
 

 

ANALYSIS OF SPATIAL AND TEMPORAL HETEROGENEITIES OF METHANE 

EMISSIONS OF RESERVOIRS BY CORRELATING HYDRO-ACOUSTIC WITH 

SEDIMENT PARAMETERS 

 

 

Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

DOCTOR OF ENGINEERING  

 

by the Department of 

Civil Engineering, Geo and Environmental Sciences 

 

of the Karlsruhe Institute of Technology (KIT) 

approved 

DISSERTATION 

 

 

by 

Dipl. Geoecol. Stephan Hilgert 

 

born in Bergisch Gladbach 

 

 

Supervisor: Prof. Dr. Stefan Hinz 

Co-supervisor: Prof. Dr. Cristóvão Vicente 

Scapulatempo Fernandes 

 

Day of defense: 06.02.2015 

 

Karlsruhe 2014  



 

ii 

 

 

 

 

The contents are available under the terms of an open content 

license of the type Creative Commons - Attribution-Share Alike 3.0 license 

Germany. 

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ 

  

http://creativecommons.org/licenses/by-sa/3.0/de/


 

iii 

 

 

Acknowledgements: 

 

I would like to extend thanks to my supervisors Prof. Stefan Hinz from the Karlsruhe Institute 

of Technology and Prof. Cristóvão Vicente Scapulatempo Fernandes from the Universidade 

Federal do Paraná, for taking over the supervision of this work. 

 

Many thanks go to Stephan Fuchs for giving me the chance to work on this topic and for a lot 

of faith in my work. 

 

I thank Anthony P. Lyons and Tonya del Sontro for scientific support and Helge Balk for the 

license of Sonar5 pro. 

 

Um Obrigado grande goes to the DHS-team at the UFPR for hosting me during the 

measurement campaigns, for technical support and for awesome times with the best 

Churrasco sessions. 

 

I thank my colleagues for a great time at the institute, for ping-pong sessions and support.  

Sincere thanks to Tobias Morck for introducing me to the world of centrifuged espresso and 

leaving me with an adequate sound system for long working nights. 

A big time thank you, to Frieder Gauger for letting me use the rendered designs of ELKE and 

highly inventiontional creatism. To Adrian and Marc for incredible particle separation work. To 

Isabel and Lisa for the domestication of data heaps and finally to Sebastian for membrane-

bagging the reservoir. 

 

Marcella, Melanie and Adrian deserve a lot of thanks for diligent corrections and criticism 

during the writing process. 

 

 

 

I thank my parents for sparking my interests and for giving me what it takes to come that far. 

- Et hätt noch ever jot jejange - 

 

Finally and most importantly, thanks go to the One, who gave me perpetual and invaluable 

support and for putting up with me during a long time, to Tina Becker. 

  



 

iv 

 

Abstract 

The worldwide phenomenon of disrupting riverine ecosystems by dams leads to severe 

changes of biogeochemical cycles. Impoundments act as a sink for all transported materials 

as they turn a river into a lake. Each particular impoundment represents an individual and 

complex reactor. 

 

All dams have in common that they turn parts of the retained organic material into greenhouse 

gases and particularly into methane. Since the number and area of artificially created lake 

ecosystems significantly increased in the last decades, the amount of climate-relevant 

emissions became a focus of research. 

However, the quantification of methane emissions from reservoirs is still imprecise. Although 

there are efficient measurement techniques, the spatial and temporal heterogeneity causes 

problems. Hence, the calculations of global methane budgets are affected by high 

inaccuracies. 

 

This study aims on the improvement of methods as well as the enhancement of the 

understanding of the most relevant processes influencing the addressed heterogeneities. The 

overall objective is the identification of methane production hot spots in reservoirs, leading to 

innovative sampling strategies which are capable of minimizing the statistical error of overall 

emission budgets. 

Following the assumption that tropical reservoirs are prone to produce significant shares of 

methane and considering the importance of hydroelectricity in Brazil, two Brazilian reservoirs 

were selected for the field investigations. Measurements were conducted during four field 

campaigns between 2010 and 2013. 

The combination of three different approaches related to methane formation made it possible 

to address temporal and spatial heterogeneities, while still including process understanding on 

a local scale.  

By conducting hydro-acoustic surveys using a 38/200 kHz single beam echo sounder, basic 

morphometric information was obtained. Additionally, seabed classification was conducted, 

including extensive ground truthing, which allowed the spatial interpolation of the found results. 

Sediment core information features the advantage of a time-integrating momentum, since the 

formation of sediment volumes is a long term process. 

Moreover, the pore water of the sediment at the corresponding sampling sites was examined 

for methane production and relevant redox-indicating compounds.  
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Consequently, it was possible to link the sediment distribution in the reservoir to quality 

parameters and correlate those to characteristics determining methane production. Derived 

sediment thickness information and organic carbon contents was used to calculate the carbon 

stock and its distribution. The entire Capivari reservoir holds a mass of 205,129 Mg (± 60.8 Mg) 

of organic carbon.  

 

Based on the carbon distribution parts of the reservoir could be assigned to specific methane-

formation behavior. Therefore, it is possible to predict the results from methane emission 

measurements which gives the chance to systematically reduce the statistical error of those. 

 

Key words: GHG emissions, Reservoirs, Sediment detection, Echo sounding, Methane 
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Resumo 

A interrupção dos sistemas fluviais, pela construção das barragens, representa um fenômeno 

mundial que causa mudanças graves nos ciclos biogeoquímicos. 

Represas atuam como depósitos para todos os materiais transportados, convertendo rios em 

lagos. Cada represa representa um sistema individual e um reator complexo. 

Todos os corpos de água congestionados têm em comum que uma parte do carbono orgânico 

é transformada em gases do efeito estufa, e particularmente em metano. 

Através do aumento intensivo das áreas inundadas antropogênicas nas últimas décadas, a 

quantificação dos gases relevantes ao clima se transformou em um foco da pesquisa. No 

entanto, a avaliação das emissões reais do metano fica imprecisa. Apesar da existência de 

métodos funcionais, a heterogeneidade temporal e espacial das emissões permanece um 

problema. Por isso, apresenta o balanço global das emissões dos gases do efeito estufa altas 

incorreções. 

Este trabalho tem como objetivo o melhoramento dos métodos relevantes, assim como a 

ampliação da compreensão do sistema no contexto dos padrões heterogéneos das emissões. 

A identificação de “hot spots” da produção de metano em reservatórios é o objetivo principal 

do trabalho. Esse objetivo é realizado pelo desenvolvimento de estratégias inovadoras de 

medições que são capazes de diminuir erros sistemáticos do balanço das emissões. 

Seguindo o pressuposto que reservatórios trópicos emitem quantidades maiores de gases do 

efeito estufa e incluindo a alta relevância da geração de energia hidroelétrica no Brasil, dois 

reservatórios brasileiros foram selecionados para as medições, as quais foram realizadas em 

campo no período de 2010 a 2013. 

Três conceitos diferentes foram utilizados no contexto da formação do metano para 

compreender a heterogeneidade temporal e espacial. Adicionalmente, os processos 

biogeoquímicos eram investigados no sedimento em escala local. 

Dados batimétricos e morfométricos eram levantados durante os estudos hidroacústicos com 

um eco sonda 38/200 kHz Single Beam. Além disso, uma classificação hidroacústica do 

sedimento foi realizada junto com amostras de perfuração. Isso tudo vai possibilitar a 

interpolação espacial com base nos dados hidroacústicos e do sedimento. 

As amostras de perfuração tem a vantagem que o sedimento se forma lentamente e por isso 

eles contém informações de períodos anteriores. Adicionalmente, investigações da água 

capilar no sedimento eram realizadas, destinadas a medir a concentração do metano e outros 

componentes relacionados com o potencial de redução e oxidação. 

Consequentemente, era possível combinar a distribuição do sedimento no reservatório com 

os parâmetros biogeoquímicos e correlacionar os resultados com as condições de formação 
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do metano. Pela espessura medida do sedimento junto com o conteúdo do carbono orgânico, 

era calculada a distribuição e a massa do carbono orgânico no sedimento. Para o reservatório 

Capivari foi calculado uma massa de 205.129 Mg (± 60.8 Mg). 

Com base nestes resultados, foi possível atribuir potenciais de emissões de metano, altas ou 

baixas, nas zonas do reservatório. 

Por conseguinte, é possível prever as margens das emissões com o erro estatístico, que pode 

ser reduzido. 

 

Palavras-chave: Gases de Efeito Estufa, Reservatórios, Detecção do sedimento, Estudos 

hidroacústicos, Metano 
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Zusammenfassung 

Das weltweite Phänomen der Unterbrechung von Flusssystemen durch den Bau von Dämmen 

führt zu gravierenden Veränderungen der biogeochemischen Kreisläufe. 

Stauhaltungen wirken als Speicher für alle transportierten Stoffe, indem sie Flüsse in Seen 

umwandeln. Jede Stauhaltung stellt einen individuellen komplexen Reaktor dar. 

Alle aufgestauten Wasserkörper haben gemeinsam, dass sie Teile des eingetragenen 

organischen Kohlenstoffs in Treibhausgase und insbesondere in Methan umsetzten. Durch die 

flächenmäßige Vergrößerung der anthropogen geschaffenen Wasserkörper in den letzten 

Jahrzehnten, wurde die Quantifizierung der dort ausgestoßenen klima-relevanten Gase zu 

einem Forschungsfocus. 

 

Jedoch ist die Abschätzung der realen Methanemissionen noch immer ungenau. Obwohl es 

funktionierende Messmethoden gibt, bleibt die räumliche und zeitliche Heterogenität der 

Emissionen ein Problem, auf Grund dessen die Berechnung der globalen 

Treibhausgasbudgets große Ungenauigkeiten aufweist. 

 

Diese Forschungsarbeit zielt auf die Verbesserung der relevanten Methoden, sowie auf die 

Erweiterung des nötigen Systemverständnisses, im Kontext der heterogenen 

Emissionsmuster. Das übergeordnete Ziel der Arbeit ist die Identifikation von Methan-

Entstehung „Hot-Spots“ in den Stauseen, durch die Entwicklung innovativer Messstrategien, 

welche in der Lage sind die systematischen Fehler der Emissionsbudgets zu minimieren. 

Der Annahme folgend, dass tropische Reservoire höhere Mengen an Treibhausgasen 

emittieren und unter Einbeziehung der hohen Relevanz der Wasserkraft in Brasilien, wurden 

zwei brasilianische Stauseen für die Messkampagnen ausgewählt. Die Messungen wurden im 

Zeitraum 2010 bis 2013 durchgeführt. 

Es wurden drei unterschiedliche Messansätze im Kontext der Methanentstehung kombiniert, 

um die temporale und räumliche Heterogenität zu erfassen. Zusätzlich wurden lokale 

geochemische Prozesse untersucht. 

Während hydroakustischer Messungen mit einem 38/200 kHz Single Beam Echolot wurden 

morphometrische Daten der Stauseen erhoben. Des Weiteren wurde eine Klassifizierung des 

Seebodens, gemeinsam mit Sedimentbohrkernen durchgeführt. Dies erlaubt im Folgenden 

eine räumliche Interpolation auf Basis der Verschneidung der Echolot- mit den 

Sedimentinformationen. 
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Die Sedimentbohrkerne haben den Vorteil, dass sie integrierend, langfristige Prozesse wieder 

geben, da die Ablagerungsprozesse relativ langsam ablaufen. Darüber hinaus wurden an den 

Probenahmestellen Porenwasseruntersuchungen durchgeführt, mit dem Ziel die 

Methangehalte aber auch redox-Potential anzeigende Verbindungen zu bestimmen. 

Somit war es möglich die Sedimentverteilung im Reservoir mit geochemischen 

Qualitätsparametern zu verbinden und die gewonnen Ergebnisse mit 

Methanentstehungsbedingungen zu korrelieren. Mittels der gemessenen Sedimentmächtigkeit 

und dem organischen Kohlenstoffgehalt im Sediment wurde die Verteilung und die 

Speichermenge des organischen Kohlenstoffs berechnet. Für das gesamte Reservoir Capivari 

wurde eine Menge von 205.129 Mg (± 60.8 Mg) errechnet. 

Gestützt auf diese Ergebnisse, konnten Bereiche des Reservoirs hohen oder niedrigen 

Methan-Entstehungspotentialen zugewiesen werden. In Folge dessen ist eine Vorhersage der 

Emissionsmessungen möglich, womit der statistische Fehler der Messungen reduziert werden 

kann. 

 

Schlüsselworte: Treibhausgasemissionen, Stauseen, Sedimentdetektion, 

Echolotsondierung, Methan 
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1 Introduction 

“The urgency to act on climate change, combined with the pressing need to build more 

reservoirs to meet electricity and water demands in many parts of the world, suggests 

that the time to overlook reservoir emissions has passed.” Mäkinen & Khan (2010) 

Chapter 1 gives and introduction to the background and motivation of this work. The role of 

dams on a global scale and the situation of reservoirs in Brazil is explained. In the context of 

the creation of impoundments, the development of greenhouse gases, in particular methane, 

is presented. Finally, the objective and the structure of the thesis are outlined. 

1.1 Dams 

Dams have been build and used by humankind for a long time. As many other processes 

driven by anthropogenic forces, the construction and utilization of dams and reservoirs were 

significantly accelerated in the last 150 years. As a clear evidence more than 95% of total 

global investment capital in dam projects was invested after 1950 (Lempérière, 2006). The 

construction boom of impoundments around the world led to a number of more than 50,000 

dams higher than 15 m and a damming of more than 50% of the rivers worldwide until today 

(WCD, 2000). The reservoirs impounded by those dams account for an area of about 

500,000 km², which equals one third of the surface of earth´s natural water bodies. Estimations 

of the overall storage capacity result in a number of about 7,000 km³ (WCD, 2000). 

 

The reservoirs fulfill a variety of general purposes and distinct functions, from irrigation, water 

supply and energy production to recreation and flood protection (Lempérière, 2006). 80% of 

the dams are used for hydropower generation. While the first dams were once built in the 

industrialized western countries, today 60% of constructed and 90% of dams in construction 

can be located in developing countries. The actual trend in reservoir construction will probably 

lead to a doubling of the generation of TWh a-1 (2,700 in the year 2004) in the next 100 years 

(WCD, 2000). This seems to be likely as only 17% of the global potential hydro-electric sites 

have been used (Barros et al., 2011). It can be assumed that the construction of new dams 

will primarily take place in the biggest developing countries like India, China and especially 

Brazil (WCD, 2000; Lima I et al., 2008). 

Since Rudd, J. W. M. et al. (1993) first mentioned reservoirs as important sources of 

Greenhouse Gases (GHGs) the “climate neutrality” of hydroelectricity is in doubt and therefore 
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has been a discussion topic of increasing importance within the scientific community. Methane 

seems to play a major role in terms of GHG emissions from anthropogenic surface water 

bodies which was stated to be in particular the case for the tropics (Lima I et al., 2008; Soumis 

et al., 2005). 

The creation of impoundments leads to the disruption of biochemical cycles in riverine systems. 

Transported material becomes trapped and the fate of the organic compounds is changed 

(Friedl & Wüest, 2002), (Dean & Gorham, 1998). Organic matter, which reaches a reservoir is 

likely to be decomposed while methane is produced. 

1.2 Methane, Atmosphere and Global trends 

„Anthropogenic greenhouse gas emissions have increased since the pre-industrial era 

driven largely by economic and population growth . From 2000 to 2010 emissions were 

the highest in history. Historical emissions have driven atmospheric concentrations of 

carbon dioxide, methane and nitrous oxide, to levels that are unprecedented in at least 

the last 800,000 years, leading to an uptake of energy by the climate system.“ 

Intergovernmental Panel on Climate Change (IPCC) (2014) 

 

The anthropogenic influence on the methane (CH4) concentration in the atmosphere is 

obvious, as the concentration increased from 715 ppbv to recently 1770 ppbv (Conrad, 2009). 

The rate of the methane concentration rise has been calculated at around 2% per year 

(±0.5% a−1) (Rasmussen, R. A. & Khalil, M. A. K., 1981). The start of this increase can be dated 

to the pre-industrial times (Conrad, 2009). The climatologic importance of this development is 

based on the findings that CH4 is contributing to around 30% of the total net anthropogenic 

radiative forcing (IPCC, 2007). Conrad (1989) stressed the relevance of wetlands on the global 

methane cycle by indicating them as the biggest individual source of methane. He stated that 

69% of all CH4 formation is due to microbial processes from methanogenic archaea which can 

be found in inundated areas.  

 

The critical point is not primarily the anthropogenic influence on wet land methane production 

by itself, but the creation of vast areas of wet lands and dams around the world, which produce 

significant amounts of methane after inundation (Conrad, 2009; Bastviken et al., 2004a; Barros 

et al., 2011; Fearnside, 1997; DelSontro et al., 2010).  

Already Ehhalt (1974) calculated the annual production of CH4 from fresh water lakes to be 

1.25–25 1012g CH4 a-1. The wide range of this assumption (factor 20) shows quite plainly that 

the uncertainties were extremely high. Even after more than three decades of research, the 
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uncertainties of global methane flux calculations are still high. The fluxes range from 8–48 

1012g CH4 a-1
, which then had an uncertainty of 600% (Bastviken et al., 2004a). St. Louis et al. 

(2000) assumed the human-induced global warming in form of GHG emissions from reservoirs 

to be 4% of the global share. 

 

Many researchers have published data about reservoir-specific GHG emissions as well as 

regional and global estimates, but still the real extend of GHG emissions from anthropogenic 

surface water bodies and especially from hydro-electric reservoirs is poorly understood (Barros 

et al., 2011; Mäkinen & Khan, 2010; Demarty & Bastien, 2011; Lehner et al., 2011; Bastviken 

et al., 2004a; Bastviken et al., 2011). 

After about 20 years of scientific discussion and increasing data availability, the following basic 

findings and statements can be posted: 

 reservoir age, location biome, morphometric features and chemical status play a major 

role for the emission of GHGs (St. Louis et al., 2000; Tremblay et al., 2004) 

 higher emissions from lower latitudes and higher emissions from younger reservoirs 

can be found (Barros et al., 2011) 

 even temperate reservoirs can have high emissions due to organic matter enriched 

inflows (DelSontro et al., 2010) 

 extreme spatial and temporal variability of emissions (Mendonça et al., 2012; Maeck et 

al., 2013) 

 reservoir sediments are hot spots of methane production (Maeck et al., 2013; Bastviken 

et al., 2004a; DelSontro et al., 2010) 

1.3 Reservoirs in Brazil 

Brazil is a remarkable country, not only because it is of the five biggest countries in land area, 

but also as a hot-spot of biodiversity (Conservation International, 2000). As one of the BRIC-

states this South-American nation acts as one of the four primary engines of global economic 

growth (Brainard & Martinez-Diaz, 2009). With the Amazon as the largest river in the world 

including an enormous number of tributaries and tremendous amounts of fresh water 

resources in general, the country has one of the biggest hydropower potentials around the 

globe. The supply rate of 78.4% of the nation’s electricity demand from an installed hydropower 

capacity of 121.104 MW is astonishing (ANEEL, 2013). Those numbers underline the 

importance of hydropower and therefore, the importance of reservoirs in Brazil. South America 

in total and Brazil in particular has a relatively small number of dams larger 0.5 km³, to be 
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counted among 459  from 6,862 dams worldwide (Lehner et al., 2011). Compared to the 

storage capacity of 1,012 km³ representing 17% of the global installed capacity, the number of 

dams in Brazil (6.6% of dams worldwide) is small (Lehner et al., 2011), leading to the statement 

that the reservoirs in Brazil are above global average size. 

 

Besides a relatively large number of surveys in Brazil, the real emissions from reservoirs are 

poorly calculated, which can be also related to the above average size of the reservoirs 

(Caetano de Souza, 2008). In addition to the large size, most reservoirs feature a low ratio 

between the surface and the volume. Extensive surfaces generally lead to high primary 

production in water bodies and hence accelerate sedimentation and consequently methane 

production (Martens et al., 1998). High average temperatures leading to fast natural carbon 

cycles intensify this effect (Soumis et al., 2005). 

1.4 Problem: Quantification 

The ongoing discussion about GHGs from reservoirs focusses in most cases either on 1) the 

question of hydroelectric power plants compared to thermal power plants in regards of CO2-

equivalents emitted per kW/h produced or 2) on the question, whether one reservoir emits 

more GHGs than the original undisturbed habitat would have emitted. 

 

While those questions are of great importance, still the answer to the problem of an unfailing 

quantification of GHG emissions from reservoirs seems to be a major task to be solved prior 

to the calculation of regional or global estimations. 

 

Nearly all investigations of GHGs from reservoirs rely on two different approaches for their 

quantification, independent of the research group or location of the study area around the world 

(Tremblay et al., 2005; Delmas et al., 2005; Bastviken et al., 2008; Baulch et al., 2011; 

Chanudet et al., 2011). The first approach uses floating chambers for the measurement of 

diffuse fluxes from the water body to the atmosphere, while the second approach is based on 

the capturing of gas bubbles on the way up to the surface. Named after the main instrument 

of measuring this latter approach is referred to as “funnels” and it is used for the quantification 

of the volume and composition of gas originating from ebullition in the sediment. However, 

both methods use technical installations covering a certain area for a distinct time and can 

therefore, be considered as point measurements. 
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Floating chambers exist in a variety of designs with various methods for the measurement of 

gas fluxes (DelSontro et al., 2010; Bastviken et al., 2004a; Duchemin et al., 1999). The same 

accounts for the funnels. Most of the measurement equipments are only capable of collecting 

a certain volume of gas which is quantified manually after a distinct time, generally around 

24 h. Some types are more advanced and are able to measure the captured volume and 

release it. Those can be used for long term measurements (Maeck et al., 2013). However, they 

still have the disadvantage of a relatively small sampling area. This area is usually around 1 m² 

(Bastviken et al., 2004a; DelSontro et al., 2010). The relevant measurement area for floating 

chambers is even smaller (Abril et al., 2005; Sherman et al., 2012). 

 

A general conformance of findings during the last decade is that GHG emissions have a high 

temporal and spatial heterogeneity (Chen et al., 2011; Casper et al., 2000; Bastviken et al., 

2004a; Maeck et al., 2013; DelSontro et al., 2011; Eilers, 2004). Hence, other quantification 

approaches have to be developed or the existing approaches have to be improved 

(Demarty & Bastien, 2011; DelSontro et al., 2011). 

The latest developments from DelSontro et al. (2011) and Maeck et al. (2013) have shown that 

new time and space integrating approaches are needed for a better understanding of emission 

dynamics. Both have found that emissions are not only varying in time and space, but that 

there are hot spots of GHG production and emission within a reservoir. This clearly impedes 

the accuracy of overall estimations of emissions from reservoirs (Lehner et al., 2011), as the 

likeliness of missing the hot spots or only measuring in hot spot areas is high, considering the 

average size of reservoirs around the world and especially in Brazil.  

In this regards the echo sounder technology offers a high potential of spatial coverage 

combined with a good temporal resolution. Moreover, the survey of sediment features and 

thickness as well as the detection of bubbles is possible. This makes this technology a 

promising tool to solve the problem of methane emission quantification.  
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1.5 Objective of the Thesis 

This thesis principally aims on the testing and improvement of integrative approaches for the 

methane hot spot detection. In these regards, a set of different methods was used. Figure 1-1 

illustrates the general context of the state of the art problems which lead to the overall research 

objective. The principal objective is divided into investigation-subunits: sediment distribution, 

processes in the sediment and ebullition. 

The subunits in Figure 1-1 represent groups of different measurement equipment, parameters 

and methodologies. The findings are connected on the one hand to temporal or spatial system 

understanding and on the other hand to carbon and methane related processes. The system 

understanding elaborated is integrated into the results of carbon and methane quantification 

and distribution. 

 

The investigation of principal connections between reservoir characteristics like the complexity 

of the shape and morphometric lakebed features, with the sediment properties, aims at the 

enhancement of the system understanding. Furthermore, the pore water investigations provide 

small-scale information about the redox- and methane formation conditions. The time 

integrating momentum of sediment can be used to improve the temporal understanding of 

processes, which potentially influence the methane emissions over time. Data sets obtained 

from hydro-acoustic surveys allow the development of models, that connect this acoustic data 

to sediment features. The model results then are spatially interpolated and therefore extent the 

local findings to the entire reservoir. This information addresses the spatial interpretation of the 

results. 

Finally, data analysis and map interpretation lead to the definition of characteristic zones of the 

reservoir. The different zones are characterized by information about the sediment 

granulometry, biogeochemical processes, sediment accumulation, carbon stock and bubble 

occurrence. The combination of these features allows conclusions about the methane 

production in each zone and additionally gives hints about the temporal behavior. 
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1.6 Contribution of the Thesis 

In succession of the objective of this thesis, this chapter summarizes the main scientific 

contribution of this work. The contribution is divided in a methodological part and a part, which 

contains the principal findings. 

Methodological level: 

 In regards to hydro-acoustic surveys and data interpretation, this work illustrates the 

possibility of new echo-feature combinations with methane-related parameters. The 

work provides an improved method for the determination of the sediment volume and 

furthermore the assessment of the carbon stock within a reservoir. It becomes possible 

to transfer the developed methodology and principal findings as a basis for further 

reservoir surveys. A significant reduction of necessary data for the detection of 

methane hot spots in other reservoirs is expected. 

 

Figure 1-1: Overview scheme of the conducted research of this work. 
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Moreover, the developed approach for the estimation of the sediment thickness, 

represents a valid method, which creates the opportunity to improve the calculation of 

the carbon stock of any reservoir. 

 

 In the context of pore water investigations, this work describes an innovative sampling 

approach. A new placing mechanism was developed and tested in the field, which 

allows to reduce the overall effort and the costs for extensive pore water sampling. 

Within a flexible depth-range, it makes the utilization of divers or AUVs superfluous. 

Additionally, it creates the possibility to sample more locations in less time. The method 

is shown to produce valid results for gas and for ion concentrations. 

Findings 

 Sediment distribution and related heterogeneities were successfully assessed. Leading 

to the identification of significantly different zones in regards of sediment 

characteristics. The combination of obtained results provides information about the 

potential methane-formation conditions in the individual zones. This leads to an 

improved understanding of prevalent spatial emission patterns. Hence, future 

measurement campaigns can be adapted to this zonation and will produce emission 

data with increased reliability. 

 

 Pore water investigations of gas contents and analyses of iron and sulfur contents in 

the sediment revealed a strong coherence. Transferred to the entire reservoir, the 

detected connection revealed a temporal component. Areas with changing redox 

conditions (proximal) feature lower iron and sulfur contents, while the short term 

methane production can still be high. Zones with permanent absence of oxygen 

(profundal) are able to produce similar amounts of methan, while the production is 

continuous. Consequently, the iron and sulfur content can be seen as proxy values for 

the temporal behavior of methane production. These findings will support the 

interpretation of temporally limited measurements, like funnel measurements. 

 

The main overall contribution of this work is the enhanced interpretation of hydro-acoustic data. 

Due to the wide range of biogeochemical parameters and gas concentrations obtained, the 

echo sounder reveals a strong potential. Relatively cost saving hydro-acoustic surveys are 

now able to produce valuable information, which can be interpreted in the context of methane 

production. They also create the possibility to survey significantly larger reservoir surfaces. 
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Independent from the quantification of direct emission fluxes, one approach for the assessment 

of GHG emissions is the calculation of the entire carbon stock budget of a reservoir. Since this 

method is based on precise estimations of the carbon stock in the sediment, the findings of 

this thesis are able to substantially support this approach in the future. 

1.7 Structure of the Thesis 

In accordance to the declared objectives, this work is structures in five main chapters. For the 

understanding of the study, the scientific background and the State of the Art are described in 

chapter 2. This chapter is subdivided in three parts, addressing reservoirs as particular 

systems, the complex of GHGs and methane emissions as well as the fundamentals of hydro-

acoustics. 

Chapter 3 introduces the investigation areas and provides geographic, hydrological and 

ecological information about Vossoroca and Capivari reservoir. 

The developed sampling strategy and used methods are explained in chapter 4. Whereas the 

methods are divided in the hydro-acoustic survey, the sediment investigation and a set of 

support parameters. Within the sediment survey, two principal parts are divided, the sediment 

sampling and the pore water investigations.  

Chapter 5 reflects the general order of chapter 4 as it contains the results and their 

interpretations. However, the last part addresses in particular the results, which are based on 

combined findings of the three approaches. 

In chapter 6 the presented results are discussed in the context of the actual scientific 

background and the defined research questions.
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2 Scientific Background and State of the Art 

Chapter 2 is divided in three major parts. They give background information about the basic 

processes in reservoirs and the creation of GHGs. Furthermore, the fundamentals of hydro-

acoustic methods are explained. At the end of the chapter a summary of the scientific 

background, which is essential for the understanding of this work, is given. 

2.1 The system reservoir 

This chapter gives an essence of the most relevant processes and conditions to be considered 

when investigating a surface water reservoir. A particular focus is laid on the thematic context 

of the formation of GHGs respectively the processes leading to the formation or altering the 

formation conditions.  

A detailed introduction regarding Morphology, Sedimentation, Trophic State and Water Quality 

as well as Carbon in reservoirs is given. 

2.1.1 Morphometry 

“Reservoir water chemistry is determined primarily by nutrient loading through 

hydrological processes, which in turn are affected by various factors including 

morphometry “ Park et al. (2014) 

The term morphometry refers to the quantitative analysis of a form. In the context of reservoirs, 

it comprises features like size, surface-depth relation, the length and form of the outer shape 

line, slope distribution and the width of the banks including the drawdown area. Morphometry 

represents one of the fundamental characteristics influencing the processes within the system 

reservoir. The processes affected include sedimentation, resuspension, diffusion, mixing, 

sediment burial and outflow. In turn, these processes regulate many abiotic and biotic variables 

(Håkanson, 2005; Park et al., 2014; Kennedy et al., 1982). 

General morphometric characteristics of reservoirs do not influence single defined reactions 

or processes, but they cause tendencies towards specific conditions and states. 

It can be distinguished between two kinds of reservoirs: 
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 Reservoirs constructed in an areas with a relatively low elevation gradient. They need 

a long dam, creating a shallow reservoir. 

 Reservoirs with high elevation differences within the flood area will allow the 

construction a relatively narrow but tall dam. 

In general, reservoirs have a larger catchment than natural lakes resulting in a small capacity 

to inflow ratio (C:I). This leads to an higher influence of the catchment characteristics on the 

reservoir, such as high sediment and nutrient loads and as a result typically low transparency 

in the water body (Morris & Fan, 1998, 4.2; Likens, 2009, Likens, 2010). Reservoirs with high 

C:I ratios maximal longitudinal gradients with high sedimentation rates can develop. The long 

residence times will lead to e.g. effective phosphorous retention. On the contrary low C:I ratios 

imply an advectively dominated flow regime with less sedimentation (Kennedy, R., 

H. & Walker, W., W., 1990). 

However, a wide range of shape configurations has a strong internal influence on the 

processes in the reservoir. For instance the hydraulic behavior and the sediment transport 

strongly depend on the shape configuration (Morris & Fan, 1998, 3.3.2; Gilbert, 2003; 

Håkanson, 2005). In this regard reservoirs exhibit a range of differences to natural lakes. For 

example, lakes tend to be shallow around the edges and deepest in the middle. Whereas, 

  

Figure 2-1: Exemplary reservoir configuration and depth distribution in comparison to a natural 

lake , the reservoirs show riverine behavior in the proximal and lacustrine characteristics in the 

profundal after Morris & Fan (1998). 
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reservoirs deepen towards (profundal) the dam and have the shallowest parts at the upstream 

end (proximal) (Figure 2-1). Together with the elongated geometries the deepening towards 

the dam causes physical, water quality, and biological longitudinal gradients which are largely 

absent in lakes (Figure 2-1) (Morris & Fan, 1998, 4.2; Park et al., 2014).  

The relation between the surface area and the volume of the reservoir influences the 

autochthone production rates and mixing processes in the water column. If the surface is 

relatively large compared to the volume stored in the reservoir, high autochthonous production 

can occur due to an extensive phototrophic area. At the same time the stratification is strongly 

influenced by wind and thermal convection as the depth of the reservoir is low in comparison. 

Deep reservoirs with small surfaces may develop a more stable stratification and are prone to 

have limited autochthonous production. The stratification can lead to a sediment focusing in 

the deepest parts of the reservoir and to oxygen depletion in the hypolimnion (Morris & Fan, 

1998, 4.3; Abraham et al., 1999). 

 

By means of dividing the circumference of a reservoir by surface area the complexity of 

shorelines can be calculated (Park et al., 2014). The higher the resulting ratio, the larger is the 

share of sidearm area relative to the surface of the entire reservoir. An extensive area of 

sidearms will have various consequences for the processes in the reservoir. In general, long 

shore lines foster extensively vegetated littoral zones, however the typical strong water level 

fluctuations caused by the water usage, hinder the natural succession. The missing littoral- 

and aquatic vegetation leads to strong erosion along the banks, especially during drawdown 

phases. The steeper the banks along the reservoir outline, the higher is the erosion. High 

erosion rates will deliver fresh soil material and therefore nutrients to the reservoir (Nilsson, 

2010). This sediment delivery is especially notable in small and mid-sized sidearms, where the 

fresh soil material changes the composition of the sediment. 

The sidearms of a reservoir represent special areas with deviating patterns from the central 

water body. On the one hand, due to the shallow water depth, the water in the sidearms is 

prone to be stronger influenced by strong temperature fluctuations. On the other hand, the 

cover of the surrounding slopes protects the sidearms from direct wind impacts and therefore 

stabilizes the water stratification. Simulations have shown that the residence time in sidearms 

can be higher by several dimensions. These effects strongly develop if the singular sidearm 

does not have a direct inflow from the catchment. (Farrow & Patterson, 1994) 
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2.1.2 Sedimentation 

“Half of all discharge entering large reservoirs shows a local sediment trapping 

efficiency of 80% or more.” Vörösmarty et al. (2003) 

After a river is dammed, the reservoir created acts as a sediment trap (Rowan et al., 1995; 

Dean & Gorham, 1998; Vörösmarty et al., 2003). Only small shares of the sediment reaching 

the reservoir will leave the impoundment again. It is important to understand the basic patterns 

and driving forces for sediment distribution in a reservoir since those patterns have a strong 

influence on the hydropower schemes as well as biochemical processes like GHG production 

(Cesare et al., 2001). 

The distribution of sediment in the reservoir depends on 1) the operation manner, 2) the size 

of deposited particles, 3) the shape of the reservoir and 4) the volume of the sediment 

deposited in the reservoir. After Annandale (2007) the shape of the reservoir can be seen as 

the major criterion for empirical deductions used for the understanding of sediment distribution.  

 

Sedimentation occurs when a tributary enters the reservoir and hence decreases the flow 

velocity. The coarser fraction will settle fast after reaching the reservoir, while the finer fractions 

like clay and silt are transported towards the dam. According to the Stokes´relation (Eq. 1): 

 𝑣𝑝 =
∆𝜌

𝜌

𝑔

18𝑣
𝐷𝑝

2 Eq. 1 

Where ∆𝜌 (kg m-3) represents the density difference between the particles and water. 𝜌 is the 

density for water (≈ 1000 kg m-3), 𝑔 (9.81 m s-2) is the gravitation acceleration, 𝑣 (≈ 1–1.5 10-

6m² s-1) is the viscosity of the water and 𝐷𝑝  [m] is the diameter of the particles. Particles will 

settle if 𝑣𝑝 is bigger than the speed of the upwelling water.  

This division of the suspended loads is due to deviations in density and particle size 

(Morris & Fan, 1998, 9.11.2). As for example ∆𝜌 for inorganic particles is ≈ 1,700 kg m-3 and 

for organic particles ≈ 20 kg m-3 the organic fraction has the disposition to stay suspended 

even if the particle size is larger.  

Sedimentation can be categorized to form four general longitudinal patterns: Delta, Tapering, 

Wedge and Uniform (Figure 2-2). All of those patterns can coexist and it is likely that in reality 

there will be an intermediate deposition pattern.  
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The filling of morphologic depressions including the deepest parts of the inundation zone 

(profundal) is an overall tendency. 

Delta Tapering

Uniform
Wedge

 

Figure 2-2: Basic sedimentation patterns after Morris & Fan (1998, 10.3). 

Resuspension is the process of mobilizing formerly deposited particles. If the clay and silt 

proportion of the suspended loads entering the reservoir is high, resuspension and sediment 

gravity currents will be relevant processes forming deposition patterns (Evans, R., D., 1994; 

Cesare et al., 2001). 

