

Institut für Katalyseforschung und -Technologie Prof. Dr.-Ing. Jörg Sauer

Entwicklung und Konstruktion eines Messgerätes zur Charakterisierung der Sedimentation in hochviskosen Pyrolysekokssuspensionen

Bachelorarbeit von **Kim Struwe**

Betreuer: Dipl.-Ing Thomas Nicoleit

September 2013

Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Regeln zur Sicherung guter wissenschaftlicher Praxis im Karlsruher Institut für Technologie (KIT) in der derzeit gültigen Fassung beachtet habe.

Karlsruhe, 19. September 2013

Inhaltsverzeichnis

Al	obildu	ingen		v
Li	ste de	er Tabel	llen	vii
Sy	mbol	e		ix
Da	anksa	gung		xi
1	Einl	eitung		1
	1.1	Motiva	ation	1
	1.2	bioliq	[®] -Verfahren	2
	1.3	Aufga	benstellung	3
2	Gru	ndlager	n der Sedimentation	5
	2.1	Partike	elbewegung im Schwerefeld	5
		2.1.1	Einfluss der Wand auf die Sinkgeschwindigkeit	7
	2.2	Sedim	entation in Suspensionen	7
		2.2.1	Einzelkornsedimentation	8
		2.2.2	Sedimentation höher beladener Suspensionen ohne Flockung	8
		2.2.3	Sedimentation höher beladener Suspensionen mit Flockung	10
3	Stan	nd der N	vIesstechnik	13
	3.1	Pipetti	ergerät nach DIN 66115	13
	3.2	Sedim	entationswaage nach DIN 66116	14
	3.3	Photos	sedimentometer	15
	3.4	Manor	meterzentrifuge	16
	3.5	"Deteo	ction of Sediment Layers and Properties" (DSLP) - Verfahren	17
	3.6	Entsch	neidung für die Entwicklung eines Sedimentationsgerätes	18
4	Vors	stellung	g der Einsatzmaterialien	21
	4.1	Charal	kterisierung des Kokspulvers	21
	4.2	Umrea	chnung von Massen-% in Volumen-%	22
	4.3	Ethyle	nglykol als Kondensat-Ersatz	22

	4.4	4 Charakterisierung des Slurrys		
		4.4.1	Mischen der Suspension	24
		4.4.2	Einfluss der Feststoffkonzentration auf den Heizwert	24
		4.4.3	Messung der Feststoffkonzentration in Suspensionen	25
5	Met	hodisch	ne Problemlösung anhand des "SPALTEN"-Prozesses	27
	5.1	Situati	ionsanalyse und Problemeingrenzung	28
	5.2	Altern	ative Lösungen und Lösungsauswahl	28
	5.3	Tragw	eite analysieren: Risikoanalyse	31
	5.4	Einfüł	rren und Umsetzen: Dimensionieren	32
		5.4.1	Berechnung der Größe des Sedimentationsmessturms	32
		5.4.2	Position des obersten Ventils	32
		5.4.3	Überprüfung der Randbedingungen aus 5.1	33
		5.4.4	Beständigkeit und Belastbarkeit der eingebauten Komponenten	33
		5.4.5	Mechanische Beanspruchung der Wände	35
	5.5	Nachb	pereiten und Lernen: Wichtige Erkenntnisse aus der Vorgehensweise	36
6	Kon	strukti	on des Sedimentationsmessturms	37
	6.1	Vorver	rsuche in einem 2 L - Zylinder	37
	6.2	Probei	nahme	38
		6.2.1	Ventile	38
		6.2.2	Stechheber	40
	6.3	Sedim	entationsmessturm	41
7	Erg	ebnisse	und Diskussion des Sedimentationsverhaltens	45
	7.1	Analy	tische Vorberechnung der Sedimentationsgeschwindigkeit	45
	7.2	Abküł	nlverhalten des frisch angemischten Slurrys	46
	7.3	Sedim	entationsverlauf	47
	7.4	Berech	hnung einer Sedimentationsgeschwindigkeit aus den Messdaten	50
8	Bew	ertung	des Sedimentationsmessturms	51
	8.1	Handh	abung	51
		8.1.1	Allgemeine Arbeiten und Sicherheit	51
		8.1.2	Probenahme und iterative Anpassung des Schleusensystems	51
		8.1.3	Dichtung	52

		8.1.4 Befüllung, Entleerung und Säuberung	53	
	8.2	Bewertung der Sedimentationsexperimente		
	8.3	Abgleich mit den Voraussetzungen aus den Abschnitten 5.1 und 5.4	54	
9	Zusa	ammenfassung und Ausblick	57	
Ar	nhang		59	
	A.1	Vorberechnung der Sinkgeschwindigkeit	59	
	A.2	Filtervorversuche	60	
	A.3	Konstruktion einer visuellen Erweiterung des Messturms		
	A.4	Betriebsanleitung	63	
	A.5	gnuplot - Quellcode für Abbilung 2.2	64	
	A.6	Ergänzende Bilder		
		A.6.1 Sedimentationsmessturm	65	
		A.6.2 Filtertisch	65	
		A.6.3 2 L-PVC Turm	66	
	A.7	Partikelgrößenverteilungsanalyse	66	
	A.8	Viskositätanalyse	69	
	A.9	Konstruktionszeichnungen	73	

Literatur

79

Abbildungsverzeichnis

1.1	Anstieg des Preises für eine Gallone OPEC Reference Basket über die letzten Jahre	1
1.2	Prinzip des Transports von Biomasse im bioliq $^{\mathbb{R}}$ -Verfahren	3
2.1	c_w -Verlauf für eine Kugel und einen Zylinder aufgetragen über die Reynoldszahl	6
2.2	Abhängigkeit des Richardson-Zaki-Exponenten α von der Reynoldszahl Re_0 .	10
2.3	Darstellung der Zonensedimentation	11
2.4	Zeitlicher Verlauf der Zonensedimentation	12
3.1	Darstellung der Andreasen-Pipette	14
3.2	Schematische Darstellung des Aufbaus einer Sedimentationswaage	15
3.3	Schematische Darstellung einer Zentrifuge mit Photosensor	16
3.4	Manometerzentrifuge und das Prinzip der Druckdifferenzmessung	17
3.5	Das DSLP - Analysegerät im Einsatz am Schiff, zur Vermessung des Untergrundes	18
4.1	Viskositätsfunktionen von Slurrys mit ungemahlenem und gemahlenem Koks .	23
4.2	Viskositätswerte der in dieser Arbeit untersuchten Suspension	24
5.1	Modular aufgebauter Sedimentationszylinder	30
5.2	Vorher- Nachhervergleich von Plexiglas nach einer Woche im Schwelteer	34
5.3	Auftragung der Bruchzähigkeit über der Streckgrenze für verschieden Werkstoffe	35
6.1	Vernickelter DN25 Messingkugelhahn	39
6.2	Vorstellung aller untersuchten Stechbohrer	40
6.3	Endgültiger Stechbohrer: halbiertes Metallrohr	41
6.4	Muster zur Anbringung der Schweißnippel an der Stahlplatte für die Kugelhähne	42
6.5	CAD-Modelle des Aluminiumgestells und des Sedimentationsmessturms	43
7.1	Verlauf der Temperaturen von Slurry und Umgebung seit Befüllen	46
7.2	Blasenbildung an der Oberfläche der Suspension in den ersten 24 h nach Befüllung	47
7.3	Verlauf der Feststoffkonzentration aufgetragen über die Höhe	47
7.4	Verlauf der Feststoffkonzentration aufgetragen über die Sedimentationszeit	48
7.5	Ergänzung zu Abbildung 7.3 für den Vergleich der Kurven nach 7 d und $14 d$.	49
8.1	Schleusensystem mit Luftloch	52

A.1	Explosionsansicht der Glasrahmenkonstruktion	62
A.2	Frontansicht des Sedimentationsmessturm im Aluminiumkäfig	65
A.3	Trichtertisch zur Aufnahme von 17 Filter für die Trennung von Feststoff und Extrakt	65
A.4	Versuchsturm aus PVC mit 2L Volumen, zur Erprobung von Ventilen und Probenehmern	66

Tabellenverzeichnis

4.1	Partikelgrößenvergleich von verschiedenen Kokssorten		
4.2	Umrechnungstabelle für Massen-% und Volumen-%	22	
5.1	Risikoanalyse der möglichen Ereignisse bei Benutzung des Sedimentationsmessturms	31	
5.2	Auflistung verschiedener Werkstoffe und ihrer Eigenschaften	34	
6.1	Vergleich eines 27 %-tigen Strohkoksslurry und einem 28,54 %-tigen aus der Arbeit von Nicoleit (2012, [15]) nach einer Sedimentationszeit von 7 d		
6.2	Auswahl eines geeigneten Ventils zur Probenahme am Messturm		
6.3	Vergleich der analysierbaren Probenmasse, die durch Verwendung verschiedener Probenehmer (PRN) erreicht wird		
8.1	Gegenüberstellung der im voraus berechneten Größen mit den im Messbetrieb ermittelten Werte	55	
A.1	Blindprobe zur Bestimmung des Massenverlustes der Filter nach einer Feststoffbestimmung	60	
A.2	Blindprobe zur Bestimmung des Massenverlustes der Filter durch Wasserdesorption in Folge des Trocknungsprozesses	61	

Symbole

Symbol	Einheit	Bedeutung
Lateinische Sym	bole	
A	m^2	Fläche
a	m	Innenkantenlänge
c_V	%	Feststoffvolumenkonzentration
c_m	%	Feststoffmassenkonzentration
\mathcal{C}_W	_	Widerstandsbeiwert
d	m	Durchmesser
F	Ν	Kraft
8	m/s^2	Erdbeschleunigung
h	m	Höhe
Н	$kJkg^{-1}$	spezifischer Heizwert
k	—	beliebiger Faktor
Μ	Nm	Drehmoment
р	bar,Nmm ^{-2}	Druck
Q	—	Summenverteilung
Re	—	Reynoldszahl
R _{es}	$Nmm^{-2}\sqrt{m}$	Bruchzähigkeit
S	m	Sedimentationssinkstrecke
t	S	Zeit
Т	°C	Temperatur
V	m ³ , L	Volumen
W	$\mathrm{ms^{-1}}$	Sinkgeschwindigkeit
x	m	Partikeldurchmesser
Ζ.	m	Wandabstand

Griechische Symbole

α	-	Richardson-Zaki-Exponent
Δ	_	Differenz
η	$N s m^2$	dynamische Viskosität
λ	nm	Wellenlänge
ρ	$\mathrm{kg}\mathrm{m}^{-3}$	Dichte

Indizes	
0	Ausgangszustand
Α	Auftrieb
d	Durchmesser
f	Flüssigkeit
8	Gewicht
р	Partikel
S	Einzelkorn
SS	Schwarm
Т	Trägheit
W	Widerstand

Danksagung

Diese Arbeit entstand im Jahr 2013 in den Monaten Juni bis September, im Rahmen meines Bachelorstudiums während meiner Zeit am Institut für Katalyseforschung und Technologie (IKFT), des Karlsruher Instituts für Technologie (KIT). Ich bedanke mich bei Herrn Prof. Dr.-Ing. Jörg Sauer für die kritische Bewertung.

Desweiteren danke ich dem Institut für Katalyseforschung und -technologie (IKFT) für die spannende Aufgabenstellung. Für diese und die lange Unterstützung und gemeinsame Planung dieser Arbeit möchte ich insbesondere meinem Betreuer Dipl.-Ing. Thomas Nicoleit danken. Mit seiner Hilfe und Anregungen war der Aufbau dieser Arbeit erst möglich und die Diskussionen mit Herrn Nicoleit haben mir jedes Mal neuen Ansporn gegeben. Vielen Dank dafür.

Ein großes Dankeschön möchte ich Herrn Kehrwecker und seinem Werkstattteam aussprechen, die meine vielen kleinen und großen Aufträge immer mit höchster Präzision und Pünktlichkeit bearbeitet haben. Weiter möchte ich Herrn Sickinger und Herrn Richter danken, da sie mich bei dieser sehr konstruktionsintensiven Arbeit unterstützt haben und den Messturm selber erst möglich gemacht haben. Außerdem bedanke ich mich bei Herrn Paris und seinem Team, für vielen Informationen und Hilfen zur Konstruktion einer visuellen Erweiterung des Messgeräts. Mein Dank gilt auch Martin Kusterer für seine große Hilfe beim Aufbau des Turm und weiteren Arbeiten daran.

Zuletzt geht ein Dank an meine Familie und Verwandten, die immer für mich da sind.

1 Einleitung

1.1 Motivation

Der fossile Rohstoff Erdöl leistet einen signifikanten Beitrag zum Lebensstandard in unserer Zivilisation. Wesentliche Erfindungen, wie das künstliche Herstellen von Polymeren, konnten mit Erdöl erst ermöglicht werden. Die Erkenntnis, dass das fossiles Erdöl, jedoch kein unendlich lang ökonomisch förderbarer Rohstoff ist, ist der Menschheit schon lange bewusst.

Es existieren sehr unterschiedliche Aussagen über den Zeitraum wie lange Erdöl noch förderbar sein wird. Der starke Anstieg des Rohölpreises ist jedoch ein Fakt. Beispielhaft kann dafür das in Abbildung 1.1 gezeigte Balkendiagramm herangezogen werden. Es zeigt den Anstieg des Preises einer OPEC (Organisation of Petroleum Exporting Countries) Referenz Gallone. (Dieser wird gebildet über den Mittelwert des Preises einer Gallone Erdöl aller OPEC-Mitglieder, wobei seit 2005 dieser entsprechend der Produktivität gewichtet ist.) Der Erdölpreis hat sich im Zeitraum von 2001 bis 2011 fast verfünffacht.

Abbildung 1.1: Anstieg des Preises in Dollar für eine Gallone OPEC (Organisation der Erdöl exportierenden Länder) Reference Basket seit 2000. Der Preis ist dabei ein Mittelwert gebildet von allen OPEC-Mitgliedern, Quelle: (OPEC, 2012, [16])

Damit werden alternative Herstellungswege von Kraftstoffen oder Erdölprodukten ökonomisch attraktiver, die sich bis jetzt wegen hoher Herstellungskosten nicht rentiert haben. Das hat auch die Europäische Union erkannt und hat 2007 den Staaten der Gemeinschaft die gemeinsame Aufgabe auferlegt bis 2020 ein Fünftel ihrer benötigten Energie aus erneuerbaren Quellen zu gewinnen. Ferner wird von der EU eine Entwicklung hin zur dezentralisierten Energieversorgung

vorgeschlagen. Als Vorteile einer solchen Versorgung werden von der EU "die Nutzung vor Ort verfügbarer Energiequellen, eine bessere lokale Energieversorgungssicherheit, kürzere Transportwege und geringere übertragungsbedingte Energieverluste" genannt. Außerdem soll sich diese Dezentralisierung auch "positiv auf die Entwicklung und den Zusammenhalt der Gemeinschaft auswirken, indem Erwerbsquellen und Arbeitsplätze vor Ort geschaffen werden" (Europäisches Parlament, 2009, [10]).

1.2 bioliq[®]-Verfahren

In diesem Zusammenhang soll das Karlsruher bioliq[®]-Verfahren einen Teil dieser EU-Ziele übernehmen. Bei diesem Verfahren wird preisgünstige Restbiomasse als Ausgangsstoff genutzt. Mit einer Schnellpyrolyse wird die Biomasse zu Koks (elementarer Kohlenstoff) und Pyrolysekondensaten¹ zersetzt. Durch Mischung dieser beiden Stoffe erhält man eine hochviskose, aber auch energiedichte Suspension, den Bioslurry oder auch Biosyncrude. Dieser kann in einem Hochdruck-Flugstromvergaser zu Synthesegas (Gemisch aus Kohlenstoffmonoxid CO und Wasserstoff H₂) umgesetzt werden. Synthesegas wird heute schon als Ausgangsstoff für viele chemische Grundprodukte eingesetzt, wie zum Beispiel Methanol, oder in dem Fischer-Tropsch-Verfahren zur Gewinnung von Alkanketten oder eben Kraftstoffen.

Die Schnellpyrolyseeinheiten ist dezentral an den Stellen aufzustellen, an denen Biomasse anfällt, um ein größeres Einzugsgebiet realisieren zu können. Dies ist nötig, da die Vergasereinheit aus wirtschaftlichen Gründen einen sehr großen Mindestdurchsatz haben muss. Der aus den Pyrolyseeinheiten gewonnene Slurry kann wegen seiner hohen Energiedichte (ca. $20 \,\text{GJm}^{-3}$) kostengünstig zu dieser Vergasungsstelle transportiert werden, wie in Abbildung 1.2 ersichtlich ist.

Alles in allem sind in diesem Konzept einige Vorteile, die die EU in einer dezentralisierten Energieversorgung sieht, enthalten. Dahmen et al. (2007, [7]) sind der Meinung, dass Biokraftstoffe schon kurzfristig einen Teil der fossilen Energieträger ersetzen können.

¹Diese bestehen aus Schwelteer, einer öligen sehr zähen organischen Flüssigkeit, und Schwelwasser, eine Substanz mit geringer Viskosität und niedrigem Heizwert

Abbildung 1.2: Prinzip des Transports von Biomasse im bioliq[®]-Verfahren, Quelle: (Dahmen et al., 2007, [7])

1.3 Aufgabenstellung

Eine wesentliche Herausforderung mit dem eben erwähnten Slurry ist seine Handhabung. Da der Bioslurry eine Suspension aus flüssigem Pyrolysekondensaten und festen Kokspartikeln ist, kann es ohne stetiges Rühren zu einem Absetzen des Kokses kommen. Je nach Mischungsverhältnis und Eigenschaften von Koks und Kondensat kommt es im sogenannten BioSyncrude (Mischung von Koks mit Pyrolysekondensat) zur Bildung von festen Sedimenten, welche nur mit einem hohen Energieeintrag wieder aufgerührt werden können.

In der Arbeit von Nicoleit (2012, [15]) wurden im Labormaßstab die mechanischen Eigenschaften des Slurrys untersucht und das Sedimentationsverhalten der Kokspulver in der Suspension quantifiziert. Außerdem wurde die Sedimentationsdichte und die Sedimentationsgeschwindigkeit als Funktion der Sedimentationszeit und der Kokskonzentration im Slurry ermittelt. Dafür wurden modular aufgebaute Sedimentationszylinder von geringer Größe und kleinem Durchmesser verwendet. Es ist nun interessant zu untersuchen, wie sich der Slurry hinsichtlich seiner Sedimentationseigenschaften verhält, wenn ein Sedimentieren der Suspension im Technikumsmaßstab zugelassen wird. Vor allem hinsichtlich der Zonensedimentation sind im größeren Maßstab (Sedimentationshöhe > 100 cm) aufgrund der hydrostatischen Drücke in Bodennähe andere Sedimentationscharakteristika zu erwarten.

Aufgabe dieser Arbeit ist die Entwicklung und Konstruktion eines Messgerätes zur Charakterisierung der Partikelsedimentation im BioSyncrude. Hierzu wird ein Messgerät im Technikumsmaßstab konstruiert, an welchem über Ventile in verschiedenen Höhen eine BioSyncrude-Probe genommen werden kann. Von diesen Proben ist der Feststoffgehalt zu bestimmen, um so das Absetzverhalten der Partikel als Funktion der Zeit und der Sedimentationshöhe ermitteln zu können. Dabei wird auf die Auswahl geeigneter Ventile und Hilfseinrichtungen, um auch eine Probe festen Sediments aus den bodennahen Bereichen des Messgerätes entnehmen zu können, eingegangen.

Als Größenordnung für die Konstruktion im Technikumsmaßstab soll das Innenvolumen von mindestens $0,4 \text{ m}^3$ BioSyncrude, sowie eine Höhe von ca. 150 cm angestrebt werden. Ein entsprechend großer Innendurchmesser soll verhindern, dass das Entnehmen einer Probe (~ 50 ml) den Höhenspiegel signifikant absinken lässt. Das konstruierte Messgerät wird in dieser Arbeit als Sedimentationsmessturm bezeichnet. Dieser wird mit einem Modellslurry aus Ethylenglykol und ~ 30 % Holzkoks in Betrieb genommen. Die Messmethodik soll erläutert werden und die Ergebnisse werden mit den Resultaten aus vorangegangen Arbeiten verglichen.

In dieser Bachelorarbeit sollen nach der Einleitung zunächst die theoretischen Grundlagen der Sedimentation erläutert werden. Dann wird auf den Stand der Messtechnik eingegangen, gefolgt von der Vorstellung der Einsatzmaterialien. Das Vorgehen zur Konstruktion des Sedimentationsmessturm wird anhand des SPALTEN-Prozesses erörtert und wird die vollständige Konstruktion vorgestellt. Im Anschluss werden die Ergebnisse aus der Inbetriebnahme ausgewertet und diskutiert und danach der Messturm im Ganzen bewertet. Zum Schluss wird die Arbeit zusammengefasst und ein Ausblick auf weitere Verbesserungen beziehungsweise Erweiterungen gegeben.

2 Grundlagen der Sedimentation

In diesem Kapitel werden die theoretischen Grundlagen erklärt, die für diese Arbeit wichtig sind. Es werden Gleichungen eingeführt, die in den folgenden Kapitel benutzt werden. Außerdem wird auf die Theorie des Sedimentationsprozesses eingegangen.

2.1 Partikelbewegung im Schwerefeld

Wichtige Einflussgrößen bei der Partikelbewegung in einer ruhenden Flüssigkeit im Schwerefeld sind die Viskosität und Dichte des Fluids, die Dichte des Partikels, sowie seine Form. Darüber hinaus sind noch die Partikelkonzentration, Wechselwirkungen zwischen den Partikeln und strömungstechnische als auch thermodynamische Randbedingungen zu nennen (Salas, 1956, [19]).

Zunächst wird ein einzelnes, sinkendes Partikel betrachtet. Für diesen Fall wird die Sinkgeschwindigkeit w_s , für eine unendlich ausgedehnte, ruhende Flüssigkeit unter Einwirkung der Schwerkraft definiert. Die Partikelkonzentration, sowie Wechselwirkungen sind vernachlässigbar. Auf das sinkende Partikel wirken die Gewichtskraft F_g , die Auftriebskraft F_A , die Trägheitskraft F_T , sowie die Widerstandskraft F_W . Im stationären Fall, dass heißt die Beschleunigungsphase ist vorbei ($F_T = 0$), erhält man das folgende Kräftegleichgewicht (2.1), (Stieß, 2008, [24]):

$$F_g - F_A - F_W = 0 (2.1)$$

Um dieses Kräftegleichgewicht in eine analytische Formel zu überführen, wird zunächst die Reynoldszahl Re_d als Verhältnis von Trägheitskraft zu Reibungskraft eingeführt (siehe Gleichung (2.2)). In ihr enthalten ist die dynamische Viskosität η und die Dichte ρ_f des Fluids, sowie der Durchmesser *d* und die Sinkgeschwindigkeit w_s des Partikels.

$$Re_d = \frac{\text{Trägheitskraft}}{\text{Widerstandskraft}} = \frac{w_s \cdot d \cdot \rho_f}{\eta}$$
(2.2)

Außerdem spielt der c_w - Wert, auch Widerstandsbeiwert genannt, eine wichtige Rolle. Dieser ist wie folgt definiert:

$$c_w = \frac{2 \cdot F_W}{\rho_{\rm f} \cdot w_s^2 \cdot A} \tag{2.3}$$

Hierbei ist *A* die Fläche des angeströmten Querschnitts. Mit den Definitionen für die Kräfte aus der Kräftebilanz (2.1), ergibt sich nach Einsetzen die folgende Gleichung, (Stieß, 2008, [24]):

$$(\rho_{\rm p} - \rho_{\rm f}) \cdot \frac{\pi}{6} d^3 \cdot g = \frac{\rho_f}{2} \cdot w_s^2 \cdot \frac{\pi}{4} \cdot d^2 \cdot c_w(Re_d)$$
(2.4)

 $\rho_{\rm p}$ ist hier die Dichte des Partikels beziehungsweise $\rho_{\rm f}$ die Dichte des Fluids. Weiter enthalten in der Formel sind die Reynoldszahl Re_d (siehe Gleichung (2.2)), der Durchmesser d und die Erdbeschleunigung g.

In Gleichung (2.4) sowie in $c_w(Re_d)$ sind die Sinkgeschwindigkeit w_s und d enthalten. Es müssen also Vereinfachungen getroffen werden um Gleichung (2.4) in expliziter Form zu erhalten. Dazu betrachten wir zuerst die Abhängigkeit des c_w -Werts von der Reynoldszahl. Diese ist für eine Kugel in Abbildung 2.1 (Kurve K) zu erkennen. Die Abbildung lässt sich in drei Bereiche einteilen. Die Kurve nimmt am Anfang fast linear ab, daran schließt sich ein Übergangsbereich an, in dem der c_w -Wert annähernd konstant bleibt. Am Ende (bei sehr hohen Reynoldszahlen) schließt sich ein Sprung des c_w -Werts an.

Abbildung 2.1: c_w -Verlauf für eine Kugel (K im Diagramm) und eines unendlich langen, quer angeströmten Kreiszylinders (Z), logarithmisch aufgetragen über die Reynoldszahl, Quelle: (Sigloch, 2012, [22])

In der Literatur werden die Unterteilungen mit drei Bereichen kenntlich gemacht (vgl. auch Abbildung 2.1):

- Stokesbereich (Bereich I) für $Re_d < 0.25$
- Übergangsbereich (Bereich II) für $0.25 < Re_d < 2 \times 10^3$
- Newtonbereich (Bereich III) für $2 \times 10^3 < Re_d < ca. 2 \times 10^5$

In dem für uns interessanten Stokesbereich herrscht eine zähe Umströmung und es liegt überwiegend Reibungswiderstand vor. Unter zu Hilfenahme von Gleichung (2.4) lässt sich die Widerstandskraft, für sehr kleine Geschwindigkeiten ($Re_d \rightarrow 0$), annehmen als:

$$F_{WSt} = 3\pi \cdot d \cdot \eta \cdot w \tag{2.5}$$

Daraus folgt für den Widerstandsbeiwert, wenn Gleichung (2.5) in (2.3) eingesetzt wird, mit der angeströmten Querschnittsfläche $A = \frac{\pi}{4}d^2$ eines Kreises:

$$c_w(Re_d) = \frac{6\pi \cdot d \cdot \eta \cdot w_s}{\rho_f \cdot w_s^2 \cdot \frac{\pi}{4} \cdot d^2} = \frac{24 \cdot \eta}{\rho_f \cdot w_s \cdot d}$$
(2.6)

Mit der Definition aus (2.2) gilt $c_w = 24/Re_d$ und der Ausdruck (2.4) vereinfacht sich zu, (Stieß, 2008, [24]):

$$w_s = \frac{\rho_{\rm p} - \rho_{\rm f}}{18\eta} \cdot g \cdot d^2 \tag{2.7}$$

2.1.1 Einfluss der Wand auf die Sinkgeschwindigkeit

Der Widerstandsbeiwert c_w kann durch die Nähe eines Partikels zu einer Wand erhöht werden. Betrachtet werden kugelförmige Partikel, die sich im Stokesbereich parallel oder senkrecht zu einer Wand bewegen. In diesem Fall ist der Widerstandsbeiwert eine Funktion der Reynoldszahl und dem Verhältnis von Wandabstand z zur Partikelgröße d. Für den parallelen Fall gilt:

$$c_w = \frac{24}{Re} \cdot \left\{ 1 - \frac{9}{16} \cdot \left(1 + 2\frac{z}{d}\right)^{-1} \right\}^{-1}$$
(2.8)

Im senkrechten Fall:

$$c_w = \frac{24}{Re} \cdot \left\{ 1 - \frac{8}{9} \cdot (1 + 2\frac{z}{d})^{-1} \right\}^{-1}$$
(2.9)

Der Wandeinfluss kann vernachlässigt werden, wenn der Abstand eine Größenordnung über dem Partikeldurchmesser liegt, also wenn gilt z >> d. In diesem Fall liegt der Unterschied vom Absinken mit Wandeinfluss gegenüber dem ohne Wandeinfluss bei weniger als 3 % (Stieß, 2008, [24]).

