

Untersuchung der Regulation von Sekundärmetabolitgenclustern in Alternaria alternata

Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.)

Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich

> genehmigte DISSERTATION von **Kristin Seither** aus Karlsruhe

Dekan: Prof. Dr. Peter Roesky Referent: Prof. Dr. Reinhard Fischer Korreferent: Prof. Dr. Rolf Geisen Tag der mündlichen Prüfung: 17.04.2015

Inhalt

1. Zusammenfassung	4
2. Einleitung	5
2 1 Die Gattung Alternaria	5
2.1.1 Die Einordnung von Alternaria in das Reich der Pilze	
2.1.2 Phänotypische Besonderheiten von A. alternata	6
2.1.3 Vorkommen von <i>Alternaria</i> in der Umwelt	9
2 2 Sekundärmetabolismus	10
2.2.1 Der Sekundärmetabolismus wird von äußeren Faktoren beeinflusst	
2.2.2 Sekundärmetabolismus in Alternaria	12
2.3 Pflanzen- und Humanpathogenität	
2.3.1 Pflanzenpathogenität	
2.3.2 Humanpathogenität	14
2.4 Die Polyketidbiosynthese findet mittels Polyketidsynthasen statt	
2.4.1 Polyketide	15
2.4.2 Polyketidsynthasen	17
2.5 Gencluster	19
2.5.1 <i>pksJ</i> -Cluster	21
2.5.2 <i>pksB</i> -Cluster	21
2.6 Aspergillus nidulans als Modellorganismus	22
2.7 Lichtwahrnehmung in Pilzen	24
2.7.1 Diverse Photorezeptoren ermöglichen Pilzen die Lichtwahrnehmung	25
2.7.2 Lichtwahrnehmung in <i>A. alternata</i>	28
3. Material und Methoden	32
3.1 Chemikalien	32
3.2 Verwendete Stämme von A. alternata, A. nidulans und E. coli	32
3.3 Kultivierung der Organismen	37
3.4 Molekularbiologische Methoden	
3.5. Methoden zum Nachweis von Mykotoxinen	56
3.6 Biochemische Methoden	57
3.7. Mikroskopische Methoden	61
4. Ergebnisse	63
4.1 Die Expression von <i>pksA</i> bis <i>pksJ</i>	63

4.2 Charakterisierung der PksB und des umliegenden Clusters. 6 4.2.1 CmrA reguliert das Melanincluster. 6 4.2.2 pksB-Cluster. 7 4.2.3 Identifizierung des Transkriptionsfaktors des pksB-Clusters 7 4.2.4 Identifizierung weiterer zum pksB-Cluster gehörender Gene 7 4.2.5 Herunterregulierung von pksB und Überexprimierung des Transkriptionsfaktors. 7	66 71 74 76 79
4.3 Die globalen Regulatoren VeA und LaeA beeinflussen das <i>pksB</i> -Cluster	86 86 91
4.4 Die Charakterisierung des <i>pksD</i> -Clusters 9 4.4.1 <i>pksD</i> Cluster 9 4.4.2 Die Identifizierung des Transkriptionsfaktors des <i>pksD</i> -Clusters 9 4.4.3 Bestätigung der weiteren Gene im <i>pksD</i> -Cluster 9 4.4.4 Überexpression der <i>pksD</i> 10 4.4.5 Heterologe Expression von <i>pksD</i> in <i>A. nidulans</i> 10	94 97 98 00 04
 4.5 Epigenetische Regulation durch Modifikation globaler Regulatoren10 4.5.1 Licht beeinflusst die Sekundärmetabolitproduktion	06 07 12
5. Diskussion12	27
5.1 Die Expression der Polyketidsynthasen ist lichtabhängig12	27
5.2 Charakterisierung des pksB-Clusters und des dazugehörigen Metabolits12	29
5.3 Charakterisierung des <i>pksD</i> -Clusters und des dazugehörigen Metabolits13	33
5.4 VeA und LaeA als globale Regulatoren	35 36 37
5.5 Strategien um neue Sekundärmetabolite zu entdecken13	39
5.6 Grünlichtwahrnehmung in <i>A. alternata</i> 14	41
5.7 Ähnlichkeit von <i>A. nidulans</i> LreA und <i>A. alternata</i> LreA14	43
5.8 Ähnlichkeit von <i>A. nidulans</i> FphA und <i>A. alternata</i> FphA14	45
5.9 Chromatin Remodeling spielt eine Rolle in der Sekundärmetabolitgenexpression in <i>A. alternata</i> 14	n 46

1. Zusammenfassung

Alternaria alternata ist ein filamentöser Schimmelpilz, welcher auf Grund seiner Melanineinlagerungen in der Zelle zu den Schwärzepilzen gezählt wird. Der Pilz ist ubiquitär verbreitet; er lebt saprophytisch oder pflanzenparasitisch. *A. alternata* ist in der Lage, mehr als 60 verschiedene Sekundärmetabolite zu bilden, worunter neben Pigmenten wie Melanin auch mehr als 30 bereits bekannte Mykotoxine fallen. Als prominenteste Vertreter sind hier Alternariol, Alternariolmonomethylether, Altenuen und die Altertoxine zu nennen. Polyketidsynthasen sind die zentralen Enzyme zur Bildung der Sekundärmetabolite. Sie besitzen ein minimales Set an konservierten Domänen und oftmals weitere zusätzliche Domänen, um die Endprodukte zu synthetisieren. Weitere für die Bildung des Metaboliten nötige Gene sind zusammen mit der Polyketidsynthase in einem sogenannten Gencluster lokalisiert.

In dieser Arbeit wurde das Gencluster um die Polyketidsynthase PksB genauer untersucht. Es wurde ein Reporterassay durchgeführt, um den Regulator des Clusters zu identifizieren und um die anderen zum Cluster gehörenden Gene zu bestimmen. Außerdem wurde durch Gene-silencing von *pksB* und Überexpression des Transkriptionsfaktors ein Metabolit gefunden, welcher durch *pksB* reguliert scheint. Die Analyse des Metabolits dauert noch an. Es konnte zudem gezeigt werden, dass die globalen Regulatoren VeA und LaeA eine wichtige Rolle in der Regulation der Sekundärmetabolitgene in *A. alternata* spielt. In der Disruption von VeA sowie einer Herunterregulierung von LaeA konnte eine niedrigere Expression der Polyketidsynthasen im Vergleich zum Wildtyp gemessen werden. Auch das Sekundärmetabolitspektrum zeigt gravierende Unterschiede zu dem des Wildtyps. Zusätzlich zum *pksB*-Cluster wurde auch das *pksD*-Cluster näher beleuchtet. Auch hier konnte der Transkriptionsfaktor des Clusters identifiziert werden. Des Weiteren konnten hier ebenfalls Gene bestimmt werden, welche zum Cluster gehören. Die Überexpression von *pksD* führt zu melanindefizienten Mutanten.

In einem weiteren Versuchsansatz konnten erste Hinweise erbracht werden, dass FphA, ein Rotlichtrezeptor, und LreA, ein Blaulichtrezeptor, als Regulatoren auf epigenetischer Ebene wirken, die die Chromatinstruktur und somit auch die Sekundärmetabolitexpression verändern. Auch die Rolle von Licht als äußeren Faktor und seine Wirkung auf die Sekundärmetabolite wurde in diesem Zusammenhang näher beleuchtet. Ist eine Polyketidsynthase lichtreguliert, trifft dies auch auf das ganze umliegende Cluster zu.

2. Einleitung

2.1 Die Gattung Alternaria

2.1.1 Die Einordnung von Alternaria in das Reich der Pilze

Die weltweit verbreitete Gattung Alternaria gehört den Schimmelpilzen an. Als Schimmelpilze bezeichnet man eine systematisch heterogene Gruppe filamentöser Pilze, die man in drei Abteilungen gliedern kann: Basidiomyceten, Ascomyceten und Zygomyceten (Roth u. a., 1990). Eine weitere Unterteilung ist die Gruppe der Deuteromyceten, oder auch Fungi imperfecti (lateinisch fungus: Pilz, imperfectus: unvollkommen, unvollständig) genannt; diese Gruppe zeichnet aus, dass sie sich ausschließlich asexuell vermehrt, ein sexueller Zyklus ist bei allen Vertretern nicht bekannt (Petrini, 2002). Früher wurde die Gattung Alternaria auf Grund des fehlenden sexuellen Zyklus bei den Fungi imperfecti eingeordnet. Die Gattung Alternaria geht auf Christian Gottfried Nees von Esenbeck zurück, der diese im Jahr 1817 einführte. Ältere Quellen unterscheiden 44 Arten innerhalb der Gattung Alternaria (Rotem, 1994). Auf Grund der vielen Pathotypen ist eine Klassifizierung jedoch kompliziert. Die hohe morphologische Variabilität dieser Art macht eine eindeutige Gliederung schwierig. Daher variiert die Zahl der Alternaria-Arten erheblich, je nachdem ob ein Pathotyp als eigene Spezies bezeichnet oder bei einer bereits beschriebenen Art eingegliedert wird. Aktuellere Schätzungen gehen von bis zu mehreren hundert Arten innerhalb der Gattung Alternaria aus. Obwohl bisher bei keinem Vertreter ein sexueller Zyklus beobachtet wurde, wird Alternaria nach NCBI (National Center for Biotechnology Information) zur Abteilung der Ascomyceten, Subphylum Pezizomycotina, Klasse Dothideomyceten, Ordnung Pleosporales, Familie Pleosporaceae zugeordnet. Des Weiteren weist man sie der Gruppe der sogenannten "Schwärzepilze" zu, da sie in ihren Hyphen und vor allem in den Sporen den Pigmentfarbstoff Melanin einlagern, welcher eine dunkelbraune bis schwärzliche Färbung der Pilze hervorruft (Carzaniga et al., 2002).

2.1.2 Phänotypische Besonderheiten von A. alternata

Die Abbildung 1 zeigt die phänotypischen Besonderheiten von *A. alternata* auf makroskopischer und mikroskopischer Ebene. Durch die Einlagerung von Melanin in die Hyphen, aber vor allem in die Sporen, erscheint der Pilz nach einigen Tagen Inkubation dunkelbraun bis schwarz (siehe Abb. 1 (A)). Jüngere Kolonien erscheinen eher bräunlich-grün. Auch auf mikroskopischer Ebene gibt es einige Besonderheiten, die charakteristisch für die Gattung *Alternaria* sind (siehe Abb. 1).

(A)

(B)

Abbildung 1: Phänotyp von *A. alternata.* (A) *A. alternata* Wildtyp auf Platte. Die Kolonie wurde auf mCDB-Medium gepickt und für 4 Tage bei 28°C inkubiert. (B) Mikroskopische Besonderheiten von *A. alternata.* I: Spore. Die Sporen sind stark melanisiert und besitzen mehrere Kompartimente. Durch mitotische Teilungen wird die Spore mehrkernig. II: Auskeimende Spore. Die Sporen können an mehreren Stellen gleichzeitig auskeimen. III: Weiter ausgekeimte Spore. Direkt nach der Auskeimung können die Hyphen sich verzweigen. IV: Älteres Stadium einer ausgekeimten Spore. V: Hyphen. Die Hyphen können dick und stark septiert sein oder eher schlank und gerade in der Nähe der Spitze. VI: Ältere Hyphen sind oft stark verzweigt. VII: Septe: Die Septen sind deutlich zu erkennen.

Im Laufe der Entwicklung bilden sie pigmentierte Konidiosporen zur Fortpflanzung und Uberdauerung aus. Diese sind zunächst einkernig, machen jedoch mehrere mitotische Teilungen durch, wodurch die Sporen mehrkernig werden, was eher untypisch für Pilzsporen ist. Die reifen Sporen sind mehrfach longitudinal und transversal, manchmal auch schräg, septiert, was ihnen ein sehr charakteristisches Aussehen verleiht (siehe Abb. 1 (B) I) (Kück et al., 2009). Sie sitzen einer dickwandigen, kurzen und unverzweigten, aus einer Hyphe differenzierten, Konidiophore auf, welche aus einer porenförmigen Öffnung der Zellwand entwächst. Nach einer gewissen Zeit keimen die Sporen aus (siehe Abb. 1 (B) II + III). Dies kann an einer Stelle der Spore passieren oder auch an mehreren Stellen gleichzeitig oder nacheinander. Die Wachstumsgeschwindigkeit der Keimschläuche kann dabei bis zu 20 µm pro Stunde betragen (Sand, 2011), ist allerdings in der Regel langsamer. Es bildet sich ein dichtes Hyphengeflecht; die Hyphen bilden nach etwa eineinhalb Tagen neue Konidiophore aus. In älteren Hyphen ist oftmals eine ausgeprägte Septierung zu beobachten (siehe Abb. 1 (B) IV), die Septen sind deutlich zu erkennen (siehe Abb. 1 (B) VII). Die Abbildung 1(B) V zeigt links eine etwas ältere Hyphe, welche eine deutliche Septierung aufweist, im Vergleich zu einer Hyphenspitze, bei der man keine Einschnürung erkennen kann. Das oftmals stark verzweigte Wachstum kann man in Abbildung 1 (B) VI erkennen.

Die bereits erwähnten Melanineinlagerungen sind vor allem in den Sporen gut zu erkennen. Es wird vermutet, dass diese vor allem dem Schutz vor UV-Strahlung dienen (Roth, 1990). Tatsächlich ist es *A. alternata* möglich, UV-Bestrahlung besser zu bewältigen als manch anderen Pilzarten (siehe Abb. 2).

Abbildung 2: Überlebensrate von *A. alternata* nach UV-Bestrahlung. Die Überlebensrate nimmt mit Stärke der UV-Bestrahlung kontinuierlich ab, dennoch überstehen über 60% der Sporen eine UV-Bestrahlung von 100 mJ.

Das Diagramm in Abbildung 2 zeigt, dass die Überlebensrate von *Alternaria*-Sporen sogar bei einer UV-Bestrahlung von 100 mJ noch bei über 60% liegt. Die Überlebensrate nimmt mit Höhe der Bestrahlung kontinuierlich, aber nur sehr langsam, ab. Um diesen Wert besser vergleichen zu können, wurden Werte aus *A. nidulans* herangezogen. Um eine 20%ige Überlebensrate zu erreichen, wird *A. nidulans* nur mit Intensitäten von 5 mJ – 25 mJ bestrahlt. Dies zeigt den schützenden Effekt des Melanins in den Sporen von *A. alternata*; das Melanin bringt dem Pilz einen Selektionsvorteil gegenüber anderen Organismen ein.

Was morphologisch ebenfalls auffällig ist, ist die Verteilung der Kerne in den A. alternata Hyphen (siehe Abb. 3).

Abbildung 3: Kernverteilung in *A. alternata.* I: Spore mit etwa 30 µm langem Keimschlauch. Hier sind 2 Kerne zu erkennen. Die Spore selbst ist zu dick, um einzelne Kerne erkennen zu können. II: Junge Hyphe. Die Kerne sind in regelmäßigen Abständen verteilt. III: Älteres Myzel mit vielen Verzweigungen. Hier scheinen die Kerne ungeordnet und geballt auf einem kleinen Abschnitt vorzukommen.

Diese sind in jungen Hyphen gleichmäßig verteilt und scheinen in regelmäßigen Abständen vorzukommen (siehe Abb. 3 I, II). In älteren Hyphen jedoch, welche oft stärker verzweigt sind, kommen viele Kerne akkumuliert vor. Auch scheinen sie dann nicht mehr richtig verteilt zu sein, sondern sammeln sich an einem Ort ohne erkennbare Ordnung (siehe Abb. 3 III).

2.1.3 Vorkommen von Alternaria in der Umwelt

Die Verbreitung der *Alternaria*-Arten ist ubiquitär; sie haben es geschafft, ein sehr breites Spektrum an Substraten zu besiedeln. Als Saprophyt nutzen sie organisches Substrat. Es wurden beispielsweise Arten auf Mehl, Brot, Eiern, Leder, Käse, Zellulose, Textilien z.B. Leinenstoffe, Tapeten, Abwasser und Wespennestern nachgewiesen. Vor allem der Befall von Kulturpflanzen wie Getreidesorten, Gemüse und Früchte ist für die Wirtschaft von großer Bedeutung. Der ursprünglich bei uns im Labor genutzte Wildtypstamm DSM12633 (DSMZ, Braunschweig) beispielsweise ist ein Isolat aus Putz; wohingegen der zweite genutzte Wildtypstamm ATCC66981 (Virginia Bioinform. Inst., Blacksburg; Lawrence Lab) aus der Erdnuss (*Arachis hypogaea*) in Indien isoliert wurde. Hauptsächlich sind die saprophytischen Arten jedoch im Boden in Sumpfgebieten, Wäldern und Gärten verbreitet.

Neben den Saprophyten gibt es auch parasitisch lebende Arten oder opportunistische Pathogene; auch Übergänge beider Formen sind möglich (Roth u. a., 1990). Der Pathotyp bestimmt hier, welcher Organismus oder welches Substrat befallen wird. Viele der phytopathogenen Arten wie *A. solani*, *A. brassicicola* und *A. dauci* treten weltweit auf (Rotem, 1994). Allerdings ist die Art *A. alternata* die am weitesten verbreitete der *Alternaria*-Arten und somit auch eine der bedeutendsten.

Ein Faktor, warum *Alternaria* weltweit so erfolgreich ist, ist seine Fähigkeit, auch bei kalten Temperaturen noch zu wachsen. Das Wachstumsoptimum liegt bei diesem Pilz zwar bei 20°C – 28°C, allerdings ist es *Alternaria* auch möglich, noch bei einer Temperatur von bis zu -2°C und bis zu 32°C zu wachsen (Hermersdörfer, 1987). Dieses breite Spektrum vor allem in sehr niedrige Temperaturbereiche erlaubt es dem Pilz, sogar im Kühlschrank aufbewahrte Lebensmittel zu verderben (Reiss, 1981).

2.2 Sekundärmetabolismus

Als Primärstoffwechsel wird der lebenserhaltende Stoffwechsel jedes Organismus bezeichnet, also die Bildung essenzieller Bestandteile des Stoffhaushaltes (Kohlenhydrate, Fette und Eiweiße). Hierbei nimmt die Biomasse des Organismus zu, bis schließlich eine stationäre Phase erreicht wird. Hauptsächlich ab diesem Zeitpunkt beginnt die Produktion von Sekundärmetaboliten. Es handelt sich hierbei um Stoffe, die für das Überleben und Wachstum nicht zwingend notwendig sind (Czapek, 1925).

2.2.1 Der Sekundärmetabolismus wird von äußeren Faktoren beeinflusst

Es liegt keine allgemein gültige Theorie über die Vorteile des Sekundärmetabolismus für Pilze vor; allerdings gibt es einige Interpretationsansätze wie der Fraßschutz, die Hemmung von Konkurrenten, Schutz vor äußeren Einflüssen, aber auch Entgiftungsreaktionen im Stoffwechsel; dies alles führt zu Selektionsvorteilen gegenüber den Konkurrenten. Sekundäre Metabolite können unter anderem Pigmente, Antibiotika oder Mykotoxine sein. Es handelt sich somit einerseits um Stoffe, die der Mensch sich zu Nutzen machen und davon profitieren kann, andererseits können sie dem Menschen auch schaden.

Zu den Pigmenten zählt das weit verbreitete Melanin. Wie bereits erwähnt, geht man bei *Alternaria* davon aus, dass das Melanin als Schutz gegen UV-Licht gebildet wird. Für manche Organismen ist dieses Pigment jedoch sogar für das Wachstum unerlässlich. Die Schwarzhefe *Hortaea werneckii* schützt sich mit Melanin in der Zellwand vor dem hypersalinen Extremhabitat, in dem sie lebt (Kejzar *et al.*, 2013). Auch für *Rosellinia necatrix* wurde eine Rolle des Melanins für die Bildung von Pseudosclerotien gefunden (Shimizu *et al.*, 2014). Ein Beispiel für eine Polyketidsynthase (PKS), die für Pigmente zuständig ist, ist die *pks4* aus *Trichoderma reesei*, deren Deletion in einem Verlust des grünen Konidienpigments resultiert. Zudem war dies der erste Befund, dass eine pigmentproduzierende PKS an der Verteidigung, mechanischer Stabilität der Zelle und Stressresistenz eines Pilzes beteiligt ist (Atanasova *et al.*, 2013).

Als Mykotoxine werden sekundäre Stoffwechselprodukte von Schimmelpilzen definiert, die auf Menschen, Tiere und Pflanzen akut oder chronisch toxisch einwirken (Cast, 2003). Es sind über 400 Mykotoxine bekannt, welche von etwa 350

Schimmelpilzgattungen gebildet werden (Bräse *et al.*, 2008). Manche Stoffe werden speziell nur bei einer bestimmten Art oder Gattung beobachtet, welche dadurch eine besondere Nische besetzen kann. Andere Metabolite werden artübergreifend gebildet.

Abbildung 4: Die Regulation der Sekundärmetabolitgencluster durch äußere Einflüsse. Viele äußere Einflüsse wie beispielsweise das Licht, die Kohlenstoffquelle, die Interaktion mit anderen Organismen innerhalb desselben Habitats, der pH-Wert und die Stickstoffguelle werden von der Zelle durch Rezeptoren wahrgenommen. Eine Änderung in den Umweltparametern führt zu einer Änderung der Signalkaskase innerhalb der Zelle. letztlich einer Regulation in was zu der Sekundärmetabolitgencluster führt (Brakhage, 2013).

Die Biosynthese der Sekundärmetabolite hängt von vielen äußeren Faktoren ab (Calvo *et al.*, 2002, Brakhage *et al.*, 2009, Bruns *et al.*, 2010, Vodisch *et al.*, 2011, Yin & Keller, 2011), wie beispielsweise der Temperatur (Oviedo *et al.*, 2011), dem pH-Wert des umgebenden Habitats, der Wasseraktivität (Oviedo *et al.*, 2011), dem CO₂-Partialdruck, der Nährstoffquelle und den Lichtbedingungen, denen der Pilz ausgesetzt ist. Des Weiteren können auch Konkurrenten im gleichen Habitat die Sekundärmetabolitproduktion verändern (Schroeckh *et al.*, 2009, Nützmann *et al.*, 2011). Diese Umweltparameter können nicht nur die Expression der Cluster verändern, sie können sogar gänzlich für die Aktivierung eines schlafenden Clusters oder die Herunterregulierung eines sonst aktiven Clusters verantwortlich sein. Die

Umweltstimuli werden hierbei mittels Singalkaskaden zum Nukleus weitergeleitet. Eine wichtige Rolle hierbei spielen die globalen Regulatoren CreA (Kohlenstoffmetabolismus), AreA (Stickstoffmetabolismus), PacC (pH-Sensor) (Tilburn et al., 1995) oder auch LaeA (Yu & Keller, 2005). Einen umfassenden Überblick über die äußeren Faktoren und die interzellulären Regulationswege gibt die Abbildung 4 (Brakhage, 2013).

2.2.2 Sekundärmetabolismus in Alternaria

Es wird vermutet, dass die Gattung Alternaria fähig ist, mehr als 60 Sekundärmetabolite zu bilden. Bis heute sind die Strukturformeln von etwa 30 Alternaria-Toxinen beschrieben, es wird jedoch eine noch höhere Anzahl an Mykotoxinen vermutet. Einige davon sind wirtsspezifisch und kommen nur in dem entsprechenden Pathotyp vor; andere sind nicht spezifisch und werden in mehreren oder allen Arten gefunden. Die wichtigsten von Alternaria gebildeten Mykotoxine sind unter anderem Alternariol (AOH), Alternariolmonomethylether (AME), Altenuen (ALT), Tenuazonsäure (TA) (Davis et al., 1977) und die Altertoxine (ATX I-III). Bei Alternariol und seinem Derivat, Alternariolmonomethylether, handelt es sich um farblose kristalline Substanzen mit einem Schmelzpunkt von 350°C bzw. 267°C. Altenuen hingegen bildet farblose Nadeln aus; der Schmelzpunkt liegt hier bei 190-191°C. In Abbildung 5 (A) sind die Strukturformeln der wichtigsten von Alternaria gebildeten Mykotoxine dargestellt. Einige der Mykotoxine fluoreszieren unter UV-Licht. Dies ermöglicht es, die Toxine mit Hilfe einer Dünnschichtchromatographie aufzutrennen und dann qualitativ zu bestimmen. Die Abbildung 5 (B) zeigt ein typisches Wildtyp-Bandenmuster. Bei der obersten grünen Bande handelt es sich um Altenuen, darunter läuft Alternariolmonomethylether und Alternariol, beide zeigen eine blaue Fluoreszenz. Knapp darunter sind die Altertoxine zu sehen, sie fluoreszieren gelb (Wittkowski, 1984).

Abbildung 5: Die prominentesten Vertreter der *A. alternata* **Mykotoxine. (A)** Chemische Strukturformeln der Haupt-Mykotoxine in *A. alternata*. Alternariol (AOH), Alternariolmonomethylether (AME) und Altenuen (ALT) gehören der Dibenzo-α-Pyrone an, die Altertoxine (ALT-I und ALT-II) den Perylenchinonen und die Tenuazonsäure ist ein Tetramersäure-Derivat. (B) Dünnschichtchromatographie des *A. alternata* Wildtypstamms. Das charakteristische Fluoreszieren einiger der Metabolite unter UV-Licht erlaubt es, diese mit Hilfe einer Dünnschichtchromatographie aufzutrennen und sichtbar zu machen. Die oberste grüne Bande ist die des Altenuens, darunter läuft Alternariolmonomethylether, dann Alternariol und in gelb fluoreszieren die Altertoxine.

2.3 Pflanzen- und Humanpathogenität

2.3.1 Pflanzenpathogenität

Die große Vielfalt an Mykotoxinen erlaubt es *Alternaria*-Arten, viele verschiedene Pflanzen zu besiedeln. Meist leben sie parasitisch auf landwirtschaftlichen Nutzpflanzen wie Weizen, Hirse, Roggen, diversen Nüssen (z.B. Walnüssen (Hong *et al.*, 2006)), Sonnenblumen- und Rapskernen. Auch verschiedene Gemüse- und Früchtearten wie z.B. Kartoffeln (Haware, 1971), Tomaten (Andersen & Frisvad, 2004), Karotten (Solfrizzo *et al.*, 2005), Kohl, Oliven (Visconti *et al.*, 1986), Melonen, Äpfel, Zitrusfrüchte wie Mandarinen, Orangen und Limonen sowie Birnen (Tian *et al.*, 2006) sind betroffen. Jedes Jahr kommt es dadurch zu erheblichen Ernteausfällen von bis zu 80%, auch weil der Befall nicht nur direkt auf dem Feld, sondern auch nach der Ernte bei der Lagerung auftreten kann. *Alternaria* kann also erheblichen wirtschaftlichen Schaden verursachen.

Es treten sehr vielfältige Krankheiten auf wie z.B. die von *A. dauci* bedingte Möhrenschwärze oder die Braunfäule an Tomaten, verursacht durch *A. solani. A. mali* befällt Äpfel und Birnen und führt zur sogenannten Weichfäule. Die Sporen werden hierbei oftmals durch Wind oder Spritzwasser verbreitet. Sie überdauern meist noch als Spore oder bereits in Myzelform in absterbenden Pflanzenteilen oder an Samen. Freie Feuchtigkeit wie Niederschlag, Tau oder erhöhte Bodenfeuchtigkeit begünstigen die Keimung der Sporen. Es können alle Teile der Pflanze befallen sein, wie z. B. die Blätter, Wurzeln, Knollen, Stängel und Früchte. Die Abbildung 6 zeigt ein paar Krankheitsbilder, wie sie die verschiedenen *Alternaria*-Arten hervorrufen können.

Abbildung 6: Durch Alternaria-Arten hervorgerufene Krankheiten. (A) Durch A. alternata oder A. solani hervorgerufene Dürrfleckenkrankheit an den Blättern einer Kartoffelpflanze (www. Landundforst.agrarheute.com). (B) Die Tomatenpflanze ist ebenfalls mit der Dürrfleckenkrankheit infiziert, ausgelöst durch A. solani (www.blumen-klefer.de). (C) Hierbei handelt es sich um einen von der Weichfäule befallenen Apfel. Auslöser ist in diesem Fall A. mali (www.laumburg.it).

2.3.2 Humanpathogenität

Vermutlich noch wichtiger als die Pflanzenpathogenität ist für uns die Tatsache, dass es auch humanpathogene Vertreter unter den *Alternaria*-Arten gibt. Vor allem bei bereits geschwächten und vorbelasteten Personen agieren die Pilze gerne opportunistisch. Man bringt sie in Zusammenhang mit Infektionen der Cornea, der Mund- und Nebenhöhlen, des respiratorischen Trakts, der Nägel und der Haut. Auch wurden einige Mykotoxine mit der Entstehung von Speiseröhrenkrebs in Verbindung gebracht. In den 80er Jahren traten in Nord-China erhöhte Raten von Speiseröhrenkrebs auf, welche mit einem erhöhten Befall von Getreide mit *Alternaria* korrelierte. Hier lag höchstwahrscheinlich die Ursache der vermehrten Krankheitsfälle (Dong *et al.*, 1987, Liu *et al.*, 1991, Liu *et al.*, 1992). Fehr *et al.* zeigten 2009, dass AOH und AME als Topoisomerase II-Gifte wirken, indem sie mit dem Enzym interagieren und die kovalente Bindung an die DNA stabilisieren. Somit kann es vermehrt zu Doppelstrangbrüchen der DNA kommen (Fehr *et al.*, 2009). Des Weiteren wurden den Mykotoxinen mutagene (erbgutverändernde), genotoxische, fetotoxische und auch teratogene (fruchtschädigende) Effekte bestätigt (Pero *et al.*, 1973). Auch können Allergien (als Hauptauslöser wird hier *A. alternata* genannt), Hautinfektionen, Asthmaanfälle (Asthma bronchiale) (Mücke und Lemmen, 2004) oder Alternariosen, eine Infektion oder Besiedlung bereits erkrankter Haut durch *Alternaria*, auftreten.

Anders als beispielsweise das Deoxynivalenol, Ochratoxin A, Fumonisin oder die Aflatoxine existiert für die *Alternaria*-Toxine keine EG-Verordnung, welche die Höchstgehalte an Kontaminationen in Lebensmitteln definiert. Die Datenlage ist nicht ausreichend um eine Risikoabschätzung für den Verbraucher vorzunehmen; weitere Untersuchungen sind erst notwendig um die Toxine und ihre Risiken näher zu charakterisieren.

2.4 Die Polyketidbiosynthese findet mittels Polyketidsynthasen statt

2.4.1 Polyketide

Viele der Sekundärmetabolite, die von Pilzen gebildet werden, gehören den sogenannten Polyketiden an. Es handelt sich hierbei um eine heterogene Gruppe von Naturstoffen mit hoher struktureller Vielfältigkeit. Viele pharmakologische Stoffe wie Lovastatin oder auch das Antibiotikum Tetracyclin gehören in diese Gruppe. Einige der von *A. alternata* gebildeten Mykotoxine wie Alternariol sowie das zu den Melaninen gehörende DHN-Melanin werden ebenfalls dieser Gruppe zugeordnet.

Trotz einer sehr großen Vielfalt an Endprodukten beginnt die Biosynthese immer mit dem gleichen ersten Schritt. Ähnlich der Fettsäurebiosynthese reagiert ein Acetyl-Coenzym A mittels Claisen-Kondensation mit mehreren Einheiten Malonyl-CoA. Die zentralen Enzyme dieser Reaktion sind die Polyketidsynthasen, welche die Polymerisierung der Moleküle übernehmen.

Die Biosynthese von Alternariol, Alternariolmonomethylether, Altenuen und Altenusin erfolgt ebenfalls auf diesem Weg. In diesem speziellen Fall beginnt die Biosynthese ebenfalls mit einem Startermolekül Acetyl-Coenzym A, welches mit sechs Malonyl-CoA Einheiten reagiert. Aus einem Zwischenprodukt, einer Poly-β-Ketoverbindung, entsteht durch intramolekulare Zyklisierung das Diphenylderivat AOH. AOH reagiert dann nochmals weiter zu AME, welches selbst Vorstufe mehrerer Metabolite ist. Die Abbildung 7 zeigt die einzelnen Reaktionen und Zwischenstufen bei der Alternariolsynthese und hebt die hohe Vernetzung in der Biosynthese der Metabolite, wie sie bei den Polyketiden oft typisch ist, hervor.

Abbildung 7: Stoffwechselweg zur Biosynthese der Polyketide AOH, AME, Altenusin und ALT. Durch Claisen-Kondensation von Acetyl-CoA und Malonyl-CoA entsteht eine Poly-β-Ketoverbindung. Eine Abspaltung von H₂O führt zur Bildung von AOH; eine weitere Reaktion resultiert in der AME-Biosynthese. Im weiteren Verlauf werden Altenusin und ALT gebildet (Wittkowski, 1984).

2.4.2 Polyketidsynthasen

Wie bereits erwähnt, handelt es sich bei den zentralen Enzymen für die Produktion der Sekundärmetabolite um die Polyketidsynthasen. Diese großen multifunktionellen Enzymkomplexe von meist über 2000 Aminosäuren weisen eine ähnliche Struktur auf wie Fettsäuresynthasen; es gibt einen gemeinsamen evolutionären Ursprung (Schümann & Hertweck, 2006). 1992 wurde sogar nachgewiesen, dass der Fettsäuresyntheseinhibitor Cerulenin die Polyketidsynthese in *A. alternata* hemmen kann, was die Ähnlichkeit der Biosynthesewege hervorhebt (Hiltunen & Soderhall, 1992).

Es existieren insgesamt drei verschiedene Typen von Polyketidsynthasen. Die Typ I Polyketidsynthasen sind lange, hochmodulare Proteine, Typ II Polyketidsynthasen sind multiple Proteine, bei denen jedes eine eigene monofunktionale Aktivität besitzt. Bei den Typ III Polyketidsynthasen handelt es sich um einzelne Proteine mit multiplen Modulen (siehe Abb. 8). Ein Beispiel für eine Typ III Polyketidsynthase ist CysB aus *A. oryzae*, welche den Metaboliten Csypyron B1 bildet (Yang *et al.*, 2014). Allerdings ist eine Typ III Polyketidsynthase bei Pilzen eher selten; hier kommt hauptsächlich der Typ I vor, welcher sich nochmal in multi-modulare Polyketidsynthasen und iterative Polyketidsynthasen unterteilen lässt. Beiden ist jedoch gemein, dass sie ein minimales Set an stark konservierten Domänen besitzen, darunter eine Ketoacylsynthase (KS) für die Kondensation der Erweiterungseinheit mit einem Acyl-Thioeser, eine Acyltransferase (AT) für den Transfer und Auswahl der Erweiterungseinheit und ein Acyl-Carrier-Protein für das Beladen der Erweiterungseinheit (Nicholson *et al.*, 2001).

Zusätzliche Domänen können durchaus vorkommen; diese sind dann an der weiteren Modifikation des Polyketids beteiligt wie z.B. eine Enyolreduktasedomäne (ER), eine Ketoreduktasedomäne (KR), eine Methyltransferase (MT) oder eine Dehydratase (DH). Je nach synthetisiertem Endprodukt werden die Polyketidsynthasen auch in nicht-reduzierende, bzw. aromatische, teilweise reduzierende oder stark reduzierende Polyketidsynthasen unterteilt. Post-PKS-Reaktionen wie Alkylierungen, Acylierungen oder Oxygenierungen führen zusätzlich zu einer noch höheren strukturellen Vielfalt der Endprodukte.

17

Abbildung 8: Gliederung verschiedener Polyketidsynthasen. (A) Es gibt drei Polyketidsynthasen-Typen. Die Typ I Polyketidsynthasen unterteilen sich nochmals in multi-modulare und in iterative Polyketidsynthasen (Fujii, 2009). **(B)** Die Unterteilung der Polyketidsynthasen anhand ihrer Domänen und den daraus resultierenden Endprodukten. Die drei charakteristischen Domänen KS, AT und ACP sind in jedem der Proteine vorhanden. Anhand der zusätzlichen Domänen wie Ketoreduktase (KR), Enoylreduktase (ER) oder DH (Dehydratase) kann der Reduktionsgrad der Polyketidsynthase bestimmt werden; so werden die Proteine in nicht-reduzierend (NR), teilweise reduzierend (PR) und stark reduzierend (HR) eingeteilt (Schümann, 2006).

Es gibt jedoch seit kurzem auch Hinweise darauf, dass Polyketidsynthasen nicht ausschließlich an der Produktion von Sekundärmetaboliten beteiligt sind. In *Sordaria macrospora* konnte gezeigt werden, dass die Pks4 essenziell für die sexuelle Entwicklung ist und die Fruchtkörpermorphologie reguliert (Schindler & Nowrousian, 2014). Dies deutet an, dass die Funktion der Polyketidsynthasen viel komplexer ist als bisher angenommen.

Zusätzlich Polyketidsynthasen zu den kommen die Nichtribosomalen Peptidsynthasen (NRPS) vor. Sie beinhalten drei typische Domänen: eine Peptidyl-Carrier-Adenylierungsdomäne für die Aminosäurenaktivierung, eine Domäne zur Bindung des Kofaktors 4'-Phosphopanthetheine (4'PP), an die die aktivierte Aminosäure kovalent gebunden ist und eine Kondensationsdomäne, welche Peptidverbindungen katalysiert (Brakhage, 2013). Die Abbildung 9 zeigt die Metaboliten mittels einer Polyketidsynthase Biosynthese von bzw. einer Nichtribosomalen Peptidsynthase.

Abbildung 9: Gencluster und Enzyme für den Sekundärmetabolismus in Pilzen. Gencluster mit einer zentralen Polyketidsynthase (PKS) links und einer Nichtribosomalen Peptidsynthase (NRPS) rechts (Brakhage, 2013).

2.5 Gencluster

Meistens liegen die Polyketidsynthasen nicht allein auf dem Genom; im direkten Umkreis befinden sich zusätzliche Gene, die für die Produktion des Endproduktes wichtig sind. Diese Gene bilden ein sogenanntes Gencluster, was bedeutet, dass sie sich in räumlicher Nähe zueinander befinden. Es handelt sich hierbei meist um Regulatoren, Transporter oder Gene für die nachträgliche Modifikation der Polyketide (Hoffmeister & Keller, 2007).

Oftmals gibt es einen zentralen Transkriptionsfaktor, welcher die Regulation aller im Cluster befindlichen Gene übernimmt. Die Gliotoxinsynthese in *A. fumigatus* beispielsweise ist in einem Cluster mit 13 Genen geregelt (Gardiner & Howlett, 2005, Cramer *et al.*, 2006, Kupfahl *et al.*, 2006), die alle durch den Zn-Finger Transkriptionsfaktor GliZ reguliert werden (Bok *et al.*, 2006). Es konnte auch in *A. parasiticus* gezeigt werden, dass die Translokation eines Sekundärmetabolitclustergens an eine andere chromosomale Position zu einer Trennung der Koregulation mit den anderen Genen des Clusters führt (Chiou *et al.*, 2002).

Es handelt sich jedoch keinesfalls um eine Operon-Struktur wie sie bei Bakterien vorkommt. Jedes Gen besitzt einen eigenen Promotor und Terminator und somit findet die Transkription auch für jedes Gen einzeln statt. *Aspergillus* spp. mit einer Genomgröße von 28-40 Mb besitzt typischerweise ungefähr 50 solcher Gencluster, wohingegen Pilze mit einem kleineren Genom wie *Arthroderma benhamiae* mit einer Genomgröße von ungefähr 22 Mb 27 Gencluster besitzt (von Dohren, 2009, Burmester *et al.*, 2011).

Der Mechanismus der Regulation der Sekundärmetabolitgencluster ist nur sehr rudimentär erforscht. Dennoch konnte kürzlich gezeigt werden, dass *A. nidulans* Mutanten, bei denen Komponenten für die Heterochromatin-Bildung fehlten, eine Derepression von Genen zeigten, die in der Biosynthese von Sterigmatocystin (ST), Penicillin und Terrequinon beteiligt sind (Reyes-Dominguez *et al.*, 2010). Auch im Pflanzenpathogen *Fusarium graminearum* stellte sich heraus, dass das Heterochromatin das Sekundärmetabolitprofil beeinflusst (Reyes-Dominguez *et al.*, 2012).

In *A. alternata* wurden bisher zehn Sekundärmetabolitgencluster beschrieben und teilweise näher charakterisiert. Die Polyketidsynthasen wurden von PksA bis PksJ benannt. In jedem Cluster gibt es typische Gene, die an der Modifikation des Metaboliten beteiligt sein könnten. Das Cluster um die PksA beispielsweise wurde als das Melanincluster identifiziert; drei Gene (*pksA*, *brm2* und *cmrA*) liegen in unmittelbarer Nähe auf dem Genom beieinander. Ein weiteres Gen (*brm1*) allerdings liegt auf einem anderen Teil des Genoms. Zwei weitere Cluster sollen an dieser Stelle noch erwähnt werden.

2.5.1 *pksJ*-Cluster

Im Jahr 2012 wurde das Cluster für die Produktion von Alternariol und Alternariolmonomethylether in *A. alternata* entdeckt und näher charakterisiert. Es handelt sich hierbei um die Polyketidsynthase PksJ und das umliegende Cluster. Es wurde gezeigt, dass die Expression von *pksJ* und *pksH* mit der Produktion von AOH und AME korreliert. Die Herunterregulierung von *pksJ* resultierte in einer starken Reduktion von Alternariol. Dies führte zu dem Schluss, dass die PksJ für die Produktion von Alternariol verantwortlich ist. Zusätzlich wurde der Regulator des Clusters, *altR*, und eine putative Methyltransferase näher charakterisiert, welche für die Umwandlung von Alternariol zu Alternariolmonomethylether verantwortlich sein könnte (Saha *et al.*, 2012). Die Abbildung 10 zeigt die PksJ und das Cluster in *A. alternata*.

Abbildung 10: Schema der PksJ und des Clusters. (A) Schema der Polyketidsynthase PksJ. KS: β-Ketoacylsynthase, AT: Acyltranferase, DH: Dehydrogenase, ER: Enoylreduktase, KR: Ketoreduktase, ACP: Acyl-Carrier-Protein. Das Protein ist 2225 Aminosäuren lang. **(B)** Schema des Clusters. Homeo: Homeobox, TE: Translation-Elongation-Faktor, O-MT: O-Methyltransferase, *altR*: Transkriptionsfaktor, MO: Monooxygenase, GT: Glycosyl-Transferase, DH: Short-Chain-Dehydrogenase, HL: Hydrolase, DI: Dioxygenase, NBP: Nucleinsäure-Bindeprotein, Sin3: Putatives Sin3-Bindeprotein, TI: DNA-Topo-Isomerase, Unknown: Protein mit unbekannter Funktion, EM: extrazelluläres Protein

2.5.2 pksB-Cluster

Besonders interessant ist die Polyketidsynthase PksB, da es sich hierbei um ein Fusionsprodukt von PKS und NRPS (<u>Nichtribosomale Peptidsynthase</u>) handelt. Diese Fusion ist eher selten; allerdings wurde 2007 ein "schlafendes" Gencluster aktiviert, dessen zentrales Enzym ebenfalls ein PKS-NRPS-Hybrid ist. Es handelt sich hierbei um *apdA*, welches für die bisher unbekannten Metabolite Aspyridon 1 und 2 in *A. nidulans* zuständig ist (Bergmann *et al.*, 2007). In dem Reispathogen

Fusarium fujikuroi wurde kürzlich eine NRPS beschrieben, welche das Hauptenzym für die Bildung von Apicidin F ist (Niehaus et al., 2014). Eine NRPS kann also durchaus auch ohne PKS für die Produktion eines Metaboliten verantwortlich sein. Durch die Hybridisierung von PKS und NRPS hat die PksB eine Länge von über 4000 Aminosäuren. Weitere sieben Gene befinden sich auf dem Contig, jedoch ist nicht geklärt, welche davon tatsächlich zum Cluster gehören. Im Ergebnisteil werden AAT_PP07105, die AAT PP07106, AAT PP07107, AAT PP07108, Gene AAT_PP07111 AAT_PP07109, AAT PP07110, und AAT PP07112 näher charakterisiert und die Gene auf diejenigen eingeschränkt, welche höchstwahrscheinlich das Cluster bilden.

2.6 Aspergillus nidulans als Modellorganismus

Obwohl der Hauptorganismus dieser Arbeit A. alternata ist, wurden einige der Versuche in A. nidulans durchgeführt. Die heterologe Expression in diesem Organismus erlaubte Interaktionen mit anderen Proteinen es. oder Zwischenwirkungen auszuschließen und einen Versuch nur auf die Komponenten zu reduzieren, die heterolog exprimiert wurden. Schon früher wurden Arten der Gattung Aspergillus, z.B. A. oryzae oder A. niger, als gute Kandidaten für die heterologe Expression befunden (Sakai et al., 2012, Zaehle et al., 2014). Auch neue Metabolite konnten mit Hilfe von A. nidulans als heterologem Organismus entdeckt werden (Yin et al., 2013).

A. nidulans gehört den Ascomyceten an; er ist ubiquitär im Boden verbreitet (Sievers *et al.*, 1997), wo er maßgeblich an der Remineralisierung organischer Materialien beteiligt ist (Fischer und Braus, 2006). Das Genom von *A. nidulans* ist haploid, was ihn zu einem guten Kandidaten für genetische Manipulationen macht, da Phänotypen durch Mutationen sofort sichtbar werden (Morris *et al.*, 1989, Osmani & Mirabito, 2004); es wurde 2005 vollständig sequenziert, was ebenfalls das genetische Manipulieren des Organismus erleichtert (Galagan *et al.*, 2005). Des Weiteren sind sein schnelles Wachstum, seine Fähigkeit, als kompakte Kolonie auf Platten zu wachsen, und seine Fähigkeit, sich sexuell sowie asexuell zu vermehren, Eigenschaften, die ihn zu einem idealen Forschungsorganismus machen (Todd *et al.*, 2007).

Die asexuelle Entwicklung geht mit der Bildung von Konidiophoren einher, die die Träger der asexuellen Konidiosporen darstellen. Es handelt sich hierbei um ein Vesikel, aus dem sich die Metulae, Phialiden und letztendlich die Sporen abschnüren (Adams *et al.*, 1998). *A. nidulans* ist ein homothallischer Pilz, das bedeutet, dass er für die sexuelle Vermehrung keinen Partner benötigt. In den Fruchtkörpern, den Kleistothezien, bilden sich die sexuellen Sporen, die Ascosporen, aus. Die zwei unterschiedlichen Entwicklungswege sind in Abbildung 11 (A) dargestellt.

Abbildung. 11: Die Entwicklung von *A. nidulans*. (A) Der Lebenszyklus von *A. nidulans* (Scherer & Fischer, 1998). (B) Vergleich der verschiedenen Bedingungen im Boden und an der Oberfläche. Im Boden herrscht Dunkelheit, die Sauerstoffkonzentration ist gering und die Temperaturunterschiede sind nicht signifikant. Auf der Oberfläche ist die Sauerstoffkonzentration höher, es gibt Wind und es ist hell. Diese Unterschiede werden vom Pilz erkannt und genutzt. Im Dunkeln werden eher sexuelle Strukturen entwickelt, wohingegen im Licht mehr die asexuelle Entwicklung präferiert wird (Rodriguez-Romero *et al.*, 2010).

Einige Faktoren wie der Kohlenstoffdioxidgehalt, der pH-Wert oder auch die Temperatur beeinflussen die Entscheidung, ob sich der Pilz asexuell oder sexuell fortpflanzt (Etxebeste *et al.*, 2010). Doch der wichtigste äußere Faktor ist das Licht. *A. nidulans* ist in der Lage, sogar zwischen Licht unterschiedlicher Wellenlängen zu unterscheiden. (Hellrotes) Licht einer Wellenlänge von 680 nm bewirkt hier eine Induktion der asexuellen Sporulation wohingegen im Dunkeln oder bei Licht der Wellenlänge 740 nm die asexuelle Sporulation gehemmt und die sexuelle Entwicklung präferiert wird (Mooney & Yager, 1990, Bayram *et al.*, 2010). Es wird

davon ausgegangen, dass *A. nidulans* durch das Signal "Dunkelheit" die Information bekommt, dass er sich derzeit unter der Erdoberfläche befindet, sodass eine Verbreitung der kleinen, leichten Konidiosporen ungünstiger ist als an der Oberfläche, wenn er mit Licht in Berührung kommt. Somit werden unter Dunkelbedingungen eher die robusten Kleistothezien gebildet. Auch die Produktion von Sterigmatocystin wird im Dunkeln gegenüber Blaulicht begünstigt (Kastner, 2010).

