Partitioning and budget of inorganic and organic chlorine species observed by MIPAS-B and TELIS in the Arctic in March 2011

G. Wetzel1, H. Oelhaf1, M. Birk2, A. de Lange3, A. Engel4, F. Friedl-Vallon1, O. Kirner5, A. Kleinert1, G. Maucher1, H. Nordmeyer1, J. Orphal1, R. Ruhnke1, B.-M. Sinnhuber1, and P. Vogt2

1Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
2Deutsches Zentrum für Luft und Raumfahrt, Institut für Methodik der Fernerkundung, Wessling, Germany
3SRON-Netherlands Institute for Space Research, Utrecht, the Netherlands
4Institut für Atmosphäre und Umwelt, J. W. Goethe Universität Frankfurt, Frankfurt, Germany
5Karlsruhe Institute of Technology, Steinbuch Centre for Computing, Karlsruhe, Germany
Received: 18 December 2014 – Accepted: 3 February 2015 – Published: 25 February 2015
Correspondence to: G. Wetzel (gerald.wetzel@kit.edu)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The Arctic winter 2010/11 was characterized by a persisting vortex with extremely cold temperatures in the lower stratosphere above northern Scandinavia leading to a strong activation of chlorine compounds (ClO$_x$) like Cl, Cl$_2$, ClO, ClOOCl, OCIO, and HOCl which rapidly destroyed ozone when sunlight returned after winter solstice. MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) and TELIS (Terahertz and submillimeter Limb Sounder) balloon measurements obtained in northern Sweden on 31 March 2011 inside the polar vortex have provided vertical profiles of inorganic and organic chlorine species as well as diurnal variations of ClO around sunrise over the whole altitude range in which chlorine is undergoing activation and deactivation. This flight was performed at the end of the winter during the last phase of ClO$_x$ deactivation. The complete inorganic and organic chlorine partitioning and budget in the stratosphere has been derived by combining MIPAS-B and TELIS simultaneously observed molecules. A total chlorine amount of 3.41 ± 0.30 ppbv is inferred from the measurements. This value is in line with previously carried out stratospheric observations confirming the slightly decreasing chlorine trend in the stratosphere. Observations are compared and discussed with the output of a multi-year simulation performed with the Chemistry Climate Model EMAC (ECHAM5/MESSy Atmospheric Chemistry). The simulated stratospheric total chlorine amount is in accordance with the MIPAS-B/TELIS observation taking into account the fact that some chlorine source gases and very short lived species are not included in the model.

1 Introduction

The discovery of the Antarctic stratospheric “ozone hole” in the seventies of the last century (Farman et al., 1985) strongly intensified research to unravel the reason for this ozone depletion. Chemically active chlorine (ClO$_x$) species like Cl, Cl$_2$, ClO, ClOOCl, OCIO, and HOCl are part of total inorganic chlorine Cl$_y$ (ClO$_x$ + HCl + ClONO$_2$). They
play a dominant role in the catalytic destruction of stratospheric ozone during polar winter when cold temperatures and heterogeneous chemical reactions on polar stratospheric cloud (PSC) particles have previously enabled active chlorine compounds (mainly Cl$_2$) to be produced from its reservoir species ClONO$_2$, HCl, and HOCl (e.g., Molina and Rowland, 1974; Solomon et al., 1986; Molina et al., 1987; Crutzen and Oppenheimer, 2008). Due to the Montreal Protocol and successor agreements, emissions of dominant halocarbons were reduced such that total tropospheric (organic) chlorine is decreasing since 1994 after reaching a peak value of nearly 3.7 parts per billion by volume (ppbv) (O’Doherty et al., 2004; WMO, 2011). The stratospheric total chlorine peak occurred several years later, because of the stratospheric age of air (Engel et al., 2002; WMO, 2011; Kohlhepp et al., 2012). The amount of equivalent effective stratospheric chlorine (chlorine and bromine halogens) is predicted to return to 1980 values around 2050 at mid-latitudes (Stolarski et al., 2010; WMO, 2011).