2.2 Sedimentation in Suspensionen

Suspensionen sind heterogene, meist instabile Systeme, bei der ein Feststoff in einer Flüssigkeit dispergiert ist. Solange die Feststoffpartikel groß genug sind und die Viskosität der Flüssigkeit so gering ist, dass die Schwerkraft, die auf die Partikel wirkt, größer ist als die Auftriebs- und die Widerstandskraft, dann sinken die Feststoffpartikel im Laufe der Zeit nach unten. Diesen Vorgang nennt man Sedimentation (Zogg, 1993, [26]).

Es kann unterschieden werden zwischen der wechselwirkungsfreien Sedimentation eines Partikels, also der freien Bewegung im Schwerefeld, auch Einzelkornsedimentation genannt, und der Sedimentation mit Wechselwirkungen. Letztere liegt bei hohen Feststoffkonzentrationen vor. Unter diese fällt, die für diese Arbeit interessante, Zonensedimentation.

2.2.1 Einzelkornsedimentation

Ist die Feststoffvolumenkonzentration im Medium kleiner als ca. 0,2 % (bei Messungen) bzw. ca. 1 % (bei technischen Trennungen), so können alle Wechselwirkungen zwischen den Partikeln vernachlässigt werden. Die Partikel sind frei gegeneinander beweglich, sinken ungehindert ab und weisen die Charakteristika eines einzelnen Korns auf, das in einer unendlich ausgedehnten, ruhenden Flüssigkeit unter Einwirkung der Schwerkraft sedimentiert, siehe Abschnitt 2.1. Deswegen gilt für alle Partikel die stationäre Sinkgeschwindigkeit im Stokesbereich, wenn die Reynoldszahl kleiner 0,25 ist (Stieß, 2008, [24]).

Aus der Gleichung für die stationäre Sinkgeschwindigkeit (2.7) ist erkenntlich, dass die Sinkgeschwindigkeit eines Partikels, bei Vergleich des selben Mediums, nur vom Durchmesser abhängt. Große Partikel sinken deshalb schneller als kleine, da mit Vergrößerung des Durchmessers das Volumen beziehungsweise die Masse mit der dritten Potenz zunimmt und damit die Sedimentation aufgrund der Schwerkraft stärker beschleunigt wird, als sie durch die sich quadratisch vergrößernde Oberfläche (Reibungswiderstand, siehe Gleichung (2.4) rechte Seite) verlangsamt wird. Im Umkehrschluss bedeutet das, dass kleine Partikel nicht langsam sedimentieren, weil sie wenig wiegen, sondern, weil die Haft-/Gleitreibung der (relativ betrachtet) großen Oberfläche einen hohen Widerstand hat.

Um die Einzelkornsedimentation zu untersuchen, wurden unter anderem die Sedimentationswaage und das Pipettiergerät entwickelt, siehe dafür Abschnitt 3.1 und 3.2. In dieser Arbeit werden Suspensionen mit Feststoffkonzentration > 20% untersucht, deswegen soll diese Art der Sedimentation nur kurz erwähnt bleiben.

Ab Feststoffvolumenkonzentrationen über 1 % sind Effekte zwischen den Partikeln nicht mehr vernachlässigbar und nehmen mit steigender Konzentration weiter zu. Es kann hier zwischen der Sedimentation ohne und mit Flockung der Partikel unterschieden werden (Stieß, 2008, [24]), die in den nachfolgenden Abschnitten erläutert werden.

2.2.2 Sedimentation höher beladener Suspensionen ohne Flockung

Eine Flockung der Partikel tritt nicht auf, wenn die Haftkräfte zwischen ihnen kleiner gegenüber den Massen- und Druckkräften sind. In ungeflockten Suspensionen höherer Massenkonzentration spricht man von Partikelschwärmen. Ein Partikelschwarm besteht aus *n* Fraktionen, diese bestehen aus Partikeln einheitlichen Durchmessers und Dichte. Man unterscheidet Monoschwärme und Polyschwärme. Ein Monoschwarm besteht nur aus einer Fraktion, damit haben alle Partikel den gleichen Durchmesser und die gleiche Dichte. Ein Polyschwarm ist somit ein Schwarm mit mehreren Fraktionen (Brauer und Thiele, 1973, [6]).

Allgemein reißt jedes Partikel beim Sinken ein kleines Flüssigkeitsvolumen mit sich, aufgrund der Massenerhaltung muss ein ebenso großes auch wieder aufsteigen. Ab einer Volumenkonzentration von $c_V > 2\%$ kann keine Geschwindigkeit für jedes einzelne Partikel bestimmt werden (Zogg, 1993, [26]). Dafür wird die Schwarmsinkgeschwindigkeit w_{ss} eingeführt. Diese ist abhängig von der Volumenkonzentration c_V und nur noch bedingt vom Durchmesser des

einzelnen Partikels. Man beobachtet eine konstante Sinkgeschwindigkeit für alle Partikelgrößen ab einer bestimmten Volumenkonzentration ($c_V > 2\%$, (Zogg, 1993, [26])).

Im Bereich 2 % $\leq c_V \leq 10$ % registriert man einen Anstieg der Sinkgeschwindigkeit gegenüber der des Einzelkorns. Das ist anhand der Wechselwirkungen zwischen den Teilchen zu erklären. Die größeren, schneller sedimentierenden Partikel reißen die kleineren mit und erhöhen so die mittlere Sedimentationsgeschwindigkeit (Bickert, 1997, [4]). Ab großen Konzentrationen ($c_V > 10$ %) stellt sich ein großer, entgegen der Partikelbewegung gerichteter, Volumenstrom ein. Zusammen mit der Interaktion der Partikel untereinander, zum Beispiel durch Impulsaustausch, verringert sich die Sinkgeschwindigkeit der Partikel wesentlich gegenüber der Einzelkornsinkgeschwindigkeit (Anlauf, 2010, [3]).

Zur Berechnung der Schwarmsinkgeschwindigkeit w_{ss} existieren mehrere Modelle, diese lassen sich in drei hydrodynamische Betrachtungen aufteilen (Schubert, 2003, [20]):

- 1. Die Suspension wird als **Kontinuum** aufgefasst, wobei dessen Dichte und Viskosität eine Funktion der Feststoffkonzentration ist. Damit sind die vorher genannten Formeln weiter gültig und die Parameter müssen durch die **Kontinuumseigenschaften** (Suspensionsdichte, -viskosität) statt der Fluideigenschaften ersetzt werden.
- Der Feststoff wird als durchströmte Partikelschüttung aufgefasst. Zur Berechnung muss hier ein geeignetes Durchströmungsmodell gewählt werden. Ein Beispiel hierfür wären Gleichungen nach Darcy oder Carman-Kozeny (siehe Stieß (2008, [24]), S.146ff).
- 3. Die Suspension wird als **Zweiphasensystem** mit den Eigenschaften der einzelnen Phasen behandelt. In diesem Fall müssen verschiedene Wechselwirkungseffekte (z.B. Schwarmturbulenz, Gegenströmung) berücksichtigt werden.

Das empirische Modell für kugelförmige Partikel nach Richardson und Zaki ist ein Beispiel, in dem die Suspension als Kontinuum betrachtet wird. Sie wird wie folgt definiert:

$$\frac{w_{ss}}{w_s} = (1 - c_V)^{\alpha(Re_0)}$$
(2.10)

Der Exponent α ist eine von Richardson und Zaki empirisch bestimmte Funktion mit der Variablen Re_0 , der Reynoldszahl für ein einzelnes umströmtes Partikel; $Re_0 \equiv Re_d$. Mit wachsender Reynoldszahl nimmt die Funktion $\alpha(Re_0)$ ab, bis sie oberhalb von $Re_0 \approx 500$ den konstanten Wert $\alpha = 2,4$ annimmt (Stieß, 2008, [24]) (siehe hierfür Abb. 2.2, diese wurde mit gnuplot erstellt siehe Anhang A.5 für den Quellcode und die Funktionen).

Die Richardson-Zaki-Gleichung ist gültig bis zu einer Feststoffvolumenkonzentration von $c_V < 30\%$ (Schubert, 2003, [20]) und ist wie das nachfolgende Modell nur für nicht geflockte Suspensionen anwendbar.

Ein Beispiel bei dem die Suspension als Zweiphasensystem behandelt wird, ist das von Brauer und Mitarbeiter, siehe Gleichung (2.11). Dieses ist gültig für Monoschwärme im Bereich $Re_d \leq 1$. Für Polyschwärme sind einige Anpassungen zu machen. Diese Anpassungen und eine allgemeine

Abbildung 2.2: Abhängigkeit des Richardson-Zaki-Exponenten α von der Reynoldszahl Re_0 , Quelle: (Stieß, 2008, [24])

Funktion finden sich in der Veröffentlichung von Brauer und Thiele (1973, [6]). In dem hier vorgestellten Modell wird die oben genannte Schwarmturbulenz, sowie die durch die Schwarm verursachte Gegenströmung des Fluids berücksichtigt (Schubert, 2003, [20]). Dabei ist in (2.11) der erste Term, k_G , der Gegenstromfaktor. Der zweite Term, k_T , ist der Schwarmturbulenzfaktor. Das Modell nach Brauer und Mitarbeiter kann für Suspensionen im Bereich $5\% \le c_V \le 60\%$ benutzt werden (Brauer und Thiele, 1973, [6]).

$$\frac{w_{ss}}{w_s} = \underbrace{\frac{1}{1 + \frac{c_v}{(1 - c_v)^2}}}_{k_G} \cdot \underbrace{\frac{1 - c_v}{1 + \frac{1.05}{\sqrt{1 + (\frac{\pi}{12c_v})^2 - \frac{1}{2}}}}_{k_T}}_{k_T}$$
(2.11)

2.2.3 Sedimentation höher beladener Suspensionen mit Flockung

Flocken, Cluster oder Agglomerate sind Gebilde aus mehreren, aneinander haftenden Partikeln. Flockung tritt vor allem bei feinkörnigen, oder der Dichte des Fluids ähnlichen Partikeln auf und kann schon bei geringen Volumenkonzentrationen beobachtet werden. In den meisten Fällen liegen dann sehr enge Partikelverteilungen vor. Die physiko-chemisch gebundenen Flocken sinken aufgrund ihres im Vergleich zum Einzelkorn größeren Gesamtdurchmessers schneller ab. Allgemein ist die Sinkgeschwindigkeit also gegenüber der Einzelkornsedimentation erhöht. Dies trifft allerdings nur für Volumenkonzentration $c_V < 10\%$ zu. Ab diesem Wert beeinflussen sich die Flocken zu stark untereinander und dasselbe Phänomen, der verringerten Sinkgeschwindigkeit, tritt auf (siehe auch Kapitel 2.2.2) treten auf (Stieß, 2008, [24]). Der Flockungsvorgang ist ungerichtet und nicht lenkbar, somit kann weder die Größe noch die Dichte der Flocken vorausberechnet werden. Daher sind diese Systeme mathematisch schwer zu analysieren und in der Regel sind Versuche mit Sedimentationsgefäßen notwendig (Stieß, 2008, [24]). In diesem Zusammenhang könen die Arbeiten von Bürger erwähnt werden, der in vielen Veröffentlichungen eine mathematische Modellierung und numerische Simulation für das Absetzverhalten von geflockten Suspensionen vorgestellt hat (P.Garrido et al., 2004, [18]).

Eines der häufigsten auftretenden Phänomene bei geflockten Suspensionen ist die Zonensedimentation (Abb. 2.3). Bei der Zonensedimentation bildet sich aus einer

Abbildung 2.3:Zonensedimentation.1Klarflüssigkeit,2Sedimentationszone,3 Kompressionszone, 4 verdichtetes Sediment, Quelle:(Stieß, 2008, [24])

homogenisierten Suspension (Abb. 2.3, Bereich 2) von oben nach unten eine mit der Zeit größer werdende Zone mit klarer Flüssigkeit (Abb. 2.3, Bereich 1). Davon scharf abgegrenzt befindet sich die darunter gelegene Suspension. Der F eststoff wird am Boden des Gefäßes komprimiert (Abb. 2.3, Bereich 3), diesen Teil nennt man auch *Dickschlamm*. Abhängig von der Volumenkonzentration lässt sich eine 4. Zone aus weiter verdichtetem Sediment erkennen.

Die Sedimentationsgeschwindigkeit in den einzelnen Zonen und im Vergleich der Zonen untereinander ist bei diesem Vorgang nicht konstant. Zuerst ist ein Absetzen der Suspension, mit konstanter Geschwindigkeit, beobachtbar, bis Zone (1) und (3) auf einander treffen. Die weitere Sedimentation ist danach stark verlangsamt, dies kann unter anderem auf ein Komprimieren des Sediments zurückgeführt werden. Anzumerken ist an dieser Stelle noch, dass bei geringeren Konzentrationen der sogenannte Kompressionspunkt (siehe Abb. 2.4) früher erreicht wird als bei höheren (Stieß, 2008, [24]).

Abbildung 2.4: Zeitlicher Verlauf der Zonensedimentation (Absetzkurve), Ko: Kompressionspunkt, Zonen 1-4 wie in Abb. 2.3, Quelle: (Stieß, 2008, [24])

3 Stand der Messtechnik

In diesem Kapitel sollen mögliche Messmethodiken zur Sedimentationsanalyse und Sinkgeschwindigkeitsbestimmung vorgestellt werden. Desweiteren soll an Hand dessen in Abschnitt 3.6 gezeigt werden, warum es nötig war eine neue Messeinrichtung zu konstruieren.

Generell unterscheidet man bei der Analyse von Sedimentationen, die die im Gravitationsfeld (für Korngrößen ab 2 μ m) und die die im Zentrifugalfeld (für Korngrößen zwischen 0,1 bis 10 μ m) stattfinden. Außerdem lassen sich im Bezug auf die Suspensionen noch zwei Methoden zu Beginn der Sedimentationsanalyse unterscheiden, zum einen die überschichtete und zum anderen die homogen durchmischte Suspension (Lange, 1973, [14]).

Im Folgenden werden Vertreter von Sedimentationen in den entsprechenden Feldern beschrieben, wobei nicht weiter darauf eingegangen werden soll, wie die Suspension vorliegt. Nur so viel soll gesagt sein, dass der für die Experimente verwendete Slurry eine homogene Suspension ist, da dies dem Zustand des Slurrys in den Tanks der bioliq[®] - Anlage entsprechen soll.

3.1 Pipettiergerät nach DIN 66115

Das auch als Andreasen-Pipette bezeichnete Pipettiergerät, besteht aus einem Sedimentationsgefäß und einer meist gläsernen Pipette für die Probennahme. Mit dem Gerät ist es möglich Feststoffmassenkonzentrationen, Sinkgeschwindigkeiten, sowie Partikelgrößen (es wird ein Sinkgeschwindigkeits-Äquivalenzdurchmesser berechnet) für den Bereich von 1 bis 250 µm zu bestimmen.

Die zu untersuchende Suspension wird in den Sedimentationszylinder vorgelegt und im Vorbereitungsbehälter temperiert. Die Feststoffvolumenkonzentration soll dabei einen Wert von 0,2 % nicht überschreiten. Eine konstante Temperatur muss gewährleistet sein, da bei dem geringen verwendeten Volumen, Schwankungen der Umgebungstemperatur sehr schnell Einfluss auf Dichte und Viskosität der Suspension haben. Außerdem können lokale Temperaturänderungen, Konvektionsströmungen hervorrufen, die die Messung nichtig machen.

Zu Beginn der Messung gibt man den Feststoff in den Messbereich, ein etwa 20 cm-Bereich im Zylinder (siehe Abb. 3.1), der in bestimmte Abschnitte eingeteilt ist. Die Probenahme aus diesem Bereich der Pipette erfolgt nach einem festgelegten Zeitplan (Formel nach DIN 6611). Dafür ist es notwendig ein gewisses Vorwissen über die Partikelgrößenverteilung der Suspension zu haben, da anhand des Sinkgeschwindigkeits-Äquivalenzdurchmessers der Zeitplan bestimmt wird. Das setzt Vorversuche voraus und beim Einhalten des Zeitplans muss auf exakte Arbeit geachtet werden. Die Flüssigkeit in den so erhaltenen Proben wird verdampft und der Feststoff getrocknet. Der Feststoffgehalt wird durch Wiegen ermittelt. Aus der Masse des Feststoffs lässt sich die Sinkgeschwindigkeit ermitteln und über diese erhält man Aufschluss über die Partikelgröße.

Der gesamte Versuchsvorgang muss nach DIN 6611 durchgeführt werden (DIN, 1996, [9]). Zum Aufbau einer solchen Apparatur kann man auch Alex (1970, [2]) zu Rate ziehen.

Abbildung 3.1: Darstellung der Andreasen-Pipette: gut zu erkennen ist der 20 cm große Messbereich. Auf dem Schliff des Messzylinders angebracht ist die namensgebende Pipette zur Probenahme, Quelle: (Hess und Tretbar, 2006, [12])

3.2 Sedimentationswaage nach DIN 66116

Das Messprinzip der Sedimentationswaage ist relativ simpel. Eine homogene Suspension (mit einer höchstzulässigen Feststoffvolumenkonzentration von 0,2%) wird in einen Messzylinder gegeben. In diesem Zylinder befindet sich auf einer definierten Höhe ein Teller, der über einem Draht mit einem Balkenende verbunden ist, an dessen anderem Ende ein Gewicht hängt, welches auf einer Waage steht (siehe Abb.3.2).

Die in der Suspension enthaltenen Partikel sedimentieren auf den Teller. Durch diese Ablagerung wird der Teller nach unten gedrückt und damit das Gewicht angehoben. Der Sedimentationsvorgang kann also kontinuierlich über die Zeit an Hand der Entlastung der Waage beobachtet werden. Die Entlastung kann mit entsprechender Software von der Waage am Computer ausgelesen werden. Diese Messwerte liefern Aufschluss über Sinkgeschwindigkeit, Partikelgröße (es wird ein Sinkgeschwindigkeits-Äquivalenzdurchmesser bestimmt) und Feststoffgehalt.

Beim Messvorgang beziehungsweise der Vorbereitung sind auf einige Fehlerquellen zu achten. Der Messzylinder muss wie beim Pipettiergerät temperiert werden, und zwar aus den selben Gründen, wie in Abschnitt 3.1 beschrieben. Die Waagschale/Messteller plus Aufhängung muss ausbalanciert werden und von jeglichen anhaftenden Luftblasen befreit werden. Letzteres kann durch optimale Entgasung der Suspension, sowie vorsichtiges Einführen des Messtellers gewährleistet werden. Berechnungsvorschriften und genaue Handhabung können der DIN 66116 entnommen werden (DIN, 1996, [9]).

Abbildung 3.2: Schematische Darstellung des Aufbaus einer Sedimentationswaage, Quelle: (Panzer, 2011, [17])

3.3 Photosedimentometer

Allgemein besteht die Möglichkeit das Fortschreiten einer Sedimentation auch visuell zu betrachten. Der einfachste Aufbau ist der sogenannte Sedimentationszylinder. Dies ist ein Messzylinder mit feiner Millimeter-Skala, in den die zu sedimentierende Suspension gegeben wird. Das Absinken der Partikel beziehungsweise das Wandern der Phasengrenze kann beobachtet und in diskreten Zeitschritten dokumentiert werden. Damit kann die Sedimentationsgeschwindigkeit bestimmt werden.

Verbesserungen dieses Verfahrens können durch Transmissionsmessung erzielt werden, zum Beispiel einem Laser, oder mit Licht im Nahen Infrarot-Bereich (NIR-Bereich mit λ =880 nm). Möglichkeiten zu Letzterem bieten unter anderem Geräte der Firma L.U.M. GmbH. Deren Messinstrumente registrieren die Intensität des transmittierten Lichtes zeit- und ortsabhängig. Als Beispiel ist das Messprinzip der LumiFuge in Abbildung 3.3 ersichtlich. Somit kann das Fortschreiten der Sedimentation über die Abnahme des eingestrahlten Lichtes im rechten Bereich der Probe (vgl. Abb. 3.3) bestimmt werden. Insgesamt erhält man unter anderem Aufschluss über die Sedimentationsgeschwindigkeit und Partikelwechselwirkungen (Sobisch und Lerche, 2008, [23]).

Abbildung 3.3: Schematische Darstellung einer Zentrifuge mit Photosensor. Es wird die Transmission des Lichtes über der radialen Position über die gesamte Probelänge aufgetragen und so auf den Sedimentationsfortschritt geschlossen, Quelle: (Sobisch und Lerche, 2008, [23])

3.4 Manometerzentrifuge

Die Messtechnik der Manometerzentrifuge basiert auf dem Dichteunterschied der sedimentierenden Suspension. Mit fortschreitender Sedimentation nimmt dieser zu und damit ergibt sich ein Druckunterschied, siehe hierfür auch Bickert (1997, [4]). Das Prinzip ist in Abbildung 3.4 rechts erkenntlich. Der Feststoff sedimentiert aus den oberen Bereichen heraus, dadurch verändert sich die Dichte und dieses ruft einen veränderten Druckunterschied hervor.

Zur Messung dieses Druckunterschiedes wird eine Küvette auf einem Rotorarm einer Zentrifuge angebracht und mit der Suspension gefüllt (siehe Abbildung 3.4 (links) für die Skizze des Rotorarms). Über Bohrungen entlang der Küvettenachse können Druckmesser angebracht werden und so den Differenzdruck über die Zeit aufnehmen. Die Druckdifferenz zwischen den Messpunkten in der Küvette hängt von der Konzentration der Partikel ab. Diese Konzentration nimmt während der Sedimentation ab, weil die Partikel aus dem Messbereich sedimentieren und nur das Fluid zwischen den Messstellen verbleibt. Es kann folgender Zusammenhang zwischen Sinkgeschwindigkeitsverteilung, Partikelkonzentration und Druckdifferenz ermittelt werden:

$$Q_3(u_P) = \frac{1}{\Delta p_0} \left(\Delta p(t_1) + t_1 \left| \frac{d}{dt} \Delta p(t) \right|_{t_1} \right)$$
(3.1)

$$u_P(t_1) = \frac{h_0}{t_1} \tag{3.2}$$

Dabei ist Q_3 die Summenverteilungsfunktion, u_P die Partikelgeschwindigkeit, Δp die

Druckdifferenz, Δp_0 die Differenz des Drucks der reinen Mutterflüssigkeit und *t* die Zeit sowie t_1 ein beliebiger Zeitpunkt. Bei geringen Konzentrationen sedimentieren auch in diesem Fall die größten Partikel als erstes, daher nimmt die Rate der Druckdifferenzabnahme mit der Zeit ab (Feist, 2012, [11]).

Abbildung 3.4: links: Skizze des Rotorarms einer Manometerzentrifuge, rechts: Prinzip der Druckdifferenzmessung, hier über 2 Messpunkte, Quelle: (Feist, 2012, [11])

3.5 "Detection of Sediment Layers and Properties" (DSLP) - Verfahren

Eine Methode zur hydroakustischen Detektion von Sedimentgrenzschichten und deren Eigenschaften bietet das sogenannte "Detection of Sediment Layers and Properties" (DSLP) - Verfahren, der Familie Eden, Vorrath & Partner. Abbildung 3.5 zeigt das Gerät im Einsatz an einem Schiff. Standard Echolote können nur Aufschluss über die Tiefe eines Gewässers geben und den Beginn des Sediments bestimmen. Ausgestattet mit einem akustischen Multifrequenz-Echolotsystem und komplexer Signalanalyse erlaubt das DSLP-Verfahren Aussagen über die Tiefenlage und Dicke von Suspensions- und Sedimentschichten zu treffen.

Hervorzuheben ist die Fähigkeit des Verfahrens selbst Sedimente mit nicht signifikanten Dichteunterschieden genau zu analysieren. Mit der Methode der Signalanalyse können eindeutig die Wechselwirkung zwischen Schallwelle und Materie ermittelt werden und geben so Rückschluss auf die Tiefenlagen der Grenzflächen von Suspensions- und Sedimentschichten, sowie die Klassifikation der Phasen. Dabei können unter Laborbedingungen Tiefenauflösungen von bis zu 3 mm erreicht werden. Zusammenfassend detektiert man mit dem DSLP-Verfahren Sedimentschichten, die sich allein durch die Änderung physikalischer und struktureller Parameter, wie zum Beispiel der Dichte ergeben (Kern (1999, [13]), S.117-121).

Abbildung 3.5: Das DSLP - Analysegerät (schwarze Röhre) im Einsatz am Schiff, zur Vermessung des Untergrundes; Quelle(generalacoustics.com)

3.6 Bewertung der Verfahren und Entscheidung für die Entwicklung eines Sedimentationsgerätes

In den vorherigen Abschnitten wurden fünf, teilweise sehr verschiedene, aktuell in der Analyse eingesetzte und anerkannte Techniken zur Bestimmung von Sedimentationsvorgängen vorgestellt. Im Folgenden wird nun auf die Vorteile der Techniken eingegangen, um danach an den Nachteilen zu zeigen, warum die Entwicklung eines neuen Gerätes nötig war.

