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Abstract -- This paper examines synchronous machines, 

whose excitation axis and reluctance axis can have an 

arbitrary angle. Basic equations for this machine type are set 

up and control strategies for maximum torque are derived. By 

using a normalized representation, it will be shown that 

machines with displacement angles of about 60° need up to 

10% less permanent magnet material than conventional 

machines while yielding comparable motor performance. 

 
Index Terms -- Field weakening, synchronous machine, 

permanent magnet machines, variable speed drive, two-part 

rotor, displacement, electric traction, motor design 

I.   INTRODUCTION 

OR many applications, such as electric traction, good 

field weakening capabilities and a wide constant power 

speed range are required [1]. Thus, permanent magnet 

synchronous machines (PMSM) are usually equipped with 

interior permanent magnets (PM) [2]. Due to their magnetic 

properties, those machines provide the highest inductance 

electrically perpendicular to the direction of the rotor 

excitation, i.e.      . On the one hand, this fact can be 

used to increase machine performance by utilizing the 

reluctance torque and to reduce the use of PM material [2]. 

On the other hand, a low direct inductance    means that a 

high value of current is needed for flux weakening, which 

deteriorates the flux weakening performance of those 

machines [1]. 

To overcome this disadvantage, several authors have 

investigated different machine designs which provide 

     . In [3], Bianchi and Bolognani proposed a machine 

geometry with a segmented rotor structure and demons-

trated its improved field weakening performance. In [1], 

Gosden et al. proposed a two-part rotor consisting of a 

reluctance part and a surface PM part, which are mounted 

axially on a common shaft in a way that the high inductance 

axis of the reluctance part and the excitation axis of the PM 

part are aligned to achieve      . However, to maintain 

performance of this class of PMSM, the relative PM flux 

linkage has to be increased by about 50% [3]. This implies 

increased cost and tightened safety issues due to the higher 

induced voltage. 

Generally, the two rotor parts of a two-part rotor can be 

mounted at any chosen angle. Fig. 1 shows a simplified 

drawing of such a machine, consisting of a reluctance-free 

excitation part, which is described in the d/q reference 

frame, and a reluctance part, which is described in the r/s 

reference frame and contains the resulting reluctance of 

both rotor parts. These two systems are displaced by the 
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angle  . Using this representation, conventional PM 

synchronous machines with       have      , 

machines with       have     . 

The two-part rotor was investigated in more detail in [4] 

by Chalmers et al., wherein a set of base equations was 

established to describe this motor dependent on the 

displacement angle   between the two rotor parts. 

Unfortunately, the authors of [1] and [4] discarded the 

possibility to set any desired displacement angle in their 

following contributions [5], [6], [7] partly due to the fact 

that these machines don’t show the same characteristics in 

motoring and generating mode. 

Nevertheless, subsequent work has been done by other 

authors on this topic. A theoretical study was carried out by 

Randi and Astier [8], who used the displacement angle to 

synthesize a machine with desired characteristics consisting 

of two different rotor parts, however ending up with a 

conventional PMSM exhibiting      . Practical work has 

been accomplished by Chen [9] and Beser et al. [10]. Chen 

analyzed displacement angles of        and identified 

different field weakening behavior, Beser studied an even 

broader range of displacement angles, yet both are lacking 

of a theory describing the phenomena they discovered. 

This paper analyzes the potential of machines with 

displaced reluctance axis. It is motivated by applications 

which mostly require just one operation mode, i.e. motoring 

or generating, such as traction drives. Assuming that any 

desired displacement angle can be realized, this paper first 

sets up a basic set of equations in Chapter II. Following 

that, machine characteristics are illustrated in Chapter III 

and operating strategies are developed in Chapter IV. From 

a set of possible motor configurations, design planes are 

derived and evaluated to find the optimal parameter set for 

motors in Chapter V. 
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d/q frame: excitation system

r/s frame: reluctance system

β: displacement angle

Fig. 1. Basic reference frames of machines with displaced reluctance axis 



  

II.   BASIC MACHINE EQUATIONS 

A.   Assumptions 

This paper aims at investigating the fundamental 

behavior of synchronous machines with displaced 

reluctance axis. In order to keep the system as simple as 

possible, a few assumptions have to be made [7]: 

 

 All losses are zero, especially the stator resistance 

is set to zero; 

 The iron and PMs are considered linear (i.e. 

saturation is neglected), so that linear inductances 

can be defined; 

 Harmonics and other parasitic effects are not taken 

into account, electrical quantities are sinusoidal 

and there is no torque ripple. 

