

1 **Modelling of motorcycle movements in mixed traffic conditions**

6 **Freddy Antony Mullakkal Babu**

7 Indian Institute of Technology Bombay

8 Mumbai – 400 076, India

9 email: fredavincister@gmail.com

12 **Peter Vortisch**

13 Karlsruhe Institute of Technology

14 Karlsruhe-76131, Germany

15 Email: peter.vortisch@kit.edu

18 **Tom V Mathew (Corresponding Author)**

19 Indian Institute of Technology Bombay

20 Mumbai – 400 076, India

21 email: tvm@civil.iitb.ac.in

25 **4615 Words + (6 Figures + 3 Tables)*250 = 6865 Words**

27 **1st August, 2014**

29

ABSTRACT

30 There exists limited literature that explains the movement of two-wheelers in mixed traffic conditions,
 31 where the traffic behaviour is characterised by different vehicle types moving together without much
 32 lane adherence, collision avoidance to neighbouring vehicles, response to infrastructure boundaries and
 33 following behaviour with respect to multiple lead vehicles. The study aims at filling this gap by
 34 proposing a microscopic simulation model exclusively for two-wheeler movement in a mixed traffic
 35 environment. The theories of the social force model and the intelligent driver model have been adapted
 36 and employed for this purpose. The model performance is assessed using individual trajectory
 37 comparison between simulation and observation, and the ability to qualitatively simulate naturalistic
 38 two-wheeler behaviour through a test scenario. The simulation results show that the model could
 39 visually represent the two-wheeler behaviour in mixed traffic scenarios.

40 INTRODUCTION

41 Motorcycles are an important component of the mixed traffic vehicle population which exists
 42 predominantly in Asian countries. High manoeuvrability, door to door accessibility, smaller parking
 43 space, low maintenance and fuel cost makes motorcycles more appealing for the low or middle income
 44 families. Simulation of motorcycle movements is therefore important in the field of traffic safety and
 45 capacity analysis (1). The motorcycle, being the smallest motorised vehicle type, would require
 46 simulation at a microscopic scale for understanding its riding behaviour in various traffic scenarios.
 47 Micro simulation in general is well established in design and testing of control strategies (2). Study on
 48 the basic characteristics of motorcycle flow, like the speed-flow relationship, headway distribution etc.
 49 was done by (3) and (4) on the macroscopic level. Cellular automata models were also developed to
 50 model mixed traffic flow including motorcycles (5).

51 Cho and Wu (6) suggested a model for the lateral position of two-wheelers based on relative
 52 positions of the influential surrounding vehicles. The problem lies in the fact that in Indian conditions
 53 the definition of surrounding vehicles as described in the paper may not hold. Also the idea of
 54 maintaining the mid-point of the nearby lateral space does not account for the safety distance from the
 55 infrastructural boundary and the surrounding vehicles. Long (7) proposed a model based on safety
 56 distance from the neighbour vehicle. A car-following model was applied to motorcycles by Lan et al.
 57 (5) but the lateral movements were described poorly. Lee (8) suggested an agent based motorcycle
 58 model which used a multinomial choice model for path choice, however the assumption of virtual lanes
 59 in this model has a practical difficulty in deciding the virtual lane width. Some more models try to
 60 explain lane changing behaviour of the vehicles using the concept of virtual lanes (9). This model
 61 however had inaccurate results for motorcycles.

62 Most of these models fail to replicate the characteristic behaviour of motorcycles in mixed
 63 traffic conditions: filtering through the traffic, tailgating (following the lead vehicle along a lateral edge)
 64 the lead vehicle, maintain safety distances from neighbour vehicles, swerving and frequent lateral
 65 movements (7). The proposed model tries to fill this gap. It aims at developing a microscopic
 66 behavioural model for naturalistic two-wheeler movement in a mixed traffic environment. The theories
 67 of the social force model (10) and the intelligent driver model (IDM) (11) have been adapted and
 68 employed for this purpose. The model deals with two-wheelers in a midblock section in uncongested
 69 situations with cars as neighbour vehicles. It does not attempt to model the vehicle dynamics in all
 70 details.

71 MODEL FRAMEWORK

72 The general structure of the model is explained in figure 1. The neighbour vehicles are identified using
 73 a perception line logic and are passed over as input for the lateral and longitudinal movement models.
 74 The lateral movement model is based on the concept of social force (12) and the longitudinal movement
 75 is modelled using the Intelligent Driver Model. (11). The output of these models, i.e. acceleration and
 76 the raw angle, is then adjusted subject to certain manoeuvrability constraints of the motorcycle. The
 77 updated position of the motorcycle for the next time interval is calculated and the cycle continues.

