
Program-level Specification and
Deductive Verification of Security

Properties

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

bei der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Christoph Scheben

aus Siegen

Tag der mündlichen Prüfung: 26. November 2014

Erster Gutachter: Prof. Dr. Peter H. Schmitt
Karlsruher Institut für Technologie (KIT)

Zweiter Gutachter: Prof. Dr. Markus Müller-Olm
Westfälische Wilhelms-Universität Münster

Acknowledgments

I would not have succeeded in writing this thesis without the support of many
great people.

I would like to take this opportunity to express my special thanks and appre-
ciation to Prof. Dr. Peter H. Schmitt for his—in every way—excellent guid-
ance and support. Thanks for the advice, discussions, patience, care and trust,
thanks for giving me a lot of time for research and special thanks for postpon-
ing your retirement until completion of my thesis!

I would also like to thank my second reviewer Prof. Dr. Markus Müller-Olm
for investing all the time and energy in fulfilling this role.

I am grateful to my colleague Dr. Mattias Ulbrich who shared the office with
me and who always was open for—sometimes more, sometimes less scientific
but always exciting and inspiring—discussions, supporting me wherever he
could in his kind and likeable way. I am also thankful to all my other former
and current colleagues—too many to be listed all by name—for the teamwork,
the nice working atmosphere and all the inspiring discussions. It was always
fun to work with you. Likewise, I would like to thank all my student assistants
for their tireless engagement and the nice and fruitful teamwork.

My sincere thanks go to my parents and family for their ongoing and uncon-
ditional support and love. Special thanks go also to all my friends, foremost
Markus, for all the years of support in all situations of life.

Lastly, I would like to thank the German National Science Foundation (DFG)
for financially supporting this thesis as part of the project “Program-level Spec-
ification and Deductive Verification of Security Properties” within priority pro-
gramme 1496 “Reliably Secure Software Systems – RS3”.

i

Abstract

Programs with publicly accessible interfaces (like web applications) are increas-
ingly used to process confidential data. This makes it all the more important
to control the information flow within such applications: confidential informa-
tion must not leak to publicly accessible outputs. Already small programming
errors may lead to critical information leaks, as the “Heartbleed bug” recently
showed. Language-based information flow analysis, which is considered here,
tries to prevent such bugs by program analysis and verification techniques.

Though a variety of sophisticated information flow analysis techniques and
tools have been developed in the past, it was not feasible to verify complex
information flow properties of open, object-oriented programs with expressive
declassification (controlled release) of information. An instance of such kind
of programs are electronic voting systems. In those systems, secrecy of votes
is an important property which could not be proven on the code level up to
recently.

This thesis shows how highly precise specification and deductive verification
of language-based secure information flow can be made feasible. The approach
does not rely on fixed approximations, but makes use of the precision provided
by the underlying (relatively complete) calculus for Java Dynamic Logic.

On the specification side, the thesis presents an extension of the Java Modeling
Language (JML), the defacto standard language for behavioral specification of
Java code, for fine-grained, knowledge-based, modular information flow spec-
ifications including declassification. These specifications can be translated to
a novel formalization of language-based secure information flow in Java Dy-
namic Logic and subsequently be analyzed with the deductive software ver-
ification system KeY, as shown in a further contribution. The formalization is
formulated in self-composition style, a semantically precise, but costly formula-
tion of language-based secure information flow. This thesis shows how the effi-
ciency of self-composition style reasoning can be improved considerably. These
improvements as well as a contribution on modular self-composition verifica-
tion are indispensable prerequisites for the scalability of the self-composition
approach.

Though the optimized self-composition approach is feasible, as proven by a
case study on a simplified electronic voting system, it is still a heavyweight

iii

approach. Many programs, or at least parts of them, can be verified with less
precise but more efficient techniques. To this end, a more efficient, approxi-
mate information flow calculus is presented. Compared to similar approaches
from literature, it has the advantage that the logic which underlies the calculus
is chosen such that it is possible to switch on-the-fly from the approximate rea-
soning to self-composition style reasoning if higher precision is needed at some
point during the proof. Furthermore, it is shown that an integration of approx-
imate and precise techniques can also be achieved on the specification level. To
this end, a semantically correct translation of the most important specification
elements of a security type-checking approach, the prominent Java Information
Flow approach, into the JML extension is presented. Because both techniques
are modular on the method level, this allows to verify each method with the
technique most appropriate for it.

All techniques except for the last two have been implemented in the KeY system
and successfully tested on examples from literature and, in cooperation with
the research group of Prof. Ralf Küsters from the University of Trier, on an
implementation of a simple electronic voting system.

iv

Deutsche Zusammenfassung
(Abstract in German)

Programme mit öffentlich zugänglichen Interfaces (wie z. B. Webapplikationen)
werden zunehmend zur Verarbeitung von vertraulichen Daten genutzt. Dies
macht es umso wichtiger, den Fluss von Informationen in solchen Applikatio-
nen zu kontrollieren: vertrauliche Informationen dürfen nicht über öffentlich
zugängliche Ausgaben preis gegeben werden. Schon kleine Programmierfeh-
ler können zu kritischen Informationspreisgaben führen, wie der “Heartbleed
bug” kürzlich gezeigt hat. Sprach-basierte Informationsflussanalyse, welche
hier betrachtet wird, versucht solche Fehler mit Hilfe von Programmanalyse-
und Verifikationstechniken zu verhindern.

Obwohl in der Vergangenheit einige ausgefeilte Informationsflussanalysetech-
niken und Tools entwickelt worden sind, war es nicht möglich komplexe In-
formationsflusseigenschaften von offenen, objektorientierten Programmen mit
ausdrucksstarker Deklassifikation (kontrollierter Freigabe) von Informationen
zu verifizieren. Ein Beispiel für diese Art von Programmen sind elektronische
Abstimmungssysteme. In solchen Systemen ist das Wahlgeheimnis eine wichti-
ge Eigenschaft, welche auf Programmtextebene bis vor kurzem nicht bewiesen
werden konnte.

Diese Dissertation zeigt wie die hochpräzise Spezifikation und deduktive Ve-
rifikation von sprach-basiertem sicherem Informationsfluss realisiert werden
kann. Der Ansatz verwendet keine fixen Approximationen, sondern nutzt die
Präzision des zugrunde liegenden (relativ vollständigen) Kalküls für Dynami-
sche Logik für Java.

Auf der Spezifikationsseite präsentiert diese Dissertation eine Erweiterung der
Java Modeling Language (JML), der defacto Standardsprache für die Verhal-
tensspezifikation von Java Code, um feinkörnige, wissensbasierte und modula-
re Informationsflussspezifikationen einschließlich Deklassifikation. Diese Spe-
zifikationen können in eine neuartige Formalisierung von sprach-basiertem si-
cherem Informationsfluss in Dynamischer Logik für Java übersetzt und an-
schließend mittels des deduktiven Softwareverifikationssystems KeY analysiert
werden, welches in einem weiteren Beitrag gezeigt wird. Die Formalisierung
ist im Selbstkompositionsstil formuliert, einer semantisch präzisen, aber teuren

v

Formulierung von sprach-basiertem sicherem Informationsfluss. Diese Disser-
tation zeigt wie die Effizienz des Schlussfolgerns im Selbstkompositionsstil er-
heblich verbessert werden kann. Diese Verbesserungen sowie ein Beitrag zu
modularer Selbstkompositionsverifikation sind unabdingbar für die Skalier-
barkeit des Selbstkompositionsansatzes.

Obwohl der optimierte Selbstkompositionsansatz praktikabel ist, was durch
eine Fallstudie zu einem einfachen elektronische Abstimmungssystem belegt
wird, ist es dennoch ein schwergewichtiger Ansatz. Viele Programme, oder zu-
mindest Teile von Ihnen, können mit weniger präzisen aber dafür effizienteren
Techniken verifiziert werden. Zu diesem Zweck wird ein effizienterer, approxi-
mater Informationsflusskalkül präsentiert. Verglichen mit ähnlichen Ansätzen
aus der Literatur hat der Kalkül den Vorteil, dass die Logik, die dem Kalkül
zugrunde liegt, so gewählt ist, dass es möglich ist spontan vom approximaten
Schlussfolgern zum Selbstkompositionsstil zu wechseln, falls höhere Präzision
an irgendeinem Punkt im Beweis benötigt wird. Des weiteren wird gezeigt,
dass eine Integration von approximaten und präzisen Techniken auf Spezi-
fikationsebene erreicht werden kann. Hierzu wird eine semantisch korrekte
Übersetzung der wichtigsten Spezifikationselemente eines Sicherheitstypprü-
fungsansatzes, dem prominenten Java Information Flow Ansatz, in die JML
Erweiterung präsentiert. Da beide Techniken modular auf Methodenebene ar-
beiten, erlaubt dies die Verifikation jeder Methode mit der Technik, die am ge-
eignetsten für sie ist.

All Techniken außer den letzten beiden sind im KeY-System implementiert und
erfolgreich an Beispielen aus der Literatur und, in Kooperation mit der For-
schergruppe von Prof. Ralf Küsters von der Universität Trier, an einer Imple-
mentierung eines einfachen elektronischen Abstimmungssystems getestet wor-
den.

vi

Contents

1 Introduction 1
1.1 Information Flow in Object-Oriented Programs. 2
1.2 Fine-Grained Specification of Information Flow Properties. 3
1.3 Contributions. 4
1.4 Publications. 5
1.5 Outline. 5

2 Foundations 7
2.1 Java Dynamic Logic . 7

2.1.1 Type Hierarchy . 10
2.1.2 Fields, Heaps and Object Creation 10
2.1.3 Location Sets . 11
2.1.4 Sequences . 12
2.1.5 Substitutions . 12
2.1.6 Calculus . 13

2.2 Java Modeling Language . 14
2.2.1 Method Contracts . 16
2.2.2 Model Fields . 17
2.2.3 Ghost Fields . 18
2.2.4 Class Invariants . 19
2.2.5 Loop Invariants . 19

3 Language-Based Secure Information Flow 21
3.1 Attacker Model . 21
3.2 Formal Definition of Secure Information Flow 23
3.3 Example . 25
3.4 Multilevel Noninterference . 26
3.5 Discussion . 27

4 JML Extensions for Specifying Secure Information Flow 29
4.1 Illustration of Knowledge-Based Specification 30
4.2 Knowledge-Based Specification vs. Classical Security Policies . . 33
4.3 Extending JML* for Noninterference Specifications 34

4.3.1 Information Flow Method Contracts 34
4.3.2 Information Flow Block Contracts 36

vii

Contents

4.3.3 Information Flow Loop Invariants 36
4.3.4 Information Flow Class Invariants 36
4.3.5 Naming Views . 37

4.4 Examples . 37
4.4.1 Banking System . 37
4.4.2 Loop Invariants . 47
4.4.3 Block Contracts, Interface Specification and Interactive

Programs . 48
4.5 Discussion . 48

5 Verification of Secure Information Flow by Self-Composition 51
5.1 Naive Self-Composition . 51
5.2 Efficient Self-Composition . 53

5.2.1 Reducing the Cost of the Symbolic Execution 55
5.2.2 Reducing the Number of Comparisons 56

5.3 Modular Self-Composition . 58
5.4 Discussion . 64

6 Object Orientation 67
6.1 Information Flow in Java . 68

6.1.1 Isomorphisms . 69
6.1.2 Formalization of Opaqueness of References 70
6.1.3 Basic Object-Sensitive Noninterference 71
6.1.4 Optimized Object-Sensitive Noninterference 73

6.2 An Efficient Compositional Criterion 73
6.3 Formalisation in JavaDL . 79
6.4 JML Extension . 82
6.5 Discussion . 85

7 An Approximate Information Flow Calculus 87
7.1 Java DL Syntax Extension . 89
7.2 Two-State Semantics . 90
7.3 Two-State Calculus . 109

7.3.1 First Order Logic Rules . 112
7.3.2 Java Rules . 115
7.3.3 Update Simplification Rules 118
7.3.4 n Approximation Rules . 118
7.3.5 Conversion to One-State Semantics 119

7.4 Soundness of the Two-State Calculus 123
7.5 Discussion . 144

8 Combining Analysis Techniques 147
8.1 The Decentralized Label Model (DLM) 147

viii

Contents

8.2 Basic JIF to JML Translation . 151
8.2.1 Extraction of the Security Lattice and Security Policy from

DLM Annotations . 151
8.2.2 Translating Multi-Level Noninterference to Two-Level Non-

interference . 152
8.2.3 Specifying a set of Two-Level Noninterference properties

in JML . 153
8.3 Optimizations . 154
8.4 Translation of Arrays . 154
8.5 Translation of Declassify Statements 155
8.6 Example . 155
8.7 Discussion . 157

9 Case Studies 159
9.1 A Simple Electronic Voting System 159

9.1.1 Verifying Programs containing Cryptography 159
9.1.2 The System and its Specification 160
9.1.3 Verification Effort . 168
9.1.4 Discussion . 168

9.2 Examples from Literature . 169

10 Conclusions 171
10.1 Summary . 171
10.2 Future Work . 173

ix

List of Figures

2.1 Java DL type hierarchy (from Ahrendt et al.) 10

4.1 Banking scenario: use-case and class diagram. 31
4.2 Banking scenario: object diagram with annotated views. 31
4.3 Class diagram of Figure 4.1 with annotated views. 32

5.1 Sketch of the execution paths of (a) the original program and (b)
the self-composed program. 54

5.2 Reducing the verification overhead by compositional reasoning. . 57
5.3 Proof tree to the example from page 61. 62

6.1 Secure object creation, Beckert et al. [2014] 68

7.1 Two-state calculus: example derivation. 88
7.2 Two-state calculus: unmodified first-order rules from [Ahrendt

et al., Chapter 2]. 113
7.3 Two-state calculus: restricted first-order rules. The rules are vari-

ations of rules from [Ahrendt et al., Chapter 2] 114
7.4 Two-state calculus: n variants of first-order rules. The rules are

variations of rules from [Ahrendt et al., Chapter 2] 114
7.5 Two-state calculus: unmodified Java rules from Weiß [2011]. . . . 115
7.6 Two-state calculus: special Java rules. ncreateObj, nexpandMethod,

nconditional and nloopInvariant are variations of rules from Weiß
[2011]. 116

7.7 Two-state calculus: rules approximating n. 118
7.8 Transformation from two-state semantics to one-state semantics

with the help of predicate transformers. (Part 1) 124
7.9 Transformation from two-state semantics to one-state semantics

with the help of predicate transformers. (Part 2) 125

9.1 UML Class Diagram of the e-voting system. 161

xi

List of Listings

2.1 Example of a password checker in Java with a full functional
JML-specification. 15

4.1 EBNF of determines clauses. 35
4.2 Example implementation of the class BankAccount of Figure 4.3. 37
4.3 Example implementation of the class UserAccount of Figure 4.3. 39
4.4 Example implementation of the class Bank of Figure 4.3. 44

6.1 EBNF of determines clauses in the object-sensitive context. . . . 83

8.1 Example of a password checker in JIF. 148
8.2 Example translation to JML. 156

9.1 Implementation of the main method. 162
9.2 Information flow contract of the main method. 162
9.3 Loop invariant for the loop in main. 164
9.4 Information flow contract of publishResult. 165
9.5 Declaration of the interface Environment. 166
9.6 Contract of onSendBallot. 167

xiii

1 Introduction

Programs with publicly accessible interfaces (like web applications) are increas-
ingly used to process confidential data. This makes it all the more important
to control the information flow within such applications: confidential infor-
mation must not leak to publicly accessible outputs. Already small program-
ming errors may lead to critical information leaks, as the “Heartbleed bug”
recently showed. To cope with the problems arising from these developments,
in the last decades a discipline called information flow control emerged (Lampson
[1973], Denning [1976], Cohen [1977], Goguen and Meseguer [1982]). Informa-
tion flow control prevents information leaks by a variety of techniques, ranging
from dynamic monitoring approaches to static program analysis and verifica-
tion techniques. This thesis contributes to static information flow control. More
precisely, it presents advances in the field of language-based information flow anal-
ysis.

Language-based information flow analysis is concerned with the analysis of
program code, in contrast to other fields of information flow control which
aim at the analysis of abstract systems, modeled for instance by finite state
machines. Code level verification provides far reaching guarantees, but is—
in particular for real world programming languages—inherently difficult. In
general, the question whether a program has secure information flow or not
is undecidable for Turing complete languages. Therefore, a fully automatic,
sound and precise information flow verification technique for Turing complete
programming languages cannot exist.

In the past, a variety of sophisticated information flow analysis techniques and
tools have been developed. As in functional verification, the proposed tech-
niques can be divided into lightweight (that is, automatic, but approximate)
and heavyweight (that is, semiautomatic, but precise) approaches.

Popular lightweight approaches are security type systems (a prominent exam-
ple in this field is the Java Information Flow (JIF) system by Myers [1999a]),
the analysis of program dependence graphs for graph-theoretical reachability
properties (Hammer et al. [2006]), specialized approximate information flow
calculi based on Hoare like logics (Amtoft et al. [2006]) and the usage of abstrac-
tion and ghost code for explicit tracking of dependencies (Pan [2005], Bubel

1

1 Introduction

et al. [2008], van Delft [2011]). A popular heavyweight approach is to state in-
formation flow properties by self-composition (Barthe et al. [2004], Darvas et al.
[2005]) and use off-the-shelf software verification systems to check for them.
An alternative is to formalize information flow properties in higher-order logic
and use higher-order theorem provers for the verification of those properties,
as presented for instance by Nanevski et al. [2011].

Lightweight approaches are usually efficient and scale well on large programs,
but do not have the necessary precision to express and verify complex infor-
mation flow properties of programs with controlled release of information. An
instance of such kind of programs are electronic voting systems. In those sys-
tems, secrecy of votes is an important property which could not be proven by
approximate approaches so far. Heavyweight approaches on the other hand
were, until recently, applicable to artificially small examples only.

This thesis contributes to the deductive verification of complex information
flow properties of open, object-oriented programs with controlled release of
information. To this end, the thesis proposes several improvements of the self-
composition approach, making a highly precise analysis of sequential Java pro-
grams feasible. The feasibility of the approach is proven by a case study on
a simplified electronic voting system, carried out in cooperation with the re-
search group of Prof. Ralf Küsters from the University of Trier. Though the
optimized self-composition approach is practicable, it is still a heavyweight ap-
proach. In order to lighten the burden of the verification process, the present
thesis proposes a combination of self-composition style reasoning with a novel
approximate information flow calculus and—orthogonal to this approach—a
combination with the JIF approach.

The presented techniques are used for the verification of sequential Java pro-
grams. The considered subset of Java explicitly covers exceptions, object cre-
ation and static initialization. It mainly does not include concurrency, floating
point arithmetic and generics. In the context of this thesis sequential Java is
considered to be deterministic.

The verification of information flow properties of object-oriented programs and
the fine-grained specification of information flow properties pose special prob-
lems, as the next two sections show.

1.1 Information Flow in Object-Oriented Programs.

Object-oriented programs pose particular challenges for the verification of se-
cure information flow. If variables of object type are observable, then the clas-
sical notion of secure information flow—secret inputs may not influence public

2

1.2 Fine-Grained Specification of Information Flow Properties.

outputs—classifies almost all programs as insecure: the problem traces back
to the creation of new objects and the fact that the mere existence of secret ob-
jects may influence the choice of a new observable object. In object-oriented
programming languages like Java, where references are opaque (that is, refer-
ences can be compared by the identity comparison operation == only), a lot
of programs rejected by the classical notion of secure information flow are in-
deed secure. Therefore, it is reasonable to replace the classical notion by a less
restrictive version which uses an adopted notion of indistinguishability of pro-
gram states, as used for instance by Hedin and Sands [2005], Hansen and Probst
[2006], Barthe et al. [2013], Banerjee and Naumann [2002], Beringer and Hof-
mann [2007], Naumann [2006]. We call the adopted notion object-sensitive secure
information flow.

Lightweight information flow analyses usually check for object-sensitive secure
information flow, but it has been an open research question to find a feasible
precise formalization of this notion. The present thesis addresses this issue and
derives a feasible precise formalization from an investigation into the concept
of object-sensitive secure information flow itself.

1.2 Fine-Grained Specification of Information Flow
Properties.

The verification of information flow properties relies on a formal specification
of those properties. In language-based information flow analysis these specifi-
cations are usually given in form of annotations to the program code.

A well-known approach in this area is the JIF approach by Myers [1999a].
Though the approach belongs to the most successful information flow verifi-
cation techniques for Java, the specifications are not suitable for highly precise
information flow verification as targeted in this thesis. Banerjee et al. [2008] pro-
pose a promising scheme for the specification (and verification) of expressive
declassification policies. The approach is based on a self-defined, non-object-
oriented programming language, but the authors present some ideas how the
technique could be extended to object-oriented languages as well. An alterna-
tive is the defacto standard language for behavioral specification of Java code:
the Java Modeling Language (JML), introduced by Leavens et al. [2006, 2008].
The language was designed for the specification of functional properties, but
there exist several approaches for the specification of information flow prop-
erties in JML as well. Warnier [2006] and Haack et al. [2008] encode sufficient
conditions for information flow properties into pre- and postconditions of JML
method contracts. This approach, however, is not suitable for highly precise

3

1 Introduction

information flow verification. An alternative is the extension of JML by new
keywords. Dufay et al. [2005] introduce new JML-keywords which directly de-
fine relations between the program variables of two self-composed executions.
This is flexible because general relational properties can be expressed in this
way. On the other hand, it seems to be questionable whether these specifica-
tions can be verified with other techniques than self-composition or relational
verification in general.

This thesis builds upon the above ideas by proposing an extension of JML for
the specification of complex information flow properties including expressive
declassification which is suitable for highly precise information flow verifica-
tion.

1.3 Contributions.

Overall, this thesis shows how highly precise specification and deductive ver-
ification of language-based secure information flow can be made feasible. The
approach does not rely on fixed approximations, but makes use of the precision
provided by the underlying (relatively complete) calculus for Java Dynamic
Logic.

The main contributions of this thesis are:

• An extension of the Java Modeling Language (JML), the defacto stan-
dard language for behavioral specification of Java code, for fine-grained,
knowledge-based, modular information flow specifications including ex-
pressive declassification (Chapter 4).

• A translation of the JML extensions to a novel formalization of language-
based secure information flow in Java Dynamic Logic, formulated in the
semantically precise self-composition style (Section 5.1).

• A considerable improvement of the efficiency of self-composition style
reasoning (Section 5.2) and a technique for modular self-composition ver-
ification (Section 5.3). Both contributions are indispensable prerequisites
for the scalability of the self-composition approach.

• An optimized formalization of object-sensitive secure information flow in
Java Dynamic Logic (Chapter 6), derived from an investigation into the
concept of object-sensitive secure information flow itself.

• An approximate information flow calculus with the ability to switch on-
the-fly from approximate reasoning to self-composition style reasoning if
higher precision is needed at some point during the proof (Chapter 7).

4

1.4 Publications.

• An integration of approximate and precise techniques on the specification
level with the help of a semantically correct translation of the most im-
portant specification elements of JIF into the JML extension (Chapter 8).
Because both techniques are modular on the method level, this allows
verifying each method with the technique most appropriate for it.

• A case study on a simplified electronic voting system which proves the
feasibility of the optimized self-composition approach (Chapter 9). The
case study was carried out in cooperation with the research group of
Prof. Ralf Küsters from the University of Trier.

• An implementation of all techniques described in Chapters 4, 5 and 6. The
implementation extends the KeY system and is accessible via Java Web
Start on the website http://www.key-project.org/DeduSec/.

1.4 Publications.

Parts of the work presented in this thesis have already been published on well
established conferences and workshops.

Parts of Chapter 2 are based on Scheben and Schmitt [2012]; Chapter 3 is a re-
vised and extended version of parts of Scheben and Schmitt [2012] and Beckert
et al. [2014]; Chapter 4 is a revised and extended version of Scheben and Schmitt
[2012]; Chapter 5 is a revised version of Scheben and Schmitt [2014] and parts
of Scheben and Schmitt [2012]; Chapter 6 is a revised version of Beckert et al.
[2014]. Chapter 9 is loosely related to Küsters et al. [2013] and Bormer et al.
[2012]. Finally, Ahrendt et al. [2014] gives a brief summary of the work pre-
sented in this thesis. Chapters 7 and 8 have not been published before. They
appear for the first time in print. The introduction (Chapter 1) and the conclu-
sion (Chapter 10) cover parts of all mentioned publications.

Further conference and workshop publications by the author not directly re-
lated to this thesis are Kuntz et al. [2012], Geisler and Scheben [2007], Scheben
[2006].

1.5 Outline.

The next chapter gives a short introduction into Java Dynamic Logic and the
Java Modeling Language. Both are used intensively throughout the thesis.
Based on a formal attacker model, Chapter 3 then explains and formalizes when

5

http://www.key-project.org/DeduSec/

1 Introduction

a program is considered secure with respect to its information flow. The formal-
ization of secure information flow is followed by the main contributions of the
thesis as listed in Section 1.3. The thesis concludes with a summary and an
outlook on future work in Chapter 10.

6

2 Foundations

Parts of this chapter are based on Scheben and Schmitt [2012].

This chapter gives a short introduction to Java Dynamic Logic and the Java
Modeling Language. An in-depth presentation of Java Dynamic Logic can be
found in Weiß [2011]. For a more comprehensive introduction to JML see Leav-
ens et al. [2006, 2008] and Weiß [2011]. It is assumed that the reader is familiar
with typed first order logic, as presented for instance in Beckert et al. [2007b].

2.1 Java Dynamic Logic

Java Dynamic Logic (Java DL) is an adaption of first order Dynamic Logic
(Harel et al. [2000]) to the Java programming language. It is an extension of
typed first order logic, augmented by

• modal operators [α] (called box modality) and 〈α〉 (called diamond modality)
for sequential Java programs α, and

• updates {u} (which can be understood as a kind of explicit substitutions).

The syntax is defined on the basis of a signature Σ = (F ,P,V, (T ,v), γ,Prg)
consisting of

• a set of function symbols F ,

• a set of predicate symbols P ,

• a set of variable symbols V ,

• a set of types T with a subtype relation v of the form depicted in Fig-
ure 2.1,

• a static typing function γ, and

• a sequential Java program Prg.1

1Confer Beckert et al. [2007b] or Weiß [2011] for a detailed description of which Java programs are
allowed.

7

2 Foundations

The set of function symbols is divided into a set of program variables PV and a set
of “rigidly” interpreted function symbols RF. According to Weiß [2011], terms,
formulas and updates are defined recursively by the following grammar:2

TrmA ::= x | f(TrmB′
1
, . . . ,TrmB′

n
) | {Upd}TrmA

Frm ::= true | false | p(TrmB′
1
, . . . ,TrmB′

n
) |

¬Frm | Frm ∧ Frm | Frm ∨ Frm | Frm→ Frm | Frm↔ Frm |
∀x; Frm | ∃x; Frm | [α]Frm | 〈α〉Frm | {Upd}Frm

Upd ::= v := TrmA′ | Upd ||Upd | {Upd}Upd | Upd; Upd

where x is a variable of type A, f : B1× . . .×Bn → A is a function symbol (that
is, a rigidly interpreted function symbol or a program variable), p : B1×. . .×Bn
is a predicate symbol, B′i v Bi, α is a program fragment (a “subprogram”) of
Prg, v is a program variable of type A and A′ v A. TrmA denotes the set of
terms of (exact) type A, Frm denotes the set of formulas and Upd denotes the
set of updates. The set of all terms is defined as Trm ::=

⋃
A TrmA. Note that

logical variables must not occur in programs, and program variables must not
be quantified.

Java DL formulas are interpreted in Kripke structuresD = (D, I,S, δ, P), where

• D is a set of values, called domain or universe,

• I is a function, called interpretation, which assigns a meaning to the pred-
icate symbols P and the rigid function symbols RF,

• S is a set of states which consists of all functions assigning values to the
program variables PV,

• δ : D → T is a dynamic typing function and

• P is a set of transition relations ρα : S × S , one for each legal program
fragment (or “subprogram”) α of Prg, such that (s1, s2) ∈ ρα if and only
if α started in s1 terminates normally in s2.

As usual in first order logic, free variables are interpreted by a variable assign-
ment β. Up to {u}t, {u}φ, [α]φ and 〈α〉φ, formulas and terms are evaluated as in
first order logic. The notation tD,s,β denotes the evaluation of term t in Kripke
structure D, state s and variable assignment β, whereas D, s, β � φ expresses
that formula φ evaluates to true in (D, s, β).

If D and β can be deduced from the context, we sometimes abbreviate tD,s,β by
ts and D, s, β � φ by s � φ. A tuple (D, s) of a Kripke structure D and a state s

2The depicted grammar has been slightly simplified.

8

2.1 Java Dynamic Logic

is called a model of φ if D, s, β � φ holds for all variable assignments β. The case
that φ evaluates to false is denoted by D, s, β 2 φ.

The semantics of {u}t, {u}φ, [α]φ and 〈α〉φ is defined as follows:

• D, s, β � [α]φ holds if and only if D, s2, β � φ holds for all states s2

such that (s, s2) ∈ ρα. In other words, D, s, β � [α]φ holds if and only
if D, s2, β � φ is true for all states s2 such that α started in s terminates
normally in s2.

Note that this definition does not require α to terminate. If α terminates,
then s2 is uniquely determined: sequential Java is considered to be deter-
ministic.

• D, s, β � 〈α〉φ holds if and only if there exists a state s2 such that (s, s2) ∈
ρα and D, s2, β � φ. In other words, D, s, β � 〈α〉φ holds if and only if
there exists a state s2 such that α started in s terminates normally in s2

and D, s2, β � φ is true.

This means in particular that 〈α〉 requires α to terminate in the uniquely
determined state s2. Note that 〈α〉 is the dual of [α], that is, D, s, β � [α]φ
holds if and only if D, s, β � ¬〈α〉¬φ holds.

• ({u}t)D,s,β = tD,s
u,β with su = valD,s,β(u)(s) where

– valD,s′,β(x := t)(s) is the state stx defined as

stx (y) =

{
tD,s

′,β if y = x

s(y) else
,

– valD,s′,β(u1 ||u2)(s) = valD,s′,β(u2)(s′′) with s′′ = valD,s′,β(u1)(s),

– valD,s′,β({u1}u2)(s) = valD,s′′,β(u2)(s) with s′′ = valD,s′,β(u1)(s),
and

– valD,s′,β(u1;u2)(s) = valD,s′,β(u1||{u1}u2)(s).

• D, s, β � {u}φ holds if and only if D, su, β � φ holds where su is defined
as before as su = valD,s,β(u)(s).

Updates are comparable to substitutions, but in contrast to substitutions they
are part of the logic itself.

9

2 Foundations

>

Any

Boolean Int Object

. . .

Null

⊥

. . .

LocSet Seq

Heap Field

Figure 2.1: Java DL type hierarchy (from Ahrendt et al.)

2.1.1 Type Hierarchy

To check if the dynamic type of a term t is a subtype of A, Java DL contains
special predicates instanceA, one for each typeA, where I(instanceA)(x) = true
if and only if δ(x) v A (for x ∈ D). Additionally, Java DL contains special
predicates exactInstanceA(t) for checking whether the dynamic type of a term
t is of exact type A, that is, I(exactInstanceA)(x) = true if and only if δ(x) = A.
For short we use t@−A for instanceA(t) and eInstA for exactInstanceA.

Any type hierarchy (T ,v) of Java DL has the form depicted in Figure 2.1. Be-
side the usual types Boolean , Int and Object the Java DL type hierarchy contains
the special types Heap, Field , LocSet and Seq which require a short explana-
tion.

2.1.2 Fields, Heaps and Object Creation

The type Field represents the set of all Java fields. Java DL uses tuples (o, f) of
objects o and fields f to address heap locations. The current heap of a Java pro-
gram is represented by a special program variable heap ∈ PV of type Heap.
The elements of type Heap represent heap states. A field accesses o.f is for-
malized as in the theory of arrays (Mccarthy [1962], Bradley et al. [2006]) by
selectA(heap, o, f). Similarly, store(heap, o, f, v) stores a value v in location
(o, f) on the current heap. The creation of an object o is modeled by storing

10

2.1 Java Dynamic Logic

the value true in the special location (o, created). In Java DL objects may not
be deallocated. Therefore, the value of (o, created) cannot be modified by store
directly. Instead, Java DL uses the special constructor create(h, o) to create an
object o on heap h.

Java DL takes only few assumptions on the creation of new objects: if in Java a
new object is created, it is assumed that (1) the newly created object is different
from null ; and (2) if the heap is wellformed (see below), then no already created
object will be (re)created. The order in which objects are created is determinis-
tic, but underspecified.

Within a program, field accesses always refer to the current heap state repre-
sented by heap. The same holds for assignments and object creations. The
logic, however, may talk about different heap states. In Java DL it is even pos-
sible to quantify over all heap states. This is useful, for instance, to express
noninterference in Java DL (see Chapter 5).

Not all heap states represented in the logic can actually be reached by running
Java programs. The heap state where all (countably infinitely many) objects are
created, for instance, exists in the logic, but is not reachable by any program. All
heap states reachable by Java programs have the following properties: (1) all
objects stored on the heap are either created or the null object; (2) only finitely
many objects are created; and (3) all locations stored on the heap in location
sets (see Section 2.1.3 below) refer to created objects or the null object only. If
a heap state h fulfills these properties, then h is called wellformed. The set of
wellformed heap states h is characterized by the predicate wellFormed(h).

2.1.3 Location Sets

In the context of modular program verification it is useful to be able to talk
about the set of heap locations modified or accessed by a method. In Java DL
sets of heap locations are represented by the elements of type LocSet . Location
sets are build up from the following constructors:

• ∅̇ : LocSet

• singleton : Object × Field → LocSet

• ∪̇ : LocSet × LocSet → LocSet

• ∩̇ : LocSet × LocSet → LocSet

• \ : LocSet × LocSet → LocSet

11

2 Foundations

2.1.4 Sequences

Terms of type Seq represent finite sequences. A sequence may contain elements
of different types. The term 〈5,true〉, for instance, is an element of Seq . Se-
quences may also be nested.

Similar to location sets, sequences can be build up from the constructors

• seqEmpty : Seq ,

• seqSingleton : Any → Seq and

• seqConcat : Seq × Seq → Seq .

Instead of

seqConcat(seqSingleton(v1), seqConcat(. . . , seqSingleton(vn)))

we usually write 〈v1, . . . , vn〉. Sequences can also be constructed with the help
of the generalized quantifier seq{i}(from, to, e) where e is a term of arbitrary
type with free variable i and where from and to are terms of type Int defining
the range of the variable i. Its semantics is defined by

(seq{i}(from, to, e))D,s,β

= 〈(e[i/n])D,s,β , (e[i/n+ 1])D,s,β , . . . , (e[i/m− 1])D,s,β〉

if fromD,s,β = n < m = toD,s,β , and (seq{i}(from, to, e))D,s,β = 〈〉 else. Here
e[i/n] is the term obtained from e by replacing all occurrences of the variable i
by the integer n.

Values contained in sequences can be accessed by seqGetA : Seq× Int → A. For
short, we usually write R[i] instead of seqGetAny(R, i).

2.1.5 Substitutions

As usual, [x1/t1, . . . , xn/tn] denotes a substitution. The application of a substi-
tution [x1/t1, . . . , xn/tn] on a term t, denoted by t[x1/t1, . . . , xn/tn], yields the
term obtained from t by simultaneously replacing all occurrences of variable xi
by term ti.

12

2.1 Java Dynamic Logic

2.1.6 Calculus

Java DL comes with a sequent calculus. Sequents have the form Γ =⇒ ∆, where
Γ (called antecedent) and ∆ (called succedent) are finite sets of formulas. The
meaning of sequents is that of their meaning formula

∧
Γ →

∨
∆. The calculus

consists of a set of schematic rules which operate on sequents. Schematic rules
have the form

Γ1 =⇒ ∆1 . . . Γn =⇒ ∆n

Γ =⇒ ∆

where the conclusion Γ =⇒ ∆ and the premisses Γ1 =⇒ ∆1, . . . , Γn =⇒ ∆n

may contain schema variables. Schema variables are placeholders which are sub-
stituted by terms or formulas if the rule schema is applied on a concreted se-
quent. Rules are always applied bottom up, whereas the direction of logical
consequence is top down. A rule is sound, if the universal validity of the pre-
misses implies the universal validity of its conclusion. Rules without premiss
are called axiom.

A special kind of schematic rules are rewrite rules. They have the form x1 x2

where x1 and x2 are either formulas or terms of the same type. The rule x1 x2

replaces an occurrence of x1 in a sequent by x2. A rewrite rule is sound, if x1 is
logically equivalent to x2: in this case the meaning of the sequent remains the
same.

A simple example of a schematic rule is “andRight”:

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

The rule expresses that if φ and ψ are valid in context Γ, ∆, then also φ ∧ ψ is
valid in context Γ, ∆. Another example is the rule “assignLocal”:

assignLocal
Γ =⇒ {u}{a := t}[π ω]φ,∆

Γ =⇒ {u}[π a = t; ω]φ,∆

where a is a program variable and t is a side-effect-free, normally terminating
expression. The rule converts a Java assignment into an update. Modalities
occurring in schematic rules usually have the form [π p; ω], where π is a non-
active Java prefix, p is the active statement and ω is the remaining Java program.
The non-active prefix contains opening braces of blocks, labels, beginnings of
try-catch-finally blocks etc., whereas the active statement is the next command
to be executed.

In the sequent calculus proofs are represented by closed proof trees. The nodes
of a proof tree are annotated with sequents, where the children of each node

13

2 Foundations

N are annotated with (instantiations of) the premisses of a rule schema which
is applicable to the sequent of N . Each inner node is additionally annotated
with the (instantiated) rule which relates the node to its children. A branch of a
proof tree is closed, if its leaf is annotated with an axiom. A proof tree is closed
if all branches of the tree are closed.

Java DL formulas are automatically generated by the KeY tool from Java pro-
grams annotated with specifications written in the Java Modeling Language.
The next section gives a short introduction to the Java Modeling Language.

2.2 Java Modeling Language

The Java Modeling Language (JML) introduced by Leavens et al. [2006, 2008] is
a popular language for the behavioral specification of Java code. It adopts the
design by contract (DBC) methodology (Meyer [1988]). Java expressions en-
riched with specification constructs such as quantifiers are used to write asser-
tions, such as pre- and postconditions and invariants. Weiß [2011] introduced a
dialect of JML, called JML*, which is suitable for modular specifications. JML*
extends JML mainly by the concept of dynamic frames (Kassios [2011]). The
approaches presented in this thesis are based on JML*, but in most places the
text does not distinguish the two versions.

This section shortly explains the JML* specification entities most important in
the context of this thesis, namely method contracts, loop invariants, class in-
variants, ghost fields and model fields. For a more comprehensive introduction
to JML and JML* see for instance Weiß [2011].

Listing 2.1 shows a simple implementation of a password checker. User names
and passwords are represented as integers and stored in arrays names and
passwords, respectively, where the password stored at position i belongs to
the user name stored at that same position. The integer numOfFailedChecks
holds the current number of consecutively unsuccessful login attempts. Login
attempts are checked by the method check which takes a user name and a
password as parameters. If there exists an index i such that the array names
contains the passed user name and at which the array passwords contains the
password, then the method returns true and resets numOfFailedChecks to
zero. Otherwise, check returns false and increments numOfFailedChecks.

The source code of the example is annotated with JML specifications. Each
specification is included in a special comment, either starting with //@ or with
/*@. The following sections explain the intuitive meaning the specifications.

14

2.2 Java Modeling Language

1 class PasswordFile {
2 private int[] names, passwords;
3 private int numOfFailedChecks;
4 //@ invariant names.length == passwords.length;
5

6 /*@ public model \locset rep;
7 @ private represents rep =
8 @ \set_union(\locset(names, passwords, numOfFailedChecks),
9 @ \set_union(names[*], passwords[*]));

10 @ accessible rep : rep;
11 @*/
12

13 /*@ private normal_behavior
14 @ ensures \result ==
15 @ (\exists int i; 0<=i && i<names.length;
16 @ names[i]==user && passwords[i]==password);
17 @ public normal_behavior
18 @ assignable rep;
19 @*/
20 public boolean check(int user, int password) {
21 /*@ loop_invariant 0 <= i && i <= names.length &&
22 @ (\forall int j; 0 <= j && j < i;
23 @ !(names[j]==user
24 @ && passwords[j]==password));
25 @ assignable numOfFailedChecks;
26 @ decreases names.length - i;
27 @*/
28 for (int i = 0; i < names.length; i++) {
29 if (names[i] == user && passwords[i] == password) {
30 numOfFailedChecks = 0;
31 return true;
32 }
33 }
34 numOfFailedChecks++;
35 return false;
36 }
37 }

Listing 2.1: Example of a password checker in Java with a full functional JML-
specification.

15

2 Foundations

2.2.1 Method Contracts

The most basic concept in JML are method contracts. Method contracts are
placed in front of Java methods. They specify a contract between the caller of
a method and the method itself. A contract usually consists of a precondition
which has to be fulfilled by the caller and a postcondition which is guaranteed
by the method if the precondition holds.

Listing 2.1 shows in lines 13 to 19 two contracts for the method check. Precon-
ditions are specified with the help of the keyword requires. If the keyword is
missing—as in this case—the precondition is implicitly defined as true. There-
fore, the postcondition of the contract holds for any invocation of check. Post-
conditions are specified with the help of the keyword ensures. The postcon-
dition in lines 14 to 16 says that the result of the method is true if and only if
there exists an index i at which the array names equals the value passed by the
parameter user and at which the array passwords equals the value passed
by the parameter password. If the postcondition is missing—as in the second
contract—it is implicitly defined as true.

ensures clauses give guarantees for normal termination only. In case excep-
tions are thrown, additional clauses are needed to specify which exceptions are
allowed to be thrown and what postcondition should hold in such a case (see
for instance Weiß [2011]). The contracts of check specify with the help of the
keyword normal_behavior that check does not throw exceptions.

Similar to Java, JML supports visibility modifiers. They follow essentially the
same rules as in Java, but JML has one additional rule for visibility that mat-
ters in the context of this thesis: an annotation may not refer to names (for
instance field names) that are more hidden than the visibility of the annota-
tion itself. In the example, the first contract is private. It is visible within the
class PasswordFile only. Therefore it may talk about the private fields of
PasswordFile. In contrast, the second contract is publicly visible and may
refer to public names only.

Beside pre- and postconditions, method contracts can specify which heap loca-
tions may be altered by a call to the corresponding method. This is done with
the help of the keyword assignable. The second contract of check speci-
fies that at most the locations defined by the model field rep may be changed.
What model fields are and how they can be used is discussed in the next sec-
tion.

16

2.2 Java Modeling Language

2.2.2 Model Fields

Model fields can be interpreted as functions from the heap to their specified
type. They are declared like usual Java fields, but within JML annotations and
with the additional model modifier. In the example, line 6 declares the model
field rep of type \locset. The type \locset is JML* specific. Its elements
are sets of heap locations, where a heap location is a pair of an object and a field
(see Section 2.1.3). The evaluation of model fields is defined by represents
annotations. represents annotations constrain the function which is repre-
sented by a model field. In the example (lines 7 to 9), the model field rep
represents the heap locations

{(this, names), (this, passwords), (this, numOfFailedChecks)}

∪
⋃
i

(this.names, arr(i)) ∪
⋃
i

(this.passwords, arr(i)) .

Note that, for instance, the evaluation of this.names depends on the heap.
Therefore, rep is indeed a function from the heap to sets of heap locations.

Model fields are used to abstract from implementation details. This is in par-
ticular useful for the specification of interfaces. In the example, the model field
rep is used to enforce the principle of information hiding. All fields occurring
in the set of heap locations abstracted by rep are private and thus not visi-
ble outside of PasswordFile. Therefore, those fields may not be used in a
public contract for check. Still, we want to express that only private heap lo-
cations are changed by check, such that callers can be sure that none of “their”
heap locations change by a call to check. This can be achieved by the usage
of the model field rep in the contract of check whose definition is not known
by the caller (the represents annotation is private). Callers need to know only
two things: (1) that their “own” heap locations are disjoint from the locations
represented by rep; and (2) that the set of locations represented by rep does
not change if a location outside of rep is changed. Item (2) is ensured by line
10. The accessible annotation specifies on which heap locations the func-
tion represented by the model field depends. In the example, the specification
says that the result of rep depends at most on the locations in rep itself. This
kind of specification is called self-framing (see Kassios [2011] or Weiß [2011]).
It exactly expresses (2). Item 1 has to be specified by the caller and checked on
every call of check.

Chapter 4 frequently uses model fields of type sequence (note that the type
sequence is also JML* specific):

/*@ model \seq pwdFileManager;
@ represents pwdFileManager =

17

2 Foundations

@ \seq(names,
@ \seq_def(int i; 0; names.length; names[i]),
@ passwords,
@ \seq_def(int i; 0; passwords.length; passwords[i]));
@*/

The first line declares the model field pwdFileManager of type sequence.
Lines 2 to 6 define pwdFileManager to be the finite sequence

〈 names, 〈names[0], . . . , names[names.length− 1]〉,
passwords, 〈passwords[0], . . . , passwords[passwords.length− 1]〉〉 .

(2.1)

As the example shows, sequences can be nested.

2.2.3 Ghost Fields

Ghost fields serve the same purpose as model fields, but are handled slightly
differently. They are declared as usual Java fields, but within JML annotations
and with the additional modifier ghost. For instance, the annotation

//@ ghost \seq pwdFileManager;

declares the ghost field pwdFileManager of type sequence. Ghost fields can
be used within specifications only, but otherwise behave like usual Java fields.
They can be assigned with the help of special set statements within the body
of a method. set statements have to be included in JML comments. Except for
the preceding set keyword the syntax is as in usual assignments:3

/*@ set pwdFileManager =
@ \seq(names,
@ \seq_def(int i; 0; names.length; names[i]),
@ passwords,
@ \seq_def(int i; 0; passwords.length; passwords[i]));
@*/

In order to ensure that the ghost field pwdFileManager always represents the
finite sequence (2.1), as it is the case for the model field from the last section,
it is appropriate to use a class invariant (see next section) which expresses this
equality.

3Unfortunately, the convenient syntax used in the expression seq(names, ...) cannot be parsed in
set statements in the current version of KeY. The expression has to be replaced by a combination
of seq concat and seq singleton expressions instead. For an example for the syntax currently
supported by KeY see Section 4.4.1.

18

2.2 Java Modeling Language

Usually, theorem provers can handle ghost fields more efficiently than model
fields. Model fields, on the other hand, might be more attractive to specifiers be-
cause they cause less specification overhead. This thesis usually prefers ghost
fields, not least because this allows the handling of bigger programs. More-
over, the additionally required set statements explicitly describe the transi-
tions from one abstract state to another. This documents the behavior of the ab-
straction and is therefore valuable for understanding the code, even if it leads
to additional specification overhead.

2.2.4 Class Invariants

Intuitively, class invariants are properties which hold for all objects of a class—
ideally—throughout the execution of the whole program. There are cases,
though, where it is unavoidable to violate class invariants. For instance, mul-
tiple program variables cannot be updated at once in Java: let a, b and c be
three fields. Then the invariant c == a + b has to be violated each time a is
assigned a new value.

In JML* all class invariants of the object referenced by this hold before and
after the execution of a method of the object, but this default behavior can be
overwritten. The modifier helper in front of a method disables the default
behavior. Moreover, if o is an expression of object type, then the expression
\invariant_for(o) can be used to refer to the invariant of o, for instance in
pre- and postconditions or other invariants. Thus, it is possible to enforce class
invariants as needed, but also to leave them open.

Class invariants are defined by JML annotations starting with the keyword
invariant. Line 4 shows such a definition. The invariant says that the lengths
of the arrays names and passwords coincide.

The class invariant of an object becomes a heap-dependent predicate in Java
DL: the invariant of object o holds in heap h if and only if the expression java.
lang.Object::<inv>(h,o) evaluates to true. For short, we usually write
o.<inv> instead of java.lang.Object::<inv>(heap,o).

2.2.5 Loop Invariants

In order to support the theorem prover in proving properties about programs,
JML allows the specifier to state auxiliary lemmas within the body of a method.
The most important auxiliary lemmas for software verification systems are loop
invariants. Loop invariants state properties which hold before and after each
execution of the loop body. In the example, lines 21 to 24 state that before and

19

2 Foundations

after each execution of the loop body the control variable i is in the range be-
tween zero (inclusive) and names.length (inclusive) and that for all positions
j in between zero and i either the passed user name does not equal the one of
names[j] or the passed password does not equal the one of passwords[j].

