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1. Einleitung

1.1. Motivation

Systeme der Informations- und Kommunikationstechnologie (IKT) sind heute inte-
graler Bestandteil des tdglichen Lebens. Dies ist nicht zuletzt auf den andau-
ernden Trend zur Miniaturisierung im Bereich der Halbleiterentwicklung zu-
riickzufiihren [202, 231]. Die Bedeutung der IKT wird auch in Zukunft immer
weiter zunehmen, was durch aktuelle Forschungstrends verdeutlicht wird, wel-
che durch Begriffe wie Ambient Intelligence, Ubiquitous Computing oder Pervasive
Computing charakterisiert werden konnen [264, 127, 31]: Zukiinftige Applikatio-
nen sollen eine gewisse Umgebungsintelligenz (Ambient Intelligence) zur Un-
terstiitzung des Menschen im Alltag bereitstellen. Zur Realisierung dieser Ap-
plikationen muss Information jederzeit und allgegenwirtig verfiigbar sein (Ubi-
quitous). Dies geschieht unter Ausnutzung und Vernetzung bereits vorhandener
Technologien (Pervasive). Zu den Bereichen, die durch die neuen Ansdtze im
Umfeld der IKT mafigeblich beeinflusst werden, gehoren u.a. die Automobil-
elektronik, die Avionik, der Schienenverkehr, die Telekommunikation, die Auto-
matisierungstechnik oder die Medizintechnik.

Zwei bereits existierende grundlegende Basistechnologien zu Realisierung zu-
kiinftiger IKT Systeme bilden eingebettete Systeme und Kommunikationstech-
nologien [174, 195]. In [248] werden eingebettete Systeme definiert als

Jheterogene technische Systeme, die sich durch verschiedenartige Kompo-
nenten und Interaktionen auszeichnen, die auf einen ganz bestimmten An-
wendungsbereich zugeschnitten und die in einem technischen Kontext ein-
gebettet sind”.

In der Regel miissen sie eine Reihe von Anforderungen wie Echtzeitfdhigkeit,
Zuverldssigkeit, Robustheit und/oder Effizienz erfiillen. Ein eingebettetes Sys-
tem besteht im Kern typischerweise aus Hardware- und Softwarekomponenten.
Aufgrund der Notwendigkeit zur Interaktion mit der physikalischen Umwelt
sind eingebettete Systeme mit Sensoren und/oder Aktoren ausgestattet. Kom-
munikationstechnologien schaffen schlieflich die Basis dafiir, dass Interaktio-
nen eines eingebetteten Systems mit der Umwelt auch tiber einen raumlich be-
schrankten Horizont hinaus moglich werden.
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Die Umsetzung der oben genannten neuartigen Konzepte tragt zu einer enormen
Steigerung der Vielfalt und Komplexitdt von eingebetteten Systemen bei. Diese
Komplexitat dufiert sich insbesondere in

1. einer gesteigerten Rechenkomplexitit zukiinftiger Anwendungen. In Ver-
bindung mit der hohen Anzahl neuer Funktionen resultiert dies in erhth-
ten Anforderungen an die verfiigbare Performanz.

2. einer erhohten Interaktion von Anwendungen und zugrunde liegenden
Systemkomponenten nicht nur mit der heterogenen physischen Umwelt,
sondern auch mit einer weitreichenden und vernetzten IKT Infrastruktur.

Wegen der Einkopplung der physikalischen Umwelt in eine umfangreich ver-
netzte IKT Infrastruktur wird die beschriebene Art des resultierenden Gesamt-
systems heutzutage oft auch allgemein unter dem Oberbegriff Cyber-Physical Sys-
tem (CPS) [246, 174, 32] oder Internet of Things [38, 197] zusammengefasst.

Durch die Komplexititssteigerung von Funktionen, Anwendungen und Syste-
men entstehen unmittelbar neue Herausforderungen an Entwicklungsprozesse.
Konkrete Herausforderungen im Bereich der Simulation, die aktuell entweder
gar nicht oder nicht im notwendigen Mafle berticksichtigt werden, seien im Fol-
genden kurz skizziert.

1.1.1. Beschleunigung durch parallele Simulation

Betrachtet man ausschliefllich den Entwicklungsprozess fiir Hardware/Software
(HW/SW) Systeme, den Teil eines eingebetteten Systems, der fiir die Informati-
onsverarbeitung verantwortlich ist, so basiert dieser schon seit den 1980er Jah-
ren auf automatisierten rechnergesttitzten Entwurfsmethoden. Nur dadurch ist
es moglich, solche Systeme in akzeptabler Zeit und mit annehmbaren Kosten zu
entwickeln [115, 172, 248].

Die steigenden Anforderungen an die verfligbare Performanz in Verbindung
mit der Notwendigkeit zur energetischen Effizienz resultieren nun darin, dass
solche eingebetteten HW /SW Systeme immer ofter als Multiprocessor System-on-
Chip (MPSoC) realisiert werden [56]. MPSoCs integrieren immer mehr homoge-
ne oder heterogene Rechenkerne auf einem einzigen Chip. Dies wiederum hat
einen wachsenden Umfang von Modellen und Spezifikationen zur Folge, die
im Verlauf des Entwicklungsprozesses erstellt werden. Umfangreichere Spezifi-
kationen erzeugen Mehraufwand fiir die Verifikation und infolgedessen hohere
Kosten. Beispielsweise haben stetig wachsende Simulationsmodelle immer l4n-
gere Laufzeiten einer simulationsbasierten Verifikation zur Folge [180].

Ein oft gewdhlter Ansatz zur Beschleunigung von MPSoC Simulationen ist es,
die Rechenkomplexitdt von vollstandig zyklenakkuraten Simulationsmodellen
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durch Abstraktion zu verringern. Dadurch sind betrachtliche Performanzsteige-
rungen moglich. Ein solche Abstraktion hat jedoch den Nachteil, dass Modelle je
nach Abstraktionsgrad nur fiir bestimmte Anwendungsfélle geeignet sind. Ein
zur Abstraktion alternativer Losungsansatz ist deswegen die parallele Simulati-
on.

Im Bereich der Mehrzweck Central Processing Units (CPUs) hat sich der Paradig-
menwechsel von einkernigen Prozessoren hin zu Multiprozessoren bereits im
Jahr 2004 vollzogen [243]. Die Ursache war das Uberschreiten der oft als ,, Power
Wall” bezeichneten Barriere (siehe Abb. 1.1). Diese fiihrt dazu, dass Performanz-
steigerungen nicht mehr durch eine reine Skalierung der Taktfrequenz, sondern
nur noch durch Architekturtechniken wie Hyperthreading, Caching oder eben
dem Ubergang zu Multiprozessoren erreicht werden kénnen [243]. Aktuell geht
der Trend im Mehrzweckbereich bereits in Richtung Manycore Prozessoren, wel-
che mehrere zehn oder gar hundert Rechenkerne integrieren. Ein Beispiel aus
der Forschung ist der im Jahr 2009 angekiindigte sog. Single-chip Cloud Computer
(SCC) [144] mit 48 Kernen. Ein seit dem Jahr 2011 kommerziell erhéltlicher Ma-
nycore Prozessor ist die Intel Many-Integrated-Core (MIC) Architektur mit aktuell
bis zu 72 Kernen [91].

10,000,000

-/

‘ Dual-Core Itanium 2

Intel CPU Trends -

(sources: Intel, Wikipedia, K. Olukotun)

100,000
Pentium 4 /
) oL

10,000

1,000,000

1,000

100

10

1 f t t oot Trand

o i @ Clock Speed (MHz)
[ XX ] A Power (W)
‘@ Perf/Clock (ILP)

° I

1970 1975 1980 1985 1990 1995 2000 2005 2010

Abbildung 1.1.: Intel CPUs zwischen 1970 und 2010 (Quelle: [243])

Um Multicore oder Manycore CPUs zur Beschleunigung einer MPSoC Simulati-
on nutzen zu konnen, miissen existierende Simulatoren fiir die Parallelverarbei-
tung tauglich gemacht werden. Fiir einschldgige Simulatoren wie beispielsweise
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den SystemC Simulator [27, 1] existiert aktuell noch keine Unterstiitzung fiir par-
allele Ausfithrung.

Zukiinftige Entwicklungsprozesse sollten folglich neue Methoden nutzen, wel-
che die Moglichkeit zur parallelen Simulation komplexer Simulationsmodelle er-
offnen. Die Kombination von Parallelisierung und Abstraktion kann ein addqua-
tes Mittel sein, um einen besseren Trade-off zwischen hoher Genauigkeit und ho-
her Performanz zu erzielen. Aus Griinden der Komplexititsreduktion sollte der
Prozess der Parallelisierung eines Modells zugleich moglichst automatisiert und
versteckt vor dem Anwender erfolgen.

1.1.2. Interdisziplindre Entwicklung durch kooperative
Simulation

Durch den Trend in Richtung MPSoCs in Kombination mit dem hohen Vernet-
zungsgrad lassen sich zukiinftige Anwendungen im Bereich der eingebetteten
Systeme oft nicht mehr eindeutig bestimmten HW/SW Komponenten zuord-
nen. Durch die Integration von (vormals vollstindig geschlossenen Netzwerken
aus) Teilsystemen in eine prinzipiell offene IKT Infrastruktur, entstehen deswe-
gen zusdtzliche Herausforderungen bzgl. der Erfiillung von Anforderungen wie
Echtzeitfahigkeit, Zuverlassigkeit und Sicherheit.

Um die Erfiillung solcher Anforderungen zu verifizieren, geniigt es nicht mehr,
Teilsysteme als abgeschlossene Einheiten zu betrachten und erst in einer spéten
Phase des Entwicklungsprozesses miteinander zu integrieren. Vielmehr muss
die Entwicklung eines Teilsystems bereits in frithen Phasen des Entwurfspro-
zesses und durchgéngig bis zur Implementierungsphase unter Berticksichtigung
von Randbedingungen erfolgen, die durch andere Teilsysteme erzeugt werden
[20]. Nur auf diese Weise konnen ein Fehlschlagen einer spéten Integration so-
wie teure Iterationen im Entwurfsprozess vermieden werden.

Fiir die Verifikation bedeutet dies, dass der wechselseitige Einfluss verschiede-
ner Teilsysteme sowie der physikalischen Umwelt so frith wie moéglich durch
kooperative Simulation (Co-Simulation) von disziplinspezifischen Modellen be-
riicksichtigt werden sollte. Als Voraussetzung dafiir miissen Schnittstellen zur
Kopplung der Modelle oder der zugrundeliegenden Simulationswerkzeuge exis-
tieren. Sollen Modelle wiederverwendet werden, so miissen diese Schnittstellen
u.U. neu entwickelt oder adaptiert werden. Neben dem hohen Entwicklungsauf-
wand ist ein weiteres Problem, dass das resultierende heterogene Gesamtsimu-
lationsmodell aufgrund unstrukturierter Komposition ein unerwartetes emer-
gentes Verhalten aufweisen kann [102]. Eine alternative Losung sind heterogene
Simulationswerkzeuge, welche bereits nativ eine Simulation von heterogenen
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Modellen unterstiitzen. Diese Werkzeuge stehen allerdings dem Wiederverwen-
dungsaspekt entgegen.

Zukiinftige Entwicklungsprozesse sollten der beschriebenen Problematik daher
durch den Einsatz neuer Methoden zur heterogenen Co-Simulation sowie zur
Verbesserung der Interoperabilitdt zwischen existierenden heterogenen Model-
len entgegenwirken, welche eine moglichst schnelle aber strukturierte Integrati-
on von Simulationsmodellen ermoglichen.

1.2. Zielsetzung der Dissertation

Die vorliegende Dissertation widmet sich der Entwicklung von Losungsansat-
zen, um den zuvor skizzierten Herausforderungen im Bereich der Simulation
eingebetteter Systeme zu begegnen. Dabei sollen moglichst automatisierte Me-
thoden bereitgestellt werden, die einen simulationsbasierten Verifikationspro-
zess fiir eingebettete Multiprozessorsysteme durch Beschleunigung und Inter-
operabilitdt unterstiitzen.

Bei den im Kontext der Simulationsbeschleunigung betrachteten Techniken und
Methoden steht die Kompatibilitit fiir zukiinftige Manycore Prozessoren im Vor-
dergrund. Dies ist ein Hauptunterscheidungsmerkmal zu anderen existierenden
Forschungsansitzen im Bereich der parallelen MPSoC Simulation. Folgende Fra-
gestellungen werden dabei erortert:

¢ Wie konnen zukiinftige Manycore Prozessoren wie der Single-chip Cloud
Computer fiir die parallele Simulation und insbesondere die Beschleuni-
gung von zyklenakkuraten und zyklenapproximativen MPSoC Simulatio-
nen nutzbar gemacht werden?

* Welche Charakteristika muss ein paralleler Simulator besitzen, um An-
forderungen, wie Skalierbarkeit, Erweiterbarkeit, Portierbarkeit, Handhab-
barkeit und Kompatibilitit zu relevanten Modellierungsstilen zu erfiillen?

* Wie sehen Ansitze fiir eine automatisierte Werkzeugkette aus, um den Par-
allelisierungsprozess weitgehend bis vollstdindig vor dem Anwender zu
verstecken?

¢ Welche Moglichkeiten bestehen, um bei einer MPSoC Simulation eine Per-
formanzsteigerung durch Parallelisierung und Abstraktion zu erreichen
aber gleichzeitig den Genauigkeitsverlust gering zu halten?

Um die Herausforderungen bzgl. der Interoperabilitdt von Simulationsmodellen
in zukiinftigen Entwicklungsprozessen weiter zu konkretisieren, werden sie in
dieser Arbeit am Beispiel der Entwicklung zukiinftiger automobiler elektrisch/-
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elektronischer (E/E) Architekturen betrachtet. Dabei wird auf folgende Kernfrage-
stellungen eingegangen:

e Welche Implikationen von neuartigen Technologien auf zukiinftige E/E
Architekturen sind zu erwarten? Welche Anforderungen lassen sich dar-
aus fiir zukiinftige Entwicklungsprozesse im Automobilbereich ableiten?

e Wie sieht eine Simulatorarchitektur zur Co-Simulation aus, die Anforde-
rungen wie bessere Interoperabilitit, heterogene Modellierung, struktu-
rierte Komposition, Wiederverwendbarkeit und Erweiterbarkeit erftillt?

* Welche Moglichkeiten bestehen, um den Prozess der Kopplung heteroge-
ner Simulationsmodelle zu beschleunigen, die Handhabbarkeit zu verbes-
sern und die Gefahr vor unerwartetem Verhalten zu reduzieren?

Zur Beantwortung der genannten Fragestellungen wurden verschiedene Metho-
den und Werkzeuge entwickelt, die im Folgenden vorgestellt werden. Dies bein-
haltet die Beschreibung und Analyse zugrundeliegender Konzepte sowie die
quantitative Bewertung und kritische Diskussion von Grenzen und moglicher
Ansétze zur weiteren Optimierung.

1.3. Aufbau der Arbeit

Kapitel 2 gibt einen kurzen Uberblick iiber die Grundlagen dieser Arbeit. Das
Kapitel beginnt mit einem Uberblick iiber Entwurfsprozesse fiir eingebettete Sys-
teme. Anschliefend werden Grundbegriffe der Modellbildung und Simulation
mit einem speziellen Fokus auf (parallelen) diskreten ereignisbasierten Berech-
nungsmodellen erldutert. Darauf aufbauend werden einschldgige Sprachen und
Werkzeuge, insbesondere SystemC [27] und Ptolemy II [102], vorgestellt. Das
Kapitel schliefst mit einer Zusammenfassung existierender Techniken im Bereich
Prozessorarchitekturen, einer Beschreibung der Architektur des SCC sowie einer
Kldrung grundlegender Begriffe der Performanzanalyse.

Kapitel 3 beschreibt den Stand von Forschung und Technik. Im Bereich der par-
allelen Simulation von Multiprozessoren liegt der Schwerpunkt zunichst auf
proprietdaren Forschungsansidtzen und bereits existierenden kommerziellen Lo-
sungen. Danach werden Ansatze betrachtet, welche SystemC als Grundlage ver-
wenden. Anschliefend wird der Stand von Forschung und Technik im Bereich
heterogener Co-Simulation, insbesondere auch im Hinblick auf Methoden zur
Verbesserung der Interoperabilitit existierender Simulationswerkzeuge, disku-
tiert.

In Kapitel 4 wird zunéchst eine allgemeine Methodik fiir die parallele SystemC-
basierte Simulation von eingebetteten MPSoCs auf Manycore Architekturen her-
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geleitet. Anschliefiend werden Strategien zur Parallelisierung des SystemC Ker-
nels analysiert und klassifiziert. Darauf aufbauend wird die Umsetzung drei-
er ausgewdhlter Strategien zur zyklenakkuraten Simulation auf dem sog. Regis-
ter Transfer Level (RTL) beschrieben. Zwei der drei Strategien werden durch eine
teil- bzw. vollautomatisierte Werkzeugkette ergédnzt. Darauf aufbauend wird ei-
ne Modellierungsstrategie auf dem sog. Transaction Level (TL) entwickelt, welche
es gestattet, die parallele Ausfiihrung durch gezielte Abstraktion zusétzlich zu
beschleunigen. Jede der genannten Strategien wird mit Hilfe verschiedener Fall-
studien hinsichtlich ihrer Leistungsfiahigkeit und der Erfiillung an sie gestellter
Anforderungen bewertet.

Kapitel 5 beschreibt einen methodischen Ansatz, welcher eine simulationsba-
sierte Verifikation anhand interdisziplindrer kooperativer Simulation moglich
macht. Die Notwendigkeit dazu wird zunachst am Beispiel des Entwicklungs-
prozesses automobiler E/E Architekturen verdeutlicht. Aus dem Beispiel wer-
den Anforderungen an eine geeignete Simulationsumgebung fiir die interdis-
ziplinidre kooperative Simulation abgeleitet. Darauf basierend wird ein Konzept
fiir eine Simulatorarchitektur sowie eine Methode fiir die Anwendung der Simu-
latorarchitektur entwickelt. Realisierbarkeit und Anwendbarkeit der Methode
werden schliefllich anhand einer Werkzeugkette und verschiedener Fallstudien
demonstriert.

In Kapitel 6 werden die entwickelten Ansétze in einer abschlielenden Betrach-
tung noch einmal zusammengefasst. Ein kurzer Ausblick auf mogliche Weiter-
entwicklungen, Optimierungen und zukiinftiges Forschungspotential vervoll-
standigen die Arbeit.






2. Grundlagen

2.1. Entwurf eingebetteter elektronischer Systeme

Die kontinuierliche Weiterentwicklung der Halbleitertechnologie ist die Grund-
lage fiir die Entwicklung immer komplexerer eingebetteter Systeme. Die Be-
herrschung dieser stetig steigenden Komplexitit stellt eine grofie Herausforde-
rung wahrend des Entwurfsprozesses dar. Tatsachlich ist zu beobachten, dass
die Liicke zwischen den verfiigbaren Basistechnologien und der Produktivitit
der Entwurfsverfahren fiir digitale Hardware/Software Systeme, die die Basis-
technologien ausnutzen, immer grofier wird [99]. In [99] wird diese Liicke als
System Design Gap bezeichnet.

Das stetig wachsende System Design Gap ist auf die Notwendigkeit sog. Hard-
ware-dependent Software (HAS) [148, 99] und den mit der Entwicklung von HdS
verbundenen zusétzlichen Anstieg im Entwicklungsaufwand zuriickzufiihren.
Im Allgemeinen dient HdS der Abstraktion verfiigbarer Hardwareressourcen
durch eine zusatzliche Softwareschicht.

Dartiber hinaus wird das System Design Gap dadurch verstarkt, dass aktuelle
und zukiinftige System-on-Chip (S0C) Losungen immer mehr Rechenkerne auf
einem einzigen Chip integrieren. Solche Multi- oder Manycore SoCs kénnen
von unterschiedlichster Auspragung sein (homogen, heterogen, generisch, ap-
plikationsspezifisch, ...) [180]. Zusatzlich steigt die Anzahl an Anforderungen
hinsichtlich unterstiitzter Applikationen, Funktionen, Zuverlédssigkeit und Echt-
zeitfahigkeit. HdS muss dieser Vielfalt moglicher Hardwarearchitekturen und
Funktionen gerecht werden.

Aus dieser Beschreibung wird deutlich, dass ein hoher Bedarf an neuen Ansat-
zen in Form von neuen Entwurfsmethoden existiert, die zur Verbesserung von
Entwicklungsprozessen im Bereich eingebetteter elektronischer Systeme beitra-
gen. Das Ziel einer solchen Entwurfsmethode kann wie folgt formuliert werden
(vgl. [107]):

Minimierung der Entwicklungszeit sowie Entwicklungs- und Produkti-
onskosten nach Maf$gabe der Anforderungen an Performanz und Funktio-
nalitit des Systems”.
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Zur Erreichung dieses Ziels stellt eine Entwurfsmethode typischerweise Werk-
zeuge in Form von Electronic Design Automation (EDA) Tools zur Verfiigung, die
die einzelnen Schritte der Entwurfsmethode durch Automatisierung untersttit-
zen. Solche automatisierten Verfahren ermoglichen kiirzere Entwurfszyklen und
reduzieren Entwurfsfehler durch Verbesserung von Verifikations-, Validierungs-
und Explorationsprozessen [130]. All diese Teilaspekte kommen wiederum einer
Minimierung der Entwicklungszeit zugute. Im Folgenden werden die Grundla-
gen der heutzutage angewendeten Entwurfsmethoden erldutert.

2.1.1. Klassifikation von Entwurfsmethoden

Unterschiedliche Entwurfsmethoden im Bereich elektronischer Systeme lassen
sich anhand des von Gajski und Kuhn im Jahr 1983 entwickelten Y-Diagramms
[116] klassifizieren (siehe Abb. 2.1). Das Y-Diagramm besteht aus drei Achsen,
die verhaltens-, struktur- und physikorientierte Aspekte eines Systems reprasen-
tieren. Aus der Perspektive des Verhaltens wird ein System als Blackbox betrach-
tet und anhand der Wirkung von Eingdngen auf Ausgange tiber der Zeit spezifi-
ziert. Aus struktureller Sicht wird ein System als eine Kombination von Subsys-
temen und Verbindungen zwischen Subsystemen spezifiziert. Mit dem physika-
lischen Aspekt ist die Beschreibung der tatsdchlichen raumlichen Beschaffenheit
gemeint.

Alle drei Achsen sind in unterschiedliche Abstraktionsebenen unterteilt. Diese
sind durch konzentrische Kreise dargestellt. Abb. 2.1 beinhaltet die Systemebe-
ne, die Prozessorebene, die Logikebene und die Schaltkreisebene. Die Namen
leiten sich von den Komponenten ab, die typischerweise auf der entsprechen-
den Abstraktionsebene im Fokus der Entwicklung stehen. Eine Entwurfsmetho-
de entspricht einem Pfad im Y-Diagramm, der sich immer mehr dem Zentrum
ndhert. Er beginnt typischerweise bei der Spezifikation des Verhaltens und be-
wegt sich von dort in Richtung Spezifikation der Geometrie.

2.1.1.1. Synthese

Ein essentieller Teil einer Entwurfsmethode ist die Synthese. Der Begriff der Syn-
these ldsst sich im Y-Diagramm auf jeder Abstraktionsebene als eine , Konvertie-
rung einer gegebenen Verhaltensspezifikation in eine strukturelle Spezifikation” [115]
darstellen. Jede Teilkomponente einer strukturellen Spezifikation, kann auf der
darunterliegenden Abstraktionsebene wieder aus der Perspektive des Verhaltens
der Struktur oder der Geometrie betrachtet werden. Eine Synthese kann manuell
erfolgen oder durch automatisierte Syntheseverfahren unterstiitzt werden. Au-
tomatische Verfahren setzen voraus, dass das Verhalten auf Basis sog. Berech-
nungsmodelle (vgl. Abschnitt 2.2.3) eindeutig spezifiziert ist.

10
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Behavior Structure
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Abbildung 2.1.: Y-Diagramm nach Gajski und Kuhn [115]

Abhingig davon, auf welcher Abstraktionsebene eine Synthese ansetzt, kann sie
in unterschiedliche Teilschritte untergliedert werden. Der typische Schritt der
sog. Systemsynthese ist die Abbildung (engl. Mapping) einer Verhaltensspezifi-
kation in Form einer Funktion oder Applikation auf eine strukturelle Spezifika-
tion in Form eines beliebigen Netzwerks von Prozessoren. Typische Teilschritte
eine Synthese auf den darunterliegenden Ebenen sind I) die Allokation II) die
Ablaufplanung und III) die Bindung [248, 115].

2.1.1.2. Beispiele fiir Entwurfsmethoden

Noch bis in die spaten 1990er Jahre begannen Entwurfsmethoden fiir elektroni-
sche Systeme unmittelbar mit der Spezifikation des Verhaltens auf dem RTL. Im
Gegensatz dazu lassen sich Entwurfsmethoden heutzutage mit der Umschrei-
bung , Specify, Explore-and-Refine” [115] charakterisieren. Solche Ansédtze werden
auch als System-Level Design (SLD) Methoden bezeichnet. Nur durch die Anhe-
bung der Abstraktionsebene iiber RTL hinaus auf das sog. Electronic System Level
(ESL), ist es moglich, die steigende Komplexitit zukiinftiger eingebetteter Sys-
teme in der Phase des Entwurfs in den Griff zu bekommen [228]. Gajski nennt
und erldutert in [115] drei Basismethodiken, die grundsatzlich auf jeder Abstrak-
tionsebene (ESL, RTL, etc.) angewendet werden konnen:

11
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1. Bottom-up Methodik: In einer Bottom-up Methode existiert auf einer be-
stimmten Abstraktionsebene eine Bibliothek von Komponenten (inkl. der
Spezifikation von Verhalten, Struktur und Geometrie). Aus Komponenten
dieser Abstraktionsebene werden sukzessive Komponenten der ndchstho-
heren Abstraktionsebene erstellt (Komposition) und hinsichtlich der drei
Entwurfsaspekte aus Abb. 2.1 spezifiziert. Diese konnen dann ebenfalls
wieder in einer Bibliothek hinterlegt werden. Ein Vorteil ist die klare Tren-
nung von Abstraktionsebenen durch Bibliotheken. der Hauptnachteil ist,
dass fiir die Komposition einer Komponente auf einer hoheren Abstrakti-
onsebene alle notwendigen Komponenten auf den niedrigeren Abstrakti-
onsebenen bereits vorhanden sein miissen.

2. Top-down Methodik: Eine Top-down Methode beginnt auf einer hohen
Abstraktionsebene, tiblicherweise bei der Spezifikation des Verhaltens. Die
abstrakte Verhaltensspezifikation wird dann sukzessive in Teilkomponen-
ten niedrigerer Abstraktionsebenen zerlegt (Dekomposition) und bzgl. Ver-
halten, Struktur und letztlich Geometrie detailliert (Verfeinerung). Die Not-
wendigkeit von Bibliothekskomponenten niedrigerer Abstraktionsebenen
wird dadurch vermieden. Umgekehrt ist man wéhrend des Entwurfspro-
zesses auf Schdtzungen der Entwurfsqualitat auf niedrigeren Abstraktions-
ebenen angewiesen.

3. Meet-In-The-Middle Methodik: Diese kombiniert die beiden zuvor ge-
nannten Methoden und nutzt so die Vorteile beider Ansédtze. Typischer-
weise wird auf hoheren Abstraktionsebenen eine Spezifikation in einem
ein Top-down Verfahren dekomponiert. Auf niedrigeren Abstraktionsebe-
nen werden Komponenten in ein Bottom-up Verfahren komponiert. Oft lie-
gen beispielsweise Komponenten in einer RTL Bibliothek vor, die zuvor in
einem Bottom-up Prozess generiert wurden. In einem Top-down Prozess
wird dann eine abstrakte Verhaltensspezifikation sukzessive in Richtung
einer Architektur verfeinert, die ausschliefSlich aus Komponenten der RTL
Bibliothek besteht. Die Entwurfsqualitiat wird mit Hilfe von Metriken ge-
schitzt, die aus den Bibliotheken extrahiert werden konnen.

2.1.1.3. Plattformbasierte Entwurfsmethodik auf Systemebene

Die plattformbasierte Entwurfsmethodik (engl. Platform-based Design (PBD)) auf
Systemebene ist ein Sonderfall der Meet-In-The-Middle Methodik, welcher stark
produktorientiert ist und an spezifische industrielle Anforderungen angepasst
werden kann [115][107][120]. PBD auf Systemebene reduziert die Komplexitét
wahrend des Entwurfsprozesses durch die Separation von Belangen (z.B. Sepa-
ration von Funktion und Architektur oder Berechnung und Kommunikation)

12
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[163][224] und die Einschrankung des theoretisch unendlich grofle Entwurfs-
raum auf eine handhabbare Grofse.

Die sog. Systemplattform besteht aus einer Hardware- und einer Softwareplatt-
form. Sie wurde zuvor in einem Bottom-up Prozess entwickelt. Die Hardware-
plattform umfasst eine begrenzte Anzahl an Hardwarekomponenten, die bis zu
einem gewissen Grad (Typ, Anzahl, Verbindung, etc.) konfigurierbar sind. Die
Softwareplattform erfiillt den Zweck der weiter oben bereits erwdhnten HdS
und abstrahiert von der darunterliegenden Hardware. Typische Komponenten
der Softwareplattform sind z.B. ein Real-time Operating System (RTOS) oder Trei-
bersoftware. Fiir grofstmogliche Flexibilitdt ist sie meist in Form einer Schichten-
architektur realisiert. Die Funktionalitit der Systemplattform wird in Form eines
Application Programming Interface (API) genannt Plattform API zur Verfigung ge-
stellt (vgl. [163][230]).

In einer PBD Methodik auf Systemebene wird, ausgehend von einer abstrak-
ten Verhaltensspezifikation (Application Instance), die Implementierung in ei-
nem iterativen Prozess entwickelt. Der essentielle Schritt ist die Abbildung der
Verhaltensspezifikation auf eine bestimmte Plattforminstanz (Platform Instan-
ce). Diese ist eine Konfiguration aus der Menge aller méglichen Konfigurationen
der Systemplattform (Architectural Space). Die Kosten einer Entwurfsentschei-
dung basierend auf einer Abbildung werden anhand von Kostenmodellen ge-
schétzt und bewertet. Im Rahmen des Abbildungsprozesses wird die Spezifika-
tion schrittweise in Richtung Implementierung verfeinert. Die Exploration findet
insgesamt auf Abstraktionsebenen statt, die sich irgendwo zwischen vollstandig
abstrakter Spezifikation und finaler Implementierung bewegen.

Bis zu einer gewissen Ebene entspricht der Prozess der Abbildung und Verfei-
nerung einer semi-automatischen Synthese. Dabei spielt der Einsatz von Simu-
lationen zur Kostenschédtzung oft eine dominante Rolle. Auch die Korrektheit
eines durchgefiihrten Syntheseschrittes bzw. die Erfiillung gegebener funktio-
naler und nicht-funktionaler Anforderungen muss verifiziert werden. Der ite-
rative Prozess endet auf einer gewissen Ebene. Ab diesem Punkt werden typi-
scherweise vollstindig automatische Syntheseverfahren fiir die Generierung der
Hardware- und Softwareplattform verwendet. Abb. 2.2 illustriert den beschrie-
benen typischen Entwurfsfluss. Eine Verifikation erfolgt fiir gewohnlich nach je-
dem Syntheseschritt, insbesondere auch nach Erreichen der finalen Implemen-
tierung.

2.1.2. Validierung und Verifikation

In einem kompletten Entwicklungsprozess kann im Allgemeinen zwischen dem
Prozess der Validierung und dem Prozess der Verifikation unterschieden wer-
den. Der IEEE Standard 1012-1012 [28] definiert Validierung wie folgt:

13
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Application space
Application instance

Platform
specification
¥ System
platform
Platform
design-space
exploration
y

Platform instance
Architectural space
Abbildung 2.2.: Plattformbasierter Entwurf (Quelle: [230])

, The process of evaluating a system or component during or at the end of
the development to determine whether it satisfies specified requirements. The
process of providing evidence that the system, software, or hardware and its
associated products ... solve the right problem ..., and satisfy intended use
and user needs.”

Bei der Validierung wird die Erfiillung von Anforderungen tiberpriift, die der
Anwender oder Kunde an das zu entwickelnde System stellt. Es wird sicherstellt,
dass tiberhaupt das richtige System entwickelt wird. Verifikation wird in [28] als

,process of evaluating a system or component to determine whether the pro-
ducts of a given development phase satisfy the conditions imposed at the
start of that phase”

definiert. Oft wird die Verifikation auch als der Prozess umschrieben, der sicher-
stellt, dass ein System oder ein Teilsystem entsprechend einer gegebenen Spe-
zifikation umgesetzt wird, die zu Beginn eines Teilprozesses im Entwicklungs-
prozess definiert wurde. Im Vergleich zur Validierung ist die Verifikation daher
meist ein interner Prozess [25], der nicht unmittelbar in Verbindung zum Anwen-
der steht. Die Spezifikation ergibt sich dabei indirekt aus den Anforderungen
des Anwenders. Aus dieser Perspektive kann die Validierung als der Sonderfall
einer Verifikation betrachtet werden, bei dem eine Spezifikation eines Systems
hinsichtlich der Erfiillung von Anforderungen des Anwenders verifiziert wird.
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2.1.2.1. Methoden zur Verifikation

Entsprechend [130] kénnen drei grundlegende Ansédtze zur Verifikation unter-
schieden werden, formale Verifikationsmethoden, simulative Verifikationsme-
thoden und prototypische Implementierungen.

¢ Formale Verifikationsmethoden: Formale Verifikationsmethoden basieren
auf mathematischen Beweisen und setzen, wie die Synthese, unter Verwen-
dung von Berechnungsmodellen (vgl. Abschnitt 2.2.3) eindeutig definier-
te Verhaltensspezifikationen voraus. Formale Methoden sind vollstindig
bzgl. der Abdeckung des Zustandsraumes einer zu verifizierenden Spezi-
fikation. Dazu muss die Spezifikation selbst ebenfalls vollstdndig sein, was
die Anwendbarkeit formaler Methoden auf kleine (vollstandig spezifizier-
te) Teilsysteme limitiert [130]. Komplexe Systeme, die u.U. nicht-determi-
nistischen Storungen unterliegen und deswegen nicht vollstindig formal
beschrieben werden konnen, lassen sich beispielsweise nur schwer oder
gar nicht formal verifizieren.

¢ Simulative Verifikationsmethoden: Diese basieren auf ausfiithrbaren Si-
mulationsmodellen, deren Verhalten auch durch Berechnungsmodelle (vgl.
Abschnitt 2.2.2) restriktiert ist. Wahrend der Ausfithrung wird ein Simula-
tionsmodell dann mit einer Menge von zuvor innerhalb eines Testfalls spe-
zifizierten Mustern (Testpatterns) angeregt. Die Verifikation erfolgt durch
Vergleich der Ausgabe des Simulationsmodells mit der erwarteten Ausga-
be. Dieser Ansatz resultiert in der Regel in einer unvollstindigen Abde-
ckung des Zustandsraumes, da es aufgrund der Systemkomplexitdt nor-
malerweise nicht moglich ist, alle relevanten Testfille zu simulieren. Ur-
sachen sind entweder schlicht die Unmoglichkeit, alle relevanten Testfal-
le tiberhaupt identifizieren zu kénnen oder ein zu hoher Zeitaufwand fiir
die Simulation bei hohem Detailgrad. Anstelle eines vollstandigen Korrekt-
heitsbeweises ist deswegen nur eine Falsifikation [130] (d.h. ein selektiver
Ausschluss von Fehlern) moglich. Da die Spezifikation nicht vollstindig
sein muss, konnen im Unterschied zur formalen Verifikation allerdings
auch komplexe Systeme simuliert werden.

¢ Prototypische Implementierungen: Diese konnen den Geschwindigkeits-
nachteil bei der Ausfithrung von detaillierten Simulationsmodellen aus-
gleichen. Allerdings ist der Aufwand zur Erstellung einer prototypischen
Implementierung mit dem Aufwand fiir eine tatsichliche Realisierung ver-
gleichbar, wodurch prototypische Implementierungen im Allgemeinen nur
sehr spatim Entwicklungsprozess verwendet werden. Dartiber hinaus sind
die Moglichkeiten zum Debuggen und Testen beschrédnkt.

In Abb. 2.3 ist der Unterschied zwischen formalen und simulativen Verifikations-
methoden visuell dargestellt. Beide Methoden kénnen als eine Abtastung eines
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sog. Ausgaberaumes angesehen werden. Punkte im Ausgaberaum reprasentie-
ren alle moglichen Systemausgaben, die als Antwort auf Systemeingaben aus
einem Eingaberaum erzeugt werden konnen.

Bei simulativer Verifikation entsprechen einzelne Punkte im Eingaberaum Test-
patterns, die durch Testfille erzeugt werden. Ein einzelner Punkt im Ausgabe-
raum wird erst dann abgetastet, wenn das zugehorige Testpattern durch einen
passenden Testfall generiert wird. Existiert kein passender Testfall, so findet auch
keine Abtastung statt.

Bei einer Beweisfiihrung im Rahmen einer formalen Verifikation wird hingegen
eine Menge von Eingaben auf einmal berticksichtigt. Dadurch wird in der Re-
gel eine zusammenhidngende Menge von Punkten im Ausgaberaum auf einmal
abgetastet.
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Abbildung 2.3.: Abtastung des Ausgaberaums bei a) simulativer und b) formaler
Verifikation (Quelle: [130])

2.2. Modellbildung und Simulation

2.2.1. Modell und Modellbildung

Die Grundlage der im vorigen Abschnitt beschriebenen Entwurfs- und Verifika-
tionsmethoden ist die Existenz von Modellen. Nach Stachoviak [240] besitzt ein
Modell drei Hauptmerkmale, das Abbildungsmerkmal, das Verkiirzungsmerk-
mal und das pragmatische Merkmal:
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Ein Modell ist grundsétzlich eine natiirliche oder kiinstliche Abbildung oder Re-
présentation eines Originals. Dieses Original kann real existieren oder ein fikti-
ves bzw. hypothetisches Original sein. Die Représentation des Originals ist ,, ver-
kiirzt”, d.h. sie erfasst nicht alle Attribute des Originals, sondern nur die, die
dem Ersteller des Modells als relevant erscheinen. Ein Modell ist pragmatisch,
da es aufgrund seiner Verkiirzungseigenschaft und der damit verbundenen Ab-
straktion einem bestimmten Original nicht mehr eindeutig zugeordnet werden
kann. Zusammengefasst ist ein Modell damit eine vereinfachte Darstellung ei-
nes Originals, die bestimmte, als relevant betrachtete Aspekte, moglichst akkurat
wiedergeben soll.

Unter dem Begriff der Modellbildung oder Modellierung versteht man den Pro-
zess der Erstellung eines Modells [191]. Das Ziel ist dabei, eine Reprasentation
zu entwickeln, die aus Griinden der Komplexitédtsreduktion so weit wie moglich
vom Original abstrahiert und nur die fiir eine bestimmte Analyse wesentlichen
Attribute beinhaltet.

Ubertragen auf den hier betrachteten Bereich der eingebetteten Systeme bedeu-
tet Modellbildung die (verkiirzte) Spezifikation aller der zur Entwicklung eines
eingebetteten Systems notwendigen Aspekte. Ein Modell kann beispielsweise
mehrere oder nur einen der in Abb. 2.1 dargestellten Entwurfsaspekte abdecken.
Die Vernachlassigung oder zusitzliche Einbeziehung eines Entwurfsaspekts hat
eine weiteren Verlust oder Gewinn an Genauigkeit zur Folge. Je weiter der Ent-
wurfsprozess fortgeschritten ist, desto detaillierter und nédher an der finalen Im-
plementierung ist im Allgemeinen das Modell. Die Aufgabe des Entwicklers ist
es, auf Basis existierender Anforderungen zu entscheiden, welcher Grad an Ge-
nauigkeit fiir eine Spezifikation wahrend einer bestimmten Phase des Entwurfs
notwendig ist und welche Details bei der Modellbildung vernachlassigt werden
konnen.

2.2.2. Simulation

In der VDI Richtlinie 3633 wird der Begriff der Simulation definiert als das

,,Nachbilden eines Systems mit seinen dynamischen Prozessen in einem ex-
perimentierfihigen Modell, um zu Erkenntnissen zu gelangen, die auf die
Wirklichkeit tibertragbar sind”.

Die Voraussetzung fiir eine Simulation ist also die Eigenschaft der Experimen-
tierfahigkeit des Modells und die Moglichkeit, das Verhalten eines (originalen)
physikalischen Systems zu imitieren. In einer Computersimulation geschieht die-
se Nachbildung des Verhaltens durch ein Computer-aided Engineering (CAE) Werk-
zeug genannt Simulator.
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2. Grundlagen

Ein Simulator basiert auf einer Modellierungssprache, welche ein syntaktisches
und semantisches Regelwerk zur Spezifikation und Ausfiihrung von Simulati-
onsmodellen zur Verfiigung stellt. Neben Syntax (wie wird ein Modell reprasen-
tiert, mit welchen Symbolen) und Semantik (was bedeutet ein Modell) ist eine
Modellierungssprache im Allgemeinen auch durch Pragmatik (was bedeutet ein
Modell in einem konkreten Kontext und wie wird es verwendet) definiert [217].

Neben der Festlegung der statischen Bedeutung von syntaktischen Elementen
(statische Semantik) beinhaltet das semantische Regelwerk einer ausfithrbaren Mo-
dellierungssprache wie der eines Simulators insbesondere eine Beschreibung des
erlaubten Verhaltens (dynamische Semantik) [128, 129]. Dieser Teil des semanti-
schen Regelwerks wird auch als Berechnungsmodell (siehe Abschnitt 2.2.3) be-
zeichnet und ist fiir alle Simulationsmodelle giiltig, welche in der Modellierungs-
sprache beschrieben werden konnen. Abb. 2.4 zeigt die fiir einen Simulator typi-
sche Grundstruktur.

Simulator

Simulation Model J

Kernel
Interface

Simulation Kernel

Abbildung 2.4.: Grundstruktur eines Simulators

Ein Simulationsmodell wird {tiblicherweise durch Instanziierung syntaktischer
Basiskonstrukte (z.B. Prozesse, Kandle oder Module) erzeugt. Diese sind in Form
einer Bibliothek hinterlegt. Sie bilden den Ausgangspunkt fiir eine Spezialisie-
rung im Sinne einer verhaltens- und/oder strukturorientierten Modellierung.
Die resultierende Spezifikation repréasentiert zunéchst eine statische Abbildung
eines physikalischen Systems. Erst die Ausfithrung des Modells durch einen
Simulationskernel erzeugt eine dynamische Abbildung. Der Simulationskernel
implementiert dazu ein bestimmtes Berechnungsmodell. Kernel und Modell in-
teragieren iiber eine Schnittstelle miteinander. Uber diese Schnittstelle steuert
der Kernel die Ausfithrung des Simulationsmodells entsprechend dem imple-
mentierten Berechnungsmodell.

Der Vorteil der Trennung in Simulationsmodell und -kernel liegt in der Flexi-
bilitat: Wahrend das Modell eine spezifische Beschreibung des zu analysieren-
den Systems enthalt, implementiert der Kernel sdmtliche modelliibergreifenden
Aspekte. Grundsitzlich ist die Implementierung des Kernels unabhingig von
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2.2. Modellbildung und Simulation

dem konkreten System, das durch das Simulationsmodell reprédsentiert wird. Al-
lerdings schrénkt das Berechnungsmodell des Kernels dessen Anwendbarkeit
auf eine bestimmte Klasse von Simulationsmodellen ein.

2.2.3. Berechnungsmodelle

Der Begriff des Berechnungsmodells (engl. Model of Computation (MoC)) hat sei-
ne Wurzeln in der theoretischen Informatik und hier speziell in der Erforschung
der Berechenbarkeit von mathematischen Funktionen [106]. In den 1930er Jah-
ren wurde die Berechenbarkeit von Funktionen erstmals anhand von abstrak-
ten Berechnungsmodellen untersucht. Beispiele fiir solche Berechnungsmodelle
sind der von Alonzo Church eingefiithrte Lambda-Kalkiil [87] oder die von Alan
Turing entwickelte Turingmaschine [256]. Letztere ist ein abstraktes Rechnermo-
dell, das die Arbeitsweise eines Computers anhand der schrittweisen Ausfiih-
rung eines Automaten beschreibt.

In Anlehnung an den Begriff des Entwurfsmusters, wie er von Gamma et al. in
[117] im Kontext objektorientierter Programmiersprachen verwendet wird, bil-
den Berechnungsmodelle nach Lee et al. [178] Entwurfsmuster fiir Interaktionen
zwischen Komponenten eines Systems. Die Regeln eines Berechnungsmodells
schrianken das erlaubte Verhalten eines Modells auf eine giiltige Teilmenge aller
moglichen Verhaltensweisen ein. Neben der Simulation werden Berechnungs-
modelle auch zur formalen Spezifikation der Interaktion von Komponenten ei-
nes zu entwickelnden Systems genutzt und sind elementarer Bestandteil auto-
matisierter Syntheseverfahren (vgl. Abschnitte 2.1.1.1 und 2.1.2.1).

2.2.3.1. Klassifikation von Berechnungsmodellen

Verschiedene Berechnungsmodelle unterscheiden sich dahingehend, wie gut oder
wie schlecht sich bestimmte Charakteristika eines Systems erfassen und analy-
sieren lassen. Dies beinhaltet Eigenschaften wie Parallelitat, Ausfiihrungsreihen-
folge von Operationen, Scheduling, Synchronisation, etc. In [217] werden Regeln,
welche ein bestimmtes Berechnungsmodell spezifizieren, in drei Kategorien ein-
geteilt:

1. Regeln, die spezifizieren was eine Komponente ist,

2. Regeln, die den Kommunikationsmechanismus zwischen Komponenten
spezifizieren und

3. Regeln, die den Ausfiihrungsmechanismus von Komponenten spezifizie-
ren.
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2. Grundlagen

Ein Simulationskernel als die Implementierung eines Berechnungsmodells kon-
trolliert somit die Art und Weise, wie das Verhalten von Komponenten eines Si-
mulationsmodells und Interaktionen zwischen diesen Komponenten auf einem
Computer berechnet werden. Es legt die Gemeinsamkeiten im Verhalten all der
Simulationsmodelle fest, die mit dem Kernel ausgefiihrt werden kénnen.

In Abb. 2.5 ist eine mogliche (informelle) Klassifikation von typischen Berech-
nungsmodellen wie State Machines (SM), Discrete Event (DE) oder Continuous Ti-
me (CT) dargestellt, die sich aus den genannten Regeln ergibt. Je weiter unten
sich ein Berechnungsmodell in der Hierarchie befindet, desto spezieller und um-
fangreicher sind die Regeln, die es charakterisieren.

( Functional ) (Seq uential) (Concurrent)

N~

(Event Graphs) (State Machines) Untimed

Petri Nets

(Rendezvous) (Process Networks) Dataflow ‘ Synchronous Reactive !

((Dynamic Dataflow ) {(Synchronous Dataflow) {(Continuous Time ) {( Discrete Events )

Equational

Abbildung 2.5.: Klassifikation von Berechnungsmodellen (Quelle: [217])

In Abb. 2.5 werden Berechnungsmodelle z.B. dahingehend unterschieden, ob
die zugrunde liegenden Ausfiihrungs- und Kommunikationsmechanismen die
Spezifikation von gleichzeitiger oder nur von sequentieller Ausfithrung erlauben.
Gleichzeitige Berechnungsmodelle werden weiter in zeitbasiert und nicht zeitba-
siert unterteilt. Die Moglichkeiten zur Spezifikation von Zeit und Gleichzeitigkeit
entscheiden dariiber, inwieweit bestimmte Reihenfolgen von Aktionen spezifi-
ziert werden konnen, die wihrend einer Ausfithrung entstehen diirfen.

Generell lassen sich aus einer solchen Klassifikation Regeln ableiten, wie Be-
rechnungsmodelle miteinander kombiniert werden konnen [122]. Ein formaler
Ansatz zur Klassifikation findet sich z.B. in [175]. Die Klassifikation basiert auf
einem denotationellen mathematischen Formalismus namens Tagged Signal Mo-
del, bei dem das Berechnungsmodell induktiv mit Hilfe der Mengentheorie be-
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2.2. Modellbildung und Simulation

schrieben wird. Eine andere Moglichkeit zur Klassifikation ist eine operationelle
Beschreibungsform wie in [255]. Diese ist ndher an der Implementierung und
erfasst schrittweise Zustandsanderungen.

2.2.3.2. Der Zeitbegriff in einer Simulation

Im Allgemeinen existieren im Kontext der Simulation unterschiedliche Begriffe
und Definitionen von Zeit. Fujimoto unterscheidet in [113] zwischen drei grund-
legenden Typen:

¢ Physikalische Zeit: Bezeichnet die Zeit des modellierten physikalischen
Systems.

e Simulationszeit: Die Simulationszeit ist eine Abstraktion, die vom Simu-
lator bzw. dem Simulationsmodell zur Représentation der physikalischen
Zeit verwendet wird.

® Reale Zeit: Fujimoto nennt diese Zeit Wallclock Time. Sie bezeichnet die
Zeit, die wihrend der Ausfiithrung eines Simulators vergeht.

Fiir die Simulationszeit und deren Verhiltnis zur physikalischen Zeit gibt Fuji-
moto folgende allgemeine Definition, die eine lineare Beziehung zwischen Inter-
vallen in der Simulationszeit und der physikalischen Zeit herstellt:

Definition 2.1 (Simulationszeit): Die Simulationszeit ist definiert als eine vollstin-
dig geordnete Menge von Werten, wobei jeder Wert einen Zeitpunkt der physikalischen
Zeit repriisentiert, die modelliert wird. Des Weiteren gilt fiir beliebige Simulationszeiten
Ty und Ty, die physikalische Zeiten P; und P, reprisentieren: Wenn T; < T, dann tritt
Py vor Py auf und (T, — Ty) ist identisch zu (P, — Py) x K mit einer bestimmten Kon-
stanten K. Falls Ty < Ty, dann sagt man, dass Ty vor T, auftritt, und wenn Ty > T,
dann sagt man, dass Ty nach T, auftritt.

In der Literatur existieren weitere speziellere Definitionen fiir die Simulations-
zeit und die Modellierung der physikalischen Zeit. Wahrend obige Definition
sehr allgemein gehalten ist, legen andere Zeitmodelle, wie das Modell der Su-
perdense Time [76][190], den Schwerpunkt auf die Moglichkeit zur Spezifikation
einer eindeutigen Definition von Gleichzeitigkeit. Die Superdense Time wird bei-
spielsweise im Ptolemy II Simulator [217, 179] angewendet und ist die Grundla-
ge fiir eine deterministische Ausfiihrung. Ein dhnlicher Ansatz zur Modellierung
von Gleichzeitigkeit existiert auch im SystemC Simulator [27].

Neben der Modellierung der physikalischen Zeit ist die Art und Weise der Re-
présentation der Simulationszeit innerhalb eines Berechnungsmodells ebenfalls
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ein kritischer Punkt. Die Simulationszeit kann beispielsweise als eine verteilte
oder eine globale Variable reprasentiert sein (vgl. Abschnitte 2.2.3.3 und 2.2.3.4).
Im Folgenden werden die Grundlagen der fiir diese Arbeit relevanten Berech-
nungsmodelle, insbesondere auch im Hinblick auf die Reprédsentation der Simu-
lationszeit, kurz erldutert.

2.2.3.3. Discrete Event (DE)

Diskrete ereignisbasierte Berechnungsmodelle dienen zur Simulation zeitdiskre-
ter Systeme. Varianten von DE Berechnungsmodellen sind weit verbreitet und in
vielen Werkzeugen zur Modellierung und Simulation von technischen Systemen
implementiert. Dies ist der Tatsache geschuldet, dass viele technische Systeme
von Natur aus diskret sind oder zumindest diskrete Anteile besitzen.

In einer Discrete Event Simulation (DES) wird das Verhalten eines Systems tiber
der Zeit durch Sequenzen von diskreten Ereignissen (Events) modelliert. Ein Er-
eignis entspricht einem bestimmten Simulationszeitpunkt von unendlich kurzer
Dauer, an dem sich der Zustand des modellierten Systems (moglicherweise) an-
dert. Grundlegende Konzepte eines DE Simulators, bestehend aus Simulations-
modell und Simulationskernel sind (vgl. [173][113]):

* Zustandsvariablen: Variablen, die den Zustand des modellierten physika-
lischen Systems speichern.

* Globale Zeitvariable: Eine globale Variable, die die aktuelle Simulations-
zeit speichert.

¢ Globale Ereignisliste: Eine globale Liste, die die in Zukunft auftretenden
Ereignisse inkl. deren Zeitpunkt des Auftretens (Zeitstempel) speichert.

¢ Zeitroutine: Ein Unterprogramm, das das néchste zu verarbeitende Ereig-
nis in der Ereignisliste bestimmt und anschliefSend die globale Zeitvariable
auf den Zeitpunkt dieses Ereignisses setzt.

¢ Ereignisroutinen: Dies sind Unterprogramme in Form von Verhaltensbe-
schreibungen, die den Systemzustand aktualisieren, wenn ein bestimmtes
Ereignis auftritt. Sie erfiillen den Zweck der in Abschnitt 2.2.3.1 im Rah-
men der Klassifikation von Berechnungsmodellen erwdhnten Komponen-
ten. Die meisten DE Simulatoren implementieren heutzutage Ereignisrou-
tinen, die auf sog. Prozessen basieren. Ein Prozess ist eine komplexe Ereig-
nisroutine, die nicht nur das Verhalten in Reaktion auf ein einziges Ereig-
nis, sondern auf eine Menge von Ereignissen implementieren kann.

¢ Initialisierungs-/Terminierungsroutinen: Unterprogramme, die zur Initia-
lisierung und Terminierung der Gesamtsimulation dienen.
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2.2. Modellbildung und Simulation

¢ Hauptroutine: Ein Unterprogramm, das auf Basis der Zeitroutine das Sche-
duling von Ereignissen durchfiihrt und durch Aufruf von Ereignisroutinen
den Zustandswechsel des Modells initiiert. Die Hauptroutine priift auch,
ob die Simulation beendet werden kann. Dies ist der Fall, wenn die ma-
ximale Simulationszeit erreicht ist oder die Ereignisliste keine Ereignisse
mehr enthalt.

Die Elemente und deren Beziehungen untereinander sind in Abb 2.6 illustriert.
Entsprechend der Beschreibung aus Abschnitt 2.2.2 sind die Komponenten auf-
geteilt in Modell und Kernel. Die Schnittstelle zwischen beiden ist durch die Be-
ziehungspfeile dargestellt, die den grauen und den blauen Bereich verbinden.
Der Ablauf der gesamten Simulationsausfithrung wird von der Hauptroutine
gesteuert. Eine mogliche Variante des DE Berechnungsmodells ist anhand einer
entsprechenden Implementierung von Hauptroutine und Zeitroutine in Algo-
rithmus 2.1 dargestellt.

Model
Update
Event P Model State
Routines
A A
Add Events | Invoke Init
Kernel
.

Initialization &
Termination
Routines

Main
Routine

Eventlist

Get Next
Event

Timing Advance

Routine Global Time

Init/Shutdown

Abbildung 2.6.: Komponenten einer DE Simulation und deren Beziehungen
(Quelle: [173], modifiziert)

Nach der Initialisierung durchlduft die Hauptroutine eine Schleife. Mit jeder Ite-
ration der Schleife wird mit Hilfe der Zeitroutine das néchste auszufiihrende
Ereignis bestimmt und durch Aufruf des zugehorigen Prozesses ausgefiihrt. Das
néchste auszufithrende Ereignis entspricht dem Ereignis in der Ereignisliste, das
den kleinsten Zeitstempel besitzt. Nur, wenn alle Ereignisse mit dem gleichen
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Algorithm 2.1

1: function MAINPROGRAM()

2 INITIALIZATIONROUTINE( )

3 while (SimulationClock < MaxTime) do
4 nextEvent = TIMINGROUTINE()

5: EventRoutines[nextEvent| EXECUTE()
6 end while

7 TERMINATIONROUTINE()

8: end function

9

10: function TIMINGROUTINE()

11: nextEvent = EventList. GETNEXTEVENT()

12: SimulationClock = SimulationClock + nextEvent.GETTIME()
13: return nextEvent

14: end function

Zeitstempel abgearbeitet sind, schreitet die Simulation in der Simulationszeit
voran. Die Ausfiihrung terminiert, sobald die maximale Simulationszeit erreicht
ist. Abb. 2.7 illustriert hierzu ein Beispiel.

Der Zustand des Systems wird anhand von vier Zustandsvariabeln SO — S3 mo-
delliert. Ein senkrechter Strich entspricht einem Zeitfortschritt, ein blauer Punkt
einer Wert- bzw. Zustandsidnderung aufgrund eines Ereignisses und dem Aufruf
eines Prozesses. Die Anzahl der in einem bestimmten Zeitintervall auftretenden
Ereignisse ist direkt vom Modell abhédngig. Iterationen durch die Schleife in der
Hauptroutine erfolgen nur an markanten Punkten innerhalb der Simulationszeit.
Diese sind direkt durch die Ereignisse definiert. Falls {iber ein lingeres Zeitin-
tervall kein Ereignis auftritt, so wird dieses Zeitintervall einfach iibersprungen.
Dadurch wird unnétiger Overhead vermieden. Umgekehrt macht die Hauptrou-
tine Zum Zeitpunkt ,,7.5” aufgrund der drei Ereignisse drei Iterationen, bevor sie
zum Zeitpunkt ,9” voranschreitet.

2.2.3.4. Parallel Discrete Event (PDE)

Parallele diskrete ereignisbasierte (engl. Parallel Discrete Event (PDE)) Berech-
nungsmodelle sind eine umfangreiche Klasse von speziellen DE Berechnungs-
modellen, deren Hauptmotivation die Beschleunigung einer DE Simulation durch
parallele Ausfiihrung ist.

Eine Parallel Discrete Event Simulation (PDES) besteht typischerweise aus sog. lo-
gischen Prozessen (engl. logical Processes). Ein logischer Prozess wird, dquivalent
zum einem gewdhnlichen Prozess in einer DE Simulation, zur Verhaltensmo-
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Abbildung 2.7.: Diskrete ereignisbasierte Simulation

dellierung eingesetzt. Entsprechend der Definition von Chandy und Misra [78]
bilden logische Prozesse untereinander ein Netzwerk und kommunizieren aus-
schliefflich anhand von Nachrichten tiber Verbindungen, die oft auch als logische
Verbindungen (engl. logical Links) bezeichnet werden. Logische Verbindungen re-
présentieren eine gerichtete Punkt-zu-Punkt Kommunikation auf Basis von FI-
FOs. Uber sie kénnen die logischen Prozesse Nachrichten (typischerweise zeitge-
stempelte Ereignisse) austauschen und sich dabei miteinander zeitlich synchro-
nisieren.

Im Unterschied zu Prozessen in einer DES simuliert ein logischer Prozess hidu-
fig ein ganzes Subsystem des modellierten physikalischen Gesamtsystems [108].
Ein logischer Prozess fasst dann mehrere gewohnliche DE Prozesse zu einem
komplexen Prozess zusammen. Er kann dann in erster Instanz als ein erweiter-
ter sequentieller DE Simulator betrachtet werden, der nur auf einen Teil der ins-
gesamt vorhandenen Zustandsvariablen Zugriff hat. In Abb. 2.8 ist beispielhaft
ein Prozessnetzwerks bestehend aus vier logischen Prozessen LP1 bis LP4 illus-
triert. Fiir jeden logischen Link ist im Empfénger ein zugehoriger Eingangs-FIFO
eingezeichnet. Zudem besitzt jeder logische Prozess eine lokale Ereignisliste, die
Teil einer lokalen DES ist.

Damit ein PDE Berechnungsmodell, dessen logische Prozesse ausschliefslich an-
hand von Nachrichten iiber logische Links kommunizieren, in der Lage ist, kor-
rekte Simulationsergebnisse zu liefern, ist die Einhaltung der sog. lokalen Kausa-
litatsbedingung notwendig. Fujimoto formuliert diese Bedingung in [112] folgen-
dermaflen:
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Event List

Logical Link

Abbildung 2.8.: Beispiel eines Prozessnetzwerks bestehend aus vier logischen
Prozessen

Definition 2.2 (Lokale Kausalititsbedingung): Eine diskrete ereignisbasierte Simu-
lation, die aus logischen Prozessen besteht, welche ausschliefSlich durch den Austausch
von Nachrichten interagieren, hiilt die lokale Kausalititsbedingung dann und nur dann
ein, wenn jeder logische Prozess Ereignisse in der Reihenfolge ihrer Zeitstempel verar-
beitet.

Anders ausgedriickt, kann eine PDES im Sinne von Definition 2.2 dann als kau-
sal korrekt bezeichnet werden, wenn deren Ausfiihrung das gleiche Ergebnis
liefert, wie eine entsprechende sequentielle DES. Die Entwicklung und Untersu-
chung von Mechanismen zur Synchronisation der Simulationszeit und zur Ein-
haltung der lokalen Kausalitdtsbedingung bildet einen zentralen Aspekt in der
Forschung im Bereich PDES. Dabei definiert das Netzwerk aus logischen Pro-
zessen und logischen Links die Grundstruktur eines parallelen Simulators und
bildet einen Rahmen fiir die Implementierung verschiedener PDE Berechnungs-
modelle.

Viele dieser PDE Varianten sind nicht auf eine nachrichtenbasierte Kommunika-
tion und Synchronisation limitiert. Der nachrichtenbasierte Ansatz kann jedoch
als ein erstes Hilfsmittel fiir die Vermeidung von kausalen Fehlern betrachtet
werden, die durch eine falsche Zugriffsreihenfolge von mehreren logischen Pro-
zessen auf gleiche Zustandsvariablen entstehen konnen (vgl. [112]). Die Schwie-
rigkeit bei der Entwicklung eines Synchronisationsverfahrens besteht dann meist
darin, dass die Forderung nach Einhaltung der lokalen Kausalitatsbedingung
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der Forderung nach Performanz, Effizienz oder Flexibilitdt oftmals auf den ers-
ten Blick kontrér gegeniibersteht.

Existierende Synchronisationsalgorithmen zur PDES lassen sich auf unterschied-
liche Art und Weise klassifizieren (ein umfangreicher Uberblick ist in [149] zu
finden):

* Die am weitesten verbreitete Klassifikation ist die Unterscheidung hinsicht-
lich konservativer und optimistischer Algorithmen zur Synchronisation. Kon-
servative Algorithmen vermeiden die Verletzung der lokalen Kausalitéts-
bedingung. Sie garantieren, dass innerhalb eines logischen Prozesses Events
immer in der kausal korrekten Reihenfolge verarbeitet werden. Fundamen-
tal in konservativen Algorithmen fiir die Einhaltung der lokalen Kausali-
tatsbedingung und die Vermeidung von Deadlocks ist eine Grofle namens
Lookahead, welche ein Zeitintervall beschreibt, um die ein logischer Prozess
in die Zukunft schauen kann. Beispiele fiir konservative Algorithmen sind
der sog. Null Message Algorithmus (NMA) oder Chandy-Misra-Bryant (CMB)
Algorithmus [78, 69] oder der Bounded Lag Algorithmus von Lubachevs-
ky [187]. [241] oder [207] sind weitere konservative Beispiele. Im Gegensatz
zu konservativen Ansédtzen erlauben optimistische Algorithmen, die Kau-
salititsbedingung zu verletzen. Sie stellen allerdings Mechanismen zur Er-
kennung von Kausalitdtsverletzungen und zur Wiederherstellung friihe-
rer valider Systemzustidnde zur Verfiigung. In diese Kategorie gehoren bei-
spielsweise der Time-Warp Algorithmus von Jefferson et. al [150] oder der
Global Virtual Time Algorithmus von Mattern [196].

¢ Eine andere Moglichkeit ist die Einteilung der Synchronisationsalgorith-
men in synchrone und asynchrone Ansitze [44]. Synchrone Algorithmen er-
zeugen eine regelmiflige globale Synchronisation zwischen logischen Pro-
zessen. Dies resultiert darin, dass die gesamte Simulation an bestimmten
Punkten in der Realzeit regelmafiig pausiert und wieder loslduft (siehe
Abb. 2.9 oben). Der Abstand dieser globalen Synchronisationspunkte wird
héufig durch eine sog. global Reduction bestimmt. dazu ist eine globale Sicht
tiber den aktuellen Zustand aller beteiligten logischen Prozesse notwendig.
Die Synchronisationspunkte selbst werden typischerweise durch Barriers
implementiert.

Im Unterschied zu synchronen Algorithmen erlauben asynchrone Algo-
rithmen den logischen Prozessen in der Simulationszeit voranzuschreiten,
ohne zwangsldufig global zu synchronisieren. Stattdessen wird fiir einzel-
ne logische Prozesse der Zeitfortschritt separat berechnet (siehe Abb. 2.9
unten). In die Berechnung des Zeitfortschritts eines logischen Prozess p
muss ausschlieSlich der Zustand der logischen Prozesse einbezogen wer-
den, die potentiell das Verhalten von p beeinflussen kénnen. Globale War-
tezustande entsprechen daher Deadlocks, die es soweit wie moglich zu ver-
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meiden gilt. Falls das Auftreten von Deadlocks nicht verhindert werden
kann, beispielsweise im Fall eines Lookahead von Null (Zero Lookahead),
konnen diese mit Hilfe von sog. Deadlock Detection und Deadlock Recove-
ry Mechanismen aufgelost werden [113]. In [78],[69],[150], [196] oder [43]
finden sich Beispiele fiir asynchrone Ansitze. [241], [187] und [207] sind
Beispiele fiir synchrone Algorithmen.

¢ Eine dritte oft verwendete Einteilung fokussiert stdrker auf die logische
Struktur, die sich aus dem Synchronisationsalgorithmus ergibt. Dabei wird
zwischen zentralen und dezentralen Ansédtzen unterschieden [44]. Eine glo-
bale Reduktion in Kombination mit globalen Barriers wird im einfachsten
Fall mit Hilfe eines zentralen Controllers umgesetzt. Dies entspricht einer
sog. Centralized Barrier [113]. Da der Controller schnell zu einem Hot-Spot
in der Kommunikation werden kann, wurden in der Literatur verschiedene
dezentrale Alternativen vorgeschlagen, wie z.B. Tree- oder Butterfly-Barriers
[267][68].

Zentralisierte Ansatze sind dann von Vorteil, wenn fiir einen Algorithmus
eine globale Sichtweise notwendig ist. Viele synchrone Algorithmen beno-
tigen eine solche globale Sichtweise, um einen moglichst grofien Abstand
der globalen Barriers berechnen zu kénnen. Es existieren auch Beispiele
von asynchronen Algorithmen, die auf zentralisierte Strukturen zurtick-
greifen, beispielsweise wird in [79] ein zentraler Controller zur Erkennung
und Auflosung von Deadlocks verwendet.

Prinzip des Null Message Algorithmus

Als Beispiel wird im Folgenden das dem Null Message Algorithmus zugrunde-
liegende Prinzip erldutert. Ein besonderes Augenmerk gilt dabei der Repréasen-
tation und Synchronisation der Simulationszeit. Wahrend in einer gew6hnlichen
DES die Zeit durch eine allen Simulationsprozessen bekannte globale Zeitvaria-
ble représentiert wird, existiert bei einer PDES auf Basis des NMA in jedem lo-
gischen Prozess Ip; eine separate lokale Zeitvariable tﬁ““l. Ein logischer Link /;;
von Ip; nach Ip; existiert nur dann, wenn das Teilmodell in /p; das Teilmodell in
Ip; tiber Ereignisse kausal beeinflussen kann. Jedes Ereignis ¢, das in Form einer
Nachricht {iber eine logische Verbindung tibertragen wird, tragt einen Zeitstem-
pel ts(e). Dieser spezifiziert den (zukiinftigen) Simulationszeitpunkt, an dem das
Ereignis verarbeitet werden soll.

Unter der Voraussetzung, dass Ereignisse zwischen logischen Prozessen immer
in zeitlich aufsteigender Reihenfolge iibertragen werden und folglich auch in
zeitlich aufsteigender Reihenfolge in den FIFOs der logischen Links gespeichert
sind, hélt ein logischer Prozess Ip; die kausal richtige Verarbeitungsreihenfolge
von Ereignissen ein, wenn er im Rahmen des Schedulings immer genau das Er-
eignis als das néchste zu verarbeitende Ereignis ¢"**! auswihlt, das von allen Er-
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eignissen EZ.C”’, die aktuell in den FIFOs und der lokalen Ereignisliste vorhanden
sind, den kleinsten Zeitstempel besitzt. Dies bedeutet:

e"e*t — oMM wobei ts(e™") = min (ts(e)), (2.1)
Vec ECUr

Nach der Bestimmung von ¢"** wird tﬁo”‘l auf den Zeitstempel ts(e"°*") gesetzt

und ¢! wird durch Aufruf der zugehorigen Ereignisroutine ausgefiihrt. Diese
Methode funktioniert solange, wie sich in jedem FIFO mindestens ein Ereignis
befindet. Ist dies nicht der Fall, so kann der logische Prozess vorhandene Er-
eignisse nicht verarbeiten, da u.U. noch Ereignisse {iber momentan leere FIFOs
eintreffen konnen, die friither verarbeitet werden mdiissten. Der logische Prozess
muss dann warten, bis jeder FIFO ein Ereignis enthilt. Problematisch wird es
insbesondere dann, wenn eine zirkuldre Abhédngigkeit zwischen mehreren Pro-
zessen besteht. In diesem Fall kann ein Deadlock genau dann auftreten, wenn
logische Prozesse gegenseitig auf die Ubertragung eines Ereignisses warten.

Beim NMA werden solche Situation durch den regelmifligen Versand sog. Null
Messages und die Einfiihrung einer Grofie namens Lookahead verhindert. Der
Lookahead bezeichnet die Latenz einer logischen Verbindung bzgl. der Simula-
tionszeit. Er wird fiir jede logische Verbindung statisch festgelegt. Der Wert des
Lookaheads einer logischen Verbindung muss aus dem Simulationsmodell ab-
geleitet werden. Der Zeitstempel ts einer jeden Nachricht (auch der von Null
Messages) wird von einem Sender /p; aus der Summe seiner aktuellen lokalen
Zeit tf"“’l und dem Lookahead Al;; des logischen Links /;; gebildet, tiber den die

Nachricht verschickt werden soll: ts = tﬁ"“’l + Aljj (eine Alternative ist die Be-
rechnung der Summe im Empfanger). Der Zeitstempel einer Null Message defi-
niert dann eine untere Schranke fiir den Zeitstempel, den ein in Zukunft tiber /;;
tbertragenes Ereignis haben kann. Algorithmus 2.2 illustriert das beschriebene
Verfahren durch Erweiterung des Pseudocodes aus Algorithmus 2.1.

2.2.4. Heterogenitat

Ein Simulationswerkzeug basiert idealerweise auf einem Berechnungsmodell,
welches optimal an die Bediirfnisse des Modellerstellers oder Applikationsent-
wicklers angepasst ist. In bestimmten Féllen ist es zudem notwendig oder von
Vorteil, unterschiedliche Spezifikationen, die unterschiedlichen Berechnungsmo-
dellen folgen, miteinander in Beziehung zu setzen. In diesem Kontext kann man
zwischen vertikaler und horizontaler Heterogenitit unterscheiden [136, 184]:
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Algorithm 2.2

1: function MAINPROGRAM()

2 INITIALIZATIONROUTINE( )

3 while (SimulationClock < MaxTime) do
4 WAITFIFOS()

5: nextEvent = TIMINGROUTINE()

6 EventRoutines[nextEvent|. EXECUTE()
7 SENDNM()

8 end while

9 TERMINATIONROUTINE()

10: end function

11:

12: function TIMINGROUTINE()

13: nextEvent = GETMINTIMEEVENT()

14: SimulationClock = SimulationClock + nextEvent.GETTIME()
15: return nextEvent

16: end function

* Vertikale Heterogenitit: Vertikale Heterogenitit wird in [136] als die Mog-
lichkeit beschrieben, Berechnungsmodelle entlang eines Entwicklungspro-
zesses zu transformieren. Sie ist z.B. innerhalb einer SLD Entwurfsmetho-
dik von grofler Bedeutung, bei der Modelle / Spezifikationen unterschied-
licher Abstraktionsebenen Schritt fiir Schritt durch Synthese und damit
verbundener Transformation zugrundeliegender Spezifikationen ineinan-
der tberfiihrt werden.

* Horizontale Heterogenitit: Bezeichnet die Heterogenitidt zwischen mitein-
ander integrierten Modellen. Beispielsweise sind Modelle von eingebette-
ten Systemen von Natur aus horizontal heterogen, da deren Teilsysteme
oft unterschiedlichen Anwendungsdomanen entstammen und sehr unter-
schiedliche Charakteristika hinsichtlich des Verhaltens aufweisen. Neben
Komponenten aus Hardware oder Software kénnen Teile eines eingebet-
teten Systems z.B. auch aus mechanischen, hydraulischen oder analogen
Komponenten bestehen [102]. Auch die Integration von Teilsystemmodel-
len ein und derselben Anwendungsdisziplin, die aber auf unterschiedli-
chen Abstraktionsebenen spezifiziert sind, fithrt zu horizontaler Heteroge-
nitét.

Horizontale Heterogenitédt kann die Folge vertikaler Heterogenitét sein, beispiels-

weise wenn im Zuge einer vertikalen Verfeinerung Teile eines vormals homoge-
nen Modells durch Teilmodelle niedrigerer Abstraktionsebenen ersetzt werden.
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Umgekehrt kann vertikale Heterogenitét auch die Folge horizontaler Heteroge-
nitét sein (z.B. im Fall von Ptolemy II, sieche Abschnitt 2.3.4).

Die dynamische Kombination von Simulationswerkzeugen, die unterschiedli-
chen Anwendungsdisziplinen entstammen und verschiedenen Berechnungsmo-
dellen folgen, entspricht einer Co-Simulation. Eine Alternative zur Co-Simulation
sind Simulationswerkzeuge basierend auf sog. formalen Frameworks (siehe Ab-
schnitt 2.3.3). Mit diesen kénnen heterogene Systeme in ein und derselben Spra-
che spezifiziert und simuliert werden.

2.3. Sprachen fiir den Systementwurf

Um die innerhalb von Entwurfsprozessen fiir elektronische Systeme (vgl. Ab-
schnitt 2.1) typischerweise anfallenden Aufgaben wie Spezifikation, Exploration,
Synthese oder Verifikation optimal zu unterstiitzen, haben sich sowohl in der In-
dustrie als auch im Bereich der Forschung eine ganze Reihe unterschiedlichster
Modellierungssprachen und Simulationswerkzeuge herausgebildet. Diese un-
terscheiden sich stark hinsichtlich der Abdeckung von Anwendungsdomé&nen
und Anwendungsmoglichkeiten.

Im Folgenden werden zunédchst Sprachen fiir den Entwurf von digitalen Hard-
ware- und Softwaresystemen vorgestellt. Anschlieffend werden Werkzeuge be-
schrieben, welche es zusitzlich gestatten, Wechselwirkungen zwischen hetero-
genen Teilsystemen (z.B. Hardware/Software und physikalischer Umwelt) zu
spezifizieren. Diese bilden die Grundlage zur Entwicklung heterogener einge-
betteter Systeme.

2.3.1. Sprachen zur Modellierung von Hardware und Software

Zur Entwicklung von Software existieren Sprachen wie z.B. C/C++, Java oder
C#. Im Bereich der eingebetteten Systeme ist C/C++ die wohl verbreitetste Spra-
che. Die genannten Sprachen sind allesamt sog. Hochsprachen, d.h. sie abstrahie-
ren stark von der Hardware, auf der ein Programm letztendlich ausgefiihrt wird.
Eine Spezifikation kann deswegen u.U. vollstindig unabhingig von der zugrun-
deliegenden Hardware sein. Die genannten Sprachen eignen sich insbesondere
deswegen nicht zur Spezifikation von Hardware, weil sie keine Moglichkeiten
zur Beschreibung spezieller Charakteristika von Hardware wie signalbasierte
Kommunikation, Zeitverhalten und Parallelitit bieten.

Einschlédgige Sprachen im Bereich der industriellen Hardwareentwicklung sind
z.B. VHDL [19] oder Verilog [17]. Diese werden allgemein auch als Hardware De-
scription Languages (HDLs) bezeichnet. VHDL und Verilog basieren beide auf ei-
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nem DE Berechnungsmodell und bilden die Grundlage zur zyklengenauen Spe-
zifikation und Simulation von diskreten Hardwareschaltungen. Wegen der Li-
mitierung auf Hardware und der Beschrankung des Abstraktionsgrades auf das
RTL, eignen sich diese Sprachen allerdings nicht fiir die Anwendung im Rahmen
einer SLD Methodik, welche Hardware und Software einschliefdt.

Die bekanntesten sog. System Level Design Languages (SLDLs) sind SystemC [27]
und SpecC [114] [119] [98]. SystemC ist eine Erweiterung von C/C++, SpecC ba-
siert auf ANSI-C. SystemC und SpecC besitzen die notwendigen syntaktischen
und semantischen Eigenschaften, um sowohl Hardware als auch Software be-
schreiben zu konnen. Wie VHDL und Verilog besitzen beide Sprachspezifikatio-
nen als Grundlage ein DE Berechnungsmodell. In beiden Sprachen existiert keine
Beschrankung bzgl. Register Transfer (RT) Ebene. Deswegen sind diese Sprachen
grundsatzlich fiir die Anwendung innerhalb einer SLD Methodik geeignet. Im
Unterschied zu SpecC wird SystemC nicht nur im Bereich der Forschung, son-
dern auch in der Industrie verwendet. Aufgrund der Relevanz in den nachfol-
genden Kapiteln, wird nun eine Einfiihrung in die SystemC Syntax und die fiir
SystemC Modelle giiltige dynamische Semantik gegeben.

2.3.2. SystemC

SystemC [27] wurde Ende der 90er Jahre von der Open SystemC Initiative (OS-
CI) entwickelt. Die OSCI ging im Jahr 2011 in die Accelera Systems Initiative
[1] tiber. SystemC ist seit dem Jahr 2005 ein IEEE Standard [27]. SystemC wird
aktuell von vielen CAE Werkzeugen einschldgiger EDA Firmen unterstiitzt. Die
Accelera Systems Initiativestellt stellt eine C/C++ Klassenbibliothek frei zur Ver-
figung, welche die Sprache implementiert. Dies ist der Grund, weshalb SystemC
auch im Bereich der Forschung weit verbreitet ist. Abb. 2.10 gibt einen Uberblick
tiber die Komponenten der SystemC Bibliothek.

SystemC erlaubt die Spezifikation und Simulation von Hardware und Software.
Da die Modellierung von Software grofitenteils bereits durch C++ selbst abge-
deckt wird, beinhaltet die Bibliothek hauptsachlich Artefakte zur Modellierung
von Hardware [55]. Ahnlich zu HDLs wie VHDL oder Verilog kann mit SystemC
struktur- und verhaltensorientiert modelliert werden. Im Folgenden werden zu-
néchst die grundlegenden syntaktischen Komponenten allgemein erldutert. An-
schlieffend wird das dem SystemC Kernel zugrundeliegende Berechnungsmo-
dell beschrieben (eine detaillierte Einfithrung ist z.B. in [55] zu finden).
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Abbildung 2.10.: Architektur der SystemC Bibliothek (Quelle: [55])
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2.3.2.1. Syntaktische Komponenten

Das Grundelement der Syntax von SystemC zur Erzeugung von hierarchischen
Strukturen ist das Modul. Ein Modul kann Prozesse, Ereignisobjekte, Channels, Ports,
Variablen, Funktionen oder beliebige andere Module enthalten. All diese Kompo-
nenten sind in der SystemC Bibliothek als C++ Klassen implementiert.

Prozesse dienen zur Spezifikation von Verhalten. Das Scheduling von Prozes-
sen wird im Zusammenspiel von Prozessen und Simulationskernel tiber Ereig-
nisobjekte gesteuert (vgl. Abschnitt 2.3.2.2). Prozesse konnen durch Lesen und
Schreiben von/auf Channels oder direkt iiber Variablen und beliebige Funkti-
onsaufrufe kommunizieren. Kommunikation anhand von Channels erfolgt im-
mer tiber definierte Schnittstellen. Kommunikation tiber Modulhierarchien hin-
weg ist tiber Ports moglich. Ports dienen als Stellvertreter fiir verbundene Chan-
nels. Die Aufteilung in Prozesse / Module und Channels vereinfacht die Separa-
tion von Belangen, wie sie bereits in Abschnitt 2.1.1.3 als Grundlage einer platt-
formbasierten SLD Methodik erwdhnt wurde.

Grundsitzlich konnen zwei Typen von Channels unterschieden werden, Primi-
tive Channels und Hierarchical Channels. Primitive Channels implementieren das
sog. Evaluate / Update (E/U) Paradigma, das fiir die deterministische Simulation
von Gleichzeitigkeit grundlegend ist (vgl. Abschnitt 2.3.2.2). Im Gegensatz zu
Primitive Channels sind Hierarchical Channels Module und besitzen dement-
sprechend die gleichen Moglichkeiten zur Implementierung wie ein Modul. Ein
Hierarchical Channel kann z.B. die Spezifikation eines komplexen Kommunika-
tionsprotokolls beinhalten.
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2.3.2.2. Berechnungsmodell

Das SystemC zugrundeliegende Berechnungsmodell ist eine Variante des DE Be-
rechnungsmodells. Es wird im Folgenden anhand der vier Aspekte Zeitmodell,
Prozesse, Kommunikationsmechanismen und Ausfithrungsmechanismus erldu-
tert.

Zeitmodell

Das Zeitmodell von SystemC besitzt die Besonderheit, dass die Simulationszeit
kein Skalar, sondern ein Tupel t*° = (t,d) ist. Neben der eigentlichen Zeit T
existiert eine zweite unabhéngige Variable ¢, die die Anzahl der sog. Deltacy-
cles seit dem Beginn der Simulation z&hlt. Deltacycles haben per Definition eine
Zeitdauer bzgl. T von Null

Mit Hilfe von ¢ ist es moglich, eine partielle Ordnung fiir SystemC Ereignisse
(sog. Notifications) zu generieren, die bei gleichem 7 eintreten. Notifications kon-
nen dann unterschiedlichen Deltacycles zugeordnet werden. Fiir zwei Zeitpunk-

te tf'é und tz"s lasst sich dabei folgende Ordnungsrelation definieren:

ti—'(s > t;"s ST >0V (Tl =nAH > 52) (2.2)

In Anlehnung an die Superdense Time aus dem Ptolemy II (vgl. Abschnitt2.3.4.2)
konnen Notifications, die bei gleichem T auftreten, auch als schwach gleichzeitig
bezeichnet werden. Falls sie auch beim gleichen ¢ auftreten, so kann man sie als
stark gleichzeitig bezeichnen. Notifications kénnen entsprechend [27] folgender-
maflen klassifiziert werden:

o Zeitverzogert (Timed Notifications): Das Ereignis hat einen um At verzoger-
ten Eintrittszeitpunkt 7 := 7+ AT mit Aé = 0.

¢ Deltaverzogert (Delta Notifications): Das Ereignis hat einen um Ad = 1 ver-
zogerten Eintrittszeitpunkt 6 := 6 4+ 1 mit At = 0.

* Keine Verzogerung (Immediate Notifications): Der Eintrittszeitpunkt des Er-
eignisses ist nicht verzogert, d.h. AT = 0 und A = 0.

Spezifikation von Verhalten durch Prozesse

Die zentrale Komponente zur Verhaltensspezifikation ist der Prozess. Die Aus-
fithrung von Prozessen wird vom Simulationskernel anhand eines kooperativen
Multitaskings und mit Hilfe von Notifications gesteuert. Notifications werden
innerhalb von Prozessen erzeugt. Dies entspricht dem Aufruf der Methode no-
tify() auf einem Ereignisobjekt w aus der Menge aller Ereignisobjekte .
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Das Eintreten einer Notification kann wiederum zur Ausfiihrung von Prozessen
fiihren, sofern diese Prozesse sensitiv auf die Notification sind. Sensitivitit fiir
Notifications kann dynamisch mit Hilfe der Funktionen wait() oder next_trigger()
oder statisch mit Hilfe des Schliisselworts sensitive spezifiziert werden. Auch ge-
zielte Timeouts konnen durch Aufruf von wait() oder next_trigger() auf dem Ker-
nel erzeugt werden.

Wurde die Ausfithrung eines SystemC Prozesses einmal initiiert, so ist dieser
aufgrund des kooperativen Multitaskings danach eigenstdndig dafiir verantwort-
lich, den Kontext wieder an den Kernelscheduler zurtickzugeben. Dabei konnen
zwei Typen von Prozessen unterschieden werden: SC_METHOD Prozesse sind
simple Callback-Funktionen. SC_THREAD Prozesse sind Co-Routinen und be-
sitzen einen Stack. Ein SC_METHOD Prozess gibt die Kontrolle durch ein simp-
les return an den Kernelscheduler zurtick. SC_THREAD Prozesse implementie-
ren normalerweise eine Endlosschleife. Sie geben die Kontrolle explizit durch
Aufruf von wait() an den Kernel zurtick.

Kommunikationsmechanismen

Die Semantik des Datenaustauschs zwischen SystemC Prozessen kann entspre-
chend der Kontrollierbarkeit durch den Kernel klassifiziert werden. Kontrolle
durch den Kernel impliziert eine gewisse Restriktivitat:

* Restriktierte Kommunikation: Diese Art der Kommunikation basiert auf
der Verwendung von Primitive Channels wie z.B. Signalen (sc_signal) oder
Fifos (sc_fifo). Signale werden typischerweise in RTL Modellen eingesetzt.
Lese- oder Schreibzugriff von einem Prozess auf ein Signal muss mit Hilfe
der read() oder write() Methoden erfolgen. Das E/U Paradigma von Primi-
tive Channels beschrankt die Art und Weise der Weiterleitung von Daten
zwischen SystemC Prozessen: Daten, die zu einem bestimmten Simulati-
onszeitpunkt in einen Primitive Channel geschrieben werden, sind immer
deltaverzogert am Ausgang sichtbar.

