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ABSTRACT 29 

There exists limited literature that explains the movement of two-wheelers in mixed traffic conditions, 30 
where the traffic behaviour is characterised by different vehicle types moving together without much 31 
lane adherence, collision avoidance to neighbouring vehicles, response to infrastructure boundaries and 32 
following behaviour with respect to multiple lead vehicles. The study aims at filling this gap by 33 
proposing a microscopic simulation model exclusively for two-wheeler movement in a mixed traffic 34 
environment. The theories of the social force model and the intelligent driver model have been adapted 35 
and employed for this purpose. The model performance is assessed using individual trajectory 36 
comparison between simulation and observation, and the ability to qualitatively simulate naturalistic 37 
two-wheeler behaviour through a test scenario. The simulation results show that the model could 38 
visually represent the two-wheeler behaviour in mixed traffic scenarios. 39 

INTRODUCTION 40 
Motorcycles are an important component of the mixed traffic vehicle population which exists 41 
predominantly in Asian countries. High manoeuvrability, door to door accessibility, smaller parking 42 
space, low maintenance and fuel cost makes motorcycles more appealing for the low or middle income 43 
families. Simulation of motorcycle movements is therefore important in the field of traffic safety and 44 
capacity analysis (1). The motorcycle, being the smallest motorised vehicle type, would require 45 
simulation at a microscopic scale for understanding its riding behaviour in various traffic scenarios. 46 
Micro simulation in general is well established in design and testing of control strategies (2). Study on 47 
the basic characteristics of motorcycle flow, like the speed-flow relationship, headway distribution etc. 48 
was done by (3) and (4) on the macroscopic level. Cellular automata models were also developed to 49 
model mixed traffic flow including motorcycles (5).  50 

Cho and Wu (6) suggested a model for the lateral position of two-wheelers based on relative 51 
positions of the influential surrounding vehicles. The problem lies in the fact that in Indian conditions 52 
the definition of surrounding vehicles as described in the paper may not hold. Also the idea of 53 
maintaining the mid-point of the nearby lateral space does not account for the safety distance from the 54 
infrastructural boundary and the surrounding vehicles. Long (7) proposed a model based on safety 55 
distance from the neighbour vehicle. A car-following model was applied to motorcycles by Lan et al. 56 
(5) but the lateral movements were described poorly. Lee (8) suggested an agent based motorcycle 57 
model which used a multinomial choice model for path choice, however the assumption of virtual lanes 58 
in this model has a practical difficulty in deciding the virtual lane width. Some more models try to 59 
explain lane changing behaviour of the vehicles using the concept of virtual lanes (9). This model 60 
however had inaccurate results for motorcycles.  61 

Most of these models fail to replicate the characteristic behaviour of motorcycles in mixed 62 
traffic conditions: filtering through the traffic, tailgating (following the lead vehicle along a lateral edge) 63 
the lead vehicle, maintain safety distances from neighbour vehicles, swerving and frequent lateral 64 
movements (7). The proposed model tries to fill this gap. It aims at developing a microscopic 65 
behavioural model for naturalistic two-wheeler movement in a mixed traffic environment. The theories 66 
of the social force model (10) and the intelligent driver model (IDM) (11) have been adapted and 67 
employed for this purpose. The model deals with two-wheelers in a midblock section in uncongested 68 
situations with cars as neighbour vehicles. It does not attempt to model the vehicle dynamics in all 69 
details. 70 

MODEL FRAMEWORK 71 
The general structure of the model is explained in figure 1. The neighbour vehicles are identified using 72 
a perception line logic and are passed over as input for the lateral and longitudinal movement models. 73 
The lateral movement model is based on the concept of social force (12) and the longitudinal movement 74 
is modelled using the Intelligent Driver Model. (11). The output of these models, i.e. acceleration and 75 
the raw angle, is then adjusted subject to certain manoeuvrability constraints of the motorcycle. The 76 
updated position of the motorcycle for the next time interval is calculated and the cycle continues. 77 
 78 
 79 

 80 
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FIGURE 1: Model framework 93 

Perception lines 94 
In heterogeneous traffic, vehicles are placed at different lateral positions around the subject vehicle 95 
throughout the time. It is important to identify the surrounding vehicles that influence the movement of 96 
the motorcycle. Perception lines (PLs) are imaginary lines drawn from the front seat of the subject 97 
motorcycle outwards up to a distance of Lp 98 