78

79

80

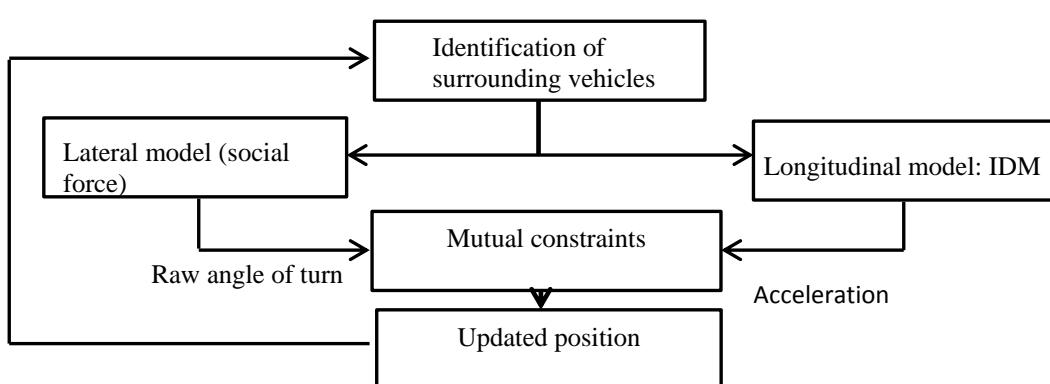


FIGURE 1: Model framework

Perception lines

In heterogeneous traffic, vehicles are placed at different lateral positions around the subject vehicle throughout the time. It is important to identify the surrounding vehicles that influence the movement of the motorcycle. Perception lines (PLs) are imaginary lines drawn from the front seat of the subject motorcycle outwards up to a distance of L_p

$$L_p = v \left(T + \frac{W_c}{\tan(\theta^m)} \right) + s_{long}^* \quad (1)$$

W_c is the width of a car (taken to be 1.8m), T is the desired time headway, θ^m is the maximum possible yaw angle at time t , V is the velocity of the motorcycle at time t , and s_{long}^* is the minimum longitudinal headway at rest. An individual PL is referred to using the anticlockwise angle it makes with the positive X axis as shown in figure 2. All the surrounding vehicles that first intercept a perception line are considered to be the neighbour vehicles. The vehicle that intersects the 90° PL first is assumed to be the direct lead vehicle. The positions of the those vehicles on the front 60° field of view closest on the left and right side of the lead vehicle are also identified as front left and front right vehicles respectively.

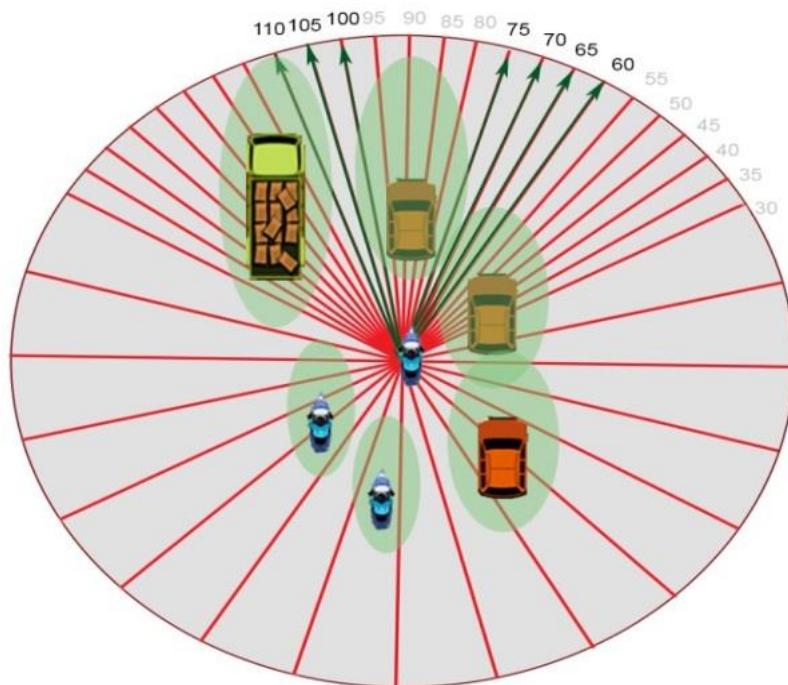


FIGURE 2: Representation of the perception lines

109 **LATERAL MOVEMENT MODEL**

110 The social force approach (10) was originally used to describe the movement of pedestrians. Later this
 111 model had also been employed for modelling motorcycle movement (12). Fellendorf et al. (13) also
 112 used the social force approach to model motor vehicle movement, however motorcycles were not
 113 considered in the study.

114 The social forces are measures of the instantaneous internal motivation to accelerate or change
 115 direction experienced by the driver to avoid collisions. The model assumes that the motorcycle prefers
 116 to remain in the state of no lateral movement in the absence of any force. The proposed model includes
 117 three types of social forces, namely:

- 118 1. A repulsive force from surrounding vehicles (F_{Ri}^t) leading to a lateral displacement of ΔY_{Ri}^t
- 119 2. A repulsive force from infrastructural boundaries (F_{Bi}^t), leading to a lateral displacement of ΔY_{Bi}^t
- 120 3. A repulsive force from the lateral gap in front (F_{Gi}^t), leading to a lateral displacement of ΔY_{Gi}^t

121 The total required lateral displacement as a reaction to the neighboring social forces is computed as

$$\Delta Y_i^t = \Delta Y_{Ri}^t + \Delta Y_{Bi}^t + \Delta Y_{Gi}^t \quad (2)$$

122 **Force due to surrounding vehicle**

123 The motorcycles generally tend to keep a safe lateral distance from the neighbouring vehicles. The
 124 closer they come beyond this perceived safe distance the more is the motivation to move away from the
 125 vehicle. The motivation to move away is further influenced by the relative velocity of the vehicle. The
 126 motorcycle tries to move more aggressively away from the neighbouring vehicle when it has a higher
 127 relative velocity. The region around the neighbour vehicle where the subject vehicle feels equally
 128 uncomfortable can be imagined as an ellipse. (7) The semi minor axis of this ellipse is b which is a
 129 constant for the given pair of subject vehicle and neighbour vehicle at a given point of time. When other
 130 vehicle comes closer to a target vehicle, the semi-minor axis of the ellipse becomes smaller and as a
 131 result, repulsive force gets bigger. The repulsive force F_{Rij}^t creates a lateral motivation which is
 132 formulated as shown in eq. (4).

