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Abstract

Data assimilation systems allow for estimating surface fluxes of greenhouse gases from
atmospheric concentration measurements. Good knowledge about fluxes is essential
to understand how climate change affects ecosystems and to characterize feedback
mechanisms. Based on assimilation of more than one year of atmospheric in-situ con-5

centration measurements, we compare the performance of two established data assim-
ilation models, CarbonTracker and TM5-4DVar, for CO2 flux estimation. CarbonTracker
uses an Ensemble Kalman Filter method to optimize fluxes on ecoregions. TM5-4DVar
employs a 4-D variational method and optimizes fluxes on a 6◦ ×4◦ longitude/latitude
grid. Harmonizing the input data allows analyzing the strengths and weaknesses of10

the two approaches by direct comparison of the modelled concentrations and the es-
timated fluxes. We further assess the sensitivity of the two approaches to the density
of observations and operational parameters such as temporal and spatial correlation
lengths.

Our results show that both models provide optimized CO2 concentration fields of sim-15

ilar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentra-
tions, since its 5-week assimilation window does not allow for adjusting the far-away
surface fluxes in response to the detected concentration mismatch. Flux estimates by
CarbonTracker and TM5-4DVar are consistent and robust for regions with good obser-
vation coverage, regions with low observation coverage reveal significant differences.20

In South America, the fluxes estimated by TM5-4DVar suffer from limited representa-
tiveness of the few observations. For the North American continent, mimicking the his-
torical increase of measurement network density shows improving agreement between
CarbonTracker and TM5-4DVar flux estimates for increasing observation density.
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1 Introduction

Sources and sinks of atmospheric carbon dioxide (CO2) largely control future climate
change (Schimel, 2007). Anthropogenic emissions release roughly 10 Gt carbon into
the atmosphere per year (Peters et al., 2013), part of which gets taken up by the bio-
sphere and the oceans. The fraction of emitted CO2 which remains in the atmosphere5

is the largest driver of climate change (Stocker et al., 2013, chapter 8.5.1), but the
distribution and strength of carbon sources and sinks on the surface is hard to mea-
sure directly. Methods for observing the fluxes directly require either eddy covariance
measurements at multiple height levels (Foken et al., 2012) or measurements of con-
centration changes in a sealed volume of air. But such bottom-up approaches are only10

representative for a given collection of vegetation types in a limited geographic area.
Inverse modelling therefore uses CO2 concentration gradients observed in the

Earth’s atmosphere to quantify the spatio-temporal distribution of the net CO2 sur-
face fluxes (e.g. Enting, 2000; Peters et al., 2007; Chevallier et al., 2010; Feng et al.,
2011; Peylin et al., 2013). To this end, various data assimilation (DA) techniques have15

been developed. These DA approaches differ in four main characteristics: first, they
ingest different observational constraints, for example in-situ concentration measure-
ments at different sites. Second, they represent sources and sinks of carbon differently,
for example by binning them by by vegetation type or on a latitude/longitude grid. Third,
they relate sources and sinks to observed atmospheric abundances using different air-20

mass transport models. And fourth, they use different inverse methods that find the
best estimate of the source-sink distribution using the transport model, the observa-
tional constraints, the representation of sources and sinks and a prior estimate of the
sources and sinks.

There are two main classes of assimilation techniques for complex inversions, vari-25

ational methods and ensemble methods (Lahoz et al., 2007; Lahoz and Schneider,
2014). Both approaches are approximate variants of the general Bayesian optimal es-
timation scheme (e.g. Rodgers, 2000) which aims at balancing prior or background in-
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formation with actual measurement information to derive robust parameter estimates.
Approximations are necessary to render the inverse problem computationally feasible
since real-world CO2 surface flux inversions typically involve thousands of concentra-
tion measurements and millions of unknown flux parameters. Both schemes can either
treat the entire considered assimilation period at once or divide it into shorter peri-5

ods to be treated sequentially. Ensemble methods approximate the exact solution from
an ensemble of model runs, while variational methods approach the optimal solution
step-by-step (e.g. Juhász and Bölöni, 2007; Gilbert and Lemaréchal, 1989).

The performance of ensemble methods and variational methods has been evaluated
previously for numerical weather prediction (e.g. Kalnay, 2005; Fairbairn et al., 2013)10

and direct optimization of atmospheric gas abundances (Skachko et al., 2014). Chat-
terjee and Michalak (2013) are the first to evaluate the performance of the two methods
for the purpose of CO2 surface flux estimation. They use a synthetic setup with sim-
ulated observations and a 1-dimensional transport model which has the advantage of
knowing the true fluxes and for which a direct Bayesian inversion is computationally15

feasible. In particular they find that under constraints on model runtime and resource
use, the estimated surface fluxes are more realistic with their variational implemen-
tation than with their ensemble method, and that for both models small-scale fluxes
(flux aggregation spanning up to 5 % of the model size) are very sensitive to the data
coverage and distribution.20

Here, we focus on evaluating the performance of an ensemble method and a vari-
ational method used for real atmospheric CO2 flux inversion problems. We focus on
a case study for the period from 2009 to 2010, and use observational constraints col-
lected by an in-situ measurement network and compiled by the NOAA Environmental
Sciences Division, Oak Ridge National Laboratory (2013, exact version: obspack PRO-25

TOTYPE v1.0.2 2013-01-28). Our ensemble method is the Ensemble Square Root Fil-
ter (EnSRF, Whitaker and Hamill, 2002) as employed by the CarbonTracker modelling
system (Peters et al., 2007), a variant of the Ensemble Kalman Filter. The variational
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method is the TM5-4DVar package described by Meirink et al. (2008) and Basu et al.
(2013).

Beside the mathematical treatment of the inversion, CarbonTracker and TM5-4DVar
differ in the design of the state vector. CarbonTracker optimizes fluxes binned by re-
gions with similar vegetation – like cropland or boreal forest – and separated by ge-5

ographic regions following the transcom basemap (Gurney et al., 2000). TM5-4DVar
adjusts the fluxes on a grid (6◦ ×4◦ longitude× latitude) with correlations which decay
exponentially in time and space.