To assess and monitor the partitioning and budget of chlorine, a number of measurements of its individual compounds have been carried out to calculate the amount of inorganic (Cl$_y$), organic (CCl$_y$), and finally total chlorine (Cl$_{total}$). An early observation based on data from the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument has been published by Zander et al. (1992). A mean stratospheric total chlorine volume mixing ratio (VMR) of 2.58 ppbv was observed at 30° N in 1985. Significantly enhanced values between 3.4 and 3.5 ppbv in the 1992 Arctic lower stratosphere were estimated using retrieved data from the balloon-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) in combination with in-situ measurements (von Clarmann et al., 1995). A further slightly enhanced value of 3.53 ppbv was detected during the ATMOS/ATLAS-3 November 1994 mission at northern mid-latitudes, also demonstrating the strong increase of stratospheric total chlorine in this time period before regulating measures could alter this linear trend of 0.10 ppbv year$^{-1}$ (Zander et al., 1996). The same trend has been deduced between 1991 and 1995 by estimating total chlorine with the help of HCl observations from the Halogen Occultation Experiment (HALOE; Russell III et al., 1996). A further increased Cl$_{total}$ value of
3.7 ppbv was derived from MkIV balloon measurements carried out in the 1997 Arctic summer (Sen et al., 1999). This measurement occurred close to the turn-over of the total stratospheric chlorine amount. Chlorine data obtained by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in combination with in-situ measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE) campaign (Schauffler et al., 2003; Nassar et al., 2006) were used to estimate Cl_{total} between February 2004 and January 2005 in five latitude zones. A mean stratospheric Cl_{total} value of 3.65 ppbv was determined for both the northern and southern mid-latitudes. This beginning temporal decrease of stratospheric chlorine was confirmed by observations of the Microwave Limb Sounder (MLS) from August 2004 until January 2006 (Froidevaux et al., 2006). A Cl_{total} value of 3.60 ppbv at the end of this time period was inferred from HCl measurements and a decrease of about 43 pptv in the stratospheric chlorine loading within this 18 month period was detected.

The long term trend of stratospheric inorganic chlorine was investigated by using data of multiple space-borne sensors like ACE-FTS, ATMOS, MLS, CLAES (Cryogenic Limb Etalon Spectrometer), CRISTA (Cryogenic Infrared Spectrometer and Telescope for the Atmosphere) and HALOE (Lary et al., 2007). Inter-instrument biases were overcome by using a neural network. The abundance of Cl_{y} as a function of HCl and CH_{4} was learned with a further neural network. This time series confirms that stratospheric Cl_{y} peaked in the late 1990s and started to decrease as expected from the changing concentrations of tropospheric source gases and related transport times from the troposphere to the stratosphere. More recent published observations of Cl_{total} were performed by ACE-FTS covering the years 2004 until 2009. Nine chlorine containing species have been directly measured by the satellite instrument (Brown et al., 2011, 2013). These data were supplemented by a number of further trace gases which were calculated using the SLIMCAT 3-dimensional Chemical Transport Model (Chipperfield, 2006). Global mean stratospheric chlorine was found to decrease by 0.46 % year^{-1} in the time period under investigation.
The purpose of this paper is to assess the current status of the partitioning and budget of inorganic and organic Arctic stratospheric chlorine. Trace gas profiles of individual chlorine compounds were retrieved from limb emission spectra recorded during a balloon flight of MIPAS-B and the Terahertz and submillimeter Limb Sounder (TELIS) from Kiruna (Sweden) on 31 March 2011 inside the polar vortex. A description of the instruments, data analysis and chemical modelling is given in Sect. 2. A discussion of the observed chlorine partitioning and budget follows in Sect. 3 together with a comparison of the combined measured data to simulations of the Chemistry Climate Model (CCM) EMAC (ECHAM5/MESsy Atmospheric Chemistry model).

2 Instruments, data analysis and modelling

The Arctic winter 2010/11 was characterized by a cold vortex persisting from December until the end of March (Manney et al., 2011; Sinnhuber et al., 2011). Temperatures were below the threshold associated for chlorine activation (~196K) for more than 100 days between about 15 and 23 km. Consequently, an unprecedented Arctic ozone loss was observed which could be described for the first time as an Arctic ozone hole since ozone profiles in late March resembled typical Antarctic late-winter profiles (Manney et al., 2011; Sinnhuber et al., 2011). The MIPAS-B/TELIS flight took place on 31 March 2011 over northern Scandinavia inside the Arctic vortex at the end of the chlorine deactivation period which started slowly in early March and accelerated towards the end of this month. The balloon gondola was launched from Esrange near Kiruna (Sweden) and reached its float level at about 35 km. Recorded limb sequences of MIPAS-B and TELIS are depicted in Fig. 1.

2.1 MIPAS-B instrument and data analysis

The balloon-borne limb-emission sounder MIPAS-B is a cryogenic Fourier Transform spectrometer which operates in the mid-infrared spectral range between about 4 and
14 µm. The maximum optical path difference of 14.5 cm of the beam in the interferometer allows a high unapodized spectral resolution of 0.0345 cm\(^{-1}\) (about 0.07 cm\(^{-1}\) after apodization with the Norton and Beer (1976) “strong” function) which allows the separation of individual spectral lines from continuum-like emissions in combination with a high radiometric accuracy of typically 1%. Values of the noise equivalent spectral radiance (NESR) are typically within \(1 \times 10^{-9}\) and \(7 \times 10^{-9}\) W(cm\(^2\)sr cm\(^{-1}\))\(^{-1}\) for a single calibrated spectrum. Averaging over \(n\) spectra \((n \leq 5)\) per single elevation scan reduces the spectral noise by a factor of \(1/\sqrt{n}\). The instrument is characterized by a high performance and flexibility of the pointing system with a knowledge of the tangent altitude of better than 50 m at the 1σ confidence limit. A comprehensive overview and description of the instrument together with processing of recorded interferograms to calibrated spectra including phase correction, Fourier Transformation to the spectral domain, and two-point calibration of the spectra from arbitrary to radiance units is given by Friedl-Vallon et al. (2004) and references therein. This publication further includes instrument characterization in terms of the instrumental line shape, field of view, NESR, line of sight of the instrument, detector non-linearity and the error budget of the calibrated spectra.

