Sulfur dioxide (SO$_2$) from MIPAS in the upper troposphere and lower stratosphere 2002–2012

M. Höpfner1, C. D. Boone2, B. Funke3, N. Glatthor1, U. Grabowski1, A. Günther1, S. Kellmann1, M. Kiefer1, A. Linden1, S. Lossow1, H. C. Pumphrey4, W. G. Read5, A. Roiger6, G. Stiller1, H. Schlager6, T. von Clarmann1, and K. Wissmüller6

1Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
2Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
3Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain
4School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3JN, UK
5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA
6Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany

Received: 23 December 2014 – Accepted: 12 February 2015 – Published: 27 February 2015

Correspondence to: M. Höpfner (michael.hoepfner@kit.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Vertically resolved distributions of sulfur dioxide (SO$_2$) with global coverage in the height region from the upper troposphere to \sim 20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70–100 pptv and by a vertical resolution ranging from 3–5 km. Comparison with ACE-FTS observations revealed a slightly varying bias with altitude of -20 to 50 pptv for the MIPAS dataset in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within -10 to 20 pptv in the altitude range of 10–20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS dataset with in-situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around \pm50 pptv. The SO$_2$ emissions of more than thirty volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO$_2$ masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period – Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 – derived lifetimes of SO$_2$ for the altitude ranges 10–14, 14–18, and 18–22 km are 13.3 \pm 2.1, 23.6 \pm 1.2, and 32.3 \pm 5.5 d, respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO$_2$. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16–18 km enhanced mixing ratios of SO$_2$ can be found in the region of the Asian and the North-American monsoon in summer – a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.
1 Introduction

The background aerosol loading of the stratosphere has been found to increase since about the year 2000 (Hofmann et al., 2009; Vernier et al., 2011b). Due to the negative radiative forcing of stratospheric sulfate aerosol this trend has been discussed as part of the explanation for a slowdown in the rise of global temperatures (the so-called global warming hiatus) since the turn of the millennium (Solomon et al., 2011; Fyfe et al., 2013a, b; Haywood et al., 2013; Santer et al., 2014). Hofmann et al. (2009) explained the rising stratospheric aerosol levels by an increase in the anthropogenic sulfur dioxide SO_2 production in South East Asia while Vernier et al. (2011b) opposed this view by showing the increasing influence from sulfate injection of moderate tropical volcanic eruptions into the stratosphere. Recently, Ridley et al. (2014) have used ground-based and balloon-borne observations to demonstrate that especially at mid- and high latitudes the aerosol loading within the altitude range between the tropopause and 15 km contributes strongly to the volcanic aerosol forcing during the last decade.

As basis for studying these processes with the aid of atmospheric models, it is essential to get global information about the amount of SO_2 reaching stratospheric altitudes. Measurements of SO_2 in the upper troposphere and lower stratosphere (UTLS) are, however, sparse. In-situ observations from aircraft campaigns are highly accurate (see also Sect. 2.5.1). However, they provide mainly snapshots of the atmospheric state which might also be influenced by the sampling tailored specifically to the campaign objective. Global observations from satellite nadir sounding instruments provide horizontally highly resolved pictures of SO_2 distributions emitted by strong sources, like volcanoes (Theys et al., 2013, and references therein). While most analysis methods of nadir sounding observations provide vertical column amounts of SO_2, various recent studies indicate that volcanic plume heights can be derived (Van Gent et al., 2012; Rix et al., 2012; Carboni et al., 2012; Clarisse et al., 2014; Fromm et al., 2014).

Owing to their observation geometry, limb-sounding measurements are especially suited to obtain profile information of atmospheric constituents. In the microwave spec-
tral region Read et al. (1993) retrieved SO$_2$ concentrations from MLS on UARS in the aftermath of the eruption of Mt. Pinatubo and Pumphrey et al. (2015) analysed SO$_2$ signatures from various volcanic eruptions measured by the MLS instrument on the Aura satellite. In the mid-infrared, Doeringer et al. (2012) used solar occultation spectra to reconstruct vertical profiles of SO$_2$ following the eruption of the Sarychev volcano in June 2009.

In the following we present global altitude-resolved distributions of SO$_2$ between about 10 and 20 km as retrieved from infrared limb-emission observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) between June 2002 and April 2012. This dataset is derived from single MIPAS limb spectra and complementary to the one presented in Höpfner et al. (2013) which was reconstructed from monthly and 10° zonally averaged spectra, covering the height region between 15–20 and 40 km altitude. Thus, the present dataset allows to exploit the full spatial and temporal coverage and resolution of the MIPAS observations.

In Sect. 2 we describe the measurements and the retrieval scheme and characterize the dataset comprising vertical resolution and error estimation. This is followed by a comparison with independent remote sensing and in-situ observations of SO$_2$ in the UTLS region. Beside an overview over the whole dataset, the main subject of Sect. 3 is the analysis of volcanic plumes with respect to the derivation of eruption masses and lifetimes of SO$_2$ from major volcanic events. The global non-volcanic background distribution of SO$_2$ is presented at the end of Sect. 3 and final conclusions are drawn in Sect. 4.

2 The MIPAS SO$_2$ dataset

2.1 Instrument

MIPAS (Fischer et al., 2008) was operated on the sun-synchronous polar orbiting satellite Envisat. Envisat was launched on 1 March 2002 and lost ground contact on 8 April
2012. The MIPAS instrument is a limb-sounder measuring the thermal radiation emitted by the atmosphere in the region 685–2410 cm\(^{-1}\) by means of a Fourier Transform spectrometer (ESA, 2000).

Two main periods of MIPAS operation can be distinguished: period 1 (P1) lasted from June 2002 until April 2004 and period 2 (P2) from January 2005 until April 2012. During P1 the spectral resolution was 0.025 cm\(^{-1}\) (unapodized) and the latitudinal distance between subsequent limb-scans 530 km, each consisting of 17 tangent views with 3 km sampling steps in the UTLS region. During P2 the spectral resolution was set to 0.0625 cm\(^{-1}\) (unapodized), thereby reducing the measurement time per spectrum. This led to finer horizontal (420 km) and vertical (1.5 km in the UTLS region) sampling patterns.

For the retrieval of SO\(_2\) described in this paper level-1b calibrated spectra version 5 as provided by ESA have been used (Nett et al., 2002).