Lp = v (T +
Wc

tan(θm)
) + slong

∗  (1) 

Wcis the width of a car (taken to be 1.8m),T is the desired time headway, θm is the maximum possible 99 
yaw angle at time t, V  is the velocity of the motorcycle at time t, and slong

∗  is the minimum longitudinal 100 
headway at rest. An individual PL is referred to using the anticlockwise angle it makes with the positive 101 
X axis as shown in figure 2. All the surrounding vehicles that first intercept a perception line are 102 
considered to be the neighbour vehicles. The vehicle that intersects the 90˚ PL first is assumed to be the 103 
direct lead vehicle. The positions of the those vehicles on the front 60˚ field of view closest on the left 104 
and right side of the lead vehicle are also identified as front left and front right vehicles respectively.  105 

 106 
FIGURE 2: Representation of the perception lines 107 

 108 
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LATERAL MOVEMENT MODEL  109 
The social force approach (10) was originally used to describe the movement of pedestrians. Later this 110 
model had also been employed for modelling motorcycle movement (12). Fellendorf et al. (13) also 111 
used the social force approach to model motor vehicle movement, however motorcycles were not 112 
considered in the study.  113 

The social forces are measures of the instantaneous internal motivation to accelerate or change 114 
direction experienced by the driver to avoid collisions. The model assumes that the motorcycle prefers 115 
to remain in the state of no lateral movement in the absence of any force. The proposed model includes 116 
three types of social forces, namely: 117 
1. A repulsive force from surrounding vehicles (FRi

t ) leading to a lateral displacement of∆YRi
t  118 

2. A repulsive force from infrastructural boundaries (FBi
t ), leading to a lateral displacement of ∆YBi

t  119 
3. A repulsive force from the lateral gap in front  (FGi

t ), leading to a lateral displacement of ∆YGi
t  120 

The total required lateral displacement as a reaction to the neighboring social forces is computed as 121 

∆Yi
t = ∆YRi

t  +∆YBi
t  +∆YGi

t   (2) 

Force due to surrounding vehicle 122 
The motorcycles generally tend to keep a safe lateral distance from the neighbouring vehicles. The 123 
closer they come beyond this perceived safe distance the more is the motivation to move away from the 124 
vehicle. The motivation to move away is further influenced by the relative velocity of the vehicle. The 125 
motorcycle tries to move more aggressively away from the neighbouring vehicle when it has a higher 126 
relative velocity. The region around the neighbour vehicle where the subject vehicle feels equally 127 
uncomfortable can be imagined as an ellipse. (7) The semi minor axis of this ellipse is b which is a 128 
constant for the given pair of subject vehicle and neighbour vehicle at a given point of time. When other 129 
vehicle comes closer to a target vehicle, the semi-minor axis of the ellipse becomes smaller and as a 130 
result, repulsive force gets bigger. The repulsive force FRij

t creates a lateral motivation   which is 131 
formulated as shown in eq. (4). 132 

∆YRij = βR(b − bo)−ρR     (3) 

b =
√(|ri⃗⃗ −rj⃗⃗ | + |ri⃗⃗ −rj⃗⃗ − (vj⃗⃗⃗  −vi⃗⃗⃗  )∆t|)

2
− (|vj⃗⃗⃗  −vi⃗⃗⃗  |∆t)

2

2
 

(4) 

Where ri⃗⃗ and rj⃗⃗ are the position vectors of the subject vehicle and neighbour vehicle and the distance 133 
between them at time t. Similarly (vj⃗⃗⃗  −vi⃗⃗⃗  ) ∆t are the velocity vectors. βR is a multiplicative calibration 134 
constant.ρR is the exponential calibration constant and bois the additive constant used in the formulation 135 
of repulsive force. 136 

Force due to infrastructural boundary 137 
Similar to the repulsive force from the neighboring vehicles, the motorcycle perceives a repulsive force 138 
from the infrastructural boundaries (FBi

t ). The resulting lateral displacement motivation is formulated 139 
in eq. (5) 140 

∆YBi = βBrb
−ρB (5) 

Where, βBthe multiplicative calibration is constant, ρB is the exponential calibration constant, rb is the 141 
lateral distance towards the infrastructural boundary. 142 

