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An dieser Stelle möchte ich die Gelegenheit nutzen, um einigen Personen, die mich in den letzten
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Korreferats sowie für fruchtbare Diskussionen im Rahmen eines von ihm geleiteten Proseminars,
welchen ich einige Anregungen für diese Arbeit verdanke.
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Des Weiteren möchte ich Philip Oberacker, Vitaly Friedman, Simon Krämer, Anne Wald, Sarah Det-
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1 Introduction

1.1 Overview of this work

Without doubt, the fundamental theorem of calculus is one of the most important cornerstones in
the history of modern analysis. Actually, the desire to reconstruct a function only by the informa-
tion of some kind of derivative and a given initial value was an important impetus to the archi-
tects of modern integration theory - with H. Lebesgue leading the way as the title of his monog-
raphy “Leçons sur l’intégration et la recherche des fonctions primitives” distinctly testifies. How-
ever, within Lebesgue’s integration theory one cannot recover every differentiable function from its
derivative. So the question arises in which sense this is possible.
The first complete solution to this problem (without any integrability conditions imposed on the
derivative) was given by A. Denjoy using his so-called totalization process. This approach led to
the so-called Denjoy integral in the restricted sense. Loosely speaking, Denjoy constructed a trans-
finite sequence (Iξ)ξ≤Ω of more and more general integrals, where I0 is the Lebesgue integral and
Ω denotes the first uncountable ordinal. Then IΩ is the Denjoy integral in the restricted sense (for a
fairly detailed account to Denjoy’s approach we refer to Chapter XVI of [Nat60]). Apparently, this
approach is not that easily accessible and moreover, and due to work of R. Dougherty and A. S.
Kechris (see [DK91]), we know today that the constructive flavour of Denjoy’s approach can only
be purchased at the cost of this complexity, or to put it another way, this complexity is an inherent
characteristic of Denjoy’s constructive solution.
Nevertheless, Lebesgue was so amazed at Denjoy’s solution of his own “problème des fonctions
primitives” that Lebesgue incorporated Denjoy’s solution into the second edition of his Leçons.
Despite the complexity of Denjoy’s solution it is quite surprising that soon after Denjoy’s solution,
N. Lusin found a strikingly simple characterisation of Denjoy integrable functions, which has by
now become the usual access to this integral within modern treatises (see, e.g., [Gor94]) and which
is very close to the fundamental theorem of calculus for the Lebesgue integral. It reads as follows:

A function f : [0, 1] → R is Denjoy-integrable in the restricted sense if and only if there is a continuous
function F : [0, 1]→ R of generalized absolute continuity in the restricted sense such that F ′ = f Lebesgue-
a.e. on [0, 1].

The notion of functions of generalized absolute continuity in the restricted sense will be explained
later on in Chapter 2 and at this point we content ourselves with the hint that this notion is a
reasonable generalisation of the classical notion of absolute continuity.

Another solution to the problem of recovering a function from its derivative was given by O. Perron,
who used a notion of integral which is in its flavour close to Darboux’s approach to the Riemann
integral (see, e.g., [Gor94] or [Sak41] for details).

It took some time, but finally around 1925 it was recognized that the Denjoy and Perron integral
are equivalent. This is the so-called Hake-Alexandroff-Looman Theorem (see, e.g., Chapter VIII in
[Sak41]). However, it took further more than thirty years till R. Henstock and J. Kurzweil came up
independently of each other with a new notion of Integral which is based on an alteration of the
classical Riemann integral as simple as ingenious: Instead of considering in the definition tagged
partitions of uniform mesh, the mesh is localised and depends on the tags of the partition. The result
is an integral using a formalism almost as simple as the formalism of the Riemann integral, but, as
it finally turned out, with the same strength as the Denjoy integral: The Henstock-Kurzweil integral
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1 Introduction

and the Denjoy integral in the restricted sense are equivalent. In particular, there is a Riemann-type
integration process that integrates all derivatives and recovers the corresponding function up to an
additive constant. Moreover, Lusin’s theorem also characterizes the Henstock-Kurzweil integral.

Now a natural question arises: Are there similar results concerning Stieltjes-type integrals? Are
there in particular results comparable to Lusin’s theorem? These questions are not only interesting
from a purely theoretical point of view, but also with respect to potential applications in complex
analysis (we will come back to this issue later on). Explorations of this kind date back to the early
days of modern integration theory where initially functions of bounded variation serving as inte-
grators were mainly in the focus of research (see, e.g., [Dan18, Rid36, You17]; see also [Gar92] for a
more recent treatise of these questions). Even Lebesgue himself seized this question and devoted a
great part of the eleventh chapter of the second edition of his Leçons to this topic based on a gener-
alisation of Denjoy’s totalization method.
Advanced considerations taking as their starting point either Denjoy’s totalization method (see, e.g.,
G. Choquet’s paper [Cho47]) or Perron’s approach to the restricted Denjoy integral (see, e.g., J. Rid-
der’s work [Rid38, Rid39] and A. J. Ward’s paper [War36]) succeeded in overcoming the premise
of bounded variation; in particular, in [Rid38, Rid39, War36] theorems are proved giving Lusin-
type descriptive characterisations of the respective Perron-Stieltjes integrals defined there (see, e.g.,
[Rid38, Satz 20], [Rid39, Satz 6] and [War36, Theorem 7, 12, 13]).
Now it stands to reason to reflect about these questions in the Henstock-Kurzweil setting and, fur-
ther proceeding, to take into consideration vector-valued functions. Indeed, there is a huge amount
of works devoted to these question, see, e.g., [BP92, BGP92, BP91, Pfe83, Pfe95, Nar04, Fed99, Fau97,
Sch96, SY05] and the references therein to name but only a very few. However, although the prob-
lem of giving a so-called descriptive characterisation of Lusin-type for a given kind of integral has
become a recurrent object of mathematical research and a lively topic up to date in particular in con-
nection with the Henstock-Kurzweil integral, see, e.g., [BPP95, BPT96, Pia01, Fau95, Lee05, Lee03,
LL99, Ye06] to name but a few, there is surprisingly only a small number of results of this kind
concerning the Henstock-Kurzweil-Stieltjes integral, see, e.g., Theorem 3.4 in [BP92], Theorem 3.2
in [BP91], Theorem 1 and 2 in [Fed99] and [Fau97]. However, apart from [Fau97] all the afore-
mentioned works are afflicted with the same flaw: Due to the absence of an appropriate notion of
differentiation with respect to a given function (one might speak of an differentiator in the style of
the terminology in the context of Stieltjes integration), they invoke differentiability (in the ordinary
sense) of the integrator. In particular, all these works consider integrators that satisfy one kind or
another of generalized absolute continuity. In contrast to that, Faure could treat in [Fau97] contin-
uous integrators of so-called generalized bounded variation (in the restricted sense) and moreover,
in [War36] Ward was even able, using the Perron approach, to handle the discontinuous case and
in [Cho47] Choquet could treat, based on the Denjoy approach, continuous functions without any
condition imposed on them concerning their variational behaviour. So there seems to be some hope
that one can strengthen the results for the Henstock-Kurzweil-Stieltjes integral and perhaps extend
them to the vector-valued case. However, the things are more delicate. If we want to explore some
kind of vector-valued bilinear integral as, e.g., proposed by Š. Schwabik in [Sch96], where both the
integrand and the integrator take their values in (possibly different) Banach spaces and to derive a
descriptive characterisation of this integral, we have to face the problem that none of the approaches
in the existing literature seems to be well-suited in order to achieve this aim:
As we said, the works [BP92] and [BP91] use differentiability properties of functions that are in some
generalized sense of absolute continuity. But this causes heavy problems if we want to proceed to
the vector-valued case since even a Lipschitz function with values in an infinite-dimensional space
which does not possess the so-called Radon-Nikodým property may fail to have at least a single
point of differentiablility: The function

f : [0, 1]→ L1([0, 1]); t 7→ 1[0,t]

is a classical text book example. For this reason in [Fed99] Federson cannot avoid to impose differ-
entiablility assumptions on the integrator.
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1.1 Overview of this work

Ridder’s and Ward’s approach based on a Perron-type integration process uses minorant and ma-
jorant functions, for which there is no natural replacement if the considered functions do not take
their values, e.g., in a lattice. And since their proofs heavily rely on these concepts, there is no hope
that one can extend offhand these proofs to our situation. Moreover, Ward uses at several decisive
points the outer Lebesgue measure of the range of a given function, which cannot be done just like
that for functions with values in an infinite-dimensional space as we do not have there a canonical
analogon to the outer Lebesgue measure.
A similar remark applies to Choquet’s approach; indeed, in section 5.1 we will see that an assertion
as general as Choquet’s Théorème 10 in [Cho47] cannot hold true even if complex-valued functions
are considered and that it might dramatically fail. In fact, the reason for this is that at its heart
Choquet’s approach is a real-valued approach as it is essentially based on the idea to consider the
points in the plane with the one component arising from the integrand and the other arising from
the integrator, or to have Choquet’s own say: “Le méthode que nous utiliserons repose essentiellement
sur la considération de l’ensemble plan paramétré: x = α(m); y = F (m).” (see [Cho47], page 146).
So the most promising ansatz seems at the first glance to be Faure’s approach where a notion of
differentiability with respect to a function is used and which makes it obsolete to consider ordinary
derivatives. Unfortunately, Faure’s methods are essentially real methods: For example, some of
Faure’s results essentially rest on his Proposition 3.10 in [Fau97] which also cannot have an exten-
sion to the general vector-valued situation where the considered Banach spaces are not supposed
to possess the Radon-Nikodým property. Apart from this, Faure considers, as we already said, con-
tinuous integrators and uses the continuity at some decisive points (Lemma 4.2, which is used to
prove the crucial Lemma 4.3), while we want to capture discontinuous integrators, too.

However, the good news is that a combination of Ward’s concept of ϕ-continuity and Faure’s ideas
concerning absolute continuity finally leads to the desired Lusin-type characterisation. The main
goal of the present work is to establish such a characterisation.

We now describe the content of this work in greater detail.

As in [War36] we want so-called BVG*-functions to serve as integrators. Therefore the first section
of Chapter 2 is devoted to the study of this class of functions in the vector-valued situation and we
collect some basic facts, which are at least partly known in the scalar case. But nevertheless there is
also a novel aspect: Our Lemma 2.4 in its present form seems to have not yet appeared explicitely
in the existing literature. Indeed, an invalid version of it appears as Lemma 6.15 in [Lee89], but we
do not know of any other reference. Moreover, we use Lemma 2.4 together with Lemma 2.8, an
extension of a result originally due to Ward in the scalar case, as a starting point in order to system-
atically work out some of the most important properties of BVG*-functions (we will come back to
this issue later on).
The next section explores BVG*-functions in connection with the so-called ACG*-functions and ex-
amines in particular the basic properties of the latter ones. Once again some of the results are more
or less known in the scalar or even in the vector-valued case, but despite this fact we provide de-
tailed proofs of these results for several reasons, which we would like to shortly quote. First, in
consideration of the sheer number of results it seems to be, at least in our opinion, all too audacious
to claim that all proofs go through in the vector-valued case; in particular, in view of the fact that this
is indeed not true! As an example, the proof of Lemma 2.16 as given, e.g., in [Sak41] (Lemma 8.1)
or [Gor94] (Lemma 6.3) essentially rests on the assumption that the functions considered are real-
valued. The same remark applies to Theorem 5.12 (cf. Theorem 6 in [Gor89]). Moreover, existing
proofs as, e.g., in [Sak41] are at least in parts rather concisely written and so providing fairly detailed
proofs removes doubts whether in the omitted details of the existing proof the real-valuedness is
unnoticeably used. For this reason it is also no real alternative to cite [SY05], although they treat the
vector-valued case, as they often just refer to the proofs of the scalar-valued case leaving it to the
reader to check whether the proofs of the real-valued case are still valid in the vector-valued situa-
tion. This is finally aggravated by the fact that several proofs or statements in the existing literature
are erroneous. Above we have already mentioned Lemma 6.15 in [Lee89]. In [Gor94] it is frequently
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used that AC*-functions are BV*-functions, but this is (given the definitions in [Gor94]) not true! As
a result, a whole series of statements in [Gor94] in its present form is false. This seems to have been
noticed in [SY05] where the statements are more carefully formulated. However, in comparison to
the results we shall present the formulations are in fact too careful in the sense that they partly use
stronger assumptions than really needed. As a consequence, our results are distinctly preciser.
The last section of the second chapter is devoted to the proof of the Banach-Zarecki theorem for
vector-valued functions of generalized absolute continuity. It is based on the quite recently estab-
lished main result in [Dc05] and to our best knowledge it seems to be completely new. Apart from
the fact that this result is of some interest in its own, we will use it later on to establish an extension
of Theorem 6 in [Gor89].

Chapter 3 introduces and explores the so-called Henstock-Kurzweil variational measures. These
measures are well-suited to describe the variational behaviour of a function and are deeply related
to BVG*-functions. In fact, after an excursion in the second section of Chapter 3 on the question
when these measures are σ-finite (where we prove distinct extensions of existing results), we will
explore this close connection in the third section and prove Thomson’s characterisation of σ-finite
variational measures (see, e.g., Theorem (40.1) in [Tho85], Theorem 1 in [Tho81]). Since false ver-
sions of this theorem have appeared, unfortunately, several times in the literature, it seems to be
worth to provide an ab ovo proof of this result. In addition, our proof is completely elementary
(in particular, we avoid the notion of local systems used in [Tho85] or the language of derivation
basis employed in [Tho81]) and presents a completely novel approach to this characterisation be-
cause we apply, as already mentioned above, systematically Lemma 2.4 and Lemma 2.8, whereas
in the existing literataure these results seem to have carved out so far a rather stepmotherly ex-
istence. In addition, this systematisation comes along with rather transparent and simple proofs.
The last section additionally introduces the so-called fine measures. They are, as it turns out, well-
suited to describe differential properties of functions. The close relation between fine measures and
Henstock-Thomson variational measure is in the centre of attention in this section. Later on, it will
be revealed that this relation is in fact of extremely high importance for the differential properties
of the variational Henstock-Kurzweil-Stieltjes integrals under consideration.

Chapter 4 finally introduces the variational Henstock-Kurzweil-Stieltjes integral, which we are in-
terested in, as well as various notions of differentiability with respect to a function. The main results
then concern differentiability properties of the Henstock-Kurzweil-Stieltjes integral and the integra-
bility properties of the derivatives introduced before. Combining these two kind of results, we fi-
nally arrive in the last section at the desired Lusin-type characterisation of the variational Henstock-
Kurzweil-Stieltjes integral with BVG*-integrators thus giving improvements and far-reaching ex-
tensions of some of the results in [War36] and [Fau97].

The last chapter is devoted to various applications of the results obtained so far. In the first section
we come back to the problem of recovering a function from a relative derivative and we completely
solve this problem for bounded differentiators of generalized bounded variation (in the restricted
sense).
Afterwards, we revisit ACG*-functions and derive another characterisation for them, which is in
the real-valued case originally due to Gordon (see [Gor89]). Using this result we shall reprove the
classical descriptive characterisation of the Henstock-Kurzweil integral due to Lusin.
As we will explain later on, this last mentioned result motivates to study Henstock-Kurzweil inte-
grals of functions with values in a space having the Radon-Nikodým property. This will be done in
the third section where we prove a far reaching extension of a result originally due to Bongiorno,
Di Piazza and Musiał (see Theorem 3.6 in [BPM09b]) and we will also fill a gap in their proof.
The fourth section demonstrates how one can obtain “integration by parts”-results for variational
Henstock-Kurzweil-Stieltjes integral using the characterisations proved in Chapter 4.
In the last section we apply, as we indicated above, our results to complex analysis as we utilize
our results in order to study certain normed algebras of differentiable functions on compact plane
sets.
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1.2 Notation

1.2 Notation

Throughout the entire work we fix real numbers a < b. And we denote by I the set of all non-
degenerated (i.e., with nonvoid interior) closed subintervals of [a, b]. For t, s ∈ R we put 〈t, s〉 :=
[min{t, s},max{t, s}]. By N we denote the set of natural numbers without 0. If A ⊆ R, then λ(A) or
occasionally λ∗(A) denotes the outer Lebesgue measure of A.

We further consider Banach spaces (V, ‖ · ‖V ), (X, ‖ · ‖X), (Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) over the common
field K ∈ {R,C}, where we usually supress the index in ‖·‖X and just write ‖·‖ for X ∈ {V,X, Y, Z}
if no confusion is to be expected. We further assume that there is a bilinear mappingB : X×Y → Z
such that ‖B(x, y)‖Z ≤ ‖x‖X · ‖y‖Y holds for all x ∈ X and y ∈ Y . We put x · y := B(x, y) for
(x, y) ∈ X × Y . This notation also contains the convention that · bounds more strongly than other
algebraic operations. If we have, e.g., Z = X and x, z ∈ X and y ∈ Y , then z − x · y is to be
read as z − (x · y) = z − B(x, y). The topological dual space of X is denoted by X ?. If x? ∈ X ?
and x ∈ X , then we usually write 〈x, x?〉 for x?(x). (Note that this notation will not conflict with
〈t, s〉 introduced above for t, s ∈ R as the respective meaning will be always completely clear by the
context.) Moreover, throughout the entire work, the symbols f , F and ϕ are exclusively reserved
for functions f : [a, b]→ X , ϕ : [a, b]→ Y and F : [a, b]→ Z.

Let (X, d) denote a metric space. For a non-empty subset E ⊆ X we denote by dE the restriction
d|E×E of d to E. By Bor(X) we denote the Borel σ-algebra associated with (X, d) and by T (X) the
set of all open subsets of (X, d). For x ∈ X and ε > 0 we set

Uε(x) := {y ∈ X : d(x, y) < ε} and ∆(x, ε) := {y ∈ X : d(x, y) ≤ ε}.

Moreover, we set U̇ε(x) := Uε(x) \ {x}. For any nonvoid subset E ⊆ X we denote by diam(E), ∂E,
int(E) = E◦ and E the diameter, the boundary, the interior and the closure of E in the space (X, d),
respectively. Moreover, we put dist(x,E) := inf{d(x, e) : e ∈ E} for x ∈ X. If X = K, then we
always assume that d is the usual Euclidean metric. If (Y, ρ) is another metric space, we denote
by C(X,Y) the set of all continuous functions from X to Y, where we supress the mention of Y
provided that Y = K. By H1

X we denote the one-dimensional outer Hausdorff measure on X (once
again, we drop the index X if the meaning of H1 is clear by the context). For ε > 0 and A ⊆ X we
set

H1
ε(A) := inf

{∑
B∈D

diam(B) : D ⊆ Aε countable with A ⊆
⋃
D

}
,

where Aε := {B ⊆ X : diam(B) < ε}. ThenH1(A) = limε→0+ H1
ε(A) = supε>0H1

ε(A).

If A is a set we denote by ]A or |A| the cardinality of A and by P(A) its power set. Moreover, we
let B(A, V ) denote the subspace of all bounded elements in V A and denote by ‖ · ‖A,∞ or (if no
confusion is to be expected) simply by ‖ ·‖∞ the uniform norm onB(A, V ) (arising from ‖ ·‖V ). The
indicator function of a set A is denoted by 1A and the identity function on A is denoted by idA or
simply by id if no confusion is to be expected.
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2 Functions of generalized bounded
variation and absolute continuity

In this chapter we introduce the important class of functions of generalized bounded variation (in
the restricted and wide sense) and the class of functions of generalized absolute continuity (in the
restricted and wide sense) and explore their basic and deeper properties. Later on we will benefit
from these studies for the examination of Henstock-Kurzweil-Stieltjes integrals with integrators that
are of generalized bounded variation in the restricted sense.

First we must fix some notation.
For ∅ 6= E ⊆ [a, b] we set

A(E) :=
{
{[aj , bj ]}rj=1 :

r ∈ N, a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ ar < br ≤ b
with aj , bj ∈ E for all j ∈ {1, . . . , r}

}
.

Notice that the notation {[aj , bj ]}rj=1 is always meant to indicate that the respective intervals are
listed in “increasing order” as in the defintion of A(E). In addition, note that in what follows a
generic element of A(E) will always be written in the form {[aj , bj ]}rj=1 and we speak of a partition
(on E).

For a function g : [a, b]→ V and a set ∅ 6= E ⊆ [a, b] we set

ω(g,E) := diam(g(E)) = sup{‖g(t)− g(s)‖ : t, s ∈ E} ∈ [0,∞],

and for S = {[aj , bj ]}rj=1 ∈ A([a, b]) we put

V ∗g (S) :=
r∑
j=1

ω(g, [aj , bj ]) and Wg(S) :=
r∑
j=1

‖g(bj)− g(aj)‖.

In particular, Wid(S) =
∑r
j=1(bj − aj). We further define

V∗(g,E) :=

{
0, if E is a singleton,
sup{V ∗g (S) : S ∈ A(E)}, elsewise,

and

V (g,E) :=

{
0, if E is a singleton,
sup{Wg(S) : S ∈ A(E)}, elsewise.

Now we can define functions of generalized bounded variation and of generalized absolute conti-
nuity.

2.1 Definition. Let ∅ 6= E ⊆ [a, b] and g ∈ V [a,b]. We call g a function of

(a) bounded weak variation onE or of bounded variation in the wide sense onE or a BV-function
on E, if V (g,E) <∞, and we denote by BV(E, V ) the set of all those functions;
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2 Functions of generalized bounded variation and absolute continuity

(b) generalized bounded weak variation on E or of generalized bounded variation in the wide
sense on E or a BVG-function on E, if there exists a sequence (En)∞n=1 of subsets of E with⋃
n∈N En = E such that V (g,En) < ∞ for all n, and we denote by BVG(E, V ) the set of all those

functions;

(c) bounded strong variation on E or of bounded variation in the restricted sense on E or a BV*-
function on E, if V∗(g,E) <∞, and we denote by BV*(E, V ) the set of all those functions;

(d) generalized bounded strong variation on E or of generalized bounded variation in the re-
stricted sense on E or a BVG*-function on E, if there exists a sequence (En)∞n=1 of subsets of E
with

⋃
n∈N En = E such that V∗(g,En) < ∞ for all n, and we denote by BVG(E, V ) the set of all

those functions;

(e) absolute continuity on E in the wide sense or an AC-function on E, if |E| = 1 or for each ε > 0
there exists a δ > 0 such that Wg(S) < ε for each S ∈ A(E) with Wid(S) < δ, and we denote by
AC(E, V ) the set of all those functions;

(f) generalized absolute continuity on E in the wide sense or an ACG-function on E, if there exists
a sequence (En)∞n=1 of subsets of E with

⋃
n∈N En = E such that g ∈ AC(En, V ) for all n, and we

denote by ACG(E, V ) the set of all those functions;

(g) absolute continuity on E in the restricted sense or an AC*-function on E, if |E| = 1 or for each
ε > 0 there exists a δ > 0 such that V ∗g (S) < ε for each S ∈ A(E) with Wid(S) < δ, and we denote
by AC*(E, V ) the set of all those functions;

(h) generalized absolute continuity on E in the restricted sense or an ACG*-function on E, if there
exists a sequence (En)∞n=1 of subsets of E with

⋃
n∈N En = E such that g ∈ AC*(En, V ) for all n,

and we denote by ACG*(E, V ) the set of all those functions.

2.2 Remark Let ∅ 6= E ⊆ [a, b].

(a) One immediately verifies that for E = [a, b] the above notions of bounded variation and abso-
lute continuity coincide with the classical ones and for g ∈ BV([a, b]) = BV*([a, b]) the values
V (g, [a, b]) and V∗(g, [a, b]) both equal the classical variation.

(b) It is easy to show that the sets BV(E, V ), BVG(E, V ), BV*(E, V ), BVG*(E, V ), AC(E, V ),
ACG(E, V ), AC*(E, V ) and ACG*(E, V ) endowed with the usual algebraic operations form
vector spaces over K.

(c) We always have BV*(E, V ) ⊆ BV(E, V ) ⊆ BVG(E, V ) and thus BVG*(E, V ) ⊆ BVG(E, V ).

(d) We always have AC*(E, V ) ⊆ AC(E, V ) ⊆ ACG(E, V ) and hence ACG*(E, V ) ⊆ ACG(E, V ).

(e) Some authors (as, e.g., Saks, see p. 223 and 231 in [Sak41]) require additional continuity or
boundedness conditions in the definition of generalized absolute continuity (in the wide or re-
stricted sense). The reason for this will be explained later on in Remark 2.13 and Remark 2.15.
As we refrain from doing so, the subsequent results are preciser than those given in [Sak41] in
so far as they work out in more detail, which boundedness and continuity conditions are actu-
ally needed in order to obtain the fundamental properties of functions of generalized bounded
variation and generalized absolute continuity.

(f) One has BV(E, V ) ⊆ B(E, V ). In fact, let g ∈ BV(E, V ) and fix t ∈ E. Then for each s ∈ E
we estimate ‖g(s)‖ ≤ ‖g(s) − g(t)‖ + ‖g(t)‖ ≤ V (g,E) + ‖g(t)‖ and obtain ‖g‖E ≤ V (g,E) +
‖g(t)‖ <∞.

(g) If g ∈ AC(E, V ), then clearly g|E is uniformly continuous and so it is bounded on E and
possesses a unique continuous extension to E. However note that this extension does not
need to coincide with g|E and that g may not be bounded on E.

After these preliminary definitions we start the exploration of functions of generalized bounded
variation and of generalized absolute continuity in the next section.
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2.1 Basic properties of functions of generalized bounded variation

2.1 Basic properties of functions of generalized bounded
variation

In this section we collect some of the basic properties of functions of generalized bounded varia-
tion.

2.3 Lemma. Let ∅ 6= E ⊆ [a, b] with c := inf E and d := supE and let ϕ ∈ BV*(E, Y ). Then ϕ is
bounded on [c, d].

Proof. For E = {c, d} there is nothing to be shown. So assume c < d as well as (c, d) ∩E 6= ∅ and fix
t0 ∈ E ∩ (c, d). Consider an arbitrary t ∈ (c, t0] and choose x ∈ E with x ≤ t. Then we obtain

‖ϕ(t)‖ ≤ ‖ϕ(t)− ϕ(t0)‖+ ‖ϕ(t0)‖ ≤ sup
s,σ∈[x,t0]

‖ϕ(s)− ϕ(σ)‖+ ‖ϕ(t0)‖

= ω(ϕ, [x, t0]) + ‖ϕ(t0)‖ ≤ V∗(ϕ,E) + ‖ϕ(t0)‖.

Similarly, we get
‖ϕ(t)‖ ≤ V∗(ϕ,E) + ‖ϕ(t0)‖

for t ∈ [t0, d). Hence, we arrive at

sup
c≤t≤d

‖ϕ(t)‖ ≤ max{‖ϕ(c)‖, ‖ϕ(d)‖, V∗(ϕ,E) + ‖ϕ(t0)‖} <∞.

So ϕ is bounded on [c, d].

2.4 Lemma. Let ∅ 6= E ⊆ [a, b] be not a singleton and put c := inf E and d := supE. The following are
equivalent.

(a) ϕ ∈ BV*(E, Y ).

(b) There is a strictly increasing function χ : [a, b]→ R such that ‖ϕ(x)− ϕ(y)‖ ≤ |χ(x)− χ(y)| for all
x ∈ E and all y ∈ [c, d].

(c) There exists anM > 0 such that V ∗ϕ (S) ≤M for all S = {[aj , bj ]}rj=1 ∈ A([c, d]) with {aj , bj}∩E 6=
∅ for each j ∈ {1, . . . , r}.

(d) There exists an M > 0 such that V ∗ϕ (S) ≤M for all S = {[aj , bj ]}rj=1 ∈ A([c, d]) with [aj , bj ]∩E 6=
∅ for every j ∈ {1, . . . , r}.

Proof. (a) =⇒ (b): (cf. Lemma 2 in [War36]) For x ∈ [c, d] we set

E−x := (E∩[a, x])∪{x}, E+
x := (E∩[x, b])∪{x} and χ(x) := x+V∗(ϕ,E−x )−V∗(ϕ,E+

x ).

We first show that χ is in fact real-valued, i.e., we never have V∗(ϕ,E−x ) = ∞ or V∗(ϕ,E+
x ) = ∞.

Indeed, let x ∈ [c, d], assume that E−x is not a singleton and let S = {[aj , bj ]}rj=1 ∈ A(E−x ). If br < x,
then we even have S ∈ A(E) and we derive

V ∗ϕ (S) =
r∑
j=1

ω(ϕ, [aj , bj ]) ≤ V∗(ϕ,E).

If br = x, then {[aj , bj ]}r−1
j=1 belongs to A(E) provided that r > 1. We can thus compute

V ∗ϕ (S) =
r∑
j=1

ω(ϕ, [aj , bj ]) =
r−1∑
j=1

ω(ϕ, [aj , bj ]) + ω(ϕ, [ar, x]) ≤ V∗(ϕ,E) + 2 sup
c≤t≤d

‖ϕ(t)‖;
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2 Functions of generalized bounded variation and absolute continuity

note that the quantity supc≤t≤d ‖ϕ(t)‖ is finite by Lemma 2.3.

In any case, we infer

V∗(ϕ,E−x ) = sup
S∈A(E−x )

V ∗ϕ (S) ≤ V∗(ϕ,E) + 2 sup
c≤t≤d

‖ϕ(t)‖ <∞.

Analogously, one verifies V∗(ϕ,E+
x ) <∞.

We next show that χ strictly increases on [c, d]. For this purpose, let x, y ∈ [c, d] with x < y. Obvi-
ously, V∗(ϕ,E−y ) ≥ V∗(ϕ,E−x ) if E−x is a singleton. So let us suppose that E−x is not a singleton. Then
E−y is not a singleton either. Take a partition S = {[aj , bj ]}rj=1 in A(E−x ) and put

S′ := {[a1, b1], . . . , [ar−1, br−1], [ar, y]} ∈ A(E−y ),

where this is to be read as S′ := {[a1, y]} for r = 1. We obtain

V∗(ϕ,E−y )− V ∗ϕ (S) ≥ V ∗ϕ (S′)− V ∗ϕ (S) = ω(ϕ, [ar, y])− ω(ϕ, [ar, br]) ≥ 0

and hence
V∗(ϕ,E−y ) ≥ sup

S∈A(E−x )

V ∗ϕ (S) = V∗(ϕ,E−x ).

A similar reasoning shows V∗(ϕ,E+
y ) ≤ V∗(ϕ,E+

x ), and we thus conclude χ(y) > χ(x).

Let x ∈ E and y ∈ [c, d]. For x = y we trivially have ‖ϕ(x)− ϕ(y)‖ ≤ |χ(x)− χ(y)|. So let x 6= y and
assume x < y as well as that E−x is not a singleton. Pick S = {[aj , bj ]}rj=1 ∈ A(E−x ) and set, using
x ∈ E,

S̃ := {[a1, b1], . . . , [ar, br], [x, y]} ∈ A(E−y ).

We then estimate

V∗(ϕ,E−y )− V ∗ϕ (S) ≥ V ∗ϕ (S̃)− V ∗ϕ (S) = ω(ϕ, [x, y]) ≥ ‖ϕ(x)− ϕ(y)‖

and arrive at
V∗(ϕ,E−y )− V∗(ϕ,E−x ) ≥ ‖ϕ(x)− ϕ(y)‖.

This last inequality is certainly also true if E−x is a singleton (because {[x, y]} ∈ A(E−y )). These
relations lead to

|χ(x)− χ(y)| = y − x+ V∗(ϕ,E−y )− V∗(ϕ,E−x ) + V∗(ϕ,E+
x )− V∗(ϕ,E+

y ) ≥ ‖ϕ(x)− ϕ(y)‖.

The case y < x can be treated similarly.

Finally we extend χ to a strictly increasing function on [a, b].

(b) =⇒ (c): Let {[aj , bj ]}rj=1 ∈ A([c, d]) with {aj , bj} ∩ E 6= ∅ for all j and pick tj ∈ {aj , bj} ∩ E. For
s, s̃ ∈ [aj , bj ] we then obtain

‖ϕ(s)− ϕ(s̃)‖ ≤ ‖ϕ(s)− ϕ(tj)‖+ ‖ϕ(tj)− ϕ(s̃)‖
≤ |χ(s)− χ(tj)|+ |χ(tj)− χ(s̃)| ≤ 2(χ(bj)− χ(aj))

and, hence, ω(ϕ, [aj , bj ]) ≤ 2(χ(bj)− χ(aj)). This yields

r∑
j=1

ω(ϕ, [aj , bj ]) ≤ 2
r∑
j=1

(χ(bj)− χ(aj)) = 2(χ(b)− χ(a)).
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2.1 Basic properties of functions of generalized bounded variation

(c) =⇒ (d): Take {[aj , bj ]}rj=1 ∈ A([c, d]) with [aj , bj ] ∩ E 6= ∅ for all j and fix tj ∈ [aj , bj ] ∩ E. By
hypothesis,

r∑
j=1

(ω(ϕ, [aj , tj ]) + ω(ϕ, [tj , bj ])) ≤M.

For s, s̃ ∈ [aj , bj ] we have

‖ϕ(s)− ϕ(s̃)‖ ≤ ‖ϕ(s)− ϕ(tj)‖+ ‖ϕ(tj)− ϕ(s̃)‖ ≤ 2(ω(ϕ, [aj , tj ]) + ω(ϕ, [tj , bj ]))

and, consequently,
∑r
j=1 ω(ϕ, [aj , bj ]) ≤ 2M .

(d) =⇒ (a) is obvious.

We want to not let go unmentioned that it is also possible to prove the implication (a) =⇒ (c) in
Lemma 2.4 more directly.

2nd proof of (a) =⇒ (c) in Lemma 2.4. Assume that (a) holds and consider S = {[aj , bj ]}rj=1 ∈ A([c, d])
with {aj , bj}∩E 6= ∅ for all j ∈ {1, . . . , r}. We put L := supc≤t≤d ‖ϕ(t)‖ (recall that L is indeed finite
due to Lemma 2.3).
Let x1 < . . . < xs be the points of the set E ∩

⋃r
j=1{aj , bj}. If s = 1, then we have S = {[a1, b1]} or

S = {[a1, b1], [a2, b2]}with b1 = a2 ∈ E. In both cases we obtain V ∗ϕ (S) ≤ 4L.
Now suppose s ≥ 2. We then put Iν := [xν , xν+1] for ν ∈ {1, . . . , s − 1}. If x1 = b1, then define
I0 := [c, b1]. If xs = ar, then put Is+1 := [ar, d]. It is easy to see that every interval [aj , bj ] is contained
in some Iν and that conversely each Iν contains at most two of the intervals [aj , bj ]. Therefore, we
obtain

V ∗ϕ (S) ≤ 4L+
s∑

ν=1

2ω(ϕ, Iν) ≤ 4L+ 2V∗(ϕ,E)

since ω(ϕ, Iν) ≤ 2L for ν ∈ {0, s+ 1}. The result follows with M := 4L+ 2V∗(ϕ,E).

As a simple corollary we mark down the following result.

2.5 Lemma. For ϕ : [a, b]→ Y and ∅ 6= E ⊆ [a, b] not a singleton the following statements are equivalent.

(a) We have ϕ ∈ BV*(E, Y ) and ϕ is bounded on [a, b].

(b) There exists an M > 0 such that V ∗ϕ (S) ≤ M for each S = {[aj , bj ]}rj=1 ∈ A([a, b]) with {aj , bj} ∩
E 6= ∅ for all j ∈ {1, . . . , r}.

Proof. First suppose that condition (a) is satisfied. Lemma 2.4 implies that there is an L > 0 with
V ∗ϕ (S) ≤ L for each S = {[aj , bj ]}rj=1 ∈ A([c, d]) with {aj , bj} ∩ E 6= ∅ for all ∈ {1, . . . , r}, where
c := inf E and d := supE. Take S = {[aj , bj ]}rj=1 ∈ A([a, b]) with {aj , bj}∩E 6= ∅ for all ∈ {1, . . . , r}.
Put M := L+ 4 supa≤x≤b ‖ϕ(x)‖. As the intervals [aj , bj ] are non-overlapping and have at least one
endpoint in E, we conclude aj , bj ∈ [c, d] at least for j ∈ {1, . . . , r} \ {1, r}. In addition, we have
ω(ϕ, [aj , bj ]) ≤ 2 supa≤x≤b ‖ϕ(x)‖ for each j. Therefore, we immediately obtain V ∗ϕ (S) ≤M .

Conversely assume that (b) holds. Clearly, (b) implies ϕ ∈ BV*(E, Y ). Fix x ∈ E and take t ∈ [a, b].
Assertion (b) then yields

‖ϕ(t)‖ ≤ ‖ϕ(t)− ϕ(x)‖+ ‖ϕ(x)‖ ≤ ω(ϕ, 〈t, x〉) + ‖ϕ(x)‖ ≤M + ‖ϕ(x)‖.

Hence, ϕ is bounded on [a, b].
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2 Functions of generalized bounded variation and absolute continuity

2.6 Remark The equivalence (a)⇐⇒ (c) in Lemma 2.4 and Corollary 2.5 both give correct versions
of the false Lemma 6.15 in [Lee89].

2.7 Lemma. Let ∅ 6= E ⊆ [a, b] and let ϕ ∈ BV*(E, Y ). Then we also have ϕ ∈ BV*(E, Y ).

Proof. This can be shown essentially as Theorem 6.2 (c) in [Gor94]. But here is an alternative proof,
which is a natural outflow of Lemma 2.4.
We put

M := sup{V ∗ϕ (S) : S = {[aj , bj ]}rj=1 ∈ A([c, d]) with [aj , bj ] ∩ E 6= ∅ for every j ∈ {1, . . . , r}},

which is finite due to Lemma 2.4. Let S = (Ij)rj=1 ∈ A(E) and setA := {j ∈ {1, . . . , r} : Ij ∩E = ∅}.
Then V ∗ϕ ({Ij}j /∈A) ≤ M . The intervals in the set {Ij : j ∈ A} are pairwise disjoint. In fact, let
i, j ∈ A distinct and suppose to the contrary that Ii ∩ Ij is nonvoid. As the intervals of S are non-
overlapping, Ii and Ij intersect at a boundary point, say t, which belongs to E by the choice of S.
Due to t ∈ (Ii ∪ Ij)◦ ∩ E, we infer (Ii ∪ Ij)◦ ∩ E 6= ∅, which implies Ii ∩ E 6= ∅ or Ij ∩ E 6= ∅
contradicting the choice of i and j. Due to the pairwise disjointness of the closed intervals in the set
{Ij : j ∈ A}, whose endpoints lie in E, we can find closed, pairwise disjoint intervals {Ĩj}j∈A such
that Ij ⊆ Ĩj ⊆ [c, d] and Ĩj ∩ E 6= ∅ for each j ∈ A. This yields V ∗ϕ ({Ij}j∈A) ≤ V ∗ϕ ({Ĩj}j∈A) ≤ M .
Altogether, we obtain V ∗ϕ (S) = V ∗ϕ ({Ij}j∈A) + V ∗ϕ ({Ij}j /∈A) ≤ 2M .

The next lemma plays together with Lemma 2.4 a crucial and vital part in the proofs of some of our
main results. It gives a complete characterisation of BVG*-functions on a set E and extends Lemma
6 in [War36].

2.8 Lemma. Let ∅ 6= E ⊆ [a, b].The following statements are equivalent for a function ϕ : [a, b]→ Y .

(a) The function ϕ belongs to BVG*(E, Y ).

(b) There is a strictly increasing function χ : [a, b]→ R and a countable set A ⊆ [a, b] such that

lim
y→x

‖ϕ(x)− ϕ(y)‖
|χ(x)− χ(y)|

<∞

for all x ∈ E \A.

Proof. We closely follow the proof of Lemma 6 in [War36]. We first show that (a) implies (b). We
choose sets ∅ 6= En ⊆ [a, b] for n ∈ N with

⋃
n∈N En = E such that ϕ ∈ BV*(En, Y ) is satisfied for

all n ∈ N. For each En we take a function χn as in Lemma 2.4 and we put

χ(x) :=
∞∑
n=1

2−n · χn(x)− χn(a)
χn(b)− χn(a)

for x ∈ [a, b]. Clearly, χ is well-defined and strictly increasing.
For m ∈ N we set cm := inf Em and dm := supEm. Take m ∈ N with Em ∩ (cm, dm) 6= ∅ and
x ∈ Em ∩ (cm, dm). The choice of χm yields

|χ(x)− χ(y)| =
∞∑
n=1

|χn(x)− χn(y)|
2n(χn(b)− χn(a))

≥ |χm(x)− χm(y)|
2m(χm(b)− χm(a))

≥ ‖ϕ(x)− ϕ(y)‖
2m(χm(b)− χm(a))

and thus
‖ϕ(x)− ϕ(y)‖
|χ(x)− χ(y)|

≤ 2m(χm(b)− χm(a))
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2.1 Basic properties of functions of generalized bounded variation

for all y ∈ (cm, dm) \ {x}. (For the first equation above note that we either have χn(x) > χn(y) for
all n ∈ N or χn(x) < χn(y) for all n ∈ N.) Statement (b) now follows with A :=

⋃
m∈N{cm, dm}.

Conversely, assume that (b) holds. For n ∈ N and k ∈ Z we define En as the set of all x ∈ E with
the property

∀ y ∈ [a, b] : |χ(x)− χ(y)| ≤ 1
n

=⇒ ‖ϕ(x)− ϕ(y)‖ ≤ n|χ(x)− χ(y)|,

and we put

En,k :=
{
x ∈ En :

k

n
≤ χ(x) <

k + 1
n

}
.

Since the inverse of a strictly increasing function defined on an interval is everywhere continuous
(see Proposition D.2), we easily infer⋃

n∈N

⋃
k∈Z

En,k =
⋃
n∈N

En ⊇ E \A.

Since A is countable and since every function is of class BV* on a singleton, it suffices to verify that
ϕ belongs to BV*(En,k, Y ) for all n ∈ N and k ∈ Z.
So fix n ∈ N and k ∈ Z, assume without loss of generality that En,k is not a singleton and consider
a partition S = {[aj , bj ]}rj=1 in A(En,k). For each j ∈ {1, . . . , r}we then have

‖ϕ(z)− ϕ(bj)‖ ≤ n|χ(z)− χ(bj)| (2.1)

for every z ∈ [aj , bj ] because aj , bj ∈ En,k ⊆ En and

0 ≤ χ(bj)− χ(z) ≤ χ(bj)− χ(aj) <
k + 1
n
− k

n
=

1
n
.

Inequality (2.1) implies

ω(ϕ, [aj , bj ]) = sup
aj≤x≤y≤bj

‖ϕ(x)− ϕ(y)‖

≤ sup
aj≤x≤y≤bj

(‖ϕ(y)− ϕ(bj)‖+ ‖ϕ(bj)− ϕ(x)‖)

≤ sup
aj≤x≤y≤bj

(n|χ(bj)− χ(y)|+ n|χ(bj)− χ(x)|)

≤ 2n(χ(bj)− χ(aj)).

As a result,

V ∗ϕ (S) =
r∑
j=1

ω(ϕ, [aj , bj ]) ≤ 2n
r∑
j=1

(χ(bj)− χ(aj)) ≤ 2n(χ(b)− χ(a)),

from which we conclude

V∗(ϕ,En,k) = sup
S∈A(En,k)

V ∗ϕ (S) ≤ 2n(χ(b)− χ(a)) <∞.

Thus (a) holds.

2.9 Remark As a references for a proof of Lemma 2.8 and for the implication (a) =⇒ (b) in Lemma
2.4 in the case of real-valued functions we only know [War36] and [Sak41, p. 236] (but see also
Lemma 3.6 in [Fau97] for a proof for bounded functions). For the sake of completeness and since
the existing proofs are a little bit sketchy (especially Ward’s original one), we provided complete
proofs.
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2 Functions of generalized bounded variation and absolute continuity

Since any monotone function has at most countably many discontinuities, we immediately infer the
following corollary from Lemma 2.8.

2.10 Corollary. Every function ϕ ∈ BVG*([a, b], Y ) has at most countably many discontinuities.

At the close of this section we state a result analogous to Lemma 2.7 for BV-functions.

2.11 Lemma. Let ∅ 6= E ⊆ [a, b]. Then C(E, Y ) ∩ BV(E, Y ) ⊆ BV(E, Y ); more precisely: if ϕ|E ∈
C(E, Y ) and if ϕ ∈ BV(E, Y ), then ϕ ∈ BV(E, Y ).

Proof. At this point we refrain from a detailed proof, but refer to the proof of Lemma 2.14 below,
which is quite similar.

2.2 Basic properties of functions of generalized absolute
continuity

In this section we collect basic properties of functions of generalized absolute continuity. With these
preliminaries at our disposal we shall prove the Banach-Zarecki theorem for ACG*-functions in the
next section and a generalisation of Theorem 6 of [Gor89] in chapter 5 below. A vital point in the
now upcoming examinations consists of the interplay between generalized bounded variation and
generalized absolute continuity.

Throughout the entire section let ∅ 6= E ⊆ [a, b], c := inf E and d := supE.

2.12 Lemma. (a) AC(E, Y ) ⊆ BV(E, Y ) and ACG(E, Y ) ⊆ BVG(E, Y ).
(b) AC*(E, Y ) ∩B([c, d], Y ) ⊆ BV*(E, Y ) and ACG*(E, Y ) ∩B([c, d], Y ) ⊆ BVG*(E, Y ).

Proof. In (a) and (b) the corresponding second assertion is an immediate consequence of the corre-
sponding first one. We now only prove the first assertion of part (b) as the first assertion of part (a)
may be proved similarly using that every function in AC(E, Y ) is necessarily bounded on E. Our
proof is a detailed exposition of the proof on page 231 in [Sak41].
Clearly, the assertion is true if E is a singleton. For this reason we may and will assume w.l.o.g. that
E is not a singleton.
Let ϕ ∈ AC*(E, Y ) ∩B([c, d], Y ). We put M := ‖ϕ‖[c,d],∞ and we choose η > 0 such that V ∗ϕ (S) < 1
for all S ∈ A(E) with Wid(S) < η. Furthermore, choose n ∈ N so large that n ≥ 2 and d−c

n < η. Let
S = {[aj , bj ]}rj=1 ∈ A(E). We now define

Ak :=
{
j ∈ {1, . . . , r} : c+

k − 1
n

(d− c) ≤ aj < bj ≤ c+
k

n
(d− c)

}
for k ∈ {1, . . . , n}. We have j /∈

⋃n
k=1Ak if and only if (aj , bj) contains at least one of the points

of the set {c + k
n (d − c) : k ∈ {1, . . . , n − 1}}. Since the sets {(aj , bj)}rj=1 are pairwise disjoint, we

therefore derive

]

(
{1, . . . , r} \

n⋃
k=1

Ak

)
≤
n−1∑
k=1

]

{
j ∈ {1, . . . , r} : c+

k

n
(d− c) ∈ (aj , bj)

}
≤ n− 1.