Die Implementierung eines Primitive Channels ch basiert dazu auf den
Methoden request_update(), update(), zwei Datenstrukturen v*" und prext
sowie einem Ereignisobjekt w. Ein Lesezugriff per read() resultiert in der
Riickgabe des Wertes von v, ein Schreibzugriff per write() in der Modi-
fikation von v"¢*!. Dabei registriert request_update() eine Aktualisierungs-
anfrage im Kernel. update() wird vom Kernel aufgerufen, um eine Aktua-
lisierungsanfrage zu bearbeiten. Die Aktualisierung beinhaltet das Setzen
von v = p"®* ynd den Aufruf von notify() auf w, wodurch eine Delta-
Notification generiert wird.

¢ Nicht-Restriktierte Kommunikation: Bei dieser Art der Kommunikation
wird auf das E/U Paradigma und die Verwendung entsprechender Primi-
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tive Channels verzichtet. Der Kernel hat damit keine Kontrolle mehr tiber
die Kommunikation. Die Kommunikation erfolgt vielmehr direkt iiber Va-
riablen oder Funktionsaufrufe im Modell. Ein Prozess greift u.U. auf belie-
bige C++ Variablen unmittelbar lesend und schreibend zu. Simulationser-
gebnisse hingen dann von der Zugriffsreihenfolge auf die Variablen und
damit vom Scheduling der SystemC Prozesse ab. Diese Art der Kommuni-
kation wird typischerweise in sog. Transaction Level Models (TLMs) verwen-
det.

Primitive Channel

prext

Module N

[request_update()) [update() ]

B Ny Module

v |
E Input/Output Port 10 Kernel from Kernel

Abbildung 2.11.: Kommunikation tiber einen Primitive Channel

Ausfiihrungsmechanismus

Der sequentielle SystemC Scheduler durchlduft wéhrend der Ausfithrung die
Elaboration Phase und die Simulation Phase. Die Elaboration Phase dient zur In-
stanziierung des Modells und zur Herstellung von Modulverbindungen. Zur
Erlduterung des Schedulingverfahrens ist sie nicht relevant. Es geniigt daher die
Betrachtung des iterativen Teils der Simulation Phase. Dieser besteht aus unter-
schiedlichen Teilphasen namens Evaluation Phase, Update Phase, Delta Notification
Phase und Timed Notification Phase. Um die Beschreibung des iterativen Ablaufs
der Teilphasen zu vereinfachen, werden zunéchst folgende Variablen und Men-
gen definiert:

* state: Speichert den aktuellen Basiszustand des Schedulers, wobei state nur
Werte aus der Menge S = {s°0%, supdate gdnotify gtnotify) annehmen kann.

T: Speichert den Wert der Simulationszeit im aktuellen Timedcycle. Dabei
ist T € R0,

0: Zahlt die Anzahl der in der gesamten Simulation bereits ausgefiihrten
Deltacycles, dabei ist § € INp.

P: Menge aller SystemC Prozesse p.

R: Menge der laufféhigen SystemC Prozesse r, dabei gilt: R C P.
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¢ U: Menge der Aktualisierungsanfragen u.

e N°: Menge der Delta Notifications und Timeouts 7° zum aktuellen Delta-
zyklus 6.

* NT': Menge der Timed Notifications und Timeouts n* zum aktuellen und
zu zukiinftigen Zeitpunkten 7.

Die Gesamtfunktionsweise des SystemC Schedulers ldsst sich anhand folgender
grundlegender Basisaktionen beschreiben:

* get(SET): Wahle ein beliebiges Element aus der Menge SET.
® del(SET1,SET?2): Losche alle Elemente in Menge SET1 aus Menge SET2.
* run(p): Fiihre Prozess p aus.
* eval(R): Fithre folgende Sequenz aus, solange |R| # 0:
— p=get(R); run(p); del(p,R);
e update(U): Fiihre folgende Sequenz aus, solange |U| # 0:

- u=get(U); Fiihre das Update u durch Aufruf von update() auf dem zu-
gehorigen Primitive Channel ch aus; del(u,U);

e dnotify(N°): Fiihre folgende Sequenz aus, solange |N°| # 0:

- n‘5=get( N9); Vp € P: Falls p sensitiv auf nd ist, dann fige p in R ein;
del(n®,N°);

o nextTime(): Gib die Simulationszeit T¢** der frithesten Timed Notification
/ des frithesten Timeouts zurtick.

e getNext(): Gib aus der Menge N* dasjenige n* mit dem kleinsten Zeitstem-
pel zurtick.

e tnotify(t,N"): Fiihre folgende Sequenz aus solange nextTime()= T:

— n"=getNext(); Vp € P: Falls p sensitiv auf n" ist, dann fiige p in R ein;
del(n®,N7);

Das SystemC Scheduling ist in Abb. 2.12 anhand einer Zustandsmaschine dar-
gestellt. Die Zustandsmaschine modelliert jede Kernelphase mit einem separaten
Zustand. Immediate Notifications sind implizit durch die Riickkopplung im %
Zustand modelliert. Die Abarbeitung von Delta Notifications entspricht dem
Durchlaufen der sog. inneren Schleife von s***if¥ nach s®**. Die Abarbeitung von
Timed Nlotifications entspricht dem Durchlaufen der duferen Schleife von s'tfy
nach s°°%.
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[IR] I= 0]/eval(R);

(IR =01/
d:=0+1;

[1U} = 0]/update(U);

v =0y

[IR| I= 0 && © < "] [|N6| 1= 0]/dnot1fj/ﬂ\’6);

[IR] =0/

[IN| I= 0]/
©.=nextTime(); motify(t ,N');
=

[T >= TmaXJ

Abbildung 2.12.: Sequentieller SystemC Scheduler
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2.3.2.3. Modellierung auf Transaktionsebene

Transaction Level Modeling [74, 100] ist eine Methode zur Anhebung der Ab-
straktionsebene iiber das RTL hinaus auf das ESL (vgl. Abschnitt 2.1.1.2). Der
Begriff entstammt der Doméne der SLD Sprachen wie SpecC oder SystemC, wes-
halb TLM insbesondere in Kombination mit diesen Sprachen verbreitet ist [74].
TLM Konzepte bilden dabei die Basis unterschiedlichster SLD Entwurfsmetho-
diken (z.B. [114, 77, 213, 60]). Ein guter Uberblick iiber existierende akademische
SLD Ansétze unter Verwendung von TLM ist in [120] zu finden.

Die grundlegende Idee von TLMs besteht darin, Kommunikation zwischen Kom-
ponenten nicht mehr wie in einem RTL Modell mit Hilfe einzelner Signale zu
modellieren, sondern mit Hilfe von Transaktionen. Eine Transaktion wird in [72]
als

.. the longest communication during which the invariant data, as set by a
system master, remains valid”

definiert. Dabei werden direkte Methodenaufrufe verwendet, durch die Transak-
tionsobjekte zwischen Modulen ausgetauscht werden konnen (nicht-restriktierte
Kommunikation). Neben den zu tibertragenden Daten konnen solche Transakti-
onsobjekte u.a. einen Zeitstempel enthalten, der die Dauer einer oder mehrerer
Phasen einer Transaktion spezifiziert. Da die Kommunikation nicht mehr unter
der Kontrolle des Kernels ist, miissen Zeitinformationen aus den Zeitstempeln
abgeleitet werden. Der Vorteil des TL gegentiber dem RTL liegt vor allem in der
weit besseren Performanz, da Synchronisationsaufwand mit dem Kernel einge-
spart wird.

Syntaktische Komponenten

Abb. 2.13 illustriert ein typisches TL Modell bestehend aus drei Modulen. Diese
konnen in Initiator und Target Module klassifiziert werden. Das als Interconnect
bezeichnete Modul ist Initiator und Target zugleich. Der Modultyp wird durch
den Typ des/der Sockets bestimmt, auf das/die ein Modul Zugriff hat.

Die Art und Weise der Modellierung innerhalb eines Moduls ist im System-
C/TLM Standard nicht definiert. Typischerweise werden Initiator mit einem oder
mehreren SC_THREAD Prozessen modelliert. Target Module kénnen abhéngig
vom Modellierungsstil (siehe unten) auch rein passiv sein, d.h. sie enthalten kei-
nen Prozess, sondern nur Schnittstellenmethoden.

Kommunikation erfolgt durch direkte Methodenaufrufe auf dem Vorwirtspfad
oder auf dem Riickwiirtspfad tiber Sockets. Ein Initiator Socket stellt einen Port
zum Aufruf von Schnittstellenmethoden im Target unter Nutzung des Vorwarts-
pfades zur Verfiigung. Zugleich stellt es eine weitere Schnittstelle bereit, {iber die
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das Target auf dem Riickwirtspfad Schnittstellenmethoden im Initiator aufrufen
kann. Ein Target Socket ist das Gegenstiick zum Initiator Socket [27].

Forward

. Interconnect Path
Initiator

Transaction
Object

Abbildung 2.13.: Kommunikation zwischen Initiator und Target (Quelle: [27])

(Initiator & Target)

Backward Backward
Path Path

E Initiator Socket %E Target Socket

Modellierungsstile

Der Begriff des Transaction Levels steht nicht fiir eine bestimmte Abstraktions-
ebene mit einem bestimmten Detaillierungsgrad, sondern bezeichnet vielmehr
ein Kontinuum unterschiedlicher Abstraktionsgrade. Ein TL Modell kann durch
einen Punkt innerhalb dieses Kontinuums charakterisiert werden [100, 72]. Zum
aktuellen Zeitpunkt existiert keine allgemein anerkannte Terminologie zur prézi-
sen Definition und Charakterisierung solcher Punkte innerhalb dieses Kontinu-
ums [219]. Mit anderen Worten: Es existiert kein eindeutig spezifiziertes Berech-
nungsmodell fiir TL Modelle. Die TLM 2.0 Spezifikation des SystemC Standards
[27] unterscheidet allerdings zwischen sog. Modellierungsstilen oder Coding Sty-
les (Abb. 2.14 mitte), mit deren Hilfe TL Modelle genauer eingeordnet werden
konnen.

Coding Styles beschreiben Alternativen zur Nutzung der vom TLM Standard zur
Verfiigung gestellten API (vgl. Abb. 2.14 unten). Jeder Coding Style beschreibt ei-
ne Reihe von Moglichkeiten, um bis zu einem gewissen Grad zwischen hoherer
und geringerer (zeitlicher) Genauigkeit zu skalieren. Dadurch lassen sich Model-
le realisieren, die fiir unterschiedliche Anwendungsfalle geeignet sind (Abb. 2.14
oben). Die in [27] beschriebenen Coding Styles sind:

* Loosely-Timed (LT): Dieser Coding Style nutzt das Blocking Transport In-
terface (b_transport() Methode) zur Kommunikation. Transaktionen sind
blockierend, d.h. die Methodenaufrufe blockieren solange, bis eine Trans-
aktion abgeschlossen ist. Diese Dauer kann durch einen Zeitstempel an-
notiert werden. Synchronisation mit dem Kernel oder anderen Prozessen
erfolgt durch wait() Aufrufe. Mit Hilfe von Temporal Decoupling kénnen Pro-
zesse in der Simulationszeit maximal bis zu einem sog. Global Quantum vor-
auseilen, ohne mit anderen Prozessen bzw. dem Kernel zu synchronisieren.
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Ahnlich einem asynchronen PDES Algorithmus (siehe Abschnitt 2.2.3.4)
besitzen Module zu diesem Zweck eine lokale Zeit, die im Fall von Tem-
poral Decoupling bis zum Erreichen des globalen Quantums inkrementiert
wird. Der reduzierte Synchronisationsoverhead resultiert in einer héheren
Performanz.

Die Verwendung des LT Coding Styles ist in der Regel mit einem hohen
Genauigkeitsverlust verbunden, da durch die blockierenden Methoden-
aufrufe keine simultanen Transaktionen modelliert werden kénnen. Der
Genauigkeitsverlust wird durch Temporal Decoupling weiter erhcht. Auf-
grund der geringen zeitlichen Akkuratheit ist der LT Coding Style fiir die
Entwicklung virtueller Plattformen zur Softwareentwicklung und weniger
zur Exploration oder Verifikation von Hardware geeignet.

* Approximately-Timed (AT): Dieser Coding Style nutzt das Non-Blocking
Transport Interface (nb_transport_fw(), nb_transport_bw() Methoden). Trans-
aktionen sind in mehrere Phasen eingeteilt. Diese sind durch nicht-block-
ierende Funktionsaufrufe markiert. Die Phasen spezifizieren die Synchro-
nisationspunkte mit dem Kernel. Dazu muss fiir jede Phase separat eine
Zeitdauer festgelegt werden. Die Phasenaufteilung ermoglicht die Model-
lierung simultaner Transaktionen. Temporal Decoupling wird in der Regel
nicht unterstiitzt. Durch die hohere zeitliche Genauigkeit, die aus dem AT
Coding Style resultiert, ist dieser zur Architekturexploration und Analy-
se gut geeignet. Die geringe Geschwindigkeit macht AT Modelle weniger
geeignet fiir die Softwareentwicklung.

Eine rein funktionale Spezifikation (Untimed (UT) Coding Style) ist ein Sonder-
fall des LT Coding Styles, bei dem auf eine Modellierung der Zeit grundsétzlich
verzichtet wird. Vollstandig zyklenakkurate Modellierung ist nicht Teil von TLM
2.0. Ein zyklenakkurater Codingstyle kénnte laut SystemC/TLM Standard [27]
als Erweiterung des AT Coding Styles definiert werden.

Alternative Klassifikationen von TL Modellen finden sich z.B. in [74] oder [100].
Cai und Gajski charakterisieren TL Modelle in [74] separat hinsichtlich der zeit-
lichen Genauigkeit von Kommunikation und Berechnung und unterscheiden
diesbezgl. zwischen fiinf verschiedenen Modellierungsstilen. Donlin differen-
ziert in [100] explizit zwischen RTL Modellen und zyklenakkuraten Modellen.
Nach seiner Klassifikation sind zyklenakkurate Modelle Teil des TL.

2.3.3. Sprachen zur Modellierung heterogener eingebetteter
Systeme

Um das Verhalten von heterogenen Systemen eindeutig spezifizieren und ve-
rifizieren zu konnen, bedarf es einer Moglichkeit, Kompositionen und Interak-
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Use cases
Software Software Architectural Hardware
development performance analysis verification
TLM-2 Coding Styles Each style supports a range of abstractions
Loosely-timed ‘
‘ Approximately-timed

Mechanisms ¢ ¢ ¢

Blocking DMI Quantum Sockets Generic Phases Noln-bl(fckmg

interface payload interface

Abbildung 2.14.: Anwendungsfille, Coding Styles und Mechanismen von TLM
2.0 (Quelle: [27])

tionen zwischen Modellen, die auf unterschiedlichen Berechnungsmodellen ba-
sieren, moglichst exakt zu beschreiben. Lee und Vincentelli fiihren in diesem
Zusammenhang in [176] an, dass die Verwendung von nur einem einzigen all-
gemeingiiltigen Berechnungsmodell zur vollstindigen Beschreibung eines Sys-
tems zur Folge hitte, dass Eigenschaften des zu entwickelnden Systems nur
noch durch umfangreiche Simulationen und nicht mehr durch formale Metho-
den tiberpriifbar waren. Umgekehrt argumentieren Eker et al. in [102], dass ei-
ne unorganisierte amorphe Heterogenitit von Komponenten die Analyse von
Wechselwirkungen zwischen Teilsystemen aufierordentlich schwierig gestalten
kann, da die Komposition heterogener Modelle u.U. in nicht vorhersehbarem
emergentem Verhalten resultiert. Ein solches Verhalten kann sich entsprechend
[102] z.B. dann einstellen, wenn eine ,,brute-force” Komposition heterogener Si-
mulationsmodelle aufgrund nicht vorhersehbarer Charakteristika verschiedener
Berechnungsmodelle ungewollte Wechselwirkungen auslost. Insbesondere eine
Co-Simulation (vgl. Abschnitt 2.2.4) ist anfdllig dafiir.

Aus den genannten Griinden ist die exakte Beschreibung von Beziehungen zwi-
schen heterogenen Berechnungsmodellen und die Untersuchung von Eigenschaf-
ten unterschiedlich heterogener Berechnungsmodelle und deren Interaktionen
ein aktuelles Forschungsthema. Aus unterschiedlichen Projekten sind in diesem
Zusammenhang bereits eine ganze Reihe sog. formaler Frameworks hervorge-
gangen. Diese basieren meist auf einem
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1. mathematischen Formalismus, der sich zur Beschreibung, formalen Verifi-
kation, Synthese (von Teilen) und Simulation eines Modells eignet, das auf
Basis heterogener Berechnungsmodelle spezifiziert wurde. Der mathema-
tische Formalismus definiert typischerweise ein einheitliches Metamodell
fiir verschiedene Berechnungsmodelle.

2. heterogenen Werkzeug zur Modellierung und Simulation (M&S), das zur ex-
perimentellen simulationsbasierten Analyse eines Modells dient. Die dem
Werkzeug zugrundeliegende Sprache basiert auf dem mathematischen For-
malismus.

Im Unterschied zu SLDL Ansédtzen wie z.B. SystemC/TLM, existiert in diesen
Frameworks eine eindeutige Definition fiir verschiedene Berechnungmodelle so-
wie deren Interaktionen. Beispiele formaler Frameworks sind Ptolemy II [102,
255, 175] und dessen Vorgénger Ptolemy [70], Metro II [95, 94] und dessen Vor-
ganger Metropolis [45, 175] sowie ForSyDe [226]. Beispiele fiir heterogene Erwei-
terungen von SystemC sind HetSC [136] oder die Arbeit von Patel und Shukla in
[212]. Aufgrund der Relevanz in Kapitel 5, werden im Folgenden die wichtigsten
Grundlagen von Ptolemy II erlautert.

2.3.4. Ptolemy Il

Ptolemy 1I (PtIl) [102] ist ein Werkzeug zur Modellierung und Simulation hete-
rogener Systeme in Java. Das Ptll zugrundeliegende Konzept zum Management
der Heterogenitat wird als hierarchische Heterogenitdt bezeichnet. Diese ist ein
spezieller Ansatz zum Management horizontaler Heterogenitét (vgl. Abschnitt
2.2.4), bei dem heterogene Teilmodelle nur durch hierarchische Komposition mit
der Folge zusitzlicher vertikaler Heterogenitdt kombiniert werden konnen.

2.3.4.1. Syntaktische Komponenten

Die abstrakte Syntax von PtIl erlaubt (dhnlich wie die SystemC Syntax) eine
Strukturierung von Modellen in hierarchisch geclusterte Graphen [185]. Die Kno-
ten eines solchen Graphen bilden sog. Actors, die {iber Ports, Links und Relations
miteinander verkniipft sind. Die abstrakte Syntax kann durch unterschiedliche
Formen einer konkreten Syntax reprédsentiert werden. In PtII existiert eine kon-
krete visuelle Syntax (siehe Abb. 2.15) sowie ein XML Dialekt namens Modeling
Markup Language (MoML) [177].

Actors konnen atomare (B, D und E in Abb. 2.15) oder komposite Actors (TopLevel,
A und C) sein. Am unteren Ende der Hierarchie befinden sich ausschliefslich
atomare Actors. Ein Netzwerk von (kompositen) Actors kann wiederum in einen
kompositen Actor eingebettet sein. Ein kompositer Actor erlaubt so die hierarchi-
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sche Verschachtelung von beliebigen (atomaren und kompositen) Actors. Jeder
komposite Actor besitzt entweder genau ein Director Attribut oder keines. Die
Toplevelebene besitzt immer einen Director.

Toplevel: CompositeActor

Director .
B: AtomicActor

link
A: CompositeActor C: CompositeActor

, %
. Relation

Director @ Attribute: value

E: AtomicActor

q: Port
D: AtomicActor

p: Port

Relation

Relation

Opaque CompositeActor Transparent Composite Actor

Abbildung 2.15.: Konkrete visuelle Syntax von Ptolemy II (Quelle: [217])

2.3.4.2. Abstrakte Semantik

PtII unterscheidet zwischen abstrakter und konkreter Semantik [217]. Die ab-
strakte Semantik spezifiziert Regeln zur Ausfithrung und Kommunikation zwi-
schen Actors, die allgemein giiltig sind. Sie wird auch als Actor Semantics be-
zeichnet. Ein Berechnungsmodell entspricht einer konkreten Semantik. Deren
Implementierung wird auch als Domiine oder Domain bezeichnet. Die Existenz
einer abstrakten Semantik ist grundlegend fiir die eindeutige Beschreibung der
Interaktion zwischen heterogenen Domé&nen. Im Folgenden werden die grund-
legenden Aspekte der abstrakten Ptll Semantik erldutert.

Zeitmodell

Das Zeitmodell von PtIl wird als Superdense Time bezeichnet. Dabei wird die
Zeit, ahnlich zum Zeitmodell aus Kapitel 4.5, als ein Tupel t*# = (7, i) repra-
sentiert. T ist die sog. Modeltime und y der Microstep. Zwei Zeitstempel (11, y1)
und (1, #2) heilen schwach gleichzeitig, wenn 7 = 1, und stark gleichzeitig wenn
zusdtzlich yu = yy gilt. Bzgl. der zeitlichen Dauer ist ein Microstep in PtII damit
identisch zu einem Deltacycle in SystemC (vgl. Abschnitt 2.3.2). Das Zeitmodell
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ist die Grundlage fiir den Erhalt von Determinismus, indem die Ausfiihrungs-
reihenfolge der Actors vollstindig geordnet wird.

Auf Grundlage der Superdense Time wird der Zeitverlauf innerhalb eines PtII
Modells hierarchisch gesteuert: Typischerweise wird ein Zeitfortschritt nur auf
der obersten Hierarchieebene durchgefiihrt. Untere Ebenen erhalten den aktuel-
len Zeitwert t“* des Modells dann vom hoheren Ebenen [217].

Spezifikation von Verhalten durch Actors

Aktors sind prinzipiell ausfiihrbare nebenldufige Komponenten. Sie kommuni-
zieren iiber Relationen. Interaktionen entsprechen dem Austausch sog. Tokens.
Die Art und Weise der Ausfiihrung und Kommunikation ist durch die Doméne
in dem kompositen Actors definiert, in der der Actor instanziiert ist. Komposi-
te Actors konnen als undurchlissig (engl. opaque) oder als transparent definiert
werden. Im ersten Fall verhalten sie sich wie eine Blackbox, bei der die interne
Spezifikation der Struktur und des Verhaltens nach aufien hin nicht sichtbar ist.
Im zweiten Fall ist die komplette interne strukturelle Spezifikation nach aufien
hin sichtbar. Die konkrete Semantik entspricht der des umgebenden kompositen
Actors.

Kommunikationsmechanismen

Die Art und Weise der Kommunikation ist in der abstrakten Semantik noch nicht
festgelegt. Mit Hilfe unterschiedlicher Typen von sog. Receiver konnen Ports
auf einen fiir eine bestimmte Doméne geeigneten Kommunikationsmechanis-
mus spezialisiert werden. Dazu wird Senden eines Tokens per Aufruf von send()
auf dem Ausgangsport an die puf() Methode des zugehorigen Receivers dele-
giert (siehe Abb. 2.16). Beispiele unterschiedlicher Kommunikationsmechanis-
men sind FIFOs, Mailboxen oder Queues [217].

execution control data transport

[{send(0,t)

receiver.put(t) (— gef(0))
h /

fire() P R1

b |OPort
ﬁ Actor

Abbildung 2.16.: Kommunikation in Ptolemy II (Quelle: [217])

token t)

|IORelation\| Receiver
(inside port)
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Ausfiihrungsmechanismus

Der Ausfiihrungsmechanismus einer Domé&ne wird innerhalb eines kompositen
Actors durch einen Director festgelegt. Das abstrakte Ausfithrungsschema aller
Directors von PtII ist in Abb. 2.17 anhand eines Beispiels dargestellt. Die Aus-
fuhrung lasst sich, dhnlich wie die Ausfiihrung eines SystemC Modells (vgl. Ab-
schnitt 2.3.2.2), in verschiedene Ausfiihrungsphasen einteilen, die Initialization
Phase, die Execution Phase und die Wrapup Phase. Diese Phasen lassen sich wieder-
um in Teilphasen untergliedern, fiir die jeder Actor und Director entsprechende
Callback-Methoden (Action Methods) besitzt.

initialization execution wrapup

process check prefire fire postfire Goned wrapup
™| mutations }—> types top level yes top level top level one” 4 top level
initialize prefire fire postfire wrapup
director director director director director

ol ;eady—‘
select an
actor

initialize
top level

Manager

top level
Composite
Actor

'

transfer
outputs

initialize
actors

prefire fire
actor actor

postiire
actor

wrapup

refire
p actors

postire

Director

more

initialize refire request fire request ostiire wrapy

b transfer [ transfer n Irapup

director director director director director
inputs outputs

postfire wrapup

{ actors

Abbildung 2.17.: Ausfithrung eines PtIl Modells (Quelle: [217])

opaque
Composite
Actor

postire
actor

Director

Die Initialization Phase besteht aus preinitialize() und initialize(). Deren Aufgabe
ist die Initialisierung von Modellparametern und Zustédnden. In der Execution
Phase wird das Modell durch wiederholte Iferation iiber die Aktionen prefire(),
fire() und postfire() ausgefiihrt. In prefire() werden mogliche Vorbedingungen fiir
den Aufruf von fire() getestet. Das eigentliche Verhalten eines Actors (lesen von
Tokens, Berechnung, Schreiben von Tokens) ist in fire() implementiert. In postfi-
re() wird der lokale Zustand des Actors aktualisiert. Die Tatsache, dass der Zu-
stand eines Actors erst in postfire() aktualisiert wird, ist grundlegend fiir die Exis-
tenz sog. doménenpolymorpher Actors (vgl. [217]). Die Ausfithrung der Wrapup
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Phase erfolgt durch Aufruf der wrapup() Aktion. Sie signalisiert das Ende der
Austithrung eines Actors oder Directors.

2.3.4.3. Konkrete Semantik

Spezialisierte Domanen konnen grundsitzlich auf Basis bereits existierender we-
niger spezieller Doménen entwickelt werden. Ein Ansatz dazu ist es, durch ob-
jektorientierte Ableitung von den relevanten Klassen (insbesondere von einer
geeigneten Director Klasse) eine neue Variante zu implementieren. Durch den
Mechanismus der Ableitung wird sichergestellt, dass die Eigenschaften der ur-
spriinglichen Doméne sowie deren Kompatibilitdt zur anderen Doménen erhal-
ten bleibt. Wegen ihrer besonderen Relevanz in Kapitel 5 werden im Folgenden
einige wichtige Besonderheiten der DE Domaéne von PtII kurz erldutert.

2.3.4.4. Spezifika der DE Domane

Das DE Berechnungsmodell von PtIl ist, wie das SystemC Berechnungsmodell,
eine Variante des Basisalgorithmus aus Abschnitt 2.2.3.3). Details zur Implemen-
tierung sind in [67] zu finden. In der DE Doméne kommunizieren Actors tiber
Events. Ein Event ist eine Kombination aus einem Token und einem Tag. Das To-
ken speichert Daten und der Tag speichert einen Zeitstempel entsprechend dem
Zeitmodell aus Abschnitt 2.3.4.2.

Der DE Director verwaltet eine globale Eventqueue. Das Auftreten eines Ereig-
nisses ist dquivalent zum Empfang eines Tokens tiber einen mit dem DE Receiver
spezialisierten Port (vgl. Abschnitt 2.2.3.3). Daneben gibt es sog. Pure Events. Mit
deren Hilfe kann ein Actor zu einem spéateren Zeitpunkt erneut gefeuert werden,
ohne dass dies mit dem Empfang eines Tokens verbunden ist.

In einer SystemC RTL Simulation geniigt ein Zweiertupel bestehend aus Simula-
tionszeit und Deltacycle, um deterministische Simulationsergebnisse zu erzielen.
Der Grund ist das Evaluate/Update Paradigma: Dieses sorgt dafiir, dass alle in
einem Deltacycle n generierten Wertdnderungen eines Signals grundsétzlich erst
im Deltacycle n + 1 (gleichzeitig) sichtbar werden.

Wiirde man in PtIl DE ausschlieSlich Actors mit einer minimalen Verzogerung
von einem Microstep verwenden, so gentigte ebenfalls die Berticksichtigung von
Model Time und Microstep bei der Sortierung von Ereignissen. In einem Ptll
Modell existieren jedoch meist auch Actors, die weder eine Verzogerung bzgl.
T noch eine Verzogerung bzgl. u erzeugen. Dadurch kann es passieren, dass
das Simulationsergebnis bei Existenz mehrerer Ereignisse mit gleichem 7 und
gleichem p von der Reihenfolge abhéngt, in der Actors gefeuert werden. Um
dennoch deterministische Simulationsergebnisse garantieren zu kénnen, wird in
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der DE Doméne zusétzlich der Level von Actors bertiicksichtigt, wodurch eine
vollstindige Ordnung mit einer eindeutigen Ausfithrungsreihenfolge von Ac-
tors entsteht. Das DE Berechnungsmodell erweitert dazu das Superdense Time
Zeitmodell zu einem Dreiertupel (7, u, A). Dabei spezifiziert A den Level.

Der Level von Actors wird statisch durch eine topologische Sortierung der Ac-
tors bestimmt, die Teil des Actor-Graphen G4 (A, R) im betrachteten DE Modell
sind. Eine Sortierung ist nur dann moéglich, wenn die Topologie einen gerichte-
ten azyklischen Graphen (engl. Directed Acyclic Graph (DAG)) aufspannt [67, 152].
Existiert der DAG eines DE Modells, dann ist der Level eines Actors durch des-
sen Position innerhalb des DAG definiert. Dabei hat ein sog. Upstream Actor (ein
Actor, der sich ndher an der Wurzel des DAG befindet) einen kleineren Level
als ein Downstream Actor. Ein DAG existiert nicht, wenn innerhalb der Topolo-
gie verzogerungsfreie Zyklen zwischen Actors existieren. Ein solches Modell ist
in PtIl grundsétzlich nicht ausfiihrbar. PtII verweigert in diesem Fall die Aus-
fithrung. Die Ausfiihrbarkeit kann hergestellt werden, indem verzégerungsfreie
Zyklen mit Verzogerungsgliedern von mindestens einem Microstep in verzoge-
rungsbehaftete Zyklen umgewandelt werden.

2.4. Prozessorarchitekturen und Parallelitat

2.4.1. Taxonomie fiir Prozessorarchitekturen

Eine der ersten Klassifikationen fiir Prozessorarchitekturen stammt aus dem Jahr
1966 von Michael J. Flynn [109]. Flynn klassifiziert Computersysteme entspre-
chend der Matrix aus Abb. 2.18. Die Klassifikation leitet sich von der Anzahl der
innerhalb einer Architektur vorhandenen parallelen Kontroll- und Datenfliisse
ab. Im Falle mehrerer paralleler Kontroll- und/oder Datenfliisse existieren ent-
sprechend mehrere parallele Recheneinheiten zu deren Verarbeitung.

¢ Single Instruction Single Data (SISD): Das SISD Paradigma ist die Grund-
lage traditioneller Prozessorarchitekturen, die entweder entsprechend ei-
ner Von-Neumann oder Harvard-Architektur aufgebaut sind. Es wird we-
der Parallelitdt im Datenstrom noch im Befehlsstrom genutzt. Es existiert
nur ein einziger Datenstrom als Eingang in eine zentrale Recheneinheit.
Wihrend eines Taktzyklus wird von der zentralen Recheneinheit nur ein
einziger Befehl ausgefiihrt.

¢ Single Instruction Multiple Data (SIMD): Alle Recheneinheiten fithren
in jedem Takt den gleichen Befehl aus. Dabei kann jede Recheneinheit auf
unterschiedlichen Daten arbeiten. Die Synchronitit der Befehlsausfithrung
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Single Multiple
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Abbildung 2.18.: Klassifikation von Computerarchitekturen nach Flynn

ist die Basis fiir Determinismus. Aktuelle Grafikprozessoren arbeiten nach
diesem Prinzip.

e Multiple Instruction Single Data (MISD): Jede Recheneinheit fithrt an-
dere Befehle auf einem fiir alle Recheneinheiten gleichen Datenstrom aus.
Bisher existieren wenige Beispiele fiir Architekturen, die diesem Typ zuge-
ordnet werden konnen.

* Multiple Instruction Multiple Data (MIMD): Jede Recheneinheit fiihrt ei-
nen eigenen Befehlsstrom aus und arbeitet zugleich auf einem separaten
Datenstrom. Abhingig von der Art der Implementierung arbeiten MIMD
Architekturen synchron oder asynchron. Wenn keine entsprechenden Vor-
kehrungen im Sinne der Synchronisation und Koordination paralleler Re-
cheneinheiten getroffen werden, ist eine korrekte Funktion nicht garantiert.
MIMD Architekturen sind die am weitesten verbreiteten parallelen Archi-
tekturen.

2.4.2. Klassifikation von Parallelitdt

Mit den genannten Klassen von Prozessorarchitekturen kénnen verschiedene
Arten von Parallelitdt innerhalb einer Applikation mehr oder weniger effizient
ausgenutzt werden. Hennessy und Patterson unterscheiden in [133] zwei grund-
legende Klassen von Parallelitdt innerhalb von Applikationen, Data-Level Paral-
lelism (DLP) und Task-Level Parallelism (TLP).

DLP entsteht durch voneinander unabhéngige Datenelemente, die aufgrund ih-
rer Unabhéngigkeit zur gleichen Zeit verarbeitet werden konnen. Im Gegensatz
dazu spricht man von TLP im Kontext von Funktionen, die aufgrund ihrer funk-
tionalen Unabhingigkeit weitgehend parallel ausgefiihrt werden konnen. DLP
und TLP lassen sich in einem bestimmten betrachteten Kontext weiter verfei-
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nern. Hennessy und Patterson nennen orthogonal zur Klassifikation von Flynn
mehrere mehr hardwarespezifische Typen von Parallelitit, die sich von DLP und
TLP ableiten. Zu den hier relevanten gehoren:

¢ Instruction Level Parallelism (ILP): Diese Art der Parallelitdt nutzt DLP
zur Extraktion von feinkodrniger Parallelitdt innerhalb eines Befehlsstroms.
Entsprechende Techniken hierzu finden sich in Mikroarchitekturen von
Prozessoren wieder. Beispiele sind Pipelining, spekulative Befehlsausfiih-
rung oder Hardwareseitiges Multithreading (HMT) bzw. Hyper-Threading [101].

¢ Thread-Level Parallelism (THLP): THLP nutzt die in einer Applikation
vorhandene DLP oder TLP zur parallelen Ausfithrung der Applikation
verteilt auf mehrere grobkornige Funktionen, die Thread oder Prozess ge-
nannt werden.

Die in dieser Arbeit fiir die Simulation eingesetzten Zielplattformen lassen sich
als MIMD Architekturen klassifizieren und implementieren Techniken zur Nut-
zung von ILP und THLP. Der Fokus der entwickelten Softwaretechniken liegt
hingegen ausschliefilich auf der Verbesserung des THLP.

2.4.2.1. Parallelitit auf Threadebene

Ein Thread oder Prozess ist ein separater Befehlsstrom, der auf einem oder meh-
reren Datenstromen arbeitet. Die Ausnutzung von Parallelitdt auf Threadebene
setzt voraus, dass eine Applikation in mehrere Threads zerlegbar ist. Je nach Ap-
plikation kénnen diese dann mehr oder weniger unabhangig voneinander ab-
gearbeitet werden. Der Grad der Unabhingigkeit steht in direkter Relation zur
vorhandenen Parallelitdt. Durch spezielle Synchronisationsmechanismen muss
die parallele Ausfiihrung gezielt limitiert werden, um Datenabhédngigkeiten kor-
rekt aufzulosen und funktionale Korrektheit herzustellen.

Techniken zur Ausnutzung von Parallelitdt auf Threadebene basieren typischer-
weise auf MIMD Architekturen, da diese eine Infrastruktur fiir mehrere paral-
lele Befehls- und Datenstrome bereitstellen. Betrachtet man die Implementie-
rung von MIMD Architekturen etwas genauer, so werden im Allgemeinen meh-
rere Recheneinheiten und Speichermodule iiber ein Verbindungsnetzwerk mit-
einander gekoppelt. MIMD Architekturen kdnnen in die Klasse der Distributed-
Memory (DM) Architekturen sowie der Shared Memory (SHM) Architekturen un-
terteilt werden [247, 103] (siehe Abb. 2.19). Erstere werden auch als Multiprozes-
soren oder Multicore Prozessoren, letztere als Multicomputer oder Distributed
Memory Multiprozessoren bezeichnet [247, 139, 211].
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MIMD Architecture

SHM DM
(Multiprocessor) (Multicomputer)

NCC-NUMA

Abbildung 2.19.: Verfeinerte Klassifikation von MIMD Architekturen (nach
[247])

2.4.2.2. Distributed-Memory MIMD Architekturen

In einem DM System ist jede Recheneinheit mit einem lokal zugreifbaren Spei-
cher ausgestattet. Kommunikation zwischen Recheneinheiten wird tiber den Aus-
tausch von Nachrichten realisiert. Das Verbindungsnetzwerk zum Austausch
der Nachrichten kann auf unterschiedlichste Weise realisiert sein, beispielsweise
als als Computernetzwerk, das geografisch verteilte Rechner miteinander ver-
bindet. In die Klasse der DM Architekturen gehoren u.a. sog. Massively Paral-
lel Processors (MPPP), Clusters of Workstations (COW) und Networks of Workstations
(NOW).

Zum Nachrichtenaustausch muss dem Programmierer eine spezielle API zur
Verfiigung gestellt werden. Eine der bekanntesten APIs ist der Message Passing
Interface (MPI) Standard [110]. Kommunikation und Synchronisation erfolgt tiber
definierte Methodenaufrufe. Mit deren Hilfe konnen unterschiedliche sog. Kom-
munikationsmuster wie One-Sided Communication, Two-Sided Communication oder
Collective Communication zwischen parallelen Prozessen realisiert werden. Kom-
munikationsmuster sind durch Syntax und Semantik des Datenaustauschs zwi-
schen einzelnen oder einer Gruppe von beteiligten MPI Prozessen definiert!.

1 Aus dem Blickwinkel der Beschreibung aus Abschnitt 2.2.3 definiert der MPI Standard damit ein
(sehr allgemeines) Berechnungsmodell zur verteilten Ausfiihrung.
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2.4.2.3. Shared-Memory MIMD Architekturen

In einer SHM Architektur kommunizieren mehrere Recheneinheiten iiber einen
globalen Speicherbereich und einen gemeinsamen logischen Adressraum. Dieser
ist allen Recheneinheiten tiber normale Speicheradressierung zugéanglich. Der
globale Speicher kann aus mehreren Speicherelementen bestehen, die mit den
Recheneinheiten tiber ein mehr oder weniger komplexes Netzwerk verbunden
sind. Im einfachsten Fall ist das Verbindungsnetzwerk ein Bus. Komplexere Ver-
bindungsnetzwerke bestehen aus mehreren hierarchisch organisierten Bussen,
einer Crossbar oder einem Network-on-Chip (NoC) [50].

Jede Recheneinheit hat typischerweise die gleichen Zugriffsrechte auf den glo-
balen Speicher. Bei zugleich identischen Zugriffszeiten spricht man auch von ei-
nem Unified Memory Access (UMA) System. Im Gegensatz dazu spricht man von
einem Non-Unified Memory Access (NUMA) System, wenn sich die Zugriffszei-
ten von verschiedenen Recheneinheiten auf den Speicher unterscheiden. NUMA
Architekturen werden auch als Distributed Shared Memory (DSM) Architekturen
bezeichnet [208]. Tatséchlich sind sie eine Hybridlosung, die DM Prinzipien mit
SHM Prinzipien verbindet. Abhédngig davon, ob ein sog. Cachekohédrenzproto-
koll in Hardware implementiert ist oder nicht, konnen UMA und NUMA Pro-
zessoren in weitere Unterkategorien eingeteilt werden[139]:

e Cache-Coherent / Non-Cache-Coherent UMA (CC/NCC-UMA)
¢ Cache-Coherent / Non-Cache-Coherent NUMA (CC/NCC-NUMA)

Cachekohirenz bedeutet, dass Prozessoren eine gemeinsame Sicht auf bestimm-
te Stellen im Speicher haben miissen. Sie wird durch das Cachekoharenzproto-
koll (z.B. MESI [133]) sichergestellt. Ist kein Cachekoharenzprotokoll implemen-
tiert, muss die Kohédrenz softwareseitig sichergestellt werden. Eine Cache Only
Memory Access (COMA) Architektur ist ein Sonderfall einer CC-NUMA Archi-
tektur, bei dem jeglicher Shared Memory im System ein Cache ist.

Architekturtechniken zur Synchronisation

Die korrekte Funktion einer parallelen Applikationen basiert meist auf der Exis-
tenz einer partiellen Ordnung von Interaktionen bzw. Speicherzugriffen von par-
allelen Threads [236]. Eine solche partielle Ordnung kann durch eine gezielte
Synchronisation zwischen Threads und sog. wechselseitigen Ausschluss [37] von
Zugriffen auf ein und dieselbe Speicherstelle hergestellt werden. Im Bereich der
Multiprozessoren existieren unterschiedliche Basislosungen in Form spezieller
sog. Read Modify Write (RMW) Instruktionen, die als Ausgangspunkt fiir kom-
plexere Synchronisationsmethoden genutzt werden kénnen. RMW Instruktio-
nen sind eine Klasse von atomaren Befehlen, die es ermoglichen, gleichzeitig
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von einer Speicheradresse zu lesen und auf sie zu schreiben. Beispiele fiir RMW
Instruktionen sind:

¢ Test-and-Set (TNS): Eine TNS Instruktion erlaubt das Schreiben eines Wer-
tes auf eine Speicheradresse bei gleichzeitigem Lesen des alten Wertes. Eine
mogliche Anwendung ist die Bereitstellung einer Critical Section.

¢ Compare-and-Set (CAS): Eine CAS Instruktion vergleicht den Inhalt einer
Speicheradresse mit einem gegebenen Wert. Wenn beide {ibereinstimmen,
dann wird der gegebene Wert an die Speicheradresse geschrieben. Anhand
eines boolschen Riickgabewertes erkennt ein Prozess, ob das Schreiben er-
folgreich war.

2.4.3. Single-chip Cloud Computer

Der Single-chip Cloud Computer [46] ist ein von Intel Labs entwickelter experi-
menteller Prozessor, der als Forschungsplattform im Kontext der Programmie-
rung von paralleler Software fiir zukiinftige Manycore Architekturen dient. Als
Manycore werden Prozessoren bezeichnet, die viel mehr Kerne besitzen, als dies
in traditionellen Architekturen tiblich ist.

Abbildung 2.20.: Wafer des SCC (Quelle: www.intel.com)

Die Architektur des SCC kann als NCC-NUMA klassifiziert werden. Ein im Ver-
gleich zu herkémmlichen cachekohdrenten SHM Architekturen neuartiges Fea-
ture ist die Unterstiitzung von schneller On-Chip Kommunikation, basierend auf
nicht cachekohdrentem SHM. Es wurde bewusst auf eine Hardwareimplemen-
tierung eines Cachekohérenzprotokolls zu Gunsten einer in Software verwalte-
ten Cachekohérenz verzichtet.

54



2.4, Prozessorarchitekturen und Parallelitit

Abb. 2.21 gibt einen Uberblick iiber die Gesamtarchitektur des SCC anhand eines
Blockdiagramms. Er besteht aus 24 Tiles. Diese sind iiber ein zweidimensionales
6x4 Mesh NoC mit 256 GB/s Bisektionsbandbreite. Jedes Tile besteht wiederum
aus zwei P54C Pentium™ Kernen, 16 kB L1 Cache jeweils fiir Daten und Befehle
pro Kern, einen fiir Daten und Befehle gemeinsamen 256 kB grofien L2 Cache pro
Kern eine Mesh Interface Unit (MIU), zwei TNS Register und einen 16 kB SRAM
basierten sog. Message Passing Buffer (MPB). Die MIU verbindet jedes Tile mit
einem Router, der einen XY-Routingalgorithmus implementiert [225]. Der Rou-
ter wiederum integriert das Tile in das NoC. Der SCC ist ausgestattet mit vier
integrierten DDR3 Memorycontrollern (IMCs), tiber die bis zu 64 GB Hauptspei-
cher adressiert werden kann. Zusétzlich existiert ein 8 Byte breites bidirektiona-
les Highspeed I/O Interface, das fiir die Off-Chip-Kommunikation genutzt wird
[92].

Die Kerne des SCC lassen sich entweder mit jeweils sparatem Linux Operating
System (OS) (einem modifizierten 2.6.16 Linuxkernel) oder im sog. ,, BareMetalC*”
Modus (ohne OS) betreiben [198]. In dieser Arbeit wurden die Kerne des SCC
grundsitzlich mit OS betrieben.

HDI0HDEDD

16 KB L1 ICache unified L2
! ! ! ! ! 16 KB L1 DCache Cache
Copyright ©Intel Corporation Bus to PCI

Tile
1A-32 256 KB
16 KB L1 ICache unified L2
16 KB L1 DCache Cache

To

Message Passing Router
Buffer =

16 KB

Abbildung 2.21.: SCC Architektur Blockdiagramm

2.4.3.1. Flexible Speicherarchitektur

Der SCC besteht aus mehreren unterschiedlichen Speicherbereichen. Sie wird
durch den externen DDR Speicher, sowie den durch die MPB bereitgestellten
On-Chip Speicher aufgespannt. Dabei kénnen sowohl der DDR3 als auch der
MPB Speicherbereich als Private Memory oder als Shared Memory deklariert
werden. Durch Nutzung von Lookuptables (LUTs) kann der komplette Speicher-
bereich flexibel auf unterschiedliche Adressraume abgebildet werden. Zugriffe
auf externen DDR3 oder MPB Speicher erfolgen immer tiber die MIU[198].
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2.4.3.2. Prozessorkerne

Die P54C Kerne des SCC sind eine erweiterte Version von 32 bit Pentium Kernen
der zweiten Generation [235]. Sie unterstiitzen keine Out-of-Order Ausfithrung
von Befehlen. Die urspriinglichen 8 kB L1 Daten- und Befehlscaches wurden
durch 16 kB 4-Wege satzassoziative Caches mit Write-Through und Write-Back
Unterstiitzung ausgetauscht. Wie jede x86 Architektur basiert das Speicherma-
nagement auch bei den SCC Kernen auf einem Pagetable Ansatz. Physikalische
Speicheradressen eines Kerns werden mit Hilfe der Pagetable in systemweite
Adpressen tibersetzt. Dies geschieht mit einer Granularitét einer Page von 4 kB.

Fiir jede Page kann anhand spezieller Konfigurationsbits separat festgelegt wer-
den, ob der Speicherzugriff mit oder ohne Cacheunterstiitzung erfolgen soll [198].
Die Wahl hiangt davon ab, ob ein Speicherbereich ausschliefilich als Private Me-
mory oder gemeinsam mit anderen Kernen als Shared Memory verwendet wer-
den soll. Falls nur Private Memory verwendet wird, so kann die vollstdndige L1
und L2 Cacheunterstiitzung aktiviert werden. Daten werden mit einer Granula-
ritat von 32 bit zwischen Caches und Speicher bewegt. Eine Kohdrenzsicherung
ist nicht notwendig. Falls Shared Memory verwendet wird, so muss die Koha-
renz zwischen dem Speicher und den Caches der Kerne softwareseitig sicherge-
stellt werden. Dazu existieren folgende Alternativen:

1. Cached Mode (CM): Vollstindige Aktivierung der L1 und L2 Cacheun-
terstiitzung. Sowohl L1 als auch L2 Cache werden zum Lesen und/oder
Schreiben von Daten verwendet. Die einzige Moglichkeit, um Konsistenz
herzustellen ist die Ausfithrung teurer L2 Cache Flushes.

2. Uncached Mode (UCM): Vollstindige Deaktivierung der L1 und L2 Ca-
cheunterstiitzung: Weder L1 noch L2 Cache werden zum Lesen und/oder
Schreiben von Daten verwendet. Speicherzugriffe werden direkt auf die
Zielsystemadresse gemappt. In diesem Modus ist ein Speicherzugriff mit
einer Granularitdt von 1, 2, 4 oder 8 Byte moglich.

3. Gemischter Modus: Verwendung von L1 und L2 Cacheunterstiitzung fiir
Private Memory Zugriffe und den sog. Message Passing Memory Type (MPMT)
in Verbindung mit unterschiedlichen Konfigurationen des L1 Cache fiir
Shared Memory Zugriffe: Daten, die in der Pagetable als MPMT markiert
sind, werden bei einem Schreibzugriff zunéchst in einem sog. Write-Combine
Buffer (WCB) zwischengepuffert und erst an die Zieladresse geschrieben,
wenn der WCB eine volle Cacheline (32 Byte) enthélt. Der L2 Cache wird
bei MPMT Zugriffen grundsitzlich umgangen. Die Benutzung von L2 Ca-
che in Verbindung mit der in Software verwalteten Cachekohérenz ist nicht
moglich. Zur Nutzung des MPMT existieren folgende Varianten:

e MPMT + L1CM: MPMT mit L1 Cacheunterstiitzung. Um dies zu er-
moglichen, wurde der Befehlssatz des Pentium um einen neuen Be-
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fehl namens CL1INVMB erweitert. In Verbindung mit dem MPMT ist
dieser Befehl die Grundlage fiir die in Software verwaltete Cacheko-
hidrenz, fir den Fall, dass Teile des MPB oder externen Speichers als
SHM genutzt werden. Wenn der CL1INVMB Befehl ausgefiihrt wird,
werden alle als MPMT markierten L1 Cachezeilen innerhalb eines Tak-
tes invalidiert (ungtiltig gemacht). Darauffolgende Lese- oder Schreib-
zugriffe auf MPMT Zeilen resultieren in einem garantierten Cache
Miss. Bei einem Lesezugriff wird die jeweilige Zeile direkt aus dem
SHM geholt. Bei einem Schreibzugriff werden Daten zunédchstim WCB
zwischengespeichert, bis eine Cachezeile voll ist und dann erst in den
Shared Memory geschrieben.

¢ MPMT + L1UCM: MPMT ohne L1 Cacheunterstiitzung. In diesem
Fall durchlaufen Uncached Schreibzugriffe zusatzlich den WCB. Die-
se konnen so beschleunigt werden, da sie im Gegensatz zu Lesezu-
griffen nicht mit einer Granularitdt von 1, 2, 4 oder 8 Byte erfolgen
miissen, sondern mit bis zu 32 Byte Breite erfolgen kénnen.

Anhand der flexiblen Speicherarchitektur konnen unterschiedliche Programmier-
modelle experimentell untersucht werden. Die von Intel zur Verfiigung gestell-
te Rapidly Communicating Cores Environment (RCCE) Softwarebibliothek [198, 15]
implementiert bereits grundlegende Mechanismen zur Umsetzung von verteil-
ten Anwendungen auf Basis von Shared Memory oder Message Passing. Ak-
tuell nutzt RCCE den nicht cachekohdrenten MPB fiir ein synchrones On-Chip
Message Passing, kann aber auch als Ausgangspunkt fiir die Entwicklung neuer
Protokolle verwendet werden. Alternative Losungen zum synchronen Message
Passing Protokoll von RCCE sind z.B. in [144] oder in Anhang A zu finden.

2.4.4. Performanzanalyse

Zur Bewertung und zum Vergleich paralleler Algorithmen existieren verschie-
dene Leistungsmafle und Metriken. Der Nutzen einzelner Leistungsmafse ist ab-
héngig vom betrachteten Anwendungsfall und dem Ziel der Leistungsbewer-
tung. Im Rahmen dieser Arbeit ist das Primérziel der Parallelverarbeitung, ei-
ne Steigerung der Performanz im Sinne einer hoheren Ausfithrungsgeschwin-
digkeit bzw. einer geringeren Simulationslaufzeit im Vergleich zur sequentiellen
Ausfiihrung zu erreichen. Ein weiteres damit eng verkniipftes Ziel ist die Errei-
chung einer guten Skalierbarkeit auf einer bestimmten Zielplattform.

Im Allgemeinen gehoren Laufzeit und Skalierbarkeit zu den wichtigsten Krite-
rien bei der Bewertung von parallelen Algorithmen und Systemen [111]. Die im
Folgenden beschriebenen Leistungsmetriken zielen daher auf eine Bewertung
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der Leistungsfahigkeit im Hinblick auf Laufzeit und Skalierbarkeit. Die Beschrei-
bungen basieren auf [111][49][133].

2.4.4.1. Sequentielle Laufzeit

Im Kontext von Prozessoren und Mikroarchitekturen wird die Laufzeit oft in Ab-
hiangigkeit der notwendigen Taktzyklen fiir die Abarbeitung eines Algorithmus
oder Programms definiert [133], d.h.

Ty = CC X teyete- (2.3)

Dabei ist T; die Laufzeit, CC die Anzahl notwendiger Taktzyklen (engl. Cycle
Count) zur Abarbeitung eines Programms und £, die Taktzykluszeit. Ein alter-
nativer Ansatz ist es, fiir die Bestimmung der Laufzeit das Zeitintervall, vom Be-
ginn der Berechnung bis zu deren Beendigung zu messen. Diese Methode wurde
in dieser Arbeit angewendet.

2.4.4.2. Parallele Laufzeit

Die Definition der Laufzeit tiber Gleichung 2.3 eignet sich fiir eine Performanz-
analyse von einkernigen Prozessoren. Im parallelen Fall gibt es allerdings viele
weitere zu berticksichtigende Parameter. Die Laufzeit eines parallelen Programms
T, auf einer bestimmten Zielplattform ist u.a. eine Funktion der Problemgrofse
N, der Anzahl der Prozessoren P und der Anzahl an Tasks U [111]:

T, = f(N,P,U,..) (2.4)

Ein moglicher Ansatz zur ndherungsweisen Bestimmung von T, ist es, die Lauf-
zeit als das Zeitintervall, vom Beginn der Berechnung eines parallelen Programms
bis zu deren Beendigung zu definieren. Der Beginn der Berechnung ist dabei spe-
zifiziert als der Zeitpunkt, an dem der erste Prozessor mit der Abarbeitung star-
tet. Das Ende der Berechnung ist der Zeitpunkt, an dem der letzte Prozessor mit
der Abarbeitung endet [111]. Diese Vorgehensweise wurde auch in dieser Arbeit
zur Bestimmung von T}, verwendet.
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2.4.4.3. Beschleunigung

Die Beschleunigung (engl. Speedup) bezeichnet den Faktor, um den die Laufzeit
bei paralleler Ausfithrung gegentiber der sequentiellen Ausfithrung reduziert
wird. Sie ist der Quotient der sequentiellen und parallelen Laufzeiten fiir ein
gegebenes Problem [111, 49]:

_5

S, = T (2.5)

Dabei ist T; die Laufzeit der sequentiellen Implementierung auf einem einzigen
Prozessor und T, die Laufzeit der parallelen Implementierung auf P Prozesso-
ren. Wenn S p = P, dann spricht man von einer linearen Beschleunigung. Wenn
Sp > P, so spricht man von einer superlinearen Beschleunigung. Letztere kommt
in der Realitdt du8erst selten vor. In den meisten Fillen ist die Beschleunigung
durch die Anzahl P der Prozessoren nach oben beschrankt, d.h. Sp < P.

Ein Grund fiir eine superlineare Beschleunigung konnen Cacheeffekte sein: Durch
einen grofieren Parallelisierungsgrad ist im Gesamtsystem mehr Cache verfiig-
bar. Dadurch kénnen mehr Daten im Cache anstelle des langsameren Hauptspei-
chers vorgehalten werden. Als Folge wird die parallele Laufzeit im Vergleich zur
sequentiellen Laufzeit noch einmal zusatzlich reduziert.

2.4.4.4. Kosten, Overhead und Effizienz

Mit den Kosten eines parallelen Programms wird die von den Prozessoren bei der
Problemlosung durchgefiihrte Arbeit gemessen [49]. Die Kosten kénnen geschrie-
ben werden als

Cp=T,xP (2.6)

Dabei gilt ein paralleles Programm als kostenoptimal [49], wenn die einzelnen
Prozesse der parallelen Implementierung insgesamt die gleiche Anzahl an Ope-
rationen ausfiihren wie die sequentielle Implementierung, d.h. wenn

Cp =T, 2.7)

59



2. Grundlagen

Der Overhead entspricht der Differenz zwischen den Kosten des parallelen und
denen des sequentiellen Programms:

Hy=Cp—Ts=PxT,—T, (2.8)

Im kostenoptimalen Fall gilt H, = 0. Die Effizienz ist ein Ma# fiir die zusétzlich,
durch die Parallelisierung erzeugte Last einzelner Prozessoren. Sie gibt die Verar-
beitungsgeschwindigkeit im Vergleich zu einer sequentiellen Implementierung
bezogen auf einen einzelnen Prozessor an. Sie sagt aus, wie nah ein bestimmter
paralleler Algorithmus an das Optimum (maximal moglicher Speedup) heran-
kommt. Die Effizienz kann aus der Beschleunigung durch Normierung auf die
Anzahl P der Prozessoren wie folgt berechnet werden:

S T. T.
P= P PxT, G @9)

Es konnen folgende drei Fille unterschieden werden [49, 35]:

* E, < 1: Die Parallelisierung ist suboptimal bzgl. ihrer Kosten. Dies ist in
der Praxis der Normallfall. Es liegt eine Beschleunigung unterhalb einer
linearen Beschleunigung vor.

* E, > 1: Die Parallelisierung ist kostenoptimal. Es liegt eine lineare Beschleu-
nigung im Vergleich zur sequentiellen Implementierung vor.

* E, > 1: Die Parallelisierung ist besser als kostenoptimal. Es liegt eine superli-
neare Beschleunigung vor.

2.4.4.5. Amdahlsches Gesetz

Das sog. Amdahlsche Gesetz geht zurlick auf eine Veroffentlichung von Gene M.
Amdahl aus dem Jahre 1967 [36]. Es erfasst die oft giiltige Tatsache, dass Al-
gorithmen aus einem parallelisierbaren und einem nicht zu vernachlidssigenden
rein sequentiellen Anteil bestehen. Der sequentielle Anteil ist nach Amdahl fiir
die Limitierung der Beschleunigung durch parallele Ausfiihrung verantwortlich.
Uber den sequentiellen Anteil kann eine theoretische Obergrenze der erzielbaren
Beschleunigung fiir einen bestimmten parallelen Algorithmus geschétzt werden.
Das Gesetz kann geschrieben werden als:
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_ 5 - . (2.10)

Dabei gilt:
* S, ist die Beschleunigung,
e f; ist der sequentielle Anteil des Algorithmus,
* fpist der parallelisierbare Anteil des Algorithmus,
e P ist die Anzahl der Prozessoren,
* fs+fp=1mit0 < f;,, <1

Im Idealfall ist S, = P (mit fs = 0 und f, = 1). In der Realitdtist 1 < 5, <
P. S, ist dabei durch den sequentiellen Anteil f; beschriankt, da dieser durch
Parallelisierung nicht verringert werden kann (fiir den Grenzfall von P — oo ist
Sp=1)-

Als Beispiel ist in Abb. 2.22 der Speedup in Abhdngigkeit der Anzahl vorhan-
dener Prozessorkerne aufgetragen. Wenn der sequentielle Anteil in einem Pro-
gramm grof$ ist, dann tritt eine Sattigung des erreichbaren Speedups schon bei
einer kleinen Anzahl von Kernen ein. Im Beispiel ist zu sehen, dass bei Ausfiih-
rung einer Applikation auf 16 Kernen schon ein sequentieller Anteil von ledig-
lich 6.7% in einem maximalen theoretischen Speedup von nur acht resultiert.

10
8 Serial% = 6.7%
a N=16,N,,=8
_g 6 {_16 Cores, Perf=8
@
L}
o
& 4
Serial% = 20%
2 N=6,N,,=3
6 Cores, Perf =3

Number of Cores

Abbildung 2.22.: Limitierung der Beschleunigung nach Amdahl (Quelle: [63])
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3. Stand von Forschung und
Technik

3.1. Parallele Simulation von Multiprozessoren

Da eingebettete Systeme immer 6fter als MPSoC realisiert werden, nimmt die
Grofle und Komplexitit entsprechender Simulationsmodelle immer weiter zu.
Dies verursacht einen stetigen Anstieg der Simulationslaufzeiten. Durch Ab-
straktion konnen Simulationen zwar beschleunigt werden, die Abstraktion geht
aber auf Kosten der Genauigkeit. Die parallele Simulation ist daher eine Mog-
lichkeit, um die stetig steigende Diskrepanz zwischen Performanz und verfiig-
barer /notwendiger Genauigkeit zu verringern [180].

Im Folgenden wird zunéchst ein allgemeiner Uberblick iiber existierende Ansét-
ze zur parallelen MPSoC Simulation gegeben und diese entsprechend ihrem An-
wendungsbereich eingeordnet. Anschliefend werden SystemC spezifische For-
schungsansétze im Detail klassifiziert.

3.1.1. Anwendungsbereiche

In Abb. 2.14 aus Abschnitt 2.3.2.3 werden unterschiedliche Anwendungsfille
fur die Simulation mit SystemC/TLM genannt: Softwareentwicklung, Perfor-
manzanalyse von Software, Architekturanalyse und Verifikation von Hardware.
Die notwendige zeitliche Genauigkeit eines Simulators wird durch den Anwen-
dungsfall bestimmt. Das Schema eignet sich daher gut, um einen Uberblick iiber
existierende (auch SystemC unabhingige) Werkzeuge zur parallelen MPSoC Si-
mulation zu geben und diese initial zu klassifizieren.

Fiir die Softwareentwicklung steht weniger die zeitliche Genauigkeit als viel-
mehr die Moglichkeit im Vordergrund, die funktionale Korrektheit von Soft-
ware zu verifizieren. Erste Performanzabschédtzungen sollten dennoch moglich
sein. Zu den bereits existierenden parallelen Simulatoren, die hierfiir geeignet
sind, gehoren z.B. Parallel SimOS [169] oder Graphite [201]. Ein kommerzielles
Beispiel ist Simics [104]. Neben abstrakter Modellierung von Hardwarekompo-
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nenten und speziellen Techniken wie Dynamic Binary Translation [10] wird die
Simulation typischerweise durch starke temporare Entkopplung von parallelen
Threads um mehrere hundert bis tausend Taktzyklen, zusatzlich beschleunigt.
Dies hat eine enorme Reduktion des Synchronisationsaufwands gegentiber zy-
klengenauer Simulation zur Folge und macht es moglich, sogar komplette Be-
triebssysteme in akzeptabler Zeit auf einem MPSoC Modell zu booten.

Slacksim [81], Darsim/Hornet [183][182], gem5/GEMS [194, 541! oder SystemC
spezifische Ansatze wie Transaction Level Modeling with Distributed Time (TLM-
DT) [199] und die Arbeit von Yi et al. [268] sind Beispiele, welche besser fiir eine
detailliertere Performanzanalyse geeignet sind. Hardwarekomponenten werden
akkurater modelliert als in den zuvor genannten Beispielen, so dass bestimmte
architekturspezifische Effekte wie z.B. Zugriffszeiten auf den Speicher genau-
er wiedergegeben werden konnen. Dies fithrt dazu, dass diese Simulatoren um
mehrere Grofienordnungen langsamer sind. Temporare Entkopplung ist mog-
lich, wird aber fiir eine detaillierte Performanzanalyse typischerweise auf weni-
ge zehn oder hundert Taktzyklen beschriankt. Ein quantitative Analyse fiir den
gemb Simulator [54] ist in [73] zu finden.

Fir den Anwendungsfall der Hardwareverifikation muss eine zyklenakkura-
te Simulation moglich sein, z.B. um Timingfehler und Hardwarebugs erkennen
zu konnen. Arbeiten, welche dies explizit als Fokus haben, sind beispielsweise
[215, 260, 105, 232, 206, 188, 181]. [215] basiert auf einem proprietiren Simula-
tor namens LSE. Die Arbeiten in [206, 188, 181] basieren auf VHDL bzw. Verilog
und sind damit auf zyklenakkurate oder subzyklenakkurate Simulation (auf der
Ebene von Gates) beschrinkt. Die Ansitze in [215, 260, 105, 232] basieren auf
SystemC.

Der Fokus der vorliegenden Arbeit ist die zyklenakkurate und -approximative
parallele Simulation von MPSoC Modellen, die sich fiir Performanzanalysen und
Hardwareverifikation eignet. Dazu wurde SystemC als Grundlage gewé&hlt. Im
Folgenden werden existierende Forschungsansétze zur Parallelisierung von Sys-
temC weiter vertieft betrachtet.

3.1.2. Forschungsansitze basierend auf SystemC

Die aktuelle SystemC Referenzimplementierung der Accelera Systems Initiative
[1] arbeitet rein sequentiell und implementiert ausschliefilich ein kooperatives
Mulitasking zur Simulation von paralleler Hardware- oder Software (vgl. Ab-
schnitt 2.3.2.2). Daher ist die Untersuchung von Moglichkeiten zur Parallelisie-
rung des SystemC Schedulers schon seit einiger Zeit in den Fokus der Forschung
geraten. Existierende Ansitze lassen sich neben dem Modellierungsstil orthogo-

ILaut [118] existiert eine initiale parallele Implementierung von gemb5.
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nal hinsichtlich Zielplattformen, Synchronisationsverfahren und Kernelpartitio-
nierung klassifizieren.

3.1.2.1. Modellierungsstile und Zielapplikationen

Die Unterstiitzung unterschiedlicher Modellierungsstile ist die Voraussetzung
zur Modellbildung auf verschiedenen Abstraktionsebenen. Die Arbeiten in [93],
[86], [90], [205] und [260] unterstiitzen nur Kommunikation basierend auf dem
Evaluate/Update Paradigma. Damit ist die Anwendbarkeit auf RTL und &hnli-
che Modellierungstile beschrankt. Umgekehrt unterstiitzen die Arbeiten in [214]
und [199] nur transaktionsbasierte Kommunikation und sind daher nur fiir die
Simulation auf Transaktionsebene, nicht aber auf Registertransferebene geeig-
net. [105], [232] und [237] sind die einzigen unter den genannten Arbeiten, die
sowohl die sowohl RTL Modelle, als auch TL Modelle unterstiitzen. Aufier [205]
und [237] fokussieren alle genannten Beispiele explizit auch auf die Simulation
vollstandiger SoCs. In [232] und [199] liegt der Schwerpunkt explizit auf der Si-
mulation von MPSoCs.

3.1.2.2. Zielplattformen

Als Zielplattformen zur parallelen SystemC Simulation kommen in der Litera-
tur insbesondere COWs, cachekohdrente SHM Multiprozessoren oder Grafik-
prozessoren (engl. Graphics Processing Units (GPUs)) zum Einsatz (vgl. Abschnitt
2.4). [93], [86], [90] oder [214] sind Beispiele fiir Arbeiten, die auf die parallele
Ausfiithrung von SystemC Modellen auf einem Workstation Cluster abzielen. Sie
sind grundsitzlich geeignet fiir Architekturen, die nur tiber einen verteilten und
keinen gemeinsam nutzbaren Speicher verfiigen. Dies impliziert typischerweise
eine statische Modellpartitionierung, eine verteilte Ausfiihrung innerhalb meh-
rerer Betriebssystemprozesse, sowie eine nachrichtenbasierte Kommunikation.

Die in [105], [199] und [232] beschriebenen Ansitze sind spezialisiert fiir die
Ausfithrung auf cachekohdrenten SHM Multiprozessoren. Dabei wird die Si-
mulation nicht auf Betriebssystemprozesse, sondern auf Threads aufgeteilt, die
einen gemeinsamen virtuellen Adressraum besitzen. Dies hat auf cachekohéren-
ten SHM Maschinen den Vorteil eines sehr geringen Kommunikationsoverheads.
Wegen der Abhingigkeit von einem gemeinsamen virtuellen Adressraum sind
diese Verfahren normalerweise nicht auf Architekturen mit ausschlieSlich ver-
teiltem Speicher anwendbar.

[205], [260]) oder [237] beschreiben sog. General Purpose Computation on Graphics
Processing Unit (GPGPU) Ansédtze zur Nutzung von GPUs fiir die SystemC Be-
schleunigung. Wiahrend die ersten beiden Arbeiten nur eine homogene GPU

65



3. Stand von Forschung und Technik

Plattform betrachten, steht bei [237] eine heterogene Plattform bestehend aus ca-
chekohirentem SHM Multiprozessor und GPU im Fokus. Einen aktuellen Uber-
blick tiber verschiedene GPU Ansitze gibt [53].

3.1.2.3. Synchronisationsverfahren

Eine allgemeine Klassifikation von Synchronisationsalgorithmen zur PDES in
konservativ/optimistisch, synchron/asynchron, oder zentral/dezentral wurde
bereits in Abschnitt 2.2.3.4 gegeben. Existierende Ansétze zur SystemC Paralleli-
sierung lassen darin wie folgt einordnen:
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¢ Konservativ versus optimistisch: Alle bekannten Ansétze konnen in die

Klasse der konservativen Strategien eingeordnet werden, da sie versuchen,
kausale Abhingigkeiten zwischen Ereignissen, soweit sie durch die Mo-
dellspezifikation definiert sind, soweit wie moglich nicht zu verletzen.

Synchron versus asynchron: [105],[232] und [237] sind Beispiele fiir voll-
standig synchrone Verfahren: Die Simulation startet und stoppt phasen-
weise an globalen Barrieren. In allen drei Féllen erfolgt die Synchronisation
bis zu einer Granularitit von Deltazyklen, was einen hohen Overhead zur
Folge hat.

[93, 86, 90, 199] konnen als asynchrone Verfahren klassifiziert werden. [93],
[86] und [90] nutzen globale Synchronisation zur Auflosung von Dead-
locks. In [199] wird auf globale Synchronisation auf Kosten einer Limitie-
rung der verwendbaren Modellierungsstile verzichtet.

[214] kann als eine Mischung aus einem synchronen und einem asynchro-
nen Ansatz betrachtet werden: Logische Prozesse synchronisieren nur lo-
kal mit ihren jeweiligen Nachbarn. In dieser Hinsicht ist das Verfahren
asynchron. Diese Synchronisation efolgt allerdings durch explizite Hands-
hakes in global definierten, regelméfligen Abstinden und abwechselnd mit
den Ausfiihrungsphasen, was typisch fiir synchrone Verfahren ist.

Zentral versus dezentral: [105], [232], [205], [86], [260] und [237] basieren
auf einem zentralisierten Synchronisationsverfahren. In allen Fillen exis-
tiert ein Master, der die Synchronisation zentral steuert. Auch die GPU ba-
sierten Ansitze in [205], [260]) und [237] basieren auf einem zentralisierten
Verfahren. Diese ergibt sich zwangslaufig daraus, dass eine GPU innerhalb
eines PCs eine I/O Ressource ist, die phasenweise vom Host mit neuen Da-
ten (zu evaluierenden SystemC Prozessen) versorgt werden muss, um die-
se in SIMD Manier (vgl. Abschnitt 2.4.2) zu verarbeiten. In [237] wird ein
zentralisiertes Synchronisationsverfahren auf einem Multiprozessor mit ei-
nem zentralisierten Verfahren fiir eine GPU kombiniert. Die Synchronisati-
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on zwischen beiden erfolgt mit einer Granularitit von bis zu einem Delta-
zyklus.

Die Ansitze in [93], [86], [90], [214] und [199] konnen als dezentral klas-
sifiziert werden. In [214] und [199] synchronisieren logische Prozesse aus-
schliefSlich mit benachbarten Prozessen. In [90] wird ein zentralisiertes Ver-
fahren durch globale Synchronisation vermieden.

3.1.2.4. Kernelpartitionierung

Unter dem Begriff der Kernelpartitionierung ist zu verstehen, in welcher Art
und Weise die Phasen des sequentiellen SystemC Schedulings (vgl. Abschnitt
2.3.2.2) auf parallele Prozesse verteilt werden. Dabei kann man zwischen einer
asymmetrischen und einer symmetrischen Partitionierung unterscheiden: In einem
asymmetrischen Kernel implementieren parallele Prozesse jeweils unterschied-
liche Phasen des sequentiellen Schedulings. U.U. werden nicht alle Phasen repli-
ziert. In einem symmetrischen Kernel implementieren alle Prozesse alle Phasen.
Dabei werden alle Kernelphasen repliziert (siehe auch Abschnitt 4.2.4).

[105, 232, 205, 260, 237] sind allesamt Beispiele fiir asymmetrische Kernelpar-
titionierung. Der zugrundeliegende Mechanismus wird auch als Master/Worker
Schema bezeichnet (vgl. [49]). Der Master fiihrt alle Phasen des SystemC Schedu-
lings aus, die Worker nur die Evaluation Phase. Dabei werden zu evaluierende
SystemC Prozessen vom Master auf die Worker verteilt. Der Vorteil des Verfah-
rens ist die globale Sicht des Masters auf die Simulation und die Moglichkeit zu
einfachen Umsetzung einer zentral gesteuerten dynamischen Lastverteilung.

Das Master /Worker Schema eignet sich besonders zur Nutzung auf cachekoha-
renten SHM Multiprozessoren, da hier eine dynamische Lastverteilung ohne die
Notwendigkeit einer aufwandigen Umverteilung von Daten erfolgen kann. In
allen Féllen ist entweder ein Thread oder Prozess auf einem Multiprozessor der
Master. In [105] und [232] sind Worker durch andere Threads gegeben. In [205]
und [260] konnen alle Threads auf der GPU als Worker betrachtet werden. In
[237] existieren sowohl Workerthreads auf dem Multiprozessor als auch auf der
GPU.

In [93], [86], [90] und [214] wird eine symmetrische Kernelpartitionierung ver-
wendet. D.h. alle vorhandenen parallelen Prozesse fiihren jeweils alle Kernel-
phasen aus. Ein ganz anderer Ansatz wird in [199] verfolgt: Hier wird zugunsten
der Performanz auf die Implementierung des Evaluate/Update Paradigmas und
damit auf die Implementierung der Update Phase vollstindig verzichtet.

67



3. Stand von Forschung und Technik

3.1.3. SystemC Front-Ends

Die bisher im Kontext der parallelen SystemC Simulation genannten Arbeiten
bieten eine unterschiedlich umfangreiche Werkzeugunterstiitzung, um Simula-
tionsmodelle und -kernel fiir eine parallele Simulation zu préparieren. In [93],
[86], [90], [214] oder [199] existiert keinerlei Werkzeugunterstiitzung zur auto-
matisierten Praparation von Modell und Kernel. Die Partitionierung muss ma-
nuell erfolgen. Auf8er in [199] ist sie beschrankt auf grobgranulare Module der
obersten Hierarchieebene eines Modells. [105] und [232] sind aufgrund des Mas-
ter/Worker Schemas und der Beschriankung auf cachekohdrente SHM Multipro-
zessoren prinzipiell nicht auf eine statische Modellpartitionierung angewiesen.
Im Kontext von SystemC existieren damit aktuell nur in Verbindung mit GPUs
Arbeiten, bei denen verschiedene automatisierte Optimierungsschritte vor der
eigentlichen Simulationslaufzeit vorgenommen werden (z.B. [205] und [260]).
Dies kann Schritte wie eine automatisierte Modellpartitionierung und -transfor-
mation oder Kernelkonfiguration beinhalten.

Entsprechende Werkzeugketten basieren auf einer automatischen Extraktion ei-
ner formalen abstrakten Représentation (AR) oder vollstindigen Zwischenre-
prasentation (engl. Intermediate Representation (IR)) anhand eines sog. SystemC
Front-Ends [192]. Eine solche Modellreprasentation enthilt alle fiir eine Prépara-
tion notwendigen struktur- und verhaltensorientierten Informationen. Das Front-
End bietet Funktionen, die das Parsen und das Generieren einer IR unterstiit-
zen. Zu den bekanntesten freien SystemC Front-Ends gehoren Pinapa [204], Pi-
naVM [193], Scoot [57], SystemCXML [52] oder KaSCPar [7]. HIFSuite [59] ist
ein Beispiel fiir ein kommerzielles Softwarepaket. Mogliche allgemeine Anwen-
dungsfille fiir SystemC Front-Ends sind formale Verifikation, Synthese, opti-
mierte Kompilierung und Simulation, Debugging oder Visualisierung [193].

SystemC Front-Ends kénnen in rein statische und hybride Ansitze klassifiziert
werden. Wahrend erstere die IR ausschliefSlich durch statische Codeanalyse ex-
trahieren, nutzen letztere auch die Moglichkeit, SystemC Code mit dem Kernel
auszufiihren und auf diese Art zusétzliche Informationen zu gewinnen. Bei-
spielsweise ist es schwer bis gar nicht moglich, dynamisch instanziierte Archi-
tekturen vollstandig statisch zu erkennen, da entsprechende Informationen nur
zur Laufzeit zur Verfiigung stehen [192]. Zu den rein statischen Front-Ends ge-
horen Scoot [57], SystemCXML [52] und KaSCPar [7], zu den Front-Ends, die
zusitzlich dynamische Ausfithrung nutzen, gehoren Pinapa [204] und PinaVM
[193].

Die Methoden zum Parsen von SystemC Code unterscheiden sich stark. Die
Spannweite reicht vom Parsen mit Hilfe von Doxygen [52][2] bis hin zur Nut-
zung von C/C++ Compiler-Suites wie GCC [57, 204, 5] oder Low Level Virtual Ma-
chine (LLVM) [186, 193]. PinaVM [193] basiert z.B. auf LLVM und nutzt die LLVM
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IR sowohl zur statischen Extraktion von Verhaltensbeschreibungen, als auch zur
dynamischen Extraktion der Modellstruktur anhand von Just-in-Time Compila-
tion (JITC). Ein erst kiirzlich veroffentlichtes rein statisches SystemC Front-End
ist SystemC-clang [158], welches als Plug-in fiir das LLVM Front-End clang [88]
implementiert ist. Keines der genannten SystemC Front-Ends nutzt die Analyse
zur Extraktion von Informationen zur Performanzabschétzung.

3.1.4. Forschungsansitze basierend auf SpecC

Auch im Bereich von SpecC existieren einige Forschungsansatze zur parallelen
Simulation, aufgrund der geringen Verbreitung von SpecC allerdings nicht im
gleichen Umfang wie im Fall von SystemC. Zu erwdhnen wéren hier die Arbei-
ten von Chen et al. in [84, 85] sowie Chen und Domer in [82] und [83]. Der Ansatz
in [84] kann als weitgehend dquivalent zu dem SystemC-basierten voll synchro-
nen Master/Worker Ansatz aus [232] eingeordnet werden, welcher speziell fiir
cachekohdrente SHM Architekturen entwickelt wurde. In beiden Féllen werden
TLM und RTL Modelle unterstiitzt

Die Methode in [82] dient zur parallelen Simulation von TL Modellen und kann
dhnlich wie der SystemC/TLM Simulator in [214] klassifiziert werden. Im Un-
terschied zu [214] ist der Synchronisationsmechanismus in [84] vollstandig asyn-
chron.

Die Ansatze in [85] und [83] sind als Erweiterungen des zentralisierten Ansatzes
aus [84] zu verstehen. Auf Basis einer statischen compilerbasierten Modellanaly-
se wird der parallele SpecC Kernel so konfiguriert, dass Prozesse ohne Kausali-
tatsverletzungen vom Master bis zu einem gewissen Grad auflerhalb der durch
die Zeitstempel definierten Reihenfolge auf die Worker verteilt werden konnen.
Das synchrone Verfahren aus [84] wird damit zu einem asynchronen Verfahren
erweitert.

3.2. Interdisziplinare Co-Simulation

In verschiedenen Anwendungsdisziplinen wie Informatik, Elektrotechnik oder
Mechatronik haben sich unterschiedliche Modellierungsformalismen etabliert,
die sich durch unterschiedliche Berechnungsmodelle charakterisieren lassen. Um
Wechselwirkungen zwischen Anwendungsdisziplinen zu untersuchen, wird ty-
pischerweise Co-Simulation eingesetzt. Die Heterogenitit der Berechnungsmo-
delle resultiert in Heterogenitdt in der Co-Simulation (vgl. Abschnitt 2.2.4). Das
Management dieser Heterogenitét ist eine Herausforderung, die aktuell von vie-
len Entwurfsmethodiken und Sprachen noch nicht hinreichend unterstiitzt wird
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[176]. Nachfolgend wird zunichst ein allgemeiner Uberblick iiber existierende
Forschungsarbeiten zur heterogenen Co-Simulation gegeben. Anschlieflend wer-
den einschlédgige Interoperabilitdtsstandards genauer betrachtet.

3.2.1. Allgemeiner Uberblick

Existierende Ansdtze zur heterogenen Simulation kénnen allgemein in forma-
le und kopplungsbasierte Ansétze eingeteilt werden. Formale heterogene Frame-
works aus dem Bereich der eingebetteten Systeme wurden bereits in Abschnitt
2.3.3 erwdhnt. Zu diesen gehoren z.B. Ptolemy II [102], Metro II [95] oder ForSy-
De [226]. Diese Werkzeuge basieren auf einer Sprache, welche es erlaubt, Wech-
selwirkungen zwischen beliebigen heterogenen Berechnungsmodellen mathe-
matisch eindeutig zu beschreiben.

Neben diesen vollstindig heterogenen Frameworks existieren verschiedene An-
sédtze, welche auf einer festen Kombination einiger weniger Berechnungsmodel-
le basieren. Dazu gehoren Formalismen wie Hybrid Automata [134] oder Giotto
[135]. Beispiele aus dem Bereich der Simulationswerkzeuge sind VHDL-AMS
[18] und SystemC-AMS [1] oder Simulink/Stateflow [8]. Alle drei kombinieren
diskrete mit kontinuierlichen Berechungsmodellen. Eine solche Simulation wird
auch als hybrid bezeichnet [179].

Alternativ existieren in der Literatur Arbeiten, welche Simulatorkopplungen zur
Untersuchung von Wechselwirkungen zwischen Anwendungsdisziplinen nut-
zen (z.B. [64, 242, 131, 200]). Dabei werden disziplinspezifische Simulatoren oder
Modelle tiber eine zusitzliche Schnittstelle zur Co-Simulation miteinander ge-
koppelt. Im Unterschied zu den formalen Methoden ermoglicht dies die einfache
Wiederverwendung bereits existierender disziplinspezifischer Modelle.

Technische Losungen zur Kopplung sind vielfdltig und reichen von Ansétzen
auf Basis von TCP/IP [265] bis hin zur Integration per Shared Memory [164].
Unabhiéngig von der technischen Umsetzung sind bei kopplungsbasierten An-
sdtzen zwei Architekturtrends zu beobachten: Im ersten Fall dienen formale Fra-
meworks wie Ptolemy II [102] oder ForSyDe [226] als zentraler Koordinator fiir
eine Co-Simulation. Zu diesen Arbeiten gehoren [184], [39] oder [40]. Simulato-
ren kommunizieren tiber das formale Framework, welches heterogene Simulato-
ren miteinander kombiniert und die kooperative Ausfiihrung steuert. In zweiten
Fall bildet eine Middleware die Grundlage (z.B. [65, 242, 170]). Simulatoren m(is-
sen dann eine Schnittstelle implementieren und dafiir sorgen, dass das Berech-
nungsmodell der Simulationswerkzeugs in das Berechnungsmodell der Middle-
ware tibersetzt wird und umgekehrt. Fiir diesen Fall existieren bereits Standards
wie die High Level Architecture (HLA) [22] oder das Functional Mock-up Inter-
face (FMI) [29].
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Alle genannten technischen und architekturspezifischen Losungen sind Ansétze
zur Herstellung besserer Interoperabilitdt. Im Folgenden wird der Begriff der
Interoperabilitdt daher genauer erldutert.

3.2.2. Interoperabilitit

Tolk und Muguira definieren in [251] und [250] den Begriff der Interoperabilitat
anhand des sog. Levels of Conceptual Interoperability Model (LCIM). Das LCIM wird
stetig weiterentwickelt und setzt sich aktuell aus sechs Ebenen zusammen [262]
(siehe Abb. 3.1). Die Ebenen des LCIM entsprechen unterschiedlichen Abstrakti-
onsschichten, welche es ermoglichen, den Begriff der Interoperabilitit differen-
zierter zu beschreiben und das Problem der Herstellung von Interoperabilitdt in
mehrere Teilprobleme zu zerlegen. Auf den untersten beiden Ebenen liegt der
Fokus auf der technischen Infrastruktur zum Datenaustausch, auf den Ebenen
2 bis 4 auf der Implementierung des Simulationssystems und auf den Ebenen 5
und 6 auf der Modellierung.

Entsprechend Abb. 3.1 ldsst sich Interoperabilitdt aus Sicht der Implementie-
rung in syntaktische Interoperabilitit (es gibt ein gemeinsames Verstdndnis tiber
die Struktur von Daten), semantische Interoperabilitiit (es gibt ein gemeinsames
Verstandnis tiber die Bedeutung von Daten) und pragmatische Interoperabilitiit (es
gibt ein gemeinsames Verstandnis tiber den Kontext, in dem Daten verwendet
werden) aufteilen. Aufgrund ihrer Relevanz in dieser Arbeit, wird im Folgenden
ndher auf die syntaktische und die semantische Interoperabilitit eingegangen,
wobei insbesondere zwischen statischer und dynamischer Semantik unterschie-
den wird (vgl. Abschnitt 2.2.2).

Level 6

@\\ﬁ
Conceptual Interoperability
o
¢ ‘ Level 5

Dynamic Interoperability

Modeling /

o Level 4
&@ d Pragmatic Interoperability
Simulation /
Implementation . Level 2 -
Syntactic Interoperability
Level 1

B
Technical Interoperability

uoneiadoiayu) 1oy Ayiqede) Buiseaiou|

Network /

r,;i&“*“ Level 3
‘\@’ ‘ Semantic Interoperability ‘
Connectivity ‘

Level 0
No Interoperability

Abbildung 3.1.: Levels of Conceptual Interoperability Model (Quelle: [262])

Wihrend fiir die Herstellung syntaktischer sowie statischer semantischer Inter-
operabilidt in der Literatur bereits diverse Losungsansitze existieren (z.B. [154,

71



3. Stand von Forschung und Technik

131, 242]), wird die dynamische semantische Interoperabilitdt zwischen Berech-
nungsmodellen oft nicht im notwendigen Mafle berticksichtigt [176, 252]. Die-
se Tatsache ist verantwortlich fiir eines der Kernprobleme kopplungsbasierter
Simulationsansitze: Nicht dokumentierte oder unklare Semantik, insbesondere
die dynamische Semantik von gekoppelten Simulationswerkzeugen, hat amor-
phe Heterogenitét zur Folge (vgl. Abschnitt 2.2.4), was die Kopplung enorm er-
schweren kann.