2.7 Lichtwahrnehmung in Pilzen

Licht ist zugleich Energiequelle und Informationsträger; manche Organismen wie die grünen Pflanzen nutzen das Sonnenlicht direkt zur Energieversorgung und wandeln mittels Photosynthese Kohlenstoffdioxid und Wasser mit Hilfe der Energie des Lichtes in Kohlenhydrate um. Dies erlaubt den photoautotrophen Organismen, sich ihre organischen Nährstoffe selbst zu erzeugen und somit unabhängig vom Nahrungsangebot zu überleben. Andere Organismen, wie die Pilze, haben gelernt, Licht als Informationsträger zu nutzen und so Änderungen in der Umgebung zu registrieren. Dies erlaubt eine schnellere Anpassung an sich verändernde Umweltbedingungen, was zu einem selektiven Vorteil gegenüber anderen Organismen führt (Tisch & Schmoll, 2010).

Verschiedenste Prozesse wie die Carotinoid-Bioynthese, Hyphenwachstum, circadiane Rhythmik, Phototropismus (Idnurm *et al.*, 2006), sowie die Entscheidung zwischen sexueller und asexueller Entwicklung können in Pilzen durch Licht reguliert sein.

Viele Pilze reagieren sogar auf Licht verschiedener Wellenlänge, sodass eine Unterscheidung zwischen verschiedenen Tageszeiten auf Grund unterschiedlicher Lichtintensitäten möglich wird. Als Antwort auf die Lichtwahrnehmung kommt es zur Transkription von Genen, die für die speziellen Lichtbedingungen von Vorteil sind. Ein prominentes Beispiel für die Lichtwahrnehmung in Pilzen ist *Neurospora crassa*. Mit Hilfe des Lichts wird sein circadianer Rhythmus eingestellt, was zu einer Tag-Nacht-Wahrnehmung führt, welche die Induktion der Sporenbildung bewirkt.

Die Erkennung von Licht erfordert das Vorhandensein von Photorezeptoren, also Proteine oder Proteinkomplexe, welche Licht empfangen und das entsprechende Signal weiter in die Zelle geben können. Die Photorezeptoren besitzen Chromophore, welche die lichtabsorbierenden Kofaktoren der Proteine darstellen. Die am häufigsten auftretenden Chromophore sind Retinal, Tetrapyrrole und Flavine (Herrera-Estrella & Horwitz, 2007). Viele Photorezeptoren sind in Pilzen konserviert. Zu den bekannten und am besten untersuchten Lichtrezeptoren gehören die Phytochrome, welche rotes Licht wahrnehmen können, sowie Phototropine oder Phototropin-ähnliche Proteine und Cryptochrome für die Perzeption von Blaulicht. Opsin-ähnliche Moleküle können grünes Licht wahrnehmen (Corrochano, 2007).

2.7.1 Diverse Photorezeptoren ermöglichen Pilzen die

Lichtwahrnehmung

2.7.1.1 Phytochrome

Phytochrome sind Rotlichtrezeptoren und nehmen eine Wellenlänge ab 600 nm wahr (Brandt et al., 2008). Erst 2005 wurde das erste Phytochrom in Pilzen entdeckt, vorher galten sie als ausschließlich pflanzenspezifisch (Blumenstein et al., 2005). Als Chromophor dient für dieses Protein Phytochromobilin bei Pflanzen, Phycocyanobilin bei Cyanobakterien und Biliverdin bei nicht photosynthetischen Bakterien und auch bei A. nidulans. Alle Phytochrome tragen eine charakteristische photosensorische Input-Domäne am N-Terminus und eine regulatorische Output-Domäne am C-Terminus. Die N-terminale Input-Domäne beinhaltet eine PAS(Per-Arnt-Sim)-, eine GAF(cGMP Phosphodiesterase-Adenylatcyclase-Formiathydrogenlyase)- und eine PHY-Domäne sowie eine Ligandenbindedomäne (Rockwell & Lagarias, 2010). Die C-terminale Output-Domäne trägt eine Histidin-Kinase-Domäne und, im Fall von A. nidulans, eine Response-Regulator-Domäne. Die Phytochrome sind in der Lage, auf das Verhältnis von hellrotem zu dunkelrotem Licht zu reagieren. In Dunkelheit bzw. dunkelrotem Licht wird die stabile Pr-Form synthetisiert (max. 707 nm), welche physiologisch inaktiv ist. Durch Bestrahlung des Pilzes mit hellrotem Licht wird diese Form in die ebenfalls stabile rotlichtabsorbierende Pfr-Form überführt (Blumenstein et al., 2005). Diese Photoreversibilität wird durch die cis-trans-Isomerisierung des Chromophors vermittelt. Diese Konformation ist physiologisch aktiv. In A. nidulans wurde gezeigt, dass FphA die sexuelle Entwicklung hemmt (Purschwitz et al., 2008, Bayram et al., 2010).

2.7.1.2 Blaulichtrezeptoren

Auch wenn viele Pilze ein Phytochrom zur Rotlichtwahrnehmung besitzen, zeigen die meisten Pilze eine stärkere Reaktion auf Blaulicht als auf Rotlicht oder die anderen Spektren des Lichts (Cheng *et al.*, 2003).

Bei den Blaulichtrezeptoren gibt es Cryptochrome, welche blaues Licht und auch UVA-Licht wahrnehmen können. Sie wurden in Pflanzen entdeckt und später auch in Prokaryoten, Pilzen und Tieren nachgewiesen (Blumenstein *et al.*, 2005). Cryptochrome weisen eine hohe Homologie zu Photolyasen auf, welche UV-Schäden an der DNA reparieren. In Säugetieren und Insekten sind diese Proteine an der Regulation der circadianen Uhr beteiligt (Rodriguez-Romero *et al.*, 2010). Als Chromophor fungiert FAD zusammen mit einem Kofaktor. In *A. nidulans* ist *cryA* ein Supressor der sexuellen Entwicklung; die Deletion führt zur Bildung sexueller Strukturen unter Bedingungen, die diese eigentlich unterdrücken (Bayram *et al.*, 2008).

Neben den Cryptochromen gibt es die Klasse der Phototropine, welche ebenfalls in der Lage sind, Blaulicht wahrzunehmen. Es handelt sich hierbei um Proteine mit einem photosensorischen N-terminalen Bereich mit mindestens einer LOV(Light, Oxygen, Voltage)-Domäne. Diese zeichnet sich durch die konservierte Proteinsequenz GXNRCFLQ aus, welche häufig in Proteinen vorkommt, die an der Wahrnehmung von Licht, Sauerstoff oder elektrischer Spannung beteiligt sind. Am Cterminalen Part der Phototropine befindet sich eine Kinase-Domäne. Als Chromophor dient den Phototropinen FMN (Flavinadeninmononukleotid) oder FAD (Flavinadenindinukleotid).

Am besten untersucht ist dieser Photorezeptor wahrscheinlich in *N. crassa*, wo er als White Collar-1 (WC-1) bezeichnet wird. WC-1 bildet zusammen mit WC-2 durch ihre PAS-Domänen (<u>Per-Arnt-Sim</u>; für Protein-Protein-Interaktion) den WCC-Komplex, welcher an die DNA bindet und so das Lichtsignal auf die lichtregulierten Gene weiterleitet (Chen *et al.*, 2010). Der White Collar Complex fungiert nicht nur als Blaulichtrezeptor, er ist auch für die Aufrechterhaltung der circadianen Rhythmik unerlässlich. Der größte Unterschied zwischen WC-1 und WC-2 ist, dass nur WC-1 über die charakteristische LOV-Domäne verfügt. Homologe zu diesen Genen sind in allen Gruppen der Pilze, also der Ascomyceten, Basidiomyceten und Zygomyceten, zu finden; daher geht man von einer frühen Entwicklung dieser Photorezeptoren aus (Corrochano, 2007).

Auch in A. nidulans gibt es Homologe zu diesen Proteinen, sie werden hier als LreA und LreB bezeichnet (light regulator A und B). Beide haben eine aktivierende Funktion für den sexuellen Zyklus (Purschwitz et al., 2008). LreA besitzt, wie sein Homolog WC-1, eine Zinkfinger-Domäne zur DNA-Bindung, eine PAS-Domäne zur Interaktion mit anderen Proteinen, unter anderem LreB, und eine LOV-Domäne als Bindestelle für den Chromophor. LreB entspricht in seiner Struktur WC-2; es besitzt eine Zinkfingerdomäne, aber keine eine PASund LOV-Domäne zur Chromophorbindung (Bayram et al., 2010).

2.7.1.3 Weitere Lichtrezeptoren

Als weitere Lichtrezeptoren sind noch die Opsine zu nennen; sie gehören zur Familie G-Protein gekoppelter Rezeptoren und absorbieren im grünen Spektralbereich bei etwa 500 nm. Als Chromophor fungiert meist ein 11-*cis*-Retinal, ein Terpenoid. Sie kommen sowohl bei Wirbeltieren als auch in Archaebakterien vor. Sowohl in *N. crassa* (Bieszke *et al.*, 1999) als auch in *A. nidulans* wurden Opsin-verwandte Proteine gefunden, allerdings ist die Funktion des Opsins in *A. nidulans* noch nicht geklärt, da das konservierte Lysin zur Bindung des Chromophors fehlt und NopA somit nicht als Photorezeptor wirken kann (Bayram *et al.*, 2010). In *N. crassa* konnte eine Regulation von *nop1* durch WC-2 festgestellt werden; Nop1 selbst wurde als ein Repressor der konidienspezifischen Genexpression identifiziert (Bieszke *et al.*, 2007).

2.7.1.4 Velvet

Ein weiteres Protein soll hier erwähnt werden, obwohl es sich nicht um einen Photorezeptor handelt. Es wurde gezeigt, dass Velvet eine regulatorische Funktion in der lichtabhängigen Entwicklung innehat (Calvo *et al.*, 2004, Bayram *et al.*, 2008). Zusätzlich spielt VeA eine wichtige Rolle im Sekundärmetabolismus (Kato *et al.*, 2003, Sprote & Brakhage, 2007, Purschwitz *et al.*, 2009). Das Protein verfügt über ein NLS (<u>n</u>uclear <u>l</u>ocalisation <u>s</u>ignal), welches den Shuttle des Proteins in den Kern ermöglicht, ein NES (<u>n</u>uclear <u>export s</u>ignal) und eine PEST-Domäne, welche auf einen hohen Protein-Umsatz hindeutet (Rogers *et al.*, 1986). VeA lokalisiert in Dunkelheit im Kern, bei Lichteinfall kann man eine Lokalisation hauptsächlich im Zytoplasma beobachten (Bayram *et al.*, 2010).

2.7.2 Lichtwahrnehmung in A. alternata

Schon früh wurde auch in *Alternaria* ein Einfluss von Licht auf diverse Prozesse der Entwicklung beobachtet. Bei *A. dauci* beispielsweise wurde beschrieben, dass die Sporulation in zwei Phasen abläuft; in der induktiven Phase verstärkt Licht die Bildung von Konidiophoren, während in der terminalen Phase im Dunkeln Konidien gebildet und durch Licht inhibiert werden (Rotem, 1994). In anderen *Alternaria*-Arten wie *A. alternata* und *A. tenuissima* wiederum ist dieser Lichtreiz zur Bildung von Konidiophoren nicht notwendig. Somit ist die Regulation durch Licht nicht für alle Arten dieser Gattung gleich. Dabei spielt vor allem blaues Licht eine Rolle. Es wurde für 20 *Alternaria*-Arten, unter anderem auch *A. alternata*, ein induzierender Effekt von UV-nahem Blaulicht mit einer Wellenlänge von 310 nm hinsichtlich der Sporulation beobachtet (Rotem, 1994).

Abbildung 12: Sporenanzahl von Kulturen, die unter verschiedenen Lichtbedingungen inkubiert wurden. Der Wildtyp wurde für 3, 5 oder 7 Tage im Dunkeln, in Weiß-, Blau- oder Rotlicht inkubiert und anschließend die Sporenanzahl bestimmt (Pruss *et al.*, 2014).

Um diese Effekte und die Auslöser näher zu beleuchten, wurde in *A. alternata* nach Homologen der *A. nidulans* Photorezeptoren gesucht. Tatsächlich wurden alle wesentlichen Lichtsensoren auch in *A. alternata* gefunden.

Drei putative Blaulichtrezeptoren konnten identifiziert werden; sie wurden entsprechend der Namen in *A. nidulans* benannt. LreA weist eine LOV- und zwei PAS-Domänen sowie ein Kernlokalisierungssignal und eine GATA-Zinkfingerdomäne auf. LreB hingegen besitzt keine LOV-Domäne, wie dies auch in *A. nidulans* der Fall ist. Es weist jedoch ebenfalls ein NLS, eine ZnF-Domäne und eine PAS-Domäne auf. Der dritte Blaulichtrezeptor ist ein zum *A. nidulans* CryA ähnliches Protein, welches eine Photolyasedomäne und eine FAD-Bindedomäne aufweist.

Im Wildtyp ist die Sporenproduktion im Dunkeln höher als im Licht. In der *IreA*-Deletionsmutante hingegen nimmt die Sporulation unter beiden Bedingungen zu und es gibt keinen Unterschied mehr zwischen Licht und Dunkel (siehe Abb. 14 (A)). Zusätzlich ist in der Mutante die Altertoxinbildung im Dunkeln induziert, wohingegen die Alternariolbildung im Blaulicht reprimiert wird (siehe Abb. 14 (B)).

Abbildung 14: Phänotyp der Δ *IreA* Mutante. (A) Es wurde die Sporenanzahl von Kulturen, die im Dunkeln sowie im Blaulicht inkubiert wurden, bestimmt. Im Wildtyp ist der Unterschied zwischen im Licht und im Dunkeln inkubierten Proben gravierend. Die Mutante hebt diesen Effekt auf. (B) Die Sekundärmetabolitproduktion von Mutante und Wildtyp im Dunkeln und im Blaulicht. Die Mutante inhibiert die Produktion von Alternariol unter Blaulichtbedingungen und induziert die Bildung von Altertoxin I im Dunkeln (Pruss *et al.*, 2014)

Des Weiteren wurde ein zu Phytochrom homologes Protein gefunden, welches hier auch als FphA bezeichnet wird. Dieses Protein hat eine N-terminale PAS-, GAF- und PHY-Domäne sowie ein NLS. C-terminal befindet sich eine Histidinkinasedomäne (HKRD), eine HATPase, ein zweites NLS und eine Response-Regulator-Domäne (RRD). In *A. nidulans* wurde gezeigt, dass FphA im Cytoplasma lokalisiert ist, aber durchaus auch in den Kern wandern kann (Blumenstein *et al.*, 2005). Ein Knockout von *fphA* (es handelt sich höchstwahrscheinlich um ein Heterokaryon, da noch Wildtyp-Hintergrund vorhanden ist) in *A. alternata* resultiert in einer Erhöhung der Sporenzahl. Jedoch bleibt der bereits im Wildtyp beobachtete Effekt bestehen, dass im Dunkeln viel mehr Sporen produziert werden als unter Lichtbedingungen (Sand, 2011). Die Abbildung 15 zeigt zudem, dass das Rotlicht sowohl im Wildtyp als auch der Mutante einen sehr ähnlichen Effekt auf die Sporenbildung hat wie Dunkelheit, wohingegen die Inkubation in Blaulicht ein sehr ähnliches Resultat erzielt wie die Inkubation unter Weißlichtbedingungen. Dies deutet nochmals auf eine wichtige Rolle des Blaulichts hin, während Rotlicht eine untergeordnete Rolle spielt.

Abbildung 15: Sporenanzahl von Wildtyp und Δ*fphA* 3 bzw. 6 Tage nach Inkubation unter verschiedenen Lichtbedingungen im Vergleich. Die Kulturen wurden entweder im Dunkeln, in Weißlicht, Blaulicht (450 nm) oder Rotlicht (680 nm) inkubiert (Fetzner, 2011).

Ein putativer Grünlicht-Rezeptor mit der charakteristischen Rhodopsindomäne wurde ebenfalls entdeckt (siehe Abb. 13).

Auch ein zum Velvet homologes Protein wurde gefunden (siehe Abb. 13). Die charakteristische PEST-Domäne kommt hier ebenfalls vor, jedoch fehlt ein Kernlokalisierungs- und Kernexportsignal (NES). In *A. nidulans* ist VeA als Interaktionspartner mit den anderen Photorezeptoren FphA, LreA und LreB beschrieben; zusätzlich ist es ein Bestandteil des VelB-VeA-LaeA Komplexes (Bayram *et al.*, 2008).

3. Material und Methoden

3.1 Chemikalien

Die verwendeten Chemikalien und Reagenzien stammten, wenn nicht im Folgenden gesondert aufgeführt, von den Firmen AppliChem (Darmstadt), Bioline (Luckenwalde), Biozym (Hessisch Oldendorf), Invitrogen (Karlsruhe), Macherey-Nagel (Düren), Merck (Darmstadt), Qiagen (Hilden), Roche (Mannheim), Roth (Karlsruhe) und Sigma-Aldrich (Steinheim). Restriktionsenzyme und DNA- sowie RNA-Marker stammten von New England Biolabs (Frankfurt) und Fermentas (St. Leon-Rot).

3.2 Verwendete Stämme von A. alternata, A. nidulans und E. coli

Es wurde in dieser Arbeit mit folgenden Stämmen der Ascomyceten *A. alternata* und *A. nidulans* sowie des Proteobakteriums *E. coli* gearbeitet (siehe Tabelle 1). Als Promotor wurde immer ein Bereich von 1000 bp upstream des ORF definiert.

Stamm	Genotyp	Referenz
DSM12633	Wildtyp	DSMZ (Braunschweig)
ATCC66981	Wildtyp	Virginia Bioinform. Inst.
		(Blacksburg); Lawrence
		Lab
SSS4	DSM 12633 transformiert mit PCR-	Sonja Sand, Karlsruhe
	Fusionskonstrukt	
	fphA LB::hph::fphA RB	
SSS2	DSM 12633 transformiert mit	Sonja Sand, Karlsruhe
	Fusionskonstrukt	(Pruss <i>et al.</i> , 2014)
	IreA LB::hph::IreA RB	
SRD6	DSM 12633 transformiert mit pRD37	Ramona Fetzner,
	(trpC(p)::cmr1 sense::IT::cmr1	Karlsruhe (Fetzner <i>et</i>
	antisense::(t)trpC::hph)	<i>al.</i> , 2014)
SRD8	DSM 12633 transformiert mit pRD59	Ramona Fetzner,
	(trpC(p)::pksB sense::IT::pksB	Karlsruhe
	antisense::trpC(t):hph)	

|--|

ATCC66981 transformiert mit pKS8	Diese Arbeit
(<i>trpC</i> (<i>p</i>):: <i>laeA</i> :: <i>trpC</i> (<i>t</i>))	
SSS4 transformiert mit Fusionskonstrukt,	Diese Arbeit
lreA(p)::lreA::lreA(t), trp(p)::nptll::trpC(t)	
ATCC66981 transformiert mit pRD98	Diese Arbeit
(trpC(p)::pksB TF sense::IT::pksB TF	
antisense::trpC(t):hph)	
ATCC66981 transformiert mit pRD49	Diese Arbeit
(trpC(p)::pksD sense::IT::pksD	
antisense::trpC(t):hph	
ATCC66981 transformiert mit veA	Diese Arbeit
Disruptionskonstrukt; LB::hph::RB	
ATCC66981 transformiert mit pksB	Diese Arbeit
Disruptionskonstrukt;	
<i>pksB</i> LB::hph:: <i>pksB</i> RB	
	ATCC66981 transformiert mit pKS8 $(trpC(p)::laeA::trpC(t))$ SSS4 transformiert mit Fusionskonstrukt, $lreA(p)::lreA::lreA(t), trp(p)::nptll::trpC(t)$ ATCC66981 transformiert mit pRD98 $(trpC(p)::pksB TF sense::lT::pksB TF$ antisense::trpC(t):hph)ATCC66981 transformiert mit pRD49 $(trpC(p)::pksD sense::lT::pksD$ antisense::trpC(t):hphATCC66981 transformiert mit veADisruptionskonstrukt; LB::hph::RBATCC66981 transformiert mit pksBDisruptionskonstrukt; LB::hph::RBpksB LB::hph::pksB RB

Tabelle 2: Verwendete A. nidulans-Stämme

Stamm	Genotyp	Referenz
RMS011	<i>yA1</i> ; <i>pabaA1</i> ; <i>ΔargB::trpCΔB</i> ; <i>veA1</i> ; trp801	Stringer et al.,
		1991
GR5	pyrG89; wA3; pyroA4; veA1	G. May,
		Houston, USA
SRF200	pyrG89; ΔargB::trpCΔB; pyroA4; veA1	Karos & Fischer,
		1999
SKV103	WIM126 x SRF200; <i>pyGF89; pyroA4; veA+</i>	Vienken &
		Fischer , 2006
SKS7	RMS011 transformiert mit pKS16 (alcA::cmrA) und pAH16	Diese Arbeit
	(pksA(p)::lccC; argB)	
SKS8	RMS011 transformiert mit pAH16 (<i>pksA(p)::lccC; argB</i>)	Diese Arbeit
SKS10	RMS011 transformiert mit pKS21 (alcA::pksB TF	Diese Arbeit
	(AAT_PP07107), <i>pyr-4</i>) und pKS23 (<i>pksB(p)::lccC; argB</i>)	
SKS11	RMS011 transformiert mit pKS20 (<i>pksD(p)::lccC; argB</i>)	Diese Arbeit
SKS12	RMS011 transformiert mit pKS23 (<i>pksB(p)::lccC; argB</i>)	Diese Arbeit

SKS13	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4)</i> und pKS20 (<i>pksD(p)::lccC; argB</i>)	
SKS21	GR5 transformiert mit <i>pksD</i> in Efimov in KpnI und PacI	Diese Arbeit
	(pSM14, <i>pyr-4); alcA::pksD</i>	
SKS22	SRF200 transformiert mit <i>pksD</i> in Efimov in KpnI und PacI	Diese Arbeit
	(pSM14, <i>pyr-4</i>); <i>alcA::pksD</i>	
SKS23	GR5 transformiert mit <i>pksD</i> in Efimov in AscI und PacI	Diese Arbeit
	(pSM14 <i>pyr-4</i>); <i>alcA::</i> 3xHA <i>::pksD</i>	
SKS24	SRF200 transformiert mit <i>pksD</i> in Efimov in AscI und PacI	Diese Arbeit
	(pSM14, <i>pyr-4</i>); <i>alcA::</i> 3xHA <i>::pksD</i>	
SKS25	RMS011 transformiert mit pKS42 (07105(p)::lccC; argB)	Diese Arbeit
SKS26	RMS011 transformiert mit pKS44 (07109(p)::lccC; argB)	Diese Arbeit
SKS27	RMS011 transformiert mit pKS45 (07110(p)::lccC; argB)	Diese Arbeit
SKS28	RMS011 transformiert mit pKS46 (07112(p)::lccC; argB)	Diese Arbeit
SKS29	RMS011 transformiert mit pKS21 (alcA::pksB TF	Diese Arbeit
	(AAT_PP07107); <i>pyr-4</i>) und pKS42 (<i>07105(p)::lccC; argB</i>)	
SKS30	RMS011 transformiert mit pKS21 (alcA::pksB TF	Diese Arbeit
	(AAT_PP07107); <i>pyr-4</i>) und pKS44 (<i>07109(p)::lccC; argB</i>)	
SKS31	RMS011 transformiert mit pKS21 (alcA::pksB TF	Diese Arbeit
	(AAT_PP07107); <i>pyr-4)</i> und pKS45 (<i>07110(p)::lccC; argB</i>)	
SKS32	RMS011 transformiert mit pKS21 (alcA::pksB TF	Diese Arbeit
	(AAT_PP07107); <i>pyr-4</i>) und pKS46 (<i>07112(p)::lccC; argB</i>)	
SKS33	RMS011 transformiert mit pKS47 (07106(p)::lccC; argB)	Diese Arbeit
SKS34	RMS011 transformiert mit pKS50 (07384(p)::lccC; argB)	Diese Arbeit
SKS35	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4)</i> und pKS50 (<i>07384(p)::lccC; argB</i>)	
SKS36	RMS011 transformiert mit pKS21 (alcA::pksB TF	Diese Arbeit
	(AAT_PP07107); <i>pyr-4</i>) und pKS47 (<i>07106(p</i>):: <i>lccC; argB</i>)	
SKS37	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4</i>) und pKS53 (<i>07386(p)::lccC; argB</i>)	

SKS38	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4)</i> und pKS55 (<i>07391(p)::lccC; argB</i>)	
SKS39	RMS011 transformiert mit pKS53 (07386(p)::lccC; argB)	Diese Arbeit
SKS40	RMS011 transformiert mit pKS57 (07389(p)::lccC; argB)	Diese Arbeit
SKS41	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4)</i> und pKS57 (<i>07389(p)::lccC; argB</i>)	
SKS42	RMS011 transformiert mit pKS58 (07392(p)::lccC; argB)	Diese Arbeit
SKS43	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4)</i> und pKS58 (<i>07392(p)::lccC; argB</i>)	
SKS44	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4)</i> und pKS55 (<i>07391(p)::LccC; argB</i>)	
SKS45	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4)</i> und pKS56 (<i>07394(p)::lccC; argB</i>)	
SKS46	RMS011 transformiert mit pKS52 (07388(p)::lccC; argB)	Diese Arbeit
SKS47	RMS011 transformiert mit pKS42 (07108(p)::lccC; argB)	Diese Arbeit
SKS48	RMS011 transformiert mit pKS49 (07372(p)::lccC; argB)	Diese Arbeit
SKS49	RMS011 transformiert mit pKS56 (07394(p)::lccC; argB)	Diese Arbeit
SKS50	RMS011 transformiert mit pKS21 (alcA::pksB TF	Diese Arbeit
	(AAT_07107), <i>pyr-4)</i> und pKS43 (<i>07108(p)::lccC; argB</i>)	
SKS51	RMS011 transformiert mit pKS54 (07390(p)::lccC; argB)	Diese Arbeit
SKS53	RMS011 transformiert mit pKS65 (07398(p)::lccC; argB)	Diese Arbeit
SKS54	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4</i>) und pKS65 (<i>07398(p)::lccC; argB</i>)	
SKS55	RMS011 transformiert mit pKS63 (07512(p)::lccC; argB-)	Diese Arbeit
SKS56	RMS011 transformiert mit pKS22 (alcA::pksD TF	Diese Arbeit
	(AAT_07393), <i>pyr-4</i>) und pKS63 (<i>07512(p)::lccC; argB</i>)	

SKS57	RMS011 transformiert mit pKS22 (<i>alcA::pksD TF</i> (AAT_07393), <i>pyr-4)</i> und pKS52 (<i>07388(p)::lccC; argB</i>)	Diese Arbeit
SKS58	RMS011 transformiert mit pKS22 (<i>alcA::pksD TF</i> (AAT_07393), <i>pyr-4)</i> und pKS54 (<i>07390(p)::lccC; argB</i>)	Diese Arbeit
SKS59	SKV103 transformiert mit pKS59 (<i>alcA::gfp::lreA; pyr4</i>)	Diese Arbeit
SKS60	SKV103 transformiert mit pKS60 (<i>alcA::gpf::fphA</i> ; <i>pyr4)</i>	Diese Arbeit
SKS61	SKV103 transformiert mit pKS62 (<i>alcA::gfp::veA; pyr4</i>)	Diese Arbeit

Tabelle 3: Verwendete *E. coli*-Stämme

Stamm	Genotyp	Referenz
TOP 10	F- <i>mcrA</i> Δ(<i>mrr-hsd</i> RMS- <i>mcr</i> BC); Ø80 <i>lacZ</i> Δ <i>M15</i>	Invitrogen,
	Δ lacX74; recA1; araD139 Δ (ara-leu)7679; galU;	Karlsruhe
	galK; rpsL (Str ^R) endA1; nupG	
XL1-Blue	recA1; endA1; gyrA96; thi-1; hsdR17; supE44;	Stratagene,
	<i>erlA1; lac</i> [F'proAB <i>lacl^QZ∆</i> M15:Tn10 (Tet ^R)]	La Jolla, USA

Tabelle 4: Liste der *A. nidulans* Auxotrophie-Marker bzw. nützliche Mutationen und *A. alternata* dominante Marker

Marker	Nachweis/Funktion	Chromosom
A. nidulans		
pyrG89	Uracil-, Uridin-Auxotrophie (Orotidin-5'-	1
	Phosphat-Decarboxylase)	
pyroA4	Pyridoxin-Auxotrophie	IV
biA1	Biotin-Synthese	I
riboB2	Riboflavin-Biosynthese	VIII
argB2	Arginin-Biosynthese	III
pabaA1	p-Aminobenzoesäure-Auxotrophie;	I
	Folsäurebiosynthese	
veA1	Lichtunabhängige Konidienbildung	VIII
A. alternata		
hph	Hygromycin B (Roth)	-
nptll	Geneticin (Roth)	-
bar	Basta	-
nat	Nourseotricin	-
3.3 Kultivierung der Organismen

3.3.1 Medien und Zusätze für die Kultivierung von *E. coli*, *A. nidulans* und *A. alternata*

Sowohl die *A. nidulans* als auch die *E. coli*-Kulturen wurden, sofern nicht gesondert erwähnt, entweder auf Festmediumplatten (mit 15 g Agar pro Liter) oder in Flüssigmedium in Erlenmeyerkolben (in Schüttelinkubatoren bei 30°C bzw. 37°C aerob bei 180 rpm) inkubiert. *A. alternata* Kulturen wurden, sofern nicht anders beschrieben, bei 28°C entweder statisch im Feuchtinkubator oder schüttelnd bei 120 rpm inkubiert. Hitzeempfindliche Antibiotika, Aminosäuren und Nukleotide wurden sterilfiltriert. Tabelle 5, 6 und 7 zeigen die Zusammensetzung der für *A. nidulans, A. alternata* und *E. coli* genutzten Medien.

Medium	Zusammensetzung (pro Liter)
Luria Bertani (LB)	10 g Trypton; 5 g Hefeextrakt; 5 g NaCl (+ 15 g Agar für Festmedium)
Super optimal broth with catabolite repression (SOC)	20 g Trypton; 5 g Hefeextrakt; 0,58 g NaCl; 0,185 g KCl; 2,03 g MgCl ₂ x 7H ₂ O; 2,46 g MgSO ₄ x 7 H ₂ O; 3,6 g Glukose

Tabelle 5: Verwendete Medien zur Anzüchtung von E. coli

Tabelle 6: Antibiotika für E. coli-Medien

Antibiotikum	Endkonzentration
Ampicillin	100 mg/l
Kanamycin	50 mg/l
Streptomycin	50 mg/l

Medium	Zusammensetzung (pro Liter)
Modifiziertes Czapek-Dox	40 g Glukose; 1 g Hefeextrakt; 50 ml Salzstammlösung (pH
(mCDB)	5,5)
Richard's Flüssigmedium	20 g Saccharose; 10 g KNO ₃ ; 5 g KH ₂ PO ₄ ; 2,5 g MgSO ₄ x 7
	H ₂ O; 1 g Hefeextrakt
Regenerationsmedium	342,7 g Saccharose; 0,5 g Casein-Aminosäure-Hydrolysat;
	0,5 g Hefeextrakt (+15 g Agar)

Salzstammlösung	20 g NaNO ₃ ; 5 g NH ₄ Cl; 20 g KH ₂ PO ₄ ; 5g KCl; 5 g NaCl; 10 g
	$MgSO_4 \ge 7 H_2O; \ 0.2 g FeSO_4 \ge 7 H_2O; \ 0.2 g ZnSO_4 \ge 7 H_2O$
Potatoe Dextrose Agar (PDA)	39 g Potatoe Dextrose Agar
1% Glucose und 0,5% Yeast extract broth (GYEB)	10 g Glucose; 5 g Hefeextrakt

Tabelle 8: Verwendete Medien und Lösungen zur Anzüchtung von A. nidulans

Medium	Zusammensetzung (pro Liter)
Vollmedium	50 ml Salzstammlösung; 20 g Glukose; 2 g Pepton; 1 g Hefeextrakt;
(CM)	1 ml Vitaminlösung; 1 ml Spurenelementlösung; mit 10 M NaOH auf
	pH 6,5 einstellen
Minimalmedium	50 ml Salzstammlösung; 20 g Glukose (oder Threonin/Glycerin); 1 ml
(MM)	Spurenelementlösung; mit 10 M NaOH auf pH 6,5 einstellen
	(+ entsprechende Selektionsmarker)
Salzstammlösung	120 g NaNO ₃ ; 10,4 g KCl; 10,4 g MgSO ₄ x 7 H ₂ O; 30,4 g KH ₂ PO ₄
(20-fach)	
Spurenelementlösung	22 g ZnSO ₄ x 7 H ₂ O; 11 g H ₃ BO ₃ ; 5 g MnCl ₂ x 4 H ₂ O; 5 g FeSO ₄ x 7
(1000-fach)	$H_{2}O;1,6\;g\;CoCl_{2}\;x\;5\;H_{2}O;1,6\;g\;CuSO_{4}\;x\;5\;H_{2}O;1,1\;g\;(NH_{4})_{6}\;Mo_{7}O_{24}$
	x 4 H ₂ O; 50 g Na ₄ EDTA; mit Kaliumhydroxidplätzchen auf pH 6,5-6,8
	einstellen
Vitaminlösung	0,1 g D-Biotin; 0,1 g Pyridoxin-HCl; 0,1 g Thiamin-HCl; 0,1 g
(1000-fach)	Riboflavin; 0,1 g p-Aminobenzoesäure; 0,1 g Niacinsäure

Tabelle 9: Verwendete Auxotrophiemarker für *A. nidulans* und dominante Marker für *A. alternata*

Substanz	Konzentration der Stammlösung	Eingesetzte Menge
Uracil	-	1 g/l
Uridin	-	1 g/l
Biotin	0,05%	1 ml/l
Pyridoxin-HCL	0,1%	1 ml/l
Hygromycin B	100 mg/ml	80 μg/ml
Geneticin	100 mg/ml	200 µg/ml

3.3.2 Kultivierung unter verschiedenen Lichtbedingungen

Für die Kultivierung von *A. alternata* und *A. nidulans* wurden verschiedene Lichtverhältnisse in Inkubatoren simuliert. Für Versuche im Weißlicht wurde eine im Inkubator installierte Energiesparlampe benutzt, für die Dunkelkontrollen wurden Proben im gleichen Inkubator in einer lichtdichten Box inkubiert. Blau- und Rotlicht wurde mit Wellenlängen-spezifischen LED-Paneelen (450 nm und 680 nm) erzeugt, welche ebenfalls in lichtdichten Boxen installiert waren. Durch eine Diffusorfolie wurde eine Streuung des Lichts erreicht, wodurch die Intensitäten am Boden der Boxen letztlich 0,72 W/m² für Blaulicht und 1,45 W/m² für Rotlicht betrugen. Das Weißlicht hatte eine Intensität von 1,29 W/m².

3.4 Molekularbiologische Methoden

3.4.1 Plasmide

Tabelle 10: Verwendete Plasmide

Plasmid	Eigenschaften	Referenz
pJet1.2/blunt	Klonierungsvektor, Bestandteil des CloneJET PCR	Fermentas, St.
	Cloning Kits	Leon-Rot
pSilent	Gene silencing vector, Amp ^R , <i>hph</i>	Fungal Genetics and
		Biology 42: 275-283
pSM14	pMCB17 apx mit 3xHA-Tag in KpnI & AscI pyr-4	Sylvia Müller,
	(<i>alcA::</i> 3xHA <i>; pyr-4</i>)	Karlsruhe
pKA12	pJET + <i>trpC(p)::gfp::trpC(t);</i> hph	Diese Arbeit
pMT-Ove_lccC	alcA::lccC; argB	Matthias Toews,
		Karlsruhe
pRD49	Silencing Vektor der <i>pksD</i> ; <i>trpC(p)::pksD</i>	Ramona Fetzner,
	sense::IT:: <i>pksD</i> antisense <i>::trpC(t), hph</i>	Karlsruhe
pRD59	Silencing Vektor der pksB; trpC(p)::pksB	Ramona Fetzner,
	sense::IT:: <i>pksB</i> antisense <i>:: trpC(t), hph</i>	Karlsruhe
pRD97	Überexpression des <i>TF</i> in pksD-Gencluster;	Ramona Fetzner,
	trpC(p)::TF(pksD) ORF::trpC(t), hph	Karlsruhe
pRD98	Silencing Vektor des TF im pksB-Gencluster;	Ramona Fetzner,
	<pre>trpC(p)::TF sense::IT::TF antisense::trpC(t), hph</pre>	Karlsruhe
pKS8	konstitutive Expression von <i>laeA</i> , <i>trpC(p)::laeA</i>	Diese Arbeit
	ORF::trpC(t)	

pKS12	Silencing Vektor des LaeA-Homologs, trpC(p)::laeA	Diese Arbeit
	sense::IT:: <i>laeA</i> antisense:: <i>trpC(t), hph</i>	
pKS16	alcA::cmrA in pJet blunt	Diese Arbeit
pKS19	<i>alm</i> in pJet blunt	Diese Arbeit
pKS20	pksD(p)::lccC; argB	Diese Arbeit
pKS21	alcA::pksB TF (AAT_PP07107); pyr-4	Diese Arbeit
pKS22	alcA::pksD TF (AAT_PP07393); pyr-4	Diese Arbeit
pKS23	pksB(p)::lccC; argB	Diese Arbeit
pKS32	<i>cmrA</i> cDNA 2kb von ATG + 200 bp upstream	Diese Arbeit
pKS38	Silencing Vektor der <i>pksD</i> , <i>trpC(p)::pksD</i>	Diese Arbeit
	sense::IT:: <i>pksD</i> antisense <i>::trpC(t), hph</i>	
pKS40	<i>pksD</i> in Efimov in <i>Kpn</i> I und <i>Pac</i> I	Diese Arbeit
pKS42	07105(p)::lccC; argB	Diese Arbeit
pKS43	07108(p):: lccC; argB	Diese Arbeit
pKS44	07109(p):: lccC; argB	Diese Arbeit
pKS45	07110(p):: lccC; argB	Diese Arbeit
pKS46	07112(p):: lccC; argB	Diese Arbeit
pKS47	07106(p):: lccC; argB	Diese Arbeit
pKS50	07384(p):: lccC; argB	Diese Arbeit
pKS51	07385(p):: lccC; argB	Diese Arbeit
pKS52	07388(p):: lccC; argB	Diese Arbeit
pKS53	07386(p):: lccC; argB	Diese Arbeit
pKS54	071390(p)::lccC; argB	Diese Arbeit
pKS55	07391(p):: lccC; argB	Diese Arbeit
pKS56	07394(p):: lccC; argB	Diese Arbeit
pKS57	07389(p):: lccC; argB	Diese Arbeit
pKS58	07392(p):: lccC; argB	Diese Arbeit
pKS59	alcA::gfp::lreA; pyr-4	Diese Arbeit
pKS60	alcA::gfp::fphA; pyr-4	Diese Arbeit
pKS62	alcA::gfp::veA; pyr-4	Diese Arbeit
pKS63	07512(p)::lccC; argB	Diese Arbeit
pKS65	07398(p)::lccC; argB	Diese Arbeit
pKS73	pJET mit VeA Disruptionskonstrukt blunt; LB:: <i>hph</i> :RB	Diese Arbeit
pKS81	alcA::GFP::/reA(cDNA); pyr-4	Diese Arbeit
pKS82	alcA::gfp::veA(cDNA); pyr-4	Diese Arbeit
pKS83	alcA::gfp::fphA(cDNA); pyr-4	Diese Arbeit

3.4.2 Präparation von Plasmid-DNA aus E. coli

Medien	Zusammensetzung
Zell-Suspensionspuffer	5 ml 1 M TrisCl pH 7,5; 2 ml 0,5 M EDTA pH 8,0; 10 mg
(100ml)	RNase
Zell Lysis-Puffer	0,2 M NaOH; 1% SDS
Kalium-Acetat	1,5 M KAc pH 4,8
TE	10 mM TrisCl pH 7,4; 1 mM EDTA pH 8,0

Für die Plasmid-Minipräparation wurde eine Übernachtkultur aus einer auf LB-Medium gewachsenen einzelnen E.coli-Kolonie hergestellt. Die Kolonie wurde hierfür gepickt und in 2,5 ml LB Medium mit entsprechendem Antibiotikum über Nacht bei 37°C im Schüttler inkubiert. Nun wurden 1,5 ml dieser Kultur in ein Eppendorfgefäß überführt und fünf Minuten bei 13 000 rpm zentrifugiert. Der Rest wurde aufgehoben, um später damit einen Stock anzuimpfen. Der Überstand wurde nach der Zentrifugation verworfen und das Pellet in 200 µl Zell-Suspensionspuffer resuspendiert. Anschließend wurden 200 µl Zell-Lysis-Puffer zugegeben (2-3 Minuten Inkubation), vorsichtig invertiert und 200 µl 1,5 M KAc pH 4,8 zugegeben, um Proteine zu fällen. Nach fünfminütiger Inkubation auf Eis wurden die Proben 5 Minuten auf höchster Stufe (13 000 rpm) zentrifugiert. Der klare Überstand wurde in ein frisches Eppendorfgefäß überführt und mit 500 µl 100% Isopropanol gemischt. Die Plasmid-DNA wurde dann für 20 Minuten auf Eis gefällt. Nun folgte eine zehnminütige Zentrifugation auf höchster Stufe. Der Überstand wurde anschließend verworfen und das Pellet mit 500 µl kaltem 70% EtOH gewaschen. Erneut wurde 3 Minuten auf höchster Stufe zentrifugiert, der Überstand verworfen und das Pellet getrocknet. Letztendlich wurde das Pellet in 30 µl TE gelöst. Mit Hilfe eines Restriktionsverdaus wurde die Richtigkeit des Plasmides überprüft. Falls eine Sequenzierung nötig war, wurde diese durch die MWG Eurofins AG (Ebersberg) durchgeführt.

Um die Plasmid-DNA für die Protoplastentransformation vorzubereiten, wurde eine Natriumacetat-Fällung durchgeführt. Hierbei wurde zur Plasmid-DNA 1/10 des Volumens Natriumacetat pH 5,2 zugegeben und gut gemischt. Anschließend wurde das 2 bis 2,5-fache Volumen kaltes 100%iges EtOH zugegeben und nochmals gut gemischt. Die Fällung der DNA erfolgte auf Eis für mindestens 20 Minuten. Nun

wurde für 15 Minuten zentrifugiert, anschließend mit 1 ml 70% igem EtOH gewaschen und erneut zentrifugiert. Das Pellet wurde getrocknet und in 30 μ l TE gelöst. Somit wurde eine höhere Konzentration und bessere Reinheit der Plasmid-DNA erreicht.

3.4.3 Restriktion von DNA

Restriktionsverdaue wurden in der Regel in 10 µl Gesamtvolumen durchgeführt. Es wurden 0,3 µl Enzym verwendet. Die jeweilige Zusammensetzung des Ansatzes und Reaktionstemperatur entsprach den Angaben des Herstellers. Der Ansatz wurde im Allgemeinen eine Stunde, bei einem Doppelverdau zwei Stunden lang verdaut. Wurde ein HF-Enzym (High Fidelity) verwendet, wurde lediglich 30 Minuten verdaut.

3.4.4 Gelelektrophorese und Isolierung von DNA-Fragmenten aus Agarosegelen

DNA-Fragmente wurden je nach Größe auf 1-2%ige Agarosegele aufgetragen und in 0,5xTAE-Puffer (40 mM Tris-Acetat pH 8,0, 1 mM EDTA) aufgetrennt. Als Größenvergleich wurden jeweils 5 µl 1 kb DNA-Marker (NEB) mit aufgetragen. Nachdem die Gele ca. 30 Minuten einer Spannung von 135 Volt ausgesetzt waren, wurden sie im Ethidiumbromidbad gefärbt und unter UV-Licht fotografiert. Falls nötig, wurden die DNA-Banden mit einem Skalpell aus dem Gel ausgeschnitten und durch Säulen-Elution mit Hilfe des Zymoclean Gel DNA Recovery Kit (ZymoResearch, USA) aufgereinigt. Qualität und Quantität der eluierten DNA wurde anschließend mit dem Nanodrop Spektrometer ND-1000 (Peqlab, Erlangen) überprüft.

3.4.5 Isolierung von genomischer DNA aus A. nidulans und A. alternata

Lösung	Zusammensetzung
Extraktionspuffer	50 ml EDTA pH 8; 0,2% SDS
8 M KAc	29,45 g Kalium-Acetat in 60 ml Aqua dest. lösen; Zugabe von 11,5 ml
	Essigsäure; mit HCl konz. einen pH von 4,2 einstellen; auf 100 ml mit
	Aqua dest. auffüllen

Tabelle 12: Lösungen zur Isolierung genomischer DNA

Um eine Kahmhaut zu erzeugen, wurde eine kleine Petrischale mit Minimalmedium mit entsprechenden Markern im Falle von A. nidulans und mit mCDB im Falle von A. alternata befüllt und dick mit Sporen beimpft. Nach ca. 15 Stunden für A. nidulans bzw. 2-3 Tagen Inkubation für A. alternata wurde die gebildete Kahmhaut abgenommen, zwischen Papiertüchern trocken gepresst und in flüssigem Stickstoff gemörsert. Nach Zugabe von 1 ml Extraktionspuffer wurden die Proben für 1,5 Stunden bei 68°C inkubiert. Hierbei wurden die Eppendorfgefäße immer wieder invertiert, um Myzel und Puffer gut zu vermischen. Nach dieser Inkubationsphase wurde 5 Minuten bei 13 000 rpm zentrifugiert, der Überstand in ein neues Eppendorfgefäß überführt, 60 µl 8 M Kaliumacetat (pH 4,2) zur Proteinfällung zugegeben, gemischt und 5 Minuten auf Eis inkubiert. Danach wurde wieder 5 Minuten bei 13 000 rpm zentrifugiert, der Überstand in ein neues Eppendorfgefäß überführt und mit dem gleichen Volumen Isopropanol zur DNA-Fällung vermischt. Das Gemisch wurde 10 Minuten auf Eis inkubiert. Anschließend wurde wieder 5 Minuten bei 13 000 rpm zentrifugiert, das DNA-Pellet dann zweimal mit 100 µl 70% igem EtOH gewaschen, luftgetrocknet und am Ende in 50-100 µl TE-Puffer bei 68°C gelöst. Am Ende wurde noch RNAse zugegeben, um die RNA abzubauen. 5 μl wurden auf ein Agarosegel aufgetragen, um die Reinheit der genomischen DNA zu überprüfen.

Parallel dazu wurde eine weitere Methode zur Isolierung angewendet, die keine Bildung von Kahmhaut erfordert (freundlicherweise von Julia Meyer zur Verfügung gestellt). Hierbei wurde mit der Impföse etwas Myzel von einer gut bewachsenen Platte abgekratzt und in 1 ml Extraktionspuffer gegeben. Zusammen mit Metallkügelchen wurde nun kräftig für 1-3 Minuten gevortext. Anschließend wurden die Proben für 20 Minuten auf -80°C gestellt. Danach folgte ein Inkubationsschritt von 90 Minuten bei 68°C. Nun wurde für 10 Minuten zentrifugiert, der Überstand in ein neues Eppendorfgefäß überführt, 100 µl 8 M Kaliumacetat (pH 4,2) zur Proteinfällung zugegeben und für 10 Minuten auf Eis inkubiert. Anschließend wurde für 10 Minuten auf höchster Stufe zentrifugiert, der Überstand erneut in ein neues Eppendorfgefäß überführt, nit dem gleichen Volumen 100% Isopropanol gemischt und die DNA für 10 Minuten auf Eis gefällt. Dann wurde nochmals für 10 Minuten zentrifugiert und das DNA-Pellet anschließend zweimal mit 70%igem Ethanol gewaschen. Nun wurde das Pellet für 10 Minuten bei 68°C getrocknet und danach ebenfalls bei 68°C in 50 µl TE-Puffer gelöst.

3.4.6 Polymerasekettenreaktion (PCR)

Die PCR-Programme wurden bei einer Denaturierungstemperatur von 98°C durchgeführt, elongiert wurde jeweils bei 72°C, wobei die Elongationszeit von den jeweilig zu amplifizierenden Primern abhing. Die Oligonukleotide wurden hierbei von MWG Eurofins (Ebersberg) bezogen. Die Annealingtemperatur wurde individuell auf die verwendeten Primer angepasst. Als Polymerase diente die Phusion-Polymerase. PCR-Produkte, die noch weiterverwendet wurden, wurden mit dem DNA clean & concentrator Kit (Zymo Research) aufgereinigt.