Das Pipettiergerät sowie das DSLP-Verfahren können beide Aufschlüsse über die verschiedenen Schichten einer Suspension geben; dies ist auch mit einer Manometerzentrifuge, mit vielen Messstellen für eine ausreichend feine Auflösung, möglich. Das Pipettiergerät kann gute Aufschlüsse über die Mikro- (Größe der einzelnen Partikel im Bereich 1 - 250 µm) liefern. Mit dem DSLP - Verfahren erhält man Details über die Makroebene (Ausmaße der einzelnen Sedimentschichten bis zu einer Tiefe von ca. 15 m und mit einer Auflösung zwischen den unterschiedlichen Sedimenten bis zu 3 mm). Die Sedimentationswaage macht eine kontinuierliche Betrachtung eines Sedimentationsvorgang möglich. Dies ist auch mit einem Photosedimentometer und dem Manometerverfahren möglich, wobei in diesen Fällen der teils zeitintensive Vorgang der Sedimentation mit einer Zentrifuge (in Kapitel 3.3 am Beispiel der LumiFuge erklärt beziehungsweise Abschnitt 3.4) beschleunigt werden kann.

Problematisch für die Anwendung von Pipettiergerät, Sedimentationswaage und Photosedimentometer ist die Massenbeladung der Suspension. Die ersten beiden Analysemethoden liefern keine aussagekräftige Ergebnisse mehr ab einer Feststoffvolumenkonzentration von über 0,2 %. Die licht-basierte Sedimentationsanalyse kann dagegen relativ hohe Konzentration analysieren, da teils kräftige Laserstrahlen, oder Infrarotlicht
eingesetzt werden. Es können so auch trübe Medien untersucht werden, einzige Voraussetzung ist eine noch messbare Transmission am Anfang der Messung. Da in dieser Arbeit jedoch ein tiefschwarzer Slurry mit mindestens 30 % Feststoffkonzentration untersucht wird – das entspricht einer Feststoffvolumenkonzentration von ca. 19,1 % – und der Überstand über dem Sediment lichtundurchlässig ist, kann der Sedimentationsvorgang nicht mit einer photometrischen Analyse verfolgt werden.

Denkbar wäre der Einsatz eines Standzylinders mit der Messtechnik der Manometerzentrifuge. Hierfür liegen aber noch keine Arbeiten vor, in denen diese Technik bei hohen Feststoffkonzentrationen in hochviskosen Suspensionen erprobt wurde. Es bedarf einer genauen Untersuchung in wie weit die Dichteunterschiede zwischen den Phasen groß genug für eine Druckdifferenzmessung sind. Dies betrifft vor allem die geforderte hohe Auflösung über die ganze Sedimentationshöhe. Dieser Punkt sollte weiter verfolgt werden, kann aber auf Grund des Umfangs im Rahmen dieser Arbeit nicht berücksichtigt werden.

Einzig das DSLP-Verfahren bietet Möglichkeiten für die geplante Untersuchung. Im ersten Kapitel dieser Arbeit wurde darauf eingegangen, dass eine modulare Betrachtung des Sedimentationsprozesses ermöglicht werden soll. Es soll sowohl ein Scale-up, als auch eine Verbesserung des Verfahrens erreicht werden. Das DSLP-Verfahren würde den Anforderungen genügen. Da es aber ein vor allem im marinen Bereich eingesetztes Gerät ist, ist die chemische Beständigkeit des Sensors, im aggressivem Slurry fraglich und unerforscht. Darüberhinaus hat der Sensor eine Länge von bis zu 1 m und ist damit zu groß für den geplanten Einsatz in dem Sedimentationsmessturm mit einer Höhe von 1,5 m, und im Rahmen dieser Arbeit auch zu kostenintensiv.

Zusammenfassend gibt es also keine Möglichkeit hochbeladene Pyrolysekokssuspensionen im großen Maßstab auf ihre Sedimentationseigenschaften zu untersuchen. Aus diesem Grund wurde in dieser Arbeit der Sedimentationsmessturm entwickelt, der auf die in der Einleitung erwähnten modularen Sedimentationszylinder von Nicoleit (2012, [15]) aufbaut, und in Betrieb genommen. Der konstruierte Messturm wird im Kapitel 6 eingehend erläutert.

4 Vorstellung der Einsatzmaterialien

Die Versuche (Ergebnisse in Kapitel 7) wurden mit einem Modell- beziehungsweise Referenzslurry durchgeführt, der in ähnlicher Zusammensetzung auch bei der Inbetriebnahme der Vergasung zum Einsatz kam. Die Komponenten Koks und Ethylenglykol sollen im Folgenden näher vorgestellt werden. Weiterhin soll das Mischen der Komponenten und die eigentliche Messung der Feststoffkonzentration der angerührten Suspension betrachtet werden.

4.1 Charakterisierung des Kokspulvers

Im Rahmen dieser Arbeit wurde Koksstaub der Firma proFagus GmbH der Produktsorte Q035 verwendet. Dieser wurde von dem Unternehmen UVR - FIA GmbH mit einer Kugelmühle auf eine Partikelgröße unter 100 μ m gemahlen. Eine Elementaranalyse ergab für den verwendeten Koks einen Kohlenstoffanteil von 83 %, einen Wasserstoffanteil von 3,3 %, einen Stickstoffanteil von weniger als 1 %, sowie einen aus der Differenz zu 100 % resultierenden Sauerstoffanteil von 13 %. Der Aschegehalt des Kokspulvers beträgt 1,6 %.

Allgemein liegt der Durchmesser des hochreaktiven und pyrophoren¹ Kokses bei gemahlenen Kokspartikeln im Schnitt bei $x_{50} \sim 20 \,\mu\text{m}$; x_{50} bezeichnet dabei den Durchmesser der Partikel, die 50 % der Gesamtmasse innehaben. Die größten Partikel liegen in der Regel bei $x_{95} \sim 80 \,\mu\text{m}$. Die genauen Werte im Vergleich können aus der Tabelle 4.1 entnommen werden.

Tabelle 4.1: Partikelgrößenvergleich von verschiedenen Kokssorten untersucht von Nicoleit (2012, [15]), x₅, x₅₀ und x₉₅ bezeichnen dabei die Durchmesser der Partikel die 5, 50 beziehungsweise 95 % der Gesamtmasse innehaben

Koks	<i>x</i> ₅ [µm]	<i>x</i> ₅₀ [µm]	<i>x</i> 95 [μm]
ungemahlener bioliq [®] -Koks ²	$12{,}99\pm0{,}29$	$37{,}91\pm0{,}95$	$95{,}17\pm22{,}41$
gemahlener bioliq [®] -Koks ²	$6{,}46\pm0{,}06$	$15{,}90\pm0{,}26$	$64,2\pm1,16$
Holzkoks ²	$5{,}25\pm0{,}12$	$21{,}74\pm0{,}95$	$81,\!49\pm2,\!69$
gemahlener bioliq [®] -Koks ³	$11,\!79\pm0,\!36$	$43{,}94\pm0{,}88$	$164,\!27\pm6,\!57$

Es ist erkennbar, dass der Holzkoks eine vergleichbare Partikelgrößenverteilung zum gemahlenen biolig[®]-Strohkoks aufweist.

¹pyrophore Stoffe reagieren bei feiner Verteilung bereits bei Raumtemperatur mit der Umgebungsluft unter Bildung einer Flamme oder Glut

²Es wurde der Waddel-Disk-Durchmesser bestimmt, dieser wird aus der Äquivalenzdurchmessers eines Kreises bestimmt, der die selbe Fläche wie das Partikel hat

³Es wurde der Max Feret-Durchmesser bestimmt, der gleichgesetzt wird mit dem Abstand der zwei weit entferntesten Punkten des projizierten Partikels

4.2 Umrechnung von Massen-% in Volumen-%

An einigen Stellen in dieser Arbeit wird sowohl Feststoffvolumenkonzentration (oder Volumenprozent), sowie Feststoffmassenkonzentration c_m , auch Massenprozent genannt, behandelt. Dafür ist es notwendig an dieser Stelle eine Umrechnung für die verschiedenen Angaben zu liefern:

$$Vol.\% = \frac{\frac{Ma.\%}{\rho_{\text{Feststoff}}}}{\frac{Ma.\%}{\rho_{\text{Feststoff}}} + \frac{1 - Ma.\%}{\rho_{\text{Flüssigkeit}}}}$$
(4.1)

$$Ma.\% = \frac{1}{1 + \frac{\rho_{\text{Flüssigkeit}}}{\rho_{\text{Feststoff}}} \frac{(1 - Vol.\%)}{Vol.\%}}$$
(4.2)

Dabei kann man näherungsweise für die verwendete Suspension $\rho_{\text{Feststoff}} = 2 \text{ g/cm}^{-3}$ und $\rho_{\text{Flüssigkeit}} = 1,1 \text{ g/cm}^{-3}$ annehmen. Häufig verwendete Umrechnungswerte sind in Tabelle 4.2 angegeben.

Tabelle 4.2: Umrechnungstabelle für Massen-% und Volumen-% für $\rho_{\text{Feststoff}} = 2 \text{ g/cm}^{-3}$ und $\rho_{\text{Flüssigkeit}} = 1.1 \text{ g/cm}^{-3}$

Massenprozent	Volumenprozent
0,3	0,2
1,8	1
30	19,1

4.3 Ethylenglykol als Kondensat-Ersatz

Ähnlich dem Kokspulver sind die Pyrolysekondensate stark abhängig vom Einsatzstoff und Prozessbedingungen. Die Eigenschaften unterliegen starken Schwankungen und können noch nicht großtechnisch reproduzierbar hergestellt werden. Als Ersatz für die Pyrolysekondensate kann Ethylenglykol ($\rho_{Glykol} = 1,11 \text{ gcm}^{-3}$) dienen, da dieses eine vergleichbare Dichte hat und ähnliche Eigenschaften $\eta_{Glykol} = 21,3 \times 10^{-3}$ Pas zum Beispiel bei der Viskosität, oder dem Heizwert ($H_{Glykol} = 16,6 \text{ MJ/kg}$) aufweist. Aus diesem Grund wurde bei der Inbetriebnahme der bioliq[®]-Vergasung im Januar 2013 Ethylenglykol als flüssige Phase verwendet. Dabei wird zur Vergasung der sogenannte Modellslurry, eine Mischung aus Ethylenglykol und Koks, verwendet. Ferner wird Ethylenglykol im bioliq[®]-Prozess beim Quenchen⁴ zum Anfahren des Kondensationsprozesses eingesetzt. Es wird im Laufe des Prozesses durch das produzierte Pyrolysekondensat nach und nach aus den Kühlkreisläufen verdrängt.

⁴In der chemischen Verfahrenstechnik bezeichnet man mit Quenchen das gewünschte, schnelle Stoppen einer Reaktion, durch zum Beispiel rapide Temperaturabsenkung

4.4 Charakterisierung des Slurrys

Die Koks-Glykol-Suspension hat je nach Feststoffbeladung eine Dichte von $\rho_{\text{Slurry}} \sim 1200 \text{ kgm}^{-3}$. Die Viskosität des Slurrys ist stark abhängig von der Feststoffbeladung: Bitsch (2011, [5]) hat diesen Zusammenhang in seiner Arbeit untersucht, siehe Abbildung 4.1.

Abbildung 4.1: Viskositätsfunktionen bei 20 °C von vier Slurrys mit ungemahlenem Koks (links) und fünf Slurrys mit gemahlenem Koks (rechts), Quelle: (Bitsch, 2011, [5])

In der Abbildung 4.1 wird für vier Slurrys mit ungemahlenem und für fünf Slurrys mit gemahlenem Koks, die Viskosität über der Schubspannung aufgetragen.

Weiter wurde die Viskosität der hier untersuchten Suspension für verschiedene Temperaturen bestimmt. Die Scherbeanspruchung des Slurrys während der Sedimentation ist sehr gering, daher sollen nur die Viskositätswerte für die Drehzahl 1 min⁻¹ betrachtet werden. Die Ergebnisse für die niedrigste untersuchte Drehzahl und eine Trendgerade (rote Gerade) sind in Abbildung 4.2 aufgetragen; für die komplette Analyse siehe A.8 im Anhang.

Die Werte aus Abbildung 4.2 sind vergleichbar mit denen aus Abbildung 4.1 für einen gemahlenen 29,7 %-tigen Slurry. Deswegen wird für folgende Berechnungen eine Viskosität von $\eta \sim 1$ Pas für den in dieser Arbeit verwendeten Slurry angenommen.

Abbildung 4.2: Viskositätswerte der in dieser Arbeit untersuchten Suspension für verschiedene Temperaturen für die Drehzahl 1 min⁻¹, die rote Linie ist eine Trendgerade

4.4.1 Mischen der Suspension

Der hier zur Erprobung des Sedimentationsgerätes verwendete Slurry wurde im Zuge einer Vergasungskampagne im Juli 2013 gemischt. Der in Abschnitt 4.1 beschriebene Holzkoks wird mit Ethylenglykol in einer Chargen-Suspensionsmischanlage des Typs SCA-5-C der Firma MAT Mischanlagentechnik GmbH zu dem verwendeten Slurry mit einer Feststoffkonzentration von $c_m \sim 30\%$ gemischt. In Kapitel 7 wird die genaue Konzentration analysiert und dort aufgeführt.

4.4.2 Einfluss der Feststoffkonzentration auf den Heizwert

In der Einleitung (Abschnitt 1.2) wurde von der Notwendigkeit der Verwendung eines energiedichten Materials gesprochen. Je höher die Energiedichte des Slurrys, umso wirtschaftlicher fällt die Bilanz für den Transport von der Pyrolyseeinheiten zu der zentralen Vergasereinheit aus. Eine hohe Energiedichte ist direkt abhängig von der Feststoffkonzentration der Suspension. Dies kann anhand einer einfachen Rechnung gut verdeutlicht werden. Koks, hier Holzkoks, hat einen Heizwert von $\sim 30 \text{ MJkg}^{-1}$. Beispielhaft nehmen wir Glykol als Flüssigphase. Dieses hat einen Heizwert von 16,6 MJkg⁻¹ (Nicoleit, 2012, [15]). Für einen 10-prozentigen Slurry ergibt sich, wenn der Holzkoks keinen Aschengehalt hat, ein Heizwert *H*:

$$H_{10\%} = 0.1 \cdot H_{\text{Koks}} + 0.9 \cdot H_{\text{Glykol}} = 17,94 \,\text{MJkg}^{-1}$$
(4.3)

Für einen 25-prozentigen Slurry gilt nach der gleichen Rechnung $H_{25\%} = 19,95 \text{ MJkg}^{-1}$. Diese Betrachtung zeigt, dass es essentiell ist eine möglichst hohe Feststoffkonzentration zu erreichen.

4.4.3 Messung der Feststoffkonzentration in Suspensionen

Um die Feststoffkonzentration zu bestimmen, muss dafür eine Probe der Suspension von ihrer flüssigen Phase getrennt werden, so dass der reine Feststoffgehalt gemessen werden kann. Das Verdampfen des in der Suspension enthaltene Glykols ($T_{\text{Siedepunkt}} = 197 \,^{\circ}\text{C}$) kommt nicht in Frage, da bei der notwendigen Temperatur der Koks sich entzündet. Aus Versuchen von zeigt sich, dass der Koks bei sehr langer Trocknungszeit ab 120 °C anfängt zu glimmen. Bei dieser Reaktion mit dem Umgebungssauerstoff reagiert ein Teil des Kokses ab und es kann keine genaue Aussage mehr über das ursprüngliche Gewicht des in der Suspension vorliegenden Koks gemacht werden.

Deswegen wird die abgewogene Probe mit etwa der zehnfachen Menge an Ethanol verdünnt. Aufgrund der ähnlichen Polaritäten von Ethylenglykol und Ethanol, kann letzteres als Extraktionsmittel dienen. Die so erlangte Mischung wird stark gerührt, um ein Ausspülen der mit Glykol gefüllten Koksporen zu erreichen. Die Mischung wird in vorher mit einer sartorius Typ 1507 Waage gewogenen Filter gefüllt. Die Filter, von der Firma sartorius stedim biotech mit einem Durchmesser von 385 mm und einer Partikelretention von 5-8 µm, befinden sich in einem Trichtertisch (siehe Anhang Abschnitt A.6.2, Abbildung A.3) und können dort auslaufen. Aufgrund der hohen Verdünnung des Ethylenglykols wird das aufgefangene Ethanol einmal wiederverwendet.

Der Filterkuchen samt Filter wird bei 105 °C für mindestens 8 Stunden getrocknet. Diese Trocknungstemperatur ist wegen der niedrigen Siedetemperatur von Ethanol möglich, außerdem kann gleichzeitig noch adsorbiertes Wasser entfernt werden. Geringe Anteile an Glykol, die wider erwarten noch enthalten sind, sollten nach dieser Prozedur über die Ofen-Abzugsluft verdunstet sein.

Der trockene Filter samt Kokspulver wird am Ende gewogen. Zu beachten ist hierbei, dass der Filter durch den Prozess, wenn auch nur im geringen Maße, Gewicht verloren hat. Dieses Δm wurde in einer Blindprobe ermittelt und fließt in die Berechnung mit ein; die Bestimmung von Δm ist im Anhang Abschnitt A.2 einsehbar. In der Berechnung wird das Gewicht der getrockneten Probe (abzüglich des Filtereigengewichts) ins Verhältnis zu dem anfänglichen Probengewicht gesetzt, wodurch sich eine prozentuale Feststoffkonzentration c_m ergibt.

5 Methodische Problemlösung anhand des "SPALTEN"-Prozesses

Das Problem der Entwicklung eines neuartigen Gerätes zur Untersuchung von Sedimentationen wurde mit dem "SPALTEN"-Prozess durchgeführt, um ein methodisches und ergebnisorientiertes Arbeiten zu garantieren, sowie ein Produkt zu erhalten bei dem alle Sicherheitsaspekte beachtet wurden. Die von Albers et al. (2002, [1]) am KIT entwickelten Methode ist eine generelle Herangehensweise für Problemlösungsprozesse und beinhaltet folgende sieben Aktivitäten:

- Situationsanalyse: Erfassung aller Informationen als Basis für die Lösungssuche
- Problemeingrenzung: Bewertung und Priorisierung der Informationen zur Klärung der wichtigen Randbedingungen
- <u>A</u>lternative Lösungssuche: Erzeugung möglichst vieler alternativer Lösungsideen durch den Einsatz von Kreativitätstechniken
- <u>L</u>ösungsauswahl: Auswahl und Bewertung der technisch und wirtschaftlich bestgeeigneten Lösung
- <u>Tragweitenanalyse</u>: Analyse und Abschätzung der vorhersehbaren Risiken und Chancen, sowie Maßnahmen zu deren Vermeidung bzw. Realisierung
- Entscheiden/Umsetzen: Umsetzung der Lösung mit Hilfe von Projektmanagement-Werkzeugen
- <u>Nacharbeiten/Lernen</u>: Gelerntes und prozessuale Erkenntnisse für zukünftige Problemlösungsprozesse allgemein zugänglich machen

SPALTEN vereinigt viele Werkzeuge der Entwicklungsprozesse zu einer ganzheitliche Methode und beinhaltet unter anderem Elemente aus der VDI-Richtlinie 2221 (VDI-Fachbereich, 1993, [25]). Der Prozess basiert auf der Erfahrung und den Forschungsergebnissen vieler wissenschaftlicher Untersuchungen zur Problemlösung und zum System-Engineering und kann sowohl bei zukunftsorientierten Entwicklungsproblemen als auch bei spontanen Problemen eingesetzt werden. SPALTEN findet Anwendung bei technischen und nicht-technischen Problemen.

Bei der Verwendung dieser Methodik ist darauf zu achten, dass diese immer problemangepasst angewendet werden sollte, um die Nutzen/Aufwand-Relation zu optimieren. SPALTEN ist daher nicht dogmatisch, sondern pragmatisch anzuwenden.

5.1 Situationsanalyse und Problemeingrenzung: Erfassen aller Informationen, sowie Festlegungen von Randbedingungen und Treffen von Annahmen

Die Aufgabe ist es ein Gerät zu entwickeln mit dem es möglich, ist den Sedimentationsprozess fein aufgelöst zu verfolgen. Der Fortschritt einer Sedimentation ist messbar über:

- 1. die fortschreitende Klärung einer Suspension
- 2. eine direkte Dichtemessung der Suspension
- 3. eine Feststoffbestimmung

Als Randbedingungen müssen gelten:

- Vernachlässigbar kleine Pegelschwankungen, damit keine Veränderungen des hydrostatischen Druckes beziehungsweise der Sedimentationsbedingungen vorliegen
- Einsatzstoffe sind hoch viskose Suspensionen
- Die Wand des Behälters darf keinen Einfluss auf die Partikel bei der Sedimentation haben
- kostengünstiges und einfach handhabbares Gerät
- einfache Reinigung und benutzerfreundliche Inbetriebnahme

5.2 Alternative Lösungen und Lösungsauswahl: Sichten aller Möglichkeiten und Auswahl des bestgeeigneten Konzepts

Es existieren mehrere Lösungen, die die obigen Bedingungen zum Teil erfüllen. Die Erfassung von Dichteunterschieden lässt sich mit Ultraschallmessung oder einer Doppler-Mikrowellenmessung bewerkstelligen. Letztere Messmethodik wurde von Nicoleit (2012, [15]) untersucht und als ungenügend befunden.

Ultraschall

Eine Ultraschallmessung ist generell möglich. Es existieren jedoch keine Daten über die Aussagekraft einer solchen Messung bei einem gewählten Maßstab in dieser Größenordnung. Darüberhinaus müsste ein solches Messinstrument für jede neue Suspension neu kalibriert werden. Die erhaltenen Messdaten liefern keine direkte Aussage über den Feststoffgehalt beziehungsweise Dichte der Suspension, sondern müssen durch vorherige Feststoffbestimmungen erst in Zusammenhang mit den gewünschten Größen gebracht werden.

LiquidSens-Sensor

Eine weitere Möglichkeit ist das Erfassen der Feststoffkonzentration über die Messung der Schallgeschwindigkeit in einem Medium. Der LiquidSens-Sensor der Firma SensAction AG sendet ähnlich dem Ultramessgerät, Schallwellen aus und misst die Impedanz der Flüssigkeit und die Schallgewindigkeit, also die Zeit die für die Strecke von Sender zu Empfänger benötigt wurde. Anders als die namensgebenden Ultraschallwellen im oben beschriebenen Verfahren, werden Akustische Oberflächenwellen (englisch Surface Acoustic Waves = SAW) eingesetzt. Dabei ist es generell möglich im gesamten Konzentrationsbereich von 0 % bis 100 % bei einer Genauigkeit von bis zu 0,01 % Suspensionen zu analysieren.

Aus Herstellerangaben geht hervor, dass bei der Untersuchung von reinem Glykol eine Feststoffkonzentration von 1,6 % und die Messergebnisse der Suspensionen einen Fehler von \pm 2 % aufweisen (SensAction, 2013, [21]).

Es bedarf einer genauen Untersuchung der genauen Korrelation zwischen Schallgeschwindigkeit und Feststoffkonzentration. Außerdem ist die Kalibrierung ähnlich kritisch zu betrachten, wie im Falle der Ultraschallmessung. Aus diesen Gründen wird diese Lösung in dieser Arbeit nicht weiterverfolgt.

Trübungsmessung

Eine Veränderung der Trübung könnte mit einem Laser gemessen werden, oder mit einem anderen Photosedimentometer aus Abschnitt 3.3. In Abschnitt 3.6 wurden Gründe gegen diese Analyse erläutert. Aus diesem Abschnitt folgt, dass einzig die Feststoffbestimmung zur Ermittlung des Sedimentationsvorgang benutzt werden kann.

Modular aufgebaute Sedimentationszylinder

In Nicoleit (2012, [15]) wurden handelsübliche Kunststoffrohre, mit einem Durchmesser von d = 50 mm und einer Höhe von h = 190 mm, in fünf gleichgroße Segmente zerlegt. Diese werden mit Klebeband wieder zusammengefügt, wobei eines der Segmente mit einem Deckel versehen ist (siehe Abb. 5.1). Nach Ablauf der interessierenden Sedimentationszeit wird der, mit der zu untersuchenden Suspension gefüllte, Zylinder an den Sollbruchstellen von oben nach unten aufgeschnitten. Die Suspension wird aufgefangen und auf ihren Feststoffgehalt, wie in Abschnitt 4.4.3 beschrieben, untersucht.

Eine Möglichkeit wäre eine größere Version des modularen Sedimentationszylinders. Da aber nach eigener Erfahrung sich die Dichtung schon im kleinen Maßstab als schwierig gestaltete, erscheint eine Scale-up-Umsetzung als zu fehleranfällig.

Abbildung 5.1: Modular aufgebauter Sedimentationszylinder, bestehend aus fünf Segmenten die mit Klebeband zusammengefügt und abgedichtet sind

Pipettiergerät

Das Prinzip des Pipettiergeräts könnte auf die gegebenen Umstände angepasst werden, zum Beispiel mit einem modifizierten Stechheber. Die Probennahme würde axial beziehungsweise vertikal erfolgen und dabei ein kompletter Bohrkern entnommen. Dieser wird dann mechanisch in vorgegebene Segmente unterteilt auf die Segmente einzeln auf ihren Feststoffgehalt analysiert. Die dabei entstehenden Konvektionen würden die Sedimentationszonen aufwirbeln und vermischen, damit sind weitere Aussage über den Sedimentationsvorgang über die Länge des Gefäßes nicht mehr möglich.

Druckmessung

In Abschnitt 3.4 wurde die Manometerzentrifuge vorgestellt, mit der es möglich ist mit Hilfe von Druckdifferenzen das Fortschreiten einer Sedimentation zu messen. Theoretisch treten die benötigten Dichteunterschiede in der Suspension auf, es bleibt jedoch fraglich ob diese messbar groß genug sind. Um die Größenordnung des Druckunterschieds zu ermitteln, nehmen wir eine Stelle (1) 1 cm unter der Suspensionsoberfläche und eine Stelle (2) 1 cm über dem Boden eines 1,5 m hohen Behälters. Beispielhaft soll an Stelle (1) reines Glykol mit der Dichte 1110 kgm⁻³ und an (2) die Suspension mit $\rho_{Suspension} \sim 1200 \text{ kgm}^{-3}$ vorliegen. Daraus ergibt sich ein Druckunterschied von $\Delta p = 0,17$ bar.

In Sektion 3.6 wurde diese Möglichkeit wegen der zeitintensiven Untersuchung dieser Fragestellung verworfen.

Messturm: die ausgewählte Lösung

Nach dieser Betrachtung fällt die Entscheidung auf eine kostengünstige und konstruktionstechnische einfache Variante, bestehend aus einem Messturm der Höhe 1,5 m, an dem Ventile über die ganze Höhe angebracht sind (siehe Abbildung 6.5(b) in Abschnitt 6.3, sowie im Anhang Abbildung A.2). Zu beachten ist bei dieser Methode, dass die Grundfläche des Turms groß genug gewählt wird, damit durch die Probennahme über die Ventile keine signifikanten Pegelschwankungen entstehen.