Similar to method contracts, loop invariants can be augmented by assignable
clauses which describe a set of heap locations which may be modified at most
by the loop. In the example, the loop may modify at most the heap location
(this, numOfFailedChecks). If termination of a loop has to be proven (as it is
usually the case) the loop invariant can additionally be augmented by a ranking
function. The ranking function is specified behind the decreases keyword. In
the example, line 26 specifies that the value of names.length - i decreases
in each iteration of the loop and that it is bounded by zero.

20

3 Language-Based Secure
Information Flow

This chapter is a revised and extended version of parts of Scheben and Schmitt [2012]
and Beckert et al. [2014].

Programs may leak information in a number of different ways. Usually, in-
formation leaks are categorized into explicit leaks, implicit leaks and side chan-
nels. Explicit leaks are the most obvious ones and easy to detect. If low is a pub-
licly observable program variable (also called “low variable”) and if high is a
program variable containing secret information (also called “high variable”),
then the program low = low + high has an explicit information leak: the
secret is disclosed explicitly by an assignment. Implicit leaks are more subtle.
They disclose information through the control flow of programs. For instance,
the program if(high > 0) {low = 0;} else {low = 1;} is insecure,
too: if high is greater than 0, then the final value of low is 0, else it is 1. The
information whether high is greater than 0 or not is leaked. It goes without
saying that in complex programs these leaks become much more subtle. Fi-
nally, information may leak by physical properties like time, power consump-
tion, heat generation and others. These kinds of leakages are called side chan-
nels. Like most work on language-based information flow analysis, this thesis
is concerned with explicit and implicit leaks only.

In the following, the notation of language-based secure information flow will
be formalized. As a first step towards a formalization, the capabilities of attack-
ers have to be fixed.

3.1 Attacker Model

Attackers watch program runs and observe two things about them: Firstly, they
know the program code. This is formalized by the assumption that they know
which initial state of a program run relates to which final state. Secondly, they
can observe parts of the initial and the final program state. What attackers
are able to observe of those states is described by sets of so-called observation

21

3 Language-Based Secure Information Flow

expressions. Observation expressions can be thought of as arbitrary Java DL
terms or JML expressions:

Definition 1. An observation expression can be:

1. A program variable (including method parameters).

2. e.f for e an expression of type C and f a field declared in C (including ghost and
model fields).

3. e[t] if e is an expression of array type, and t of integer type.

4. op(e1, . . . , ek) if op is a data type operation and ei expressions of matching type.

5. The usual conditional operator b ? e1 : e2 (e1, e2 have to be of the same type).

6. The sequence definition operator seq{i}(from, to, e). Its semantics is defined by

(seq{i}(from, to, e))s

= 〈(e[i/n])s, (e[i/n+ 1])s, . . . , (e[i/m− 1])s〉

if froms = n < m = tos, and (seq{i}(from, to, e))s = 〈〉 else. Here e[i/n] is
the expression obtained from e by replacing all occurrences of the variable i by
the literal n.

Attackers can observe the values of observation expressions and additionally
know which value belongs to which expression. One can imagine that the ex-
pressions and the corresponding evaluations are printed on a screen. Attackers
may compute any computable function on the observed values and compare
the results by equality. The set of observation expressions describing the infor-
mation observable in initial program states might differ from the one describing
the information observable in final program states.

Technically, this thesis uses sequences of observation expressions (which are
themselves observation expressions), instead of sets, to describe the informa-
tion observable by attackers. The concatenation of two observation expressions
R1 and R2 is denoted by R1;R2.

Let R be an observation expression. If s is the initial or the final state of a
program run, then, formally, attackers are able to observe the tuple (R,Rs),
where Rs = 〈es1, . . . , esk〉 if R = 〈e1, . . . , ek〉. Because attackers can compute any
computable function on the observed values, they can deduce in particular that
esi is the value of the expression ei in state s (for 1 ≤ i ≤ k) and they can compare
any two values, esi = es

′

j , for any pair of states s and s′.

The above attacker model does not assume that attackers who can observe an
object o automatically can also observe any location reachable by o. In par-
ticular when modular information flow reasoning is studied later on, such an

22

3.2 Formal Definition of Secure Information Flow

attacker model would be too strong. On the other hand, an attacker with the
capabilities to observe all reachable locations can be modeled with the above at-
tacker model with the help of recursively defined ghost (or model) fields. Java
programs as attackers can also be modeled, see Section 9.1.

3.2 Formal Definition of Secure Information Flow

Given the attacker model of Section 3.1, this section defines what it means for
a program to have secure information flow. Firstly, it is helpful to introduce a
notion for the indistinguishability of two states.

Definition 2 (Agreement of states). Let R be an observation expression.

Two states s, s′ agree on R, abbreviated by agree(R, s, s′), if and only if Rs = Rs
′
.

Thus, two states s and s′ agree on R if an attacker cannot distinguish them:
f(R,Rs) equals f(R,Rs

′
) for any function f . The following definition states

what it means for a program α (when started in a state s) to allow information
flow only from R1 to R2 under condition φ, denoted by flow(s, α,R1, R2, φ).

Definition 3 (Conditional Noninterference). Let α be a program, R1, R2 observa-
tion expressions and φ a formula.

Program α allows information to flow only from R1 to R2 when started in s1 under
condition φ, denoted by flow(s1, α,R1, R2, φ), if and only if for all states s′1, s2, s

′
2

such that α started in s1 terminates in s2 and α started in s′1 terminates in s′2 the
following applies:

if s1 � φ, s′1 � φ and agree(R1, s1, s
′
1) then agree(R2, s2, s

′
2).

flow(α,R1, R2, φ) denotes the case that flow(s1, α,R1, R2, φ) holds for all states s1;
flow(α,R1, R2) abbreviates flow(α,R1, R2, true).

The observation expressionsR1, R2 describe the publicly available information
of the initial and final state of a program run. In simple cases Ri is build up of
those program variables and fields which are considered low. Usually, R1 and
R2 will coincide. However, to declassify an expression edecl, for instance, one
would choose R1 = R2; edecl.

The next theorem shows that Definition 3 fits to the attacker model of Sec-
tion 3.1. If flow(s1, α,R1, R2) holds, then attackers with the capabilities of Sec-
tion 3.1 are not able to distinguish s1 by execution of α from any other initial
state s′1 which agrees on R1 with s1.

23

3 Language-Based Secure Information Flow

Theorem 4. If flow(s1, α,R1, R2) holds and if non-termination is not observable, then
attackers with the capabilities of Section 3.1 are not able to distinguish s1 by execution
of α from states s′1 with (R1, R

s′1
1) = (R1, R

s1
1).

Proof. Assume two states s1, s′1 such that

(R1, R
s′1
1) = (R1, R

s1
1). (3.1)

If α terminates if started in s1, then let s2 denote this final state. Similarly, if α
terminates if started in s′1, then let s′2 denote this final state. Attackers are able to
observe at most the tuples (R2, R

s2
2) and (R2, R

s′2
2) in addition to (R1, R

s1
1) and

(R1, R
s′1
1). By Definition 2, the equation R

s′1
1 = Rs11 implies agree(R1, s1, s

′
1).

Therefore, flow(s1, α,R1, R2) ensures that agree(R2, s2, s
′
2) holds. By Defini-

tion 2 the predicate agree(R2, s2, s
′
2) holds if and only if Rs22 = R

s′2
2 . Thus, it

holds if and only if

(R2, R
s2
2) = (R2, R

s′2
2) (3.2)

holds.

Because of (3.1) and (3.2), the result of δ((R2, R
s2
2), (R1, R

s1
1)) equals the result

of δ((R2, R
s′2
2), (R1, R

s′1
1)) for any function δ. Therefore, attackers cannot tell by

the observation of the initial and the final state of a run of α whether α was
started in s1 or s′1. Thus, they cannot distinguish s1 by execution of α from
s′1.

Conditional noninterference is compositional in the following sense.

Lemma 5 (Compositionality of flow). Let α1, α2 be programs, α1;α2 their sequen-
tial composition. If flow(s1, α1, R1, R2, φ1), flow(s2, α2, R2, R3, φ2), � φ1 → [α1]φ2

and α1 started in s1 terminates in s2 and α2 started in s2 terminates in s3 then
flow(s1, α1;α2, R1, R3, φ1) holds.

Proof. Let s′1, s′2, s′3 be a second set of states such that α1 started in s′1 terminates
in s′2, α2 started in s′2 terminates in s′3 and s′1 � φ1 → [α1]φ2. Assume that the
precondition φ1 holds in s1 and s2, in other words, assume s1 � φ1 and s′1 � φ1.
Additionally, assume agree(R1, s1, s

′
1). Then, flow(s1, α1, R1, R2, φ1) implies

agree(R2, s2, s
′
2), s1 � φ1 → [α1]φ2 implies s2 � φ2 and s′1 � φ1 → [α1]φ2 implies

s′2 � φ2. Finally, agree(R2, s2, s
′
2), s2 � φ2, s′2 � φ2 and flow(s2, α2, R2, R3, φ2)

ensure agree(R3, s3, s
′
3).

24

3.3 Example

3.3 Example

This section illustrates the above basic definitions by the frequently used pass-
word checker example. The example will be extended to a small banking sys-
tem in the next chapter.

Listing 2.1 shows the considered implementation. As discussed in detail in Sec-
tion 2.2, it consists of a class PasswordFile with two private arrays, names
and passwords, which store the user names and their corresponding pass-
words at the same index. Obviously, the length of those two arrays has to co-
incide. This is formulated with the help of an JML-invariant in line 4. Further,
the class contains a method check which takes a user name and a password.
It checks whether there exists an index i at which the array names contains the
user name and at which the array passwords contains the password. If such
an index exists, the method returns true, otherwise false.

The arrays names and passwords and their contents are usually considered
confidential whereas the parameters user and password as well as the not
explicitly named return-variable are considered public (because callers know
the user name and password they enter and learn the return value of the call).
This security requirement can be expressed naturally by

flow(boolean check(. . .){. . .}, 〈user, password〉, 〈result〉) (3.3)

where result denotes a special variable containing the result of the method.

As the case studies show (Chapter 9), it is a quite common pattern to split the
verification of (3.3) into showing that (i) the security requirement holds in case
the class invariant is valid, that is,

flow(boolean check(. . .){. . .}, 〈user, password〉, 〈result〉), self.<inv>)

and (ii) that the class invariant cannot be broken. Here, <inv> denotes the
observer symbol for class invariants, see Section 2.2.4.

Note that neither the information flow property (3.3) nor

flow(boolean check(. . .){. . .}, 〈user, password〉, 〈result〉, self.<inv>)

is fulfilled: the method check necessarily leaks some information about the
contents of names and passwords—the information whether there exists an
index i at which the array names contains the passed user name and at which

25

3 Language-Based Secure Information Flow

the array passwords contains the passed password. This intentional infor-
mation release is usually dealt with by declassification. As mentioned in Sec-
tion 3.2, declassification can be expressed by flow directly:

flow(boolean check(int user, int password){. . .},
〈user, password,

∃i.(0 ≤ i ∧ i < names.length

∧ names[i] = user ∧ passwords[i] = password)〉,
〈result〉,
self.<inv>)

allows exactly the intended flow of information.

3.4 Multilevel Noninterference

Section 3.2 defines noninterference for a classification into low and high sym-
bols only. Usually this is found to be too coarse for practicable information flow
analysis. Most existing analysis tools use lattices of security levels instead (see for
instance Myers [1999a]). In a security lattice information may flow from lower
levels to higher ones only. Security policies are usually defined as mappings of
program variables to security levels of the lattice (see for instance Denning and
Denning [1977]).

Let α be a program with program variables PV, let L = (L,) be a security
lattice with security levels L and flow relation , let p : PV → L be a security
policy and let x ∈ PV. We denote the set of variables {y | p(y) p(x)} which
belong to the same or a lower security level than x by PV p(x).

Let � be an arbitrary ordering on PV. Any subset X of PV defines in combi-
nation with � a sequence. By abuse of notation this sequence is denoted by X ,
too.

Definition 6 (Multilevel Noninterference). Let α be a program with program vari-
ables PV and let L = (L,) be a security lattice with security levels L and flow
relation . Let further p : PV→ L be a security policy.

Program α allows information to flow only according to L and p when started in s1

under condition φ, denoted by flow(s1, α,L, p, φ), if and only if for all x ∈ PV and
for all states s′1, s2, s

′
2 such that α started in s1 terminates in s2 and α started in s′1

terminates in s′2, we have

if s1 � φ, s′1 � φ and agree(PV p(x), s1, s
′
1) then agree(x, s2, s

′
2).

26

3.5 Discussion

flow(α,L, p, φ) denotes the case that flow(s1, α,L, p, φ) holds for all states s1. Addi-
tionally, flow(α,L, p) abbreviates flow(α,L, p, true).

As well known in literature, multilevel noninterference can be expressed by
two-level noninterference (as defined in Section 3.2):

Lemma 7. Let α be a program with program variables PV and let L = (L,) be a
security lattice with security levels L and flow relation . Let further p : PV → L be
a security policy.

flow(s1, α,L, p, φ) if and only if flow(s1, α,PV p(x), x, φ) holds for all x ∈ PV.

Proof. By Definition 6 flow(s1, α,L, p, φ) holds if and only if

for all x ∈ PV and for all states s′1, s2, s
′
2 such that α started in s1

terminates in s2 and α started in s′1 terminates in s′2, we have
if s1 � φ, s′1 � φ and agree(PV p(x), s1, s

′
1) then

agree(x, s2, s
′
2).

By Definition 3 the last part,

for all states s′1, s2, s
′
2 such that α started in s1 terminates in s2 and

α started in s′1 terminates in s′2, we have
if s1 � φ, s′1 � φ and agree(PV p(x), s1, s

′
1) then

agree(x, s2, s
′
2),

holds if and only if flow(s1, α,PV p(x), x, φ).

Hence, flow(s1, α,L, p, φ) if and only if flow(s1, α,PV p(x), x, φ) holds for all
x ∈ PV.

This thesis usually considers sets of two-level noninterference properties flow(
s1, α,R1, R2, φ). As Lemma 7 shows, this is at least as expressive as using secu-
rity lattices.

3.5 Discussion

The definition of secure information flow is as usual except that it allows for
finer-grained specifications by the usage of observation expressions instead of
variables and fields only. This is in particular useful for the specification of
declassification, but also allows for knowledge-based specifications (see Chap-
ter 4). Furthermore, the definition—and the thesis in general—considers con-
ditional information flow which is studied only rarely. As already observed
by Amtoft et al. [2008], conditional information flows are useful in modular

27

3 Language-Based Secure Information Flow

information flow verification. Section 5.4 gives a comprehensive overview on
related work on conditional information flow.

28

4 JML Extensions for Specifying
Secure Information Flow

This chapter is a revised and extended version of Scheben and Schmitt [2012].

A convenient way to specify properties of programs is annotating them in a
formal specification language utilized for the programming language under
consideration. The most popular approach for specifying functional properties
of Java programs is JML. This chapter shows how JML can be extended to the
specification of information flow properties.

Specifying information flow properties for variables and fields of object type
poses particular problems, as will be shown in Chapter 6. This chapter does
not consider those particularities but handles variables and fields of object type
like variables and fields of primitive type. This is safe but potentially more
restrictive than necessary. Chapter 6 shows how the JML extension presented
here can be augmented such that variables and fields of object type are treated
in a less restrictive way.

The JML extension is designed to be suitable for highly precise, fully modular
information flow verification. To this end, it allows writing information flow
specifications for interfaces without knowing their implementations as well as
the integration of functional and information flow specifications. Additionally,
it is designed to be suitable for a broad range of verification techniques.

Most existing practicable information flow analysis tools use lattices of secu-
rity levels and annotate variables and fields with levels of this lattice (see for
instance Myers [1999a]). This approach poses the problem that the specifier
has to figure out which program variable has to be assigned which security
level by an investigation of the high level security specifications. This can be
nontrivial, as can be seen in Section 4.2. Therefore, this chapter will present
a knowledge-based approach which concentrates on the specification of the
knowledge which actors of a system may have about the system. Because mul-
tilevel noninterference can be expressed by two-level noninterference (see Sec-
tion 3.4), any security policy implies a specification in this approach, but not

29

4 JML Extensions for Specifying Secure Information Flow

necessarily vice versa, as will be shown in Section 4.2. Knowledge-based speci-
fications promise to be easier deduceable from high-level security requirements
than suitable classical security policies.

The next section will illustrate the approach with the help of a banking ex-
ample. To abstract from program level details, the motivation will use UML
diagrams. The subsequent definitions in Section 4.3 will be on the Java level
again.

4.1 Illustration of Knowledge-Based Specification

Figure 4.1 shows a use-case diagram and a class diagram for a banking ex-
ample. The actors in this example are bank-customers and bank-employees.
Customers can view the balance of their accounts and draw money while em-
ployees may observe the balance of all accounts. A reasonable security require-
ment is that customers may know at most the data belonging to their accounts
while employees may know everything except the passwords of the accounts.
This requirement is illustrated in the object diagram of Figure 4.2 for three cus-
tomers and one employee. Each kind of smiley represents an actor and marks
the fields which are allowed to be observed/known by this actor.

Figure 4.3 summarizes the above requirements at the level of a class diagram.
The fields observable by an actor are defined with the help of observation ex-
pressions (Definition 1). The symbols userAccounts and bankAccounts
denote the shown associations between the classes Bank and UserAccount in
the first case and between UserAccount and BankAccount in the second. On
the programming language level these are implemented as fields of type User-
Account[] and BankAccount[], see Listings 4.2 and 4.3. The example uses
one observation expression per actor and class to define what is observable
of an object by an actor. The observation expression 〈this, balance, id〉 with
the name customerViewOnBankAccount, for instance, is used to express that
customers which may observe an object o of class BankAccount may also ob-
serve the value of o.balance and o.id. Which objects of class BankAccount
a customer is permitted to observe is defined one level higher, in the class
UserAccount. Here, the observation expression customerView defines that
a customer who is able to observe a user account o may additionally observe
(1) o.userID, (2) o.incorrectLogins, (3) the object o.bankAccounts including
its contents as defined by the expression customerViewOnBankAccount, and
(4) o.password including its contents. What an employee may see is defined in
a similar fashion.

30

4.1 Illustration of Knowledge-Based Specification

Use-Case-Diagram

Bank-Customer Bank-Employee

BankSystem

draw money
from own
account

view balance
of own
account view balance

of any
account

Class-Diagram
Bank

- instance : Bank

- Bank()
+ getInstance() : Bank
+ login(int userID, char[] password) : boolean

UserAccount

BankAccount

1

0..*

1 0..* - userID : int
- password : char[]
- incorrectLogins : int

- balance : int
- id : int

+ tryLogin(int userID, char[] password) : boolean
+ getBankAccount(int number) : BankAccount

+ getId() : int
+ getBalance() : int
+ depositMoney(int amount) : void

Figure 4.1: Banking scenario: use-case and class diagram.

Object-Diagram

Bank-Employee-View

Bank-Customer-View-1

Bank-Customer-View-2

Bank-Customer-View-3

Instance : Bank UserAccount-1 : UserAccount

UserAccount-2 : UserAccount

UserAccount-3 : UserAccount

balance = 147
id = 1

balance = 23
id = 1

balance = 5678
id = 3

BankAccount-2-1 : BankAccount

BankAccount-1-2 : BankAccount

BankAccount-1-1 : BankAccount

int userID = 1
char[] password = abc
int incorrectLogins = 0

int userID = 2
char[] password = huhu
int incorrectLogins = 2

int userID = 3
char[] password = cool
int incorrectLogins = 0

Figure 4.2: Banking scenario: object diagram with annotated views.

31

4 JML Extensions for Specifying Secure Information Flow

Class-Diagram
Bank

- instance : Bank
 employeeView<<ghost>> : \seq

- Bank()
+ getInstance() : Bank
+ login(int userID, char[] password) : boolean

UserAccount

BankAccount

1

0..*

1 0..* - userID : int
- password : char[]
- incorrectLogins : int
 customerView<<ghost>> : \seq
 employeeViewOnUserAccount<<ghost>> : \seq

- balance : int
- id : int
 customerViewOnBankAccount<<ghost>> : \seq

+ tryLogin(int userID, char[] password) : boolean
+ getBankAccount(int number) : BankAccount

+ getId() : int
+ getBalance() : int
+ depositMoney(int amount) : void

customerViewOnBankAccount = this, balance, id;

customerView = this, userID, incorrectLogins, bankAccounts, password,

seq{int i}(0; password.length; password[i]),
seq{int i}(0; bankAccounts.length;

bankAccounts[i].customerViewOnBankAccount);

employeeViewOnUserAccount = this, userID, incorrectLogins, bankAccounts,

seq{int i}(0; bankAccounts.length;
bankAccounts[i].customerViewOnBankAccount);

employeeView = userAccounts,

seq{int i}(0; userAccounts.length;
userAccounts[i].employeeViewOnUserAccount);

Figure 4.3: Class diagram of Figure 4.1 with annotated views.

How Java code can be annotated with named observation expressions is shown
in Section 4.3.5 and illustrated on the banking example in Section 4.4. In the
following, the expression observable by an actor will be called the view of the
actor on the system. In some cases actors may observe different information
in the prestate and in the poststate of a program run. In this case the views of
actors consist of a prestate view, usually denoted by R1, and a poststate view,
usually denoted by R2. Intuitively a program α is secure if and only if no actor
can learn anything new by an execution of α. Thus, a program is secure if and
only if flow(α,R1, R2) holds for all views (R1, R2) of all considered actors.

The observation expressions above are build up from fields and sequences of
fields only. More complex specifications can be written by using more complex
observation expressions. Examples where this is useful can be found in Sec-
tion 4.4 and Chaper 9. Declassification and erasure can be captured by choos-
ing different observation expressions for the initial and final states of a program

32

4.2 Knowledge-Based Specification vs. Classical Security Policies

run, see Section 3.2.

4.2 Knowledge-Based Specification vs. Classical
Security Policies

Classical security policies of lattice approaches can be expressed with the help
of sets of views by the usual translation of multilevel noninterference to two-
level noninterference, see Section 3.4. The other way around, the translation of
knowledge-based information flow specifications into classical security policies
is in general infeasible, because classical security policies constraint the infor-
mation flow on the granularity of variables/fields only and cannot constraint
the information flow of more general expressions like observation expressions.
The view (〈x + y < 0〉, 〈result == 0〉), for instance, cannot be translated into
a classical security policy. Still, a knowledge-based specification can be trans-
lated into classical security policies, if all pre- and postviews occurring in the
specification are sequences of variables and fields only.

Example. The following figure depicts five views. For simplicity, the prestate view
coincides with the poststate view for all depicted views. In other words, all views have
the form (R,R), where R is a sequence of variables and fields.

View 2

View 3

View 1

View 4

View 5
y x z

The rectangles overlap in those parts where the corresponding observation expressions
contain the same variables. The variable x, for instance, is part of Views 2 and 3, y
is part of Views 1, 2 and 3 and z is part of View 5 only. In this example, information
may flow form y to x because x is contained in all views, in which y occurs. On the
other hand, information may not flow the other way around. Otherwise, actors which
are allowed to observe View 1 would be able to learn the value of x, which they are not
supposed to know. Similarly, no information flow is allowed between z and x. The
above observations suggest that the set of views can be translated to a security lattice
consisting of sets of variables and fields with set-union and set-intersection as join and

33

4 JML Extensions for Specifying Secure Information Flow

meet operators. The security policy maps each variable to the intersection of all views
it is part of.

In general, information may flow from y to x if and only if x ∈ R2 implies
y ∈ R1 for all views (R1, R2). Let dep(x) denote the set of variables on which
the final value of x may depend on, that is, dep(x) := {y | x ∈ R2 ⇒ y ∈
R1 for all views (R1, R2)}. The security lattice is the power set of the set of all
variables and fields occurring in the program under consideration with set-
intersection and set-union as meet and join operators. The security policy is
defined by x 7→ dep(x) for every variable and field x. Information may flow
from y to x if the level dep(y) is a subset of the level dep(x).

If the information flow behavior of a program is specified with the help of a
security lattice, the specifier essentially has to do the above translation by hand.
Knowledge-based specifications avoid this extra step.

4.3 Extending JML* for Noninterference
Specifications

JML* (Weiß [2011]) is designed as a design by contract (Meyer [1988]) style spec-
ification language. To achieve a natural integration of information flow and
functional specifications, the JML* extension uses design by contract style for
the specification of information flow properties, too. Conditional noninterfer-
ence with declassification and erasure is specified by information flow method
contracts. Similar to functional method contracts, which specify the functional
behavior of methods, information flow contracts specify the information flow
behavior of methods.

4.3.1 Information Flow Method Contracts

The information flow behavior of a method is specified in the JML* extension
with the help of a new method contract clause, the determines clause. A method
contract may have multiple determines clauses. Each determines clause defines
a restriction on the information flow, as illustrated in the following example.

Example. Consider the method tryLogin from the class UserAccount of the
banking example (Figure 4.3). The security property requires that bank customers
and employees do not learn anything by execution of the method. Therefore, the final
value of bankCustomerView needs to depend at most on itself. The same holds for the
employee view. This is expressed by determines clauses as follows:

34

4.3 Extending JML* for Noninterference Specifications

determines_clause =
"determines", (expressions | "\nothing"),
"\by", (expressions | "\itself" | "\nothing"),
{ ["\declassifies", expressions]
| ["\erases", expressions] };

expressions = expression, { ",", expression };

Listing 4.1: EBNF of determines clauses.

/*@ determines bankCustomerView \by \itself;
@ determines employeeViewOnUserAccount \by \itself;
@ assignable this.*;
@*/

public boolean tryLogin(int userID, char[] password)

Here, bankCustomerView and employeeViewOnUserAccount are the observation ex-
pressions of Figure 4.3. Note that the determines clauses restrict the information flow
to locations mentioned in bankCustomerView and employeeViewOnUserAccount only.
To ensure that information does not leak to other locations, the contract has to be aug-
mented by an assignable clause. The assignable clause in this example ensures that at
most fields of the this object are modified and therefore excludes the possibility of an
information flow to locations other then the ones mentioned in bankCustomerView and
employeeViewOnUserAccount.

The syntax of determines clauses is defined by the Extended Backus–Naur
Form (EBNF) of Listing 4.1. Here, expression is a usual JML expression.

The semantics of the determines clause is defined with the help of conditional
noninterference (Definition 3): Let Rpost be defined as the concatenation of the
expressions behind the determines keyword and the expressions behind the
\erases keywords. Let Rpre be defined as the concatenation of the expres-
sions behind the \by keyword and the expressions after the \declassifies
keywords, where \nothing is identified with the empty sequence and where
\itself is identified with Rpost . Let further φpre be the precondition of the
contract defined as usual by requires clauses and class invariants. A method m
fulfills a determines clause if and only if flow(m, Rpre , Rpost , φpre) is valid.

Beside methods, also blocks and loops can be annotated by information flow
specifications. The next two sections show how this is done. They are followed
by a note on information flow class invariants in Section 4.3.4 and a note on
naming views in Section 4.3.5.

35

4 JML Extensions for Specifying Secure Information Flow

4.3.2 Information Flow Block Contracts

Information flow block contracts are very similar to information flow method
contracts, but they are annotated to blocks instead of methods and accordingly
specify the information flow behavior of blocks.

Information flow contracts augment functional block contracts (Wacker [2012])
by determines clauses. The syntax of those determines clauses is the same as
the one for method contracts, see Listing 4.1. A block b fulfills a determines
clause if and only if flow(b, Rpre , Rpost , φpre) is valid, where Rpre , Rpost and
φpre are defined as in the last section.

An application of information flow block contracts can be found in Section 5.2.

4.3.3 Information Flow Loop Invariants

From a specification point of view, information flow loop invariants are not
very different from information flow method or block contracts, too. The main
differences are that Rpre has to coincide with Rpost and that the guard of the
loop has to be considered low in any case.

Again, information flow loop invariants augment functional loop invariants by
determines clauses. This time, however, the syntax is slightly different, because
Rpre has to coincide with Rpost .

loop_determines =
"determines", (expressions | "\nothing"), "\by", "\itself";

expressions = expression, { ",", expression };

Without loss of generality we define the semantics of determines clauses for
loops with side-effect-free, normally terminating guards only: let R be defined
as the concatenation of the guard g of the loop and the expressions behind the
determines keyword. Let further \nothing and \itself be defined as
in Section 4.3.1. Let φinv be the functional loop invariant defined as usual by
maintains clauses. A loop l with loop body body fulfills a determines clause if
and only if φinv is a functional loop invariant for l and flow(body, R,R, φinv)
is valid.

4.3.4 Information Flow Class Invariants

It seems to be reasonable to define information flow class invariants in anal-
ogy to functional class invariants because in many cases there are information
flow properties which have to be fulfilled by all methods of a class. Since such

36

4.4 Examples

invariants would be “syntactic sugar” for particular information flow method
contracts only, this is left for future work, however.

4.3.5 Naming Views

Sequences of observation expressions can be given names by using ghost or
model fields. This has the advantage that such a sequence has to be defined
only once and can be reused in different contexts by referring to a meaningful
name.

Example. Consider for instance the view customerViewOnBankAccount of Fig-
ure 4.3. This view can be defined in class BankAccount by a ghost field with the same
name as follows:

/*@ public ghost \seq customerViewOnBankAccount;
@ public invariant customerViewOnBankAccount ==
@ \seq(this, balance, id);
@*/

Here, the first line defines a new ghost field of type sequence with the name customer-
ViewOnBankAccount. The second and third line then define with the help of a class
invariant that the sequence customerViewOnBankAccount always equals the se-
quence 〈this, balance, id〉.

A larger and more involved example will be considered in the next section.

4.4 Examples

4.4.1 Banking System

Listings 4.2 to 4.4 show an implementation of the class diagram of Figure 4.3
including a complete JML specification. The simplest class in this example is
the class BankAccount. Its implementation is shown in Listing 4.2.

1 public class BankAccount {
2 private int balance;
3 private int id;
4

5 /*@ public ghost \seq customerViewOnBankAccount;
6 @ public invariant customerViewOnBankAccount ==
7 @ \seq(this, balance, id);

37

4 JML Extensions for Specifying Secure Information Flow

8 @*/
9

10 /*@ normal_behavior
11 @ determines customerViewOnBankAccount \by \itself;
12 @ assignable \strictly_nothing;
13 @*/
14 public int getId() {
15 return id;
16 }
17

18 /*@ normal_behavior
19 @ determines customerViewOnBankAccount \by \itself;
20 @ assignable \strictly_nothing;
21 @*/
22 public int getBalance() {
23 return balance;
24 }
25

26 /*@ normal_behavior
27 @ determines customerViewOnBankAccount \by \itself
28 @ \declassifies amount;
29 @ assignable balance, customerViewOnBankAccount;
30 @*/
31 public void depositMoney(int amount) {
32 this.balance = this.balance - amount;
33 //@ set customerViewOnBankAccount = \seq(this, balance, id);
34 }
35 }

Listing 4.2: Example implementation of the class BankAccount of Figure 4.3.

The implementation of the three methods is straight forward. The contracts
of getId and getBalance state that (1) no exception will be thrown; (2) the
value of the view customerViewOnBankAccount—and therefore the value
of the sequence 〈this, balance, id〉—in the final state depends at most on its
value in the initial state; and (3) no locations are altered at all. Here, item (3) im-
plies (2) and therefore (2) is redundant. Item (2), however, makes the informa-
tion flow behavior of getId and getBalance explicit. The view customer-
ViewOnBankAccount is defined in lines 5 to 8, as already discussed in Sec-
tion 4.3.5. The contract of depositMoney is only marginally more complex. It
states that (1) no exception will be thrown; (2) the value of the view customer-
ViewOnBankAccount in the final state depends at most on its value in the
initial state and on the (initial) value of amount; and (3) at most the locations

38

4.4 Examples

balance and customerViewOnBankAccount are modified. In this example,
item (2) is not redundant, because balance is modified. The value of amount
is in some sense declassified to customerViewOnBankAccount. Therefore,
the dependency of customerViewOnBankAccount on amount is stated for
presentational purposes by the \declassifies keyword. The contract

/*@ normal_behavior
@ determines customerViewOnBankAccount
@ \by customerViewOnBankAccount, amount;
@ assignable balance, customerViewOnBankAccount;
@*/

is semantically equivalent to the one of depositMoney. The set statement
in the body of depositMoney is necessary, because customerViewOnBank-
Account is a ghost field. It had not been necessary, if customerViewOnBank-
Account had been defined as a model field (which are harder to handle during
verification, however). Note that the assignment to customerViewOnBank-
Account in the set statement is uniquely determined by the invariant: if any
other value would be assigned, then the invariant would not hold after the
execution of depositMoney any more.

Side Note. The current KeY-System cannot parse the syntax

\seq(this, balance, id)

in set-statements, though this would be convenient. Instead, KeY currently supports
the following syntax only:

/*@ set customerViewOnBankAccount =
\seq_concat(\seq_singleton(this),

\seq_concat(\seq_singleton(balance),
\seq_singleton(id)));

*/
;

Here, the ; is no typo but has to be added for technical reasons.

The implementation of the class UserAccount, shown in Listing 4.3, is a bit
more involved.

1 public class UserAccount {
2 private /*@ spec_public */ int userID;
3 private /*@ spec_public */ char[] password;
4 private /*@ spec_public */ int incorrectLogins;
5 private BankAccount[] bankAccounts;
6

39

4 JML Extensions for Specifying Secure Information Flow

7 /*@ public ghost \seq employeeViewOnUserAccount;
8 @ public invariant employeeViewOnUserAccount ==
9 @ \seq(this, userID, incorrectLogins, bankAccounts,

10 @ (\seq_def int i; 0; bankAccounts.length;
11 @ bankAccounts[i].customerViewOnBankAccount)
12 @);
13 @
14 @ public ghost \seq bankCustomerView;
15 @ public invariant bankCustomerView ==
16 @ \seq(this, userID, incorrectLogins, bankAccounts,
17 @ password,
18 @ (\seq_def int i; 0; password.length; password[i]),
19 @ (\seq_def int i; 0; bankAccounts.length;
20 @ bankAccounts[i].customerViewOnBankAccount)
21 @);
22 @
23 @ public invariant 0 <= incorrectLogins && incorrectLogins <= 3;
24 @
25 @ accessible \inv : this.*, password[*], bankAccounts[*],
26 @ \infinite_union(
27 @ int i;
28 @ (0 <= i && i < bankAccounts.length) ?
29 @ bankAccounts[i].* : \empty);
30 @*/
31

32 /*@ normal_behavior
33 @ ensures \result
34 @ == (0 <= \old(incorrectLogins)
35 @ && \old(incorrectLogins) < 3
36 @ && userID == this.userID
37 @ && password.length == this.password.length
38 @ && (\forall int i; 0 <= i && i < password.length;
39 @ password[i] == this.password[i]));
40 @ determines employeeViewOnUserAccount \by \itself
41 @ \declassifies
42 @ 0 <= incorrectLogins
43 @ && incorrectLogins < 3
44 @ && userID == this.userID
45 @ && password.length == this.password.length
46 @ && (\forall int i;
47 @ 0 <= i && i < password.length;
48 @ password[i] == this.password[i])
49 @ \declassifies

40

4.4 Examples

50 @ 0 <= incorrectLogins
51 @ && incorrectLogins < 3
52 @ && userID == this.userID
53 @ && (password.length
54 @ != this.password.length
55 @ || (\exists int i;
56 @ 0 <= i && i < password.length;
57 @ password[i] != this.password[i])
58 @);
59 @ determines bankCustomerView \by \itself
60 @ \declassifies
61 @ 0 <= incorrectLogins
62 @ && incorrectLogins < 3
63 @ && userID == this.userID
64 @ && password.length == this.password.length
65 @ && (\forall int i;
66 @ 0 <= i && i < password.length;
67 @ password[i] == this.password[i])
68 @ \declassifies
69 @ 0 <= incorrectLogins
70 @ && incorrectLogins < 3
71 @ && userID == this.userID
72 @ && (password.length
73 @ != this.password.length
74 @ || (\exists int i;
75 @ 0 <= i && i < password.length;
76 @ password[i] != this.password[i])
77 @);
78 @ assignable incorrectLogins, bankCustomerView,
79 @ employeeViewOnUserAccount;
80 @*/
81 public boolean tryLogin(int userID, char[] password) {
82 boolean userIDCorrect = (this.userID == userID);
83 boolean pwdCorrect =
84 (this.password.length == password.length);
85 /*@ loop_invariant 0 <= i && i <= password.length;
86 @ loop_invariant pwdCorrect ==
87 @ (password.length == this.password.length
88 @ && (\forall int j; 0 <= j && j < i;
89 @ password[j] == this.password[j])
90 @);
91 @ assignable \strictly_nothing;
92 @ decreases password.length - i;

41

4 JML Extensions for Specifying Secure Information Flow

93 @*/
94 for(int i = 0; i < password.length && pwdCorrect; i++) {
95 pwdCorrect = (this.password[i] == password[i]);
96 }
97 boolean incorrectLoginsInRange =
98 (0 <= incorrectLogins && incorrectLogins < 3);
99

100 if(userIDCorrect && incorrectLoginsInRange) {
101 this.incorrectLogins = pwdCorrect ?
102 0 : this.incorrectLogins + 1;
103 }
104 /*@ set bankCustomerView =
105 \seq(this, userID, incorrectLogins, bankAccounts,
106 password,
107 (\seq_def int i; 0; password.length; password[i]),
108 (\seq_def int i; 0; bankAccounts.length;
109 bankAccounts[i].customerViewOnBankAccount));
110 */
111 /*@ set employeeViewOnUserAccount =
112 \seq(this, userID, incorrectLogins, bankAccounts,
113 (\seq_def int i; 0; bankAccounts.length;
114 bankAccounts[i].customerViewOnBankAccount));
115 */
116 return userIDCorrect && pwdCorrect && incorrectLoginsInRange;
117 }
118

119 /*@ normal_behavior
120 @ determines employeeViewOnUserAccount \by \itself;
121 @ determines bankCustomerView \by \itself;
122 @ assignable \strictly_nothing;
123 @*/
124 public /*@ nullable */ BankAccount getBankAccount(int number) {
125 if (number < 0 || bankAccounts.length <= number) {
126 return null;
127 }
128 return bankAccounts[number];
129 }
130 }

Listing 4.3: Example implementation of the class UserAccount of Figure 4.3.

The views bankCustomerView and employeeViewOnUserAccount are de-
fined in lines 7 to 21 according to Figure 4.3 in the same manner as customer-

42

4.4 Examples

ViewOnBankAccount in the class BankAccount. Both, bankCustomerView
and employeeViewOnUserAccount, comprise for any reachable BankAc-
count object o the view o.customerViewOnBankAccount. The class User-
Account contains an additional invariant (line 23) which guarantees that the
number of consecutive incorrect login attempts is always in the range of zero to
three. Once three consecutive incorrect login attempts occur, the account is con-
sidered as locked and cannot be accessed any more: the method tryLoginwill
always return false. As specified by the accessible clause of the invariant
(line 25), the value of the invariant as a whole depends at most on (1) all loca-
tions of the UserAccount object itself; (2) all array elements of the password
array; (3) all reachable BankAccount objects; and (4) all locations of all reach-
able BankAccount objects. This framing information is necessary for modular
information flow reasoning, as will be discussed in Section 5.3.

The specification of the method getBankAccount is similar to the ones of
getId and getBalance of the class BankAccount. The contract of tryLogin
is more complicated. As the contracts before, it states that no exception will be
thrown. Further, the result of the method is true if and only if the passed
user id and password match the ones stored in the object and if the number of
consecutive incorrect login attempts is smaller than three (and greater or equal
zero). The implementation additionally ensures that the number of consecutive
incorrect login attempts is incremented each time an incorrect login attempt oc-
curs, until the maximum value of three is reached. The number is reset to zero
if it is smaller than three and the correct user id and password are passed. Be-
cause the value of incorrectLogins may change, the values of the ghost
variables employeeViewOnUserAccount and bankCustomerView have to
be adjusted by set statements. This is done similar to the set statement in the
method depositMoney of the class BankAccount. The objective of the infor-
mation flow specifications of the contract in lines 40 to 77 is to specify that ob-
servers of the views employeeViewOnUserAccount and bankCustomer-
View do not learn anything new by the execution of tryLogin. A careful in-
spection of the source code, however, shows that observers of those views can
learn something new, because the value of incorrectLogins is observable
in both views. In both cases observers can learn whether or not (1) the num-
ber of consecutive incorrect login attempts is in the range of zero to two and
the passed userID and password are correct; and whether or not (2) the num-
ber of consecutive incorrect login attempts is in the range of zero to two, the
passed userID is correct and the passed password is incorrect. Because this in-
formation leak is intentional, the corresponding information is declassified to
employeeViewOnUserAccount and bankCustomerView. Finally, line 78
specifies that tryLogin modifies at most the values of the locations (this,
incorrectLogins), (this, bankCustomerView) and (this, employee-
ViewOnUserAccount).

43

4 JML Extensions for Specifying Secure Information Flow

Finally, Listing 4.4 shows the implementation of the class Bank. The specifi-
cation is similar to the ones of the classes UserAccount and BankAccount
except of one complication. We have to express that each bankCustomerView
reachable through the array userAccounts depends only on itself (except for
some unavoidable declassification). That is, we have to quantify over contracts.
This can be achieved with the forall syntax of JML for contracts (see Ragha-
van and Leavens [2000]), as used in line 26 in the contract of login. The con-
tract following line 26 needs to hold for any value of anyID.

Side Note. Currently KeY does not support the forall syntax of JML for the quan-
tification over contracts. However, instead of line 26 one can use an underspecified
ghost (or model) field instead:

//@ public ghost int anyID;

Because the ghost field anyID may have any value, this has essentially the same effect
as the quantification in line 26.

1 public class Bank {
2

3 private UserAccount[] userAccounts;
4

5 /*@ public model \seq bankEmployeeView;
6 @ public represents bankEmployeeView =
7 @ \seq(userAccounts,
8 @ (\seq_def int i; 0; userAccounts.length;
9 @ userAccounts[i].employeeViewOnUserAccount));

10 @
11 @ public invariant (\forall int i;
12 @ 0 <= i && i < userAccounts.length;
13 @ \invariant_for(userAccounts[i]));
14 @ public invariant (\forall int i;
15 @ 0 <= i && i < userAccounts.length;
16 @ (\forall int j;
17 @ i+1 <= j
18 @ && j < userAccounts.length;
19 @ \disjoint(userAccounts[i].*,
20 @ userAccounts[j].*)
21 @)
22 @);
23 @*/
24

25 /*@ normal_behavior
26 @ forall int anyID;

44

4.4 Examples

27 @ requires 0 <= anyID && anyID < userAccounts.length;
28 @ determines \result
29 @ \by
30 @ userID,
31 @ (\seq_def int i; 0; password.length;
32 @ password[i]),
33 @ (0 <= userID
34 @ && userID < userAccounts.length
35 @ && 0 <= userAccounts[userID].incorrectLogins
36 @ && userAccounts[userID].incorrectLogins < 3
37 @ && userID == userAccounts[userID].userID
38 @ && password.length
39 @ == userAccounts[userID].password.length
40 @ && (\forall int i;
41 @ 0 <= i && i < password.length;
42 @ password[i]
43 @ == userAccounts[userID].password[i])
44 @)
45 @ ? userAccounts[userID] : null
46 @ \declassifies
47 @ 0 <= userAccounts[userID].incorrectLogins
48 @ && userAccounts[userID].incorrectLogins < 3
49 @ && userID == userAccounts[userID].userID
50 @ && password.length
51 @ == userAccounts[userID].password.length
52 @ && (\forall int i;
53 @ 0 <= i && i < password.length;
54 @ password[i]
55 @ == userAccounts[userID].password[i]);
56 @ determines bankEmployeeView \by \itself
57 @ \declassifies userID
58 @ \declassifies
59 @ 0 <= userAccounts[userID].incorrectLogins
60 @ && userAccounts[userID].incorrectLogins < 3
61 @ && userID == userAccounts[userID].userID
62 @ && password.length
63 @ == userAccounts[userID].password.length
64 @ && (\forall int i;
65 @ 0 <= i && i < password.length;
66 @ password[i]
67 @ == userAccounts[userID].password[i])
68 @ \declassifies
69 @ 0 <= userAccounts[userID].incorrectLogins

45

4 JML Extensions for Specifying Secure Information Flow

70 @ && userAccounts[userID].incorrectLogins < 3
71 @ && userID == userAccounts[userID].userID
72 @ && (password.length
73 @ != userAccounts[userID].password.length
74 @ || (\exists int i;
75 @ 0 <= i && i < password.length;
76 @ password[i]
77 @ != userAccounts[userID].password[i])
78 @);
79 @ determines userAccounts[anyID].bankCustomerView \by \itself
80 @ \declassifies anyID == userID
81 @ \declassifies
82 @ anyID == userID
83 @ && 0 <= userAccounts[userID].incorrectLogins
84 @ && userAccounts[userID].incorrectLogins < 3
85 @ && userID == userAccounts[userID].userID
86 @ && password.length
87 @ == userAccounts[userID].password.length
88 @ && (\forall int i;
89 @ 0 <= i && i < password.length;
90 @ password[i]
91 @ == userAccounts[userID].password[i])
92 @ \declassifies
93 @ anyID == userID
94 @ && 0 <= userAccounts[userID].incorrectLogins
95 @ && userAccounts[userID].incorrectLogins < 3
96 @ && userID == userAccounts[userID].userID
97 @ && (password.length
98 @ != userAccounts[userID].password.length
99 @ || (\exists int i;

100 @ 0 <= i && i < password.length;
101 @ password[i]
102 @ != userAccounts[userID].password[i])
103 @);
104 @*/
105 public /*@ nullable */ UserAccount login(int userID,
106 char[] password) {
107 UserAccount result = null;
108 if (0 <= userID && userID < userAccounts.length) {
109 boolean loginSuccessful =
110 userAccounts[userID].tryLogin(userID, password);
111 if (loginSuccessful) {
112 result = userAccounts[userID];

46

4.4 Examples

113 }
114 }
115 return result;
116 }
117

118 }

Listing 4.4: Example implementation of the class Bank of Figure 4.3.

4.4.2 Loop Invariants

The loop example shown below originates from a tutorial by Christian Ham-
mer and was designed to demonstrate where approximate information flow
analysis approaches usually have to give up.

//@ normal_behavior
//@ determines low \by \itself;
public void hammer(int secret) {

int x = 0; int y = 0;

//@ loop_invariant 0 <= y && y <= 10;
//@ determines low, y, (y < 10 ? x : 0) \by \itself;
//@ assignable low;
//@ decreases 10 - y;
while (y < 10) {

print(x);
if (y == 5) {

x = secret; y = 9;
}
x++; y++;

}
}

//@ normal_behavior
//@ determines low, x \by \itself;
//@ assignable low;
//@ helper
public void print(int x) { low = x; }

It has to be shown that low does not depend on secret. The method intro-
duces two counters, x and y. Both are incremented within the loop body. y
is used in the loop guard whereas x is printed in every loop iteration. In the

47

4 JML Extensions for Specifying Secure Information Flow

sixth iteration, when y has the value 5, x is assigned the secret. This secret is
never printed, because y is assigned the value 9 in this case and incremented
afterwards. Therefore, the loop will not entered again and secret will not be
leaked to low.

The challenge of this example is that at the end of the last iteration of the loop
x depends on secret and therefore approximate analysis usually will reject
the program. In the JML extension, however, it is possible to express that x
does not depend on secret as long as y is smaller than 10. This enables the
verification techniques from Chapter 5 to correctly accept the program. Overall,
the determines clause of the loop invariant states that after each loop iteration
the values of low, y and (y < 10 ? x : 0) depend at most on initial values
of these three expressions.

4.4.3 Block Contracts, Interface Specification and
Interactive Programs

Examples for the specification of block contracts can be found in Sections 5.2
and 6.4, where the usefulness of block contracts in the context of information
flow verification is discussed. An example for the specification of an interface
can be found in the e-voting case-study in Chapter 9.1. This specification is
also an example for the specification of interactive programs. Note that in the
context of this thesis only deterministic programs are considered.

4.5 Discussion

Different attempts to extend JML for information flow specifications have been
presented by Warnier [2006], Haack et al. [2008] and Dufay et al. [2005]. The
approaches by Warnier [2006] and Haack et al. [2008] try to specify noninterfer-
ence in JML by encoding sufficient conditions for noninterference into pre- and
postconditions. This is less expressive than the approach of this chapter since
the encoded conditions are only sufficient. Furthermore, they do not give hints
how to encode declassifications, which is an important feature for the specifi-
cation of real world programs.