2.2 Retrieval

In contrast to the MIPAS dataset of SO\(_2\) published by Höpfner et al. (2013), which was reconstructed from monthly and zonal averaged spectra, the present retrieval has been performed on basis of single limb-scans. The standard MIPAS IMK-IAA data processing scheme has been applied as described in detail by von Clarmann et al. (2003) and von Clarmann et al. (2009). The retrieval method is a constrained non-linear least squares multi-target fitting procedure of measured limb radiances. Spectral fitting intervals which have been applied for the reconstruction of SO\(_2\) are listed in Table 1. Beside the volume mixing ratios of SO\(_2\), jointly retrieved parameters are altitude profiles of the main spectrally interfering species H\(_2\)O, O\(_3\), N\(_2\)O, and CH\(_4\). Height distributions of further trace gases exhibiting minor signatures in the spectral region of interest are taken either from previous steps in the retrieval chain (HNO\(_3\), N\(_2\)O\(_5\), CFC–12, HCN, PAN, C\(_2\)H\(_2\)) or are based on climatological profiles (HCFC–22, CFC–113, CFC–114, HCFC–142b). The atmospheric temperature profile, the instrumental line-of-sight and spectral calibration correction are likewise imported from previous retrieval steps.
Regularization of the retrieval is necessary since the altitude grid distance of the atmospheric profiles is 1 km and, thus, smaller than the vertical tangent point spacing of 1.5–3 km. Here we have applied a standard first order Tikhonov regularization scheme (Tikhonov, 1963; Steck, 2002). This scheme constrains the reconstructed profiles by minimizing along with the spectral residual also the first derivative of the vertical profile. Thus, the regularization introduces a smoothness of the result but avoids any biasing with respect to some absolute vmr value. The resulting vertical resolution varies from 3 to 5 km in the altitude range between 10 and 20 km.

The IMK-IAA MIPAS data which are used in this work are versions V5H_SO2_20, V5R_SO2_220, and V5R_SO2_221.

2.3 Error estimation

An estimate of altitude-dependent retrieval errors of various sources has been performed separately for different locations belonging to both measurement periods and for volcanically perturbed and unperturbed atmospheric situations. Figure 1 shows the resulting mean error profiles for each of the four categories. Estimated errors are split into a purely random term due to measurements noise and “systematic” terms due to instrumental, spectroscopic and errors in pre-determined parameters, like temperature and line-of-sight pointing. Note, however, that the “systematic” error term contains also random contributions with different time-scales, like e.g. radiometric calibration. The random error due to measurement noise leads to vmr errors which are at first order independent of the SO$_2$ amount in the atmosphere. With around 70–100 pptv it is the dominant error contribution when single (non-averaged) profiles are considered. In the case of averaging systematic errors become more important. These are estimated to about 10–75 pptv (10–180 %) for cases without volcanic influence and 10–110 pptv (10–75 %) in volcanically enhanced conditions (Fig. 1).

In contrast to other trace gases measured with MIPAS, the dynamic range of SO$_2$ vmr values in the atmosphere can vary significantly because of volcanic activity. This can introduce errors in the retrieved profiles due to saturation effects in the radiative
transfer. We have estimated these uncertainties by sensitivity studies. Table 2 shows the results depending on the value of the maximum of the assumed SO$_2$ vmr profile. The retrieved vmr values show maximum concentrations underestimated by −13\% for 5 ppbv and −50\% for a reference of 100 ppbv. Partial column amounts over a certain altitude range around the maximum of the vmr profile are much less affected. The underestimation here reaches from −0.1\% for the profile with a maximum of 5 ppbv to −14\% for 100 ppbv at the maximum. This result indicates that the error of the maximum vmr value is mainly caused by the regularization smoothing constraint while saturation effects appear for profiles with vmr values above 50–100 ppbv.

2.4 Validation

2.4.1 Comparison with ACE-FTS

We have performed a comparison of MIPAS altitude profiles of SO$_2$ with those of the ACE-FTS instrument (research product version 3.0).

In Fig. 2 the comparison is shown for collocated observations using a match-criterion of 500 km and 5 h. Further, the profiles have been grouped into one representing background conditions with mixing ratios smaller than 50 pptv (top row in Fig. 2) and two groups representing enhanced mixing ratios with at least one vmr value up to 20 km larger than 50 and 200 pptv, respectively (middle and bottom row of Fig. 2). In the case of the background conditions, there is a clear bias with larger MIPAS mixing ratios of up to 30 pptv below 18 km and up to 15 pptv lower MIPAS values for altitudes between 18 and 20 km. The combined precision estimates of both instruments (blue curves in the third column) are slightly smaller than the SD of the differences. As will be shown below, this is caused by the residual atmospheric variability within the limits of the collocation criterion. In the case of enhanced SO$_2$ vmr values, differences between MIPAS and ACE-FTS are generally in the range of ±30 pptv reaching values of ±50–100 pptv only at a few altitudes. However, as shown by the error bars in the second row of Fig. 2, these differences lie mostly inside the SD of the differences and, thus, are not
significant. The large difference between the black and blue curves in the middle and bottom plot of the third column (Fig. 2) is very probably due to the strong atmospheric variability of \(\text{SO}_2 \) under volcanic influence.

Figure 3 presents a closer look at the comparison of collocated measurements for the background case. Here we have distinguished matches during MIPAS periods P1 (top) and P2 (bottom). Additionally, during P2 only profiles during periods of low volcanic activity have been selected which was not necessary for P1 since there was no significant volcanic influence when both instruments measured simultaneously. This representation reveals that the typical bias of up to 30 pptv for the \(\text{SO}_2 \) background only appears during period P2 while during P1 no significant bias between the two instruments can be detected. We suppose that this fact is due to the higher spectral resolution during P1 which makes the retrieval of small spectral signatures more robust. Furthermore, there is a very good agreement between the combined estimated instrument precision and the SD of the profile differences (third column in Fig. 3). This is due to the selection of periods with very low volcanic activity which reduces the atmospheric variability additionally to the criterion on small \(\text{vmr} \)-values of \(\text{SO}_2 \). This demonstrates that the combined precision estimates of MIPAS and ACE-FTS are realistic.

2.4.2 Comparison with retrievals from mean MIPAS spectra and the monthly averaged ACE-FTS dataset

Here we analyse the agreement between the MIPAS \(\text{SO}_2 \) data retrieved from monthly zonal mean spectra (Höpfner et al., 2013) (called MIPASmon in the following) and the present single scan dataset. Figure 4 shows the comparison of average monthly mean profiles between the two MIPAS datasets and ACE-FTS for background (top) and volcanically perturbed cases (bottom). For the background situation, MIPAS monthly mean profiles from single scan retrievals show similar differences either to MIPASmon or the ACE-FTS dataset. This is in agreement with the comparisons of collocated profiles between MIPAS and ACE-FTS described in the previous section. The background profiles of MIPASmon and ACE-FTS compare very well. In contrast, the comparison of vol-
canically enhanced monthly mean profiles (Fig. 4, bottom) reveals a good agreement between ACE-FTS and MIPAS single scan retrievals while MIPASmon seems to underestimate the atmospheric \(\text{SO}_2 \) content by up to 100 pptv. Such an underestimation of \(\text{SO}_2 \) in MIPASmon for volcanically enhanced periods has already been suspected when comparing the \(\text{SO}_2 \) distribution of July 2009 between ACE-FTS and MIPASmon retrievals (Höpfner et al., 2013).