Tabelle 13: verwendete Oligonukleotide (Restriktionsschnittstellen sind unterstrichen,

Oligonukleotid	Sequenz
cmr1_fwd	ATG GTC TTC TGC ACA TAT TGT G
cmr1_rev	TTA ACC GCG CGC AAG TTT CTC G
laeA_SnaBI_fwd	GTTCAT TACGTA ATG GCG TCG AAT GGG TGA G
laeA_KpnI_rev	GTTCAT <u>GGTACC</u> CTA CAT GTT GTT GTA CGC ATG
laeA_sense_SnaBI_fw	GTTCAT TACGTA CCA CCT CAA GCC CGG C
laeA_sense_HindIII_rev	GTTCAT AAGCTT CTA CAT GTT GTT GTA CGC ATG
laeA_antisense_KpnI_	GTTCAT <u>GGTACC</u> CCA CCT CAA GCC CGG C
fwd	
laeA_antisense_BgIII_	GTTCAT <u>AGATCT</u> CTA CAT GTT GTT GTA CGC ATG
rev	
pSil_Control_fwd	GTG TGA CTC TTA TTA GCA GAC
pSil_Control_rv	GAT CTG CTT GAT CTC GTC TC
pksA_RT_fwd	GAT TGC CAT CGT CGG TAT G
pksA_RT_rev	GGC TCA TCG ATG AAG CAA C
pksB_RT_fwd	GGC TTC ATC TGG ACT CAT C
pksB_RT_rev	CTT GAG CGA TTT GTA TAG TCC
pksC_RT_fwd	GCC AAT GAA GAC GGC CAC
pksC_RT_rev	CCG ATC CAA CTG TGT TCA G
pksD_RT_fwd	GCC GAA TTA CAG GAC CTT C
pksD_RT_rev	CGA GAG TAG CAT GGG TAA G
pksE_RT_fwd	CAC ATC TAT CGC CAC TGG T
pksE_RT_rev	CTT CTT CAG GCT TCA GTC G
pksF_RT_fwd	CAA TAC GCT AGG ATG GGT G
pksF_RT_rev	AGA TGG CTG CTT CTC CAA C

Linker kursiv hervorgehoben)

pksG_RT_fwd	GTC CGA TAG ACC ACT GTA TG
pksG_RT_rev	CAA ATA CTC TGT ATC AAT AGC AG
pksH_RT_fwd	CAA CCC GAA TAT TCC GCT G
pksH_RT_rev	GAG GAT GCG TGT TTG TGT G
pksl_RT_fwd	GGT CTC TTC GAT GCC ATG T
pksl_RT_rev	GCC TGT CCG TAA AAC GTA C
laeA_RT_fwd	CCA CCT CAA GCC CGG C
laeA_RT_rev	CTA CAT GTT GTT GTA CGC ATG
pksA(p)_Xbal_fwd	TGCTT <u>TCTAGA</u> GCA TGA AAA GAA ATC CTT CAC C
pKSA(p)_BsiWI_rev	TGCTT <u>CGTACG</u> CAG CAT ACA TAT ACT CTG GCG
Histon2B_RT_Fwd	CTC TGG CGA CAA GAA GAA G
Histon2B_RT_rev	GTT GAC GAA AGA GTT GAG AAT G
nptII_fwd_NotI	GTTCAT <u>GCGGCCGC</u> T GAA TTC ATG CCA GTT GTT CC
nptII_rev_NotI	GTTCAT <u>GCGGCCGC</u> T GGA TCC TCT AGA AAG AAG GA
nptII_fwd_NotI_kurzer	GTTCAT <u>GCGGCCGC</u> T GAC GTT AAC TGA TAT TGA AGG A
Prom	
NptII_rev_NotI_kurzer	GTTCAT <u>GCGGCCGC</u> T AAC CCA GGG GCT GGT G
Term	
wc1_P1	GTG ACT TCA AGA GAG ATG ATG
wc1_P2	TCC AGA GGG AAG TGA CAT GG
wc1_P3	GTA GTT GGC ATT GGC TTT CCC TAG GCC CCC CAA TCT
	AGT TGT AAT C
nptII_P4	CCT AGG GAA AGC CAA TGC CAA CTA C GAC GTT AAC TGA
	TAT TGA AGG AG
nptII_P5	AAC CCA GGG GCT GGT GA
nptII_P6	GCT GAG GAA CTT GCA AAG CA
H2B_RT_fwd_hT	CTC TGG CGA CAA GAA GAA GC
H2B_RT_rev_hT	GTT GAC GAA AGA GTT GAG AAT GC
wc1_RT_fwd	CTC AAC CAG GAC TTT GTT GG
wc1_RT_rev	GGA AGC TGG ATC TCC CTG
cmr1_RT_fwd	GAA ATG TCA CCT GCG CAA AC
cmr1_RT_rev	GTC TTG GGC TGC GAT AAT G
Cyt-P450_Rt_fwd	CATTTCGTCCAGCTTGCAC
Cyt-P450_RT_rev	CTG TGA CAG CAC CAT GAA G
Pc_RT_fwd	CAT TGA CCA CGT CCA TAG C
Pc_RT_rev	GAA GTC TCT ACA TGG CGA AC
MT_RT_fwd	CTT GCG CAT TAC GCC AAT G

MT_RT_rev	GAA CAC AAT CAA TGC CTC CC
pksD(p)_fwd_Xbal	TGCTT <u>TCTAGA</u> TAG TTT CGC TCG TTC CAA GTT
pksD(p)_rev_BsiWI	TGCTT <u>CGTACG</u> GGC GGA TAG CTG CCT TG
pksB(p)_fwd_Xbal	TGCTT <u>TCTAGA</u> GCG ATC TCT GCA GTA AAG TTC
pksB(p)_ rev: BsiWI	TGCTT <u>CGTACG</u> TCT GGC GAA GAA TTG CTG TAT
pksB_TF_fwd_Pacl	GTCAC <u>TTAATTAA</u> CAT GTC AGA ATC AAA CGG ATC TC
pksB_TF_rev_Xbal	TGCTT <u>TCTAGA</u> CTA ATA GAA AGC CCC ACT CC
pksD_TF_fwd_Ascl	TGCTT <u>GGCGCGCC</u> T ATG AGC CGA CCG CCT ACT
pksD_TF_rev_Pacl	TGCTT <u>TTAATTAA</u> CTA GCT GTC CAC AAT GGG A
cmrA_seq_fwd	GTA CGC CAA CTC TTT CGA AC
cmrA1_rev	GTT GAT CGC GCA CTG TCC
cmrA2_fwd	GGA CAG TGC GCG ATC AAC
cmrA2_rev	ATG TCC ATC TGC CAC TTG TC
cmrA3_fwd	GAC AAG TGG CAG ATG GAC AT
cmrA2_seq_fwd	CTG GAG TAC TTC CTC AAG TC
pksD_RNAi_fwd_Xhol_ sense	GTTCAT <u>CTCGAG</u> CAA CCG AAC ATA CAA ATG ACC
pksD_RNAi_rev_HindIII	GTTCAT <u>AAGCTT</u> GGA TGA TTG AAG GCA AGT TG
_rev_sense	
antisense	GITCAT GGTACC CAA CCG AAC ATA CAA ATG ACC
oksD RNAi rev Ball	GTTCAT AGATCT GGA TGA TTG AAG GCA AGT TG
antisense	
pKS313_RT_fwd	CCA TCG TCA AGA TTC CAC AG
pKS313_RT_rev	TCT CGC CAT ACG TGC TAA AG
pksD_Ascl_fwd	CAAGT <u>GGCGCGCC</u> T ATG GAA CCC ATC GCT ATC GT
pksD_KpnI_fwd	GTTCAT <u>GGTACC</u> ATG GAA CCC ATC GCT ATC GT
pksD_Pacl_rev	GTCAC <u>TTAATTAA</u> TTA TGC TTT GGC TAC CGT CTT
pksD_TF_Xhol_fwd_	GTTCAT CTCGAG CTA AAC ACG GCT ATG CAC TG
sense	
pksD_TF_HindII_rev_ sense	GTTCAT <u>AAGCTT</u> GAG TCT GCA AGT GTG CGC
pksD_TF_KpnI_fwd_	GTTCAT <u>GGTACC</u> CTA AAC ACG GCT ATG CAC TG
antisense	
pksD_TF_BgIII_rev_	GTTCAT <u>AGATCT</u> GAG TCT GCA AGT GTG CGC
antisense	
nptII_fwd	GAC GTT AAC TGA TAT TGA AGG A

nptII_rev	AAC CCA GGG GCT GGT GA
07112_Xbal_fwd	TGCTT <u>TCTAGA</u> GCG TTG ACA AAA TTA CCT AGG
07112_BsiWI_rev	TGCTT <u>CGTACG</u> CTT TAC CCA TGT TGC ACT GAA
07110_Xbal_fwd	TGCTT <u>TCTAGA</u> GAC TCG TAT GTG GTA TGA GC
07110_BsiWI_rev	TGCTT <u>CGTACG</u> GGT TGC GGG TAT CTG CTC
07109_Xbal_fwd	TGCTT <u>TCTAGA</u> CCT ACG TCT GAG TAG TCC
07109_BsiWI_rev	TGCTT <u>CGTACG</u> GCT GAG GAG AAT GGG AGT
07108_Xbal_fwd	TGCTT <u>TCTAGA</u> AGA CCC ACA CGC TGA GAG
07108_BsiWI_rev	TGCTT <u>CGTACG</u> GTT GCG TGT TCC TCC GTC
07106_Xbal_fwd	TGCTT <u>TCTAGA</u> TGT CGG CGA GGT AGA GG
07106_BsiWI_rev	TGCTT <u>CGTACG</u> TGC ACG TCG AAT ATC GAT CG
07105_Xbal_fwd	TGCTT <u>TCTAGA C</u> AC TGT GAA GAC GTA TAA GC
07105_BsiWI_rev	TGCTT <u>CGTACG</u> TGC GTT GCT GTG TTC CCA A
07386_Xbal_fwd	TGCTT <u>TCTAGA</u> GAA TGA GGA TGT TGT AGT TCT T
07386_BsiWI_rev	TGCTT <u>CGTACG</u> TTC TAG TGC CTC GTT GAG TAT
07385_Xbal_fwd	TGCTT <u>TCTAGA</u> CTA GTG CCT CGT TGA GTA TG
07385_BsiWI_rev	TGCTT <u>CGTACG G</u> TT ATG AAT GAG GAT GTT GTA G
07384_Xbal_fwd	TGCTT <u>TCTAGA</u> GTT CAC CGG TTC ATG TTA TC
07384_BsiWI_rev	TGCTT <u>CGTACG</u> ATG AAA TGC CAG TGA TTT CCC
07388_Xbal_fwd	TGCTT <u>TCTAGA</u> CCT ACA TAC GAA TTT AGC ATA TC
07388_BsiWI_rev	TGCTT <u>CGTACG</u> AAC GAT GAT GTA AGT CAA TTG TG
07389_Xbal_fwd	TGCTT <u>TCTAGA</u> GAA TTC ATG GTG TTG ACC CA
07389_BsiWI_rev	TGCTT <u>CGTACG</u> CTT CAG CAG GAT CTC TGT AT
07390_Xbal_fwd	TGCTT <u>TCTAGA</u> CTT GAA GGT GTG TAG GGT G
07390_BsiWI_rev	TGCTT <u>CGTACG</u> CTT GTG TTC GCG ATT ATA ACT TT
07391_Xbal_fwd	TGCTT <u>TCTAGA</u> CTT GTG TTC GCG ATT ATA ACT T
07391_BsiWI_rev	TGCTT <u>CGTACG</u> CTT GAA GGT GTG TAG GGT G
07392_Xbal_fwd	TGCTT <u>TCTAGA</u> GAC GGC CAT AGC ATG TAG
07392_BsiWI_rev	TGCTT <u>CGTACG</u> GTT GAC TTG CGC TCG TCA
07394_Xbal_fwd	TGCTT <u>TCTAGA</u> GCA TGC AGC ACC AAG AAT AC
07394_BsiWI_rev	TGCTT <u>CGTACG</u> GTT GCG TGG GAT ACA GGT
Wc1_fwd_Asc	CAAGT <u>GGCGCGCC</u> T ATG AAT GGC TAT CCA TAT CCC
Wc1_rev_Pac	GTCAC <u>TTAATTAA</u> TCA TGA TTC CGG CTC CGT T
VeA_fwd_Asc	CAAGT <u>GGCGCGCC</u> T ATG CGG ACG TGG CCC TG
VeA_rev_Pac	GTCAC <u>TTAATTAA</u> TCA GTG ACC GAC TGC AGG T
FphA_fwd_Asc	CAAGT <u>GGCGCGCC</u> T ATGTCTCAATCACCCCAGC
FphA_rev_Pac	GTCAC <u>TTAATTAA</u> TTA AGC TGG GGG TTC GGA

07512_Xbal_fwd	TGCTT <u>TCTAGA</u> CTC CAG CGA AAC AAA ACT AAA G
07512_BsiWI_rev	TGCTT <u>CGTACG</u> GTC GGT TCT GTA TCA CGT AT
07395_Xbal_fwd	TGCTT <u>TCTAGA</u> GTC GTT CTA GTC GCA ATG AC
07395_BsiWI_rev	TGCTT <u>CGTACG</u> TGT CGT TGT CGC TTT CTT GT
07398_Xbal_fwd	TGCTT <u>TCTAGA</u> CAA GGT GGT GAT ACT CAG G
07398_BsiWI_rev	TGCTT <u>CGTACG</u> GTT GTC GGA CAT TTG ACA ATC
P1_VeA_fwd	CTC ATG GCA GTC AGT GTC
P3_VeA_mitte_rev	TGC TCC TTC AAT ATC AGT TAA CGT C CTG TTG CTG GTA
	GCT ATT GC
P4_VeA_mitte_fwd	AAA TTC CGT CAC CAG CCC CTG GGT T ATG CCT CCA
	CCG CAG AAC
P6_VeA_rev	CTG ACG TAT GGG CAA TAA AG
P2_VeA_fwd	GAG TAC CAA TTG TGT GGT TG
P5_VeA_rev	GAT CCG TAA CAG CAC ACA TAA
P7_hyg_fwd	GAC GTT AAC TGA TAT TGA AGG A
P8_hyg_rev	AAC CCA GGG GCT GGT GA
VeA_RT_fwd	CTA GCA ACC ACT CAC TGG T
VeA_RT_rev	GGT GCT GTT GGC TTG ACG
07105_RT_fwd	CTA CAA CGT CCA TCA GGA G
07105_RT rev	CAT TCT TGA ACG ATG TGG TAA G
07106_RT_fwd	CAA ACT CCT CGG ACA GAA G
07106_RT rev	CAA GAT AGG GAC GAT CCA G
07107_RT_fwd	CCT TCC TAG ACT GAT CAA GC
07107_RT rev	CCT TCA CCA GCC GAT ATA G
07108_RT_fwd	CAG CTG CAA GAG CCA TCG
07108_RT rev	GTG TGT ATG CTT GCT TGG G
07109_RT_fwd	CTG CCA GTC CTC GTC TTC
07109_RT rev	GTC CTT GTA GTC GAA GAC G
07110_RT_fwd	CCA AGT ACT CTG CAT CTG G
07110_RT rev	CGA CAG GGA CCT GGA ATG
07112_RT_fwd	CGA CAC CTA CTT TGC ATA CC
07112_RT rev	GTG CGT TGC GAT TCG TTT C

3.4.7 Fusion-PCR

Die Fusion-PCR wurde in einem 50 ul Ansatz durchgeführt. In drei einzelnen PCR-Reaktionen wurden die drei Fragmente für die *wc1-*(bzw. *lreA*)-Rekomplementation amplifiziert. Für die linke Flanke wurden die Primer Wc1 P1 und Wc1 P3 benutzt, für die rechte Flanke nptll P4 und nptll P6. Der ORF von *wc1* wurde hierbei aus der genomischen DNA amplifiziert, die nptll-Kassette zusammen mit trpC-Promotor und *trpC*-Terminator aus dem Vektor pKA12. Die PCR-Stücke wurden wie beschrieben aufgereinigt und im molaren Verhältnis von 1:1 für die Fusion-PCR eingesetzt. Hierfür wurden die "nested primer" Wc1 P2 und nptll P5 verwendet, um das gesamte Konstrukt zu amplifizieren. Folgendes Programm wurde für die Fusion-PCR verwendet: Einer initialen Denaturierung bei 98°C für 3 Minuten folgten 35 Zyklen, bestehend aus Denaturierung bei 98°C für 15 Sekunden. Annealing bei 57,5°C für 15 Sekunden und Elongation bei 72°C für 4 Minuten. Am Ende folgte eine finale Elongation bei 72°C für 5 Minuten. Das ca. 8 kb große PCR-Produkt wurde über eine Säule aufgereinigt und direkt für die Protoplasten-Transformation ohne Ligation in einen Vektor eingesetzt. Das gleiche Verfahren wurde angewendet, um die Disruption von veA herzustellen. Hier wurde jedoch als linke und rechte Flanke jeweils ein Teil des Gens zusammen mit einem Stück up- bzw. downstream verwendet. Dazwischen wurde mit Hilfe eines Linkers die Hygromycin-Kassette (amplifiziert aus dem pSilent-Vektor) eingebracht. Das Gen ist somit größtenteils noch vorhanden, aber an einer Stelle durch Hygromycin unterbrochen.

3.4.8 Klonierung von PCR Fragmenten

PCR-Produkte wurden, wie oben beschrieben, mit dem DNA clean & concentrator Kit (Zymo Research) aufgereinigt und entweder ohne Verdau in einen Plasmidvektor (in der Regel pJet1.2/blunt) zwischenkloniert oder direkt verdaut und in den Zielvektor ligiert. Um das Verhältnis von eingesetztem Vektor zu Insert zu berechnen, wurde der Ligation Calculator (Insilico) verwendet. Es wurde in der Regel ein 10 µl Ligationsansatz mit 1 µl 10xLigationspuffer und 1 µl Ligase angesetzt.

3.4.9 Herstellung von RNAi-Konstrukten

Mit Hilfe der RNA-Interferenz oder kurz RNAi kann gezielt die Expression von Genen nach der Transkription herunter reguliert werden. Als Ausgangsvektor wurde für jedes RNAi-Konstrukt der pSilent-1-Vektor verwendet, ein Vektor mit einer Ampicillinresistenz für die Selektion in *E. coli*, einer Hygromycin-Kassette zur Selektion im Zielorganismus *A. alternata,* sowie einer IT-Region. Upstream der IT-Region wurde das sense-Stück des zu regulierenden Gens mit Hilfe der *Xhol, Sna*BI oder *Hind*III-Schnittstelle eingebracht, downstream der IT-Region das antisense-Stück mit Hilfe einer *Bgl*II, *Sph*I, *Stu*I, *Kpn*I oder *Apa*I-Schnittstelle. Als sense-Stück wurde jeweils eine 500-bp große Exon-Region im Gen gewählt.

3.4.10 Transformation von E. coli

Medium	Zusammensetzung
Soc-Medium	20 g Trypton; 5 g Hefeextrakt; 0,58 g NaCl; 0,185 g KCl; 2,03 g
	MgCl2 x 7 H ₂ O; 2,46 g MgSO ₄ x 7 H ₂ O; 3,6 g Glukose

Tabelle 14: verwendete Medien zur Transformation von E.coli-Zellen

Um *E. coli*- Zellen zu transformieren, wurde ein 50 μ l Aliquot der TOP 10-Zellen auf Eis aufgetaut und 5 μ l des zu transformierenden Ligationsproduktes zugegeben. Es folgte eine Inkubation von 20 Minuten auf Eis und ein Hitzeschock bei 42°C für 30–60 Sekunden, bei dem die DNA-Aufnahme erfolgte. Sofort danach wurden zur Regeneration 200 μ l Soc-Medium zugegeben, die Bakterien für 1 Stunde bei 37°C schüttelnd inkubiert und auf LB-Medium mit Ampicillin oder Kanamycin ausplattiert (jeweils 50 μ l auf eine Platte und 150 μ l auf die andere Platte). Nach der Inkubation über Nacht folgte das Screening der Kolonien über Plasmid-Präparation mit anschließendem Restriktionsverdau.

3.4.11 Protoplastentransformation von A. nidulans

Lösung	Zusammensetzung
Glucose (10x)	200 g Glucose pro Liter
Ammonium	9,2 g pro 100 ml
Tartrate (100x)	

Tabelle 15: Lösungen für die Protoplastentransformation von A. nidulans

Lösung 2 (50 ml)	14,9 g MgSO ₄ x 7 H ₂ 0; 1,8 ml Na ₂ HPO ₄ (0,2 M); 0,7 ml NaH ₂ PO ₄ (0,2
	M); pH 5,5; steril filtrieren
Lösung 5 (100 ml)	10,9 g Sorbitol; 10 mM TrisHCl 1 M pH 7,5
Lösung 6 (100 ml)	18,22 g Sorbitol; 1 mM TrisHCl 1 M pH 7,5
Lösung 7 (100 ml)	18,22 g Sorbitol; 1 mM TrisHCl 1 M pH 7,5; 1 mM CaCl ₂
Lösung 8 (100 ml)	30 g PEG-4000; 0,5 ml TrisHCl 1 M pH 7,5; 0,5 ml CaCl ₂ 1 M
MMR (500 ml)	10 ml Salzstammlösung (ohne Stickstoff); 0,5 ml Spurenelemente;
	benötigte Vitamine (Marker); 171 g Saccharose; 7,5 g Agar
	Mit H ₂ 0 auf 500 ml auffüllen; pH 6,8;
	440 ml MMR + 5 ml Ammoniumtartrate (100x) + 50 ml Glucose (10x) =
	MMR
MMR-TOP (500	10 ml Salzstammlösung (ohne Stickstoff); 0,5 ml Spurenelemente; 171
ml)	g Saccharose; 3 g Agar; mit H_20 auf 500 ml auffüllen; autoklavieren

Zur Anzucht des zu transformierenden Stamms wurden 300 ml Minimalmedium mit entsprechenden Markern versehen, mit Konidiosporen beimpft und über Nacht bei 30°C und 180 rpm schüttelnd inkubiert. Die Kultur wurde durch steriles Miracloth abfiltriert und etwa 1 g Myzel wurde in einen 100 ml Erlenmeyerkolben überführt. 200 mg Glucanex sowie 10 ml vorgekühlte Lösung 2 wurden zu dem Myzel hinzugegeben und gut vermischt. Nun wurde 90 Minuten lang bei 30°C und 100 rpm inkubiert, um die Zellwände zu verdauen. Nach dieser Zeit wurde die Bildung der Protoplasten am Mikroskop überprüft. Gegebenenfalls wurde nochmals für weitere 10 Minuten verdaut. Die Suspension wurde in ein steriles 50 ml Falcon gegeben und vorgekühlte Lösung 2 zugefügt, sodass das Volumen 15 ml betrug. Anschließend wurde die Suspension vorsichtig mit Lösung 5 überschichtet, wobei sich zwei Phasen bilden. Die Protoplasten reicherten sich während einer 18-minütigen Zentrifugation bei 4°C und 5000 rpm im Ausschwingrotor in der Grenzschicht zwischen Lösung 2 und Lösung 5 an. Hierbei wird eine langsame Beschleunigungs- sowie Bremsstufe eingestellt. Die an der Phasengrenze gebildete Protoplastenbande wurde mit einer Pasteurpipette abgenommen und in ein neues steriles Falcon überführt. Ab nun wurde alles auf Eis behandelt. Zu den Protoplasten wurde das zweifache Volumen Lösung 6 zugegeben und 12 Minuten bei 5000 rpm und 4°C zentrifugiert. Nach der Zentrifugation wurde der Überstand entfernt, das Protoplastenpellet vorsichtig in 1 ml Lösung 6 resuspendiert und in ein 1,5 ml Eppendorfgefäß überführt. Nun wurde erneut bei 5000 rpm und 4°C 5 Minuten lang zentrifugiert und das Pellet in Lösung 7 resuspendiert. Dabei benötigt man pro Transformation 200 µl Protoplastensuspension und zusätzlich nochmals jeweils 100 µl für eine Positiv- und Negativkontrolle.

Für die eigentliche Transformation wurden jeweils drei MMR-Platten mit entsprechenden Markern vorbereitet sowie eine Platte ohne alle Vitamine für die Negativkontrolle und eine Platte mit allen Vitaminen für die Positivkontrolle. Der MMR-TOP-Agar wurde aufgekocht und warm gestellt. Für jede Transformation wurde ein Falcon benutzt, in welchem 100 µl Lösung 8 vorgelegt wurde. Etwa 10 µg DNA wurde zu den 200 µl Protoplastensuspension gegeben und sanft gemischt. Beides wurde nun zur Lösung 8 in das Falcon gegeben. Der Ansatz wurde für 20 Minuten auf Eis gelagert und anschließend 1 ml Lösung 8 zugegeben und das Falcon bis zu Homogenisierung der Lösung gerollt. Der Transformationsansatz wurde für mindestens 5 Minuten bei Raumtemperatur inkubiert und dann auf 5 ml mit Lösung 7 aufgefüllt. Mit dem handwarmen MMR-Top wurde nun auf 35 ml aufgefüllt und das Gemisch gleichmäßig auf die drei Platten verteilt. Die Positiv- und Negativkontrolle wurde auf die Kontrollplatten aufgeteilt. Nach 2-3 Tagen Inkubation bei 30°C kann man die Transformanten für weitere Untersuchungen auf neue Platten überimpfen.

3.4.12 Protoplastentransformation von A. alternata

Lösung	Zusammensetzung
STC Puffer	1 M Sorbitol; 50 mM Tris (15 ml 1 M Tris, pH 8.0); 50 mM
	CaCl ₂
40% PEG in STC	40 g PEG 3500 in STC (100 ml)
0,7 NaCl	140 ml 5 M NaCl + 860 ml H ₂ 0
Regenerationsmedium	0,5% Hefeextrakt; 0,5% Casaminosäuren; 1 M Saccharose;
	0,8% Agar
PDA	19,5 g Potatoe Dextrose Agar in 500 ml H_2 0
1% Glucose and 0,5%	10 g Glucose; 5 g Hefeextrakt in 1 I
Yeast extract broth (GYEB)	

Tabelle 16: Lösungen für die Protoplastentransformation von A. alternata

reast extract broth (GrED)

Um eine Kultur für die Protoplastentransformation anzuimpfen, sollte möglichst nur das Myzel verwendet werden und so wenig wie möglich Sporen. Hierfür wurden die Sporen einer gut bewachsenen Platte mit einem Skalpell vom Agar gekratzt und an den Seiten gesammelt. Erst dann wurden die Hyphen mit ein wenig Agar abgekratzt und in einen 250 ml Erlenmeyerkolben gegeben. Zum Anwachsen wurde 50 ml

GYEB genutzt. Die so angeimpfte Kultur wurde für 36-48 Stunden bei 25°C und 100 rpm schüttelnd inkubiert. Es sollten einzelne, milchig-weiße Myzelbällchen entstehen. Nach zwei Tagen wurde das Myzel in ein 50 ml Falcon überführt und bei 3 600 rpm für 5 Minuten zentrifugiert. Der Überstand wurde verworfen, 0,7 M NaCl zum Myzel gegeben und erneut für 5 Minuten bei 3 600 rpm zentrifugiert. Dieser Waschschritt wurde danach noch einmal wiederholt. Es sollten 3-5 ml pilzliche Biomasse nach den zwei Waschschritten übrig sein. 10 ml einer 10 mg/ml Kitalase (Wako Chemicals GmbH, Neuss) Lösung wurde steril filtriert und zum Myzel gegeben. Das Gemisch wurde in einen sterilen 250 ml Erlenmeyerkolben überführt und bei 28°C leicht geschüttelt. Nach etwa 90 Minuten sollten so die Zellwände des Myzels komplett verdaut sein. Nach einer Stunde Inkubation wurde der Fortschritt der Protoplastierung überprüft, indem eine kleine Menge unter dem Mikroskop angeschaut wurde. Nach erfolgreicher Protoplastierung wurde das Myzel durch Miracloth abfiltriert und in einem 15 ml Falcon gesammelt. Das Falcon wurde bei 700 rpm und 4°C für 10 Minuten zentrifugiert, anschließend der Überstand entfernt, 10 ml NaCl zugegeben und erneut bei gleichen Bedingungen zentrifugiert. Danach wurde der Uberstand erneut entfernt, 10 ml STC zugegeben und nochmals zentrifugiert. Vorher wurde eine Probe genommen, um die Anzahl der Protoplasten zu bestimmen. Nach dieser Zentrifugation wurde der Überstand entfernt und so viel STC zugegeben, um eine Konzentration von etwa 10 Mio. Protoplasten in 70 µl zu erreichen. Die Protoplasten wurden anschließend zur DNA gegeben, welche vorher schon in einem 1,5 ml Eppendorfgefäß vorbereitet wurde (5-10 µg DNA in 10 µl Wasser). Hierbei sollte mit der 1-ml Pipette gearbeitet werden, da eine kleinere Pipette die Protoplasten beschädigen könnte. Das Gemisch aus Protoplasten und DNA wurde dann für 10 Minuten auf Eis inkubiert, anschließend für 2-10 Minuten in ein 42°C-Wasserbad und danach nochmal für 10 Minuten auf Eis gestellt. 40% PEG in STC wurde zu dem Ansatz gegeben und das Eppendorfgefäß bis zur Homogenisierung der Lösung invertiert. Nach einer 15-minütigen Inkubation bei Raumtemperatur wurden 400 µl des Ansatzes in ein 50 ml Falcon, gefüllt mit geschmolzenem Regenerationsmedium, gegeben und gleichmäßig auf zwei Petrischalen verteilt. Diese Platten wurden für eine Nacht bei 28°C inkubiert und am nächsten Tag mit 25 ml PDA (mit entsprechenden Markern) überschichtet. Nach etwa 5-7 Tagen erschienen die Transformanten.

3.4.13 RNA-Isolierung aus A. alternata

Zur Isolierung von RNA aus *A. alternata* wurde das Fungal RNA Mini-Kit von Omega benutzt. Alle Eppendorfgefäße waren RNAse-frei und es wurden gestopfte Spitzen verwendet, um Verunreinigungen zu verhindern. Zum Animpfen der Kahmhaut wurden kleine Petrischalen mit Sporen beimpft und (wenn nicht anders angegeben) für 7 oder 12 Tage im Dunkeln (oder für die Lichtversuche in Weiß-, Rot- oder Blaulicht) inkubiert. Einen Teil der Kahmhaut wurde dann abgenommen, zwischen Miracloth trocken gepresst, in flüssigem Stickstoff gemörsert und in 500 µl RB-Puffer aufgenommen. Das Eppendorfgefäß wurde nun stark gevortext und anschließend für 3 Minuten auf höchster Stufe zentrifugiert. Der Überstand wurde auf die Homogenisierungssäule gegeben und für 5 Minuten bei 13 000 rpm zentrifugiert. Wieder wurde der Überstand des Durchflusses genommen und in ein neues Eppendorfgefäß überführt, möglichst ohne das Pellet aufzulösen. 250 µl 100 %iges EtOH wurde zugegeben und gut gemischt. Nun wurde die Suspension direkt auf die Matrix der HiBind-RNA-Säulen pipettiert und für 30 Sekunden bei 10 000 rpm zentrifugiert; der Durchfluss wurde verworfen. 500 µl RNA Waschpuffer I wurden auf die Säule gegeben und bei 10 000 rpm für 30 Sekunden zentrifugiert. Anschließend wurde noch zweimal gewaschen, einmal mit 700 µl und einmal mit 500 µl Waschpuffer II jeweils für 30 Sekunden bei 10 000 rpm. Der Durchfluss wurde jeweils verworfen. Nun wurde die Säule auf ein leeres Auffanggefäß gebracht und nochmals 1 Minute zentrifugiert, um den restlichen Puffer aus der Säule zu entfernen. Die Säule wurde auf ein 1,5 ml Eppendorfgefäß gebracht, 50 µl DEPC-Wasser direkt auf die Matrix pipettiert und für 1 Minute bei höchster Geschwindigkeit zentrifugiert, um die DNA in Lösung zu bringen.

Anschließend wurde noch ein DNAse-Verdau durchgeführt, um restliche DNA zu entfernen. Hierfür wurde das TURBO-DNA-free Kit von Invitrogen verwendet. Das 0,1-fache Volumen TURBO DNase Puffer und 1 µl TURBO DNase wurden zur RNA gegeben. Nun wurde für 30 Minuten bei 37°C inkubiert. Das 0,1-fache Volumen DNase Inactiviation Reagenz wurde hinzugefügt, gut gemischt und für 5 Minuten bei Raumtemperatur mit gelegentlichem Mischen inkubiert. Nun wurde für 1,5 Minuten bei 10 000 x g abzentrifugiert und die RNA in ein neues Eppendorfgefäß pipettiert. Am Nanodrop wurde die Quantität und Qualität der Probe gemessen sowie die Qualität zusätzlich auf einem Agarose-Gel überprüft. Nun wurde die RNA auf 50 ng/µl verdünnt und bei -80°C gelagert.

3.4.14 Quantitative Real Time PCR

Für die Real Time PCR wurde das SensiFAST SYBR & Fluorescein One-Step Kit von Bioline (Luckenwalde) verwendet. Die auf 50 ng/µl verdünnte RNA wurde hierbei für die Realtime-PCR eingesetzt. Hierbei wurden von jedem zu testenden Stamm drei unabhängige biologische Replikate hergestellt und zwei technische Replikate pipettiert. Als Kontrollgen wurde das Histon H2B-Gen verwendet, welches konstitutiv exprimiert wird. Für jeden Ansatz wurden 12,5 µl 2xSensiFAST[™] SYBR & Fluorescein One-Step Mix, sowohl 1 µl Forward als auch Reverse Primer, 0.25 µl Reverse Transkriptase, 0,5 µl RiboSafe RNAse Inhibitor, 7,75 µl RNase freies H₂O sowie 2 µl der zu untersuchenden RNA eingesetzt. Somit ergab sich ein Gesamtvolumen von 25 µl pro Reaktion. Die Reaktion erfolgt im BioRad iCycler iQ bei folgenden Einstellungen: Die Reverse Transkription fand für 10 Minuten bei 45°C statt. Danach erfolgte die Polymerasen-Inaktivierung für 2,5 Minuten bei 95°C. Nun folgten 40 Zyklen mit je 10 Sekunden bei 95°C, Annealing für 30 Sekunden bei, je nach Primer, 55-60°C, und Elongation für 30 Sekunden bei 60°C. Für die Dissoziationskurven wurde 1 Minute bei 95°C und 1 Minute bei 55°C angewandt. Für die Schmelzkurven wurden 81 Zyklen mit je 10 Sekunden bei 55°C angewandt, wobei pro Zyklus die Temperatur um 0,5°C gesenkt wurde. Als Template für die Real Time PCR wurde ein etwa 100-150 bp großes Stück in einem Exon des Gens gewählt.

3.4.15 cDNA Gewinnung aus RNA

Die Reagenzien, Puffer und Enzyme für die cDNA-Synthese wurden von der Firma Invitrogen bezogen. Etwa 500 ng RNA wurden für eine Reaktion eingesetzt, hinzu wurden 1 µl Oligo(dT)-Primer und 1 µl dNTP-Mix (10 mM) in ein nukleasefreies Reaktionsgefäß gegeben und mit sterilem, destilliertem H₂O auf 13 µl aufgefüllt. Der Ansatz wurde für 5 Minuten auf 65°C erhitzt und anschließend für mindestens 1 Minute auf Eis inkubiert. Nach kurzem Herunterzentrifugieren wurden 4 µl 5xFirst-Strand Puffer, 1 µl DTT (0,1M) 1 µl RNaseOutTM und zuletzt 1 µl SuperScriptTM III Reverse Transcriptase zugefügt, sodass ein Gesamtvolumen von 20 µl erreicht wurde. Es folgte eine Inkubation für 45 Minuten bei 50°C. Inaktiviert wurde die Reaktion durch einen Inkubationsschritt von 15 Minuten bei 70°C. Um eventuelle RNA-Rückstände zu entfernen wurde 1 µl RNase H zugegeben, welche nach 10 Minuten Lagerung auf Eis für 20 Minuten bei 37°C die restliche RNA abbaute. Die cDNA wurde nun als Template für PCR-Reaktionen verwendet; jeweils 1 µl cDNA wurde für einen 50 µl Ansatz eingesetzt.

3.5. Methoden zum Nachweis von Mykotoxinen

3.5.1 Ermittlung der Sporen-Gesamtzahl von Agarplatten-Kulturen

Um eine Dünnschichtchromatographie durchzuführen wurde eine definierte Sporenanzahl auf Agarplatten ausgebracht. Hierfür wurde im Vorhinein eine Platte mit einer gut gewachsenen *A. alternata*-Kultur mit einigen ml H₂O versehen und die Sporen mittels eines Dreieck-Drahts abgeschabt. Die Suspension wurde anschließend durch steriles Miracloth in ein 50 ml Falcon filtriert, um Myzelreste zu entfernen. Durch eine Zentrifugation von 10 Minuten bei 5 000 rpm wurden die Sporen auf dem Boden des Falcons pelletiert und wieder in 1 ml H₂O gelöst. Die Sporen wurden nun mit Hilfe einer Neubauer Zählkammer ausgezählt. Alternativ wurde die optische Dichte bei 600 nm (OD₆₀₀) in einem Spektrophotometer (Pharmacia Ultraspec III) gemessen. Die gemessene OD wurde mit dem Faktor 1,17x10⁶ multipliziert, um die Sporenanzahl/ml zu erhalten. Dieser Faktor wurde zuvor einmalig mit Hilfe der Helber-Zählkammer und der Auszählung einer Sporen in 30% Glycerin eingestellt, welche bei -20°C gelagert werden konnte.

3.5.2 Dünnschichtchromatographie

3.5.2.1 Dünnschichtchromatographie von A. alternata

Für die Durchführung einer Dünnschichtchromatographie wurde eine definierte Sporenmenge (1×10^6 Sporen) auf kleinen mCDB-Agarplatten aufgebracht und mit Glasperlen gleichmäßig verteilt. Die Inkubation erfolgte für 7 Tage oder 12 Tage bei 28°C, eventuell unter verschiedenen Lichtbedingungen. Aus den bewachsenen Agarplatten wurden mit Hilfe einer 1ml-Spitze drei Agarblöckchen ausgestanzt und in 1 ml Ethylacetat 1 Stunde ausgeschüttelt. Danach wurde der Überstand in ein neues Eppendorfgefäß überführt, dieser zur Trockne eingedampft und anschließend wieder in 100 μ l Ethylacetat bzw. Methanol in Lösung gebracht. Hiervon wurden 20 μ l auf eine 20x10 cm Kieselgel 60 Dünnschichtplatte aufgetragen. Als Standard wurde Dünnschicht-präpariertes Alternariol benutzt. Die mobile Phase war ein Gemisch aus

Toluol:Ethylacetat:Ameisensäure im Verhältnis 5:4:1. Die Fluoreszenzdetektion der Mykotoxine erfolgte bei UV-Licht (365 nm).

3.5.2.2 Dünnschichtchromatographie von A. nidulans

Für die Durchführung einer Dünnschichtchromatographie mit *A. nidulans* wurde ebenfalls eine definierte Sporenmenge (1×10^7 Sporen) mit Hilfe von Glasperlen gleichmäßig auf Minimalmediumplatten mit 2% Threonin ausgebracht und für 4 Tage bei 30°C inkubiert. Nun wurden mit einer 1ml-Spitze drei Scheiben aus dem Agar ausgestochen und in ein 2 ml Eppendorfgefäß gegeben. 1 ml Chloroform wurde zugegeben und das Reaktionsgefäß für 30 Minuten geschüttelt. Der Extrakt wurde in ein neues Gefäß überführt und in der SpeedVac zur Trockne eingedampft. Anschließend wurden die Metabolite in 60 µl Acetonitril oder Methanol durch Vortexen wieder gelöst. 20 µl hiervon wurden auf eine 20x10 cm Kieselgel 60 Dünnschichtplatte aufgetragen. Toluol:Ethylacetat:Essigsäure (80:10:10) wurde als Laufpuffer benutzt.

Um größere Mengen Metabolite zu isolieren, wurde *A. nidulans* in Flüssigmedium mit einer definierten Sporenmenge (1x10⁷) angeimpft und für 4 Tage schüttelnd bei 30°C inkubiert. Das gesamte Myzel wurde über Nacht lyophilisiert und anschließend die Metabolite mit Ethylacetat ausgeschüttelt.

3.6 Biochemische Methoden

3.6.1 Western Blot

3.6.1.1 Protein-Isolierung aus *A. alternata* unter sauren Bedingungen Tabelle 17: Lösungen für die Proteinisolierung aus unter sauren Bedingungen

Lösung	Zusammensetzung
Lysepuffer	10 mM HEPES pH 7,9
1 M HCI	
5 M NaOH	

Um Proteinextrakte auf Histonmodifkationen zu untersuchen, wurde die Isolierung unter sauren Bedingungen durchgeführt. Hierfür wurde eine Sporensuspension von *A. alternata* in Flüssigmedium in Petrischalen angeimpft und für 2 Tage bei 28°C im Dunkeln inkubiert. Die Kahmhaut wurde abgenommen, trockengepresst und in

flüssigem Stickstoff gemörsert. Dann erfolgte die Zugabe des Lysepuffers (+ 1 μ l Protease Inhibitor Cocktail) und 1/5 des Volumens an 1 M HCl (Endkonzentration: 0,2 M). Nach einer 30-minütigen Inkubation auf Eis wurde die Probe für 13 000 rpm bei 4°C zentrifugiert. Der Überstand wurde in ein neues Reaktionsgefäß überführt, mit 1/25 Volumen 5 M NaOH versetzt und die Proteinkonzentration bestimmt. Die Bestimmung der Proteinkonzentration erfolgte mit Hilfe des Qubit Fluorometer von Invitrogen nach Angaben des Herstellers.

3.6.1.2 SDS-Page

Lösung/Gele	Zusammensetzung
Trenngel (10%)	4 ml H ₂ O; 3,3 ml 30% Acrylamid-Mix; 2,5 ml 1,5 M Tris pH 8,8; 0,1
	ml 10% SDS; 0,1 ml 10% APS; 0,004 ml TEMED
Sammelgel	3,4 ml H ₂ O; 0,83 ml 30% Acrylamid-Mix; 0,63 ml 1 M Tris pH 6,8;
	0,05 ml 10% SDS; 0,05 ml 10% APS, 0,005 ml TEMED
Tris-Glycin-	25 mM Tris; 250 mM Glycin; 0,1% SDS
Elektrophorese	
4-fach SDS-	200 mM Tris-HCl pH 6,8; 400 mM DTT; 8% SDS; 0,4%
Ladepuffer	Bromphenolblau; 40% Glycerin

Tabelle 18: Lösungen für SDS-Polyacrylamid-Gelelektrophorese

Zur Herstellung der Polyacrylamidgele und zur Gelelektrophorese wurde ein Mini-PROTEAN System von Bio-Rad verwendet. Die Dicke der Gele wurde durch 1 mm breite Abstandshalter bestimmt. Zunächst wurde ein 10% iges Trenngel in die im Gießstand eingespannten Platten bis etwa 1,5 cm unterhalb des Randes der Glasplatte gegossen und mit Isopropanol überschichtet. Nach dem Auspolymerisieren des Gels wurde das Isopropanol entfernt und das Trenngel mit einem 5%igen Sammelgel überschichtet. Sofort nach dem Gießen wurden die Gelkämme eingesetzt und nach dem Auspolymerisieren wieder entfernt. Die Proteinproben wurden währenddessen mit 4xSDS-Ladepuffer gemischt und für 5 Minuten bei 95°C gekocht und anschließend in die Geltaschen pipettiert. Als Marker diente die Prestained Protein Ladder von Fermentas. 4 µl Protein Marker wurden aufgetragen. Die Kammer wurde mit Tris-Glycin-Elektrophorese-Puffer gefüllt. Der Probeneinlauf erfolgt für 15 Minuten bei 100 V, bis sich die Proben am Ende des Sammelgels befanden, danach erfolgte der weitere Gellauf für ca. 1,5 Stunden bei 140 V.

3.6.1.3 Western Blot

Lösung	Zusammensetzung
Transferpuffer	20 mM Tris; 100 mM Glycin; 0,1% SDS, 20% Methanol
TBS-T	50 mM Tris-HCl pH 8,0; 150 mM NaCl; 0,1% Tween 20
Blockierlösung	5% Magermilchpulver in TBS-T
Primärantikörper	- Anti-Histon H3, entwickelt im Hasen, Millipore
	(Verdünnung 1:5000)
	- Anti-acetyl-Histon H3, entwickelt im Hasen, Millipore
	(Verdünnung 1:5000)
	- Anti-acetyl Histon H3 Lys9, entwickelt im Hasen, Millipore
	(Verdünnung 1:5000)
	- Anti-acetyl Histon H3 Lys14, entwickelt im Hasen, Millipore
	(Verdünnung 1: 500)
	- Anti-Aktin, entwickelt in der Maus (Verdünnung 1:4000)
Sekundärantikörper	- Anti Maus (gekoppelt mit Peroxidase), entwickelt in der Ziege,
	Sigma (Verdünnung 1:10 000)
	- Anti Hase (gekoppelt mit Peroxidase), entwickelt in der Ziege,
	Sigma (Verdünnung 1:10 000)
Luminol	Lösung A: 50 mg Luminol in 200 ml 0,1 M Tris-HCl pH 8,6
	Lösung B: 11 mg p-Hydroxycoumarinsäure in 10 ml DMSO
	35 % H ₂ O ₂
Stripping Buffer	für 100 ml: 20 ml SDS (10%); 12,5 ml Tris HCl pH 6,8 0,5 M; 67,5 ml
	ddH ₂ O; 0,8 ml β - Mercaptoethanol unter dem Abzug zugeben

Tabelle 19: Lösungen für den Western Blot

Die Western-Blots wurden mit Tank-Blotting-Apparaturen von BioRad durchgeführt. Der Transfer der Proteine erfolgte auf eine PVDF-Membran (A. Hartenstein) bei 30 V über Nacht bei 4°C. Zum Blockieren unspezifischer Bindestellen auf der Membran wurde entweder eine Stunde bei Raumtemperatur oder über Nacht bei 4°C mit 5% Magermilchpulver in TBS-T inkubiert. Danach erfolgte die Hybridisierung mit dem Primärantikörper in Magermilchlösung für eine Stunde bei Raumtemperatur. Ungebundene Antikörper wurden anschließend in drei 10-minütigen Waschschritten mit TBS-T abgespült und die Membran mit dem an eine Peroxidase gekoppelten Sekundärantikörper für eine Stunde bei Raumtemperatur inkubiert. Nach drei weiteren 10-minütigen Waschschritten mit TBS-T wurde die Immundetektion am Chemi-Smart Chemilumineszenzsystem von Peglab durchgeführt. Hierfür wurden 1 ml Lösung A, 100 µl Lösung B und 0,3 µl H₂O₂ in einem Reagenzgefäß gemischt und auf die Membran getropft. Nach der Immundetektion wurde die Membran gestrippt. Die Membran wurde zweimal mit Stripping Buffer für 5–10 Minuten inkubiert und anschließend zweimal mit TBS-T für 5–10 Minuten gewaschen. Nun wurde der Blot nochmals entwickelt, um den Erfolg des Strippens der Membran zu überprüfen. Dann wurde erneut mit TBS-T gewaschen und wieder mit Milchpulver blockiert. Die Ladekontrolle erfolgte mit dem Aktin Antikörper.

3.6.2 ABTS-Assay

-	-
Lösung	Zusammensetzung
100 mM Na-Acetat	8,2 g Natriumacetat pro Liter (pH mit Essigsäure einstellen)
Puffer, pH 5	
5 mM ABTS	2,5 ml einer 100 mM Stammlösung ABTS (54,8 g/ml)

Tabelle 20: Lösungen für den ABTS-Assay

Für den Reportergenversuch wurden zwei unterschiedliche Ansätze gewählt. Zum einen wurden die positiv getesteten Kolonien, welche also beide für den Versuch nötigen Plasmide beinhalteten, auf Minimalmediumplatten mit 1 mM ABTS gepickt. Hierbei wurde als Kohlenstoffquelle entweder Glucose eingesetzt, welche den *alc*A-Promotor reprimiert, Glycerin, welche den Promotor dereprimiert oder Threonin, wodurch der Promotor induziert wird. Bei Glycerin und Threonin wurden jeweils 0,2 % Glucose zusätzlich zugesetzt, um den Kolonien das Wachstum zu erleichtern. Ermöglichte das Reportersytem die Bildung von Laccasen, wurde das im Medium befindliche ABTS zu einem grünen Farbstoff oxidiert, welcher leicht detektierbar ist.