Vergleicht man standardisierte Middlewarelosungen wie die High Level Architec-
ture (HLA) [22] oder das Functional Mock-up Interface (FMI) [29] mit einem for-
malen Framework wie PtIl [102], so bieten beide eine ausgereifte statische se-
mantische Interoperabilitit. Eine Middleware bietet typischerweise die Moglich-
keit zur verteilten Ausfiihrung. Ist sie standardisiert, so bietet dies zudem den
Vorteil einer grofleren Verbreitung sowie u.U. bereits vordefinierte Dienste, die
nicht von Grund auf neu implementiert werden miissen. Die Kopplung tiber ein
formales Framework hingegen bietet im Allgemeinen den Vorteil einer besse-
ren dynamischen semantischen Interoperabilitit, da die Heterogenitat durch das
formale Framework koordiniert wird. Im Folgenden sollen die zwei aktuell am
weitesten Verbreiteten Standards zur Herstellung von Interoperabilitdt zwischen
Simulationswerkzeugen nédher betrachtet werden.

3.2.3. Standardisierung

3.2.3.1. Functional Mock-up Interface

Das Functional Mock-up Interface ist ein werkzeugunabhingiger Standard [29],
welcher Schnittstellen zum Austausch und zur Co-Simulation von dynamischen
Modellen definiert. Das FMI ist dabei auf Modelle spezialisiert, die durch kon-
tinuierliche und diskrete Differentialgleichungen beschrieben werden kénnen.
Abb. 3.2 skizziert das dem FMI zugrundeliegende Konzept anhand eines Bei-
spiels aus der Automobilindustrie.

Die Entwicklung von FMI wurde von der Daimler AG mit dem Ziel initiiert, den
Austausch von Simulationsmodellen zwischen Zulieferern und Erstausriistern
(Original Equipment Manufacturers (OEMs)) zu verbessern. Das FMI wird stetig
weiterentwickelt. Die aktuelle Version ist FMI 2.0 vom Juli 2014 [29]. Das FMI
Konsortium besteht aktuell aus 16 Partnern aus Industrie und Forschung. Der
FMI Standard ist in drei Teile untergliedert:

1. Gemeinsame Konzepte: Hier werden allgemeingiiltige Prinzipien des FMI
spezifiziert. Das grundlegende Konzept ist die sog. Functional Mock-up Unit
(FMU). Eine FMU ist dquivalent zu einem austauschbaren Modell oder ei-
nem Wrapper fiir einen sog. Slave zur Co-Simulation. Sie besteht aus einem
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dynamischen Modell in Form von C Code und einer XML Datei, die Me-
tainformation der FMU wie Definitionen von Variablen, Eingdngen, Aus-
gdngen oder Zustidnden beinhaltet.

2. FMI fiir den Modellaustausch: In diesem Teil des Standards werden die
notwendigen Prinzipien zum Austausch von FMUs zwischen Simulations-
werkzeugen definiert. Dies beinhaltet die Definition von Methoden in Form
von C Code sowie die Definition giiltiger Interaktionen mit der FMU in
Form einer Zustandsmaschine. Dabei wird vorausgesetzt, dass Werkzeuge
C Code einer dynamischen Modellbeschreibung generieren kénnen. Die
FMU kann dann von anderen Werkzeugen integriert werden. Je nach Gro-
Be konnen Modelle entweder in einem Simulator oder auf einer eingebet-
teten Plattform (z.B. Microcontroller) ausgefithrt werden.

3. FMI fiir die Co-Simulation: In diesem Teil werden die Schnittstellen einer
FMU spezifiziert, die fiir eine Kopplung verschiedener Simulationswerk-
zeuge notwendig sind. Die FMU dient als Wrapper fiir einen Slave und
verbindet diesen mit einem Master. Die Spezifikation beinhaltet die Defini-
tion von Methoden in Form von C Code sowie die Definition giiltiger Inter-
aktionen mit der FMU in Form einer Zustandsmaschine. Datenaustausch
und Synchronisation zwischen Slaves werden durch den Master gesteu-
ert. Der Datenaustausch erfolgt an diskreten Punkten. Dazwischen werden
gekoppelte Simulatoren unabhéngig voneinander ausgefiihrt. Der exakte
Algorithmus des Masters ist nicht Teil der FMI Spezifikation.

Engine Gearbox Thermal Automated Chassis components,
with ECU with ECU systems cargo door roadway, ECU (e.g. ESP)

functional mockup interface for model exchange and tool coupling
Abbildung 3.2.: Konzept des Functional Mock-up Interface (FMI) (Quelle: [29])

Insgesamt spezifiziert der FMI Standard damit eine fiir einen Modellaustausch
oder eine Co-Simulation von zeitkontinuierlichen oder zeitdiskreten Systemen
geeignete Semantik der Schnittstelle einer FMU. Dadurch, dass der Master nicht
spezifiziert ist, existieren viele Freiheitsgrade fiir die Umsetzung verschiedener
Algorithmen zur Co-Simulation. Da der Standard noch sehr jung ist und sich ak-
tuell noch in der Entwicklung befindet, werden diskrete ereignisbasierte Modelle
laut [42] nur beschrankt unterstiitzt. Bis auf eine Absichtserkldarung schlieft der
Standard bisher keine Losungsansitze fiir eine verteilte Ausfiihrung mit ein.
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3.2.3.2. High Level Architecture

Die HLA ist eine generische Softwarearchitektur fiir verteilte Simulation. Sie
wurde zunéchst durch das Defense Modeling and Simulation Office (DMSO) fiir das
U.S. Department of Defense (DoD) spezifiziert [257] und ist seit dem Jahr 2000 ein
IEEE Standard [22]. Die HLA ist keine Implementierung einer solchen Architek-
tur. Das Anwendungsfeld ist urspriinglich der Bereich militdrischer Trainingssi-
mulationen. In HLA Terminologie entspricht eine verteilte Simulation einer Fe-
deration [23]. Eine Federation ist ein Zusammenschluss von Federates. Prinzipiell
entspricht ein Federate einem Simulator. Federates sind {iiber eine sog. Runti-
me Infrastructure (RTI) miteinander gekoppelt. Die Schnittstellen zur RTI werden
durch sog. Ambassador bereitgestellt (vgl. Abb. 3.3). Der HLA Standard besteht
aus vier Dokumenten. Diese definieren

* Regeln, welche die Verantwortlichkeiten von HLA Federates und Federati-
ons zur Sicherstellung einer konsistenten Implementierung definieren [22].

¢ Dienste und Schnittstellen zur RTIL. Diese Dienste werden von interagie-
renden Simulationen genutzt, um einen koordinierten Austausch von In-
formationen in einer verteilten Federation zu ermoglichen [23].

e ein Object Model Template (OMT). Dies beinhaltet Format und Syntax (aber
nicht Inhalt, d.h. statische Semantik) eines HLA Object Models (OM) [24].
Das OM spezifiziert die Eigenschaften der Daten, die in einer Federation
ausgetauscht werden konnen.

¢ Empfohlene Prozesse und Vorgehensweisen, die von Anwendern der HLA
beim Entwurf und der Ausfiihrung von Federations befolgt werden sollten

[26].
Federate 1 Federate 2
RTI Ambassador ) (FederateAmbassador RTI Ambassador ) (FederateAmbassador

Runtime Infrastructure (RTI)

RTI Ambassador ) (Federate Ambassador

Federate 3

Abbildung 3.3.: High Level Architecture (HLA)

Die durch die Ambassador zu implementierenden HLA Schnittstellen sind in
[23] in sieben Kategorien unterteilt: Federation Management (FM), Declaration Ma-
nagement (DM), Object Management (OM), Ownership Management (OWM), Time
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Management (TM), Data Distribution Management (DDM) und Support Services.
Ein detaillierteter Uberblick ist in Anhand B zu finden.

Ein konkretes Object Model, welches auf dem OMT basiert, definiert die in einer
Federation existierenden Typen in Form von sog. Objektklassen (Object Classes)
und Interaktionsklassen (Interaction Classes) sowie deren Attributen (Attributes),
Parametern (Parameters) und Datentypen (Datatypes). Zu Beginn oder wihrend
einer Simulation werden dann Instanzen von Object Classes (Object Instances)
und Interaction Classes (Interaction Instances) erzeugt. Im Allgemeinen wird zwi-
schen einem Federation Object Model (FOM) und einem Simulation Object Model
(SOM) unterschieden. Wahrend das FOM alle Eigenschaften einer gesamten Fe-
deration beschreibt, beinhaltet das SOM nur die Beschreibung von Eigenschaften
eines einzelnen Federates.

Ein Teil der Informationen, die das FOM einer Federation beinhaltet, muss mit
der sog. Federation Object Model Document Data (FDD) Datei (im urspriinglichen
DoD Standard [257] heifst diese Datei Federation Execution Data (FED)) fiir eine
Ausfiihrung explizit spezifiziert werden. Dies beinhaltet u.a. Namen und Struk-
tur von Object Classes, Interaction Classes, Attributes und Parameters sowie Pu-
blish und Subscribe Beziehungen auf den Klassen und deren Attributen/Para-
metern. Die FDD Datei beinhaltet bestenfalls das komplette FOM, aber nicht not-
wendigerweise.

Durch die Moglichkeit das FOM einer Federation anhand des OMT vollstindig
zu spezifizieren [24], wird die Spezifikation der Art und Weise der Représenta-
tion von Daten (statische Semantik) explizit zur Aufgabe des Erstellers der Fe-
deration. Die Spezifikation der dynamischen Semantik der Kommunikation ist
hingegen nicht Teil des FOM und damit nicht explizit Aufgabe des Erstellers.
Aufgrund der umfangreichen Schnittstellendefinition der HLA existiert daher
im Allgemeinen eine Menge an Freiheitsgraden fiir die Implementierung der dy-
namischen Semantik des Datenaustauschs.

Eine Hilfestellung fiir die Entwicklung von HLA Federations bietet der Distri-
buted Simulation Engineering and Execution Process (DSEEP) [26]. Der DSEEP er-
streckt sich tiber sieben Schritte von der Vorgehensweise bei der Ziel- und Kon-
zeptanalyse einer Simulation bis hin zur Vorgehensweise bei der Evaluation von
Simulationsergebnissen (siehe Abb. 3.4). Der DSEEP ist in erster Linie als ein
Leitfaden zu verstehen, der auf einen speziellen Anwendungsfall angepasst wer-
den kann.

Im DSEEP [26] wird eine Spezifikation, welche die zur Laufzeit ausgetausch-
ten Daten definiert um ein bestimmtes Simulationsziel zu erreichen, als Simula-
tion Data Exchange Model (SDEM) bezeichnet. Dies beinhaltet laut [26] Klassen-
beziehungen, Datenstrukturen, Parameter und andere relevante Information. Es
ist nicht exakt spezifiziert, wie ein solches SDEM auszusehen hat. Im Zusam-
menhang mit dem SDEM werden sog. Base Object Model (BOM) Spezifikationen
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[125, 126] als mogliche Elemente eines SDEM erwéhnt. Ein BOM fokussiert auf
die abstrakten konzeptorientierten Ebenen fiinf und sechs des LCIM (vgl. [262])
und nicht auf die implementierungsorientierte Ebene der semantischen Inter-
operabilitat, welche Fokus dieser Arbeit ist.

N
Integrate Execute
and Test Simulation

Analyze
Data and
Evaluate
Results

Define
Simulation

Objectives

)

@

Bema s mmm s rmE s EE e rmm s naannarnnn AN E R R EEE R NEE R EEEE R EEE RS R ERR RN EEEER AR EEEERREE EREEEEEEREEEEEEERRREEET

Corrective Actions / lterative Development

Abbildung 3.4.: Distributed Simulation Engineering and Execution Process
(Quelle: [26])
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fur Multiprozessoren

Der Paradigmenwechsel von einer immer weiteren Erhohung der Taktfrequenz
in Richtung Multiprozessoren macht eine Parallelisierung existierender Simula-
tionswerkzeuge unausweichlich, um das stetig grofier werdende System Design
Gap zu verringern (vgl. Abschnitt 2.1). Bei einer parallelen Simulation ist die Be-
schleunigung zum einen durch den Grad an Parallelitiat limitiert, der aus dem
Simulator und dem ausgefiihrten Simulationsmodell extrahiert werden kann.
Zum anderen hat die Ausfithrungsplattform einen groflen Einfluss auf den er-
zielbaren Gewinn. Eine zusétzliche Anhebung der Abstraktionsebene kann u.U.
zu einer starken Ausfiihrungsbeschleunigung beitragen, ist aber meist mit einem
Verlust an Genauigkeit verbunden.

Innerhalb dieses Spannungsfeldes sollen im folgenden Kapitel Moglichkeiten
zur parallelen SystemC-basierten Simulation von eingebetteten MPSoCs unter-
sucht werden. Der Schwerpunkt liegt dabei auf Modellen, deren zeitliche Genau-
igkeit bis auf Zyklenebene skaliert werden kann und die fiir Anwendungsfille
wie Hardwareverifikation und Debugging geeignet sind. Als Ausfithrungsplatt-
form dient in erster Linie der Single-chip Cloud Computer, dessen Architektur
als Blaupause fiir zukiinftige Manycore Chips angesehen werden kann.

4.1. Allgemeine Anforderungen

Aus dem angestrebten Anwendungsfall und den beschriebenen Zielen ergeben
sich folgende allgemeine Anforderungen fiir den Entwurf des parallelen Simu-
lationsverfahrens:

* Geschwindigkeit und Skalierbarkeit: Die Parallelisierungsstrategie soll
die Laufzeit von MPSoC Simulationen verkiirzen und damit zu hoherer
Produktivitdt beitragen. Das Verfahren soll skalierbar sein und die Aus-
fithrung kleinerer und groierer MPSoC Modelle beschleunigen.

¢ Kompatibilitit zu relevanten Modellierungsstilen: Fiir eine zyklengenaue
Simulation im Kontext der Hardwareverifikation muss mindestens das RTL
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Subset von SystemC unterstiitzt werden. Um auch die Performanzvorteile
abstrakterer Simulationen nutzen zu konnen, sollte die Moglichkeit beste-
hen, zyklenapproximativ zu modellieren.

¢ Erweiterbarkeit: Der zu entwickelnde Simulator sollte anpassbar und er-
weiterbar an neue und zukiinftige Anforderungen sein. Diese kann z.B.
neue Modellierungsstile, Synchronisationsverfahren, oder Zielplattformen
betreffen.

¢ Kompatibilitit zum SCC und Portierbarkeit: Das Verfahren soll sich fiir
die Ausfiithrung auf dem SCC eignen. Die Portierbarkeit auf Multicore und
zukiinftige Manycore CPUs soll moglich sein.

¢ Handhabbarkeit: Die zur Parallelisierung notwendigen Schritte sollen nach
Moglichkeit vor dem Anwender verborgen bleiben und automatisiert er-
folgen.

4.2. Konzept und Methodik

4.2.1. Perspektiven und Abstraktion

In Analogie zur plattformbasierten Entwurfsmethodik auf Systemebene aus Ab-
schnitt 2.1.1 wird das zu entwickelnde parallele Simulationssystem im Folgen-
den auf der Systemebene betrachtet. Um auf dieser Ebene unterschiedliche As-
pekte des Gesamtsystems genauer beschreiben zu konnen, ist eine weitere Un-
terteilung in Zwischenebenen sinnvoll (vgl. [115]). Im Allgemeinen ist dann eine
Betrachtung des Simulationssystems aus einer horizontalen und einer vertikalen
Perspektive moglich. Die Betrachtung aus einer horizontalen Perspektive ent-
spricht der Betrachtung auf einer bestimmten Abstraktionsebene. Die Betrach-
tung aus einer vertikalen Perspektive entspricht der Fokussierung auf Beziehun-
gen zwischen Abstraktionsebenen.

Will man in einer Software eine Trennung von Abstraktionsebenen aus Griinden
der Erweiterbarkeit und der Komplexititsreduktion dauerhaft beibehalten, so ist
die Verwendung einer Schichtenarchitektur eine mogliche Losung. Dabei wird
die Software in vertikal angeordnete Schichten aufgeteilt, von denen jede eine
begrenzte Anzahl an Funktionen erfiillt. Existieren eindeutig definierte Schnitt-
stellen, so konnen unterschiedliche Implementierungen leicht ausgetauscht wer-
den.

Der theoretische Zusammenhang zwischen Abstraktion und Schichtenbildung
im Kontext von Kommunikationssystemen wurde von Herzberg und Broy in
[137] und [138] erldutert. Demnach besteht jede Schicht aus Komponenten und
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sog. komplexen Konnektoren, die die Komponenten verbinden'. Die Verfeine-
rung einer Schicht entspricht der Verfeinerung von komplexen Konnektoren die-
ser Schicht mit Komponenten und Konnektoren der darunterliegenden Schicht.
Das wohl bekannteste Beispiel einer Schichtenarchitektur aus dem Bereich der
Kommunikationssysteme ist das ISO/OSI Referenzmodell (OSI-RM) [270, 147]. Wie
bereits in Abschnitt 2.1 dargelegt, ist die Schichtenbildung auch ein fundamen-
tales Prinzip beim plattformbasierten Entwurf.

Im Rahmen dieser Arbeit soll das Prinzip der Schichtenbildung einerseits als
Hilfsmittel fiir die Erlduterung der Prinzipien des entwickelten parallelen Simu-
lators eingesetzt werden. Andererseits diente die Schichtenbildung als Funda-
ment fiir eine strukturierte Umsetzung im Hinblick auf die oben genannten An-
forderungen.

4.2.2. Architekturmodell fiir eine parallele Simulation

Fiir die Beschreibung der Verfahren in den weiteren Abschnitten sowie als Basis
fiir die Implementierung, dient das folgende Schichtenmodell als Grundlage:

Definition 4.1 (Parallele Simulation): Eine parallele Simulation ist ein Tupel
§= (Si)ie4,...,0 = (M,K, L, B, A). Dabei gilt:

o M ist die Modellebene,

IC ist die Kernelebene,

L ist die logische Ebene,

BB ist die Basisdienstebene,

o A ist die Ausfithrungsplattformebene.
Die Ebenen K, L und B repriisentieren den parallelen Simulator PS: PS = {K, L, B}.

Definition 4.1 wird im Folgenden auch als Referenzmodell fiir die parallele Sys-
temC Simulation bezeichnet. Im Unterschied zum LCIM aus Abschnitt 3.2.2 fo-
kussiert das Referenzmodell aus Definition 4.1 ausschliefSlich auf Implementie-
rungsaspekte. Die Ebenen haben folgende Bedeutung;:

* Modellebene: Die Modellebene bildet die Schnittstelle zum Anwender ei-
nes Simulators. Sie wird im Folgenden auch einfach als Simulationsmodell
bezeichnet. Ublicherweise wird das Simulationsmodell durch Instanzbil-
dung von Komponenten- und Konnektorprototypen aus einer Klassenbi-

INach [138] sind komplexe Konnektoren ebenfalls Komponenten, wenn auch eine spezielle Form.
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bliothek, deren Verkniipfung und Implementierung erstellt. Die Implemen-
tierung beinhaltet typischerweise die Spezialisierung der Prototypen auf
eine bestimmte Funktion und damit die finale Festlegung der dynamischen
Semantik.

¢ Kernelebene: Die Kernelebene implementiert die Syntax und Semantik ei-
ner bestimmten Modellierungssprache zur Beschreibung von Simulations-
modellen (in diesem Fall SystemC). Sie stellt zudem eine Infrastruktur in
Form unterschiedlich partitionierter Kernelkomponenten und Kernelkon-
nektoren (siehe Abschnitt 4.2.4.4) zur Ausfithrung eines Simulationsmo-
dells zur Verfiigung.

¢ Logische Ebene: Die logische Ebene ist die Infrastruktur zur Ausfithrung
und Synchronisation von Kernelkomponenten. Auf der logischen Ebene
werden Komponenten und Konnektoren als logische Prozesse und logi-
sche Links bezeichnet. Die logische Ebene implementiert ein bestimmtes
Synchronisationsverfahren und versteckt deren konkrete Funktion vor der
Kernelebene. Diese Separation ist insbesondere fiir komplexe (z.B. topolo-
gieabhingige Verfahren) von Vorteil.

¢ Basisdienstebene: Die Basisdienstebene ist die unterste Ebene des paral-
lelen Simulators PS. Die konkrete Auspragung ist von der Ausfithrungs-
plattform abhingig. Auf einem Multiprozessor entsprechen Komponen-
ten und Konnektoren z.B. Prozessen des Betriebssystems und APIs zur
Interprozesskommunikation. Typische Aufgaben dieser Ebene sind die In-
itialisierung, Einbindung und Bereitstellung plattformspezifischer Biblio-
theken, welche verschiedene Typen grundlegender Synchronisations- und
Transportmechanismen fiir den verlustfreien Datenaustausch zur Verfii-
gung stellen.

¢ Ausfiihrungsplattformebene: Hier sind alle Komponenten vereint, wel-
che nicht Teil des parallelen Simulators PS sind. Diese Ebene représentiert
die Infrastruktur in Form von Hardware und Software, zur Ausfithrung
des parallelen Simulators. Komponenten kénnen Prozessorkerne inkl. ei-
nes darauf ausgefiihrten Betriebssystems oder ganze Workstations sein. Zu
den Konnektoren gehoren beispielsweise On-Chip Netzwerke oder Local
Area Networks (LANs) sowie zugehorige Software APIs.

4.2.3. Simulationssynthese

In Abschnitt 2.1 wurde der Begriff der Synthese im Kontext eines Entwurfspro-
zesses fiir eingebettete Systeme als der Prozess der , Konvertierung einer gegebe-
nen Verhaltensspezifikation in eine strukturelle Spezifikation” [115] eingefiihrt. Dabei
wurde das Mapping als der essentielle Schritt der Systemsynthese identifiziert.
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Diese Sichtweise der Systemsynthese kann 1:1 auf den Prozess der Praparation
einer Simulation fiir die parallele Ausfiihrung iibertragen werden. Letzterer ist
dabei mit einem plattformbasierten Entwurfsprozess auf Systemebene vergleich-
bar (Abschnitt 2.1.1.3). Eine Simulationssynthese beschreibt demnach den Prozess
der (automatisierten) Abbildung eines Simulationsmodells M auf eine Ausfiih-
rungsplattform .4 mit Hilfe eines parallelen Simulators PS. Liegt der Fokus auf
der simulationsbasierten Verifikation eines MPSoC Modells, so ldsst sich die Si-
mulationssynthese entsprechend Abb. 4.1 in zwei Schritte gliedern:

e I) Abbildung der Applikation AP auf das (MPSoC) Simulationsmodell M.

e II) Abbildung des Simulationsmodells M auf die Ausfiithrungsplattform A
mit Hilfe des parallelen Simulators PS.

4.2.3.1. Abbildung der Applikation auf das Simulationsmodell

Die Abbildung der Applikation auf das Simulationsmodell findet noch aufSer-
halb des Referenzmodells aus Definition 4.1 statt. Dieser Schritt ist typischer-
weise Teil der Verifikation in einem plattformbasierten Entwicklungsprozess fiir
MPSoCs [75, 261, 151, 145, 189]. Da die Applikation das Verhalten des Simulati-
onsmodells beeinflusst, hat sie auch Einfluss auf die Performanz, wenn das Mo-
dell auf einer bestimmten Ausfithrungsplattform simuliert wird. Im Folgenden
wird beispielhaft das Hermes Multiprocessor System (HeMPS) [75] und der zuge-
horige Entwurfsfluss erlautert, da HeMPS in den weiteren Kapiteln als Grundla-
ge zur experimentellen Evaluation dient.

HeMPS (sieche Abb. 4.2) ist ein homogenes MPSoC, das aus einer konfigurier-
baren Anzahl von Processing Elements (PE) basierend auf einem MIPS Prozes-
sor namens Plasma [220] besteht. Diese sind tiber ein Mesh NoC namens Her-
mes [203] miteinander verbunden. Jedes PE ist tiber ein Network Interface (NI)
an einen dedizierten Router (RO) des NoCs angebunden. Die Router vollziehen
ein XY Routing in Kombination mit Round Robin Scheduling und Wormhole
Switching. HeMPS hat eine Distributed Memory Architektur. Datentransfers ba-
sieren auf einem Message Passing Protokoll. Die Plasmakerne fiithren ein RTOS
aus, welches Multithreading unterstiitzt. Applikationen fiir HeMPS konnen als
Prozessnetzwerk [153] spezifiziert werden. Prozesse / Tasks werden in einem Task
Repository (TP) abgelegt. Nur der Master hat Zugriff auf das TP. In der Initialisie-
rungsphase verteilt er die Tasks an die Slaves, bevor diese mit der Ausfithrung
der Applikation beginnen.

Der grundlegende Ablauf des Entwurfsflusses von HeMPS (siehe Abb. 4.3) ist ty-
pisch fiir viele MPSoC Entwurfsmethoden [75, 261, 151, 145, 189]. Er beginnt mit
der Spezifikation der Softwareapplikation(en) und der Konfiguration der Ziel-
plattform, bestehend aus Hardware- und Softwarekomponenten. Im Rahmen
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Abbildung 4.1.: Synthese einer parallelen MPSoC Simulation
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des Mappingschritts werden die Tasks der Applikation(en) auf eine bestimm-
te Plattformkonfiguration abgebildet. Daraus wird ein Simulationsmodell M
generiert und zu Verifikationszwecken ausgefiihrt. Dieser Prozess wird solan-
ge iteriert, bis eine giiltige Abbildung gefunden ist. Der beschriebene Prozess
wird durch eine grafische Benutzeroberfliche (HeMPS Editor) und diverse an-
dere Softwaretools unterstiitzt?.

4.2.3.2. Abbildung des Simulationsmodells auf die Ausfiihrungsplattform

Dieser (wie prinzipiell auch der vorangegangene) Teilschritt ldsst sich vereinfa-
chend auf ein Graphpartitonierungsproblem [152][248] zuriickfiihren. Dazu konnen
Komponentennetzwerke, die mit Hilfe der Ebenen des Referenzmodells reali-
siert sind, als Graph G"(P", V") modelliert werden, der fiir jede realisierte Kom-
ponente einen Knoten in P" enthélt. Zwischen p; und pj existiert eine Kante
v, € V", wenn mindestens eine gerichtete Kommunikationsbeziehung zwi-

schen pj} und p} existiert.

Mit der vereinfachenden Annahme, dass alle Graphen unterhalb der Modelle-
bene identisch sind, kann die Partitionierung eines Modells als Abbildung von
Knoten und Kanten des Graphen G* des Modells auf Knoten und Kanten eines
beliebigen der vier darunterliegenden Graphen modelliert wird. Die Abbildung
erfolgt im Allg. unter bestimmten Randbedingungen, die bei der Partitionierung
eingehalten werden miissen (z.B. moglichst optimaler Lastausgleich oder gerin-
ger Kommunikationsaufwand) [49]. Zur Schidtzung entstehender Kosten miis-
sen Kostenfunktionen entwickelt werden, die als Entscheidungsgrundlage fiir
die Art und Weise der Abbildung dienen.

Erfolgt die Abbildung statisch und dndert sich diese nicht mehr zur Laufzeit, so
kann die Erstellung einer Kostenfunktion mit Hilfe von Profiling [120][124] vor
der eigentlichen Simulationslaufzeit unterstiitzt werden. Falls die Abbildung dy-
namisch zur Laufzeit gedndert werden kann, so miissen Performanzwerte wih-
rend der Ausfiihrung beobachtet und unmittelbar in eine geeignete Lastvertei-
lung umgesetzt werden. Dies entspricht in etwa den Aufgaben eines Regelkrei-
ses [49]. Eine statische Abbildung hat den Vorteil, dass die raumliche Datenver-
fugbarkeit dauerhaft eingeschriankt werden kann (siehe auch Abschnitt 4.2.4.5).
Dies reduziert u.U. den Kommunikations- und Synchronisationsaufwand. Sta-
tische Abbildung hat den Nachteil, dass mogliche dynamisch auftretende Un-
gleichgewichte in der Auslastung nicht automatisch ausgeglichen werden kon-
nen. Bei dynamischer Abbildung liegt der genau entgegengesetzte Fall vor.

Die Originalversion von HeMPS basiert auf einer VHDL RTL Beschreibung. Nur fiir den Plasma-
kern existiert zusitzlich ein zyklenapproximativer Instruktionssatzsimulator in SystemC. Daher
wurden im Rahmen dieser Arbeit alle existierenden VHDL Teile manuell in dquivalente SystemC
RTL Beschreibungen tibersetzt und der HeMPS Editor entsprechend angepasst.
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Formulierung des Partitionierungsproblems fiir SystemC

Da SystemC unterschiedliche Modellierungsstile und Abstraktionsgrade unter-
stiitzt (vgl. Abschnitt 2.3.2), die unterschiedliche syntaktische Elemente verwen-
den, ist der Graph G* der Modellebene vom verwendeten Modellierungsstil ab-
hédngig. In reinen RTL oder dhnlichen Modellen macht es Sinn, Instanzen von
Prozessen als Modellkomponenten und Instanzen von sc_signal als Modellkon-
nektoren zu interpretieren. Vernachladssigt man die hierarchische Struktur, so
kann ein reines RTL Modell dann als ein Prozess-Signalgraph Gpg(P,S) model-
liert werden:

Definition 4.2 (Prozess-Signal Graph): Ein Prozess-Signal Graph Gpg(P,S) ist
ein gerichteter Graph mit Knoten p € P und Kanten s € S. Jeder Knoten repriisentiert
genau einen SystemC Prozess. Zwei Knoten py und p, sind durch eine Kante sy ver-
bunden, wenn die Prozesse, die durch die Knoten py und py, reprisentiert werden, durch
mindestens ein Signal verbunden sind, wobei der durch py repriisentierte Prozess auf das
Signal schreibt und der durch p, reprisentierte Prozess von diesem Signal ausschliefilich
liest.

In TL Modellen ist es hingegen sinnvoller, SystemC Module als Modellkompo-
nenten und Socket- oder Transportverbindungen als Modellkonnektoren zu in-
terpretieren. Ein reines TL Modell kann dann z.B. als ein Modul-Transport Graph
Gumr(M, T) modelliert werden:

Definition 4.3 (Modul-Transport Graph): Ein Modul-Transport Graph

Gmr (M, T) ist ein gerichteter Graph mit Knoten m € M und Kanten t € T. Jeder Kno-
ten repriisentiert genau ein SystemC Modul. Zwei Knoten my und m,, sind durch eine
Kante ty, verbunden, wenn das durch my reprisentierte Modul anhand einer Transport-
methode den Zustand in dem durch my, repriisentierten Modul modifizieren kann®.

Ein gemischtes RTL/TL Modell, das sowohl RTL als auch TL Anteile enthilt,
kann durch zwei Teilgraphen Gpg und Gy 1 beschrieben werden. Beide Teilgra-
phen sind dann durch Knoten aus einer Menge A verbunden, wobei PN M = A.
Ein Knoten a € A représentiert ein gemischtes Modul, das sowohl tiber Signale
als auch Sockets kommuniziert. Ein Modul aus A reprasentiert damit ein TL Mo-
dul und zugleich einen durch das Modul aggregierten Prozess (eine Menge von
Prozessen), der nicht weiter zerlegt werden kann. Darauf basierend lasst sich das
Partitionierungsproblem fiir ein SystemC Modell wie folgt formulieren:

3Auf welche Art und Weise diese Modifikation exakt geschieht, ist absichtlich nicht spezifiziert.
Diese kann z.B. durch das Schreiben eines Parameters innerhalb einer Transportmethode erfolgen
oder umgekehrt, durch Riickgabe eines Wertes bei Verlassen der Methode.
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Definition 4.4 (SystemC Partitionierungsproblem): Bei der Partitionierung eines
SystemC Modells ist eine Graphenpartitionierung gesucht, die den Graphen Gps U Gyt
partitioniert. Eine Partitionierung beinhaltet die Abbildung von Knoten des Graphen
Gps U Gt auf Knoten eines beliebigen Graphen G'"8° einer darunterliegenden Ebene

und die Abbildung von Kanten der Graphen Gpg U Gyt auf Knoten und Kanten von
Gturget.

4.2.4. Strategien zur Parallelisierung von SystemC

Als erste Voraussetzung fiir die Abbildung eines SystemC Modells auf einen
Multi- oder Manycoreprozessor miissen Kernelkomponenten bereitgestellt wer-
den, die SystemC Modellpartitionen ausfiithren kéonnen. Zur Umsetzung dieser
Kernelkomponenten gibt es eine Reihe von Moglichkeiten. In Abschnitt 3.1.2.4
wurde bereits der Begriff der Kernelpartitionierung eingefiihrt und existieren-
de Ansitze in asymmetrisch und symmetrisch klassifiziert. Im nun folgenden Ab-
schnitt soll dieser und weitere Freiheitsgrade sowie Auswirkungen von Ent-
wurfsentscheidungen auch im Hinblick auf die Erfiillung der in Abschnitt 4.1
genannten allgemeinen Anforderungen genauer betrachtet werden.

4.2.4.1. Datenabhdngigkeiten bei sequentiellem Scheduling

Der sequentielle SystemC Scheduler implementiert ein dynamisches Schedu-
ling [248]: Welche SystemC Prozesse wie oft und in welcher Reihenfolge aus-
gefiihrt werden, steht vor der Laufzeit noch nicht (vollstindig) fest. Zu einem
bestimmten Simulationszeitpunkt sind nur ein Bruchteil aller zukiinftigen Ereig-
nisse bekannt. Diese Dynamik duflert sich in der Existenz zweier Schleifen in der
Zustandsmaschine aus Abb. 2.12, der Deltacycle-Schleife und der Timedcycle-
Schleife?.

Die Phasen, die wahrend des sequentiellen Schedulings durchlaufen werden,
sind atomar (vgl. Abschnitt 2.3.2.2): Um die kausalen Abhingigkeiten zwischen
Ereignissen korrekt aufzulgsen, beginnt eine neue Phase immer erst dann, wenn
die vorausgehende Phase vollstindig beendet ist. Der Grund dafiir sind Abhan-
gigkeiten zwischen Phasen auf den in Abschnitt 2.3.2.2 aufgefiihrten Mengen
und Variablen, die aber erst zur Laufzeit bekannt sind. Abhingigkeiten in ei-
nem Softwareprogramm kénnen im Allg. in Datenabhéingigkeiten, Kontrollfluss-
abhingigkeiten und Resourcenabhingigkeiten klassifiziert werden [41]. Erste-
re lassen sich wiederum in Read-After-Write (RAW), Write-After-Read (WAR) und
Write-After-Write (WAW) Abhéangigkeiten einteilen. Werden solche Abhéngigkei-

4Tmmediate Notifications werden in der Zustandsmaschine aus Abb. 2.12 nicht explizit modelliert.
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ten nicht beachtet, so wird das Simulationsmodell u.U. nicht kausal (d.h. zeitlich)
korrekt ausgefiihrt (vgl. Definition 2.1).

Um Abhéngigkeiten der genannten Typen zu visualisieren, eignet sich die Dar-
stellung anhand eines dynamischen Abhingigkeitsgraphen (engl. Dynamic De-
pendency Graph (DDG)) [34, 41]. Ein DDG ist ein partiell geordneter DAG, dessen
Knoten die Ausfithrung von Instruktionen reprasentieren und dessen Kanten
die Abhdngigkeiten zwischen den Instruktionen modellieren, die wihrend der
dynamischen Ausfithrung eines Programms entstehen [41].

Aus einer grobgranularen Perspektive konnen die Kernelphasen des sequentiel-
len SystemC Schedulers, die innerhalb eines Simulationslaufs ausgefiihrt wur-
den, als komplexe Makroinstruktionen und damit Knoten eines DDG in Form
einer gerichteten Kette interpretiert werden. Da jede Kernelphase zu jedem Si-
mulationszeitpunkt ¢t = (7,6) maximal einmal ausgefiihrt wird, kénnen ausge-
fiihrte Kernelphasen mit einem Zeitstempel indiziert werden. Abb. 4.4 illustriert
ein Beispiel fiir einen DDG einer sequentiellen SystemC Ausfiihrung, die vom
Zeitpunkt (0,0) bis zum Zeitpunkt (7, 2) reicht.

eval(0,1) update(0,2) dnotify(0,2)

update(0,1) dnotify(0,1)

tnotify(0,2)

eval(7,2)

Abbildung 4.4.: DDG einer Ausfiihrung des sequentiellen SystemC Schedulers

Damit eine Strategie zur Parallelisierung des sequentiellen SystemC Kernels ge-
wihrleisten kann, dass die Kausalitdtsbeziehungen zwischen Ereignissen, wie
sie durch sequentielle Ausfiihrung eines Simulationsmodells definiert sind, auch
bei paralleler Ausfiihrung desselben Simulationsmodells erhalten bleiben, muss
die Strategie im Allg. die Abhédngigkeiten berticksichtigen, die durch den DDG
der sequentiellen Ausfiihrung spezifiziert sind.

Neben dem DDG aus Abb. 4.4 sind auch andere feingranularere Darstellun-
gen der dynamisch auftretenden Abhangigkeiten moglich. Ein feingranularerer
DDG kann z.B. nicht nur komplette Kernelphasen und deren Abhéangigkeiten vi-
sualisieren, sondern u.U. auch Instruktionen und Abhéngigkeiten, die innerhalb
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der komplexen sequentiellen Kernelphasen aus Abb. 4.4 selbst existieren. Dies
hat den Vorteil einer besseren Analysierbarkeit, erhoht aber die Komplexitat.

Um die in einem DDG enthaltenene dynamische Information konservativ zu ap-
proximieren, eignen sich im Allg. statische Abhéngigkeitsmodelle [96, 210, 141],
die typischerweise im Rahmen einer Compileranalyse erstellt werden kénnen.
Ebenso wie die Komplexitét eines DDG steigt in einer statischen Approximation
die Komplexitdt mit der Verfeinerung der Granularitit an.

4.2.4.2. Datenabhdngigkeiten bei parallelem Scheduling

Ausgehend vom grobgranularen DDG der sequentiellen Ausfiihrung aus Abb.
4.4 ist der naheliegendste Ansatz zur Parallelisierung, die Vervielfachung ein-
zelner oder aller Knoten und damit, entsprechend der verfiigbaren Ressourcen,
die Erzeugung jeweils paralleler komplexer Instruktionen gleichen Typs. In ei-
ner parallelisierten Phase wird dann Rechenaufwand gleichzeitig bewaltigt, der
in der urspriinglichen Phase sequentiell abgearbeitet wurde. Die Vervielfachung
von Knoten im DDG bzw. von Phasen setzt voraus, dass der Rechenaufwand
einer Phase auf parallele Teilphasen gleichen Typs aufgeteilt werden kann. Im
Allgemeinen entstehen dabei, orthogonal zu den in Abschnitt 4.2.4.1 erwdhnten
Typen von Datenabhingigkeiten, folgende neue Typen von Datenabhingigkei-
ten:

1. Inter-Phasen-Abhingigkeiten (IRA): Abhingigkeiten zwischen aufeinan-
derfolgenden Teilphasen.

2. Intra-Phasen-Abhingigkeiten (IAA): Abhédngigkeiten zwischen paralle-
len Teilphasen des gleichen Typs.

IRA existierten als Sonderfall bereits bei sequentieller Ausfithrung. Im paralle-
len Fall lassen sie sich am einfachsten durch eine zeitliche Partitionierung bzw.
die Einfiihrung zusitzlicher Kontrollflussabhédngigkeiten in Form globaler Syn-
chronisation nach jeder parallelisierten Phase auflésen. Dieser Ansatz ist sehr
konservativ und nur dann notwendig, wenn keine Kenntnisse tiber Datenparti-
tionierungen (vgl. Abschnitt 4.2.4.5) oder Eigenschaften des Simulationsmodells
(vgl. Abschnitt 4.2.4.6) vorhanden sind. Solches Wissen konnte beispielsweise
aus einer detaillierteren statischen Approximation des DDG aus Abb. 4.4 extra-
hiert werden. Als Beispiel fiir eine IAA denke man an das gleichzeitige Auslesen
von lauffdhigen SystemC Prozessen aus einer global verfiigbaren Menge lauffa-
higer Prozesse R wéhrend einer parallelisierten Evaluation Phase. Im einfachs-
ten Fall gentigt fiir solche Zugriffe simples Locking, wobei dann die Ausfiih-
rungsreihenfolge von SystemC Prozessen innerhalb eines Deltacycles evtl. nicht-
deterministisch sein kann.
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4.2.4.3. Determinismus

Sobald die Zugriffsreihenfolge auf Variablen nicht mehr kontrolliert wird und
von zufélligen Verarbeitungs- oder Kommunikationslatenzen abhéngt, so ist ei-
ne Parallelisierungsstrategie eine potentielle Quelle fiir nicht-deterministisches
Verhalten. Im Fall von SystemC wird die Gefahr von nicht-deterministischem
Verhalten dadurch verstirkt, dass die Modellierung auf hoheren Abstraktions-
ebenen oft auf der direkten Kommunikation von SystemC Prozessen tiber ge-
meinsam genutzte Variablen basiert (vgl. Abschnitt 2.3.2.3). Dadurch steigt die
Wabhrscheinlichkeit fiir sog. nicht-deterministische Anomalien (vgl. [234, 233].
Falls der Kernel keine entsprechende Unterstiitzung bietet, liegt es in der Ver-
antwortung des Anwenders, explizit Gegenmafinahmen zu ergreifen.

Da in dieser Arbeit die Untersuchung von Methoden zur parallelen Ausfiithrung
zyklenakkurater und -approximativer Modelle auf Manycore Architekturen und
weniger eine holistische Betrachtung einer deterministischen Ausfiihrung aller
Typen von Modellen im Fokus steht, wird eine Betrachtung von Determinismus
nur insoweit mit einbezogen, wie dies fiir die in dieser Arbeit verwendeten Ty-
pen von Modellen und Modellierungstechniken notwendig ist.

4.2.4.4. Kernelpartitionierung

Durch Gruppierung von vervielfiltigten Teilphasen unterschiedlichen Typs wer-
den Kernelkomponenten K erzeugt. Dieser Vorgang wird im Folgenden auch
als Kernelpartitionierung bezeichnet. Angenommen, nur die Evaluation Phase
eval() ist parallelisiert. Eine Moglichkeit zur Gruppierung ist dann die asymme-
trische Aufteilung des SystemC Kernels in unterschiedliche Typen von Kernel-
komponenten, z.B. eine Master Komponente kK und mehrere Worker Kompo-
nenten K = (J;<;j<ny k{’, wobei K = k' U K. Eine mogliche Phasenaufteilung
wiére beispielsweise folgende:

P(k™) = {init(), update(),dnotify(), tnotify()} 4.1)
Vi: P(k¥) = {eval;()} (4.2)

Eine asymmetrische Partitionierung hat den Nachteil, dass der Master mit zu-
nehmender Modellgrofle und Anzahl an Workern zu einem Flaschenhals wer-
den kann: Zum einen steigt der Berechnungsaufwand innerhalb der sequenti-
ellen Phasen des Masters mit der Modellgrofie. Zum anderen steigt bei wach-
sender Anzahl an Workern der Kommunikationsaufwand im Master. Dies kann
durch eine Parallelisierung aller Phasen und symmetrische Partitionierung ent-
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schérft werden: Sei K* = [J;<;<y k; die Menge aller Kernelkomponenten und N
deren Anzahl, so gilt:

Vi: P(ki) = {init;(), eval;(), update;(), dnotify;(), tnotify;() } (4.3)

Variablen und Datenstrukturen des sequentiellen Kernels werden zu Kernelkon-
nektoren, sofern Kernelkomponenten sie gemeinsam nutzen. Dazu gehoéren U,
R, N°, N7 oder Datenstrukturen innerhalb von Instanzen des Modells. Im Fall
eines Signals sind dies z.B. v, v""* oder das in einem Signal enthaltene Ereig-
nisobjekt w.

4.2.4.5. Datenpartitionierung

Im Unterschied zur zeitlichen Partitionierung von Datenzugriffen durch Synchro-
nisation entsteht durch Datenpartitionierung eine ridumliche Partitionierung der
Daten und Datenzugriffe. Datenpartitionierung ist ein weiterer Schritt, um Da-
tenabhédngigkeiten tiber den in Abschnitt 4.2.4.2 beschriebenen Ansatz hinaus zu
reduzieren. Der in Abschnitt 4.2.4.2 beschriebene IAA Konflikt, der beim gleich-
zeitigen Zugriff auf die Menge der lauffdhigen Prozesse R durch mehrere par-
allele Teilphasen entsteht, kann z.B. durch Partitionierung von R und Beschrén-
kung des Zugriffs von Teilphasen auf jeweils eine Partition von R gelost werden.

Als Folge einer Datenpartitionierung konnen Variablen und Datenstrukturen als
intern oder extern deklariert werden. Auf interne Variablen hat nur eine einzi-
ge Kernelkomponente Zugriff, auf externe Variablen mehrere. Externe Variablen
konnen wiederum in lokal extern und global extern eingeteilt werden. Auf lokal ex-
terne Variablen hat nur eine Teilmenge aller Kernelkomponenten Zugriff, global
externe Variablen sind hingegen fiir alle Kernelkomponenten erreichbar.

Die global externe Verfiigbarmachung von Variablen erhoht einerseits die Flexi-
bilitdt enorm, andererseits aber auch den Aufwand fiir die korrekte Behandlung
von Datenabhingigkeiten. Eine gezielte Einschrankung der Verfiigbarkeit fiihrt
zu geringerem Aufwand in der Behandlung von Datenabhingigkeiten aber we-
niger Flexibilitat. Welche Variablen wie deklariert werden kénnen oder miissen,
ist letztendlich von der Ausfiihrungsplattform abhéngig (siehe auch Abschnitt
2.4).

4.2.4.6. Weiterfiihrende PDES Optimierungsstrategien

Konservative PDES Verfahren (siehe Abschnitt 2.2.3.4) zeichnen sich insbesonde-
re dadurch aus, dass sie Methoden zur Reduktion von kausalen Abhéngigkeiten
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zwischen Ereignissen und folglich zur Steigerung der Parallelitit bereitstellen,
die iiber eine reine Datenpartitionierung hinausgehen. Diese Verfahren basieren
insbesondere auf der effizienten Ausnutzung von modellspezifischer Informati-
on zur Reduktion des Synchronisationsaufwands [113]. Im Vergleich zum Ansatz
aus Abschnitt 4.2.4.2 ermoglicht die Ausnutzung modellspezifischer Informatio-
nen, Datenabhingigkeiten zwischen aufeinanderfolgenden parallelisierten Ker-
nelphasen eines grobgranularen DDG genauer zu identifizieren und die globale
Synchronitét durch die feingranularere Betrachtungsweise zu durchbrechen. Da-
bei konnen bestimmte Strategien der Datenpartitionierung von Vorteil sein. Eine
Optimierung im Sinne der PDES ldsst sich im Allg. in drei Schritte einteilen:

1. Extraktion modellspezifischer Information: Dies geschieht entweder ma-
nuell oder automatisiert. Die manuelle Extraktion hat den Vorteil, dass
durch Anwenderwissen auch spezielle modellspezifische Datenabhéngig-
keiten und komplexere Zusammenhinge berticksichtigt werden kénnen,
kann allerdings zeitaufwiandig sein. Eine automatisierte Extraktion ist ef-
fizienter, funktioniert aber nur so gut, wie es das verwendete Werkzeug
zuldsst. Konnen komplexe Datenabhéngigkeiten nicht erkannt werden, so
konnen kausale Fehler nur durch geringere Parallelitdt vermieden werden.

2. Vorhersage von Garantien fiir kausale Unabhingigkeit: Auf Basis der ex-
trahierten Informationen werden Garantien fiir existierende kausale Unab-
héngigkeiten berechnet. Diese Berechnung kann entweder statisch vor der
Laufzeit oder dynamisch zur Laufzeit erfolgen. Eine statische Berechnung
erzeugt keinen zusétzlichen Laufzeitoverhead, kann aber evtl. zu konser-
vative Vorhersagen zur Folge haben. Eine dynamische Berechnung erzeugt
zusitzlichen Laufzeitoverhead, kann aber aktuelle Laufzeitinformationen
in die Berechnung mit einfliefSen lassen, was moglicherweise zu weniger
konservativen Vorhersagen fiihrt.

3. Adaption von Modell und parallelem Simulator: Wiinschenswert ist es,
dass das Modell und der paralleler Simulator bis zu einem gewissen Grad
anpassbar bzw. konfigurierbar sind und die Vorhersagen aus Schritt 2) ge-
zielt zur Reduktion des Kommunikationsaufwands genutzt werden kon-
nen. Eine geeignete Abbildung des Simulationsmodells kann z.B. zu einer
besseren Lastverteilung, besserer Datenlokalitdt und besseren Garantien
fiir kausale Unabhéngigkeit fithren. Eine solche Adaption kann ebenfalls
manuell oder automatisiert erfolgen, wobei in komplexen Fillen eine auto-
matisierte Adaption grundsétzlich vorzuziehen ist.

4.2.5. Uberblick iiber implementierte Komponenten

Abb. 4.5 gibt einen Uberblick iiber Verfahren, die auf den einzelnen Ebenen des
Referenzmodells entwickelt wurden. Die Verfahren wurden als Erweiterung des
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freien SystemC Kernels [1] in Form einer Klassenbibliothek umgesetzt. Von die-
ser Bibliothek wurden schrittweise neue Versionen entwickelt, welche die aufge-
fithrten Verfahren (teilweise gleichzeitig) unterstiitzen.

Model Layer
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Abbildung 4.5.: Implementierte Konzepte

Da der Fokus auf der parallelen Simulation zyklenakkurater und zyklenapproxi-
mativer Modelle liegt, wird auf Modellebene generell mindestens das RTL Sub-
set von SystemC [244] unterstiitzt. In Abschnitt 4.6 wird dartiber hinaus eine TL
Modellierungsmethode vorgestellt, die es erlaubt, die Genauigkeit von Modellen
statisch oder dynamisch zu skalieren.

Der sequentielle SystemC Kernel wurde in zwei verschiedenen Varianten parti-
tioniert. Dem Verfahren aus Abschnitt 4.3 liegt eine asymmetrische Kernelparti-
tionierung zugrunde. Die Verfahren aus den Abschnitten 4.4, 4.5 und 4.6 basieren
auf einer symmetrischen Partitionierung.
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Auf der logischen Ebene wurden vier verschiedene Synchronisationsverfahren
implementiert, asynchron (vgl. Abschnitt 4.4), adaptiv (vgl. Abschnitt 4.5) syn-
chron und unsynchronisiert (Abschnitt 4.6). Die synchrone Variante auf der lo-
gischen Ebene wurde zum Verfahren aus Abschnitt 4.5 als Vergleichsfall imple-
mentiert (vgl. Abschnitt 4.5.7) und entspricht einer durch statische Partitionie-
rung optimierten Version des asymmetrischen Verfahrens aus Abschnitt 4.3.

Der Simulator kann mit Hilfe zweier verschiedener Backends auf Basisdienstebe-
ne sowohl auf den SCC als auch auf gewohnliche cachekohdrenten SHM Multi-
prozessoren abgebildet werden. Das SCC Backend ist eine objektorientierte Er-
weiterung der SCC-spezifischen RCCE Bibliothek [198, 15]. Die Erweiterungen
beinhalten in der Hauptsache neue Schnittstellen, z.B. zur einfacheren Instanziie-
rung gemeinsam genutzter Datenstrukturen in verschiedenen Speicherbereichen
(Shared Objects) sowie zur Implementierung zentral koordinierter blockieren-
der oder nicht-blockierender Barrieren (B/Nb Barrier). In beiden Fillen wurden
bereits existierende Funktionen der RCCE API wiederverwendet. Des Weiteren
wurde als neues Verfahren ein statischer/dynamischer Ringpuffer (Circular Buf-
fer) zur asynchronen einseitigen On-Chip Kommunikation entwickelt (vgl. An-
hang A). Das SHM Backend ist eine 1:1 Ubertragung des SCC Backends durch
Austausch von RCCE spezifischen Funktionen und Nutzung von herkémmli-
chem SHM zur Implementierung der genannten Datenstrukturen.

4.3. Asymmetrische synchrone Strategie

Im folgenden Abschnitt soll die Eignung einer asymmetrischen Kernelpartitio-
nierung in Kombination mit einem vollstandig synchronen Synchronisationsver-
fahren fiir den SCC untersucht werden. Ahnliche Verfahren haben sich auf ca-
chekohirenten SHM Multiprozessoren als niitzlich erwiesen: Die geringe Kom-
munikationslatenz auf diesen Architekturen erlaubt es, den hohen Synchronisa-
tionsaufwand vollstindig synchroner Verfahren in Kauf zu nehmen [232, 105].
Durch die diesen Verfahren typischerweise zugrundeliegende asymmetrische
Master /Worker Architektur ist auf einfache Weise eine dynamische Lastvertei-
lung moglich. Weiterfithrende Optimierungen im Sinne einer Kausalitdtsanalyse
werden bei vollstindig synchronen Verfahren nicht vorausgesetzt [44].

Im Folgenden werden zugrundeliegende Konzepte und Entwurfsentscheidun-
gen erldutert. Anschlieflend werden Aspekte der Implementierung und Opti-
mierungspotentiale beschrieben. Die Leistungsfdhigkeit des Ansatzes wird an-
hand mehrerer Fallstudien untersucht und bewertet. Die Ergebnisse dieses Ab-
schnitts wurden im Rahmen einer vom Autor betreuten Bachelorarbeit [Red11]
erarbeitet und sind somit in Zusammenarbeit entstanden. Sie sind in [RRS112]
publiziert.
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4.3.1. Anforderungen und Konzept

Ausgehend von bekannten Arbeiten zu vollstdndig synchroner Parallelisierung
[232, 105], lagen dem entwickelten Konzept folgende spezielle Anforderungen
zugrunde:

I) Modellierungsmethode: Es soll zumindest das RTL Subset von SystemC
[244] unterstiitzt werden. Das Modell soll dabei prinzipiell als ein Prozess-
Signal Graph Gpg beschreibbar sein (vgl. Definition 4.2).

II) Abbildung des Simulationsmodells: Es soll eine einfache dynamische Ab-
bildung des Simulationsmodells auf die Ausfiihrungsplattform moglich sein.

III) Datenpartitionierung: Auf eine Datenpartitionierung in interne und exter-
ne Daten soll zugunsten der einfachen dynamischen Lastverteilung und ei-
ner generellen global externen Deklaration verzichtet werden.

IV) Kernelpartitionierung: Der Kernel soll asymmetrisch partitioniert werden.
Dabei sollen ausschliefilich die eval() und die update() Phase parallelisiert
sein. Kernelkomponenten sind in einen Master k" und n Worker kf...kj
unterteilt. Dabei gilt:

P(k™) = {init(),dnotify(), tnotify()} (4.4)
Vi>0:P(k{’) = {eval;(), update;()} (4.5)

V) Synchronisation: Die Kernelkomponenten sollen synchron in der Zeit vor-
anschreiten.

Das resultierende Konzept ist in Abb. 4.6 illustriert. Da in Anforderung I nur das
RTL Subset vorausgesetzt wird, hat die Ausfithrungsreihenfolge von SystemC
Prozessen wihrend eines Deltacycles keinen Einfluss auf das Ergebnis der Si-
mulation®. Zur Sicherstellung der Kausalitdt miissen deswegen nur IRA bertick-
sichtigt werden. Bei gleichzeitigem Zugriff auf ein und dieselbe Datenstruktur
innerhalb einer Phase (IAA) gentigt es, wenn wechselseitiger Ausschluss garan-
tiert ist. Wegen der Anforderungen II und III benotigen alle Kernelkomponenten
Zugriff auf einen global zuginglichen Zustandspeicher. Der Verzicht auf eine
statische Partitionierung von Daten reduziert die dynamische Abbildung des Si-
mulationsmodells auf die dynamische Abbildung von SystemC Prozessen. We-
gen Anforderung V erfolgt nach jeder Kernelphase eine globale Synchronisation.
Entstehende globale Wartezustdnde ermoglichen eine zentral gesteuerte dyna-

5Da SystemC Prozesse durch das E/U Paradigma grundsitzlich um mindestens einen Deltacycle
voneinander entkoppelt sind, gentigt die Herstellung der durch die Deltacycles definierten par-
tiellen Ordnung von Prozessaktivierungen.
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mische Verteilung von Prozessen durch einen zentralen Master (Anforderung
V).

Master

Initialization

Delta/Timed
Notification

4 4

Globally Shared State

o 4 4

Worker 1 Worker n

=
¢ q =
e o o o

/

Abbildung 4.6.: Architekturkonzept der asymmetrischen synchronen Strategie

4.3.2. Datenpartitionierung

Als Basis fiir die Umsetzung einer jeden Kernelkomponente dient jeweils ein se-
parater sequentieller SystemC Kernel. Damit existieren fiir U, N und N°, R, T
und § (vgl. Abschnitt 2.3.2.2) bereits in jeder Kernelkomponente interne Duplika-
te. Im Folgenden werden Varianten zur Umsetzung einer Datenpartitionierung
anhand der genannten Variablen und Mengen diskutiert.

* Aktualisierungsanfragen: Diese werden von Workern ki’ in den eval;()
Phasen generiert und in den update;() Phasen verarbeitet. Wenn ein Wor-
ker k¥ immer fiir die Durchfiihrung genau der Updates verantwortlich ist,
die er selbst generiert hat, konnen die # internen Datenstrukturen U;...U,
in den Workern komplett unabhéngig voneinander verwendet werden. Teu-
re gleichzeitige Zugriffe auf eine globale Datenstruktur U in der eval;()
oder update;() Phase werden dadurch vermieden.

 Lauffihige Prozesse: Diese werden vom Master in dnotify() bzw. tnotify()
erzeugt und von den Workern in den eval;() Phasen verarbeitet. Selektiert
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jeder Worker k¥ die von ihm auszufiihrenden Prozesse in der eval;() Pha-
se selbststdandig aus einem globalen R, verteilt sich die Rechenkomplexi-
tiat automatisch gleichmifig (sog. Work-Stealing [58]). Dies hat allerdings
den Nachteil, dass zu viele gleichzeitige Zugriffe aufgrund des Koordina-
tionsaufwands evtl. zu einem Flaschenhals werden kénnen. Durch Vertei-
lung der Eintrage auf n Nachrichtenwarteschlangen lequ;nq wird daher
die Verfiigbarkeit insgesamt auf lokal extern eingeschrankt und so der Fla-
schenhals verringert: Der Master ist so fiir den Lastausgleich und die Zutei-
lung von lauffahigen SystemC Prozessen auf die R}'"...Ry? zu den Workern
verantwortlich (sog. Work-Sharing [97]).

¢ Timed-/Delta-Notifications: Diese werden von Workern in den eval;() und
update;() Phasen generiert und vom Master in der dnotify() bzw. tnotify()
Phase verarbeitet. Datenstrukuren zur Speicherung konnen als gemeinsam
genutzte Strukturen N7 und N? realisiert werden, mit dem bereits erwahn-
ten Risiko, dass viele Workerzugriffe einen Flaschenhals verursachen. Zu-
dem benotigen die Worker keinen Zugriff auf in der Zukunft liegende No-
tifications in N'. Als Alternative werden die Notifications daher wieder
tiber n lokal externe Nachrichtenwarteschlangen N;'?...Nj;? von den k¥ an

den Master iibermittelt.

¢ Simulationszeit T und Deltacycle é: T muss extern verfiigbar sein. Da nur
der Master in der tnotify() Phase auf T schreiben kann, wird 7 global ex-
tern deklariert. Die § Variable wird vollstandig als interne Kopie in jeder
Kernelkomponente vorgehalten und separat inkrementiert.

o Ubrige Datenstrukturen des Modells: Diese beinhalten z.B. Ereignisobjek-
te, Channel-, Modul- und Prozessinstanzen, etc. Aufgrund der Anforde-
rungen I und III werden zunéchst nur Datenstrukturen als intern klassifi-
ziert, die wahrend der Evaluation, Update und Notification Phasen nicht
veranderlich sind. Die restlichen Variablen sind initial global extern ver-
fligbar.

4.3.3. Globale Barriersynchronisation

Eine einfache Moglichkeit zur Realisierung globaler Synchronisation ist ein ge-
nerischer Ansatz basierend auf globalen Barrieren. Ein solcher ist unabhingig
von einer bestimmten Topologie des Simulationsmodells bzw. dessen Abbildung
auf die Kernelkomponenten. Durch globale Barrieren wird die Simulation regel-
méfig in einen global definierten Zustand {tiberfiihrt. Entstehende globale War-
tezustinde konnen zur zentral gesteuerten Lastumverteilung genutzt werden.
Folgende Barrieren sind notwendig:
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¢ Evaluation nach Update: Stellt das E/U Paradigma sicher: Worker diirfen
Primitive Channels erst aktualisieren, wenn sichergestellt ist, dass sich kein
Worker mehr in der Evaluation Phase befindet.

¢ Update nach Notification: Stellt sicher, dass mit Ende der Update Phase
alle Notifications von den Workern an den Master tibermittelt wurden.

¢ Notification nach Evaluation: Mit dieser Barrier initiiert der Master die
Evaluation Phase und teilt den Workern die neue Simulationszeit mit.

4.3.4. Integration von Kommunikation und Synchronisation

Fiir die Priifung von bindren Entscheidungen und des Terminierungszustandes
werden neben den im vorigen Abschnitt erwidhnten neuen Datenstrukturen in
jeder Kernelkomponente bindre Variablen pass und term eingefiihrt. Zum reinen
Datenaustausch sind im Master k" folgende Aktionen implementiert:

¢ readNotifications(): Lese vorhandene Notifications aus den N imq aus und fii-
ge sie entsprechend ihrem Typ in Njj oder Ng ein. Priife gleichzeitig, ob alle
SystemC Prozesse evaluiert sind. Wenn ja, dann gib eine 1 zuriick, wenn
nein, dann eine 0 °.

e distWork(): Falls |Ry| # 0, dann verteile die lauffdhigen Prozesse auf die
Worker. Gib eine 1 zuriick, sobald |Ry| = 0, ansonsten eine 0.

o terminate(): Sende ein Terminierungssignal an die Worker, welches das En-
de der Simulation anzeigt.

In einem Worker ki’ werden zum Datenaustausch folgende zusitzliche Aktionen
benotigt:

o readRunnables(): Kopiere alle in le vorhandenen Handles von lauffihigen
Prozessen nach R;.

e nb/b_sendNotifications(): Versuche, alle aktuell vorhandenen Notifications
tiber N;n 7 an den Master zu versenden. Falls nicht ausreichend Speicher
vorhanden ist, gib die Kontrolle an die Zustandsmaschine zurtick (nb) oder

warte, bis ausreichend Speicher vorhanden ist (b).

* b_send_notify(): Sende alle aktuell vorhandenen Notifications tiber N lm 7 an
den Master. Blockiere solange, bis alle Notifications verschickt sind.

e check_terminate(): Priife, ob das Terminierungssignal gesetzt ist, wenn ja,
dann gib eine 1 zurtick, wenn nicht, dann eine 0.

6Damit ein Worker dem Master die erfolgreiche Evaluation von SystemC Prozesses mitteilen kann,
existieren zusitzlich sog. Confirmation Notifications, welche ebenfalls tiber die N l" " verschickt wer-
den.
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Zur Barriersynchronisation existieren sowohl im Master k™ als auch in einem
Worker k¥’ folgende Aktionen:

e b_barrier(): Initialisiere eine Barriere. Im Fall eines Workers, trete der Bar-
riere bei und warte bis der Master sie freigibt. Im Fall des Masters, warte
bis alle Worker der Barriere beigetreten sind und gib die Barriere dann frei.

e nb_checkIn(): Initialisiere eine Barriere. Im Fall eines Workers, trete der Bar-
riere zusatzlich direkt bei. Verlasse die Aktion anschlieffend (Master und
Worker).

* barrier_passed(): Im Fall eines Workers, warte bis der Master die Barriere
freigibt. Im Fall des Masters, warte bis alle Worker der Barriere beigetreten
sind und gib die Barriere dann frei.

Die im Master und den Workern implementierten endlichen Zustandsautomaten
(engl. Finite State Machines (FSM)) sind in den Abb. 4.7 und 4.8 dargestellt.

4.3.5. Abbildung auf die Speicherarchitektur des SCC

Da die Mechanismen zur Kommunikation und Synchronisation nicht von der To-
pologie abhingig sind, kann auf eine logische Ebene verzichtet werden. Master
und Worker werden direkt mit RCCE Units of Execution (UEs) [15] als Betriebssy-
stemprozesse implementiert. Die Synchronisationsaktionen werden unmittelbar
mit Hilfe blockierender und nicht-blockierender Barrierprimitive (B/Nb Barrier,
vgl. Abschnitt 4.2.5) der Basisdienstebene umgesetzt. Vorhandene Datenstruktu-
ren werden mit Primitiven der Basisdienstebene auf unterschiedliche Weise in
die Speicherbereiche des SCC abgebildet. Abb. 4.9 illustriert die initiale Vertei-
lung.

Im privaten Speicher jedes beteiligten SCC Kerns befindet sich ein vollstandi-
ges Duplikat des Programmcodes. Auch von statischen Variablen wird in jeder
Kernelkomponente eine Kopie im privaten Speicher angelegt. Zu den statischen
Variablen werden auch solche gezdhlt, die sich nur einmal in der Initialization
Phase dndern. Deren Wert wird u.U. wahrend der Initialisierung einmal aus dem
SHM aktualisiert. Die in Abschnitt 4.3.2 erwdhnten Nachrichtenwarteschlangen
werden unter Verwendung von statischen Ringpuffern (Circular Buffer Primiti-
ve, vgl. Abschnitt 4.2.5 und Anhang A) auf den MPB abgebildet. Die Variable T
wird als Shared Object im MPB abgelegt. Dynamisch verdnderliche Variablen des
Modells werden zunéchst vollstandig als Shared Objects in den externen SHM
ausgelagert.

Da sich der Cached Mode des SCC wegen der Notwendigkeit vieler teurer L2
Cache Flushes (vgl. Abschnitt 2.4.3.2) im Verlauf der Implementierung als sehr
langsam herausgestellt hat (siehe hierzu auch [223] oder [249]), bleibt die Ca-

98



4.3. Asymmetrische synchrone Strategie

[pass == 0]/
pass=readNotifications && distWork(),

wait_eval

[pass == 1]/
b_barrier();0=0+1;
nb_checkIn();pass=0;

[1Ro| I= 0]/

b_barrier(),; pass=0; [pass == 1]

[pass == 0]/
pass = barrier_passed();
readNotifications();

[IN°s| 1= 0]/dnotify(N°y);

[IRo| I= 0 && = < "]/
b_barrier();pass=0;

[IRo| == 0]

[INg| I= 0]/
7 = nextTime(); tnotify(N'y);

[e>=7""|| |Ro| == 0]/
terminate();
b_barrier();

Abbildung 4.7.: Zustandsmaschine im Master k™
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[R™| =0 || pass == 0]/
pass = barrier_passed();
readRunnables();eval(R;);
nb_sendNotifications();
[IR)| == 0 && pass ==
0=0+1;

1]/
[1Ui] I= 0]/update(U;);

Nuil ==0y/
[term == 0]/ b_sendNotifications();
7 = nextTime(); b_barrier(); @

nb_checkin();pass=0;

/b_barrier();
term = check termmate()

[term =

Abbildung 4.8.: Zustandsmaschine in einem Worker &’
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cheunterstiitzung fiir Zugriffe auf den externen SHM vollstdndig deaktiviert
(UCM).

Shared off-chip DRAM

Dynamic Model Data (event, channel, process instances,,etc.) and Initialization Data

/

I I I

Private DRAM Private DRAM
Core 2

(Worker 2)

Private DRAM
Coren

(Master)

Core 1
(Worker 1)

1 I I

Shared on-chip SRAM (MPB)

. External variables and data structures

D All others (static variables, data structures and program code)

Abbildung 4.9.: Speichernutzung bei asymmetrischer Kernelpartitionierung

4.3.6. Weiterfithrende Strategien

4.3.6.1. Verbesserter dynamischer Lastausgleich

Eine der Hauptaufgaben des Masters ist die gleichméflige Verteilung der zu eva-
luierenden Prozesse auf die R; der Worker ki (Work Sharing). In der Zustands-
maschine aus Abb. 4.7 geschieht dies innerhalb der Aktion distWork(). In der
Grundversion legt der Master mit jeder neuen Evaluation Phase zunichst eine
initiale Verteilung fest.

Da verschiedene SystemC Prozesse unterschiedliche Last erzeugen, kann es vor-
kommen, dass ein Worker wihrend der Evaluation Phase leerlduft und ande-
re Worker noch beschiftigt sind. Der dynamische Lastausgleich kann deswegen
dahingehend verbessert werden, dass der Master auch wihrend der Evaluati-
on Phase die Last dynamisch umverteilt. Um einen Leerlauf nach Moglichkeit
zu vermeiden, beobachtet der Master in der aktuellen Implementierung die R}
Warteschlangen und verteilt noch zu bearbeitende Prozesse in den Warteschlan-
gen bei Bedarf um.

Ein zusétzlich zum Work Sharing {iberlagertes Work Stealing wird dann ange-
wendet, wenn eine der Warteschlangen tatsachlich leerlauft, ohne dass der Mas-
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ter schnell genug aktiv wurde, um diesen Fall zu vermeiden. Der entsprechende
Worker versucht dann selbststandig, Prozesse aus den Warteschlangen der an-
deren Worker zu ,,stehlen”.

4.3.6.2. Statische Abbildung von SC  THREAD Prozessen

Dajeder SystemC Prozess auf einem beliebigen Worker ausgefiihrt werden kann,
werden die Stacks von SC_THREAD Prozessen in der Grundversion im externen
SHM abgelegt. Durch die Grofie der Stacks von 64 KB kann die auf dem SCC
fehlende hardwareseitige Cachekohdrenz die Ausfithrungsperformanz negativ
beeinflussen. Um die Anzahl der Zugriffe auf den als UCM konfigurierten ex-
ternen SHM zu reduzieren, kann der Master deswegen so eingestellt werden,
dass er lauffahige SC_THREAD Prozesse immer dem gleichen Worker zuordnet
und auf dynamische Verteilung von SC_THREAD Prozessen verzichtet. Damit
kann der Stack eines Prozesses im privaten Speicherbereich des entsprechenden
Workers abgelegt werden.

Existieren nur SC_METHOD Prozesse, was in RTL u.d. Modellen typisch ist, wird
die dynamische Lastverteilung anhand von Work Stealing und Work Sharing
durch die statische Abbildung von SC_THREAD Prozessen nicht beeinflusst.
Auch bei Existenz von SC_METHOD und SC_THREAD Prozessen wird eine
vollstandige Aushebelung der dynamischen Lastverteilung dadurch vermieden,
dass die aktuelle Implementierung immer zuerst die SC_THREAD Prozesse und
erst dann die SC_METHOD Prozesse in die R;.m’ eingeftigt. Dies lasst sich wie
folgt erkldren: Da das Work Sharing Verfahren immer auf den zuletzt in die War-
teschlangen eingeftigten Prozessen arbeitet, sind diese aller Wahscheinlichkeit
nach vom Typ SC_METHOD. Da das Work Stealing Verfahren erst dann aktiv
wird, wenn bereits eine Warteschlange leergelaufen ist, sind die statisch abgebil-
deten SC_THREAD Prozesse mit hoher Wahrscheinlichkeit bereits verarbeitet.

4.3.6.3. Lokale Zustandspufferung

Treten innerhalb eines Deltacycles auf einem Kern mehrere Schreib- oder Lesezu-
griffe auf eine bestimmte v"*** oder v’ Variable eines Primitive Channels auf,
so kann dies mehrere teure aber unnotige SHM Zugriffe zur Folge haben. Die
Ursache ist, dass der dynamische Zustand des Modells in der Grundversion der
Parallelisierungsstrategie, insbesondere die v""**! und v Variablen, vollstindig
im externen SHM abgelegt werden (vgl. Abschnitt 4.3.5).

Durch Ausnutzung des E/U Paradigmas (vgl. Abschnitt 2.3.2.2) ist es moglich,
die L1 und L2 Hardware Caches der SCC Kerne zu verwenden und den be-
schriebenen Sachverhalt zu entschirfen. Dazu werden zuséatzlich zu den stati-
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schen Modelldaten (vgl. Abschnitt 4.3.5) lokale Kopien v“*"“PY und v"¢*:P¥ aller
v und 0" Variablen im privaten Speicherbereich eines jeden SCC Kerns ab-
gelegt. Diese Kopien erlauben wéhrend eines Deltacycles eine weitgehend rein
lokale Ausfiihrung von SystemC Prozessen. Die Kohdrenz zwischen den Kopien
in den Caches der SCC Kerne wird softwareseitig hergestellt. Zu diesem Zweck
miissen die read(), write() und update() Methoden der SystemC Channels entspre-
chend adaptiert werden. Die Funktionsweise ist wie folgt (vgl. Abbildung 4.10):

Bei einem Schreibzugriff durch Aufruf von write() wird der neue Wert eines
Channels zunédchst in der lokalen v"¢*/P¥ Kopie abgelegt. Erst in der Update-
phase wird durch den Aufruf von update() sowohl die lokale Kopie v“*P¥ als
auch die 0" Variable im SHM mit dem Wert der v"¢*/P¥ Variablen aktualisiert.
Bei einem Lesezugriff durch Aufruf von read() wird der Wert der v*"*P¥ Varia-
blen immer nur beim ersten Auslesen innerhalb eines Deltacycles mit dem Wert
des zugehorigen v aus dem externen SHM aktualisiert’.

4.3.6.4. Statische Abbildung von beliebigen SystemC Prozessen

Typischerweise haben nur wenige im Modell vorhandene SystemC Prozesse di-
rekten Zugriff auf ein und dieselbe Menge von Zustandsvariablen. Werden alle
Prozesse, die potentiell auf eine Zustandsvariable zugreifen, auf den gleichen
SCC Kern statisch abgebildet, so kann diese Zustandsvariable in dessen priva-
ten Speicher abgebildet werden®. Dadurch wird der Kommunikationsaufwand
noch weiter verringert. Dabei sollte jedoch beachtet werden, dass durch die sta-
tische Abbildung beliebiger Prozesstypen der dynamische Lastausgleich weiter
eingeschrankt wird.

Die Umsetzung basiert auf einer Anwenderschnittstelle, mit deren Hilfe Prozess-
gruppen manuell definiert werden konnen. Die in einer Prozessgruppe befindli-
chen Prozesse werden dann immer auf ein und demselben SCC Kern evaluiert.
Da eine externe Vorhaltung von Zustandsvariablen, auf die nur die Prozesse ei-
ner Gruppe zugreifen, nicht mehr notwendig ist, konnen diese dauerhaft als in-
terne Variablen in den privaten Speicher des ausfiihrenden Workers abgebildet
werden. Zur Klassifikation von Channels in intern oder extern existiert deswe-
gen ebenfalls eine Anwenderschnittstelle.

"Die aktuelle Implementierung setzt diesen Mechanismus ausschlieglich fiir Signale vom Typ
sc_signal um. Bei anderen Primitive Channels, welche z.B. mehrere Writer unterstiitzen, kann ei-
ne verteilte Koordination der Aktualisierung z.B. dadurch verhindert werden, dass alle Prozesse,
die gleichzeitig schreibenden Zugriff auf ein und dasselbe Signal haben, immer auf den gleichen
Worker abgebildet werden.

8Prozesse, die potentiell auf einen Primitive Channel bzw. dessen Zustandsvariablen zugreifen,
koénnen dadurch identifiziert werden, dass in ihrem Rumpf ein read() oder write() Aufruf auf dem
betreffenden Channel erfolgt.
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P
Core 0

Private Memory

Evaluate Channel 0

Vnext,cpy ‘

E update()

Process 0 write()

Shared Memory
Channel 0

next
\'

-
Core 1

Evaluate Private Memory

Process 1 Channel 0

Proces 2
) 4

<

—> Function call O Sequence over wallclock time

—» Data transfer

Abbildung 4.10.: Pufferung beim Evaluate/Update Paradigma (Quelle: [Red11])
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Fiir die Gruppierung und Klassifikation von Prozessen und Channels wurde be-
wusst eine fiir den Anwender sichtbare Schnittstelle gewéhlt. Als Erweiterung
konnte entsprechender Quellcode bei Bedarf auch automatisch auf Basis einer
Analyse des Prozess-Signal Graphen Gpg erzeugt werden. Eine dafiir geeignete
Werkzeugkette wurde in Kombination mit einer anderen Parallelisierungsstra-
tegie entwickelt (vgl. Abschnitt 4.5.6). An dieser Stelle wird allerdings auf eine
Automatisierung verzichtet.

4.3.6.5. Optimierung von sc_clock Channels

Taktsignale konnen in SystemC anhand eines spezialisierten sc_signal Channels
namens sc_clock modelliert werden. Ein sc_clock Channel besitzt die Besonder-
heit, dass der Signalwert zu dquidistanten Zeitpunkten automatisch zwischen 0
und 1 alterniert wird. Der Umschaltvorgang wird durch einen sc_clock-internen
Prozess gesteuert. Dieser generiert regelmiflig eine Timed Notification, auf die
ist er selbst sensitiv ist. Wird er durch eine Timed Notification getriggert, legt
er den zukiinftigen Signalwert fest, ruft dabei request_update() auf und generiert
eine Delta Notification. Durch den Aufruf von request_update() wird der Signal-
wert letztlich aktualisiert. Erst durch die Delta Notification wird einem empfan-
genden Prozess die Existenz der Taktflanke signalisiert und dieser mit einem
Deltacycle Verzogerung evaluiert.

Die beschriebene Implementierung hat den Nebeneffekt, dass in den Timedcy-
cles, die durch den sc_clock Channel erzeugt werden, u.U. ausschlieSlich der
sc_clock-interne Prozess selbst ausgefiihrt wird. Ein solcher Timedcycle ist daher
schlecht bis gar nicht parallelisierbar.

Eine Optimierung besteht deswegen darin, die Taktflanke bereits im Timedcycle
per Timed Notification zu signalisieren und den sc_clock-internen Prozess ge-
meinsam mit allen anderen auf den sc_clock Channel sensitiven Prozessen zu
evaluieren. Der damit erzielbare Performanzgewinn ist umso grofer, je geringer
die Anzahl an Deltacycles pro Timedcycle ist.

Durch die beschriebene Optimierung ist nicht mehr sichergestellt, dass der im
sc_clock Channel intern vorhandene Prozess vor den anderen sensitiven Prozes-
sen evaluiert wird. Um dennoch auszuschliefSen, dass die auf den Channel sen-
sitiven Prozesse einen veralteten Wert des Taktsignals lesen, wird dieser beim
Aufruf von read() nicht mehr aus der entsprechenden Zustandsvariablen gele-
sen, sondern direkt aus der aktuellen Simulationszeit abgeleitet.
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4.3.7. Bewertung

In den folgenden Abschnitten wird die Leistungsfahigkeit des beschriebenen
Parallelisierungsansatzes untersucht und bewertet. Das Augenmerk liegt dabei
auf Ausfithrungsperformanz und Skalierbarkeit auf dem SCC.

Da sich die lokale Pufferung von Zustandsdaten sowie die statische Abbildung
von SC_THREAD Prozessen als essentiell fiir einen Performanzgewinn heraus-
gestellt haben, werden sie als fester Bestandteil der Implementierung betrachtet.
Die restlichen in Abschnitt 4.3.6 aufgefiihrten Strategien werden auf ihren zu-
sdtzlichen Nutzen hin anhand unterschiedlicher Modelle untersucht.

Fiir die experimentelle Bewertung wurden zwei verschiedene SystemC Modelle
eingesetzt, I) eine synthetische Ringpipeline sowie II) ein detailliertes RTL Mo-
dell des HeMPS [75] (siehe Abschnitt 4.2.3.1). Die Rechenkerne des SCC wurden
bei 533 MHz, das Mesh bei 800 MHz und der DDR3 Speicher ebenfalls bei 800
MHz betrieben.

4.3.7.1. Synthetisches Szenario

Das Ziel der Simulation mit dem synthetischen Simulationsmodell war es, ein
erstes Gefiihl fiir existierende Performanzgrenzen des asymmetrischen synchro-
nen Simulationsansatzes sowie der parallelen Simulation auf dem SCC {iber-
haupt zu bekommen. Die Struktur des synthetischen Pipelinemodells ist in Abb.
4.11 dargestellt.

Das Modell besteht aus zwei Modulen Component_1 und Component_2, die durch
eine konfigurierbare Anzahl m an Signalen vom Typ sc_uint<8> verbunden sind.
Jedes dieser beiden Module umfasst wiederum n Submodule, die als Pipeline-
stufen stage_1 ... stage_n bezeichnet sind. Jede Stufe besteht aus einem SystemC
Prozess vom Typ SC_METHOD oder SC_THREAD. Das Modell ist vollstandig
synchron. In jedem Deltacycle fiihrt jede Stufe eine konfigurierbare Anzahl ¢
an FlieBkommaoperationen aus, liest die Werte der Eingangssignale, inkremen-
tiert diese um eins und schreibt sie in die Ausgangssignale. Aufgrund der vielen
existierenden Freiheitsgrade wurde die Untersuchung anhand des synthetischen
Modells auf den einfachen Fall eines Masters und zweier Worker beschrankt.

Konstante Anzahl an SystemC Prozessen

Zunichst wurde die Beschleunigung in Abhéngigkeit der Modellparameter m
und ¢, der Prozesstypen SC_METHOD und SC_THREAD sowie der Kernelpa-
rameter DYNAMIC, FIX und MANUAL, welche aktivierten/deaktivierten dy-
namischen Lastausgleich sowie manuelle Gruppierung bezeichnen, gemessen.
Die Abb. 4.12 und 4.13 illustrieren die gemessene Beschleunigung durch Par-
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Toplevel

Abbildung 4.11.: Struktur des synthetischen Pipelinemodells

allelisierung im Vergleich zu sequentieller Ausfiihrung auf einem SCC Kern in
Abhingigkeit der erwdhnten Parameter.

Sowohl fiir m = 1 als auch fiir m = 100 ist ein deutlicher Anstieg der Beschleu-
nigung mit steigender Berechnungskomplexitét ¢ in den SystemC Prozessen zu
verzeichnen. Fiir kleine Werte von ¢ ist die parallele Ausfithrung allerdings si-
gnifikant langsamer als die serielle. Die Berechnungskomplexitdt wahrend der
Evaluation Phase ist in diesen Fillen offensichtlich zu klein, um den Kommuni-
kationsaufwand auszugleichen.

Der Einfluss der anderen Parameter ist stark von der Anzahl der Signale m zwi-
schen den Pipelinestufen abhingig. Im Allgemeinen skaliert die Implementie-
rung im Falle einer groflen Anzahl an Signalen (m = 100) besser. Man wiirde
vermuten, dass sich eine grofle Anzahl an Signalen wegen hédufiger SHM Zu-
griffe eher negativ auf die Performanz auswirkt. Offensichtlich iiberwiegen aber
sowohl bei statischer als auch auch bei dynamischer Abbildung zusitzlich ent-
stehende parallelisierbare Anteile, die dann in der parallelen Update Phase ge-
nutzt werden kénnen.

Deaktivierter dynamischer Lastausgleich (FIX) und manuelle Gruppierung (MA-
NUAL) fithren zu einer zusétzlichen Verbesserung der Beschleunigungswerte.
Dies wird speziell bei m = 100 deutlich (siehe Abb. 4.13). Die Verschiebung von
Teilen des Modellzustands in den privaten Speicherbereich und die Reduktion
von SHM Zugriffen erweist sich damit als vorteilhaft. Umgekehrt wird deutlich,
dass der dynamische Lastausgleich nicht zu einer besseren Performanz beitragen
kann.

Bei Verwendung von SC_THREAD Prozessen anstelle von SC_METHOD Pro-
zessen liegt die gemessene Beschleunigung generell um einige Prozentpunkte
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Abbildung 4.12.: Beschleunigung der synthetischen Ringpipeline mit m = 1 und
n=>5

hoher, da der Wechsel zum Stack einer SC_THREAD Co-Routine mehr Rechen-
aufwand generiert als der simple Aufruf einer SC_METHOD Callback-Funktion.
Dieser zusétzliche Rechenaufwand gehort zu den parallelisierbaren Anteilen ei-
nes Modells, da er auf den Workern erzeugt wird. Er wirkt sich vor allem fiir klei-
ne Werte von c aus. Fiir grofie Werte von ¢ tiberwiegt hingegen der Berechnungs-
aufwand innerhalb der Prozesse, weswegen die Differenz in der Beschleunigung
zwischen der SC_THREAD und der SC_METHOD Variante verschwindet.

Variation der Anzahl an SystemC Prozessen

Schliefllich wurde der Einfluss untersucht, den die Anzahl von SystemC Pro-
zessen 1 auf die Ausfiihrungsperformanz hat. Als feste Modellparameter wurde
m = 10 und ¢ = 10 gesetzt und SC_METHOD Prozesse ausgewdhlt. Dynami-
scher Lastausgleich wurde deaktiviert, und die Verteilung von Prozessen wurde
durch manuelle Gruppierung optimiert. Die Messergebnisse sind in Abb. 4.14
dargestellt.

Mit steigender Prozessanzahl steigt auch der Anteil des parallelisierbaren Re-
chenaufwands in der Evaluation Phase. Bei der gegebenen Konfiguration ist eine
relativ grofie Anzahl an Prozessen notwendig, um eine Beschleunigung > 0 zu
erzielen.

