westfaelische Technische Hoch-
schule Aachen, 2003.

[138] HERZBERG, D. und M. BROY: Modeling layered distributed communication
systems. Form. Asp. Comput., 17(1):1–18, Mai 2005.

[139] HILL, M., N. JOUPPI und G. SOHI: Readings in computer architecture. The
Morgan Kaufmann Series in Computer Architecture and Design. Morgan
Kaufmann, 2000.

[140] HÖHN, R., A. RAUSCH, S. HÖPPNER und K. BERGNER: Das V-Modell
XT: Grundlagen, Methodik und Anwendungen. Springer-Lehrbuch. Springer,
2008.

[141] HORWITZ, S., T. REPS und D. BINKLEY: Interprocedural Slicing Using De-
pendence Graphs. In: Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, PLDI ’88, S. 35–46, New
York, NY, USA, 1988. ACM.

[142] HOSSEINABADY, M. und J. NUNEZ-YANEZ: SystemC architectural transac-
tion level modelling for large NoCs. In: Specification Design Languages (FDL
2010), 2010 Forum on, S. 1–6, Sept 2010.

[143] HOSSEINABADY, M. und J. NUNEZ-YANEZ: Fast and low overhead architectu-
ral transaction level modelling for large-scale network-on-chip simulation. Com-
puters Digital Techniques, IET, 6(6):384–395, November 2012.

[144] HOWARD, J., S. DIGHE, S. VANGAL, G. RUHL, N. BORKAR, S. JAIN, V. ER-
RAGUNTLA, M. KONOW, M. RIEPEN, M. GRIES, G. DROEGE, T. LUND-

313

Literatur- und Quellennachweise

LARSEN, S. STEIBL, S. BORKAR, V. DE und R. VAN DER WIJNGAART: A
48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing and
DVFS for Performance and Power Scaling. Solid-State Circuits, IEEE Journal
of, 2011.

[145] HUANG, K., S. IL HAN, K. POPOVICI, L. BRISOLARA, X. GUERIN, L. LI,
X. YAN, S.-I. CHAE, L. CARRO und A. JERRAYA: Simulink-Based MPSoC
Design Flow: Case Study of Motion-JPEG and H.264. In: Design Automation
Conference, 2007. DAC ’07. 44th ACM/IEEE, S. 39–42, June 2007.

[146] ISERMANN, R., R. SCHWARZ und S. STOLZL: Fault-tolerant drive-by-wire
systems. Control Systems, IEEE, 22(5):64–81, Oct 2002.

[147] Information Technology — Open Systems Interconnection — Basic Reference Mo-
del: The Basic Model. ISO/IEC 7498-1:1994, ISO, Geneva, Switzerland, Nov.
1994.

[148] ITRS: International Technology Roadmap for Semiconductors. Techn. Ber., 2011.

[149] JAFER, S., Q. LIU und G. WAINER: Synchronization methods in parallel and
distributed discrete-event simulation. Simulation Modelling Practice and
Theory, 30(0):54 – 73, 2013.

[150] JEFFERSON, D., B. BECKMAN, F. WIELAND, L. BLUME und M. DILORETO:
Time warp operating system. In: Proceedings of the eleventh ACM Symposium on
Operating systems principles, SOSP ’87, S. 77–93, New York, NY, USA, 1987.
ACM.

[151] JOVEN, J., O. FONT-BACH, D. CASTELLS-RUFAS, R. MARTINEZ, L. TERES
und J. CARRABINA: xENoC - An eXperimental Network-On-Chip Environment
for Parallel Distributed Computing on NoC-based MPSoC Architectures. In: Pro-
ceedings of the 16th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2008), PDP ’08, S. 141–148, Washington, DC, USA,
2008. IEEE Computer Society.

[152] JUNGNICKEL, D.: Graphs, Networks and Algorithms. Springer Publishing
Company, Incorporated, 3rd Aufl., 2007.

[153] KAHN, G.: The Semantics of Simple Language for Parallel Programming.. In:
IFIP Congress, S. 471–475, 1974.

[154] KARSAI, G., A. LANG und S. NEEMA: Design patterns for open tool integra-
tion. Software & Systems Modeling, 4(2):157–170, 2005.

[155] KARYPIS, G.: METIS A Software Package for Partitioning Unstructured Gra-
phs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Ma-
trices. Department of Computer Science & Engineering University of Min-
nesota, Minneapolis, MN 55455, Version 5.1.0 Aufl., March, 30 2013.

[156] KARYPIS, G. und V. KUMAR: A Fast and High Quality Multilevel Scheme

314

Literatur- und Quellennachweise

for Partitioning Irregular Graphs. SIAM J. Sci. Comput., 20(1):359–392, Dez.
1998.

[157] KARYPIS, G. und V. KUMAR: Multilevel K-way Partitioning Scheme for Irre-
gular Graphs. J. Parallel Distrib. Comput., 48(1):96–129, Jan. 1998.

[158] KAUSHIK, A. und H. D. PATEL: Systemc-clang: An open-source framework for
analyzing mixed-abstraction SystemC models. In: Specification Design Langua-
ges (FDL), 2013 Forum on, S. 1–8, Sept 2013.

[159] KESTING, A.: Microscopic Modeling of Human and Automated Driving: To-
wards Traffic-Adaptive Cruise Control. Doktorarbeit, Faculty of Traffic
Sciences “Friedrich List“ Technische Universität Dresden (Germany), 2008.

[160] KESTING, A.: Microscopic Modeling of Human and Automated Driving: To-
wards Traffic-Adaptive Cruise Control. Doktorarbeit, Technische Universität
Dresden, 2008.

[161] KESTING, A. und M. TREIBER: How Reaction Time, Update Time, and Adap-
tation Time Influence the Stability of Traffic Flow. Computer-Aided Civil and
Infrastructure Engineering, 23(2):125–137, 2008.

[162] KESTING, A., M. TREIBER, M. SCHÖNHOF und D. HELBING: Adaptive crui-
se control design for active congestion avoidance. Transportation Research Part
C: Emerging Technologies, 16(6):668 – 683, 2008.

[163] KEUTZER, K., A. NEWTON, J. RABAEY und A. SANGIOVANNI-
VINCENTELLI: System-level design: orthogonalization of concerns and platform-
based design. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 19(12):1523–1543, 2000.

[164] KIM, H., L. GUO, E. LEE und A. SANGIOVANNI-VINCENTELLI: A tool in-
tegration approach for architectural exploration of aircraft electric power systems.
In: Cyber-Physical Systems, Networks, and Applications (CPSNA), 2013 IEEE
1st International Conference on, S. 38–43, Aug 2013.