As a consequence, we get

V ∗ϕ (S) =
n∑
k=1

∑
j∈Ak

ω(ϕ, [aj , bj ]) +
∑

j /∈
Sn
k=1 Ak

ω(ϕ, [aj , bj ]) ≤ n+ 2M(n− 1),

where we used that
∑
j∈Ak ω(ϕ, [aj , bj ]) < 1 because of

∑
j∈Ak(bj − aj) < η for each k.
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2.13 Remark The boundedness condition in part (b) of Lemma 2.12 is actually needed. If, e.g., E
consists only of two points, then it is trivial that every function ϕ ∈ Y [a,b] belongs to AC*(E, Y ) as in
this caseA(E) contains no intervals with length smaller than the distance between these two points
so that the defining condition in the definition of AC*-functions becomes empty. But clearly not
every function ϕ ∈ Y [a,b] belongs to BV*(E, Y ) (take any function unbounded on the convex hull of
these two points). It seems that for this reason Saks has incorporated a corresponding boundedness
condition in his definition of ACG*-functions. Unfortunately, such a condition is missing in [Gor94]
which leads to the unpleasant situation that several results as stated in [Gor94] are not correct (the
root of all evil is part (b) of Theorem 6.2 in [Gor94], which is stated without proof).

2.14 Lemma. We have C(E, Y ) ∩AC(E,X) ⊆ AC(E, Y ).

Proof. (cf. the proof of Theorem 6.2 in [Gor94]) Let ε > 0 and choose δ > 0 such that Wϕ(S) < ε
2 for

all S ∈ A(E) with Wid(S) < δ. Let {[uk, vk]}rk=1 ∈ A(E) with
∑r
k=1(vk − uk) < δ

2 . We now define
{[aj , bj ]}rj=1 iteratively as follows: Choose a1 ∈ [a, v1) ∩E (this set is nonvoid as it contains u1 ∈ E)
with |a1 − u1| < δ

4r and ‖ϕ(a1)− ϕ(u1)‖ < ε
4r . If u2 = v1, choose b1 ∈ (a1, v2) ∩ E with

|b1 − v1| <
δ

4r
and ‖ϕ(b1)− ϕ(v1)‖ < ε

4r
. (2.2)

If v1 < u2 choose b1 ∈ (a1, u2)∩E with (2.2). Next, if u2 = v1 set a2 := b1 ∈ (a1, v2)∩E and observe
that in this case (2.2) becomes

|a2 − u2| <
δ

4r
and ‖ϕ(a2)− ϕ(u2)‖ < ε

4r
.

If, however, v1 < u2 pick a2 ∈ (b1, v2) ∩E with |a2 − u2| < δ
4r and ‖ϕ(a2)− ϕ(u2)‖ < ε

4r . If u3 = v2,
choose b2 ∈ (a2, v3) ∩ E with

|b2 − v2| <
δ

4r
and ‖ϕ(b2)− ϕ(v2)‖ < ε

4r
. (2.3)

If v2 < u3 choose b2 ∈ (a2, u3)∩E with (2.3). Next, if u3 = v2 set a3 := b2 ∈ (a2, v3)∩E and observe
that in this case (2.3) becomes

|a3 − u3| <
δ

4r
and ‖ϕ(a3)− ϕ(u3)‖ < ε

4r
.

If, however, v2 < u3 pick a3 ∈ (b2, v3) ∩ E with |a3 − u3| < δ
4r and ‖ϕ(a3) − ϕ(u3)‖ < ε

4r and so
on and so forth (where we finally choose br ∈ (ar, b] ∩ E). In this way we obtain a finite sequence
{[aj , bj ]}rj=1 ∈ A(E) with |uj−aj | < δ

4r , |vj−bj | < δ
4r , ‖ϕ(aj)−ϕ(uj)‖ < ε

4r and ‖ϕ(bj)−ϕ(vj)‖ < ε
4r

for j ∈ {1, . . . , r}. Thus, we get
r∑
j=1

(bj − aj) ≤
r∑
j=1

|bj − vj |+
r∑
j=1

|vj − uj |+
r∑
j=1

|uj − aj | <
δ

4
+
δ

2
+
δ

4
= δ,

which implies
∑r
j=1 ‖ϕ(bj)− ϕ(aj)| < ε

2 by the choice of δ. In addition, we have
r∑
j=1

‖ϕ(bj)− ϕ(vj)‖ <
ε

4
and

r∑
j=1

‖ϕ(aj)− ϕ(uj)‖ <
ε

2
.

Altogether this yields
r∑
j=1

‖ϕ(uj)− ϕ(vj)‖ ≤
r∑
j=1

‖ϕ(uj)− ϕ(aj)‖+
r∑
j=1

‖ϕ(aj)− ϕ(bj)‖+
r∑
j=1

‖ϕ(bj)− ϕ(vj)‖

<
ε

4
+
ε

2
+
ε

4
= ε,

which finishes the proof.
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2 Functions of generalized bounded variation and absolute continuity

2.15 Remark The continuity condition in Lemma 2.14 is actually needed in so far as ϕ ∈ AC(E, Y )
only implies that ϕ|E is continuous on E (this is obvious), while ϕ can be discontinuous at points of
E. For example, consider the function

ϕ : [0, 1]→ R; t 7→

{
1, if t 6= 0,
0, elsewise.

and the set E = (0, 1]. Then ϕ ∈ AC(E,R), but ϕ is not continuous at 0.

We next establish a technical auxiliary result which is an example par excellence for a statement
whose existing proofs for real-valued functions (see, e.g., Lemma 8.1 in [Sak41] or Lemma 6.3 in
[Gor94]) cannot be transferred to the vector-valued case, which necessitates a finer analysis. Indeed,
this finer analysis even leads to a slight improvement in comparison to Lemma 8.1 in [Sak41] resp.
Lemma 6.3 in [Gor94].

2.16 Lemma. Assume that E is closed and let (Ik)k be the connected components of [c, d] \ E. Then

ω(ϕ, [c, d]) ≤ V (ϕ,E) +
∑
k

ω(ϕ, Ik).

Proof. The assertion is clear if V (ϕ,E) = ∞ or
∑
k ω(ϕ, Ik) = ∞. For this reason we assume that

V (ϕ,E) < ∞ and
∑
k ω(ϕ, Ik) < ∞. Let t, s ∈ [c, d] with t 6= s. We distinguish between several

cases.
1st case: t ∈ Ik and s ∈ Il with k 6= l. Pick r ∈ ∂Ik ⊆ E and ρ ∈ ∂Il ⊆ E. We then estimate

‖ϕ(t)− ϕ(s)‖ ≤ ‖ϕ(t)− ϕ(r)‖+ ‖ϕ(r)− ϕ(ρ)‖+ ‖ϕ(ρ)− ϕ(s)‖

≤ ω(ϕ, Ik) + V (ϕ,E) + ω(ϕ, Il) ≤ V (ϕ,E) +
∑
j

ω(ϕ, Ij).

2nd case: t, s ∈ Ik. In this case we have

‖ϕ(t)− ϕ(s)‖ ≤ ω(ϕ, Ik) ≤ V (ϕ,E) +
∑
j

ω(ϕ, Ij).

3rd case: t, s ∈ E. Then one gets

‖ϕ(t)− ϕ(s)‖ ≤ V (ϕ,E) ≤ V (ϕ,E) +
∑
j

ω(ϕ, Ij).

4th case: t ∈ E and s ∈ Ik. In this situation we take r ∈ ∂Ik and we estimate

‖ϕ(t)− ϕ(s)‖ ≤ ‖ϕ(t)− ϕ(r)‖+ ‖ϕ(r)− ϕ(s)‖ ≤ V (ϕ,E) + ω(ϕ, Ik) ≤ V (ϕ,E) +
∑
j

ω(ϕ, Ij).

Altogether these inequalities lead to supt,s∈[c,d] ‖ϕ(t)−ϕ(s)‖ = ω(ϕ, [c, d]) ≤ V (ϕ,E) +
∑
k ω(ϕ, Ik)

as claimed.

By means of the preceding result, we next show the following lemma, which contains a useful
sufficient condition for the membership of a function to the space BV*(E, Y ) resp. AC*(E, Y ),
which is well-known in the scalar-valued case (see, e.g., Theorem 8.5 in [Sak41]). Our proof follows
the one given in [Gor94].

2.17 Lemma. Assume that E is closed and let (Ik)k be the connected components of [c, d] \ E. We consider
the subsequent statements.
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2.2 Basic properties of functions of generalized absolute continuity

(a) ϕ ∈ BV*(E, Y ) (ϕ ∈ AC*(E, Y )).
(b) ϕ ∈ BV(E, Y ) (ϕ ∈ AC(E, Y )) and

∑
k ω(ϕ, Ik) <∞.

We have (b) =⇒ (a) and in the BV*-case the converse is always valid, while it is also true in the AC*-case
provided that ϕ is bounded on [c, d].

Proof. We first show the assertions concerning the implication (a) =⇒ (b). We have BV*(E, Y ) ⊆
BV(E, Y ) and AC*(E, Y ) ⊆ AC(E, Y ) and, provided that ϕ is bounded on [c, d], also AC*(E, Y ) ⊆
BV*(E, Y ) by Lemma 2.12. Therefore, it suffices to verify

∑
k ω(ϕ, Ik) < ∞ for ϕ ∈ BV*(E, Y ).

But this is clear as the closed intervals Ik (if there are any at all) are mutually non-overlapping with
endpoints in E.

We now turn to the proof of (b) =⇒ (a) starting with the case ϕ ∈ BV(E, Y ). Let S = {Kj}pj=1 ∈
A(E). Since c, d ∈ E and since we wish to find an upper bound on V ∗ϕ (S) independent of S, we can
assume w.l.o.g.

⋃
j=1Kj = [c, d]. Thanks to Lemma 2.16, we estimate

ω(ϕ,Kj) ≤ V (ϕ,E ∩Kj) +
∑
k

Ik⊆Kj

ω(ϕ, Ik)

for every j. Now observe that one has
⋃p
j=1 Sj ∈ A(E) if Sj ∈ A(E ∩ Kj) for each j because the

intervals K1, . . . ,Kp are pairwise non-overlapping. Hence,
∑p
j=1 V (ϕ,E ∩ Kj) ≤ V (ϕ,E). As a

result, we obtain
p∑
j=1

ω(ϕ,Kj) ≤
p∑
j=1

V (ϕ,E ∩Kj) +
p∑
j=1

∑
k

Ik⊆Kj

ω(ϕ, Ik) ≤ V (ϕ,E) +
∑
k

ω(ϕ, Ik) <∞

and ϕ ∈ BV*(E, Y ).

Now we assume that ϕ ∈ AC(E, Y ). Let ε > 0 and choose δ0 > 0 such that we have Wϕ(S) < ε
2

for all S ∈ A(E) with Wid(S) < δ0. Choose N ∈ N sucht that
∑
k>N ω(ϕ, Ik) < ε

2 and put δ :=
min{δ0, λ(I1), . . . , λ(IN )} provided, of course, that the set {Ik}k is non-empty, otherwise just set
δ := δ0. Furthermore, let (Kj)

p
j=1 ∈ A(E) with

∑p
j=1 λ(Kj) = λ(

⋃p
j=1Kj) < δ. Using that we have

Ik 6⊆ Kj due to λ(Kj) < δ ≤ λ(Ik) for each j ∈ {1, . . . , p} and each k ∈ {1, . . . , N} we estimate as
above

p∑
j=1

ω(ϕ,Kj) ≤
p∑
j=1

V (ϕ,E ∩Kj) +
p∑
j=1

∑
k

Ik⊆Kj

ω(ϕ, Ik) =
p∑
j=1

V (ϕ,E ∩Kj) +
p∑
j=1

∑
k>N
Ik⊆Kj

ω(ϕ, Ik)

≤
p∑
j=1

V (ϕ,E ∩Kj) +
∑
k>N

ω(ϕ, Ik) ≤
p∑
j=1

V (ϕ,E ∩Kj) +
ε

2
.

Let Sj ∈ A(E ∩Kj). Then
⋃p
j=1 Sj ∈ A(E) with

Wid

 p⋃
j=1

Sj

 =
p∑
j=1

Wid(Sj) ≤
p∑
j=1

λ(Kj) < δ.

Consequently, Wϕ

(⋃p
j=1 Sj

)
=
∑p
j=1Wϕ(Sj) < ε

2 . Taking the supremum with respect to Sj ∈
A(E ∩Kj) then leads to the inequality

∑p
j=1 V (ϕ,E ∩Kj) ≤ ε

2 . This finally implies

p∑
j=1

ω(ϕ,Kj) ≤
p∑
j=1

V (ϕ,E ∩Kj) +
ε

2
≤ ε

and we deduce ϕ ∈ AC*(E, Y ).
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2 Functions of generalized bounded variation and absolute continuity

2.18 Corollary. Assume that E is closed. Then AC*(E, Y ) ∩B([c, d], Y ) = BV*(E, Y ) ∩AC(E, Y ).

Proof. The inclusion ⊆ is clear by Lemma 2.12. Conversely, let ϕ ∈ BV*(E, Y ) ∩ AC(E, Y ) and
denote by (Ik)k the connected components of [c, d] \ E. By Lemma 2.3, we have ϕ ∈ B([c, d], Y ).
Moreover, due to ϕ ∈ BV*(E, Y ) we also have

∑
k ω(ϕ, Ik) < ∞. Hence, Lemma 2.17 gives the

assertion.

2.19 Corollary. Let ϕ ∈ AC*(E, Y ) be bounded on [c, d] and assume that ϕ|E ∈ C(E, Y ). Then ϕ ∈
AC*(E, Y ).

Proof. By Lemma 2.12 (b) and Lemma 2.7, we have ϕ ∈ BV*(E, Y ). Furthermore, Lemma 2.14 yields
ϕ ∈ AC(E, Y ). As a consequence, the assertion results from Corollary 2.18.

2.20 Corollary. Assume that E is closed and that ϕ|E ∈ C(E, Y ). Then ACG*(E, Y ) ∩ B([c, d], Y ) ⊆
BVG*(E, Y ) ∩ACG(E, Y ) ⊆ ACG*(E, Y ).

Proof. First, let ϕ ∈ ACG*(E, Y ) ∩B([c, d], Y ) and choose a sequence (En)n such that
⋃
n∈N En = E

and ϕ ∈ AC*(En, Y ) for all n. Thanks to Corollary 2.19 and 2.18 (note that En ⊆ E, hence, ϕ
is bounded on [inf En, supEn] ⊆ [c, d]), we infer ϕ ∈ BV*(En, Y ) ∩ AC(En, Y ) for all n. Hence,
ϕ ∈ BVG*(E, Y ) ∩ACG(E, Y ).

Now, let ϕ ∈ BVG*(E, Y ) ∩ ACG(E, Y ). Write E =
⋃
nEn =

⋃
m Ẽm with ϕ ∈ BV*(En, Y ) for all

n and ϕ ∈ AC(Ẽm, Y ) for all m. Applying Lemma 2.7 and Lemma 2.14, we derive ϕ ∈ BV*(En, Y )

for all n and ϕ ∈ AC(Ẽm, Y ) for all m. Let {Fk}k be an enumeration of the countable set {En ∩ Ẽm :
n,m}. Each Fk is closed with ϕ ∈ BV*(Fk, Y ) ∩ AC(Fk, Y ) and ϕ|Fk ∈ C(Fk, Y ). Corollary 2.18
implies ϕ ∈ AC*(Fk, Y ) for all k and because of

⋃
k Fk = E we finally conlude ϕ ∈ ACG*(E, Y ).

Let ∅ 6= E ⊆ [a, b] be closed. By a linear extension of ϕ|E to the whole of [a, b] we understand any
function G : [a, b] → Y that extends ϕ|E and is linear on the subintervals of [a, b] contiguous to E
(note that such a G is only uniquely determined on [c, d]).

2.21 Lemma. Assume that E is closed and let G be a linear extension of ϕ|E to [a, b].

(a) The function G is continuous on [a, b] \ E and each continuity point of ϕ|E is also a continuity point
of G.

(b) If ϕ ∈ BV(E, Y ), then G ∈ BV([a, b], Y ).

Proof. We start with the proof of (a). Clearly,G is continuous on [a, b]\E. Now assume that there is a
t ∈ E where ϕ|E is continuous, whereasG is not. Then t /∈ [a, b]\E and, obviously t 6∈ E◦, so t ∈ ∂E.
Furthermore, there is an ε > 0 and a sequence (tn)n in [a, b] converging to t with ‖G(t)−G(tn)‖ ≥ ε
for all n ∈ N. Due to the continuity of ϕ|E , at most finitely many tn can belong to E and we may
therefore assume w.l.o.g. that tn /∈ E for all n. By defintion G is continuous on [a,minE] and on
[maxE, b]. Thus we may further assume that tn ∈ [minE,maxE] = [c, d]. Then for each n ∈ N
there are cn, dn ∈ E with tn ∈ (cn, dn) and (cn, dn) is a connected component of [c, d] \ E. We now
distinguish between two cases.

1st case: There are C,D ∈ E with (cn, dn) = (C,D) for infinitely many n ∈ N. Then we can extract a
subsequence (tnk)k with tnk ∈ (C,D) for all k ∈ N and we derive t ∈ {C,D}. One then gets

ε ≤ ‖G(t)−G(tnk)‖ =
∥∥∥∥ϕ(t)−

(
D − tnk
D − C

· ϕ(C) +
tnk − C
D − C

· ϕ(D)
)∥∥∥∥ −−−−→k→∞

0,

which is absurd.
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2.3 The Banach-Zarecki theorem for ACG*-functions

2nd case: For each m ∈ N the set {n ∈ N : (cn, dn) = (cm, dm)} is finite. So we can extract a
subsequence (tnk)k with (cnk , dnk) 6= (cnl , dnl) for k 6= l. By considering another subsequence,
we may further assume that either tnk < t for all k or t > tnk for all k. We only treat the first case
(the second one is analogous). By taking once again a subsequence, we can further assume w.l.o.g.
that (tnk)k is strictly increasing. Thus we obtain cnk < tnk < dnk ≤ cnk+1 < tnk+1 < dnk+1 ≤ t and
taking the limit k → ∞ yields limk→∞ cnk = limk→∞ dnk = t. We thus obtain an index k0 ∈ N with
‖ϕ(cnk)− ϕ(t)‖ < ε and ‖ϕ(dnk)− ϕ(t)‖ < ε for all k ≥ k0. For k ≥ k0 we now infer

ε ≤ ‖G(t)−G(tnk)‖ =
∥∥∥∥ϕ(t)− dnk − tnk

dnk − cnk
· ϕ(cnk)− tnk − cnk

dnk − cnk
· ϕ(dnk)

∥∥∥∥
=
∥∥∥∥dnk − tnkdnk − cnk

· (ϕ(t)− ϕ(cnk)) +
tnk − cnk
dnk − cnk

· (ϕ(t)− ϕ(dnk))
∥∥∥∥

≤ dnk − tnk
dnk − cnk

· ‖ϕ(t)− ϕ(cnk)‖+
tnk − cnk
dnk − cnk

· ‖ϕ(t)− ϕ(dnk)‖ < ε,

which is impossible.

As both cases have led to a contradiction, we conclude that our assumption must be wrong, i.e.,
part (a) is true.

Part (b) can be essentially shown as in the solution to Exercise 6.2 in [Gor94].

2.3 The Banach-Zarecki theorem for ACG*-functions

The main objective of this section is the proof of the Banach-Zarecki theorem for ACG*- and ACG-
functions. In order to formulate this theorem we need the following definition.

As before let ∅ 6= E ⊆ [a, b], c := inf E and d := supE throughout the entire section.

2.22 Definition. We say that ϕ : [a, b]→ Y satisfies on E Lusin’s condition

(a) (N)E (we then write ϕ ∈ (N)E) if we haveH1
Y (f(A)) = 0 for each set A ⊆ E with λ∗(A) = 0;

(b) [N ]E (we then write ϕ ∈ [N ]E) if we haveH1
Y (f(A)) = 0 for each closed set A ⊆ E with λ∗(A) = 0.

The following lemma shows that there are plenty examples of functions satisfying Lusin’s condition
(N)E .

2.23 Lemma. If ϕ ∈ ACG(E, Y ), then ϕ ∈ (N)E .

Proof. Let η > 0 and let us first assume that ϕ ∈ AC(E, Y ). Furhtermore, let A ⊆ E with λ(A) = 0
and let ε > 0 be arbitrary. Then there is a δ > 0 such that Wϕ(S) < min{ε, η2} for all S ∈ A(E)
with Wid(S) < δ. Choose an open set G ⊆ R with A ⊆ G and λ(G) < δ and denote by (Ik)k
the countable family of those connected components of G that have non-empty intersection with
A. Then {ϕ(A ∩ Ik)}k is a countable cover of ϕ(A) and for each k and all s, t ∈ Ik ∩ A we have
|s − t| ≤ λ(Ik) ≤ λ(G) < δ. Because of 〈s, t〉 ∈ A(A) ⊆ A(E), this implies ‖ϕ(s) − ϕ(t)‖ < η

2 . As a
result, we infer

diam(ϕ(Ik ∩A)) ≤ η

2
< η. (2.4)

Now pick sk, tk ∈ Ik ∩A for each k. For each finite family S = {〈sk1 , tk1〉, . . . , 〈skν , tkν 〉} (kj 6= ki for
i 6= j) we have S ∈ A(A) ⊆ A(E) (note that the intervals in S do not overlap as they are subintervals
of the intervals Ik, which are even pairwise disjoint) and

∑ν
j=1 |skj − tkj | ≤

∑ν
j=1 λ(Ikj ) ≤ λ(G) < δ
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2 Functions of generalized bounded variation and absolute continuity

and thus
∑ν
j=1 ‖ϕ(skj )−ϕ(tkj )‖ < ε. This estimate yields

∑ν
j=1 ω(ϕ, Ikj∩A) ≤ ε. As a consequence,

we derive ∑
k

diam(ϕ(Ik ∩A)) =
∑
k

ω(ϕ, Ik ∩A) ≤ ε. (2.5)

The both inequalities (2.4) and (2.5) together lead to the estimateH1
η(ϕ(A)) ≤ ε. Letting first η → 0+

and afterwards ε→ 0+ then yieldsH1
Y (ϕ(A)) = 0 and we finally derive ϕ ∈ (N)E .

Now we consider the general case ϕ ∈ ACG(E, Y ) and we choose a sequence (En)n with
⋃
nEn =

E and ϕ ∈ AC(En, Y ) for all n. Let A ⊆ E with λ(A) = 0. Then λ(An) = 0 for all n, where
An := A ∩ En, and hence H1

Y (ϕ(An)) = 0 by what we have shown so far. Since H1
Y is an outer

measure, we deduceH1
Y (ϕ(A)) = 0 and obtain ϕ ∈ (N)E as claimed.

Results of the Banach-Zarecki-type are engaged with partial converses to Lemma 2.23. One impor-
tant (and surprisingly rather recent result) is the following Theorem due to J. Duda and L. Zajı́ček
that extends the classical Banach-Zarecki theorem for real-valued functions to the vector-valued
case.

2.24 Theorem. The following statements are equivalent.

(a) ϕ ∈ AC([a, b], Y ).

(b) ϕ ∈ C([a, b], Y ) ∩ BV([a, b], Y ) and ϕ ∈ (N)[a,b].

(c) ϕ ∈ C([a, b], Y ) ∩ BV([a, b], Y ) and ϕ ∈ [N ][a,b].

Proof. (a) =⇒ (b) follows from Lemma 2.12 (a) and Lemma 2.23. The implication (b) =⇒ (c) is trivial
and the remaining implication (c) =⇒ (a) emerges from the proof of the main result in [Dc05].

2.25 Corollary. Assume that E is closed and let G be a linear extension of ϕ|E to [a, b]. If ϕ ∈ AC(E, Y ),
then G ∈ AC([a, b], Y ).

Proof. Lemma 2.21 yields G ∈ C([a, b], Y ) ∩ BV([a, b], Y ) and by Lemma 2.23 we have ϕ ∈ (N)E .
Clearly, G is Lipschitz continuous, hence, an AC-function on the closure of each interval contiguous
to E in [a, b]. Consequently, G fulfills Lusin’s condition (N)I on each such interval I thanks to
Lemma 2.23. SinceH1

Y is an outer measure, the countable union ofH1
Y -zero sets is again aH1

Y -null
set. It is now easy to conclude that G ∈ (N)[a,b]. As a result, we infer that G belongs to AC([a, b], Y )
by employing Theorem 2.24.

We now come to the announced Banach-Zarecki theorem for functions of generalized absolute con-
tinuity.

2.26 Theorem. Let E be a nonvoid, closed subset of [a, b] and assume ϕ|E ∈ C(E, Y ). Then we have:

(a) ϕ ∈ AC(E, Y ) ⇐⇒ ϕ ∈ BV(E, Y ) and ϕ ∈ (N)E ⇐⇒ ϕ ∈ BV(E, Y ) and ϕ ∈ [N ]E ,

(b) ϕ ∈ ACG(E, Y ) ⇐⇒ ϕ ∈ BVG(E, Y ) and ϕ ∈ (N)E ⇐⇒ ϕ ∈ BVG(E, Y ) and ϕ ∈ [N ]E ,

(c) ϕ ∈ AC*(E, Y ) ⇐= ϕ ∈ BV*(E, Y ) and ϕ ∈ (N)E ⇐⇒ ϕ ∈ BV*(E, Y ) and ϕ ∈ [N ]E ,

(d) ϕ ∈ ACG*(E, Y ) ⇐= ϕ ∈ BVG*(E, Y ) and ϕ ∈ (N)E ⇐⇒ ϕ ∈ BVG*(E, Y ) and ϕ ∈ [N ]E .

In addition, in (c) and (d) the implication =⇒ holds true provided that ϕ is bounded on the interval [c, d] =
[minE,maxE].
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2.3 The Banach-Zarecki theorem for ACG*-functions

Proof. W.l.o.g. we assume that ]E ≥ 2.

In all cases the second implication =⇒ follows by definition. The addendum and the first implica-
tion =⇒ in (a) and (b) result from from Lemma 2.12 and Lemma 2.23.

We now first prove the remaining implications in part (a). Let G be the linear extension of ϕ|E
to [c, d]. Lemma 2.21 and the proof of Corollary 2.25 yield G ∈ C([c, d], Y ) ∩ BV([c, d], Y ) and
G ∈ (N)[c,d] if ϕ ∈ (N)E . We further show that G ∈ [N ][c,d] if ϕ ∈ [N ]E . For this purpose let
{Ij}j∈J be the countable family of all connected components of [c, d] \E and assume ϕ ∈ [N ]E . Let
N = N ⊆ [c, d] with λ(N) = 0. Then the sets N ∩ E and N ∩ Ij are also closed Lebesgue-null sets
and we obtainH1(G(N ∩E)) = H1(ϕ(N ∩E)) = 0 as well asH1(G(N ∩ Ij)) = 0, and consequently
G ∈ [N ][c,d]. Thanks to Theorem 2.24, we derive G ∈ AC([c, d], Y ) in both cases ϕ ∈ (N)E or
ϕ ∈ [N ]E . Because of ϕ|E = G|E , we conclude ϕ ∈ AC(E, Y ).

We now turn to the proof of part (c). Assume that ϕ ∈ BV*(E, Y ) and ϕ ∈ [N ]E . Then we have
in particular ϕ ∈ BV(E, Y ) and ϕ ∈ [N ]E . Hence ϕ ∈ AC(E, Y ) by part (a) and thus ϕ ∈ (N)E
due to Lemma 2.23. So we are now in the case ϕ ∈ BV*(E, Y ) and ϕ ∈ (N)E . In particular
ϕ ∈ BV(E, Y ) and ϕ ∈ (N)E . Consequently, part (a) gives us ϕ ∈ AC(E, Y ) ∩ BV*(E, Y ), which
yields ϕ ∈ AC*(E, Y ) by Corollary 2.18.

Finally, the implications ⇐= in part (b) resp. (d) follow from part (a) resp. (c) using Lemma 2.11
resp. Lemma 2.7.

2.27 Corollary. Let E be a nonvoid, Fσ-set contained in [a, b] and assume ϕ|E ∈ C(E, Y ). Then we have:

(a) ϕ ∈ BV(E, Y ) and ϕ ∈ (N)E ⇐⇒ ϕ ∈ BV(E, Y ) and ϕ ∈ [N ]E ,

(b) ϕ ∈ ACG(E, Y ) ⇐⇒ ϕ ∈ BVG(E, Y ) and ϕ ∈ (N)E ⇐⇒ ϕ ∈ BVG(E, Y ) and ϕ ∈ [N ]E ,

(c) ϕ ∈ BV*(E, Y ) and ϕ ∈ (N)E ⇐⇒ ϕ ∈ BV*(E, Y ) and ϕ ∈ [N ]E ,

(d) ϕ ∈ ACG*(E, Y ) ⇐= ϕ ∈ BVG*(E, Y ) and ϕ ∈ (N)E ⇐⇒ ϕ ∈ BVG*(E, Y ) and ϕ ∈ [N ]E .

In addition, in (d) the implication =⇒ holds true provided that ϕ is bounded on the interval [c, d] =
[inf E, supE].

Proof. The addendum and the implications =⇒ are clear by Lemma 2.12 and the definition of
Lusin’s conditions. In what follows let (En)n be sequence of closed sets such that E =

⋃
n∈N En.

We first complete the proof of part (a). For this purpose, suppose that ϕ ∈ BV(E, Y ) and ϕ ∈ [N ]E .
Then ϕ ∈ BV(En, Y ) ∩ C(En, Y ) and ϕ ∈ [N ]En for each n ∈ N and consequently ϕ ∈ BV(En, Y )
and ϕ ∈ (N)En for each n ∈ N by part (a) of Theorem 2.26. Since the countable union of H1

Y -null
sets is itself aH1

Y -null set, we derive ϕ ∈ (N)E .
A similar argument establishes part (c).
We now turn to the proof of part (b) and we assume that ϕ ∈ BVG(E, Y ) and ϕ ∈ [N ]E . Let
(Fm)m be a sequence of sets such that E =

⋃
m Fm and ϕ ∈ BV(Fm, Y ) for all m. We put En,m :=

En ∩ Fm ⊆ En ⊆ E for all n and m. Then ϕ|En,m ∈ C(En,m, Y ) and hence ϕ ∈ BV(En,m, Y ) due to
Lemma 2.11 and ϕ ∈ BV(En ∩ Fm, Y ). Moreover, ϕ ∈ [N ]En,m , which now yields ϕ ∈ AC(En,m, Y )
for all n and m thanks to part (a) of Theorem 2.26. We therefore conclude ϕ ∈ ACG(E, Y ).
An analogous argument employing Lemma 2.7 establishes part (d).

2.28 Remark To our best knowledge Theorem 2.26 and Corollary 2.27, both well-known in the real-
valued case, are completely new in the vector-valued case. Nevertheless, our line of argument
follows the general strategy in Theorem 6.16 of [Gor94].
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2 Functions of generalized bounded variation and absolute continuity

2.29 Remark Notice that in general one has neither “ϕ ∈ BV(E, Y ) and ϕ ∈ (N)E =⇒ ϕ ∈
AC(E, Y )” nor “ϕ ∈ BV*(E, Y ) and ϕ ∈ (N)E =⇒ ϕ ∈ AC*(E, Y )”. In fact, assume that Y 6= {0},
pick y ∈ Y with ‖y‖ = 1, choose an increasing function χ : [a, b] → R which is not absolutely
continuous (e.g., the Cantor function) and put ϕ(t) := χ(t)y for t ∈ [a, b]. Since χ is not abso-
lutely continuous, there exists an ε > 0 such that we can find for each n ∈ N a partition Sn =
{[aj,n, bj,n]}rnj=1 ∈ A([a, b]) with Wid(Sn) < 1

n and V ∗χ (Sn) ≥ ε. The set E :=
⋃
n∈N

⋃rn
j=1{aj,n, bj,n} is

countable (hence an Fσ-set) and ϕ belongs to BV*(E, Y ) and satisfies Lusin’s condition (N)E , but ϕ
is not even an element of AC(E, Y ).

22



3 Variational measures

In this chapter we introduce the so-called Henstock-Thomson variational measures and study some
of their most important properties.

3.1 Definition of variational measures

Let (X, d) be a metric space and µ : Bor(X)→ [0,∞] a fixed measure.

A non-empty subset B ⊆ (Bor(X) \ {∅})×X is called a differentiation basis or just basis on (X, d) if we
have x ∈ U for all (U, x) ∈ B (note that some authors call this a Perron basis, see, e.g., [Pia01]). We
call U ∈ Bor(X) a B-set if there exists some x ∈ X such that (U, x) ∈ B; by B(X) we denote the set of
all B-sets.

For a non-empty subset E of X and a so-called gauge δ ∈ (0,∞)X on X, we define

B[E] := {(U, x) ∈ B : x ∈ E} and Bδ[E] := {(U, x) ∈ B[E] : U ⊆ Uδ(x)(x)}.

Note that we will sometimes define gauges only on certain subsets of X; in this case one may set by
default the gauge, e.g., equal to 1 on the set where it is not explicitely specified.

Let δ be a gauge on X. A finite sequence (U1, x1), . . . , (Ur, xr), r ∈ N, in Bδ[E] such that U◦i ∩U◦j = ∅,
whenever i, j ∈ {1, . . . , r} are distinct, is called a δ-fine partition onE and a δ-fine partition ofE if even⋃r
j=1 Uj = E holds. We denote by Pδ(E) the set of all δ-fine partitions on E. The points x1, . . . , xr

are called the tags of the partition {(Uj , xj)}rj=1. In what follows a generic element of Pδ(E) will
always be written in the form {(Uj , xj)}rj=1. We further put

S(E, δ) :=
{
P = {(Uj , xj)}rj=1 ∈ Pδ(E) : µ(U i ∩ U j) = 0 for all distinct i, j ∈ {1, . . . , r}

}
.

We call B

• an open basis if U is open for all (U, x) ∈ B,

• a semi-open basis if every B-set has non-empty interior,

• a Vitali-basis if we have Bδ[{x}] 6= ∅ for each x ∈ X and δ ∈ (0,∞)X,

• a Busemann-Feller-basis or simply BF-basis if we have (U, x) ∈ B whenever U is a B-set and
x ∈ U .

In what follows, a function τ : B(X) → [0,∞] is called a B-set function. For ∅ 6= E ⊆ X, δ ∈ (0,∞)X,
P = {(Uj , xj)}rj=1 ∈ Pδ(E) and a B-set function τ we define

τ(P ) :=
r∑
j=1

τ(Uj),

Wδ(τ, E) :=

{
0, if Pδ(E) = ∅,
sup {τ(P ) : P ∈ S(E, δ)} , elsewise,
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3 Variational measures

and
µ∗τ (E) := inf

δ∈(0,∞)X
Wδ(τ, E) and µ∗τ (∅) := 0.

If we consider different bases simultaneously, we writePδ(E;B),Wδ(τ, E;B), µ∗τ,B and so on instead
of simply Pδ(E), Wδ(τ, E), µ∗τ .
Following well-known patterns like, e.g., in [Tho76] or in [Fau95] one can show the subsequent
result.

3.1 Lemma. The set function µ∗τ is a metric outer measure on (X, d). In particular, the restriction µτ :=
µ∗τ |Bor(X) is a measure in the usual sense. For this reason, one calls µ∗τ the (µ,B)-Henstock-Thomson
variational measure of/induced by/associated with τ or simply the Henstock-Thomson variational
measure of/induced by/associated with τ .

Proof. We clearly have µ∗τ (E) ≥ 0 for all E ⊆ X and by definition µ∗τ (∅) = 0.

For E ⊆ F ⊆ X and any δ ∈ (0,∞)X we obviously have Pδ(E) ⊆ Pδ(F ) and thus Wδ(τ, E) ≤
Wδ(τ, F ) as well as µ∗τ (E) ≤ µ∗τ (F ).

Let (An)n be any sequence of subsets of X and setA :=
⋃∞
n=1An. To see that µτ is an outer measure,

we have to show µ∗τ (A) ≤
∑∞
n=1 µ

∗
τ (An).

In order to do this we first observe that we have µ∗τ (E) = 0 whenever there is some δ0 ∈ (0,∞)X

such that Pδ0(E) = ∅; this is clear by definition. In this case we obtain Pδ(F ) = Pδ(F \ E) for every
F ⊇ E and each δ ∈ (0,∞)X satisfying δ|E ≤ δ0|E .

Let us additionally assume that the sets An are pairwise disjoint and let ε > 0 be arbitrary. We put
I := {n ∈ N : ∃ δ ∈ (0,∞)X with Pδ(An) = ∅} and J := N \I .

For each n ∈ I we choose a gauge δn with Pδn(An) = ∅ and for each n ∈ J we choose a gauge δn
with Wδn(τ,An) ≤ µ∗τ (An) + ε

2n . Next we define δ : X → [0,∞) by putting δ(x) := 1 for x ∈ X \ A
and by setting δ(x) := δn(x) if x ∈ An. (As the sets An are pairwise disjoint, δ is well-defined.) If
Pδ(A) = ∅, then we clearly have µ∗τ (A) = 0 ≤

∑∞
n=1 µ

∗
τ (An). We thus assume that Pδ(A) 6= ∅ holds.

For an arbitrary partition P = {(Uj , xj)}rj=1 ∈ Pδ(A) = Pδ(A \
⋃
n∈I An) with µ(Ui ∩ Uj) = 0, we

then estimate

τ(P ) =
∞∑
n=1

r∑
j=1

xj∈An

τ(Uj) =
∑
n∈J

r∑
j=1

xj∈An

τ(Uj) ≤
∑
n∈J

Wδn(τ,An)

≤
∑
n∈J

(
µ∗τ (An) +

ε

2n
)
≤ ε+

∞∑
n=1

µ∗τ (An).

Taking the supremum over such P , we infer

Wδ(τ,A) ≤ ε+
∞∑
n=1

µ∗τ (An)

and thus

µ∗τ (A) ≤ ε+
∞∑
n=1

µ∗τ (An).

Letting ε→ 0+, we arrive at µ∗τ (A) ≤
∑∞
n=1 µ

∗
τ (An).

If the sets An are not pairwise disjoint, we put B1 := A1 and Bn := An \
⋃n−1
j=1 Aj for n > 1. We then

obtain

µ∗τ (A) = µ∗τ

( ∞⋃
n=1

Bn

)
≤
∞∑
n=1

µ∗τ (Bn) ≤
∞∑
n=1

µ∗τ (An),
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3.2 σ-finite variational measures

i.e., µ∗τ is an outer measure.

In order to complete the proof, we now show that we have µ∗τ (A1 ∪ A2) = µ∗τ (A1) + µ∗τ (A2) for
A1, A2 ⊆ X provided that there are disjoint open sets V1, V2 ∈ T (X) with Aj ⊆ Vj . Since we already
know µ∗τ (A1 ∪A2) ≤ µ∗τ (A1) + µ∗τ (A2), it only remains to establish µ∗τ (A1) + µ∗τ (A2) ≤ µ∗τ (A1 ∪A2).
This is clear for µ∗τ (A1 ∪ A2) = ∞. Therefore we may assume that µ∗τ (A1 ∪ A2) is finite, which also
yields µ∗τ (Aj) <∞ for j ∈ {1, 2}.

Moreover, the assertion is also true if we have µ∗τ (Aj) = 0 for some j ∈ {1, 2}. Hence, we may
assume that µ∗τ (Aj) > 0 for j ∈ {1, 2}, which yields in particular Pδ(Aj) 6= ∅ for j ∈ {1, 2} and thus
Pδ(A1 ∪A2) 6= ∅ for each δ ∈ (0,∞)X.

Now let ε > 0 be arbitrary and take a gauge δ0 ∈ (0,∞)X with Wδ0(τ,A1 ∪ A2) ≤ µ∗τ (A1 ∪ A2) + ε.
For x ∈ Vj and j ∈ {1, 2} we choose a positive number ρ(x) > 0 with ∆(x, ρ(x)) ⊆ Vj . We put
δ(x) := δ0(x) for x ∈ X \ (V1 ∪ V2) and δ(x) := min{δ0(x), ρ(x)} for x ∈ V1 ∪ V2. For j ∈ {1, 2} we
take a sequence Pj = {(Ui,j , xi,j)}

rj
i=1 in Pδ(Aj) with µ(Ui,j ∩ Uk,j) = 0 for distinct i, k ∈ {1, . . . , rj}

such that τ(Pj) ≥ Wδ(τ,Aj)− ε. (Note that Wδ(τ,Aj) is finite because Wδ0(τ,A1 ∪ A2) is finite and
because δ ≤ δ0.) Thanks to Ui,j ⊆ Uδ(xi,j)(xi,j) ⊆ Uδ(xi,j)(xi,j) ⊆ ∆(xi,j , δ(xi,j)) ⊆ Vj , we have
U◦i,j ⊆ Ui,j ⊆ Vj and we see that P := {(Ui,j , xi,j)} i=1,...,rj

j∈{1,2}
is a δ-fine partition on A1 ∪ A2 with

µ(Ui,j ∩ Uk,l) = 0 for distinct pairs (i, j), (k, l) ∈ ({1, . . . , r1} × {1}) ∪ ({1, . . . , r2} × {2}). Therefore
we can now estimate

µ∗τ (A1) + µ∗τ (A2) ≤Wδ(τ,A1) +Wδ(τ,A2) ≤ τ(P1) + τ(P2) + 2ε = τ(P ) + 2ε
≤Wδ0(τ,A1 ∪A2) + 2ε ≤ µ∗τ (A1 ∪A2) + 3ε,

and deduce µ∗τ (A1) + µ∗τ (A2) ≤ µ∗τ (A1 ∪A2) by letting ε→ 0.

3.2 Remark If no confusion is to be expected and if the difference does not matter, we frequently
write just µτ instead of µ∗τ and we use the notation µ∗τ especially in cases where we want to empha-
size the character of an outer measure (as, e.g., in Corollary 3.14 and 3.16) to illustrate how certain
measure theoretical properties of the outer measure µ∗τ are related to corresponding properties of
µτ in order to feature special particularities inherent in the nature of variational measures.

3.2 σ-finite variational measures

In 1997 Z. Buczolich and W. F. Pfeffer asked the question (see Question 5.4 in [BP97]) whether
or not certain variational measures on Rd are automatically σ-finite provided that they are ab-
solutely continuous with respect to d-dimensional Lebesgue measure. Since then there has been
a lot of research on this topic starting from the affirmative answer to this question in the one-
dimensional case already given in [BPS96, Theorem 1] and then producing strengthened results (see,
e.g., [Tho98, Zhe07a]), extensions to higher dimensions (see, e.g., [BP98, Pia01, SZ04]) as well as ex-
tensions to the case of more general differentiation bases (see, e.g., [BPS00, BPS02, BPS06, Zhe07b]),
to name but a few. Note that this affirmative answer is a very characteristic feature of variational
measures. For example, consider the (outer) measure that vanishes on all Lebesgue-null sets and
assigns the value∞ to all other sets. This measure is clearly absolutely continuous with respect to
Lebesgue measure, but it is not even semifinite. Moreover, see Theorem 1.1 in [EK06] for a much
more elaborate example of this kind.
However, to our best knowledge the analogous question where absolute continuity with respect to
the Lebesgue measure is replaced by absolute continuity with respect to some more general measure
has only been treated in [Ene00] and [Cap03], although such studies are well motivated, e.g., by the
intention to obtain full descriptive characterisations of Henstock-Kurzweil-Stieltjes integrals, see
[Ene00, Theorem 5.1] combined with [Fau97, Theorem 4.7]) and see also Lemma 5.19 and Lemma
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3 Variational measures

5.20 below.
In the papers [Ene00] and [Cap03], the authors use an approach essentially based on properties of
the functions of class BVG∗ or ACG∗ so that it is not “clear that this is a feature of the method used
to construct the measures and not a property merely of functions”, where we borrowed these words
from Thomson (see [Tho98]).
In the spirit of these words, we want to make a contribution to this question. In the next section we
first prove an extension of Thomson’s theorem [Tho98, Theorem 1], where the real line is replaced
by a metric space that is complete or locally compact and the differentiation basis of open intervals
is replaced by an open differentiation basis.
Afterwards, we focus our attention on the corresponding situation for the real line where we con-
sider Busemann-Feller interval bases. We shall derive an extension of [BPS00, Theorem 3.1 (α)] due
to Bongiorno, Di Piazza and Skvortsov, which entails (as we will see in the next section) as special
cases extensions of the results obtained by Ene ([Ene00, Theorem 3.2]) and Caponetti ([Cap03, The-
orem 3.4])
The scheme of proof has been appeared several times in the literature (cf., e.g., [BPS96, BPS00,
BPS02, Cap03, Pia01, SZ04, Tho98, Zhe07b, Zhe07a]) and is well-known to experts. Therefore our
contribution is not based on inventing a new approach, but on the try to exhaust this well-known
method of proof as effectively as possible. Indeed, there is one new small, but decisive feature con-
sisting of the definition of the variational measure in the preceding section: It is now related to the
given reference measure µ. It is this slight modification that allows us to decouple measure and dis-
tance within the framework of the afore-mentioned method of proof and to derive the mentioned
generalisations.

3.2.1 An extension of Thomson’s theorem

The aim of this section is the proof of the following result, which generalises Thomson’s theorem
[Tho98, Theorem 1]. In particular, this extension is applicable to situations in Rd, although for d > 1
usually quite different arguments are needed (see, e.g., [BP98, BP97]).

3.3 Theorem. Assume that (X, d) is complete or locally compact and let ∅ 6= E ⊆ X be a subset such that
(E, dE) is separable. Let B be an open Vitali-BF-basis and τ a B-set function. Moreover, assume that µ
vanishes on all singletons contained in E and that µ is semi-moderate on E, i.e., there is a sequence (En)n
of closed sets with

⋃
n∈N En = E such that µ(En) <∞ for all n ∈ N (in particular, E is an Fσ-set and so µ

is indeed defined on the Borel set E). Suppose that µτ is σ-finite on singletons (i.e., finite on singletons) and
on each perfect compact µ-nullset contained in E. Then µτ is σ-finite on E.

Proof. We divide the proof into several steps.
step 1. Suppose that the assertion is already established in the special case that E is closed and µ is
finite onE. Then we may deduce the general assertion as follows: For every n ∈ N the measure µτ is
clearly σ-finite on each perfect compact µ-nullset contained in En and µ is finite on En; in addition,
each space (En, dEn) (n ∈ N) is separable. Therefore the special case yields that µτ is σ-finite on En
for each n ∈ N and thus σ-finite on E. Consequently, we may and will assume in what follows that
E is closed and µ is finite on E.
step 2. We define

U := {U ∈ T (X) : µτ is σ-finite on E ∩ U}

and O :=
⋃

U, which is clearly open. We note that the measure µτ is σ-finite on E ∩ O. Indeed, for
each x ∈ E ∩ O we can find a set U(x) in U with x ∈ U(x). Then {U(x) ∩ E}x∈E∩O = {U(x) ∩ E ∩
O}x∈E∩O is an open (relative to (E ∩ O, dE∩O)) cover of the separable metric space (E ∩ O, dE∩O).
Since every separable metric space is a Lindelöf space, there is a sequence (xn)n in E ∩ O with
E ∩O =

⋃
n∈N (U(xn) ∩ E). Since µτ is σ-finite on each of the sets U(xn) ∩E, it is σ-finite on E ∩O

as asserted.
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3.2 σ-finite variational measures

Now we put P := E \ O. Obviously, P is closed. Furthermore, P has no isolated points: If x0 ∈ P
were an isolated point of P , then there would be a number r > 0 with Ur(x0) ∩ P = {x0}. The set
U := Ur(x0) \ {x0} ⊆ X \ P = (X \ E) ∪ O would satisfy U ∩ E ⊆ E ∩ O, and hence µτ would be
σ-finite on U ∩E. As a result, µτ would be σ-finite on (U ∪ {x0}) ∩E = Ur(x0) ∩E. But this would
imply Ur(x0) ∈ U and consequently x0 ∈ O contradicting x0 ∈ P ⊆ X \ O.
We next observe that µτ is not σ-finite on P ∩ U for any U ∈ T (X) with P ∩ U 6= ∅. Indeed, if there
were such a U , then µτ would be σ-finite on E ∩ U thanks to the decomposition E ∩ U = (U ∩
P )∪̇(U ∩E ∩O) and as a consequence we could derive U ∈ U, which would yield the contradiction
∅ = P ∩ O ⊇ P ∩ U 6= ∅.
step 3 a). We claim that P is empty. As soon as we will have shown this, we obtain E ⊆ O and we
see that µτ is σ-finite on E = E ∩ O.
In order to verify this claim we suppose to the contrary that P is nonvoid. Since (P, dP ) is a perfect
separable metric space which is complete or locally compact (as P is a non-empty closed subset of
the closed setE), P is infinite (even uncountable, see, e.g., [Kec95, Theorem (5.3) and Theorem (6.2)])
and we may choose two distinct elements x1, x2 of P . Let j ∈ {1, 2}. Because of ∆(xj , 1

n )∩E ↓ {xj}
and because of the finiteness of µ on E, we obtain

0 = µ({xj}) = µ

(⋂
n∈N

(
∆(xj , 1/n) ∩ E

))
= lim
n→∞

µ(∆(xj , 1/n) ∩ E).