B.   Normalization 

The equation system will be derived in normalized form 

according to Soong and Miller [2]. As opposed to [7], base 

quantities are rated current   , rated voltage    (both RMS 

phase quantities) and rated motoring speed   , at which 

both    and    appear while the motor is operated applying 

the maximum torque per ampere (MTPA, [4]) strategy. 

This set of base quantities is advantageous when 

comparing rotor concepts while the drive system including 

the stator remains the same. The inverter specifies the 

values    and   , the application sets   . This means 

constant base flux linkage         , constant base 

inductance         , constant base torque    
 

 
      and constant base power    

 

 
     with the 

number of pole pairs   and the number of phases  . 

The motor is assumed to be fed by a perfect  -phase 

current source so that any current vector can be applied. 

Stator voltage is then assumed as a resulting quantity. 

C.   Normalized Equation System 

Any chosen space vector, e.g. the normalized current 

vector  , can be represented in the d/q reference frame or 

the r/s reference frame by its components (see Fig. 1). d/q 

components can be expressed in the r/s reference frame via 

                   (1) 

                   (2) 

where the absolute value of the vector equals 

  √  
    

    (3) 

Defining the saliency 

         (4) 

from the normalized inductances    and    that appear in the 

r/s reference frame, normalized stator flux linkage 

components    and    can be written as 

                  (5) 

               
       (6) 

where     is transformed into the r/s reference frame using 

(1) and (2). Regarding Section II A and introducing the 

normalized speed  , normalized voltage equations are 

          (            
    )   (7) 

        (            )   (8) 

Similar to (3), the absolute value of the voltage vector is  

  √  
    

    (9) 

Normalized torque   can be derived from the general 

torque equation                 using 

          (10) 

which yields 

     (             )     
        (11) 

The first summand of (11) represents the torque 

          which is created by the PM, the second 

summand is due to the salient nature of the reluctance part. 

Normalized power is expressed by  

                (12) 

for both the electrical and the mechanical part due to the 

assumed absence of losses. 

Setting up the basic equation system in the d/q reference 

frame turned out to be unfavorable as equations are more 

complex and inductances in the d/q reference frame are a 

function of the current. 

D.   Calculation of    

Equations (5)-(12) describe the basic machine behavior. 

They are dependent on four machine parameters: the 

normalized PM flux linkage    , the saliency  , the 

displacement angle   and the normalized inductance   .  
In the case of       and      , an analytic equation 

can be found to express    as a function of     and   [11]. 

Therefore, there are only two independent parameters that 

describe a machine entirely. 

In the case of arbitraty  ,    can also be eliminated, so 

that the three parameters    ,   and   are sufficient. 

However, in this case, an analytical equation for    does not 

exist. Thus, the problem has to be solved numerically by 

finding a solution for    which yields √  
    

    using 

(5) and (6) while applying MTPA strategy (see Section IV 

B). This can be achieved using constrained nonlinear 

numerical optimization techniques. 

E.   Machine Type Depending on   

Analyzing the minima and maxima of the torque versus 

the current angle               numerically at maximum 

current     using (11) and (3) and assuming      , 

    and    , some substantial statements can be made: 

 

 Machines with      or       show equal 

absolute maximum torque in both motoring and 

generating mode;  

 Machines with          exhibit greater 

absolute maximum torque in motoring mode; 

 Machines with           and       
     exhibit greater absolute maximum torque in 

generating mode. 

 

Due to the electromagnetic and mechanical symmetry of 

the reluctance part,   can be limited to a range of 180°. 

This paper uses            . 



  

III.   THE CIRCLE DIAGRAM 

The content of the Chapters III and IV will be discussed 

on an example machine with        ,     and 

      . Fig. 2 shows the circle diagram of this machine. 

The black current circle surrounds the area where    , 

which represents the allowed area of operation.  

The red hyperbolas indicate levels of constant torque 

according to (11). The function is point symmetric to its 

saddle point, which is marked with a red circle. The torque 

hyperbolas have a vertical and a horizontal asymptote, 

which pass the saddle point. The saddle point of conven-

tional PMSM lies on the direct axis and yields    . In 

general, the torque on the saddle point is different from 

zero. It is the hyperbola passing     that yields    .  

The blue ellipses in Fig. 2 represent points of constant 

voltage for a fixed speed [12]. Any point inside an ellipsis 

is feasible for the corresponding speed. Increasing the speed 

leads to contracting ellipses. As opposed to conventional 

PMSM, their center (       ), which is indicated by a blue 

circle, does not necessarily lie on an axis as well. It is 

calculated by plugging         in (7) and (8): 

      
   

  
       (13) 

    
   

  
        (14) 

   √   
     

  
   

  
√                (15) 

The center of the ellipses lies on the torque trajectory 

which passes    , because torque at infinite speed must 

be zero due to the limitation of    . Yet, as opposed to 

conventional PMSM, reluctance torque and PM torque 

itself are not zero at that point in general, which becomes 

clear when substituting (13)-(14) into (11). Rather, both 

summands yield exactly opposing torque. 