[165] KÖPKE, A., M. SWIGULSKI, K. WESSEL, D. WILLKOMM, P. T. K. HANE-
VELD, T. E. V. PARKER, O. W. VISSER, H. S. LICHTE und S. VALENTIN:
Simulating Wireless and Mobile Networks in OMNeT++ the MiXiM Vision. In:
Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems & Workshops, Simutools
’08, S. 71:1–71:8, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engi-
neering).

[166] KRAJZEWICZ, D., J. ERDMANN, M. BEHRISCH und L. BIEKER: Recent Deve-
lopment and Applications of SUMO - Simulation of Urban MObility. Internatio-
nal Journal On Advances in Systems and Measurements, 5(3&4):128–138,
December 2012.

315

Literatur- und Quellennachweise

[167] KRANKE, F. und H.-J. STAUSS: Forschungsinitiative INVENT: Intelligenter
Verkehr und nutzergerechte Technik. Schlussbericht VM 2010 zu dem Teilprojekt
VLA - Verkehrsleitungsassistenz. Techn. Ber., Volkswagen AG, 2006.

[168] KUMAR, V., L. LIN, D. KRAJZEWICZ, F. HRIZI, O. MARTINEZ, J. GOZAL-
VEZ und R. BAUZA: iTETRIS: Adaptation of ITS Technologies for Large Scale
Integrated Simulation. In: Vehicular Technology Conference (VTC 2010-Spring),
2010 IEEE 71st, S. 1–5, May 2010.

[169] LANTZ, R.: Parallel SimOS: Scalability and Performance for Large System Si-
mulation. Doktorarbeit, Stanford University, 2007.

[170] LÄSCHE, C., V. GOLLÜCKE und A. HAHN: Using an HLA Simulation Envi-
ronment for Safety Concept Verification of Offshore Operations. In: Proceediings
27th European Conference on Modelling and Simulation, S. 156ff, 05 2013.

[171] LASNIER, G., J. CARDOSO, P. SIRON, C. PAGETTI und P. DERLER: Distribu-
ted Simulation of Heterogeneous and Real-Time Systems. In: Distributed Simu-
lation and Real Time Applications (DS-RT), 2013 IEEE/ACM 17th International
Symposium on, S. 55–62, Oct 2013.

[172] LAVAGNO, L., L. SCHEFFER und G. MARTIN: EDA for IC Implementation,
Circuit Design, and Process Technology. Electronic Design Automation for
Integrated Circuits Hdbk. Taylor & Francis, 2006.

[173] LAW, A. M. und W. D. KELTON: Simulation Modeling and Analysis.
McGraw-Hill Higher Education, 2nd Aufl., 1997.

[174] LEE, E.: Cyber Physical Systems: Design Challenges. In: Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposi-
um on, S. 363–369, May 2008.

[175] LEE, E. und A. SANGIOVANNI-VINCENTELLI: A framework for comparing
models of computation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 17(12):1217–1229, Dec 1998.

[176] LEE, E. und A. SANGIOVANNI-VINCENTELLI: Component-based design for
the future. In: Design, Automation Test in Europe Conference Exhibition (DA-
TE), 2011, S. 1–5, March 2011.

[177] LEE, E. A. und S. NEUENDORFFER: MoML - A Modeling Markup Language
in XML - Version 0.4, 2000.

[178] LEE, E. A., S. NEUENDORFFER und M. J. WIRTHLIN: Actor-Oriented Design
Of Embedded Hardware And Software Systems. Journal of Circuits, Systems,
and Computers, 12:231–260, 2003.

[179] LEE, E. A. und H. ZHENG: Operational semantics of hybrid systems. In: Hy-
brid Systems: Computation and Control (HSCC), volume LNCS 3414, S. 25–53.
Springer-Verlag, 2005.

316

Literatur- und Quellennachweise

[180] LEUPERS, R., L. EECKHOUT, G. MARTIN, F. SCHIRRMEISTER, N. TOPHAM
und X. CHEN: Virtual Manycore platforms: Moving towards 100+ processor
cores. In: Design, Automation Test in Europe Conference Exhibition (DATE),
2011, S. 1–6, 2011.

[181] LI, T., Y. GUO und S. KUN LI: Design and implementation of a parallel Veri-
log simulator: PVSim. In: VLSI Design, 2004. Proceedings. 17th International
Conference on, S. 329–334, 2004.

[182] LIS, M., P. REN, M. H. CHO, K. S. SHIM, C. FLETCHER, O. KHAN und
S. DEVADAS: Scalable, accurate multicore simulation in the 1000-core era. In:
Performance Analysis of Systems and Software (ISPASS), 2011 IEEE Internatio-
nal Symposium on, S. 175–185, April 2011.

[183] LIS, M., K. S. SHIM, M. H. CHO, P. REN, O. KHAN und S. DEVADAS: DAR-
SIM: a parallel cycle-level NoC simulator. In: EECKHOUT, L. und T. WENISCH
(Hrsg.): MoBS 2010 - Sixth Annual Workshop on Modeling, Benchmarking and
Simulation, Saint Malo, France, 2010.

[184] LIU, J., X. WU und E. LEE: Interoperation of Heterogeneous CAD Tools in
Ptolemy II. In: Symposium on Design, Test, and Microfabrication of MEMS/-
MOEMS, 1999.

[185] LIU, X., Y. XIONG und E. LEE: The ptolemy II framework for visual languages.
In: Human-Centric Computing Languages and Environments, 2001. Proceedings
IEEE Symposia on, S. 50–51, 2001.

[186] LLVM-PROJECT: The LLVM Compiler Infrastructure. http://llvm.org/. [Onli-
ne; accessed 21-March-2014].

[187] LUBACHEVSKY, B. D.: Efficient distributed event-driven simulations of
multiple-loop networks. Commun. ACM, 32(1):111–123, Jan. 1989.

[188] LUNGEANU, D. und C.-J. R. SHI: Parallel and Distributed VHDL Simulation.
In: Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’00, S. 658–662, New York, NY, USA, 2000. ACM.

[189] LYONNARD, D., S. YOO, A. BAGHDADI und A. JERRAYA: Automatic genera-
tion of application-specific architectures for heterogeneous multiprocessor system-
on-chip. In: Design Automation Conference, 2001. Proceedings, S. 518–523,
2001.

[190] MALER, O., Z. MANNA und A. PNUELI: From Timed to Hybrid Systems. In:
Proceedings of the Real-Time: Theory in Practice, REX Workshop, S. 447–484,
London, UK, UK, 1992. Springer-Verlag.

[191] MARIA, A.: Introduction to modeling and simulation. In: Proceedings of the 29th
conference on Winter simulation, WSC ’97, S. 7–13, Washington, DC, USA,
1997. IEEE Computer Society.

