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Dynamic equilibrium of collective degrees of freedom
in strongly correlated quantum matter

Peter Wolfle
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E-mail: peter.woelfle@kit.edu

Abstract. Strongly correlated quantum systems may assume states stabilized by dynamic
equilibrium of competing collective degrees of freedom. As a first example we consider the
Kondo effect, which may be viewed as governed by a subtle balance of an infinite growth of the
exchange coupling constant controled by an increasing local spin relaxation rate, leading to a
Fermi liquid stable fixed point at low temperatures. As a second example the quantum critical
behavior in antiferromagnetic metals will be considered. It is often found experimentally that
the quasiparticle effective mass appears to diverge at the quantum critical point in spite of the
fact that the critical spin fluctuations seem to be in the weak coupling domain - a contradiction.
It will be shown that the feedback of the diverging mass into the spin fluctuation spectrum
allows to establish a balance of the fermionic and bosonic singular degrees of freedom, leading
to strong-coupling type quantum critical behavior. The resulting self-consistent theory obeys
hyper-scaling of the dominant fermionic degrees of freedom, while the bosonic interaction is
still in the weak coupling domain. Excellent agreement is found with experiment for the two
candidate cases CeCug—_Au, and YbRhsSis .

1. Introduction

Over the last four decades strongly correlated quantum systems have attracted considerable
attention owing to the rich variety of novel behavior found in these systems. Starting with the
discovery of the superfluid phases of 3He (for a comprehensive treatise see [1]), the Kondo effect
and the advent of heavy fermion metallic compounds [2] , the fractional quantum Hall effect,
the cuprate high temperature superconductors and most recently the pnictide superconductors
[3] it has become clear that correlations play a dominant role in all of these systems. The
theoretical advances in attempting to describe these systems have been impressive: renormalized
perturbation theory, renormalization group theories, slave particle theories, dynamical mean
field theory, to name just a few. Yet there are problems that appear to defy our theoretical
capabilities, like the cuprate superconductor problem. What is lacking is a systematic approach
to tackle many-body problems at strong coupling. A first simple but powerful approximation
scheme working at weak and strong coupling has been established more than a century ago:
mean field theory. First developed to describe the liquid-gas system or magnetic systems, later
generalized to describe superconductivity, charge density waves, spin density waves, or indeed
any type of order, mean field theory appears to work resonably well if there is a mean field
order parameter of some sort. Generally speaking the mean field is an expectation value of
an operator, which involves averaging over a number of neighbors of a given entity (charge,
spin, Cooper pair,..). The larger the number of neighbors the better defined the mean field is.
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However, fluctuations may destroy the mean field. In this case the fluctuations are the object
of interest, and one may ask whether it is possible to devise a kind of mean field theory for the
fluctuations. This is the subject of the present paper. I will argue in the following that there are
examples of mean field theories of dynamical quantities, which give at least a good qualitative
description of a situation in which fluctuations dominate the behavior. A first example is the
Kondo effect, which is the formation of a quantum many-body resonance state of conduction
electrons at a magnetic impurity in a metal. The famous perturbative renormalization group
treatment of this model, Anderson’s ”poor man’s scaling” [4], suggests infinite growth of the spin
exchange coupling. We will see how this growth is controled by the increasing inelastic scattering
rate of the inpurity spin such that a stable Fermi liquid state is attained. The second example
is the quantum critical behavior at an antiferromagnetic instability point of a metal. Here the
conventional Hertz-Millis theory (a perturbative renormalization group theory of the bosonic
degrees of freedom) is found to often be in conflict with experiment, whenever the fermionic
quasiparticles are characterized by a diverging effective mass (for an overview see [5]). It will be
shown that in this case the fermions rather than the bosons are the dominant critical entities.
The critical fermions modify the (bosonic) spin fluctuation in such a way that a self-consistent
theory of the fermionic mass emerges which has a strong coupling solution in addition to the
usual weak coupling solution, provided that the initial effective mass enhancement is sufficiently
large.