Both models are used in a number of studies. CarbonTracker studies include es-
timates of global CO2 fluxes (Peters et al., 2007, 2010), European fluxes (Meesters10

et al., 2012), Asian fluxes (Zhang et al., 2014) as well as 13C isotope studies (van der
Velde et al., 2014). Studies with TM5-4DVar include CO2 flux estimation (Basu et al.,
2013), CO estimation (Hooghiemstra et al., 2011) and CH4 emission estimates (Meirink
et al., 2008; Bergamaschi et al., 2010; Houweling et al., 2014). Additionally both mod-
els were employed in several multi-model comparison studies (e.g. Gurney et al., 2004;15

Schulze et al., 2009; Peylin et al., 2013; Thompson et al., 2014).
Our goal is to evaluate the impact of the inverse method (including the flux represen-

tation) on the accuracy of the estimated surface fluxes. Therefore, we must make sure
that the other components of the DA systems – the observations to be assimilated, the
transport model and the prior assumptions – are the same. After a short summary of20

the general CarbonTracker and TM5-4DVar methodology in Sect. 2, Sect. 3 describes
how we harmonize these other components of the two DA systems, mostly focusing on
the observation input and the prior assumptions, since CarbonTracker and TM5-4DVar
both operate on the same transport model, the tracer model 5 (TM5, Krol et al., 2005).
In Sect. 4 we compare the performance of the two inverse methods by evaluating the25

mismatch between modelled and measured concentration fields. The comparison to
assimilated observations verifies that the schemes work as expected. The comparison
to non-assimilated observations yields an estimate of how the DA systems succeed
in modelling CO2 concentration fields in regions where the models do not assimilate

8887

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/8883/2015/acpd-15-8883-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/8883/2015/acpd-15-8883-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 8883–8932, 2015

CarbonTracker and
TM5-4DVar

A. Babenhauserheide
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

observations. Building on these results, Sect. 5 analyzes the estimated surface fluxes
and tests their sensitivity to observation density.

2 Inverse methods and model setup

The DA systems aim at inferring a state vector x that contains spatially and temporally
binned surface fluxes or a related quantity such as scaling factors for an initial guess5

flux field. To this end, the systems exploit measurements of the atmospheric concen-
tration chained into an observation vector y. Fluxes and measured concentrations are
linked through the transport and observation operator H which is linear for the case
of our CO2 flux inversions, but in general could be non-linear such as for CH4 flux in-
versions. Typically, the inverse problem of estimating x from a set of observations y10

is ill posed. Due to sparse observational coverage, measurement errors or measure-
ment configuration, the observations contain insufficient information to determine all
components of x independently. A background flux estimate xb from biosphere and
ocean models is used to provide a constraint that fills the null-space where measure-
ment information is insufficient. Accordingly, the state vector of fluxes x is determined15

by minimizing a cost function J that typically consists of two terms, the mismatch be-
tween measured and modelled observations and the mismatch between the fluxes to
be estimated and the background estimate,

J = (y −Hx)TR−1(y −Hx)+

+ (x−xb)TB−1(x−xb) (1)20

with R the observation covariance and B the background flux covariance. R and B
define the relative weights of the measurement and background mismatch.
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In general, minimization of Eq. (1) can be solved by means of matrix algebra
(Rodgers, 2000) yielding optimized fluxes and their error covariances,

x̂ = xb +BH
T (HBHT +R)−1 (y −Hxb) (2)

= xb + (HTR−1
H +B−1)−1H

T
R
−1 (y −Hxb) , (3)

B̂ = B−BHT (HBHT +R)−1HB (4)5

= (HTR−1
H +B−1)−1, (5)

with x̂ the a posteriori state vector and B̂ as the respective covariance matrix. Equiva-
lence of equation pairs – Eqs. (2) and (3), Eqs. (4) and (5) – can be shown (Rodgers,
2000, Eqs. 4.11 and 2.27).

While theoretically the minimization of Eq. (1) reduces to a matrix inversion for linear10

systems like CO2 flux inversion (e.g. Rodgers, 2000), the large number of parameters
to be estimated and the amount of measurements to be ingested requires approximate
methods such as EnSRF and 4DVar which are numerically efficient.

2.1 CarbonTracker: EnSRF based data assimilation

CarbonTracker is an inverse modelling framework based on the Ensemble Square Root15

Filter (EnSRF) developed by Peters et al. (2005). Instead of solving the minimization
problem in one step, the EnSRF determines optimized surface fluxes sequentially in
a time stepping approach with xt defining a subset of x for a certain time window. In
our standard setup x contains scaling factors for the surface fluxes for 96 weeks, while
xt only spans 5 weeks.20

Commonly, a gain matrix G is defined as

G = BHT (HBHT +R)−1 (6)

= (HTR−1
H +B−1)−1H

T
R
−1. (7)
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Equations (2) and (4) then read

x̂t = xb,t +Gt
(
yt −Htxb,t

)
, (8)

B̂t = Bt −GtHtBt (9)

with the Gain Matrix

Gt = BtH
T
t

(
HtBtH

T
t +Rt

)−1
(10)5

where subscript t indicates quantities of reduced dimensions, for the time step under
investigation. Once Eqs. (8) and (9) are solved for time slice t, the solution of the
scaling factors x̂t is used as the background estimate xb,t+1 for the next time slice t+1,
assuming that a simple persistence forecast is adequate for our CO2 flux inversion
problem,10

xb,t+1 = x̂t. (11)

The covariance Bt+1 is prescribed at each time step as described in Peters et al.
(2005). Given an initial guess for the first background state, this strategy allows for
sequentially calculating the complete state vector x̂.

To estimate the gain matrix Gt, the EnSRF uses an ensemble approach. The ensem-15

ble members xib,t = xb,t+∆x
i
b,t (i = 1. . .E ) of the background state are drawn such that

their mean and covariance is consistent with the background state xb,t and background
covariance Bt, respectively, so that

Bt ≈
1

E −1

(
∆x1

b,t,∆x
2
b,t, . . .,∆x

E
b,t

)
·
(
∆x1

b,t,∆x
2
b,t, . . .,∆x

E
b,t

)T
(12)20
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Then, the terms HtBtH
T
t and BtH

T
t required for calculating Gt following Eq. (10) can

be approximated using the results from an ensemble run of the possibly non-linearized
transport model H

HtBtH
T
t ≈

1
E −1

(
Ht∆x1

b,t,Ht∆x
2
b,t, . . .,Ht∆x

E
b,t

)
·
(
Ht∆x1

b,t,Ht∆x
2
b,t, . . .,Ht∆x

E
b,t

)T
(13)5

BtH
T
t ≈

1
E −1

(
∆x1

b,t,∆x
2
b,t, . . .,∆x

E
b,t

)
·
(
Ht∆x1

b,t,Ht∆x
2
b,t, . . .,Ht∆x

2
b,t

)T
, (14)

where the approximation becomes more exact with increasing ensemble size E . The
EnSRF method yields robust results with non-linear transport operators H as long as
the transport model is close to linear for small perturbations (H(x+∆x) ≈ Hx+H∆x).10

Using Eqs. (13) and (14), the gain matrix Gt can be calculated from Eq. (10), finally to
update the state estimate x̂t via Eq. (8). Peters et al. (2005) describe in detail how to
estimate the state covariance B̂t by separately updating the ensemble deviations ∆xib,t
while avoiding the costly evaluation of Eq. (10) and circumventing spurious underesti-
mation of B̂t. Overall, CarbonTracker’s EnSRF approach requires running the transport15

model H for E ensemble members over the time period covered by all time steps t. At
each time step t the transport model is sampled at all measurement instances within
the time step and the above methodology is followed.