IV.   OPERATING STRATEGIES 

This Chapter aims at deriving a strategy to achieve the 

maximum absolute torque for motoring and generating 

mode at any possible speed. The required currents change 

with speed due to contracting voltage ellipses and create 

trajectories in the    –    – plane. In the following, these will 

be referenced as maximum torque trajectories. 

As mentioned in Section II E, machines with arbitrary   

exhibit different torque capabilities in motoring and 

generating mode and hence have different maximum torque 

trajectories. Thus, both modes have to be analyzed 

separately. 

Furthermore, as will become clear in Section IV G, it is 

necessary to analyze up to two further maximum torque 

trajectories that can be neglected for conventional PMSM. 

A.   Modes of Operation 

In order to calculate the different maximum torque 

trajectories, different operation modes have to be analyzed. 

As for conventional PMSM [4], there are three operation 

modes: 

 

 Mode 1 operation: current is limited while the 

voltage is lower than its maximum value, i.e.     

and    . 

 Mode 2 operation: current and voltage are limited, 

i.e.     and    .  

 Mode 3 operation: only voltage is limited, i.e. 

    and    . 

 

B.   Mode 1 Operation (Maximum Torque per Ampere) 

For any current   there are several combinations of    
and    yielding local maximum or minimum torque. 

Together, these maxima and minima form the MTPA 

trajectories, which are plotted red in Fig. 3. They are 

calculated by using analytical optimization by means of 

Fig. 2. Circle diagram of a machine with        ,    ,      . 
Black: maximum current circle. Red: hyperbolas of constant torque. Blue: 

ellipses of constant voltage 

Fig. 3. Trajectories of MTPA (red) and MTPV (blue) strategy. Blue Circle: 

point (       ). Blue plus sign: point (       ) (see Section IV D). 
Diamonds: MTPA points (see Section IV B). 



  

Lagrange multipliers. Therefore, gradients of an objective 

function and an equality constraint function have to be 

calculated and compared. When they are parallel, a feasible 

point has been found [12]. 

Equation (11) serves as objective function, (3) is the 

constraint function. Both are differentiated with respect to 

   and    and compared, yielding the equation for the MTPA 

trajectories:  

           
   

           
   

 
  
  

  (16) 

This equation can be solved for either    or   , yielding 

two equations due to its quadratic nature. As can be seen 

from Figs. 2 and 3, one trajectory passes the origin 

(hereafter called primary MTPA trajectory), another 

trajectory passes the saddle point of the torque hyperbolas 

(hereafter called secondary MTPA trajectory). The primary 

MTPA trajectory represents global maximum and minimum 

torque, the secondary MTPA trajectory represents local 

maximum and minimum torque for a fixed value of  . 
To find the intersection points of the MTPA trajectories 

with the current circle, (3) and (16) are solved with respect 

to    and    and with    . This yields a quartic function, 

which can be solved either analytically or numerically. Its 

solutions are the MTPA points, which are marked with 

diamond symbols in Fig. 3. If the secondary MTPA 

trajectory runs partly through the current circle, there are 

four solutions. The two corresponding MTPA points are 

called the secondary MTPA points.  

The rated operating point is where the primary MTPA 

trajectory intersects the current circle, evoking positive 

torque. It can be maintained until speed increases rated 

speed, i.e.    , as this is the base speed of the 

normalization. In general, the other MTPA points yield 

different maximum speeds. Their equation can be derived 

from (7)-(9):  

  
 

√(         
  
 

  )
 

 (            )
 

 (17) 

where    .  

C.   Mode 2 Operation 

After the maximum speed of an MTPA point has been 

exceeded, mode 2 operation commences. As the current 

magnitude is still 1, the trajectory of mode 2 operation is 

equal to the current circle (see Fig. 3, black circle). 

To find the current for a specific speed  , (1)-(3) and 

(7)-(9) with     and     have to be solved. This also 

yields a quartic function, providing up to four solutions. 

The correct value that belongs to the desired maximum 

torque trajectory has to be found by case analysis. The 

solution represents the intersection of the current circle with 

the speed-dependent voltage ellipsis. 

D.   Mode 3 Operation (Maximum Torque per Voltage) 

Maximum torque per voltage trajectories (MTPV, [4]) 

are calculated in a similar manner to the MTPA trajectories. 