Forward radiance calculations were performed with the Karlsruhe Optimized and Precise Radiative transfer Algorithm (KOPRA; Stiller et al., 2002) which is a line-by-line and layer-by-layer model to simulate the infrared radiative transfer through the atmosphere. Molecular spectroscopic parameters for the calculation of limb emission spectra were taken from the high-resolution transmission molecular absorption database (HITRAN; Rothman et al., 2009) with updates according to Flaud et al. (2003). KOPRA also calculates derivatives of the radiance spectrum with respect to atmospheric state and instrument parameters and thus provides the Jacobians for the retrieval procedure KOPRAFIT (Höpfner et al., 2002). Since the vertical scan distance of adjacent tangent altitudes ranges between 1 and 1.5 km, the retrieval grid was set to 1 km up to the balloon float altitude. Above this level, the vertical spacing increases to 10 km at the top altitude at 100 km. Considering the smoothing of the vertical part of the instrumental
field of view, the retrieval grid is finer than the achievable vertical resolution of the measurement for a large part of the altitude region covered (especially above the observer altitude). To avoid retrieval instabilities due to this oversampling of the vertical retrieval grid, a Tikhonov–Phillips regularization approach (Phillips, 1962; Tikhonov, 1963) was applied which was constrained with respect to a first derivative a priori profile x_a of the target species:

$$
x_{i+1} = x_i + \left[K^T S_y^{-1} K_i + R \right]^{-1} \left[K^T S_y^{-1} (y_{\text{meas}} - y(x_i)) - R (x_i - x_a) \right]
$$

(1)

Where x_{i+1} is the vector of the desired state parameters for iteration $i + 1$; y_{meas} is the measured radiance vector and $y(x_i)$ the calculation of the radiative transfer model using state parameters of iteration number i; K is the Jacobian matrix containing partial derivatives $\partial y(x_i)/\partial x_i$ while S_y^{-1} is the inverse noise measurement covariance matrix and R a regularization matrix with the first derivative operator and a regularization strength parameter.

In a first step, a temperature retrieval was performed using appropriate CO$_2$ lines of two separate bands around 810 and 950 cm$^{-1}$ and a priori pressure-temperature information from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses together with a CO$_2$ VMR profile updated with data from NOAA ESRL GMD (National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division; Montzka et al., 1999). The temperature retrieval 1σ accuracy is estimated to be within about 0.7 K. Then, VMR profiles of the target species are individually retrieved in selected spectral regions (see Table 1). Profiles of species interfering with the target molecule were adjusted simultaneously during the retrieval procedure. An overview of the principal analysis of spectra with regard to chlorine-containing molecules is given in von Clarmann et al. (1995) and Wetzel et al. (2002, 2010). The error estimation of the target parameter consists of random and systematic errors which were added in quadrature to yield the total error which refers to the 1σ confidence limit. Random errors include spectral noise as well as covariance effects of the simultaneously fitted parameters. Systematic errors mainly comprise spectroscopic
data inaccuracies (band intensities), uncertainties in the line of sight, and gain calibration errors. The altitude resolution is calculated from the number of degrees of freedom of the retrieval which corresponds to the trace of the averaging kernel matrix. Typical values for the retrieved parameters are given in Table 1.

2.2 TELIS instrument and data analysis

The cryogenic heterodyne balloon sounder TELIS was developed in a collaboration of three partners: the German Aerospace Centre (DLR), Rutherford Appleton Laboratory (RAL), UK, and the Netherlands Institute for Space Research (SRON). Each institute generated one channel: 1.8 THz (DLR), 500 GHz (RAL), and 480–650 GHz (SRON). A comprehensive description of the instrument is given by Birk et al. (2010) and de Lange et al. (2012). HCl and ClO results presented here were derived from spectra in the 480–650 GHz channel with a tunable superconducting integrated receiver (SIR) developed and characterized by de Lange et al. (2010) and de Lange et al. (2012).

A local oscillator (LO) reference signal is mixed with the atmospheric signal in a non-linear mixer. The measured spectrum is the superposition of two spectra covering the frequency ranges \(\nu_{LO} + \nu_{IF} \) and \(\nu_{LO} - \nu_{IF} \), where \(\nu_{IF} \) is the measured difference (intermediate) frequency (IF).

The analysis of the TELIS spectra is carried out in a similar way as for the MIPAS-B retrieval procedure. A forward line-by-line model is used to model the radiative transfer along the line-of-sight of the instrument. Spectroscopic parameters are also taken from the HITRAN database (Rothman et al., 2009). An instrument model to account for the specifics of the TELIS instrument is included in the forward algorithm. Further details on the forward model are described by de Lange et al. (2009) and references therein. The forward model is inverted with a Gauss–Newton iteration scheme in combination with a Tikhonov–Phillips regularization approach (Phillips, 1962; Tikhonov, 1963) as described in the previous section.