Um zusätzlich die Laccaseaktivität messen zu können, wurden die positiv getesteten Kolonien in flüssigem Minimalmedium mit Glucose als Kohlenstoffquelle angeimpft. Die Kultur wurde über Nacht schüttelnd inkubiert. Am nächsten Tag wurde das Medium durch induzierendes Threoninmedium ausgetauscht und gleich danach eine Probe des Überstandes genommen. Jeweils 500 µl 100 mM Na-Acetatpuffer pH 5, 200 µl 5 mM ABTS, 200 µl dH₂O und 100 µl Kulturüberstand wurden in einer Küvette gemischt und direkt die Absorption bei 420 nm gemessen. Dabei wurde direkt nach dem Mischen gemessen, dann nochmals nach 10 Minuten, 30 Minuten und 60 Minuten Inkubation. In regelmäßigen Abständen wurden Proben aus dem Überstand entnommen und gemessen. Aus der Steigung konnte man nun die A/min berechnen.

Die Enzymaktivität wird in U/ml Kulturüberstand ausgedrückt, ein Unit entspricht der Menge an Enzym, die 1 µmol ABTS pro min bei RT umsetzt.

3.7. Mikroskopische Methoden

3.7.1 Immunfärbung

Lösung	Zusammensetzung
Fixierlösung	200 mM PIPES pH 6,7 mit 10 M NaOH (50 ml); 500 mM EGTA pH
	8,5 mit 10 M NaOH (10 ml); 1 M MgSO ₄ (1 ml); DMSO (10 ml);
	Formaldehyd (37%) (21,6 ml)
10xPhosphat buffered	80 g NaCl; 2 g KCl; 14,4 g Na ₂ HPO ₄ ; auf 800 ml auffüllen; pH 7,4
saline (PBS)	einstellen, dann auf 1000 ml auffüllen
NaCitrat (50 mM,	
pH 5,8)	
NaCitrat (100 mM,	
pH 4,5)	
Verdaulösung	100 mg Driselase (in 600 μl 50 mM Natriumcitrat pH 5,8); 20 μl
	Zymolyase (5U/ μ l); 800 mg GlucanX (in 1 ml 50 mM Natriumcitrat
	pH 5,8); 40 mg β -D-Glucanase (in 400 μ l 100 mM Natriumcitrat pH
	4,5); alles Enzyme mischen und mit 50 mM Natriumcitrat pH 5,8 auf
	2,5 ml auffüllen; 2,5 ml Eiweiß wurden zugegeben und gevortext
10xTBS	20 mM Tris/HCl pH 7,6 (24,2 g/); 137 mM NaCl (80 g/l)
1xTBST	1xTBS + 0,1% Tween 20 (1 ml/l)
Blockierlösung	1xTBST + 5% Magermilch (5 g/100 ml)
Antikörper	Erstantikörper: Acetyliertes Lysin 9 H3
	Zweitantikörper: Anti-Maus IgG-Cy3

Als Vorbereitung wurden abgeflammte, sterile Deckgläser in eine Petrischale gelegt und mit 450 µl Mikroskopiemedium bedeckt. 10³ Sporen wurden aufgebracht und für 12-24 Stunden bei Raumtemperatur inkubiert. Das Medium wurde abgekippt, sofort die Fixierlösung aufgebracht und für 30 Minuten bei Raumtemperatur inkubiert. Es folgten drei Waschschritte mit 1xPBS für jeweils 10 Minuten. Nach jeweils jedem letzten Waschschritt im Verlauf dieses Protokolls wurden die Deckgläser gut auf einem Papier abgetropft und in eine neue Petrischale überführt. Nun wurde für 1 Stunde bei Raumtemperatur in 200 µl Verdaulösung inkubiert. Es folgten erneut drei Waschschritte mit 1xPBS für jeweils 10 Minuten. Auf -20°C vorgekühltes Methanol wurde zugegeben und genau für 10 Minuten bei -20°C inkubiert. Nach zwei weiteren Waschschritten von jeweils 5 Minuten in 1xPBS wurden die Deckgläser für 15 Minuten in Blockierlösung inkubiert. Der erste Antikörper ließ man über Nacht bei 4°C auf den Deckgläsern einwirken; um ein Austrocknen zu verhindern, wurden die Objektträger mit Parafilm bedeckt. Am nächsten Tag wurde vier Mal für 10 Minuten mit 1xTBST gewaschen. Der Zweitantikörper wurde auf die Deckgläser gebracht und für 1 Stunde bei Raumtemperatur inkubiert. Es folgten nochmals vier Waschschritte mit 1xTBST für jeweils 10 Minuten. Ein Tropfen mounting media mit DAPI wurde auf die Deckgläser aufgebracht; die Deckgläser wurden auf einen Objektträger gebracht und mit Nagellack versiegelt.

3.7.2 Präparation von A. nidulans und A. alternata für die Mikroskopie

In eine Petrischale wurden bis zu vier abgeflammte Deckgläser gelegt und mit etwa 500 µl MM (2% Threonin, 0,2% Glucose mit entsprechenden Auxotrophiemarkern) im Falle von *A. nidulans* Proben und mit mCDB-Medium im Falle von *A. alternata* überschichtet. Eine dünne Sporensuspension wurde aufgebracht und für 20-24 Stunden bei Raumtemperatur inkubiert. Am nächsten Tag wurden, falls notwendig für die Untersuchung, die Zellkerne mit DAPI (4,6-Diamidin-2-phenylindol) angefärbt. Hierfür wurde das Deckglas mit einem Tropfen Färbelösung überschichtet und für ca. 10 Minuten inkubiert. Das Deckglas wurde anschließend mit der Oberseite nach unten auf einen Objektträger gelegt, mit Immersionsöl beschichtet und bei 64-facher Vergrößerung mikroskopiert.

4. Ergebnisse

Um nähere Erkenntnisse über die Regulation von Sekundärmetabolitgenclustern und somit der jeweiligen Zielmetabolite zu bekommen, wurden verschiedene Methoden angewandt, eine Änderung der Regulation zu erzeugen und diese dann näher zu charakterisieren. Grundsätzlich gibt es drei Wege, die Sekundärmetabolitproduktion auf Ebene der Regulation zu verändern. Dies ist einmal die heterologe Expression in einem anderen Wirt. In dieser Arbeit wurde hierfür der Ascomycet A. nidulans herangezogen, da dieser als Modellorganismus bereits etabliert und die genetische Manipulation recht schnell durchführbar ist. Die zweite Möglichkeit ist die epigenetische Regulation, also die Modifikation eines globalen Regulators. Als letztes Mittel zur Veränderung der Regulation ist die Überexpression eines Transkriptionsfaktors mit der Aussicht, ein ganzes Cluster damit neu einzustellen, zu nennen (Niehaus et al., 2014). Dabei ist zu erwähnen, dass ungefähr 60% aller pilzlichen Sekundärmetabolitgencluster ein putatives regulatorisches Gen enthalten (Brakhage, 2013). Der Hauptteil dieser Arbeit beschäftigt sich mit der Charakterisierung der Polyketidsynthase PksB und des dazugehörigen Clusters. Zuerst wurde versucht, durch Manipulation einzelner Gene im Cluster die Produktion zu verändern und so den betroffenen Metaboliten zu identifizieren. Auf höherer Ebene wurde anschließend der Einfluss zweier globaler Regulatoren, VeA und LaeA, auf die Polyketidsynthasen näher beleuchtet. Zuletzt wurde der externe Faktor Licht und dessen Auswirkung auf das Cluster betrachtet sowie auf epigenetischer Ebene untersucht, wie auch hier eine Regulation der Sekundärmetabolite stattfinden könnte.

4.1 Die Expression von *pksA* bis *pksJ*

Um eine Veränderung der Regulation besser beurteilen zu können, wurde zuerst die Expression der bereits bekannten Polyketidsynthasegene *pksA* bis *pksJ* nach 7 Tagen und 14 Tagen Inkubation gemessen. Die späten Zeitpunkte wurden gewählt, da Sekundärmetabolite zumeist erst zu einem späteren Zeitpunkt der Entwicklung gebildet werden, wenn das vegetative Wachstum größtenteils vollendet ist und der Organismus in die stationäre Phase eintritt (Bu'Lock, 1961), da es sich bei den Sekundärmetaboliten nicht um essentielle Bestandteile des Pilzes handelt, die dieser zum Überleben benötigt.

7 Tage 7 Tage 14 Tage Dunkel Weißlicht Dunkel

14 Tage

7 Tage

Dunkel Weißlicht Dunkel

7 Tage

pksD

0.06

0.05

0.04

0.03

0.02

0.01

0

0.008

0.007

0.006

0.005

0.004

0.003 0.002

0.001

0

Relative Expression

pksG

Relative Expression

pksB

64

Abbildung 16: Expression der Polyketidsynthasen in A. alternata (A) Expression der Polyketidsynthasegene pksA bis *pksJ* im Dunkeln im Vergleich zu Weißlicht nach 7 Tagen bzw. 14 Tagen Inkubation. Die Proben wurden für 7 bzw. 14 Tage bei 28°C statisch inkubiert. Anschließend wurden drei biologische Replikate der RNA mit Hilfe des Fungal RNA Mini-Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu A. nidulans homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Die Fehlerbalken wurden aus der Standardabweichung errechnet. **(B)** Expression der Polyketidsynthasegene pksA bis pksJ zur besseren Übersicht.

Da die Expression von dem äußeren Faktor Licht abhängig sein könnte, wurde RNA sowohl aus in Weißlicht als auch im Dunkeln inkubierten Kulturen isoliert. Alle Proben wurden, abgesehen vom Licht, zu genau gleichen Bedingungen inkubiert. Als Referenzgen wurde das zu *A. nidulans* homologe Histon H2B-Gen verwendet, welches konstitutiv exprimiert wird.

Die Expression aller Polyketidsynthasegene ist gering; sogar die höchste Expression, in diesem Fall von pksA, ist maximal bei 0,18; dies entspricht etwa 18% der Expression des Haushaltsgens (siehe Abb. 16 (B)). Alle anderen sind noch wesentlich geringer exprimiert. Jede Polyketidsynthase verhält sich etwas anders. pksA beispielsweise wird durch Licht reguliert; in Weißlicht ist die Expression deutlich höher als im Dunkeln. Da PksA für die Produktion von Melanin zuständig ist, erscheint die Lichtregulation in diesem Fall durchaus logisch, da Melanin zum Schutz gegen UV-Licht genutzt werden kann und der Schutz wichtiger wird, wenn der Pilz einer höheren Lichtintensität ausgesetzt ist. Das gleiche Expressionsmuster scheint für *pksF* zu gelten; es ist ebenfalls eine höhere Expression in Weißlicht zu erkennen. Allerdings ist hier nicht bekannt, für welchen Metabolit pksF kodiert. Für pksB gilt genau das Gegensätzliche. Weißlicht hemmt hier offensichtlich die Expression. Auch die Polyketidsynthasegene pksG und pksH scheinen lichtabhängig exprimiert zu sein; hier ist ebenfalls die Expression in Weißlicht niedriger als im Dunkeln. Auch für diese Polyketidsynthasen kennt man den dazugehörigen Metabolit noch nicht, daher kann man keine Schlüsse über die Funktion der Lichtregulation ziehen. Für pksE und

pksl ist nach 7 Tagen keine Lichtregulierung zu erkennen; allerdings scheint nach 14 Tagen Inkubation ein Unterschied zwischen den Licht- und Dunkelproben zu existieren. Die Polyketidsynthasegene pksC und pksD hingegen scheinen nicht lichtreguliert zu sein. Für pksJ ist die Expression bei 7 Tagen Inkubation im Licht und Dunkeln fast gleich, allerdings geht die Expression nach 14 Tagen im Dunkeln stark nach oben und ist somit etwa doppelt so hoch wie die Expression nach 14 Tagen im Weißlicht. Man kann also keine allgemeingültige Regel für die Regulation der Sekundärmetabolite durch den äußeren Faktor Licht aus den Expressionsanalysen ziehen: allerdings zeigt sich, dass fast alle der bisher beschriebenen Polyketidsynthasen in A. alternata in irgendeiner Weise lichtreguliert sind.

4.2 Charakterisierung der PksB und des umliegenden Clusters

Für die nähere Charakterisierung der Polyketidsynthase PksB und des dazugehörigen Clusters ist es zunächst wichtig, den Transkriptionsfaktor eines Clusters zu identifizieren und diesen anschließend zu manipulieren, also eine Überexpression herbeizuführen oder gegebenenfalls auch eine Herunterregulierung. So kann man am effektivsten alle davon regulierten Gene in ihrer Expression verändern und somit im besten Fall den betroffenen Sekundärmetabolit identifizieren. Für die meisten der zehn bereits beschriebenen PKS-Cluster ist es jedoch nicht eindeutig, welcher Transkriptionsfaktor tatsächlich für die Regulation des Clusters zuständig ist. Bei fünf der Cluster ist kein Transkriptionsfaktor in der Nähe lokalisiert und könnte sich somit auch auf einem ganz anderen Teil des Genoms befinden. Bei den anderen Clustern ist es unklar, ob die darin befindlichen Transkriptionsfaktoren für die Regulierung zuständig sind oder ob die tatsächlichen Regulatoren außerhalb des Clusters auf einem separaten Teil des Genoms liegen. Um diese Fragen zu klären, wurde ein Reportersystem entwickelt, welches es erlaubt, schnell den Transkriptionsfaktor einer PKS zu identifizieren. Es wurde zuerst an einem bereits recht gut untersuchten Cluster angewendet, dessen Transkriptionsfaktor schon durch Ramona Fetzner identifiziert werden konnte (Fetzner et al., 2014).

4.2.1 CmrA reguliert das Melanincluster

Das Melanincluster ist ein bereits gut beschriebenes Cluster, welches in vielen Organismen mit hoher Homologie auftritt. Die *A. alternata* Melaningene beispielsweise können eine melanindefiziente Mutante in *Magnapothe grisea* komplementieren (Kawamura *et al.*, 1997). Es wird hierbei zwischen drei Melaninen unterschieden, die auf einer unterschiedlichen Stoffgrundlage basieren. Bei Eumelaninen bildet die Aminosäure Tyrosin die Basis, bei Phäomelanin die Aminosäuren Tyrosin und Cystein. Die dritte Gruppe der Melanine, das Allomelanin, wird hauptsächlich von höheren Pflanzen und Pilzen produziert. Die Basis hierbei sind Hydroxybenzole. *A. alternata* bildet das Allomelanin DHN-Melanin. Die Biosynthese verläuft über den 1,8-DHN Weg mit 1,8-Dihydroxynapththalen (1,8-DHN) als Intermediat. Hierfür wird eine Polyketidsynthase (ALM oder PksA), eine 1,3,6,8-THN-Reduktase, eine Scytalon-Dehydratase (Brm1) und eine 1,3,8-THN-Reduktase (Brm2) benötigt (siehe Abb.17 (A)).

Abbildung 17: Biosyntheseweg und Cluster des Sekundärmetaboliten Melanin. (A) Biosyntheseweg des Melanins in *A. alternata*. (B) Schema des Genclusters der Polyketidsynthase.

Es wurde für *A. alternata* in unserem Labor gezeigt, dass *cmrA*, ein Transkriptionsfaktor innerhalb des Melaninclusters, der Regulator des kompletten Clusters ist (Fetzner *et al.*, 2014). Eine Herunterregulierung des Gens führte zu einer Mutante, bei der die Expression von *cmrA* nur noch etwa 22% der Wildtypexpression entspricht (siehe Abb. 18 (A)). Die Mutante hat einen gravierenden Phänotyp. Der Knockdown von *cmrA* resultiert in einer weißen melanindefizienten Mutante (siehe

(A) (B) Wildtyp si-cmrA 1.2 **Relative Expression** 0.8 0.4 0 Wild-LV Τ1 typ 10µm (C) (D) 1.4 1.2 1.6 Sporen / cm² x 10⁶ 1.0 Relative expression pksA 1.2 0.8 brm1 Ī brm2 0.6 0.8 Cytochrom P450 0.4 Peroxisomal carrier 0.4 0.2 **O-Methyltransferase** 0 0 si-cmrA Wildtyp si-cmrA

Abb. 18 (B)). Sowohl die Sporenproduktion (siehe Abb. 18 (C)) als auch das Hyphenwachstum sind in der Mutante stark reduziert (Daten nicht gezeigt).

Abbildung 18: Knockdown des Regulators CmrA. (A) Expressionsanalyse von *cmrA* im Myzel des Wildtyps, einer Leerkontrolle und des Knockdown-Stammes. Die Stämme wurden für 3 Tage in mCDB-Medium bei 28°C inkubiert. Anschließend wurde das Myzel geerntet und die RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Im Kontrollstamm wurde der Leervektor transformiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet. LV: Leervektor; T1: Transformante 1. (**B**) Phänotyp der Mutante. Wildtyp und Mutante wurden für drei Tage auf mCDB-Medium bei 28°C inkubiert bzw. die Sporen mikroskopiert. (**C**) Sporenzahl im Wildtyp und im Knockdown-Stamm. 0,25 cm² der Kolonie wurden abgenommen und die Sporen in H₂O aufgenommen. Die Sporen wurden für 7 Tage in Flüssigkultur angezogen und dann geerntet. Die RNA wurde wie in (A) beschrieben extrahiert.

Zusätzlich wurde in der Mutante die Expression aller eventuell zum Cluster gehörenden Gene gemessen. Es konnte gezeigt werden, dass die Expression von *pksA*, *brm1* und *brm2* reduziert ist, während drei andere untersuchte Gene, die ebenfalls auf diesem Teil des Genoms liegen, ein Cytochrom P450, ein Peroxisomaler Carrier und eine O-Methyltransferase, nicht durch den Regulator beeinflusst werden (siehe Abb. 18 (D)). Dies machte es möglich, das Cluster auf die drei Gene *pksA*, *cmrA* und *brm2* einzuschränken. Das Gen *brm1* liegt außerhalb des Clusters, ist jedoch auch notwendig für die Produktion von Melanin (Fetzner *et al.*, 2014).

Der weiße Phänotyp der Mutante und die niedrige Expression der anderen Gene im Cluster im Vergleich zum Wildtyp bestätigten bereits die Rolle von CmrA als Regulator des Melaninclusters. Als letzter Test, ob CmrA tatsächlich direkt *pksA* reguliert, wurde der Reporterassay durchgeführt. Hierfür sind zwei Plasmide erforderlich (siehe Abb. 19 (A)). In ein Plasmid wurde der Regulator *cmrA* hinter den induzierbaren *alcA*-Promotor kloniert. Auf dem anderen Plasmid befand sich das Reportergen, in diesem Fall eine Laccase aus *A. nidulans*, *lccC*. Davor wurde der Promotor von *pksA* kloniert. Beide Plasmide wurden in *A. nidulans* transformiert, um eine heterologe Expression zu erreichen.

Induziert man nun den alcA-Promotor mit Threonin (oder dereprimiert ihn mit Glycerin), wird in großen Mengen CmrA gebildet. Dieses bindet, falls es tatsächlich pksA reguliert, an den Promotor von pksA. Dieser wird hierdurch aktiviert und die Befindet sich Laccase wird produziert. nun ABTS (2,2'-Azino-di-(3ethylbenzthiazolin-6-sulfonsäure) im Medium, wird dieses durch die gebildeten Laccasen oxidiert und färbt das Medium grün. Dies zeigt schnell und zuverlässig die Interaktion des Regulators mit dem Promotor der Polyketidsynthase an. Es wurden jeweils der Wildtypstamm (RMS011), zwei biologische Replikate einer Kontrolle mit nur einem erfolgreich transformierten Plasmid sowie zwei biologische Replikate mit beiden Vektoren auf Medium mit Glycerin, Threonin und Glucose (keine Aktivierung des *alcA*-Promotors) aufgebracht (siehe Abb.19 (B)).

69

Abbildung 19: Reporterassay in *A. nidulans*. (A) Schema des Versuchs. Die Expression von *cmrA* unter dem *alcA*-Promotor wird durch die Zugabe von 2% Glycerin oder Threonin ins Medium induziert. Eine Bindung von CmrA an den *pksA*-Promotor führt zur Expression des Reportergens, der Laccase *lccC*, und damit zu einer Umsetzung von ABTS in seine oxidierte Form, was in der Grünfärbung des Mediums resultiert. (B) Die transformierten Stämme wurden unter induzierenden und reprimierenden Konditionen getestet. Die Expression der Gene unter dem *alcA*-Promotor wurde durch die Kohlenstoffquelle im Medium reguliert: eine Repression findet auf Glucose-, eine Dereprimierung auf Glycerin- und eine Induktion auf Threoninmedium statt. (C) Messung der Laccaseaktivität über die Zeit. Die Stämme wurden unter reprimierenden Konditionen (Glucose als Kohlenstoffquelle) für 16 Stunden angezogen, dann gewaschen und von nun an unter induzierenden Bedingungen (Threonin als Kohlenstoffquelle) inkubiert. Nach 8 Stunden in induzierendem Medium konnte eine Laccaseaktivität in Stämmen (SKS7, SAH29) mit beiden Plasmiden (pAH16, pKS16) beobachtet werden, jedoch nicht in den Kontrollstämmen (SKS8, SAH27) und dem Wildtyp.

Die Abbildung 19 (B) zeigt, dass nur die Transformanten mit beiden Plasmiden die grüne Farbe zeigen, und das auch nur auf den dereprimierenden bzw. induzierenden Medien Glycerin und Threonin. Auf Glucosemedium bleibt die Färbung aus. In einem weiteren Versuch in Flüssigmedium wurden die Stämme zuerst in reprimierendem Medium mit Glucose als Kohlenstoffquelle über Nacht angezogen; anschließend wurde das Myzel gewaschen und in Medium mit Threonin überführt. Ab dann kann in den positiven Stämmen direkt eine Grünfärbung gemessen werden, die über den Zeitraum von 60 Stunden immer weiter zunimmt. Die Kontrollstämme und der Wildtyp zeigen hingegen auch hier keine Laccaseaktivität (siehe Abb.19(C)).

4.2.2 pksB-Cluster

Der Versuchsaufbau aus dem vorherigen Kapitel sollte weiterhin genutzt werden, um den Transkriptionsfaktor für das *pksB*-Cluster zu finden und somit mehr über die Regulation des *pksB*-Clusters und im besten Fall auch über den von diesem Cluster produzierten Metabolit zu erfahren.

Die Polyketidsynthase PksB befindet sich auf Contig00319 (Alternaria Genome Database). Das Gen hat eine Länge von 12036 bp, welche für 4011 Aminosäuren kodieren. Es handelt sich vermutlich um ein Fusionsprodukt aus Polyketidsynthase und Nichtribosomaler Peptidsynthase. Auch in *A. nidulans* ist ein Hybrid aus PKS und NRPS bekannt, welches zur Biosynthese von Aspyridon-1 und -2 notwendig ist (Bergmann *et al.*, 2007). Die Abbildung 20 (A) zeigt die Domänen der Polyketidsynthase PksB sowie ein phylogenetischer Stammbaum anhand der Homologie von PksB in verschiedenen *Alternaria*-Arten (siehe Abb. 20 (B)). Insgesamt wurde die PksB mit sehr hoher Homologie in sieben weiteren *Alternaria*-Arten gefunden, *A. citriarbusti, A. fragariae, A. limoniasperae, A. mali, A. tangelonis, A. tenuissima* und *A. turkisafria* (siehe Alignment im Anhang 1). Alle anderen überprüften Arten besitzen kein zu dieser Polyketidsynthase homologes Protein.

Abbildung 20: Die Polyketidsynthase PksB. (A) Schematische Darstellung der DNA-Sequenz von *pksB* und die Aminosäuresequenz mit konservierten Domänen. Das Gen hat eine Länge von 12036 bp und besitzt acht Introns. Das Protein ist 4011 Aminosäuren lang und besitzt elf charakteristische Domänen. I: Intron; PKS-KS: β-Ketoacylsynthase; ACT: Acyltranferase; DH: Dehydrogenase; MT: Methyltransferase; KR: Ketoreduktase; CD: Condensationsdomäne; H: HxxPF-repeated Domäne, eine typische NRPS-Domäne; NRPS: Adenylation Domäne einer Nichtribosomalen Peptidsynthase; PB: Phosphopanthetheine Bindestelle; NAD: NAD-Bindedomäne. **(B)** Phylogenetischer Verwandtschaftsbaum der sieben *Alternaria*-Arten anhand der Homologie der PksB.

Zusätzlich zu diesem Gen befinden sich insgesamt 7 weitere Gene auf diesem relativ kleinen Contig, welche im Folgenden anhand ihrer Gennummer bezeichnet werden. Bei dem Gen AAT PP07105 handelt es sich um eine putative Proteinkinase. Es besitzt eine typische katalytische Proteinkinasedomäne. Das Gen AAT PP07106 ist ein Transporter der MFS-Superfamilie (Major facility transporter). Bei dem Gen AAT PP07107 handelt es sich um den potenziellen Regulator dieses Clusters, welcher im Folgenden noch genauer untersucht wird. Es handelt sich um ein Protein mit einer putativen pilzspezifischen Transkriptionsfaktordomäne. Diese Domäne kommt in den Zink-Cluster Transkriptionsfaktoren vor, die eine N-terminale GAL4ähnliche C6 Zink-binukleare **DNA-Bindedomäne** putative besitzen. Der Transkriptionsfaktor hat eine Länge von 2313 bp und kodiert für ein Protein von 770 Aminosäuren.

Abbildung 21: Das pksB-Cluster. (A) Vergleich der pksB-Cluster von sieben verschiedenen Alternaria-Arten. MFS: Major Facility Transporter, TF: Transkriptionsfaktor; APT: Acyl-Protein-Thioesterase, ER: Enoylreduktase, HP: Hypothetisches Protein. (B) Schematische Domänenstruktur der Gene im Cluster. MFS: Major Facility Superfamily, putativer Polyamin-Transporter 4; GAL4: Gal4-ZnCys6 binuklear Cluster DNA-Bindedomäne; TF: Transkriptionsfaktordomäne; like ER: Enoylreduktase-Proteindomäne.

Das Gen AAT_PP07108 hat eine GAL-4 ähnliche Zn2Cys6 DNA-Bindedomäne und hat Ähnlichkeit mit einer putativen Acyl-Protein-Thioesterase. AAT_PP07109 codiert für eine Enoylreduktase; AAT_PP07110 zeigt keine konservierten Domänen. Bei dem Gen AAT_PP07111 handelt es sich um das Polyketidsynthasegen *pksB*. Das Gen AAT_PP07112 ist das letzte Gen auf dem Contig und hat keine konservierte Domäne. Es werden als homologe Proteine nur hypothetische Proteine ohne beschriebene Funktion gefunden. Die Abbildung 21 (B) zeigt die Domänen der weiteren Gene auf dem Cluster. Neben der Polyketidsynthase ist auch das gesamte Cluster sehr hoch konserviert; fast alle Gene kommen in allen der sieben Arten vor (siehe Abbildung 21 (A)). Daher kann man auch davon ausgehen, dass alle fähig sind, das Produkt zu bilden, welches von diesem Cluster kodiert wird. Es gibt jedoch in keiner der Arten einen Hinweis, um welchen Metabolit es sich handeln könnte.

4.2.3 Identifizierung des Transkriptionsfaktors des pksB-Clusters

Nun sollte untersucht werden, ob der Transkriptionsfaktor, welcher im Cluster liegt, tatsächlich die Regulation des Clusters übernimmt. Für den Reporterassay wurde nun der ORF des Transkriptionsfaktors hinter den induzierbaren *alcA*-Promotor kloniert und der Promotor von *pksB* vor das Laccase-Gen *lccC*. Beide Plasmide wurden in den *A. nidulans* Wildtypstamm RMS011 transformiert. Die Abbildung 22 (A) zeigt die per PCR bestätigten positiven Transformanten auf verschiedenen Medien. Sowohl der Wildtyp als auch die Negativkontrollen, in welche jeweils nur ein Plasmid transformiert wurde, sind auf allen Medien negativ, was bedeutet, dass es keinen Farbumschlag gibt und somit auch keine Laccase produziert wird. Die Transformanten, in denen beide Plasmide nachgewiesen wurden, führen durch die Produktion der Laccasen in Glycerinmedium und in Threoninmedium zu einer Grünfärbung auf Grund des ABTS im Medium. Dies beweist, dass der Transkriptionsfaktor tatsächlich an den Promotor von *pksB* bindet und dadurch das Gen reguliert.

In einem Flüssigansatz konnte auch die Bildung der Laccase über die Zeit gemessen werden (siehe Abb. 22 (B)). Hier wurden die Stämme in Flüssigmedium unter reprimierenden Bedingungen mit Glucose als Kohlenstoffquelle inkubiert. Nach 16 Stunden Inkubation wurde das Myzel gewaschen und das Medium mit Glucose durch Medium mit Threonin ersetzt, welches den *alcA*-Promotor induziert. Anschließend

wurde in regelmäßigen Abständen Überstand entnommen und ABTS zugefügt. Man kann so die Laccaseproduktion im Überstand messen. Auch hier zeigt sich, dass die Laccaseproduktion in den Stämmen mit beiden erfolgreich transformierten Plasmiden während der Wildtyp und die Kontrollstämme stetia ansteigt. keine Laccaseproduktion zeigen. Es wurde zusätzlich zu den regelmäßigen Messpunkten im Abstand von 8 bis 16 Stunden zu jedem Zeitpunkt eine weitere OD-Bestimmung 10 Minuten nach der ersten Messung durchgeführt, um die Laccaseaktivität zu diesem speziellen Zeitpunkt bestimmen zu können. Für die transformierten Stämme ergibt sich somit eine Laccaseaktivität zwischen 0,0006-0,001 U/ml. Dieser Wert ist eher klein, jedoch ist A. nidulans kein guter Laccaseproduzent, was diese Werte erklärt.

75

4.2.4 Identifizierung weiterer zum pksB-Cluster gehörender Gene

Da nun der Transkriptionsfaktor, welcher *pksB* reguliert, identifiziert werden konnte, sollte in einem weiteren Schritt ermittelt werden, welche Gene auf dem Contig zusätzlich reguliert werden und somit höchstwahrscheinlich ebenfalls zum Cluster gehören und an der Biosynthese des Endproduktes dieser Polyketidsynthase beteiligt sind. Der gleiche Versuchsaufbau wurde somit genutzt, um Gene dem pksB-Cluster zuzuordnen bzw. ihre Zugehörigkeit auszuschließen. Um den Versuch auch für die anderen Gene durchzuführen, wurden die Promotoren der Gene AAT_PP07105, AAT_PP07106, AAT_PP07108, AAT_PP07109, AAT_PP07110 und AAT PP07112 vor die Laccase kloniert und das Plasmid jeweils zusammen mit dem Plasmid, welches den Regulator unter der Kontrolle des induzierbaren Promotors trägt, erneut in den A. nidulans Wildtyp-Stamm RMS011 transformiert. Die Abbildung 23 (A) zeigt, wie die Stämme auf induzierendem Medium reagieren. Wieder zeigt keiner der Stämme eine Blaufärbung auf Glucose-Medium. Dies zeigt, dass der Reporterversuch durch die Glucose gehemmt wird. Auf Glycerinund Threoninmedium zeigt sich bei vier der sechs untersuchten Gene eine Grünfärbung, was auf ein positives Ergebnis hinsichtlich der Regulation hinweist. Die beiden "äußeren" Gene auf dem Contig, AAT PP07105 und AAT PP07112 zeigen auch auf induzierendem Medium mit Threonin als Kohlenstoffguelle keine Laccaseaktivität, somit werden diese beiden Gene offenkundig nicht von dem Transkriptionsfaktor reguliert.

Dieser Versuch zeigt, dass man das Cluster auf sechs Gene reduzieren kann, welche durch den Transkriptionsfaktor (der sich ebenfalls im Cluster befindet) reguliert sind. Somit scheinen diese vier zusätzlich zur Polyketidsynthase und dem Transkriptionsfaktor eine Rolle in der Produktion des Sekundärmetabolits zu spielen. Somit bleiben ein MFS-Transporter, eine Acyl-Protein-Thioesterase, eine Enoylreductase, ein hypothetisches Protein ohne bekannte Funktion sowie der Transkriptionsfaktor und die PKS-NRPS, welche das Cluster bilden. Abbildung 23 (B) zeigt das aktualisierte Bild des Clusters, welches sich durch den Reporterassay herauskristallisiert hat. Mit Sternen sind die Gene markiert, welche im Cluster durch den Transkriptionsfaktor reguliert sind.

Abbildung 23: Charakterisierung des *pksB*-Clusters. (A) Reporterassay für alle anderen Gene des Contigs. Der Versuch wurde wie in Abbildung 22 (A) beschrieben durchgeführt. 1: Kontrollstämme, transformiert mit nur einem Plasmid (zwei biologische Replikate); 2: Wildtypstamm; 3: Stämme für Reporterassay, transformiert mit beiden Plasmiden (zwei biologische Replikate). Die Tabelle zeigt eine Übersicht der Regulation der Gene. (B) Aktualisiertes Schema des *pksB*-Clusters. Mit Sternen sind die Gene markiert, die zum Cluster gehören. Nicht zum Cluster gehörende Gene sind durchgestrichen.

Um diese Ergebnisse nochmals zu verifizieren, wurde die Expression aller Gene auf diesem Contig gemessen. Bei Genen, die zum Cluster gehören, wurde ein ähnliches Expressionsmuster erwartet, wie es schon für *pksB* gezeigt wurde. Die Abbildung 24 zeigt die Expressionen der Gene AAT_PP07105, AAT_PP07106, AAT_PP07107, AAT_PP07108, AAT_PP07109, AAT_PP07110 und AAT_PP07112 im Vergleich zur *pksB*-Expression. Wie bereits in Kapitel 4.1 erwähnt, zeigt *pksB* eine lichtabhängige Expression. Sowohl bei 7 Tagen als auch bei 14 Tagen Inkubation ist die Expression im Dunkeln deutlich höher als im Weißlicht. Betrachtet man nun die anderen Gene auf dem Contig, ergibt sich für einige ein ähnliches Bild (siehe Abb. 24).

Der Transkriptionsfaktor (AAT_PP07107) zeigt ebenfalls sowohl nach 7 Tagen als auch 14 Tage Inkubation eine höhere Expression im Dunkeln als im Weißlicht. Die Regulation verläuft hier scheinbar gleich; Bei dem Gen AAT_PP07106 entspricht die Expression genau dem Muster der beiden anderen Gene. Im Dunkeln ist sie höher als im Weißlicht. Betrachtet man nun das Gen AAT_PP07105, welches negativ im Reporterassay war und welches demnach nicht zum Cluster gehören sollte, ergibt sich ein leicht verändertes Bild. Das Expressionsmuster ist für dieses Gen leicht anders als für die anderen gemessenen. Auch hier ist nach 7 Tagen Inkubation die Expression im Dunkeln höher als im Weißlicht, jedoch ist dieser Unterschied nach 14 Tagen Inkubation nicht mehr zu sehen. Hier sind die Dunkel- und Weißlichtwerte gleich und entsprechen den Weißlichtwerten nach 7 Tagen Inkubation.

Die Gene AAT_PP07108, AAT_PP07109 und AAT_PP07110 entsprechen ebenfalls dem Muster der anderen Clustergene. Für AAT PP07108 ändert sich die Expression nach 14 Tagen im Vergleich zu 7 Tagen nicht. Zu beiden Zeitpunkten kann eine deutlich höhere Expression im Dunkeln gemessen werden als unter Weißlichtbedingungen. Für AAT PP07109 ist nach 7 Tagen Inkubation die Expression ebenfalls im Dunkeln höher als im Weißlicht; dieser Effekt ist nach 14 Tagen jedoch fast verschwunden. Das Gen AAT PP07110 zeigt insgesamt eine etwas höhere Expression nach 14 Tagen als nach 7 Tagen; die Expression im Dunkeln liegt trotzdem bei beiden Situationen im Dunkeln höher als im Weißlicht. Für das Gen AAT PP07112 ergibt sich ebenfalls ein Expressionsmuster ähnlich der anderen Clustergene, obwohl dieses Gen im Reporterassay negativ gestestet wurde.

Abbildung 24: Expressionsanalyse der Gene auf Contig00319. Expression der Gene AAT_PP07105, AAT_PP07106, AAT_PP07107, AAT_PP07108, AAT_PP07109, AAT_PP07110 und AAT_PP07112 im Vergleich zum Expressionsmuster des Polyketidsynthasegens *pksB*. Gemessen wurde die Expression im Dunkeln im Vergleich zu Weißlicht nach 7 Tagen bzw. 14 Tagen Inkubation. Die Proben wurden für 7 bzw. 14 Tage bei 28°C statisch inkubiert. Anschließend wurden drei biologische Replikate der RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Die Fehlerbalken wurden aus der Standardabweichung errechnet.

4.2.5 Herunterregulierung von pksB und Überexprimierung des

Transkriptionsfaktors

Da nun gezeigt wurde, dass der Transkriptionsfaktor wirklich für die Regulation des Clusters verantwortlich ist, sollte mehr über den Sekundärmetabolit herausgefunden werden, welcher von diesem Cluster produziert wird. Hierfür wurde ein RNAi-Stamm der *pksB* genutzt (freundlicherweise von Ramona Fetzner zur Verfügung gestellt). Zuerst wurde nachgeprüft, wie hoch die Expression des herunterregulierten Gens noch ist. Die Abbildung 25 (A) zeigt, dass es sich bei dem Stamm um eine Mutante handelt, welche noch etwa 30% der Expression des Wildtyplevels zeigt. Somit

konnte der Knock-down bestätigt und diese Mutante weiteren Untersuchungen unterzogen werden.

(B)

Abbildung 25: Knockdown der pksB. (A) Expressionsanalyse von si-pksB. Es wurden jeweils drei biologische Replikate des Wildtyps und der Mutante in flüssigem mCDB-Medium angeimpft und für 7 bzw. 12 Tage bei 28°C statisch inkubiert. Anschließend wurde die RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu A. nidulans homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Es wurde gegen den Wildtyp normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet. **(B)** Dünnschichtchromatographie von si-*pksB*. Für jeweils drei biologische Replikate wurden 4x10⁴ Sporen auf mCDB-Platten ausgebracht und für 7 bzw. 12 Tage bei 28°C im Weißlicht bzw. im Dunkeln statisch inkubiert. Die Sekundärmetabolite wurden mit Ethylacetat aus dem Myzel und Agar gelöst. 20 µl der insgesamt 100 µl Gesamtvolumen der jeweiligen Probe wurde auf die Platte geladen. AOH: Alternariolstandard. Der Stern markiert den Metabolit, der augenscheinlich in der Mutante weniger stark ausgeprägt ist und bei dem es sich möglicherweise um den Endmetaboliten des pksB-Clusters handeln könnte.

Als nächstes wurde mit der Mutante eine Dünnschichtchromatographie durchgeführt (siehe Abb. 25 (B)). Hierfür wurden die Proben jeweils 7 bzw. 12 Tage im Dunkeln und im Weißlicht inkubiert und anschließend die Sekundärmetabolite mit Ethylacetat isoliert. Es ist gleich zu sehen, dass die Mutante scheinbar einige Metabolite in nicht so starker Menge produziert wie der Wildtyp. Dafür scheint die Produktion anderer Metabolite stimuliert zu sein. Auch produziert die Mutante im Dunkeln allgemein mehr Metabolite als im Weißlicht, beim Wildtyp scheint dieser Effekt genau anders herum zu sein. Besonders auffällig jedoch ist der mit einem Stern markierte Metabolit, welcher im Wildtyp stark produziert wird, jedoch in der Mutante im Weißlicht fast gar nicht vorkommt und auch im Dunkeln stark reduziert ist. Es könnte sich hierbei um den Metabolit handeln, für den pksB verantwortlich ist. Da es sich um eine Herunterregulierung mit immer noch 30% iger Aktivität und keinen Knockout handelt, macht es auch Sinn, dass der Metabolit nicht ganz wegfällt, sondern noch als weniger starke Bande vorhanden ist. Zusätzlich fallen die orangenen Banden in der Mutante auf, die im Wildtyp nicht zu sehen sind. Hierbei könnte es sich um Metabolite handeln, die als Zwischenstufe des Endmetabolits entstehen und in der Mutante nicht weiter verstoffwechselt werden können. Es könnte allerdings auch sein, dass der Schmier, der bei fast allen Wildtypproben vorhanden ist, diese Metabolite überdeckt, sodass diese nicht sichtbar sind.

Um dieses Ergebnis zu bekräftigen, wurde ein Deletionsskonstrukt für pksB hergestellt und in den Wildtypstamm transformiert. Zwei Transformanten wurden erzielt, welche per PCR auf die Integration des Hygromycins überprüft wurden. Anschließend wurde die Expression der Mutanten gemessen und eine Dünnschichtchromatographie durchgeführt (siehe Abb. 26 (A) und (C)). Die Expressions analyse ergab, dass die Transformante 1 nur um 18% herunterreguliert ist, die Transformante 2 nur um etwa 10%. Trotzdem wurde das Metabolitspektrum mit Hilfe einer Dünnschichtchromatographie betrachtet. Scheinbar hat die Transformation zu einem Heterokaryon geführt, bei dem immer noch Wildtyphintergrund vorhanden ist, welcher den Effekt revertiert.

Abbildung 26: Analyse der pksB-Deletion. (A) Expressionsanalyse der pksB-Deletionsmutante. Es wurden jeweils drei biologische Replikate des Wildtyps und der Mutante in flüssigem mCDB-Medium angeimpft und für 7 Tage bei 28°C statisch inkubiert. Anschließend wurde die RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die gRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu A. nidulans homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Es wurde gegen den Wildtyp normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet. T: Transformante. (B) Dünnschichtchromatographie von Wildtyp im Vergleich zu den Transformanten 1 und 2. Für jeweils drei biologische Replikate wurden 4x10⁴ Sporen auf mCDB-Platten ausgebracht und für 7 Tage bei 28°C statisch inkubiert. Die Sekundärmetabolite wurden mit Ethylacetat aus dem Myzel und Agar gelöst. 20 µl der insgesamt 100 µl Gesamtvolumen der jeweiligen Probe wurde auf die Platte geladen. AOH: Alternariolstandard. Der Stern markiert den vermuteten Metaboliten des pksB-Clusters. (C) Quantitative Analyse der Metabolite. Mit Hilfe des Bildbearbeitungsprogramms ImageJ wurden die Banden quantitativ analysiert. Es wurde jeweils die Bandenintensität des Wildtyps und der Transformanten gemessen und gegen den Wildtyp normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet.

Die Dünnschichtchromatographie zeigt, dass in den Mutanten die gleichen Metabolite produziert werden wie im Wildtyp. Im Dunkeln ist die Produktion allgemein etwas schwächer als im Weißlicht, was mit den bisherigen Beobachtungen übereinstimmt. Der mit Stern markierte Metabolit ist auch in allen Proben vorhanden. Optisch ist es schwierig, einen Unterschied in den Bandenintensitäten von Wildtyp und Mutanten zu erkennen. Um zu bestimmen, ob die Bande in den Transformanten weniger stark ist als im Wildtyp, wurde mit dem Bildbearbeitungsprogramm ImageJ die Intensität der Banden bestimmt und gegen den Wildtyp normalisiert. Man kann in Abbildung 26 (B) erkennen, dass in den Mutanten die Intensität tatsächlich etwas abnimmt im Vergleich zum Wildtyp. Da das Deletionskonstrukt auch nur eine geringe Herunterregulierung von *pksB* zeigt, würde dieses Ergebnis gut passen. Eine stärkere Herunterregulierung würde wahrscheinlich auch eine Bande mit weniger Intensität hervorrufen. Die Transformationen für eine reine Deletionsmutante dauern noch an.

Da für dieses Cluster der Transkriptionsfaktor in Kapitel 4.2.3 bereits bestätigt wurde, wurde zusätzlich versucht, diesen durch Überexpression oder Knockdown zu manipulieren. Es wurde hierfür ein bereits vorhandenes Plasmid genutzt, welches ein RNAi-Konstrukt des *pksB*-Transkriptionsfaktors trägt (freundlicherweise von Ramona Fetzner zur Verfügung gestellt). Das Plasmid wurde in den Wildtypstamm transformiert und es wurden insgesamt sechs Transformanten erzielt. Die Expressionsanalyse dieser Transformanten ergab jedoch für jede Mutante eine höhere Expression des Transkriptionsfaktors von *pksB* verglichen zum Wildtyp (siehe Abb. 27 (A)). Eventuell ist bei der Konstruktion des Vektors ein Fehler unterlaufen, welcher zu einem Überexpressionsvektor anstatt einem Knockdown-Konstrukt führte. Die Mutanten wurden somit im Weiteren als Überexpressionsstämme behandelt. Die Transformanten T1, T3 und T4, welche die höchsten Expressionen zeigten, wurden genutzt um eine Dünnschichtchromatographie durchzuführen (siehe Abb. 27

(B)).

Abbildung 27: Die Überexpression des *pksB***-Transkriptionsfaktors. (A)** Expressionsanalyse der *pksB*-TF-Mutanten. Es wurden jeweils drei biologische Replikate des Wildtyps und der Mutante in flüssigem mCDB-Medium angeimpft und für 7 Tage bei 28 °C statisch inkubiert. Anschließend wurde die RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Es wurde gegen den Wildtyp normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet. EV: Leervektor, T: Transformante. **(B)** Dünnschichtchromatographie der Transformanten 1, 3 und 4. Für jeweils drei biologische Replikate wurden $4x10^4$ Sporen auf mCDB-Platten ausgebracht und für 7 Tage bei 28 °C statisch inkubiert. Die Sekundärmetabolite wurden mit Ethylacetat aus dem Myzel und Agar gelöst. 20 µl der insgesamt 100 µl Gesamtvolumen der jeweiligen Probe wurde auf die Platte geladen. AOH: Alternariolstandard. Der Stern markiert den vermuteten Metaboliten des *pksB*-Clusters. **(C)** Quantitative Analyse der Metabolite. Mit Hilfe des Bildbearbeitungsprogramms ImageJ wurden die Banden der Metabolite quantitativ analysiert. Es wurde jeweils die Bandenintensität gemessen und gegen Dunkel normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet.

Die Transformanten zeigen ein zum Wildtyp sehr ähnliches Bandenmuster. Es scheint kein Metabolit zusätzlich produziert zu werden. Jedoch wirkt der mit einem Stern markierten Metabolit stärker als im Wildtyp. Um diesen Eindruck zu bestätigen, wurde die Bandenintensität quantitativ mit dem Bildbearbeitungsprogramm ImageJ gemessen (siehe Abb. 27 (C)). Tatsächlich ist die Intensität der Banden in den Mutanten höher als im Wildtyp. Die Intensität korreliert mit der Höhe der Überexpression der Transformanten. Die Transformante 4 zeigt die höchste Expression und auch die höchste Produktion des Metabolites, bei Transformante 1 und 3 ist sowohl die Expression als auch die Bandenintensität etwas niedriger. Somit zeigt sich, dass sowohl die Herunterregulierung von *pksB* als auch die Überexpression des Transkriptionsfaktors von *pksB* diesen speziellen Metaboliten beeinflusst. Dies legt den Schluss nahe, dass dieses Cluster für die Produktion dieses Metabolits zuständig oder zumindest beteiligt ist.

Um genauere Aussagen über die Beschaffenheit des Metabolits treffen zu können, wurde eine große Menge der Proben auf eine präparative Dünnschichtplatte aufgetragen und der Metabolit anschließend von der Platte isoliert. Er wurde dann erneut in Methanol in Lösung gebracht und mittels LC/MS genauer analysiert (für die Analyse bedanke ich mich bei Dr. Markus Schmid-Heydt vom MRI in Karlsruhe). Die isolierte Bande ergab zwei Metabolite mit ähnlichen bzw. gleichen Retentionen. Einer dieser Metabolite (2 Isomere) ist mit ziemlicher Sicherheit Altenuen. Bei dem zweiten gefundenen Metaboliten handelt es sich um einen Heterozyklus mit der Masse 320 g/mol und der Summenformel C₂₀H₁₆O₄ (siehe Abb. 28). Die Strukturformel dieses Metabolits ist in Abbildung 28 angegeben. Es könnte sich hierbei um den Stoff Rubiginon B2 handeln, ein Antibiotikum, welches bereits in *Aspergillus* und *Streptomyces*, aber nicht in *Alternaria* beschrieben ist.