5.3 Tragweite analysieren: Risikoanalyse

Für diesen Punkt wurde ein sogenanntes Brainstorming über mögliche worst-case Ereignisse durchgeführt und für die Ergebnisse eine Risikoanalyse angefertigt. In Tabelle 5.1 sind die möglichen Ereignisse aufgelistet und ihrer Eintrittswahrscheinlichkeit, sowie ihrer Auswirkung bei einem Eintritt gegenübergestellt. Die Wahrscheinlichkeit und die Auswirkung wird mit einer Skala von 1 bis 5 bewertet. Dabei ist 5 sehr unwahrscheinlich beziehungsweise sehr geringe Auswirkung und 1 sehr wahrscheinlich beziehungsweise sehr große Auswirkung. Aus dem Produkt von Wahrscheinlichkeit und Auswirkung lassen sich die in der Tabelle aufgeführten Risikowerte berechnen, die mit 1 - 25 priorisiert werden, wobei 1 die höchste Priorität ist.

Die mit 2 - 4 priorisierten Ereignisse müssen näher betrachtet werden. Dafür wird im Folgenden Abschnitt eine Dimensionierung durchgeführt.

Ereignis	Wahrscheinlichkeit	Auswirkung	Risikowert	
chemische Zerstörung	4	1	4	
des Kunststoffs	•	1	-	
Allgemeines	1	1	1	
Materialversagen	4	1		
kurzzeitige	2	Л	0	
Temperaturschwankungen	2	4	0	
Undichtigkeiten	2	2	4	
Pegelabnahme	1	2	2	
Ventilverstopfungen	2	4	8	

Tabelle 5.1: Risikoanalyse der Ereignisse. 5 bedeutet sehr unwahrscheinlich beziehungsweise sehr geringe Auswirkung und 1 sehr wahrscheinlich beziehungsweise sehr große Auswirkung. 1 bezeichnet die höchste Priorität, 25 die niedrigste.

5.4 Einführen und Umsetzen: Dimensionieren

Zuerst müssen Versuchsparameter diskutiert werden, um das Gesamtvolumen des Turms so berechnen zu können, dass bei mehrfacher Probenahme der Flüssigkeitsspiegel in vernachlässigbar kleinem Maße absinkt. Die Ausmaße des Gerätes müssen den Dimensionen der Experimente angepasst werden, deswegen werden zuerst die Versuchsparameter festgelegt.

- Menge der Probe $V_{\text{Probe}} = 100 \text{ mL}$
- Alle 60 mm ein Ventil, bei einer Gesamthöhe von 1,50 m sind das 25 Ventile
- 1 Experiment beinhaltet eine Probenahme à 100 mL von allen 25 Ventilen, das entspricht einer Volumen von $V_{\text{Experiment}} = 2,5 \text{ L}$
- Eine Messreihe sind 5 Experimente: Messung nach 4h, 8h, 24h, 3d, 7d \implies $V_{\text{Messreihe}} = 12,5 \text{ L}$
- Das oberstes Ventil darf nach einer Messreihe nicht leerlaufen

Mit diesen Parametern sollen Ereignisse, wie Pegelschwankungen, hervorgerufen durch Probenahme, behandelt werden. Es soll weiter eine ausreichende Dimensionierung der Einsatzmaterialien erfolgen, so dass es zu keinem Materialversagen kommen kann. Die Voraussetzungen aus Kapitel 5.1 sollen überprüft und bestätigt werden.

5.4.1 Berechnung der Größe des Sedimentationsmessturms

Nehmen wir eine Grundfläche *A* des Sedimentationsmessturms mit $A = 0,3025 \text{ m}^2$ an (Kantenlänge 0,55 m). Bei einer, durch die Aufgabenstellung gegebene, Höhe von h = 1,5 m resultiert aus $V = A \cdot h$ ein Gesamtvolumen von $V \sim 0,454 \text{ m}^3$, das entspricht 454 L. Wird nun eine Messreihe durchgeführt, also 5 Experimente ergibt sich wie oben beschrieben $V_{\text{Messreihe}} = V_{\text{Experiment}} \cdot 5 = 12,5 \text{ L}$, das entspricht einer Pegelabsenkung von $h = \frac{V_{\text{Messreihe}}}{A} = 0,0413 \text{ m}$. Die prozentuale Absenkung der Flüssigkeitsoberfläche beträgt 2,8 % und ist damit vernachlässigbar klein. $V_{\text{Messreihe}}$ wurde mit einem Sicherheitsfaktor von 2 berechnet.

5.4.2 Position des obersten Ventils

Das oberste Ventil ist 30 mm unterhalb der oberen Kante des Sedimentationsmessturms angebracht. Bei einem DN25-Ventil kann somit bis zu einer Höhe von 4,125 cm unterhalb der oberen Kante eine Probe entnommen werden. Eine Abnahme des Pegels um 4,3 cm sollte deswegen verhindert werden. Die Lösung für dieses Problem ist relativ simpel. V_{Probe} wurde mit einem Sicherheitsfaktor von 2 berechnet, solange die meisten Proben unterhalb der kritischen Menge von 100 mL liegt, kann ein Leerlaufen des obersten Ventil verhindert werden.

5.4.3 Überprüfung der Randbedingungen aus 5.1

Anhand der Daten über die Größe des Sedimentationsmessturms können die vorausgesetzten Randbedingungen aus Kapitel 5.1 überprüft werden. Der in Abschnitt 2.1.1 behandelte Wandeinfluss kann wegen der großen Ausmaße des Messturms vernachlässigt werden. Die Kokspartikeln des für diese Arbeit verwendeten Slurrys haben eine Durchmesser von $x_{95} \sim 81 \,\mu\text{m}$. Der Wandeinfluss kann bei Quadern vernachlässigt werden ab einem Abstand der Partikel von $z = 0.81 \,\text{mm}$, dann gilt z >> d. Diese Bedingung ist für fast alle Partikel erfüllt, lediglich die Grenzfläche an der Wand muss berücksichtigt werden. Bei Feststoffkonzentrationen größer 10 % ist der Einfluss der Wand gegenüber der Wechselwirkung der Partikel untereinander zusammen mit dem Effekt der Zonensedimentation (siehe Abschnitt 2.2.3) vernachlässigbar. Wie sich die eckige Geometrie auf das Sedimentationsverhalten und den Vorgang an sich auswirkt, muss sich in den Ergebnissen (Kapitel 7) zeigen.

Für die spätere Probenahme müssen noch einige Annahmen getroffen werden. Es wird angenommen, dass keine Konvektionsströmungen auftreten. Aufgrund der zu erwartenden Zonensedimentation (siehe auch Nicoleit (2012, [15])) ist dies näherungsweise der Fall. Weiter gilt die Annahme, dass innerhalb der Zonen in waagerechter Richtung, also entlang des Querschnitts, der Feststoff in der Suspension homogen verteilt ist. Mit der Vereinfachung, dass bei der Probenahme mit einem Ventil oder einem Probenehmer nur Probensubstanz aus dem gewünschten Bereich entnommen wird und nicht aus dem Raum weit über oder unter dem Ventil, sind vergleichbare Ergebnisse zu Nicoleit (2012, [15]) zu erwartem.

5.4.4 Beständigkeit und Belastbarkeit der eingebauten Komponenten

Kugelhähne und Wände des Sedimentationsgerätes müssen dem chemisch aggressiven Slurry (pH-Werte bis zu 3) und organischen Lösungsmitteln (Aceton, Ethanol) standhalten. In der bioliq[®]-Anlage wird Edelstahl eingesetzt, wobei davon ausgegangen werden muss, dass der Stahl erst nach hinreichender Belastungszeit angegriffen wird.

Zur Erniedrigung des Gesamtgewichtes der Konstruktion, soll ein großer Teil aus Kunststoff gefertigt werden. Im Laufe dieser Arbeit wurde eine durchsichtige Rückwand in Erwägung gezogen, um eine mögliche Phasentrennung, sowie die Sedimentation selbst zu beobachten. Denkbar sind für diese Aufgabe transparente Kunststoffe oder Glas.

In Tabelle 5.2 sind Vertreter der genannten Werkstoffe aufgeführt, zusammen mit ihrer Streckgrenze¹, der Bruchzähigkeit² und ihren jeweiligen Vor- und Nachteile.

Für die visuelle Erweiterung des Messturms kommen PMMA oder andere transparente Kunststoffe wie PVC-Glas nicht in Frage. PMMA verlor nach einer Woche in Schwelteer im großen Maße seine Transparenz (siehe Abb. 5.2).

¹Die Streckgrenze ist ein Materialkennwert, der die Spannung bezeichnet bei der ein Werkstoff bei einachsiger und momentenfreier Zugbeanspruchung noch keine plastische Verformung aufweist

²Die Bruchzähigkeit beschreibt den Widerstand eines Materials gegen instabilen Rissfortschritt

Werkstoffname	Streckgrenze	Bruchzähigkeit [Nmm ⁻² \sqrt{m}]	Vorteil	Nachteil
Polyetherether-	(5 05		breite chemische	ca. 50 mal
keton (PEEK)	05 - 95	2,75 - 4,5	Beständigkeit, zäh	teurer als PVC
Polymethmethyl	53,8 - 72,4	0,7 - 1,6	beständig gegen	Spannungs-
acrylat (PMMA)			Säuren, Laugen,	korrosionsrisse
			Benzin und Öl	durch Ethanol
Polyvinyl-	35,4 - 52,1	52,1 1,46 - 5,12	beständig gegen	Chloroform löst
chlorid (PVC-H)			viele Chemikalien	PVC auf
Polypropylen	207 372	3 1 5	chemisch fast	mechanisch
(PP)	20,7 - 57,2	5 - 4,5	komplett inert	gering belastbar
Edalatahl			chemisch und	
(V/A)	170 - 1000	62 - 150	mechanisch gut	Gewicht
$(\mathbf{v}4\mathbf{A})$			beständig	
Verbund- sicherheitsglas		35 0,55 - 0,7 chemisch iner		Gewicht, hoher
	30 - 35		0,55 - 0,7 chemisch inert	konstruktiver
				Aufwand

Tabelle 5.2: Auflistung verschiedener Werkstoffe und ihrer Eigenschaften

Abbildung 5.2: (Oben) PMMA nach einer Woche im bioliq[®]-Schwelteer. (Unten) Ausgangszustand des PMMAs

Im Anhang (Abschnitt A.3) findet sich die konstruktionstechnische mögliche Lösung zum Einsatz einer Glasscheibe. Wegen des hohen konstruktiven Aufwands und dem zeitlich geringem Umfang dieser Arbeit, wurde jedoch von einer visuellen Erweiterung des Turms abgesehen, aus Gründen der Vollständigkeit soll es dennoch erwähnt werden.

Zusammen mit der Tabelle 5.2 und Abbildung 5.3, in der die Bruchzähigkeit über der Streckgrenze für unterschiedliche Werkstoffe aufgetragen ist, können die geeignetsten Werkstoffe ausgewählt werden. Die Abbildung wurde mit der Software Werkstoffauswahl CES EduPack 2012 erstellt und dabei folgende Parameter gewählt: Beständigkeit gegen 10%-tige Essigund Salzsäure, sowie gegen die Lösungsmittel Aceton, Ethanol, Ethylenglykol und Methanol. PMMA kann wegen seines mechanisch sehr spröden Verhaltens und der Anfälligkeit gegen die eingesetzten organischen Lösungsmittel nicht verwendet werden. Ein Einsatz von PEEK ist

Abbildung 5.3: Auftragung der Bruchzähigkeit über der Streckgrenze für verschieden Werkstoffe, erstellt mit CES EduPack 2012

zu kostenintensiv. PVC wird ausgewählt, aufgrund der Erfahrung mit dem Material und dem besseren Verhältnis von Bruchzähigkeit zu Streckgrenze (siehe Abb.5.3) gegenüber PP. Eine hohe Streckgrenze garantiert, bei hohen mechanischen Belastungen, reversible Verformungen, zusammen mit einer hohen Bruchzähigkeit wird ein Versagen und Zerreißen des Materials entgegen gewirkt. Im Folgenden Abschnitt wurden diese Belastungen berechnet.

5.4.5 Mechanische Beanspruchung der Wände

Das Gesamtvolumen des Gerätes übersteigt 400 L, daher ist es notwendig eine Abschätzung der wirkenden Kräfte zu machen. Hierfür wird zunächst eine Betrachtung nach Sigloch (2012, [22]) zur Berechnung der Druckkräfte durchgeführt:

$$F = \Delta p \cdot dA = a \int_0^h g \ z \ \rho_{\text{Slurry}} \ dz = \frac{1}{2} \ a \ g \ h^2 \ \rho_{\text{Slurry}}$$
(5.1)

Mit den Angaben für die Dichte $\rho_{\text{Slurry}} = 1200 \text{ kgm}^{-3}$, der Erdbeschleunigung $g = 9,81 \text{ ms}^{-2}$, der Innenkantenlänge a = 0,55 m, sowie der Höhe h = 1,5 m des Sedimentationsmessturms, ergibt sich eine auf die Wand übertragene Druckkraft von 7,3 kN.

Daraus lässt sich eine resultierende Druckspannung berechnen. Der hydrostatische Druck nimmt mit der Höhe der Flüssigkeitsäule linear zu. Die maximal übertragene Kraft am Boden beträgt F = 14,6 kN. Für einen 1 cm großen Abschnitt in Bodennähe nehmen wir eine gemittelte Maximalkraft von F = 14,5 kN an, diese wirkt auf eine Fläche A = 1 cm $\cdot a = 60$ cm². Aus dem Quotient von Kraft F und Fläche A erhält man eine Druckspannung von 2,5 Nmm⁻². Die Streckgrenze von PVC ist ausreichend für eine solche Belastung (vgl. hierfür Tab. 5.2). Für ein, aus einer Druckkraft resultierendes, Drehmoment gilt nach Dankert und Dankert (2010, [8]), die folgende Gleichung:

$$\widehat{M} = F \cdot \frac{h}{2} = a \, \frac{h}{2} \int_0^{\frac{h}{2}} g \, z \, \rho_{\text{Slurry}} \, dz = \frac{h^3}{16} \, a \, g \, \rho_{\text{Slurry}} \tag{5.2}$$

Mit den gleichen Angaben, mit denen die Druckkraft berechnet wurde, einem hier beispielhaft angenommenen Hebelarm von h/2, sowie der Druckkraft selbst, beträgt das Drehmoment auf die Schrauben im Boden des Messturms 1,4 kN m.

Es erscheint daher sinnvoll, die Konstruktion zu sichern, um die Schrauben sowie die PVC-Wände von den hohen Kräften zu entlasten. Diese Aufgabe soll eine Käfig übernehmen, der in Abschnitt 6.3 in Abbildung 6.5(a) zu sehen ist.

5.5 Nachbereiten und Lernen: Wichtige Erkenntnisse aus der Vorgehensweise

Zuletzt soll zusammen gefasst werden, wie ein effektiver Lösungsfindungsprozess und eine hinreichend gute Lösung gewährleistet werden kann.

Bei der ersten Konzepterstellung ist sich Gedanken über die Risikoanalyse zu machen. Damit können frühzeitig ungeeignete Materialien ausgeschlossen werden und der Prozess wird um einige Iterationsschritte verkürzt. Sehr hilfreich erwies sich die Befragung von Unternehmen, die die gewünschten Materialien herstellen.

Eine weitere Prozessverkürzung kann auch durch eine frequentierte Rücksprache mit der zuständigen Fertigungsstelle erreicht werden, denn diese haben Erfahrung in der Materialbelastung und dem Zusammenbau allgemein. Generell muss jedes überlegte Konzept mit erfahrenen Leuten abgesprochen werden.

Zur Konstruktion ist unterstützende Software zu benutzen (z.b CAD-Programme), diese erleichtern die Vorstellung und weisen zum Beispiel Denkfehler bei den Abmaßen auf.

Frühzeitig sollte neben den theoretischen Überlegungen mit praktischen Untersuchungen begonnen werden, um die Realisierbarkeit der Theorien zu verifizieren: siehe Abb. 5.2 vergilbtes PMMA, dass als visuelle Erweiterung des Messturms ausgeschlossen wurde.

6 Konstruktion des Sedimentationsmessturms

Die Problematik der Probenahme, sowie die damit verbundene Ventilauswahl bedarf einer eingehenden Untersuchung. Diese wird zusammen mit den resultierenden Ergebnissen in diesem Kapitel präsentiert. Die Messmethodik wird im Labormaßstab überprüft. Die Erkenntnisse aus den Laborergebnissen fließen zusammen mit denen aus Kapitel 5 in die in Abschnitt 6.3 vorgestellte fertige Konstruktion.

6.1 Vorversuche in einem 2 L - Zylinder

Für die folgenden Untersuchungen diente als Prototyp zum Auswählen von Probenehmern und Ventilen ein kleiner Versuchsturm. Der 2L-PVC-Zylinder (Abbildung A.4, siehe Anhang Abschnitt A.6.3), wurde mehrfach mit unterschiedlichen Slurrys befüllt und mit verschiedenen Ventilen bestückt. Beispielhaft ist in Tabelle 6.1 eine Messung für einen 27 %-tigen Slurry aufgeführt. Die Sedimentationszeit betrug 7 Tage und es wurde Strohkoks verwendet.

Es werden die Ergebnisse der Feststoffbestimmung von den Proben, die im Fall des Prototypen aus den Ventilen entnommen wurden und mit Herrn Nicoleits Arbeit mit den Segmenten des modularen Zylinders verglichen. Die Ventile sind mit den Nummer I-V beziffert, wobei I das oberste Ventil und V das unterste Ventil bezeichnet. Die Höhe der Ventile sind der Höhe der Segmente des modularen Sedimentationszylinders angenähert.

Ventil	Konzentration [%] gemessen mit PVC-Turm	Höhe [mm]	Konzentration [%] gemessen von Nicoleit (2012, [15])
I	1,41	171	28,97
II	12,09	133	30,19
III	28,73	95	29,99
IV	30,49	57	30,39
V	31,89	19	30,16

Tabelle 6.1:	Vergleich eines 27 %-tigen Strohkoksslurry und einem 28,54 %-tigen aus der Arbeit
	von Nicoleit (2012, [15]) nach einer Sedimentationszeit von 7 d

Die Ergebnisse sind im gewissen Rahmen miteinander vergleichbar. Es gibt eine gute Übereinstimmung zwischen den Werten des Prototyps und des Zylinders ab der dritten Höhenstufe beziehungsweise Ventil III. Eine große Abweichung existiert nur bei den Ventilen I-II. Das ist ein Fehler, der wahrscheinlich aus der Verwendung von zu kleinen Ventilen (I: DN8, II: DN10) resultiert. Die mittlere Feststoffkonzentration (Mittelwert gebildet über die Feststoffkonzentration aller fünf Ventile) des 27%-tigen Slurrys beträgt lediglich 20,92%, daraus ist ableitbar, dass möglicherweise an den zu kleinen Ventilen Feststoff zurückgehalten wurde und dies zu den zu geringen Konzentrationen führt.

Mit der einheitlichen Verwendung von DN25 - Ventilen, die auch in den Abschnitten III-V verwendet wurden, soll die Fehlerquelle unterbunden werden.

6.2 Probenahme

Für alle Experimente mit Probenehmern und Ventilen stand der oben vorgestellte 2 L-Polyvinylchlorid (PVC)-Zylinder zur Verfügung, für Ergebnisse siehe Abschnitt 6.1. Mit unterschiedlich beladenen Slurrys wurden die Eigenschaften von Ventilen und Stechheber getestet.

6.2.1 Ventile

Zur Probenahme muss ein Zugang zum Messturm geschaffen werden. Dafür werden Ventile verschiedener Arten miteinander verglichen. Bei der Auswahl des optimalen Ventils sind folgende Suchparameter gegeben:

- geringes Totvolumen zwischen sedimentierender Suspension und Schließschott des Ventils
- voller Durchgang durch das Ventil
- Ausmaße und Gewicht des Ventils
- Simplizität der Montage

Ventile, die diese Spezifikationen erfüllen sind in Tabelle 6.2 aufgeführt und werden dort miteinander verglichen. Dabei werden die Kriterien mit - bis + bewertet, wobei - nicht geeignet und + sehr gut geeignet bedeutet.

Absperr- beziehungsweise Stoffschieber sind nicht verwendbar, da diese erst ab einem Innendurchmesser von DN 50 lieferbar sind. Durchflussversuche im Vorfeld haben gezeigt, dass maximal ein Durchmesser von DN 32 benötigt wird, da sonst die Ausflussmenge zu groß wird. Beide Schieber, sowie der schwere Flanschkugelhahn sind ferner unbrauchbar wegen ihrer großen äußeren Ausmaße und ihres Eigengewichtes.

Damit bleibt die Auswahl zwischen dem Flanschkugelhahn der Firma Dwyer Instruments, INC und dem Standardgewindekugelhahn. Der einseitige Flanschkugelhahn von Dwyer kann wegen schwierigem Dichtungskonzept und vor allem wegen der nicht vorhandenen Lieferbarkeit nach Deutschland nicht verwendet werden. Es kommen deswegen Gewindekugelhähne (Abb. 6.1) aus vernickeltem Messing zum Einsatz, in der leichten Ausführung mit vollem Durchgang und G1 Innengewinde, von Riegler & Co. KG.. Diese sind sehr robust, chemisch inert gegen den Slurry und weisen ein Totvolumen von 1 - 2 cm auf. Diese werden auf Schweißnippel an den Messturm geschraubt.

Ventile	0	Contraction of the second seco		
	schwerer Flansch-	Flanschkugel-	normaler	Stoffschieber ¹
Kriterien	kugelhahn ²	hahn ³	Kugelhahn ⁴	Stoffsenieber
Ausmaße		1	1	
(z.B. < DN 32)	_	+	+	_
Gewicht	—	+	+	_
Größe des			_	
Totvolumens	+	+	0	+
Montage	о	+	+	_

Tabelle 6.2: Ventilauswahl: die Kriterien wurden mit +, o, – bewertet, die für sehr geeignet, geeignet, nicht geeignet stehen.

Abbildung 6.1: Vernickelter DN25 Messingkugelhahn, in der leichten Ausführung mit vollem Durchgang

Eine weitere Verringerung des Totvolumens durch direktes Anschweißen der Ventile an den Turm, ist wegen der möglichen Beschädigung des PTFE-Dichtung nicht möglich. Schweißbare Ausführungen desselben Kugelhahntyps werden wegen der großen äußeren Ausmaße und eines vergleichbar größeren Totvolumens nicht verwendet.

¹http://www.goettgens-gmbh.com/de/goettgens-sortiment/absperrschieber/keil-flachschieber/keilflachschieber-224, Stand August 2013 Industriearmaturen Göttgens GmbH

²http://www.von-scheven.de, Stand August 2013, Rudolf von Scheven GmbH

³http://german.alibaba.com/product-gs/brass-flange-ball-valve-csa-cupc-solder-type-515506412.html, Stand August 2013,Taizhou Vala Import Export Co., Ltd.

⁴http://www.riegler.de/page/vent-absperr/U-kugel-messing.html, Stand August 2013, Riegler & Co. KG

6.2.2 Stechheber

Ein Slurry mit einer Feststoffkonzentration von 30 % ist nach einer Sedimentationszeit von 3 Tagen im unteren Bereich des Sedimentationszylinders nicht mehr fließfähig. Der Einsatz von großen Kugelhähnen (DN 25) alleine reicht deshalb nicht aus. Es muss ein Probenehmer zur Hilfe genommen werden.

Eine Probenahme mit Unterdruck stellt dabei eine Möglichkeit dar. Experimente zeigten, dass ein manuell erzeugter Unterdruck, mit zum Beispiel einer Spritze, nicht groß genug ist um den Slurry aus der Behälter zu saugen. Von der Benutzung einer Vakuumpumpe wird abgesehen, da der technische Aufwand verhältnismäßig zu groß ist.

Im Folgenden werden verschiedene Probenehmer und Stechheber miteinander verglichen, dabei werden sie auf Tauglichkeit überprüft, indem versucht wird aus festem und hochviskosen Sediment Proben zu entnehmen. Zur Verfügung steht ein selbst-konstruierter Stechheber (siehe Abb. 6.2(c)). Dieser besteht aus einem Vollmantelrohr mit möglichst geringer Wandstärke und einer Münze, zur Schließfunktion, die vorne angebracht ist (Konstruktionszeichnung im Anhang A.9). An der Münze sind zwei Seile gefestigt, mit denen die Orientierung der Münze verändert werden kann. Darüber hinaus wurde ein konischer (Abb. 6.2(b)) und ein Vollmantel Stechbohrer (Abb. 6.2(a)) Firma Kersting GmbH untersucht.

(a) Vollmantel Stechbohrer

(b) Konischer Stechbohrer

- (c) Stechbohrer Marke Eigenbau
- Abbildung 6.2: Links: Vollmantelstechbohrer mit Probenstempel der Firma Kersting GmbH, von derselben Firma Mitte: Konischer Stechbohrer, Rechts: Stechbohrer Marke Eigenbau mit Verschlussmünze

Eine Probenahme, sowohl mit Vollmantel-Stechbohrer, als auch dem eigens gefertigten, war nicht möglich. Es konnte herausgefunden werden, dass ein fehlendes Eindringen des Slurrys in den Probenehmer schuld daran ist. Beim Eigenbau behindert die, verhältnismäßig zum Querschnitt, sehr dicke Münze das Eindringen der Suspension. Mit dem konischen Stechheber hingegen kann eine sehr einfache und gute Probennahme erfolgen. Diese Sachverhalte lassen sich auch in Tabelle 6.3 gut erkennen, da mit dem konischen Stechheber mehr Probenmasse entnommen werden kann als mit den anderen Probenehmern. Eine größere Probenmasse kann zufällige Messfehler verhindern. Die Ergebnisse der Feststoffbestimmung sind bei gleichen Ausgangsbedingungen vergleichbar zu denen von Nicoleit (2012, [15]).

Während der Recherche nach Probenehmern konnte kein konischer Probennehmer mit einer Länge größer 17 cm und einem Maximaldurchmesser < DN24 gefunden werden. Aus diesem Grund wurde ein Stahlrohr (Abb. 6.3) der Länge nach halbiert.

Tabelle 6.3: Vergleich der analysierbaren Probenmasse, die durch Verwendung verschiedenerProbenehmer (PRN) erreicht wird. Zur Verfügung stand ein 30 %-tiger Slurry der21 d lang sedimentierte

	Masse [g]
Vollmantel PRN	8,72
Konischer PRN	24,61
Eigenbau PRN	7,72

Zur leichteren Handhabung kann bei Bedarf an einem Ende ein Griff angeschweißt werden. Das andere Ende wurde geschliffen, so dass eine scharfe Abrisskante entsteht. Der so entstandene Probenehmer hat eine Länge von 40 cm und kann entweder als Ausflussrinne für hochviskose Sedimente, oder als Stechheber für feste Sedimente verwendet werden.