Force due to gap choice 143 
Motorcyclists in mixed traffic streams often exhibit behaviors such as tailgating and filtering through 144 
the lateral gaps in uncongested conditions. The common attribute observed for these behaviors is the 145 
presence of a safe lateral gap ahead. The direct front vehicle is identified using the concept of perception 146 
lines. Also it is observed that the rider identifies the gap-ahead only if it exists in the gap search area 147 
ahead of it. The gap search area is the sector made by the 60˚ and 120˚ perception line with the rider as 148 
the center. The lateral positions of all the vehicles in the search area are analyzed. If the edge to edge 149 
distance between the nearest vehicle and the leader vehicle is more than twice the safe lateral distance 150 
(Slat

∗ ), then a gap is identified on that particular side. 151 
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Availability of gap on the left and right side defines the gap-scenario, which decides the 152 
accepted gap. This decision framework is illustrated in figure3. When there is only left gap, or right 153 
gap, or there is no gap, the decision is straight forward. However, when both the left and right gaps are 154 
available, a binomial choice model is used for the decision. The utility equations for the left gap (UL) 155 
and the right gap (UR) are formulated follows: 156 

UL = α1gL  + α2aL + α3cL + ϵ ,  (6) 

UR = α1gR+ α2aR + α3cR + ϵ , (7) 

where gL and gR are the lateral distance to the corresponding overtaking position with respect to the 157 
front vehicle; aL and aR are the parameters of relative affinity towards left and right direction 158 
respectively; cL and cR are the lateral clearance available for the lead vehicle with the nearest vehicle on 159 
the left and right sides respectively; α1, α2 and α3 are coefficients for the general terms; and ϵ is a rider 160 
specific random term which is Gumbel distributed. The lane affinity is a generally observed 161 
phenomenon on express ways.  They are dummy variables incorporated to explain the lane affinity.  It 162 
means that the motorcycle has higher probability to choose the gap in the lane to which it has higher 163 
affinity. The estimates α1, α2 andα3 can be calculated using maximum likelihood method (ALOGIT 164 
software is used in the current study). The probabilities for choosing an alternative are calculated using 165 
the binomial logit model. The probability corresponding to each of the options is calculated. The left 166 
gap is chosen when, UL>UR. The probability of choosing the left gap PL therefore is 167 
PL = Pr[UL>UR], by the binary logit model, 168 

PL=  
eUL

eUL  +eUR  
  and PR=  

eUR

eUL  +eUR
   (8) 

The choice model returns the probabilistic choice of the rider for the corresponding time interval. Once 169 
the choice is identified, then the rider is subject to a new force in order to occupy the gap (FGi

t ).  170 
 171 
 172 
 173 
 174 
 175 
 176 
 177 
 178 
 179 
 180 
 181 
 182 
 183 
 184 
 185 
 186 
 187 
 188 

 189 

 190 

 191 

 192 

FIGURE 3: Flowchart for identification of gap scenario 193 

Formulation of the attractive force due to lateral gap choice (𝐅𝐆𝐢
𝐭 ). 194 

Once the gap is accepted, motorcycle perceives an attractive force driving it towards the accepted gap. 195 
The resulting lateral displacement motivation ∆YGi is formulated as shown in eq. (9). 196 

∆YGi =  S fθ (9) 
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Where, S is the coefficient of certainty and  fθ is the required lateral force parameter. The term S is 197 
ensures that the motorcycle is more certain to make the lateral movement toward the gap when it is 198 
along the corresponding lateral edge and has a maximum value of 1. The lateral force parameter is a 199 
measure of the required angle towards the comfortable lateral position. 200 

S = (βGGlong
t )

− ρGGlat
t

 (10) 

fθ =   vdt tan (θg
t ) (11) 

θg
t =  tan−1 (

Glat
t

max[ Slong,
∗ Glong

t − Sglong
t ]

) (12) 

Sglong
t = 

Glat
t

tan θm
 

(13) 

where, βG is the multiplicative calibration is constant, ρG is the exponential calibration constant θg 
t is 201 

the target angle of gap force, Sglong
t , is the safe longitudinal headway required for following along the 202 

edge of leader vehicle, Glat
t  is the lateral distance towards the following edge corresponding to front 203 

vehicle at time t, Glong
t  is the longitudinal headway available with the front vehicle at time t, slong