Abbildung 28: Analyse des vermuteten Metabolits des *pksB*-Clusters. Strukturformel der isolierten Substanz. Aus der Analyse konnte eine Strukturformel ermittelt werden. Es handelt sich jedoch vorerst nur um eine vorläufige Formel und noch nicht die endgültige Version. Es könnte sich dabei um das aus *Aspergillus* und *Streptomyces* bekannte Rubiginon B2 handeln.

4.3 Die globalen Regulatoren VeA und LaeA beeinflussen das pksB-

Cluster

Es konnte bisher gezeigt werden, dass die Überexpression des Transkriptionsfaktors zur Überexpression eines Metaboliten führt und dass ein Herunterregulieren der Polyketidsynthase in einer Verminderung des gleichen Metabolits resultiert. Um nun noch mehr über die Regulation des *pksB*-Clusters zu erfahren, wurden Homologe zweier globaler Regulatoren, VeA und LaeA, die in *A. nidulans* bereits gut untersucht sind, in *A. alternata* manipuliert und die Auswirkung dieser beiden Proteine auf *pksB* untersucht.

4.3.1 Der globale Regulator VeA und seine Auswirkung auf die

Polyketidsynthasen

Es konnte bereits in unserem Labor gezeigt werden, dass in A. alternata ein zu A. nidulans und N. crassa homologes Velvet-Protein existiert (Pruss et al., 2014); VeA kann selbst kein Licht wahrnehmen, spielt aber als Koordinator der Lichtsignale mit dem Sekundärmetabolismus eine wichtige Rolle (Bayram et al., 2008). Zuerst wurde ein Alignment erstellt (siehe Abb. 29 (A)), um die Ähnlichkeit der Proteine hervorzuheben; es liegt eine Deckungsgleichheit von 61% und eine Identität von 53% vor. Zusätzlich wurde eine Lokalisation des A. alternata VeA in A. nidulans durchgeführt, um die Ähnlichkeit der Proteine und ihrer Funktion zu untersuchen. Das A. nidulans VeA lokalisiert im Dunkeln gewöhnlich im Kern, unter Lichtbedingungen lokalisiert es teilweise im Zytoplasma. Der ORF des Gens wurde hierfür hinter den induzierbaren alcA-Promotor kloniert und in den A. nidulans Wildtypstamm SKV103 transformiert. Die Transformanten wurden per PCR auf die Integration des alcA-Promotors zusammen mit dem ORF des veA-Gens geprüft. Sporen positiv getesteter Mutanten wurden in Minimalmedium mit 2% Glycerin angeimpft und für ca. 14 Stunden bei Raumtemperatur inkubiert. Die Mikroskopieaufnahmen stammen von Elke Wohlmann.

Abbildung 29: Das Velvet-Homolog in *A. alternata.* (A) Alignment von *A. nidulans* VeA mit dem homologen Protein in *A. alternata*. Das Alignment wurde mit dem CLC Sequence Viewer erstellt. Das *A. nidulans* Protein VeA (AN1052) wurde gegen das homologe Protein in *A. alternata* (AAT_PG009942) alignt. Die Proteine sind zu 61% deckungsgleich und zu 53% identisch. (B) Lokalisation von *A. alternata* VeA in *A. nidulans*. Der ORF von *veA* aus *A. alternata* wurde aus gDNA amplifiziert und in den Efimov-Vektor unter der Kontrolle des *alcA*-Promotors kloniert. Durch die Integration in den Vektor findet gleichzeitig eine GFP-Markierung des Gens statt. Das Plasmid wurde in den SKV103 Wildtypstamm transformiert; die Selektion erfolgte hierbei durch den Auxotrophiemaker *pyr-4*. Per PCR wurde die Integration des Gens nachgewiesen. Sporen der positiv getesteten Transformanten wurden für die Mikroskopie in Minimalmedium mit 2% Glycerin auf Deckgläsern angeimpft, für ca. 16 Stunden bei Raumtemperatur inkubiert und anschließend auf Objektträger aufgebracht und mit dem Immersionsobjektiv bei einer Vergrößerung von 64-fach mikroskopiert. Glycerin dereprimiert den *alcA*-Promotor, was in einem Signal unabhängig von den äußeren Bedingungen resultiert. Es konnte eine Lokalisation im Kern (I) als auch im Zytoplasma (II) beobachtet werden. Die Markierung der Kerne erfolgte mit DAPI (4′,6-Diamidin-2-phenylindol).

10 µm

10 µm

Die Abbildung 29 (B) zeigt die zwei unterschiedlich beobachteten Lokalisationen des *A. alternata* VeA-Proteins in *A. nidulans*. In B (I) konnte eine Lokalisierung höchstwahrscheinlich im Kern mikroskopiert werden. Auf Grund der fehlenden DAPI-Färbung der Kerne ist dies nur eine Vermutung; jedoch deutet die Regelmäßigkeit des Signals auf eine Kernlokalisierung hin. Das Signal in B (II) hingegen ist gleichmäßig über die Hyphen verteilt; das Protein lokalisiert im Zytoplasma.

Um nun genaueres über die Funktion des Velvet Proteins in *A. alternata* zu erfahren, wurde ein Disruptions-Konstrukt hergestellt. Hierfür wurde eine Left-Border und eine Right-Border aus dem Genom amplifiziert und mit Linkern für die Hygromycin-Kassette versehen. Allerdings wurde als Left- und Right-Border jeweils ein Teil des ORF zusammen mit einem Stück up- und downstream amplifiziert. Die Hygromycinkassette unterbricht also das Gen und ersetzt es nicht vollständig. Mit nested-Primern wurde das Fusionskonstrukt aus den drei einzelnen DNA-Stücken gebildet und dieses direkt als PCR-Produkt transformiert. Es konnten etwa zehn Transformanten erzielt werden.

Schon optisch unterscheiden sich die Transformanten stark von dem Wildtyp. Die Kolonien sind eher weißlich grau und produzieren viel mehr Luftmyzel als der Wildtyp (siehe Abb. 30 (A)). Die Melaninproduktion scheint in den Mutanten beeinträchtigt zu sein. Dies könnte schon der erste Hinweis auf die regulierende Funktion des *veA*-Homologs auf die Sekundärmetabolite sein. Ähnliche Beobachtungen wurden bereits für eine *mve1*-Mutante, dem Homolog zu VeA in *Mycosphaerella graminicola*, gemacht. Auch hier kann die Mutante kein Melanin mehr produzieren (Choi & Goodwin, 2011). Die Wachstumsgeschwindigkeit scheint jedoch nicht reduziert.

Sechs der erhaltenen Transformanten wurden im Weiteren auf die Expression untersucht. Es konnte gezeigt werden, dass in allen getesteten Transformanten praktisch keine Expression mehr gemessen werden kann (siehe Abb.30 (B)). Um nun die Auswirkungen der Mutante auf die PksB zu bestimmen, wurde die Expression von *pksB* gemessen. Da durch Beobachtung des Phänotyps bereits gefolgert werden kann, dass die Melaninproduktion in den Mutanten beeinträchtigt ist, wurde zusätzlich die Expression von *pksA* sowie *pksD* gemessen (Abb. 30 (C)). Es ist zu sehen, dass alle drei Polyketidsynthasen in ihrer Expression beeinflusst sind. Das Gen *pksA* hat ein Expressionslevel von 71%, *pksB* von 21% und *pksD* von lediglich 2% der ursprünglichen Expression im Wildtyp. Dies liefert erste Hinweise auf eine aktivierende Funktion von VeA bezüglich der Sekundärmetabolite.

88

Abbildung 30: veA-Disruption. (A) Phänotyp der Disruptionsmutanten. Die Transformanten 2 und 8 wurden zusammen mit dem Wildtyp auf mCDB-Medium gepickt und für 3 bzw. 4 Tage bei 28°C inkubiert. (B) Messung der Expression von veA in den Disruptionsmutanten. Es wurden jeweils drei biologische Replikate des Wildtyps und der sechs Mutanten in flüssigem mCDB-Medium angeimpft und für 7 Tage bei 28°C statisch inkubiert. Anschließend wurde die RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu A. nidulans homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Es wurde gegen den Wildtyp normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet. (C) Expressionsanalysen von pksA, pksB und pksD in der veA-Disruptionsmutante. Die Inkubation und Isolierung der RNA sowie die qRT-PCR wurde wie in (B) beschrieben durchgeführt.

Um nun den Effekt der Genunterbrechung auf die direkt sichtbaren Sekundärmetabolite zu untersuchen, wurden drei der Transformanten (Nr. 2, 3 und 8) ausgewählt, um eine Dünnschichtchromatographie durchzuführen. Auf Grund der Vermutung, dass sich die Mutanten unter verschiedenen Lichtbedingungen unterschiedlich verhalten, wurden die Proben im Weißlicht oder im Dunkeln für 7 Tage bei 28°C inkubiert.

Abbildung 31. Dünnschichtchromatographie von *veA*-Disruptionsmutanten 2, 3 und 8 im Vergleich zu *A. alternata* Wildtyp. 4×10^4 Sporen wurden auf mCDB-Platten ausgebracht und für 7 Tage bei 28°C im Weißlicht bzw. im Dunkeln statisch inkubiert. Die Sekundärmetabolite wurden mit Ethylacetat aus dem Myzel und Agar gelöst. 20 µl der insgesamt 100 µl Gesamtvolumen der jeweiligen Probe wurde auf die Platte geladen. T: Transformante.

Die Abbildung 31 zeigt, dass die Disruption dieses Gens tatsächlich große Unterschiede im Sekundärmetabolitspektrum nach sich zieht. Dabei ist der Effekt im Dunkeln noch leicht stärker ausgeprägt als im Weißlicht. Die Mutanten produzieren große Mengen an gelben Metaboliten. Hierbei handelt es sich ausgehend von der Farbe und der Höhe der Banden eventuell um Altertoxine. Des Weiteren erkennt man in den Mutanten viele zusätzliche Banden, die meisten davon gelb oder orange. Allerdings kann hier keine Aussage darüber getroffen werden, um welche Metabolite es sich handelt. Die im Weißlicht inkubierten Proben zeigen ebenfalls starke gelbe Banden, von denen vermutet wird, dass es sich um Altertoxine handelt. Jedoch kann man hier auch die Alternariol-, Alternariolmonomethylether- und Altenuenbande erkennen, welche in den Dunkelproben fast vollständig von anderen Metaboliten überlagert sind. Auch der Metabolit, welcher vermutlich vom *pksB*-Cluster produziert wird, ist in den Velvet-Mutanten verschwunden. Dies stützt ebenfalls die These, dass pksB und die anderen Gene auf dem Cluster für den Metaboliten verantwortlich sind und dass VeA als übergeordneter Regulator viele der Polyketidsynthasen beeinflusst.

4.3.2 Der globale Regulator LaeA und seine Auswirkung auf die

Polyketidsynthasen

Da gezeigt werden konnte, dass VeA eine Rolle in der Regulation von *pksA*, *pksB* und *pksD* und somit höchstwahrscheinlich auch aller anderer Polyketidsynthasen spielt, wurde noch ein weiterer globaler Regulator, LaeA, untersucht. LaeA wurde bereits in *A. nidulans* als globaler Regulator von Sekundärmetaboliten beschrieben (Bok & Keller, 2004). Da in *A. alternata* noch kein LaeA-Homolog beschrieben ist, wurde mit einer BLAST-Suche nach dem Gen mit der höchsten Homologie gesucht und ein Alignment erstellt (siehe Abb. 32).

Abbildung 32: Alignment von *A. nidulans* LaeA (AN0807) mit dem homologen Protein (AAT_PG002962) in *A. alternata.* Das Alignment wurde mit dem CLC Sequence Viewer erstellt. Die Proteine sind zu 74% deckungsgleich und zu 51% identisch.

Nachdem das Protein mit der höchsten Homologie gefunden wurde, wurde der ORF des Gens hinter den konstitutiven *trpC*-Promotor kloniert und dieses Konstrukt in den Wildtyp transformiert. Die Transformanten wurden auf die Expression des *laeA*-Gens getestet. Eine der Transformanten wies eine Expression von nur noch 13% im Vergleich zum Wildtyp auf (siehe Abb. 33 (A)). Diese Mutante wurde ausgewählt, um weitere Versuche zu machen. Auffällig war das verlangsamte Wachstum im Vergleich zum Wildtyp-Stamm. Die Abbildung 33 (B) zeigt, dass die Mutante nach 2 Tagen Inkubation wesentlich kleiner ist als der Wildtyp. Um dies zu quantifizieren, wurde eine Messreihe über vier Tage durchgeführt, um die Größe der Kolonien zu vergleichen. Es zeigt sich, dass die Mutante über den ganzen Zeitraum nur etwa halb so schnell wächst wie der Wildtyp, was auf einen gravierenden Defekt in der Entwicklung hinweist (siehe Abb. 33 (C). Oft geht hiermit auch eine Änderung in der Sporenzahl der Mutanten im Vergleich zum Wildtyp einher. Daher wurde auch die Sporenzahl pro cm² einer gut bewachsenen Platte bestimmt. Die Sporenzahl liegt ein

wenig unter der des Wildtyps, allerdings ist der Unterschied von 2,32x10⁶ Sporen beim Wildtyp und 1,98x10⁶ Sporen bei der Mutante sehr gering (siehe Abb. 4.33 (D)).

Abbildung 33: Herunterregulierung von *laeA***. (A)** Messung der Expression von *laeA* in den Mutanten. Es wurden jeweils drei biologische Replikate des Wildtyps und der Mutanten in flüssigem mCDB-Medium angeimpft und für 7 Tage bei 28 °C statisch inkubiert. Anschließend wurde die RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Die Fehlerbalken wurden aus der Standardabweichung errechnet. Dargestellt ist die Transformante Nr.6, die die niedrigste Expression zeigte und mit der die weiteren Versuche durchgeführt wurden. (B) Phänotyp der Mutanten. Die Transformante 6 wurde zusammen mit dem Wildtyp auf mCDB-Medium gepickt und für 2 Tage bei 28°C inkubiert. (C) Wachstumsvergleich Wildtyp und Mutante. Der Wildtyp und die Mutante wurden auf mCDB-Medium gepickt und das Wachstum über 4 Tage hinweg dokumentiert. Es wurden jeweils drei Replikate gemessen. (D) Sporenanzahl der Mutante im Vergleich zum Wildtyp. Es wurde jeweils eine Fläche von 1 cm² einer gut bewachsenen Platte abgesteckt, die Sporen komplett in H₂O aufgenommen und mit Hilfe der Neubauer Zählkammer gezählt.

Des Weiteren sollte auch hier die Sekundärmetabolitproduktion überprüft werden. Es wurden die Sekundärmetabolite von 7 Tage im Dunkeln oder Weißlicht inkubierten Proben mit Hilfe von Ethylacetat isoliert. Es zeigt sich ein gravierender Unterschied in der Produktion von Metaboliten in der Mutante im Vergleich zum Wildtyp (siehe Abb. 34 (A)). Zuerst fällt auf, dass bedeutend weniger Metabolite gebildet werden. Altenuen ist in allen Proben vorhanden, aber Alternariolmonomethylether und auch Alternariol wird von den Mutanten so gut wie nicht mehr produziert. Hierfür kann man zusätzliche Metabolite erkennen, bei denen es sich um die gelben Altertoxine handeln könnte. Auch der durch einen Stern markierte Metabolit, welcher im Wildtyp sehr dominant ist, ist in der Mutante nicht mehr vorhanden.

Abbildung 34: Sekundärmetabolitproduktion und Expression von *pksB* und *pksD* in der *laeA*-Mutante im Vergleich zum Wildtyp. (A) Dünnschichtchromatographie von Wildtyp und *laeA*-Mutante. Für jeweils drei biologische Replikate wurden 4x10⁴ Sporen auf mCDB-Platten ausgebracht und für 7 Tage bei 28 °C im Weißlicht bzw. im Dunkeln statisch inkubiert. Die Sekundärmetabolite wurden mit Ethylacetat aus dem Myzel und Agar gelöst. 20 µl der insgesamt 100 µl Gesamtvolumen der jeweiligen Probe wurde auf die Platte geladen. AOH: Alternariolstandard. (B) Expression von *pksB* und *pksD* in der *laeA*-Mutante. Es wurden jeweils drei biologische Replikate des Wildtyps und der Mutanten in flüssigem mCDB-Medium angeimpft und für 7 Tage bei 28°C statisch inkubiert. Anschließend wurde die RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Die Fehlerbalken wurden aus der Standardabweichung errechnet. Die Expression beider Polyketidsynthasen ist in den Mutanten stark reduziert. Insgesamt kann man also sagen, dass das mutierte Gen einen großen Einfluss auf die Sekundärmetabolitproduktion hat. Es scheint sich tatsächlich um einen globalen Regulator zu handeln, der viele Auswirkungen auf die nachgeschalteten Wege hat. Um die direkte Auswirkung der Mutation des Gens auf die Polyketidsynthasen zu messen, wurde erneut die Expression von *pksB* und *pksD* in der Mutante im Vergleich zum Wildtyp gemessen (siehe Abb. 34 (B)). Tatsächlich wird die Dünnschichtchromatographie, die viel weniger Metabolite zeigte, durch diese Messung bestätigt. Beide Polyketidsynthasen sind stark in ihrer Expression reduziert. Das Gen *pksB* hat nur noch 18% und *pksD* 19% ihrer ursprünglichen Expression im Wildtyp. Dies zeigt, dass die Mutante eine direkte Auswirkung auf die Gene des Sekundärmetabolismus hat. Auch in dieser Dünnschichtchromatographie fehlt der Metabolit, welcher vermutlich durch das *pksB*-Cluster gebildet wird. Dies unterstützt ebenfalls nochmals die These, dass *pksB* und das umliegende Cluster für die Bildung des Metaboliten zuständig sein könnte. Zusätzlich wird die globale Rolle des LaeA-homologen Proteins demonstriert.

4.4 Die Charakterisierung des *pksD*-Clusters

Da diese Ergebnisse zeigen, dass sich die Herunterregulierung bzw. Disruption zweier globaler Regulatoren direkt auf die Polyketidsynthasen, unter anderem auch auf *pksD*, auswirkt, wurde im Weiteren auch das *pksD*-Cluster näher analysiert.

4.4.1 pksD Cluster

Die Polyketidsynthase PksD (AAT PG07387) liegt auf Contig00323; das Gen hat eine Länge von 7407 bp, die für 2468 Aminosäuren kodieren. Die Domänenstruktur ist in Abbildung 35 (A) dargestellt. Es gibt insgesamt sieben Alternaria-Arten, die Proteine mit einer hohen Homologie zu dieser Polyketidsynthase aufweisen. Es handelt sich hierbei um die gleichen Arten, die auch ein Homolog zu pksB besitzen Alignment im Anhang 2). Die Abbildung 35 (siehe (B) zeigt einen Verwandtschaftsbaum ausgehend von der Homologie der PksD.

Abbildung 35: Die Polyketidsynthase PksD und das *pksD*-Cluster. (A) Schematische Darstellung der DNA-Sequenz von *pksD* und die Aminosäurensequenz mit konservierten Domänen. Das Gen hat eine Länge von 7407 bp und besitzt sechs Introns. Das Protein hat eine Länge von 2468 Aminosäuren. I: Intron; PKS-KS: β-Ketoacylsynthase; ACT: Acyltranferase; DH: Dehydrogenase; MT: Methyltransferase; ER: Enoylreduktase; KR: Ketoreduktase; PB: Phosphopanthetheine Bindestelle. (B) Phylogenetischer Verwandtschaftsbaum der sieben *Alternaria*-Arten anhand der Homologie der PksD.

In unmittelbarer Nähe liegt das Gen AAT_PP07393, welches ein Transkriptionsfaktor sein könnte. Das Gen ist 1545 bp lang und kodiert für ein Protein von 514 Aminosäuren. Einige weitere Gene liegen ebenfalls auf diesem Contig in direkter Nähe zur Polyketidsynthase, welche ebenfalls eine Rolle in der Produktion eines Sekundärmetaboliten spielen könnte. Es wurden insgesamt 17 Gene um die PKS herum genauer betrachtet, um die zum Cluster gehörenden zu identifizieren (AAT_PP07384 bis AAT_PP07398) (siehe Abb. 36). Die Gene, die genauer untersucht wurden, haben folgende vermutete Funktion:

AAT_PP07384: Transporter der MFS-Superfamilie
AAT_PP07385: Alkohol Acyltransferase
AAT_PP07386: Aminotransferase
AAT_PP07388: Putative Vanillyl-Alkohol-Oxidase, FAD-Bindeprotein
AAT_PP07389: Hypothetisches Protein
AAT_PP07390: Glucoronyl-Hydrolase
AAT_PP07391: Glycosyl-Hydrolase-Family 5, Alpha-Amylase-Family
AAT PP07392: Putativer Panthothenat Transporter, Transporter der MFS-Superfamilie

AAT_PP07394: Short-Chain-Dehydrogenase

AAT_PP07512: HET-Domäne enthaltendes Protein

AAT_PP07395: Putative Short-Chain-Dehydrogenase

AAT_PP07396: Endoplasmatisches-Retikulum-Vesikel-Protein

AAT_PP07397: Putative Endoribonuklease L-psp Familiy Protein

AAT_PP07516: C2H2 Transkriptionsfaktor

AAT_PP07398: C6 Zinkfinger-Protein

Abbildung 36: Schematische Domänenstruktur der Gene im Cluster. AT: Aminotransferase; CD: Kondensationsdomäne; MFS: (Major facility superfamily)-Transporter; FAD: FAD-Bindedomäne, FAD-ox: FAD-linked oxidase; GH: Glycosyl Hydrolase Family; TF: Fungal specific transcription factor; SRD: Short-Chain-Dehydrogenase/reduktase; HET: Heterokaryon incompatibility Protein; ERVP: Endoplasmatic Retikulum Vesikel Protein 25; L-psp: Putative Endoribonuklease L-psp Family Protein.

4.4.2 Die Identifizierung des Transkriptionsfaktors des pksD-Clusters

Der Reporterassay (siehe Kapitel 4.2.1) wurde erneut angewendet, um das *pksD*-Cluster genauer zu analyiseren. Um zu untersuchen, ob der putative Transkriptionsfaktor innerhalb des Clusters auch der Regulator des Selbigen ist, wurde hier ebenfalls der Reporterassay benutzt. Hierfür wurde nun der ORF des Transkriptionsfaktors hinter den induzierbaren *alcA*-Promotor und der Promotor von *pksD* (1kb) vor das Laccase-Gen *lccC* kloniert. Beide Plasmide wurden in den *A. nidulans* Wildtypstamm RMS011 transformiert.

Die Abbildungen 37 (A) und (B) zeigen den Reporterassay für die beiden Komponenten *pksD*-Promotor und dem putativen Transkriptionsfaktor von *pksD*. Es ist zu sehen, dass die Kontrollstämme und auch der Wildtyp keine Grünfärbung aufweisen. Im Gegensatz dazu produzieren die Stämme, welche mit beiden Plasmiden transformiert wurden, das Reportergen Laccase, welche das ABTS im Medium zu einem grünen Farbstoff umsetzt. Der Transkriptionsfaktor bindet also tatsächlich an den Promotor der Polyketidsynthase.

Dies wurde auch in einem Flüssigkulturansatz gezeigt (siehe Abb. 37 (B)). Hier wurden die Stämme in Flüssigmedium unter reprimierenden Bedingungen mit Glucose als Kohlenstoffquelle für etwa 16 Stunden stark schüttelnd inkubiert. Danach wurde das Myzel gewaschen und das Medium mit Glucose durch Medium mit Threonin ersetzt, welches den alcA-Promotor induziert. Anschließend wurde in regelmäßigen Abständen Überstand entnommen und ABTS zugefügt. Man kann so die Laccaseproduktion im Überstand messen. Auch hier zeigt sich, dass die Laccaseproduktion in den Stämmen mit beiden erfolgreich transformierten Plasmiden Kontrollstämme stetig ansteigt, während der Wildtyp und die keine Laccaseproduktion zeigen. Es wurde zusätzlich zu den regelmäßigen Messpunkten im Abstand von 8 bis 16 Stunden zu jedem Zeitpunkt eine weitere Messung 10 Minuten nach der ersten Messung durchgeführt, um die Laccaseaktivität zu diesem speziellen Zeitpunkt bestimmen zu können. Für die transformierten Stämme ergibt sich eine Laccaseaktivität zwischen 0,0006–0,002 U/ml. Dieser Wert ist eher klein, jedoch ist A. nidulans wie erwähnt kein guter Laccaseproduzent, was diese Werte erklärt.

4.4.3 Bestätigung der weiteren Gene im pksD-Cluster

Es sind einige interessante Gene in der Nähe der *pksD* lokalisiert, welche eine Rolle in der Produktion des Metabolits spielen könnten.

Von jedem der Gene wurde 1 kb upstream des ORF als Promotor vor das Reportergen Laccase kloniert und zusammen mit dem bereits vorhandenen Plasmid (*alcA*-Promotor und Transkriptionsfaktor *pksD*) in *A. nidulans* transformiert. Per PCR wurde die Integration der beiden Plasmide nachgewiesen. Zu jedem Konstrukt wurde auch hier eine Negativkontrolle hergestellt, indem nur eins der Plasmide transformiert wurde. Die Abbildung 38 zeigt das Ergebnis dieser Transformationen.

Gen	Regulation
AAT_PP07384: MFS	positiv
AAT_PP07385: Alkohol Acyltransferase	?
AAT_PP07386: Aminotransferase	positiv
AAT_PP07388: Vanillyl-Alkohol-Oxidase, FAD-Bindeprotein	positiv
AAT_PP07389: Hypothetisches Protein	positiv
AAT_PP07390: ungesättigte Glucuronyl-Hydrolase	positiv
AAT_PP07391: Glykosid-Hydrolase	negativ
AAT_PP07392: Putativer Panthothenat Transporter, MFS	positiv
AAT_PP07394: Short-chain Dehydrogenase	positiv
AAT_PP07512: HET-Domäne-Protein	positiv
AAT_PP07395: Putative Short-chain Dehydrogenase	?
AAT_PP07396: ER-Vesikel-Protein	?
AAT_PP07397: Endoribonuklease L-psp Family Protein	?
AAT_PP07516: C2H2 Transkriptionsfaktor	?
AAT_PP07398: C6 Zinkfinger-Protein	negativ

Abbildung 38: Reporterassay für weitere putative Cluster-Gene um pksD. Die transformierten Stämme wurden unter induzierenden und reprimierenden Konditionen getestet. Die Expression der Gene unter dem alcA-Promotor wurde durch die Kohlenstoffquelle im Medium reguliert; eine Repression findet auf Glucose-, eine Dereprimierung auf Glycerinund eine Induktion auf Threoninmedium statt. 1: Kontrollstämme, transformiert mit nur einem Plasmid (zwei biologische Replikate); 2: Wildtypstamm; 3: Stämme für Reporterassay, transformiert mit beiden Plasmiden (zwei biologische Replikate).

Für alle Kombinationen sind sowohl der Wildtyp als auch die Negativkontrollen negativ; hier wird also keine Laccase auf Grund anderweitiger Faktoren produziert. Für manche der Gene konnte auch nach mehrmaligem Transformieren keine positive Kolonie identifiziert werden. Die Abbildung 39 zeigt das Schema des *pksD*-Clusters. Die Gene, für die keine Transformanten erzielt werden konnten, sind hier mit einem Fragezeichen markiert. Die mit Sternen markierten Gene wurden positiv im Laccasetest geprüft. Die durchgestrichenen Gene gehören nicht zum Cluster. Dies ergibt eine erste Einschätzung, wie man das Cluster um *pksD* definieren muss.

Abbildung 39: Identifizierung weiterer Gene im *pksD*-Cluster. Schema des *pksD*-Clusters unter Berücksichtigung der Ergebnisse des Reporterassays. Mit Sternen sind die Gene markiert, die zum Cluster gehören. Nicht zum Cluster gehörende Gene sind durchgestrichen. Die mit Fragezeichen gekennzeichneten Gene wurden bisher nicht erfolgreich getestet.

4.4.4 Überexpression der pksD

Zur näheren Charakterisierung der Polyketidsynthase PksD wurde ein RNAi-Konstrukt hergestellt, die Polyketidsynthase herunter regulieren um zu (freundlicherweise zur Verfügung gestellt von Ramona Fetzner). Das Plasmid wurde in den Wildtypstamm transformiert. Zwei Transformanten wuchsen auf dem Selektionsmedium und wurden weiteren Untersuchungen unterzogen. Nach erfolgreicher Überprüfung der Transformanten per PCR wurde die Expression der pksD in den Mutanten gemessen. Überraschenderweise wurde eine etwa doppelt so starke Expression im Vergleich zum Wildtyp festgestellt. Somit handelt es sich nicht um RNAi-Stämme, sondern eher um Überexpressionsstämme (siehe Abb. 40 (A)). Möglichweise ist bei der Konstruktion des Plasmids ein Fehler unterlaufen, wodurch ein Konstrukt zur Überexpression entstand. Auch optisch unterscheiden sich die zwei Mutanten sehr vom Wildtyp (siehe Abb. 40 (B)). Die Transformanten zeigen beide einen weißen Phänotyp; sie scheinen im Melaninbiosyntheseweg gestört zu sein.

Abbildung 40: (A) Expressionsanalyse der *pksD*-Mutanten. Es wurden jeweils drei biologische Replikate des Wildtyps und der Mutanten sowie einer Leervektorkontrolle in flüssigem mCDB-Medium angeimpft und für 7 Tage bei 28°C statisch inkubiert. Anschließend wurde die RNA mit Hilfe des Fungal RNA Mini Kit von Omega isoliert. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Es wurde gegen den Wildtyp normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet. **(B)** Phänotyp der Mutanten. Die Transformanten 1 und 2 wurden zusammen mit dem Wildtyp auf mCDB-Medium gepickt und für 2 Tage bei 28°C inkubiert.

Um weitere äußere Unterschiede festzustellen, wurde die Koloniegröße, also das Wachstumsverhalten der Transformanten, mit der des Wildtyps verglichen (siehe Abb. 41 (A)). Die Transformanten wachsen etwas langsamer als der Wildtyp, jedoch ist das Wachstum nur um etwa 10% reduziert.

Auf Grund des auffälligen Phänotyps wurden die Transformanten auch mikroskopiert, um Unterschiede im Phänotyp auf mikroskopischer Ebene festzustellen (siehe Abb. 41 (C)). Der bereits makroskopisch festgestellte Melaninmangel wurde durch die Mikroskopbilder bestätigt. Der Wildtyp zeigt vor allem in den Sporen eine sehr dunkle Färbung, die durch das Melanin, welches hauptsächlich in den Sporen eingelagert wird, verursacht wird. In den Transformanten sind die Sporen ohne jegliche Färbung. Es scheint kein Melanin in ihnen akkumuliert zu sein. Auch sind die Sporen kleiner und scheinen nicht ausgewachsen zu sein. Möglicherweise können sie sich auf Grund des Melaninmangels nicht vollständig ausbilden.

Abbildung 41: Analyse der *pksD*-Mutanten. (A) Koloniegröße der Mutanten. Der Wildtyp und die beiden Mutanten wurden auf eine mCDB-Platte gepickt und bei 28°C inkubiert. Es wurden drei Replikate angefertigt. Die Koloniegröße wurde 4 Tage lang alle 24 Stunden bestimmt. (B) Expressionsanalyse von *cmrA* und *pksA* in den *pksD*-Mutanten. Die Isolation der RNA und die Durchführung der qRT-PCR erfolgte wie in Abbildung 40 (A) beschrieben. (C) Mikroskopische Aufnahmen der Transformanten. Für die Mikroskopie wurden wenige Sporen einer Platte abgenommen und auf Deckgläsern in Mikroskopiemedium resuspendiert. Die Proben wurden über Nacht bei Raumtemperatur inkubiert und am nächsten Tag auf Objektträger gebracht und mit dem Immersionsobjektiv bei einer Vergrößerung von 64-fach mikroskopiert.

Um nun zu untersuchen, ob tatsächlich die Gene für die Melaninsynthese in dieser Mutante beeinflusst sind, wurde die Expression von *pksA*, der Polyketidsynthase für die Produktion von Melanin, und *cmrA*, dem Regulator des Melaninclusters, in den Mutanten gemessen (siehe Abb. 41 (B)). Tatsächlich ist die Expression beider Gene stark beeinflusst. In der Transformante 1 zeigt *cmrA* nur noch 28% und *pksA* sogar nur 7% der Expression des Wildtyps. Für die Transformante 2 ist der Effekt nicht ganz so gravierend, hier ist die Expression von *cmrA* noch bei 56% und von *pksA* bei 14% im Vergleich zum Wildtyplevel. Beide Mutanten zeigen also eine starke Reduzierung der Expression der Gene für die Melaninproduktion. Dies deutet auf eine Interaktion der verschiedenen Polyketidsynthasen miteinander hin.

Abbildung 42: Dünnschichtchromatographie der Transformanten 1 und 2. Für jeweils drei biologische Replikate wurden 4x10⁴ Sporen auf mCDB-Platten ausgebracht und für 7 Tage bei 28 °C im Weißlicht bzw. im Dunkeln statisch inkubiert. Die Sekundärmetabolite wurden mit Ethylacetat aus dem Myzel und Agar gelöst. 20 µl der insgesamt 100 µl Gesamtvolumen der jeweiligen Probe wurde auf die Platte geladen. AOH: Alternariolstandard.

Letztendlich wurde noch der Effekt der Transformation auf die Bildung der Sekundärmetabolite untersucht. Hierfür wurde eine Dünnschichtchromatographie durchgeführt. Die Transformanten zeigen mehr Banden als der Wildtypstamm, allerdings sind die "typischen" Banden wie Alternariol, Alternariolmonomethylether und Altenuen nur noch sehr schwach zu sehen. Die Produktion dieser Metabolite scheint stark eingeschränkt zu sein.

Es wurde im Weiteren versucht, genauere Hinweise auf den von der PksD direkt produzierten Metaboliten zu finden.

4.4.5 Heterologe Expression von pksD in A. nidulans

Die heterologe Expression erlaubt es, einzelne Gene und ihre Funktion zu untersuchen, indem man sie in eine Umgebung bringt, in der sie unabhängig von allen Interaktionspartnern ihre Aufgabe ausüben. Es wurde bereits gezeigt, dass *A. nidulans* ein effizientes System ist, um Sekundärmetabolitgene heterolog zu exprimieren (Chiang *et al.*, 2013). *A. nidulans* ist ein Ascomycet mit schnellem filamentösen Wachstum. Sein Genom ist haploid und seit 2005 komplett sequenziert, was die Arbeit mit dem Pilz vereinfacht. Es wurde *pksD* ausgewählt um die heterologe Expression in *A. nidulans* zu untersuchen.

Abbildung 43: Die Expression von *pksD* in *A. nidulans.* (A) Schematische Darstellung des Vektors für die heterologe Expression von *pksD* in *A. nidulans.* Der ORF der *pksD* wurde mit *Kpn*I und *Pac*I-Schnittstellen hinter den *alcA*-Promotor kloniert. Das Plasmid wurde in die Stämme GR5 (pyrG89, pyroA4) und SRF200 (pyrG89, pyroA4, argB2) transformiert. (B) Expression der transformierten Stämme. Die Wildtyp-Stämme GR5 und SRF200 wurden mit dem dargestellten Plasmid transformiert. Die transformierten Kolonien wurden per PCR auf das Plasmid überprüft. Zwei der positiven Transformanten wurden ausgewählt und RNA wurde isoliert. Hierbei wurden die Proben für drei Tage bei 37°C statisch inkubiert. Als Kohlenstoffquelle wurde dem Medium 2% Threonin und 0,2% Glucose zugesetzt. Die RNA wurde mit Hilfe des Fungal Mini Kit von Omega hergestellt. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das *A. nidulans* Histon H2B-Gen wurde als Kontrollgen verwendet. Die Fehlerbalken wurden aus der Standardabweichung errechnet.

Für die heterologe Expression wurde der ORF der pksD in den Efimov-Vektor eingebracht, in dem pksD unter der Kontrolle des induzierbaren alcA-Promotors exprimiert wird. Threonin induziert hierbei den Promotor, Glycerin dereprimiert und Glucose reprimiert den Promotor. Nach der Transformation wurden die Kolonien per Test-PCR auf das Konstrukt überprüft. Jeweils zwei der positiven Transformanten wurden ausgewählt und die Expression bestimmt. Dabei wurde die RNA aus Proben isoliert, bei denen der alcA-Promotor durch Threonin induziert wurde. Beide Wildtypen zeigen keine Expression des *pksD*-Gens, wohingegen die Tranformanten SKS21 und SKS22 eine bis zu 50 000-fache Expression zeigen (siehe Abb. 43 (B)). Die Expression der *pksD* in einem heterologen Organismus war demnach erfolgreich. Als nächster Schritt wurde eine Dünnschichtchromatographie durchgeführt, um die Stämme auf neue Metabolite zu untersuchen (siehe Abb. 44).

Abbildung 44: Analyse der Metabolite in dem transformierten *A.nidulans*-Stamm SRF200. Kleine Petrischalen mit Minimalmedium und Threonin als Kohlenstoffquelle wurden mit 1x10⁷ Sporen beimpft und für 7 Tage bei 37°C inkubiert. Die Isolierung der Sekundärmetabolite erfolgte einmal mit Chloroform und einmal mit Ethylacetat. Es wurden jeweils drei biologische Replikate hergestellt. 20 µl der Extrakte wurden auf die Dünnschichtplatten aufgebracht. Für die sechs rechten Proben wurden 50 ml Flüssigmedium mit Threonin als Kohlenstoffquelle mit Sporen beimpft und schüttelnd für vier Tage inkubiert. SRF: Wildtyp, K: Kontrollstamm, D1: Transformante 1, D5: Transformante 5, Ü1: Überstand der Transformante 1, Ü6: Überstand der Transformante 6.

Die Abbildung 44 zeigt die Dünnschichtchromatographie der transformierten *A. nidulans*-Stämme im Vergleich zum untransformierten Wildtyp und einer Leerkontrolle, welche mit dem leeren Efimov-Vektor transformiert wurde. Es wurde sowohl Chloroform als auch Ethylacetat genutzt, um die Metabolite zu isolieren. Zusätzlich zur statischen Inkubation wurden Schüttelkulturen beimpft und nach 4

Tagen Inkubation ebenfalls die Sekundärmetabolite isoliert (siehe Abb. 44: Schüttelkultur). Hier wurde erwartet, dass auf Grund der höheren Myzelbildung auch mehr Sekundärmetabolite produziert werden könnten. Insgesamt kann man sagen, dass die vom *A. nidulans* produzierten Sekundärmetabolite weniger stark ausgeprägt und auch nicht so zahlreich vorhanden sind wie bei *A. alternata*. Allerdings sind auch nicht alle Metabolite unter UV-Licht zu sehen, daher ist dies nur ein optischer Eindruck.

Mit roten Pfeilen ist der auffälligste Unterschied zwischen Wildtyp und den Mutanten markiert. Die starke orangene Bande, die in beiden Mutanten-Stämmen und beiden verwendeten Lösungsmitteln auftritt, ist sowohl im Wildtyp als auch in der Leerkontrolle nicht vorhanden. Hierbei könnte es sich eventuell um den von der PksD produzierten Metabolit handeln. Durch den induzierten Promotor ist *pksD* stark aktiv, was die Stärke des Signals erklären könnte. Hierbei handelt es sich jedoch nur um das direkte Produkt der Polyketidsynthase PksD; es ist höchstwahrscheinlich ein Zwischenprodukt, welches durch andere Proteine noch weiter verstoffwechselt wird und erst so zum Endprodukt umgesetzt wird. Jedoch gibt es bisher keine Anhaltspunkte, um welchen Stoff es sich bei diesem Zwischenprodukt handelt; auch der Endmetabolit des Clusters ist noch nicht bekannt.

4.5 Epigenetische Regulation durch Modifikation globaler

Regulatoren

Wie bereits in der Einleitung erwähnt, wird die Regulation von Sekundärmetabolitclustern hauptsächlich durch äußere Faktoren wie der Kohlenstoffoder Stickstoffquelle, des pH-Wertes der Umgebung, der Kommunikation mit anderen Arten oder auch durch verschiedene Lichtintensitäten beeinflusst. Alle diese Faktoren werden durch Rezeptoren an der Zelle registriert und eine Signalkaskade wird ausgelöst, welche die Expression der Metabolite gemäß dem Signal verändert. Es wurde nun gezeigt, wie man ein Cluster direkt durch Manipulation des Transkriptionsfaktors verändern kann und wie globale Regulatoren die Sekundärmetabolitproduktion beeinflussen können. Nun wird hier auf noch einer höhergestellten Ebene die Produktion von Metaboliten untersucht. Dieser Teil der Arbeit beschäftigt sich mit dem äußeren Faktor Licht und dessen Einfluss auf die Expression der Polyketidsynthasen. Hierbei ist es unausweichlich, sich mit dem Blaulichtrezeptor LreA und dem Rotlichtrezeptor FphA näher zu beschäftigen, welche ebenfalls in der Einleitung bereits erwähnt wurden.

4.5.1 Licht beeinflusst die Sekundärmetabolitproduktion

Es wurde bereits belegt, dass die Sekundärmetabolitproduktion unter anderem von dem äußeren Faktor Licht abhängt. Hierbei ist die Produktion der Metabolite im Licht höher als im Dunkeln (Pruss *et al.*, 2014). *A. alternata* verhält sich in Blaulicht wie unter Weißlichtbedingungen, wohingegen Rotlicht einen ähnlichen Effekt zeigt wie Dunkelheit. Es existiert, wie bereits in der Einleitung beschrieben, ein zu *A. nidulans* homologer Blaulichtrezeptor in *A. alternata*, LreA, sowie ein zu *A. nidulans* homologer Rotlichtrezeptor, FphA. Für Blaulicht wurde bereits gezeigt, dass es einen gravierenden Effekt auf die Produktion von Sekundärmetaboliten hat, wohingegen Rotlicht bisher keine so starke Wirkung zeigte. Durch die Deletion von *IreA* konnte der Blaulichteffekt aufgehoben werden. Die Mutante kann kein Blaulicht mehr sehen, also handelt es sich bei dem deletierten Gen tatsächlich um den Blaulichtrezeptor in *A. alternata* (Pruss *et al.*, 2014).

4.5.1.1 A. alternata reagiert auf Grünlicht

Zudem wurde gezeigt, dass ein möglicher Grünlichtrezeptor existiert; es handelt sich um ein NopA-homologes Protein mit einer Rhodopsin-Domäne (Pruss *et al.*, 2014). Um nun alle Lichtarten abzudecken, wurde getestet, ob *A. alternata* Grünlicht wahrnehmen kann. Hierfür wurde eine Dünnschichtchromatographie durchgeführt, bei der Proben von in verschiedenen Lichtintensitäten bestrahlten Wildtypkolonien aufgetragen wurden. Sie wurden Dunkelheit, Grünlicht oder Weißlicht für jeweils 7 Tage ausgesetzt und anschließend die Sekundärmetabolite mit Ethylacetat isoliert.

Abbildung 45 zeigt, dass *A. alternata* tatsächlich Grünlicht wahrzunehmen scheint. Die Dünnschichtchromatographie lässt erkennen, dass sich die mit Grünlicht bestrahlten Proben eher wie die in Weißlicht inkubierten verhalten und ebenfalls mehr Sekundärmetabolite gebildet wurden, wie bei den im Dunkeln inkubierten Wildtypproben.

Um diese Beobachtung genauer zu quantifizieren, wurde das Bildbearbeitungsprogramm ImageJ genutzt, um die Bandenintensitäten zu messen und zu vergleichen. Dies ergibt ein genaueres Bild über die gebildeten Sekundärmetabolite. Es wurden die drei dominantesten Metabolite Alternariol, Alternariolmonomethylether und Altenuen ausgewählt, um die Lichtabhängigkeit quantitativ nachzuweisen. Das Diagramm in Abbildung 45 (Bi) zeigt die Bandenintensität aller Banden unabhängig voneinander, bei Abbildung 45 (Bii) wurde auf die Dunkelproben normalisiert. Man kann erkennen, dass im Weißlicht alle drei Metabolite stärker produziert werden als im Dunkeln. Hierbei zeigen die Grünlichtproben ähnliche und teilweise sogar höhere Werte wie die Weißlichtproben; es scheint eine Grünlichtwahrnehmung zu existieren.

(Bi) 40000 35000 2.5 n-fache Intensität 30000 Bandenintensität 2 25000 Alternariol 1.5 20000 AME 15000 Altenuen 1 10000 0.5 5000 0 0 Dunkel Grünlicht Weißlicht Grünlicht Weißlicht Dunkel

Abbildung 45: Dünnschichtchromatographie von *A. alternata* Wildtyp unter verschiedenen Lichtbedingungen. (A) Dünnschichtchromatographie von *A. alternata* Wildtyp. Die jeweiligen Proben wurden entweder im Dunkeln, Weißlicht oder Grünlicht für 7 Tage bei 28°C statisch inkubiert. Es wurden jeweils drei biologische Replikate hergestellt, die Isolation der Sekundärmetabolite erfolgte mit Ethylacetat. 20 µl der jeweiligen Probe wurde auf die Platte geladen. AOH: Alternariolstandard. (B) Quantitative Analyse der Metabolite. Mit Hilfe des Bildbearbeitungsprogramms ImageJ wurden die Banden quantitativ analysiert. Es wurde jeweils die Bandenintensität gemessen (Bi) und aufgetragen bzw. gegen Dunkel normalisiert (Bii).

(A)
4.5.1.2 Die Gene eines Clusters sind ebenfalls lichtabhängig exprimiert

Bereits in Kapitel 4.1 wurde nachgewiesen, dass einige Polyketidsynthasen abhängig vom Licht exprimiert sind. Nun ist es auch interessant, ob nur die Polyketidsynthasen lichtreguliert sind oder ob dieser Effekt, wie im Falle von *pksB* bereits überprüft, sich auf ein ganzes Cluster auswirkt. Um dies zu untersuchen, wurde ein bereits beschriebenes Cluster, das *pksJ*-Cluster, ausgewählt. Es handelt sich hierbei um eine Polyketidsynthase, die für die Produktion von Alternariol verantwortlich ist. Sie hat eine Länge von 2225 Aminosäuren und besitzt eine peroxisomale Zielsequenz (Saha *et al.*, 2012). Es wurden neben der Polyketidsynthase drei weitere Gene ausgewählt, die schon als Clustergene definiert wurden und für die Produktion von Alternariol eine Rolle spielen, und die Expression dieser Gene gemessen (siehe Abb. 46).

Abbildung 46: Expression von *pksJ* und von drei weiteren Genen innerhalb des *pksJ*-Clusters. Es wurde hier die Expression von *pksJ*, des Regulators des Clusters (*altR*), einer Hydrolase (HL) und einer Dioxygenase (DI) innerhalb des *pksJ*-Clusters untersucht. Die Proben wurden hierfür für 7 Tage bei 28°C entweder bei Dunkelheit (d), Weißlicht (h) oder Blaulicht (b) (450 nm) statisch inkubiert. Es wurden jeweils drei biologische Replikate der RNA mit Hilfe des Fungal Mini Kit von Omega hergestellt. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Alle Werte wurden auf den Dunkelwert des Wildtyps normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet. In Abbildung 46 ist die Expression von *pksJ*, des Regulators *altR*, einer Hydrolase und einer Dioxygenase unter verschiedenen Lichtbedingungen dargestellt. Gemessen wurde die Expression in Dunkelheit (d), in Weißlicht (h), Blaulicht (b) und zusätzlich für *pksJ* nach 10 Minuten, 30 Minuten und 60 Minuten Blaulichtexposition nach einer Dunkelphase.