Abbildung 6.3: Endgültiger Stechbohrer: halbiertes Metallrohr

6.3 Sedimentationsmessturm

Aufbauend auf die Ergebnisse der vorherigen Abschnitte, kann nun ein optimierter Messturm konstruiert werden.

Der Sedimentationsmessturm ist aufgebaut aus drei PVC-Wänden, die auf einem PVC-Boden stehen. An dieses Konstrukt wird als vierte Wand eine Stahlplatte geschraubt. PVC Wände und Boden sind zur besseren Abdichtung miteinander verschraubt und verschweißt.

Die Stahlplatte (V4A-Edelstahl⁵) ist nach dem Muster in Abbildung 6.4 mit Löchern versehen. Auf dieser werden Schweißnippel fixiert, an deren Außengewinde die Kugelhähne (eingehend behandelt abschnitt 6.2.1) angebracht werden.

Zwischen Stahlplatte und PVC-Kante wird zur Dichtung eine Gummibanddichtung verwendet. Die Stahlplatte ist zwecks der Reinigbarkeit nur verschraubt, da eine Reinigung bei einer

⁵Chrom-Nickel-Stahl mit Molybdänzusatz, der rostfrei ist und eine gute Korrosionsbeständigkeit aufweist. Der austenitische Stahl hat die Fachbezeichnung X5CrNiMo17-12-2

Abbildung 6.4: Muster zur Anbringung der Schweißnippel an der Stahlplatte für die Kugelhähne

Gefäßtiefe von 1,5 m und dem sehr festen Slurrysediment ohne Demontage nicht möglich ist. Aus diesem Grund wurde auch von der Verwendung eines zylindrischen Sedimentationsgerätes abgesehen.

Aus den Berechnungen in Kapitel 5.4.5 ergibt sich die Notwendigkeit die in Abbildung 6.5(b) gezeigte Konstruktion weiter zu sichern. Dafür wurde ein Rahmen aus Aluminiumrahmenprofilen, als Käfig, um den Messturm gebaut; für die Konstruktion siehe Abbildung 6.5(a).

Mit den in Abschnitt 5.4.1 durchgeführten Berechnungen erhält man die Maße des Sedimentationsmessturm, aus der die Konstruktion abgeleitet werden kann. Für den Messturm ergeben sich Außenmaßen von 590 x 570 x 1500, sowie Innenmaßen von 550 x 550 x 1500. Der Sedimentationsmessturm mit Gestell und ausgerüstet mit 25 Kugelhähnen hat ein Leergewicht von ~ 220 kg.

Im Anhang A.9 wurden vollständigkeitshalber die Konstruktionszeichnungen des Messturms hinterlegt, siehe auch Abschnitt A.6.1, für die Abbildung A.2 des Messturms.

(a) Aluminiumrahmengestell

(b) Sedimentationsmessturm

Abbildung 6.5: Links: Käfig aus Boschprofilen zur Sicherung des Turms, Rechts: Sedimentationsmessturm ausgestattet mit 25 Kugelhahnventilen

7 Ergebnisse und Diskussion des Sedimentationsverhaltens

In diesem Kapitel werden die Ergebnisse der Messreihe (Eine Messreihe sind 5 Experimente mit einer Probenahme von allen 25 Ventilen nach einer Sedimentationszeit nach 4 h, 8 h, 24 h, 3 d und 7 d) vorgestellt und diskutiert. Ergänzend wurde noch eine Messung nach 14 d gemacht, um weitere Erkenntnisse über das Sedimentationsverhalten des verwendeten Holzkoksslurrys zu erlangen. Zuerst wird eine Vorberechnung der theoretischen Sedimentationsgeschwindigkeit angefertigt, anhand der Modelle aus Abschnitt 2.2.2.

7.1 Analytische Vorberechnung der Sedimentationsgeschwindigkeit

Anhand der Gleichungen aus den Abschnitten 2.2.1 und 2.2.2 lassen sich einige Vorberechnungen anstellen. Zu beachten ist, dass die hier verwendete Suspension zur Zonensedimentation neigt. Für diesen Fall liegen keine Formeln vor. Es werden die Ergebnisse mit der Richardson-Zaki-Gleichung (2.10) und dem Modell nach Brauer und Mitarbeiter (2.11) angenähert Zuerst wird die Einzelkornsinkgeschwindigkeit bestimmt.

Es wird hier beispielhaft ein großer Kokspartikel ($d = 100 \,\mu\text{m}$) mit der Dichte ($\rho_p = 1600 \,\text{kgm}^{-3}$) angenommen. Als Fluid wird reines Glykol, mit einer Dichte von $\rho_f = 1100 \,\text{kgm}^{-3}$ und der Viskosität $\eta = 21.3 \times 10^{-3}$ Pas, für die Rechnung benutzt. Für die genaue Berechnung siehe Anhang Abschnitt A.1.

Es ergibt sich eine Sinkgeschwindigkeit von $w_s = 0,128 \text{ mms}^{-1}$, daraus resultiert eine Reynoldszahl von $Re = 6,61 \times 10^{-4}$. Da sich die Umströmung des Partikels im Stokesbereich befindet, wurde die Sinkgeschwindigkeit korrekt berechnet.

In dieser Arbeit wird ein Slurry mit 30% Massenkonzentration untersucht, dies entspricht einer Feststoffvolumenkonzentration von 19,1%. Zusammen mit c_V und w_s wird die Schwarmsinkgeschwindigkeit mit dem Modell nach Brauer und dem nach Richardson und Zaki.

Es ergeben sich $w_{ss,Richardson-Zaki} = 0,048 \text{ mms}^{-1}$ und $w_{ss,Brauer} = 0,043 \text{ mms}^{-1}$. Wobei für Richardson und Zaki, nach Abbildung 2.2, der Exponent $\alpha = 4,65$ ist. Zu erkennen ist, dass beide Werte relativ nah beieinander liegen, außerdem ist auch im diesen Fall $Re \ll 0,25$. Das ist verständlich, da die Sinkgeschwindigkeiten sich verringert haben.

Aufgrund der Effekte der Zonensedimentation, sowie der höheren Viskosität des Slurrys ist eine niedrigere Sinkgeschwindigkeit als die berechnete zu erwarten. Für einen ca. 30 %-tigem, gemahlenen Slurry für 20 °C wird eine Viskosität η etwa 1 Pas angenommen. Da Bitsch (2011, [5]) in seiner Arbeit gemahlenen Strohkoks verwendet hat und die Partikelgrößenverteilung von diesem zu dem hier verwendeten Holzkoks vergleichbar ist, siehe Tabelle 4.1. Daher sind ähnliche Viskositäten zu erwarten.

7.2 Abkühlverhalten des frisch angemischten Slurrys

Die frisch gemischte Suspension wurde direkt in den Messturm gegeben. Es konnte zu Beginn eine Temperatur von 41,1 °C gemessen werden. Die Temperatur der Suspension wurde in der Mitte etwa 30 cm unterhalb der Oberfläche und in den Ecken des Messturms, mit einem entsprechend langem Thermoelement erfasst. Der Verlauf dieser Temperaturen und der Umgebung sind in Abbildung 7.1 als Funktion der Zeit seit Befüllung des Sedimentationsmessturms abgebildet. Dieser ist zu entnehmen, dass die Suspension nach etwa 100 h, beziehungsweise vier Tagen, Raumtemperatur (T = 25 °C) erreicht hat.

Abbildung 7.1: Verlauf der Temperaturen von Slurry und Umgebung seit Befüllen (t = 0 h)

Die hohe Temperatur zu Beginn der Messung, sowie der kurze Zeitraum zwischen Mischen und Befüllen führen dazu, dass die in die Suspension eingebrachte Luft aufsteigt und "ausgast". Die daraus resultierende Blasenbildung ist in 7.2 abgebildet und erklärt die zu Beginn unstetige Oberfläche der Suspension im Messturm. Diese beiden Beobachtungen konnten nach 24 h nicht mehr getroffen werden.

Abbildung 7.2: Blasenbildung an der Oberfläche der Suspension in den ersten 24 h nach Befüllung

7.3 Sedimentationsverlauf

Die Ergebnisse der Messreihe können auf zwei Arten dargestellt werden: Abbildung 7.3 zeigt den Verlauf der Feststoffkonzentration über die Sedimentationshöhe und bei Abbildung 7.4 ist diese über die Zeit seit Befüllung für unterschiedliche Höhen aufgetragen. Das oberste Ventil bezeichnet dabei für Experimente nach 4 h, 8 h, 1 d, 3 d das Ventil Nummer eins und für die Experimente nach 7 d und 14 d das zweite Ventil, da zu diesen Zeitpunkten das erste Ventil leergelaufen war.

Abbildung 7.3: Feststoffkonzentration als Funktion der Probenhöhe im Messturm, wobei h = 1490 mm das oberste Ventil markiert, nach unterschiedlichen Zeitabständen einer 30,5 %-tigen Suspension

Abbildung 7.4: Feststoffkonzentration als Funktion der Zeit seit Befüllung des Messturms, von unterschiedlichen Höhen einer 30,5 %-tigen Suspension

Auffällig ist, dass sich die Konzentration c_m im Bereich 400 mm bis 1300 mm kaum ändert, sondern lediglich geringfügig um die Anfangskonzentration von 30,5 % schwankt. Dies ist auch aus Abbildung 7.4 ersichtlich, denn die Datenpunkte von der Höhen 290 mm, 530 mm, 770 mm, 1010 mm und 1250 mm liegen im Bereich 29 bis 31 %, wenn man von den Messfehlern bei 350 mm und 1300 mm der sieben Tage Kurve beziehungsweise 400 mm und 600 mm der vier Stunden Messkurve absieht. Daraus ist zu schließen, dass dieser Bereich der Sedimentationszone entspricht (vgl. Sektion 2.2.3 und Abb. 2.3). Es ist zu erkennen, dass aus dem oberen Bereich (h > 1300 mm) Feststoff aus sedimentiert ist und im unteren Bereich (h < 400 mm) die Konzentration zu nimmt.

Ein anderer vermutlicher Messfehler liegt bei Abbildung 7.4, bei der Messkurve "oberstes Ventil" vor. Die gemessene Feststoffkonzentration von ca. 15 % bei ca. 75 h liegt im Vergleich zu den anderen Werte der Kurve zu hoch.

Eine weitere Auffälligkeit stellt die Feststoffkonzentrationskurve nach einer Sedimentationszeit von 4 h dar. Im unteren Bereich liegt die Feststoffkonzentration unterhalb von 30,5 %, obwohl der Feststoff in diesem Bereich hinein sedimentieren müsste, müsste, siehe insbesondere Abbildung 7.3 links. Dass gleiche Phänomen kann auch der Kurve 8 h entnommen werden, nur im geringeren Maße. Diese Unstimmigkeit kann zwei Ursachen haben:

 Aufgrund des hohen hydrostatischen Drucks und der hohen Temperatur am Anfang (siehe Abb. 7.1), die zu einer geringeren Viskosität und einer Verbesserung des Flie
ßverhaltens führt, konnten die Ventile nur Spaltweise geöffnet werden. Es ist möglich, dass dadurch Partikel zur
ückgehalten wurden, das kann zu einem systematischen Messfehler mit geringeren Feststoffkonzentrationen f
ühren. 2. Eine andere Erklärung ist die in oberen Abschnitt 7.2 behandelte Blasenbildung und unstetige Oberfläche. Die beim Mischprozess eingebrachte Luft muss aus der Suspension ausgasen. Dabei können Blasen, die vom Grund des Sedimentationsmessturms aufsteigen Partikel mitreißen und damit die Feststoffkonzentration in diesem Bereich verringern. Es wurde erwähnt, dass die Blasenbildung und die unstetige Oberfläche nach 24 h nicht mehr beobachtbar waren. Dies spiegelt die Feststoffkonzentrationskurve für die Sedimentationszeit von 1 d wieder.

Als Ergänzung zu Abbildung 7.3 kann Abbildung 7.5 herangezogen werden. In dieser ist der Sedimentationsverlauf von 7d und 14d aufgetragen. Die mittlere Konzentration der Sedimentationszone im Bereich von 500 - 1300 mm ist geringer im Vergleich zu den anderen Experimenten. Gut zu erkennen ist die daraus folgende weitere Verkleinerung der Sedimentationszone und die Erhöhung der Konzentration im Bereich zwischen 0 mm und 500 mm.

Abbildung 7.5: Feststoffkonzentration als Funktion der Probenhöhe im Messturm, von unterschiedlichen Höhen einer 30,5 %-tigen Suspension, zur Ergänzung zu Abbildung 7.3 für den Vergleich der Kurven nach 7 d und 14 d

7.4 Berechnung einer Sedimentationsgeschwindigkeit aus den Messdaten

Angelehnt an die Berechnung einer theoretischen Sedimentationsgeschwindigkeit zur Konzentrationshalbierung von Nicoleit (2012, [15]), bei der eine Geschwindigkeit gebildet aus dem Quotienten t_{halb} (Zeit die benötigt wird, damit die Konzentration in einem Volumenelement, Bereich zwischen zwei Messstellen, einer Strecke s = 60 mm auf die Hälfte des ursprünglichen Wertes sinkt) und einer Strecke s. Es ist:

$$w_{theo,ss} = \frac{s}{t_{halb}} \tag{7.1}$$

Aus Abbildung 7.3 ist ableitbar, dass sich im obersten Kontrollvolumen die Konzentration spätestens nach einem Tag mindestens halbiert hat. Mit einer verkürztem Sedimentationsweg *s*, da sich der Pegel durch die Probenahme verringert, von ~ 30 mm ergibt sich aus Gleichung (7.1):

$$w_{theo,ss} = \frac{30\,\mathrm{mm}}{24\,\mathrm{h}} = \frac{0.03\,\mathrm{m}}{8.64 \times 10^4\,\mathrm{s}} = 1.25 \times 10^{-3}\,\mathrm{mms}^{-1}$$
 (7.2)

Dieser Wert liegt mit mehr als einer Größenordnung deutlich unter den im oberen Abschnitt 7.1 berechneten Schwarmsinkgeschwindigkeiten. Eine Erklärung könnte sein, dass die Gegenströmung die bei dem Absinken der Partikel erzeugt wird nicht genug von den Modellen nach Richardson und Zaki, beziehungsweise nach Brauer berücksichtigt wird. Außerdem wurde bei bei den Vorberechnung nicht auf die sich verändernde Konzentration eingegangen. Folglich sind die Modelle, die für diese Berechnungen angenommen werden, ungenügend, da diese nicht die Zonensedimentation mit einbeziehen.

Es ist anzunehmen, dass bei der Berechnung die Form der Partikel auch eine signifikante Rolle spielt, denn die Kokspartikel sind nicht kugelförmig, wovon die in Abschnitt 2.2.2 vorgestellten Modelle ausgehen.

8 Bewertung des Sedimentationsmessturms

Basierend auf den Ergebnissen aus Kapitel 7 und aus den Erkenntnissen der Entwicklung und Konstruktion des Sedimentationsmessturms, soll dieser nun bewertet werden. Es soll hierfür auf die verschiedene Merkmale wie die Handhabung und die Einhaltung der Voraussetzungen zur Probenahme und Pegelstand aus Abschnitt 5.1 beziehungsweise 5.4 eingegangen werden. Außerdem werden die Ergebnisse der Sedimentationsexperimente eingehend bewertet. Resultierend daraus werden Verbesserungen zur Konstruktion vorgeschlagen.

8.1 Handhabung

8.1.1 Allgemeine Arbeiten und Sicherheit

Der Aufbau des Sedimentationsmessturms ist einfach und unkompliziert. Probleme macht das hohe Gesamtgewicht der Konstruktion von 220 kg. Dadurch wird das Rangieren und andere mechanischen Arbeiten am Messturm erschwert. Dieser Effekt wird mit dem Gewicht der eingebrachten Suspension nochmal verstärkt.

Der niedrige Schwerpunkt und das hohe Gewicht verhindern hingegen ein Kippen der Konstruktion und machen diese sehr sicher. Der Käfig aus Aluminiumprofilen erwies sich als notwendige Maßnahme und konnte gut die übertragenen Druckkräfte der Suspension aufnehmen. Die Durchbiegung des PVC betrug circa 1 mm in der Mitte des Turm. Eine weiteres Durchbiegen wurde durch den Käfig verhindert.

Eine geringere Höhe der Konstruktion könnte das Gewicht verringern ohne eine negativen Effekt auf den Schwerpunkt zu haben.

8.1.2 Probenahme und iterative Anpassung des Schleusensystems

Die Probenahme erweist sich als schwierig. Je höher die Fließfähigkeit der Suspension ist, desto vorsichtiger sind die Ventile zu öffnen. Verstärkt wird dieser Fakt durch den hydrostatischen Druck, der vor allem in den unteren Ventilen einen großen Einfluss hat. Eine messfehlerfreie Probenahme ohne Ventil bedingte Partikelretention ist vor allem in den ersten Experimenten, also den Messungen nach 4 h und 8 h, nur eingeschränkt möglich. Dies ist auf die hohe Temperatur zu Beginn der Messung zurückzuführen, jedoch tritt diese Problem auch bei den Messungen nach 7 d und 14 d auf und ist somit nicht nur eine Funktion der Temperatur, sondern auch eine des hydrostatischen Drucks.

Im Laufe der Messung wurde ein Schleusensystem in Betrieb genommen (siehe Abb. 8.1) mit dem es ermöglicht wird auch aus Ventilen mit hohem Flüssigkeitsdruck problemlos und ohne der Gefahr der Partikelretention, Proben zu entnehmen, da ein definiertes Volumen gefüllt wird.

Abbildung 8.1: Metallrohr mit einseitig aufgeschraubten Kugelhahn und zweiten Gewinde zur Installation am entsprechenden Ventil. Bohrloch (roter Kreis) ermöglicht es der eingeschlossenen Luft zu entweichen.

Es wird eine weitere Verbesserung der Schleuse vorgeschlagen mit angepasster Größe und verbessertem Luftloch. Dafür sollte eine Längenmodifikation vorgenommen werden, um das Volumen der Schleuse auf 60 mL zu begrenzen. Für das Luftloch ist ein Spritzschutz zu konstruieren und anzubringen, zur Sicherheit vor einem spontanem Austreten der Probe. Einfacher wäre das Anbringen einer schrägen Bohrung, statt einer vertikal geraden, so dass ein Austreten der Probe in Richtung Messturm erreicht werden kann.

Außerdem könnte das relativ große Totvolumen von Kugelhahn und Schweißnippel durch eine Eigenkonstruktion eines Stoffschiebers, der anstelle des Kugelhahns eingesetzt wird, verringert werden.

8.1.3 Dichtung

Ein wichtiges Augenmerk muss der Dichtung gewidmet werden. Aufgrund der angebrachten Schweißnippel liegt die Stahlplatte unverschraubt, wegen Schweißverzug, nicht mehr plan auf, dies macht eine Dichtung schwierig. Die Gummidichtung hielt nicht dicht, da die Stahlplatte wahrscheinlich mit zu geringem Druck an die PVC gepresst wurde (dieser allein durch die Schrauben kann nicht erhöht werden, ohne die PVC-Schraubengewinde zu zerstören; denkbar wären großen Schraubzwingen zur Lösung dieses Problems). Das Glykol floss aufgrund von Kapillarkräften durch den Spalt zwischen PVC, Gummidichtung und Stahl heraus. Die Haftung von dem verwendeten Silikon auf den PVC-Wänden war nur sehr gering, so konnte die Flüssigkeit durch den hohen Druck die Dichtung anheben und durch den so entstandenen Spalt zum Beispiel über die Schraubengewinde austreten.

Aus dem Messturm sind ca. 400 mL an Flüssigkeit (gemessen über die Dauer der Messreihe) durch Undichtigkeiten verloren gegangen. Das ist ein Verlust von einem Promille und verändert die Ausgangskonzentration von 30,5 % vernachlässigbar wenig.

8.1.4 Befüllung, Entleerung und Säuberung

Mit Hilfe einer Schwerkraftentleerung eines mit dem zu untersuchenden Gut gefüllten IBC¹-Behälters, der sich über dem Turm befindet, gestaltet sich die Befüllung des Turms einfach. Es erweist sich jedoch als schwierig den Messturm bei einem Füllvolumen von ca. 450 L exakt bis zur oberen Kante zu füllen.

Um dieses Problem zu beheben wäre es denkbar das erste Ventil in der Messung generell nicht zu berücksichtigen und einen entsprechenden Pegelstand bezüglich des zweiten Ventils einzustellen, so kann einem Überlaufen des Messturms entgegengewirkt werden.

Die größte Schwierigkeit in der Handhabung des Messturms ist die Entleerung und Säuberung. Ein Großteil der Suspension kann über die Ventile abgelassen werden. Die sehr zähflüssige Phase kann zu Beginn der Entleerung noch entfernt werden mit Hilfe des hohen hydrostatischen Drucks. Ab einem bestimmten Zeitpunkt bricht dann die fließfähigere Phase durch und über dreiviertel des Turms können entleert werden. Danach fehlt der benötigte Druck, um die immer noch zu großen Teil vorhanden hochviskose Phase aus dem Turm zu entfernen. Diese muss aufwendig manuell entfernt werden.

Für folgende Entleerung können zwei Lösungskonzepte vorgeschlagen werden:

- 1. Installation eines Rührwerks zur Dispergierung der sedimentierten Phasen und Homogenisierung der Suspension, um diese dann durch ein Ventil abzulassen oder abzupumpen. Diese Konfiguration ist zu verwenden für Suspensionen, die langsam sedimentieren und lockere Sedimente bilden.
- 2. Ende der Sedimentation abwarten (vierte beziehungsweise fünfte Phase der Zonensedimentation siehe Abb. 2.3), um ein klare Grenze zwischen festem Sediment und Klarphase zu erreichen. Die Flüssigkeit kann wie bei ersten abgelassen oder abgepumpt werden, danach kann die Frontplatte entfernt und das feste Sediment entsorgt werden. Diese Konfiguration ist zu verwenden für schnell sedimentierende Suspensionm, die feste Sedimente bilden.

Positiv zu bewerten ist die gute Reinigbarkeit des PVCs und des Stahls. Die Reinigung wird höchstwahrscheinlich bei der Verwendung von originalen Pyrolysekondensaten problematisch, da diese stark die Atemwege reizen und sehr zähe und schwer entfernbare Sedimente bilden.

Es ist zu erwarten, dass sich der Aufwand der mit Befüllung und Entleerung verbunden ist mit einer geringeren Höhe und damit geringeren Gesamtvolumen, verringern wird und auch die Aufrührbarkeit der Suspension erleichtert. Ein sich daraus ergebender Vorteil ist die pegelstandgenauere Befüllung des Turms.

¹Intermediate Bulk Container (IBC)

8.2 Bewertung der Sedimentationsexperimente

Aus den Ergebnissen aus Kapitel 7 geht hervor, dass eine Vergrößerung der Sedimentationshöhe, keinen Einfluss auf den eigentlichen Sedimentationsverlauf hat. Aus den Grafiken (Abb.7.3 und 7.4) ist zu erkennen, dass im großen Mittelteil des Sedimentationsmessturms (Ventil 6 - 18) keine signifikanten Konzentrationsänderungen auftreten. Diese Erkenntnisse gelten für den, in dieser Arbeit verwendeten, Holzkoks. Aus den Sedimentationsversuchen mit Strohkoks von Nicoleit (2012, [15]) lässt sich ein solcher Bereich nicht ableiten. Es ist anzunehmen, dass die auf die geringe Höhe der modularen Sedimentationszylindern zurückzuführen ist.

Nichtsdestotrotz sind die Ergebnisse der Experimente nach 1 d, 3 d, 7 d, 14 d vergleichbar mit den Ergebnisse von Nicoleit (2012, [15]) und weisen einen typischen Sedimentationsverlauf auf.

Aus dieser Erkenntnis kann man schließen, dass der Turm auch in geringerer Höhe befüllbar ist. Diese Änderung macht die Handhabung einfacher, da der, mit der Höhe verbundene, hydrostatische Druck abnimmt und die Probennahme so erleichtert.

Eine Unsicherheit in den Messungen stellte die Temperatur des Slurrys dar. Der Slurry sollte erst eingefüllt werden, wenn er nach dem Mischen abgekühlt ist. Die unterschiedlichen Temperaturen während des Sedimentationsvorgangs resultieren in schwankende Viskositäten der Suspension und damit in geringer vergleichbare Sedimentationsbedingungen. Ein geringeres Gesamtvolumen ermöglicht ein schnelleres Abkühlen.

8.3 Abgleich mit den Voraussetzungen aus den Abschnitten 5.1 und 5.4

Die Einhaltung der Probenmenge V_{Probe} von etwa 50 mL ist nicht möglich bei einer Höhe von 1,5 m. Die Voraussetzung aus Kapitel 5, dass das erste Ventil nicht leerlaufen darf, konnte daher nicht erfüllt werden. Die gemittelte Probenmenge über alle 125 Probenahmen beträgt ~ 70 mL, dazu wurden bei den Probenahmen 1 d, 3 d, 7 d, die Suspension aus dem Totvolumen des Ventils herausgelassen; Es sollte untersucht werden, ob dies auch in Zukunft notwendig ist, dafür muss die Feststoffkonzentration der Suspension aus dem Totvolumen analysiert werden und mit der eigentlichen Feststoffkonzentration der Probe aus dem Ventil verglichen werden. Die gemittelte Menge an entfernter Suspension berägt ~ 40 mL. Die maximal zulässige Probenmenge von 100 mL wurde somit um 10 mL überstiegen, außerdem war es nicht möglich den Turm bis zur obersten Kante zu befüllen. Der Anfangspegel lag bei einer Höhe von 1490 mm und ist nach der Messreihe auf 1445 mm gesunken. Dies entspricht einer prozentualen Abnahme um 3 %. Die Lösung für diese Problem wurde im Punkt Probenahme Abschnitt 8.1.2 behandelt.

Es konnten alle anderen Randbedingungen erfüllt werden. Die messbaren Größen sind in Tabelle 8.1 aufgeführt und nach der Güte ihrer Einhaltung bewertet. Die oben erwähnte Probenahme und die damit verbundene Einhaltung einer geringen Pegelschwankung sind ungenügend erfüllt worden, zu beachten gilt für diesen Fall der obere Abschnitt sowie Abschnitt 8.1.2, hier wird Problematik näher beschrieben.