∗  is the 204 
safe longitudinal headway for motorcycle at stop position and θm is the maximum turn angle. The 205 
attractive force due to lead gap would not require any change in parameter values in order to be applied 206 
for different lead vehicle types. This is because the parameter values only depend on the geometric 207 
dimensions of the lead vehicle. 208 

LONGITUDINAL MOVEMENT MODEL 209 
The movement of a motorcycle on a road can be explained mainly by the turning angle and its 210 
acceleration behavior. This section deals with the estimation of acceleration characteristics of the 211 
motorcycle in different traffic scenario. The Intelligent driver model is a well-established car following 212 
model for cars in lane disciplined traffic. However, modifications have to be done to incorporate this 213 
model for explaining the motorcycle movement in mixed traffic scenarios. In the proposed model, the 214 
lead vehicle is identified based on the perception lines logic and a threshold lateral distance for the 215 
influence of lead vehicle has been introduced.  Lead vehicles in this model are defined as all the vehicles 216 
that are visible to the rider in his 20˚ angle of vision. The applied IDM belongs to the class of 217 
deterministic follow-the-leader models like the optimal-velocity model of Treiber et al. (11). 218 

vi̇ =
∂vi

∂t
= ac (1 − (

vi

vo
)
δ

− (
s∗(v, ∆v)

Glong
)

2

) 
(14) 

s∗(v, ∆v) = slong
∗ + vT +

v ∗ ∆v

2√ac ∗ dc
 (15) 

where, vo is the velocity with which the vehicle would drive in free traffic condition, slong
∗  is the 219 

minimum longitudinal distance that the motorcycle  keep even at stand-still in a traffic jam, T is the 220 
desired time headway to the vehicle in front, ac is the maximum possible acceleration, dc is the 221 
comfortable braking deceleration and δ is the exponent coefficient. 222 

Threshold for lead vehicle interaction 223 
The motorcycle interacts with the lead vehicle in the following regime. Beyond this threshold of 224 
following regime it accelerates freely to acquire the desire speed. The threshold is defined as the 225 
function of velocity and lateral clearance.  226 

v = 3.74Slat
∗ + 12.44 (16) 

This means that, a motorcycle moving with a velocity v will start to accelerate to its desired velocity, if 227 
a lateral clearance of at least  Slat

∗  is available with respect to all the lead vehicles. The equation was 228 
obtained from analyzing the data samples. The position of the subject vehicle where it was seen to move 229 
out of the interaction with the front vehicle was assumed to be the threshold. That is, if the subject 230 
vehicle accelerates while following a front vehicle, it is considered to be out of the interaction threshold. 231 
40 sample points were obtained and linear regression was used to calculate the estimates. The values of 232 
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coefficient of Slat
∗ is estimated to be 3.74 and the estimate for the constant was 12.44 using linear 233 

regression with R2=0.193. The p value for variable is 0.005 and the t stat is 2.98 which mean that there 234 
is a significant relationship between velocity and the threshold lateral headway. 235 

Integration of the lateral and longitudinal behavior 236 
The lateral and longitudinal behavior of a motorcycle is closely related to each other. Even though the 237 
lateral and longitudinal motivations are found separately, there are certain mutually imposed 238 
constraints. The turn angle that the rider applies should not exceed the maximum possible turn angle 239 
even if the lateral motivational forces require it to be more. The maximum turn angle (θm) made by the 240 
motorcycle is found to be a decreasing function of velocity at the point eq. (17). 241 

θm = γ1v + γ2 (17) 

Here  γ1 and γ2 are the two calibration parameters. 242 

Position update 243 
The position of the two wheeler is updated based the constraint of maximum turning angle. The equation 244 
for motion is eq.(18) 245 

Yi
t = Yi

t−dt + max( ∆YRi
t  +∆YBi

t  +∆YGi
t  , vtdt tan (θm)) 

Xi
t = Xi

t−dt + vt(∆t) + 0.5 at(∆t)2 
(18) 

The position of the motorcycle is updated and the next set of influential vehicles at time t + dt are 246 
identified by PL algorithm. The procedure is then repeated till the motorcycle reaches the end of the 247 
stretch. 248 

RESULTS AND DISCUSSION 249 
The proposed model is calibrated and validated with field data and a case study is presented to illustrate 250 
the performance of the model. 251 