CarbonTracker uses a refined approach for stepping through the entire time period
considered. CarbonTracker’s state vector xt is subdivided into five one-week bins (five20

cycles) resulting in an assimilation window of five weeks (Peters et al., 2005, chapter
2.3). At each optimization step the oldest cycle at the “end” of the state vector drops out
of the state vector and is used as a posteriori flux estimate while a new cycle is added
to the “beginning” of the state vector according to Eq. (11). As such, each one-week
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cycle experiences a number of optimization steps equal to the number of weeks in
the assimilation time window. The choice of assimilation time window, here five weeks,
also implies that CarbonTracker can adjust surface fluxes only when their effects are
observed at a site within five weeks of atmospheric transport. In the zonal direction,
this limitation is of little consequence, because typical global transport times scales are5

on the order of weeks. But in meridional direction and especially for interhemispheric
transport where the transport timescales are on the order of months, this choice needs
to be taken into account when interpreting flux results. The time stepping also defines
the temporal binning of one-week fluxes.

The spatial binning of CarbonTracker’s state vector follows the transcom regions10

(Gurney et al., 2000), further categorized into land regions with similar ecosphere fol-
lowing Olson et al. (1992) and ocean regions following the Ocean Inversion Fluxes
(Jacobson et al., 2007b) as described in the documentation of CarbonTracker North
America1. In total, there are 240 flux ecoregions to be optimized, which is signfi-
cantly less than the number of grid cells of the transport model operating on 6◦ ×4◦15

(longitude×latitude). The fluxes to be optimized are further separated into 3 categories:
biosphere/ocean, fire and fossil fuel. Only the category biosphere/ocean is optimized,
the others are imposed from their priors following the assumption that fossil fuel fluxes
are known with much higher precision than biosphere and ocean fluxes and that fire
fluxes cannot easily be distinguished from biosphere fluxes, so they could not be inter-20

preted separately. Altogether, temporal and spatial binning results in a state vector xt
with 240×5 = 1200 elements.

The structure of the background covariance Bt in the Northern Hemisphere is a diag-
onal matrix with a variance of 0.64 (80 % standard deviation) in units of dimensionless
flux scaling factors. In tropical and many Southern Hemisphere regions, the ecosys-25

tems are coupled with exponentially decreasing covariance, selected such that the

1CarbonTracker 2011_oi results and documentation are provided by NOAA ESRL, Boulder,
Colorado, USA from the website esrl.noaa.gov/gmd/ccgg/carbontracker/CT2011_oi/. The site
builds on the work from Peters et al. (2007).
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total covariance in the transcom region matches the variance in Northern Hemisphere
regions. The covariance for ocean regions uses the results of the ocean inversion by
Jacobson et al. (2007a). Temporal covariance in CarbonTracker stems from processing
observations multiple times in the timestepping approach. The observation covariance
R is assumed diagonal.5

The version of CarbonTracker used here is derived from version 1.0 of the code
maintained by Wageningen University with the same state vector as CarbonTracker
North America (as used in Peters et al., 2007) and without a zoom region.

2.2 TM5-4DVar: variational data assimilation

Whereas the EnSRF in CarbonTracker reduces the dimension of the minimization prob-10

lem of Eq. (1) by solving sequentially for time-sliced state vectors, the 4DVar method
leaves the dimension of the state vector intact and instead approaches the minimum
of the cost function step-by-step. The iterative minimization of Eq. (1) in TM5-4DVar is
described in detail by Meirink et al. (2008). It employs the conjugate gradient algorithm
(Navon and Legler, 1987) which is equivalent to the Lanczos method (Lanczos, 1950)15

and requires calculation of the cost function gradient

∇xJ = B−1(xn −xb)−HTR−1(y −Hxn) (15)

where subscript n indicates the nth iterative step. The adjoint formulation of TM5 allows
calculating the cost function gradient by a single run of the transport model and its
adjoint (Errico, 1997; Chevallier et al., 2005). The conjugate gradient algorithm further20

provides the leading eigenvalues and eigenvectors of the preconditioned Hessian

∇χ(∇χJ) = B−1 +HTR−1
H, (16)

which is the second derivative of the cost function J with respect to the dimensionless
preconditioned state χ defined as x = Lχ +xb, where L is the preconditioning matrix
with B = LLT . This can be used to construct the inverse of the state covariance B̂−1

25
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as defined in Eq. (4). After n steps, corresponding to n runs of the forward and the
adjoint model, the minimization algorithm yields an optimized state estimate χ̂n and
the first n eigenvalues λi (λi > 1) and eigenvectors v i (i = 1, . . .,n) for the eigensystem
of the preconditioned Hessian. The latter can be used to construct an approximate
error covariance matrix,5

B̂n ≈ B+
n∑
i=1

(
1
λi
−1
)

(Lv i )(Lv i )
T . (17)

With increasing number of iterations, the optimized state vector x̂n approaches the
optimal state vector x̂ at the minimum of the cost function and the approximate state
covariance B̂n approaches B̂ from above (Basu et al., 2013). For practical purposes
the iteration is stopped when the gradient norm reduction exceeds a threshold, i.e.10

|∇xJ(xn)| ≤ η · |∇xJ(x0)| (18)

with the constant chosen to be η = 10−9 here.
TM5-4DVar’s state vector x is binned temporally in monthly fluxes and spatially on

the transport model grid scale, i.e. 6◦ ×4◦ longitude× latitude. Fluxes are categorized
into biosphere, ocean, fire and fossil fuel. To create a setup comparable to Carbon-15

Tracker, only biosphere and ocean fluxes are optimized. The background covariance B
of the state vector is characterized by a global temporal and spatial correlation length.
By default TM5-4DVar uses an exponential decay with a temporal and spatial length
scale of 1 month and 200 km for biosphere fluxes and 3 months and 1000 km for ocean
fluxes. As such, the temporal binning of TM5-4DVar’s state vector containing monthly20

bins is about a factor 4 coarser than the temporal binning of CarbonTracker’s weekly
bins. TM5-4DVar’s spatial binning has a different overall structure. Whereas Carbon-
Tracker’s prior fluxes are fully correlated inside the 240 ecoregions and mostly uncorre-
lated between different ecoregions, the correlation of TM5-4DVar’s fluxes exponentially
falls off around each grid box. The exponential decay in TM5-4DVar’s temporal back-25

ground correlation limits the effects of observations in time. However, TM5-4DVar has
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no strict limit on the time window during which observations can be linked to fluxes but
rather reduces the strength of the influence with temporal lag. TM5-4DVar can adjust
surface fluxes in response to any observation during the entire considered time period
given that the transport model reveals a link between fluxes and observations. As for
CarbonTracker, the observation covariance R is assumed diagonal.5

3 Setup of the comparison

Given the setup of the CarbonTracker and TM5-4DVar modelling systems, we aim at
comparing the performance of their data assimilation concepts for the purpose of CO2
surface flux estimation when assimilating atmospheric CO2 concentration records. To
avoid affecting conclusions about the inverse methodology, care must be taken that10

model input such as transport parameters, background estimates, initial concentration
fields and assimilated observations are harmonized as far as possible. However, as
outlined in Sect. 2, conceptual differences between the models prevent us from making
the model setup literally identical.