Dufay et al. [2005] on the other hand introduce new JML-keywords which di-
rectly define relations between the program variables of two self-composed ex-
ecutions. In particular two keywords to distinguish the variables of the two
runs are defined. This is flexible, because general relational properties can be
expressed in this way. On the other hand, it seems to be questionable whether a
different technique than self-composition (see Chapter 5) can be used to verify

48

4.5 Discussion

those specifications. The approach presented in this chapter allows the appli-
cation of other verification techniques, see Chapter 7. Beside the possibility
to choose the best suited verification technique for a given program, this has
the additional advantage that the specifier does not have to think in a self-
composition manner but rather has to figure out only what is allowed to be
known by whom. Thus, the specifications presented in this chapter are in this
sense more abstract.

The JIF system by Myers [1999a] is another important approach on the speci-
fication and verification of information flow properties of Java programs. The
core idea of JIF is to annotate variables with security policies and derive a se-
curity lattice from those annotations. Given the security lattice, Java programs
are analysed with the help of type checking for undesirable information flow.
The main advantage of the approach presented in this chapter is its higher ex-
pressiveness: on the one hand, information flow properties can be defined for
arbitrary JML expressions and not for variables and fields only. On the other
hand, the JML extension integrates functional and information flow specifica-
tions which makes it easier to use synergy effects of the two specifications. Fi-
nally, the declassification construct in JIF, which is used for delimited informa-
tion release as introduced by Sabelfeld and Myers [2004], can be used within
the implementation of a method only. This transgresses against the rule of
clear separation of specification and implementation. In contrast, the declas-
sifications presented here are part of the method contract and therefore clearly
separated from the implementation.

Banerjee et al. [2008] propose a scheme for the specification (and verification)
of expressive declassification policies. The approach is based on a self-defined,
non object-oriented programming language, but the authors present some ideas
how the technique could be extended to object-oriented languages. The declas-
sification construct presented in this chapter complies with the scheme pro-
posed in Banerjee et al. [2008]. The chapter shows how expressive declassifica-
tion can be integrated into JML for the specification of sequential Java.

The presented approach can be used to write modular specifications. These
specifications fit into the approach of dynamic frames (see for instance Schmitt
et al. [2011]) and therefore comply to the principle of information hiding as
used in object-oriented programming languages. Furthermore, it allows for
fine-grained specifications by the usage of observation expressions instead of
variables and fields only. This is in particular useful for the specification of de-
classification, but also allows for knowledge-based specifications as illustrated
in Sections 4.1 and 4.4.

49

5 Verification of Secure
Information Flow by
Self-Composition

This chapter is a revised version of Scheben and Schmitt [2014] and parts of Scheben
and Schmitt [2012].

Chapters 3 and 4 showed how information flow properties can be formalized
and specified. This chapter presents techniques for the deductive verification
of those properties.

5.1 Naive Self-Composition

Conditional noninterference can be formulated naturally in Java DL in self-
composition style. Firstly, we formalize the notion of indistinguishability of
states as given in Definition 2.

Lemma 8. Let α be a program with local variables x̄, let D be a Kripke structure, s be
a state and β be a variable assignment such that the state s is described by variables x̄
and h, that is, heaps = β(h) and x̄s = β(x̄). Let φ be a formula in which at most the
program variables heap and x̄ occur.

For any state s2 the evaluation D, s2, β � ({heap := h || x̄ := x̄}φ) equals the
evaluation D, s, β � φ.

Proof. By the definition of the semantics of updates, for any state s2 the evalua-
tion D, s2, β � ({heap := h || x̄ := x̄}φ) equals D, su2 , β � φ, where su2 is defined
like s2 except that heaps

u
2 = β(h) and x̄s

u
2 = β(x̄). Because heap and x̄ are

the only program variables occurring in φ, the evaluation D, su2 , β � φ equals
D, s, β � φ.

Corollary 1. Let α be a program with local variables x̄, let D be a Kripke structure,
let s1, s2 be states and let β be a variable assignment such that the states s1, s2 are

51

5 Verification of Secure Information Flow by Self-Composition

described by variables x̄1, h1 and x̄2, h2, respectively, that is, heapsi = β(hi) and
x̄si = β(x̄i). Let R be an observation expression over the program variables in α.

For any state s the formula

obsEq(x̄1, h1, x̄2, h2, R)

≡ {heap := h1 || x̄ := x̄1}R = {heap := h2 || x̄ := x̄2}R

is valid in Kripke structure D and state s if and only if agree(R, s1, s2) holds.

Proof. Follows directly by Lemma 8 and Definition 2 (Agreement of states).

With the help of the predicate obsEq(x̄1, h1, x̄2, h2, R) conditional noninterfer-
ence can be formalized as follows.

Theorem 9. Let α be a program with local variables x̄ of types X̄ , let R1, R2 be
observation expressions over the program variables in α and let φ be a formula. Let
further h1, h′1, h2, h′2 be variables of type Heap and let x̄1, x̄′1, x̄2, x̄′2 be variables of
type X̄ .

The formula (with suggestive abbreviations (∗ . . . ∗) as defined below)

Ψα,x̄,R1,R2,φ ≡ ∀h1, h
′
1, h2, h

′
2.∀x̄1, x̄

′
1, x̄2, x̄

′
2.

(∗in s1∗)(φ ∧ 〈α〉(∗save s2∗)) ∧ (∗in s′1∗)(φ ∧ 〈α〉(∗save s′2∗))
→
(
obsEq(x̄1, h1, x̄

′
1, h
′
1, R1)→ obsEq(x̄2, h2, x̄

′
2, h
′
2, R2)

)
is universally valid if and only if flow(α,R1, R2, φ) holds. Here the (∗ . . . ∗) abbreviate
the formulas:

(∗in si∗) ≡ {heap := hi || x̄ := x̄i} (∗save s2∗) ≡ (heap = h2 ∧ x̄ = x̄2)

(∗in s′i∗) ≡ {heap := h′i || x̄ := x̄′i} (∗save s′2∗) ≡ (heap = h′2 ∧ x̄ = x̄′2)

Proof.

“⇒”: Assume Ψα,x̄,R1,R2,φ. We need to show flow(α,R1, R2, φ). To this end, let
s1, s′1, s2, s′2 be states such that φs1 , α started in s1 terminates in s2, φs

′
1 , α started

in s′1 terminates in s′2, and agree(R1, s1, s
′
1). We need to show agree(R1, s2, s

′
2).

We chose the variable assignment β such that β(h1) = heaps1 , β(h′1) = heaps
′
1 ,

β(h2) = heaps2 , β(h′2) = heaps
′
2 , β(x̄1) = x̄s1 , β(x̄′1) = x̄s

′
1 , β(x̄2) = x̄s2 , and

β(x̄′2) = x̄s
′
2 . Then D, s, β |= (∗in s1∗)(φ ∧ 〈α〉(∗save s2∗)) holds by Lemma 8 and

by the definition of 〈α〉 (for an arbitrary state s), because we have φs1 and α
started in s1 terminates in s2. Similarly, D, s, β |= (∗in s′1∗)(φ ∧ 〈α〉(∗save s′2∗))

52

5.2 Efficient Self-Composition

holds, because we have φs
′
1 and α started in s′1 terminates in s′2. Further, by

Corollary 1, D, s, β |= obsEq(x̄1, h1, x̄
′
1, h
′
1, R1) if and only if agree(R1, s1, s

′
1).

Therefore, D, s, β |= obsEq(x̄2, h2, x̄
′
2, h
′
2, R2) holds. Again by Corollary 1, we

conclude agree(R1, s2, s
′
2).

“⇐”: Assume flow(α,R1, R2, φ). We need to show D, s, β |= Ψα,x̄,R1,R2,φ. To
this end, let β be an arbitrary variable assignment and let s1, s′1, s2, s′2 be states
such that β(h1) = heaps1 , β(h′1) = heaps

′
1 , β(h2) = heaps2 , β(h′2) = heaps

′
2 ,

β(x̄1) = x̄s1 , β(x̄′1) = x̄s
′
1 , β(x̄2) = x̄s2 , and β(x̄′2) = x̄s

′
2 . We may assume (for

an arbitrary state s) D, s, β |= (∗in s1∗)(φ∧ 〈α〉(∗save s2∗)), D, s, β |= (∗in s′1∗)(φ∧
〈α〉(∗save s′2∗)) and D, s, β |= obsEq(x̄1, h1, x̄

′
1, h
′
1, R1) and need to show that

D, s, β |= obsEq(x̄2, h2, x̄
′
2, h
′
2, R2) holds.

By D, s, β |= (∗in s1∗)(φ ∧ 〈α〉(∗save s2∗)) in combination with Lemma 8 and
the definition of 〈α〉 we get φs1 and α started in s1 terminates in s2. Similarly,
D, s, β |= (∗in s′1∗)(φ ∧ 〈α〉(∗save s′2∗)) implies that φs

′
1 holds and α started in

s′1 terminates in s′2. Further, by Corollary 1, agree(R1, s1, s
′
1) holds because

we have D, s, β |= obsEq(x̄1, h1, x̄
′
1, h
′
1, R1). Therefore, flow(α,R1, R2, φ) im-

plies agree(R1, s2, s
′
2). Another appeal to Corollary 1 finally yields D, s, β |=

obsEq(x̄2, h2, x̄
′
2, h
′
2, R2).

Though Theorem 9 can already be used to show noninterference with the KeY
tool on small examples, the approach in its present form becomes infeasible
on larger examples. The next section presents a more sophisticated version of
self-composition style reasoning.

5.2 Efficient Self-Composition

Naive self-composition reasoning tends to be inefficient and does not easily
lend itself to modular verification. The following example illustrates the effi-
ciency issues of self-composition approaches. Let α be the program

l = l + h;
if (h != 0) { l = l - h; }
if (l > 0) { l--; }

and let l be the only low variable. Then α has no information leak: the value of
l after line 2 is the same as the initial value of l. Thus the value of l after line
3 depends only on the initial value of l. The execution paths of α are sketched
in Figure 5.1(a).

In the classical self-composition approach a copy α′ of α is constructed by re-
placing all program variables by primed copies. In the following, the primed

53

5 Verification of Secure Information Flow by Self-Composition

(a) (b)

Figure 5.1: Sketch of the execution paths of (a) the original program and (b) the
self-composed program.

counterpart of a program variable x is denoted by x′. Accordingly, φ′ denotes
the formula constructed from φ by replacing all program variables by their
primed counterpart and the term t′ denotes the counterpart of t. This leads
to the following self-composed program α;α′:

l = l + h;
if (h != 0) { l = l - h; }
if (l > 0) { l--; }
l′ = l′ + h′;
if (h′ != 0) { l′ = l′ - h′; }
if (l′ > 0) { l′--; }

The execution paths of α;α′ are sketched in Figure 5.1(b).

h does not interfere with l in α if and only if α;α′ started in any state with
l = l′ terminates in a state where l = l′ holds. Hence, in the self-composition
approach essentially the outcome of any path through α has to be compared
to the outcome of any path through α′. If n is the number of paths through α,
this results in O(n2) comparisons of the low variables. In contrast, specialized
information flow calculi, which consider α only once, have to check only the
outcome of the n paths through α. This is one reason why self-composition
often is considered to be inefficient. The other reason is that the symbolic ex-

54

5.2 Efficient Self-Composition

ecution of α;α′, that is, the reduction of α;α′ into syntactic updates and case
distinctions (see Beckert et al. [2007b], Section 3.4.5), is at least twice as costly
as the symbolic execution of α.

The following section shows that if noninterference is formalized as in Theo-
rem 9, then α needs to be symbolically executed only once. Further, inspired by
the compositional reasoning of security type systems and specialized informa-
tion flow calculi, Section 5.2.2 shows that the number of final symbolic states to
be considered can be reduced considerably if α is compositional with respect to
information flow. In this case onlyO(n) final symbolic states have to be consid-
ered. Depending on the structure of the program, this number can be reduced
further up to O(log(n)).

The following argumentations are based on Dynamic Logic. Readers which are
more familiar with weakest precondition calculi might prefer the presentation
in Scheben and Schmitt [2014].

5.2.1 Reducing the Cost of the Symbolic Execution

We tackle the first problem, reducing the cost of the symbolic execution, by
showing that it is possible to prove noninterference in self-composition style
with the help of only one symbolic execution of α.

Let heap and x̄ be the program variables of α and let h1, x̄1, h2, x̄2, h′1, x̄′1,
h′2 and x̄′2 be variables of appropriate type. We aim at finding formulas ψ and
ψ′ (without modalities) with only one symbolic execution of α which replace
{heap := h1 || x̄ := x̄1}〈α〉(heap = h2 ∧ x̄ = x̄2) and {heap := h′1 || x̄ :=
x̄′1}〈α〉(heap = h′2 ∧ x̄ = x̄′2) in Theorem 9.

Let D be a Kripke structure, s a state and β a variable assignment. The main
step is finding a formula ψ—by symbolic execution of α—such that D, s, β �
{heap := h1 || x̄ := x̄1}〈α〉(heap = h2 ∧ x̄ = x̄2) implies Dext , s, β � ψ for
an extension Dext of D by new Skolem symbols. (We need to consider exten-
sions of D, because the symbolic execution of α might introduce new Skolem
symbols.) Note that the application of the Java DL calculus—which contains
all necessary rules for the symbolic execution of α—on {heap := h1 || x̄ :=
x̄1}〈α〉(heap = h2 ∧ x̄ = x̄2) does not deliver the desired implication: it ap-
proximates {heap := h1 || x̄ := x̄1}〈α〉(heap = h2 ∧ x̄ = x̄2) in the wrong
direction. We have to take an indirection.

Intuitively, the formula {heap := h1 || x̄ := x̄1}〈α〉(heap = h2 ∧ x̄ = x̄2) is
valid in (D, s, β) if α started in state s1 : heap 7→ hβ1 , x̄ 7→ x̄β1 terminates in
state s2 : heap 7→ hβ2 , x̄ 7→ x̄β2 (see Theorem 9). We calculate a formula ψnot

which is at most true if α started in s1 : heap 7→ hβ1 , x̄ 7→ x̄β1 does not terminate

55

5 Verification of Secure Information Flow by Self-Composition

in s2 : heap 7→ hβ2 , x̄ 7→ x̄β2 . Then ψ = ¬ψnot is at least true if α started in s1

terminates in s2. We obtain ψnot by symbolic execution of {heap := h1 || x̄ :=
x̄1}[α](heap 6= h2 ∨ x̄ 6= x̄2): application of the Java DL calculus on the sequent
=⇒ {heap := h1 || x̄ := x̄1}[α](heap 6= h2 ∨ x̄ 6= x̄2) results in a set of sequents
Fseq , where each fseq ∈ Fseq does not contain modalities any more. Let F be
the set of meaning formulas for Fseq . We set ψnot =

∧
f∈F f .

Because the Java DL calculus is sound, the universal validity of the premisses
of a rule implies the universal validity of its conclusion. Java DL rules fulfill
even a slightly stronger property: rules which do not introduce new Skolem
symbols have the property that the conclusion of the rule is valid in (D, s, β)
if the premisses are valid in (D, s, β). In case new Skolem symbols are intro-
duced, as for instance in the rule for object creation (see Weiß [2011] or—for a
slightly modified version—Figure 7.6), the conclusion is valid in (D, s, β) if the
premisses are valid in all extensions (Dext , s, β) of (D, s, β) by interpretations
of the new Skolem symbols. As a consequence we get that D, s, β 2 {heap :=
h1 || x̄ := x̄1}[α](heap 6= h2 ∨ x̄ 6= x̄2) implies Dext , s, β 2 ψnot for an exten-
sion Dext of D by new Skolem symbols. By the duality of box and diamond
D, s, β 2 {heap := h1 || x̄ := x̄1}[α](heap 6= h2 ∨ x̄ 6= x̄2) is equivalent to
D, s, β � {heap := h1 || x̄ := x̄1}〈α〉(heap = h2 ∧ x̄ = x̄2). Further, ψ is defined
as ¬ψnot . Hence, D, s, β � {heap := h1 || x̄ := x̄1}〈α〉(heap = h2 ∧ x̄ = x̄2)
implies Dext , s, β � ψ for an extension Dext of D by new Skolem symbols, as
desired.

Given ψ, we observe that we obtain a formula ψ′ such that D, s, β � {heap :=
h′1 || x̄ := x̄′1}〈α〉(heap = h′2 ∧ x̄ = x̄′2) implies D, s, β � ψ′ by a simple renam-
ing of the variables h1, x̄1, h2, x̄2 to h′1, x̄′1, h′2, x̄′2 and by the renaming of the
new Skolem symbols c̄ to new primed Skolem symbols c̄′. The thus obtained
formulas ψ and ψ′ can be used to replace {heap := h1 || x̄ := x̄1}〈α〉(heap =
h2∧ x̄ = x̄2) and {heap := h′1 || x̄ := x̄′1}〈α〉(heap = h′2∧ x̄ = x̄′2) in Theorem 9.
Their calculation involves only one symbolic execution.

5.2.2 Reducing the Number of Comparisons

The second problem, reducing the number of comparisons, can be tackled with
the help of compositional reasoning, if the structure of the program allows for
it. Reconsider the initial example:

l = l + h;
if (h != 0) { l = l - h; }
if (l > 0) { l--; }

56

5.2 Efficient Self-Composition

(a) (b) (c)

Figure 5.2: Reducing the verification overhead by compositional reasoning.

As discussed above, the first part, lines 1 and 2, and the second part, line 3,
are noninterfering on their own. Therefore, by Lemma 5, the complete pro-
gram is noninterfering. As illustrated in Figure 5.2, checking the two parts
independently from each other results in less verification effort: the execution
paths of each self-composed part on its own contains only four paths. Thus,
altogether only eight comparisons have to be made to prove noninterference of
the complete program. Checking the complete program at once would require
(about) 12 comparisons.1 We summarize the above observation in the following
lemma.

Lemma 10. Let α be a program with m branching statements.

If α can be divided into m noninterfering blocks with at most one branching statement
per block, then noninterference of α can be shown with the help of self-composition with
3m comparisons.

Because a program with m branching statements has at least n = m + 1 paths,
Lemma 10 shows that the verification effort of self-composition approaches can
be reduced from O(n2) comparisons to O(n), if the program under considera-
tion is compositional with respect to information flow. In the best case, a pro-
gram withm branching statements has Ω(2m) paths. In this case the verification
effort reduces to O(log(n)) comparisons, if the program under consideration is
compositional with respect to information flow.

Unfortunately, the separation of the program into blocks is not always as simple
as in the example above. Consider for instance the following program:

if (l > 0) { if (l % 2 == 1) { l--; } }

The program can be divided into blocks

1By symmetry the number of comparisons can be reduced further in both cases: in the first case
2 · (2 + 1) = 6 comparisons are sufficient, in the second case 4 + 3 + 2 + 1 = 10 comparisons
are enough.

57

5 Verification of Secure Information Flow by Self-Composition

b1 = if (l % 2 == 1) { l--; }

and

b2 = if (l > 0) { b1 }.

To conclude that b2 is noninterfering, it is necessary to use the fact that b1
is noninterfering in the proof of b2. Unfortunately, the self-composition ap-
proach does not easily lend itself to such compositional/modular verification,
as shown in the next section.

5.3 Modular Self-Composition

If program α calls a block b, one (sometimes) does not want to look at its code
but rather use a software contract for b, a contract that had previously been es-
tablished by looking only at the code of b. This kind of modularization can also
be applied to methods instead of blocks and is essential for the scalability of
all deductive software verification approaches. With self-composition b is not
only called in α, but b′ is called in α′. This poses the technical problem of some-
how synchronizing the calls of b and b′ for contract application. This section
shows how software contracts can be applied in self-composition proofs. An
important feature of the approach is the seamless integration of information
flow and functional reasoning allowing us to take advantage of the precision of
functional contracts also for information flow verification, if necessary.

In the context of functional verification, modularity is achieved with the help
of method contracts. We want to extend this approach to the verification of
information flow properties. Firstly, we define information flow contracts.

Definition 11 (Information Flow Contract). An information flow contract (in short
“flow contract”) to a block (or method) b with local variables x̄ := (x1, . . . , xn) of types
Ā := (A1, . . . , An) is a tuple Cb,x̄ = (Pre, R1, R2), where (1) Pre is a formula which
represents a precondition and (2) R1, R2 are observation expressions which represent
the low expressions in the pre- and post-state.

A flow contract Cb,x̄ = (Pre, R1, R2) is valid if and only if for all states s the predicate
flow(b, R1, R2,Pre) is valid.

The difficulty in the application of flow contracts arises from the fact that flow
contracts refer to two invocations of a block b in different contexts.

Example. Consider

58

5.3 Modular Self-Composition

if (l>0) { l++; if (l%2 == 1) {l--;} }

again, with blocks b1 = if (l%2==1) {l--;} and b2 = if (l>0) {l++; b1}.
Let Cb1,x̄ = Cb2,x̄ = (true,l,l) be flow contracts for b1 and b2. To prove Cb2,x̄ by
classical self-composition,

l = l′ → (〈if (l>0) {l++; b1}; if (l′>0) {l′++; b′1}〉l = l′)

has to be shown. (For presentational purposes, we ignore the heap in this example.)
Symbolic execution of the program, as far as possible, yields:

l = l′, l > 0

=⇒ {l := l+ 1}
〈 b1;
if(l′>0) {
l′++;

b′1

}
〉l = l′

(5.1)

*apply-
Equality +
close l = l′

l′ > 0
=⇒ l > 0,
{l′ := l′ + 1}
〈b′1〉l = l′

*
close

l = l′

=⇒ l > 0,
l′ > 0,
l = l′

... symbolic execution

=⇒ l = l′ → (〈if (l>0) {l++; b1}; if (l′>0) {l′++; b′1}〉l = l′)

To close branch (5.1), Cb1,x̄ needs to be used—but it is not obvious how this can be done,
because Cb1,x̄ refers to the invocation of b1 and the invocation of b′1 at the same time. A
similar problem occurs if Cb2,x̄ is proved with the help of the optimizations discussed in
Section 5.2.

The main idea of the solution is a coordinated delay of the application of flow
contracts. The solution is compatible with the optimizations from Section 5.2
and additionally allows the combination of flow contracts with functional con-
tracts.

Let b be a block with the functional contract Fb,x̄ = (Pre,Post ,Rep) consist-
ing of: (1) a formula Pre representing the precondition; (2) a formula Post
representing the postcondition; and (3) a term Rep representing the assignable
clause for b. In functional verification, block contracts are applied by the rule
“useBlockContract”, introduced by Wacker [2012]. The rule is an adaption of

59

5 Verification of Secure Information Flow by Self-Composition

the rule “useMethodContract” from Weiß [2011] for blocks. For presentational
purposes we consider a simplified version of the rule only:

useBlockContract

pre Γ =⇒ {u}Pre,∆

post Γ =⇒ {u;uanon}(Post → [π ω]φ),∆

Γ =⇒ {u}[π b; ω]φ,∆

Here, u is an arbitrary update; uanon = (heap := anon(heap,Rep, h), x̄ := x̄′)
is an anonymising update setting the locations of Rep (which might be modi-
fied by b) and the local variables which might be modified to unknown values;
h of type Heap and x̄′ of appropriate types are fresh symbols. We require Pre to
entail equations heappre = heap and x̄pre = x̄ which store the values of the pro-
gram variables of the initial state in program variables heappre and x̄pre such
that the initial values can be referred to in the post-condition. Additionally,
we require that Pre and Post entail a formula which expresses that the heap is
wellformed. For the sake of simplicity we do not handle exceptions here.

The plan is to use an extended version of the rule “useBlockContract” during
symbolic execution—in many cases for the trivial functional contract Fb,x̄ =
(true, true, allLocs)—which adds some extra information to the sequent allow-
ing a delayed application of information flow contracts. The extra information
is encapsulated in a new two-state predicate Cb(x̄, h, x̄

′, h′) with the intended
meaning that b started in state s1 : heap 7→ h, x̄ 7→ x̄ terminates in state
s2 : heap 7→ h′, x̄ 7→ x̄′. This predicate can be integrated into the rule “use-
BlockContract” as follows:

useBlockContract2

pre Γ =⇒ {u}Pre,∆

post Γ, {u}Cb(x̄,heap, x̄
′, h′), {u;uanon}(heap = h′ ∧ x̄ = x̄′)

=⇒ {u;uanon}(Post → [π ω]φ),∆

Γ =⇒ {u}[π b; ω]φ,∆

where h′ and x̄′ are fresh function symbols. By Lemma 12 below, the rule
“useBlockContract2” is sound. The introduction of Cb(x̄, h, x̄

′, h′) to the post
branch allows us to store the initial and the final state of b for a delayed ap-
plication of information flow contracts: Theorem 13 shows that two predi-
cates Cb(x̄1, h1, x̄2, h2) and Cb(x̄

′
1, h
′
1, x̄
′
2, h
′
2) appearing on the antecedent of

a sequent can be approximated by an instantiation of a flow contract Cb,x̄ =
(Pre, R1, R2) for b by

{heap := h1 || x̄ := x̄1}Pre ∧ {heap := h′1 || x̄ := x̄′1}Pre

→
(
obsEq(x̄1, h1, x̄

′
1, h
′
1, R1)→ obsEq(x̄2, h2, x̄

′
2, h
′
2, R2)

)

60

5.3 Modular Self-Composition

This approximation is applied by the rule “useFlowContract”:

useFlowContract

Γ,Cb(x̄1, h1, x̄2, h2),Cb(x̄
′
1, h
′
1, x̄
′
2, h
′
2),

{heap := h1 || x̄ := x̄1}Pre ∧ {heap := h′1 || x̄ := x̄′1}Pre

→
(
obsEq(x̄1, h1, x̄

′
1, h
′
1, R1)→ obsEq(x̄2, h2, x̄

′
2, h
′
2, R2)

)
=⇒ ∆

Γ,Cb(x̄1, h1, x̄2, h2),Cb(x̄
′
1, h
′
1, x̄
′
2, h
′
2) =⇒ ∆

Example. Let Fb1,x̄ = (true, true, allLocs) be the trivial functional contract for b1.
Applied on the example from above, (5.1) can be simplified as shown in Figure 5.3.
For presentational purposes all heap symbols have been removed from the example.
Therefore, Cb1 takes only two parameters and obsEq only three. Adding the heap results
in essentially the same proof but with more complex formulas.

The proof uses the following abbreviations of rule names:

Abbreviation Full name Abbreviation Full name
uBC2 useBlockContract2 eq applyEquality
uFC useFlowContract if conditional
obsEq replaces obsEq(·) by its

definition (Corollary 1)
simp combination of all update

simplification rules
++ plusPlus close close
eq+ simp repeated application of the

rules eq and simp

Firstly, the symbolic execution is continued by the rule “useBlockContract2” and (after
several simplifications) by the rule “conditional”. The conditional rule splits the proof
into two branches. The right branch, which represents the case that the condition l′ >
0 evaluates to false, can be closed after further simplifications and the application of
equalities. On the other branch, the remaining program is executed symbolically by
the rule “plusPlus” and another application of “useBlockContract2”, now on the block
b′1. After some further simplifications, we are in the position to apply the flow contract
for b1: the antecedent of the sequent contains the two predicates Cb1(l + 1, `) and
Cb1(l′+1, `′) on which the rule “useFlowContract” can be applied. With the help of the
guarantees from the flow contract for b1, the proof closes after some final simplifications.

Formally, Cb(x̄, h, x̄
′, h′) is valid in Kripke structure D and state s if and only

if
{x̄ := x̄ || heap := h}〈b〉(heap = h′ ∧ x̄ = x̄′)

is valid in (D, s). Note that the usage of the rule “useBlockContract2” during
symbolic execution allows the application of arbitrary functional contracts in
addition to flow contracts. This allows for taking advantage of the precision of

61

5 Verification of Secure Information Flow by Self-Composition

*
close

l = l′, l > 0, Cb1(l+ 1, `), `anon = `,
l′ > 0, Cb1(l

′ + 1, `′), `′anon = `′,
`anon = `′anon

=⇒ `anon = `′anoneq +
simp l = l′, l > 0, Cb1(l+ 1, `), `anon = `,

l′ > 0, Cb1(l
′ + 1, `′), `′anon = `′,

l+ 1 = l′ + 1→ ` = `′

=⇒ `anon = `′anon
obsEq

l = l′, l > 0, Cb1(l+ 1, `), `anon = `,
l′ > 0, Cb1(l

′ + 1, `′), `′anon = `′,
obsEq(l+ 1,l′ + 1,l)

→ obsEq(`, `′,l)
=⇒ `anon = `′anon

uFC
l = l′, l > 0, Cb1(l+ 1, `), `anon = `,
l′ > 0, Cb1(l

′ + 1, `′), `′anon = `′

=⇒ `anon = `′anon
simp

l = l′, l > 0, Cb1(l+ 1, `), `anon = `,
l′ > 0,
{l := `anon}{l′ := l′ + 1}Cb1(l

′, `′),
{l := `anon}{l′ := l′ + 1}{l′ := `′anon}l = `′

=⇒ {l := `anon}{l′ := l′ + 1}{l′ := `′anon}l = l′

uBC2
l = l′, l > 0, Cb1(l+ 1, `), `anon = `,
l′ > 0

=⇒ {l := `anon}{l′ := l′ + 1}〈b′1〉l = l′
++

l = l′, l > 0, Cb1(l+ 1, `), `anon = `,
l′ > 0

=⇒ {l := `anon}〈l′++; b′1〉l = l′
simp

l = l′, l > 0, Cb1(l+ 1, `), `anon = `,
{l := `anon}l′ > 0

=⇒ {l := `anon}〈l′++; b′1〉l = l′

*
close

l = l′,
l > 0,
Cb1(l+ 1, `),
`anon = `

=⇒ l > 0,
`anon = l′

eq
l = l′,
l > 0,
Cb1(l+ 1, `),
`anon = `

=⇒ l′ > 0,
`anon = l′

simp
l = l′,
l > 0,
Cb1(l+ 1, `),
`anon = `

=⇒ {l := `anon}
l′ > 0,
{l := `anon}
l = l′

if
l = l′, l > 0, Cb1(l+ 1, `), `anon = `

=⇒ {l := `anon}〈if (l′>0) {l′++; b′1}〉l = l′
simp

l = l′, l > 0, {l := l+ 1}Cb1(l, `), {l := l+ 1}{l := `anon}l = `
=⇒ {l := l+ 1}{l := `anon}〈if (l′>0) {l′++; b′1}〉l = l′

uBC2
l = l′, l > 0

=⇒ {l := l+ 1}〈b1; if (l′>0) {l′++; b′1}〉l = l′

Figure 5.3: Proof tree to the example from page 61.

62

5.3 Modular Self-Composition

functional contracts within information flow proofs, if necessary. The default,
however, is using the trivial functional contract Fb,x̄ = (true, true, allLocs) as in
the presented example.

The remainder of this section shows soundness of the above approach.

Lemma 12. Let b be a block which fulfills the functional block contract Fb,x̄ = (Pre,
Post ,Rep). Then the rule “useBlockContract2” is sound.

Proof. Because the rule “useBlockContract” is sound (see Wacker [2012]) it suf-
fices to show that the premiss post of “useBlockContract2” is valid in a Kripke
structure D and a state s if and only if the premiss post of “useBlockContract”
is valid in (D, s).

LetD be a Kripke structure and let s be a state. If the premiss post of “useBlock-
Contract2” is valid in (D, s), then by simple propositional logic also the premiss
post of “useBlockContract” is valid in (D, s). Thus, we assume that the premiss
post of “useBlockContract” is valid in (D, s) and set out to show that the pre-
miss post of “useBlockContract2” is true in (D, s). We assume

∧
Γ 6→

∨
∆ and

{u;uanon}Post are true in (D, s) with the aim to show that {u;uanon}[π ω]φ
is also true in (D, s). Since the new constant symbols h′ and x̄′ do not oc-
cur in {u;uanon}Post we find a Kripke structure D′ that differs from D only
in the interpretation of these symbols such that in (D′, s) both {u;uanon}Post
and {u}Cb(x̄,heap, x̄′, h′) ∧ {u;uanon}(heap = h′ ∧ x̄ = x̄′) are true. This may
be achieved by choosing the structure D′ such that the state s2 presented by
((h′)D

′,s, (x̄′)D
′,s) is the final state of b when started in the state s1 presented

by (({u}heap)D,s, ({u}x̄)D,s). By validity of the premiss post of “useBlockCon-
tract2” we obtain that {u;uanon}[π ω]φ is true in (D′, s). Since {u;uanon}[π ω]φ
does likewise not contain the new symbols it is also true in the orignal Kripke
structure D and state s.

Theorem 13. Let b be a block fulfilling the flow contract Cb,x̄ = (Pre, R1, R2). Fur-
ther, let D be a Kripke structure, s be a state and β be a variable assignment.

D, s, β � Cb(x̄a, ha, x̄
′
a, h
′
a) and D, s, β � Cb(x̄b, hb, x̄

′
b, h
′
b) imply

D, s, β � {heap := ha || x̄ := x̄a}Pre ∧ {heap := hb || x̄ := x̄b}Pre

→
(
obsEq(x̄a, ha, x̄

′
a, h
′
a, R1)→ obsEq(x̄b, hb, x̄

′
b, h
′
b, R2)

) (5.2)

Proof. We assume that the left-hand side of (5.2) is true in (D, s, β), that is,
D, s, β � {heap := ha || x̄ := x̄a}Pre and D, s, β � {heap := hb || x̄ := x̄b}Pre .
By assumption D, s, β � Cb(x̄a, ha, x̄

′
a, h
′
a) and D, s, β � Cb(x̄b, hb, x̄

′
b, h
′
b) are

true, which by definition says D, s, β � {x̄ := x̄a || heap := ha}〈b〉(heap =
h′a ∧ x̄ = x̄′a) and D, s, β � {x̄ := x̄b || heap := hb}〈b〉(heap = h′b ∧ x̄ = x̄′b). The

63

5 Verification of Secure Information Flow by Self-Composition

assumption that the flow contract Cb,x̄ = (Pre, R1, R2) is fulfilled implies via
Definition 11 and Theorem 9 that D, s, β � Ψb,x̄,R1,R2,Pre is true. By Definition,
Ψb,x̄,R1,R2,Pre equals

∀h1, h
′
1, h2, h

′
2.∀x̄1, x̄

′
1, x̄2, x̄

′
2.

(∗in s1∗)(Pre ∧ 〈b〉(∗save s2∗)) ∧ (∗in s′1∗)(Pre ∧ 〈b〉(∗save s′2∗))
→
(
obsEq(x̄1, h1, x̄

′
1, h
′
1, R1)→ obsEq(x̄2, h2, x̄

′
2, h
′
2, R2)

) (5.3)

with abbreviations

(∗in si∗) ≡ {heap := hi || x̄ := x̄i} (∗save s2∗) ≡ (heap = h2 ∧ x̄ = x̄2)

(∗in s′i∗) ≡ {heap := h′i || x̄ := x̄′i} (∗save s′2∗) ≡ (heap = h′2 ∧ x̄ = x̄′2) .

Let β′ be defined as β′(y) = ((y)[x̄1/x̄a, h1/ha, x̄2/x̄b, h2/hb])
D,s,β for all vari-

ables y. Hence, we have

x̄D,s,β
′

1 = x̄D,s,βa , hD,s,β
′

1 = hD,s,βa , x̄D,s,β
′

2 = x̄D,s,βb and hD,s,β
′

2 = hD,s,βb . (5.4)

Because Equation (5.3) is valid in (D, s, β),

(∗in s1∗)(Pre ∧ 〈b〉(∗save s2∗)) ∧ (∗in s′1∗)(Pre ∧ 〈b〉(∗save s′2∗))
→
(
obsEq(x̄1, h1, x̄

′
1, h
′
1, R1)→ obsEq(x̄2, h2, x̄

′
2, h
′
2, R2)

) (5.5)

is valid in (D, s, β′). Inspection of (5.5) under consideration of (5.4) shows that
in the present situation obsEq(x̄a, ha, x̄

′
a, h
′
a, R1) → obsEq(x̄b, hb, x̄

′
b, h
′
b, R2) is

true in (D, s, β), as desired.

5.4 Discussion

Popular approaches to check for noninterference of programs are approximate
methods like security type systems (a prominent example in this field is the JIF-
System by Myers [1999a]), the analyses of the dependence graph of a program
for graph-theoretical reachability properties (Hammer et al. [2006]), specialized
approximate information flow calculi based on Hoare like logics (Amtoft et al.
[2006]) and the usage of abstraction and ghost code for explicit tracking of de-
pendencies (Pan [2005], Bubel et al. [2008], van Delft [2011]). These approaches
are efficient, but do not have the precision of self-composition nor do they al-
low for as fine-grained specifications as they are possible with the help of obser-
vation expressions (Section 3.1). Nanevski et al. [2011] formalize information
flow properties in a higher-order logic and use Coq for the verification of those
properties. This approach seems to be extremely expressive, but comes with
the price of more and more complex interactions with the proof system.

64

5.4 Discussion

Almost all approaches mentioned so far check for unconditional information
flow. There are only few approaches which study conditional information flow
and in particular information flow contracts. One of the first contributions on
conditional information flow was by Amtoft and Banerjee [2007]. They devel-
oped a Hoare logic for compositional intraprocedural analyses of conditional
information flow. This approach was the basis for a contribution on software
contracts for conditional information flow for SPARK Ada by Amtoft et al.
[2008]. The latter approach works on a relatively simple while-language in-
cluding method calls. The handling of arrays was added in a later contribution
(Amtoft et al. [2010]). Object-orientation is not supported. One advantage of
the presented approach is that information flow and functional contracts can
be combined easily. This results in highest possible precision whereas Amtoft
et al. [2008] introduce fixed over-approximations.

Finally self-composition (Barthe et al. [2004], Darvas et al. [2005]) is a popu-
lar approach to state noninterference and use off-the-shelf software verification
systems to check for it, as also presented in this chapter. The approach has been
applied to full-fledged programming languages like Java.

To the best of the authors knowledge there are only very few contributions
aiming at an improvement of the efficiency of the self-composition approach.
A recent approach by Phan [2013] uses bounded symbolic execution (symbolic
execution without inductive invariants) and a formulation of (non-conditional)
noninterference based on symbolic traces which is quite near in spirit to the one
of Theorem 9 (which goes back to Scheben and Schmitt [2012]). Phan found
that with this formulation it is sufficient to symbolically execute a program
only once. Independently of Phan [2013], the author of this thesis found that
the same holds if the wp-calculus or Dynamic Logic is used, as presented in
Section 5.2. Therefore, the presented approach is not restricted to bounded pro-
grams. Additionally, it can be used to check for conditional noninterference
and with more fine-grained specifications. Barthe et al. [2011] build product
programs to increase the level of automation in relational reasoning, which can
also be used for information flow verification, but their focus is mainly on in-
creasing the degree of automation and less on increasing efficiency.

Compositional/modular self-composition reasoning is also studied rarely: A
contribution by Naumann [2006] duplicates each variable, field, parameter and
method body in the Java source code and uses standard JML method contracts
to state noninterference with the help of the duplicates. The contracts are veri-
fied with the help of ESC/Java2. This approach has the drawback that there is
no obvious translation of JML annotations from the non-duplicated source to
the duplicated source: an object invariant

65

5 Verification of Secure Information Flow by Self-Composition

invariant (\sum Object o;; 1) < 10;

for instance might evaluate differently in the duplicated code than in the non-
duplicated one. The paper mentions vaguely how modularity on the method
level could be achieved, but thorough investigation is left for future work. An-
other contribution by Dufay et al. [2005] introduces new JML-keywords which
directly define relations between the program variables of two self-composed
executions. In particular two keywords to distinguish the variables of the two
runs are defined. The approach uses ghost code to store the return value and
the values of parameters of the first run in order to use those values during the
application of noninterference contracts in the second run. As the authors men-
tion themselves, the approach is limited in case arrays are involved in method
invocations. The author of this thesis does not see how even more complex data
structures or equivalently complex heap manipulations can be tracked with
ghost code. The proposed usage of ghost code seems to be a serious limitation
of the approach. Resolving such limitations is mentioned as an aim of future
work. The approach from Section 5.3 overcomes such limitations: it does not
use additional ghost code and is not limited by its usage. Finally, a recent ap-
proach on modular relational verification by Hawblitzel et al. [2013], which can
be used for information flow verification as well, targets at the same direction
as Section 5.3. Hawblitzel et al. [2013] use mutual summaries, instead of infor-
mation flow contracts, in order to prove relational properties modularly. Their
approach, however, is not compatible with the efficient self-composition style
reasoning presented in Section 5.2.

66

6 Object Orientation

This chapter is a revised version of Beckert et al. [2014]. The author of this thesis
contributed on Sections 2, 4, 5.1 and 5.2 of the paper only to a smaller extent. Therefore,
the results of these sections are repeated (in Section 6.1 below) only as far as they are
necessary for the presentation of the subsequent results.

The former chapters handle sources and sinks of object type in the same way
as sources and sinks of primitive type, that is, the definition of noninterference
(Definition 3) requires their values to be identical. As a consequence, programs
with low variables of object type will usually be classified insecure: one cannot
expect that the Java Virtual Machine generates the same new objects in two runs
starting in states with possibly differently many created “high” objects. On the
other hand, references in Java are opaque, that is, they can be compared by the
== function only (see Lindholm and Yellin [1999]), which allows to relax the
notion of noninterference as already pointed out by Hedin and Sands [2005],
Hansen and Probst [2006], Barthe et al. [2013], Banerjee and Naumann [2002],
Beringer and Hofmann [2007] and Naumann [2006]. The classical notion of
secure information flow can be replaced by object-sensitive secure information
flow which uses a different notion of low-equivalence of states: for all states s1,
s2, s′1, s′2 such that the observable values of s1 and s2 are related by a partial
isomorphism π and such that the program α started in s1 terminates in s′1 and
α started in s2 terminates in s′2 the observable values of s′1 and s′2 are related by
a partial isomorphism extending π. This chapter investigates into the concept
of object-sensitive secure information flow itself with the aim to find a feasible
formalization of the property in Java DL. This formalization promises to be
useful in self-composition approaches in general.

Object-sensitive secure information flow can be formalized in Java DL in the
style of Theorem 9. The formalization is appealing, because it is semantically
precise and, in contrast to other formalizations based on self-composition (see
Section 6.5), it does not require changes or additions to the investigated pro-
gram. Additionally, it can be easily realized on top of software verification
systems like KeY. A naive encoding of the isomorphism property, however, in-
creases the burden on the analysis considerably. Beckert et al. [2014] present
in Section 5.2 an alternative but equivalent formulation of object-sensitive se-
cure information flow: in this formulation the partial isomorphism π in the

67

6 Object Orientation

final class C {
static C x, y; // low variables
static boolean h; // high variable
static void m1() { if (h) {x = new C(); y = new C();}

else {y = new C(); x = new C();} } }

Figure 6.1: Secure object creation, Beckert et al. [2014]

prestate is restricted to be the identity. This simplifies the formalization of
object-sensitive secure information flow in Java DL (and hence its verification)
already a lot.

This chapter shows that additionally restricting the partial isomorphism in the
poststate to newly created objects leads to a marginally stronger, but more intu-
itive property. This property is a sufficient criterion for object-sensitive secure
information flow (Theorem 26) and, in contrast to object-sensitive secure in-
formation flow, it is compositional (Theorem 29) which is considered an indis-
pensable prerequisite for modular verification of information flow properties
(see Section 5.3). The sufficient criterion can be formalized in a way which
reduces the burden on analysis tools significantly (Section 6.3). The main dif-
ference between the original property and the sufficient criterion is that the
criterion admits the attacker the ability to distinguish between newly created
objects and objects which already existed in the prestate.

6.1 Information Flow in Java

Figure 6.1 reproduces a typical example of a program for which flow(m1(),
〈x,y〉, 〈x,y〉) does not hold, but which is considered secure in object-sensitive
information flow. In this example it is impossible to learn the value of h by
observation of x and y if object references can be compared by the == function
only. The abstraction that references in Java may be treated opaque might be
broken by native methods such as Object::hashCode(), as demonstrated
by Hedin and Sands [2006]. This potential leakage, however, can be dealt with
by assigning a high security level to the output of native methods.

The attacker model in object-sensitive secure information flow is identical to
the one from Section 3.1, with the additional assumption that attackers cannot
learn more than object identity from object references. In particular, the order
in which objects have been generated cannot be learned. Attackers may, on the
other hand, retrieve the runtime type type(es) of object valued expressions and,
for array references, their length len(es).

68

6.1 Information Flow in Java

6.1.1 Isomorphisms

Isomorphisms for typed structures, as treated for instance in Mitchell [1990],
are defined between structures (D1, s1) and (D2, s2).

Definition 14. An isomorphism ρ from a Σ structure (D1, s1) onto the Σ structure
(D2, s2) is a bijection from the universeD1 of (D1, s1) onto the universeD2 of (D2, s2)
satisfying

1. for all types T and all d ∈ D1: d ∈ TD1,s1 ⇔ ρ(d) ∈ TD2,s2

2. for any n-ary function symbol f ∈ Σ and all n-tuples d̄ ∈ Dn
1 :

ρ(fD1,s1(d̄)) = fD2,s2(ρ(d̄))

3. for any n-ary predicate symbol p ∈ Σ and all n-tuples d̄ ∈ Dn
1 :

(D1, s1) |= p(d̄)⇔ (D2, s2) |= p(ρ(d̄))

For d̄ = (d1, . . . , dn) the notion ρ(d̄) is a shorthand for (ρ(d1), . . . , ρ(dn)).

We will consider isomorphisms from (D, s1) onto (D, s2) for an arbitrary, but
fixed D only. Therefore, in the following D will usually be omitted.

Bijections between objects of typed structures enjoy the following property:

Lemma 15. Let (D, s) be a structure and let π be a bijection from X onto Y for finite
subsets X,Y ⊆ ObjD such that

1. If null ∈ X then π(null) = null and null ∈ Y implies null ∈ X .

2. π preserves the exact types of its arguments.

3. π preserves the length of array objects.

Then there is an isomorphism ρ : s→ ρ(s) extending the bijection π.

Partial isomorphisms with respect to observation expressions R, as they are
needed for the definition of object-oriented secure information flow, are defined
with the help of the objects observable by R.

Definition 16. Obj (Rs) denotes the set of objects observable by observation expression
R in state s, that is,

Obj (Rs) = {o ∈ ObjD | ∃i.(o = Rs[i])} ∪
⋃

i∈{j|Rs[j]∈SeqD}

Obj (Rs[i]) .

Definition 17 (Partial isomorphism w. r. t. R). Let R be an observation expression
and s1, s2 be two states.

A partial isomorphism with respect to R from s1 onto s2 is a bijection π : Obj (Rs1)→
Obj (Rs2) such that

69

6 Object Orientation

(a) the requirements of Lemma 15 hold and

(b) πSeq(Rs1) = Rs2 where πSeq is defined on sequences as

πSeq(〈e1, . . . , ek〉) = 〈e′1, . . . , e′k〉

where e′i = π(ei) if ei ∈ ObjD, e′i = πSeq(ei) if ei ∈ SeqD and e′i =
ei else.

To simplify notation, every partial isomorphism π is extended to all primitive values w
by π(w) = w. If π is a partial isomorphism from s1 onto s2, written s2 = π(s1), then
s1 and s2 are called isomorphic.

If all program variables p are observable by R, that is, if for all program vari-
ables p there exists an index i such that p = R[i], then every isomorphism ex-
tending a partial isomorphism π with respect to R according to Lemma 15 is a
total isomorphism from s1 onto s2, because π(ps1) = ps2 by requirement (b). On
the other hand, not every partial isomorphism can be extended to a total iso-
morphism. If q is a program variable such that q does not appear as a subterm
in R, then π(qs1) = qs2 is not required.

To clarify the role of condition (b) in Definition 17 consider the following ex-
ample. Let x be a program variable of type C and f a field in C, say of type
integer, such that R = 〈x, f(x)〉. Let s1, s2 be states. In this case condition (b)
implies π((f(x))s1) = (f(x))s2 = fs2(xs2) = fs2(π(xs1)). This amounts to the
usual requirements of isomorphisms on mathematical structures.

6.1.2 Formalization of Opaqueness of References

Object-sensitive noninterference relies on opaqueness of references. This sec-
tion formalizes opaqueness of references in terms of isomorphisms between
structures. If references are opaque, then the behavior of Java programs only
depend on the values of references up to comparison by ==. Therefore, a pro-
gram α started in isomorphic states also terminates in isomorphic states (if α
terminates).

Postulate 18. Let s1, s2, s′1 be states. Let α be a program which started in s1 termi-
nates in s2, and let ρ : s1 → s′1 be an isomorphism.

