
Heuristic-based Genetic Operation
in Classifier Systems

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

NUGROHO FREDIVIANUS, M.Sc.

Tag der mündlichen Prüfung: 27. Februar 2015
Referent: Prof. Dr. Hartmut Schmeck
Korreferent: Prof. Dr. Rudi Studer

2015 Karlsruhe

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 3.0 Deutschland Lizenz.

(http://creativecommons.org/licenses/by/3.0/de/)

ABSTRACT

This thesis focuses on improving the Accuracy-based Learning Classifier System (XCS), an
online Machine Learning technique that keeps its knowledge in a population of rules. Intro-
duced in 1995, the system has been developed to a number of variants. However, most of
them still face an issue of suffering from a slow learning rate. Several investigations have ad-
dressed this matter, yet with no convincing results. Therefore, this thesis introduces a novel
technique named Rule Combining (RC), with an ability to provide a better solution. The
new approach specifically replaces the operators of the Darwinian Genetic Algorithm (GA)
in producing a number of better children from some selected parents.
Different from the crossover and mutation in GA, RC does not employ any randomization

processes in creating offspring. Instead, it adopts the inductive reasoning (induction) concept
along with some other notions to build the children. So, the system considers only the
knowledge that is already available, and draws some conclusions out of it. At this point, one
can say that the quality of RC’s results highly depends on the current rules. A comprehensive
knowledge in XCS’s population would lead to a number of valid conclusions.
Improving the learning rate is not the only advantage for XCS. RC also assists the system to

increase its efficiency, denoted by the significant reduction of space that is required to maintain
the knowledge. XCS with RC (called XCS-RC) shows a better learning capability while
requiring a smaller size of population. Moreover, the proposed system is capable of solving
various tasks that the original XCS (with GA) tackles unconvincingly, both in handling inputs
in binaries and real values.
A further improvement of XCS is achieved by an additional capability of performing a

feature selection operation. This ability allows the system to evaluate the received input and
to conclude for each part of the information the relevance level with respect to the learning
process. The parts with no relevance are filtered out, letting the system run more efficiently
with respect to speed and space requirements. Such operation can only be performed by
XCS having a set of reliably general and accurate rules. Therefore, adding feature selection
to the original XCS would be considered as a huge risk, since the system potentially removes
relevant information.
Finally, this thesis provides a set of comparative evaluations based on a series of experiments

using typical test problems. The results show that XCS-RC is significantly more superior
compared to the original XCS in terms of learning speed and space efficiency.

iii

ACKNOWLEDGEMENTS

One funny thing I felt while writing this thesis is an urge for traveling through time towards
the past, long way back to the ancient Greek era. Physically, such thing is still impossible.
However, performing it mentally was necessary in order to familiarize the ideas that I wanted
to explain. Diving into the haystack of moments where humans built the foundation of science
was a priceless experience. However, one might not see that as a good idea for writing the
beginning of a doctoral thesis. And I knew that I should be alarmed when my doctoral
supervisor also felt that way the first time I discussed my idea with him.
So, firstly, I would like to express my gratitude to Prof. Dr. Hartmut Schmeck for all of his

supports while I was walking in the path of scientific works. There were moments where I
can barely move forward and he showed some patience. And by the time I was prepared to
run towards the finish line, he also provided necessary suggestions that were very helpful to
avoid any accidents. And it is one of the best moments in my life when he finally agreed my
idea of placing the history of science as a foundation of the thesis.
I would also like to thank the second reviewer of my thesis, Prof. Dr. Rudi Studer, for

being an important role on the examination committee. Furthermore, many thanks to
Prof. Dr. Frank Schultmann and Prof. Dr. Wolf Fichtner for their participations as the ex-
aminer and the chairman on the examination committee, respectively. I suppose that we had
a nice discussion in the forum, and I am grateful for that.
Starting to write a scientific work from scratch was not easy. Having supportive colleagues

at the Efficient Algorithms research group was a big help indeed. Therefore, I would like to
thank my predecessor in the OCCS project Dr. Urban Richter, for his time and willingness
to discuss many things that were required. Also, Dr. Holger Prothmann that was actively
involved in several deep discussions in the early phase of my thesis. For their assistance
that kept me survive at this business a few years ago, I would like to thank Prof. Dr. Sanaz
Mostaghim, Micaela Wünsche and Christian Hirsch. Finally, many thanks to Dr. Lukas
König for his life-saving suggestions near the end of the process.
From the Learning Classifier Systems community, I would like to thank Dr. Stewart Wilson

for his endorsement on my investigations. We had a nice discussion at the GECCO 2012
conference in Philadelphia. You gave me a number of suggestions regarding the way I explain
my contribution scientifically, and your argumentations lead me to pick a proper title for this
thesis.
Moving outside the scientific field, I would like to thank my family both in Indonesia and

Germany. Although I could not hear your voice all the time, I was, and still am, sure that

v

you have supported me in several ways one might not be able to imagine. My mother Sri
and my father Suparno, my wife’s parents Herniti and Tarsobidi, my brother Ary and my
sister Offi. But, if anyone was capable of making me feel incomplete, it is my wife Mira.
Thanks for all your support and love, both in easy and difficult times, including when you
had to fully take care of our children Aida, Raihan and Firdaus, which I am also grateful for
them. Last but not least, Alhamdulillah, all praise to Him, for letting me achieve all these
wonderful things, also for His guidance and tests that make me a better and stronger person
from time to time.

Karlsruhe, April 2015

Nugroho Fredivianus

vi

CONTENTS

List of Tables ix

List of Figures xi

List of Abbreviations xv

1 Introduction 1
1.1 History . 3
1.2 Background . 6
1.3 Motivation . 11
1.4 Contribution . 13
1.5 Guide for Readers . 14
1.6 Acknowledgement . 15

2 Accuracy-based Learning Classifier System 17
2.1 Overview . 18
2.2 Classifier . 20
2.3 System parameters . 21
2.4 Performance component . 23
2.5 Reinforcement component . 25
2.6 Discovery component . 26

3 XCS with Rule Combining 29
3.1 Heuristic-based Evolution . 30

3.1.1 Covering . 31
3.1.2 Generalization . 32
3.1.3 Hastiness . 36

3.2 Deterministic Explorative Decision . 37
3.3 Rule Combining . 38

3.3.1 Combining Steps . 39
3.3.2 Algorithmic representation . 43

3.4 Knowledge Correction . 44
3.5 Parameters . 47

vii

Contents

4 XCS-RC for Continuous Values 49
4.1 Interval representations . 50
4.2 Covering . 51
4.3 Darwinian Genetic Operators . 54
4.4 Combining . 56
4.5 Modifications from Binary XCS-RC . 58

4.5.1 Wildcard . 59
4.5.2 Covering . 59
4.5.3 Rule Combining . 60

5 Experiments 63
5.1 Procedure . 64
5.2 Results and Comparisons . 65

5.2.1 Multiplexer with binary inputs . 65
5.2.2 Multiplexer with real-valued inputs . 69
5.2.3 Checkerboard . 70
5.2.4 Woods and Maze . 74

5.3 Evaluation . 82
5.3.1 Loss of Knowledge . 82
5.3.2 Runtime . 85
5.3.3 Optimal Population . 89

6 Feature Selection 91
6.1 Relevance Level Identification . 91
6.2 Outlier Detection . 94
6.3 Multiplexers with Modified Input . 96
6.4 The Predator-Prey Pursuit Scenario . 99

6.4.1 Learning . 101
6.4.2 Results . 103

7 Conclusion and Outlook 107
7.1 Summary . 108

7.1.1 Learning rate . 109
7.1.2 Generalization capability . 111
7.1.3 System parameters . 112

7.2 Outlook . 113

References 119

Appendix 123

viii

LIST OF TABLES

2.1 Attributes of a classifier . 21
2.2 XCS parameters . 22

3.1 Working man’s reward mechanism . 33
3.2 Translations of the generalized rules . 35
3.3 New parameters in XCS-RC . 47

5.1 Parameter setting for the experiments . 64
5.2 [P]opt for the MP6 task . 66
5.3 Scenarios for real MP6 [37] . 69
5.4 Binary codes for the cells in Woods and Maze environments 77
5.5 Resemblance level for Figure 5.24(a) . 90

6.1 Reward map for the Predator-Prey Pursuit scenario [13] 103

7.1 Performance comparison for the single-step problems 110
7.2 Performance comparison for the multi-step cases 110
7.3 Population size comparison . 111
7.4 Unused XCS parameters and the new ones for XCS-RC 113
7.5 Rule representation of the fuzzy logic membership function 117

ix

LIST OF FIGURES

1.1 Sequence . 2
1.2 Concluding the content of a "black box" (an unknown population) 2
1.3 An illustration of the Tychonic system, as proposed by Tycho Brahe 4
1.4 Colored lines . 7
1.5 Type of controls (as in [28]) . 8
1.6 OC’s learning architecture and its practical implementation using XCS 9
1.7 Types of classifier’s condition . 10
1.8 A robot should make a decision . 10
1.9 Alternate environmental situations . 12
1.10 An input is covered using a 25% wildcard probability 12
1.11 Hastiness presented using a timeline . 14
1.12 Results for 20-bit binary multiplexers . 15

2.1 Holland’s LCS as explained in [2] . 18
2.2 XCS full cycle . 19
2.3 A classifier cli . 20
2.4 Reward assignment in single and multi-step problems 23
2.5 Performance component of XCS . 24
2.6 Probabilities in explorative action selection 24
2.7 Reinforcement component of XCS . 25
2.8 Covering an input . 27
2.9 Mutation and crossovers . 28

3.1 Learning cycle in XCS-RC . 30
3.2 Comparison of covering implementation . 31
3.3 The working man scenario . 33
3.4 Population for the Working Man scenario . 34
3.5 Generalization of rules for the working man scenario 35
3.6 A hasty conclusion . 37
3.7 Determining explorative decision in action selection step 38
3.8 Overview of the combining steps . 39
3.9 Combining sets . 40
3.10 Forming cl∗ . 41

xi

List of Figures

3.11 Examination of cl∗ . 41
3.12 Subsumption, deletion and calculation of cl∗’s attributes 42
3.13 [C]0 after insertion . 43
3.14 The values of cli.ε over cl.exp . 45

4.1 Types of coverage within an element of a classifier’s condition 49
4.2 A dot in a two-dimensional checkerboard . 50
4.3 Intervals in XCSR [37] and XCS-RC [11] . 51
4.4 A 2-dimensional checkerboard with intervals 52
4.5 Covering . 52
4.6 Covering for the rounding task in XCSR . 53
4.7 Covering overlap in XCSR . 53
4.8 Mutation in XCSR . 54
4.9 Mutation and overlap . 55
4.10 Crossover in XCSR . 56
4.11 Combining dots in XCS-RC . 57
4.12 Combining intervals in XCS-RC . 57
4.13 Combining drawback in XCS-RC for real value 58
4.14 A wildcard at cl.C[p] in space representation 59
4.15 Covering on XCS-RC having n possible actions 60
4.16 Combining in space representations . 61
4.17 Examples of disproving classifiers . 61

5.1 Examples of multiplexer inputs . 66
5.2 Results for binary MP6 . 67
5.3 Results for binary MP11 and MP20 . 68
5.4 Binary interpretation types . 69
5.5 Comparison for the real multiplexer tasks . 71
5.6 A mapping process in a CB − 2d5 scenario 72
5.7 Combining in Checkerboard scenario . 73
5.8 XCS-RC’s results for the CB-2d3 problem . 74
5.9 XCS-RC’s results for the CB-2d5 and CB-2d7 problems 75
5.10 Results for the CB-3d3 problem . 76
5.11 Maps of the Woods1 and Woods101 environments 76
5.12 Input composition process by the animat . 77
5.13 Results for the Woods1 environment . 78
5.14 Woods2 environment . 78
5.15 Results for the Woods2 environment . 79
5.16 Maps of the Maze4, Maze5 and Maze6 environments 79
5.17 Results for the Maze4, Maze5 and Maze6 environments 81
5.18 Comparison of results involving MP6 with varying Tcomb values 83
5.19 Comparison of results involving MP11 with varying Tcomb values 84
5.20 Comparison on MP20 using N = 800 and varying Tcomb values 86
5.21 Comparison on MP20 using N = 2000 and varying Tcomb values 87
5.22 Execution of RC at every Tcomb cycles . 88
5.23 Execution time for binary MP20 . 88
5.24 Combining results based on parent picking . 89

xii

List of Figures

6.1 Relevance in binary MP6 scenario . 92
6.2 Feature Selection in XCS-RC . 93
6.3 Outlier effect . 94
6.4 Combining in MP3+3 . 95
6.5 Modification of MP6 input . 97
6.6 Results for MP6+12 . 98
6.7 Results for MP6+24 . 99
6.8 Results for MP11+11 . 100
6.9 The predator-prey pursuit scenario . 101
6.10 Flowchart of the predator’s behavior . 102
6.11 The input for XCS-RC . 103
6.12 Results for the Predator-Prey scenario with Moore neighborhood 104
6.13 Results for the extended Moore neighborhood 105

7.1 Combining . 108
7.2 Schematic diagram of the system modifications 109
7.3 Alternative method for anticipating loss of knowledge 114
7.4 Classifier coverage in rectangle representations 114
7.5 Classifier coverage in other two-dimensional representations 115
7.6 Typical fuzzy logic components . 116

xiii

LIST OF ABBREVIATIONS

[A] - Action set
[C] - Combining set
[M] - Match set
[P] - Population of knowledge
[P]opt - The optimal [P]
ANN - Artificial Neural Network
CB - Checkerboard task
cl - A classifier
cl∗ - A classifier candidate
GA - Genetic Algorithm
LCS - Learning Classifier System
MP6 - Multiplexer task with six elements of inputs
MP11 - Multiplexer task with 11 elements of inputs
MP20 - Multiplexer task with 20 elements of inputs
NASA - National Aeronautics and Space Administration
OC - Organic Computing
RC - Rule Combining
SuOC - System under Observation and Control
XCS - Accuracy-based Learning Classifier System, as in [35,36]
XCSR - XCS with real inputs, as in [37]
XCSS - XCS with Specify, as in [20]
XCS-RC - XCS with Rule Combining, as in [12]

xv

CHAPTER 1
INTRODUCTION

"The only source of knowledge is
experience."

(Albert Einstein)
By the time Einstein made the statement, he surely did not talk about machines. His

sentence was solely focused on human, despite the possibility that he might have predicted
that one day machines will be capable of maintaining their very own knowledge. Tens of
years afterwards, those words became applicable to various machine learning techniques.
Experience becomes a vital factor in designing an intelligent machine’s knowledge, either
through its own learning process or initially planted by human.
Hundreds of years before Einstein, Aristotle made a similar statement within that matter.

He introduced a paradigm which is later called inductive reasoning (or induction) by stating
that knowledge can only come from the experience. At his time, the common religion was
polytheism and people strongly held the belief that Athena, the goddess of knowledge, had
a full authority of distributing her power to the human.
The concept stated by Aristotle implies the idea that every human observes and makes

conclusions by discovering any underlying patterns within the collected experience. For
example, a small child may come to a conclusion by walking to the kindergarten every weekday
morning with one of his parents. Every time they are about to cross a street, the parent always
asks him to stop when the light is currently red, waiting until the sign becomes green. After
experiencing such occasion quite regularly, he would learn that a red light means that they
should not go crossing the street, while a green stating otherwise.
In mathematics, induction provides a solution for coping with various assignments. For

instance, Figure 1.1(a) presents a typical Fibonacci sequence starting with two 1s and followed
by a series of numbers. Each following number is determined by calculating the sum of its
two predecessors. By only observing some of the earliest values, one can theoretically discover
the whole sequence.
The second sequence depicted in Figure 1.1(b) shows an unknown set with five initial

numbers, i. e., 3, 12, 13, 52, and 53. After observing these values, one has to find the
specific pattern to figure out the following members. A possibility is given by assuming
that the sequence is composed using an alternating relation where the numbers 3, 13 and
53 come from one group and the rest belong to the other (see Figure 1.1(c)). However, as
depicted in Figure 1.1(d), the most probable pattern here is represented by two alternating

1

Chapter 1 Introduction

(a) Fibonacci (b) Unknown

(c) Possible connection
from the unknown

(d) One of the valid solutions

Figure 1.1: Sequence

calculations. After the initial value "3", the direct successor is determined by multiplying it
by four, making it "12". Then, the number "13" comes as a result of an increment "12 + 1",
and those operations are executed one after the other. After discovering the pattern depicted
in Equation 1.1, calculating all unknown values is possible.

ni =

3 if i = 1,
4× ni−1 if i is even
ni−1 + 1 if i is odd, i > 1.

(1.1)

Both examples suggest that a small number of samples is sufficient to discover a pattern
in a reasonable way. In the Fibonacci case, performing an induction on the given sequence
leads to a mathematical formula ni+2 = ni+ni+1 after two initial 1s. Then, the conclusion is
generalized by assuming that the whole sequence can be represented by the equation. Such
technique is valid for determining the unknown values of the second sequence as well, using
its respective formula.
Another illustration is provided by the so-called Black Box scenario, involving a group of

physical matters as depicted in Figure 1.2. An observer is given three opportunities to take
some unknown contents from a black box, one individual at a time. Shortly afterwards, he
discovers three ball-shaped items in two different colors. One of them is green while the
others are red (see Figure 1.2(a)).

Population sample

(a) Three samples of the popula-
tion

Population sample

(b) Conclusion

Figure 1.2: Concluding the content of a "black box" (an unknown population)

At this point, a conclusion can be made based on the current samples. It is logical that the

2

1.1 History

observer tends to conclude that the box is filled with balls. Furthermore, he may also believe
that the red individuals have a greater share than the green as illustrated by Figure1.2(b),
with a comparison of somewhere near 2:1. Here, the three samples play the role as a set of
representatives of the whole population, and a conclusion is made based upon them.
This thesis proposes a new method, adopted from that induction concept. The paradigm

leads to the composition of a novel learning technique based on a similar line of thoughts. As
humans collect their knowledge from time to time by making conclusions out of their experi-
ence, machines can be designed to behave similarly with some limitations. This introductory
chapter describes an overview regarding the process of building the scientific knowledge, and
how it can be implemented to the machine learning, especially those operating as classifier
systems.
The remainder of this chapter is composed as follows. Firstly, a brief history of inductive

reasoning is presented. Then, a short description of the background is given in Section 1.2,
followed by an explanation regarding the motivation. Section 1.4 highlights the contribution
of this thesis while Section 1.5 provides a guide for readers. Finally, an acknowledgment ends
this chapter as a credit to those who gave meaningful contributions in the composition of
this thesis.

1.1 History

The concept of induction began long way back to the ancient Greece era. Plato (428/427 -
348/347 BC) and one of his students, namely Aristotle (384 - 322 BC), had a long debate
over the philosophy of science [22]. Plato, strongly affected by the current Greek belief and
wisdom, stated that each human is born with a set of hidden knowledge in his memory. Then,
as time goes by, his life experience gradually uncovers the knowledge. However, the brilliant
pupil had another thought stating the opposite. Aristotle said that every human does not
know anything at the time he was born. Afterwards, each life event presents a chance for
observing, gathering information, and then concluding the result in a so-called knowledge [23].
Since then, philosophy and science established their places in the civilizations at two dif-

ferent stand-points. Aristotle was acknowledged as the father of science, while the father of
philosophy was entitled to Plato. Like a pair of twins, philosophers play their roles by produc-
ing many thoughts, inspiring the scientists to investigate the unknowns and to always pursue
the logical explanations. At this point, Aristotle had brilliantly founded the systematical
thinking used by scientists until today, called inductive reasoning or induction.
Centuries afterwards, in the Islamic golden age, a scholar namely Ibn al-Haytham or Al-

hazen (965 - 1040 AD) made a breakthrough in the field of optics [29]. He was a pioneer in
studies on light refraction, which later gives a way to the invention of a lens. However, his
biggest contribution to science was realizing in his work the first scientific implementation of
Aristotle’s induction paradigm. With that, Alhazen established a way in conducting investi-
gations which is now known as the first practical scientific method: observation, hypothesis,
followed by experiments.
Such method led Galileo Galilei (1564 - 1642 AD) to one of the most notable discoveries

in science [34]. His work in astronomy has indeed given the strong foundation for induction.
A series of observations encouraged him to publish the theory of heliocentrism, stating that
the earth revolves around the sun. The conclusion was based on the fact that planet Venus
actually has light and dark phases, which would never happen if geocentrism was correct.
This idea confirmed the statements previously made by at least two notable astronomers,

3

Chapter 1 Introduction

i. e., Ibn al-Shatir (1304 - 1375 AD) [26] and Nicolaus Copernicus (1473 - 1543 AD) [19].
However, Galileo’s idea got harsh critics from other scholars as well as religious groups. At
that time, geocentrism was considered as the scientific truth and also the common belief,
stating that the earth is the center of the universe.

sun

earth
moon

orbit
of the sun

stars belt

Figure 1.3: An illustration of the Tychonic system, as proposed by Tycho Brahe

Slightly before Galileo, another universe theory was introduced by Tycho Brahe (1546 -
1601 AD), known as the Tychonic System [31]. As depicted in Figure 1.3, the system could
be addressed as a combination of geocentrism and heliocentrism. According to Brahe, the
sun and the moon revolve around the earth while each of the other planets plays a role
as a satellite of the sun. Brahe came to this theory after several series of observations. His
work was considered having the most accurate calculations with no involvement of telescopes.
Like Galileo, Brahe came to such conclusion by practicing inductive reasoning. Despite the
possibility that he was being accommodative to the opinion held by the religious and political
authorities at the moment, his findings followed the inductive reasoning paradigm.
Not only in astronomy, Galileo also conducted an investigation in the field of physical

science using Alhazen’s scientific method. In the 17th century, he published a theory called
Galilean Equivalence Principle. It stated that any physical matter originally has the same
velocity when falling to the ground. Galileo argued that the differences were actually caused
by the atmosphere instead of the falling objects themselves. The conclusion came after
investigating the fall of a set of balls made from different materials. His experiments showed
that all balls reached the ground at considerably the same time, after being dropped from
the leaning tower in Pisa, Italy.
Galileo’s theory was further developed by Isaac Newton (1643 - 1727 AD). He agreed to

Galileo’s thought and pushed even further to establish the Theory of Gravity. Centuries

4

1.1 History

afterwards, this line of thought was backed up even more convincingly in 1971 by a NASA
astronaut Dave Scott who landed at the moon. The experiment was done in that non-
atmospheric field using a hammer and a feather, where both fell off his hands and touched
the sands at approximately the same time.
All the aforementioned investigations by Alhazen, Brahe, Galileo and Newton provide some

historical milestones stating that knowledge is created inductively after finding one or more
patterns throughout several instances. Using the same paradigm, various kinds of balls, fruits
(like apples as in Newton’s famous story regarding the theory of gravity), a hammer and a
feather behaved identically. The vertical positions of those objects are affected solely by
gravity. With only a small number of examples, conclusions are made and the result could
be generalized to nearly all physical entities.
Unlike the ancient Greece era nor the years when Galileo conducted his experiments, nowa-

days, scientific observations can be done using machines, namely computers. As the tech-
nology gets more sophisticated, the demand of accuracy as well as safety become the main
issues. Maintaining millions of data, investigating some dangerous and radiated areas, or
simply measuring the speed of a microscopic particle, are some instances of modern activities
assisted by machines. Yet a question follows, is it possible for computers to do something
more analytical, such as discovering a pattern out of the results of observation?
In 1950, a well-known research work namely Turing Test was published [32]. It investigated

the possibility of designing a machine that is capable of imitating human’s behavior. The
experiments were conducted by asking a human interrogator to identify whether a "person"
in another room is a human or a machine. The interaction was done by exchanging texts to
ensure that the interrogator’s judgement was based on the content of the opponent’s response.
Several years afterwards, the issue brought by this "imitation game" is very much still alive,
along with numerous arguments, both supporting and criticizing.
The topic presented in this thesis takes a notion from the idea of imitating human’s behav-

ior, particularly in the process of forming a set of knowledge. Implementing Plato’s concept
to design a mechanism that allows a machine to have pre-birth memory followed by a se-
ries of "internal discovery" would be very difficult. Hence, Aristotle’s paradigm is considered
more suitable for designing intelligent machines, i. e., equipping them with the capability of
building their very own knowledge, inductively.
Designing machines to imitate humans in performing inductive reasoning is a way to build

intelligent entities. However, the validity of an induction largely depends on the comprehen-
siveness of the observation. Practically, machines should be equipped with a capability of
detecting invalid conclusions. Such process plays a very important role in performing induc-
tion, and therefore has to be handled properly. The history of science provides numerous
instances in this matter, where Tycho Brahe’s investigation can be considered as one of the
most notable stories.
The Tychonic system is built using astronomical calculations which are considered the

most accurate, without any involvement of telescopes. A series of observations was made,
denoting the positions of the sun, the planets, and the stars. They were formulated with
respect to the solar calendar. Each angular position was considered as a datum where the
pattern was calculated in a twelve-month interval. Then, Brahe discovered the cycle and
made a conclusion based on the pattern, i. e., the Geo-heliocentric theory.
Arguing against the idea of heliocentrism, the Tychonians insisted that if the earth was

actually revolving around the sun, then there should be a position shift of the stars at some
specific time within a year [14]. This argument was accepted for at least two centuries.

5

Chapter 1 Introduction

However, a German mathematician and astronomer namely Friedrich Bessel (1784 - 1846),
discovered a way to measure the stellar parallax for a star called 61 Cygni in the year 1838.
Using a set of far more sophisticated optical tools than Brahe’s, he found an evidence that
had not been discovered before: a position shift of the star.
This example adds a valuable foundation to the inductive reasoning paradigm. After

finding one or several patterns throughout some sets of data, conclusions are made. Further
observations in the future might either strengthen the induction result, or otherwise, disprove
it. Implementing a capability of making conclusions to a learning system potentially makes
it more complicated. Still, this is a promising concept that has been built and conducted by
the humans for thousands of years, with a potential benefit in the area of machine learning.

1.2 Background

To have an efficient learning process is one of the major interests in computer science, par-
ticularly machine learning. Investigations in this subject have been conducted for several
decades under numerous flags, e. g., more recently, Autonomic Computing [17] and Organic
Computing [28]. Organic Computing (OC) introduces a paradigm that a system should be
equipped sufficiently to be able to develop by itself with a definite possibility of human in-
terference in controlling the process [27]. In OC, this capability is coined with the term
controlled self-organization.
A scenario called the Colored Lines [28] can be used to illustrate self-organizing behavior.

As depicted in Figure 1.4, a number of lines should be sorted, following either height, color
or both attributes. Starting with a random situation (see Figure 1.4(a)), each line should
switch its position with one of its neighbors to achieve the team goal, i. e., forming a height
ascending sequence. So, if an agent observes a taller line on its left-hand side (can also mean
that the other sees a shorter teammate on the opposing side), both of them switch places.
Finally, all lines are sorted according to their heights and the assignment is fulfilled (see
Figure 1.4(b)). Other tasks are also possible, e. g., forming a descending sequence based on
the height, or color-based grouping. Both examples are depicted in Figure 1.4(c) and 1.4(d),
respectively.
Among several possibilities to design machines with a capability of performing such op-

eration, the controlled self-organization concept plays its role as a moderate solution. OC
introduces that paradigm to bridge the classical top-down and the intricate bottom-up ap-
proaches. Hence, an OC system is designed to have certain criteria of freedom, while at the
same time it should also fulfill one or more objectives set by the human. Figure 1.5 provides
an illustration of the concept, in relation to the colored lines task.
One way to compose a system with an ability of fulfilling such task is equipping it with

an external control, as depicted in Figure 1.5(a). Such design is also called "centralized
control", referring to its specific element that has the assignment to make decisions and to
command every line. This top-down approach is commonly simple to design, but at the other
hand difficult to cope with dynamic external changes. In conclusion, this design cannot be
considered as a self-organizing system.
Figure 1.5(b) depicts another idea of a system with its own internal control, a component

that independently makes decisions based on the current situation. Here, each line is con-
sidered as an autonomous agent. Instead of switching places under the command of central
control, each individual observes the environment (in this case is the other agents) and takes
an action. The existence of the "Controller" element within each line indicates that every

6

1.2 Background

(a) Unsorted (b) Sorted: height, ascending

(c) Sorted: height, descending (d) Sorted: color

Figure 1.4: Colored lines

decision is made autonomously, which remarks the idea of a controlled self-organizing system.
To realize the concept, OC employs a so-called generic Observer/Controller architec-

ture [24] (see Figure 1.6(a)). The design involves a so-called System under Observation
and Control (SuOC) and a learning entity comprised of an observer and a controller. After
collecting the environmental data, the observer delivers some information regarding the state
of the controller. Then, an action is executed as an attempt of making a specific state change
at the SuOC. The environmental response after applying the decision is monitored by the
observer, regarded as a feedback. Such generic concept makes further developments possible,
e. g., using layers as in [8].
A desirable feedback from the SuOC indicates that the system response is appropriate.