$$\Delta Y_{Rij} = \beta_R (b - b^0)^{-\rho_R} \quad (3)$$

$$b = \frac{\sqrt{(|\vec{r}_i - \vec{r}_j| + |\vec{r}_i - \vec{r}_j - (\vec{v}_j - \vec{v}_i)\Delta t|)^2 - (|\vec{v}_j - \vec{v}_i|\Delta t)^2}}}{2} \quad (4)$$

133 Where \vec{r}_i and \vec{r}_j are the position vectors of the subject vehicle and neighbour vehicle and the distance
 134 between them at time t . Similarly $(\vec{v}_j - \vec{v}_i)\Delta t$ are the velocity vectors. β_R is a multiplicative calibration
 135 constant. ρ_R is the exponential calibration constant and b^0 is the additive constant used in the formulation
 136 of repulsive force.

137 **Force due to infrastructural boundary**

138 Similar to the repulsive force from the neighboring vehicles, the motorcycle perceives a repulsive force
 139 from the infrastructural boundaries (F_{Bi}^t). The resulting lateral displacement motivation is formulated
 140 in eq. (5)

$$\Delta Y_{Bi} = \beta_B r_b^{-\rho_B} \quad (5)$$

141 Where, β_B the multiplicative calibration is constant, ρ_B is the exponential calibration constant, r_b is the
 142 lateral distance towards the infrastructural boundary.

143 **Force due to gap choice**

144 Motorcyclists in mixed traffic streams often exhibit behaviors such as tailgating and filtering through
 145 the lateral gaps in uncongested conditions. The common attribute observed for these behaviors is the
 146 presence of a safe lateral gap ahead. The direct front vehicle is identified using the concept of perception
 147 lines. Also it is observed that the rider identifies the gap-ahead only if it exists in the gap search area
 148 ahead of it. The gap search area is the sector made by the 60° and 120° perception line with the rider as
 149 the center. The lateral positions of all the vehicles in the search area are analyzed. If the edge to edge
 150 distance between the nearest vehicle and the leader vehicle is more than twice the safe lateral distance
 151 (S_{lat}^*), then a gap is identified on that particular side.

152 Availability of gap on the left and right side defines the gap-scenario, which decides the
 153 accepted gap. This decision framework is illustrated in figure3. When there is only left gap, or right
 154 gap, or there is no gap, the decision is straight forward. However, when both the left and right gaps are
 155 available, a binomial choice model is used for the decision. The utility equations for the left gap (U_L)
 156 and the right gap (U_R) are formulated follows:

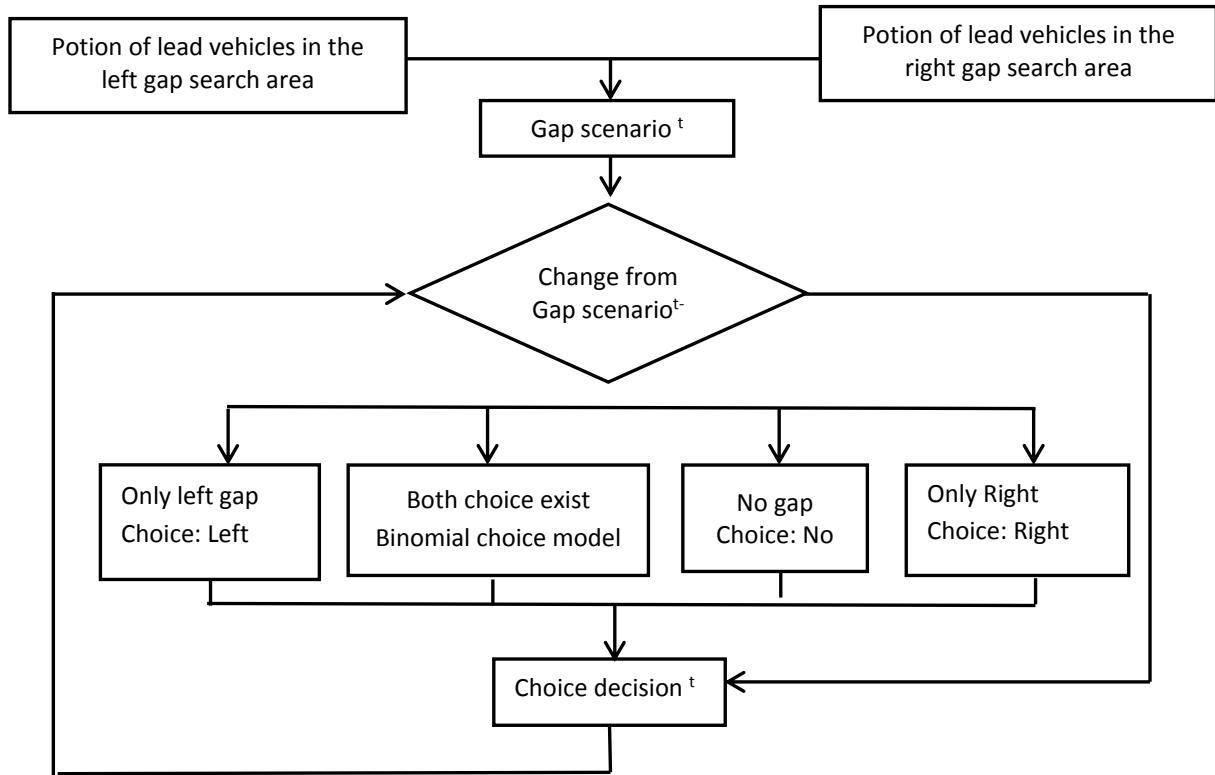
$$U_L = \alpha^1 g_L + \alpha^2 a_L + \alpha^3 c_L + \epsilon, \quad (6)$$