317

http://llvm.org/

Literatur- und Quellennachweise

[192] MARQUET, K., B. KARKARE und M. MOY: A Theoretical and Experimental
Review of SystemC Front-ends. In: FDL, S. 124–129, 2010.

[193] MARQUET, K. und M. MOY: PinaVM: A systemC Front-end Based on an Exe-
cutable Intermediate Representation. In: Proceedings of the Tenth ACM Interna-
tional Conference on Embedded Software, EMSOFT ’10, S. 79–88, New York,
NY, USA, 2010. ACM.

[194] MARTIN, M. M. K., D. J. SORIN, B. M. BECKMANN, M. R. MARTY, M. XU,
A. R. ALAMELDEEN, K. E. MOORE, M. D. HILL und D. A. WOOD: Multifa-
cet’s General Execution-driven Multiprocessor Simulator (GEMS) Toolset. SIG-
ARCH Comput. Archit. News, 33(4):92–99, Nov. 2005.

[195] MARWEDEL, P.: Embedded System Design: Embedded Systems Foundations of
Cyber-Physical Systems. Embedded Systems. Springer, 2010.

[196] MATTERN, F.: Efficient algorithms for distributed snapshots and global virtual
time approximation. J. Parallel Distrib. Comput., 18(4):423–434, Aug. 1993.

[197] MATTERN, F. und C. FLÖRKEMEIER: Vom Internet der Computer zum Internet
der Dinge. Informatik-Spektrum, 33(2):107–121, 2010.

[198] MATTSON, T., R. VAN DER WIJNGAART, M. RIEPEN, T. LEHNIG, P. BRETT,
W. HAAS, P. KENNEDY, J. HOWARD, S. VANGAL, N. BORKAR, G. RUHL
und S. DIGHE: The 48-core SCC Processor: the Programmer’s View. In: High
Performance Computing, Networking, Storage and Analysis (SC), 2010 Interna-
tional Conference for, S. 1–11, 2010.

[199] MELLO, A., I. MAIA, A. GREINER und F. PECHEUX: Parallel simulation of
systemC TLM 2.0 compliant MPSoC on SMP workstations. In: Design, Auto-
mation Test in Europe Conference Exhibition (DATE), 2010, S. 606–609, March
2010.

[200] MENDOZA CERVANTES, F.: A Problem-Oriented Approach for Dynamic Verifi-
cation of Heterogeneous Embedded Systemss. Doktorarbeit, Karlsruhe Institute
of Technology (KIT), Karlsruhe, 2014. Zugl.: Karlsruhe, KIT, Diss., 2013.

[201] MILLER, J., H. KASTURE, G. KURIAN, C. GRUENWALD, N. BECKMANN,
C. CELIO, J. EASTEP und A. AGARWAL: Graphite: A distributed parallel si-
mulator for multicores. In: High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on, S. 1–12, Jan 2010.

[202] MOORE, G.: Cramming More Components Onto Integrated Circuits. Procee-
dings of the IEEE, 86(1):82–85, 1998.

[203] MORAES, F., N. CALAZANS, A. MELLO, L. MÖLLER und L. OST: HER-
MES: an infrastructure for low area overhead packet-switching networks on chip.
Integration, the {VLSI} Journal, 38(1):69 – 93, 2004.

[204] MOY, M., F. MARANINCHI und L. MAILLET-CONTOZ: Pinapa: An Extrac-

318

Literatur- und Quellennachweise

tion Tool for SystemC Descriptions of Systems-on-a-chip. In: Proceedings of the
5th ACM International Conference on Embedded Software, EMSOFT ’05, S. 317–
324, New York, NY, USA, 2005. ACM.

[205] NANJUNDAPPA, M., H. PATEL, B. JOSE und S. SHUKLA: SCGPSim: A fast
SystemC simulator on GPUs. In: Design Automation Conference (ASP-DAC),
2010 15th Asia and South Pacific, S. 149–154, Jan 2010.

[206] NAROSKA, E.: Parallel VHDL Simulation. In: Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’98, S. 159–165, Washington,
DC, USA, 1998. IEEE Computer Society.

[207] NICOL, D. M.: The Cost of Conservative Synchronization in Parallel Discrete
Event Simulations. J. ACM, 40(2):304–333, Apr. 1993.

[208] NITZBERG, B. und V. LO: Distributed Shared Memory: A Survey of Issues and
Algorithms. Computer, 24(8):52–60, Aug. 1991.

[209] NOULARD, E., J.-Y. ROUSSELOT und P. SIRON: CERTI, an Open Source RTI,
why and how. In: Spring Simulation Interoperability Workshop, S. pp. 1–11, San
Diego, United States, 2009.

[210] OTTENSTEIN, K. J. und L. M. OTTENSTEIN: The Program Dependence Graph
in a Software Development Environment. SIGPLAN Not., 19(5):177–184, Apr.
1984.

[211] PADUA, D. A. (Hrsg.): Encyclopedia of Parallel Computing. Springer, 2011.

[212] PATEL, H. und S. SHUKLA: Towards a heterogeneous simulation kernel for sys-
tem level models: a SystemC kernel for synchronous data flow models. In: VLSI,
2004. Proceedings. IEEE Computer society Annual Symposium on, S. 241–242,
Feb 2004.

[213] PAULIN, P., C. PILKINGTON und E. BENSOUDANE: StepNP: A System-Level
Exploration Platform for Network Processors. IEEE Des. Test, 19(6):17–26, Nov.
2002.

[214] PEETERS, J., N. VENTROUX, T. SASSOLAS und L. LACASSAGNE: A systemc
TLM framework for distributed simulation of complex systems with unpredictable
communication. In: Design and Architectures for Signal and Image Processing
(DASIP), 2011 Conference on, S. 1–8, Nov 2011.

[215] PENRY, D., D. FAY, D. HODGDON, R. WELLS, G. SCHELLE, D. AUGUST
und D. CONNORS: Exploiting parallelism and structure to accelerate the simu-
lation of chip multi-processors. In: High-Performance Computer Architecture,
2006. The Twelfth International Symposium on, S. 29–40, Feb 2006.

[216] PIÓRKOWSKI, M., M. RAYA, A. L. LUGO, P. PAPADIMITRATOS, M. GROSS-
GLAUSER und J.-P. HUBAUX: TraNS: Realistic Joint Traffic and Network Simu-
lator for VANETs. SIGMOBILE Mob. Comput. Commun. Rev., 12(1):31–33,

319

Literatur- und Quellennachweise

Jan. 2008.

[217] PTOLEMAEUS, C. (Hrsg.): System Design, Modeling, and Simulation using
Ptolemy II. Ptolemy.org, 2014.

[218] QUECK, T., B. SCHUNEMANN, I. RADUSCH und C. MEINEL: Realistic Si-
mulation of V2X Communication Scenarios. In: Asia-Pacific Services Computing
Conference, 2008. APSCC ’08. IEEE, S. 1623–1627, Dec 2008.