When the bottom shear stress exceeds a critical value at a relevant position, the sediment 

becomes remobilized. The critical shear stress is a function of the sediment properties, of 

which the water content and the average grain size are the two main parameters. Fresh, water 

saturated, recently deposited sediment can be remobilized easily, due to low cohesion within 

the sediment (Evans, R., D., 1994). The reservoir can be separated into three areas (Figure 

2-3): 

 erosion bottoms, where net accumulation is permanently prevented 

 transportation bottoms, where the sediment is periodically resuspended 

 accumulation areas, where no resuspension takes place 
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Resuspension (transportation) occurs especially during phases of turn-overs (seasonal 

circulation, storms) or during extreme water table drawdowns. When the water table is low, the 

deep water waves can reach formerly undisturbed sediment and initiate resuspension. Still, 

the deepest parts of the reservoirs are unaffected by resuspension under normal water level 

conditions. High conductivity or turbidity values measured in the hypolimnion (lower water 

layer) may indicate the influence of resuspension processes (Evans, R., D., 1994). 

Long term sedimentation in the areas of erosion bottoms or transportation bottoms can only 

be possible if the continuous sediment supply reaching the reservoir and therefore the 

sedimentation rate overwhelms the wave energy. In this case sedimentation above the mud-

energy-boundary is possible (McCave, 1971). 

 

The named influences cause a vertical sedimentation gradient leading to higher sediment 

magnitudes in deeper areas (Evans, R., D., 1994). As one major driving force, turbidity currents 

are flowing water volumes with higher contents of fine material. The density differences cause 

the current to flow. These currents can already be formed by very low suspended-sediment 

concentrations around 1 g l-1. They are capable of transporting suspended material downslope 

for relatively long distances, even if the general flow velocity of the surrounding water is close 

to zero (Cesare et al., 2001). 

 

For the particular case of a tropic or sub-tropic reservoir, some basic assumptions can be 

made. The average sediment grain size is close to 63 µm (silt/clay fraction). The reservoir has 

a dendritic shape and is affected by strong water level changes which again cause strong 

shore line erosion. It can be expected to find high magnitudes of accumulated fine-sediment 

in depressions and the deeper parts of the reservoir (Hilton, 1985; Blais & Kalff, 1995). 

Whereas the steeper parts and areas close to the shore will inhabit only little amounts of 

sediment and if so, the grain size will be distinctively larger. The accumulated fine sediments 

(silt and clay) in depressions and deep zones are likely to have an elevated share of organic 

Erosion 
bottom

Transportation 
bottom

Accumulation 
area

Area of water  
level change

 

Figure 2-3: Zonation of sediment erosion, transportation and accumulation in a reservoir. 
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material (Abraham et al., 1999; Horn et al., 2006). This coincides with the findings of Håkanson 

(2005) who states that the share of silt and clay fraction increases with higher depth in 

reservoirs. 

Since the distribution of sediments in reservoirs is not analogue to sedimentation patterns in 

lakes and due to the higher complexity of reservoirs, little is known about the detailed sediment 

distribution in reservoir systems. When considering the large number of reservoirs of any size 

around the globe, the state of available information about storage volume losses and sediment 

thickness is even worse. 

2.1.3 Trophic State and Water Quality 

The available concentrations of nitrogen (N), phosphorous (P) and further nutrients are primary 

determinants of the trophic state and hence of the water quality. Similar to lakes, reservoirs 

can be seen as open systems, in which autotroph organisms (algae and macrophytes) convert 

inorganic carbon into organic matter. These organisms use solar radiation as an energy source 

and organic and inorganic compounds like oxygen, hydrogen, nitrogen, phosphorous, sulfur 

and silica as well as trace metals for primary production.  

Following the Law of Minimum the C:N:P ratio determines the basic supply for algae and 

macrophytes and therefore the carrying capacity of the reservoir (Istvánovics, 2009). Since the 

solar radiation is the primary energy source for all autotrophic processes, the relative area of 

the reservoir is proportional to the productivity, leaving the volume as relatively unimportant in 

this regard (Nilsson, 2009). The transparency of the epilimnion (upper water layer) alters the 

amount of light penetrating the water and is itself determined by algae biomass density and 

suspended-sediment concentration (Likens, 2009).  

The Organization for Economic Cooperation and Development defined widely accepted 

classes of trophic states and the according limits (OECD, 1982). 

Table 2-1: List of the OECD trophic class limitations (OECD, 1982). 

Trophic category Mean total, P  
(µg l-1) 

Mean 
(µg chl-a l-1) 

Max. 
(µg chl-a l-1) 

Mean Secchi depth 
(m) 

Oligotrophic < 10  < 2.5  < 8  > 6 
Mesotrophic 10 – 35 2.5 – 8 8 – 25 6 – 3 
Eutrophic  > 35  > 8  > 25  < 3 

Reservoirs in general and tropical reservoirs in particular, in comparison to natural lakes hold 

the property of a high eutrophication potential including a high bio productivity. This is due to 

constantly high insolation, high temperatures and therefore a year-round production. 

Furthermore, the dendrite formations with a large shore-line development, unstable thermal 
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stratification with high nutrient turnover rates and intensive operational water level changes 

are likely to intensify the eutrophication process (Gunkel & Sobral, 2013).  

The mineralization of inundated soil and vegetation can lead to a high availability of nutrients 

(N, P) in the first phase after damming. Those mineralization processes will deplete the oxygen 

stock in the hypolimnion. Oxygen deficits slow down the decomposition and hence hasten the 

accumulation of fine organic sediments (Gunkel, 2009). The trophic state of the reservoir must 

be seen as an important parameter during the investigation of reservoirs, as it is strongly 

influencing the water quality. A rapid and strong eutrophication can lead to a loss of aquatic 

biodiversity, occurrence of cyanobacteria, mass development of macrophytes and for the 

following work especially relevant, an increased production of GHGs and methane in particular 

(Gunkel & Sobral, 2013). 

2.1.4 Carbon in Reservoirs 

“We propose that the extreme CH4 ebullition in Lake Wohlen is ultimately attributable 

to very high sedimentation rates that result in limited oxic degradation of organic matter 

and rapid transfer of OC to deeper sediment layers.” Sobek et al. (2012) 

 

This chapter will give a short overview about the relevant carbon related processes in a 

reservoir, describing the transport, accumulation and formation of organic carbon compounds. 

These processes will be regarded in the context of GHG formation. 

Caused by the previously explained processes, impoundments disrupt natural biochemical 

cycles and thus, affects the households of nutrients and metals as well as carbon compounds 

(Friedl & Wüest, 2002; Dean & Gorham, 1998).  

Even though the global annual amount of buried organic and inorganic carbon in reservoirs 

and lakes is huge compared to the oceans, only limited attention has been devoted to these 

components of the carbon cycle (Gudasz et al., 2010). Already Dean & Gorham, 1998 

calculated the organic carbon (OC) burial of reservoirs (160–200 Tg a-1) considerably higher 

than the burial rate from lakes (25–60 Tg a-1) or even the oceans (60–130 Tg a-1). It can be 

assumed that based on the increased number of reservoirs in the last decades the real amount 

of retained and buried OC is significantly higher. Therefore the understanding of carbon-related 

processes is essential for the assessment of reservoir behavior, not only on a global scale but 

particularly focusing on individual reservoirs. 
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Morris & Fan, 1998 described general longitudinal patterns of production and sedimentation of 

organic matter (OM) in a reservoir (Figure 2-4). Since the disposability of OM is a major 

variable for all carbon-coupled processes, it is elucidated in the first place. 

Figure 2-4 (A) shows that the OM loading is highest at the inflow (proximal) of the feeding 

rivers. However, the peak of allochthonous OM sedimentation is located further downstream 

(Figure 2-4, B). Discharge peaks from the catchment lead to higher flow velocities and cause 

remobilization of material during strong rain events. Therefore, the accumulation rate of the 

relatively light organic particles in the proximal (area close to the inflow) of the reservoir is 

limited. In areas with lower flow velocities and less impact from storm events or after the so 

called “plunge point”, a sedimentation peak is assumed. The deposition of autochthonous OM 

is strongly related to the distribution of productivity. As general flow velocities in the middle of 

the reservoir tend to be low, the deposition peak can be found only slightly offset towards the 

outlet of the reservoir (Figure 2-4, B). Even if the universal tendencies shown in Figure 2-4 are 

the case, several authors stated that highest OM accumulation can be found in depressions, 

the old riverbed and the area towards the dam (Abraham et al., 1999; Blais & Kalff, 1995). 

Besides the mechanisms controlling sedimentation, bio-chemical processes influence the type 

and amount of available carbon species from the epilimnion to the hypolimnion and the 

sediment. Figure 2-5 depicts an overview of relevant C-species in lake and reservoir 

ecosystems. Focusing on the composition and the processes of the sediment, the pathways 

from and to the benthos are the most relevant (Heyer & Kalff, 1998). 

 

 

Figure 2-4: general longitudinal patterns of production and sedimentation of organic matter in a 

reservoir, after Morris & Fan (1998, 4.21). 
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The mass flow of particular organic carbon (POC) from plancton and from the littoral which 

settles in deeper parts of the reservoir determines the range and type of mineralization and 

carbon burial in the sediment. Therefore, it is essential to have a closer look for a better 

understanding of GHG production conditions. 

Sobek et al., 2012 stated that the potential of GHG production and hence emission can be 

directly attributed to high sedimentation rates (g OC m-2 a-1) leading to limited oxic degradation 

and fast transfer velocities of organic carbon (OC) to deeper sediment layers. Neither the 

primary productivity, nor the organic carbon degradation rate, the sedimentation rate or the 

bottom-water oxygen concentration as single parameters can give a satisfying explanation for 

OC burial (Bühler L., 2008). To quantify the input of degradable material, the OC burial 

efficiency (BE) (%), the ratio between OC gross sedimentation rate (potential OM 

sedimentation) (g OC m-2 a-1) and OC net sedimentation rate (effective OM sedimentation) (g 

OC m-2 a-1) can be calculated (Bühler L., 2008). The higher the BE, the higher is the GHG 

production potential of the particular sediment volume (Sobek et al., 2012). 

One factor strongly influencing the BE is the oxygen exposure time (OET). If the OET is long 

(range of years) the BE will be lower than 15%. In the case of a range of days of OET, the BE 

approximates 95-100%. (Bühler L., 2008; Sobek et al., 2009) 

Once the OET has a dominant influence on the amount of OC reaching the sediment, the depth 

of the oxycline becomes important. As explained in chapter 2.1.3 reservoirs with a certain 

nutrient and OM load tend to have a relatively deep hypolimnion. Thus, the vertical distance 

 

Figure 2-5: Carbon cycle in a surface water body; after Wetzel, R., G. (2001). 
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each single OM-particle has to travel to reach the oxycline (water layer, which separates O2-

saturated from depleted water volumes) is significantly shorter than in a lake with oxic 

hypolimnion conditions (no oxycline present). If the OM reaches the oxycline faster, less OC 

will be mineralized and a higher share of the easily degradable compounds will be able to 

reach the sediment. After passing the oxycline the mineralization of OC will be extremely slow 

compared to the degradation in the oxic epilimnion (Bastviken et al., 2004b; Sobek et al., 

2009). Under these conditions the major part of settling OC will fuel the anoxic degradation 

processes in the sediment. As especially the deeper parts of reservoirs are prone to have a 

major anoxic hypolimnion, this can lead to an extensive accumulation of OC in profundal zones 

(Sobek, 2009). 

2.2 Greenhouse Gases and Reservoirs 

Subsequent to the processes related to carbon in reservoirs, this chapter is about the 

processes in the sediment, which lead to the formation of methane. Additionally, the 

mechanisms of methane emission and the pathways, relevant for this work are described. 

2.2.1 Creation of Methane 

In reservoirs, the organic matter accumulating in the sediment is provided by autochthone 

primary production from either plankton or macrophytes or it is transported to the reservoir via 

the river inflows. Alternatively the OM reaches the reservoir directly through shore erosion and 

shore vegetation (Sobek, 2009). The most relevant part of the degradable material for 

biogeochemical processes in the sediment is the particulate organic matter (POM) (Mah, 

1977). 

The dissimilation of complex organic compounds takes place in several biochemical steps. 

The anoxic degradation in aquatic environments leads to the production of methane, in 

particular it can only be found in the sediment (Figure 2-6). Depending on the specific 

conditions of the sediment composition and the oxygen saturation in the hypolimnion even 

after some millimeters below the sediment water interface (SWI) the degradation processes 

and limited oxygen diffusion can lead to entirely anoxic conditions. 
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In the absence of oxygen or oxygen donators, the ultimate fate of complex organic compounds 

such as carbohydrates, lipids or proteins is their dissimilation and the formation of CH4 and 

CO2. Heterotrophic organisms use the organic carbon as an electron acceptor and also as the 

primary source to build up biomass (Mah, 1977). 

There are three principal methanogenic pathways which can be separated by the type of 

bacteria and by the intermediate products used for the final reaction steps (Okafor, 2011): 

 Hydrogenotrophic methanogens only use hydrogen as an electron donor and carbon 

dioxide as an electron acceptor, some also have the capability to use formates as a 

source of both CO2 and H2. 

 Acetoclastic methanogens consume acetate, by splitting it into methyl and a carbonyl 

group.  

 Methylotrophic methanogens grow on methylated compounds. They use them as an 

electron donor as well as acceptor or are reduced with H2. 

The acetoclastic methane formation is known to be the most common process of the three 

pathways named above (Mah, 1977). 

 

Figure 2-6: Model of the sediment related pathways of organic compounds; based on Jorgensen, 2000. 
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Figure 2-6 depicts the general sequence of anoxic degradation while the detailed reactions are 

condensed to the step “Fermentation”. Those steps of methanogenesis are listed in Table 2-2: 

Table 2-2: List of basic reactions of complete and incomplete methane formation, after Conrad, 1989. 

Complete degradation Equation # 

4𝐶𝑂 + 2𝐻2𝑂 → 3𝐶𝑂2 + 𝐶𝐻4 Eq. 2 

4𝐻2 + 𝐶𝑂2 → 2𝐻2𝑂 + 𝐶𝐻4 
Eq. 3 

4𝐻𝐶𝑂𝑂𝐻 → 3𝐶𝑂2 +  2𝐻2𝑂 + 𝐶𝐻4 
Eq. 4 

4𝐶𝐻3𝑂𝐻 → 𝐶𝑂2 +  𝐻2𝑂 + 3𝐶𝐻4 
Eq. 5 

4(𝐶𝐻3)3𝑁𝐻4 + 6𝐻2𝑂 → 3𝐶𝑂2 +  4𝑁𝐻4 + 9𝐶𝐻4 
Eq. 6 

2(𝐶𝐻3)2𝑆 + 2𝐻2𝑂 → 𝐶𝑂2 +  4𝐻2𝑆 + 3𝐶𝐻4 
Eq. 7 

𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝑂2 + 𝐶𝐻4 
Eq. 8 

 

All three groups of methane producing archaea have in common that they depend on the 

substrate supply from associated anaerobic microbial communities (Okafor, 2011). These 

methanogens also have in common that even minimal concentrations of other terminal electron 

acceptors like nitrate or sulfate inhibit the process of methanogenesis in the sediment. Those 

alternative electron acceptors channel the electron flow to other thermodynamically more 

efficient bacteria for example sulfate reducers (Garcia et al., 2000). Best condition for methane 

production are found in environments with temperatures between 20 and 38 °C and highly 

reducing conditions, around Eh ≤ -300 mV (Cicerone, 1988). Garcia et al., 2000, stated that 

the relatively narrow range of pH 6–8 marks the best growing conditions for the methanogens 

while other bacteria also show the adaption to grow in environments with pH values around 4, 

for example in peat bogs. 

Incomplete Degradation Equation # 

2𝐶𝐻3𝐶𝐻2𝑂𝐻 + 𝐶𝑂2 → 2𝐶𝐻3𝐶𝑂𝑂𝐻 +  𝐶𝐻4 Eq. 9 

4𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝐻3 + 𝐶𝑂2 → 4𝐶𝐻3𝐶𝑂𝐶𝐻3 + 𝐻2𝑂 +  𝐶𝐻4 Eq. 10 
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Besides the biogeochemical conditions, the net accumulation rate of sediment material has a 

major influence on the methane production rate (Aller, R., C., 2004; Sobek et al., 2012). As a 

general conceptual approach it can be predicted that if the sedimentation rate is constantly 

low, the relative expansion of oxic and suboxic, non-sulfidic reaction zones are favored. These 

reaction zones can be found in scales of 0.1–1 m below SWI. In contrast to those comparatively 

wide zones, high sedimentation rates will limit the oxic and suboxic zone to scales around 

0.001–0.01 m. High sedimentation rates will lead to a relatively large preservation of carbon in 

the lower sediment layers while low sedimentation rates result in a dominance of low reactivity 

compounds and virtually no organic carbon is buried in the deeper sediment layers (Figure 

2-7:). (Aller, R., C., 2004) 

Since the solubility of methane in water is very low, the produced volumes can leave the 

sediment only via diffusion or bubble formation followed by ebullition (Garcia et al., 2000; 

Wiesenburg D. A. & Guinasso N. L., 1979).  

 

Figure 2-7: Dependence of the bio-chemical sediment conditions on the 

sedimentation rate 
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2.2.2 Methane Emission Pathways 

All GHGs produced in a reservoir have to be part of further reactions or they leave the reservoir. 

Since most of the GHGs (especially methane) are produced in the sediment during the 

decomposition of OM, they have to pass the water column to leave the reservoir. The different 

emission pathways as diffusion, ebullition and storage are described in the following. 

Additionally to the mentioned pathways, methane can leave the reservoir by plant mediation 

in the littoral zone (Bastviken et al., 2004a). Due to the absence of aquatic vegetation at the 

study sites investigated in this work (see chapter 3), the plant mediated emissions are excluded 

from this study. The focus of this work is the creation, retention and rise of gas bubbles from 

the sediment, since they can be regarded as the dominant emission pathway in the tropics and 

subtropics (dos Santos et al., 2006). Generally, it can be stated that the ebullition pathway 

dominates the diffusive flux by nearly one order (Eugster et al., 2011; Maeck et al., 2013) 

Figure 2-8 depicts a simplified concept of methane flux pathways, neglecting inflow and outflow 

effects. The reservoir can be separated in two principal layers, the oxygenated epilimnion and 

the anoxic hypolimnion overlying the sediment. They are separated by the oxycline, which is 

many times congruent with the thermocline. Parts of the methane produced in the sediment 

are emitted to the water column via diffusive flux from the sediment. Other parts of the methane 

leave the sediment in form of bubbles and large shares reach the water surface. Relatively 

small parts will be oxidized or re-dissolved (McGinnis et al., 2006). The methane, which is not 

leaving the sediment in form of bubbles, dissolves in the anoxic hypolimnion and builds up high 

methane concentrations and therefore a gradient from the bottom water to the surface. The 

methane diffuses along this gradient. Oxidation usually can be found between the epi- and the 

hypolimnion, since methane consuming bacteria can receive oxygen from the top and methane 

from the bottom. Methane that reaches the epilimnion via diffusion through this layer or by re-

diffusion from bubbles can leave the reservoir at the water-atmosphere interface by diffusive 

flux. 
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2.2.3 Diffusive Flux 

From the highly saturated hypolimnion the methane is transported towards the surface 

following the existing concentration gradient. Mainly responsible for the transport is turbulent 

diffusion. The methane can be unhindered transported through the hypolimnion until it reaches 

the anoxic-oxic boundary where methanotrophs start consuming the dissolved methane. 

Especially during phases of strong turbulence more methane can reach the surface without 

being oxidized to CO2. The flux from the water to the air phase depends mainly on whether the 

direct surface layer of the water is over-saturated and therefore has higher concentration than 

the air. Or, if the opposite is the case, the surface layer of the water will take up methane from 

the atmosphere. The flux is generally called Fatm and is typically calculated using the “thin 

boundary layer” method (Sherman et al., 2012). Important factors are: the concentration of the 

gas in the both phases, vertical distance and the turbulent diffusivity. 

𝐹𝑎𝑡𝑚 = 𝑘([𝐶𝑏𝑢𝑙𝑘 𝑤𝑎𝑡𝑒𝑟] − [𝐶𝑏𝑢𝑙𝑘 𝑎𝑖𝑟]) Eq. 11 

 

Figure 2-8: Simplified concept of methane emission pathways within the reservoir, the plant mediated 

pathway is excluded 
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Where Cbulk air, and Cbulk water are the concentrations of the gas (methane) measured in the 

atmosphere above the water and in the bulk fluid just below the water surface, respectively, 

and k is a wind speed-dependent gas transfer velocity, k (m s-1). Most studies show that higher 

wind speeds will increase the gas exchange velocity significantly (Sherman et al., 2012). It can 

be stated that the diffusive flux has generally lower shares in the overall methane emission 

(±1%) than the degassing at the turbines (±49%) or direct fluxes from ebullition (±50%) (Maeck 

et al., 2013). But in contradiction to this they are much better investigated and understood in 

terms of temporal and special variability, since diffuse fluxes have been measured in a wide 

range of campaigns around the world (Abril et al., 2005; Tremblay et al., 2005; Bastviken et 

al., 2008). 

2.2.4 Ebullition 

Since the beginning of GHG emission related investigations in surface water bodies and 

especially in reservoirs, they focused on diffuse emissions over a long time. This is still 

reflected by the high number of publications and available measurement results of diffuse 

fluxes and a relatively low number of ebullition quantification studies. Ostrovsky (2003) noticed 

already the high spatial and temporal variability and moreover, the potential high fluxes caused 

by ebullition. Still, DelSontro et al. (2011) stated that: “…the spatial distribution of ebullition has 

not been systematically studied…”. Therefore, the dynamics related to ebullition in terms of 

stochastic and episodic variation still represent one of the central research gaps in the context 

of GHG emissions from reservoirs (Maeck et al., 2013).  
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Ebullition is normally measured using inverted funnel-shaped capturing constructions which 

are positioned in the water column (Figure 2-9). 

Normally, a series of funnels is installed either next to 

each other in the same depth or in subsequent depth 

levels (Rosa et al., 2003). Hence, funnels can only 

provide limited depth-related information, since their 

positions are fixed and only a limited number of them 

can be deployed. The opening size of most funnels is 

ca. 1 m2, in agreement to the uniformly recommended 

diameter of 0.7 m (The World Bank, 2010). The general 

deployment time lies between a couple of hours and one 

day (Rosa et al., 2003; Bastviken et al., 2004a; Abril et 

al., 2005) even The World Bank (2010) recommends a 

deployment of up to several months.  

Only a few ebullition measurements with funnels were 

carried out producing long continuous time series of 

measurement (Maeck et al., 2013). The gas capturing 

unit of the funnel system was further developed and 

modified. A valve is installed at the top side of the capture unit which can be electrically 

controlled to release the gas. This made a multi-month deployment of the funnels possible. 

The number of valve openings was recorded with a data logger and could be related to the 

volume of the capture unit to calculate the gas flux. In addition to this, the internal clock gives 

time reference to the data allowing to recognize high and low emission phases. 

Another opportunity of quantification of gas bubbles rising from the bottom of a water body to 

the surface is the use of echo sounding technology. Ostrovsky (2003) stated:  

“Acoustic methods might be helpful to evaluate spatial variability of bubbles, which are strong 

scatterers of acoustic energy, in deep enough aquatic systems”. 

DelSontro et al. (2011) developed, based on Ostrovsky et al. (2008) a method aiming to 

quantify ebullition by counting the number of rising bubbles and estimating their size using a 

single beam echo sounder. This led to an improved method of surface flux calculation from 

ebullition due to the capability of the echo sounder to detect bubbles in the entire water column 

ensonified by the sound waves. Additionally the area covered by these measurements can be 

manyfold larger compared to the limited number of square meters covered with funnels or 

chambers.  

In the study from DelSontro et al. (2011) the funnels were mostly used for the determination of 

gas concentrations but not for the gas flux estimation. The results show a high spatial 

 

Figure 2-9: Basic design of a gas trap 
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heterogeneity of bubble emissions and also a conjunction between potential sediment 

accumulation zones. Contrary to Abril et al. (2005), who claimed that major zones of bubbles 

production can only be found in depth lower that 10 m, other results show that methane 

bubbling from the sediment can be found also in greater depth (Ostrovsky, 2003; DelSontro et 

al., 2011; Wessels et al., 2010). 
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2.2.4.1 Formation of bubbles 

Under certain conditions the produced methane from OM 

degradation can form bubbles in the sediment. The primary 

factor is the methane concentration in the pore water, which 

has to exceed the saturation level in order to form micro 

bubbles (Figure 2-10; A). For the accumulation of methane 

and hence the formation of bubbles, the diffuse flux from the 

sediment to the overlaying water cannot exceed the 

production in the sediment. If the partial pressure of all 

dissolved gases in the pore water is higher than the ambient 

pressure and the surface tension of the surrounding 

medium, bubbles can be formed.  

Depending on the sediment properties the bubbles can grow 

in the interstitial spaces between the sediment particles. If 

those spaces are limited or the bubbles grow further, the 

particles can be displaced by the free gas (Figure 2-10, from 

B to C). Figure 2-10, D, depicts the situation for very fine 

sediments, dominated by silt or clay, where the pores are 

extremely small and hence the growing bubbles cause a 

displacement of the sediment. Bubble sizes measured by 

computerized tomography ranged between 0.4 and 5 mm 

(Abegg & Anderson, 1997) while bubble sizes up to radii of 

11 mm were also observed (Anderson et al., 1998). 

Katsman et al. (2013) calculated that in muddy sediments a 

mature bubble can reach the size of around 11 mm 

equivalent spherical radius.  

Decisive for the growth of the bubble is not only the 

surrounding sediment with its particular mechanical 

characteristics, but also the permanent support of dissolved 

methane. In a depth around 20 m a concentration of 6.5 mM 

was stated as sufficient for undisturbed bubble growth 

(Martens et al., 1998). Contrary to the shapes shown in Figure 2-10, bubbles with high volumes 

are likely to form non-spherical, amoeba-like shapes within the sediment (own observation 

from sediment cores; photos of cores are given in Appendix A.1). 

 

 

Figure 2-10: Different types of 

bubble formations in the sediment 

are shown; the sediment is 

displaced with increasing bubble 

size; modified after Anderson et al. 

(1998) 
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Bubbles are known to build up coherent layers in sediments of high gas production (Lyons, 

1996; Katsman et al., 2013; Sager et al., 1998). If the sediment contains a porous layer where 

gas accumulation can occur, it is likely that local spontaneous ebullition events will produce 

volcano-like pockmarks at the surface of the sediment (Wessels et al., 2010).  

2.2.4.2 Rise of bubbles 

The release of the bubbles created in the sediment depends on the production rate, outgassing 

frequency, the pressure respectively pressure changes and the mechanical features of the 

sediment (Katsman et al., 2013; Maeck et al., 2014; Scandella et al., 2011). The sediment is 

known to form preferential pathways, like vertically-aligned fractures after a series of bubble 

release events (Scandella et al., 2011; Katsman et al., 2013). Those conduits are assumed to 

facilitate the transport to the SWI. Conduit formation mainly occurs in fine sediment matrices 

(Choi et al., 2011). If conduits are present in 

the sediment the hydrostatic pressure moves 

into focus. Figure 2-11 visualizes in three 

steps the process of bubble release from the 

sediment. It is initiated by a pressure drop 

caused by a decreasing water level. Figure 

2-11 (A) shows the depth of active bubble 

formation (h) and the open conduit down to 

the point where the effective stress 𝜎´ =  𝜎 −

𝑃𝑔 reaches the tensile limit. Where 𝑃𝑔 is the 

gas pressure and 𝜎 is the stress. Conduits 

always dilate if the effective stress is negative 

and is equal to the magnitude of the effective 

tensile strength (T). If the water level sinks (or 

even the atmospheric pressure) the 

pressure/stress in the entire sediment volume 

is reduced (Figure 2-11, B) (smaller σ), 

plastic cavity dilation allows the bubbles to 

expand (decompress) until 𝑃𝑔 =  𝜎 + 𝑇. 

During and after expansion the bubbles will 

leave the conduit and rise to the surface (Figure 2-11, C). Assuming that mechanic 

characteristics and methane production are constant the pressure situation is the dominant 

 

Figure 2-11: Modeled response of bubble release on 

pressure changes from a sediment with conduits, 

after Scandella et al., 2011. 
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factor for the bubble release in fine grained sediments (Scandella et al., 2011; Maeck et al., 

2014). 

During the rise the bubbles are affected by several physical and chemical processes. The 

bubbles can change their shape due to rising velocity and friction with the medium. The higher 

the volume of a bubble, the lesser it will maintain a round shape during the ascent. Bubbles 

with 1–3 ml volume already develop a variety of non-spherical shapes (Ostrovsky et al., 2008). 

The shape of the bubbles is relevant for the effective diffusion surface as well as for the 

backscatter strength of sound waves (Ostrovsky et al., 2008).  

Bubbles which normally leave the sediment have a methane content between 5% and above 

90% (Baulch et al., 2011; Maeck et al., 2014). Since the methane concentration in the bubble 

is higher than in the water column, the bubble will be affected by dissolution processes 

(Leifer & Patro, 2002). Hence, the bubble shrinks on the way to the surface and the methane 

content decreases. The dissolution is mainly controlled by 1) the depth of release and thus by 

the time the bubble is exposed to a medium with a concentration gradient and 2) by the volume 

and shape of the bubble.  

The larger the volume the smaller is the surface in relation to the contained gas. Consequently, 

small bubbles will suffer higher losses of gas than large bubbles released at the same depth 

(Ostrovsky et al., 2008; McGinnis et al., 2006). McGinnis et al., 2006 calculated that a bubble 

from a depth of 26 m and 11 mm radius will transport ca. 90% of its methane content to the 

surface. 

2.3 Fundamentals of underwater Acoustics 

This chapter provides a general introduction to the physical nature of sound waves in an 

aquatic medium, including explanations of the decibel notation, signal behavior and 

propagation and possible applications in water bodies. Although there is a variety of 

applications and methods for distinct purposes, only the applications used in this work are 

elucidated. Since the basic knowledge of underwater acoustics is not common outside the 

hydrographs-community, basic facts and equations are explained. 
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2.3.1 Underwater Sound Propagation and Propagation Losses 

Acoustic waves 

Acoustic waves are longitudinal mechanical waves which are propagating in an elastic medium 

(i.e. gas, liquid or solid) via fluctuations of pressure and density and can be characterized by 

“frequency” or “wave length”. While frequency refers to the number of oscillations per time, one 

Hertz [Hz] is one wave cycle per second. The wave length is the distance between identical 

points within two adjacent wave cycles at a constant velocity. Therefore the frequency f [Hz] is 

inversely related to the wave length 𝜆 [m] (Eq. 12). Shortly stated as, the higher the frequency, 

the shorter the wave length.  

Sound waves in water are transported relatively slow (ca. 1,500 m s-1) compared to the speed 

of electromagnetic waves (ca. 300,000 km s-1), but much faster than sound in air (300 m s-1). 

The propagation of acoustic waves occurs with sound velocity c [m s-1] (Eq. 13), depending on 

the density ρ [kg m-3] and the compressibility χ [Pa-1] of the medium. 

𝜆 =
𝑐

𝑓
          [𝑚] Eq. 12 

𝑐 = √
1

𝜌χ
          [𝑚 𝑠−1] Eq. 13 

The sound intensity I [W m-²] of a plane wave depends on its pressure amplitude p0 [Pa], 

density ρ [kg m-3] of the propagation medium and sound velocity c [m s-1]. 

 
𝐼 =

𝑝0
2

2𝜌𝑐
          [𝑊 𝑚−2] Eq. 14 

Sound intensity is defined as the average energy flow per surface unit perpendicular to the 

direction of propagation and time. As sound waves spread spherically, intensity decreases with 

growing distance from the source. The product of intensity I [W m-2] and surface A [m2] results 

in the sound power P [W] (Eq. 15) which is received by the surface (Lurton, 2010, 20–30). 

 𝑃 = 𝐼 ∙ 𝐴 =
𝑝0

2𝐴

2𝜌𝑐
          [𝑊] Eq. 15 
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Sound velocity 

The speed of sound mainly depends on the characteristics of the transmitting medium. For 

water, the sound velocity strongly depends on the density. The density in turn is influenced by 

the temperature T, the hydrostatic pressure (depth dependent) and the salinity. The higher the 

density, the faster the sound travels through the water. General sound speeds in water can 

range from around 1400 m s-1 (cold, salt free water) up to 1500 m s-1 as a standard value for 

sea water. Higher sound speeds can only be reached under extremely high pressures in 

depths of more than 3000 m (Leroy, C., C. et al., 2008). In fresh water, the speed of sound can 

be assumed to be around 1480 m s-1. 

The sound velocity can be calculated by using the comparatively simple model by Medwin 

(1975) (Eq. 16), which accounts for the impact of the named parameters and provides a 

sufficient accuracy up to depths of 1000 meters.  

 
𝑐 = 1449.2 + 4.6 𝑇 − 0.055 𝑇2 + 0.00029 𝑇3 + (1.34 − 0.01 𝑇)(𝑆 − 35)

+ 0.016𝑑     [m 𝑠−1] 
Eq. 16 

C identifies the sound velocity [m s-1], T is the temperature [°C], d is the depth [m] and S is the 

salinity [PSU] (Lurton, 2010). 

The decibel scale 

The name decibel [dB] goes back to Alexander Graham Bell who was the inventor of the 

modern telephone. One decibel is the tenth of one bel. The decibel is a logarithmic unit 

expressing the ratio between two different values of a physical quantity, in this case intensity. 

One of these values is used as the reference, which in under water acoustics, is a pressure of 

pref = 1 µPa. The measured intensity can be expressed in decibel as the absolute pressure 

level 𝑝𝑑𝐵 of the physical quantity (Eq. 17). The unit decibel is appropriate to be used for sound 

measurements, since the logarithmic scale allows to represent a huge range of values created 

by the fast decrease of sound intensity caused by spherical spreading and absorption (Lurton, 

2010, 20–30). 

Following Eq. 18 the sound level L can either be calculated by using the ratio of two sound 

powers P1, P2 [W], two intensities I1, I2 [W m-2] or two pressure amplitudes p1, p2 [Pa]. 

𝑝𝑑𝐵 = 20 log
𝑝

𝑝𝑟𝑒𝑓
          [𝑑𝐵] 

Eq. 17 
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 𝐿 = 10 log
𝑃1

𝑃2
= 10 log

𝐼1

𝐼2
= 10 log

𝑝1
2

𝑝2
2 = 20 log

𝑝1

𝑝2
          [𝑑𝐵] 

Eq. 18 

Geometric spreading loss 

All sound waves which are transmitted through water emanating from a point source, e. g. the 

transducer of an echo sounder, spread in all possible directions, forming a sphere (Figure 

2-12). Since energy is conserved the intensity of the wave diminishes exponentially with range. 

This means that the ratio of the intensities at two ranges is proportional to the inverse ratio of 

the sphere surfaces at those ranges (Eq. 19). 

 
𝐼2

𝐼1
=

𝐴1

𝐴2
=

4𝜋𝑅1
2

4𝜋𝑅2
2 = (

𝑅1

𝑅2
)

2

⇔ 10 𝑙𝑜𝑔
𝐼2

𝐼1
= 10 𝑙𝑜𝑔 (

𝑅1

𝑅2
)

2

= 20 𝑙𝑜𝑔 (
𝑅1

𝑅2
) Eq. 19 

 

The transmission loss (TL) of a sound wave is calculated 

through the comparison of the intensity I of one signal at a 

distinct range R with the intensity I1m of the signal at a 1 m 

distance from the source and is defined as 

 𝑇𝐿 = 10 log
𝐼1𝑚

𝐼
          [𝑑𝐵] Eq. 20 

According to Eq. 21, the transmission loss of an acoustic wave caused by spherical spreading 

can therefore also be expressed as: 

 𝑇𝐿𝑠𝑝𝑟𝑒𝑎𝑑 = 20 log (
𝑅

𝑅1𝑚
)          [𝑑𝐵] Eq. 21 

A widespread simplification of the formula is TLspread = 20 log  R with no reference to the unit 

distance. For practical reasons this expression also will be used from this point on. (Lurton, 

2010, 22–23) 

 

Figure 2-12: Spherical spreading, 

after Lurton, 2010, 20–22. 
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Correction of spreading losses - Time-Varying Gain 

If alternating targets with different distances to the transducer are to be detected without 

biasing the received signal, the signal intensity has to be corrected. To ensure that identical 

reflecting targets cause the same echo strength independent of their distance to the echo 

sounder, the transmission loss due to geometric spreading can be corrected using a function 

called Time-Varying Gain (TVG) (Figure 2-13) (Tęgowski et al., 2006). For spherical spreading, 

there are different TVG functions depending on the target type. For volume targets 

TVG = 20 log R is applied (Eq. 23). For surface targets and point targets, however, 

TVG = 30 log R and TVG = 40 log R, respectively, have to be used for correction. 

On the one hand, applying the TVG function can compensate the intensity losses of different 

ranges. On the other hand, it has to be kept in mind that the TVG correction will also increase 

the noise of the signal. The signal-to-noise ratio stays unchanged through this correction 

(Lurton, 2010, 251–253). 