When comparing MIPAS and MIPASmon profiles of \(\text{SO}_2 \) separately for MIPAS periods P1 and P2 and, additionally excluding volcanically enhanced periods (see Fig. 5) we reach the same conclusion as from the comparison with ACE-FTS in Fig. 3: in P1 the background distribution compares well between both datasets while during P2 a typical bias of the MIPAS single scan retrieved data of up to 30 pptv is apparent.

2.5 Debiasing

The presented comparisons have revealed a distinct height-dependent bias between the \(\text{SO}_2 \) retrievals from MIPAS periods P1 and P2 of up to about 30 pptv down to about 12 km. Most observations further indicate that this bias affects the observations during measurement period P2. Thus, for the subsequent discussion of the whole dataset from 2002–2012 we have applied an altitude- and latitude-dependent bias-correction to the data from period P2. This 2 d correction pattern has been determined as the difference between the mean \(\text{SO}_2 \) distributions (height vs. latitude) of period P1 and period P2 where for both periods months of major volcanic influence have been excluded. The spatial correction pattern as shown in Fig. 6 does not vary strongly with latitude down to about 10 km altitude. Above 17–18 km it is generally positive and negative below – reaching values of \(-150\) pptv at lowest altitudes between 6 and 10 km.

The comparisons with ACE-FTS and MIPAS monthly mean retrievals as discussed above and as shown in Figs. 2–5 have been repeated for the debiased dataset (bold dotted lines in these figures). The results now show a much better consistency between the two measurement periods with remaining maximum differences of about 10–15 pptv at 13–14 km and of a few 10ths of pptv at lowest altitudes. In the following
we will restrict the discussion to altitudes above 10 km where remaining differences between the datasets of P1 and P2 are around 10 pptv.

2.5.1 Comparison of the debiased dataset with in-situ observations

The comparison of MIPAS SO$_2$ with ACE-FTS and MIPASmon is only possible for altitudes above 12.5 and 15 km, respectively. The altitude region between about 8 and 12 km has been covered mainly by in-situ observations from aircraft.

In Fig. 7 we show a collection of published airborne measurements of SO$_2$ mainly observed before the year 2000 (Jaeschke et al., 1976; Inn and Vedder, 1981; Meixner, 1984; Möhler and Arnold, 1992; Reiner et al., 1998; Thornton et al., 1999; Jaeschke et al., 1999; Curtius et al., 2001). These are compared to MIPAS data of similar geographic range and season excluding periods of strong volcanic influence. Further, the MIPAS data are subdivided into measurement periods P1 (green) and P2 (blue, solid) because of the debiasing of measurement period P2 with respect to P1 as described above. In general the MIPAS data are in the range of in-situ observations. In the northern high- and mid-latitudes e.g. in Meixner (1984); Möhler and Arnold (1992), and Reiner et al. (1998) the values increase with lower altitudes, which is reflected in the MIPAS dataset. At more remote regions like over the equatorial and southern Pacific Ocean, Thornton et al. (1999) observed in general lower SO$_2$ mixing ratios than in the Northern Hemisphere (bottom row in Fig. 7). This is reflected mainly by the MIPAS data which show a weaker vertical gradient compared to the observations in the north and which are in magnitude similar to the Thornton et al. (1999) observations in the equatorial region. However, at southern subtropical and mid-latitudes MIPAS are higher than the in-situ data by 20–30 pptv.

A comparison with a more recent set of in-situ observations is presented in Fig. 8. The data have been collected by DLR-IPA (Deutsches Zentrum für Luft-und Raumfahrt – Institute für Physik der Atmosphäre) and MPI-K (Max-Planck-Institut für Kernphysik) using a jointly developed Ion Trap Chemical Ionization Mass Spectrometer (ITCIMS), described in Speidel et al. (2007), during several measurement campaigns (Schlager
et al., 2006; Fiedler et al., 2009b, 2011; Waddicor et al., 2012; Barth et al., 2014; Roiger et al., 2014).

In contrast to the behaviour of SO$_2$ with altitude shown before, this time the vmr values in the northern mid- to high-latitudes (first two rows in Fig. 8) do not show a distinct increase towards lower altitudes, which is different from MIPAS. Also the absolute in-situ measured vmr values are in most cases smaller than MIPAS, especially at altitudes below 10 km. In contrast, the equatorial and southern hemispheric ITCIMS data from AMMA, SCOUT-O3 and TROCCINOX are higher compared to MIPAS. The in-situ data from the ESMVal-Antarktis campaign are with around 10 pptv comparable to the S-Pacific data of Thornton et al. (1999) and lower than MIPAS up to 13 km by up to 40 pptv. Above 13 km differences are reduced to about 10 pptv.

Obviously, it is difficult to gain a coherent picture of the uncertainty of the MIPAS background SO$_2$ dataset in the lowermost stratosphere/upper troposphere from comparison with in-situ measurements. First, the variability of SO$_2$ in the UTLS is quite large. We have tried to restrict the MIPAS data to background situations while the in-situ data might contain cases where volcanic plumes are sampled. Unfortunately, the real matches between in-situ and MIPAS data are too sparse to get robust statistics – so we had to compare with seasonal mean MIPAS data. Second, aircraft campaigns are snapshots and even are often dedicated to specific objectives which might not be representative for the atmospheric situation in general. And, third, even the atmospheric background situation might be different due to changes in industrial emission patterns influencing the UTLS distributions of SO$_2$.

In summary, for the region between 7 and 15 km the MIPAS dataset of SO$_2$ (especially above 10 km) seems to be in accordance with the set of in-situ observations within its estimated systematic error of a few tens of ppt. Thus, in the following we will restrict the discussion to the debiased dataset and to altitudes above 10 km where also remaining differences between the debiased data of P1 and P2 are around 10–20 pptv.
3 Results and discussion

3.1 SO₂ distributions

As an example for daily distributions from MIPAS Fig. 9 shows volume mixing ratios of SO₂ at the altitude levels 18, 20, and 22 km for three days after the eruption of the Nabro volcano on 12 June 2011. The plume of enhanced concentrations is clearly visible on 17 June reaching from northern Africa over the mid-East to S-E Asia at 18 and 20 km while at 22 km altitude no clear enhancements are visible. This global dispersion is similar to observations by IASI (Clarisse et al., 2014; Fromm et al., 2014). One week later, on 24 June, the plume filled a large area of the Asian monsoon region. Its extension towards the west reached zero degrees longitude over northern Africa. Even at 22 km, enhanced values of SO₂ could be observed within a restricted area reaching from the Arabian Peninsula over India and S-China. One month later, on 22 July, the plume at 18 km extended around the globe from the tropics to high northern latitudes while at 20 km it remained within the tropics/subtropics and at 22 km no clear enhancements could be observed any more. In the MIPAS dataset enhanced values of lower stratospheric SO₂ over the Northern Hemisphere can be observed even until mid/end of September 2011. Of course it must be kept in mind that due to the limited vertical resolution, high volume mixing ratios in the retrieved profiles detected up to 22 km altitude do not guarantee that volcanic SO₂ actually reached these heights. Taking into account, however, the half-width of the averaging kernel it is very probable that the plume extended at least to heights of 20 km.