Data collection 252 
The trajectory data set used in this study was collected on a section of the westbound direction of Eastern 253 
Expressway, Bhandup Mumbai from 8.30 AM to 11.00 AM. The data was collected using 3 video 254 
cameras that were mounted on a foot-over bridge. The entire section is approximately 650 m meters 255 
long and 18.3 m wide (5 lanes). The weather was clear with good visibility and pavement was dry 256 
during the data collection period. Furthermore, there were no incidents or events within the section 257 
during this period. The motorcycle constituted about 38% of the vehicular flow during the time of 258 
survey. The data extraction was done using the software- Traffic data extractor developed in IITB (14) 259 

Model calibration 260 
The proposed model could be broadly summarized as a combination of social force model and 261 
intelligent driver model put in the framework of perception lines logic. This means that the entire 262 
component models have to be calibrated separated for their parameters and the final model have to be 263 
checked for functioning harmoniously. The developed model contains various parameters. As the first 264 
step parameters such as visual range for perception lines etc. have been taken from related studies. 265 
Secondly fixing the above parameters, other parameters are calibrated using trial and error.  266 

Calibration of measurable parameters 267 
The field of view for the proposed perception lines logic (ø) is taken to be 120˚ from the related works 268 
(15). The exponential parameter (δ) used in IDM is not sufficiently sensitive and hence the original 269 
value, 4 given by Treiber et al. (11) is adopted. For the purpose of simulation, the road section (0 m to 270 
18.3 m) is divided into 3 sections namely section 1 (0–5 m), section 2 (5-10 m) and section 3 10-18.3 271 
m). aL and aR are the parameters of relative affinity towards left and right direction respectively. The 272 
values of these parameters were decided based on the average lane occupancy of the motorcycle for the 273 
given data. The value of the lane affinity taken for the purpose of simulation is as follows; aL in section 274 
3 is 0.1 and aR in section 1 is 0.5 and the lane affinity has value 1 in all the remaining cases. 275 

Calibration of non-measurable parameters 276 

After fixing the measurable parameter, there is a total of 16 parameters remaining to be calibrated. 277 
These are optimized using as by trial and error. The values are tabulated in Table 1. 278 
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TABLE 1: Parameter values for the model 279 
Coefficient Eq. Trial and error value 

βR(car) (3) 0.91 

βR(motorcycle) (3) 0.42 

βR(HCV) (3) 5.5 

βR(auto) (3)  0.6 

ρR    (3) 0.80 

bo (3) 0.83 

βB (5) 0.235 

ρB (5) 0.246 

βG (10) 0.01 

ρG (10) -0.334 

vo (14) 30 

slong
∗  (14) 1m 

ac (14) 1 m/s2 

bc (14) 3 m/s2 

δ (14) 4 

T (14) 0.7 s 

 280 
The coefficients of the binary choice model are calibrated from the data. The sample of 45 281 

instances where the rider took a gap decision was extracted manually. In 29 instances the rider chose 282 
the left gap and in 14 instances the rider chose the right gap. The results of calibration using ALOGIT 283 
software is summarized in Table 2. The Rho – squared w.r.t to zero is 0.5349, and the Rho –squared 284 
w.r.t to constants is 0.5047. 285 

TABLE 2: Estimates of choice model coefficients 286 
Estimates α1 α2 α3 

Mean -0.82 1.767 0.5993 

Std error 0.619 1.22 0.227 

t stat -3.1 1.4 2.6 

Validation 287 
To analyse the performance of the model, individual real world trajectories was extracted and then 288 
compared to the simulated trajectory in similar traffic scenario. 289 
  290 
Individual trajectory simulation 291 
The motorcycle trajectory was simulated keeping the original trajectories for the surrounding vehicle. 292 
Figure 4 illustrates an example of passing manoeuvre. The front vehicle in this case is a HCV. The 293 
values of the parameters were given as in described earlier. Different forces dominate with respect to 294 
the relative position of the motorcycle. Initially, the lateral movement towards the right was triggered 295 
due to the right gap identification. At a later point of time, the right gap became unavailable and the gap 296 
choice was changed. This made the motorcycle move towards its left. Lateral forces became 297 
insignificant as it reached the comfortable lateral edge position. The tailgating behaviour was observed 298 
here. Finally the longitudinal gap decreased, the repulsive force started to dominate and the vehicle was 299 
pushed further left.  300 
 301 
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 302 
FIGURE 4: Individual trajectory Vs Observed trajectory - 1 303 

