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ABSTRACT

There exists limited literature that explains the movement of two-wheelers in mixed traffic conditions,
where the traffic behaviour is characterised by different vehicle types moving together without much
lane adherence, collision avoidance to neighbouring vehicles, response to infrastructure boundaries and
following behaviour with respect to multiple lead vehicles. The study aims at filling this gap by
proposing a microscopic simulation model exclusively for two-wheeler movement in a mixed traffic
environment. The theories of the social force model and the intelligent driver model have been adapted
and employed for this purpose. The model performance is assessed using individual trajectory
comparison between simulation and observation, and the ability to qualitatively simulate naturalistic
two-wheeler behaviour through a test scenario. The simulation results show that the model could
visually represent the two-wheeler behaviour in mixed traffic scenarios.

INTRODUCTION

Motorcycles are an important component of the mixed traffic vehicle population which exists
predominantly in Asian countries. High manoeuvrability, door to door accessibility, smaller parking
space, low maintenance and fuel cost makes motorcycles more appealing for the low or middle income
families. Simulation of motorcycle movements is therefore important in the field of traffic safety and
capacity analysis (1). The motorcycle, being the smallest motorised vehicle type, would require
simulation at a microscopic scale for understanding its riding behaviour in various traffic scenarios.
Micro simulation in general is well established in design and testing of control strategies (2). Study on
the basic characteristics of motorcycle flow, like the speed-flow relationship, headway distribution etc.
was done by (3) and (4) on the macroscopic level. Cellular automata models were also developed to
model mixed traffic flow including motorcycles (5).

Cho and Wu (6) suggested a model for the lateral position of two-wheelers based on relative
positions of the influential surrounding vehicles. The problem lies in the fact that in Indian conditions
the definition of surrounding vehicles as described in the paper may not hold. Also the idea of
maintaining the mid-point of the nearby lateral space does not account for the safety distance from the
infrastructural boundary and the surrounding vehicles. Long (7) proposed a model based on safety
distance from the neighbour vehicle. A car-following model was applied to motorcycles by Lan et al.
(5) but the lateral movements were described poorly. Lee (8) suggested an agent based motorcycle
model which used a multinomial choice model for path choice, however the assumption of virtual lanes
in this model has a practical difficulty in deciding the virtual lane width. Some more models try to
explain lane changing behaviour of the vehicles using the concept of virtual lanes (9). This model
however had inaccurate results for motorcycles.

Most of these models fail to replicate the characteristic behaviour of motorcycles in mixed
traffic conditions: filtering through the traffic, tailgating (following the lead vehicle along a lateral edge)
the lead vehicle, maintain safety distances from neighbour vehicles, swerving and frequent lateral
movements (7). The proposed model tries to fill this gap. It aims at developing a microscopic
behavioural model for naturalistic two-wheeler movement in a mixed traffic environment. The theories
of the social force model (10) and the intelligent driver model (IDM) (11) have been adapted and
employed for this purpose. The model deals with two-wheelers in a midblock section in uncongested
situations with cars as neighbour vehicles. It does not attempt to model the vehicle dynamics in all
details.

MODEL FRAMEWORK

The general structure of the model is explained in figure 1. The neighbour vehicles are identified using
a perception line logic and are passed over as input for the lateral and longitudinal movement models.
The lateral movement model is based on the concept of social force (12) and the longitudinal movement
is modelled using the Intelligent Driver Model. (11). The output of these models, i.e. acceleration and
the raw angle, is then adjusted subject to certain manoeuvrability constraints of the motorcycle. The
updated position of the motorcycle for the next time interval is calculated and the cycle continues.
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FIGURE 1: Model framework

Perception lines

In heterogeneous traffic, vehicles are placed at different lateral positions around the subject vehicle
throughout the time. It is important to identify the surrounding vehicles that influence the movement of
the motorcycle. Perception lines (PLs) are imaginary lines drawn from the front seat of the subject

motorcycle outwards up to a distance of L,

_ W, .
Lp =V (T + tan(em)) + Slong (1)