Otherwise, an unexpected or undesired behavior can be caused by one out of two possibilities:
(1) the action was not chosen adequately, or (2) the observer did not provide the controller
with sufficient information to make an adequate decision. A repetition of the latter may

7

Chapter 1 Introduction

(a) External (b) Internal

Figure 1.5: Type of controls (as in [28])

trigger an execution of "select observation model" functionality that indicates a necessity of
changing the type of data obtained from the SuOC, while the former normally corresponds
to the learning curve.
At its highest level, the system allows a form of external intervention coming from human

or some other external entity. The user always has a full authority to modify the learning
system in several ways, e. g., initiating a change in the desired SuOC state. Such design opens
a chance to modify certain things according to the current needs, which can be different from
time to time.
The concept introduced in this Observer/Controller architecture can be realized using

various machine learning systems, e. g., Artificial Neural Network (ANN) and Accuracy-based
Learning Classifier System (XCS). One of the main difference between ANN and XCS is the
way of maintaining the knowledge. ANN uses sets of variables accompanying its neurons,
while XCS employs rules and collects them in a population. This thesis is composed after a
series of investigations using XCS instead of ANN, due to the ease of translating its population
of knowledge into human language.
XCS begins each learning process after receiving the first input from the environment [35],

or known as the SuOC in OC. The observed state is responded by an action that is advised
by one or more rules satisfying the input. In case the received state cannot be matched by
any rules (e. g., when the population is still empty), a covering mechanism occurs and an
action is picked randomly. Then, the environment sends a feedback awarding the chosen
action based on its suitability to the previously given state. Finally, the reward is used to
update the executed rules, where the change denotes the rules’ quality. Figure 1.6(b) depicts
an illustration of the process.
The knowledge is kept in a population of classifiers (the word is used interchangeably with

"rules"), where each individual contains a pair of IF-THEN parts namely condition and action.
Following a relation "IF the input matches this CONDITION, THEN execute this ACTION",

8

1.2 BackgroundOC Architecture

(a) The generic Observer/Controller architecture in
OC (as in [24])

(b) XCS learns the SuOC

Figure 1.6: OC’s learning architecture and its practical implementation using XCS

the suitability of the pair is denoted by the third attribute, i. e., reward prediction (will be
mentioned as "prediction" afterwards). Involvement of the latter modifies the meaning of
a classifier into "IF the input matches this CONDITION, AND this ACTION is executed,
THEN this is the reward PREDICTION". Along with those three, every rule possesses a
number of book-keeping values for various calculation purposes, which will be explained in
more details in Chapter 2.
Condition is the most complex part of a classifier. Quite often, it is represented in form

of an array where each element is independent of the others. In the early development of
XCS, this part could only contain binary values (as depicted in Figure 1.7(a)). Later, this
was extended to contain ternary, alphabetical, and up to real values (as in Figure 1.7(b)).
Action contains an actual decision of the system, represented by integer values. E. g., a
vehicle might have five possible actions from 0 to 4, where each symbolizes "STAY" and
the directions "NORTH", "EAST", "SOUTH" and "WEST", respectively. Then, prediction
indicates the suitability of its condition and the action. A rule is considered accurate if the
value of its prediction adequately reflects the suitability of the pair.
Since the knowledge is kept in rules, the more lessons learned also means the greater number

of individuals are required. Moreover, if the system has to consider several details to make
proper decisions, then the condition should be consisting of sufficient number of elements
to cover them all. Such requirement increases the complexity of managing the knowledge.
Also, the usage of the resources may get significantly high, making the process become less
efficient.
The issue of over-populated knowledge is responded with the concept of wildcard. A wild-

card makes a rule more general by extending the input coverage. E. g., a set of values "01001#"
shown in Figure 1.7(c) can act as both "010010" and "010011" at the same time. In handling
real-valued inputs, the symbolization of generality is expressed using intervals. Figure 1.7(d)
depicts an example where the second element of the array is generalized, indicated by an

9

Chapter 1 IntroductionClassifiers - intro

0 1 0 0 1 0 0 : 1000

Condition Action Prediction

0.6 3 : 50 3.2 1.4 7.1

0 1 0 0 1 # 0 : 1000

Condition Action Prediction

Condition Action Prediction

0.6 3 : 50 3.2 1.4;2.5 7.1

Condition Action Prediction

(a) Binary values

Classifiers - intro

0 1 0 0 1 0 0 : 1000

Condition Action Prediction

0.6 3 : 50 3.2 1.4 7.1

0 1 0 0 1 # 0 : 1000

Condition Action Prediction

Condition Action Prediction

0.6 3 : 50 3.2 1.4;2.5 7.1

Condition Action Prediction

(b) Real values

Classifiers - intro

0 1 0 0 1 0 0 : 1000

Condition Action Prediction

0.6 3 : 50 3.2 1.4 7.1

0 1 0 0 1 # 0 : 1000

Condition Action Prediction

Condition Action Prediction

0.6 3 : 50 3.2 1.4;2.5 7.1

Condition Action Prediction
(c) Binary values with a wildcard

Classifiers - intro

0 1 0 0 1 0 0 : 1000

Condition Action Prediction

0.6 3 : 50 3.2 1.4 7.1

0 1 0 0 1 # 0 : 1000

Condition Action Prediction

Condition Action Prediction

0.6 3 : 50 3.2 1.4;2.5 7.1

Condition Action Prediction

(d) Real values with an interval

Figure 1.7: Types of classifier’s condition

interval ranging from 1.4 to 2.5. The number of wildcards, as well as the width of intervals,
determines the degree of generality owned by a rule.

Food

Robot example

0 0 0 1 1 0

Danger

L A R L A R

Don’t care whether there’s
danger on the right

0 # # 1 1 0

Don’t care whether there’s
food ahead

Wildcard
Input

(a) Intersection

Food

Robot example

0 0 0 1 1 0

Danger

L A R L A R

Don’t care whether there’s
danger on the right

0 # # 1 1 0

Don’t care whether there’s
food ahead

Wildcard
Input

(b) Observation result

Food

Robot example

0 0 0 1 1 0

Danger

L A R L A R

Don’t care whether there’s
danger on the right

0 # # 1 1 0

Don’t care whether there’s
food ahead

Wildcard
Input

(c) Decision

Figure 1.8: A robot should make a decision

Figure 1.8 illustrates an example of a decision making process. A robot coming from the
western side of an intersection is about to choose a direction to go. The task is simple: (1)
find some food; and (2) avoid dangerous obstacles. As of this moment, three options are
available: (1) turn left to the North; (2) go forward to the East; or (3) turn right to the
South. As shown in Figure 1.8(a), some food (symbolized by a heart) is available at the
North, while an obstacle lays in the East.
Then, Figure 1.8(b) depicts the result of the robot’s observation. The observed environment

is coded into an array consisting of six elements. The values of the first three bits are defined
by the existence of dangerous obstacles, while the others denote food availability. Each bit
represents a specific direction, i. e., left (in this case is the North), ahead (the East) and right
(the South), respectively. So, the first part of the observation result ("010") means "there is a
dangerous obstacle ahead" and the rest ("100") represents "some food is available on the left".
Figure 1.8(c) depicts the robot’s decision to turn left as expected. Hence, a full classifier
representing the lesson for this situation is symbolized by ”010100 : LEFT → HIGH”
meaning "IF there is a dangerous obstacle ahead AND some food is available on the left AND
the action is LEFT, THEN the reward prediction is HIGH" (in the actual rules, actions and
predictions are expressed in integers and real values, respectively).
A single classifier can map the robot’s situation perfectly. However, since the possible states

that may occur during the learning process are numerous, an issue regarding overpopulation
arises. The wildcard concept may provide the solution for this matter. Now, one very

10

1.3 Motivation

important task is left: the system should have the capability of identifying elements that
can be generalized and those which must be left specific. Surprisingly, there are very few
investigations on XCS that address this generalization issue very convincingly. The lack of
solutions brings the idea that is pursued in this thesis, where the details are discussed in the
following section.

1.3 Motivation

As an online learning system, XCS suits the needs of implementing the Observer/Controller
architecture. It is capable of providing an action (output) directly after an input is received
from the environment. Every time after a response is sent by the system, the environment
delivers a reward to XCS. The feedback judges the suitability of the latest decision with
respect to the previously given input. The received reward is essential for XCS to build its
knowledge using a set of rules. The population is expected to contain sufficient information,
while at the other hand the usage of resources should be kept minimal.
In XCS, generalization plays a central role in reducing space requirements. By disregarding

insignificant (and moreover irrelevant) details, rules become more general without lowering
their accuracy. Therefore, the maximal advantage of wildcards can only be achieved if the
system has the capability of detecting insignificant data. Several investigations have been
conducted to address this matter (e. g., [6] and [7]). Mostly, the works attempt to solve
the difficulties of determining the most suitable parameter values for generalizing the rules.
Some others went to the direction of modifying the system, e. g., using additional operators
(as in [20]) or architectural components (e. g., as in [25]). The approach presented in this
thesis goes towards this "proper generalization" direction by offering a different approach,
i. e., an adaptation of the induction concept.
Referring back to the robot/intersection scenario depicted in Figure 1.8(a), an action is

taken by the robot in response to a simple environmental state. In order to learn the occurring
state, XCS requires at least three classifiers with varying actions: left, ahead, and right.
Obviously, the highest reward would be given to the rule advocating "left". Aside from the
given example, there are various situations that get optimally responded by taking the same
action. Unfortunately, although the difference is slight, the robot would have to learn all
states, one at a time. The learned knowledge is kept in three separate rules, making the
process both space and time consuming.
Figure 1.9 illustrates some possible situations that would earn a high reward after being

responded the same way with the one depicted in Figure 1.8(a). All of them have a common
solution, i. e., take a left turn to the North. Without generalizations, each of the states
"010100", "011100", "010110" and "011110" is assigned with three possible actions, making a
total of 12 separate individuals. This means, that the system would require at least 12 learning
cycles to record them all, which is considerably inefficient. Such requirement can be reduced
by implementing the wildcard concept. To replace those rules, three generalized classifiers
having conditions "01#1#0" and varying actions would suffice. This way, a reduction of the
space requirement can be achieved without removing any learned lessons.
Now, there is a consequence of applying generalization to the classifiers. To keep the

system behave appropriately, all wildcards should be placed at the correct positions. A
misplaced wildcard causes the owning rule to be over-general, or in other words, containing
a biased knowledge. E. g., in the previous robot/intersection scenario, placing wildcards
at a direction where the danger is present (i. e., "0#01#0") is undesirable. Such condition

11

Chapter 1 Introduction

Food

Robot example

0 0 0 1 1 0

Danger

L A R L A R

Input

0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0

(a) Additional obstacle in the
south

Food

Robot example

0 0 0 1 1 0

Danger

L A R L A R

Input

0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0

(b) Additional food in the east

Food

Robot example

0 0 0 1 1 0

Danger

L A R L A R

Input

0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0

(c) Combination

Figure 1.9: Alternate environmental situations

completely disobeys the situation at the East and obviously decreases the comprehensiveness
of the knowledge. The cost is not only the time required to relearn the situation, but also
some usage of space.
In the original XCS, the placement of wildcards occurs at two separate occasions, namely,

while covering an input and updating the classifiers. When an input is received, the system
checks whether it has been learned. Covering plays its role if the population currently has
no information about the state. If that happens, XCS performs a randomization and uses a
probability variable to determine whether to cover each element either using a wildcard or
the original state.
Figure 1.10 visualizes how an input is covered using a 25% wildcard probability, which also

means that there is a 75% possibility of putting the original value. Each red line denotes
the result of a randomization. When it lies in the black area, the corresponding bit would
contain a wildcard. Otherwise, the original value is used to cover the current input bit.
Finally, the randomization provides a result that makes the system cover the input with
"#101#0" instead of the original values "010100".

Covering wildcard

0 0 0 1 1 0

Input

Covering

0 0 0 1 1 0

0 1 1 0

Coverage

Figure 1.10: An input is covered using a 25% wildcard probability

The random process in covering has a drawback that it potentially causes some inaccuracy
for the created rule. Suppose such coverage is performed by the robot in Figure 1.8, important
information is lost (i. e., danger at left and food ahead). There is also an extreme possibility
that the input is covered with six wildcards (i. e., "######"). Although the probability

12

1.4 Contribution

for such an "accident" can be considered very small, the coverage mechanism still allows such
thing to occur.
To minimize the effect of misplaced wildcards, XCS is equipped with a rule manipulation

procedure, i. e., Darwinian genetic operators. While updating the classifiers, XCS attempts
to increase the quality of the rule by performing mutations and crossovers. Different from
covering, these techniques consider the accuracy of each rule before selecting it as one of the
parents.
Genetic operation plays its role in attempting to find good rules by creating a child based

on the already existing ones. Such technique may increase the learning speed in finding
favorable rules. However, some randomization is also involved here. The random process does
not only affect the placement of wildcards, but also the overall learning process of the system.
Moreover, employing Darwinian genetic operators also makes XCS more complicated, denoted
by the number of required parameters (and also a series of experiments) in the attempts of
discovering general and accurate rules.
So, although the additional method assists the system in generalizing rules, it still has

a potential of slowing down the overall learning process. In this thesis, a method called
Rule Combining (RC) is proposed to replace the approach to generalization used in the orig-
inal XCS. It eliminates the negative impacts of randomizations by replacing them with a
heuristic-based genetic operator. Adapted from the induction concept, RC attempts to dis-
cover general and accurate rules by making conclusions based only on the learned knowledge.
More information regarding that is provided in the following section.

1.4 Contribution

This thesis describes the effects of modifications to the classifier systems. A series of sim-
ulations shows that XCS-RC is capable of providing a set of results that indicates some
significant improvements compared to the original XCS. The achievement is gained by im-
plementing three mechanisms that are designed based on lessons taught by the history of
science: induction, experiment and knowledge correction.
In XCS, the general term induction is implemented using a name "Rule Combining". It is

implemented by taking some values from a pair of parents and used them to conclude the
properties of the child. Firstly, the system should identify any underlying patterns within a set
of experienced rules. In case one or more are found, a generalized offspring is produced based
upon them. Then, the system examines the newly created rule, looking for any contradicting
knowledge. The inexistence of such disproving rule implies that the child is a valid conclusion
and therefore allowed to enter the population, replacing a number of "older" classifiers.
However, there is still a possibility of performing a hasty generalization. Although an

examination is run, a child might be created based on insufficient amount of information. In
other words, an invalid conclusion might be accepted due to the inexistence of disprovals.
Figure 1.11 illustrates this matter using a timeline. A child might pass the examination
mechanism, but later afterwards, a single unlearned knowledge might dissolve the knowledge.
Two approaches are prepared to overcome the disadvantageous situation, i. e., preventive

and correction. As an anticipation, the system attempts to gather more knowledge by con-
ducting experiments. Every time there is a chance to gain a new lesson by picking one or
more inexperienced rules, the system prioritizes such decision. This approach increases the
comprehensiveness of the system’s knowledge, leading to a lower chance of hastiness.
Unfortunately, simulations show that such preventive technique cannot guarantee that the

13

Chapter 1 Introduction

Figure 1.11: Hastiness presented using a timeline

problem is automatically solved. Some indications of producing hasty children still appear.
To handle this matter appropriately, XCS-RC is equipped with a knowledge correction mech-
anism. Whenever a classifier is identified hasty, the system eliminates the invalid knowledge
and replaces it with a new rule.
The concept of knowledge correction is adapted based on the history regarding the Tychonic

system, where a new discovery disproved the conclusion that was made centuries before. This
gives a significant contribution to the system, making its knowledge more comprehensive.
Some detailed descriptions regarding these modifications are given in Chapter 3.
XCS-RC is equipped with the capabilities of performing inductions, experiments, and

knowledge corrections. To deliver some early insights regarding the contribution, some com-
parisons are provided here. Graphics are presented from a number of observation data ob-
tained from a series of simulations, where XCS-RC and the original XCS are run using an
identical set of parameters and settings. A full explanation of the experiments and the cor-
responding results is given in Chapter 5.
A scenario called multiplexer is chosen here, due to its suitability for playing the testing

role. Moreover, this task is used by Stewart Wilson as a standard XCS testing problem for
handling environments consisting of both binaries (see [35, 36]) and real values (as in [37]).
The judgement is determined by observing two indicators: performance and population size.
The former denotes correctness rate which should be maximized, while the latter depicts
the number of classifiers required to gain such result and should be minimized. In case both
systems is capable of achieving those goals, the one with a quicker learning rate is pronounced
as the winner.
Figure 1.12 depicts the results provided by both systems playing a multiplexer role with

20 bits of input, visualized based on an average out of 20 runs. Both systems indicate a success
in performing a 100% correctness rate (see Figure 1.12(a)). However, XCS-RC reaches the
expected value by requiring smaller number of learning cycles compared to the opponent.
Figure 1.12(b) illustrates another advantage of employing RC, showing the ability of the
proposed method in significantly reducing the population size. Therefore, it is fair to state
that the proposed system is an improvement from the original XCS, where the difference
highly depends on the success of induction.

1.5 Guide for Readers
For a comfortable way of reading this thesis, the writing is structured this way: the in-
troductory chapter opens the thought by providing some philosophical foundations, a brief
description of the issues and how this thesis addresses it by proposing a novel solution. Chap-
ter 2 provides the binary-mode XCS, beginning with a flashback, followed by some detailed

14

1.6 Acknowledgement

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000 5000

C
o

rr
e

ct
n

es
s

ra
te

Explore trials

XCS with Rule Combining Original XCS

Label

(a) Performance (b) Population size

Figure 1.12: Results for 20-bit binary multiplexers

explanations about the original technique.
Then, Chapter 3 continues the discussion by presenting the proposed RC method, brings up

the novel improvement of XCS which reconstructs the basic mechanism of its rule discovery
functionality. Following afterwards, Chapter 4 presents the XCSR, a real-valued mode XCS,
along with some modifications of XCS-RC to add the capability of handling such problems.
To evaluate the proposed method, several comparisons between XCS (and some of the vari-

ants) and XCS-RC for binary and real values are described in Chapter 5, using a number of
known scenarios. Chapter 6 introduces the capability of the proposed system in performing
feature selection, which can only be obtained from classifier systems with a powerful general-
ization capability. Finally, Chapter 7 summarizes this thesis by presenting some conclusions
and foreseen outlooks for future works.

1.6 Acknowledgement
The conducted investigations and the writing of this thesis are financially supported by the
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the priority
program DFG-1183 Organic Computing. Some of the works have been published in a close
cooperation between the research group of Prof. Dr. Hartmut Schmeck from Karlsruhe
Institute of Technology in Karlsruhe, Germany and the group of Prof. Dr.-Ing. Christian
Müller-Schloer from Leibniz Universität in Hannover, Germany.

15

CHAPTER 2
ACCURACY-BASED LEARNING CLASSIFIER SYSTEM

"He who learns but does not think,
is lost. He who thinks but does
not learn, is in great danger."

(Confucius)
Nowadays, machines play a major role in assisting humans, either directly in daily activ-

ities or indirectly such as through industrial productions. This involves the capability of
machines in performing various learning processes, especially in handling complex problems.
The advancement of technology brings the world to a direction that requires an intelligent
behavior performed by computers and gadgets. Within the scope of answering such challenge,
this thesis proposes a novel paradigm of machine intelligence, derived from the concept of
induction. Its aim is to improve a well-known machine learning technique, Accuracy-based
Learning Classifier System known as XCS, a variant of Learning Classifier System (LCS).
LCS was introduced by John H. Holland in 1976 as an online learning method that main-

tains a number of rules called classifiers. Each individual in the population is equipped with a
pair of attributes namely condition and action, performing an "IF-THEN" functionality. The
suitability of the action in responding to the condition is expressed by the third attribute,
namely reward prediction (commonly mentioned as prediction). LCS retrieves inputs from
the environment in form of an array of binaries, where each bit represents a specific meaning.
The input length follows the number of observed states in the environment.
There are three functionalities employed in Holland’s LCS [2], i. e., discovery, credit assign-

ment and classifier system itself. As seen in Figure 2.1(a), the environment is observed by an
input interface and the result is collected in a so-called message list. After receiving a number
of inputs, the list is compared to another set called rule list (or rule base). Classifiers in the
rule list that satisfy at least one input are grouped based on their actions. After choosing
an output, rules advocating the winning action are collected in a specific set. This collection
becomes the new message list and replaces the old one (see Figure 2.1(b)).
The chosen action is delivered to an output interface. When the payoff is received, the

credit assignment updates the attribute indicating the quality of the winning rules using the
Bucket Brigade algorithm. At the other part of the system, genetic operators attempt to
pick some good rules before processing them in order to obtain some better ones. In this
initial version of LCS, the quality of a rule is solely determined by the value of the payoffs it
receives.

17

Chapter 2 Accuracy-based Learning Classifier System

(a) Organization (b) Basic parts

Figure 2.1: Holland’s LCS as explained in [2]

Shortly afterwards in 1978, an improvement of LCS was introduced by Holland and Re-
itmann (in [15]). Here, a so-called fitness attribute is employed to denote the accuracy of a
classifier in predicting the external feedback [3]. So, in this improved version of LCS, a lower
reward does not indicate that the corresponding rule is less useful. Instead, it represents the
quality of the classifier in predicting the payoff. This point remarks the first modification of
LCS and becomes the basis of the accuracy-based variant introduced by Wilson in 1995.

2.1 Overview
XCS is oftenly considered as one of the most successful variants of LCS. Commonly starting
with an empty knowledge, a learning agent attempts to behave intelligently in responding
to every observed environmental state. The knowledge is gained by obtaining judgements
from the environment in form of quantitative rewards, denoting the suitability of the system
response to the received state. A high feedback value implies that the response is suitable, a
higher one means better, while a lower payoff indicates that the chosen action is less desirable.
Figure 2.2 depicts the mechanism of XCS in schematic representation. It retrieves input in

form of an array where each element contains a binary value, either "0" or "1". Every time a
state is received, the system executes a specific decision making procedure to pick one of the
available responses. The number of possible actions is defined by the user, symbolized by a.
The learning process starts when the system receives the first environmental state. When

an input is received, a matching attempt is conducted. Here, the system examines the
population of rules (or population, commonly symbolized by [P]) and collects classifiers that
satisfy the input in a so-called match set [M]. In case the number of available actions in [M]
is less than a (including when the number of matching rules is zero), a covering mechanism
is executed. XCS composes one or more new classifiers and sets their condition attributes
based on the input. The newly created rules are stored into [P] and collected in [M] at the
same time.
In the match set, XCS performs a so-called action selection step to choose one of the avail-

able outputs. The process of picking a winning action is executed either using exploitation
or exploration technique. Exploiting means that the system deterministically chooses an ac-

18

2.1 Overview

Figure 2.2: XCS full cycle

tion with the highest predicted payoff, while exploring is commonly used to examine other
options. Then, one or more rules advocating the winning output enter a so-called action set
[A], and the response is sent to the environment. Afterwards, the system prepares to receive
a feedback.
The environment judges the quality of the chosen action according to its suitability in

responding to the previously given state. Then, XCS uses the received feedback to update
the classifiers in [A]. If the output is desirable, then the payoff tends to be high. Otherwise,
a lower feedback is sent. This part is called a reinforcement step, executed following the Q-
Learning method proposed byWatkins [33]. The result of the update is calculated by weighing
the old value and the incoming reward. Finally, the learning cycle closes by restoring the
updated rules to [P].
There are three main components of XCS, i. e., performance, reinforcement and discovery.

Each part plays its role differently, despite the strong connection among them. The perfor-
mance component is assigned with the task of responding to the input with an appropriate
output. It checks the population for matching classifiers, stores those rules to the match set,
picks a winning action and executes it. The reinforcement part is implemented through rule
updates. After receiving the payoff from the environment, XCS calculates the new values of
the classifier’s attributes accordingly.
The third component, discovery, is responsible to produce general and accurate rules.

Generality denotes the capability of the rule in covering numerous states, while accuracy
indicates the suitability of its prediction in reflecting the condition-action pair. A rule that is
capable of covering several states but at the same time inaccurate is expressed using a term
over-general.
In the implementation, the discovery component consists of four techniques, i. e., cover-

ing, genetic operation, subsumption and deletion. As previously explained, covering has an
assignment to create rules at the early stage of the learning cycle. After some time, the
population commonly consists of a great number of classifiers. When the population size
exceeds a user-defined threshold N , the deletion plays its role by removing some rules having
low accuracy from [P]. The genetic operation attempts to create some good rules by ma-

19

Chapter 2 Accuracy-based Learning Classifier System

nipulating the condition values of some parent classifiers, while subsumption has the task to
eliminate any indications of rule redundancy. Now, to provide a clear description regarding
the system, the following section explains each attribute owned by a classifier.

2.2 Classifier

XCS stores its knowledge in form of classifiers and collects them in [P]. Each rule is equipped
with a set of attributes. Among those, the main roles can be expressed as an "IF", a "THEN"
and a value indicating the suitability of the pair. The "IF" part is condition, commonly
symbolized with cl.C, an array whose elements are independent of each other. Different from
that, the "THEN" part named action (cl.A), is commonly expressed by an integer. Although,
basically, any expressions denoting an output are also suitable (e. g., "LEFT" or "STOP").
The pairing condition-action guides the system to respond to the received states. So, the

third attribute named reward prediction (commonly mentioned as prediction and symbolized
by cl.P) is preserved to keep the suitability judgement of the pair. If cl.A is a desirable
response to one or more states covered by cl.C, then the value of cl.P would be relatively
high. Otherwise, an unsuitable action in responding to the condition is indicated by a low
prediction value. Hence, the relation involving the three main attributes can be expressed
using a sentence "IF the input matches cl.C AND the action is cl.A, THEN the reward
prediction is cl.P ".
Figure 2.3(a) illustrates a common way to symbolize a classifier, i. e., by using the notation

"cl.C : cl.A → cl.P " (e. g., ”010010 : 0 → 1000”). In the early development of XCS, each
element in the condition could only contain either a binary (i. e., "0" and "1") or a wildcard
("#"). Later afterwards, a number of variants was developed to handle various input types,
e. g., continuous values [37].

(a) Three main attributes owned by cli (b) cli.C with two wildcards

Figure 2.3: A classifier cli

A wildcard expresses the generality of a particular bit. Since a "#" plays both roles as
"0" and "1", a generalized classifier is capable of matching more than a state. Each wildcard
multiplies the rule’s coverage by two, e. g., a classifier cli depicted in Figure 2.3(b). Such rule
is able to match four possible inputs (i. e., "010000", "010010", "011000" and "011010"). Any
appearance of those states leads cli to entering the match set, with a further chance of being
chosen to enter the action set.
After an action is executed, classifiers in the action set are updated following a received

payoff P . Then, the system calculates new values of three attributes, i. e., cl.P , fitness cl.F ,
and prediction error cl.ε. The cl.P is updated following a formula adapted from the Q-
Learning technique (more details in Section 2.5). As a usefulness indicator, cl.F denotes a
classifier’s relative accuracy in comparison to the other [A] members. When the size of [P]
exceeds the threshold, the value of cl.F becomes a decisive factor for the rule deletion process.
Then, cl.ε is assigned with

∑
|P − cl.P | ÷ cl.exp, where cl.exp refers to the rule’s experience,

denoting how many times it enters [A].

20

2.3 System parameters

To anticipate two or more classifiers having similar attribute values, XCS introduces the
so-called numerosity attribute cl.num. Its value expresses the number of identical rules in
[P]. In performing the learning cycles, some discovery processes (e. g., Darwinian genetic
operation) may create rules having the pair condition-action whose values are identical to
an existing classifier. When this occurs, the system keeps only one of the classifiers and
eliminates the others. To compensate the missing rules, the value of cl.num owned by the
survived one is incremented by the number of eliminated individuals.
A classifier having cl.num > 1 is called a macro-classifier. The opposite, i. e., each individ-

ual contained by a macro-classifier, is a micro-classifier. When a rule cli with cli.num > 1
is chosen to be removed (e. g., when the population size exceeds the allowed amount), the
system simply decrements cli.num by one. Contrary to that, if a deleted classifier clj having a
numerosity clj .num = 1, then clj is completely removed from the population. As a summary,
Table 2.1 provides the list of attributes owned by a classifier.

Table 2.1: Attributes of a classifier

Symbol Name Description
cl.C Condition Plays the "IF" role
cl.A Action Plays the "THEN" role
cl.P (Reward) prediction Suitability judgement of the "IF-THEN" pair
cl.F Fitness Usefulness level
cl.ε Prediction error Average of difference between cl.P and the payoff
cl.exp Experience Counter for entering [A]
cl.num Numerosity Number of identical classifiers

The population of rules represents XCS’s knowledge, i. e., the learned lesson from the
environment. Since XCS is designed to solve a wide variety of problems, a set of user-defined
parameters is provided. An adequate set of parameter values leads XCS to perform optimally
in reaching the assigned goal. Therefore, a section focusing on the discussion of the system
parameters is provided as follows.

2.3 System parameters
A learning system should be designed to face various levels of tasks, from a simple problem
to the complex ones. Based on such idea, a set of user-defined parameters is provided for
adjustment purposes. Assigning appropriate values to those variables leads the system to
its optimal performance. Table 2.2 contains a list of XCS’s system parameters, summarized
from [35,36] and [4]. For ease of understanding, the list is presented in five groups indicating
the parameter’s assignment or its contribution to the learning process.
The first group "Initialization" consists of three variables. They determine the default

values of some classifier’s attributes when the rule is created. Firstly, the value of pI remarks
the initial reward prediction cl.P . The prediction error cl.ε follows εI , while FI becomes the
fitness value cl.F . In most XCS variants, the values of these parameters have very small
effect to the learning process, if not none. This is due to the mechanism employed by XCS,
which commonly gives very small role to the initial settings by not involving them in further
calculations.
The four parameters grouped into "learning and fitness evaluation" play their role in a

central part of the learning process. The values determine how XCS calculates the new

21

Chapter 2 Accuracy-based Learning Classifier System

Table 2.2: XCS parameters

Group Symbol Name / Function

Initialization
pI Classifier’s reward prediction
εI Classifier’s prediction error
FI Classifier’s fitness

Learning and
fitness evaluation

α Accuracy distinction rate
ν Power function
ε0 Accuracy threshold
β Learning rate

Discovery

P# Wildcard covering probability
θGA GO threshold
pX Crossover probability
pM Mutation probability

(unsymbolized) GO prediction error reduction
(unsymbolized) GO fitness reduction

Population size
reduction

N Maximal population size
δ Fitness threshold for deletion
θdel Deletion threshold
θsub Minimal experience to subsume

Multi-step γ Discount rate (for multi-step)
(unsymbolized) Teletransportation (for multi-step)

fitness of a classifier after receiving a payoff. More details regarding this matter are discussed
in Section 2.5. Specifically for β, it is also involved in determining a "preparation time" for
new rules, before a "normal" calculation is applied to them.
Six parameters are included in the "discovery" group, where five of them are related to

the genetic operation (the term "Genetic Algorithm" or "GA" is used to preserve the orig-
inal name). There are two unsymbolized parameters that are only used in the algorithmic
implementation (source code). Meanwhile, the parameter P# does not have any relation to
genetic processes. It expresses a probability variable for determining whether an element of
the input is covered using a wildcard or the original value. A higher value of P# indicates a
greater chance of performing generalization in covering.
Continuing to the "population size reduction" group, each of the four parameters in this

category plays specific role in performing subsumption and deletion. While the latter means
eliminating a micro-classifier or subtracting a macro-classifier’s numerosity by one, the for-
mer refers to deleting a rule and storing its attribute values to the subsuming classifier. A
subsumer is always more general than the ones being subsumed. E. g., a rule ”01#” : 0→ 100
is allowed to subsume other classifier having a condition either "010" or "011", as long as they
have the same action. Then, the parameter N denotes the maximally allowed number of
classifiers in [P]. When the population size exceeds N , XCS performs a deletion process by
picking some rules and removing them from the population (or decrementing the numerosity).
The two parameters in the last group are preserved for multi-step tasks. Figure 2.4(a)

and 2.4(b) illustrate the difference between the single and the multi-step operations. While
the former always receives a payoff directly after executing an action, the latter regulates
the reward mechanism differently. In a multi-step task, the payoffs are received after a series
of steps. A learning cycle closes when a specific condition is met. The environment sends

22

2.4 Performance component

(a) Single-step: directly after completing a cycle

(b) Multi-step: distributed to a number of previous steps

Figure 2.4: Reward assignment in single and multi-step problems

the feedback and the system distributes the payoff to all uncredited classifiers which were
executed.
Finally, an unsymbolized variable namely teletransportation is prepared as a threshold for

the number of steps. XCS uses this parameter as a way to terminate the current process
and to close a learning cycle. A suitable example for this type of scenario is provided in
Subsection 5.2.4, where a virtual entity called "animat" attempts to find the quickest way
to some food. The reward is given once the food is "eaten", or when the animat keeps
wandering around until the number of steps exceeds the value of teletransportation. Then,
the last parameter in this group is γ. It denotes a discount rate for the multi-step scenarios,
which is handled differently to the single-step tasks.
A suitable set of parameter values enables the system to learn the given problem properly.