3.1 Transport model and observation operator15

To connect concentration measurements and surface fluxes, CarbonTracker and
TM5-4DVar use a transport model which transports the CO2 tracer using meteoro-
logical fields. Both models use the Tracer Model 5 (TM5) as described by Krol et al.
(2005) which utilizes meteorological data from the European Centre for Medium-Range
Weather Forecasts (ECMWF, 2013). For CarbonTracker, we follow the setup used by20

Peters et al. (2007). For TM5-4DVar our setup differs from the setup used by Basu
et al. (2013) in one main aspect to be consistent with CarbonTracker: the CO2 concen-
tration field is sampled in the second model layer (≈ 980hPa ≈ 170m) or higher instead
of in the first model layer (≈ 994hPa ≈ 50m) or higher. Except for these adjustments
and some minor differences due to different interfaces of the inverse methods, the ver-25
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sions of TM5 used by the CarbonTracker and TM5-4DVar systems we are using are
the same.

3.2 Background flux and initial guess

CarbonTracker and TM5-4DVar use the same background fluxes and initial concen-
tration fields. The biosphere fluxes are taken from the Simple Biosphere model using5

the Carnegie-Ames-Standord Approach (SIBCASA as by Schaefer et al., 2008). SIB-
CASA is a carbon cycle model that represents the uptake of CO2 by different types
of vegetation and its subsequent transfer back to the atmosphere through autotrophic
and heterotrophic respiration. Its mechanistic description of the processes involved is
driven by a combination of high-resolution weather data and satellite remote sensing10

products and includes interactions between the carbon, water, and energy cycles of
the land-surface. For the oceans both models use Ocean Inversion Fluxes (oif), the
output from an ocean inversion which assumes that the uptake of antropogenic CO2
increases proportional to the mismatch between atmospheric and oceanic CO2 par-
tial pressure. Fire fluxes are taken from the Global Fire Emissions Database version 215

(GFEDv2 van der Werf et al., 2010). Fossil fuel fluxes are taken from the Miller dataset
as described in Peters et al. (2007) and its Supplement.

The initial concentration field is generated from the output of a previous Carbon-
Tracker run which ended on 1 January 2007. The field for 2009 is derived by increasing
the concentration by 1.9 parts per million (ppm) per year. The value 1.9 ppm was cho-20

sen based on tests of the fit to observation sites in the first month of 2009.
The covariance of the fluxes is defined in the models as described in Sects. 2.1 and

2.2. Due to the different ways of specifying the state vector x in CarbonTracker and
TM5-4DVar, it is not possible to get an exact match of the flux uncertainies. We har-
monize the overall covariance by adjusting the prior flux uncertainty in TM5-4DVar to25

match uncertainty of a CarbonTracker run with a monthly cycle for global and continen-
tal aggregates.
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3.3 Observations and observation errors

Both DA systems use the same observations from the “obspack” compilation of in-situ
CO2 concentration measurements (Masarie et al., 2014; NOAA Environmental Sci-
ences Division, Oak Ridge National Laboratory, 2013, version: PROTOTYPE v1.0.2
2013-01-28). Discrete (e.g. one sample per week) measurements from surface flask5

sites, in situ continuous (and semi-continuous) measurements from surface sites and
towers, and aircraft campaign measurements are collected, aggregated and quality
screened to make them suitable for inverse flux estimation. At many but not all of the
continuous measurement sites, the measurements are averaged to provide afternoon
or nighttime averages (depending on the type of site, e.g., continental planetary bound-10

ary layer site or mountain site), using intra-day averaging periods representative of
large scale fluxes and discarding single measurements outside the respective aver-
aging periods. For our baseline CarbonTracker and TM5-4DVar runs, we exclude 21
measurement sites from the assimilation to use them as validation sites.

Additionally we take out 5 sites which have more than 1000 measurements in the as-15

similation period. This is to keep the TM5-4DVar results representative of TM5-4DVar
runs which use the native TM5-4DVar input. When using these 5 sites with the Carbon-
Tracker preprocessing, TM5-4DVar shows strong gradients between neighboring grid
cells in North America which it does not show when processing its native set of obser-
vations. In addition to these 26 excluded sites, there are 24 further sites from which20

the default run of CarbonTracker uses no data or only a subset of the observations.
Reasons for not using some of the observation data of a site include that the data is
assumed not representative of its grid-cell or recorded in aircraft campaigns.

Measurement uncertainty is set to a fixed value for each site accounting for the mea-
surement errors and for representativeness errors. The latter originate from using the25

in-situ samples to represent the CO2 concentration in a transport model grid box of 6◦

longitude and 4◦ latitude. Concentration uncertainties range from 0.75ppm for marine
boundary layer sites over 2.5ppm for land sites up to 7.5ppm for sites which experi-
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ence variable meteorological conditions. Table 1 in the Supplement lists the observation
records used in our study. Figure S1 shows the global distribution of observation sites
together with a visual representation of their weight due to sampling frequency and
representativeness error. In our setup CarbonTracker and TM5-4DVar use the same
representativeness errors.5

4 A posteriori concentration fields

As a first step, we compare and validate the performance of CarbonTracker and
TM5-4DVar by evaluating the difference between measured and modelled CO2 con-
centration fields at the location of various ground sampling stations. Comparing con-
centration fields at the assimilated sites in Sect. 4.1 provides a check to verify that data10

assimilation works in both systems. Comparing measured and modelled concentra-
tions at non-assimilated sites in Sect. 4.2 demonstrates to what extent the data assim-
ilation approaches yield improvements where observational constraints are distant in
space and/or time. CarbonTracker and TM5-4DVar are both run with the baseline setup
(as described in Sect. 3) for a 23 month period starting on 1 February 2009.15

4.1 Assimilated sites

As an example for an assimilated site, Fig. 1 shows a time series of measured and
modelled CO2 concentrations at Mauna Loa (MLO), Hawaii, located 3399 ma.s.l. in the
Pacific. For the period from 1 February 2009, to 30 December 2010, the models assim-
ilate 94 weekly flask measurements. We compare the observations to a posteriori and20

a priori model concentrations. The a posteriori concentrations are sampled using the
a posteriori surface fluxes estimated by CarbonTracker or TM5-4DVar. The prior model
concentrations are sampled using the background (prior) flux estimate common to both
models. The Mauna Loa record demonstrates that the a posteriori concentrations pro-
duced by both models match the observations within the uncertainty estimate and that25
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the match is substantially better than for the prior concentration fields. Differences be-
tween CarbonTracker and TM5-4DVar are much smaller than the representativeness
error of the measurements at Mauna Loa (0.75 ppm) over the entire period. This is
consistent with the results at other sites.