There thus exists an index nj ∈ N with µ(∆(xj , 1
n ) ∩ E) ≤ 1

4 for all n ≥ nj . We may additionally
assume that each nj is so large that ∆(x1,

1
n1

)∩∆(x2,
1
n2

) = ∅ and that both ∆(x1,
1
n1

) and ∆(x2,
1
n2

)
are compact in the case that (X, d) is locally compact. For x ∈ U 1

nj

(xj) with j ∈ {1, 2} we define the
gauge

δ(x) :=


1
2 min{dist(x,X \ U 1

nj

(xj)), d(x, xj), 1
2}, if x 6= xj ,

1
2 min{dist(x,X \ U 1

nj

(xj)), 1
2}, if x = xj .

Due to µτ (U 1
nj

(xj)∩P ) =∞, we haveWδ′(τ, U 1
nj

(xj)∩P ) =∞ for each gauge δ′. Therefore we can

find a a partition {(Ui,j , ξi,j)}
rj
i=1 ∈ Pδ(U 1

nj

(xj)∩P ) with rj ∈ N and µ(U i,j∩Uk,j) = 0 for all distinct

i, k ∈ {1, . . . , rj} such that
∑rj
i=1 τ(Ui,j) > 2. We observe that Ui,j ⊆ Uδ(ξi,j)(ξi,j) ⊆ U 1

nj

(xj) and

thus diam(Ui,j) ≤ 2δ(ξi,j) ≤ 1
2 . If xj 6= ξi,j for some i ∈ {1, . . . , rj}, then xj does not even belong to

∆(ξi,j , δ(ξi,j)) because otherwise 0 < d(xj , ξi,j) ≤ δ(ξi,j) ≤ 1
2d(xj , ξi,j) would follow. Assume for a

moment that xj 6= ξi,j holds indeed for every i ∈ {1, . . . , rj}. According to what we have just said,
we may then choose a radius ε ∈ (0,min{ 1

4 ,
1
nj
, δ(xj)}) so small that ∆(xj , ε) and ∆(ξi,j , δ(ξi,j))

are disjoint for all i ∈ {1, . . . , rj} and ∆(xj , ε) is compact provided that (X, d) is locally compact.
Thanks to the premise that B is a Vitali-basis, there exists a set V in B(X) with (V, xj) ∈ Bε[{xj}];
hence, V ⊆ Uε(xj). We clearly have V ∩Ui,j = ∅ for each i ∈ {1, . . . , rj}. As a consequence, we may
add (V, xj) to the sequence {(Ui,j , ξi,j)}

rj
i=1 without violating the subsequent conditions:

• ξi,j ∈ Ui,j ⊆ U 1
nj

(xj) and ξi,j ∈ P for all i ∈ {1, . . . , rj},

• Ui,j is open for all i ∈ {1, . . . , rj},

• diam(Ui,j) ≤ 1
2 for all i ∈ {1, . . . , rj},

•
∑rj
i=1 τ(Ui,j) > 2,

• Ui,j ∩ Uk,j = ∅ for all i, k ∈ {1, . . . , rj}with i 6= k,

• µ(Ui,j ∩ Uk,j) = 0 for all i, k ∈ {1, . . . , rj}with i 6= k,

• Ui,j is compact for all i ∈ {1, . . . , rj} if (X, d) is locally compact.
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3 Variational measures

Therefore we assume without loss of generality that xj is an element of {ξi,j : i ∈ {1, . . . , rj}}.

Using the inclusion-exclusion principle for finite measures, we arrive at
rj∑
i=1

µ(Ui,j ∩ E) = µ

(
rj⋃
i=1

Ui,j ∩ E

)
≤ µ(∆(xj , 1/nj) ∩ E) ≤ 1

4
.

We next relabel the pairs {(Ui,j , ξi,j)} i=1,...,rj
j∈{1,2}

by

(V1,1, x1,1), (V1,2, x1,2), (V1,3, x1,3), . . .

and observe that ∑
k

µ(V1,k ∩ E) ≤
2∑
j=1

µ(∆(xj , 1/nj) ∩ E) ≤ 2
4

=
1
2
.

We further obtain V1,p ∩ V1,q = ∅ as well as µ(V1,p ∩ V1,q) = 0 for p 6= q due to the construction and
due to ∆(x1,

1
n1

) ∩∆(x2,
1
n2

) = ∅.

We repeat the preceding procedure as follows. Take any of the indices k. Because x1,k ∈ V1,k ∩ P ,
V1,k is open and P is perfect, we can find a point ζ2,k in V1,k ∩ P such that ζ1,k := x1,k and ζ2,k
are distinct. As above we can find integers nj,k ∈ N for j ∈ {1, 2} such that ∆(ζj,k, 1

n ) ⊆ V1,k and
µ(∆(ζj,k, 1

n )∩E) ≤ 1
4µ(V1,k ∩E) for all n ≥ nj,k, ∆(ζ1,k, 1

n1,k
) and ∆(ζ2,k, 1

n2,k
) are disjoint and such

that both ∆(ζ1,k, 1
n1,k

) and ∆(ζ2,k, 1
n2,k

) are compact in the case that (X, d) is locally compact.
For x ∈ U 1

nj,k

(ζj,k) and j ∈ {1, 2}we define the gauge

δ(x) :=


1
2 min{dist(x,X \ U 1

nj.k

(ζj,k)), d(x, ζj,k), 1
4}, if x 6= ζj,k

1
2 min{dist(x,X \ U 1

nj,k

(ζj,k)), 1
4}, if x = ζj,k.

Again there exists a partition {(Ui,j,k, ξi,j,k)}r(j,k)
i=1 in Bδ[U 1

nj,k

(ζj,k) ∩ P ] satisfying

• ξi,j,k ∈ Ui,j,k ⊆ Uδ(ξi,j,k)(ξi,j,k) ⊆ U 1
nj,k

(ζj,k) ⊆ V1,k and ξi,j,k ∈ P for all i ∈ {1, . . . , r(j, k)},

• Ui,j,k is open for all i ∈ {1, . . . , r(j, k)},
• diam(Ui,j,k) ≤ 1

4 for all i ∈ {1, . . . , r(j, k)},

•
∑r(j,k)
i=1 τ(Ui,j,k) > 4,

• Ui,j,k ∩ Uι,j,k = ∅ for all i, ι ∈ {1, . . . , r(j, k)}with i 6= ι,

• µ(Ui,j,k ∩ Uι,j,k) = 0 for all i, ι ∈ {1, . . . , r(j, k)}with i 6= ι

• ζj,k ∈ {ξi,j,k : i ∈ {1, . . . , r(j, k)}},
• Ui,j,k is compact for all i ∈ {1, . . . , r(j, k)} if (X, d) is locally compact.

It follows

r(j,k)∑
i=1

µ(Ui,j,k ∩ E) = µ

r(j,k)⋃
i=1

Ui,j,k ∩ E


≤ µ(∆(ζj,k, 1/nj,k) ∩ E) ≤ 1

4
µ(V1,k ∩ E)

as well as

2∑
j=1

r(j,k)∑
i=1

µ(Ui,j,k ∩ E) ≤ 1
2
µ(V1,k ∩ E).

28



3.2 σ-finite variational measures

We thus infer

∑
k

2∑
j=1

r(j,k)∑
i=1

µ(Ui,j,k ∩ E) ≤ 1
2

∑
k

µ(V1,k ∩ E) ≤ 1
4
.

We next relabel the pairs {(Ui,j,k, ξi,j,k)} i=1,...,r(j,k)
j∈{1,2}, k

by

(V2,1, x2,1), (V2,2, x2,2), . . . .

Observe that for every k we have x1,k = x2,l for some l.
So, proceeding by induction we construct for each i ∈ N a finite sequence

(Vi,1, xi,1), (Vi,2, xi,2), . . .

at least of length 2 with B-sets (in particular open sets) Vi,k fulfilling the subsequent requirements:

(a) xi,k ∈ P ∩ Vi,k,

(b) for each j > i there is some l such that xi,k = xj,l,

(c) each set Vi,k is contained in some set Vi−1,l if i > 1),

(d) each set Vi−1,l contains at least two of the sets Vi,k if i > 1,

(e)
∑
k

Vi,k⊆Vi−1,l

τ(Vi,k) > 2i for each l and i > 1 and
∑
k τ(V1,k) > 2,

(f) diam(Vi,k) ≤ 1
2i ,

(g)
∑
k µ(Vi,k ∩ E) ≤ 1

2i ,

(h) µ(Vi,k ∩ Vi,l) = 0 for distinct k, l,

(i) Vi,k ∩ Vi,l = ∅ for distinct k, l,

(j) Vi,k is compact for all i and k provided that (X, d) is locally compact.

step 3 b). We now define N :=
⋂
i∈N
⋃
k

(
Vi,k ∩ E

)
⊆ E. Clearly, N is closed. Thanks to condition (c)

above we have ⋃
k

(
Vi,k ∩ E

)
⊆
⋃
l

(
Vi−1,l ∩ E

)
and hence

⋃
k

(
Vi,k ∩ E

)
↓ N . Together with conditions (a) and (b) this fact yields xi,k ∈ N for every

i and k. In particular, N is not empty and each set Vi,k contains a point of N .
If (X, d) is locally compact, then N is compact since all sets Vi,k ∩ E are compact by construction.
If (X, d) is complete, then (N, dN ) is complete, too, and N is covered by the finitely many sets
{Vi,k ∩ E}k each of which has diameter of at most 1

2i according to (f). Using a diagonalisation
argument we infer that each sequence in N possesses a subsequence which is a Cauchy sequence.
Hence, it converges by the completeness of (N, dN ) and N is compact also in this case.
Now we show that N is perfect. Take x ∈ N and r > 0 and choose an integer i ∈ N with 1

2i < r.
Because of x ∈ N there exists an index k such that x ∈ Vi,k. Using condition (f) we deduce Vi,k ⊆
Ur(x). Thanks to conditions (d) and (i) there are distinct xi+1,l and xi+1,l′ contained in Vi,k ⊆ Ur(x).
But as we already mentioned above these points both belong to N and clearly at least one of them
is distinct from x. Therefore we conclude that (Ur(x) ∩N) \ {x} is nonvoid.
Conditions (g) and (h) further imply

µ(N) = lim
i→∞

µ

(⋃
k

(
Vi,k ∩ E

))
= lim
i→∞

∑
k

µ
(
Vi,k ∩ E

)
≤ lim
i→∞

2−i = 0.

Consequently, µτ is σ-finite on N by assumption and we can choose a finite or infinite sequence
(Np)p of pairwise disjoint non-empty Borel sets with

⋃
pNp = N and µτ (Np) < ∞ for each p. Due
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3 Variational measures

to µτ (Np) < ∞ and the pairwise disjointness of the sets Np, we can thus find a gauge δ on X with
Wδ(τ,Np) < ∞ for each p. We next set Em := {x ∈ N : δ(x) > 1

m} for each m ∈ N. Clearly
N =

⋃
m,p(Np ∩ Em) and the closedness of N yields N =

⋃
m,pNp ∩ Em. Since the space (N, dN )

it compact, Baire’s theorem applies and gives indices p and m such that Np ∩ Em has non-empty
interior in the metric space (N, dN ). There thus exists an open set U in T (X) with ∅ 6= N ∩ U ⊆
Np ∩ Em, where we may assume without loss of generality diam(U) < 1

m . (Just take some x ∈ N∩U
and choose ε ∈ (0, 1

2m ) such that Uε(x) ⊆ U holds and replace U by Uε(x).) One easily verifies that
Np ∩ Em ∩ U is dense in N ∩ U .
We finally claim that for all sufficiently large indices i there is an index ki with Vi−1,ki ⊆ U . Indeed,
fix x ∈ N∩U , choose r > 0 with ∆(x, r) ⊆ U and take i ∈ N with i > 1 and 1

2i−1 < r. Since x ∈ N , for
each such i there is an index ki with x ∈ Vi−1,ki . Due to diam(Vi−1,ki) = diam(Vi−1,ki) ≤ 1

2i−1 < r,
we thus infer Vi−1,ki ⊆ ∆(x, r) ⊆ U .
As we mentioned above, each set Vi,k contains a point ofN . Therefore for all sufficiently large i, each
set Vi,l contained in Vi−1,ki ⊆ U possesses an element of N ∩U . Since Np∩Em∩U is dense in N ∩U
and Vi,l ∩N ∩U is open in N ∩U , we can find a point yi,l belonging to Np∩Em∩Vi,l. The collection
{(Vi,l, yi,l)}l,Vi,l⊆Vi−1,ki

belongs to B because B is a BF-basis. Moreover, we have δ(yi,l) ≥ 1
m and

diam(Vi,l) < 1
m thanks to yi,l ∈ Em, and Vi,l ⊆ U respectively. As a result, Vi,l ⊆ Uδ(yi,l)(yi,l) and

{(Vi,l, yi,l)}l,Vi,l⊆Vi−1,ki
is a δ-fine partition on Np with µ(Vi,l ∩ Vi,k) = 0 for distinct l and k (recall

conditions (h) and (i) from above). Consequently, we obtain (by condition (e) from above)

∞ > Wδ(τ,Np) ≥
∑
l

Vi,l⊆Vi−1,ki

τ(Vi,l) > 2i

for all sufficiently large i, which is absurd.
As a result, we infer that our assumption “P 6= ∅” must be wrong and the proof is completed.

Note that instead of verifying thatN is perfect we could have equally applied the Cantor-Bendixson
Theorem (see, e.g., [Kec95, Theorem (6.4)]) to N by observing that (N, dN ) is polish since N is a
closed subset of the closed setE and (E, dE) is a separable metric space which is complete or locally
compact, hence, polish (see, e.g., [Kec95, Theorem (5.3)]). Then we could have also concluded that
µτ is σ-finite on N .

3.2.2 Variational measures on the real line

Now we turn our attention to variational measures on the real line. In this section we let X ⊆ R
be closed and endowed with the usual Euclidean metric. As before µ : Bor(X) → [0,∞] is a fixed
measure. We further recall at this point that we form the interior, the boundary and so on with
respect to X.
Usually the bases considered in this context are not open. In order to capture this case, the main aim
of this section is to establish the following theorem, which generalises [BPS00, Theorem 3.1 (α)].

3.4 Theorem. Let ∅ 6= E ⊆ X ⊆ R and B a semi-open BF-basis on X satisfying

• U = U◦ for each U ∈ B(X);

• if U ∈ B(X), then each boundary point of U◦ (equivalently, boundary point of U ) is a boundary point
of some connected component (with respect ot X) of U◦.

Moreover, let τ be a B-set function and assume that µ is semi-moderate on E (in particular E is a Fσ-set in
X, hence, in R) and that we have µ({x}) = 0 for all x ∈ E. If µτ is σ-finite on each singleton and on each
perfect compact µ-nullset contained in E, then µτ is σ-finite on E.
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3.2 σ-finite variational measures

Note that these two additional properties imposed on the basis B are, e.g., satisfied if each B-set is
the finite union of intervals of positive length (where we do not assume that each single interval is
closed or open).

As one may expect, the proof of this result follows very closely the lines of the proof to Theorem
3.3. However, there are some crucial differences.
In the proof of Theorem 3.3 we constructed finite sequences

(Vi,1, xi,1), (Vi,2, xi,2), . . .

inter alia with the two properties

• xi,k ∈ P ∩ Vi,k,

• for each j > i there is some l such that xi,k = xj,l.

We used these properties, e.g., to ensure that N was nonvoid and that each set Vi,k contains some
element of N . But to fulfill these two requirements, it was essential that we considered an open
basis. Moreover, the first condition was most decisive for the inductive contruction of those finite
sequences above since it guaranteed - thanks to the openness of Vi,k (and the perfectness of P ) -
that Vi,k contained enough points belonging to P so that we could construct at least two sets Vi+1,l

contained in Vi,k.
In Theorem 3.4 however, we do not consider an open basis. Thus it may happen that some of those
tags xi,k from above are boundary points of the respective set Vi,k; and then the construction in the
proof of Theorem 3.3 does not work anymore this way! As a consequence, we have to modify the
construction in order to make sure that even in that case V ◦i,k contains sufficiently many points of P .
In the papers [BPS00, BPS02, SZ04, Zhe07b, Zhe07a] the Lebesgue measure was considered, which
allowed to solve this problem by means of Lebesgue density points. This approach was extended
in [Cap03] in order to include measures defined by monotone functions. But, we cannot apply such
arguments in the general situation of Theorem 3.4.
The following simple, but useful observation is the key to modify the above inductive construction
in the situation of Theorem 3.4. (A similar reasoning is used in the proof of [BPS02, Theorem 4.3].)
If P ⊆ R is a closed set, then the set of all points that are boundary points of a connected component
of R \P is countable because R \P has only countably many connected components and each such
connected component is an interval with at most two boundary points.
We now give a proof for Theorem 3.4, where we omit those details that are completely analogous to
the corresponding arguments used in the proof of Theorem 3.3.

Proof of Theorem 3.4. As in the proof of Theorem 3.3, we may assume w.l.o.g. that E is closed and
that µ is finite on E.
Let U, O and P be defined as before. Then µτ is σ-finite on E ∩O, P is closed (in X and, hence, in R
as X is closed in R) without isolated points and µτ is not σ-finite on P ∩ U for any U ∈ T (X) with
P ∩ U 6= ∅. Once again we claim that P is void and assume to the contrary P 6= ∅.
We define

P̂ := {x ∈ P : ∃ V ∈ B(X) with x ∈ V and V ◦ ∩ P = ∅}.

Let x ∈ P̂ and V ∈ B(X) be as in the definition of P̂ . The point x then belongs to V \ V ◦ ⊆ V \ V ◦ =
V ◦ \ V ◦ = ∂V ◦. Let G be a connected component of V ◦ with x ∈ ∂G. Since G ⊆ R \P is connected,
it is contained in a connected component H of R \P . We conclude x is contained in ∂H since x ∈ P
and in each neighbourhood of x there is point of G ⊆ H . However, R \P has only countably many
connected components (since R \P is open in R) and each such connected component is an interval
with at most two boundary points. As a result, P̂ is countable, and hence an Fσ-µ-nullset. The
assumption thus yields that µτ is σ-finite on P̂ .
Consider any U ∈ T (X) with P ∩ U 6= ∅. From the composition

U ∩ P =
(
U ∩ (P \ P̂ )

)
∪̇(U ∩ P̂ )
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3 Variational measures

and the fact that µτ is not σ-finite on P ∩ U , we infer that µτ is not σ-finite on U ∩ (P \ P̂ ) either.
Take V ∈ B(X) with V ∩ (P \ P̂ ) 6= ∅. We claim that V ◦∩P is nonvoid. Indeed, pick x ∈ V ∩ (P \ P̂ ).
If V ◦ ∩ P were empty, then x would belong to P̂ by definition. But this contradicts the choice of x.
We can now proceed similarly as in the proof of Theorem 3.3. We first choose two distinct elements
x1, x2 of P . Let j ∈ {1, 2}. We find nj ∈ N with µ(∆(xj , 1

n ) ∩ E) ≤ 1
4 for all n ≥ nj and with

∆(x1,
1
n1

) ∩∆(x2,
1
n2

) = ∅. For x ∈ U 1
nj

(xj) (j ∈ {1, 2}) we define the gauge

δ(x) :=
1
2

min
{

dist(x,X \ U 1
nj

(xj)),
1
2

}
.

Since µτ ist not σ-finite on U 1
nj

(xj) ∩ P , it is not σ-finite on U 1
nj

(xj) ∩ (P \ P̂ ) as observed above;

in particular µτ (U 1
nj

(xj) ∩ (P \ P̂ )) = ∞. It follows that Wδ′(τ, U 1
nj

(xj) ∩ (P \ P̂ )) = ∞ for each

gauge δ′. We can thus find a partition {(Ui,j , ξi,j)}
rj
i=1 in Bδ[U 1

nj

(xj)∩ (P \ P̂ )] with rj ∈ N such that

U◦i,j ∩ U◦k,j = ∅, µ(Ui,j ∩ Uk,j) = 0 for distinct i, k ∈ {1, . . . , rj} and
∑rj
i=1 τ(Ui,j) > 2. We observe

that Ui,j ⊆ Uδ(ξi,j)(ξi,j) ⊆ U1/nj (xj) and hence diam(Ui,j) ≤ 2δ(ξi,j) ≤ 1
2 . As before we obtain that

rj∑
i=1

µ(Ui,j ∩ E) ≤ µ(∆(xj , 1/nj) ∩ E) ≤ 1
4
.

as well as

2∑
j=1

rj∑
i=1

µ(Ui,j ∩ E) ≤ 1
2
.

Clearly, all sets {U◦i,j}i,j are pairwise disjoint with µ(Ui,j ∩Uk,l) = 0 for distinct pairs (i, j) and (k, l).
We finally relabel the pairs {(Ui,j , ξi,j)} i=1,...,rj

j∈{1,2}
as

(V1,1, x1,1), (V1,2, x1,2), . . . .

Because of x1,k ∈ V1,k ∩ (P \ P̂ ), the intersection V ◦1,k ∩ P is non-empty. Since P has no isolated
points, we are able to choose in each set V ◦k,1 two distinct points ζ1,k and ζ2,k of P and to repeat the
above procedure in a similar manner as in the proof of Theorem 3.3. As in the induction step in the
proof of Theorem 3.3 we can construct (using the notation of the proof of Theorem 3.3) points ξi,j,k,
sets Ui,j,k and indices nj,k ∈ N such that

ξi,j,k ∈ Ui,j,k ⊆ U 1
nj,k

(ζj,k) ⊆ ∆(ζj,k, 1/nj,k) ⊆ V ◦1,k ⊆ V1,k.

Hence Ui,j,k ⊆ ∆(ζj,k, 1/nj,k) ⊆ V ◦1,k. Arguing as above, we obtain for each i ∈ N a finite sequence

(Vi,1, xi,1), (Vi,2, xi,2), . . .

at least of length 2 with B-sets Vi,k fulfilling the requirements:

(a) xi,k ∈ Vi,k ∩ (P \ P̂ ),

(b) each set Vi,k is contained in some set V ◦i−1,l if i > 1,

(c) each set V ◦i−1,l contains at least two of the sets Vi,k if i > 1,

(d)
∑
k

Vi,k⊆Vi−1,l

τ(Vi,k) > 2i for all l and i > 1 and
∑
k τ(V1,k) > 2,

(e) diam(Vi,k) ≤ 1
2i ,
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3.3 BVG*-functions and Henstock-Thomson variational measures

(f)
∑
k µ(Vi,k ∩ E) ≤ 1

2i ,

(g) µ(Vi,k ∩ Vi,l) = 0 for distinct k, l,

(h) V ◦i,k ∩ V ◦i,l = ∅ for distinct k, l.

We again define N :=
⋂
i∈N
⋃
k

(
Vi,k ∩ E

)
. Then µ(N) = 0, and the set N is compact since the sets⋃

k

(
Vi,k ∩ E

)
are bounded and closed subsets of the closed set X. Moreover, the set N is non-empty

by the finite intersection property of compact sets because we have

∅ 6=
⋃
k

(
Vi,k ∩ E

)
⊆
⋃
l

(
Vi−1,l ∩ E

)
.

We claim that each set V ◦i,k contains a point of N . In order to see this, we first choose a sequence
of indices (κj)∞j=0 with κ0 := k and with Vi+n,κn ⊆ V ◦i+n−1,κn−1

for n ∈ N, which is possible due
to condition (c). Thanks to the compactness of Vi+1,κ1 , the sequence (xi+n,κn)∞n=1 possesses a limit
point. One easily verifies that each such limit point belongs to N ∩ Vi+1,κ1 ⊆ N ∩ V ◦i,k.
As in the proof of Theorem 3.3 one can show that N is perfect and, hence, that µτ is σ-finite on N
(alternative: use the Cantor-Bendixson Theorem). Therefore we can choose {Np}p, δ and {Em}m
as in the proof of Theorem 3.3 and we find indices p and m ∈ N and an open set U ∈ T (X) with
diam(U) < 1

m such thatNp∩Em∩U is dense in the non-empty setN∩U . Moreover,N∩U ⊆ Np ∩ Em
and for all sufficiently large indices i there is an index ki with Vi−1,ki ⊆ U .
Because every set V ◦i,k contains some point of N , for all sufficiently large i, we have V ◦i,l ∩ N ∩
U 6= ∅ for each set Vi,l contained in Vi−1,ki ⊆ U . Since Np ∩ Em ∩ U is dense in N ∩ U and
V ◦i,l ∩ N ∩ U is non-empty and open in N ∩ U , there is an element yi,l of Np ∩ Em ∩ V ◦i,l. The
collection {(Vi,l, yi,l)}l,Vi,l⊆Vi−1,ki

belongs to the BF-basis B. Furthermore, we have δ(yi,l) ≥ 1
m and

diam(Vi,l) < 1
m thanks to yi,l ∈ Em and Vi,l ⊆ U , respectively. As a result, Vi,l ⊆ Uδ(yi,l)(yi,l) and

{(Vi,l, yi,l)}l,Vi,l⊆Vi−1,ki
is a δ-fine partition on Np with µ(Vi,l ∩ Vi,k) = 0 for distinct l and k (recall

conditions (g) and (h)). Condition (d) thus implies

∞ > Wδ(τ,Np) ≥
∑
l

Vi,l⊆Vi−1,ki

τ(Vi,l) > 2i

for all sufficiently large i, which is absurd.

We notice that in contrast to [BPS00, Theorem 3.1 (α)] we do not need to assume in Theorem 3.4
that B is a Vitali-basis; this is essentially due to our definition of µτ , which allows the situation
Pδ(E) = ∅.

Amongst other things, we shall apply in the next section our Theorem 3.4 to measures µτ derived
from functions.

3.3 BVG*-functions and Henstock-Thomson variational
measures

In this section we explore the intimate relation between BVG*-functions and the so-called Henstock-
Thomson variational measures associated with them. In particular, we give a proof of Thomson’s
characterisation of σ-finite variational measures induced by functions (see [Tho85, Theorem (40.1)]).
Since false versions of this theorem have appeared, unfortunately, several times in the literature, it
seems to be worth to provide an ab ovo and elementary proof of this result merely based on the
most elementary properties of BVG*-functions and avoiding the notion and machinery of local sys-
tems as used by Thomson. En passant, we reprove results essentially due to Yu. A. Zhereb’ev (cf.
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3 Variational measures

[Zhe07b, Theorem 2] and [Zhe07a, Corollary 1]) and we shall use these results to give a complete
characterisation of BVG*-functions solely in terms of their associated variational measure. In addi-
tion, we will derive, as announced at the beginning of this chapter, extensions of the results obtained
by Ene ([Ene00, Theorem 3.2]) and Caponetti ([Cap03, Theorem 3.4]).

We start with the definition of Henstock-Thomson variational measures. In fact, the definition just
instantiates a special case of the general framework considered in the preceding section. To see
how this special case is embedded in the general framework, let X = [a, b] (endowed as before with
the usual Euclidean metric). We denote by S the set of all non-degenerate (not necessarily closed)
subintervals of [a, b] and, as before, by I the set of all non-degenerate, closed subintervals of [a, b].
For a function f : [a, b]→ X (recall that (X, ‖ · ‖) is a Banach space) and for a basis B ⊆ S× [a, b] on
X = [a, b] (a so-called interval basis) we consider the B-set function

τf,B : B → [0,∞); (I, t) 7→ ‖f(sup I)− f(inf I)‖.

We put µ∗f,B := µ∗τf,B and µf,B := µτf,B . We write BI for the unique BF-basis B ⊆ S× [a, b] on X with
B(X) = I (the so-called full interval basis). We further set τf := τf,BI

and Wδ(f, ·) := Wδ(τf,BI
, ·)

for every gauge δ on [a, b] as well as µ∗f := µ∗τf,BI
and µf := µτf,BI

, where we frequently also just
write µf instead of µ∗f if no confusion is to be expected.
Moreover, we assume for the remainder of this section that our measure µ : Bor(X) → [0,∞] is the
one-dimensional Lebesgue measure λ. We then write mf instead of µf = λf . The set function mf

is known as the Henstock-Thomson variational measure induced by/ associated with f . At this point, we
note that we could also treat measures µ that vanish on all singletons. Here one obtains precisely
the same results since such µ yields the same measures µf,B as the Lebesgue measure because B is
an interval basis and thus two B-sets whose interiors have empty intersection intersect in at most
one point. This is a simple, but important observation, which we shall use later on.
As a consequence, for ∅ 6= E ⊆ [a, b] and for δ ∈ (0,∞)E we have

S(E, δ;BI) =
{
{([aj , bj ], xj)}rj=1 :

r ∈ N, a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ ar < br ≤ b,
xj ∈ [aj , bj ] ⊆ Uδ(xj)(xj), xj ∈ E for all j ∈ {1, . . . , r}

}
.

We usually write a generic element of S(E, δ) in the form {([aj , bj ], tj)}rj=1 or {([aj , bj ], xj)}rj=1,
where we simply write S(E, δ) in lieu of S(E, δ;BI). Notice that the notation {([aj , bj ], tj)}rj=1

resp.{([aj , bj ], xj)}rj=1 always means that the respective intervals are listed in “increasing order”.
For δ ∈ (0,∞)E and S = {([aj , bj ], xj)}rj=1 ∈ S(E, δ) we write

Wg(S) =
r∑
j=1

‖g(bj)− g(aj)‖ and Wδ(g,E) = sup{Wg(S) : S ∈ S(E, δ)}.

Note that the notation of this chapter is consistent with notation of Chapter 2. For a ≤ c < d ≤ b and
δ ∈ (0,∞)[c,d], we call, as above, S = {([aj , bj ], xj)}rj=1 ∈ S([c, d], δ) a δ-fine partition on [c, d] and we
call it a δ-fine partition of [c, d] if

⋃r
j=1[aj , bj ] = [c, d] additionally holds. If A is an arbitrary set, then

a δ-fine partition of A does not need to exist. However, for intervals the situation is different. This
is the content of the following result, known as Cousin’s lemma (see, e.g., Lemma 9.2 in [Gor94] for
a proof).

3.5 Lemma (Cousin’s lemma). If δ : [a, b]→ (0,∞) is a gauge on [a, b] and [c, d] an element of I, then there
exists a δ-fine partition of [c, d], i.e., an interval-point sequence {([aj , bj ], xj)}rj=1 belonging S([c, d], δ;BI)
with

⋃r
j=1[aj , bj ] = [c, d].

The next lemma shows that the Henstock-Thomson variational measure of a function is assigned to
an exposed position among variational measures (which is one aspect that justifies to give a specific
name to it).
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3.6 Lemma. Let f : [a, b] → X be a function. For each basis B ⊆ S × [a, b] on X we have µ∗f,B ≤ m∗f . In
particular, we have µ∗f,B = m∗f whenever B is a BF-basis with B(X) ⊇ I.

Proof. Let ∅ 6= E ⊆ X and consider any gauge δ onX . If there is no δ-fine partition onE with respect
to the basis B, then we clearly have µ∗f,B(E) = 0 ≤ m∗f (E). Therefore we may assume without loss
of generality that a δ-fine partition on E with respect to the basis B exists. Let {(Ij , xj)}rj=1 be such
a δ-fine partition on E with respect to B. Then {(Ij , xj)}rj=1 is a 2δ-fine partition on E with respect
to the basis BI. Due to

∑r
j=1 τf,B(Ij) =

∑r
j=1 τf (Ij), this yields Wδ(τf,B, E;B) ≤ W2δ(f,E) and

consequently µ∗f,B(E) ≤ m∗f (E) as asserted.

We now start the exploration of the relation between BVG*-functions and the Henstock-Thomson
variational measures associated with them. The first results of this kind also distinctly explain
the adjective “variational”, as they demonstrate how closely the Henstock-Thomson variational
measure is related to the classical notion of variation.

3.7 Lemma (see also Lemma 39.1 in [Tho85]). Let J ⊆ [a, b] be a non-empty interval which is open
relative to [a, b]. Then mϕ(J) = V (ϕ, J). In particular, ϕ ∈ BV([a, b], Y ) if and only if mϕ([a, b]) < ∞,
and ϕ is constant on J if and only if mϕ(J) = 0.

Proof. Let δ ∈ (0,∞)J with Uδ(t)(t) ∩ [a, b] ⊆ J for all t ∈ J . Furthermore, let {([aj , bj ], tj)}rj=1 ∈
S(J, δ). We then have [aj , bj ] ⊆ Uδ(tj)(tj)∩ [a, b] ⊆ J ; in particular {[aj , bj ]}rj=1 ∈ A(J), which yields∑r
j=1 ‖ϕ(bj)− ϕ(aj)‖ ≤ V (ϕ, J) and thus mϕ(J) ≤ supS∈S(J,δ)Wϕ(S) ≤ V (ϕ, J).

Conversely, take {[aj , bj ]}rj=1 ∈ A(J) and let ε > 0. Pick δ ∈ (0,∞)J such that Wδ(ϕ, J) ≤
mϕ(J) + ε. Thanks to Cousin’s lemma, we may choose for each j ∈ {1, . . . , r} a δ-fine partition
{([aνj , bνj ], tνj)}

rj
ν=1 of [aj , bj ]. As J is an interval, we obtain

⋃r
j=1{([aνj , bνj ], tνj)}

rj
ν=1 ∈ S(J, δ).

This implies

r∑
j=1

‖ϕ(bj)− ϕ(aj)‖ ≤
r∑
j=1

rj∑
ν=1

‖ϕ(bνj)− ϕ(aνj)‖ ≤Wδ(ϕ, J) ≤ mϕ(J) + ε,

hence V (ϕ, J) ≤ mϕ(J) + ε. Letting ε→ 0+ yields the assertion.
The addendum is clear.

Furthermore, it is also possible to determine the value of the Henstock Thomson variational mea-
sure on singletones as the next result shows.

3.8 Lemma (see [Tho85, Example 37.5]). We have

• mϕ({x}) = limh→0+ ‖ϕ(x)− ϕ(x+ h)‖+ limh→0+ ‖ϕ(x)− ϕ(x− h)‖ for all x ∈ (a, b) as well as

• mϕ({a}) = limh→0+ ‖ϕ(a)− ϕ(a+ h)‖ and

• mϕ({b}) = limh→0+ ‖ϕ(b)− ϕ(b− h)‖.

Moreover, we have

ωϕ(x) ≤ 2mϕ({x}) ≤ 4ωϕ(x). (3.1)

for any x ∈ [a, b], where ωϕ(x) := limε→0+ ω(ϕ,Uε(x) ∩ [a, b]) = infε>0 ω(ϕ,Uε(x) ∩ [a, b]) ∈ [0,∞]. In
particular, ϕ is continuous at x ∈ [a, b] if and only if mϕ({x}) = 0.
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Proof. Let x ∈ (a, b) be arbitrary and put ρ := min{x − a, b − x}. (The cases x = a and x = b are a
little bit easier and may be similarly treated.) We then compute

mϕ({x})
= inf
δ∈(0,∞)[a,b]

Wδ(ϕ, {x})

= inf
δ∈(0,∞)[a,b]

sup


r∑
j=1

‖ϕ(bj)− ϕ(aj)‖ :
r ∈ N, aj ≤ x ≤ bj ≤ aj+1,

a ≤ aj < bj ≤ b, [aj , bj ] ⊆ Uδ(x)(x)


= inf
δ>0

sup


r∑
j=1

‖ϕ(bj)− ϕ(aj)‖ :
r ∈ N, aj ≤ x ≤ bj ≤ aj+1,

a ≤ aj < bj ≤ b, [aj , bj ] ⊆ Uδ(x)


= inf

0<δ≤ρ
max

 sup
{
‖ϕ(t)− ϕ(s)‖ : x−δ<s≤x≤t<x+δ,

a≤s<t≤b

}
,

sup
{
‖ϕ(x)− ϕ(s)‖+ ‖ϕ(t)− ϕ(x)‖ : x−δ<s<x<t<x+δ,

a≤s<t≤b

}


= inf
0<δ≤ρ

sup {‖ϕ(x)− ϕ(s)‖+ ‖ϕ(t)− ϕ(x)‖ : x− δ < s < x < t < x+ δ}

= inf
0<δ≤ρ

(
sup

0<h<δ
‖ϕ(x)− ϕ(x+ h)‖+ sup

0<h<δ
‖ϕ(x)− ϕ(x− h)‖

)
. (3.2)

This last line immediately gives mϕ({x}) ≤ 2ωϕ(x).
Conversely, for each δ ∈ (0, ρ] and all s, t ∈ Uδ(x), we clearly have

‖ϕ(t)− ϕ(s)‖ ≤ ‖ϕ(t)− ϕ(x)‖+ ‖ϕ(x)− ϕ(s)‖

≤ 2
(

sup
0<h<δ

‖ϕ(x)− ϕ(x+ h)‖+ sup
0<h<δ

‖ϕ(x)− ϕ(x− h)‖
)
,

and hence

ω(ϕ,Uδ(x)) ≤ 2
(

sup
0<h<δ

‖ϕ(x)− ϕ(x+ h)‖+ sup
0<h<δ

‖ϕ(x)− ϕ(x− h)‖
)
.

This means that ωϕ(x) ≤ 2mϕ({x}) and thus assertion (3.1) holds.
Starting from (3.2), we derive the lower estimate

mϕ({x})

= inf
0<δ≤ρ

(
sup

0<h<δ
‖ϕ(x)− ϕ(x+ h)‖+ sup

0<h<δ
‖ϕ(x)− ϕ(x− h)‖

)
≥ inf

0<δ≤ρ
sup

0<h<δ
‖ϕ(x)− ϕ(x+ h)‖+ inf

0<δ≤ρ
sup

0<h<δ
‖ϕ(x)− ϕ(x− h)‖

= lim
h→0+

‖ϕ(x)− ϕ(x+ h)‖+ lim
h→0+

‖ϕ(x)− ϕ(x− h)‖.

Take ε > 0 and choose δ0 ∈ (0, ρ) such that

sup
0<h<δ

‖ϕ(x)− ϕ(x+ h)‖ ≤ lim
h→0+

‖ϕ(x)− ϕ(x+ h)‖+
ε

2

and

sup
0<h<δ

‖ϕ(x)− ϕ(x− h)‖ ≤ lim
h→0+

‖ϕ(x)− ϕ(x− h)‖+
ε

2
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3.3 BVG*-functions and Henstock-Thomson variational measures

both hold for all δ ∈ (0, δ0). These inequalities yield the upper estimate

mϕ({x})

= inf
0<δ≤ρ

(
sup

0<h<δ
‖ϕ(x)− ϕ(x+ h)‖+ sup

0<h<δ
‖ϕ(x)− ϕ(x− h)‖

)
= inf

0<δ<δ0

(
sup

0<h<δ
‖ϕ(x)− ϕ(x+ h)‖+ sup

0<h<δ
‖ϕ(x)− ϕ(x− h)‖

)
≤ inf

0<δ<δ0

(
lim
h→0+

‖ϕ(x)− ϕ(x+ h)‖+ lim
h→0+

‖ϕ(x)− ϕ(x− h)‖+ ε

)
= lim
h→0+

‖ϕ(x)− ϕ(x+ h)‖+ lim
h→0+

‖ϕ(x)− ϕ(x− h)‖+ ε.

The lemma follows letting ε→ 0+.

A natural question arising at this point is whether it possible to transcend Lemma 3.7 and 3.8 in or-
der to identify mϕ in its entirety. Indeed it is often stated (without proof) that for a real-valued, con-
tinuous function ϕ of bounded variation on [a, b], the set function mϕ coincides with the Lebesgue-
Stieltjes measure associated with the total variation. We refer to Appendix A for a proof of this claim
in the case of a vector-valued function of bounded variation that is continuous from the right.

Now we prove the announced results linking BVG*-functions with their variational measures. In
the existing literature there are different approaches to these results (mostly for real-valued func-
tions). Here we choose a completely different and new approach that systematically employs
Lemma 2.4 and 2.8. This approach has a methodological merit as it reveals the subsequent results as
a completely natural outflow of the characterisations established in Lemma 2.4 and 2.8 and provides
a unified framework to the following results. As a consequence, the proofs are, in comparison, e.g.,
to [Gor94], simplified.

3.9 Lemma (cf. [Tho81]). Let ∅ 6= E ⊆ [a, b], c := inf E, d := supE and ϕ ∈ BV*(E, Y ).

(a) We have mϕ(E ∩ (c, d)) <∞.

(b) If for each t ∈ {c, d} there is a ρ(t) > 0 such that ϕ is bounded on Uρ(t)(t) ∩ [a, b], then mϕ(E) <∞.

Proof. We first prove (a). If (c, d) ∩ E = ∅, then mϕ((c, d) ∩ E) < ∞ is clear. Therefore we may
assume without loss of generality (c, d) ∩ E 6= ∅. For t ∈ (c, d) ∩ E we set δ(t) := min{d − t, t − c}
and we choose a strictly increasing function χ : [c, d] → R according to Lemma 2.4. For each
S = {([aj , bj ], xj)}rj=1 ∈ S((c, d) ∩ E, δ) we obtain

Wϕ(S) ≤
r∑
j=1

‖ϕ(bj)− ϕ(xj)‖+
r∑
j=1

‖ϕ(xj)− ϕ(aj)‖

≤
r∑
j=1

|χ(bj)− χ(xj)|+
r∑
j=1

|χ(xj)− χ(aj)| =
r∑
j=1

(χ(bj)− χ(aj)) ≤ χ(d)− χ(c).

This implies Wδ(ϕ, (c, d) ∩ E) ≤ χ(d)− χ(c) <∞ and hence mϕ((c, d) ∩ E) <∞ as asserted.

In order to prove part (b) it suffices to observe that the hypothesis yields mϕ({c, d}) <∞ thanks to
Lemma 3.8.

3.10 Corollary. Let ∅ 6= E ⊆ [a, b] and ϕ ∈ BVG*(E, Y ).

(a) There is a sequence (En)∞n=0 with
⋃
n∈N0

En = E such that E0 is countable and mϕ(En) <∞ for all
n ∈ N.
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(b) If ϕ is locally bounded at all points of E, i.e., for each t ∈ E there is a ρ(t) > 0 such that ϕ is bounded
on Uρ(t)(t) ∩ [a, b], then we may choose E0 = ∅ in part (a).

(c) If E is an Fσ-set, then we can additionally achieve that the sets En in part (a) and (b) are closed for
every n ∈ N.

Proof. Due to ϕ ∈ BVG*(E, Y ), there exists a sequence of sets (Fn)∞n=1 with
⋃∞
n=1 Fn = E such

that ϕ ∈ BV*(Fn, Y ) for all n ∈ N. Put cn := inf Fn and dn := supFn for n ∈ N. If we set
E0 :=

⋃
n∈N{cn, dn} and En := Fn \ {cn, dn} for n ∈ N, part (a) follows from part (a) of Lemma 3.9.

Moreover, if ϕ is locally bounded at all points of E, then part (b) of Lemma 3.9 permits that we may
take E0 = ∅ and En = Fn for n ∈ N.

Finally, suppose that E is an Fσ-set and write E =
⋃∞
k=1Ak with closed sets Ak. Applying Lemma

2.7, we derive ϕ ∈ BV*((Fn ∩Ak), Y ) for all k and n. For this reason we may assume w.l.o.g.
that the sets Fn themselves are closed. For those n ∈ N such that cn and dn are distinct, we choose
sequences (cν,n)ν and (dν,n)ν in (cn, dn) converging to cn and dn, respectively, with cν,n < dν,n. Then
mϕ(Fn ∩ [cν,n, dν,n]) ≤ mϕ(Fn ∩ (cn, dn)) < ∞ by part (a) of Lemma 3.9. Hence, in the situation of
part (a) we may take as before E0 :=

⋃
n∈N{cn, dn} and we may choose (En)∞n=1 as an enumeration

of the set {Fn ∩ [cν,n, dν,n] : n, ν ∈ N with cn 6= dn}. Finally, in the situation of part (b) we can put
E0 := ∅ and En := Fn for n ∈ N once again because of part (b) of Lemma 3.9.

Now we prove a partial converse to part (b) of Lemma 3.9.

3.11 Lemma. Let ∅ 6= E ⊆ [a, b] and assume that mϕ(E) <∞. Then ϕ belongs to BVG*(E, Y ).

Proof. We adapt the proof of Lemma 3.5 in [Fau97] and provide necessary details omitted there.

We choose δ ∈ (0,∞)E such that Wδ(ϕ,E) ≤ mϕ(E) + 1 and for t ∈ [a, b] we put

St :=
{
S = {([aj , bj ], tj)}rj=1 ∈ S(E, δ) :

r⋃
j=1

[aj , bj ] ⊆ [a, t]
}

and

ψ(t) :=

{
sup{Wϕ(S) : S ∈ St}, if St 6= ∅,
0, if St = ∅.

We now consider
χ : [a, b]→ R; t 7→ t+ ψ(t).

For t, s ∈ [a, b] with s < t we have Ss ⊆ St and hence ψ(s) ≤ ψ(t) and we conclude that χ is strictly
increasing. Now let t ∈ E and s ∈ U̇δ(t)(t). We shall show that ‖ϕ(s) − ϕ(t)‖ ≤ |χ(t) − χ(s)|. Then
we obtain lims→t

‖ϕ(s)−ϕ(t)‖
|χ(t)−χ(s)| <∞ for all t ∈ E and Lemma 2.8 yields the assertion.

We first consider the case where s < t and Ss = ∅. Because of ([s, t], t) ∈ St and ψ(s) = 0, we derive

‖ϕ(t)− ϕ(s)‖ ≤ ψ(t) ≤ t− s+ ψ(t)− ψ(s) = χ(t)− χ(s) = |χ(t)− χ(s)|.

Next we consider the case where s < t and Ss 6= ∅. Let S = {([aj , bj ], tj)}rj=1 ∈ Ss. Then S′ :=
{([aj , bj ], tj)}rj=1 ∪ {([s, t], t)} ∈ St and we estimate

Wϕ(S) + ‖ϕ(s)− ϕ(t)‖ = Wϕ(S′) ≤ ψ(t),

ψ(s) + ‖ϕ(s)− ϕ(t)‖ ≤ ψ(t),
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which yields

‖ϕ(s)− ϕ(t)‖ ≤ ψ(t)− ψ(s) ≤ t− s+ ψ(t)− ψ(s) = |χ(t)− χ(s)|.