The error measurement used here is MAPE (mean absolute percentage error). The MAPE 304 
values for lateral position are found to be 1.93% and longitudinal position is 3.71%. It has to be noted 305 
that, during this period 76.5% of lateral movement have been caused by the gap force. Individual 306 
trajectory simulation was carried out with different neighbor vehicle types. As explained earlier, the 307 
only parameter that would vary in lateral movement calculation while having different neighbor vehicle 308 
type isβR. Hence trajectories involving the interaction of motorcycle to different vehicle type was 309 
extracted and compared with simulated trajectories. The summarised MAPE values are given in Table 310 
3. 311 

TABLE 3: MAPE estimates for individual trajectory simulation 312 
Front vehicle MAPE lateral (%) MAPE longitudinal (%) 

Heavy vehicle 2.83 3.56 

Car 0.84 2.40 

Motorcycle 1.41 3.15 

Auto 5.30 4.03 

Validation of the model for lane affinity 313 
The lane affinity is a commonly observed phenomenon on Indian roads especially in uncongested 314 
conditions. To verify if the proposed model was capable of exhibiting lane affinity, the position of 315 
motorcycles after 20 sec of vehicle input was calculated. The vehicle input of the surrounding vehicles 316 
was predefined. The vehicle arrival model is taken to be negative exponential and the lateral distribution 317 
of the cars is assumed to be a skewed normal distribution with mean on 9m, resembling the field 318 
behavior. The lateral input distribution of the motorcycles is assumed to be a uniform probability 319 
function, which means that the motorcycles have equal probability of occupying any lateral position 320 
initially. The parameters extracted from the field are mean headway: 0.86 s for car and 1.75 for 321 
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motorcycles, average speed: 12m/s. The results in figure 5 show that the motorcycle position after 20 322 
sec was concentrated to particular lane position as it was seen on the field.  323 

 324 
FIGURE 5: Lateral position distribution of estimated vs observed 325 

Case study  326 
In order to verify the ability of the model to exhibit naturalistic riding behaviour, a hypothetical situation 327 
resembling an uncongested highway was created. The behaviour of the neighbor vehicles denoted as 328 
V2 and V3 were predefined in terms of position and velocity. The trajectory of the motorcycle in these 329 
conditions was estimated using the proposed model. The estimated acceleration and the relative position 330 
of the motorcycle with respect to the neighboring vehicle were studied. It can be seen that initially the 331 
motorcycle decelerates as it did not have required lateral headway with vehicle 2. Later, when a safe 332 
lateral headway with respect to the V2 was achieved, the motorcycle began to accelerate. This 333 
demonstrates the ability of the model to simulate the naturalistic motorcycle behaviours while 334 
maintaining the safety distance from the neighbouring vehicle. 335 

 336 

 337 
FIGURE 6: Velocity profile and relative lateral position of the test motorcycle  338 

CONCLUSION 339 
Microscopic motorcycle behaviour in mixed traffic condition is studied in this paper. The proposed 340 
modelling framework consists of a social force concept based lateral movement and an intelligent driver 341 
model (IDM) based longitudinal movement. The effect of surrounding vehicles and infrastructure is 342 
accounted by considering the gap available for the subject vehicle to move ahead. This models the 343 
turning angle of the motorcycles and subsequent lateral movement. The conventional intelligent driver 344 
model for longitudinal movement is a modified by redefining the leader vehicle and its influence 345 
regime. Both the lateral and longitudinal model was integrated to provide a continuous movement 346 
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model. The specific contribution of this study is the development of a behaviourally sound and 347 
comprehensive model to simulate the movement of motorbikes in mixed traffic conditions. The 348 
proposed model is calibrated and validated using field data. It can be seen that the gap seeking behaviour 349 
of motorcycle plays an important role in its lateral behaviour. The MAPE error values for individual 350 
trajectory simulation were found to be reasonably low. Moreover the case study demonstrated the ability 351 
of the model to simulate naturalistic riding behaviour. The model could be extended to incorporate the 352 
behaviour of motorcycles at intersections, curved roads, and rider behaviour and pavement condition. 353 
Finally the model is presently meant only for motorcycles. However this could be extended to other 354 
motor vehicles 355 
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