Then there exists an isomorphism ρ′ : s2 → s′2 that coincides with ρ on all objects
existing in state s1 (that is, ρ(o) = ρ′(o) for all o ∈ ObjD with createds1(o) = tt)
such that α started in ρ(s1) terminates in ρ′(s2).1

1The notation ρ(s) is defined below Definition 14.

70

6.1 Information Flow in Java

The isomorphism ρ′ may be different form ρ, because α may generate new ob-
jects and there is no reason why a new element o′ generated in the run of α
starting in ρ(s1) should be the ρ-image of the new element o generated in the
run starting in s1.

6.1.3 Basic Object-Sensitive Noninterference

To formalize object-sensitive noninterference, it is helpful first to introduce a
notion for the object-sensitive indistinguishability of states.

Definition 19 (Object-Sensitive Agreement of States). Let R be an observation
expression.

In an object-sensitive setting two states s, s′ agree on R, denoted by agreeos(R, s, s
′), if

and only if there exists a partial isomorphism π : Obj (Rs) → Obj (Rs
′
) with respect

to R. The partial isomorphism π is uniquely determined by R, s and s′. The notation
agreeos(R, s, s

′, π) indicates that agreeos(R, s, s
′) is true and π is the mapping thus

defined.

Note that by Definition 17 agreeos(R, s, s
′) entailsRs[i] = Rs

′
[i] for all subterms

R[i] of primitive type. Object-sensitive noninterference is formalized with the
help of isomorphisms on structures as follows.

Definition 20 (Object-Sensitive Noninterference). Let α be a program and R1 and
R2 be two observation expressions.

In an object-sensitive setting a program α allows information to flow only from R1

to R2 when started in s1, denoted by flowos(s1, α,R1, R2), if and only if for all object
creation orders o, o′ and all states s′1, s2, s′2 such that α started in s1 with order
o terminates in s2 and α started in s′1 with order o′ terminates in s′2 the following
applies

if agreeos(R1, s1, s
′
1, π1) for some π1

then agreeos(R2, s2, s
′
2, π2) for some π2 that is compatible with π1

where π2 is said to be compatible with π1 if
π2(o) = π1(o) for all o ∈ Obj (Rs11) ∩Obj (Rs22) with createds1(o) = tt .

flowos(α,R1, R2) denotes the case that flowos(s1, α,R1, R2) holds for all states s1.

Note that the object creation order in the two runs of αmight differ which mod-
els that the two runs might be executed in different environments, for instance
on different Java Virtual Machines. As a consequence, α started two times in s1

71

6 Object Orientation

might result in different (but isomorphic) final states. Though Chapter 3 does
not address this issue, this fact applies there, too.

For presentational purposes, Definition 20 does not allow for conditional in-
formation flow statements, but can—as well as all subsequent results—be ex-
tended to conditional information flow along the lines of Chapters 3 to 5.

The following extension of method m1() from Figure 6.1 illustrates Defini-
tion 20:

final class C {
static C x, y; // low variables
static boolean h; // high variable
C next;

static void m2() {
if (h) { x = new C(); y = new C(); x.next = y; }
else { y = new C(); x = new C(); x.next = x; }

}
}

Whether m2() leaks information or not depends on the examined observa-
tion expression. For R = 〈C.x,C.y〉 the observation will always consist of two
freshly created, distinct object references. If agreeos(R, s1, s

′
1, π1), the partial iso-

morphism π2 defined as an extension of π1 by π2(xs2) = xs
′
2 and π2(ys2) = ys

′
2

ensures agreeos(R, s2, s
′
2, π2) and, therefore, flowos(m2(), R,R).

On the other hand, if R′ = 〈C.x,C.y, C.x.next〉 is chosen, π2 is no longer a par-
tial isomorphism as π2(nexts2(xs2)) = nexts

′
2(xs

′
2) would need to hold. But if

hs1 = true and hs
′
1 = false, the resulting heap structures are not isomor-

phic: π2(nexts2(xs2)) = π2(ys2) and nexts
′
2(xs

′
2) = xs

′
2 = π2(xs2) which cannot

be equal as π2 is an injection. The attacker can learn the value of h by comparing
x and x.next. flowos(m2(), R′, R′) does not hold.

The information flow property of Definition 20 is compositional in the follow-
ing sense.

Lemma 21 (Compositionality of flowos). Let α1, α2 be programs and α1;α2 their
sequential composition. Further let R1, R2, R3 be observation expressions and s1, s2

be states.

If flowos(s1, α1, R1, R2), flowos(s2, α2, R2, R3) as well as the condition Obj (Rs11) ∩
Obj (Rs33) ⊆ Obj (Rs22) hold for all s1, s2, s3 such that α1 started in s1 terminates in
s2 and α2 started in s2 terminates in s3, then flowos(α1;α2, R1, R3) holds.

The following lemma on agreeos is needed for later reference.

72

6.2 An Efficient Compositional Criterion

Lemma 22. If agreeos(R, s, s
′, π) and if ρ : s → ρ(s) and ρ′ : s′ → ρ′(s′) are

isomorphisms then

(1) agreeos(R, s, ρ
′(s′), ρ′ ◦ π) and

(2) agreeos(R, ρ(s), s′, π ◦ ρ−1).

6.1.4 Optimized Object-Sensitive Noninterference

The basic notion of object-sensitive noninterference can be optimized. To this
end, this section introduces a simpler, but semantically equivalent definition
of object-sensitive noninterference. The definition restricts the partial isomor-
phism in the prestate to be the identity. This simplifies the formulation of ver-
ification conditions considerably (see Theorem 30 below), also making them
easier to verify.

Definition 23 (Optimized Object-Sensitive Noninterference). Let α be a program
and R1 and R2 be two observation expressions.

In an object-sensitive setting a program α allows information to flow only from R1

to R2 when started in s1, denoted by flow∗os(s1, α,R1, R2), if and only if for all states
s′1, s2, s′2 such that α started in s1 terminates in s2 and α started in s′1 terminates in
s′2 (for arbitrary object creation orders) the following applies:

if agreeos(R1, s1, s
′
1, id)

then agreeos(R2, s2, s
′
2, π2) for some π2 compatible with id.

agreeos(R1, s1, s
′
1, id) implies in particular Obj (Rs11) = Obj (R

s′1
1) since π1 = id

is a bijection from Obj (Rs11) onto Obj (R
s′1
1).

Theorem 24. For all programs α, any two observation expressions R1 and R2, and
any state s1 flow∗os(s1, α,R1, R2) ⇔ flowos(s1, α,R1, R2) .

Postulate 18 (on page 70) is essential for the proof of Theorem 24.

6.2 An Efficient Compositional Criterion

Though Definition 23 already simplifies the formulation of verification con-
ditions and consequently checking for flowos, it can still be improved. This
section presents a slightly stronger information flow property, flow∗∗os , which
is simpler to check. flow∗∗os is a criterion for flowos, that is, a sufficient but not
a necessary condition. Roughly speaking, the main difference between flowos

73

6 Object Orientation

and flow∗∗os is that flow∗∗os admits the attacker the ability to distinguish between
newly created objects and objects which already existed in the prestate. This
property of flow∗∗os is responsible for its compositionality (Theorem 29), which
is an indispensable prerequisite for modular verification of information flow
properties. In flow∗∗os , the partial isomorphisms differs from the identity on new
objects only. This reduces the effort to verify flow∗∗os considerably if only few or
no new objects are created. Also, there is no obligation that one isomorphism
is an extension of another.

A disadvantage of flow∗∗os is that it requires an additional observation expres-
sion N2 which exactly names the new elements of the set of objects observable
in the poststate. Also, it has to be proven that N2 exactly names the new el-
ements. However, N2 is usually an explicit subexpression of R2 and can be
named easily. Proving that N2 exactly names the new elements is in the major-
ity of cases a simple task as well.

Definition 25 (Strong Object-Sensitive Noninterference). Let N2 be an observa-
tion expression such that all terms inN2 are of object type. Further, let α be a program,
R1, R2 observation expressions, and s1 a state.

The predicate flow∗∗os (s1, α,R1, R2, N2) is true if and only if the following applies for
all states s′1, s2, s′2 such that α started in s1 terminates in s2 and α started in s′1
terminates in s′2 (for arbitrary object creation orders):

if agreeos(R1, s1, s
′
1, id)

then all objects in Obj (Ns2
2) and Obj (N

s′2
2) are new and

agreeos(N2, s2, s
′
2, π) for a partial isomorphism π and

if agreeos(N2, s2, s
′
2, id) then agreeos(R2, s2, s

′
2, id)

As before, flow∗∗os (α,R1, R2, N2) denotes the case that flow∗∗os (s1, α,R1, R2, N2) holds
for all states s1.

Theorem 26. Let N2 be an observation expression such that all expressions in N2 are
of object type. Further, let α be a program, R1, R2 observation expressions, and s1 a
state.

1. flow∗∗os (s1, α,R1, R2, N2)⇒ flowos(s1, α,R1, R2).

2. If for all states s2 such that α started in s1 terminates in s2

Obj (Ns2
2) = {o ∈ Obj (Rs22) | createds1(o) = ff } and

{o ∈ Obj (Rs22) | createds1(o) = tt} ⊆ Obj (Rs11)
then flowos(s1, α,R1, R2)⇒ flow∗∗os (s1, α,R1, R2, N2) .

The proof of Theorem 26 uses the following auxiliary lemma. The lemma states
that there are always object creation orders such that in two runs of a program

74

6.2 An Efficient Compositional Criterion

α, which are started in R equivalent states, the same new objects are chosen for
those objects which are observable by R.

Lemma 27. Let α be a program such that α started in s1 terminates in s2, α started
in s′1 terminates in s′2, agreeos(R, s1, s

′
1, id) and agreeos(N, s2, s

′
2, π) hold true for ob-

servation expressions R and N . In addition let all objects in Obj (Ns2) and Obj (Ns′2)
be new.

Then there are isomorphisms ρ : s2 → ρ(s2) and ρ′ : s′2 → ρ′(s′2) and object creation
orders such that (1) α started in s1 terminates in ρ(s2), (2) α started in s′1 terminates
in ρ′(s′2), (3) agreeos(N, ρ(s2), ρ′(s′2), id), and (4) ρ(o) = o and ρ′(o) = o for all o
existing in state s1 or s′1.

Proof of Lemma 27. Let ρ00 be a type preserving and array-length preserving in-
jective function from Obj (Ns2) to ObjD, such that the image ρ00(Obj (Ns2)) only
contains objects that were not already created in states s1 or s′1. Because the uni-
verse D of D contains an infinite reservoir of non-created objects, such a choice
is possible. Let ρ0 be the extension of ρ00 that is the identity on all (finitely
many) objects existing in state s1. Let ρ′00 = ρ00 ◦ π−1 and ρ′0 the extension of
ρ′00 which is the identity on all objects existing in s′1. By Lemma 15 there are iso-
morphisms ρ : s2 → ρ(s2) and ρ′ : s′2 → ρ′(s′2) extending ρ0 and ρ′0, respectively.
By Lemma 22, agreeos(N, s2, s

′
2, π) implies agreeos(N, ρ(s2), ρ′(s′2), ρ′ ◦ π ◦ ρ−1).

By construction of ρ, ρ′ the isomorphism ρ′ ◦ π ◦ ρ−1 is the identity function
on Obj (N2), thus agreeos(N, ρ(s2), ρ′(s′2), id) holds. ρ(o) = o and ρ′(o) = o for
all o existing in state s1 or s′1 follows from the construction, too. Further, the
isomorphisms ρ and ρ′ are chosen such that still (1) every newly created object
is different from null ; (2) the dynamic types of new objects correspond to the
type allocated by the Java program; and (3) no newly created object is already
created in s1 or s′1. Therefore, there are object creation orders such that α started
in s1 terminates in ρ(s2) and α started in s′1 terminates in ρ′(s′2) (compare Sec-
tion 2.1).

Proof of Theorem 26.

Part 1: We assume flow∗∗os (s1, α,R1, R2, N2) and show flow∗os(s1, α,R1, R2). To
this end, let s′1, s2, s′2 be states such that α started in s1 terminates in s2, α
started in s′1 terminates in s′2 and agreeos(R1, s1, s

′
1, id). It has to be shown

that agreeos(R2, s2, s
′
2, π) holds, where the uniquely determined partial isomor-

phism π is compatible with id.

By assumption we obtain agreeos(N2, s2, s
′
2, σ) for some partial isomorphism σ

and we know that all objects in Obj (Ns2
2) and Obj (N

s′2
2) are new. By Lemma 27,

there are isomorphisms ρ : s2 → ρ(s2), ρ′ : s′2 → ρ′(s′2) and object creation
orders such that α started in s1 terminates in ρ(s2), α started in s′1 terminates in

75

6 Object Orientation

ρ′(s′2), and agreeos(N2, ρ(s2), ρ′(s′2), id) holds. Another appeal to the definition
of flow∗∗os (s1, α,R1, R2, N2), now for the object creation orders from Lemma 27,
yields agreeos(R2, ρ(s2), ρ′(s′2), id). By Lemma 22, the latter implies agreeos(R2,
s2, s

′
2, (ρ

′)−1 ◦ ρ). Further, (ρ′)−1 ◦ ρ(o) = o holds by Lemma 27 for all o ∈
Obj (Rs11) ∩ Obj (Rs22). Thus (ρ′)−1 ◦ ρ is compatible with id and the claim is
proved.

Part 2: For the reverse implication we assume flow∗os(s1, α,R1, R2) and aim at
proving flow∗∗os (s1, α,R1, R2, N2). Let s′1, s2, s′2 be states such that α started in
s1 terminates in s2, α started in s′1 terminates in s′2, and agreeos(R1, s1, s

′
1, id).

From flow∗os(s1, α,R1, R2) we obtain agreeos(R2, s2, s
′
2, π) where π is compati-

ble with id. By case assumption, Obj (Ns2
2) = {o ∈ Obj (Rs22) | createds1(o) = ff }

holds. Therefore, π is a partial isomorphism from Obj (Ns2
2) onto Obj (N

s′2
2).

This yields agreeos(N2, s2, s
′
2, π).

In the following, we assume agreeos(N2, s2, s
′
2, id) with the intention to show

agreeos(R2, s2, s
′
2, id). First of all, agreeos(R2, s2, s

′
2, π) implies πSeq(Rs22) = R

s′2
2 ,

where πSeq is defined as πSeq(〈e1, . . . , ek〉) = 〈e′1, . . . , e′k〉with

e′i =

 π(ei) if ei ∈ ObjD

πSeq(ei) if ei ∈ SeqD

ei else
.

It remains to be shown that π(ei) = ei for ei ∈ Obj (Rs22). We distinguish two
cases: (1) createds1(ei) = tt and (2) createds1(ei) = ff .

In case (1) we obtain ei ∈ Obj (Rs11) by case assumption {o ∈ Obj (Rs22) |
createds1(o) = tt} ⊆ Obj (Rs11). Hence π(ei) = ei since π is compatible with
id. In case (2) we use assumptions agreeos(N2, s2, s

′
2, id) and Obj (Ns2

2) = {o ∈
Obj (Rs22) | createds1(o) = ff }, and also arrive at π(ei) = ei.

The remainder of this section shows compositionality of flow∗∗os . The key prop-
erty of flow∗∗os compared to flowos which is responsible for its compositionality
is that an attacker can observe in the poststate of a program run at most objects
which are newly created or which already have been observed in the prestate.
More precisely, Theorem 29 below shows the compositionality of

(1) flowos(s1, α,R1, R2) in combination with

(2) agreeos(R1, s1, s
′
1) implies {o ∈ Obj (Rs22) | createds1(o) = tt} ⊆ Obj (Rs11).

Both properties are implied by flow∗∗os , as the next lemma shows.

76

6.2 An Efficient Compositional Criterion

Lemma 28. LetN2 be an observation expression such that all terms inN2 are of object
type. Further, let α be a program, R1, R2 observation expressions, and s1 a state. Let
s′1, s2, s′2 be states such that α started in s1 terminates in s2 and α started in s′1
terminates in s′2.

Then flow∗∗os (s1, α,R1, R2, N2) implies

(1) flowos(s1, α,R1, R2) and additionally that

(2) agreeos(R1, s1, s
′
1) implies {o ∈ Obj (Rs22) | createds1(o) = tt} ⊆ Obj (Rs11).

Proof. By Theorem 26 and Theorem 24, flowos(s1, α,R1, R2) follows directly
from flow∗∗os (s1, α,R1, R2, N2).

For the second part, we may assume agreeos(R1, s1, s
′
1, π1). By Lemma 15, there

is an isomorphism ρ0 : s′1 → ρ0(s′1) extending (π1)−1. Thus we may conclude
agreeos(R1, s1, ρ0(s′1), ρ0◦π1) using Lemma 22. Since ρ0 extends (π1)−1 we have
agreeos(R1, s1, ρ0(s′1), id).

We prove {o ∈ Obj (Rs22) | createds1(o) = tt} ⊆ Obj (Rs11) by contradiction. As-
sume flow∗∗(s1, α,R1, R2, N2), agree(R1, s1, ρ0(s′1), id) and o ∈ Obj (Rs22) such
that createds1(o) = tt and o /∈ Obj (Rs11). Because o ∈ Obj (Rs22), there is an
index i such that R2[i]s2 = o.

By flow∗∗(s1, α,R1, R2, N2) and Postulate 18, we get agree(N2, s2, ρ
′
0(s′2), π2)

for a partial isomorphism π2 and an isomorphism ρ′0 which equals ρ0 for all ob-
jects created in ρ0(s′1). Additionally, we know that all objects in Obj (Ns2

2) and
Obj (N

ρ′0(s′2)
2) are new. By Lemma 27, there are isomorphisms ρ : s2 → ρ(s2)

and ρ′ : ρ′0(s′2)→ ρ′(ρ′0(s′2)) and object creation orders such that α started in s1

terminates in ρ(s2), α started in ρ0(s′1) terminates in ρ′(ρ′0(s′2)), and addition-
ally agreeos(N2, ρ(s2), ρ′(ρ′0(s′2)), id) holds. Another appeal to the definition of
flow∗∗os (s1, α,R1, R2, N2), now for the object creation orders from Lemma 27,
yields agreeos(R2, ρ(s2), ρ′(ρ′0(s′2)), id). By Lemma 22, the latter implies that
agreeos(R2, s2, s

′
2, (ρ

′
0)−1 ◦ (ρ′)−1 ◦ ρ) holds.

On the other hand, o is neither in the domain of π1 of agree(R1, s1, s
′
1, π1) nor of

id of agreeos(N2, ρ(s2), ρ′(ρ′0(s′2)), id) and thus there is no reason why R2[i]s
′
2 =

(ρ′0)−1 ◦ (ρ′)−1 ◦ ρ(o) indeed should hold. We will use this intuition to derive a
contradiction to agreeos(R2, s2, s

′
2, (ρ

′
0)−1 ◦ (ρ′)−1 ◦ ρ).

To this end, we need to assume that R2[i]s
′
2 = (ρ′0)−1 ◦ (ρ′)−1 ◦ ρ(o) “acciden-

tally” holds true (which is possible). We construct an isomorphism ρ′1 such
that agreeos(R2, s2, s

′
2, (ρ

′
1)−1 ◦ (ρ′)−1 ◦ ρ) still needs to hold, but for which

R2[i]s
′
2 = (ρ′1)−1 ◦ (ρ′)−1 ◦ ρ(o) definitely is false (which then is a contradic-

tion).

77

6 Object Orientation

Let o′ be a so far “uninvolved” object, that is, let o′ be neither created in s2 nor
in ρ(s2), s′2, ρ′0(s′2), or ρ′(ρ′0(s′2)). Further, let ρ1 be an isomorphism which is
defined as follows:

ρ1(x) =

o′ if x = ρ−1

0 (o)

ρ−1
0 (o) if x = o′

ρ0(x) else

Because neither o nor o′ are in the domain of π1 and therefore ρ−1
0 (o) and ρ−1

0 (o′)

are not in Obj (R
s′1
1), the isomorphism ρ1 is still an extension of π−1

1 .

By flow∗∗(s1, α,R1, R2, N2) and Postulate 18, we get agree(N2, s2, ρ
′
1(s′2), π2)

for an isomorphism ρ′1 which equals ρ1 on all objects created in ρ1(s′1). Further,
all objects in Obj (Ns2

2) and Obj (N
ρ′1(s′2)
2) are new. An inspection of the proof

of Lemma 27 shows that ρ : s2 → ρ(s2) and ρ′ : ρ′1(s′2) → ρ′(ρ′1(s′2)) are still
isomorphisms such that α started in s1 terminates in ρ(s2), α started in ρ1(s′1)
terminates in ρ′(ρ′1(s′2)), and agreeos(N2, ρ(s2), ρ′(ρ′1(s′2)), id) for suitable object
creation orders. Another appeal to flow∗∗os (s1, α,R1, R2, N2), now for the ob-
ject creation orders from Lemma 27, yields agreeos(R2, ρ(s2), ρ′(ρ′1(s′2)), id). By
Lemma 22, the latter implies agreeos(R2, s2, s

′
2, (ρ

′
1)−1 ◦ (ρ′)−1 ◦ ρ).

By the construction of ρ′1, ρ′ and ρ we have R2[i]s
′
2 = (ρ′1)−1 ◦ (ρ′)−1 ◦ ρ(o) = o′.

This is a contradiction to R2[i]s
′
2 = (ρ′0)−1 ◦ (ρ′)−1 ◦ ρ(o) from above, because

o′ 6= (ρ′0)−1(o) by definition.

Theorem 29 (Compositionality of flow∗∗). Let s1, s2, s3 be states such that α1

started in s1 terminates in s2 and α2 started in s2 terminates in s3. If

1. flow(s1, α1, R1, R2),

2. flow(s2, α2, R2, R3),

3. for all states s′1 we have agree(R1, s1, s
′
1) ⇒ {o ∈ Obj (Rs22) | createds1(o) =

tt} ⊆ Obj (Rs11) and

4. for all states s′2 we have agree(R2, s2, s
′
2) ⇒ {o ∈ Obj (Rs33) | createds2(o) =

tt} ⊆ Obj (Rs22)

then
flow(s1, α1;α2, R1, R3) and for all states s′1 we have
agree(R1, s1, s

′
1)⇒ {o ∈ Obj (Rs33) | createds1(o) = tt} ⊆ Obj (Rs11).

Proof. Let s′1, s′2, s′3 be states such that α1 started in s′1 terminates in s′2 and α2

started in s′2 terminates in s′3. We may assume agree(R1, s1, s
′
1), otherwise the

78

6.3 Formalisation in JavaDL

lemma is trivially true. By flow(s1, α1, R1, R2) we derive agree(R2, s2, s
′
2) and

thus we have by assumption

{o ∈ Obj (Rs22) | createds1(o) = tt} ⊆ Obj (Rs11) and (6.1)
{o ∈ Obj (Rs33) | createds2(o) = tt} ⊆ Obj (Rs22) (6.2)

We show flow(s1, α1;α2, R1, R3) with the help of Lemma 21. Thus it is suffi-
cient to show (1) Obj (Rs11) ∩ Obj (Rs33) ⊆ Obj (Rs22) and (2) {o ∈ Obj (Rs33) |
createds1(o) = tt} ⊆ Obj (Rs11).

By (6.1) and (6.2) we get {o ∈ Obj (Rs33) | createds1(o) = tt} ⊆ {o ∈ Obj (Rs22) |
createds1(o) = tt} ⊆ Obj (Rs11) and thus Obj (Rs11)∩Obj (Rs33) = {o ∈ Obj (Rs33) |
createds1(o) = tt} ⊆ {o ∈ Obj (Rs22) | createds1(o) = tt} ⊆ Obj (Rs22).

6.3 Formalisation in JavaDL

The overall goal is to prove information flow properties flowos(α,R1, R2) for
particular programs α and particular observation expressions Ri. To this end,
this section presents a formulation of strong object-sensitive noninterference in
Java DL in the lines of Theorem 9. The construction of the formula φα,R1,R2,N2

expressing flow∗∗os (α,R1, R2, N2) is explained step by step.

flow∗∗os (α,R1, R2, N2) quantifies over states. A state s is a mapping of the (fi-
nitely many) program variables x̄ and heap to values. By Lemma 8, updates of
the form {heap := h || x̄ := x̄} can be used to refer to multiple states within
one structure (D, s). Thus, quantification over all states can be achieved as in
Theorem 9 by quantification over all values x̄ and h of x̄ and heap:

∀h.∀x̄.{heap := h || x̄ := x̄}φ

flow∗∗os (α,R1, R2, N2) involves four states, the two pre-states s1, s′1 and the post-
states s2, s′2. Correspondingly, φα,R1,R2,N2

contains four pairs of universally
quantified variables (h1, x̄1), (h′1, x̄

′
1), (h2, x̄2), (h′2, x̄

′
2) representing the states

s1, s′1, s2, s′2. This leads to the following schematic form of φα,R1,R2,N2 which
directly follows the definition of flow∗∗os (α,R1, R2, N2):

φα,R1,R2,N2
≡ ∀h1, h

′
1, h2, h

′
2.∀x̄1, x̄

′
1, x̄2, x̄

′
2.

((∗in s1∗)〈α〉(∗save s2∗)
∧ (∗in s′1∗)〈α〉(∗save s′2∗)
∧ (∗in s1∗)R1

.
= (∗in s′1∗)R1

→ (newIso

∧ ((∗in s2∗)N2
.
= (∗in s′2∗)N2

→ (∗in s2∗)R2
.
= (∗in s′2∗)R2)))

79

6 Object Orientation

To maintain readability, φα,R1,R2,N2
uses the same abbreviations (∗ . . . ∗) as The-

orem 9:

(∗in si∗) ≡ {heap := hi || x̄ := x̄i} (∗save s2∗) ≡ (heap = h2 ∧ x̄ = x̄2)

(∗in s′i∗) ≡ {heap := h′i || x̄ := x̄′i} (∗save s′2∗) ≡ (heap = h′2 ∧ x̄ = x̄′2)

The abbreviation newIso is defined as

newIso ≡ (∗in s1∗)objectsNew((∗in s2∗)N2)

∧ (∗in s′1∗)objectsNew((∗in s′2∗)N2)

∧Agreetype((∗in s2∗)N2, (∗in s′2∗)N2)

∧Agreeobj ((∗in s2∗)N2, (∗in s′2∗)N2)

where the predicates objectsNew(Seq X), Agreetype(Seq X,Seq X ′) as well as
Agreeobj (Seq X,Seq X ′) are defined recursively as follows:

objectsNew(Seq X) ≡ ∀i.(0 ≤ i < X.len→ created(X[i])
.
= FALSE)

Agreetype(Seq X,Seq X ′) ≡
X.len

.
= X ′.len

∧ ∀i.(0 ≤ i < X.len→
X[i]@−Obj

∧
∧
A in α

(exactInstanceA(X[i])↔ exactInstanceA(X ′[i]))))

Agreeobj (Seq X,Seq X ′) ≡
∀i.∀j.(0 ≤ i < X.len ∧ 0 ≤ j < X.len→ (X[i]

.
= X[j]↔ X ′[i]

.
= X ′[j]))

As before, R[i] denotes seqGetAny(R, i) and t@−A denotes instanceA(t).

It remains to show that φα,R1,R2,N2
indeed expresses flow∗∗os (α,R1, R2, N2).

Theorem 30. Let α be a program, let R1, R2, N2 be observation expressions.

flow∗∗os (α,R1, R2, N2) ⇔ s1 |= φα,R1,R2,N2
.

Proof.

“⇐”: Assume s1 |= φα,R1,R2,N2 . In order to prove flow∗∗os (α,R1, R2, N2), let
s1, s′1, s2, s′2 be states such that α started in s1 terminates in s2, α started in
s′1 terminates in s′2, and agreeos(R1, s1, s

′
1, id). We need to show that all objects

in Obj (Ns2
2) and Obj (N

s′2
2) are new, agreeos(N2, s2, s

′
2, π) for a partial isomor-

phism π and if agreeos(N2, s2, s
′
2, id) then agreeos(R2, s2, s

′
2, id).

80

6.3 Formalisation in JavaDL

As in Theorem 9, we chose the variable assignment β such that β(h1) = heaps1 ,
β(h′1) = heaps

′
1 , β(h2) = heaps2 , β(h′2) = eaps

′
2 , β(x̄1) = x̄s1 , β(x̄′1) = x̄s

′
1 ,

β(x̄2) = x̄s2 , and β(x̄′2) = x̄s
′
2 . Then D, s, β |= (∗in s1∗)〈α〉(∗save s2∗) holds by

Lemma 8 and by the definition of 〈α〉 (for an arbitrary state s), because α started
in s1 terminates in s2. Similarly, D, s, β |= (∗in s′1∗)〈α〉(∗save s′2∗) holds, because
α started in s′1 terminates in s′2. By Corollary 1, agreeos(R1, s1, s

′
1, id) implies

D, s, β |= (∗in s1∗)R1
.
= (∗in s′1∗)R1. As a consequence

D, s, β |= newIso

∧ ((∗in s2∗)N2
.
= (∗in s′2∗)N2

→ (∗in s2∗)R2
.
= (∗in s′2∗)R2)

holds by assumption s1 |= φα,R1,R2,N2
.

Another application of Corollary 1 on

D, s, β |= (∗in s2∗)N2
.
= (∗in s′2∗)N2 → (∗in s2∗)R2

.
= (∗in s′2∗)R2)

yields that agreeos(N2, s2, s
′
2, id) implies agreeos(R2, s2, s

′
2, id).

It remains to be shown that all objects in Obj (Ns2
2) and Obj (N

s′2
2) are new and

agreeos(N2, s2, s
′
2, π) for a partial isomorphism π. We know D, s, β |= newIso

which is equivalent to:

D, s, β |= (∗in s1∗)objectsNew((∗in s2∗)N2)

∧ (∗in s′1∗)objectsNew((∗in s′2∗)N2)

∧Agreetype((∗in s2∗)N2, (∗in s′2∗)N2)

∧Agreeobj ((∗in s2∗)N2, (∗in s′2∗)N2)

D, s, β |= (∗in s1∗)objectsNew((∗in s2∗)N2) implies Obj (Ns2
2), whereas D, s, β |=

(∗in s′1∗)objectsNew((∗in s′2∗)N2) implies Obj (N
s′2
2). Finally, the combination of

D, s, β |= Agreetype((∗in s2∗)N2, (∗in s′2∗)N2)

and
D, s, β |= Agreeobj ((∗in s2∗)N2, (∗in s′2∗)N2)

implies that s2 and s′2 are isomorphic according to Definition 17 (Partial iso-
morphism w. r. t. R).

In total flow∗∗os (α,R1, R2, N2) has been shown.

“⇒”: Assume flow∗∗os (α,R1, R2, N2). We need to show D, s, β |= φα,R1,R2,N2
.

To this end, let β be an arbitrary variable assignment and let s1, s′1, s2, s′2 be
states such that β(h1) = heaps1 , β(h′1) = heaps

′
1 , β(h2) = heaps2 , β(h′2) =

81

6 Object Orientation

eaps
′
2 , β(x̄1) = x̄s1 , β(x̄′1) = x̄s

′
1 , β(x̄2) = x̄s2 , and β(x̄′2) = x̄s

′
2 . We may

assume (for an arbitrary state s) D, s, β |= (∗in s1∗)〈α〉(∗save s2∗), D, s, β |=
(∗in s′1∗)〈α〉(∗save s′2∗) and D, s, β |= (∗in s1∗)R1

.
= (∗in s′1∗)R1 and need to show

that
D, s, β |= newIso

∧ ((∗in s2∗)N2
.
= (∗in s′2∗)N2

→ (∗in s2∗)R2
.
= (∗in s′2∗)R2)

holds.

D, s, β |= (∗in s1∗)〈α〉(∗save s2∗), D, s, β |= (∗in s′1∗)〈α〉(∗save s′2∗) and D, s, β |=
(∗in s1∗)R1

.
= (∗in s′1∗)R1 imply that α started in s1 terminates in s2, α started in

s′1 terminates in s′2, and agreeos(R1, s1, s
′
1, id). Thus, flow∗∗os (α,R1, R2, N2) im-

plies that all objects in Obj (Ns2
2) and Obj (N

s′2
2) are new, agreeos(N2, s2, s

′
2, π) for

a partial isomorphism π and if agreeos(N2, s2, s
′
2, id) then agreeos(R2, s2, s

′
2, id).

Analog to the first part of the proof,

D, s, β |= (∗in s2∗)N2
.
= (∗in s′2∗)N2 → (∗in s2∗)R2

.
= (∗in s′2∗)R2)

holds because agreeos(N2, s2, s
′
2, id) implies agreeos(R2, s2, s

′
2, id). Similarly,

D, s, β |= newIso

because all objects in Obj (Ns2
2) and Obj (N

s′2
2) are new and agreeos(N2, s2, s

′
2, π)

for a partial isomorphism π. In total we have shown D, s, β |= φα,R1,R2,N2
.

The next section shows how strong object-sensitive noninterference is specified
in the JML extension from Chapter 4.

6.4 JML Extension

The information flow behavior of methods is specified in JML with the help
of determines clauses, as presented in Chapter 4.3. This section introduces
the new keyword \new_objects which can be used in determines clauses to
name the observable newly created objects. The syntax of determines clauses
is defined by the Extended Backus–Naur Form (EBNF) of Listing 6.1. Here,
expression is a usual JML expression.

The semantics of the determines clause is defined with the help of conditional
object-sensitive non-interference, the obvious extension of Definition 25 with
conditions along the lines of Definition 3: Let Rpost be defined as the concate-
nation of the expressions behind the determines keyword and the expres-
sions behind the \erases keywords. Let Rpre be defined as the concatenation

82

6.4 JML Extension

determines_clause =
"determines", (expressions | "\nothing"),
"\by", (expressions | "\itself" | "\nothing"),
{ ["\declassifies", expressions]
| ["\erases", expressions]
| ["\new_objects", expressions] };

expressions = expression, { ",", expression };

Listing 6.1: EBNF of determines clauses in the object-sensitive context.

of the expressions behind the \by keyword and the expressions behind the
\declassifies keywords and let N2 be defined as the concatenation of the
expressions behind the \new_objects keywords. In this context \nothing
is identified with the empty sequence and \itself is identified with Rpost .
Let further φpre be the precondition of the contract defined as usual by requires
clauses and class invariants. A method m fulfills a determines clause if and only
if flowos(m, Rpre , Rpost , N2, φpre) is valid.

The syntax and semantics of block contracts and loop invariants of Chapter 4.3
are extended accordingly.

Example 1. Consider the following example originating from Naumann [2006]. In
this example a fresh array with 10 fresh Node objects is generated. Additionally, the
val attribute of each Node object is assigned the value of the low parameter x. It has
to be shown that the resulting array does not depend on the secret parameter secret.

1 public class Naumann {
2 Node[] m_result;
3

4 /*@ determines m_result,
5 (\seq_def int i; 0; m_result.length; m_result[i]),
6 (\seq_def int i; 0; m_result.length;
7 m_result[i].val)
8 \by x;
9 @*/

10 //@ helper
11 void pair_m(int x, int secret) {
12 /*@ normal_behavior
13 ensures m_result != null && m_result.length == 10;
14 ensures \typeof(m_result) == \type(Node[]);
15 determines m_result \by \nothing
16 \new_objects m_result;
17 @*/

83

6 Object Orientation

18 { m_result = new Node[10]; }
19 int i = 0;
20 /*@ loop_invariant 0 <= i && i <= m_result.length;
21 loop_invariant m_result != null
22 && \typeof(m_result) == \type(Node[]);
23 assignable m_result[*];
24 decreases m_result.length - i;
25 determines i, x, m_result,
26 (\seq_def int j; 0; i; m_result[j]),
27 (\seq_def int j; 0; i; m_result[j].val)
28 \by \itself
29 \new_objects m_result[i-1];
30 @*/
31 while (i < 10) {
32 m_result[i] = new Node();
33 m_result[i].val = x;
34 i++;
35 }
36 }
37

38 class Node {
39 public int val;
40 }
41

42 }

The security requirement is expressed by a method contract. The contract states that
the attribute m_result as well as its content depends at most on the value of the pa-
rameter x (and therefore not on the value of secret). Though the method generates
new objects, the method contract does not use the keyword \new_objects. This is
possible, because the verification problem is split into two parts: the generation of the
new array object and the loop. In the first part as well as in each loop iteration only one
new object is created. This makes it easy to find an isomorphism for the newly created
objects of each part. Further, by the compositionality result of Section 6.2, we may as-
sume at the end of each part that identical objects have been created. Because this holds
in particular after the execution of the loop, the method contract does not need to list
the new objects again, but can check for object identity instead. Intuitively, each part
checks for a compatible extension of the isomorphism of the previous part and there-
fore we do not need to check for the existence of an isomorphism for the composition of
those parts again. This fact simplifies the verification of object-sensitive noninterference
considerably.

The block contract for the array creation, line 18, ensures (beside some basic functional
guarantees) that the final value of m_result does not depend on anything and that

84

6.5 Discussion

the final value is a newly created object. Similarly, the loop invariant states that the
values of control variable i, of the parameter x, of m_result and of the content of
m_result up to position i depend in each loop iteration only on themselves. Further,
in each loop iteration the only new observable object is m_result[i-1] (where the
expression m_result[i-1] is evaluated in the poststate). Beside these information
flow guarantees, the loop invariant ensures termination of the loop and that at most the
content of m_result is modified.

6.5 Discussion

The discussion below focuses on object-sensitive secure information flow. A
broader discussion on the specification and verification of secure information
flow can be found in Sections 4.5 and 5.4.

The work closest to this chapter is Amtoft et al. [2006]. The authors build on
region logic, a kind of Hoare logic with concepts from separation logic, which is
comparable to Java DL. They use the same basic definition of object-sensitive
secure information flow. Instead of providing verification conditions which
can be discharged with a standard calculus, as presented in this chapter, they
introduce a specialized, more efficient calculus in the lines of Chapter 7 to show
object-sensitive secure information flow. This specialized calculus uses approx-
imate rules which avoid explicit modeling of isomorphisms, but comes with
the price of imprecision. The discerning points of the presented work are: (1) a
further investigation of the security property, allowing the restriction of iso-
morphisms as far as possible and thus making the explicit, non approximate
modeling of isomorphisms feasible with a minimum of additional user inter-
action; (2) verification conditions that are discharged with an existing tool; and
(3) a more flexible specification methodology.

Contributions (1) and (3) also distinguish this work from the approaches men-
tioned in Section 5.4, including JIF, which already presented an approximate
treatment of object-sensitive secure information flow for Java in Myers [1999a].
JIF is a practical approach to the analysis of secure information flow which cov-
ers a broad range of language features, but it has not been formally proven to
enforce noninterference. Similar to JIF, Barthe et al. [2013] and Banerjee and
Naumann [2002] use type systems for the verification of object-oriented secure
information flow. They treat a smaller set of language features, but prove that
their type systems indeed enforce noninterference. A closely related approach
is Beringer and Hofmann [2007]. Here, only the information flow analysis is
based on type systems; the verification task is separated from the analysis and
based on program logics. Still, points (1) and (3) as well as the overall precision

85

6 Object Orientation

are discerning points of this chapter. The approach by Barthe et al. [2013], al-
ready mentioned above, and the approaches by Hansen and Probst [2006] and
Hedin and Sands [2005] target Java Bytecode in contrast to source code, as the
other approaches do. Hedin and Sands [2005] use a type system approach, too,
whereas Hansen and Probst [2006] use abstract interpretation in combination
with classical static analysis.

To the best of the authors knowledge, the only approach which models isomor-
phisms explicitly is the self-composition approach in Naumann [2006]. The
drawback of that approach is that the specifier needs to track the isomorphism
manually with the help of additional ghost code annotations. This increases
the burden on the specifier, whereas the presented approach detects the iso-
morphism automatically.

86

7 An Approximate Information
Flow Calculus

Many times programs contain simple parts which can be verified with self-
composition style reasoning, but which can be verified more efficiently with
approximate approaches, even though the optimizations of Sections 5.2 and 5.3
increase the efficiently of self-composition style reasoning considerably. This
section presents an approximate information flow calculus along the lines of
Amtoft et al. [2006] which can handle simple examples efficiently and—in con-
trast to Amtoft et al. [2006]—additionally provides the possibility to resort to
self-composition style reasoning, if higher precision is needed at any time dur-
ing a proof.

As in Amtoft et al. [2006], the calculus is based on a special “agree” predicate
n : Any . Formulas and sequents are interpreted in two states instead of one:
n(t) is valid in states s1 and s2 if ts1 equals ts2 . Information flow statements
flow(α,R1, R2, φ) can be expressed with the help of n by

(φ ∧n(R1))→ [α]n(R2) , (7.1)

where φ is a “functional precondition”, that is, a formula which neither contains
the n operator nor modalities. Intuitively, formula (7.1) reads as follows: if φ is
valid in two states s1 and s′1 and if s1 and s′1 agree on the value of R1, then any
two states reached from s1 and s′1 by execution of α, respectively, agree on the
value of R2.

The information flow statement

flow(l1=l2; if (false) l2=h, 〈l1, l2〉, 〈l1, l2〉, true) (7.2)

for instance holds if and only if the sequent

n(l1),n(l2) =⇒ [l1=l2; if (false) l2=h](n(l1) ∧n(l2)) (7.3)

is universally valid. Figure 7.1 shows an example derivation in the approximate
calculus which proves that (7.3) is indeed universally valid. The rule names in
Figure 7.1 are abbreviated according to Table 7.1. We will go shortly trough the

87

7 An Approximate Information Flow Calculus

*
closeTrue

n(l1),n(l2)
=⇒ truenconst
n(l1),n(l2)
=⇒
n(false)

simp
n(l1),n(l2)
=⇒
{l1 := l2}
n(false)

*
closeFalse

n(l1),n(l2), false
=⇒
{l1 := l2}[l2=h]
(n(l1) ∧n(l2))

simp
n(l1),n(l2),
false = true
=⇒
{l1 := l2}[l2=h]
(n(l1) ∧n(l2))

*
close

n(l1),n(l2)
=⇒ n(l2)

simp
n(l1),n(l2)
=⇒ n(l2)∧n(l2)

simp
n(l1),n(l2)
=⇒
{l1 := l2}

(n(l1)∧n(l2))
empty

n(l1),n(l2)
=⇒
{l1 := l2}[]

(n(l1)∧n(l2))
simp

n(l1),n(l2),
false = false
=⇒
{l1 := l2}[]

(n(l1)∧n(l2))
nif

n(l1),n(l2) =⇒ {l1 := l2}[if (false) l2=h](n(l1) ∧n(l2))
assign

n(l1),n(l2) =⇒ [l1=l2; if (false) l2=h](n(l1) ∧n(l2))

Figure 7.1: Two-state calculus: example derivation.

Abbreviation Full name Abbreviation Full name
assign assignLocal nif nconditional
empty emptyModality nconst nconstant
closeTrue closeTrue closeFalse closeFalse
simp combination of all up-

date simplification rules
close close

Table 7.1: Two-state calculus: abbreviations of rule names.

88

7.1 Java DL Syntax Extension

proof tree and explain the intuition behind each derivation step to get a feeling
for the calculus.

The first derivation is a symbolic execution step which transforms the assign-
ment l1=l2 as usual into the update {l1 := l2}. The second step executes the
if statement symbolicly. In contrast to the normal if rule, the nif rule has three
premisses:

(1) In premiss one it has to be shown that the two states, in which the if state-
ment is executed, evaluate the guard in the same way. This way it is ensured
that any two runs which agree on l1 and l2 in the prestate will execute the
same branch of the if statement.

(2) In premiss two it has to be shown that the postcondition holds if the runs
take the then branch, whereas

(3) in premiss three it has to be shown that the postcondition holds if the runs
take the else branch.

Because false is a constant, n(false) is universally valid and Branch 1 of the
proof tree closes almost immediately. The then branch of the if statement is
never executed, because its guard is false. Therefore, Branch 2 of the proof
tree closes easily, too. Branch 3 remains. Here, the rule “simp” removes the
tautology false = false from the sequent. Thereafter, the empty modality
is removed by the rule “empty” and the update {l1 := l2} is applied to the
post condition n(l1) ∧ n(l2), again by the rule “simp”. The resulting sequent
is obviously universally valid and thus Branch 3 closes within two additional
steps, too.

The remainder of the chapter is structured as follows. The next section intro-
duces the extension to the Java DL syntax from Section 2.1, whereas Section 7.2
introduces its one-state and two-state semantics. Finally, Section 7.3 presents
the calculus followed by its soundness proof in Section 7.4. The chapter closes
with a short discussion.

7.1 Java DL Syntax Extension

Slightly different from the intuition given in the introduction, the syntax of
Java DL from Section 2.1 is not augmented by a special predicate, but by a new
modal operator n. Apart from that, terms and formulas are defined recursively
as before, whereby nesting of n is explicitly allowed.

The notation n(R) from the introduction, whereR is an observation expression
or a term (and not a formula), is a shorthand for the formula ∀x.n(x = R),
where x is a variable of the same type as R which does not occur free in R. As

89

7 An Approximate Information Flow Calculus

Lemma 32 below shows, the shorthand n(R) has the intended meaning, that
is, n(R) is valid in states s1 and s2 if and only if Rs1 equals Rs2 .

(φ ∧n(R1))→ [α](ψ ∧n(R2)) (7.4)

and Formula (7.1) are syntactically correct formulas in the extended Java DL
syntax using the shorthands n(Ri) for the formulas ∀x.n(x = Ri). The next
section explains their formal semantics.

7.2 Two-State Semantics

Formulas φ containing the n operator are interpreted in pairs of states. The
two-state semantics of a formula is defined on the basis of a restricted two-state
evaluation which interprets φ mainly in the first state.

Definition 31 (Restricted Two-State Evaluation). A formula φ is true in restricted
two-state evaluation in two-state structure (D, s1, s2) and variable assignment β, do-
nated by D, s1, s2, β �2�1 φ, if and only if:

D, s1, s2, β �2�1 φ⇔

D, s1, β � φ
if the top-level
operator of φ is
a predicate

D, s1, s2, β �2�1 φ1 if and only if
D, s2, s1, β �2�1 φ1

if φ = nφ1

D, s1, s2, β �2�1 φ1 and
D, s1, s2, β �2�1 φ2

if φ = φ1 ∧ φ2

D, s1, s2, β �2�1 φ1 orD, s1, s2, β �2�1 φ2 if φ = φ1 ∨ φ2

not D, s1, s2, β �2�1 φ1 if φ = ¬φ1

D, s1, s2, β
x/d �2�1 φ1 for all d ∈ D if φ = ∀x.φ1

There is an element d ∈ D such that
D, s1, s2, β

x/d �2�1 φ1
if φ = ∃x.φ1

D, su1 , su2 , β �2�1 φ1 where
sui = valD,si,β(u)(si)

if φ = {u}φ1

D, sα1 , sα2 , β �2�1 φ1 for all sα1 , sα2 such
that α started in si terminates (normally)
in sαi

if φ = [α]φ1

There are sα1 , sα2 such that α started
in si terminates (normally) in sαi and
D, sα1 , sα2 , β �2�1 φ1

if φ = 〈α〉φ1

90

7.2 Two-State Semantics

D, s1, s2, β 22�1 φ denotes the case that D, s1, s2, β �2�1 φ does not hold.

For conciseness of notation, in the following, D, s1, s2, β � φ will sometimes be
abbreviated by s1, s2 � φ. In these cases D and β are arbitrary but fixed. Simi-
larly, ts will be used to abbreviate tD,s,β . In other cases, the variable assignment
β is not important for the evaluation of formulas or terms (for instance if closed
formulas are evaluated). In these cases β will be omitted.

The next lemma shows that the abbreviation n(t) (where t is a term and not a
formula) has the semantics motivated by the introduction.

Lemma 32. Let (D, s1, s2) be a two-state structure, let β be a variable assignment, let
t be a term of type T and let x be a variable of type T which does not occur free in t.

D, s1, s2, β �2�1 n(t) (which abbreviates D, s1, s2, β �2�1 ∀x.n(x = t)) holds if and
only if tD,s1,β = tD,s2,β .

Proof. By Definition 31, D, s1, s2, β �2�1 ∀x.n(x = t) holds if and only if D, s1,
s2, β

x/d �2�1 n(x = t) for all d ∈ TD. Again by Definition 31, the latter is
equivalent to D, s1, β

x/d � x = t iff D, s2, β
x/d � x = t for all d ∈ TD. By the

usual Java DL semantics and because x does not occur free in t this holds if and
only if d = tD,s1,β iff d = tD,s2,β for all d ∈ TD. Because there is a d ∈ TD such
that d = tD,s1,β , this is equivalent to tD,s1,β = tD,s2,β .