2. Kondo effect

The Kondo effect is arguably the best studied quantum many-body problem. It is defined by
a local spin S, representing a quantum impurity with internal degrees of freedom, coupled by
isotropic spin exchange interaction J to a bath of conduction electrons [2]. At the heart of the
Kondo problem is the excitation of low energy particle-hole pairs occurring after each spin-flip
process, when the conduction electron Fermi sea has to adjust to the suddenly switched potential
provided by the spin, and undergoes an orthogonality catastrophe [6]. The quantum coherent
readjustment of the Fermi sea is interrupted by any phase breaking process, which may happen
at a rate I', the local spin relaxation rate. A perturbative treatment of this problem requires a
systematic resummation of infinitely many relevant contributions, which may be achieved by the
renormalization group (RG) method. While an analytic formulation in the form of Anderson’s
poor man’s scaling [4] provides a correct and simple description in the perturbative regime,
i.e. for dimensionless coupling go = JN(0) < 1, or equivalently, temperatures much larger
than the Kondo temperature, T > Tx = D exp(—1/2g,), the strong coupling regime has so far
only been accessible by Wilson’s Numerical RG (NRG) [7]. The latter method has established
that the low energy behavior of a Kondo system (7' <« Tx) is governed by local Fermi liquid
theory, with far-reaching consequences as noted by Nozieres [8] . These results, at least as far
as thermodynamic properties are concerned, have been confirmed by the Bethe-Ansatz solution
9, 10] .

2.1. Kondo model
We consider a local spin S = 1/2 exchange coupled to the local conduction electron spin density,
as described by the Hamiltonian [12]

1 . .
_ T T
H = Z 6kckcrcka + J Z icka’rga’ck’a’sl (1)
k,o k

! ! 5
»k 0,07,

Here 7 is the vector of Pauli matrices, and C;f( , creates an electron of momentum k and spin
o . In order to make use of standard many-body techniques we represent the spin operator
by S = %Zma, f;Tw/ for, where f;, fo are pseudo-fermion (pf) operators (¢ =t1,]). We
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take the pf chemical potential to be A = 0 so that the pf spectral function is particle-hole
symmetric, A(w) = A(—w) ~ WQLJFFQ The projection onto the physical sector of Hilbert
space, Q@ = Y . f; fo = 1, is done by omitting all higher pf-loop diagrams. In case of the
pf-selfenergy this amounts to taking only diagrams without any pf-loop, whereas in case of the
conductivity /conductance and of the local spin susceptibility only diagrams with a single loop

are kept. In addition, the latter quantities are corrected by a factor [11]

2 Z 1 1 [
ma 70 = 4eXp[T/0 dA <Q>,\]» (2)
Z

where Zg = Trle H0/T] and Z = Tr[e "/T] are the partition functions of, respectively, the
noninteracting and interacting systems. A useful approximation is provided by Zy/Z =
Texp(2 [dwln(l + e=/T)A(w)] .

Yy =

2.2. RG-equation.
The coupling ¢ as a function of the temperature T', three frequencies (which we put to zero)
and the running UV-cutoff D obeys the RG-equation [13, 14]

dg o D

At weak coupling (I' < D), B(9) = —c29® + O(g?), while at strong coupling (D < T
2
B(g) = —icsg® + O(g?) . Assuming the interpolation formula 8 = —%, the RG-

equation may be integrated to give g(chcgg) - 90%2 =1In(vD? +T12/Dg) (go < 1). The leading

g3-dependence of 3(g) at g > 1 , which is reached at scales D < T}, follows from an analysis
of the contributions to $(g) in arbitrary order of perturbation theory. It turns out that a third
order (in g) contribution is dominant, as all higher order contributions vanish as (D/I')" , n > 4
, in the limit D < I". The two-loop order vertex correction diagram at strong coupling, D < T,
which is the dominant contribution since self-energy corrections are smaller by a factor (D/I")2,
gives c3 = 1 . We also use the weak coupling result co = 2 . The temperature dependence of g
(at zero energy) is found by solving the RG equation, setting D = T as [13, 14]