HCl retrievals are performed separately for both chlorine isotopes \(\text{H}^{35}\text{Cl} \) and \(\text{H}^{37}\text{Cl} \). The total amount of HCl can be determined by taking into account the isotope abun-
dance of H^{35}Cl (75.76 %) and H^{37}Cl (24.23 %). While the precision error of HCl is very small ($\sim 0.01 \text{ ppbv}$) the systematic error estimate yields between 0.05 and 0.4 ppbv corresponding to a total error of about 10 to 15 % in the region of the VMR maximum. Systematic error sources are instrumental uncertainties like instrumental line shape and side band ratio inaccuracies, detector non-linearity, calibration and pointing errors. Furthermore, errors in the atmospheric pressure-temperature profile as well as spectroscopic data errors are taken into account. The largest uncertainty stems from the non-linear behaviour of the detector. This holds also for the ClO retrievals. The overall accuracy of ClO is almost entirely determined by systematic error sources. Similar to HCl, the total error for the species ClO typically remains within 10 and 15 % in the altitude region of its VMR maximum. An overview on the characteristics of the retrieved species is given in Table 2.

2.3 Model calculations

Measured data are compared to simulations performed with the Chemistry Climate Model EMAC which is a numerical chemistry and climate simulation system that includes sub-models describing tropospheric and middle atmosphere processes (Jöckel et al., 2010). It uses the second version of the Modular Earth Submodel System (MESSy2) to link multi-institutional computer codes. The core atmospheric model is the 5th generation European Centre Hamburg general circulation model (ECHAM5, Roeckner et al., 2006). For the present study we applied EMAC (ECHAM5 version 5.3.02, MESSy version 2.50) in the T42L39MA-resolution, i.e. with a spherical truncation of T42 (corresponding to a quadratic Gaussian grid of approximately 2.8° by 2.8° in latitude and longitude) with 39 vertical hybrid pressure levels from the ground up to 0.01 hPa. The applied model setup comprised among others the submodels MECCA (Sander et al., 2005) for the calculation of gas-phase chemistry and the submodel MSBM (Kirner et al., 2011) for the simulation of polar stratospheric clouds and the calculation of heterogeneous reaction rates.
A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and the surface pressure above the boundary layer and below 1 hPa towards the ECMWF reanalysis ERA-Interim (Dee et al., 2011) has been applied to simulate realistic synoptic conditions. Boundary conditions for greenhouse gases, chlorofluorocarbons (CFCs), and halons are adapted from observations (WMO, 2011; Meinshausen et al., 2011). Halogenated hydrocarbons are included according to the WMO-A1 scenario (WMO, 2011). Chlorine containing tropospheric source gases considered in EMAC are CFC-11, CFC-12, HCFC-22, CFC-113, CCl₄, CH₃Cl, and CH₃CCl₃. Photolysis rates of HCFC-22 and CFC-113 are the same as for CFC-12. The simulation includes a comprehensive chemistry setup from the troposphere to the lower mesosphere with 104 gas phase species, 234 gas phase reactions, 67 photolysis reactions, and 11 heterogeneous reactions on liquid aerosols, nitric acid trihydrate (NAT) and ice particles. Rate constants of gas-phase reactions are taken from Atkinson et al. (2007) and Sander et al. (2011). The model output data was saved every 10 min. The temporally closest output to the MIPAS-B measurements has been interpolated in space to the observed geolocations.

3 Chlorine partitioning and budget

The unique combination of two different sensors, MIPAS-B and TELIS, working in different spectral regions (mid-infrared and microwave), enables the simultaneous measurement of virtually all relevant inorganic and organic chlorine molecules. The amount of inorganic chlorine \([\text{Cl}_y]\) is defined as:

\[
[\text{Cl}_y] = [\text{ClO}_x] + [\text{HCl}] + [\text{ClONO}_2] \quad (2)
\]

where active chlorine \([\text{ClO}_x]\) is calculated via:

\[
[\text{ClO}_x] = [\text{ClO}] + [\text{HOCl}] + 2[\text{ClOOCI}] \quad (3)
\]
The amount of organic chlorine \([\text{CCl}_y]\) is composed of:

\[
[\text{CCl}_y] = 2[\text{CFC-12}] + 3[\text{CFC-11}] + [\text{HCFC-22}] + 3[\text{CFC-113}] + 4[\text{CCl}_4] + [\text{CH}_3\text{Cl}] \quad (4)
\]

Total chlorine \([\text{Cl}_{\text{total}}]\) is given as the sum of both budgets:

\[
[\text{Cl}_{\text{total}}] = [\text{Cl}_y] + [\text{CCl}_y] \quad (5)
\]