A good performance means that every received state is responded appropriately, denoted by
the highest possible reward. In processing every input, the system involves three components,
i. e., performance, reinforcement and discovery. Each of them has a specific job, as discussed
in the following section.

2.4 Performance component

The term performance component refers to a straightforward process involving the population
[P], the match set [M] and the action set [A]. This part is also responsible for all activities
connecting those sets. When the system receives an input, the state is compared to all
classifiers in [P]. Matching individuals enter [M], where one of the available outputs is
chosen in the action selection step. Then, one or more rules advocating the winning output
enter [A] and the chosen response is executed.
Figure 2.5 depicts an example where XCS having four possible outputs (i. e., 0 to 3) receives

an input x = ”1001” from the environment. Since none of five matching classifiers in [P]
advocates "2", a new rule cl10 = ”1#01 : 2→ 10.0” is created (marked with an asterisk). The

23

Chapter 2 Accuracy-based Learning Classifier System

initial values of cl10.P and cl10.F follows the user-defined parameters PI and FI , respectively.

Figure 2.5: Performance component of XCS

All six individuals that satisfy the input are collected in [M], including the newly created
cl10. Then, a so-called prediction array (PA) is composed in four elements, following the
number of possible actions. Each PA[k] contains an average of the fitness-proportionate
value of all cli.P where cli.A = k, using a formula depicted in Equation 2.1.

Pi = Σcl.P × cl.F
Σcl.F (2.1)

In general, two options are available to determine the winner, i. e., exploitation and explo-
ration modes. The former assigns XCS to pursue the most advantageous payoff by picking
the highest PA[k] value and executes the action k. Figure 2.5 depicts XCS’s effort to max-
imize the feedback by choosing the action "1", following the highest value owned by PA[1].
In case more than one PA members currently have the highest value, XCS picks one of them
randomly.

(a) Roulette wheel (b) Uniform

Figure 2.6: Probabilities in explorative action selection

Different to that, doing an explorative selection means that the system is allowed to select
any available action. One of the aim in using this mode is to observe the suitability of
an output to a specific state that is currently received. Figure 2.6 displays the graphical

24

2.5 Reinforcement component

representation of the probabilities based on the case depicted in Figure 2.5. The roulette
wheel is composed using the proportions from the set of values in PA. This means, a better
action has a greater probability to be picked. Different to that, the uniform probability
distribution simply gives all options an equal opportunity to be chosen.
After an action is selected, the corresponding classifiers enter [A] and the output is fired.

Then, the environment sends a feedback to the system as a judgement of the chosen output.
The reward is used by XCS for calculating some attributes owned by the classifiers in [A].
This is a part of the reinforcement component, and the details are provided in the following
section.

2.5 Reinforcement component

Feedback is one of the key factors in determining the success of XCS in learning the environ-
ment. By examining the payoff P , XCS discovers the suitability level of the condition-action
pair owned by the chosen classifiers. A high reward means that the action is a desirable
response to the received state, while a low one expresses its unsuitability. Then, XCS calcu-
lates and updates the values of cl.P , cl.F , and cl.ε owned by the rules in [A]. The updated
classifiers return to the population and this moment remarks an additional lesson learned by
the system (see Figure 2.7).

Figure 2.7: Reinforcement component of XCS

The updates of prediction cl.P and prediction error cl.ε follow two formulas provided in
Equation 2.2 and 2.3, respectively. The determining variables in the process are the classifier’s
experience cl.exp and the parameter β. Both equations indicate that XCS does not apply
"normal" calculation to new rules. But instead, it minimizes the effect of the initial values
by employing some preparatory phase. Different to the ones applied to cl.P and cl.ε, the
calculation for cl.F is slightly more complicated.

cl.P =

cl.P × (cl.exp− 1) + cl.P

cl.exp if cl.exp < 1
β ,

cl.P + β × (P − cl.P) otherwise

(2.2)

25

Chapter 2 Accuracy-based Learning Classifier System

cl.ε =

cl.ε× (cl.exp− 1) + |P − cl.P |

cl.num if cl.exp < 1
β ,

cl.ε+ β × (|P − cl.P | − cl.ε) otherwise

(2.3)

The usefulness rate of a classifier cli is indicated by the value of cli.F . A closer value to 1.0
means a higher chance of survival against deletions owned by the corresponding classifier.
XCS updates the fitness attribute by involving all rules in [A], starting with a calculation for
accuracy κi belonging to each classifier cli, as depicted by Equation 2.4. Then, it continues
to determine the value of each rule’s relative accuracy κ′i (see Equation 2.5).

κi =

α×
(
cli.ε
ε0

)−ν
if cli.ε ≥ ε0,

1 otherwise
(2.4)

κ′i = κi
Σκi

(2.5)

cli.F =

cli.F + β(κ′i − cli.F) if cli.exp ≥ 1

β ,

κ′i,t−1 + κ′i,t
2 otherwise

(2.6)

Finally, the value of each cli.F is defined using Equation 2.6. One might say that by
determining cl.F this way, its value does not actually reflect a true fitness of a classifier. The
argument is based on the fact that the process only involves classifiers that are currently
entering [A]. Addressing this matter, Wilson argues that such calculation would lead rules
with higher fitness to be included in the discovery processes, i. e., genetic operations [35].
This way, the relativity of cl.F pushes the rule to have more offspring and to stay survive.
To provide the full description on the discovery component, a detailed discussion is presented
as follows.

2.6 Discovery component
The discovery element is responsible for producing desirable classifiers, expressed by their
generality and accuracy. Technically, this component has a task to put a sufficient number
of wildcards at proper positions in a classifier’s condition. A success of doing this assignment
leads to a reduction of the population size. This point remarks the solution offered by this
thesis,presenting a novel way of performing generalizations, i. e., by implementing the concept
of induction.
Highly qualified classifiers enable the system to maximize its learning rate, as well as to

minimize the occupied storage for keeping the knowledge. This aim has been targeted by nu-
merous works, although very few of them were able to achieve both satisfying and convincing
results. Butz et al., attempted to approach the solution by identifying and analyzing the evo-
lutionary pressures in XCS [7], thereby supporting the theoretical understanding of Wilson’s
hypothesis. In [20], Lanzi provided a number of insights on the system configuration, while
some other works attempt to identify the available rooms for further improvements (e. g., by
modifying the process of deletion [18] and the selection schemes [6]). All of them successfully
contributed to the development and improvement of XCS, while this thesis proposes another
option using a very different approach.

26

2.6 Discovery component

Before continuing the discussion further, a detailed description regarding the techniques in
the discovery component of XCS is presented as follows:

Covering Covering occurs for an input x if the classifiers in [M] represent less than a pre-
defined number of different actions. During covering, additional matching rules are
created. Depending on the value of P#, wildcards are inserted in a new classifier’s
condition so it matches a set of inputs including x. The chance of having a wildcard
between the bits are independent of each other, making it possible to cover the input
as it is, or even having all bits containing wildcards (see Figure 2.8). In creating a
rule, the values of its prediction, prediction error, and fitness are initialized with the
defaults, i. e., the parameters PI , εI and FI , respectively.

Figure 2.8: Covering an input

Genetic operators Crossovers and mutations are applied to classifiers in the action set if
the average time since their last genetic modification exceeds a threshold θGA. In this
case, parent classifiers are selected using fitness-proportionate [35,36] or tournament [6]
selection. From the selected parents, a number of offsprings are created using mutation
and crossover, as shown in Figure 2.9.

Subsumption When inserting newly created classifiers into [P] or when building [A], sub-
sumption may occur. A rule cli may be subsumed by clj if cli.A = clj .A and clj is
sufficiently accurate (with respect to clj .ε) and experienced (denoted by clj .exp ≥ θsub).
If so, cli is deleted and its numerosity cli.num is added to clj .num.

Deletion To keep the population within its allowed size N , the system deletes a number
of rules when the threshold is exceeded. A classifier is selected for deletion with a
probability that is proportional to the average size of the action sets it was part of.
This way, classifiers in well covered environmental niches have a higher probability to
be removed. Furthermore, experience and fitness of a classifier influence its deletion
probability. If the rule is experienced and its fitness is lower than the population’s
average fitness, its probability for being removed increases.

The attempt of finding general and accurate rules is conducted by modifying the condition.
At the beginning of each learning cycle, covering involves the probability parameter P# in

27

Chapter 2 Accuracy-based Learning Classifier System

(a) Mutation (b) A pair of parent classifiers

(c) One-point crossover (d) Two-point crossover

Figure 2.9: Mutation and crossovers

deciding whether to put a wildcard or not. Then, Darwinian genetic operations have a
chance to modify some selected rules. The modification is expected to correct any misplaced
wildcards. Thus, the genetic process comes up with some rules having a more adequate
condition.
However, evaluating a random process using a probability factor is difficult. Several efforts

have been done (e. g., by Butz et al. [7]) to give some guidance in determining the appropriate
values for the parameters P# and those belonged to Darwinian genetic operations. Some
investigations successfully assist the system to perform better, but the issue yet remains live.
In conclusion, further developments are still very much expected.
In the following chapter, a novel way of improving XCS’s capability is introduced under

the name XCS-RC, which stands for XCS with Rule Combining. As mentioned previously,
its technique to discover general and accurate classifiers is derived from the concept of induc-
tive reasoning. Along with several characteristics inspired by numerous historical scientific
processes, the proposed system manages to improve the learning behavior, imitating human
in making conclusions.

28

CHAPTER 3
XCS WITH RULE COMBINING

"I am turned into a sort of
machine for observing facts and
grinding out conclusions."

(Charles Darwin)
Humans learn from the experience. They observe things, record and keep the results in

some part of the brain. They also act, responding to their environmental state by choosing
one of the available options. Then, in some cases, they retrieve feedbacks. At this point, when
they consider the response as a lesson, they learn. After a number of learning experience,
they have a chance to discover a pattern laying in a series of occurring events. And finally,
for those who succeed in taking advantage of such opportunity, they made a conclusion based
on the experience. Humans build their knowledge, which leads them to something known as
science.
As a machine learning technique, XCS operates in a similar way to some of those activities.

The learning system observes the environment, keeps the states, chooses a response, and
finally obtains the feedback of the action. As such process runs continuously, XCS builds its
very own knowledge. In the practice, after performing the learning cycles several times, some
contradictions might appear. Later experience may strengthen, or contrary to that, weaken
the existing knowledge. This is the way XCS updates the knowledge, with some expectations
of obtaining a better accuracy.
Now, a specific point differentiating the learning process conducted by XCS and humans

is the part where humans make their conclusions. The original XCS does not operate any
techniques aiming to discover any possible underlying patterns within the knowledge. Its
attempt to gather new knowledge is implemented through two occasions, i. e., covering and
Darwinian genetic operation. Contrary to that, humans build their knowledge by making
conclusions from a set of observed facts.
This thesis proposes a novel technique called Rule Combining (RC). It allows a machine

to search deeply into the heap of knowledge, and then to build a number of conclusions
based on the available information. The method is adapted from the induction concept, and
is inspired by several historical scientific processes. By employing RC, the learning system
performs a specific technique to find patterns, aiming for a better performance and a shorter
learning time. From this point on, the proposed system is mentioned as XCS with Rule
Combining (XCS-RC).

29

Chapter 3 XCS with Rule Combining

Figure 3.1: Learning cycle in XCS-RC

Figure 3.1 depicts a modified schema of XCS’s learning cycle. An additional process is
added after the update of [A], to express the moment when RC operates the generalization
attempt. The arrows going to and from the RC square indicate that the additional technique
is a part of the discovery component. As a result, RC produces new rules representing a set
of conclusions based on the available knowledge. Similar to the Darwinian genetic operations
in the original XCS, modifications are focused on the condition attribute of a classifier (cl.C).
However, XCS-RC does not employ Darwinian genetic operations in any part of the learning
activities since it is replaced by RC.

3.1 Heuristic-based Evolution

Performing a genetic-based manipulation to the rules is possible since the attribute cl.C is
an array consisting of independent values. Therefore, implementing Darwinian evolution has
a good chance to create better rules. Mutation and crossover select individuals that fulfill
certain quality criteria to create some offsprings, which are expected to be better individuals.
At the other hand, RC introduces a novel heuristic approach for discovering general and
accurate rules. Different from those employed by XCS, this method does not implement
any form of randomization. Instead, RC attempts to find better rules by solely performing
deterministic genetic procedures.
XCS conducts a number of random processes while performing covering and Darwinian

genetic operations, two activities that belong to the discovery component. In covering, gen-
eralization allows every created rule contains one or more wildcards, determined by a prob-
ability variable. Darwinian mutation and crossover assist the original system in attempting
to seek better rules from the good ones, but not without payoff. Randomizations in those
two techniques cause the system making "uneducated guesses" in the process of generalizing
a classifier. It slows down the learning rate and potentially costs a number of correcting re-
quirements. Despite the fact that many investigations have attempted to address this issue,
yet no satisfying breakthrough is introduced.
RC goes to the same direction with Darwinian genetic operation does. It considers each

30

3.1 Heuristic-based Evolution

classifier as an individual and focusing on the condition attribute, which is in form of array
of information. But, instead of performing mutation or crossover, the elements of the array
are manipulated using a technique, based on the induction concept. So, each rule in the
population is considered as an observation datum while each offspring becomes a conclusion
of the learned knowledge. From the heap of individuals, the proposed system attempts to
find any underlying pattern, leading to one or more possible conclusions.
Unlike the implementation of Darwinian genetic operation, every step in RC is operated

heuristically, following a specific algorithm. Generalized rules express conclusions, which are
taken based on the proposed system’s experience. Referring to Darwin’s quote presented at
the beginning of this chapter, the conclusion is made after a series of observations. Proper
generalizations in a learning system can only be performed by having a sufficiently compre-
hensive data. Such accurate basis makes the conclusion have a greater chance of being a
correct one. XCS-RC handles the issue concerning rule accuracy very thoroughly starting
from covering process, as described in the following subsection.

3.1.1 Covering

One of the main differences between XCS and XCS-RC is that the proposed system does not
implement generalization in covering (see Figure 3.2). Every time an input is received, the
system checks any existence of matching rules in the population. In case covering is required,
one or more classifiers are created using the exact details of the input without wildcards. This
is an effective way to prevent any occasional misplaced wildcards. Later, when any of those
new rules is picked to enter the action set, the environmental feedback is used to update the
classifier for the first time. This way, the accuracy of each rule is kept high.
Such technique gives a significant impact to the system. At some moment while performing

the learning cycles, an induction process occurs. Here, each experienced rule is regarded as
a datum. A high amount of accurate data means that the collected knowledge is consid-
erably comprehensive, leading to a greater chance of making adequate conclusions. In case
one or more inaccurate data exist, the potential of making inadequate conclusions appears.
Therefore, XCS-RC maintain the accuracy of each learning result by not performing any
generalization attempts in covering. In practice, the wildcard probability parameter P# is
permanently set at zero.

Figure 3.2: Comparison of covering implementation

Eliminating generalization in covering ensures the accuracy of the newly created rules.
When an inexperienced classifier enters the action set and then gets updated, it becomes
an experienced and ungeneralized rule with high accuracy. The removal of generalization

31

Chapter 3 XCS with Rule Combining

eliminates the difficulty of determining a proper value for P#, as well as the necessity for an
evaluation of this probability variable. Furthermore, it also reduces the possibility of having
one or several misplaced wildcards, which frequently causes a slow learning rate.
All experienced and specific (not general) rules are confirmed accurate. Commonly, since

those individuals do not contain any wildcards, the population grows quite quickly. Such
situation can be disadvantageous. But at the other hand, a high number of accurate indi-
viduals may also express a set of comprehensive knowledge, which is very useful for making
conclusions. The following subsection discusses this matter in more details.

3.1.2 Generalization
In scientific activities, making conclusion can only be conducted after analyzing some sets
of data. Therefore, before performing induction, XCS-RC attempts to find any underlying
patterns within the classifier’s condition. This means, that each classifier in [P] is regarded
as an observation result, and some conclusions are about to be made based upon the available
collection.
To perform generalization in an appropriate way, a user-defined parameter combining period

(Tcomb) regulates how often RC is performed. In other words, XCS-RC attempts to combine
the rules in every Tcomb learning cycles. Setting this parameter too high potentially causes the
system to occupy more space than necessary, but an extremely low value may lead XCS-RC
to repeatedly making inaccurate generalizations. To obtain the maximal advantage, the user
should consider the characteristics and complexity of the problem, and properly determines
a value for Tcomb.
The system makes each conclusion following a specific pattern. Referring back to the ex-

ample illustrating an unknown sequence in Figure 1.1, the whole individuals can theoretically
be discovered after a valid conclusion is made. In XCS-RC, each rule is considered as a da-
tum. Since cl.C consists of several independent values, the pattern can only be figured out
after examining each element. The conclusion is directly related to a generalization, and each
pattern leads to a wildcard placement. A wildcard reflects an element which has no influence
in determining the output, or in a word: insignificant.
An example is provided using the following illustration. This so-called Working Man sce-

nario involves a man that goes to the office at weekdays. There are three available trans-
portation modes to pick, i. e., a bicycle, a bus and a car. Among those, a car is the quickest
in getting him to the workplace while the other two are comparable. The negative side of
driving a car is the cost, which becomes one of the advantages of riding a bicycle. Using the
mass transportation system costs less than driving the car, but still more compared to riding
the bike.
In every morning, the man makes a decision after considering two variables representing

the current situation, i. e., the weather and the remaining time before the official working
hour. The former is expressed using two states (i. e., "RAINING" and "NOT RAINING"),
while the latter is simplified into two situations, i. e., "SHORT" and "LONG". The goal is to
get to the office on time without getting wet by the rain.
Such simple scenario can be transformed into a task which is suitable for classifier systems,

as seen in Figure 3.3. After observing the environment, the man composes a binary input x
and uses the available knowledge to pick an action a. Each every-day decision is either to go
by a car, a bus or a bike, expressed by the codes 0, 1 and 2, respectively.
When the man arrives late to the office, a reward of 10 is assigned. Otherwise, being

on-time or an early arrival is awarded by 50. Then, a reward 30 is given when he manages

32

3.1 Heuristic-based Evolution

Figure 3.3: The working man scenario

Table 3.1: Working man’s reward mechanism

No. State Payoff
1 Late arrival 10
2 On-time or early arrival 50
3 Got wet 10
4 Stayed dry 30
5 Maximum cost 10
6 Minimum cost 20
7 No cost 40

to stay dry or 10 for a set of wet clothes caused by the rain. Finally, riding a bike is the
best option with respect to the cost. The man gives it a 40-point payoff, which is the highest
compared to the bus with 20 and the car with 10.
By the time he arrives to the office, the man evaluates his latest decision following a reward

mechanism given in Table 3.1. The values of the payoffs are weighed following his subjective
opinion. After performing a number of learning cycles for some weeks, his collection of
knowledge already covers all possible combinations of states and decisions.
Figure 3.4(a) presents the list containing the whole results of the activities. Each row

represents a unique pair consisting of a specific situation and an option, followed by the
man’s quantified evaluation. A situation consists of a combination involving the weather and
the time availability, while the option expresses the chosen transportation mode. E. g., the
first row of the list can be translated into "IF the weather is NOT RAINING, AND the time
left is NOT MUCH, AND the chosen transportation mode is THE CAR, THEN the sum of
the payoffs is 90". The highest payoff of each combination of states is illustrated with the
green color.
The structure of information in the Working Man scenario is very similar to that employed

by a common classifier system. A combination between the weather and the time availability
represents the state kept in cl.C while a set of possible actions (i. e., car, bus and bicycle) are

33

Chapter 3 XCS with Rule Combining

(a) Evaluation results (b) Classifier representations

Figure 3.4: Population for the Working Man scenario

stored in cl.A. And finally, cl.P is determined by calculating the sum of the received payoffs,
following the Table 3.1. In conclusion, the best option for the state "00" is driving a car with
a reward at 90. This means, when the current situation is "NOT RAINING and NOT MUCH
TIME LEFT", then taking a car is the most desirable transportation mode. Figure 3.4(b)
illustrates the population of rules representing the whole knowledge.
Up to this point, no generalized rules are involved in the population, meaning no wildcards

are placed in any of the classifiers’ condition. Induction can be implemented by performing
RC to the population of knowledge. To give an impression on how each conclusion is made,
the classifiers in [P] are rearranged following three steps:

1. Grouping based on the action cl.A

2. Sorting based on the prediction cl.P

3. Creation of offspring by performing induction to the condition cl.C

Figure 3.5 visualizes those steps by illustrating the grouped and sorted classifiers along with
the generalized ones. The varying cell colors denote the process involving the current rules
and the corresponding offspring. RC creates the children (cl∗) following three regulations:

1. The number of bits owned by the child is equal to the parents

2. If the value of a bit position i is different, a wildcard is placed in cl∗.C[i]

3. If the value of a bit position i is identical, the value is inherited by cl∗.C[i]

The attributes of the generalized children are determined using such heuristics. Those
regulations drive the production of cl1∗ based on the conditions of four classifiers, i. e., cl1,

34

3.1 Heuristic-based Evolution

cl4, cl7, and cl10. Since all of them have identical actions and predictions but their conditions
are unique, cl1∗.C is composed with two wildcards ("##").

Figure 3.5: Generalization of rules for the working man scenario

RC successfully reduces the population size from 12 individuals to only six. Although
the amount of classifiers is reduced by 50%, the existing knowledge is sufficient to cover
all possible states without losing the accuracy. Referring back to the original story, such
population can be translated into human’s language, as expressed in Table 3.2.

Table 3.2: Translations of the generalized rules

No. cl.C cl.A cl.P Translation
1* ## 0 90 In ANY case, driving a CAR gets 90
2* #1 1 105 If the time left is MUCH, taking a BUS gets 105
3* #0 1 65 If the time left is NOT MUCH, using a bus gets 65
4* 01 2 120 If it is NOT RAINING, AND the time left MUCH,

riding a BIKE gets 120
5* 11 2 100 If it is RAINING, AND the time left is MUCH,

riding a BIKE gets 100
6* #0 2 60 If the time left is NOT MUCH, riding a BIKE gets 60

This simple scenario shows that the induction concept is very useful to generalize classifiers.
It illustrates how irrelevant information does not play any role in determining the final result.
E. g., wildcards in cl2∗.C and cl3∗.C confirm that the only factor determining the reward for
taking a bus is the time availability. Furthermore, taking a bicycle to work is the most
undesirable option when not much time left, regardless of the weather. In conclusion, a
proper induction enables the system to find specific patterns which become the basis for
generalizing the available knowledge.
However, for facing problems with higher complexity, such generalization technique has a

potential of hastiness. The term hasty generalization expresses a situation where the conclu-

35

Chapter 3 XCS with Rule Combining

sion is taken without a set of sufficiently comprehensive data. The missing information might
be either unlearned or disobeyed by the system. A hasty generalization commonly leads to
an incorrect conclusion and potentially ends with an inaccurate child. More details regarding
hastiness and the proposed way to solve this issue are discussed in the following subsection.

3.1.3 Hastiness

In the history of science, an instance of hastiness is provided by the story of the Tychonic
system. Tycho Brahe founded the theory in his attempt to explain orbital movements of the
planets, the moon and the sun. His theory was considered valid for hundreds of years, and
was involved in a long debate in astronomy. Although finally the scientific rivalry was won
by Galileo’s heliocentrism, Brahe’s work was considered as the most accurate astronomical
calculation without any involvement of optical tools, and was considered as a major scientific
breakthrough.

What did Brahe fail to recognize? In scientific debates against the Heliocentrists, the
Tychonians argued that the earth is not orbiting since there was no indication that the stars
had a change of positions. It can be concluded that the lack of supportive equipments can
be considered as the cause, despite any possible pressures from the religious belief.

An evidence finally came in the 19th Century when Friedrich Bessel discovered a stellar par-
allax, a scientific fact that disproved the Tychonic system. Bessel conducted his experiments
by using a number of quite sophisticated telescopes, which were not available in Brahe’s time.
This story provides a good explanation regarding the cause and the impact of hastiness in
science. Not to claim that the Tychonians were careless for disobeying the scientific method,
but mostly due to an absence of a relevant fact. Such hasty conclusion requires a correction
in the future.

Another occurrence of hastiness can be illustrated by spinning the previously presented
"black box" scenario. Figure 3.6(a) shows three individuals taken from a black box, where
each is considered as a sample of the population. Such insufficient amount of data potentially
misleads an observer to a conclusion depicted in Figure 3.6(b), which is significantly different
from the actual condition (see Figure 3.6(c)). Unlike the Tychonic system, in this case, the
hasty decision is made due to a lack of samples.

As a summary, a hasty conclusion is caused by two occurrences, i. e., non-comprehensive
knowledge and insufficient number of samples. Those two might occur in XCS-RC, each with
a potential of making incorrect generalizations. Therefore, in anticipating the first mistake
that is illustrated by the Tychonian case, XCS-RC is equipped with a correction mechanism.
After a generalized rule is executed and their attributes are updated, the proposed system
monitors any indication of hastiness and performs a sudden act to avoid future confusions.
A more detailed explanation regarding this matter is discussed in Section 3.4.

The second cause of hastiness should also be avoided. Therefore, the proposed system is
designed to involve all available knowledge in the process of making conclusions. To increase
the comprehensiveness of the learning result, a small modification on the action selection
technique is applied, particularly when the exploration mode is used. The following section
provides a discussion regarding this matter.

36

3.2 Deterministic Explorative Decision

Population sample

(a) Three samples of the popula-
tion

Population sample

(b) Potential conclusion

Population sample

(c) Actual population

Figure 3.6: A hasty conclusion

3.2 Deterministic Explorative Decision

The chance of making a hasty conclusion can be reduced by implementing a number of tech-
niques. Firstly, an anticipation is necessary. XCS-RC should possess a sufficiently compre-
hensive knowledge, which can only be obtained based on experience. However, the proposed
system does not have the capability to demand or to determine a specific environmental
state. So, it is designed to prioritize inexperienced rules, attempting to increase the amount
of collected knowledge.
Figure 3.7 illustrates a simplified decision making mechanism, using the previously men-

tioned Working Man scenario. A population consisting of five experienced rules and an
inexperienced classifier (denoted by the question mark at the cl.P column). Suppose XCS-
RC runs a combining process on the existing [P], the rules advocating the action "0" are
combined and the child can be symbolized by ”## : 0 → 90”. Here, the system combines
them by taking the risk coming from an unknown cl.P value owned by the inexperienced
rule.
With another assumption that the RC process occurs later, an additional lesson can be

obtained when XCS-RC receives an input "01". Such value can be matched by three classifiers
entering [M], where each of them advocates different cl.A values. Slightly afterwards, the
action selection is executed to pick a winning output. Now, if the decision is taken using the
exploitation mode, the winning action is "2".
A different situation may occur when the system currently uses explorative approach, which

allows rules with a lower prediction value to become the winner. A common XCS mechanism
suggests various techniques to pick a decision, e. g., roulette wheel or simple randomization.
As an attempt of minimizing hastiness, XCS-RC uses a different decision making process. It
deterministically picks a classifier that currently has the lowest experience, meaning that it
intentionally chooses the action "0" in responding to the given situation.

37

Chapter 3 XCS with Rule Combining

Figure 3.7: Determining explorative decision in action selection step

After the environmental feedback is received, the system obtains a new knowledge. The
inexperienced classifier becomes experienced, and more useful for future combining activities.
Using the scientific method as a reference, such deterministic explorative decision making is
similar to conducting an experiment, attempting to discover any unknown facts. When an
observer requires a set of specific experimental data, he picks some control variables to see
the influence to the result. His data collection is expected to be more comprehensive after
the experiment is conducted.
This technique can only be executed when the system receives a specific input that is

covered by the inexperienced rule. Nevertheless, it contributes positively to the generalization
result by providing a way to obtain more accurate data. The extra knowledge potentially
leads to adequate combining processes and furthermore the right learning direction. In the
following section, a full explanation of the RC implementation is presented, remarking the
main idea proposed in this thesis.