To give an overview over the whole measurement period, Figs. 10–12 show the dataset grouped as bins of 2 day and 10° zonal means. The most obvious signals influencing the time series are due to volcanic eruptions which have been indicated by triangles and abbreviations (see Table 3). A quantitative analysis of the emitted masses of SO₂ from these volcanic events is discussed in Sect. 3.2. In the subsequent Sect. 3.3 we try to extract the global distribution and the temporal behavior of the non-volcanic background of SO₂ in the UTLS.
3.2 Volcanic SO\textsubscript{2} mass and lifetime

As noticed above, the strongest contribution to the variability of SO\textsubscript{2} volume mixing ratios in our dataset is caused by volcanoes. Though not as strong as the one of Pinatubo in 1992, many mid-scale volcanic eruptions occurred in the period 2002–2012. Partly overlapping the measurement period of MIPAS there exist observations of volcanic SO\textsubscript{2} by the microwave limb-emission sounder MLS on Aura (Pumphrey et al., 2015). Though not being as sensitive to SO\textsubscript{2} as the mid-infrared observations, measurements in the microwave have the advantage of being less affected by particles, like aerosols or thin clouds in the line-of-sight.

In Fig. 13 we show an example of the development of the total mass of SO\textsubscript{2} as calculated from MLS and MIPAS volume mixing ratios during a period of time around the eruption of Sarychev on 12 June 2009. Directly after the eruption, total SO\textsubscript{2} masses of both instruments increase. However, MLS shows a faster rise and larger maximum values. After a few weeks, the global SO\textsubscript{2} masses of the instruments start to agree showing a similar decline afterwards.

We interpret this behavior as an underestimation of the MIPAS SO\textsubscript{2} masses directly after strong volcanic eruptions. This is supported by the assumption that the major mass of SO\textsubscript{2} is injected into the UTLS region during the eruption and decreasing afterwards, as observed e.g. by various nadir sounding satellite instruments. One of the main reasons for this underestimation is the influence of volcanic particles on the MIPAS measurements: spectra strongly affected by aerosols or clouds are excluded from the retrieval. As described in Höpfner et al. (2013) the cloud clearing algorithm excludes tangent views with a particle volume density of about 1–2 µm3 cm-3 along the line of sight. This causes a sampling artifact where non-plume air-masses are favored. Second, the presence of largely enhanced concentrations of SO\textsubscript{2} leads to saturation of the spectral lines and, thus, to an underestimation in the retrieval as described in Sect. 2.3. Third, the sampling of the horizontally restricted plume directly after the eruption by limb-sounding instruments results in errors in total mass estimation which might...
be slightly worse in case of MIPAS due to a less dense along-track sampling compared to MLS.

In order to compile a climatology of SO$_2$ masses emitted by volcanoes, we have fitted the MIPAS observations to a parametric model with exponential decay, similar as in Pumphrey et al. (2015):

$$M_{\Delta h_i}(t) = M_{\Delta h_i}(t_0) \times \exp \left(\frac{t - t_0}{\tau_{\Delta h_i}} \right).$$

(1)

$M_{\Delta h_i}(t)$ are the background-subtracted zonal mean masses of SO$_2$ observed by MIPAS binned over five days within the latitude range where elevated signals are observed and within the altitude range Δh_i. The background values have been determined using the observations just before the eruption time t_0. The fitting parameter $M_{\Delta h_i}(t_0)$ denotes the emitted mass at time t_0 and $\tau_{\Delta h_i}$ the e-folding lifetime of SO$_2$ at Δh_i.

Thus, unlike Pumphrey et al. (2015) we have chosen to perform an altitude-dependent fit within three atmospheric layers ($\Delta h_1 = 10–14$ km, $\Delta h_2 = 14–18$ km, $\Delta h_3 = 18–22$ km). Further, due to the underestimated SO$_2$ masses directly after a volcanic eruption, as discussed above, the fitting period initiates not at t_0 but when linear behavior of $\ln(M_{\Delta h_i}(t))$ starts and ends when no enhanced signal compared to the background is detected.

In the fifth row of Table 3 the resulting values of $M_{\Delta h_i}(t_0)$ and $\tau_{\Delta h_i}$ for all volcanic eruptions which could be detected within the MIPAS dataset are presented for each of the three atmospheric layers. The total masses are indicated in bold face. An independent fit of $M_{\Delta h_i}(t_0)$ and $\tau_{\Delta h_i}$ has only been possible for the eruptions with the largest signals: Kasatochi (August 2008), Redoubt (March 2009), Sarychev (June 2009), Merapi (November 2010), Puyehue-Cordón Caulle (June 2011), and Nabro (June 2011). This is indicated as extrapolation method “c” in Table 3. For the other eruptions typical lifetimes have been assumed as the average lifetimes of Kasatochi, Sarychev and Nabro ($\bar{\tau}_{\Delta h_1} = 13.3$ d, $\bar{\tau}_{\Delta h_2} = 23.6$ d, $\bar{\tau}_{\Delta h_3} = 32.3$ d). Thus, in those cases only the SO$_2$ masses $M_{\Delta h_i}(t_0)$ have been fitted. In Table 3 this is marked as extrapolation methods
“a” or “b” where “a” means that only one enhanced value of \(M_{\Delta h_i}(t) \) has been used after the eruption while “b” indicates that more than one values of \(M_{\Delta h_i}(t) \) have been fitted.

Uncertainties, which are given in brackets in Table 3 have been estimated by variation of the fitting interval time in case of methods “b” and “c”. Additionally, for the cases “a” and “b” where lifetimes have not been derived simultaneously, an error of 20\% in the assumed values of \(\bar{\tau}_{\Delta h_i} \) has been applied. The table also presents results of \(\text{SO}_2 \) mass and lifetime from previous studies. These are mainly based on nadir sounding satellite observations with the exception of Pumphrey et al. (2015) who discuss Aura/MLS limb measurements.