W_is the width of a car (taken to be 1.8m),T is the desired time headway, 6™ is the maximum possible
yaw angle at time t, VV is the velocity of the motorcycle at time t, and sl*ong is the minimum longitudinal

headway at rest. An individual PL is referred to using the anticlockwise angle it makes with the positive
X axis as shown in figure 2. All the surrounding vehicles that first intercept a perception line are
considered to be the neighbour vehicles. The vehicle that intersects the 90° PL first is assumed to be the
direct lead vehicle. The positions of the those vehicles on the front 60° field of view closest on the left
and right side of the lead vehicle are also identified as front left and front right vehicles respectively.

FIGURE 2: Representation of the perception lines
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LATERAL MOVEMENT MODEL

The social force approach (10) was originally used to describe the movement of pedestrians. Later this
model had also been employed for modelling motorcycle movement (12). Fellendorf et al. (13) also
used the social force approach to model motor vehicle movement, however motorcycles were not
considered in the study.

The social forces are measures of the instantaneous internal motivation to accelerate or change
direction experienced by the driver to avoid collisions. The model assumes that the motorcycle prefers
to remain in the state of no lateral movement in the absence of any force. The proposed model includes
three types of social forces, namely:

1. A repulsive force from surrounding vehicles (Fg;) leading to a lateral displacement ofAYf;
2. Arepulsive force from infrastructural boundaries (Fg;), leading to a lateral displacement of AY;
3. Arepulsive force from the lateral gap in front (Fg;), leading to a lateral displacement of AY§;

The total required lateral displacement as a reaction to the neighboring social forces is computed as
AYS = AYE; +AYE; +AYE; 2

Force due to surrounding vehicle

The motorcycles generally tend to keep a safe lateral distance from the neighbouring vehicles. The
closer they come beyond this perceived safe distance the more is the motivation to move away from the
vehicle. The motivation to move away is further influenced by the relative velocity of the vehicle. The
motorcycle tries to move more aggressively away from the neighbouring vehicle when it has a higher
relative velocity. The region around the neighbour vehicle where the subject vehicle feels equally
uncomfortable can be imagined as an ellipse. (7) The semi minor axis of this ellipse is b which is a
constant for the given pair of subject vehicle and neighbour vehicle at a given point of time. When other
vehicle comes closer to a target vehicle, the semi-minor axis of the ellipse becomes smaller and as a
result, repulsive force gets bigger. The repulsive force Fﬁijcreates a lateral motivation which is

formulated as shown in eq. (4).
AYgij = Br(b —Db°%)7Pr 3)

—_ g — — — — 2 —_— —_— 2
=5+ 5 - @ -w)ad)’ - (5 —vie) @
- 2
Where T, and rjare the position vectors of the subject vehicle and neighbour vehicle and the distance
between them at time t. Similarly (v; —v;) At are the velocity vectors. By is a multiplicative calibration

constant.pp is the exponential calibration constant and b°is the additive constant used in the formulation
of repulsive force.

Force due to infrastructural boundary
Similar to the repulsive force from the neighboring vehicles, the motorcycle perceives a repulsive force
from the infrastructural boundaries (Fg;). The resulting lateral displacement motivation is formulated
ineq. (5)

AYg; = Bprp B ®)
Where, Bgthe multiplicative calibration is constant, pg is the exponential calibration constant, ry, is the
lateral distance towards the infrastructural boundary.