3.3 Rule Combining
A classifier system employs reinforcement learning to collect its knowledge. Every time an
environmental state is retrieved, the system attempts to behave appropriately by responding
with a suitable action. Learning is performed based on the received reward at the next time
step, denoting the suitability of the decision in responding to the previously given state.
Along with that, the system has an effort to produce generalized classifiers without losing
the accuracy.
Since XCS-RC does not perform generalization in covering, wildcard placements are solely

determined by the experience. This technique guarantees that generalized classifiers have
a high accuracy, although at the other hand, each of them can only cover a specific input.
After the number of learning cycles reaches Tcomb, the first RC mechanism is executed and
the effort of producing general and accurate rules begins. Classifiers are picked pairwise, a
pair at a time. Every pair of rules cli and clj should fulfill RC basic principles consisting of
three criteria:

C1. The parents advocate the same action (cli.A = clj .A)

C2. The difference of the parents’ predictions is tolerable (|cli.P − clj .P | ≤ predTol)

38

3.3 Rule Combining

C3. No disproving rules exist in the population

The previously described scenario involving a working man provides an example of a gener-
alization process using the induction concept. However, the actual process is expected to have
a higher difficulty level since the number of observed states in most scenarios is greater than
two. Moreover, there are many scenarios that involve more actions, as well as a more complex
environmental reward map. Hence, in order to generalize the classifiers in the population,
XCS-RC performs a so-called combining steps procedure, which is explained as follows.

3.3.1 Combining Steps

Each generalization attempt is implemented by executing a series of combining steps. Fig-
ure 3.8 depicts a procedure performed by the proposed system, in the attempt of producing
generalized classifiers. Starting from the left-hand side, XCS-RC collects rules having the
same action and stores them into a so-called combining set (symbolized by [C]) in Step 0.

Figure 3.8: Overview of the combining steps

All generalization attempts are conducted in [C]. In Step 1, a parent-picking mechanism
is performed, along with the attempts of validating the combining results. Step 2 has the
task to build the child’s attributes based on the information obtained from the involved
rules. Finally, Step 3 ends the process by inserting the combining result into [P] and the
corresponding [C]. A more detailed description regarding the full procedure is provided as
follows.

39

Chapter 3 XCS with Rule Combining

Step 0. Preparatory

In Step 0, classifiers having cl.A = a are recruited to a combining set [C]a, as depicted in
Figure 3.9. This step is useful to avoid the chance of violations to the criterion C1 of RC
basic principles. Also, it emphasizes the fact that individuals with different action have no
influence to the generalization in any way. All further processes are executed within each
combining set [C]a.

Figure 3.9: Combining sets

Each rule is copied into one and only one [C]. Commonly, the combining sets have varying
amount of classifiers. One containing a larger number of individuals may require more time
for performing RC. At the other hand, the chance of making a hasty conclusion tends to be
lower. The process continues by performing parent picking processes, followed by combining
and disproval examination.

Step 1. Child candidate and its validation

XCS-RC forms a child candidate cl∗, one at a time. All pairing rules cli and clj should follow
the criterion C2, i. e., having insignificant difference at their cl.P values. This constraint
distinguishes the quality of the action in responding to the covered state, while the significance
level is determined by a threshold variable predTol denoting a prediction tolerance parameter.
In determining which pair should be processed first, the system considers the resemblance

level of the parents. This mechanism can be executed using two options, i. e., ascending
and descending. The former states that two rules having the most similar cl.C to be picked
first, while the latter advises the contrary. Using ascending sequence can be more useful for
handling scenarios with less input elements, since the number of wildcards tends to be low.
Otherwise, a descending strategy is more favorable for learning the environments with higher
generalization possibility. Considering that XCS-RC is designed to tackle various kinds of
problems, the descending sequence is used as the default.
An offspring candidate inherits three main attributes from the parents (see Figure 3.10),

i. e., the condition, the action and the prediction. While cl.A is simply copied, cl.P is de-
termined by calculating the average value with respect to the classifiers’ numerosity cl.num.
Then, as an implementation of the induction concept, the value of cl∗.C is derived from the
parents following these rules:
• If positions p in the conditions of cli and clj are identical (i. e., if cli.C[p] = clj .C[p]),

the value is copied to cl∗ (i. e., cl∗.C[p] := cli.C[p]).

40

3.3 Rule Combining

Figure 3.10: Forming cl∗

• If positions p in the conditions of cli and clj are different (i. e., if cli.C[p] 6= clj .C[p]),
the value in cl∗ becomes a wildcard (i. e., cl∗.C[p] := #).

After forming three main attributes of the child candidate, the system runs an examination
process to check any existence of a disproving rule in the corresponding [C]. As depicted in
Figure 3.11, a conflict potential is detected by comparing cl∗ to all experienced classifiers in
the set.

Figure 3.11: Examination of cl∗

An individual clk becomes a disproval for cl∗ if they share a specific area within their input
coverage, while their prediction values are far from equal. In other words, if both cl∗ and
clk are able to match at least one environmental state and their predictions are significantly
different (|cl∗.P − clk.P | > predTol), then cl∗ is considered a hasty conclusion.
The situation where cl∗ is disproved leads the system to abandon it and to abort the current

combining process. Afterwards, XCS-RC continues the generalization attempt by picking one
of the remaining pair of parents. Otherwise, if no disproval is found, the process continues
to equip the child candidate the necessary attributes.

Step 2. Attribute building

Step 2 starts by assigning a subsumer role to the child candidate cl∗. The subsumption
technique in XCS-RC is a little bit different to that implemented in XCS. While basically
both systems eliminate the subsumed individuals, XCS-RC takes the values of their attributes
to build the ones belong to the subsumer. Figure 3.12 depicts an example of a subsumption
process where the parents (cl4 and cl13) and another rule cl14 are subsumable to cl∗. An

41

Chapter 3 XCS with Rule Combining

inexperienced classifier (e. g., cl10) is simply deleted instead of being subsumed, meaning
none of its attributes is considered for further processes.

Figure 3.12: Subsumption, deletion and calculation of cl∗’s attributes

In this step, cl∗.P , cl∗.num and cl∗.exp are calculated based on the subsumed classifiers.
Firstly, the value of cl∗.P is set following the average of the subsumed rules’ predictions
multiplied by their respective numerosity. In most cases, the difference between the new
cl∗.P and the initial value is insignificant. Then, the child’s experience cl∗.exp and numerosity
cl∗.num follow the sum of those owned by the subsumed rules.
Prediction error cl∗.ε and fitness cl∗.F are determined following a concept that the values

should express the rule’s accuracy. Although it is possible to use a more simple way (e. g.,
taking an average of the subsumed rule), a slightly more difficult calculation is composed. This
choice is taken in order to give those attributes more "natural" values. Hence, the calculation
of those two attributes refers to the process in [A], where cl.ε and cl.F are updated every
time the corresponding rule is executed. Equation 3.1 and 3.2 express the specific formula
used in determining the values.

cl∗.ε =

|cl∗.P − PI |
cl∗.exp

, if cl∗.exp ≤ 1/β

|cl∗.P − PI |
b1/βc · (1− β)cl∗.exp−b1/βc, otherwise

(3.1)

cl∗.F = (FI − 1) · (1− β)cl∗.exp + 1 (3.2)

Those equations have been derived experimentally, and their result resembles the outcome
of an iterative process that starts with the default values for new classifiers (i. e., εI and
FI). In the iteration, cl∗.ε and cl∗.F are updated as if cl∗ was the only member of an action
set [A] := {cl∗} and received a payoff P = cl∗.P for cl∗.exp times. These computations
ensures that cl∗ has proper values regarding the accuracy, with low prediction error and high
fitness.
This way, the child has a similar characteristic to a "normal" classifier. Figure 3.12 depicts

an example showing the new values of the offspring’s attributes after subsuming cl4, cl13, and
cl14. Here, the parameter values are set β = 0.2, PI = 10.0, and FI = 10.0. The values of
cl∗.ε and cl∗.F are 2.85 and 1.04, respectively.

42

3.3 Rule Combining

Step 3. Insertion

XCS-RC inserts cl∗ into [P] and the corresponding [C]i in Step 3. At the same time, all
subsumed and deleted classifiers are removed from both sets. Afterwards, the process goes
back to Step 1 and the proposed system continues to execute RC procedures by picking one
of the remaining pair of parents. The newly created rule can be involved as a parent, and
also has a right to disprove a younger candidate.

Figure 3.13: [C]0 after insertion

Figure 3.13 depicts the rules in [C]0 after cl∗2 is accepted and becoming cl6 (the previous
indexing is kept for tracking purpose). Every time a child is created via combining, the
number of rules in [C] and [P] is reduced. The updates of [C] and [P] denote the end of a
generalization process, but not the whole RC mechanism. XCS-RC continues to check the
remaining pairs, attempting to discover other patterns and use them for combining.
All generalized rules have the full capability like normal classifiers. They are allowed to

enter [M] and [A], to become a parent in combining, and also to disprove a generalization
process. Obviously, rules with wildcards have a greater chance of becoming a disproval. Here,
one may figure that a disadvantageous situation can happen. An offspring that is created
through an inadequate generalization potentially disproves several combining attempts, which
are actually valid. Despite that this matter commonly occurs in environments with a large
space input, the chance should be anticipated. Discussion regarding this matter is provided
in Chapter 6 where XCS-RC is equipped with an additional function for identifying irrelevant
features.

3.3.2 Algorithmic representation
In practice, XCS-RC attempts to perform generalization by executing a set of commands
depicted in Algorithm 1. Firstly, the system composes a series of combining sets (line 1).
Then, it searches a pair of combinable parents (line 6) and composes a candidate cl∗ based
on them (line 8). To prevent hastiness, a checking mechanism attempts to find any existence
of disprovals (line 9). If at least one disproval is found, then cl∗ is abandoned (line 11).
Otherwise, the system equips the child with necessary attributes (line 13) and inserts it
to [P] and the corresponding [C] (line 14). Finally, subsumed and deleted individuals are
removed from both sets (line 15).
The creation of the child rises up a flag namely ChangedMade, which indicates that

a change occurs in the population (line 16). Then, either the last combining attempt is
successful or not, the system attempts to find other combinable parents from the remaining
individuals (line 18). Finally, the system jumps back to line 4 if the ChangeMade flag is up.
Otherwise, if the last check in [C] does not produce any offspring, the mechanism stops and
the RC attempts ends.

43

Chapter 3 XCS with Rule Combining

Algorithm 1 Combining steps
1: COMPOSE a series of [C]
2: for all [C]i do
3: initialize variable ChangeMade← TRUE
4: while ChangeMade is TRUE do
5: ChangeMade← FALSE
6: FIND a combinable pair of rules
7: while a combinable pair is found do
8: COMPOSE a candidate rule cl∗
9: CHECK for disprovals
10: if disproval exists then
11: ABANDON cl∗
12: else
13: BUILD attributes of cl∗
14: INSERT cl∗ to [P] and corresponding [C]i
15: REMOVE subsumed and deleted rules from [P] and [C]i
16: ChangeMade← TRUE
17: end if
18: FIND next combinable pair of rules
19: end while
20: end while
21: end for

However, the disproval checking cannot guarantee that the offspring is not hasty. Although
the result of the examination indicates an appropriate conclusion, it is possible that a valid
disproval has not been learned. When this occurs, the knowledge represented by the child
might contradict to a learning result in the future. The following section specifically dis-
cusses the anticipation to such issue, getting the system prepared to receive some "updated
knowledge".

3.4 Knowledge Correction

When making a conclusion, the system can only rely on data which are currently available.
A number of the proposed children would be categorized hasty when they cannot pass the
examination. Each of the successful ones makes a way to be accepted as full classifiers,
symbolizing a conclusion of the subsumed individuals.
However, the chance that a conclusion is actually inappropriate is still open. Such hasty

generalization occurs when the result is composed based on non-comprehensive data. In
other words, the conclusion would have been disproved if the disproving knowledge is already
learned. This is similar to the story of the Tychonic system, a theory that was known valid
for centuries, and finally disproved by new scientific facts. Hence, beside the preventive
mechanism using disproval examination, an additional procedure to anticipate a knowledge
correction is necessary.
As explained in Chapter 2, prediction error and fitness are used to indicate a rule’s accuracy.

Both are updated within the action set, every time after the system receives a feedback from
the environment. However, the purpose of those attributes are quite different. A classifier cli

44

3.4 Knowledge Correction

is considered accurate if cli.ε is lower than a predefined parameter ε0, while cli.F is used to
denote the relative accuracy of cli compared to all the other classifiers in [A].
XCS-RC attempts to detect any indication of hastiness by monitoring the prediction error.

The idea could be described this way: "if a rule cli is accurate, then updating it shall not
make the value of cli.ε becomes higher". In conclusion, by monitoring the prediction error’s
value, an indication of inaccuracy can be detected and responded properly.

(a) Constant rewards at 1000 (b) Alternating rewards at either 950 or 1050

(c) Inconsistent reward for every 25th update

Figure 3.14: The values of cli.ε over cl.exp

Figure 3.14 provides some graphical representations showing the value of cl.ε over cl.exp
using various settings of the reward discount factor parameter β. The value of prediction
error is observed by running a series of simulations based on the following assumptions:

1. No change of values in the parameter setting except a control variable β.

2. For each update, cli is a sole member of [A] (no other rules are involved).

3. The feedback value is arranged in a way so that cli.ε forms an observable pattern.

45

Chapter 3 XCS with Rule Combining

The first simulation involves a consistent reward value at 1000. As seen in Figure 3.14(a),
every update tends to stabilize cli.ε. The blue line depicts the simulation result using β =
0.99, indicating a steep descent on the observed variable at the beginning of the simulation.
Meanwhile, the red with β = 0.01 shows a more gentle behavior. From these facts, one
can conclude that the value of prediction error never increases for both extremely high and
extremely low reward discount factor.
A different payoff arrangement is given to the second simulation. Figure 3.14(b) depicts the

prediction error value obtained by feeding XCS-RC with alternating feedbacks, i. e., either
950 or 1050. Unlike the previous simulation, the value is found stable at around 100 for the
blue line and slowly getting lower for the red. In conclusion, the maximum value of cli.ε
tends to follow the difference of the alternating feedbacks, which is 100.
Those two instances indicate that the parameter β affects the calculations of prediction

error. And for both of them, cli.ε tends to be stable when the system receives a set of relatively
consistent feedbacks along the run. This is the starting point of designing a knowledge
correction mechanism, as Figure 3.14(c) depicts the result from an experiment that employs
another scenario in order to get a more comprehensive conclusion.
The third simulation is arranged involving a significantly different reward at every 50th

experience. Practically, the system receives 49 feedbacks at 1000 and then followed by a low
reward at 0. The response is monitored to validate the idea that a hastiness control can be
implemented by monitoring cli.ε. For a better impression, a third run using β = 0.50 joins
the simulation, depicted by the green line.
All lines show their common behaviors for the first 49 iterations, which is as expected.

The blue line depicting the result for β = 0.99 is the quickest to reach zero with only five
iterations while the green requires 22. The red line (β = 0.01) only gets as low as 39.6
until the 49th update. However, the value of cl.ε increases significantly after receiving a low
reward. From previously zero, the blue line shows a steep increment to 990.00 while the green
reaches 500.00. The value of the red line becomes 76.54 from previously 39.60.
Such significant change after receiving the low reward indicates that detecting hastiness is

applicable by monitoring cl.ε. By taking the value from a prediction error tolerance parameter
predErrTol, the proposed system employs a threshold for a flagging mechanism. Once the
value of cli.ε goes beyond the allowed limit after an update, cli is removed due to an indication
of hastiness.
However, removing rules solely based on such threshold potentially arises another issue.

The system might accidentally delete accurate classifiers with low experience, since commonly
such rule has a high cl.ε value. Hence, in the implementation, deletions can only occur to cli
if these two conditions are fulfilled:

• The value of cli.ε is beyond predErrTol

• The value of cli.ε before the update is lower than afterwards

Applying these conditions prevents a situation where accurate rules are removed only be-
cause of having a low experience. The experiments conducted for composing this thesis show
that this hastiness deletion mechanism does not have a tendency to delete good rules. Hence,
this monitoring technique is employed as the part of the knowledge correction mechanism in
XCS-RC.
Furthermore, such mechanism emphasizes the importance of determining a proper value

for β. A value between 0.20 and 0.33 is quite common, including in the experiments conducted
for composing this thesis. Nevertheless, some adjustments might be necessary, depending on

46

3.5 Parameters

the characteristics of the assigned task. Finally, the following section closes this chapter by
summarizing a set of user-defined parameters employed by XCS-RC, in comparison to the
original XCS.

3.5 Parameters

The proposed system is designed to cope with various problems having several levels of
complexity. Therefore, a set of parameters is provided to allow system adjustments in facing
varying tasks. Most of the original system’s variables are still employed by XCS-RC. The
difference mainly exists in the group "Discovery". Here, XCS-RC uses only four parameters
instead of six. Along with the reduction, some variables in the category "Subsumption and
Deletion" are slightly modified.
Table 3.3 presents a set of new system parameters employed by XCS-RC. Firstly, the vari-

able combining period Tcomb denotes the number of learning cycles has to be taken before the
next RC attempt. Commonly, environments with higher complexity require more knowledge
since having more classifiers tends to lead to a comprehensive conclusion. At the other hand,
keeping the period short might speed up the RC process, since the system focuses on fewer
rules.
Every time the generalization mechanism is executed, the system applies a filter to pick

the parents. The aim is to guarantee that only a sufficiently experienced rule can become a
parent. In practice, classifiers entering the action set less times than the parameter minimum
experience minExp cannot be considered as parents. For learning a simple scenario, assigning
the value minExp = 1 is mostly sufficient. Obviously, it might occur that in facing a more
complex task, a greater number could be more useful.

Table 3.3: New parameters in XCS-RC

Symbol Name Functionality
Tcomb Combining period Number of trials between RC attempts

minExp Minimal experience Lowest cl.exp value to become a parent
predTol Prediction tolerance Highest difference of cl.P between parents

predErrTol Prediction error tolerance Hastiness detection threshold for cl.ε

After identifying the experienced rules, the proposed system copes with the available pairs
of classifiers by combining them, one at a time. Following the basic principles of XCS-RC, the
difference of cl.P between the pairing rules must not be significantly different. Here, predTol
serves the purpose by determining the allowed tolerance. A difference of predictions beyond
that value prevents two individuals from becoming a pair of parents.
Finally, every time an update occurs to the rules in [A], the new deletion mechanism is ex-

ecuted. A parameter prediction error tolerance predErrTol determines a deletion threshold.
This means, whenever the value of a cli.ε exceeds predErrTol, cli is potentially removed.
More detailed information regarding the removal is described in Section 3.4.
By employing these new parameters, the classifier system performs a discovery component

following a specific heuristics named Rule Combining. The system is expected to behave more
convincingly without any involvement of random processes. It is also important to emphasize
the fact that analyzing the new parameters becomes more simple, and furthermore, adjusting
their values to the user’s need becomes less difficult.

47

Chapter 3 XCS with Rule Combining

Up to this point, the RC technique is proposed as a novel way to handle scenarios involving
binary environments. Since complex environments are more likely to be represented with
continuous values, the following chapter is intended to provide the discussion regarding real
inputs. Such environment is less artificial, and the development to this direction is expected
to increase the capability of the system to cope with some more complex problems. And
more importantly, how induction can contribute to learn a real valued environment.

48

CHAPTER 4
XCS-RC FOR CONTINUOUS VALUES

"And to make matters worse:
complexity sells better."

(Edsger Dijkstra)
Most problems in the real world that require machine learning techniques are the complex

ones. At least, they are represented using various data types instead of only binaries. Some
scenarios that are mentioned earlier (e. g., multiplexer) can be considered artificial, only
used for experimental purposes. The capability of handling continuous input would make
the proposed system one step closer to the aim of designing machines that assist humans.
Therefore, instead of only handling binaries, XCS-RC is prepared to tackle more complex
problems involving real values.
In [37], an extension of XCS with a capability of handling real value is introduced. The

system is called XCSR (the letter "R" might stand for "Real"), and it adopts most of the
concepts that are used in XCS. Obviously, the system introduces a major difference with
respect to the classifier’s condition. The whole performance and reinforcement components
(i. e., matching, action selection, feedback and updating) are still implemented like the origi-
nal. Also, the classifiers still advocate discrete outputs and their predictions still contain real
values.

(a) Binary (b) Real

Figure 4.1: Types of coverage within an element of a classifier’s condition

One of the most interesting discussions regarding the transformation from discrete to con-
tinuous values is defining the range of a wildcard. This matter should be addressed properly,
since generalization is a key factor in determining the success of the learning process. For
systems with binaries, a wildcard "#" is defined as a multi-valued entity with a capability of

49

Chapter 4 XCS-RC for Continuous Values

covering two specific values "0" and "1". In space representation, a wildcard has a full coverage
of the range, from the lowest to the greatest possible input value (see Figure 4.1(a)).
At the other hand, continuous inputs can only be satisfied by classifiers containing interval

representations, as seen in Figure 4.1(b). Here, the term "matching" is used when the current
input is located within the covered area. Such interval represents a so-called partial wildcard,
denoted by the limited range of input coverage. Then, another term namely full wildcard is
introduced to express an interval that is capable of matching all possible input values. Rules
without any intervals can only cover a single value (i. e., a dot), and it is categorized as a
specific (non-general) one. In the following section, a discussion provides the practical use of
such concept of input coverage.

4.1 Interval representations
Problems with continuous inputs are more difficult than the discrete ones. Not only due to a
larger input space, but also in performing rule manipulations. Therefore, to equip classifiers
with a capability of matching real inputs, the condition expresses its coverage using intervals.
E. g., Figure 4.2 presents the illustration of a two-dimensional checkerboard problem.

(a) A dot (b) Rule coverage

Figure 4.2: A dot in a two-dimensional checkerboard

A classifier system learns such environment by receiving an input consisting of two elements,
where each contains a value between 0.00 and 1.00. The pair of values works as a coordinate,
representing horizontal and vertical position, respectively. As shown in Figure 4.2(a), a dot
located at (0.50, 0.70) in a checkerboard is covered by a set of classifiers having a condition
"0.50; 0.70" (see Figure 4.2(b)). A rule advocates the action "WHITE" while the other is
"BLACK". A prediction "HIGH" is assigned to the one with an appropriate answer.
However, the conditions owned by those classifiers are only capable of covering a dot.

Like a specific rule that has no wildcards in the binary case, having such ungeneralized rule
would cost a large space for storage. Hence, the classifier system attempts to generalize such
condition, placing wildcards in form of intervals, replacing those dots.
XCSR symbolizes an interval following a formula inti = (ci, si), where ci acts as the center

and si denotes the half width of the spread (see Figure 4.3(a)). So, a classifier is able to match
an input x if ci−si ≤ xi < ci+si for every i. XCS-RC uses a different formulation to express
intervals. Instead of having the center-spread relation, it employs pairs of lower-upper bound
limits, as seen in Figure 4.3(b). In short, the coverage of a [li;ui] is equal to a [ci−si; ci+si).

50

4.2 Covering

(a) XCSR (b) XCS-RC

(c) Implementation

Figure 4.3: Intervals in XCSR [37] and XCS-RC [11]

Figure 4.4(a) presents an illustration involving an annotated region within a two-dimensional
checkerboard. The area between the ranges [0.41;0.58] and [0.64;0.79] is recorded by XCSR
using a set of pairing numbers {(0.50;0.09), (0.72;0.08)}, following the center-spread model
(see Figure 4.4(b)). Different to that, XCS-RC comes up with a set of four values belonging
to a pair that denotes the lower and upper bound of the intervals, as depicted in Figure 4.4(c).
Both form of pairs are useful to express intervals, where each has its own advantages and

disadvantages. The center-spread relation is more simple, denoted by having only one value
within each element of the array. At the other hand, the lower-upper bound representation
has a smaller number of elements, making it easier to cope with the inputs. Nonetheless, such
difference influences the system quite significantly. The first effect is shown at the earliest
process of the system, i. e., covering, which is discussed as follows.

4.2 Covering

Different representation techniques between XCSR and XCS-RC comes from different rule
manipulation methods, particularly concerning generalization. Here, XCSR still carries the
previous concept from the original system, i. e., allowing generalizations in covering. As
seen in Figure 4.5(a), every time covering creates a number of rules following an input x,
the values of their conditions are determined using formulas ci = xi and si = rand(s0). The
latter means that the spread is determined using a random value between 0 and a user-defined
parameter s0.
Contrary to that, XCS-RC performs covering using the specifically received value, i. e., a

dot. The mathematical representation for XCS-RC could be expressed using li = xi and
ui = xi for the lower and the upper bound, respectively (see Figure 4.5(b)). The result can
be represented using the center-spread relation, by setting ci = xi and si = 0.
To emphasize the effect of having such different techniques, an example is provided using

a simple rounding task. An input x with only one element contains a random value within
a range [0.00;1.00]. The input is received by both XCSR and XCS-RC, where each of them
is expected to pick the closest natural number as the action, i. e., either "0" or "1". In other
words, when the input satisfies xi < 0.50, the expected output is "0". Otherwise, the action "1"

51

Chapter 4 XCS-RC for Continuous Values

(a) Coverage (b) XCSR

(c) XCS-RC

Figure 4.4: A 2-dimensional checkerboard with intervals

(a) XCSR (b) XCS-RC

Figure 4.5: Covering

is more desirable. Each correct answer is awarded with a high reward, and a low one for a
less expected output.
Every time an input is retrieved, XCSR seeks matching classifiers in the population. In

case covering is necessary, one or more individuals are created. Figure 4.6(a) depicts an
example where the received input x1 = 0.25 is used to compose a new classifier. The value
of the input is set to be the center of the interval, i. e., c1 = x1. To generalize the rule, a
random process plays its role to determine the value of the spread, resulting s1 = 0.20. From
this example, a new classifier having an interval [0.05;0.45) is created.
A different situation appears by giving an input x1 = 0.95, which is very close to the upper

border. Any value of s1 that satisfies s1 > 0.05 leads XCSR to create rules that covers some
unused area, as illustrated by Figure 4.6(b). Such situation does not affect the performance
of XCSR in any way since the system is not aware of the existing border. So, an overlap
outside the possible input range is tolerable.
Now, a disadvantage of performing generalization in covering is likely to occur when the

value of the input is close to the rounding threshold. As seen in Figure 4.7, an input x1 = 0.40
demands the output "0". However, if the spread is greater than 0.10, (e. g., s1 = 0.20), the rule
covers an overlapping area denoted by the red color. This leads to a potential mistake that

52

4.2 Covering

(a) Within the range

(b) Beyond the range

Figure 4.6: Covering for the rounding task in XCSR

Figure 4.7: Covering overlap in XCSR

may occur in the future, e. g., when XCSR receives x1 = 0.55. Such value will be responded by
the system incorrectly with a "0" based on an inadequate generalization process in covering.

XCS-RC uses the same philosophy with its binary version to prioritize accuracy. The
proposed system avoids placing any form of wildcards in covering, meaning no intervals are
created while recording an unlearned state. Every input is covered using a dot to guarantee
maximal accuracy. This way, when the first generalization attempt takes place, the population
consists of a number of classifiers covering a dot. Therefore, a proper value for the minimal
experience parameter minExp = 1 is strongly recommended when assigning the system to
learn a real valued environment.

As mentioned previously, XCSR would perform the same covering technique to XCS-RC
by setting s0 = 0.00. However, such value is not advisable since the generalization methods
owned by the learning systems come from different ideas. Induction is designed to handle
rules having high accuracy, while genetic operation is more tolerant in that matter. More
details on the implementation of Darwinian genetic operation in XCSR are described in the
following section.

53

Chapter 4 XCS-RC for Continuous Values

4.3 Darwinian Genetic Operators

Coverage overlaps that are created in covering might lower the rule’s accuracy. In turn, they
potentially affect XCSR’s behavior in responding to inputs. When the system chooses an
inadequate action, the learning rate slows down. Despite the chance that the technique may
produce general rules with high accuracy, the negative impact should be handled properly.
The Darwinian genetic operator is employed to do the assignment.
Like in the original XCS, XCSR attempts to tackle the issue by applying mutations and

crossovers. The rules currently entering the action set [A] are manipulated by setting them as
parent classifiers to create some offsprings. The attempt is executed regularly, expecting that
good rules will be composed this way. Basically, there is no difference between Darwinian
genetic operations in XCS and XCSR. Both modify some elements of the conditions through
mutations and initiate an exchange of a number of values in crossovers.

(a) Before mutating

(b) A mutation on c1

(c) A mutation on s1

Figure 4.8: Mutation in XCSR

A mutation drives a change of value in one or more classifier’s elements, leading to a
modification of their input coverage. An instance for such process is provided by Figure 4.8(a),
where a rule having c1 = 0.35 and s1 = 0.12 is picked as a parent. When the system performs
a mutation to the classifier, a change of value might occur to the center, the spread, or both.
Figure 4.8(b) depicts a case when the center is modified. Here, the coverage of the classifier

is shifted without changing the coverage width. Since the value of c1 is reduced, the interval
shifts closer to 0. Another case is depicted by Figure 4.8(c), where s1 mutates and its value
is becoming lower. As a result, the modified coverage is more narrow than the original. The
third possibility of a mutation process is where both c1 and s1 are modified. This would
cause a coverage shift along with a change in the interval’s width.
Despite those changes are expected to overcome the issue regarding overlaps, unfortunately

it also contains a drawback. When the value of s1 is reduced, its coverage’s width becomes
more narrow. This may remove the overlap, but it also contains a loss of knowledge. The
classifier becomes more specific, and the system might require additional learning cycles to
recover the missing coverage.
Another negative factor of performing mutation is the potential of making overlapping

intervals, which is a contradiction to the goal. Figure 4.9(a) depicts a change of c1 that
stretches the rule’s coverage beyond the threshold. Similar to that, Figure 4.9(a) illustrates

54

4.3 Darwinian Genetic Operators

(a) Mutation on c1

(b) Mutation on s1

Figure 4.9: Mutation and overlap

an overlap that appears after an increasing spread value. Performing a genetic mutation may
cause such situation occur, leading to a slower learning rate. Unfortunately, crossover also
has similar issues.

In performing a crossover operation, a pair of parents are selected and two offsprings are
created based upon their values. As in the binary mode, an exchange of values is made
between the parents. A one-point or two-point crossover remarks the elements that are being
exchanged.

Figure 4.10(a) shows an illustration of a one-point crossover that is implemented to an
array of two elements. A pair of rules cl1 and cl2 containing a respective center-spread
(0.35; 0.12) and (0.24; 0.07) is chosen as parents. As seen in the illustration, two offsprings
are created, i. e., cl3 and cl4. The former consists of a pair (cl1.C[1]; cl2.C[2]) while the latter
has (cl2.C[1]; cl1.C[2]). Such coverages owned by the children are acceptable, since they
contain no overlapping area.