[219] RADETZKI, M. und R. S. KHALIGH: Modelling Alternatives for Cycle Appro-
ximate Bus TLMs. In: FDL, S. 74–79, 2007.

[220] RHOADS, S.: Plasma CPU. http://opencores.org/project,plasma. [Online; acces-
sed 27-February-2014].

[221] RONDINONE, M., J. MANEROS, D. KRAJZEWICZ, R. BAUZA, P. CATAL-
DI, F. HRIZI, J. GOZALVEZ, V. KUMAR, M. RÖCKL, L. LIN, O. LAZARO,
J. LEGUAY, J. HÄRRI, S. VAZ, Y. LOPEZ, M. SEPULCRE, M. WETTERWALD,
R. BLOKPOEL und F. CARTOLANO: iTETRIS: A modular simulation platform
for the large scale evaluation of cooperative {ITS} applications. Simulation Mo-
delling Practice and Theory, 34(0):99 – 125, 2013.

[222] ROTTA, R.: On Efficient Message Passing on the Intel SCC. In: DIA-
NA GÖHRINGER, MICHAEL HÜBNER, J. B. (Hrsg.): 3rd Many-core Appli-
cations Research Community (MARC) Symposium. KIT Scientific Publishing,
2011.

[223] ROTTA, R., T. PRESCHER, J. TRAUE und J. NOLTE: Data Sharing Mecha-
nisms for Parallel Graph Algorithms on the Intel SCC. In: NOULARD, E. und
S. VERNHES (Hrsg.): Proceedings of the 6th Many-core Applications Research
Community (MARC) Symposium, S. 13–18, Toulouse, France, Juli 2012. ONE-
RA, The French Aerospace Lab.

[224] ROWSON, J. A. und A. SANGIOVANNI-VINCENTELLI: Interface-based de-
sign. In: Proceedings of the 34th annual Design Automation Conference, DAC
’97, S. 178–183, New York, NY, USA, 1997. ACM.

[225] SALIHUNDAM, P., S. JAIN, T. JACOB, S. KUMAR, V. ERRAGUNTLA, Y. HO-
SKOTE, S. VANGAL, G. RUHL, P. KUNDU und N. BORKAR: A 2Tb/s 6x4 mesh
network with DVFS and 2.3Tb/s/W router in 45nm CMOS. In: VLSI Circuits
(VLSIC), 2010 IEEE Symposium on, S. 79–80, 2010.

[226] SANDER, I. und A. JANTSCH: System modeling and transformational design
refinement in ForSyDe [formal system design]. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, 23(1):17–32, Jan 2004.

[227] SANDER, O.: Skalierbare adaptive System-on-Chip-Architekturen für Inter-Car
und Intra-Car Kommunikationsgateways. Steinbuch series on advances in in-
formation technology. KIT Scientific Publ., 2010.

320

http://opencores.org/project,plasma

Literatur- und Quellennachweise

[228] SANGIOVANNI-VINCENTELLI, A.: Quo Vadis, SLD? Reasoning About the
Trends and Challenges of System Level Design. Proceedings of the IEEE,
95(3):467–506, 2007.

[229] SANGIOVANNI-VINCENTELLI, A. und M. DI NATALE: Embedded System
Design for Automotive Applications. Computer, 40(10):42–51, Oct 2007.

[230] SANGIOVANNI-VINCENTELLI, A. und G. MARTIN: Platform-based design
and software design methodology for embedded systems. Design Test of Com-
puters, IEEE, 18(6):23–33, 2001.

[231] SCHALLER, R.: Moore’s law: past, present and future. Spectrum, IEEE,
34(6):52–59, Jun 1997.

[232] SCHUMACHER, C., R. LEUPERS, D. PETRAS und A. HOFFMANN: parSC:
Synchronous Parallel Systemc Simulation on Multi-core Host Architectures. In:
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES/ISSS ’10, S. 241–246,
New York, NY, USA, 2010. ACM.

[233] SCHUMACHER, C., J. WEINSTOCK, R. LEUPERS und G. ASCHEID: Cause
and effect of nondeterministic behavior in sequential and parallel SystemC simu-
lators. In: High Level Design Validation and Test Workshop (HLDVT), 2012
IEEE International, S. 124–131, 2012.

[234] SCHUMACHER, C., J. WEINSTOCK, R. LEUPERS, G. ASCHEID, L. TOSORAT-
TO, A. LONARDO, D. PETRAS und T. GROTKER: legaSCi: Legacy SystemC
Model Integration into Parallel Systemc Simulators. In: Parallel and Distribu-
ted Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, S. 2188–2193, May 2013.

[235] SCHUTZ, J.: A 3.3V 0.6 /spl mu/m BiCMOS superscalar microprocessor. In:
Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC.,
1994 IEEE International, S. 202–203, 1994.

[236] SHASHA, D. und M. SNIR: Efficient and correct execution of parallel programs
that share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, Apr.
1988.

[237] SINHA, R., A. PRAKASH und H. PATEL: Parallel simulation of mixed-
abstraction SystemC models on GPUs and multicore CPUs. In: Design Auto-
mation Conference (ASP-DAC), 2012 17th Asia and South Pacific, S. 455–460,
Jan 2012.

[238] SOMMER, C.: Veins The Open Source Vehicular Network Simulation Frame-
work. http://veins.car2x.org/. [Online; accessed 23-June-2014].

[239] SOMMER, C., R. GERMAN und F. DRESSLER: Bidirectionally Coupled Network
and Road Traffic Simulation for Improved IVC Analysis. Mobile Computing,
IEEE Transactions on, 10(1):3–15, Jan 2011.

321

http://veins.car2x.org/

Literatur- und Quellennachweise

[240] STACHOWIAK, H.: Allgemeine Modelltheorie. Springer-Verlag, 1973.

[241] STEINMANN, J.: SPEEDES: Synchronous Parallel Environment for Emulation
and Discrete-Event Simulation. In: SCS Western Multiconference on Advances
in Parallel and Distributed Simulation (PADS91), 1991.

[242] SUNG, C. und T. G. KIM: Framework for Simulation of Hybrid Systems: Inter-
operation of Discrete Event and Continuous Simulators Using HLA/RTI. In: Pro-
ceedings of the 2011 IEEE Workshop on Principles of Advanced and Distributed
Simulation, PADS ’11, S. 1–8, Washington, DC, USA, 2011. IEEE Computer
Society.

[243] SUTTER, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[244] SYNOPSIS, INC.: Describing Synthesizable RTL in SystemC, 2002.

[245] SZTIPANOVITS, J. und G. KARSAI: Model-Integrated Computing. IEEE Com-
puter, 30:110–112, April 1997.