Der Abfall der Beschleunigung fiir n > 100 ist auf den mit wachsendem # stei-
genden Verwaltungsaufwand im Master und den steigenden Kommunikations-
aufwand mit dem Master zurtickzufiihren: Bei kleinen Werten fiir c miissen sehr
viele Prozesse in kurzen Zeitabstinden vom Master geschedult werden. Auch
bei statischer Lastverteilung ist der Master fiir das Scheduling auf die Worker
verantwortlich. Die Zuteilung fiihrt zu vielen Zugriffen auf die durch Master
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Abbildung 4.13.: Beschleunigung der synthetischen Ringpipeline mit m = 100
undn =5

und Worker gemeinsam genutzten Prozess-Warteschlangen. Da jeder Prozess in
jedem Deltacycle ausgefiihrt wird und neue Notifications erzeugt, miissen die-
se Notifications umgekehrt von den Workern an den Master zur Verarbeitung
tibermittelt werden.

Die abfallende Beschleunigung fiir n > 100 héngt nicht mit der steigenden An-
zahl an Signalen zusammen, die ebenfalls durch die wachsende Anzahl an Pipe-
linestufen entstehen. Die zusatzlichen Signale werden, aufgrund der manuellen
Gruppierung, vollstandig im privaten Speicher abgelegt. Sie verursachen deswe-
gen ausschliefilich parallelisierbare Anteile. Die Anzahl an Signalen im externen
SHM bleibt hingegen konstant.

4.3.7.2. Reales Szenario

Im zweiten Experiment wurde die Ausfithrungsperformanz anhand einer RTL
Beschreibung des HeMPS evaluiert. In den durchgefiihrten Testlaufen wurde auf
den Plasmakernen eine Dummy-Applikation ausgefiihrt: Jeder Plasmakern fiihrt
wiederholt eine Anzahl an Ganzzahladditionen in einem Task aus. Anschlieffend
wird eine Nachricht tiber das simulierte NoC an einen benachbarten Plasmakern
verschickt.

Um eine Beschleunigung zu erzielen, mussten fiir die Messungen samtliche Op-
timierungen angewendet werden, die in den vorangegangenen Abschnitten be-
schrieben wurden. Die Prozesse der einzelnen Plasma-Prozessoren wurden je-
weils zu einer Gruppe zusammengefasst. Das Hermes NoC mit den Routern
wurde in zwei Prozessgruppen zusammengefasst. Die die Gruppen verbinden-
den Signale wurden in den externen SHM abgebildet. Die Beschleunigungswer-
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Abbildung 4.14.: Beschleunigung der synthetischen Ringpipeline in Abhédngig-
keit der Anzahl an SystemC Prozessen

te, die bei der Ausfithrung eines 2x2 und eines 4x4 HeMPS Modells auf bis zu 16
Workern gemessen wurden, sind in Abb. 4.15 zu sehen.

Beim 2x2 Modell ist durch Parallelisierung keine Beschleunigung > 1 moglich.
Beim 4x4 Modell wird mit sechs Workern eine maximale Beschleunigung von
27% erreicht. Die Skalierbarkeit des Simulators auf eine gréfiere Anzahl an SCC
Kernen ist deutlich limitiert: Die Beschleunigung beider Modelle stagniert zwi-
schen sechs und acht Workern und nimmt danach ab.

Die schlechte Skalierbarkeit kann zum einen auf den Schedulingaufwand im
Master, den Kommunikationsaufwand mit dem Master und den verhiltnisma-
Big geringen Berechnungsaufwand in jedem Worker zurtickgefiihrt werden. Bei
stiarkerer Parallelisierung kommt der Master der schnellen Parallelverarbeitung
in den Workern nicht mehr hinterher. Zum anderen wird mit steigender Anzahl
an Workern die globale Barriersynchronisation immer kostspieliger. SchliefSlich
ist die Beschleunigung durch die unterschiedlich grofien Prozessgruppen und
die damit einhergehende ungleichméfige statische Lastverteilung limitiert.

4.3.7.3. Diskussion

Die beschriebene Strategie wurde insbesondere unter der Pramisse implemen-
tiert, eine einfache dynamische Lastverteilung von SystemC Prozessen auf Ker-
nelkomponenten zu ermoglichen. Dies hat sich auf cachekohdrenten SHM Mul-
tiprozessoren in Verbindung mit einem barrierbasierten Master/ Worker Schema
als niitzlich erwiesen. Daher wurde in dieser Arbeit ein zu bekannten Ansédtzen
[232, 105] dhnliches Programmiermodell umgesetzt, das stark auf die Nutzung
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Abbildung 4.15.: Beschleunigung der HeMPS Modells in Abhéngigkeit von Mo-
dellgrofie und Anzahl an Workern

von Shared Memory ausgelegt ist. Dieses hat sich auf dem SCC allerdings aus
folgenden Griinden als ungtinstig herausgestellt:

1. Mangels hardwareseitiger Cachekohédrenz existieren hohe Zugriffslatenzen
auf den externen SHM. Daher ist es schwer moglich, den Kommunikations-
aufwand durch den Berechnungsaufwand auszugleichen. Die dynamische
Lastverteilung ist dadurch nahezu wirkungslos.

2. Die zentralisierte Softwarearchitektur hat einen nicht zu vernachldssigen-
den Kommunikations- und Berechnungsaufwand im Master zur Folge, der
mit steigender Kernanzahl sehr schnell zum Flaschenhals wird.

3. Die globale Barriersynchronisation in Verbindung mit ungleicher statischer
Lastverteilung limitiert die Parallelitét.

Wie sich bei den experimentellen Untersuchungen herausgestellt hat, sind eine
Vielzahl an Optimierungen notwendig, um mit dem beschriebenen Ansatz eine
messbare Beschleunigung der parallelen Simulation gegeniiber der sequentiel-
len Simulation zu erzielen. Aus Sicht des Modells hat vor allem die Anzahl an
SystemC Prozessen, deren Rechenkomplexitdt und die damit eng verbundene
Zugriffsfrequenz auf Daten, die sich in gemeinsam genutzten Speicherbereichen
befinden, grofien Einfluss auf die Effizienz.

Durch geeignete modellspezifische Optimierungen wie Gruppierung von Sys-
temC Prozessen, Einschrankung der Verftigbarkeit und Verschiebung von Daten
in den privaten Speicher konnte der Umfang an gemeinsam genutzten Daten
und die Zugriffsfrequenz auf diese Daten reduziert werden. Im folgenden Ab-
schnitt soll daher untersucht werden, inwieweit ein vollstandiger Verzicht auf
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globale Verfiigbarkeit in Verbindung mit einer dezentralen Softwarearchitektur
zu besserer Effizienz beitragen kann.

4.4. Symmetrische asynchrone Strategie

In der Untersuchung im vorigen Abschnitt hat sich herausgestellt, dass sich die
asymmetrische Master/Worker Architektur in Verbindung mit der vollstindig
synchronen Ausfiihrung auf dem SCC schnell zu einem Flaschenhals entwickeln
kann. Die Anwendung dynamischer Lastverteilung konnte nicht signifikant zu
einem Ausgleich des Kommunikations- und Synchronisationsoverheads beitra-
gen. Vielmehr hat sich die Einschrankung der Datenverfiigbarkeit in Verbindung
mit der statischen Abbildung des Simulationsmodells als eine Mafinahme mit
Potential zur Steigerung der Effizienz erwiesen.

Der in diesem Abschnitt beschriebene Ansatz zielt daher in erster Linie auf die
Erhéhung der Datenlokalitiat und die Vermeidung zentralisierter Kommunika-
tions- und Synchronisationsstrukturen ab. Dazu wird ein auf dem asynchronen
Null Message Algorithmus (vgl. Abschnitt 2.2.3.4) basierendes Verfahren entwi-
ckelt. Es werden Bedingungen hergeleitet, die zur Ausfithrung von RTL &dhnli-
chen SystemC Modellen mit Hilfe des NMA erfiillt sein miissen. Anschlieflend
wird anhand einer prototypischen Implementierung die Leistungsfahigkeit be-
wertet. Der Ansatz wird durch eine teilautomatisierte Werkzeugkette erganzt.
Teile dieses Abschnitts sind bereits in [RRET12] publiziert. Die Werkzeugkette
wurde im Rahmen einer vom Autor betreuten Studienarbeit [Erd12] umgesetzt
und ist in Zusammenarbeit entstanden.

4.4.1. Anforderungen und Konzept

Folgende Anforderungen liegen der beschriebenen Strategie zugrunde:

I) Modellierungsmethode: Es soll zumindest das RTL Subset von SystemC
[244] unterstiitzt werden. Das Modell soll prinzipiell als ein Prozess-Signal
Graph Gpg beschreibbar sein (vgl. Definition 4.2).

II) Abbildung des Simulationsmodells: Eine statische Abbildung des Simu-
lationsmodells auf die Ausfiihrungsplattform ist ausreichend.
III) Datenpartitionierung: Gemeinsam genutzte Datenstrukturen sollen so weit
wie moglich in intern und lokal extern partitioniert werden.

IV) Kernelpartitionierung: Es soll eine symmetrische Kernelpartitionierung in
n identische Kernelkomponenten k* erfolgen, die jeweils alle Kernelphasen
implementieren:
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Vi € 1..n: P(k§) = {init;(), eval;(), update;(), (4.6)
dnotify;(), tnotify;()}

V) Synchronisation: Globale Synchronisation soll strikt vermieden werden.

Abb. 4.16 illustriert das resultierende Konzept. Wegen Anforderung I gentigt es,
IRA korrekt aufzulosen. Wegen der Anforderungen II und III konnen bereits
in der Konzeptionsphase des parallelen Simulators weitergehende Optimierun-
gen (vgl. Abschnitt 4.2.4.6) zur Erhohung der Datenlokalitit eingeplant werden.
Beispielsweise kann statisch bestimmt werden, welche Variablen welche Kernel-
komponenten miteinander ,verbinden”. Dies ermoglicht unmittelbar die Ablei-
tung der Kommunikationstopologie zwischen den Kernelkomponenten und die
Identifikation interner und lokal externer Variablen vor der Laufzeit (siehe Abb.
4.16). Wegen Anforderung IV implementiert jede Kernelkomponente alle Kernel-
phasen. Bis auf Anforderung V existieren keine Einschrankungen fiir die Wahl
des Synchronisationsverfahrens zwischen den Kernelkomponenten.

Kernel 0 Kernel n i
PRl Notification Notification [
8 ce -
|'S Evaluate Evaluate |3
H Fl
£ 5
{ External Local Data ) { External Local Data } { External Local Data }

Kernel 1
Notification

Evaluate

Abbildung 4.16.: Architekturkonzept der symmetrischen synchronen Strategie
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4.4.2. Datenpartitionierung auf Kernelebene

Wie beim asymmetrischen Verfahren wird fiir die Umsetzung der Kernelkom-
ponenten jeweils ein vollstindiger sequentieller Kernel verwendet, so dass auch
hier bereits interne Duplikate von U, N7, N?, R, T und § existieren. Da Kernel-
komponenten generell nur mit Nachbarn kommunizieren, gentigt fiir die betrof-
fenen Variablen lokal externe Verfiigbarkeit. Fiir die Realisierung von Kommu-
nikation und Synchronisation eignet sich ein nachrichtenbasierter Mechanismus.
Zur Umsetzung des nachrichtenbasierten Mechanismus wird im Gegensatz zur
asymmetrischen Strategie eine separate logische Ebene verwendet, mit der topo-
logieabhéngige Funktionalitit verwaltet werden kann. Im Fall von T wird als
Alternative direkt gemeinsam genutzter Speicher verwendet (siehe Abschnitt
4.4.32).

Im Modell kénnen bis auf eine Teilmenge der Signale, welche lokal extern ver-
fligbar sein miissen (vgl. Definition 4.4), alle Datenstrukturen als intern dekla-
riert werden. Um moglichst viel Spielraum fiir ein bestimmtes Synchronisations-
verfahren zu lassen, kann fiir ein lokal externes Signal ein vollstandiges internes
Duplikat in jeder Kernelkomponente vorgehalten werden, welche auf das Signal
Zugriff hat.

4.4.3. Logische Ebene

Um globale Synchronisation zu vermeiden wird ein asynchrones PDES Verfah-
rens dhnlich dem NMA verwendet. Bei asynchroner PDES wird die Gesamtsi-
mulation nicht gezielt in einen global giiltigen Zustand tiberfiihrt (vgl. Abschnitt
2.2.3.4). Es gilt vielmehr, globale Wartezustdnde soweit als moglich zu vermei-
den. Typischerweise ist eine asynchrone PDES von der Topologie eines Modells
abhangig. Daher ist es sinnvoll, eine zusatzliche logische Ebene einzufiihren, die
die topologieabhédngige Funktionalitdt verwaltet.

Die logische Ebene besteht aus logischen Prozessen und logischen Links. Ein
logischer Prozess Ip; kapselt genau eine Kernelkomponente ki (vgl. Abschnitt
4.2.3.2). Die SystemC Prozesse und internen Signale, die auf k} bzw. [p; abgebil-
det werden, sind daher identisch. Ein logischer Link /;; von Ip; nach Ip; existiert
genau dann, wenn ein auf /p; abgebildeter SystemC Prozess auf ein externes Si-
gnal schreibt, das von einem auf /p; abgebildeten SystemC Prozess gelesen wird.
Das Netzwerk auf logischer Ebene kann insgesamt als ein Logischer-Prozess
Graph Gy p(LP, L) modelliert werden:

Definition 4.5 (Logischer-Prozess Graph): Ein Logischer-Prozess Graph
Grp(LP, L) ist ein gerichteter Graph mit Knoten lp € LP und Kanten | € L. Jeder
Knoten reprisentiert genau einen logischen Prozess und jede Kante einen gerichteten
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logischen Link. Zwei Knoten Ip; und lp; sind durch eine Kante l;; verbunden, wenn ein
Nachrichtenaustausch von lp; in Richtung lp; moglich ist. lp; wird dann als adjazent
zu lp; bezeichnet.

4.4.3.1. Nachrichtenbasierte Kommunikation iiber logische Links

Da Prozesse in RTL Modellen nur tiber Signale kommunizieren, lassen sich alle
extern ausgelosten Anderungen am internen Zustand einer Kernelkomponente
auf Anderungen am Zustand externer Signale zuriickfiihren. In einer parallelen
SystemC RTL Simulation dient ein logischer Link daher ausschlieSlich zur Uber-
tragung von Signalnachrichten fiir alle auf ihn abgebildeten externen Signale:

Definition 4.6 (Signalnachricht): Eine Signalnachricht, die von lp; an lp; iiber l;;
iibertragen wird, enthiilt folgende Informationen:

¢ Eine id des zugehorigen externen SystemC Signals s,
e cine Variable v"58, welche den Wert der v"¢*t Variablen des Signals tibermittelt,

* einen Zeitstempel TimSg des Sendezeitpunkts in Ip;.

Mit der id konnen Nachrichten einem bestimmten externen Signal zugeordnet
werden. Mit der ™8 Variable wird die neue Zustandsinformation eines Signals
in Form des néchsten giiltigen Signalwerts v"¢*! {ibermittelt. Der Zeitstempel
Tims‘g dient zur Ableitung des Zeitpunktes der Aktualisierung des sichtbaren Si-
gnalzustandes (v°*") im Empféanger.

Fiir eine asynchrone PDES auf Basis von Signalnachrichten muss ein logischer
Link das FIFO Prinzip auf der gesamten Kommunikationsstrecke zwischen zwei
logischen Prozessen implementieren (vgl. Abschnitt 2.2.3.4). Vorausgesetzt, die
Basisdienstebene garantiert bereits eine FIFO-basierte Ubertragung zwischen Pro-
zessorkernen, so sind die Hauptaufgaben der logischen Ebene bzgl. Kommuni-
kation:

1. Zuordnung von ausgehenden Signalnachrichten zu logischen Links,

2. Zuordnung von auf logischen Links eingehenden Signalnachrichten zu Si-
gnalen und deren Zwischenpufferung entsprechend dem umgesetzten Syn-
chronisationsverfahren.

4.4.3.2. Basisverfahren zur Synchronisation

Das Basisverfahren zur Synchronisation auf logischer Ebene ist eine abgewan-
delte Form des NMA. Es basiert (im Unterschied zum SystemC Kernel) auf ei-
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nem einfachen skalaren Zeitmodell. Logische Prozesse besitzen lokale Zeiten T;.

Jedem logischen Link /;; wird eine interne Variable genannt Linkzeit Tl-l]-i"k und

ein Lookahead Al% zugeordnet:

Definition 4.7 (Linkzeit): Die Linkzeit Tl-l]-i”k eines logischen Links 1;j von Ip; nach
Ip; entspricht der letzten in lp; bekannten lokalen Zeit ; von Ip;.

Zur Ableitung der Linkzeit kann der Zeitstempel 7"°¢ von Signalnachrichten
verwendet. Unter der Voraussetzung, dass Nachrichten in der Reihenfolge ihrer
Zeitstempel tibertragen werden, gibt der Zeitstempel den frithesten Zeitpunkt
an, an dem in Zukunft eine Nachricht von Ip; verschickt werden kann. Beim
Empfang in Ip; entspricht der Zeitstempel 7,°¢ dem letzten bekannten Wert der

Linkzeit Til]?'”k.

Der Lookahead eines logischen Links [;; spezifiziert dessen zeitliche Verzoge-
rung und ist eine Konstante. Entsprechend dem NMA [78] darf ein logischer
Prozess immer dann in der Zeit voranschreiten, wenn seine lokale Zeit kleiner
ist als das Minimum aus der Summe von Linkzeiten und Lookaheads At aller
eingehenden logischen Links. Diese Bedingung fiir den Zeitfortschritt lasst sich
im Kontext von SystemC anhand einer spezialisierten Fassung der lokalen Kau-
salitdtsbedingung aus Definition 2.2 wie folgt schreiben:

Definition 4.8 (LOCC: Local Causality Condition): Ein logischer Prozess lp; darf
die niichste Notification bei T]?“f"t verarbeiten, wenn

Vip; € Lp]?df Lt < glink AT (4.7)
Fiir den maximal moglichen Zeitfortschritt gilt:

T = n;/in(Tl-li"k + Al) (4.8)
1

Damit die Linkzeit Til-"”k
und Deadlocks vermieden werden, muss Ip; regelmiflig seine lokale Zeit ; ver-
fiigbar machen. Im NMA werden dazu Null Messages verwendet. In dieser Ar-
beit wird ein alternativer Ansatz gewéhlt: Es wird eine lokal externe Variable
7/i"k deklariert, die fiir alle adjazenten logischen Prozesse zuganglich ist. Ip;
muss den Wert von 7; dann regelmigig in 7/% schreiben. /"% muss von Ip;
immer dann auf 7; aktualisiert werden, wenn sicher ist, dass (trotz evtl. interner
Nachrichtenpufferung) tatsdchlich keine Nachrichten mit einem kleineren Zeit-
stempel als T; verschickt werden kénnen.

auch ohne Nachrichten von [p; abgeleitet werden kann
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Voraussetzung fiir die beschriebene Methode ist, dass die Zielplattform die Rei-
henfolge von Speicherzugriffen eines einzelnen Prozessors auf beliebige gemein-
sam genutzte Bereiche erhilt. Dies ist beim SCC und gewohnlichen cachekoha-
renten Architekturen gegeben.

4.4.3.3. Deadlocks durch Deltacycles

Durch die Anforderung, dass Kommunikation nur mit benachbarten Prozessen
stattfinden sein soll, entsteht die Einschrankung, dass keine Zyklen aus logischen
Links mit einem Zero Lookahead (vgl. Abschnitt 2.2.3.4) von A" = 0 existieren
diirfen, da diese zu Deadlocks fiithren [78]. Dies sei an folgendem Beispiel ver-
deutlicht:

Eine parallele Simulation bestehe aus drei logischen Prozessen Ipg bis Ip;, die
entsprechend Abb. 4.17 iiber logische Links miteinander in einem Zyklus ver-
bunden sind. Jeder logische Link habe einen Lookahead von AI" = 0. Ein Zeit-
fortschritt AT > 0 kann nur durchgefiihrt werden, wenn alle eingezeichneten
Ungleichungen gleichzeitig erfiillt sind, was niemals moglich ist.

)< T2 7, <7

Abbildung 4.17.: Entstehung von Deadlocks beim Null Message Algorithmus

Das gleiche Problem tritt auch auf, wenn man den NMA auf eine parallele Sys-
temC Simulation mit vektoriellem Zeitmodell (vgl. Abschnitt 2.3.2.2) anwenden
mochte. Durch die Verzogerung eines Signals von nur einem Deltacycle exis-
tiert bzgl. T generell ein Lookahead von AI" = 0. Zirkuldre Abhédngigkeiten im
Netzwerk logischer Prozesse fithren dann dazu, dass die Simulation nicht in Ti-
medcycles voranschreiten kann. Dartiber hinaus geht die partielle Ordnung von
Notifications wéhrend eines Timedcycles verloren. Ohne geeignete Mafsnahmen
ist der NMA daher nicht auf SystemC RTL Modelle u.4. anwendbar.
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4.4.3.4. Elimination zirkuldrer Abhdngigkeiten

Der gewéhlte Losungsansatz basiert auf der kontrollierten Relaxation der Syn-
chronitdt zwischen adjazenten logischen Prozessen von der Ebene der Delta-
cycles auf die Ebene der Timedcycles. Im Folgenden wird gezeigt, dass durch
Elimination von zirkuldren Abhangigkeiten mit AI* = 0 auf Basis gezielter La-
tenzannotationen dennoch Zyklengenauigkeit einer NMA basierten parallelen
RTL Simulation erreicht werden kann. Das Verfahren setzt sich aus zwei Schrit-
ten zusammen:

1. Klassifikation von logischen Links hinsichtlich einer sog. Kritikalitatsei-
genschaft.

2. Gezielte Annotation zeitlicher Verzogerungen und Einschrankung der Ab-
bildung des Simulationsmodells.

Klassifikation logischer Links

Im Folgenden wird angenommen, dass logische Links in deadlock-kritisch und
deadlock-unkritisch klassifizierbar sind und nur kritische Zyklen bestehend aus dead-
lock-kritischen logischen Links zum Deadlock fithren. In diesem Fall konnen kri-
tische Zyklen durch geeignete Abbildung eines Simulationsmodells ausgeschlos-
sen werden. Abb. 4.18 illustriert dazu ein Beispiel.

Die linke Seite von Abb. 4.18 zeigt einen logischen Prozessgraphen Gyp(LP,L).
O.B.d.A. sind logische Prozesse [p € LP tiber logische Links | € L in einer Mesh-
Topologie verbunden. Wenn keine Klassifikation logischer Links vorgenommen
wird, existieren zirkuldre Abhédngigkeiten mit einem Lookahead von Al* = 0
zwischen jedem Paar logischer Prozesse. Genauer gesagt: Der gesamte Graph
Gpp ist stark zusammenhingend [152]. Die logischen Prozesse konnen folglich
niemals in Timedcycles voranschreiten.

Ist es hingegen moglich, logische links in kritisch (c) und nicht-kritisch (nc) zu
Kklassifizieren, so konnen zirkuldre Abhdngigkeiten u.U. eliminiert werden, da
diese nur noch fiir kritische Links beriicksichtigt werden miissen. Dies wird auf
der rechten Seite von Abb. 4.18 deutlich, in der nur noch der Graph Gi’gf (LP,L°),
ein Teilgraph von Gpp mit L C L, dargestellt ist.

Im Fall von SystemC RTL biindelt ein logischer Link ausschliefilich Signale. Da-
her muss die Kritikalitdtseigenschaft eines logischen Links aus den Eigenschaf-
ten der Signale abgeleitet werden, die auf ihn abgebildet sind. Beispielsweise
gilt:

Definition 4.9 (LDP: Link Delay Property): Der Lookahead 5117]- eines logischen Links

lij entspricht der minimalen Verzogerung Asltin die 1;j

i aller SystemC Signale s € S

ijs
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biindelt. Der logische Link l;; wird als delta-verzdgert bezeichnet, wenn Alig = 0. Er
wird als zeitverzdgert bezeichnet, wenn Al}; > 0.

Mit Definition 4.9 folgt fiir die Kritikalitit eines logischen Links:

Definition 4.10 (LCC1: First Link Criticality Condition): Ein logischer Link ist
deadlock-kritisch, wenn er delta-verzigert ist. Ansonsten ist er deadlock-unkritisch.

Um kritische Zyklen zu vermeiden, muss ein Modell derart auf logische Prozesse
abgebildet werden, dass keine delta-verzogerten und damit kritischen logischen
Links entstehen, die Zyklen in G{7! erzeugen. Da ein SystemC Signal normaler-
weise aber immer delta-verzogert ist, existieren nach Definition 4.10 weiterhin
nur kritische logische Links. Um dieses Dilemma zu 16sen, werden Signale in
einem zweiten Schritt gezielt mit zeitlichen Verzogerungen As™ > 0 annotiert.

Abbildung 4.18.: G1p (links) und Gﬂ? (rechts) ohne zirkuldre Abhéngigkeiten
zwischen deadlock-kritischen logischen Links

Annotation von Verzégerungen und Modellabbildung

Grundsitzlich erfolgt eine Annotation von Verzogerungen nur an externe Signa-
le. Externe Signale sind daran zu erkennen, dass sie im Verlauf der Partitionie-
rung (siehe Definition 4.4) auf logische Links abgebildet werden. Zyklengenaue
Simulation einer Partitionierung ist moglich, wenn nach der Annotation folgen-
de Bedingungen erfiillt sind:
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¢ Bedingung I: Wenn ein externes Signal Teil einer Menge von externen Si-
gnalen ist, die sich im gleichen kombinatorischen Pfad befinden, so muss
die Summe der annotierten Verzogerungen ) As] aller externen Signale in-

nerhalb dieses Pfades kleiner als die minimale Aktivierungsperiode AtPeriod
des Modells’ sein.

* Bedingung II: Kombinatorische SystemC Prozesse
vollstandige Sensitivitatsliste besitzen.

10 miissen immer eine

* Bedingung III: Zwischen logischen Prozessen diirfen keine kritischen Zy-
klen existieren.

Bedingung I ist fiir den Erhalt der Zyklengenauigkeit notwendig. Sie garan-
tiert, dass kombinatorische Prozesse in jedem Fall rechtzeitig vor der nédchsten
Taktflanke einen stabilen Endzustand erreichen. Die Erfiillung von Bedingung I
schliefst somit aus, dass Annotationen nicht zu einer Verzogerung bis nach der
néchsten Taktflanke fithren. Die partielle Ordnung, die durch die Deltacycles de-
finiert ist, bleibt dabei nur insoweit erhalten, wie es fiir zyklengenaue Simulation
notwendig ist.

Bedingung II garantiert, dass neue Signalwerte nicht gespeichert werden, bevor
deren Anderung zu einem spéteren Zeitpunkt von einem lesenden Prozess re-
gistriert wird. Durch unvollstindige Sensitivitatslisten gespeicherte Werte sind
im Allg. von der durch die Deltacycles definierten partiellen Ordnung von Pro-
zessaktivierungen abhingig. Andert sich diese, so &ndern sich die gespeicherten
Werte und damit u.U. der Endzustand der Signale, der im néchsten Taktzyklus
gelesen wird.

Generell wiirden bei einer Logiksynthese von Modellen mit unvollstandiger Sen-
sitivitdtsliste sog. Latches entstehen. Latches werden nur in wenigen Spezialfal-
len benoétigt und in synchronen Schaltwerken normalerweise gemieden, da sie in
der spateren Implementierung meist zu Glitches und Timingfehlern fiihren. Pro-
zesse mit unvollstindiger Sensitivitétsliste konnen daher ausgeschlossen wer-
den.

Bedingung III ist schliefslich notwendig, um Deadlocks zu verhindern. Kritische
Zyklen sind in jedem Fall ausgeschlossen, wenn alle vorhandenen externen Si-
gnale mit Werten As™ > 0 annotiert werden konnen.

Sind alle Bedingungen erfiillt, kann das partitionierte und annotierte RTL Modell
unmittelbar mit dem NMA basierten Verfahren aus Abschnitt 4.4.3.2 parallel und
zyklengenau ausgefiihrt werden. Dabei ist zu beachten, dass Taktsignale grund-
satzlich nicht verteilt werden konnen. Eine Propagation des Taktsignals durch

Die minimale Aktivierungsperiode ATP¢""¢ entspricht iiblicherweise einem oder einem halben
Taktzyklus.

19K ombinatorische Prozesse sind SystemC Prozesse, die (auch) asynchron durch beliebige Signale
und nicht nur durch das Taktsignal aktiviert werden kénnen.
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mebhrere logische Prozesse wiirde dazu fiihren, dass jeder vom Taktsignal durch-
laufene logische Prozess dieses um den Betrag des Lookahead verzogert. Dieses
Problem kann dadurch umgangen werden, dass jede Modellpartition mit einem
separaten SystemC Prozess fiir die Taktgenerierung ausgestattet wird.

4.4.4. Integration nachrichtenbasierter Kommunikation

Zur Integration der Abschnitt 4.4.3.1 beschriebenen nachrichtenbasierten Kom-
munikation mit dem SystemC Kernel wird ein neuer Channeltyp namens PDES-
Signal eingefiihrt. Eingehende und ausgehende logische Links werden innerhalb
der logischen Prozesse mit Hilfe sog. Sockets reprasentiert. Aktualisierungen
ausgehender externer Signale des Typs PDESSignal werden in Signalnachrich-
ten verpackt und mit Aufruf der write() Methode direkt an das zugehorige Aus-
gangssocket tibermittelt. Eingehende Signalnachrichten werden von einem Ein-
gangssocket an einen InputAdaptor weitergeleitet. Fiir jedes externe Eingangssi-
gnal existiert ein separater Adapter im empfangenden logischen Prozess. Dessen
Aufgabe ist nicht nur die reine Zwischenpufferung. Vielmehr dient er zur kausal
korrekten Integration eingehender Kommunikation in den SystemC Kernel.

In Abb. 4.19 ist die Implementierung eines Adapters fiir einen logischen Pro-
zess lp; dargestellt. Nachrichten werden durch Aufruf von insert_message() vom
Eingangssocket gelesen. Die Behandlung der Signalnachricht hdngt dann vom
Zeitstempel der Nachricht und der lokalen Zeit des empfangenden logischen
Prozesses Ip; ab:

1. 78 4 As™ = 7;: In diesem Fall erfolgt die Aktualisierung des zugehorigen
Signals durch Aufruf von imm() und Erzeugung einer Immediate Notifica-
tion direkt.

2. T8 4+ AsT > 1;: Dieser Fall erfordert eine Verzogerung der Aktualisie-
rung bzgl. 7. Dies erfolgt mit Hilfe der Methode timed() und einem Update
FIFO. Falls der FIFO bei Aufruf von timed() leer ist, so wird zum Zeitstem-
pel T8 einer Nachricht die Verzégerung As™ des zugehorigen Signals ad-
diert und auf w eine Timed Notification registriert. Anschlieffend wird die
Nachricht in den Update FIFO geschrieben. Zusatzlich zu den normalen
SystemC Prozessen im Modell existiert innerhalb des Adapters ein Prozess
namens update_process(), welcher auf Notifications von w sensitiv ist. So-
bald 7; = "¢ + As" erreicht ist, existieren zwei Moglichkeiten:

a) Ein lesender Prozess im Modell wird bei 7; vor update_process() aus-
gefiihrt: In diesem Fall wird die Aktualisierung durch Aufruf von up-
date_process() aus der read() Methode heraus und Einlesen des Wertes
der obersten Signalnachricht im FIFO durchgefiihrt.
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b) update_process() wird bei T; vor allen lesenden Prozessen im Modell
ausgefiihrt: In diesem Fall erfolgt die Aktualisierung durch den Auf-
ruf von update_process() vom SystemC Kernel.

Nach der Aktualisierung wird innerhalb von update_process() die oberste
Signalnachricht im Update FIFO gelodscht. Falls der FIFO nicht leer ist, wird
der Zeitstempel der ndchsten Signalnachricht zur Registrierung einer neu-
en Timed Notification auf w verwendet.

PDES Signal

ok

[requestiupdate()] [ update() j
A
v i
To Kernel Layer From Kernel Layer
Input/Output Port 3
E ‘(updale _process() -
S
iS]
<
~
2
)
<
S
S
S
From Logical Layer | insert_message()
7y

v 3
Output Input
Socket Socket

Abbildung 4.19.: Integration nachrichtenbasierter Kommunikation

4.4.5. Integration des Synchronisationsverfahrens

Zur detaillierten Beschreibung des Verfahrens werden zunéchst folgende zusitz-
liche Variablen eingefiihrt:

o 7" Speichert den (skalaren) Zeitstempel der nédchsten lokal vorhandenen
Timed Notification / des nachsten lokal vorhandenen Timeouts.

o thound; Gpeichert den den Zeitstempel, der entsprechend Ausdruck 4.8 den
nédchsten maximal méglichen Zeitfortschritt spezifiziert.
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Die Integration der Synchronisationsverfahrens mit einer Kernelkomponente k;
in einen logischen Prozess I p; kann anhand folgender Aktionen beschrieben wer-
den:

* checkLOCC(t"*): Priife, ob fiir Ip; ein Zeitfortschritt entsprechend der LOC
Bedingung aus Definition 4.8 moglich ist. Gib anschlieflend die maximale
Zeitgrenze """ entsprechend Ausdruck 4.8 zuriick, bis zu der ohne Ver-
letzung kausaler Abhingigkeiten ein Zeitfortschritt durchgefiihrt werden
kann.

* updateT(): Aktualisiere die Ti””k Variable. Priife dabei, ob sich noch Nach-
richten in lokalen Ausgangspuffern der Sockets befinden (falls beim letzten
Aufruf von dispatch() nicht alle Nachrichten verschickt werden konnten).
Wenn nein, setze T/"F auf 7;. Wenn ja, setze T/"% auf den Zeitstempel der

zuletzt versendeten Nachricht.
Folgende Aktion modelliert den Zugriff auf logische Links:

¢ dispatch(): Leite von der lokalen Simulation generierte und evtl. noch im lo-
kalen Senderpuffer (vgl. Anhang A.2) zwischengespeicherte Nachrichten
an die logischen Prozesse weiter, fiir die die Nachrichten bestimmt sind.
Lese dann alle aktuell in den Eingangssockets verfiigbaren Nachrichten
aus. Identifiziere das zu einer Signalnachricht gehorige Signal und fiige
den empfangenen neuen Signalwert v"°¢ durch Aufruf der insert_message()
Methode auf dem zugehorigen Input Adaptor in die Simulation ein. Setze
die Linkzeit der durch die Eingangssockets reprédsentierten eingehenden
logischen Links auf den Zeitstempel der Nachricht, die zuletzt von einem
zu ihm gehorigen Eingangssocket gelesen wurde. Falls auf einem Link kei-
ne Nachricht empfangen wurde, so verwende die lokal externe t/* Varia-
ble des zugehorigen benachbarten logischen Prozesses zur Ableitung der
Linkzeit.

Abb. 4.20 illustriert den Zustandautomaten. Die zeitliche Synchronisation mit
anderen logischen Prozessen in s"*kLOCC kann wegen der Annotation von Ver-
zogerungen bzgl. T an Signale mit dem Empfang von Aktualisierungen verbun-
den sein kann (Riickwartspfad von s¢KLOCC nach séispatchy ‘Wenn diese unmit-
telbar lauffahige Prozesse erzeugen (|R| # 0 im Riickwirtspfad von s#P#" nach
s?") wird sofort ein weiterer Deltacycle durchgefiihrt. Dadurch ist vollstandi-
ger Empfang aller Nachrichten eines Deltacycles nicht garantiert und es wird
eine nicht-deterministische Anzahl an Deltacycles per Timedcycle generiert. Da
das RTL Subset vorausgesetzt wird und unvollstindige Sensitivititslisten ausge-
schlossen sind, bleibt die Zyklengenauigkeit dennoch erhalten.
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[IRi| != 0]/ eval(Ry);

[\U}| I= 0]/ update(Uy;

[\ ==0]

[IRi|I=0]
[IN’} I= 0]/ dnotify(N°);

[N == 0]/
dispatch();

Sa’ispatch

[|Rl| :=0]/ [Tbaund igﬁzx{] /
7' = nextTime(); Ti=1

P~ checkLOCC(™); update )

dispatch();

rbound >= Tnext] 1/
7 =7 motify(t ;.N);
updateT();

[7i< Twax]

[Ti>= Tya ]

Abbildung 4.20.: Asynchrone Zustandsmaschine in einer Kernelkomponente k;
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4.4.6. Manuelle Partitionierung des Simulationsmodells

Die Partitionierung des Simulationsmodells muss manuell spezifiziert werden.
Dies beinhaltet die I) Zuweisung von SystemC Prozessen zu Partitionen und II)
die Deklaration von Signalen als interne und externe Signale.

Zur Umsetzung von Punkt I) wird eine neue Wrapper-Basisklasse zur Verfii-
gung gestellt. Diese erlaubt eine Partitionierung des Modells auf dem Tople-
vel mit einer Granularitdt von Modulen. Fiir jeden Modultyp auf dem Tople-
vel muss durch Ableitung von der neuen Basisklasse ein Wrapper entwickelt
werden. Instanzen der Module miissen dann durch Instanzen der spezialisier-
ten Wrapper ausgetauscht werden. Ein Wrapper erlaubt die bedingte Instanzi-
ierung des gekapselten Moduls anhand eines Flags. Auf diese Art und Weise
kann ein Modell grundsatzlich mit Modulgranularitit verteilt werden. Durch
Nummerierung werden Wrapper-Instanzen Modellpartitionen zugeordnet. Zur
Umsetzung von Punkt II) miissen alle Signale, die Wrapper-Instanzen verbin-
den, durch den neuen PDESSignal Channeltyp ausgetauscht werden. Anhand
der Schnittstelle des PDESSignal Channeltyps kann der Lookahead spezifiziert
werden.

4.4.7. Abbildung auf die Speicherarchitektur des SCC

Zur Abbildung auf die SCC Speicherarchitektur werden logische Prozesse wie
in Abschnitt 4.3.5 mit RCCE UEs [15] als Betriebssystemprozesse implementiert.
Im privaten Speicher jedes beteiligten SCC Kerns befindet sich ein vollstindi-
ges Duplikat des Programmcodes. Im Unterschied zum asymmetrischen Ansatz
wird fiir die Speicherung der Daten kein externer SHM genutzt. Diese sind fast
vollstandig im privaten Speicher der SCC Kerne hinterlegt. Nur im MPB Bereich
eines jeden logischen Prozesses [ p; existiert jeweils eine Instanz eines Shared Ob-
ject und eines Circular Buffer Primitivs. Ersteres dient zur Speicherung der Link-
zeit in Form der Tl.li”k Variablen. Letzteres dient zur Realisierung der abstrakten
FIFOs der logischen Links. Abb. 4.21 illustriert die resultierende Verteilung auf
die Speicherarchitektur des SCC.

4.4.8. Teilautomatisierte Werkzeugunterstiitzung

Zur Unterstiitzung der beschriebenen symmetrischen Parallelisierungsstrategie
ist eine teilautomatisierte Werkzeugkette entstanden, die beide Schritte der in
Abschnitt 4.2.3 beschriebenen Methodik zur Simulationssynthese implementiert.
Fir das in dieser Arbeit verwendete HeMPS MPSoC [75] existierte bereits eine
Generator (HeMPS Editor) mit einer grafischen Benutzeroberfldche zur manu-
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Shared off-chip DRAM

I I I

Core 1 Private DRAM Core 2 Private DRAM Core n
ksI ksZ ksn

I ! I

Shared on-chip SRAM (MPB)

. External variables and data structures

Private DRAM

D All others (internal variables, data structures and program code)

Abbildung 4.21.: Speichernutzung bei symmetrischer Kernelpartitionierung

ellen Abbildung der Applikation auf das MPSoC Modell. Dieser wurde um die
notwendigen Funktionen erweitert.

4.4.8.1. Originaler HeMPS Editor

Mit der originalen Version des Generatorwerkzeugs kann sowohl eine HeMPS
Hardwareplattform in Form von Anzahl der PEs, Topologie, Speichergrofe, etc.
als auch die Abbildung von Tasks einer oder mehrerer Applikationen auf die
HeMPS Plattform spezifiziert werden. Als Ergebnis erhdlt man zundchst eine
Konfigurationsdatei (SimulationModellnfoFile.hmp Datei), in der die Plattforms-
pezifikation und die Abbildungsinformation in einem proprietdren Format hin-
terlegt sind.

Mit Hilfe der SimulationModellnfo.hmp Datei und der HeMPS Komponentenbi-
bliothek (HeMPS Library) wird das Modell der Hardwareplattform generiert. Mit
der Abbildungsinformation in der SimulationModelInfo.hmp Datei, dem Applika-
tionscode und den Templatedateien fiir das Plasma RTOS (Tasks and RTOS) wird
die Softwareplattform erzeugt. Die Software wird anschlieffend kompiliert und
das Task Repository des HeMPS Masters mit den resultierenden Binédrdaten in-
itialisiert. Das Ergebnis ist ein vollstindiges Simulationsmodell, das Hardware
und Software beinhaltet.
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4.4.8.2. Erweiterter HeMPS Editor

Der beschriebene Prozess der Abbildung der Applikation auf das Simulations-
modell wurde direkt mit dem Prozess der Abbildung des Simulationsmodells
auf die Ausfiihrungsplattform kombiniert und in einen Extended HeMPS Genera-
tor integriert. Damit liegt die Durchfiihrung beider Schritte prinzipiell im Aufga-
benbereich des Modellerstellers. Der gesamte Ablauf ist in Abb. 4.22 dargestellt.

D C++ Code D Static Library Eg{ﬁgl h

Extension
D Abstract Data *h ]

*:cpp
i Executable ?

Sequential - [
SystemC:
Kernel —

SsCCIPC
Backend

Backend
*

alternative

L —
Extended n Parallel
Extended HeMPS Model o Execu- . .
»> I
Generator Sohde C/C++ Compiler/Linker table Map & Run Simulation

Simulation
Model

Info
.hmp

Abbildung 4.22.: Teilautomatisierte Werkzeugkette

Die entwickelte Losung nutzt die in Abschnitt 4.4.6 beschriebene API zur ma-
nuellen Modellpartitionierung. Fiir jedes Toplevel Modul des HeMPS Modells
(PEs, NIs, ROs) wurde ein Wrapper entwickelt. Sowohl die grafische Benutze-
roberfliche des originalen HeMPS Editors als auch das proprietdre Format der
Konfigurationsdatei wurden so erweitert, dass Partitionen aus Toplevelmodulen
anhand von IDs spezifiziert werden konnen. Mit Hilfe von Platzhaltern, die ma-
nuell in ein Template der Topleveldatei des SystemC Modells eingefiigt wurden,
kann das Generatorwerkzeug den Code zur Instanziierung automatisch modifi-
zieren und damit die Modellpartitionierung &ndern. Das Ergebnis des Generie-
rungsvorgangs ist der sog. Extended Model Code.

In Kombination mit den Quellcodedateien des parallelen SystemC Kernels (Bi-
bliotheken der Kernelebene, der logischen Ebene und der Basisdienstebene) kann
anschlieffend durch Kompilation und Verlinkung das ParallelExecutable erzeugt
werden. In Abhingigkeit des gewédhlten Backends zur Inter-Process Communicati-
on (IPC) auf Basisdienstebene ist dieses auf dem SCC oder einem cachekohéren-
ten SHM Multiprozessor ausfithrbar. Mit Hilfe eines simplen Skripts wird das
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Parallel Executable auf der Zielplattform gestartet. Abb. 4.23 zeigt beispielhaft
die erweiterte grafische Benutzeroberfliche des erweiterten HeMPS Generators.
Im Beispiel existieren drei Partitionen. Module, die ein und derselben Partition
angehoren, sind farblich identisch unterlegt.

sl HeMPS Generator (Project - D:\Temp\Parallel_HeMPS_2_O\projects\mpeg.hmp) = e e
Project  Edit  About
Applications RTLal 1S53l
2] 33 22y
W osa XY e Add Appiication Processing Block 02 Processing Block 12 Processing Block 22
e Processor RTL Processor RTL Processor RTL
START1c Enable VLClc Enable IQUANT1 ¢ Enable
© Maser © Mt © Maser
xpB B vp B @ Slave @ Slave @ Slave
Pagesize (KB} [16 1= in Group 0 in Group 0 in Group 0
Max Toske/Sive: 2 ||| (Pemve | [ Remove | [ Remove |
v Network IF Router Network IF Router Network IF Router
EotyEes in Group 0 in Group 0 in Group 0 in Group 0 in Group 0 in Group 0
@ B4KB
) 128KB
Processing Block 01 Frocessing Block 11 Processing Block 21
Fattin Processor | Processor [RL) Processor (RIL)
Enable IDCT1.e Enable PRINT1.c Enable: STARTZc Enable
P SCC © Master ©) Master ©) Master
Partition Groups: @ ModelSIM @ Slave @ Slave @ Slave
s _nGop 1] _nGon 1]
i I
il 5 Remove Remove Remove
Networke [F Router Network IF Router Networke IF Router
Bsisons Ul i | G e | S i
Debug inot buitt)
R Processing Block 00 (Master) Processing Block 10 Processing Block 20
l Heat Map-Buider ] e Processor (R1L) Procsssar ) Processor (&L
IVLC2 ¢ Enable IDCT2¢ Enzble
[ Heathap Buider | | Generate ] ; PRINT2 ) QUANTZ: |
@) Master () Master ) Master
© Slave © Slave @ Slave
in Group 2 in Group 2 in Group 2
Remove Remove Remove
Network IF Router Network IF Router Network IF Router
in Gioup 2 in Group 2 in Group 2 in Group 2 in Group 2 in Group 2

Abbildung 4.23.: Erweiterter HeMPS Editor

4.4.8.3. Randbedingungen zur Verteilung von HeMPS

Damit HeMPS korrekt ausgefiihrt wird, muss die Verteilung von Toplevel Mo-
dulen auf logische Prozesse und die Annotation von externen Signale so erfol-
gen, dass die Bedingungen aus Abschnitt 4.4.3.4 erfiillt sind. Eine Analyse des
Quellcodes des Simulationsmodells ldsst folgende Schliisse zu:

* Bedingung I: Um das HeMPS Modell zwischen einem Network Interface
und dem zugehorigen Router zu partitionieren, muss As” einen beliebigen
Wert aus folgendem Intervall besitzen: 0 < As™ < AT Dies ist moglich,

da sich keines der Signale zwischen einem Network Interface und dem zu-

gehorigen Router auf ein und demselben kombinatorischen Pfad befindet.
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. cycle . . .
Die Schranke von % ist durch das Kommunikationsprotokoll zwischen

den NoC Routern gegeben, welches die positive und die negative Taktflan-
ke nutzt. Um das sog. Time Creep Problem [113] zu vermeiden und einen
maximalen Lookahead zu erhalten, sollte As™ auf den maximal moglichen
Wert gesetzt werden.

Zwischen Processing Element und Network Interface ist Bedingung I mit

der Einschrinkung 0 < As™ < %ym noch nicht erfiillt. Um den Looka-
head nicht weiter reduzieren zu miissen und den Aufwand fiir die manuel-
le Partitionierung zu reduzieren, wurde auf eine Partitionierung zwischen
Processing Elements und zugehorigen Network Interfaces verzichtet.

¢ Bedingung II: Da das HeMPS Modell keine unvollstandigen Sensitivitats-
listen besitzt, ist diese Bedingung immer erfiillt.

* Bedingung III: Da grundsitzlich alle externen Signale mit 0 < As™ <

cycle . . . . . .
ATT annotiert sind und auf Annotationen mit As™ = 0 verzichtet wird,

existieren generell keine kritische Zyklen zwischen logischen Prozessen.

4.4.9. Bewertung

4.4.9.1. Evaluation der Skalierbarkeit

Zur Bewertung der Skalierbarkeit wurde die Dauer der parallelen Ausfiihrung
unterschiedlich grofser HeMPS Modelle auf einer unterschiedlichen Anzahl an
SCC Kernen gemessen. Mit Hilfe der sequentiellen Ausfithrungsdauer auf ei-
nem SCC Kern wurde jeweils die erzielte Beschleunigung berechnet. Fiir die
PEs kamen reine RTL Modelle und zyklenapproximative Simulatoren, sog. Cycle-
Approximate Simulators (CAS), zum Einsatz. Letztere konnen exakter auch als Pin-
Accurate Cycle-Approximate Level (PA-CAL) Modelle bezeichnet werden. Sie besit-
zen eine signalbasierte Schnittstelle, modellieren Pipelinekonflikte intern aber
nicht zeitlich akkurat. Dies resultiert in einem optimistischen Modell mit einem
geringeren Anzahl an Cycles per Instruction (CPI) [RAST11].

Auf den PEs von HeMPS wurde eine unterschiedliche Anzahl an fiinfstufigen
MPEG Decoder Pipelines ausgefiihrt. TASK 1 einer Pipeline erzeugt 8x§ MPEG
Blocke. Diese werden von einem Variable Length Decoder in TASK 2, einer Inver-
se Quantization Stufe in TASK 3, einer Inverse Discrete Cosine Transformation
Stufe in TASK 4 und einem Ausgabetask (TASK 5) verarbeitet.

Die Tasks der Pipelines wurden zeilenweise auf die PEs abgebildet. Anschlie-
Bend wurde das Modell mit einer Granularitat von Tiles (1 Tile=1PE+ 1 NI + 1
RO) partitioniert und moglichst gleichméfsig auf logische Prozesse verteilt. Dabei
wurde darauf geachtet, dass sich moglichst immer benachbarte Tiles in einer Mo-
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dellpartition befinden. Auf jedem SCC Kern wurde dann ein logischer Prozess
ausgefiihrt. Falls die Anzahl an logischen Prozessen kleiner war als die Anzahl
an SCC Kernen, so wurden die iibrigen SCC Kerne nicht verwendet. Die Simu-
lation wurde bei einer simulierten Taktfrequenz von 100 MHz ausgeftihrt. Dies
resultierte generell in einer annotierten Verzdgerung von % = 5ns und damit
einem generellen Lookahead von Al™ = 4.9ns. Die gemessenen Charakteristika
der Beschleunigung sind in den Abb. 4.24 und 4.25 dargestellt.

25
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N m 4 SCC cores
E’ g 20 1| m8'SCC cores
2 8 m 16 SCC cores
<
g F 15 32 SCC cores
o< 48 SCC cores
E§
E3
8 10 4
S5
T »n
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2x2 3x3 4x4 5x5 6x6 <7 8x8

Model Size

Abbildung 4.24.: Beschleunigung RTL parallel vs. RTL seriell

Abb. 4.24 zeigt die Beschleunigung reiner RTL Modelle mit Dimensionen von
2x2 bis 8x8. Im Unterschied zum asymmetrischen Verfahren war die Beschleuni-
gung in allen gemessenen Fillen grofier als 1.0x. Die Beschleunigung kleinerer
Modelle ist aus zwei Griinden limitiert: Zum einen beschrénkt die grobgranu-
lare Partitionierung die maximale Anzahl moglicher Partitionen (im Fall eines
2x2 Modells ist diese Limitiert auf vier). Nimmt man eine konstante Anzahl an
Partitionen an, so bieten grofse Modelle ein besseres Verhiltnis zwischen paralle-
lisierbaren und nicht parallelisierbaren Anteilen bzw. von Berechnungsanteilen
zu Kommunikationsanteilen. Beispielsweise steigt die Beschleunigung von 2.5x
auf 3.6x, wenn man anstelle eines 2x2 Modells ein 4x4 Modell auf vier Partitionen
verteilt simuliert.

Die grofite Beschleunigung wurde im Fall eines 8x8 Modells gemessen, das auf
48 SCC Kernen ausgefiihrt wurde. Sie betrédgt 25.3x. Dieser Wert ist nahezu iden-
tisch zu dem Wert, der fiir das gleiche Modell auf nur 32 SCC Kernen gemessen
wurde. Ein Grund dafiir ist, dass mit 48 SCC Kernen das Limit der verfiigbaren
Kerne erreicht ist. Die Anzahl der in beiden Féllen genutzten SCC Kerne un-
terscheidet sich nur noch um den Faktor 1.5 und nicht um den Faktor 2.0, wie
in allen anderen Fillen. Auflerdem resultiert die Nutzung von 32 SCC Kernen
in Kombination mit einem 8x8 Modell in einer idealen Partitionierung, bei der
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jeder SCC Kern zwei HeMPS Tiles simuliert. Im Gegensatz dazu ist die Partitio-
nierung im Fall von 48 SCC Kernen unausgewogen: 32 SCC Kerne simulieren
nur ein Tile wihrend die tibrigen 16 Kerne zwei Tiles ausfithren miissen.
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g ’96? 40 || 8SCCecores
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Abbildung 4.25.: Beschleunigung CAS parallel vs. RTL seriell

Tauscht man die auf RT Level modellierten Plasmakerne gegen die CAS aus,
so kann die Beschleunigung im Vergleich zur reinen RTL Simulation weiter ge-
steigert werden. Die Messergebnisse sind in Abb. 4.25 dargestellt. Im Vergleich
zu sequentieller RTL Simulation wurde bei CAS-basierter Simulation fiir ein 8x8
Modell auf 32 SCC Kernen eine Beschleunigung von 56.3x gemessen. Die zusatz-
liche Beschleunigung ist auf die hohere Abstraktion der CAS zuriickzufiihren.
Eine interessante Beobachtung ist die Tatsache, dass die Beschleunigung auf 32
SCC Kernen grofSer war als auf 48 Kernen. Dies kann auf die gleiche Ursache zu-
riickgefiihrt werden wie die limitierte Beschleunigung des reinen RTL Modells
auf 48 SCC Kernen. Im Fall der CAS tritt der Effekt wegen der geringeren paral-
lelisierbaren Anteile im Modell stdrker in Erscheinung.

4.4.9.2. Evaluation des Einflusses der Modellabbildung

In einer zweiten Untersuchung wurde der Einfluss betrachtet, den die Art und
Weise der Abbildung I) von Tasks der simulierten Anwendung auf das Simula-
tionsmodell II) des Simulationsmodells auf den SCC hat. Daftir wurde zunéchst
eine fiinf Tasks umfassende Dummy Applikation geschrieben. Ahnlich wie bei
der MPEG Applikation aus dem vorigen Abschnitt, bilden die Tasks eine Pipe-
line, bei der jeder Task nur mit seinem Vorgédnger und seinem Nachfolger kom-
muniziert. Die Tasks fithren eine Endlosschleife aus, in der so viele Nachrichten
wie moglich tiber das NoC an den jeweiligen Nachfolgetask geschickt werden.
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Fiinf Instanzen dieser Applikation wurden horizontal und zeilenweise auf ein
5x5 HeMPS Modell abgebildet. Dies ist in Abb. 4.26 dargestellt.

ojojo/0/0

©/ojej0/0
©jo0/0/0/0

H ?Vertical Partitioning O Horizontal Partitioning

Abbildung 4.26.: Abbildung von Tasks und Modellpartitionen

AnschlieBend wurde das Modell zunichst ebenfalls horizontal (identisch zur
Orientierung der Pipelines) und dann vertikal (orthogonal zur Orientierung der
Pipelines) partitioniert. Wegen des XY Routings des Hermes NoCs war im ersten
Fall die Kommunikation zwischen Tasks ausschlieilich auf Modellpartitionen
beschrdnkt und damit rein intern. Im zweiten Fall kommunizierten hingegen nur
Tasks miteinander, die in unterschiedlichen Modellpartitionen ausgefiihrt wur-
den. Die fiinf logischen Prozesse wurden schliefllich in einer Reihe nebeneinan-
der auf fiinf SCC Kerne abgebildet. Die Simulation wurde fiir 107 simulierte Zy-
klen unter Verwendung von RTL und CAS-basierten Plasmakernen ausgefiihrt.
Tabelle 4.1 zeigt die gemessenen Laufzeiten der beschriebenen vier Félle (Fille
A-D) relativ zu CAS-basierter Simulation mit horizontaler Partitionierung (Fall
A).

Durch den Wechsel von den CAS zur RTL Beschreibung wird die Laufzeit erwar-
tungsgemafl mehr als verdoppelt. Vergleicht man fiir beide Félle die Partitionie-
rung, so resultiert eine vertikale im Vergleich zur einer horizontalen Partitionie-
rung in einer Erhohung der Laufzeit um nur 1% fiir die CAS basierte Modell
und um 3,7% fiir das RTL Modell. In beiden Féllen, CAS und RTL tiberwiegt
auch fir vertikale Partitionierung offensichtlich weiterhin der Aufwand fiir die
Berechnung des Simulationsmodells gegeniiber der Kommunikation zwischen
logischen Prozessen.

132



4.4. Symmetrische asynchrone Strategie

4.4.9.3. Diskussion

Die Messergebnisse zeigen, dass der Ubergang vom asymmetrischen zum sym-
metrischen Verfahren in Kombination mit statischer Partitionierung zu einer si-
gnifikanten Steigerung der Effizienz zyklenakkurater MPSoC Simulationen bei-
tragen kann. Dies ist zum einen auf die Reduktion des Synchronisationsaufwan-
des zuriickzufiihren, die mit der Relaxation auf die Ebene von Timed Notificati-
ons einhergeht. Zum anderen wird die Skalierbarkeit durch den Ubergang von
einem zentralen zu einem dezentralen Verfahren verbessert, welches ausschliefs-
lich nachrichtenbasierte On-Chip Kommunikation nutzt.

Dariiber hinaus konnte gezeigt werden, dass bei zyklenakkuraten signalbasier-
ten Modellen eine leichte Abhdngigkeit der Ausfiihrungsperformanz von der
auf dem MPSoC Modell ausgefiihrten Software existiert. In diesem Zusammen-
hang soll spater untersucht werden, inwieweit dies auch fiir abstraktere MPSoC
Modelle gilt.

Ein Nachteil der verwendeten Annotationsmethode ist die Tatsache, dass kriti-
sche Zyklen zwischen logischen Prozessen unbedingt vermieden werden mdiis-
sen. Dadurch ist die Anzahl moglicher Partitionierungen beschrankt. Aufierdem
geht durch die Annotationsmethode Genauigkeit verloren: Beispielsweise kann
in Abhédngigkeit von Partitionierung und Annotationen eine unterschiedliche
Anzahl an Deltacycles und Timedcycles auftreten. Auch die parallele Simulation
eines RTL Modells mit unvollstandigen Sensitivitatslisten fithrt u.U. zu anderen
Ergebnissen als eine sequentielle Simulation des Modells.

Die beschriebene Kernelimplementierung verursacht zusétzlich eine nicht-deter-
ministische Anzahl an Deltacycles pro Timedcycle. Deltaereignisse werden iiber
mehrere Timed- und Deltacycles verschmiert. Dies ist evtl. nicht fiir alle denkba-
ren Verifikationsszenarien wiinschenswert. Die Kernel API zur Partitionierung
eines Simulationsmodells limitiert die Granularitit auf Toplevel Module. In Ver-
bindung mit der teilautomatisierten der Werkzeugkette ist die Flexibilitdt be-
schrankt, da der Generator im Falle eines anderen Modells adaptiert oder kom-
plett neu entwickelt werden muss.

Tabelle 4.1.: Einfluss von Task- und Modellabbildung
Fall Partitionierung Plasma Modell Relative Laufzeit

| |
A | horizontal | CAS \ 1 \
B | vertikal \ CAS \ 1.01 \
- C | horizontal | RTL ‘ 2.42 |
D | vertikal | RTL | 251 |
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4.5. Adaptive symmetrische Strategie

Im folgenden Abschnitt wird ein adaptiver Ansatz vorgestellt, der mit dem Ziel
entwickelt wurde, die Nachteile bzgl. Annotation, Partitionierung und Determi-
nismus der symmetrischen asynchronen Strategie aus dem vorigen Abschnitt
auszugleichen. Globale Synchronisation wird so weit wie moglich vermieden.
Dazu wird eine Kombination aus rein lokaler und kollektiver Synchronisation
in abgeschlossenen Bereichen der logischen Prozesstopologie angewendet. Dies
erfordert eine umfassende modell- und plattformadaptive Konfiguration der Si-
mulationsumgebung. Als Voraussetzung dafiir ist eine tiefgreifende Modellana-
lyse erforderlich. Zur Unterstiitzung von Konfiguration und Modellanalyse wird
der Ansatz daher durch eine vollstindig automatisierte Werkzeugkette ergéanzt.
Im folgenden Abschnitt werden zunichst Konzepte und Implementierungsa-
spekte beleuchtet. Anschliefend wird der Ansatz in einer umfangreichen Fall-
studie bewertet. Ein Grofsiteil der Ergebnisse dieses Abschnitts wurde im Rah-
men einer vom Autor betreuten Masterarbeit [Red14] erarbeitet und ist in Zu-
sammenarbeit entstanden. Teile sind in [RRB*14] publiziert.

4.5.1. Anforderungen

Fiir die adaptive symmetrische Strategie wurde Anforderung V aus Abschnitt
4.4.1 in folgender Form modifiziert:

V) Synchronisation: Eine globale Synchronisation soll soweit wie moglich ver-
mieden werden.

Daneben wird eine zusatzliche Anforderung gestellt:

VI) Delta Notifications: Die durch die Deltacycles definierte partielle Ordnung
soll erhalten bleiben.

4.5.2. Adaptive logische Ebene

Bei der symmetrischen asynchronen Strategie aus Abschnitt 4.4 wird auf die de-
terministische Synchronisation des Deltacyclezdhlers § zugunsten eines skalaren
Zeitmodells verzichtet. Um die durch die Deltacycles definierte partielle Ord-
nung zu erhalten, ist eine Synchronisation des Deltacyclezihlers ¢ allerdings un-
verzichtbar. Um dies auch ohne globale Synchronisation zu ermoglichen, wird
zundchst ein angepasstes Zeitmodell eingefiihrt. Darauf basierend werden an-
schlielend weitere geeignete Modelleigenschaften formuliert, die eine genaue-
re Klassifikation von logischen Links als in Abschnitt 4.4.3.4 erlauben. Dies ist
die Voraussetzung fiir die Ableitung unterschiedlicher Kausalitdtsbedingungen
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innerhalb logischer Prozesse und die (weitgehende) Vermeidung globaler Syn-
chronisation bei gleichzeitig deltazyklengenauer paralleler Ausfiihrung.

4.5.2.1. Angepasstes SystemC Zeitmodell

Beim Zeitmodell des SystemC Standards [27] z&dhlt  die innerhalb eines gesam-
ten Simulationslaufes ausgefiihrten Deltacycles und ist unabhéngig von 7 (vgl.
Abschnitt 2.3.2.2). Zur vollstindigen Vermeidung globaler Synchronisation ist
es vorteilhaft, von diesem Modell auf eine Variante iiberzugehen, bei der nicht
mehr die Deltacycles einer gesamten Simulationsausfithrung, sondern mit einer
Variablen 6 jeweils die Deltacycles innerhalb einzelner Zeitschritte bzgl. T ge-
zahlt werden. 6 wird dann zu Beginn eines jeden Zeitschritts auf null gesetzt. In
dieser Weise ist beispielsweise auch das Zeitmodell der DE Doméne von Ptole-
my II [217] implementiert.

Durch das Zurticksetzen von 6 mit jedem Zeitfortschritt bzgl. T wird eine Bezie-
hung zwischen T und 6 hergestellt, anhand derer man auftretende Notifications
in einer parallelen Simulation bestehend aus mehreren logischen Prozessen bis
auf die Ebene von Deltacycles leichter partiell ordnen kann. Insbesondere er-
moglicht es diese Art der Zeitmodellierung den logischen Prozessen, zu einem
Simulationszeitpunkt T eine unterschiedliche Anzahl an Deltacycles ausfiihren,
ohne miteinander explizit synchronisieren zu miissen. Man denke hier an zwei
logische Prozesse Ip; und Ip,, die ausschliefilich {iber einen logischen Link /1,
von [pj nach /p, miteinander verbunden sind. In diesem Fall kann Ip; u.U. eine
groflere Anzahl an Deltacycles bei einem bestimmten T ausfiihren als /p;, ohne
die Notwendigkeit, dies /p; mitteilen zu miissen.

4.5.2.2. Deterministisches Basisverfahren zur Synchronisation

Mit dem vektoriellen Zeitmodell miissen Zeitstempel (z.B. von Signalnachrich-
ten) sowie der Lookahead um 6 ergdnzt werden. Die Linkzeit aus Definition 4.7
und die LOC Bedingung aus Definition 4.8 werden dann durch eine erweiterte
Linkzeit und eine erweiterte LOC Bedingung ersetzt:

Definition 4.11 (Erweiterte Linkzeit): Die erweiterte Linkzeit tf}”k = (mj, 0;)
eines logischen Links I;; von Ip; nach lp; entspricht der letzten in Ip; bekannten lokalen
Zeit t; = (7;,0;) von Ip;.

Definition 4.12 (ELOCC: Extended Local Causality Condition): Ein logischer Pro-

zess Ip; darf das niichste Ereignis bei t}“"t = (Tj””t, 6}”’“) verarbeiten, wenn
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Wip; € LPI - grest < link 4 ALY, (4.9)

Fiir den maximal moglichen Zeitfortschritt gilt:

_ e link 0
tr = n\w;lin(ti;-” + ALY (4.10)

Um das Evaluate/Update Paradigma korrekt und deterministisch auszufiihren,
muss garantiert sein, dass alle Signalnachrichten fiir einen Deltacycle empfan-
gen wurden, bevor dieser ausgefiihrt wird. Angenommen, der Lookahead eines
logischen Links ist generell durch AI™® = (0,1) gegeben. Neben einem kausal
korrekten Zeitfortschritt garantiert die Einhaltung der erweiterten lokalen Kau-
salititsbedingung genau dann zuséitzlich den vollstindigen Empfang aller Si-
gnalnachrichten fiir einen Deltacycle in Ip;, bevor dieser ausgefiihrt wird, wenn

1. Ip; die Linkzeit im Unterschied zu Abschnitt 4.4.3.2 nur noch tiber eine lo-

kal externe Variable tf»"”k ableitet und nicht mehr zusétzlich den Zeitstempel
von Signalnachrichten nutzt.

2. Ip; die Variable /" immer nur dann auf den Wert des gerade ausgefiihr-
ten Deltacycles inkrementiert, wenn bereits alle Signalnachrichten, die im
gerade ausgefiihrten Deltacycle generiert wurden, verschickt sind.

Basierend auf dem angepassten Zeitmodell und dem beschriebenen Basisverfah-
ren werden in den weiteren Abschnitten spezielle Eigenschaften von RTL u.4. si-
gnalbasierten Modellen identifiziert, die fiir eine genauere Klassifikation von lo-
gischen Links in deadlock-kritisch und -unkritisch genutzt werden kénnen. Die
neue Klassifikation ist die Voraussetzung fiir die Vermeidung globaler Synchro-
nisation trotz eines generellen Lookaheads von Al = (0,1). Bei den folgenden
Definitionen wird daher einer genereller Lookahead von Al™® = (0,1) voraus-
gesetzt.

4.5.2.3. Kanalaktivitit

Eine geeignete Modelleigenschalft, die als Grundlage zur Klassifikation logischer
Links im Hinblick auf den Erhalt der durch die Deltacycles definierten partiellen
Ordnung dienen kann, ist die Kanalaktivitiit:
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Definition 4.13 (CAP: Channel Activity Property): Ein SystemC Primitive Chan-
nel ch wie z.B. ein Signal ist aktiv (bzgl. des SystemC Prozesses p), wenn p sensitiv auf
ch ist. Ansonsten ist ch passiv (bzgl. p).

In einem RTL Modell ist ein Signal s aktiv bzgl. Prozess p, wenn das Signal Teil
der statischen Sensitivitdtsliste von p ist. Passive Signale treten typischerweise in
synchronen Prozessen auf, die nur auf ein Taktsignal sensitiv sind. In diesem Fall
sind alle Signale aufler dem Taktsignal passiv bzgl. des synchronen Prozesses, da
deren Wertdnderung nur infolge einer bzgl. T verzogerten Taktflanke ausgelesen
werden kann.

Mit der CAP kann aus dem Prozess-Signal Graphen Gps (P, S) aus Definition 4.2
der sog. Sensitivititsgraph Gg(P, E) abgeleitet werden. Dieser ist spéter fiir die
Identifikation weiterer Modelleigenschaften notwendig. Im Gegensatz zu Gpg
enthidlt G nur dann eine gerichtete Kante ¢,, von Knoten p, nach p;, wenn p,
auf mindestens eines der Signale, die p, und p;, verbinden, zusétzlich sensitiv ist.
Dabei sind Taktsignale nicht Teil von Gg. Abb. 4.27 illustriert beispielhaft einen
Sensitivitatsgraphen mit Prozessen p; bis p7. In der Abbildung werden die Pro-
zesse p1 und p; durch ein zeitverzogerndes Taktsignal (zeitgesteuertes Ereignis-
objekt w?) aktiviert. Infolge der Aktivitdt von Signalen konnen u.U. alle anderen
(sensitiven) Prozesse auch ausgefiihrt werden. Aus der Aktivitdt von Signalen
kann folgende Definition fiir die Aktivitdt eines logischen Links abgeleitet wer-
den:

Definition 4.14 (LAP: Link Activity Property): Ein logischer Link l;; heifit aktiv
(bzgl. Ip;), wenn die Kernelkomponente in Ip; durch eine iiber l;; iibertragene Nachricht
eine Aktivierung eines SystemC Prozesses auslosen kann, ansonsten heifit l;; passiv.
Bzgl. SystemC RTL heifit 1;j folglich aktiv, wenn l;; mindestens ein Signal biindelt, das
durch eine Kante e € Gs(P, E) reprisentiert wird. Ansonsten heifit ;; passiv.

Da passive logische Links SystemC Prozesse nicht aktivieren kénnen, miissen
sie im Empfianger bei der Priifung der ELOCC im Kontext des Zeitfortschritts
nicht berticksichtigt werden, sondern nur im Kontext einer deterministischen
Nachrichteniibertragung. Ersteres ist moglich, da die Generierung zyklischer
Abhéngigkeiten auf der Ebene von Deltacycles {iber passive logische Links aus-
geschlossen ist. Letzteres ist moglich, wenn die in Abschnitt 4.5.2.2 beschriebe-
nen Anderungen am Basisverfahren verwendet werden. Dies fiihrt zur modifi-
zierten ersten Bedingung fiir Link Kritikalitdt (vgl. Definition 4.10):

Definition 4.15 (MLCC1: Modified First Link Criticality Condition): Ein delta-
verzogerter logischer Link ist deadlock-unkritisch, wenn er passiv ist.
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In der Implementierung kann die unterschiedliche Art der Nutzung der ELOCC
durch zwei aufeinanderfolgende Priifungen der ELOCC realisiert werden, wobei
passive und damit unkritische logische Links zwar bei der Priifung der vollstdn-
digen Ubermittlung von Nachrichten fiir einen Deltacycle vor der Ausfithrung
dieses Deltacycles berticksichtigt werden miissen, nicht aber bei der Priifung ei-
nes moglichen Zeitfortschritts bzgl. T.

4.5.2.4. Delta-Beschranktheit

Um die Chance fiir deadlock-unkritische logische Links weiter zu vergrofiern
und damit die Anzahl valider Partitionierungen des Modells zu erhohen, wird
eine weitere Modelleigenschaft in Betracht gezogen. Diese wird als Delta-Be-
schriinktheit oder schlicht Beschrinktheit von SystemC Prozessen oder SystemC
Signalen bezeichnet:

Definition 4.16 (DBP: Delta-Boundedness Property): Ein Prozess p heifit delta-
beschrinkt bzgl. eines zeitgesteuerten Ereignisobjekts w®, wenn es moglich ist, aus-
gehend von einer Timed Notification nj, von w? eine maximale Anzahl an Deltacycles
A’;,"””d(wr) < oo zu bestimmen, ab der Aktivierungen von p bis zur nichsten Timed
Notification ausgeschlossen werden konnen. AZO””d(aJT) wird als Delta-Schranke von
Prozess p bzgl. w" bezeichnet.

Ein SystemC Signal s heifit delta-beschrinkt bzgl. eines zeitgesteuerten Ereignisob-
jekts w?, wenn es maglich ist, ausgehend von einer Timed Notification nl, von w® eine
maximale Anzahl an Deltacycles A" (wT) < oo zu bestimmen, ab der schreiben-
de Zugriffe auf s bis zur nichsten Timed Notification ausgeschlossen werden konnen.
AL () wird als Delta-Schranke von Signal s bzgl. wT bezeichnet.

Da wegen MLCC1 bereits ausgeschlossen ist, dass passive logische Links zu ei-
nem Deadlock fiithren konnen, ist die Eigenschaft der Delta-Beschréanktheit letzt-
lich nur fiir aktive Signale relevant. Daher geniigt es, diese Eigenschaft anhand
des im vorigen Abschnitt eingefiihrten Sensitivitidtsgraphen Gg herzuleiten.

Bestimmung der Delta-Beschrdnktheit von Prozessen

Man betrachte erneut den Sensitivitatsgraphen Gg aus Abb. 4.27. Die Prozesse
p1 und p, werden aufgrund eines zeitverzogernden Taktsignals clk aktiviert. Die
Zeitverzogerung wird signalintern mit Hilfe des zeitgesteuerten Ereignisobjekts
w? erreicht. Prozesse, die unmittelbar auf zeitgesteuerte Ereignisobjekte sensi-
tiv sind, werden immer im ersten Deltacycle (§ = 0) nach dem Auftreten der
zugehorigen Timed Notification ausgefiihrt. Folglich ist fiir jedes zeitgesteuerte
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Ereignisobjekt w® € Q) eine Menge R(w®, 8 = 0) C R von lauffahigen Prozessen
definiert, die nach der Timed Notification von w? in Deltacycle § = 0 garantiert
evaluiert werden.

Bei bekanntem Ereignisobjekt w™ kann man die Beschaffenheit von R(w™,0 = 0)
durch statische Analyse vollstindig herleiten. Fiir > 0 lasst sich R(w",6) al-
lerdings vor der Laufzeit nicht mehr exakt vorherbestimmen. Eine genaue Be-
stimmung von R(w?,0) ist nur noch durch eine dynamische Analyse moglich,
wie sie typischerweise zur Generierung eines DDG verwendet wird (vgl. Ab-
schnitt 4.2.4.1). Ein DDG ist allerdings deswegen nicht fiir die Herleitung von
Delta-Schranken geeignet, da er nur einen einzigen, meist zeitlich beschrankten
Ausfithrungspfad und nicht alle moéglichen Ausfithrungspfade vollstandig be-
schreibt.

Alternativ kann man im Rahmen einer statischen Abhangigkeitsanalyse jedoch
die Mengen der Prozesse R (w7, 0) bestimmen, die im Zyklus 6 potentiell evalu-
iert werden. Beginnend bei der bereits bekannten Menge R(wT, 0) konnen die
Mengen fiir § > 0 somit konservativ geschétzt werden. Fiir den Deltacycle 6 gilt
dann im Allgemeinen R(w?,0) C R(w?,0).

Aufgrund der Sensitivitidt miissen Prozesse in R(w?, 6 + 1) von einer Delta No-
tification aktiviert worden sein, die einer der Prozesse in R (w7, 0) generiert hat.
Die Evaluation eines Prozesses, der durch einen Knoten p; in Gg représentiert
wird, kann nur dann per Delta Notification von einem Prozess ausgeldst wor-
den sein, der durch einen Knoten p; in Gg reprasentiert wird, wenn von p; zu
p; eine gerichtete Kante existiert. Dieser Zusammenhang kann allgemein durch
den folgenden Ausdruck beschrieben werden:

R(w™,0+1) ={p;:Jejj e EAp; € R(w",0)} (4.11)

Damit Prozesse einer beliebigen Menge R(w?,0 + n) mit n € IN\{0} von Pro-
zessen der Menge R (w7, 0) direkt oder indirekt aktiviert werden kénnen, miis-
sen erstere tiber einen Pfad in Gg von letzteren aus erreichbar sein. Oder anders
ausgedriickt: Zu einem beliebigen Prozess p; € R(wT,0), der potentiell bei Del-
tacycle 6 evaluiert wird, muss ein sog. Aktivierungspfad der Lange 0 im Graphen
Ggs existieren, der bei einem durch w? aktivierten Prozess beginnt. Die Mengen
R(wT?,0) konnen mit Hilfe einer Tiefensuche [152] bestimmt werden, die fiir je-
den Prozess p; € R(wT,0) mit p; als Startknoten wiederholt wird.

Fiir einen bestimmten Prozess p; kann u.U. ein unendlich langer Aktivierungs-
pfad existieren, ndmlich dann, wenn p; Teil eines Zyklus in Gg ist oder von einem
Zyklus aus erreichbar ist. p; ist dann in unendlich vielen Mengen R (w7, ) ent-
halten.
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Sofern p; nicht von einem Zyklus aus erreichbar ist, kann man eine obere Schran-
ke Aé’,‘;””d(wT) fiir den letztmoglichen Deltacycle angeben, in dem p; evaluiert

wird. Der Wert von Ag‘z”"d(wr) entspricht der Lange des langsten Aktivierungs-
pfades, der in p; endet. Falls AZ?””‘Z (wT) < o0, so gilt allgemein:

0 > AL (7Y = p; ¢ R(wT,0) = pi & R(w",6). (412)

Die Auflistung aller Mengen R (w7, ), in denen ein SystemC Prozess p; enthal-
ten ist, zusammen mit dem Wert der Delta-Schranke AZ‘;“”d(wT), sofern diese
existiert, wird im Folgenden auch als das sog. Aktivititsmuster von p; bzgl. w*®
bezeichnet.

Im Beispiel aus Abb. 4.27 sind die Prozesse p4, ps und pe Teil eines unend-
lich langen Aktivierungspfades. Fiir den Prozess p3 aus Abb. 4.27 gilt hingegen
Abound( ) — 1.

Bestimmung der Delta-Beschrinktheit von aktiven Signalen

Kommunikation tiber Signale besteht immer aus einem Schreib- und einem zu-
gehorigen Lesevorgang. Die Kommunikation eines Prozesses p; mit einem Pro-
zess p; liber ein aktives Signal, welches durch eine Kante ¢;; im Graphen Gg re-
présentiert wird, ist erst dann vollstdndig abgeschlossen, wenn das Signal nach
einem Schreibvorgang von p; zum ersten Mal von p; gelesen wird. Etwas for-
meller ausgedriickt, muss fiir eine Kommunikation bei ein und demselben t
ein Schreibvorgang bei einem tﬁ‘;},’ite = (1, 9;‘;’”6) und ein Lesevorgang bei ei-
nem t’e"d = (1, 9;;””’) erfolgen. Wegen der Delta-Verzogerung von Signalen muss

tﬁ,‘l’]”” < t””d gelten. Im Allgemeinen ist bei gleichem T potentiell Kommunikation
tiber ein aktlves Signal moglich, das durch eine Kante e;; € Gs(E, P) reprasen-

tiert wird, wenn

pi € R(WT, 9;7.;1'“) Apj € R(wT, egfjﬂd) mit 93;},’“@ < egfjad. (4.13)

Um fiir ein durch e;; représentiertes aktives Signal eine Delta-Schranke bzgl. w®
herzuleiten, muss der letzte Deltacycle 8 bestimmt werden, in dem Kommuni-
kation tiber e;; innerhalb eines durch w" ausgeldsten Timedcycles moglich ist.
Dieser kann mit Hilfe der Delta-Schranke Ag"“”d( *) des auf ¢;; schreibenden
Prozesses p; berechnet werden. Spezifiziert man die Delta-Schranke von ¢;; mit
dem letztmoglichen Schreibzeitpunkt (der Lesezeitpunkt ergibt sich aufgrund
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R(w",3) Ps Ps

Abbildung 4.27.: Sensitivitdtsgraph Gg mit den Mengen R(w",0) (Quelle:
[Red14])
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der Aktivitatseigenschaft durch Addition von eins), so kann A?g””d (wT) wie folgt
bestimmt werden:

AL (@T) = AL (). (4.14)

C,]

Basierend auf der Definition der Delta-Beschrianktheit von einzelnen Signalen
lasst sich die Eigenschaft der Delta-Beschranktheit fiir einen logischen Link wie
folgt definieren:

Definition 4.17 (LBP: Link Boundedness Property): Ein logischer Link | heifst delta-
beschrinkt bzgl. eines Ereignisobjekts w”, wenn auf | delta-beschriinkte aber keine un-
beschriinkten aktiven Signale abgebildet sind. AY“"(w"), die Delta-Schranke von |
bzgl. w®, entspricht dem Maximum der Delta-Schranken aller auf | abgebildeten aktiven
Signale bzw. der sie repriisentierenden Kanten aus dem Sensitivititsgraphen Gg:

Abound _ Abound ) 4.15
[ (w") = v‘rare%)( (w®)) (4.15)

Dabei bezeichnet E(I) C E hier die Teilmenge der Signalkanten aus Gg, die auf
I abgebildet sind. Aus der Delta-Beschranktheit folgt fiir die Kritikalitat aktiver
logischer Links:

Definition 4.18 (LCC2: Second Link Criticality Condition): Ein delta-verzigerter
und aktiver logischer Link ist deadlock-unkritisch, wenn er delta-beschriinkt ist. Ansons-
ten ist er deadlock-kritisch.

Angenommen I/p; und Ip; sind durch einen delta-beschrinkten logischen Link
lij verbunden. Um kausale Korrektheit wihrend der parallelen Simulation zu
gewdhrleisten, muss innerhalb eines Timedcycles exakt nach dem Deltacycle,
welcher durch die Delta-Schranke Abm‘”d spezifiziert ist, zum letzten Mal zwi-

schen Ip; und Ip; synchronisiert werden bevor der nédchste Zeitfortschritt bzgl.
T durchgefiihrt werden kann. Anschlieffend existieren dann keine echten Da-
tenabhéngigkeiten mehr auf /;; zum aktuellen Zeitpunkt 7. Im Allgemeinen gilt
folgende zusitzliche Kausalitdtsbedingung:
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Definition 4.19 (LOBC: Local Bound Condition): Ein logischer Prozess Ip; hat die
Delta-Schranke iiberschritten, sobald folgende Bedingung fiir alle eingehenden aktiven,
delta-verzigerten aber delta-beschriinkten logischen Links I;; € L}’ erfiillt ist:

Vi i # j > (g, 80 (wT)). (4.16)

Wird das SystemC Modell so auf logische Prozesse abgebildet, dass keine kriti-
schen Zyklen existieren, dann ist die Erfiillung der LOBC ein weiteres notwendi-
ges Kriterium fiir einen Zeitfortschritt bzgl. T. Hinreichend ist nur die Erfiillung
von beiden Kausalitdtsbedingungen, der ELOCC und der LOBC.

4.5.2.5. Dynamische Auflésung zirkuldrer Abhdngigkeiten

Deadlock-unkritische logische Links sind fundamental fiir die Vermeidung von
kritischen Zyklen im Graphen der logischen Prozesse Gy p. In manchen Fillen
kann die Abbildung eines Modells auf logische Prozesse, ohne dabei kritische
Zyklen zu generieren, u.U. aber zu einer unausgeglichenen Partitionierung fiih-
ren, die die Performanz negativ beeinflusst. Aus diesem Grund ist es wiinschens-
wert, Zyklen in manchen Regionen der Topologie von Grp zu erlauben aber
gleichzeitig Mechanismen bereitzustellen, mit deren Hilfe Deadlocks wihrend
der Laufzeit aufgelost werden konnen.

Als ein Beispiel betrachte man die logischen Prozessgraphen Grp and G in
Abb. 4.28. Im Unterschied zu Gy p aus Abb. 4.18 sind die Links lp; and l74 nun
deadlock-kritisch. Dies resultiert in der Existenz von zwei disjunkten stark zu-
sammenhéingenden Komponenten (engl. Strongly Connected Components (SCC))
in G¢If mit einer Kardinalitit grofer oder gleich zwei, namlich {Ipy,Ip;} und
{lpa,1ps,1py,Ips}. Diese werden als Dominen (engl. Domain) bezeichnet:

Definition 4.20 (Domidine | Domdnenprozess): Gegeben sei ein logischer Prozess-
graph Gpp und dessen Teilgraph GS7i!, der nur deadlock-kritische logische Links beinhal-
tet. Mit der Menge der stark zusammenhiingenden Komponenten SCC (Girlét) von Gzrlﬁt
ist die Menge der disjunkten Domdnen durch

DOM = {domy, ...dom, } = {scc € SCC(GS! : |scc| > 1)

gegeben. Ein logischer Prozess lp ist Teil einer Domine domy, wenn eine Abbildung
domain(lp) existiert, sodass
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domain(lp) = [domy, € DOM : Ip € domy|

gilt. Ip wird dann als Domdnenprozess bezeichnet.

domg

" b @

Circular
—» dependency loop
of critical links

Abbildung 4.28.: Grp (links) und GE’I? (rechts) mit zirkuldren Abhangigkeiten
zwischen deadlock-kritischen logischen Links

Bei Existenz von kritischen Zyklen kann ein Doménenprozess Ip; € dom keine
Riickschliisse mehr iiber die maximale Anzahl an Deltacycles ziehen, bis zu der
er mit adjazenten logischen Prozessen auf der Ebene von Deltacycles synchroni-
sieren muss, bevor er einen Zeitfortschritt bzgl. T durchfiihren darf. Ausschlief3-
lich das Wissen tiber den lokalen Zustand eingehender logischer Links reicht in
diesem Fall fiir die Erkennung eines validen Zeitfortschritts bzgl. T nicht aus.
Beispielsweise kann Ip, in G’/ aus Abb. 4.28 nicht wissen, ob Ips in einem be-
stimmten Deltacycle 0 eine Nachricht an /p; verschickt hat, die /p; dazu veran-
lasst, in Deltacycle 6 + 1 an Ip4 eine weitere Nachricht zu senden.

Folglich ist es die Aufgabe eines Domédnenprozesses, trotz kritischer Zyklen in
Girlét zu verhindern, dass innerhalb des Zeitschritts T eine unendliche Anzahl an
Deltacycles 6 ausgefiihrt wird und somit ein Deadlock entsteht. Die gewahlte
Losung basiert auf einer doméneninternen kollektiven Deadlockerkennung zur
Laufzeit. Dazu wird ein einzelner Doménenprozess als Master auf logischer Ebe-
ne deklariert (z.B. Ips fiir domy in Abb. 4.28), alle anderen als Slaves.