Für den Wildtyp zeigt sich, dass die Expression aller Gene in Dunkelheit geringer ist als bei Weiß- oder Blaulicht. Auch 10–60 Minuten Belichtung reichen noch nicht aus, um die Expression signifikant zu ändern. Die in Weißlicht inkubierten Proben verhalten sich hierbei sehr ähnlich zu den Blaulichtproben, was darauf hindeutet, dass dieser Effekt hauptsächlich auf das Blaulicht zurückzuführen ist. Dies zeigt, dass die Regulation für alle Gene eines Clusters, zumindest in diesem Fall für die drei ausgewählten, gleich ist und zusätzlich, dass das Cluster lichtabhängig exprimiert wird.

wird. LreA Hauptrezeptor die Da davon ausgegangen dass der für Blaulichtwahrnehmung in A alternata ist, wurde zusätzlich zum Wildtyp noch die Expression der gleichen Gene in dem *AlreA* Stamm durchgeführt. Im Vergleich zum Wildtyp kann man im $\Delta IreA$ -Stamm erkennen, dass nun die Expressionen bei allen drei Lichtbedingungen fast gleich sind. Es gibt keinen Unterschied mehr zwischen den im Dunkeln inkubierten Proben und denen in Weiß- bzw. Blaulicht. Dies zeigt, dass LreA tatsächlich eine wichtige Funktion als Lichtrezeptor wahrnimmt, dessen Einfluss sich bis auf die Sekundärmetabolitcluster auswirkt. Die Ergebnisse deuten für dieses spezielle Cluster auf eine reprimierende Funktion von LreA im Dunkeln auf die Polyketidsynthase und die anderen Gene innerhalb des Clusters hin, welche durch die Deletion verloren geht.

4.5.1.3 LreA reguliert die Polyketidsynthasen

Nun stellt sich die Frage, ob diese Lichtregulation auch in anderen Polyketidsynthasen durch die Deletion aufgehoben wird, oder ob doch noch andere Lichtrezeptoren involviert sind. Hierzu wurden drei weitere Polyketidsynthasen ausgewählt und ihre Expression im Dunkeln und im Weißlicht im Hinblick auf den Vergleich von Wildtyp und $\Delta IreA$ -Mutante gemessen (siehe Abb. 47).

Abbildung 47: Die Expression von *pksA*, *pksC* und *pksD* im *A. alternata* Wildtyp und Δ*lreA*-Stamm. Es wurde hier die Expression von *pksA*, *pksC* und *pksD* untersucht. Die Proben wurden hierfür für 7 Tage bei 28°C entweder bei Dunkelheit (d) oder Weißlicht (h) statisch inkubiert. Es wurden jeweils drei biologische Replikate der RNA mit Hilfe des Fungal Mini Kit von Omega hergestellt. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Alle Werte wurden auf den Dunkelwert des Wildtyps normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet.

Es zeigt sich, dass vor allem bei pksA eine nur halb so hohe Expression in Dunkelheit im Vergleich zu den Lichtproben ermittelt werden konnte, was durchaus durch den Schutz von Melanin gegen durch Licht verursachte Schäden erklärt werden kann. Bei pksC und pksD wurde in Kapitel 4.1 keine auffallend-lichtregulierte Expression festgestellt. Auch hier wurde kein signifikanter Effekt von Licht gefunden; man könnte höchstens eine leichte Herunterregulierung von *pksD* im Licht vermuten. Betrachtet man nun die Δ *lreA*-Mutante, ist der Unterschied zwischen Licht und Dunkel so gut wie aufgehoben. Die *pksA* zeigt nun im Licht eine Expression ähnlich zu der im Dunkeln; dies deutet auf eine aktivierende Funktion von LreA im Licht hin. Sogar in den scheinbar nicht lichtinduzierten Polyketidsynthasegenen pksC und pksD zeigt die Mutante einen Effekt. Bei pksC könnte man eine inhibierende Funktion von LreA im Licht annehmen, da in der Mutante die Expression im Weißlicht höher ist als in Dunkelheit. Bei pksD sieht man deutlich eine hemmende Wirkung von LreA im Dunkeln; man könnte sogar eine leichte Hemmung im Licht annehmen. Man kann also feststellen, dass Blaulicht großen Einfluss auf die Expression der Polyketidsynthasen hat und dass der Blaulichtrezeptor LreA hier eine große Rolle spielt, sogar bei den Polyketidsynthasen, die nicht lichtreguliert scheinten.

Um diesem Effekt weiter nachzugehen, wurde die LreA-Mutante genauer im Vergleich zum Wildtyp auf epigenetischer Ebene untersucht, um herauszufinden, wie genau die Regulation von statten geht.

4.5.2 Epigenetische Regulation im Wildtyp, Δ *IreA-* und Δ *fphA*-Mutante

Da sich das nächste Kapitel mit der Δ*lreA*-Mutante befasst, wurde auch hier zuerst die Expression im Hinblick auf die verschiedenen Lichtverhältnisse gemessen, um eine genauere Idee für die Funktion von LreA zu bekommen.

Abbildung 48: Die Expression von IreA. Die Proben wurden hierfür für 3 bzw. 7 Tage bei 28°C entweder bei Dunkelheit (d), Weißlicht (h) oder Blaulicht (b) (450 nm) statisch inkubiert. Es wurden jeweils drei biologische Replikate der RNA mit Hilfe des Fungal Mini Kit von Omega hergestellt. Jeweils 100 ng RNA wurden für die qRT-PCR eingesetzt. Als Template wurden jeweils 100-150 bp große Stücke in den Exons der Gene gewählt. Das zu *A. nidulans* homologe Histon H2B-Gen wurde als Kontrollgen verwendet. Alle Werte wurden auf den Dunkelwert des Wildtyps normalisiert. Die Fehlerbalken wurden aus der Standardabweichung errechnet.

Die Expressionsanalyse zeigt zum einen, dass *IreA* nach 7 Tagen höher exprimiert wird als nach 3 Tagen (siehe Abb. 48). Dies könnte auf eine Funktion in der Sekundärmetabolitregulation hindeuten, da diese auch erst nach längerem Wachstum gebildet werden. Zum anderen kann man innerhalb eines Inkubationszeitraums erkennen, dass die Expression sowohl im Weißlicht als auch im Blaulicht etwas höher ist als im Dunkeln. Dies deutet auf eine Funktion in der Blaulichtwahrnehmung hin, was bereits bestätigt wurde (Pruss *et al.*, 2014).

Es sollte nun untersucht werden, ob LreA und zusätzlich FphA, ein Rotlichtrezeptor-Homolog zu FphA in *A.nidulans*, epigenetisch an Histonmodifikationen beteiligt sind und auf diesem Weg die Sekundärmetabolitexpression regulieren.

4.5.2.1 Die Lokalisation von LreA und FphA aus A. alternata in A. nidulans

Es konnte bereits in *N. crassa* gezeigt werden, dass zumindest WC-1 eine Funktion in der epigenetischen Regulation übernimmt (Grimaldi *et al.*, 2006). Auch gibt es Hinweise, dass auch in *A. nidulans* der Blaulichtrezeptor LreA eine Rolle bei Histonmodifikationen spielt (persönliche Mitteilung von Maren Hedtke). Um nun einen ersten Hinweis auf eine ähnliche Funktion in *A. alternata* zu bekommen, wurde versucht, beide Proteine heterolog in *A. nidulans* zu exprimieren und ihre Lokalisation zu beobachten. Bei einer sehr großen Ähnlichkeit der Proteine könnte die Lokalisation mit der Wildtypsituation übereinstimmen. Das *A. nidulans* LreA ist im Kern lokalisiert.

4.5.2.1.1 Die Lokalisation von LreA aus A. alternata in A. nidulans

Um eine genauere Aussage treffen zu können, wie ähnlich die Proteine sich tatsächlich sind, wurde versucht, das *A. alternata* LreA in *A. nidulans* zu lokalisieren.

Abbildung 49: Die Lokalisation von A. alternata LreA, (aus gDNA) in A. nidulans. Der ORF von *IreA* aus A. alternata wurde aus gDNA amplifiziert und in den Efimov-Vektor unter der Kontrolle des alcA-Promotors kloniert. Durch die Integration in den Vektor findet gleichzeitig eine GFP-Markierung des Gens statt. Das Plasmid wurde in den SKV103 Wildtypstamm transformiert; die Selektion erfolgte hierbei mit *pyr-4*. Per PCR wurde die Integration des Gens nachgewiesen. Sporen der per PCR positiv getesteten Transformanten wurden für die Mikroskopie in Minimalmedium mit 2% Glycerin auf Deckgläsern angeimpft und für ca. 16 Stunden bei Raumtemperatur inkubiert. Anschließend wurden die Proben auf Objektträger aufgebracht und mit dem Immersionsobjektiv bei einer Vergrößerung von 64-fach mikroskopiert. Glycerin dereprimiert den alcA-Promotor, was in einem Signal unabhängig von den äußeren Bedingungen resultiert. Die Markierung der Kerne erfolgte mit DAPI.

Der ORF des Gens wurde hinter den induzierbaren *alcA*-Promotor kloniert und in den *A. nidulans* Wildtypstamm SKV103 transformiert. Die Transformanten wurden per PCR auf die Integration des *alcA*-Promotors zusammen mit dem *lreA*-Gen getestet. Positive Transformanten wurden in Medium mit 2% Glycerin angeimpft und am nächsten Tag mikroskopiert. Die Kerne wurden hierbei mit DAPI gefärbt, um diese zu lokalisieren. Es ist zu sehen, dass ein GFP-Signal in den Hyphen zu sehen ist. Dies zeigt, dass die Transformation erfolgreich war und dass das Protein LreA gebildet wird. Allerdings ist keine Lokalisation in den Kernen zu erkennen, das Signal scheint eher im Zytoplasma verteilt zu sein (siehe Abb. 49). Es gibt keine speziellen Akkumulationen oder Strukturen, die auf eine gerichtete Lokalisation hindeuten.

Abbildung 50: Die Lokalisation von *A. alternata* LreA, amplifiziert aus cDNA, in *A. nidulans*. Der ORF von *IreA* aus *A. alternata* wurde aus cDNA amplifiziert und in den Efimov-Vektor unter der Kontrolle des *alcA*-Promotors kloniert. Durch die Integration in den Vektor findet gleichzeitig eine GFP-Markierung des Gens statt. Das Plasmid wurde in den SKV103 Wildtypstamm transformiert; die Selektion erfolgte hierbei mit *pyr-4*. Sporen der Transformanten wurden für die Mikroskopie in Minimalmedium mit 2% Glycerin auf Deckgläsern angeimpft und für ca. 16 Stunden bei Raumtemperatur inkubiert. Anschließend wurden die Proben auf Objektträger aufgebracht und mit dem Immersionsobjektiv bei einer Vergrößerung von 64-fach mikroskopiert. Glycerin dereprimiert den *alcA*-Promotor, was in einem Signal unabhängig von den äußeren Bedingungen resultiert. Die Markierung der Kerne erfolgte mit DAPI.

Dies deutet darauf hin, dass LreA zwar gebildet wird und auch in den Hyphen vorhanden ist, dass aber die Funktion nicht erfüllt werden kann, da es nicht in den Kernen lokalisiert ist. Möglicherweise ist die DNA-Sequenz zu verschieden oder *A. nidulans* kann die Introns im Gen nicht richtig erkennen und so kommt es zu einem fehlerhaften Protein.

Auf Grund dieser Vermutung wurde die cDNA von LreA hinter den *alcA*-Promotor kloniert und in den *A. nidulans* Wildtypstamm GR5 transformiert. Es wurde unter den gleichen Bedingungen wie bereits beschrieben mikroskopiert. Tatsächlich konnte hier eine Lokalisation in den Kernen beobachtet werden (siehe Abb. 50). Das GFP-Signal kolokalisiert hier mit der DAPI-Färbung, was eine Kernlokalisation bestätigt. Allerdings müssen diese Stämme noch auf die Richtigkeit des integrierten Plasmids überprüft werden.

4.5.2.1.2 Lokalisation von FphA aus A. alternata in A. nidulans

Auch für den Rotlichtrezeptor FphA aus A. nidulans gibt es in A. alternata ein Homolog. Ein Lokalisationsversuch sollte auch hier zeigen, ob die Ähnlichkeit so groß ist, dass das heterologe Protein in A. nidulans die gleiche Lokalisation annimmt wie das eigene FphA. Für das A. nidulans FphA wurde sowohl eine Lokalisation im Zellkern als auch im Zytoplasma beobachtet. Der ORF des A. alternata Gens wurde hinter den induzierbaren alcA-Promotor kloniert und in den A. nidulans Wildtypstamm SKV103 transformiert. Die Transformanten wurden mittels PCR auf die Integration des alcA-Promotors zusammen mit dem fphA-ORF geprüft. Sporen positiver Mutanten wurden für die Mikroskopie in Minimalmedium mit 2% Glycerin als Kohlenstoffquelle angeimpft, um den alcA-Promotor zu dereprimieren. Nach einer Inkubation von ca. 16 Stunden wurden die Proben noch mit DAPI versehen, um die Kerne anzufärben. Die Abbildung 51 zeigt die GFP-Lokalisierung des A. alternata FphA in einem A. nidulans Wildtyp. Es ist ein Signal zu erkennen, jedoch ist es weder eine Lokalisation im Kern noch im Zytoplasma. Das Protein akkumuliert in der Hyphe, jedoch an unspezifischen Stellen. Dies deutet darauf hin, dass das Protein gebildet wurde, aber die Lokalisation nicht funktioniert und somit auch die Funktion in den Zellkernen und im Zytoplasma nicht wahrgenommen werden kann.

Abbildung 51: Die Lokalisation von *A. alternata* FphA, amplifiziert aus gDNA, in *A. nidulans*. Der ORF von *fphA* aus *A. alternata* wurde aus gDNA amplifiziert und in den Efimov-Vektor unter der Kontrolle des *alcA*-Promotors kloniert. Durch die Integration in den Vektor findet gleichzeitig eine GFP-Markierung des Gens statt. Das Plasmid wurde in den SKV103 Wildtypstamm transformiert; die Selektion erfolgte hierbei mit *pyr-4*. Per PCR wurde die Integration des Gens nachgewiesen. Sporen der positiv getesteten Transformanten wurden für die Mikroskopie in Minimalmedium mit 2% Glycerin auf Deckgläsern angeimpft und für ca. 16 Stunden bei Raumtemperatur inkubiert. Anschließend wurden die Proben auf Objektträger aufgebracht und mit dem Immersionsobjektiv bei einer Vergrößerung von 64-fach mikroskopiert. Glycerin dereprimiert den *alcA*-Promotor, was in einem Signal unabhängig von den äußeren Bedingungen resultiert. Die Markierung der Kerne erfolgte mit DAPI.

4.5.2.2 Die epigenetische Regulation im Wildtyp im Vergleich zur Δ*IreA*-Mutante

Um die epigenetische Funktion von LreA nachzuprüfen wurde der Wildtyp und die $\Delta lreA$ -Mutante nach zwei Tagen Inkubation im Dunkeln verschiedenen Lichtbedingungen (Dunkel, 15 Minuten Licht, 30 Minuten Licht und 60 Minuten Licht) ausgesetzt und anschließend die Proteine isoliert. Mit diesen Proteinen wurde nun ein Western Blot durchgeführt, bei dem zuerst ein Antikörper verwendet wurde, der speziell an acetyliertes Histon 3 (bzw. acetyliertes Lysin 9 und Lysin 14) bindet und danach nochmal ein Antikörper, der an das Histon 3 bindet. Somit konnte man die Stärken der Banden direkt vergleichen und eventuelle Unterschiede feststellen. Die Abbildung 52 (B) zeigt die Bandenstärke für das acetylierte Lysin 9 normalisiert zum Histon 3-Antikörper. Ziel ist es hierbei, bestenfalls einen Unterschied in der Acetylierung der Histone im Dunkeln im Vergleich zu Weißlicht zu erkennen. Dies würde einen Hinweis darauf geben, ob Licht eher aktivierende oder reprimierende

Funktionen im Chromatin-Remodeling besitzt. Ein Unterschied in dem Acetylierungsmuster von Wildtyp und *IreA*-Mutante würde auf die Funktion von LreA in der epigenetischen Regulation hindeuten.

Abbildung 52: Western Blot und Quantifizierung von Wildtyp im Vergleich zum Δ/reA-Stamm. (**A**) Western Blot von Wildtyp und Δ/*reA*-Stamm. Wildtyp und Mutante wurden für 2 Tage im Dunkeln bei 28°C statisch inkubiert. Dann wurden sie verschiedenen Lichtverhältnissen ausgesetzt, entweder weiterer Dunkelheit, 15 Minuten Belichtung, 30 Minuten Belichtung oder 60 Minuten Belichtung mit Weißlicht. Anschließend wurden die Proteine isoliert und ein Western Blot durchgeführt. Als Antikörper wurde der H3K9ac verwendet, welcher spezifisch an das acetylierte Lysin 9 des Histons 3 bindet. Als zweiter Antikörper wurde der Histon H3 Antikörper gewählt, welcher als Kontrolle dient. (**B**) Quantitative Analyse des Western Blots. Mit dem Bildbearbeitungsprogramm ImageJ wurden die Banden quantitativ erfasst und ins Verhältnis zueinander gesetzt. Hierbei wurde gegen die Dunkelprobe des Wildtyps normalisiert.

Betrachtet man zunächst einmal nur den Wildtyp, kann man erkennen, dass die Acetylierung nach 15 Minuten leicht ansteigt, aber nach 30 Minuten und 60 Minuten wieder leicht abfällt. Die Unterschiede sind hier jedoch sehr gering, sodass man nicht unbedingt von einer niedrigeren Acetylierung im Licht ausgehen kann.

Die Mutante zeigt insgesamt eine niedrigere Acetylierung der Histone als der Wildtyp. Besonders nach 60 Minuten Belichtung fällt die Acetylierung stark ab. Dies

deutet auf eine Rolle von LreA in der Histonmodifikation hin. Acetylierungen an der DNA sorgen in den meisten Fällen für eine Relaxion der DNA. Somit scheint LreA daran beteiligt zu sein, die DNA für die Transkription zu öffnen; in der Deletionsmutante findet nach Belichtung auf Grund des fehlenden Proteins keine so starke Acetylierung mehr statt.

Auch in *A.nidulans* gibt es Hinweise in unserem Labor darauf, dass LreA durchaus eine Rolle in der epigenetischen Regulation durch Modifikationen an den Histonen spielt (persönliche Kommunikation mit Maren Hedkte).

4.5.2.3 Epigenetische Regulation im Wildtyp und der Δ*fphA-*Mutante

Der gleiche Versuchsaufbau wurde angewendet, um die epigenetische Regulationsfunktion von FphA zu untersuchen. Allerdings handelt es sich bei dem hier verwendeten $\Delta f phA$ -Stamm um keine reine Deletion, sondern um ein Heterokaryon, in dem immer noch zusätzlich die Wildtypsituation vorhanden ist. Dies könnte dazu führen, dass die Ergebnisse nicht so stark ausgeprägt sind, wie es bei einer reinen Deletion vielleicht der Fall wäre. Bisher konnte kein ausgeprägter Effekt von Rotlicht auf den Pilz A. alternata nachgewiesen werden. Die Abbildung 53 (A) zeigt beispielhaft einen Western Blot für den Wildtyp im Vergleich zum *AfphA*-Stamm. Quantifiziert man die Banden, ergibt sich für den Wildtyp ein anderes Muster als in Abbildung 52. Hier steigt die Acetylierung schon nach 15 Minuten Belichtung an, was sich noch mit dem Ergebnis des anderen Blots deckt, und bleibt im Gegensatz zu Abbildung 52 auch nach 30 Minuten Belichtung und 60 Minuten Belichtung höher als die Dunkelprobe. Die Unterschiede sind hier signifikanter als in Abbildung 52, daher scheint dieses Ergebnis glaubwürdiger. Für den Δ*fphA*-Stamm ergibt sich ein ganz anderes Bild. Hier scheint die Acetylierung im Dunkeln sogar höher zu sein als im Wildtyp und mit der Belichtungsdauer konstant abzunehmen.

Dies deutet ebenfalls auf eine regulatorische Funktion von FphA auf epigenetischer Ebene hin, da die Mutante ein ganz anderes Acetylierungsverhalten an den Tag legt als der Wildtyp. Es scheint sich hier ebenfalls um einen relaxierenden Effekt zu handeln; in der Mutante ist die Acetylierung im Licht viel geringer, da die Aufgabe nicht mehr erfüllt werden kann. Da sich für den Wildtyp nun zwei nicht ganz zu vereinbarende Muster ergaben, wurde ein weiterer Versuch durchgeführt, um eines dieser Ergebnisse zu verifizieren, wobei eine niedrige Acetylierung im Dunkeln und eine höhere Acetylierung im Licht das wahrscheinlichere Ergebnis darstellt.

Abbildung 53: Western Blot und Quantifizierung von Wildtyp im Vergleich zum Δ*fphA*-Stamm. (A) Western Blot von Wildtyp und Δ*fphA*-Stamm. Der Wildtyp und die Mutante wurden für 2 Tage im Dunkeln bei 28°C statisch inkubiert. Dann wurden sie verschiedenen Lichtverhältnissen ausgesetzt, entweder weiterer Dunkelheit, 15 Minuten Belichtung, 30 Minuten Belichtung oder 60 Minuten Belichtung mit Weißlicht. Anschließend wurden die Proteine isoliert und ein Western Blot durchgeführt. Als Antikörper wurde der H3K9ac verwendet, welcher spezifisch an das acetylierte Lysin 9 des Histons 3 bindet. Als zweiter Antikörper wurde der Histon H3 Antikörper gewählt, welcher als Kontrolle dient. (B) Quantitative Analyse des Western Blots. Mit dem Bildbearbeitungsprogramm ImageJ wurden die Banden quantitativ erfasst und ins Verhältnis zueinander gesetzt. Hierbei wurde gegen die Dunkelprobe des Wildtyps normalisiert.

Eine Immunfärbung ermöglicht es, bestimmte Moleküle mit Hilfe von Antikörpern zu markieren. Da bisher in unserem Labor noch keine Immunfärbung mit *A. alternata* durchgeführt wurde, musste zuerst getestet werden, ob diese Methode, wie sie für *A. nidulans* angewendet wird, überhaupt genutzt werden kann. Die Immunfärbungen wurden freundlicherweise von Elke Wohlmann durchgeführt.

Abbildung 54. Immunfärbung von *A. alternata* **Hyphen.** Es wurden 10³ Sporen auf Deckgläser aufgebracht und für 16 Stunden bei Raumtemperatur inkubiert. Nun wurde mit Fixierlösung für 30 Minuten fixiert. Es folgten drei Waschschritte mit PBS, danach wurde in Verdaulösung inkubiert und erneut gewaschen. Nach einem Inkubationsschritt mit Methanol wurde nochmals gewaschen und in Blockierlösung inkubiert. Der erste Antikörper (Anti alpha Tubulin) wurde über Nacht aufgebracht. Als Zweit-Antikörper wurde der Anti Maus IgG-Cy3 (Sigma) verwendet. Es wurde nochmals gewaschen und zusätzlich DAPI zum Anfärben der Zellkerne aufgebracht. Nun wurde mikroskopiert. Im dsRED-Kanal kann man die Signale der Immunfärbung sehen. (A) Mikroskopische Aufnahme einer Hyphe in der Mitose.

Es wurde zuerst ein Primärantikörper verwendet, welcher das α-Tubulin des Zytoskeletts anfärbt; es handelt sich hierbei um einen Antikörper, welcher für *A. nidulans* sehr gut funktioniert und daher als Test genutzt wurde. Zusätzlich wurden die Kerne mit DAPI gefärbt, um einen besseren Einblick in die Zelle zu bekommen. Die Abbildung 54 zeigt, dass die Immunfärbung bei *A. alternata* mit den verwendeten Antikörpern funktioniert. In Abbildung 54 (A) sieht man eine Hyphe, bei der die Kerne mit DAPI und die Mikrotubuli mit dem Antikörper markiert sind. Es sind die einzelnen Filamente der Mikrotubuli zu sehen, welche sich als Geflecht durch die ganze Zelle ziehen und sowohl für Stabilität sorgen als auch am Transport von Vesikeln und allen möglichen Stoffen beteiligt sind.

In Abbildung 54 (B) sieht man nun eine Hyphe, die sich gerade in der Mitose befindet; das bedeutet, die Mikrotubuli sind fast alle depolymerisiert, nur der Spindelapparat ist noch vorhanden, um die Chromosomen in die neuen Kerne zu verteilen. Da diese ersten Versuche gute Resultate erzielten, wurde die Methode der Immunfärbung im Weiteren dazu verwendet, die durch die Western Blots erzielten Ergebnisse zu sichern.

Die Immunfärbung wurde durchgeführt, um eventuelle visuelle Unterschiede zwischen in verschiedenen Lichtbedingungen inkubierten Stämmen aufzuzeigen. Es wurde ein Antiköper gegen das acetylierte Lysin 9 des Histons 3 verwendet um zu untersuchen, ob Licht einen Unterschied in der Acetylierung machen könnte. Ein erster Versuch wurde nur mit dem Wildtyp unternommen. Ziel des Versuches war es, einen Unterschied in der Acetylierung der Histone zwischen im Licht und im Dunkeln inkubierten Proben zu erkennen, was Rückschlüsse darauf zulässt, welche Rolle Licht tatsächlich in der epigenetischen Regulation spielt.

Abbildung 55 zeigt beispielhaft zwei Bilder einer Immunfärbung. Es ist die DAPI-Färbung dargestellt, die sicherstellt, dass das Signal tatsächlich in den Kernen lokalisiert ist. Der dsRED-Kanal zeigt die Antikörperfärbung von acetyliertem Lysin 9 am Histon 3. Die Färbung tritt nur in den Kernen auf, was zeigt, dass die Färbung an sich gut funktioniert hat. Optisch kann man schon einen Unterschied zwischen den im Dunkeln und den im Weißlicht inkubierten Proben sehen. Die im Weißlicht inkubierten Proben scheinen ein stärkeres Signal zu zeigen. Um dies quantitativ zu erfassen, wurden etwa 100 Kerne pro Lichtbedingung ausgewählt und die Intensität des Signals bestimmt.

Abbildung 55: Immunfärbung von Wildtyp inkubiert im Dunkeln und im Weißlicht. (A) Immunfärbung des Wildtyps. Es wurden 10³ Sporen auf Deckgläser aufgebracht und für 16 Stunden inkubiert. Anschließend wurde mit Fixierlösung für 30 Minuten fixiert. Es folgten drei Waschschritte mit PBS, danach wurde in Verdaulösung inkubiert und erneut gewaschen. Nach einem Inkubationsschritt mit Methanol wurde nochmals gewaschen und in Blockierlösung inkubiert. Der erste Antikörper (Antiacetyl Lysin 9 H3) wurde über Nacht aufgebracht. Als Zweit-Antikörper wurde der Anti Kaninchen IgG-Cy3 (Sigma) genutzt. Es wurde nochmals gewaschen und zusätzlich DAPI zum Anfärben der Zellkerne aufgebracht. Im dsRED-Kanal kann man die Signale der Immunfärbung sehen. (B) Quantitative Analyse der Immunfärbung. Um die optischen Unterschiede auch quantitativ zu erfassen, wurden jeweils etwa 100 Kerne ausgesucht und die Signalstärke gemessen. Die Weißlichtproben wurden gegen die Dunkelproben normalisiert.

Das Diagramm (siehe Abb. 55 (B)) zeigt, dass der optische Eindruck auch statistisch bestätigt werden kann. Im Licht ist das Signal der acetylierten Antikörper um das 1,71-fache höher als im Dunkeln. Dies bestätigt nochmals die in der Abbildung 53 erzielten Ergebnisse. Beides zeigt, dass die Acyetylierung im Wildtyp im Dunkeln niedriger ist als im Weißlicht, zumindest auf das Lysin 9 des Histons 3 bezogen. Dies ist der erste Nachweis in *A. alternata*, dass Licht tatsächlich auf epigenetischer Ebene die Regulation von Genen beeinflussen kann. Es scheint, dass Licht eher eine Öffnung der DNA fördert und somit eine Transkription von Genen begünstigt. Jedoch kann man hier nur allgemein über das Genom sprechen und nicht über die Regulation spezieller Gene spekulieren.

Abbildung 56: Immunfärbung der $\Delta fphA$ -Mutante inkubiert im Dunkeln und im Weißlicht. (A) Immunfärbung der $\Delta fphA$ -Mutante. Es wurden 10³ Sporen auf Deckgläser aufgebracht und für 16 Stunden inkubiert. Nun wurde mit Fixierlösung für 30 Minuten fixiert. Es folgten drei Waschschritte mit PBS, danach wurde in Verdaulösung inkubiert und erneut gewaschen. Nach einem Inkubationsschritt mit Methanol wurde nochmals gewaschen und in Blockierlösung inkubiert. Der erste Antikörper (Antiacetyl Lysin 9 H3) wurde über Nacht aufgebracht. Als Zweit-Antikörper wurde der Anti Kaninchen IgG-Cy3 (Sigma) verwendet. Es wurde nochmals gewaschen und zusätzlich DAPI zum Anfärben der Zellkerne aufgebracht. Im dsRED-Kanal kann man die Signale der Immunfärbung sehen. (B) Quantitative Analyse der Immunfärbung. Um die optischen Unterschiede auch quantitativ zu erfassen, wurden jeweils etwa 100 Kerne ausgesucht und die Signalstärke gemessen. Die gleiche Methode wurde nun ebenfalls angewandt um die Ergebnisse des $\Delta f phA$ -Stamms aus Abbildung 53 zu bestätigen.

Die Abbildung 56 zeigt beispielhaft eine Immunfärbung von Proben des Δ*fphA*-Stamms, welcher im Dunkeln inkubiert bzw. Weißlicht ausgesetzt wurde. Auch hier sind die Kerne mit DAPI angefärbt um sicherzustellen, dass das dsRED-Signal eine Kernlokalisation zeigt und keine unspezifischen Signale auftreten. Das dsRED-Signal ist deutlich und ausschließlich in den Kernen zu sehen, somit hat das Markieren mit den Antikörpern gut funktioniert. Hier bekommt man ebenfalls den Eindruck, dass das Signal in den Kernen bei den mit Weißlicht belichteten Proben stärker ist als bei den im Dunkeln inkubierten. Misst man quantitativ die Intensität der Kerne, wird dieser Eindruck bestätigt. Im Licht ist das Signal des acetylierten Lysin 9 des Histons 3 um das 1,24-fache höher als im Dunkeln, was den Western Blot bestätigt, bei dem auch im Licht eine höhere Acetylierung nachgewiesen wurde als im Dunkeln.

Beides deutet darauf hin, dass FphA tatsächlich eine Rolle im Chromatin Remodeling spielt. Im Wildtyp ist die Acetylierung des Lysins 9 des Histons 3 im Licht viel stärker als im Dunkeln, was auf eine aktivierende Funktion des Lichts für die Relaxion der DNA hinweist. Da dieser Effekt in der $\Delta f phA$ -Mutante reduziert ist, scheint das Phytochrom an diesem Mechanismus beteiligt zu sein. FphA scheint die Relaxion der DNA begünstigen zu und somit eventuell auch die Expression der Sekundärmetabolit-Gene. Dies ist ein erster Hinweis auf die Funktion des Rotlicht-Rezeptors FphA in A. alternata.

Um die Acetylierung der Histone als Werkzeug für die Relaxion der DNA und somit die höhere Expression der Sekundärmetabolitgene zu bekräftigen, wurde ein daran anknüpfender Versuch durchgeführt, der die aktivierende Funktion dieser epigenetischen Modifikation hervorhebt. Natriumbutyrat ist das weiße hygroskopische Natrium-Salz der N-Buttersäure. Es hat einen unangenehmen Geruch und ist stabil gegenüber Hitze und Licht. Zusätzlich wurde Natriumbutyrat als ein Histon-Deacetylase-Inhibitor beschrieben; die Zugabe von Natriumbutyrat führt somit zu einer dauerhaften Akkumulierung von multiacetylierten Formen des Histons H3 und H4, da die Histon-Deacetylase gehemmt ist (Candido et al., 1978, Vidali et *al.*, 1978). Durch Zugabe von niedrigen Konzentrationen Natriumbutyrat ins Medium sollte also eine Erhöhung der Sekundärmetabolite stattfinden. Es wurden verschiedene Konzentrationen (0,05 mM, 0,1 mM, 0,5 mM, 1 mM, 5 mM, 10 mM und 20 mM) getestet, um einen aktivierenden Effekt zu erreichen.

Die Dünnschichtchromatographie (Abb. 57 (A)) zeigt, dass nur sehr geringe Konzentrationen überhaupt eine Sekundärmetabolitproduktion hervorrufen, die mit dem Wildtyp vergleichbar ist. Ab 1 mM Natriumbutyrat im Medium nimmt die Sekundärmetabolitproduktion stark ab. Dies ist wohl auf das verminderte Wachstum auf Grund der toxischen Wirkung des Natriumbutyrats in höheren Konzentrationen zurückzuführen. Nutzt man allerdings nur eine geringe Konzentration im Medium, scheint diese einen positiven Effekt auf die Sekundärmetabolitproduktion zu haben.

(A) Wildtyp (0 mM) 0.05 mM 0.1 mM 0.5 mM 1 mM AOH 5 mM 10 mM 20 mM

(B)

Abbildung 57: Dünnschichtchromatographie von mit Natriumbutyrat behandelten Proben. (A) Dünnschichtchromatographie von *A. alternata* Wildtyp. Die jeweiligen Proben wurden im Dunkeln für 7 Tage bei 28°C statisch inkubiert. Das Medium wurde hierfür mit 0 mM (Wildtyp), 0,05 mM, 0,1 mM, 0,5 mM, 1 mM, 5 mM, 10 mM oder 20 mM Natriumbutyrat versetzt. Es wurden jeweils drei biologische Replikate hergestellt; die Isolation der Sekundärmetabolite erfolgte mit Ethylacetat. 20 µl der jeweiligen Probe wurde auf die Platte geladen. AOH: Alternariolstandard. (B) Quantitative Analyse der Dünnschichtchromatographie. Mit Hilfe des Bildbearbeitungsprogramms ImageJ wurde die Bandenintensität für Alternariol (AOH) und Alternariolmonomethylether (AME) gemessen und gegen die Wildtypsituation normalisiert.

Um dies auch quantitativ zu bestätigen, wurde das Bildbearbeitungsprogramm ImageJ die Bandenintensität genutzt, um von Alternario und Alternariolmonomethylether zu bestimmen und mit der Wildtypsituation zu vergleichen. Das Diagramm in Abbildung 57 (B) zeigt, dass im Falle von Alternariol die Produktion tatsächlich durch Zugabe von 0,05 mM, 0,1 mM und 0,5 mM 1,68-fachen gesteigert werden kann. Auch Natriumbutyrat bis zum bei Alternariolmonomethylether ist ein leichter Produktionsanstieg (1,13-fach) bei Zugabe von 0,05 mM Natriumbutyrat ins Medium zu erkennen. Bei Konzentrationen ab 1 mM jedoch kommt es eher zu einer Reduzierung der Produktion aller Sekundärmetabolite (siehe Abb. 57 (A)). Dies bestätigt, dass eine stärkere Acetylierung der Histone eine Erhöhung der Sekundärmetabolitproduktion hervorruft; dies ist ein Beispiel, wie man relativ einfach die Produktion der Metabolite durch Änderung der äußeren Bedingungen beeinflussen kann.

5. Diskussion

5.1 Die Expression der Polyketidsynthasen ist lichtabhängig

Es wurden bisher insgesamt zehn Polyketidsynthasen in *A. alternata* beschrieben und teilweise näher charakterisiert. Für die hier vorliegende Arbeit wurde zusätzlich vor allem auf den äußeren Faktor Licht Wert gelegt, da dieser allgegenwärtig ist und bereits gezeigt wurde, dass dieser Einfluss nicht vernachlässigt werden sollte. Bei der Expression der Polyketidsynthasegene *pksA*, *pksB*, *pksF*, *pksG* und *pksH* ist sowohl bei 7 Tagen Inkubation als auch bei 14 Tagen Inkubation eine deutliche Lichtregulierung zu erkennen (siehe Abb. 16).

Die Gene *pksE*, *pksI* und *pksJ* zeigen zumindest nach 14 Tagen Inkubation einen Unterschied der in Licht- bzw. in Dunkelheit inkubierten Proben; sie sind demzufolge ebenfalls zumindest leicht lichtreguliert. Nur für *pksC* und *pksD* scheint die Expression gänzlich lichtunabhängig abzulaufen; zumindest ist bei den getesteten Bedingungen keine Lichtabhängigkeit festzustellen. Somit ergibt sich für fast alle bisher beschriebenen Polyketidsynthasegene eine vom Licht der Umgebung abhängige Expression. Diese Erkenntnis sollte in den weiteren Versuchen berücksichtigt werden und es wurden, wann immer nötig, die Lichtverhältnisse für die Versuche mitbedacht. Der Grund für die lichtabhängige Expression ist für die meisten Polyketidsynthasen nicht offensichtlich; vermutlich auch deswegen, weil die Funktion der Polyketidsynthasen in den meisten Fällen nicht geklärt ist und somit auch keine Rückschlüsse gezogen werden können, was Licht dabei für eine Rolle spielen könnte.

Immerhin für eine der Polyketidsynthasen gibt es jedoch eine schlüssige Erklärung. Das Gen *pksA* und das umliegende Cluster ist für die Produktion von Melanin zuständig, einem Pigment, welches in anderen Organismen unter anderem als Schutz vor UV-Licht beschrieben wurde. Speziell für *pksA* konnte in dieser Arbeit sowohl nach 7 Tagen als auch nach 14 Tagen eine signifikant höhere Expression bei Bestrahlung mit Weißlicht im Vergleich zu den Dunkelproben festgestellt werden. Der Unterschied ist nach 14 Tagen sogar noch größer als nach 7 Tagen. Dies ist eben mit der schützenden Funktion von Melanin gegen lichtverursachte Schäden zu erklären. Kawamura *et al.* konnten 1999 bereits für *A. alternata* zeigen, dass die Disruption eines Gens für die Melaninbiosynthese in der erhöhten Sensitivität gegenüber UV-Licht resultiert (Kawamura *et al.*, 1999). Dies bekräftigt die

schützende Rolle von Melanin gegenüber UV-Licht. Zusätzlich konnten sie eine Reduktion der Konidiengröße und der Septenanzahl feststellen, was auf eine zusätzliche Funktion von Melanin in der Konidienentwicklung hindeutet. Allerdings waren die Mutanten nicht in ihrer Pathogenität eingeschränkt, was eine Rolle von Melanin in der Pathogenität, wie sie bei einigen anderen Organismen, wie beispielsweise *Magnaporthe grisea* beschrieben ist, für diesen speziellen Pilz ausschließt (Woloshuk, 1983; Howard & Ferrari, 1989; Chumley & Valent,1990., Howard *et al.* 1991). Somit kann man die Funktion des Melanins in *A. alternata* auf den Schutz gegen UV-Licht eingrenzen.

In *A. nidulans* wurde ebenfalls schon eine lichtabhängige Expression von Sekundärmetabolitgenen beobachtet (Atoui *et al.*, 2010). Gemessen wurde die Expression von *aflR*, einem Sterigmatocystin-spezifischen Transkriptionsfaktor, der für die Aktivierung des Clusters benötigt wird, und *stcU*, ein Gen, das oftmals als Indikator für die Aktivierung des Clusters dient. Zusätzlich zum Faktor Licht wurden hier unterschiedliche Glucosekonzentrationen im Medium untersucht. Es wurde gezeigt, dass nach 48 Stunden die *aflR*-Expression auf Medium mit 1% Glucose im Dunkeln höher ist als unter Lichtbedingungen. Nach einer längeren Inkubationszeit von 72 Stunden jedoch wurde eine höhere Expression der im Licht inkubierten Kulturen mit einer höheren Konzentration Glucose im Medium gemessen, wohingegen das Transkriptlevel von *aflR* in den Kulturen mit 1% Glucose abnahm. Für *stcU* konnte in 1% und 1,5% Glucose im Dunkeln eine erhöhte Expression

gemessen werden, während bei 2% Glucose kaum eine Expression beobachtet werden konnte. Ähnlich zu *aflR* erhöhte sich das Transkript von *stcU* nach 72 Stunden in Kulturen, die unter Lichtbedingungen auf 2% Glucose-Medium gewachsen waren. Bei niedrigeren Glucosekonzentrationen war das Transkriptlevel sehr niedrig

In *Monascus* wurde eine Induktion des Sekundärmetaboliten Citrinin unter Blaulichtbedingungen beobachtet. Daraufhin wurde die Expression der *pksCT*, des Citrinin-Polyketidsynthasegens, sowie der 5 ORFs um das Gen herum gemessen. Es konnte eine Hochregulierung des *orf1*, *orf3* und *orf4* nach Belichtung mit Blaulicht gemessen werden, aber nicht der Polyketidsynthase selbst. Dies führt zu der Schlussfolgerung, dass *pksCT* nicht das Schlüsselenzym für die Quantität der Citrininproduktion unter Blaulichtbedingungen ist (Wang *et al.*, 2012).

Auch in *Penicillium chrysogenum* wurde Licht als positiver Regulator von Sekundärmetabolitgenen gefunden (Wolfers *et al.*, 2015). Es gibt also keine Verallgemeinerung, dass Licht die Expression von Sekundärmetabolitgenen induziert oder reprimiert; sogar innerhalb eines Pilzes kann sich der Einfluss des Lichtes auf die Expression ändern. Eine schlüssige Erklärung für die Lichtabhängigkeit einiger Sekundärmetabolitgencluster muss allerdings noch gefunden werden.

Auch für die anderen Polyketidsynthasen ist eine Erklärung des Expressionsmusters nicht einfach. Es wäre möglich, dass die lichtregulierten Polyketidsynthasen für Metabolite kodieren, die einen Selektionsvorteil bedeuten, wenn der Pilz entweder lichtexponiert an der Oberfläche wächst oder wenn er sich im Boden in Dunkelheit befindet. Vielleicht ist die Lichtwahrnehmung auch an die Perzeption der Temperatur gekoppelt und die Metabolite bieten einen Vorteil in den Grenzbereichen des Temperaturtoleranzspektrums. Für *pksB, pksG, pksH, pksI* und *pksJ* konnte eine höhere Expression in Dunkelheit festgestellt werden, was auf eine stärkere Produktion des entsprechenden Metabolits in Dunkelheit vermuten lässt. In *A. nidulans* wurde ebenfalls gezeigt, dass Weiß- und Blaulicht die Biosynthese von Sterigmatocystin, einer Vorstufe von Aflatoxin, hemmt (Christian Kastner, 2010). Allerdings kann auch dies nicht als allgemeingültig betrachtet werden; *pksA* und *pksF* zeigen immerhin eine höhere Expression unter Weißlichtbedingungen.

5.2 Charakterisierung des *pksB*-Clusters und des dazugehörigen

Metabolits

Im Hauptteil dieser Arbeit wurde die PksB und das dazugehörige Cluster näher analysiert. Die PksB befindet sich auf Contig00319, welches nur etwas weniger als 34 kb lang ist und kodiert laut "Alternaria Genome Database" für eine putative Lovastatin Nonaketid Synthase; sie soll fähig sein, eine Diels-Alder-Reaktion auszuführen. Lovastatin ist der Name eines Arzneistoffs aus der Gruppe der Statine, welches zur Senkung des Cholesterinspiegels eingesetzt wird. Es wird von *A. terreus* gebildet. Zwei stark reduzierende PKS, LovB (Lovastatin Nonaketid Synthase) und LovF, spielen bei der Bildung des Metabolits eine Rolle. Ein Alignment von PksB mit LovB zeigt eine 97% Deckung und 40% Identität der Proteine. Tatsächlich sind auch die Domänenstrukturen der Proteine sehr ähnlich, nur fehlt bei LovB die NRPS-Domäne (siehe Abb. 58). Es wäre demnach möglich, dass PKS und NRPS in *A*. *alternata* zwei voneinander unabhängige Proteine darstellen, somit wäre die Ähnlichkeit zu LovB in *A. terreus* gegeben. In *A. terreus* handelt es sich bei LovB und LovF um zwei stark reduzierende PKS. LovC ist eine Enoylreduktase und LovG eine Thioesterase (Guo & Wang, 2014). Beide Proteine wurden auch im *pksB*-Cluster gefunden. Allerdings wurden keine Hinweise gefunden, dass Lovastatin jemals in *Alternaria* beobachtet wurde; was eher darauf hindeutet, dass das Protein für einen anderen Metaboliten, der Lovastatin sehr ähnlich ist, zuständig ist.

Abbildung 58: Lovastatin Nonaketid Synthase. (A) Schema der PksB aus *A. alternata* im Vergleich zu LovB *aus A. terreus*. In *A. terreus* ist LovB eine Lovastatin Nonaketid Synthase. (B) *pksB*-Cluster aus *A. alternata* und Lovastatin-Cluster aus *A. terreus*. LovB: Lovastatin Nonaketid Synthase, LovC: Enoylreduktase, LovG: Thioesterase (Guo & Wang, 2014).

In dieser Arbeit wurde der Transkriptionsfaktor dieses Clusters mit Hilfe eines Reporterassays identifiziert und auch die anderen Gene, die zum Cluster gehören, bestimmt. Das Reportergen hierbei ist eine Laccase, *IccC. A. nidulans* bestitzt selbst sechs Laccasen, welche aber bei diesem Versuch nicht stören; er produziert diese nur in sehr geringem Maße, da er sie nicht für den Ligninabbau benötigt, sondern z.B. für Pigmentsynthese. Für alle Versuche wurden immer der Wildtyp sowie zwei biologische Replikate einer Negativ-Kontrolle mitgeführt, um einen eventuell doch auftretenden Effekt der anderen Laccasen zu bemerken. Dies war nicht der Fall. Der

gleiche Ansatz wurde verwendet, um einen Transporter, eine Thioesterase, eine Enoylreduktase, ein hypothetisches Protein ohne bekannte Funktion sowie die Polyketidsynthase und den Transkriptionsfaktor als zum Cluster gehörend zu definieren. Dies wurde nochmals bestätigt, da alle Cluster-Gene das gleiche Expressionsmuster im Dunkeln im Vergleich zum Weißlicht aufweisen (siehe Abb. 24). Allerdings konnten auch für die ausgeschlossenen Gene ein ähnliches Expressionsmuster festgestellt werden. Dies könnte man durch die durch Licht veränderte Chromatinstruktur erklären, welche sich auf einen Bereich auswirkt, der etwas größer ist als das Cluster selbst. Die Gene liegen beide sehr nahe am Cluster. Somit könnte es durch dunkelbedingte Öffnung des Clusters zu einer besseren Zugänglichkeit zu den Genen neben dem eigentlichen Cluster kommen; allerdings ist die Öffnung an einer bestimmten Stelle räumlich ziemlich begrenzt, was gegen diese These spricht. Für das Gen AAT_PP07105 zumindst entspricht das Muster der Genexpression nicht genau dem der anderen Clustergene.

Es wurde versucht, durch eine Herunterregulierung der Polyketidsynthase (siehe Abb. 25) und Überexpression des Transkriptionsfaktors (siehe Abb. 27) eine Änderung in der Regulation des Clusters zu erreichen und damit Hinweise auf den gebildeten Metaboliten zu bekommen. Es konnte für beide Ansätze ein Metabolit in der Dünnschichtchromatographie identifiziert werden, dessen Bandenstärke sich je nach Mutante veränderte. Die PksB ist offensichtlich an der Bildung des Metaboliten zumindest beteiligt. Der vermutete Metabolit wurde aus den Platten isoliert und mittels zweidimensionaler LC/MS genauer analysiert. Die Analyse ergab, dass in der Bande zwei Metabolite vorkommen. Bei dem ersten Metaboliten (2 Isomere) handelt es sich mit ziemlich hoher Sicherheit um Altenuen. Normalerweise läuft dieser Metabolit in einer Dünnschichtchromatographie viel weiter oben, aber eine geringfügige Modifikation wie ein Zuckerrest oder eine OH-Gruppe könnten diese Verschiebung nach unten erklären.