[246] TABUADA, P.: Cyber-Physical Systems: Position Paper. In: NSF Workshop on
Cyber Physical Systems, 2006.

[247] TANENBAUM, A.: Structured Computer Organization. Alternative Etext For-
mats. Pearson Prentice Hall, 2006.

[248] TEICH, J. und C. HAUBELT (Hrsg.): Digitale Hardware/Software-Systeme :
Synthese und Optimierung. Springer Berlin Heidelberg, 2., erweiterte Auf-
lage Aufl., 2007.

[249] TOL, M. W. VAN, R. BAKKER, M. VERSTRAATEN, C. GRELCK und C. R.
JESSHOPE: Efficient Memory Copy Operations on the 48-core Intel SCC Pro-
cessor.. In: GÖHRINGER, D., M. HÜBNER und J. BECKER (Hrsg.): MARC
Symposium, S. 13–18. KIT Scientific Publishing, Karlsruhe, 2011.

[250] TOLK, A.: Interoperability, Composability, and Their Implications for Distribu-
ted Simulation: Towards Mathematical Foundations of Simulation Interoperabi-
lity. In: Distributed Simulation and Real Time Applications (DS-RT), 2013 IE-
EE/ACM 17th International Symposium on, S. 3–9, Oct 2013.

[251] TOLK, D. A. und J. A. MUGUIRA: The Levels of Conceptual Interoperability
Model. In: in 2003 Fall Simulation Interoperability Workshop, 2003.

[252] TOPÇU, O., M. ADAK und H. OǦUZTÜZÜN: A Metamodel for Federation
Architectures. ACM Trans. Model. Comput. Simul., 18(3):10:1–10:29, Juli
2008.

[253] TREIBER, M., A. HENNECKE und D. HELBING: Congested Traffic States in
Empirical Observations and Microscopic Simulations. Rev. E 62, Issue, 62:2000,
2000.

[254] TREIBER, M. und A. KESTING: Verkehrsdynamik und -Simulation: Daten,

322

Literatur- und Quellennachweise

Modelle Und Anwendungen Der Verkehrsflussdynamik. Springer-Lehrbuch.
Springer, 2010.

[255] TRIPAKIS, S., C. STERGIOU, C. SHAVER und E. A. LEE: A modular for-
mal semantics for Ptolemy. Mathematical Structures in Computer Science,
23(04):834–881, August 2013.

[256] TURING, A. M.: On Computable Numbers, with an Application to the Ent-
scheidungsproblem. Proceedings of the London Mathematical Society, s2-
42(1):230–265, Jan. 1937.

[257] U.S. DEPARTMENT OF DEFENSE: High Level Architecture (HLA) – Version
1.3, 1998.

[258] VARGA, A. und R. HORNIG: An Overview of the OMNeT++ Simulation En-
vironment. In: Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Workshops,
Simutools ’08, S. 60:1–60:10, ICST, Brussels, Belgium, Belgium, 2008. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering).

[259] VIAUD, E., D. POTOP-BUTUCARU und A. GREINER: An Efficient TLM/T
Modeling and Simulation Environment Based on Conservative Parallel Discrete
Event Principles. In: Design, Automation and Test in Europe, 2006. DATE ’06.
Proceedings, Bd. 1, S. 1–6, March 2006.

[260] VINCO, S., D. CHATTERJEE, V. BERTACCO und F. FUMMI: SAGA: SystemC
Acceleration on GPU Architectures. In: Proceedings of the 49th Annual De-
sign Automation Conference, DAC ’12, S. 115–120, New York, NY, USA, 2012.
ACM.

[261] WACHTER, E., C. LUCAS, E. CARARA und F. MORAES: An open-source fra-
mework for heterogeneous MPSoC generation. In: Programmable Logic (SPL),
2012 VIII Southern Conference on, S. 1–6, March 2012.

[262] WANG, W., A. TOLK und W. WANG: The Levels of Conceptual Interoperability
Model: Applying Systems Engineering Principles to M&S. In: Proceedings of the
2009 Spring Simulation Multiconference, SpringSim ’09, S. 168:1–168:9, San
Diego, CA, USA, 2009. Society for Computer Simulation International.

[263] WEHRLE, K., J. GROSS und M. GÜNES: Modeling and Tools for Network Si-
mulation. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2010.

[264] WEISER, M.: The Computer for the 21st Century. SIGMOBILE Mob. Comput.
Commun. Rev., 3(3):3–11, Juli 1999.

[265] WETTER, M.: Co-simulation of building energy and control systems with the
Building Controls Virtual Test Bed. Journal of Building Performance Simula-
tion, 4(3):185–203, 2011.

323

Literatur- und Quellennachweise

[266] WIJNGAART, R. F. VAN DER, T. G. MATTSON und W. HAAS: Light-weight
communications on Intel’s single-chip cloud computer processor. SIGOPS Oper.
Syst. Rev., 45(1):73–83, Feb. 2011.

[267] YEW, P.-C., N.-F. TZENG und D. H. LAWRIE: Distributing Hot-Spot Ad-
dressing in Large-Scale Multiprocessors. Computers, IEEE Transactions on,
C-36(4):388–395, 1987.

[268] YI, Y., D. KIM und S. HA: Fast and Accurate Cosimulation of MPSoC Using
Trace-Driven Virtual Synchronization. Trans. Comp.-Aided Des. Integ. Cir.
Sys., 26(12):2186–2200, Dez. 2007.

[269] ZEIGLER, B. P., T. G. KIM und H. PRAEHOFER: Theory of Modeling and Si-
mulation. Academic Press, Inc., Orlando, FL, USA, 2nd Aufl., 2000.

[270] ZIMMERMANN, H.: OSI Reference Model–The ISO Model of Architecture for
Open Systems Interconnection. Communications, IEEE Transactions on,
28(4):425–432, 1980.

[271] ZIYU, H., Q. LEI, L. HONGLIANG, X. XIANGHUI und Z. KUN: A Parallel
SystemC Environment: ArchSC. In: Parallel and Distributed Systems (ICPADS),
2009 15th International Conference on, S. 617–623, Dec 2009.

324

Betreute studentische Arbeiten

[Buc12] BUCIUMAN, MARIUS-FLORIN: Entwurf eines Network-on-Chip Modells
zur schnellen parallelen Simulation auf dem Single-chip Cloud Computer.
Bachelorarbeit, Karlsruher Institut für Technologie, Institut für Technik
der Informationsverarbeitung, 2012.

[Bwa09] BWADKJI, MOHAMED: Modellierung einer Car-to-X Communication Unit
mittels SystemC zur Entwurfsraumexploration. Diplomarbeit, Karlsruher
Institut für Technologie, Institut für Technik der Informationsverarbei-
tung, 2009.