  

 

Figure 2-13: Principle of Time-Varying Gain (TVG), after (Lurton, 2010). 
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Absorption losses 

In addition to decreasing intensity through spherical expansion, the intensity of the sound wave 

will be affected by the absorption of energy caused by the medium water. Both frictional 

dissipation and heat induce that the signal is attenuated constantly. This is expressed through 

an attenuation coefficient α [dB km-1] (Eq. 22). Since all investigations in this work were carried 

out particular in shallow waters (max. depth 45 m), for practical reasons the equation will refer 

to α [dB m-1]:  

 𝑇𝐿𝑎𝑏𝑠 = ∝ 𝑅     [𝑑𝐵] Eq. 22 

Correction of spherical spreading and absorption losses 

For reasons of clarity, the physics of the hydro acoustic part of this work are kept as simple as 

possible and therefore other existing losses like scattering will be ignored due to the 

subordinate relevance and signal distortion. For the purposes of this work it is assumed that 

the target loss (TL) mainly consists of spherical spreading and attenuation (Eq. 23). Therefore 

the data obtained was corrected from those effects. 

 𝑇𝐿 = 𝑇𝐿𝑠𝑝𝑟𝑒𝑎𝑑 + 𝑇𝐿𝑎𝑏𝑠 = 20 log (
𝑅

𝑅1𝑚
) + 𝛼𝑅     [𝑑𝐵] Eq. 23 
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2.3.2 Echo Sounding 

Set-up of an echo sounding system 

The echo sounder system used for this survey 

consists of five principal parts. The central element is 

the transceiver, it generates high-voltage electrical 

pulses (100 – 1000 W) which are sent to the 

transducer. It also contains the communication and 

processing rack for the data exchange with the 

computer. 

The produced electrical impulses are send to the 

underwater located transducer. It mainly consists of 

two arrays of piezoceramic elements, one for each 

frequency (38 and 200 kHz) and a sonic-permeable 

polymer hull for mechanic protection. Through 

deformation of the piezoceramic elements the 

electrical pulses are transformed into sound waves. 

Typical beam angles of those impulses vary from 

2.75° to 20° (Buchanan, 2009). This principle works 

as well the controversially, which means that the 

transducer is also able to receive returning sound waves (echoes) and to convert them into 

electrical pulses. The received pulses (pings) are sent back to the transceiver where they are 

processed in real time. The processed data is stored and visualized on the notebook (Airmar 

Technology Corporation, 2012). The EA400 software tags every single ping with a time stamp 

and the available GPS position information. 

Principle of measurement 

Based on the physical background explained, the water depth under the echo sounder as well 

as some characteristics of the reflecting medium can be derived. The character of the return 

signal is dependent on the function of the transducer (frequency, pulse length, power input), 

the angle of incidence and the reflective properties of the bottom material encountered within 

the footprint of the sound wave (Buchanan, 2009). Depending on these parameters the 

acoustic signature of the sound wave is changed. 

The depth can be measured by emitting sound pulses into the water and measuring the time 

until the echo reaches the transducer again. The depth in [m] is half of the distance the sound 

Transceiver

GPS

Transducer

38 kHz 200 kHz

Power supply

  

Figure 2-14: Set up of the EA400 echo 

sounding system. 



2 – Scientific Background and State of the Art 

38 

 

travels during time t with speed c (Eq. 24). Those pings have a distinct duration (pulse length τ) 

and are emitted with a distinct frequency [ping s-1] (ping rate). In this manner all obstacles 

which are capable of reflecting sound waves can be detected on the way between the 

transducer and the bottom. 

 𝑑 =
𝑡𝑐

2
     [𝑚] Eq. 24 

The sound wave, while travelling 

through the water, bounces back from 

every object or boundary (density or 

phase difference). In general the echo 

lasts for a longer period than the 

original pulse length. In form of 

intensity modulations it contains 

information about the echo strength of 

any object or surface. The horizontal 

resolution is a function of travel speed 

and ping rate, while the vertical 

resolution complies with the wave 

length, meaning that a higher 

frequency allows a higher resolution. 

The echo strength is a logarithmic measure for the intensity of the echo in relation to the 

intensity of the original sound wave at a one meter distance of the transducer. This echo 

information is available for further processing and can be visualized in form of an echogram 

(example shown in Figure 2-16). 

 

 

Figure 2-15: Echo sounding sequence, showing the 

transmitted pulse and the following echo. 
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The echogram shows the recorded pings juxtaposed from left to right with increasing numbers 

on the x-axis, whereas the y-axis indicates the time the echo needs to return and hence the 

depth in [m]. After having emitted a signal of pulse length τ [ms], the echo sounder is waiting 

for echoes. For intervals of the pulse length duration τ, the sounder measures the echo strength 

of the returning impulse and the elapsed time since the moment the signal has been emitted 

by the sounder. This information is stored in samples, which can be visualized in the echogram 

as pixels, colored depending on the echo strength (Buchanan, 2009). 

The software compiles the echogram by slicing each ping in a number of samples (time slices) 

while each sample is represented by a pixel in the echogram. The intensity value of each 

sample defines the color of the pixel and the frequency defines the possible resolution and 

therefore the minimal size of each pixel.  

A 200 kHz echogram shows more details (resolution ±1 cm) than a 38 kHz echogram 

(resolution 4–5 cm) of the same situation (Airmar Technology Corporation, 2012) (Figure 2-17). 

Higher frequencies are able to detect smaller objects but they consequently suffer from a 

higher attenuation than low frequency waves. Hence, the low frequencies are able to penetrate 

sediment significantly deeper. Examples of penetration depths are given in Table 2-3. Hydro-

acoustic methods can be used for the identification of the bottom types, fish biomass or buried 

objects. One specific application is the detection of gas bubbles. 

 

Figure 2-16: Example of an echogram; Sonar5 pro, colors represent the echo strength in dB referring to an 

adaptable scale, the black line depicts the identified bottom. 
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Table 2-3: Approximate values for the penetration of sound impulses into silt and sand depending on the 

frequency (British Standard 6349-5:1991, 1991). 

Frequency [kHz] Penetration [m] for silt Penetration [m] for sand 

10 2.0 to 5.0 0.5 to 1.5 
15 1.0 to 3.0 0.5 to 1.0 
50 0.5 to 2.0 0.1 to 0.5 
100 0.1 to 1.0 0.0 to 0.5 
200 0.0 to 0.2 0.0 to 0.1 

 

 

Figure 2-17: Differences between high and low frequency  

resolution, concerning the detection of obstacles. 

Transducer configuration 

Whereas the two frequencies, 38 and 200 kHz as fix part of the hardware cannot be altered, a 

variety of transducer configurations can be adapted to the needs of the survey. These 

parameters and their influence on the acoustic pulse will be addressed in the following. Table 

2-4 gives an overview of the principal effects of the different transducer settings. 

Transmitting power 

The transmitting power P [W], put in every ping has to be appropriate for the purposes of the 

survey intended. The power of the pulses has to be sufficient to guarantee that the signal is 

not lost at the deepest parts which can also be covered with soft sediments reducing the 

reflectivity. At the same time the power may not be too high so that clipping effects would be 

caused in shallow parts of the investigation area, which can feature harder bottoms producing 

strong echoes (Collins & Rhynas, 1998; Lurton, 2010, 189–190). 

  

High frequency Low frequency
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Pulse duration 

The pulse length τ [ms] describes the duration of power transmission and is proportional to the 

amount of energy transmitted into the water. Hence, a short pulse length delivers less energy 

through the water and into the bottom. Depending on the transmitting power a very short pulse 

length can lead to a loss of information. Disadvantages of long pulse lengths lay within the 

resolution of the signal. Long τ-values will cause the samples (parts of the pings) to increase 

in size, thus the resolution deteriorates. Furthermore, long pulses can lead to a signal blending, 

which means that the echo of a previous pulse is returning to the transducer before the 

emission of the subsequent pulse itself has been fully completed. This can lead to a loss of 

information. 

Ping rate 

The ping rate does not influence the properties of the echo signal itself. The rate influences 

the ratio of measurements per time respectively sailed distance. It should be chosen 

dependent on the vessel speed, the striven resolution and also to avoid unnecessary large 

data volumes (Collins & Rhynas, 1998). 

Table 2-4: Overview of the effects of the main transducer characteristics and settings. 

Parameter: Low/short High/long 

Frequency Resolution low, high penetration 

depth 

Resolution high, low 

penetration depth 

Transmitting power Energy consumption low Increased penetration depth 

Pulse length Detailed images, less energy per 

ping 

Reduced resolution, can 

increase penetration depth 

Ping rate Less resolution per distance; small 

data volumes; less noise in 

shallow water 

Best resolution per distance, 

can cause noise 

2.3.3 Interaction of Sound with Bottom and Sediment 

“Reflective properties of bottom, determined by the method of multiple echoes 

measurements are strongly correlated with mechanical characteristics of bottom 

sediments” Orlowski (1984) 

Sound waves hitting an interface between two different media (e.g. water and sediment) are 

reflected. At those acoustic impedance discontinuities one part of the sound wave´s energy is 

reflected directly, while the rest is transmitted into the next medium. The ratio between the 

transmitted (or refracted) and the reflected part of the wave depends on the impedance 

contrast between the two media. The impedance of a medium is defined as the product of its 
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density ρ [kg m-3] and the sound velocity c [m s-1] in this medium (Eq. 25) (Lurton, 2010, 372–

379).  

 𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑍 = 𝜌 ∙ 𝑐     [𝑘𝑔 𝑚−2𝑠 ] Eq. 25 

The share of energy thrown back by direct reflection increases with stronger impedance contrasts. For normal 

incidence (θ1 = 0; see   

Figure 2-18), which was the case for all measurements in this work, the reflection coefficient 

V can be calculated as follows (Eq. 26) (Lurton, 2010, 402–403). Where Zi is the impedance 

of the medium. 

 

Reflection and scattering at surfaces 

An absolutely plane surface would cause the whole energy to be reflected specularly with an 

angle θ1 analogously to the angle of incidence, but in the opposite direction (Figure 2-18, A). 

However, since no surface in nature is totally plane, in particular no sediment interfaces, there 

 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑉 =
𝑍2 − 𝑍1

𝑍2 + 𝑍1
=

𝜌2𝑐2 − 𝜌1𝑐1

𝜌2𝑐2 + 𝜌1𝑐1
 Eq. 26 

  

Figure 2-18: Refraction, reflection and scattering due to the interaction of sound with the sediment. 
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is not only coherent reflection. Irregular or rough interfaces, like the bottom of a lake, only 

reflect a part of the energy in specular direction (coherent reflection), while the other part of 

the energy is scattered in all directions. This phenomenon is called diffuse reflection or 

(surface) scattering (Figure 2-18, B) (Brouwer P., 2008; Lurton, 2010, 372–379; Orlowski, 

1984). 

The ratio between diffuse and specular reflection depends on the roughness of the interface. 

The rougher a surface, the higher is the scattered fraction. For a correct understanding of the 

term roughness it is important to set the spatial irregularities of a surface in relation to the wave 

length λ. A rough surface for the 200 kHz frequency can look plane in terms of the reflection 

of a 38 kHz sound wave (Lurton, 2010, 476–477). 

Scattering inside the sediment 

Scattering does not only occur on surfaces of impedance irregularities, but also inside the 

sediment. Thus, the sediment volume scattering depends on sediment roughness and 

heterogeneities inside the sediment. Stones and shells which are buried in the sediment or 

free gas forming bubbles in sediment scatter the sound wave and hence the energy which is 

penetrating the sediment (Figure 2-18, C). Sediment volume backscattering can contribute 

significantly to global backscattering strength (Orlowski, 1984; Lurton, 2010, 98–101). 

2.3.4 Acoustic Bottom Classification 

Based on the physical circumstances echo sounding systems are able to obtain information 

about the seabed (bottom) acoustic hardness (acoustic reflection coefficient) and acoustic 

roughness (backscatter coefficient) since this information is encoded in the echo signal. This 

information can be analyzed and helps to detect e.g. suitable routes for communication cables, 

benthic habitats like coral reefs and sea weed populations or gas bubbles bound in the 

sediment (Hamilton, 2001). 

Concerning sediment classification, model-based methods and empirical methods can be 

distinguished. Model-based approaches run on a higher complexity level and require much 

data based knowledge. Nevertheless, they have the advantage that they directly calculate 

physical properties of sediment from echo signals. In comparison, empirical methods are easy 

to implement. They are based on the correlation between echo features such as echo shape 

or echo energy and sediment properties (Hamilton, 2001; Amiri-Simkooei et al., 2011).  

For empirical approaches it is essential to recover physical samples of the lakebed. The direct 

match of digital signal features and the corresponding lakebed samples is called “ground 
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truthing”. The results of sediment classification are in most cases only valid for the equipment 

used and are hard to transfer to other hardware configurations (Hamilton, 2001). Two empirical 

methods, often implemented in commercial classification software, are the “first echo division 

method” (implemented in QTC View, BioSonics VBT Seabed Classifier) and the “first/second 

bottom ratio method” (implemented in BioSonics VBT Seabed Classifier, Roxann, Echoplus) 

(Hamilton et al., 1999). The classification and characterization of sediments within this work 

are also based on these methods. After an explanation of bottom ensonification the mentioned 

methods will be explained.  

Phases of Bottom ensonification 

The principle of “bottom ensonification phases” is essential for the understanding of these 

methods. Due to its wave front curvature each ping ensonifies the lakebed in different phases 

resulting in phase-specific reflection shapes and areas (Figure 2-19). These phases can be 

distinguished by the time which has passed after entering the bottom. The first phase “attack” 

begins, when the pulse reaches the ground. During this phase the ensonified area has the 

shape of a circle whose diameter is increasing with time. After the duration of exactly one pulse 

length (1τ [ms]), the back slope of the pulse reaches the lakebed and the second phase “decay” 

starts. From the center of the circle a hole with increasing diameter is formed. As a 

consequence the ensonified area has the shape of an annulus whose diameter also increases 

with time. The third phase begins when the front of the pulse reaches the boundaries of the 

ideal beam pattern. At this moment the annulus stops growing and becomes thinner from the 

middle. This phase lasts until the pulse has completely entered the bottom and the annulus 

has disappeared (Hamilton, 2001; Burczynski, 1999). Therefore the third phase is named 

“release phase”. 
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Figure 2-19: Interaction of a ping with the lakebed - The three phases of bottom ensonification depending on the 

position of the sound pulse inside the sediment (lateral view) with the resulting shapes of the ensonified areas 

reflecting from the bottom (top view). 

First echo division method and first/second bottom ratio method 

According to the distinguished phases during the penetration of the lakebed by a sound wave, 

the shape of an echo can be divided into three parts (Figure 2-20). The first part complies with 

the attack phase (duration: one pulse length from the point of bottom detection) and the second 

with the decay phase (duration: three pulse lengths from the end of attack phase). The last 

part of the echo is called release phase. It is not used for classification. 
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The section of the echo, which is created during the attack phase, is mainly caused by surface 

reverberation (reflection). The energy of this part of the echo (E1’) can be used as a measure 

for acoustic hardness or reflectivity. The detection of this part is very sensitive to the pitch and 

roll movement of the survey vessel. The section of the echo which is created during the decay 

phase is caused by both, surface and volume reverberation (scattering). As scattering depends 

on bottom roughness, the energy of this part of the echo (E1) is generally described as acoustic 

roughness (Figure 2-20). The energy of the attack (E1’) and decay phase (E1) is estimated by 

the integration of the bottom echo amplitude squared (Voulgaris & Collins, 1990; Burczynski, 

1999; Balk et al., 2011). 

The principle of the first/second bottom ratio method (Figure 2-20) which was developed by 

Orlowski, 1984) is quite similar to the one of the first echo division method (Figure 2-21).  

  
Figure 2-21: Exemplary acoustic wave showing the integrated areas of the wave 

signature for the “First echo division method”. 
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Figure 2-20: Exemplary acoustic wave showing the integrated areas of the wave signature 

for the “First / second bottom ratio method”; the first part is the attack phase, the second 

the decay phase and last part of the echo is called the release phase 
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The second part of the first echo (E1) as a measure for sediment roughness is defined in the 

same way as in the first echo division method. In contrast, the whole energy of the second 

bottom echo (E2) is used as a measure for bottom hardness or rather reflectivity.  

This value can be diminished in the case of high roughness (Burczynski 1999). 

Although E1´, E1 and E2 are referred to sediment hardness and roughness respectively, it 

must be considered that those parameters are only acoustic values resulting from the 

interaction of a penetrating sound wave with bottom. In this respect it is only a simplifying basic 

assumption that flat hard sediments cause strong specular reflection, while soft or rough 

sediments are responsible for intense scattering. Figure 2-22 shows exemplarily simulated 

echo shapes for soft and hard sediment. The signature of a homogeneous relatively hard 

sediment (in this case fine sand) shows, that most of the energy is reflected within a first high 

intensity peak. The echo of the soft sediment is characterized by a low first peak and a longer 

lasting reverberation, indicating that the pulse is able to penetrate the sediment leading to 

scattering in the deeper parts of the lakebed. 

Influence of depth 

The basic assumption for the division of the echoes for bottom classification is, that pulse-

returns during attack and decay phase originate from reverberation at the surface or within the 

sediment. It can be assumed that most contributions to the echo energy of the attack phase 

originate from specular reflection and surface scattering and those during the decay phase are 

due to sediment volume backscattering. 

 

Figure 2-22: Simulated echo shapes of hard and soft sediment; modified after 

Burczynski (1999) 
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This assumption is correct, as long as the beam footprint and the pulse footprint have the same 

extent. However, this is the case for one distinct distance between the transducer and the 

bottom (Figure 2-23, situation 2) depending on the pulse length and the beam angle. In 

shallower water the pulse footprint is larger than the beam footprint (beam limited regime, 

Figure 2-23, situation 1), whereas in deeper water the beam footprint is larger (pulse-limited 

regime, Figure 2-23, situation 3). 

If the regime is pulse-limited, in the case of deeper water, the edges of the beam footprint are 

only ensonified during decay phase, causing that specular reflection and surface scattering 

from this expanse (forming an annulus) contribute to E1, while it would be normally contributing 

to E1´ during situation 2. This leads to an oversampling of the decay phase. Whereas, the 

contrary appears, if the regime is beam-limited. In this case, during the attack phase there is 

sediment volume scattering even from the edges of the beam footprint. However, as depth 

increases, the ensonification of the peripheric regions of the beam footprint delays 

progressively. As a consequence of this the return of this region retards as well, resulting in a 

dilation of the echo shape. (Hamilton, 2001; Lurton, 2010, 329–332) 

 

Figure 2-23: Influence of depth on the division of the acoustic wave signature into the attack and decay phase. 
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2.3.5  Acoustic Bubble Detection 

The general advantage of hydro-acoustic remote sensing technologies is the ability to scan 

relatively large areas and acquire data from extensive water and sediment volumes at the 

same time. Since the detection of gas bubbles can be parallelly performed, echo sounding is 

a relatively time- and cost-effective technique (Ostrovsky, 2003; DelSontro et al., 2011). 

Therefore, these methods represent valuable alternatives for standard point measurements 

during the detection of methane stored in the sediment or the quantification of bubbles rising 

to the surface (Ostrovsky et al., 2008). This chapter will support the basic understanding for 

the hydro-acoustic detection of bubbles in the water column. Moreover it will describe possible 

approaches for the detection of free gas in the sediment. 

2.3.5.1 Bubbles in the water column 

The hydro-acoustic detection of bubbles in the water column seems to be a promising 

extension of options to gas traps and video or photo detection, since those are only suitable 

for restricted areas. 

Gas bubbles and the swim bladders of fishes can be detected by the echo sounder because 

of their large density difference compared to water (Figure 2-24).  

 

Figure 2-24: Principal scheme of hydro-acoustic bubble detection in the water column 
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Gas bubbles are strong scatterers of acoustic energy (Vagle & Farmer, 1992). By applying a 

suitable parameter setting of the echo sounder, even the exact quantification of bubbles 

(targets) and their characteristics like size and volume is possible (Ostrovsky, 2003, Ostrovsky, 

2009a). Ostrovsky et al. (2008) published the empiric relation between 𝜎𝑏𝑠 (backscattering 

cross section in m²) and the volume of the bubbles V (in ml). It can be described by a 

logarithmic equation Eq. 27 or alternatively by Eq. 28. This equation is valid for a bubble 

volume range from 0.005 to 20 ml. This range covers nearly all naturally occurring bubble sizes 

in reservoirs, since methane bubbles from soft muddy sediments normally vary between 0.1 ml 

and 0.38 ml respectively an equivalent radius of (𝑟𝑒𝑞) 1.3 mm to 4.5 mm (McGinnis et al., 2006; 

Ostrovsky et al., 2008). 

 log (𝜎𝑏𝑠) = (0.745 ± 0.013) log(𝑉) − (4.467 ± 0.016) Eq. 27 

The equation can also be expressed as: 

 

The target strength (TS) is proportional to the volumes of the bubbles. It can be calculated by: 

 TS = 10 log (𝜎𝑏𝑠) = 7.45 log(𝑉) − 44.67 

 

Eq. 29 

Even smallest bubbles, which could be expected during surveys in reservoirs with soft 

sediment, are larger than the maximum size for resonance considering the two relevant 

frequencies 38 and 200 kHz. Hence, those bubbles cannot resonate at the chosen sonar 

frequencies and thus Eq. 27 – Eq. 29 are valid for the entire water column. Very small bubbles 

of around 0.005 ml will have a TS of ca. -66 dB while bubbles with a volume of 10 ml cause 

strong reflection with TS ranges around -36 dB (Ostrovsky et al., 2008). 

However, the difference in backscattering between gas bubbles and fish bladders is very small 

and thus causes problems distinguishing them. Thus, the certain recognition and quantification 

of gas bubbles in the water column are more difficult (Ostrovsky et al., 2008). Nevertheless, 

some differences are noticeable: 1) bubbles rise vertically to the surface whereas fish generally 

leave almost horizontal tracks (Ostrovsky, 2009a, Ostrovsky, 2009b) and 2) the mean target 

strength of gas bubbles is weaker than the TS of swim bladders. Due to the average volume 

of bubbles (𝑟𝑒𝑞 = ca. 2.85 mm; 0.01 ml) they can be distinguished from fish which have swim 

bladders with much larger volumes. Whereas targets with a stronger signal than -44 dB usually 

 𝜎𝑏𝑠 = 3.409 10−5𝑉0.745±0.013 Eq. 28 
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are fish, targets with a TS from -66 to -50 dB typically are bubbles (Ostrovsky, 2009a). It has 

to be noted that the higher the volume of the bubble the flatter the shape and hence less 

spherical the bubble will be. This can be explained with the changing ratio of surface tension 

versus the mechanical stress from the rise. In small bubbles the surface tension dominates, 

but becomes weaker the larger the bubble is. Therefore, this allometry of bubbles limits the 

proportional relation of 𝑟𝑒𝑞 and 𝜎𝑏𝑠 to the named range (0.005 – 20 ml). 

2.3.5.2 Bubbles in the sediment 

While bubbles in the water column can normally be detected as single targets the bubbles in 

the sediment can only be detected as collectives or layers. 

Coarse sediments like gravel and sand have only a very limited bubble holding capacity. Due 

to low cohesion between the particles as well as relatively big pore spaces and hence a high 

number of preferential ways for bubbles to leave the sediment (Ostrovsky et al., 2008), they 

lack the capacity of producing relevant volumes of accumulated gas. In addition, coarse 

sediments tend to have low shares of bio-available organic carbon and hence are mainly 

unimportant for the formation of GHGs. Consequently, coarse sediment (> 2 mm diameter) is 

not considered further this work. 

Consequently, the focus of the detection of bubbles in the sediment lies on soft muddy and 

organic rich sediments. They have the bio-chemical capacity to produce relevant amounts of 

 

Figure 2-25: Scheme of sound reflection at the acoustic turbidity layer. 
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gases and also sufficient cohesion to capture the formed bubbles. The collective of bubbles in 

the sediment appears like a so-called “acoustic turbidity layer” (Figure 2-25). 

Since the detection of single bubbles is not possible, the general attenuation of the sediment 

volume of one area has to be related to ground truthing sediment samples (Lyons, 1996), 

leading to a seabed classification (SBC) process. The context of sediment features and hydro-

acoustic behavior is explained in the following. 

The overall reflection of an ensonified compact sediment volume is stronger than the reflection 

from soft sediment. High intensities of reflected signals are caused by strong acoustic 

impedance contrasts. The contrast is derived from the impedance of both media, here water 

and sediment (Eq. 30). The stronger the impedance contrast between two media, the higher 

the reflected part. For normal incidence (θ1 = 0), which is mostly given in single beam echo 

sounding applications, the reflection coefficient V can be calculated as follows (Eq. 31) (Lurton, 

2010, 80–82). 

 𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑍 = 𝜌 ∙ 𝑐     [𝑘𝑔 𝑚−2𝑠−1] Eq. 30 

 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑉 =
𝑍2 − 𝑍1

𝑍2 + 𝑍1
=

𝜌2𝑐2 − 𝜌1𝑐1

𝜌2𝑐2 + 𝜌1𝑐1
 Eq. 31 

A strong reflection leads to less attenuation and therefore to higher dB values measured by 

the transducer. It can be expected that the E1 values are significantly higher from gas-bearing 

sediments compared to sediments with the same granulometric and chemical features without 

gas bubbles (Holland & Gerig, 2006). The E1´ value especially of the 200 kHz frequency (less 

sediment penetration) is likely to be less influenced by bubble occurrence in the sediment, 

since most bubbles are assumed to be found in deeper sediment layers (10 – 60 cm) due to 

increasing cohesion with sediment depth (Jain & Juanes, 2009). 
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2.4 Summary of the Fundamentals 

The system reservoir 

 Reservoirs are more complex biochemical reactors than natural lakes 

 They trap most of the material entering the reservoir. 

 The complexity of the shape strongly influences the sedimentation processes and the 

formation of internal gradients. 

 Sediment deposition also depends on flow velocities, which establish vertical 

transportation gradients. 

 The trophic state of a water body directly influences the available amount of organic 

matter and hence sedimentation processes.  

 The burial efficiency plays a major role for the accumulation of organic matter in the 

sediment. Stratified reservoirs tend to have higher burial efficiencies than mixed ones. 

 The profundal acts as a permanent sink for sediments and consequently represents a 

potential zone of methane production. 

Greenhouse gases in reservoirs 

 Methane formation only takes place in the sediment, under the absence of oxygen or 

oxygen donators. 

 The SWI creates steep gradients of oxygen concentrations within the range of 

millimeters. 

 The availability of organic substrate determines the productivity of the methane 

producing archaea. Higher sedimentation rates lead to increased methane production. 

 The correct quantification of diffuse fluxes to the atmosphere is still challenging and 

often limited to small areas. 

 Ebullition is found to be the major pathway of GHG directly leaving the reservoir. The 

ebullitive emissions feature high spatial and temporal heterogeneities. 

 Fine grained sediments are capable of producing large-sized bubbles, while coarse 

materials can only hold small bubble volumes. The moment and the amount of ebullition 

depends on changes of the hydro-static pressure. 

 The larger the size of a rising bubble, the more gas is transported to the surface. 

Bubbles from deeper areas suffer increased re-diffusion, hence less methane reaches 

the surface. 

  



2 – Scientific Background and State of the Art 

54 

 

Hydro-acoustic fundamentals 

 The resolution of an echo sounder depends on the frequency and the pulse length. 

Higher frequencies and shorter pulse lengths reach better resolutions. 

 Lower frequencies are able to penetrate sediment deeper. The penetration depth of the 

sound wave depends on the attenuation of the sediment volume.  

 Objects or boundaries, which cause a strong impedance contrast cause intense echoes 

and are therefore easy detectable. Homogeneous sediment volumes produce less 

attenuation. 

 Hydro-acoustic waves can be used for the detection and classification of sediment 

types. Each echo can be divided in distinct phases. The integration of the intensity of 

each phase (attack or decay) can be correlated with features of the sediment. 

 Due to the low density of gas, bubbles have a strong influence on the hydro-acoustic 

behavior of sediment volumes, hence they can be detected. 

 Likewise, bubbles in the water column are strong scatterers. The number, rising velocity 

and size can be detected. 
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3 Investigation Area 

This chapter presents geographic, environmental and technical background information of the 

two investigated reservoirs. 

All four measurement campaigns of this study were carried out in the south east of Brazil. The 

first two in Vossoroca Reservoir took place in March 2011 and November–December 2011. 

The field campaigns in Capivari Reservoir were conducted afterwards in November–December 

2012 and March 2013. According to the Köppen-Geiger climate classification, both reservoirs 

belong to a region which is classified as Cfa: C, temperate climate (Thot > 10°C & 

0°C < Tcold < 18°C); f, without dry season and with a, hot summer (Thot > 22°C) (Peel et al., 

2007). 

 

Capivari Reservoir
Curitiba

Vossoroca Reservoir
Paranà

Brazil

 

Figure 3-1: Geographic localization of the reservoirs. 

3.1 Vossoroca Reservoir (VR) 

The Vossoroca reservoir is located in the state of Paraná, approximately 50 km southeast of 

the city of Curitiba in the “Serra do Mar” mountain range at approximately 833 masl. The 

climate is subtropical with monthly average temperatures between 13°C in June and 21°C in 

February. The annual rainfall is about 1,900 mm, the climate is subtropical. 

The reservoir which covers an area of about 5 km² and has a capacity of 33.6 x 106 m³ 

(Republic of Brazil, 1969) was created in 1940 to regulate the water flow in the hydroelectric 

power plant Chaminé located 7 km downstream. It is fed by various small streams and rivers 

whereby the largest of which is Rio João with an average discharge of 3.5 m3 s-1. The average 

water depth is about 8 m, the maximum depth is about 17 m. The catchment area of the 
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reservoir has a size of 151 km² (Republic of Brazil, 1969) and is predominantly rural. The 

immediate surrounding area of the reservoir is used for recreation and is mostly covered with 

Atlantic forest including the native Paranà pine tree (Araucaria angustifolia). The upstream 

area of the catchment is mainly used by agriculture. Major parts of the reservoir are under 

protection since it belongs to the environmental protection area of Guaratuba. 

A summary of the basic data of Vossoroca reservoir is listed in Table 3-1. 

 

 

Figure 3-2: Topographic map of the Vossoroca reservoir at maximum water level. 
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3.2 Capivari Reservoir (CR) 

Capivari reservoir is located 40 km northeast of the state capital Curitiba at a latitude of about 

2°S of the tropic of Capricorn (Figure 3-3). To the east the water body verges on the Sierra do 

Mar mountain range that separates it geographically from the Atlantic Ocean that is about 

80 km away. The reservoir was constructed in 1970 for the operation of the Governador Parigot 

de Souza Hydroelectric Power Station (Borges et al., 2008) The surface covers now an area 

of 13.1 km2 at an altitude of 788 masl. Its average depth is calculated at 13.6 m while the 

deepest parts reach 45 m during maximum water level. With a volume of 178 Mm3 and a 

medium flow of 19.4 m3 s-1 the detention time is around 107 d. The main contributor to the 

surface inflow is the Capivari River with a share of around 90%, Tapera River and Rio dos 

Patos contribute with small shares. Receiving water is the Cachoeira River on the eastern side 

of the Serra do Mar, from where the water flows into the ocean (Materon B. & Maurer E., 1979). 

A summary of morphometric data of Capivari reservoir is listed in Table 3-1. 

The climate is comparable to the situation in Vossoroca. On average annual precipitation 

amounts to 1,400 mm, with high quantities of rainfall year-round (Peel et al., 2007). The natural 

vegetation in the rural catchment area of around 1,200 km2 consists of Atlantic rainforest. 

 

 

Figure 3-3: Topographic map of the Capivari reservoir, the surface is shown for maximum water level. 
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Table 3-1: Morphometry of Capivari and Vossoroca reservoir. 

Characteristic Capivari Reservoir Vossoroca Reservoir 

Maximum length 18 km 5.9 km 
Maximum width 1.3 km 1 km 
Average width Ca. 0.45 km Ca. 0.25 km 
Maximum depth 45 m 17 m 
Average depth 13.6 8 m 
Surface area 13.1 km² 5 km² 
Volume 178  x 106 m3 33.6 x 106 m³ 
Mean residence time 107 days 110 days 
Catchment size 1,200 km² 151 km² 
Complexity 10.2 11.5 
Age 44 a 74 a 
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4 Materials and Methods 

This chapter outlines the survey approach by presenting the equipment used, the 

measurement techniques and the processing steps of the conducted survey. Important 

processes, configurations and data treatment steps are explained in detail. Since a variety of 

measurement techniques were used to produce the results presented in this work, especially 

the overview figures should help to enhance the comprehension of the investigation 

procedures.  

First the sampling strategy is described, followed by the different measurement approaches. 

4.1 Sampling Strategy 

This section explains the general approach and basic ideas of the strategy behind the sampling 

done in this work. 

The sampling strategy was elaborated based on the objective definition of this work (chapter 

1.5). To develop a systematic approach for an extensive investigation of the GHG production 

and related parameters in a reservoir, hydro-acoustic methods are combined with physico-

chemical sediment parameters and gas measurements. Next to the correlation of acoustic with 

granulometric and chemical sediment features their spatial distribution and therefore the 

recognition of patterns within the reservoir is investigated. Here, the methodological approach 

of the combination of point measurements with spatial surveys constitutes the central 

procedure. 
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Figure 4-1 shows the general procedure of data treatment. Point measurements were carried 

out including all measurement types. Next, the results were statistically analyzed in order to 

find potential relations and including all measured parameters. While the granulometric 

sediment parameters are used as the reference for acoustic ground truthing, further 

investigations for the detection of correlations were carried out. A selection of promising 

correlations were used to be transposed from point information to areal information (driven 

survey). Based on the echo sounding results of the entire reservoir and the correlation terms, 

the particular sediment features can be transferred into spatial maps. In combination with 

analyzed morphological features and detected sediment thickness distribution in the reservoir, 

conclusions can be drawn in regards to the allocation of GHG production.  

The data surveys and measurements were separated in two phases. Each phase again was 

parted in two field campaigns.  

In the first phase, sediment sampling- and hydro-acoustic methods have been tested in two 

campaigns on the Vossoroca Reservoir (VR). Results were analyzed and used for method 

adaption and improvement (Figure 4-2). 

To improve the data density and also the feasibility of the survey the point sampling during 

phase one was focused on the western arm and the central part of the reservoir (Figure 4-19). 

These two parts were assumed to be representative for the entire reservoir. 

In a second phase during two campaigns a detailed investigation of the Capivari Reservoir 

was conducted. Data from VR serves for comparison and as additional input data for e.g. 

correlations, as the general conditions (climate, land use in the catchment, altitude, geologic 

background, etc.) and reservoir characteristics are directly comparable (see chapter 3). 

 

Figure 4-1: Scheme of the overall measurement and data processing procedure. 
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Figure 4-2: Overview of the principle measurement steps, order and results; SBC.  
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Hydro-acoustic Measurement Strategy 

The followed approach for the hydro-acoustic measurements is a combination of static and 

dynamic surveys.  

The water column and the sediment were scanned with the echo sounder while the vessel was 

either fixed to one position (sediment sampling sites) or while the boat was driving along the 

transect lines. In both reservoirs the bathymetric survey was carried out for the entire lake 

except for the very shallow parts (less than 1.50 m). In those parts no proper echo signal could 

be received and the risk of running aground was too high. 

The sediment was sampled at the exact same positions as where the static measurements 

were carried out to assure that the sediment samples were taken within the footprint of the 

echo sounder beam in order to substantiate the relation between echo sounding results and 

the obtained sediment parameters. Static measurements also feature the advantage that 

sounding errors caused by boat motion or cavitation (bubbles under the transducer) can be 

avoided. Therefore, these results represent a basis for later verification for the outcomes of the 

dynamic measurements.  

At each point a sequence of transducer configurations (pulse length, power input) was used 

during the ensonification phases. Hence, a range of different sampling parameters is available 

for the seabed classification (SBC) and further analysis. Details of the hydro-acoustic data 

acquisition for both reservoirs are explained in chapter 4.2. 

Sediment sampling strategy 

Since it is not possible to conduct physical spatial sediment sampling, the general approach of 

characterizing sediments in water bodies is limited to point measurements.  

Sediment samples were recovered using a van Veen sampler (US Environmental Protection 

Agency (EPA), 2001) and a Mondsee Corer (Niederreiter, 2012). In this context the quality for 

hydro-acoustic ground truthing using grab samples compared to core samples was assessed.  

 

In this work the sediment characteristics and parameters serve as a link between the hydro-

acoustic parameters and estimated methane production. To obtain the best possible results, a 

wide range of different sediment parameters was measured.  

 

The parameters can be classified in two groups: 

 The first group represents the parameters which can be directly related to hydro-

acoustic behavior of the sediment, including granulometry, bulk density and gas 

concentration.  
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 The second group includes the sediment parameters which can only indirectly be 

related to the acoustic response of ensonification. Those parameters are the content 

of total iron [g kg-1], total Mn [mg kg-1], Loss on ignition (LOI) [%], total Sulfur [%] and 

total Carbon (TC) [%] in the solid phase of the sediment. The analysis of these 

parameters aims on the assessment of geo-biochemical conditions in the reservoir 

causing distinct reflectivity patterns of the sediment, which can be correlated to the 

hydro-acoustic signals and thus being transferred to the entire reservoir. 