 Constituents, which are of minor importance for the Arctic stratospheric chlorine budget (e.g. \(\text{Cl}_2\), \(\text{Cl}\), \(\text{OCIO}\), \(\text{CH}_3\text{CCl}_3\), \(\text{CFC-114}\), \(\text{CFC-115}\), \(\text{HCFC-141b}\), \(\text{HCFC-142b}\), Halon-1211) are neglected here. All the quantities defined in Eqs. (2) to (5) can be deduced from TELIS (measuring ClO and HCl) and MIPAS-B (measuring all gases except HCl) observations. However, the chlorine monoxide dimer \(\text{ClOOCl}\) is only measurable by MIPAS-B under activated chlorine conditions ([\(\text{ClOOCl}\)] > 0.5 ppbv) without any PSC emissions in the recorded spectra (Wetzel et al., 2010). This was not the case during the balloon flight on 31 March 2011. However, \(\text{ClOOCl}\) can be estimated from \(\text{ClO}\) with the following relation:

\[
[\text{ClOOCl}] = ([\text{ClO}_{\text{noon}}] + 2[\text{ClOOCl}_{\text{noon}}] - [\text{ClO}])/2 \quad (6)
\]

while the amounts of \([\text{ClO}_{\text{noon}}]\) and \([\text{ClOOCl}_{\text{noon}}]\) which correspond to noon maximum, respectively minimum values in the diurnal variations of these species, can be both taken from EMAC simulations if the modelled \(\text{ClO}\) is constrained to the measured one.

MIPAS-B spectra have been recorded from night until day. The sunrise took place between 02:38 UTC at 36 km and 03:10 UTC at 9 km altitude. Figure 2 shows the measured ClO cross section from 02:00 to 04:38 UTC, corresponding to 64.0° N, 30.1° E and 63.5° N, 28.9° E. A temporal variation of ClO is clearly visible. The concentration of this species is a measure of whether the sounded air masses are still chlorine-activated or not. After sunrise the mixing ratio of ClO increases in a layer between 16 and 22 km from nighttime values below 0.05 ppbv to daytime mixing ratios up to 0.4 ppbv. During periods of strong chlorine activation significantly higher values around 2 ppbv are
observed (see, e.g., Santee et al., 2003; Wetzel et al., 2012). The ClO increase is reproduced similarly by both instruments, MIPAS-B and TELIS. The latter instrument measured not only with higher vertical resolution but also with higher temporal resolution compared to MIPAS-B, hence the TELIS data was transferred to the coarser temporal grid of MIPAS-B for better comparability. At higher altitudes above 26 km, MIPAS-B ClO temporal retrieval fluctuations are visible due to the large noise error in this altitude region. As a consequence, the TELIS ClO data was used for calculating the chlorine partitioning and budget.

The decreasing ClO$_x$ at the end of the Arctic winter in the lower stratosphere due to rising temperatures followed by shrinking ClO$_x$ production from heterogeneous chemical reactions is in line with high amounts of ClONO$_2$ in this altitude region. The reaction of ClO with NO$_2$ produces the reservoir species ClONO$_2$. The measured time evolution of this molecule is displayed in Fig. 3. Measured ClONO$_2$ data exhibit high values which are typical for observations in the late Arctic winter. Only in an atmospheric layer around 19 km the vertical mixing ratio gradient is small since some residual amounts of active chlorine are still available in this altitude region. This observed signature is in line with the enhanced ClO amounts around 19 km as seen in Fig. 2. A significant diurnal temporal variation is not visible in the ClONO$_2$ data.

The mean measured chlorine partitioning and budget for early morning is displayed in Fig. 4. A noise-error weighted averaging was applied to calculate the mean profiles, although statistical errors of the individual species profiles are similar. The molecules ClO and ClOOCl exhibit a temporal variation over the measured time period. However, since their mixing ratios are very low at this time in the year, vertical profiles of these species have also been averaged over the observed time period, with almost no consequence. To obtain a proxy of total inorganic chlorine, a N$_2$O-Cl$_y$ correlation was derived from air samples collected with the balloon-borne cryogenic whole air sampler BONBON between 2009 and 2011 according to the method described in Engel et al. (2002) and Wetzel et al. (2010). The proxy inorganic chlorine [Cl$_y^*$] is calculated
with the following dependence on the amount of \([\text{N}_2\text{O}]\), both given in ppbv:

\[
[\text{Cl}_y^*] = 3.2008346 + 8.7786479 \times 10^{-6} [\text{N}_2\text{O}] - 2.9132361 \times 10^{-5} [\text{N}_2\text{O}]^2.
\] (7)