$$U_R = \alpha^1 g_R + \alpha^2 a_R + \alpha^3 c_R + \epsilon, \quad (7)$$

157 where g_L and g_R are the lateral distance to the corresponding overtaking position with respect to the
 158 front vehicle; a_L and a_R are the parameters of relative affinity towards left and right direction
 159 respectively; c_L and c_R are the lateral clearance available for the lead vehicle with the nearest vehicle on
 160 the left and right sides respectively; α^1 , α^2 and α^3 are coefficients for the general terms; and ϵ is a rider
 161 specific random term which is Gumbel distributed. The lane affinity is a generally observed
 162 phenomenon on express ways. They are dummy variables incorporated to explain the lane affinity. It
 163 means that the motorcycle has higher probability to choose the gap in the lane to which it has higher
 164 affinity. The estimates α^1 , α^2 and α^3 can be calculated using maximum likelihood method (ALOGIT
 165 software is used in the current study). The probabilities for choosing an alternative are calculated using
 166 the binomial logit model. The probability corresponding to each of the options is calculated. The left
 167 gap is chosen when, $U_L > U_R$. The probability of choosing the left gap P_L therefore is
 168 $P_L = \Pr[U_L > U_R]$, by the binary logit model,

$$P_L = \frac{e^{U_L}}{e^{U_L} + e^{U_R}} \text{ and } P_R = \frac{e^{U_R}}{e^{U_L} + e^{U_R}} \quad (8)$$

169 The choice model returns the probabilistic choice of the rider for the corresponding time interval. Once
 170 the choice is identified, then the rider is subject to a new force in order to occupy the gap (F_{Gi}^t).



193 **FIGURE 3: Flowchart for identification of gap scenario**

194 **Formulation of the attractive force due to lateral gap choice (F_{Gi}^t).**

195 Once the gap is accepted, motorcycle perceives an attractive force driving it towards the accepted gap.
 196 The resulting lateral displacement motivation ΔY_{Gi} is formulated as shown in eq. (9).

$$\Delta Y_{Gi} = S f_\theta \quad (9)$$

197 Where, S is the coefficient of certainty and f_θ is the required lateral force parameter. The term S is
 198 ensures that the motorcycle is more certain to make the lateral movement toward the gap when it is
 199 along the corresponding lateral edge and has a maximum value of 1. The lateral force parameter is a
 200 measure of the required angle towards the comfortable lateral position.

$$S = (\beta_G G_{\text{long}}^t)^{-\rho_G G_{\text{lat}}^t} \quad (10)$$

$$f_\theta = vdt \tan(\theta_g^t) \quad (11)$$

$$\theta_g^t = \tan^{-1} \left(\frac{G_{\text{lat}}^t}{\max[S_{\text{long}}^*, G_{\text{long}}^t - S_{\text{glong}}^t]} \right) \quad (12)$$

$$S_{\text{glong}}^t = \frac{G_{\text{lat}}^t}{\tan \theta_m} \quad (13)$$

201 where, β_G is the multiplicative calibration is constant, ρ_G is the exponential calibration constant θ_g^t is
 202 the target angle of gap force, S_{glong}^t , is the safe longitudinal headway required for following along the
 203 edge of leader vehicle, G_{lat}^t is the lateral distance towards the following edge corresponding to front
 204 vehicle at time t, G_{long}^t is the longitudinal headway available with the front vehicle at time t, s_{long}^* is the
 205 safe longitudinal headway for motorcycle at stop position and θ_m is the maximum turn angle. The
 206 attractive force due to lead gap would not require any change in parameter values in order to be applied
 207 for different lead vehicle types. This is because the parameter values only depend on the geometric
 208 dimensions of the lead vehicle.