However, a mistake might occur as the case depicted by Figure 4.10(b). A pair of parents
cl5 and cl6 having a respective center-spread (0.74; 0.23) and (0.65; 0.12) is involved in a
crossover operation. The values of the center denote that the expected output for both
parents is "1". Then, an exchange of value produces two new offsprings (i. e., cl7 and cl8)
where each covers the range [0.62; 0.86) and [0.42; 0.88), respectively. By observing them,
one can conclude that the latter contains an overlap at [0.42 ;0.50).

If cl8 exists in the population, the system potentially fails to respond to an input within the
overlapping range properly. E. g., an environmental state "0.45" that should be rounded to "0",
will be categorized as a "1" by cl8. Although the chance of providing the expected output
still opens, the overlap obviously costs extra time consumption which makes the attempt of
building a comprehensive knowledge inefficient.

Implementing Darwinian genetic operations have its own advantages and disadvantages.
Since the technique are only applied to good rules, better offsprings are expected to enter
the population afterwards. At the other hand, the previously mentioned case of overlapping
intervals denotes the possibility of over-generality. In a response to that matter, the following
section discusses how XCS-RC deals with real values without employing Darwinian genetic
operation. Instead, it implements the concept of induction, similar to that introduced in the
binary version.

55

Chapter 4 XCS-RC for Continuous Values

(a) No overlapping area

(b) Overlapping area in cl4

Figure 4.10: Crossover in XCSR

4.4 Combining
Over-general rules bring problematic situation to the classifier systems. It potentially causes
XCS to respond to an input with an unexpected answer. At the very least, it slows down the
learning rate. The proposed method offers a different philosophy of coverage modification.
And as in the binary version, XCS-RC handles real value without relying on randomization.
Since XCS-RC operates ungeneralized covering that only produces dots, earlier combining

processes normally cope with individuals with such specific coverages. Figure 4.11 depicts
an illustration of a child candidate cl∗ which is created by combining a pair of rules. Each
of the parents covers a dot in the jth element of the condition. In general, three cases may
occur in combining a pair of dots whose each element contains the values pj and qj :

• if pj = qj , then cl∗.C[j] = pj

• if pj < qj , then cl∗.C[j] = (pj ; qj)

• if pj > qj , then cl∗.C[j] = (qj ; pj)

The first possibility happens very rarely and the formula is self-explanatory. Then, the
second and the third ones are depicted in Figure 4.11(a) and 4.11(b), respectively. The
value of pj comes from cl1.C[j] while qj follows cl2.C[j]. The lowest value is picked as the
lower bound of the interval, while the other determines the upper limit. This way, when cl∗
successfully passes the examination, cl∗.C[j] covers an interval expressed with [pj ; qj].
The explanation continues by focusing on the case shown in Figure 4.11(a). When the

child enters the population, the symbolization changes from cl∗ to cl3. In the future, cl3 has

56

4.4 Combining

(a) pj < qj (b) pj > qj

Figure 4.11: Combining dots in XCS-RC

an equal right to become a parent and a disproval as the others. The combining process
that involves intervals can be categorized into several models, i. e., subset, overlapping and
gapped.
Firstly, Figure 4.12(a) illustrates the situation where cl4.C[j] is a subset of that owned

by cl3. In such case, the value of cl∗.C[j] is simply copied from cl3.C[j]. The second possibility
involves a pair of overlapping coverages, as depicted in Figure 4.12(b). Different from the
previous example, cl∗ inherits its lower bound from cl5 while the upper is determined by that
owned by cl3.C[j].

(a) Subset (b) Overlapping

(c) Gapped

Figure 4.12: Combining intervals in XCS-RC

The third illustration shown in Figure 4.12(c) involves two intervals without any shared
area. Similar to the situation a pair of dots is combined, a gap lays between the covered
areas. Such occurrence arises the potential of performing an undesirable hasty generalization,
and the combining attempt is potentially disproved by an experienced rule. This situation
should be emphasized as a potential cause of having a low learning rate. To provide a better
impression in this matter, an illustration involving the checkerboard scenario is presented as

57

Chapter 4 XCS-RC for Continuous Values

follows.

(a) Dots in the different white area of
the checkerboard

(b) A pair of parent classifiers and the child

(c) The child’s coverage

Figure 4.13: Combining drawback in XCS-RC for real value

Figure 4.13(a) depicts two dots located at (0.50, 0.70) and (0.84, 0.78), respectively. As-
suming that no disproval exists, a pair of parents covering those dots are combined and the
child covers a rectangular area shown in Figure 4.13(b). XCS-RC represents the offspring
with a classifier ”[0.50; 0.84][0.70; 0.78] : WHITE → HIGH”, as depicted in Figure 4.13(c).
Later afterwards, when an input points a dot within the covered black area (e. g., at the co-
ordinate (0.65, 0.75)), the system would respond to it incorrectly. XCS-RC attempts to
prevent such failure using a similar technique to the one employed in the binary mode, i. e.,
disproval checking. A deeper discussion regarding the implemented modifications from the
binary version of XCS-RC is provided in the following section.

4.5 Modifications from Binary XCS-RC

In real world, there are more problems expressed using real values than binaries. Therefore,
one can say that a learning system that only capable of handling discrete values is too
artificial. Fortunately in this case, most of the concepts used in designing RC are applicable
to be implemented in handling real values. This means, with some technical adjustments,
XCS-RC for binaries is capable of performing induction to rules that employs intervals.

58

4.5 Modifications from Binary XCS-RC

The purpose of this section is to emphasize the key factors relating XCS-RC for binary
and real values. Among three components employed by the system, the performance and the
reinforcement parts require no modifications at all. So, the focus of the adjustment is in the
discovery component, which prepares the proposed system to cope with a higher complexity.
The discussion starts by describing the fundamental modification that is implemented to the
proposed method, i. e., the concept of wildcard.

4.5.1 Wildcard

Both XCS-RC for binaries and real values generalize rules and place wildcards in the offspring
based on the learned knowledge. The child enters the population after a disproval checking
mechanism and attribute building. In both binary and real-value problems, a wildcard rep-
resents the capability of a classifier to cover a larger input space. Obviously, a difference
characteristic of the input makes it being expressed differently.
Figure 4.14(a) illustrates the space representation of a wildcard in a specific bit position p

of a condition cl.C. In facing a binary environment, the input has only two possible values
(i. e., "0" and "1"), denoted by the black arrows. So, a binary wildcard simply covers those
points without involving any values in between. Here, each coverage point is depicted by a
blue node.

(a) Coverage in binary mode (b) Full coverage in real mode

(c) Partial coverage in real mode

Figure 4.14: A wildcard at cl.C[p] in space representation

A different approach is used for handling real values, where wildcards are designed in form
of intervals. As illustrated by Figure 4.14(b), a full wildcard has a capability to match any
possible inputs (represented by black arrows). Then, another term partial wildcard is used
to express an interval that does not cover the whole area. Such coverage is illustrated by
Figure 4.14(c), where a wildcard is unable to match some states outside the coverage, depicted
by red arrows.

4.5.2 Covering

XCS-RC is designed to start the learning process with an empty population. Hence, covering
is the very first step it executes. The proposed system creates a set of rules to cover incoming
unlearned states. Then, it assigns those classifiers with varying actions. In the implemen-
tation, those rules are created using an exact value of the input, denoting no generalization
applied in covering.

59

Chapter 4 XCS-RC for Continuous Values

(a) Binary (b) Real

Figure 4.15: Covering on XCS-RC having n possible actions

Figure 4.15(a) and 4.15(b) depict a moment where XCS-RC learns different kinds of envi-
ronment. For each type of inputs, a set of n rules is created, where n denotes the number of
possible actions. All produced classifiers have neither wildcards ("#") nor intervals, denot-
ing their non-generality. The disadvantage of maintaining such specific rules is the obvious
requirement of a greater space, while the advantage is maximal accuracy. Since induction
requires a set of accurate data to come up with adequate conclusions, covering without gen-
eralization is considered suitable to be implemented to XCS-RC.

4.5.3 Rule Combining
The RC’s basic principles state that the parents must advise the same action, they have
similar predictions and the population contains no disproval for the child. None of those
guidelines requires any modifications for extending the capability of RC to cope with real
values. Therefore, the difference is only determined by the techniques in manipulating the
condition’s coverage.
A conclusion is always made based on the available knowledge. In XCS-RC, an offspring

is created after obtaining the values of some attributes owned by the parents. Figure 4.16(a)
illustrates the space representation for combining in binary mode, where cl1.C[i] = ”1” is
combined with cl2.C[i] = ”0”. This process produces a child candidate cl∗ having a wildcard
in its ith bit. In space representation, the wildcard is depicted with two nodes where each of
them covers "0" and "1", respectively (see Figure 4.14(a)).
Figure 4.16(b) depicts an example of a typical situation in a real-valued environment. Two

intervals contained by cl3.C[j] and cl4.C[j] are combined into cl∗.C[j]. The lowest value of
the covered area becomes the lower bound while the highest determines the upper limit.
Different to combining two binary values, a coverage gap commonly exists in real mode. The
binary version does not face similar issue since an input bit always contains either "0" or "1".
The system runs a typical disproval checking mechanism after creating cl∗. For both binary

and real-value modes, an individual becomes a disproving rule cld when it fulfills these criteria:

C1. Both cl∗ and cld advocate the same action

60

4.5 Modifications from Binary XCS-RC

(a) Binary inputs (b) Real inputs

Figure 4.16: Combining in space representations

C2. Both cl∗ and cld share an area of input coverage

C3. The difference of their predictions is beyond the tolerance parameter predTol

(a) Binary inputs

(b) Real inputs

Figure 4.17: Examples of disproving classifiers

Figure 4.17(a) illustrates a combining process involving a pair of parents, cl1 and cl2. The
candidate is created and a disproval examination is executed. Here, the system finds that
cl3 fulfills all three criteria of becoming a disproving rule. Similar situation is presented by
Figure 4.17(b) where cl6 disproves the combining result between cl4 and cl5. The coverage
of cl∗ (i. e., [0.50;0.84][0.70;0.78]) satisfies a dot in a coordinate (0.65, 0.75) which is pointed
by cl6. In both cases, considering that cl∗ and the disproval have the same action but
significantly different prediction, the child candidate is abandoned.
Those examples denote that the concept of disproving rule can be implemented in a similar

way for facing both binary and real environments. However, the latter commonly has a
greater chance of hastiness due to the large space of input. Moreover, combining real values
often involves a gap, particularly at the earlier learning cycles. Setting a proper value for
combining period Tcomb might minimize the chance of hastiness. Thus, by giving XCS-RC a
reasonable time for collecting necessary experience, the conclusions are expected to be more
comprehensive.
Finally, in the following chapter, a series of comparisons is provided to validate the effec-

tiveness of implementing induction. The experiments involve the original binary XCS, XCSR

61

Chapter 4 XCS-RC for Continuous Values

for real values and XCS-RC for both binary and real. To make a fair comparison, they are
assigned to learn the same set of scenarios following some works from the previously published
investigations.

62

CHAPTER 5
EXPERIMENTS

"In our play, we reveal what kind
of people we are."

(Ovid)
After a series of descriptions concerning the proposed method, this chapter is solely in-

tended for a validation. The judgement is made by assigning identical problems to XCS,
XCSR and XCS-RC. The results are provided using a series of graphical representations in
order to assist the readers in obtaining a better impression. Before discussing the decisive
aspects, a short discussion is presented here as a short summary of the previous chapters.
The aim of implementing induction is to improve the system’s effectiveness in learning the

environment, as well as to increase its efficiency in discovering desirable classifiers. New rules
are expected to be accurate and general, but not over-general. The original XCS has a success
story in handling such challenge, but not very satisfying in terms of speed. Several evaluations
on that matter were made, mainly concentrating on the Darwinian genetic operators. In
conclusion, the involvement of several random variables slows down the learning process.
Such randomization technique could be regarded as a way to produce "uneducated guesses",
which is very difficult to evaluate. Therefore, a heuristic-based approach is introduced in this
thesis, eliminating all random processes in the attempts of rule discovery.
XCS-RC does not make a conclusion by solely relying on the information obtained from a

pair of parents. It is also designed to consider the remaining knowledge that might influence
the result. Such technique minimizes the chance of producing a child from a hasty general-
ization. Along with that, a set of additional mechanisms and modifications are added to the
proposed system, i. e., specific covering without generalization, deterministic action selection
and hastiness detection. The whole package is expected to fulfill the purpose of improving
the learning performance.
In conducting the experiments, identical procedures and parameters are applied to both

systems to conduct a fair comparison. Three scenarios are assigned to the learning systems,
i. e., multiplexer, checkerboard and Markovian environments. After describing each of those
tasks, some comparisons are provided to emphasize the effects of the modifications. Finally,
an evaluation is presented at the closing section of this chapter, describing some interesting
issues on the XCS-RC’s performance.

63

Chapter 5 Experiments

5.1 Procedure

XCS performs an online reinforcement learning, i. e., seeing each mistake as a lesson and
broadening the chance to pick good responses for future decision makings. In the imple-
mentation, the system maps the environment by observing its states and then attempting to
provide the best response possible. After a feedback is awarded, XCS updates the knowledge
accordingly. A low reward following an unsuitable action is useful to acknowledge a less
desirable decision, while a high one increases the probability of the output to be chosen again
in the future when an identical state appears.
The experiments are conducted by running an XCS source code provided in [5], which

is also the basis for developing the XCS-RC implementation. The modifications are mainly
made for the purpose of discovering general and accurate rules, along with some other smaller
improvements as well. Here, all lines that belong to Darwinian genetic operators and other
unused methods are removed from XCS-RC’s source code. Hence, one can be firm that the
proposed method is executed by solely taking advantage of its own algorithm, with neither
positive nor negative interference coming from the original method.

Table 5.1: Parameter setting for the experiments

Parameter Value Applies to
N 400
α 0.1
β 0.2
γ 0.71
δ 0.1
nu 5.0 both
ε0 0.01
θdel 20

teletransportation 50
pI 10.0
εI 0.0
FI 10.0
θGA 25
pX 0.8
pM 0.04
P# 0.33 XCS

predictionErrorReduction 0.25
fitnessReduction 0.1

θsub 20
Tcomb 100
predTol 10 XCS-RC
minExp 1

predErrTol 100

All learning systems face identical scenarios throughout the experiments. Since the compar-
ison is focused on RC’s contribution to the learning process, known tasks from some previous
publications are chosen for evaluation purpose. An identical parameter setting is given to all
systems (see Table 5.1), except when stated otherwise while explaining a corresponding case.

64

5.2 Results and Comparisons

5.2 Results and Comparisons

A series of experiments are conducted to observe XCS-RC’s behavior. Meanwhile, for the
original XCS, the results are obtained by executing the provided source code. Specifically
for XCSR, the presented values are taken from a set of collected data from the original
publication in [37], without any additional reruns.
Each judgement is determined by two main aspects, i. e., the performance (indicated by the

difference to the expected value) and the population size (the number of (macro-)classifiers
in [P]). The former should be optimized either maximally or minimally depending on the
problem, while the latter should always be minimized. Commonly, each problem has a
composition denoting an optimal population (symbolized by [P]opt), which is the final aim
of the proposed system. When all learning systems successfully reach an optimal value, a
smaller number of cycles indicates a better capability of learning the environment. Each
comparison involves a set of figures to provide a better impression on the results.
In composing this thesis, the systems are compared using three types of problem, i. e.,

binary input with single-step problem, binary/multi-step and real/single-step. The experi-
ments for the single step problem employ multiplexer and checkerboard scenarios. Meanwhile,
the multi-step problem is represented by some Markovian environments namely Woods and
Maze.

5.2.1 Multiplexer with binary inputs

Scenarios involving multiplexer functionality are easy to understand. Binary (or sometimes
called Boolean) multiplexer cases are used as the validation scenario in Wilson’s original
work [35] and the follow-ups (e. g., in [36]). A version involving the continuous valued input
is also presented in [37]. The task is suitable for investigating the basic capability of a classifier
system in learning single-step problems. Despite its simplicity, the case still offers sufficient
challenge for a classifier system in performing a proper generalization.
In a common multiplexer scenario, the environment feeds a series of states to the learning

system. All inputs are formed in array of l elements, where l = k + 2k. The first k parts
of the input point a specific position in the remaining 2k, in which the expected answer is
stored. The target for the learning system is to always pick the correct action as the output,
thereby performing a 100% correctness rate.
The conducted investigations use several values of k = 2, 3, 4. Each of them is named

following the length of the inputs, i. e., the 6-bit, 11-bit and 20-bit multiplexer (will be
mentioned as MP6, MP11 and MP20 afterwards). Figure 5.1(a) illustrates an MP6 input
"011101", where the first k elements contain an address that points out a specific bit with a
value "1". Some changes on the address bits would switch the answer into "0", as depicted by
Figure 5.1(b). Such regulation is also valid for MP11 with k = 3, as shown by Figure 5.1(c)
and 5.1(d).
Each learning system has two assignments. The first one is to get a stable 100% correctness

rate, with some additional credits for the one reaching such expectation with a smaller number
of learning cycles. The second assignment is performing a proper generalization. This is to
emphasize the importance of reducing the number of required rules in responding to any
incoming inputs.
For MP6, [P]opt that provides the aims with respect to the performance and the population

size is given by the set of rules depicted in Table 5.2. Each of the first eight classifiers has

65

Chapter 5 Experiments

(a) An MP6 input with the
answer "1"

(b) An MP6 input with the
answer "0"

(c) An MP11 input with the answer "0"

(d) An MP11 input with the answer "1"

Figure 5.1: Examples of multiplexer inputs

a good reward prediction (i. e., 1000), while the rest advise the incorrect answer and having
cl.P = 0.
In terms of quality, those 16 individuals are categorized as good classifiers based on two

factors, i. e., maximal generality and accuracy. Both are indicated by the impossibility to add
one or more wildcards without making it over-general. In performing an MP6 operation, a
classifier system having [P] = [P]opt would achieve an obvious 100% correctness rate.

Table 5.2: [P]opt for the MP6 task

No. Classifier No. Classifier
1 000###:0 → 1000 9 000###:1 → 0
2 001###:1 → 1000 10 001###:0 → 0
3 01#0##:0 → 1000 11 01#0##:1 → 0
4 01#1##:1 → 1000 12 01#1##:0 → 0
5 10##0#:0 → 1000 13 10##0#:1 → 0
6 10##1#:1 → 1000 14 10##1#:0 → 0
7 11###0:0 → 1000 15 11###0:1 → 0
8 11###1:1 → 1000 16 11###1:0 → 0

Each individual listed in Table 5.2 owns three wildcards, and therefore capable of matching
eight different inputs. Such coverage is determined by 2n, where n represents the number of
wildcards. Using similar calculations, each rule in [P]opt for MP11 and MP20 is capable of
covering 27 = 128 and 215 = 32 768 states, respectively. By comparing those coverages to the
number of possible inputs, one can conclude that [P]opt for MP11 consists of 32 individuals

66

5.2 Results and Comparisons

while the size for MP20 is 64.
Every learning process begins after receiving the first binary input. Afterwards, it picks

an action and prepares to receive the feedback. A reward "1000" is provided for every correct
output, and zero otherwise. Both systems operate in alternating explore and exploit mode.
Since this observation focuses on the system capability, only the values obtained from the
exploit trials are recorded and then presented as the result of the experiments.
All provided graphics are obtained from an average of 20 runs, where each simulation is

independent to the others. The depicted data for MP6 and MP11 are based on a sliding
window for the last 50 exploit trials, while MP20 employs a width of 250 exploit trials.
Additional error bars in the figures indicate the 25th and 75th percentiles. In some cases, the
errors are very small, causing the bars to be not easily seen.

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000 5000

C
o

rr
e

ct
n

es
s

ra
te

Explore trials

XCS with Rule Combining Original XCS

Label

(a) Performance (b) Population size

Figure 5.2: Results for binary MP6

Firstly, Figure 5.2 depicts two comparisons of the correctness rate and the population size
between XCS and XCS-RC for MP6. As shown in Figure 5.2(a), the better achievement is
performed by XCS-RC, which is represented by the blue line. The proposed system provides
a full correctness rate more quickly than XCS (the red line). XCS-RC classifies all inputs
correctly after approximately 700 trials (i. e., 350 explore and 350 exploit), while XCS requires
more than 1000 trials to reach a stable correctness rate at 100%.
For the simulations employing the binary MP6, the setting for the maximum population

size is N = 400 for both systems. Here, XCS-RC quickly reduces the number of individuals
without reaching beyond 50. Around 400 trials are required to obtain a population size with
less than 24 classifiers, which is sufficiently close to the minimum at 16. In comparison, the
population of XCS is still converging after 10 000 trials, reaching a size of approximately
45 classifiers.
Similar situations are obtained from MP11 simulations (see Fig. 5.3(a)). Using a set of

identical parameters to MP6 except N = 800, XCS-RC requires about 7000 trials to reach a
stability performance at the full correctness rate. At the other hand, XCS still makes small
mistakes after 29 000 trials. The comparison regarding the size reduction shows another
superiority of the proposed method. The population of rules owned by XCS has not finished
converging by the end of the simulations. After 30 000 trials, XCS’s [P] still contains around

67

Chapter 5 Experiments

120 classifiers. In contrast, XCS-RC maintains only 50 rules or lower since the 3700th trial.

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000 5000

C
o

rr
e

ct
n

es
s

ra
te

Explore trials

XCS with Rule Combining Original XCS

Label

(a) Performance (MP11) (b) Population size (MP11)

(c) Performance (MP20) (d) Population size (MP20)

Figure 5.3: Results for binary MP11 and MP20

Figure 5.3(c) and 5.3(d) present the results from the MP20 task using N = 2000 for XCS
and N = 800 for XCS-RC. With such disadvantage, the proposed system is still superior by
only requiring 15 000 trials to achieve a high correctness rate at 99.8%. It is significantly
better than XCS, which needs more than 100 000 trials to perform at the same level. With
respect to the population size, XCS-RC keeps at most 200 classifiers after 61 000 trials. In
contrast, XCS never manages to reduce the size of [P] under 340 classifiers until the end of
the simulations at 200 000 trials.

The results of the experiments using three multiplexer cases lead to a temporary conclusion
that XCS-RC is capable of solving classification tasks. Furthermore, the proposed method
shows a more superior performance compared to the original version. For the binary multi-
plexer scenarios, XCS-RC reaches full correctness rate faster than XCS, and even quicker in
reducing the number of classifiers.

68

5.2 Results and Comparisons

5.2.2 Multiplexer with real-valued inputs

After presenting the results for binary multiplexer operations, the next comparisons involve
assignments with real valued input where some preliminary results are available in [11]. The
basic functionality of the input array is similar. The first k elements point out one of the
rest, which contains the expected output. The obvious difference is that the inputs should
be "translated" into binaries in order to determine the answer. This means, that the value in
each element is either considered as a "0" or a "1". Other than this matter, the assignments
are identical to the ones coping with binaries.
Environments producing real values have several flexibilities. In [37], Wilson introduces

two tasks where each of them employs different sets of thresholds within a similar range
[0.000, 1.000]. Table 5.3 shows that instead of using a static point at 0.500, employing a
set of other threshold concepts (in this case, alternating) are also possible. This is a way to
increase the complexity of a task, since covering a narrow range has a greater risk of creating
coverage overlaps.

Table 5.3: Scenarios for real MP6 [37]

Task Element Range "0" Range "1"
Constant threshold All [0.000, 0.500) [0.500, 1.000]

Alternating thresholds Odd [0.000, 0.250) [0.250, 1.000]
Even [0.000, 0.750) [0.750, 1.000]

The difference between those scenarios can be illustrated by Figure 5.4, where an input
containing the values ”0.25; 0.55; 0.38; 0.43; 0.71; 0.12” is fed to the system. When such state
is translated using the static thresholds, it is interpreted as ”010010” and the correct answer
is "0". Contrary to that, if an identical input is fed by the environment employing the
alternating thresholds, the obtained binary version is ”101010” expecting an output "1".

0.25 0.55 0.38 0.43 0.71 0.12

0 1 0 0 1 0 1 0 1 0 1 0

0.00 1.00 0.50 0.00 1.00 0.25 0.75
(a) Input in array of real values

0.25 0.55 0.38 0.43 0.71 0.12

0 1 0 0 1 0 1 0 1 0 1 0

0.00 1.00 0.50 0.00 1.00 0.25 0.75

(b) Static threshold at 0.50

0.25 0.55 0.38 0.43 0.71 0.12

0 1 0 0 1 0 1 0 1 0 1 0

0.00 1.00 0.50 0.00 1.00 0.25 0.75

(c) Alternating threshold at 0.25 and 0.75

Figure 5.4: Binary interpretation types

Due to the unavailability of XCSR’s source code, the simulations only involves XCS-RC
while the comparisons are made by using the experimental data from [37]. Both scenarios
are run using similar parameter setting and alternating explore-exploit selection method to

69

Chapter 5 Experiments

pick a winning action. The given results are presented only from the exploit trials, using a
sliding window with a width of 100 data taken every 100 exploit trials. Both systems start
all experiments without any prior knowledge.
The first comparison involving experiments with a constant threshold shows a slight dif-

ference on the performances. As depicted in Figure 5.5(a), the correctness rate of XCSR are
superior for the first 4000 trials. Later between then and the 14 000th trial, XCS-RC performs
a better learning rate. Finally, until the end of the simulation, both of them are relatively
comparable with over 93% of the states are responded correctly.
Those results indicate that XCS-RC starts with a slower learning speed compared to XCSR.

This is caused by the requirements of the RC technique to have a number of sufficient expe-
rienced classifiers before having the capability of producing general and accurate offspring.
Good rules are important for making appropriate conclusions while also play significant roles
in becoming disprovals for inadequate combining attempts. The lack of disproving rules po-
tentially causes hasty conclusions and produces inaccurate classifiers, which will eventually
be deleted after being executed. Such situation commonly occurs in the early phase of the
learning process, especially when XCS-RC copes with an environment with a large state
space. Once the system reaches an advantageous amount of knowledge, the performance gets
significantly better. This is denoted by two indications which appear after the 3000th trial,
i. e., the steep reduction of the population size and the improved correctness rate.
Regarding the population size, Figure 5.5(b) shows the capability of XCS-RC in minimiz-

ing the number of rules to below 100 after 37 200 cycles. For the whole simulations, the
requirement of space is always kept less than 510 classifiers, never getting close to the limit
at N = 2000. Further process shows that XCS-RC manages to reduce the size of [P] below
25 rules after 220 000 trials. This is not provided in the graph due to the unavailability of
XCSR’s experimental data, which are only available for the first 40 000 cycles.
Figure 5.5(c) shows a comparison for the second experiment involving a case with alternat-

ing thresholds. XCS-RC does not show a significant change on the behavior, but XCSR gets
some difficulties in coping with the new set of widths. Like in the previous task, XCSR is
more superior for the first 4000 trials. However, starting from the 7000th cycle, RC assists the
proposed system in performing a better learning capability. By the end of the simulations,
XCS-RC presents a 99% of the full correctness rate while XCSR never reaches a 95% of a full
performance for the whole simulations.
As in the experiment involving constant thresholds, XCS-RC is challenged by the lack of

disproving rules in the beginning of the simulations. The population size is also identical to
the previous test, i. e., always less than 510 individuals (see Figure 5.5(d)). The proposed
system successfully manages to reduce the number of classifiers to below 90 after 40 000 trials,
and further keeping the size less than 25 after 230 000 cycles. For XCSR, the achievement of
its generalization attempt can be considered identical to that produced in the previous task.
Now, after observing these facts, one can say that XCS-RC is more powerful than both

XCS in handling binary environments and XCSR for continuous inputs. To either strengthen
or weaken such impression, some more difficult scenarios are provided. In the following
subsection, the validation process continues by employing the checkerboard scenarios.

5.2.3 Checkerboard
The idea of using the so-called checkerboard problems to test classifier systems was introduced
by Stone and Bull in [30]. It is a mapping task, where XCS learns to provide appropriate
answers for all received states. The input consists of a number of elements containing real

70

5.2 Results and Comparisons

Real MP Label

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000

C
o

rr
ec

tn
es

s
ra

te

Explore trials

XCS with Rule Combining XCSR

(a) Performance for static threshold (b) Population size for static threshold

(c) Performance for alternating threshold (d) Population size for alternating threshold

Figure 5.5: Comparison for the real multiplexer tasks

values representing a specific coordinate within the environment. A checkerboard can be
described as an m-dimensional cube where each dimension is divided into n areas. The name
"checkerboard" came from a set of rectangles having alternating white and black colors similar
to a checkerboard, when using a parameter setting m = 2 and n > 2.
A correct answer means that the learning system successfully identifies the color at the

pointed coordinate. Figure 5.6 depicts an example using m = 2 and n = 5, mentioned as
"CB-2d5" afterwards. An input consisting of two real numbers (i. e., 0.50 and 0.70) denotes a
specific coordinate within a checkerboard. The former number belongs to the horizontal axis
while the latter is interpreted vertically. Since (0.50, 0.70) in the checkerboard is located in
a white area, the output is expected to represent that color (a simple term "WHITE" is used
in this example).
Compared to the multiplexer, the challenge provided by this scenario is more difficult.