To illustrate Definition 31, let us consider Formula (7.1) again. Formula (7.1)
is valid in states s1 and s2 with respect to the restricted two-state evaluation,
written s1, s2 �2�1 (φ ∧n(R1))→ [α]n(R2), if and only if

s1, s2 �2�1 φ (which is equivalent to s1 � φ, because φ is a “func-
tional precondition”, see Lemma 49.2 below)

and Rs11 = Rs21

imply for all states sα1 , sα2 such that α started in s1 terminates in sα1 and
α started in s2 terminates in sα2 the equation Rs

α
1

2 = R
sα2
2 is true.

This is not yet compatible with the semantics of flow(α,R1, R2, φ) as given in
Definition 3, because flow(α,R1, R2, φ) has the additional precondition that be-
side s1 � φ also s2 � φ holds. Therefore, the two-state semantics is defined on
the basis of the restricted two-state evaluation as follows.

Definition 33 (Two-State Evaluation). A formula φ evaluates to tt in two-state
evaluation in two-state structure (D, s1, s2) and variable assignment β, denoted by
D, s1, s2, β �2 φ, if and only if

(D, s1, s2, β �2�1 φ or D, s2, s1, β �2�1 φ) and D, s1, s1, β �2�1 φ

holds. D, s1, s2, β 22 φ denotes the case that D, s1, s2, β �2 φ does not hold.

91

7 An Approximate Information Flow Calculus

Definition 34 (Two-State Model). A two-state structure (D, s1, s2) is called a two-
state model of a formula φ, denoted by D, s1, s2 �2 φ, if and only if D, s1, s2, β �2 φ
for all variable assignments β. D, s1, s2 22 φ denotes the case that D, s1, s2 �2 φ
does not hold. A two-state structure (D, s1, s2) is called a two-state model for a set of
formulas M , denoted by D, s1, s2 �2 M , if and only if D, s1, s2 �2 φ for all φ ∈M .

Definition 35 (Universal Validity in Two-State Semantics). A formula φ is uni-
versally valid in two-state semantics, denoted by �2 φ, if and only if D, s1, s2 �2 φ for
all two-state structures (D, s1, s2).

Note that �2 has several non-classical properties, for instance, �2 is not closed
under conjunction: let x be a program variable of type Boolean and let s1 : x 7→
true and s2 : x 7→ false be two states. Then s1, s2 �2 x = true → n(x)
and s1, s2 �2 x = false → n(x) hold, but s1, s2 �2 (x = true → n(x)) ∧
(x = false → n(x)) does not. Indeed, the exemplary derivation of n(x) in
Section 7.3 shows that it appears to be unlikely that there is a semantics for �2

such that n is interpreted as desired and at the same time �2 has all properties
of classical logic.

That the semantics of �2 is chosen reasonably is shown by the next lemma.

Lemma 36. Let φ be a closed formula which neither contains the n operator nor modal-
ities (“a functional precondition”), let α be a program and let R1, R2 be observation
expressions.

φ ∧ n(R1) → [α]n(R2) is universally valid in two-state semantics if and only if
flow(α,R1, R2, φ) holds.

Proof. Let (D, s1, s2) be an arbitrary two-state structure. By Definition 34 (Two-
State Model) and Definition 33 (Two-State Evaluation),

D, s1, s2 �2 (φ ∧n(R1))→ [α]n(R2)

holds if and only if

(D, s1, s2, β �2�1 (φ ∧n(R1))→ [α]n(R2)

or D, s2, s1, β �2�1 (φ ∧n(R1))→ [α]n(R2))

and D, s1, s1, β �2�1 (φ ∧n(R1))→ [α]n(R2)

(7.5)

holds for all variable assignments β. Because the observation expressions R1

and R2 are closed formulas and because φ is closed by the premiss of the
lemma, β can be omitted. By Definition 31 (Restricted Two-State Evaluation)
the last conjunct D, s1, s1 �2�1 (φ ∧n(R1))→ [α]n(R2) is equivalent to

D, s1, s1 22�1 φ or RD,s11 6= RD,s11 or for all states sα1 such that α started
in s1 terminates in sα1 the equation RD,s

α
1

2 = R
D,sα1
2 holds.

92

7.2 Two-State Semantics

This is always true, because RD,s
α
1

2 always equals itself. Hence, (7.5) is equiva-
lent to

D, s1, s2 �2�1 (φ ∧n(R1))→ [α]n(R2)

or D, s2, s1 �2�1 (φ ∧n(R1))→ [α]n(R2) .
(7.6)

Because D, s1, s2 22�1 φ is equivalent to D, s1 2 φ and D, s2, s1 22�1 φ is equiv-
alent to D, s2 2 φ, see Lemma 49.2, equation (7.6) can be rearranged by Defini-
tion 31 (Restricted Two-State Evaluation) to

D, s1 2 φ or RD,s11 6= RD,s21 or for all states sα1 , sα2 such that α
terminates in sα1 , sα2 if started in s1, s2, respectively, the equation
R
D,sα1
2 = R

D,sα2
2 holds

or D, s2 2 φ or RD,s11 6= RD,s21 or for all states sα1 , sα2 such that α
terminates in sα1 , sα2 if started in s1, s2, respectively, the equation
R
D,sα1
2 = R

D,sα2
2 holds

(7.7)

which is equivalent to

D, s1 2 φ
or D, s2 2 φ

or RD,s11 6= RD,s21

or for all states sα1 , sα2 such that α terminates in sα1 , sα2 if started in
s1, s2, respectively, RD,s

α
1

2 = R
D,sα2
2 holds.

(7.8)

Equation (7.8) matches exactly the semantics of flow(α,R1, R2, φ).

The requirement D, s1, s1, β �2�1 φ of Definition 33 is necessary to avoid incon-
sistency of the semantics, see Lemma 44 (Consistency of the Two-State Seman-
tics), but has no impact on the interpretation of formulas expressing informa-
tion flow.

Sequents Γ =⇒ ∆ are interpreted in two-state semantics by their meaning for-
mula

∧
Γ→

∨
∆.

Definition 37 (Validity of Sequents in Two-State Semantics). A sequent Γ =⇒ ∆
is valid in two-state structure (D, s1, s2) and variable assignment β if and only if
D, s1, s2, β �2

∧
Γ→

∨
∆.

Intuitively, the interpretation of sequents Γ =⇒ ∆ in two states s1 and s2 is as
usual in the sense that the left hand side is connected by “and” and the right
hand side is connected by “or”: if s1, s2 �2�1 Γ and s2, s1 �2�1 Γ hold, then there
exists δ ∈ ∆ such that s1, s2 �2�1 δ or s2, s1 �2�1 δ holds. As in Lemma 36, the

93

7 An Approximate Information Flow Calculus

additional requirement s1, s1 �2�1
∧

Γ→
∨

∆ has no impact on the evaluation
of the sequents that we are interested in.

However, formulas φ can be interpreted naturally in one state instead of two—
even if they contain n—by giving them the semantics of s1, s1 �2 φ. If n is inter-
preted rigidly as tt in the (one-state) semantics from Section 2.1, then s1, s1 �2 φ
and s1 � φ coincide (Lemma 39).

Definition 38. In the (one-state) semantics from Section 2.1 n is interpreted rigidly
as tt , that is, all structures (D, s) are required to fulfill D, s � nφ for all formulas φ.

Lemma 39. D, s1, s1, β �2 φ holds if and only if D, s1, β � φ holds.

Proof. By Definition 33 (Two-State Evaluation) D, s1, s1, β �2 φ if and only if
D, s1, s1, β �2�1 φ. The lemma follows by structural induction on the structure
of Java DL formulas.

Base case 1. By Definition 31 (Restricted Two-State Evaluation), D, s1, s1, β �2�1

φ holds if and only if D, s1, β � φ for any formula φ with a predicate symbol as
top level symbol.

Base case 2. By Definition 31, D, s1, s1, β �2�1 nφ holds if and only if

D, s1, s1, β �2�1 φ iff D, s1, s1, β �2�1 φ .

Therefore, D, s1, s1, β �2�1 nφ holds in all states s1 and for all formulas φ.

Step case. The claim is quite obvious. The cases φ = φ1 ∧ φ2 and φ = [α]φ1 are
proved exemplary.

Case φ = φ1 ∧φ2. D, s1, s1, β �2�1 φ1 ∧φ2 holds if and only if D, s1, s1, β �2�1 φ1

and D, s1, s1, β �2�1 φ2 hold. By the induction hypothesis this is equivalent to
D, s1, β � φ1 and D, s1, β � φ2, which again is equivalent to D, s1, β � φ1 ∧ φ2.

Case φ = [α]φ1. D, s1, s1, β �2�1 [α]φ1 holds if and only if D, sα1 , sα1 , β �2�1 φ1

for all sα1 such that α started in s1 terminates in sα1 . By the induction hypothesis
this is equivalent to D, sα1 , β � φ1 for all sα1 such that α started in s1 terminates
in sα1 , which again is equivalent to D, s1, β � [α]φ1.

Satisfyability, logical consequence and logical equivalence are defined in two-
state semantics as usual:

Definition 40 (Satisfyability in Two-State Semantics). A formula φ is satisfyable
in two-state semantics if and only if there exist a two-state structure (D, s1, s2) and a
variable assignment β such that D, s1, s2, β �2 φ holds.

94

7.2 Two-State Semantics

Definition 41 (Logical Consequence in Two-State Semantics). Let φ be a formula
and let M be a set of formulas. M �2 φ if and only if for all two-state structures
(D, s1, s2) and all variable assignments β the validity of D, s1, s2, β �2 M implies the
validity of D, s1, s2, β �2 φ.

Definition 42 (Logical Equivalence in Two-State Semantics). Two formulas φ and
ψ are logical equivalent in two-state semantics, denoted by φ ≡2 ψ if and only if φ↔ ψ
is universal valid in two-state semantics.

The two-state logic defined above enjoys the desirable property of consistency,
as the following two lemmas show.

Lemma 43. Let φ be a formula, let (D, s1, s2) be a two-state structure and let β be a
variable assignment.

D, s1, s2, β �2 ¬φ implies D, s1, s2, β 22 φ.

Proof. Let ψ be an arbitrary formula. By Definition 33 (Two-State Evaluation),
D, s1, s2, β �2 ψ if and only if

(D, s1, s2, β �2�1 ψ or D, s2, s1, β �2�1 ψ) and D, s1, s1, β �2�1 ψ .

Therefore, D, s1, s2, β �2 ψ implies D, s1, s1, β �2�1 ψ which is equivalent to
D, s1, β � ψ by Lemma 39.

Assume D, s1, s2, β �2 ¬φ and D, s1, s2, β �2 φ. Then, by the thoughts above,
also D, s1, β � ¬φ and D, s1, β � φ hold. This is a contradiction to the consis-
tency of Java DL.

Theorem 44 (Consistency of the Two-State Semantics). LetM be a set of formulas
which has a two-state model and let φ be a formula. Then either M 22 φ or M 22 ¬φ.

Proof. By the assumption that M has a model, there exists a two-state structure
(D, s1, s2) such thatD, s1, s2 �2 M . AssumeM �2 ¬φ. By Definition 41 (Logical
Consequence in Two-State Semantics), M �2 ¬φ if and only if every two-state
model of M is a two-state model of ¬φ. Therefore, D, s1, s2 �2 ¬φ needs to
hold. By Lemma 43 this implies D, s1, s2 22 φ and hence M 22 φ.

The converse implication of Lemma 43, however, does not hold: there are a
formula φ and states s1, s2 such that neither s1, s2 �2 φ nor s1, s2 �2 ¬φ holds.
Let, for instance, s1 and s2 be states such that xs1 = true and xs2 = false
for some program variable x of type Boolean. Then neither s1, s2 �2 n(x) nor
s1, s2 �2 ¬n(x) is true: in the first case neither s1, s2 �2�1 n(x) nor s2, s1 �2�1

n(x) hold, in the second case s1, s1 �2�1 ¬n(x) does not hold.

As usual, universal validity and satisfiability have the following properties.

95

7 An Approximate Information Flow Calculus

Lemma 45.

1. A formula φ is universal valid if and only if ∅ �2 φ holds.

2. If a formula φ is satisfyable, then ¬φ is not universally valid, that is ∅ �2 ¬φ
does not hold.

Proof.

1. Any two-state structure (D, s1, s2) is a two-state model for the empty set
of formulas. Therefore, by Definition 41 (Logical Consequence in Two-
State Semantics), ∅ �2 φ if and only if D, s1, s2 �2 φ for all structure
(D, s1, s2). By Definition 35 (Universal Validity in Two-State Semantics),
the latter holds if and only if φ is universally valid.

2. By Definition 40 (Satisfyability in Two-State Semantics), φ is satisfyable
if and only if there exists a two-state structure (D, s1, s2) and a variable
assignment β such that D, s1, s2, β �2 φ. By Lemma 43, D, s1, s2, β �2 φ
implies D, s1, s2, β 22 ¬φ. Therefore, D, s1, s2, β �2 ¬φ does not hold for
all two-state structures (D, s1, s2) and all variable assignments β. Hence,
by Definition 41 (Logical Consequence in Two-State Semantics), ∅ �2 ¬φ
does not hold.

Unfortunately, logical equivalence is no congruence if interpreted in two-state
semantics. It is not even transitive. However, logical equivalence interpreted
in restricted two-state evaluation is a congruence. This will be useful in subse-
quent proofs:

Definition 46 (Logical Equivalence in Restricted Two-State Evaluation). Two
formulas φ and ψ are logical equivalent in restricted two-state evaluation, denoted by
φ ≡2�1 ψ if and only if D, s1, s2 �2�1 φ↔ ψ for all two-state structures (D, s1, s2).

Lemma 47 (Auxiliary Lemma). Let φ and ψ be formulas.

φ ≡2�1 ψ if and only if either D, s1, s2, β �2�1 φ and D, s1, s2, β �2�1 ψ or
D, s1, s2, β 22�1 φ and D, s1, s2, β 22�1 ψ for all two-state structures (D, s1, s2)
and variable assignments β.

96

7.2 Two-State Semantics

Proof. φ ≡2�1 ψ

(Definition 46)⇔ for all structures (D, s1, s2) and variable assignments β:
D, s1, s2, β �2�1 φ↔ ψ

(Definition of↔)⇔ for all structures (D, s1, s2) and variable assignments β:
D, s1, s2, β �2�1 (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)

(Definition 31)⇔ for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ and D, s1, s2, β �2�1 ψ)

or (D, s1, s2, β 22�1 φ and D, s1, s2, β 22�1 ψ)

Lemma 48 (≡2�1 is a Congruence). Let φ1, φ2, ψ1 and ψ2 be formulas.

≡2�1 is a congruence, that is, ≡2�1 is an equivalence relation such that φ1 ≡2�1 φ2 and
ψ1 ≡2�1 ψ2 imply

1. ¬φ1 ≡2�1 ¬φ2

2. (φ1 op ψ1) ≡2�1 (φ2 op ψ2) for op ∈ {∧,∨}

3. Qx.φ1 ≡2�1 Qx.φ2 for x ∈ V, Q ∈ {∀,∃}

4. {u}φ1 ≡2�1 {u}φ2

5. [[α]]φ1 ≡2�1 [[α]]φ2 for [[α]] = [α] or [[α]] = 〈α〉 and α a program

6. n(φ1) ≡2�1 n(φ2).

Proof. Firstly, ≡2�1 is an equivalence relation:

• Reflexivity: φ1 ≡2�1 φ1 ⇔ �2�1 φ1 ↔ φ1 ⇔ �2�1 true

• Symmetry: φ1 ≡2�1 φ2 ⇔ �2�1 φ1 ↔ φ2

⇔ �2�1 φ2 ↔ φ1 ⇔ φ2 ≡2�1 φ1

• Transitivity: By Lemma 47, φ1 ≡2�1 φ2 and φ2 ≡2�1 ψ1 implies

for all structures (D, s1, s2) and variable assignments β:(
(D, s1, s2, β �2�1 φ1 and D, s1, s2, β �2�1 φ2)

or (D, s1, s2, β 22�1 φ1 and D, s1, s2, β 22�1 φ2)
)

and
(

(D, s1, s2, β �2�1 φ2 and D, s1, s2, β �2�1 ψ1)

or (D, s1, s2, β 22�1 φ2 and D, s1, s2, β 22�1 ψ1)
)

(7.9)

97

7 An Approximate Information Flow Calculus

which in turn is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1

and D, s1, s2, β �2�1 φ2

and D, s1, s2, β �2�1 ψ1)

or (D, s1, s2, β 22�1 φ1

and D, s1, s2, β 22�1 φ2

and D, s1, s2, β 22�1 ψ1)

(7.10)

by distribution of “and” over “or” and subsequent simplification. Equa-
tion (7.10) implies

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1 and D, s1, s2, β �2�1 ψ1)

or (D, s1, s2, β 22�1 φ1 and D, s1, s2, β 22�1 ψ1)

(7.11)

by dropping D, s1, s2, β �2�1 φ2 and D, s1, s2, β 22�1 φ2, respectively. By
Definition 31 (Restricted Two-State Evaluation), Equation 7.11 is equiva-
lent to �2�1 (φ1 ∧ ψ1) ∨ (¬φ1 ∧ ¬ψ1) which in turn is equivalent to �2�1

φ1 ↔ ψ1 by the definition of ↔. �2�1 φ1 ↔ ψ1 finally is equivalent to
φ1 ≡2�1 ψ1 by Definition 46 (Logical Equivalence in Restricted Two-State
Evaluation).

Secondly, φ1 ≡2�1 φ2 and ψ1 ≡2�1 ψ2 imply 1. to 6.:

1. φ1 ≡2�1 φ2

(Definition 46)⇔ �2�1 φ1 ↔ φ2

(Definition of↔)⇔ �2�1 (¬φ1 ∧ ¬φ2) ∨ (φ1 ∧ φ2)(
Commutativity of ∨,
Definition of↔

)
⇔ �2�1 ¬φ1 ↔ ¬φ2

(Definition 46)⇔ ¬φ1 ≡2�1 ¬φ2

2. Similar to Lemma 47, φ1 ≡2�1 φ2 and ψ1 ≡2�1 ψ2 implies

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1 ∧ φ2

or D, s1, s2, β �2�1 ¬φ1 ∧ ¬φ2)

and (D, s1, s2, β �2�1 ψ1 ∧ ψ2

or D, s1, s2, β �2�1 ¬ψ1 ∧ ¬ψ2) .

(7.12)

98

7.2 Two-State Semantics

Further, by Lemma 47, (φ1 op ψ1) ≡2�1 (φ2 op ψ2) is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1 op ψ1

and D, s1, s2, β �2�1 φ2 op ψ2)

or (D, s1, s2, β �2�1 ¬(φ1 op ψ1)

and D, s1, s2, β �2�1 ¬(φ2 op ψ2)) .

(7.13)

It remains to be shown that (7.12) implies (7.13) for op ∈ {∧,∨,→,↔}.
To this end, let (D, s1, s2) be a two-state structure and let β be a variable
assignment.

• Case op = ∧:

– Case D, s1, s2, β �2�1 φ1 ∧ φ2 and D, s1, s2, β �2�1 ψ1 ∧ ψ2:

In this case the first part of Equation 7.13,

D, s1, s2, β �2�1 φ1 ∧ ψ1and D, s1, s2, β �2�1 φ2 ∧ ψ2 ,

is fulfilled (Definition 31 and commutativity of “and”).

– Case D, s1, s2, β �2�1 φ1 ∧ φ2 and D, s1, s2, β �2�1 ¬ψ1 ∧ ¬ψ2:

In this case the second part of Equation 7.13,

D, s1, s2, β �2�1 ¬(φ1 ∧ ψ1)and D, s1, s2, β �2�1 ¬(φ2 ∧ ψ2)) ,

is fulfilled, because D, s1, s2, β 22�1 ψ1 and D, s1, s2, β 22�1 ψ2

hold by Definition 31 (Restricted Two-State Evaluation)

– Case D, s1, s2, β �2�1 ¬φ1 ∧ ¬φ2 and (D, s1, s2, β �2�1 ψ1 ∧ ψ2 or
D, s1, s2, β �2�1 ¬ψ1 ∧ ¬ψ2):

In this case the second part of Equation 7.13,

D, s1, s2, β �2�1 ¬(φ1 ∧ ψ1)and D, s1, s2, β �2�1 ¬(φ2 ∧ ψ2)) ,

is fulfilled, because D, s1, s2, β 22�1 φ1 and D, s1, s2, β 22�1 φ2

hold by Definition 31 (Restricted Two-State Evaluation).

• Case op = ∨:

– Case D, s1, s2, β �2�1 φ1 ∧ φ2 and (D, s1, s2, β �2�1 ψ1 ∧ ψ2 or
D, s1, s2, β �2�1 ¬ψ1 ∧ ¬ψ2):

In this case the first part of Equation 7.13,

D, s1, s2, β �2�1 φ1 ∨ ψ1and D, s1, s2, β �2�1 φ2 ∨ ψ2 ,

99

7 An Approximate Information Flow Calculus

is fulfilled, because D, s1, s2, β �2�1 φ1 and D, s1, s2, β �2�1 φ2

hold by Definition 31 (Restricted Two-State Evaluation).

– Case D, s1, s2, β �2�1 ¬φ1 ∧ ¬φ2 and D, s1, s2, β �2�1 ψ1 ∧ ψ2:

In this case the first part of Equation 7.13,

D, s1, s2, β �2�1 φ1 ∨ ψ1and D, s1, s2, β �2�1 φ2 ∨ ψ2 ,

is fulfilled, because D, s1, s2, β �2�1 ψ1 and D, s1, s2, β �2�1 ψ2

hold by Definition 31 (Restricted Two-State Evaluation).

– Case D, s1, s2, β �2�1 ¬φ1 ∧ ¬φ2 and D, s1, s2, β �2�1 ¬ψ1 ∧ ¬ψ2:

In this case the second part of Equation 7.13,

D, s1, s2, β �2�1 ¬(φ1 ∨ ψ1)and D, s1, s2, β �2�1 ¬(φ2 ∨ ψ2)) ,

is fulfilled (Definition 31 and commutativity of “and”).

3. By Lemma 47, φ1 ≡2�1 φ2 is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1 and D, s1, s2, β �2�1 φ2)

or (D, s1, s2, β 22�1 φ1 and D, s1, s2, β 22�1 φ2)

(7.14)

whereas Qx.φ1 ≡2�1 Qx.φ2 for x ∈ V ar,Q ∈ {∀,∃} is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 Qx.φ1 and D, s1, s2, β �2�1 Qx.φ2)

or (D, s1, s2, β 22�1 Qx.φ1 and D, s1, s2, β 22�1 Qx.φ2) .

(7.15)

• Case Q = ∀: Equation 7.15 holds if and only if

for all structures (D, s1, s2) and all variable assignments β:

(for all d ∈ D: D, s1, s2, β
x/d �2�1 φ1

and D, s1, s2, β
x/d �2�1 φ2)

or (there exist d1, d2 ∈ D: D, s1, s2, β
x/d1 22�1 φ1

and D, s1, s2, β
x/d2 22�1 φ2) .

(7.16)

Assume that D, s1, s2, β
x/d �2�1 φ1 and D, s1, s2, β

x/d �2�1 φ2 do not
hold for all d ∈ D. Otherwise we are done. Then there exists a d ∈ D
such that D, s1, s2, β

x/d 22�1 φ1 or D, s1, s2, β
x/d 22�1 φ2. By (7.14)

we have that there exists a d ∈ D such that D, s1, s2, β
x/d 22�1 φ1

and D, s1, s2, β
x/d 22�1 φ2 and hence (7.16) holds.

100

7.2 Two-State Semantics

• Case Q = ∃: Equation 7.15 holds if and only if

for all structures (D, s1, s2) and all variable assignments β:

(there exist d1, d2 ∈ D: D, s1, s2, β
x/d1 �2�1 φ1

and D, s1, s2, β
x/d2 �2�1 φ2)

or (for all d ∈ D: D, s1, s2, β
x/d 22�1 φ1

and D, s1, s2, β
x/d 22�1 φ2)

(7.17)

Assume that D, s1, s2, β
x/d 22�1 φ1 and D, s1, s2, β

x/d 22�1 φ2 do not
hold for all d ∈ D. Otherwise we are done. Then there exists a d ∈ D
such that D, s1, s2, β

x/d �2�1 φ1 or D, s1, s2, β
x/d �2�1 φ2. By (7.14)

we have that there exists a d ∈ D such that D, s1, s2, β
x/d �2�1 φ1

and D, s1, s2, β
x/d �2�1 φ2 and hence (7.17) holds.

4. By Lemma 47, φ1 ≡2�1 φ2 is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1 and D, s1, s2, β �2�1 φ2)

or (D, s1, s2, β 22�1 φ1 and D, s1, s2, β 22�1 φ2)

(7.18)

whereas {u}φ1 ≡2�1 {u}φ2 is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 {u}φ1 and D, s1, s2, β �2�1 {u}φ2)

or (D, s1, s2, β 22�1 {u}φ1 and D, s1, s2, β 22�1 {u}φ2) .

(7.19)

By Definition 31, equation (7.19) equals

for all structures (D, s1, s2) and variable assignments β:
(D, su1 , su2 , β �2�1 φ1 and D, su1 , su2 , β �2�1 φ2)

or (D, su1 , su2 , β 22�1 φ1 and D, su1 , su2 , β 22�1 φ2)

(7.20)

where su1 and su2 result from s1 and s2 by application of {u}, respectively.
Equation (7.18) implies (7.20).

5. By Lemma 47, φ1 ≡2�1 φ2 is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1 and D, s1, s2, β �2�1 φ2)

or (D, s1, s2, β 22�1 φ1 and D, s1, s2, β 22�1 φ2)

(7.21)

101

7 An Approximate Information Flow Calculus

whereas [[α]]φ1 ≡2�1 [[α]]φ2 for [[α]] = [α] or [[α]] = 〈α〉 is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 [[α]]φ1 and D, s1, s2, β �2�1 [[α]]φ2)

or (D, s1, s2, β 22�1 [[α]]φ1 and D, s1, s2, β 22�1 [[α]]φ2) .

(7.22)

• Case [[α]] = [α]: Equation 7.22 holds if and only if

for all structures (D, s1, s2) and all variable assignments β:
(for all states sα1 , sα2 such that α started in s1

terminates in sα1 and α started in s2 termi-
nates in sα2 we have
D, sα1 , sα2 , β �2�1 φ1 and D, sα1 , sα2 , β �2�1 φ2)

or (there are states sα1 , sα2 such that α started in
s1 terminates in sα1 and α started in s2 termi-
nates in sα2 and such that
D, sα1 , sα2 , β 22�1 φ1 and D, sα1 , sα2 , β 22�1 φ2) .

(7.23)

Assume that it is not the case that for all states sα1 , sα2 such that α
started in s1 terminates in sα1 and α started in s2 terminates in sα2
we have D, sα1 , sα2 , β �2�1 φ1 and D, sα1 , sα2 , β �2�1 φ2. (Otherwise
we are done.) Then there are states sα1 , sα2 such that α started in s1

terminates in sα1 and α started in s2 terminates in sα2 and such that
D, sα1 , sα2 , β 22�1 φ1 or D, sα1 , sα2 , β 22�1 φ2. By (7.21) we get that there
are states sα1 , sα2 such that α started in s1 terminates in sα1 and α
started in s2 terminates in sα2 and such that D, sα1 , sα2 , β 22�1 φ1 and
D, sα1 , sα2 , β 22�1 φ2. Thus 7.23 holds.

• Case [[α]] = 〈α〉: Equation 7.22 holds if and only if

for all structures (D, s1, s2) and all variable assignments β:
(there are states sα1 , sα2 such that α started in
s1 terminates in sα1 and α started in s2 termi-
nates in sα2 and such that
D, sα1 , sα2 , β �2�1 φ1 and D, sα1 , sα2 , β �2�1 φ2)

or (for all states sα1 , sα2 such that α started in s1

terminates in sα1 and α started in s2 termi-
nates in sα2 we have
D, sα1 , sα2 , β 22�1 φ1 and D, sα1 , sα2 , β 22�1 φ2) .

(7.24)

Assume that it is not the case that for all states sα1 , sα2 such that α
started in s1 terminates in sα1 and α started in s2 terminates in sα2
we have D, sα1 , sα2 , β 22�1 φ1 and D, sα1 , sα2 , β 22�1 φ2. (Otherwise

102

7.2 Two-State Semantics

we are done.) Then there are states sα1 , sα2 such that α started in s1

terminates in sα1 and α started in s2 terminates in sα2 and such that
D, sα1 , sα2 , β �2�1 φ1 or D, sα1 , sα2 , β �2�1 φ2. By (7.21) we get that there
are states sα1 , sα2 such that α started in s1 terminates in sα1 and α
started in s2 terminates in sα2 and such that D, sα1 , sα2 , β �2�1 φ1 and
D, sα1 , sα2 , β �2�1 φ2. Thus 7.24 holds.

6. By Lemma 47, φ1 ≡2�1 φ2 is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1 and D, s1, s2, β �2�1 φ2)

or (D, s1, s2, β 22�1 φ1 and D, s1, s2, β 22�1 φ2)

(7.25)

whereas n(φ1) ≡2�1 n(φ2) is equivalent to

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 n(φ1) and D, s1, s2, β �2�1 n(φ2))

or (D, s1, s2, β 22�1 n(φ1) and D, s1, s2, β 22�1 n(φ2)) .

(7.26)

By Definition 31, equation (7.26) equals

for all structures (D, s1, s2) and variable assignments β:
(D, s1, s2, β �2�1 φ1 iff D, s2, s1, β �2�1 φ1

and D, s1, s2, β �2�1 φ2 iff D, s2, s1, β �2�1 φ2)

or (D, s1, s2, β �2�1 φ1 iff D, s2, s1, β 22�1 φ1

and D, s1, s2, β �2�1 φ2 iff D, s2, s1, β 22�1 φ2) .

(7.27)

Assume that

not (D, s1, s2, β �2�1 φ1 iff D, s2, s1, β �2�1 φ1

and D, s1, s2, β �2�1 φ2 iff D, s2, s1, β �2�1 φ2)

holds. Otherwise we are done. Then we have D, s1, s2, β �2�1 φ1 iff
D, s2, s1, β 22�1 φ1 or D, s1, s2, β �2�1 φ2 iff D, s2, s1, β 22�1 φ2. By
equation (7.25) we get D, s1, s2, β �2�1 φ1 iff D, s2, s1, β 22�1 φ1 and
D, s1, s2, β �2�1 φ2 iff D, s2, s1, β 22�1 φ2. Thus, (7.27) holds.

A positive consequence of Lemma 39 and Definition 35 (Universal Validity in
Two-State Semantics) is that functional and information flow properties can be
verified together: Formula (7.4) is a combination of the scheme for informa-
tion flow properties with the usual scheme φ → [α]ψ for functional properties,

103

7 An Approximate Information Flow Calculus

where φ and ψ neither contain the n operator nor modalities. (7.4) is valid in
two-state semantics, written s1, s2 �2 (φ∧n(R1))→ [α](ψ∧n(R2)), if and only
if

s1 � φ

and s2 � φ

and Rs11 = Rs21

imply for all states sα1 , sα2 such that α terminates in sα1 , sα2 if started in
s1, s2, respectively, (sα1 � ψ or sα2 � ψ) and Rs

α
1

2 = R
sα2
2 hold

and

s1 � φ

implies for all states sα1 such that α terminates in sα1 if started in s1 the
equation sα1 � ψ holds.

The latter agrees with the one-state semantics of φ → [α]ψ. Hence, if (7.4) is
universally valid in two-state semantics, then φ → [α]ψ is universally valid in
one-state semantics and (7.1) is universally valid in two-state semantics.

In general, the following connections between the universal validity in one-
state semantics and the universal validity in two-state semantics exist.

Lemma 49.
1. If a formula φ is universally valid in two-state semantics, then it is universally

valid in one-state semantics, too.

2. If a formula φ neither contains the n operator nor modalities, then
D, s1, s2, β �2�1 φ holds if and only if D, s1, β � φ holds.

3. Let u, u′ be updates and let α, α′ be programs such that for all states s the
program α started in su terminates if and only if α′ started in su

′
terminates

(where su is the state resulting from s by application of update u).

If the formulas φ and ψ neither contain the n operator nor modalities, then

(a) D, s1, s2, β �2�1 [α]φ holds if and only if
D, s1, β � [α]φ or D, s2, β � [α]false hold;

(b) D, s1, s2, β �2�1 〈α〉φ holds if and only if
D, s1, β � 〈α〉φ and D, s2, β � 〈α〉true hold;

(c) D, s1, s2, β �2�1 {u}[α]φ→ {u′}[α′]φ holds if and only if
D, s1, β � {u}[α]φ→ {u′}[α′]φ or D, s2, β � {u′}[α′]false ;

(d) D, s1, s2, β �2�1 {u}〈α〉φ→ {u′}〈α′〉φ holds if and only if
D, s1, β � {u}〈α〉φ→ {u′}〈α′〉φ or D, s2, β � {u}[α]false ;

104

7.2 Two-State Semantics

(e) D, s1, s2, β �2�1 (ψ ∧ {u}[α]φ)→ {u′}[α′]φ holds if and only if
D, s1, β � (ψ ∧ {u}[α]φ)→ {u′}[α′]φ or D, s2, β � {u′}[α′]false ; and

(f) D, s1, s2, β �2�1 (ψ ∧ {u}〈α〉φ)→ {u′}〈α′〉φ holds if and only if
D, s1, β � (ψ ∧ {u}〈α〉φ)→ {u′}〈α′〉φ or D, s2, β � {u}[α]false .

4. If a formula φ does not contain the n operator and if each modality in φ is prefixed
by an update of the form {heap := h || x̄ := x̄}, where heap and x̄ completely
describe a state and where h and x̄ are (arbitrary) variables, thenD, s1, s2, β �2�1

φ holds if and only if D, s1, β � φ holds.

5. If a formula φ, which neither contains the n operator nor modalities, is uni-
versally valid in one-state semantics, then it is universally valid in two-state
semantics, too.

6. If a formula φ, which does not contain the n operator and in which each modality
is prefixed by an update of the form {heap := h || x̄ := x̄} (where heap and x̄
completely describe a state and where h and x̄ are variables), is universally valid
in one-state semantics, then it is universally valid in two-state semantics, too.

Proof.

1. The first part of the lemma is a direct consequence of Lemma 39 and Def-
inition 35. Let D, s1, s2, β �2 φ hold for all two-state structures (D, s1, s2)
and all variable assignments β. Then in particular D, s1, s1, β �2 φ holds
for all two-state structures (D, s1, s1) and all variable assignments β. By
Lemma 39 this is equivalent to: D, s1, β � φ for all structures (D, s1) and
variable assignments β.

2. The proof parallels the one of Lemma 39 in great parts. The lemma fol-
lows by Definition 31 by induction on the structure of Java DL formulas.

Base case. Let φ be a formula with a predicate symbol as top level symbol.
By Definition 31, D, s1, s2, β �2�1 φ holds if and only if D, s1, β � φ holds.
Because φ does not contain n, this is the only base case.

Step cases.

Case φ = φ1 ∧ φ2. D, s1, β � φ1 ∧ φ2 holds if and only if D, s1, β � φ1

and D, s1, β � φ2 hold. By the induction hypothesis this is equivalent to
D, s1, s2, β �2�1 φ1 and D, s1, s2, β �2�1 φ2, which again is equivalent to
D, s1, s2, β �2�1 φ1 ∧ φ2.

Case φ = φ1 ∨ φ2. D, s1, β � φ1 ∨ φ2 holds if and only if D, s1, β � φ1

or D, s1, β � φ2 hold. By the induction hypothesis this is equivalent to
D, s1, s2, β �2�1 φ1 or D, s1, s2, β �2�1 φ2, which again is equivalent to
D, s1, s2, β �2�1 φ1 ∨ φ2.

105

7 An Approximate Information Flow Calculus

Case φ = ¬φ1. D, s1, β � ¬φ1 holds if and only if D, s1, β 2 φ1 holds. By
the induction hypothesis this is equivalent to D, s1, s2, β 22�1 φ1, which
again is equivalent to D, s1, s2, β �2�1 ¬φ1.

Case φ = ∀x.φ1. D, s1, β � ∀x.φ1 holds if and only ifD, s1, β
x/d � φ1 for all

d ∈ D. By the induction hypothesis the latter equalsD, s1, s2, β
x/d �2�1 φ1

for all d ∈ D, which again is equivalent to D, s1, s2, β �2�1 ∀x.φ1.

Case φ = ∃x.φ1. D, s1, β � ∀x.φ1 holds if and only if there exists a d ∈ D
such that D, s1, β

x/d � φ1. By the induction hypothesis D, s1, β
x/d � φ1 if

and only ifD, s1, s2, β
x/d �2�1 φ1. Therefore, there exists a d ∈ D such that

D, s1, s2, β
x/d �2�1 φ1, which again is equivalent to D, s1, s2, β �2�1 ∃x.φ1.

Case φ = {u}φ1. D, s1, β � {u}φ1 holds if and only if D, su1 , β � φ1

where sui results from si by application of {u}. By the induction hypoth-
esis this is equivalent to D, su1 , su2 , β �2�1 φ1, which again is equivalent to
D, s1, s2, β �2�1 {u}φ1.

Because φ does not contain modalities, the cases φ = [α]φ1 and φ = 〈α〉φ1

do not occur.

3. (a) By Definition 31, D, s1, s2, β �2�1 [α]φ if and only if D, sα1 , sα2 , β �2�1 φ
for all sα1 , sα2 such that α started in si terminates in sαi . By Part 2,
D, sα1 , sα2 , β �2�1 φ if and only if D, sα1 , β � φ. Thus, D, s1, s2, β �2�1

[α]φ if and only if D, sα1 , β � φ for all sα1 , sα2 such that α started in si
terminates in sαi . The latter is equivalent toD, s1, β � [α]φ or α started
in s2 does not terminate. This again is equivalent to D, s1, β � [α]φ or
D, s2, β � [α]false .

(b) By Definition 31, D, s1, s2, β �2�1 〈α〉φ holds if and only if there exist
sα1 , sα2 such that α started in si terminates in sαi and D, sα1 , sα2 , β �2�1

φ holds. By Part 2, D, sα1 , sα2 , β �2�1 φ if and only if D, sα1 , β � φ.
Therefore, D, s1, s2, β �2�1 〈α〉φ if and only if there exist sα1 , sα2 such
that α started in si terminates in sαi and D, sα1 , β � φ. The latter is
equivalent to D, s1, β � 〈α〉φ and there exist sα2 such that α started in
s2 terminates in sα2 . This again is equivalent to D, s1, β � 〈α〉φ and
D, s2, β � 〈α〉true .

(c) By Definition 31, D, s1, s2, β �2�1 {u}[α]φ → {u′}[α′]φ holds if and
only if D, s1, s2, β �2�1 {u}〈α〉¬φ or D, s1, s2, β �2�1 {u′}[α′]φ. Again
by Definition 31 and by Parts 3a and 3b, this is equivalent to

(D, s1, β � {u}〈α〉¬φ and D, s2, β � {u}〈α〉true)

or D, s1, β � {u′}[α′]φ or D, s2, β � {u′}[α′]false .
(7.28)

106

7.2 Two-State Semantics

By assumption we have D, s2, β � {u}〈α〉true if and only if D, s2, β �
{u′}〈α′〉true . Therefore, Equation (7.28) is equivalent to

(D, s1, β � {u}〈α〉¬φ
or D, s1, β � {u′}[α′]φ
or D, s2, β � {u′}[α′]false)

and (D, s2, β � {u′}〈α′〉true

or D, s1, β � {u′}[α′]φ
or D, s2, β � {u′}[α′]false) .

(7.29)

Because

D, s2, β � {u′}〈α′〉true or D, s2, β � {u′}[α′]false

is always fulfilled, the second conjunct is always true. Thus, (7.29) is
equivalent to

D, s1, β � {u}〈α〉¬φ or D, s1, β � {u′}[α′]φ or D, s2, β � {u′}[α′]false ,

which again is equivalent to

D, s1, β � {u}[α]φ→ {u′}[α′]φ or D, s2, β � {u′}[α′]false ,

as desired.

(d) By Definition 31, D, s1, s2, β �2�1 {u}〈α〉φ → {u′}〈α′〉φ holds if and
only if D, s1, s2, β �2�1 {u}[α]¬φ or D, s1, s2, β �2�1 {u′}〈α′〉φ. Again
by Definition 31 and by Parts 3a and 3b, this is equivalent to

D, s1, β � {u}[α]¬φ or D, s2, β � {u}[α]false

or (D, s1, β � {u′}〈α′〉φ and D, s2, β � {u′}〈α′〉true) .
(7.30)

By assumption we have D, s2, β � {u}〈α〉true if and only if D, s2, β �
{u′}〈α′〉true . Therefore, Equation (7.30) is equivalent to

(D, s1, β � {u}[α]¬φ
or D, s2, β � {u}[α]false

or D, s1, β � {u′}〈α′〉φ)

and (D, s1, β � {u}[α]¬φ
or D, s2, β � {u}[α]false

or D, s2, β � {u}〈α〉true) .

(7.31)

Because

D, s2, β � {u}〈α〉true or D, s2, β � {u}[α]false

107

7 An Approximate Information Flow Calculus

is always fulfilled, the second conjunct is always true. Thus, (7.31) is
equivalent to

D, s1, β � {u}[α]¬φ or D, s2, β � {u}[α]false or D, s1, β � {u′}〈α′〉φ ,

which again is equivalent to

D, s1, β � {u}〈α〉φ→ {u′}〈α′〉φ or D, s2, β � {u}[α]false ,

as desired.

(e) By Definition 31, D, s1, s2, β �2�1 (ψ ∧ {u}[α]φ) → {u′}[α′]φ if and
only if D, s1, s2, β �2�1 ¬ψ or D, s1, s2, β �2�1 {u}[α]φ → {u′}[α′]φ.
Similarly, D, s1, β � (ψ ∧ {u}[α]φ) → {u′}[α′]φ holds if and only if
D, s1, β � ¬ψ or D, s1, β � {u}[α]φ → {u′}[α′]φ. By part 2 we have
D, s1, s2, β �2�1 ¬ψ if and only if D, s1, β � ¬ψ. Additionally, part 3c
yields D, s1, s2, β �2�1 {u}[α]φ → {u′}[α′]φ if and only if D, s1, β �
{u}[α]φ → {u′}[α′]φ or D, s2, β � {u′}[α′]false . Thus, D, s1, s2, β �2�1

(ψ ∧ {u}[α]φ) → {u′}[α′]φ if and only if D, s1, β � (ψ ∧ {u}[α]φ) →
{u′}[α′]φ or D, s2, β � {u′}[α′]false .

(f) By Definition 31, D, s1, s2, β �2�1 (ψ ∧ {u}〈α〉φ) → {u′}〈α′〉φ if and
only if D, s1, s2, β �2�1 ¬ψ or D, s1, s2, β �2�1 {u}〈α〉φ → {u′}〈α′〉φ.
Similarly, D, s1, β � (ψ ∧ {u}〈α〉φ) → {u′}〈α′〉φ holds if and only if
D, s1, β � ¬ψ or D, s1, β � {u}〈α〉φ → {u′}〈α′〉φ. By part 2 we have
D, s1, s2, β �2�1 ¬ψ if and only if D, s1, β � ¬ψ. Additionally, part 3d
yields D, s1, s2, β �2�1 {u}〈α〉φ → {u′}〈α′〉φ if and only if D, s1, β �
{u}〈α〉φ → {u′}〈α′〉φ or D, s2, β � {u}[α]false . Thus, D, s1, s2, β �2�1

(ψ ∧ {u}〈α〉φ) → {u′}〈α′〉φ if and only if D, s1, β � (ψ ∧ {u}〈α〉φ) →
{u′}〈α′〉φ or D, s2, β � {u}[α]false .

4. We extend the induction proof of 2. by step cases for φ = {heap :=
h || x̄ := x̄}[α]φ1 and φ = {heap := h || x̄ := x̄}〈α〉φ1, where h and x̄
are variables.

Case φ = {heap := h || x̄ := x̄}[α]φ1. Let s denote the state which is com-
pletely determined by heaps = hD,β and x̄s = x̄D,β . ThenD, s1, s2, β �2�1

{heap := h || x̄ := x̄}[α]φ1 holds if and only if D, s, s, β �2�1 [α]φ1 holds.
By Lemma 39, the latter holds if and only if D, s, β � [α]φ1 holds. (Note,
that for this step we do not need the induction hypothesis.)

Case φ = {heap := h || x̄ := x̄}〈α〉φ1. Analog to case φ = {heap :=
h || x̄ := x̄}[α]φ1 (indeed, it is exactly the same proof).

5. LetD, s, β � φ hold for all structures (D, s) and all variable assignments β.
Further, let (D, s1, s2) be an arbitrary two-state structure and β a variable

108

7.3 Two-State Calculus

assignment. Then in particular D, s1, β � φ and D, s2, β � φ hold. By part
2 this implies

D, s1, s1, β �2�1 φ and (D, s1, s2, β �2�1 φ or D, s2, s1, β �2�1 φ) .

By Definition 33 (Two-State Evaluation) the latter holds if and only if
D, s1, s2, β �2 φ.

6. LetD, s, β � φ hold for all structures (D, s) and all variable assignments β.
Further, let (D, s1, s2) be an arbitrary two-state structure and β a variable
assignment. Then in particular D, s1, β � φ and D, s2, β � φ hold. By part
4 this implies

D, s1, s1, β �2�1 φ and (D, s1, s2, β �2�1 φ or D, s2, s1, β �2�1 φ) .

By Definition 33 (Two-State Evaluation) the latter holds if and only if
D, s1, s2, β �2 φ.

Lemma 49 is the basis for the soundness proofs of a lot of rules from Sec-
tion 7.3.

The next section presents a sound two-state calculus.

7.3 Two-State Calculus

As shown in the last section, information flow problems can be formulated
naturally in Java DL using the n predicate. A calculus to reason about them
needs to be sound with respect to the two-state semantics of those formulas
(Definition 33). Unfortunately, the normal Java DL calculus is not sound with
respect to this semantics. For instance, let x be a program variable of type
Boolean. One possibility to derive n(x) would be using the rule andRight:

*
closeTrue

x = false =⇒ truenconstant
x = false =⇒ n(false)

applyEq
x = false =⇒ n(x)

eqTrueRight
=⇒ n(x), x = true

*
closeTrue

x = true =⇒ truenconstant
x = true =⇒ n(true)

applyEq
x = true =⇒ n(x)

notRight
=⇒ n(x),¬x = true

andRight
=⇒ n(x), x = true ∧ ¬x = true

=⇒ n(x)

109

7 An Approximate Information Flow Calculus

Though some of the normal Java DL rules are not sound in two-state semantics,
many others indeed are and thus can be used in the two-state calculus without
modification. An example of such a rule is orRight:

orRight
Γ =⇒ φ1, φ2,∆

Γ =⇒ φ1 ∨ φ2,∆

Its soundness in two-state semantics follows directly by Definition 37. In gen-
eral, a non-splitting rule with premiss φ and conclusion ψ is sound in two-state
semantics, if, roughly speaking, φ and ψ do not contain the n predicate and if
φ logically implies ψ in one-state semantics. In deed the condition is a bit more
involved, as Theorem 52 below shows.

Lemma 50 (Auxiliary Lemma). Let (D, s1, s2) be a two-state structure and let β be
a variable assignment.

D, s1, s2, β �2 φ implies D, s1, s2, β �2 ψ if
D, s′1, s′2, β �2�1 φ implies D, s′1, s′2, β �2�1 ψ for all s′1, s′2.