209 LONGITUDINAL MOVEMENT MODEL

210 The movement of a motorcycle on a road can be explained mainly by the turning angle and its
 211 acceleration behavior. This section deals with the estimation of acceleration characteristics of the
 212 motorcycle in different traffic scenario. The Intelligent driver model is a well-established car following
 213 model for cars in lane disciplined traffic. However, modifications have to be done to incorporate this
 214 model for explaining the motorcycle movement in mixed traffic scenarios. In the proposed model, the
 215 lead vehicle is identified based on the perception lines logic and a threshold lateral distance for the
 216 influence of lead vehicle has been introduced. Lead vehicles in this model are defined as all the vehicles
 217 that are visible to the rider in his 20° angle of vision. The applied IDM belongs to the class of
 218 deterministic follow-the-leader models like the optimal-velocity model of Treiber et al. (11).

$$\dot{v}_i = \frac{\partial v_i}{\partial t} = ac \left(1 - \left(\frac{v_i}{v^0} \right)^\delta - \left(\frac{s^*(v, \Delta v)}{G_{\text{long}}} \right)^2 \right) \quad (14)$$

$$s^*(v, \Delta v) = s_{\text{long}}^* + vT + \frac{v * \Delta v}{2\sqrt{ac * dc}} \quad (15)$$

219 where, v^0 is the velocity with which the vehicle would drive in free traffic condition, s_{long}^* is the
 220 minimum longitudinal distance that the motorcycle keep even at stand-still in a traffic jam, T is the
 221 desired time headway to the vehicle in front, ac is the maximum possible acceleration, dc is the
 222 comfortable braking deceleration and δ is the exponent coefficient.

223 Threshold for lead vehicle interaction

224 The motorcycle interacts with the lead vehicle in the following regime. Beyond this threshold of
 225 following regime it accelerates freely to acquire the desire speed. The threshold is defined as the
 226 function of velocity and lateral clearance.

$$v = 3.74S_{\text{lat}}^* + 12.44 \quad (16)$$

227 This means that, a motorcycle moving with a velocity v will start to accelerate to its desired velocity, if
 228 a lateral clearance of at least S_{lat}^* is available with respect to all the lead vehicles. The equation was
 229 obtained from analyzing the data samples. The position of the subject vehicle where it was seen to move
 230 out of the interaction with the front vehicle was assumed to be the threshold. That is, if the subject
 231 vehicle accelerates while following a front vehicle, it is considered to be out of the interaction threshold.
 232 40 sample points were obtained and linear regression was used to calculate the estimates. The values of

233 coefficient of S_{lat}^* is estimated to be 3.74 and the estimate for the constant was 12.44 using linear
 234 regression with $R^2=0.193$. The p value for variable is 0.005 and the t stat is 2.98 which mean that there
 235 is a significant relationship between velocity and the threshold lateral headway.

236 **Integration of the lateral and longitudinal behavior**

237 The lateral and longitudinal behavior of a motorcycle is closely related to each other. Even though the
 238 lateral and longitudinal motivations are found separately, there are certain mutually imposed
 239 constraints. The turn angle that the rider applies should not exceed the maximum possible turn angle
 240 even if the lateral motivational forces require it to be more. The maximum turn angle (θ^m) made by the
 241 motorcycle is found to be a decreasing function of velocity at the point eq. (17).

$$\theta^m = \gamma_1 v + \gamma_2 \quad (17)$$

242 Here γ_1 and γ_2 are the two calibration parameters.

243 **Position update**

244 The position of the two wheeler is updated based the constraint of maximum turning angle. The equation
 245 for motion is eq.(18)

$$\begin{aligned} Y_i^t &= Y_i^{t-dt} + \max(\Delta Y_{Ri}^t + \Delta Y_{Bi}^t + \Delta Y_{Gi}^t, v_t dt \tan(\theta^m)) \\ X_i^t &= X_i^{t-dt} + v_t (\Delta t) + 0.5 a_t (\Delta t)^2 \end{aligned} \quad (18)$$

246 The position of the motorcycle is updated and the next set of influential vehicles at time $t + dt$ are
 247 identified by PL algorithm. The procedure is then repeated till the motorcycle reaches the end of the
 248 stretch.

249 **RESULTS AND DISCUSSION**

250 The proposed model is calibrated and validated with field data and a case study is presented to illustrate
 251 the performance of the model.

252 **Data collection**

253 The trajectory data set used in this study was collected on a section of the westbound direction of Eastern
 254 Expressway, Bhandup Mumbai from 8.30 AM to 11.00 AM. The data was collected using 3 video
 255 cameras that were mounted on a foot-over bridge. The entire section is approximately 650 m meters
 256 long and 18.3 m wide (5 lanes). The weather was clear with good visibility and pavement was dry
 257 during the data collection period. Furthermore, there were no incidents or events within the section
 258 during this period. The motorcycle constituted about 38% of the vehicular flow during the time of
 259 survey. The data extraction was done using the software- Traffic data extractor developed in IITB (14)

260 **Model calibration**

261 The proposed model could be broadly summarized as a combination of social force model and
 262 intelligent driver model put in the framework of perception lines logic. This means that the entire
 263 component models have to be calibrated separately for their parameters and the final model have to be
 264 checked for functioning harmoniously. The developed model contains various parameters. As the first
 265 step parameters such as visual range for perception lines etc. have been taken from related studies.
 266 Secondly fixing the above parameters, other parameters are calibrated using trial and error.

267 **Calibration of measurable parameters**

268 The field of view for the proposed perception lines logic (ϕ) is taken to be 120° from the related works
 269 (15). The exponential parameter (δ) used in IDM is not sufficiently sensitive and hence the original
 270 value, 4 given by Treiber et al. (11) is adopted. For the purpose of simulation, the road section (0 m to
 271 18.3 m) is divided into 3 sections namely section 1 (0–5 m), section 2 (5–10 m) and section 3 10–18.3
 272 m). a_L and a_R are the parameters of relative affinity towards left and right direction respectively. The
 273 values of these parameters were decided based on the average lane occupancy of the motorcycle for the
 274 given data. The value of the lane affinity taken for the purpose of simulation is as follows; a_L in section
 275 3 is 0.1 and a_R in section 1 is 0.5 and the lane affinity has value 1 in all the remaining cases.