 

In addition to this, the pore water was investigated taking into account the following 

parameters: dissolved CO2, N2O, CH4, O2, NO3
-, NO2

-, SO4
2- and F- in mg l-1. The survey of 

pore water concentrations in in-situ situations in relatively deep reservoirs is generally limited 

to the use of divers or Autonomous Underwater Vehicles (AUVs). These procedures are time 

demanding and produce high costs. Therefore, a new instrument for the placement and 

recovery of Dialysis Pore water Sampling devices (DPS´s) was developed and constructed 

(chapter 4.3.2.1). The Dialysis Pore water Sampler Placing System (DPS-PS) was 

successfully tested in CR. The results are included in this work. 
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4.2 Hydro-acoustic Survey 

In this chapter the equipment used during the surveys, the different methodological 

approaches as well as the data processing steps are explained. The detection of seabed 

features is separated in the fixed position acquisition and the dynamic seabed classification. 

Furthermore, the determination of the sediment thickness and the detection of gas bubbles are 

described. 

4.2.1 Equipment – EA 400 Single Beam hydrographic Echo Sounder 

This section explains the basic setup of 

the hydro-acoustic equipment during all 

surveys conducted for this work. 

 

Mounted on a five meter class aluminum 

vessel the transducer of the echo 

sounder was installed star board looking 

down with an incidence angle of 0°. The 

transducer was fixed on a steel frame to 

ensure maximum stability against the 

resistance in the water and also to 

minimize natural vibration. To avoid that 

the sound waves from the transducer 

interfere with bubbles from cavitation or 

the vessel hull, the draught was set to 

68 cm. The draught value was included 

in the EA 400 processing software to 

produce correct depth values. To 

minimize the difference between the 

transducer and GPS position and to 

receive a better signal due to a higher 

receiving position of the antenna, the GPS receiver was mounted close to the transducer on a 

2 m pole. Figure 4-3 shows the setup from a lateral perspective and  

Figure 4-4 a picture of the mounted equipment from the front. 

 

Figure 4-3: Lateral view of the onboard echo sounder setup.  
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During this work the transducer was exclusively used in 

the downward alignment. Both possible frequencies 

were used for vertical scanning. While the 200 kHz 

frequency has an opening angle of 7° in longitudinal and 

transverse direction forming a symmetric beam lobe (see 

Appendix A.2), the 38 kHz frequency beam opens 13° in 

longitudinal and 21° in transversal direction forming a 

asymmetric beam lobe (see Appendix A.2). The 

transceiver is able to produce impulses with a power 

input from 100 W to 1000 W and pulse lengths (τ) from 

0.256 to 2.048 ms for the 38 kHz frequency and 0.064 to 

1.024 ms for the higher 200 kHz frequency. The used 

configurations during the different surveys are listed in 

Table 4-1 and Table 4-2. 

Table 4-1: Echo sounder configurations during phase 1 survey in VR. 

 Frequency Configuration 

  A B C D 
Power input [W]  100 100 100 100 
Pulse length [ms] 38 kHz 0.256 0.512 0.256* 0.256* 
Pulse length [ms] 200 kHz 0.256 0.512 0.064 0.128* 

* Configuration was not applied to core 1 and core 2 in VR 

 

Table 4-2: Echo sounder configurations during phase 2 survey in CR. 

 Frequency Configuration 

  A B C D E F G H 
Power input [W]  100 100 100 100 500 500 500 500 
Pulse length [ms] 38 kHz 0.256 0.512 1.024 2.048 0.256 0.512 1.024 2.048 
Pulse length [ms] 200 kHz 0.064 0.128 0.256 0.512 0.064 0.128 0.256 0.512 

  

 

Figure 4-4: The mounted EA 400 echo 

sounder on the aluminum vessel. 
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4.2.2 Bathymetry 

“A common misconception is that the deepest areas of a lake are the best locations for 

sediment coring.” Eilers (2004) 

The bathymetric survey was planned and conducted aiming on the creation of a depth map of 

both reservoirs (phase one and two). The resulting 3D-depth map does not only serve the 

purpose of the information of depth distribution within the reservoir, it represents the foundation 

for morphologic interpretation of the results, hydraulic calculations (not part of this work) and 

more detailed parameters like the inclination of slopes. Furthermore, it plays an important role 

during the determination of sampling locations for the placement of DPS and sediment coring 

or grab sampling. 

The data and experiences from the first phase (VR) were assessed to improve the echo 

sounder configuration during phase two (CR). This was done to produce the best possible data 

base for the correlation of echo features with sediment parameters. 

 

During the survey in phase one the ping rate was set to 15–20 pings s-1 which proved to be 

too high, since some interference with plankton or ringing effects in shallower areas were 

detected. The ping rate was reduced to 5–10 pings s-1 during phase two of the survey. Other 

echo sounding configurations were kept constant during the two surveys. Driving speed during 

the surveys varied between 1.2 and 1.8 m s-1, leading to a resolution of 18–36 pings m-1 during 

phase one and 6–18 pings m-1 during phase two. In dangerous situations caused by tree logs 

or rocks in the water the vessel speed was reduced.  

In regards to the echo sounder configuration, Poulain et al. (2011) published an optimal input 

power of 400 W and a pulse length of 0.512 ms for seabed classification. 

In opposition to Poulain the configurations for the dynamic surveys in this work were chosen 

differently. The input power was set to 100 W and the pulse length for the 200 kHz frequency 

was set to 0.256 ms, while the 38 kHz frequency was emitting pulses of 0.512 ms length. 

The input power was modified since the maximum estimated survey depth in both reservoirs 

was expected not to exceed the depth of 50 m. A power input of 400 W would have reduced 

the potential survey area to the parts of the reservoirs with a minimum depth of 5 m due to the 

saturation effect (Poulain et al., 2011). This would have led to a significantly reduced potential 

investigation area and therefore to reduced results. The settings refer to configuration B, in 

Table 4-1 and Table 4-2, chapter 4.2.1. 

In addition the lower power input was expected to produce sufficiently strong impulses to gain 

echoes with a good signal to noise ratio. Furthermore, the daily measuring routine (up to 7 

hours of measurement) could be performed using only one car battery for the echo sounder 
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and one for the peripheral equipment (notebook, other sensors) simplifying the survey 

operation. One crucial setting is the pulse length, which was chosen the same for the 38 kHz 

frequency since it is closer to the 70 kHz used during the survey conducted by Poulain. Hence, 

a basis for comparability is given.  

Since the objective of this work is not only to perform a standard SBC but also to detect bubble 

occurrences in the sediment, the hydro-acoustic resolution plays a major role regarding the 

expected results. Accordingly, the pulse lengths of the 200 kHz frequency was chosen shorter 

to allow a better depth resolution in the echograms.  

The survey raster was separated into two different parts. One part was driven close to the 

shore line of both reservoirs while the other route followed a zig-zag course (Figure 4-5 

& Figure 4-6). The outer line was sailed to ensure the data acquisition even in the shallow parts 

which is often forgotten during comparable surveys. The zig-zag course was sailed to obtain 

the best possible result regarding spatial coverage. In narrow branches or winding parts of the 

reservoirs the course was adapted to the local situation. The EA400 software was set to save 

raw-data files every 100 mb and additionally *.xyz files with a time stamp and the depth 

information.  
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Figure 4-5: Survey route in VR depicted against longitude and latitude; gray lines represent the sailed path, the 

black line is the reservoir outline. 

 

Figure 4-6: Survey route in CR depicted against longitude and latitude, gray lines represent the driven path, the 

black line is the reservoir outline; hatched areas were too shallow for measurement or the GPS signal was lost 

during survey. 
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Creation of the 3D models 

After the correction of the bathymetric data (chapter 4.2.8) the two data sets were imported in 

ArcGIS 10.2 as multi point information. In several processing steps a regular raster was 

interpolated using Inverse Distance Weighting (IDW). This raster was processed to a contour 

data set which again was the basis for the Triangulated Network (TIN). Due to missing spatial 

high resolution data, the Reservoir outline was taken from satellite images (Google Earth). 

Image scenes were chosen where the water level was approximately the same as during the 

surveys. 

4.2.3 Fixed Position Acquisitions (point measurements) 

At all positions where sediment samples were planned to be taken, static hydro-acoustic 

measurements were conducted before the sediment was disturbed. Positions are presented 

in chapter 4.3.1 (Figure 4-19 & Figure 4-20). 

After fixing the vessel to one position the bottom was ensonified. During ensonification phases 

all movement onboard was stopped to avoid a variation of the incidence angle due to shaking 

of the boat. Due to the fact that incidence angle variations on fine sediments have a limited 

effect on the backscatter strength, the impact from very small waves on the results can be 

neglected (Brouwer P., 2008). 

Various combinations of pulse lengths and power inputs were used to cover and determine the 

best possible configurations considering the later SBC and bubble detection. In comparison to 

Poulain et al. (2011) the spectrum of combinations was significantly expanded. Used 

combinations of the configuration settings are given in Table 4-1 and Table 4-2. For each single 

configuration the sediment was ensonified for as much time as it was necessary to obtain a 

minimal number of 300 pings per configuration. Likewise with the dynamic survey all data was 

stored as *.raw files and *.xyz files.  

4.2.4 Seabed Classification (SBC) 

Seabed classification is the process of automatic or semi-automatic seabed type detection 

based on a number of training examples. The hydro-acoustic data alone cannot produce any 

added value to the spatial investigation of sediments in a reservoir. Therefore, the “ground 

truthing” is an inevitable presupposition for the interpretation of hydro-acoustic information. 

Based on the analysis of the sediment information in combination with the hydro-acoustic 

sediment features a classification system can be developed (Orlowski, 1984; Freitas et al., 

2008).  
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In this work the following features were used for classification: 

Table 4-3: List of the echo features used for SBC; most features have various names in the literature, therefore 

the most common terms are listed. 

Feature Other titles Explanation 

attSv1  E1  ́ “Hardness” 

decSv1 E1 “Roughness” 

attSv1 + decSv1 E1´+ E1 Entire fist bottom echo 

attSv2   Attack of the 2nd bottom echo 

decSv2  Decay of the 2nd bottom echo 

attSv2 + decSv2 E2 “Hardness”; Entire 2nd bottom echo 

attSv1 / decSv1 E1 /́ E1 Relation between Attack and Decay 

decSv1 / (attSv2 + decSv2) E1 / E2  

FD (linear, non-linear)  Fractal dimension, Echo shape parameter 

This wide range of possible echo features was developed and used to assess the best possible 

classification combinations beyond the already used standard combinations (see chapter 

2.3.4). In this work all hydro-acoustic data was processed and analyzed using the software 

Sonar5 pro (Balk et al., 2011). Figure 4-7 shows the general survey and processing sequence 

for the performed SBC leading to two different approaches for SBC.  
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Figure 4-7: Data processing sequence for SBC approaches. 
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4.2.4.1 SBC- approaches 

Approach 1: Clustering via echo features 

Sediments with different compositions and 

characteristics will cause a variation in the detected 

echo parameters, these features can be used to 

produce sampling clusters, grouping the same sediment 

types together. Two acoustic parameters are used for 

this approach of classification. The most common 

combination is “hardness” (attSv1 (E1´)) and 

“roughness” (attSv2 (E1)) as defining values 

(Burczynski, 1999). The main purpose of this procedure 

is to use acoustic parameters which allow the best 

possible separation of the displayed sediment samples 

in the diagram and hence a clear definition of sediment 

types (Figure 4-8). This can be obtained not only by the combination of “hardness” and 

“roughness” features as in the “first echo division” method (Burczynski, 1999). Although this 

approach is well known and in many cases promising, further echo features can be used.  

Approach 2: Correlation of echo- with sediment parameters 

The second general approach is the statistical analysis 

of the echo features including the obtained sediment 

parameters. A classification becomes possible if 

correlations between an echo feature and a sediment 

parameter are found.  

As applied in Anderson & Pacheco (2011) sediment 

parameters such as granulometry, density and loss on 

ignition can be used for correlation. In this study the 

range of investigated correlations was significantly 

extended (see chapter 5.2.3). The resulting equations 

are the basis for a classification of the data points from 

the dynamic survey. In this manner the sediment 

properties of unknown substrates can be calculated. 

 

Figure 4-8: Principle of the definition of 

acoustic classes. 
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Figure 4-9: Principle of the single 

parameter correlation. 
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4.2.4.2 Fractal Dimension as an additional echo parameter 

The Fractal Dimension (FD) is a parameter which can be used for the analysation of textures 

(Soille & Rivest, 1996). Hence in the context of SBC it serves for the analysis of the echo 

shapes and therefore creates information about the backscatter characteristics of the 

sediment. To obtain this information each echogram was analyzed, the bottom detected and 

the Mean Volume Backscattering Strength (MVBS or Mean Sv) for all pings calculated in 

Sonar5 pro . The resulting curve was flattened using a 3x3 filter to smooth small range 

variations. Calculated Range and Mean Sv values were exported, starting at the “bottom pick” 

ending at the end of the decaySv1. Data was loaded to OriginLab software and visualized. All 

graphs were produced in the way to maintain a constant side relations between the x and the 

y axis. This was done since the scaling of the curves effects the box-count results 

(Soille & Rivest, 1996). Graphs were stored as *.jpg files 

and loaded to the software Fractalyse 2.4 (Research 

Centre ThéMA – Université de Franche-Comté, P. 

Frankhauser). For the fractal dimension analysis the box 

count method was chosen with an exponential box size 

and a fixed grid algorithm (Figure 4-10), based on the 

methodology published by van Walree, P., A. et al., 

2005. The results from the FD-estimations were stored 

for linear and for non-linear estimations. The created FD 

values were used for sediment – acoustic correlations. 

4.2.5 Sediment thickness: 

Several methods for the estimation of sediment thickness in lakes or reservoirs are available. 

The first and oldest method is to use sediment coring to determine the thickness of the actual 

sediment. This technique is generally a save approach since the exact sediment magnitudes 

can be measured. The interfaces between the pre- and post-impoundment layers are often 

distinct. Gravity or vibrational cores are used. Disadvantages are relative high handling and 

working efforts to recovery sufficient core samples as well as the general problem that only 

spatial restricted point information can be obtained. Hence, the spatial interpolation of the 

sediment information may constitute a problem. Additionally, if the sediment layer is thick it is 

likely that the core is not long enough to sample the entire vertical layer and reach the former 

lakebed. 

 

Figure 4-10: Example for the application 

of the box-count method. 
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The second approach is called “Topographic Differencing”. Here, the difference between the 

pre-impoundment and today lake bottom is calculated (Ortt, JR. & Richard, 2000; 

Jakubauskas & deNoyelles, 2008). This information is processed and a distinct 3D 

representation of the accumulated sediment is the result. An advantage is the ability to produce 

sediment thickness information for the entire reservoir. However, this method normally suffers 

from the poor quality of pre-impoundment maps, be it the missing information about the map 

coordinate system and transformation of the insufficient resolution due to an inappropriate 

spatial scale of the map.  

The third option is the “Acoustic Estimation” of the sediment thickness. This approach uses 

two different acoustic frequencies. The high frequency is used to detect the sediment water 

interface and the lower frequency detects the interface between the sediment layer and the 

next consolidated sediment layer (pre-impoundment layer). The feasibility was described by 

Dunbar et al., 2000 and Jakubauskas & deNoyelles (2008). Acoustic Estimation features the 

same advantage as the Topographic Differencing, since it is possible to collect data for the 

entire reservoir. 

The first option was discarded as the available corer has a maximum sampling depth of 80 cm 

and it could be expected to find sediment thicknesses up to several meters (Kansas Water 

Office, 2008). Topographic Differencing was conducted for the CR but due to the fact that the 

original map has a vertical resolution of 5 m the differentiation of sediment layers smaller than 

this is invalid. Therefore, the third option was chosen for the estimation of sediment thickness 

in the Capivari Reservoir. Details of the methodology and the detailed approach are explained 

in the following. 

Thickness calculation 

Based on the fact that the 38 kHz frequency is able to penetrate the sediment deeper than the 

200 kHz frequency (see chapter 2.3.3), a methodology for the estimation of the sediment layer 

was developed. For the calculation of the magnitude of the sediment layer the upper limit was 

derived from the 200 kHz frequency bottom detection. This data is already available from the 

bathymetric survey. The definition and hence the detection of the lower sediment interface is 

more complicated as the density difference between layers can be less distinct. In addition the 

reflected strength (Ts) of the echo signal does not reach the same level for all sediment types 

and locations. Therefore, a determined threshold for the detection of the interface cannot be 

derived. Instead of a fixed threshold for the lower interface detection, the echogram data is 

analyzed and the particular highest reflection pixel cluster is marked as the sediment layer 

interface (Figure 4-11). Figure 4-13 illustrates the sediment reflectivity and detection of the 

upper and lower boundaries in a 3D graph. 
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The bottom detection in Sonar5 pro is not able to produce satisfying results, hence all data 

was controlled and adapted manually. In some cases the detected interface composes of an 

array of vertical distributed pixels, resembling the same Sv-values, than the mean depth 

between these pixels is chosen as the corresponding interface. 

This method is a promising approach to define the thickness of a sediment layer until a density 

boundary (Figure 4-12). If accumulations of sediment are present and more than one stratum 

within the sediment layer is detected, the lower most clearly distinctive boundary is chosen as 

the limit of accumulated sediment (see dark violet pixel in Figure 4-11). 

It cannot be derived if the detected boundary is exactly the pre- impoundment layer or a 

posterior developed consolidated stratum. However, in the context of understanding the 

principal reservoir processes discussed in this work, the expressiveness of this method is 

sufficient. In the following, the term “sediment thickness” will refer to the here defined sediment 

layer. 

 

Figure 4-11: Echogram in Sonar5 pro showing both frequencies with exemplary detected upper and lower 

sediment layer boundaries. 

 

38 kHz; τ = 0.256 ms; 100 W 200 kHz; τ =  0.128 ms; 100 W

Upper boundary

Lower boundary

Consolidated 
layer



4 – Materials and Methods 

76 

 

 

The marked layer bottom is 

stored as a *.bottom-file and 

depth values together with 

coordinates are exported for 

processing in ArcGIS. Layer-

depth values (200 & 38 kHz) at 

the same coordinates are 

subtracted resulting in the 

magnitude of the sediment 

overlay. To obtain a sediment 

map of the entire reservoir this 

information is interpolated using IDW. In order to verify the validity and reproducibility of the 

conducted method, the sediment thickness at the 18 coring sites is evaluated and a cross 

validation with the interpolated raster is performed. 

 

 

 

Figure 4-13: 3D illustration of the intensity from a sequence of pings hitting the 

sediment, including marked positions for the upper and lower sediment layer detection. 
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Figure 4-12: Schematic cross section through the sediment depicting 

the density gradients and the corresponding bottom picks. 
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4.2.6 Bubble detection 

Visual approach 

Hydro-acoustic methods can deliver an important input for the detection of bubbles with 

improved spatial and temporal resolution. Therefore, the quantification of ebullition can be 

significantly enhanced compared to non-acoustical approaches (Ostrovsky, 2003; Ostrovsky 

et al., 2008; DelSontro et al., 2011). However, this approach entails other complications which 

are irrelevant for bubbles quantification with funnels. For instance, a fish gets seldom caught 

in a funnel to be counted as methane gas. 

To avoid measurement complications and erroneous results it is inevitable to define basic 

parameters for the gas bubble detection. 

For this purpose, based on bubbles visible in the echogram a first approach was made and 

then the settings were applied for the whole reservoir. An echogram was selected where the 

bubbles were clearly visible to facilitate the definition of the right parameters for the gas bubble 

detection. The sampling site of core 6 was selected (Figure 4-14). Here the tracks in the 

echogram caused by rising bubbles strongly resemble the situation depicted in example 

echograms of Ostrovsky (2009a) (Figure 4-15). 

 

Figure 4-14: Exemplary echogram taken at Core site 6, diagonal traces are detected 

bubbles. 

 

Figure 4-15: Bubbles and fishes in the same echogram (Ostrovsky, 2009). 
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Different approaches to bubble tracking in Sonar5 pro 

Sonar5 pro provides versatile tools to detect, track and analyze bubbles within echograms. 

The basic procedure relies on the combination of successive targets from different tracks (Balk 

et al., 2011). The three options are given in the following: 

Manual Tracking: This approach allows the user to manually draw a rectangle around visibly 

identified tracks to define the targets. Since manual identification of all single tracks is time 

demanding this approach is only suitable for relatively small amounts of data. 

Cross Filter Tracking (CFD): The CFD is based on image analysis and uses the Single Echo 

Detection (SED) echogram to trace clusters of samples or pixels with a specific decibel value. 

The methodology works similar to the Manual Tracking except that the identification-rectangles 

around the tracks are detected automatically. 

Multiple Target Tracking (MTT): For bigger amounts of data the automatic tracking method 

provides numerous parameter settings for tracking either using the Simple MTT or the 

advanced MTT. The implementation of the advanced MTT is most promising, but also very 

challenging. It allows the most precise detection of bubbles. In this work the AMTT was used 

based on the procedure established by DelSontro et al. (2011). Since DelSontro et al. (2011) 

used a different echo sounder system (120 kHz, split beam) the procedure was adapted for 

the EA400 system used for this study. In the following, the steps of the bubble detection are 

explained in detail. 

Bubble detection using the Advanced Multiple Target Tracker (AMTT) 

This section explains the multiple processing steps for the AMTT tool implemented in Sonar5 

pro. Figure 4-16 gives an overview over the processing steps during the AMTT procedure 

based on Balk et al. (2011). The descriptions of the major steps are divided over the following 

subchapters.  
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Figure 4-16: Overview of the bubble detection post-processing steps. 
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Sonar5 pro is capable of visualizing two types of echograms. One is the “standard” echogram 

showing the color-encoded amplitudes of each pixel. It is referred to as “AMP-echogram”. The 

other option is the visualization of single echo detections (SED). 

The AMP-echogram is suitable for shallow water applications with low signal to noise ratios. 

Executing the detector, evaluator and “task” steps a new single echo detection (SED) -

echogram is created. It becomes filtered by the detector in the next step. The foreground filter 

equally distributes the echo intensity so that peaks are removed and are not detected as single 

echoes. The background filter was set to a low level with the mean-filter method to ensure that 

only echoes with small variations in echo intensity were detected as tracks. Unwanted 

detections are removed by the evaluator. Track length were limited to a number of 5–75 pings. 

In the last step the SED echogram was created while the gaps in the tracks were automatically 

filled. 

Advanced Multiple Target Tracker: The AMTT consists of four basic elements: Track 

supporter, Gating, Association, and Prediction. They can be used for the configuration of 

various parameters for target tracking. Using the Track supporter the minimum track length 

and the maximum ping gap can be set. This defines the numbers of echoes that may be 

missing before the next target is detected. The Track supporter functions as a filter, defining 

new tracks or rejecting echoes as noise. By conducting the “Gating”, the range to the next echo 

detection is defined and was set to 0.1 m starting from the first ping. The Gating step “predicts” 

the location of the next echo because, as stated in the manual, “the future is very well known in 

post-processing”, Balk et al. (2011). As a last step, the application of a linear regression in the 

Prediction estimates the subsequent positions of the echoes by: “applying a straight best fit line 

through the last N echoes in the track”, Balk et al. (2011). 

Fish and bubble baskets: Bubble as well as the fish baskets are created in advance of the 

tracking together with the automatic storage of various sample data from the detected targets. 

Here the number of echoes, the target strength (Ts), water depth and sample location is stored. 

In order to separate the bubbles from possibly detected fish the minimal rising velocity was 

defined as 0.1 m s-1. 

Static bubble detection at core sites 

At the static measurement sites (Core 1–18) bubble detection procedures were conducted for 

all eight configurations for both frequencies (see chapter 4.2.1, Table 4-2). Different settings 

regarding the echogram threshold and the limitation of the target strengths were applied and 

the results were grouped to evaluate the performance of the settings (Table 4-4). To determine 
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the best configuration for bubble detection clusters were build. The rising velocity of 0.1 m s-1 

was chosen as one criterion. The other two clusters were limited by target strength. For each 

configuration and cluster the number of detected bubbles was stored including the individual 

visual evaluation of the measurements in the echogram. 

Table 4-4: Exemplary table for the grouping procedure for different parameter settings during bubble detection.  

 Vz < -0.1 cm/s only -75.00 < TS < -45.00 TS < -45.00 

AMP-echogram 
threshold: -100 

∑ bubbles ∑ bubbles ∑ bubbles 

Configuration A B C D E F G H A B C D E F G H A B C D E F G H 
∑ bubbles                         

AMP-echogram 
threshold: -80 

∑ bubbles ∑ bubbles ∑ bubbles 

Configuration A B C D E F G H A B C D E F G H A B C D E F G H 
∑ bubbles                         
 

Bubble detection in echograms of the dynamic survey 

Following the evaluation of the best configuration settings in Sonar5 pro these were used for 

the detection and analysis of the echograms obtained during the dynamic surveys. Other than 

for the analysis at the sediment sampling sites, only configuration B was available for the 

bubble detection at the driven lines. After detecting all possible bubbles the coordinates were 

imported to ArcGIS for further interpretation and mapping. 

4.2.7 General Data Processing 

All data imported to Sonar5 pro has to be converted from the *.raw data format to the *.uuu 

Sonar5 pro specific format. At the beginning of this process it has to be decided, if the data is 

going to be used for volume analysis (volume targets), like sediment features or for the 

detection of bubbles. For the first approach it is necessary that the echogram is corrected using 

the TVG = 20 log R function while the bubble detection works with the TVG = 40 log R function. 

For details on TVG corrections see Chapter 2.3.1.  

Moreover, the echogram specific range settings have to be defined as well during the 

converting process. For the purpose of SBC as a minimum the range was set to two times the 

maximum depth detected in the individual echogram plus a fixed value of 5 m. The double 

depth is important to ensure that the information of the second bottom echo is still part of the 

converted echogram. The additional depth provides sufficient extra range for the volume 

information of the second bottom detection. Accordingly, if the maximal water depth in an 

echogram is 20 m, the converter range will be set to 45 m. 
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For the bottom detection in Sonar5 pro, the “image analysis” method was selected. The filter 

height and filter width for both, the pre-filter and post-filter were set to 1 pixel. As a threshold, 

for the bottom detection a value of -36 dB was chosen. Consequently, the first sample with an 

echo strength of -36 dB or higher is detected as bottom. This value was defined after manual 

visual bottom detection. After the automatic bottom detection, the produced bottom line was 

inspected and corrected manually if necessary (semi-supervised bottom detection). Based on 

the detected bottom, attack and decay values were exported as .txt files.  

 

For the SBC the amplitude echogram base threshold was generally set to -90 dB. Since a 

higher range in the echograms does not have a negative effect on any bubble detection 

process the same configurations could be used for this purpose as well, even if half the 

maximum range would be sufficient. Regarding the threshold in the amplitude echogram the 

basic conversion parameters are different. For bubble detection a very low threshold of -120 dB 

was chosen to ensure that all detectable targets are visible. 

Due to the fact that Sonar5 pro is unable to include the GPS information directly to the 

echogram, all GPS data was processed and converted to the standard Sonar5 pro import 

format (see Appendix A.3). Afterwards it could be imported and via the second-based time-

stamp the coordinates could be related to the single pings of each echogram. During this step, 

Sonar5 pro created automatically *.NAV files which makes it possible to link the GPS data 

continuously to the corresponding echogram. After this step, for all echogram analysis besides 

the bubble detection, the bottom line has to be detected. By altering the file format from *.uuu 

to *.uuuQ Sonar5 pro automatically stores the alteration of information after a successful 

detection of the bottom line. For bathymetric as well as SBC approaches the bottom line is 

inevitable, since it represents the position of the beginning of the consolidated sediment. For 

the bathymetry the depth value will be exported and for SBC the detected bottom is the 

beginning of the sediment feature analysis.  
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4.2.8 Data Correction and Quality Control 

Sound velocity correction 

Since the sound velocity in the water is one of the essential factors influencing the results of 

hydro-acoustic measurements, it has to be exactly determined. 

The sound velocity in water depends on temperature, hydrostatic pressure (depth dependent) 

and salinity. Due to the fact that the sound velocity was set to constant (1500 m s- 1) in the 

EA 400 software during the surveys, a sound velocity correction had to be performed in the 

post processing. In this case the following sound velocity model by Medwin (1977) was used 

(Eq. 32). Where c is the sound velocity [m s- 1], T is the temperature [°C], z is the depth [m] and 

S is the salinity [PSU]. 

 𝑐 = 1449.2 + 4.6 𝑇 − 0.055 𝑇2 + 0.00029 𝑇3 + (1.34 − 0.01 𝑇)(𝑆 − 35) + 0.016𝑧 Eq. 32 

The salinity of the reservoir was calculated from conductivity values, assuming that a 

conductivity of 1 µS cm-1 complies with a concentration of 0.53 mg l-1 NaCl (Karrasch & Eeckert 

Gesellschaft für Wassertechnologie mbH, 2014). According to this relation, for example the 

mean conductivity of 32 µS cm-1 measured in VR reservoir complies with a salinity of 

16.96 mg l-1 or rather 0.01696 PSU. 

For each week of the survey in VR a temperature-salinity profile was taken using a HORIBA ® 

multi-sensor. Results were used as input to Eq. 32) (profiles are shown in Appendix A.4). 

During the phase-two surveys at CR a CastAway™ CTD from YSI was available facilitating 

the recording of the temperature and conductivity for the entire depth. Hence, SVPs could be 

included in the correction on a daily basis. 

Water level changes: 

Bathymetric measurements always refer to one water surface level. As the water level in 

reservoirs can change in relatively short periods (within one day), the water level during each 

survey is required for post processing. Especially, if one bathymetric survey demands multi-

day measurements it is important to refer all obtained data to the same reference water level. 

Vossoroca reservoir: 

At VR an official water-gage is missing. Hence a fix point with reference to the water level was 

needed. A concrete pillar close to the shore at the ramp was chosen as reference point. The 

top point of this pillar was geo-referenced with a DGPS network resulting in a positioning 

accuracy of around one centimeter. 
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The daily mean water level of the VR was determined by measuring the distance between the 

water level and the top of the pillar (834.74 m above sea level) and the actual water level. As 

reference height for the bathymetric survey, the highest mean water level during the survey 

(833.78 m above sea level) was chosen.  

Capivari reservoir: 

Since CR feature an official water-gage the recording of the daily water levels was less effort. 

The water levels were recorded two times each day, before and after each survey. Like in VR 

the highest water level during the two campaigns was also used as the bathymetric reference 

level. In CR the correction of the water levels was especially essential since the level between 

campaign one and two changed about 4.5 m. 

Extreme values and error signals 

All results processed in Sonar5 pro were exported as *.txt files. Besides the hydro-acoustic 

corrections and compensations no data quality control was undertaken until this process step. 

Hence, the data (bathymetric and SBC) was processed using Matlab R2011b to perform further 

calculations and quality control. Sonar5 pro gives -999 values if a pixel does not have any 

value. To avoid the inclusion of these values in the calculation of further echo feature values, 

they were deleted from the data matrix. Furthermore, logic limits were set for each echo feature 

value to exclude extraordinary deviations. After this control the data was exported and 

analyzed. 
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4.3 Sediment Survey  

This chapter explains the two principal sampling techniques regarding sediment investigations, 

applied in this work. First, the core and grab sampling is illustrated, including the different 

relevant measurement parameters. Second, methodological details about the developed 

measurement approach, for the dialysis pore water sampling are given.  

4.3.1 Cores & Grabs 

Core sampling 

For the core sampling a gravity "Mondsee"-corer by the 

manufacturer Uwitech was used (Niederreiter, 2012). The 

corer (Figure 4-20) basically consists of a steel carrier for 

replaceable, cylindric 86 mm diameter PVC tubes of different 

lengths (60 cm and 80 cm tubes were used). For core 

sample recovery, the corer was lowered rapidly into the 

water from the side of the boat using a steel rope winch. The 

device also features a locking mechanism which is indicated 

in Figure 4-20. By locking the tube, the mechanism ensures 

that no sample material is lost or washed out during the pull-

phase. The impact on the seabed triggers the release of the 

elastic band and allows the plastic ball to lock the PVC tube 

the moment the tube is being withdrawn from the sediment. 

An airtight lip seal at the tube’s top traps supernatant water 

from the sediment-water interface inside the PVC tube. It 

also causes the buildup of negative pressure in the tube 

during the rise to the surface. Hence, the sediment is unlikely 

to leave the tube as long the lip seal is closed. This 

mechanism is especially useful if the locking mechanism has 

a malfunction. To lock up the PVC tube for transportation a 

rubber plug has to be used while the tip of the corer is still 

under water. 

After sampling, basic physical and chemical water parameters were obtained from the 

supernatant water. The sediment sample volume is about 3 liters using the 80 cm tube. 

Depending on the sediment composition, the most cores had a length of around 40–50 cm. As 

 

Figure 4-17: Schematic design of 

the Mondsee Corer. 
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a main advantage to other sampling techniques the coring provides a mostly maintained 

integrity of the sediment and a greater penetration depth. Structural features like stratification 

can still be identified in the opened cores. In addition, the washout of the fine fraction during 

recovery can be reduced to a minimum and the entire sample has only limited contact to the 

atmosphere (US Environmental Protection Agency (EPA), 2001, 3–11). One drawback is a 

higher expenditure of time and equipment compared to grab sampling. Multiple sampling 

attempts are often necessary for the obtainment of a proper core. There were difficulties 

drawing cores in sloping ground, probably resulting from hard sediments, insufficient corer 

weight or not hitting the sediment surface orthogonally.  

Grab sampling 

In addition to core sampling, grab samples were taken using a Petersen Grab Sampler (US 

Environmental Protection Agency (EPA), 2001, 3–5). It consists of two metal jaws which are 

held open (Figure 4-18) by a latch until the sampler hits the seabed. The jaws are then 

unlocked. Up to 1 liter of sediment is sampled by pulling up the grabber. The device was then 

retrieved, opened and the sediment material was transferred by hand into a Whirl-pak® for 

save and air tight storage. 

 

The van Veen grabber can be operated 

faster than the Mondsee corer, since 

sampling preparation is simple. The 

grabber does not require a winch. Best 

results are obtained in soft, oozy 

sediment but the grabber is not 

restricted to it. Steep slopes and rocky 

seabeds are harder or impossible to 

sample, as the device tilts during 

sampling or rocks prevent the jaws from 

closing. In contrast to the Uwitech corer, 

only about the top 15 cm of the deposits 

are sampled and the fine fraction can be 

lost as it gets washed out during 

recovery. No supernatant water can be 

sampled. 

  

 

Figure 4-18: Foto of the grab sampler prepared for sampling. 
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Vossoroca reservoir 

During the surveys in phase one 10 core samples and 21 grab samples were retrieved. The 

sediment samples were taken in depth between 2 m and 17 m which equates nearly to the 

deepest spot in the reservoir. The positions of the sampling sites are illustrated in Figure 4-19. 

 

Figure 4-19: Sediment sampling locations in VR depicted against latitude and longitude; cores are displayed 

with crosses while grab samples are represented as triangles. 

Capivari reservoir 

In both surveys together 18 Core and one Grab sample were taken from water depth between 

2 and 35 m. The Grab sample was taken, since the recovery of a proper core sampling was 

impossible. The positions of the sampling sites are depicted in Figure 4-20. 
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Figure 4-20: Sediment sampling location in CR depicted against latitude and longitude. 

4.3.1.1 In-situ sediment analysis 

Before the sediment was investigated the supernatant water was measured for temperature, 

conductivity and pH value. These measurements were performed still on the boat, directly after 

recovering the cores. 

As a first step of sediment investigation, the core samples were cut in half and were optically 

examined with regard to the qualitative aspects listed in Table 4-5, whereas the last five 

aspects were rated on a scale from 0 to 4. 

Some samples had clearly visible boundaries and were therefore divided in different layers. 

The number of layers per core reaches from 1 to a maximum of 5. A representative sample 

from every layer in each core was taken and named “total”. All material from the layers and 

“totals” were sieved separately as described in chapter 4.3.1.2. 
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Table 4-5: In-situ sediment description and analysis parameter. 

Sediment feature Characteristics 

Odor Intensity and quality of the samples smell 

Color after Munsell: determined with a Munsell Soil Color Book 

Dominant structural feature Description of visible structures 

HCl-reaktion Optical/acoustical observations of a chem. reaction after HCL 
(concentration of 10%) application 

pH-value determined with a Hellige-Troug pH test kit 

Components all material that could be identified with hands and the naked eye 

Disturbances pores or other errors in the sample 

Darkness  (0 = bright, 4 = dark) 

Dryness  (0 = wet, 4 = dry) 

Elasticity (0 =  plastic, 4 = elastic) 

Stratification (0 = badly stratified, 4 =  well stratified) 

Sharpness of boundaries (0 =  no boundaries, 4 =  sharp boundaries) 

4.3.1.2 Granulometry 

The sediment material from core and grab samples was wet sieved through four sieves with a 

mesh size of 2 mm, 0,5 mm, 0,25 mm and 0,063 mm to determinate the consistency of each 

Sample according to DIN 52098:2005-06 (Deutsches Institut fuer Normung e.V (2005). Lake 

water was used for the sieving of all samples. The sieving divided the samples into pea gravel 

(> 2 mm), coarse sand (0.5 mm), medium sand (0.25 mm) and fine sand (0.063 mm). Silt and 

clay passed through the 0.063 mm sieve. In order to determine the mass of the silt and clay 

fraction the volume of this suspension obtained from sieving was recorded. This value was 

used to calculate the real mass share of the silt and clay fraction, which was necessary since 

only a share of the suspension was dried and analyzed in the laboratory. 