Finally, let t < s. If t = a, then St = ∅ and ψ(t) = 0. Due to ([t, s], t) ∈ Ss we then obtain

‖ϕ(t)− ϕ(s)‖ ≤ ψ(s) ≤ s− t+ ψ(s)− ψ(t) = χ(s)− χ(t) = |χ(t)− χ(s)|.

Now assume that t 6= a. Then St 6= ∅. Let S = {([aj , bj ], tj)}rj=1 ∈ St. Then S′ := {([aj , bj ], tj)}rj=1 ∪
{([t, s], t)} ∈ Ss and we estimate

Wϕ(S) + ‖ϕ(s)− ϕ(t)‖ = Wϕ(S′) ≤ ψ(s),

ψ(t) + ‖ϕ(s)− ϕ(t)‖ ≤ ψ(s),

which yields

‖ϕ(s)− ϕ(t)‖ ≤ ψ(s)− ψ(t) ≤ s− t+ ψ(s)− ψ(t) = |χ(t)− χ(s)|.

This finishes the proof.

Combining Corollary 3.10 and Lemma 3.11 we arrive at the subsequent result that completely char-
acterises the membership of ϕ to the class BVG*(E, Y ) in terms of the Henstock-Thomson varia-
tional measure associated with ϕ.

3.12 Theorem (cf. Theorem 1 in [Tho81] and Theorem 40.1 in [Tho85]). Let ∅ 6= E ⊆ [a, b].

(a) The following statements are equivalent

(i) ϕ ∈ BVG*(E, Y ).
(ii) There is a sequence (En)∞n=0 with

⋃
n∈N0

En = E such that E0 is countable and mϕ(En) < ∞
for all n ∈ N.

(b) If E is an Fσ-set, the following statements are equivalent.

(i) ϕ ∈ BVG*(E, Y ).
(ii) There is a sequence (En)∞n=0 with

⋃
n∈N0

En = E such thatE0 is countable, each setEn is closed
and mϕ(En) <∞ for all n ∈ N.

(c) If ϕ is locally bounded at each point of E, then we may choose E0 = ∅ in part (a) and part (b).

3.13 Definition. Let ∅ 6= E ⊆ [a, b] and ϕ ∈ BVG*(E, Y ). Then we call each sequence (En)∞n=0 with⋃
n∈N0

En = E such that E0 is countable and mϕ(En) < ∞ for all n ∈ N a decomposition admissible
for (ϕ,E) or just a decomposition admissible for ϕ if E = [a, b]. We call a decomposition admissible for
(ϕ,E) closed respectively Borel respectively measurable provided that for each n ∈ N the set En is closed,
Borel or mϕ-measurable (i.e., measurable in the sense of Carathéodory), respectively. Clearly, each closed
admissible decomposition is also a Borel admissible decomposition and every Borel admissible decomposition
is a measurable admissible decomposition (as mϕ is a metric outer measure). Due to Theorem 3.12, there
always exists a closed admissible decomposition for (ϕ,E) if ϕ ∈ BVG*(E, Y ) and E is an Fσ-set.

We now derive two corollaries to Theorem 3.12.

3.14 Corollary. Let ∅ 6= E ⊆ [a, b] be closed. Then the following assertions are equivalent.

(a) We have ϕ ∈ BVG*(E, Y ) and ωϕ(t) <∞ for all t ∈ E.

(b) The measure mϕ is semi-moderate on E.

(c) The measure mϕ is σ-finite on E.

(d) The outer measure m∗ϕ is σ-finite on E.
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(e) We have ϕ ∈ BVG*(E, Y ) and ϕ is bounded on E.

Proof. Theorem 3.12 gives the equivalence of (a), (b), (c) and (d). Finally, it is clear that (e) implies
(a), while the converse statement is easily deduced using a compactness argument.

3.15 Remark Propostion 3.12 respectively Corollary 3.14 is the correct version of [BPM09a, Proposi-
tion 3.4] and [BPM09b, Theorem 2.5]. In the final analysis, the proof given there suffers (as Gordon’s
solution to his Exercise 11.3 in [Gor94]) from the fact that it is taken for granted that the implication
“(a) =⇒ (c)” in Corollary 3.14 always holds even without the boundedness assumption provided
that E is a singleton (or countable); in some sense this error corresponds to the difference between
the oscillation of a function on a singleton and the oscillation of this function at the respective
point. But Lemma 3.8 shows that this is not correct. Let us give a very simple example. We take
[a, b] = [0, 1] and we put ϕ(x) := 1

x for x ∈ (0, 1] and ϕ(0) := 0. Then we have ϕ ∈ BV*(En,R) for
all n ∈ N0, where En := [ 1

n+1 , 1] for n ∈ N and E0 := {0}. However, mϕ is not σ-finite because of
mϕ({0}) =∞.

As a further corollary to Theorem 3.12 and to Theorem 3.4 we obtain the following result essentially
due to Yu. A. Zhereb’ev (cf. [Zhe07b, Theorem 2] and [Zhe07a, Corollary 1]).

3.16 Corollary. Let ∅ 6= E ⊆ [a, b] be an Fσ-set. Then the following assertions are equivalent.

(a) We have ϕ ∈ BVG*(E, Y ) and ωϕ(t) <∞ for all t ∈ E.

(b) The measure mϕ is semi-moderate on E.

(c) The measure mϕ is σ-finite on E.

(d) The measure mϕ is σ-finite on each compact Lebesgue-null set contained in E.

(e) The outer measure m∗ϕ is σ-finite on E.

Proof. Assertions (a), (b), (c) and (e) are equivalent thanks to Theorem 3.12 and obviously (c) implies
(d). Finally, assertion (d) yields (c) thanks to Theorem 3.4.

3.17 Remark Corollary 3.16 is an instance where it is very worth to distinguish between mϕ and m∗ϕ
as there exist an example of a σ-finite measure defined on a σ-algebra on R containing the Borel sets
such that its restriction to the Borel σ-algbra is not σ-finite (see Theorem 1.1 in [EK06]). Therefore, it
is a priori not clear whether the σ-finiteness of m∗ϕ yields that mϕ itself is σ-finite.

As a special case of Theorem 3.4 we obtain the following result generalising [Cap03, Theorem 3.4]
and [Ene00, Theorem 3.2].

3.18 Corollary. Let f : [a, b] → X and ϕ : [a, b] → Y be two functions and ∅ 6= E ⊆ [a, b] be an Fσ-set.
Assume furthermore that ϕ ∈ BVG*(E, Y ) with (countable) discontinuity set D. Finally, suppose that
B ⊆ S× [a, b] is a BF-basis and let µ be the Lebesgue measure (recall the introductory part at the beginning
of this section). Then the following assertions hold.

(a) Assume thatD = ∅. If µf,B is σ-finite on each closed µϕ,B-nullset contained inE, then µf,B is σ-finite
on E. (cf. [Cap03, Theorem 3.4])

(b) Assume that D is closed. If mf is absolutely continuous on the set E \D with respect to mϕ, then f is
a BVG∗-function on E being continuous at each point of E \D and mf is semi-moderate on E \D.
(cf. [Ene00, Theorem 3.2])
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Proof. We start with the proof of part (a). By Corollary 3.16, the measure mϕ is semi-moderate on
E. Thanks to Lemma 3.6, the measure µϕ,B is semi-moderate on E, too. The crucial point is now
the observation that we just have

(
µϕ,B

)
τf,B

= µf,B. This is due to the nature of the basis B being an
interval basis and the fact that µϕ,B vanishes on singletons thanks to Lemma 3.6 and the continuity
of ϕ (use Lemma 3.8). As a result, Theorem 3.4 implies that µf,B is σ-finite on E.

Now we turn to the proof of part (b). First of all we note thatmϕ({t}) = 0 for t ∈ [a, b]\D by Lemma
3.8 and consequently mf ({t}) = 0 for all t ∈ E \D, which implies (once again by Lemma 3.8) that
f is continuous at each point of E \D.
By hypothesis, D is closed. Therefore we can find a sequence (In)n of closed intervals such that⋃
n In = [a, b] \D. Then each of the sets E ∩ In is also an Fσ-set. Now we consider the variational

Henstock-Thomson measures mf |In and mϕ|In formed with respect to In (and the full interval basis
on In). It is easy to see thatmf |In andmf respmϕ|In andmϕ coincide on the interior of In (relative to
[a, b]). Since f resp. ϕ is continuous at each point of In, we further have mf ({t}) = 0 = mf |In ({t}),
resp. mϕ({t}) = 0 = mϕ|In ({t}) for t ∈ {min In,max In} and we conclude that mf |In and mf resp
mϕ|In and mϕ coincide on In. Applying part (a) with [a, b] replaced by In and E replaced by E ∩ In,
we infer that mf |In = mf is σ-finite on E ∩ In, which yields that mf is semi-moderate on E ∩ In
by Corollary 3.16 and that f is a BVG∗-function on E ∩ In thanks to Theorem 3.12. As a result, µf
is semi-moderate on E \ D and f is a BVG∗-function on E \ D. Since D is countable, f is even a
BVG∗-function on E.

3.4 Full and fine variational measures

In this section we introduce the notion of full and fine variational measures. The notion of fine
variational measure plays a crucial part in the differentiation theory of Henstock-Kurzweil integrals
as we shall see in the next chapter. The exposition closely follows the arguments in chapter 4 of
[Tho85] and the proof of Theorem 6.29 in [Tho13]; see the remark at the end of this section for a
more detailed comparison.

We start with some definitions and notations.

3.19 Definition. Let ∅ 6= E ⊆ [a, b].

(a) A nonvoid subset β ⊆ I× [a, b] is called a covering relation if t ∈ I for all (I, t) ∈ β.

(b) A covering relation β is called

• a full cover of E if for each t ∈ E there exists a δ(t) > 0 such that (I, t) ∈ β for all I ∈ I with
diam(I) < δ(t) and with t ∈ I ;

• a restricted full cover of E if for each t ∈ E there exists a δ(t) > 0 such that (I, t) ∈ β for all
I ∈ I with diam(I) < δ(t) and with t ∈ ∂I ;

• a fine cover or Vitali cover of E if for each ε > 0 and each t ∈ E there exists an element
(I, t) ∈ β with diam(I) < ε and t ∈ ∂I .

We denote by C(E), C̃(E) resp. C?(E) the set of all full covers, restricted full covers resp. fine covers of
E.

For a covering relation β and a non-empty set E ⊆ [a, b] we introduce

P(β) := {{(Ij , tj)}rj=1 : r ∈ N, (I1, t1) . . . , (Ir, tr) ∈ β, I1, . . . , Ir are non-overlapping}

and

P(β,E) := {{(Ij , tj)}rj=1 ∈ P(β) : t1, . . . , tr ∈ E}.
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3 Variational measures

For τ : I → X , ϕ ∈ Y [a,b] and π = {(Ij , tj)}rj=1 ∈ P(β) we put Wτ (π) :=
∑r
j=1 ‖τ(Ij)‖ and we set

Wϕ(π) := Wτϕ(π), where
τϕ : I→ Y ; I 7→ ϕ(max I)− ϕ(min I).

Notice that we always have Wτ (π) = W‖τ‖(π) and that the notation used here is consistent with the
notation of the preceding sections. We further define set functions by

λτ (E) := inf
β∈C(E)

sup
π∈P(β)

Wτ (π),

λ̃τ (E) := inf
β∈eC(E)

sup
π∈P(β)

Wτ (π),

mτ (E) := inf
β∈C?(E)

sup
π∈P(β)

Wτ (π),

and λτ (∅) := λ̃τ (∅) := mτ (∅) := 0. Note that λτ = λ‖τ‖, λ̃τ = λ̃‖τ‖ and mτ = m‖τ‖.

The following lemma collects some of the basic properties of the set functions just defined and
relates them to the variational measures considered in the previous sections.

3.20 Lemma. (a) We have mτ ≤ λ̃τ ≤ λτ and the second inequality is even an equality provided that

‖τ([c, d])‖ ≤ ‖τ([c, e])‖+ ‖τ([e, d])‖ (3.3)

for all a ≤ c < e < d ≤ b. Note that for ϕ ∈ Y [a,b] the set function τϕ satisfies (3.3).

(b) We have
mτ (E) = inf

β∈C?(E)
sup

π∈P(β,E)

Wτ (π)

and
λ̃τ (E) = inf

β∈eC(E)
sup

π∈P(β,E)

Wτ (π)

for all ∅ 6= E ⊆ [a, b].

(c) We have λτ = mτ := µτ,BI
(with µ the Lebesgue measure, recall the notation introduced at the

respective beginning of sections 3.1 and 3.3).

(d) The set functions λ̃τ ,mτ : P([a, b]) → [0,∞] are metric outer measures. One calls λ̃τ the full
variational measure of τ and mτ the fine variational measure of τ

Proof. on (a): Let ∅ 6= E ⊆ [a, b]. Obviously, we have C(E) ⊆ C̃(E) ⊆ C?(E), which yields the claimed
chain of inequalities.
Now assume that τ satisfies (3.3). For each β ∈ C(E) we put

β̃ := {([min(I), t], t) : (I, t) ∈ β with min(I) < t} ∪ {([t,max(I)], t) : (I, t) ∈ β with max(I) > t}.

Clearly, β̃ ∈ C̃(E). Pick π = {(Ij , tj)}rj=1 ∈ P(β). Using (3.3) we obtain

Wτ (π) =
r∑
j=1

‖τ(I)‖ =
r∑
j=1
tj∈I◦j

‖τ(Ij)‖+
r∑
j=1

tj=max(Ij)

‖τ(Ij)‖+
r∑
j=1

tj=min(Ij)

‖τ(Ij)‖

≤
r∑
j=1
tj∈I◦j

‖τ([min(tj), tj ])‖+
r∑
j=1
tj∈I◦j

‖τ([tj ,max(tj)])‖+ s1 + s2 = Wτ (π̃),
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3.4 Full and fine variational measures

where we define

s1 :=
r∑
j=1

tj=max(Ij)

‖τ(Ij)‖,

s2 :=
r∑
j=1

tj=min(Ij)

‖τ(Ij)‖

and

π̃ := {([min(Ij), tj ], tj)} j∈{1,...,r}
tj∈I◦j

∪ {([tj ,max(Ij)], tj)} j∈{1,...,r}
tj∈I◦j

∪ {(Ij , tj)} j∈{1,...,r}
tj∈∂Ij

.

Clearly, π̃ ∈ P(β̃), and hence Wτ (π̃) ≤ supbπ∈P(eβ)Wτ (π̂). This implies

λτ (E) ≤ sup
π∈P(β)

Wτ (π) ≤ supeπ∈P(eβ)

Wτ (π̃)

and thus
λτ (E) ≤ inf

β∈C(E)
supeπ∈P(eβ)

Wτ (π̃).

For γ ∈ C̃(E) we define

Γ := {(I ∪ J, t) : (I, t), (J, t) ∈ γ with t ∈ ∂I ∩ ∂J}.

One easily verifies that Γ belongs to C(E) and that Γ̃ is contained in γ. These facts imply

λτ (E) ≤ inf
β∈C(E)

supeπ∈P(eβ)

Wτ (π̃) ≤ inf
γ∈eC(E)

supeπ∈P(eΓ)

Wτ (π̃) ≤ inf
γ∈eC(E)

sup
π∈P(γ)

Wτ (π) = λ̃τ (E).

The addendum is clear.

on (b): We only show the first equation as the second one can be derived analogously. Let β ∈ C?(E)
and define βE := {([u, v], t) ∈ β : t ∈ E}. We have βE ∈ C?(E) and P(βE) = P(β,E). Since βE ⊆ β,
we obtain

mτ (E) ≤ sup
π∈βE

Wτ (π) ≤ sup
π∈β

Wτ (π),

mτ (E) ≤ inf
β∈C?(E)

sup
π∈βE

Wτ (π) ≤ inf
β∈C?(E)

sup
π∈β

Wτ (π) = mτ (E)

and consequently mτ (E) = infβ∈C?(E) supπ∈P(β,E)Wτ (π) using the definitions.

on (c): Let ∅ 6= E ⊆ [a, b] and δ ∈ (0,∞)E and put

βδ := {([u, v], t) ∈ I× E : ([u, v], t) ∈ S(E, δ)} ∈ C(E)

and
F(E) := {βδ : δ ∈ (0,∞)E} ⊆ C(E).

We then have S(E, δ) = P(βδ) and consequently

mτ (E) = inf
δ∈(0,∞)E

sup
S∈S(E,δ)

Wτ (S) = inf
δ∈(0,∞)E

sup
π∈P(βδ)

Wτ (S)

= inf
β∈F(E)

sup
π∈P(βδ)

Wτ (S) ≥ inf
β∈C(E)

sup
π∈P(βδ)

Wτ (S) = λτ (E).
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3 Variational measures

Now let β ∈ C(E) and fix for each t ∈ E a number δ(t) > 0 such that ([u, v], t) ∈ β for every [u, v]
with t ∈ [u, v] and v − u < δ(t). It follows S(E, δ2 ) ⊆ P(β) and therefore

mτ (E) ≤ sup
S∈S(E, δ2 )

Wτ (S) ≤ sup
π∈P(β)

Wτ (S),

which implies
mτ (E) ≤ inf

β∈C(E)
sup

π∈P(β)

Wτ (S) = λτ (E).

on (d): We only show that mτ is a metric outer measure; the proof for λ̃τ is similar. The definition
yields mτ (E) ≥ 0 for all E ⊆ [a, b] and mτ (∅) = 0. For ∅ 6= E ⊆ F ⊆ [a, b] we obtain C?(F ) ⊆ C?(E)
and thus

mτ (E) = inf
β∈C?(E)

sup
π∈P(β)

Wτ (π) ≤ inf
β∈C?(F )

sup
π∈P(β)

Wτ (π) = mτ (F ).

Let (An)n be sequence of subsets of [a, b] and put A :=
⋃
n∈N An. At first, we additinally assume

that the sets are pairwise disjoint and we put I := {n ∈ N : An 6= ∅}. If I = ∅, we trivially have
mτ (A) ≤

∑∞
n=1m

τ (An). So let I be nonvoid. Let ε > 0 and choose for each n ∈ I a cover relation
βn ∈ C?(An) with supπ∈P(βn)Wτ (π) ≤ mτ (An) + ε

2n . One easily verifies that β :=
⋃̇
n∈I β̂n belongs

to C?(A), where β̂n := {(I, t) ∈ βn : t ∈ An}. Consider π = {(Ij , tj)}rj=1 ∈ P(β,A). Observe that
due to the pairwise disjointness of the sets {Aj}j∈I we have automatically (I, t) ∈ β̂n provided that
(I, t) ∈ β and t ∈ An. For this reason {(Ij , tj) : j ∈ {1, . . . , r}with tj ∈ An} ∈ P(β̂n). Further note
that we have P(β̂n) ⊆ P(βn) for all n ∈ I , which gives us

sup
π∈P(bβn)

Wτ (π) ≤ sup
π∈P(βn)

Wτ (π) ≤ mτ (An) +
ε

2n
.

Combining these obserbvations we deduce

Wτ (π) =
∑
n∈I

r∑
j=1

tj∈An

‖τ(Ij)‖ ≤
∑
n∈I

sup
π∈P(bβn)

Wτ (π) ≤
∑
n∈I

(
mτ (An) +

ε

2n
)
≤
∑
n∈I

mτ (An) + ε

and

sup
π∈P(β,A)

Wτ (π) ≤
∑
n∈I

mτ (An) + ε.

Thanks to part (b) we obtain

mτ (A) = inf
β∈C?(A)

sup
π∈P(β,A)

Wτ (π) ≤
∑
n∈I

mτ (An) + ε

and taking the limit ε → 0 we arrive at mτ (A) ≤
∑
n∈I m

τ (An) =
∑∞
n=1m

τ (An). If the sets (An)n
are not pairwise disjoint, then we put B1 := A1 and Bn := An \

⋃n−1
j=1 Aj for n > 1. We then have

(note that mτ (Bn) ≤ mτ (An) because of Bn ⊆ An)

mτ (A) = mτ

(⋃̇
n∈N

Bn

)
≤
∞∑
n=1

mτ (Bn) ≤
∞∑
n=1

mτ (An)

and we are done.
Now let A1, A2 ⊆ [a, b] and let V1, V1 ⊆ [a, b] be open (relative to [a, b]) with Aj ⊆ Vj and V1∩V2 = ∅.
We want to show thatmτ (A1∪A2) = mτ (A1)+mτ (A2). Since we have already realized thatmτ is an
outer measure, the inequality≤ is clear by now. In particular, we have equality ifmτ (A1∪A2) =∞.
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3.4 Full and fine variational measures

Moreover, equality surely holds if A1 = ∅ or A2 = ∅. So let us assume that the sets A1 and A2 are
non-empty with mτ (A1 ∪A2) <∞, which further implies mτ (Aj) <∞ because mτ is isotone as an
outer measure. Let ε > 0 and choose β ∈ C?(A1 ∪A2) with supπ∈P(β)Wτ (π) ≤ mτ (A1 ∪A2) + ε. We
put

βj := {(I, t) ∈ β : t ∈ Aj , I ⊆ Vj} ∈ C?(Aj)

and β′ := β1∪̇β2. Note that β ⊇ β′ ∈ C?(A1 ∪ A2). Let πj ∈ P(βj). Then π1∪̇π2 ∈ P(β′) as each
interval of π1 and each interval of π2 are disjoint due to V1 ∩ V2 = ∅. We estimate

Wτ (π1) +Wτ (π2) = Wτ (π1 ∪ π2) ≤ sup
π∈P(β′)

Wτ (π),

and hence

mτ (A1) +mτ (A2) ≤ sup
π1∈P(β1)

Wτ (π1) + sup
π2∈P(β2)

Wτ (π2) ≤ sup
π∈P(β′)

Wτ (π) ≤ mτ (A1 ∪A2) + ε.

Letting ε→ 0+ we arrive at the conclusion mτ (A1) +mτ (A2) ≤ mτ (A1 ∪A2).

The remaining part of this section is now devoted to the aim to work out the intimate relation
between mϕ and mϕ for BVG*-functions ϕ. As a first step, the next lemma gives us an important
and very useful sufficient condition for two interval functions τ, σ ∈ Y I to produce the same set
functions.

3.21 Lemma. Let τ, σ ∈ Y I and ∅ 6= E ⊆ [a, b] with λ̃τ−σ(E) = 0. Then we have λ̃τ (F ) = λ̃σ(F ) and
mτ (F ) = mσ(F ) for all F ⊆ E.

Proof. For F = ∅ there is nothing to be shown and for ∅ 6= F ⊆ E we have 0 ≤ λ̃τ−σ(F ) ≤
λ̃τ−σ(E) = 0 and so the assumptions of this lemma are also satisfied for F in lieu of E. Therefore it
suffices to establish the result for F = E.
Let ε > 0, choose a covering relation β1 ∈ C̃(E) with supπ∈P(β1)Wτ−σ(π) < ε and pick β2 ∈ C̃(E)
such that supπ∈P(β2)Wτ (π) ≤ λ̃τ (E) + ε. We put β := β1 ∩ β2 ∈ C̃(E). Notice that for π ∈ P(β) we
have Wσ(π) ≤ Wτ−σ(π) +Wτ (π) and Wτ−σ(π) ≤ ε due to β ⊆ β1. Moreover, because of β ⊆ β2 we
have supπ∈P(β)Wτ (π) ≤ supπ∈P(β2)Wτ (π) ≤ λ̃τ (E) + ε. These observations together yield

λ̃σ(E) ≤ sup
π∈P(β)

Wσ(π) ≤ sup
π∈P(β)

(Wτ−σ(π) +Wτ (π)) ≤ ε+ sup
π∈P(β)

Wτ (π) ≤ λ̃τ (E) + 2ε.

Letting ε → 0+ we obtain λ̃σ(E) ≤ λ̃τ (E). By symmetry, λ̃τ (E) ≤ λ̃σ(E), which proves the first
assertion.

Next pick γ ∈ C?(E) with supπ∈P(γ)Wτ (π) ≤ mτ (E) + ε and consider γ ∩ β1 ∈ C?(E). Similarly as
above, we estimate Wσ(π) ≤ Wτ−σ(π) + Wτ (π) and Wτ−σ(π) ≤ ε due to γ ∩ β1 ⊆ β1 and, using
γ ∩ β1 ⊆ γ, also supπ∈P(γ∩β1)Wτ (π) ≤ supπ∈P(γ)Wτ (π) ≤ mτ (E) + ε. Consequently, we derive as
above mσ(E) ≤ mτ (E) + 2ε and may complete the proof as before.

We now need some additional notation. For ϕ ∈ Y [a,b] we consider the function

Vϕ : [a, b]→ [0,∞]; t 7→

{
0, if t = a,

V (ϕ, [a, t]), if t > a.

We need some elementary properties of Vϕ, which are well-known for scalar-valued functions. For
the sake of completeness we provide a proof for these properties. As an auxiliary result we need
the subsequent lemma.
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3 Variational measures

3.22 Lemma. Let ϕ ∈ BV([a, b], Y ) and c ∈ (a, b). Then ϕ ∈ BV([a, c], Y ) and ϕ ∈ BV([c, b], Y ) and
V (ϕ, [a, c]) + V (ϕ, [c, b]) = V (ϕ, [a, b]).

Proof. As the proof of Theorem 6.11 in [Apo74].

3.23 Lemma. Let ϕ ∈ BV([a, b], Y ). The function Vϕ is an increasing, real-valued function, whose continu-
ity points coincide with the continuity points of ϕ, and we have ‖ϕ(t)−ϕ(s)‖ ≤ V (ϕ, [t, s]) = Vϕ(s)−Vϕ(t)
for all a ≤ t ≤ s ≤ b.

Proof. Lemma 3.22 yields that Vϕ is real-valued and the inequality ‖ϕ(t) − ϕ(s)‖ ≤ V (ϕ, [t, s]) is
obvious. For t = s or t = a we clearly have V (ϕ, [t, s]) = Vϕ(s) − Vϕ(t). Let a < t < s. Lemma 3.22
implies

Vϕ(s) = V (ϕ, [a, s]) = V (ϕ, [a, t]) + V (ϕ, [t, s]) = Vϕ(t) + V (ϕ, [t, s]),

0 ≤ V (ϕ, [t, s]) = Vϕ(s)− Vϕ(t).

This shows the asserted relations as well as the increasing monotonicity of Vϕ. In addition, this
also yields that each continuity point of Vϕ is also a continuity point of ϕ. Next let t ∈ (a, b) be a
continuity point of ϕ. Let ε > 0 and pick δ > 0 with ‖ϕ(s)− ϕ(s)‖ < ε

2 for all s ∈ Uδ(t) ∩ [a, b]. Take
a partition S = {[aj , bj ]}rj=1 ∈ A([t, b]) of [t, b] such that V (ϕ, [t, b])−

∑r
j=1 ‖ϕ(bj)− ϕ(aj)‖ < ε

2 and
w.l.o.g. b1 − t < δ. For s ∈ (t, b1) we then obtain applying once again Lemma 3.22

0 ≤ Vϕ(s)− Vϕ(t) = V (ϕ, [t, s]) = V (ϕ, [t, b])− V (ϕ, [s, b])

= V (ϕ, [t, b])−
r∑
j=1

‖ϕ(bj)− ϕ(aj)‖+
r∑
j=1

‖ϕ(bj)− ϕ(aj)‖ − V (ϕ, [s, b])

≤ ε

2
+ ‖ϕ(s)− ϕ(t)‖+ ‖ϕ(b1)− ϕ(s)‖+

r∑
j=2

‖ϕ(bj)− ϕ(aj)‖ − V (ϕ, [s, b])

≤ ε+ V (ϕ, [s, b])− V (ϕ, [s, b]) = ε.

This shows lims→t+ Vϕ(s) = Vϕ(t). Analogously, we deduce lims→t− Vϕ(s) = Vϕ(t), and the case
t ∈ {a, b} is treated similarly.

Now we come to a very crucial lemma, which constitutes an important ingredient in order to relate
mϕ and mϕ.

3.24 Lemma. Let ϕ ∈ BV([a, b], Y ). Then we have λ̃τVϕ−‖τϕ‖([a, b]) = 0.

Proof. Fix ε > 0 and choose a partition {[aj , bj ]}rj=1 of [a, b] with V (ϕ, [a, b])−
∑r
j=1 ‖ϕ(bj)−ϕ(aj)‖ <

ε. We not put
β := {(I, t) ∈ I× [a, b] : t ∈ ∂I, ∃ j ∈ {1, . . . , r} : I ⊆ [aj , bj ]}.

It is easy to confirm that β ∈ C̃([a, b]). Consider an arbitrary element π = {([ck, dk], tk)}νk=1 of P(β)
with the additional property that

⋃ν
k=1[ck, dk] = [a, b] (where as usual the intervals [ck, dk] are in

increasing order). Using Lemma 3.23 and observing that⋃
{[ck, dk] : k ∈ {1, . . . , ν}with [ck, dk] ⊆ [aj , bj ]} = [aj , bj ] (3.4)
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for each j ∈ {1, . . . , r}, we then compute

ν∑
k=1

∣∣(τVϕ − ‖τϕ‖)([ck, dk])
∣∣ =

ν∑
k=1

|Vϕ(dk)− Vϕ(ck)− ‖ϕ(dk)− ϕ(ck)‖|

=
ν∑
k=1

(V (ϕ, [ck, dk])− ‖ϕ(dk)− ϕ(ck)‖)

=
r∑
j=1

ν∑
k=1

[ck,dk]⊆[aj,bj ]

(V (ϕ, [ck, dk])− ‖ϕ(dk)− ϕ(ck)‖)

=
r∑
j=1

V (ϕ, [aj , bj ])−
ν∑
k=1

[ck,dk]⊆[aj,bj ]

‖ϕ(dk)− ϕ(ck)‖


≤

r∑
j=1

V (ϕ, [aj , bj ])−
r∑
j=1

‖ϕ(bj)− ϕ(aj)‖

= V (ϕ, [a, b])−
r∑
j=1

‖ϕ(bj)− ϕ(aj)‖ < ε,

where we used

‖ϕ(bj)− ϕ(aj)‖ ≤
ν∑
k=1

[ck,dk]⊆[aj,bj ]

‖ϕ(dk)− ϕ(ck)‖,

which results from (3.4). Now let π ∈ P(β) be arbitrary. Using the definition of β we easily find a
partition π̃ ∈ P(β) of [a, b] (i.e.,

⋃
(I,t)∈eπ I = [a, b]) with π ⊆ π̃. So the above estimate yields∑

(I,t)∈π

∣∣(τVϕ − ‖τϕ‖)(I)
∣∣ ≤ ∑

(I,t)∈eπ
∣∣(τVϕ − ‖τϕ‖)(I)

∣∣ < ε.

We conclude
λ̃τVϕ−‖τϕ‖([a, b]) ≤ sup

π∈P(β)

WτVϕ−‖τϕ‖(π) ≤ ε

and hence λ̃τVϕ−‖τϕ‖([a, b]) = 0.

Now we use the preceding lemma to make a further important step towards our aim to relate mϕ

and mϕ.

3.25 Lemma. Let ϕ ∈ BV([a, b], Y ) and denote by D the countable set of all discontinuities of ϕ. Then we
have mϕ(E) = λ̃ϕ(E) = mϕ(E) for all E ⊆ [a, b] \D.

Proof. Let E ⊆ [a, b] \D. Combining Lemma 3.21, Lemma 3.24 and Lemma 3.20 we derive

mϕ(E) = m‖τϕ‖(E) = mVϕ(E)

and
λ̃ϕ(E) = λ̃‖τϕ‖(E) = λ̃Vϕ(E) = λVϕ(E) = mVϕ(E).

Furthermore, Lemma 3.20 gives us

mϕ(E) ≤ λ̃ϕ(E) = λϕ(E) = mϕ(E).
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Putting these equations together we obtain

mVϕ(E) = mϕ(E) ≤ mϕ(E) = mVϕ(E).

So it remains to establish mVϕ(E) ≤ mVϕ(E). For this purpose pick β ∈ C?(E) and put Λ := {I ∈
I : ∃ t ∈ [a, b] : (I, t) ∈ β}. Observe that Λ forms a Vitali cover of E in the classical sense, i.e., for
each t ∈ E and each ε > 0 there exists an interval I ∈ Λ with t ∈ I and diam(I) < ε. Thanks to
Proposition B.1 we can extract from Λ a countable family (In)n of pairwise disjoint intervals such
tha mVϕ(E \

⋃
n In) = 0 (notice that mVϕ is finite due to Lemma 3.7 as ϕ belongs to BV([a, b], Y )).

As as result,

mVϕ(E) ≤ mVϕ

(
E ∩

⋃
n

In

)
+mVϕ

(
E \

⋃
n

In

)
= mVϕ

(⋃
n

(E ∩ In)
)
≤
∑
n

mVϕ(E ∩ In).

Consider t ∈ ∂In. If t ∈ D, then t /∈ E ∩ In. If, however, t ∈ [a, b] \ D, then Vϕ is continuous at t
by Lemma 3.23 and thus mVϕ({t}) = 0 due to Lemma 3.8. This observation leads to mVϕ(E ∩ In) =
mVϕ(E∩I◦n), where we form I◦n in R. Applying once again Lemma 3.7 and Lemma 3.23, we estimate

mVϕ(E) ≤
∑
n

mVϕ(E ∩ In) =
∑
n

mVϕ(E ∩ I◦n)

≤
∑
n

mVϕ(I◦n) =
∑
n

V (Vϕ, I◦n) =
∑
n

(
lim

t→max(In)−
Vϕ(t)− lim

t→min(In)+
Vϕ(t)

)
≤
∑
n

(Vϕ(max(In))− Vϕ(min(In))) =
∑
n

τVϕ(In).

Fix tn ∈ [a, b] with (In, tn) ∈ β for each n. As the intervals in the countable family {In}n are
pairwise disjoint, every finite subset of {(In, tn)}n is an element of P(β). This yields

∑
n τVϕ(In) ≤

supπ∈P(β)WτVϕ
(π). As a consequence, we deduce

mVϕ(E) ≤ inf
β∈C?(E)

sup
π∈P(β)

WτVϕ
(π) = mVϕ(E)

and this finishes the proof.

Taking the preceding lemma as a starting point, our next objective to extend exactly this lemma to
BVG*-functions. In order to achieve this aim we shall need the next three technial lemmata.

3.26 Lemma. Let ∅ 6= E ⊆ [a, b] be closed, ϕ ∈ Y [a,b] and let (In)n denote the finite or infinite sequence of
the connected components of [c, d] \E, where c =: minE and d := maxE. Assume that

∑
n ω(ϕ, In) <∞

and ϕ|E = 0. Denote by D the set of discontinuities of ϕ. Then mϕ(E \D) = 0.

Proof. W.l.o.g. we may assume that E 6= [c, d] (hence the family (In)n is nonvoid). Let ε > 0 and
choose k such that

∑
n>k ω(ϕ, In) < ε. Write In = [cn, dn]. If n ≤ k and cn /∈ D resp. dn /∈ D,

take δ(cn) > 0 resp. δ(dn) > 0 with ‖ϕ(t) − ϕ(cn)‖ < ε
k for all t ∈ Uδ(cn)(cn) ∩ [a, b] resp. with

‖ϕ(t) − ϕ(dn)‖ < ε
k for all t ∈ Uδ(dn)(dn) ∩ [a, b]. For t ∈ E \ (D ∪

⋃
n≤k{cn, dn}) choose δ(t) > 0

with Uδ(t)(t) ⊆ (c, d) \
⋃
n≤k{cn, dn} if t ∈ (c, d) resp. with Uδ(t)(t) ⊆ R \

⋃
n≤k{cn, dn} if t ∈ {c, d}

and in both of these two cases with ‖ϕ(t) − ϕ(s)‖ < ε for all s ∈ Uδ(t)(t) ∩ [a, b]. We now consider
an arbitrary element {([aj , bj ], tj)}rj=1 of S(E \ D, δ). Let 1 ≤ j < ν ≤ r with aj , aν ∈ [c, d] \ E.
Then aj and aν belong to different components of [c, d] \ E, for otherwise we would obtain tj ∈
[aj , bj ] ⊆ [aj , aν ] ⊆ In ⊆ R \{tj} for an n, but this is not possible. For aj ∈ [c, d] \ E let In(j)

denote that component of [c, d] \ E that contains aj . Analogously, one sees that for 1 ≤ j < ν ≤ r
with bj , bν ∈ [c, d] \ E the points bj and bν also belong to different components of [c, d] \ E and
we let Jm(j) denote the corresponding component of [c, d] \ E containing bj . If aj ∈ [c, d] \ E and
tj /∈

⋃
n≤k{cn, dn}, then aj ≤ dn(j) ≤ tj and hence dn(j) ∈ Uδ(tj)(tj), so that by the definition of δ
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3.4 Full and fine variational measures

we have dn(j) /∈
⋃
n≤k{cn, dn}, i.e., n(j) > k. Analogously, one can derive m(j) > k provided that

bj ∈ [c, d] \ E and tj /∈
⋃
n≤k{cn, dn}. We now estimate

r∑
j=1

‖ϕ(bj)− ϕ(aj)‖ ≤‖ϕ(b1)− ϕ(t1)‖+ ‖ϕ(t1)− ϕ(a1)‖+ ‖ϕ(tr)− ϕ(ar)‖+ ‖ϕ(br)− ϕ(tr)‖

+
∑

1<j<r
bj∈E

‖ϕ(bj)− ϕ(tj)‖+
∑

1<j<r
bj /∈E

‖ϕ(bj)− ϕ(tj)‖

+
∑

1<j<r
aj∈E

‖ϕ(tj)− ϕ(aj)‖+
∑

1<j<r
aj /∈E

‖ϕ(tj)− ϕ(aj)‖.

By the definition of δ and the hypothesis ϕ|E = 0, we have

‖ϕ(b1)− ϕ(t1)‖+ ‖ϕ(t1)− ϕ(a1)‖+ ‖ϕ(tr)− ϕ(ar)‖+ ‖ϕ(br)− ϕ(tr)‖ < 4ε,∑
1<j<r
bj∈E

‖ϕ(bj)− ϕ(tj)‖ = 0

and ∑
1<j<r
aj∈E

‖ϕ(tj)− ϕ(aj)‖ = 0.

Let 1 < j < r, aj /∈ E and tj /∈
⋃
n≤k{cn, dn}. Due to aj ∈ Uδ(tj)(tj) and tj ∈ (c, d) (as 1 < j < r), we

conclude aj ∈ [c, d] \ E. Therefore we obtain∑
1<j<r

aj /∈E,tj /∈
S
n≤k{cn,dn}

‖ϕ(tj)− ϕ(aj)‖ =
∑

1<j<r
aj /∈E,tj /∈

S
n≤k{cn,dn}

‖0− ϕ(aj)‖

=
∑

1<j<r
aj /∈E,tj /∈

S
n≤k{cn,dn}

‖ϕ(dn(j))− ϕ(aj)‖

≤
∑

1<j<r
aj /∈E,tj /∈

S
n≤k{cn,dn}

ω(ϕ, In(j)) ≤
∑
n>k

ω(ϕ, In) < ε,

where the inequality ∑
1<j<r

aj /∈E,tj /∈
S
n≤k{cn,dn}

ω(ϕ, In(j)) ≤
∑
n>k

ω(ϕ, In)

follows from n(j) > k (see above) and In(j) 6= In(ν) for j 6= ν (see also above). We further estimate∑
1<j<r

aj∈E,tj∈
S
n≤k{cn,dn}

‖ϕ(tj)− ϕ(aj)‖ ≤
∑

1<j<r
aj∈E,tj∈

S
n≤k{cn,dn}

ε

k
≤ 4ε,

where we used

]

{
j ∈ {1, . . . , r} : aj ∈ E, tj ∈

⋃
n≤k

{cn, dn}
}
≤ ]
{
j ∈ {1, . . . , r} : tj ∈

⋃
n≤k

{cn, dn}
}
≤ 4k,

which results from the observation that ]{j ∈ {1, . . . , r} : tj = s} ≤ 2 for all s ∈
⋃
n≤k{cn, dn}.

Summarizing, we arrive at∑
1<j<r
aj∈E

‖ϕ(tj)− ϕ(aj)‖+
∑

1<j<r
aj /∈E

‖ϕ(tj)− ϕ(aj)‖ < 5ε.
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Analogously, one can deduce∑
1<j<r
bj∈E

‖ϕ(bj)− ϕ(tj)‖+
∑

1<j<r
bj /∈E

‖ϕ(bj)− ϕ(tj)‖ < 5ε.

Altogether we derive
r∑
j=1

‖ϕ(bj)− ϕ(aj)‖ < 14ε,

which completes the proof.

3.27 Lemma. Let ϕ ∈ BVG*([a, b], Y ) and denote by D the countable set of all discontinuities of ϕ. Then
there are sequences (En)n and (ϕn)n possessing the following properties:

(a) En is closed for all n ∈ N;

(b)
⋃
nEn = [a, b] and ϕ ∈ BV*(En, Y ) for all n ∈ N;

(c) ϕn ∈ BV([a, b], Y ) and the point set Dn of discontinuities of ϕn is contained in D for all n ∈ N;

(d) mϕ−ϕn(En \D) = 0 for all n ∈ N.

Proof. We choose nonvoid closed sets (En)n such that
⋃
nEn = [a, b] and ϕ ∈ BV*(En, Y ) for all

n ∈ N. Then
∑
k ω(ϕ, Ik,n) < ∞ for all n, where (Ik,n)k is the (finite or infinite) sequence of the

connected components of [minEn,maxEn] \ En (see Lemma 2.17). Furthermore, let ϕn be a linear
extension of ϕ|En to the whole of [a, b]. Then ϕn ∈ BV([a, b], Y ) and Dn ⊆ D thanks to Lemma 2.21,
where Dn is the point set of discontinuities of ϕn. Moreover, we have∑

k

ω(ϕ− ϕn, Ik,n) ≤
∑
k

ω(ϕ, Ik,n) +
∑
k

ω(ϕn, Ik,n) <∞

and (ϕ− ϕn)|En = 0 and so Lemma 3.26 implies mϕ−ϕn(En \D) = 0.

3.28 Lemma. Let (X, d) be a metric space and let µ : P(X)→ [0,∞] be a metric outer measure. Let (An)n be
pairwise disjoint Borel sets with µ(An) <∞ for all n ∈ N and letE ⊆

⋃
nAn. Then µ(E) =

∑
n µ(E∩An).

Proof. First, let A,B ∈ Bor(X) with A ∩ B = ∅, µ(A) < ∞ and µ(B) < ∞. Since A, B and A ∪ B ∈
Bor(X) are µ-measurable (in the sense of Carathéodory), we obtain

µ(A \ E) + µ(A ∩ E) + µ(B \ E) + µ(B ∩ E) = µ(A) + µ(B) = µ(A ∪B)
= µ((A ∪B) \ E) + µ((A ∪B) ∩ E)
≤ µ(A \ E) + µ(B \ E) + µ((A ∪B) ∩ E),

hence

µ(A ∩ E) + µ(B ∩ E) ≤ µ((A ∩ E) ∪ (B ∩ E)) ≤ µ(A ∩ E) + µ(B ∩ E),

i.e., µ(A ∩ E) + µ(B ∩ E) = µ((A ∪B) ∩ E). Using this equality, we derive

µ(E) = µ

(⋃
n

(An ∩ E)

)
≤
∑
n

µ(An ∩ E) = sup
k

∑
n≤k

µ(An ∩ E)

= sup
k
µ

E ∩ ⋃
n≤k

An

 ≤ sup
k
µ(E) = µ(E)

as claimed.
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3.4 Full and fine variational measures

We finally arrive at the announced main result of this section that relates mϕ and mϕ for BVG*-
functions ϕ extending Lemma 3.25.

3.29 Theorem. Let ϕ ∈ BVG*([a, b], Y ) and let D denote the set of discontinuities of ϕ. Then we have

mϕ(E) = mϕ(E)

for all E ⊆ [a, b] \D.

Proof. Choose sequences (En)n and (ϕn)n according to Lemma 3.27. By Lemma 3.25, we have
mϕn(E) = mϕn(E) for allE ⊆ [a, b]\D ⊆ [a, b]\Dn. Lemma 3.20 (a) and (c) and Lemma 3.21 together
imply mϕ(F ) = mϕn(F ) and mϕ(F ) = mϕn(F ) for all F ⊆ En \ D. Let A1 := E1 ∈ Bor([a, b]),
An := En \

⋃
k<nEk ∈ Bor([a, b]) for n > 1 and let E ⊆ [a, b] \ D. Using that E ∩ An ⊆ En \ D,

we infer mϕ(E ∩ An) = mϕn(E ∩ An) ≤ mϕn([a, b]) < ∞ (recall Lemma 3.7) and mϕ(E ∩ An) =
mϕn(E ∩An) = mϕn(E ∩An) <∞ for all n. Applying Lemma 3.28, we therefore deduce

mϕ(E) =
∑
n

mϕ(E ∩An) =
∑
n

mϕn(E ∩An) =
∑
n

mϕn(E ∩An) =
∑
n

mϕ(E ∩An) = mϕ(E)

as asserted.

3.30 Remark For real-valued functions with an additional continuity condition results comparable
to Theorem 3.29 appear as Theorem 4 in [Hen79] and as Theorem 15.10 in [Hen88]. However, for
real-valued functions Theorem 3.29 seems to appear only in [Tho85] as Theorem 41.4. Apart from
the fact that the proof given there is rather concisely written (several details are not carried out), it
has a considerable gap (for the subsequent considerations cf. the proof of Theorem 41.4 in [Tho85]):
At a decisive point of his proof, Thomson refers to his previous Corollary 41.2, but this result as well
as the preceding results from which 41.2 is deduced consider continuous functions on R, whereas
the function g under consideration in the proof of Theorem 41.4 is in general not continuous. Ad-
mittedly, Thomson wants to apply his Corollray 41.2 on a set, namely Cf , where g is continuous,
but it can’t be helped that the assumptions of Corollary 41.2 are not satisfied, as this set Cf does
not fit into the framework of this result. This is due to the fact that Cf is the continuity set of a
BVG*-function and as every countable set set can appear as the discontinuity set of a function of
bounded variation, the set set Cf may have such an unpleasant structure (e.g., it might be totally
disconnected and neither open nor closed) that it is at least very questionable whether it is possible
to make Corollary 41.2 applicable without any great additional efforts. Nevertheless, the question
arises if continuity is really that essential in Thomson’s proof. In fact, it is more or less: In order
(in our notation) to move from mϕ to mϕ and vice versa the Lebesgue-Stieltjes measure νVϕ (see
Lemma A.1) associated with Vϕ plays a central role. Hence without assuming that ϕ resp. Vϕ (ϕ of
bounded variation in the classical sense) is at least everywhere continuous from the right or from
the left, one has to face the problem to give a reasonable meaning to νVϕ . Therefore we were com-
pelled to deeply enter the proofs of Thomson and to furnish refinements of them from the very
beginning on in order to obtain a full and complete proof of our Theorem 3.29 resp. Thomson’s
Theorem 41.4 in [Tho85]. In [Ene98] V. Ene made similar efforts in the real-valued case and The-
orem 6.1 in [Ene98] is closest to our Theorem 3.29, but Ene does not proceed to the full version of
Theorem 3.29 and poises at a preliminary version of it (he considers only BV*-functions). Moreover,
there are two methodological differences between Ene’s approach and ours. First, Ene’s arguments
rely on the conceptual framework and the machinery of the so-called local systems introduced by
Thomson, while we avoid them, and it should not go unmentioned that this is not at the cost of
a loss of generality. Indeed, using Corollary 37.2 in [Tho85], it is easy to obtain Ene’s seemingly
more general results from our approach. Second, Ene handles the afore-mentioned complication of
giving a meaning to νVϕ by considering λ(Vϕ(·)) as a substitute (recall that λ is the one-dimensional
outer Lebesgue-measure), whereas in contrast to that we do not need such a substitute and hence
we give a directer deduction for Theorem 3.29. Consequently, Ene’s and our approach (although
both following the route of Thomson’s line of argument) differ in several details distinctly.
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4 The variational
Henstock-Kurzweil-Stieltjes integral

4.1 Definition and basic properties

In this section we finally introduce the (variational) Henstock-Kurzweil-Stieltjes integral and collect
some of its basic properties.