The mismatch between measured and modelled CO2 concentrations for all assimi-5

lated measurements is shown in Fig. 2, with the prior concentrations, the a posteriori
concentrations optimized by CarbonTracker, and the a posteriori concentrations opti-
mized by TM5-4DVar. The concentration mismatch is normalized by the representa-
tiveness error of the observations such that a (unitless) mismatch of 1 corresponds
to a mismatch with the magnitude of the representativeness error. Unlike the time se-10

ries for Mauna Loa, the histograms only integrate over the 1 year period 3 April 2009
to 2 April 2010 in order to be consistent with the analysis of the a posteriori surface
fluxes in Sect. 5. This time period gives the models sufficient spin-up and spin-down
time, given that the initial concentration is already well-optimized by a previous Car-
bonTracker run.15

The concentrations from the Prior Forward Run in Fig. 2 reveal an overall bias in
the normalized (unitless) mismatch of 0.37 with a standard deviation of 1.09. Tenta-
tively, the prior fields show a dipole pattern with peaks around −1 and 1 which can be
traced back to the Northern Hemisphere prior generally overestimating the observa-
tions and the Southern Hemisphere prior generally underestimating the observations.20

The CarbonTracker and TM5-4DVar histograms show small biases of 0.006 and 0.025
with standard deviation of 0.727 and 0.650, respectively. Compared to the prior, both
DA systems improve the overall bias and they substantially reduce the spread of the
observation-model mismatch. Normalized standard-deviations smaller than 1 indicate
that the mismatch is on average smaller than the estimated representativeness error,25

which points to a conservative choice of representativeness errors and consequently
a stronger than optimal influence of the prior flux estimate. However, avoiding this would
require using the output of the assimilation systems to adjust their input parameters
which could lead to transient errors in the result.
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The histograms for CarbonTracker and TM5-4DVar a posteriori concentrations reveal
some non-Gaussian behavior with long tails toward greater mismatch and with a nar-
row peak at the center. The tails most likely stem from temporally varying contributions
to the representativeness error which our input data assumes constant in time. The nar-
row peak likely stems from two sources: first, sites with high frequency measurements5

are assumed uncorrelated in the models and as such provide a stronger constraint
than sites with low frequency measurements. Second, an already well-optimized prior
which is close to the observations causes the models to stick to the prior in a sparse
observation network.

In summary, both models show similar performance for assimilated sites, and the10

assimilation substantially reduces the mismatch between modelled and measured con-
centrations at assimilated sites.

4.2 Non-assimilated sites

Next, we evaluate the performance of the DA systems for sites whose observations
are not assimilated by the models. These sites provide independent validation of the15

results. Figure 3 shows a time series of flask measurements in Guam on Mariana
Islands (GMI), West Pacific. In contrast to Mauna Loa, the measurements are taken
at sea level, and are not assimilated by the CarbonTracker and TM5-4DVar inverse
models. The observation error in Guam is 1.5 ppm, and the models agree well with
measurements taken at the site. Both, CarbonTracker and TM5-4DVar, reproduce the20

measurements similarly well with a respective bias of 0.12 and 0.02 ppm. Their stan-
dard deviation of 0.79 and 0.82 ppm, are greater than the standard deviation at Mauna
Loa, our selected example for assimilated sites. The prior concentrations on the other
hand deviate substantially from the measurements with a bias and standard deviation
of 0.89 and 1.24 ppm, respectively.25

The histograms of model-observation mismatch, are shown in Fig. 4, for the concen-
trations of a Prior Forward Run and from the a posteriori CarbonTracker and TM5-4DVar
runs. Many of the non-assimilated measurements come from continuous sampling sites
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and aircraft campaigns which provide a high number of measurements. Normalized
bias and standard deviation of the prior mismatch are 0.66 and 1.03, respectively. The
normalized biases of the mismatch for CarbonTracker and TM5-4DVar are 0.097 and
0.004, respectively, and the standard deviation of the histograms are 0.835 and 0.839,
indicating that assimilating observations with the DA systems substantially improves5

the match to independent data when compared to the prior performance. The spread
of the a posteriori model-observation mismatch, however, is somewhat greater than
for the comparison to assimilated measurements. This is as expected and indicates
a slightly worse performance of both models for the non-assimilated than for assimi-
lated sites.10

4.2.1 Robustness of the result

CarbonTracker a posteriori concentrations show a larger bias for non-assimiliated mea-
surements (0.097) than for assimilated measurements (0.006). TM5-4DVar biases are
more similar for non-assimiliated (0.004) and assimilated measurements (0.025). In or-
der to investigate whether these differences are likely to be an artefact of our selection15

of validation sites, we conduct a resampling experiment. Out of the 50 sites for which
there are non-assimilated observations – our 2 validation sites, aircraft measurements
and sites for which only a given measurement method is assimilated – we randomly
select subsets of 25 sites and recalculate the statistical model-observation bias for non-
assimilated measurements. Then we repeat the exercise 10 times and examine the dis-20

tribution of the resampled CarbonTracker and TM5-4DVar biases. Figure 5 shows that
the normalized biases for the CarbonTracker baseline run consistently scatter around
0.08 with a standard deviation of 0.04 while the TM5-4DVar average bias and standard
deviation are −0.04 and 0.07, respectively.

So, while CarbonTracker a posteriori concentrations appear offset from the (non-25

assimilated) observations, TM5-4DVar does not show a significant overall bias but
greater station-to-station variability for the model-observation mismatch.
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4.2.2 Impact of the CarbonTracker assimilation window length

In order to investigate whether the robust bias our resampling found for CarbonTracker
can be due to the choice of the EnSRF assimilation time window, we vary Carbon-
Tracker’s lag and cycle parameters. Figure 6 illustrates the effect of the window length
on the model-observation mismatch at Syowa (SYO), Antarctica. Syowa is located far5

from any major sources or sinks to be adjusted by the DA systems. Therefore, the DA
systems cannot match the Syowa measurements by flux adjustment unless they ac-
count for far- and long-reaching correlations between concentrations and fluxes. While
TM5-4DVar allows for such connections, CarbonTracker’s baseline assimilation win-
dow strictly limits these to 5 weeks, which is shorter than the transport timescales from10

strong flux regions to Antarctica. Therefore, the baseline CarbonTracker run shows
a small but systematic underestimation of the CO2 concentration by up to 0.5 ppm ob-
served in Syowa in summer and fall 2009 while TM5-4DVar a posteriori concentrations
match well (not shown). Increasing or decreasing CarbonTracker’s assimilation window
length respectively improves or deteriorates the match to Syowa observations, show-15

ing that the assumed temporal correlations play a role. For sites which are closer to
biosphere regions, this effect could manifest as flux misattribution, which would show
as a mismatch to non-assimilated stations. Figure 5 illustrates the resulting biases for
our resampling assessment when CarbonTracker is run with an assimilation window of
10×7 days or 5×20 days instead of 5×7 days. For 10×7 the average normalized bias20

reduces to 0.03 with a standard deviation of 0.03 and for 5×20 the average normal-
ized bias reduces to −0.01 with a standard deviation of 0.03. Both are consistent with
TM5-4DVar’s performance and better than the run with 5×7 days. This suggests that
a longer assimilation window adds valuable information to CarbonTracker’s DA system.
It is unclear, though, whether this improved match to validation measurements trans-25

lates into improved flux estimates since transport model errors might have a larger
impact for the longer assimilation windows. In Sect. 5.1 we discuss additional effects
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from a larger bin size which may make a long assimilation window undesirable, despite
the better match to validation measurements.