[Erd12] ERDOGAN, GÖKHAN: Erweiterung eines Code-Generators hinsichtlich der
Möglichkeit zur Erzeugung flexibel partitionierbarer SystemC Modelle. Stu-
dienarbeit, Karlsruher Institut für Technologie, Institut für Technik der
Informationsverarbeitung, 2012.

[Ker12] KERN, MATTHIAS: Entwicklung eines Many-Core Prozessormodells auf Ba-
sis eines Network-on-Chip mit QoS Unterstützung. Bachelorarbeit, Karls-
ruher Institut für Technologie, Institut für Technik der Informationsver-
arbeitung, 2012.

[LZ10] LASZLO ZSOLT, DÉNES: Entwicklung eines Simulationsframeworks für
System-on-Chip basierte Netzwerke. Bachelorarbeit, Karlsruher Institut
für Technologie, Institut für Technik der Informationsverarbeitung,
2010.

[Ras12] RASTETTER, ROUVEN: Portierung von PtidyOS auf ein Multiprozessorsys-
tem zur echtzeitfähigen Ausführung verteilter Tasks. Bachelorarbeit, Karls-
ruher Institut für Technologie, Institut für Technik der Informationsver-
arbeitung, 2012.

[Red11] REDER, SIMON: Entwicklung eines Konzepts zur synchronen parallelen Sys-
temC Simulation auf dem Single-chip Cloud Computer. Bachelorarbeit,
Karlsruher Institut für Technologie, Institut für Technik der Informa-
tionsverarbeitung, 2011.

[Red14] REDER, SIMON: Adaptiver Algorithmus und Tool Chain zur Beschleunigung
von SystemC auf Many-Core Architekturen. Masterarbeit, Karlsruher In-
stitut für Technologie, Institut für Technik der Informationsverarbei-
tung, 2014.

325

Betreute studentische Arbeiten

[Sch13] SCHULTSCHIK, SVEN: Entwicklung einer Multi-Domänen Simulation zur
interdisziplinären Betrachtung vernetzter eingebetteter Systeme. Studienar-
beit, Karlsruher Institut für Technologie, Institut für Technik der Infor-
mationsverarbeitung, 2013.

326

Verö�entlichungen

Konferenz- & Zeitschriftenbeiträge

[ADS+10] ALBERS, A., T. DÜSER, O. SANDER, C. ROTH und J. HENNING: De-
velopment Platform for Vehicles, Control Units and Communication Sys-
tems. ATZelektronik worldwide, 5(5):50–54, 2010.

[BNR+13] BRITO, A., A. NEGREIROS, C. ROTH, O. SANDER und J. BECKER: De-
velopment and Evaluation of Distributed Simulation of Embedded Systems
using Ptolemy and HLA. In: 17th IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications, Delft, 2013.

[BSR12] BECKER, J., O. SANDER und C. ROTH: Processor Solutions for Smart
Mobility. In: 48. Workshop der Multi Projekt Chip - Gruppe der Hoch-
schulen in Baden Württemberg, Seiten 1–10, 2012.

[DSK+13] DRESCHMANN, M., O. SANDER, A. KLIMM, C. ROTH und J. BE-
CKER: Addiguration: Exploring configuration behavior of Spartan-3 de-
vices. In: Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), 2013 8th International Workshop on, Seiten 1–6, 2013.

[KBR+11a] KUEHNLE, M., A. BRITO, C. ROTH, K. DAGAS und J. BECKER: The
Study of a Dynamic Reconfiguration Manager for Systems-on-Chip. In:
VLSI (ISVLSI), 2011 IEEE Computer Society Annual Symposium on, Sei-
ten 13–18, 2011.

[KBR+11b] KUEHNLE, M., A. BRITO, C. ROTH, M. KRUESSELIN und J. BECKER:
An approach for power and performance evaluation of reconfigurable SoC
at mixed abstraction levels. In: Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2011 6th International Workshop on, Seiten
1–8, 2011.

[RAS+11] ROTH, C., G.M. ALMEIDA, O. SANDER, L. OST, N. HEBERT, G. SAS-
SATELLI, P. BENOIT, L. TORRES und J. BECKER: Modular Framework
for Multi-level Multi-device MPSoC Simulation. In: Parallel and Dis-

327

Konferenz- & Zeitschriftenbeiträge

tributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE
International Symposium on, Seiten 136–142, 2011.

[RBB+14] ROTH, C., H. BUCHER, A. BRITO, O. SANDER und J. BECKER: A
Simulation Tool Chain for Investigating Future V2X-based Automotive
E/E Architectures. In: Proceedings of Embedded Real Time Software and
Systems Conference, 2014.

[RBR+13a] ROTH, C., H. BUCHER, S. REDER, F. BUCIUMAN, O. SANDER und
J. BECKER: A SystemC Modeling and Simulation Methodology for Fast
and Accurate Parallel MPSoC Simulation. In: 26th Symposium on Inte-
grated Circuits and Systems Design, Curitiba - Brazil, 2013.

[RBR+13b] ROTH, C., H. BUCHER, S. REDER, O. SANDER und J. BECKER: Im-
proving parallel MPSoC simulation performance by exploiting dynamic
routing delay prediction. In: Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC), 2013 8th International Workshop on, Seiten
1–8, 2013.

[RMR+12] ROTH, C., J. MEYER, M. RÜCKAUER, O. SANDER und J. BECKER:
Efficient Execution of Networked MPSoC Models by Exploiting Multiple
Platform Levels. Int. J. Reconfig. Comput., 2012:27–39, Januar 2012.

[RRB+14] ROTH, C., S. REDER, H. BUCHER, O. SANDER und J. BECKER: Ad-
aptive Algorithm and Tool Flow for Accelerating SystemC on Many-Core
Architectures. In: 2014 Euromicro Conference on Digital System Design
(DSD), Verona, Italy, 2014.

[RRE+12] ROTH, C., S. REDER, G. ERDOGAN, O. SANDER, G.M. ALMEIDA,
H. BUCHER und J. BECKER: Asynchronous parallel MPSoC simulati-
on on the Single-Chip Cloud Computer. In: System on Chip (SoC), 2012
International Symposium on, 2012.

[RRS+12] ROTH, C., S. REDER, O. SANDER, M. HÜBNER und J. BECKER: A Fra-
mework for Exploration of Parallel SystemC Simulation on the Single-chip
Cloud Computer. In: Proceedings of the 5th International ICST Conference
on Simulation Tools and Techniques, SIMUTOOLS ’12, Seiten 202–207.
ICST, 2012.

[RSB11] ROTH, CHRISTOPH, OLIVER SANDER und JÜRGEN BECKER: Flexible
and efficient co-simulation of networked embedded devices. In: Proceedings
of the 24th symposium on Integrated circuits and systems design, SBCCI
’11, Seiten 61–66, New York, NY, USA, 2011. ACM.