Force due to gap choice

Motorcyclists in mixed traffic streams often exhibit behaviors such as tailgating and filtering through
the lateral gaps in uncongested conditions. The common attribute observed for these behaviors is the
presence of a safe lateral gap ahead. The direct front vehicle is identified using the concept of perception
lines. Also it is observed that the rider identifies the gap-ahead only if it exists in the gap search area
ahead of it. The gap search area is the sector made by the 60° and 120° perception line with the rider as
the center. The lateral positions of all the vehicles in the search area are analyzed. If the edge to edge
distance between the nearest vehicle and the leader vehicle is more than twice the safe lateral distance
(Siae), then a gap is identified on that particular side.
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Availability of gap on the left and right side defines the gap-scenario, which decides the
accepted gap. This decision framework is illustrated in figure3. When there is only left gap, or right
gap, or there is no gap, the decision is straight forward. However, when both the left and right gaps are
available, a binomial choice model is used for the decision. The utility equations for the left gap (U.)
and the right gap (Ug) are formulated follows:

UL= algL + (lzaL + (ISCL+ €, (6)

Ur= (IlgR+ OLZaR + OLSCR + €, (7)
where gL and gr are the lateral distance to the corresponding overtaking position with respect to the
front vehicle; a. and ag are the parameters of relative affinity towards left and right direction
respectively; ¢ and crare the lateral clearance available for the lead vehicle with the nearest vehicle on
the left and right sides respectively; o', o? and o are coefficients for the general terms; and e is a rider
specific random term which is Gumbel distributed. The lane affinity is a generally observed
phenomenon on express ways. They are dummy variables incorporated to explain the lane affinity. It
means that the motorcycle has higher probability to choose the gap in the lane to which it has higher
affinity. The estimates o', o anda® can be calculated using maximum likelihood method (ALOGIT
software is used in the current study). The probabilities for choosing an alternative are calculated using
the binomial logit model. The probability corresponding to each of the options is calculated. The left
gap is chosen when, U, >Ug The probability of choosing the left gap Py therefore is
PL-Pr[U_>Ug], by the binary logit model,

Ug, eUR
eUL +eUR and Pe= eUL +eUR (8)
The choice model returns the probabilistic choice of the rider for the corresponding time interval. Once

the choice is identified, then the rider is subject to a new force in order to occupy the gap (Fg;).

P|_=

Potion of lead vehicles in the
right gap search area

Potion of lead vehicles in the
left gap search area \]/

Gap scenario*

v

- Change from
,W

A\ A4 A4 \'4
Only left gap Both choice exist No gap Only Right
Choice: Left Binomial choice model Choice: No Choice: Right

Choice decision! [€

FIGURE 3: Flowchart for identification of gap scenario

Formulation of the attractive force due to lateral gap choice (F¢;).
Once the gap is accepted, motorcycle perceives an attractive force driving it towards the accepted gap.
The resulting lateral displacement motivation AY; is formulated as shown in eq. (9).

AYGi = Sfe (9)
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Where, S is the coefficient of certainty and fg is the required lateral force parameter. The term S is
ensures that the motorcycle is more certain to make the lateral movement toward the gap when it is
along the corresponding lateral edge and has a maximum value of 1. The lateral force parameter is a
measure of the required angle towards the comfortable lateral position.

t ~ PGGlat
S= (BGGlong) (10)
fo = vdttan(6g) (11)
Gt
6y = tan™! ( - tlat - ) (12)
maX[ Slong,Glong - Sglong]
¢ _ Gl (13)

glong ™ tap gm
where, B¢ is the multiplicative calibration is constant, pg is the exponential calibration constant eg is

the target angle of gap force, S;long' is the safe longitudinal headway required for following along the
edge of leader vehicle, G}, is the lateral distance towards the following edge corresponding to front
vehicle at time t, Gfong is the longitudinal headway available with the front vehicle at time t, sj, is the

safe longitudinal headway for motorcycle at stop position and 8™ is the maximum turn angle. The
attractive force due to lead gap would not require any change in parameter values in order to be applied
for different lead vehicle types. This is because the parameter values only depend on the geometric
dimensions of the lead vehicle.