5 Comparison of a posteriori surface fluxes

Section 4 shows that the models are of similar quality when comparing the a posteriori
concentrations with assimilated and non-assimilated observations. Here, we turn to5

evaluating the a posteriori surface fluxes delivered by CarbonTracker and TM5-4DVar.
As first step we describe the results of the baseline runs. Then we analyze detectable

features and the effect of a longer assimilation window in CarbonTracker.

5.1 Surface fluxes of the baseline run

For the baseline CarbonTracker and TM5-4DVar runs, Table 1 shows the globally10

aggregated a posteriori fluxes for the biosphere and oceans from 3 April 2009, to
2 April 2010. CarbonTracker and TM5-4DVar estimate a global carbon sink (due to
the biosphere and oceans) which is stronger than the prior estimate by 1.42 and
1.35 PgCa−1, respectively. We only show the uncertainty for the prior and TM5-4DVar
which is calculated as described by Basu et al. (2013), because for CarbonTracker15

the aggregation of uncertainties from weekly to yearly scale requires using assump-
tions about the temporal correlation of the uncertainties. Due to these assumptions,
the yearly uncertainties of TM5-4DVar and CarbonTracker would not be comparable,
even if we adopted existing schemes as for example the one employed by Peters et al.
(2005). The differences in the uncertainties would not be representative of actual differ-20

ences in the models. Therefore we use the uncertainties from TM5-4DVar as a metric
for comparisons.

Different from the Monte-Carlo based uncertainty calculation which Chatterjee and
Michalak (2013) used, the error propagation employed in TM5-4DVar always ap-
proaches uncertainties from above, so we expect our uncertainties to overestimate25
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the real uncertainties due to measurement and representativeness errors. With this
caveat, the sink estimates of the two models are consistent within the TM5-4DVar un-
certainties and also match previous findings for CarbonTracker (Peters et al., 2007).
Examining the time series of globally aggregated surface fluxes in Fig. 7 confirms that
the two DA systems are consistent on the global scale, both showing stronger summer5

uptake than the prior.
Figure 8 illustrates the a posteriori biogenic and oceanic fluxes aggregated over the

one-year time period on continental scale regions. Agreement between CarbonTracker
and TM5-4DVar is found for North America, Africa, Europe, and Australia, as well as
for all the oceans except for the Indian Ocean. The optimized fluxes in these regions10

differ by less than the yearly uncertainties estimated from TM5-4DVar’s statistical error
aggregation (see Basu et al., 2013). On the other hand, the modelled fluxes from Car-
bonTracker and TM5-4DVar differ by more than their uncertainty in South America, Asia
and the Indian Ocean. In South America they differ by roughly two times the estimated
uncertainty, therefore we take a more detailed look at this discrepancy.15

5.1.1 TM5-4DVar’s flux anomaly in South America

The time series of South American surface fluxes in Fig. 9 reveals that the flux differ-
ences in South America stem from particularly large emission estimates in summer
2009 by TM5-4DVar. The temporal structure of TM5-4DVar fluxes for the Indian Ocean
as well as the Pacific Ocean, suggest that ocean uptake compensates for the large20

South America source to match the hemispheric flux budget.
South America suffers from sparseness of observational constraints such that vali-

dation of the estimated surface fluxes via comparison of measured and modelled at-
mospheric CO2 concentrations is difficult. Aircraft measurements regularly conducted
in South America do not provide deeper insight, because they have a data gap in the25

critical time between June and August 2009. The only other site that is close to the
South America flux region is Arembepe in Brazil (ABP, 12.77◦ S, 38.17◦W), a ground
sampling station which is used as constraint within our data assimilation exercise.
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To check its impact on the fluxes, we perform a sensitivity run without assimilating
Arembepe. In this run both models are similarly good at matching modelled a poste-
riori and measured CO2 concentrations in Arembepe and mostly follow the prior (see
Fig. 10). When assimilating observations from Arembepe however, TM5-4DVar closely
follows the observations in spring 2009 while CarbonTracker only moves halfways from5

the prior to the observations. This can be explained by the outlier-detection in Carbon-
Tracker: when the difference between the model and a measurement is more than three
times the estimated representativeness error of the measurement, CarbonTracker ig-
nores the measurement as outlier. As marine boundary layer site, Arembepe is as-
signed a representativeness error of only 0.75 ppm, so CarbonTracker ignores most10

measurements before May 2009.
The aggregated fluxes in Fig. 8 show that assimilating the measurements in Arem-

bepe has a significant effect on the a posteriori fluxes of TM5-4DVar. When taking out
Arembepe from the baseline run, TM5-4DVar’s attribution of fluxes shifts: the sinks in
the Pacific and the Indian Ocean weaken while the strong source in South America dis-15

appears. The time series in Fig. 9 provide a temporal fingerprint of the flux difference
due to removing Arembepe from the assimilation which identifies the changes in the
Pacific and the Indian Ocean as compensation for the removal of the strong source in
South America.

The flux changes in CarbonTracker with assimilating Arembepe are within the es-20

timated uncertainties, in the yearly aggregated fluxes as well as in the time series.
Disabling the outlier rejection in CarbonTracker causes the modelled concentrations
to follow the observations much closer, but as shown in Fig. 9 it does not show the
additional source seen in TM5-4DVar between June and August 2009 and neither the
compensation fluxes TM5-4DVar gives in the oceans.25

The fluxes induced by assimilating Arembepe show that TM5-4DVar is more suscep-
tible than CarbonTracker to the effect of single measurement sites in regions with very
low observation density.
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5.1.2 CarbonTracker with longer assimilation window

Figure 8 shows that the difference in the Asian flux estimates is not affected by remov-
ing Arembepe from the assimilated sites. When increasing the assimilation time win-
dow of CarbonTracker to 5×20 days (“5×20”), however, CarbonTracker yields roughly
the same aggregated flux as TM5-4DVar.5

The time series in Fig. 11 suggests that the change in the CarbonTracker estimate
of Asian fluxes when going to the longer assimilation window originates from high fre-
quency corrections to the prior fluxes. If the biosphere model needs to be corrected for
only one week, the run with weekly flux bins can adjust that week separately while the
run with 20 day flux bins has to adjust a full 20 day period. To test this theory, we verified10

that a run with an assimilation window consisting of ten one-week cycles yields a similar
Asian sink as the run with five one-week cycles (1.84 instead of 1.61 PgCa−1) which
does not increase further when going to fifteen one-week cycles (not shown), while
a run with three 20 day cycles yields a similar Asian sink as the run with five 20 day
cycles (2.22 instead of 2.25 PgCa−1).15