4.3.1.3 Wet Bulk Density (WBD) 

Using a cylindrical soil sample ring (3.5 cm diameter, 4.5cm depth) a density sample was taken 

from each layer, whenever possible. The density samples were stored at minimum 4°C and 

were weighted on a special accuracy scale in the laboratory. Due to the destruction of the 

integrity of the sediment matrix the wet bulk density was only sampled from core samples. The 

WBD is calculated by Eq. 33 (derived from Avnimelech et al., 2001): 

 𝑊𝑒𝑡 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑔 𝑐𝑚−3] = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒/𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 Eq. 33 
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4.3.1.4 Chemical parameters (C, Fe, Mn, P) 

In order to measure the carbon and sulfur content, an Eltra CS 2000® Carbon Sulfur 

Determinator was used. The samples were grinded to a flour-like consistency as preparation 

of the measurements. 250 mg of each sample were burned in an induction furnace at 1,800°C 

together with 700 mg of iron and 1,800 mg of Wolfram. The formed combustion gas is 

transported by an inert gas stream to an infrared sensor which detects the CO2 and SO2 

content of the sample. Since it was expected that grain sizes bigger than fine sand do not 

contain significant contents of carbon or sulfur, only the smallest particle size fraction was 

analyzed for total carbon and sulfur. 

Total phosphorus was measured as phosphate by molybdate blue analysis, according to DIN 

38405-11 Deutsches Institut fuer Normung e.V (2007). 

Total iron and total manganese contents were determined by atom absorption spectrometry 

(AAS). 

4.3.1.5 Organic compounds (LOI) 

To determine the loss of ignition 1–5 g of the air dried samples were grinded using a pestle 

and burnt for at least two hours in a muffle oven at 550°C. The burning time was not chosen 

to be longer since the LOI was predicted to be under 20% (Heiri et al., 2001). The share that 

has been used for the LOI equates to around 15% to 30% of the total dried sample weight. 

The weight of the sample has been measured before and after burning to calculate the loss. 

The Results are noted as percentages. The LOI was calculated after Eq. 34 (Heiri et al., 2001). 

Where 𝐷𝑊105 is the dry weight at 105°C and 𝐷𝑊550 the dry weight after 550°C and 2.5 hours 

in the Muffeloven. 

4.3.2 Dialysis Pore Water Sampler (DPS) 

As Teasdale et al. (1995) stated, dialysis pore water samplers (DPS) bear a number of 

advantages with regard to bio-chemical sediment investigation. The DPS were adapted to and 

specialized for different purposes in the last decades (Hesslein, 1976; Lewandowski et al., 

2002; Thomas & Arthur M., 2010; Schubert, C. J. et al., 2011). The applications reach from the 

measurement of concentration gradients of heavy metals and redox conditions to the 

 
𝐿𝑂𝐼550 = (

𝐷𝑊105 − 𝐷𝑊550

𝐷𝑊105

) ∗ 100 Eq. 34 
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calculation of diffuse fluxes of gas from the sediment to the water body (Urban et al., 1997; 

Thomas & Arthur M., 2010). Since DPS deliver valuable information about the biochemical 

processes and concentrations in a mostly undisturbed sediment, this sampling technique still 

has its place in modern environmental science. However, after many years of use and further 

development, most sediment DPS still have to be manually introduced to the sediment by 

divers or research submarines which makes the DPS relatively expensive in use and time- 

demanding in terms of preparation and placement. Otherwise, the measurements are limited 

to very shallow areas of the water bodies.  

In addition to the placement efforts, the treatment of DPS before and after recovery is 

complicated and costly as the DPS have to be kept in oxygen-free atmosphere before 

placement and have to be analyzed in a glove box afterwards (Lyons et al., 1979; Teasdale et 

al., 1995; Dattagupta et al., 2007). Addressing these major drawbacks of DPS, the intention 

was to develop a DPS placing system (DPS-PS), which would allow the precise placement of 

DPS in water with a depth of up to 40 m and assessing the biases of on-board measurements 

and possible methodological improvements. The DPS-PS was designed not only to place one 

type of DPS, but should also be capable of placing DPS with variable chamber sizes and 

design factors. As mobility of equipment has become an important requirement, the DPS-PS 

design should allow all components to fit in a single aluminum box making it transportable in 

airplanes. The system was tested with a set of eight peepers investigating gas concentrations 

and redox conditions in the sediment. From pre-survey investigations, it could be assumed that 

the predominant sediment type found in CR is a rather soft mixture of silt and clay. 

Measurements were carried out during phase two. 

4.3.2.1 Placement system concept and construction 

With the objective of avoiding the described effects and still be able to generate a fast workflow 

placing the peepers, an innovative placing system was developed (Hölzlwimmer, 2013). To 

keep the assembly as simple as possible, components are made from a rapid construction kit 

of prefabricated aluminum profiles resulting in a compact mechanism, which can be 

transported and used on a 5 m aluminum boat (Figure 4-21). 

The inside of the housing bears two pairs of guide rails on either side, made from polyethylene. 

These provide a robust and dirt-proof vertical guidance for two sleds, which are connected 

through a pull-eye mechanism, featuring a 1:2 translation. 

A hydraulic cylinder specified to max. 40 cm extension drives one sled upwards while the other 

sled is pulled downwards, resulting in an 80 cm travel of the peeper sled. Including a 10% 

safety margin, 74 cm long peepers can be safely pushed into the sediment (Hölzlwimmer, 
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2013). Two foldable aluminum-framed PVC stands on both sides assure that the entire DPS-

PS keeps an upright position and does not sink into the sediment. The surface of the stands 

can be adapted to the expected sediment hardness. The softer the sediment the more 

elements can be attached and folded out. 

The pressure for the sled movement comes from a manual hydraulic pump located on the boat. 

The pump and cable system is capable of delivering 200 bar maximum pressure equaling 

500 kg down force of the peeper sled.  

Before placing the peeper into the sediment, it has to be fixed in the holding mechanism, which 

can be adjusted to any desired penetration depth. The use of the hand pump for pressure 

generation secures that the DPS penetrates the sediment in small steps. With every stroke of 

the hand pump, the pressure in the cylinder increases and pushes the peeper deeper into the 

sediment. After applying approximately 80 bars, the peeper reaches the maximum depth and 

the previously adapted holding mechanism releases it at exactly the configured sediment 

depth. For harder sediment, a higher pressure is needed, hence the DPS-PS can be equipped 

with additional weight to generate appropriate counter weight. 

After placing, a relief valve at the manual pump releases the pressure. Then, elastic straps 

automatically counteract the extension of the cylinder and move the sled back to the starting 

position. The whole placement system can now be recovered using a car battery- powered 

electric winch. 

The DPS itself looks similar to former designs (Winfrey & Zeikus, 1977), but is made from 15 

individual aluminum compartments assembled using a 2-component epoxy resin. 15 chambers 

for a length of 60 cm result in an effective vertical resolution of 4 cm. On the bottom end, a 

stainless steel tip is bonded to the body allowing easy sediment penetration (Figure 4-21).  
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Two closure frames bear a steel mesh protecting the inner membrane tubes. One of the frames 

is permanently fixed while the other one can be removed providing access to the inner 

compartments. According to specific measurement demands the peepers allow various 

membranes to be chosen. The DPS-PS is also capable of deploying peepers of various 

designs. The chamber size and therefore the depth resolution can be altered, as long as the 

outer dimensions of the peeper stay the same. 

4.3.2.2 Sample preparation and Peeper Placement 

For the preparation of the DPS, a regenerated cellulose membrane tube (ZelluTrans; Carl Roth 

GmbH, Karlsruhe, Germany) with a molecular weight cut off (MWCO) between 

1.99265 10-23 kg and 2.32475 10-23 kg, which is equivalent to a pore size of ~ 4 nm (US 

Environmental Protection Agency, 2005), and a thickness of 20 μm, was cut into segments of 

10 cm length. Each of the segments was then closed on one end with a polyamide 6.6 cable 

strap and filled with distilled water. Care was taken to avoid air bubbles inside the membrane 

tube and thus keep it as free of oxygen as possible. After filling, the other end was closed with 

a cable strap. Each bag then contained a volume of ~50 ml. Membrane bags were usually 

prepared on the day or the day before placement and stored inside a polyethylene bag filled 

 

Figure 4-21: Rendered design of the DPS-PS; design and construction by Gauger 

(2013) 
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with distilled water. Shortly before placement, one bag was positioned inside each chamber of 

the DPS and the housing was closed securely with a polyamide 6.6 cable strap. 

Placing procedure 

The prepared DPS was clamped in the DPS-PS. The DPS-PS was then lowered with the help 

of an electric winch until the tension in the steel cable lessened by the DPS-PS reaching the 

sediment surface. The dialysis sampler is pushed vertically into the sediment by the hand-

driven hydraulic system. Ultimately, after recovering the DPS-PS, a buoy was attached to a 

rope connected to the DPS for marking the location of the peeper and for recovery after the 

equilibration time. Caution has to be given to the length of the rope as wave action can loosen 

or even pull out the DPS from the sediment if the rope is to short, leading to biased results. 

The length of the rope rl can be calculated after (Hilgert et al., 2014), (Eq. 35): 

  𝑟𝑙 = 𝑑 + 1 + ln (𝑑) 
 

Eq. 35 

Where d represents the water depth in [m] at the current position. If the water body is affected 

by rapid water level changes, like in reservoirs, the maximum water level at the current position 

can be used as d. 

Peeper recovery and sample treatment 

The peepers were recovered by manually pulling them 

out of the sediment and up to the surface using the ropes 

attached to the buoys. After the peeper was retrieved 

back on the boat, handling was to be conducted as fast 

as possible to prevent diffusion of oxygen into the 

membrane and methane to the atmosphere which would 

accordingly falsify sample analysis. For the whole 

sampling procedure of 15 chambers, about 25 minutes 

were needed. The executed sampling sequence included 

photo documentation, in situ oxygen and temperature 

measurements, and headspace sampling for further gas 

and ion analysis.  

Figure 4-22: DPS after recovery with 

adherent sediment. 
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After recovery of each peeper, the first step was to take photos to document the position of the 

adherent sediment marking the sediment water interface (SWI) Figure 4-22.  

The SWI was most times clearly visible by sediment. 

Then, the cable straps were cut off and the DPS opened. 

Due to the highest expected gradients and hence the 

fastest diffusion, the oxygen concentration and 

temperature were measured beginning from chamber 15 

(lowermost chamber) using a medical syringe sensor 

(Oxygen Microsensor; PreSens®, Regensburg, 

Germany). The syringe has the benefit that the bag does 

not need to be opened and therefore air contact of the 

sample stays at the minimum. Before insertion of the 

syringe, the bags were cleaned from sediment particles to 

avoid intrusion of particles from the outer surface into the 

sampling solution. In the next step, a sample of 10 ml 

volume was taken with a syringe (Omnifix® 10 ml; Braun, 

Melsungen, Germany) fitted with a metal cannula (100 

Sterican®; Braun, Melsungen, Germany) from the 

membrane bag and transferred to a 20 ml headspace 

brown glass vial filled with ambient air. To let the air 

escape from the vial, a second cannula was placed in the rubber septum of the vial cap. To 

prevent degradation of methane through microorganisms, the vial was previously prepared 

with 0.1 ml of a preserving agent (0.6% HgCl2 solution) (Bartram & Richard, 1996). For each 

sample, a fresh syringe was used and during all measurements, the membrane bags were 

protected from direct sunlight. Vials were afterwards stored dark and cool at 4°C until analysis. 

4.3.2.3 Measurement (Head space analysis) 

The chromatographic analysis was performed by LACTEC (Institute of Technology for 

Development) in Curitiba, Brazil. This had the advantage, that the samples could be analyzed 

relatively fast after sampling as well as that the existing experience of the laboratory personnel 

guaranteed reliable results. 

  

 

Figure 4-23: Injection of DPS solution in 

the head space vial. 
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Gas chromatography 

Detection and quantification of the gaseous analytes, methane (CH4), nitrous oxide (N2O), 

carbon dioxide (CO2), oxygen (O2) and nitrogen (N2) was carried out with a multi-channel static 

headspace gas chromatograph (Trace GC Ultra®; Thermo Scientific, Waltham, USA). The gas 

chromatograph was interconnected with three different detectors. For the detection of methane 

and indirect detection of carbon dioxide a Flame Ionization Detector (FID), for nitrous oxide an 

Electron Capture Detector (ECD) and for oxygen and nitrogen a Thermal Conductivity Detector 

(TCD) was in use. The latter two gases where identified by default and did not have relevance 

for the study. 

For analysis, samples were preheated at 90°C and 2 ml portions were manually inserted with 

a polypropylene syringe into a storage loop and subsequently introduced into the 

Hayesep N packed columns (2000×0,5 mm; VICI AG International, Schenkon, Switzerland) 

through valves. The FID detector used helium as carrier gas. The makeup gas had a flow rate 

of 30 ml min-1, as fuel gas helium was used with a flow rate of 10 ml min-1 and the airflow was 

adjusted to 350 ml min-1. For the ECD detector nitrogen was used as carrier gas at a constant 

pressure of 250 kPa. Column temperature for both columns was 90°C. For the detection of 

carbon dioxide with the FID detector a methanator system was used. In the methanator, carbon 

dioxide was catalytic reduced to methane under excess hydrogen. Eq. 36 shows the basic 

reaction in the methanator. 

 𝐶𝑂2 + 4 𝐻2  
𝑁𝑖
→   𝐶𝐻4 + 2 𝐻2𝑂 Eq. 36 

Actually many of the samples exceeded the highest standard of the calibration curve for CO2, 

hence in some cases peak areas could not be integrated entirely. Thus, the integrated area is 

not fully accurate. CH4 was quantified with the FID until it exceeded the highest possible 

standard, then it was switched to the TCD for highest concentrations. Due to the high methane 

concentrations, the column was flushed after each sample to evade artifacts from former 

measurements. Therefore, carrier gas was used, conducting chromatographic analysis without 

sample injection. 

The calibration of the chromatograph was done using nine different standards with varying 

concentrations (details in Appendix A.5). Final processing of the obtained data was carried out 

with ChromQuest™ (Version 5; Thermo Scientific, Waltham, USA). 

Results were given in ppm respectively percent in the gas phase and had to be converted, 

according to Henry's law, into the concentration in the aqueous phase (see Appendix A.6).  
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Ion chromatography 

For the detection of fluoride, chloride, bromide, nitrite, nitrate, phosphate and sulfate a single-

channel ion chromatograph (Dionex ICS-9000®; Thermo Scientific, Waltham, USA) 

interconnected with a conductivity cell with DS5 detection stabilizer (Thermo Scientific, 

Waltham, USA) was used. Samples of 10 μl were injected into the chromatograph and 

separated on a Dionex IonPac AS23® carbonate eluent anion-exchange column (4×250 mm; 

Thermo Scientific, Waltham, USA) protected by a Dionex IonPac AG23® guard column 

(4×50mm; Thermo Scientific, Waltham, USA). All samples taken directly out of the membrane 

tube in the DPS were free of any particles, therefore a pretreatment was not necessary. Hence 

anions should have been detected, carbonate eluent was used to carry the sample through 

the chromatograph. The flow rate was 1 ml/min. As regenerate for the Dionex MMS 300 

Suppressor (4cm; Thermo Scientific, Waltham, USA) dilute sulfuric acid was used. The peak 

integration was done with Chromeleon (Version 7; Thermo Scientific, Waltham, USA). The 

calibration was done with seven ion-specific standards (Appendix A.5). 

Concentrations obtained by measurement of both ion and gas chromatography were corrected 

for the volume of the preserving agent by equation A6- 10 (see Appendix A.6). 

4.4 Further Surveyed Parameters 

4.4.1 Secchi Disc 

The visibility depth was assessed once a day during the surveys of phase two using a Secchi 

disc. Since the Secchi depth is linear correlated to the algal biomass in the water column the 

obtained values are used for the calculation of the trophic state of the reservoir (Carlson, R., 

E., 1977). In combination with received water quality data from the inflows and the reservoir 

itself (provided by LACTEC) the water quality index was calculated using Eq. 37 

(Länderarbeitsgemeinschaft Wasser (LAWA), 2001). 

 
𝐼𝑁𝐷𝐸𝑋 =  

𝐼𝑛𝑑𝐶ℎ𝑙 ∗ 𝑊𝑓 + 𝐼𝑛𝑑𝑆𝐷 ∗ 𝑊𝑓 + 𝐼𝑛𝑑𝑃𝑠𝑝 ∗ 𝑊𝑓 + 𝑃𝑠 ∗ 𝑊𝑓

∑ 𝑊𝑓
 Eq. 37 

Where “Ind” stands for index and the subscript for the individual parameter. Wf is the weighting 

factor. The individual parameters are: Chl = Chlorophyll-a [µg l-1]; SD = Secchi-depth [m]; 

Psp = Total Phosphorous during spring [µg l-1] and Ps=Total Phosphorous during summer [µg l1]. 

The detailed calculation can be found in Appendix A.7. 



4 – Materials and Methods 

98 

 

The water quality index was calculated due to its relevance in the context of GHG emissions. 

Gunkel & Sobral (2013) stated that there is a direct relation between water quality and potential 

GHG production. Accordingly, this information can serve as a secondary parameter to 

understand the behavior of the reservoir. An oligotrophic reservoir in contrast to a highly 

productive eutrophic one would not be expected to produce relevant amounts of methane (Abe 

et al., 2009b). 

4.4.2 Water Quality Parameters 

For the acquisition of basic water parameters a U-53 Multiparameter Water Quality Checker 

from HORIBA was used. With the multiprobe temperature (°C), pH, conductivity (µs cm-1), 

dissolved oxygen (mg l-1), turbidity (NTU) and depth (m) were measured. In phase one and 

phase two regular vertical profiles were measured collecting data at 1 m intervals until the 

lakebed was nearly reached. In phase one the obtained results were used for the echo 

correction calculations. Whereas in phase two the vertical sampling was taken over by the 

CastAway®-CTD due to faster data acquisition. 

All data was tagged with GPS positions and time stamps. 

4.4.3 Temperature – Conductivity – Depth (CTD) 

During phase two at all sample points the CastAway®-CTD was used to obtain information 

about the vertical temperature and conductivity distribution in the reservoir. The main purpose 

of this measurements is the correction of sound speed in the water column, but it also serves 

to understand the actual stratification situation in the reservoir. Exemplary results are given in 

Appendix A.4. 
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5 Results and Interpretation 

Reflecting the methodological structure of this study, this chapter is divided into four parts. The 

first three parts contain the results from the sediment, hydro-acoustic and pore water 

investigations. Each part primarily focuses on the method-specific findings. However, if it 

serves the explanation of the findings or is necessary for the understanding, data from the 

other methods are included. In the last part “composed results” more complex interpretations 

and results are developed including the selected data from the previous three subchapters, 

which is most relevant for answering the overall research questions. 

5.1 Sediment Investigations 

This section gives a synopsis of the sediment investigation results. They are presented in 

singular perspectives as well as in the context of other sediment features and their spatial 

distribution in the reservoirs. The selection of sediment features discussed, focuses on the 

formation of GHGs and the context of hydro-acoustic measurements, even though many other 

single features were investigated. 

5.1.1 Sediment Key Data 

For the comparison of the sediment conditions in VR and CR the key parameters are given in 

Table 5-1 and Table 5-2. In addition to the differences of the two reservoirs described in 

chapter 3, basic statistics of the sediment samples are listed here. The entire sediment analysis 

results are given in Appendix A.8. 

The sediment composition of both reservoirs is similar in most regards. The granulometry 

ranges in comparable limits since the mean share of the finest fraction differs only by 6.8%. 

The same accounts for the coarser grain size fractions. While the highest bulk density 

measured in Capivari reservoir is slightly higher (1.8 g cm-3) than in VR, the maximum total 

carbon content and also the upper limit of the LOI reaches higher contents in VR (6.5% and 

18.7%, respectively). Sulfur concentrations in the sediment have nearly the same value ranges 

and feature high coefficients of variation (CV). This generally may be caused by low 

concentrations and the associated measurement inaccuracies. Total concentrations of iron, 

phosphor and manganese exhibit higher values in the sampled sediment volumes in CR. 
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Table 5-1: Sediment key parameter from cores taken in Capivari Reservoir (N = 18), CV is the coefficients of 

variation 

 Mean Max. Min. Standard 
Deviation (SD) 

CV 

Depth [m]* 13.7 32.5 0.4 8.8 0.6 

LOI [%] 13.3 16.5 8.3 1.7 0.1 

Total Carbon [%] 2.7 4.2 1.3 0.6 0.2 

Bulk Density [g cm-3] 1.3 1.8 1.1 0.1 0.1 

Sulfur [%]** 0.05 0.14 0.01 0.03 0.7 

Phosphor [mg kg-1] 1395 1837 965 279 0.2 

Mn [mg kg-1] 635 1296 336 242 0.4 

Fe [g kg-1] 68.2 93.4 53.9 11.4 0.2 

Proportion of particles <63µm [%] 78.3 99.9 34.7 17.5 0.2 

Proportion of particles <250µm >63µm [%] 14.7 43.2 0 13 0.9 

Proportion of particles <500µm >250µm [%] 4 19.5 0 4 1 

Proportion of particles <2mm >500µm [%] 2.2 14.1 0 2.2 1 

Proportion of particles >2mm [%] 0.5 2.6 0 0.6 1.2 

*Depth range only refers to the sediment sampling locations 

** Values are rounded to two decimal places 

 

Table 5-2: Sediment key parameter from cores and grabs taken in Vossoroca Reservoir (N = 32), CV is the 

coefficients of variation 

 Mean Max. Min. Standard 
Deviation (SD) 

CV 

Depth [m]* 8.8 15.6 2.1 3.6 0.4 

LOI [%] 12.1 18.7 2.9 4.4 0.4 

Total Carbon [%] 2.8 6.5 0.4 1.3 0.5 

Bulk Density [g cm-3] 1.2 1.6 1.1 0.2 0.2 

Sulfur [%]** 0.03 0.13 0 0.03 0.87 

Phosphor [mg kg-1] 822 1344 224 329 0.4 

Mn [mg kg-1] 341 488 190 71.3 0.2 

Fe [g kg-1] 42 68.3 11.4 12.6 0.3 

Proportion of particles <63µm [%] 71.5 99.9 0 32.6 0.5 

Proportion of particles <250µm >63µm [%] 10.2 95.2 0.1 17.6 1.7 

Proportion of particles <500µm >250µm [%] 8.6 36.8 0 11.2 1.3 

Proportion of particles <2mm >500µm [%] 8.1 42.5 0 12.9 1.6 

Proportion of particles >2mm [%] 1.7 15 0 3.2 1.9 

*Depth range only refers to the sediment sampling locations 

** Values are rounded to two decimal places 
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In-Situ Sediment analysis – a first insight into the sediment composition 

The in-situ analysis was conducted for all core samples from VR and CR. The distinction of 

layers in the cores was mainly based on the color and the water content of the sediment. Colors 

range from light ochre over brown tones to darker black and blue hues and were determined 

using the Munsell color chart. The number of layers ranged from one to five layers per core, 

also in dependence to the length of the taken cores. Since grab samples have a disturbed 

structure these cannot be subdivided into layers. Most cores show gas inclusions. The bubbles 

are present in various configurations. From randomly distributed large (> 2 cm diameter) single 

bubbles to homogeneously distributed small (< 4 mm diameter) bubbles. A tendency can be 

observed: The larger the volume of the bubble, the less spherical the shape.  

This effect is particularly visible in soft sediments with high shares of silt and clay (Boudreau, 

B., P. et al., 2005; Sollberger et al., 2014). 

 

In all samples investigated, neither optical nor acoustical reactions with 10% HCl were 

observed, proving the complete absence of carbonates. The odor of many samples tend to 

have a smell of H2S especially after the appliance of HCl, indicating the presence of sulfides. 

Smells of the samples ranged from earthy and metallic to putrid. Putrid odors were mostly 

present in sediment samples featuring blackish-bluish colors. The pH values range from 4.5 to 

7, while most samples show pH values in the acidic range around 5–5.5. The sediment 

samples feature a wide range of elasticity with a vertical differentiation, visible in the core 

samples. The upper parts of the cores have higher elasticity while the deeper layers tend to 

be dryer and hence have low elasticities. Dryness is vertically oppositional distributed. Upper 

layers are highly water saturated in contrast to lower dryer layers. 

5.1.2 Granulometry and Sediment Distribution in the Reservoirs 

Figure 5-1 (A & B) shows the granulometry results as percentaged dry weight from VR 

sediment samples. In phase one of the research, grab and core samples were taken and hence 

are depicted next to each other. Figure 5-2 then shows the corresponding results from CR. 

Here, only core samples are represented. The range of grain size distributions of both 

reservoirs appears to be generally similar. In both reservoirs no sediments could be found 

consisting of pure sand or gravel. 

Differences can be found in the share of the coarser material in the grab samples compared 

to the core samples. This can be due to the fact that, on the one hand the grab sampler is 

capable of sampling sediments with higher densities, which can be caused by the presence of 
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consolidated clay, sand and gravel mixtures. On the other hand, the grabber is prone to lose 

some fine material through washing of particles during the recovery.  

Noteworthy is the discrepancy in grain size distribution between the different samples, 

independent from the reservoir or the sampling technique. As already addressed, high shares 

of coarse material can be found, contrasting that at least every second sample taken, has a 

silt-clay fraction share higher than 90%. Some samples even reach close to 100% silt and clay 

fraction (e.g. Figure 5-1, B: core 4, 7, 8, 18, 20 and 22). 

 

  

 

Figure 5-2: Percentaged dry weight distribution of grain 

sizes in core samples from CR. 

 

Figure 5-1: (A) Percentaged dry weight distribution of grain sizes in core samples from VR; values for core 8 are doubtful 

due to handling errors during sample processing; (B) Percentaged dry weight distribution of grain sizes in VR grab 

samples. 
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Considering the sediment distribution within the reservoirs, in particular within the south-

western arm of the VR and the entire CR analog patterns can be observed. The granulometric 

characteristics of the sediment samples distributed over the area of the reservoirs are 

presented in Figure 5-3 and Figure 5-4. The pie charts represent the composition of the 

sampled lakebed at the current position. Shown values are weighted shares of all layers 

analyzed and hence represent an average of the entire vertical grain size distribution of the 

sampled volumes. Exact coring depths and photos of the cores are given in Appendix A.1. Due 

to the destruction of the sediment structures no images of the grab samples are presented.  

 

Two overall tendencies of the sediment distribution in the reservoirs can be observed. The first 

is the presence of coarser material in the proximals and the second is the predominant gradient 

from the inflow to the deeper areas with increasing shares of fine material (Figure 5-3: G4, 

C10; Figure 5-4: Core 1, 2, 3, 4, 7 and Core 15). 

 

Figure 5-3: Granulometric lakebed characteristics at sampling 

locations in the south-western arm of VR, C# indicates the core 

numbers and G# the numbers of the grab samples. 
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Small branches of the reservoirs feature higher shares of coarse sediment (Figure 5-4: C5, 

G9, G12, G15; Figure 5-4: Core 5 and Core 10). The same accounts for shallow areas or 

plateaus within the main parts of the reservoirs (Figure 5-3: C1, G5, G6; Figure 5-4: Core 18 

and the grab sample). Larger branches or sidearms do not evince the same pattern, but rather 

show sediment compositions similar to the main arm (Figure 5-4: Core 13, Core 16 and Core 

17). 

It has to be kept in mind that CR is nearly ten times larger than VR. Hence for comparison of 

locations, morphology and topologic characteristics of the single sampling sites the real 

distances have to be considered. Regarding the shown maps (Figure 5-3 & Figure 5-4) the 

entire south-western arm and center part of VR is approximately the size of the south-eastern 

sidearm in CR. 

The variation between sediment compositions of neighboring samples already gives a 

presentiment of the heterogeneity of the sediment distribution in the two reservoirs. Therefore, 

it is difficult to generally derive the sediment characteristics from the position in the reservoir. 

 

Figure 5-4: Granulometric lakebed characteristics at sampling locations in CR, the numbers indicate the core 

numbers. 
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Diligent investigations and a more detailed understanding of the distribution and accumulation 

mechanisms are necessary. 

As a further relevant parameter of sediment distribution and characterization, the total carbon 

(TC) of the sample material, is depicted in Figure 5-5 and Figure 5-6. Like for the granulometry, 

here again similarities between the two reservoirs can be found. High TC values are present 

in the proximal areas of the reservoirs as well as in the profundal close to the dam. Some 

sidearms and plateaus feature lower TC values. A first comparison of the grain size distribution 

and the TC indicate the contradiction of high TC values in the coarse material as well as in 

samples consisting of high shares of fine material. This will be investigated in the following 

section of this work. 

 

Figure 5-5: TC content in sediment samples in the VR, cores and grabs are 

named individually. 
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Figure 5-6: TC content in sediment samples in the Capivari reservoir; cores are named individually. 
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5.1.3 Sediment Parameter Interrelations  

This section evaluates the correlations between sediment parameters aiming on the 

recognition of interrelations. The focus lies on the carbon-related correlations as well as on the 

particle distribution.  

While the carbon-related parameters are important for the biochemical degradation processes 

and hence for the GHG production in the sediment. The granulometric distribution is one 

principal factor influencing the density and thus the hydro-acoustic properties of the sediment. 

It is a principal concern to determine the relationship of physical and granulometric parameters 

with carbon related parameters. Hence, the loss on ignition and total carbon in conjunction 

with their interrelation with other parameters is regarded first, looking at the strength of their 

relationship. 

Prior to the regression analyses, all sediment data sets were checked for normal distribution. 

Data was tested for normal distribution using the Shapiro-Wilk and Kolmogorov-Smirnov tests. 

With a confidence level of 5%, p-values of around 6.2 for the Shapiro-Wilk and 0.77 for the 

Kolmogorov-Smirnov test were reached, conforming the normal distribution of the data sets. 

The normal distribution cannot be rejected for all sediment parameters, if the values included 

in the analysis are referring to the same sediment depth (here upper 15 cm). Consequently the 

following analyses are statistically legitimate. 

 

For understanding the relation between the TC 

and LOI, it is started from the assumption that the 

sampled volumes represent the entire spectrum 

of the sediment types in the reservoirs and also 

that the errors during the measurement of the LOI 

are independent from the errors which may occur 

measuring the TC. The linear regression 

calculation results in a Pearson r-value of 0.76 

(N = 28; p < 0.01) (Figure 5-7). Thus, a significant 

positive correlation between the two parameters 

can be stated. Significant correlations between 

these parameters were also published by Vos et 

al. (2005). 

  

 

Figure 5-7: Correlation between the total carbon 

content and the LOI in all core samples from VR 

and CR; (N = 28; p<0.005). 
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In this study, due to the absence of any HCl 

reaction it can be presumed that no inorganic 

carbon (IC) is present in any sample and that 

the TC is a very close approximation of the 

total organic carbon (TOC). This assumption 

is strongly supported by Ortt, JR. & Richard 

(2000), who found a correlation of 0.98 

between TC and TOC in the absence of IC. 

 

Comparing the sediment composition with 

carbon related parameters (CRPs), the finest 

fraction is exemplarily used as a 

representative value for the entire 

granulometric distribution. The LOI shows a 

different behavior than the TC (Figure 5-8 & Figure 5-9). While the proportion of 

particles < 63 µm stands in a significant positive correlation to the LOI, no clear relation to the 

TC can be derived. Consequently, the LOI–TC relation must be biased by the clay and silt 

share in the sediment. To control influence of the silt and clay fraction on the LOI, the TC is 

again plotted against the LOI, under exclusion of all samples with a silt and clay share of more 

than 80%. Figure 5-10 shows a highly significant correlation with r = 0.92 (N = 20, p = 0.01). 

Consequently, the LOI is clearly influenced by high shares of silt and clay. This suggestion is 

corroborated by Craft et al. (1991) and Vos et al. (2005) 

 

Figure 5-9: Share of finest particle fraction depicted 

over TC; all cores and grabs from CR and VR are 

included. 

 

Figure 5-10: Correlation of TC with LOI based on 

a selection of cores from VR and CR with less than 

80% share of finest particle fraction; (N = 20, 

p = 0.01). 

 

Figure 5-8: Share of finest particle fraction plotted 

against LOI; all cores and grabs from CR and VR are 

included (N=45; p<0.001). 
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As a primary value for the interpretation of SBC-data the density is of importance. Since the 

bulk density (BD) could not be determined for the grab samples, only the results of the core 

samples are presented. 

The presence of OC represents one general precondition for the formation of CH4 bubbles. 

Based on the assumption that the bulk density of the sediment notedly changes with the 

existence of free gas bubbles (Leifer & Patro, 2002; Sager et al., 1998; Anderson et al., 1998) 

in the sediment matrix, a relation between OC and density can be assumed.  

In Figure 5-12 and Figure 5-11 the relations between density and both CRPs are shown. Both 

correlations are significant and therefore a direct connection between the bulk density and the 

presence of organic matter in the sediment can be derived.  

Organic compounds always feature lower densities than mineral particles and consequently, 

a general coherence with the bulk density can be assumed. Yet, the share of OM in the 

sediment in both reservoirs is between 2–6% and hence the influence on the density is 

relatively low. 

The values of the LOI scatter less and hence the Pearson r is, with a value of -0.89 

considerably stronger correlated than the -0.60 from the BD–TC relation. However, both 

regression analyses support the same suggestion. The higher the organic content of the 

sediment, the lower the bulk density. This stands in accordance to several findings in the 

literature (Sobek et al., 2012). 

  

 

Figure 5-12: TC depicted over bulk density from all 

cores in VR and CR; (N = 28; p<0.01). 

 

Figure 5-11: LOI depicted over bulk density from 

all cores in VR and CR; (N = 28; p<0.01). 
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Depth-dependence of sediment features 

Aiming on the understanding of principal processes in the reservoirs an important aspect is the 

distribution of sediment parameters in relation to the water depth. For the comparison of the 

depth-dependent data from both reservoirs the local depth was recalculated to relative depth. 

The actual local depth was set into relation to the maximum depth of the corresponding 

reservoir. Thus, the deepest measuring points can be grouped together likewise the points 

from shallow areas, independent from the general depth difference of the two reservoirs. 

Total Carbon: 

Figure 5-13 (A and B) compares the relative depth at the sampling locations with the TC 

content in both reservoirs. They coincide with the highest TC values found in the shallowest 

areas of the reservoir, which in these cases are equal to the proximal. Furthermore, it can be 

observed that after relatively low TC values in the mid-depth range an increase in the carbon 

content in the deepest parts of the reservoir is present. Joining the information from Figure 5-5 

and Figure 5-6 with Figure 5-13 A and B, areas with similar carbon content ranges can be 

defined. The reservoirs can be separated in the proximal, the middle part, the profundal and 

the sidearms. Yet, it has to be stated that not all of the sampled sidearms show the same 

behavior (Figure 5-6: Core 5, 13 and 16). Some side arms show high TC values while others 

feature values at the lower end of the entire spectrum. It is suggested that this is due to erosion 

processes on the one hand and direct introduction of organic material from the surroundings 

on the other hand. Strong erosion leaves only the bare soil with relatively low TC contents 

 

Figure 5-13: Total carbon vs. the relative depth in A) Capivari reservoir and B) in the Vossoroca reservoir, VR = 

core samples. 
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around 2–2.5%. While the accumulation of organic rich material introduced from the shore 

vegetation increases the TC value significantly. 

Sulfur & Proportion of Particles: 

Comparing the allocation of the finest particle fraction with the content of sulfur, a contrary 

trend can be observed (Figure 5-14). While the share of the finest fraction has a high variability 

with an increasing average slope up to a relative depth of about 50%, the sulfur content is 

stable on a low level until 60% relative depth, followed by an increasing slope. Both patterns 

suggest that between 50–60% a switch-over of conditions takes place. The depth corresponds 

to a depth of around 18 m in CR and 11 m in VR. Finest particles accumulate and the sulfur 

content constantly increases. The switch-over can be attributed to the presence of the oxycline, 

which is located in a depth of 11–15 m in Capivari reservoir.  

 

Figure 5-14: Comparison of finest fraction share and sulfur content in relation to the relative depth; Contents of 

the upper 15 cm of the sediment sample material from VR & CR are included in the graph; the orange line 

illustrates the trends described. 