For an easier overview, a graphical representation of MIPAS total masses in comparison with external work is given in Fig. 14 where black symbols indicate MIPAS, red ones MLS and other colors the nadir observations. From a total of 42 pairs of MIPAS/external observations, 18 compare well within 1-\(\sigma \) and 28 within 2-\(\sigma \) error bars. Further, about 2/3rd (28 of 42) of the MIPAS derived \(\text{SO}_2 \) masses are lower than those derived from other sources. This might be explained by the fact that nadir instruments sample the whole column of \(\text{SO}_2 \) while the MIPAS altitude range considered here starts at 10 km, which leads to low MIPAS columns in cases where the bulk of \(\text{SO}_2 \) remains in the troposphere. Regarding only limb-sounders, MIPAS total masses compare within the uncertainties with MLS for So06, Ra06, Sa09 (retrieval above 215 hPa) and Na11 while MIPAS values are lower for Ka08 and higher for Ma05 and Gr11. However, under consideration of the lower pressure level given for the MLS dataset, MIPAS data of Ma05, So06 and Ra06, would be outside the estimated error range and lower than MLS.

For some of the volcanic eruptions detected in the MIPAS dataset (see Table 3), no published values of emitted \(\text{SO}_2 \) abundances have been found. We attributed those \(\text{SO}_2 \) plumes to specific volcanic eruptions by comparison with measurements from nadir sounding satellites given at http://so2.gsfc.nasa.gov or at http://sacs.aeronomie.be. Further, in two cases (mid-July and mid-August 2005) enhanced values of \(\text{SO}_2 \)
3.3 Global variability of background SO$_2$

A modulation of the SO$_2$ time series which seems not to be caused by volcanic activity appears in the Northern Hemisphere at mid- and high-latitudes (see the top row in Fig. 10): in summer the SO$_2$ volume mixing ratios at 10 km altitude are enhanced with monthly mean values reaching 80–100 pptv. This feature can best be detected during years when volcanic influence was comparably small, such as 2003, 2007 or 2010. In comparison, northern wintertime volume mixing ratios of SO$_2$ are around 40–50 pptv. An annual cycle of SO$_2$ is also slightly visible at mid-latitudes in the Southern Hemisphere, however, with strongly reduced amplitude compared to the north (10 pptv in winter vs. 40 pptv in summer).

A globally resolved view on the seasonal variability of the SO$_2$ non-volcanic “background” is provided in Fig. 15. Here we have tried to exclude periods of direct volcanic SO$_2$ influence by visual inspection of single observations (as in Fig. 9) and of the overview plots (Figs. 10–12). Time periods which have been excluded from the analysis are reported in the caption of Fig. 15. Certainly it is not possible to exclude any volcanic influence. However, we tried to avoid the signals of the larger volcanic erup-
tions in order to get a picture of possible non-volcanic impact, its global distribution and its temporal modulation.

The most obvious temporal variability in background SO\(_2\) is an annual cycle at 10 km altitude with maxima during summer over northern mid- to high- and southern mid-latitudes as already mentioned above. Further, at 12 km one can observe highest values of SO\(_2\) over the western Pacific and Atlantic at northern sub-tropical and middle latitudes in June/July/August (JJA). Enhanced values spread within this latitude band eastward over the Pacific and the Atlantic. Higher up, at 14 an 16 km, localized regions with enhanced SO\(_2\) mixing ratios can be found over SE-Asia, the Arabian Peninsula and middle America. At 18 km these locations of slightly enhanced values are still visible in JJA. Further, at this altitude there appear enhanced mixing ratios over the Antarctic region which are probably connected to the downwelling of SO\(_2\)-rich air within the Antarctic polar vortex as described by Höpfner et al. (2013).

Comparison of these global structures and temporal variations in the UTLS with previous in-situ measurements is difficult due to their sparsity and the variability of the observed SO\(_2\) concentrations. The main feature of the MIPAS dataset at lowest altitudes of 10 km, the annual variation with maximum values in JJA, cannot clearly be identified in available airborne in-situ measurements (c.f. Figs. 7 and 8). In-situ campaigns providing data in northern mid-latitudes during summer have been e.g. ACCESS, ITOP, TACTS and DC3 (Fig. 8). During ACCESS and TACTS mean volume mixing ratios in the order of 30 pptv have been detected at around 10 km altitude while the corresponding MIPAS data show about 50–70 pptv. During ITOP and DC3, however, the MIPAS values are more similar to the airborne averaged data of around 40–70 pptv. Thus, at the present stage, we cannot decide whether the annual variation of SO\(_2\) at 10 km altitude is robust or caused by unknown artifacts within the MIPAS retrieval.

A similar interhemispheric picture of the SO\(_2\) distribution as in the MIPAS dataset has been obtained by Thornton et al. (1999) during flights over the Pacific. At 8–12 km altitude a north–south gradient has been found with values of 50–150 pptv in the north
decreasing to 10 pptv at southern remote areas. (The Thornton et al. (1999) data are also included in the comparison of Fig. 7.)

Another feature reported by Thornton et al. (1999) and present also in the MIPAS distributions especially in JJA (c.f. Fig. 15) is the signal of pollution visible in the western North Pacific region east of the Asian continent and reaching even the upper troposphere. Enhanced levels of SO\textsubscript{2} in the free troposphere originating from the North China Plain have been observed by Ding et al. (2009) during airborne measurements in summer 2007. By trajectory analysis Ding et al. (2009) concluded that these polluted airmasses are further lifted into the upper troposphere by warm conveyor belts (WCBs). Further, Fiedler et al. (2009a) and Fiedler et al. (2009b) report on measurements of enhanced SO\textsubscript{2} concentrations over Europe with origin in East Asia.

Enhanced concentrations of SO\textsubscript{2} at around 16–18 km located mainly in the region of the Asian and the North American Monsoon cannot be compared to in-situ data due to the lack of observations at those altitudes. However, there may be a connection with the Asian tropopause aerosol layer (ATAL) which was detected in data of the spaceborne lidar CALIPSO (Vernier et al., 2011a). There is a region of enhanced aerosol backscatter signal in the region of the Asian monsoon extending vertically from around 13 to 18 km. A similar but less pronounced aerosol feature is also present in connection with the North American monsoon (Vernier et al., 2011a). The nature of these particles is still unclear. Due to their low depolarisation signal, either spherical droplets or small solid particles are candidates (Vernier et al., 2011a). The present MIPAS data indicate that there exist enhanced levels of SO\textsubscript{2} in the Monsoon regions at the altitudes of the ATAL. This points towards the possibility of a production of sulfate aerosols from SO\textsubscript{2} oxidation at those levels.