Each dimension is commonly divided into more than two areas. Hence, the chance of over-
lapping is greater then the tasks of performing a multiplexer. As an example, Figure 5.7(a)
depicts an XCS-RC’s combining process involving two dots at the coordinates (0.42, 0.25)
and (0.58, 0.31), represented respectively by cl1 and cl2. Since the classifiers own an identical
action and similar predictions, the system attempts to combine them. The offspring enters
[P] after some usual examination procedures, covering a two-dimensional area shown in Fig-

71

Chapter 5 Experiments
Checkerboard

0 1

0

1

0.5

0.7

Figure 5.6: A mapping process in a CB − 2d5 scenario

ure 5.7(b)). This combining process is adequate, denoted by the non-overlapping coverage
within the white cell.
A contradicting situation occurs when the parents currently cover two dots (or intervals)

located in different cells. Figure 5.7(c) illustrates the combining process involving a pair of
classifiers cl3 and cl4. As shown in Figure 5.7(d), the child’s coverage overlaps into the black
area. Although a series of examination is already conducted, the final result depends on any
existence of disprovals. An inadequate combining can still be accepted when no disproving
rule exists in the population. Commonly, such incident occurs at the early learning cycles
and becomes more likely to occur when the value of Tcomb is set too low.
Setting the checkerboard with a greater number of dimensions certainly makes the problem

more complex. A higher divisions decreases the area of each cell, and thereby increasing the
chance of coverage overlaps. Both the number of dimensions and divisions affect the learning
performance significantly. Assuming that all checkerboard scenarios involves environments
having no less than three divisions, a checkerboard problem whose input consisting of six
elements is theoretically more difficult to solve than a typical MP6.
Experiments involving XCS-RC are run using empty initial populations. The results are

displayed using the average value out of 20 simulations. As in the previous cases, the cor-
rectness rate and the number of classifiers are recorded every 200 trials. The presented value
for the performance is calculated by only considering the results from the last 100 exploit
modes. The parameter setting is identical to that used in the real value multiplexer.
XCS-RC’s performance in learning CB-2d3 scenario is shown in Figure 5.8(a). It success-

fully maps the environment into a set of rules. After 1200 trials, the line indicator shows no
less than 90% of a full correctness rate. Furthermore, the system provides at least 99% of
the full performance after the 5000th cycle.
In addition to the performance, the reduction attempt for the required space is successfully

executed. XCS-RC aims at [P]opt for CB-2d3 which consists of 18 classifiers. In learning the
given task, the system manages to produce 36 classifiers after 13 000 trials. Figure 5.8(b)
depicts the requirement of space for keeping the knowledge, which is always kept below 20
after 47 000 cycles.
Similar results indicating the capability of XCS-RC in learning the checkerboards are shown

in Figure 5.9. Obviously, CB-2d5 is more difficult to handle than CB-2d3. The complexity
causes XCS-RC maintaining nearly 800 individuals at the beginning of the simulation before

72

5.2 Results and Comparisons

Checkerboard: combining correct

(0.42, 0.42) (0.25, 0.25) 0

(0.58, 0.58) (0.31, 0.31) 0 (0.42, 0.58) (0.25, 0.31) 0

cl1

cl2

(a) Two points in the same white
area

Checkerboard: combining correct

(0.42, 0.42) (0.25, 0.25) 0

(0.58, 0.58) (0.31, 0.31) 0 (0.42, 0.58) (0.25, 0.31) 0

(b) Generalized

Checkerboard: combining mistake

(0.5, 0.5) (0.3, 0.3) 0

(0.7, 0.7) (0.9, 0.9) 0 (0.5, 0.7) (0.3, 0.9) 0

cl3

cl4

(c) Two points in separate
white areas

Checkerboard: combining mistake

(0.5, 0.5) (0.3, 0.3) 0

(0.7, 0.7) (0.9, 0.9) 0 (0.5, 0.7) (0.3, 0.9) 0

(d) over-general coverage

Figure 5.7: Combining in Checkerboard scenario

followed by a steep reduction afterwards (see Figure 5.9(b)). At the 20 000th trial, the
population size is reduced to 81.5 rules before finally keeping only 52.5 classifiers at the end
of the simulations. Since [P]opt for CB-2d5 consists of 50 classifiers, the provided result can
be considered highly desirable.
Figure 5.9(d) illustrates the capability of XCS-RC in coping with a more difficult task,

i. e., CB-2d7. The [P]opt for this problem consists of 98 individuals. Here, XCS-RC maps
the environment using 164.85 rules at the end of the simulations. The population size is still
unstable, which is an indication that the system requires more cycles to provide a better
result. Nevertheless, the reduction can be considered significant, since the number of rules
previously reaches beyond 900 classifiers at around the 2600th cycle.
However, a reduction of the population size is a secondary target after the performance.

Regarding this matter, Figure 5.9(a) and 5.9(c) depict an impressive learning capability
owned by XCS-RC. It never performs correctness rates at any value lower than 99% after
14 000 trials for CB-2d5, and after 32 000 cycles for CB-2d7. Although a longer run is stilll
required to achieve a perfect result, these data confirm that XCS-RC has the ability to map
various two-dimensional Checkerboard environments.
The last checkerboard test for XCS-RC is conducted by assigning a three-dimensional

checkerboard, i. e., the CB-3d3 task. In [30], Stone and Bull attempt to solve a similar

73

Chapter 5 Experiments

(a) Performance (b) Population size

Figure 5.8: XCS-RC’s results for the CB-2d3 problem

case using XCSR. Unfortunately, the results provided in the publication cannot be directly
compared to RC technique, due to the non-identical initial states. The previous investigation
uses a non-empty initial knowledge while XCS-RC always starts with zero classifier. Although
a comparison would not be advantageous to XCS-RC, the results are mentioned here in order
to get an impression of the proposed system’s behavior.
In solving CB-3d3, XCS-RC performs well by showing a capability of quicker learning

compared to XCSR. Figure 5.10(a) shows that less than 11 000 cycles are required by the
proposed system to get a stable correctness rate above 90%. It shows a superiority over XCSR
that requires over 30 000 trials to get a level performance. Then, after 35 000 trials, XCS-RC
never performs below 99% correctness rate. At the other hand, XCSR is unable to reach such
achievement even after 200 000 learning cycles, which marks the end of the simulations.
The population size limit for XCS-RC is set at N = 2000, equal to the amount of XCSR’s

initial rules. Figure 5.10(b) shows that by employing RC technique, the number of [P]
members never exceeds 600 classifiers. Then, the proposed system keeps the number of rules
below 200 after 24 200 cycles and ends with 101 individuals. Such combination of successful
achievements in performance and rule reduction is contrary to that belongs to XCSR, which
copes with 600 classifiers after 200 000 trials (see [30]).
As a summary for the Checkerboard tests, XCS-RC can be considered capable of mapping

the environment successfully. Although a comparison is merely possible, one can argue that
RC assists the learning system to tackle the assigned tasks. Using an empty initial knowledge,
the given performance is quite convincing while the population size is reduced significantly.
Specifically in facing the CB-3d3 case, XCS-RC can be considered more superior to XCSR,
despite the difference regarding the initial knowledge. Now, the validation process continues
to test the proposed learning system using some binary multi-step problems. Then, the result
is compared to those produced the original XCS to observe the effect of the modification, as
presented in the following subsection.

5.2.4 Woods and Maze

The tests validating the capability of XCS-RC in solving single-step problems are followed
by a series of investigations involving binary multi-step tasks. The difference between those

74

5.2 Results and Comparisons

(a) Performance (2d5) (b) Population size (2d5)

(c) Performance (2d7) (d) Population size (2d7)

Figure 5.9: XCS-RC’s results for the CB-2d5 and CB-2d7 problems

environments is the feedback mechanism. In a single-step problem, each system’s action gets
an instant reward. Different to that, in a multi-step case, executed rules are collected and the
environment sends a feedback when a specific situation occurs. The investigations presented
here employ various artificial Markovian environments namely Woods and Maze.
Firstly, a brief explanation regarding Markovian environments is provided here. Fig-

ure 5.11(a) and 5.11(b) depict two environments namely Woods1 and Woods101, respectively.
The former is a Markovian while the latter is not. A non-Markovian environment is denoted
by an existence of two or more empty cells having identical Moore neighborhood (the eight
surrounding cells), which in this case is the ones marked with a cross.
Each map contains a number of cells with various colors (i. e., white, green and yellow).

The white color denotes emptiness, a green cell means rock and a yellow one indicates the
availability of some food. Some other environments are designed to have a higher complexity
(e. g., Woods2) by adding two additional colors Orange (alternate food) and Dark Green
(alternate rock). Woods1 also has a characteristic of being a torus world, meaning that a cell
at any of its edges is connected virtually to the opposing edge. Regarding this matter, one
can easily conclude that Woods101 is not a torus environment.
A simulation begins by placing a virtual entity called animat at a random empty cell. At

75

Chapter 5 Experiments

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000 5000

C
o

rr
e

ct
n

es
s

ra
te

Explore trials

XCS with Rule Combining Original XCS

Label

(a) Performance (b) Population size

Figure 5.10: Results for the CB-3d3 problem

(a) Woods1 (Marko-
vian)

(b) Woods101 (non-Markovian)

Figure 5.11: Maps of the Woods1 and Woods101 environments

every time step, the animat picks an action to move to a cell within its Moore neighborhood
either horizontally, vertically, or diagonally. An option to not moving is unavailable, but a
decision to move towards a rock causes no change of location. The rules representing a series
of animat’s movements are collected, and the trial ends when the animat arrives to the food.
Then, a reward is given and another trial is conducted by placing the animat at a random
empty cell.
The animat’s task is to get closer to the food and "eat" it while attempting to minimize

the number of steps. In order to do that, the animat observes its Moore neighborhood and
encodes the observation result into binaries. The obtained code is fed to the classifier system,
which is used by the animat to learn the assigned task. Table 5.4 provides a complete list of
cell types and the corresponding codes.
Figure 5.12(a) illustrates an encoding process, where an animat translates its Moore neigh-

borhood into a 24-bit array of binaries. Starting from the northern cell, the animat observes
the cells clockwise and encodes each of them while composing the input. Since Woods1 is a
torus world, it is still possible to form a 24-bit input while located at the edge of the environ-
ment, as depicted in Figure 5.12(b). Here, each vertical line between the binary codes simply
visualizes a different arrow representation, without any actual effect to the "normal" input.

76

5.2 Results and Comparisons

Table 5.4: Binary codes for the cells in Woods and Maze environments

Type Color Code
Empty White 000

Food Yellow 110
Orange 111

Rock Green 010
Dark Green 011

(a) At a cell in middle (b) At the edge

Figure 5.12: Input composition process by the animat

Such input composition is followed by the usual mechanism of the classifier system, from
matching to executing the chosen action. The difference comes afterwards, i. e., instead of
sending an instant feedback, the environment waits until the animat gets the food. When
that happens, a reward is given and distributed to the collection of executed classifiers. In
conclusion, the more steps required for getting the food, the smaller reward received by each
individual. Hence, the performance of the system in coping with such scenario is determined
by its ability to minimize the number of steps.
Since the composed input does not involve any information regarding the animat’s past

movements, its decision is solely based on the information of the current surrounding cells.
Such design makes a non-Markovian environment unsuitable for performing a multi-step
learning. Using Woods101 as an example, when the animat is located in one of the cells
marked with a cross, both options "WEST" and "EAST" have an equal chance to be either
the best solution (closer to the food) or the worst option (further away).
In the provided graphical presentation, the system performance is determined by the aver-

age number of steps out of 20 runs, which should be minimized. The expected value can be
calculated by taking a distance-weighted average from all empty cells. E. g., among 16 empty
cells in Woods1, 11 of them are two steps away from the food while the other five requires
only one. So, the expected number of steps is (2 × 11 + 1× 5) ÷ (11 + 5) = 1.6875. In con-
clusion, a learning system is considered successful by providing an average value at around
1.6875 steps.
The following multi-step simulations follow the parameter setting used in [36]. For XCS-RC,

the default values are used except predErrTol = 5. All runs still use the typical alternating

77

Chapter 5 Experiments

explore/exploit regime, where the graphical representation is provided by only considering
the results from the exploit trials.

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000 5000

C
o

rr
e

ct
n

es
s

ra
te

Explore trials

XCS with Rule Combining Original XCS

Label

(a) Performance (b) Population size

Figure 5.13: Results for the Woods1 environment

Both XCS and XCS-RC are able to map the Woods1 with an average close to 1.6875 steps
after performing 200 trials (see Figure 5.13(a)). However, Figure 5.13(b) indicates a signif-
icant difference between their generalization capabilities. XCS-RC successfully reduces the
population size down to less than 36 classifiers after 300 trials. In contrast, XCS maintains
a population of approximately 160 rules at the end of the simulations.

Figure 5.14: Woods2 environment

The next test involves a Markovian environment namely Woods2, as depicted in Fig-
ure 5.14, which is also a torus one. Compared to Woods1, the complexity of this case is
increased by two additional colors, i. e., Orange and Dark Green. The former represents
some food while the latter symbolizes a rock. Despite having different translation codes (see

78

5.2 Results and Comparisons

Table 5.4), the characteristic of an orange cell is identical to those in yellow, while dark green
is similar to green.

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000 5000

C
o

rr
e

ct
n

es
s

ra
te

Explore trials

XCS with Rule Combining Original XCS

Label

(a) Performance (b) Population size

Figure 5.15: Results for the Woods2 environment

After placing the animat at an empty cell at the beginning of each simulation, the number
of steps to food is monitored. Then, the average is recorded every 50 exploit trials with an
performance at around 1.6875 steps. Figure 5.15(a) shows that both XCS and XCS-RC are
able to manage the number of steps close to that value, in less than 400 trials. However, their
generalization capabilities show a significant difference.
XCS-RC maintains a population size lower than 40 after 4000 trials. Contrary to that,

XCS still struggles with around 160 rules at the end of the simulations. Despite the chance
that XCS might reach such achievement in the future, XCS-RC requires a significantly less
cycles to accomplish the assignment. In conclusion, the RC technique provides a notable
assistance to the classifier systems in facing some cases involving the Woods environments.

(a) Maze4 (b) Maze5 (c) Maze6

Figure 5.16: Maps of the Maze4, Maze5 and Maze6 environments

Further on the multi-step test, the challenge is increased by assigning the learning sys-
tems to map Maze4, Maze5 and Maze6 environments (see Figure 5.16). Maze5 and Maze6
are employed as test cases in [20], where Lanzi introduces an XCS variant with an addi-

79

Chapter 5 Experiments

tional component called Specify. The proposed functionality enables XCS to specialize rules,
as opposed to generalizing them. Such technique is implemented to the classifiers that are
indicated as over-general. Unfortunately, the results from that investigation cannot be com-
pared directly to the ones performed by XCS-RC since Lanzi equips his XCS with an initial
population. However, mentioning the provided results is still useful to get a rough impression.

In coping with Maze environments, some parameter adjustments are applied to XCS, i. e.,
P# = 0.05 and N = 2000. Experiments show that a greater wildcard probability may cause
failures, as well as a lower population size limit. Then, using a set of identical procedures
to the Woods in running the simulations, Figure 5.17(a) is provided as the result of the
experiments. There, both XCS and XCS-RC are indicated to have comparable performance
in mapping Maze4, close to the expected value at 3.50.

Regarding the population size, XCS indicates a failure in reducing the number of rules.
The original system still owns an average of 601 classifiers at the end of the simulations.
Contrary to that, XCS-RC quickly reduces its population to a size of less than 120 rules in
only about 900 trials. As shown in Figure 5.17(b), XCS-RC confirms its superiority to XCS
in terms of generalization.

The results from the experiments involving Maze5 and Maze6 are similar to those belong
to Maze4. Both learning systems show successful attempts in handling the assignments.
XCS-RC requires 200 trials to minimize the number of steps, reaching around the expected
value at 4.6111 for Maze5 and 5.1944 for Maze6. In comparison to XCS, the original system
performs a comparable behavior with a slightly higher number of steps for Maze5 and a
similar achievement for Maze6.

However, Figure 5.17(d) and 5.17(f) indicate the incapability of XCS to reduce the popula-
tion size at a similar level compared to XCS-RC. The proposed method manages to decrease
the number of rules to less than 200 after 1300 trials for both environments. At the other
hand, XCS ends the simulation with around 840 and 720 classifiers for Maze5 and Maze6, re-
spectively. Despite the chance of having a different situations in longer runs, XCS-RC shows
a quicker generalization compared to the original XCS.

In the investigations involving Maze environments, Lanzi proposes a variant called XCS
with Specify (XCSS) [20]. The modified system performs a more powerful learning capability,
indicated by the results in coping with the given cases. After approximately 400 exploit
problems (800 trials), XCSS requires less than 10 steps to reach the food in Maze5, and less
than six steps in Maze6. In comparison, XCS-RC manages to perform such achievements
after 300 trials (150 exploit problems). Another difference between XCSS and XCS-RC is
that the former starts the simulations with an initial population while the latter has an empty
one.

As a conclusion, one can argue that XCS-RC is more superior to XCS in performing gen-
eralizations to Markovian environments, represented by those Woods and Maze. Despite the
fact that both provide a comparable learning rate, the original system requires a significantly
more trials to produce general and accurate rules. In conclusion, RC technique performs
better compared to the Darwinian genetic operators.

The investigations using Markovian environments as the test cases end the series of com-
parisons between XCS and XCS-RC. Although the proposed system performs a desirable
behavior in most of the tests, some interesting drawbacks are shown, as discussed in the
following section.

80

5.2 Results and Comparisons
0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000 5000

C
o

rr
e

ct
n

es
s

ra
te

Explore trials

XCS with Rule Combining Original XCS

Label

(a) Performance for Maze4 (b) Population size for Maze4

(c) Performance for Maze5 (d) Population size for Maze5

(e) Performance for Maze6 (f) Population size for Maze6

Figure 5.17: Results for the Maze4, Maze5 and Maze6 environments

81

Chapter 5 Experiments

5.3 Evaluation
Through a series of comparisons between XCS-RC and XCS, a clear conclusion can be made
that the proposed system is more superior than the original XCS and some of the published
variants. The implementation of the induction concept is proven to have a powerful assis-
tance in all experiments involving multiplexers, checkerboards and Markovian environments.
XCS-RC convincingly provides a better learning rate and a quicker discovery of general and
accurate rules.
The conducted experiments also show some indications of drawbacks, affecting the per-

formance of XCS-RC. The first notable weakness is loss of knowledge. This occurs when
XCS-RC detects a sign of hastiness after updating the rules in [A]. When the flag indicating
over-generality rises, the corresponding rule is deleted. Such step is necessary since keeping
hasty offspring potentially drives the system to making incorrect decisions. However, each
removal definitely causes some knowledge permanently being eliminated.
The second evaluation is regarding the execution time. Experiments show that XCS-RC

requires less than one second to solve a simple task, e. g., the binary MP6 simulation with
10 000 trials. Obviously, more cycles are required for learning some more complex cases, e. g.,
binary MP20 with 200 000 trials. Running a series of binary MP20 using only 10 000-trial
simulations does not satisfy the purpose of the experiment.
Finally, the last topic presented in this section is focused on the parent-picking mechanism.

Although XCS-RC shows its capability to learn all the given cases, only a few of them
successfully reach [P]opt. A series of observations shows that such failure is caused by the
inability of the system in determining which pair should be prioritized to be combined. These
evaluations are discussed in more details, as follows.

5.3.1 Loss of Knowledge

In the attempt of performing a generalization, XCS-RC takes some values owned by a number
of existing rules and creates an offspring. Ideally, all involved rules are accurate and coming
from a population that contains a comprehensive knowledge, including potential disprovals.
However, the possibility that some children are created inadequately due to the lack of dis-
proving classifiers remains open. To anticipate the negative impact of such disadvantageous
combining, XCS-RC is equipped with a deletion mechanism. The procedure removes rules
being identified as a product of a hasty generalization.
However, such deletion does not only remove a classifier. It also eliminates the parents

and all subsumed rules, which might be accurate ones. Those classifiers are deleted when the
child is inserted to the population. Hence, deleting over-general offspring means taking a risk
of also removing some lessons kept in a number of accurate individuals.
To observe how such situation may affect the results, a series of experiments is conducted

to XCS-RC using a set of combining period Tcomb with varying values. The rest of the
parameters are set identical to those in the defaults, and the provided graphics are averaged
out of 20 runs. Figure 5.18(a) depicts the result of the simulations involving binary MP6
with varying combining period values.
Since binary MP6 is a very simple problem, the difference of the results cannot be distin-

guished easily, due to the insignificance. However, a trend is shown indicating that the blue
line representing Tcomb = 20 has the slowest learning rate. The purple line with Tcomb = 200
can be considered as the quickest. The red line with Tcomb = 50 lays between those lines
having combining periods 20 and 100 cycles.

82

5.3 Evaluation

(a) Performance (b) Population size

(c) Deletion over cycles (d) Total deletion

Figure 5.18: Comparison of results involving MP6 with varying Tcomb values

The evaluation of the proposed system is also based on the population size, as shown by
Figure 5.18(b). Although setting Tcomb = 200 can be considered as the most desirable in
terms of learning rate, an observation to the generalization capability states the opposite.
The purple line shows that the system has not perform any generalization at the first data
acquisition. In other words, the provided correctness rate comes from a set of ungeneralized
classifiers. Therefore, in terms of population size, an exactly reversed sequence is presented.
The purple line shows the least desirable generalization capability, while the blue one (Tcomb =
20) can be considered as the winner.
Figure 5.18(d) explains the cause of the performance shown by the system. A smaller

value of Tcomb tends to having a higher number of deletions due to hastinesses. Then, Fig-
ure 5.18(c) confirms the number of removals of over-general rules by presenting the detected
hastiness over cycles. The green and purple lines with a respective Tcomb value at 100 and
200 cycles, show a similar zero deletion until the 100th cycle. This is due to the fact that the
corresponding runs have not perform any combining yet. The blue has the highest deletion
rate, while the red is the second best.

83

Chapter 5 Experiments

Those results can be interpreted this way: a system with a lower combining period tends
to combine more rules, taking risk of performing hasty generalizations. Hence, it performs
a relatively lower learning rate but maintains a smaller population size. To confirm the
conclusion, another series of simulations using MP11 are run, with a similar set of combining
periods.

(a) Performance (b) Population size

(c) Deletion over cycles (d) Total deletion

Figure 5.19: Comparison of results involving MP11 with varying Tcomb values

A significant difference of performance is shown by XCS-RC with Tcomb = 20, depicted
by the blue line in Figure 5.19(a). It indicates a lower learning rate compared to the other
systems which perform quite similarly. Such phenomena is caused by the level of complexity
owned by an MP11 scenario. Handling the task using a low combining period is inadvisable.
Therefore, solving the MP11 scenario with higher values of Tcomb as depicted by the other
lines, is more adequate.
Figure 5.19(b) shows a graphical representation of the population size for the simulations.

Similar to that belongs to MP6, the number of classifiers depicted by the purple line is the
greatest of all, i. e., around 56.00 individuals after 5000 trials. The green and the red, with a
respective combining period set at 100 and 50 cycles, depict similar results. Then, the blue

84

5.3 Evaluation

line provides the smallest number of rules along the simulations, although it also shows the
lowest learning rate.
The cause of such slow performance is shown by Figure 5.19(d). With an average of over

150 rules deleted due to the occurrence of hastiness, the system with Tcomb = 20 loses a rela-
tively great amount of knowledge. It requires around 4400 cycles to reach a considerably low
removal rate (see Figure 5.19(c)) and approximately the same time to perform a correctness
rate consistently above 99%.
In conclusion, the results suggest that there is a strong relation between the number of hasty

generalizations and the system performance. It can also be concluded that using Tcomb = 20
is inadvisable for solving an MP11 problem or other tasks with a higher complexity. Systems
with other values of combining period perform similar trends the previous task involving
MP6. A higher Tcomb value leads to a lower number of hastiness.
These results also emphasize the necessity of adjusting the combining period following

the characteristics of the assignment. A complex problem requires more individuals before
performing its first combining attempt. By assigning a greater value, the loss of knowledge
can be minimized. At the other hand, there is a payoff between the system performance
(which is affected by the number of hastiness) and the population size. The number of rules
in the population tends to be greater when the system employs a longer period for performing
RC. Fortunately, evaluating a periodic parameter such as Tcomb is easier than dealing with a
set of probability parameters to perform randomizations.

5.3.2 Runtime
Discussing the runtime is particularly required to evaluate XCS-RC in solving cases with a
large input space, e. g., binary MP20. The obtained results indicate that the determining
variable for this issue is the maximal population size parameter N . A lower threshold tends
to make the proposed system perform quicker than a higher one. To observe the effect in
more details, a series of simulations are run and the results are presented using the following
comparison.
Figure 5.20(a) displays the performance of XCS-RC with N = 800 and varying Tcomb

values. Most lines indicate a similar behavior, i. e., a stable correctness rate above 95% after
around 32 000 trials. Then, the light-blue line with Tcomb = 500 performs a lower learning
rate by requiring 50 000 trials to reach such level of performance. Finally, a learning failure
is shown by the brown line (Tcomb = 1000) with around 50% of full performance along the
simulations.
Figure 5.20(b) and 5.20(c) depict similar results indicating better system capabilities of

tackling the given case. Also, the light-blue line shows a slightly less desirable performance
while the brown line fails to provide a good one. The population size owned by the system
with Tcomb = 1000 stays at around 425 classifiers for the whole simulations. Moreover, its
deletion rate is very high with a total of slightly under 2879.85 hastinesses (see Figure 5.20(d)).
Such failure in coping with the task are caused by the space insufficiency. Assuming all

input states are unique, the system already keeps 800 classifiers at the 400th trial. Some rules
must be removed afterwards to keep the amount below the allowed limit. This means, for
every simulation using Tcomb > 400, a series of deletions is already executed before the first
RC operation. Assuming the worst case scenario that all inputs are unique, XCS-RC with
Tcomb = 1000 would have to remove 1200 classifiers before the first generalization attempt.
From those amount, at least 200 of them are experienced and accurate with a potential of
disproving inadequate generalizations.

85

Chapter 5 Experiments

(a) Performance (b) Population size

(c) Deletion over cycles (d) Total deletion

Figure 5.20: Comparison on MP20 using N = 800 and varying Tcomb values

The space issue can be solved by increasing the size limit for the population. Therefore,
another series of simulations using N = 2000 are run, particularly for those having Tcomb =
100 or greater. Figure 5.21(a) depicts the results where all systems perform at approximately
the same level. Then, Figure 5.21(b) shows that the brown line representing XCS-RC with
Tcomb = 1000 perform the most desirable generalization capability. After the 160 000th cycle,
it maintains only around 360 classifiers while the others still cope with at least 400 rules.
Regarding hastiness detection, XCS-RC with Tcomb = 1000 removes a total of 343.65 classi-

fiers, averaged from 20 runs (see Figure 5.21(d)). This represents the lowest number of hasty
generalizations compared to the others, despite that most of the difference occur at earlier
cycles, as depicted by Figure 5.21(c).
In conclusion, using a greater N value increases the system capability of handling tasks

with a large space input. XCS-RC is unable to solve a binary MP20 case using Tcomb = 1000
and N = 800. At the other hand, changing the population size limit to 2000 provides slightly
more desirable results. However, the ability of handling problems having a large space does

86

5.3 Evaluation

(a) Performance (b) Population size

(c) Deletion over cycles (d) Total deletion

Figure 5.21: Comparison on MP20 using N = 2000 and varying Tcomb values

not necessarily mean that the system is more superior, particularly when the runtime factor
gets involved.
A short description regarding the execution of RC mechanism is presented before comparing

the results. As seen in Figure 5.22, a generalization attempt is executed every Tcomb trials.
Therefore, every time the number of cycles reaches Tcomb, RC is performed and the count is
reset back to zero.
In practice, the system examines a flag that indicates whether the content of [P] is changed

since the last RC attempt. The aim is to prevent unnecessary time consumption, which will
occur such as when the system already reaches a stable population (e. g., [P]opt). This
mechanism makes the system more efficient and requiring a shorter runtime. If the flag is
up, a normal RC process is executed. Afterwards, XCS-RC runs a series of generalization
procedures as explained in Chapter 3.
Two processes are taken into account when determining the runtime variable. The first one

measures the decision making process, from receiving an input to executing the chosen action.
Then, the second time measurement begins when a feedback is received from the environment

87

Chapter 5 Experiments

Figure 5.22: Execution of RC at every Tcomb cycles

and covering rule update, occasional combining, and finally ends after the population is
updated. All simulations are run in the same machine, one at a time. An identical set of
20 random seeds in provided to the system, and the measurement is determined by calculating
an average of those 20 runs.

Figure 5.23: Execution time for binary MP20

Figure 5.23 depicts a comparison between a system with N = 800 in the blue bars and
another having N = 2000 in red, facing a total of 200 000 trials. The former shows an
incapability of solving the given case when Tcomb is set with a great value, e. g., 1000. Such
setting produces a failure in learning, making XCS-RC unable to tackle the given assignment.
For Tcomb = 100, XCS-RC only requires 120.42 seconds to finish each run using N = 800.

Contrary to that, 4013.42 seconds are used by the system with N = 2000 to provide similar
performance, which is over 33 times as long. Then, by setting the combining period into 200,
the system with N = 800 finishes each simulation in 70.35 seconds. This is very efficient
compared to 1990.01 seconds required by the XCS-RC with N = 2000. The third comparison
involving Tcomb = 500 depicts similar results with 39.00 versus 666.62 seconds, won by XCS-
RC with N = 800. Finally, no comparison can be made to systems having Tcomb = 1000
since the corresponding XCS-RC fails to learn the task properly. This is an indication that
by setting N = 2000, the system requires a relatively greater Tcombvalue.

88

5.3 Evaluation

The results also show that in terms of execution time, simpler problems are more suitable to
be handled with a lower value of N . However, as indicated by the results of the experiments,
such setting potentially brings a drawback regarding the hastiness rate. Hence, it is advisable
to set the parameters according to the characteristics of the problem. A complex problem
is commonly indicated by a large input space, a low generalization possibility and a high
variation of the reward map.

5.3.3 Optimal Population

A classifier system can only perform a high learning rate when its population contains a
number of accurate rules. However, for environments with a large state space, the number
of rules can be very huge. This makes the capability of performing generalization becomes
very important, since each wildcard should be placed at an appropriate position. When all
classifiers in the population are accurate and general, the system is guaranteed to behave as
expected. An optimal performance will be achieved when the knowledge is represented by
[P]opt.
Simple cases like multiplexers are easy to analyze. Hence, determining the composition of

rules that builds [P]opt is not difficult. However, XCS-RC fails to produce such a compact
population in most of the simulations. The failure can be considered normal for real valued
MP6 due to the large input space. Unfortunately, the proposed system is also unable to reach
[P]opt in most of the binary MP6 assignments.
Figure 5.24(a) illustrates a set of classifiers in a population which is about to be generalized.

The rules involved here follow the actual situation occurs in one of the conducted binary MP6
experiments. Now, as explained in Chapter 3, XCS-RC runs the parent-picking mechanism by
prioritizing those with lower resemblance. A list consisting of the corresponding resemblance
level is provided in Table 5.5.