276 **Calibration of non-measurable parameters**

277 After fixing the measurable parameter, there is a total of 16 parameters remaining to be calibrated.
 278 These are optimized using as by trial and error. The values are tabulated in Table 1.

279

TABLE 1: Parameter values for the model

Coefficient	Eq.	Trial and error value
β_R (car)	(3)	0.91
β_R (motorcycle)	(3)	0.42
β_R (HCV)	(3)	5.5
β_R (auto)	(3)	0.6
ρ_R	(3)	0.80
b^o	(3)	0.83
β_B	(5)	0.235
ρ_B	(5)	0.246
β_G	(10)	0.01
ρ_G	(10)	-0.334
v^o	(14)	30
s_{long}^*	(14)	1m
ac	(14)	1 m/s ²
bc	(14)	3 m/s ²
δ	(14)	4
T	(14)	0.7 s

280

281

282

283

284

285

The coefficients of the binary choice model are calibrated from the data. The sample of 45 instances where the rider took a gap decision was extracted manually. In 29 instances the rider chose the left gap and in 14 instances the rider chose the right gap. The results of calibration using ALOGIT software is summarized in Table 2. The Rho – squared w.r.t to zero is 0.5349, and the Rho –squared w.r.t to constants is 0.5047.

286

TABLE 2: Estimates of choice model coefficients

Estimates	α^1	α^2	α^3
Mean	-0.82	1.767	0.5993
Std error	0.619	1.22	0.227
t stat	-3.1	1.4	2.6

287

Validation

288

289

290

291

Individual trajectory simulation

292

293

294

295

296

297

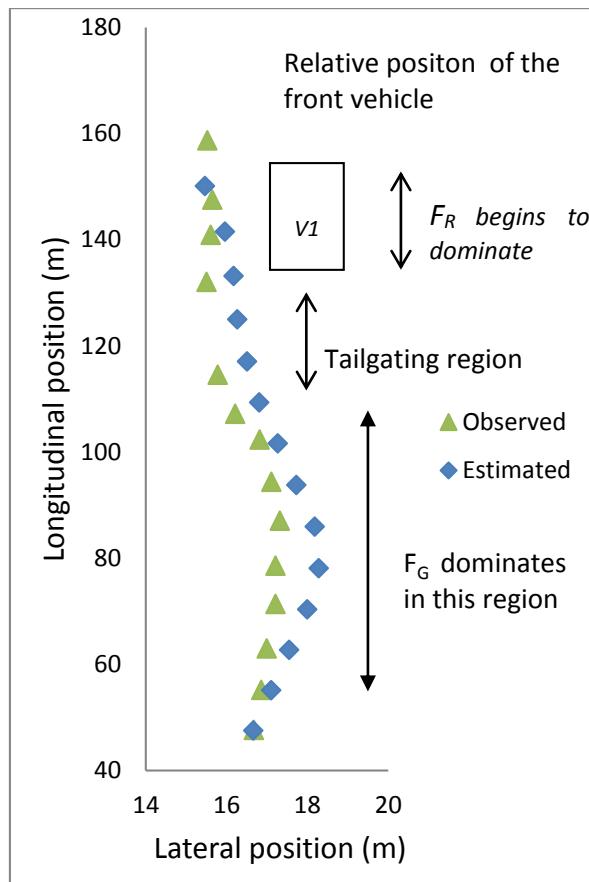
298

299

300

301

The motorcycle trajectory was simulated keeping the original trajectories for the surrounding vehicle. Figure 4 illustrates an example of passing manoeuvre. The front vehicle in this case is a HCV. The values of the parameters were given as in described earlier. Different forces dominate with respect to the relative position of the motorcycle. Initially, the lateral movement towards the right was triggered due to the right gap identification. At a later point of time, the right gap became unavailable and the gap choice was changed. This made the motorcycle move towards its left. Lateral forces became insignificant as it reached the comfortable lateral edge position. The tailgating behaviour was observed here. Finally the longitudinal gap decreased, the repulsive force started to dominate and the vehicle was pushed further left.



302
303 **FIGURE 4: Individual trajectory Vs Observed trajectory - 1**

304 The error measurement used here is MAPE (mean absolute percentage error). The MAPE
305 values for lateral position are found to be 1.93% and longitudinal position is 3.71%. It has to be noted
306 that, during this period 76.5% of lateral movement have been caused by the gap force. Individual
307 trajectory simulation was carried out with different neighbor vehicle types. As explained earlier, the
308 only parameter that would vary in lateral movement calculation while having different neighbor vehicle
309 type is β_R . Hence trajectories involving the interaction of motorcycle to different vehicle type was
310 extracted and compared with simulated trajectories. The summarised MAPE values are given in Table
311 3.