Weiter bedarf es einer genaueren Untersuchung der Annahme über die Homogenität der Suspension.
Tabelle 8.1:	Gegenüberstellung der im voraus angenommenen beziehungsweise berechneter
	Größen mit den im Messbetrieb ermittelten Werte und Bewertung der Differenzen

	berechnet	gemessen	Bewertung
V _{Probe}	100 mL	$\sim 110\text{mL}$	optimierungswürdig
V _{Gesamt}	454 L	$\sim 450L$	Anforderungen erfüllt
Volumenverlust	0 mI	~ 400 mI	noch in Ordnung
durch Undichtigkeiten	UIIL	$\sim 400\mathrm{mL}$	noen in Oranung
Pegelabnahme	4,3 cm	5,5 cm	noch in Ordnung

9 Zusammenfassung und Ausblick

Aufgabe dieser Arbeit war es ein Messgerät im Technikumsmaßstab zur Charakterisierung der Partikelsedimentation im BioSyncrude zu entwickeln und konstruieren. Es sollte die Messmethodik erläutert und das Messgerät in Betrieb genommen werden. Die Ergebnisse der Messreihe, der ersten einmaligen Befüllung des Messinstruments sollen mit den Resultaten aus vorangegangen Arbeiten verglichen werden.

Nachdem in Kapitel 3 der Stand der Messtechnik erläutert wurde, wird in Kapitel 5 auf den Prozess der Lösungsfindung und die genaue Auswahl der Messparameter und Materialien eingegangen. Die fertige Konstruktion konnte in Kapitel 6 vorgestellt werden, sowie die Ergebnisse aus der Messreihe in Kapitel 7. Insgesamt wurden zufriedenstellende Ergebnisse erzielt. Der ermittelte Sedimentationsverlauf im Technikumsmaßstab ist vergleichbar mit der labor-skalierten Vorarbeit von Nicoleit (2012, [15]). Der Sedimentationsmessturm wurde in Kapitel 8 analysiert und es wurden Verbesserungsvorschläge erörtert, die die Bedienung und Handhabung optimieren.

Ein niedrigerer Messturm hat nach den Erkenntnissen aus Abschnitt 7.3 keine negativen Auswirkungen auf die Ergebnisse und entgegen anfänglicher Annahmen hat die Sedimentationshöhe keine Auswirkungen auf die Sedimentationscharakteristika. Die Aufgabestellung wurde demnach erfüllt, obwohl es Verbesserungsbedarf beim Dichtungskonzept sowie bei der Reinigung und Entleerung ist. Im Folgenden wird nun ein technischer und ein experimenteller Versuchsausblick gemacht.

Technischer Ausblick zur Optimierung der Konstruktion

Insgesamt stellt der Messturm wegen seiner einfachen Konstruktion ein gutes Konzept zur Charakterisierung von Sedimentationen dar, das einfach erweiterbar ist. So ist es möglich die in dieser Arbeit aus Zeitgründen beiseite gelegten Messmethodiken in folgenden Arbeiten weiter zu untersuchen, wie die manometrische oder akustische Messung (siehe hierfür die alternativen Lösungsvorschläge aus Abschnitt 5.2). Denkbar wäre eine Installation von Drucksensoren anstelle der Kugelhähne, um die Sedimentation, wie in Abschnitt 3.4 beschrieben, kontinuierlich zu untersuchen.

Bei Fortschritten der Analysetechnik des LiquidSens-Sensors, die in Abschnitt 5.1 erläutert wurde, könnte diese genutzt werden, um ohne aufwendige Feststoffbestimmungen durch Filtration, schnell und präzise die Feststoffkonzentration im interessierenden Bereich zu ermitteln. Sieht man von der zeitintensiven Kalibrierung ab, so wäre auch eine Messung mit Ultraschall denkbar.

Experimenteller Versuchsausblick

Nach der Inbetriebnahme des Sedimentationsmessturms ist die Charakterisierung der Sedimentation als Funktion verschiedener Versuchsparameter interessant. Zum einen sollten

unterschiedliche Einsatzstoffe, wie zum Beispiel ungemahlener und gemahlener bioliq[®]-Koks, untersucht werden. Ferner sind Suspensionen mit unterschiedlichen flüssigen Phasen zu untersuchen (Ethylenglykol und organische und wässrige Kondensate aus der bioliq[®]-Pyrolyse). Zum anderen sind die Einflüsse der Sedimentationshöhe, der Feststoffkonzentration, der Viskosität der Suspension, der Temperatur, sowie der Partikelgrößenverteilung auf den Sedimentationsverlauf interessant.

Außerdem sollte die Feststoffkonzentration im Totvolumen analysiert werden, um festzustellen ob ein Auslassen der Suspension im Totvolumens bei jeder Probenahme notwendig ist.

In Zukunft wären weiter Sedimentationsexperimente auf einer Rüttelvorrichtung interessant, da der Slurry beim Transport auf Straßen beziehungsweise Schienen unter Umständen anders sedimentiert, wenn Schwingungsenergien eingetragen werden.

Anhang

A.1 Vorberechnung der Sinkgeschwindigkeit

Mit Gleichung (2.7):

$$w_s = \frac{\rho_{\rm p} - \rho_{\rm f}}{18\eta} \cdot g \cdot d^2 \tag{A.1}$$

Einsetzen der Zahlenwerte:

$$w_s = \frac{1600 \,\mathrm{kgm^{-3}} - 1100 \,\mathrm{kgm^{-3}}}{1821,3 \times 10^{-3} \,\mathrm{Pas}} \cdot 9,81 \,\mathrm{ms^{-2}} \cdot (100 \,\mathrm{\mu m} \cdot 10 \times 10^{-3})^2 \tag{A.2}$$

Daraus ergibt sich $w_s = 1,28 \times 10^{-4} \text{ ms}^{-1}$.

Zusammen mit (2.2):

$$Re_d = \frac{\text{Trägheitskraft}}{\text{Widerstandskraft}} = \frac{w_s \cdot d \cdot \rho_f}{\eta}$$
(A.3)

Erhält man:

$$Re_d = \frac{1,28 \times 10^{-4} \,\mathrm{ms}^{-1} \cdot 100 \,\mu\mathrm{m} \cdot 10 \times 10^{-3} \cdot 1100 \,\mathrm{kgm}^{-3}}{21,3 \times 10^{-3} \,\mathrm{Pas}} = 6,61 \times 10^{-4}$$
(A.4)

Darauf aufbauend werden Gleichung (2.10) und (2.11) benutzt: Für (2.10) gilt:

$$\frac{w_{ss}}{w_s} = (1 - c_V)^{\alpha(Re_0)} \tag{A.5}$$

bzw. aufgelöst nach w_{ss}:

$$w_{ss} = w_s \cdot (1 - c_V)^{\alpha(Re_0)} = 1,28 \times 10^{-4} \,\mathrm{ms}^{-1} \cdot (1 - 0,191)^{4,65} = 4,77 \times 10^{-5} \,\mathrm{ms}^{-1} \quad (A.6)$$

Für (2.11) und aufgelöst nach w_{ss} gilt:

$$w_{ss} = \frac{w_s}{1 + \frac{c_v}{(1 - c_v)^2} \cdot \frac{1 - c_v}{1 + \frac{1 - c_v}{\sqrt{1 + (\frac{\pi}{12c_v})^2 - \frac{1}{2}}}}}$$
(A.7)

und mit Werten folgt:

$$w_{ss} = \frac{1,28 \times 10^{-4} \,\mathrm{ms}^{-1}}{1 + \frac{0,191}{(1 - 0,191)^2}} \cdot \frac{1 - 0,191}{1 + \frac{1.05}{\sqrt{1 + (\frac{\pi}{12 \cdot 0,191})^2} - \frac{1}{2}}} = 4,27 \times 10^{-5} \,\mathrm{ms}^{-1} \tag{A.8}$$

Damit gilt für die Reynoldszahlen:

$$Re_{\text{Richardson und Zaki}} = \frac{1,28 \times 10^{-4} \,\text{ms}^{-1} \cdot 100 \,\mu\text{m} \cdot 10 \times 10^{-3} \cdot 1100 \,\text{kgm}^{-3}}{21,3 \times 10^{-3} \,\text{Pas}} = 4,93 \times 10^{-5}$$
(A.9)

$$Re_{\text{Brauer}} = \frac{1,28 \times 10^{-4} \,\text{ms}^{-1} \cdot 100 \,\mu\text{m} \cdot 10 \times 10^{-3} \cdot 1100 \,\text{kgm}^{-3}}{21,3 \times 10^{-3} \,\text{Pas}} = 4,41 \times 10^{-5} \qquad (A.10)$$

A.2 Filtervorversuche

Zur Bestimmung des Massenverlustes der Filter während des Messprozesses, wurden mehrere Blindproben untersucht. Hierfür wurden leere Filter derselben Prozedur unterzogen, wie bei einer Feststoffbestimmung. Die Filter wurden mit 1 L Ethanol gespült und für 8 h im Trockenschrank bei 105 °C gelassen. Die Ergebnisse sind in Tabelle A.1 aufgezeigt.

Tabelle A.1:	Blindprobe	zur	Bestimmung	des	Massenverlustes	der	Filter	nach	einer
	Feststoffbest	timm	ung						

Ausgangsgewicht	Gewicht nach Prozedur	Δm	Gewicht nach 5 Tagen	$\Delta m2$
10,48	9,84	0,64	10,32	0,16
10,43	9,76	0,67	10,27	0,16
10,33	9,71	0,62	10,18	0,15
10,56	9,91	0,65	10,4	0,16
10,46	9,85	0,61	10,31	0,15

Die Filter wurden direkt nach dem Trocknen gemessen (Massenverlust Δm) und einige Tage später noch einmal (Massenverlust Δm^2). Mit den Werten für Δm ergibt sich ein Massenverlust von ~ 6,2 % und für Δm^2 etwa 1,5 %.

Der Massenverlust in kein Effekt der durch die Ethanolspülung hervorgerufen wird, sondern resultiert vom desorbierenden Wasser, wie aus dem Vergleich mit den Ergebnissen aus Tabelle A.2 hevorgeht. In diesem Fall wurden die Filter bei 105 °C für 8 h getrocknet und direkt danach gewogen. Die durch diese Prozedur ermittelte Werte für Δm entsprechen liegen nah an den Werten für Δm aus Tabelle A.1. Nachdem die Filter fünf Tage offen ohne Luftausschluss gelagert worden waren, wurden sie erneut gewogen. Die Werte sind in Tabelle A.2 aufführt. Es ist erkennbar, dass die Filter das durch Trocknung entfernte Wasser langsam wieder aufnehmen.

Ausgangsgewicht	Gewicht nach Trocknung	Δm	Gewicht nach 5 Tagen	$\Delta m2$
10,48	9,85	0,64	10,3	0,19
10,43	9,8	0,69	10,29	0,2
10,33	9,8	0,75	10,34	0,21
10,56	9,64	0,76	10,16	0,24
10,46	9,7	0,82	10,36	0,16

 Tabelle A.2: Blindprobe zur Bestimmung des Massenverlustes der Filter durch Wasserdesorption in Folge des Trocknungsprozesses

A.3 Konstruktion einer visuellen Erweiterung des Messturms

Zur Bruchsicherung der Scheibe wird eine 300 x 1500 mm Glasscheibe in einen Rahmen aus zwei PVC-Tafeln eingesetzt und verklebt. Die Fugen werden mit Silikon gedichtet. Die Scheibe besteht aus zwei 24 mm dicken, thermisch behandelten Gläsern (Einscheibensicherheitsglas (ESG)) die mit einer Folie verbunden sind (Verbundsicherheitsglas (VSG)). Die gesamte Konstruktion wird an die Stelle der Rückwand des Sedimentationsmessturms gesetzt und mit den anderen Elementen verschraubt, die Glasscheibe sollte dabei eine Auflagefläche von 50 mm auf jeder Seite auf dem PVC haben; Abbildung A.1 zeigt eine Explosionsansicht dieser Konstruktion. Bei der Verwendung von ESG ist zu beachten, dass diese materialbedingt in Einzelfällen zu Spontanbruch neigen, daran Schuld sind Nickelsulfideinschlüsse. Deswegen muss ein Heat-Soak-Test durchgeführt werden. Dies ist ein Heißlagerungstest, dabei wird das vorgespannte Glas, während mehrerer Stunden in einem speziellen Heat-Soak-Ofen, einer Wärmebelastung von 290 °C ausgesetzt. Außerdem muss das VSG vor jeglicher Flüssigkeit geschützt werden, da die Verbundfolie hygroskopisch ist.

Abbildung A.1: Explosionsansicht der Konstruktion: Bestehend aus einer 25 mm (links) und einer 20 mm PVC-Platte, in die die Glasscheibe (mitte) eingelassen und verklebt ist

A.4 Betriebsanleitung

Es soll beschrieben werden, wie der Sedimentationsmessturm zu handhaben ist und welche Punkte bei der Benutzung beachtet werden muss.

Aufbau

Die PVC-Wände und der Boden sind fest miteinander verbunden, es müssen nur die Schrauben auf ihre Sitz geprüft werden. Die Wände auf denen die Stahlplatte liegt neigen sich nach innen. Dies sollte durch eine behälfsmäßige Stütze verhindert werden. Der Sitz der Gummidichtung ist beim Auflegen der Stahlplatte zu beachten. Alle Schrauben müssen mit Vorsicht (Kunststoffgewinde können zerstört werden) fest angezogen werden. Die Gewinde der Schweißnippel sind mit Teflonband zu versiegeln bevor die Kugelhähne aufgeschraubt werden. Bei diesem Vorgang ist das Öffnen der Hähne zu überprüfen und gegebenenfalls muss die Stellung dieser verändert werden. Der komplette Turm wird in den Aluminiumkäfig gestellt und gesichert.

Befüllung

Das Befüllen des Messturms mit der zu untersuchenden Suspension kann von oben per Schwerkraftentleerung erfolgen. Die Suspension sollte wenn sie frisch gemischt ist 100 h stehen gelassen werden, um eine Ausgasung zu gewährleisten, sowie die möglicherweise erhöhte Temperatur, hervorgerufen durch den Mischprozess, zu verringern. Einer vorzeitigen Sedimentation sollte dabei mit einem entsprechenden Rührwerk entgegengewirkt werden.

Probenahme

Vor jeder Probenahme muss aus dem entsprechenden Ventil eine kleine Menge auslaufen gelassen werden, um das Totvolumen zu entleeren. Dabei kann auch das Ausflussverhalten direkt analysiert werden. Je nach Ventilhöhe ist es ratsam das Ventil erst vorsichtig zu öffnen, da ab Ventil Nr. > 8 die Suspension sehr stark und schnell fließt.

Die entnommene Probe kann in ein kleines Becherglas gefüllt werden, so ist es möglich die Probenmenge in etwa abzuschätzen. Zur Hilfe steht neben dieser Möglichkeit die Entnahme mit dem Schott. Dieses wird vorne mit einem weiteren Kugelhahn bestückt und dann in das zu untersuchende Ventil geschraubt. Zuerst ist das Turmventil zu öffnen und wieder zu schließen. Jetzt kann die Schleuse vorsichtig abgeschraubt werden und die Probe entnommen werden. Das Schott ist mit Ethanol zu reinigen und die benutzte Menge Enthanol muss, für das genaue Probengewicht, dokumentiert werden.

A.5 gnuplot - Quellcode für Abbilung 2.2

Die Abbildung 2.2 wurde mit dem Programm gnuplot Version 4.6 patchlevel 3 erstellt.

Die im VDI-Wärmeatlas (2006) [4.9] angegebenen Näherungsformeln zur rechnerischen Auswertung des Richardson-Zaki Exponenten α sind:

$$\begin{array}{rcl} \alpha_{Re_0} &=& 4,65 & \mbox{für} & Re_0 < 0,2 \\ \alpha_{Re_0} &=& 4,35 \cdot Re_0^{-0,03} & \mbox{für} & 0,2 < Re_0 < 1 \\ \alpha_{Re_0} &=& 4,45 \cdot Re_0^{-0,1} & \mbox{für} & 1 < Re_0 < 500 \\ \alpha_{Re_0} &=& 2,39 & \mbox{für} & Re_0 > 500 \end{array}$$

Der Quellcode zur Erstellung des Graphen mit gnuplot lautet:

```
gnuplot> set terminal wxt
Terminal type set to 'wxt'
Options are '0'
gnuplot> set xrange [0.001:10000]
gnuplot> set yrange [0:5]
gnuplot> set grid
gnuplot> set logscale x
gnuplot> a(x)= (x<0.2) ? 4.65 : (x>0.2 && x<1) ? 4.35*x**(-0.03): (x>1 && x<500) ? 4.45*x**(-0.1): 2.39
gnuplot> plot a(x)
```

A.6 Ergänzende Bilder

A.6.1 Sedimentationsmessturm

Abbildung A.2: Frontansicht des Sedimentationsmessturm im Aluminiumkäfig

A.6.2 Filtertisch

Abbildung A.3: Trichtertisch zur Aufnahme von 17 Filter für die Trennung von Feststoff und Extrakt

A.6.3 2 L-PVC Turm

Abbildung A.4: Versuchsturm aus PVC mit 2L Volumen, zur Erprobung von Ventilen und Probenehmern

A.7 Partikelgrößenverteilungsanalyse

Nachfolgend finden sich 2 Beispielergebnisprotokolle der Partikelgrößenanalyse des Holzkokses, jeweils ein Protokoll für die Messmethodik Waddel-Disk und Max-Feret:

Das erste Protokoll hat den Waddel-Disk Durchmesser analysiert im zweiten wurde Max-Feret benutzt.

Sample

Sample Name	2013-2226_1	Date	06.09.2013	
Sample Origin	2013-09-02 Koks	Time	10:36:13	
Reference		Operator	user2	
Remarks	Auswertung mit Waddel Disk			

Method

Methou					
Overall	Actual setup			Measurement Value	Waddel Disk Diameter
Filter	bioliq (shiftcontra	ist-inv-sub-inv-fu∈		Weight	volume
Analysis	Actual setup			Distribution Type	probability [%]
Camera	bioliq (kleine-can	nera-max-resolut		Number of Frames	2000
Statistics					
Mean	32.6795	Std	24.3342	Number	1167516.0000
x(1,0)	7.9110	x(3,2)	20.6346	x(4,3)	32.6795

20.5756

x(50%)

Particle Spectrum 35 -30 25 probability [%] 20 15 10 5-0 ΰ 100 300 400 200 500 Waddel Disk Diameter

5.1090

x(5%)

Sum Distribution

78.2025

x(95%)

x	%	S %	x	%	S %	x	%	S %	x	%	S %	x	%	S %
0-10	4.6564	4.6564	100-110	0.7718	98.0237	200-210	0.0000	100.0000	300-310	0.0000	100.0000	400-410	0.0000	100.0000
10-20	31.5192	36.1756	110-120	0.6338	98.6574	210-220	0.0000	100.0000	310-320	0.0000	100.0000	410-420	0.0000	100.0000
20-30	24.7944	60.9700	120-130	0.6511	99.3085	220-230	0.0000	100.0000	320-330	0.0000	100.0000	420-430	0.0000	100.0000
30-40	14.1481	75.1181	130-140	0.0000	99.3085	230-240	0.0000	100.0000	330-340	0.0000	100.0000	430-440	0.0000	100.0000
40-50	7.9437	83.0619	140-150	0.3811	99.6897	240-250	0.0000	100.0000	340-350	0.0000	100.0000	440-450	0.0000	100.0000
50-60	5.2412	88.3031	150-160	0.3103	100.0000	250-260	0.0000	100.0000	350-360	0.0000	100.0000	450-460	0.0000	100.0000
60-70	3.5590	91.8621	160-170	0.0000	100.0000	260-270	0.0000	100.0000	360-370	0.0000	100.0000	460-470	0.0000	100.0000
70-80	2.5315	94.3935	170-180	0.0000	100.0000	270-280	0.0000	100.0000	370-380	0.0000	100.0000	470-480	0.0000	100.0000
80-90	1.8937	96.2873	180-190	0.0000	100.0000	280-290	0.0000	100.0000	380-390	0.0000	100.0000	480-490	0.0000	100.0000
90-100	0.9646	97.2519	190-200	0.0000	100.0000	290-300	0.0000	100.0000	390-400	0.0000	100.0000	490-500	0.0000	100.0000

parameter	mean	Std	parameter	mean	Std	parameter	mean	Std
Waddel Disk Diameter	32.6795	24.3342	Equivalent Ellipse Minor Axis	21.6232	15.1249	Ratio of Equivalent Rect Sides	1.6593	0.8729
Hydraulic Radius	13.6484	9.9192	Equivalent Rect Long Side 35.7889 35.0864 Elongation Factor 2.		2.3083	0.2482		
Max Feret Diameter	45.1409	40.1191	Equivalent Rect Short Side	22.7632	15.7754	Compactness Factor	0.6710	0.0388
Equivalent Rect Diagonal	42.4248	39.3270	% Area/Image Area	0.9666	0.3799	Heywood Circularity Factor	1.1282	0.0895
Perimeter	117.1042	101.0157	Equivalent Ellipse Minor Axis (Feret)	24.2019	17.9418	Type Factor	0.8955	0.1087
Convex Hull Perimeter	114.2404	97.6189	Equivalent Rect Short Side (Feret)	19.0081	14.0915	Tortuosity	0.7446	0.0286
Equivalent Ellipse Major Axis	47.6544	42.6292	Ratio of Equivalent Ellipse Axes	2.1373	0.6239	Light Intensity	178.0994	0.0701

Sample					
Sample Name	PA-0350-2-N	1F		Date	27.03.2013
Sample Origin	2013-03-13 H	lolzkohlekoks (2013)		Time	13:16:56
Reference				Operator	user2
Remarks					
Method					
Overall	bioliq (300/6,	max ferret, kleine ca		Measurement Value	Max Feret Diameter
Filter	bioliq (shiftco	ontrast-inv-sub-inv-fue		Weight	volume
Analysis	bioliq (300/6,	max ferret, kleine ca		Distribution Type	probability [%]
Camera	bioliq (kleine-	-camera-max-resolut		Number of Frames	2000
Statistics					
Mean	63.31	Std	47.27	Number	310718.00
x(1,0)	18.05	x(3,2)	38.21	x(4,3)	63.31
x(5%)	12.25	x(50%)	45.02	x(95%)	161.70

x	%	S %	x	%	S %	x	%	S %	x	%	S %	x	%	S %
0-6	0.00	0.00	60-66	4.40	64.92	120-126	1.54	88.52	180-186	0.46	97.52	240-246	0.00	99.71
6-12	1.22	1.22	66-72	3.91	68.83	126-132	1.33	89.85	186-192	0.00	97.52	246-252	0.29	100.00
12-18	6.97	8.19	72-78	3.29	72.12	132-138	1.61	91.47	192-198	0.28	97.79	252-258	0.00	100.00
18-24	9.51	17.70	78-84	2.93	75.05	138-144	1.16	92.62	198-204	0.46	98.25	258-264	0.00	100.00
24-30	9.74	27.44	84-90	2.58	77.63	144-150	0.77	93.40	204-210	0.50	98.75	264-270	0.00	100.00
30-36	8.54	35.99	90-96	2.16	79.78	150-156	0.47	93.87	210-216	0.00	98.75	270-276	0.00	100.00
36-42	7.54	43.53	96-102	2.38	82.17	156-162	0.83	94.70	216-222	0.00	98.75	276-282	0.00	100.00
42-48	6.45	49.98	102-108	1.95	84.12	162-168	0.67	95.37	222-228	0.00	98.75	282-288	0.00	100.00
48-54	5.68	55.66	108-114	1.49	85.61	168-174	0.75	96.12	228-234	0.46	99.21	288-294	0.00	100.00
54-60	4.86	60.52	114-120	1.38	86.99	174-180	0.94	97.06	234-240	0.50	99.71	294-300	0.00	100.00

parameter	mean	Std	parameter	mean	Std	parameter	mean	Std
Waddel Disk Diameter	39.95	25.87	Equivalent Ellipse Minor Axis	24.93	13.57	Ratio of Equivalent Rect Sides	3.35	3.91
Hydraulic Radius	16.05	9.13	Equivalent Rect Long Side	59.14	61.43	Elongation Factor	2.82	0.43
Max Feret Diameter	63.31	47.27	Equivalent Rect Short Side	25.44	13.09	Compactness Factor	0.64	0.06
Equivalent Rect Diagonal	65.68	63.20	% Area/Image Area	0.79	0.88	Heywood Circularity Factor	1.28	0.23
Perimeter	169.17	144.18	Equivalent Ellipse Minor Axis (Feret)	28.80	18.07	Type Factor	0.86	0.08
Convex Hull Perimeter	153.50	111.38	Equivalent Rect Short Side (Feret)	22.62	14.20	Tortuosity	0.67	0.05
Equivalent Ellipse Major Axis	70.94	63.22	Ratio of Equivalent Ellipse Axes	3.28	2.51	Light Intensity	168.07	0.06

A.8 Viskositätanalyse

Folgend sind die Ergebnisse der Viskositätsmessungen des in dieser Arbeit verwendeten Slurrys auflistet. Die Viskosität wurde bei unterschiedlichen Drehzahlen und Temperaturen ermittelt.

bioliq

 $\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 8\\ 9\\ 22\\ 23\\ 24\\ 25\\ 26\\ 7\\ 28\\ 9\\ 30\\ 31\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ 8\\ 39\\ 40\\ \end{array}$