(a) Four individuals before combining (b) Combining cl1 and cl2 into cl5

(c) Combining cl1-cl3 into cl6 and cl2-cl4 into cl7

Figure 5.24: Combining results based on parent picking

In practice, the system checks one pair of classifiers at a time by prioritizing those with a
lower resemblance level. When two or more pairs with identical resemblance level exist (e. g.,
cl1-cl2, cl1-cl3, cl1-cl2), the system picks a pair that involves a rule having the lowest index.
This means, the pair cl1-cl2 becomes the priority. An absence of disproval allows the child
(cl5) to be accepted after eliminating the parents (see Figure 5.24(b)). Hence, by combining
cl1 and cl2, the number of rules is reduced to three instead of previously four.

89

Chapter 5 Experiments

Table 5.5: Resemblance level for Figure 5.24(a)

No. Resemblance Pair
1 1 cl3-cl4
2 3 cl1-cl2
3 3 cl1-cl3
4 3 cl2-cl4
5 4 cl1-cl4
6 4 cl2-cl3

A more desirable solution is depicted by Figure 5.24(c) where the number of rules is reduced
to two instead of three. Such result can be obtained if the system prioritizes the pair cl1-cl3
instead of cl1-cl2. However, since XCS-RC processes the rules using lower index priority, such
thing does not commonly occur.
Despite a relatively satisfying performance, the proposed system shows a series of failures

in reaching [P]opt. The impact of such inefficiency is potentially greater for cases with a
higher complexity. From the conducted investigations, some techniques may be implemented
to overcome the problem, e. g., keeping the parents after the child is accepted. However, such
solution potentially costs a significant negative impact to some other aspects of the system,
especially regarding efficiency. Finally, a tolerance to this small drawback is picked over any
potential inefficiency, after considering the desirable behavior shown by the system.
In the following chapter, an example of XCS-RC’s possible development is described in

the direction of performing a Feature Selection operation. Such functionality can only be
implemented to a classifier system having a convincing generalization capability, denoted by
the accuracy in placing wildcards. Using XCS-RC, such direction of development becomes
possible, thanks to the implementation of the induction concept.

90

CHAPTER 6
FEATURE SELECTION

"Nature knows no pause in
progress and development, and
attaches her curse on all inaction."

(Johann Wolfgang von Goethe)
A capability of handling binary and real numbers can be considered as a basic feature of a

classifier system. In facing those problems, the proposed method successfully shows a powerful
and efficient performance compared to some versions which have been published previously,
for both the learning result and the reduction of the space requirements. Naturally, such
success is followed by a question: what next? Are there other capabilities to be developed
after employing induction? And so this chapter is provided in responding to such line of
questioning.
In performing learning, machines have some inherent constraints with respect to their

resources, e. g., number of sensors and memory space. At the other hand, they are assigned
to assist humans by coping with various tasks. Unfortunately, in the design phase, it is not
always possible to determine beforehand which of the available information will actually be
useful for decision making at runtime. Therefore, in addition to learning the assigned task, a
system is also expected to identify the relevance of the available features. By doing that, the
system may dynamically adjust its focus of attention only to the relevant information, thus
reducing the usage of resources.

6.1 Relevance Level Identification
XCS-RC’s capability of adequately placing wildcards opens up a number of development
chances, e. g., a Feature Selection operation. Here, the system is expected to deliver another
form of efficiency: filtering irrelevant environmental information. By receiving a series of
information at each learning cycle, the proposed system attempts to identify the relevance
level owned by each input element. A success in this attempt allows XCS-RC to optimize
the space usage, and in turn, to make decisions involving physical entities such as turning off
sensors.
In [16], John et al., suggest a concept regarding two degrees of relevance, i. e., strong and

weak. The former is used to express indispensable features while the latter implies a lower
contribution to the system performance. Features that belong to neither of both are con-

91

Chapter 6 Feature Selection

sidered irrelevant, meaning that they can be completely disobeyed. A good example for
describing relevance levels can be provided using an input for a 6-bit multiplexer.

(a) A normal MP6 in-
put

(b) An MP6 input with an addi-
tional bit

(c) Relevance levels

Figure 6.1: Relevance in binary MP6 scenario

Figure 6.1(a) shows a "normal" input for binary MP6, consisting of two address and four
value bits. Then, a different form of input is illustrated by Figure 6.1(a), with a total of
seven input bits. Since the system only requires six elements at most, the last bit (i. e., the
seventh) is completely unused. Therefore, as seen in Figure 6.1(c), it is considered irrelevant.
Meanwhile, elements containing address information have a strong relevance due to their
indispensable roles. Then, each of the value bits can be regarded as weakly relevant, since
their values are not always decisive.
The feature selection functionality is added to XCS-RC in the expectation that the system

will be able to detect irrelevant elements within the input structure. To accomplish such task,
the system should be able to place wildcards correctly. In other words, a strongly relevant
input element must not be replaced by a wildcard, while an irrelevant bit can always be.
Therefore, performing such feature selection operation to the original XCS is not advisable,
since it does not perform a convincing generalization capability.
Figure 6.2(a) illustrates a relevance level identification process. After a number of learning

cycles, XCS-RC collects some knowledge in form of rules. At some point, the population
is analyzed and a pattern is found: all the 7th bit of the conditions are replaced by wild-
cards. This matter denotes that the particular bit has a zero impact on the system decision.
Therefore, it can be concluded that the last bit is irrelevant. XCS-RC responds to such
conclusion with two actions, i. e., manipulating the classifiers in the population and adding a
filter accordingly.
Those two actions are followed by manipulation of the condition attributes owned by all

classifiers in [P]. As seen in Figure 6.2(b), all rules now have only six bits on their conditions
instead of seven. Then, in order to adjust incoming inputs, Figure 6.2(c) depicts an addition
of a filtering functionality. It intercepts all incoming inputs and eliminates the irrelevant
bit. So, an environmental state "1010011" is filtered and the system processes it as "101001"
instead.
The provided illustration implies that a higher number of wildcards in a particular bit

position is a sign that the bit is more likely to be an irrelevant one. Different to the unused
element, the value bits are considered weakly relevant since some of their values should be kept
specific. Finally, the address bits are strongly relevant, denoted by the absence of wildcards
in all classifiers.
Filtering an MP6 input does not represent a complex feature selection problem. Never-

theless, the idea of a classifier system with a capability of identifying irrelevant elements
is a desirable direction of development. Referring back to the architecture of an Organic

92

6.1 Relevance Level Identification

(a) Conclusion regarding irrelevance

(b) Filtered population (c) A modified XCS-RC

Figure 6.2: Feature Selection in XCS-RC

Computing system introduced in Section 1.2, such mechanism can be interpreted as a way of
selecting an observation model (see Figure 1.6(a)).
To implement such technique, a user-defined parameter Tfil determines the period for

relevance checking mechanism. XCS-RC runs the feature selection operation every Tcomb×Tfil
trials, and starts the process by observing the number of wildcards at each bit position i.
Then, the result is stored to an array n#[i]. A variable τ [i] keeps the relevance degree of
the ith bit, where the value of each element is calculated following the formula n#[i]÷ nexp,
where nexp denotes the number of experienced rules in the population. Then, a user-defined
relevance threshold parameter τfil whose value lays between 0 and 1, plays a role to determine
the relevance degree of a specific bit position. Practically, the ith element of the conditions
is considered irrelevant if the formula τ [i] ≥ τfil is satisfied.
Assigning a proper value for τfil is important, since it can be decisive in determining

the success of feature selection operation. In simple environments like binary MP6, setting
τfil = 1.00 may suffice. However, a more complex environment commonly has a greater
number of input elements. A larger input space urges the system to generalize a greater
number of rules before identifying and filtering the irrelevant features out. Hence, for such
systems, a lower relevance threshold value is generally more advisable.

93

Chapter 6 Feature Selection

Experiments show that the situation may get more difficult due to the appearance of
the so-called invalid disprovals. Such term expresses low-experienced rules that disprove a
great number of valid combining attempts. In performing feature selection, each of these
individuals has similar effect to outliers. Some part of the obtained data that potentially
drives the system to make incorrect conclusions. A detailed explanation regarding the issue
is discussed as follows.

6.2 Outlier Detection
In performing feature selection, XCS-RC does not only require a number of new parameters.
An additional mechanism in detecting invalid disprovals is also necessary, since they affect the
system in a bad way. Such rules commonly have low accuracy, but tend to mislead the con-
clusion negatively. Despite their low experience, such classifiers disprove a significant number
of combining processes which are actually appropriate. Figure 6.3 depicts the situation that
illustrates how an outlier potentially lead the system to a false conclusion, using an alternate
version of the black box example.

(a) Three samples from a "black box"
including an outlier (star-shaped
item)

(b) Actual population

(c) A mislead conclusion

Figure 6.3: Outlier effect

Figure 6.3(a) begins the illustration by showing three individuals taken from a black box,
i. e., a red ball, a blue ball and a green star-shaped item. An observer is given a task to
conclude the population of items in the box based on the discovered individuals. The actual
content is shown in Figure 6.3(b), but another conclusion is more likely made, after taking
the star into account (see Figure 6.3(c)).
XCS-RC makes a conclusion after considering experienced individuals in the population.

When an offspring passes the disproval examination, the system concludes that the child is

94

6.2 Outlier Detection

a valid combining result. Otherwise, an existence of one or more disproving classifiers causes
the process to stop. Unfortunately, it is possible that a proper generalization is disproved by
an inaccurate individual. In other words, the conclusion regarding a hasty combining result
is mistakenly made, due to an influence of an outlier.
By the time such event occurs, the system still identifies the disproval as an accurate classi-

fier. This is valid, since hastiness detection is only performed to rules that are currently in the
action set. The situation where an inaccurate rule stays undetected does not commonly hap-
pen in "normal" cases. However, the chance becomes greater for scenarios involving a number
of unused input elements. Therefore, an additional hastiness detection is implemented, taking
a so-called disproving rate into account.
Figure 6.4 illustrates the role played by an outlying rule. Here, XCS-RC learns to perform

a 3-bit multiplexer (MP3) that receives one address and two value bits. But instead of three
elements, the environment sends a series of inputs in form of an array of six. The address is
placed at the first bit (indexed by a0), pointing one of the following two value bits (v0 or v1).
The rest can be considered as irrelevant elements, having constant positions at the fourth to
the sixth bit.
The aim of the task is not only to respond with the correct output, but also to identify

the irrelevant bits within the given input. Such task is called "MP3+3", where the former "3"
denotes the number of relevant bits and the latter refers to the irrelevant ones. As shown in
Figure 6.4(a), an input "000000" is received, with an expected output "0". Some time after-
wards, the system receives an input "110000", as depicted in Figure 6.4(b). Assuming that
the system responds to both inputs correctly, the predictions of the corresponding classifiers
are "HIGH".

(a) The address bit a0 points to v0 (b) a0 points to v1

(c) Combined to a child

(d) The child disproves a valid conclusion

Figure 6.4: Combining in MP3+3

95

Chapter 6 Feature Selection

Figure 6.4(c) depicts the situation that occurs when the system attempts to combine those
rules. Wildcards are placed at the first two bits of the child’s condition. The offspring,
symbolized by "##0000 : 0 → HIGH", does not reflect a valid knowledge. Here, XCS-RC
losses two out of three relevant information while all the irrelevant ones are kept. Finally,
Figure 6.4(d) illustrates a situation when the child becomes a disproval for another combining
process. Although the provided generalization attempt is actually valid, the system abandons
the child candidate after being disproved inappropriately.
To solve this issue, XCS-RC monitors the disproving rate owned by each rule. This new

attribute is calculated following a formula cl.ρdisp = cl.disp ÷ cl.exp, where cl.disp denotes
how many times the rule disproves a combining attempt. A greater value of cli.ρdisp denotes
the more likeliness of cli being an outlier.
Then, the decision to eliminate cli depends on the current number of experienced rule in

the population (nexp). If cli.ρdisp ≥ nexp, then cli is removed from the population. The
variable nexp is picked as a threshold for deletion due to the fact that smaller population has
less chance of combining. In other words, when the chance of being disproval is low, a high
disproving rate raises an obvious suspicion.
To validate the concepts of feature selection and outlier detection, the system is tested

using some specifically designed problems. Firstly, a multiplexer task is provided with a
series of inputs having shuffled bits, plus some additional irrelevant elements. Secondly, an
artificial scenario is used, involving a team of four predators with the task of capturing a
prey. Three different learning systems is tested to cope with those tasks, i. e., the original
XCS-RC, XCS-RC with feature selection (will be mentioned as "XCS-RC1" afterwards) and
XCS-RC with feature selection and outlier deletion mechanism called "XCS-RC2". A detailed
explanation regarding the experiments is provided as follows.

6.3 Multiplexers with Modified Input

In the first test, XCS-RC operates as a multiplexer receiving a series of 6-bit inputs with a
modified composition. In a normal MP6 input, the first and the second elements contain an
address while the rest are the value bits. Here, the positions are shuffled. This means, that
each of the address bits may be placed in any of the possible six. To make the case solvable,
the sequence is unchanged for the whole simulation. Figure 6.5(a) depicts an example of a
normal MP6 input, while Figure 6.5(b) shows a shuffled version of that.
A normal MP6 input "010110" keeps the correct answer in the fourth bit (indexed with v1).

Here, v refers to the word "value" while the number "1" comes from the decimal representation
of the address "01". Shuffling the elements means changing the positions of the bits randomly,
but still keeping the correct answer at v1. This way, the system has the chance to identify
the new locations of all the elements and to act properly.
Such shuffled input cannot represent a feature selection task yet. Therefore, a number of

bits are added to the array. As shown in Figure 6.5(c), 12 additional bits accompany the
original six. Along the simulations, the positions of all address, value and unused bits are
static. Then, XCS-RC is assigned to identify all of those irrelevant elements, along with the
main goal of performing full correctness rate. This multiplexer scenario with six relevant and
12 irrelevant input elements is called "MP6+12".
In this MP6+12 scenario, each suitable action is awarded by "1000" and otherwise "0".

The investigation is conducted by feeding XCS-RC 20 000 binary inputs, and the decisions
are taken using alternating modes between exploration and exploitation. The values for

96

6.3 Multiplexers with Modified Input

(a) A normal input for
MP6

(b) A modified MP6 in-
put

(c) A modified 6-bit input with 12 irrelevant information (MP6+12)

Figure 6.5: Modification of MP6 input

the feature selection parameters Tfil and τfil are 2 and 0.9, respectively. This means, that
detection of irrelevant features is executed every second RC attempt, and a bit in a particular
position is considered irrelevant when the amount of wildcards reaches 90% from the total
experienced rules in the population. Other settings are set similar to that used in the MP6
task described in Chapter 5. All results provided here are averaged from 20 runs.
Figure 6.6(a) presents the correctness rate of all systems, where an achievement at 100%

means that all inputs are responded correctly in the last 200 exploit trials. Here, each
XCS-RC variant performs well and provides a stable performance above 95% after 1200 cy-
cles. However, Figure 6.6(b) shows the superiority of XCS-RC2 (with filtering and outlier
detection). The size in the population is quickly reduced to less than 30 individuals after
1200 trials. Having the same number of cycles, the others still cope with around 125 rules
and never reach below 30 until the end of the simulations.
To analyze the capability of identifying irrelevant information, Figure 6.6(c) provides the

comparison between XCS-RC1 and XCS-RC2. Here, XCS-RC2 successfully discovers all
irrelevant bits after 1200 learning cycles. Contrary to that, XCS-RC1 only manages to filter
nine out of 12 unused elements at the end of the simulations. This result clearly indicates that
the outlier detection mechanism improves the capability of identifying irrelevant features.
It can be concluded that XCS-RC2 behaves more desirable to tackle the MP6+12 scenario

in all aspects. The system shows a comparable level of performance along with a quicker re-
duction of the population size and a successful filtering attempt. To validate such conclusion,
the learning systems are assigned to handle some more difficult tasks, i. e., the MP6+24 and
MP11+11 problems.
The obtained results strengthen the previous conclusion that XCS-RC2 performs better

than the others. Starting the comparison by discussing the capability of identifying irrele-
vant features, XCS-RC2 detects all unused bits after 2000 trials (see Figure 6.7(c)). XCS-RC1
shows a different behavior and never manages to perform the feature selection well, leaving
21 irrelevant bits unfiltered at the end of the runs. Another failure is shown by XCS-RC1
when attempting to reduce the population size. Figure 6.7(b) shows that the system ends

97

Chapter 6 Feature Selection

(a) Performance (b) Population size

(c) Input length

Figure 6.6: Results for MP6+12

the simulations while still maintaining 138 rules, which is significantly higher compared to
less than 24 individuals owned by XCS-RC2 since the 2000th cycle. With respect to the cor-
rectness rate, all three XCS-RC variants perform a similar level, as depicted in Figure 6.7(a).
For validating the capability of the proposed system in performing feature selection for

multiplexers, a MP11+11 problem is given. Figure 6.8(a) shows that XCS-RC and XCS-RC2
perform at a similar level, responding to all inputs correctly after 8000 trials. Regarding
space efficiency, XCS-RC2 manages to reduce the population size to below 40 rules (see
Figure 6.8(b)). It is also shown that XCS-RC1 fails to perform a comparable behavior,
providing a slightly slower learning speed and a significantly greater population size. At the
end of the simulations, XCS-RC1 is only able to reduce the number of classifiers to around
265 individuals.
The conclusion that XCS-RC2 is superior to the others is finally validated by Figure 6.8(c)

where XCS-RC2 requires only 4800 trials for filtering all 11 irrelevant elements out. Contrary
to that, XCS-RC1 shows a poor behavior by only discovering one of the unused elements.
The additional technique for detecting outliers can be considered useful to assist the system

98

6.4 The Predator-Prey Pursuit Scenario

(a) Performance (b) Population size

(c) Input length

Figure 6.7: Results for MP6+24

in reaching the feature selection goal. Finally, these results remark the end of the comparison
for multiplexer tasks. Following, XCS-RC is assigned to a new task having a whole different
environment, i. e., the so-called Predator-Prey Pursuit scenario.

6.4 The Predator-Prey Pursuit Scenario

A number of predators has an assignment to pursue a prey and capture it. This Predator-
Prey problem is a well-known task in the area of multi-agent systems (as in [21], [13] and [9]).
Figure 6.9(a) shows a team of four predators (symbolized by red circles) and a prey (yellow
circle) in an artificial torus (borderless) cellular automata world.
As depicted by Figure 6.9(b), each predator has limited vicinity of its surrounding. Cur-

rently, the predator P2 sees the prey. When the location of the prey is known, each of the
predators learns to make decisions that is advantageous to itself. At the same time, they
should consider other possibilities that potentially contribute positively to the team goal
(i. e., capturing the prey). A capture is defined as a situation where the predators success-

99

Chapter 6 Feature Selection

(a) Performance (b) Population size

(c) Input length

Figure 6.8: Results for MP11+11

fully surround the prey, occupying all four closest cells commonly known as the von Neumann
neighborhood (see Figure 6.9(c)).

All entities begin the simulations at random coordinates. Each predator moves randomly
when none of them sees the prey. When the prey’s location is known by at least one team
member, the coordinate is broadcasted. The information will be used by all predators, making
each of them starts the learning process using their own population of knowledge. The
system’s response expresses a movement decision, meaning that each predator either moves
north, south, east or west at every simulation tick. The option to not moving is unavailable.
However, if the cell in the chosen direction is not empty, then the predator’s position does
not change. XCS-RC is assigned to assist the predators in learning to collaboratively capture
the prey, as described in the following section.

100

6.4 The Predator-Prey Pursuit Scenario

(a) Four predators (red) and a prey (yel-
low)

(b) P2 sees the prey (c) The prey is cap-
tured

Figure 6.9: The predator-prey pursuit scenario

6.4.1 Learning

During the simulations, each predator decides its action autonomously. No external control is
applied, and none of the teammates is capable of interfering any other’s decision. Figure 6.10
depicts a flowchart of the predator’s behavior at every simulation tick. After observing the
surrounding, the predator checks whether the prey is seen or not. If the answer is no, it
checks whether a message regarding the prey’s coordinate is broadcasted from any of the
teammates. If no such information is available, each predator simply moves to a random
direction.
Once a predator obtains the prey’s location (either directly seeing or receiving a broadcasted

information), it translates the coordinate into direction. Taking an example provided in
Figure 6.9(b), P1 now knows that the prey is at the Southeast while P2, P3 and P4 converts
the information to the directions South, Southeast and Northeast, respectively. Now, the
desired decision is to move towards the prey.
In [13], each predator performs a learning process by providing two information to XCS-

RC, i. e., the prey’s relative direction and the predator’s local environment. Figure 6.11(a)
shows an encoding process conducted by the predator P2, which has a limited vicinity to
5 × 5 cells in the surrounding. As of this moment, it sees all the teammates and the prey,
without any information regarding the cells depicted in gray color.
The first part of the input consists of four bits denoting the prey’s relative direction,

starting from North and continues clockwise. A value "1" means a confirmation that the
prey is currently at the corresponding direction. Since P2 sees the prey at west, the result of
the encoding is "0001". Following a similar composition technique, P1 translates the prey’s
location to "0011" meaning "SOUTHWEST". Then, P3 encodes "NORTHWEST" to "1001",
while P4 obtains "1100" for "NORTHEAST".
For the second part representing the surrounding area, some options regarding limitation

are available. Figure 6.11(b), 6.11(c) and 6.11(d) illustrate the types of neighborhood called
von Neumann, Moore and extended Moore, respectively. The chosen observation range de-
termines the number of input elements that will be fed to XCS-RC.
According to [13], the 4-bit von Neumann neighborhood is sufficient for the predators to

101

Chapter 6 Feature Selection

Figure 6.10: Flowchart of the predator’s behavior

learn and to collaboratively pursuit the team goal. In composing this thesis, the others are
also implemented for experimental purpose, i. e., to test the capability of XCS-RC with feature
selection. By observing the Moore neighborhood, XCS-RC receives 12-bit inputs while the
extended Moore gives the system an input consisting of 28 bits. A successful performance
of feature selection is denoted by the capability of XCS-RC in reducing the number of input
elements down to eight. This should be done without hurting neither the system performance
nor the efficiency of space usage.
XCS-RC processes the inputs by performing the normal learning cycles. The reward

"HIGH" is received if the last action leads the predator to getting closer to the prey, and
"LOW" for further. A "VERY LOW" feedback is given when the distance does not change
due to an attempt to move into a cell occupied by a teammate (stagnant). If the unchanged
position is caused by trying to move to the prey’s cell (implying a closest possible distance),
then the reward is "HIGH". The last movement expresses a collaborative decision called
fair move, and is rewarded "VERY HIGH". It can only occur when a predator moves from
an advantageous position to let a teammate getting closer to the prey (see [13] for detailed
explanation). Table 6.1 summarizes the five types of predator’s movements along with the
rewards.
The assignment to guide the predators capturing the prey is more difficult than the multi-

plexer cases. Each predator has its own population of classifiers and learns separately without
any social capabilities except broadcasting the prey’s coordinate. Like in the previous tests

102

6.4 The Predator-Prey Pursuit Scenario

(a) Full composition

(b) Von Neumann neigh-
borhood

(c) Moore neighborhood (d) Extended Moore
neighborhood

Figure 6.11: The input for XCS-RC

Table 6.1: Reward map for the Predator-Prey Pursuit scenario [13]

No. Movement type Reward
1. Closer HIGH
2. Further LOW
3. Stagnant VERY LOW
4. Closest possible HIGH
5. Fair move VERY HIGH

involving multiplexers, a series of investigations are run to compare XCS-RC, XCS-RC1 and
XCS-RC2.

6.4.2 Results

For validating the impact of equipping the feature selection capability to XCS-RC, the preda-
tors start with some larger limitations, i. e., Moore and extended Moore neighborhood. It is
expected that finally all of them succeed in reducing the number of observation elements. An
identical set of system parameters and data acquisition technique are used in the simulations,
unless stated otherwise. For each run, the length is limited to 1 000 000 simulation ticks. In
every tick, each predator has the full autonomy to decide its movement. To provide a better
impression on the comparison results, a static prey is chosen. This means, in the whole run,
the prey does not move anywhere and only waits to be captured.
The figures here are presented quite differently to the previous graphics. In these results,

103

Chapter 6 Feature Selection

the horizontal axes denote the number of simulation ticks in logarithmic scales. Then, the
vertical axes indicate the average number of captures every 1000 ticks, accumulated from the
beginning of the simulations, which should be maximized. All results are calculated based
on an average of 10 runs, where the population size and the input length are obtained from
all four predators, making it 40 sets of data in total.

(a) Performance (b) Population size

(c) Input length

Figure 6.12: Results for the Predator-Prey scenario with Moore neighborhood

Figure 6.12(a) depicts the performance of the predators in capturing the prey. Identical
results owned by all learning systems indicate that the performance of XCS-RC is not af-
fected by the additional feature selection and outlier detection techniques. Starting with zero
knowledge, the team of predators ends up with an average of 22.3 captures every 1000 ticks,
or approximately 22 300 for the whole run. Then, Figure 6.12(b) provides a similar indi-
cation concerning the generalization capability. In reducing the number of rules, XCS-RC,
XCS-RC1 and XCS-RC2 show insignificant differences in the results.
However, a noticeable difference is shown in Figure 6.12(c) that compares the capability

of XCS-RC1 and XCS-RC2 in minimizing the number of input bits. The latter, equipped
with a mechanism to detect outliers, filters out irrelevant information quicker than the for-

104

6.4 The Predator-Prey Pursuit Scenario

mer. After 80 000 ticks, XCS-RC2 already eliminates two irrelevant bits while XCS-RC1 has
not succeeded to remove any. The highest gap between them occurs around the 200 000th
tick where XCS-RC1 provides an average at 10.375 bits while XCS-RC2 already copes with
8.8 elements. At the end of the simulations, XCS-RC2 slightly outperforms the counterpart
by 8.075 to 8.25 elements within the inputs.
The superiority of XCS-RC2 continues to appear in the next task, assisting a team of

predators using the 24-bit extended Moore neighborhood. Figure 6.13(b) illustrates how
the systems manage to minimize the population size over the number of ticks. Here, XCS-
RC2 outperforms the others, ending the runs with an average of less than 105 classifiers.
Meanwhile, XCS-RC maintains around 320 rules and XCS-RC1 still copes with approximately
290 individuals at the end of the simulations. This result shows the indication that XCS-RC2
has the quickest reduction mechanism compared to the others.

(a) Performance (b) Population size

(c) Input length

Figure 6.13: Results for the extended Moore neighborhood

In the attempt of filtering out irrelevant data, XCS-RC2 ends the comparison by providing
a better result. As shown in Figure 6.13(c), the average of the input lengths are 11.5 bits for
XCS-RC2 and 24.7 elements for XCS-RC1 at the end of the simulations (1 000 0000 ticks).

105

Chapter 6 Feature Selection

Finally, Figure 6.13(a) confirms that the extra capabilities owned by XCS-RC1 and XCS-RC2
do not affect their performance negatively. The conclusion is made based on the fact that
the number of captures is very similar for all classifier systems in the whole simulations.
These results provide a set of evidences showing that a feature selection capability can be

implemented to XCS-RC without bringing any negative impact. Moreover, it even manages
to make the learning process more efficient and desirable. The development of XCS-RC in
the direction of feature selection is promising, leading to future investigations. This chapter
successfully provides a convincing argument regarding an instance of future developments.
Finally, some concluding remarks and outlooks close the discussions in this thesis, as presented
in the following chapter.

106

CHAPTER 7
CONCLUSION AND OUTLOOK

"And whoever today is better than
yesterday, they are the lucky ones."

(Muhammad)
Improvement is a keyword that describes the motivation behind the proposed method. The

composition of XCS-RC has a specific aim, i. e., to gain a more powerful learning system that
is able to deliver better results compared to the original XCS and its variants. Therefore, the
proposed system is designed based on a philosophical approach that has been conducted by
humans for centuries. Inductive reasoning, the technique that founds the whole investigation,
is a classical method invented by Aristotle thousands of years ago.
Since then, the induction concept has been developed widely. Notable names, e. g., Tycho

Brahe, Nicolaus Copernicus, Alhazen, Galileo Galilei, Isaac Newton and Charles Darwin,
have contributed to improve the stability of the theory. Induction became the basis of sci-
entific activities where humans collect their experiences and build their knowledge. They all
conduct the same things, observing the environment, obtaining a set of data, followed by the
composition of conclusions based on some underlying patterns. Therefore, the quality of the
conclusions highly depends on the accuracy of every individual datum. Not only that, the
comprehensiveness of the data plays an important role to prevent a hasty generalization.
A series of investigations is conducted in the attempt of adapting such method to machine

learning, taking an example using the Accuracy-based Learning Classifier System (XCS). In
building the knowledge, XCS employs reinforcement method to perform online learning. The
result is stored in form of classifiers which contain some attributes expressing the covered
states, the advocated action and the suitability between both of them.
After several years of development, XCS has been established as one of the most successful

technique in the genetic-based machine learning area. Its capability of handling various forms
of input is one of the positive aspects. Moreover, the classifier uses a coded language that
can be easily translated to a simple human language. Such factors are very helpful for the
users, especially for evaluation purposes.
However, the performance of XCS does not always satisfy the common needs. The fact

that the system learns quite slowly even for some simple tasks, is a flaw that requires to
be solved. And so this thesis is composed, attempting to contribute to the scientific world
by improving the learning method for classifier systems. The modifications mainly affect a
specific component with an assignment of discovering general and accurate rules. Classifiers

107

Chapter 7 Conclusion and Outlook

having such positive characteristics increase both the effectiveness and the efficiency of the
learning process, and the results can be significantly improved.

7.1 Summary

In this thesis, the induction concept is derived to perform a heuristic-based genetic operation
called Rule Combining. The system, namely XCS with Rule Combining (XCS-RC), is de-
signed to make conclusions based on the experience. After observing the learned knowledge,
generalized offsprings are created, replacing the old individuals.