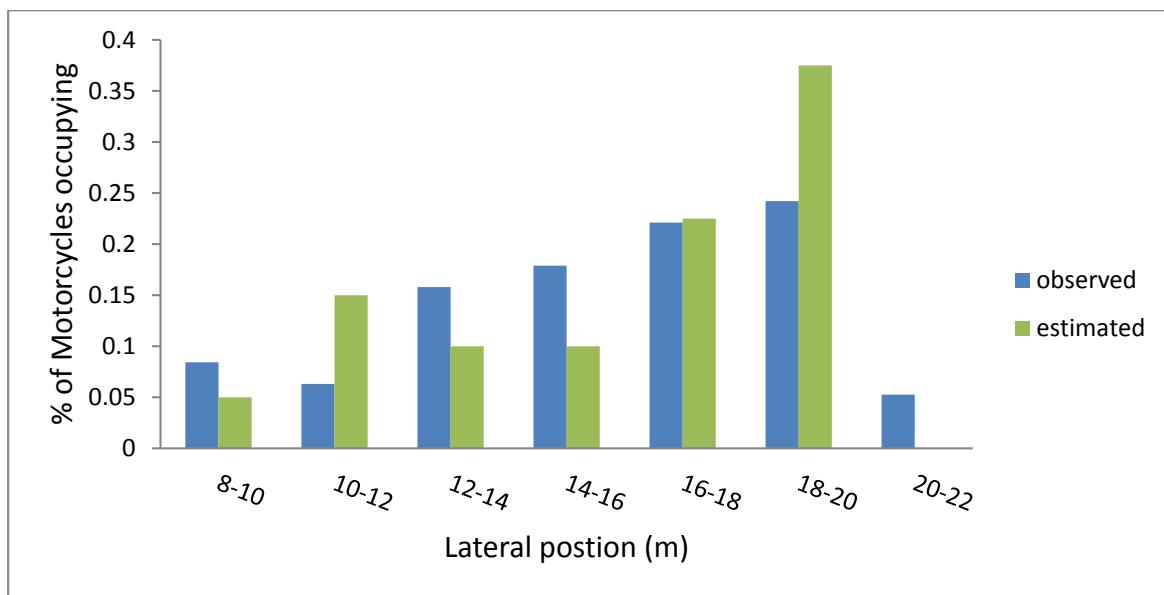
312 **TABLE 3: MAPE estimates for individual trajectory simulation**

Front vehicle	MAPE lateral (%)	MAPE longitudinal (%)
Heavy vehicle	2.83	3.56
Car	0.84	2.40
Motorcycle	1.41	3.15
Auto	5.30	4.03

313 **Validation of the model for lane affinity**

314 The lane affinity is a commonly observed phenomenon on Indian roads especially in uncongested
315 conditions. To verify if the proposed model was capable of exhibiting lane affinity, the position of
316 motorcycles after 20 sec of vehicle input was calculated. The vehicle input of the surrounding vehicles
317 was predefined. The vehicle arrival model is taken to be negative exponential and the lateral distribution
318 of the cars is assumed to be a skewed normal distribution with mean on 9m, resembling the field
319 behavior. The lateral input distribution of the motorcycles is assumed to be a uniform probability
320 function, which means that the motorcycles have equal probability of occupying any lateral position
321 initially. The parameters extracted from the field are mean headway: 0.86 s for car and 1.75 for

322 motorcycles, average speed: 12m/s. The results in figure 5 show that the motorcycle position after 20
 323 sec was concentrated to particular lane position as it was seen on the field.

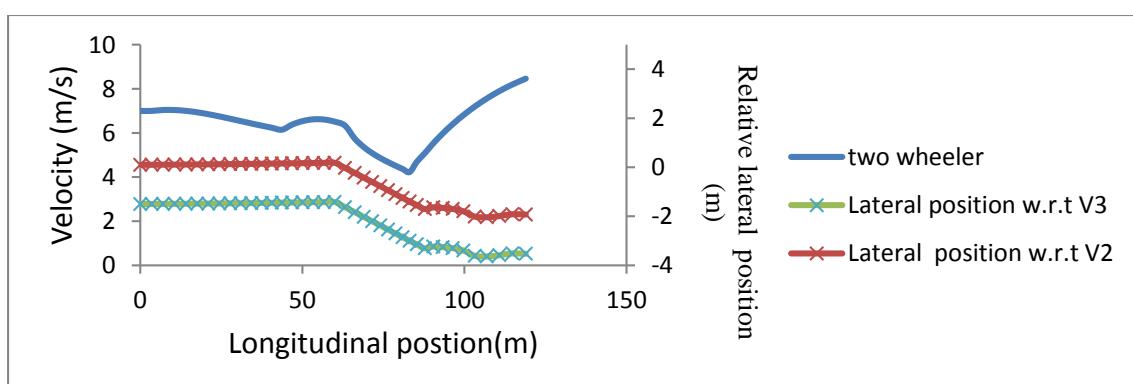


324
 325 **FIGURE 5: Lateral position distribution of estimated vs observed**

326 **Case study**

327 In order to verify the ability of the model to exhibit naturalistic riding behaviour, a hypothetical situation
 328 resembling an uncongested highway was created. The behaviour of the neighbor vehicles denoted as
 329 V2 and V3 were predefined in terms of position and velocity. The trajectory of the motorcycle in these
 330 conditions was estimated using the proposed model. The estimated acceleration and the relative position
 331 of the motorcycle with respect to the neighboring vehicle were studied. It can be seen that initially the
 332 motorcycle decelerates as it did not have required lateral headway with vehicle 2. Later, when a safe
 333 lateral headway with respect to the V2 was achieved, the motorcycle began to accelerate. This
 334 demonstrates the ability of the model to simulate the naturalistic motorcycle behaviours while
 335 maintaining the safety distance from the neighbouring vehicle.