9(T) = —1+ 1+ 1/ In(\/(TZ + T2/ Tc). (4)

, where T = Dge~1/29 is the Kondo temperature and gy = N(0).J is the bare coupling. We
observe that the growth of g(7") as T' — 0 is controled by the relaxation rate I, which is again
a function of temperature and depends on ¢g(7') in turn. In the limit of T > Tk we recover
the weak coupling result ¢(T') = 1/[2In(\/(T? + I?)/Tk)], and ' < T,k . In the limit T < Tk
, considering that I' — Tk + O(T?) , and consequently In(/ (T2 +T'2)/Tk) oc T?, as will be
shown below, we find ¢(T") o< Tx /T , diverging in the limit 7" — 0.

It is worthwhile to note that the coefficient of the g3-term of 3(g) at g < 1 has the opposite

sign, c3 = —4. We may improve the approximate form of the S-function by requiring that the
21+g%/4

g3-term at weak coupling be reproduced, in the form 3(g) = —2g Try

2.8. Selfenergy
The spin relaxation rate I' is given by the imaginary part of the pf self-energy Im> plus vertex
corrections, which we omit at present, as we do not expect those to have a major effect. It is
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best to consider the diagrams of the components ¥~>><, which may be classified according to the
number n of particle-hole (ph) excitations in the intermediate state:

o0

Im¥(w) =T'(w) = (27 (W) = 35 ()] ()

n=1

N | .

Shw) o= ) / dwr A(w!) f(—w!) / deide....de, %
n=1

denf(e1)f(—€1)-..f(en) f(—En) X [Un|* x
0w/ —w+e + €. + €, +€n) (6)

X
™
3

X

and a similar expression for ©5(w). Here f(w) = 1/[e/T 4 1], the pf spectral function is given
by A(w) = 1T'(w)/[(w — ReX)? + I'*(w)], U, is the n-particle-hole vertex function and the local
conduction electron spectral functions N(e) = N(0)O(D — |e]) can be taken as constant and
are combined with the (renormalized) exchange coupling J to give g . We will first analyze the
single particle-hole contribution (n = 1), for which Uj(e;) = g(e1). Since the Fermi functions
confine the integrations to ||, |e1] < T, we may take g(e1) ~ g(T') out of the integral. Further
we replace I'(w’) by I'(T') under the integral, resulting in the self-consistency equation

(7)< 3(7) [ dos n(w)f(—w)oﬁi(l%

with n(w) being the Bose function. Here we neglected ReX(w’), which is justified at all T. At
T < Tk, we may neglect w? in the denominator of A(w). Then one finds I'?(T) = er2T?¢*(T),
and further, substituting g, we find

D/Tic =1+ e (T/Tk)* + O ((T/Tk)*) . g = cg(Tie/T) (7)
with epp = %772 ,Cr = (cT,g—%) and ¢, = 1/,/cr2. We observe that g is indeed scaling to infinite
strength as T' — 0, while the rate I' assumes a finite value Tk with Fermi liquid corrections
o« T? .

Let us now take a brief look at the higher order contributions. Analyzing the diagrams
of U, we note that only the n vertices g with external legs grow large. The internal g’s are
integrated over and enter only the prefactor. We therefore get as generalized self-consistent
equation I'? = Y% . cp,,¢?"(T%"/T?"2), which has the low T solution I' = Tx + cpT?, and
g = ¢y(Tx /T), with modified coefficients cr, ¢, , where Y7 | e 2™ = 1.

The limiting value of I' = Tk has been obtained before by Mattuck and collaborators [15],
using the reasoning applied above. However, these authors employed the weak coupling form
of the RG equation, which leads to finite temperature corrections linear in 7', in disagreement
with Fermi liquid theory. It is the form of the RG S-function o g3 , which is responsible for
recovering the correct T2-dependence, the hallmark of Fermi liquid theory.