Iron & Phosphor: 

The distribution of total iron content and total phosphor depicted over the relative depth is given 

in Figure 5-16 and Figure 5-15. Both graphs show a similar behavior between the two 

reservoirs. Capivari reservoir possesses higher Fetot and Ptot contents independent from the 

depth of the sediment sample. Iron and phosphor reveal comparable trends, regarding the 

inter- and intra-reservoir behavior. Regression analysis results indicate similar relations and 

slopes, leading to significant positive correlations with r-values between 0.60 and 0.88 (CR: 

N = 18, p < 0.05; VR: N = 30, p < 0.05). 
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Based on the fact that Fetot and Ptot are 

distributed in a comparable manner, Fetot is 

selected as a representative for both 

parameters due to the higher r-values. The 

relation of Fetot and the particle distribution is 

evaluated in Figure 5-17. There is a weak 

tendency that the lowest Fetot-values are 

found in coarser sediment. Even if the 

correlations are still in a significant range, the 

variation of the values is high, particularly if 

the results for higher shares of the finest 

fraction are regarded. Above 90% of finest 

fraction there is no clear tendency to be 

derived and hence the Fetot and Ptot content 

can be seen as almost independent from the 

particle composition. However, very coarse 

sediments feature relatively low contents of 

iron. 

The found results are in accordance to the 

iron contents published by Passier & deLange 

(1998). The elevated contents of iron in 

deeper parts of the reservoir can be explained 

by the absence of oxygen, lower redox-

potentials and hence the permanent fixation 

of iron bound to sulfur (FeS or FeS2).  

 

 

 

 

 

 

 

 

 

 

Figure 5-16: Total iron content vs. relative Depth and 

reservoir specific linear correlation (CR: N = 18, p < 0.05; 

VR: N = 30, p < 0.05). 

 

Figure 5-15: Total phosphor content vs. relative Depth 

and reservoir specific linear correlation (CR: N = 18, 

p < 0.05; VR: N = 30, p<0.05). 
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5.1.4 Multivariate Approach 

In order to assess relations between more than one sediment parameter, sets of supposedly 

related parameters are used as input data for a Principal Component Analysis (PCA) (Grant, 

1990). The normal distribution of the relevant values was confirmed (chapter 5.1.3) and 

consequently a PCA is possible. The PCA was conducted using OriginLab 9.0. The correlation 

matrix for the PCA is given in Table 5-3. 

Table 5-3: Correlation matrix of the five input parameters 

 LOI Total carbon Density Depth 
Proportion of 

particles < 63µm 

LOI 1 0.69 0.59 0.55 -0.87 
Total carbon 0.69 1 0.11 -0.07 -0.58 

Density 0.59 0.11 1 0.62 -0.61 
Depth 0.55 -0.07 0.62 1 -0.61 

Proportion of particles <63µm -0.87 -0.58 -0.61 -0.61 1 

The Biplot shows the two extracted principal components (PC) and the loadings of the input 

parameters (Figure 5-18). PC1 is mainly composed of the coefficients of the eigenvectors from 

the LOI (0.53) and Density (-0.53), while the PC2 is dominated by the eigenvectors of total 

carbon (-0.72) and the particle share < 63 µm (0.53).  

 

Figure 5-17: Total iron content vs. share of finest 

sediment fraction and reservoir specific linear 

correlation (CR: N = 18, p < 0.05; VR: N = 30, p < 0.05). 
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Density and LOI are well explained 

by the PC1 while the TC has a 

tendency to be explained by the 

PC2. 

Two distinct outcomes of the PCA 

can be described. First, the density 

opposes the LOI and second, the 

share of the finest fraction is 

grouped together with the relative 

depth.  

The relation between density and 

LOI was already statistically 

described in chapter 5.1.3. It can be 

explained by the fact that the LOI 

includes the influence of the grain size distribution (Figure 5-8) and also the total carbon 

content (Figure 5-10). The position between both vectors in the biplot underlines this 

coherence. Consequently, the LOI has a strong correlation with the granulometric features 

determining the density. Since high values of both, the TC and the share of the finest fraction 

are prerequisites for the formation of bubbles, the strong relation to sediment density becomes 

clear. 

The grouping of the silt and clay fraction and the relative depth is explained by the dependence 

of sedimentation processes respectively resuspension. High particle shares of silt and clay are 

mainly found in the deeper areas of the hypolimnion, where flow velocities and therefore the 

impact from shear stress is low. 

  

 

Figure 5-18: Biplot of the PCA results of a selection of sediment 

parameters. 
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5.1.5 Synopsis 

Summarizing the central results of the sediment sampling analysis, the following aspects can 

be named: 

 The evaluated distribution and behavior of the sediment is very similar in both 

reservoirs. The formation of significantly different zones in regards of sediment 

characteristics, in the reservoirs is identified. A first demarcation indicates the following 

demarcation: inflow (proximal), outflow (profundal), small sidearms and inner areas with 

intermediate depth (plateaus). Proximal and profundal feature the highest contents of 

TC. 

 The LOI cannot be used as a direct substitute for the TOC. It is rather a mixed 

parameter combining the share of silt and clay and the OC content. Under exclusion of 

samples with shares higher than 80% silt and clay fraction, the LOI is strongly 

correlated with the OC content. 

 In the absence of inorganic carbon, the total carbon equals the total organic carbon 

(TC = TOC). 

 TC and LOI have a high potential to explain the density changes of the sediment, since 

both feature significant correlations with the density values. 

 Fetot, Ptot show the same behavior regarding distribution and concentration gradients in 

the sediment. 

 Due to the depth distribution of the silt and clay fraction and the sulfur content a switch-

over zone is suggested. At an average relative depth of 50-60% an increase, 

respectively accumulation is observed. This corresponds to a depth of around 18 m in 

CR and 11 m in VR. 
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5.2 Hydro-acoustic Results 

In this section both reservoirs will be addressed, but more information is given about the 

Capivari reservoir, referring to the sampling strategy of this work (chapter 0). Results from 

Vossoroca reservoir will serve as a data pool for comparison. However, most of the hydro-

acoustic research was conducted in CR and therefore this reservoir plays the central role in 

the detailed investigation in the rest of this study. Based on the bathymetric results the depth 

distribution of the reservoirs was derived. The creation of a 3D-surface of the CR allowed the 

calculation of the slope distribution, which is suggested to stand in a direct context with 

sediment focusing. This analysis is ensued by the detection and illustration of the sediment 

thickness, exemplifying zones of sediment accumulation. After a validation of this approach, 

the SBC is used for spatial interpolation of selected sediment parameters, which are related to 

the formation of GHGs. Finally, the outcomes of the static and dynamic bubble detection are 

visualized and set into context with the underlying sediment. 

5.2.1 Bathymetry and morphometric Implications 

This chapter and its subchapters contain the principal results from the bathymetric data 

ascertainment and the results derived from the resulting 3D-reservoir model. The reservoir 

topography including depth and slope distribution are delineated.  

Depth interpolation 

Vossoroca Reservoir 

Interpolated results of the bathymetric survey in the VR are shown in Figure 5-19. If regarded 

in detail the old riverbeds in both southern arms can be recognized. The profundal lies in front 

of the restricted zone west of the dam. Here the maximum depth reaches 17 m. The south-

western arm is characterized by the feature that, in contrast to other large arms, the inflow area 

is relatively deep. This is caused by the effect that the main river enters the reservoir in a small 

water fall, causing the minimum depth of around 2–3 m at this inflow.  
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Figure 5-19: Map showing the depth below the surface of the VR as a function of latitude and longitude in 

March 2011. 

Capivari Reservoir 

Like the old lakebed in VR, the former run of the Capivari River can still be distinguished from 

the rest of the lakebed in CR (Figure 73). Here the deepest area is located in the northern part 

in front of the dam. During the survey of the bathymetric data the water level did not allow 

sailing in the south-western inflow areas since the water depth was lower than 1.8 m and old 

uncut trees were encountered regularly. The histogram in Figure 72 gives information about 

the depth distribution in CR. 

Major 
inflow

[m]
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At the time of measurement 50% of the 

reservoir had a depth lower than 7 m. Only 

4% of the reservoir are deeper than 25 m. 

It has to be mentioned that the values 

shallower than 1.5 m were generated 

during the interpolation process since 

those areas are too shallow for an exact 

measurement. In the histogram the hashed 

areas from the map are not included, thus 

in reality, the share of shallow areas is 

slightly larger. 

 

 

 

 

Figure 5-20: Histogram of the distribution of depth 

classes in CR. 

 

Figure 5-21: Map showing the depth below the surface of the CR as a function of latitude and 

longitude in November 2012. 
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Slope calculation 

The slope distribution was calculated with regards to the potential coherence with the sediment 

distribution and the influence on SBC. 

 

Based on the bathymetric data a Triangulated Irregular Network 

(TIN) was constructed. The TIN served as the data basis for the 

calculation of slope polygons using ArcGIS 10.2.2. For the 

construction of equi-inclined slope polygons break values were 

consigned. The values are given in Table 5-4.  

Since a large range of slope inclinations is present in the reservoir, 

the classes were chosen from 0°–55° including the very steep 

slopes. 

Figure 5-22 shows the distribution of the most abundant four slope 

classes and illustrates the corresponding inclination. About 52% of 

the lakebed in CR has a slope between 0–7.5° (class 1 & 2). 

Around 16% of the area can be added to the extremely steep areas 

with inclinations above 17.5° (classes 5–11). These areas are 

illustrated in tones of orange in Figure 5-23 while flat or less inclined areas are represented by 

darker tones of gray. It can be observed that the steepest areas follow the old riverbed and are 

located particularly at the undercut slope sides. The closer to the dam and hence the higher 

the water depth, the more abundant the strongly inclined reservoir banks become. The wider 

parts of the reservoir feature plateaus on the slip-off slope side. 

 

Figure 5-22: Visualization and distribution of the most prevalent slope 

classes in CR. 
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Table 5-4: Class breaks for 

slope inclination 

Class Breaks 
[°] 

Slope 
Class # 

0 0 
5 1 

10 2 
15 3 
20 4 
25 5 
30 6 
35 7 
40 8 
45 9 
50 10 
55 11 
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Figure 5-23: Slope polygon map, Slope polygons are defined by the class breaks from Table 5-4. 

5.2.2 Sediment Thickness (ST) 

Based on the differences between the processed bottom lines (38 & 200 kHz), the sediment 

layer thickness was calculated and then interpolated (IDW), it is illustrated in Figure 2-24. An 

area of 11.1 km² was calculated. In accordance with the literature, the results show a sediment 

accumulation in the old riverbed and potential former depressions (Blais & Kalff, 1995; Gilbert, 

2003). Highest interpolated thicknesses reach 3 m while the most abundant magnitudes stay 

below this value. Due to the interpolation process, extreme values are lost. At some single 

points, magnitudes of up to 3.8 m were calculated, but since these measurement points have 

a share of less than 0.001% of the total point number, their loss can be neglected. A tendency 

can be derived, the ST reaches only minimum values in the outer reaches of the reservoir 

close to the shore line. Clear coherence to the water depth can be derived. In accordance to 

Gilbert (2003) plateau areas and shallow parts are not capable of accumulating significant 

amounts of sediment. 

Water 
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Figure 5-24: Sediment thickness distribution in CR, results based on the dynamic hydro-acoustic measurements 

and IDW interpolation. 

It can be stated that the sediment overlay classes from 0.4–0.9 m contribute to around 70% of 

the entire reservoir lakebed surface (Figure 5-25). Areas with no overlay at all to a thickness 

of 0.1 m of sediment cover contribute to 0.8 km² (7%) of the entire lakebed surface. This can 

be attributed to the steep slopes and drawdown areas along the shore line. These findings 

match the results from Anderson (2010). 

To control the quality of the sediment 

thickness interpolation and also the 

precision of the applied model for the data 

points of the driven survey, a cross 

validation was conducted. The estimated 

ST values from the coring sites were used 

as independent subsamples. Due to the 

fact that, the same methodology was used 

at the static measurement sites and that 

none of these points is included in the data 

set of the driven lines, they may represent 

the validation data set. The cross validation 

Water 
out take
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Figure 5-25: Spatial share of sediment thickness classes 

in the CR. 
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shows a high grade of correlation (r = 0.92; 

N = 16; p < 0.01) and a linear relation 

between the interpolated and measured 

values (Figure 5-26). The calculated slope 

value of the regression (1.1) is very close 

to the expected value of 1.0. These results 

suggest that the spatial interpolation is a 

versatile tool producing values within a 

valid range. Although the results from this 

method cannot be ultimately controlled 

(limited coring depth), an approximation of 

the validity is done. 

Since the maximum core penetration 

depth was 75 cm, an exact sediment layer 

determination was not possible at most 

sites (core tubes shorter than ST). Still, the 

hydro-acoustic ST values can be set in 

relation to the absolute core penetration 

depths. Figure 5-27 gives an overview 

about the differences between the 

sediment depths values obtained from the 

three approaches. Generally, the results 

for sediment thicknesses around 0.3–

0.5 m tend to have a high correlation 

between all three values. Larger 

interpolated or measured sediment depths 

cannot be reflected by the coring depths. 

However, there is a tendency that the core 

penetration at locations with higher ST 

values is deeper. This can be explained by the fact that high sediment thicknesses are only 

reached through high sedimentation rates, which in Capivari reservoir means an accumulation 

of soft sediment. Hence, at these locations the corer can easily penetrate the sediment. 

Additionally to the softer sediment, the water depth at these sites tend to be higher (Figure 

5-24), as most of the sediment accumulates in the deeper regions. Therefore, it is suggested 

that the coring device has a prolonged acceleration phase during the fall and thus can 

penetrate the sediment deeper. 

 

Figure 5-27: Comparison of the three approaches for 

sediment thickness estimation in CR. 

 

Figure 5-26: Measured vs. interpolated sediment 

thickness values; Correlation of the ST values, N=16; 

p<0.01. 
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5.2.3 Seabed Classification (SBC) 

Following the hydro-acoustic measurement strategy, two general methods of seabed 

classification were conducted. The first aims on the creation of correlated acoustic – sediment 

parameter pairs, while the second method targets the clustering of sediment samples in groups 

of the same hydro-acoustic behavior. Results of both approaches are presented in the 

following. 

5.2.3.1 Approach one  –  creating sediment-acoustic pairs 

For this approach the results from the SBC are divided into two parts, due to the underlying 

methodology. The results obtained during the dynamic and stationary are separated. In 

addition the results obtained from the phase one measurements (VR), which were the basis 

for the methodological adaptions in phase two, are presented separately from phase two 

results (CR). 

Stationary SBC results 

As described in the methodology part (chapter 4.2.3) the stationary SBC was carried out with 

a set of configurations, alternating the pulse length (τ) and/or the input power. Incidence angle, 

frequencies and further parameters were kept constant. Due to a very high number of 

conducted single correlations, 896 pairs for the Vossoroca and 2,560 combinations for Capivari 

reservoir, only the most promising correlations between the SBC-features and the sediment 

parameters are presented.  

Hydro-acoustic data was tested for normal distribution using the Shapiro-Wilk and 

Kolmogorov-Smirnov tests. With a confidence level of 5%, p-values of around 5.7 for the 

Shapiro-Wilk and 0.76 for the Kolmogorov-Smirnov test were reached, conforming the normal 

distribution of the data sets. Consequently the following analyses are statistically legitimate. 

SBC in the Vossoroca Reservoir 

To assess the use of the hydro-acoustic parameters for lakebed characterization and 

prediction all combination of the relevant parameters were correlated. Table 5-5 and  

Table 5-6 list the Pearson r-values for the core samples and the grab samples. The 38 and 

200 kHz frequencies are shown next to each other for a direct comparison. R-values above 

the significance level are highlighted (Core samples: p < 0.05 for r = 0.63, N = 10; Gab samples: 

p < 0.05, r = 0.44, N = 21). For both sample types the average performance of the lower 
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frequency is clearly higher. In addition, the correlation with core samples reach higher levels 

of conformance. The best detectable parameter is the “density”, which independently of the 

hydro-acoustic parameters reaches average r-value of 0.62 and maximal r-values of 0.89. High 

correlations are also reached between the particle composition and most hydro-acoustic 

parameters. Here the best pair, % < 63 µm vs. E1, reaches an r-value of 0.91. Comparably 

high correlations are not reached within the group of grab samples (best value: r = 0.60). 

Compared to the quality of the correlations between cores and hydro-acoustic parameters, the 

correlations with the grab samples are clearly less significant. Based on these findings from 

Vossoroca, the use of grab samples was substituted by core samples in phase two (apart from 

one sample). 

Table 5-5: Correlations between sediment and acoustic parameters based on the results obtained from the 

core samples of Vossoroca reservoir; statistical significance is given for r > 0.63 (p < 0.05, N = 10). 

  density Total P LOI % < 63 µm Total C 

kHz 200 38 200 38 200 38 200 38 200 38 

E1  ̀ 0.10 0.85 0.06 0.62 0.10 0.71 0.17 0.81 0.12 0.50 

E1 0.42 0.54 0.43 0.64 0.42 0.44 0.82 0.91 0.05 0.05 

attdecSv1 0.25 0.87 0.07 0.66 0.25 0.71 0.30 0.88 0.12 0.38 

attSv2 0.43 0.24 0.57 0.07 0.32 0.24 0.67 0.17 0.04 0.53 

decSv2 0.11 0.89 0.17 0.63 0.13 0.73 0.25 0.79 0.12 0.51 

attdecSv2 (E2) 0.15 0.88 0.29 0.59 0.09 0.74 0.33 0.71 0.09 0.51 

attSv1/decSv1 0.24 0.47 0.19 0.23 0.16 0.42 0.63 0.25 0.05 0.47 

decSv1/attdecSv2 0.45 0.22 0.51 0.15 0.44 0.33 0.84 0.15 0.08 0.62 

 

Table 5-6: Correlations between sediment and acoustic parameters based on the results obtained from the 

grab samples of Vossoroca reservoir; statistical significance is given for r > 0.44 (p < 0.05, N = 21). 

  Total P LOI % < 63 µm Total C 

kHz 200 38 200 38 200 38 200 38 

E1  ̀ 0.37 0.27 0.16 0.27 0.18 0.52 0.11 0.14 

E1 0.56 0.56 0.37 0.38 0.48 0.54 0.25 0.28 

attdecSv1 0.37 0.42 0.21 0.34 0.19 0.60 0.11 0.18 

attSv2 0.14 0.04 0.11 0.08 0.05 0.02 0.02 0.05 

decSv2 0.30 0.36 0.12 0.31 0.12 0.54 0.08 0.18 

attdecSv2 (E2) 0.27 0.33 0.12 0.28 0.11 0.51 0.07 0.16 

attSv1/decSv1 0.53 0.22 0.14 0.09 0.37 0.07 0.21 0.10 

decSv1/attdecSv2 0.60 0.14 0.37 0.27 0.57 0.07 0.25 0.13 
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SBC in the Capivari Reservoir 

The procedures of the seabed classification followed the methodology in Vossoroca, but with 

the addition that more parameter were investigated during phase two. The results of the SBC 

for the two frequencies are given in separate tables (Table 5-7 –  

Table 5-10). The 200 kHz frequency produces higher correlations compared to the results from 

the 38 kHz. This stands in accordance to Anderson & Pacheco, 2011. No clear tendencies can 

be derived comparing the results of the different input powers 100 and 500 W. The 500 W – 

correlations tend to have less pairs with significant correlations but some feature higher 

r-values. In comparison to the literature values from Anderson & Pacheco, 2011 the overall 

correlations are less significant since no parameter combination reaches values above 0.81. 

This can be the case because the investigated reservoirs in the literature are morphologically 

less complex and show uniform structures and gradients. However, the highlighted correlation 

pairs demonstrate the possibility of SBC in both investigated reservoirs.  

Although the correlations between the fractal dimension and various sediment parameters 

presented by Anderson & Pacheco (2011) are promising, the best correlations obtained in this 

work including the fractal dimension, reach only an r-value of 0.59 (Table 5-9). Accordingly, 

the fractal dimension was discarded for the detailed analysis of the correlations and hence 

further results are not presented in this work. 

Under the perspective, that outliers are not yet excluded from the regression calculations, a 

potential of significantly higher correlations is given, if results are regarded and adapted in 

detail. This is done for selected parameters as a preparation for the spatial interpolation. The 

selected correlation pairs for the spatial interpolation are highlighted in orange (Table 5-7 and 

Table 5-9). 
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Table 5-7: Correlations between sediment and acoustic parameters (200 kHz, 100W) based on the results obtained from the core samples of Capivari reservoir; statistical 

significance is given for r > 0.47 (p < 0.05, N = 18). 

 E1  ̀ E1 attdecSv1 attSv2 decSv2 attdecSv2 
(E2) 

attSv1/ 
decSv1 

decSv1/ 
attdecSv2 

FD linear FD non 
linear 

density 0.53 (A,B) -0.53 (D) -0.39 (D) 0.48 (B) 0.47 (B) 0.47 (B) -0.60 (B) 0.38 (B) -0.39 (B) -0.29 (B) 

Total_P -0.53 (B) 0.59 (D) -0.36 (B) -0.43 (B) -0.43 (B) -0.42 (B) 0.52 (B) -0.49 (C) 0.58 (B) 0.59 (B) 

LOI -0.32 (B) 0.38 (D) 0.58 (D) -0.18 (B) 0.52 (D) 0.46 (D) 0.54 (B) -0.36 (B) 0.26 (B) -0.33 (D) 

% < 63µm -0.55 (A) 0.81 (C) 0.44 (D) -0.54 (B) -0.46 (B) -0.46 (B) 0.71 (B) -0.67 (C) 0.53 (B) 0.46 (B) 

Total_S -0.41 (B) 0.51(C) 0.51 (C) 0.25 (A) 0.26 (D) 0.23 (D) 0.55 (B) -0.34 (C) 0.53 (B) 0.46 (B) 

Total_C 0.39 (C) -0.37 (C) 0.42 (B) 0.38 (C) 0.40 (C) 0.4 (C) -0.36 (C) 0.54 (C) -0.45 (D) -0.53 (C) 

D_90_V 0.13 (D) 0.25 (C) 0.13 (B) -0.24 (D) -0.14 (A) -0.14 (A) 0.12 (B) 0.41 (C) 0.21 (A) 0.32 (D) 

 

Table 5-8: Correlations between sediment and acoustic parameters (200 kHz, 500W) based on the results obtained from the core samples of Capivari reservoir; statistical 

significance is given for r > 0.47 (p < 0.05, N = 18). 

 E1  ̀ E1 attdecSv1 attSv2 decSv2 attdecSv2 
(E2) 

attSv1/ 
decSv1 

decSv1/ 
attdecSv2 

FD linear FD non 
linear 

density 0.45 (B) -0.61 (D) 0.29 (A) 0.53 (B) 0.42 (A) 0.43 (A) -0.51 (B) 0.42 (D) -0.4 (A) -0.42 (C) 

Total_P -0.55 (B) 0.61 (D) -0.36 (A) -0.44 (D) -0.45 (B) -0.45 (B) 0.55 (B) -0.53 (D) 0.51 (B) 0.53 (B) 

LOI -0.27 (B) 0.39 (D) 0.38 (C) -0.41 (B) 0.43 (D) 0.38 (C) 0.58 (B) -0.49 (B) 0.21 (A) 0.2 (C) 

% < 63µm -0.34 (A) 0.54 (C) 0.32 (D) -0.61 (B) -0.47 (A) -0.48 (A) 0.47 (A) -0.56 (B) 0.50 (A) 0.38 (B) 

Total_S -0.45 (B) 0.42 (D) -0.26 (A) -0.23 (D) 0.24 (C) 0.25 (C) 0.67 (B) 0.34 (B) 0.34 (B) 0.37 (D) 

Total_C 0.46 (B) -0.38 (C) 0.35 (A) 0.32 (A) 0.33 (B) 0.33 (B) -0.35 (A) 0.52 (C) -0.58 (C) -0.46 (B) 

D_90_V 0.26 (A) 0.33 (D) 0.24 (A) -0.46 (C) -0.23 (A) -0.21 (A) -0.2 (D) -0.35 (A) 0.16 (B) -0.31 (D) 
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Table 5-9: Correlations between sediment and acoustic parameters (38 kHz, 100W) based on the results obtained from the core samples of Capivari reservoir; statistical 

significance is given for r > 0.47 (p < 0.05, N = 18). 

 E1  ̀ E1 attdecSv1 attSv2 decSv2 attdecSv2 attSv1/ 
decSv1 

decSv1/ 
attdecSv2 

FD linear FD non 
linear 

density 0.47 (B) -0.59 (C) -0.12 (D) 0.58 (B) -0.42 (D) 0.41 (B) -0.52 (B) 0.40 (C) -0.44 (A) -0.59 (B) 

Total_P -0.65 (B) 0.44 (C) -0.50 (D) -0.53 (B) -0.57 (B) -0.59 (B) 0.51 (B) -0.54 (C) -0.60 (D) 0.28 (B) 

LOI 0.20 (D) 0.28 (C) 0.3 (D) -0.27 (B) 0.33 (D) 0.25 (D) 0.29 (A) -0.11 (A) 0.17 (A) 0.30 (C) 

% < 63µm -0.42 (A) 0.51 (B) 0.3 (C) -0.44 (B) 0.37 (D) -0.31 (B) 0.58 (A) -0.4 (A) 0.61 (A) 0.49 (A) 

Total_S -0.42 (B) 0.23 (B) -0.22 (C) -0.42 (B) -0.20 (C) -0.27 (C) 0.36 (B) 0.25 (B) 0.27 (A) 0.54 (A) 

Total_C 0.42 (C) -0.56 (B) 0.38 (A) 0.47 (C) 0.31 (A) 0.31 (A) -0.48 (B) 0.52 (B) 0.49 (C) -0.32 (D) 

D_90_V 0.36 (D) 0.44 (B) -0.31 (A) 0.22 (B) 0.22 (B) -0.15(A) -0.24 (D) -0.27 (A) 0.22 (D) 0.35 (D) 

 

Table 5-10: Correlations between sediment and acoustic parameters (38 kHz, 500W) based on the results obtained from the core samples of Capivari reservoir; statistical 

significance is given for r > 0.47 (p < 0.05, N = 18). 

 E1  ̀ E1 attdecSv1 attSv2 decSv2 attdecSv2 attSv1/ 
decSv1 

decSv1/ 
attdecSv2 

FD linear FD non 
linear 

density 0.29 (A) -0.63 (C) -0.44 (B) 0.34 (A) -0.33 (D) 0.26 (A) -0.36 (A) 0.33 (D) -0.63 (A) -0.25 (A) 

Total_P -0.57 (A) 0.31 (B) -0.32 (A) -0.56 (A) -0.45 (A) -0.47 (A) 0.40 (A) -0.43 (C) -0.45 (C) 0.48 (D) 

LOI 0.23 (C) 0.33 (B) 0.57 (C) -0.35 (A) 0.33 (C) 0.29 (C) 0.49 (A) -0.17 (B) 0.29 (A) 0.43 (B) 

% < 63µm 0.49 (D) 0.70 (B) 0.60 (D) -0.41 (A) 0.40 (D) 0.39 (D) 0.46 (A) -0.49 (B) 0.53 (A) 0.2 (B) 

Total_S -0.48 (A) 0.34 (B) 0.32 (C) -0.57 (A) -0.33 (A) 0.34 (A) 0.43 (A) -0.33 (B) 0.17 (B) 0.33 (D) 

Total_C 0.32 (A) -0.49 (B) 0.17 (A) 0.35 (A) 0.41 (D) 0.39 (A) -0.29 (B) 0.53 (A) -0.43 (B) -0.51 (D) 

D_90_V 0.30 (D) 0.52 (B) 0.40 (B) -0.20 (A) 0.40 (B) 0.14 (D) 0.10 (A) -0.26 (B) 0.57 (C) 0.33 (A) 
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Dynamic SBC – the entire reservoir 

Based on the regression models from the static measurements the corresponding sediment 

parameters are calculated for the entire reservoir. Since TC and the particle distribution show 

significant correlations as well as a predictive function for the GHG production of the sediment, 

both are chosen for the modeling. Although, higher correlation values are presented in Table 

5-7 –  

Table 5-10, only correlation pairs including hydro-acoustic values obtained with configuration 

B are analyzed in detail. Around 177,000 point values of the dynamic hydro-acoustic 

measurement were processed with the given models.  

Particle Distribution 

The best r-values representing the particle composition (% < 63µm) of the sediment, combined 

with a hydro-acoustic parameter from a linear regression model is found for configuration C, 

200 kHz (E1 vs. % < 63µm; r = 0.81). As the objective of the SBC is not only the evaluation of 

the potential sediment prediction in a static mode, but also the transfer to the dynamic survey, 

the best correlation of configuration B has to be used. Hence, the next highest r-value from 

configuration B (attSv1/decSv1 x % < 63µm; r = 0.71) serves for further analysis. A linear 

regression is not capable of resembling a model, which can properly represent the plateau 

evident between 90–100% proportions of the finest fraction (Figure 5-28). Therefore, based on 

the inability of the original linear regression model another model function, the Gompertz 

Function (Seber, G. A. F. & Wild, C. J., 2005) was adapted. It is originally a sigmoidal function 

for population growth, but is capable of modelling the hydro-acoustic sediment behavior. The 

function is given in Eq. 38. 

𝑦 = 𝑎𝑒
(𝑙𝑜𝑔(

𝑥𝑐
𝑎

)∗𝑒(−𝑘∗𝑋))
 Eq. 38 

Where a is the amplitude (asymptote), xc is the center and k the coefficient; lower bounds are 

a > 0.0 and k > 0.0. The resulted curve is shown in Figure 5-28. This model is used to predict 

the sediment values for “% < 63µm” resulting in the following equation: 

% < 63µm = 97.9 * EXP(LOG(0.35/97.9) * EXP(-4.3 * L3))        (r² = 0.83) Eq. 39 
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The modeled values represent the data basis 

for the interpolation (IDW) to predict the share 

of the finest fraction in the entire reservoir. 

Results are demonstrated in Figure 5-29. 

Having in mind the presented results from the 

sediment distribution (chapter 5.1.2), 

described gradients are reflected well in the 

interpolated raster. Higher shares of fine 

sediment are found in the deeper areas of the 

reservoir and coarser material is located in 

the proximal and in some sidearms. 

Especially narrow sidearms show high shares 

of coarse material. 

 

Figure 5-29: Map of the modeled proportion of the grain size fraction < 63µm in [%] for the Capivari reservoir. 
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Figure 5-28: Depicted proportion of particles < 63 µm vs. 

the attSv1/decSv1 values and the modeled curve based 

on the adapted Gompertz function. 
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To validate the interpolated results, a cross validation is performed. Ranked values from the 

granulometric measurements, the mean values from the classified interpolated polygons with 

upper and lower contour line limits and the extracted interpolated pixel values at the 

corresponding coring site, are set in relation. Polygons based on contour lines show different 

topologic shapes compared to the local pixel values. Hence, not all polygons and pixels feature 

the same sediment composition, if 

regarded on a small scale (30 x 30 m). In 

Figure 5-30 the orange points represent 

the measured values, from the static 

sediment thickness estimation, which are 

compared to the interpolated polygon- and 

pixel-based values. The modeled values, 

especially the pixel values accurately 

reproduce the real share of finest fraction 

in a range from 85–100%. The average 

pixel-based deviation for this range is 

6.7%. If the outlier from rank 16 is excluded 

from the average, a deviation of 3.4% is 

reached. The value extraction from 

contour-based topologies reaches a slightly lower precision with a deviation of 8.8%. Yet, apart 

from the outlier the overall performance is worse. For areas with higher shares of coarse 

material the variation between the modeled values for the pixel-based extraction is 25.7% 

respectively 27.5% for the contour-based values. Besides a systematic, model based over 

estimation of the modeled values below 85% finest fraction (see Appendix A.14), these model 

results can be predicated by the location of the sampling sites. If sidearms are extremely 

narrow (Core 5; 6 & 13) the interpolation is not able to represent the entire sediment gradients 

due to the minimal pixel size (30 x 30 m). The heterogeneity of the sediment in this areas is 

higher than the resolution of the raster. Moreover, it is suggested that the hydro-acoustic 

behavior of the sediment influences the model results. In particular, the presence of gas 

bubbles can shift the hydro-acoustic apparition of the sediment (Anderson et al., 1998). This 

is discussed in detail in chapter 5.2.3.2. 

Total Carbon: 

Selected from Table 5-7–Table 5-10 the best r-value representing the TC in the sediment is 

found for the pair TC x E1 (38 kHz, 100W). The overall correlation from the linear regression 

resulted in an r-value of -0.56. Since this value represents only a correlation on a relatively low 

 

Figure 5-30: Differences between modeled and 

measured sediment shares of the finest fraction. 
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significance level, the input values were regarded in detail. Due to potentially biased hydro-

acoustic values, caused by inclination of the lake ground and relatively high waves during the 

static hydro-acoustic measurements, two of the input values (Core 12 & 15) were excluded. 

Afterwards, a new regression was calculated (Figure 5-31). This linear regression leads to the 

model of Eq. 40. 

Based on this formula the TC values for all 

hydro-acoustic measurement points were 

calculated. The results from interpolation 

(IDW) are presented in Figure 5-32. The map 

shows that the proximal, the profundal and 

the sidearms generally feature the highest 

carbon contents. Lower contents can be 

dedicated to the plateau areas. However, a 

high small-scale spatial heterogeneity can be 

observed. It is suggested that the hydro-

acoustic values are not strongly influenced 

by depth, since both deep and shallow areas 

are classified with high carbon values 

(compare Figure 5-21 and Figure 5-32). To 

evaluate the goodness of the interpolation a 

cross validation was conducted with the 

original sediment samples.  

 

  

%TC = 1.3 + (-0.06 * E1)         (r = -0.74) Eq. 40 

 

Figure 5-31: Linear regression model of the TC vs E1; 

N=15; p<0.01. 
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The comparison of the measured and modeled results is given in a ranked order in Figure 

5-33.  

Here the modeled values are extracted 

from the interpolated pixels at the coring 

positions. The average deviation from the 

granulometric results is 17% (SD ±0.45% 

total carbon).  

If the strongest scatterers (Core 9, 11 & 

13) are excluded, a deviation of 13% 

(SD ±0.36% total carbon) is reached. 

Especially the lower content ranges tend 

to have stronger deviations, while the 

general TC-distribution is represented well 

based on the modeled results. From the 

individual deviations of the sampling sites, 

it can be concluded that the modeling of 

 

Figure 5-32: Interpolated total carbon contents in the sediment of CR, Interpolation was performed using IDW. 
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Figure 5-33: Modeled and measured TC contents in a 

ranked order. 
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the TC in the sediment is less accurate in small sidearms. Whereby open, more homogeneous 

areas of the lakebed are represented with sufficient accuracy. 

5.2.3.2 Approach two  –  producing sediment clusters 

This approach aims on the classification of sediment types by creating groups of same acoustic 

behavior. As the result of a preselection process, the first echo division method was chosen 

as the most promising approach.  

Results from both frequencies are presented (Figure 5-34 and Figure 5-35). In accordance to 

Figure 4-8, chapter 4.2.4.1 hard, strongly reflecting sediment types are normally located in the 

range of -5 – -15 dB (high hardness and roughness values). Sediments with weaker reflectivity 

are ordered in the lower left part of the diagram. Generally, fine, muddy sediments are located 

in the range of -25 – -50 dB. 

The results from the 38 kHz frequency show that most core samples are located relatively 

close together. No sample is located in the standard-range of soft sediment. One distinct group 

can be separated from the other samples, due to the high attSv1 values combined with 

relatively low decSv1 values (Core 5, 6, 8 & 9). This distinction is caused by the elevated bulk 

densities of the named cores. All four samples feature increased shares of coarse material 

(Figure 5-2 and Figure 5-4). The attack phase of the 38 kHz frequency with a pulse length of 

0.512 ms (configuration B) is 

influenced by the sediment features 

in the first 76 cm of the ensonified 

sediment. Echoes show higher 

intensities, if a compacted sediment 

layer is present. Alternatively a 

reflecting layer of aligned bubbles 

may cause the same effect 

(Anderson et al., 1998). 

 

In comparison to the 38 kHz-

sample-allocation, the 200 kHz is 

able to cluster the samples in more 

distinct groups (Figure 5-35). The 

ability to clearly separate the 

sediment samples due their acoustic 

 

Figure 5-34: Results of the “first echo division” method; 38 kHz, 

Configuration B, 100 W; orange bars represent the standard 

deviation within the ping sequences; the size of the black 

squares is the relative depth, the larger the deeper. 

38 kHz
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behavior, is a primary prerequisite for a successful classification. Thus, the seabed 

classification is conducted based on the 200 kHz frequency values. 

Taking into account the obtained knowledge of the sediment characteristics of each core 

sample and additionally keeping in mind the basic assumption of the allocation of hard and 

soft sediments, clusters are defined.  