Proof. D, s1, s2, β �2 φ

(Definition 33)⇔ (D, s1, s2, β �2�1 φ or D, s2, s1, β �2�1 φ)

and D, s1, s1, β �2�1 φ

(Assumption)⇒ (D, s1, s2, β �2�1 ψ or D, s2, s1, β �2�1 ψ)

and D, s1, s1, β �2�1 ψ

(Definition 33)⇔ D, s1, s2, β �2 ψ

Lemma 51 (Auxiliary Lemma). Let

Γ, Apre
φ1,...,φn

=⇒ Bpre
φ1,...,φn

,∆

Γ, Acon
φ1,...,φn

=⇒ Bcon
φ1,...,φn

,∆

be a non-splitting rule schema with formula schema variables φ1, . . . , φn such that
the premiss and conclusion of the rule schema are interpreted in the same structure
(in other words: such that no fresh symbols are introduced). Let further Apre

φ1,...,φn
,

Bpre
φ1,...,φn

, Acon
φ1,...,φn

and Bcon
φ1,...,φn

be of a form such that

• (Apre
φ1,...,φn

→ Bpre
φ1,...,φn

) → (Acon
φ1,...,φn

→ Bcon
φ1,...,φn

) fulfills the requirements
of Lemma 49.2, Lemma 49.4, Lemma 49.3c, Lemma 49.3d, Lemma 49.3e or
Lemma 49.3f;

• φ1, . . . , φn do not occur in the scope of quantifiers; and

110

7.3 Two-State Calculus

• if Apre
φ1,...,φn

, Bpre
φ1,...,φn

, Acon
φ1,...,φn

and Bcon
φ1,...,φn

are evaluated in state s, then all
occurrences of φj in Apre

φ1,...,φn
, Bpre

φ1,...,φn
, Acon

φ1,...,φn
and Bcon

φ1,...,φn
are evaluated

in the same state e(φj , s) according to the evaluation function of the one-state
semantics.

Let Apre
φ1,...,φn

→ Bpre
φ1,...,φn

logically imply Acon
φ1,...,φn

→ Bcon
φ1,...,φn

in one-state seman-
tics, that is � (Apre

φ1,...,φn
→ Bpre

φ1,...,φn
)→ (Acon

φ1,...,φn
→ Bcon

φ1,...,φn
).

Then also �2�1 (Apre
φ1,...,φn

→ Bpre
φ1,...,φn

)→ (Acon
φ1,...,φn

→ Bcon
φ1,...,φn

) holds.

Proof. Let Pφ1,...,φn be defined as Apre
φ1,...,φn

→ Bpre
φ1,...,φn

and let Cφ1,...,φn be de-
fined as Acon

φ1,...,φn
→ Bcon

φ1,...,φn
. We show that �2�1 Pψ1,...,ψn → Cψ1,...,ψn holds

for all formulas ψ1, . . . , ψn under the given conditions, where schema variable
φj is instantiated by formula ψj . We fix an arbitrary structure (D, s1, s2) and
a variable assignment β. Let m : {ψ1, . . . , ψn} → {true, false} be the function
defined by

m(ψj) =

{
true if D, e(φj , s1), e(φj , s2), β �2�1 ψj

false otherwise
.

Because the φj (and therefore the ψj) do not occur in the scope of quanti-
fiers and because all occurrences of φj in Pφ1,...,φn and Cφ1,...,φn are evalu-
ated in the same state e(φj , s) if Pφ1,...,φn and Cφ1,...,φn are evaluated in the
same state s (according to the evaluation function of the one-state semantics),
D, s1, s2, β �2�1 Pψ1,...,ψn → Cψ1,...,ψn holds if and only if

D, s1, s2, β �2�1 Pm(ψ1),...,m(ψn) → Cm(ψ1),...,m(ψn) (7.32)

holds, where the schema variables φj are instantiated by m(ψj) for all j. By the
premiss of the lemma, Lemma 49.2, Lemma 49.4, Lemma 49.3c, Lemma 49.3d,
Lemma 49.3e or Lemma 49.3f is applicable on Pm(φ1),...,m(φn) → Cm(φ1),...,m(φn).
Therefore, Equation (7.32) holds if

D, s1, β � Pm(ψ1),...,m(ψn) → Cm(ψ1),...,m(ψn) (7.33)

holds. (7.33) is true by the premiss of the lemma.

Theorem 52. Let
Γ, Apre

φ1,...,φn
=⇒ Bpre

φ1,...,φn
,∆

Γ, Acon
φ1,...,φn

=⇒ Bcon
φ1,...,φn

,∆

be a non-splitting rule schema with formula schema variables φ1, . . . , φn such that the
premiss and conclusion of the rule schema are interpreted in the same structure (in
other words: such that no fresh symbols are introduced).

If the requirements of Lemma 51 are met then the rule is sound in two-state semantics.

111

7 An Approximate Information Flow Calculus

Proof. By Lemma 50, it is sufficient to show that �2�1 ((
∧
γ∈Γ γ ∧ A

pre
φ1,...,φn

) →
(Bpre

φ1,...,φn
∨
∨
δ∈∆))→ ((

∧
γ∈Γ γ ∧Acon

φ1,...,φn
)→ (Bcon

φ1,...,φn
∨
∨
δ∈∆)) holds.

Let (D, s1, s2) be a two-state structure and let β be a variable assignment. If
D, s1, s2, β 22�1

∧
γ∈Γ γ or D, s1, s2, β �2�1

∨
δ∈∆ holds, then we are finished.

Thus assume the contrary. We have to show

D, s1, s2, β �2�1 (Apre
φ1,...,φn

→ Bpre
φ1,...,φn

)→ (Acon
φ1,...,φn → Bcon

φ1,...,φn) . (7.34)

Because we have � (Apre
φ1,...,φn

→ Bpre
φ1,...,φn

) → (Acon
φ1,...,φn

→ Bcon
φ1,...,φn

) by the
premiss of the lemma, (7.34) follows from Lemma 51.

The following sections present the rules of the two-state calculus. Their sound-
ness is shown in Section 7.4.

7.3.1 First Order Logic Rules

Figure 7.2 shows the subset of the classical first order logic rules which are
sound in two-state semantics and therefore included without modification in
the two-state calculus. Merely the tree splitting rules—andRight, orLeft and
impRight—are unsound in two-state semantics. They may only be used if a
sequent does not contain the n-predicate and modalities (see Lemma 49), thus
only in the variants shown in Figure 7.3. Though those variants of the rules are
sound, they are applicable only in rare cases. Therefore, Figure 7.4 shows vari-
ations of the rules which are sound in two-state semantics even if n predicates
and modalities are present on the sequent. To get an intuition why the three
rules nandRight, norLeft and nimpRight look as they do, consider the cut rule.
In the usual Java DL calculus the cut rule has the following form:

cut
Γ, φ =⇒ ∆ Γ,¬φ =⇒ ∆

Γ =⇒ ∆

Interpreted in two-state semantics, the premisses cover only two of three possi-
bilities: the first premiss intuitively requires φ to hold in both states; the second
premiss requires ¬φ to hold in both states. The case that φ holds in the one state
and ¬φ in the other is missing. This can be expressed by ¬nφ. Adding the third
possibility leads to the following cut rule for two-state semantics:

ncut
Γ,¬nφ =⇒ ∆ Γ, φ =⇒ ∆ Γ,¬φ =⇒ ∆

Γ =⇒ ∆

112

7.3 Two-State Calculus

andLeft
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

orRight
Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

impRight
Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

notLeft
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

notRight
Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

close
∗

Γ, φ =⇒ φ,∆

closeFalse
∗

Γ, false =⇒ ∆

closeTrue
∗

Γ =⇒ true,∆

allRight
Γ =⇒ (φ)[x/c],∆

Γ =⇒ ∀x.φ,∆
with c is a new constant which
has the same type as x

allLeft
Γ,∀x.φ, [x/t](φ) =⇒ ∆

Γ,∀x.φ =⇒ ∆

with t ∈ TrmA′ ground, A′ v A,
if x is of type A

exLeft
Γ, (φ)[x/c] =⇒ ∆

Γ,∃x.φ =⇒ ∆

with c is a new constant which
has the same type as x

exRight
Γ =⇒ ∃x.φ, [x/t](φ),∆

Γ =⇒ ∃x.φ,∆

with t ∈ TrmA′ ground, A′ v A,
if x is of type A

Figure 7.2: Two-state calculus: unmodified first-order rules from [Ahrendt
et al., Chapter 2].

113

7 An Approximate Information Flow Calculus

restrictedAndRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

where Γ,∆, φ and ψ neither contain the n operator nor modalities

restrictedOrLeft
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

where Γ,∆, φ and ψ neither contain the n operator nor modalities

restrictedImpLeft
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

where Γ,∆, φ and ψ neither contain the n operator nor modalities

Figure 7.3: Two-state calculus: restricted first-order rules. The rules are varia-
tions of rules from [Ahrendt et al., Chapter 2]

nandRight
Γ =⇒ nφ,nψ,∆ Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

norLeft
Γ =⇒ nφ,nψ,∆ Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

nimpLeft
Γ =⇒ nφ,nψ,∆ Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Figure 7.4: Two-state calculus: n variants of first-order rules. The rules are vari-
ations of rules from [Ahrendt et al., Chapter 2]

114

7.3 Two-State Calculus

emptyModality
Γ =⇒ {u}φ,∆

Γ =⇒ {u}[]φ,∆

assignLocal
Γ =⇒ {u}{a := t}[π ω]φ,∆

Γ =⇒ {u}[π a = t; ω]φ,∆

assignField
Γ =⇒ {u}{heap := store(heap, o, f, t)}[π ω]φ,∆

Γ =⇒ {u}[π o.f = t; ω]φ,∆

assignArray
Γ =⇒ {u}{heap := store(heap, a, arr(i), t)}[π ω]φ,∆

Γ =⇒ {u}[π a[i] = t; ω]φ,∆

unwindLoop
Γ =⇒ {u}[π if(g){p; while(g) p}; ω]φ,∆

Γ =⇒ {u}[π while(g) p; ω]φ,∆

Figure 7.5: Two-state calculus: unmodified Java rules from Weiß [2011].

or equivalently

ncut
Γ =⇒ nφ,∆ Γ, φ =⇒ ∆ Γ =⇒ φ,∆

Γ =⇒ ∆

The rules nandRight, norLeft and nimpRight can be understood as an applica-
tion of the ncut rule with subsequent simplification.

7.3.2 Java Rules

Figure 7.5 shows the subset of the classical Java DL rules which are sound in
two-state semantics and therefore included without modification in the two-
state calculus. Again, mainly the splitting Java rules like the conditional rule
have to be adjusted. They are used in the variant shown in Figure 7.6.

The rule nexpandMethod is a slight variation of the rule expandMethod from
Weiß [2011]: the two premisses of expandMethod are merged into one. The rules
nexpandMethod and expandMethod are equivalent in one-state semantics.

The rule nconditional has a third premiss compared to the rule conditional. This
third premiss guarantees that both runs evaluate the guard of the conditional

115

7 An Approximate Information Flow Calculus

nexpandMethod

Γ =⇒ {u}exactInstanceA(o)

∧{u}[π method-frame(result=r, this=o) :

{ body(m, A) } ω]φ,∆

Γ =⇒ {u}[π r = o.m(); ω]φ,∆

nconditional

Γ =⇒ {u}n(g),∆
Γ, {u}g =̇ true =⇒ {u}[π p1; ω]φ,∆
Γ, {u}g =̇ false =⇒ {u}[π p2; ω]φ,∆

Γ =⇒ {u}[π if(g) p1 else p2; ω]φ,∆

nextConditional

Γ =⇒ {u}[π if(g) p1 else p2](Inv ∧n(Inv)),∆
Inv =⇒ [π ω]φ

Γ =⇒ {u}[π if(g) p1 else p2; ω]φ,∆

for an arbitrary formula Inv

nloopInvariant

Γ =⇒ {u}(Inv ∧n(Inv) ∧n(g)),∆
Inv , g =̇ true =⇒ [p](Inv ∧n(Inv) ∧n(g))
Inv , g =̇ false =⇒ [π ω]φ

Γ =⇒ {u}[π while(g) p; ω]φ,∆

for an arbitrary formula Inv

nextLoopInvariant

Γ =⇒ {u}[π while(g) p](Inv ∧n(Inv)),∆
Inv =⇒ [π ω]φ

Γ =⇒ {u}[π while(g) p; ω]φ,∆

for an arbitrary formula Inv

ncreateObj

Γ, o′ ˙6= null, exactInstanceA(o′),

{u}(wellFormed(heap)

→ selectBoolean(heap, o′, created) =̇ false)
=⇒ {u}{heap := create(heap, o′)}{o := o′}[π ω]φ,∆

Γ =⇒ {u}[π o = A.alloc(); ω]φ,∆

where o′ : A is a fresh program variable.

Figure 7.6: Two-state calculus: special Java rules. ncreateObj, nexpandMethod,
nconditional and nloopInvariant are variations of rules from Weiß
[2011].

116

7.3 Two-State Calculus

in the same way. Thus, it is excluded that the one run takes the then branch
whereas the second one takes the else branch (which would not be express-
ible in the two-state logic). To be able to reason about programs with high
guards, the rule nextConditional is introduced. The rule decouples the reason-
ing about the conditional from the reasoning about the rest of the program.
In this way it is possible to use precise self-composition style reasoning for
the conditional statement (see Section 7.3.5) and the approximate calculus for
the rest of the program. The first premiss of nextConditional guarantees that
the formula Inv is valid after the execution of the conditional “in both final
states”, that is, D, sα1 , sα2 , β �2�1 Inv and D, sα2 , sα1 , β �2�1 Inv (and by the way
also D, sα1 , sα1 , β �2�1 Inv) hold if the execution of the conditional terminates
in states sα1 and sα2 , respectively. (Inv ensures that D, sα1 , sα2 , β �2�1 Inv or
D, sα2 , sα1 , β �2�1 Inv holds and n(Inv) makes an “and” out of the “or”.) The
second premiss ensures that if D, s3, s3, β �2�1 Inv , D, s3, s4, β �2�1 Inv and
D, s4, s3, β �2�1 Inv hold for arbitrary states s3 and s4, then D, sα3 , sα3 , β �2�1 φ
and either D, sα3 , sα4 , β �2�1 φ or D, sα4 , sα3 , β �2�1 φ hold if the execution of the
rest of the program terminates in states sα3 and sα4 , respectively. Together this
implies the conclusion. Note that the presented rule loses the context Γ and ∆.
As usual, it is possible to design a rule which preserves the context as far as
possible with the help of anonymizing updates.

The loop invariant rule nloopInvariant does not differ much from the usual loop
invariant rule (in its simplest form). Similar to nextConditional, the first pre-
miss of the rule ensures that Inv holds “in both states” before the loop and
similar to nconditional that the guard of the loop evaluates in the same way in
those states. The second premiss ensures that these additional requirements
are preserved by the loop body. As in the case of nextConditional the rule looses
the context Γ and ∆. Again it can be preserved by the usage of anonymizing
updates, see for instance Weiß [2011]. The rule nextLoopInvariant allows self-
composition style reasoning for loops with high guards in the same fashion as
the rule nextConditional allows this for conditional statements.

The only difference between the rule ncreateObj and the original rule createObj
from Weiß [2011] is that o′ is a fresh program variable instead of a fresh function
symbol. In one-state semantics this makes no difference. In two-state seman-
tics there is a difference: a fresh function symbol would be interpreted by D
and thus in the same way for the two runs. There is, however, no reason why
the two runs should allocate the same new object. A fresh program variable,
on the other hand, is interpreted by the two states potentially differently. Note
that the only change to be made in the calculus to check for Strong Object-
Sensitive Noninterference (Definition 25) instead of Conditional Noninterfer-
ence (Definition 3) is to use the original rule createObj from Weiß [2011] instead
of ncreateObj.

117

7 An Approximate Information Flow Calculus

nnot n(¬φ) n(φ)

napproxAnd
Γ =⇒ n(φ) ∧n(ψ),∆

Γ =⇒ n(φ ∧ ψ),∆

napproxOr
Γ =⇒ n(φ) ∧n(ψ),∆

Γ =⇒ n(φ ∨ ψ),∆

napproxEq
Γ =⇒ n(s) ∧n(t),∆

Γ =⇒ n(s = t),∆

napproxPred

Γ =⇒ n(t1) ∧ . . . ∧n(tn),∆

Γ =⇒ np(t1, . . . , tn),∆

where p is a predicate

nconstant n(c) true

where c is a constant

napproxFunc

Γ =⇒ n(t1) ∧ . . . ∧n(tn),∆

Γ =⇒ nf(t1, . . . , tn),∆

where f is a function

Figure 7.7: Two-state calculus: rules approximating n.

Figures 7.5 and 7.6 show the box variants of the rules only. The diamond vari-
ants can be constructed analog.

7.3.3 Update Simplification Rules

The two-state calculus uses the same update simplification rules as Weiß [2011]
and Rümmer [2006]. Their soundness is ensured by Theorem 52.

7.3.4 n Approximation Rules

Sometimes it is useful if nformulas can be simplified. For instance, the univer-
sal validity of n(x) =⇒ n(x+1) cannot be shown with the help of the rules dis-
cussed so far. Figure 7.7 shows rules for the approximation of nformulas. With
the help of these rules the universality of n(x) =⇒ n(x+ 1) can be shown:

118

7.3 Two-State Calculus

*
close

n(x) =⇒ n(x)
andTrue

n(x) =⇒ n(x) ∧ true
nconstant

n(x) =⇒ n(x) ∧n(1)
napproxFunc

n(x) =⇒ n(x+ 1)

The rules from Figure 7.7 handle simple cases efficiently. If higher precision is
necessary, it is possible to switch to self-composition style reasoning instead.
The next Section shows how self-composition style reasoning can be used with
the help of an on-the-fly conversion to one-state semantics.

7.3.5 Conversion to One-State Semantics

The two-state semantics can be unfolded into one-state semantics according to
Definitions 33 (Two-State Evaluation) and Definition 31 (Restricted Two-State
Evaluation). The following rule preforms such a conversion. The transforma-
tion triplicates each formula on the sequent and is closely related to self com-
position.

toOneState

=⇒ ∀h.∀h2.∀x̄.∀x̄2.

(
∧

1≤i≤n

γ2�1
i ∧

∧
1≤i≤n

γ2�2
i)

→ (
∨

1≤j≤m

δ2�1
j ∨

∨
1≤j≤m

δ2�2
j)

γ1
1 , . . . , γ

1
n

=⇒ δ1
1 , . . . , δ

1
m

γ1, . . . , γn =⇒ δ1, . . . , δm

where γ1
i and δ1

j equal γi and δj , respectively, except that all npredicates are
replaced by true and where h, x̄, h2, x̄2 do not occur free in γi and δj . The con-
struction of γ2�1

i , γ2�2
i , δ2�1

j and δ2�2
j is more involved, at least if those formulas

contain modalities. We consider the construction for δ2�1
j . The formula γ2�1

j is
constructed in the same way as δ2�1

j and the only difference in the construction
of γ2�2

i and δ2�2
i is in step 1, where the updates {heap := h || x̄ := x̄}{heap :=

h2 || x̄ := x̄2}2 have to be replaced by {heap := h2 || x̄ := x̄2}{heap :=
h || x̄ := x̄}2.

To describe the intermediate steps of the transformation it is useful to extend
the two-state logic by updates which effect the second state only. Therefore, we
enrich the syntax of the two-state logic by formulas {u}2φ, where φ is a formula
and u has the same syntax as in ordinary updates. Their semantics is defined by

119

7 An Approximate Information Flow Calculus

an extension of the restricted two-state evaluation: D, s1, s2, β �2�1 {u}2φ holds
if and only if D, s1, s

u
2 , β �2�1 φ holds, where su2 results from s2 by application

of {u}. The updates {u}2 are useful to describe the intermediate steps of the
transformation, but do not occur in δ2�1

j any more.

The formula δj is transformed in several steps from the outside to the inside.

1. Construct δ1
j = {heap := h || x̄ := x̄}{heap := h2 || x̄ := x̄2}2δj .

Example. Consider the sequent l > 0 ∧ n(l) =⇒ [α]n(l). The first step
transforms γ1 = l > 0 ∧ n(l) to {heap := h || x̄ := x̄}{heap := h2 || x̄ :=
x̄2}2(l > 0 ∧ n(l)) and δ1 = [α]n(l) to {heap := h || x̄ := x̄}{heap :=
h2 || x̄ := x̄2}2[α]n(l).

2. Shift all updates in δ1
j to the arguments of ∧, ∨, ¬, ∀ and ∃ till they ap-

pear solely in front of noperators, modalities, predicates or other updates.
(If an update contains a free variable which would be bound by shifting
the update in the scope of the quantifier, then rename the variable of the
quantifier beforehand.)

Example. Because n(l) is only a short form for ∀y.n(y = l), the second step
transforms {heap := h || x̄ := x̄}{heap := h2 || x̄ := x̄2}2(l > 0 ∧ n(l))
to {heap := h || x̄ := x̄}{heap := h2 || x̄ := x̄2}2(l > 0) ∧ ∀y.{heap :=
h || x̄ := x̄}{heap := h2 || x̄ := x̄2}2n(y = l). The second formula {heap :=
h || x̄ := x̄}{heap := h2 || x̄ := x̄2}2[α]n(l) is not modified.

3. If there are updates in front of noperators, modalities, and predicates of
the form {u}{u2}2{v1} . . . {vn} (where {u} and {u2}2 update the complete
state, respectively), transform them into {u; v1; . . . ; vn}{u2; v1; . . . ; vn}2.

Example. In the example there has nothing to be done.

4. As long as the resulting formula contains subformulas

(1) {u}{u2}2nφ,

(2) {u}{u2}2[α]φ,

(3) {u}{u2}2〈α〉φ or

(4) {u}{u2}2φp, where φp is a predicate,

replace

(1) {u}{u2}2nφ by {u}{u2}2φ↔ {u2}{u}2φ,

120

7.3 Two-State Calculus

(2) {u}{u2}2[α]φ by

∀hpost .∀hpost2 .∀x̄post .∀x̄post2 .
{u}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {u2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

→ {heap := hpost || x̄ := x̄post}{heap := hpost2 || x̄ := x̄post2}2φ

(3) {u}{u2}2〈α〉φ by

∃hpost .∃hpost2 .∃x̄post .∃x̄post2 .
{u}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {u2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

∧ {heap := hpost || x̄ := x̄post}{heap := hpost2 || x̄ := x̄post2}2φ

and

(4) {u}{u2}2φp, where φp is a predicate, by {u}φp.

Example. The fourth step transforms {heap := h || x̄ := x̄}{heap :=
h2 || x̄ := x̄2}2(l > 0) ∧ ∀y.{heap := h || x̄ := x̄}{heap := h2 || x̄ :=
x̄2}2n(y = l) to {heap := h || x̄ := x̄}(l > 0) ∧ ∀y.({heap := h || x̄ :=
x̄}(y = l) ↔ {heap := h2 || x̄ := x̄2}(y = l)) and {heap := h || x̄ :=
x̄}{heap := h2 || x̄ := x̄2}2[α]n(l) to

∀hpost .∀hpost2 .∀x̄post .∀x̄post2 .
{heap := h || x̄ := x̄}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {heap := h2 || x̄ := x̄2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

→ {heap := hpost || x̄ := x̄post}{heap := hpost2 || x̄ := x̄post2}2n(l)

The subformula {heap := hpost || x̄ := x̄post}{heap := hpost2 || x̄ :=
x̄post2}2n(l) is not replaced yet, because n(l) is only a short form for ∀y.n(y =
l).

5. If the resulting formula still contains updates {u}2, then repeat starting at
step 2. Otherwise the construction terminates and the resulting formula
is δ2�1

j .

Example. Another repetition of steps 2 to 5 yields

γ2�1
1 = {heap := h || x̄ := x̄}(l > 0)

∧ ∀y.({heap := h || x̄ := x̄}(y = l)

↔ {heap := h2 || x̄ := x̄2}(y = l))

121

7 An Approximate Information Flow Calculus

(the second round did not affect this formula any more) and

δ2�1
1 = ∀hpost .∀hpost2 .∀x̄post .∀x̄post2 .

{heap := h || x̄ := x̄}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {heap := h2 || x̄ := x̄2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

→ ∀y.({heap := hpost || x̄ := x̄post}(y = l)

↔ {heap := hpost2 || x̄ := x̄post2}(y = l))

Because ∀y.({u}(y = l) ↔ {u2}(y = l)) equals {u}l = {u2}l (see Lemma 32)
γ2�1

1 and δ2�1
1 can be rewritten to

γ2�1
1 = {heap := h || x̄ := x̄}(l > 0)

∧ {heap := h || x̄ := x̄}l = {heap := h2 || x̄ := x̄2}l

and

δ2�1
1 = ∀hpost .∀hpost2 .∀x̄post .∀x̄post2 .

{heap := h || x̄ := x̄}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {heap := h2 || x̄ := x̄2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

→ {heap := hpost || x̄ := x̄post}l
= {heap := hpost2 || x̄ := x̄post2}l

γ2�2
1 and δ2�2

1 are constructed analog. We have

γ2�2
1 = {heap := h2 || x̄ := x̄2}(l > 0)

∧ {heap := h2 || x̄ := x̄2}l = {heap := h || x̄ := x̄}l

and δ2�2
1 = δ2�1

1 .

The formulas occurring in the premiss of the rule toOneState do not contain the
npredicate any more and each modality is prefixed by an update of the form
{heap := h || x̄ := x̄}, where h and x̄ are variables. Thus, the premiss can safely
be handled by the usual Java DL calculus (Lemma 49.6) if it is not possible to
reintroduce n to the sequent (for instance by hide and reinsert rules).

Note that the two-state calculus mainly excludes infeasible combinations of
paths through the program and at some point approximates n formulas. Val-
ues of program variables are abstracted by invariants and contracts only and
thus can be kept highly precise. Switching to self-composition style preserves
this very precise knowledge on both program states. Thus, the self-composition
style reasoning approach from Chapter 5 can build on precise knowledge to
draw precise conclusions.

122

7.4 Soundness of the Two-State Calculus

The rule toOneState is very complex. The transformation can be performed in
smaller steps on the basis of predicate transformers. Figures 7.8 and 7.9 show a
set of conversion rules based on predicate transformers. Their soundness proof,
however, is out of scope of this thesis.

7.4 Soundness of the Two-State Calculus

The following lemmas show the soundness of the two-state calculus.

Lemma 53. The rules from Figure 7.2 are sound with respect to two-state semantics.

Proof. The soundness of the rules andLeft and orRight follows directly by the
definition of the meaning formulas (Definition 37) of the premisses and the
conclusions of the rules.

The rules impRight, notLeft, notRight, close, closeTrue and closeFalse fulfill the
requirements of Theorem 52 and therefore are sound in two-state semantics.

The soundness of the rules allRight, allLeft, exRight and exLeft remains to be
shown.

• allRight: We have to show that

�2

∧
Γ→ ((φ)[x/c] ∨

∨
∆) (7.35)

implies
�2

∧
Γ→ ((∀x.φ) ∨

∨
∆) . (7.36)

By Definition 33, equation (7.36) holds if and only if

D, s1, s1, β �2�1

∧
Γ→ ((∀x.φ) ∨

∨
∆)

and
(
D, s1, s2, β �2�1

∧
Γ→ ((∀x.φ) ∨

∨
∆)

or D, s2, s1, β �2�1

∧
Γ→ ((∀x.φ) ∨

∨
∆)
) (7.37)

for all two-state structures (D, s1, s2) and all variable assignments β. Let
(D, s1, s2) be an arbitrary two-state structure and let β be a variable as-
signment. If

D, s1, s1, β �2�1 ¬
∧

Γ or D, s1, s1, β �2�1

∨
∆

and (D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1

∨
∆

or D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1

∨
∆)

123

7 An Approximate Information Flow Calculus

pToOneState

l x̄1, h1, x̄2, h2, γ1m2�1,

. . . ,

l x̄1, h1, x̄2, h2, γnm2�1

l x̄1, h1, x̄2, h2, γ1m2�2,

. . . ,

l x̄1, h1, x̄2, h2, γnm2�2

=⇒ l x̄1, h1, x̄2, h2, δ1m2�1,

. . . ,

l x̄1, h1, x̄2, h2, δmm2�1

l x̄1, h1, x̄2, h2, δ1m2�2,

. . . ,

l x̄1, h1, x̄2, h2, δmm2�2

l γ1melimn,

. . . ,

l γnmelimn

=⇒ l δ1melimn,

. . . ,

l δmmelimn

γ1, . . . , γn =⇒ δ1, . . . , δm

where h1, h2 are fresh heap symbols and x̄1, x̄2 are fresh function symbols, two
for each program variable.

pTwoStateLogicalOp
lx̄1, h1, x̄2, h2, φ1 m2�i ◦l x̄1, h1, x̄2, h2, φ2m2�i

lx̄1, h1, x̄2, h2, φ1 ◦ φ2m2�i

where ◦ is a logical operator.

pElimAgreeLogicalOp
lφ1 melimn ◦l φ2melimn

lφ1 ◦ φ2melimn

where ◦ is a logical operator.

pTwoStateAgree
{x̄ := x̄1 ‖ heap := h1}φ = {x̄ := x̄2 ‖ heap := h2}φ

lx̄1, h1, x̄2, h2,nφm2�i

pElimAgree
true

lnφmelimn

Figure 7.8: Transformation from two-state semantics to one-state semantics
with the help of predicate transformers. (Part 1)

124

7.4 Soundness of the Two-State Calculus

pTwoStatePredicate
{x̄ := x̄i ‖ heap := hi}p(t)
lx̄1, h1, x̄2, h2, p(t̄)m2�i

where p is a predicate and t̄ terms of proper type.

pElimAgreePredicate
p(t̄)

lp(t̄)melimn

where p is a predicate and t̄ terms of proper type.

pTwoStateUpdate
l{u}x̄1

, {u}h1
, {u}x̄2

, {u}h2
, φm2�i

lx̄1, h1, x̄2, h2, {u}φm2�i

pElimAgreeUpdate
{u}l φmelimn

l{u}φmelimn

pTwoStateModality

{x̄ := x̄1 ‖ heap := h1}[p](x̄ = x̄1
post ∧ heap = h1

post)

∧ {x̄ := x̄2 ‖ heap := h2}[p](x̄ = x̄2
post ∧ heap = h2

post)

→ l x̄1
post , hpost

1, x̄2
post , hpost

2, φm2�i

lx̄1, h1, x̄2, h2, [p]φm2�i

where h1
post , h

2
post are fresh heap symbols and x̄1

post , x̄
2
post are fresh function

symbols, two for each program variable.

pElimAgreeModality
[p] l φmelimn

l[p]φmelimn

Figure 7.9: Transformation from two-state semantics to one-state semantics
with the help of predicate transformers. (Part 2)

125

7 An Approximate Information Flow Calculus

hold, then we are done. Hence, assume the contrary.

Again by Definition 33, equation (7.35) holds if and only if

D, s1, s1, β �2�1

∧
Γ→ ((φ)[x/c] ∨

∨
∆)

and
(
D, s1, s2, β �2�1

∧
Γ→ ((φ)[x/c] ∨

∨
∆)

or D, s2, s1, β �2�1

∧
Γ→ ((φ)[x/c] ∨

∨
∆)
) (7.38)

for all two-state structures (D, s1, s2) and variable assignments β. Thus,
we may assume

D, s1, s1, β �2�1 (φ)[x/c]

and
(
D, s1, s2, β �2�1 (φ)[x/c] or D, s2, s1, β �2�1 (φ)[x/c]

)
.

(7.39)

We define SD = {D′ | cD′ ∈ D and all other symbols interpreted as in D}.
Because c is a fresh constant symbol and therefore does neither occur in∧

Γ nor in
∨

∆, we also have for all D′ ∈ SD that

D′, s1, s1, β �2�1 ¬
∧

Γ or D′, s1, s1, β �2�1

∨
∆

and (D′, s1, s2, β �2�1 ¬
∧

Γ or D′, s1, s2, β �2�1

∨
∆

or D′, s1, s2, β �2�1 ¬
∧

Γ or D′, s1, s2, β �2�1

∨
∆)

does not hold and hence

D′, s1, s1, β �2�1 (φ)[x/c]

and
(
D′, s1, s2, β �2�1 (φ)[x/c] or D′, s2, s1, β �2�1 (φ)[x/c]

) (7.40)

holds.

Let β′ be defined as β′(y) = ((y)[x/c])D
′,si,β for all variables y. Then,

(7.40) is equivalent to

D′, s1, s1, β
′ �2�1 φ

and
(
D′, s1, s2, β

′ �2�1 φ or D′, s2, s1, β
′ �2�1 φ

) (7.41)

for all D′ ∈ SD. By the definition of SD, for all d ∈ D there is a structure
D′ ∈ SD such that cD

′
= d. Therefore,

D, s1, s1, β
x/d �2�1 φ

and
(
D, s1, s2, β

x/d �2�1 φ or D, s2, s1, β
x/d �2�1 φ

) (7.42)

126

7.4 Soundness of the Two-State Calculus

for all d ∈ D and hence

D, s1, s1, β �2�1 ∀x.φ
and

(
D, s1, s2, β �2�1 ∀x.φ or D, s2, s1, β �2�1 ∀x.φ

)
.

(7.43)

Equation (7.43) implies (7.37), which finishes the proof.

• exLeft:
The soundness of exLeft can be reduced to the soundness of allRight. The
premiss can be rearranged as follows:

(
∧

Γ ∧ (φ)[x/c])→
∨

∆ ≡2�1 ¬(
∧

Γ) ∨ ¬(φ)[x/c] ∨
∨

∆

≡2�1 ¬(
∧

Γ) ∨ [x/c](¬φ) ∨
∨

∆ ≡2�1

∧
Γ→ ([x/c](¬φ) ∨

∨
∆)

Similarly, the conclusion can be rearranged:

(
∧

Γ ∧ (∃x.φ))→
∨

∆ ≡2�1 ¬(
∧

Γ) ∨ ¬(∃x.φ) ∨
∨

∆

≡2�1 ¬(
∧

Γ) ∨ (∀x.¬φ) ∨
∨

∆ ≡2�1

∧
Γ→ (∀x.¬φ) ∨

∨
∆)

Therefore, by the proof of allRight, �2�1 (
∧

Γ ∧ (φ)[x/c]) →
∨

∆ implies
�2�1 (

∧
Γ ∧ (∃x.φ))→

∨
∆.

• exRight: Let (D, s1, s2) be a two-state structure and let β be a variable
assignment. By Lemma 50 it is sufficient to prove that

D, s1, s2, β �2�1

∧
Γ→ (∃x.φ ∨ [x/t](φ) ∨

∨
∆) (7.44)

implies
D, s1, s2, β �2�1

∧
Γ→ (∃x.φ ∨

∨
∆) . (7.45)

Therefore, assume (7.44). Then,

D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1 ∃x.φ

or D, s1, s2, β �2�1 [x/t](φ) or D, s1, s2, β �2�1

∨
∆ .

If either D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1 ∃x.φ or D, s1, s2, β �2�1∨
∆ holds, then (7.45) holds and we are done. Therefore, assume the

contrary. We show that in this case D, s1, s2, β 22�1 [x/t](φ) holds. By
assumption, D, s1, s2, β 22�1 ∃x.φ holds which equals D, s1, s2, β �2�1

¬∃x.φ and hence D, s1, s2, β �2�1 ∀x.¬φ. The latter implies in particu-
lar D, s1, s2, β

′ �2�1 ¬φ for β′ defined as β′(y) = ([x/t](y))D,si,β for all
variables y. Therefore, D, s1, s2, β 22�1 [x/t](φ) holds as desired.

127

7 An Approximate Information Flow Calculus

• allLeft:

The soundness of allLeft can be reduced to the soundness of exRight. The
premiss can be rearranged as follows:(∧

Γ ∧ (∀x.φ) ∧ [x/t](φ)
)
→
∨

∆

≡2�1 ¬(
∧

Γ) ∨ ¬(∀x.φ) ∨ ¬[x/t](φ) ∨
∨

∆

≡2�1 ¬(
∧

Γ) ∨ (∃x.¬φ) ∨ [x/t](¬φ) ∨
∨

∆

≡2�1

∧
Γ→

(
(∃x.¬φ) ∨ [x/t](¬φ) ∨

∨
∆
)

Similarly, the conclusion can be rearranged:(∧
Γ ∧ (∀x.φ)

)
→
∨

∆ ≡2�1 ¬(
∧

Γ) ∨ ¬(∀x.φ) ∨
∨

∆

≡2�1 ¬(
∧

Γ) ∨ (∃x.¬φ) ∨
∨

∆ ≡2�1

∧
Γ→

(
(∃x.¬φ) ∨

∨
∆
)

Thus, by the proof of exRight, D, s1, s2, β �2�1
(∧

Γ∧ (∀x.φ)∧ [x/t](φ)
)
→∨

∆ implies D, s1, s2, β �2�1
(∧

Γ ∧ (∀x.φ)
)
→

∨
∆ for all two-state

structures (D, s1, s2) and variable assignments β. The latter implies by
Lemma 50 that �2

(∧
Γ ∧ (∀x.φ) ∧ [x/t](φ)

)
→
∨

∆ implies �2

(∧
Γ ∧

(∀x.φ)
)
→
∨

∆.

Lemma 54. The rules from Figure 7.3 are sound with respect to two-state semantics.

Proof. The soundness of the rules from Figure 7.3 follows by Lemma 49 and the
fact that those rules are sound in one-state semantics (see for instance [Ahrendt
et al., Chapter 2]).

Lemma 55. The rules from Figure 7.4 are sound with respect to two-state semantics.

Proof. Let (D, s1, s2) be a two-state structure and let β be a variable assignment.

• nandRight: We show that any two-state model of the meaning formulas of
the premisses is a two-state model for the conclusion, too. Let (D, s1, s2)
be a two-state structure and let β be a variable assignment. We have to
show that D, s1, s2, β �2

∧
Γ →

(
nφ ∨ nψ ∨

∨
∆
)

in combination with
D, s1, s2, β �2

∧
Γ → (φ ∨

∨
∆) and D, s1, s2, β �2

∧
Γ → (ψ ∨

∨
∆)

implies D, s1, s2, β �2

∧
Γ→

(
(φ ∧ ψ) ∨

∨
∆
)
.

128

7.4 Soundness of the Two-State Calculus

By Definition 33 (Two-State Evaluation) D, s1, s2, β �2

∧
Γ→

(
nφ∨nψ∨∨

∆
)

holds if and only if(
D, s1, s2, β �2�1

∧
Γ→

(
nφ ∨nψ ∨

∨
∆
)

or D, s2, s1, β �2�1

∧
Γ→

(
nφ ∨nψ ∨

∨
∆
))

and D, s1, s1, β �2�1

∧
Γ→

(
nφ ∨nψ ∨

∨
∆
)
.

(7.46)

Because D, s1, s1, β �2�1 nφ is always true, Equation (7.46) holds if, and
only if,

D, s1, s2, β �2�1

∧
Γ→

(
nφ ∨nψ ∨

∨
∆
)

or D, s2, s1, β �2�1

∧
Γ→

(
nφ ∨nψ ∨

∨
∆
)
.

This again is equivalent to

D, s1, s2, β �2�1 ¬
∧

Γ or D, s2, s1, β �2�1 ¬
∧

Γ

or D, s1, s2, β �2�1

∨
∆ or D, s2, s1, β �2�1

∨
∆

or (D, s1, s2, β �2�1 φ iff D, s2, s1, β �2�1 φ)

or (D, s1, s2, β �2�1 ψ iff D, s2, s1, β �2�1 ψ)

(7.47)

by Definition 31 (Restricted Two-State Evaluation).

Additionally, D, s1, s2, β �2

∧
Γ→ (φ ∨

∨
∆) holds if and only if(

D, s1, s2, β �2�1

∧
Γ→ (φ ∨

∨
∆)

or D, s2, s1, β �2�1

∧
Γ→ (φ ∨

∨
∆)
)

and D, s1, s1, β �2�1

∧
Γ→ (φ ∨

∨
∆)

which is equivalent to

(D, s1, s2, β �2�1 ¬
∧

Γ or D, s2, s1, β �2�1 ¬
∧

Γ

or D, s1, s2, β �2�1

∨
∆ or D, s2, s1, β �2�1

∨
∆

or D, s1, s2, β �2�1 φ or D, s2, s1, β �2�1 φ)

and (D, s1, s1, β �2�1 ¬
∧

Γ or D, s1, s1, β �2�1

∨
∆

or D, s1, s1, β �2�1 φ) .

(7.48)

129

7 An Approximate Information Flow Calculus

Similarly, D, s1, s2, β �2

∧
Γ→ (ψ ∨

∨
∆) holds if and only if

(D, s1, s2, β �2�1 ¬
∧

Γ or D, s2, s1, β �2�1 ¬
∧

Γ

or D, s1, s2, β �2�1

∨
∆ or D, s2, s1, β �2�1

∨
∆

or D, s1, s2, β �2�1 ψ or D, s2, s1, β �2�1 ψ)

and (D, s1, s1, β �2�1 ¬
∧

Γ or D, s1, s1, β �2�1

∨
∆

or D, s1, s1, β �2�1 ψ) .

(7.49)

We have to show that (7.47), (7.48) and (7.49) imply D, s1, s2, β �2

∧
Γ →(

(φ ∧ ψ) ∨
∨

∆
)
.

D, s1, s2, β �2

∧
Γ→

(
(φ ∧ ψ) ∨

∨
∆
)

holds if and only if

(
D, s1, s2, β �2�1

∧
Γ→

(
(φ ∧ ψ) ∨

∨
∆
)

or D, s2, s1, β �2�1

∧
Γ→

(
(φ ∧ ψ) ∨

∨
∆
)) (7.50)

and D, s1, s1, β �2�1

∧
Γ→

(
(φ ∧ ψ) ∨

∨
∆
)
. (7.51)

We first show that (7.48) and (7.49) imply (7.51). By (7.48) and (7.49) we
get

(D, s1, s1, β �2�1 ¬
∧

Γ or D, s1, s1, β �2�1

∨
∆

or D, s1, s1, β �2�1 φ)

and (D, s1, s1, β �2�1 ¬
∧

Γ or D, s1, s1, β �2�1

∨
∆

or D, s1, s1, β �2�1 ψ)

which is equivalent to

D, s1, s1, β �2�1 ¬
∧

Γ or D, s1, s1, β �2�1

∨
∆

or (D, s1, s1, β �2�1 φ and D, s1, s1, β �2�1 ψ)

and hence to (7.51).

Further, we show that (7.47), (7.48) and (7.49) imply (7.50). Equations

130

7.4 Soundness of the Two-State Calculus

(7.48) and (7.49) imply that

(D, s1, s2, β �2�1 ¬
∧

Γ or D, s2, s1, β �2�1 ¬
∧

Γ

or D, s1, s2, β �2�1

∨
∆ or D, s2, s1, β �2�1

∨
∆

or D, s1, s2, β �2�1 φ or D, s2, s1, β �2�1 φ)

and (D, s1, s2, β �2�1 ¬
∧

Γ or D, s2, s1, β �2�1 ¬
∧

Γ

or D, s1, s2, β �2�1

∨
∆ or D, s2, s1, β �2�1

∨
∆

or D, s1, s2, β �2�1 ψ or D, s2, s1, β �2�1 ψ)

(7.52)

holds which is equivalent to

D, s1, s2, β �2�1 ¬
∧

Γ or D, s2, s1, β �2�1 ¬
∧

Γ

or D, s1, s2, β �2�1

∨
∆ or D, s2, s1, β �2�1

∨
∆

or
(

D, s1, s2, β �2�1 φ or D, s2, s1, β �2�1 φ)

and (D, s1, s2, β �2�1 ψ or D, s2, s1, β �2�1 ψ)
)
.

(7.53)

If

D, s1, s2, β �2�1 ¬
∧

Γ or D, s2, s1, β �2�1 ¬
∧

Γ

or D, s1, s2, β �2�1

∨
∆ or D, s2, s1, β �2�1

∨
∆

holds, then also (7.50) holds and we are done. Therefore, assume the
contrary. Then we have by (7.53)

(D, s1, s2, β �2�1 φ or D, s2, s1, β �2�1 φ)

and (D, s1, s2, β �2�1 ψ or D, s2, s1, β �2�1 ψ)
(7.54)

and by (7.47)

(D, s1, s2, β �2�1 φ iff D, s2, s1, β �2�1 φ)

or (D, s1, s2, β �2�1 ψ iff D, s2, s1, β �2�1 ψ) .
(7.55)

Without loss of generality let D, s1, s2, β �2�1 φ iff D, s2, s1, β �2�1 φ be
true. Then (7.54) is equivalent to

D, s1, s2, β �2�1 φ

and (D, s1, s2, β �2�1 ψ or D, s2, s1, β �2�1 ψ)
(7.56)

which again is equivalent to

(D, s1, s2, β �2�1 φ and D, s1, s2, β �2�1 ψ)

or (D, s1, s2, β �2�1 φ and D, s2, s1, β �2�1 ψ) .
(7.57)

131

7 An Approximate Information Flow Calculus

Again because of D, s1, s2, β �2�1 φ iff D, s2, s1, β �2�1 φ equation (7.57)
holds if and only if

(D, s1, s2, β �2�1 φ and D, s1, s2, β �2�1 ψ)

or (D, s2, s1, β �2�1 φ and D, s2, s1, β �2�1 ψ)
(7.58)

which implies (7.50) by Definition 31 (Restricted Two-State Evaluation).

• norLeft: The soundness of the rule norLeft can be reduced to the sound-
ness of the rule nandRight. To this end, by Lemma 50, it is sufficient
to show that the meaning formulas of the premisses and conclusion of
norLeft can be rearranged in restricted two-state evaluation such that they
fit the form of the premisses and conclusion of nandRight:

– The first premiss of norLeft is identical to the one of nandRight.

– For the second premiss
∧

Γ ∧ φ →
∨

∆ ≡2�1
∧

Γ →
(
¬φ ∨

∨
∆
)

holds.

– For the third premiss
∧

Γ∧ψ →
∨

∆ ≡2�1
∧

Γ→
(
¬ψ ∨

∨
∆
)

holds.

– For the conclusion
∧

Γ∧(φ∨ψ)→
∨

∆ ≡2�1
∧

Γ→
(
(¬φ∧¬ψ)∨

∨
∆
)

holds.

• nimpLeft: As before, the soundness of the rule nimpLeft can be reduced
to the soundness of the rule nandRight. To this end, by Lemma 50, it is
sufficient to show that the meaning formulas of the premisses and con-
clusion of nimpLeft can be rearranged in restricted two-state evaluation
such that they fit the form of the premisses and conclusion of nandRight:

– The first and the second premiss of nimpLeft are identical to the ones
of nandRight.

– For the third premiss
∧

Γ∧ψ →
∨

∆ ≡2�1
∧

Γ→
(
¬ψ ∨

∨
∆
)

holds.

– For the conclusion
∧

Γ ∧ (φ → ψ) →
∨

∆ ≡2�1
∧

Γ →
(
(φ ∧ ¬ψ) ∨∨

∆
)

holds.

Lemma 56. The rules from Figure 7.5 are sound with respect to two-state semantics.

Proof. The rule schemata emptyModality, assignLocal, assignField, assignArray and
unwindLoop fulfill the requirements of Theorem 52. Therefore, by Theorem 52,
these rules are sound in two-state semantics, too.

Lemma 57. The rules from Figure 7.6 are sound with respect to two-state semantics.

132

7.4 Soundness of the Two-State Calculus

Proof.

• nexpandMethod: The rule

expandMethod

Γ =⇒ {u}[π method-frame(result=r, this=o) :
{ body(m, A) } ω]φ,∆

Γ =⇒ {u}exactInstanceA(o),∆

Γ =⇒ {u}[π r = o.m(); ω]φ,∆

from Weiß [2011] equals nexpandMethod in the sense that any one-state
model for the meaning formulas of the premisses of expandMethod is a
model for the meaning formula of the premiss of nexpandMethod and vice
versa. Therefore, the premiss of nexpand-Method logically implies its con-
clusion in one-state semantics. Hence, by Theorem 52, nexpandMethod is
sound in two-state semantics, too.

• nconditional: By Lemma 50, it is sufficient to show that the conjunction
of the meaning formulas of the premisses imply the meaning formula
of the conclusion in restricted two-state evaluation. Let (D, s1, s2) be
an arbitrary two-state structure and let β be a variable assignment. If
D, s1, s2, β �2�1 ¬

∧
Γ or D, s1, s2, β �2�1

∨
∆ holds, then we are done.

Hence, assume the contrary. In this case

D, s1, s2, β �2�1 {u}n(g),

D, s1, s2, β �2�1 ({u}g =̇ true)→ {u}[π p1; ω]φ and
D, s1, s2, β �2�1 ({u}g =̇ false)→ {u}[π p2; ω]φ

(7.59)

need to hold. Equation (7.59) is equivalent to

D, su1 , su2 , β �2�1 n(g),

D, su1 , su2 , β �2�1 (g =̇ true)→ [π p1; ω]φ and
D, su1 , su2 , β �2�1 (g =̇ false)→ [π p2; ω]φ

(7.60)

where su1 and su2 result from s1 and s2 by application of {u}, respectively.
D, su1 , su2 , β �2�1 n(g) implies gD,s

u
1 ,β = gD,s

u
2 ,β .

Case distinction.