4 Conclusions

We have presented a dataset of global SO\textsubscript{2} volume mixing ratio distributions which is complementary to the one shown in Höpfner et al. (2013). While the latter covers the
altitude range of 15–40 km, the present retrievals extend from the upper troposphere up to about 20 km. In terms of temporal and horizontal resolution, the Höpfner et al. (2013) data are monthly and zonal average values of 10° latitudinal bins, while the new data record consists of single limb-scan retrievals from MIPAS/Envisat comprising more than thousand profiles with global coverage daily. The estimated total error for single vmr profiles is typically in the range 60–100 pptv. The error budget is dominated by the measurement noise. Other error contributions are estimated from about 10 pptv up to 100 pptv, with increasing errors towards lower altitudes. Comparison of the MIPAS SO$_2$ measurements with those of the ACE-FTS instrument revealed an altitude dependent offset in the background SO$_2$ concentrations of the second major measurement period of MIPAS (2005–2012). The two periods have been debiased by application of a height- and latitude-dependent correction field yielding residual biases of less than 20 pptv. Due to the sparsity of in-situ observations of SO$_2$ no systematic validation could be made with collocated measurements. However, we could compare within similar latitudes and seasons of the year. This resulted in a scatter of the differences within about ±50 pptv revealing no indication for a problem with the actual MIPAS data after debiasing.

Due to the global coverage of this dataset and the high sensitivity of limb observations, the evolution of SO$_2$ clouds from single volcanic eruptions reaching the region of the UTLS can be tracked, in some cases for even more than half a year. We have derived volcanic injection masses and for some cases also atmospheric lifetimes at three altitude regions for thirty eruptions between 2002 and 2012. The determination of masses of emitted SO$_2$ was complicated due to an underestimation of the total mass directly after the eruptions which has become evident by a comparison with SO$_2$ masses derived from MLS. This is attributed to sampling artifacts caused by the discard of MIPAS spectra with large aerosol contribution, an effect similar to the “aerosol cloud top” feature in SAGE II observations (McCormick and Veiga, 1992; Fromm et al., 2014) and the smearing of SO$_2$ profile maxima in case of extremely high mixing ratios where the spectral lines are saturated and, thus, carry less information. The derived
masses can be used as input for atmospheric models taking into account explicitly also smaller volcanic eruptions reaching stratospheric levels. Further, to our knowledge for the first time, the atmospheric e-folding lifetime of SO$_2$ has been derived at different levels in the UTLS. The average lifetimes increase with altitude from about 13 days at 10–14 km up to 32 days at 18–22 km and are compatible with estimates from previous observations.

Seasonal global maps of background SO$_2$ distributions are provided by omitting volcanically perturbed periods. In the northern mid- and high latitudes at about 10 km altitude these maps indicate an annual cycle with maximum values during summertime. Candidate explanations are the higher tropopause level during summer and the so-called flushing of the extratropical UTLS with tropospheric air from late spring to summer (Gettelman et al., 2011, and references therein). To our knowledge, such a cycle in SO$_2$ has not been observed before. However, the significance of this particular result is limited, and additional measurements are needed for confirmation or falsification. The same applies to increased concentrations of SO$_2$ at altitudes of 16–18 km at the regions and during the period of the Asian and North-American monsoon which might be linked to the ATAL (Vernier et al., 2011a). This calls for a closer probing of upper-altitude monsoon airmasses with respect to sulfur species which is actually a goal of the StratoClim project (http://www.stratoclim.org/).

Acknowledgements. H. Schlager, A. Roiger, and K. Wissmüller acknowledge support by the DLR projects ESMVal and VolcATS. This work was supported by the European Community within the StratoClim project (grant no. 603557). We acknowledge provision of MIPAS level-1b calibrated spectra by ESA, meteorological data by ECMWF, and data on volcanic activity by the Smithsonian’s Global Volcanism Program and by NASA’s Global Sulfur Dioxide Monitoring Home Page. Funding for the Atmospheric Chemistry Experiment is provided by the Canadian Space Agency. We acknowledge support by the Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of the Karlsruhe Institute of Technology.
The article processing charges for this open-access publication have been covered by a Research Centre of the Helmholtz Association.

References

ESA: Envisat MIPAS: An instrument for atmospheric chemistry and climate research, Tech. Rep. SP-1229, European Space Agency, SA Publications Division, ESTEC, P. O. Box 299, 2200 AG Noordwijk, the Netherlands, 2000. 5805

Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., Orphal, J., Stiller, G., von Clarmann, T., Funke, B., and Boone, C. D.: Sulfur dioxide (SO$_2$) as observed by MIPAS/Envisat: temporal development and spatial distribution at 15–45 km altitude, Atmos.

Table 1. Spectral windows for MIPAS SO$_2$ retrieval [cm$^{-1}$].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1128.2000–1129.4250</td>
<td>1128.1875–1129.4375</td>
<td></td>
</tr>
<tr>
<td>1132.1250–1132.7500</td>
<td>1132.1250–1132.7500</td>
<td></td>
</tr>
<tr>
<td>1136.3250–1136.8750</td>
<td>1136.3125–1136.8750</td>
<td></td>
</tr>
<tr>
<td>1139.4500–1141.0000</td>
<td>1139.4375–1141.0000</td>
<td></td>
</tr>
<tr>
<td>1142.0000–1143.3000</td>
<td>1142.0000–1143.3125</td>
<td></td>
</tr>
<tr>
<td>1366.5750–1368.2500</td>
<td>1366.5625–1368.2500</td>
<td></td>
</tr>
<tr>
<td>1369.9500–1370.6250</td>
<td>1369.9375–1370.6250</td>
<td></td>
</tr>
<tr>
<td>1371.1250–1371.9250</td>
<td>1371.1250–1371.9375</td>
<td></td>
</tr>
<tr>
<td>1376.0000–1376.6250</td>
<td>1376.0000–1376.6250</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Results of retrieval simulations for enhanced profiles. The vmr values of SO\textsubscript{2} at the profile maximum and the integrated column amounts between 10 and 25 km are reported (Ref. = Reference, Res. = Result, Diff. = Difference = (Res.-Ref.)/Ref. × 100).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.08</td>
<td>0.12</td>
<td>1.01</td>
<td>1.01</td>
<td>−6.34</td>
</tr>
<tr>
<td>5.08</td>
<td>0.52</td>
<td>4.43</td>
<td>4.43</td>
<td>−12.78</td>
</tr>
<tr>
<td>10.08</td>
<td>1.02</td>
<td>8.19</td>
<td>8.19</td>
<td>−18.71</td>
</tr>
<tr>
<td>50.08</td>
<td>5.03</td>
<td>31.02</td>
<td>31.02</td>
<td>−38.06</td>
</tr>
<tr>
<td>100.08</td>
<td>10.03</td>
<td>49.90</td>
<td>49.90</td>
<td>−50.14</td>
</tr>
</tbody>
</table>

5830
Table 3. Volcanic eruptions observed in MIPAS measurements. General data of volcanoes are obtained from http://www.volcano.si.edu. “TropVolc” indicate unidentified sources at low tropical latitudes. $M(t_0)$ are the resulting emission masses of SO$_2$ from the exponential fit (see text for details). Values of $M(t_0)$ are given for altitude ranges 10–14/14–18/18–22/10–22 km. “$\tau =$” in column $M(t_0)$ indicates that a fit of the lifetime was possible with the values in days given for the altitude ranges 10–14/14–18/18–22 km. Values in brackets indicate estimated errors.