Sobald sich ein Slave im lokalen Wartezustand befindet, informiert er den Master
seiner Doméne iiber einen aus seiner lokalen Sicht moglichen Zeitfortschritt bzgl.
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7. Mit Hilfe der lokalen Sichten der Slaves generiert der Master eine domdnenweite
Sicht. Mit dieser kann der Master priifen, ob ein Zeitfortschritt bzgl. T tatsachlich
moglich ist. Die domédnenweite Sicht kann z.B. anhand gemeinsam genutzter Va-
riablen erzeugt werden. Aktuell existieren dazu fiir jeden Domé&nenprozess [p;
zwei lokal externe Datenfelder, tfy "= (Tl.sy ", nync) und t;.nSg = (TimSg , GTSg ). Im
ersten Datenfeld legt ein Slave Ip;, der sich im lokalen Wartezustand befindet,
seine aktuelle lokale Zeit ¢; ab, in zweiten Datenfeld den Zeitstempel der zu-
letzt iibertragenen Nachricht. Anhand dieser Information priift der Master ob
sog. transiente Nachrichten irgendwo in der Doméne existieren. Dies sind Nach-
richten, die von einem Sender bereits verschickt worden sind, vom Empfanger
allerdings nicht rechtzeitig registriert wurden, so dass dieser aufgrund des loka-
len Wartezustands bereits eine Anfrage an den Master gestellt hat. Wenn keine
transienten Nachrichten existieren, dann liegt der Verklemmungszustand vor:

Definition 4.21 (DSC: Domain Starvation Condition): Befinden sich alle logischen
Prozesse einer Domiine domy, € DOM im lokalen Wartezustand, so befindet sich die
Domiine domy, insgesamt im Verklemmungszustand, wenn folgende Bedingung erfiillt
ist:

{leiedomk:Ri:®AUi:®ANf:®}

A { min  {#7"} > max {£%}+(0 1)] @17
leiedomk ! le,-edomk ! ’

Der obere Teil von Ausdruck 4.17 definiert den lokalen Wartezustand, den jeder
logische Prozess [p; zum Zeitpunkt der Anfrage erreicht haben muss. Mit dem
unteren Teil werden transiente Nachrichten ausgeschlossen. Nur wenn beide Tei-
le von Ausdruck 4.17 erfiillt sind, teilt der Master dies den Slaves mit Hilfe eines
Datenfeldes 87" = (78t §87amt) mit. In dieses schreibt er den Zeitstempel des
néchsten Zeitschritts.

4.5.3. Deltazyklengenaue nachrichtenbasierte Kommunikation

Zur deltazyklengenauen Integration nachrichtenbasierter Kommunikation wird
der in Abschnitt 4.4.4 beschriebene adapterbasierte Mechanismus entsprechend
Abb. 4.29 erweitert. Die Behandlung einer Signalnachricht in insert_message()
héngt wieder vom Zeitstempel der Nachricht und der lokalen Zeit des empfan-
genden logischen Prozesses Ip; ab:
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From Kernel Leyer
E Input/Output Port 2y —

Signal
Module o pre e

[requestiupdate()jf [update() ]

update_process()

Update
skip FIF
——1 o

[delta()] [timed()] [ imm() ]

Ll
Layer insert_message()

.
Qutput Input
Socket Socket

v

doydvpy induy

Abbildung 4.29.: Integration nachrichtenbasierter Kommunikation

1. t"™8 = t;: In diesem Fall erfolgt die Aktualisierung des zugehorigen Signals

durch Aufruf von imm() und Erzeugung einer Immediate Notification di-
rekt.

T8 = 1; A9 > 0;: In diesem Fall wird die Aktualisierung mit delta() um
ein Af verzogert. Falls A8 = 1, so wird durch Aufruf von request_update()
ein normaler E/U basierter Schreibvorgang durchgefiihrt. Falls A8 > 1,
so wird die Nachricht zundchst an den Update FIFO weitergeleitet und
dort zwischengepuffert. Die Aktualisierung wird dann mit Hilfe von up-
date_process() gesteuert, welcher sensitiv auf ein Ereignisobjekt NP ist.
Mit Hilfe von w*"’? werden solange Uberbriickungsereignisse durch Del-
ta Notifications generiert, bis der Deltacycle 6P der obersten Nachricht
im Update FIFO erreicht ist. Dann erst wird die Aktualisierung von upda-
te_process() durch Aufruf von request_update() vorgenommen.

3. ™8 > 1;: Um die Aktualisierung (zusétzlich) bzgl. T zu verzogern, er-
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4.5.4. Integration adaptiver Synchronisation

Zur Beschreibung der Integration des adaptiven Synchronisationsverfahrens mit
einem Kernel k? in einen logischen Prozess [p; werden neben der bindren Varia-

1

ble pass zunéchst folgende zuséatzliche Mengen definiert:

Li* = [4om U L Menge aller Eingangslinks eines logischen Prozesses.

L9om; Teilmenge aller Eingangslinks von adjazenten logischen Prozessen
innerhalb der eigenen Doméne.

Lext = ppaext g Lubext y [bext; Teilmenge der Eingangslinks von adjazenten
logischen Prozessen aufSerhalb der eigenen Doméne.

LPa#xt; Teilmenge der passiven Eingangslinks von L.
Lubext, Teilmenge der delta-unbeschrinkten aktiven Eingangslinks von L.

LPext; Teilmenge der delta-beschrinkten aktiven Eingangslinks von L,

Folgende zusitzliche Aktionen sind notwendig;:

checkELOCC(L,t"*t 9"¢*!): Priife, ob in I p; die ELOC Bedingung aus Defini-
tion 4.12 erfiillt ist. Beziehe dabei nur die durch die Menge L spezifizierten
logischen Links in die Priiffung mit ein. Gib anschliefSend eine 1 zurtick,
falls die ELOC Bedingung erfiillt ist, ansonsten eine 0.

checkLOBC(L): Priife, ob in [p; die LOB Bedingung aus Definition 4.16 er-
fullt ist. Beziehe dabei nur die durch die Menge L spezifizierten logischen
Links in die Priifung mit ein. Gib anschliefSend eine 1 zurtick, falls die LOB
Bedingung erfiillt ist, ansonsten eine 0.

checkDSC(): Priife, ob fiir alle logischen Prozesse, welche Teil der eigenen
Domaéne sind, die DSC aus Definition 4.21 erfiillt ist. Mit Erftillung der DSC
ist aus Sicht der logischen Links der Menge L%°™ ein Zeitfortschritt bzgl. T
moglich. Gib eine 1 zurtick, falls die DSC erfiillt ist, ansonsten eine 0.

dispatchOut(): Leite alle von der lokalen Simulation generierten und evtl.
im lokalen Senderpuffer (vgl. Anhang A.2) zwischengespeicherten Nach-
richten an die logischen Prozesse weiter, fiir die die Nachrichten bestimmt
sind. Falls eine Weiterleitung nicht moglich ist, rufe intern dispatchln() auf
und iteriere solange, bis alle Nachrichten weitergeleitet sind.

dispatchin(): Setze zunéchst die Linkzeit jedes eingehenden logischen Links
auf den Wert der lokal externen #"* Variablen des zugehorigen logischen
Prozesses. Lese dann alle aktuell in den Eingangssockets der eingehenden
logischen Links vorhandenen Nachrichten aus. Identifiziere das zu einer
Signalnachricht gehorige Signal und fiige den empfangenen neuen Signal-
wert 08 durch Aufruf der insert_message() Methode auf dem zugehorigen
Input Adaptor in die Simulation ein. Im Fall passiver Signale kann es vor-
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kommen, dass "% < t;. Dieser Fall wird genauso behandelt wie "% = t;
in Abschnitt 4.5.3.

* skip(): Sei t!"™ = min, eLm(tZ”k + Al]-Ti’e). Falls 7/"** > T;, dann setze 6; =
jiSLi
co. Falls t"* > t; A T"** < 7;, dann setze 0; = 6]"**.
o nextEdgeTime(): Gib den Zeitpunkt T°%¢ der néchsten Taktflanke zuriick.

* updateT(): Aktualisiere die tf»i”k Variable durch Kopieren des Wertes der lo-
kalen Zeit ¢t; in tfi”k.

Abb. 4.30 illustriert den Zustandsautomaten des Verfahrens. Wegen des ange-
passten Zeitmodells wird der Zahler fiir den lokalen Deltacycle §; durch den
synchronisierten Deltacyclezdhler 6; ergénzt. Im Vergleich zu den vorangegan-
genen Verfahren existiert eine weitaus komplexere Kausalititspriifung. Die ent-
sprechenden Priifaktionen checkELOCC(), checkLOBC(), checkDSC() arbeiten
auf den oben genannten Mengen.

Nur wenn im sf¥ Zustand keine lauffihigen Prozesse mehr vorhanden sind,
ist u.U. ein Zeitfortschritt bzgl. T moglich (lokaler Wartezustand). Dazu miissen
ELOCC, LOBC und DSC fiir relevante logische Links erfiillt sein. Rein passive
logische Links konnen bei der Priiffung auf einen Zeitfortschritt grundsétzlich
vernachlédssigt werden (vgl. Abschnitt 4.5.2.3).

Im sELOCCINFTY 7ystand wird checkELOCC() nur auf der Teilmenge L*0** aus-
gefiihrt. Diese Links sind zwar allesamt kritisch, da Lubext o pdom — @ gind sie
allerdings nicht Teil eines Zyklus der eigenen Doméne. Damit ist garantiert, dass
die Linkzeit dieser Links vom Sender nach einer endlichen Anzahl Deltacycles
bzgl. T inkrementiert wird. Daher kann die Priiffung von ELOCC in s/OCC-INFTY
mit § = oo erfolgen. Ist die ELOCC in stOCC-INFIY erfijllt, wird die LOBC in
sLOBC auf der Teilmenge L** gepriift. Ist diese auch erfiillt, wird zuletzt in sP5C
die DSC auf der Teilmenge L%°" gepriift. Sind alle drei Bedingungen erfiillt, wird
der Zeitfortschritt durchgefiihrt.

Bevor der nidchste Timed- oder Deltacycle tatsdchlich ausgefiihrt werden darf,
muss in sF20CC noch einmal die ELOCC auf allen Eingangslinks L™ gepriift
werden. Dies dient nicht mehr einem kausal korrekten Zeitfortschritt 11, son-
dern ausschliefllich dem vollstindigen und damit deterministischen Empfang
aller Nachrichten fiir den nédchsten Zyklus.

4.5.5. Abbildung auf die Speicherarchitektur SCC

Die Methode der Abbildung auf den SCC ist weitgehend identisch zur Methode,
die bei der symmetrischen asynchronen Strategie aus Abschnitt 4.4 verwendet

"Der Zeitfortschritt ist mit dem Ausfiihren von tnotify() bereits abgeschlossen.
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[IRi| = 0]/ evaluate(R;);

[pass==1] [\1Ri| == 0}/
) +J-

[pass==0]/
pass=checkELOCC(L",1;,6,);
dispatchln();

[1Ui| I= 0]/ update(U;);

(U] == 0j/
dispatchOut();0; = 0; + 1;updateT();

[IN’| = 0]/ dnotify(N°));

[IN’] == 0 && |R)| I= 0]/
pass=0; [N == 0 && |R}| == 0]/

pass0; [IR] == 0 && pass==0}/

6, = skip(),; updateT();
pass=checkELOCC(L"*" z;,0);

dispatchln();
SEL OCC_INFTY

[IR)| == 0 && pass==1]/
pass=checkLOBC(L"*);

[IR|!=0]

[pass==0]

[pass==0]

[pass==1]/
pass=checkDSC();

[IR)| == 0 && @ < Twar ]/
[IRi] 1= 0 && ©: < Ty J/ pass=0;

pass=0;

[pass==1]/
7; = nextEdgeTime();0,= -1;
motify(v,N");updateT();

[Ti>= Tuax ]

Abbildung 4.30.: Adaptive Zustandsmaschine in einer Kernelkomponente k?
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wurde. Anstelle der Tili"k Variablen, die mit Hilfe von Shared Object Primitiven
im MPB allokiert wurden, existieren nun im MPB Shared Object Instanzen fiir die
link, tfy ", t:.ns‘g und #8"" Abb. 4.31 illustriert die Verteilung auf die Speicherar-
chitektur des SCC. Kernel k3 fungiert im Beispiel als Master, die anderen Kernel
als Slaves.

Shared off-chip DRAM

I I 1

Core 1 Private DRAM Core 2 Private DRAM

v [
Shared on-chip SRAM (MPB)
DR EER R EE

. External variables and data structures

Private DRAM Coren

kS

D All others (internal variables, data structures and program code)

Abbildung 4.31.: Speichernutzung bei adaptiver Synchronisation

4.5.6. Vollautomatisierte Werkzeugunterstiitzung

Die vollautomatisierte Werkzeugkette wurde speziell fiir den adaptiven paral-
lelen SystemC Kernel entwickelt. Volle Automatisierung bedeutet, dass Schritt
II der Simulationssynthese aus Abschnitt 4.2.3 komplett versteckt vor dem Mo-
dellersteller erfolgt. Dies ist insofern wiinschenswert, als dass ein solcher Ansatz
unabhédngig vom Simulationsmodell ist. Er ist daher unmittelbar auch auf an-
dere RTL u.d. Modelle anwendbar. Vollautomatisierung ist dartiber hinaus not-
wendig, weil eine manuelle Modellanalyse und Konfiguration, wie sie im Fall
des Kernels aus Abschnitt 4.4 noch ausreichend war, im Hinblick auf die kom-
plexen Zusammenhinge zwischen Modelleigenschaften und Synchronisations-
methoden als nicht mehr handhabbar betrachtet werden kann. Ein weiterer Vor-
teil ist die Aufhebung der Partitionierungsbeschrankung auf dem Toplevel, wo-
durch Modelle flexibel verteilt werden konnen.
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4.5.6.1. Uberblick

Der gesamte Ablauf ist in Abb. 4.32 illustriert. Da der HeMPS Editor infolge der
vollen Automatisierung nicht mehr modifiziert werden muss, kann fiir die Ge-
nerierung des HeMPS Simulationsmodells der originale Editor verwendet wer-
den. Als Voraussetzung fiir die Abbildung des Modells auf eine parallele Aus-
fithrungsplattform muss dann zunéchst eine Modellanalyse erfolgen. Anhand
der Analyse werden relevante Eigenschaften des Simulationsmodells identifi-
ziert und gespeichert. Auf Basis dieser gespeicherten Informationen kann die
parallele Simulation, bestehend aus Modell und parallelem Simulator, fiir die
Ausfiihrung auf der Zielplattform konfiguriert werden.

Die vorgelagerte Modellanalyse gliedert sich in einen statischen und einen dy-
namischen Teil. Die statische Analyse dient der Extraktion von deklarativer In-
formation und Aspekten, die das Modellverhalten betreffen. Sie nutzt dazu das
Compiler Frontend Clang [88], das Teil der LLVM Compiler Infrastruktur [186]
ist. Mit [158] existiert seit Kurzem ein weiteres Werkzeug auf Basis von Clang
fiir die Analyse von SystemC Modellen, das ungefahr im gleichen Zeitraum zu
dieser Arbeit entstanden ist. In [158] wird allerdings nur eine rein statische Ana-
lyse unterstiitzt. Da sich die statische Analyse in dieser Arbeit auf die Extrakti-
on deklarativer Informationen beschriankt, kann sie deutlich einfacher aufgebaut
werden. Die restlichen Informationen werden in der dynamischen Analyse ge-
wonnen.

Die dynamische Analyse dient der Extraktion von Information, die zur Laufzeit
unmittelbar verftigbar ist und schwer oder gar nicht statisch extrahiert werden
kann. Dazu gehort beispielsweise die vollstindige parametrisierte Struktur der
Instanz der modellierten Hardwarearchitektur. Aufierdem integriert die dyna-
mische Analyse direkt ein dynamisches Profiling, das zur Optimierung der Par-
titionierung genutzt wird. Die dynamische Analyseroutine kann nativ in die aus-
fithrbare Datei der Simulation integriert werden, sodass die Analyse, anders als
bei [193], ohne virtuelle Maschine und Just-in-Time Kompilierung durchgefiihrt
werden kann. Durch die Kombination aus statischer und dynamischer Analyse
erhilt man ein moglichst vollstandiges Abbild des Simulationsmodells. Im Fol-
genden werden die statische und die dynamische Analyse ndher betrachtet.

4.5.6.2. Statische Analyse

Ausgehend vom urspriinglichen Modell wird zunéchst die statische Analyse
durchgefiihrt (siehe Abb. 4.32). Diese besteht aus der Quellcodeanalyse selbst
(Generate SAR), in der die SystemC-spezifische Static Abstract Representation (SAR)
generiert wird und einer Codegenerierungsphase (Generate Extended Model Code).
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Generierung der statischen abstrakten Darstellung

Die statische Quellcodeanalyse nutzt das bereits erwdhnte Clang LLVM Com-
piler Frontend. Clang bietet eine Programmierschnittstelle zur Integration von
Plug-ins und bildet damit eine flexible Grundlage fiir die Implementierung der
Software zur Quellcodeanalyse, auch im Hinblick auf zukiinftige Erweiterungen.

Ein Clang Plug-in arbeitet auf dem Abstract Syntax Tree (AST) des eingelesenen
Quellcodes. Dieser ist eine vollstandige Darstellung der im C++ Quelltext vor-
gefundenen Sprachkonstrukte. Eine vollstindige Darstellung ist notwendig, da
der AST den Ausgangspunkt fiir alle weiteren Schritte zur Erzeugung von Ma-
schinencode bildet. Im Clang AST sind jedoch bereits die Ergebnisse einiger Ver-
arbeitungsschritte wie der Namensauflosung und der Klassifikation von Aus-
driicken und Deklarationen enthalten. Zur Speicherung der Sprachkonstrukte
basiert der Clang AST auf einer geeigneten Datenstruktur.

Neben der Datenstruktur zur Speicherung des AST stellt Clang eine Program-
mierschnittstelle zur Verfiigung, anhand derer innerhalb eines Plug-ins iiber Ty-
pen von Deklarationen und Ausdriicken im AST iteriert werden kann. Mit Hilfe
dieser Schnittstelle werden folgende Informationen extrahiert und in der Sys-
temC-spezifischen SAR gespeichert:

¢ Modul-Deklarationen: Fiir jede gefundene Moduldeklaration wird deren
Position in der Quelldatei fiir die spatere Code-Modifikation identifiziert.

® Ports und Channels: Alle innerhalb von Modulen deklarierten SystemC
Ports und Channels werden ermittelt.

¢ Prozesse: Definitionen von SystemC Prozessen innerhalb von Modulkon-
struktoren, deren Typ (z.B. SC_THREAD oder SC_METHOD) sowie deren
Sensitivitatslisten werden aktuell identifiziert. Auch Aufrufe der wait() und
next_trigger() Methoden innerhalb von Prozessen werden ermittelt. Die-
se konnen entweder eine dynamische Sensitivitdt verursachen oder eine
Timed-/Delta Notification erzeugen, wodurch der den Aufruf beinhalten-
de Prozess zu einem spateren Zeitpunkt wieder aktiviert wird. Im ersten
Fall wird die Notification wie ein Eintrag in der Sensitivitétsliste behandelt.
Im zweiten Fall wird der Prozess als Quelle fiir Notifications markiert.

¢ Lese- und Schreibzugriffe: Voraussetzung fiir die Extraktion sdmtlicher
Lese- und Schreibzugriffe auf Channels oder Ports innerhalb von identi-
fizierten SystemC Prozessen ist, dass die verwendeten Port bzw. Channel
Variablen direkt aus dem Quellcode ermittelt werden konnen. Da bei der
Verwendung von Zeigern die verwendete Variable im Allgemeinen erst zur
Laufzeit feststeht, diirfen solche Zugriffe im Modell aktuell nicht auftreten.
Im Fall von Arrays aus Ports oder Channels konnen variable Indizes ver-
wendet werden. Das Analysewerkzeug geht dann jedoch von einem Zu-
griff auf alle Eintrdge des Arrays aus.
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Die durch die SAR extrahierten Informationen sind in Abb. 4.33 anhand eines
Unified Modeling Language (UML) Klassendiagramms dargestellt. Da das Clang
Plug-in in den Compiler eingebunden ist, wird die Analyse fiir jede Kompilier-
Einheit und damit fiir jede Quelldatei einzeln ausgefiihrt. Als Ausgabe sind nach
einem Analysedurchlauf tiber die verschiedenen Quelldateien mehrere XML (Ex-
tensible Markup Language) Dateien vorhanden, iiber die die extrahierte SAR In-
formation modulweise verteilt gespeichert ist. In Abb. 4.32 werden diese Dateien
als Partial Model Info Files bezeichnet.

<<enumeration>> static_model_info
member_type — —
port_member
channel_member 1
submodule_member
1 module_class constructor_info
+string:name ﬁ +File_loc:source_location

+File_loc:source_location

| 7 1

module_member systemc_process ctor_argument
+sFring:name +string:name +string:type
+file_full:type_name +bool :is_sc_thread +string:name
+member_type:type +bool :uses_wait
+File_loc:source_location +sc_time[]:timed_delays
+int[]:delta_delays

* * *

* - *
writes

sensitivity

reads

Abbildung 4.33.: Klassendiagramm der statischen abstrakten Darstellung (Quel-
le: [Red14])

Generierung des erweiterten Modellcodes

Die mit dem Clang Plug-in erzeugten XML Dateien dienen als Eingangsdaten fiir
das Werkzeug zur Generierung des erweiterten Modellcodes (Generate Extended
Model Code Block in Abb. 4.32). Dieses fasst zunichst die statischen Informatio-
nen, die auf die verschiedenen Partial Model Info Files verteilt sind, zusammen
und speichert sie in einer einzelnen Datei namens SAR.xml. Die extrahierte SAR
wird anschliefend zur Generierung der folgenden drei Artefakte verwendet:

* Modulwrapper: Fiir jedes Modul der gesamten Modulhierarchie wird ein
Wrapper generiert. Wie bei den Wrappern aus Abschnitt 4.4.6 ist eine be-
dingte Instanziierung von gekapselten Moduls anhand von Flags und ei-

154



4.5. Adaptive symmetrische Strategie

ne Modellverteilung mit Modulgranularitit moglich. Im Unterschied zu
den Wrappern aus Abschnitt 4.4.6 ist die Verteilung allerdings nicht mehr
auf das Toplevel beschrankt. Module niedrigerer Hierarchieebenen kénnen
unabhédngig von Modulen hoherer Hierarchieebenen auf unterschiedliche
Kerne der Ausfiihrungsplattform verteilt werden. Eine Erweiterung von
Modul- auf Prozessgranularitit ist leicht integrierbar: Dazu miisste ein Mo-
dul auf verschiedenen Kernen mehrfach instanziiert werden. Die Prozesse
innerhalb des Moduls miissten dann selektiv ausgefiihrt werden.

¢ Helfermethoden und Helferklassen: Durch die Helfermethoden und Hel-
ferklassen konnen statisch gewonnene und in der SAR hinterlegte Infor-
mationen in der nachfolgenden dynamischen Analyse oder Ausfiihrung
verwendet werden. Die Helfermethoden sind fiir eine typspezifische Inspi-
zierung von SystemC Modulen in der dynamischen Analyse notwendig.
Die Helferklassen werden fiir die dynamische Instanziierung der Modul-
wrapper und SystemC Channels wihrend der Laufzeit benétigt, wenn das
tibergeordnete Modul auf einem anderen Kern ausgefiihrt wird.

* Modifikation der Header: Die Modifikation der originalen Quelltexte be-
schrankt sich auf das Hinzuftigen von Typdefinitionen und Praprozessor-
konstrukten, wodurch die originalen Module durch die Modulwrapper
ausgetauscht werden. Da der in Abschnitt 4.5.3 beschriebene Kommuni-
kationsmechanismus direkt in die Basisklasse fiir Primitive Channels inte-
griert wurde, werden notwendige Modifikationen am originalen Quelltext
insgesamt auf ein Minimum reduziert.

4.5.6.3. Dynamische Analyse

Wiéhrend der dynamischen Analyse werden alle Aspekte extrahiert, die von ei-
ner konkreten Modellausfithrung abhéngen und in der sog. Dynamic Abstract
Representation (DAR) gespeichert. Dies hat den Vorteil, dass jegliche Parametrie-
rung, die von einem bestimmten Simulationslauf abhédngt, automatisch erkannt
werden kann. Abb. 4.34 illustriert das einer DAR zugrundeliegende Klassendia-
gramm. Um die DAR zu erzeugen, muss der im Rahmen der statischen Analyse
generierte/modifizierte Quellcode zunéchst kompiliert und mit den fiir die Ana-
lyse notwendigen Bibliotheken gelinkt werden. Letztere beinhalten den sequen-
tiellen SystemC Kernel sowie eine sog. Analyzer Kernel Extension, die simtlichen
fur die dynamische Analyse notwendigen Analysecode beinhaltet (sieche Abb.
4.32).

Als Ergebnis erhalt man das Analyzer Executable, durch dessen Ausfithrung die
dynamische Analyse erfolgt. Dabei wird die Elaboration Phase des SystemC Ker-
nels zur Extraktion der simulierten Architektur und die Simulation Phase zur
Extraktion von Profilinginformation genutzt.
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Extraktion der Modellarchitektur

In der Elaboration Phase werden Objekte der Module, Ports und Channels eines
SystemC Designs instanziiert und die Verkniipfungen zwischen diesen herge-
stellt. Mit dem Ende der Elaboration Phase ist das komplette Modell instanziiert
und bereit zur Ausfiihrung. Der SystemC Kernel speichert dabei die genannten
SystemC Objekte in einer internen Datenstruktur. Diese Datenstruktur wird zur
Iteration {iber die Objekte und zu deren Inspektion genutzt.

Da die Objekte in der Datenstruktur nur durch Zeiger auf polymorphe Basisklas-
sen (sc_module, sc_prim_channel oder sc_port_base) referenziert werden (vgl. [27]),
miissen fiir die Extraktion der Verkniipfungen von Objekten zunéchst die spe-
zialisierten Datentypen der einzelnen Objekte identifiziert werden. Dazu werden
die wihrend der statischen Analyse generierten Helfermethoden eingesetzt (vgl.
Abschnitt 4.5.6.2).

Mit Unterstiitzung der Helfermethoden werden die Klassennamen der Modu-
linstanzen und die Membervariablen von Modulen inklusive Typ und Name
erkannt. Anhand der Namen von Modulklassen und Membervariablen kénnen
den einzelnen Instanzen dann die zugehorigen Daten aus der statischen Analyse
zugeordnet werden. Darauf basierend ist es schliefSlich moglich, Verbindungs-
strukturen zwischen Prozessen, Port- und Channelinstanzen zu identifizieren,
indem die an Ports angebundenen Channelinstanzen ermittelt und Zugriffe von
Prozessen auf Channels und Ports den jeweiligen Instanzen zugeordnet werden.

Die Helfermethoden setzen sich aus einer Methode namens get_module_members()
und einer Menge von iiberladenen Methoden namens get_members() zusammen.
Von letzteren existiert jeweils eine Version fiir jede Modulklasse des Modells.
Innerhalb von get_module_members() wird der Klassenname einer Modulinstanz
tiber deren dynamischen Typ mit Hilfe von Typecasts bestimmt. Wurde der Typ
identifiziert, so konnen mit der zugehorigen get_members() Methode alle im Mo-
dul instanziierten Member wie Ports, Channels inklusive Typ und Name ermit-
telt werden.

Insgesamt wird mit den extrahierten Informationen eine abstrakte Beschreibung
der dynamisch erzeugten Modellstruktur generiert. Diese wird mit Hilfe der
Klassenstruktur aus Abb. 4.34 abgespeichert. Die Beschreibung umfasst die Mo-
dulhierarchie mit allen Ports, Channels und Prozessen und deren Relationen.
Speziell fiir sc_clock Channels werden aktuell zus&tzlich noch Informationen tiber
deren Zeitverhalten erfasst und fiir die Nutzung in den nachfolgenden Analyse-
schritten abgespeichert.

Extraktion von Profilingdaten

In der Simulation Phase werden fiir SystemC Prozesse und fiir SystemC Chan-
nels Profilinginformationen aufgezeichnet. Fiir jeden SystemC Prozess p; € P
wird die Anzahl der Ausfithrungen va”l (0) und die mittlere Ausfithrungszeit
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Tfml in Abhingigkeit des Deltacyclezihlers 6 erfasst. In der Implementierung

muss mit "7 eine Grenze festgelegt werden, bis zu der N¥*/(§) maximal be-
stimmt werden soll. Mit Hilfe von

1

N{zval 0), ] grmax
ﬁ?wl(g) = {ZLO ( )Nevul(k) 0 i gmax (4'18)
k=0max =Y ’ -

kann fiir jeden SystemC Prozess p; ein Vektor n‘"”“l angegeben werden, der die

Ausfiihrungshéufigkeiten fiir 6 < 6™ wie folgt annéihert:

—eval ~eval ~eval ~eval ( pmax T
7t :[n. (0), A (1), ..., A" (8 )} (4.19)

1 1 1 1

Auf Basis von 7% wird der Lastvektor @ definiert, welcher die Verteilung

der mittleren Ausfuhrungszelt eines SystemC Prozesses p; auf die Deltacycles
beschreibt. Fiir @7 gilt:

ot =1 (971 a0

ﬁlejval

Dabei ist die Gesamtzahl der Evaluationen n”’“l

weise durch

eines Prozesses p; ndherungs-

GHIHA

Aeval Z —evul (4.21)

gegeben. Neben den Profilingdaten fiir SystemC Prozesse wird aktuell fiir jeden
Channel ch; € CH die Gesamtanzahl der Aktualisierungen N update ;
Phase aufgezelchnet

in der Update

Die Profilingdaten werden, neben den weiter oben bereits genannten Informa-
tionen tiber das Modell, ebenfalls in der DAR hinterlegt. Die vollstindige DAR
kann abschlieflend in einer XML Datei namens DAR.xml exportiert werden. DAR
und SAR liefern somit ein Abbild des Modells, das Verhalten, Struktur und Per-
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1 parent module

dynamic_model _info :|

1

*

module_instance

+string:class_name
+string: instance_name

submodule

*

*

*

channel_instance

port_instance

process_instance

+string:module_member_name
+string: instance_name
+int:profiling_update_count

+string:module_member_name
+int:port_index

+string:instance_name
+string:method_name
+float:profiling_average_runtime

1 Tl nterface

*

binding

=

0..1
clock_data

+sc_time:period
+double:duty_cycle

sensitivity

profiling_eval_counters

+int[MAX_PROF_DELTA]:eval_count

+sc_time:start_time
+bool :posedge_first

Abbildung 4.34.: Klassendiagramm der dynamischen abstrakten Darstellung

(Quelle: [Red14], erweitert)
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formanzinformation beinhaltet. Diese Informationen dienen als Grundlage fiir
die Modellpartitionierung und die Kernelkonfiguration im nun folgenden Schritt.

4.5.6.4. Abbildung auf die Ausfiihrungsplattform

Die Abbildung des Simulationsmodells auf die Ausfiihrungsplattform geschieht
mit Hilfe eines gesonderten Werkzeugs. In Abb. 4.32 wird dieses Werkzeug durch
den Block Generate Simulator Configuration représentiert. Der Prozess der Ab-
bildung lasst sich in die drei Teilschritte Vorverarbeitung, Partitionierung und
Nachverarbeitung gliedern.

Vorverarbeitung

Das Werkzeug liest zunédchst die XML Dateien ein, welche die statische und
dynamische abstrakte Darstellung enthalten und erzeugt daraus den Prozess-
Signal-Graphen Gpg(P, S) und den Sensitivititsgraphen Gg(P, E) des Simulati-
onsmodells. Auf Basis einer Analyse von Gs werden Knoten P aus Gpg mit Akti-
vitdtsmustern (vgl. Abschnitt 4.5.2.4) annotiert. Knoten P und Kanten S werden
zudem mit Profilingdaten (vgl. Abschnitt 4.5.6.3) aus der DAR annotiert.

Partitionierung

Ausgehend vom Graphen Gpg wird der logische Prozessgraph Grp(LP, L) syn-
thetisiert. Letzterer entspricht mit Definition 4.4 einer Partitionierung aller vor-
handenen SystemC Prozesse p € P in logische Prozesse Ip € LP.

Aktuell existiert fiir die Partitionierung die zusétzliche Nebenbedingung, dass
alle SystemC Prozesse einer Modulinstanz in derselben Partition liegen mdiis-
sen (vgl. Abschnitt 4.5.6.2). Diese Bedingung kann dadurch eingehalten werden,
dass Prozesse derselben Modulinstanz vor der eigentlichen Partitionierung zu
einem Knoten zusammengefasst werden. Damit erhélt man ein Graphenparti-
tionierungsproblem ohne Nebenbedingungen, fiir dessen Losung bereits viele
unterschiedliche Algorithmen existieren. Geeeignete Losungsalgorithmen sind
in der METIS Bibliothek [155] implementiert, weshalb METIS in dieser Arbeit
verwendet wird. METIS wurde speziell fiir die Partitionierung unregelméfiiger
Graphen oder grofser Mesh-Netzwerke entwickelt. Die Algorithmen basieren auf
dem Paradigma der sog. Multilevel Graphpartitionierung [156, 157].

Als Eingabedaten benétigt die Bibliothek Gewichte fiir die Knoten und Kan-
ten des zu partitionierenden Graphen. Der Partitionierungsalgorithmus versucht
dann, die Knoten so auf die Partitionen zu verteilen, dass die Summe aller Kno-
tengewichte in den einzelnen Partitionen moglichst nahe an eine vorgegebene
Verteilung heran kommt. Gleichzeitig wird versucht die Summe der Gewichte
aller Kanten, die zwischen zwei Partitionen verlaufen, zu minimieren.
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Als Knotengewichte konnen in METIS Vektoren verwendet werden. Dies ist die
Basis fiir eine Optimierung bzgl. eines jeden Vektorelements (Mehrzieloptimie-
rung). Fiir einen SystemC Prozess werden die an die Knoten p; € Gpg anno-

tierten Lastvektoren bT)f‘“‘d als vektorielle Knotengewichte verwendet. Daneben

kann ein Toleranzvektor § definiert werden, der das erlaubte Ungleichgewicht
bzgl. einzelner Elemente des Knotengewichtsvektors zwischen Partitionen spe-
zifiziert [155]. Als Kantengewicht fiir eine Kante s; € Gps wird unmittelbar die

Summe aus der Anzahl der Aktualisierungen N,” date

chy verwendet, die durch die Kante reprasentiert sind.

all der SystemC Channels

Nachverarbeitung

Ist eine Partitionierung gefunden, werden mit Hilfe der Klassifikation aus Ab-
schnitt 4.5.2) und der Graphen Gps und Gg die Eigenschaften der logischen Links
und deren Kritikalitdtstypen extrahiert. Als Ergebnis erhalt man G¢f. Uber die
Suche von stark zusammenhidngenden Komponenten [152] in Gi’ét werden Do-
ménen identifiziert und logische Prozesse in Master und Slaves eingeteilt. Schlus-
sendlich wird die komplette Konfiguration inkl. Modellpartitionierung, Aktivi-
tatsmuster, Position von Doménen und die Master/Slave Einteilung logischer
Prozesse als XML Datei (KernelConfig.xml) exportiert. Das Werkzeug ist aufler-
dem in der Lage, eine vereinfachte Représentation der generierten Partitionie-
rung zu exportieren (SavedKernelConfig.xml Datei). Die abgespeicherte Partitio-
nierung kann daraufhin gegebenenfalls modifiziert und bei einem spéteren Auf-
ruf des Werkzeugs wieder importiert werden. Dadurch ist es moglich, auch ma-
nuell erstellte oder modifizierte Partitionierungen anstelle einer automatisch ge-
nerierten Partitionierung zu verwenden.

Ausfiihrung

Fiir die parallele Ausfithrung muss zundchst das ParallelExecutable erzeugt wer-
den. Dazu muss der in Abb. 4.32 oberhalb zur dynamischen Analyse parallel
verlaufende Pfad durchschritten werden. Das ParallelExecutable wird dann unter
Verwendung der zuvor generierten KernelConfig.xml Datei gestartet. Diese kon-
figuriert das ParallelExecutable zur Simulationslaufzeit mit den vorher erstellten
Konfigurationsdaten. Mit Hilfe unterschiedlicher Backends ist eine Ausfithrung
dabei sowohl auf dem SCC als auch auf gewohnlichen cachekohédrenten SHM
Multiprozessoren moglich.
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4.5.7. Bewertung

4.5.7.1. Adaptive Synchronisation und Lastverteilung

In diesem Abschnitt soll untersucht werden, welchen Einfluss die adaptive Syn-
chronisation auf die Beschleunigung der Simulation hat. Dies beinhaltet eine Be-
trachtung des Einflusses der dynamischen Verklemmungserkennung als auch
einen Vergleich mit einem rein synchronen Verfahren.

Fiir die Messungen wurden fiir verschieden grofie HeMPS Modelle unterschied-
liche Partitionierungen manuell erstellt. Die HeMPS Modelle fiihrten dabei die
bereits bekannte MPEG Applikation aus. Die gewdhlten Partitionierungen wa-
ren frei von Zyklen kritischer logischer Links, so dass eine dynamische Erken-
nung von Verklemmungen und die Einfithrung von Doménen prinzipiell ei-
gentlich nicht notwendig war. Ausgehend von diesem Basisfall wurden die logi-
schen Prozesse anschieffend dennoch auf gleich grofie kiinstliche Doméanen auf-
geteilt. Innerhalb dieser Doménen blieb die Verklemmungserkennung aktiviert.
Beginnend bei einer maximalen Anzahl von drei logischen Prozesen pro Doma-
ne wurde die Anzahl an logischen Prozessen innerhalb einer Doméne sukzessive
erhoht. Im Umkehrschluss reduzierte sich dadurch die Gesamtanzahl vorhande-
ner Doménen. Im letzten Schritt befanden sich dann alle logischen Prozesse in
einer einzigen Domaéne. Dies entspricht einer globalen Synchronisation fiir einen
Zeitschritt bzgl. T.

Fiir den ersten Teil des Experiments wurden ein 8x8 und ein 6x8 HeMPS RTL
Modell manuell in jeweils 48 Partitionen aufgeteilt. Da das 6x8 Modell aus genau
48 Tiles besteht, konnten alle Submodule eines Tiles jeweils in einer separaten
Partition zusammengefasst waren. Weil alle Partitionen einen Satz gleichartiger
Modulinstanzen enthielten, war die Partitionierung des 6x8 Modells homogen.
Bei der Partitionierung des 8x8 Modells enthielten 32 Partitionen je ein Proces-
sing Element und die restlichen 16 Partitionen je vier Router und vier Network
Interfaces. Aufgrund dieser ungleichen Zusammensetzung war die Partitionie-

rung inhomogen. Abb. 4.35 illustriert die Messergebnisse!?.

Am auffilligsten an den Messergebnissen ist die Tatsache, dass die Beschleuni-
gung der Simulation des 6x8 Modells trotz der geringeren Modellgrofie generell
deutlich hoher ausfillt als die Beschleunigung der Simulation des 8x8 Modells.
Die Ursache ist die weniger gleichméfiige Verteilung der Rechenlast bei inho-
mogener Partitionierung. Dadurch kann es mit hoherer Wahrscheinlichkeit zu
permanent grofieren Differenzen in der Ausfithrungszeit von Deltazyklen auf
unterschiedlichen logischen Prozessen kommen.

12Um statistische Schwankungen auszugleichen, wurden die Messungen mehrfach wiederholt und
Mittelwerte gebildet.
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—o—HeMPS 8x8, 48 SCC Cores
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Abbildung 4.35.: Beschleunigung bei fester Partitionierung und variabler
Doménengrofie

Des Weiteren ist zu erkennen, dass die Beschleunigung mit zunehmender Do-
ménengrofie abnimmt. Der grofite Abfall ist bei maximaler Doménengrofie zu
verzeichnen. Ein Grund fiir den Abfall ist der durch die dynamische Verklem-
mungserkennung verursachte zusatzliche Synchronisationssaufwand: Innerhalb
der kiinstlichen Doménen entstehen nicht notwendige domédnenweite Wartezei-
ten. Logische Prozesse miissen beim Zeitfortschritt u.U. auf andere logische Pro-
zesse warten, obwohl keine kausalen Abhangigkeiten bestehen.

Bei inhomogener Partitionierung (8x8 Modell) fallt der relative Verlust, d.h. die
relative Verlingerung der Ausfithrungsdauer, bei Verwendung einer globalen
Doméne mit 11.07% nahezu doppelt so stark aus wie bei homogener Partitionie-
rung (6x8 Modell) mit 5,95%. Die auftretenden Wartezeiten werden offensicht-
lich durch die ungleiche Lastverteilung weiter vergrofiert, da die schnelleren lo-
gischen Prozesse langer auf die langsameren warten miissen.

Tab. 4.2 beinhaltet einige zuséitzliche Messergebnisse, um den Zusammenhang
zwischen der Lastverteilung und dem Verlust durch globale Synchronisation
weiter zu verdeutlichen. Sie zeigt fiir verschiedene Modellkonfigurationen (ein
2x2, ein 4x4 und die beiden bekannten Modelle) den Verlust, der durch eine glo-
bale Doméne und durch vollsténdig synchrone Ausfiihrung entsteht!3.

Wie erwartet verursacht eine globale Doméne weiterhin bei den inhomogenen
Partitionierungen stdrkere Verluste. Im Unterschied dazu ist bei voll synchroner
Simulation nicht die Homogenitat der Partitionierung der dominierende Ein-

13Die Prozentangaben beziehen sich auf die Ausfiihrungsdauer. Angegeben ist jeweils das Verhiltnis
zur Ausfithrungsdauer bei adaptiver Synchronisation ohne kiinstliche Doménen.
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flussfaktor. Hier ist eher ein Zusammenhang zwischen der Modellgrofie/SCC
Kernen und dem Verlust erkennbar: Letzterer steigt mit der Anzahl an SCC Ker-
nen. Bei gleichbleibender Anzahl an SCC Kernen (48) sinkt er mit der Modell-
grofle. Die Verluste sind bei synchroner Ausfithrung zudem insgesamt deutlich
groBer als im Fall von asynchroner Ausfithrung und einer globalen Doméne.

Tabelle 4.2.: Laufzeitverlust durch globale Synchronisation

Modellgrofie/SCC Kerne 2x2/9  4x4/16 6x8/ 48 8x8/48
Homogene Partitionierung nein ja ja nein

Verlust durch globale Doméne 947 % | 2.87% | 595% | 11.07 %
Verlust durch synchrone Ausfiithrung | 24.94 % | 36.05 % | 76.05 % | 67.07 %

4.5.7.2. Feingranulare Partitionierung

Bei der teilautomatisierten Werkzeugkette aus Abschnitt 4.4.8 ist die Partitionie-
rung auf die oberste Ebene der Modulhierarchie beschrankt. Dies limitiert die
maximale Anzahl logischer Prozesse. Beispielsweise konnen im Fall eines 2x2
HeMPS Modells bestehend aus zwolf Toplevel Modulen (PEs, NIs und ROs) ma-
ximal zwolf logische Prozesse erzeugt werden. Da die Processing Elements den
Hauptanteil der Rechenlast erzeugen, kann eine weitere Partitionierung dieser
Module zu zusétzlichen Performanzverbesserungen beitragen. Dies ist in Abb.
4.36 illustriert.

~ 5

[

§ 45 - - e

23,

e 3 / /

(5]

= 2.5 | ——2x2 HeMPs

Z 2

(]

= 15 € Coarse Grained | Fined Grained =

2 1

8 05

“ 0 , . . .
4 8 12 13 18 22 26

SCC Core Count

Abbildung 4.36.: Grobgranulare versus feingranulare Partitionierung

Durch die feingranulare Partitionierung ist es moglich ein 2x2 HeMPS Modell
tiber zwolf Partitionen hinaus auf bis zu 26 Partitionen zu verteilen. (alle Mess-
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punkte rechts der roten Linie). Dadurch kann die Beschleunigung ausgehend
von 3.63x bei 12 Partitionen auf bis zu 4.62x bei 26 Partitionen gesteigert werden.

Dartiber hinaus erodffnet die Moglichkeit zur feineren Partitionierung noch weite-
re Freiheitsgrade zur Optimierung. Im Fall von HeMPS lisst sich beispielsweise
der Kommunikationsaufwand zwischen logischen Prozessen in Form der Del-
taschranken von existierenden beschriankten logischer Links durch Umverteilen
einzelner Submodule reduzieren. Um dies zu demonstrieren, wurden zunéchst
verschiedene homogene Toplevel Partitionierungen mit einer Granularitdt von
Tiles erzeugt. Dabei wurden nur Signale geschnitten, die zwischen benachbar-
ten Routern verlaufen. Die HeMPS Router verfiigen tiber einen separaten Emp-
fangspulffer fiir jeden benachbarten Router. Diese Puffer sind in einem eigenen
Submodul implementiert. Im Zuge der Optimierung wurden diese Empfangs-
puffer jeweils in die Partition des sendenden Routers verschoben.

Messergebnisse, welche die optimierte Variante der nicht optimierten Variante
fiir verschiedene Modellgrofien gegentiberstellen, sind in Abb. 4.37 dargestellt.
Die Optimierung bewirkt generell eine hohere Beschleunigung. Wie man der Ab-
bildung auch entnehmen kann, konnte die hochste beim adaptiven Verfahren
gemessene Beschleunigung von 33.13x beim 6x8 Modell auf 48 SCC Kernen nur
mit dieser Art der Optimierung erreicht werden.

33.13
— 35 31,04 '
<
5 30
o
O
8 25
20
;;' 14,24 15,28
= 15
=
F 10
£ 5 26 2.83
o
g, mm -
(c/a) no opt. ‘ no opt. no opt. ’ opt.
2x2/4 8x8/16 6x8/48

Partitioning (Model Size / SCC Cores)

Abbildung 4.37.: Optimierte versus Toplevel Partitionierung

4.5.7.3. Automatische Partitionierung

Zur Demonstration von Funktion und Anwendbarkeit der automatischen Par-
titionierung wurden abschliefend mehrere umfangreiche Messreihen mit ver-
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schiedenen HeMPS Modellen (unter Verwendung von reinen RTL und Cycle-
Approximate Level (CAL) PEs) durchgefiihrt. Unter Vorgabe der Anzahl zu ver-
wendender SCC Kerne wurden die Modelle mit der Werkzeugkette aus Ab-
schnitt 4.5.6 jeweils automatisch analysiert, partitioniert und anschlieffend aus-
gefiihrt. Fiir die automatische Partitionierung wurden zwei unterschiedliche An-
sdtze verwendet:

¢ Strategie I: Knoten- und Kantengewichte werden durch Compileranalyse
ermittelt. Fiir 7#¢°" von Prozess p; aus Ausdruck 4.19 werden dessen Ak-
tivitditsmuster (vgl. Abschnitt 4.5.2.4) in Form eines bindren Vektors ver-
wendet. Tf”“l wird auf 1 und ﬁf”“l auf 0 gesetzt. Als Toleranzwert fiir das
Lastungleichgewicht wird generell 1.2 angenommen. Fiir SystemC Signale
wird der Betrag des Aktivitdtsmustervektors des jeweils schreibenden Pro-
zesses als Kantengewicht benutzt. Aktive Signale werden zusatzlich mit
einem Faktor 3x gewichtet. Als METIS Partitionierungsmethode wird Mul-

tilevel k-Way Partitioning gewdhlt.

¢ Strategie II: Knoten- und Kantengewichte werden durch Profiling ermit-
telt. Diese entspricht der in Abschnitt 4.5.6.3 beschriebenen Methode. Zu-
dem wird das erste Element der Lastvektoren ﬁﬁf‘md mit einer Toleranz von
1.15 behandelt, die restlichen Vektorelemente mit einer Toleranz von 1.4.
Als METIS Partitionierungsmethode wird Multilevel Recursive Bisectioning

gewdhlt.

Fiir alle Untersuchungen wurde 6" = 8 gesetzt. Die erzielten Beschleunigun-
gen bei Verwendung von Strategie I und adapativer Synchronisation sind in den
Abb. 4.38 und 4.39 in Abhidngigkeit der verwendeten SCC Kerne und der ver-
schiedenen Modellkonfigurationen dargestellt!*. Bei den kleineren Modellen ist
wegen der geringeren Rechenkomplexitit generell ein schnellere Sattigung der
Beschleunigung zu verzeichnen. Vergleicht man den Verlauf der Kurven der RTL
und CAL basierten Simulationen, so liegen die Gewinne durchweg in dhnlichen
Groflenordnungen, trotz der geringeren Rechenkomplexitdt der CAL PEs.

Im Mittel steigt die Beschleunigung mit der Anzahl der SCC Kerne an. Es sind
allerdings deutliche Schwankungen und Ausreifser zu erkennen. Beim RTL Mo-
dell sind diese noch stdrker als beim CAL basierten Modell. Dabei fillt auf, dass
meist nur in einigen Sonderfallen, insbesondere beim 4x4, 5x5 und 6x6 RTL Mo-
dell, wenn die Anzahl der HeMPS Tiles identisch zur Anzahl der SCC Kerne ist,
gute Beschleunigungen erzielt werden. Dies ist mit der 3x Gewichtung der ak-
tiven Signale zu erkldren. Zwischen den HeMPS Tiles existieren wenige aktive
Signale, so dass eine Partitionierung an Tile Grenzen bevorzugt wird.

14Bei Verwendung von Strategie I in Kombination mit dem 2x2 Modell und bei Vorgabe vieler SCC
Kerne > 25 resultierte die Partitionierung mit METIS teilweise in der Auslassung von SCC Ker-
nen. Dabei blieben maximal fiinf SCC Kerne ungenutzt.
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Abbildung 4.38.: Beschleunigung von HeMPS (RTL PEs) mit Strategie I und ad-
aptiver Synchronisation
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Abbildung 4.39.: Beschleunigung von HeMPS (CAL PEs) mit Strategie I und ad-
aptiver Synchronisation
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In Abb. 4.40 sind die Messergebnisse der parallelen RTL Simulation mit Strategie
IT und adaptiver Synchronisation dargestellt. Vergleicht man Abb. 4.40 mit Abb.
4.38, so kommen die Kurven viel niher an den durch das Amdahlsche Gesetz
(vgl. Abschnitt 2.4.4.5) theoretisch beschriebenen Verlauf heran.

Durch den Austausch der Partitionierungsmethode und der per Compileranaly-
se ermittelten Schiatzwerte mit realen Profilingdaten ist es offensichtlich moglich,
die Schwankungen in der Beschleunigung bis zu einem gewissen Grad auszu-
gleichen. Auffillig ist aulerdem, dass die starken Maxima, die bei Partitionie-
rung des RTL Modells mit Strategie I entstanden sind, mit Strategie Il nicht mehr
auftreten. Allerdings kann mit Strategie II auch aufierhalb der Sonderfélle eine
relativ gute Lastverteilung erzielt werden.

Sowohl bei Strategie I als auch bei Strategie 1I fdllt die Beschleunigung bei au-
tomatischer Partitionierung im Durchschnitt niedriger als bei manueller Opti-
mierung aus. Beispielsweise konnte das 8x8 HeMPS RTL Modell mit manueller
Partitionierung und manueller Optimierung maximal um einen Faktor 30.81x
beschleunigt werden. Bei automatischer Partitionierung wurde dagegen nur ei-
ne maximale Beschleunigung von 20.54x (Strategie I) bzw. 29.28x (Strategie II)
erreicht. Dies ist auf die suboptimale Gewichtung von Signalen und Prozessen
wiahrend der automatischen Partitionierung zurtickzufiihren. Offensichtlich ist
noch weiteres Optimierungspotential vorhanden.

Um den Vorteil der adaptiven Synchronisation weiter zu verdeutlichen, ist in
Abb. 4.41 schliefilich die Beschleunigung illustriert, wenn vollsynchrone Aus-
fiihrung auf Basis globaler Barriers verwendet wird!®. Insgesamt liegt die ma-
ximal erzielte Beschleunigung deutlich unter 20x, was signifikant kleiner ist als
die mit adaptiver Synchronisation maximal erreichten Werte.

Des Weiteren ist ein deutlicher Riickgang der Beschleunigung mit steigendem
Parallelisierungsgrad zu erkennen, der bei adaptiver Synchronisation nicht so
deutlich auftritt. Die vollsynchrone Ausfiihrung skaliert offensichtlich nicht so
gut mit der Anzahl an SCC Kernen wie die adaptive Synchronisation. Dieser
Effekt wird durch die Implementierung der Barrier verstédrkt, welche einen zen-
tralen Master nutzt.

4.5.7.4. Diskussion

Anhand der verschiedenen Fallstudien konnte gezeigt werden, dass es durch
einen erhohten Grad an Automatisierung moglich ist, asynchrone PDES fiir die
deltazyklengenaue Parallelisierung von SystemC RTL Modellen nutzbar zu ma-

1°Die Implementierung des vollsynchronen Ansatzes, der hier als Vergleichsfall verwendet wird,
entspricht weitgehend dem Verfahren, das innerhalb einer grofsen globalen Doméne angewendet
wird. Der Unterschied besteht darin, dass alle Slaves vor jedem neuen Timed- oder Deltacycle
immer mit dem Master synchronisieren und blockieren, wéhrend sie auf den Master warten.
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Abbildung 4.40.: Beschleunigung von HeMPS (RTL PEs) mit Strategie Il und ad-
aptiver Synchronisation
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Abbildung 4.41.: Beschleunigung von HeMPS (RTL PEs) mit Strategie Il und glo-
balen Barriers
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chen. Die erzielten Beschleunigungswerte liegen trotz feinerer Synchronisation
in etwa in der gleichen Groflenordnung wie beim Verfahren aus Abschnitt 4.4.
Durch gezielte Optimierungen konnten sie sogar tibertroffen werden.

Die automatische Partitionierung bietet noch Potential fiir Verbesserungen. Ins-
besondere fiir die Kanten des Graphen Gps konnen u.U. bessere Gewichtun-
gen gefunden werden, um die Qualitat der mit METIS erzeugten Partitionierun-
gen weiter zu erhohen. Insbesondere muss das Gewicht einer Kante besser mit
der Klassifikation (aktiv/passiv, delta-beschrankt/unbeschrénkt, etc.) der Kan-
te korrelieren, um so den Effekt auf die Performanz detaillierter zu beschreiben,
der durch die Klassifikation entsteht. Dazu ist der Einfluss der Klassen von Kan-
ten auf die Leistungsfahigkeit der Simulation genauer zu untersuchen und die
Klassen anhand einer skalaren Kostenmetrik zueinander in Beziehung zu setzen.

Die Haupteinschrankung des beschriebenen Ansatzes ist die Limitierung auf
RTL und dhnliche Modelle. Um die Anwendbarkeit auch auf andere Modellie-
rungsstile (z.B. TLM) auszudehnen, miissen spezifische Modellierungsartefakte
und Modellcharakteristika von den Analyse- und Transformationswerkzeugen
sowie der Laufzeitumgebung unterstiitzt werden. Ein Grund fiir die Limitie-
rung auf das RTL o.4. ist die Voraussetzung, dass Partitionen um mindestens
einen Deltacycle entkoppelt sind und die durch die Aktion nextEdgetime() zu-
riickgegebene Zeit T°%° bei der Beriicksichtigung delta-beschrénkter Links lokal
bekannt ist. Bei RTL Modellen kann dieser Wert unmittelbar lokal vorhergesagt
werden. Kommen im Modell aber beliebige Aufrufe von wait() oder next_trigger
mit Zeitargument vor, so sind die jeweiligen Verzogerungszeiten im Allgemei-
nen erst zur Laufzeit bekannt. Dartiber hinaus ist die Verzégerung zunéchst nur
dem logischen Prozess bekannt, in dem der Aufruf stattfindet.

Um trotz des beschriebenen Sachverhalts nicht auf dezentrale Synchronisation
verzichten zu missen, ist ein moglicher Ansatz, die Zeitpunkte zukiinftiger No-
tifications im Rahmen der Synchronisation zwischen (statisch oder dynamisch
zu bestimmenden) ausgewéhlten logischen Prozessen auszutauschen. Auf Basis
der ausgetauschten Informationen kénnte dann in jedem logischen Prozess eine
allgemeingiiltigere nextTime() Aktion realisiert werden.

Neben der Optimierung von Partitionierung und Synchronisation kénnten ex-
trahierte Modellinformationen auch zur Optimierung des lokalen Schedulings
genutzt werden. Beispielsweise konnte die Reihenfolge, in der aktive SystemC
Prozesse wiahrend der Evaluation Phase abgearbeitet werden, mit Hilfe der Ana-
lysedaten verbessert werden 6. SystemC Prozesse, die nicht von Datenabhan-
gigkeiten betroffen sind, konnten bereits vor dem Priifen der ELOCC ausfiihren.

1®Da laut SystemC Standard die Ausfiihrungsreihenfolge in der Evaluations Phase nicht festgelegt
ist, ist das Umsortieren der Prozesse grundsitzlich erlaubt. Dies kann aber u.U. mit einem Verlust
von Determinismus einhergehen. In diesem Fall wiére z.B. vom Anwender zu entscheiden, ob er
dies in Kauf nehmen kann oder nicht.
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Umgekehrt kénnte man die Ausfithrung von SystemC Prozesse priorisiert be-
handeln, wenn diese in der Lage sind, Daten an andere logische Prozesse zu
versenden. Auf diese Weise konnen sich Wartezeiten auf benachbarte logische
Prozesse gegebenenfalls verringern.

4.6. Strategie zur Simulation auf

Transaktionsebene

Eine Hauptanforderung an die in den Abschnitten 4.3 bis 4.5 vorgestellten Paral-
lelisierungsstrategien war die Unterstiitzung des RTL Subsets von SystemC und
eine zyklenakkurate Ausfithrung. Es wurde unter anderem gezeigt, dass die Ef-
fizienz durch geschickte Ausnutzung von Modelleigenschaften gesteigert wer-
den kann. Allerdings war die erzielbare Simulationsbeschleunigung aufgrund
der engen kausalen Kopplung zyklenakkurater Teilmodelle grundsétzlich be-
schrankt.

Im Folgenden soll daher untersucht werden, inwieweit es moglich ist, die Perfor-
manz durch gezielte Abstraktion weiter zu steigern, jedoch den Verlust an zeit-
licher Genauigkeit moglichst gering zu halten. Dazu wird zunéchst eine neue
Methode fiir die Modellierung und Simulation von NoC-basierten MPSoCs auf
Transaktionsebene entwickelt, welche typische mikroskopische Effekte solcher
NoC-basierten Architekturen wiedergeben kann. Gleichzeitig wird die kausale
Kopplung von Prozessen von Deltacycles auf Timedcycles reduziert'”. Anschlie-
end wird ein Ansatz zur Integration dieser Methode mit einem parallelen Sys-
temC Kernel vorgestellt. Schlieslich wird die Performanz der Gesamtmethodik
bewertet. Im Rahmen einer vom Autor betreuten Bachelorarbeit [Buc12] wurden
einige Vorarbeiten zum hier beschriebenen Verfahren gemacht. Teile der folgen-
den Unterabschnitte sind publiziert in [RBR*13a] und [RBR"13b].

4.6.1. Allgemeine Anforderungen

Die zu entwickelnde Modellierungstechnik soll hauptsachlich zur Modellierung
von Verbindungsstrukturen und Elementen von Verbindungsstrukturen wie z.B.
Routermodulen eines NoCs dienen. Sie sollte aber nicht notwendigerweise auf
diesen Bereich beschriankt sein und bei Bedarf auch die Modellierung anderer
Elemente einer MPSoC Architektur ermoglichen. Die wiederholte Ausfiihrung
ein und desselben TL Modells soll identische Ergebnisse liefern und damit fiir
entsprechende Verifikationsfélle geeignet sein.

7Eine Kopplung mit einer Genauigkeit von einem Takt wird im Folgenden, in Abgrenzung zur
deltazyklenweisen Synchronisation, als zyklenweise Synchronisation bezeichnet.
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Die Implementierung eines Packet-Switched NoC Routers [50] wie dem Her-
mes Router [203] umfasst tiblicherweise die Schichten 1 bis 3 des ISO/OSI Refe-
renzmodells (Bitiibertragungs-, Sicherungs- und Vermittlungsschicht) [270]. Die
grundlegende Dateneinheit auf der Vermittlungsschicht ist ein Paket, auf der
Sicherungsschicht ein Flit und auf der Bitiibertragungsschicht ein Signal. Um
bei der Modellierung der Kommunikation zwischen Routermodulen mikrosko-
pische Effekte wie Pufferkongestion oder Ressourcenkonflikte akkurat reprodu-
zieren zu kénnen, muss die Modellierung mindestens mit einer Granularitit von
Flits erfolgen und daher auf der Sicherungsschicht ansetzen. Dabei gentigt es,
wenn Effekte der Bitiibertragungsschicht durch synchrone Ausfithrungs- und
Kommunikationsmechanismen in Erscheinung treten.

4.6.2. Basismethode

Den Kern der Modellierungstechnik bilden sog. leichtgewichtige Module, Sche-
duler und Prozesse. In Abb. 4.42 ist ein Szenario fiir eine parallele Simulation
bestehend aus zwei logischen Prozessen /py und Ip; dargestellt, in dem die Mo-
dellierungstechnik verwendet wird. Jeder der beiden logischen Prozesse kapselt
einen sequentiellen SystemC Kernel. Jeder Kernel fiithrt wiederum jeweils ein
Teilmodell, bestehend aus zwei Modulen aus. Das Teilmodell auf Kernel kq be-

steht aus einem leichtgewichtigen Modul yo und einem konventionellen Modul
my.
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Abbildung 4.42.: Prinzip der TL Modellierungsstrategie

Ein leichtgewichtiges Modul ist ein spezieller Typ eines normalen SystemC Mo-
duls, das auf Basis eines leichtgewichtigen Schedulers und leichtgewichtigen
Prozessen ein hierarchisches Scheduling implementiert. Der Aufruf eines leicht-
gewichtigen Schedulers liegt in der Verantwortung des SystemC Kernels, der
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Aufruf eines leichtgewichtigen Prozesses liegt in der Verantwortung des leicht-
gewichtigen Schedulers. Kommunikation und Synchronisation zwischen leicht-
gewichtigen Modulen erfolgt anhand von Transaktionen. Dabei werden fiir die
parallele Simulation sowie fiir die Reproduktion mikroskopischer NoC Effekte
geeignete Mechanismen fiir das Scheduling und die Kommunikation benutzt.

Im Gegensatz zu jg besteht m( ausschliefilich aus gewohnlichen SystemC Pro-
zessen. Auf Kernel k; befindet sich ein leichtgewichtiges Modul p1 und ein ge-
mischt modelliertes Modul py. Eine gemischte Modellierung kann dann not-
wendig sein, wenn verschiedene Modellierungstechniken miteinander gekop-
pelt werden miissen. Ein gemischtes Modul dient dann als Adapter, welcher
zwischen Syntax und Semantik der beiden Modellierungstechniken iibersetzt.

Vor dem Hintergrund des in Abschnitt 4.2.2 eingefiihrten Schichtenmodells wird
durch das Konzept prinzipiell eine weitere Schicht oberhalb der traditionellen
SystemC Modellebene eingefiihrt, wodurch die zusitzliche Hierarchisierung ent-
steht. Dies hat verschiedene Vorteile: Kommunikation zwischen leichtgewichti-
gen Prozessen innerhalb eines Moduls kann vollstdndig lokal iiber den leicht-
gewichtigen Scheduler abgewickelt werden. Wie spéter gezeigt wird, konnen
in Modulen enthaltene leichtgewichtige Prozesse vom SystemC Kernel und von
anderen leichtgewichtigen Prozessen zudem (kontrolliert) temporér entkoppelt
werden. Eine solche temporédre Entkopplung reduziert den Synchronisations-
aufwand sowohl zwischen leichtgewichtigen Schedulern und lokalem SystemC
Kernel (vertikal), als auch zwischen verteilten logischen Prozessen (horizontal)
und kann so zu einer allgemeinen Performanzsteigerung beitragen.

4.6.2.1. Komponenten

Die zur Modellierung notwendigen Komponenten sind in der folgenden Defini-
tion eines leichtgewichtigen Moduls zusammengefasst:

Definition 4.22 (Leichtgewichtiges Modul): Ein leichtgewichtiges Modul y € M
ist ein SystemC Modul, das den Regeln der Modellierungsmethodik folgt. y ist ein Tupel
(0,7,P,V,FI,FO,C,S), wobei folgendes gilt:

* o ist ein leichtgewichtiger Scheduler,

* T ist eine lokale Variable zur Speicherung der lokalen Zeit eines leichtgewichtigen
Moduls,

P ist die Menge aller leichtgewichtigen Prozesse des Moduls,

V ist die Menge der Variablen (Variablencontainer),

FI ist die Menge der Eingangsartefakte aller logischen Puffer,
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* FO ist die Menge der Ausgangsartefakte aller logischen Puffer,
 C ist die Menge der Kontrollpuffer,

* S ist die Menge aller eingehenden TLM Socketverbindungen iiber Target-Sockets
Str8et ynd ausgehenden TLM Socketverbindungen iiber Initiator-Sockets S,

Abb. 4.43 zeigt ein Beispiel, anhand dessen die Bedeutung der einzelnen Kom-
ponenten deutlich gemacht werden soll. In der folgenden Beschreibung wird zu-
néchst auf die Modellierung von Verhalten und Kommunikation innerhalb eines
leichtgewichtigen Moduls und anschlieiend auf die Modellierung von Kommu-
nikation zwischen Modulen eingegangen. Anschlieffend wird ein Ausfiihrungs-
mechanismus beschrieben, der beides miteinander kombiniert.

Transaction Objects
e 0 (data,phase,t) N

3 % Lightweight | Lightweight g N
SR Processes P < Processes P SIS
=3 S
""" N \ Socket Links S ‘* :77:
N ‘ , \
s J— A odimn O <!
N
T 8 Lightweight Lightweight §~ g
N § Scheduler o Scheduler o IR
S

|
\

/

S‘ Initiator Socket —PE Target Socket

Abbildung 4.43.: Grundlegende Bausteine der Modellierungsstrategie

4.6.2.2. Verhalten und Kommunikation innerhalb leichtgewichtiger Module

Fir die Verhaltensmodellierung innerhalb von Modulen stehen die Artefakte o,
P, V und 7 zur Verfiigung. Ein leichtgewichtiger Scheduler ¢ ist ein herkdmm-
licher SystemC Prozess und zugleich der einzige richtige SystemC Prozess in-
nerhalb eines Moduls. Er kann entweder als SC_METHOD oder SC_THREAD
implementiert werden. Ein Scheduler ¢ ist verantwortlich fiir die Ausfiithrung
von leichtgewichtigen Prozessen P.

Leichtgewichtige Prozesse werden als normale C++ Klassen realisiert, die mit
einer speziellen dem Scheduler bekannten Schnittstelle ausgestattet sind. Leicht-
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gewichtige Prozesse ersetzen konventionelle SC_METHOD oder SC_THREAD
basierte SystemC Prozesse. Durch sie kann eine prozessbasierte Strukturierung
von Verhaltensbeschreibungen innerhalb von Modulen erfolgen. Der Scheduler
o und die Prozesse P implementieren zusammen ein kooperatives Multitasking:
Die Prozesse werden regelméfiig vom Scheduler tiber ihre Schnittstelle getrig-
gert und sind anschliefend selbst dafiir verantwortlich, den Kontext wieder an
den Scheduler zuriickzugeben.

Die Variablen V des Variablencontainers dienen zur Implementierung einer effi-
zienten modulinternen Kommunikation zwischen leichtgewichtigen Prozessen.
Der Variablencontainer kann beispielsweise als simpler C++ Container realisiert
werden. Er dient als Ersatz fiir SystemC Channels wie z.B. sc_signal. Die lokale
Zeitvariable T ist eine separate (ganzzahlige) C++ Variable. Sie dient zur Spei-
cherung der aktuellen lokalen Zeit eines leichtgewichtigen Moduls.

Die Verteilung der Verhaltensbeschreibung auf mehrere leichtgewichtige Prozes-
se ist die Grundlage fiir die Modellierung von modulinterner Parallelitdt. Die
Verwendung von leichtgewichtigen Schedulern gestattet prinzipiell eine Verhal-
tensmodellierung auf Basis unterschiedlicher Berechnungsmodelle. Fiir die Mo-
dellierung parallel ausfiihrender und kommunizierender Zustandsautomaten ist
eine synchrone dynamische Semantik mit zyklenweiser Synchronisation gut ge-
eignet.

Zur Realisierung zyklenweiser Synchronisation besitzt jeder leichtgewichtige Pro-
zess p € P drei offentliche Schnittstellenmethoden mit dem Namen pre(), exec()
und post(). Diese dienen als Callback-Methoden und werden vom leichtgewichti-
gen Scheduler innerhalb einer leichtgewichtigen Iteration sukzessive jeweils ge-
nau einmal aufgerufen, d.h. zunéichst alle pre() Methoden, dann alle exec() Me-
thoden und zuletzt alle post() Methoden. Ein Simulationslauf umfasst dann viele
solcher Iterationen nacheinander. Nach jeder Iteration wird die lokale Zeit T um
ein AT erhoht, welches dem Taktzykluszeit entspricht. Die Callback-Methoden
eines Prozesses p haben folgende Aufgaben:

e pre(): Durch diese Methode wird sichergestellt, dass p auf einem rein loka-
len Zustandsspeicher arbeitet. Relevante Variablen aus V werden dazu als
Parameter (Kopie) iibergeben. Die Werte der iibergebenen Parameter wer-
den entweder direkt in internen Eingangsvariablen von p gespeichert oder
in eine geeignete Darstellung transformiert (Vorverarbeitung anhand von
Teilen einer modellierten kombinatorischen Eingangslogik) und dann erst
intern gespeichert.

¢ exec(): Diese Methode implementiert eine Verhaltensbeschreibung in Form
eines endlichen Zustandsautomaten. Jeder Aufruf der exec() Methode be-
wirkt die Berechnung eines Schritts (Taktes) des Zustandsautomaten auf
Basis der in pre() gelesenen Eingangsvariablen und evtl. zusétzlicher in-
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terner Variablen. Neu berechnete Ausgangswerte werden in internen Aus-
gangsvariablen von Prozess p abgelegt.

* post(): Mit dieser Methode werden die Werte der internen Ausgangsvaria-
blen von p in entsprechende Variablen in V kopiert. Ausgangsvariablen
werden dabei als Parameter iibergeben. Als Alternative kann diese Metho-
de, dquivalent zur pre() Methode, auch zur Modellierung kombinatorischer
Ausgangslogik genutzt werden, wodurch interne Ausgangsvariablen in ei-
ne geeignete Darstellung transformiert werden.

Stellt man sicher, dass jede Variable v € V nur von genau einem leichtgewichti-
gen Prozess geschrieben werden kann, so ist das Ergebnis einer Iteration unab-
héngig von der Ausfithrungsreihenfolge der Prozesse P wihrend der Iteration.
Grundsitzlich konnte fiir synchrone Ausfithrung auch die pre() mit der exec()
Methode zu einer Methode kombiniert werden. In Verlauf der Implementierung
hat sich die Verschiebung von Teilen der kombinatorischen Eingangslogik in eine
separate pre() Methode allerdings als vorteilhaft fiir die Strukturierung heraus-
gestellt.

4.6.2.3. Kommunikation zwischen leichtgewichtigen Modulen

TLM Socketverbindungen und Transaktionen

In einem TL Modell kommunizieren ein Initiator und ein Target-Modul im Allge-
meinen {iber eine Socketverbindung, wobei der Initiator Zugriff auf ein Initiator
Socket und das Target Zugriff auf ein Target Socket hat. Der Initiator tibermit-
telt durch nb_transport_fw() Aufrufe Transaktionen auf dem Vorwiértspfad, das
Target antwortet durch Aufrufe von nb_transport_bw() auf dem Riickwéartspfad.
Dadurch wird der Initiator iiber den neuen Zustand im Target informiert (vgl.
Abschnitt 2.3.2.3).

In einem NoC ist jeder Router Initiator und Target zugleich. Diese Unterschei-
dung ist damit (zumindest fiir diesen Anwendungsfall) hinféllig. Daher wurde
in dieser Arbeit eine Alternative gewéhlt: Zwischen Routermodulen y; und y;
werden grundsitzlich zwei Socketverbindungen auf Basis von Initiator und Tar-
get Sockets von entgegengesetzter Orientierung instanziiert. Auf jeder Socket-
verbindung werden ausschlief8lich nb_transport_fw() Methodenaufrufe verwen-
det. Ein solcher Aufruf kann dann sowohl Transaktionen mit vorwartsgerichteter
als auch riickwértsgerichteter Information tibertragen. in Anlehnung an [27] ist
eine Transaktion wie folgt aufgebaut:

Definition 4.23 (Transaktion): Eine Transaktion 0 dient zum Informationsaustausch

auf einer bestimmten Protokollschicht zwischen leichtgewichtigen Modulen. 0 ist ein
Tupel (data, phase, T) mit:
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e data: Bezeichnet eine Datenstruktur zur Ubertragung von Nutzdaten der model-
lierten Protokollschicht.

® phase: Bezeichnet eine Variable, die die Protokollphase spezifiziert.

® T: Bezeichnet eine Variable, die den Zeitpunkt spezifiziert, an dem 6 im Empfinger
verarbeitet werden muss.

Im Allgemeinen konnen Transaktionen zur Simulationslaufzeit dynamisch erzeugt und
wieder geloscht werden. Dabei bezeichnet © die Menge der zu einer bestimmten Simula-
tionszeit in einem logischen Prozess erzeugten und existierenden Transaktionen 6. Dy-
namisch erzeugte Transaktionen werden auch als Transaktionsobjekte bezeichnet.

Zur Modellierung auf der Sicherungsschicht wird zwischen zwei Phasen unter-
schieden, einer Kontrollphase und einer Datenphase: 6.phase € (CTRL, DATA).
Falls 0.phase = CTRL, so heifst 6 Kontrolltransaktion, falls 6.phase = DATA, so
heifst & Datentransaktion. In der Kontrollphase werden mit 6.data Kontrollinfor-
mationen wie z.B. Pufferfiillstinde oder Zahlerstande zur Datenflusskontrolle
iibertragen, in der Datenphase Flits.

Der Zeitstempel 0.7 dient als Hilfsmittel fiir die zeitliche Synchronisation mitein-
ander kommunizierender leichtgewichtiger Module. Der Zeitstempel ist Teil der
Modellierungstechnik und nicht Teil der modellierten Funktion. Seine Verwen-
dung ist dennoch optional. Sie hdngt im Allgemeinen vom Synchronisations-
verfahren ab, das in einem leichtgewichtigen Scheduler implementiert ist (vgl.
Abschnitt 4.6.3).

Pufferung von Flits auf der Sicherungsschicht
Die Artefakte aus den Mengen FI und FO dienen zur Modellierung eines ver-
teilten Pufferungsmechanismus fiir Datentransaktionen bzw. Flits:

Definition 4.24 (Logischer Puffer): Ein logischer Puffer besteht aus einem Pufferein-
gangsartefakt fi und einem Pufferausgangsartefakt fo. Das fi Artefakt befindet sich im
Sendermodul und ist die Schnittstelle zum Schreiben von Datentransaktionen. Das fo
Artefakt befindet sich im Empfingermodul und ist die Schnittstelle zum Lesen. Eingangs-
und Ausgangsartefakt verwalten gemeinsam den Zustand des logischen Puffers. Nur
das Pufferausgangsartefakt fo speichert tatsichlich Datentransaktionen in einer inter-
nen FIFO Struktur.

Zur gemeinsamen verteilten Verwaltung des Pufferzustands verfiigen beide Ar-
tefakte tiber jeweils drei Zustandsvariablen. In einem fi Artefakt sind dies f°,

176



4.6. Strategie zur Simulation auf Transaktionsebene

i und W In einem fo Artefakt sind dies f°, ff° und fifZ Die Variablen haben
folgende Bedeutung:

e f%ist der synchronisierte Fiillstandwert.

e ffiist der im fi Artefakt sichtbare Fiillstandswert.

o ffoistderim fo Artefakt sichtbare Fiillstandswert.

. fifl ist der letzte bekannte Wert von f/* auf Empfangerseite.

. ﬁ ist der letzte bekannte Wert von f/° auf Senderseite.

Aufler f*° konnen sich die Variablen im Laufe der Simulationsausfithrung sowohl
innerhalb eines Artefakts als auch zwischen den Artefakten unterscheiden. Nur
an bestimmten Synchronisationspunkten zwischen Modulen ist die Identitat al-
ler Variablen gegeben:

Definition 4.25 (Synchronisationspunkt eines logischen Puffers): Gegeben scien
die Module p; und p;. p; enthilt ein fi Artefakt und p; ein fo Artefakt. Ein Simulati-
on bestehend aus p; und p; hat den Synchronisationspunkt T>V"¢ iiberschritten, wenn
V"¢ = 1 = 7; und alle sechs Zustandsvariablen in den fi und fo Artefakten nach
Durchfiihrung der folgenden Berechnungen den gleichen Wert haben:

Auf der Senderseite (in fivon y;):

FIi ffi _HW —f (4.22)
5 fh (4.23)

Auf der Empfingerseite (in fo von p;):

ffo  ffo +ﬁ —f (4.24)
f5 « flo (4.25)

Vor der Uberschreitung eines Synchronisationspunktes muss der Wert von £/
vom Sender zum Empfinger tibermittelt worden sein. Dies kann z.B. dadurch
geschehen, dass der Empféanger alle seit dem letzten Synchronisationspunkt ein-
gegangenen Datentransaktionen zihlt. Eine Alternative ist die Ubermittlung von

f/i in einer Kontrolltransaktion. Genauso muss der gestrichene Wert ]W vom
Empfinger zum Sender per Kontrolltransaktion tibermittelt worden sein. Ein
undirektionaler Datenfluss hat so einen bidirektionalen Kontrollfluss zur Folge.
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Im Fall eines Eingangsartefakts fi werden an einem Synchronisationspunkt al-
le Datentransaktionen sichtbar, die seit dem letzten Synchronisationspunkt vom
logischen Puffer gelesen wurden. Im Fall eines Ausgangsartefakts fo werden an
einem Synchronisationspunkt alle Datentransaktionen sichtbar, die seit dem letz-
ten Synchronisationspunkt auf den logischen Puffer geschrieben wurden. Dieses
Verhalten ist vergleichbar mit dem E/U Paradigma und fundamental fiir die
Realisierung von zyklenweise synchronen Modellen sowie deterministischem
Zeitverhalten im parallelisierten Fall.

Synchronisierte Kommunikation

Mit Hilfe von Kontrolltransaktionen ist es moglich, einen in zeitlicher Genauig-
keit und Performanz skalierbaren Mechanismus fiir die Kommunikation tiber lo-
gische Puffer zu implementieren. Beim hier zundchst beschriebenen Basisverfah-
ren kann dazu die Kommunikationslatenz zwischen leichtgewichtigen Modulen
vor Beginn der Simulation statisch festgelegt werden. Legt man die Kommunika-
tionslatenz gleichzeitig global fest, so entspricht dies einem globalen Quantum,
dhnlich dem globalen Quantum aus dem SystemC/TLM Standard (vgl. [27]):

Definition 4.26 (Globales Quantum): Das globale Quantum q ist ein maximales,
global festgelegtes Zeitintervall, das den zeitlichen Abstand von Synchronisationpunk-
ten zwischen leichtgewichtigen Modulen spezifiziert.

Durch das globale Quantum ist die Anzahl N der Synchronisationspunkte, die
auf jedem verteilten Puffer wiahrend eines Simulationslaufs auftreten, gleich grof3
und l&sst sich mit der maximalen Simulationszeit 7""** tiber N = 7"** / g berech-
nen. Um eine zyklenweise Synchronisation zu erreichen, muss das globale Quan-
tum einem Taktzyklus entsprechen, d.h. g = 7%, Durch gréSere Werte von g
kann eine zeitliche Entkopplung bei gleichzeitigem Erhalt des Determinismus
erzielt werden.

Angenommen, ein leichtgewichtiges Modul u hat gerade mit allen benachbarten
Modulen den n-ten Synchronisationsvorgang erfolgreich abgeschlossen und be-
findet sich bei der lokalen Zeit 7(1). Nach Abarbeitung des globalen Quantums ¢q
und Erreichen des Zeitpunkts 7(n + 1) = 7(n) + g beinhaltet die Durchfiihrung
des nichsten Synchronisationsvorgangs drei Schritte:

1. u sendet jeweils genau eine Kontrolltransaktion an alle benachbarten Mo-
dule. Die Kontrolltransaktionen signalisieren, dass das letzte globale Quan-
tum von y durchschritten wurde, y alle Datentransaktionen fiir das letzte
Quantum verschickt hat und die empfangenden Module aus Sicht von u
autorisiert sind, mit der Abarbeitung des néchsten globalen Quantums zu
beginnen.
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2. Anschlieffend wartet y selbst so lange, bis sich von jedem benachbarten
Modul mindestens eine Kontrolltransaktion in jedem Kontrollpuffer ¢ € C
befindet. Dies autorisiert y zur Aktualisierung der Fiillstinde aller logi-
schen Puffer.

3. Auf Basis der gestrichenen Fiillstandswerte, die mit den Kontrolltransak-
tionen empfangen wurden, kann y den Zustand der eingehenden und aus-
gehenden logischen Puffer durch Anwendung der Ausdriicke 4.22 und
4.24 aktualisieren. Dann kann y das néchste globale Quantums g abarbei-
ten.

Kontrolltransaktionen erfiillen damit drei Aufgaben gleichzeitig: Ubermittlung
von Kontrollinformation, Ausschluss transienter Transaktionen und Zeitsynchro-
nisation. Da wegen des konstanten globalen Quantums ein Zeitfortschritt un-
mittelbar durch den Empfang einer Kontrolltransaktion signalisiert wird, ist im
Basisverfahren der Zeitstempel der Transaktion prinzipiell iiberfliissig.

Globales Quantum versus statischer Lookahead

Der zeitliche Fehler gegeniiber zyklenweiser Synchronisation zwischen Modu-
len ist durch die Grofie des globalen Quantums beschrankt. Wird fiir das globale
Quantum die minimale zwischen leichtgewichtigen Modulen auftretende Kom-
munikationslatenz gewdhlt, so wird der Genauigkeitsverlust im Vergleich zum
RTL Modell auf ein Minimum reduziert. Das globale Quantum kommt dann ei-
nem statischen Lookahead gleich. Wenn das globale Quantum grofier als der
statische Lookahead gewdhlt wird, so hat das Verfahren die Eigenschaft, die
tatsachliche Latenz einzelner Datentransaktionen (Flits) um ein oder mehrere
Quanta zu verschmieren.

Betrachtet man das originale signalbasierte RTL Modell des Hermes NoC, so ist
die Kontrollinformation immer um einen halben Takt verzogert zu den Daten
verfiigbar. Dadurch wird eine verlustlose taktweise Ubertragung der Daten rea-
lisiert. Die halbtaktweise Verschiebung hatte zur Folge, dass in Abschnitt 4.4.8.3

cycle
ein statischer Lookahead fiir das Hermes NoC von Al* < % hergeleitet wer-

den konnte. Bei transaktionsbasierter Modellierung des Hermes NoC kann der
statische Lookahead fiir eine zyklenweise Datentibertragung aus zwei Griinden
auf %" erhoht werden: Zum einen fiihren die Daten- und die Kontrollphase
prinzipbedingt immer abwechselnd aus, weshalb eine halbtaktweise Synchroni-
sation bereits explizit modelliert ist. Zum anderen wartet ein leichtgewichtiger
Scheduler immer den Empfang aller Kontrolltransaktion fiir die aktuelle leicht-
gewichtige Iteration ab, bevor er die Datentransaktionen verarbeitet. Der Looka-
head muss daher nicht mehr kleiner als T/ gewahlt werden, um garantieren
zu kénnen, dass fiir 7€/ alle Datentransaktionen eingetroffen sind.
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4.6.2.4. Kombinierter Ausfiihrungsmechanismus beim Basisverfahren

Zur Beschreibung der kombinierten Ausfiihrungsmechanimus in einem leicht-
gewichtigen Modul y; werden folgende Zeitvariablen verwendet:

T; ist die aktuelle lokale Simulationszeit eines leichtgewichtigen Moduls.
Vel ist die Taktzykluszeit.
T ist die maximale Simulationszeit.

T ist der nédchste Synchronisationszeitpunkt.

Innerhalb eines leichtgewichtigen Schedulers sind folgende Aktionen definiert:

sendCT(): Sende eine Kontrolltransaktion an jedes benachbarte Modul. Eine
Kontrolltransaktion signalisiert, dass ein global und statisch spezifiziertes
Zeitquantum ¢ erreicht wurde. Daneben {tibertrédgt eine Kontrolltransakti-
on von y; nach y; die aktuellen lokalen Fiillstandswerte jedes logischen
Puffers zwischen p; und p;.

checkCT(): Gib die Anzahl der Kontrollpuffer aus C zurtick, die im aktuellen
Zyklus mindestens eine Kontrolltransaktion speichern.

sleep(AT®): Gib die Kontrolle an den SystemC Kernel zuriick. Dies ist not-
wendig, um den Ausfiihrungskontext zu wechseln oder um den SystemC
Kernel um die spezifizierte Zeit At® voranschreiten zu lassen. Im Fall einer
Simulation auf gemischten Abstraktionsebenen (TLM und RTL) werden
dadurch die RTL Anteile ausgefiihrt.

update(): Vfi € FIANVfo € FO: Aktualisiere den Zustand der lokal vor-
handenen fi bzw. fo Instanz entsprechend der Ausdriicke 4.22 und 4.24.
Die gestrichenen Werte wurden mit der letzten Kontrolltransaktion emp-
fangen.

popCT(): Vc € C: Losche die oberste Kontrolltransaktion.

pre(P): Vp € P: Fiihre die pre() Methode des leichtgewichtigen Prozesses
p aus. Ubergebe zusitzlich einen Zeiger auf alle fo € FO bzw. fi € FI
Artefakte, auf die p lesenden bzw. schreibenden Zugriff hat.

exec(P): Vp € P: Fiihre die exec() Methode des leichtgewichtigen Prozesses
p aus. Fiihre bei Bedarf Lese- bzw. Schreibzugriffe von p auf fo bzw. fi
Artefakte unter Verwendung von Datentransaktionen durch.

post(P): Vp € P: Fiihre die post() Methode des leichtgewichtigen Prozesses
p aus.

incLocal(): Inkrementiere T; um 7Yl

In Abbildung 4.44 ist die Zustandsmaschine des leichtgewichtigen Schedulers
illustriert. Sie besteht aus zwei Teilen:
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In den beiden Toplevel-Zustinden s°¥"¢ und s"“P%4 ist die Synchronisation mit
benachbarten Modulen implementiert. Synchronisation erfolgt mit einer Schritt-
weite g, dem globalen Quantum. Zwischen den Zustinden sV und s"P%¢ kann
der Scheduler optional durch Aufruf von sleep() dem SystemC Kernel-Scheduler
den Kontext tibergeben, um diesen ebenfalls um g voranschreiten zu lassen.

der hierarchische s5¢"¢ule Zystand ist verantwortlich fiir das lokale Scheduling
der leichtgewichtigen Prozesse. Wahrend der Ausfithrung eines Quantums g
vollzieht der Scheduler der rf%? Iterationen durch die drei Zustdnde sP™Pr0cess,

gexecute ynd spostprocess Wihrend einer Iteration werden die drei Callback Metho-
den pre(), exec() und post() eines jeden leichtgewichtigen Prozesses genau einmal
aufgerufen.