LONGITUDINAL MOVEMENT MODEL

The movement of a motorcycle on a road can be explained mainly by the turning angle and its
acceleration behavior. This section deals with the estimation of acceleration characteristics of the
motorcycle in different traffic scenario. The Intelligent driver model is a well-established car following
model for cars in lane disciplined traffic. However, modifications have to be done to incorporate this
model for explaining the motorcycle movement in mixed traffic scenarios. In the proposed model, the
lead vehicle is identified based on the perception lines logic and a threshold lateral distance for the
influence of lead vehicle has been introduced. Lead vehicles in this model are defined as all the vehicles
that are visible to the rider in his 20° angle of vision. The applied IDM belongs to the class of
deterministic follow-the-leader models like the optimal-velocity model of Treiber et al. (11).

. _0vi _ vivd (s (v, An)* (14)
=G - ()

v * Av (15)
2vac * dc
where, v is the velocity with which the vehicle would drive in free traffic condition, s),,, is the
minimum longitudinal distance that the motorcycle keep even at stand-still in a traffic jam, T is the
desired time headway to the vehicle in front, ac is the maximum possible acceleration, dc is the
comfortable braking deceleration and 6 is the exponent coefficient.

s*(v,Av) = Sjgpg + VT +

Threshold for lead vehicle interaction

The motorcycle interacts with the lead vehicle in the following regime. Beyond this threshold of
following regime it accelerates freely to acquire the desire speed. The threshold is defined as the
function of velocity and lateral clearance.

v = 3.74S},, + 12.44 (16)

This means that, a motorcycle moving with a velocity v will start to accelerate to its desired velocity, if
a lateral clearance of at least Sj,, is available with respect to all the lead vehicles. The equation was
obtained from analyzing the data samples. The position of the subject vehicle where it was seen to move
out of the interaction with the front vehicle was assumed to be the threshold. That is, if the subject
vehicle accelerates while following a front vehicle, it is considered to be out of the interaction threshold.
40 sample points were obtained and linear regression was used to calculate the estimates. The values of
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coefficient of Sj,.is estimated to be 3.74 and the estimate for the constant was 12.44 using linear
regression with R2=0.193. The p value for variable is 0.005 and the t stat is 2.98 which mean that there
is a significant relationship between velocity and the threshold lateral headway.

Integration of the lateral and longitudinal behavior

The lateral and longitudinal behavior of a motorcycle is closely related to each other. Even though the
lateral and longitudinal motivations are found separately, there are certain mutually imposed
constraints. The turn angle that the rider applies should not exceed the maximum possible turn angle
even if the lateral motivational forces require it to be more. The maximum turn angle (6™) made by the
motorcycle is found to be a decreasing function of velocity at the point eq. (17).

6™ =vyiv+y; (17)
Here y, and vy, are the two calibration parameters.

Position update
The position of the two wheeler is updated based the constraint of maximum turning angle. The equation
for motion is eq.(18)

Y) = Y79 + max( AYg; +AYS; +AY; , vidt tan(6™))
X = X9 4 v (AL) + 0.5 a(At)?

The position of the motorcycle is updated and the next set of influential vehicles at time t + dt are
identified by PL algorithm. The procedure is then repeated till the motorcycle reaches the end of the
stretch.

(18)

RESULTS AND DISCUSSION
The proposed model is calibrated and validated with field data and a case study is presented to illustrate
the performance of the model.

Data collection

The trajectory data set used in this study was collected on a section of the westbound direction of Eastern
Expressway, Bhandup Mumbai from 8.30 AM to 11.00 AM. The data was collected using 3 video
cameras that were mounted on a foot-over bridge. The entire section is approximately 650 m meters
long and 18.3 m wide (5 lanes). The weather was clear with good visibility and pavement was dry
during the data collection period. Furthermore, there were no incidents or events within the section
during this period. The motorcycle constituted about 38% of the vehicular flow during the time of
survey. The data extraction was done using the software- Traffic data extractor developed in IITB (14)

Model calibration

The proposed model could be broadly summarized as a combination of social force model and
intelligent driver model put in the framework of perception lines logic. This means that the entire
component models have to be calibrated separated for their parameters and the final model have to be
checked for functioning harmoniously. The developed model contains various parameters. As the first
step parameters such as visual range for perception lines etc. have been taken from related studies.
Secondly fixing the above parameters, other parameters are calibrated using trial and error.