2.4. Conductance and spin susceptibility
With the aid of the above results one may now proceed to calculate the conductance G of a
Kondo quantum dot (in units of 22 /A)

ccjo =37°g"Y / dede' f(e) F(—€) f(¢ = €) A() A(€)).
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Here Y is the normalization factor introduced above. We may calculate Y analytically at
high and low temperatures to find ¥ = 2 and Y = 1 , respectively. The conductance at
T > Tk is found as G/Gy = 372/[161n*(T/Tk)] in agreement with perturbation theory. At
low temperatures 7' < Tx we may drop €2 and (¢/)2 in the denominators of A compared to
I'2. The remaining integral is exactly the same as in the selfconsistency equation for I', and
therefore G/Gy = cTﬁggKF—; =1at T = 0. In other words, the requirement of unitarity of the
scattering amplitude is met. The finite temperature corrections are O(T?) and are obtained, e.g.
by keeping the €2 in the denominator, as well as similar terms in the equation for the selfenergy

and results in

T \? T
G/Gy=1—cg <TK) for E<<1 (8)

The spin susceptibility is given by
Xip(T) = (g18)* [X§s(T) + 2x55(T) + x5 (T) — x& o (T)], 9)

where XaRg (T), {a, B} = s, .S are the spin-spin-response functions of impurity spin and conduction
electron spins, respectively. Neglecting vertex corrections, XIS%S(T ) is given by the pf-bubble
diagram,
E(T) = wY/dw taunh(i)AQ(w)8
2T r
The mixed response function st(T) is given by a pf-bubble and a local conduction electron
bubble, joined by an interaction vertex g as x%(T) = —Sfogs(T ) with Hff(T ) =
ﬁ [ dwg(w)w tanh(5%)N?(w). The impurity induced c-electron contribution is given by two
c-bubbles at the ends and a pf-bubble in the middle x&(T) — Xﬁ,o(T) = css[Hg]zng(T). In
the limit T" — 0 the susceptibility is found to tend to a finite value, with quadratic temperature
correction, as required by Fermi liquid theory, x*(T) = aﬁ — O(T?). For high temperatures

we find the perturbative result x®(T) = 1/(4T) (1 — 1/ In(T/Tk) £ .. .).

(10)

2.5. Summary of the Kondo problem part

In the above we demonstrated that the Kondo problem may be solved in the framework of
renormalized perturbation theory, employing a self-consistent relation for the central quantity,
the spin relaxation rate I As to be expected, it is necessary to sum infinite classes of
contributions in perturbation theory, which is done with the aid of the renormalization group
method. The relaxation rate I' of the local spin acts to separate the weak coupling (scale
parameter D >> I' ) from the strong coupling regime (D << I' ) of the renormalization
group flow. Surprisingly, the renormalization group S-function in the strong coupling regime is
dominated by a two-loop (cubic in ¢ ) contribution, all higher contributions being small in the
parameter D /I'. The coupling function acquires a strong dependence on energy or temperature,
9(T) x Tx/T , and thus diverges in the limit 77 — 0. In this work we determine I" from
renormalized perturbation theory, keeping all orders, in principle. As noticed in the 1970s by
Mattuck and collaborators [15], the divergence of the coupling function g(7T') is exactly cancelled
by the phase space factors of the energy integrations, so that I' tends to the finite value Tk
as T — 0 . This statement is correct even in the case of multiple particle-hole excitations in
the intermediate state (in this case the numerical coefficients have not yet been calculated).
The finite temperature corrections are oc T2 , as required by Fermi liquid theory. Given
the relatively simple structure of the theory, one may calculate thermodynamic, transport or
dynamic properties. We presented results on the linear conductance through a Kondo quantum-
dot. We observe that the conductance reaches the unitarity limit at 7 — 0 and decreases oc T2
in the regime 7" << Tx. We further calculated the temperature dependent spin susceptibility,
again in good agreement with known results.
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3. Critical quasiparticles at an antiferromagnetic quantum critical point