Case gD,s
u
1 ,β = gD,s

u
2 ,β = true . In this case if(g) p1 else p2; ω started

in sui terminates in state su,αi if and only if p1; ω started in sui termi-
nates in su,αi . The latter follows by (7.60), line two. Therefore, we have
D, su1 , su2 , β �2�1 [π if(g) p1 else p2; ω]φ and hence D, s1, s2, β �2�1

{u}[π if(g) p1 else p2; ω]φ.

133

7 An Approximate Information Flow Calculus

Case gD,s
u
1 ,β = gD,s

u
2 ,β = false . In this case if(g) p1 else p2; ω started

in sui terminates in state su,αi if and only if p2; ω started in sui termi-
nates in su,αi . The latter follows by (7.60), line three. Therefore, we have
D, su1 , su2 , β �2�1 [π if(g) p1 else p2; ω]φ and hence D, s1, s2, β �2�1

{u}[π if(g) p1 else p2; ω]φ.

• nextConditional: We may assume

�2

∧
Γ→

(
{u}[π if(g) p1 else p2](Inv ∧n(Inv)) ∨

∨
∆
)

and �2 Inv → [π ω]φ
(7.61)

and have to show

�2

∧
Γ→

(
{u}[π if(g) p1 else p2; ω]φ ∨

∨
∆
)
. (7.62)

By Definition 33, equation (7.62) holds if and only if

D, s1, s1, β �2�1

∧
Γ→ ({u}[π if(g) p1 else p2; ω]φ ∨

∨
∆) and(

D, s1, s2, β �2�1

∧
Γ→ ({u}[π if(g) p1 else p2; ω]φ ∨

∨
∆)

or D, s2, s1, β �2�1

∧
Γ→ ({u}[π if(g) p1 else p2; ω]φ ∨

∨
∆)
)

(7.63)
for all two-state structures (D, s1, s2) and all variable assignments β. Let
(D, s1, s2) be an arbitrary two-state structure and let β be a variable as-
signment. If

D, s1, s1, β �2�1 ¬
∧

Γ or D, s1, s1, β �2�1

∨
∆

and (D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1

∨
∆

or D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1

∨
∆)

hold, then we are done. Hence, assume the contrary.

Again by Definition 33, line one of equation (7.61) holds if and only if

D, s1, s1, β �2�1∧
Γ→ ({u}[π if(g) p1 else p2](Inv ∧n(Inv))) ∨

∨
∆)

and
(
D, s1, s2, β �2�1∧

Γ→ ({u}[π if(g) p1 else p2](Inv ∧n(Inv))) ∨
∨

∆)

or D, s2, s1, β �2�1∧
Γ→ ({u}[π if(g) p1 else p2](Inv ∧n(Inv))) ∨

∨
∆)
)

(7.64)

134

7.4 Soundness of the Two-State Calculus

for all two-state structures (D, s1, s2) and variable assignments β. Thus,
we may assume

D, s1, s1, β �2�1 {u}[π if(g) p1 else p2](Inv ∧n(Inv))

and
(
D, s1, s2, β �2�1 {u}[π if(g) p1 else p2](Inv ∧n(Inv))

or D, s2, s1, β �2�1 {u}[π if(g) p1 else p2](Inv ∧n(Inv))
) (7.65)

which is equivalent to

D, sα1 , sα1 , β �2�1 Inv

and
(

(D, sα1 , sα2 , β �2�1 Inv and gD,s
α
1 ,β = gD,s

α
2 ,β

and (D, sα1 , sα2 , β �2�1 Inv iff D, sα2 , sα1 , β �2�1 Inv))

or (D, sα2 , sα1 , β �2�1 Inv and gD,s
α
1 ,β = gD,s

α
2 ,β

and (D, sα1 , sα2 , β �2�1 Inv iff D, sα2 , sα1 , β �2�1 Inv))
)

(7.66)

for all sα1 , sα2 such that if(g) p1 else p2 started in su1 terminates in sα1
and if(g) p1 else p2 started in su2 terminates in sα2 and where su1 and su2
result from s1 and s2 by application of {u}, respectively. Equation (7.66)
simplifies to

D, sα1 , sα1 , β �2�1 Inv and gD,s
α
1 ,β = gD,s

α
2 ,β

and D, sα1 , sα2 , β �2�1 Inv and D, sα2 , sα1 , β �2�1 Inv .
(7.67)

By �2 Inv → [π ω]φ we get

D, s3, s3, β �2�1 Inv → [π ω]φ

and
(
D, s3, s4, β �2�1 Inv → [π ω]φ

or D, s4, s3, β �2�1 Inv → [π ω]φ
) (7.68)

for all two-state structures (D, s3, s4) and all variable assignments β. Re-
member that D, s3, s4, β �2�1 ψ1 → ψ2 or D, s4, s3, β �2�1 ψ1 → ψ2

holds if and only if D, s3, s4, β �2�1 ψ1 and D, s4, s3, β �2�1 ψ1 imply
that either D, s3, s4, β �2�1 ψ2 or D, s4, s3, β �2�1 ψ2 hold. Therefore, for
all states s3, s4 such that D, s3, s3, β �2�1 Inv , D, s3, s4, β �2�1 Inv and
D, s4, s3, β �2�1 Inv hold, the program ω started in s3, s4 either does not
terminate or it terminates in states sα3 , sα4 , respectively, such thatD, sα3 , sα3 ,
β �2�1 φ and either D, sα3 , sα4 , β �2�1 φ or D, sα4 , sα3 , β �2�1 φ hold. Thus, ω
started in sα1 , sα2 either does not terminate or it terminates in states sα3 , sα4 ,
respectively, such that D, sα3 , sα3 , β �2�1 φ and either D, sα3 , sα4 , β �2�1 φ or
D, sα4 , sα3 , β �2�1 φ hold. Hence, (7.63) is true.

135

7 An Approximate Information Flow Calculus

• nloopInvariant: We may assume

�2

∧
Γ→ ({u}(Inv ∧n(Inv) ∧n(g)) ∨

∨
∆),

�2 (Inv , g =̇ true)→ [p](Inv ∧n(Inv) ∧n(g)) and
�2 (Inv , g =̇ false)→ [π ω]φ

(7.69)

and have to show

�2

∧
Γ→ ({u}[π while(g) p; ω]φ ∨

∨
∆) . (7.70)

By Definition 33, equation (7.70) holds if and only if

D, s1, s1, β �2�1

∧
Γ→ ({u}[π while(g) p; ω]φ ∨

∨
∆) and(

D, s1, s2, β �2�1

∧
Γ→ ({u}[π while(g) p; ω]φ ∨

∨
∆)

or D, s2, s1, β �2�1

∧
Γ→ ({u}[π while(g) p; ω]φ ∨

∨
∆)
) (7.71)

for all two-state structures (D, s1, s2) and all variable assignments β. Let
(D, s1, s2) be an arbitrary two-state structure and let β be a variable as-
signment. If

D, s1, s1, β �2�1 ¬
∧

Γ or D, s1, s1, β �2�1

∨
∆

and (D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1

∨
∆

or D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1

∨
∆)

hold, then we are done. Hence, assume the contrary.

Again by Definition 33, line one of equation (7.69) holds if and only if

D, s1, s1, β �2�1

∧
Γ→ ({u}(Inv ∧n(Inv) ∧n(g)) ∨

∨
∆) and(

D, s1, s2, β �2�1

∧
Γ→ ({u}(Inv ∧n(Inv) ∧n(g)) ∨

∨
∆)

or D, s2, s1, β �2�1

∧
Γ→ ({u}(Inv ∧n(Inv) ∧n(g)) ∨

∨
∆)
) (7.72)

holds for all two-state structures (D, s1, s2) and all variable assignments
β. Therefore, we may assume

D, s1, s1, β �2�1 {u}(Inv ∧n(Inv) ∧n(g))

and
(
D, s1, s2, β �2�1 {u}(Inv ∧n(Inv) ∧n(g))

or D, s2, s1, β �2�1 {u}(Inv ∧n(Inv) ∧n(g))
) (7.73)

136

7.4 Soundness of the Two-State Calculus

which is equivalent to

D, su1 , su1 , β �2�1 Inv

and
(

(D, su1 , su2 , β �2�1 Inv and gD,s
u
1 ,β = gD,s

u
2 ,β

and (D, su1 , su2 , β �2�1 Inv iff D, su2 , su1 , β �2�1 Inv))

or (D, su2 , su1 , β �2�1 Inv and gD,s
u
1 ,β = gD,s

u
2 ,β

and (D, su1 , su2 , β �2�1 Inv iff D, su2 , su1 , β �2�1 Inv))
)

(7.74)

where su1 and su2 result from s1 and s2 by application of {u}, respectively.
Equation (7.74) simplifies to

D, su1 , su1 , β �2�1 Inv and gD,s
u
1 ,β = gD,s

u
2 ,β

and D, su1 , su2 , β �2�1 Inv and D, su2 , su1 , β �2�1 Inv .
(7.75)

By �2 (Inv , g =̇ true)→ [p](Inv ∧n(Inv) ∧n(g)) we get

D, s3, s3, β �2�1 (Inv , g =̇ true)→ [p](Inv ∧n(Inv) ∧n(g)) and(
D, s3, s4, β �2�1 (Inv , g =̇ true)→ [p](Inv ∧n(Inv) ∧n(g))

or D, s4, s3, β �2�1 (Inv , g =̇ true)→ [p](Inv ∧n(Inv) ∧n(g))
) (7.76)

for all two-state structures (D, s3, s4) and all variable assignments β. Re-
member that D, s3, s4, β �2�1 ψ1 → ψ2 or D, s4, s3, β �2�1 ψ1 → ψ2

holds if and only if D, s3, s4, β �2�1 ψ1 and D, s4, s3, β �2�1 ψ1 imply
that either D, s3, s4, β �2�1 ψ2 or D, s4, s3, β �2�1 ψ2 hold. Therefore,
for all states s3, s4 such that D, s3, s3, β �2�1 Inv , D, s3, s4, β �2�1 Inv ,
D, s4, s3, β �2�1 Inv and gD,s3,β = gD,s4,β = true hold, the program p
started in s3, s4 either does not terminate or it terminates in states sα3 ,
sα4 , respectively, such that again D, sα3 , sα3 , β �2�1 Inv , D, sα3 , sα4 , β �2�1

Inv , D, sα4 , sα3 , β �2�1 Inv and gD,s
α
3 ,β = gD,s

α
4 ,β hold. Thus, while(g) p

started in su1 , su2 either does not terminate or it terminates in states sα1 , sα2 ,
respectively, such that again D, sα1 , sα1 , β �2�1 Inv , D, sα1 , sα2 , β �2�1 Inv ,
D, sα2 , sα1 , β �2�1 Inv and gD,s

α
1 ,β = gD,s

α
2 ,β hold.

Finally, in case the loop terminates in states sα1 , sα2 , respectively, such
that D, sα1 , sα1 , β �2�1 Inv , D, sα1 , sα2 , β �2�1 Inv , D, sα2 , sα1 , β �2�1 Inv and
gD,s

α
1 ,β = gD,s

α
2 ,β hold, then gD,s

α
1 ,β = gD,s

α
2 ,β = false needs to hold. In

this case �2 (Inv , g =̇ false) → [π ω]φ implies that D, sα1 , sα1 , β �2�1

[π ω]φ and either D, sα1 , sα2 , β �2�1 [π ω]φ or D, sα2 , sα1 , β �2�1 [π ω]φ holds.

Altogether we get that the program while(g) p; ω started in su1 , su2 either
does not terminate or it terminates in states sα1 , sα2 , respectively, such that
D, sα1 , sα1 , β �2�1 φ and either D, sα1 , sα2 , β �2�1 φ or D, sα2 , sα1 , β �2�1 φ
holds. Hence, (7.71) is true.

137

7 An Approximate Information Flow Calculus

• nextLoopInvariant: analog to nextConditional.

• ncreateObj: Weiß [2011] argues why it is sufficient to require that o′ is dif-
ferent from null, its dynamic type is A and the object is not yet created
if the heap is wellformed. As already mentioned, the only difference be-
tween the rule ncreateObj and the original rule createObj from Weiß [2011]
is that o′ is a fresh program variable instead of a fresh function symbol. In
one-state semantics this makes no difference, but in two-state semantics
there is a difference: a fresh function symbol would be interpreted by D
and thus in the same way for the two runs. There is, however, no reason
why the two runs should allocate the same new object. A fresh program
variable, on the other hand, is interpreted by the two states potentially
differently.

Lemma 58. The rules from Figure 7.7 are sound with respect to two-state semantics.

Proof.

• nnot: By Definition 33 (Two-State Evaluation), D, s1, s2, β �2 n(φ) holds
if and only if

D, s1, s1, β �2�1 n(φ)

and (D, s1, s2, β �2�1 n(φ) or D, s2, s1, β �2�1 n(φ))

(7.77)

hold. By Definition 31 (Restricted Two-State Evaluation), (7.77) is equiva-
lent to

D, s1, s2, β �2�1 φ iff D, s2, s1, β �2�1 φ (7.78)

and hence to

D, s1, s2, β 22�1 φ iff D, s2, s1, β 22�1 φ . (7.79)

Again by Definition 31, equation (7.78) is equivalent to

D, s1, s2, β �2�1 ¬φ iff D, s2, s1, β �2�1 ¬φ (7.80)

which in turn is equals

D, s1, s1, β �2�1 n(¬φ)

and (D, s1, s2, β �2�1 n(¬φ) or D, s2, s1, β �2�1 n(¬φ))

(7.81)

and hence D, s1, s2, β �2 n(¬φ), as desired.

138

7.4 Soundness of the Two-State Calculus

• napproxAnd: By Lemma 50 it is sufficient to prove that

�2�1

∧
Γ→ ((n(φ) ∧n(ψ)) ∨

∨
∆) (7.82)

implies
�2�1

∧
Γ→ (n(φ ∧ ψ) ∨

∨
∆) . (7.83)

Therefore, assume (7.82). Then, D, s1, s2, β �2�1 ¬
∧

Γ or D, s1, s2, β �2�1

n(φ) ∧n(ψ) or D, s1, s2, β �2�1
∨

∆ for all two-state structures (D, s1, s2)
and all variable assignments β.

Let (D, s1, s2) be an arbitrary two-state structure and let β be a variable
assignment. If D, s1, s2, β �2�1 ¬

∧
Γ or D, s1, s2, β �2�1

∨
∆ holds, then

(7.83) is true and we are done. Hence, assume the contrary. In this case
D, s1, s2, β �2�1 n(φ) ∧n(ψ) needs to hold.

By Definition 31 (Restricted Two-State Evaluation),D, s1, s2, β �2�1 n(φ)∧
n(ψ) holds if and only if

(D, s1, s2, β �2�1 φ iff D, s2, s1, β �2�1 φ)

and (D, s1, s2, β �2�1 ψ iff D, s2, s1, β �2�1 ψ)

(7.84)

hold. Equation (7.84) implies

(D, s1, s2, β �2�1 φ and D, s1, s2, β �2�1 ψ)

iff (D, s2, s1, β �2�1 φ and D, s2, s1, β �2�1 ψ)

(7.85)

which in turn equals

D, s1, s2, β �2�1 φ ∧ ψ
iff D, s2, s1, β �2�1 φ ∧ ψ .

(7.86)

Finally, (7.86) holds if and only if D, s1, s2, β �2�1 n(φ ∧ ψ).

• napproxOr: Analog to napproxAnd.

• napproxEq: Analog to napproxAnd.

• napproxPred: Analog to napproxAnd.

• nconstant: By Lemma 50 it is sufficient to prove that D, s1, s2, β �2�1 n(c)
holds if and only if D, s1, s2, β �2�1 true holds. Therefore, we show
D, s1, s2, β �2�1 n(c). We have D, s1, s2, β �2�1 n(c) if and only if (D, s1,
s2, β �2�1 c iff D, s2, s1, β �2�1 c) which in turn equals (cD iff cD). The
latter is obviously true.

• napproxFunc: Analog to napproxAnd.

139

7 An Approximate Information Flow Calculus

Lemma 59. The rule toOneState (Section 7.3.5) is sound in two-state semantics.

Proof. According to Definition 37 (Validity of Sequents in Two-State Semantics)
the sequent γ1, . . . , γn =⇒ δ1, . . . , δm is universally valid in two-state semantics
if and only if D, s1, s2 �2

∧
1≤i≤n γi →

∨
1≤j≤m δj for all two-state structures

(D, s1, s2). By Definition 33 (Two-State Evaluation) and Lemma 39 the latter is
equivalent to

D, s1 �
∧

1≤i≤n

γi →
∨

1≤j≤m

δj (7.87)

and D, s1, s2 �2�1

∧
1≤i≤n

γi →
∨

1≤j≤m

δj

or D, s2, s1 �2�1

∧
1≤i≤n

γi →
∨

1≤j≤m

δj
(7.88)

for all two-state structures (D, s1, s2).

(7.87) follows from the second premiss of the rule toOneState: Because in one-
state semantics n is interpreted as true , (7.87) holds if and only if

D, s1 �
∧

1≤i≤n

γ1
i →

∨
1≤j≤m

δ1
j .

By Lemma 49.1,
∧

1≤i≤n γ
1
i →

∨
1≤j≤m δ

1
j is universally valid in one-state se-

mantics if it is universally valid in two-state semantics, thus if the sequent
γ1

1 , . . . , γ
1
n =⇒ δ1

1 , . . . , δ
1
m is universally valid in two-state semantics.

(7.88) follows from the first premiss of the rule toOneState: By Lemma 49.1, the
meaning formula

∀h.∀h2.∀x̄.∀x̄2.(
∧

1≤i≤n

γ2�1
i ∧

∧
1≤i≤n

γ2�2
i)→ (

∨
1≤j≤m

δ2�1
j ∨

∨
1≤j≤m

δ2�2
j) (7.89)

of the sequent

=⇒ ∀h.∀h2.∀x̄.∀x̄2.(
∧

1≤i≤n

γ2�1
i ∧

∧
1≤i≤n

γ2�2
i)→ (

∨
1≤j≤m

δ2�1
j ∨

∨
1≤j≤m

δ2�2
j)

is universally valid in one-state semantics if it is universally valid in two-state
semantics. Further, (7.89) is logically equivalent (in one-state semantics) to

∀h.∀h2.∀x̄.∀x̄2.(
∧

1≤i≤n

γ2�1
i →

∨
1≤j≤m

δ2�1
j) ∨ (

∧
1≤i≤n

γ2�2
i →

∨
1≤j≤m

δ2�2
j) . (7.90)

140

7.4 Soundness of the Two-State Calculus

It remains to be shown that the universal validity of (7.90) in one-state seman-
tics implies (7.88) for all two-state structures (D, s1, s2).

For any two-state structure (D, s1, s2) and any variable assignment β′ there is
a variable assignment β such that hβ = heapD,s1 , x̄β = x̄D,s1 , hβ2 = heapD,s2

and x̄β2 = x̄D,s2 and vβ = vβ
′

else. Let δij denote the formula resulting from
execution of step i of the construction of δ2�1

j . We show for each step of the con-
struction that D, s1, s2, β �2�1 δ

i−1
j holds if and only if D, s1, s2, β �2�1 δ

i
j holds.

Because δ2�1
j does not contain the npredicate any more and each modality is

prefixed by an update of the form {heap := h || x̄ := x̄}, where h and x̄ are
variables, we can conclude by Lemma 49.4 that D, s, β � δ2�1

j holds if and only
if D, s1, s2, β �2�1 δj .

1. By Definition 31 and Lemma 8, D, s1, s2, β �2�1 {heap := h || x̄ :=
x̄}{heap := h2 || x̄ := x̄2}2δj if and only if D, s1, s1, β �2�1 {heap :=
h2 || x̄ := x̄2}2δj . Another appeal to Definition 31 and Lemma 8 yields
that D, s1, s1, β �2�1 {heap := h2 || x̄ := x̄2}2δj holds if and only if
D, s1, s2, β �2�1 δj holds.

2. We have to show that shifting updates over ∧, ∨, ¬, ∀ and ∃ does not
change the result of the evaluation of the formulas in restricted two-state
semantics.

By Definition 31 we have:

D, s1, s2, β �2�1 {u}(φ1 ∧ φ2)

⇔ D, su1 , su2 , β �2�1 φ1 ∧ φ2

⇔ D, su1 , su2 , β �2�1 φ1 and D, su1 , su2 , β �2�1 φ2

⇔ D, s1, s2, β �2�1 {u}φ1 and D, s1, s2, β �2�1 {u}φ2

⇔ D, s1, s2, β �2�1 {u}φ1 ∧ {u}φ2

The other cases follow analog.

3. We need to show D, s1, s2, β �2�1 {u}{u2}2{v1} . . . {vn}φ if and only if
D, s1, s2, β �2�1 {u; v1; . . . ; vn}{u2; v1; . . . ; vn}2φ.

D, s1, s2, β �2�1 {u}{u2}2{v1} . . . {vn}φ
⇔ D, su, su, β �2�1 {u2}2{v1} . . . {vn}φ

where {u} defines completely the state su
⇔ D, su, su2 , β �2�1 {v1} . . . {vn}φ

where {u2}2 defines completely the state su2

⇔ D, sv1,...,vnu , sv1,...,vnu2
, β �2�1 φ

141

7 An Approximate Information Flow Calculus

where sv1,...,vnu and sv1,...,vnu2
are the states su and su2

updated ac-
cording to {v1} . . . {vn}

⇔ D, sv1,...,vnu , sv1,...,vnu , β �2�1 {u2; v1; . . . ; vn}2φ
because {u2; v1; . . . ; vn}2 defines completely the state sv1,...,vnu2

⇔ D, s1, s2, β �2�1 {u; v1; . . . ; vn}{u2; v1; . . . ; vn}2φ
because {u; v1; . . . ; vn} defines completely the state sv1,...,vnu

4. (1) We have to show that D, s1, s2, β �2�1 {u}{u2}2nφ holds if and only
if D, s1, s2, β �2�1 {u}{u2}2φ↔ {u2}{u}2φ holds.

D, s1, s2, β �2�1 {u}{u2}2nφ
⇔ D, su, su2

, β �2�1 nφ
⇔ D, su, su2

, β �2�1 φ

iff D, su2
, su, β �2�1 φ

⇔ D, s1, s2, β �2�1 {u}{u2}2φ
iff D, s2, s1, β �2�1 {u2}{u}2φ

⇔ D, s1, s2, β �2�1 {u}{u2}2φ↔ {u2}{u}2φ

(2) We have to show that D, s1, s2, β �2�1 {u}{u2}2[α]φ holds if and only
if

D, s1, s2, β �2�1 ∀hpost .∀hpost2 .∀x̄post .∀x̄post2 .
{u}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {u2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

→ {heap := hpost || x̄ := x̄post}
{heap := hpost2 || x̄ := x̄post2}2φ

holds.

D, s1, s2, β �2�1 {u}{u2}2[α]φ

⇔ D, su, su2
, β �2�1 [α]φ

⇔ D, sαu , sαu2
, β �2�1 φ for all sαu , sαu2

such that α started in su, su2

terminates in sαu , sαu2
, respectively

⇔ forall hpost , hpost2 , x̄post , x̄post2 : if α started in su terminates in
the state described by hpost , x̄post (which we denote by sαu) and if
α started in su2

terminates in the state described by hpost2 , x̄post2
(which we denote by sαu2

) then D, sαu , sαu2
, β �2�1 φ

142

7.4 Soundness of the Two-State Calculus

⇔ forall hpost , hpost2 , x̄post , x̄post2 :
if D, su, β � 〈α〉(heap = hpost ∧ x̄ = x̄post)

and D, su2
, β � 〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

then D, sαu , sαu2
, β �2�1 φ

⇔ forall hpost , hpost2 , x̄post , x̄post2 :
if D, su, su, β �2�1 〈α〉(heap = hpost ∧ x̄ = x̄post)

and D, su2
, su2

, β �2�1 〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

then D, sαu , sαu , β �2�1 {heap := hpost2 || x̄ := x̄post2}2φ
⇔ forall hpost , hpost2 , x̄post , x̄post2 :

if D, s1, s2, β �2�1 {u}〈α〉(heap = hpost ∧ x̄ = x̄post)

and D, s1, s2, β �2�1 {u2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

then D, s1, s2, β �2�1 {heap := hpost || x̄ := x̄post}
{heap := hpost2 || x̄ := x̄post2}2φ

⇔ D, s1, s2, β �2�1

∀hpost .∀hpost2 .∀x̄post .∀x̄post2 .
{u}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {u2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

→ {heap := hpost || x̄ := x̄post}
{heap := hpost2 || x̄ := x̄post2}2φ

(3) We have to show that D, s1, s2, β �2�1 {u}{u2}2〈α〉φ holds if and only
if

D, s1, s2, β �2�1 ∃hpost .∃hpost2 .∃x̄post .∃x̄post2 .
{u}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {u2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

∧ {heap := hpost || x̄ := x̄post}
{heap := hpost2 || x̄ := x̄post2}2φ

holds.

D, s1, s2, β �2�1 {u}{u2}2〈α〉φ
⇔ D, s1, s2, β �2�1 {u}{u2}2¬[α]¬φ
⇔ D, s1, s2, β �2�1 ¬{u}{u2}2[α]¬φ

143

7 An Approximate Information Flow Calculus

⇔ D, s1, s2, β �2�1

¬∀hpost .∀hpost2 .∀x̄post .∀x̄post2 .
{u}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {u2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

→ {heap := hpost || x̄ := x̄post}
{heap := hpost2 || x̄ := x̄post2}2¬φ

⇔ D, s1, s2, β �2�1

∃hpost .∃hpost2 .∃x̄post .∃x̄post2 .
{u}〈α〉(heap = hpost ∧ x̄ = x̄post)

∧ {u2}〈α〉(heap = hpost2 ∧ x̄ = x̄post2)

∧ {heap := hpost || x̄ := x̄post}
{heap := hpost2 || x̄ := x̄post2}2φ

(4) We have to show that D, s1, s2, β �2�1 {u}{u2}2φp holds if and only if
D, s1, s2, β �2�1 {u}φp holds (where φp is a predicate).

D, s1, s2, β �2�1 {u}{u2}2φp
⇔ D, su, su2

, β �2�1 φp

⇔ D, su, β � φp
⇔ D, su, su, β �2�1 φp

⇔ D, s1, s2, β �2�1 {u}φp

5. The construction terminates, because in each step the updates {u}{u2}2
are either pushed to subformulas or {u2}2 is eliminated.

7.5 Discussion

This chapter presents a two-state logic and an approximate calculus for it. The
calculus can be used to efficiently reason about conditional noninterference, a
property which can be expressed naturally in the logic. The approach was in-
spired by Amtoft et al. [2006]. The main advances of the presented approach
are its less restrictive syntax and the possibility to switch on-the-fly from the
approximate reasoning to precise self-composition style reasoning. The ap-
proximate calculus mainly excludes infeasible combinations of paths through
the program and at some point approximates n formulas. Values of program

144

7.5 Discussion

variables are abstracted by invariants and contracts only and thus can be kept
highly precise. Switching to self-composition style preserves this precise knowl-
edge on both program states. Thus, the self-composition style reasoning ap-
proach from Chapter 5 can build on precise knowledge to draw precise con-
clusions. This is a unique property of the presented two-state logic and calcu-
lus.

145

8 Combining Analysis Techniques

This chapter shows that approximate and precise information flow verification
techniques can also be integrated on the specification level. To this end, a se-
mantically correct translation of the most important specification elements of
the Java Information Flow approach by Myers [1999a] into the JML extension
of Chapter 4 is presented. Because both, the verification techniques presented
in this thesis as well as JIF, are modular on the method level, this allows to
verify each method with the technique most appropriate for it.

A first version of the translation was developed in the Bachelor’s thesis of
Nikolov [2014] which was supervised by the author of this thesis. The pre-
sented translation is a substantially revised version of the approach discussed
by Nikolov [2014].

JIF specifications are written in the decentralized label model (DLM) by Myers
and Liskov [2000]. DLM contains static and dynamic features. This chapter
considers the static features of DLM only, since this thesis is interested in static
program analysis.

8.1 The Decentralized Label Model (DLM)

Listing 8.1 shows a slightly modified version of the password checker example
from Listing 2.1, implemented in JIF. This section explains the considered DLM
specifications based on the implementation shown in Listing 8.1.

The most basic block of DLM are principals. Principals are thought of as entities
with the ability to observe and modify parts of a program. Principals are related
by a reflexive and transitive acts-for relation <. A principal q which acts for p,
written q < p, has at least the same abilities as p. DLM has a top principal *
and a bottom principal _, that is, * < p < _ for all principals p. The example in
Listing 8.1 uses the bottom principal _ and a principal called root, where the
principal hierarchy is * < root < _.

DLM primarily annotates types with labels. In line 3 of Listing 8.1, the type
int is annotated with the label {root->}. In general, labels have the form

147

8 Combining Analysis Techniques

1 class PasswordFile authority(root) {
2 private int{root->}[]{root->} names, passwords;
3 private int{root->} numOfFailedChecks;
4

5 public boolean{_->_} check{root->} (int{_->_} user,
6 int{_->_} password) : {_->_}
7 where authority(root)
8 {
9 try {

10 for (int i = 0; i < names.length; i++) {
11 if (names[i] == user && passwords[i] == password) {
12 numOfFailedChecks = 0;
13 declassify ({root->} to {_->_}) {
14 return true;
15 }
16 }
17 }
18 } catch (NullPointerException e) {
19 } catch (ArrayIndexOutOfBoundsException e) {
20 }
21

22 numOfFailedChecks++;
23 declassify ({root->} to {_->_}) {
24 return false;
25 }
26 }
27 }

Listing 8.1: Example of a password checker in JIF.

148

8.1 The Decentralized Label Model (DLM)

{c;d}, where c is a confidentiality policy and d is an integrity policy. Confiden-
tiality policies are build up from elementary confidentiality policies o->r in
combination with the join t and meet u of confidentiality policies. Elementary
confidentiality policies o->r consist of two principals o and r. The principal o
is called owner of the policy and the principal r is called reader of the policy.
If r is omitted, then the top principal * is assumed. Likewise, integrity policies
are build up from elementary integrity policies o<-w in combination with the
join t and meet u of integrity policies. In integrity policies, o is called owner of
the policy and w is called writer of the policy. If w is omitted, then also the top
principal * is assumed.

Intuitively, a confidentiality policy o->r expresses that all principals p with
o < p think that only principals q with q < o or q < r should be able to read
the information the policy is assigned to. Formally, the set of readers which
a principal p believes should be able to read the information is defined by the
function readers(p,o->r) = {q | o < p implies (q < o or q < r)}. Similarly, the
set of writers which a principal p believes should be able to change some infor-
mation is defined by the function writers(p,o<-r) = {q | o < p implies (q <
o or q < r)}. The sets of readers and writers can be extended to joint and meet
policies as follows:

readers(p, c t d) = readers(p, c) ∩ readers(p, d)

readers(p, c u d) = readers(p, c) ∪ readers(p, d)

writers(p, c t d) = writers(p, c) ∪ writers(p, d)

writers(p, c u d) = writers(p, c) ∩ writers(p, d)

Confidentiality and integrity policies are preordered by the set of readers and
writers, respectively. A confidentiality policy c is less restrictive than d, writ-
ten c vC d, if and only if readers(p, c) ⊇ readers(p, d) for all principals p.
An integrity policy c is less restrictive than d, written c vI d, if and only if
writers(p, c) ⊆ writers(p, d) for all principals p. vC and vI are preorders, their
equivalence classes form lattices with join operator t and meet operator u. The
policy _->_ is the least restrictive confidentiality policy, *->* is the most re-
strictive one. Likewise, *<-* is the least restrictive integrity policy and _<-_
is the most restrictive one.

Labels are ordered according to vC and vI: a label {c1; d1} is less restrictive
than {c2; d2}, written {c1; d1} vL {c2; d2}, if and only if c1 vC c2 and d1 vI d2.
The equivalence classes of the set of labels according tovL form in combination
with join operator t and meet operator u a lattice, where {c1; d1} t {c2; d2} is
defined as {c1tc2; d1td2} and {c1; d1}u{c2; d2} is defined as {c1uc2; d1ud2}.

If the confidentiality policy is omitted in a label, then the least restrictive con-
fidentiality policy _->_ is assumed. If the integrity policy is missing, then the

149

8 Combining Analysis Techniques

most restrictive integrity policy _<-_ is assumed. In Listing 8.1 all integrity
policies are omitted. Therefore, in all cases the most restrictive integrity policy
<- is assumed.

In contrast to usual types, arrays have two labels: the usual type label placed
after the type declaration and a base type label placed between the base type
and the square brackets. The usual type label refers to the array object whereas
the base type label refers to the content of the array. In the example in Listing 8.1
the array declaration in line 2 uses the same label as usual type label and base
type label.

Labels are not only annotated to types, but occur at several additional places.
In the context of this thesis method begin labels, method end labels and labels
in declassifications are considered only.

Method begin and end labels constrain the control flow information hidden in
the program counter. Method begin labels are placed right after the method
name. They are an upper bound for the label of the program counter when the
method is called. Method end labels are annotated with a preceding colon after
the closing bracket of the parameter list. It is an upper bound for the label of
the program counter on termination of the method.

Declassification in DLM is in essence a relabeling of an expression or the pro-
gram counter. Listing 8.1 shows in lines 13 to 15 and lines 23 to 25 a relabeling
of the program counter: if the program counter has a less restrictive label than
the first label after the declassify keyword, then the program counter is rela-
beled to the second label for the code block between the curly brackets. Beside
the program counter, expressions can be declassified. The declassification of an
expression e has the form declassify(e, c to d), where c and d are labels.
In case the label of e is less restrictive than c, then e is relabeled to d.

Beside information flow control mechanisms, DLM contains some access con-
trol mechanisms. Part of the access control mechanisms is that declassification
may take place only if the corresponding code is executed with sufficient au-
thority. Lines 1 and 7 in Listing 8.1 serve this purpose. Access control is, how-
ever, not subject to this thesis and therefore the corresponding specifications of
DLM are not considered any further.

The overall semantics of a DLM specification is given by the lattice of labels
(Myers [1999b]): information stored in a variable or field labeled with L may
flow at most to variables and fields which are labeled with L′ wL L; except
for information which is released by a declassify statement: this informa-
tion may also flow to variables and fields which are less restrictive than L, but
more restrictive than the second label of the declassify statement. Because

150

8.2 Basic JIF to JML Translation

declassify statements may occur after complex computations, it is often dif-
ficult to figure out what information exactly is allowed to flow in a DLM spec-
ification. It is already difficult to see on a first glance what information exactly
is declassified in Listing 8.1.

8.2 Basic JIF to JML Translation

The basic translation does not consider arrays and declassify statements.
It consists of three steps. Firstly, the security lattice and the security policy in
the sense of Section 3.4 are extracted from the DLM specification according to
its semantics. Afterwards, we use Lemma 7 to express the multilevel nonin-
terference property by a set of two-level noninterference properties. The set of
two-level noninterference properties can then be specified in the JML extension
from Chapter 4 by a set of determines clauses.

8.2.1 Extraction of the Security Lattice and Security Policy
from DLM Annotations

Extracting the security policy from DLM annotations is easy: the security policy
is the mapping of program variables and fields to the labels annotated to them.
Method begin and end labels need to be considered separately, because they
constrain the information implicitly stored in the program counter. How they
are translated is described in Section 8.2.3.

The label ordering can be determined according to the complete relabeling rule
(Myers [1999b]). In essence, {c1; d1} vL {c2; d2} if

• c1 can be relabeled to c2 by an arbitrary, repeated application of the fol-
lowing incremental relabeling rules:

– A reader r may be replaced by a reader r2 if r2 acts for r: an el-
ementary confidentiality policy o->r may be relabeled to o->r2 if
r2<r.

– An owner o may be replaced by an owner o2 if o2 acts for o: an
elementary confidentiality policy o->r may be relabeled to o2->r
if o2<o.

– A new elementary confidentiality policy may be added to the label:
L may be relabeled to L t o->r for arbitrary principals o and r.
(Remember that tmeans “and” for confidentiality policies.)

151

8 Combining Analysis Techniques

• d1 can be obtained from d2 by an arbitrary, repeated application of the
following rules:

– An integrity policy may be removed: I t o<-w may be replaced by
I for arbitrary principals o and w.

– A writer w may be replaced by a writer w2 that it acts for: an elemen-
tary integrity policy o<-w may be replaced by o<-w2 if w<w2.

– A policy o<-w may be added to an integrity policy I t o2<-w if o2
acts for o, that is, I t o2<-w may be replaced by I t o2<-w t o<-w
if o2<o.

An efficient implementation of the containment check can be found in the JIF
system.

A representative is chosen for the labels of each equivalence class and all labels
are replaced by their representative in the security policy extracted from the
DLM specification.

8.2.2 Translating Multi-Level Noninterference to Two-Level
Noninterference

The multilevel noninterference property flow(α,L, p) characterized by the se-
curity lattice L = (L,vL) (where L is the set of equivalence classes of labels) in
combination with the security policy p from the last section can be expressed
according to Lemma 7 as a set of two-level noninterference properties: let FP
be the (finite) set of fields and program variables (without heap) occurring in
the program under consideration and let FPvLp(x) be the set of all y ∈ FP such
that p(y) vL p(x). Further, let n be the number of elements in FPvLp(x) and let
for all x ∈ FP the sequence SeqvLp(x) = 〈x1, . . . , xn〉 be defined such that

• for all y ∈ FPvLp(x)∩PV (where PV denotes the set of program variables,
see page 8) there exists a unique index i such that xi = y and

• for all y ∈ FPvLp(x) ∩ Field there exists an index i such that xi = toSeq(
heap, y) where the function toSeq : Heap ×Field → Seq maps each heap-
field-pair (h, f) to a sequence 〈o1.f, . . . , om.f〉 such that {o1, . . . , om} is
the set of all objects created in h which have a field f . In case the num-
ber of created objects is infinite (this is possible in heaps which are not
wellformed), the result of toSeq is underspecified.

Similar to Lemma 7, flow(α,L, p) holds if and only if flow(α,SeqvLp(x), x) holds
for all x ∈ FP ∩ PV and flow(α,SeqvLp(x), toSeq(heap, x)) holds for all x ∈
FP ∩ Field .

152

8.2 Basic JIF to JML Translation

8.2.3 Specifying a set of Two-Level Noninterference
properties in JML

The information flow properties {flow(α,SeqvLp(x), x) | x ∈ FP ∩ PV} and
{flow(α,SeqvLp(x), toSeq(heap, x)) | x ∈ FP∩Field} can easily be expressed in
the JML extension from Chapter 4 by information flow contracts: each informa-
tion flow property flow(α,SeqvLp(x), x) is specified according to the semantics
of determines clauses from Section 4.3 by a clause

determines x \by y1, . . ., yn;

where SeqvLp(x) = 〈y1, . . . , yn〉. In the determines clause, the function toSeq
is replaced by a new function \to_seq of type \seq. In contrast to toSeq ,
the function \to_seq has only one argument: a field. \to_seq is always
interpreted in the current heap and therefore does not take an explicit heap
argument. Hence, \to_seq(f) is equivalent to toSeq(heap,f).

The translation of method begin and end labels remains to be explained. A be-
gin label L allows assignments only to variables and fields which are annotated
by a more restrictive label L′ wL L. This property can be expressed by a usual
JML assignable clause:

assignable *.y1, . . ., *.yn;

where {y1, . . . , yn} is the set of all fields with p(yi) wL L and where *.f repre-
sents the location set {(o, f) | o ∈ Obj}.

The end label restricts the information which may leak by observing whether
the method terminates normally or whether an exception is thrown. For the
translation of the end label we extend JML by the keyword \exceptionwhich
is interpreted as a special variable. This variable points to the thrown exception,
if any is thrown, or to null otherwise. An end label L can then be translated
by the determines clause

determines \exception \by y1, . . ., yn;

where {y1, . . . , yn} is the set of all variables and fields with p(yi) vL L.

Note that JIF checks for object-oriented secure information flow. Therefore,
we have to use the \new_objects keyword from Chapter 6 to list all newly
created objects in the determines clauses from above. Additionally, we have
to add the modifier nullable to each field of object type and the modifier
helper to each method, in order to disable all JML default specifications.

153

8 Combining Analysis Techniques

8.3 Optimizations

The basic translation may lead to a large set of determines clauses. The set of
clauses can be reduced in two ways.

Firstly, all determines clauses with the same \by part can be combined into one
clause: the set of clauses

determines x1 \by y1, . . ., yn;
...
determines xm \by y1, . . ., yn;

is semantically equivalent to

determines x1, . . ., xm \by y1, . . ., yn;

and hence can be replaced by this one.

Secondly, one can omit all those determines clauses

determines x \by y1, . . ., yn;

where x is a variable or field whose value is not changed by the method. All
determines clauses for fields which do not occur in the assignable clause of
the method can be omitted. A simple static analysis—which approximates the
set of assigned variables and fields syntactically—should reduce the number of
determines clauses further.

8.4 Translation of Arrays

The translation of arrays is limited to one-dimensional arrays up to now. The
type label placed after the square brackets translates like the label of any other
field, but the additional base type label needs special treatment. To this end,
we introduce the function contentToSeq : Heap×Field → Seq which maps each
heap-field-pair (h, f) to a sequence

〈o1.f [0], . . . , o1.f [o1.f.length− 1], . . . , om.f [0], . . . , om.f [om.f.length− 1]〉

such that {o1, . . . , om} is the set of all objects created in h which have a field
f . In case the field f is not of type Seq or in case the number of created ob-
jects is infinite, the result of contentToSeq is underspecified. For every field f of
type array we add flow(α,SeqvLp(f), contentToSeq(heap, f)) to the set of two-
state noninterference properties and additionally add contentToSeq(heap, f)
to all sequences SeqvLp(x) with p(f) vL p(x). In JML, the function contentToSeq

154

8.5 Translation of Declassify Statements

is replaced by a new function \content_to_seq of type \seq. The func-
tion \content_to_seq is always interpreted in the current heap and there-
fore takes only one argument, a field: \content_to_seq(f) is equivalent to
contentToSeq(heap,f).

The assignable clause resulting form the translation of the begin label L has to
be joined with *.f.* for all fields f of array type whose base type is labeled
with L′ wL L. The notation *.f.* stands for the location set {(o.f, g) | o ∈
Obj , g ∈ Field}

8.5 Translation of Declassify Statements

The translation of declassify statements is possible, but difficult. Because de-
classify statements may occur after complex computations, it seems to be ques-
tionable whether there exists a good algorithm for the translation of declassify
statements. Already the translation of the declassify statements from Listing 8.1
is non-trivial, as the example in the next section shows. Those statements have
to be translated on a case-by-case basis to JML declassifies statements which
are part of determines clauses.

8.6 Example

The JIF specification from Listing 8.1 translates to the JML specification in List-
ing 8.2: the fields numOfFailedChecks, names and passwords as well as the
base type of names and passwords have the most restrictive label occurring in
the example and therefore may depend on any other variable and field. The de-
termines clauses resulting from the basic translation of numOfFailedChecks,
names, passwords and their base types have been merge into one (lines 5
to 11). The result of the method, denoted by \result in JML, has the least
restrictive label and therefore may (theoretically) depend on the parameters
user and password only (line 12). A careful examination of the declassify
statements reveals that \result may additionally depend on the accumulated
information whether (1) names is null or (2) passwords is null or (3) if for
all indices i grater than zero and smaller than names.length and smaller
than passwords.length the passed user name is different from names[i]
or the passed password is different from passwords[i] (lines 13 to 20). The
parameters user and password cannot be accessed after termination of the
method any more and therefore their determines clauses are omitted. The
end label is the least restrictive label and therefore whether or not an excep-
tion is thrown may depend at most on the parameters user and password

155

8 Combining Analysis Techniques

1 class PasswordFile {
2 private /*@ nullable */ int[] names, passwords;
3 private int numOfFailedChecks;
4

5 /*@ determines \to_seq(names), \content_to_seq(names),
6 @ \to_seq(passwords), \content_to_seq(passwords),
7 @ \to_seq(numOfFailedChecks)
8 @ \by user, password,
9 @ \to_seq(names), \content_to_seq(names),

10 @ \to_seq(passwords), \content_to_seq(passwords),
11 @ \to_seq(numOfFailedChecks);
12 @ determines \result \by user, password
13 @ \declassifies
14 @ names == null ||
15 @ passwords == null ||
16 @ (\forall int i;
17 @ 0 <= i && i < names.length
18 @ && i < passwords.length;
19 @ names[i] != user
20 @ || passwords[i] != password);
21 @ determines \exception \by user, password;
22 @ assignable *.names, *.names.*, *.passwords, *.passwords.*,
23 @ *.numOfFailedChecks;
24 @*/
25 //@ helper
26 public boolean check(int user, int password)
27 {
28 try {
29 for (int i = 0; i < names.length; i++) {
30 if (names[i] == user && passwords[i] == password) {
31 numOfFailedChecks = 0;
32 return true;
33 }
34 }
35 } catch (NullPointerException e) {
36 } catch (ArrayIndexOutOfBoundsException e) {
37 }
38

39 numOfFailedChecks++;
40 return false;
41 }
42 }

Listing 8.2: Example translation to JML.

156

8.7 Discussion

(line 21). Finally, the begin label is the most restrictive label of the example and
therefore the method may assign to the fields numOfFailedChecks, names
and passwords and the contents of the arrays names and passwords only
(lines 22 to 23).

8.7 Discussion

The presented DLM to JML translation is a first step towards a comprehensive
integration of type-based and deductive information flow verification on the
specification level. It may serve as a basis for the translation of RIFL (which is a
tool-independent specification language for information flow properties devel-
oped within the priority program “Reliably Secure Software Systems (RS3)”)
specifications into the JML extension of Chapter 4. An alternative to the inte-
gration of type-based and deductive information flow verification on the speci-
fication level is presented by Banerjee et al. [2008]: the authors design a security
type system that can make direct use of declassification statements comparable
to the ones of the JML extension. Though this is an elegant solution, the inte-
gration on the specification level has the advantage that existing tools can be
reused without modifications.

157

9 Case Studies

9.1 A Simple Electronic Voting System

Electronic voting (e-voting) systems which are used in public elections need
to fulfill a broad range of strong requirements concerning both safety and se-
curity. Among those requirements are reliability, robustness, privacy of votes,
coercion resistance and universal verifiability. Bugs in or manipulations of an e-
voting system might have considerable influence on the life of humans. There-
fore, e-voting systems are an obvious target for software verification. This case
study proves the preservation of privacy of votes for a modified version of an
e-voting system implemented by the group of Ralf Küsters at the University
of Trier. The main modification compared to the original implementation de-
scribed in Küsters et al. [2013] is that messages are transmitted synchronously
instead of asynchronously. To the best of the authors knowledge this is the first
time that preservation of privacy of votes could be shown on the code level for a
(simple) e-voting system. Altogether the considered code comprises 8 classes
and 19 methods in about 150 lines of code of a rich fragment of Java.

To prove that the system merely reveals the result of the election and nothing
else about the votes, it is unavoidable to prove the functional property that the
program calculates the result of the election correctly. The major part of the
functional specification and verification was carried out by Bruns [2014]. The
information flow specification and verification, on the other hand, was per-
formed by the author of this thesis. The presentation of the case study focuses
on the information flow part.

9.1.1 Verifying Programs containing Cryptography

The e-voting system consists of clients which send encrypted votes over a pub-
licly available channel. A server receives and counts the messages. The pub-
lic channel can be manipulated by an active adversary: adversaries may re-
ceive, drop or manipulate messages and they may do arbitrary polynomially
bounded computations. Adversaries cannot access the memory of the client or
server directly. In this system strong secrecy of votes—which can be expressed

159

9 Case Studies

as noninterference—is not fulfilled: the message which is sent over the net-
work depends on the vote and could theoretically be decrypted by an adver-
sary with unbounded computational power. As a consequence, KeY classifies
the program insecure though it is secure from a cryptographic point of view.
Küsters et al. [2011] proposed a solution to this problem: the authors showed
that the real encryption of the system can be replaced by an implementation
of ideal encryption. Ideal encryption completely decouples the sent message
from the secret. Even an adversary with unbounded computational power can-
not decrypt the message. The receiver can decrypt the message by some extra
information sent over a secret channel which is not observable by adversaries.
Küsters et al. [2011] showed that if in the system with ideal encryption votes do
not interfere with the output on the public channel, then the system with real
encryption guarantees privacy of votes. Therefore, it is sufficient to analyze the
system with ideal encryption.

9.1.2 The System and its Specification

Figure 9.1 shows an UML class diagram of the considered e-voting system. The
implementation comprises, beside the client (class Voter) and the server, an in-
terface to the environment1 and a setup. The main method of the setup models
the e-voting process itself. This is necessary, because the security property—
that privacy of votes is preserved up to the result of the election—can only be
formulated with regard to a complete e-voting process rather than the imple-
mentation of the client and server only.