Anwenderdaten:			
Druckzeit:	Mittwoch, 11. September 2013 10:17:01	Temperatur:	20°C
Name:	2013 - 2227	Spindel:	ST24-2HR-37/120
Probe:	Slurry / Modellbrennstoff 02.09.2013	KW:	
Bemerkuna :	Messung mit Helixspindel, Faktor 88, 20°C	Benutzer:	Janke

messpice.	Drohzahl	Moment	Viekoeität	Temperatur	Status							
	[1/min]	[uNm]	[mDo.ol	reniperatur	n							
	[1/min]	[µNm]	[mPa·s]	[°C]	U							
Datenreihe	n-Information	nen				AIIGMET	PE-ERGERNIC	SE.				
Name:			2013 - 2227	1		L .		,	1			
Probe [.]			Slurry / Mode	ellbrennstoff 02	2 09 2013	Anzahl	. Eingangsda	tenpunkte	: 1			
Remarkung			Meesung mil	Helivenindal	Faktor 88 20°C	Anzahl	Ergebnisda	tenpunkte	: 1			
Demerkung			wessung min	Tielixspiridei,	T ARIOT 00, 20 C)	· · · · · · · · · · · · · · · · · ·				
Anzani Abs	cnnitte:		4									
Applikation			RHEOPLUS	/32 V3.61 2100	05765-33024	Nr.	n	eta				
Messgerät:			MCR102 SN	81023202; FW	V3.64; Slot(7,-1)		[1/min]	[mPa·s]				
Datum/Zeit			11.09.2013:	09:52			[1/10111]		rel	ative Viskosität!!		
Massevetor	n.		ST24_2HR_3	7/120-SNI2024	10: d=0 mm	1	50	211,5				
Tresssyster	11. 4		3124-211K-3	7/120-3N2924	70.4							
Zusatzgera	te:		TU1=C-PTD	200-SN81021	734							
Abschnitt:			1			AUSWEF	RTE-ERGEBNIS	SE:				
Anzahl Mes	spunkte:		0			Anzahl	Eingangsda	tennunkte	• 1			
								compannee	• ±			
Zaihuaraahu			COO Massau	aluka wamwamfam	-	Anzahl	. Ergebnisda	tenpunkte	: 1			
Zeitvorgabe			600 Wesspu	ikle, verwerier	n							
			Messpunktda	auer 1 s		NTwo	~	м				
Messprofil:						IN I .	11	141				
Drehzahl			n = 500 1/mi	n			[1/min]	[µNm]				
Temperati	Jr		T[-1] = 20 °C			1	50	120.2				
romporad			.[.] 20 0			-	00	12072				
Abschnitt:			2									
Anzahl Mes	spunkte:		0									
Zeitvorgabe	e:		180 Messou	nkte, verwerfer	n				Drehmome	ont		
gubt			Meenunktd	auer 1 e								
			wesspurik(da	200115								
Messprofil:												
Drehzahl			n = 0 1/min				10 000 -					_ I
Temperati	ur		T[-1] = 20 °C				10.000					
			, 20 0									
A ha - h			2					F				
Abschnitt:			3				uNm					
Anzahl Mes	spunkte:		0				μινιι					
							-					
Zeitvorgabe	.		5 Messnunkt	e verwerfen								
Leitvorgabt			Meesewurkte				1 000 -	-				
			Messpunkta	aueris			1.000					
Messprofil:												
Drehzahl			n = 1 1/min					F				
Temperati	ır		T[-1] = 20 °C									
remperat			1[1] 20 0									
						NA NA						
Abschnitt:			4									
Anzahl Mes	spunkte:		40				100-	-				
							100					
Zeitvorgabe	<u>.</u>		40 Messour	rto						•		
Zeitvorgabe			40 Messpuli		1							
			Messpunkta	auer 35 1 S I	log							
Messprofil:												
Drehzahl			n = 1 500	1/min log								
Temperati	ır		T[-1] = 20 °C	- 5								
remperate			1 1 20 0				10-		1		1	
				_			10	T .				
Messpkt.	Drehzahl	Moment	Viskosität	Temperatur	Status		10	1	10	100	1/min1	
Messpkt.	Drehzahl [1/min]	Moment [µNm]	Viskosität [mPa·s]	Temperatur [°C]	Status []		10	1	10	100	1/min1.0	000
Messpkt. 1	Drehzahl [1/min] 1	Moment [µNm] 9,78	Viskosität [mPa⋅s] 861	Temperatur [°C] 20	Status [] Dy accu		10	1	10	100	1/min 1.0	000
Messpkt. 1 2	Drehzahl [1/min] 1 1 17	Moment [µNm] 9,78 10 5	Viskosität [mPa·s] 861 785	Temperatur [°C] 20 20	Status [] Dy_accu Dy_accu		10	1 Dr	10 ehzahl n	100	1/min 1.(000
Messpkt. 1 2	Drehzahl [1/min] 1 1,17	Moment [µNm] 9,78 10,5	Viskosität [mPa·s] 861 785	Temperatur [°C] 20 20	Status]] Dy_accu Dy_accu		10	1 Dr	10 ehzahl n	100	1/min1.(►	000
Messpkt. 1 2 3	Drehzahl [1/min] 1 1,17 1,38	Moment [µNm] 9,78 10,5 11,1	Viskosität [mPa·s] 861 785 709	Temperatur [°C] 20 20 20	Status [] Dy_accu Dy_accu Dy_accu		10	1 Dre	10 ehzahl n	100	1/min1.(►	000
Messpkt. 1 2 3 4	Drehzahl [1/min] 1,17 1,38 1,61	Moment [µNm] 9,78 10,5 11,1 11,8	Viskosität [mPa·s] 861 785 709 643	Temperatur [°C] 20 20 20 20	Status [] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10	1 Dro	10 ehzahl n	100	1/min1.0 ►	000
Messpkt. 1 2 3 4 5	Drehzahl [1/min] 1,17 1,38 1,61 1,89	Moment [µNm] 9,78 10,5 11,1 11,8 12,6	Viskosität [mPa⋅s] 861 785 709 643 585	Temperatur [°C] 20 20 20 20 20 20	Status [] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10	1 Dro	10 ehzahl n	100	1/min1.(►	000
Messpkt. 1 2 3 4 5 6	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5	Viskosität [mPa·s] 861 785 709 643 585 536	Temperatur [°C] 20 20 20 20 20 20 20	Status I Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n	100	1/min 1.(►	000
Messpkt. 1 2 3 4 5 6 7	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2 6	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5 14 6	Viskosität [mPa·s] 861 785 709 643 585 536 493	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs	100	1/min 1.(► or 88, 20°C	000
Messpkt. 1 2 3 4 5 6 7 8	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15 °	Viskosität [mPa·s] 861 785 709 643 585 536 493 456	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n Ing mit Helixs	100	1/min1.(►	000
Messpkt. 1 2 3 4 5 6 7 8 8	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8	Viskosität [mPa·s] 861 785 709 643 585 536 493 456	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20	Status Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n Ing mit Helixs	100	1/min1.(► or 88, 20°C	000
Messpkt. 1 2 3 4 5 6 7 8 9	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto t	1/min1.(► or 88, 20°C	000
Messpkt. 1 2 3 4 5 6 7 8 9 9 10	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,05 3,58 4,2	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 493 456 424 396	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	000
Messpkt. 1 2 3 4 5 6 7 7 8 9 10 11	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7	Viskosität [mPa·s] 861 785 709 643 585 536 493 493 456 424 396 371	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	000
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12	Drehzahl [1/min] 1 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9	Viskosität [mPa·s] 861 785 709 643 585 536 493 493 456 424 396 371 349	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	000
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77	Moment [μNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 493 456 424 396 371 349 330	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222 1.000 -	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 6,77	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 20,2	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 424 396 371 349 330	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100	1/min1.(► or 88, 20°C	000
Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 -	Drehzahl [1/min] 1 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 225,4 28,3	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6	Viskosität [mPa·s] 861 785 709 643 585 536 493 493 456 424 396 371 349 330 313 298	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 298 285	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Drehzahl [1/min] 1 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 298 285 273	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 15,8 17,2 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 39,7	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 424 330 371 349 330 313 298 298 285 273 262	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu		2013 - 222	1 Dr 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 10 12 13 14 15 16 10 11 12 12 12 12 12 12 13 14 15 16 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 0,7 10,9	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 298 285 273 262	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 - - - - - - - - - - - - -	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5	Viskosität [mPa·s] 861 785 585 536 493 456 424 396 371 349 330 313 298 285 273 262 252	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 6,77 6,77 9,31 10,9 12,8 15 17,6 20,6	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 424 3371 349 330 313 349 330 313 298 285 273 262 273 262 252 244	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu		2013 - 222	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Drehzahl [1/min] 1 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2	Moment [µINm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 298 285 273 262 252 244 236	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu		2013 - 222 1.000	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2	Viskosität [mPa·s] 861 705 643 585 536 424 493 456 424 396 371 349 330 313 313 298 285 273 262 262 252 244 236 230	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status I Dy_accu		2013 - 222 1.000 mPa·s	1 Dr 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 298 285 273 262 252 252 254 224 236 230	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu		2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 665 74,2 84,8 20,2	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 298 285 273 262 252 244 236 230 224 240	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu		2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 28,9 25,4 28,3 31,6 35,4 39,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2	Viskosität [mPa·s] 861 785 709 643 585 536 423 493 456 424 396 424 330 313 371 349 330 313 298 298 298 285 273 262 252 244 230 230 224 219	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu		2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8	Moment [µJNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111	Viskosität [mPa·s] 861 785 709 643 585 536 493 493 493 495 424 396 371 349 330 313 298 285 273 262 252 252 244 236 230 224 230 224 219 214	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu	 	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 77,2 84,8 97,2 111 128	Viskosität [mPa·s] 861 705 643 585 536 424 493 456 424 390 371 349 330 313 298 285 273 313 298 285 273 262 252 244 230 224 230 224 219 214 210	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status I Dy_accu	 1 η	2013 - 222 1.000 mPa·s	1 Dr. 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 2,6 3,05 3,58 4,2 4,92 5,77 6,77 6,77 6,77 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111 128	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 424 330 371 349 330 313 371 349 330 313 371 298 285 273 262 252 244 236 230 252 224 219 214 210 205	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	+ η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 28,3 31,6 35,4 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111 128 147 169	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 298 285 273 262 252 252 244 236 230 224 230 224 230 224 219 214 210 202	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu	η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 27 28 20 20 21 22 22 23 24 22 22 23 24 25 25 26 27 28 29 20 21 20 20 20 20 20 20 20 20 20 20	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 96,6	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 28,3 20,7 22,9 25,4 28,3 31,6 35,4 39,7 24,7 50,5 57,2 65 74,2 84,8 97,2 111 128 147 169	Viskosität [mPa·s] 861 785 709 643 585 536 424 493 456 424 390 371 349 330 313 371 349 330 313 298 298 285 273 262 252 244 230 252 252 244 219 214 210 205 202	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6	Moment [µJNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 225,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111 128 147 169 195	Viskosität [mPa·s] 861 785 709 643 585 536 493 493 456 424 396 371 349 330 313 298 285 273 262 252 252 252 252 252 252 252 252 252	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	+ η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 30 30 30 30 30 30 30 30	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102	Moment [µNm] 9.78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 77,2 84,8 97,2 111 128 147 169 195 225	Viskosität [mPa·s] 861 785 709 643 585 536 424 493 456 424 390 371 349 330 313 298 285 273 313 298 285 273 262 252 244 230 224 230 224 219 214 210 205 205 205 205 205 205 205 205 205 20	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	ή η	2013 - 222 1.000 mPa·s	1 Dr. 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 4 31 5 5 5 5 5 5 5 5 5 5 5 5 5	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111 128 147 169 195 225 261	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 424 3371 349 330 313 371 349 330 313 371 298 285 273 262 252 244 236 230 252 252 244 219 214 219 214 210 205 202 198 193	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 28,3 31,6 35,4 28,3 34,6 35,4 28,3 34,6 57,2 65 74,2 84,8 97,2 111 128 147 195 225 261 301	Viskosität [mPa·s] 861 785 709 643 585 536 493 493 349 330 313 298 285 273 262 252 252 244 236 230 224 230 224 230 224 219 214 219 214 210 202 198 195 193	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu	η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 24 25 30 31 32 33 34 35 35 36 37 37 37 37 37 37 37 37 37 37	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 77,2 84,8 97,2 111 128 147 169 195 225 261 301	Viskosität [mPa·s] 861 705 643 585 536 424 493 456 424 396 424 330 313 371 349 330 313 249 298 285 273 262 244 230 252 244 219 214 219 214 210 205 202 198 205 202 195 193 190	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	η	2013 - 222 1.000 mPa·s 100 -	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 34 35 35 35 35 35 35 35 35 35 35	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164	Moment [µINm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 225,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111 128 147 169 195 225 261 301 350	Viskosität [mPa·s] 861 785 709 643 585 536 493 493 456 424 396 371 349 330 313 298 285 273 262 252 252 252 252 252 252 252 252 252	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	ή η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto t 100	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 6,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 35,4 39,7 44,7 50,5 57,2 65 57,2 65 74,2 84,8 97,2 111 128 147 169 195 225 261 301 350 407	Viskosität [mPa·s] 861 705 643 585 536 424 493 456 424 390 311 349 330 313 298 285 273 313 298 285 273 262 252 244 230 224 230 224 219 214 210 205 202 214 210 205 202 198 195 193 190 188 187	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	↑ η	2013 - 222 1.000 mPa·s 100 -	1 Dr. 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto t 100	1/min1.(► or 88, 20°C	
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 24 33 33 33 33 35 35 35 35 35 35	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 28,3 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111 128 147 169 195 225 2261 301 350 407 474	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 371 349 330 313 371 349 330 298 285 273 262 244 236 230 252 252 244 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 214 219 214 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 219 219 214 219 219 219 219 219 219 219 219 214 219 219 219 219 219 219 219 219 219 219	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ing mit Helixs Viskosität	100 spindel, Fakto t t 100	1/min1.(► or 88, 20°C	000
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 33 34 35 36 37 37 37 37 37 37 37 37 37 37	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264	Moment [µNm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 28,3 31,6 35,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111 128 147 195 225 261 301 350 407 474 553	Viskosität [mPa·s] 861 785 709 643 585 536 493 349 371 349 330 313 298 285 273 262 252 244 236 230 224 244 236 230 224 219 219 214 219 219 214 219 214 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 214 219 219 214 219 219 214 219 214 219 214 219 214 219 219 214 219 214 219 219 214 219 214 219 214 219 214 219 214 219 214 219 214 219 214 219 214 219 219 214 219 219 214 219 219 219 219 219 219 219 219 219 219	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status] Dy_accu	η	2013 - 222 1.000 mPa·s	1 Dro	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto t 100	1/min1.(► or 88, 20°C ••••••• 1/min1.(
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310	Moment [µNm] 9.78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 28,3 31,6 35,4 39,7 44,7 50,5 57,2 84,8 97,2 111 128 147 169 195 225 261 301 350 407 474 553 64,8	Viskosität [mPa·s] 861 785 709 643 585 536 424 493 456 424 396 424 330 313 371 349 330 313 371 349 330 313 242 252 244 230 252 252 244 219 214 219 214 210 205 202 198 205 202 199 219 214 210 205 202 199 219 219 214 210 205 202 199 219 219 219 219 219 219 219 219 21	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	Α η	2013 - 222 1.000 mPa·s 100 -	1 Dro	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto t 100	1/min1.(► or 88, 20°C •••••• 1/min1.(
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 38 37 38 36 37 37 38 37 38 37 38 37 38 37 38 37 38 38 37 38 38 38 38 38 38 38 38 38 38	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310 264	Moment [µINm] 9,78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 225,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 1111 128 147 169 195 225 261 301 350 407 474 553 648	Viskosität [mPa·s] 861 785 709 643 585 536 493 456 424 396 371 349 330 313 298 285 273 262 224 236 230 230 225 224 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 214 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 214 219 214 219 214 219 214 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 214 219 219 219 219 214 219 219 219 219 219 219 219 219 219 219	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	η	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto t 100	1/min1.(► or 88, 20°C ••••••• 1/min1.(
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 31 32 33 34 35 36 37 38 37 38 37 38 37 38 37 38 37 38 37 38 38 37 38 38 37 38 37 38 38 37 38 38 38 37 38 38 38 38 38 38 38 38 38 38	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310 364 162 163 163 163 163 163 163 164 192 264 310 364 163 163 163 163 163 176 163 176 176 176 176 176 176 176 176	Moment [µNm] 9.78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 65 74,2 84,8 97,2 111 128 147 169 195 225 261 301 350 407 474 553 6648 760	Viskosität [mPa·s] 861 785 709 643 585 536 424 493 456 424 390 311 349 330 313 298 285 273 313 298 285 273 262 252 244 210 205 224 210 214 210 205 202 224 219 214 210 205 202 214 210 205 202 214 210 205 202 214 210 205 202 214 210 215 218 218 218 218 218 218 218 218 218 218	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	↑ n	2013 - 222 1.000 mPa·s	1 Dro 27 1; Messu	10 ehzahl n ung mit Helixs Viskosität	100 spindel, Fakto t 100	1/min1.(► or 88, 20°C ••••••• 1/min1.(000
Messpkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 9 9 9 9 9 9 9 9 9 9 9 9 9	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310 192	Moment [µNm] 9.78 10,5 11,1 11,8 12,6 13,5 14,6 15,8 17,2 18,9 20,7 22,9 25,4 28,3 31,6 35,4 39,7 44,7 50,5 57,2 28,3 31,6 35,4 39,7 44,7 50,5 57,2 84,8 97,2 111 128 147 169 195 225 261 301 350 407 474 553 648 760 897	Viskosität [mPa·s] 861 785 709 643 585 536 424 493 456 424 390 371 349 330 313 371 349 330 313 371 298 298 285 273 262 244 219 214 210 205 202 219 214 210 205 202 198 195 193 190 185 193 190 185 184 184 184 184 184	Temperatur [°C] 20 20 20 20 20 20 20 20 20 20 20 20 20	Status [] Dy_accu	η	2013 - 222 1.000 mPa·s 100 - 1	1 Dro 27 1; Messu Dro 27 1: Messu	10 ehzahl n ung mit Helixs Viskosität 10 ehzahl n	100 spindel, Fakto	1/min1.(► or 88, 20°C ••••••• 1/min1.(►	

Unterschrift:

bioliq

Anwenderdaten	1.		
Druckzeit:	Mittwoch, 11. September 2013 10:53:02	Temperatur:	30°C
Name:	2013 - 2227	Spindel:	ST24-2HR-37/120
Probe:	Slurry / Modellbrennstoff 02.09.2013	KW:	
Bemerkung :	Messung mit Helixspindel, Faktor 88, 30°C	Benutzer:	Janke

	Drohzahl	Momont	Viekoeität	Tomporatur	Status						
MC33pKt.	Dienzani [4/mim]	fubleal		remperatur	olalus n						
	[1/min]	[μNm]	[mPa·s]	[°C]	L						
Datenreiher	n-Information	ien					- FOCFONT	20F.			
Name:			2013 - 2227	2		ROSWERT	- EKGEDNI,				
Prohe:			Slurry / Mod	ellbrennstoff 02	2 00 2013	Anzahl B	Eingangsda	atenpunkte :	: 1		
FIUDE.			Siurry / Wou		E-14 00 00%0	Anzahl F	Fraebnied	atennunkte ·	• 1		
ветнегкинд	•		wessung mi	t Helixspindel,	Faktor 88, 30 C	i inzani i	brgconroad		• ±		
Anzahl Abs	chnitte:		4								
Applikation:			RHEOPLUS	/32 V3.61 2100	05765-33024	Nr. r	n	eta			
Messgerät:			MCR102 SN	81023202: FW	/3.64; Slot(71)		[1/min]	[mPa ·c]			
Datum/Zeit			11.00.2013	10.32			[_ / III _ II]	[IIIFa S]	relative	Viekoeität!!	
Magagy stor			0704 2010,	7/100 00000	0. 4-0	1 5	50	174	Telative	Visitositata	
wesssyster	n:		5124-2HR-3	7/120-SN2924	iu; a=u mm						
Zusatzgerät	te:		TU1=C-PTD	200-SN810217	734						
Abschnitt:			1			AUSWERTE	E-ERGEBNIS	SSE:			
Anzahl Mes	enunkto:		0			America I T	- 		. 1		
	opunkte.		0			Anzani	Eingangsu	atenpunkte :	: 1		
						Anzahl H	Ergebnisda	atenpunkte :	: 1		
Zeitvorgabe	:		600 Messpu	nkte, verwerfer	n		2	-			
			Messpunktd	auer 1 s							
Messprofil						Nr. r	n	M			
Dreheehl			m - 500 1/m	~			[1/min]	[11]Nm]			
Dienzani			TT - 500 1/11	11		1	[_ /]	[]			
Temperati	ır		1[-1] = 30 °C	,			50	98,87			
Abschnitt:			2								
Anzahl Mes	spunkte:		0								
	opunito.		0								
7 - 14			100 11		_				rohmomont	L	
Zeitvorgabe	:		180 Messpu	nkte, verwerter	n			D	renmoment	L	
			Messpunktd	auer 1 s							
Messprofil:											
Drehzahl			n = 0.1/min				1 000				
Tomporati			TI 11 = 20 °C				1.000 -	-			
remperati	11		i[-i] = 30 C	,							• I I I I I I I I I I I I I I I I I I I
Abschnitt:			3				[
Anzahl Mes	enunkto:		0								
	opunkte.		0								
							unm +	-			
Zeitvorgabe	:		5 Messpunk	te, verwerten							
			Messpunktd	auer 1 s			ŀ			· · · · · · · · · · · · · · · · · · ·	
Messprofil [.]											
Drobzobl			n = 1.1/min								
Dienzani							100				
Temperatu	ır		T[-1] = 30 °C	;			100 +	-		.	
							t	-			
Abschnitt:			4			I I M					
	enunkto:		40				Ļ				
	spunkte.		40								
Zeitvorgabe	:		40 Messpun	kte			F	-			
			Messpunktd	auer 35 1 s I	log						
Messprofil [.]					0		ŀ				
meooprom.			- 4 500	4 /							
Ducks											
Drehzahl			11 - 1 500	i/miniog							
Drehzahl Temperatu	ır		T[-1] = 30 °C	;			10		1		
Drehzahl Temperatu	ır		T[-1] = 30 °C	;			10 -				
Drehzahl Temperatu Messokt	ır Drehzahl	Moment	T[-1] = 30 °C	Temperatur	Status		10	*****	10		
Drehzahl Temperatu Messpkt.	ur Drehzahl	Moment	T[-1] = 30 °C Viskosität	Temperatur	Status		10 -	*****	10	100 1/mi	n 1 000
Drehzahl Temperatu Messpkt.	ır Drehzahl [1/min]	Moment [µNm]	T[-1] = 30 °C Viskosität [mPa·s]	Temperatur [°C]	Status I		10 - 1		10	100 1/mi r	1.000 ח
Drehzahl Temperatu Messpkt.	ır Drehzahl [1/min] 1	Moment [µNm] 10,6	T[-1] = 30 °C Viskosität [mPa·s] 934	Temperatur [°C] 30	Status [] Dy_accu		10 - 1	Duck	10	100 1/mi i	
Drehzahl Temperatu Messpkt. 1 2	ır Drehzahl [1/min] 1 1,17	Moment [µNm] 10,6 11,1	T[-1] = 30 °C Viskosität [mPa·s] 934 834	Temperatur [°C] 30 30	Status [] Dy_accu Dy_accu		10 - 1	Dreh	10 nzahl n	100 1/mi r	
Drehzahl Temperatu Messpkt. 1 2 3	ur Drehzahl [1/min] 1 1,17 1.38	Moment [µNm] 10,6 11,1 11.6	T[-1] = 30 °C Viskosität [mPa·s] 934 834 740	Temperatur [°C] 30 30 30	Status [] Dy_accu Dy_accu Dy_accu		10 - 1	Dreh	10 nzahl n	100 1/mi r	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4	ur Drehzahl [1/min] 1 1,17 1,38 1,61	Moment [μNm] 10,6 11,1 11,6 12,1	T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660	Temperatur [°C] 30 30 30 30 30	Status [] Dy_accu Dy_accu Dy_accu		10 1	Dreh	10 nzahl n	100 1/mi i	1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5	ur Drehzahl [1/min] 1,17 1,38 1,61 1,80	Moment [μNm] 10,6 11,1 11,6 12,1 12,8	T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594	Temperatur [°C] 30 30 30 30 30 30	Status Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 1	Dreh	10 nzahl n	100 1/mi r	ביים 1.000 ו
Drehzahl Temperatu Messpkt. 1 2 3 4 5	ur Drehzahl [1/min] 1 1,17 1,38 1,61 1,89	Moment [µNm] 10,6 11,1 11,6 12,1 12,8	T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594	Temperatur [°C] 30 30 30 30 30 30	Status Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 1	Dreh	10 nzahl n	100 1/min	11.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6	Ur Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22	Moment [μNm] 10,6 11,1 11,6 12,1 12,8 13,5	T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537	Temperatur [°C] 30 30 30 30 30 30 30 30	Status I Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 - 1 2013 - 22	Dreh	10 nzahl n g mit Helixspi	100 1/min	1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 7	Urehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6	Moment [μNm] 10,6 11,1 11,6 12,1 12,8 13,5 14,4	T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 - 1 2013 - 22	Dreh	10 nzahl n g mit Helixspi	100 1/mir	1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 8	Urehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05	Moment [μNm] 10,6 11,1 11,6 12,1 12,8 13,5 14,4 15,5	T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 - 1 2013 - 22	Dreh	10 nzahl n g mit Helixspi	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 7 7 8 9	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58	Moment [µNm] 10,6 11,1 11,6 12,1 12,8 13,5 14,4 15,5 16,6	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 1 1 2013 - 22	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 7 8 9 10	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4 2	Moment [µNm] 10,6 11,1 11,6 12,1 12,8 13,5 14,4 15,5 16,6 18	T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 277	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 - 1 2013 - 22	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 7 8 9 10	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 594 594 594 594 594 594 594 594 594	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 1 1 2013 - 22	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92	Moment [μNm] 10,6 11,1 11,6 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 1 1 2013 - 22	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 6 6 7 7 8 9 10 11 12	Drehzahl [1/min] 1 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77	Moment [µNm] 10,6 11,1 11,6 12,1 13,5 14,4 15,5 16,6 18 19,5 21,3	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 1 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77	Moment [µNm] 10,6 11,1 11,6 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I Dy_accu		10 1 1 2013 - 22 1.000 -	Dreh 27 2; Messun	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7 94	Moment [µNm] 10,6 11,1 12,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 - 1 2013 - 22 1.000 -	Dreh 27 2; Messun	10 nzahl n g mit Helixspi Viskosität	100 1/min	1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14	Urehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,21	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 24,3 23,3 25,7 23,4	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 269	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 - 1 2013 - 22 1.000 -	Dreh 27 2; Messun	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31	Moment [µNm] 10,6 11,1 11,6 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 24,4	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 325 304 285 268	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		10 1 2013 - 22 1.000 -	Dreh 27 2; Messun	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16	Drehzahl [1/min] 1 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu		10 - 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8	Moment [µNm] 10,6 11,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I Dy_accu		10 1 2013 - 22 1.000 -	Dreh 27 2; Messun	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 6,77 7,94 9,31 10,9 12,8 15	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 23,7 28,4 31,4 34,9 39	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 225 268 254 240 228	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu		10 - 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 10	Drehzahl [1/min] 1 1,17 1,88 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 221,3 23,3 25,7 28,4 31,4 34,9 39 43,6	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 225 204 228 219	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I Dy_accu		10 - 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 9	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6	Moment [µNm] 10,6 11,1 11,6 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 325 304 285 268 254 240 228 218 200	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu		10 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/mir	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Drehzahl [1/min] 1 1,17 1,88 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 209	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status) Dy_accu		10 - 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2	Moment [µNm] 10,6 11,1 12,2 13,5 14,4 15,5 16,6 18 19,5 21,3 25,7 28,4 31,4 31,4 31,4 34,9 39 43,6 49 55,2	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 209 201	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I Dy_accu		10 - 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 4,2 4,92 5,77 6,77 6,77 6,77 6,77 6,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 23,3 23,3 23,3 23,3 23,4 31,4 34,9 39 43,6 49 55,2 62,4	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 537 488 446 409 377 350 325 304 285 268 254 240 228 218 209 201 193	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu		10 - 1 2013 - 22 1.000 - mPa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Drehzahl [1/min] 1 1,17 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 221,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 43	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 225 304 285 268 218 209 201 193 187	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	r	10 - 1 2013 - 22 1.000 - m Pa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3	Moment [µNm] 10,6 11,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 65,2 65,2 62,4 71 80,7	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 255 304 285 268 254 240 228 218 209 201 193 187	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I Dy_accu		10 1 2013 - 22 1.000 - m Pa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/mir	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 5	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 254 240 228 218 209 201 193 187 182	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status) Dy_accu	; η	10 - 1 2013 - 22 1.000 - m Pa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 2,5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 254 240 228 218 209 201 193 187 182 177	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status J Dy_accu	r η	10 1 2013 - 22 1.000 - mPa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 23,3 23,3 23,3 23,3 23,4 31,4 34,9 55,7 28,4 31,4 34,9 55,2 62,4 71 80,7 91,9 105	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 537 488 446 409 377 350 325 268 254 240 228 218 209 201 193 187 182 177 172	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status) Dy_accu	r n	10 1 2013 - 22 1.000 - m Pa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 22 23 24 25 26 27	Drehzahl [1/min] 1 1,17 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 209 201 193 187 182 177 172 2168	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	, , , η	10 - 1 2013 - 22 1.000 - m Pa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,0	Moment [µNm] 10,6 11,1 12,2 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 31,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 255 304 285 268 254 240 228 218 209 201 193 187 182 1177 172 168	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status) Dy_accu	r η	10 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,05 120 138	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 225 254 240 225 254 240 225 254 240 225 254 240 225 218 209 201 193 187 182 177 172 168 164	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status) Dy_accu	 η	10 - 1 2013 - 22 1.000 - m Pa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 2,5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 221,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 254 240 228 218 254 240 228 218 254 240 228 218 254 240 228 218 254 240 228 219 314 217 1172 1182 1177 1172 1182 1177 1182	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I Dy_accu	, , η	10 1 2013 - 22 1.000 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 22 23 24 25 26 27 28 29 30	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 19,9 105 120 138 158 182	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 537 488 446 409 377 350 325 268 254 240 228 218 209 201 193 187 182 177 172 168 164 160 157	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	, , , η	10 1 2013 - 22 1.000 - nPa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	 n 1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 22 23 24 25 26 27 28 29 30 31	Drehzahl [1/min] 1 1,17 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 221,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158 182 209	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 209 201 193 187 182 177 172 168 164 160 155	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	, , η	10 1 2013 - 22 1.000 - mPa·s	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 12 21 22 23 24 25 26 27 28 29 30 31 32	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,9 145,8 53,7 63 73,9 86,6 102 119	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 22,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158 120 128 158 120 9241	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 209 201 193 187 182 177 172 168 164 160 157 155	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I Dy_accu	r η	10 - 1 2013 - 22 1.000 - m Pa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23 34	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158 158 158 158 152 209 241	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 254 240 228 218 209 201 193 187 182 177 172 168 164 160 157 155 155 155	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	; η	10 - 1 2013 - 22 1.000 - m Pa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 140	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158 182 209 241 279	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 325 304 285 268 218 209 201 193 187 172 182 177 172 168 164 160 155 152 150	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	, , η	10 - 1 2013 - 22 1.000 - mPa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 25 26 27 28 29 30 31 32 33 33 34	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 23,3 23,3 23,3 23,4 31,4 34,9 55,2 62,4 71 80,7 91,9 105 120 138 182 209 241 182 279 326	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 209 201 193 187 182 2177 172 168 164 160 157 155 155 155 155 150 149	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	r η	10 - 1 2013 - 22 1.000 - m Pa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min Indel, Faktor 88, 3	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23 33 33 33 34 35	Drehzahl [1/min] 1 1,17 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 49 55,2 62,4 71 80,7 91,9 105 120 138 158 182 209 241 279 326 379	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 209 201 193 187 182 177 172 268 254 240 254 240 255 304 255 318 717 172 168 164 160 155 155 155 155 155 155 152	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	, , η	10 - 1 2013 - 22 1.000 - m Pa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min Indel, Faktor 88, 3	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 12 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 2,27 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 9,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158 182 209 241 279 326 379 343	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 201 193 187 172 182 1177 172 168 164 160 157 155 152 150 149 148 147	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status I) Dy_accu	r η	10 - 1 2013 - 22 1.000 - mPa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität	100 1/min	n 1.000 0°C
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23 33 33 34 35 36 37	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 0	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158 158 158 158 152 209 241 279 326 379 443	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 288 268 254 240 228 254 240 228 218 209 201 193 187 182 177 172 168 164 160 157 155 152 150 149 148 147 148	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status) Dy_accu	 η	10 - 1 2013 - 22 1.000 - m Pa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität Viskosität	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 29	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310	Moment [µNm] 10,6 11,1 12,2 12,8 13,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158 182 209 241 279 326 379 443 522	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 218 209 201 193 187 172 182 274 240 228 218 209 201 193 187 172 168 164 160 155 155 155 155 155 155 155 155 155 15	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	, , η	10 - 1 2013 - 22 1.000 - mPa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität 10 nzahl n	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 9 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 17 18 19 10 11 12 13 14 15 16 17 17 18 19 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 37 38 36 37 38 36 37 38 36 37 38 36 37 38 36 37 38 36 37 37 38 36 37 37 38 36 37 37 38 37 38 38 37 38 38 37 38 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 145 15 17,6 20,6 24,2 28,4 33,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310 364	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 14,4 15,5 16,6 18 19,5 21,3 23,3 23,3 23,3 23,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 182 209 241 182 209 241 279 326 379 443 5522 613	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 218 201 193 187 182 201 193 187 182 1177 172 168 160 157 155 155 155 155 155 155 155 155 155	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status) Dy_accu	r η	10 1 2013 - 22 1.000 - m Pa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität Viskosität 10 nzahl n	100 1/min	n 1.000
Drehzahl Temperatu Messpkt. 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 33 33 34 35 36 37 38 39	Drehzahl [1/min] 1 1,17 1,38 1,61 1,89 2,22 2,6 3,05 3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 163 102 119 140 163 225 264 310	Moment [µNm] 10,6 11,1 12,1 12,8 13,5 16,6 18 19,5 21,3 23,3 25,7 28,4 31,4 34,9 39 43,6 49 55,2 62,4 71 80,7 91,9 105 120 138 158 182 209 241 279 326 379 443 522 613 722	T[-1] = 30 °C T[-1] = 30 °C Viskosität [mPa·s] 934 834 740 660 594 537 488 446 409 377 350 325 304 285 268 254 240 228 254 240 228 218 209 201 193 3187 182 177 172 168 164 160 155 155 155 155 155 155 155 155 155 15	Temperatur [°C] 30 30 30 30 30 30 30 30 30 30 30 30 30	Status] Dy_accu	, , η ,	10 - 1 2013 - 22 1.000 - mPa·s 100 -	Dreh	10 nzahl n g mit Helixspi Viskosität 10 nzahl n g mit Helivspi	100 1/min	n 1.000