The theory of quantum criticality in metals goes back to the 1960s, when the first RPA-type
theories of metals with strong spin fluctuations were formulated. A field-theoretical formulation
was pioneered by J. Hertz [16] and later completed by A. Millis [17]. The latter theories are
based on the assumption that the critical excitations are the bosonic spin fluctuations, while
the fermionic quasiparticle excitations may be integrated out. The resulting ¢* - field theory
has an upper critical dimension d = 4. Observing that the temporal dimension is given by
the dynamical exponent z, the bare value of which is z = 3 for ferromagnets and z = 2 for
antiferromagnets, one finds that the effective dimension defy = d + 2 is frequently above the
upper critical dimension, meaning that the theory is Gaussian. Nonetheless the results of the
theory are often in conflict with experimental observation. The reason is that in those cases
the fermionic quasiparticles show critical behavior, as deduced from a specfic heat coefficient
v(T) = C(T)/T diverging as T — 0. Provided that the single-particle self-energy ¥(w, k) is a
weak function of momentum k, which appears to be the case in these systems, it follows that
the quasiparticle effective mass ratio m*/m o ~(T) diverges, implying that the quasiparticles
are critical.

3.1. Collective excitations in antiferromagnetic metals

The clue to resolving this puzzle lies in a careful study of vertex corrections [18, 21]. The (three-
point) vertices coupling to spin density, A(k,w;q, ), and spin current density, A(k,w;q,)
satisfy a Ward identity based on the spin conservation law: QA — qA = G~k +q/2,w +
Q/2) — G Yk —q/2,w — ©/2). Tt follows that in the case that the effective mass ratio
m*/m = 1 — OReX /0w is singularly enhanced in the limit w — 0, the vertices A will be
enhanced, too, in particular for momenta at the antiferromagnetic ordering wave vector q = Q,
A(kr,0;Q,0) = Ao ox m*/m.The latter vertex corrections enter the evaluation of diagrammatic
contributions in several places. First in the Landau damping term, accounting for the decay of
collective spin excitations into particle-hole pairs, and second at the vertices coupling the spin
fluctuations to quasiparticles. The imaginary part of the spin susceptibility (the spectrum of
spin fluctuations) for wave vectors near the AFM ordering wave vector Q thus takes the form

No(wA/vrQ)
[(r + (@ — Q)2 + (WA /vr@Q)>

(11)

Imx(q,w) =

Here, Ny is the bare density of states at the Fermi surface, vp is the bare Fermi velocity and
& = k;l is the microscopic AFM correlation length. The control parameter r is a function of
both, the tuning field and the temperature. Outside the critical regime we have r = 7“8” , where
v =1/(1+ 2/2), whereas in the critical regime r oc T%% .

The above spin fluctuation propagator may be viewed as mediating a retarded interaction
transferring momentum q ~ Q . It follows that a quasiparticle with momentum k on the
Fermi surface scattering off a spin fluctuation will end up in a state of momentum k + Q
in general far from the Fermi surface, except if k and k + Q are located in so-called "hot spots”
. There are, however, ways to get singular scattering even on the cold parts of the Fermi surface.
One possibility is that impurity scattering helps to distribute the singular scattering at the hot
spots all over the Fermi surface [19, 20]. Another mechanism operative even in clean systems
is provided by the simultaneous scattering off two spin fluctuations carrying opposite momenta,
such that the net transferred momentum is small [18, 22]. An excitation combined of two spin
fluctuations may be considered as an (exchange) energy fluctuation xp . Its spectral weight is
given by the expression
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(w)\zQ/vFQ)d_l/2