336



337
 338 **FIGURE 6: Velocity profile and relative lateral position of the test motorcycle**

339 **CONCLUSION**

340 Microscopic motorcycle behaviour in mixed traffic condition is studied in this paper. The proposed
 341 modelling framework consists of a social force concept based lateral movement and an intelligent driver
 342 model (IDM) based longitudinal movement. The effect of surrounding vehicles and infrastructure is
 343 accounted by considering the gap available for the subject vehicle to move ahead. This models the
 344 turning angle of the motorcycles and subsequent lateral movement. The conventional intelligent driver
 345 model for longitudinal movement is a modified by redefining the leader vehicle and its influence
 346 regime. Both the lateral and longitudinal model was integrated to provide a continuous movement

347 model. The specific contribution of this study is the development of a behaviourally sound and
 348 comprehensive model to simulate the movement of motorbikes in mixed traffic conditions. The
 349 proposed model is calibrated and validated using field data. It can be seen that the gap seeking behaviour
 350 of motorcycle plays an important role in its lateral behaviour. The MAPE error values for individual
 351 trajectory simulation were found to be reasonably low. Moreover the case study demonstrated the ability
 352 of the model to simulate naturalistic riding behaviour. The model could be extended to incorporate the
 353 behaviour of motorcycles at intersections, curved roads, and rider behaviour and pavement condition.
 354 Finally the model is presently meant only for motorcycles. However this could be extended to other
 355 motor vehicles

356 **AKNOWLEDGEMENTS**

357 The first author would like to thank German Academic Exchange Programme (DAAD) for supporting
 358 the project.

359 **REFERENCES**

- 360 1. Luk, J., and Johann Tay. *The use and application of microsimulation traffic models*. No. AP-R286/06.
 361 2006.
- 362 2. Antonini, Gianluca, Santiago Venegas Martinez, Michel Bierlaire, and Jean Philippe Thiran.
 363 "Behavioral priors for detection and tracking of pedestrians in video sequences." *International Journal
 364 of Computer Vision* 69, no. 2 (2006), pp.159-180
- 365 3. Minh, Chu Cong, Kazushi Sano, and Shoji Matsumoto. "The speed, flow and headway analyses of
 366 motorcycle traffic." *Journal of the Eastern Asia Society for Transportation Studies* 6 (2005), pp. 1496-
 367 1508.
- 368 4. Kov, Monyrath, and Tetsuo Yai. "Traffic characteristics of motorcycle-dominated urban street
 369 considering the effect of light vehicle." *Journal of the Eastern Asia Society for Transportation Studies* 8
 370 (2010), pp.1806-1821.
- 371 5. Lan, Lawrence W., and Chiung-Wen Chang. "Inhomogeneous cellular automata modeling for mixed
 372 traffic with cars and motorcycles." *Journal of Advanced Transportation* 39, no. 3 (2005),pp. 323-349.
- 373 6. Cho, Hung-Jung, and Yuh-Ting Wu. "Modeling and simulation of motorcycle traffic flow."
 374 In *Systems, Man and Cybernetics, 2004 IEEE International Conference on*, vol. 7, IEEE, 2004,pp.
 375 6262-6267.
- 376 7. Kanda, Manabu, Kunio Takahashi, Yasuo Asakura, Daisuke Fukuda, and Tetsuo Shimizu. "A
 377 Concept of Safety Space for Describing Non-lane-based Movements of Motorcycles." PhD diss., Tokyo
 378 Metropolitan University, 2012.
- 379 8. Lee, Tzu-Chang. "An agent-based model to simulate motorcycle behaviour in mixed traffic flow."
 380 PhD diss., Imperial College London (University of London), 2007.
- 381 9. Mathew, Tom V., Caleb Ronald Munigety, and Ashutosh Bajpai. "A Strip-based Approach for
 382 Simulation of Mixed Traffic Conditions." *Journal of Computing in Civil Engineering* (2013).
- 383 10. Helbing, Dirk, and Peter Molnar. "Social force model for pedestrian dynamics." *Physical review
 384 E* 51, no. 5 (1995), pp. 4282.
- 385 11. Treiber, Martin, Ansgar Hennecke, and Dirk Helbing. "Congested traffic states in empirical
 386 observations and microscopic simulations." *Physical Review E* 62, no. 2 (2000), pp. 1805.
- 387 12. Helbing, Dirk, and Benno Tilch. "Generalized force model of traffic dynamics." *Physical Review
 388 E* 58, no. 1 (1998), pp.133.
- 389 13. Fellendorf, Martin, Robert Schönauer, and Weinan Huang. "Social force based vehicle model for
 390 two-dimensional spaces." In *Transportation Research Board 91st Annual Meeting*, no. 12-1347. (2012).
- 391 14. Vivek Vicraman, C. R. Munigety, T.V.Mathew,. Semi automated tools for traffic data extraction.
 392 *Proceedings of 93rd Annual Transportation Research Board Meeting*. Washington D C: Transportation
 393 research board. (2013).

394 15. Astarita, Vittorio, Vincenzo Giofré, Giuseppe Guido, and Alessandro Vitale. "Investigating road
395 safety issues through a microsimulation model." *Procedia-Social and Behavioral Sciences* 20 (2011),
396 pp. 226-235.

397