°

/sendCT();pass=0;

[pass==0]/sleep(SC_ZERO_TIME);
pass=checkCT(),

e ° 7\

/pre(P)

[pass==1]/update();
popCT();

[t <]/
sendCT();pass=0;

\IJ'V”C,-: 7v;yncl_+ q; /exeC(P)

sleep(q);
[Ti < e 1] /

pre(P);

/post(P);incLocal();

[6==2"]

[Ti —— Yyn(‘l_]
N\ ! J

Abbildung 4.44.: Zustandsmaschine Basisvariante
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4.6.3. Dynamische Latenzpradiktion

Das im vorigen Abschnitt beschriebene Basisverfahren ermoglicht eine tempo-
rare Entkopplung auf Kosten der zeitlichen Genauigkeit. Ein Kommunikations-
vorgang wird mit grofier werdendem globalen Quantum tiber ein oder evtl. auch
mehrere Quanta verschmiert. In diesem Kapitel wird daher eine optionale Vari-
ante vorgestellt, die den Grad der tempordren Entkopplung zwischen leichtge-
wichtigen Modulen zur Laufzeit dynamisch anpassen kann. Diese dynamische La-
tenzpridiktion (DLP) verhindert den Verlust von zeitlicher Prazision im Vergleich
zu nicht entkoppelter zyklenweiser Ausfithrung mit dem Basisverfahren.

Anstatt ein immer gleich grofies Zeitquantum global und statisch zu definieren,
existieren bei DLP fiir jede Modulverbindung anpassbare lokale Zeitquanta. Auf
Basis von Latenzannotationen innerhalb von Modulen sowie aktueller Laufzeit-
parameter wie Zustidnden von Automaten oder Zihlern, konnen Kommunika-
tionslatenzen zwischen Modulen dynamisch vorhergesagt werden. Diese Vor-
hersagen dienen als Garantien fiir temporédre kausale Unabhéngigkeit. Eine tem-
pordre Entkopplung ohne Genauigkeitsverlust wird erreicht, wenn die lokalen
Zeitquanta entsprechend der bereitgestellten Pradiktionen angepasst werden.
Durch die Integration des Pradiktionsmechanismus in die Modellspezifikation
ist ein einfacher Zugriff auf Modellparameter moglich.

4.6.3.1. Modellierung der Latenz

Bei DLP wird der Lookahead nicht mehr nur statisch bestimmt, sondern dy-
namisch. Dies ist moglich, da Module nicht mehr nur als Blackboxes betrach-
tet werden. Vielmehr werden funktionsabhédngige Latenzen, die innerhalb von
Modulen auftreten, fiir eine dynamische Berechnung des Lookaheads genutzt.
Im Kontext eines NoC Routers werden dadurch insbesondere Latenzen unter-
schiedlicher Protokollschichten fiir die kontrollierte Adaption der temporaren
Entkopplung nutzbar gemacht. Zur Beschreibung von DLP eignet sich die Dar-
stellung anhand eines dynamischen Latenzgraphen:

Definition 4.27 (Dynamischer Latenzgraph: Ein dynamischer Latenzgraph ist
ein gerichteter Graph Gr(FI, FO,E, D(t)) mit Knoten fi € FI und fo € FO, Kanten
e € E und Kantengewichten d(t) € D(T). Er beschreibt den Zustand eines Netzwerks
leichtgewichtiger Module zu diskreten dquidistanten Zeitpunkten t(n) mit n € IN. Je-
der Knoten reprisentiert genau ein fi oder ein fo Artefakt eines leichtgewichtigen Mo-
duls. Zwei Knoten fi; und fo; sind iiber eine gerichtete Kante e;; bzw. ej; verbunden,
wenn eine kausale Abhiingigkeit von fi; nach fo; bzw. von fo; nach fi; existiert. Das
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Gewicht d;; einer Kante e;; spezifiziert die Latenz ab dem Zeitpunkt T(n), nach deren
Ablauf der Knoten mit Index j von Knoten mit Index i kausal beeinflusst wird.

Mit Hilfe des dynamischen Latenzgraphen kann das zeitliche Verhalten von Mo-
dulen im Sinne von auftretenden zeitlichen Verzégerungen zwischen Pufferarte-
fakten des gleichen Moduls oder benachbarter Module modelliert werden. Durch
die Limitierung des Latenzgraphen auf Knoten, die Pufferartefakte reprasentie-
ren, richtet sich der Fokus automatisch auf das fiir die Modellierung von Routern
in einem NoC wichtige reaktive Eingangs- und Ausgangsverhalten. Die Model-
lierung anhand zweier Typen von Knoten erlaubt die getrennte Betrachtung von
statischen und dynamisch erzeugten Anteilen des Lookahead.

4.6.3.2. Latenzgraph fiir das Hermes NoC

Um die Beschreibung des Pradiktionsmechanismus zu erleichtern, wird im Fol-
genden das bereits bekannte Hermes NoC [203] betrachtet. Dessen TL Modell
ist in Abbildung 4.45 links illustriert (Kontrollpuffer wurden im Bild aus Griin-
den der Ubersichtlichkeit ausgelassen). Das Routermodell besteht aus typischen
Elementen wie

¢ Puffer: Diese dienen zur Zwischenspeicherung von Flits. Puffer existieren
fir jede der vier Himmelsrichtungen Norden, Osten, Stiden, Westen und
fiir die lokale Schnittstelle. Sie werden durch logische Puffer modelliert.

¢ Crossbar: Die Crossbar erlaubt es, Eingidnge auf beliebige Ausgange durch-
zuschalten. Dies geschieht entsprechend einem XY Routing. Die Crossbar
ist mit Hilfe von simplen C++ Variablenfeldern modelliert.

¢ Input Controller: Diese sind verantwortlich fiir die Flusskontrolle beim
Transport von Flits. Die Input Controller werden durch leichtgewichtige
Prozesse modelliert.

e Switch Controller: Der Switch Controller steuert den Datenfluss durch
den Router anhand eines Round Robin Schedulings. Der Switch Controller
wird ebenfalls durch einen leichtgewichtigen Prozess modelliert.

Puffer und Crossbar reprasentieren die Bitiibertragungsschicht, Input Control-
ler représentieren die Sicherungsschicht und der Switch Controller die Vermitt-
lungsschicht des ISO/OSI Referenzmodells [270].

Abb. 4.45 rechts zeigt den Latenzgraphen innerhalb eines einzelnen Hermes Rou-
ters. Die sog. Vorwértskanten von fo zu fi Artefakten sind schwarz gezeichnet,
sog. Riickwértskanten von fi zu fo Artefakten rot. Mit Vorwartskanten wird die
zeitliche Vorwirtswirkung modelliert. Die Richtung der Vorwértswirkung ent-
spricht dem Fluss von Flits durch das NoC. Mit den Riickwértskanten wird die
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zeitliche Riickwéartswirkung modelliert, welche dem Datenfluss bzw. dem Fluss
von Flits entgegengerichtet ist. Die Riickwartswirkung wird durch Pufferkon-
gestion oder Zugriffskonflikte ausgelost und hat grofien Einfluss auf die Perfor-
manz der vorwirtsgerichteten Datentiibertragung.

e ] ol b

e ]| e = oo)
. : @ d(fogo,fior) i

Crossbar

A
A flo]_

Input d(fioa,fooo) |

Control

e d(fooo.fioe)
Lighweight TR (Y Switch
SEIES | Signals Control

—» Vorwartskanten —» Riickwartskanten

Abbildung 4.45.: TL Modell des Hermes Routers (links) und dessen Latenzgraph
Gy (rechts)

Eine Verkniipfung zwischen Routermodulen iiber logische Puffer beliebiger An-
zahl und Orientierung wird im Folgenden als Verbindung con;; oder conj; be-
zeichnet, wobei con;j = conj;. Eine Verbindung con;; représentiert damit alle
zwischen p; und p; verlaufenden Vorwirts- und Riickwiértskanten des Graphen
G- Beim Hermes Router gilt fiir jede Verbindung zu einem benachbarten Router
|con| = 4.

Pfade von Vorwirtskanten (Vorwdrtspfade) und Pfade von Riickwartskanten
(Riickwértspfade) durch ein Netzwerk von Routermodulen kénnen separat an-
hand der Teilgraphen Gj (P, E}) und Gj (P, E}) beschrieben werden. Dabei ist
E; = E{ UE] mit E{ N E} = @. Abb. 4.46 illustriert beispielhaft die beiden Gra-
phen G} und Gj fiir einen Auschnitt aus einem kompletten NoC Modell.

An den Graphen G} und Gj ist die Vorwiérts- bzw. Riickwartswirkung durch
das komplette NoC zu erkennen. Die Vorwirtswirkung verlauft zwischen Mo-
dulen von fi in Richtung fo Artefakten und innerhalb von Modulen von fo in
Richtung fi Artefakten. Die Riickwéartswirkung durch das NoC verlduft reziprok
dazu, d.h. entgegen der vorwirtsgerichteten Ubertragung von Flits: Sie verlauft
zwischen Modulen von fo in Richtung fi Artefakten und innerhalb von Modu-
len von fi in Richtung fo Artefakten.
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d(fiorfo10) 47‘1'(fl‘2/rf012)

d(fi10.f001) d(fi12f021)

—»  Vorwdrtspfad

/(0 ,10.fin1)) d(f012,fi21)

i »
f o0 d(fi12f010)

d(fi>1.f023)

(foo1.fi10) &(f021./112) d(fiz5.f021)

—»  Riickwirtspfad

Abbildung 4.46.: Graph G7 fiir die Vorwiértspfade (oben) und Graph Gj fiir die
Riickwiértspfade (unten)

4.6.3.3. Statische Latenzmodellierung

Zwischen Knoten in Gp, die unterschiedlichen Routermodulen y; und y; zuge-
ordnet sind, kann eine externe Pfadlatenz fiir Verbindung con;; definiert werden.
Diese entspricht dem im Basisverfahren bereits verwendeten globalen Quantum
g und ist daher fiir jede Verbindung con € CON identisch und statisch festgelegt.

Wird fiir das globale Quantum die zwischen Modulen minimal auftretende Kom-
munikationslatenz auf dem Vorwirts- und dem Riickwértspfad des Graphen G|,
gewdhlt, so entspricht das globale Quantum g einem statischen Lookahead (vgl.
Abschnitt 4.6.2.3) bzw. der Latenz der Bitiibertragungsschicht. Der statische Loo-
kahead wird im Folgenden auch als minimale externe Pfadlatenz df]?‘t bezeichnet:

dgt = g, (4.26)

4.6.3.4. Dynamische Latenzmodellierung

Neben der Modellierung der statischen Latenz der Bitiibertragungsschicht kann
der Latenzgraph G; zur Modellierung der dynamischen Latenzen hoherer Pro-
tokollschichten genutzt werden. Dies ist die Grundlage fiir die VergrofSerung der
temporéren Entkopplung tiber den statischen Lookahead hinaus, ohne die Kau-
salitdt zu verletzen. Zur Beschreibung der Methode werden zunachst die Teil-
graphen G{ und G} von G, separat betrachtet.
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Mit Hilfe des Graphen G} kénnen fiir ein Routermodul y; zum lokalen Zeitpunkt
7; die minimalen internen Vorwirtspfadlatenzen df“"*(1;) bzgl. der Pufferartefak-
te f il-]- € FI; berechnet werden. Unter der Annahme, dass generell von jedem
Pufferartefakt fo;; € FO; eine kausale Abhéngigkeit zu jedem fi;; € FI; existiert,

berechnet sich df;Wd'mt(Ti) fiir ein Artefakt fi;; iber das Minimum der Latenzen
aller in fi;; eingehenden Kanten des Graphen G’:

fwd,int N . ) ]
a7 (1) vf(r)ll_:ler}:oi{d(folk/flq)(Tz)}' (4.27)

Aquivalent dazu kénnen mit G} die minimalen internen Riickwirtspfadlatenzen
d?]?”d’l”t(ri) fiir Artefakte fo;; tiber

bwd,int (_\ __ . . . )
di " (w) = min, {d(fii foi)(m)} (4.28)

berechnet werden. Mit der fiir einen NoC Router typischen Eigenschaft, dass
Flits, die tiber einen logischen Puffer einer Verbindung con;; in y; eintreffen, nicht
wieder direkt tiber diese Verbindung zuriickgeschickt werden kénnen, gilt fiir

=k

d(foix, fiij) = d(fiix, foij) = oo.

Unter der Voraussetzung das alle anderen Latenzen endlich sind, reduziert sich
die Menge der in Ausdruck 4.27 zu berticksichtigenden ausgehenden Puffer-
artefakte FO; auf die Teilmenge FO;\{foj }i—x. Aquivalent reduziert sich die
Menge der in Ausdruck 4.28 zu berticksichtigenden Puffereingangsartefakte auf
FIN{fiik }izk-

Bei alleiniger Betrachtung von y; ist eine Beeinflussung des fiir y; sichtbaren Zu-
stands der logischen Puffer genau dann vorhanden, wenn ji; selbst eine beliebige
Zustandsvariable seiner Pufferartefakte modifiziert. Mit den fiir die Pufferarte-
fakte einer Verbindung con;; bestimmten internen Latenzen auf dem Vorwérts-
und auf dem Riickwértspfad kann das diskrete Zeitintervall ab dem lokalen Zeit-
punkt 7; dynamisch bestimmt werden, fiir das auf beiden Pfaden eine solche Be-
einflussung des Zustands der Verbindung con;; ausgeschlossen ist. Fiir dieses
Zeitintervall gilt:
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dint (1) = min{d[“" (z;), Al ()} (4.29)

dﬁ}” (7;) wird als minimale interne Pfadlatenz von Router y; in Richtung von Verbin-

dung con;j zum lokalen Zeitpunkt 7; bezeichnet. Diese entspricht den Latenzen,
welche durch die Sicherungs- und die Vermittlungsschicht erzeugt werden.

4.6.3.5. Dynamischer Lookahead und lokales Quantum

Mit Hilfe der internen und externen Pfadlatenzen kann in einem Modul y; fiir
jede Verbindung, con;; auf die p; Zugriff hat, ein dynamischer Lookahead berechnet
werden. Der dynamische Lookahead einer Verbindung con;; im Modul y; spe-
zifiziert das diskrete Zeitintervall ausgehend von einem diskreten lokalen Zeit-
punkt 7;, fiir das auf dem Vorwiérts- und auf dem Riickwértspfad eine Beein-
flussung des fiir Modul y; sichtbaren Zustands durch Modul y; ausgeschlossen
werden kann. Der dynamische Lookahead einer Verbindung con;; im Modul y;
entspricht damit der Summe aus der internen Pfadlatenz von y; in Richtung con;;
und der externen Pfadlatenz von con;;:

Alij(pi, w) = dif (7) +d5 = dif (1) + q. (4.30)

Unter der Voraussetzung, dass zwei Module y; und y;, die tiber con;; miteinan-

der verbunden sind, die gleiche lokale Zeit T = 7; = T; erreicht haben, kann der
diskrete Zeitpunkt Ti’]?”t, nach dessen Ablauf der Zustand von con;; zwischen y;
und Hj das nédchste Mal synchronisiert werden muss, iiber die Summe aus der
aktuellen Zeit T und dem sog. lokalen Quantum q;;(T) berechnet werden:

Tl?gﬂ =T+ qu(T) =T+ min{All-j(yl-, T), All](‘lxl], T)} (431)

Das lokale Quantum g;;(7) muss generell durch y; und y; kooperativ bestimmt
werden. Mit kooperativer Berechnung ist hier gemeint, dass benachbarte Mo-
dule sich gegenseitig zunéchst alle notwendigen Informationen zur Verfiigung
stellen miissen, um dann unabhingig voneinander ein identisches lokales Quantum
bestimmen zu kénnen. In Erganzung zum Basisverfahren aus Abschnitt 4.6 muss
dabei der Zeitstempel einer Kontrolltransaktion immer auf den lokal vorhande-
nen dynamischen Lookahead gesetzt werden. In Analogie zum Basisverfahren
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kann die kooperative Bestimmung zwischen y; und y; in drei Schritten gesche-

hen:

1. Das Modul y; sendet nach Abarbeitung des letzten lokalen Quantums ge-

nau eine Kontrolltransaktion an 1j- Diese signalisiert 1, dass das letzte
lokale Quantum durchschritten wurde.

p; wartet so lange, bis sich von y; mindestens eine Kontrolltransaktion im
zugehorigen Kontrollpuffer ¢;; € C befindet.

Auf Basis der gestrichenen Fiillstandswerte, die mit der Kontrolltransakti-
on empfangen wurden, kann y; den Zustand der eingehenden und aus-
gehenden logischen Puffer von con;; durch Anwendung der Ausdriicke
4.22 und 4.24 aktualisieren. Dann berechnet y; das néchste lokale Quan-

tum ¢;;(7) entsprechend Ausdruck 4.31. Danach kann y; aus Sicht von y;

das lokale Quantum g;;(7) bis zur Erreichung von Ti’}m abarbeiten.

4.6.3.6. Kombinierter Ausfiihrungsmechanismus bei Latenzpradiktion

Im Detail kann der kombinierte Ausfithrungsmechanismus mit Latenzpradikti-
on fiir Modul y; anhand folgender neuer oder modifizierter Aktionen beschrie-
ben werden:
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* calcDL(): Veon;; € CONi|Ti’}eXt = 7;: Berechne den dynamischen Lookahead

qij (7) entsprechend Ausdruck 4.30.

sendCT(): Vcon;j € CONi|Ti;?e"t = 1;: Sende eine Kontrolltransaktion an das
Modul p; tiber con;;. Setze dabei den Zeitstempel der Kontrolltransaktion
auf den zuletzt mit calcDL() fiir con;; berechneten dynamischen Lookahead
Al;j(pi, 7). Daneben {ibertrégt die Kontrolltransaktion nach y; die aktuel-
len lokalen Fiillstandswerte jedes logischen Puffers zwischen y; und ;.

checkCTD(): Vcon;; € CONl-\Ti’]?”t = 1;: Gib eine 0 zuriick, falls ein Kontroll-

puffer c;; € C; existiert mit |c;;| = 0. Ansonsten gibt eine 1 zurtick.

updateD(): Yeon;; € CONZ-|TZ-§?“’” = 7;: Berechne den néchsten Synchroni-
sationspunkt Ti’]?ext fir alle logischen Puffer von con;; entsprechend Aus-
druck 4.31. Aktualisiere anschlieffend den Zustand von fi;; bzw. fo;; ent-
sprechend der Ausdriicke 4.22 und 4.24. Die gestrichenen Werte wurden

mit der letzten Kontrolltransaktion empfangen.

popCTD(): Veon;; € CONZ-|TZ73“ = 1;: LOsche die oberste Kontrolltransakti-
on aus Cij-

setNextModuleSyncTime(): Setze den nédchsten Synchronisationspunkt des
sync .
Moduls ;" auf MiNycon,eCON; {Ti’]?m .
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Abb. 4.47 illustriert den modifizierten leichtgewichtigen Scheduler. Im neuen
Scheduler existiert prinzipiell die gleiche Zustandsfolge wie beim Basisverfah-
ren. Insbesondere die Implementierung des hierarchischen s*"¢#¢ Zystands ist
identisch zum Basisverfahren. Fiir den neuen Ausfithrungsmechamismus ist da-
her ausschliefilich die neue Funktionalitdt innerhalb der Aktionen auf dem To-
plevel verantwortlich.

/ealeDL(),sendCT();pass=0;

[pass == 0]/sleep(SC_ZERO TIME);
pass=checkCTD();

i -~

[pass==1]/

updateD();popCDT();

[T < 7]/
caleDL();sendCT();
pass=0;

|
\setNextModuleSyncTime();
sleep(T™;- 1)y

Sschedule

I
[Ti J— z_mmr]

Abbildung 4.47.: Zustandsmaschine bei Latenzpradiktion

4.6.4. Integration transaktionsbasierter Kommunikation

Die Modellierungsstrategie wurde mit dem symmetrischen asynchronen Kernel
aus Abschnitt 4.4 kombiniert. Dazu waren einige wenige Ergdnzungen am par-
allelen SystemC Kernel notwendig.

Wihrend die Partitionierung eines RTL Modells das Schneiden von externen Si-
gnalen und eine Duplikation der Datenstrukturen geschnittener Signale zur Fol-
ge hat (vgl. Abschnitte 4.4.2 und 4.4.4), resultiert die Partitionierung eines TLM
Modells hingegen im Schneiden von Socketverbindungen, die bereits aus zwei
separaten Artefakten in Form eines Initiator und eines Target Sockets bestehen.
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Folglich ist keine Duplikation notwendig, sondern nur eine Adaption. In der
aktuellen Implementierung existiert dazu eine verteilte Version der nb_ trans-
port_fw() Methode. Bei Aufruf von nb_transport_fw() auf einem TLM Initiator
Socket wird der Inhalt der tibergebenen Transaktion zundchst in eine Transak-
tionsnachricht kopiert:

Definition 4.28 (Transaktionsnachricht): Eine Transaktionsnachricht, die von Ip;
an lp; iiber l;; iibertragen wird, enthiilt folgende Informationen:

e eine id, welche die TLM Socketverbindung identifiziert,

e ein Datenfeld data, welches die Transaktion speichert.

Die Nachricht wird dann in das Ausgangssocket eines logischen Links kopiert.
Der durch die Transaktion im Modell dynamisch reservierte Speicher wird dabei
deallokiert. Beim Empfang wird die Transaktionsnachricht im Target Socket vom
Eingangssocket des logischen Links gelesen. Anschliefiend wird eine neue Trans-
aktion lokal allokiert. Diese Transaktion wird zum zugehorigen Modul anhand
der dort lokal implementierten nb_transport_fw() Methode direkt tibermittelt.

Fiir die Umsetzung des Verfahrens wurde die insert_message() Methode des Ad-
apters aus Abb. 4.19 so erweitert, dass sie neben dem synchronisierten Modus
einen weiteren unsynchronisierten Modus unterstiitzt. Wahrend im synchroni-
sierten Modus Nachrichten entsprechend ihres Zeitstempels weitergeleitet wer-
den, ist im neuen unsynchronisierten Modus die Zeitsynchronisation vollstan-
dig deaktiviert. Daten werden dann direkt weitergeleitet, sobald der Kernel den
Kontext vom Modell erhalten hat und das néchste Mal die dispatch() Aktion aus-
fiihrt (z.B. bei Aufruf von sleep()). Die ist moglich, weil TL Modelle, die ent-
sprechend der beschriebenen Modellierungstechnik beschrieben sind, sich selbst
synchronisieren.

Aktuell ist fiir Signalnachrichten standardméfsig die synchronisierte Weiterlei-
tung aktiviert. Transaktionsnachrichten werden hingegen standardméfSiig unsyn-
chronisiert weitergeleitet. Ein logischer Link, der Nachrichten ausschliefslich im
unsynchronisierten Modus tibertragt, kann als deadlock-unkritisch klassifiziert
werden, da die Vermeidung von Deadlocks nicht in der Verantwortung des Ker-
nels liegt. Ansonsten ergibt sich die Kritikalitdt aus Definition 4.10.

Die Implementierung von sleep() ist vollstandig identisch zu Implementierung
der originalen wait() bzw. next_trigger() Methoden des sequentiellen Kernels. We-
gen der Reduktion der kausalen Kopplung von Deltacycles auf Timedcyles ge-
ntigt eine rein lokale Implementierung, eine Synchronisation mit anderen logi-
schen Prozessen erfolgt nicht.

190



4.6. Strategie zur Simulation auf Transaktionsebene

4.6.5. Fallstudie |

In der ersten Fallstudie wurde die Basisvariante des Modellierungsansatzes hin-
sichtlich der zwei Aspekte I) Genauigkeit und II) Performanz betrachtet. In Be-
zug auf die Genauigkeit wurde zundchst untersucht, inwieweit es mit dem Mo-
dellierungsansatz {iberhaupt moglich ist, spezielle NoC Charakteristika wieder-
zugeben. Darauf basierend wurde der Trade-off zwischen erzielbarer Genauig-
keit und erzielbarer Performanz néaher beleuchtet. Als Grundlage fiir die Unter-
suchung diente das in Abb. 4.6.3.2 bereits illustrierte und neu entwickelte TL
Modell des Hermes Routers [203] sowie das um die TL Router ergénzte HeMPS
Modell [75].

4.6.5.1. Wiedergabe typischer Network-on-Chip Charakteristika

Ein Effekt, der typischerweise auftritt, sobald ein NoC-basiertes MPSoC an die
Grenzen seiner Leistungsfahigkeit stof$t, ist die Kongestion der Puffer im NoC.
Diese tritt dann auf, wenn Nachrichten mit einer hoheren Datenrate in das Netz-
werk injiziert werden, als sie von diesem iibertragen werden konnen. Eine limi-
tierte Ubertragungsrate kann sowohl durch die empfangenden Verarbeitungs-
einheiten, als auch durch die Implementierung des NoCs selbst hervorgerufen
werden. Im ersten Fall bilden die Empfanger aufgrund ihrer hohen Verarbei-
tungslatenz den Flaschenhals. In zweiten Fall bildet das NoC den Flaschenhals.
Ursache ist beispielsweise ein ineffizientes Routingverfahren, welches zu Zu-
griffskonflikten wihrend der Ubertragung fithrt. Im Rahmen dieser Untersu-
chung lag der Fokus auf dem NoC.

Kongestion der Routerpuffer

In einem ersten Experiment wurden in jeden Hermes Router eines 4x4 NoCs

Nachrichten mit unterschiedlichen Flit-Injektionsraten (Flit-IR) injiziert'®. Bei den
Messungen wurden zwei unterschiedliche Traffic Patterns verwendet. Beim sog.

Single Sender Pattern wurden nur Pakete in Router 0/0 injiziert mit Router 3/3

als Zieladresse. Beim sog. Transpose Pattern wurden in jeden Router Pakete mit

folgendem Adressierungsschema injiziert: destX = sourceY und destY = sourceX.

In den Empfangerroutern wurden eingehende Pakete generell ohne Verarbei-
tungslatenz direkt wieder ausgelesen. Die Erzeugung des Netzwerkverkehrs er-
folgte anhand abstrakter verzogerungsfreier Prozessoreinheiten. Fiir die Mes-
sungen wurden Puffergrofie und Paketlange jeweils auf 16 Flits gesetzt. Das glo-

18Eine Injektionsrate von 100% (50%, 25%...) entspricht der Generierung eines Flits in jedem (jedem
2., jedem 4., ...) Taktzyklus und dessen sofortiger Injektion, sobald der Ausgangspuffer des Net-
work Interfaces geniigend Speicherplatz bietet.
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bale Quantum wurde nicht variiert und entsprach der Taktzykluszeit. Die Mess-
ergebnisse sind in den Abbildungen 4.48 und 4.49 illustriert.

(a) 10% Flit-IR (b) 25% Flit-IR (c) 50% Flit-IR (d) 100% Flit-IR

Abbildung 4.48.: Kongestion der Puffer beim Single Sender Pattern

(a) 10% Flit-IR (b) 25% Flit-IR (c) 50% Flit-IR (d) 100% Flit-IR
Abbildung 4.49.: Kongestion der Puffer beim Transpose Pattern

Die farblich unterlegten Quadrate reprasentieren die Eingangspuffer der Router.
Je dunkler die Farbgebung eines Puffers, desto grofler ist der gemessene durch-
schnittliche Fillstand tiber die gesamte Simulationsausfiihrung. In beiden Ab-
bildungen ist deutlich der Zusammenhang zwischen steigender Injektionsrate
und steigenden Pufferfiillstinden in Abhédngigkeit des Traffic Patterns zu erken-
nen. Aufgrund der Ubertragungslatenz des Hermesrouters ist es nicht moglich,
die Puffer zwischen den Routern mit einem einzigen Datenstrom und 100% In-
jektionsrate voll auszulasten (siehe Abb. 4.48 (d)). Erst mit dem Vorhandensein
mehrerer gleichzeitiger Datenstrome (vgl. Abb. 4.49), die sich gegenseitig kreu-
zen, ist dies moglich.

Genauigkeitsverlust bei Aufzeichung typischer NoC Charakteristika

In einem zweiten Experiment wurden in jeden Hermes Router eines 8x8 NoCs
Nachrichten mit einer 50% Flit-Injektionsrate injiziert. Die Adressen der Ziel-
router wurden dabei per Zufall gewéhlt und waren gleichverteilt (Random Pat-
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tern). Fiir die Messungen wurden Modellparameter wie Puffergrofie, Paketgro-
e und das globale Quantum variiert. Die abstrakten Prozessoreinheiten wurden
zur Aufzeichnung von Performanzdaten wie der Verzogerung einzelner Pakete
und dem Datendurchsatz genutzt.

Die Abb. 4.50 und 4.51 zeigen die gemessene durchschnittliche Abweichung
der Paketverzogerung und des Durchsatzes, die entsteht, wenn anstatt einer
zyklenweisen Synchronisation mit einem globalen Quantum von g = T =
10 ns groflere Werte fiir g gewédhlt werden. In den Abbildungen sind einzelne
vertikale Segmente, welche unterschiedliche Paketgrofien reprasentieren, nicht-
kumulativ.

Wie erwartet steigt die durchschnittliche Abweichung in beiden Fillen mit der
Grofle des globalen Quantums an. Fiir eine Puffergrofie von acht Flits und einer
Paketgrofie von 32 Flits resultiert eine Vergrofierung des globalen Quantums von
20 ns auf 80 ns in einem Anstieg der Abweichung von Verzogerung und Durch-
satz von +4.0% auf £57.4% bzw. £3.8% auf £35.6%. Die Ursache fiir den An-
stieg ist die Generierung zusatzlicher synthetischer Kongestion, welche durch die
tempordre Entkopplung ausgelost wird. Da die Pufferfiillstinde nur einmal pro
Quantum synchronisiert werden, werden bereits volle Puffer mit erhohter Wahr-
scheinlichkeit zu spit ausgelesen. Umgekehrt werden bereits leere oder nicht
mehr volle Puffer mit erhchter Wahrscheinlichkeit zu spét beschrieben.
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Abbildung 4.50.: Durchschnittliche Abweichung der Paketverzogerung (Ran-
dom Pattern)

Wie sich den Abbildungen auch entnehmen lasst, sinkt die durchschnittliche Ab-
weichung mit steigender Pufferkapazitit. Offensichtlich reduzieren grofere Puf-
fer die Gefahr von (synthetischer) Kongestion. Beispielsweise reduziert sich die
durchschnittliche Abweichung der Verzogerung, im Fall eines globalen Quan-
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tums von g = 20 ns und einer Paketgrofse von 32 Flits, von £4.0% auf nur
£0.49%, wenn man die Pufferkapazitdt von acht auf 32 Flits anhebt. Entspre-
chend reduziert sich die Abweichung des Durchsatzes von £3.8% auf £0.37%.

Mit den gegebenen Paketgrofien wurden kleinere durchschnittliche Abweichun-
gen im einstelligen Prozentbereich fiir Fy;x < % gemessen. Dabei ist Fy,y die
Anzahl an Flits, die maximal zwischen zwei Routern innerhalb eines Quantums
q tibertragen werden konnen und F, die Kapazitidt der Puffer. Kleinere Paketgro-

fen resultierten meist in kleineren Abweichungen. Im speziellen Fall des Hermes
NoC gilt:

q

Teycle

<

Fmax =

N | o

(4.32)

4.6.5.2. Performanz und zeitliche Genauigkeit

Um den Trade-off zwischen Performanz und zeitlicher Genauigkeit im Fall einer
vollstindigen MPSoC Simulation zu untersuchen, wurden unterschiedliche Va-
rianten eines 8x8 HeMPS Modells auf einer unterschiedlichen Anzahl an Kernen
einer bestimmten Zielplattform ausgefiihrt. Die Module und deren verfiigbare
Abstraktionsebenen (RTL, TL, PA-CAL und Mixed Level (ML)) sind in Tab. 4.3
zusammengefasst.

Sowohl fiir den Router als auch fiir das Network Interface existieren transakti-
onsbasierte Modelle. Die ML Beschreibung des Network Interfaces dient als Ad-
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apter zur Ubersetzung zwischen einem signalbasierten PE und dem TL Router.
Dabei werden intern zwei SC_METHOD Prozesse zur Ubersetzung von Signalen
in Transaktionen verwendet. Der leichtgewichtige Scheduler dient ausschlieslich
zur Synchronisation.

\ Modul Abstraktionsebene

‘ Processing Element (PE) RTL, PA-CAL

- Network Interface (NI) | RTL, ML \
\ Router (RO) \ RTL, TL \

Tabelle 4.3.: Modellelemente und Abstraktionebenen

Die Module wurden soweit wie moglich in gleich grofle Partitionen aufgeteilt.
Die Simulation wurde fiir 10° Taktzyklen bei einer simulierten Taktfrequenz von
100 MHz und entsprechend einer Zykluszeit von 7%°/¢ = 10 ns ausgefiihrt. Die
PEs fiihrten dabei mehrere MPEG Decoder Pipelines aus.

Als Zielplattformen kamen sowohl der SCC als auch ein cachkohdrenter SHM
Multiprozessor (Core i7 930) mit vier physikalischen und acht virtuellen (Hy-
perthreading) Kernen zum Einsatz. Der Core i7 930 war mit 2.8GHz getaktet
und verfligte im Unterschied zum SCC tiber Hardware Cachekohdrenz. Da die
Kernelimplementierung auf dem asynchronen Kernel aus Abschnitt 4.4 basiert,
wurde fiir die Konfiguration der Simulation die teilautomatisierte Werkzeugket-
te aus Abschnitt 4.4.8 verwendet.

Zur Quantifizierung der zeitlichen Genauigkeit unterschiedlich konfigurierter
Modelle im Vergleich zur RTL Referenz wurden Zeitstempel signifikanter Er-
eignisse wie z.B. Empfangszeiten von Nachrichten aufgezeichnet. Diese Zeit-
stempel wurden dann zur Bestimmung der relativen zeitlichen Abweichung der
abstrakteren Simulationsmodelle von der RTL Referenz verwendet. Dazu wur-
de der zeitliche Fehler jeweils identischer Ereignisse berechnet und daraus der
Durchschnitt gebildet.

Die Messergebnisse auf dem SCC und dem Core i7 930 sind in den Abb. 4.52 und
4.53 dargestellt. In beiden Fallen ist sowohl die Beschleunigung rein sequentiel-
ler Simulation als auch die durch Parallelisierung zusitzlich erzielte Beschleuni-
gung dargestellt. Bei der Core i 930 Workstation wird auSerdem zwischen einer
Simulation auf vier Kernen (ohne Hyperthreading) und acht Kernen (mit Hy-
perthreading) unterschieden.

Sowohl auf dem SCC als auch auf dem Core i 930 wird mit reiner RTL Simu-
lation maximale Genauigkeit aber generell die geringste Beschleunigung erzielt
(22.6x/1.0 auf dem SCC respektive 4.6x/2.9/1.0 auf dem Core i7 930). Der Grund
fur die signifikant bessere Beschleunigung auf dem SCC ist die vergleichsweise
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tion eines 8x8 HeMPS Modells auf dem Core i7 930
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geringe Rechenleistung der SCC Kerne in Verbindung mit der insgesamt hohe-
ren Anzahl an Kernen.

Tauscht man die RTL Beschreibungen der Router und Network Interfaces durch
deren TL bzw. ML Beschreibungen aus und belédsst das Quantum bei der Zy-
kluszeit, so tritt ein leichter durchschnittlicher Genauigkeitsverlust von 0.005%
auf. Dieser ist auf die synchrone Semantik der leichtgewichtigen Scheduler zu-
riickzufiihren, welche keine Deltacycles unterstiitzt, wodurch es evtl. zu kleinen
Timingfehlern im Vergleich zur RTL Referenz kommen kann.

Mit SC_THREAD Schedulern ist in fast allen Féllen ein leichter Performanzge-
winn zu verzeichnen. Nur auf dem Core i 930 geht die Beschleunigung bei vier
Kernen von 2.9x auf 2.5x zurtick. Eine Ursache dieses Riickgangs ist der hohe
Overhead fiir das Scheduling der SC_THREAD Co-Routinen. Bei Verwendung
der effizienteren SC_METHOD Callbacks konnte hingegen in allen Fillen eine
signifikant bessere Beschleunigung gemessen werden (27.8x/1.3x auf dem SCC
respektive 9.8x/4.1x/1.3x auf dem Core i7 930). Die Zuwéchse im rein sequenti-
ellen Fall sind generell beschrankt, da die Hauptrechenlast weiterhin durch die
RTL Plasmakerne generiert wird. Dieser Overhead ist um einiges Grofer als die
durch den Austausch der Router und Network Interfaces erzeugte Varianz in
der Rechenlast.

Tauscht man die RTL PEs durch PA-CAL Beschreibungen aus, so resultiert dies
in einem Riickgang der Genauigkeit auf ca. 99.6% und in einem generellen Zu-
wachs der Beschleunigung, selbst wenn in den Routern und Network Interfa-
ces SC_THREAD Scheduler eingesetzt werden. Ein Austausch von SC_THREAD
Schedulern durch SC_METHOD Scheduler fallt wegen der geringeren Rechen-
last der PA-CAL Beschreibungen nun viel stdrker ins Gewicht: Wahrend bei-
spielsweise die parallele Beschleunigung mit RTL PEs auf dem SCC nur von
26.4x auf 27.8x zunimmt, steigt sie mit PA-CAL PEs von 109.0x auf 136,6x.

Wendet man nun zusétzlich temporare Entkopplung an und vergrofert das glo-
bale Quantum, so wird im Fall von g = 80 ns eine maximale Beschleunigung von
291.8x auf dem SCC und 104.5x auf dem Core i7 930 erreicht. Dabei sinkt die Ge-
nauigkeit im betrachteten Szenario im Vergleich zur RTL Referenz lediglich auf
99.09% ab. Der nur geringe Verlust ist auf die eher rechenintensiven MPEG Pipe-
lines zuriickzufiihren. Aufgrund der relativ seltenen Kommunikation iiber das
NoC ist der zeitliche Genauigkeitsverlust im Vergleich zur RTL Referenz auch
bei einem Quantum von g = 80 ns stark limitiert.
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4.6.6. Fallstudie Il

In der zweiten Fallstudie wurde die Anwendbarkeit der Methode zur dynami-
schen Latenzpradiktion untersucht. Zur Anwendung der Methode auf das Her-
mes NoC miissen folgende drei Schritte durchgefiihrt werden:

1. Analyse des Verhaltens.

2. Annotation von Verzégerungen an die Verhaltensbeschreibungen der leicht-
gewichtigen Prozesse.

3. Entwicklung einer Funktion zur Berechnung des dynamischen Lookaheads
auf Basis der annotierten Verzogerungen.

Dabei ist insbesondere hervorzuheben, dass der dynamische Lookahead, im Ge-
gensatz zur allgemeinen Beschreibung aus den vorigen Abschnitten, nicht akku-
rat berechnet, sondern konservativ geschitzt wird. Die mogliche Performanzstei-
gerung durch temporare Entkopplung ist dadurch zusitzlich limitiert, im Ver-
gleich zum Basisverfahren werden Kausalitdtsverletzungen jedoch vollstandig
verhindert.

4.6.6.1. Analyse des Verhaltens im Hermes Router

Die Aufgaben der einzelnen Elemente des Hermes Routers (Puffer, Crossbar, In-
put Controllern und Switch Controller) wurden bereits in Abschnitt 4.6.3.2 grob
erldutert. Abb. 4.54 illustriert auf das Notwendigste reduzierte Versionen der bei-
den Controller FSMs. Im Detail ist das Verhalten wie folgt:

Angenommen, ein Input Controller befindet sich im S_IDLE Zustand. Sobald
sich ein Header Flit eines Pakets im zugehorigen Eingangspuffer befindet, sendet
der Input Controller eine Anfrage zur Weiterleitung aller Flits des Pakets zum
Switch Controller. Der Input Controller wechselt dann in den S_WAIT Zustand
und wartet auf eine Bestdtigung durch den Switch Controller.

Ein Arbitrierungs- und Routingzyklus fiir einen beliebigen Input Controller ist
erst nach mindestens einer vollstindigen Iteration von S_IDLE nach S_END des
Switch Controllers abgeschlossen: Der Switch Controller kann sich zum Zeit-
punkt der Anfrage eines Input Controllers A in einem beliebigen Zustand zwi-
schen S_IDLE und S_END befinden. Dies ist dann der Fall, wenn der Switch
Controller bereits eine Anfrage eines Input Controllers B bearbeitet, wahrend
die Anfrage des Input Controllers A eintrifft. Mehr als eine Iteration des Switch
Controller ist moglich, wenn andere Input Controller trotz der Anfrage des In-
put Controllers A aufgrund des Schedulingschemas mit hoherer Prioritit aus-
gewdhlt werden. Ein weiterer Grund fiir mehr als eine Iteration ist ein bereits
belegter Ausgang, was in einem Abbruch des Routingvorgangs im Switch Con-
troller im Zustand S_ROUTE resultiert.

198



4.6. Strategie zur Simulation auf Transaktionsebene

Sobald ein Input Controller erfolgreich arbitriert wurde, werden die Header und
Payload Flits in den Zustdanden S_HEAD und S_PAYLOAD f{ibertragen. Im Fall
von Pufferkongestion ist es moglich, dass der Input Controller lingere Zeit in
einem dieser Zustdnde verharrt. In den Zustinden S_END und S_END?2 signa-
lisiert der Input Controller das Ende der Ubertragung an den Switch Controller

und wechselt schliefSlich zurtick in S_IDLE.

S_ARBITRATE

S_ROUTE

Abbildung 4.54.: Input Controller FSM (links) und Switch Controller FSM
(rechts)

4.6.6.2. Annotation von Verzégerungen

Wie bereits erwidhnt, konnen die Elemente des Hermes Routers den unteren drei
Schichten des OSI Referenzmodells zugeordnet werden. In diesem Kontext wird
eine annotierte Latenz an eine der genannten Komponenten als ein Zeitfenster in
der Grofienordnung von Taktzyklen definiert, fiir das eine Interaktion mit dem
darunterliegenden OSI Layer (im Fall der untersten Schicht mit dem benachbar-
ten Router) ausgeschlossen ist. Annotationen auf einer konkreten Schicht haben
folgende Bedeutung:

¢ Bitiibertragungsschicht: Diese Schicht wird durch eine konstante Verzoge-
rung d”*/ von einem Taktzyklus modelliert. Eine zustandsabhingige An-
notation ist nicht notwendig.

¢ Sicherungsschicht: Angenommen, die FSM eines Input Controllers befin-
det sich in einem beliebigen der in Abb. 4.54 gezeigten Zustiande. Dann re-
présentiert eine Annotation an eine Transition die konservativ geschitzte
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minimale Anzahl an Taktzyklen, bis zur nichsten verlustlosen Flitiibertra-
gung (Ubergang nach S_HEAD oder S_PL). Arbitrierungsverzogerungen
werden noch nicht beriicksichtigt. Der aktuelle Schatzwert der Verzoge-
rung d(7) einer Input Control FSM ist durch den Wert der Annotation an
der nichsten zu nehmenden Transition gegeben.

¢ Vermittlungsschicht: Angenommen, die FSM des Switch Controllers be-
findet sich in einem beliebigen der in Abb. 4.54 gezeigten Zustdnde. Dann
reprasentiert eine Annotation an eine Transition die konservativ geschéitzte
minimale Anzahl an Taktzyklen, bis der aktuelle Arbitrierungszyklus vor-
bei ist (Ubergang nach S_END). Der aktuelle Schitzwert der Verzoégerung
d%¢(t) der Switch Control FSM ist durch den Wert der Annotation an der
néchsten zu nehmenden Transition gegeben.

Die Layer 1 Verzogerung d”/ ist identisch zur externen Pfadlatenz d** bzw. zum
statischen Lookahead (vgl. Abschnitt 4.6.3.3). d”“f sowie die Schitzwerte d’ (1)
und 4°°(7) kénnen widerum zur Schitzung der Pfadlatenzen bzw. des dynami-
schen Lookaheads genutzt werden (vgl. Abschnitt 4.6.3.4).

4.6.6.3. Schatzung des dynamischen Lookaheads

Alg. 4.1 illustriert die in der Fallstudie verwendete Schatzfunktion. Die Funktion
ist Teil des leichtgewichtigen Schedulers und wird innerhalb der Aktion calcDL()
angewendet (vgl. Abschnitt 4.6.3.6). Die Funktion schitzt ausschliefilich die La-
tenz auf dem Vorwartspfad. Auf eine separate Schatzung des Riickwértspfades
kann verzichtet werden. Der Grund sind folgende spezielle Eigenschaften des
Hermes Routers:

Zum einen werden im Switch Controller Entscheidungen bzgl. Arbitrierung und
Routing grundsétzlich unabhédngig von den Pufferfiillstandswerten gefallt. Die-
se haben keinen Einfluss auf die Funktion des Switch Controllers. Des Weiteren
stiitzt ein Input Controller die Entscheidung, ob im aktuellen Takt ein Flit tiber-
tragen werden kann, nur auf die im unmittelbar vorangegangenen Taktzyklus
empfangene binidre Zustandsinformation iiber die Pufferfiillstinde (voll/nicht
voll).

Fiir die Berticksichtigung des Riickwartspfades gentigt es daher, wenn man da-
ftir sorgt, dass auf dem Vorwaértspfad nicht nur nach jedem tatsachlich durchge-
fiihrten Schreibzugriff auf ein fi Artefakt, sondern zusitzlich vor jedem potenti-
ellen Schreibzugriff eine Synchronisation erfolgt. Zu diesem Zweck wurden die
Annotationen in der Input Controller FSM insgesamt um einen Takt zusétzlich
dekrementiert. Damit kann die Berechnung der minimalen internen Pfadlatenz
in Ausdruck 4.29 wie folgt vereinfacht werden:
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dint () = min{dl["" (z;), A" (1)} = al* M (). 433)

Algorithm 4.1 Schitzfunktion fiir den dynamischen Lookahead

1: function ESTIMATE_LOOKAHEAD(InputArtifact fi)
2 lookahead | = oo

3 for all x € InputController do

4 dint <0

5: if s(x) = S_WAIT then

6: dint « dsc(T)

7 elseif s(x) = S_HEAD V s(x) = S_PL then
8 if out(x) = fithen

9: dint « di¢(T)

10: else

11: d" — pe(x) +d5,

12: end if

13: else

14: /fall other states:

15: d"t — die () - d56,

16: end if

17: I+ min(l,d™)

18: end for

19: 1« 1 +df
20: end function

Auf dieser Basis fiihrt die Funktion in Alg. 4.1 eine Reduktion des Lookaheads
von oo auf einen giiltigen Wert durch. Zunichst wird durch Iteration tiber alle In-
put Controller mit Ausdruck 4.33 die minimale interne Vorwiértspfadlatenz wie
folgt berechnet:

Falls sich der Input Controller x im Zustand S_WAIT befindet, so wird fiir dZ” (%)

die konservative Schitzung der aktuellen Latenz des Switch Controllers d°°(T)
herangezogen. In den Zustanden S_HEAD bzw. S_PL héngt der geschétzte La-
tenzwert vom betrachteten fi Artefakt ab. Ist dieses identisch zu dem logischen
Puffer, auf den der Input Controller x gerade schreibt (identifiziert durch out(x)),
so wird als Latenz di¢ (1) angenommen. Andernfalls, ist die Latenz pc(x) -+ asi-
pc(x) gibt dabei die Anzahl der zur Ubertragung ausstehenden Payload Flits
zurtick und d°¢.  entspricht der minimalen Dauer eines Routingvorgangs durch
den Switch Controller (vier Taktzyklen). In allen anderen Zustinden (S_IDLE,

S_END und S_END?) wird die Latenz zu d’¢ (t) + d%¢, angenommen: In diesen
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Féllen kann eine aktive Ubertragung ausgeschlossen werden. Fiir die néchste
Ubertragung eines Flits muss mindestens ein kompletter Routingvorgang erfol-
gen. Zu guter Letzt wird in Zeile 19 die Berechnung durch Addition der externen
Pfadlatenz bzw. d”*/ vervollstandigt.

4.6.6.4. Experimentelle Evaluation

Zur experimentellen Bewertung wurden mehrere Simulationsldufe mit unter-
schiedlichen Varianten des HeMPS durchgefiihrt. Zunédchst wurden dazu ver-
schiedene Konfigurationen einer Applikation, die ein Transpose Pattern imple-
mentiert, auf die PEs des Modells abgebildet. Dabei wurde jedem PE ein Task
mit einem festen Kommunikationspartner auf einem anderen Kern zugeordnet.
Mit Hilfe eines Zahlers war es moglich, die Wartezyklen zwischen der Ubertra-
gung aufeinanderfolgender Pakete einzustellen. Anschlieffend wurde die Mo-
dellierungstechnik fiir die verwendeten Module ausgewéhlt. Die Umsetzung des
Pradiktionsmechanismus beschréankte sich auf das Routermodell.

Die Module wurden mit einer Granularitidt von Tiles soweit wie moglich in gleich
grofe Partitionen gruppiert. Jeder dieser Partitionen wurde einem Kern der Ziel-
plattform zugeordnet. Als Zielplattform dienten der SCC und eine Core i7 930
Workstation mit bis zu acht virtuellen Kernen mit jeweils 2.8 GHz. Die Simu-
lation wurde fiir 10° Zyklen bei einer simulierten Taktfrequenz von 100 MHz
ausgefiihrt.

Plattformunabhangige Charakteristika

Tabelle 4.4 fasst gemessene plattformunabhéngige Charakteristika zusammen.
Sobald ein Synchronisationspunkt einer Verbindung erreicht ist, warten benach-
barte Module auf den gegenseitigen Austausch von genau einer Kontrolltrans-
aktion. Dies resultiert darin, dass auch mit aktivierter Pradiktion die Anzahl der
insgesamt in der Simulation ausgetauschten Kontrolltransaktionen unabhéngig
von der Zielplattform und dem Ausfithrungsmodus (sequentiell oder parallel)
ist.

Der Tabelle ist zu entnehmen, dass die durchschnittliche Anzahl der Kontroll-
transaktionen 8! die bei deaktivierter Pradiktion pro Router und Socket Link
verschickt wird, exakt der Anzahl der simulierten Taktzyklen (1 x 10°) entspricht.
Die Anwendung von DLP resultiert im Allgemeinen in einer Reduktion der
durchschnittlichen Anzahl an Kontrolltransaktionen um 57% bis 66%. Damit
steigt die durchschnittliche Anzahl an Taktzyklen, die ein Modul ausfiihren kann,
ohne mit einem benachbarten Modul synchronisieren zu miissen, von 1.0 auf
Werte > 2.38.
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Tabelle 4.4.: Plattformunabhéngige Charakteristika
Modell Wartezyklen Pridiktion 6.ctrl/Router/Link Zyklen/0.ctrl

4x4 100 aus 1 x 10° 1.0
4x4 100 an 421 x 10° 2.38
4x4 102 aus 1 x 100 1.0
4x4 102 an 4.06 x 10° 2.46
4x4 10° aus 1 x 10° 1.0
4x4 10° an 3.58 x 10° 2.79
8x8 100 aus 1 x 100 1.0
8x8 100 an 3.90 x 10° 2.56
8x8 102 aus 1 x 100 1.0
8x8 102 an 3.83 x 10° 2.61
8x8 10° aus 1 x 10° 1.0
8x8 10° an 3.37 x 10° 2.97

Die tatsdchliche Effektivitdt hdangt von der auf dem HeMPS ausgefiihrten Ap-
plikation ab. Im Fall von geringem Aufkommen an Datentransaktionen (grofsere
Anzahl Wartezyklen) ist die durchschnittliche Anzahl an Kontrolltransaktionen
generell kleiner als im Fall von hohem Aufkommen (kleinere Anzahl Wartezy-
klen). Viele Datentransaktionen einer aktiven Ubertragung uber einen bestimm-
ten routerinternen Pfad erhohen die Wahrscheinlichkeit, dass sich die betroffe-
nen Input Controller im Zustand S_HEAD oder S_PL befinden und die Latenz
dieses Pfades tiber Zeile neun in Alg. 4.1 berechnet wird. Da sich die Werte der
Annotationen an Transitionen im Input Controller in den Zustinden S_HEAD
oder S_PL nur zwischen null und einem Taktzyklus bewegen, fiihrt dies zu ei-
nem erhohten Aufkommen von Kontrolltransaktionen.

Fiir alle anderen internen Pfade, die nicht von der aktiven Ubertragung betroffen
sind und {tiber die aktuell keine Datentransaktionen tibermittelt werden, berech-
net sich die interne Pfadlatenz ausgehend von einem aktiven Input Controller,
tiber Zeile elf. Dadurch bewegen sich die geschitzten Latenzen in der Grofien-
ordnung des Payloads. Allerdings werden diese verhéltnismé&dfiig hohen Schatz-
werte in nahezu allen Féllen durch geringere Schidtzwerte anderer passiver In-
put Controller im Zustand S_ILDE, S_END oder S_END2 wieder reduziert: In
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diesem Fall bestimmt sich die Latenz iiber Zeile 15. Aufgrund der annotierten
Werte, die sich in jeder FSM nur im Bereich von ein bis maximal vier Zyklen
bewegen, resultiert dies in Gesamtverzogerungen < 7 Zyklen.

Die durchschnittliche Anzahl an Kontrolltransaktionen ist bei aktiver Pradiktion
beim 8x8 Modell generell kleiner als beim 4x4 Modell. Der Grund ist die Initiali-
sierungsphase des HeMPS Modells, in der die Tasks zunédchst von einem Master
PE auf Slave PEs verteilt werden, bevor letztere mit der Ausfiihrung beginnen.
In dieser Phase wird die Transpose Anwendung nicht vollstindig ausgefiihrt. Da
die Taskverteilung auf einem 8x8 System ldnger dauert als auf einem 4x4 Sys-
tem, befinden sich die Input Controller der Router langer im S_IDLE Zustand.
Dadurch entstehen grofiere dynamische Lookaheads und lokale Quanta.

Plattformabhingige Charakteristika

Zur Bewertung plattformabhangiger Charakteristika wird zunéchst die Ausfiih-
rung auf der Core i7 930 Workstation betrachtet. In Abb. 4.55 ist die gemessene
Beschleunigung von paralleler im Vergleich zu sequentieller Simulation illus-
triert. Bei der sequentiellen Simulation wurde zyklenweise Synchronisation oh-
ne Pradiktion verwendet. Im parallelen Fall wurde die Ausfiihrungsdauer mit
und ohne Pradiktion gemessen.
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Abbildung 4.55.: Beschleunigung auf dem Core i7 930

Wegen des hoheren parallelisierbaren Berechnungsaufwands ist die Beschleuni-
gung beim 8x8 Modell generell hoher als beim 4x4 Modell. In beiden Fallen hat
DLP eine merkliche Verbesserung der Beschleunigung zur Folge. Beispielsweise
betrédgt sie beim 8x8 Modell mit zyklenweiser Synchronisation, ohne DLP und
1 x 10° Wartezyklen, 3.08x. Mit aktivierter DLP steigt die Beschleunigung auf
5.07x an. Dies ist gleichzeitig der hochste Wert, der auf der Core i7 930 Worksta-
tion gemessen wurde.
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Insbesondere bei aktivierter DLP ist eine Abhingigkeit der Beschleunigung vom
Datenaufkommen zu erkennen, das durch die Transpose Applikation generiert
wird. Beispielsweise reduziert sich die Beschleunigung beim 8x8 Modell und ak-
tivierter DLP von 5.07x auf 4.79x bzw. 4.72x, wenn die Anzahl der Wartezyklen
in der Applikation von 1 x 10° auf 1 x 102 bzw. 1 x 10° verringert wird.

Fiir die Untersuchungen auf dem SCC konnten die Modelle stiarker zerlegt wer-
den, da der SCC mehr Kerne als die SHM Workstation besitzt. Insgesamt kamen
fiir das 4x4 Modell 16 Partitionen und fiir das 8x8 Modell 48 Partitionen und
damit alle SCC Kerne zum Einsatz. Da mit Tile Granularitét partitioniert wurde,
bestanden beim 8x8 Modell 16 Partitionen aus zwei Tiles. Abb. 4.56 illustriert die
Messergebnisse.
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Abbildung 4.56.: Beschleunigung auf dem SCC

Auch auf dem SCC fiihrt DLP zu einer merklichen Verbesserung der Beschleu-
nigung im Vergleich zu zyklenweiser Synchronisation. Wéahrend die insgesamt
erzielten Beschleunigungen um einiges grofier sind als auf dem Core i7 930, be-
wegen sich die durch DLP zusitzlich erzielten Verbesserungen in der gleichen
Groflenordnung.

Beim 4x4 Modell mit 1 x 10° Wartezyklen steigt die Beschleunigung durch Ein-
satz von DLP von 5.8x auf 8.22x. Beim 8x8 und gleicher Anzahl Wartezyklen
steigt sie von 19.64x auf 24.91x. Wie bereits in Abschnitt 4.6.5.2 erldutert, sind
die Beschleunigungen auf dem SCC, wegen der vergleichsweise geringen Re-
chenleistung in Kombination mit der hoheren Kernanzahl, generell hoher.

Die Gegeniiberstellung in Abb. 4.57 macht deutlich, dass eine hohere Beschleu-
nigung nicht zwangsldufig einen besseren Absolutwert der Laufzeit zur Folge
hat. Simuliert wurde ein 8x8 Modell bei 1 x 10° Wartezyklen. Sowohl im sequen-
tiellen als auch im parallelen Fall sind Laufzeitverbesserungen durch DLP zu
verzeichnen. Die geringe Taktfrequenz von 533 MHz der SCC Kerne hat aber
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4. Parallele SystemC Simulation fiir Multiprozessoren

vergleichsweise lange Laufzeiten bei sequentieller Ausfithrung in der Grofien-
ordnung von 10* s zur Folge (im Vergleich zu nur 10% s auf dem Core i7 930).
Durch aggressive Parallelisierung wird der Nachteil der geringen Rechenleis-
tung der SCC Kerne allerdings nahezu ausgeglichen: Im betrachteten Szenario
kann die Laufzeit auf dem SCC von 12468 s bzw. 11604 s (mit aktiver DLP) auf
nur 675 s bzw. 509 s reduziert werden. Die absoluten parallelen Laufzeiten auf
dem SCC bewegen sich dann zwischen den absoluten sequentiellen und paral-
lelen Laufzeiten auf dem Core i7 930.
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Abbildung 4.57.: Vergleich der Laufzeiten

4.7. Einordnung in verwandte Arbeiten und Fazit

Die hier vorliegende Arbeit ist die erste Arbeit, in der die Parallelisierung von
SystemC auf Manycore Architekturen untersucht wurde. Dem Autor sind dar-
tiber hinaus keine Arbeiten bekannt, dies das Problem der Parallelisierung von
SystemC mit Hilfe von Schichtenbildung zerlegen. Auch Gegeniiberstellungen
unterschiedlicher Verfahren und Plattformen (z.B. asymmetrische versus sym-
metrische Strategie auf logischer Ebene, SCC versus cachkohédrentem SHM Mul-
tiprozessor auf Ausfithrungsplattformebene) sind in der Literatur eher selten zu
finden. Ausnahmen sind [260] und [61], wo eine GPU Parallelisierung von Sys-
temC RTL Modellen mit einer Parallelisierung auf einem Multiprozessor bzw.
FPGA verglichen wird.

Die asymmetrische synchrone Strategie aus Abschnitt 4.3 wurde in dhnlicher
Weise in [105] und [232] implementiert, allerdings fiir konventionelle cacheko-
hiarente SHM Multiprozessoren. Im Bereich von SpecC existieren die Arbeiten
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von Chen et. al [85, 83], die ebenfalls auf cachekohérente Architekturen speziali-
siert sind. Bei den Untersuchungen in dieser Arbeit hat sich die asymmetrische
Strategie als nur schwer anwendbar auf dem nicht cachekohédrenten SCC erwie-
sen.

Vergleichbar mit dem symmetrischen asynchronen Ansatz aus Abschnitt 4.4 sind
z.B. die Arbeiten in [271] und [82]. In beiden Fillen sind die Zielplattformen
allerdings Workstation Cluster. In [271] werden nur synthetische Benchmarks
durchgefiihrt und keine realistischen Simulationen. Das Verfahren in [82] wurde
fur SpecC TL Modelle implementiert. In [188], [206] und [181] werden Ansétze
zur parallelen VHDL und Verilog Simulation beschrieben. Die Arbeiten erlau-
ben aber entweder keine Relaxation der Synchronisation auf die Ebene von Ti-
medcycles [188], fokussieren auf die Gatterebene [206] oder nutzen optimistische
Synchronisation [188, 181].

Die grofite Ahnlichkeit mit dem adaptiven Synchronisationsverfahren aus Ab-
schnitt 4.5 haben die SystemC-basierten parallelen Simulatoren von Cox [93] und
Combes et. al [90] sowie der parallele VHDL Simulator von Lungeanu und Shi
[188]. Keine der genannten Arbeiten zielt jedoch auf Manycore Architekturen als
Zielplattformen ab. Alle sind auf globale Synchronisation zwischen logischen
Prozessen angewiesen. Zudem bieten Cox und Combes keine Werkzeugkette
welche es erlaubt, SystemC Modelle automatisch zu analysieren, zu partitionie-
ren und zu verteilen. Weder in [93], [90] noch in [188] wird eine statische Kausa-
litdtsanalyse zur Vermeidung globaler Synchronisation genutzt.

Die einzigen bekannten Arbeiten im Bereich von SystemC, die eine statische
compilergestiitzte Modellanalyse verwenden, sind die GPU basierten Losungen
aus [205], [237] und [260]. Nur die im Kontext von SpecC entstandenen Arbeiten
von Chen et. al [85, 83] nutzen ebenfalls eine statische Compileranalyse, aller-
dings fiir eine zentralisierte Parallelisierung auf cachekohdrenten Multiprozes-
soren. Keine der bekannten Arbeiten kombiniert eine statische mit einer dyna-
mischen Analyse vor der Simulationslaufzeit, dhnlich dem Ansatz von PinaVM
[193].

Die TL Modellierungsstrategie aus dem vorigen Abschnitt ist durch die Softwa-
rearchitektur von Ptolemy II [217] inspiriert (vgl. Abschnitt 2.3.4), insbesondere
die hierarchische Verschachtelung von Schedulern. Wihrend die Hierarchisie-
rung in PtII als Grundlage fiir die strukturierte Komposition von heterogenen
Simulationsmodellen dient, wird sie in der beschriebenen TL Methodik aller-
dings als Basis fiir die Simulationsbeschleunigung eingesetzt. Ein moglicher An-
satz zur Nutzung von sog. Microschedulern im Kontext von SystemC/TLM mit
dem Ziel der Simulationsbeschleunigung wird in [142] und [143] beschrieben.
Jedoch wird in diesen Arbeiten keine Methode fiir die parallele Ausfithrung sol-
cher Modelle hergeleitet.
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4. Parallele SystemC Simulation fiir Multiprozessoren

In [259, 199] wird eine SystemC TL Modellierungsmethodik namens TLM/T
bzw. deren Erweiterung TLM-DT vorgestellt, die auf Basis von Transaktionen
ein PDES Protokoll umsetzt. TLM-DT Modelle sind mit einem speziellen Ker-
nel parallel ausfiihrbar. Der Kernel ist allerdings fiir die parallele Simulation von
TLM-DT Modellen auf cachekohdrenten SHM Multiprozessoren beschrankt. We-
der in [259] noch in [199] werden leichtgewichtige Scheduler eingesetzt, um mi-
kroskopische Effekte wie Kongestion einzelner Puffer in einem NoC Router ak-
kurat zu simulieren. Zudem wird weder eine Losung zur deterministischen TLM
Simulation noch zur kontrollierten Beschrankung von temporérer Entkopplung
beschrieben.

Insgesamt konnte in diesem Kapitel gezeigt werden, dass sich asynchrone Syn-
chronisationsverfahren gut fiir die parallele Simulation von zyklenakkuraten MP-
SoC Simulationsmodellen eignen. Auf Architekturen wie dem SCC hat sich ei-
ne statische Partitionierung des Modells als notwendig erwiesen, um signifikan-
te Beschleunigungen zu erreichen. Durch die Kombination aus Parallelisierung
und Abstraktion ist ein weiterer Grad an Beschleunigung moglich. Neben der
Partitionierung und dem Abstraktionsgrad hédngt die Effizienz stark von der
Grofie des Simulationsmodells ab. Die Prapédration eines Modells kann anhand
entsprechender Werkzeugunterstiitzung erfolgen. Dies wurde anhand ein teil-
und einer vollautomatisierten Werkzeugkette demonstriert.

Ziel zukiinftiger Arbeiten kann es sein, die Anwendbarkeit der beschriebenen
Methoden auf eines grofieres Spektrum von Modellierungsstilen sowie eine Kom-
bination aus heterogenen Ausfiihrungsplattformen (GPUs, Intel MIC, FPGAs, ...)
zu erweitern. Dazu sind die Eigenschaften von Modellen, Modellierungsstilen
und Ausfiihrungsplattformen zu analysieren, um daraus Schlussfolgerungen fiir
notwendige Adaptionen der Laufzeitumgebung und der Modelle zu ziehen. In
Kombination mit einer entsprechenden Erweiterung der teil- oder vollautoma-
tisierten Werkzeugkette konnten SystemC Simulationsmodelle automatisiert auf
heterogenen Ausfithrungsplattformen verteilt werden. Die beschriebene Erwei-
terung ist eng verkntipft mit der Entwicklung von neuen Strategien zur Simula-
tionssynthese auf Basis von Modelltransformationen sowie der Entwicklung von
Methoden zur Bewertung verschiedener Parallelisierungsansétze.
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Co-Simulation

Neben der Notwendigkeit von Methoden zur Nutzung von Multi- und Manyco-
re Prozessoren fiir die parallele Simulation, wurde in Kapitel 1 die Untersttit-
zung neuer Methoden zur kooperativen Simulation als elementarer Bestand-
teil zukiinftiger interdisziplindrer Entwicklungsprozesse identifiziert. Einer der
Hauptgriinde dafiir ist der erhohte Grad an Interaktionen von zukiinftigen An-
wendungen und zugrundeliegenden Systemkomponenten, nicht nur mit der he-
terogenen physikalischen Umwelt, sondern auch mit einer weitreichenden und
vernetzten IKT Infrastruktur.

In diesem Kapitel wird ein Ansatz zur Unterstiitzung eines interdisziplindren
und simulationsbasierten Verifikationsprozesses fiir zukiinftige eingebettete Sys-
teme vorgestellt. Der Ansatz basiert auf einer Simulatorarchitektur und einer
Methode zur Werkzeugkopplung. Am Beispiel automobiler elektrisch/elektro-
nischer (E/E) Architekturen werden allgemeingiiltige Zusammenhé&nge zunéchst
konkretisiert!. Darauf aufbauend werden Anforderungen und Konzepte herge-
leitet. Anschlieflend werden implementierte Konzepte beschrieben und die An-
wendbarkeit anhand unterschiedlicher Prototypen demonstriert. Grundlagen zu
diesem Kapitel wurden in zwei vom Autor betreuten Studienarbeiten [LZ10,
Sch13] erarbeitet und sind somit in Zusammenarbeit entstanden. Konzepte und
Ergebnisse sind in mehreren Publikationen veroffentlicht [RSHB10a, RSHB10b,
RMR*12, BNR*13, RBB* 14].

5.1. Beispiel: Automobile E/E Architekturen

Die E/E Architektur eines modernen Fahrzeugs ist heutzutage ein verteiltes Netz-
werk, das aus mehreren Bussystemen, duzenden Steuergeréten (engl. Electronic
Control Units (ECUs)) und hunderten von Sensoren und Aktuatoren besteht. An
dieses System werden hohe Anforderungen bzgl. Zuverldssigkeit und Echtzeit-
fahigkeit gestellt. Die Erftillung dieser Anforderungen ist die Grundlage fiir Si-

1Die Darstellung der Zusammenhénge basiert auf [71] und [51].
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cherheit in verschiedensten Fahr- und Gefahrensituationen. Zur Erfullung der
Anforderungen wird das Zeitverhalten einzelner Teilsysteme sowie die Art und
Weise der Kommunikation innerhalb des Fahrzeugs in der Entwurfsphase weit-
gehend statisch festgelegt. Dies ist moglich, da die E/E Architektur ein nahezu
vollstandig abgeschlossenes System bildet.

Verursacht durch die evolutionsartige Entwicklung und der dadurch entstan-
denen funktionalen Fragmentierung, tibersteigt die Komplexitidt heutiger E/E
Architekturen deutlich die Komplexitét, die eigentlich fiir die existierende Funk-
tionsdichte ausreichend wiére [51]. Traditionelle E/E Architekturen werden des-
wegen und aufgrund der stetig steigenden Funktionsdichte immer anfalliger fiir
Fehler und so nach und nach zu einer , Innovationsbarriere” [71]. Dariiber hin-
aus sind Applikationen zunehmend von unterschiedlichsten Daten aus verschie-
densten Quellen wie diversen Sensoren oder fahrzeuginternen und -externen
Kommunikationsnetzwerken abhéingig. Die genannten Defizite der E/E Archi-
tektur sind nicht zuletzt auf den stark Bottom-up gepréagten Entwicklungspro-
zess zwischen Zulieferern (Tier 1 und Tier 2 Supplier) und OEMs zurtickzufiih-
ren [51].

OEMs (z.B. Daimler, VW oder Toyota) produzieren das Gesamtfahrzeug. Tier
1 Zulieferer (z.B. Bosch oder Siemens) produzieren Teilsysteme wie ECUs oder
Bussysteme und stellen diese dem OEM zur Verfiigung. Tier 2 Zulieferer (z.B.
Chiphersteller wie Freescale oder Infineon oder Hersteller von Betriebssystemen
wie WindRiver) stellen den Tier 1 Zulieferern wiederum die Basistechnologien
zur ECU Entwicklung zur Verfiigung. Einzelne Teilsysteme werden weitgehend
unabhéngig voneinander entwickelt.

Das konkrete Vorgehen wahrend Entwicklung und Test wird durch das sog. V-
Modell [140] definiert. Dabei erfolgen Entwicklung und Test heutzutage weit-
gehend sequentiell. Im Ergebnis tauchen Fehler oft erst in der spaten Phase der
Integration von ECUs und E/E Architektur auf. Eine anschlieffende Ursachen-
forschung kann sehr zeitintensiv sein und erhebliche Kosten verursachen. Des
Weiteren finden Optimierungen von Steuergeratefunktionen meist ausschliefs-
lich bei einem Zulieferer und losgeldst vom OEM oder anderen Zulieferern statt.
Dadurch werden mogliche (implizite) Wechselwirkungen mit anderen Funktio-
nen und Teilsystemen oft nicht beriicksichtigt.

5.1.1. Einfluss neuer Technologien auf die E/E Architektur

Die beschriebene Situation im Bereich der E/E Architekturen wird durch die In-
tegration neuartiger Technologien wie beispielsweise Drive-by-Wire (DbW) Sys-
temen [146] oder Fahrzeug-zu-Fahrzeug bzw. Fahrzeug-zu-X Kommunikation
(engl. Vehicle-to-X Communication (V2XC)) [30][227] weiter verscharft. Diese zeich-
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nen sich durch eine gesteigerte Abhidngigkeit von mehreren oder vielen verteil-
ten Informationsquellen und -senken aus.

DbW Systeme basieren auf voneinander separierten hochintegrierten mechatro-
nischen Antriebsmodulen, die klassische Radnabenmotoren ersetzen [123]. Die-
se Antriebsmodule sind intelligente Module, die Sensordaten bereits intern vor-
verarbeiten, um eine Regelung zunéchst lokal zu optimieren. Alle im Fahrzeug
vorhandenen Antriebsmodule (in der Regel eines pro Rad) werden dann schliefs-
lich durch eine fahrzeugiibergreifende Regelung, die beispielsweise auf einer
zentralen leistungsfahigen Rechnerplattform ausgefiihrt wird, aufeinander ab-
gestimmt.

V2XC bildet die Basis fiir zukiinftige Anwendungen und Dienste, fiir die eine
ausschliefiliche Berticksichtigung von im Sichtbereich des Fahrzeugs verfiigba-
rer Information nicht mehr ausreichend ist. Der Grofsteil der Anwendungen wird
vielmehr auf der Verfiigbarkeit von Informationen aus rdaumlich weit verteilten
Quellen basieren, um beispielsweise eine automatisierte globale Verkehrsfluss-
regelung vornehmen zu konnen. In erster Ndaherung muss die E/E Architektur
dazu mit einer neuen Funkschnittstelle ,geoffnet” werden (z.B. {iber eine daftir
vorgesehene ECU). Diese erlaubt es dann, mit anderen Fahrzeugen oder der ex-
ternen IKT Infrastruktur in Kontakt zu treten [227]. Die Offnung des internen
Fahrzeugnetzwerks nach aufien erzeugt neue zusatzliche Abhangigkeiten und
Wechselwirkungen und erhoht nicht zuletzt die Gefahr von Storungen sicher-
heitskritischer Funktionen oder Angriffen auf das interne Fahrzeugnetz [121].

Um E/E Architekturen fiir solch neue Technologien tauglich zu machen und
gleichzeitig existierende Limitierungen hinsichtlich Erweiterbarkeit fiir zukiinf-
tige Innovationen aufzuheben, ist eine grundlegende Uberarbeitung existieren-
der Konzepte notwendig [51]. Dies beinhaltet eine stringentere Anwendung von
Entwurfsparadigmen wie Modularitdt, Kapselung, Standardisierung und Zen-
tralisierung. In [51] werden diese Paradigmen unter dem Oberbegriff der Vir-
tualisierung zusammengefasst. Ein vergleichbarer Prozess wurde schon einmal
in den 1980er Jahren durchlaufen, als die direkte Verkabelung zwischen ECUs
durch Bussysteme ersetzt wurde [51] (siehe Abb. 5.1).

5.1.2. Auswirkungen auf den Entwicklungsprozess

Anhand den beiden beschriebenen Technologien DbW und V2XC lassen sich
wichtige Schlussfolgerungen an zukiinftige Entwicklungsprozesse und an dar-
in zu verwendende Werkzeuge ableiten. Wechselwirkungen zwischen verschie-
denen Teilsystemen sollten so frith wie moglich bei den Entwicklungsaktivita-
ten Beachtung finden. Dazu miissen existierende Bottom-up gepriagte Entwick-
lungsprozesse durch neue Meet-in-the-Middle Ansitze ergénzt werden. Dies er-
offnet dann die Moglichkeit fiir eine durchgéngige modellbasierte Herangehens-
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Abbildung 5.1.: Evolution der Komplexitdt von E/E Architekturen (Quelle: [51])

weise und die Verifikation von Teilsystemen und deren Interaktionen, ohne alle
Details der finalen Implementierung kennen zu miissen.

Die plattformbasierte Entwurfsmethodik (vgl. Abschnitt 2.1.1.3) ist ein vielver-
sprechender Losungsansatz, um die erwdhnten Defizite innerhalb automobiler
Entwicklungsprozesse zu eliminieren [229]. Die Etablierung von Prinzipien des
PBD im automobilen Kontext bedeutet zunédchst, Anwendungen vollstandig als
Software zu ,,virtualisieren”? und von ihrer urspriinglich festen Verkniipfung mit
einer bestimmten ECU zu l6sen. Funktion und Architektur sind damit von Be-
ginn an voneinander separiert. Dies gestattet eine flexible Abbildung von Funk-
tionen auf die E/E Architektur. Zudem konnen abstrakte modellbasierte Funk-
tionsspezifikationen und deren Zusammenspiel bereits in frithen Entwicklungs-
stadien z.B. durch Simulation modellbasiert verifiziert werden, ohne die exakte
Implementierung der Architektur zu kennen. Dies ist die Grundlage fiir eine
iterative Verfeinerung des Systems und dessen durchgingige Verifikation und
resultiert in erhohter Zuverlassigkeit und reduzierten Kosten [229].

Zusétzlich zu den beschriebenen PBD Prinzipien sind insbesondere die technolo-
gische Heterogenitit neuartiger Systeme wie DbW oder V2XC und die durch die
starke Vernetzung zusétzlich entstehenden Wechselwirkungen bereits in frithen
Phasen des Entwurfsprozesses zu berticksichtigen. Diese Notwendigkeit wird

2Fiir den Begriff der Virtualisierung wird an dieser Stelle die Definition aus [51] vorausgesetzt.
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dadurch verstirkt, dass es immer schwieriger wird, klare Systemgrenzen zu defi-
nieren. Dadurch kénnen bestimmte Wechselwirkungen (z.B. mit dem V2X Netz-
werk) nicht einfach ausgeschlossen werden.

Aus technologischer Sicht entstehen diese Wechselwirkungen zwischen verschie-
denen Anwendungsdisziplinen. Da sich innerhalb einzelner Disziplinen wie In-
formationstechnik, Kommunikationstechnik oder Mechatronik bereits speziali-
sierte Modellierungs- und Simulationswerkzeuge etabliert haben, ist die Mog-
lichkeit zur Wiederverwendung dieser zueinander heterogenen Werkzeuge ein
grundlegendes Kriterium fiir den Erfolg einer Entwicklungsmethodik [20].

Dariiber hinaus entstehen aus organisatorischer Sicht Wechselwirkungen zwi-
schen Zulieferern und OEM: Bestimmte Simulationswerkzeuge oder Modelle
sind z.B. aus lizenzrechtlichen Griinden nur bei einem Zulieferer verfiigbar. Eine
verteilte Kopplung kann eine Losung sein, um trotzdem Untersuchungen von
Wechselwirkungen zwischen diesen Modellen zu ermoglichen.

Aus den genannten Griinden ist es notwendig, neue PBD Ansdtze zu entwi-
ckeln, welche eine heterogene Modellierung gestatteten und existierende Simu-
lationswerkzeuge koppeln konnen. Komplikationen, die durch Inkompatibili-
taten zwischen heterogenen Simulationswerkzeugen entstehen konnen, sollten
soweit wie moglich reduziert werden. Aus organisatorischen Griinden ist eine
verteilte Koppelbarkeit vorteilhaft.

5.2. Anforderungen an die entwickelnde

Simulationsumgebung

Aus dem beschriebenen Szenario der automobilen E/E Architekturen und den
daraus abgeleiteten Auswirkungen auf den Entwicklungsprozess ergeben sich
folgende konkrete Anforderungen an die zu entwickelnde Simulationsumge-
bung:

I) Interdisziplindre Modellierung und Simulation: Es sollte eine Modellie-
rung und Simulation unter gleichzeitiger Verwendung disziplinspezifischer
Simulationswerkzeuge moglich sein.

II) Verbesserte Interoperabilitit: Aus der vorherigen Anforderung ergibt sich
unmittelbar die Notwendigkeit fiir Interoperabilitdt. Die Voraussetzung da-
fiir sind eindeutig definierte syntaktische und semantische Schnittstellen
zur Co-Simulation.

III) Heterogene Modellierung: Die Simulationsumgebung sollte eine formale
Grundlage besitzen, die es erlaubt, eine Kombination aus heterogenen Teil-
systemen und deren Interaktionen so genau wie moglich zu spezifizieren.
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IV) Wiederverwendbarkeit und Erweiterbarkeit: Die Simulationsumgebung
sollte flexibel und strukturiert erweiterbar sein. Durch die Integration dis-
ziplinspezifischer Modelle sollte die Spezifikation des Restsystems unange-
tastet bleiben.

V) Handhabbarkeit: Es soll die Moglichkeit bestehen, Schnittstellen zu erzeu-
gen und dadurch Interoperabilitét bis zu einem gewissen Grad automatisch
herzustellen. Eine solche Automatisierung beschleunigt den Prozess der In-
tegration. Die Moglichkeit zur verteilten Ausfithrung férdert die Handhab-
keit zusatzlich.

VI) Platformbasierter Entwurfsprozess: Die Simulationsumgebung sollte fiir
die Anwendung einer Meet-in-the-Middle Methodik wie der PBD Metho-
dik (vgl. Abschnitt 2.1.1.3) geeignet sein. Dies beinhaltet die Moglichkeit
zur Spezifikation von Funktion-zu-Architektur Abbildungen sowie deren
durchgéngige Verifikation innerhalb eines iterativen Verfeinerungsprozes-
ses, unter Berticksichtigung existierender Wechselwirkungen mit anderen
Teilsystemen.

5.3. Konzept

Im Allgemeinen sind die Aufgaben einer Schnittstelle zur Co-Simulation ver-
gleichbar mit den Aufgaben der logischen Ebene des Referenzmodells zur par-
allelen Simulation (vgl. z.B. Abschnitt 4.4). Der prinzipielle Unterschied liegt
darin, dass bei einer Co-Simulation unterschiedliche Simulationswerkzeuge ge-
nutzt werden, die auf unterschiedlichen Sprachen basieren und unterschiedli-
che heterogene Berechnungsmodelle implementieren (vgl. Abschnitt 2.2.2). Ei-
ne Co-Simulation ist auch dann heterogen, wenn verschiedene Simulatoren ei-
ner Klasse (z.B. DE) gekoppelt werden, da sich deren Funktion meist im De-
tail unterscheidet. Die Heterogenitédt wird spétestens dann zum Problem, wenn
Berechnungsmodelle von kommerziellen Werkzeugen nicht offengelegt werden
und somit nicht eindeutig definiert sind. Im schlimmsten Fall liegtim Fall einer
Kopplung ein unerwartetes nicht nachvollziehbares Verhalten vor.

In Abschnitt 3.2 wurde die beschriebene Problematik auf die unzureichende se-
mantische Interoperabilitidt zwischen heterogenen Simulationswerkzeugen zu-
riickgefiihrt. Semantische Interoperabilitit wird in den aktuell verfiigbaren Stan-
dards zur Co-Simulation wie HLA [22] oder FMI [29] nicht im notwendigen Um-
fang adressiert. Deren Nutzung ist entweder auf bestimmte Klassen von Berech-
nungsmodellen limitiert, oder sie erlauben keine hinreichend genaue (d.h. ex-
plizite) Spezifikation der erlaubten statischen und dynamischen Semantik des
Datenaustauschs (vgl. Abschnitt 3.2.2).
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Das Konzept, mit dessen Hilfe der beschriebenen Problematik unter Berticksich-
tigung der Anforderungen aus Abschnitt 5.2 begegnet werden soll, besteht aus
einer Simulatorarchitektur und einer Methode zur Werkzeugkopplung. Fiir die
Umsetzung der Methode wird in einem spéteren Abschnitt eine auf der Simula-
torarchitektur aufsetzende Werkzeugkette vorgeschlagen und prototypisch im-
plementiert. Simulatorarchitektur und Methode werden im Folgenden erlautert.

5.3.1. Simulatorarchitektur

Das Konzept der Simulatorarchitektur ist in Abb. 5.2 dargestellt. Der gewdhlte
Ansatz basiert auf einem heterogenen Backbone zur Co-Simulation. Heterogene
Simulationswerkzeuge werden tiber diesen Backbone gekoppelt. Der Backbone
selbst besteht aus drei Komponenten:

1. Einer Simulationsmiddleware wie der HLA [22] (vgl. Abschnitt 3.2.3.2),
die es erlaubt, eines oder mehrere Simulationswerkzeuge als Federates in-
nerhalb einer verteilten Federation auszufiihren.

2. Einem SDEM Metamodell namens Simulation Data Exchange Metamodel
(SDEMM)?: Das SDEMM dient zur flexiblen Spezifikation der Semantik
des Datenaustauschs zwischen Simulationswerkzeugen und HLA. Eine In-
stanz des SDEMM entspricht dem im DSEEP des HLA Standards [26] vage
formulierten Konzepts des SDEM (vgl. Abschnitt 3.2.3.2).

3. Einem heterogenen M&S Werkzeug, welches eine mathematisch forma-
le Basis besitzt (vgl. Abschnitt 2.3.3 ff.). Das in dieser Arbeit verwendete
Werkzeug ist Ptolemy II [102].

5.3.1.1. Hierarchische Kopplung von Ptll und HLA

PtII und die HLA unterscheiden sich in einer Hinsicht grundlegend voneinan-
der: Innerhalb einer HLA Federation kénnen u.U. unterschiedliche Kommunika-
tionsmechanismen zur gleichen Zeit verwendet werden. HLA Federations sind
bzgl. der dynamischen Semantik nicht strukturiert. In PtIl Modellen ist die Bil-
dung von Komponentenhierarchien hingegen fundamental fiir die Spezifikation
von Modellen, die bzgl. des Berechnungsmodells heterogen sind.