Calibration of measurable parameters

The field of view for the proposed perception lines logic () is taken to be 120° from the related works
(15). The exponential parameter (8) used in IDM is not sufficiently sensitive and hence the original
value, 4 given by Treiber et al. (11) is adopted. For the purpose of simulation, the road section (0 m to
18.3 m) is divided into 3 sections namely section 1 (0-5 m), section 2 (5-10 m) and section 3 10-18.3
m). a_ and ar are the parameters of relative affinity towards left and right direction respectively. The
values of these parameters were decided based on the average lane occupancy of the motorcycle for the
given data. The value of the lane affinity taken for the purpose of simulation is as follows; a, in section
3is 0.1 and ar in section 1 is 0.5 and the lane affinity has value 1 in all the remaining cases.

Calibration of non-measurable parameters

After fixing the measurable parameter, there is a total of 16 parameters remaining to be calibrated.
These are optimized using as by trial and error. The values are tabulated in Table 1.
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TABLE 1: Parameter values for the model

Coefficient Eq. Trial and error value
Br(car) (3) 0.91
Br(motorcycle) 3) 0.42
Br(HCV) (3) 55
Br(auto) 3) 0.6
PR (3) 0.80
b° (3) 0.83
B (5) 0.235
PB (5) 0.246
Bg (10) 0.01
PG (10) -0.334
v° (14) 30
Slong (14) Im
ac (14) 1 m/s?
be (14) 3 m/s?
0 (14) 4
T (14) 0.7s

The coefficients of the binary choice model are calibrated from the data. The sample of 45
instances where the rider took a gap decision was extracted manually. In 29 instances the rider chose
the left gap and in 14 instances the rider chose the right gap. The results of calibration using ALOGIT
software is summarized in Table 2. The Rho — squared w.r.t to zero is 0.5349, and the Rho —squared
w.r.t to constants is 0.5047.

TABLE 2: Estimates of choice model coefficients

Estimates ol o? o’
Mean -0.82 | 1.767 | 0.5993
Std error 0.619 | 1.22 0.227
t stat -3.1 1.4 2.6

Validation
To analyse the performance of the model, individual real world trajectories was extracted and then
compared to the simulated trajectory in similar traffic scenario.

Individual trajectory simulation

The motorcycle trajectory was simulated keeping the original trajectories for the surrounding vehicle.
Figure 4 illustrates an example of passing manoeuvre. The front vehicle in this case is a HCV. The
values of the parameters were given as in described earlier. Different forces dominate with respect to
the relative position of the motorcycle. Initially, the lateral movement towards the right was triggered
due to the right gap identification. At a later point of time, the right gap became unavailable and the gap
choice was changed. This made the motorcycle move towards its left. Lateral forces became
insignificant as it reached the comfortable lateral edge position. The tailgating behaviour was observed
here. Finally the longitudinal gap decreased, the repulsive force started to dominate and the vehicle was
pushed further left.
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FIGURE 4: Individual trajectory Vs Observed trajectory - 1

The error measurement used here is MAPE (mean absolute percentage error). The MAPE
values for lateral position are found to be 1.93% and longitudinal position is 3.71%. It has to be noted
that, during this period 76.5% of lateral movement have been caused by the gap force. Individual
trajectory simulation was carried out with different neighbor vehicle types. As explained earlier, the
only parameter that would vary in lateral movement calculation while having different neighbor vehicle
type isBr. Hence trajectories involving the interaction of motorcycle to different vehicle type was
extracted and compared with simulated trajectories. The summarised MAPE values are given in Table
3.