['ﬂ% + 2€2 + r](d+D)/2

(g, ) ~ NG

3.2. Selfconsistent theory of fermion effective mass

The effective mass m* is calculated from the fermion selfenergy Y. The leading scale-dependent
contribution to the latter is obtained from the single boson exchange diagram of the energy
fluctuation propagator, the imaginary part of which is given by

ImY(k,w)= —\3 / d—: ZImG(k + q,w+ v)Imxge(q,v)[bv) + f(w—v)]

~ vpQ(m* /m)*(wAg fvrQ)*
o |w|d—1/2—7](2d+1)7 (13)

The interaction vertex Ap = )\22)\1,, where A\, is oc (m*/m), as it arises through a Ward identity
connected to energy conservation. We used A\g o< (m*/m), as discussed above. The Fermi and
Bose functions f(w), b(w) confine the v-integration at low T to the interval [0,w]. In Eq. (4), we
used the power law m*(w) o< |w|™" . The scale dependent contribution to ReX(w) follows from
analyticity as ReX(w) o (w/vpQ)*Y2(m*/m)?¥+1) | This leads to the self-consistency relation
for m*(w) [18]

m*(w)/m =1— 0ReX(w)/0w
~ 1+ () D) o [ Q)2 (14)

In dimensions d > 3/2 the scale dependent correction term o< (w/vrQ)* /2 is seen to vanish
in the limit w — 0. This would suggest that m* does not diverge in this limit, in agreement with
the result of Hertz-Millis theory in that case. If, however, the effective mass is already sufficiently
enhanced, e.g. by AFM fluctuations around the hot spots or by additional fluctuations, the scale-
dependent term on the right-hand-side will dominate and a second solution becomes available,
which is of a strong coupling type.

Before solving the self-consistent equation for m*(w) in the strong coupling regime we first
note that in general, the w and T dependence of m* is obtained by substituting vw? + a2T?
for w, where a is a constant of order unity. For frequencies less than the temperature, we may
replace w by T. We then find

m*(T) < (T/vrQ)", (15)

where the exponent n characterizing the scaling of m* is found to be

n=(2d — 3)/4d (16)

which gives 7 = 1/4 in the case of threedimensional AFM fluctuations and n = 1/8 in the case
of quasi-twodimensional spin fluctuations (d = 2) in a threedimensional metal.

3.8. Critical exponents and dynamical scaling
The critical behavior of the spin-excitation spectrum as obtained above is given by power laws
in frequency and in the bare control parameter ry (magnetic field H, pressure P, ..)

w x ¢, z= = — (17)

v

§ x ry’, v=5— (18)
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The spin correlation length is a function of 7" inside the critical regime, and a function of H (for
example) outside

1/6(H,T) « TYZ, T > |H — H|*" (19)
1/6(H,T) o« |H—-H.", |H—-HJ|*>T (20)

The scaling properties of the fermions may be derived from the single particle Green’s function:
Y(w) ox vp|k—kF|, i.e. the dynamical critical exponent of the fermions is given by 2z = 1/(1—n)
and the effective dimension of the fermions is dy = 1 (the dimension perpendicular to the Fermi
surface). The correlation length of the critical quasiparticles &; follows power laws in temperature
and the control parameter, respectively, £y oc T2 and £ o |H — HC\*l/”f The exponent vy
follows from the relation of the momentum to the (spindependent) shift in chemical potential
vplk — kp| o 0ps as vy = 1. It is interesting to note that the Harris criterion vy > 2/3 is
satisfied so that the solution found here is stable with respect to spatial fluctuations induced by

impurities. The correlation lengths of fermions and bosons are therefore related by £ o {;f /z

inside the critical regime and £ f;f " outside.

Inside the critical regime and at q = Q one finds F/T-scaling of the dynamical structure
factor [18]

¢(E/T)

~ T2 PN
S ER 7 )

(21)
where ¢(z) = x(2? + a?)~" and a is a constant.