[RSG+10] ROTH, C., O. SANDER, B. GLAS, J. BECKER, T. DÜSER, A. SEI-
FERMANN, A. ALBERS, K. D. MÜLLER-GLASER und J. HENNING:
Car-to-X-in-the-Loop - Development Environment for Vehicles, Control
Units and Communication Systems in the Context of future Mobility

328

Konferenz- & Zeitschriftenbeiträge

Concepts. In: Fahrerassistenz und Integrierte Sicherheit. 26. VDI/VW-
Gemeinschaftstagung, VDI-Berichte, Seiten 67–80. VDI Verlag GmbH,
2010.

[RSHB10a] ROTH, C., O. SANDER, M. HUEBNER und J. BECKER: Car-to-X Si-
mulation Environment for Comprehensive Design Space Exploration Ve-
rification and Test. SAE Int. J. Passeng. Cars - Electron. Electr. Syst.,
2010:17–26, 2010.

[RSHB10b] ROTH, C., O. SANDER, M. HUEBNER und J. BECKER: Car-to-X Simu-
lation Environment for Comprehensive Design Space Exploration Verifica-
tion and Test. In: SAE 2010 World Congress, 2010.

[RSKB11] ROTH, C., O SANDER, M. KÜHNLE und J. BECKER: HLA-based simu-
lation environment for distributed SystemC simulation. In: Proceedings
of the 4th International ICST Conference on Simulation Tools and Techni-
ques, SIMUTools ’11, Seiten 108–114. ICST, 2011.

[SGR+09a] SANDER, O., B. GLAS, C. ROTH, J. BECKER und K. D. MUELLER-
GLASER: Real time information processing for car to car communication
applications. In: 12th EAEC European Automotive Congress, 2009.

[SGR+09b] SANDER, O., B. GLAS, C. ROTH, J. BECKER und K.D. MUELLER-
GLASER: Design of a Vehicle-to-Vehicle communication system on recon-
figurable hardware. In: Field-Programmable Technology, 2009. FPT 2009.
International Conference on, Seiten 14–21, 2009.

[SGR+09c] SANDER, O., B. GLAS, C. ROTH, J. BECKER und K.D. MUELLER-
GLASER: Priority-based packet communication on a bus-shaped structure
for FPGA-systems. In: Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., Seiten 178–183, 2009.

[SGR+09d] SANDER, O., B. GLAS, C. ROTH, J. BECKER und K.D. MUELLER-
GLASER: Testing of an FPGA Based C2X-Communication Prototype with
a Model Based Traffic Generation. In: Rapid System Prototyping, 2009.
RSP ’09. IEEE/IFIP International Symposium on, Seiten 68–71, 2009.

[SRGB13] SANDER, O., C. ROTH, B. GLAS und J. BECKER: Towards Design and
Integration of a Vehicle-to-X Based Adaptive Cruise Control. In: Procee-
dings of the FISITA 2012 World Automotive Congress, Band 200 der Rei-
he Lecture Notes in Electrical Engineering, Seiten 87–99. Springer Berlin
Heidelberg, 2013.

[SRSB09] SANDER, OLIVER, CHRISTOPH ROTH, VITALI STUCKERT und JÜR-
GEN BECKER: System concept for an FPGA based real-time capable au-
tomotive ECU simulation system. In: Proceedings of the 22nd Annual
Symposium on Integrated Circuits and System Design: Chip on the Du-
nes, SBCCI ’09, Seiten 34:1–34:6, New York, NY, USA, 2009. ACM.

329

sdnotify

seval

stnotify

[τ i >= τmax]

[|Ri| == 0]/
δ i = δ i + 1;

supdate

init

scheckLOCC

[|Ui| == 0]

[|Ri| != 0]/ eval(Ri);

[|Ui| != 0]/ update(Ui);

[τbound >= τnext]/
τ i = τnext; tnotify(τ i,N

τ
i);

updateT();

[|Nδ
i| != 0]/ dnotify(Nδ

i);

[τ i < τmax]
sdispatch

[|Nδ
i| == 0]/

dispatch();

[|R|==0]/
τnext = nextTime();

τbound= checkLOCC(τnext);

[|Ri|!=0]

[τbound < τnext]/
τ i = τbound;
updateT();
dispatch();

[Event_Absent]/
HLA13_tick

[Event_Update]/
HLA13_A3_12_Action_Update

S_EX

S_ADVANCE

S_

S_SYNC_RE

S_SYNC_

S_S_GRANT

S_START

S_READ

[Event_Absent]

[Event_SetNextBarrier]/
HLA13_A5_12_Action_
NextEventReqAvailable S_UPDATE

[Event

[Even
HLA13_A1_

HLA13_A1_2_Ac

[Even

[Even
[Event_Update]/

HLA13_A3_12_Action_Update

[Event_SetNextBarrier]/HLA13_A5_12_Action_
NextEventReqAvailable

[HLA13_B5_2_Event_Grant]/
Action_SetNextBarrier

[HLA13_B3_4_Event_Discover]/
HLA13_B3_4_Action_Discover

[HLA13_B3_7_Event_Reflect]/
HLA13_B3_7_Action_Reflect

[pass==0]/
pass=checkELOCC(Lin,τi ,θi);

dispatchIn();

[|Ri| == 0 && pass==0]/
θi = skip();updateT();

pass=checkELOCC(Lub,ext,τi ,∞);
dispatchIn();

sdnotify

seval

[|Ri| == 0]/
δi = δi + 1;

supdate

init

[|Ui| == 0]/
dispatchOut();θi = θi + 1;updateT();

[|Ri| != 0]/ evaluate(Ri);

[|Ui| != 0]/ update(Ui);

[|Nδ
i| != 0]/ dnotify(Nδ

i);sELOCC

[|Nδ
i| == 0 && |Ri| != 0]/

pass=0;

sLOBC

sDSC

[pass==1]/
pass=checkDSC();

sELOCC_INFTY

[|Nδ
i| == 0 && |Ri| == 0]/

pass=0;

[|Ri| != 0]

stnotify

[τ i >= τmax]

[pass==1]/
τi = nextEdgeTime();θi = -1;

tnotify(τi,N
τ
i);updateT();

[|Ri| != 0 && τi < τmax]/
pass=0;

[|Ri| == 0 && τi < τmax]/
pass=0;

[|Ri| == 0 && pass==1]/
pass=checkLOBC(Lb,ext);

[pass==1]

[pass==0]

[pass==0]

spostprocess

sschedule

/sendCT();pass=0;

\τsync
i = τsync

i + q;
sleep(q);

[pass==0]/sleep(SC_ZERO_TIME);
pass=checkCT();ssync

[τi < τmax]/
sendCT();pass=0;

[τi == τmax]

[pass==1]/update();
popCT();

supdate

/pre(P)

spreprocess

[τi < τsync
i]/

pre(P);

/exec(P)

/post(P);incLocal();

[τi == τsync
i]

sexecute

Christoph Roth

Parallele und kooperative Simulation für
eingebettete Multiprozessorsysteme

Die Entwicklung von eingebetteten Systemen wird durch die stetig
steigende Anzahl und Integrationsdichte neuer Funktionen in
Kombination mit einem erhöhten Interaktionsgrad zunehmend zur
Herausforderung. Vor diesem Hintergrund stellen Methoden zur
Simulationsbeschleunigung sowie zur Verbesserung der
Interoperabilität zwei zentrale Teilaspekte von zukünftigen
simulationsbasierten Entwicklungsprozessen dar.