The objective function remains the same; the constraint 

function is given by (9), incorporating (7) and (8). This 

yields the equation for the MTPV trajectories: 

           
   

           
   

   
     

         
       

         
  (18) 

Again, solving for    respectively    yields two 

equations, plotted as blue lines in Fig. 3. The hereafter 

called primary MTPV trajectory passes the point (       ) 

(see (13)-(14)), which is marked with a blue circle. The 

secondary MTPV trajectory passes the saddle point of the 

torque hyperbolas as well as the secondary MTPA 

trajectory. This trajectory also contains a boundary point 

(       ) with the voltage ellipses, marked with a plus sign, 

where the trajectory and a voltage ellipsis only touch in one 

point. Increasing speed means that there is no longer a 

feasible point on the secondary MTPV trajectory, 

signifying that there is a maximum speed for maximum 

torque trajectories containing this segment of the secondary 

MTPV trajectory. The relevance of this point is clarified in 

Section IV G. 

To calculate the MTPV operating point of a specific 

speed  , (7)-(9) and (18) have to be solved for    and   , 

yielding a quartic function as well. Again, the desired value 

has to be found by case differentiation. The solution 

represents the intersection of the MTPV trajectories with 

the speed-dependent voltage ellipsis. 

E.   Maximum Speed 

As with conventional PMSM, two types of machines can 

be distinguished: those theoretically capable of infinite 

speed and those with a specific maximum speed [2]. If 

    , (see (15)), as is the case in the introduced example 

machine, the former is the case. If     , the machine 

does have a maximum speed. At that speed, the current 

circle and the corresponding voltage ellipsis have one 

common boundary point. It can also be calculated by 

analytical optimization, comparing the gradients of (3) and 

(7)-(9). This yields 

  
     

         
       

         
 

  
  
   (19) 

Solving (3) and (19) with     with respect to    and    

yields a quartic function. Its solutions are the boundary 

points of the voltage ellipses with the current circle. To find 

the maximum speed, the solutions have to be plugged in 

(17). The highest speed is the maximum speed, as lower 

speeds mean that there must be an intersection of the 

current circle ant the corresponding voltage ellipsis, 

signifying that there are several feasible operation points. 

As opposed to conventional PMSM, the torque at maximum 

speed is not necessarily zero. 

F.   Mode Order 

When raising speed, the mode order of the maximum 

torque trajectories of conventional PMSM is mode 1 – 

mode 2 when      respectively mode 1 – mode 2 – mode 

3 when      [2]. However, this strict rule does not 

necessarily apply to machines with an arbitrary 

displacement angle  . It is possible that mode 2 follows 

mode 3 again once or twice, even if the machine has a finite 

maximum speed. This is due to the shifted positions of the 

MTPV trajectories. In that case, when entering mode 3, an 

algorithm has to check if the corresponding MTPV 



  

trajectory leaves the current circle again without including 

the point (       ) or the point (       ) in that segment, 

both signifying the end of the maximum torque trajectory. 

However, the introduced example machine behaves 

“ordinary”. An example of a machine exhibiting the 

described mode order is          ,    ,       . 

G.   Discussion 

Fig. 4 shows the maximum torque trajectories of the 

example machine. The solid lines indicate the maximum 

torque trajectories starting from the primary MTPA points, 

where red is the main motoring mode and blue is the main 

generating mode. The dashed lines indicate the maximum 

torque trajectories starting from the secondary MTPA 

points. The same convention is used in Fig. 5 which shows 

the normalized torque   and the normalized power   over 

normalized speed. 

Based on these two figures, some further statements can 

be made. As can be seen in Fig. 5, the maximum torque 

trajectories starting at secondary MTPA points (dashed 

lines) exhibit worse performance at low speed than those 

starting at the primary MTPA points. However, at      , 

best generating performance is delivered by the maximum 

trajectory that started at a secondary MTPA point (green 

dashed line). 

In generating mode, trajectories should be switched at 

      to ensure maximum absolute torque. The blue 

solid line must be left at the latest when reaching      . 

Then, the point (       ) is reached, where the trajectory 

ends. 

V.   DESIGN PLANE 

Similar to [2], design planes can be introduced for 

PMSM with arbitrary displacement angle  . Due to the fact 

that there are three independent parameters    ,   and  , 

one of it has to be fixed in order to draw a plane. 

 

The following two Sections describe a possible design 

strategy for two-part rotor motors by iteratively analyzing 

the two parameter planes that are described below. 