4.1 Definition. Let ϕ ∈ Y [a,b]. A function f : [a, b]→ X is called

(a) Riemann-Stieltjes integrable with respect to ϕ : [a, b] → Y if there is a point z ∈ Z such that for
each ε > 0 there exists a constant δ > 0 such that∥∥∥∥∥∥

r∑
j=1

f(xj) · [ϕ(bj)− ϕ(aj)]− z

∥∥∥∥∥∥
Z

< ε

for all {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ) with
⋃r
j=1[aj , bj ] = [a, b]. In this case z is unique and we

write z = (R)
∫ b
a
f(s) · dϕ(s).

(b) Henstock-Kurzweil-Stieltjes integrable with respect to ϕ : [a, b] → Y if there is a point z ∈ Z
such that for each ε > 0 there exists a gauge δ : [a, b]→ (0,∞) such that∥∥∥∥∥∥

r∑
j=1

f(xj) · [ϕ(bj)− ϕ(aj)]− z

∥∥∥∥∥∥
Z

< ε

for all {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ) with
⋃r
j=1[aj , bj ] = [a, b]. In this case z is unique and we

write z = (HK)
∫ b
a
f(s) · dϕ(s).

(c) variationally/strongly Henstock-Kurzweil-Stieltjes integrable with respect to ϕ : [a, b] → Y if
there is a function F : [a, b]→ Z such that for each ε > 0 there exists a gauge δ : [a, b]→ (0,∞) such
that the inequality

r∑
j=1

‖(F (bj)− F (aj))− f(xj) · [ϕ(bj)− ϕ(aj)]‖Z < ε

is fulfilled whenever {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ). In this case we say that F is an indefinite
variational Henstock-Kurzweil-Stieltjes integral of f with respect to ϕ.

(d) variationally/strongly McShane-Stieltjes integrable with respect to ϕ : [a, b] → Y if there is a
function F : [a, b]→ Z such that for each ε > 0 there exists a gauge δ : [a, b]→ (0,∞) such that

r∑
j=1

‖(F (bj)− F (aj))− f(xj) · [ϕ(bj)− ϕ(aj)]‖Z < ε

is satisfied for all finite sequences {([aj , bj ], xj)}rj=1, r ∈ N, with x1, . . . , xr, a1, . . . , ar, b1, . . . , br ∈
[a, b], aj < bj and [aj , bj ] ⊆ Uδ(xj)(xj) for all j ∈ {1, . . . , r}.

53



4 The variational Henstock-Kurzweil-Stieltjes integral

4.2 Remark (a) For basic properties of the Riemann-Stieltjes and the Henstock-Kurzweil-Stieltjes
integral we refer to Chapter 2 of [DN11].

(b) Note that the given definition for the variational Henstock-Kurzweil-Stieltjes integral is equiv-
alent to the definition where only sequences {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ) with

⋃r
j=1[aj , bj ] =

[a, b] are taken into consideration; indeed, one implication is trivial and the converse follows
by means of Cousin’s lemma.

(c) Observe that the crucial point in the definition of the variational McShane-integral is the fact
that is not assumed that xj ∈ [aj , bj ].

(d) Every function that is Riemann-Stieltjes integrable with respect to ϕ is clearly also Henstock-
Kurzweil-Stieltjes integrable with respect to ϕ with the same integral. In general the converse
is false, as the classical Henstock-Kurzweil integral (i.e., X = Y = Z = R and ϕ = id[a,b])
integrates every ordinary derivative (see, e.g., Theorem 4.24 below combined with Lemma
4.3), whereas the classical Riemann integral does not.

(e) Every function that is variationally McShane-Stieltjes integrable with respect to ϕ is obvi-
ously also variationally Henstock-Kurzweil-Stieltjes integrable with respect to ϕ. The con-
verse statement, however, is not valid, since, e.g., the classical variational McShane integral
(i.e. X = Y = Z = R and ϕ = id[a,b]) is equivalent to the Lebesgue-integral, which does not
integrate all ordinary derivatives, while the classical Henstock-Kurzweil integral does.

(f) Every function that is variationally Henstock-Kurzweil-Stieltjes integrable with respect to ϕ is
clearly also Henstock-Kurzweil-Stieltjes integrable with respect to ϕ and we then have F (b)−
F (a) = (HK)

∫ b
a
f(t) · dϕ(t). In general the converse fails (we will expose this in a moment).

Let f be variationally Henstock-Kurzweil-Stieltjes integrable with respect to ϕ and let F be an indef-
inite variational Henstock-Kurzweil-Stieltjes integral of f with respect to ϕ. Clearly, F is not unique
as F +z does the same for any z ∈ Z. However, F is indeed uniquely determined if we additionally
demand F (a) = 0. In particular, two indefinite variational Henstock-Kurzweil-Stieltjes integrals of
f with respect to ϕ differ from each other only by an additive constant. In fact, consider F and F̃

as above with F (a) = 0 = F̃ (a). Fix t ∈ [a, b] and take ε > 0. There is a gauge δG : [a, b] → (0,∞)
with

r∑
j=1

‖f(xj) · [ϕ(bj)− ϕ(aj)]− (G(bj)−G(aj))‖Z <
ε

2

for all {([aj , bj ], xj)}rj=1 in S([a, b], δG) where G ∈ {F, F̃}. We then put δ := min{δF , δ eF } and choose
a δ|[a,t]-fine partition {([aj , bj ], xj)}rj=1 ∈ S([a, t], δ|[a,t]) of [a, t] by means of Cousin’s lemma. In

particular, aj = bj−1 for j ∈ {1, . . . , r} \ {1}, br = t and a1 = a. Due to F (a) = 0 = F̃ (a), we thus
obtain

‖F (t)− F̃ (t)‖Z =

∥∥∥∥∥∥
r∑
j=1

(F (bj)− F (aj))−
r∑
j=1

(F̃ (bj)− F̃ (aj))

∥∥∥∥∥∥
Z

≤
r∑
j=1

‖f(xj) · [ϕ(bj)− ϕ(aj)]− (F (bj)− F (aj))‖Z

+
r∑
j=1

‖f(xj) · [ϕ(bj)− ϕ(aj)]− (F̃ (bj)− F̃ (aj))‖Z

<
ε

2
+
ε

2
= ε.
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Hence, ‖F (t) − F̃ (t)‖Z < ε for every ε > 0, which yields F (t) = F̃ (t). We call this uniquely
determined function F with F (a) = 0 the primitive (function) of f (with respect to ϕ) and we write

F (t) =
∫ t

a

f(τ) · dϕ(τ)

for t ∈ [a, b]. We denote by HK([a, b], ϕ,X) the set of all X-valued functions that are variationally
Henstock-Kurzweil-Stieltjes integrable with respect to ϕ. In the special case X = Z, Y = K, where
ϕ is the identity on [a, b] and the bilinear mapping B is the usual multiplication with scalars, we
simply writeHK([a, b], X) instead ofHK([a, b], ϕ,X).

One easily verifies thatHK([a, b], ϕ,X) is a K-vector space and that the mapping∫ t

a

· dϕ : HK([a, b], ϕ,X)→ Z; f 7→
∫ t

a

f(τ) · dϕ(τ)

is linear for each t ∈ [a, b].

If f ∈ HK([a, b], ϕ,X) and a < c < b, then the restriction f |[a,c] belongs to HK([a, c], ϕ|[a,c]) and
f |[c,b] toHK([c, b], ϕ|[c,b]) with∫ c

a

f |[a,c](τ) · dϕ|[a,c](τ) +
∫ b

c

f |[c,b](τ) · dϕ|[c,b](τ) =
∫ b

a

f(τ) · dϕ(τ).

These facts easily follow from the definition. Therefore we simply write, e.g.,
∫ c
a
f(τ) ·dϕ(τ) instead

of
∫ c
a
f |[a,c](τ) · dϕ|[a,c](τ). Furthermore, f is contained in HK([c, d], ϕ,X) for a ≤ c < d ≤ b and we

finally put
∫ c
c
f(t) · dϕ(t) := 0 for every c ∈ [a, b] and f ∈ HK([a, b], ϕ,X).

We said above that in general the Henstock-Kurzweil-Stieltjes integral strictly contains the varia-
tional Henstock-Kurzweil-Stieltjes integral. Indeed, A. P. Solodov (see [Sol99]) was the first to show
that in the case whereX = Z, Y = R, ϕ is the identity map on [a, b] andB is the usual multiplication
with scalars these both notions of integral coincide if and only if X is a finite dimensional Banach
space. The if-part of this statement is a consequence of the well-known Henstock-Saks lemma (see,
e.g., Lemma 2.59 in [DN11]). The following lemma gives us a version of this Henstock-Saks lemma
in our framework.

4.3 Lemma. Assume that Z is finite-dimensional. Then the following assertions are equivalent.

(a) The function f is Henstock-Kurzweil-Stieltjes integrable with respect to ϕ.

(b) We have f ∈ HK([a, b], ϕ,X).

If (a) or (b) is satisfied, we have
∫ t
a
f(s) · dϕ(s) = (HK)

∫ t
a
f(s) · dϕ(s) for all t ∈ [a, b].

Proof. We have already noticed that (b) implies (a) and that in this case the addendum holds. We
now conversely assume that (a) is satisfied. Considering Z as a Banach space over R, one easily
verifies that it suffices to consider the case Z = Rd (endowed with the usual Euclidean norm) for a
d ∈ N and then one reduces equally easily the assertion to the case d = 1.
By Theorem 2.73 in [DN11], f is Henstock-Kurzweil-Stieltjes integrable with respect to ϕ on each
closed subinterval of [a, b] and the Henstock-Kurzweil-Stieltjes integral is additive with respect to
the integration domain. We can therefore set F (t) := (HK)

∫ t
a
f(τ) · dϕ(τ) for t ∈ [a, b]. Thanks to

Lemma 2.59 in [DN11], we infer that for each ε > 0 there exists a gauge δ : [a, b]→ (0,∞) such that∣∣∣∣∣∣
r∑
j=1

(F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)])

∣∣∣∣∣∣ < ε,
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4 The variational Henstock-Kurzweil-Stieltjes integral

whenever {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ). To finish the proof, one may thus proceed as in the proof
of the classical Henstock-Saks lemma (cf., e.g., the proof of Lemma 2.3.1 in [Pfe93]). Fix ε > 0 and
choose a gauge δ with ∣∣∣∣∣∣

r∑
j=1

(F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)])

∣∣∣∣∣∣ < ε

2

for each {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ). Consider an arbitrary δ-fine partition {([aj , bj ], xj)}rj=1 ∈
S([a, b], δ) on [a, b] and put I+ := {j ∈ {1, . . . , r} : F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)] ≥ 0}. We
then compute

r∑
j=1

|F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)]|

=
∑

j=1,...,r
j∈I+

(F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)])

−
∑

j=1,...,r
j /∈I+

(F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)])

=
∣∣∣∣ ∑
j=1,...,r
j∈I+

(F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)])
∣∣∣∣

+
∣∣∣∣ ∑
j=1,...,r
j /∈I+

(F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)])
∣∣∣∣ < 2 · ε

2
= ε.

Consequently, f ∈ HK([a, b], ϕ,X) with
∫ t
a
f(s) · dϕ(s) = F (t) for all t ∈ [a, b].

We now start to collect the deeper properties of the variational Henstock-Kurzweil-Stieltjes integral.
In doing so it turns out that the following two notions take up dominant roles; they are inspired by
concept formations due to Ward in [War36] and Faure in [Fau97].

4.4 Definition. (a) A set A ⊆ [a, b] is called a ϕ-null set if there is an mϕ-null set N ⊆ [a, b] (i.e.,
mϕ(N) = 0) and a countable set D ⊆ [a, b] with A = N ∪D.

(b) We call F absolutely continuous with respect to ϕ if each mϕ-null set is also an mF -null set. In
this case we write mF � mϕ.

4.5 Remark We obviously have mF � mϕ if and only if every ϕ-null set is also a F -null set.

4.6 Definition. Let F : [a, b] → Z and ϕ : [a, b] → Y be functions and t ∈ [a, b]. We say that F is
ϕ-continuous at t if there is a x ∈ X such that

lim
h→0

t+h∈[a,b]

(
F (t+ h)− F (t)− x · (ϕ(t+ h)− ϕ(t))

)
= 0.

Such an x ∈ X is called a ϕ-continuity value of g at the point t.

Observe that the point x in the definition of ϕ-continuity is not unique in general: if, e.g., F and ϕ
are both continuous at t, then each x ∈ X is a ϕ-continuity value of F at t. So we denote by C(F,ϕ, t)
the set of all ϕ-continuity values of F at t (in particular, C(F,ϕ, t) = ∅ precisely means that F is not
ϕ-continuous at t); notice that C(F,ϕ, t) is always convex.

4.7 Lemma (cf. [Fau97, Proposition 4.4]). Let f ∈ HK([a, b], ϕ,X) with primitive F . Then mF � mϕ.
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4.1 Definition and basic properties

Proof. Let ∅ 6= E ⊆ [a, b] with mϕ(E) = 0 and set En := {x ∈ E : ‖f(x)‖ ≤ n}. It suffices to verify
mF (En) = 0 for each n ∈ N since mF is an outer measure on [a, b]. For this purpose, fix n ∈ N,
assume En 6= ∅ and let ε > 0 be arbitrary. Then there is a gauge δ1 : [a, b]→ (0,∞) such that

r∑
j=1

‖f(xj) · [ϕ(bj)− ϕ(aj)]− (F (bj)− F (aj))‖ <
ε

2

for every {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ1) and a gauge δ2 : En → (0,∞) with

r′∑
j=1

‖ϕ(b′j)− ϕ(a′j)‖ <
ε

2n

for all {([a′j , b′j ], x′j)}r
′

j=1 ∈ S(En, δ2). Take a collection {([aj , bj ], xj)}rj=1 in S(En,min{δ1|En , δ2}).
We can estimate

r∑
j=1

‖F (bj)− F (aj)‖ ≤
r∑
j=1

‖f(xj) · [ϕ(bj)− ϕ(aj)]− (F (bj)− F (aj))‖

+
r∑
j=1

‖f(xj)‖ · ‖ϕ(bj)− ϕ(aj)‖

<
ε

2
+ n

r∑
j=1

‖ϕ(bj)− ϕ(aj)‖ < ε

and we conclude mF (En) = 0.

4.8 Corollary. Let f ∈ HK([a, b], ϕ,X) with primitive F and let E ⊆ [a, b] be an Fσ-set such that mϕ is
σ-finite on E. If ϕ is continuous, then mF is also σ-finite on E and we have F ∈ BVG*(E,Z).

Proof. This is a direct consequence of Lemma 4.7 and Corollary 3.18.

4.9 Lemma. Let f ∈ HK([a, b], ϕ,X) with primitive F . Then f(x) ∈ C(F,ϕ, x) for all x ∈ [a, b].

Proof. Fix x ∈ [a, b] and let ε > 0. Choose a gauge δ ∈ (0,∞)[a,b] such that

r∑
j=1

‖f(xj) · [ϕ(bj)− ϕ(aj)]− (F (bj)− F (aj))‖ < ε

for every {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ). For each y ∈ [a, b]∩Uδ(x)(x) we have (〈y, x〉, x) ∈ S([a, b], δ)
and consequently

‖F (y)− F (x)− f(x) · [ϕ(y)− ϕ(x)]‖ < ε.

As a result, f(x) is contained in C(F,ϕ, x).

4.10 Corollary. Let f belong toHK([a, b], ϕ,X) with primitive F and assume that ϕ is continuous at some
point x0 ∈ [a, b]. Then F is also continuous at x0.

Proof. Lemma 4.9 and the continuity of ϕ yield

‖F (x)− F (x0)‖
≤‖F (x)− F (x0)− f(x0) · [ϕ(x)− ϕ(x0)]‖+ ‖f(x0) · [ϕ(x)− ϕ(x0)]‖
≤‖F (x)− F (x0)− f(x0) · [ϕ(x)− ϕ(x0)]‖+ ‖f(x0)‖ · ‖ϕ(x)− ϕ(x0)‖ −→ 0

as x→ x0.
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4 The variational Henstock-Kurzweil-Stieltjes integral

4.11 Lemma. Let N := {x ∈ [a, b] : f(x) 6= 0} and assume that mϕ(N) = 0. Then f ∈ HK([a, b], ϕ,X)
with

∫ x
a
f(t) · dϕ(t) = 0 for all x ∈ [a, b].

Proof. We set Nj := {x ∈ [a, b] : j − 1 < ‖f(x)‖ ≤ j} for j ∈ N. Because of Nj ⊆ N we have
mϕ(Nj) = 0 for all j ∈ N. Let ε > 0. Put A := {j ∈ N : Nj 6= ∅}. For each j ∈ A there exists a gauge
δj ∈ (0,∞)Nj with

r∑
k=1

‖ϕ(bk)− ϕ(ak)‖ < ε

j2j

for all {([ak, bk], xk)}rk=1 ∈ S(Nj , δj). We now define

δ(x) :=

{
1, if f(x) = 0,
δj(x), if x ∈ Nj for a (unique) j ∈ A.

For every {([ak, bk], xk)}rk=1 in S([a, b], δ) we estimate

r∑
k=1

‖f(xk) · [ϕ(bk)− ϕ(ak)]‖ ≤
∞∑
j=1

r∑
k=1

xk∈Nj

‖f(xk)‖ · ‖[ϕ(bk)− ϕ(ak)]‖

≤
∞∑
j=1

j

r∑
k=1

xk∈Nj

‖[ϕ(bk)− ϕ(ak)]‖ <
∞∑
j=1

j · ε

j2j
= ε,

using in the last (strict) inequality that {([ak, bk], xk)} k=1,...,r
xk∈Nj

belongs to S(Nj , δj) for j ∈ A. As a

consequence, we get f is an element ofHK([a, b], ϕ,X) with
∫ x
a
f(t) · dϕ(t) = 0 for all x ∈ [a, b].

4.2 Notions of differentiation

The next two sections contain our main results concerning the variational Henstock-Kurzweil-
Stieltjes integral. These results deal on the one side with the question in which sense the variational
Henstock-Kurzweil-Stieltjes integral is differentiable and whether certain derivatives are variation-
ally Henstock-Kurzweil-Stieltjes integrable. In this short section we want to specify these “certain
derivatives”.

The following definition is inspired by [War36].

4.12 Definition. Let t ∈ [a, b]. We say that F is ϕ-Roussel-differentiable at t provided the following two
conditions are satisfied

• C(F,ϕ, t) 6= ∅ and

• ∃ x ∈ C(F,ϕ, t) ∀ ε > 0 ∃ δ > 0 ∀ 0 < |h| < δ with t+ h ∈ [a, b]:

‖F (t+ h)− F (t)− x · (ϕ(t+ h)− ϕ(t))‖Z ≤ ε ω(ϕ; t, h),

where

ω(ϕ; t, h) :=

{
ω(ϕ, [t, t+ h]), if h > 0,
ω(ϕ, [t+ h, t]), if h < 0.

If x ∈ C(F,ϕ, t) satisfies the second condition, we say that x is a ϕ-Roussel-differentiability value of F at
t. The set of all ϕ-Roussel-differentiability values of F at t is denoted by D(F,ϕ, t); using that C(F,ϕ, t) is
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4.2 Notions of differentiation

convex, one easily deduces that D(F,ϕ, t) is convex, too. Note that the second condition is trivially fulfilled
if ω(ϕ; t, h) = ∞ holds. Any point x ∈ X (not necessarily belonging to C(F,ϕ, t)) satisfying the second
condition is called a pseudo-ϕ-Roussel-differentiability value of F at t; if such an x exists, we then say
that F is pseudo-ϕ-Roussel-differentiable at t.

4.13 Remark (a) Observe that if x is a pseudo-ϕ-Roussel-differentiability value of F at t and if F
is bounded in a neighbourhood of t, then x is even a ϕ-Roussel-differentiability value of F at
t since in this case one has x ∈ C(F,ϕ, t) automatically.

(b) Furthermore, notice that in the special case X = Z, Y = K, where ϕ is the identity on [a, b]
and the bilinear mapping B is the usual multiplication with scalars, the notion of ϕ-Roussel-
differentiability coincides with usual notion of differentiability.

If there is an mϕ-null set N ⊆ [a, b] such that F is pseudo-ϕ-Roussel-differentiable on [a, b] \N , then
we say that F ismϕ-almost everywhere (mϕ-a.e.) pseudo-ϕ-Roussel-differentiable and any function
f : [a, b] → X with the property that f(t) is a pseudo-ϕ-Roussel-differentiability value of F at t for
all t ∈ [a, b] \N is called an mϕ-Roussel derivative of F .

Let F : [a, b] → Z be a ϕ-continuous function and A ⊆ [a, b] a ϕ-null set such that F is ϕ-Roussel-
differentiable on [a, b] \A. Then any function f : [a, b]→ X satisfying

• ∀ t ∈ [a, b] : f(t) ∈ C(F,ϕ, t) and

• ∀ t ∈ [a, b] \A : f(t) ∈ D(F,ϕ, t)

is called a ϕ-Roussel derivative of F . Note that, if we say that F possesses a ϕ-Roussel derivative, then
this means in particular that F is assumed to be ϕ-continuous.

The following two examples show that in general none of the notions “ϕ-Roussel derivative” and
“mϕ-Roussel derivative” includes the respective other one.

4.14 Example We consider
f : [0, 1]→ R; t 7→ 1[0,1)(t),

F : [0, 1]→ R; t 7→ 1[0,1)(t) · t

and
ϕ : [0, 1]→ R; t 7→ t.

Clearly, f is an mϕ-Roussel derivative of F , but it is not a ϕ-Roussel derivative because f(1) /∈
C(F,ϕ, 1). In fact, F (1)− F (s)− f(1)(ϕ(1)− ϕ(s)) = −s→ −1 as s→ 1+.

4.15 Example We consider
f : [0, 1]→ R; t 7→ 1[−1,1]\{0}(t),

F : [0, 1]→ R; t 7→ t

and

ϕ : [0, 1]→ R; t 7→

{
t, if − 1 ≤ t ≤ 0,
t+ 1, if 0 < t ≤ 1.

We first verify that f(t) ∈ D(F,ϕ, t) for each t ∈ [−1, 1] \ {0}. Let t ∈ [−1, 0) and h ∈ R \{0} with
t+h ∈ [−1, 0). Then we have |F (t)−F (t+h)−f(t)(ϕ(t)−ϕ(t+h))| = |t−(t+h)−(t−(t+h))| = 0.
For t ∈ (0, 1] and h ∈ R \{0}with t+h ∈ (0, 1] one obtains |F (t)−F (t+h)−f(t)(ϕ(t)−ϕ(t+h))| =
|t− (t+ h)− (t+ 1− (t+ h+ 1))| = 0. Moreover, we calculate

|F (0)− F (±h)− f(0)(ϕ(0)− ϕ(±h))| = |0− (±h)− 0| = h (4.1)
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4 The variational Henstock-Kurzweil-Stieltjes integral

for h ∈ (0, 1) and we conclude f(t) ∈ C(F,ϕ, t) for all t ∈ [−1, 1]. So f is a ϕ-Roussel derivative of
F . Furthermore, for h ∈ (0, 1) we have ω(ϕ, [−h, 0]) = h. Consequently, if we have

|F (0)− F (−h)− f(0)(ϕ(0)− ϕ(−h))| ≤ εω(ϕ; 0,−h)

for an ε > 0, then equation (4.1) yields ε ≥ 1 and therefore f(0) /∈ D(F,ϕ, 0). As a consequence,
f is not an mϕ-Roussel derivative as for the exceptional set {0} we have mϕ({0}) > 0 since ϕ is
discontinuous at 0.

In contrast to the above two examples there are important cases where the notions “ϕ-Roussel
derivative” and “mϕ-Roussel derivative” coincide as the subsequent result shows.

4.16 Lemma. Let ϕ : [a, b] → Y be continuous with mF � mϕ. Then the following assertions are
equivalent.

(a) The function f is a ϕ-Roussel derivative of F .

(b) The function f is an mϕ-Roussel derivative of F .

Proof. First suppose that (a) is satisfied. We have mϕ({x}) = 0 for all x ∈ [a, b] because ϕ is continu-
ous and we therefore conclude that f is anmϕ-Roussel derivative of F . Now we conversely assume
that (b) holds. Since ϕ is continuous and mF � mϕ, we have mF ({x}) = 0 for all x ∈ [a, b], which
implies that F is continuous. Thus F and ϕ are both continuous, which yields C(F,ϕ, t) = X for all
t ∈ [a, b]. As a result, we infer that f is a ϕ-Roussel derivative of F .

We shall need two further notions of differentiation.

4.17 Definition. We say that F is ϕ-Fréchet differentiable at t if there exists an x ∈ X such that for all
ε > 0 there exists a ρ > 0 such that we have

‖F (s)− F (t)− x · [ϕ(s)− ϕ(t)]‖ ≤ ε‖ϕ(s)− ϕ(t)‖

for all s ∈ [a, b] with |s − t| < ρ. We then call x a ϕ-Fréchet-differentiability value of F at t. The set of
all ϕ-Fréchet-differentiability values of F at t is denoted by FD(F,ϕ, t).

Let F : [a, b] → Z be a ϕ-continuous function and A ⊆ [a, b] a ϕ-null set such that F is ϕ-Fréchet
differentiable off A. A function f : [a, b]→ X satisfying

• ∀ t ∈ [a, b] : f(t) ∈ C(F,ϕ, t) and

• ∀ t ∈ [a, b] \A : f(t) ∈ FD(F,ϕ, t)

is then called a ϕ-Fréchet derivative of F .

4.18 Remark It is obvious that each ϕ-Fréchet-differentiability value is also a pseudo-ϕ-Roussel-
differentiability value and each ϕ-Fréchet derivative is also a ϕ-Roussel derivative.

The last notion of differentiation is adapted to the situation where BVG*-functions serve as “differ-
entiators”.

4.19 Definition. Let ϕ ∈ BVG*([a, b], Y ) with admissible decomposition (En)∞n=0. We say that F is
(ϕ, (En)n)-differentiable at t if there exists an x ∈ X such that for all ε > 0 and all n ∈ {m ∈ N : t ∈ Em}
there exists a ρ > 0 such that we have

‖F (s)− F (t)− x · [ϕ(s)− ϕ(t)]‖ ≤ εmϕ(〈s, t〉 ∩ En)

for all s ∈ [a, b] with |s− t| < ρ. The set of all those x is denoted by D(F,ϕ, t, (En)n).
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4.3 Differentiation properties

It seems to be quite a delicate matter to fathom how this last notion of differentiability depends on
the choosen admissible decomposition (En)∞n=0 and how it is related to the derivatives introduced
above. Using the results from the next two sections we will obtain a clearer picture concerning these
questions. Nevertheless we can give already at this point a partial result.

4.20 Lemma. Let ϕ ∈ BV([a, b], Y ) be continuous from the right and choose the admissible decomposition
(En)∞n=0 given by E0 = ∅ and En = [a, b] for n ∈ N. If F is ϕ-Roussel-differentiable at t ∈ [a, b], then F is
also (ϕ, (En)n)-differentiable at t.

Proof. Let x ∈ D(F,ϕ, t), ε > 0 and pick ρ > 0 with

‖F (t+ h)− F (t)− x · (ϕ(t+ h)− ϕ(t))‖Z ≤ ε ω(ϕ; t, h)

for all 0 < |h| < ρ with t+ h ∈ [a, b]. Using Corollary A.4 we obtain

‖ϕ(u)− ϕ(v)‖ ≤ mϕ([u, v]) ≤ mϕ(〈t, t+ h〉)

for all u, v ∈ 〈t, t+ h〉, hence ω(ϕ; t, h) ≤ mϕ(〈t, t+ h〉 ∩ En), n ∈ N.

4.3 Differentiation properties

We now come to our main results concerning the variational Henstock-Kurzweil-Stieltjes integral.
In this section we establish two theorems concerning its differentiability properties.
The first result concerns differentiation in the sense of Definition 4.19.

4.21 Theorem. Let ϕ ∈ BVG*([a, b], Y ) with an admissible decomposition (En)∞n=0. Furthermore, let
f ∈ HK([a, b], ϕ,X) with primitive F . Then there exists an mϕ-null set N ⊆ [a, b] such that f(t) ∈
D(F, t, ϕ, (En)n) for all t ∈ [a, b] \N .

Proof. For k, ν ∈ N we set

Nk,ν :=
{
t ∈ Eν :

∀ ρ > 0 ∃ sρ ∈ Uρ(t) ∩ [a, b] :
‖F (sρ)− F (t)− f(t) · [ϕ(sρ)− ϕ(t)]‖ > 1

k ·mϕ(〈sρ, t〉 ∩ Eν)

}
.

Let t ∈ [a, b]\
⋃
k,ν∈N Nk,ν , ε > 0 andm ∈ N with t ∈ Em. Take l ∈ N with 1

l ≤ ε. Because of t /∈ Nl,m,
there exists a ρ > 0 such that

‖F (s)− F (t)− f(t) · [ϕ(s)− ϕ(t)]‖ ≤ 1
l
·mϕ(〈sρ, t〉 ∩ Eν) ≤ εmϕ(〈sρ, t〉 ∩ Eν)

for all s ∈ Uρ(t) ∩ [a, b] and, as a consequence, f(t) ∈ D(F, t, ϕ, (En)n). Therefore it suffices to show
mϕ(Nk,ν) = 0 for all k, ν ∈ N. For this purpose fix k, ν ∈ N and choose δ1 ∈ (0,∞)[a,b] with

r∑
j=1

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖ <
ε

2k
(4.2)

for all {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ1), which is possible by hypothesis. For every t ∈ Nk,ν we pick a
sequence (sn,t)n in [a, b] with |t− sn,t| < min{1/n, δ1(t)} and with

‖F (sn,t)− F (t)− f(t) · [ϕ(sn,t)− ϕ(t)]‖ > 1
k
·mϕ(〈sn,t, t〉 ∩ Eν) (4.3)
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4 The variational Henstock-Kurzweil-Stieltjes integral

for all n ∈ N, which is possible by the definition of Nk,ν . Then J := {〈sn,t, t〉 : t ∈ Nk,ν , n ∈ N}
covers Nk,ν in the (classical) Vitali-sense and the elements of J are closed intervals having non-
trivial interior as the inequality in (4.3) is strict. We now consider the finite set function

µ : P(R)→ [0,∞); A 7→ mϕ(B ∩ Eν).

One easily verifies that µ is a metric outer measure on R using that mϕ is a metric outer measure
on [a, b]. Thanks to Proposition B.1, we can extract pairwise disjoint intervals {〈snj , tj〉}rj=1, where
snj := snj ,tj and nj ∈ N such that µ(Nk,ν \

⋃r
j=1〈snj , tj〉) <

ε
2 . Employing (4.3) we now estimate

mϕ(Nk,ν) = µ(Nk,ν) ≤ µ
(
Nk,ν \

r⋃
j=1

〈snj , tj〉
)

+ µ

(
Nk,ν ∩

r⋃
j=1

〈snj , tj〉
)

<
ε

2
+ µ

(
Eν ∩

r⋃
j=1

〈snj , tj〉
)

=
ε

2
+mϕ

( r⋃
j=1

(Eν ∩ 〈snj , tj〉)
)

≤ ε

2
+

r∑
j=1

mϕ(Eν ∩ 〈snj , tj〉)

≤ ε

2
+

r∑
j=1

k‖F (snj )− F (tj)− f(tj) · [ϕ(snj )− ϕ(tj)]‖ <
ε

2
+ k · ε

2k
= ε,

where the last inequality results from applying (4.2), which is allowed because {(〈snj , tj〉, tj)}rj=1 ∈
S([a, b], δ1) due to the pairwise disjointness of the intervals {〈snj , tj〉}rj=1. We thus arrive at the
conclusion mϕ(Nk,ν) = 0.

The next theorem treats the Fréchet-differentiability of the variational Henstock-Kurzweil-Stieltjes
integral and gives an improvement and indeed far-reaching extension of Theorem 7 in [War36] and
of the implication 1) =⇒ 2) of Faure’s Theorem 4.7 in [Fau97] (note that Faure’s theorem is based
on his Proposition 3.10 which cannot have an vector-valued extension beyond the scope of spaces
with the Radon-Nikodým property). At this point our exploration on the relation between fine and
full variational measure becomes fruitful.

4.22 Theorem. Let ϕ ∈ BVG*([a, b], Y ) and f ∈ HK([a, b], ϕ,X) with primitive F . Then there exists an
mϕ-null set N ⊆ [a, b] and a countable set D such that f(t) ∈ FD(F, t, ϕ) for all t ∈ [a, b] \ (N ∪D).

Proof. For k ∈ N we put

Nk :=
{
t ∈ [a, b] :

∀ ρ > 0 ∃ sρ ∈ Uρ(t) ∩ [a, b] :
‖F (sρ)− F (t)− f(t) · [ϕ(sρ)− ϕ(t)]‖ > 1

k · ‖ϕ(sρ)− ϕ(t)‖

}
.

Let D denote the countable point set of all discontinuities of ϕ. It suffices to verify mϕ(Nk \D) = 0
for all k ∈ N. For this purpose fix k ∈ N and choose δ ∈ (0,∞)[a,b] with

r∑
j=1

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖ <
ε

k
(4.4)

for all {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ), which is possible by assumption. For each t ∈ Nk we take a
sequence (sn,t)n in [a, b] with |t− sn,t| < min{1/n, δ(t)} and with

‖F (sn,t)− F (t)− f(t) · [ϕ(sn,t)− ϕ(t)]‖ > 1
k
· ‖ϕ(sρ)− ϕ(t)]‖. (4.5)

62
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We set β := {(〈sn,t, t〉, t) : t ∈ Nk, n ∈ N}. As the inequality (4.4) is strict, we always have sn,t 6= t
and we conclude that β ∈ C?(Nk). Now let π = {(〈snj , tj〉, tj)}rj=1 ∈ P(β), where snj := snj ,tj and
nj ∈ N. From (4.4) and(4.5) we deduce

Wϕ(π) =
r∑
j=1

‖ϕ(snj )− ϕ(tj)‖ ≤ k
r∑
j=1

‖F (snj )− F (t)− f(t) · [ϕ(snj )− ϕ(t)]‖ < k · ε
k

= ε,

using {(〈snj , tj〉, tj)}rj=1 ∈ S(Nk, δ) ⊆ S([a, b], δ). Hence, mϕ(Nk) ≤ supπ∈P(β)Wϕ(π) ≤ ε and thus
mϕ(Nk) = 0. Now Theorem 3.29 yields mϕ(Nk \D) = mϕ(Nk \D) = 0.

4.4 Integration of derivatives

In this section we explore the integrability properties of some of the derivatives introduced above.

4.23 Theorem. Let ϕ ∈ BVG*([a, b], Y ) with measurable admissible decomposition (En)∞n=0 and let F :
[a, b] → Z be a ϕ-continuous function such that there exists a set N ⊆ [a, b] with mF (N) = 0 and
a countable set A ⊆ [a, b] such that F is (ϕ, (En)n)-differentiable on [a, b] \ (N ∪ A). Furthermore let
f : [a, b]→ X be any function with the following properties:

• f(t) ∈ C(F,ϕ, t) for all t ∈ A \N ;

• f(t) ∈ D(F,ϕ, t, (En)n) for all t ∈ [a, b] \ (N ∪A);

• f(t) = 0 for all t ∈ N .

Then we have f ∈ HK([a, b], ϕ) with
∫ t
a
f(s) · dϕ(s) = F (t)− F (a) for all t ∈ [a, b].

Proof. Let D denote the countable set of all discontinuities of ϕ and let ε > 0. If B := (A ∪D) \N is
nonvoid, let (sn)n∈I be an enumeration of B, where I = {1, . . . , ]B}, if B is finite, and I = N, if B is
infinite. We further set Ẽ1 := E1 \ (B ∪N) and Ẽn := En \

(⋃
k<nEk ∪B ∪N

)
for n > 1. For each

n ∈ I take δn > 0 with

‖F (s)− F (sn)− f(sn) · [ϕ(s)− ϕ(sn)]‖ < ε

2n+4

for all s ∈ [a, b] ∩ Uδn(sn), using that f(sn) ∈ C(F,ϕ, sn). Because of mF (N) = 0, there is a gauge
δ0 ∈ (0,∞)N with WF (S) < ε

4 for all S ∈ S(N, δ0). Finally, for t ∈ Ẽn we choose δ0,n(t) > 0 with

‖F (s)− F (t)− f(t) · [ϕ(s)− ϕ(t)]‖ ≤ ε

2n+2(mϕ(En) + 1)
·mϕ(〈s, t〉 ∩ En)

for all s ∈ [a, b] ∩ Uδ0,n(t)(t). We now define

δ : [a, b]→ (0,∞); t 7→


δn, if t = sn for a (unique) n ∈ I,
δ0(t), if t ∈ N,
δ0,n(t), if t ∈ Ẽn for a (unique) n ∈ N .

Let {([aj , bj ], tj)}rj=1 be an arbitrary element of S([a, b], δ). We have

r∑
j=1

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖ ≤
r∑
j=1
tj∈N

‖F (bj)− F (aj)‖+ Σ1 + Σ2 + Σ3,
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4 The variational Henstock-Kurzweil-Stieltjes integral

where

Σ1 :=
r∑
j=1
tj∈B

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖,

Σ2 :=
r∑
j=1

tj /∈B∪N

‖F (bj)− F (tj)− f(tj) · [ϕ(bj)− ϕ(tj)]‖,

and

Σ3 :=
r∑
j=1

tj /∈B∪N

‖F (tj)− F (aj)− f(tj) · [ϕ(tj)− ϕ(aj)]‖.

By the definition of δ we obtain
r∑
j=1
tj∈N

‖F (bj)− F (aj)‖ <
ε

4
.

For tj ∈ B let kj ∈ I with skj = tj . Using that ]{j ∈ {1, . . . , r} : tj = sk} ≤ 2 for each k ∈ I we
calculate

Σ1

≤
r∑
j=1
tj∈B

‖F (bj)− F (skj )− f(tj) · [ϕ(bj)− ϕ(skj )]‖+
r∑
j=1
tj∈B

‖F (skj )− F (aj)− f(tj) · [ϕ(skj )− ϕ(aj)]‖

≤2
r∑
j=1
tj∈B

ε

2kj+4
≤ 4ε

24

∑
k∈I

1
2k
≤ ε

4

∞∑
n=1

1
2n

=
ε

4
.

Next observe that for tj , tk ∈ Ẽn with j 6= k we have [tj , bj ] ∩ [tk, bk] ⊆ {tj , tk} and mϕ({tk}) = 0
due to Ẽn ⊆ [a, b] \D. This yields (recall that (En)∞n=0 is a measurable admissible decomposition)

r∑
j=1

tj∈ eEn
mϕ([tj , bj ] ∩ En) = mϕ

( r⋃
j=1

tj∈ eEn
[tj , bj ] ∩ En

)
≤ mϕ(En).

Utilising this inequality we further estimate

Σ2 =
∞∑
n=1

r∑
j=1

tj∈ eEn
‖F (bj)− F (tj)− f(tj) · [ϕ(bj)− ϕ(tj)]‖

≤
∞∑
n=1

r∑
j=1

tj∈ eEn

ε

2n+2(mϕ(En) + 1)
·mϕ([tj , bj ] ∩ En)

≤
∞∑
n=1

εmϕ(En)
2n+2(mϕ(En) + 1)

<
ε

4
.

Analogously, we see Σ3 <
ε
4 . Summarizing, we arrive at

r∑
j=1

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖ < 4 · ε
4

= ε

for each {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ). This completes the proof.
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4.4 Integration of derivatives

Analogous to Theorem 4.23, the next result states a corresponding statement essentially concerning
the integrability properties of the Roussel-derivative.

4.24 Theorem. Let ϕ ∈ BVG*([a, b], Y ) and let F : [a, b]→ Z be a ϕ-continuous function such that there
exists a setN ⊆ [a, b] withmF (N) = 0 and a countable setA ⊆ [a, b] such that F is ϕ-Roussel differentiable
on [a, b] \ (N ∪A). Furthermore let f : [a, b]→ X be any function with the following properties:

• f(x) ∈ C(F,ϕ, x) for all x ∈ A \N ;

• f(x) ∈ D(F,ϕ, x) for all x ∈ [a, b] \ (N ∪A);

• f(x) = 0 for all x ∈ N .

Then we have f ∈ HK([a, b], ϕ) with
∫ x
a
f(t) · dϕ(t) = F (x)− F (a) for all x ∈ [a, b].

We shall give two different proofs for this important result. The first one rests on an immediate
application of Lemma 2.8, while the second proof is based on Lemma 2.4

1st proof of Theorem 4.24. Lemma 2.8 gives a strictly increasing function χ : [a, b] → R and a count-
able set M ⊆ [a, b] such that

lim
y→x

‖ϕ(x)− ϕ(y)‖
|χ(x)− χ(y)|

<∞

for all x ∈ [a, b] \M . In view of this fact, for each n ∈ N we define Ẽn as the set of all x ∈ [a, b] with
the property

∀ y ∈ [a, b] : |χ(x)− χ(y)| < 1
n

=⇒ ‖ϕ(x)− ϕ(y)‖ ≤ n|χ(x)− χ(y)|.

Let ε > 0. We set
εn :=

ε

n2n+3(χ(b)− χ(a))

for n ∈ N. Let D denote the countable set of all discontinuities of χ and put B := N ∪A ∪M ∪D ∪
{a, b}. For each x ∈ Ẽn \B there exists a number δn(x) > 0 such that the two implications

|x− y| < δn(x) =⇒ |χ(x)− χ(y)| < 1
n

and

x− δn(x) < y ≤ x ≤ z < x+ δn(x)
=⇒ ‖F (z)− F (y)− f(x) · [ϕ(z)− ϕ(y)]‖ ≤ εnω(ϕ, [y, z]) (4.6)

are satisfied for all y, z ∈ [a, b]. Indeed, the first condition can be fulfilled because of x /∈ D. Due to
x /∈ N ∪A, F is ϕ-Roussel-differentiable at x with f(x) ∈ D(F,ϕ, x). There thus exists a radius r > 0
such that x+ h ∈ [a, b] and

‖F (x+ h)− F (x)− f(x) · [ϕ(x+ h)− ϕ(x)]‖ ≤ εn
2
ω(ϕ;x, h)

for all h ∈ (−r, r). For y, z ∈ (x− r, x+ r) with y ≤ x ≤ z, we deduce

‖F (z)− F (y)− f(x) · [ϕ(z)− ϕ(y)]‖
≤‖F (z)− F (x)− f(x) · [ϕ(z)− ϕ(x)]‖+ ‖F (x)− F (y)− f(x) · [ϕ(x)− ϕ(y)]‖

≤εn
2

(ω(ϕ, [x, z]) + ω(ϕ, [y, x])) ≤ εnω(ϕ, [y, z]).
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4 The variational Henstock-Kurzweil-Stieltjes integral

Hence, we can choose δn(x) > 0 as claimed. Observe that if x ∈ Ẽn \B, y, z ∈ [a, b] and x− δn(x) <
y ≤ x ≤ z < x+ δn(x), then we obtain |ξ − x| < δn(x) for each ξ ∈ [y, z]. Hence, |χ(ξ)− χ(x)| < 1

n ,
which in turn yields ‖ϕ(x)− ϕ(ξ)‖ ≤ n|χ(x)− χ(ξ)| because x ∈ Ẽn. We thus derive

‖ϕ(ξ)− ϕ(ζ)‖ ≤ ‖ϕ(ξ)− ϕ(x)‖+ ‖ϕ(x)− ϕ(ζ)‖
≤ n(|χ(ξ)− χ(x)|+ |χ(x)− χ(ζ)|)
≤ 2nω(χ, [y, z]) = 2n(χ(z)− χ(y))

for all ξ, ζ ∈ [y, z], i.e.,
ω(ϕ, [y, z]) ≤ 2n(χ(z)− χ(y)). (4.7)

We next put C := B \N = (A∪M ∪D∪{a, b})\N . If C 6= ∅, let (yn)n∈I be a (bijective) enumeration
of C, where I := {1, . . . , ]C} for finite C and I := N for infinite C. (Note that C is countable.) Since
F is ϕ-continuous with f(x) ∈ C(F,ϕ, x) for all x ∈ [a, b] \ N , we can choose a number δn > 0 for
each n ∈ I such that

‖F (y)− F (yn)− f(yn) · [ϕ(y)− ϕ(yn)]‖ < ε

2n+4

for all y ∈ [a, b] with |y − yn| < δn.

Thanks to mF (N) = 0, we finally find a gauge δ̃ : N → (0,∞) with

r∑
j=1

‖F (bj)− F (aj)‖ <
ε

4

for each {([aj , bj ], xj)}rj=1 ∈ S(N, δ̃).

Now, we define E1 := Ẽ1 \B, En+1 := Ẽn+1 \
(
B ∪

⋃n
j=1 Ẽj

)
for n ∈ N and

δ(x) :=


δn(x), if x ∈ En for some (unique) n ∈ N,
δn, if x = yn for some (unique) n ∈ I,
δ̃(x), if x ∈ N,

for x ∈ [a, b]. Note that
⋃̇∞
n=1En∪̇N ∪̇C =

(⋃∞
n=1 Ẽn \B

)
∪B =

⋃∞
n=1 Ẽn∪B = [a, b] since [a, b]\M ⊆⋃∞

n=1 Ẽn and M ⊆ B.
Now let {([aj , bj ], xj)}rj=1 ∈ S([a, b], δ) be arbitrary. We have

r∑
j=1

‖F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)]‖

=
r∑
j=1
xj∈N

‖F (bj)− F (aj)‖+
r∑
j=1
xj∈C

‖F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)]‖

+
r∑
j=1
xj /∈B

‖F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)]‖

= :
r∑
j=1
xj∈N

‖F (bj)− F (aj)‖+ Σ1 + Σ2 <
ε

4
+ Σ1 + Σ2

For each xj ∈ C let nj ∈ I be the uniquely determined number with ynj = xj . Then we estimate

Σ1 =
r∑
j=1
xj∈C

‖F (bj)− F (aj)− f(ynj ) · [ϕ(bj)− ϕ(aj)]‖
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≤
r∑
j=1
xj∈C

‖F (bj)− F (ynj )− f(ynj ) · [ϕ(bj)− ϕ(ynj )]‖

+
r∑
j=1
xj∈C

‖F (ynj )− F (aj)− f(ynj ) · [ϕ(ynj )− ϕ(aj)]‖

<2
r∑
j=1
xj∈C

ε

2nj+4
≤ ε

4

∞∑
n=1

1
2n

=
ε

4
,

where we used that for each k ∈ I the set {j ∈ {1, . . . , r} : xj = yk} has at most two elements. We
next estimate

Σ2 =
∞∑
n=1

r∑
j=1

xj∈En

‖F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)]‖

≤
∞∑
n=1

r∑
j=1

xj∈En

εnω(ϕ, [aj , bj ])

≤
∞∑
n=1

r∑
j=1

xj∈En

2nεn(χ(bj)− χ(aj)),

where we applied the inequalities (4.6) and (4.7). The monotonicity of χ and the definition of εn
then yield

Σ2 ≤
∞∑
n=1

2nεn
r∑
j=1

xj∈En

(χ(bj)− χ(aj))


≤
∞∑
n=1

(
2n · ε

n2n+3(χ(b)− χ(a))
· (χ(b)− χ(a))

)

=
ε

4

∞∑
n=1

1
2n

=
ε

4
.