Der zweite Metabolit (ebenfalls 2 Isomere) ist ein Heterozyklus mit einer Masse von 320 g/mol und der Summenformel $C_{20}H_{16}O_4$ (siehe Abb. 28). Dieser Metabolit ist höchstwahrscheinlich Rubiginon B2, ein Angucyclin-Antibiotikum aus *Aspergillus* und *Streptomyces*, welches auch Antitumor-Aktivität zeigt (mit Potenzierungsaktivität der Vincristin-Zytotoxizität). Es wirkt somit als "Chemosensitizer". Zur Angucyclin-Gruppe gehören mehr als hundert Sekundärmetabolite mikrobischen Ursprungs. 1966 wurde diese Gruppe mit einem unsymmetrisch assemblierten tetracyclischen Ring

beschrieben, welche später dann als Angucyclin-Antibiotika benannt wurde nach dem charakteristischen Vier-Ring-Gerüst des Aglycon-Rests (eine Nicht-Zucker-Komponente, bei der die Glycosylgruppe eines Glycosids durch ein Wasserstoffatom ersetzt wurde), welcher abgewinkelt ist. Die zusätzlichen roten und orangenen Zusatzbanden in der RNAi-Mutante könnten Zwischenprodukte sein, die nicht weiter verstoffwechselt wurden. Allerdings müssen zur Sicherheit Standards dieser beiden Metabolite hergestellt werden, um die bisher erzielten Ergebnisse zu verifizieren. In Abbildung 59 ist Lovatatin, das vorhergesagte Produkt auf Grund der Ähnlichkeit der PksB zu einer bereits bekannten Lovastatin Nonaketid Synthase, und Rubiginon B2, der aus den Dünnschichtchromatographieplatten isolierte Metabolit.

Kürzlich wurde in unserem Labor ein weiteres Polyketidsynthasegen, *pksC*, herunterreguliert und es konnte ebenfalls eine Schwächung derselben Bande beobachtet werden. Eine Erklärung wäre, dass jeweils eine Polyketidsynthase für einen Metaboliten zuständig ist, jedoch durch die Überlagerung der Banden in der Dünnschichtchromatographie keine Zuordnung getroffen werden kann, welcher Metabolit zu welcher Polyketidsynthase gehört. Es könnte jedoch auch sein, dass beide Polyketidsynthasen oder PKS-Cluster an der Produktion eines Stoffes (Guo & Wang, 2014) bzw. an einem Biosyntheseweg (Lo *et al.*, 2012) beteiligt sind, wie dies schon für andere Organismen gezeigt wurde. Weitere Analysen sind hier notwendig um die genaue Rolle der Polyketidsynthasen bei der Produktion eines oder beider Metaboliten zu definieren. Zumindest ist dies der erste Hinweis darauf, dass Lovastatin von *A. alternata* gebildet werden könnte. Auch konnte zum ersten Mal Rubiginon B2 in *A. alternata* nachgewiesen werden.

Abbildung 59: Strukturformeln von Lovastatin und Rubiginon B2. (A) Lovastatin. Summenformel: $C_{24}H_{36}O_5$. (B) Rubiginon B2. Summenformel: $C_{20}H_{16}O_4$.

5.3 Charakterisierung des pksD-Clusters und des dazugehörigen

Metabolits

Eine weitere Polyketidsynthase, PksD, wurde ebenfalls näher beleuchtet. Sie liegt auf dem Contig00323 und hat eine Länge von 2468 Aminosäuren. Es handelt sich um eine Typ I Polyketidsynthase mit den charakteristischen Domänen β-Ketoacylsynthase, Acyltransferase und Ketoreduktase. Zusätzlich gibt es noch eine Dehydrogenase-, eine Methyltransferase- und eine Enoylreduktasedomäne sowie eine Phosphopanthetheine Bindestelle (siehe Abb. 35 (A)). In sieben weiteren Alternaria-Arten konnte ein dazu homologes Protein identifiziert werden: A. citriarbusti, A. fragariae, A. limoniasperae, A. mali, A. tangelonis, A. tenuissima und Α. turkisafria. Auch hier konnte mit Hilfe des Reportergenassays ein Transkriptionsfaktor innerhalb des Clusters als Regulator von pksD identifiziert werden (siehe Abb. 37). Auch einige weitere Gene konnten mit diesem Ansatz dem Cluster zugeordnet werden. Allerdings blieb bei einigen Genen (AAT PP07385, AAT PP7395, AAT PP7306, AAT PP7397 und AAT PP07516) unklar, ob sie nun zum Cluster gehören oder nicht (siehe Abb. 38) Für manche der Plasmide funktionierte die Transformation auch nach mehrmaligen Versuchen nicht. Daher bleibt hier ihre Rolle unklar. Für zehn Gene jedoch konnte eine Clusterzugehörigkeit nachgewiesen werden.

Um die PksD näher zu charakterisieren, wurde ein RNAi-Konstrukt des Gens zur Transformation genutzt. Überraschenderweise ergaben alle Transformanten eine höhere Expression von *pksD* als der Wildtyp (siehe Abb. 40 (A)). Da das Plasmid bereits vorhanden war, wurde die genaue Sequenz des klonierten DNA-Stücks nicht nochmal auf seine Richtigkeit überprüft. Eventuell ist hier ein Fehler unterlaufen und es handelt sich um ein konstitutiv-exprimierendes Plasmid. Die erhaltenen Transformanten wurden für die weiteren Analysen als Überexpressionsmutanten behandelt. Hervorstechend war jedoch der Phänotyp der zwei erzielten Mutanten (siehe Abb. 40 (B)). Beide wiesen einen weißen Phänotyp auf. Auch mikroskopische Analysen zeigten, dass in den Sporen kein Melanin eingelagert wurde. Die Sporen der Mutanten sind kleiner und sehen unreif aus, was auf das fehlende Melanin zurückzuführen sein könnte. Eine Reduzierung der Septierung von Sporen wurde bereits in der *cmrA*-Mutante beobachtet; dieser Effekt wird ebenfalls vermutlich durch das Fehlen von Melanin hervorgerufen (Fetzner *et al.*, 2014). Auf Grund dieses

Phänotyps wurde die Expression von *pksA* und *cmrA*, dem Regulator des Melaninclusters, in den Mutanten gemessen. Tatsächlich ist die Expression beider Gene in beiden Transformanten stark reduziert (siehe Abb. 41 (B)). Dies deutet auf eine Interaktion der einzelnen Polyketidsynthasen untereinander hin.

Bereits in der Einleitung wurde erwähnt, dass für alle Polyketide die gleichen Ausgangsstoffe benötigt werden. Daher wäre es möglich, dass eine Überexpression einer Polyketidsynthase einen Mangel der Ausgangsstoffe hervorruft und daher andere Metabolite in geringeren Mengen produziert werden. In *Penicillium* wurde 2011 gezeigt, dass die Produktion von Ochratoxin und Citrinin ebenfalls gegenläufig ist. Hohe Mengen des einen Metabolits werden auf Kosten des anderen produziert (Schmidt-Heydt *et al.*, 2011).

In einer Dünnschichtchromatographie wurde auch das Sekundärmetabolitspektrum untersucht (siehe Abb. 42). Die Hauptmetabolite wie Alternariol. Alternariolmonomethylether und Altenuen scheinen weniger produziert zu werden. Allerdings kann man in den Mutanten mehrere zusätzliche Banden erkennen, die im Wildtyp nicht auftauchen. Es könnte sich hierbei um Zwischenprodukte handeln, die sich ansammeln, da das Endprodukt nicht mehr in gleichem Maße wie im Wildtyp gebildet wird. Nach dem Ergebnis der Dünnschichtchromatographie zu urteilen, handelt es sich bei dem von der PksD gebildeten Metaboliten um keinen fluoreszierenden Stoff. Keine der bereits im Wildtyp vorhandenen Banden zeigt hier eine höhere Intensität. Daher könnte nur eine HPLC-Analyse einen genaueren Überblick bieten.

Allerdings wurde hier nicht überprüft, ob die anderen Polyketidsynthasegene in den Mutanten ebenso wie die *pksA* eine niedrigere Expression aufweisen wie es im Wildtyp der Fall ist. Dies könnte genauere Rückschlüsse auf die zusätzlichen Banden geben.

Zusätzlich zur Überexpression von *pksD* wurde hier ebenfalls versucht, *pksD* heterolog in *A. nidulans* zu exprimieren (siehe Abb. 43). Es wurde bereits gezeigt, dass *A. nidulans* ein geeigneter Wirt ist, um Gene heterolog zu exprimieren (Chiang *et al.*, 2013, Yin *et al.*, 2013). Um die Ausbeute bei der heterologen Expression weiter zu steigern, wurde der globale Regulator *laeA* in *A. oryzae* überexprimiert und somit eine Überexpression des heterolog exprimierten Clusters erreicht (Sakai *et al.*, 2012).

Die Transformation in dieser Arbeit wurde in einem Wildtypstamm durchgeführt. Auch wurde nicht das ganze Cluster, welches für die PksD auch noch nicht eindeutig definiert ist, heterolog exprimiert, sondern nur die Polyketidsynthase selbst. Dies resultiert in der Expression des nur von der Polyketidsynthase gebildeten Zwischenprodukts und nicht dem Metaboliten des ganzen Clusters. Der ORF von pksD wurde hierfür hinter den induzierbaren alcA-Promotor kloniert, welcher durch Threonin induziert werden kann. Tatsächlich wurde eine sehr hohe Expression von pksD in den Transformanten beobachtet, wohingegen im Wildtyp keine Expression detektiert wurde. In der Dünnschichtchromatographie wurden die Transformanten neben dem Wildtyp und einer Leerkontrolle aufgetragen. Unabhängig vom Lösungsmittel, es wurde Chloroform und Ethylacetat benutzt, konnte eine neue Bande in den Proben der Transformanten beobachtet werden (siehe Abb. 44). Es handelt sich hierbei um einen orange-fluoreszierenden Stoff, welcher sehr weit oben auf der Platte läuft. Da er im Wildtyp und der Leerkontrolle nicht vorkommt, kann man von einem heterolog exprimierten Produkt ausgehen. Allerdings gibt es keine Hinweise darauf, um welchen Stoff es sich handeln könnte. Als gelb-orange Banden sind nur die Altertoxine in Alternaria beschrieben, welche aber von der Farbe her heller sind und auch deutlich tiefer laufen als diese Bande. Somit kann man keine nähere Aussage über den Metaboliten treffen. Eine HPLC-Analyse würde die nähere Charakterisierung des Metaboliten erlauben und auch feststellen, ob es sich hierbei tatsächlich um ein Zwischenprodukt handeln könnte, welches zu einem Endmetabolit umgesetzt wird.

5.4 VeA und LaeA als globale Regulatoren

In vielen anderen Organismen sind Velvet und LaeA als globale Regulatoren beschrieben und sind stark mit dem Sekundärmetabolismus des jeweiligen Pilzes assoziiert. In dieser Arbeit sollte die Rolle der zwei Proteine im Hinblick auf die Sekundärmetabolitproduktion näher beleuchtet werden. VeA wurde bereits in der Dissertation von Sonja Sand beschrieben, aber die Funktion nicht näher charakterisiert. Für LaeA gibt es bisher keine Studien in *A. alternata.*

5.4.1 VeA

Sonja Sand konnte bereits in ihrer Doktorarbeit ein zu Velvet aus A. nidulans homologes Protein bei der Suche nach Lichtrezeptoren und damit verbundener Proteine identifizieren. In A. nidulans handelt es sich um das Gen AN1052. Das homologe Protein in A. alternata hat eine Länge von 1809 bp und kodiert für 602 Aminosäuren. Zuerst wurde versucht, das Protein aus A. alternata in A. nidulans zu lokalisieren. In A. nidulans lokalisiert VeA in Dunkelheit im Kern, unter Lichteinfall befindet es sich hauptsächlich im Zytoplasma (Stinnett et al., 2007). Dieser Shuttle vom Kern ins Zytoplasma findet jedoch sehr schnell statt, daher kann auch ein kurzer Lichtimpuls schon die neue Lokalisation bewirken. Es wurde eine Lokalisation des heterologen Proteins sowohl in den Kernen als auch im Zytoplasma beobachtet (siehe Abb. 29 (B)). Die Lokalisation im Kern ist allerdings nur eine Vermutung, da in diesen Proben keine Färbung mit DAPI stattfand und somit die Kerne nicht genau lokalisiert werden konnten. Das Signal kommt jedoch in regelmäßigen Abständen in der Zelle vor und erscheint auch von der Größe her passend. Die anderen Proben zeigen ein Signal im Zytoplasma und nicht mehr in den Kernen. Diese Beobachtungen deuten stark darauf hin, dass sich die beiden Proteine ähnlich genug sind, um höchstwahrscheinlich auch ähnliche oder gleiche Aufgaben in der Zelle zu erfüllen.

In *A. nidulans* ist VeA Teil des Velvet-Komplexes bestehend aus LaeA, welches noch näher beschrieben wird, VeA und VelB. Zusammen verbinden sie den Sekundärmetabolismus mit Entwicklungsprozessen wie der sexuellen und asexuellen Entwicklung (Bayram et al., 2008, Yin & Keller, 2011). Die Hauptbestandteile des Velvet-Komplexes wurden bisher in allen filamentösen Pilzen gefunden; jedoch nicht in den Hefen Saccharomyces cerevisiae und Schizosaccharomyces pombe, was auf eine spezielle Funktion von VeA in filamentösen Pilzen hindeutet (Calvo et al., 2004). Ebenfalls in A. nidulans wurde gezeigt, dass VeA die Bildung von Kleistothezien, den sexuellen Strukturen, fördert und die Konidienbildung hemmt (Kafer, 1965, Mooney & Yager, 1990). Das Protein reguliert die Produktion von Fumonisin und Fusarin in *Fusarium verticillioides* (Myung et al., 2009), das Sterigmatocystin und Penicillin in A. nidulans (Kato et al., 2003) und Aflatoxin in A. parasiticus (Calvo et al., 2004). Auf Grund dieser Funktion als Regulator des Sekundärmetabolismus wurde eine Disruption von VeA in A. alternata hergestellt. Phänotypisch ist ein gravierender Unterschied zum Wildtyp zu erkennen,

die Transformanten sind fast farblos und bilden sehr viel Luftmyzel (siehe Abb. 30 (A)). Es konnte gezeigt werden, dass die Expression aller drei getesteten Polyketidsynthasegene *pksA*, *pksB* und *pksD* in den Mutanten stark reduziert ist (siehe Abb. 30 (C)). Auch in der Dünnschichtchromatographie ist das Bandenmuster im Vergleich zum Wildtyp stark verändert (siehe Abb. 31). Die meisten der "typischen" Banden wie Alternariol, Alternariolmonomethylether und Altenuen sind nicht mehr eindeutig zu identifizieren. Allerdings sind in den Mutanten sehr viel mehr Metabolite zu erkennen als im Wildtyp. Viele der Metabolite sind orange oder gelb. Eventuell handelt es sich hierbei um Zwischenprodukte, die nicht weiter verstoffwechselt werden können auf Grund der Störung des Sekundärmetabolismus. In *Mycosphaerella graminicola* wurde ebenfalls 2011 das putative Velvet-Gen ausgeschaltet (Choi & Goodwin, 2011). Es handelt sich um die erste

ausgeschaltet (Choi & Goodwin, 2011). Es handelt sich um die erste Charakterisierung eines Velvet-homologen Gens in der Klasse der Dothideomyceten. Da beide Pilze derselben Klasse untergeordnet sind, könnte das Ausschalten der Gene zu ähnlichen Effekten führen, was den Phänotyp in dieser Arbeit bestätigen würde. Tatsächlich konnte die Gruppe um Choi einen Albinophänotyp ihrer Mutanten auf Agarplatten beobachten; das radiale Wachstum wurde nicht beeinträchtigt. Dieser Phänotyp gleicht dem in *A. alternata* beobachteten. Im Gegensatz jedoch zum vermehrten Luftmyzel der *veA*-Disruptionsmutanten wurde in *M. graminicola* eine Reduzierung des Luftmyzels ermittelt. Im Weiteren konnten sie eine Vermehrung des Luftmyzels des Wildtyps unter Blaulichtbedingungen erkennen; im Dunkeln wird weniger Luftmyzel gebildet. Der gleiche Effekt konnte ebenfalls für den Wildtyp in *A. alternata* beobachtet werden (Sand, 2011). Es wird nun vermutet, dass die Disruption unabhängig vom Licht viel Luftmyzel bildet. Es wäre möglich, dass VeA direkt den Regulator des Melaninclusters (*cmrA*) beeinflusst, genau wie VeA in *A. parasiticus* für die Expression von *aflR*, dem Transkriptionsfaktor der Aflatoxinbiosynthese, benötigt wird (Woloshuk *et al.*, 1994, Calvo *et al.*, 2004).

5.4.2 LaeA

Im nächsten Schritt wurde ein weiterer globaler Regulator, LaeA, in *A. alternata* untersucht. In *A. nidulans* ist LaeA ein Protein mit einer Länge von 375 Aminosäuren. Charakteristisch für das Protein ist die konservierte S-adenosylmethionin(SAM)-Bindestelle, wie sie auch in Methyltransferasen gefunden wird. Eine Deletion des

Gens resultiert in der Reduzierung mehrerer Sekundärmetabolite. wie Sterigmatocystin und Gliotoxin (Bok & Keller, 2004). Die Überexpression des Gens führte in verschiedenen Pilzen zur Steigerung unterschiedlicher Metabolite, wie Penicillin in A. nidulans (Bok & Keller, 2004) und P. chrysogenum (Kosalkova et al., 2009), Aflatoxin in A. flavus (Kale et al., 2008) und T-Toxin in Cochliobolus heterostrophus (Wu et al., 2012). Die molekulare Funktion von LaeA bleibt jedoch weiterhin ein Rästel. In A. alternata findet sich als Protein mit der höchsten Homologie AAT_GIDPG03450. Hier hat es eine Länge von 924 bp und kodiert für 307 Aminosäuren; dieses Protein hat ebenfalls als charakteristische Domäne eine Sadenosylmethionin(SAM)-Bindestelle. Bereits 2003 wurde LaeA als Regulator des Sekundärmetabolismus in Aspergillus beschrieben (Bok & Keller, 2004). Dieses Protein ist ebenfalls in filamentösen Pilzen konserviert; allerdings ist es in Saccharomyces cerevisiae nicht vorhanden, ein Pilz frei von Sekundärmetaboliten. LaeA ist zusätzlich zum Velvet-Komplex Teil eines zweiten Velvet-ähnlichen Komplexes aus VelB und VosA. Eine Herunterregulierung des Gens in A. alternata führte zu vermindertem Wachstum der Mutante (siehe Abb. 33 (B) + (C)). Auffällig war auch das Sekundämetabolitspektrum in der Dünnschichtchromatographie, welches sich stark von dem des Wildtyps unterschied (siehe Abb. 34 (A)). Die im Wildtyp stark ausgeprägten Banden von Alternariol und Alternariolmonomethylether sind hier gänzlich verschwunden sowie fast alle anderen typisch vorkommenden Banden. Die Altenuenbande dagegen ist noch vorhanden. Zusätzlich sind in den Mutanten neue gelbe Banden hinzugekommen. Näheres über die Beschaffenheit der Banden kann jedoch nicht ausgesagt werden. Eventuell handelt es sich hier ebenfalls wie in der veA-Mutante um Zwischenprodukte, welche nicht weiter verstoffwechselt werden können. In dieser Mutante wurde ebenfalls die Expression zweier Polyketidsynthasegene, pksB und pksD gemessen. Es zeigt sich, dass in beiden Fällen die Expression stark reduziert ist (siehe Abb. 34 (B)). Falls man dieses Ergebnis auf alle Polyketidsynthasen übertragen würde, würde das die verminderte Sekundärmetabolitbildung erklären. Wenn man die Expression aller Gene in einem Cluster in den Mutanten messen würde, könnte man mehr über die Regulation eines Clusters herausfinden. Die Messung würde zeigen, ob nur die Polyketidsynthase betroffen ist oder alle Gene eines Clusters.

In *A. fumigatus* wurde ermittelt, dass in einer *laeA*-Deletionsmutante 13 von 22 Sekundärmetabolitclustern niedriger exprimiert wurden als im Wildtyp. Zusätzlich beeinflusst LaeA 20-40% aller Sekundärmetabolitbiosynthesegene wie NRPS oder PKS positiv (Perrin *et al.*, 2007). Es wurde zusätzlich angenommen, dass LaeA der Bildung von Heterochromatin entgegenwirkt (Reyes-Dominguez *et al.*, 2010).

Die genaue Rolle von VeA und LaeA in der Umschaltung der Transkription wurde noch nicht hinreichend ermittelt, aber es wird ein Reprogrammieren des Heterochromatins angedeutet (Palmer *et al.*, 2008, Reyes-Dominguez *et al.*, 2010). Da VeA und LaeA, eine Methyltransferase, miteinander interagieren, wäre hier eine Verbindung zwischen Lichtwahrnehmung und Histonmodifikation, in diesem Falle eine Methylierung, ebenfalls denkbar. Allerdings ist noch unklar, ob LaeA direkt oder indirekt die Chromatinstruktur verändert. Lange wurde auf eine methylierende Rolle spekuliert, jedoch ist das Substrat für die Methylierung durch LaeA noch nicht identifiziert (Bok & Keller, 2004, Bok *et al.*, 2006, Palmer & Keller, 2010).

In dieser Arbeit konnte jedenfalls für beide Proteine eine Rolle im Sekundärmetabolismus in *A. alternata* beobachtet werden. Durch eine Überexpression eines der beiden Proteine wäre es eventuell möglich, stille Cluster zu aktivieren.

5.5 Strategien um neue Sekundärmetabolite zu entdecken.

Als stille Cluster bezeichnet man diejenigen, die unter normalen Laborbedingungen nicht aktiv sind. Ein Grund hierfür kann der Telomer-Positions-Effekt (TPE) sein. Dieses Phänomen wurde zuerst in Hefe beschrieben und beschreibt die Repression sub-telomer gelegener Gene (Doheny *et al.*, 2008). Dieser Effekt wurde bereits in *S. cerevisiae* (Tham & Zakian, 2002), *Sc. pombe* (Nimmo *et al.*, 1994), *Candida glabrata* (Castano *et al.*, 2005), *N. crassa* (Smith *et al.*, 2008) und kürzlich auch in *A. nidulans* (Shaaban *et al.*, 2010) beobachtet. Auch für *A. alternata* wäre so ein Mechanismus denkbar, da davon ausgegangen wird, dass hier ebenfalls viele Cluster still sind.

Schon mehrere Techniken wurden angewandt, um solche Cluster zu aktivieren und damit neue Metabolite zu finden, die einen Effekt gegen Bakterien, Pilze oder andere Organismen hervorrufen und somit als neues Medikament hilfreich sein könnten (siehe Abb. 60).

Abbildung 60: Strategien zur Entdeckung neuer Sekundärmetabolite. (A) Überexpression eines Cluster-spezifischen Transkriptionsfaktorgens. (B) Austausch eines Promotors eines Biosyntheseoder Transkriptionsfaktorgens mit einem induzierbaren Promotor wie z.B. den *alcA*-Promotor. (C) Überexpression oder Deletion eines globalen Regulators. (D) Chromatinmodifikationen. (E) Simulation physiologischer oder ökologischer Konditionen, die eine Aktivierung des stillen Clusters hervorrufen (Brakhage, 2013).

Die heterologe Expression beispielsweise wird genutzt, um einen Metaboliten zu produzieren, der im eigentlichen Organismus unter Laborbedingungen nicht produziert wird (Yin *et al.*, 2013). Mit einer Diethyl-Sulphat-Mutagenese konnten sogar vier neue Antitumorstoffe aus *Penicillium purpurogenum* identifiziert werden (Fang *et al.*, 2014). Des Weiteren wurde gezeigt, dass die Kokultivierung mit Bakterien bei *A. nidulans* die Aktivierung einiger Sekundärmetabolitgene stimulierte (Schroeckh *et al.*, 2009). Auch eine Veränderung der Chromatinstruktur konnte zur Aktivierung eines bisher stillen Clusters genutzt werden (Bok *et al.*, 2009). Dies wird in einem späteren Abschnitt noch genauer erläutert. Es wurde auch schon die Aktivierung durch die Klonierung einer Polyketidsynthase unter einen induzierbaren Promotor beschrieben (Bergmann *et al.*, 2007). Ähnlich zu diesen Strategien könnte man die Überexpression einer der globalen Regulatoren nutzen, um ebenfalls direkt in *A. alternata* eventuell schlafende Gencluster zu aktivieren.

5.6 Grünlichtwahrnehmung in A. alternata

Zusätzlich zu den Lichtrezeptoren für Rot- und Blaulicht wurde ein putativer Grünlichtrezeptor gefunden.

(A)

Abbildung 61: Das Opsin Nop-1, NopA bzw. CarO. (A) Struktur des Opsins Nop-1 in N. crassa. An ein konserviertes Lysin in der siebten Transmembrandomäne bindet der Chromophor all-trans-Retinal (Bieszke et al., 1999). (B) Alignment von Nop-1 aus N. crassa, NopA aus A. nidulans und dem Opsin-Homolog in A. alternata und A. tenuissima, hier ebenfalls als NopA bezeichnet, sowie CarO aus Fusarium fujikuroi. Das konservierte Lysin ist mit einem roten Kasten markiert.

Es handelt sich hierbei um ein Homolog zu NopA aus *A.nidulans*. Allerdings wurde bisher nicht getestet, ob *A. alternata* tatsächlich grünes Licht wahrnehmen kann. Daher wurde eine Dünnschichtchromatographie mit Proben durchgeführt, die unter konstantem Grünlicht inkubiert wurden und mit Dunkel- bzw. Weißlichtproben verglichen (siehe Abb. 45). Das Bandenmuster und auch die Intensität der Banden ähneln eher den unter Weißlicht inkubierten Proben. Auch hier ist die Metabolitproduktion im Vergleich zu den Dunkelproben stimuliert. Dies lässt auf einen funktionierenden Grünlichtrezeptor in *A. alternata* schließen.

In A. nidulans ist die Lichtwahrnehmung durch dieses Protein nicht möglich, da ein konserviertes Lysin zur Bindung des Chromophors fehlt und NopA daher nicht als Photorezeptor wirken kann (Bayram et al., 2010). Das homologe Protein zu Nop-1 aus *N. crassa* ist in *A. alternata* das Gen AAT PP01847 mit einer Länge von 930 bp und 309 Aminosäuren. Die Gene haben eine 97%ige Deckungsgleichheit und eine Identität von 51%. Ein Alignment von N. crassa Nop-1, A. nidulans NopA, dem Homolog aus A. alternata und A. tenuissima, hier ebenfalls als NopA bezeichnet, sowie CarO aus Fusarium fujikuroi, zeigt, dass die Homologie des Opsins zwischen den beiden Alternaria-Arten und N. crassa höher zu sein scheint als für A. nidulans (siehe Abb. 61). Das Lysin an Stelle 236 ist außer in *A. nidulans* in allen Oranismen, die in dieses Alignment mit einbezogen wurden, konserviert. Die Proteine aus A. alternata und A. tenuissima sind identisch. Dies zeigt, dass Alternaria auf Grund seines Opsin-Homologs durchaus in der Lage sein könnte, Grünlicht wahrzunehmen einen das Grünlicht aktivierenden Effekt und dass auf die Sekundärmetabolitproduktion hat, genauso wie es bereits für Blaulicht gezeigt wurde. Dies ist der erste Hinweis auf eine Lichtregulation über den Grünlichtrezeptor in A. alternata. Kürzlich wurde die Rolle von CarO, einem putativen Rhodopsin in Fusarium fujikuroi, als lichtabhängige Protonenpumpe beschrieben (Garcia-Martinez et al., 2015). Es wurde gezeigt, dass es sich bei dem Protein um eine grünlichtabhängige Protonenpumpe handelt, welche die Entwicklung der Hyphen unter Lichtbedingungen verlangsamt. Um eine ähnliche Funktion für das A. alternata NopA zu beschreiben, wären weitere Untersuchungen notwendig. Beide Proteine sind zu 78% deckungsgleich, haben jedoch eine Identität von nur 35%. Allerdings besitzen beide Proteine das konservierte Lysin an Stelle 236 zur Bindung des Chromophors. Ein Knockdown oder Knockout von nopA könnte in A. alternata zu näheren Erkenntnissen über die Funktion des Proteins führen.

5.7 Ähnlichkeit von A. nidulans LreA und A. alternata LreA

Es konnte für fast alle Polyketidsynthasen gezeigt werden, dass ihre Expressionen entweder positiv oder auch negativ durch Licht beeinflusst werden (siehe Abb. 16). Anhand zweier Gencluster konnte zudem nachgewiesen werden, dass sogar die anderen Gene des Clusters ebenfalls in gleichem Maße reguliert sind wie die Polyketidsynthasen selbst (siehe Abb. 24 und 46) und dass dieser Effekt verloren geht, wenn man die Expression in einem Δ *IreA*-Stamm misst (siehe Abb. 46 und 47). Der Deletionsstamm ist nicht mehr in der Lage, das Licht wahrzunehmen. Die Unterschiede zwischen Licht- und Dunkelexpression werden somit von dem Blaulichtrezeptor LreA verursacht, welcher in manchen Polyketidsynthasen aktivierend und in anderen eher reprimierend zu wirken scheint.

Schon früh wurde eine Rolle von Blaulicht in *A. alternata* beschrieben (Rotem, 1994). Das Gen *IreA* weist eine geringfügig höhere Expression unter Lichtbedingungen auf sowie eine etwa doppelt so hohe Expression nach 7 Tagen im Vergleich zu 3 Tagen (siehe Abb. 48). Dies könnte ein Hinweis darauf sein, dass es eine Rolle in der Regulation des Sekundärmetabolismus einnimmt, welcher erst nach einer gewissen Inkubationszeit auftritt.

Im nächsten Schritt wurde versucht, LreA aus A. alternata in A. nidulans zu lokalisieren. Da es sich um einen Transkriptionsfaktor handelt, lokalisiert LreA in A. nidulans im Kern. Es konnte allerdings bei der heterologen Expression zuerst keine Kernlokalisierung beobachtet werden (siehe Abb. 49). Dabei verfügt das A. alternata LreA ebenfalls über eine LOVund zwei PAS-Domänen sowie eine Kernlokalisierungssequenz (NLS) und eine GATA-Zinkfingerdomäne (ZnF), die eine DNA-Bindung ermöglicht (Sand, 2011). Das Gen hat also ebenfalls die Voraussetzung, als Transkriptionsfaktor zu wirken. Die Proteine sind zudem zu 65% deckungsgleich und haben eine Identität von 42%. Die Abbildung 62 zeigt das Alignment der beiden Proteine. Das A. alternata LreA besitzt drei Introns; falls das Splicen der DNA in A. nidulans nicht richtig funktioniert, könnte es hierbei zu einem falschen Protein kommen und daher die Lokalisierung nicht mehr stimmen.

Daher wurde zusätzlich zur gDNA die cDNA von LreA hinter den induzierbaren *alcA*-Promotor kloniert und ebenfalls in *A. nidulans* transformiert. Überraschenderweise konnte hier tatsächlich eine Lokalisierung im Kern beobachtet werden (siehe Abb. 50). Aus Zeitgründen wurden diese Kolonien allerdings nur mikroskopiert; die richtige Integration des Konstrukts muss noch per PCR überprüft werden. Scheinbar lag die fehlende Lokalisierung des Proteins aus gDNA am falschen Splicen, wodurch wichtige Domänen, wie das NLS, zerstört wurden.

Abbildung 62: Alignment von *A. nidulans* LreA mit *A. alternata* LreA. Das Alignment wurde mit dem CLC Sequence Viewer erstellt. Die Proteine sind zu 65% deckungsgleich und zu 42% identisch

Einen genaueren Einblick in die Funktion von LreA würden ChIP-Experimente geben, mit deren Hilfe man die direkten Zielpromotoren des Proteins identifizieren könnte. Zusätzlich wäre es möglich herauszufinden unter welchen Lichtverhältnissen LreA an die Promotoren bindet.
5.8 Ähnlichkeit von A. nidulans FphA und A. alternata FphA