This correlation has been adapted to MIPAS-B measured \(\text{N}_2\text{O}\) and yields up to 3.20 ppbv \(\text{Cl}_y^*\) in the stratosphere. The amount of inorganic chlorine is dominated by the chlorine reservoir species \(\text{ClONO}_2\) and \(\text{HCl}\), the latter one especially above 24 km. Above this altitude, where the \(\text{Cl}_y\) VMR is supposed to be vertically constant, the mean observed \(\text{Cl}_y\) amounts to 3.25 ± 0.30 ppbv which is in agreement with the deduced \(\text{Cl}_y^*\) within the error bars although there is a tendency to a small positive bias in the observations. The bias between \(\text{Cl}_y\) and \(\text{Cl}_y^*\) below 21 km may be explained by different degrees of subsidence of the air masses in the case of the discussed balloon flight and the reference which results in different \(\text{N}_2\text{O}\) mixing ratios in a specific altitude. \(\text{Cl}_y\) species play by far the largest part in the total chlorine budget from the lower to the upper Arctic winter stratosphere. Below about 17 km, the amount of organic chlorine gets increasingly dominant in the total chlorine budget. Source gases which contribute to \(\text{CCl}_y\) in dependence of their chlorine atoms contained in the molecule are visible in Fig. 4: CFC-12 (\(\text{CCl}_2\text{F}_2\)), CFC-11 (\(\text{CCl}_3\text{F}\)), HCFC-22 (\(\text{CHClF}_2\)), CFC-113 (\(\text{C}_2\text{Cl}_3\text{F}_3\)), CCl₄, and CH₃Cl. The mean amount of \(\text{Cl}_{\text{total}}\) is calculated as 3.41 ± 0.30 ppbv above 24 km. This means that about 95 % of total chlorine is inorganic.

The mean chlorine partitioning and budget as simulated by EMAC is shown in Fig. 5. The principal vertical profile shape of the measured chlorine species is well reproduced by the model. However, in detail, some differences between simulated and observed data are obvious. The modelled HCl VMR maximum appears slightly broader than the measured one. Below about 20 km, the simulation shows significantly lower values compared to the observation by TELIS. A striking difference is visible in the case of \(\text{ClONO}_2\). The model clearly underestimates this reservoir species and deviates 0.8 ppbv from the MIPAS-B data in the region of the VMR maximum at 22 km although simulated and measured \(\text{NO}_y\) and \(\text{NO}_2\) (a necessary reactant in the production of \(\text{ClONO}_2\) via \(\text{NO}_2\) plus ClO) agree in this altitude region. Since simulated HCl and \(\text{ClO}_x\)
(near 22 km) are in agreement with the observed data, the simulated Cl\textsubscript{y} deviation from the measurement can be attributed to the ClONO\textsubscript{2} deficit in EMAC. Around 19 km, the difference in simulated and measured Cl\textsubscript{y} is largest due to very low HCl values in EMAC compared to the HCl seen by TELIS. The amount of available Cl\textsubscript{y} below about 24 km is dependent on the degree of downwelling of the air masses inside the polar vortex. In EMAC, the subsidence of the air masses in the course of the winter was underestimated such that we find higher values of tracers like N\textsubscript{2}O and CFCs at a given altitude of the lower stratosphere compared to the measurements. Consequently, higher N\textsubscript{2}O values lead to lower Cl\textsubscript{y} values due to the compact N\textsubscript{2}O-Cl\textsubscript{y} relationship followed by an underestimation of the chlorine reservoir species (especially ClONO\textsubscript{2}).

The simulated Cl\textsubscript{y} reaches its maximum VMR in the quasi altitude-constant region with a mean value of 3.16 ppbv above 24 km which is slightly lower than the measured one and close to the simulated value of Cl\textsubscript{y} which gives 3.19 ppbv. Below this altitude region, a similar bias between Cl\textsubscript{y} and Cl\textsubscript{y} as in the case of the observations is visible. The mean amount of Cl\textsubscript{total} in the model run is calculated as 3.21 ppbv above 24 km, that is 0.20 ppbv lower than the observed one. About half of this simulated chlorine deficit can be explained by the fact that some minor CFCs (e.g. CFC-114 and CFC-115) and HCFCs (e.g. HCFC-141b and HCFC141b) as well as halons are not included in the EMAC model. The remaining deficit can be explained by very short lived chlorine species which altogether amount about 0.1 ppbv (Mébarki et al., 2010; WMO, 2011) and which are also not contained in the model simulation. However, the chlorine amount of these missing species is implicitly contained in the HCl measurement (after being photolyzed) and hence included in the observed chlorine budget. In the altitude region above 24 km, about 98 % of total chlorine in EMAC is inorganic. The shaded region of the budget profiles ClO\textsubscript{x}, Cl\textsubscript{y}, CCl\textsubscript{y}, and Cl\textsubscript{total} shown in Fig. 5 takes into account all available chlorine species in EMAC which were not measured by MIPAS-B and TELIS. These molecules comprise Cl, Cl\textsubscript{2}, OCIO (belonging to ClO\textsubscript{x} and Cl\textsubscript{y}) and CH\textsubscript{3}CCl\textsubscript{3} (belonging to CCl\textsubscript{y}) and add up to 0.1 ppbv at 16 km to the total
chlorine budget (mainly due to Cl\textsubscript{2} and OCl\textsubscript{O}). However, at altitudes between 22 and 36 km contributions of these gases to the chlorine budget are insignificant.