For a quantitative discussion of the propagation of aggregation errors see Turner
and Jacob (2015). Our findings suggest that there is an impact of roughly 0.5 PgCa−1

from high frequency mismatches between the prior model and the measured concen-
trations during the Asian summer which cannot be corrected accurately with a binsize
of 20 days or more.20

In summary we see good agreement for the baseline fluxes between CarbonTracker
and TM5-4DVar on a global scale and for most continents and oceans. The mismatch
of the fluxes in South America, the Indian Ocean and Asia can be traced back to two
distinct effects: a different flux response in regions with very limited observation cover-
age and using weekly (CarbonTracker) or monthly (TM5-4DVar) adjustments to account25

for mismatches on shorter time scales.
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5.2 Sensitivity to observation coverage

In order to assess the importance of data density and coverage on the two DA sys-
tems, we follow the approach which Bruhwiler et al. (2011) used to analyze the per-
formance of their initial version of a fixed-lag Ensemble Kalman Smoother (Bruhwiler
et al., 2005). We carry out 5 “historical” model-runs where we stepwise increase the5

number of assimilated observation sites, mostly following the historical availability of
data. The first run, termed “2/cont”, assimilates observations from up to 2 stations per
continent. It represents an extremely sparse observation network with different sam-
pling frequencies per site. The runs “1988” and “2000” assimilate observations from all
sites that were active in the years 1988 and 2000, respectively. The “2000” run assim-10

ilates roughly the same number of observations as our baseline run. The run “2010”
uses all stations which were active in the year 2010 except for Arembepe. We exclude
Arembepe from the “2010” run, because as shown in Sect. 5.1 the different treatment
of the observations there would dominate the flux changes and as such mask other
effects. Figure S2 illustrates the observation density and coverage for the different his-15

torical runs while Table S1 lists the sites included for all the historical runs.
Figure 12 shows the globally aggregated prior and a posteriori fluxes for the baseline

setup and each of the historical runs. All the historical runs for both models, Carbon-
Tracker as well as TM5-4DVar, yield consistent estimates of the global (biospheric and
oceanic) carbon sink. The results differ by a few tenth’s of a PgCa−1 which is well20

below the TM5-4DVar uncertainty estimate of about 1 PgCa−1. This consistency is
expected since the global carbon sink is well constrained by the trend in global back-
ground concentrations. Compared to the prior, all runs indicate a stronger sink by more
than 1 PgCa−1. The global flux estimate is robust against changes in the observation
coverage and against the choice of the inverse model.25

On the continental scale we take a closer look at North America, since changes
in observation density are historically most pronounced there. Figure 13 shows that
TM5-4DVar and CarbonTracker fluxes for North America become more similar the
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denser the observation network becomes, with almost the same flux estimate in the
“2010” setup in which the models assimilate more than 15 sites on the North American
continent (see Fig. 14). This good match of both models suggests that the density of
observation sites in North America suffices to optimize continental scale fluxes with
some degree of certainty. Separating the fluxes of the two North America Transcom re-5

gions (Fig. 13) shows that for the more homogeneous transcom region in Boreal North
America the results from both models are already converged with the observation cov-
erage in the “1988” run, while in the more heterogeneous North American Temperate
region with many agricultural regions, the models only converge in the “2010” setup.

The stronger land sink seen by TM5-4DVar for “2/cont” stems from assimilating only10

two sites: a site in West Branch in Iowa, USA (WBI, 41.7◦N, 91.4◦W), in the US corn
belt, and a site on Sable Islands, Nova Scotia, Canada (WSA, 43,9◦N, 60.0◦W). In
TM5-4DVar, the strong summer sink near West Branch dominates the North America
fluxes and increases the sink from roughly 1 PgCa−1 in the “2010” run to more than
1.6 PgCa−1 in the “2/cont” run. CarbonTracker is less susceptible to this effect than15

TM5-4DVar, because its ecoregion approach enforces a correlation between the fluxes
for all regions in the corn belt as well as for all regions with grassland – both region-
types span the area from the southern parts of North America up to the border of
Canada. This makes it more likely that a potential flux adjustement is constrained by
more than one site which gives it a stronger meridional coupling. Since meridional20

mixing is much slower than zonal mixing, stronger meridional coupling forces a larger
region to change in the same way. As such the ecoregion approach makes it more
likely that a potential flux adjustment is constrained by more than one site.

On the other hand, the overall North American sink of 0.65 PgCa−1 estimated by
CarbonTracker in the “1988” run are 30 % lower than the sink of 0.95 PgCa−1 in the25

“2010” run, while in TM5-4DVar the “1988” and the “2010” run differ only by 10 %
(0.1 PgCa−1). The difference between the results for the “2000” and the “2010” runs
in North America is on the order of 0.1 PgCa−1 for both models, but in different direc-
tons. So with low observation coverage, the quality of the inversion in either system
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depends on the exact distribution of the observations. This suggests that with the cov-
erage from “2000”, we need to assume a minimum uncertainty of 0.25 PgCa−1 from
only the choice of the inverse method. For “2010” this is down to less than 0.1 PgCa−1.

The strong reduction of the uncertainty estimate in the North America fluxes of
TM5-4DVar in the “2/cont” run, despite assimilating only 2 sites in North America,5

shows the sensitivity of these estimates to the raw number of assimilated observations.
It proves that the actual structure of the observations has to be taken into account when
interpreting the reduction of model-estimated uncertainty.

Overall our results show that the current observation coverage in North America
allows estimating robust fluxes on continental scales and on the scales of transcom re-10

gions. The historically improving agreement between both models for the aggregated
North American fluxes and the two transcom regions in North America suggests that in-
creasing the observation coverage allows getting robust fluxes on even smaller scales.

6 Conclusions

Our study evaluates the performance of the data assimilation models CarbonTracker15

and TM5-4DVar by comparing their a posteriori CO2 concentration fields to measure-
ments and by comparing their a posteriori surface fluxes. We test the sensitivity of the
a posteriori CO2 fluxes to model parameters and data coverage. To analyze the impact
of the inverse method and the flux representation, the models run in setups which are
close to their production settings but use harmonized input data, tracer transport model20

and prior estimates.
Both inverse models yield CO2 concentration fields of comparable quality. We show

that increasing the length of the assimilation time window of CarbonTracker to five bins
of twenty days or ten bins of seven days gives a good agreement to observations in
Antarctica which are underestimated in summer when using the default setup with an25

assimilation window of only five weeks. With these longer windows, the difference of the
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bias of the models at non-assimilated measurement sites is lower than the uncertainty
of the bias due to the limited number of non-assimilated sites.