Ein Ansatz, diese beiden gegensétzlichen Konzepte dennoch miteinander zu kom-
binieren, ist die Integration von HLA Federations in jeweils abgeschlossene ho-

3Der Begriff des Metamodells wird hier entsprechend [154, 245] verwendet. Ein Metamodell ist
somit dquivalent zur Definition einer Modellierungssprache und kann anhand von UML Klas-
sendiagrammen dargestellt werden. Dies steht im Gegensatz zur Definition eines Metamodells
im MDA [9] Kontext, wo ein UML Klassendiagramm grundsétzlich nur als Modell und nicht als
Metamodell bezeichnet wird.
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Abbildung 5.2.: Architekturkonzept zur interdisziplindren Co-Simulation
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mogene PtIl Doménen. Dies kann beispielsweise durch Ableitung von einem
bereits existierenden Director erfolgen. Die HLA Erweiterung des Directors ist
dann nur in genau dem kompositen Actor sichtbar, in dem der neue Director
auch verwendet wird. Die Heterogenitdt von PtIl Modellen bleibt erhalten. Auf
diese Weise kann die Teilanforderung der Wiederverwendbarkeit, durch Modi-
fikation eines Teilmodells die Spezifikation des Restsystems nicht anzutasten,
auch im Fall einer Co-Simulation erfiillt werden (vgl. Abschnitt 5.2).

5.3.1.2. Aufgaben der Komponenten innerhalb der Architektur

Die HLA ist die technologische Grundlage fiir die Einbindung verschiedener dis-
ziplinspezifischer Simulationswerkzeuge und -modelle in eine verteilte Gesamt-
simulation. Sie stellt flexible Schnittstellen fiir eine auf mehrere Ausfithrungs-
plattformen verteilte Simulation zur Verfiigung.

Das SDEMM ist die Basis fiir Spezifikation der statischen und dynamischen Se-
mantik des Datenaustauschs fiir jeden beteiligten Simulator anhand eines SDEM.
Das SDEMM besteht dazu aus einem sog. Simulation Object Metamodel (SOMM)
und einem Behavioral Interface Metamodel (BIMM). SOMM und BIMM definieren
die erlaubte Syntax eines SOM und eines sog. Behavioral Interface Model (BIM).
Das SDEMM bildet zugleich die Schnittstelle zu einer C++ Bibliothek namens
SDEMMlib. SDEMMIib implementiert eine semantische Abbildung [128] von Kom-
ponenten des SDEMM auf die semantische Doméane der HLA.

Auf Basis der durch die SDEMMIib Bibliothek festgelegten semantischen Abbil-
dung von SDEMM Komponenten auf die HLA Doméne definiert ein konkre-
tes SDEM wiederum eine semantische Abbildung der HLA in eine bestimmte
Anwendungsdomane. Diese entspricht der Festlegung eines Vertrags (engl. Con-
tract) zwischen Simulationswerkzeugen und HLA bzgl. der erlaubten statischen
und dynamischen Semantik des Datenaustauschs. Ein SDEM stellt sicher, dass
zwischen Simulator und HLA nur Interaktionen erfolgen, die laut Vertrag auch
gestattet sind. Mehrere SDEMs in Kombination stellen sicher, dass iiber die HLA
nur erlaubte Interaktionsmuster erfolgen. Sie limitieren alle moglichen Interak-
tionsmuster auf eine giiltige Teilmenge. SDEMs vereinfachen so die verteilte In-
tegration verschiedener Werkzeuge z.B. zwischen verschiedenen Entwicklungs-
teams in verschiedenen Firmen (Zulieferer und OEM). Ausfiihrbare SDEMSs kon-
nen wihrend der Implementierung der verteilten Simulation bei der Fehlersuche
niitzlich sein. Die dazu umgesetzte Bibliothek SDEMMIib (siehe Abschnitt 5.4)
kann zusammen mit PtII dazu beitragen, unerwartetes Verhalten zu vermeiden.

PtII hat insgesamt drei Aufgaben innerhalb der Architektur:

1. Ptll dient als Anwenderschnittstelle zur Unterstiitzung der Werkzeugkopp-
lung vor der Simulationslaufzeit. Dies beinhaltet die Konfiguration von
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statischer und dynamischer Semantik zwischen einzubindenden Simula-
tionswerkzeugen und HLA in visueller PtII Syntax (vgl. Abb. 2.15) und die
anschlieffende Generierung von HLA Schnittstellen.

2. Ptll dient als Koordinator wahrend der heterogenen Co-Simulation. Dies
beinhaltet die Steuerung des Datenaustauschs zwischen gekoppelten hete-
rogenen Simulationswerkzeugen wihrend der Simulationslaufzeit. Diese
Aufgabe ist Vergleichbar mit der Rolle eines Schedulers in einem gewdhn-
lichen Simulator.

3. Aufgrund seiner Fahigkeiten zur strukturierten Komposition von hetero-
genen Modellen dient PtII als zentrales Entwurfswerkzeug fiir die Umset-
zung einer bestimmten Entwurfsmethodik fiir eingebettete Systeme (vgl.
Abschnitt 2.1). Durch die Moglicheit zur Simulation auf abstrakter Ebe-
ne kann Ptll insbesondere als Ausgangspunkt fiir eine Meet-in-the-Middle
Entwurfsmethodik auf Systemebene genutzt werden.

PtII vereint damit Aufgaben einer Schnittstelle zur Co-Simulation mit Aufga-
ben eines reinen Simulators. Bzgl. des Aufgabenspektrums kann PtII also nicht
eindeutig der logischen Ebene oder der Kernelebene im Referenzmodell fiir die
parallele SystemC Simulation aus Abschnitt 4.1 zugeordnet werden. Dies soll
anhand der Farbgebung in Abb. 5.2 deutlich werden.

5.3.2. Methode zur Etablierung einer Simulatorkopplung

Die Vorgehensweise fiir die Herstellung einer Simulatorkopplung mit Hilfe der
beschriebenen Simulatorarchitektur ergibt sich prinzipiell aus der Entwurfsme-
thodik fiir eingebettete Systeme, innerhalb derer die Simulatorarchitektur ver-
wendet wird. Im Folgenden wird beispielhaft die Kombination mit einer inter-
disziplindren Meet-in-the-Middle Entwurfsmethodik skizziert.

5.3.2.1. Interdisziplindre Entwurfsmethodik fiir eingebettete Systeme

Eine typische Meet-in-the-Middle Entwurfsmethodik beginnt in PtII mit der Ver-
haltensspezifikation auf abstrakter Ebene unter Verwendung geeigneter Berech-
nungsmodelle. Da sich die Systemgrenzen fiir zukiinftige eingebettete Systeme
nicht mehr ohne weiteres definieren lassen, miissen diese zu Beginn in geeig-
neter Weise festgelegt werden. Eine gute Wahl ist die durch die physikalische
Ausdehnung des zu entwickelnden Teilsystems definierte Grenze. Alles aufier-
halb dieser Grenze wird als Systemumwelt betrachtet. Durch die Berticksichti-
gung der Systemumwelt ist es moglich, Wechselwirkungen des Zielsystems mit
der Umgebung zu spezifizieren und zu untersuchen. Die verschiedenen in PtII
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verfiigbaren Berechnungsmodelle erlauben dabei von Beginn an eine heterogene
Modellierung von Teilen des Gesamtsystems in einem geeigneten Formalismus.

In PtII kann das zu entwickelnde Zielsystem z.B. durch einen Target Actor und
dessen Umgebung durch mehrere Environment Actors modelliert werden. Die
Environment Actors enthalten Modelle der Systemumwelt, welche als Testben-
ches fiir Target dienen. Im Verlauf der Entwicklung wird Target sukzessive de-
komponiert und verfeinert. Dies bedeutet in Ptll, dass der Actor Target durch
einen kompositen Actor (gleichen Namens) ersetzt wird. Dieser enthélt selbst
wiederum beliebige Hierarchien von Actors. Mit Hilfe der Testbenches in den
Environment Actors konnen unterschiedliche Versionen von Target unter Bertick-
sichtigung von Wechselwirkungen mit der Systemumwelt durchgingig auf Kor-
rektheit verifiziert werden.

Ab einer gewissen Verfeinerungsstufe gentigt eine Spezifikation von Teilsyste-
men im kompositen Actor Target durch einen oder mehrere reine Ptll Actors
nicht mehr. Um Details der Implementierung beriicksichtigen zu kénnen, miis-
sen Actors durch bereits existierende (z.B. in einem Bottom-up Ansatz bereits
entwickelte) detaillierte Teilmodelle verfeinert werden. Diese liegen typischer-
weise in disziplinspezifischen Sprachen vor.

5.3.2.2. Entwicklung von HLA Federations

Unabhéngig davon, ob es sich bei einem Actor um ein Modell der Systemumwelt
oder ein Modell des zu entwickelnden Systems handelt, kann folgende sechs-
stufige Vorgehensweise zur Etablierung einer Co-Simulation zwischen PtII und
externen Simulationswerkzeugen via HLA verwendet werden (siehe Abb. 5.3):

1. Identifikation von Federates: In einem ersten Schritt werden sog Federate
Actors F;...F, identifiziert, welche durch Co-Simulation verfeinert werden
sollen. Auflerdem werden die externen Simulationswerkzeuge S...S, aus-
gewdhlt, die zur Verfeinerung genutzt werden sollen. Dabei muss fiir jeden
Actor F; genau ein Werkzeug S; existieren.

2. Klassifikation von Berechnungsmodellen: Im zweiten Schritt werden die
Berechnungsmodelle der Simulatoren klassifiziert. Dies beinhaltet

a) die Identifikation von Regeln, welche die Komponenten, Kommuni-
kations- und Ausfithrungsmechanismen eines Berechnungsmodells be-
schreiben (vgl. Abschnitt 2.2.3).

b) die Klassifikation des Berechnungsmodells durch Vergleich der ge-
nannten Regeln mit den Regeln all der Berechnungsmodelle, die in
PtII als Domédnen implementiert sind. Ein mathematischer Ansatz zur
Klassifikation wird in [175] beschrieben. Ein Simulator S; wird durch
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genau die Domédne von Ptll am besten charakterisiert, deren Berech-
nungsmodell dem von S; am nidchsten kommt.

3. Identifikation von Federations: Die Actors Fj ... F,;, werden in Federation-

modelle FM;...FM,, gruppiert. Dabei ist jeder Actor F; Teil genau eines Fe-
derationmodells FM}. Im einfachsten Fall ist n = m, d.h. jede Federati-
on enthélt genau einen externen Simulator. Die Gruppierung erfolgt durch
Erzeugung von kompositen Actors, welche eine Teilmenge {F;, ..., F;} der
Actors kapseln. Als ein notwendiges Kriterium, um Actors F; und F; in
eine Federation FM zu gruppieren, kann die ,Kompatibilitit” der Be-
rechnungsmodelle von F; und F; herangezogen werden, d.h. beide miissen
durch die gleiche Ptll Doméne charakterisiert sein. Damit kann eine Fe-
deration einer PtIl Doméane zugeordnet werden. Durch die hierarchische
Struktur von PtII ist die Gruppierung zusitzlich auf Actors limitiert, die
sich auf der gleichen Hierarchieebene befinden. Insgesamt kann zwischen
zwei moglichen Modi zur kooperativen Simulation unterschieden werden:

a) Single-Federation Modus: Die zu koppelnden Simulatoren sind Teil
ein und derselben Federation. Dieser Modus ist insbesondere dann
sinnvoll, wenn alle Simulatoren dem gleichen oder einem dhnlichen
Berechnungsmodell folgen. Beispielsweise ist eine Kopplung mehre-
rer identischer DE Simulatoren relativ unkompliziert, da der HLA
Standard bereits einen diskreten ereignisbasierten Time Management
Service spezifiziert (vgl. Anhang B).

b) Multi-Federation Modus: In diesem Modus werden mehrere Single-
Federations tiber PtIl gekoppelt. Einzelne oder mehrere Simulatoren
werden dann mit PtIl innerhalb separater kompositer Actors co-simu-
liert. Die kompositen Actors folgen u.U. verschiedenen Berechnungs-
modellen. PtII dient als Gateway zwischen (nahezu) homogenen Fe-
derations und koordiniert deren Ausfiihrung. Dieser Modus eignet
sich insbesondere zur Unterstiitzung der RTI bei der Koordination der
Heterogenitdt. Zudem hat eine hierarchische Komposition von Fede-
rations eine strukturiertere Implementierung zur Folge.

4. Konfiguration des Datenaustauschs durch semantische Abbildung: Um
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einen kontrollierten Datenaustausch zwischen Simulatoren tiber die HLA
zu ermoglichen, muss die erlaubte Semantik definiert werden. Dieser Vor-
gang kann entsprechend [128] allgemein als semantische Abbildung be-
zeichnet werden. In dieser Arbeit beinhaltet die semantische Abbildung
die Spezifikation der statischen und der dynamischen Semantik des Da-
tenaustauschs:

a) Statische Semantik des Datenaustauschs: Die Spezifikation der stati-
schen Semantik des Datenaustauschs ergibt sich aus den auszutau-
schenden Daten in einer HLA Federation. Die explizite Festlegung
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geschieht durch Ersetzen von PtIl Relationen und Links durch Ac-
tors, welche konkrete HLA Object Classes und Interaction Classes,
deren Attribute, Parameter und Datentypen représentieren. Als Er-
gebnis erhilt man eine Spezifikation der statischen Semantik des Da-
tenaustauschs zwischen Simulatoren, die durch Actors eines Federa-
tionmodells FM représentiert sind. Aus dem FM kénnen unmittelbar
SOMs und FOM abgeleitet werden, indem die visuelle PtII Syntax auf
SOM/FOM Syntax abgebildet wird.

b) Dynamische Semantik des Datenaustauschs: Die Spezifikation der
dynamischen Semantik des Datenaustauschs ergibt sich aus den er-
laubten Interaktionen in einer HLA Federation. Sie beinhaltet eine
explizite Beschreibung des erlaubten Verhaltens, die sich von der In-
itialisierung, tiber die eigentliche Ausfithrung der Simulation bis zu
deren Terminierung erstreckt. Die dynamische Semantik des Daten-
austauschs wihrend der Ausfithrung resultiert aus den Berechnungs-
modellen der Simulatoren, zwischen denen der Datenaustausch statt-
finden soll. Wenn alle Simulatoren einer Federation durch die gleiche
PtII Domine charakterisiert sind, reduziert sich der Aufwand fiir die
Anpassung. Die Spezifikation kann durch Annotation von Parame-
tern an die Federate und Object Class Actors erfolgen (insbesondere
durch Annotation von BIMs an Federate Actors®).

5. Generierung von Schnittstellen: Aus der vollstindigen Konfiguration ei-
nes Federationmodells FM werden geeignete HLA Schnittstellen (Interface
Wrapper (IFW)) fiir die einzelnen Simulationswerkzeuge der Federation
abgeleitet und automatisch generiert. In den nichsten Abschnitten wird
dazu ein Bibliotheksansatz vorgestellt, der im nachfolgenden Integrations-
schritt zum Testen und Debuggen von Federations sowie zum Aufdecken
von Integrationsfehlern hilfreich ist.

6. Integration und Test: Im letzten Schritt werden die generierten Schnitt-
stellen in die Simulationswerkzeuge integriert, so dass eine kooperative
Ausfiihrung moglich ist. Abhédngig von Werkzeug, Modell und Automa-
tisierungsgrad, kann/muss dieser Schritt automatisch/manuell erfolgen.
In PtII beinhaltet dies die Erweiterung von Director und Actor Klassen in
geeigneter Weise.

Da ein Federationmodell ein Ptll Modell ist, kann es in dem Ptll spezifischen
XML Dialekt MoML [177] abgespeichert werden. Es ist somit in zukiinftigen Co-
Simulationen auch innerhalb anderer PtIl Modelle direkt wiederverwendbar. Die
Schritte drei bis sechs kénnen dann entfallen.

“Fiir das durch PtII selbst gegebene Federate kann die Spezifikation durch Annotation an den das
Federationmodell umgebenden kompositen Actor erfolgen.
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Insgesamt existieren mit dem beschriebenen Ansatz zwei miteinander kombi-
nierte Mechanismen zu Verbesserung semantischer Interoperabilitdt: Innerhalb
einer Federation dienen die BIMs dazu, die erlaubte dynamische Semantik des
Datenaustauschs so gut wie moglich an die dynamische Semantik der Simulato-
ren in der Federation anzupassen. Uber Doménen hinweg wird die Heterogeni-
tat von Berechnungsmodellen vollstindig von PtIl koordiniert.

An dieser Stelle soll noch einmal explizit angemerkt werden, dass es nicht der
Anspruch der vorgeschlagenen Methode ist, die Problematik der Interoperabi-
litat vollstandig zu losen. Die oben geschilderten Probleme, die beim Zusam-
menschalten heterogener und verteilter Simulationswerkzeuge auftreten kon-
nen, sind nicht immer vermeidbar. Dies ist aus den genannten Griinden auch
gar nicht moglich. Die Methodik soll allerdings eine Hilfestellung bieten, um
mogliche Komplikationen auf ein Minimum zu reduzieren.

5.4. Implementierung der Simulatorarchitektur

5.4.1. CERTI HLA

Da die HLA ein Standard ist und keine Implementierung, muss fiir die Um-
setzung der Simulatorarchitektur zunéchst eine geeignete RTI Implementierung
ausgewdhlt werden. Im Rahmen einer Recherche wurden diverse existierende
freie und kommerzielle Implementierungen einer HLA RTI wie CERTI [209],
poRTIco [12], MAC [16] oder pRTI [11] ausfindig gemacht. Im Zuge der Unter-
suchungen hat sich CERTI als die am meisten ausgereifte freie Implementierung
erwiesen und wurde deswegen fiir die prototypische Implementierung verwen-
det. Grundsitzlich ist die RTT Implementierung aber austauschbar.

Die Softwarearchitektur von CERTI [209] ist in Abb. 5.4 dargestellt. Die RTI ist
ein verteiltes System bestehend aus zwei Typen von Prozessen, einem lokalen
namens RTI Ambassador (RTIA) und einem globalen namens RTI Gateway (RTIG).
Jeder Federate Prozess interagiert lokal mit einem RTIA Prozess iiber ein Unix
Domain Socket. Er muss dazu die Ambassador Schnittstellen implementieren.
Diese werden durch eine Bibliothek namens libRTI zur Verfiigung gestellt. Ein
RTIA Prozess selbst ist wiederum tiber TCP und UDP Sockets mit dem RTIG Pro-
zess verbunden. Samtliche Kommunikation und Synchronisation erfolgt tiber
das RTIG. Eine einzige RTIG Instanz kann mehrere voneinander unabhingige
logische Federations gleichzeitig steuern.

CERTI stellt sowohl die HLA Schnittstellen nach dem IEEE 1516 Standard [22]
als auch nach dem Originalen DoD HLA 1.3 Standard [257] zur Verfiigung. Bis
auf einige kleine Unterschiede sind die Standards weitgehend deckungsgleich.
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Abbildung 5.4.: Softwarearchitektur von CERTI (Quelle: [209])

Die im Folgenden beschriebene Implementierung basiert auf dem DoD HLA 1.3
Standard. Aufgrund der Modularitidt der SDEMMIib ist eine einfache Portierung
auf den IEEE 1516 Standard moglich.

5.4.2. Simulation Data Exchange Metamodel

Das SDEMM ist die Schnittstelle der SDEMMIib C++ Bibliothek. SDEMMlib ist
ein Baukasten, der eine modellbasierte Beschreibung der Semantik des Daten-
austauschs zwischen einem Simulationswerkzeug und der HLA erlaubt. Das
SDEMM ist dazu in ein SOMM und ein BIMM aufgeteilt, mit deren Hilfe ein
SOM und ein BIM erstellt werden kdnnen.

Eine konkrete modellbasierte Beschreibung in Form eines SOM und eines BIM
in Kombination mit der von SDEMMIib bereitgestellten Klassenbibliothek bil-
det die Grundlage fiir eine semi-automatische Erzeugung einer funktionsfahigen
HLA Schnittstelle fiir einen bestimmten Simulator. Die Komponenten der Klas-
senbibliothek abstrahieren dazu von den standardméfiigen HLA Schnittstellen
und lassen sich strukturiert miteinander kombinieren. Abb. 5.5 zeigt das Tople-
vel Klassendiagramm von SDEMMLib.

Die Federate Klasse aggregiert alle anderen Toplevelklassen. Das SOMM wird
durch die SimulationObjectModel Klasse repréasentiert, das BIMM durch die Be-
haviorallnterfaceModel Klasse.

Die ToolAdaptor Klasse stellt eine Verbindung von einem Simulationswerkzeug
zu einem konkreten SOM (Instanz der SimulationObjectModel Klasse) und zu ei-
nem BIM (Instanz der BehaviorallnterfaceModel Klasse) her. Die ToolAdaptor Klasse
stellt kontrollflussrelevante Methoden zur Verfiigung, die vom angebundenen
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Abbildung 5.5.: Toplevel Klassendiagramm von SDEMMIib

Simulationswerkzeug aufgerufen werden. Daneben kapselt der ToolAdaptor In-
stanzen vom Typ IOSocket, welche zum Datenaustausch zwischen HLA und Si-
mulationswerkzeug notwendig sind. IOSockets sind intern mit einem FIFO aus-
gestattet, in dem von der HLA empfangene Daten zwischengepuffert werden
konnen.

Auf der entgegengesetzten Seite bietet die Ambassador Klasse Zugriff auf die RTI
Ambassador Schnittstellen und implementiert zugleich die Federate Ambassa-
dor Callback Methoden. Die HLA Ambassador Schnittstellen werden schlieSlich
durch die HLAAdaptor Klasse gekapselt.

5.4.2.1. Simulation Object Metamodel

Abb. 5.6 zeigt einen Auszug der Klassenstruktur des SOMM. Die Klassen bilden
eine objektorientierte Metareprasentation eines SOM. Ein solches wird durch In-
stanziierung der SimulationObjectModel Klasse erzeugt, welche das SOMM ent-
hélt. Die Speicherung von Daten im SOM erfolgt dynamisch.

Die Struktur des SOMM wurde in Anlehnung an die OMT Spezifikation des
HLA Standards [24] entwickelt. Im HLA OMT sind Komponenten in Tabellen
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strukturiert. Objektklassen im OMT konnen hierarchisch verschachtelt werden,
was dquivalent zur Vererbung in einer objektorientierten Programmiersprache
ist. Komponenten einer OMT Tabelle kénnen zudem Komponenten anderer Ta-
bellen referenzieren. Beispielsweise muss ein Attribut in der Attributtabelle die
Objektklasse referenzieren, zu der es gehort. Zusétzlich muss jedem Attribut ein
Datentyp einer Datentyptabelle zugewiesen werden. Jede Datentyptabelle bein-
haltet Typen mit identischen Charakteristika, wie z.B. einfache Datentypen oder
Arraytypen.

[

AbstractArgument [* SimulationObjectModel

L%

OMClass SyncPoint

[ |
" ObjectClass InteractionClass [
= -

1 1

OMAttr |1 1| DataType
* ‘ ‘ *

Attribute Parameter BasicType ArrayType

Abbildung 5.6.: Simulation Object Metamodel

Relationen zwischen Objektklassen eines SOM werden mit Hilfe der ObjectClass
und InteractionClass C++ Klassen auf objektorientierte Aggregations- und/oder
Vererbungsbeziehungen abgebildet (siehe Abb. 5.6):

Hierarchische Verschachtelung wird durch Selbstaggregation modelliert. Zuge-
horigkeiten von Attributen und Parametern werden ebenfalls durch Aggregati-
on zwischen Object/InteractionClass Klassen und Attribute/Parameter Klassen mo-
delliert. Attribute und Parameter besitzen eine Referenz auf exakt einen Daten-
typen. Fiir die Erzeugung von Polymorphie bei zusammengesetzten Datentypen
wie Arrays wird Vererbung eingesetzt.

In der aktuellen Implementierung der SOMMIib kénnen SOM Tabellen in einer
leicht lesbaren Form anhand von verschachtelten C++ Methodenaufrufen spezi-
fiziert werden (siehe Listing 5.1). Zu diesem Zweck muss man von der Simula-
tionObjectModel Klasse erben und die generateObjectModel() Methode implemen-
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tieren. Eine Alternative wire die Reprédsentation eines SOM in XML Syntax. Zur
Laufzeit dienen Objekte der Datentypklassen zum Konvertieren zwischen C++
und HLA Datentypen und umgekehrt.

virtual void generateObjectModel ()
{

//Synchronization table
SYNCPOINT( "READY_TO_RUN", ...);

//Basic data representation table
BASICTYPE("HLAinteger32LE" ,"32", ...);

//Array datatype table
ARRAYTYPE( "HLAInteger32LEArray ", "HLAAlInteger32LE", ...);

//Object class structure table
OBJECTCLASS (" ObjectRoot", "N",
OBJECTCLASSL ( "wifiDownMsg" , "S"),
OBJECTCLASSL ( "wifiUpMsg", "P"),
OBJECTCLASSL( "internalSetMsg", "S")
OBJECTCLASSL( "internalGetMsg", "P")
);
// Attribute table
OBJECT (" ObjectRoot . wifiDownMsg" ,
ATTRIBUTE( "vehicleID", "HLAinteger32LE", ...),
ATTRIBUTE("size", "HLAinteger32LE", ...),
ATTRIBUTE( "payload", "HLAinteger32LEArray", ...)
);

’

Listing 5.1: Beispiel C++ Code zur SOM Instanziierung

5.4.2.2. Behavioral Interface Metamodel

Die Klassenstruktur des BIMM ist in Abb. 5.7 illustriert. Aquivalent zu einem
SOM wird ein BIM durch Instanziierung der BehavioralInterfaceModel Klasse er-
zeugt, welche das BIMM enthilt. Die Speicherung eines BIM erfolgt dynamisch.

Durch Ableitung von der BehaviorallnterfaceModel Klasse kann ein endlicher Zu-
standsautomat namens BIM FSM spezifiziert werden. Eine BIM FSM legt das
erlaubte Schnittstellenverhalten fest. BIM FSMs definieren eine valide Aufruf-
reihenfolge von Schnittstellenmethoden der ToolAdaptor und IOSocket Klassen
sowie Methoden der HLAAdaptor Klasse. Dadurch kénnen unterschiedliche In-
teraktions- und Synchronisationsmechanismen modelliert werden. Die semanti-
sche Abbildung von BIM Syntax auf die HLA erfolgt durch Spezialisierung der
in Abb. 5.7 gezeigten Basisklassen und einen Scheduler. Durch die Vererbung
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wird eine statische Abbildung festgelegt, durch den Scheduler wird die statische
um eine dynamische Abbildung ergénzt.

Mit Hilfe des Schedulers sind BIM FSM Spezifikationen ausfiihrbar. Sie kon-
nen damit zur Laufzeit unmittelbar zur Sicherstellung korrekter dynamischer
Semantik verwendet werden. Insbesondere ist eine BIM FSM wiahrend der dyna-
mischen Integrations- und Testphase einer Federation zum Debugging niitzlich.

Vernachlassigt man Besonderheiten wie hierarchische Zustédnde® oder abstrak-
te Argumente®, so kann die Implementierung des Verhaltens einer BIM FSM im
Scheduler der SDEMMIib mathematisch als ein Tupel (S,%, ), 6, so, Se, Sint) be-
schrieben werden. Dabei ist S die Menge der Zustdnde, X das Eingangsalpha-
bet, (3 das Ausgangsalphabet, 6 : S x X — S x () die Transitionsfunktion, sy der
Startzustand, s, der Endzustand und S;,;; die Menge der sog. Interaktionszustan-
de, deren besondere Bedeutung weiter unten erldutert wird.

Behavioral InterfaceModel

FSMElement [1 | AbstractArgument [
+exec()
+post()
1 1 0..1 1
]
Transition}
1
loa
- 1
Action 1
1
Guard
2
State
1
Event |« EventQueue

Abbildung 5.7.: Behavioral Interface Metamodel

Die Transitionsfunktion beschreibt den Ubergang von Ausgangszustinden in
Zielzustande. In der BehaviorallnterfaceModel Klasse ist die Transitionsfunktion
mit Hilfe einer Transitionstabelle realisiert. Diese speichert Eintrige vom Typ
Transition. Eine einzelne Transition beschreibt den Ubergang von einem Ausgangs-
zustand s in einen Zielzustand s,. Zustdnde sind durch die State Klasse reali-
siert. Die Nutzung einer Transition ist durch einen Guard geschiitzt und mit der
Ausfithrung einer Aktion vom Typ Action verbunden. Durch die explizite Spezi-

5BIM FSMs erlauben die Definition von hierarchischen Zustinden: Ein Zustand kann selbst wieder
eine vollstandige FSM enthalten. Dadurch wird eine Zustandsexplosion vermieden.
6 Abstrakte Argumente dienen zur Referenzierung von Elementen des SOM.
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fikation erlaubter Ereignisse anhand von Guards wird garantiert, dass nur valide
(d.h. spezifizierte) Ereignisse wiahrend der gesamten Ausfiihrung auftreten.

Eingangswerte X in die Transitionsfunktion entsprechen Ereignissen (Instanzen
der Event Klasse). Das aktuelle Ereignis entspricht immer dem obersten Event in
der EventQueue (siehe Abb. 5.7). Ereignisse konnen beim Aufruf von Schnittstel-
lenmethoden der ToolAdaptor oder HLAAdaptor Klassen oder durch die Ausfiih-
rung einer Action generiert werden. Die Erzeugung eines Ereignisses, der Auf-
ruf einer Schnittstellenmethode oder der Schreibzugriff auf ein AbstractArgument
durch eine Action sind dquivalent zur Generierung eines Ausgangswertes aus ().

Der Begriff des Interaktionszustandes wird klar, wenn man den im Scheduler
implementierten Ausfiihrungsmechanismus fiir BIM FSMs genauer betrachtet.
Dieser basiert auf einer iterativen Ausfithrung zweier Methoden exec() und post().
Diese Methoden sind durch die Action Methods fire() und postfire() von PtII in-
spiriert. Eine BIM Iteration besteht aus einem Aufruf von exec() und einem dar-
auffolgenden Aufruf von post(). Dabei geschieht Folgendes:

e exec(): Nimm das vorderste Event von der Event Queue und wihle die
Transition, deren Guard den Wert , true” zurtickliefert. Die gewdhlte Tran-
sition wird als aktive Transition bezeichnet. Stelle sicher, dass immer nur
eine aktive Transition existiert. Falls aufgrund einer fehlerhaften Spezifi-
kation mehrere aktive Transitionen existieren sollten, so brich die Ausfiih-
rung ab.

* post(): Fithre einen Zustandswechsel aus und setze dazu den aktuellen Zu-
stand auf den Zielzustand der aktiven Transition. Wenn der Zielzustand
der Toplevel Endzustand oder ein Interaktionszustand ist, dann gib eine 0
zurtick um zu signalisieren, dass der Simulator entweder terminieren soll
oder die Kontrolle zeitweise an den Simulator iibergeben werden soll. Gib
in allen anderen Féllen eine 1 zurtick um zu signalisieren, dass eine weitere
Iteration durchgefiihrt werden soll.

Insgesamt ist ein Interaktionszustand damit ein Label, an dem die Ausfiihrung
der BIM FSM unterbrochen wird, um die Kontrolle tempordr dem umgebenden
Simulator zu tiberlassen (z.B. zur Ausfithrung der lokalen Simulation). Der Zu-
stand, in dem die Ausfiihrung zuletzt unterbrochen wurde, entspricht dem Ein-
trittspunkt bei der nichsten Iteration.

Aktuell erfolgt die Modellierung einer BIM FSM &hnlich wie die Modellierung
eines SOM, namlich durch Ableitung von BehaviorallnterfaceModel und Imple-
mentierung der generateBIM() mit verschachtelten Methodenaufrufen (siehe Co-
debeispiel 5.2). Auch hier ist XML als konkrete Syntax eine denkbare Alternative.

virtual void generateBIM ()

{
//State table
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STATE("S_START") ;
STATE("S_READ") ;
STATE("S_UPDATE") ;
STATE( "S_ADVANCE" ) ;
STATE("S_GRANT") ;

//Special states
START_STATE("S_START") ;
INTERACTION_STATE("S_READ") ;
END_STATE("S_GRANT") ;

// Transition table

TRANSITION (
STATEREF("S_READ") ,
STATEREF("S_ADVANCE") ,
ACTION("HLA13_A5_12_Action_NextEventReqAvailable") ,
EG("Event_SetNextBarrier")

),

Listing 5.2: Beispiel C++ Code zur BIM Instanziierung

5.5. Umsetzung der semi-automatischen

Werkzeugkopplung

Im Folgenden wird davon ausgegangen, dass die Schritte 1 bis 3 der Vorgehens-
weise aus Abschnitt 5.3.2 bereits erfolgreich durchgefiihrt worden sind. Fiir die
Umsetzung der Schritte 4 bis 6 sind einige Erweiterungen zum PtIl Framework
hinzuzufiigen. Diese Erweiterungen basieren auf den nachfolgend aufgefiihrten
neuen Modellierungselementen:

¢ HLAComposite: Ein Actor, der eine HLA Federation reprasentiert.
* HLAFederate: Ein Actor, der ein HLA Federate reprisentiert.

¢ HLAODbjectClass: Basisklasse eines Actors, der eine HLA Object Class repré-
sentiert”.

o HLADEObjectClass: DE Actor, der eine HLA Object Class in der DE Doma-
ne reprasentiert.

* HLAGenDirector: Ein Director zur Generierung von HLA Schnittstellen.
* HLADED:irector: Ein DE Director mit HLA Schnittstelle.

7 Aktuell existiert auch ein HLAInteractionClass Actor, welcher aber im Folgenden nicht weiter be-
trachtet wird.
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Nachfolgend wird die Implementierung der Schritte 4 bis 6 am Beispiel einer
verteilten PtII Simulation und Verwendung zweier Ptll Instanzen erldutert. Da-
bei sollen die PtII Instanzen iiber die DE Doméne gekoppelt sein. Einen Uber-
blick tiber den Entwurfsfluss gibt Abb. 5.8. Die automatische Generierung von
Schnittstellen wurde im Prototypen nur soweit umgesetzt, wie es fiir eine De-
monstration der Machbarkeit notwendig war.

5.5.1. Konfiguration des Datenaustauschs

Die Konfiguration des Datenaustauschs in einem in PtIl Syntax beschriebenen
Federationmodell FM setzt die Spezifikation der erlaubten statischen und dy-
namischen Semantik entsprechend der Schritte 1 bis 3 der Vorgehensweise aus
Abb. 5.3 voraus. Dies beinhaltet, dass das Federationmodell in einem Komposi-
tum des Typs HLAComposite beschrieben wurde und die Actors, welche die Fe-
derates reprasentieren, vom Typ HLAFederate sind. Ist dies nicht der Fall, so miis-
sen die verwendeten Modellierungselemente durch besagte Elemente zunachst
ausgetauscht werden.

5.5.1.1. Statische Semantik des Datenaustauschs

Die innerhalb einer Federation auszutauschenden Daten ergeben sich unmittel-
bar aus den Namen und Typen der Modellierungsartefakte in zugehorigen Fe-
derationmodell und deren Verkniipfung. Die Namen der Actors in einem HLA-
Composite Actor entsprechen den Namen der durch die Actors reprédsentierten
HLA FOM/SOM Artefakte.

Die HLA Publish/Subscribe Beziehungen, wie sie im FOM spezifiziert sein miis-
sen, werden aus der Orientierung der Links zwischen HLAFederate, HLAComposi-
te und HLAObjectClass Actors abgeleitet. Der Aufbau der Object Classes, inkl. de-
ren Attribute und Datentypen, wird aus den Datentypen der Ports der verschie-
denen HLAObjectClass Actors hergeleitet. Ein Datenaustausch eines Ptll Modells
mit anderen Federates wird tiber die Ports zum umgebenden HLAComposite Ac-
tor bestimmt. In der aktuellen Implementierung wird keine Unterscheidung zwi-
schen HLA Object Class und HLA Object Instance gemacht.

Im Beispiel aus Abb. 5.8 ist das Federationmodell in der ersten PtII Instanz Ptole-
myll_First zu sehen. Diese soll mit einer zweiten PtII Instanz, welche durch einen
HLAFederate Actor namens Ptolemyll_Second reprasentiert wird, co-simuliert wer-
den®. Die Verbindung zum lokalen Modell von Ptolemyll_First wird tiber Ports

8In Ptolemyll_Second muss dafiir ein analoges Federationmodell existieren, bei dem die Links eine
umgekehrte Flussrichtung aufweisen.
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Abbildung 5.8.: Semi-automatische Werkzeugkopplung (PtolemylI_First Sicht)
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am umgebenden HLAComposite hergestellt. Das lokale PtIl Modell und der ex-
terne Simulator kommunizieren ausschliefllich tiber die beiden HLAObjectClass
Actors ,,ObjectX” und ,ObjectY”.

5.5.1.2. Dynamische Semantik des Datenaustauschs

Die erlaubten Interaktionen in einer Federation werden anhand der an die HLA-
Federate Actors annotierten Parameter, insbesondere anhand der durch eine C++
Datei spezifizierten BIM FSM, abgeleitet.

Die abstrakte Semantik von PtIl und Spezifika der DE Doméne wurden bereits
in Abschnitt 2.3.4 erlautert. Betrachtet man eine komplette PtIl Ausfiihrungsse-
quenz entsprechend Abb. 2.17, so beinhaltet diese (unter Vernachladssigung der
Teilphasen) Initialization Phase, Execution Phase und Wrapup Phase.

Im betrachteten Beispiel ergibt sich die Spezifikation der dynamischen Semantik
des Datenaustauschs aus den Berechnungsmodellen, die jeweils in den beiden
PtII Instanzen zur Kopplung verwendet werden. Wie bereits in Abschnitt 5.3.2
angemerkt, reduziert sich die Komplexitit einer BIM FSM, wenn die zu integrie-
renden Simulatoren mit ein und derselben PtIl Doméne charakterisiert werden
konnen. Bei der Kopplung von Ptolemyll_First und Ptolemyll_Second iiber die DE
Domine ist die Charakterisierung trivial: Sie ist DE. Aufgrund der Symmetrie,
gentigt die Entwicklung einer einzigen BIM FSM.

Um die erlaubte dynamische Semantik fiir die drei Ausfithrungsphasen sepa-
rat modellieren zu konnen, spiegeln sich die Phasen 1:1 als S_INIT, S_EXECUTE
und S_END Zustinde auf dem Toplevel der BIM FSM wider (vgl. Abb. 5.9). Zur
Synchronisation existieren zusétzlich noch die S_SYNC_READY_TO_RUN und
S_SYNC_SHUTDOWN Zustinde. Aufler dem S_END Zustand sind alle Tople-
vel Zustdnde hierarchisch, sie besitzen also eine Verfeinerung. Die tatsdchliche
Funktionalitét ist jeweils durch die Verfeinerungen implementiert.

Die beiden Zustande S_SYNC_READY_TO_RUN und S_SYNC_SHUTDOWN im-
plementieren eine Barriersynchronisation, welche sicherstellt, dass alle Federates
gleichzeitig von S_INIT nach S_EXECUTE und von S_EXECUTE nach S_END
tibergehen.

In der Verfeinerung des S_INIT Zustands werden HLA Initialisierungsroutinen
zur Erzeugung der Federation, der Publish/Subscribe Beziehungen sowie zur
Registrierung von HLA Object Instance Attributen ausgefiihrt. Intern besitzt der
Zustand S_INIT einen Interaktionszustand (vgl. Abschnitt 5.4.2.2), so dass die
Registrierung vom lokalen Simulator getriggert werden kann.

Zur verteilten Kopplung speziell der DE Doméne von Ptll muss im S_EXECUTE
Zustand die lokale Kausalitdtsbedingung aus Definition 2.2 erfiillt sein. Mog-
lichkeiten hierzu wurden bereits ausfiihrlich im vorigen Kapitel im Kontext von
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SystemC behandelt. Im Unterschied zum vorigen Kapitel kann die lokale Kau-
salititsbedingung nun mit Unterstiitzung der , High-level” Services der HLA er-
fullt werden. Zur Erlduterung ist in Abb. 5.9 die Verfeinerung des S_EXECUTE
Zustands dargestellt.

S_EXECUTE ist ein hierarchischer Zustand und enthilt einen Interaktionszu-
stand namens S_READ. Interaktionen mit dem Simulator erfolgen nur dann,
wenn kein Ereignis in der Event Queue der BIM FSM vorhanden ist. Dies wird
durch das Event_Absent Ereignis auf der in S_READ eingehenden Transition sym-
bolisiert. Anschlieffend wird durch die restliche FSM Spezifikation der Zeitfort-
schritt modelliert.

Die Implementierung basiert auf dem Next_Event_Request_Available (NERA) Ser-
vice, welcher Teil des HLA 1.3 Time Managements ist. Dessen Funktionsweise ist
in Anhang B erldutert. Insbesondere erlaubt NERA einen Lookahead von Null,
wodurch Deadlocks im Fall eines Microsteps p vermieden werden konnen. Um
den NERA Service nutzen zu kénnen, miissen alle HLA Object Classes und da-
mit deren Attribute zusatzlich per Parameter als HLAReliable deklariert werden.

Der NERA Service garantiert nicht, dass alle Nachrichten empfangen werden,
deren Zeitstempel, dem durch den Time_Advance_Grant (TAG) Service zuriick-
gelieferten Zeitstempel entsprechen. Dies hat eine nicht-deterministische Anzahl
an Microsteps zur Folge. Die hier beschriebene Implementierung ist damit trotz
Zero Lookahead nur bis auf die Modeltime 7 genau (vgl. Abschnitt 2.3.4.2).

Sobald das Event_Shutdown Ereignis auftritt (dieses muss von der lokalen Simu-
lation erzeugt werden), wechselt die FSM in den S_SYNC_SHUTDOWN. An-
schlielend werden die Shutdown Prozeduren der HLA abgearbeitet. Schlieslich
terminiert die FSM im S_END Zustand.

5.5.2. Generierung von Schnittstellen

Mit Hilfe eines Federationmodells und dem durch SDEMMLIib bereitgestellten
Baukasten konnen Schnittstellen zur Co-Simulation fiir verschiedene Simulati-
onswerkzeuge generiert werden. Dazu muss die Ptll Syntax eines Federation-
modells tiber eine Modellabfrage in C++ bzw. SDEMMIib Syntax tibersetzt wer-
den. Anschliefend kann mit Hilfe des Simplified Wrapper and Interface Generators
(SWIG) [47] die Einbettung von kompiliertem C++ Code in Java oder diverse
Skriptsprachen automatisiert werden. Folgende Artefakte miissen generiert wer-
den:

e FOM: Das FOM wird als FED Datei (vgl. Abschnitt 3.2.3.2) exportiert. Die
FED Datei dient zur Konfiguration der durch CERTI bereitgestellten HLA
RTI Implementierung.
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Abbildung 5.9.: Behavioral Interface Model FSM fiir die PtII DE Doméne

* SOM: Die SOMs der Federates werden als C++ Code exportiert (vgl. Ab-
schnitt 5.4.2.1).

¢ BIM: Die BIMs der Federates werden als C++ Code exportiert (vgl. Ab-
schnitt 5.4.2.2). Aktuell werden dazu direkt annotierte BIM C++ Beschrei-
bungen wiederverwendet.

¢ HLA Interface Wrapper: Diese beinhalten abgeleitete Typen der IOSocket
Klasse sowie einen C++ Wrapper zur vollstindigen Kapselung des gesam-
ten C++ Codes. Daneben werden noch SWIG Schnittstellendefinitionen (.i
Dateien) erzeugt. Diese sind notwendig, um den C++ Wrapper in einen
weiteren C++-fremden Wrapper zu verpacken. Die .i Dateien dienen zur
Spezifikation der Abbildung von C++ Datentypen auf Datentypen anderer
Sprachen.

Eine Moglichkeit zur Umsetzung der Modellabfrage und der Schnittstellenge-
nerierung ist die Entwicklung eines speziellen Ptll Directors fiir diesen Zweck.
Die Machbarkeit wurde anhand eines Directors namens HLAGenDirector proto-
tytpisch demonstriert. Dieser muss in den HLAComposite Actor des Federation-
modells eingefligt werden, fiir das der Schnittstellencode erzeugt werden soll.
Der HLAGenDirector hat Zugriff auf verschiedene Modellnterpreter Klassen. Die-
se liefern konkrete (programmiersprachen-spezifische) Interpretationen fiir das
in visueller PtII Syntax spezifizierte Modell, mit dem Ziel der Generierung der
oben genannten Artefakte.
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Die Artefakte werden dann zusammen mit den Klassen der SDEMMIib in eine
C++ Shared Library kompiliert. Falls der Zielsimulator in C++ geschrieben ist
(z.B. SystemC), dann kann die Shared Library direkt mit dem Simulationsker-
nel oder dem Modell gelinkt werden. Basiert der Simulator auf einer anderen
Sprache wie Java oder C# (Ptll basiert z.B auf Java), dann kann auf SWIG zu-
riickgegriffen werden.

5.5.2.1. HLA Interface Wrapper

Der HLA Interface Wrapper tritt fiir den Zielsimulator als eine einzelne Klasse in
Erscheinung, die eine feste Anzahl Kontrollflussmethoden und eine variable An-
zahl an Datenflussmethoden besitzt. Erstere werden durch die ToolAdaptor Klas-
se der SDEMMIib bereitgestellt, Letztere durch die zuvor generierten IOSocket
Klassen. Zu den Kontrollflussmethoden gehoren aktuell insbesondere

e getState(): Gibt den aktuellen Zustand der BIM FSM zuriick.

e setNextBarrier(): Setzte die Zeitbarriere, bis zu welcher der lokale Simulator
voranschreiten kann.

 getNextBarrier(): Gibt den Wert der Zeitbarriere zurtick, bis zu welcher der
lokale Simulator tatsdchlich voranschreiten darf.

o iterate(): Iteriere die BIM FSM. Ein Aufruf dieser Methode fiihrt solange
Sequenzen von exec() und post() aus, bis post() eine 0 zurtick gibt. Diese
Methode muss regelméfiig vom Simulator aufgerufen werden, damit die
BIM FSM voranschreitet.

¢ end(): Generiere ein Event_Shutdown Ereignis zur Terminierung der BIM
FSM.

Im Unterschied zu den Kontrollflussmethoden haben Datenflussmethoden keine
feste Signatur. Die Methoden zum Lesen und Schreiben beginnen mit read oder
write gefolgt vom Namen der Objektklasse, auf die zugegriffen wird. Anzahl und
Typ der Attribute einer Objektklasse definieren Anzahl und Typ weiterer Metho-
denparameter. Zu den Datenflussmethoden gehoren aktuell insbesondere

¢ readX(): Lese die letzte Aktualisierung von IOSocket/ Objektklasse "X".
e writeX(): Schreibe eine Aktualisierung in IOSocket / Objektklasse "X".

 getSocketQueueSize(): Gib den Fiillstand eines spezifizierten [0Sockets zu-
riick.

e update(): Erzeuge ein Sim_Event_Update Ereignis fiir die BIM FSM. Zusétz-
lich muss dem Aufruf der Name des Sockets und ein Zeitstempel {iberge-
ben werden.
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® popSocket(): Losche die ndchste empfangene Aktualisierung von einem als
Parameter spezifizierten IOSocket.

5.5.3. Integration und Test

Die Art und Weise der Integration ist stark von dem zu integrierenden Zielsi-
mulator und dem zugrundeliegenden Berechnungsmodell abhéngig. Hier wird
exemplarisch die Integration eines HLA Interface Wrappers in die DE Doméne
von PtII betrachtet. Fiir die Integration in PtII dient als Ausgangspunkt die Spe-
zifikation eines Federationmodells. Mit SDEMMlib kann der Prozess der Inte-
gration dann auf die Integration der Kontrollflussmethoden und die Integration
der Datenflussmethoden heruntergebrochen werden.

5.5.3.1. Integration der Kontrollflussmethoden

Fiir die Integration der Kontrollflussmethoden miissen die BIM Toplevel Zustén-
de S_INIT, S_EXECUTE und S_END auf die Action Methods preinitialize(), initia-
lize(), prefire(), fire(), postfire() und wrapup() des DE Directors in geeigneter Weise
abgebildet werden. Dadurch werden indirekt auch passende HLA Service Calls
auf die Ausfithrungsphasen des Simulators abgebildet.

Zu diesem Zweck miissen Aufrufe der iterate() Methode des HLA Interface Wrap-
pers so innerhalb der Action Methods des PtII Directors erfolgen, dass der Zu-
stand der BIM FSM mit den Ausfiihrungsphasen moglichst korrespondiert. Da
die BIM Zusténde nicht auf der Ebene der PtII Teilphasen definiert wurden, exis-
tiert hier ein gewisser Freiheitsgrad. Eine exaktere Spezifikation der BIM FSM
konnte daher alle PtII Teilphasen umfassen. Umgekehrt ist die BIM FSM auf die-
se Weise universeller einsetzbar, was innerhalb der noch folgenden Fallstudien
demonstriert wird.

Fiir die Implementierung wurde ein spezieller HLADEDirector entwickelt. Die-
ser ist vom originalen DEDirector abgeleitet. Da PtIl in Java geschrieben ist, wird
der HLA Interface Wrapper ein weiteres Mal mit Hife von SWIG verpackt und
bei der Ausfithrung dynamisch geladen. Aktuell werden der S_INIT und der
S_SYNC_READY TO_RUN Zustand der BIM FSM aus Abschnitt 5.5.1.2 in die in-
itialize() Methode abgebildet, der S_EXECUTE Zustand wird in die fire() Methode
abgebildet und der S_SYNC_SHUTDOWN sowie der S_END Zustand werden in
die wrapup() Methode abgebildet. Der Ablauf ist wir folgt (vgl. Beispiel aus Abb.
5.10):

Sobald die fire() Methode des Directors aufgerufen wird, bestimmt dieser, aus-
gehend vom aktuellen Simulationszeitpunkt 7¢", den aus seiner Sicht friihesten
Zeitpunkt T"", an dem das nidchste Mal mit der Federation synchronisiert wer-
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den muss. """ entspricht dem Zeitpunkt, an dem lokal frithestens ein neues
Ereignis auftreten kann. """ kann durch die PtIl Methode getModelNextlterati-
onTime() abgefragt werden. Wenn 7" groBer als die mit dem letzten Aufruf von
getNextBarrier() gewdhrte Zeitbarriere ist, macht der Director eine Anfrage fiir
einen Zeitfortschritt, indem er setNextBarrier()) aufruft und ¢ = 7" als An-

fragewert tibergibt.

Anschlieflend iteriert der Director die BIM FSM per iterate(). Dabei wird 777 dem
HLA NERA Service iibergeben. Uber den TAG Service und Aufruf von getNext-
Barrier()) wird dem Director schlieilich der von der HLA berechnete Zeitpunkt
78" mitgeteilt, bis zu dem der Director tatséchlich voranschreiten darf. Im All-
gemeinen ist 78" < ™" Durch Einfiigen eines Pure Events mit Zeitstempel
Thure = 78" wird die lokale Simulation zur erneuten Synchronisation bei Er-
reichen von 8" gezwungen. Dies geschieht durch Setzen des Zeitpunkts, an
dem der Director das nidchste Mal , gefeuert” werden soll per fireContainerAt()
auf 8" Danach werden Aktualisierungen von Instanz-Attributen behandelt.

5.5.3.2. Integration der Datenflussmethoden

Fiir die Integration der Datenflussmethoden wurde durch Ableitung von HLA-
ObjectClass ein HLADEObjectClass Actor erzeugt. Falls nicht schon geschehen,
miissen die Actors der HLAObjectClass Basisklasse durch Actors vom Typ HLA-
DEObjectClass ausgetauscht werden. Da PtIl eine zentrale Rolle innerhalb der
Simulationsumgebung einnimmt, hat Flexibilitdt bei der Implementierung ho-
he Prioritat. Dies wird aktuell durch dynamische Ableitung von Signaturen der
datenflussrelevanten Methoden des HLA Interface Wrappers erreicht.

Die Steuerung des Datenflusses liegt in der Hand des HLADEDirectors in Kom-
bination mit den HLADEODbjectClass Actors. Wahrend einer Simulationsausfiih-
rung haben HLADEODbjectClass Actors nur dann eine aktive Rolle, wenn sie iiber
Relationen mit den Ports des umgebenden HLAComposite Actors verbunden sind.
Sie reprasentieren dann die HLA Object Classes, tiber die das restliche lokale PtII
Modell in die Federation eingekoppelt wird. Alle anderen HLAObjectClass Actors
sowie die HLAFederate Actors sind passiv und werden niemals gefeuert. Der Ab-
lauf beim Empfangen und Senden tiber aktive HLADEObjectClass Actors ist wie
folgt:

Zum Lesen aus dem HLA Interface Wrapper ist der HLADED:irector mit einer
Methode namens reflectDir() ausgestattet. Diese Methode wird immer dann vom
HLADEDirector aufgerufen, wenn die zuletzt genehmigte Zeitbarriere erreicht
wurde (vgl. Abb. 5.10). Die Methode priift dann, ob einer der IOSocket Puffer
neue empfangene Aktualisierungen (sog. Reflections) enthélt (Aufruf von get-
SocketQueueSize()). Wenn dies der Fall ist, dann wird die vollstandige Signatur
der zugehorigen read() Methode mit Hilfe des SOMs und der Modellnterpreter
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Klassen zur Laufzeit hergeleitet. Die Reflection wird dann in ein PtII Token um-
gewandelt und zum entsprechenden HLAODbjectClass Actor weitergeleitet. Zu
diesem Zweck ist der HLADEObjectClass Actor mit einer reflectAct(token,time)
Methode ausgestattet. Diese Methode speichert das tibergebene Token (dhnlich
wie in Abschnitt 4.5.3) in einer internen Queue und ruft dann die fireAt(time)
Methode auf. Dies stellt sicher, dass der Actor exakt zu dem Zeitpunkt wieder
gefeuert wird, an dem das empfangene Token zum PtII Modell iiber einen ent-
sprechenden Ausgangsport weitergeleitet werden soll. Der Zeitparameter defi-
niert somit eine zukiinftige Zeitbarriere.

Im Sendefall tiberpriift ein aktiver HLADEObjectClass Actor seine Ptll Eingangs-
ports immer dann hinsichtlich neu verfiigbarer Tokens, wenn er gefeuert wird.
Wenn Tokens vorhanden sind, so werden diese zum HLADEDirector durch Auf-
ruf von updateDir(token) weitergeleitet. Diese Methode konvertiert das tibergebe-
ne Token mit Hilfe der ModelInterpreter Klassen in einen write() und einen update()
Methodenaufruf auf dem HLA Interface Wrapper. Der Zeitstempel der generier-
ten Aktualisierung entspricht der aktuellen lokalen Zeit.

5.5.3.3. Einhaltung der Kausalitdt

Single-Federation Modus

Im Fall des Single-Federation Modus ist mit dem durch die BIM FSM aus Ab-
schnitt 5.5.1.2 definierten Ablauf eine Verletzung der zeitlichen Kausalitdt aus-
geschlossen’: Der HLADEDirector kennt vor und wahrend des Synchronisations-
vorgangs alle zukiinftigen Ereignisse innerhalb der lokalen PtII Simulation, da
die restliche lokale PtIl Simulation wihrend des Synchronisationsvorgangs pau-
siert. Aufler durch die vom HLADED:irector kontrollierte Federation kann zum
aktuellen Zeitpunkt 7*" innerhalb der PtII Simulation daher kein Ereignis mehr
generiert werden, dessen Zeitstempel kleiner als das per setNextBarrier() an den
HLA Interface Wrapper iibergebene """ ist. Falls nach der Iteration des HLA In-
terface Wrappers 8" < 7" ist, so wird dies unmittelbar vom HLADEDirector
durch Einfiigen des entsprechenden Pure Events mit T7*"¢ = 18" beriicksich-
tigt.

Multi-Federation Modus

Im Multi-Federation Modus ist die Anwendung des beschriebenen Schemas in
den vorhandenen HLADED:irectors zwar notwendig, aber nicht in allen Féllen
hinreichend fiir den Erhalt der Kausalitit. Dies soll anhand der Einbettung meh-
rerer HLAComposite Actors der HLA DE Domaéne in eine Toplevel DE Doméne
verdeutlicht werden.

Diese Aussage bezieht sich hier auf eine Kausalititsverletzung bzgl. T. Microsteps y werden an
dieser Stelle vernachléssigt.
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Abbildung 5.10.: Beispielhafte Aufrufsequenz von Methoden im HLADEDirector
(Sicht von PtolemylI_First)
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Im Folgenden wird angenommen, es existieren HLAComposite Actors c; mit 1 <
i < N,N € Nund N > 2. Jeder Actor c; beinhaltet einen Director d; vom Typ
HLADEDirector sowie ein Federationmodell, das im Single-Federation Modus
korrekt und ohne Kausalitiatsverletzungen ausfiihrt. Die Federationmodelle in
Kombination mit den d;...dy koppeln die Federations fj...f in das restliche PtII
Modell ein. Dies ist in Abb. 5.11 beispielhaft anhand zweier Federationmodelle
cy und ¢y, dargestellt.

Toplevel Composite

HLAComposite ¢, X HLAComposite ¢y,
DEDirector
HLADEDirector d, HLADEDirector d,

Residual Actor
Network

(Gn)

[ Federation f, J [ Federation f,, J

Abbildung 5.11.: Beispiel fiir eine Multi-Federation

Auf dieser Basis konnen folgende Fille fiir den DAG G4 der DE Doméne (vgl.
Abschnitt 2.3.4.4) und Paare ¢, und ¢, von HLAComposite Actors auf dem Tople-
vel unterschieden werden:

1. G4 ist schleifenfrei: Es wird angenommen, dass nur Pfade von ¢, in Rich-
tung c,, existieren. c, kann dann entweder iiber a) verzogerungsfreie'® oder
b) verzogerungsbehaftete Pfade Tokens an c;; senden.

a) Nur verzogerungsfreie Pfade von c,, nach c¢;;: Aufgrund der Schleifen-
und Verzogerungsfreiheit zwischen c, und c;, liegt ¢, in G4 garantiert
ndher an einer Wurzel als c,. Daher gilt A, < A;,. Wenn nun ein Ereig-
nis e, auftritt, das c, bei (T, pn) aktiviert und ein Ereignis e;, auftritt,
das ¢, bei (T, pm) aktiviert und 7, = T, sowie u, = Hy ist, dann
wird ¢, wegen A, < A, auch garantiert vor ¢, ausgefiihrt. Damit
erfolgt die Synchronisation von d,, mit f,, tiber die HLA Schnittstel-
le ebenfalls vor der Ausfithrung von c;,,. Im Ergebnis befindet sich

in der Eventqueue von PtII ein durch d, erstelltes Pure Event e},"™
mit 7" = Tﬁmnt. Wenn d;; nun mit f;;, synchronisiert, so wird das

ODjes beinhaltet Verzogerungsfreiheit bzgl. T und bzgl. y.
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Limit 78" bei der Synchronisation bzw. beim Aufruf von getModel-
NextlterationTime() berticksichtigt, da sich dieses in Form von e}’ be-
reits in der Eventqueue befindet. d,;, wird deswegen dem setNextBar-

rier() Aufruf und damit dem NERA Service niemals einen Zeitstempel

ol tibergeben, der grofer ist als 72" Es ist somit garantiert, dass

T,%mm < Tffmm gilt und die Kausalitat bleibt erhalten.

b) Verzogerungsbehaftete Pfade von c,, nach c;;: Beliebige Verzogerun-
gen auf Pfaden von ¢, nach ¢, zerschneiden den DAG im Vergleich
zum vorherigen Fall in Teilgraphen. Es ist dann in Abhéngigkeit der
Position von Quell- und Verzogerungsactors in der DAG Topologie
nicht mehr garantiert, dass ¢, im Fall von 7, = T, und p, = ys, nach
¢y ausgefiihrt wird: Sollten ¢, und c;, als Folge der Verzogerung zu-
téllig den gleichen Level A haben, so ist die Ausfithrungsreihenfolge

nicht mehr definiert. U.U. kénnte dann T,%mm > Tﬁmnt

Kausalitit konnte damit potentiell verletzt werden!!.

werden. Die

. .. . . . rant rant
Eine Losung um sicherzustellen, dass weiterhin 75, < 75 " garan-

tiert ist, ist die manuelle Vergabe von Prioritdten, so dass im Fall von
gleichem 7, gleichem y und gleichem A der komposite Actor ¢, in je-
dem Fall vor c;; ausgefiihrt wird. Solche Prioritaten konnen in PtII fiir
jeden DE Actor separat gewihlt werden (vgl. [217]).

2. G, ist nicht schleifenfrei: Fiir bestimmte n und m kénnen sich ¢, und ¢,
u.U. gegenseitig Tokens senden. Um die durch die Ptll DE Doméne fest-
gelegten Regeln der erlaubten dynamischen Semantik nicht zu verletzen,
muss innerhalb einer solchen Schleife in Summe eine minimale Verzoge-
rung von einem Microstep vorhanden sein (vgl. Abschnitt 2.3.4.4). Im Fall
einer Multi-Federation gentigt dies nicht. Selbst Verzégerungen bzgl. T rei-
chen nicht aus. Vielmehr miissen weitere Randbedingungen erfiillt sein,
um Kausalitdtsfehler zu vermeiden.

Angenommen, innerhalb der einzigen Schleife zwischen ¢, und ¢, existie-
ren beliebige Verzogerungen bzgl. T auf jedem Teilpfad und es treten Er-
eignisse e, und ey, bei (T, uy) und (T, ) auf mit ©, = T, und py = .
Aufgrund der DAG Topologie wird ¢, vor ¢, ausgefiihrt. Die Ursache da-
fir, dass trotz der Verzogerungen Kausalitdtsverletzungen auftreten kon-

nen ist, dass c¢;; nach der Synchronisation von d, mit f, und dem Einfiigen

eines Pure Events e, mit 7}""* = T;fmnt auf dem entgegengesetzten Pfad

. . . . rant . .
weiterhin Tokens verschicken kann, die vor Tﬁ bei ¢, eintreffen, obwohl

HDjese Kausalititsverletzung wiirde allerdings von PtII erkannt werden. Die Ausfiihrung wiirde
dann in jedem Fall mit einer Exception abbrechen.
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fn schon bis o vorangeschritten ist. Bei umgekehrter Priorisierung gilt
dasselbe reziprok fiir cy.

Eine mogliche Losung fiir dieses Dilemma basiert auf der regelmafiigen
Generierung eines speziellen Pure Events e},  mit einem zeitlichen Ab-
stand von At,;,“ > 0, beispielsweise durch einen separaten DiscreteClock
Actor, der hochste Prioritét besitzt. e, erzeugt dann innerhalb des PtIl
Modells regelméfiig eine Synchronisationsbarriere, die weder von d, noch
dy, bei der Synchronisation mit f,, bzw. f;, tiberschritten werden kann.

AT muss grofer als Null sein, damit die Simulation nicht in einem Dead-
lock verharrt und eine unendliche Anzahl an Microsteps ausfiihrt. Um
Kausalititsfehler zu vermeiden, muss AT, auferdem gezielt nach oben
hin beschrankt werden. Dies ist moglich fiir alle Schleifen, die in Summe
mindestens eine zeitliche Verzégerung von At > 0 enthalten. Dabei sind
folgende Fille fiir die Pfadverzogerungen zwischen einem ¢, und einem
¢, zu unterscheiden:

a) Aty > 0und Ay, > 0: Die Kausalitdt zwischen ¢, und ¢y, bleibt
gewahrt, wenn AT = min(ATum, ATun)-

b) Aty > 0, ATy = 0 und Apyy, > 0: Die Kausalitdt zwischen ¢, und
cm bleibt gewahrt, wenn ATY"¢ = ATy, und prio(c,,) > prio(cn)lz.

¢) Atym = 0, ATy = 0: Die Kausalitdt kann mit der beschriebenen Me-
thode nicht hergestellt werden.

Unter der Voraussetzung, dass Fall c) nicht existiert, miissen die Bedingun-
gen aus den Féllen a) und b) fiir alle Pfade zwischen allen Paaren c,, und ¢,
mitn,m € Nund n # m erfillt sein, damit die Multi-Federation insgesamt
kausal korrekt ausfiihrbar ist. Dazu kann beispielsweise ein globales Pure
Event mit dem kleinsten im Gesamtmodell vorhandenen AT®¥"¢ generiert
werden. Eine andere Variante ist es, fiir jede existierende Schleife ein sepa-
rates Pure Event e*¥"¢ zu generieren. In einem HLA Director miissen dann
nur die Pure Events berticksichtigt werden, die durch Schleifen mit dem
eigenen kompositen Actor ausgelost werden.

Die Ableitung eines AT%"¢ > 0 ist vergleichbar mit der Ableitung eines
Lookaheads grofler Null und der Vermeidung von Deadlocks durch Ver-
meidung von kritischen Zyklen beim Null Message Algorithmus (vgl. Ab-
schnitt 4.4.3.3). Die beschriebene Methode ist als Alternative zur Methode
der Priorisierung auch im schleifenfreien Fall anwendbar, fiihrt aber evtl.
zu konservativeren Synchronisationsintervallen.

12Falls Apmn = 0, so ist die korrekte Priorisierung wegen der topologischen Sortierung des DAG
bereits automatisch hergestellt. Andernfalls muss die Priorisierung manuell vergeben werden.
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5.6. Fallstudie I: System/Netzwerk Co-Simulation

Werkzeuge zur Modellierung und Simulation von Kommunikationsnetzwerken
erlauben die Spezifikation von Protokollen entsprechend dem ISO/OSI Refe-
renzmodell [147]. Typischerweise wird entlang des zu modellierenden Kommu-
nikationsprotokolls an unterschiedlichen Stellen abstrahiert, um einen geeigne-
ten Trade-off zwischen Performanz und notwendiger Genauigkeit zu erzielen.

Bei den weit verbreiteten diskreten ereignisbasierten Simulatoren wie z.B. OM-
NeT++ [258], ns-2 [66], dessen Nachfolger ns-3 [132] oder OPNET [80] konnen
unterschiedlich komplexe Modelle von Schichten des Protokollstacks nach Be-
darf zusammengesetzt werden. Entsprechend [263] sind solche Netzwerksimu-
latoren allerdings eher fiir die Untersuchung von Algorithmen und Kommuni-
kationsprotokollen geeignet und weniger fiir Funktionstests und Performanz-
analysen von HW/SW Systemen (siehe auch Abb. 5.12). Die Granularitédt der
zwischen Kommunikationsendpunkten ausgetauschten Dateneinheiten bewegt
sich typischerweise auf der Ebene von Nachrichten und Paketen. Daraus ergibt
sich eine zeitliche Granularitdt auf der Ebene von Protokolltransaktionen. We-
gen ihrer Effizienz eignen sie sich somit insbesondere auch als Generator von
Testpatterns fiir detailliertere Teilmodelle von HW /SW Systemen.

HW model SW model HW perfor- Speed Note
complexity complexity mance
metrics

o) 00000 00000 00000 0000 Highrealism

accurate

Instruction Testing
accurate 00000 00000 00000 00000 i el
Virtual Design
Processing @@@OO @OOO0OO0 @O@OOO0 @O®O@®OO space
Units exploration
Simulation Timing

Instrumentati @OOOO0 @@O®O®O @000 00000

on

S s 00000 @0000 00000 @000 ;erhns

Simulation Protocols

Abbildung 5.12.: Trade-offs zwischen der Simulation von Netzwerken und
Hardware/Software (Quelle: [263])
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5.6.1. Beispiel: OMNeT++

Die Grundlage des frei verfiigbaren Netzwerksimulators OMNeT++ [258] bildet
ein diskreter ereignisbasierter Kernel, dessen Berechnungsmodell vergleichbar
mit der des SystemC Kernels oder der DE Doméne von PtIl ist. Der markanteste
Unterschied ist die Tatsache, dass der OMNeT++ Kernel keine Deltacycles bzw.
Microsteps kennt. Mit Hilfe sog. Frameworks wie z.B. INET oder MiXiM [165]
kann der Kernel fiir verschiedene Anwendungsgebiete wie die Simulation von
Internet Protokoll Stacks oder Wireless Sensor Networks (WSNs) spezialisiert
werden. Diese Frameworks sind in der Hauptsache Bibliotheken, die bereits va-
lidierte Simulationsmodelle zur Verfiigung stellen.

Ein Modell in OMNeT++ besteht dhnlich wie ein PtIl Modell aus hierarchisch
geschachtelten Modulen. Die Art und Weise der Schachtelung reprasentiert die
logische Struktur eines Netzwerks bestehend aus Knoten und virtuellen draht-
gebundenen oder drahtlosen Netzwerkkanilen. Jeder Knoten implementiert ein
funktionales Modell der simulierten Netzwerkprotokolle in Form von Protokoll-
Zustandsmaschinen. Diese beschreiben das Verhalten beim Senden und Empfan-
gen von Paketen sowie die Art und Weise der Manipulation von Datenstruktu-
ren. Einzelne Protokollschichten lassen sich modular kombinieren. Dartiber hin-
aus ist es im Allgemeinen moglich, dufsere Umgebungseinfliisse wie z.B. Mo-
bilitdt oder Hindernisse bis zu einem gewissen Grad zu modellieren. Typische
beobachtbare Parameter sind Datendurchsatz, Ubertragungslatenzen, Paketver-
luste oder Ubertragungsfehler.

5.6.2. Konzept

Um die grundlegende Funktionsfahigkeit einer HLA basierten Co-Simulation zu
demonstrieren, wurde eine Single-Federation zur Simulation vernetzter Multi-
prozessorsysteme entwickelt. Das den implementierten Szenarien zugrundelie-
gende Konzept ist in Abb. 5.13 dargestellt.

Die Gesamtsimulation besteht aus einem Netzwerkmodell und mehreren detail-
lierten MPSoC Modellen. Das Netzwerkmodell besteht wiederum aus mehre-
ren abstrakten Knotenmodellen, die ein bestimmtes Kommunikationsprotokoll
simulieren. In Abhdngigkeit von einem konkreten Anwendungsfall kénnen aus-
gewdhlte abstrakte Netzwerknoten mit detaillierten MPSoC Modellen verfeinert
werden. Dies resultiert in einer System /Netzwerk Co-Simulation zwischen dem
Netzwerkmodell und den MPSoC Modellen. Ein Anwendungsfall fiir die Verfei-
nerung eines Knotens ist beispielsweise die Verifikation unterschiedlicher Kno-
tenkonfigurationen hinsichtlich der Erfiillung von Performanzanforderungen,
die zur Ausfithrung einer Anwendung notwendig sind.
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Abbildung 5.13.: Konzept der System/Netzwerk Co-Simulation

5.6.3. Single-Federation

Die entwickelte Networked MPSoC Federation besteht aus einem Network Federa-
te und ein oder mehreren MPSoC Federates. Abb. 5.14 zeigt ein entsprechendes
Federationmodell in PtIl Syntax, welches die existierenden HLA Objektklassen
und Datenfliisse zwischen den Federates {iber die Objektklassen illustriert. Das
Network Federate implementiert das Netzwerkmodell, die MPSoC Federates ver-
feinerte Systemmodelle. Die Federates kommunizieren {iber zwei Object Classes
namens upMsg und downMsg. Das Network Federate publiziert upMsg und abon-
niert downMsg Object Classes. Die MPSoC Federates publizieren downMsg und
abonnieren upMsgObject Classes. Die Attribute der Object Classes sind in den
Sprechblasen dargestellt. Da Ptll selbst nicht Teil der Federation ist, existieren im
Federationmodell keine externen Ports zum umgebenden PtIl Modell.

5.6.3.1. Network Federate

Das Network Federate wurde mit Hilfe von OMNeT++/MiXiM implementiert.
Die Methode der Integration des HLA Interface Wrappers ist in weiten Teilen
dquivalent zur Integrationsmethode in die DE Doméne von PtII (vgl. Abschnitt
5.5.3):

Die BIM FSM des HLADED:irectors von PtIl kann vollstindig wiederverwendet
werden. Die Kontrollflussmethoden kénnen, vergleichbar zu Integration in den
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ATTRIBUTE nodelD
ATTRIBUTE source
(| ATTRIBUTE dest

ATTRIBUTE length
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Abbildung 5.14.: Modell der Networked MPSoC Federation

HLADEDirector, mit Hilfe eines vom OMNeT++ Standardscheduler abgeleiteten
Schedulers in den Kernel integriert werden.

Vergleichbar mit der Integration der Datenflussmethoden in den HLADEDirector
und die HLADEObjectClass Actors, konnen die Datenflussmethoden im Fall vom
OMNeT++ in den neuen Scheduler und die Knoten des Netzwerkmodells inte-
griert werden. Die Knoten eines Netzwerkmodells werden dazu in lokale Knoten
und verteilte Knoten eingeteilt (siehe Abb. 5.15).

Lokale Knoten besitzen ausschliefilich eine Reprédsentation innerhalb des Netz-
werkmodells. Sie implementieren den kompletten Protokollstack im Netzwerk-
modell. Verteilte Knoten besitzen zusitzlich eine Représentation in Form eines
Systemmodells. sie implementieren nur untere Protokollschichten im Netzwerk-
modell. Protokolle hoherer Schichten werden in einem verfeinerten Systemmo-
dell implementiert. Die Schnittkante zwischen oberen und unteren Protokoll-
schichten ist prinzipiell frei wéhlbar. Im konkreten Fall befindet sie sich zwischen
dem Data Link Layer und dem Network Layer. Welche Knoten lokale und wel-
che verteilte Knoten sind, kann durch einen Parameter in OMNeT++ eingestellt
werden.

Vor dem beschriebenen Hintergrund erkldren sich unmittelbar die Namen der
Object Classes im FM aus Abb. 5.14: Eine upMsg / downMsg ist eine Nachricht
von einer niedrigeren / hoheren zu einer hoheren /niedrigeren Protokollschicht.
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Abbildung 5.15.: Verteilte und lokale Netzwerkknoten

5.6.3.2. MPSoC Federate

Die MPSoC Federates wurden mit Hilfe des SystemC Kernels und einer Erwei-
terung des bereits bekannten HeMPS Modell (Wireless HeMPS) implementiert.
Die Beschreibung einer Methode zur HLA Schnittstellenintegration dhnlich zur
PIl und OMNeT++ Integration findet sich in [RMR*12]. Die hier beschriebene
Methode unterscheidet sich insofern vom Ansatz aus [RMRT12], als dass auf ei-
ne Integration von Kontroll- und Datenflussmethoden des HLA Interface Wrap-
pers in den SystemC Kernel verzichtet wurde. Vielmehr integriert die verfolgte
Variante die Methoden vollstindig auf Modellebene. Diese sog. Non-Intrusive
Losung reduziert die Komplexitit der Implementierung. Der Ansatz ist vergleich-
bar mit der Methode zur Synchronisation auf Modellebene, die bereits im Kon-
text der parallelen SystemC/TLM Simulation in Abschnitt 4.6 verwendet wurde.
Er ist insbesondere dann anwendbar, wenn nur eine einzige Modellinstanz (ein
HeMPS Modell) innerhalb des MPSoC Federates existiert.

Ahnlich zu [RMR*12] existiert in Abb. 5.16) in einem der PEs des HeMPS Mo-
dells eine virtuelle drahtlose Netzwerkschnittstelle genannt Virtual Wireless In-
terface (VWI). Das VW1 ist iber ein Registerinterface an das PE angebunden und
in den Adressbereich des Plasmakerns integriert. Es interagiert sowohl iiber die
Kontroll- als auch die Datenflussmethoden mit dem HLA Interface Wrapper.
Zum Nachrichtenaustausch existieren Eingangs- und Ausgangspuffer. Der Zu-
griff auf die Puffer wird vom Plasma Prozessor iiber einen Kontrollblock gesteu-
ert.

Da das VWI das einzige Modul ist, das mit dem HLA Interface Wrapper intera-
giert, kann die zeitliche Synchronisation zwischen SystemC Kernel und HLA In-
terface Wrapper indirekt tiber wait(time) Aufrufe in einem SC_THREAD Prozess
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des Kontrollblocks erfolgen. Der HLA Interface Wrapper selbst basiert weiterhin
auf der bereits aus Ptll bekannten BIM FSM des HLADEDirectors.

Networked MPSoC Federation

L }/‘ ‘/‘ HLA Interface Wrapper

Virtual Wireless Interface

Control
Block

Wireless PE
Interface

i |
”””””””

————————

Wireless HeMPS

Register Interface

Abbildung 5.16.: MPSoC Federate

5.6.4. Szenario |I: Performanzanalyse fiir venetzte MPSoCs

Das erste Testszenario besteht aus einer Anzahl an Knoten, die in einem Kreis
mit einem Radius von 10 Metern angeordnet sind. In der Mitte des Kreises be-
findet sich ein zusitzlicher Knoten, der alle anderen Knoten im Kreis mit Daten-
paketen unter Verwendung unterschiedlicher Ubertragungsraten stimuliert. Das
Ubertragungsmedium ist ein IEEE 802.11b Kanal mit 11 Mbps mit einem simu-
lierten Paketverlust von 1%. Ein Knoten aus dem Kreis ist als verteilter Knoten
konfiguriert, alle anderen als lokale Knoten.

Die im MPSoC Federate des verteilten Knotens verwendeten Knotenkonfigura-
tionen des HeMPS Modells fithren allesamt bei 100 MHz aus. Sie sind durch die
Anzahl an PEs und die Art der Abbildung von Softwaretasks auf die PEs charak-
terisiert. Die Kombination aus beidem resultiert in unterschiedlichen Verarbei-
tungszeiten und Beschrankungen fiir den Durchsatz. Da das IEEE 802.11b MAC
Protokoll keine Sicherungsmechanismen zur Verfligung stellt, verursachen un-
terschiedliche Durchsatzbeschrankungen unterschiedliche Paketverlustraten im
VWI, insbesondere dann, wenn vorhandene Daten langsamer verarbeitet wer-
den als neue Daten nachkommen.
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Die Struktur der auf den MPSoCs ausgefiihrten Software ist in Abb. 5.17 darge-
stellt. Sie besteht grundsétzlich aus sechs Tasks. Der NET Task bildet zusammen
mit dem VWI das Network Layer. Alle restlichen Tasks gehtren zum Application
Layer. Die Tasks bilden eine Pipelinestruktur. Als konkrete Applikationen wer-
den eine Dummyapplikation und eine Erweiterung der bereits bekannten MPEG
Applikation verwendet.

Application
Layer

Network
Layer

Abbildung 5.17.: Struktur der Beispielanwendungen

Die Application Layer Tasks empfangen Datenpakete vom NET Task und ver-
arbeiten diese. Im Fall der Dummyapplikation wird jedem Netzwerkpaket eine
Rechenkomplexitit w in Form von ganzahligen Multiplikationen zugewiesen.
Jeder Task der Applikation verarbeitet % x w Operationen. Im Fall der MPEG
Applikation tibertragen Nachrichten eine konfigurierbare Anzahl an 8x8 Blocken
eines MPEG Streams. Die MPEG Applikation selbst ist prinzipiell identisch zur
MPEG Pipeline aus Abschnitt 4.4.9.

Abb. 5.18 illustriert die verwendeten Konfigurationen von HeMPS und zugeho-
rige Abbildungen von Tasks. Entsprechend ihrer Gréfle und der Taskabbildung
sind sie mit 1x2, 2x2a 2x2b und 3x3 bezeichnet. Das VWI befindet sich immer an
genau dem PE, auf dem der NET Task ausgefiihrt wird. Der mit M markierte
Knoten ist der Master, auf dem keine Tasks ausgefiihrt werden kénnen.

Die Abb. 5.19 und 5.20 illustrieren die durch die verschiedenen Konfigurationen
entstandenen und gemessenen prozentualen Paketverluste im VWI fiir die Dum-
my und die MPEG Applikation (nicht zu verwechseln mit den 1% Paketverlust,
die immer durch den drahtlosen Kanal entstehen).

Wie zu erkennen ist, hat die Konfiguration von Hardware und Software starken
Einfluss auf die Hohe des Paketverlusts. Im Fall einer Senderate von 500 Pkt/s
iiber den drahtlosen Kanal ist das 1x2 System in der Lage, Pakete mit einer Kom-
plexitdt von 500 Ganzzahlmultiplikationen ohne Verlust zu verarbeiten. Im Ge-
gensatz dazu kann das 3x3 System Pakete mit einer Komplexitit von bis zu 4000
Operationen verlustfrei verarbeiten. Eine Verdopplung der Paketrate resultiert
erwartungsgemaf in einer Linksverschiebung des Diagramms.
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Abbildung 5.18.: Verwendete Konfigurationen von Wireless HeMPS

Im Fall der MPEG Applikation ist offensichtlich Variante 2x2b die am besten ge-
eignete, da sie bis zu 4 MPEG Blocke pro Paket bei 500 Pkt/s und bis zu 2 Blocke
pro Paket bei 1000 Pkt/s verarbeiten kann. Der beim 3x3 System zusétzlich ent-
stehende interne Kommunikationsoverhead tiber das NoC ist offensichtlich zu
hoch, um die MPEG Verarbeitung weiter zu beschleunigen. Dies hat einen An-
stieg des Verlusts im Vergleich zum 2x2b System von 19.6% bei 500 Pkt/s und
13% bei 1000 Pkt/s zur Folge.
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Abbildung 5.19.: Dummy Applikation
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Abbildung 5.20.: MPEG Applikation

5.6.5. Szenario Il: Verteilte Ausfiihrung

Die folgende Untersuchung soll zeigen, dass die verteilte Ausfithrung von Fe-
derates auch zur Performanzsteigerung genutzt werden kann. Durch die Vertei-
lung der Federates wird die grobgranulare Parallelitdt zwischen mehreren dis-
ziplinspezifischen Teilmodellen genutzt: Weder das Netzwerkmodell noch ein
MPSoC Modell selbst werden parallel ausgefiihrt. Die Kombination mit den An-
satzen aus Kapitel 4 ist ein moglicher Ansatzpunkt fiir zukiinftige Arbeiten.

Die Untersuchung basiert auf einem Szenario bestehend aus 64 Knoten, die in
einer Meshstruktur angeordnet sind und iiber einen IEEE 802.11b Kanal kom-
munizieren. Jeder Knoten sendet Datenpakete per Broadcast mit einer Frequenz
von 100 Hz. Die Knoten in der Diagonalen des Meshs sind verteilte Knoten, alle
anderen sind lokale Knoten. Lokale Knoten implementieren die Broadcast Ap-
plikation mit Hilfe eines simplen Traffic Generators auf dem Application Layer.
Im HeMPS System wurde wieder die Task Pipeline aus Abb. 5.17 verwendet:
TASK 5 generiert Pakete. Alle anderen schieben diese weiter bis zum NET Task.

Die Messungen wurden auf einer SHM Workstation mit einer 2.0 GHz Quad-
core CPU, 8 GB RAM und unter Verwendung von SystemC 2.2.0, OMNeT 4.1
und CERTI 3.2 durchgefiihrt. Bei zwei, drei und vier Workstation Kernen wurde
das Network Federate immer separat auf einem Kern ausgefiihrt. Die erzielten
parallelen Beschleunigungen im Vergleich zu sequentieller Ausfiihrung aller Fe-
derates auf einem einzigen Kern sind in Abb. 5.21 dargestellt.

Die Beschleunigung auf zwei Kernen ist wegen der ungleichen Lastverteilung
zwischen Netzwerksimulation und MPSoC Simulationen im Allgemeinen stark
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beschrankt (teilweise < 1x): Der Hauptanteil des Rechenaufwandes wird, trotz
der 56 lokalen Knoten, durch die MPSoC Modelle generiert. Zudem werden
beim Ubergang auf zwei Kerne die acht MPSoC Modelle noch nicht parallel aus-
gefiihrt, da ein Kern vollstindig fiir die Netzwerksimulation reserviert ist. Die
Beschleunigungen der 2x2 und 3x3 Simulationen fallen auf zwei Kernen generell
niedriger aus als die der 1x2 Simulationen. Die vergleichsweise bessere Lastver-
teilung zwischen Netzwerksimulation und MPSoC Simulationen basierend auf
dem 1x2 Modell ist eine Erkldrung fiir diesen Effekt.

4 4
3 3 3
3 = E3
g2 22 g 2
& a &
1 1 1
0 0 0 - T
2 3 4 2 3 4 2 3 4
Workstation Cores Workstation Cores Workstation Cores
(a) 1x2 Modelle (b) 2x2 Modelle (c) 3x3 Modelle

Abbildung 5.21.: Gemessene Beschleunigung bei verteilter Ausfiihrung

Trotz der ungleichen Lastverteilung zwischen Netzwerk und MPSoC Federates
erreicht die Beschleunigung bei Verwendung des 1x2 Modells auf drei Kernen
(d.h. nur zwei Kerne sind fiir die MPSoC Simulationen verfiigbar) Werte > 3x.
Ein Grund konnen Cacheeffekte innerhalb der Speicherhierarchie der verwen-
deten Workstation sein: Bei sequentieller Ausfithrung der MPSoC Simulatio-
nen iibersteigt die Menge der zu speichernden Daten die Grofle des verfiigba-
ren schnellen Cachespeichers, was zu vielen langsamen Hauptspeicherzugriffen
fithrt. Werden mehr Kerne fiir die MPSoC Simulationen verwendet, so ist ins-
gesamt mehr schneller Cachespeicher zur Datenhaltung verfiigbar. Unter Um-
stdinden konnen die Modelle dann vollstindig im Cache gehalten werden. Die
Anzahl langsamer Hauptspeicherzugriffe wird dadurch reduziert, was in einer
zusitzlichen Beschleunigung resultiert. Bei den 2x2 und 3x3 Modellen ist dies
nicht der Fall, da die Modelle offensichtlich so grofd sind, dass ihre Grofie die
Kapazitit des Caches tibersteigt, auch bei drei Kernen.

Im Fall von insgesamt vier Kernen geht die Beschleunigung beim 1x2 Modell
wieder auf 2.4x zuriick. Die Beschleunigungen der 2x2 und 3x3 Modelle steigt
an. Dabei wurden dhnliche Werte gemessen. Vernachladssigt man die Netzwerksi-
mulation, so betrdgt die theoretisch maximal mogliche Beschleunigung der MP-
SoC Simulationen 3x. Eine Ursache weswegen diese bei allen drei MPSoC Mo-
dellen nicht erreicht wird, ist der durch den hoheren Parallelisierungsgrad ent-
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stehende hohere Synchronisationsaufwand in Verbindung mit der nun auch zwi-
schen den MPSoC Simulationen vorhandenen ungleichen Lastverteilung (zwei
Kerne fiihren drei MPSoC Modelle aus und ein Kern nur zwei). Auch mogliche
positive Cacheeffekte reichen offensichtlich nicht aus, um eine dhnlich hohe Be-
schleunigung zu erzielen, wie zuvor beim 1x2 Modell auf drei Kernen.