Summarizing, we arrive at
r∑
j=1

‖F (bj)− F (aj)− f(xj) · [ϕ(bj)− ϕ(aj)]‖ ≤
ε

4
+ Σ1 + Σ2 ≤

3ε
4
< ε

and conclude f ∈ HK([a, b], ϕ) with
∫ x
a
f(t) · dϕ(t) = F (x)− F (a) for all x ∈ [a, b].

2nd proof of Theorem 4.24. We choose a sequence (En)∞n=1 of closed sets with
⋃∞
n=1En = [a, b] and

ϕ ∈ BV*(En, Y ) for all n ∈ N. We set cn := minEn and dn := maxEn. By Lemma 2.4 the quantity

Mn := sup{V ∗ϕ (S) : S = {([aj , bj ], tj)}rj=1 ∈ A([cn, dn]) with {aj , bj} ∩ En 6= ∅ for j ∈ {1, . . . , r}}

is finite for each n ∈ N. Let (sk)k∈I be an enumeration of B := (
⋃∞
n=1{cn, dn} ∪A) \ N , where

I = {1, . . . , ]B}, if B is finite, and I = N, if B is infinite (provided that B is non-empty at all). We
further set Ẽ1 := E1 \ (B ∪ N) and Ẽn := En \

(⋃
k<nEk ∪B ∪N

)
for n > 1. For each k ∈ I take

δk > 0 with

‖F (s)− F (sn)− f(sn) · [ϕ(s)− ϕ(sn)]‖ < ε

2n+4
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4 The variational Henstock-Kurzweil-Stieltjes integral

for all s ∈ [a, b] ∩ Uδk(sk), using that f(sk) ∈ C(F,ϕ, sk). Because of mF (N) = 0, there is a gauge
δ0 ∈ (0,∞)N with WF (S) < ε

4 for all S ∈ S(N, δ0). Finally, for t ∈ Ẽn ⊆ En \ {cn, dn} we choose
δ0,n(t) > 0 with Uδ0,n(t)(t) ⊆ (cn, dn)

‖F (s)− F (t)− f(t) · [ϕ(s)− ϕ(t)]‖ ≤ ε

2n+2(Mn + 1)
· ω(ϕ, 〈s, t〉)

for all s ∈ [a, b] ∩ Uδ0,n(t)(t). We now define

δ : [a, b]→ (0,∞); t 7→


δn, if t = sn for a (unique) n ∈ I,
δ0(t), if t ∈ N,
δ0,n(t), if t ∈ Ẽn for a (unique) n ∈ N .

Let {([aj , bj ], tj)}rj=1 be an arbitrary element of S([a, b], δ). We have
r∑
j=1

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖ ≤
r∑
j=1
tj∈N

‖F (bj)− F (aj)‖+ Σ1 + Σ2 + Σ3,

where

Σ1 :=
r∑
j=1
tj∈B

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖,

Σ2 :=
r∑
j=1

tj /∈B∪N

‖F (bj)− F (tj)− f(tj) · [ϕ(bj)− ϕ(tj)]‖,

and

Σ3 :=
r∑
j=1

tj /∈B∪N

‖F (tj)− F (aj)− f(tj) · [ϕ(tj)− ϕ(aj)]‖.

By the definition of δ we obtain
r∑
j=1
tj∈N

‖F (bj)− F (aj)‖ <
ε

4
.

As in the proof of Theorem 4.23 one shows Σ1 < ε
4 . Next notice that the system {[tj , bj ] : j ∈

{1, . . . , r}with tj ∈ Ẽn} belongs to A([cn, dn]) and satisfies {tj , bj} ∩ En ⊇ {tj} 6= ∅ for each j ∈
{1, . . . , r}with tj ∈ Ẽn. Hence,

r∑
j=1

tj∈ eEn
ω(ϕ, [tj , bj ]) ≤Mn.

Using this observation we derive

Σ2 =
∞∑
n=1

r∑
j=1

tj∈ eEn
‖F (bj)− F (tj)− f(tj) · [ϕ(bj)− ϕ(tj)]‖

≤
∞∑
n=1

r∑
j=1

tj∈ eEn

ε

2n+2(Mn + 1)
· ω(ϕ, [tj , bj ])

≤
∞∑
n=1

εMn

2n+2(Mn + 1)
<
ε

4
.
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Analogously, we see Σ3 <
ε
4 . Summarizing, we arrive at

r∑
j=1

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖ < 4 · ε
4

= ε

for each {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ). This completes the proof.

4.5 Descriptive characterisation of the variational
Henstock-Kurzweil-Stieltjes integral

In the final section of this chapter we bring together the results from the previous two sections
in order to obtain descriptive characterisations of functions Stieltjes-integrable in the variational
sense of Henstock-Kurzweil resp. of functions being the indefinite integral of such functions. As
a consequence of these characterisations, we shall obtain, as announced before, a clearer picture of
the relations between the various notions of derivatives introduced above.

4.25 Theorem. Let ϕ ∈ BVG*([a, b], Y ) with measurable admissible decompostion (En)∞n=0. For f ∈
X [a,b] the following statements are equivalent.

(a) We have f ∈ HK([a, b], ϕ).

(b) There exists a function F : [a, b]→ Z with mF � mϕ such that f is a ϕ-Fréchet derivative of F .

(c) There exists a function F : [a, b]→ Z with mF � mϕ such that f is a ϕ-Roussel derivative of F .

(d) There exists a ϕ-null set A and a ϕ-continuous function F : [a, b] → Z with mF � mϕ such that
f(t) ∈ C(F, t, ϕ) for all t ∈ [a, b] and f(t) ∈ D(F,ϕ, t, (En)n) for all t ∈ [a, b] \ (N ∪A);

If one (and thus all) of these conditions is satisfied, we have
∫ t
a
f(s) · dϕ(s) = F (t) − F (a) for all t ∈ [a, b]

and any function F as in condition (b)-(d).

Proof. The implication (a) =⇒ (b) follows from Theorem 4.22, Lemma 4.7 and Lemma 4.9.
The implication (a) =⇒ (d) follows from Theorem 4.21, Lemma 4.7 and Lemma 4.9.
The implication (b) =⇒ (c) is trivial.
Now assume that (c) holds. Then f(t) is contained in C(F,ϕ, t) for all t ∈ [a, b] and there exists a
countable set A ⊆ [a, b] and a set N ⊆ [a, b] with mϕ(N) = 0 such that f(t) belongs to D(F,ϕ, t) for
all t ∈ [a, b] \ (N ∪A). We now define

f̃(t) :=

{
0, if t ∈ N,
f(t), elsewise,

for t ∈ [a, b]. Since mϕ(N) = 0 and mF � mϕ, Theorem 4.24 yields f̃ ∈ HK([a, b], ϕ) with
∫ t
a
f̃(s) ·

dϕ(s) = F (t)− F (a) for all t ∈ [a, b]. The set M := {x ∈ [a, b] : f(t) 6= f̃(t)} is a subset of N . Hence,
mϕ(M) = 0 and Lemma 4.11 implies f − f̃ ∈ HK([a, b], ϕ) with

∫ t
a
(f(s) − f̃(s)) · dϕ(s) = 0 for all

t ∈ [a, b]. These facts then imply f = f̃ + (f − f̃) ∈ HK([a, b], ϕ) with∫ t

a

f(s) · dϕ(s) =
∫ t

a

f̃(s) · dϕ(s) +
∫ t

a

(f(s)− f̃(s)) · dϕ(s) = F (t)− F (a)

for all t ∈ [a, b]. This establishes (a) and the addendum in the cases (b) and (c).
Finally, the remaining implication (d) =⇒ (a) and the addendum in the case (d) can be proved as
the implication (c) =⇒ (a) before replacing the use of Theorem 4.24 by an application of Theorem
4.23.
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4 The variational Henstock-Kurzweil-Stieltjes integral

Now we can derive several corollaries from our main results above.

The first two show how the characterisation in Theorem 4.25 simplifies under additional assump-
tions imposed on ϕ.

4.26 Corollary. Let ϕ ∈ BVG*([a, b], Y ) be bounded and f ∈ X [a,b]. The following assertions are equiva-
lent.

(a) We have f ∈ HK([a, b], ϕ).

(b) There exists a function F : [a, b]→ Z with mF � mϕ and a ϕ-null set N such that f(x) is a pseudo-
ϕ-Roussel-differentiability value of F at x for all x ∈ [a, b] \N and f(x) is a ϕ-continuity value of F
at x for all x ∈ N .

(c) There exists a function F : [a, b] → Z with mF � mϕ and a ϕ-null set N such that f(t) ∈
FD(F,ϕ, t) for all x ∈ [a, b] \N and f(t) ∈ C(F,ϕ, t) for all t ∈ N .

Proof. By Theorem 4.25 it is clear that (a) implies (c) and obviously (c) implies (b).
Now assume that (b) holds. Since ϕ is a bounded function, any pseudo-ϕ-Roussel-differentiability
value is also a ϕ-continuity value and thus even a ϕ-Roussel-differentiability value. Consequently,
F is a ϕ-continuous function with mF � mϕ and f is a ϕ-Roussel-derivative of F . Theorem 4.25
now yields (a).

4.27 Corollary. Let ϕ ∈ BVG*([a, b], Y ) be continuous and f ∈ X [a,b]. The following assertions are
equivalent.

(a) We have f ∈ HK([a, b], ϕ).

(b) There exists a function F : [a, b]→ Z with mF � mϕ such that f is an mϕ-Roussel-derivative of F .

(c) There exists a function F : [a, b] → Z with mF � mϕ and a mϕ-null set N such that f(t) ∈
FD(F,ϕ, t) for all t ∈ [a, b] \N .

Proof. Statement (a) and (b) are equivalent thanks to Theorem 4.25 and Lemma 4.16. Clearly, (c)
yields (b) and (c) itself follows from (a) once again by means of Theorem 4.25.

Of course, we also obtain a characterisation of indefinite variational Henstock-Kurzweil-Stieltjes
integrals with respect to ϕ.

4.28 Corollary. Let ϕ ∈ BVG*([a, b], Y ) and F ∈ Z [a,b]. The following assertions are equivalent.

(a) The function F is an indefinite variational Henstock-Kurzweil-Stieltjes integral with respect to ϕ.

(b) The function F satisfies mF � mϕ and possesses a ϕ-Roussel derivative.

(c) The function F satisfies mF � mϕ and possesses a ϕ-Fréchet derivative.

In fact, if (b) resp. (c) holds, then F is an indefinite variational Henstock-Kurzweil-Stieltjes integral of each
of its ϕ-Roussel derivatives resp. ϕ-Fréchet derivatives with respect to ϕ.

Proof. Since two indefinite variational Henstock-Kurzweil-Stieltjes integrals of the same function
with respect to ϕ differ from each other only by an additive constant, the implication “(a) =⇒ (c)”
follows from Lemma 4.7, Lemma 4.9, Theorem 4.22 and the simple observations that C(F,ϕ, t) =
C(F + z, ϕ, t) and FD(F,ϕ, t) = FD(F + z, ϕ, t) and mF+z = mF for all t ∈ [a, b] and all z ∈ Z.
Obviously, (c) implies (b).
Assume finally that (b) holds and let f : [a, b] → X be a ϕ-Roussel derivative of F . Theorem 4.25
implies f ∈ HK([a, b], ϕ) with

∫ x
a
f(t) · dϕ(t) = F (x)−F (a) for all x ∈ [a, b] and we conclude that F

is an indefinite variational Henstock-Kurzweil-Stieltjes integral with respect to ϕ.
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4.5 Descriptive characterisation of the variational Henstock-Kurzweil-Stieltjes integral

As an immediate corollary to the preceding result we gain a new insight into the relation between
the various notions of derivatives defined above.

4.29 Corollary. Let ϕ ∈ BVG*([a, b], Y ) and F ∈ Z [a,b] with mF � mϕ. Then F possesses a ϕ-Roussel
derivative if and only if F possesses a ϕ-Fréchet derivative.

4.30 Corollary. Let ϕ ∈ BVG*([a, b], Y ) and let F, F̃ : [a, b] → Z be two functions with mF � mϕ resp.
m eF � mϕ possessing a common ϕ-Roussel derivative or a common ϕ-Fréchet derivative. Then F and F̃
only differ by an additive constant.

In the special case X = Z, Y = K, where ϕ is the identity on [a, b] and the bilinear mapping B is the
usual multiplication with scalars, we obtain the following version of Lusin’s classical characterisa-
tion of the Henstock-Kurzweil integral.

4.31 Corollary. Let X = Z, Y = K, let ϕ be the identity on [a, b] and let the bilinear mapping B be the
usual multiplication with scalars and let f ∈ X [a,b]. The following assertions are equivalent.

(a) We have f ∈ HK([a, b], ϕ).

(b) There exists a function F : [a, b]→ X with mF � λ that is Lebesgue-almost everywhere differentiable
with F ′(x) = f(x) for Lebesgue-almost all x ∈ [a, b].

Proof. This follows from Corollary 4.27 and the fact that mϕ = mid coincides in this situation with
the usual outer Lebesgue measure by Proposition A.3.

4.32 Remark The preceding result does not completely coincide with Lusin’s classical theorem in
view of two aspects. First, Corollary 4.31 uses functions F : [a, b]→ X with mF � λ to characterize
Henstock-Kurzweil integrable function, while Lusin’s result uses (continuous) ACG*-functions. As
an application of our main results of this chapter, we shall show in the second section of the next
chapter that we may indeed utilise (continuous) ACG*-functions in order to get the same charac-
terisation. Second, Corollary 4.31 incorporates differentiability properties of the indefinite integral
F . In contrast to that, the classical Lusin theorem can refrain from that because real-valued ACG*-
functions are automatically Lebesgue-a.e. differentiable. Therefore, Corollary 4.31 is a so-called par-
tial descriptive characterisation, whereas a so-called full descriptive characterisation would only in-
voke the condition mF � mϕ. As a consequence, the question arises whether or not it is indispens-
able to incorporate this differentiability condition. This was the main motivation for Bongiorno,
Di Piazza, Musiał for their paper [BPM09a], where they examine this question and its relation to
the Radon-Nikodým property. We shall continue their explorations in the third section of the next
chapter and significantly extend their results.

The last result of this section concerns the question to which extent the derivative introduced in Def-
inition 4.19 depends on the chosen admissible decomposition. It turns out that under appropriate
conditions the existence of this derivative is in a global sense independent of the chosen admissible
decomposition.

4.33 Corollary. Let ϕ be an element of BVG*([a, b], Y ) with measurable admissible decompositions (En)∞n=0

and (Ẽn)∞n=0. Let F ∈ Z [a,b] be ϕ-continuous with mF � mϕ. Then the following statements are equiva-
lent.

(a) There is a countable set A and an mϕ-null set N with D(F, t, ϕ, (En)∞n=0) 6= ∅ for all t ∈ [a, b] \ (A∪
N).

(b) There is a countable set Ã and an mϕ-null set Ñ with D(F, t, ϕ, (Ẽn)∞n=0) 6= ∅ for all t ∈ [a, b] \ (Ã∪
Ñ).
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4 The variational Henstock-Kurzweil-Stieltjes integral

Proof. By symmetry it suffices to establish that (a) yields (b). So assume (a), set B := A ∪ N ∪ E0,
take a choice function f1 : [a, b] \ B → X with f1(t) ∈ D(F, t, ϕ, (En)∞n=0) for all t ∈ [a, b] \ (A ∪N),
a choice function f2 : B → X with f(t) ∈ C(F,ϕ, t) for all t ∈ B and for t ∈ [a, b] define f(t) := f1(t)
for t ∈ [a, b] \ B and f(t) := f2(t) for t ∈ B. Note that D(F, t, ϕ, (En)∞n=0) ⊆ C(F,ϕ, t) for each
t ∈ [a, b] \ E0. Indeed, pick n ∈ N such that t ∈ En and let ε > 0. Then there exists by definition a
ρ > 0 such that

‖F (s)− F (t)− x · [ϕ(s)− ϕ(t)]‖ ≤ ε

mϕ(En) + 1
·mϕ(〈s, t〉 ∩ En) < ε

for all s ∈ [a, b] with |s− t| < ρ. Theorem 4.25 now yields f ∈ HK([a, b], ϕ,X) with
∫ t
a
f(s) · dϕ(s) =

F (t) − F (a) for all t ∈ [a, b]. With (Ẽn)∞n=0 in lieu of (En)∞n=0 Theorem 4.25 gives us now a ϕ-
continuous function F̃ : [a, b] → Z with m eF � mϕ, a countable set Ã and an mϕ-null set Ñ such
that f(t) ∈ C(F̃ , t, ϕ) for all t ∈ [a, b] and f(t) ∈ D(F̃ , ϕ, t, (Ẽn)∞n=0) for all t ∈ [a, b] \ (N ∪ A) and∫ t
a
f(s) · dϕ(s) = F̃ (t) − F̃ (a) for all t ∈ [a, b]. In particular, F and F̃ differ from each other only by

a constant. This yields part (b).
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5 Applications

This chapter is devoted to several applications of the results of the previous chapters. In the first
section we revisit one of our starting points of our explorations, namely the question of recovering
a function from a given relative derivative. As one can expect at this point in the text the most sat-
isfactory results can be achieved using the Henstock-Kurzweil integral. Nevertheless the question
arises whether Riemann- or Lebesgue-integration suffice if we additionally impose a corresponding
integrability condition on the given relative derivative. It will turn out that this is indeed the case.

Afterwards, we revisit ACG*-functions and derive another characterisation for them, which is in
the real-valued case originally due to Gordon (see [Gor89]). Using this result we shall reprove the
classical descriptive characterisation of the Henstock-Kurzweil integral due to Lusin.

Remark 4.32 motivates to study Henstock-Kurzweil integrals of functions with values in a space
having the Radon-Nikodým property. This will be done in the third section where we prove a
far reaching extension of a result due to Bongiorno, Di Piazza and Musiał (see Theorem 3.6 in
[BPM09b]) and also fill a gap in their proof.

The fourth section demonstrates how one can obtain “integration by parts”-results for variational
Henstock-Kurzweil-Stieltjes integrals using the characterisations proved in the previous chapter.

In the last section we apply our results to the study of certain normed algebras of differentiable
functions on compact plane sets.

5.1 Recovering a function from relative derivatives

We now return to the question that motivated, as we indicated in the introduction, Lebesgue’s
development of his integration theory: How can one recover a function from its derivative? But
instead of the ordinary derivative we want to consider a relativized version of it with respect to
another function. However, before doing this we have to explain what we mean by a relativized
derivative - in particular in view of the fact that there is no established definition within the litera-
ture. We refer to, e.g., [AP99, CC08, Dan18, Gar92, Gra90, Jef32, Leb50, Rid36, Rid38, Rid39, Sak41,
War36, You17] for similar notions of differentiability of a function relative to another function, as
well as for results related to ours.
Let f : [a, b]→ X and ϕ : [a, b]→ Y = K be two functions and t0 ∈ [a, b]. One natural candidate for
the definition of the derivative of f at t0 with respect to ϕ is

lim
t→t0

f(t)− f(t0)
ϕ(t)− ϕ(t0)

.

At this point, two problems rise. First, one has either to explain how the above expression is to be
understood if the denominator equals 0 for t 6= t0 or one should replace the limit limt→t0 by taking
the limit t → t0 with respect to those t that fulfill ϕ(t) 6= ϕ(t0); this, however, requires to demand
the existence of a non-degenerate interval I ⊆ [a, b] containing t0 such that ϕ is not constant on any
non-degenerate subinterval of I containing t0.
Second, one might argue that the above working definition is not a good one if ϕ has a discontinuity
at t0. Therefore, many authors have treated the discontinuities of ϕ separately or they have altered
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the above definition by incorporating left-sided and right-sided limits of ϕ; but in the last case one
has to require that ϕ is at least a so-called regular function.
In order to avoid all these questions, we have decided to follow [AP99] and to use our Definition
4.17.

5.1 Definition. We say that f is differentiable at t0 with respect to ϕ if there is an x ∈ X such that for
each ε > 0 there exists a δ > 0 such that

‖f(t)− f(t0)− x(ϕ(t)− ϕ(t0))‖ ≤ ε|ϕ(t)− ϕ(t0)|

for all t ∈ [a, b] with |t− t0| < δ.

5.2 Remark (a) Definition 5.1 precisely coincides with the definition of our notion of Fréchet-
differentiability at the point t0, where X = Z, Y = C and the bilinear mapping B is the
multiplication by scalars.

(b) If f is differentiable at t0 with respect toϕ and ifϕ is constant on some neighbourhood (relative
to [a, b]) of t0, then so is f on this neighbourhood and we can take any x ∈ X in Definition 5.1.

(c) If f is differentiable at t0 with respect to ϕ and if there exists a sequence (tn)n in [a, b] converg-
ing to t0 with ϕ(tn) 6= ϕ(t0) for all n ∈ N, then the x in Definition 5.1 is unique.

Proof for part (c). Let x̃ ∈ X also fulfill the above condition in the definition, ε > 0 and δ > 0 be as
above in the definition. We then obtain |tn − t0| < δ for all sufficiently large n ∈ N and thus

‖x− x̃‖

=
‖x(ϕ(tn)− ϕ(t0))− x̃(ϕ(tn)− ϕ(t0))‖

|ϕ(tn)− ϕ(t0)|

=
‖f(tn)− f(t0)− x̃(ϕ(tn)− ϕ(t0))− (f(tn)− f(t0)− x(ϕ(tn)− ϕ(t0)))‖

|ϕ(tn)− ϕ(t0)|

≤‖f(tn)− f(t0)− x̃(ϕ(tn)− ϕ(t0))‖
|ϕ(tn)− ϕ(t0)|

+
‖f(tn)− f(t0)− x(ϕ(tn)− ϕ(t0))‖

|ϕ(tn)− ϕ(t0)|

≤ε|ϕ(t)− ϕ(t0)|
|ϕ(t)− ϕ(t0)|

+
ε|ϕ(t)− ϕ(t0)|
|ϕ(t)− ϕ(t0)|

= 2ε

for all these sufficiently large n ∈ N. Hence, x = x̃.

Due to the observations in Remark 5.2 we make the following convention: if f is differentiable at t0
with respect to ϕ, then f ′ϕ(t0) denotes any x as in Definition 5.1.

Now we want to explore the following question. Assume that f is differentiable at each point
t ∈ [a, b] and that we know f ′ϕ on [a, b] as well as f(t0) for some t0 ∈ [a, b]. Can we reconstruct the
function f from these data? In contrast to far reaching positive results (see, e.g., Théorème 10 in
[Cho47] and page 307 in [Leb50]) in the case of real-valued ϕ, the answer is in general “no”, even
under quite “good” circumstances and even for complex-valued ϕ and very tame f . To see this, let
θ ∈ (0, π4 ) and consider Koch curves Γθ constructed in the usual iterative manner starting with the
isosceles triangle having base angle θ with vertices 0, 1 and 1

2 (1 + i tan(θ)) (see [Pon07, §1] for this
construction). Then there is a homeomorphism ϕ : [0, 1]→ Γθ satisfying

sin 3θ
8 cos3 θ

|t− s|log2(2 cos θ) ≤ |ϕ(t)− ϕ(s)| ≤ 4|t− s|log2(2 cos θ)

for all s, t ∈ [0, 1] (see, e.g., [Pon07, Theorem 1]). We now set f(t) := t for t ∈ [0, 1]. For distinct
t0, t ∈ [0, 1], we then obtain by means of the above inequality for ϕ

|t− t0|
|ϕ(t)− ϕ(t0)|

≤ 8 cos3 θ

sin 3θ
· |t− t0|1−log2(2 cos θ) −−−→

t→t0
0
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5.1 Recovering a function from relative derivatives

since 1 − log2(2 cos θ) > 0. Therefore f is differentiable at each point of [0, 1] with respect ot ϕ
and with f ′ϕ(t) = 0, but f is not constant. In particular, Choquet’s Théorème 10 in [Cho47] fails
dramatically if we pass from the real-valued to the complex-valued situation, i.e., Choquet’s result
is of genuinely real nature and does not allow an extension to Banach-space valued functions ϕ.
Furthermore, the above example prompts to impose additional conditions on ϕ in order to obtain
positive results.

Using Theorem 4.24 it is now very easy to derive the following result, which solves Lebesgue’s
“problème des fonctions primitives” in a much more general framework (cf. [Leb50, p. 307]).

5.3 Theorem. Let ϕ ∈ BVG*([a, b],K) be bounded.

(a) If f : [a, b] → X is differentiable at each point t ∈ [a, b] with respect to ϕ, then we have f ′ϕ ∈
HK([a, b], ϕ,X) with ∫ t

a

f ′ϕ(s) · dϕ(s) = f(t)− f(a)

for all t ∈ [a, b].
(b) Assume that f : [a, b] → X is ϕ-continuous and differentiable at each point t ∈ [a, b] \ N with

respect to ϕ and put f ′ϕ(t) := 0 for all t ∈ N , where N ⊆ [a, b] with mf (N) = 0. Then we have
f ′ϕ ∈ HK([a, b], ϕ,X) with ∫ t

a

f ′ϕ(s) · dϕ(s) = f(t)− f(a)

for all t ∈ [a, b].

The remaining part of this section is devoted to the question to which extent it is possible to recover
a function from relative derivatives using Riemann-Stieltjes and Lebesgue-Stieltjes integration (for
the latter notion see Definition C.1). Clearly, one has at least to require additionally that the relative
derivative is integrable in the Riemann-Stieltjes respectively Lebesgue-Stieltjes sense. It turns out
that under mild conditions these minimum demands are sufficient.

5.4 Theorem. Let ϕ ∈ BVG*([a, b],K) be bounded and assume that f : [a, b]→ X is differentiable at each
point t ∈ [a, b] with respect to ϕ.

(a) If f ′ϕ is Riemann-Stieltjes integrable with respect to ϕ, then

(R)
∫ t

a

f ′ϕ(s) · dϕ(s) = f(t)− f(a)

for all t ∈ [a, b].
(b) Assume additionally that ϕ is even of bounded variation (i.e., ϕ ∈ BV([a, b],C)) and continuous from

the right and that f ′ϕ is Lebesgue-Stieltjes integrable with respect to ϕ. Then

(L)
∫ t

a

f ′ϕ(s) · dϕ(s) = f(t)− f(a)

for all t ∈ [a, b].

Proof. Part (b) follows immediately from Theorem 5.3 and Proposition C.2 and part (a) is a very
special instance of the subsequent Theorem 5.5.

5.5 Theorem. Let ϕ ∈ BVG*([a, b], Y ) and assume that F : [a, b] → Z possesses a ϕ-Roussel derivative,
say f , and that mF � mϕ or that f(t) ∈ D(F,ϕ, t) for all t ∈ [a, b]. If f is Riemann-Stieltjes integrable
with respect to ϕ, then

(R)
∫ t

a

f · dϕ(s) = F (t)− F (a)

for all t ∈ [a, b].
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Proof. We consider X , Y and Z as real Banach spaces. Let z? be an R-linear functional on Z with
‖z?‖ ≤ 1. We consider the bilinear mapping

Bz? : X × Y → R; (x, y) 7→ 〈B(x, y), z?〉

and we observe that
|Bz?(x, y)| ≤ ‖B(x, y)‖ · ‖z?‖ ≤ ‖x‖ · ‖y‖

for all x ∈ X and y ∈ Y . We put z := (R)
∫ b
a
f(s) · dϕ(s). Let ε > 0 and choose a constant δ > 0 such

that ∥∥∥∥∥∥z −
r∑
j=1

f(tj) · [ϕ(bj)− ϕ(aj)]

∥∥∥∥∥∥ < ε

for all {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ) with
⋃r
j=1[aj , bj ] = [a, b]. For such an element {([aj , bj ], tj)}rj=1

of S([a, b], δ) we then estimate∣∣∣∣∣∣〈z, z?〉 −
r∑
j=1

Bz?(f(tj), ϕ(bj)− ϕ(aj))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈
z −

r∑
j=1

f(tj) · [ϕ(bj)− ϕ(aj)], z?
〉∣∣∣∣∣∣

≤

∥∥∥∥∥∥z −
r∑
j=1

f(tj) · [ϕ(bj)− ϕ(aj)]

∥∥∥∥∥∥ < ε.

As a consequence, we infer that f is Riemann-Stieltjes integrable with respect to ϕ and Bz? and we
have (R)

∫ b
a
Bz?(f(s),dϕ(s)) = 〈z, z?〉. Then f is also Henstock-Kurzweil integrable with respect to

ϕ and Bz? . Lemma 4.3 now implies that f is also variationally Henstock-Kurzweil integrable with
respect to ϕ and Bz? with∫ t

a

Bz?(f(s),dϕ(s)) = (HK)
∫ t

a

Bz?(f(s),dϕ(s)) = (R)
∫ t

a

Bz?(f(s),dϕ(s)) (5.1)

=
〈

(R)
∫ t

a

f(s) · dϕ(s), z?
〉

for all t ∈ [a, b]. On the other side, we know f ∈ HK([a, b], ϕ,X) with
∫ t
a
f · dϕ(s) = F (t)− F (a) for

all t ∈ [a, b] by Theorem 4.25 or Theorem 4.24, respectively. Moreover, observe that for u, v, w ∈ [a, b]
we have

‖〈F (u), z?〉 − 〈F (v), z?〉 −Bz?(f(w), ϕ(u)− ϕ(v))‖ = ‖〈F (u)− F (v)− f(w) · [ϕ(u)− ϕ(v)], z?〉‖
≤ ‖F (u)− F (v)− f(w) · [ϕ(u)− ϕ(v)]‖.

Using this estimate one easily verfies∫ t

a

Bz?(f(s),dϕ(s)) = 〈F (t)− F (a), z?〉 (5.2)

for all t ∈ [a, b]. Combining the two equations (5.1) and (5.2) and applying the Hahn-Banach theo-
rem we deduce (R)

∫ t
a
f · dϕ(s) = F (t)− F (a) for all t ∈ [a, b] as claimed.

5.2 ACG*- and ACGδ-functions

In this section we turn our attention once again to ACG*-functions and extend from the real-valued
case to the vector-valued case a result originally due to Gordon providing another characterisation
of ACG*-function.

We start with a definition due to Gordon (see [Gor89])
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5.2 ACG*- and ACGδ-functions

5.6 Definition. Let ∅ 6= E ⊆ [a, b]. We say that a function f : [a, b] → X is of variational absolute
continuity on E if for each ε > 0 there exists an η > 0 and a gauge δ ∈ (0,∞)E on E such that Wf (S) < ε
for all S = {([aj , bj ], xj)}rj=1 ∈ S(E, δ) with Wid(S) =

∑r
j=1(bj − aj) < η. We denote by ACδ(E,X)

the set of all X-valued functions of variational absolute continuity on E. Moreover, we say that a function
f : [a, b] → X is of generalized variational absolute continuity on E if E is the countable union of sets
on each of which f is of variational absolute continuity. We denote by ACGδ(E,X) the set of all X-valued
functions of generalized variational absolute continuity on E.

5.7 Remark Note that in [Gor89] Gordon defines the notion of variational absolute continuity using
the condition

∥∥∥∑r
j=1 F (bj)− F (aj)

∥∥∥ < ε instead of our condition Wf (S) < ε. But using the same
reasoning as in the proof Lemma 4.3, it is easy to see that these two concepts coincide in the case
X = R, which is considered by Gordon.

Now the question rises how the notions of generalized absolute continuity in the restricted sense
and of generalized variational absolute continuity are related to each other. As a first step we have
the following result.

5.8 Lemma. Let ∅ 6= E ⊆ [a, b] be closed and f ∈ AC*(E,X). If f is continuous at each point of E and
bounded on [min(E),max(E)], then f ∈ ACδ(E,X) holds.

The preceding result is origionally due to R. A. Gordon (cf. the solution to Exercise 11.7 in [Gor94]
or Theorem 5 of Gordon’s original paper [Gor89]). Unfortunately, his proof is not quite correct
(for the details we now refer to see the solution to Exercise 11.7 in [Gor94]): When considering P1,
Gordon claims that for any i there exists a unique index ki ≥ K such that cki < ui < dki . But this
requires ui ∈ [c, d], which may fail since we cannot guarantee that vi − δ(vi) ≥ c always holds and
we only know vi − δ(vi) < ui < vi (the same mistake appears in the solution to Exercise 11.3 in
[Gor94]). Nevertheless, it is not hard to repair Gordon’s proof, but for the sake of completeness we
have attached a correct version.

Proof of Lemma 5.8. Let ε > 0. By assumption we can find a number η > 0 such that V ∗f (S) =∑r
j=1 ω(f, [aj , bj ]) < ε for all S = {[aj , bj ]}rj=1 ∈ A(E) with

∑r
j=1 |bj − aj | < η.

We put c := inf E ∈ E and d := supE ∈ E. Since f is continuous at each point of E, there is a ρ > 0
such that ‖f(x)− f(c)‖ < ε for all x ∈ [a, b] with |x− c| < ρ and such that ‖f(x)− f(d)‖ < ε for all
x ∈ [a, b] with |x− d| < ρ.
If c = d, then we obviously have Wf (S) < 2ε for every S ∈ S(E, δ) with δ ≡ ρ, as asserted. So let
c < d.
Since E is closed, [c, d] \ E is an open set. We dinstinguish between two cases.

1st case: E = [c, d]. For x ∈ E \ {c, d} we put δ(x) := min{x − c, d − x} and for x ∈ {c, d} we set
δ(x) := min{ρ, c−d}. Let S = {([aj , bj ], xj)}rj=1 be a δ-fine partition onE with

∑r
j=1 |bj−aj | < η. As

[aj , bj ] ⊆ Uδ(xj)(xj), we have aj , bj ∈ E = [c, d] at least for j ∈ {1, . . . , r} \ {1, r}. If a1 /∈ E = [c, d],
then x1 = c and hence |a1 − c| < ρ as well as |c − b1| < ρ and thus ‖f(b1) − f(a1)‖ < 2ε. Similarly,
one sees ‖f(br)− f(ar)‖ < 2ε for br /∈ E. The choice of η now implies

Wf (S) =
r∑
j=1

‖f(bj)− f(aj)‖ ≤ 5ε.

2nd case: E 6= [c, d]. In this case [c, d] \ E is a non-empty open subset of (c, d). Therefore we may
write [c, d] \ E =

⋃
k∈I(ck, dk) with pairwise disjoint intervals (ck, dk), where ck, dk ∈ E and I is

either N or {1, . . . , ]I} if I is finite (and nonvoid). If I is finite, we put A :=
⋃
k∈I{ck, dk} and

J := I . Otherwise we choose K ∈ N with K ≥ 2 such that
∑∞
k=K ω(f, [ck, dk]) < ε. This is indeed

possible since the series
∑∞
k=1 ω(f, [ck, dk]) converges because f ∈ AC*(E,X) is bounded onE (due
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to the compactness of E and the continuity of f on E) and thus belongs to BV*(E,X) (see Lemma
2.12). Then we put A =

⋃K−1
k=1 {ck, dk} and J := {1, . . . ,K − 1}. In each of these two cases we set

J ′ := {1, . . . , 2 · (]J)}.
Since f is continuous at each point of E, we can find a function δ1 : A → (0,∞) with Wf (S) < ε
for each S ∈ S(A, δ1) (cf. the solution to Exercise 9.9 in [Gor94]): Write A = {yn : n ∈ J ′}. For
each n ∈ J ′ there exists a number δ1(yn) > 0 such that ‖f(yn) − f(x)‖ < ε

2n+2 for all x ∈ [a, b] with
|yn − x| < δ1(yn). For each S = {([aj , bj ], xj)}rj=1 ∈ S(A, δ1), we then obtain

Wf (S) =
r∑
j=1

‖f(bj)− f(aj)‖ ≤
r∑
j=1

‖f(bj)− f(xj)‖+
r∑
j=1

‖f(xj)− f(aj)‖

=
∑
n∈J

r∑
j=1

xj=yn

‖f(bj)− f(xj)‖+
∑
n∈J

r∑
j=1

xj=yn

‖f(xj)− f(aj)‖

< 2
∞∑
n=1

ε

2n+2
+ 2

∞∑
n=1

ε

2n+2
= ε,

where we used that every set {j ∈ {1, . . . , r} : xj = yn} has at most two elements.
We now put δ(x) := min{x− c, d−x,miny∈A |x− y|} for x ∈ E \ (A∪{c, d}), δ(x) := δ1(x) for x ∈ A
and δ(x) := min{ρ, c− d,miny∈A |x− y|} for x ∈ {c, d} \A.
Take a partition S = {([aj , bj ], xj)}rj=1 in S(E, δ) with

∑r
j=1 |bj − aj | < η. Because of

r∑
j=1

‖f(bj)− f(aj)‖ ≤
r∑
j=1

‖f(xj)− f(aj)‖+
r∑
j=1

‖f(bj)− f(xj)‖,

{([aj , xj ], xj)}rj=1 ∪{([xj , bj ], xj)}rj=1 ∈ S(E, δ) and
∑r
j=1(|bj −xj |+ |xj −aj |) =

∑r
j=1 |bj −aj | < η,

we may assume without loss of generality that each tag xj is an endpoint of its respective interval
[aj , bj ].
Let SA be that subset of S for which every tag xj belongs toA. We denote by S0 that subset of S \SA
for which both endpoints belong to E, by S1 that subset of S \ SA for which the left endpoint does
not belong to E and by S2 that subset of S \ SA for which the right endpoint does not belong to E.
The choice of δ (respectively δ1) yields Wf (SA) < ε if SA 6= ∅ (see above).
If ∅ 6= S0 = {([αi, βi], ξi)}qi=1, we deduce

Wf (S0) =
q∑
i=1

‖f(βi)− f(αi)‖ ≤
q∑
i=1

ω(f, [αi, βi]) = V ∗f (S0) < ε.

If I is finite, then aj and bj belong toE at least for each ([aj , bj ], xj) ∈ S\SA with j ∈ {1, . . . , r}\{1, r}
because of Uδ(xj)(xj) ∩ A = ∅. One can now proceed as in the 1st case above in order to obtain
Wf (S\SA) < 3ε (recall that each tag is a endpoint of its respective interval), provided that S\SA 6= ∅.
For this reason we henceforth consider the case of an infinite I .
Let ∅ 6= S1 = {([ui, vi], vi)}si=1. The point ui then belongs to [c, d] at least for all i ∈ {1, . . . , s} \ {1}.
We distinguish between two cases.

Case 2.1: ui ∈ [c, d] for all i ∈ {1, . . . , s}. In this case there exists for each i a unique index ki ∈ I \ J
such that cki < ui < dki because Uδ(xj)(xj) ∩ A = ∅ and ui /∈ E. For i, j ∈ {1, . . . , s} with i 6= j we
have ki 6= kj since the intervals {[ui, vi]}si=1 do not overlap and since dki ≤ vi and dkj ≤ vj due to
vi, vj ∈ E. These facts further imply dki ≤ vi ≤ cki+1 as well as

cki < ui < dki ≤ vi ≤ cki+1 < ui+1 < dki+1 ≤ vi+1

for i ∈ {1, . . . , s− 1} due to vi < ui+1, provided that s > 1. Hence, the intervals {[dki , vi]}si=1 do not

78



5.2 ACG*- and ACGδ-functions

overlap, have endpoints in E and satisfy
∑s
i=1 |vi − dki | ≤

∑s
i=1 |vi − ui| < η. We derive

s∑
i=1

‖f(vi)− f(ui)‖ ≤
s∑
i=1

(‖f(vi)− f(dki)‖+ ‖f(dki)− f(ui)‖)

≤
s∑
i=1

(ω(f, [dki , vi]) + ω(f, [cki , dki ]))

≤
s∑
i=1

ω(f, [dki , vi]) +
∑
k∈I\J

ω(f, [ck, dk]) < 2ε.

Case 2.2: ui ∈ [c, d] for all i ∈ {1, . . . , s} \ {1} and u1 /∈ [c, d]. Note that then v1 = c. Applying case 2.1
to {([ui, vi], vi)}si=2, we estimate

s∑
i=1

‖f(vi)− f(ui)‖ = ‖f(v1)− f(u1)‖+
s∑
i=2

‖f(vi)− f(ui)‖ < 3ε.

Anyway, we obtain

s∑
i=1

‖f(vi)− f(ui)‖ < 3ε.

in each of the above cases.

The set S2 can be treated analogously.

Summarizing, we arrive at

r∑
j=1

‖f(bj)− f(aj)‖ < ε+ ε+ 3ε+ 3ε = 8ε.

This completes the proof.

As an immediate corollary to the preceding lemma we get the subsequent result (for E = [a, b] this
result is due to Gordon, see, e.g., [Gor89, Theorem 5]).

5.9 Corollary. Let ∅ 6= E ⊆ [a, b] be an Fσ-set and f ∈ ACG*(E,X). If f is continuous at each point of E
and bounded on the interval [inf E, supE], then f ∈ ACGδ(E,X).

Proof. We choose a sequence (En)∞n=1 of closed sets with E =
⋃∞
n=1En and a sequence (An)∞n=1

of subsets of E with
⋃∞
n=1An = E such that f ∈ AC*(An, X) for every n ∈ N. Then also f ∈

AC*(En ∩Am, X) for all n,m ∈ N. Thanks to Corollary 2.19, we also have f ∈ AC*(Bn,m, X) for all
n,m ∈ N, where Bn,m ⊆ En is the closure of En ∩ Am. Lemma 5.8 now yields f ∈ ACδ(Bn,m, X),
which implies f ∈ ACGδ(E,X) because of

⋃
n,m∈N Bn,m = E.

As a consequence of the preceding corollary we infer

ACG*([a, b], X) ∩ C([a, b], X) ⊆ ACGδ([a, b], X)

But what about the converse inclusion? In [Gor89] Gordon proves that also ACGδ([a, b],R) ⊆
ACG*([a, b],R) holds (see Theorem 6 in [Gor89]); however, his proof essentially relies on the fact
that the functions considered there are real-valued. Therefore we have to invest some extra work
in order to obtain results concerning this question. For this purpose we need some properties of
ACGδ-functions. The first result links the generalized variational absolute continuity to the (mea-
sure theoretical) absolute continuity with respect to Lebesgue measure.
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5.10 Lemma. Let f ∈ X [a,b] and ∅ 6= E ⊆ [a, b]. Recall that λ denotes the one-dimensional (outer) Lebesgue
measure.

(a) If f ∈ ACδ(E,X), then mf � λ on E. The converse is also true, provided that mf (E) <∞ holds.
(b) If f ∈ ACGδ(E,X), then mf � λ on E. The converse is also true provided that mf is σ-finite on E.
(c) Assume that E is an Fσ-set. We then have f ∈ ACGδ(E,X) if and only if mf � λ holds on E. In

particular, f is continuous at each point of E in this case.

Proof. In order to verify part (a) one can use mutatis mutandis Skvortsov’s and Zherebyov’s proof
of Lemma 1 in [SZ04] combined with Remark 1 there or one can directly apply the results just cited
to the interval function τf given by τf (I) := ‖f(sup I) − f(inf I)‖. Part (b) easily follows from part
(a) (see the proof of [SZ04, Theorem 1]; see also the proof of [Gor89, Lemma 2] for the first assertion
in part (b)). Finally, assertion (c) is a direct consequence of part (b) combined with Corollary 3.16
and of Lemma 3.8.

The next result is of interest in its own as it exposes a connection between variational Henstock-
Thomson measures of continuous functions and the one-dimensional outer Hausdorff measure (cf.
Theorem 43.1 in [Tho85] for the easier scalar-valued case).

5.11 Proposition. Let f ∈ C([a, b], X). Then we haveH1
X(f(E)) ≤ 2mf (E) for each E ⊆ [a, b].

Proof. The assertion is trivial if E = ∅ or mf (E) = ∞. For this reason we may assume that E is
non-empty and that mf (E) <∞. Let ε > 0 and η > 0. Then there exists a constant δ1 > 0 such that
‖f(t) − f(s)‖ < ε

2 for all s, t ∈ [a, b] with |s − t| < 2δ1 and there exists a gauge δ2 ∈ (0,∞)[a,b] such
that Wf (S) ≤ mf (E) + η for all S ∈ S(E, δ2). We now put δ := min{δ1, δ2}. Applying the so-called
covering lemma in [McL80] (see page 143), we obtain a (finite or infinite) sequence {([aj , bj ], ξj)}j∈J
(where J = {1, . . . , ]J}, if J is finite, and J = N, if J is infinite) with

• ξj ∈ [aj , bj ] ∩ E for all j ∈ J ,

• [aj , bj ] ⊆ Uδ(ξj)(ξj) ∩ [a, b] for all j ∈ J ,

• (aj , bj) ∩ (ai, bi) = ∅ for for all i, j ∈ J with i 6= j and

• E ⊆
⋃
j [aj , bj ].

Clearly, f(E) ⊆
⋃
j f([aj , bj ]) and for each j ∈ J and all s, t ∈ [aj , bj ] we have ‖f(s) − f(t)‖ < ε

2 as
|s− t| < 2δ(ξj) ≤ 2δ1. Hence, diam f([aj , bj ]) ≤ ε

2 < ε for all j ∈ J . Let k ∈ J and fix sj , tj ∈ [aj , bj ]
for j ∈ {1, . . . , k}. We then estimate

k∑
j=1

‖f(sj)− f(tj)‖ ≤
k∑
j=1

‖f(sj)− f(ξj)‖+
k∑
j=1

‖f(ξj)− f(tj)‖ ≤ 2mf (E) + 2η; (5.3)

to see the last inequality notice that 〈sj , ξj〉 ⊆ [aj , bj ] and the intervals [aj , bj ] are non-overlapping.
Therefore {(〈sj , ξj〉, ξj)}kj=1 ∈ S(E, δ) ⊆ S(E, δ2). The same reasoning also shows that the system
{(〈tj , ξj〉, ξj)}kj=1 is an element of S(E, δ) ⊆ S(E, δ2). Taking in (5.3) the supremum with respect to
sj , tj ∈ [aj , bj ] , we arrive at

k∑
j=1

ω(f, [aj , bj ]) ≤ 2mf (E) + 2η,

which yields
∑
j∈J ω(f, [aj , bj ]) ≤ 2mf (E) + 2η. Therefore we have shown now

H1
ε(f(E)) ≤

∑
j∈J

ω(f, [aj , bj ]) ≤ 2mf (E) + 2η.