4 Conclusions

Observations from MIPAS-B/TELIS were performed at the end of the cold 2010/11 stratospheric winter which was characterized by a persistent polar vortex enabling strong chlorine activation and ozone loss. The chlorine partitioning measured on 31 March 2011 reveals, that the recovery of active chlorine (Cl\textsubscript{ox}) into the reservoir species (mainly ClONO\textsubscript{2}) is almost completed by the end of March only a few days after the cold period had finished. The observed total stratospheric chlorine amounts to 3.41 ± 0.30 ppbv above 24 km (see Table 3). This is in accordance with the EMAC simulation taking into account the fact that some chlorine source gases and very short lived species are not included in the model. Mean Cl\textsubscript{total} values deduced from spectra recorded by the ACE-FTS instrument (Brown et al., 2013) give 3.44 ± 0.18 ppbv (morning occultations) and 3.50 ± 0.13 ppbv (evening occultations) for northern mid-latitudes and the Arctic in 2009. Extrapolating this data to 2011 with the chlorine trend obtained from the ACE-FTS observations (about −0.4 % p.a.) yields Cl\textsubscript{total} values of 3.41 ppbv (morning occultations) and 3.47 ppbv (evening occultations) comparable to the MIPAS-B/TELIS data. The accumulated amount of minor species like CFC-114, CFC-115, HCFC-141b, HCFC-142b, and Halon-1211 was estimated to about 0.7 % (∼ 0.02 ppbv) of total chlorine at 30 km (Brown et al., 2013). Hence, the MIPAS-B/TELIS Cl\textsubscript{total} value is in line with the data obtained from ACE-FTS solar occultations and confirms the decreasing trend of stratospheric chlorine. Considering the 2005 mean global tropospheric Cl\textsubscript{total} from in-situ data of AGAGE (Advanced Global Atmospheric Gases Experiment) and NOAA ESRL databases, as compiled in WMO (2011) and transferring this value to 30 km taking into account a typical time lag of 6 years of stratospheric mean age (Engel et al., 2002, 2009; Stiller et al., 2008; WMO, 2011) we get...
an estimated Cl_{total} value of 3.40 ppbv for the year 2011 which is very close to the MIPAS-B/TELIS result.

We finally conclude that the stratospheric total chlorine as deduced from Arctic MIPAS-B/TELIS observations on 31 March 2011 confirms previously published total chlorine assessments and their related trends. A recently published study by Mahieu et al. (2014) shows a HCl concentration increase between 2005/06 and 2010/11 in large parts of the northern hemispheric stratosphere in combination with an increase in the mean age of stratospheric air of up to 0.4 years. However, in the Arctic above 24 km, ascertained changes are small and do therefore not alter the findings above.

Acknowledgements. The balloon flight was funded by CNRS (Centre National de la Recherche Scientifique) and CNES (Centre National d’Etudes Spatiales) in the framework of the ENRICHED (European collaboration for Research on Stratospheric Chemistry and Dynamics) project coordinated by Nathalie Huret (Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), Orléans, France) and Hermann Oelhaf (Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany). We are grateful to the CNES balloon team for excellent balloon operations and the Swedish Space Cooperation for hosting the campaign and logistical assistance. We thank Nathalie Huret for project management and modeling support, and Katja Grunow from Free University of Berlin for meteorological support. The work presented here was funded in part by the European Space Agency (ESA) and the German Aerospace Center (DLR). We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology.

The service charges for this open-access publication have been covered by a research centre of the Helmholtz Association.
References

Höpfner, M., Oelhaf, H., Wetzel, G., Friedl-Vallon, F., Kleinert, A., Lengel, A., Maucher, G., Nordmeyer, H., Glatthor, N., Stiller, G., von Clarmann, T., Fischer, H., Kröger, C., and Desh...
Partitioning and budget of inorganic and organic chlorine species

G. Wetzel et al.

along with ClO and ClONO$_2$ in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections, Atmos. Chem. Phys., 10, 931–945, doi:10.5194/acp-10-931-2010, 2010.

Table 1. Set-up for MIPAS-B trace species retrievals and typical errors. Results are given for different state parameters in corresponding spectral windows together with the retrieval altitude resolution (Alt. reso.).

<table>
<thead>
<tr>
<th>Species</th>
<th>Spectral range (cm⁻¹)</th>
<th>Noise errorᵃ (%)</th>
<th>Total errorᵃ (%)</th>
<th>Alt. reso. (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClONO₂</td>
<td>779.7–780.7</td>
<td>2–3</td>
<td>5–6</td>
<td>4–5</td>
</tr>
<tr>
<td>ClO</td>
<td>821.0–841.5</td>
<td>10–25ᵇ</td>
<td>20–30ᵇ</td>
<td>5–8</td>
</tr>
<tr>
<td>CFC-11</td>
<td>840.0–860.0</td>
<td>2–3</td>
<td>5–6</td>
<td>3–4</td>
</tr>
<tr>
<td>CFC-12</td>
<td>918.0–924.0</td>
<td>2–3</td>
<td>5–6</td>
<td>3–4</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>828.0–830.0</td>
<td>3–10</td>
<td>8–15</td>
<td>3–6</td>
</tr>
<tr>
<td>CFC-113</td>
<td>813.0–830.0</td>
<td>3–10</td>
<td>20–25</td>
<td>3–6</td>
</tr>
<tr>
<td>CCl₄</td>
<td>792.0–806.0</td>
<td>1–5</td>
<td>10–20</td>
<td>4–6</td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>742.5–755.0</td>
<td>1–5</td>
<td>8–15</td>
<td>9–13</td>
</tr>
<tr>
<td>HOCl</td>
<td>1215.0–1265.0</td>
<td>10–15</td>
<td>35–50</td>
<td>6–8</td>
</tr>
</tbody>
</table>