Figure 7.1: Combining

The whole modification is based on the induction concept illustrated in Figure 7.1, stating
that when a "0" meets a "1", they are combined and become "#". However, to become a
parent, a rule should be sufficiently experienced. Then, there are three basic principles that
should be fulfilled before a combining process is executed, i. e., the parents advocate the
same action, they have insignificant difference of predictions, and no disproving classifier
exists in the population. In the implementation of the latter, every combining process should
be approved by all rules representing the existing knowledge. The "communal acceptance" is
followed by equipping the child with necessary attributes, and then insertion before finally
removal of the old individuals.
Afterwards, the system prepares an anticipative mechanism due to the possibility that

the child is actually created through a hasty conclusion. In practical, every executed rules
are always monitored. Once a generalized classifier shows an intolerable behavior, it is re-
moved and replaced by a new one. Such knowledge correction mechanism is proven useful in
strengthening the reliability of the proposed system.
To minimize the possibility of making hasty generalization, XCS-RC conducts a simple

experiment when picking an action. In the exploration mode where normally the result is
taken from a random process, the system deterministically chooses an output having the
lowest experience. By doing this, shorter time is required to obtain more knowledge. And by
employing no wildcards in covering, the system guarantees that all ungeneralized rules are
accurate.
Figure 7.2 illustrates the summary of modifications using a schematic diagram. Each rect-

angle represents an activity while the arrows with solid and dashed lines refer to steps and
impacts, respectively. RC technique is affected by two modifications, i. e., ungeneralized cov-
ering mechanism and deterministic explorative decision. The impact particularly affects the
parent picking process and the result of disproval examination. Then, the generalization
result is responded by the knowledge correction mechanism. In turn, a deletion to a general-
ized rule makes the covering recover the missing states, which will affect the behavior of the
explorative action selection. Finally, the whole modifications are implemented to the original

108

7.1 Summary

Figure 7.2: Schematic diagram of the system modifications

XCS, replacing some unnecessary mechanisms.
Such method has a direct impact to decrease the space requirement, but not limited to that.

As a result, XCS-RC manages to present at least three significant improvements compared
to the original XCS:

1. Quicker learning rate

2. More powerful generalization capability

3. Simpler parameter setting

Those changes are confirmed through a series of experiments involving various cases, i. e.,
multiplexers, checkerboards, and Markovian environments. Not only in handling binaries,
but also in some experiments involving continuous values. Moreover, the proposed method
also enables the system to perform a feature selection operation, an additional capability that
is less likely to be applied to any other variants of XCS. More detailed explanation regarding
the improvements presented by XCS-RC is discussed as follows.

7.1.1 Learning rate
The first aspect that determines the judgement of XCS-RC is the learning rate, which com-
bines the factors of correctness rate and number of required cycles. Table 7.1 summarizes
the achievement of XCS, XCSR and the proposed system presented in Chapter 5, for the
single-step cases. Here, the comparison focuses on the stability of the performance, i. e., the
number of required cycles to get a stability at 95% and 99% of the full performance. A
100% indicator is not used to tolerate insignificant changes.
Starting with binary multiplexers, the number of required trials indicates that XCS-RC

performs a better learning rate compared to XCS. The proposed method requires significantly

109

Chapter 7 Conclusion and Outlook

less trials to achieve a stable 95% of full correctness rate or above. Similar to that, both
systems achieve a 99%-stability after a significant different number of learning cycles, where
XCS-RC shows a more desirable behavior.

Table 7.1: Performance comparison for the single-step problems

Test scenario Total
trials

Stable at 95%
or above (trials)

Stable at 99%
or above (trials)

XCS/XCSR XCS-RC XCS/XCSR XCS-RC
MP6 binary 10 000 1400 200 2600 300
MP11 binary 30 000 9300 1000 15 700 1400
MP20 binary 200 000 74 500 9000 88 000 12 000
MP6 real 40 000 20 600 16 600 unknown unknown
MP6 real (alt.) 40 000 unknown 13 000 unknown unknown
CB-2d3 50 000 N/A 1800 N/A 5000
CB-2d5 50 000 N/A 4400 N/A 13 600
CB-2d7 50 000 N/A 11 800 N/A 26 800
CB-3d3 50 000 N/A 16 000 N/A 34 600

Then, the results from the real MP6 simulations strengthen the indication of XCS-RC’s
superiority even more. For the task involving "normal" thresholds, XCS-RC manages to get a
stable 95% of full corectness rate quicker than the counterpart, i. e., 16 000 against 20 600 cy-
cles. However, due to the large input space, both of them fails to get a stability at 99% or
above (denoted by the term "unknown"). In the problem involving alternating thresholds,
the proposed system reaches a stability at 95% of full performance after 13 000 trials while
XCSR fails to present a similar result. As previously discussed, such task is more difficult for
XCSR since the environment contains a set of range having relatively narrow widths.
Despite the results unavailability for XCSR in the checkerboards ("N/A" refers to "Not

Available"), XCS-RC proves its ability to map the given cases. Nevertheless, an assumption
can be made based on the results from the real MP6 case. The checkerboard environments
are more difficult to solve due to the existence of multiple thresholds in each dimension.
Based on the fact that XCSR fails to solve real MP6 with alternating thresholds, one can
conclude that the possibility of reaching a stability at 95% of full correctness rate is low.
Unfortunately, no data can be provided to back such conclusion.

Table 7.2: Performance comparison for the multi-step cases

Test scenario Total
trials

Average
steps

Tolerable
value

Stability (trials)
XCS XCS-RC

Woods1 8000 1.6875 1.8148 400 200
Woods2 8000 1.6875 1.8148 500 200
Maze4 8000 3.5000 3.8537 200 200
Maze5 8000 4.6111 5.0702 800 200
Maze6 8000 5.1944 5.6415 400 200

Finally, the problems involving Markovian environments are presented here to compare
XCS and XCS-RC in facing multi-step tasks. Instead of using percentage indicators, another
approach is used to identify the success of the systems. Each map has its own expected value

110

7.1 Summary

depicting the average number of steps from all empty cells. A tolerance is applied based on
the assumption that the animat starts from those further cells more often than the closer
ones. Here, the term "further" refers to the cells requiring more steps than the average.
In finding the food within the provided environment, the animat is guided by the learning

systems to minimize its steps. As seen in Table 7.2, both XCS and XCS-RC succeed to
accomplish the task and perform a slightly different effectiveness. XCS-RC requires 200 trials
to reach a tolerable value for mapping the given environments, while XCS reach similar value
by performing 400 and 500 attempts for Woods1 and Woods2, respectively. For the Mazes,
XCS-RC successfully does all jobs with no more than 200 trials while XCS requires a slightly
more cycles to solve the given problems.
As a conclusion, XCS-RC is more superior than XCS in terms of learning rate. It manages

to fulfill all the given tasks in comparable level or even better. Those effective processes depict
its ability to manage an efficient population of general and accurate rules, as explained in the
following subsection.

7.1.2 Generalization capability

It is guaranteed that a classifier system having a set of accurate rules would perform effec-
tively. However, when those classifiers are specific (ungeneralized), the space demand is high,
making it highly inefficient. As the main modification of the proposed system, RC replaces
the role of XCS’s Darwinian genetic operators in generalization tasks. By combining rules,
the size of the population can be decreased. Along with some additional techniques, XCS-
RC performs a more desirable behavior compared to the original system and the previously
published variants.

Table 7.3: Population size comparison

Test scenario Total
trials

Size of [P]opt
(rules)

Final [P] size (rules) Stability (trials)
XCS XCS-RC XCS XCS-RC

MP6 binary 10 000 16 45.300 22.850 unknown 700
MP11 binary 30 000 32 112.250 48.600 unknown 6800
MP20 binary 200 000 64 344.850 149.350 unknown unknown
MP6 real 40 000 16 664.800 93.050 unknown unknown
MP6 real (alt.) 40 000 16 661.000 84.275 unknown unknown
CB-2d3 50 000 18 N/A 19.450 N/A unknown
CB-2d5 50 000 50 N/A 52.500 N/A unknown
CB-2d7 50 000 98 N/A 164.850 N/A unknown
CB-3d3 50 000 54 N/A 146.250 N/A unknown
Woods1 8000 31 162.350 31.350 unknown 500
Woods2 8000 31 161.700 32.550 unknown 6800
Maze4 8000 103* 601.000 105.750 unknown 1900
Maze5 8000 183* 954.850 186.400 unknown 2400
Maze6 8000 175* 723.100 177.550 unknown 5100
*optimal result out of 100 simulations

Population size is the second priority after learning rate. Nevertheless, the conducted
experiments indicate that the system performance has a strong dependency to the obtained
knowledge. The system learns better when the set of classifiers is able to represent the

111

Chapter 7 Conclusion and Outlook

learned knowledge efficiently. Having a small population size does not always mean that
the behavior will be better. But instead, the accuracy of the rules determines the learning
quality. A proper generalization method leads to an optimal learning efficiency, and in turn,
to a system with high effectiveness.
Table 7.3 contains a collection of experimental results, particularly regarding the population

size. It is an interesting phenomenon that XCS and XCSR have a stable population in none of
the experiments. Except for those involving checkerboards, the number of rules still fluctuates
at the end of the simulations. Contrary to that, XCS-RC provides a stable population size in
nine out of 14 tasks. Those unstable sets occur when facing problems having a considerably
large input space, where more trials are commonly required.
When performing binary multiplexer, XCS-RC is not able to reach optimal population in

any of the tasks. The proposed system collects a stable MP6 population with 22.85 rules
since the 700th trial, which is relatively close to the optimum at 16. Since XCS still copes
with 45.3 classifiers at the end of the simulations, XCS-RC can be considered as the winner.
The results for the MP11 task also show similar indications. XCS-RC manages to reduce
the number of rules down to 48.6, despite the optimal value at 32. At the end of the MP20
simulations, the population size owned by XCS-RC is 149.35 individuals, and still converging.
Although it is unable to reach the ideal size at 64 classifiers, those results indicate a significant
improvement compared to those provided by XCS that ends the runs with 344.85 rules.
In tasks involving real MP6, XCS-RC fails to manage a stable population. Although the

ideal size for both normal and alternating thresholds is 16 rules, the proposed system only
succeeds to reduce the value down to 93.05 and 84.275 classifiers, respectively. Nevertheless,
this is better compared to XCSR which maintains a far higher amount, i. e., around 660 rules
at the end of the simulations.
The proposed system is also unable to form [P]opt in all four checkerboard tasks. The cause

of this failure is the small number of trials, which is limited to 30 000. Nevertheless, XCS-RC
manages to reduce the number of rules down to 19.45, 52.5, 164.85 and 146.25 individuals
for CB-2d3, CB-2d5, CB-2d7 and CB-3d3, respectively.
Finally, in experiments involving multi-step tasks, XCS-RC shows no significant difference

of effectiveness compared to the original system. Hence, the winner is determined by the
one having a lower population size. The reference value (size of [P]opt) for Maze is taken by
running a series of 100 simulations. The minimal value among the results is assumed as the
optimum, after previously examining the validity of the contained classifiers.
XCS-RC forms a set of populations whose sizes very close to the target. All tasks are

learned successfully, having no more than four classifiers greater compared to that owned
by [P]opt. In this matter, XCS fails to perform similarly. The original system maintains a
much higher number of rules compared to XCS-RC. These facts end the discussion regarding
the generalization capability with a strong impression, that the RC technique contributes
strongly on making a compact population. The achievement is significantly better than that
provided by the Darwinian genetic operators.

7.1.3 System parameters

Every learning system is equipped with a set of adjustable parameters for a flexibility purpose.
The number of variables denotes the degree of freedom owned by the system. Some simpler
problems may require different parameter setting to those which are more complex. For
instance, XCS is able to solve Woods scenarios using a wildcard probability P# = 0.33, but

112

7.2 Outlook

the more suitable value for coping with Maze is 0.05. A series of experiments shows that the
value above 0.1 may cause XCS to fail in performing a proper learning process.
However, a greater number of parameters does not necessarily indicate a better learning

quality. As a matter of fact, compared to the original system, XCS-RC employs less user-
defined variables. Table 7.4 summarizes the difference of both systems with respect to the
parameters, including those required in performing the feature selection operation.

Table 7.4: Unused XCS parameters and the new ones for XCS-RC

No. Unused XCS parameters XCS-RC parameters
1 Wildcard covering probability (P#) Combining period (Tcomb)
2 GO threshold (θGA) Minimal experience (minExp)
3 Crossover probability (pX) Prediction tolerance (predTol)
4 Mutation probability (pM) Prediction error tolerance (predErrTol)
5 GO prediction error reduction Feature selection period (Tfil)
6 GO fitness reduction Relevance threshold (τfil)
7 Minimal experience to subsume (θsub) -
8 Deletion threshold (θdel) -

Eight obsolete parameters owned by XCS are related to the discovery component whose
main task to produce general and accurate rules. Five of them are used in genetic operation,
which is completely unused in XCS-RC. Instead, the proposed system entitles four new pa-
rameters for performing RC, plus additional two used in feature selection. Another important
note is that there are three parameters owned by XCS that play direct roles in some random
processes. Contrary to that, XCS-RC does not perform such randomizations and thereby
employs no probability parameter.
XCS-RCS shows a high flexibility in solving the given assignment despite its a smaller

amount of parameters. At the positive side, lower number of user-defined variables makes
the system easier to be operated by human. Moreover, elimination of probability parameters
contributes to a more accurate evaluation. An additional functionality of feature selection
even improves the system efficiency, by equipping XCS-RC a capability to identify any irrel-
evant information.

7.2 Outlook

Despite those improvements, the conducted experiments provide some indications that XCS-
RC owns some noticeable drawbacks. Additional approaches might be implemented to min-
imize the flaws, but it is difficult to apply them without facing some consequences, e. g.,
complicated calculations, process inefficiency. Therefore, those unavoidable impacts can be
considered as a payoff to the huge advantage offered by the proposed system. To complete the
discussion, this final section is dedicated to provide some outlook containing possible further
developments.
Among issues that are worth mentioning, loss of knowledge is the most harmful occasion.

As seen in Figure 7.3(a), a child is completed after subsuming experienced classifiers. Such
removal is necessary for efficient usage of storage. However, an unexpected risk of losing
knowledge might occur. Later when being executed, if the child is identified as a hasty
product, it will be removed. This means, that the knowledge it subsumed, is also lost. Other

113

Chapter 7 Conclusion and Outlook

tricks (e. g., temporarily keeping the old individuals) are possible, but there is a high risk of
having an overpopulated storage, especially in cases involving a large input space.

(a) Subsumption and deletion in
XCS-RC

(b) A "recycle bin" approach

Figure 7.3: Alternative method for anticipating loss of knowledge

Another option to the problem is by implementing a "recycle bin" approach. In practical,
the old individuals are stored to a so-called Storage set, as illustrated in Figure 7.3(b). This
might solve the problem, but yet another consequence shows up. Although a child is always
created based on two classifiers, it practically replaces a greater number of rules in many
occasions. So, for scenarios with a large input space (e. g., binary MP20 or real MP6), this
trick potentially causes a great inefficiency. To keep the system from such complexity, none
of those options is implemented to XCS-RC.
Beside the flaw of learning inefficiency, the proposed system also fails to reach [P]opt several

times, as discussed in Section 5.3. This failure causes XCS-RC to maintain a higher size of
the population. However, assigning an extra procedure in the attempt of eliminating this
issue is not considered as a priority. Currently, the parent-picking mechanism prioritizes
pairs having lower resemblance. A future improvement might solve this matter, making the
system capable of forming a more desirable population than it is currently.

(a) Rectangular (b) Combining result

Figure 7.4: Classifier coverage in rectangle representations

Another improvement opportunity involves the feature selection capability. A series of
experiments shows an indication that the idea is feasible to be implemented. However, the
technique might still contain some holes requiring a number of anticipations, e. g., evaluation

114

7.2 Outlook

whether an element is correctly identified as irrelevant. In RC, such functionality plays a
similar role to the knowledge correction procedure, anticipating possible mistakes that are
made in the past.
After describing some ideas on improving the proposed system, these following topics gen-

uinely reflect some possible steps forward. The first proposed development is inspired by
a two-dimensional representation of the cases involving real inputs, e. g., the checkerboard.
There, a coverage owned by a pair of rules can be depicted using a Cartesian and the com-
bining result is simply defined as a rectangle between two dots with the longest distance.
Figure 7.4(a) shows an instance of the pairing cl1 and cl2 while Figure 7.4(b) presents the
offspring cl3.

(a) Circular (b) Varying shapes

Figure 7.5: Classifier coverage in other two-dimensional representations

However, such combining cannot easily be implemented to other forms of representation.
Figure 7.5(a) illustrates the coverage owned by a pair of classifiers which should be drawn in
circular instead of rectangular. Furthermore, other problems might require several forms of
two-dimensional representation, instead of them both (see Figure 7.5(b)). It would be inter-
esting to adapt the idea of induction to be implemented to such problems. Several possibilities
to approach the combining can be considered, e. g., combinations between mathematical and
spatial.
Finally, this thesis ends by presenting a fundamental question: is it possible to improve

other learning systems by developing the notions of induction? As a way of thinking that
has been developed in several centuries, inductive reasoning may have a huge potential in
improving some known techniques. After some learning time, every system possesses its
knowledge that can be used to build a conclusion. By having conclusions, the learning
process can be sped up and made more efficient. Another possible advantage is increasing
the degree of freedom or the autonomy level of other machine learning methods, e. g., in a
typical Fuzzy Logic learning system as follows.
Fuzzy logic is a system that uses approximations for performing a reasoning operation. The

basic mechanism is quite similar to a classifier, i. e., receiving an "IF" (state) and executing
a "THEN" part. When an input is received, a so-called membership function translates each
element into one or more keywords. Figure 7.6(a) provides an example of a membership
function that converts real value into one or a combination of three keywords, i. e., "NEAR",
"MEDIUM" and "FAR". When the system receives an input (e. g., "8 km"), the membership

115

Chapter 7 Conclusion and Outlook

(a) Membership function

(b) Rule base

Figure 7.6: Typical fuzzy logic components

function translates it into "0.6 MEDIUM and 0.4 NEAR". Another example is given by a
state "15 km", which is "100% FAR".
Such translation can be considered a form of classification. Using a series of approximations,

Table 7.5 provides a set of one-elemented rules that is able to perform in a similar way to the
membership function. Commonly, fuzzy logic copes with states with more than one element,
as well as classifier systems. Then, Figure 7.6(b) depicts a reasoning element called rule base,
which plays a connecting role between the "IF" and "THEN" part of the system.
In the provided instance, the system considers two variables (i. e., distance and weather) to

make decisions. Such structure resembles the classifier systems, where the condition covers
several input elements by playing the "IF" role and advocates the "THEN" part from the
action attribute. E. g., intentionally emphasizing the similarity between Fuzzy Logic and
XCS, the rule base operates as "IF the distance is MEDIUM and the weather is SUNNY,
then go NORMAL speed".
The attempt to combine fuzzy logic and classifier systems has been investigated and pub-

lished in several works. In [1], Bonarini introduces the so-called Learning Fuzzy Classifier
Systems (LFCS), a system that uses fuzzy sets to interpret the input and output of a Learning
Classifier Systems. Then, Cassilas et al.proposes another system called the Fuzzy-XCS, which
operates as an XCS with two additional functionalities called "Defector" and "Effector" that
fuzzifies and defuzzifies the given values, respectively [10]. The outlook presented here offers
a very different approach, i. e., a classifier system that performs the membership function and
the rule base component using reinforcement learning cycles.
It is worth to see whether a modified classifier system is able to play a similar role to that

owned by fuzzy logic’s membership function and rule base. The challenge is provided by an

116

7.2 Outlook

Table 7.5: Rule representation of the fuzzy logic membership function

No. Condition Action Pred. No. Condition Action Pred.
1 [0.000; 5.000] NEAR 1000 13 [11.001;12.000] MEDIUM 800
2 [5.001; 6.000] NEAR 800 14 [12.001;13.000] MEDIUM 600
3 [6.001; 7.000] NEAR 600 15 [13.001;14.000] MEDIUM 400
4 [7.001; 8.000] NEAR 400 16 [14.001;15.000] MEDIUM 200
5 [8.001; 9.000] NEAR 200 17 [15.001;50.000] MEDIUM 0
6 [9.001;50.000] NEAR 0 18 [0.000; 9.999] FAR 0
7 [0.000; 4.999] MEDIUM 0 19 [10.000;10.999] FAR 200
8 [5.000; 5.999] MEDIUM 200 20 [11.000;11.999] FAR 400
9 [6.000; 6.999] MEDIUM 400 21 [12.000;12.999] FAR 600

10 [7.000; 7.999] MEDIUM 600 22 [13.000;13.999] FAR 800
11 [8.000; 8.999] MEDIUM 800 23 [14.000;50.000] FAR 1000
12 [9.000;11.000] MEDIUM 1000

obvious difference between both systems. In fuzzy logic, those components are defined solely
by human’s decision, while XCS tends to autonomously learn using environmental states
and responses. Nonetheless, combining the capabilities of two well-known machine learning
methods should be an interesting topic, a challenging problem for those who continuously
seeks a chance of improvements.

117

REFERENCES

[1] A. Bonarini. An introduction to learning fuzzy classifier systems. In Learning Classi-
fier Systems, From Foundations to Applications, pages 83–106, London, UK, UK, 2000.
Springer-Verlag.

[2] L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and genetic algo-
rithms. Artificial intelligence, 40(1):235–282, 1989.

[3] L. Bull. Learning classifier systems: A brief introduction. In L. Bull, editor, Applications
of Learning Classifier Systems, volume 150 of Studies in Fuzziness and Soft Computing,
pages 1–12. Springer Berlin Heidelberg, 2004.

[4] M. Butz and S. W. Wilson. An algorithmic description of xcs. In Revised Papers from
the Third International Workshop on Advances in Learning Classifier Systems, IWLCS
’00, pages 253–272, London, UK, UK, 2001. Springer-Verlag.

[5] M. V. Butz. XCSJava 1.0: An implementation of the XCS classifier system in Java.
IlliGAL report 2000027, Illinois Genetic Algorithms Laboratory, 2000.

[6] M. V. Butz, D. E. Goldberg, and K. Tharakunnel. Analysis and improvement of fitness
exploitation in xcs: bounding models, tournament selection, and bilateral accuracy. Evol.
Comput., 11(3):239–277, 2003.

[7] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson. Toward a theory of generalization
and learning in xcs. IEEE Transactions on Evolutionary Computation, 8:28 – 46, 2004.

[8] E. Cakar, N. Fredivianus, J. Hähner, J. Branke, C. Müller-Schloer, and H. Schmeck.
Aspects of learning in oc systems. In C. Müller-Schloer, H. Schmeck, and T. Ungerer,
editors, Organic Computing — A Paradigm Shift for Complex Systems, volume 1 of
Autonomic Systems, pages 237–251. Springer Basel, 2011.

[9] E. Cakar and C. Müller-Schloer. Self-organising interaction patterns of homogeneous and
heterogeneous multi-agent populations. In Self-Adaptive and Self-Organizing Systems,
2009. SASO ’09. Third IEEE International Conference on, pages 165–174, 2009.

[10] J. Casillas, B. Carse, and L. Bull. Fuzzy-xcs: A michigan genetic fuzzy system. Fuzzy
Systems, IEEE Transactions on, 15(4):536 –550, aug. 2007.

119

References

[11] N. Fredivianus, K. Kara, and H. Schmeck. Stay real!: Xcs with rule combining for
real values. In Proceedings of the fourteenth international conference on Genetic and
evolutionary computation conference companion, GECCO Companion ’12, pages 1493–
1494, New York, NY, USA, 2012. ACM.

[12] N. Fredivianus, H. Prothmann, and H. Schmeck. Xcs revisited: A novel discovery com-
ponent for the extended classifier system. In K. Deb, A. Bhattacharya, N. Chakraborti,
P. Chakroborty, S. Das, J. Dutta, S. Gupta, A. Jain, V. Aggarwal, J. Branke, S. Louis,
and K. Tan, editors, Simulated Evolution and Learning, volume 6457 of Lecture Notes
in Computer Science, pages 289–298. Springer Berlin / Heidelberg, 2010.

[13] N. Fredivianus, U. Richter, and H. Schmeck. Collaborating and learning predators on a
pursuit scenario. In M. Hinchey, B. Kleinjohann, L. Kleinjohann, P. Lindsay, F. Rammig,
J. Timmis, and M. Wolf, editors, Distributed, Parallel and Biologically Inspired Systems,
volume 329 of IFIP Advances in Information and Communication Technology, pages
290–301. Springer Boston, 2010.

[14] A. W. Hirshfeld. Parallax: The Race to Measure the Cosmos, volume 33 of Bulletin of
the American Astronomical Society. Henry Holt and Company, May 2001.

[15] J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms. In
D. A. Waterman and F. Hayes-Roth, editors, Pattern directed inference systems, pages
313–329. Academic Press, 1978.

[16] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In Machine Learning: Proceedings of the Eleventh International, pages 121–
129. Morgan Kaufmann, 1994.

[17] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, Jan. 2003.

[18] T. Kovacs. Deletion schemes for classifier systems. In Genetic and Evolutionary Com-
putation Conference (GECCO ’99), pages 329–336. Morgan Kaufmann, 1999.

[19] T. Kuhn. The Copernican Revolution: Planetary Astronomy in the Development of
Western Thought. A Harvard Paperback. Harvard University Press, 1957.

[20] P. L. Lanzi. An analysis of generalization in the xcs classifier system. Evol. Comput.,
7(2):125–149, 1999.

[21] B. Lenzitti, D. Tegolo, and C. Valenti. Prey-predator strategies in a multiagent system.
In Computer Architecture for Machine Perception, 2005. CAMP 2005. Proceedings. Sev-
enth International Workshop on, pages 184–189, July 2005.

[22] G. Lloyd. Early Greek science: Thales to Aristotle. Ancient culture and society. Chatto
& Windus, 1970.

[23] D. O’Leary. How Greek Science Passed to the Arabs. Ares Publishers, 1949.

[24] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and H. Schmeck. Towards a
generic observer/controller architecture for organic computing. In C. Hochberger and
R. Liskowsky, editors, INFORMATIK 2006 ? Informatik für Menschen!, volume P-93
of LNI, pages 112–119. Bonner Köllen Verlag, Oktober 2006.

120

References

[25] U. Richter, H. Prothmann, and H. Schmeck. Improving xcs performance by distribution.
In X. Li, M. Kirley, M. Zhang, D. Green, V. Ciesielski, H. Abbass, Z. Michalewicz,
T. Hendtlass, K. Deb, K. Tan, J. Branke, and Y. Shi, editors, Simulated Evolution and
Learning, volume 5361 of Lecture Notes in Computer Science, pages 111–120. Springer
Berlin Heidelberg, 2008.

[26] G. Saliba. Islamic Science and the Making of the European Renaissance. History of
science: Islamic studies. MIT Press, 2007.

[27] H. Schmeck. Organic computing - a new vision for distributed embedded systems.
In ISORC ’05: Proceedings of the Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 201–203, Washington, DC, USA,
2005. IEEE Computer Society.

[28] H. Schmeck, C. Müller-Schloer, E. Cakar, M. Mnif, and U. Richter. Adaptivity and
self-organization in organic computing systems. ACM Transactions on Autonomous and
Adaptive Systems, 5(3):10:1–10:32, 2010.

[29] B. Steffens. Ibn Al-Haytham: First Scientist. Profiles in Science. Morgan Reynolds
Incorporated, 2007.

[30] C. Stone and L. Bull. For real! xcs with continuous-valued inputs. Evol. Comput.,
11:299–336, September 2003.

[31] R. Taton, C. Wilson, and M. Hoskin. The General History of Astronomy: Volume 2,
Planetary Astronomy from the Renaissance to the Rise of Astrophysics. General History
of Astronomy. Cambridge University Press, 1995.

[32] A. M. Turing. Computing machinery and intelligence. Mind, pages 433–460, 1950.

[33] C. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University, Eng-
land, 1989.

[34] M. Weidhorn. The Person of the Millennium: The Unique Impact of Galileo on World
History. iUniverse, 2005.

[35] S. W. Wilson. Classifier fitness based on accuracy. Evol. Comput., 3(2):149–175, 1995.

[36] S. W. Wilson. Generalization in the XCS classifier system. In J. R. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba,
and R. Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual
Conference, pages 665–674, University of Wisconsin, Madison, Wisconsin, USA, 22-25
July 1998. Morgan Kaufmann.

[37] S. W. Wilson. Get real! xcs with continuous-valued inputs. In Learning Classifier
Systems, From Foundations to Applications, pages 209–222, London, UK, 2000. Springer-
Verlag.

121

APPENDIX

Files containing the results of the experiments along with the source code for XCS and XCS-
RC are available at http://www.nuggstory.com/diss/ for downloads.

123

	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 History
	1.2 Background
	1.3 Motivation
	1.4 Contribution
	1.5 Guide for Readers
	1.6 Acknowledgement

	2 Accuracy-based Learning Classifier System
	2.1 Overview
	2.2 Classifier
	2.3 System parameters
	2.4 Performance component
	2.5 Reinforcement component
	2.6 Discovery component

	3 XCS with Rule Combining
	3.1 Heuristic-based Evolution
	3.1.1 Covering
	3.1.2 Generalization
	3.1.3 Hastiness

	3.2 Deterministic Explorative Decision
	3.3 Rule Combining
	3.3.1 Combining Steps
	3.3.2 Algorithmic representation

	3.4 Knowledge Correction
	3.5 Parameters

	4 XCS-RC for Continuous Values
	4.1 Interval representations
	4.2 Covering
	4.3 Darwinian Genetic Operators
	4.4 Combining
	4.5 Modifications from Binary XCS-RC
	4.5.1 Wildcard
	4.5.2 Covering
	4.5.3 Rule Combining

	5 Experiments
	5.1 Procedure
	5.2 Results and Comparisons
	5.2.1 Multiplexer with binary inputs
	5.2.2 Multiplexer with real-valued inputs
	5.2.3 Checkerboard
	5.2.4 Woods and Maze

	5.3 Evaluation
	5.3.1 Loss of Knowledge
	5.3.2 Runtime
	5.3.3 Optimal Population

	6 Feature Selection
	6.1 Relevance Level Identification
	6.2 Outlier Detection
	6.3 Multiplexers with Modified Input
	6.4 The Predator-Prey Pursuit Scenario
	6.4.1 Learning
	6.4.2 Results

	7 Conclusion and Outlook
	7.1 Summary
	7.1.1 Learning rate
	7.1.2 Generalization capability
	7.1.3 System parameters

	7.2 Outlook

	References
	Appendix