The a posteriori fluxes from both models are in good agreement on a global scale, but
on continental scale they show significant differences, most noticably in South America
which has very sparse coverage of observation sites. Investigating the flux time series5

allows tracing these differences back to spurious flux adjustments in TM5-4DVar for
South America due to assimilating observations from a single site in Arembepe, Brazil,
along with compensating fluxes in the oceans. Also we see a difference in the adjust-
ment of Asian fluxes, but an additional CarbonTracker run with a coarser temporal flux
adjustment bin size of 20 days gives similar fluxes in Asia as TM5-4DVar. Here, the10

flux time series reveal that part of the weaker sink in CarbonTracker with smaller bin
size stems from high frequency changes which cannot be represented with the monthly
binning of flux-adaptions in TM5-4DVar and the CarbonTracker run with bins of 20 days.

To better analyze the sensitivity of both models to the observation coverage, we run
the models with collections of measurement sites selected by historical availability. In15

North America, where the change of observation coverage is most pronounced, fluxes
estimated with the observation network from 2000 differ by 0.25 PgCa−1, which can
serve as lower limit for the uncertainty due to changing the inverse system. With the
measurement network from 2010, the difference reduces to 0.1 PgCa−1.

TM5-4DVar has a stronger response to the data coverage than CarbonTracker. This20

shows that the ecoregion approach in CarbonTracker with its stronger meridional cou-
pling of fluxes and observations makes CarbonTracker less susceptible to changes in
the observations than the simple global flux covariance in TM5-4DVar. As such it might
be useful to reuse CarbonTracker’s spatial flux correlation structure in TM5-4DVar.

Generally, we see sensitivity of the optimized fluxes to the density and distribution of25

observations which might be particularly important for using satellite data, in which the
coverage of observations changes with cloud cover. The improved agreement between
both models when adding observation sites indicates that the coverage of observa-
tion sites in North America should be sufficient to yield robust fluxes on a continental
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scale when only considering the uncertainty from the inverse methods and the flux
representation.

The Supplement related to this article is available online at
doi:10.5194/acpd-15-8883-2015-supplement.
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Table 1. Yearly global CO2 fluxes and uncertainty (standard deviation) from the Prior forward
run and from the baseline runs of TM5-4DVar and CarbonTracker. The § column lists important
notes.

Biosphere+Ocean Uncertainty §

Prior forward run −5.34 PgCa−1 1.86 PgCa−1

TM5-4DVar −6.69 PgCa−1 1.07 PgCa−1

CarbonTracker −6.76 PgCa−1 N/A ∗

∗ CarbonTracker provides uncertainties on weekly scale. As discussed in
Sect. 5.1, aggregating them to yearly scale is not clearly defined and would
not be comparable to TM5-4DVar.
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Prior forward run: 1.190±0.973
Carbontracker: 0.191±0.635
TM5-4DVar: -0.038±0.614

- MLO RMSD:
Prior forward run: 2.363

Carbontracker: 0.439
TM5-4DVar: 0.379

Mauna Loa, Hawaii (19.54◦ N, 155.58◦ W)
Prior forward run
Carbontracker
TM5-4DVar
NOAA-MLO

Figure 1. Time Series of measured and modelled CO2 concentrations from CarbonTracker and
TM5-4DVar at Mauna Loa, Hawaii, Pacific (assimilated weekly flasks), NOAA sitecode MLO.
Also shown are the concentrations for obtained from a forward run of the transport model using
the a priori background flux estimates.
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Figure 2. Histograms of the mismatch between measured and modelled CO2 concentra-
tions for all assimilated measurements using prior fluxes, CarbonTracker optimized fluxes and
TM5-4DVar optimized fluxes. The histograms show residuals for one year (3 April 2009 to
2 April 2010) which are normalized by the estimated representativeness error. The line on
top of the histograms is a fit of a Gauss function to the histogram. The parameters in the top
left show the bias and standard deviation of the Gaussian. The bottom right shows the number
of measurements which were accumulated into the histogram.
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Figure 3. Time Series of measured and modelled CO2 concentrations from CarbonTracker and
TM5-4DVar at Guam, Mariana Islands, Pacific (non-assimilated). Also shown are the concen-
trations for obtained from a forward run of the transport model using the a priori background
flux estimates.
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Figure 4. Histograms of the mismatch between measured and modelled CO2 concentrations for
all non-assimilated samples using prior fluxes, CarbonTracker opitmized fluxes and TM5-4DVar
optimized fluxes. The histograms show residuals for one year (3 April 2009 to 2 April 2010)
which are normalized by the estimated representativeness error. The line on top of the his-
tograms is a fit of a Gauss function to the histogram. The parameters in the top left show the
bias and standard deviation of the histogram. The bottom right shows the number of measure-
ments which were accumulated into the histogram.
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Figure 5. Model-measurement bias of TM5-4DVar against CarbonTracker for non-assimilated
measurement sites. Each symbol corresponds to a case resampling excercise where the bi-
ases are calculated for 25 randomly drawn sites out of the total 50 resampling sites listed in
Table 1 in the Supplement. The baseline run (dots) is compared to a CarbonTracker run with
the assimilation period extended to 5×20 days (×) instead of 5×7 days and 10×7 days (+).
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Figure 6. Time Series of measured and modelled CO2 concentrations in Syowa, Antarctica, for
CarbonTracker runs with different length of the assimilation time window. The baseline run uses
an assimilation window of 5×7 days. Color coding of shorter and longer assimilation windows
follows the legend (lag× cycle in days).
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Figure 7. Global fluxes from the baseline runs of TM5-4DVar and CarbonTracker. The Prior is
shown in the binning from CarbonTracker.
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Figure 8. Fluxes from TM5-4DVar and Carbontracker aggregated on continental scale. The un-
certainties for TM5-4DVar are calculated following Basu et al. (2013). The error bars for the prior
are taken from TM5-4DVar. As written in Sect. 5.1 we show no uncertainties for CarbonTracker,
because the aggregation of uncertainties from weekly to yearly scale is not clearly defined.
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Figure 9. CO2 surface fluxes from April 2009 to April 2010 in South America, the Indian Ocean
and the Pacific. Only the timeseries for South America shows the CarbonTracker noreject,
because it follows the CarbonTracker baseline in the other regions.
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Figure 10. Time Series of CO2 concentration in Arembepe, Brazil at the east coast of South
America. The two “without ABP” runs show the concentrations when the models do not as-
similate data from the Arembepe site. CarbonTracker noreject shows the concentrations for
CarbonTracker with disabled outlier detection. The time series ends after January 2010, be-
cause data at Arembepe is only available in obspack PROTOTYPE v1.0.2 2013-01-28 from
NOAA Environmental Sciences Division, Oak Ridge National Laboratory (2013) until then.
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Figure 11. CO2 surface fluxes during summer 2009 in Asia. The Prior Forward Run shows the
prior fluxes aggregated to the binsize of the weekly Carbontracker scaling factors.
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Figure 12. Globally aggregated surface fluxes estimated by the model runs indicated in the
legend. In all aggregated flux bar charts, the uncertainties are estimated by TM5-4DVar.
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Figure 13. Fluxes for CarbonTracker and TM5-4DVar from April 2009 to April 2010 separated
into the two Transcom Regions in North America.
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Figure 14. Visualization of the weight of the measurement sites which are assimilated in North
America in the respective runs.
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