5.7. Fallstudie Il: Simulation von V2X basierten
E/E Architekturen

Ausgehend von den in Abschnitt 5.1 beschriebenen Zusammenhingen ist die
Abdeckung folgender drei Aspekte grundlegend fiir eine simulative Verifikati-
on zukiinftiger V2X-basierter E/E Architekturen: E/E Architektur, V2X Kommu-
nikation und (restliche) physikalische Umwelt. Generell existieren Wechselwir-
kungen zwischen jedem der drei genannten Aspekte (vgl. Abb. 5.22). Mogliche
und notwendige Detailgrade zur Modellierung der Aspekte und deren Wechsel-
wirkungen werden im Folgenden diskutiert.

E/E Architecture

Physical
Environment

V2X Communication

Abbildung 5.22.: Aspekte und Wechselwirkungen in einer Simulation fiir V2X-
basierte E/E Architekturen

5.7.1. E/E Architektur

Entsprechend den Ausfiihrungen in Abschnitt 5.1 erfolgt die Entwicklung zu-
kiinftiger E/E Architekturen optimalerweise unter Verwendung einer Meet-in-
the-Middle Entwurfsmethodik wie dem PBD. Eine Voraussetzung fiir die Uber-
tragung von PBD Prinzipien ist die Definition von geeigneten Abstraktionsebe-
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nen fiir die Spezifikation der Funktion und die Spezifikation der Architektur.
Dabei muss einerseits von den Details einer bestimmten Architekturimplemen-
tierung abstrahiert werden aber andererseits gentigend Information vorhanden
sein, um moglichst genaue Vorhersagen tiber Eigenschaften von Funktionen und
Architektur wie z.B. notwendige/verfiigbare Berechnungs- oder Kommunikati-
onsperformanz zu erlauben [229].

Die Selektion der E/E Architektur ist die Hauptaufgabe eines OEM. Vincen-
telli und Di Natale schlagen fiir die Integration dieser Aufgabe mit einer PBD
Entwurfsmethodik in [229] eine Granularitat der Funktionsspezifikation auf der
Ebene einzelner Teilfunktionen und der E/E Architekturspezifikation auf der
Ebene von ECUs und Bussen vor. Einzelne funktionale und architektonische Teil-
komponenten miissen bis zu einem gewissen Grad parametrierbar sein. Fiir eine
Exploration relevante Parameter von Teilkomponenten miissen von dem jewei-
ligen Verantwortlichen (z.B. dem OEM oder einem Zulieferer) bereitgestellt wer-
den, der diese Teilkomponenten entwickelt. Typische Analysen auf der Ebene
der Gesamtarchitektur beinhalten z.B. (vgl. [229]) Evaluationen von Ende-zu-
Ende Latenzen und Schedulability oder System-Level Simulationen von Funkti-
on und Timing.

Eine detailliertere Exploration einzelner Teilkomponenten sowie deren funktio-
nale Verifikation setzt eine Modellierung der Teilkomponenten mit feinerer Gra-
nularitdt voraus. Im Verlauf des Entwicklungsprozesses miissen von den Ver-
antwortlichen daher akkuratere Modelle von Teilsystemen wie Funktionen, Be-
triebssystemkomponenten, ECUs oder Bussen bereitgestellt werden, welche fiir
eine durchgéngige Verifikation bis hin zur Implementierung notwendig sind.
Die Gesamtarchitektur kann dann mit diesen Modellen schrittweise verfeinert
werden.

Beispielsweise muss die Granularitdt von ECUs u.U. auf die Ebene einzelner Ker-
ne aufgebrochen werden, um die Abbildung von Funktionen mit der notwendi-
gen Genauigkeit untersuchen zu konnen. Dies beinhaltet z.B. die Verifikation
des Schedulings und der Ausfithrungsdauer auf einzelnen Kernen oder der ent-
stehenden Kommunikationslatenzen zwischen den Kernen unter Verwendung
exakterer zyklenapproximativer Modelle.

5.7.2. V2X Kommunikation und physikalische Umwelt

Durch V2X Kommunikation wird die E/E Architektur iiber eine Funkschnitt-
stelle ,,gedffnet” (vgl. Abschnitt 5.1.1). Funktionen, die auf der E/E Architektur
ausgefiihrt werden sind u.U. in hohem Mafie von Informationen abhingig, die
tiber den drahtlosen Kanal eintreffen. Umgekehrt sendet das eigene Fahrzeug
tiber den Funkkanal Informationen an andere Fahrzeuge.
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V2X Kommunikation erzeugt neue Wechselwirkungen des Fahrzeugs, welche in
einem hohen Grad nicht deterministisch sind. Dies betrifft sowohl die Menge
an zu verarbeitenden Nachrichten, die in einem bestimmten Zeitraum eintref-
fen, als auch deren Inhalt. Die beiden Haupteinflussparameter sind der drahtlo-
se Kommunikationskanal in Kombination mit dem Verhalten der umgebenden
Verkehrs.

Zur Simulation des drahtlosen Kommunikationskanals eignen sich paketbasier-
te Netzwerksimulatoren. Dies wurde bereits in Fallstudie I demonstriert. Im Fall
von V2X Kommunikation muss in erster Linie zusatzlich das Bewegungsverhal-
ten des Strafienverkehrs modelliert und simuliert werden.

5.7.2.1. Modellierung und Simulation von StraBenverkehr

Unter Verkehrssimulation versteht man die Simulation von StrafSenverkehr auf
Basis mathematischer Modelle (vgl. [254]). Dies beinhaltet typischerweise die
Modellierung von Strafien, Kreuzungen, Routen etc. sowie die Modellierung des
dynamischen Verhaltens des Verkehrs oder einzelner Fahrzeuge. Die typischer-
weise in Verkehrssimulatoren implementierten Bewegungs- oder Mobilitdtsmo-
delle lassen sich inhaltlich in drei Klassen einteilen:

¢ Submikroskopische Modelle haben einen sehr hohen Detailgrad. Sie be-
schreiben die Langs- und Querdynamik eines einzelnen Fahrzeugs mit Hil-
fe komplexer Differentialgleichungen. Die Gleichungen werden fiir jeden
Simulationsschritt neu berechnet. Der Rechenaufwand ist daher extrem
hoch. Ein sub-mikroskopisches Bewegungsmodell findet sich beispielswei-
se in der Software CarMaker [6] der Firma IPG.

¢ Mikroskopische Modelle beschreiben das Verhalten mehrerer Fahrzeuge.
Im Unterschied zu sub-mikroskopischen Modellen, werden Bewegungs-
parameter eines einzelnen Fahrzeugs meist in Abhéngigkeit benachbarter
Fahrzeuge bestimmt (sog. Fahrzeugfolgemodelle). Der Detailgrad eines si-
mulierten Fahrzeugs ist um einiges geringer als bei submikroskopischen
Modellen. Die Verhaltensmodellierung beschrankt sich oft auf die Langs-
dynamik. Mikroskopische Modelle sind meistens diskret. Beispiele sind die
Verkehrssimulatoren SUMO [166] oder PTV Vissim [13].

In SUMO werden z.B. Fahrzeugfolgemodelle verwendet, welche das Ver-
halten bzw. den Zustand fiir jedes einzelne Fahrzeug separat mit Hilfe von
kontinuierlichen Differentialgleichungen berechnen. Zur Ausfiihrung die-
ser Modelle implementiert der Kernel von SUMO ein Berechnungsmodell
(vgl. Abschnitt 2.2.3.3), bei dem sich das Zeitinkrement im Mikrosekunden-
bis Sekundenbereich variieren ldsst. Insgesamt ist die Simulation raumlich
kontinuierlich aber zeitdiskret.
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* Makroskopische Modelle basieren auf der Verwendung von Statistik und
Anleihen aus der Stromungslehre zur Verkehrsflussmodellierung. Typische
Parameter sind Dichte und Geschwindigkeit. Da keine einzelnen Fahrzeug-
instanzen mehr vorhanden sind, reduziert sich die Anzahl zu berechnen-
der Ereignisse um ein Vielfaches im Vergleich zu mikroskopischen Model-
len. Makroskopische Modelle werden typischerweise fiir grofie innerstad-
tische Szenarien verwendet, bei denen eine Analyse oder Prognose der Ver-
kehrsbedingungen im Vordergrund steht. PTV Visum [14] ist ein Beispiel
eines makroskopischen Simulators.

Neben den genannten Klassen existieren auch noch gemichte Ansitze (sog. me-
soskopische Modelle), welche mikroskopische und makroskopische Modellie-
rungsmethoden verkniipfen [254]. Im hier betrachteten Kontext sind Verkehrs-
modelle der ersten beiden Kategorien relevant. Aufgrund einer dhnlichen zeitli-
chen Auflosung eignen sich insbesondere mikroskopische Modelle fiir die Kopp-
lung mit einer paketbasierten Netzwerksimulation. Je stdrker der Schwerpunkt
auf einer Betrachtung der durch V2X beeinflussten Fahrdynamik liegt, desto
mebhr ist die Verwendung submikroskopischer Bewegungsmodelle notwendig.

5.7.2.2. Bidirektionale Kopplung von Netzwerk- und Verkehrssimulation

Die Notwendigkeit fiir eine bidirektional gekoppelte Simulation von Netzwerk-
kommunikation und Straflenverkehr wurde von Sommer et al. in [239] aufge-
zeigt. Einer der in [239] genannten Hauptgriinde dafiir ist die Tatsache, dass V2X
Kommunikationsprotokolle ohne ein entsprechendes Feedback eines Modells
des Straflenverkehrs nicht ausreichend getestet werden konnen. Umgekehrt er-
laubt eine bidirektionale Kopplung auch die Untersuchung des Einflusses der
Netzwerkkommunikation auf den Straflenverkehr.

Eine solche Kopplung ist im Simulationswerkzeug Veins [239] anhand von OM-
NeT++ und SUMO umgesetzt (sieche Abb. 5.23). Das Ziel dieser Kopplung ist die
Untersuchung von V2X Kommunikationsprotokollen zur dynamischen Routen-
planung oder von sicherheitsrelevanten Applikationen. Die Kopplung zwischen
OMNeT++ und SUMO basiert auf TCP/IP.

Veins stellt verschiedene Modelle der einschldgigen V2X Protokolle wie IEEE
1609.x und 802.11p [30][21] basierend auf dem MiXiM Framework zur Verfii-
gung. SUMO ist als zusétzliches Mobilitdtsmodell in MiXiM integriert. Dadurch
ist eine weitaus akkuratere Modellierung und Simulation von Straflenverkehr
moglich, als mit den in MiXiM standardméfiig vorhandenen Mobilitdtsmodel-
len. Zudem bietet SUMO die Moglichkeit, Strafienkarten diverser Formate zu
importieren.
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Abbildung 5.23.: Architektur des Veins Frameworks (Quelle: [238])

Die Argumentation aus [239] ist unmittelbar auf den Anwendungsfall der E/E
Architektursimulation tibertragbar: Aus Sicht von [239] werden der Kommuni-
kations- und der Verkehrsaspekt ein weiteres Mal erweitert und zwar um den
E/E Architekturaspekt, mit dem Ziel, zusatzlich Aussagen {iber die Ausfiih-
rungsperformanz von V2X Applikationen und Funktionen und deren Wechsel-
wirkungen mit dem drahtlosen Kommunikationskanal machen zu kénnen. Die
durch Veins zur Verfiigung gestellte Granularitidt von Daten und der Zeit reicht
dabei aus, um Stimuli und Testbenches fiir die Verifikation von Funktionen zu
generieren, die auf der E/E Architektur ausgefiihrt werden.

5.7.2.3. Modellierung und Simulation der restlichen physikalischen Umwelt

Unter diesen Aspekt fallen alle Komponenten, welche nicht durch die Simulati-
on der V2X Kommunikation und die Simulation des Straflenverkehrs mit Veins
erfasst werden. Dazu gehoren vor allem auch Interaktionen mit der restlichen
umgebenden physikalischen Umwelt {iber Sensor/Aktuator Schnittstellen der
E/E Architektur. Soll beispielsweise zusdtzlich die Wechselwirkung der Rader
eines DbW Systems, wie es in Abschnitt 5.1.1 beschrieben ist, mit der Strafie be-
riicksichtigt werden, so miissen Sensoren, Aktuatoren und die mechanische In-
teraktion der Rdder mit der Strale anhand von Differentialgleichungen model-
liert werden. Fiir die Modellierung anhand von Differentialgleichungen eignen
sich Werkzeuge wie Matlab/Simulink [8] oder das bereits im Kontext der submi-
kroskopischen Verkehrssimulation erwdhnte Werkzeug CarMaker [6]. Auch die
CT Doméne von Ptll ist dafiir geeignet.
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5.7.3. Multi-Federation

Ausgehend von den zuvor beschriebenen Anforderungen wurde eine Multi-
Federation entwickelt, welche es ermoglicht, Wechselwirkungen innerhalb eines
Systems von vernetzten V2XC-fahigen Fahrzeugen in einer verteilten Simulation
zu untersuchen. Als Beispielanwendung zur Ausfiihrung auf der E/E Architek-
tur und zur Demonstration der Funktionsfahigkeit des Konzepts dient ein V2X
basierter Abstandsregeltempomat (Adaptive Cruise Control (ACC)).

Die Multi-Federation besteht aus einem PtII Federate, einem Veins Federate und
einem HeMPS Federate. Die beiden disziplinspezifischen Simulatoren Veins und
HeMPS werden in jeweils separaten Federations mit PtII co-simuliert. Die Kom-
ponenten der Multi-Federation sind in Abb. 5.24 dargestellt und werden im Fol-
genden erldutert.

5.7.3.1. Gesamtsystemmodell

PtII ist der Ausgangspunkt fiir die Modellierung des Gesamtsystems. Es wird
angenommen, dass das zu entwickelnde System ein einzelnes Fahrzeug ist. Da-
mit bildet die Fahrzeugkarosserie die Grenze zwischen dem zu entwickelnden
System und der Systemumwelt.

Aus einer Top-down Perspektive besteht das Gesamtsystemmodell in PtII da-
her aus einem internen Fahrzeugmodell und einem Umgebungsmodell. Ersteres
wird innerhalb eines kompositen Actors namens Intra Vehicle Composite model-
liert, Letzteres in einem kompositen Actor namens Inter Vehicle Composite. Beide
Actors kommunizieren tiber Ports und Relations. Interaktionen zwischen beiden
Actors unterliegen dem DE Berechnungsmodell. Sofern Actors niedrigerer Hier-
archieebenen keinen eigenen Director besitzen, folgen sie automatisch auch dem
DE Berechnungsmodell.

Da ein spezieller Fokus auf der E/E Architektur des Fahrzeugs liegt, reprasen-
tiert das interne Fahrzeugmodell aktuell alleine die E/E Architektur. Das kom-
plette interne Fahrzeugmodell oder einzelne Komponenten (Actors) konnen be-
liebig verfeinert werden. Mit dem neuen Actor vom Typ HLAComposite konnen
fiir die Verfeinerung auch sprachfremde Modelle verwendet werden. Auch das
Umgebungsmodell kann durch beliebige (komposite) Actors bis auf die not-
wendige Modellierungstiefe weiter verfeinert werden (siehe Abb. 5.24).

5.7.3.2. Internes Fahrzeugmodell

Als Grundlage fiir die Entwicklung des internen Fahrzeugmodells dienten die
Konzepte fiir zukiinftige E/E Architekturen, die bereits in Abschnitt 5.1.1 disku-
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Abbildung 5.24.: Multi-Federation zur Simulation von E/E Architekturen
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tiert wurden. Das daraus abgeleitete abstrakte Grundgeriist einer zukiinftigen
E/E Architektur ist in Abb. 5.24 oben dargestellt. Es wird angenommen, dass die
Struktur der Architektur im Grofien und Ganzen festgelegt ist, einzelne Kompo-
nenten bzw. Actors aber ausgetauscht oder bis zu einem gewissen Grad variiert
und verfeinert werden kénnen.

In Abb. 5.24 ist jede ECU und das interne Netzwerk durch einen separaten Actor
modelliert. Es existiert eine zentrale Multicore ECU mit Namen Central ECU. Fur
jedes Rad existiert ein Actor namens Wheel ECU'3. Daneben gibt es noch eine
Radar ECU und eine GPS ECU. Es wird angenommen, dass alle ECUs tiber einen
standardisierten fahrzeuginternen Kommunikationsbackbone (modelliert durch
einen Actor namens Internal Network) Nachrichten austauschen kénnen.

Central ECU

In Anlehnung an das in [227] beschriebene Konzept fiir V2XC-fdhige Automoti-
ve Gateways, existiert mit der Central ECU ein Steuergerat, welches die Schnitt-
stelle zwischen dem internen Bordnetz und dem externen drahtlosen Kommmu-
nikationsnetzwerk bildet. Der entsprechende Actor in Abb. 5.24 verfiigt deswe-
gen iiber separate Ports fiir die V2X Kommunikation mit dem Umgebungsmo-
dell.

Fir die Central ECU existiert neben einem reinen kompositen PtII Actor auch ein
Actor vom Typ HLAComposite, tiber den das interne Fahrzeugmodell in PtIl mit
einer Erweiterung des bereits bekannten Wireless HeMPS SystemC Modells aus
Abschnitt 5.6 verfeinert werden kann. Das diesem Actor zugrundeliegende Fe-
derationmodell ist in Abb. 5.25 dargestellt. Die Actors mit Namen wifillpMsg und
wifiDownMsg sind vom Typ HLADEObjectClass und erfiillen den gleichen Zweck
wie die upMsg und downMsg Actors aus der Fallstudie in Abschnitt 5.6. Zusitz-
lich dazu existieren zwei Actors / Object Classes mit Namen internalGetMsg und
internalSetMsg, mit deren Hilfe das Verhalten der Wheel ECU gesteuert werden
kann.

Auf HeMPS Seite wurde das Virtual Wireless Interface Modul zu einem allgemei-
nen Virtual Network Interface (VNI) erweitert, so dass sowohl V2X Datenpake-
te tiber das externe V2X Netzwerk (via wifillpMsg und wifiDownMsg), als auch
Datenpakete tiber das interne Netzwerk (via internalGetMsg und internalSetMsg)
empfangen und versendet werden konnen.

Wheel ECU

Entsprechend dem in Abschnitt 5.1.1 beschriebenen DbW Ansatz, ist eine Wheel
ECU fiir Vorverarbeitung von Sensordaten und die Radansteuerung verantwort-
lich. Um die Fallstudie zu vereinfachen, wurde 0.B.d.A. nur eine abstrakte Wheel

131n der hier beschriebenen Fallstudie war nur eine der Wheel ECUs aktiv.
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Abbildung 5.25.: Modell der HeMPS Federation

ECU umgesetzt. Die Implementierung basiert auf einem CT Director. In Kom-
bination mit dem DE Director wird damit die Moglichkeit zur heterogenen Co-
Simulation demonstriert.

Als Vorgabe erhalt der Wheel ECU Actor einen Beschleunigungswert aus dem in-
ternen Bordnetz (Internal Network Actor) und erzeugt daraus durch Integration
eine Geschwindigkeit fiir das interne Fahrzeugmodell. Uber einen externen Port
wird die erzeugte Geschwindigkeit der Représentation des internen Fahrzeug-
modells im Umgebungsmodell mitgeteilt. Uber die Wheel ECU kénnten auch
weitaus komplexere Verhaltenseigenschaften des Fahrzeugs oder Einflussgro-
Ben der Fahrbahn modelliert werden. Auch die Verfeinerung der Wheel ECUs
mit einem vollstindigen submikroskopischen Dynamikmodell eines Fahrzeugs
(beispielsweise anhand von CarMaker [RSG*10]) wire denkbar.

Radar und GPS ECUs

Neben dem mit dem Wheel ECU Actor implizit modellierten Geschwindigkeits-
sensor sind der Radar ECU und der GPS ECU Actor die einzigen in der Fall-
studie explizit modellierten Sensorkomponenten. Die Radar ECU liefert die Po-
sition und die Geschwindigkeit des vorausfahrenden Fahrzeugs. Die GPS ECU
liefert die Position des eigenen Fahrzeugs. Aktuell werden die genannten Wer-
te durch das Umgebungsmodell berechnet. Aus diesem Grund dienen die bei-
den Steuergerdtemodelle ausschliefslich als reine Stellvertreterobjekte und rei-
chen die durch das Umgebungsmodell berechneten Werte an den Internal Net-
work Actor einfach durch.
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5.7.3.3. Umgebungsmodell

Das Umgebungsmodell im Inter Vehicle Composite Actor wird vollstandig durch
Veins reprasentiert. Veins simuliert den umgebenden Straienverkehr und die
drahtlose Netzwerkkommunikation zwischen Fahrzeugen. Der Inter Vehicle Com-
posite Actor wurde dazu mit Hilfe eines Actors vom Typ HLAComposite umge-
setzt. Das Federationmodell im Inter Vehicle Composite Actor ist in Abb. 5.26 dar-
gestellt. Im Prinzip ist das Federationmodell der Veins Federation reziprok zum
Federationmodell der HeMPS Federation definiert: Im Unterschied zum HeMPS
Federate empfangt das Veins Federate von PtIl Aktualisierungen fiir wifillpMsg
und internalGetMsg Object Classes und sendet Aktualisierungen fiir die wifiDow-
nMsg und internalSetMsg Object Classes.
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Abbildung 5.26.: Modell der Veins Federation

Die Integration in Veins entspricht weitgehend der Implementierung des OM-
NeT++ basierten Network Federates aus der ersten Fallstudie. Ein in PtII model-
liertes internes Fahrzeugmodell hat eine Représentation in Form eines verteilten
Knotens innerhalb von Veins. Im Unterschied zu Abschnitt 5.6 werden fiir diesen
verteilten Knoten nicht nur Netzwerkpakete des Network Layer und des MAC
Layer zwischen PtII und Veins tibertragen, sondern auch Bewegungsinformatio-
nen zum verteilten Knoten, die tiber die internalGetMsg Actors / Object Class In-
stanzen in die Sensormodelle des internen Fahrzeugmodells eingespeist werden.
Umgekehrt kénnen Bewegungsparameter wie z.B. die Geschwindigkeit des ver-
teilten Knotens durch Aktualisierung einer internalSetMsg Object Class Instanz
tiberschrieben werden. Wie bei der OMNeT++ Integration ist einstellbar, ob und
welche Fahrzeuge unter der Kontrolle von Ptll oder Veins sind. Grundsitzlich
ist es auch moglich, die abstrakte Verhaltenssimulation mehrerer Fahrzeuge in
Veins durch eine detailliertere Simulation in PtII zu ersetzen.
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5.7.4. Szenario |: Test einer ACC Funktion

Um die Funktionsfahigkeit der heterogenen Co-Simulation zwischen PtII und
Veins zu demonstrieren, wurde der Central ECU Actor zunidchst nicht mit dem
HeMPS Modell verfeinert. Stattdessen wurde die ACC Funktion im kompositen
Central ECU Actor auf algorithmischer Ebene (ohne Berticksichtigung von Ar-
chitekturcharakteristika) und unter Verwendung des DE und CT Berechnungs-
modells umgesetzt.

5.7.4.1. Intelligent Driver Model

Die auf der Central ECU implementierte Funktion beschrankt sich auf eine ACC
Implementierung basierend auf dem sog. Intelligent Driver Model (IDM) [253].
Das IDM ist ein kollisionsfreies mikroskopisches Fahrzeugfolgemodell, das auch
als Grundlage fiir eine echte ACC Implementierung dient [162, 159, 167]. Das
IDM ist eine kontinuierliche Funktion der tatsdchlichen Geschwindigkeit v, des
Abstands zum vorausfahrenden Fahrzeug s und der Geschwindigkeitsdifferenz
Av:

do
arpm(v, s, Av) = ik

-]

vAv

s*(v, Av) = sg + 0T + ——.

(5.2)

Dabei ist s* der gewiinschte minimale Abstand. Die Bedeutung der {ibrigen Mo-
dellparameter kann Tab. 5.1 entnommen werden. Hier sind auch typische Para-
metrierungen illustriert. In [254] werden die Modellparameter anhand der fol-
genden drei Standardsituationen veranschaulicht:

¢ Beschleunigen auf freier Strecke: Dies geschieht zunidchst mit der maxi-
malen Beschleunigung bei normalem Verkehr a. Die Beschleinigung geht
bei Anndherung an die Wunschgeschwindigkeit vg in einer durch den Pa-
rameter 0 beschriebenen Weise gegen Null. Je grofier & gewdhlt wird, desto
spéter reduziert sich die Beschleunigung.

* Folgefahren: Das Folgefahren geschieht mit dem durch die Folgezeit T cha-
rakterisierten Abstand zuziiglich dem Minimalabstand sg bei stehendem
Verkehr.

* Annidhern: Bei der Anndherung an langsamere Fahrzeuge wird in Normal-
situationen die komfortable Verzogerung b nicht tiberschritten.
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1.5m/s? 0.5-3m/s?

\ Parameter Autobahn Stadtverkehr  Sinnvoll
- Wunschgeschwindigkeit vy = 120km/h | 54km/h | 50-200 km/h |
\ Folgezeit T - 1.0s | 1.0s - 09-3s |
\ Minimalabstand s \ 2m \ 2m \ 1-5m \
' Beschleunigungsexponent ¢ | 4 \ 4 \ 1-00 \
\ Beschleunigung a C1.0m/s? | 10m/s> | 03-3m/s* |
| | | |

Komfortable Verzogerung b | 1.5 m/s?

Tabelle 5.1.: Modellparameter des IDM (Quellen: [254, 160])

5.7.4.2. Funktionsblécke

Zur Einbettung des IDM in den Central ECU Actor wurden mehrere Funkti-
onsblocke in Form von kompositen Actors implementiert. Das zu verwendende
Ubertragungsmedium, um Informationen iiber das vorausfahrende Fahrzeug zu
erhalten (Radar ECU oder V2XC Kanal), kann innerhalb der Central ECU durch
Vertauschung der Portanbindung gewechselt werden. Folgende Funktionsblo-
cke existieren (wenn nicht anders angegeben, wurde das DE Berechnungsmodell
verwendet):

* Message Decoder (nur V2X Kanal): Ein tiber den V2XC Kanal empfange-
nes Paket wird vom Message Decoder Block in seine Bestandteile (Header
und Payload) zerlegt. Die einzelnen Datenfelder werden als PtII Tokens an
den Message Filter weitergeleitet.

® Message Filter (nur V2X Kanal): Dieser Funktionsblock filtert relevante
V2X Pakete aus dem eingehenden Strom von Paketen aus. Ein Paket wird
als relevant klassifiziert, wenn es vom vorausfahrenden Fahrzeug stammt.
Dieses wird anhand einer ID identifiziert. Alle anderen Pakete werden ver-
worfen.

¢ Environment Picture: Dieser Funktionsblock dient als lokaler Zwischen-
speicher eines aktuellen , Abbildes der Umgebung” in Form von zuletzt
empfangenen Umgebungsinformationen. Es speichert die iiber die GPS
ECU und die Wheel ECU eingelesenen Werte fiir Position und Geschwin-
digkeit des eigenen Fahrzeugs sowie die entweder tiber die Radar ECU
oder den V2X Funkkanal empfangenen Werte fiir Position und Geschwin-
digkeit des vorausfahrenden Fahrzeugs.

¢ IDM Controller: Der IDM Controller Block ist die eigentliche Implemen-
tierung des oben beschriebenen IDM. Auf Basis der Daten des Environment
Picture Blocks gibt das IDM die Beschleunigung a fiir die Wheel ECU (Re-
gelstrecke) vor. Dieser komposite Actor folgt dem CT Berechnungsmodell.
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Mit der durch das IDM berechneten Beschleunigung ajpys generiert die Wheel
ECU die Geschwindigkeit v. Diese wiederum wird an die Repridsentation des
Fahrzeugs in Veins (den verteilten Knoten) zuriick iibermittelt.

5.7.4.3. Dynamische Abstandsregelung via Radar und V2X

In Veins wird ein Verkehrsszenario mit zwei Fahrzeugen ausgefiihrt. Das vor-
ausfahrende Fahrzeug wird von Veins gesteuert. Auf einer geraden Strecke in
x-Richtung passiert es periodisch Strafienkreuzungen mit einem Abstand von
200 m (vgl. Abb. 5.27). Das nachfolgende Fahrzeug wird durch das interne Fahr-
zeugmodell bzw. die IDM Implementierung in PtIl gesteuert. SUMO wurde mit
einem Aktualisierungsintervall (Update Time in [161]) von 0.01 s ausgefiihrt. Die
verwendeten IDM Parameter sind in Tab. 5.2 zusammengestellt. Zu Beginn der
Simulation wurde Veins ein Vorlauf von 10 s Simulationszeit gegeben.

Abbildung 5.27.: Stralenkreuzungen mit einem Abstand von 200 m in Veins

Parameter Gewihlter Wert
Wunschgeschwindigkeit vg 54 km/h
Folgezeit T 1.0s
Minimalabstand s 20m
Beschleunigungsexponent & 4
Beschleunigung a 2.6m/s?
Komfortable Verzogerung b 3.0m/s?

Tabelle 5.2.: Gewéhlte IDM Modellparameter
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Radar ACC

Abb. 5.28 zeigt die mit PtIl aufgezeichneten Simulationsergebnisse fiir Geschwin-
digkeit, Beschleunigung, Abstand und Position bei Verwendung einer ACC Funk-
tion basierend auf der Radar ECU. Innerhalb des nachfolgenden Fahrzeugs (im

PtII E/E Architekturmodell sowie zur Synchronisation mit Veins) wurde, wie in

SUMO, generell eine Aktualisierungsrate von 0.01 s verwendet. Die roten Kur-

ven illustrieren das Verhalten des vorausfahrenden und vollstdndig in Veins si-

mulierten Fahrzeugs, die blauen Kurven das Verhalten des nachfolgenden und

teilweise in PtIl simulierten Fahrzeugs. Am Plot der Geschwindigkeit ist sehr gut

das regelmiflige Auftreten der Straflenkreuzungen zu erkennen: Das in Veins

bzw. SUMO verwendete Mobilitdtsmodell (eine Erweiterung des IDM) bertick-

sichtigt u.a. die Rechts-vor-Links Regel. Dies resultiert in regelméfsigen Abbrems-
und Beschleunigungszyklen des vorausfahrenden Fahrzeugs, sobald dieses eine

Kreuzung passiert. Die Geschwindigkeit des vorausfahrenden Fahrzeugs sinkt

periodisch von 13.9 m/s auf ca. 2.2 m/s ab und steigt dann wieder bis auf 13.9

m/s an. Dazwischen befinden sich Abschnitte von ca. 8 s Dauer, bei denen freie

Fahrt mit konstanter Geschwindigkeit von 13.9 m/s moglich ist.

Aufgrund der in Ptll implementierten Basisvariante des IDM, beachtet das nach-
folgende Fahrzeug die Rechts-vor-Links Regel nicht. Es folgt ausschliefSlich dem
Beschleunigungsverhalten des vorausfahrenden Fahrzeugs und hélt dabei eine
in einem gewissen Rahmen variable raumliche Distanz ein. Im gemessenen Zei-
tintervall von 90 s unterschreitet diese niemals den Wert von 11 m, so dass das
vorausfahrende und das nachfolgende Fahrzeug nahezu parallele Trajektorien
in x-Richtung besitzen (sieche Abb. 5.28 unten rechts. Uber das gesamte Zeitinter-
vall von 90 s ist im Schnitt dennoch ein leichtes Sinken der Distanz zu beobach-
ten. Diese Verhalten ist auf einen Einschwingvorgang zu Beginn des Szenarios
zuriickzufiihren, da das nachfolgende Fahrzeug mit einer grofieren Distanz hin-
ter dem vorausfahrenden Fahrzeug startet, als durch das durch die Summe aus
Folgezeit T und dem Minimalabstand s\ definierte Minimum vorgegeben ist.

V2X ACC

Um die Funktionsfihigkeit der Netzwerksimulation zu testen und zugleich den
Einfluss verschiedener Sendeintervalle von V2X Nachrichten auf das ACC Ver-
halten zu untersuchen, wurde nicht mehr die Radar ECU, sondern der V2X Kom-
munikationskanal als Ubertragungmedium von Umgebungsinformation und zur
Stimulation der ACC Funktion verwendet. Durch Variation des Beaconintervalls
der periodisch verschickten V2X Broadcastnachrichten (sog. Cooperative Awaren-
ess Messages (CAM) [30]) zwischen 0.1 s, 1.0 s und 10.0 s wurden unterschiedliche
Sendeintervalle erzeugt. Griinde fiir hohere Beaconintervalle kénnten beispiels-
weise ein tiberlasteter Funkkanal sein. Die Aktualisierungsraten innerhalb von
SUMO, Ptll und dazwischen betrugen weiterhin 0.01 s. Bei Beaconintervallen
von 0.01 s und 0.1 s waren die Ergebnisse noch weitgehend identisch zu den Plots

267



5. Interdisziplindre verteilte Co-Simulation

des Radar ACC. Die Verzégerung durch den drahtlosen Kanal resultierte in einer
leichten hochfrequenten Oszillation der Distanz. Die Plots von Geschwindigkeit
und Position fiir 1.0 s und 10.0 s sind in Abb. 5.29 zu sehen.

Es ist deutlich zu erkennen, dass der Verlauf der Geschwindigkeit des nachfol-
genden Fahrzeugs im Vergleich zu Abb. 5.28 nicht mehr exakt dem des voraus-
fahrenden Fahrzeugs folgt. Die resultierenden Fahrmaneuver lassen sich insbe-
sondere zu Beginn des Szenarios durch groflere Ausschldge in der minimalen
und maximalen Geschwindigkeit charakterisieren. Grofiere Sendeintervalle re-
sultieren zudem in einer zunehmend verdnderten Trajektorie des nachfolgenden
Fahrzeugs sowie in einem grofieren Abstand der Trajektorien von vorausfah-
rendem und nachfolgendem Fahrzeug. Da bei den betrachteten Simulationen
der Betrag der maximal moglichen Bremsbeschleunigung nicht auf weniger als
9m/s? limitiert war und aufer der Latenz der drahtlosen Kanals keine weiteren
Latenzen modelliert wurden, sind keine Kollisionen zwischen den Fahrzeugen
aufgetreten. Kollisionsfreiheit ist eine grundlegende Eigenschaft des IDM [253].
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Abbildung 5.28.: Messwerte mit Radar ACC, rot = vorausfahrendes Fahrzeug,
blau = nachfolgendes Fahrzeug
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Abbildung 5.29.: Messwerte mit V2X ACC, rot = vorausfahrendes Fahrzeug,
blau = nachfolgendes Fahrzeug
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5.7.5. Szenario Il: Verifikation einer ACC Implementierung

Mit dem zweiten Szenario soll die Funktionsfahigkeit einer Co-Simulation basie-
rend auf mehreren Federations (Multi-Federation Modus) demonstriert werden.
Dazu wurde die abstrakte Implementierung der V2X ACC Funktion im Central
ECU Actor aus Szenario I durch eine Implementierung auf Basis von HeMPS
ersetzt und mit Hilfe der HeMPS Federation co-simuliert. Die ACC Funktion
wurde dazu als Taskgraph auf das HeMPS System portiert. Das Resultat ist eine
verfeinerte Spezifikation der Implementierung der ACC Funktion, welche Cha-
rakteristika einer moglichen MPSoC Architektur der Central ECU beriicksichtigt.
Im Folgenden werden die einzelnen umgesetzten Teilschritte zundchst erldutert.
Anschliefflend werden Messergebnisse vorgestellt und diskutiert.

5.7.5.1. Verfeinerung der Central ECU mit HeMPS

Zur Portierung der ACC Funktion auf HeMPS wurden die in Abschnitt 5.7.4.2
beschriebenen PtII Funktionsblocke zundchst manuell in C-Code tibersetzt. Jeder
Funktionsblock wurde dazu als ein eigenstdandiger Softwaretask fiir das HeMPS
OS implementiert. Zusatzlich wurden folgende Softwaretasks speziell zur Kom-
munikation mit dem VNI entwickelt:

* Sensor Read: Liest in regelméfiigen Abstinden alle {iber das VNI eintref-
fenden Sensordaten ein und leitet sie an den Environment Picture Task wei-
ter.

* Actuator Write: Wenn eine NoC-Nachricht vom IDM Controller Task emp-
fangen wird, so wird der mit der Nachricht tibermittelte Beschleunigungs-
wert tiber das VNI an die Wheel ECU {ibetragen.

* V2X Receive: Sobald ein V2X Paket tiber das VNI empfangen wurde, so
wird dies ausgelesen und an den Message Decoder Task weitergeleitet.

* V2X Send: Sendet den aktuellen Fahrzeugzustand per V2X an andere Fahr-
zeuge.

In Summe existieren damit acht Tasks. Diese wurden auf einem 2x2 HeMPS Mo-
dell verteilt. Da das VNI nur an ein einziges PE angebunden ist (vgl. Abb. 5.24
unten), mussten alle vier zusitzlich implementierten Tasks auf ein und densel-
ben Kern abgebildet werden.

5.7.5.2. Integration der Multi-Federation

Zur Integration der Multi-Federation wurde zunéchst der bisher verwendete
Central ECU Actor durch einen Actor vom Typ HLAComposite ersetzt. Dieser ent-
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hélt das HeMPS Federationmodell. Um den Erhalt der Kausalitdt zu garantieren,
wurde die in Abschnitt 5.5.3.3 beschriebene Methode zur Ableitung eines stati-
schen Lookaheads im Ptll Modell angewendet. Eine Analyse der Modellstruktur
ergab folgende Modellcharakteristika:

Zwischen Inter Vehicle Model und Central ECU existiert eine Schleife. Alle vom
Inter Vehicle Model zur Central ECU verlaufenden Pfade sind vollstandig verzo-
gerungsfrei. Von der Central ECU in Richtung Inter Vehicle Model existieren zwei
Pfade, einer verlduft tiber die Wheel ECU und einer koppelt Central ECU und Inter
Vehicle Model direkt (V2XC Kanal). Die Wheel ECU aktualisiert die Geschwindig-
keit mit einem Intervall von 0.01s. Auf dem Pfad zum V2X Kanal existiert eine
Verzogerung von nur einem Microstep.

Wiirde von Central ECU zu Inter Vehicle Model nur der Pfad tiber die Wheel ECU
existieren, konnte mit Bedingung 2b) aus Abschnitt 5.5.3.3 ein fiir das ganze
PtII Modell giiltiges AT°Y"¢ von 0.01s gewéahlt werden. Da die Wheel ECU die-
ses selbststandig generiert, ware zudem keine zusétzliche Generierung von Pure
Events z.B. anhand eines DiscreteClock Actors notwendig.

Wegen des zweiten Pfades fiir den V2X Kanal ist eine Multi-Federation aller-
dings nicht unmittelbar moglich. Besagter Pfad verursacht eine Schleife mit ei-
ner Verzogerung von At = 0. Entsprechend Bedingung 2c) aus Abschnitt 5.5.3.3
kann also keine Kausalitédt hergestellt werden. Die gewé&hlte Losung besteht dar-
in, die Schleife durch gezieltes Einfiigen einer zeitlichen Verztgerung in den
zweiten Pfad aufzubrechen. Die Wahl der Verzogerung war dabei bis zu einem
gewissen Grad beliebig, da die ACC Funktion im betrachteten Szenario durch
Nachrichten, die vom eignen Fahrzeug verschickt werden, aktuell nicht beein-
flusst wird. Um Bedingung 2a) fiir beide Pfade zu erfiillen und gleichzeitig den
Synchronisationsoverhead mit dem co-simulierten Inter Vehicle Model nicht un-
notig zu vergroflern, sind alle Verzogerungen mit Werten > 0.01s geeignet.

5.7.5.3. Ergebnisse

Abb. 5.30 illustriert die Messergebnisse fiir ein simuliertes Zeitintervall von 15 s
und 10 s Vorlauf fiir den Fall, dass die radarbasierte ACC Applikation auf einem
zyklenapproximativen HeMPS Modell (CAL PEs und zeitliche Entkopplung der
NoC Router um acht Takte) ausgefiihrt wird und das Fahrzeug seinen Zustand
regelmaflig tiber den V2X Kanal ausgibt. Das Modell wurde mit Taktfrequenzen
von 50 kHz und 100 kHz simuliert. Wie man der Abbildung entnehmen kann,
reagiert die 100 kHz Version etwas schneller als die 50 kHz Variante. Dies re-
sultiert darin, dass die Geschwindigkeit des eigenen Fahrzeugs bereits bei 20 s
wieder ansteigt, wihrend die 50 kHz Variante mit viel groflerer Amplitude oszil-
liert, vollstandig auf 0 % zuriickgeht und erst bei ca. 21 s wieder richtig mit dem
Anstieg beginnt. Aufgrund des verhiltnisméfiig hohen Berechnungsaufwandes
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fiir das HeMPS Modell, dauerte die detaillierte Simulation von 15 s um einige
Grofienordnungen ldnger als ohne HeMPS. Auf einem Core i5 Dual-Core Rech-
ner mit 2.5 GHz wurden fiir die 50 kHz Variante ca. 11 min und fiir die 100 kHz
Variante ca. 22 min Ausfithrungszeit gemessen. Ohne HeMPS lag die Ausfiih-
rungszeit bei ca. 18 s.
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Abbildung 5.30.: V2X ACC als Applikation auf HeMPS, rot = vorausfahrendes
Fahrzeug, blau = nachfolgendes Fahrzeug

5.7.6. Spezifikation von Funktionsabbildungen durch Aspekte

In den vorangegangenen Fallstudien wurde gezeigt, dass der vorgeschlagene
Ansatz eine heterogene Modellierung und Co-Simulation sowie eine struktu-
rierte Komposition von Teilmodellen erlaubt. Teilmodelle konnen Teilsysteme im
Sinne von funktionalen oder architektonischen Artefakten des zu entwickelnden
Systems oder duflere Umwelteinfliisse reprasentieren und simulieren. Es wurde
demonstriert, dass die hierarchische Struktur von PtII Modellen direkt zur Ver-
feinerung von Teilmodellen mit detaillierteren (co-simulierten) Modellen bis hin
zur finalen Implementierung genutzt werden kann. Die genannten Punkte sind
notwendige Voraussetzung fiir eine umfassende interdisziplindre Analyse und
Verifikation des zu entwickelnden Systems.

Entsprechend der in Abschnitt 5.2 identifizierten Anforderungen, ist eine Simu-
lationsumgebung fiir die Anwendung in einem Entwicklungsprozess fiir zu-
kiinftige E/E Architekturen insbesondere dann geeignet, wenn sie neben den be-
reits genannten Punkten auch weitergehende Konzepte eines plattformbasierten
Entwurfsprozesses unterstiitzt. Ein solcher zeichnet sich insbesondere durch ho-
he Flexibilitat bei den Moglichkeiten zur Exploration des Entwurfsraumes aus.
Neben der reinen Verfeinerung von abstrakten Funktionen ist ein weiteres wich-
tiges Kriterium daher die Moglichkeit zur flexiblen Abbildung von Funktions-

272



5.8. Einordnung in verwandte Arbeiten und Fazit

komponenten auf Architekturkomponenten und deren anschlieffende abstrakte
Simulation (vgl. Abschnitt 2.1.1.3).

Um den Einfluss einer Funktion-zu-Architektur Abbildungen bereits auf hohen
Abstraktionsgraden flexibel modellieren zu kénnen, existieren in PtII speziel-
le Actors vom Typ Aspect [217], welche einen kompositen Actor um die not-
wendige Funktionalitdt erweitern. Das einem Aspekt zugrundeliegende Prinzip
entspricht dem eines Quantity Managers aus dem METRO II Framework [95].
Ein Aspekt ermoglicht die Spezifikation einer Abbildung mehrerer Funktionen
auf ein und diesselbe Architekturkomponente und die Untersuchung des Ein-
flusses eines daraus resultierenden sequentiellen Schedulings der Funktionen.
Die Anderung einer Abbildung kann dabei ohne die Anderung der Verdrahtung
von Actors erfolgen. Eine kleine Fallstudie, in der PtIl Aspects zur Entwurfs-
raumexploration im Kontext des V2X ACC genutzt werden, ist in [RBB*14] zu
finden.

5.8. Einordnung in verwandte Arbeiten und Fazit

Ein allgemeiner Uberblick iiber den Stand der Technik zur heterogenen Co-Si-
mulation wurden bereits in Kapitel 3.2 gegeben. Zu den Arbeiten, welche in die-
sem Kontext am engsten mit dem hier beschriebenen Konzept verwandt sind,
gehort die Arbeit von Liu et al. in [184] sowie die Arbeiten von Niaki und San-
der in [39] und [40].

In [184] wird die Idee, heterogene Simulationswerkzeuge tiber ein zentrales he-
terogenes M&S Framework (in diesem Fall ebenfalls Ptolemy II) zu integrieren,
zum ersten Mal erwdhnt. Als Methode wird die Verwendung von atomaren Ac-
tors als doménenspezifische ,Tool Actor” vorgeschlagen. Ein solcher , Tool Ac-
tor” dient als Wrapper fiir ein externes CAE Tool, welches iiber eine beliebige
proprietdre Schnittstelle eingebunden werden kann. Der Ansatz wird von Wet-
ter in [265] fiir die Co-Simulation im Kontext sog. Building Control Virtual Test-
beds (BCVTB) aufgegriffen. Die Implementierung von BCVTB fokussiert aus-
schliefslich auf die Kopplung externer Simulatoren tiber das Synchronous Data
Flow (SDF) Berechnungsmodell von PtIL

Das Konzept in [39, 40] ist prinzipiell mit den PtIl Ansitzen vergleichbar. Als
Middleware dient allerdings nicht PtIl, sondern ForSyDe [226]. Externe Werk-
zeuge werden mit Hilfe von ,,Wrapper Processes” in ForSyDe integriert. In [39]
wird vorgeschlagen, die erlaubte dynamische Semantik des Datenaustauschs mit
Hilfe einer Sequenz von ,,Simulation Functions” formal zu beschreiben. Die Inte-
gration wird anhand eines synchronen Berechnungsmodells demonstriert. Eine
automatische Generierung von Schnittstellen wird als mogliche Erweiterung er-
wihnt.
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Im Unterschied zu den zuvor genannten Anséitzen kombiniert der in dieser Ar-
beit beschriebene Ansatz ein heterogenes M&S Framework mit einer standardi-
sierten Middleware zur verteilten Co-Simulation. Der Fokus liegt dabei auf der
verteilten Simulation V2X-basierter E/E Architekturen. Weder in [184] noch in
[265] existieren Moglichkeiten zur expliziten Spezifikation der erlaubten stati-
schen und dynamischen Semantik des Datenaustauschs zwischen Simulatoren.
In [39, 40] ist dies zwar moglich, allerdings kénnen mit Sequenzen von ,,Simu-
lation Functions” nur sehr einfache Interaktionsmuster modelliert werden. Eine
Spezifikation der statischen Semantik ist in [39, 40] nicht moglich.

Die HLA Toolbox [4] und das HLA Blockset [3] sind zwei kommerzielle Losun-
gen, welche die HLA mit Matlab/Simulink integrieren. Allerdings besteht weder
die Moglichkeit zur Erstellung von Federationmodellen, noch zur expliziten Be-
schreibung der erlaubten dynamischen Semantik des Datenaustauschs. In [242]
wird ein Ansatz zur hybriden (gemischt diskret/kontinuierlichen) Simulation
zwischen Matlab/Simulink und DEVS [269] unter Verwendung der HLA vorge-
schlagen. Die Adaption der beiden Berechnungsmodelle erfolgt vollstindig mit
Hilfe propritarer HLA Adapter und ohne Unterstiitzung eines heterogenen M&S
Frameworks. Die Erstellung von Federationmodellen ist nicht moglich. Zur glei-
chen Zeit wie diese Arbeit wurde mit [171] eine weitere Kopplung von PtII und
HLA vorgestellt. Die Moglichkeit zur Modellierung von Federations ist in [171]
nicht gegeben. Auch ist der geplante Anwendungsbereich nicht die Simulation
von E/E Architekturen, sondern von industriellen Anlagen.

Im Kontext des Model Integrated Computing (MIC) [245] bzw. der Model-driven Ar-
chitecture (MDA) [9] sind insbesondere die Arbeiten von Karsai et. al [154], Hem-
mingway et al. [131], Topcu et al. [252] und Adak et al. [33] relevant. In [154] wer-
den verschiedene Entwurfsmuster fiir die Integration von Entwicklungswerk-
zeugen vorgestellt. Eine Losung zur Spezifikation der erlaubten dynamischen
Semantik des Datenaustauschs wird nicht beschrieben. In [131] wird ein HLA
Metamodell basierend auf dem Generic Modeling Environment (GME) [245] be-
schrieben. Dieses dient als Basis fiir die Entwicklung von HLA Federations und
zur Generierung von Schnittstellencode. Eine Metamodellierung von Schnittstel-
lenverhalten ist ebenfalls nicht moglich. Dies ist explizit die Motivation der Ar-
beiten in [252, 33], welche auch GME nutzen. Weder in [131] noch in [252, 33]
wird ein formales M&S Framework zum Management von Heterogenitiat und
strukturierten Komposition von Modellen verwendet.

Neben Veins [239] existieren noch eine Reihe weiterer Simulatoren fiir die V2X
Kommunikation wie z.B. TraNS [216], MoVES [62], iTETRIS [168, 221] oder V-
SimRTTI [218]. Hervorzuheben ist dabei insbesondere das VSimRTI Framework,
welches eine modulare Kopplung von Simulatoren {iiber eine ,Runtime Infra-
structure” erlaubt, welche durch die HLA inspiriert ist. Der Fokus aller genann-
ten V2X Simulatoren liegt auf einer vergleichsweise grobgranularen Betrach-
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tung von V2X Kommunikation im Kontext von Verkehrsmanagement oder Ver-
kehrseffizienz. Dabei werden einzelne Fahrzeuge grundsétzlich als abstrakter
Punkt betrachtet. Fiir eine simulationsbasierte Verifikation von Komponenten
einer E/E Architektur ist dieser Ansatz daher nicht ausreichend.

Die in diesem Kapitel vorgestellte Methode kombiniert ein heterogenes M&S
Werkzeug (Ptll) und eine HLA Implementierung namens CERTI zu einem neu-
en Werkzeug, das sich wie folgt in den DSEEP (vgl. Abschnitt 3.2.3.2) einord-
net: Dadurch, dass PtIl sowohl als Werkzeug zur Modellierung von Schnittstel-
len zur Co-Simulation fungiert als auch die Grundlage fiir die Ausfithrung ei-
ner heterogenen verteilten Co-Simulation ist, erstreckt sich der Anwendungsbe-
reich des vorgestellten Ansatzes vom Entwurf (DSEEP Schritt 3) tiber Entwick-
lung (DSEEP Schritt 4), Integration und Test (DSEEP Schritt 5) und die Ausfiih-
rung (DSEEP Schritt 6) bis zur Nutzung von PtII als zentrales Analysewerkzeug
(DSEEP Schritt 7). Die sechs Schritte der Vorgehensweise aus Abschnitt 5.3.2
konnen als Spezialisierung der Schritte 3 bis 5 des DSEEP betrachtet werden.
SDEMMlib wirkt insbesondere in den DSEEP Schritten 4 und 5 unterstiitzend.

Die beschriebene Methode ist als erster prinzipieller Ansatz zu verstehen. Ob-
gleich eine heterogene verteilte Co-Simulation verschiedener PtIl Doménen be-
reits jetzt moglich ist, ist das zurzeit per BIM FSM modellierte Synchronisations-
verfahren auf die verteilte Kopplung diskreter ereignisbasierter Simulatoren li-
mitiert. Fiir die Integration weiterer disziplin- und doménenspezifischer Simula-
toren ist es daher notwendig, neue geeignete BIM Spezifikationen zu entwickeln.
In diesem Zusammenhang sind detailliertere Untersuchungen hinsichtlich Cha-
rakteristika von Berechnungsmodellen notwendig, wie diese die dynamische Se-
mantik des Datenaustauschs beeinflussen und in welchen Féllen eine Kopplung
von Werkzeugen via Ptolemy Il unabdingbar bzw. verzichtbar ist. Das Ziel konn-
te ein weiterer Grad der Automatisierung sein, bei dem BIM FSMs automatisch
generiert werden konnen. Schlussendlich wurden bisher keine detaillierten Per-
formanzuntersuchungen im Kontext der Co-Simulation durchgefiihrt. Auch eine
Kombination aus paralleler und kooperativer Simulationsmethoden ist denkbar.
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6. Schlussfolgerung und Ausblick

6.1. Zusammenfassung und Schlussfolgerung

Im Rahmen dieser Dissertation wurden neue Methoden und Werkzeuge vorge-
stellt, welche das Ziel haben, den Herausforderungen an Entwicklungsprozesse
fiir zukiinftige eingebettete Systeme zu begegnen. Dazu wurden zu Beginn die-
ser Arbeit zundchst Methoden

1. zur Beschleunigung von Simulationswerkzeugen sowie

2. zur Verbesserung der Interoperabilitdt zwischen Simulationswerkzeugen

als zentrale Teilaspekte von zukiinftigen Entwicklungsprozessen fiir eingebette-
te Systeme identifiziert. Anschlieffend wurden neue Methoden und Werkzeuge
vorgestellt, um diesen Herausforderungen zu begegnen.

Hinsichtlich Teilaspekt I wurde ein allgemeiner Ansatz fiir die parallele Simula-
tion von eingebetteten MPSoCs auf Manycore Architekturen abgeleitet, welcher
sich aus einer schichtenorientierten SystemC-basierten Laufzeitumgebung und
dem Konzept der Simulationssynthese zusammensetzt. Ausgehend davon wur-
den verschiedene alternative Ansitze und Strategien fiir die parallele SystemC-
basierte Simulation von zyklenakkuraten und zyklenapproximativen Modellen
entwickelt.

Die verschiedenen Strategien wurden implementiert, experimentell untersucht
und anhand verschiedener MPSoC Modelle bewertet. Zyklenakkurate und zy-
klenapproximative Modelle standen dabei im Vordergrund der Betrachtung, da
sie sich typischerweise durch extrem lange Laufzeiten auszeichnen. Begleitend
wurden Moglichkeiten zur Automatisierung des Parallelisierungsprozesses an-
hand einer teil- und einer vollautomatisierten Werkzeugkette entwickelt und
exemplarisch in einen existierenden MPSoC Entwurfsfluss integriert. Insgesamt
sind folgende Beitrdge in Bezug auf Teilaspekt I hervorzuheben, da sie iiber den
aktuellen Forschungsstand hinausgehen:

¢ Eine in Schichten strukturierte Laufzeitumgebung fiir die parallele Simu-
lation von SystemC-basierten Simulationsmodellen. Die Schichtenarchitek-
tur ist die Basis fiir Adaptivitat, Konfigurierbarkeit und Optimierung der
parallelen Simulation in Abhangigkeit von Modell und Ausfiithrungsplatt-
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form. Auf Basis des Konzepts der Schichtenarchitektur wurden diverse
Parallelisierungsstrategien zu Vergleichszwecken umgesetzt.

* Methoden zur semi-automatischen und vollautomatischen Synthese von
parallelen SystemC Simulationen fiir zukiinftige Manycore Architekturen.
Die vollautomatische Synthesemethode basiert auf einer Kombination aus
statischer Compileranalyse und dynamischer Laufzeitanalyse fiir die Ex-
traktion von Modellinformationen, mit dem Ziel der feingranularen Mo-
dellpartitionierung und der Konfiguration der zugrundeliegenden Lauf-
zeitumgebung.

¢ Die Klassifikation von logischen Links in zyklenakkuraten und zyklenap-
proximativen parallelen SystemC Simulationen in deadlock-kritisch und
deadlock-unkritisch anhand spezieller Modelleigenschaften. Es wurde ge-
zeigt, dass es moglich ist, zusatzliche Kausalitdtsbedingungen fiir das Ker-
nelscheduling anhand von Eigenschaften logischer Links abzuleiten, deren
Einhaltung eine kausal korrekte und deadlockfreie parallele Ausfiihrung
garantiert'. Der Ansatz dient zudem als Basis fiir eine Optimierung der
Performanz, insbesondere im Hinblick auf die Vermeidung globaler Syn-
chronisation.

¢ Eine Modellierungsmethodik fiir die zyklenapproximative MPSoC Simu-
lation auf Transaktionsebene, bestehend aus einem parallelisierbaren de-
terministischen TLM Kommunikationsprotokoll und einem hierarchischen
Scheduling. Die Kombination aus beidem kann zur adaptiven temporéren
Entkopplung auf Basis einer dynamischen Berechnung sog. lokaler Quanta
genutzt werden. Die dynamische Berechnung lokaler Quanta gestattet eine
kontrollierte Beschrankung des zeitlichen Fehlers unter Verwendung von
Informationen tiber den Modellzustand zur Laufzeit.

* Die Anwendung von Laufzeitumgebung, Synthese- und Modellierungs-
methoden auf dem Single-chip Cloud Computer (SCC) und einem gewhn-
lichen Shared Memory Multiprozessor und die Durchfithrung umfassen-
der Messreihen. Die Architektur des SCC dient als Blaupause fiir zukiinf-
tige Manycore Architekturen.

In Bezug auf Teilaspekt II, die Verbesserung der Interoperabilitdt zwischen exis-
tierenden Simulationswerkzeugen, wurde die Problemstellung zunichst anhand
des Entwicklungsprozesses fiir zukiinftige V2X basierte automobile E/E Archi-
tekturen konkretisiert. Die sich ergebende Haupteinsicht war, dass prinzipiell ei-
ne interdisziplindre und nicht nur eine multidisziplindre Herangehensweise not-
wendig ist, um Wechselwirkungen zwischen Teilsystemen moglichst friihzeitig

1Zyklenapproximative Modelle miissen der in Abschnitt 4.6 beschriebenen TL Modellierungsme-
thode folgen. Bei diesen Modellen ist eine Ableitung zusatzlicher Kausalititsbedingungen fiir
das Kernelscheduling grundsatzlich nicht notwendig, da sie sich auf der Ebene von Timedcycles
selbst synchronisieren.
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berticksichtigen zu kénnen. Fiir ausfithrbare Modelle kann eine solche interdis-
ziplindre Sichtweise durch kooperative Simulation erreicht werden.

Aus diesem Kontext heraus wurde ein methodischer Ansatz abgeleitet, der in
einem Entwicklungsprozess fiir eingebettete Systeme bei der schnellen Herstel-
lung von Interoperabilitit zwischen heterogenen Simulationswerkzeugen hilf-
reich ist. Die Machbarkeit des Ansatzes wurde anhand einer prototypisch imple-
mentierten Werkzeugkette demonstriert und anhand verschiedener Fallstudien
untersucht und bewertet. Geleistete wissenschaftliche Beitrdge bzgl. Teilaspekt
II, die tiber den aktuellen Stand der Forschung hinausgehen, sind:

¢ Die Verkniipfung eines heterogenen Modellierungs- und Simulationswerk-
zeugs namens Ptolemy II und einer Simulationsmiddleware namens High
Level Architecture zu einer Simulatorarchitektur. Diese dient als Basis fiir
eine Methode, welche es erlaubt, heterogene Simulationswerkzeuge struk-
turiert zu kombinieren und verteilt auszufiihren. Die Methode erlaubt zu-
sétzlich eine explizite modellbasierte Spezifikation eines , Kommunikations-
vertrags” zwischen Simulationswerkzeugen und HLA, wodurch die erlaub-
te statische und dynamische Semantik des Datenaustauschs festgelegt wird.
Sie ldsst sich mit einer simulationsbasierten Entwurfsmethodik fiir einge-
bettete Systeme kombinieren.

* Die Umsetzung der Methode anhand einer Werkzeugkette, welche Ent-
wurf, Integration und Test einer heterogenen verteilten Co-Simulation teil-
automatisiert unterstiitzt. Neben der Rolle als Koordinator einer heteroge-
nen Co-Simulation zur Laufzeit dient Ptolemy II insbesondere auch als An-
wenderschnittstelle bei der Realisierung neuer Simulatorkopplungen vor
der Laufzeit. Mit Hilfe eines Simulatoradapters in Form einer eigens im-
plementierten erweiterbaren C++ Bibliothek ist es moglich, Schnittstellen-
spezifikationen direkt auszufiihren, was fiir das Debugging niitzlich ist.

¢ Die Demonstration der Anwendbarkeit des Gesamtkonzepts in verschie-
denen Fallstudien. Diese basieren auf verschiedenen Simulatorkopplun-
gen, welche wiederum aus unterschiedlichen Kombinationen von Ptll, dem
Netzwerksimulator OMNeT++, dem V2X Simulator Veins und einem in
SystemC implementierten MPSoC Modell bestehen.

6.2. Ausblick

Die im dieser Dissertation erarbeiteten Konzepte und Methoden sowie die ent-
standenen Werkzeuge konnen als Ausgangspunkt fiir weitere Forschungsarbei-
ten im Bereich des rechnergestiitzten Entwurfs, der Modellierung und der Simu-
lation von zukiinftigen eingebetteten elektronischen Systemen angesehen wer-
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den. Dies schliefst sowohl die Entwicklung von Methoden mit ein, welche die
in dieser Dissertation erarbeiteten Methoden weiterentwickeln, als auch die An-
wendung der entstandenen Werkzeuge fiir die Untersuchung neuer Applikatio-
nen und Funktionen.

Die umgesetzten Strategien zur parallelen SystemC Simulation sind fiir die Nut-
zung in Verbindung mit zyklenakkuraten und ausgewéhlten zyklenapproxima-
tiven TL Modellen sowie homogenen Ausfiihrungsplattformen geeignet. Ziel zu-
kiinftiger kann es sein, die Methoden auf eines grofieres Spektrum von Modellie-
rungsstilen sowie eine Kombination aus heterogenen Ausfiihrungsplattformen
Zu erweitern.

Auch die entwickelten Ansitze zur Verbesserung der Interoperabilitét bieten Po-
tential fiir zukiinftige Arbeiten. Fiir die Integration weiterer disziplinspezifischer
Simulatoren sind detailliertere Untersuchungen hinsichtlich der Fragestellung
notwendig, welche Charakteristika von Berechnungsmodellen zu welcher dyna-
mischen Semantik des Datenaustauschs fithren und wie sich dies auf die Kopp-
lung auswirkt. Aus einer anwendungsorientierten Perspektive ist eine Ubertra-
gung der Konzepte auf andere einschlédgige Standards wie FMI denkbar. Auch
eine Zusammenfiihrung paralleler und kooperativer Simulationsmethoden ist
erstrebenswert.

Durch die prinzipielle Erweiterbarkeit aller umgesetzten Komponenten sind zu-
kiinftige Arbeiten im Kontext der Anwendung von paralleler oder kooperativer
Simulation mit Hilfe der entwickelten Werkzeuge nicht auf eine bestimmte An-
wendungsdoméne fiir eingebettete Systeme beschrankt. Am ITIV werden beide
Werkzeuge in erster Linie fiir die Forschung im Bereich eingebetteter Multipro-
zessorsysteme sowie V2X basierter automobiler E/E Architekturen dienen.
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A. On-Chip Kommunikation auf
dem SCC

Da der MPB Speicher des SCC auf 48 x 16 KB limitiert ist, eignet er sich weni-
ger fiir die Anwendung in einem traditionellen SHM Kontext, als vielmehr zum
Zwischenpuffern von Nachrichten beim Message-Passing (MP). Tatsdchlich be-
sitzen die Kerne des SCC mit dem MPB eine native Hardwareschnittstelle fiir
einseitige Kommunikation [110] (vgl. Abschnitt 2.4.2.2). Mechanismen zur

1. Speicherorganisation des MPB,
2. Zugriffssteuerung und Synchronisation sowie

3. Integration mit dem privaten Speicherbereich eines jeden SCC Kerns

stehen jedoch nicht unmittelbar zur Verfiigung, sondern miissen softwaresei-
tig in Form eines Protokolls realisiert werden. Der Entwurfsraum fiir ein sol-
ches Protokoll prasentiert sich als multidimensional. In [222] sind mogliche Ent-
wurfsalternativen fiir den Spezialfall nicht-blockierender einseitiger Ubertragung
von kleinen Nachrichten (< 200 Byte) zusammenfassend dargestellt. Alleine da-
fiir werden insgesamt sechs Dimensionen aufgefiihrt.

A.l. Existierende leichtgewichtige Losungen

Die standardméfig von Intel fiir den SCC zur Verfiigung gestellte RCCE Biblio-
thek [198][15] umfasst bereits eine einfache MP API zur On-Chip Kommunika-
tion. Dazu teilt RCCE die 16 KB MPB Speicher, die pro Tile vorhanden sind, in
jeweils zwei 8 KB grofie Blocke auf. Ein kleiner Teil dieser Blocke wird fiir Status-
flags benutzt, der Rest dient als Puffer fiir das MP. Fiir den Datenaustausch exis-
tiert die Gory API und die Basic API. Erstere ist einseitig und nicht-blockierend,
Letztere zweiseitig und blockierend. Verlustfreie Kommunikation ist nur mit der
Basic API moglich. Die enge Kopplung von Sende- und Empfangsvorgangen,
die mit der zweiseitigen blockierenden Basic API einhergeht, kann aus folgen-
den Griinden zum Nachteil werden:
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1. Durch die blockierende Schnittstelle erfolgen Sende-, Empfangs- und Be-
rechnungsvorgénge innerhalb eines Prozesses zwangsldufig sequentiell. Da-
mit muss die Reihenfolge von Sende- und Empfangsvorgangen auch zwi-
schen Prozessen einer Topologie bekannt sein, um Deadlocks zu vermeiden
(vgl. Ringshift-Beispiel in [198]).

2. Durch die implizite Synchronisation wihrend einer einzelnen Ubertragung
konnen mehrere Sende- und Empfangsvorgéange zwischen Prozessen nicht
asynchron zueinander erfolgen.

3. Zu jedem Zeitpunkt kann innerhalb eines 8 KB MPB Blocks immer nur
eine einzige Nachricht gespeichert werden. Bei Ubertragung relativ kleiner
Nachrichten kann die Bandbreite einbrechen (vgl. [198]).

In der sog. iRCCE Bibliothek [89] existiert zwar eine nicht-blockierende Schnitt-
stelle. Allerdings erfolgt eine einzelne Dateniibertragung mit dieser Schnittstelle
weiterhin zweiseitig und damit synchron. Die hat zur Folge, dass Prozesse wéh-
rend eines Sende- oder Empfangsvorgangs solange aktiv pollen miissen, bis eine
Synchronisation mit dem Kommunikationspartner stattgefunden hat. Auch der
Pipelinemodus von iRCCE basiert auf einer blockierenden Schnittstelle und ar-
beitet prinzipiell synchron. Zudem ist der Pipelinemodus nur fiir Datenpakete
sinnvoll anwendbar, die grofer als 8 KB sind [89].

A.2. Implementierung

Aus den genannten Griinden wurde die RCCE Bibliothek um die Moglichkeit
zur verlustlosen einseitigen Kommunikation erweitert. Diese ist bei unregelma-
Bigen Kommunikationmustern vorteilhaft [110, 48]. Insbesondere wird die Kom-
munikation von der Synchronisation separiert, was die Grundlage fiir die Imple-
mentierung einer von der Basisdienstebene unabhingigen logischen Ebene ist.

Im Unterschied zu RCCE und iRCCE basiert das entwickelte Verfahren auf dyna-
mischen Message Queues fiir jeden SCC Kern. Diese werden im MPB Speicher-
bereich des jeweiligen Tiles instanziiert. Zur Ubertragung einer Nachricht muss
ein Sender die Nachricht in die Message Queue des Empfangers schreiben. In ei-
ner Message Queue konnen gleichzeitig mehrere Nachrichten vorgehalten wer-
den. Sender und Empfanger miissen einen Ubertragungsvorgang nicht mehr ak-
tiv koordinieren. Das Prinzip ist in Abb. A.1 am Beispiel der Kommunikation
zwischen zwei SCC Kernen A und B illustriert.

Betrachtet man beispielsweise die Ubertragung einer Message von Kern A nach
Kern B, so existiert eine Kette von zwei Puffern, bestehend aus einem Send Buffer
Objekt im privaten Speicherbereich von Kern A und einem als Stream Buffer be-
zeichneten Speicherbereich im gemeinsam genutzten MPB Bereich auf der Seite
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des empfangenden Kerns B. Der Datentransfer tiber diese Kette von Puffern wird
auf Sender- und Empfangerseite jeweils durch ein Message Buffer Objekt gesteu-
ert. Dieses organisiert den Stream Buffer als statischen oder dynamischen Ring-
puffer. Als Grundlage dafiir greift das Message Buffer Objekt auf einen Stream
Proxy zuriick, welcher den Stream Buffer zundchst als bytebasierten statischen

Ringpuffer organisiert.
Private Memory Space Core B

Private Memory Space Core A

Message Buffer ‘ Message Buffer

' Shared MPB Space Core A '/—\

Send Buffer Stream Proxy Stream Proxy Send Buffer
—_— -
Y I — —

Shared MPB Space Core B

B object
D Reserved Memory Space e .

—_—d

Abbildung A.1.: On-Chip Message-Passing am Beispiel zweier SCC Kerne

A.2.1. Send Buffer

Der Send Buffer befindet sich im privaten Speicherbereich. Er dient der Zwischen-
speicherung von Nachrichten, bevor eine Ubertragung iber das NoC zum einem
beliebigen Stream Buffer erfolgt. Ein Send Buffer setzt sich aus mehreren verket-
teten Listen zusammen, einer Receiver List und mehreren Message Lists. In der
Receiver List werden IDs aller erreichbaren SCC Kerne mit Zeigern auf die Mes-
sage Lists abgespeichert. Eine ID identifiziert damit sowohl eine Message List im
privaten Speicher als auch den zugehorigen Stream Buffer im MPB Bereich des
jeweiligen Ziel SCC Kerns. Eine Message List besteht aus Zeigern auf Messages.
Messages werden dabei immer in der Reihenfolge abgespeichert, in der sie einge-
fugt wurden. Die Grofle der Message Lists ist allein durch die Grofe des verfiig-
baren privaten Speichers eines SCC Kerns beschrankt.

A.2.2. Stream Proxy

Ein Stream Proxy verfiigt tiber einen bufStart Zeiger, mit dem beliebige Stream
Buffer Speicherbereiche referenziert werden konnen. Im Lesefall referenziert der
bufStart Zeiger den eigenen Stream Buffer. Im Schreibfall referenziert der bufStart
Zeiger einen Stream Buffer eines anderen SCC Kerns.
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Stream Buffer werden von einem Stream Proxy als statische Ringpuffer zur Uber-
tragung von Bytestreams organisiert. Die Implementierung beinhaltet die Cache-
kohédrenzsicherung durch Anwendung des SCC-spezifischen Invalidierungsme-
chanismus: Damit L1 Caching beim MPB Zugriff moglich ist (MPMT + L1CM,
vgl. Abschnitt 2.4.3.2), muss sowohl vor einer Lese- als auch vor einer Schreib-
operation zundchst die CL1INVMB Instruktion ausgefiihrt werden (vgl. Abschnitt
2.4.3.2). Bei einem Schreibvorgang werden dabei nur Daten mit einer Granula-
ritdt von 32 Byte (Grofle einer Cachline) vom vorgeschalteten Write-Combine
Buffer (WCB) unmittelbar in den MPB {iibertragen (WCB Flush). Um einen WCB
Flush auch bei Daten von geringerer Grofie als einer Cacheline auszultsen, ge-
ntigt es, Junk-Daten in irgendeine beliebige Cacheline zu schreiben.

In Abb. A.3 ist die Speicherorganisation durch den Stream Proxy anhand der hell-
grau unterlegten Felder dargestellt. Der bufStart Zeiger speichert die Startadres-
se eines Stream Buffers. bufSize entspricht dessen Gesamtgrofe in Bytes. bufOffset
spezifiziert die Distanz zu bufStart in Bytes, ab der ein Schreib- bzw. Lesezugriff
erfolgen soll.

¢ Lesezugriff: Falls readSize < bufSize, so werden die MPMT Zeilen im L1
Cache mit der CL1INVMB Instruktion invalidiert und unter Berticksichti-
gung der Modulo-Arithmetik readSize Bytes vom Stream Buffer eingelesen.
Falls readSize > bufSize, liegt ein Fehlerzustand vor.

* Schreibzugriff: Falls writeSize < bufSize, so werden die MPMT Zeilen im
L1 Cache mit der CL1INVMB Instruktion invalidiert und unter Berticksich-
tigung der Modulo-Arithmetik writeSize Bytes in den zugehorigen Stream
Buffer geschrieben. Falls writeSize > bufSize, so liegt ein Fehlerzustand vor.

A.2.3. Message Buffer

Der Message Buffer hat drei Aufgaben: I) Verwaltung der Stream Buffer als stati-
sche oder dynamische Ringpuffer mit einer Granularitdt von sog. Transmissions
II) Garantie eines wechselseitigen Ausschlusses bei Stream Buffer Zugriffen III)
Vermeidung von Stream Buffer Uberldufen.

A.2.3.1. Verwaltung statischer oder dynamischer Ringpuffer

Zur Abbildung von Messages auf einen durch den Stream Proxy bereitgestellten
Bytestream verwaltet der Message Buffer einen statischen oder einen dynami-
schen Ringpuffer auf Basis von Transmissions. Transmissions sind immer Vielfache
von einem Byte. Im Fall eines dynamischen Ringpuffers konnen sie in der Gro-
e variieren. Da statische Ringpuffer ein vereinfachter Sonderfall dynamischer
Ringpulffer sind, werden im Folgenden nur dynamische Ringpuffer beschrieben.
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Eine Transmission besteht aus einem drei Byte Header und einem Payload von va-
riabler Grofie (siehe Abb. A.2). Der Header besteht wiederum aus einer processID
und einem size Feld. Die processID identifiziert den sendenden SCC Kern, die size
spezifiziert die Grofse des Payloads.

Transmission
Header Payload
size processID
2 Byte 1 Byte size Byte

Abbildung A .2.: Struktur einer Transmission

In Abb. A.3 ist dargestellt, wie Transmissions im Fall eines dynamischen Ring-
puffers auf einzelne Bytes abgebildet werden. Im Beispiel befindet sich die erste
(am langsten im Puffer befindliche) Transmission rechts und die zuletzt gespei-
cherte Transmission links. Um beide identifizieren zu konnen, werden zusitzlich
zwei Adresszdhler namens first und last im MPB Speicherbereich allokiert. Ers-
terer zeigt auf das erste Byte der ersten Transmission, Letzterer auf das erste Byte
des noch unbelegten Speichers im Stream Buffer. Aufgrund der Tatsache, dass
Transmissions linear in der Reihenfolge der Schreibzugriffe abgelegt werden, ist
es moglich, den bufOffset der ndchsten zu lesenden Transmission durch Addition
des bufOffset der letzten gelesenen Transmission mit deren Header- und Payload-
lange wie folgt zu berechnen: bufOffset ey = bufOffset 4 3 + size. Das Gleiche gilt
fur die Berechnung des nédchsten bufOffset zum Schreiben einer neuen Transmis-
sion.

| Y I

first last Header Payload empty Header Payload

A 4 A 4 y y A 4
1B[18/1B|1B[1B[1B 1B 1B|1B[1B]1B /18|18 [1B[1B[1B] -

-
bufStart

=
(o]

bufOffset (write)

bufOffset (read)

v bufSize v
\ Stream Buffer

D Message Buffer

D Stream Proxy

Abbildung A .3.: Abbildung statischer und dynamischer Ringpuffer in den MPB
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A.2.3.2. Wechselseitiger Ausschluss

Ohne garantierten wechselseitigen Ausschluss kann das Ergebnis von Speicher-
zugriffen von einer zufélligen Zugriffsreihenfolge abhdngen. Solche sog. Race
Conditions konnen dann auftreten, wenn Speicherzugriffe nicht atomar sind. Bei
Verwendung des MPMT+L1C Modus ist atomarer Zugriff nur fiir Schreibopera-
tionen garantiert, die an eine Cachline (32 Byte) angepasst sind und die eine Ca-
cheline in der Grofse weder {iber- noch unterschreiten (vgl. Abschnitt 2.4.3.2). Fiir
alle anderen Zugriffe muss wechselseitiger Ausschluss mit zuséitzlichen Mecha-
nismen hergestellt werden. Die implementierte Methode unterscheidet wechsel-
seitigen Ausschluss zwischen Sendern, die auf ein und denselben Stream Buffer
zugreifen wollen, von wechselseitigem Ausschluss zwischen einem Sender und
einem Empfanger.

Im ersten Fall wir im MPB Bereich eines jeden SCC Kerns ein Datenfeld instanzi-
iert, welches die processID des Senders speichert, der aktuell exklusiven Schreib-
zugriff auf den zugehorigen Stream Buffer hat. Setzen oder Loschen des Daten-
feldes wird {iber das Test-and-Set Register des jeweiligen Kerns geschiitzt. Die
Methode entspricht der Implementierung von Synchronization Flags in der RC-
CE Bibliothek [266].

der zweite Fall kann vollstandig ohne Test-and-Set Register umgesetzt werden.
Dazu werden die first und last Zeiger ebenfalls in separate Cachelines geschrie-
ben. Da Schreibzugriffe bei Verwendung des MPMT+L1C Modus bis 32 Byte ato-
mar erfolgen, konnen Sender und Empfanger ohne zusétzliche Synchronisation
auf den Stream Buffer zugreifen.

A.2.3.3. (De-)Serialisierung und Flusssteuerung

Das Senden einer Nachricht beinhaltet die Serialisierung von Daten, die in Mes-
sage Objekten gespeichert sind, in einen Payload, das Hinzuftigen eines Headers
und den Transfer in den Stream Buffer mit Hilfe des Stream Proxy Objekts. Ein
Lesezugriff auf Empfangerseite beinhaltet das Auslesen von Daten, die Extrakti-
on von Header und Payload sowie die anschliefende Deserialisierung in Message
Objekte.

Um Datenverlust zu vermeiden, werden Nachrichten im Send Buffer zwischen-
gespeichert, sobald der Stream Proxy einen vollen Stream Buffer meldet. Der zwei-
stufige Pufferungsmechanismus mit dem zusétzlichen Puffer im privaten Spei-
cher ist damit Voraussetzung fiir nicht-blockierende Kommunikation. Eine ge-
nerelle Zwischenpufferung im Send Buffer ist optional moglich.
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B.1. Kategorien

Die verschiedenen Kategorien der HLA Schnittstellen [23] haben folgende Auf-
gaben:

1. Die Federation Management (FM) Services sind fiir die Erzeugung, dynami-
sche Kontrolle, Modifikation und Léschung von Federations verantwort-
lich.

2. Die Declaration Management (DM) Services werden von Federates zur De-
klaration von Information genutzt, die von ihnen generiert (published) und
konsumiert (subscribed) werden kann.

3. Die Object Management (OM) Services dienen zur Registrierung, Modifi-
kation und Loschung von Instanzen von HLA Objects und Interactions.
Insbesondere kann fiir jedes Federate spezifiziert werden, welche Aktuali-
sierungen fiir welche HLA Object / Interaction Classes es publizieren (pu-
blish) oder abonnieren (subscribe) mochte.

4. Die Ownership Management (OWM) Services werden von Federates und RTI
genutzt, um den Besitz von Instanzen von HLA Attributes zwischen Fede-
rates zu iibertragen.

5. Die Time Management (TM) Services stellen Mechanismen bereit, um die
Reihenfolge der Zustellung von Nachrichten wahrend der Ausfiithrung ei-
ner Federation zu ordnen.

6. Die Data Distribution Management (DDM) Services erlauben es den Federa-
tes, die Menge der zu sendenden und emfangenden Informationen anhand
von zusitzlichen Informationen tiber deren Relevanz gezielt zu reduzieren.

7. Die Support Services fassen sonstige Dienste zusammen, welcher z.B. zur
Transformation von Namen auf Handles und umgekehrt, zum Auslesen
von Variablen oder zum Setzen von Flags dienen.
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B.2. Verwendete HLA 1.3 Services

Folgende DoD HLA 1.3 Services (einige Support Services ausgenommen) wur-
den im Rahmen dieser Arbeit verwendet (vgl. [257]):

Federation Management:

o A.1.1 createFederationExecution(): Erzeugt eine aktive Federation und regis-
triert diese bei der RTI.

o A.1.2 destroyFederationExecution(): Loscht die Registrierung einer aktiven
Federation bei der RTI und fahrt diese herunter.

¢ A.1.10 joinFederationExecution(): Stellt eine Anfrage zum Beitritt in eine Fe-
deration und initialisiert den RTI Ambassador mit federationspezifischen
Daten (FED Datei).

* A.1.12 registerFederationSynchronizationPoint(): Initiiert die Registrierung ei-
nes Haltepunktes, der zur Synchronisation einiger oder aller Federates dient.
Die Synchronisation selbst erfolgt im Rahmen einer federationspezifischen
Semantik.

* A.1.18 resignFederationExecution(): Beendet die Teilnahme eines Federates
innerhalb einer Federation.

* A.1.22 synchronizationPoint Achieved(): Informiert die Federation dartiber, dass
das Federate die federationspezifischen Kriterien erfiillt hat, die mit der Er-
reichung des Synchronisationspunktes verbunden sind, der zuletzt regis-
triert wurde.

* B.1.1 announceSynchronizationPoint(): Informiert das Federate dartiber, dass
im Rahmen einer federationspezifischen Semantik die Registrierung eines
Synchronisationspunktes angefordert wurde.

* B.1.7 federationSynchronized(): Informiert ein Federate dartiber, dass ein zu-
vor beim Federate registrierter Synchronisationspunkt von allen relevanten
Federates erreicht wurde.

* B.1.15 synchronizationPointRegistrationFailed(): Informiert ein Federate dar-
tiber, dass der Versuch, einen Synchronisationspunkt zu registrieren, fehl-
geschlagen ist.

* B.1.16 synchronizationPointRegistrationSucceeded(): Informiert ein Federate
dariiber, dass der Versuch, einen Synchronisationspunkt zu registrieren, er-
folgreich war.

Declaration Management:

o A.2.2 publishObjectClass(): Informiert die RTI {iber die Absicht eines Fede-
rates, Instanzen von Attributen einer bestimmten Object Class zu erzeugen
und zu aktualisieren.
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o A.2.5subscribeObjectClassAttributes(): Informiert die RTI tiber die Absicht ei-
nes Federates, Aktualisierungen (sog. Refelctions) fiir eine bestimmte Men-
ge von Attributen einer Object Class zu empfangen.

Object Management:

* A.3.7 registerObjectInstance(): Erzeugt eine neue Instanz einer Object Class
innerhalb der Federation. Alle Attribute einer Object Class, die vom Fede-
rate publiziert werden, miissen dann vom Federate auf dieser Instanz auch
aktualisiert werden (sog. Instanz-Attribute).

* A.3.12 updateAttributeValues(): Informiert die Federation iiber die Ande-
rung des Wertes eines oder mehrerer Instanz-Attribute einer Object Class
Instanz.

* B.3.4 discoverObjectInstance(): Informiert ein Federate tiber die Existenz ei-
ner HLA Object Instance innerhalb der Federation, welche fiir das Federa-
te, aufgrund einer zuvor getdtigten Subskription, relevant ist.

e B.3.7 reflectAttributeValues(): Informiert ein Federate {iber die Aktualisie-
rung der Werte einer Menge von Instanz-Attributen, welche fiir das Fe-
derate, aufgrund einer zuvor getatigten Subskription, relevant ist.

Time Management:

o A.5.7 enableTimeConstrained(): Instruiert die RTI, den Zeitfortschritt eines
Federates unter Beriicksichtigung der Zeit der Federation zu beschréanken

und Nachrichten mit Zeitstempel in der korrekten Reihenfolge zu tibermit-
teln.

o A.5.8 enableTimeRegulation(): Instruiert die Federation, die lokale Zeit des
Federates bei der Berechnung der Zeit der Federation zu berticksichtigen.

* A.5.12 nextEventRequestAvailable(): Fragt einen Zeitfortschritt bis zu einem
als Parameter iibergegebenen Zeitstempel an. Bei einem darauffolgenden
timeAdvanceGrant() ist nicht garantiert, dass alle Aktualisierungen fiir einen
bestimmten Zeitpunkt vollstdndig tibermittelt worden sind.

e B.5.2 timeAdvanceGrant(): Informiert ein Federate dariiber, dass eine vor-
ausgegangene Anfrage bzgl. eines Zeitfortschritts abgeschlossen ist. Dabei
wird der neue Wert der lokalen Zeit zurtickgeliefert.

* B.5.3 timeConstrainedEnabled(): Informiert das Federate, dass die zuvor per
enableTimeConstrained() getatigte Anfrage erfolgreich war.

* B.5.4 timeRegulationEnabled(): Informiert das Federate, dass die zuvor per
enableTimeRegulation() getétigte Anfrage erfolgreich war.
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Parallele und kooperative Simulation ftr

eingebettete Multiprozessorsysteme

Die Entwicklung von eingebetteten Systemen wird durch die stetig
steigende Anzahl und Integrationsdichte neuer Funktionen in
Kombination mit einem erhdhten Interaktionsgrad zunehmend zur
Herausforderung. Vor diesem Hintergrund stellen Methoden zur
Simulationsbeschleunigung sowie zur Verbesserung der
Interoperabilitdét zwei zentrale Teilaspekte von zukinftigen
simulationsbasierten Entwicklungsprozessen dar.

Hinsichtlich des ersten Teilaspekts werden in dieser Arbeit
unterschiedliche Strategien fir die SystemC-basierte parallele
Simulation von eingebetteten Multiprozessorsystemen auf
zukiunftigen Manycore Architekturen entwickelt. Dabei stehen
zyklenakkurate und zyklenapproximative Modelle im Fokus der
Betrachtung. Die verschiedenen Strategien werden implementiert,
experimentell untersucht und bewertet.

Bezuglich des zweiten Teilaspekis wird eine neuartige
modellbasierte Methode zur Verbesserung der Interoperabilitat
zwischen heterogenen  Simulationswerkzeugen vorgestellt.
Realisierbarkeit und Anwendbarkeit der Methode werden anhand
einer Werkzeugkette und verschiedener Fallstudien demonstriert.
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