3.4. Free energy

The true critical excitations of the above strong coupling scenario are the fermionic
quasiparticles. Their contribution to the free energy may be derived from the expression for
the entropy density in terms of the self-energy:

S 1 dww
—=—N(0 ——————|w — ReX 22
V 2 ( )/ T2 cosh? L lw eX(w)] (22)
Substituting the critical self energy found above and integrating over temperature we find the
scaling form of the free energy density

FH,T) = & 950 (roe " TE) (23)

which obeys hyperscaling. This expression translates into

FH,T) = & BT (roe!/7, TE?) (24)

in terms of the bosonic variables. This is not of the hyperscaling form. Indeed, in the cases
considered the effective dimension of the bosons is defy = d + 4d/3 = 7d/3 > 4 for spatial
dimension d > 12/7, implying that the boson-boson interaction scales to zero.

The consequences of the free energy expression have been analyzed in detail in [19, 20, 18].
The power laws in temperature (inside the critical regime) and in the control parameter (in the
quantum disordered regime) have been determined. The exponents found agree very well with
the available extensive experimental data. There is not a single observable where a distinct
discrepancy of theory and experiment is found.
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3.5. Summary of the self-consistent theory of quantum criticality

The theory of quantum criticality in metallic systems has traditionally been formulated in terms
of bosonic incoherent excitations such as spin fluctuations, charge fluctuations, pair fluctuations.
While it is true that these fluctuations are harbingers of the incipient order, one should keep
in mind that the more fundamental excitations of an itinerant interacting Fermi system are the
fermionic quasiparticles. The concept of quasiparticles is not confined to the realm of Fermi
liquids, where the Landau quasiparticles are stable in the sense that their line width is oc w? |
which is much less than the quasiparticle energy w in the limit w — 0 . In fact quasiparticles may
be well defined even in so-called non-Fermi liquid states, with power law self-energy Y (w) oc w!="
, provided the exponent n < 1/2. In that case the quasiparticle decay rate is still less than
the energy and the quasiparticle weight is non-zero at any finite energy, a necessary condition
for the existence of a well-defined quasiparticle peak in the single particle spectral function.
Consequently, one may still use the familiar tools of renormalized perturbation theory, namely
the expansion of response functions in terms of quasiparticle-quasihole pairs and the infinite
summation in the spirit of RPA. There is one important new element here: if the quasiparticles
turn critical, i.e. if their effective mass diverges at the QCP, this has fundamental consequences
for the interaction vertices. Namely, the Ward identities deriving from conservation laws or
from additional symmetries cause the vertices (e.g. the spin vertex at finite momentum Q in the
antiferromagnetic case) to scale with the divergent effective mass. As a result the usual single
boson exchange diagram for the self-energy, which may be proportional to a positive power of
energy w® and thus irrelevant in the limit w — 0 , will be multiplied by a factor originating from
vertex corrections, which may diverge and may offset the vanishing of w®. This is the scenario
considered in the above. It leads to a self-consistent relation for the effective mass, which allows
for two entirely different solutions, depending on the initial condition, i.e. the system parameters
at the far end of the critical regime. One of the solutions is the familiar weak coupling solution,
which is experimentally found to be realized in a number of systems. The second and new
solution is activated at strong coupling, if the effective mass is already enhanced by additional
critical fluctuations. This case is apparently met in at least two of the most intensively studied
systems. It turns out that the theory agrees in detail with experimental observation.

4. Conclusion

Dynamic equilibrium of collective degrees of freedom in strongly correlated quantum matter
may characterize certain well-defined states at strong coupling. In particular, the dynamic
equilibrium of renormalized single particle quantities such as the fermionic quasiparticle
relaxation rate or/and the effective mass and of two-particle quantities such as dynamical
interaction vertices has been shown here to lead to novel equilibrium states. In the cases
considered here there are reasons to expect that the correction terms to the self-consistent
problems describing the dynamic equilibrium do not change the character of the solution. It is
hoped that the approach sketched here will be useful in solving more strong-coupling many-body
problems of this type in the future.
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