TABLE 3: MAPE estimates for individual trajectory simulation

Front vehicle MAPE lateral (%) MAPE longitudinal (%0)
Heavy vehicle 2.83 3.56
Car 0.84 2.40
Motorcycle 1.41 3.15
Auto 5.30 4.03

Validation of the model for lane affinity

The lane affinity is a commonly observed phenomenon on Indian roads especially in uncongested
conditions. To verify if the proposed model was capable of exhibiting lane affinity, the position of
motorcycles after 20 sec of vehicle input was calculated. The vehicle input of the surrounding vehicles
was predefined. The vehicle arrival model is taken to be negative exponential and the lateral distribution
of the cars is assumed to be a skewed normal distribution with mean on 9m, resembling the field
behavior. The lateral input distribution of the motorcycles is assumed to be a uniform probability
function, which means that the motorcycles have equal probability of occupying any lateral position
initially. The parameters extracted from the field are mean headway: 0.86 s for car and 1.75 for
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motorcycles, average speed: 12m/s. The results in figure 5 show that the motorcycle position after 20
sec was concentrated to particular lane position as it was seen on the field.

0.4 -+
0.35 -

o
w
1

0.25 -

015 - M observed
I estimated

% of Motorcycles occupying
o
N

0.1 -
0.05 -
0
$10 ]0*12 2 ~1q 1444 1646 8.2, 20‘22
Lateral postion (m)
FIGURE 5: Lateral position distribution of estimated vs observed
Case study

In order to verify the ability of the model to exhibit naturalistic riding behaviour, a hypothetical situation
resembling an uncongested highway was created. The behaviour of the neighbor vehicles denoted as
V2 and V3 were predefined in terms of position and velocity. The trajectory of the motorcycle in these
conditions was estimated using the proposed model. The estimated acceleration and the relative position
of the motorcycle with respect to the neighboring vehicle were studied. It can be seen that initially the
motorcycle decelerates as it did not have required lateral headway with vehicle 2. Later, when a safe
lateral headway with respect to the V2 was achieved, the motorcycle began to accelerate. This
demonstrates the ability of the model to simulate the naturalistic motorcycle behaviours while
maintaining the safety distance from the neighbouring vehicle.

=
o
)

=two0 Wheeler

_oamommowmgm o< I 3 »==Lateral position w.r.t V3
. — 4

0 50 100 150

Velocity (m/s)
O N b OO
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=== ateral position w.r.t V2

Longitudinal postion(m)

FIGURE 6: Velocity profile and relative lateral position of the test motorcycle

CONCLUSION

Microscopic motorcycle behaviour in mixed traffic condition is studied in this paper. The proposed
modelling framework consists of a social force concept based lateral movement and an intelligent driver
model (IDM) based longitudinal movement. The effect of surrounding vehicles and infrastructure is
accounted by considering the gap available for the subject vehicle to move ahead. This models the
turning angle of the motorcycles and subsequent lateral movement. The conventional intelligent driver
model for longitudinal movement is a modified by redefining the leader vehicle and its influence
regime. Both the lateral and longitudinal model was integrated to provide a continuous movement



347
348
349
350
351
352
353
354
355

356
357
358

359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

Mullakkal, Mathew, Vortish 10

model. The specific contribution of this study is the development of a behaviourally sound and
comprehensive model to simulate the movement of motorbikes in mixed traffic conditions. The
proposed model is calibrated and validated using field data. It can be seen that the gap seeking behaviour
of motorcycle plays an important role in its lateral behaviour. The MAPE error values for individual
trajectory simulation were found to be reasonably low. Moreover the case study demonstrated the ability
of the model to simulate naturalistic riding behaviour. The model could be extended to incorporate the
behaviour of motorcycles at intersections, curved roads, and rider behaviour and pavement condition.
Finally the model is presently meant only for motorcycles. However this could be extended to other
motor vehicles
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