Taking first the limit η → 0+ and afterwards ε→ 0+, the assertion follows.
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Now we come to the announced result connecting ACG*- and ACGδ-functions.

5.12 Theorem. Let E ⊆ [a, b] be a non-empty Fσ-set and assume that f : [a, b] → X is continuous at
each point of E and bounde on the interval [inf(E), sup(E)]. Then we have f ∈ ACG*(E,X) if and only if
f ∈ ACGδ(E,X). In particular, we obtain ACG*([a, b], X) ∩ C([a, b], X) = ACGδ([a, b], X).

Proof. The only-if part follows from Corollary 5.9. Let conversely f ∈ ACGδ(E,X). Lemma 5.10
implies mf � λ on E. This in turn yields f ∈ (N)E thanks to Proposition 5.11 as well as f ∈
BVG*(E,X) by Corollary 3.16. Now Corollary 2.27 implies f ∈ ACG*(E,X) as claimed.
The addendum is clear.

We next consider a generalisation of ACGδ-functions.

5.13 Definition. Let F ∈ Z [a,b] and ϕ ∈ Y [a,b]. We say that a function F is of variational absolute
continuity on E with respect to ϕ and we write F ∈ ACδ,ϕ(E,Z) if if for each ε > 0 there exists an
η > 0 and a gauge δ ∈ (0,∞)E on E such that WF (S) < ε for all S = {([aj , bj ], xj)}rj=1 ∈ S(E, δ)
with Wϕ(S) < η. Moreover, we say that a function F : [a, b] → Z is of generalized variational absolute
continuity on E with respect to ϕ and we write F ∈ ACGδ,ϕ(E,Z) if E is the countable union of sets on
each of which f is of variational absolute continuity with respect to ϕ.

We first note the following lemma, which gives an analogon to the first assertions of part a) and b)
in Lemma 5.10 above.

5.14 Lemma. Let ∅ 6= E ⊆ [a, b]. Then the following statements hold.

(a) If F ∈ ACδ,ϕ(E,Z), then mF � mϕ on E.
(b) If F ∈ ACGδ,ϕ(E,Z), then mF � mϕ on E.

Proof. Part b) follows easily from part a), so we turn to the proof of part a). Consider ∅ 6= A ⊆ E
with mϕ(A) = 0 and let ε > 0. Because of F ∈ ACδ,ϕ(E,Z) we may find an η > 0 and a gauge
δ1 ∈ (0,∞)E with WF (S) < ε for all S = {([aj , bj ], xj)}rj=1 ∈ S(E, δ1) with Wϕ(S) < η. Due to
mϕ(A) = 0, there exists δ2 ∈ (0,∞)A such that Wϕ(S) < η for all S = {([aj , bj ], xj)}rj=1 ∈ S(A, δ2).
As a consequence, we deduce WF (S) < ε for each S = {([aj , bj ], xj)}rj=1 ∈ S(A,min{δ1, δ2}), which
shows mF (A) = 0.

With the preceding lemma at disposal we arrive at the following descriptive characterisation of the
variational Henstock-Kurzweil-Stieltjes integral.

5.15 Theorem. Let ϕ ∈ BVG*([a, b], Y ). For f ∈ X [a,b] the following statements are equivalent.

(a) The function f belongs toHK([a, b], ϕ,X).
(b) There exists a function F ∈ ACGδ,ϕ([a, b], Z) such that f is a ϕ-Fréchet-derivative of F .

Proof. Part (b) implies (a) by Lemma 5.14 and, e.g., Theorem 4.25. Conversely assume that (a) holds
and let F be the primitive of f . We set En := {t ∈ [a, b] : n − 1 ≤ ‖f(t)‖ < n} for n ∈ N. It suffices
to verify F ∈ ACδ,ϕ(En, Z) for all n ∈ N in order to finish the proof. For this purpose fix n ∈ N, let
ε > 0 and pick δ ∈ (0,∞)[a,b] with

∑r
j=1 ‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖ < ε

2 for each S =
{([aj , bj ], tj)}rj=1 ∈ S([a, b], δ). For every S = {([aj , bj ], tj)}rj=1 ∈ S(En, δ) with Wϕ(S) < η := ε

2n we
now obtain

WF (S) ≤
r∑
j=1

‖F (bj)− F (aj)− f(tj) · [ϕ(bj)− ϕ(aj)]‖+
r∑
j=1

‖f(tj) · [ϕ(bj)− ϕ(aj)]‖

<
ε

2
+ nWϕ(S) < ε,
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using that tj ∈ En.

Combining the preceding theorem with Theorem 5.12 we obtain the classical Lusin-type character-
isation of the Henstock-Kurzweil integral in the vector-valued case.

5.16 Theorem. For f ∈ X [a,b] the following statements are equivalent.

(a) The function f belongs toHK([a, b], ϕ,X).

(b) There is a continuous function F ∈ ACG*([a, b], Z) differentiable (in the ordinary sense) Lebesgue-a.e.
such that F ′ = f Lebesgue-a.e. on [a, b].

5.17 Remark Theorem 5.16 is also stated in [SY05] as Theorem 7.4.5, but the proof given there has a
gap: It rests on Theorem 7.4.3 whose proof is invalid (without going to far into details we content
ourselves with the hint that the sequence {En,i}n,i constructed in the proof of this Theorem 7.4.3
depends on a gauge δ, which itself depends on a fixed ε > 0, but the sequence must not depend
on ε > 0!). The authors of [SY05] claim that the result is known and cite Proposition 4 in [PM02],
however the notion of an ACG*-function in [PM02] is indeed our notion of an ACGδ-function and
our notion of an ACG*-function coincides with the corresponding notion in [SY05]. The classi-
cal proof for Theorem 5.16 in the real-valued function depends on the equivalence between the
Henstock-Kurzweil integral and the Perron integral. But the latter one makes in general no sense
for vector-valued function. Consequently, this classical proof cannot be transposed offhand to the
vector-valued case. In [Gor89] Gordon has developed a proof strategy avoiding the Perron inte-
gral; this is indeed the source for the introduction of ACGδ-functions. Although several proofs of
[Gor89] use that the considered functions are real-valued (e.g., Gordon uses Corrollary 2.27 in the
real-valued case, which seems to be completely new in the vector-valued case, and properties of
the outer Lebesgue-measure that seem to have no analogon on the level of one-dimensional outer
Hausdorff measures), his principal strategy served as a blue print for our approach. Moreover, there
seems to be only one other reference where Theorem 5.16 is proved, namely [Sol01] (Theorem 2.2).
Note however that the approach in [Sol01] is different from ours.

5.3 Banach spaces with the Radon-Nikodým property

Recall that a Banach space X has the so-called Radon-Nikodým property if and only if every Lip-
schitz continuous function defined on [0, 1] with values in X is Lebesgue-a.e. differentiable (in the
ordinary sense) on [0, 1]; consult [DU77] for further information. In this section we are concerned
with a characterisation of Banach spaces possessing the Radon-Nikodým property, which is orig-
inally due to B. Bongiorno, L. Di Piazza and K. Musiał (see [BPM09b, Theorem 3.6]). It reads as
follows.

5.18 Theorem. Let λ be the one-dimensional (outer) Lebesgue measure on [0, 1] (which coincides with mϕ

for ϕ the identity on [0, 1]). For a Banach space (X, ‖ · ‖) the following statements are equivalent.

(a) The space (X, ‖ · ‖) has the Radon-Nikodým property.

(b) Every function in BVG*([0, 1], X) is Lebesgue-a.e. differentiable.

(c) If h : [0, 1]→ X is a function such that mh is σ-finite, then h is Lebesgue-a.e. differentiable.

(d) If h : [0, 1]→ X is a function with mh � λ, then h is Lebesgue-a.e. differentiable.

(e) If h : [0, 1] → X is a function with mh � λ, then h is Lebesgue-a.e. differentiable with derivative
h′ ∈ HK([a, b], X) and with

∫ x
0
h′(t) dt = h(x) − h(0) for all x ∈ [0, 1] (where we put h′(x) = 0 at

non-differentiability points).

(f) If h : [0, 1] → X is a function with mh � λ, then h is an indefinite variational Henstock-Kurzweil
integral.
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Before proving this theorem, we want to explain why the proof of B. Bongiorno, L. Di Piazza and
K. Musiał in [BPM09b] has a gap. This gap concerns the implication “(a) =⇒ (b)” above. For the
following details consult the proof of the implication “(i) =⇒ (ii)” of Theorem 3.6 in [BPM09b].

In [BPM09b] the authors arrive at the inequality∑
i

‖F [ti, ui]‖ =
∑
i

‖f(ui)− f(ti)‖ ≥ n
∑
i

|ui − ti| > n
|Ek ∩G|e

2
> M [sic!]

(note that on the left side, there is a misprint: read Φ in lieu of F ; moreover the intervals [ti, ui] ap-
pearing at this point in the proof should be replaced by [min{ti, ui},max{ti, ui}]; the same remark
applies to the definition of the set F appearing there some lines before). Then the authors conclude
that Φ is not of bounded variation in the restricted sense on Ek, which gives the desired contradic-
tion completing their proof. However, we know that ti belongs to Ek, but we only know that ui is
an element of [0, 1] with |ui − ti| < 1

n and ‖f(ti)− f(ui)‖ ≥ n|ui − ti|, where n is a certain fixed nat-
ural number. Thus one needs a criterion that guarantees that if Φ belongs to BV*(Ek, X), then there
exists some constant M > 0 such that WΦ(S) ≤ M holds for each S = {[aj , bj ]}rj=1 ∈ A([a, b]) with
{aj , bj} ∩ Ek 6= ∅ for all j ∈ {1, . . . , r}. One might think that this could be achieved by constructing
intervals with both endpoints in Ek starting from such an S. Indeed, Lemma 6.15 in [Lee89] claims
that this is a successful approach, but this lemma is false; see Lemma 2.4 and Corollary 2.5 above
for correct versions. In fact, the lemmata just mentioned provide such criterions. However, Lemma
2.4 requires ui ∈ [inf Ek, supEk] and Lemma 2.4 requires Φ to be bounded and neither of these two
conditions can be assumed to be satisfied in this general situation. Moreover, if we really want
WΦ(S) ≤M to hold for each S = {[aj , bj ]}rj=1 ∈ A([a, b]) with {aj , bj}∩Ek 6= ∅ for all j ∈ {1, . . . , r},
then Φ is indeed necessarily bounded (cf. the proof of Corollary 2.5).
Therefore, we can rescue the current proof if we additionally assume Φ to be bounded. Then we
can complete the proof of the implication “(i) =⇒ (ii)” using some extra reasoning; see the proof of
the implication “(b) =⇒ (a)” of Lemma 5.19 below.
Another way to rescue the proof works as follows (here we use the notation of [BPM09b]): Set
ck := inf Ek and dk := supEk. If |Ek ∩ G|e > 0, then |Ek ∩ G ∩ (ck, dk)|e > 0. Now work with
Ek ∩G ∩ (ck, dk) instead of Ek ∩G and choose u in the proof of Theorem 3.6 in [BPM09b] with the
additional property u ∈ (ck, dk), which is indeed possible. Then the proof goes through using our
Lemma 2.4.

Now we come to our proof of Theorem 5.18. In comparison with the proof due to B. Bongiorno, L.
Di Piazza and K. Musiał we make two observations, which are of some interest. First, our proof of
the implication “(a) =⇒ (b)” is more elementary than the proof of the corresponding implication “(i)
=⇒ (ii)” of Theorem 3.6 in [BPM09b] in so far as we can avoid the Vitali covering argument applied
there by using one time more Lemma 2.8 (but we also use [Bon98, Proposition 1]).
Second, the next lemma shows that the above assertions (d), (e) and (f) are equivalent in a more
general context; indeed, this is an almost immediate and natural outflow of our results obtained so
far.

5.19 Lemma. Let ϕ ∈ BVG*([0, 1], Y ) be continuous. Consider the following assertions.

(a) Every function in BVG*([0, 1], Z) is pseudo-ϕ-Roussel-differentiable mϕ-almost everywhere.
(b) Every bounded function in BVG*([0, 1], Z) is mϕ-a.e. pseudo-ϕ-Roussel-differentiable.
(c) If F : [0, 1] → Z is a function such that mF is σ-finite, then F is mϕ-a.e. pseudo-ϕ-Roussel-

differentiable.
(d) If F : [0, 1]→ Z is a function with mF � mϕ, then F is mϕ-a.e. pseudo-ϕ-Roussel-differentiable.
(e) If F : [0, 1] → Z is a function with mF � mϕ, then F possesses a mϕ-Roussel derivative f ∈
HK([a, b], ϕ,X) with

∫ x
0
f(t) · dϕ(t) = F (x)− F (0) for all x ∈ [0, 1].

(f) If F : [0, 1]→ Z is a function withmF � mϕ, then F is an indefinite variational Henstock-Kurzweil-
Stieltjes integral with respect to ϕ.
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Then we have (a)⇐⇒ (b)⇐⇒ (c) =⇒ (d)⇐⇒ (e)⇐⇒ (f).

Proof. (a) =⇒ (b) and (e) =⇒ (f) are clear.

(b)⇐⇒ (c) is a direct consequence of Corollary 3.14.

Assume (b), let F ∈ BVG*([0, 1], Z) and choose a sequence {En}∞n=1 of sets with
⋃∞
n=1En =

[0, 1] such that F ∈ BV*(En, Z) for all n ∈ N. Then F is bounded on each interval [cn, dn] :=
[inf En, supEn] by Lemma 2.3. Extend Fn := F |[cn,dn] to [0, 1] by setting Fn(t) := 0 for t ∈ [0, 1] \
[cn, dn]. Because of F ∈ BVG*([cn, dn], Z) for each n ∈ N (notice that

⋃
m∈N(Em∩[cn, dn]) = [cn, dn]),

we derive Fn ∈ BVG*([0, 1], Z). Since Fn is bounded, Fn ismϕ-a.e. pseudo-ϕ-Roussel-differentiable
on [0, 1] due to (b) and thus a fortiori on each interval (cn, dn). As a result, F is mϕ-a.e. pseudo-
ϕ-Roussel-differentiable on (cn, dn) and consequently on [0, 1] because by Lemma 3.8 the countable
set
⋃
n∈N{cn, dn} is an mϕ-null set due to the continuity of ϕ. So we have shown (a).

(c) =⇒ (d) follows from Corollary 3.18.

Now assume that (d) holds and let F : [0, 1]→ Z be any function with mF � mϕ. Due to (d) F has
an mϕ-Roussel derivative f . Lemma 4.16 and Corollary 4.27 show that f is a ϕ-Roussel derivative
of F with f ∈ HK([a, b], ϕ,X) and

∫ x
0
f(t) ·dϕ(t) = F (x)−F (0) for all x ∈ [0, 1] (because of Theorem

4.25). Hence, (e) holds.

Finally, Corollary 4.28 and Lemma 4.16 yield (f) =⇒ (d).

Essentially the same arguments as in the preceding proof also establish the following result.

5.20 Lemma. Let ϕ ∈ BVG*([0, 1], Y ) be continuous. Consider the following assertions.

(a) We have mϕ({t ∈ [a, b] : FD(F,ϕ, t) = ∅}) = 0 for every function F ∈ BVG*([0, 1], Z).

(b) We have mϕ({t ∈ [a, b] : FD(F,ϕ, t) = ∅}) = 0 for every bounded function F ∈ BVG*([0, 1], Z).

(c) If F : [0, 1]→ Z is any function such that mF is σ-finite, then mϕ({t ∈ [a, b] : FD(F,ϕ, t) = ∅}) =
0.

(d) If F : [0, 1]→ Z is any function with mF � mϕ, then mϕ({t ∈ [a, b] : FD(F,ϕ, t) = ∅}) = 0.

(e) If F : [0, 1] → Z is any function with mF � mϕ, then F possesses a ϕ-Fréchet derivative f ∈
HK([a, b], ϕ,X) with

∫ x
0
f(t) · dϕ(t) = F (x)− F (0) for all x ∈ [0, 1].

(f) If F : [0, 1] → Z is any function with mF � mϕ, then F is an indefinite variational Henstock-
Kurzweil-Stieltjes integral with respect to ϕ.

Then we have (a)⇐⇒ (b)⇐⇒ (c) =⇒ (d)⇐⇒ (e)⇐⇒ (f).

The next lemma gives a proof for the implication (a) =⇒ (b) in Theorem 5.18.

5.21 Lemma. If the Banach space (X, ‖ · ‖) has the Radon-Nikodým property, then every function in
BVG*([0, 1], X) is Lebesgue-a.e. differentiable.

Proof. Let f ∈ BVG*([0, 1], X) be arbitrary and choose a strictly increasing function χ : [0, 1] → R
according to Lemma 2.8 and letA be a countable set with limy→x

‖f(x)−f(y)‖
|χ(x)−χ(y)| <∞ for all x ∈ [0, 1]\A.

By Lebesgue’s differentiation theorem there exists a Lebesgue-null setN such that χ is differentiable
on [0, 1] \N . As a consequence, we conclude that for every x ∈ [0, 1] \ (N ∪ A) there exists a δ > 0
and an L > 0 such that

‖f(x)− f(y)‖ =
‖f(x)− f(y)‖
|χ(x)− χ(y)|

· |χ(x)− χ(y)|
|x− y|

· |x− y| ≤ L |x− y|

for all y ∈ [0, 1] with 0 < |x−y| < δ. Thus the Stepanoff-type result Proposition 1 in [Bon98] implies
that f is Lebesgue-a.e. differentiable on [0, 1] \ (N ∪A), hence on [0, 1].
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Now we have all ingredients to prove Theorem 5.18.

Proof of Theorem 5.18. Thanks to Lemma 5.19 and 5.21, it suffices to prove that (d) implies (a). One
easily verifiesmh � λwhenever h is a Lipschitz function. So (d) yields that every Lipschitz function
h : [0, 1] → X is Lebesgue-a.e. differentiable, which is equivalent to the Radon-Nikodým property.

As an immediate corollary to Theorem 5.18 we obtain the following result.

5.22 Corollary. Let X = Z, Y = K, F ∈ X [a,b], let ϕ be the identity on [a, b], let the bilinear mapping
B be the usual multiplication with scalars and finally assume that X has the Radon-Nikodým property. The
following assertions are equivalent.

(a) The function F is an indefinite variational Henstock-Kurzweil integral.
(b) We have mF � mϕ.

The remaining part of this section is now devoted to a substantial improvement of Lemma 5.21
giving a vector-valued extension of Proposition 3.10 in [Fau97].

5.23 Theorem. Let X = Z, Y = K, ϕ ∈ BVG*([0, 1], Y ) ∩ C([0, 1], Y ), let the bilinear mapping B be the
usual multiplication with scalars and finally assume that X has the Radon-Nikodým property. Then we have
mϕ({t ∈ [a, b] : FD(F,ϕ, t) = ∅}) = 0 for all F ∈ BVG*([0, 1], X). In particular, as ϕ is bounded, F is
mϕ-a.e. ϕ-Roussel differentiable.

Proof. We divide the proof into several steps.

step 1: There exists a strictly increasing, continuous function χ : [0, 1]→ R and a countable subsetA ⊆ [0, 1]
such that

lim
s→t

∣∣∣∣ϕ(t)− ϕ(s)
χ(t)− χ(s)

∣∣∣∣ <∞
for all t ∈ [a, b] \A.
If ϕ is real-valued, the result may be found on page 237 of [Sak41]. According to this result choose
χ1 and A1 resp. χ2 and A2 for Reϕ resp. Imϕ; note that Reϕ, Imϕ ∈ BVG*([0, 1], Y ) ∩ C([0, 1], Y ).
Now put χ := χ1 + χ2 and A := A1 ∪A2.

step 2: For χ as in step 1 we have mϕ � mχ.
Let N ⊆ [0, 1] with mχ(N) = 0 and let A be as in step 1. For k ∈ N we set

Nk :=
{
t ∈ N \A : lim

s→t

∣∣∣∣ϕ(t)− ϕ(s)
χ(t)− χ(s)

∣∣∣∣ < k

}
.

Since A is countable and ϕ is continuous, we have mϕ(A) = 0. Due to N = A ∪
⋃
k∈N Nk, it suffices

to establish mϕ(Nk) = 0 for each k ∈ N. For this purpose fix k ∈ N, let ε > 0 and choose a gauge
δ̃ on N with

∑r
j=1 |χ(bj) − χ(aj)| < ε

k for each {([aj , bj ], tj)}rj=1 ∈ S(N, δ̃). For every t ∈ Nk pick
δ(t) ∈ (0, δ̃(t)) with |ϕ(s) − ϕ(t)| < k|χ(s) − χ(t)| for all s ∈ [0, 1] ∩ Uδ(t)(t). For every system
{([aj , bj ], tj)}rj=1 ∈ S(Nk, δ) we then have

r∑
j=1

|ϕ(bj)− ϕ(aj)| ≤
r∑
j=1

|ϕ(bj)− ϕ(tj)|+
r∑
j=1

|ϕ(tj)− ϕ(aj)|

≤ k

 r∑
j=1

|χ(bj)− χ(tj)|+
r∑
j=1

|χ(tj)− χ(aj)|


= k

r∑
j=1

|χ(bj)− χ(aj)| < ε,
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which yields mϕ(Nk) = 0.

step 3: Let G : [0, 1]→ X be a function and let Ψ : [0, 1]→ R be continuous and strictly increasing. Set

L := {t ∈ [0, 1] : ∃ h > 0, C > 0 ∀ s ∈ [0, 1] ∩ Uh(t) : ‖G(t)−G(s)‖ ≤ C|Ψ(t)−Ψ(s)|}.

There exists a set N ⊆ L with mΨ(N) = 0 such that the limit

DΨG(t) := lim
s→∞

G(t)−G(s)
Ψ(t)−Ψ(s)

exists in X for all t ∈ L \N .
We introduce the function

H : [Ψ(0),Ψ(1)]→ X; τ 7→ G(Ψ−1(τ)).

Let t ∈ L with the corresponding h,C > 0. Then there exists h̃ ∈ L such that |Ψ−1(σ) − t| =
|Ψ−1(σ) − Ψ−1(Ψ(t))| < h for all σ ∈ [Ψ(0),Ψ(1)] ∩ Ueh(Ψ(t)). For each σ ∈ [Ψ(0),Ψ(1)] ∩ Ueh(Ψ(t))
we thus obtain

‖H(σ)−H(Ψ(t))‖ = ‖G(Ψ−1(σ))−G(t)‖ ≤ C|Ψ(Ψ−1(σ))−Ψ(t)| = C|σ −Ψ(t)|. (5.4)

We put

L̃ := {τ ∈ [Ψ(0),Ψ(1)] : ∃ h̃ > 0, C̃ > 0 ∀ σ ∈ [Ψ(0),Ψ(1)] ∩ Ueh(τ) : ‖H(τ)−H(σ)‖ ≤ C̃|τ − σ|}.

Thanks to the Stepanoff-type result Proposition 1 in [Bon98], there is a set Ñ ⊆ [Ψ(0),Ψ(1)] with
λ(Ñ) = 0 such that H is differentiable (in the ordinary sense) at each point of L̃ \ Ñ . Inequality (5.4)
implies Ψ(L) ⊆ L̃. We set N := Ψ−1(Ñ). We then have λ(Ψ(N)) = λ(Ñ) = 0 and

G(t)−G(s)
Ψ(t)−Ψ(s)

=
H(Ψ(t))−H(Ψ(s))

Ψ(t)−Ψ(s)
−−−→
s→t

H ′(Ψ(t))

for all t ∈ L\N . Since Ψ is strictly increasing and continuous, one can easily verify that the set func-
tion λ(Ψ(·)) coincides with the outer Lebesgue-Stieltjes measure νΨ associated with Ψ. Applying
Proposition A.3 therefore yields mΨ(N) = 0. More precisely, for ε > 0 choose intervals I1, . . . , In
covering N such that

∑n
j=1 νΨ(Ij) < ε. Using that mΨ is an outer measure, Proposition A.3 gives

us mΨ(N) ≤
∑n
j=1mΨ(Ij) =

∑n
j=1 νΨ(Ij) < ε and we obtain mΨ(N) = 0 as claimed.

step 4: Finishing the proof
Let χ be as in step 1. Furthermore, let F ∈ BVG*([0, 1], X) and choose for F a strictly increasing
function χF and a countable set AF according to Lemma 2.8. By Proposition 3.10 in [Fau97] there is
a set N1 ⊆ [0, 1] with mχ(N1) = 0 such that the limit

DχχF (t) := lim
s→t

χF (s)− χF (t)
χ(s)− χ(t)

exists for every t ∈ [0, 1] \N1. As a consequence, for t ∈ [0, 1] \ (N1 ∪AF ) there are h > 0 and C > 0
with

‖F (s)− F (t)‖ =
‖F (s)− F (t)‖
|χF (s)− χF (t)|

· |χF (s)− χF (t)|
|χ(s)− χ(t)|

· |χ(s)− χ(t)| ≤ C|χ(s)− χ(t)|

for all s ∈ [0, 1] ∩ U̇h(t). By step 3 there exists N2 ⊆ [0, 1] with mχ(N2) = 0 such that the limit

DχF (t) := lim
s→t

F (s)− F (t)
χ(s)− χ(t)
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exists in X for all t ∈ [0, 1] \ (N1 ∪N2 ∪AF ). We set N3 := N1 ∪N2 ∪AF and note that mχ(N3) = 0.
Moreover, combining Lemma 3.9 and Proposition 3.10 both in [Fau97] with step 2 and the simple
observation that mϕ ≤ mReϕ +mImϕ, one can find an mϕ-null set N4 ⊆ [0, 1] such that

Dχϕ(t) := lim
s→t

ϕ(s)− ϕ(t)
χ(s)− χ(t)

exists in C \{0} for every t ∈ [0, 1] \N4. In particular, for each t ∈ [0, 1] \N4 we can find a δ(t) > 0
such that ϕ(s) 6= ϕ(t) for all s ∈ U̇δ(t)(t) ∩ [0, 1]. We finally put N := N3 ∪ N4 and observe that
mϕ(N) = 0 by step 2. For t ∈ [0, 1] \N and s ∈ U̇δ(t)(t) ∩ [0, 1] we now obtain

F (s)− F (t)
ϕ(s)− ϕ(t)

=
χ(s)− χ(t)
ϕ(s)− ϕ(t)

· F (s)− F (t)
χ(s)− χ(t)

−−−→
s→t

(Dχϕ(t))−1 ·DχF (t).

We thus conclude (Dχϕ(t))−1 ·DχF (t) ∈ FD(F,ϕ, t) for all t ∈ [0, 1] \N .

As corollary we now obtain a partial generalisation of Lemma 5.10.

5.24 Corollary. Suppose that we are in the situation of Theorem 5.23. Then we have F ∈ ACGδ,ϕ([a, b], X)
if and only of mF � mϕ.

Proof. The only-if part holds always true by Lemma 5.14. So assume conversely that mF � mϕ.
Since ϕ is continuous, this implies that F is continuous, too, as mF ({t}) = 0 for all t ∈ [a, b] (see
Lemma 3.8); in particular C(F,ϕ, t) = X for all t ∈ R. Thanks to Corollary 3.18, the hypothesis
mF � mϕ further yields F ∈ BVG*([a, b], X). Because of Theorem 5.23 we now conclude that F
possesses a ϕ-Fréchet derivative. Therefore F is an indefinite Henstock-Kurzweil-Stieltjes integral
with respect to ϕ due to Theorem 4.28. The proof of Theorem 5.15 now shows F ∈ ACGδ,ϕ([a, b], X)
as claimed.

5.4 Integration by parts

In this section we use Theorem 4.25 to obtain an integration by parts formula. For this we consider
besides the bilinear mapping B two further bilinear mappings

B1 : X × Z → X and B2 : Z × Z → Z.

We write x ·1 z := B1(x, z) and z ·2 z̃ := B2(z, z̃) for x ∈ X and z, z̃ ∈ Z. We assume that

• ‖x ·1 z‖ ≤ ‖x‖ · ‖z‖ for all x ∈ X and z ∈ Z,

• ‖z ·2 z̃‖ ≤ ‖z‖ · ‖z̃‖ for all z, z̃ ∈ Z,

• (x ·1 z) · y = (x · y) ·2 z for all x ∈ X , y ∈ Y and z ∈ Z and finally

• z ·2 z̃ = z̃ ·2 z for all z, z̃ ∈ Z.

5.25 Example In the following cases the above conditions are satsified.

(a) X = Y = Z is a commutative Banach algebra and B = B1 = B2 is the multiplication on X .

(b) Z = K, B1 is the multiplication by scalars and B2 is the multiplication on K.

(c) X = Z, Y = K, B is the multiplication by scalars and B1 = B2 is a symmetric bilinear
mapping with ‖B1(x, x̃)‖ ≤ ‖x‖ · ‖x̃‖ for all x, x̃ ∈ X .

Here comes the announced result concerning integration by parts.
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5.26 Theorem. Let ϕ ∈ BVG*([a, b], Y ), f ∈ HK([a, b], ϕ,X) with primitive F , let g ∈ HK([a, b], ϕ,X)
with primitive G and let h ∈ Z [a,b].

(a) We have h ∈ HK([a, b], F, Z,B2) (this notation indicates that integration with respect to the bilinear
mapping B2 is used) if and only if f ·1 h ∈ HK([a, b], ϕ,X). In this case we have∫ t

a

h(τ) ·2 dF (τ) =
∫ t

a

(f ·1 h)(τ) · dϕ(τ)

for all t ∈ [a, b].

(b) Assume that ϕ is bounded and denote by D the countable point set of all discontinuities of ϕ. Further-
more, suppose that

(i) for all t ∈ D \ {b} we have limτ→t+ F (τ) = F (t) or limτ→t+ G(τ) = G(t), and
(ii) for all t ∈ D \ {a} we have limτ→t− F (τ) = F (t) or limτ→t− G(τ) = G(t).

Then (f ·1 G) + (g ·1 F ) ∈ HK([a, b], ϕ,X) with∫ t

a

[(f(τ) ·1 G(τ)) + (g(τ) ·1 F (τ))] · dϕ(τ) = F (t) ·2 G(t)

for all t ∈ [a, b].

(c) Under the hypotheses of part (b), F ∈ HK([a, b], G, Z,B2) if and only if G ∈ HK([a, b], F, Z,B2)
and if either of these two cases occur (and thus both of them), then∫ t

a

F (τ) ·2 dG(τ) +
∫ t

a

G(τ) ·2 dF (τ) = F (t) ·2 G(t)

for all t ∈ [a, b].

Proof. on (a): Using the above assumed relations between B, B1 and B2, it easy to adjust the proof
on page 264 of [McL80] for the scalar-valued case to our framework. We therefore omit the proof.

on b): We consider the two functions

H : [a, b]→ Z; t 7→ F (t) ·2 G(t)

and
η : [a, b]→ X; t 7→ (f(t) ·1 G(t)) + (g(t) ·1 F (t)).

We shall show now that mH � mϕ and that η is a ϕ-Fréchet-derivative of H . Then Theorem 4.25
yields η ∈ HK([a, b], ϕ,X) with

∫ t
a
η(s) · dϕ(s) = H(t) for all t ∈ [a, b], which is precisely the claim.

step 1: We have η(t) ∈ C(H,ϕ, t) for all t ∈ [a, b]. Fix t ∈ [a, b] and pick h ∈ R \{0} with t + h ∈ [a, b].
Employing the above relations between B, B1 and B2 we estimate

‖H(t+ h)−H(t)− η(t) · [ϕ(t+ h)− ϕ(t)]‖
≤‖F (t+ h) ·2 G(t+ h)− F (t) ·2 G(t+ h)− [f(t) ·1 G(t+ h)] · [ϕ(t+ h)− ϕ(t)]‖

+ ‖[f(t) ·1 G(t+ h)− f(t) ·1 G(t)] · [ϕ(t+ h)− ϕ(t)]‖
+ ‖F (t) ·2 G(t+ h)− F (t) ·2 G(t)− [g(t) ·1 F (t)] · [ϕ(t+ h)− ϕ(t)]‖

=‖F (t+ h) ·2 G(t+ h)− F (t) ·2 G(t+ h)− (f(t) · [ϕ(t+ h)− ϕ(t)]) ·2 G(t+ h)‖
+ ‖[f(t) ·1 (G(t+ h)−G(t))] · [ϕ(t+ h)− ϕ(t)]‖
+ ‖G(t+ h) ·2 F (t)−G(t) ·2 F (t)− (g(t) · [ϕ(t+ h)− ϕ(t)]) ·2 F (t)‖.
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We further estimate

‖H(t+ h)−H(t)− η(t) · [ϕ(t+ h)− ϕ(t)]‖ (5.5)
≤‖F (t+ h)− F (t)− f(t) · [ϕ(t+ h)− ϕ(t)]‖ · ‖G(t+ h)‖

+ ‖f(t)‖ · ‖G(t+ h)−G(t)‖ · ‖ϕ(t+ h)− ϕ(t)‖
+ ‖G(t+ h)−G(t)− g(t) · [ϕ(t+ h)− ϕ(t)]‖ · ‖F (t)‖.

By symmetry, we also obtain

‖H(t+ h)−H(t)− η(t) · [ϕ(t+ h)− ϕ(t)]‖ (5.6)
≤‖G(t+ h)−G(t)− g(t) · [ϕ(t+ h)− ϕ(t)]‖ · ‖F (t+ h)‖

+ ‖g(t)‖ · ‖F (t+ h)− F (t)‖ · ‖ϕ(t+ h)− ϕ(t)‖
+ ‖F (t+ h)− F (t)− f(t) · [ϕ(t+ h)− ϕ(t)]‖ · ‖G(t)‖.

Recall from Corollary 4.10 that continuity points of ϕ are also continuity points of F and G and
also recall that both F and G are ϕ-continuous (see Lemma 4.9). Hence, using condition (b) (i)
or (b) (ii) and the hypothesis that ϕ is bounded, we conclude from the inequalities (5.5) and (5.6)
η(t) ∈ C(H,ϕ, t) for all t ∈ [a, b].

step 2: η is a Fréchet-derivative of H . Using, e.g., Theorem 4.22 we may choose an mϕ-null set N and a
countable set D with f(t) ∈ FD(F,ϕ, t) and g(t) ∈ FD(G,ϕ, t) for all t ∈ [a, b] \ (N ∪D). It suffices
to verify η(t) ∈ FD(H,ϕ, t) for all t ∈ [a, b] \ (N ∪D). Let ε > 0, consider t ∈ [a, b) \ (N ∪D) and
assume that limτ→t+ F (τ) = F (t). Then there is a ρ > 0 such that

‖F (t+ h)− F (t)− f(t) · [ϕ(t+ h)− ϕ(t)]‖ ≤ ε

3(‖G(t)‖+ 1)
· ‖ϕ(t+ h)− ϕ(t)‖,

‖F (t+ h)− F (t)‖ < min
{

1,
ε

3(‖g(t)‖+ 1)

}
and

‖G(t+ h)−G(t)− g(t) · [ϕ(t+ h)− ϕ(t)]‖ ≤ ε

6(‖F (t)‖+ 1)
· ‖ϕ(t+ h)− ϕ(t)‖

for all h ∈ (0, ρ) with t+ h ∈ [a, b]. For those h inequality (5.6) yields

‖H(t+ h)−H(t)− η(t) · [ϕ(t+ h)− ϕ(t)]‖
≤‖G(t+ h)−G(t)− g(t) · [ϕ(t+ h)− ϕ(t)]‖ · ‖F (t+ h)− F (t)‖

+ ‖G(t+ h)−G(t)− g(t) · [ϕ(t+ h)− ϕ(t)]‖ · ‖F (t)‖
+ ‖g(t)‖ · ‖F (t+ h)− F (t)‖ · ‖ϕ(t+ h)− ϕ(t)‖
+ ‖F (t+ h)− F (t)− f(t) · [ϕ(t+ h)− ϕ(t)]‖ · ‖G(t)‖

≤ ε

6(‖F (t)‖+ 1)
· ‖ϕ(t+ h)− ϕ(t)‖+

ε

6(‖F (t)‖+ 1)
· ‖ϕ(t+ h)− ϕ(t)‖ · ‖F (t)‖

+ ‖g(t)‖ · ε

3(‖g(t)‖+ 1)
· ‖ϕ(t+ h)− ϕ(t)‖+

ε

3(‖G(t)‖+ 1)
· ‖ϕ(t+ h)− ϕ(t)‖ · ‖G(t)‖

≤ε‖ϕ(t+ h)− ϕ(t)‖.

Similarly, one treats the remaining cases limτ→t− F (τ) = F (t) and limτ→t± G(τ) = G(t).

step 3: mH � mϕ. Let ∅ 6= M ⊆ [a, b] with mϕ(M) = 0. In particular, mϕ({t}) = 0 for all t ∈M and
ϕ is therefore continuous at each point of M . Hence, F and G are also continuous at every point
of M . In particular, for all t ∈ M there exists δ0(t) > 0 such that F and G are both bounded on
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Uδ0(t)(t) ∩ [a, b]. The family {Uδ0(t)(t)}t∈M forms an open cover of M . Since M is a Lindelöf space
(as a separable metric space), there is a sequence (τn)n in M such that M ⊆

⋃
n Uδ0(τn)(τn). We put

U1 := Uδ0(τ1)(τ1), Un := Uδ0(τn)(τn) \
⋃n−1
k=1 Uδ0(τk)(τk) for n > 1 and Mn := M ∩ Un. Furthermore,

we set Cn := sup{max{‖F (s)‖, ‖G(s)‖} : s ∈ Uδ0(τn)(τn)∩ [a, b]} for n ∈ N. Notice thatmϕ(Mn) = 0
for all n because Mn ⊆ M . Hence, mF (Mn) = 0 and mG(Mn) = 0 for all n ∈ N since mF � mϕ

and mG � mϕ. Now let ε > 0 be arbitrary. For each n ∈ N and Φ ∈ {F,G} choose a gauge
δn,Φ ∈ (0,∞)Mn such that

r∑
j=1

‖Φ(bj)− Φ(aj)‖ <
ε

2n+1(Cn + 1)

for all {([aj , bj ], tj)}rj=1 ∈ S(Mn, δn,Φ). Moreover, for n ∈ N take δn ∈ (0,∞)Mn with Uδn(t)(t) ⊆
Uδ0(τn)(τn) for all t ∈Mn. Finally, we define for t ∈ M the gauge δ(t) := min{δn,F (t), δn,G(t), δn(t)}
if t ∈Mn for a (unique) n ∈ N. For each {([aj , bj ], tj)}rj=1 ∈ S(M, δ) we now derive

r∑
j=1

‖H(bj)−H(aj)‖

=
r∑
j=1

‖F (bj) ·2 G(bj)− F (aj) ·2 G(aj)‖

≤
r∑
j=1

‖F (bj)− F (aj)‖ · ‖G(bj)‖+
r∑
j=1

‖G(bj)−G(aj)‖ · ‖F (aj)‖

=
∞∑
n=1

r∑
j=1

tj∈Mn

‖F (bj)− F (aj)‖ · ‖G(bj)‖+
∞∑
n=1

r∑
j=1

tj∈Mn

‖G(bj)−G(aj)‖ · ‖F (aj)‖

≤
∞∑
n=1

Cn

r∑
j=1

tj∈Mn

‖F (bj)− F (aj)‖+
∞∑
n=1

Cn

r∑
j=1

tj∈Mn

‖G(bj)−G(aj)‖

<

∞∑
n=1

Cn ·
ε

2n+1(Cn + 1)
+
∞∑
n=1

Cn ·
ε

2n+1(Cn + 1)
< ε,

where we use that the systems {([aj , bj ], tj) : j ∈ {1, . . . , r}with tj ∈Mn} belong to S(Mn, δF ) and
S(Mn, δG). As a result, we deduce mH(M) = 0 as claimed.

on (c): Let F ∈ HK([a, b], G, Z,B2). Then part (a) implies g ·1 F ∈ HK([a, b], ϕ,X) with∫ t

a

F (s) ·2 dG(s) =
∫ t

a

(g ·1 F )(s) · dϕ(s)

for all t ∈ [a, b]. From part (b) we now deduce f ·1G = ((f ·1G)+(g ·1F ))−(g ·1F ) ∈ HK([a, b], ϕ,X)
and∫ t

a

(f(s) ·1 G(s)) · dϕ(s) =
∫ t

a

((f(s) ·1 G(s)) + (g(s) ·1 F (s))) · dϕ(s)−
∫ t

a

(g(s) ·1 F (s)) · dϕ(s)

= F (t) ·2 G(t)−
∫ t

a

F (s) ·2 dG(s)

for all t ∈ [a, b]. Due to part (a), the function G thus belongs toHK([a, b], F, Z,B2) and∫ t

a

G(s) ·2 dF (s) =
∫ t

a

(f(s) ·1 G(s)) · dϕ(s) = F (t) ·2 G(t)−
∫ t

a

F (s) ·2 dG(s)

for all t ∈ [a, b]. This establishes the only-if part and the addendum. Interchanging of the roles of F
and G gives the converse implication.
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5.5 Normed algebras of differentiable functions on complact plane sets

5.27 Remark Theorem 5.26 is a far reaching extension of the main theorem in [Pfe83], which needs
much stronger assumptions (e.g., it is assumed that ϕ ∈ BV([a, b],R)) actually needed in the proof
given there. Moreover, Theorem 5.26 also weakens the hypotheses of Corollary 1 in [Nar04]. Fur-
thermore, note that the proof of Corollary 1 in [Nar04] cannot be transposed offhand to the vector-
valued case as it relies on Ward’s Stieltjes-version of the Perron integral.

5.5 Normed algebras of differentiable functions on complact
plane sets

In this last subsection we apply the results obtained so far to the study of certain normed algebras
of differentiable functions. Throughout this section assume that X = Y = Z = C and B is the usual
multiplication with scalars.

LetK be a non-empty, compact, perfect (i.e.,K possesses no isolated points) subset of C. A function
h : K → X is called differentiable at z0 ∈ K if the limit

h′(z0) := lim
K\{z0}3z→z0

h(z)− h(z0)
z − z0

exists in C. We denote by D1(K) the set of all functions h : K → C that are everywhere differen-
tiable on K such that h′ is continuous. Then ‖h‖D1 := ‖h‖∞,K + ‖h′‖∞,K defines a norm on D1(K)
such that (D1(K), ‖ · ‖D1) is a normed commutative algebra, which is in general not complete (see,
e.g., [BF05] and [DF10]). These normed algebras and related ones have been extensively examined,
see, e.g.,[BF05], [DF10], [Hof11] and the references therein. In the cited works a version of the fun-
damental theorem of calculus on rectifiable paths has proved very advantageous. More precisely,
let γ : [0, 1] → C be a continuous path with γ ∈ BVG*([0, 1],C) such that K := γ([0, 1]) is not a
singleton (and then K is a perfect set) and let h : K → C be a function differentiable everywhere on
K. Now we want to integrate h′ along the path γ; we can do this by defining∫

γ

h′(z) dz :=
∫ 1

0

h′(γ(t)) dγ(t),

(R)
∫
γ

h′(z) dz := (R)
∫ 1

0

h′(γ(t)) dγ(t)

or

(L)
∫
γ

h′(z) dz := (L)
∫ 1

0

h′(γ(t)) dγ(t),

respectively, provided the corresponding integral on the right-hand side exists.
Let t0 ∈ [0, 1] and set z0 := γ(t0). Then there is a δ′ > 0 such that ‖h(z) − h(z0) − h′(z0)(z − z0)‖ ≤
ε|z − z0| for all z ∈ K with |z − z0| < δ′. Since γ is continuous, there exists a δ > 0 such that
|γ(t)− γ(t0)| < δ′ for all t ∈ [0, 1] with |t− t0| < δ. Hence,

‖h(γ(t))− h(γ(t0))− h′((γ(t0)))(γ(t)− γ(t0))‖ ≤ ε|γ(t)− γ(t0)|

for all t ∈ [0, 1] with |t− t0| < δ. As a consequence, h ◦ γ is differentiable at t0 with respect to γ (see
Definition 5.1) and we have (h ◦ γ)′γ(t0) = h′(γ(t0)).
Theorem 5.3 and Theorem 5.4 thus directly imply the following result.

5.28 Theorem. Let γ ∈ BVG*([0, 1],K) be continuous such that K := γ([0, 1]) is not a singleton and let
h : K → C be a function differentiable everywhere on K. Then the following assertions hold.

(a) The integral
∫
γ
h′(z) dz exists with

∫
γ
h′(z) dz = h(γ(1))− h(γ(0)).
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(b) Assume that γ is rectifiable and that (L)
∫ 1

0
h′(γ(t)) dγ(t) exists. Then

(L)
∫
γ

h′(z) dz = h(γ(1))− h(γ(0))

holds.
(c) Assume that (R)

∫ 1

0
h′(γ(t)) dγ(t) exists. Then

(R)
∫
γ

h′(z) dz = h(γ(1))− h(γ(0))

holds.

We add an immediate corollary to part (a) of Theorem 5.28.

5.29 Corollary. Let ∅ 6= K ⊆ C be a compact and perfect set such that for any two points z, w ∈ K
there exists a continuous path γ ∈ BVG*([0, 1],C) with γ([0, 1]) ⊆ K and with γ(0) = z and γ(1) = w.
Furthermore, let h : K → C be differentiable everywhere on K with h′ = 0. Then h is constant.

5.30 Remark (a) Note that the conclusion of Corollary 5.29 was known so far only in the situation
of Lemma 9.2 in [DF10] and for so-called rectifiably connected (see, e.g., [DF10, Definition
2.5]) compacta. But using Theorem 10.5 in [DF10] it is easy to find compact sets that are not
captured by these two situations, to which, however, Corollary 5.29 may be applied.

(b) Part (c) of Theorem 5.28 for rectifiable γ and continuously differentiable h is stated in [BF05,
Theorem 3.3] and in [Hof11, Theorem 2.6], however, apart from quite general hints without a
proof. In [BF05], one can read that ”Elegant proofs of this general result using the method of
repeated bisection” (see [BF05, p. 95]) were communicated to W. J. Bland and J. F. Feinstein by
G. R. Allan, T. W. Körner and W. K. Hayman, and that the proof of Allan can be found in the
PhD thesis of Bland. Moreover, a weaker – although the proof also works in this situation –
version of Theorem 5.28 (c) for rectifiable γ and continuously differentiable h is proved by D.
Gaier in [Gai98] (Theorem 4).

(c) For rectifiable γ there is another elementary proof of part (c) of Theorem 5.28 hidden in Theo-
rem 2.1 of [FR79].

(d) The prementioned proofs of Allan, Gaier and Fixman and Rubel are more elementary than
ours because they do not invoke Henstock-Kurzweil integration theory, but their proofs are
limited to rectifiable paths. In addition, the statements in 5.28 are optimal with regard to inte-
grability conditions. Moreover, the value of our proof is also constituted by the demonstration
that Theorem 5.28 is a natural and direct outflow of our results.

Although we needed, in contrast to the afore-mentioned simpler proofs, a bigger machinery to
arrive at part (c) of Theorem 5.28, our results may nevertheless even lead to proofs of known results,
which are from some point of view more natural than the existing proofs as our proofs feature the
flavour of the ideas of elementary calculus in a greater measure. We want to illustrate this by
considering the example of the so-called F-derivative introduced in [BF05]. Indeed, compared to
our proofs of [BF05, Theorem 4.9] and [BF05, Theorem 4.12] below, the proofs given in [BF05] seem
to be a little bit ad-hoc, while our proofs are of more conceptual nature and well integrated in the
abstract framework of our results.