Hinsichtlich des ersten Teilaspekts werden in dieser Arbeit
unterschiedliche Strategien für die SystemC-basierte parallele
Simulation von eingebetteten Multiprozessorsystemen auf
zukünftigen Manycore Architekturen entwickelt. Dabei stehen
zyklenakkurate und zyklenapproximative Modelle im Fokus der
Betrachtung. Die verschiedenen Strategien werden implementiert,
experimentell untersucht und bewertet.

Bezüglich des zweiten Teilaspekts wird eine neuartige
modellbasierte Methode zur Verbesserung der Interoperabilität
zwischen heterogenen Simulationswerkzeugen vorgestellt.
Realisierbarkeit und Anwendbarkeit der Methode werden anhand
einer Werkzeugkette und verschiedener Fallstudien demonstriert.

C
hr

is
to

ph
 R

ot
h

Pa
ra

lle
le

 u
nd

 k
oo

pe
ra

tiv
e

Si
m

ul
at

io
n

fü
r

ei
ng

eb
et

te
te

 M
ul

tip
ro

ze
ss

or
sy

st
em

e

	Einleitung
	Motivation
	Beschleunigung durch parallele Simulation
	Interdisziplinäre Entwicklung durch kooperative Simulation

	Zielsetzung der Dissertation
	Aufbau der Arbeit

	Grundlagen
	Entwurf eingebetteter elektronischer Systeme
	Klassifikation von Entwurfsmethoden
	Validierung und Verifikation

	Modellbildung und Simulation
	Modell und Modellbildung
	Simulation
	Berechnungsmodelle
	Heterogenität

	Sprachen für den Systementwurf
	Sprachen zur Modellierung von Hardware und Software
	SystemC
	Sprachen zur Modellierung heterogener eingebetteter Systeme
	Ptolemy II

	Prozessorarchitekturen und Parallelität
	Taxonomie für Prozessorarchitekturen
	Klassifikation von Parallelität
	Single-chip Cloud Computer
	Performanzanalyse

	Stand von Forschung und Technik
	Parallele Simulation von Multiprozessoren
	Anwendungsbereiche
	Forschungsansätze basierend auf SystemC
	SystemC Front-Ends
	Forschungsansätze basierend auf SpecC

	Interdisziplinäre Co-Simulation
	Allgemeiner Überblick
	Interoperabilität
	Standardisierung

	Parallele SystemC Simulation für Multiprozessoren
	Allgemeine Anforderungen
	Konzept und Methodik
	Perspektiven und Abstraktion
	Architekturmodell für eine parallele Simulation
	Simulationssynthese
	Strategien zur Parallelisierung von SystemC
	Überblick über implementierte Komponenten

	Asymmetrische synchrone Strategie
	Anforderungen und Konzept
	Datenpartitionierung
	Globale Barriersynchronisation
	Integration von Kommunikation und Synchronisation
	Abbildung auf die Speicherarchitektur des SCC
	Weiterführende Strategien
	Bewertung

	Symmetrische asynchrone Strategie
	Anforderungen und Konzept
	Datenpartitionierung auf Kernelebene
	Logische Ebene
	Integration nachrichtenbasierter Kommunikation
	Integration des Synchronisationsverfahrens
	Manuelle Partitionierung des Simulationsmodells
	Abbildung auf die Speicherarchitektur des SCC
	Teilautomatisierte Werkzeugunterstützung
	Bewertung

	Adaptive symmetrische Strategie
	Anforderungen
	Adaptive logische Ebene
	Deltazyklengenaue nachrichtenbasierte Kommunikation
	Integration adaptiver Synchronisation
	Abbildung auf die Speicherarchitektur SCC
	Vollautomatisierte Werkzeugunterstützung
	Bewertung

	Strategie zur Simulation auf Transaktionsebene
	Allgemeine Anforderungen
	Basismethode
	Dynamische Latenzprädiktion
	Integration transaktionsbasierter Kommunikation
	Fallstudie I
	Fallstudie II

	Einordnung in verwandte Arbeiten und Fazit

	Interdisziplinäre verteilte Co-Simulation
	Beispiel: Automobile E/E Architekturen
	Einfluss neuer Technologien auf die E/E Architektur
	Auswirkungen auf den Entwicklungsprozess

	Anforderungen an die entwickelnde Simulationsumgebung
	Konzept
	Simulatorarchitektur
	Methode zur Etablierung einer Simulatorkopplung

	Implementierung der Simulatorarchitektur
	CERTI HLA
	Simulation Data Exchange Metamodel

	Umsetzung der semi-automatischen Werkzeugkopplung
	Konfiguration des Datenaustauschs
	Generierung von Schnittstellen
	Integration und Test

	Fallstudie I: System/Netzwerk Co-Simulation
	Beispiel: OMNeT++
	Konzept
	Single-Federation
	Szenario I: Performanzanalyse für venetzte MPSoCs
	Szenario II: Verteilte Ausführung

	Fallstudie II: Simulation von V2X basierten E/E Architekturen
	E/E Architektur
	V2X Kommunikation und physikalische Umwelt
	Multi-Federation
	Szenario I: Test einer ACC Funktion
	Szenario II: Verifikation einer ACC Implementierung
	Spezifikation von Funktionsabbildungen durch Aspekte

	Einordnung in verwandte Arbeiten und Fazit

	Schlussfolgerung und Ausblick
	Zusammenfassung und Schlussfolgerung
	Ausblick

	On-Chip Kommunikation auf dem SCC
	Existierende leichtgewichtige Lösungen
	Implementierung
	Send Buffer
	Stream Proxy
	Message Buffer

	Services der HLA
	Kategorien
	Verwendete HLA 1.3 Services
	Verzeichnisse
	Abbildungen
	Tabellen
	Abkürzungen

	Literatur- und Quellennachweise
	Betreute studentische Arbeiten

	Veröffentlichungen