Cluster “A” is delimited on the basis of the following supposition. Since no gravel or coarse 

sand exists as sediment in the entire Capivari reservoir, the only possible reason for a 

significantly increased reflection of both, hardness and roughness, is the presence of a dense 

acoustic turbidity layer (bubbles) in the upper part of the sediment. Due to the fact that core 13 

is separately located from other 

samples, it must feature relevant 

differences and hence was allocated 

to an own cluster (attSv1 > -18 dB; 

decSv1 > -20 dB). Group “B” is 

delimited on the basis of high attack 

values combined with low decay 

values (attSv1 > -24 dB; 

decSv1 < -24 dB). It contains the 

same samples like the one group, 

described with the 38 kHz frequency. 

Group “C” takes the part of the 

dedicated soft, muddy sediment, since 

it is defined by lower attack and decay 

values (attSv1 < -25 dB; 

decSv1 < -20 dB). The rest of the 

samples are set as “unclassified”. 

 

Both frequencies show the same patterns in regards to depth influence (size of the black 

squares Figure 5-35). Sediment in deeper areas of the reservoir produce a clearly lower attack 

value. The decay value is unaffected by the depth distribution. Depth dependence of the 

acoustic response can be due to low bulk densities and high fine particle shares which are 

found in the morphologic depressions of the impoundment. The effect of depth on the acoustic 

signal itself is not further investigated. It is assumed, that the described corrections (chapter 

2.3.1) are sufficient to produce correct results within the given depth-ranges in the reservoirs. 

To explain the differences of the chosen groups in detail, Figure 5-36 illustrates the acoustic 

signatures of exemplary core samples. The x-axis [m] should be read analogue to traveling 

 

Figure 5-35: Results of the “first echo division” method; 

200 kHz, Configuration B, 100 W; orange bars represent the 

standard deviation within the ping sequences, the size of the 

black squares is the relative depth, larger squares represent 

deeper positions. 
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time of the sound wave. While 0 cm is the point where the wave enters the sediment. Sv –mean 

is the average reflected intensity (backscatter) from the sediment volume. It combines the 

energy from coherent (specular) reflection and the volume scattering. Sound reflected during 

the volume scattering reaches the transducer later than sound waves reflected by specular 

reflection, therefore the given depth in Figure 5-36 should not be regarded as an exact 

measure. 

Core 5 and 13, both feature strong reflectivity during the attack phase, which equals 19.6 cm 

of sediment depth for the 200 kHz frequency and a pulse length of 0.128 ms. As shown in 

Figure 5-35, core 13 has a significantly stronger reflection intensity during the decay phase 

(following 3 * 19.6 cm). This can be explained by strong reverberation caused by bubbles 

(Naudts et al., 2008).  

The compact structure of core 5 

appears as a flat surface for the 

200 kHz frequency (specular 

reflection), whereas the reflecting 

horizon of the bubbles of core 13 

appears rough. Hence, the decSv1 

(roughness) value of core 13 is 

increased. A close investigation of 

core 13 showed that this core 

contained large bubbles within the 

upper 5 cm of the sediment. Most 

other cores showed the presence of 

larger bubbles exclusively in deeper 

sediment layers (10–15 cm or 

deeper). 

Cluster “C” is represented by core 2 and 12. Both show a comparable behavior. They feature 

no steep peak during the attack phase nor high values during the decay phase. Instead, the 

signal signature is extended over a relatively long distance (time). This can be due to extensive 

scattering within the sediment volume. Lower energy levels are caused by sound attenuation 

in the sediment, which can be caused by randomly distributed bubbles in the sediment. 

 

After group A, B and C are defined, all 177.000 pings of the dynamic survey are classified 

based on the described decibel group limits. Nominal values, in this case the sediment classes, 

cannot be interpolated. Therefore, Figure 5-38 shows the single pings in accordance to the 

determined acoustic classes. 

 

Figure 5-36: Acoustic signatures of four representative cores; 

200 Khz, Configuration B, 100 W; Sv Mean is the backscatter 

strength in dB, the distance 0.0 is the entrance point of the 

sound wave in the sediment. 
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As could be derived from Figure 5-35, class A holds the smallest share of all classified pings. 

It is restricted to small areas, often in direct vicinity with unclassified echoes (Figure 5-38, side 

map A and B) This can be explained by the fact that both share the same range of decay 

values. The occurrence of class A can be assigned to intensive sediment accumulation areas. 

For comparison see Figure 5-24, chapter 5.2.2. 

Pings assigned to class B are primarily located in the proximal as well as in the sidearms of 

the reservoir. These finding stand in accordance to the granulometric results from the sediment 

samples taken in this areas. The sediment in these parts is distinguished by the elevated share 

of coarse material entering the reservoir via the inflow or erosion (Core 5, 6, 8 and 9; Figure 

5-2, chapter 5.1.2). 

In the deeper areas of the main 

reservoir and the central parts of the 

larger sidearms, most pings are 

assigned to class A. This again 

corresponds to the previously 

described characteristic of the 

sediment type, assigned to this class. 

These areas feature soft sediments 

with high water contents and low bulk 

densities. Reflectivity can still be 

comparatively high due to the 

presence of bubbles in the sediment 

(Lyons, 1996; Naudts et al., 2008). 

Figure 5-37 depicts the affiliation of 

the defined hydro-acoustic classes 

versus the interpolated granulometric raster. It shows that around 60% of the pings assigned 

to class B represent a sediment with 84% of finest fraction or lower. This finding agrees with 

the assumption that this class is assigned to relative compact sediments with elevated 

densities. Pings assigned to class A present an intermediary distribution in regards to the 

sediment composition, which contrasts the expectation of gas loaded soft sediment (e.g. core 

13). Consequently, the seabed classification approach is not capable of differencing 

consolidated, flat sediment from soft sediment with high bubble counts in the upper 

centimeters. The granulometric range of class C fits the expectations, since pings were 

assigned to soft and relatively fine-grained sediment, producing relatively low attack and decay 

values. 

 

 

Figure 5-37: Relative distribution of classified pings within 

hydro-acoustic classes over granulometric ranges; basis for 

the granulometric classes are the results shown in Figure 5-29. 
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Figure 5-38: Results of the First Echo Division method classification; 200 kHz, Configuration B, 100 W. Results are shown as single pings; The side maps (A,B and C) show selected 

areas in detail. 
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5.2.4 Bubble Detection 

„Estimates of ebullitive emissions can be obtained together with an assessment of its 

uncertainty assuming that measured values deviate from mean emissions as the result of 

spatial random variations and random measurement errors.“ IEA Hydropower 

Agreement (2012) 

 

Rising bubbles from the sediment were first detected in the static mode to assess the bubble 

flux at the coring sites. Subsequently, bubbles were detected along the driven tracks of the 

bathymetric survey. For the static approach results are only presented for core 1–9 due to the 

fact that during the second campaign in phase two of the survey, no bubbles were rising during 

static measurements. 

5.2.4.1 Static bubble detection 

The feasibility of bubble detection was already proven in the literature (Ostrovsky et al., 2008; 

Ostrovsky, 2009a; Vagle et al., 2010; DelSontro et al., 2011) and was successfully conducted 

during the phase two surveys. Figure 5-39 shows rising bubbles at coring site six with 

rectangles representing the marked bubbles. During the second campaign at CR the water 

 

Figure 5-39: 200 kHz Echogram (configuration B) showing rising bubbles at coring 

site six. Tracked bubbles are marked with squares. 
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level was rising as well as the atmospheric pressure, causing increased hydro static pressure 

on the sediment. Therefore, the ebullition was reduced to a minimum (Scandella et al., 2011). 

Information about the water level and atmospheric pressure is given in Appendix A.10. The 

physical background is explained in chapter 2.2.4.2. 

At coring site six the extensive permanent presence of bubbles reaching the surface was used 

to optimize the detection configurations of the Sonar5 pro Software. The rising bubbles gave 

the opportunity to directly verify the detected bubbles with the presence of bubbles at the 

surface. Extreme bubbling was observed during sediment coring (Figure 5-40). 

In general, there are significant differences between the 38 and 200 kHz frequencies. Whereas 

bubbles could be very well detected with the 38 kHz frequency producing reasonable results. 

Bubbles were also detected with the 200 kHz frequency, yet giving many inexplicable results. 

With the 200 kHz frequency up to 300 bubbles per echogram were detected where bubbles 

could neither be seen at the surface nor were detected with the 38 kHz frequency. The most 

influencing software parameters concerning bubble detection using a single-beam 

echosounder are certainly the settings of ping gap and rising velocity. If the ping gap is set too 

low some echoes that might still belong to the same track may not be detected. On the other 

side, if the ping gap is set too high, too many echoes are combined into one track. The 

configuration of the rising velocity can have similar effects on the bubble detection.  

Starting configurations of Sonar5 pro were chosen after literature (Ostrovsky et al., 2008; 

Ostrovsky, 2009a; DelSontro et al., 2011). With all configurations (A–D, 100 & 500 W) at all 

sampling sites 98 bubbles were detected. As a general result, the short pulse length 

 

Figure 5-40: Extreme bubbling at the surface during core sampling at location 6 in the first 

campaign of phase two. 
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configurations A and B are best suited for bubble detection, regarding the resolution and level 

of detail, at the 38 and the 200 kHz frequency. By contrast, configurations C and D with longer 

pulse lengths resulted in poor detection quality. Especially for the 38 kHz frequency the 

echograms of the configurations C and D showed a high level of background noise. Since the 

target strength for rising bubbles is generally low, the background noise strongly influences the 

detection quality. The power input of 500 W consumed more battery power, but also resulted 

in a higher resolution of the echograms. That made configuration A with 500 W at 200 kHz the 

best configuration for the bubble detection during point measurements. 

Using this configuration, 30 bubbles could be tracked. In total, five out of ten sampling sites 

showed ebullition during the survey. In particular, at core 1, 6 and 8 many bubbles were tracked 

(Table 5-11). Comparing these results with sediment parameters it is noticeable that bubbling 

especially occurred at sampling sites where the TC content is elevated (Figure 5-41). The 

figure shows that bubbles are only detected at sites where the TC value is above-average 

(TC mean = 2.9%). Moreover, Figure 5-41 illustrates that bubbles in the proximal rise from 

carbon rich sediments, whereas in the profundal bubbles are detected over sediments with 

relatively low TC values. 

At sampling site 5 no bubbles could be detected due to very shallow conditions, although TC 

content is relatively high. Coring sites 3, 4 and 7 did not show any bubble activity, they also 

feature the lowest total carbon contents (Figure 5-41) 

Table 5-11: Number of Bubbles detected at coring sites; 200 kHz, configuration A, 500 W. 

Site: Core #  1 2 3 4 5 6 7 8 9 Grab 1 

Number of bubbles 10 1 0 0 --* 9 0 8 2 0 

*site at Core 5 was too shallow to obtain reasonable results 

Regarding the acoustic values of the detected bubbles from configuration 200 kHz, A, 500 W 

(Table 5-12), the mean rising velocity is 18.2 cm s-1 and the mean TS is -63.2 dB. The rising 

velocity and the detected TS values agree with available values from the literature (Ostrovsky, 

2003, Ostrovsky, 2009a). These values are very similar to the values obtained when 

considering all configurations. Only the number of echoes per track is higher using 

configuration A 500 W. This can be ascribed to the increased resolution with shorter pulse 

length, which enables a more accurate detection. The investigations show that the rising 

velocity and detectability of the bubbles were independent from the depth (minimum depth 3–

4 m), consequently the used method can be transferred to the acoustic data from the driven 

lines. 
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Table 5-12: Bubble statistics for configuration A, 200, 500 W,  

compared to average values from the remaining configurations. 

 Configuration A All configurations 

 Mean Median Mean Median 
Rising velocity [cm s-1] 18.20 19.00 18.64 20.00 
Target strength [dB] -63.20 -62.17 -62.88 -61.34 
# Echoes 16.13 9.50 11.49 7.00 

5.2.4.2 Bubble detection at driven lines 

The same Sonar5 pro configurations, which were approved during the evaluation of the static 

measurements, are used for the bubble detection on the driven routes. In total 262 bubbles 

were detected with the 38 kHz frequency. In contrast to the findings from the static 

measurements, the same settings applied for the 200 kHz frequency resulted in the detection 

of nearly no bubbles. A map of the detected bubbles (38 kHz) is shown in Figure 5-42. Highest 

bubble densities are located in the profundal and the south-eastern sidearm of CR. In the 

 

Figure 5-41: Number of detected bubbles at coring sites in relation to measured 

TC contents and the sediment thickness. 
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shallow areas only some single bubbles could be detected. The mean depth of the detected 

bubbles is 17.3 m (Table -5-13). 

Including only depths greater than 8 m, the water depth cannot be regarded as a valid factor 

for the distribution of the detected bubbles. The accumulation of sediment is suggested to have 

a stronger influence on the bubble occurrence. Hence, the relation between sediment 

thickness, bubble occurrence and the relative share of the measurement point count is 

investigated (Figure 5-43). Including the number of measurement points, the relation to the 

distribution of the sediment thickness has a major effect on the interpretation of the bubble 

occurrence. Since bubbles can only be detected in the water column under driven lines there 

is no direct connection to the interpolated area of the different sediment thickness classes. 

 

The comparison of the three factors shows that bubbles primarily occur in areas with increased 

sediment overlay. Highest bubble frequencies are reached in areas with 0.8–1.2 m of sediment 

 

Figure 5-42: Location of the detected bubbles and water depth in the CR. 
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overlay. It can be expected that high bubble densities can be encountered above areas of 

thicker sediment as well, but the ratio of points representing this area is disproportionately low. 

On the contrary, the areas of low sediment thickness show very little bubble detection counts, 

although both the spatial share and the point representation is relatively high. Therefore, it is 

suggested that the presence of bubbles in the water column can be attributed to the 

accumulation of sediment. 

Table -5-13: Bubble statistics for driven lines; Configuration B, 200 kHz, 100 W. 

 Mean TSc 
[dB] 

Start depth 
[m] 

Target depth 
[m] 

Water depth 
[m] 

Vz first last 
[cm/s] 

Mean Vz 
[cm/s] 

Mean -56.7 9.9 9.5 17.3 14.5 16.4 
Median -55.6 8.3 7.9 16.7 13.0 15.0 

  

 

Figure 5-43: Diagram of illustrating the relation between sediment thickness, 

bubble occurrence and the relative share of the measurement point count. 
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5.2.5 Synopsis 

 Depth distribution and morphologic characteristics are relative similar between the two 

reservoirs. 

 52% of the CR lakebed have a slope inclination lower than 7.5°. Extremely steep slopes 

are limited to regions in the drawdown area or along the old riverbed, forming ridges. 

 Sediment thickness reaches maxima in the deepest areas and is influenced by the 

inclination of the lakebed. Sediment thickness values from the driven survey strongly 

correlate with static results and with core samples in the range of their possible length. 

 Static SBC approaches show significant correlations between hydro-acoustic and 

sediment parameters in both reservoirs. The selected sediment features could be 

spatially reproduced by interpolating the modelled sediment values. However, mapping 

of the spatial heterogeneity of the sediment characteristics in small-scale morphologic 

features like narrow branches, is complicated. 

 Clustering of the sediment samples based on the first echo division method resulted in 

a good distinction of three sediment classes. However, the distinction of gas-loaded 

volumes at the sediment surface and compacted sediments, appears difficult. In the 

absence of dense acoustic turbidity layers, the hydro-acoustic response of 

granulometric differences can be reproduced by the classification. Accordingly, 

sediment classes can be detected and parts of the reservoir can be assigned to 

distinctive sediment types. 

 Bubble detection was successfully conducted. Bubble distribution in the reservoir 

depends mainly on the accumulation of sediment. The higher the accumulation, the 

more bubbles will be produced. Bubbles are mostly found in areas deeper than 8 m 

with an average depth of 17 m. 

 Short term bubble detections at coring sites show dependencies between TC contents 

and bubble numbers. 

 Two spatial methane production patterns are derived. The proximal produced bubbles 

in carbon rich sediments with a low magnitude, while the profundal shows ebullition of 

bubbles over sediments with lower carbon content, but high sediment thicknesses. 
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5.3 Dialysis Pore Water Sampling 

Considering that the technical devices for the DPS sampling approach conducted in this work, 

were specifically developed and constructed, the objective of this chapter is on the one hand 

to show the validity of the produced results and on the other hand present information about 

the behavior of relevant gas and ion species in and above the sediment. 

During phase two of the study DPS were placed in the sediment of CR. In the first campaign 

the DPS-PS handling still had to be elaborated since the entire system was newly developed. 

Therefore, only two DPS´s were placed without complications, which could have altered the 

results. One of these DPS´s was stolen or lost during the equilibration time (not listed). The 

other DPS could be recovered and analyzed. In the second campaign the DPS-PS handling 

was improved and the placement was facilitated due to an electric winch and a floating platform 

attached to the side of the boat (Figure 5-44.)  

 

Seven DPS´s were placed during the 

survey and one was again lost or stolen 

(Figure 5-45). Table 5-14 gives an 

overview over the DPS´s deployed during 

both campaigns. The design of the DPS 

was developed in cooperation with 

Hölzlwimmer (2013) details and technical 

specifications are given in Appendix A.11. 

Since the technical differences between 

Generation 1 and 2 are mainly relevant for 

the handling in the field, they are not 

discussed in detail. 

The principal purpose of the DPS-

approach is the investigation of the redox 

conditions, gas concentrations and 

chemical gradients in the sediment. The 

findings from this investigation, then can 

be related to the production of GHGs. 

Since the sediment at the corresponding 

locations was additionally scanned with the echo sounder and core samples were taken, it was 

 

Figure 5-44: The DPS-PS positioned on the floating 

platform at the side of the vessel in combination with an 

electric winch. 

 



5 – Results and Interpretation 

146 

 

possible to extend the findings by putting them in the context of the results from the additional 

measurement approaches. 

Table 5-14: Overview of the deployed DPS´s; the water depth at the current location, the individual 

equilibration time and the type of the DPS is given. 

 

 

 

 

 

 

 

 

5.3.1 Gas Concentrations 

This chapter describes the results from the gas chromatography analyses of the head space 

samples. Four gases were measured (O2, CO2, N2O and CH4) but only the methane and 

DPS Number Type Equilibration Time [h] Water Depth [m] 

DPS 0 Generation I 144 32 

DPS 1 Generation I 214 18 

DPS 2 Generation I 216 17 

DPS 3 Generation II 190 12 

DPS 4 Generation II 186 20 

DPS 5 Generation II 145 11 

DPS 6 Generation II peeper missing 12 

DPS 7 Generation II  147 17 

 

Figure 5-45: Positions of the placed DPS´s in Capivari reservoir, lost DPS´s are not 

presented. 
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oxygen concentrations are discussed in detail. Nitrous oxide concentrations were not 

detectable or close to zero. The number of valid carbon dioxide measurements was limited 

due to the fact that some of the samples were not in the range of the calibration and therefore 

had to be excluded. All results are shown in Appendix A.12. 

Oxygen: 

As a primary prerequisite for the methane formation the absence of oxygen is crucial. Hence, 

the oxygen concentration gradients measured in the sediment are presented in the first place. 

Based on general expectations, the oxygen concentration below the SWI tends to be zero. 

Figure 5-46 depicts the measured O2-concentrations in the overlaying water, through the SWI 

and below. Besides the DPS 2, all DPS´s show concentrations below 1 mg in the first chamber 

under the SWI, with a decreasing tendency. The results from DPS 2 must be regarded as 

individually biased. Due to a power shortage on board the oxygen measurement was 

interrupted for around 30 min. 

It must be assumed that significant re-

diffusion has taken place. The 

interruption is marked with an arrow in 

Figure 5-46. Also for the interpretation 

and the correct understanding of the 

oxygen concentrations of the other 

DPS´s the re-diffusion is a highly relevant 

factor. Especially the lower chambers 

with no dissolved oxygen are exposed to 

strong diffusion gradients during the 

onboard measuring. To control the effect 

of re-diffusion, additional experiments 

were conducted in the laboratory. 

 

Error Control Experiments 

For the measurement of the oxygen diffusion rate through the air-exposed celluloses 

membrane, a laboratory experiment was conducted. Eleven bags of the same membrane 

material as used during the field campaigns, filled with air-saturated deionized water, were 

submerged in helium-stripped deoxygenated water. The gradient of oxygen concentration was 

then measured over time. After reaching a concentration of 0 mg l-1, four bags were exposed 

to ambient air and the increase in oxygen inside the bags was recorded analogously.  

 

Figure 5-46: Oxygen concentrations in the DPS; DPS 0 is 

not shown since no oxygen was measured in the first 

campaign. 
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To ensure that the measured increase in 

oxygen concentration was only caused by 

diffusion, the membrane bags were kept 

intact. The oxygen concentration was 

measured using the same equipment as in 

the field (Oxygen Microsensor; PreSens), 

which allows measurement by only 

introducing a needle into the bags. Hence, 

biasing of the results can be neglected. In 

Figure 5-47 the re-diffusion into the bags 

is presented. The curves represent the 

beginning of an asymptotic approximation 

to the air saturation. Comparing the 

laboratory re-diffusion rate with the 

measured concentrations from the DPS´s, it becomes clear that the DPS-values are 

considerably lower. The first five chambers from the lower most end in the direction to the SWI 

are oxygen free, in spite of the fact that measuring in the field took around 2 min per chamber. 

Under laboratory conditions a permeation flux of 0.2 mg min-1 and hence a concentration of 2 

mg l-1 after 10 min is reached. These results lead to the conclusion that the stay of the 

membrane bags in the sediment led to clogging of the membrane pores. The clogging slows 

down the re-diffusion. This effect was already observed by Brandl & Hanselmann, 1991 and 

Jacobs, 2002.  

In this context the power breakdown during the measurement of DPS 2 gives a hint of the pre-

recovery oxygen concentrations of the remaining DPS´s. An additional hint gives the oxygen 

concentration in DPS 4. During the campaign it was assumed that the DPS was not properly 

placed because during recovery of the DPS the resistance of the sediment was very low. 

Hence, it was assumed that the DPS 4 was not placed deep enough in the sediment. To save 

time only two chambers were measured for oxygen. Both have a concentration of 0 mg l-1. 

Since both measurements were performed without any delay, they give back the exact 

concentration from the corresponding chambers. If the re-diffusion speed of DPS 2 is 

transferred to the other DPS no chambers below the SWI and most likely not above the SWI 

contained any oxygen. This stands in direct accordance to the results from DPS 4 and 

independently measured O2- concentrations in the supernatant water of the recovered cores 

(data not shown). The sediment overlaying water was generally oxygen free. Findings stated 

by Uhlmann & Horn (2001) are in agreement. 

 

Figure 5-47: Oxygen concentration in membrane bags 

vs. time, under laboratory conditions. 
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Methane: 

The production of methane is limited to permanent oxygen-free ambients. Therefore, in most 

cases methane is primarily produced within the sediment. The prevalent gradients of methane 

concentration in the overlaying water and underneath the SWI are depicted in Figure 5-48. The 

methane concentration stays close to zero in the chambers above the sediment and increases 

below the SWI. In deeper chambers, increasing concentrations were measured. From the 

development of the individual concentrations it is assumed that the local dissolved methane 

concentration reaches a plateau in the depth of around 40–50 cm. The exact calculation of the 

solubility of methane in the sediment is not trivial. Yet, including the principal factors, pressure 

and temperature the obtained concentrations are at the limits of solubility (Duan et al., 1992). 

The presence of gas bubbles in nearly all core samples underlines these findings.  

Compared to literature results, the measured values are reasonable. Adams & Baudo (2001) 

published pore water concentrations in the range of 18 mg l-1 in an Italian lake. Higher 

concentrations are reported from Abe et al., 2009a, who investigated the CH4 concentrations 

in the upper most centimeter of the sediment in a tropical reservoir. Concentrations around 

40–48 mg l-1 were observed. 

The team of Tundisi (2013) measured the methane concentrations in the sediment of Capivari 

reservoir at some of the DPS-sites surveyed in this work, with a different technique. The 

technique is described in Sidagis Galli C. et al. (2009) and Abe et al. (2012). At two comparable 

sites (DPS 0 and DPS 5), the methane concentrations measured by Tundisi in the first 4 cm 

 

Figure 5-48: Dissolved methane concentrations in the pore water of 

the CR; DPS 1 was discarded due to erroneous placement. 
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of the sediment ranged from 24–25.5 mg l-1. The own results from the DPS measurements 

show a range from 15–16 mg l-1at the corresponding positions. Taking into account that the 

sediment volumes sampled were not exactly the same (distance of some meters) and that 

around a month lay between the measurements, the results seem to be in agreement. The 

differences could be caused by local variation of available organic carbon or also by water 

level changes.  

Thus, it can be stated that the methane concentrations obtained from the measurement 

technique presented in this study do not suffer from the same diffusion effects found for oxygen 

measurements. It is suggested that the measured concentrations are not primarily dependent 

on the water depth at the sampling position, as the deeper locations not necessarily show the 

higher concentrations. This leads to the assumption that the local sediment features are the 

predominant influence for the methane concentration in the pore water. 

Importance of deployment time 

A primary factor for the correct interpretation of the potential methane concentration in the 

sediment is the equilibration time. The time depends on the diffusive flux of the relevant gas or 

ion species. Only if the DPS´s are deployed as long as it takes to reach equal concentrations 

in the membrane bags as in the surrounding pore water, the measured concentrations give 

back the real situation in the sediment. For this purpose DPS 2 and DPS 7 were deployed at 

the same position (distance ca. 3–4 m) with a time delay. The time difference between the 

placements of two DPS was 69 hours (Table 5-14).  

The expectation is that the concentrations 

are at the same range if the shorter 

deployment time is sufficient for full 

equilibration. As Figure 5-49 shows, both 

DPS feature similar concentrations in the 

corresponding chambers. The shorter 

deployed DPS 7 even reaches a higher 

dissolved methane concentration in the 

lower most chamber than DPS 2. Since 

DPS 7 is one of the DPS with shortest 

equilibration time, this suggests that full 

equilibration was reached in all of the 

deployed DPS´s. 

 

Figure 5-49: Methane concentrations of DPS 2 & DPS 7 

depicted against sediment depth. 
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5.3.2 Ion Concentrations 

From the analyzed ions (NO2
-, NO3

-, SO4
-, F- and Cl-) in the pore water of the sediment the 

SO4
- has the closest relation to the formation of methane, since it is part of the last redox-step 

before the CH4 formation (Jorgensen, 2000). Therefore, the rest of the ions will be addressed 

only briefly while the depth distribution of SO4
- is discussed in detail. 

Generally the presence of NO2
- and NO3

- in the water column or the sediment is limited to 

areas of 250–400 Eh [mV] (Förstner & Grathwohl, 2007, 30–31). In this regard all DPS show 

similar results. Both species are depleted in the sediment overlaying water phase or latest in 

the second chamber below the SWI. In this case only low concentrations can be found. All 

graphs are given in Appendix A.12. Especially fluoride, but also chloride concentrations 

increase analogous to the dissolved methane concentration. Research did not show any 

explanation for this behavior since both ions are not connected to relevant metabolisms of the 

formation of methane.  

Sulfate 

Apart from the concentrations measured in DPS 1 and DPS 4, the SO4
- concentrations below 

the SWI decrease within the first 8 cm under the sediment to values close to zero (Figure 5-50). 

Therefore, the behavior of SO4
- corresponds to the anticipated course. 

These expectations are founded on the previously analyzed gradients of methane 

concentration. In accordance to the fact that sulfate needs to be reduced before effective 

formation of methane can take 

place, the presented values 

decrease before or at the same 

depth as the methane 

concentrations increase 

(Martens et al., 1998). Due to the 

minimal depth resolution of 4 cm 

(dependent on the chamber size 

of the DPS) it is not possible to 

closer investigate the spatial 

occurrence of both species. 

However, it is possible to identify 

that at some locations the 

hypolimnion features significant 

 

Figure 5-50: Sulfate concentrations in the pore water of the CR; DPS 1 

must be discarded due to erroneous placement; DPS 4 reaches a 

maximum of 3.32 mg l-1 but is cut for a better resolution of the other 

graphs. 
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reducing conditions. At this locations the reduction of SO4
- already starts above the SWI (e.g. 

DPS 0, 2 & 5). Biochemically it is most likely that the reduced sulfur will be bound to the 

available iron species. As long as oxygen is unavailable in the sediment and especially in the 

hypolimnetic layer above the SWI the sulfur and iron are permanently bound in the sediment 

matrix (Holmer & Storkholm, 2001). The formation of FeS or FeS2 in the sediment becomes 

even more probable since no carbonates are present (van Cappellen & Wang, 1996). The 

permanent accumulation of FeS in the sediment is supported by the fact that no signs of bio-

turbation were observed during core analysis. 
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5.3.3 Synopsis 

Recapitulating the central results of the dialysis pore water sampling and the subsequent 

analysis, the following findings are listed: 

 The developed Dialysis Pore water Sampling – Placing System (DPS-PS) was 

successfully tested in the field. During the two campaigns the handling was significantly 

improved leading to fast and efficient placement of the samplers. 

 As a relevant parameter the equilibration time for the determination of dissolved 

methane in the sediment was successfully investigated and hence further surveys can 

be adapted. 

 Re-diffusion of oxygen was identified as a biasing factor for DPS onboard oxygen 

measurements. Presented results were adjusted and expected concentrations could 

be confirmed. Oxygen is absent in the sediment and at most DPS-sites also above the 

sediment. 

 Basic assumptions regarding the formation conditions of methane were confirmed for 

the investigated sediment volumes in the Capivari Reservoir. 

 The accumulation of iron and sulfur in the sediment was discovered to be a proxy 

parameter for the potential formation of methane. A temporal factor is suggested, since 

higher iron contents in the sediment are related to long-term reducing conditions. 
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5.4 Composed Results 

This chapter aims at the synthesis of some of the findings previously described. In regards of 

the principal questions of this work, the focusing of sediment accumulation in dependence on 

the lake ground inclination and the carbon stock of the Capivari reservoir is calculated. 

Moreover, the relation of organic carbon content and methane concentration in the sediment 

is elucidated. Finally, methane concentrations are related to echo parameters, explaining 

possible coherences between the two data sets.  

5.4.1 Slope Inclination vs. Sediment Thickness 

The distribution of accumulated sediment in the reservoir cannot be ascribed to the presence 

of a single gradient like depth or distance from the inflow. To investigate the focusing of 

sediment on a small scale, one part of the profundal is magnified (Figure 5-51). In the figure, 

only the steeper inclination polygons (code 4 = 20° – 11 = 55°) are visualized, combined with 

isolines representing the sediment thickness. 

 

Figure 5-51: Slope inclination of the profundal area of Capivari reservoir is illustrated and combined with 

sediment thickness isolines. 
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The sediment accumulation follows the shape of the ridges, which are the old banks of the 

Capivari River, this stands in accordance to (Likens, 2009). At some locations, the isolines of 

the sediment thickness overlap with the slope polygons. This can be due to two effects: 1) the 

dimension of the morphologic features is small in relation to the resolution of the map. 

Therefore, the outlines of the polygons do not exactly show the real limits. The same may be 

the case for the interpolated sediment thickness isolines. 2) Volumes of mobilized sediment 

from shallower parts of the reservoir, were detected above the inclined surface on the way to 

the bottom. 

 

However, this map does not give a quantitative measure for the influence of the inclination on 

sedimentation processes, but illustrates the effect of steep slopes within the reservoir. It is 

suggested that the sediment focusing is particularly effective for fine-grained sediments with 

high water contents, since these sediments slowly move along the ground of the reservoir. 

Depressions function as accumulation areas. 

Consequently, if the inclination of the lakebed leads small-scale sediment accumulation, it also 

influences the local methane production. Areas, which collect surrounding sediments, can be 

seen as potential methane production hot spots. 

5.4.2 Carbon Stock Calculation 

One important objective of this work is to improve the precision of the carbon stock estimation 

of a reservoir, as it is closely related to the methane emissions. The developed correlations, 

coherences and interpolations allow to derive the following scheme for an extensive calculation 

of the carbon stock in CR (Figure 5-52).  

The reservoir was divided into ca. 45.000 single polygons, covering an area of 10.5 km², which 

is equivalent to 88 % of the entire surface during maximum water level. The proximal, which 

was to shallow for the echo sounding, and the parts with lacking GPS signal were excluded 

from the calculation.  

The polygons feature the interpolated information about the organic carbon content, the grain 

size distribution and the sediment thickness. The TOC and the grain size distribution were 

averaged over the depth of the sediment. Calculating the average carbon content is important, 

since the first 15 cm of the sediment tend to contain more carbon than the underlying layers 

(data not shown).  

Two correction factors were derived from regression analyses (Appendix A.13) in order to 

calculate the dry sediment mass. Based on the equations developed, the density and water 

content were adapted for each single polygon volume.  



5 – Results and Interpretation 

156 

 

By merging the OC-contents with the corresponding sediment volumes (polygons), the carbon 

stock was calculated. 

The calculated mass of organic carbon for the entire reservoir is 205,129 Mg (± 60.8 Mg). This 

equals an average content of 19.5 kg m-2 (± 5.8 kg m-2) of OC. The deviations of around 30% 

are due to the insecurities enclosed in the correction factor prediction, based on the regression 

models. Variances originally caused by the measurement techniques are not included in the 

calculation of the deviation. 

Figure 5-53 shows the organic carbon content per square meter. The figure illustrates that the 

major stocks are located in the area of the former riverbed and in the profundal in front of the 

dam. In contrast to the distribution of the TC shown in Figure 5-32, chapter 5.2.3.1, the 

sidearms and the proximal feature relatively low stocks. Since, the average sedimentation 

rates and accordingly, the sediment thicknesses are low in these parts, the overall stock is also 

limited. 

Having in mind that large shares of the sediment enter the reservoir via the major inflows, the 

question arises how the carbon stocks in the profundal can develop. 

First, it can be assumed that a large proportion of the settling organic material has an 

autochthonous origin. 

 

Figure 5-52: Flow chart of the carbon stock calculation. 
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This assumption is corroborated by the fact that most of the material found in the profundal is 

smaller than 63 µm. The particles originating from local primary production are prone to build 

up very fine-grained sediment layers. Generally, fine sediments settle relatively slow and 

hence, are exposed to mineralization processes in the water column for a long time. 

To assess the OET of organic matter in the profundal of CR the settling velocity was 

exemplarily calculated, based on Eq.1. The presented standard values from chapter 2.1.2 (𝜌 

density for water ≈ 1000 kg m-3, 𝑔 = 9.81 m s-2), 𝑣 ≈ 1–1.5 10-6m-2 s-1) were used. The diameter 

of the particle was set to 𝐷𝑝  = 30 10-6 m and the density to 20 kg m-3. These values represent 

reasonable average values for organic particles in fresh water bodies (Friedl & Wüest, 2002). 

The OET is the time, which passes until the particle reaches the oxycline in the water body 

(Sobek et al., 2009). The shorter the time, the higher will be the carbon burial efficiency.  

For this calculation it was assumed, that no wind influence occurs during the settling period. 

The resulting settling velocity is 0.845 m d-1, which leads to an OET of around 12 days, if the 

oxycline lies in a depth of 11 m (Figure 5-54). OETs in a range of some days to three month 

will lead to a burial efficiency of 30–40% (Bühler L., 2008). 

 

Figure 5-53: Organic carbon stock in the CR [kg m-2]; results of the IDW interpolation process; the 

maximum interpolation distance of 50 m caused the edges of some shallow areas to stay without value. 
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Even if it is unlikely that the particles in the profundal of Capivari reservoir can settle without 

any external influence (e.g. wind, water level fluctuations), the OET is short compared to other 

water bodies (Bühler L., 2008).  

The orange line from core 17 in Figure 5-54 shows the vertical oxygen distribution after a heavy 

storm event. It can be suggested that storms cause intense mixing of the water body, but yet 

the oxygen concentration close to the lakebed is low (1.4 mg l-1). Consequently, it can be 

assumed that: 1) a fast re-stratification occurs after mixing and 2) the general separation in 

fast- and slow-mineralizing layers is correct (Figure 5-54). 

 

Taking into account, the prevalent absence of oxygen in the hypolimnion of the profundal, the 

elevated carbon burial efficiency can be explained. High BE values consequently lead to the 

formation of increased carbon stocks and therefore to the production of methane. 

  

 

Figure 5-54: Oxygen depth profiles at selected coring sites, the prevalent oxycline 

marks the boundary for fast and slow mineralization of organic matter, core 17 

shows the vertical oxygen distribution after a storm event. 
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5.4.3 Methane Concentration and Sediment Parameter 

In this section the measured methane concentrations in the pore water are set in relation to 

further sediment parameters. Three parameters are exemplarily chosen due to their expected 

direct or indirect connection to methane production in the sediment. As the methane 

concentration was measured only at the DPS sampling locations a profound relation to other 

sediment parameters is necessary to spatially transfer the findings. 

 

In the following the TC distribution in the 

reservoir and also the role of TC in regards 

of bubble occurrence is discussed. To 

prove that the hypotheses, that higher OC 

(here TC) contents lead to elevated 

methane production rates, the maximum 

methane concentration at the sampling 

positions is depicted against the TC 

content (Figure 5-55). The results from 

DPS 2 (core 10) were excluded from the 

correlation. They show significantly lower 

methane concentrations in relation to the 

high TC content. This is explained by the 

local grain size distribution. The results 

from core 10 indicate higher shares of 

coarse material (Figure 5-2), compared to 

the other DPS locations. Based on this data it can be concluded that the permeability for 

methane in this sediment is higher (Sollberger et al., 2014). Consequently, the diffusion from 

the sediment to the water phase is elevated and the possible concentrations in the sediment 

are limited. 