Unterschrift:

bioliq

Anwenderdaten:			
Druckzeit:	Mittwoch, 11. September 2013 11:23:21	Temperatur:	40°C
Name:	2013 - 2227	Spindel:	ST24-2HR-37/120
Probe:	Slurry / Modellbrennstoff 02.09.2013	KW:	
Bemerkung :	Messung mit Helixspindel, Faktor 88, 40°C	Benutzer:	Janke

wesspri.	Drohzohl	Momont	Viekoeität	Tomporatur	Statua					
1	[1/min]	[uNm]	[mDa.c]	remperatur	n					
Datenroiho	n-Information	en	[111-9.2]	[]	U					
Name:	monnation		2013 - 2227	3		AUSWER	TE-ERGEBNI	SSE:		
Probe:			Slurry / Mod	ellbrennstoff 0	2 09 2013	Anzahl	Eingangsd	atenpunkte	: 1	
Remerkung	1.		Messuna mi	t Helixenindel	Eaktor 88 40°C	Anzahl	Ergebnisd	atenpunkte	: 1	
Anzahl Abo	,. schnitte:		4				J			
Applikation	:		RHEOPULIS	32 V3 61 210	05765-33024	Nr	n	0t >		
Messaeröt			MCR102 SN	181023202 EIA	V3 64: Slot(7 -1)	TAT.	11 [1 / !]	eud		
Datum/Zeit			11 00 2013	11.03	v3.04, 3l0l(7,-1)		[l/min]	[mPa·s]		relative Viskosität!!
	m:		ST24-2HR-3	11.05 37/120-SN/2024	10: d=0 mm	1	50	126,8		Telative viscositat::
7usatzaerä	11. ito:		TU1=C-PTD	1200_SNI810217	734					
zusatzgera	ite:		TUT=C-PTD	200-510610217	/ 34					
Abschnitt [.]			1			AUGWER	TT-FRGERNT	९९४.		
	sepunkto:		0			Propulation in the second seco			. 1	
	sspurikte.		0			Anzani	Eingangsd	atenpunkte	: 1	
Zeitvorgab	o.		600 Messeu	unkto vonworfor	n	Anzahl	Ergebnisd	atenpunkte	: 1	
Zeitvorgabe	.		Mosspunktd	nkle, verwener	11					
Mocenrofil			wesspurktu	auerrs		Nr.	n	М		
Drobzobl			p = 500.1/mi	in			[1/min]	[11Nm]		
Tomporati			T = 500 T/m	.n >		1	[1 / III 1 I] 5 0	72 04		
remperat	ur		1[-1] = 40 C	,		LT.	50	/2,04		
A In			0							
Abschnitt:			2							
Anzahl Mes	sspunkte:		0							
										1
Zeitvorgabe	e:		180 Messpu	nkte, verwerfer	n				Drenmor	nent
			Messpunktd	auer 1 s						
Messprofil:			-							
Urehzahl			n = 0 1/min	_			1.000 ¬			
Iemperat	ur		I[-1] = 40 °C	;						
Abschnitt:			3							▲
Anzahl Mes	sspunkte:		0							
							uNm			*
Zeitvorgabe	e:		5 Messpunk	te, verwerfen		▲	L			
			Messpunktd	auer 1 s						*
Messprofil:										
Drehzahl			n = 1 1/min				100			
Temperat	ur		T[-1] = 40 °C	2			100-	_		
							100			
Abschnitt:			4			- M				
Anzahl Mes	sspunkte:		40							
Zeitvorgabe	e.		40 Messoun	kte						
Leitvorgubt			Messnunktd	auer 35 1 s l	log					
Messnrofil			messipunita		log					
Drohzahl			n = 1 500	1/min log					•	
Tomporat	ur		T[1] = 40 °C	1/IIIII log						
remperati	ui		1[-1] - 40 0	,			10-			
Mossokt	Drohzahl	Momont	Viekoeität	Tomporatur	Status					
MCSSpRt.	[1/min]	[uNm]	[mPa·e]	remperator	П		1		10	100 1/min 1.000
1	1	0.7	954	10						
2	1 17	0.08	749	40	Dy accu			Dro	hzahl r	
2	1,17	10.2	650	40	Dy_accu					
3	1,30	10,5	604	40	Dy_accu					
4 E	1,01	10,7	504	40	Dy_accu					
0	1,09	11,2	319	40	Dy_accu		2013 - 22	27 3. Massi	ing mit He	ivenindel Eaktor 88 40°C
0	2,22	10.4	404	40	Dy_accu		2013-22	27 5, 106550	ing mit ne	
/ Q	∠,0 3.0⊑	1∠,4 13.4	410	40	Dy_accu					
o	3,05	13,1	319	40	Dy_accu					191
h	2 50		244	40	Duceseu				Viskosi	TAT
9	3,58	14	344	40	Dy_accu				Viskosi	tat
9 10	3,58 4,2	14 15	344 314	40 40	Dy_accu Dy_accu				Viskosi	tat
9 10 11	3,58 4,2 4,92	14 15 16,1	344 314 288	40 40 40	Dy_accu Dy_accu Dy_accu		1 000		Viskosi	tat
9 10 11 12	3,58 4,2 4,92 5,77	14 15 16,1 17,4	344 314 288 266	40 40 40 40	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000	[Viskosi	
9 10 11 12 13	3,58 4,2 4,92 5,77 6,77	14 15 16,1 17,4 18,9	344 314 288 266 246	40 40 40 40 40	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000	•	Viskosi	
9 10 11 12 13 14	3,58 4,2 4,92 5,77 6,77 7,94	14 15 16,1 17,4 18,9 20,6	344 314 288 266 246 228	40 40 40 40 40 40	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000		Viskosi	
9 10 11 12 13 14 15	3,58 4,2 4,92 5,77 6,77 7,94 9,31	14 15 16,1 17,4 18,9 20,6 22,5	344 314 288 266 246 228 213	40 40 40 40 40 40 40	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000		Viskosi	
9 10 11 12 13 14 15 16	3,58 4,2 5,77 6,77 7,94 9,31 10,9	14 15 16,1 17,4 18,9 20,6 22,5 24,7	344 314 288 266 246 228 213 199	40 40 40 40 40 40 40 40	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000		Viskosi	
9 10 11 12 13 14 15 16 17	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2	344 314 288 266 246 228 213 199 187	40 40 40 40 40 40 40 40 40	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000		Viskosi	
9 10 11 12 13 14 15 16 17 18	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1	344 314 288 266 246 228 213 199 187 176	40 40 40 40 40 40 40 40 40 40	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000		Viskosi	
9 10 11 12 13 14 15 16 17 18 19	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4	344 314 288 266 246 213 199 187 176 167	40 40 40 40 40 40 40 40 40 40 40 40	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2	344 314 288 266 246 228 213 199 187 176 167 158	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5	344 314 288 266 246 228 213 199 187 176 167 158 151	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu	•	1.000 ·		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7	344 314 288 246 228 213 199 187 176 167 156 151 151	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu	•	1.000 · mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7 52,5	344 314 288 266 228 213 199 187 176 167 158 151 145 139	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu		1.000 · mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22 22	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7 52,5 59,4	344 314 288 266 246 228 213 199 187 176 167 158 151 158 151 145 139 134	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu	ή	1.000 mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 22	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8	14 15 16,1 17,4 18,9 20,6 22,5 22,5 27,2 30,1 33,4 37,2 41,5 46,7 52,5 59,4 67,3	344 314 288 266 246 228 213 199 187 176 167 158 151 151 145 139 134 129	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu Dy_accu	♦ η	1.000 · mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 25 26	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7 52,5 59,4 46,7 52,5 59,4 67,3 76,3	344 314 288 246 228 213 199 187 176 167 158 151 151 145 139 134 129 125	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	♦ η	1.000 · mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 25 26 27	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 52,5 59,4 67,3 76,3 87,2	344 314 288 266 246 228 213 199 187 176 167 158 151 158 151 145 139 134 129 125	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	Α η	1.000 · mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 33,4 33,4 33,4 33,2 41,5 46,7 52,5 59,4 67,3 76,3 87,2 99,1	344 314 288 266 246 228 213 199 187 176 167 158 151 145 139 134 129 125 122 118	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	ή η	1.000 · mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7 52,5 59,4 46,7 52,5 59,4 67,3 76,3 87,2 99,1 114	344 314 288 246 228 213 199 187 176 167 158 151 151 145 139 134 129 125 122 118	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	↑ η	1.000 · mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 22 22 22 22 22 22 22 22 22 23 0	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 7,2 7,2 30,1 33,4 37,2 41,5 52,5 59,4 67,3 76,3 87,2 99,1 114	344 314 288 266 246 228 213 199 187 176 167 158 151 145 139 134 129 125 122 118 113	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	♦ η	1.000 · mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22 22 22 22 22 22 22 22 22 22	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 52,5 59,4 67,3 76,3 87,2 99,1 114 131 550	344 314 288 266 246 228 213 199 187 176 167 158 151 145 139 125 122 118 115 118 115 113	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	ή η	1.000 mPa·s		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 22 22 22 23 30 31 32	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7 52,5 59,4 46,7 76,3 87,2 99,1 114 131 150	344 314 288 266 246 228 213 199 187 176 167 158 151 145 139 134 129 125 129 125 122 118 115 115	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	↑ η	1.000 · mPa·s 100 ·		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 59,4 67,3 76,3 87,2 99,1 114 131 150 174 40,6 20,6 22,5 24,7 27,2 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,6 27,2 20,1 27,2 20,1 27,2 27,2 20,1 27,2 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 27,2 20,1 20,2 20,5 20,1 20,5 20,1 20,2 20,5 20,1 20,1 20,2 20,5 20,1 20,2 20,5 20,1 20,2 20,1 20,2 20,1 20,2 20,1 20,1 20,2 20,1 20,2 20,1 20,2 20	344 314 288 246 228 213 199 187 176 167 155 151 145 139 134 129 125 125 125 122 118 115 113 111 110	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	ή	1.000 - mPa·s 100 -		Viskosi	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 32	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 52,5 59,4 67,3 76,3 87,2 99,1 114 131 150 174 202	344 314 288 266 246 228 213 199 187 176 167 158 151 145 134 129 125 122 118 115 113 115 115 113 110 109	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	4	1.000 mPa·s 100	1	Viskosi 10	100 1/min 1.000
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 -	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7 52,5 59,4 67,3 76,3 87,2 99,1 114 131 150 174 202 233	344 314 288 266 246 228 213 199 187 176 167 158 151 145 151 145 134 129 125 122 118 115 113 111 110 109 107	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	ή η	1.000 mPa·s 100	1	Viskosi 10	100 1/min 1.000
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 29 30 31 32 33 33 34 35 50	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7 52,5 59,4 46,7 52,5 59,4 46,7 52,5 59,4 46,7 37,2 99,1 114 131 150 174 202 233 274 275 27,2 27,3 27,6,3 27,2 29,1 114 131 150 27,4 27,2 27,2 27,2 27,2 27,3 27,6,3 27,2 27,2 27,2 27,2 27,2 27,2 27,2 27,3 27,6,3 27,2 27,2 27,3 27,6 27,2 27,4 27,2 27,2 27,4 27,2 27,2 27,4 27,2 27,2 27,4 27,2 27,	344 314 288 246 228 213 199 187 176 167 158 151 145 139 134 129 125 122 118 115 115 115 115 115 115 115 110 9 107	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	ή η	1.000 mPa·s 100	1 1	Viskosi 10	100 1/min 1.000
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 27 28 29 30 31 32 33 34 35 36	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 52,5 59,4 67,3 76,3 87,2 99,1 114 131 150 174 203 233 274 322 274 322	344 314 288 266 246 228 213 199 187 176 167 158 151 158 151 145 139 125 122 118 112 122 118 115 113 111 110 109 107 107	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	ή	1.000 - mPa·s 100 -	1 Dre	Viskosi 10 2hzahl	100 1/min 1.000
9 10 11 11 13 14 15 16 17 18 19 20 21 22 22 22 22 22 22 22 22 22 22 22 22	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 52,5 59,4 67,3 76,3 87,2 99,1 114 131 150 174 202 233 274 322 377	344 314 288 266 246 228 213 199 187 176 167 158 151 145 158 151 145 139 125 122 118 115 113 115 113 111 110 109 107 107 107	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	η	1.000 - mPa·s 100 -	1 Dro	Viskosi 10 ehzahl	100 1/min 1.000
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310 364	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 46,7 52,5 59,4 46,7 52,5 59,4 46,7 52,5 59,4 46,7 52,5 59,4 46,7 52,5 24,7 24,6 7,6,3 87,2 99,1 114 131 150 174 202 233 277 48 202 237 243 274 203 275 24,7 27,2 27,5 27,2 27,2 27,5 27,2 27,5 27,5 29,5 27,3 77,6,3 87,2 20,1 131 154 20,2 20,5 27,2 27,3 27,6,3 27,2 233 27,4 20,2 233 27,4 20,2 233 27,4 20,2 23,7 24,5 24,5 24,5 24,5 24,7 27,3 27,6,3 27,2 23,2 27,4 20,2 23,7 24,5	344 314 288 266 246 228 213 199 187 176 167 158 151 145 139 134 129 125 122 118 115 113 115 115 115 115 115 110 109 107 107 107 107	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	↑ η	1.000 - mPa·s 100 -	1 Dre	Viskosi 10 ehzahl	100 1/min 1.000
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23 33 33 33 33 33 35 36 37 38 39 9	3,58 4,2 4,92 5,77 6,77 7,94 9,31 10,9 12,8 15 17,6 20,6 24,2 28,4 33,3 39,1 45,8 53,7 63 73,9 86,6 102 119 140 164 192 225 264 310 364 426	14 15 16,1 17,4 18,9 20,6 22,5 24,7 27,2 30,1 33,4 37,2 41,5 59,4 46,7 52,5 59,4 46,7 52,5 59,4 67,3 76,3 87,2 99,11 114 131 150 174 202 233 274 327 274 327 274 327 274 327 274 327 202 233 274 327 202 233 274 327 202 233 274 327 202 233 274 327 202 233 274 327 202 203 274 327 202 203 275 203 275 203 275 203 275 203 275 203 275 275 275 275 275 275 275 275 275 275	344 314 288 266 246 228 213 199 187 176 167 158 151 145 139 134 129 125 122 118 115 113 111 110 107 107 107 109 110	40 40 40 40 40 40 40 40 40 40 40 40 40 4	Dy_accu Dy_accu	4	1.000 • mPa·s 100 •	1 27 3: Mage	Viskosi 10 ehzahl	100 1/min1.000

Unterschrift:

A.9 Konstruktionszeichnungen

Im Folgenden sind die Konstruktionszeichnungen für den Sedimentationsturm, sowie für den selbst konstruierten Probenehmer zu finden. Die Zeichnungen sind wie folgt sortiert:

- 1. Bodens des Messturms
- 2. Rückwand des Messturm
- 3. Linke Wand des Messturms, diese Zeichnung ist ebenso gültig für die rechte Wand und ist deswegen nicht ein zweites Mal aufgeführt
- 4. Kompletter Messturm
- 5. Probenehmer mit eingebauter Verschlussmünze, ohne angebrachten Fäden zur Bewegung der Münze

Literaturverzeichnis

- Albers, Albert, Saak, Marcus und Burkardt, Norbert (2002): Gezielte Problemlösung bei der Produktentwicklung mit Hilfe der SPALTEN-Methode. In: 47. Internationales wissenschaftliches Kolloquium: Maschinenbau und Nanotechnik Hochtechnologie des 21. Jahrhunderts, S. 83f. Kretzschmar Verlag (Ilmenau).
- [2] Alex, Wulf (1970): Was gehört zu einer Pipette-Apparatur für die Teilchengrößenanalyse?.
 G-I-T Fachzeitschrit für das Laboratorium, Bd. 14, S. 637–646.
- [3] Anlauf, Harald (2010): *Mechanische Separationstechnik / Fest-Flüssig-Trennverfahren*. Vorlesung vom Institut für Mechanische Verfahrenstechnik und Mechanik am KIT.
- [4] Bickert, G. (1997): *Sedimentation feinster suspendierter Partikel im Zentrifugalfeld*. Dissertation, Universität Karlsruhe (TH).
- [5] Bitsch, Boris (2011): *Rheologische Charakterisierung eines Modell-Pyrolyseslurries auf Basis von Glykol und Strohkoks*. Diplomarbeit, Institut für Mechanische Verfahrenstechnik und Mechanik, Karlsruher Instut für Technologie.
- [6] Brauer, H. und Thiele, H. (1973): *Bewegung von Partikelschwärmen*. Chemie Ingenieur Technik, Bd. 45, S. 909–912.
- [7] Dahmen, Nicolaus, Dinjus, Eckhard und Henrich, Edmund (2007): Erneuerbare Energie-Synthesekraftstoffe aus Biomasse, S. 59–63. WILEY-VCH Verlag GmbH & Co. KGaQ.
- [8] Dankert, J. und Dankert, H. (2010): *Technische Mechanik:*. Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft GmbH. ISBN 9783834898401.
- [9] DIN, Deutsches Institut für Normung e.V. (1996): Partikelmesstechnik : Normen. Beuth.
- [10] Europäisches Parlament, Rat (2009): Förderung der Nutzung von Energie aus erneuerbaren Quellen.
- [11] Feist, Markus (2012): *Sedimentation von Faser-Partikel-Suspensionen*. Dissertation, Karlsruher Instutit für Technologie (KIT).
- [12] Hess, W.F. und Tretbar, L. (2006): *Labor Partikeltechnologie, Andreasen-Pipette*. Fachhochschule Flensburg, Institut für Verfahrenstechnik und Biotechnologie.
- [13] Kern, U. (1999): Methoden zur Erkundung, Untersuchung und Bewertung von Sedimentablagerungen und Schwebstoffen in Gewässern. DVWK Schriften. Wirtschaftsund Verlagsgesellschaft Gas und Wasser. ISBN 9783895541117.
- [14] Lange, Michael (1973): Über Untersuchungen zur Korngrößenanalyse mit Hilfe der manometrischen Messung bei der Sedimentation im Schwerkraft-und Zentrifugalfeld. Dissertation, Technische Universität Berlin.

- [15] Nicoleit, Thomas (2012): Charakterisierung der mechanischen Eigenschaften von hochviskosen Pyrolysekokssuspensionen. Diplomarbeit, Institut für Angewandte Materialien, Karlsruhe Institut für Technologie (KIT).
- [16] OPEC (2012): OPEC Annual Statistical Bulletin, Organisation of Petroleum Exporting Countries.
- [17] Panzer, Marius (2011): Zerkleinerung von Biomassekoks beim Karlsruher bioliq-Prozess. Diplomarbeit, KIT.
- [18] P.Garrido, R.Burgos, F.Concha und R.Bürger (2004): Settling velocities of particulate systems: 13. A simulator for batch and continuous sedimentation of flocculated suspensions. International Journal of Mineral Processing, Bd. 73, S. 131–144.
- [19] Salas, Gonzalo Eugenio Solinas (1956): Sedimentationsverhalten von Submikrometerpartikeln in wässrigen Suspensionen. Dissertation, TU Dresden.
- [20] Schubert, H. (2003): Handbuch der mechanischen Verfahrenstechnik; Partikeleigenschaften, Mikroprozesse, Makroprozesse, Zerteilen, Agglomerieren, Trennen, Mischen, Schüttgut. Nr. Bd. 2. Wiley-VCH. ISBN 9783527305773.
- [21] SensAction, AG (2013): D 96450 Coburg.
- [22] Sigloch, Herbert (2012): *Technische Fluidmechanik*. SpringerLink : Bücher. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-22845-2.
- [23] Sobisch, Titus und Lerche, Dietmar (2008): Charakterisierung interpartikulärer Kräfte für Fest/Flüssig-Trennverfahren mittels Analytischer Zentrifugation. Chemie Ingenieur Technik, Bd. 80, S. 393–397.
- [24] Stieß, Matthias (2008): Mechanische Verfahrenstechnik Partikeltechologie 1. Springer-Verlag.
- [25] VDI-Fachbereich, Produktentwicklung und Mechatronik (1993): Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. VDI-Gesellschaft Produkt- und Prozessgestaltung.
- [26] Zogg, Martin (1993): *Einführung in die mechanische Verfahrenstechnik*. B.G. Teubner Stuttgart.