<table>
<thead>
<tr>
<th>Name</th>
<th>Eruption date</th>
<th>Location °N/°E</th>
<th>$M(t_0)$ [Gg] if present: τ [d] from other sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ny</td>
<td>25 Jul 2002</td>
<td>-1.4/29.2</td>
<td>22(1)/12(1)/3(0)/37(2)a</td>
</tr>
<tr>
<td>Ru</td>
<td>25 Sep 2002</td>
<td>2.3/125.4</td>
<td>36(19)/39(15)/20(9)b</td>
</tr>
<tr>
<td>Rev</td>
<td>3 Nov 2002</td>
<td>-0.1/-77.7</td>
<td>54(47)/29(6)/12(2)/94(47)b</td>
</tr>
<tr>
<td>So</td>
<td>12 Jul 2003</td>
<td>16.7/-62.2</td>
<td>68(19)/28(7)/2(1)/98(20)b</td>
</tr>
<tr>
<td>Ma</td>
<td>27 Jan 2005</td>
<td>-4.1/145.0</td>
<td>79(15)/87(9)/39(3)/206(17)a</td>
</tr>
<tr>
<td>An</td>
<td>6 Apr 2005</td>
<td>16.4/145.7</td>
<td>34(11)/34(7)/0(0)/68(13)a</td>
</tr>
<tr>
<td>Tr</td>
<td>mid-Jul 2005</td>
<td>0.0/0.0</td>
<td>38(17)/21(5)/1(0)/60(18)a</td>
</tr>
<tr>
<td>Tr</td>
<td>mid-Aug 2005</td>
<td>0.0/0.0</td>
<td>61(26)/23(5)/3(1)/88(27)a</td>
</tr>
<tr>
<td>Ma</td>
<td>27 Feb 2006</td>
<td>-4.1/145.0</td>
<td>21(4)/58(8)/1(0)/80(9)a</td>
</tr>
<tr>
<td>So</td>
<td>20 May 2006</td>
<td>16.7/-62.2</td>
<td>40(29)/38(4)/85(15)/162(33)a</td>
</tr>
<tr>
<td>Ra</td>
<td>7 Oct 2006</td>
<td>-4.3/152.2</td>
<td>75(26)/118(34)/12(4)/205(43)b</td>
</tr>
<tr>
<td>Ny</td>
<td>27 Nov 2006</td>
<td>-1.4/29.2</td>
<td>49(6)/5(0)/-54(6)a</td>
</tr>
<tr>
<td>Fo</td>
<td>4 Apr 2007</td>
<td>-21.2/55.7</td>
<td>57(10)/12(1)/2(1)/71(10)a</td>
</tr>
<tr>
<td>Ta</td>
<td>30 Sep 2007</td>
<td>15.6/41.8</td>
<td>26(11)/27(5)/3(1)/56(12)b</td>
</tr>
<tr>
<td>Ch</td>
<td>2 May 2008</td>
<td>-42.8/-72.7</td>
<td>26(7)/2(0)/30(7)a</td>
</tr>
<tr>
<td>Ok</td>
<td>12 Jul 2008</td>
<td>53.4/-168.1</td>
<td>110(41)/31(6)/2(0)/143(41)b</td>
</tr>
<tr>
<td>Ka</td>
<td>7 Aug 2008</td>
<td>52.2/-175.5</td>
<td>645(12)/210(88)/34(8)/899(154)c</td>
</tr>
<tr>
<td>Da</td>
<td>3 Nov 2008</td>
<td>13.8/40.5</td>
<td>31(9)/47(10)/1(0)/79(13)b</td>
</tr>
<tr>
<td>Re</td>
<td>23 Mar 2009</td>
<td>60.5/-152.7</td>
<td>182(10)/18(7)/-200(12)a</td>
</tr>
<tr>
<td>Fe</td>
<td>10 Apr 2009</td>
<td>-0.4/-91.6</td>
<td>14(2)/11(3)/2(0)/27(4)a</td>
</tr>
<tr>
<td>Sa</td>
<td>12 Jun 2009</td>
<td>48.1/153.2</td>
<td>888(293)/542(60)/44(4)/1473(299)b</td>
</tr>
</tbody>
</table>

$\tau =$

5831
Table 3. Continued.

<table>
<thead>
<tr>
<th>Name</th>
<th>Eruption date</th>
<th>Location ° N° E if present: τ [d]</th>
<th>$M(t_0)$ [Gg] if present: τ [d] from other sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyamuragira</td>
<td>2 Jan 2010</td>
<td>−1.4/29.2</td>
<td>17(5)/3(1)/2(0)/22(6)</td>
</tr>
<tr>
<td>Soufrière Hills</td>
<td>11 Feb 2010</td>
<td>16.7/−62.2</td>
<td>11(3)/12(2)/5(1)/28(4)</td>
</tr>
<tr>
<td>Pacaya</td>
<td>28 May 2010</td>
<td>14.4/−90.6</td>
<td>−/10(2)/4(1)/14(2)</td>
</tr>
<tr>
<td>Merapi</td>
<td>4 Nov 2010</td>
<td>−7.5/110.4</td>
<td>−/253(61)/23(7)/276(61)</td>
</tr>
<tr>
<td>Shiveluch</td>
<td>12 Dec 2010</td>
<td>56.7/161.4</td>
<td>18(4)/1(0)/0(0)/20(4)</td>
</tr>
<tr>
<td>Karymsky</td>
<td>1 Jan 2011</td>
<td>54.0/159.4</td>
<td>−/−/1(0)/1(0)</td>
</tr>
<tr>
<td>Grímsvötn</td>
<td>21 May 2011</td>
<td>64.4/−17.3</td>
<td>273(101)/2(0)/−/276(101)</td>
</tr>
<tr>
<td>Puyehue-Cordón Caulle</td>
<td>4 Jun 2011</td>
<td>−40.6/−72.1</td>
<td>185(33)/−/185(33)</td>
</tr>
<tr>
<td>Nabro</td>
<td>12 Jun 2011</td>
<td>13.4/41.7</td>
<td>131(86)/343(79)/65(5)/539(117)</td>
</tr>
</tbody>
</table>