Compared to literature (Sobek et al., 2012; Sollberger et al., 2014), results indicate that the 

CR is no exception. A highly significant positive correlation between the methane concentration 

and the available TC is found (r = 0.98, N = 5, p < 0.01). It has to be kept in mind that the TC 

is equivalent to the OC. Hence, this correlation gives a basis for the detection and definition of 

the most relevant methane producing areas in the CR. Elevated local TC values are suggested 

to cause higher CH4 production and consequently emissions. 

 

Figure 5-55: TC vs. the maximum concentration of methane 

in the pore water; location 10 was discarded as an outlier, 

(r = 0.98, N = 5, p<0.01). 
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In addition, an indirect factor, which is able to describe relevant ambient characteristics of 

methane formation can be derived. The iron content of the sediment also shows a positive 

correlation with the methane concentration in the pore water (r = 0.98, N = 5, p < 0.01) (Figure 

5-56). In this case there is no direct biochemical relation between the two parameters. Iron is 

not consumed or released during the 

formation processes of methane. 

However, the biochemical prerequisites 

for the methane formation imply the 

presence of FeS or FeS2 in the sediment 

(Passier & deLange, 1998). As described 

before, this is especially the case if the 

redox-potential in the upper sediment is 

constantly low (Eh < -200 mV). This 

again is only possible if the hypolimnion 

is oxygen-free for the largest part of the 

year. Therefore, the iron content of the 

sediment is defined as a proxy 

parameter, not only for the pore water 

methane concentration, but additionally 

for the long term reaction conditions at 

the corresponding locations. Taking into 

account the presented depth 

dependence of the iron contents in the 

sediment (chapter 5.1.3; equal 

tendencies for CR and VR) this 

assumption can be transferred to other 

reservoirs as well. 

 

Derived from the density-related results, 

elucidated in chapter 5.1.3 and 5.1.4 a 

conjunction between the bulk density 

and the concentration of methane (gas) 

can be assumed. Consequently, the 

density is depicted over the CH4 

concentration in the pore water (Figure 

5-57). The negative correlation 

 

Figure 5-56: TC vs. the maximum concentration of methane 

in the pore water, r = 0.98, N = 5, p<0.01. 

 

Figure 5-57: Density vs the maximum concentration of 

methane in the pore water; r = -0.78, N = 5, p<0.1 
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illustrates that higher methane concentrations coincide with lower bulk densities of the 

sediment volumes. Due to the fact that two DPS´s were stolen/lost (core location 5 & 8) 

valuable information from sediment with coarser material and higher densities was lost. Hence, 

no ultimate conclusion about the behavior of methane concentration in sediments with elevated 

densities can be drawn. Still these results imply a certain dependence of methane occurrence 

and density changes. 

5.4.4 Methane Concentration and hydro-acoustic Behavior 

To evaluate the relation of methane in the pore water and the hydro-acoustic signature of the 

sediment, relevant parameters are depicted against each other. Since the 200 kHz frequency 

was proven to have a significant potential of detecting sediment features, it is chosen over the 

38 kHz frequency (Figure 5-58). Figure 5-58 shows the set of hydro-acoustic parameters 

explaining the reflectivity of the sediment at the DPS-sampling locations. As the various 

parameters can be assigned to specific parts of the sediment, the reflection patterns can be 

explained. Even if the presented regressions are statistically reduced in significance due to the 

limited number of samples; tendencies can be recognized. 

The attSv1 (E1´) value shows a negative correlation to the concentration of methane (Figure 

5-58, A). Based on the assumption that the primary feature, which changes the hydro-acoustic 

behavior in addition to the granulometry, are bubbles in the sediment matrix (chapter 2.3.3 and 

2.3.5.2), an interrelation can be confirmed. The core samples at the corresponding locations 

contained bubbles, however the bubbles occurred mainly in the deeper layers of the cores 

(lower than 15 cm). If no bubbles are present the main influence for the E1´ value is the 

impedance contrast respectively the direct reflection. More methane (bubbles) can be found in 

softer sediments (higher share of finest fraction) while the backscatter strength of these 

sediment surfaces can be assumed to be weaker, due to low impedance contrasts. 

Thus, a negative relation of the E1´ parameter can be explained by the absence of bubbles 

close to the SWI and by the previously described correlation between wave signatures and 

sediment characteristics (see chapter 4.2.4.1). The E1´ value is relatively sensitive to changes 

of the angle of incidence during the measurement as well as the inhomogeneities of the 

sediment surface. This explains the high standard deviation of the presented mean values. 

 

In contrast, the decSv1 (E1) value has a positive correlation with the occurrence of higher 

methane concentrations, as does the attdecSv1 value which is mainly influenced by the E1 

value (Figure 5-58, B & C). Due to the fact, that both values represent the reflectivity of the 

sediment volume, higher backscatter strengths of the sediment can be explained by the 
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presence of gas bubbles. Larger bubbles and higher numbers per volume occur with more gas 

in the pore water (Sollberger et al., 2014). This causes the reflection and therefore the volume 

related hydro-acoustic parameters to increase (Lyons, 1996; Sager et al., 1998). 

As an example for a relative acoustic parameter the behavior of the decSv1/attdecSv2 is 

examined (Figure 5-58, H). Here a clear negative tendency is given. Based on the fact that 

acoustic turbidity layers (accumulations of bubbles) cause higher reflection intensities, the 

second bottom echo contains more energy. If the intensity of the E1 value is divided by the 

intensity of the entire second echo, it is suggested that higher methane concentrations will 

negatively influence the decSv1/attdecSv2 value. The higher the intensity of the overall 

reflection, the higher will be the intensity of the second echo, causing the ratio between both 

values to be smaller. 

 

The interpretation of the methane concentrations and the hydro-acoustic parameters leads to 

the suggestion that, the presence of gas bubbles and consequently the concentration of 

methane, can be detected by echo sounder applications. One basic restriction is the local 

solubility limit of methane. If concentrations are too low, no bubbles can form and hence no 

acoustic difference can be detected. 
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Figure 5-58: Hydro-acoustic parameters of the 200 kHz freq., configuration B, 100 W vs. the maximum methane concentration in the pore water. 
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5.4.5 Synopsis 

Summarizing the principal findings of the composed results, the following aspects are named, 

Figure 5-59 presents a graphical overview of the results. 

 Steep inclinations of the lakebed influence the distribution of the sediment. They lead 

to intense sediment focusing in the depressions, therefore the shape of the 

accumulation areas follows the morphology of the lakebed. Consequently, the 

morphology gives a first insight into the accumulation patterns and therefore into the 

allocation of potential methane emission hot spots. In further surveys, a detailed 

bathymetric map can already reveal these locations. 

 Based on a set of input parameters, which were calculated in this work, the carbon 

stock in the sediment of Capivari reservoir was calculated. Results show the tendency, 

that higher stocks are found in the profundal. This is due to elevated contents of carbon, 

but mainly the thicker sediment layer contributes to the high amounts of carbon stock 

per m². The reservoir holds an average stock of 19.5 kg m-2 (± 5.8 kg m-2). The oxycline 

in a depth of around 10–14 m causes a relatively short OET for settling particles in the 

profundal. This leads to an elevated carbon burial efficiency, and hence creates 

potential methane production hot spots. 

 Iron and TC have been shown to feature a strong positive correlation with the methane 

concentration, whereas the density is negatively correlated. TC and density are directly 

related to the methane production or the presence of bubbles. This matches general 

findings, since carbon is the basic substrate for the methanogenesis and the presence 

of bubbles strongly influences the bulk density. 

Based on the assumption that iron is only accumulated in the sediment if the redox-

potentials in and above the sediment are permanently low, it can be suggested that 

areas with high iron contents and elevated methane concentrations permanently 

produce methane. 

 If bubbles are present in the sediment, it is possible to distinct these sediment volumes 

from sediments without bubbles. The hydro-acoustic parameters from the 200 kHz 

frequency show significant correlations with the maximum methane concentration in 

the pore water. While the E1´parameter is sensitive to the occurrence of bubbles in the 
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upper part of the sediment (0–10 cm), the E1 and related parameters are able to identify 

the presence of bubbles in the lower sediment volumes (10–50 cm). 
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Figure 5-59: Overview of derived characteristics of the determined reservoir zones in Capivari reservoir. 
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6 Discussion 

This study examines the possibility to detect and understand spatial and temporal 

heterogeneities of methane production, by combining sediment analyses with hydro-acoustic 

approaches. To what extend is it possible to localize sediment types with intense methane 

production? 

 

Hydro-acoustic investigations showed that, parameters obtained with various settings of the 

echo sounder, lead to significant correlations with sediment properties (Anderson & Pacheco, 

2011; Anderson et al., 2013). The selected configurations allowed to transfer local sediment 

features into the area of the entire reservoir, by using echo sounder data from the driven lines 

(Freitas et al., 2008; Anderson et al., 2013). Created maps of various sediment features are in 

accordance to general distribution patterns (Gilbert, 2003). However, the detailed 

investigations indicated that the morphometric influence of the reservoir produces distinctive 

areas of sediment accumulation (Annandale, 2007), organic carbon burial and hence methane 

production. These areas were successfully identified. 

 

Consequently, the hydro-acoustic survey can be used as a tool to create a measurement plan 

for GHG emissions and also to reduce the number of necessary measurements for an 

adequate emission estimation. Additionally, it can help to interpret the emission measurement 

results from different areas by putting them in relation to the prevalent sediment types and their 

methane production potential. 

 

Besides the morphometric influence on sedimentation (Likens, 2010, 478-480), the oxygen 

exposure time could be determined to have a strong influence on the carbon burial efficiency, 

this is in accordance with the literature (Heyer & Kalff, 1998; Kirstensen, 2000; Sobek et al., 

2009; Sobek et al., 2012). Therefore, the localization of the oxycline and the water depth at 

corresponding locations were identified to have a major influence on local methane production. 

 

Furthermore, iron and sulfur contents in the sediment were found to be related to the temporal 

heterogeneity of methane production. Kuivila et al. (1989), Holmer & Storkholm (2001) and 

Roden & Wetzel (2003) described the connection of iron, sulfur and methane production, but 

the enrichment of FeS/FeS2 in a temporal context was not yet assessed. The described fixation 

of iron and sulfur in dependence on the prevalent redox conditions was described by 

Passier & deLange (1998). Consequently, the suggestion, that more iron and sulfur is bound 
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in the sediment if the necessary conditions are met for a long time, seems correct. 

Passier & deLange (1998) additionally stated, that more iron and sulfur is bound if elevated 

contents of organic carbon are present. This confirms the increased iron and sulfur values 

found in the sediments of the profundal, since local carbon values were high as well. 

 

The developed placement system for dialysis pore water samplers (DPS-PS) was successfully 

tested and produced verified results, while reducing the overall efforts to a minimum compared 

to previous studies (Teasdale et al., 1995; Adams & Baudo, 2001). 

 

The applied techniques allowed to create a detailed map of the carbon content in the sediment, 

which in combination with the obtained sediment thickness led to a precise estimation of the 

carbon stock of the entire reservoir.  

In partial contradiction to the literature (Morris & Fan, 1998, 10.3) the findings show that no 

continuous gradient in the accumulation of sediments from the inflow to the dam was present 

nor could one presented pattern be identified (chapter 2.1.2). The accumulation pattern found 

in Capivari reservoir resembles more a mixture between the wedge and delta shape. This can 

be attributed to the complex shape of the impoundment. 

 

Recently, sediment investigations have shown that especially the depressions like canyons 

tend to be methane production hotspots (Sollberger et al., 2014). The results of this work 

support and augment these findings, by showing that the old riverbed is a distinct accumulation 

region of fine organic-rich sediments and consequently of methane production. Plateau 

formations were found to accumulate less sediment with lower contents of organic carbon and 

thus, are areas of low potential methane production. They can be seen as transportation 

bottoms in accordance to Morris & Fan (1998, 10.3). 

 

Furthermore, the dependence of ebullition events on hydrostatic pressure (Scandella et al., 

2011; Maeck et al., 2014) could be substantiated by findings during the conducted surveys. 

During phases of rising water levels and increasing hydrostatic pressure no bubble events 

could be observed even though intense ebullition was perceived at the same positions under 

decreasing pressure. 

 

The overall efficiency of the bubble detection within this study must be critically regarded. 

Although the data analysis did not show a direct dependency between depth and bubble 

detections, un-proportional low numbers of bubbles have been detected in the shallow areas. 

In spite of the findings from Ostrovsky (2003) which show comparable patterns of bubble 
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distribution since more bubbles could be detected in deeper regions, at least in some sidearms 

higher bubble-counts were expected. This assumption is based on the visual recognition of 

bubbles reaching the surface.  

A possible explanation is given in the relatively low ping rate during parts of the driven survey. 

Due to unclear reasons the transducer was not able to maintain the set ping rate of 5 pings s-

1 during the entire survey. Lower ping rates complicate the detection of bubbles, since less 

echoes can be received during the ascent of each single bubble. This deteriorates the bubble 

detection particularly in shallow areas, due to shorter distance from the origin of the bubble 

(sediment) to the transducer. 

 

An additional point which can be critically discussed, is the detection of the sediment thickness. 

As described in this study, the detectability of the thickness strongly depends on the sediment 

properties and the impinging frequency. Anderson et al. (2013) postulate a method for the 

determination of the sediment depth which is similar to the approach presented in this work. 

The major difference is the acoustic definition of the lower sediment boundary. Anderson et al. 

take the back edge of the 38 kHz bottom echo (independent from the dB-value) as the lower 

boundary. In contrast to this, the last and strongest peak of each single echo was used in their 

study.  

Based on the physical background, defined by the British Standard 6349-5:1991 (1991) and 

modeled by Williams et al. (2002), the penetration depth of the 38 kHz frequency is limited. 

Due to the fact that an attenuation of 4–12 dB m-1-sediment can be implied for the 38 kHz 

frequency (Williams et al., 2002) it seems unlikely to obtain acoustic values from a depth of 

more than 5–6 m, even if the sediment has a high water saturation and is mostly 

unconsolidated (Jakubauskas & deNoyelles, 2008). Consequently, the sediment thickness of 

15 m calculated by Anderson et al. (2013) appears physically difficult. In this context, the 

thickness values from this study represent a realistic and scientific correct range. No 

discrepancies were observed, by comparing the static and dynamic thickness results. 

Consequently, the results are not biased by the boat movement. 

 

Besides the physical aspects of the sediment thickness determination the calculated 

magnitudes can be set in relation to literature values. Mulholland & Elwood (1982) published 

a summary of the accumulation rates of reservoirs around the world. For tropical reservoirs (in 

this case from Asia) an accumulation rate of 0.8–22 cm a-1 is stated. According to the reservoir 

age of 44 years a sediment layer of 3.5–9.6 m could be expected. Taking into account that the 

reservoir has been emptied entirely for three times since construction (COPEL), which causes 

a loss of sediment, the upper values from 1.5 – 3 m calculated in this study seem reasonable. 
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Finally, the stated zonation of the reservoir is discussed in terms of methane emissions. Figure 

6-1 combines the interpolated carbon stock and the detected bubbles from this work with 

results from ebullition flux measurements conducted by Kan et al. (2013). For the flux 

measurements funnels, as described in chapter 2.2.4, were used.  

At first, the ebullition flux measurements do not seem to support the bubble detection resutls, 

since highest fluxes were measured where small numbers of bubbles were detected and vice 

versa. Due to the explained limitations of the hydro-acoustic bubble detection in shallow areas, 

the high fluxes in the sidearms do not oppose the findings of this work. They are rather 

supported, since the interpolated carbon contents of the sediment in the sidearms was high 

(Figure 5-32). 

Even though some bubbles were present in the central parts of the reservoir, the low fluxes 

from the funnel measurements agree with the stated theory, that the middle part does not emit 

significant amounts of methane. This stands in accordance to the low total carbon values 

measured in the sediment of the central reservoir.  

The contradictive results in the profundal close to the dam can only be explained by the 

temporal heterogeneity of ebullition events. Due to the fact that no flux measurement was 

 

Figure 6-1: Carbon stock distribution in the Capivari reservoir, including detected bubbles in the water 

column; the blue circles represent averaged results from funnel measurements by Kan et al. (2013). 
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conducted directly in the proximal, no suggestion can be made in order to discuss the 

suggested elevated emissions from this part of the reservoir. 
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7 Outlook 

After the discussion of the recent findings, this chapter presents opportunities for further 

research subsequent to this work.  

The use of additional echo sounder frequencies could substantially facilitate the interpretation 

of the hydro-acoustic data. In these regards a lower frequency (15 kHz) would allow an 

improved detection of the sediment thickness, since it is less attenuated within the sediment 

volume, and can therefore penetrate the sediment deeper. One promising option is the 

parametric sonar technology. It would offer the advantages of an exceedingly narrow beam 

due to the parametric difference frequency, which produces virtually no side lobes, and can be 

transmitted from a physically small transducer. It combines high resolution imaging with good 

penetration depth (Wunderlich & Muller, 2003). It is assumed that the high resolution would 

lead to improved bubble detection in the sediment and more efficient SBC. 

 

As an experimental approach for the bubble detection, the echo sounder could be horizontally 

arranged at the side of the boat. This arrangement features the advantage, that a large area 

next to the boat could be scanned for rising bubbles. However, this approach has not been 

tested yet. 

 

Furthermore, the application of percussion corers with elongated tubes offers the possibility to 

obtain sediment cores of more than two meters length. This would substantially support the 

interpretation of long-term sedimentation processes. It would also allow to determine the exact 

magnitude of the methane-active layer. For a better assessment of the sediment 

heterogeneity, the utilization of a triple-corer (three cores are taken at the same time with 1 m 

distance) represents an additional option. 

 

The aim of this work was to investigate the structures and characteristics of the entire reservoir. 

Consequently, a more detailed sampling campaign could enhance the understanding of the 

defined zones of the reservoir. Most promising would it be, to measure along designated 

transects, which cover a range from the drawdown area to the profundal, but are situated within 

one zone. In this perspective, the deployment of DPS´s along this transect could help to 

understand the methane related processes in relation to the depth and in particular in regards 

of the position of the oxycline. 
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Appendix 

A.1 Photos of the core samples 

 

Figure A1- 1: Photos of the core samples from Capivari reservoir plotted over sediment depth, part 1 

 

 

Figure A1- 2: Photos of the core samples from Capivari reservoir plotted over sediment depth, part 2 
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Figure A1- 3: Photos of the core samples from Capivari reservoir plotted over sediment depth, part 3 
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Figure A1- 4: Photos of the core samples from Vossoroca reservoir plotted over sediment depth 

  

Core 1

0

10

20

30

40

50

60

Core 2

Depth
[cm]

Core 3 Core 4 Core 5 Core 6

0

10

20

30

40

50

60

Depth
[cm]

Core 7 Core 8 Core 9 Core 10



Appendix 

187 

 

A.2 Beam lobes of EA 400 echo sounder 

 

Figure A2 - 1: Beam Pattern 200 kHz (both directions) 

 

 

Figure A2 - 2: Beam Pattern 38 kHz longitudinal 

  



Appendix 

188 

 

 

Figure A2 - 3: Beam Pattern 38 kHz transversal 

 

A.3 The standard Sonar5 pro GPS import format 

Table A3- 1: Table showing the GPS-data import format for Sonar5 pro 

;date time Longitude Latitude 

1.12.2012 12:54:13.54 -48.8675498 -25.142525 
1.12.2012 12:54:13.91 -48.8675503 -25.1425293 
1.12.2012 12:54:14.28 -48.8675508 -25.1425337 
1.12.2012 12:54:14.66 -48.8675513 -25.1425379 
… … … … 

Data is imported as *.txt files 
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A.4 Temperature and conductivity depth profiles 

 

Figure A4- 1: Conductivity depth profiles measured in Capivari reservoir during campaign two in phase two 

 

 

Figure A4- 2: Temperature depth profiles measured in Capivari reservoir during campaign two in phase two 
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A.5 Calibration standards for the ion and gas chromatography 

Table A5- 1: Concentrations of the calibration standards for ion chromatography 

Analyte Fluoride Chloride Bromide Nitrite Nitrate Phosphate Sulfate 

Co
nc

en
tr

at
io

n 
[m

g/
l] 

0,1 0,1 0,1 0,1 0,1  0,1 

0,2 0,25 0,25 0,25 0,2  0,2 

0,58 0,5 0,5 0,5 0,5 0,5 0,5 

1 1 1 1 1 1 1 

 2,9 2,9 2,9 2,9  2,9 

2 5 5 5 5 5,8 5 

10 10 10 10 10 10 10 

 

Table A5- 2: Composition and concentrations of the calibration standards for gas chromatography 

Analyte Nitrious 
 oxide 

Methane Carbon 
 dioxide 

Oxygen Nitrogen Standard 
Nr. 

Co
nc

en
tr

at
io

n 
 

0,294 ppm         1 

0,504 ppm         2 

1,000 ppm         3 

10,660 ppm 48,800 ppm 98,840 ppm     4 

40,800 ppm 103,000 ppm 200,100 ppm     5 

600,100 ppm   818,100 ppm     6 

  1210,000 ppm 1590,000 ppm     7 

      20% 80% 8 

  59,82% 30,15%     9 
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A.6 Calculation for dissolved gases in water samples using 

headspace gas chromatography  

Collection and order of calculations after Hölzlwimmer (2013): 

Calculation of diffusion coefficients Ds [m2 × s-1] in sediments 

(Iversen & Jørgensen, 1993): 

 

 
𝐷𝑠 =

𝐷0

1 + 𝑛(1 − 𝛷)
 Eq. A6- 1 

 

with D0 [m2 × s-1] as diffusion coefficient in free water, n [-] as a factor describing the type of 

sediment and Φ [-] representing the porosity of the sediment. 

Values of 

n = 3 for clay-silt sediments 

n = 2 for sandy sediments  

gave reasonable estimates for Ds 

If D0 is given in temperatures different than in-situ conditions it can be recalculated by Stokes-

Einstein relation: 

 

 𝐷1𝜂1

𝑇1

=
𝐷2𝜂2

𝑇2

 Eq. A6- 2 

 

with η [N s m-2] the viscosity and T [K] the absolute temperature. 

 

According to Henry`s law, gases in the aqueous phase will equilibrate in the headspace and 

aqueous phase if headspace is given. Then the total concentration (Conc.tot) [g l-1] of gas in 

the original aqueous phase is the concentration in the headspace that was originally in the 

liquid phase but was partitioned into the gas phase (CGH) [g l-1], plus the concentration in the 

aqueous phase (CGA) [g l-1]: 

 

 𝐶𝑜𝑛𝑐𝑡𝑜𝑡 = 𝐶𝐺𝐻 + 𝐶𝐺𝐴 Eq. A6- 3 

 

The concentration in the aqueous phase (CGA) is calculated as follows: 

 

 𝐶𝐺𝐴 =
𝑛𝑊

𝑉𝑊
×

𝑝𝑔

𝐻
× 𝑀 Eq. A6- 4 
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with nw/Vw [mole l-1] as the molar concentration of water being 55.5 mole l-1, pg [atm] as the 

partial pressure of the gas, H [atm] as the Henry coefficient and M [g mole-1] as the molar 

weight. 

pg calculated as: 

 𝑝𝑔 = 𝐶𝐺 × 𝑝𝑇 Eq. A6- 5 

 

with CG [%] as the gas volumetric concentration in the headspace and pT as the atmospheric 

pressure assumed to be equal to 1 atmosphere. 

 

The concentration in the gas phase (CGH), which was previously in the liquid phase and then 

transfered into the gas phase is calculated as follows: 

 

 
𝐶𝐺𝐻 =

𝑉𝐻

𝑉𝐿
× 𝐶𝐺 × 𝜌 Eq. A6- 6 

 

with VH [l] as the headspace volume, VL [l] as the liquid volume and CG as above multiplied 

with the gas density [g l-1], which is calculated at standard temperature as follows: 

 

 
𝜌 =

𝑀

𝑉𝑚0
×

273.15 °𝐾

273.15 °𝐾 + 𝑇
 Eq. A6- 7 

 

with M as above, Vm0 [l/mole] as molar volume of ideal gases and T [°C] as the sample 

temperature. 

Henry's coefficients (kh) in [M atm-1] converted to sample temperature by van't Hoff equation: 
 

 
𝑘𝐻 = 𝑘𝐻0 × 𝑒𝑥𝑝 [𝐶 × (

1

𝑇
−

1

𝑇0
)] Eq. A6- 8 

 

with C as a constant [°K] and T and T0 as sample temperature respectively standard 

temperature. 

kh [M atm-1] values were then converted into H [atm] by knowing the product of kh and H being 

constantly 55.3. 

 

 

 

 
𝐻 =

55.3

𝑘𝐻

 
Eq. A6- 9 
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Correcting concentrations of samples for additional volumes (mixing rule): 

 

Result obtained from the gas chromatography and the results of ion chromatography had finally 

to be corrected by the volume of preserving agent contained in the vial by following equation: 

 

 
𝐶𝑂𝑆 =

𝐶𝑀 × 𝑉𝑀 − 𝐶𝐴 × 𝑉𝐴

𝑉𝑂𝑆

 Eq. A6- 10 

 

with COS [g/l] as the concentration in the original sample, Cm and CA as the concentrations in 

the mixture, respectively in the additional volume and Vm, VA and VOS [l] as the volume of the 

mixture, the additional volume and the original sample. 

 

A.7 Calculation of the water quality index 

Table A7- 1: Calculation table for the water quality index after OECD criteria 

 

 

Criteria Index (Ind.) Data 
Capivari 

Result Ind. Weighting 
factor Wf 

Result: 

Ind.*Wf 

Chlorophyll-a (CHL), 
[μg l-1] 

0.0560 + 0.856* ln(Chlα) 4.51  1.35 10 13.45 

Secchi-depth (SD) [m] 3.739-1.127* ln(SD) 2.064 2.92 8 23.8 

Total phosphorus 
spring (PSP),  
[μg l-1] 

-0.155+0.813* ln(PSP) 16.00 2.1 5 10.45 

Total phosphorus 
summer (PS),  
[μg l-1] 

-0.939+1.066* ln(PS) 12.50 1.75 7 12.27 

Sum Σ   1.99 30 59.60 

   Index = (Result)/Σ Wf = 1.99 
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A.8 Sediment analysis results 

Table A8- 1: Overview table of the sediment analysis parameter from Capivari reservoir 

Core # Depth 
[m] 

Rel. 
Depth 

[%] 

LOI 
[%] 

Total 
Carbon 

[%] 

Density 
[g cm-3] 

Proportion of particles [%] Fe [g kg-

1] 
Sulphur 

[%] 
Phosphor 
[mg kg-1] 

Mn 
[mg kg-1] 

      <63µm <250µm 
>63µm 

<500µm 
>250µm 

<2mm 
>500µm 

>2mm     

               

1 32.5 100 16.1 2.7 1.21 99.3 16 1.5 0.2 0.2 82.1 0.07 1777 1095 

2 31 95.3 15.7 3 1.14 81 15.2 0.1 0 0.1 85.4 0.09 1610 1545 

3 17.5 53.8 15.1 2.2 1.16 99.3 1.2 0.3 0.4 1.3 82.1 0.03 1519 777 

4 25.4 78.1 16 2.4 1.23 99.6 0.3 0 0.4 1 86.2 0.08 1730 903 

5 2.7 8.3 11.4 3.1 1.43 38.8 34.6 12.9 5.4 1 61.5 0.05 1022 320 

6 4.3 13.1 15.2 4.3 1.18 51.5 43.2 2.4 0.9 2.1 57.5 0.04 1623 720 

7 24.4 75.1 15 2.3 1.17 98.5 3.6 0.2 0 0 79.8 0.08 1697 798 

8 4.3 13.2 13.6 3.6 1.22 78.9 20.5 0.4 0.2 0.1 55.6 0.03 1261 472 

9 11.5 35.3 12.2 2.8 1.36 58.9 32.3 5.7 2.1 1 70.4 0.03 1323 544 

10 12.3 37.8 13.8 2.3 1.22 78.9 12.5 6.6 6.8 0.5 63.2 0.02 1261 479 

11 7 21.5 11.3 1.6 1.31 95.3 1.2 0.6 0 0 68.3 0.02 1396 390 

12 14.2 43.7 13.4 2.8 1.18 88.7 8.4 1.6 0.9 0 65.6 0.03 1423 670 

13 6.3 19.4 14 2.3 1.25 97.2 2.7 0.1 0 0 65.1 0.03 1057 336 

14 7.7 23.7 11.9 2.5 1.32 92.7 6.8 0.3 0.2 0 57.1 0.03 1052 564 

15 16.6 51.1 12.4 1.9 1.27 93.9 4.6 0.7 0.7 0 77.1 0.03 1837 875 

16 12 36.9 15.3 3.6 1.23 94.4 5.4 0.2 0.1 0 64.7 0.04 1471 650 

17 19.4 59.7 13.8 2.3 1.19 99.9 0 0 0 0 75.2 0.06 1878 551 

18 14.4 44.3 13.9 2.7 1.4 79.9 25 12.2 5.9 1.2 63.7 0.02 1161 554 
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Table A8- 2: Overview table of the sediment analysis parameter from core samples from Vossoroca reservoir 

Core #  Depth 
[m] 

Rel. 
Depth 

[%] 

LOI [%] Total 
Carbon 

[%] 

Density 
[g cm-3] 

Proportion of particles [%] Fe [g kg-

1] 
Sulphur 

[%] 
Phosphor 
[mg kg-1] 

Mn 
[mg kg-1] 

       <63µm <250µm 
>63µm 

<500µm 
>250µm 

<2mm 
>500µm 

>2mm     

                

1 Core 4.7 27.6 10.3 3.5 1.4 35.9 26.7 10.8 8 0.7 29.1 0.01 533 230 

2 Core 12.6 74.1 16.7 3.6 1.1 99.6 0.3 0.1 0 0 57.3 0.07 1179 335 

3 Core 12.3 72.4 15 3.2 1.1 99.5 0.1 0 0 0 68.3 0.04 1273 341 

4 Core 11.4 67.1 13.4 2.9 1.1 95.2 0.1 0 0 0 48.3 0.03 1038 348 

5 Core 2 11.8 5.4 1.1 1.6 40.8 9.2 19 26.5 4.6 21.6 0.02 225 316 

6 Core 9.9 58.2 14.7 3.6 1.1 98.2 1.9 0.2 0 0 56.1 0.03 1233 413 

7 Core 3.4 20 8.2 1.1 1.6 57.2 10.8 16.5 12.2 3.3 48.1 0 713 263 

8 Core 9.1 53.5 16 4.2 1.1 63.9 3.9 0.2 0 0 47.8 0.02 1344 488 

9 Core 5.3 31.2 18.7 6.5 1.1 71.4 20.7 5.1 1.3 1.6 47.7 0.03 1173 488 

10 Core 15.7 92.4 17.3 4.3 1.1 99.7 0.2 0 0 0 49.7 0.13 1050 382 
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Table A8- 3: Overview table of the sediment analysis parameter from grab samples from Vossoroca reservoir 

Core #  Depth 
[m] 

Rel. 
Depth 

[%] 

LOI [%] Total 
Carbon 

[%] 

Density 
[g cm-3] 

Proportion of particles [%] Fe [g kg-

1] 
Sulphur 

[%] 
Phosphor 
[mg kg-1] 

Mn 
[mg kg-1] 

       <63µm <250µm 
>63µm 

<500µm 
>250µm 

<2mm 
>500µm 

>2mm     

1 Grab 7.5 44.1 4.2 0.6  42.7 11.3 23 8 15 35.8 0.01 576 411 
2 Grab 7.5 44.1 13.5 2.7  95.5 4.3 0.2 0 0 46.4 0.02 941 424 
3 Grab 7.2 42.4 14.7 3.6  97.6 2.2 0.2 0 0 37.3 0.02 825 341 
4 Grab 15.5 91.2 16.2 3.7  99.2 0.7 0.1 0 0 45.5 0.1 1064 352 
5 Grab 10 58.8 9 2.2  41.4 17.7 26.8 13.4 0.7 36 0.02 547 378 
6 Grab 4.9 28.8 11.4 4.3  43.2 21.2 24.6 9.5 1.5 21.2 0.02 560 418 
7 Grab 14.1 82.9 15.1 3.1  98.9 0.8 0.4 0 0 49.7 0.08 1167 376 
8 Grab 12.8 75.3 16.3 3.6  99 0.8 0.2 0 0 66.3 0.08 1309 375 
9 Grab 5.9 34.7 2.9 0.4  29.8 6.1 15.6 42.5 6 11.4 0 232 204 

10 Grab 12.3 72.1 15.7 3.1  99.6 0.3 0.1 0 0 50.7 0.04 1088 329 
11 Grab 8 47.1 8.5 2.8  31.1 11.7 16.2 36 5 30.1 0.02 339 245 
12 Grab 6.8 40 11.9 2.4  42.7 11.4 16.7 27.5 1.7 51.7 0.03 713 345 
15 Grab 6.5 38.2 3.4 0.7  15.6 12.9 36.8 31.2 3.6 23.4 0.01 332 334 
16 Grab 7.5 44.1 6.5 1.3  59.6 24.9 5.9 5.4 4.3 33.3 0.02 352 310 
17 Grab   14.6 3  95.5 2.6 2 0 0 40 0.03 906 288 
18 Grab 12 70.6 14.9 3.1  99.5 0.4 0 0 0 38.7 0.03 747 273 
19 Grab 12.2 71.8 11.9 2.5  83.3 15.5 0.7 0.6 0 46.7 0.03 882 402 
20 Grab 11.2 65.9 14.5 3.2  99.4 0.5 0.1 0 0 44.1 0.02 941 363 
21 Grab 9.5 55.9 14.7 3.3  99.2 0.8 0 0 0 38.2 0.03 755 289 
22 Grab 9 52.9 14.3 2.9  99.3 0.7 0 0 0 46.8 0.02 955 328 
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A.10 Water level and air pressure data 

 

Figure A10- 1: Water level and air pressure changes depicted over the time of measurement campaign two, 

phase two (12.03.–17.03.2013) 
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A.11 Technical sheet of the DPS 

Table A11- 1: Technical specifics of DPS-generation I; after Gauger (2013) 

Total Length 700mm 

Total Width 107mm 

Total Depth 51mm 

Body Length 600mm 

Body Width 107mm 

Body Depth 40mm 

Total Weight 2,68 kg 

# Chambers 15 

Chamber Heigth 34mm 

Chamber Width 94mm 

Chamber Depth 40mm 

Single Chamber Volume 127,8 ml 

Mesh Type used (ISO 9044) Woven Wire Cloth, Plain Screen, Type A 

Aperture Square 

Wire Dia d 0,16 mm 

Aperture Width w 0,25 mm 

Open Screening Area A0 37 % 

Window Size A (both Sides) 6392 mmE2 

Sample Interval I 40 mm 

Nominal Design Factor F 20 (mm) 

Effective Design Factor Feff 54 (mm) 
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Table A11- 2: Technical specifics of DPS-generation II; after Hölzlwimmer (2013) 

Total Length 690mm 

Total Width 104mm 

Total Depth 45mm 

Body Length 605mm 

Body Width 104mm 

Total Weight 1,63 kg 

Body Depth 45mm 

# Chambers 15 

Chamber Heigth 34mm 

Chamber Width 94mm 

Chamber Depth 40mm 

Single Chamber Volume 127,8 ml 

Perforated plate Type (DIN/ISO 24041) “Rv 2-3,5”; Staggered round holes 

Individual Hole Diameter 2mm 

Hole center Distance 3,5mm 

Thickness 1 mm 

Relative open hole Area 30% 

Window Size A (both Sides) 6392 mmE2 

Sample Interval I 40 mm 

Nominal Design Factor F 20 (mm) 

Effective Design Factor Feff 66,6 (mm) 
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A.12 Depth profiles of various analytes in the DPS 

 

Figure A12- 1: Depth profiles of various analytes in DPS 1 

 

Figure A12- 2: Depth profiles of various analytes in DPS 2 
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Figure A12- 3: Depth profiles of various analytes in DPS 3 

 

 

Figure A12- 4: Depth profiles of various analytes in DPS 4 
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Figure A12- 5: Depth profiles of various analytes in DPS 5 

 

 

Figure A12- 6: Depth profiles of various analytes in DPS 7 
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A.13 Regression analysis of the sediment density correction 

factors 

 

Figure A13- 2: Linear regression analysis for the estimation of the density in 

relation to the share of fine material; N=16; p<0.01 

 

Figure A13- 1: Regression analysis of the weight loss trough 105 °C drying 

plotted over the proportion of particles, N=16; p<0.01 
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A.14 Model results for the proportion of particles in the 

sediment 

 

Figure A14- 1: Comparison of the measured and modelled results of the particle proportion at 18 coring sites in 

Capivari reservoir 