Listing 9.1 shows the implementation of main. In essence, the adversary de-
cides in a loop which client should send the next vote until the server signals
that the result of the election is ready. More precisely, the adversary is asked
by a call to the method Environment.untrustedInput which client should
send its vote. If subsequently the method onSendBallot is called on the cor-
responding Voter object, the client sends its secret vote (stored in the attribute
vote) with the help of an implementation of ideal encryption (synchronously)
to the server. The server immediately counts the vote, if the voter has not
voted before. Finally, the server is asked by a call to the method resultReady
whether the result of the election is ready. If so, the result is published by a call
to the method publishResult.

The overall security requirement is specified as a method contract for main
(Listing 9.2). The contract states that under the condition that the server is

1The verified implementation uses an abstract class instead of an interface, because the original
implementation does. From a modeling as well as a presentational point of view it is more con-
venient to use an interface though. For the specification and verification of secure information
flow it does not make a difference.

160

9.1 A Simple Electronic Voting System

Setup
− numOfVoters : int {readOnly}
− numOfCandidates : int {readOnly}
− out : int[]

+ main() : void
− publishResult() : void

Voter
− id : int {readOnly}
− vote : int {readOnly}
∼ Voter (id : int, vote : int)
+ onSendBallot(server : Server) : void

numberOfVoters

1 Server
+ numOfVoters : int {readOnly}
+ numOfCandidates : int {readOnly}
− ballotCast : boolean[]
− votesForCandidates : int[]
∼ Server(int n, int m)
+ onCollectBallot(msg : Message) : void
+ onSendResult() : void
+ resultReady() : boolean
+ getResult() : int[]

1

1

Message
+ id : int {readOnly}
+ ballot : int {readOnly}
+ Message(id : int, ballot : int)

�use�
�use�

NetworkClient

+ send(message : byte[],
server : Server,
port : int) : void

�interface�
Environment

+ untrustedOutput(x : int) : void
+ untrustedInput() : int
+ untrustedInput(x : int) : int

�use�

SMT

+ send(msg : Message,
senderID : int,
server : Server) : void

�use�

�use�

�use�

�use�

SMTEnv

+ send(messageLength : int,
senderID : int,
recipientID : int,
server : Server,
port : int) : byte[]

�use�

�use�

Figure 9.1: UML Class Diagram of the e-voting system.

161

9 Case Studies

public void main () {
boolean resultReady = server.resultReady();
while (!resultReady) { // possibly infinite loop

// let adversary decide send order
final int k = Environment.untrustedInput(voters.length);
final Voter v = voters[k];
v.onSendBallot(server);
resultReady = server.resultReady();

}
publishResult();

}

Listing 9.1: Implementation of the main method.

/*@ normal_behavior
@ requires (\forall int j;
@ 0 <= j && j < numberOfVoters;
@ !server.ballotCast[j]);
@ requires (\forall int i;
@ 0 <= i && i < numberOfCandidates;
@ server.votesForCandidates[i]==0);
@ determines Environment.envState
@ \by Environment.envState, numberOfVoters;
@ determines out, (\seq_def int i; 0; out.length; out[i])
@ \by numberOfCandidates, numberOfVoters
@ \declassifies (\seq_def int i; 0; numberOfCandidates;
@ (\num_of int j;
@ 0 <= j && j < numberOfVoters;
@ voters[j].vote == i));
@ assignable server.ballotCast[*], server.votesForCandidates[*],
@ Environment.rep, out;
@ diverges true;
@*/

public void main () { ... }

Listing 9.2: Information flow contract of the main method.

162

9.1 A Simple Electronic Voting System

initialized correctly

1. the state of the environment, abstracted by Environment.envState,
depends at most on its initial value as well as on the number of voters;

2. The array out itself as well as each of its entries (containing the final
result of the election) depend at most on

• the number of candidates,

• the number of voters, and

• for each candidate the correct sum of all votes for them;

3. at most locations of the server, the environment and the result array are
changed; and

4. the election might not terminate (because the adversary might block votes
of voters for ever).

The \declassifies keyword is syntactic sugar, but stresses that out de-
pends on a well-considered part of the secret—the correct result of the election—
only.

In order to show that main fulfills its contract, we need an information flow
loop invariant (Listing 9.3). The loop invariant—read from bottom to top—
states that

1. • the knowledge of the environment (Environment.envState),

• the fact whether the result of the election is ready,

• the number of voters, and

• the information which voter has already been voted (stored in the
array server.ballotCast)

depend at most on the initial knowledge of the environment, whether the
result of the election initially was ready, the initial number of voters, and
the initial information which voter has already been voted;

2. at most the locations of the environment and the server are modified;

3. resultReady is true if and only if all voters voted;

4. the server calculated the partial result correctly; and

5. the class invariant of the class Setup is preserved.

Because out is not modified by the loop, it needs not be mentioned in the loop
invariant explicitly. The fact that out itself as well as each of its entries depend
at most on

163

9 Case Studies

/*@ maintaining \invariant_for(this);
@
@ // votes for candidates are sums from voters already voted
@ maintaining (\forall int i; 0 <= i && i < numberOfCandidates;
@ server.votesForCandidates[i] ==
@ (\num_of int j; 0 <= j && j < numberOfVoters;
@ server.ballotCast[j]
@ && voters[j].vote == i));
@
@ maintaining resultReady
@ == (\forall int j; 0 <= j && j < numberOfVoters;
@ server.ballotCast[j]);
@
@ assignable server.ballotCast[*], server.votesForCandidates[*],
@ Environment.rep;
@ determines Environment.envState, resultReady, numberOfVoters,
@ (\seq_def int i; 0; numberOfVoters;
@ server.ballotCast[i])
@ \by \itself;
@*/

Listing 9.3: Loop invariant for the loop in main.

164

9.1 A Simple Electronic Voting System

/*@ normal_behavior
@ requires (\forall int i; 0 <= i && i < numberOfCandidates;
@ server.votesForCandidates[i] ==
@ (\num_of int j; 0 <= j && j < numberOfVoters;
@ voters[j].vote == i));
@ assignable out;
@ determines out, (\seq_def int i; 0; out.length; out[i])
@ \by numberOfCandidates, numberOfVoters,
@ server.votesForCandidates
@ \declassifies (\seq_def int i; 0; numberOfCandidates;
@ (\num_of int j;
@ 0 <= j && j < numberOfVoters;
@ voters[j].vote == i));
@*/

private void publishResult () { ... }

Listing 9.4: Information flow contract of publishResult.

• the number of candidates,

• the number of voters, and

• for each candidate the correct sum of all votes for them

can be derived from the contract of publishResult (Listing 9.4) in combi-
nation with the assurance of the loop invariant that the server calculates the
result correctly. Note that the functional knowledge that the server calculates
the result correctly is mandatory for proving the declassification. Here, the
tight integration of functional and information flow verification pays of.

The preservation of the loop invariant is proved with the help of contracts
for untrustedInput, onSendBallot and resultReady. The method un-
trustedInput is declared in the interface Environment (Listing 9.5). This
interface provides the connection to the environment which is controlled by the
attacker. The state of the environment is abstracted by a (ghost) field of type se-
quence. Because any computable information can be encoded into a sequence
of integers, this is a valid abstraction. Each method of the Environment has a
contract which, in essence, guarantees that the environment cannot access any
other part of the e-voting system. More precisely, each method is required to
meet the following restrictions: (1) the final state of the environment depends
at most on its initial state and the parameters of the method, (2) if the method
has a result value, then also the result depends at most on the initial state of the
environment and the parameters of the method, and (3) at most the state of the

165

9 Case Studies

public interface Environment {
//@ public static ghost \seq envState;

//@ public static model \locset rep;
//@ public static represents rep = \locset(envState);
//@ accessible rep : \locset(envState);

/*@ normal_behavior
@ ensures true;
@ assignable rep;
@ determines Environment.envState, \result
@ \by Environment.envState;
@*/

//@ helper
public static int untrustedInput();

/*@ normal_behavior
@ ensures true;
@ assignable rep;
@ determines Environment.envState \by Environment.envState, x;
@*/

//@ helper
public static void untrustedOutput(int x);

/*@ normal_behavior
@ ensures 0 <= \result && \result < x;
@ assignable rep;
@ determines Environment.envState, \result
@ \by Environment.envState, x;
@*/

//@ helper
public static int untrustedInput(int x);

}

Listing 9.5: Declaration of the interface Environment.

166

9.1 A Simple Electronic Voting System

/*@ normal_behavior
@ requires ! server.ballotCast[id];
@ requires \invariant_for(server);
@ ensures server.votesForCandidates[vote]
@ == \old(server.votesForCandidates[vote])+1;
@ ensures server.ballotCast[id];
@ assignable server.votesForCandidates[vote],
@ server.ballotCast[id],
@ Environment.rep;
@ determines Environment.envState \by \itself;
@ also normal_behavior
@ requires server.ballotCast[id];
@ requires \invariant_for(server);
@ ensures \old(server.votesForCandidates[vote])
@ == server.votesForCandidates[vote];
@ ensures \old(server.ballotCast[id])
@ == server.ballotCast[id];
@ assignable Environment.rep;
@ determines Environment.envState \by \itself;
@*/

public void onSendBallot(Server server) {
Message message = new Message(id, vote);
//@ set message.source = this;
SMT.send(message, id, server);

}

Listing 9.6: Contract of onSendBallot.

environment is modified. The specification of Environment shows that the in-
formation flow specification and verification approach presented in this thesis
can be used for the specification and verification of interfaces and consequently
also for the specification and verification of open and interactive systems.2

The method onSendBallot of the class Voter generates a new message con-
taining the vote of the voter and sends it over the network, see Listing 9.6.
onSendBallot has two contracts. Both require that the invariant of the server
holds and ensure that the final state of the environment depends at most on
its initial value. They differ in the functional part (which was specified and
verified by Bruns [2014]): the first contract requires additionally that the voter
has not voted yet. In this case the contract ensures that the server counted the

2Note that we consider deterministic programs only.

167

9 Case Studies

vote correctly by incrementing server.votesForCandidates[vote]. The
second contract requires that the voter did already vote and guarantees in this
case that the server does not count the vote again.

The counting takes place in the method onCollectBallot declared in the
class Server. It is called indirectly by SMT.send. Because onCollectBallot
has a purely functional contract, it will not be considered in detail here. The
same holds for the method resultReady which simply returns true if all
voters voted.

The complete specification of the system consists of approximatly 270 lines of
JML code.

9.1.3 Verification Effort

The verification of the functional part of the System was mainly carried out by
Bruns [2014] and therefore is not reported here. The subsequent verification
of its information flow took about four days. The final information flow proof
consists of 23 subproofs with about 7,800 proof steps including 10 user interac-
tions. The optimizations of Sections 5.2 and 5.3 proved to be indispensable for
the scalability of the self-composition approach.

9.1.4 Discussion

To the best of the authors knowledge this is the first time that preservation of
privacy of votes could be shown on the code level for a (simple) e-voting sys-
tem. Systems like Bingo Voting (Bohli et al. [2007]), Civitas (Clarkson et al.
[2008]), Helios (Adida [2008]) and Scantegrity (Chaum et al. [2009]), which are
much (!) more elaborate, provide guarantees on the design level, but it is not
clear whether their implementations preserve these guarantees. Clarkson et al.
[2008] report on an information flow verification of Civitas with JIF, but it is not
stated clearly which properties have been checked for.

More generally, programs containing implementations of cryptographic proto-
cols have been verified rarely. Küsters et al. [2012] describe a framework for
the cryptographic verification of Java-like programs, on which this case study
relies on. Other approaches aim at the verification of cryptographic code in C
or F# itself (Aizatulin et al. [2012], Bhargavan et al. [2008]) which, however, is
not the focus of this case study.

The e-voting case study shows that precise information flow verification tech-
niques like the ones presented in this thesis are essential for the verification

168

9.2 Examples from Literature

of complex information flow properties, in particular for the verification of ex-
pressive declassification. It also shows that the optimizations introduced in
Sections 5.2 and 5.3 are indispensable for the feasibility of the self-composition
approach.

9.2 Examples from Literature

Beside the e-voting case study, the approaches from Chapters 4, 5 and 6 have
been successfully applied to about 100 smaller examples. These examples in-
clude many examples from literature (Darvas et al. [2005], Amtoft et al. [2006],
Naumann [2006], Bubel et al. [2008]) and in particular all examples discussed in
this thesis, including the examples from Sections 4.4 and 6.4. The examples can
be inspected in the information flow version of KeY, available on the DeduSec
KeY website: http://www.key-project.org/DeduSec/.

169

http://www.key-project.org/DeduSec/

10 Conclusions

10.1 Summary

This thesis contributes to the specification and deductive verification of lan-
guage-based secure information flow. It introduces a fine gained notion of se-
cure (conditional) information flow based on observation expressions instead
of program variables only. This allows for intuitive, knowledge-based informa-
tion flow specifications. Programs fulfilling this notion of secure information
flow are provably secure with respect to the considered attacker model.

Based on this notion of secure information flow, the thesis presents an exten-
sion of the Java Modeling Language (JML), the defacto standard language for
behavioral specification of Java code, for the specification of information flow
properties of programs, including expressive declassification. The presented
approach states information flow properties in design by contract style, that
is, information flow specifications are annotated in form of contracts to meth-
ods (or other code blocks). Declassification statements are part of these con-
tracts and therefore not mere type casts as in other approaches. The extension
is designed such that functional and information flow specifications integrate
seamlessly.

On the verification side, this thesis presents a formalization of secure informa-
tion flow in Java Dynamic Logic. This formalization in self-composition style
allows the KeY tool to verify information flow properties out of the box. The
naive approach, however, tends to be inefficient. A contribution on efficient
self-composition style reasoning shows that if noninterference is formalized as
in Theorem 9, then programs need to be symbolically executed only once. Fur-
ther, the thesis shows that the number of final symbolic states to be compared
can be reduced considerably if the program under consideration is composi-
tional with respect to information flow. Both contributions are indispensable
prerequisites for the scalability of the self-composition approach. A case-study
on a simplified electronic voting system in cooperation with the research group
of Prof. Ralf Küsters from the University of Trier underlines the potential of the
presented approach. Efficient self-composition reasoning enables the verifica-
tion of programs which were beyond the state of the art before, as the electronic
voting case-study shows. Still, it is a heavyweight approach. In order to lighten

171

10 Conclusions

the burden of the verification process, the thesis presents an approximate infor-
mation flow calculus along the lines of Amtoft et al. [2006] based on a two-state
interpretation of Java Dynamic Logic formulas. This calculus has the unique
property that it can switch on-the-fly from the approximate reasoning to pre-
cise self-composition style reasoning, if higher precision is needed anywhere
in the proof. In essence, the approximate calculus excludes infeasible combina-
tions of paths through the program by showing that the guards of conditional
statements depend on publicly observable information only, but it keeps the
knowledge on the program states highly precise. Switching to self-composition
style preserves this precise knowledge on both runs. The soundness of the cal-
culus is proven based on a novel two-state logic.

The so far mentioned specification and verification techniques target at Java
programs, but handle variables and fields of object type similar to those of
primitive type: two states are considered to be low equivalent if the values
of all low variables coincide. Because references in Java are usually consid-
ered opaque (that is, references can be compared by the identity comparison
operation == only), one can argue (see for instance Banerjee and Naumann
[2002]) that it is sufficient to require the existence of an isomorphism between
the values of object typed low variables only (instead of requiring equality).
This thesis presents a feasible formalization of this notion of object-sensitive
secure information flow in Java DL. The formalization is in self-composition
style and compatible with the above verification techniques. The feasibility re-
sults from optimizations that are derived from an investigation into the concept
of object-oriented secure information flow itself which is a contribution on its
own.

Finally, an approach to combine deductive information flow verification with
security type checking is considered. The thesis presents a semantically correct
translation of the most important specifications of the prominent Java Informa-
tion Flow approach by Myers [1999a] into the JML extension from Chapter 4.
Because both techniques are modular on the method level, this allows verifying
each method with the technique most appropriate for it.

The techniques described in Chapters 4, 5 and 6 have been implemented in
the KeY system (accessible on the website http://www.key-project.org/
DeduSec/) and have successfully been tested on examples from literature and,
in cooperation with the research group of Prof. Ralf Küsters from the University
of Trier, on an implementation of a simple electronic voting system. The case
studies show that precise information flow verification techniques like the ones
presented in this thesis are essential for the verification of complex information
flow properties, in particular for the verification of expressive declassification.
It also shows that the contributions on efficient self-composition style reasoning
are indispensable for the feasibility of the self-composition approach.

172

http://www.key-project.org/DeduSec/
http://www.key-project.org/DeduSec/

10.2 Future Work

10.2 Future Work

Modular verification of information flow properties takes advantage of the fact
that methods usually affect a small part of the heap only. In KeY, specifying
which part of the heap is affected by a method is based on the approach of dy-
namic frames. This approach is very flexible, but coming up with good dynamic
frame specifications and their subsequent verification required about half of the
overall verification effort in the case study. A considerable advance in this area
would also significantly reduce the verification effort for the modular verifica-
tion of information flow properties in KeY.

Another starting point in reducing the specification and therefore the overall
verification overhead of the presented techniques is the automatic generation
of auxiliary specifications like loop invariants and block contracts. The exis-
tence of good approximate information flow verification techniques promises
the existence of good static analyses for the generation of information flow loop
invariants and information flow block contracts.

A further possible line of future work is the implementation and experimental
evaluation of the presented approximate information flow calculus. Studying
the two-state logic of Chapter 7 in more detail could lead to additional, inter-
esting insights. Likewise, studying and extending the JIF to JML translation
would be a starting point for future work. The presented translation is a first
step towards a comprehensive integration of security type checking and precise
deductive information flow verification approaches which is certainly worth to
be pursued further.

Finally, it would be interesting to study how the presented techniques can be
extended to concurrent Java programs.

173

Publications

Parts of the presented work has already been published on well established
conferences and workshops. Publications related to this thesis are:

Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph
Gladisch, Sarah Grebing, Reiner Hähnle, Martin Hentschel, Vladimir Kle-
banov, Wojciech Mostowski, Christoph Scheben, Peter Schmitt, and Mattias
Ulbrich. The KeY platform for verification and analysis of Java programs.
In Dimitra Giannakopoulou and Daniel Kroening, editors, VSTTE 2014: 6th
Working Conference on Verified Software: Theories, Tools, Experiments, Lecture
Notes in Computer Science. Springer International Publishing, 2014. To ap-
pear.

Bernhard Beckert, Daniel Bruns, Vladimir Klebanov, Christoph Scheben, Pe-
ter H. Schmitt, and Mattias Ulbrich. Information flow in object-oriented soft-
ware. In Gopal Gupta, editor, Logic-Based Program Synthesis and Transforma-
tion, LOPSTR’13. Springer Berlin Heidelberg, 2014. To appear.

Thorsten Bormer, Marc Brockschmidt, Dino Distefano, Gidon Ernst, Jean-
Christophe Filliâtre, Radu Grigore, Marieke Huisman, Vladimir Klebanov,
Claude Marché, Rosemary Monahan, Wojciech Mostowski, Nadia Polikar-
pova, Christoph Scheben, Gerhard Schellhorn, Bogdan Tofan, Julian Tschan-
nen, and Mattias Ulbrich. The COST IC0701 verification competition 2011.
In Bernhard Beckert, Ferruccio Damiani, and Dilian Gurov, editors, Formal
Verification of Object-Oriented Software, volume 7421 of Lecture Notes in Com-
puter Science, pages 3–21. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
31761-3. doi: 10.1007/978-3-642-31762-0 2. URL http://dx.doi.org/
10.1007/978-3-642-31762-0_2.

Ralf Küsters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Jürgen Graf,
and Christoph Scheben. A hybrid approach for proving noninterference and
applications to the cryptographic verification of Java programs. 2013.

Christoph Scheben and Peter H. Schmitt. Verification of information flow
properties of Java programs without approximations. In Bernhard Beck-
ert, Ferruccio Damiani, and Dilian Gurov, editors, Formal Verification of
Object-Oriented Software, volume 7421 of Lecture Notes in Computer Science,
pages 232–249. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31761-3.

175

http://dx.doi.org/10.1007/978-3-642-31762-0_2
http://dx.doi.org/10.1007/978-3-642-31762-0_2

10 Conclusions

doi: 10.1007/978-3-642-31762-0 15. URL http://dx.doi.org/10.1007/
978-3-642-31762-0_15.

Christoph Scheben and Peter H. Schmitt. Efficient self-composition for weak-
est precondition calculi. In Cliff Jones, Pekka Pihlajasaari, and Jun Sun, ed-
itors, FM 2014: Formal Methods, volume 8442 of Lecture Notes in Computer
Science, pages 579–594. Springer International Publishing, 2014. ISBN 978-
3-319-06409-3. doi: 10.1007/978-3-319-06410-9 39. URL http://dx.doi.
org/10.1007/978-3-319-06410-9_39.

Further conference and workshop publications by the author are:

Jürgen Geisler and Christoph Scheben. Human processor modelling language
(HPML): Estimate working memory load trough interaction. In Analysis,
Design, and Evaluation of Human-Machine Systems, volume 10, pages 95–100,
2007.

Matthias Kuntz, Stefan Leue, and Christoph Scheben. Extending non-
termination proof techniques to asynchronously communicating concurrent
programs. In Andrei Voronkov, Laura Kovacs, and Nikolaj Bjorner, editors,
WING 2010, volume 1 of EPiC Series, pages 132–147. EasyChair, 2012.

Christoph Scheben. Simulation of d’-dimensional cellular automata on d-
dimensional cellular automata. In Samira Yacoubi, Bastien Chopard, and
Stefania Bandini, editors, Cellular Automata, volume 4173 of Lecture Notes in
Computer Science, pages 131–140. Springer Berlin Heidelberg, 2006. ISBN 978-
3-540-40929-8. doi: 10.1007/11861201 18. URL http://dx.doi.org/10.
1007/11861201_18.

176

http://dx.doi.org/10.1007/978-3-642-31762-0_15
http://dx.doi.org/10.1007/978-3-642-31762-0_15
http://dx.doi.org/10.1007/978-3-319-06410-9_39
http://dx.doi.org/10.1007/978-3-319-06410-9_39
http://dx.doi.org/10.1007/11861201_18
http://dx.doi.org/10.1007/11861201_18

Bibliography

Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th
Conference on Security Symposium, SS’08, pages 335–348, Berkeley, CA, USA,
2008. USENIX Association. URL http://dl.acm.org/citation.cfm?
id=1496711.1496734.

Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Vladimir Klebanov, and
Peter H. Schmitt, editors. The KeY Book 2. LNCS. Springer. to appear.

Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph
Gladisch, Sarah Grebing, Reiner Hähnle, Martin Hentschel, Vladimir Kle-
banov, Wojciech Mostowski, Christoph Scheben, Peter Schmitt, and Mattias
Ulbrich. The KeY platform for verification and analysis of Java programs.
In Dimitra Giannakopoulou and Daniel Kroening, editors, VSTTE 2014: 6th
Working Conference on Verified Software: Theories, Tools, Experiments, Lecture
Notes in Computer Science. Springer International Publishing, 2014. To ap-
pear.

Mihhail Aizatulin, François Dupressoir, AndrewD. Gordon, and Jan Jürjens.
Verifying cryptographic code in c: Some experience and the csec challenge.
In Gilles Barthe, Anupam Datta, and Sandro Etalle, editors, Formal As-
pects of Security and Trust, volume 7140 of Lecture Notes in Computer Sci-
ence, pages 1–20. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-29419-8.
doi: 10.1007/978-3-642-29420-4 1. URL http://dx.doi.org/10.1007/
978-3-642-29420-4_1.

Torben Amtoft and Anindya Banerjee. Verification condition generation for
conditional information flow. In Proceedings of the 2007 ACM workshop on
Formal methods in security engineering, FMSE ’07, pages 2–11, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-887-9. doi: 10.1145/1314436.1314438.
URL http://doi.acm.org/10.1145/1314436.1314438.

Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for infor-
mation flow in object-oriented programs. In Proceedings POPL, pages 91–102.
ACM, 2006.

Torben Amtoft, John Hatcliff, Edwin Rodrı́guez, Robby, Jonathan Hoag, and
David Greve. Specification and checking of software contracts for conditional
information flow. In Jorge Cuellar, Tom Maibaum, and Kaisa Sere, editors,

177

http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dx.doi.org/10.1007/978-3-642-29420-4_1
http://dx.doi.org/10.1007/978-3-642-29420-4_1
http://doi.acm.org/10.1145/1314436.1314438

10 Conclusions

FM 2008: Formal Methods, volume 5014 of Lecture Notes in Computer Science,
pages 229–245. Springer-Verlag, 2008. ISBN 978-3-540-68235-6.

Torben Amtoft, John Hatcliff, and Edwin Rodrı́guez. Precise and automated
contract-based reasoning for verification and certification of information
flow properties of programs with arrays. In Andrew Gordon, editor, Pro-
gramming Languages and Systems, volume 6012 of Lecture Notes in Computer
Science, pages 43–63. Springer-Verlag, 2010. ISBN 978-3-642-11956-9.

Anindya Banerjee and David A. Naumann. Secure information flow and
pointer confinement in a java-like language. In In IEEE Computer Security
Foundations Workshop (CSFW, pages 253–267. IEEE Computer Society Press,
2002.

Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive de-
classification policies and modular static enforcement. In Security and Pri-
vacy, 2008. SP 2008. IEEE Symposium on, pages 339–353, Los Alamitos, CA,
USA, May 2008. IEEE Computer Society. ISBN 978-0-7695-3168-7. doi:
http://doi.ieeecomputersociety.org/10.1109/SP.2008.20.

Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow
by self-composition. In Proceedings of the 17th IEEE workshop on Computer
Security Foundations, CSFW ’04, pages 100–115, Washington, USA, 2004. IEEE
CS. ISBN 0-7695-2169-X. doi: 10.1109/CSFW.2004.17. URL http://dx.
doi.org/10.1109/CSFW.2004.17.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verification
using product programs. In Michael Butler and Wolfram Schulte, editors,
FM 2011: Formal Methods - 17th International Symposium on Formal Methods,
Limerick, Ireland, June 20-24, 2011. Proceedings, volume 6664 of Lecture Notes in
Computer Science, pages 200–214. Springer-Verlag, 2011.

Gilles Barthe, David Pichardie, and Tamara Rezk. A certified lightweight
non-interference Java bytecode verifier. Mathematical Structures in
Comp. Sci., FirstView:1–50, 4 2013. ISSN 1469-8072. doi: 10.
1017/S0960129512000850. URL http://journals.cambridge.org/
article_S0960129512000850.

Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-
oriented Software: The KeY Approach. LNCS. Springer Berlin Heidelberg,
2007b. ISBN 3-540-68977-X, 978-3-540-68977-5.

Bernhard Beckert, Daniel Bruns, Vladimir Klebanov, Christoph Scheben, Pe-
ter H. Schmitt, and Mattias Ulbrich. Information flow in object-oriented soft-
ware. In Gopal Gupta, editor, Logic-Based Program Synthesis and Transforma-
tion, LOPSTR’13. Springer Berlin Heidelberg, 2014. To appear.

178

http://dx.doi.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1109/CSFW.2004.17
http://journals.cambridge.org/article_S0960129512000850
http://journals.cambridge.org/article_S0960129512000850

10.2 Future Work

L. Beringer and M. Hofmann. Secure information flow and program logics.
In Computer Security Foundations Symposium, 2007. CSF ’07. 20th IEEE, pages
233–248, July 2007. doi: 10.1109/CSF.2007.30.

Karthikeyan Bhargavan, Ricardo Corin, Cedric Fournet, and Eugen Zalinescu.
Cryptographically verified implementations for tls. In 15th ACM Conference
on Computer and Communications Security (CCS’08). Association for Comput-
ing Machinery, Inc., October 2008. URL http://research.microsoft.
com/apps/pubs/default.aspx?id=79576.

Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich. Bingo voting: Se-
cure and coercion-free voting using a trusted random number generator. In
Ammar Alkassar and Melanie Volkamer, editors, E-Voting and Identity, vol-
ume 4896 of Lecture Notes in Computer Science, pages 111–124. Springer Berlin
Heidelberg, 2007. ISBN 978-3-540-77492-1. doi: 10.1007/978-3-540-77493-8
10. URL http://dx.doi.org/10.1007/978-3-540-77493-8_10.

Thorsten Bormer, Marc Brockschmidt, Dino Distefano, Gidon Ernst, Jean-
Christophe Filliâtre, Radu Grigore, Marieke Huisman, Vladimir Klebanov,
Claude Marché, Rosemary Monahan, Wojciech Mostowski, Nadia Polikar-
pova, Christoph Scheben, Gerhard Schellhorn, Bogdan Tofan, Julian Tschan-
nen, and Mattias Ulbrich. The COST IC0701 verification competition 2011.
In Bernhard Beckert, Ferruccio Damiani, and Dilian Gurov, editors, Formal
Verification of Object-Oriented Software, volume 7421 of Lecture Notes in Com-
puter Science, pages 3–21. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
31761-3. doi: 10.1007/978-3-642-31762-0 2. URL http://dx.doi.org/
10.1007/978-3-642-31762-0_2.

AaronR. Bradley, Zohar Manna, and HennyB. Sipma. What’s decidable about
arrays? In E. Allen Emerson and Kedar S. Namjoshi, editors, Verification,
Model Checking, and Abstract Interpretation, volume 3855 of Lecture Notes in
Computer Science, pages 427–442. Springer Berlin Heidelberg, 2006. ISBN 978-
3-540-31139-3. doi: 10.1007/11609773 28. URL http://dx.doi.org/10.
1007/11609773_28.

Daniel Bruns. Formal verification of an electronic voting system. Technical Re-
port 2014-11, Department of Informatics, Karlsruhe Institute of Technology,
2014. URL http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000042284.

Richard Bubel, Reiner Hähnle, and Benjamin Weiß. Abstract interpretation of
symbolic execution with explicit state updates. In de Boer et al. [2009], pages
247–277. ISBN 978-3-642-04166-2.

D. Chaum, R.T. Carback, J. Clark, A. Essex, Stefan Popoveniuc, R.L. Rivest,
P. Y A Ryan, E. Shen, A.T. Sherman, and P.L. Vora. Scantegrity ii: End-to-end
verifiability by voters of optical scan elections through confirmation codes.

179

http://research.microsoft.com/apps/pubs/default.aspx?id=79576
http://research.microsoft.com/apps/pubs/default.aspx?id=79576
http://dx.doi.org/10.1007/978-3-540-77493-8_10
http://dx.doi.org/10.1007/978-3-642-31762-0_2
http://dx.doi.org/10.1007/978-3-642-31762-0_2
http://dx.doi.org/10.1007/11609773_28
http://dx.doi.org/10.1007/11609773_28
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000042284
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000042284

10 Conclusions

Information Forensics and Security, IEEE Transactions on, 4(4):611–627, Dec 2009.
ISSN 1556-6013. doi: 10.1109/TIFS.2009.2034919.

M.R. Clarkson, S. Chong, and A.C. Myers. Civitas: Toward a secure voting
system. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages
354–368, May 2008. doi: 10.1109/SP.2008.32.

Ellis S. Cohen. Information transmission in computational systems. In SOSP,
pages 133–139, 1977.

Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach
to analysis of secure information flow. In Dieter Hutter and Markus Ull-
mann, editors, Security in Pervasive Computing, volume 3450 of Lecture Notes
in Computer Science, pages 193–209. Springer-Verlag, 2005.

Frank S. de Boer, Marcello M. Bonsangue, and Eric Madelaine, editors. Formal
Methods for Components and Objects, 7th International Symposium, FMCO 2008,
Sophia Antipolis, France, October 21-23, 2008, Revised Lectures, volume 5751 of
LNCS, 2009. Springer-Verlag. ISBN 978-3-642-04166-2.

Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, 1976.

Dorothy E. Denning and Peter J. Denning. Certification of programs for se-
cure information flow. Commun. ACM, 20(7):504–513, July 1977. ISSN 0001-
0782. doi: 10.1145/359636.359712. URL http://doi.acm.org/10.1145/
359636.359712.

Guillaume Dufay, Amy Felty, and Stan Matwin. Privacy-sensitive information
flow with JML. In Robert Nieuwenhuis, editor, Automated Deduction – CADE-
20, volume 3632 of Lecture Notes in Computer Science, pages 738–738. Springer
Berlin / Heidelberg, 2005. ISBN 978-3-540-28005-7. URL http://dx.doi.
org/10.1007/11532231_9. 10.1007/11532231 9.

Jürgen Geisler and Christoph Scheben. Human processor modelling language
(HPML): Estimate working memory load trough interaction. In Analysis,
Design, and Evaluation of Human-Machine Systems, volume 10, pages 95–100,
2007.

Joseph A. Goguen and José Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

Christian Haack, Erik Poll, and Aleksy Schubert. Explicit information flow
properties in JML. In 3rd Benelux Workshop on Information and System Security
(WISSec), Nov 2008.

Christian Hammer, Jens Krinke, and Gregor Snelting. Information flow con-
trol for Java based on path conditions in dependence graphs. In IEEE
International Symposium on Secure Software Engineering (ISSSE 2006), pages

180

http://doi.acm.org/10.1145/359636.359712
http://doi.acm.org/10.1145/359636.359712
http://dx.doi.org/10.1007/11532231_9
http://dx.doi.org/10.1007/11532231_9

10.2 Future Work

87–96. IEEE, March 2006. URL http://pp.info.uni-karlsruhe.de/
uploads/publikationen/hammer06issse.pdf.

R. R. Hansen and C. W. Probst. Non-interference and erasure policies for java
card bytecode. In 6th International Workshop on Issues in the Theory of Security
(WITS ’06). 2006. URL http://www2.imm.dtu.dk/pubdb/p.php?4742.

David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cam-
bridge, MA, USA, 2000. ISBN 0262082896.

Chris Hawblitzel, Ming Kawaguchi, ShuvenduK. Lahiri, and Henrique Rebêlo.
Towards modularly comparing programs using automated theorem provers.
In MariaPaola Bonacina, editor, Automated Deduction – CADE-24, volume
7898 of Lecture Notes in Computer Science, pages 282–299. Springer Berlin Hei-
delberg, 2013. ISBN 978-3-642-38573-5. doi: 10.1007/978-3-642-38574-2 20.
URL http://dx.doi.org/10.1007/978-3-642-38574-2_20.

Daniel Hedin and David Sands. Timing aware information flow security for a
JavaCard-like bytecode. In BYTECODE, volume 141:1 of ENTCS, pages 163
– 182. Elsevier, 2005.

Daniel Hedin and David Sands. Noninterference in the presence of non-opaque
pointers. In CSFW, pages 217–229, 2006.

I. Kassios. The dynamic frames theory. Formal Aspects of Computing, 23:
267–288, 2011. ISSN 0934-5043. URL http://dx.doi.org/10.1007/
s00165-010-0152-5. 10.1007/s00165-010-0152-5.

Matthias Kuntz, Stefan Leue, and Christoph Scheben. Extending non-
termination proof techniques to asynchronously communicating concurrent
programs. In Andrei Voronkov, Laura Kovacs, and Nikolaj Bjorner, editors,
WING 2010, volume 1 of EPiC Series, pages 132–147. EasyChair, 2012.

Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability, Privacy, and
Coercion-Resistance: New Insights from a Case Study. In Proceedings of the
32nd IEEE Symposium on Security and Privacy (S&P), pages 538–553, Oakland,
California, USA, 2011. IEEE Computer Society.

Ralf Küsters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Jürgen Graf,
and Christoph Scheben. A hybrid approach for proving noninterference and
applications to the cryptographic verification of Java programs. 2013.

R. Küsters, T. Truderung, and J. Graf. A framework for the cryptographic ver-
ification of java-like programs. In Computer Security Foundations Symposium
(CSF), 2012 IEEE 25th, pages 198–212, June 2012. doi: 10.1109/CSF.2012.9.

Butler W. Lampson. A note on the confinement problem. Commun. ACM, 16
(10):613–615, 1973.

181

http://pp.info.uni-karlsruhe.de/uploads/publikationen/hammer06issse.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/hammer06issse.pdf
http://www2.imm.dtu.dk/pubdb/p.php?4742
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/s00165-010-0152-5
http://dx.doi.org/10.1007/s00165-010-0152-5

10 Conclusions

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
a behavioral interface specification language for Java. SIGSOFT Softw. Eng.
Notes, 31:1–38, May 2006. ISSN 0163-5948. doi: http://doi.acm.org/10.
1145/1127878.1127884. URL http://doi.acm.org/10.1145/1127878.
1127884.

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, Peter Müller, Joseph Kiniry, and Patrice Chalin. Jml reference manual,
2008.

Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.
ISBN 0201432943.

J. Mccarthy. Towards a mathematical science of computation. In In IFIP
Congress, pages 21–28. North-Holland, 1962.

Bertrand Meyer. Object-Oriented Software Construction, 1st editon. Prentice-Hall,
1988. ISBN 0-13-629031-0.

John C. Mitchell. Type systems for programming languages. In Handbook of
Theoretical Computer Science, Volume B: Formal Models and Sematics, pages 365–
458. 1990.

Andrew C. Myers. Jflow: practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’99, pages 228–241, New York, NY, USA, 1999a.
ACM. ISBN 1-58113-095-3. doi: http://doi.acm.org/10.1145/292540.292561.
URL http://doi.acm.org/10.1145/292540.292561.

Andrew C. Myers. Mostly-Static Decentralized Information Flow Control. PhD
thesis, Massachusetts Institute of Technology, 1999b.

Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, Oc-
tober 2000. ISSN 1049-331X. doi: 10.1145/363516.363526. URL http:
//doi.acm.org/10.1145/363516.363526.

A. Nanevski, A. Banerjee, and D. Garg. Verification of information flow and
access control policies with dependent types. In Security and Privacy (SP),
2011 IEEE Symposium on, pages 165 –179, may 2011. doi: 10.1109/SP.2011.12.

David Naumann. From coupling relations to mated invariants for checking in-
formation flow. In Dieter Gollmann, Jan Meier, and Andrei Sabelfeld, editors,
Computer Security – ESORICS 2006, volume 4189 of Lecture Notes in Computer
Science, pages 279–296. Springer-Verlag, 2006. ISBN 978-3-540-44601-9.

Pavel Nikolov. Combining theorem proving and type systems for precise
and efficient information flow verification. Bachelor’s thesis (Studienarbeit),
Karlsruhe Institute of Technology, 2014.

182

http://doi.acm.org/10.1145/1127878.1127884
http://doi.acm.org/10.1145/1127878.1127884
http://doi.acm.org/10.1145/292540.292561
http://doi.acm.org/10.1145/363516.363526
http://doi.acm.org/10.1145/363516.363526

10.2 Future Work

Jing Pan. A theorem proving approach to analysis of secure information flow
using data abstraction. Master’s thesis, Dept. of Computer Science and En-
gineering, Chalmers University of Technology, 2005.

Quoc-Sang Phan. Self-composition by symbolic execution. In Imperial College
Computing Student Workshop (ICCSW’13), pages 95–102. Schloss Dagstuhl,
2013.

Arun D. Raghavan and Gary T. Leavens. Desugaring JML Method Specifica-
tions. Technical Report 00-03a, 2000. URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.28.9308.

Philipp Rümmer. Sequential, parallel, and quantified updates of first-order
structures. In Miki Hermann and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, volume 4246 of Lecture Notes
in Computer Science, pages 422–436. Springer Berlin Heidelberg, 2006. ISBN
978-3-540-48281-9. doi: 10.1007/11916277 29. URL http://dx.doi.org/
10.1007/11916277_29.

Andrei Sabelfeld and Andrew Myers. A model for delimited information
release. In Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki,
editors, Software Security - Theories and Systems, volume 3233 of Lecture
Notes in Computer Science, pages 174–191. Springer Berlin / Heidelberg,
2004. ISBN 978-3-540-23635-1. URL http://dx.doi.org/10.1007/
978-3-540-37621-7_9. 10.1007/978-3-540-37621-7 9.

Christoph Scheben. Simulation of d’-dimensional cellular automata on d-
dimensional cellular automata. In Samira Yacoubi, Bastien Chopard, and
Stefania Bandini, editors, Cellular Automata, volume 4173 of Lecture Notes in
Computer Science, pages 131–140. Springer Berlin Heidelberg, 2006. ISBN 978-
3-540-40929-8. doi: 10.1007/11861201 18. URL http://dx.doi.org/10.
1007/11861201_18.

Christoph Scheben and Peter H. Schmitt. Verification of information flow
properties of Java programs without approximations. In Bernhard Beck-
ert, Ferruccio Damiani, and Dilian Gurov, editors, Formal Verification of
Object-Oriented Software, volume 7421 of Lecture Notes in Computer Science,
pages 232–249. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31761-3.
doi: 10.1007/978-3-642-31762-0 15. URL http://dx.doi.org/10.1007/
978-3-642-31762-0_15.

Christoph Scheben and Peter H. Schmitt. Efficient self-composition for weak-
est precondition calculi. In Cliff Jones, Pekka Pihlajasaari, and Jun Sun, ed-
itors, FM 2014: Formal Methods, volume 8442 of Lecture Notes in Computer
Science, pages 579–594. Springer International Publishing, 2014. ISBN 978-
3-319-06409-3. doi: 10.1007/978-3-319-06410-9 39. URL http://dx.doi.
org/10.1007/978-3-319-06410-9_39.

183

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.9308
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.9308
http://dx.doi.org/10.1007/11916277_29
http://dx.doi.org/10.1007/11916277_29
http://dx.doi.org/10.1007/978-3-540-37621-7_9
http://dx.doi.org/10.1007/978-3-540-37621-7_9
http://dx.doi.org/10.1007/11861201_18
http://dx.doi.org/10.1007/11861201_18
http://dx.doi.org/10.1007/978-3-642-31762-0_15
http://dx.doi.org/10.1007/978-3-642-31762-0_15
http://dx.doi.org/10.1007/978-3-319-06410-9_39
http://dx.doi.org/10.1007/978-3-319-06410-9_39

10 Conclusions

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß. Dynamic frames in
Java dynamic logic. In Bernhard Beckert and Claude Marché, editors, Revised
Selected Papers, International Conference on Formal Verification of Object-Oriented
Software (FoVeOOS 2010), volume 6528 of Lecture Notes in Computer Science,
pages 138–152. Springer-Verlag, 2011.

Bart van Delft. Abstraction, objects and information flow analysis. Master’s
thesis, Institute for Computing and Information Science, Radboud Univer-
sity Nijmegen, 2011.

Simon Wacker. Blockverträge. Bachelor’s thesis (Studienarbeit), Karlsruhe In-
stitute of Technology, 2012.

Martijn Warnier. Language Based Security for Java and JML. PhD thesis, Radboud
University Nijmegen, 2006.

Benjamin Weiß. Deductive Verification of Object-Oriented Software: Dynamic
Frames, Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe In-
stitute of Technology, 2011.

184

Index

n (operator), 87, 89
nandRight (rule), 114
napproxAnd (rule), 118
napproxEq (rule), 118
napproxFunc (rule), 118
napproxOr (rule), 118
napproxPred (rule), 118
nconditional (rule), 116
nconstant (rule), 118
ncreateObj (rule), 116
nexpandMethod (rule), 116
nextConditional (rule), 116
nextLoopInvariant (rule), 116
nimpLeft (rule), 114
nloopInvariant (rule), 116
nnot (rule), 118
norLeft (rule), 114
<inv> (predicate), 19

acts-for relation, 147
agree (predicate), 23
allLeft (rule), 113
allRight (rule), 113
andLeft (rule), 113
andRight (rule), 13
antecedent, 13
assignArray (rule), 115
assignField (rule), 115
assignLocal (rule), 13, 115
axiom, 13

close (rule), 113
closed proof, 13
closeFalse (rule), 113

closeTrue (rule), 113
conclusion, 13
confidentiality policy, 149

least restrictive, 149
most restrictive, 149

Consistency
Two-State Semantics, 95

created (field), 11

design by contract, 34
determines clause, 34
domain, 8
dynamic frames, 173

emptyModality (rule), 115
evaluation

one-state, 8
two-state, 91, 138

exactInstanceA (predicate), 10
exLeft (rule), 113
exRight (rule), 113

field, 10
flow (predicate), 23
function symbol, 7

heap (program variable), 10
heap location, 10
helper (JML keyword), 19

impRight (rule), 113
information flow control, 1
instanceA (predicate), 10
integrity policy, 149

least restrictive, 149

185

Index

most restrictive, 149
interpretation, 8
isomorphism, 69

partial, 69

Java Dynamic Logic, 7
semantics, 9
syntax, 7

Kripke structure, 8

label (JIF), 147
location set, 11

modality
box, 7
diamond, 7

model
one-state, 9
two-state, 92

noninterference
conditional, 23
multilevel, 26
object-sensitive, 71
optimized object-sensitive, 73
strong object-sensitive, 74

notLeft (rule), 113
notRight (rule), 113

object creation, 11
observation expression, 22

observable objects, 69
one-state semantics, 94, 104
orRight (rule), 113

predicate symbol, 7
premiss, 13
principal, 147
program variable, 8
proof tree, 13

restricted two-state evaluation, 90
restrictedAndRight (rule), 114

restrictedImpLeft (rule), 114
restrictedOrLeft (rule), 114
rewrite rule, 13
rigid function, 8

schema variable, 13
schematic rule, 13
security lattice, 26
security policies, 26
sequence, 12
sequent

meaning formula, 13, 93
validity in two-state semantics,

93
signature, 7
state, 8

agreement of, 23
object-sensitive, 71

structure
two-state, 90

subtype relation, 7
succedent, 13

transition relation, 8
two-state semantics, 91

logical consequence, 95
logical equivalence, 95
restricted two-state evaluation,

90
congruence, 97
logical equivalence, 96

satisfiability, 94
universal validity, 92
validity of sequents, 93

type hierarchy, 10
typing function

dynamic, 8
static, 7

universe, 8
unwindLoop (rule), 115
update, 7

variable assignment, 8

186

Index

variable symbol, 7

wellFormed (predicate), 11
wellformedness of heaps, 11

187

	Introduction
	Information Flow in Object-Oriented Programs.
	Fine-Grained Specification of Information Flow Properties.
	Contributions.
	Publications.
	Outline.

	Foundations
	Java Dynamic Logic
	Type Hierarchy
	Fields, Heaps and Object Creation
	Location Sets
	Sequences
	Substitutions
	Calculus

	Java Modeling Language
	Method Contracts
	Model Fields
	Ghost Fields
	Class Invariants
	Loop Invariants

	Language-Based Secure Information Flow
	Attacker Model
	Formal Definition of Secure Information Flow
	Example
	Multilevel Noninterference
	Discussion

	JML Extensions for Specifying Secure Information Flow
	Illustration of Knowledge-Based Specification
	Knowledge-Based Specification vs. Classical Security Policies
	Extending JML* for Noninterference Specifications
	Information Flow Method Contracts
	Information Flow Block Contracts
	Information Flow Loop Invariants
	Information Flow Class Invariants
	Naming Views

	Examples
	Banking System
	Loop Invariants
	Block Contracts, Interface Specification and Interactive Programs

	Discussion

	Verification of Secure Information Flow by Self-Composition
	Naive Self-Composition
	Efficient Self-Composition
	Reducing the Cost of the Symbolic Execution
	Reducing the Number of Comparisons

	Modular Self-Composition
	Discussion

	Object Orientation
	Information Flow in Java
	Isomorphisms
	Formalization of Opaqueness of References
	Basic Object-Sensitive Noninterference
	Optimized Object-Sensitive Noninterference

	An Efficient Compositional Criterion
	Formalisation in JavaDL
	JML Extension
	Discussion

	An Approximate Information Flow Calculus
	Java DL Syntax Extension
	Two-State Semantics
	Two-State Calculus
	First Order Logic Rules
	Java Rules
	Update Simplification Rules
	 Approximation Rules
	Conversion to One-State Semantics

	Soundness of the Two-State Calculus
	Discussion

	Combining Analysis Techniques
	The Decentralized Label Model (DLM)
	Basic JIF to JML Translation
	Extraction of the Security Lattice and Security Policy from DLM Annotations
	Translating Multi-Level Noninterference to Two-Level Noninterference
	Specifying a set of Two-Level Noninterference properties in JML

	Optimizations
	Translation of Arrays
	Translation of Declassify Statements
	Example
	Discussion

	Case Studies
	A Simple Electronic Voting System
	Verifying Programs containing Cryptography
	The System and its Specification
	Verification Effort
	Discussion

	Examples from Literature

	Conclusions
	Summary
	Future Work