* a extrapolation method, see Sect. 3.2
* b Prata and Bernardo (2007), c Carn et al. (2009), d Carn and Prata (2010), e Pumphrey et al. (2015), f Prata et al. (2010)
* g Tulet and Villeneuve (2011), h Clarisse et al. (2008), i Neely et al. (2013, Table S1) and references therein
* j Karagulian et al. (2010), k Spinel et al. (2010), l Corradini et al. (2010), m Krotkov et al. (2010)
* n Kristiansen et al. (2010), o Clarisse et al. (2012), p http://www.volcano.si.edu/volcano.cfm?vn=221070; S. Carn, personal communication, 2014
* q Lopez et al. (2013), r Haywood et al. (2010), s Cole et al. (2010), t derived from Aura/OMI–30 May 2010 (http://so2.gsfc.nasa.gov)
* u Surono et al. (2012), v Clarisse et al. (2014)
Figure 2. Comparison between MIPAS and ACE-FTS collocated single profile measurements. Left column: average profiles (red solid: MIPAS original dataset, red dotted: MIPAS dataset after debiasing, c.f. Sect. 2.5). Second column: mean differences MIPAS-ACE-FTS (solid: before, dotted: after debiasing) together with their standard error (error bars; not visible in the top row since these are smaller than the line thickness) calculated as their SD (see third column) divided by the square root of the number of pairs (see last column). Third column: SD of the single differences (black line) and the mean value of the combined estimated precision of the two instruments (blue line). Fourth column: number of collocated pairs used for comparison at each altitude. Top row: only those pairs are selected where ACE-FTS profile values are smaller than 50 pptv up to 20 km altitude. Middle row: only those pairs are selected where ACE-FTS profile values are above 50 pptv at least at one altitude level up to 20 km. Bottom row: same as middle row, but for a lower limit of 200 pptv.
Figure 3. Same as top row in Fig. 2 but (1) separated in MIPAS phase 1 (top row) and phase 2 (bottom row) observation periods, and (2) excluding periods with strong volcanic influence (January–June 2005, May–November 2006, October 2007, July–December 2008, June–December 2009).
Figure 4. Comparison between monthly mean profiles from ACE-FTS, MIPASmon (Höpfner et al., 2013) and MIPAS. Left: average profiles (red solid: MIPAS original dataset, red dotted: MIPAS dataset after debiasing). Middle: mean differences (blue: MIPASmon – ACE-FTS, red: MIPAS – ACE-FTS, red solid: before, red dotted: after debiasing) together with their standard error (error bars; not visible in the top row since these are smaller than the line thickness). Right: number of collocated pairs of monthly mean values used for comparison at each altitude. Top: only those pairs are selected where MIPASmon profile values are smaller than 50 pptv up to 20 km altitude. Bottom: only those pairs are selected where MIPASmon profile values are above 100 pptv at least at one altitude level up to 20 km.
Figure 5. Same as top row in Fig. 4 but (1) only for MIPASmon and MIPAS, (2) separated in MIPAS phase 1 (top row) and phase 2 (bottom row) observation periods, and (3) excluding periods with strong volcanic influence (October–December 2002, July 2003, January–June 2005, May–November 2006, October 2007, July–December 2008, June–December 2009, November–December 2010, July–September 2011).
Figure 6. Bias correction applied to the MIPAS dataset from period P2 (2005–2012).
Figure 7. Comparison between in-situ and debiased MIPAS observations of SO\textsubscript{2}. Green lines indicate MIPAS measurements before April 2004 and blue lines after January 2005 (solid thin lines: mean of each year, solid bold lines: mean of all profiles). Black diamonds show the in-situ observations based on publications as given in the plot title (JAESCHKE76: Jaeschke et al. (1976), INN81: Inn and Vedder (1981), MEIXNER84: Meixner (1984), MOEHLER92: Möhler and Arnold (1992), THORNTON99: Thornton et al. (1999), CURTIUS01: Curtius et al. (2001), JAESCHKE99: Jaeschke et al. (1999), REINER98: Reiner et al. (1998), INN81: Inn and Vedder (1981), MEIXNER84: Meixner (1984), MOEHLER92: Möhler and Arnold (1992), THORNTON99: Thornton et al. (1999), CURTIUS01: Curtius et al. (2001), JAESCHKE99: Jaeschke et al. (1999), REINER98: Reiner et al. (1998). In case of THORNTON99, the data from Thornton et al. (1999, Plate 3) have been subdivided into five regions over the Pacific (bold black lines: mean, dotted: median). Periods with strong volcanic influence have been excluded from the MIPAS data (see caption of Fig. 5).
Figure 8. Comparison between in-situ airborne ITCIMS observations and the debiased MIPAS dataset of SO$_2$. Green lines indicate MIPAS measurements before April 2004 and blue lines after January 2005 (solid thin lines: monthly mean for each year, solid bold lines: mean of all profiles, dashed bold lines: monthly mean for year of in-situ observation). Black diamonds and horizontal bars show the mean values of the in-situ observations as well as their 1-σ variability. The median value of the in-situ measurements is indicated by black triangles. Periods with strong volcanic influence have been excluded from the MIPAS data (see caption of Fig. 5).
Figure 9. Example from the MIPAS dataset of SO$_2$ for three days and at three altitude levels after the eruption of Nabro on 12 June 2011. Note that the color-scale does not cover the entire range of the data such that vmr values > 300 pptv are set to the color at 300 pptv (red) and negative values to zero (black).
Figure 10. Global time series of color-coded SO$_2$ distributions at various altitudes with a time resolution of two days. The color scale is restricted to 0–200 pptv: negative and values larger than 200 pptv are given the color belonging to 0 and 200 pptv, respectively. Volcanic eruptions are indicated at the latitude of their location (for details see Table 3).
Figure 11. Time series of color-coded SO$_2$ volume mixing ratio profiles for 10° latitude bins in the Southern Hemisphere with a time resolution of two days. The color scale is restricted to 0–200 pptv: negative and values larger than 200 pptv are given the color belonging to 0 and 200 pptv, respectively. Volcanic eruptions are indicated at the latitude bin of their location (for details see Table 3).
Figure 12. Same as Fig. 11 but for the Northern Hemisphere.
Figure 13. Comparison between daily values of total mass of SO$_2$ above 146.8 hPa from MIPAS (red) and from MLS de-seasonalised observations (black) (Pumphrey et al., 2015).
Figure 14. Graphical representation of total SO\textsubscript{2} eruption masses as listed in Table 3. Black: MIPAS, red: MLS, other colors: nadir instruments. The colored numbers refer to the references given in Table 3.