ᵃ In the altitude region around the VMR maximum.
ᵇ Daytime errors.
Table 2. Set-up for TELIS HCl and ClO retrievals with typical errors and retrieval altitude resolution (Alt. reso.).

<table>
<thead>
<tr>
<th>Species</th>
<th>Spectral line (GHz)</th>
<th>Noise error* (%)</th>
<th>Total error* (%)</th>
<th>Alt. reso. (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H35Cl</td>
<td>625.9</td>
<td>< 1</td>
<td>10–15</td>
<td>2–5</td>
</tr>
<tr>
<td>H37Cl</td>
<td>624.8</td>
<td>< 1</td>
<td>10–15</td>
<td>2–5</td>
</tr>
<tr>
<td>ClO</td>
<td>501.3</td>
<td>< 1</td>
<td>10–15</td>
<td>2–4</td>
</tr>
</tbody>
</table>

* In the altitude region around the VMR maximum.
Table 3. Mean stratospheric chlorine budgets (ppbv) as measured by MIPAS-B/TELIS and simulated by EMAC in comparison to ACE-FTS observations (Brown et al., 2013) and in-situ data from AGAGE and NOAA ESRL databases (WMO, 2011).

<table>
<thead>
<tr>
<th>Budget</th>
<th>MIPAS-B/TELIS</th>
<th>EMAC</th>
<th>ACE-FTS</th>
<th>In-situ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl_{total}</td>
<td>3.41 ± 0.30^a</td>
<td>3.21^a</td>
<td>3.41/3.47^b</td>
<td>3.40^c</td>
</tr>
<tr>
<td>Cl_y</td>
<td>3.25 ± 0.30^a</td>
<td>3.16^a</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cl'_y</td>
<td>3.19 ± 0.00^a</td>
<td>3.19^a</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

^a Mean value between 25 and 36 km.
^b Mean value (for morning/evening occultations) between 30 and 70° N for 2011, extrapolated from 2009 with trend between 2004 and 2009.
^c Mean global tropospheric value from 2005 corresponding to a stratospheric value of 2011 assuming a stratospheric mean age of 6 years.
Figure 1. Potential vorticity (PV) field (in 10^{-6} K m2 s$^{-1}$ kg$^{-1}$) from European Centre for Medium-Range Weather Forecasts (ECMWF) analysis on 31 March 2011, 00:00 UTC. MIPAS-B tangent points are plotted as black solid circles and TELIS tangent points as green solid circles (altitude range: 9.1 to 35.4 km). The vortex boundary which represents the strongest PV gradient (Nash et al., 1996) is shown as black dashed line.
Figure 2. Temporal evolution of chlorine monoxide (ClO) mixing ratios (ppbv) as observed by MIPAS-B (top) and TELIS (bottom) on 31 March 2011 above northern Scandinavia between 02:00 and 04:38 UTC inside the Arctic vortex within the latitude/longitude sector shown in Fig. 1. The black solid line marks the sunrise terminator. A residual activation of chlorine is visible between 16 and 22 km with slightly enhanced ClO values up to 0.4 ppbv.
Figure 3. ClONO₂ mixing ratios (ppbv) as seen by MIPAS-B above northern Scandinavia on 31 March 2011 inside the late winter Arctic vortex. The black solid line marks the sunrise terminator.
Figure 4. Partitioning and budget of inorganic, organic, and total chlorine as measured by TELIS (HCl and ClO) and MIPAS-B (all other species) in the Arctic stratosphere on 31 March 2011 (see legend for line style). The reservoir species HCl and ClONO$_2$ dominate the stratospheric inorganic chlorine budget. Cl$_y^*$ deduced from observed N$_2$O data with the help of a N$_2$O-Cl$_y^*$ correlation is shown for comparison. Notice that for the calculation of the chlorine budgets the atomic content for each species has to be considered.
Figure 5. Partitioning and budget of inorganic, organic, and total chlorine as simulated with the chemistry climate model EMAC on 31 March 2011 (see legend for line style). Cl_y* has been calculated from the simulated N_2O data according to Eq. (7). The budgets ClO_x, Cl_y, CCl_y, and Cl_total are calculated as listed in Eqs. (2) to (5). The shaded region of the budgets takes into account all minor chlorine species contained in EMAC (Cl_2, Cl, OClO, CH_3CCl_3) which were not measured by MIPAS-B and TELIS.