A.   The     –   – Plane (       ) 

Regarding two-part rotors, it is apparent that saliency is 

constant, independent of the displacement of the two rotor 

parts. As a first step when designing a motor with displaced 

reluctance axis, it is obvious to fix the saliency parameter to 

a constant value. Figs. 6 to 8 show a number of important 

performance data in the     –   – plane for a fixed value 

of    , which is a realistic value for two-part rotor 

motors [4]. 

As explained in Section II B, base values of the 

normalization, such as the reference stator flux linkage, are 

specified by the application and hence are constant when 

comparing different rotors. This means, a low value of     

is equivalent to low PM induced air gap flux density and 

hence to low magnet cost. Furthermore,     is proportional 

to open loop voltage (see (7)-(9)), so reducing     also 

improves safety. 

Fig. 6 shows mode 1 maximum motoring torque 

respectively base speed power in motoring mode. For a 

fixed desired torque,     is lowest at about      . This 

means, the torque-to-magnet-cost-ratio is highest at that 

angle. Compared to conventional machines with      , 
    can be reduced by about 10%. Investigating this plane 

at other values of   shows similar behavior.  

As can be seen in Fig. 7, generating torque at that 

displacement angle is distinctly lower, depending on the 

normalized magnet flux linkage     only about 0.7 to 0.8 

times the absolute value of motoring torque due to the non-

symmetric structure of the rotor. Obviously, this is the price 

that has to be paid for minimizing    .  

Fig. 4. Maximum torque trajectories. Solid red: main motoring mode. 

Solid blue: main generating mode. Dashed: secondary maximum torque 
trajectories. Diamonds: MTPA points resp. start of mode 2 operation. 

Triangles: start of mode 3 operation. Circle: point (       ). Plus sign: 

point (       ). 
Fig. 5. Normalized torque   and normalized power   over normalized 
speed. Solid red: main motoring mode. Solid blue: main generating mode. 

Dashed: performance  of secondary trajectories. Diamonds: start of mode 2 
operation. Triangles: start of mode 3 operation. Plus sign: maximum speed 

of secondary trajectories. 



  
 

 

 

 
 

 

 

 

 

 

 

 

Fig. 6. Normalized maximum motoring torque   for a fixed saliency value 

of    . 
Fig. 9. Normalized maximum motoring torque   for a fixed PM flux 

linkage value of        . 

Fig. 7. Maximum generating torque referred to maximum motoring torque 

for a fixed saliency value of    . See also Section II E. 

Fig. 10. Maximum generating torque referred to maximum motoring tor-

que for a fixed PM flux linkage value of        . See also Section II E. 

Fig. 8. Constant power speed range for a fixed saliency value of    . Fig. 11. Constant power speed range for a fixed PM flux linkage value of 

       . 



  

Note the lines at      and      , indicating regular 

PMSM with equal motoring and generating performance. 

Machines with      and       exhibit better 

performance in generating mode and are therefore best used 

as generators. This behavior was already discussed in 

Section II E. 

Fig. 8 shows the constant power speed range (CPSR, 

[2]) of machines with arbitrary   and    . Motors for 

electric traction require at least a CPSR of 3 to 4 [1], [4]. 

Motors with       and       show similar CPSR 

behavior. 

B.   The   –   – Plane (         ) 

After determining a displacement angle   and a 

normalized PM flux linkage     using the     –   – 

plane, the individual length of the two rotor parts may be 

changed. This causes a variation of the parameter  . The 

effects are discussed using Figs. 9 to 11. Exemplary,     is 

set to 0.4. 

Fig. 9. shows mode 1 operation torque respectively base 

speed power in motoring mode. Again, for a fixed desired 

torque,     is lowest at about      . 
From Fig. 10. can be concluded that the maximum 

torque ratio of motoring to generating mode is rather a 

function of   than of   as the contour lines are quite 

constant for      .  

The CPSR in the   –   – plane with         is given 

in Fig. 11. Again, motors with       and       show 

similar CPSR behavior. 

VI.   CONCLUSION 

This paper accomplished two goals. First, it set up a 

unified theory to describe any synchronous machine, whose 

reluctance axis is displaced to the rotor excitation axis by 

any arbitrary but constant angle. Optimal torque control 

strategies have been derived from that set of equations and 

some special characteristics of those machines which are 

unknown from conventional PMSM have been 

demonstrated. 

Second, from a set of possible motor configurations, 

different design planes have been plotted and a strategy to 

design motors has been developed. It was shown that 

machines with displacement angles of about 60° need up to 

10% less permanent magnet material than conventional 

machines, yielding comparable motor performance. 

Although generating performance deteriorates by about 

20% to 30%, those machines could be a promising 

alternative in applications which mostly require motoring 

mode, such as traction drives. 
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