For this purpose we fix a compact set ∅ 6= K ⊆ C supporting a nonvoid systemF of rectifiable paths
in K such that for any path γ ∈ F defined on some Interval I the mapping γ|J is non-constant and
we have γ|J ∈ F for any non-degenerate subinterval J of I .
Let H,h : K → C be two continuous functions. Then h is called an F-derivative of H if

(R)
∫
γ

h(z) dz = H(γ+)−H(γ−)
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holds for each γ ∈ F , where γ− denotes the starting point and γ+ denotes the endpoint of γ. We
denote by D1

F (K) the set of all continuous functions H : K → C having an F-derivative. We then
have the following result.

5.31 Proposition. Let H1, H2 ∈ D1
F (K) with F-derivatives h1 and h2, respectively. Then h1H2 + H1h2

is an F-derivative of H1H2.

Proof. Consider γ : [a, b] → K in F . By Lemma 4.3, Remark 4.2 (d) (or Theorem 5.3 and Theorem
5.4) and by assumption we have hj ◦ γ ∈ HK([a, b], γ,C) with∫ t

a

hj(γ(s)) dγ(s) = (R)
∫ t

a

hj(γ(s)) dγ(s) = Hj(γ(t))−Hj(γ(a))

for all t ∈ [a, b]. Therefore part (b) of Theorem 5.26 combined with Lemma 4.3 and Remark 4.2 (d)
(or combined with Theorem 5.3 and Theorem 5.4) yields

(R)
∫
γ

(h1H2 +H1h2)(z) dz =(R)
∫
γ

(h1(H2 −H2(γ(a)) + (H1 −H1(γ(a))h2)(z) dz

+ (R)
∫
γ

h1(z)H2(γ(a)) +H1(γ(a))h2(z) dz

=(H1(γ(b))−H1(γ(a))(H2(γ(b))−H2(γ(a))
+H2(γ(a))(H1(γ(b))−H1(γ(a))
+H1(γ(a))(H2(γ(b))−H2(γ(a))

=H1(γ(b))H2(γ(b))−H1(γ(a))H2(γ(a)).

This finishes the proof.

5.32 Remark Proposition 5.31 was proved in [BF05, Theorem 4.9] using the non-trivial Mergelyan’s
resp. Lavrentiev’s approximation theorem in order to reduce the assertion to the special case of
polynomials. In contrast to this approach our proof (taking into consideration the proof of Theorem
5.26) is in the spirit of the classical (and easy proof) for the product rule of differentiation.

The next result was first proved in [BF05, Theorem 4.12] using a bisection argument based on geo-
metric properties of rectifiable paths.

5.33 Proposition. We set

F(K) :=
⋃
{γ([c, d]) : γ : [c, d]→ K in F}

and we assume that F(K) is dense in K. Let h : K → C be a continuous function with (R)
∫
γ
h(z) dz = 0

for all γ ∈ F , then h = 0 holds.

Proof. Since F(K) is dense in K and since h is continuous, it suffices to show that h|γ([a,b]) = 0 is
fulfilled for each γ : [a, b] → K in F . Using Lemma 4.3 and Remark 4.2 (d) (or Theorem 5.3 and
Theorem 5.4), we infer h ◦ γ ∈ HK([a, b], γ,C) with∫ t

a

(h ◦ γ)(s) dγ(s) = (R)
∫ t

a

(h ◦ γ)(s) dγ(s) = 0

for all t ∈ [a, b]. We now consider the function

Hγ : [a, b]→ C; t 7→
∫ t

a

(h ◦ γ)(s) dγ(s).
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We have Hγ = 0 and hence 0 ∈ FD(Hγ , γ, t) and thus FD(Hγ , γ, t) = {0} for all t ∈ [a, b] by
part (c) of Remark 5.2, where part (c) of Remark 5.2 is applicable since γ does not vanish on any
non-degenerate subinterval. On the other side, Theorem 4.22 gives us (taking into consideration
that γ is continuous) a set N ⊆ [a, b] with mγ(N) = 0 such that h(γ(t)) ∈ FD(Hγ , γ, t) = {0} for all
t ∈ [a, b]\N . Thanks to Lemma 3.7 and the assumption that γ is not constant on any non-degenerate
subinterval, we infer that N must have empty interior; in particular, D \N is dense in [a, b]. Hence,
the continuity of h ◦ γ implies h ◦ γ = 0.
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A Henstock-Thomson variational measures
and Lebesgue-Stieltjes measures

In this section our aim is to prove that for a function ϕ ∈ BV([a, b], Y ) which is continuous from the
right, the Henstock-Thomson variational measure coincides with the Lebesgue-Stieltjes measure
associated with the total variation of ϕ.

We start with a result belonging to mathematical folklore, for which we could not find an appropri-
ate reference. For this reason we provide a fairly complete proof. But before doing so we must fix
some notation: Let Ω be a nonvoid set,H a semi-ring on it and ν : H → Y a set function on it. Then
let |ν| denote the total variation of ν.

A.1 Lemma. We consider Ω := (a, b] and the semi-ring H := {(c, d] : a ≤ c ≤ d ≤ b} on Ω. Let
ϕ ∈ BV([a, b], Y ) be continuous from the right. Then the vector-valued set function

τϕ : H → Y ; (c, d] 7→ ϕ(d)− ϕ(c)

can be uniquely extended to a σ-additive measure

νϕ : Bor(Ω)→ Y,

which is of bounded variation. Moreover, an analogous statement is true for the total variation |τϕ| of τϕ and
we have |τϕ| = |νϕ|, where |τϕ| denotes the unique extension of |τϕ| to Bor(Ω)

Proof. Clearly, τϕ is finitely additive onH. LetR be the ring generated byH. It is known that

R =


n⋃
j=1

Aj : n ∈ N, A1, . . . , An ∈ H pairwise disjoint

 . (A.1)

Thus τϕ can be extended toR by setting

τ̃ϕ

 n⋃
j=1

Aj

 :=
n∑
j=1

τϕ(Aj);

indeed, this gives a well-defined, finitely additive vector measure τ̃ϕ : R → Y (see, e.g., the proof
of Proposition 1 in §5 of Chapter I in [Din67]) and, obviously, this extension is unique. Note that R
is even an algebra because of Ω ∈ H ⊆ R. The vector measure τ̃ϕ is of bounded variation (onR): In
fact, let A ∈ R. Then

|τ̃ϕ|(A) = sup
{ n∑
j=1

‖τ̃ϕ(Aj)‖ : n ∈ N, A1, . . . , An ∈ R ∩P(A) pairwise disjoint
}

(A.2)

= sup
{ n∑
j=1

‖τϕ(Ij)‖ : n ∈ N, I1, . . . , In ∈ H ∩P(A) pairwise disjoint
}

≤ sup
{ n∑
j=1

‖ϕ(tj)− ϕ(tj−1)‖ : n ∈ N, a = t0 < . . . < tn = b

}
= V (ϕ, [a, b]) <∞,
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where we used (A.1) in the second equality. In particular, we further see that |τ̃ϕ|(A) = |τϕ|(A)
for each A ∈ H. Now let y? ∈ Y ?. Then 〈ϕ(·), y?〉 ∈ BV([a, b],C) is right continuous. Hence,
there are non-decreasing, right continuous functions ϕ1, . . . , ϕ4 ∈ BV([a, b],R) with 〈ϕ(·), y?〉 =
ϕ1 − ϕ2 + i(ϕ3 − ϕ4). Each of the Stieltjes contents

τϕj : H → [0,∞); (c, d] 7→ ϕj(d)− ϕj(c)

is σ-additive, thus a premeasure (cf., e.g., II.2.2 in [Els07]) and we have

〈τϕ, y?〉 = τ〈ϕ,y?〉 = τϕ1 − τϕ2 + i(τϕ3 − τϕ4)

on H. Consequently, 〈τϕ, y?〉 is σ-additive on H with ˜〈τϕ, y?〉 = 〈τ̃ϕ, y?〉, where ˜〈τϕ, y?〉 denotes
the unique finitely additive extension of 〈τϕ, y?〉 to R. Thanks to Proposition 1 in §5 of Chapter

I in [Din67], the set function ˜〈τϕ, y?〉 is σ-additive and so is 〈τ̃ϕ, y?〉, too. We conclude that τ̃ϕ is
a weakly σ-additive vector measure. As τ̃ϕ is of bounded variation, it is even strongly additive
due to Proposition I.1.15 in [DU77]. Now the Carathéodory-Hahn-Kluvanek extension theorem
(see, e.g., Theorem I.5.2 in [DU77]) implies that τ̃ϕ possesses a unique σ-additive extension νϕ :
σ(R) → Y , where σ(R) is the σ-algebra generated by R; notice that σ(R) = Bor(Ω). Because
of νϕ|R = τ̃ϕ, the set function τ̃ϕ is σ-additive on R. Therefore |τ̃ϕ| is also σ-additive on R (see,
e.g., §3 of Chapter I in [Din67], property 9) and it is of bounded variation, since it is even a finite
content onR due to (A.2). As a consequence, |τ̃ϕ| is a finite premeasure onR and thus has a unique,
σ-additive extension |τ̃ϕ| : Bor(Ω) → [0,∞) by the usual extension procedure. Furthermore, we
obtain ‖τ̃ϕ(A)‖ ≤ |τ̃ϕ|(A) = |τ̃ϕ|(A) for all A ∈ R. Employing Satz 2.14 in [Dec06] and Theorem
1 in §5 of [Din67] and using the fact that νϕ is the unique σ-additive extension of τ̃ϕ to Bor(Ω), we
derive that |νϕ| is of bounded variation (on Bor(Ω)) and extends |τ̃ϕ|. Moreover, |νϕ| is σ-additive on
Bor(Ω) by property 9 listed in §3 of [Din67]. The uniqueness of |τ̃ϕ| now yields |νϕ|(A) = |τ̃ϕ|(A) for
all A ∈ Bor(Ω). As τϕ is additive onH, so is |τϕ| and |τϕ| is finite. By the usual extension procedure
for finite non-negative finitely additive set functions on semi-rings, |τϕ| possesses a unique finite

σ-additive extension |τϕ| : Bor(Ω) → [0,∞) (more precisely, we should write |̃τϕ| instead of |τϕ|).
We next observe that

|τϕ|(A) = |τϕ|(A) = |τ̃ϕ|(A) = |τ̃ϕ|(A)

for all A ∈ H, which yields |τϕ|(A) = |τ̃ϕ|(A) for all A ∈ R. By once again utilising uniqueness, we
conclude |τϕ| = |τ̃ϕ| = |νϕ| on Bor(Ω).

A.2 Corollary. Under the hypotheses of Lemma A.1 and refering to the notation used there we obtain

|νϕ|((c, d]) = sup
{ n∑
j=1

‖ϕ(dj)− ϕ(cj)‖ :
n ∈ N, (c1, d1], . . . , (cn, dn] ∈ H pairwise disjoint with⋃n

j=1(cj , dj ] = (c, d]

}
for all a ≤ c ≤ d ≤ b.

Proof. The assertion follows from

|νϕ|((c, d]) = |τϕ|((c, d]) = |τϕ|((c, d]).

A.3 Proposition. Let ϕ ∈ BV([a, b], Y ) be continuous from the right. Then |νϕ| = mϕ on Bor((a, b]).

Proof. Let a ≤ c < d ≤ b. For ε > 0 we put

Gε := {δ ∈ (0,∞)(c,d] : ∀ t ∈ (c, d) : Uδ(t)(t) ⊆ (c, d) and ∀ s ∈ (d, d+ δ(d)) : ‖ϕ(d)− ϕ(s)‖ < ε}.
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Due to the right continuity of ϕ we infer Gε 6= ∅ for each ε > 0. Furthermore, one easily verifies

mϕ((c, d]) = inf
δ∈(0,∞)(c,d]

sup
S∈S((c,d],δ)

Wϕ(S) = inf
ε>0

inf
δ∈Gε

sup
S∈S((c,d],δ)

Wϕ(S).

Let ε > 0, δ ∈ Gε and S = {([aj , bj ], tj)}rj=1 ∈ S((c, d], δ). Then d ∈
⋃r
j=1[aj , bj ] if and only if

tr = d. Hence,
⋃r
j=1[aj , bj ] ⊆ (c, d], if tr < d, and [ar, d] ∪

⋃r−1
j=1[aj , bj ] ⊆ (c, d], if tr = d. In the

first case, we have S′ := {([aj , bj ], tj)}rj=1 ∪ {([d, d + δ(d)
2 ], d)} ∈ S((c, d], δ) with Wϕ(S) ≤ Wϕ(S′).

Setting S ′((c, d], δ) := {S ∈ S((c, d], δ) : tr = d}, we therefore conclude supS∈S((c,d],δ)Wϕ(S) =
supS∈S′((c,d],δ)Wϕ(S). As a consequence, mϕ((c, d]) = infε>0 infδ∈Gε supS∈S′((c,d],δ)Wϕ(S). Now
fix ε > 0, let δ ∈ Gε and pick S = {([aj , bj ], tj)}rj=1 ∈ S ′((c, d], δ). We choose closed intervals
[c1, d1], . . . , [cm, dm] such that [ar, d] ∪

⋃m
k=1[ck, dk] ∪

⋃r−1
j=1[aj , bj ] = [c, d] and such that the intervals

of the system {[aj , bj ]}rj=1 ∪ {[ck, dk]}mk=1 are mutually non-overlapping. We estimate

Wϕ(S) =
r∑
j=1

‖ϕ(bj)− ϕ(aj)‖

≤
r−1∑
j=1

‖ϕ(bj)− ϕ(aj)‖+
m∑
k=1

‖ϕ(dk)− ϕ(ck)‖+ ‖ϕ(d)− ϕ(ar)‖+ ‖ϕ(d)− ϕ(br)‖

≤ |τϕ|((c, d]) + ‖ϕ(d)− ϕ(br)‖ ≤ |τϕ|((c, d]) + ε,

mϕ((c, d]) ≤ sup
S∈S′((c,d],δ)

Wϕ(S) ≤ |τϕ|((c, d]) + ε,

which leads to mϕ((c, d]) ≤ νϕ|((c, d]) by letting ε tend to 0.

Let now {(ck, dk]}mk=1 be pairwise disjoint elements (listed in increasing order) with
⋃m
k=1(ck, dk] =

(c, d]; in particular, c1 = c and dm = d. Fix ε > 0 and choose δ ∈ (0,∞)(c,d] with Wδ(ϕ, (c, d]) ≤
mϕ((c, d])+ε. Sinceϕ is continuous from the right, we can pick c̃ ∈ (c, d1) such that ‖ϕ(c)−ϕ(c̃)‖ < ε.
Thanks to Cousin’s lemma we can find {([aj,k, bj,k], tj,k)}rkj=1 ∈ S(Ek, δ|Ek) with

⋃rk
j=1[aj,k, bj,k] =

Ek, where E1 := [c̃, d1] and Ek := [ck, dk] for k ∈ {2, . . . ,m}. We then have

{([aj,k, bj,k], tj,k) : k ∈ {1, . . . ,m}, j ∈ {1, . . . , rk}} ∈ S
( m⋃
k=1

Ek, δ

)
= S([c̃, d], δ) ⊆ S((c, d], δ).

For this reason we obtain
m∑
j=1

‖ϕ(dk)− ϕ(ck)‖ ≤ ‖ϕ(c̃)− ϕ(c)‖+
m∑
k=1

rk∑
j=1

‖ϕ(bj,k)− ϕ(aj,k)‖

≤ ε+Wδ(ϕ, (c, d]) ≤ mϕ((c, d]) + 2ε,

|τϕ|((c, d]) ≤ mϕ((c, d]) + 2ε,

which implies |τϕ|((c, d]) ≤ mϕ((c, d]) by letting ε → 0+. Consequently, mϕ : Bor((a, b]) → [0,∞)
is a finite (due to Lemma 3.7), σ-additive measure that extends |τϕ|. By uniqueness we conclude
mϕ(A) = |νϕ|(A) for all A ∈ Bor((a, b]).

A.4 Corollary. Let ϕ ∈ BV([a, b], Y ) be continuous from the right. Then we have ‖ϕ(d) − ϕ(c)‖ ≤
mϕ((c, d]) for all a ≤ c ≤ d ≤ b.

Proof. Using Proposition A.3 we obtain

‖ϕ(d)− ϕ(c)‖ = ‖τϕ((c, d])‖ = ‖νϕ((c, d])‖ ≤ |νϕ|((c, d]) = mϕ((c, d])

for all a ≤ c ≤ d ≤ b.
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A.5 Remark. Analogous versions of the above results (with analogous proofs) hold true if ϕ ∈
BV([a, b], Y ) is continuous from the left.
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B The Vitali covering theorem for finite
metric outer measures on the real line

The aim of this section is to establish the following very useful and general Vitali-type covering
theorem.

B.1 Proposition. Let J be a collection of closed intervals with non-empty interior that cover a nonvoid
subset A of R in the (classical) Vitali sense, i.e., for each t ∈ A and each ε > 0 there exists an interval I ∈ J
with t ∈ I and diam(I) < ε. Moreover, let µ : P(R)→ [0,∞) be a finite metric outer measure, where P(R)
denotes the power set of R. Then there exists a finite or infinite sequence (In)n of pairwise disjoint intervals
belonging to J such that

lim
N→∞

µ

(
A \

N⋃
n=1

In

)
= 0,

if (In)n is infinite, and

µ

(
A \

⋃
n

In

)
= 0,

if (In)n is finite. In addition, one has µ (A \
⋃
n In) = 0 in any case.

B.2 Remark. The addendum of the preceding proposition (resp. a generalisation of it) appears,
e.g., in [dG75] or [Ise60]. But note that our assertion for infinite (In)n is a little bit preciser, in so
far as one cannot conclude from the validity of the equation µ (A \

⋃
n In) = 0 the validity of the

relation limN→∞ µ
(
A \

⋃N
n=1 In

)
= 0 if µ is not continuous from above. This preciser variant also

appears implicitely in [dG75], but we cannot cite this result because de Guzman (in contrast to Iseki
in [Ise60]) considers in [dG75] outer measures associated to usual measures. Therefore we shall give
a detailed proof of the above proposition, where we closely follow the lines of the proof of Theorem
3 in Chapter X of [Doo94].

For the proof of Proposition B.1 we need the following auxiliary result due to Aldaz (for a proof
consult, e.g., [Ald91]).

B.3 Lemma. Let Σ ⊆ P(R) be σ-algebra containing Bor(R) and let ν : Σ → [0,∞] be a measure. Fur-
thermore, let Λ be a collection of intervals (not necessarily closed) with non-empty interior. Then for each c ∈
(0, 1

2 ) there exists a finite subcollection Γ ⊆ Λ of pairwise disjoint intervals such that ν(
⋃

Γ) ≥ c · ν(
⋃

Λ).
(Notice that

⋃
Λ ∈ Bor(R); see, e.g., Section 2 of Chapter X in [Doo94].)

Proof of Proposition B.1. Denote by Σµ the σ-algebra of all µ-measurable (i.e., measurable in the sense
of Carathéodory) subsets of R. We have Bor(R) ⊆ Σµ as µ is a metric outer measure and we put
ν := µ|Bor(R). The set function ν : Bor(R)→ [0,∞) is a finite measure and for B ⊆ R we put

ν∗(B) := inf{ν(C) : B ⊆ C ∈ Bor(R)} ≤ ν(R) <∞.

It is known that ν∗ is a metric outer measure with ν∗|Bor(R) = ν. For B ⊆ R and C ∈ Bor(R) with
B ⊆ C we have µ(B) ≤ µ(C) = ν(C), which implies µ(B) ≤ ν∗(B). Hence, it sufficies to establish
the assertion for ν∗ in lieu of µ.
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B The Vitali covering theorem for finite metric outer measures on the real line

If ν∗(A) = 0, we have ν∗(A \ I) = 0 for each I ∈ J and we are done in this case. So assume that
ν∗(A) > 0 and choose Ã ∈ Bor(R) with A ⊆ Ã and ν(Ã) < 10

9 ν
∗(A). Thanks to Ulam’s theorem,

each (locally finite) Borel measure is regular; in particular, there exists an open set G1 satisfying
A ⊆ Ã ⊆ G1 and ν(G1) < 10

9 · ν
∗(A). Let J1 := {I ∈ J : I ⊆ G1} and observe that J1 still covers

A in the Vitali sense. Applying Aldaz’s lemma, we obtain a finite subcollection F1 ⊆ J1 of pairwise
disjoint intervals such that ν(

⋃
F1) ≥ 1

3ν(
⋃
J1) ≥ 1

3ν
∗(A). This leads to

1
3
ν∗(A) + ν∗(A \

⋃
F1) ≤ ν(

⋃
F1) + ν∗(A \

⋃
F1) ≤ ν(

⋃
F1) + ν∗(G1 \

⋃
F1)

= ν(G1 ∩
⋃
F1) + ν(G1 \

⋃
F1) = ν(G1) <

10
9
· ν∗(A)

and consequently to ν∗(A \
⋃
F1) ≤ 7

9 · ν
∗(A). Since

⋃
F1 is a finite union of closed sets, it is itself

closed and therefore K1 := {I ∈ J1 : I ∩
⋃
F1 = ∅} is a Vitali cover of the set A \

⋃
F1, provided

that A \
⋃
F1 is non-empty. If ν∗(A \

⋃
F1) = 0, we are done. Otherwide we can repeat the above

procedure: Choose an open set G2 ⊇ A \
⋃
F1 with ν(G2) < 10

9 ν
∗(A \

⋃
F1), put J2 := {I ∈ K1 :

I ⊆ G2}, apply Aldaz’s lemma in order to obtain a finite, pairwise disjoint subcollection F2 ⊆ J2

with ν(
⋃
F2) ≥ 1

3ν(
⋃
J2) ≥ 1

3ν
∗(A \

⋃
F1). We then arrive at

1
3
ν∗(A \

⋃
F1) + ν∗((A \

⋃
F1) \

⋃
F2) ≤ ν(

⋃
F2) + ν(G2 \

⋃
F2) = ν(G2) <

10
9
ν∗(A \

⋃
F1),

which implies

ν∗(A \
⋃

(F1 ∪ F2)) ≤ 7
9
ν∗(A \

⋃
F1) ≤

(
7
9

)2

ν∗(A).

Notice that by construction all intervals in the finite collection F1 ∪ F2 are mutually disjoint. It is
now clear how itering this procedure finally produces the sequence (In)n in Proposition B.1.

The addendum is trivial if (In)n is finite and for infinite (In)n it follows from µ(A \
⋃
n∈N In) ≤

µ(A \
⋃N
n=1 In), N ∈ N.
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C The Bochner and the
Henstock-Kurzweil-Stieltjes integral

The aim of this section is to prove that the variational Henstock-Kurzweil-Stieltjes integral contains
the Lebesgue-Bochner integral. More precisely, we want to prove Proposition C.2 below. In order
to formulate it, we need some notation.

C.1 Definition. Let ϕ ∈ BV([a, b],C) be of bounded variation and continuous from the right. We say that
f : [a, b] → X is Lebesgue-Stieltjes integrable with respect to ϕ, if f is Bochner-integrable with respect
to the complex measure νϕ associated with ϕ, i.e., f is Bochner-integrable with respect to the (positive)
Lebesgue-Stieltjes measures νϕ1 , . . . , νϕ4 , where ϕ = ϕ1−ϕ2 + i(ϕ3−ϕ4) is the Jordan decomposition of ϕ
(i.e., ϕ1, . . . , ϕ4 are monotonically increasing and continuous from the right), see also Lemma A.1. We write
(L)

∫ b
a
f(s) dϕ(s) for the Lebesgue-Stieltjes integral of f (over [a, b]) with respect to ϕ.

The result we want to establish now reads as follows.

C.2 Proposition. Assume that ϕ ∈ BV([a, b],C) is of bounded variation and continuous from the right and
let f : [a, b] → X be Lebesgue-Stieltjes integrable with respect to ϕ. Then we have f ∈ HK([a, b], ϕ,X)
with

(L)
∫ t

a

f(s) dϕ(s) =
∫ t

a

f(s) dϕ(s)

for all t ∈ [a, b].

The crucial ingredient for the proof of Proposition C.2 is the following result.

C.3 Proposition. Let Σ be a σ-algebra on [a, b] which contains all Borel sets and let µ : Σ → [0,∞) be a
(finite) measure which is outer and inner regular. Let f : [a, b]→ X be Bochner-integrable with respect to µ.
Then for every ε > 0 there exists a gauge δ : [a, b]→ (0,∞) such that

r∑
j=1

∥∥∥∥∥µ((aj , bj ])f(tj)−
∫

(aj ,bj ]

f(t) dµ(t)

∥∥∥∥∥ < ε

for each {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ).

It is tempting to simply cite [PM01, Lemma 1] in order to justify Proposition C.3, but this would
be inopportune because the work [PM01] lacks a proof that the variational McShane integral con-
sidered in [PM01] reduces to the ordinary variational McShane integral if the measure space is just
[a, b] with an appropriate regular quasi-Radon measure. Indeed, for this assertion one has to ver-
ify that under these special circumstances one can replace the infinite sequence (En)n appearing in
[PM01, Definition 1] by a finite sequence of intervals. At least for a generalized McShane integral
results of this kind exist, see Proposition 1E and 1F in D. H. Fremlin’s paper [Fre95]. However, at
this point we refrain from establishing such general results (as well as from discussing far-reaching
generalisations of Proposition C.3) and confine ourselves to a direct proof of Proposition C.3. We
closely follow the lines of the proof of [Fre95, Theorem 1K].
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Proof of Proposition C.3. We proceed in several steps.

step 1: The assertion is valid for integrable simple functions.
We first consider the case f = 1Ex, whereE ∈ Σ and x ∈ X . Let ε > 0 and choose an open setG and
a closed set F in [a, b] with F ⊆ E ⊆ G such that µ(G \ F ) < ε

2(‖x‖+1) . For t ∈ F we choose δ(t) > 0
with Uδ(t)(t) ⊆ G, for t ∈ G \ F we take δ(t) > 0 such that Uδ(t)(t) ⊆ G \ F and for t ∈ [a, b] \G we
choose δ(t) > 0 such that Uδ(t)(t) ⊆ [a, b] \ F . For any {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ) we then obtain

r∑
j=1
tj /∈G

∥∥∥∥∥µ((aj , bj ])f(tj)−
∫

(aj ,bj ]

f(t) dµ(t)

∥∥∥∥∥
=

r∑
j=1
tj /∈G

µ((aj , bj ] ∩ E)‖x‖ = µ

( r⋃
j=1
tj /∈G

(aj , bj ] ∩ E
)
‖x‖ ≤ µ(E \ F )‖x‖,

due to (aj , bj ] ⊆ Uδ(tj)(tj) ⊆ [a, b] \ F for tj /∈ G,

r∑
j=1

tj∈G\E

∥∥∥∥∥µ((aj , bj ])f(tj)−
∫

(aj ,bj ]

f(t) dµ(t)

∥∥∥∥∥
=

r∑
j=1

tj∈G\E

µ((aj , bj ] ∩ E)‖x‖ = µ

( r⋃
j=1

tj∈G\E

(aj , bj ] ∩ E
)
‖x‖

≤µ((G \ F ) ∩ E)‖x‖ = µ(E \ F )‖x‖,

because of (aj , bj ] ⊆ Uδ(tj)(tj) ⊆ G \ F for tj ∈ G \ E ⊆ G \ F ,

r∑
j=1

tj∈E\F

∥∥∥∥∥µ((aj , bj ])f(tj)−
∫

(aj ,bj ]

f(t) dµ(t)

∥∥∥∥∥
=

r∑
j=1

tj∈E\F

µ((aj , bj ] \ ((aj , bj ] ∩ E))‖x‖ = µ

( r⋃
j=1

tj∈E\F

(aj , bj ] \ E
)
‖x‖

≤µ((G \ F ) \ E)‖x‖ = µ(G \ E)‖x‖,

since (aj , bj ] ⊆ Uδ(tj)(tj) ⊆ G \ F for tj ∈ E \ F ⊆ G \ F , and

r∑
j=1
tj∈F

∥∥∥∥∥µ((aj , bj ])f(tj)−
∫

(aj ,bj ]

f(t) dµ(t)

∥∥∥∥∥
=

r∑
j=1
tj∈F

µ((aj , bj ] \ ((aj , bj ] ∩ E))‖x‖ = µ

( r⋃
j=1
tj∈F

(aj , bj ] \ E
)
‖x‖ ≤ µ(G \ E)‖x‖,

because (aj , bj ] ⊆ Uδ(tj)(tj) ⊆ G for tj ∈ F . Summarizing, we arrive at

r∑
j=1

∥∥∥∥∥µ((aj , bj ])f(tj)−
∫

(aj ,bj ]

f(t) dµ(t)

∥∥∥∥∥ ≤ 2‖x‖(µ(G \ E) + µ(E \ F )) = 2‖x‖µ(G \ F ) < ε.

It is now easy to verify that the assertion of Proposition C.3 holds for every integrable simple
function, i.e., for any linear combination of functions just considered.
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step 2: Let h : [a, b] → [0,∞) be µ-integrable and ε > 0 be arbitrary. Then there exists a gauge δ : [a, b] →
(0,∞) with

r∑
j=1

µ((aj , bj ])h(tj) ≤
∫

[a,b]

h(t) dµ(t) + ε

for every {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ).
The Vitali-Carathéodory Theorem (see, e.g., [Rud87, 2.24]) yields a lower semicontinuous function
v : [a, b] → [0,∞) with h < h+ ε

2(µ([a,b])+1) ≤ v and
∫

[a,b]
(v − h− ε

2(µ([a,b])+1) ) dµ < ε
2 . Hence h < v

everywhere and
∫

[a,b]
(v − h) dµ < ε. For t ∈ [a, b] we take δ(t) > 0 such that Uδ(t)(t) ⊆ {s ∈ [a, b] :

v(s) > h(t)} 6= ∅, which is possible because v is lower semicontinuous. Take {([aj , bj ], tj)}rj=1 ∈
S([a, b], δ). We then obtain

r∑
j=1

µ((aj , bj ])h(tj) =
r∑
j=1

∫
(aj ,bj ]

h(tj) dµ(t) ≤
r∑
j=1

∫
(aj ,bj ]

v(t) dµ(t)

≤
∫

[a,b]

v(t) dµ(t) ≤
∫

[a,b]

h(t) dµ(t) + ε

as claimed.

step 3: Finishing the proof
Let f be a Bochner-integrable function and ε > 0. Choose an integrable simple function g : [a, b] →
X such that

∫
[a,b]
‖f − g‖dµ < ε

4 . Thanks to the step 1 and step 2, there is a gauge δ : [a, b]→ (0,∞)
such that

r∑
j=1

∥∥∥∥∥µ((aj , bj ])g(tj)−
∫

(aj ,bj ]

g(t) dµ(t)

∥∥∥∥∥ < ε

4

and
r∑
j=1

µ((aj , bj ])h(tj) ≤
∫

[a,b]

h(t) dµ(t) +
ε

4

for every {([aj , bj ], tj)}rj=1 ∈ S([a, b], δ), where h(t) := ‖f(t)− g(t)‖ for t ∈ [a, b]. For each sequence
{([aj , bj ], tj)}rj=1 ∈ S([a, b], δ) we can now estimate

r∑
j=1

∥∥∥∥∥µ((aj , bj ])f(tj)−
∫

(aj ,bj ]

f(t) dµ(t)

∥∥∥∥∥
≤

r∑
j=1

‖µ((aj , bj ])f(tj)− µ((aj , bj ])g(tj)‖+
r∑
j=1

∥∥∥∥∥µ((aj , bj ])g(tj)−
∫

(aj ,bj ]

g(t) dµ(t)

∥∥∥∥∥
+

r∑
j=1

∥∥∥∥∥
∫

(aj ,bj ]

g(t) dµ(t)−
∫

(aj ,bj ]

f(t) dµ(t)

∥∥∥∥∥
<

∫
[a,b]

‖f(t)− g(t)‖ dµ(t) +
ε

4
+
ε

4
+

r∑
j=1

∫
(aj ,bj ]

‖f(t)− g(t)‖ dµ(t)

<
3ε
4

+
∫

[a,b]

‖f(t)− g(t)‖ dµ(t) < ε.

This completes the proof.

Proof of Proposition C.2. We write ϕ = ϕ1−ϕ2 + i(ϕ3−ϕ4) with monotonically increasing functions
ϕ1, . . . , ϕ4 continuous from the right. Since each Lebesgue-Stieltjes measure νϕj is a regular Radon
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measure with νϕj ((c, d]) = ϕj(d)−ϕj(c) for every [c, d] ⊆ [a, b], Proposition C.3 therefore shows that

Fj : [a, b]→ X; t 7→ (L)
∫

(a,t]

f(s) dνϕj

is a Henstock-Kurzweil primitive for f with respect to ϕj . Hence, f ∈ HK([a, b], ϕj) with

(L)
∫ t

a

f(s) dϕj(s) =
∫ t

a

f(s) dϕj(s)

for all t ∈ [a, b] and j ∈ {1, . . . , 4}. It is now easy to show that f ∈ HK([a, b], ϕ,X) with∫ t

a

f(s) dϕ(s) = (L)
∫ t

a

f(s) dϕ(s)

for all t ∈ [a, b].

C.4 Remark.

(a) For the proof of Proposition C.3 it is irrelevant that the tag tj belongs to the respective inter-
val [aj , bj ]; therefore Fremlin’s proof shows in fact (as indicated by Di Piazza and Musiał in
[PM01]) that Bochner-integrable functions are (under approriate circumstances) variationally
McShane integrable (in a generalized sense).

(b) If X is finite-dimensional, then one easily reduces the assertion of Proposition C.3 to the case
X = R, which can be treated by an obvious modification of the proof in [DS70].

(c) Instead of interval-point sequences {([aj , bj ], tj)}rj=1 one might take any finite set-point se-
quence {(Ej , tj)}rj=1 such that Ej ∈ Σ, Ej ⊆ Uδ(tj)(tj) (or Ej ⊆ G(tj), where tj ∈ G(tj) is
open) and µ(Ej ∩ Ei) = 0 for i 6= j (cf. [PM01, Fre95, DS70]); then one can state and prove a
result analogous to Proposition C.3.
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D The continuity of the inverses of strictly
monotonic functions

It is a fundamental question in analysis under which conditions the inverse of a continuous bijec-
tion, say between two topological spaces, is itself continuous. There are well-known results like
the invariance of domain theorem or the classical (and easy to prove) result that the inverse of a
continuous bijection from a compact space onto a Hausdorff space is also continuous.

It seems that results like the ones just mentioned have influenced the presentation of similar results
on the level of undergraduate courses. So it seems that the following statement is most wide-spread
in such courses.

If ∅ 6= I ⊆ R is an interval and if f : I → R is continuous and injective, then f−1 : f(I)→ R is continuous,
too.

Usually, the proofs given for this result make use of the continuity of f in such a way that the con-
tinuity assumption appears to be indispensable at a first cursory glance. However, there is a more
general result (see, e.g., [Heu00, 37.1]), which, unfortunately, seems to be seldom taught in under-
graduate courses.

If ∅ 6= I ⊆ R is an interval and if f : I → R is strictly monotonic, then f−1 : f(I)→ R is continuous, too.

This statement demonstrates that the premise of the continuity of f is entirely superfluous and
proofs based on this premise might disguise the deeper reason for this phenomenon. Indeed, from
the point of view of topology, the true reason lies in the observation that a strictly monotonic func-
tion f : I → f(I) is a homeomorphism if I and f(I) both carry the order topology induced by
the order inherited from R instead of the usual subspace topology (see below). Since the subspace
topology is finer than the order topology the mapping f−1 : f(I) → I is continuous if f(I) is en-
dowed with the subspace topology and I carries the order topology. But since for intervals the
order and subspace topology coincide (see Lemma D.1 below), we conclude that f−1 : f(I) → I is
continous where I and f(I) now both carry the usual subspace topology.

Clearly, the same argument works for every strictly monotonic function f : A → R (∅ 6= A ⊆
R) whenever the order and subspace topology of A coincide. In this section we state a known
characterisation (but for the sake of completeness and because we failed to find a good reference for
it, we also provide a proof for it) of those non-empty subsetsA of R for which the order and subspace
topology coincide in order to complete our picture and to relate Proposition D.2 and Proposition D.5
below to the topological point of view just described. Moreover, we present an elementary proof
for the assertion that f−1 : f(A) → A is always continuous provided that f : A → R is strictly
monotonic and the order and subspace topology of A coincide. Finally, we show that this result is
optimal in the sense that on each non-empty subset A of R for which order and subspace topology
differ there exists a strictly monotonic function f whose inverse is not continuous.

First of all, recall that the order topology on A is by definition the topology generated by all sets
of the form (−∞, a) ∩ A or (a,∞) ∩ A where a ∈ A, while the subspace topology is, as one easily
verifies, generated by all sets of the form (−∞, x) ∩A or (x,∞) ∩A where x ∈ R.

D.1 Lemma. Let ∅ 6= A ⊆ R. Then the order and subspace topology of A coincide if and only if every
bounded component of R \A is either closed or open.
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Proof. Let us suppose that R \A possesses a bounded component which is neither closed nor open,
i.e., there are a, b ∈ R with a < b such that either [a, b) or (a, b] is a component of R\A. We only treat
the first case since the second one can be handled analogously. In this case we have a /∈ A, b ∈ A and
there exists a sequence (xn)n in A that converges to a in R. In particular, for every x ∈ A with x < b
(which implies x < a), resp. for each x′ ∈ A with x′ > b, there is an n0 ∈ N with xn ∈ (x,∞) ∩ A,
resp. with xn ∈ (−∞, x′)∩A, for all n ≥ n0. Therefore (xn)n converges to bwith respect to the order
topology on A.

If the order topology and the subspace topology of A coincided, then we could infer that (xn)n
converges to b in R, which would yield a = b in contrast to a < b. As a result, we deduce that the
subspace topology of A is strictly finer than the order topology of A.

Now we conversely assume that each bounded component of R\A is either closed or open. In order
to show that in this case the order and subspace topology of A coincide, it sufficies to verify that
each set of the form (−∞, ξ)∩A or (ξ,∞)∩A, where ξ ∈ R, is open with respect to the order topology
on A. We show this only for (−∞, ξ) ∩A because the remaining case can be treated similarly.

In the cases ξ ∈ A, (−∞, ξ) ∩ A = ∅ or (−∞, ξ) ∩ A = A the assertion is clear. Therefore we may
assume that ξ /∈ A and (−∞, ξ) ∩ A 6= ∅ and (−∞, ξ) ∩ A 6= A or equivalently that ξ /∈ A and
(−∞, ξ) ∩ A 6= ∅ and (ξ,∞) ∩ A 6= ∅ hold. We denote by I that component of R \ A that contains ξ.
Due to (−∞, ξ)∩A 6= ∅ and (ξ,∞)∩A 6= ∅, the set I is bounded. By assumption we therefore either
have I = [a, b] with a ≤ ξ ≤ b and a, b ∈ R \A or I = (a, b) with a < ξ < b and a, b ∈ A.

In the first case we can choose a strictly increasing sequence (xn)n in A converging to a in R. We
then obtain

(−∞, ξ) ∩A = (−∞, a) ∩A =
∞⋃
n=1

(−∞, xn) ∩A,

so that (−∞, ξ)∩A is a union of sets open with respect to the order topology onA and consequently
itself open with respect to the order topology on A.

In the second case we observe that [b,∞) ∩ A is (because of b ∈ A) closed with respect to the order
topology on A. Therefore

(−∞, ξ) ∩A = A \ ([b,∞) ∩A)

is open with respect to the order topology on A.

Now we come to the main result of this section.

D.2 Proposition. Let ∅ 6= A ⊆ R such that every bounded component of R \ A is either closed or open.
Furthermore, let f : A → R be a strictly monotonic function on A. Then the function f−1 : f(A) → R is
continuous.

Proof. We suppose that f is strictly increasing (the case that f is strictly decreasing can be treated in
a similar way).

Let y0 ∈ f(A) be arbitrary. We want to show that f−1 : f(A) → R is continuous at y0. For this
purpose, let (yn)n be an arbitrary convergent sequence in f(A) with limit y0. We then have to show
that (xn)n := (f−1(yn))n ∈ AN converges to x0 := f−1(y0) ∈ A.

It is easy to verify that there are u, v ∈ f(A) with u ≤ v such that yn ∈ [u, v] for all n ∈ N0. We
put a := f−1(u) and b := f−1(v). Then we have xn ∈ [a, b] ∩ A for all n ∈ N0. In particular, the
sequence (xn)n is bounded and it thus suffices to verify that x0 is its only possible limit point in
order to conclude that (xn)n converges to x0, which completes the proof.

Suppose now that (xn)n possesses a limit point ξ different from x0 and let (xnk)k be a subsequence
converging to ξ. We then either have ξ > x0 or ξ < x0. We only treat the first case (the second one
is analogous) and we shall show that we obtain a contradiction.
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First, assume additionally that ξ does not belong to A and denote by I that component of R \A that
contains ξ. Observe that we have ξ ∈ ∂I because of ξ ∈ ∂A, where ∂M denotes the boundary of a
set M ⊆ R.

If ξ is the left endpoint of I and if I is not a singleton, then there exists a k0 ∈ N with xnk0 ∈ (x0, ξ)
and an index k1 ∈ N with xnk ∈ (xnk0 , ξ) for all k ≥ k1. This yields

ynk = f(xnk) ≥ f(xnk0 ) > f(x0) = y0

for all k ≥ k1. As k →∞we obtain the contradiction y0 ≥ f(xnk0 ) > y0.

If ξ is the right endpoint of I (which includes the case that I is a singleton), then I must be bounded
due to x0 < ξ. By assumption I is either closed or open, but due to ξ ∈ ∂I ∩ (R \ A), the set I must
be closed. Therefore we then have I = [α, ξ] with an α ≤ ξ such that α /∈ A.

We may now choose an element z ∈ (x0, α) ∩ A. (Note that this is indeed possible: If α < ξ, this
follows from α ∈ ∂A and x0 < ξ, which yields x0 < α. If however α = ξ, then (x0, ξ)∩A is nonvoid
since otherwise we would obtain (x0, ξ] ⊆ I = {ξ}, which is impossible.) There exists a k0 ∈ N such
that xnk > z for all k ≥ k0. This implies

ynk = f(xnk) ≥ f(z) > f(x0) = y0

for all k ≥ k0 and we arrive at the contradition y0 ≥ f(z) > y0.

Summarizing, we infer that ξ must be an element of A. Here we distinguish between two cases:
(x0, ξ) ∩ A 6= ∅ or (x0, ξ) ∩ A = ∅. In the first case we choose z ∈ (x0, ξ) ∩ A and proceed as in the
above case where ξ was a right endpoint of the above I to arrive at a contradiction.

So let us assume that (x0, ξ) ∩ A = ∅. Then there exists a k0 ∈ N such that xnk ≥ ξ for every k ≥ k0.
This yields ynk ∈ [f(ξ),∞) for each k ≥ k0, which leads to the contradiction y0 ≥ f(ξ) > f(x0) = y0.

Altogether we arrive at the conclusion that ξ > x0 ist not possible.

Proposition D.2 gives rise to the following characterisation of the continuity of a strictly monotonic
function.

D.3 Corollary. Let ∅ 6= A ⊆ R be such that every bounded component of R \ A is either closed or open.
Then for a strictly monotonic function f : A→ R the following assertions are equivalent.

(a) The function f : A→ R is continuous (for the subspace topology).

(b) Each bounded component of R \ f(A) is either closed or open.

In the case of equivalence the sets A and f(A) are homeomorphic. Moreover, the implication “(b) =⇒ (a)” is
still true if we drop the assumption imposed on A.

Proof. Applying Proposition D.2 to the function f−1 : f(A) → R gives us the implication “(b) =⇒
(a)”; even without the assumption imposed on A.

Now assume that f is continuous as well as, without loss of generality, that f strictly increases.
Furthermore, suppose to the contrary that R \ f(A) possesses a bounded component that is neither
closed nor open, thus having the form (u, v] or [u, v). We only treat the first case.

Then u ∈ f(A), v /∈ f(A) and there is a strictly decreasing sequence (yn)n in f(A) with limit v. We
set xn := f−1(yn) for n ∈ N and x := f−1(u). The sequence (xn)n is strictly decreasing and bounded
from below by x, thus it converges to ξ := infn∈N xn in R. The number ξ does not belong to A since
otherwise the continuity of f would imply

v = lim
n→∞

yn = lim
n→∞

f(xn) = f(ξ) ∈ f(A),
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which is impossible because of v /∈ f(A). Now consider an arbitrary z ∈ A with z > x. We then
have f(A) 3 f(z) > f(x) = u and thus f(z) > v. Consequently, there exists an index n ∈ N with
v < yn = f(xn) < f(z), which implies ξ < xn < z. We conclude that (x, ξ] is a component of R \ A
(because x ∈ A and A 3 xn → ξ /∈ A as n→∞), which contradicts the assumption on A.

The first part of addendum is clear by Proposition D.2.

D.4 Remark The characterisation of the continuity of strictly monotonic functions obtained in the
preceding corollary fails if the adverb “strictly” is dropped. Indeed, just consider the function f :
{ 1
n ; n ∈ N} ∪ {0} → R given by f(0) := 0 and f( 1

n ) = 1 (n ∈ N).

As announced we now demonstrate that Proposition D.2 is in some sense optimal.

D.5 Proposition. Let ∅ 6= A ⊆ R be a set such that R \ A possesses a bounded component that is neither
closed nor open. Then there exists a strictly monotonic, continuous function f : A → R such that the
function f−1 : f(A)→ R is discontinuous.

Proof. By assumption R \ A possesses a bounded component having the form (a, b] or [a, b) (with
a < b). We only consider the first case since the second case is analogous.

Clearly, b is a cluster point of (b,∞) ∩ A. Therefore we can choose a strictly decreasing sequence
(xn)n inA converging to b. Moreover, we choose a strictly decreasing sequence (yn)n in R with limit
a. Now we put g(xn) := yn for n ∈ N and g(a) := a and we extend g on (xn+1, xn) linearly. This
gives us a strictly increasing, continuous function g : {a}∪ (b, x1]→ R, which we extend to a strictly
increasing, continuous function g : (−∞, a] ∪ (b,∞) → R in any way. Then the function f := g|A
(note thatA ⊆ (−∞, a]∪(b,∞)) is strictly increasing and continuous, but its inverse is discontinuous
at a. Indeed, we calculate limn→∞ f(xn) = limn→∞ yn = a = f(a), while limn→∞ f−1(yn) =
limn→∞ xn = b 6= a = f−1(a).

D.6 Remark (a) By Proposition D.2, the function g|(−∞,a)∪(b,∞) (where g is as in the proof of
Proposition D.5) has a continuous inverse. Therefore the point a is the only discontinuity
of the above f−1.

(b) Combined with the order topological considerations in the introduction, Proposition D.5 fur-
nishes a slightly different proof that the order and subspace topology of A do not coincide
whenever R \A possesses a bounded component that is neither closed nor open.

(c) If we combine Proposition D.2, D.5 and Lemma D.1, we arrive at the following result:
Let ∅ 6= A ⊆ R. Then the order and subspace topology of A coincide if and only if every (continuous)
strictly monotonic function f : A→ R possesses a continuous inverse f−1 : f(A)→ A, where A and
f(A) are endowed with their respective subspace topologies.
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