		20	40		60	
A. alternata FphA	MSQSPQQTPNSGPPLQ	DDGRFNF <mark>S</mark> TVS <mark>P</mark> V	PEEPCTPDAGTKTT	DFASLPPSNAAH	AALSNEAASSAL	SPSAT 72
A. nidulans FphA	MSELPSRS	·····ISPRDPS	PGETPGRDPSTPST	D	AGVGYSASQDAP	SFGAY 47
	80 I	100		120 I	1	40 I
A. alternata FphA	DRVFPIRSAISVDPTP	PKGGHSQGDY	FHPYSRTNDSRFTS	DSRRASQGSTTS	QSSHASQRNWSL	RHGGN 142
A. nidulans PphA	160	acraana	180	2		1300-110
		DOD CONTRACTOR				
A. alternata FphA	TGI SPESSEAPSS	RGDSSRMAAPVL	SNTTGI RRG	DD HTTETPSS	FDSH - POVO	ARSGI 214
A. mountaina r prior	220	240	onrioenn	260	280	102
A alternate Eah A		TECCUMVITOR	COTLODCEDERIU	BCAVOCECI LI AL	ODDBECKLUND	VUCEN DOC
A. alternata PphA A. nidulans FphA	EPYELMTTRERHV	TDDGHAVITGRT	VDSFKACEDEPIHI	PGAIQSEGALVA		IVSEN 231
7	300		320	340		380
A alternata EnhA	SKRUGRTPKELEALES			VISNOPEVETMS		KIW 354
A. nidulans FphA	SQDILGYSPNDLFSLPT	LCDIFPEDQADN	FLDHVDFVKEEGYD	PSVDGPEVFILT	V NQPNGS	T I R VW 298
		380	400		420	
A. alternata FphA	CATHMNEANPGLVICE	FELEEDPLYPLVP	PNDLTPELPEDTLS	SQPTAEELLEST	EIKSKPLRVLRS	ARKRK 426
A. nidulans FphA	CAIHTNPALNGLVICE	FELEDDHVNPLTS	SGH I SPAVPTNTLD	VVPTIEQMAGST	ITINQ <mark>PLRVLR</mark> R/	ARRK 370
	440	460		480	5	00
A. alternata FphA	GEAAAMEVFNIMSQVQ	EQLAAAPSLEKFL	KVLVGVVKELTGFH	IRVM I YQFDQT FN	GRVVTELVDPRA	TKDLY 498
A. nidulans FphA	GEAAAMEVFSIVSQIQ	EQLARADNMEALL	DTTSGIVKELTGFH	RILVYQFDSEFN	GKVVSELVDPTM	SIDLF 442
	520		540	5	60 I	
A. alternata FphA	KGLNFPASDIPKQAREI	YKLNKVRMLYDR	DLTTARLVCRTAED	LENPLDLTHSYL	RAMSPIHLKYLA	NMAVR 570
A. nidulans FphA	KGLHFPAADIPKQARDI		DHVIARLVCRALED		RAMSPIHIKYLA	NMQIR 514
	560	l		1	640	
A. alternata FphA	S SMS I S I NA FNELWGL		SFPIRKMCRMVGDA	ASRNIERLSYAS		TQHNP 642
A. nidulans I-phA	SSMSTSTN SMNULWOL	ISCHSTOPROMRV	SEP IRANGELIGUI	V SKNIEKLSTASI	REQARKEINIVP	720
	l		Î	Ĩ		Ĩ
A. alternata FphA	SGY I LASSODLLKLFD/				MISIDIVSDEPDI	LRYPP 714
A. moulana ripha	SOTTERSOUTERETER	740	760	ELTERTRATING T	780	000
A alternata EahA	CENTRACHT INDLEVD	CEDE LVEE BKGOL	KEVKWACNOVE KE		KEEKTWEETVVCI	
A. alternata PphA	GEKDISGLI VVPL STD		TEVKWGGNPNEAKE	TEGHLEPR	KSFQTWRETVLD	RCRDW 726
A. DOURDS FORA	OFROTOGELIVIESID					
A. nioularis EpriA	800	820		840	8	60
A alternata EnhA					8	60 I
A. alternata FphA A. nidulans FphA	TEEEIETASVLCLVYG	820 I KFIEVWRQKEAAL KFIKVWRQQEAAL	QSSQLTRLLLANSA	840 I HEVRTPLNAIIN HEVRTPLNAIVN	8 YLEIALEGALDTI YLEIALEGALDGI	ETREN 857
A. alternata FphA A. nidulans FphA	BOO I TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI 880	820 I KFIEVWRQKEAAL KFIKVWRQQEAAL	QSSQLTRLLLANSA ESSSLTKLLLANSA 900	HEVRTPLNAIIN HEVRTPLNAIVN 9	8 YLEIALEGALDTI YLEIALEGALDGI 20	ETREN 857
A. alternata FphA A. nidulans FphA A. alternata FphA	TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI 880 LSRSHSASKSLIVVINI	KFIEVWRQKEAAL KFIEVWRQQEAAL	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 I LIKGESFDFKETIK	840 I HEVRTPLNATIN HEVRTPLNATVN 9 CEATDMFRNDAKRI	8 YLEIALEGALDT YLEIALEGALDG 20 1 KNIAYEVIEHPG	ETREN 857 ETRDH 798
A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA	TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI 880 LSRSHSASKSLIYVINU LSKSYSASKSLIYVINU	620 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 I LIKGESFDFKETIK LIKDEPFDLPTTFS	640 I HEVRTPLNAIIN HEVRTPLNAIVN 20 EATDMFRNDAKRI EATAMFESEAKRI	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPGI KGLNYKVLSQPG	ETREN 857 ETRDH 798 LPTLC 929 IPETV 870
A. alternata FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. nidulans FphA	TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI 880 LSRSHSASKSLIYVINU SHO	SP KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS Seo	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 I LIKGESFDFKETIK LIKDEPFDLPTTFS	840 HEVRTPLNATIN REVRTPLNATVN 2 EATDMFRNDAKRI EATAMFESEAKRI 980	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000	ETREN 857 ETRDH 798 LPTLC 929 IPETV 870
A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. alternata FphA	TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI 880 LSRSHSASKSLIYVINU 940 IGDQRRIRQAISNITAI	80 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 960 VAIQNTTQGSVKV	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 I LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV	840 IHEVRTPLNAIIN 20 EATDMFRNDAKRI EATAMFESEAKRI 20 20 20 20 20 20 20 20 20 20 20 20 20	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD	ETREN 857 ETRDH 798 LPTLC 929 IPETV 870
A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. nidulans FphA	TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI 880 LSRSHSASKSLIYVINU 940 IGDQRRIRQATSNITAI IGDQRRVRQSISNLIS	800 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 980 VAIQNTTQGSVKV NAVQNTSSGGVTV	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 I LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVYVA - AKPSRDHV	440 HEVRTPLNAIIN SEATDMFRNDAKRI SEATAMFESEAKRI 980 VEVEVAVSDTGVGI TVKIAVLDTGRG	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE	60 ETREN 857 ETRDH 798 LPTLC 929 IPETV 870 LEQVQ 1000 LEQVS 942
A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. nidulans FphA	BOD TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI 880 LSRSHSASKSLIYVINI 940 IGDQRRIRQAISNITAI IGDQRRVRQSISNLIS 1.000	80 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 960 VAIQNTTQGSVKV NAVQNTSSGGVTV	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 I LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1.040 I	840 HEVRTPLNAIIN HEVRTPLNAIVN 2 EATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI TVKIAVLDTGRG 1.060	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE	ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 LEQVS 942 1.000
A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA	ROTING STATES AND	80 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 940 NAIQNTTQGSVKV NAVQNTSSGGVTV QIAEQGEKST	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 ILIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1040 IGLGLAVVGRIIRN	440 HEVRTPLNAIIN REATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI TVKIAVLDTGRG 1.00	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD	ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 LEQVS 942 1.080 LEQVS 942
A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. alternata FphA A. nidulans FphA	ROTING AND	80 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 940 NAIQNTTQGSVKV NAVQNTSSGGVTV QIAE QGEKST SAPEAKASKDKAV	QSSQLTRLLANSA 900 IKGESFDFKETIK LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1.040 IGLGLAVVGRIIRN LGLGLAVVGRIIRN 120	840 HEVRTPLNAIIN SEATDMFRNDAKRI SEATAMFESEAKRI 980 VEVEVAVSDTGVGI NTVKIAVLDTGRG 1.00 IMNGQLRLRSEEGI IMNGQLTVRSEEGI	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD 1100	ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQV2 1000 LEQV5 942 1.080 LEQDAE 1069 IPEGS 1014
A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. alternata FphA A. nidulans FphA	R00 TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI 880 LSRSHSASKSLIYVINI 940 IGDQRRIRQATSNITAI IGDQRRVRQSISNLISI 1020 SEPTSMLEDALVPDKKK GEDDSHYYGGSEEGEES	80 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 940 NAIQNTTQGSVKV NAVQNTSSGGVTV QIAEQGEKST SAPEAKASKDKAV 1.100	QSSQLTRLLLANSA 900 IKGESFDFKETIK LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1.040 IGLGLAVVGRIIRN LGLGLAVVGRIIRN 1.120 1.120	840 HEVRTPLNAIIN SEATDMFRNDAKRI SEATAMFESEAKRI 980 VEVEVAVSDTGVGI NTVKIAVLDTGRG 1.00 IMNGQLRLRSEEGI IMNGQLLVRSEEGI	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD 1.140	ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVS 942 1.080 LEQVS 942 1.080 1 LEDDAE 1069 IPEGS 1014
A. alternata FphA A. nidulans FphA A. alternata FphA	ROTING AND	800 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 940 NAIQNTTQGSVKV NAVQNTSSGGVTV QIAEQGEKST SAPEAKASKDKAV 1.100 PQPDSMLSNILPG	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 ILIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1.040 IGLGLAVVGRIIRN LGLGLAVVGRIIRN 1.120 IPEDGERTLIAPSLS	840 HEVRTPLNAIIN SEATDMFRNDAKRI SEATAMFESEAKRI 980 VEVEVAVSDTGVGI TVKIAVLDTGRG 1.06 IMNGQLRLRSEEGI IMNGQLRLRSEEGI IMHGQLTVRSEEGI SRHTSDSESK-DT TGDSAAPEST	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD 1.140 SNGVVIRRSSAE 3DDVVIRRSSAE	ETREN 857 ETREN 857 ETREN 798 IPETV 870 IPETV 870 IEQVS 942 1.080 IPEGS 1014 SLTSK 1140 SLTSK 1140
A. alternata FphA A. nidulans FphA A. alternata FphA	ROT SUCCESSION ROT SUCCESSION TESEIETASVLCLVYGI RESEVDTAAVLCLVYGI	80 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 900 VAIQNTTQGSVKV NAVQNTSSGGVTV QIAE QGEKST SAPEAKASKDKAV 1.100 PQPDSMLSNILPG 1.180	QSSQLTRLLLANSA 900 ILKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1.040 IGLGLAVVGRIIRN LGLGLAVVGRIIRN 1.120 1 PEDGERTLIAPSLS	840 HEVRTPLNAIIN SEATDMFRNDAKRI SEATAMFESEAKRI 980 VEVEVAVSDTGVGI TVKIAVLDTGRG 1.00 IMNGQLRLRSEEGI IMNGQLRLRSEEGI IMNGQLTVRSEEGI SRHTSDSESK-DT 1.200	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD 1.140 SNGVVIRRSSAE SDDVILVD	60 1 ETREN 857 ETREN 857 ETREN 798 LPTLC 929 IPETV 870 LEQVQ 1000 LEQVS 942 1.080 1 LPDAE 1069 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1049
 A. alternata FphA 	ROTISTIC CONTRACTOR OF CONTRACT OF CONTRAC	80 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 940 VAIQNTTQGSVKV NAVQNTSSGGVTV QIAEQGEKST SAPEAKASKDKAV 1.100 	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 ILIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1.040 IGLGLAVVGRIIRN LGLGLAVVGRIIRN 1.120 IFEDGERTLIAPSLS	440 HEVRTPLNAIIN SEATDMFRNDAKRI SEATAMFESEAKRI 980 VEVEVAVSDTGVGI TVKIAVLDTGRG 1.06 IMNGQLRLRSEEGI IMNGQLRLRSEEGI IMNGQLRLRSEEGI IMNGQLFVRSEEGI SRHTSDSESK - DT 1.200 TI TKPNSIEPAA	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD KGSRFQISLQFP 1.140 SNGVVIRSSAE GDDVILVD 1.2 SNGVVIRSSAE	80 I ETREN BTREN SETREN SETREN IPTLC 929 IPETV 870 LEQVQ 1.000 LEQVS 1.000 LEQVS 1.000 LPDAE 1069 IPEGS SETSC SCS SOS SOS
 A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA 	ROUTSOLE TASVLCLVYG TEEEIETASVLCLVYG TESEVDTAAVLCLVYG 880 LSRSHSASKSLIVVINI 940 IGDQRRIRQATSNITA IGDQRRVRQSISNLIS 1.020 SEPTSMLEDALVPDKKC GEDDSHYYGGSEEGES VEAVSTAEASPAGSITE DTKSPTAEHRPVA	80 KFIEVWRQKEAAL KFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 940 VAIQNTTQGSVKV NAVQNTSSGGVTV QIAEQGEKST SAPEAKASKDKAV 1.100 1.100 1.100 1.100 1.100 0.000 0.0000 0.00000 0	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRTIRN LGLGLAVVGRTIRN 1.120 I PEDGERTLIAPSLS GRGDVSPGARSMRF	840 HEVRTPLNAIIN HEVRTPLNAIVN 2 EATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI TVKIAVLDTGRG 1.060 IMNGQLRLRSEEGI IMNGQLRLRSEEGI IMNGQLRLRSEEGI IMNGQLRLRSEEGI INNGQLRLSEEGI INNGQLRLRSEEGI INNGQLRLRSEEGI INNGQLRLSEEGI INNGQLRLSEEGI INNGQLRLSEEGI INNGQLRLSEEGI INNGQLRLSEEGI INNGQLRLSEEGI INNGQLRSEEGI INNGQLRSEEGI INNGQLRSEEGI INNGQLSEEGI INNGQLSEEGI INNGQLSEEGI INNGQLSEEGI INNGQLSEEGI INNGQLSEEGI INNGQLSEEGI INNGA INNG	8 YLEIALEGALDT YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD 1.140 SNGVVIRRSSAE SDDVILVD 1.2 PRMRSRSLEHIG	60 1 ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 LOUS 942 1.000 1 1 1 LEQVS 942 1.000 1 SUTSK 1049 SUS 1049 SQS IV 1212 1074 1074
 A. alternata FphA 	ROUTSUE CONTRACTOR OF CONTRACT	80 CFIEVWRQKEAAL CFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 940 VAIQNTTQGSVKV VAVQNTSSGGVTV QIAEQGEKST SAPEAKASKDKAV 1.100 	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRTIRN LGLGLAVVGRTIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.280	840 I HEVRTPLNAIIN REATDMFRNDAKRI EATDMFRNDAKRI EATAMFESEAKRI 900 I VEVAVSDTGVGI 1.060 IMNGQLRLRSEEGI IMNGQLLVRSEEGI IMHGQLTVRSEEGI IANG INNGQLRLRSEEGI INNGQLRLRSEEGI IANG INNGQLRLRSEEGI INNGQLREI INNGQLRLRSEEGI INNGQLREI INNGQLREI INNGQLREI INNGQLREI INNGQLREI INNGQLREI INNGQLREI INNGQLREI INNGQL INNGQL INNGQL INNGQL INNG IN	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPED KGSRFQISLQFP 1.140 SNGVVIRRSSAE 3DDVILVD 13 PRMRSRSLEHIG 20 20 20 20 20 20 20 20 20 20	60 1 ETREN 857 ETREN 857 ETREN 798 IPETV 870 IEQVS 900 IDEQVS 942 1.000 1 IPEGS 1014 SLTSK 1140 STTG 1049 SQS IV 1212 1074
A. alternata FphA A. nidulans FphA A. nidulans FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. nidulans FphA	ROT SUCCESSION ROT SUCCESSION REFERENCESSION	SO ST ST ST ST ST ST ST ST ST ST	QSSQLTRLLLANSA P00 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA-AKPSRDHV EWHAPGEGDTDKA 1.040 IGLGLAVVGRIIRN IGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.260 PDAGGDNPIDPRPF	840 I HEVRTPLNAIIN REVRTPLNAIVN 9 EATDMFRNDAKRI EATAMFESEAKRI 900 I VEVAVSDTGVGI 1000 INNGQLRLRSEGI INNGQLRLRSEGI INHGQLTVRSEGI INHGQLTVRSEGI INHGQLTVRSEGI I 200 I TLTKRNSLEPAAI DVPRKSEPEDTAI 12 12 12 12 12 12 12 12 12 12	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPED KGSRFQISLQFP 1.140 SNGVVIRRSSAE SDDVILVD 12 PRMRSRSLEHIG P	60 1 ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 IPEGS 1014 SLTSK 1140 STTG- 1049 SQSIV 1212 1074 ADHMR 1284
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. nidulans FphA 	BOD SUCCESSION SUCCESS	SO ST ST ST ST ST ST ST ST ST ST	QSSQLTRLLLANSA P00 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.280 PDAGGDNPIDPRPF GESTASTSHEQ	840 HEVRTPLNAIIN REATDMFRNDAKRI EATDMFRNDAKRI EATAMFESEAKRI 900 VEVEVAVSDTGVGI 1000 INNGQLRLRSEEGI INNGQLRLRSEEGI INNGQLTVRSEEGI IN	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD KGSRFQISLQFP 1.140 SNGVVIRRSSAE SDDVILVD 12 PRMRSRSLEHIG P	60 1 ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1014 SQSIV 1212 1074 ADHMR 1284 RRPLR 1130
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA 	BOD BOD TEEEIETASVLCLVYGH TESEVDTAAVLCLVYGH BRO LSRSHSASKSLIYVING SRO IGDQRRIRQAISNITAN IGDQRRVRQSISNLISN 1.020 SEPTSMLEDALVPDKKG GEDDSHYYGGSEGGES VEAVSTAEASPAGSITI DTKSPTAEHRPVA	SO ST ST ST ST ST ST ST ST ST ST	QSSQLTRLLLANSA P00 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EWHAPGEGDTDKA 1.040 LGLGLAVVGRTIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.280 PDAGGDNPIDPRPF GESTASTSHEQ 1	640 HEVRTPLNAIIN REATDMFRNDAKRI EATDMFRNDAKRI EATAMFESEAKRI 900 VEVEVAVSDTGVGI TVKIAVLDTGRG 1.060 IMNGQLRLRSEGI INNGQLRLRSEGI INNGQLTVRSEEGI INNGQ	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD KGSRFQISLQFP 1.140 SNGVVIRRSSAE SDDVILVD 1.240 PRMRSRSLEHIG PIEPSAEPEKLT/ PSGPSSGPSAPEI 1.340	60 1 ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 LEQVS 942 1.080 1 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 ADHMR 1284 ADHMR 1284
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA 	ROTING SOLUTION STICK	SO ST ST ST ST ST ST ST ST ST ST	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN 1.040 IGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.280 PDAGGDNPIDPRPF GESTASTSHEQ	840 I HEVRTPLNAIIN REVRTPLNAIVN 90 EATDMFRNDAKRI EATAMFESEAKRI 90 I EVEVAVSDTGVGI I TVKIAVLDTGRG 1.060 I MNGQLRLRSEGI I MNGQLRLRSEGI I AND I COSSESK-DT 1.200 I TLTKRNSLEPAAI 1.200 I TLTKRNSLEPAAI 1.200 I TLTKRNSLEPAAI 1.200 I TLTKRNSLEPAAI 1.200 I TLTKRNSLEPAAI 1.200 I LTKRNSLEPAAI 1.200 I LTKRNSLEPAAI I LTKRNSLEPAAI I LTKRNSLEPAAI I LTKRNSLEPAAI I LTKRNSLEPAAI I LTKRNSLEPAAI I	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD KGSRFQISLQFP 1.140 SNGVVIRRSSAE SDDVILVD 1.20 PRMRSRSLEHIG PIEPSAEPEKLT/ PSGPSSGPSAPEI 1.360 VDGLTSTKMIR	60 1 ETREN 857 ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 LEQVS 942 1.080 1 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA 	ROT SUCCESSION ROT SUCCESSION REETASVLCLVYGI RESUDTAAVLCLVYGI RESUDTAAVLCLVYGI RESUDTAAVLCLVYGI RESUDTAAVLCLVYGI RESUDTAAVLCLVYGI RESUDTAAVLCLVYGI RESUDTAAVLCLVYGI RESUDTAAVLCLVYGI RESUTAASSSS SEPTSMLEDALVPDKKG GEDDSHYYGGSEGEGS VEAVSTAEASPAGSITI DTKSPTAEHRPVA 1.160 ASLRSFKSGSSQRSDVI SKRNSQI 1.200 VEAVSTAEASPAGSITI DTKSPTAEHRPVA 1.160 ASLRSFKSGSSQRSDVI SKRNSQI 1.200 VLVAEDDPVNSRTVKKG VLVAEDDPVNSRTVKKG	800 I STANDARD STANDARD STAN	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN 1.040 IGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.280 PDAGGDNPIDPRPF GESTASTSHEQ	840 I HEVRTPLNAIIN REVRTPLNAIVN 90 EATDMFRNDAKRI EATAMFESEAKRI 90 I EVEVAVSDTGVGI I VEVAVSDTGVGI 100 I TVKIAVLDTGRG 1.000 I MNGQLRLRSEGI I MNGQLRLRSEGI I AND I COSSESK-DT 1.200 I TLTKRNSLEPAAI 1.200 I TLTKRNSLEPAAI 1.200 I TLTKRNSLEPAAI 1.200 I TLTKRNSLEPAAI 1.200 I TLTKRNSLEPAAI 1.200 I LTKRNSLEPAAI 1.200 I LTKRNSLEPAAI I LTKRNSLEPAAI	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 WSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD KGSRFQISLQFP 1.140 SNGVVIRRSSAE SDDVILVD 1.20 PRMRSRSLEHIG PIEPSAEPEKLT/ PSGPSSGPSAPEI 1.360 IVDGLTSTKMIR ILDGIESTKRIR(60 1 ETREN 857 ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 LEQVS 942 1.089 1 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356 Q 1198
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA 	RECITASVLCLVYGI TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI RESEVDTAAVLCLVYGI RESEVDTAAVLCLVYGI RESEVDTAAVLCLVYGI RESEVDTAAVLCLVYGI RESEVDTAAVLCLVYGI RESEVDTAAVLCLVYGI SEPTSMLEDALVVDKKG GEDDSHYYGGSEGEGES VEAVSTAEASPAGSITI DTKSPTAEHRPVA 1.160 ASLRSFKSGSSQRSDVI SKRNSQI 1200 VLVAEDDPVNSRIVKKG VLVAEDDPVNSRIVKKG VLVAEDDPVNSRIVKKG VLVAEDDPVNSRIVKKG 1380	800 CFIEVWRQKEAAL CFIKVWRQQEAAL OLLDLTKTEEGGP OLLDLTNVEKGQS 960 NAIQNTTQGSVKV VAVQNTSSGGVTV QIAEQGEKST SAPEAKASKDKAV 1,100 1,100 QPDSMLSNILPC 1,100 1,100 0 RLIDAIQEPHMI ORLIDAIQEPHMI OSLT	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.280 PDAGGDNPIDPRPF GESTASTSHEQ	840 HEVRTPLNAIIN REATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI TVEVAVSDTGVGI 1080 INNGQLRLRSEGI INNGQLRLRSEGI INHGQLTVRSEGI INGU TLTKRNSLEPAAI 1200 TLTKRNSLEPAAI	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1.000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD KGSRFQISLQFP 1.140 SNGVVIRRSSAE GDVILVD 1.20 PRMRSRSLEHIG PSGPSSGPSAPEI 1.360 IEPSAEPEKLT/ PSGPSSGPSAPEI 1.360 IUDGLTSTKMIR LDGIESTKRIR(60 1 ETREN 857 ETREN 857 ETREN 857 ETREN 798 IPETV 870 LEQVQ 1000 LEQVQ 1000 LPDAE 1069 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356 1.440 1
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA 	REAL STATES AND	SO ST ST ST ST ST ST ST ST ST ST	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.260 PDAGGDNPIDPRPF GESTASTSHEQ - 1.260 NGEECSSAYCDNSK NGEECANAYSAEST 1.400 QQYIDAGFDAWLK	640 HEVRTPLNAIIN REVERTPLNAIVN 9 CEATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI 1.060 IMNGQLRLRSEGI INNGQLRLRSEGI INNGQLRLRSEGI 1.060 INNGQLRLRSEGI 1.060 INNGQLRLRSEGI 1.060 INNGQLRLRSEGI 1.200 TLTKRNSLEPAAI 1.200 TLTKRNSLEPAAI 1.200 TLTKRNSLEPAAI 1.200 TLTKRNSLEPAAI 1.200 TLTKRNSLEPAAI 1.200 TLTKRNSLEPAAI 1.200 INNGVLGEVQGDT 1.200 INNGVL	8 YLEIALEGALDTI YLEIALEGALDGI 20 KNIAYEVIEHPGI KGLNYKVLSQPG 1.000 MSQKKLDQLFYDI ISSSTLELLFRE KGTRFVIQFPFDI KGSRFQISLQFP 1.140 SNGVVIRRSSAE GDVILVD 1.20 PRMRSRSLEHIG PIEPSAEPEKLTA PSGPSSGPSAPEI 1.360 IVDGLTSTKMIR LDGIESTKRIRG	60 1 ETREN 857 ETREN 857 ETREN 857 ETREN 857 ETREN 857 ETREN 857 IPETV 870 LEQVQ 1000 LEQVS 942 1.089 1014 SLTSK 1140 STTG- 1049 220 1074 SQSIV 1212 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356 1.440 1428 YQPGE 1428
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA 	ROTING AND	SO CFIEVWRQKEAAL CFIEVWRQQEAAL CFIEVWRQQEAAL CFIEVWRQQEAAL CFIEVWRQQEAAL SO SO SO SO SO SO SO SO SO SO	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.260 PDAGGDNPIDPRPF GESTASTSHEQ - 	640 HEVRTPLNAIIN REVERTPLNAIVN 9 CEATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI 1.060 IMNGQLRLRSEGI INNGQLRLRSEGI INNGQLRLRSEGI 1.060 INNGQLRLRSEGI INNGQLRVSEGI 1.200 TLTKRNSLEPAAI 1.200 TLTKRNSLEPAAI 1.200 TLTKRSLEPAAI	8 YLEIALEGALDTI YLEIALEGALDGI 20 KNIAYEVIEHPGI KGLNYKVLSQPG 1.000 MSQKKLDQLFYDI ISSSTLELLFRE KGTRFVIQFPFDI KGSRFQISLQFP 1.140 SNGVVIRRSSAE GDVILVD 1.20 PRMRSRSLEHIGS PIEPSAEPEKLTI PSGPSSGPSAPEI 1.360 IVDGLTSTKMIR LDGIESTKRIRGAV	60 1 ETREN 857 IPETV 870 LEQVS 942 1.080 1049 220 1049 SSITG 1049 220 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356 1.440 1198 1.440 1264
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. nidulans FphA A. nidulans FphA 	ROT SALES FOR THE SAME SAME SAME SAME SAME SAME SAME SAM	STATES AND	QSSQLTRLLLANSA B00 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.260 PDAGGDNPIDPRPF GESTASTSHEQ - 	640 HEVRTPLNAIIN HEVRTPLNAIVN 9 CEATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI 1.060 IMNGQLRLRSEGI IMNGQLTVRSEGI 1.060 IMNGQLTVRSEGI COLONAL SECON 1.060 IMNGQLTVRSEGI 1.200 TLTKRNSLEPAAI 1.200 TLTKRNSLEPAAI 1.200 TLTKRSLEPAAI 1.200 TLTKRSLEPAAI 1.200 TLTKRSLEPAAI 1.200 TLTKRSLEPAAI 1.200 TLTKRSLEPAAI 1.200 TLTKRSLEPAAI 1.200 TLTKRSLEPAAI 1.200 TLTKRSLEPAAI 1.200 I.200 TLTKRSLEPAAI 1.200 I.200 TLTKRSLEPAAI 1.200 I.200	8 YLEIALEGALDTI YLEIALEGALDGI 20 KNIAYEVIEHPGI KGLNYKVLSQPG 1.000 MSQKKLDQLFYDI ISSSTLELLFRE KGTRFVIQFPFDI KGSRFQISLQFP 1.140 SNGVVIRRSSAE GDVILVD 1.140 SNGVVIRRSSAE GDVILVD 1.140 PRMRSRSLEHIGS PIEPSAEPEKLTI PSGPSSGPSAPEI 1.360 IVDGLTSTKMIR LDGIESTKRIK AIVDTDIRHDCL SIHEERARNGAV 1.500	60 1 ETREN 857 ETREN 857 ETREN 857 ETREN 798 IPETV 870 IPETV 870 LEQVQ 1000 LEQVS 942 1.080 1049 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356 1.440 1198 1.440 1267
 A. alternata FphA 	BOD BOD TEEEIETASVLCLVYGI TESEVDTAAVLCLVYGI BBO ISRSHSASKSLIVVINI SBO IGDQRRIRQAISNITAI IGDQRRVRQSISNLIS 1020 SEPTSMLEDALVPDKKG GEDDSHYYGGSEGEES VEAVSTAEASPAGSITI DTKSPTAEHRPVA 1.160 ASLRSFKSGSSQRSDVI SKRNSQI 1240 PPHKRSMNSDHPGEES SKRNSQI 1.240 PPHKRSMSDHPGEES SKRNSQI 1.240 PPHKRSMSDHPGESS SKRNSQI 1.240 PPHKRSMSCHPCESS 	800 CFIEVWRQKEAAL CFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 960 NAIQNTTQGSVKV NAVQNTSSGGVTV QIAEQGEKST SAPEAKASKDKAV 1.100 PQPDSMLSNILPG 1.100 PQPDSMLSNILPG 1.100 PQPDSMLSNILPG 1.100 CLIDAIQEPHMI DRLIDAIQEPHMI SGSGAPITALKI SGSGAPITALKI SGSGAPITALKI SGSGAPITALKI SGSGAPITALKI SGSGAPITALKI SGSGAPITALKI 1.320 RLEKLGHKVHLTV 1.400 ADTKPSGEAPMPN	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.260 PDAGGDNPIDPRPF GESTASTSHEQ	840 HEVRTPLNAIIN HEVRTPLNAIVN 9 CEATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI 1.060 IMNGQLRLRSEGI IMNGQLTVRSEGI IL200 TLTKRNSLEPAAI DVPRKSEPEDTAI 1.200 TLTKRNSLEPAAI 1.200 TLTKRNSLEPAAI 1.200 TLTKRS	8 YLEIALEGALDTI YLEIALEGALDGI 20 KNIAYEVIEHPGI KGLNYKVLSQPG 1,000 MSQKKLDQLFYDI ISSSTLELLFREI KGTRFVIQFPFDI KGSRFQISLQFP 1,140 SNGVVIRRSSAE GDVILVD 1,140 SNGVVIRRSSAE GDVILVD 1,20 PRMRSRSLEHIGS PIEPSAEPEKLTI PSGPSSGPSAPEI 1,380 IVDGLTSTKNIR LDGIESTKRIR AIVDTDIRHDCL GIHEERARNGAV 1,50 PDEQERLLQNQEI	60 1 ETREN 857 IPETV 870 LEQVQ 1000 LEQVS 942 1.080 1069 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356 1.440 1198 1.440 1267 YQPGE 1428 YQPGE 1267 EGKTE 15000
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. alternata FphA A. nidulans FphA 	BOD SOLUTION SET OF SOLUTION S	A I CHARACTER STATES ST	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.260 PDAGGDNPIDPRPF GESTASTSHEQ NGEECSSAYCDNSK NGEECSAAYCDNSK NGEECANAYSAEST 1.400 1 PSEEVDEAIMRSED	840 HEVRTPLNAIIN HEVRTPLNAIVN 9 CEATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI 100 INNGQLRLRSEGI INNGQLRLRSEGI INNGQLTVRSEGI 1200 TLTKRNSLEPAAI DVPRKSEPEDTAI 120 TLTKRNSLEPAAI 120 TLTKRNSLEPAAI 120 TLTKRSLEPAAI 120 TLT	8 YLEIALEGALDTI YLEIALEGALDGI 20 KNIAYEVIEHPGI KGLNYKVLSQPG 1,000 MSQKKLDQLFYDI ISSSTLELLFREI KGTRFVIQFPFDI KGSRFQISLQFP 1,140 SNGVVIRRSSAE GDVILVD 1,20 PRMRSRSLEHIGS PIEPSAEPEKLTI PSGPSSGPSAPEI 1,380 IVDGLTSTKNIR LDGIESTKRIR AIVDTDIRHDCL GIHEERARNGAV 1,50 PDEQERLLQNQEI	60 1 ETREN 857 ETREN 857 ETREN 857 ETREN 857 ETREN 857 IPETV 870 IPETV 870 LEQVQ 1000 LEQVS 942 1.080 1061 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356 1.440 1198 1.440 1267 YQPGE 1428 YQPGQ 1267
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA 	ROT SUCCESSION ROT SUCCESSION REST AS A SU	80 CFIEVWRQKEAAL CFIKVWRQQEAAL CFIKVWRQQEAAL CFIKVWRQQEAAL CFIKVWRQQEAAL CFIKVWRQQEAAL SHO SHO SHO SHO SHO SHO SHO SHO	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.200 PDAGGDNPIDPRPF GESTASTSHEQ	840 IHEVRTPLNAIIN IHEVRTPLNAIVN 9 CEATDMFRNDAKRI EATAMFESEAKRI 980 IVEVEVAVSDTGVGI 100 INNGQLRLRSEEGI INNGQLRLRSEEGI INNGQLTVRSEEGI 1200 ILIXKNSLEPAAI DVPRKSEPEDTAI 1200 ILIXKNSLEPAI	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD KGSRFQISLQFP 1.140 SNGVVIRRSSAE GDVILVD 12 PRMRSRSLEHIG PIEPSAEPEKLT/ PSGPSSGPSAPEI 1.380 VDGLTSTKMIR LDGIESTKRIR AIVDTDIRHDCL SIHEERARNGAV 1.500 PDEQERLLQNQEI	60 1 ETREN 857 IPETV 870 LEQVQ 1000 LEQVS 942 1.089 1069 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 ADHMR 1284 RRPLR 1130 SFEKL 1356 1.440 1 YQPGE 1428 YQPGQ 1267 EGKTE 1500 1280
 A. alternata FphA A. nidulans FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA A. alternata FphA A. nidulans FphA 	BOD I SERVICE VICE I E SEVILIARIA SUCCUYGO TESEVIDTAAVLCUYGO TESEVIDTAAVLCUYGO B800 LSRSHSASKSLIYVING S800 IGDQRRIRQAISNITAL IGDQRRVRQSISNLIS 1020 SEPTSMLEDALVPDKKC GEDDSHYYGGSEGGES VEAVSTAEASPAGSITT DTKSPTAEHRPVA	80 CFIEVWRQKEAAL CFIKVWRQQEAAL DLLDLTKTEEGGP DLLDLTNVEKGQS 960 NAIQNTTQGSVKV VAVQNTSSGGVTV QIAE QGEKST SAPEAKASKDKAV 1.100 PQPDSMLSNILPG 1.180 DRLIDAIQEPHMI DSLT	QSSQLTRLLLANSA ESSSLTKLLLANSA 900 LIKGESFDFKETIK LIKDEPFDLPTTFS EVYVA - AKPSRDHV EVWHAPGEGDTDKA 1.040 LGLGLAVVGRIIRN 1.120 PEDGERTLIAPSLS GRGDVSPGARSMRF 1.200 PDAGGDNPIDPRPF GESTASTSHEQ	840 IHEVRTPLNAIIN HEVRTPLNAIVN 2 CEATDMFRNDAKRI EATAMFESEAKRI 980 VEVEVAVSDTGVGI TVKIAVLDTGRG 1.060 IMNGQLRLRSEEGI IMNGQLTVRSEEGI IMNGQLTVRSEEGI INNGQLRLRSEEGI INNGQLR INNGQLRLRSEEGI INNGQLR INNGQLR INNG INNGQLR INNG INNGQLR INNG INNGQLR INNG	8 YLEIALEGALDTI YLEIALEGALDG 20 KNIAYEVIEHPG KGLNYKVLSQPG 1000 MSQKKLDQLFYD ISSSTLELLFRE KGTRFVIQFPFD KGSRFQISLQFP 1.140 SNGVVIRRSSAE GDVILVD 12 PRMRSRSLEHIG PIEPSAEPEKLT/ PSGPSSGPSAPEI 1.380 VDGLTSTKMIR LDGIESTKRIR AIVDTDIRHDCL SIHEERARNGAV 1.500 PDEQERLLQNQEI	60 1 ETREN 857 IPETV 870 LEQVQ 1000 LEQVS 942 1.089 1069 IPEGS 1014 SLTSK 1140 STTG- 1049 220 1074 SQSIV 1212 1074 ADHMR 1284 NGPGE 1440 1 1 YQPGE 1428 YQPGE 1428

Phytochrome sind als Rotlichtrezeptoren in vielen Organismen vorhanden.

Abbildung 63: Alignment von *A. nidulans* FphA mit *A. alternata* FphA. Das Alignment wurde mit dem CLC Sequence Viewer erstellt. Die Proteine sind zu 89% deckungsgleich und zu 56% identisch.

Allerdings wurde für *A. alternata* noch kein signifikanter Rotlichteffekt beobachtet. Auch hier wurde versucht, FphA aus *A. alternata* in dem heterologen Pilz *A. nidulans* zu lokalisieren. Aus *A. nidulans* ist bekannt, dass FphA sowohl im Zellkern als auch im Zytoplasma lokalisiert. Allerdings konnte nur eine Akkumulation des heterolog exprimierten Proteins im Zytoplasma beobachtet werden (siehe Abb. 51). Hier scheint die Ähnlichkeit der Proteine nicht hoch genug zu sein um eine identische Lokalisierung zu erlauben. Dabei haben die Proteine eine Deckungsgleichheit von 89% und eine Identität von immerhin 56% (siehe Abb. 63). Auch ist nur ein Intron im Gen vorhanden, welches am Ende des Gens liegt und somit die Möglichkeit des falschen Splicens reduziert. Das Gen wurde zusätzlich aus cDNA amplifiziert, um eventuelle Fehler durch falsches Splicen zu umgehen; jedoch konnten hier noch keine positiven Transformanten identifiziert werden. Wie auch im Falle von LreA könnten Introns der Grund sein, warum das Protein in dem heterologen Organismus nicht richtig lokalisiert. Auch hier würden ChIP-Experimente genauere Aufschlüsse über eventuelle Zielgene von FphA geben

5.9 Chromatin Remodeling spielt eine Rolle in der

Sekundärmetabolitgenexpression in A. alternata

Chromatin kann in zwei verschiedenen Stadien existieren: Euchromatin ist transkriptionell aktiv und hat eine charakteristisch niedrige Nukleosomendichte, wohingegen das Heterochromatin durch dicht gepackte Nukleosomen ausgezeichnet wird und es transkriptionell inaktiv ist. Hyperacetylierte und methylierte Histonreste am Lysin 4 des Histons 3 ist mit dem Euchromatin assoziiert, während eine Hypoacetylierung und Methylierung von Lysin 9 des Histons 3 mit der Bildung von Heterochromatin in Verbindung steht (Noma *et al.*, 2001).

Es konnte gezeigt werden, dass Sekundärmetabolitgencluster tendentiell eher an den Chromosomenenden zu finden sind. Diese Bereiche nennen sich sub-telomer und Chromatinmodifizierer wirken sich hier auf die Transkription der Gencluster aus (Perrin *et al.*, 2007, McDonagh *et al.*, 2008). In der Literatur gibt es einige Hinweise darauf, dass die Chromatinstruktur, oder der Histoncode, das Sekundärmetabolitprofil eines Organismus stark beeinflussen kann (Reyes-Dominguez *et al.*, 2010, Strauss & Reyes-Dominguez, 2011, Reyes-Dominguez *et al.*, 2012) und Histonmodifikationen sogar zu einer Aktivierung von stillen

Sekundärmetabolitgenclustern führen können (Nützmann *et al.*, 2011). Daher wurde auch auf dieser Ebene versucht, die Regulation der Sekundärmetabolite besser zu verstehen.

Sogar einzelnen Proteinen konnte schon eine Rolle bei Histonmodifikationen zugewiesen werden. Es wurde beispielsweise bereits gezeigt, dass der Blaulichtrezeptor WC-1 in *N. crassa* epigenetisch an der Histonmodifikation beteiligt ist (Grimaldi *et al.*, 2006). Hier wurde eine Acetylierung des Lysins 14 an Histon 3 festgestellt, welche zur lichtregulierten Aktivierung von Genen führte. Auch in unserem Labor gibt es Hinweise auf eine Funktion von LreA und sogar FphA im Chromatin Remodeling.

Mehrere Möglichkeiten sind bekannt, die Chromatinstruktur zu verändern, wie z.B. Histonacetylierung oder Methylierung (Kurdistani & Grunstein, 2003). Normalerweise sorgen Methylierungen für eine Repression der Gene, wohingegen Acetylierungen eher zur Aktivierung der Genexpression führt, da diese Modifikationen eine Öffnung der Chromatinstruktur nach sich ziehen, was die Bindung von Transkriptionsfaktoren an die speziellen Promotoren erleichtert (Sterner & Berger, 2000).

In *A. nidulans* wurde 2009 gezeigt, dass die Deletion von CcIA, ein Protein, welches in der Methylierung von Histon 3 Lysin 4 involviert ist, zur Expression von mindestens zwei bisher stiller Sekundärmetabolitgencluster führte. Eins davon produziert die Anthraquinon-Bestandteile Monodictyphenone und Emodin, das andere die Polyketide F9775A und F9775B, welche eine Aktivität gegen Osteoporose aufweisen (Bok *et al.*, 2009).

Die Rolle von LreA in *A. alternata* am Chromatin Remodeling sollte hier ebenfalls überprüft werden. Hierfür wurden Western Blots mit Antikörpern gegen das acetylierte Lysin 9 und Lysin 14 des Histons 3 durchgeführt (siehe Abb. 52). Tatsächlich konnte eine Abnahme der Acetylierung nach Belichtung im LreA-Deletionsstamm im Vergleich zum Wildtyp bemerkt werden. Dies deutet auf eine ähnliche aktivierende Funktion von LreA hin. Da in der Mutante die Acetylierung abnimmt, wird diese Funktion nicht mehr ausgeführt. Allerdings ist die Acetylierung hier auf das komplette Genom bezogen gemessen und nicht auf einen bestimmten Abschnitt. Um direkt die Auswirkung auf ein spezielles Cluster zu beobachten, würde man die Acetylierung der Lysine 9 und 14 mit Hilfe von ChIP-Experimenten direkt an einem gewünschten Protomor messen und so direkt sehen, ob dieser im Wildtyp oder der Mutante stärker acetyliert ist. Auch andere Histonmodifikationen, wie Methylierungen, könnten untersucht werden.

Auch hier wurde nochmals auf den Faktor Licht als äußerer Einfluss auf die Chromatinstruktur Wert gelegt. In *A. nidulans* konnte gezeigt werden, dass im Wildtyp die Acetylierung des Lysins 9 in der Promotorregion des lichtregulierten Gens *ccgA* nach Belichtung zunimmt (persönliche Kommunikation mit Maren Hedtke). In *A. alternata* wurde nur allgemein die Acetylierung der Lysine 9 und 14 untersucht, bezogen auf das gesamte Genom und nicht speziell auf ein lichtreguliertes Gen. Trotzdem ergibt sich hier ein ähnliches Ergebnis. Auch in *A. alternata* konnte in dieser Arbeit gezeigt werden, dass Licht im Wildtyp zu einer höheren Acetylierung des Lysins 9 führt. Zum einen wurde dies mit Hilfe von Western Blots (siehe Abb. 53) gezeigt und zusätzlich noch mit der Immunfärbung (siehe Abb. 55); diese zeigt schon optisch, dass die Acetylierung in den Dunkelproben niedriger ist als in den Weißlichtproben, da das Fluoreszenzsignal, welches mit der Antikörperbindung korreliert, unterschiedlich ist. Somit scheint Licht einen aktivierenden Effekt auf die Expression von Genen auszuüben.

Im Vergleich dazu konnte im *fphA*-Deletionsstamm keine höhere Acetylierung nach dem Lichtimpuls festgestellt werden (siehe Abb. 53 und 56). Dies deckt sich ebenfalls mit den Beobachtungen in *A. nidulans* (persönliche Kommunikation mit Maren Hedtke) und ist der erste Hinweis auf eine Funktion des Rotlichtrezeptors FphA in *A. alternata*.

Ein letzter Versuch sollte nochmals die Rolle der Histonmodifikationen auf die Produktion von Sekundärmetaboliten verdeutlichen. Natriumbutyrat, ein Histon-Deacetylase-Inhibitor, wurde in verschiedenen Konzentrationen ins Medium gegeben und *A. alternata* dann darauf inkubiert; dabei kommt es durch das Nariumbutyrat zu einer Akkumulierung von acetylierten Histonen 3 und 4, weil die Histon-Deacetylase gehemmt ist. Tatsächlich konnte bei der Zugabe von sehr geringen Mengen Natriumbutyrat eine Stimulierung von Metaboliten beobachtet werden. Die absichtlich herbeigeführte stärkere Acetylierung der Histone hat somit zu einer Aktivierung der Sekundärmetaboligencluster geführt. Somit kann man einerseits bestätigen, dass auch in *A. alternata* die Chromatinstruktur mit der Bildung von Sekundärmetaboliten zusammenhängt, und andererseits, dass auch in diesem Fall eine Acetylierung eher eine Aktivierung als Reprimierung von Genen bewirkt.

6. Literaturverzeichnis

Adams TH, Wieser JK & Yu JH (1998) Asexual sporulation in Aspergillus nidulans. *Microbiol Mol Biol Rev* 62: 35-54.

Andersen B & Frisvad JC (2004) Natural occurrence of fungi and fungal metabolites in moldy tomatoes. *J Agric Food Chem* **52**: 7507-7513.

Atanasova L, Knox BP, Kubicek CP, Druzhinina IS & Baker SE (2013) The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. *Eukaryot Cell* **12**: 1499-1508.

Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA, Fischer R & Calvo AM (2010) Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. *Fungal Genet Biol* **47**: 962-972.

Bayram O, Braus GH, Fischer R & Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. *Fungal Genet Biol* **47**: 900-908.

Bayram O, Krappmann S, Seiler S, Vogt N & Braus GH (2008) Neurospora crassa ve-1 affects asexual conidiation. *Fungal Genet Biol* **45**: 127-138.

Bayram O, Biesemann C, Krappmann S, Galland P & Braus GH (2008) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. *Mol Biol Cell* **19**: 3254-3262.

Bayram O, Krappmann S, Ni M, et al. (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. *Science* **320**: 1504-1506.

Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA & Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. *Nat Chem Biol* **3**: 213-217.

Bieszke JA, Li L & Borkovich KA (2007) The fungal opsin gene nop-1 is negativelyregulated by a component of the blue light sensing pathway and influences conidiationspecific gene expression in Neurospora crassa. *Curr Genet* **52**: 149-157. **Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO & Borkovich KA (1999)** The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. *Proc Natl Acad Sci U S A* **96**: 8034-8039.

Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N & Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. *Curr Biol* **15**: 1833-1838.

Bok JW & Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. *Eukaryot Cell* **3**: 527-535.

Bok JW, Noordermeer D, Kale SP & Keller NP (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. *Mol Microbiol* 61: 1636-1645.

Bok JW, Chung D, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA & Keller NP (2006) GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. *Infect Immun* **74**: 6761-6768.

Bok JW, Chiang YM, Szewczyk E, et al. (2009) Chromatin-level regulation of biosynthetic gene clusters. *Nat Chem Biol* 5: 462-464.

Bräse S, Encinas A, Gall J & Nisind CF (2008) The chemistry and biology of mycotoxins and related fungal metabolites. *Chem Rev* revised II.

Brakhage AA (2013) Regulation of fungal secondary metabolism. *Nat Rev Microbiol* **11**: 21-32.

Brakhage AA, Thon M, Sprote P, Scharf DH, Al-Abdallah Q, Wolke SM & Hortschansky
 P (2009) Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors. *Phytochemistry* 70: 1801-1811.

Brandt S, von Stetten D, Gunther M, Hildebrandt P & Frankenberg-Dinkel N (2008) The fungal phytochrome FphA from Aspergillus nidulans. *J Biol Chem* **283**: 34605-34614.

Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, Brakhage AA, Kniemeyer O & Muller FM (2010) Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. *Proteomics* **10**: 3097-3107.

Bu'Lock, JD (1961). Intermediary metabolism and antibiotic synthesis. *Adv. Appl. Microbiol.* **3**;292-342.

Burmester A, Shelest E, Glockner G, *et al.* (2011) Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. *Genome Biol* **12**: R7.

Calvo AM, Wilson RA, Bok JW & Keller NP (2002) Relationship between secondary metabolism and fungal development. *Microbiol Mol Biol Rev* 66: 447-459, table of contents.

Calvo AM, Bok J, Brooks W & Keller NP (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. *Appl Environ Microbiol* **70**: 4733-4739.

Candido EP, Reeves R & Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. *Cell* 14: 105-113.

Carzaniga R, Fiocco D, Bowyer P & O'Connell RJ (2002) Localization of melanin in conidia of Alternaria alternata using phage display antibodies. *Mol Plant Microbe Interact* **15**: 216-224.

Castano I, Pan SJ, Zupancic M, Hennequin C, Dujon B & Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. *Mol Microbiol* **55**: 1246-1258.

Chen CH, Dunlap JC & Loros JJ (2010) Neurospora illuminates fungal photoreception. *Fungal Genet Biol* **47**: 922-929.

Cheng P, He Q, Yang Y, Wang L & Liu Y (2003) Functional conservation of light, oxygen, or voltage domains in light sensing. *Proc Natl Acad Sci U S A* **100**: 5938-5943.

Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang SL, Sung CT, Wang CC & Oakley BR (2013) An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. *J Am Chem Soc* **135**: 7720-7731.

Chiou CH, Miller M, Wilson DL, Trail F & Linz JE (2002) Chromosomal location plays a role in regulation of aflatoxin gene expression in Aspergillus parasiticus. *Appl Environ Microbiol* **68**: 306-315.

Choi YE & Goodwin SB (2011) MVE1, encoding the velvet gene product homolog in Mycosphaerella graminicola, is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signaling. *Appl Environ Microbiol* **77**: 942-953.

Chumley FG & Valent B (1990). Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporte grisea. Mol. Plant-Microbe Interact. **3**: 135-143.

Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behaviour. *Photochem Photobiol Sci* **6**: 725-736.

Cramer RA, Jr., Gamcsik MP, Brooking RM, et al. (2006) Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. *Eukaryot Cell* **5**: 972-980.

Czapek, F (1925). Biochemie der Pflanzen, 3. Auflage, Band 3, Jena.

Dann M, Lefemine DV, Barbatschi F, Shu P, Kunstmann MP, Mitscher LA, Bohonos N (1965) *Antimicrob Agents Chemother*, 832.

Davis ND, Diener UL & Morgan-Jones G (1977) Tenuazonic acid production by Alternaria alternata and Alternaria tenuissima isolated from cotton. *Appl Environ Microbiol* **34**: 155-157.

Doheny JG, Mottus R & Grigliatti TA (2008) Telomeric position effect--a third silencing mechanism in eukaryotes. *PLoS One* **3**: e3864.

Dong ZG, Liu GT, Dong ZM, Qian YZ, An YH, Miao JA & Zhen YZ (1987) Induction of mutagenesis and transformation by the extract of Alternaria alternata isolated from grains in Linxian, China. *Carcinogenesis* **8**: 989-991.

Drautz H, Zähner H, Rohr J, Zeeck A (1986) J. Antibiot., 39, 1657.

Etxebeste O, Ugalde U & Espeso EA (2010) Adaptative and developmental responses to stress in Aspergillus nidulan. *Curr Protein Pept Sci* **11**: 704-718.

Fang SM, Wu CJ, Li CW & Cui CB (2014) A practical strategy to discover new antitumor compounds by activating silent metabolite production in fungi by diethyl sulphate mutagenesis. *Mar Drugs* **12**: 1788-1814.

Fehr M, Pahlke G, Fritz J, Christensen MO, Boege F, Altemoller M, Podlech J & Marko D (2009) Alternariol acts as a topoisomerase poison, preferentially affecting the Ilalpha isoform. *Mol Nutr Food Res* 53: 441-451.

Fetzner, R (2012) Molekularbiologische Untersuchung des Sekundärmetabolismus in Alternaria alternata. Dissertation.

Fetzner R, Seither K, Wenderoth M, Herr A & Fischer R (2014) Alternaria alternata transcription factor CmrA controls melanization and spore development. *Microbiology* **160**: 1845-1854.

Fischer, R & Braus, GH (2006).Genomsequenz von Schimmelpilzen bringt Sex ans Licht. *BioSpektrum* 12, 270-271.

Fujii I (2009) Heterologous expression systems for polyketide synthases. *Nat Prod Rep* **26**: 155-169.

Galagan JE, Calvo SE, Cuomo C, et al. (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. *Nature* **438**: 1105-1115.

Garcia-Martinez J, Brunk M, Avalos J & Terpitz U (2015) The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. *Sci Rep* **5**: 7798.

Gardiner DM & Howlett BJ (2005) Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. *FEMS Microbiol Lett* **248**: 241-248.

Grimaldi B, Coiro P, Filetici P, Berge E, Dobosy JR, Freitag M, Selker EU & Ballario P (2006) The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. *Mol Biol Cell* **17**: 4576-4583.

Guo CJ & Wang CC (2014) Recent advances in genome mining of secondary metabolites in Aspergillus terreus. *Front Microbiol* **5**: 717.

Haware MP (1971) Assessment of losses due to early blight (Alternaria solani) of potato. *Mycopathol Mycol Appl* **43**: 341-342.

Hermersdörfer, H (1987) R. Reiss: Schimmelpilze. Lebensweise, Nutzen, Schaden, Bekämpfung. 230 Seiten, 69 Abb., 55 Tab. Springer- Verlag, Berlin, Heidelberg, New York, Tokio 1986. Preis: 58,- DM. *Nahrung* **31**: 426-426.

Herrera-Estrella A & Horwitz BA (2007) Looking through the eyes of fungi: molecular genetics of photoreception. *Mol Microbiol* 64: 5-15.

Hiltunen M & Soderhall K (1992) Inhibition of polyketide synthesis in Alternaria alternata by the fatty acid synthesis inhibitor cerulenin. *Appl Environ Microbiol* **58**: 1043-1045.

Hoffmeister D & Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. *Nat Prod Rep* 24: 393-416.

Hong SG, Maccaroni M, Figuli PJ, Pryor BM & Belisario A (2006) Polyphasic classification of Alternaria isolated from hazelnut and walnut fruit in Europe. *Mycol Res* **110**: 1290-1300.

Howard, RJ and Ferrari, MA (1989) Role of melanin in appressorium function. Exp. Mycol. 13: 403-418.

Howard, RJ, Ferrari, MA, Roach, DH and Money, NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA 88: 11281-11284

Idnurm A, Rodriguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP & Heitman J (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. *Proc Natl Acad Sci U S A* **103**: 4546-4551.

Kafer E (1965) Origins of translocations in Aspergillus nidulans. Genetics 52: 217-232.

Kale SP, Milde L, Trapp MK, Frisvad JC, Keller NP & Bok JW (2008) Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. *Fungal Genet Biol* **45**: 1422-1429.

Kastner, C (2010). Regulation der Sporenkeimung und des Sekundärmetabolismus durch Licht in Aspergillus nidulans. Dissertation.

Kato N, Brooks W & Calvo AM (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. *Eukaryot Cell* **2**: 1178-1186.

Kawamura C, Tsujimoto T & Tsuge T (1999) Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. *Mol Plant Microbe Interact* **12**: 59-63.

Kawamura C, Moriwaki J, Kimura N, Fujita Y, Fuji S, Hirano T, Koizumi S & Tsuge T (1997) The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. *Mol Plant Microbe Interact* **10**: 446-453.

Kejzar A, Gobec S, Plemenitas A & Lenassi M (2013) Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. *Fungal Biol* **117**: 368-379.

Kosalkova K, Garcia-Estrada C, Ullan RV, Godio RP, Feltrer R, Teijeira F, Mauriz E & Martin JF (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. *Biochimie* **91**: 214-225.

Kück U, Nowrousian M, Hoff B & Engh I (2009) Schimmelpilze: Lebensweise, Nutzen, Schaden, Bekämpfung. 3. Auflage. Springer Verlag.

Kunstmann MP, Mitscher LA. (1966) J. Org. Chem., 31, 2920.

Kupfahl C, Heinekamp T, Geginat G, Ruppert T, Hartl A, Hof H & Brakhage AA (2006) Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. *Mol Microbiol* **62**: 292-302.

Kurdistani SK & Grunstein M (2003) Histone acetylation and deacetylation in yeast. *Nat Rev Mol Cell Biol* **4**: 276-284.

Liu GT, Qian YZ, Zhang P, Dong WH, Qi YM & Guo HT (1992) Etiological role of Alternaria alternata in human esophageal cancer. *Chin Med J (Engl)* **105**: 394-400.

Liu GT, Qian YZ, Zhang P, Dong ZM, Shi ZY, Zhen YZ, Miao J & Xu YM (1991) Relationships between Alternaria alternata and oesophageal cancer. *IARC Sci Publ* 258-262.

Lo HC, Entwistle R, Guo CJ, Ahuja M, Szewczyk E, Hung JH, Chiang YM, Oakley BR & Wang CC (2012) Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. *J Am Chem Soc* **134**: 4709-4720.

McDonagh A, Fedorova ND, Crabtree J, *et al.* (2008) Sub-telomere directed gene expression during initiation of invasive aspergillosis. *PLoS Pathog* 4: e1000154.

Mooney JL & Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. *Genes Dev* 4: 1473-1482.

Morris NR, Osmani SA, Engle DB & Doonan JH (1989) The genetic analysis of mitosis in Aspergillus nidulans. *Bioessays* 10: 196-201.

Myung K, Li S, Butchko RA, Busman M, Proctor RH, Abbas HK & Calvo AM (2009) FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. *J Agric Food Chem* **57**: 5089-5094.

Nicholson TP, Rudd BA, Dawson M, Lazarus CM, Simpson TJ & Cox RJ (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. *Chem Biol* 8: 157-178.

Niehaus EM, von Bargen KW, Espino JJ, Pfannmuller A, Humpf HU & Tudzynski B (2014) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. *Appl Microbiol Biotechnol* **98**: 1749-1762.

Nimmo ER, Cranston G & Allshire RC (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. *EMBO J* **13**: 3801-3811.

Noma K, Allis CD & Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. *Science* **293**: 1150-1155.

Nützmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schumann J, Hertweck C, Strauss J & Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. *Proc Natl Acad Sci U S A* **108**: 14282-14287.

Osmani SA & Mirabito PM (2004) The early impact of genetics on our understanding of cell cycle regulation in Aspergillus nidulans. *Fungal Genet Biol* **41**: 401-410.

Oviedo MS, Ramirez ML, Barros GG & Chulze SN (2011) Influence of water activity and temperature on growth and mycotoxin production by Alternaria alternata on irradiated soya beans. *Int J Food Microbiol* **149**: 127-132.

Palmer JM & Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? *Curr Opin Microbiol* **13**: 431-436.

Palmer JM, Perrin RM, Dagenais TR & Keller NP (2008) H3K9 methylation regulates growth and development in Aspergillus fumigatus. *Eukaryot Cell* **7**: 2052-2060.

Pero RW, Posner H, Blois M, Harvan D & Spalding JW (1973) Toxicity of metabolites produced by the "Alternaria". *Environ Health Perspect* **4**: 87-94.

Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC & Keller NP (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. *PLoS Pathog* **3**: e50.

Petrini LE & Petrini O (2002) Schimmelpilze und deren Bestimmung. J. Cramer in der Gebr. Borntaeger Verlagsbuchhandlung Berlin, Stuttgart.

Pruss S, Fetzner R, Seither K, Herr A, Pfeiffer E, Metzler M, Lawrence CB & Fischer R (2014) Role of the Alternaria alternata blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism. *Appl Environ Microbiol* **80**: 2582-2591.

Purschwitz J, Muller S & Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. *Mol Genet Genomics* **281**: 35-42.

Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso EA, Atoui A, Calvo AM
& Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. *Curr Biol* 18: 255-259.

Reiss J (1981) Mykotoxine in Lebensmitteln. 1. Auflage, Gustav Fischer Verlag Stuttgart; New York.

Reyes-Dominguez Y, Boedi S, Sulyok M, Wiesenberger G, Stoppacher N, Krska R & Strauss J (2012) Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. *Fungal Genet Biol* **49**: 39-47.

Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A, Scazzocchio C, Keller N & Strauss J (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. *Mol Microbiol* **76**: 1376-1386.

Rockwell NC & Lagarias JC (2010) A brief history of phytochromes. *Chemphyschem* **11**: 1172-1180.

Rodriguez-Romero J, Hedtke M, Kastner C, Muller S & Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. *Annu Rev Microbiol* **64**: 585-610.

Rogers S, Wells R & Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. *Science* **234**: 364-368.

Rotem J (1998) The genus Alternaria: biology, epidemiology and pathogenicity. APS Press, St. Paul Minn.

Roth L, Frank H & Kormann, K (1990) Giftpilze, Pilzgifte: Schimmelpilze, Mykotoxine, Vorkommen, Inhaltsstoffe, Pilzallergien, Nahrungsvergiftungen. 1. Auflage, *ecomed vergesellschaft mbH*.

Saha D, Fetzner R, Burkhardt B, Podlech J, Metzler M, Dang H, Lawrence C & Fischer R (2012) Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata. *PLoS One* 7: e40564. Sakai K, Kinoshita H & Nihira T (2012) Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. *Appl Microbiol Biotechnol* **93**: 2011-2022.

Sand, S (2011) Charakterisierung eines Blaulichtrezeptors in Alternaria alternata. Dissertation.

Scherer M & Fischer R (1998) Purification and characterization of laccase II of Aspergillus nidulans. *Arch Microbiol* 170: 78-84.

Schindler D & Nowrousian M (2014) The polyketide synthase gene pks4 is essential for sexual development and regulates fruiting body morphology in Sordaria macrospora. *Fungal Genet Biol* 68: 48-59.

Schmidt-Heydt M (2007). Entwicklung und Implementierung eines DNA-Microarrays zur Analyse von Genen der Mykotoxinbiosynthese. *Dissertation, Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH)*.

Schmidt-Heydt M, Rufer C, Raupp F, Bruchmann A, Perrone G & Geisen R (2011) Influence of light on food relevant fungi with emphasis on ochratoxin producing species. *Int J Food Microbiol* **145**: 229-237.

Schroeckh V, Scherlach K, Nutzmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C & Brakhage AA (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. *Proc Natl Acad Sci U S A* **106**: 14558-14563.

Schümann J & Hertweck C (2006). Advances in cloning, functional analysis an heterologous expression of fungal polyketide synthase genes. *J Biotechnol* **124**: 690–703.

Shaaban M, Palmer JM, El-Naggar WA, El-Sokkary MA, Habib el SE & Keller NP (2010) Involvement of transposon-like elements in penicillin gene cluster regulation. *Fungal Genet Biol* **47**: 423-432.

Shimizu T, Ito T & Kanematsu S (2014) Functional analysis of a melanin biosynthetic gene using RNAi-mediated gene silencing in Rosellinia necatrix. *Fungal Biol* **118**: 413-421.

Sievers N, Krüger M & Fischer R (1997) Kreuzung von *Aspergillus nidulans*. Biologie in unserer Zeit 6, 383-388.

Smith KM, Kothe GO, Matsen CB, Khlafallah TK, Adhvaryu KK, Hemphill M, Freitag M, Motamedi MR & Selker EU (2008) The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. *Epigenetics Chromatin* **1**: 5.

Solfrizzo M, Girolamo AD, Vitti C, Tylkowska K, Grabarkiewicz-Szczesna J, Szopinska D & Dorna H (2005) Toxigenic profile of Alternaria alternata and Alternaria radicina occurring on umbelliferous plants. *Food Addit Contam* 22: 302-308.

Sprote P & Brakhage AA (2007) The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. *Arch Microbiol* **188**: 69-79.

Sterner DE & Berger SL (2000) Acetylation of histones and transcription-related factors. *Microbiol Mol Biol Rev* 64: 435-459.

Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L & Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. *Mol Microbiol* **63**: 242-255.

Strauss J & Reyes-Dominguez Y (2011) Regulation of secondary metabolism by chromatin structure and epigenetic codes. *Fungal Genet Biol* **48**: 62-69.

Tham WH & Zakian VA (2002) Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. *Oncogene* **21**: 512-521.

Tian S, Wan Y, Qin G & Xu Y (2006) Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. *Appl Microbiol Biotechnol* **70**: 729-734.

Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA & Arst HN, Jr. (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. *EMBO J* 14: 779-790.

Tisch D & Schmoll M (2010) Light regulation of metabolic pathways in fungi. *Appl Microbiol Biotechnol* **85**: 1259-1277.

Todd RB, Davis MA & Hynes MJ (2007) Genetic manipulation of Aspergillus nidulans: heterokaryons and diploids for dominance, complementation and haploidization analyses. *Nat Protoc* **2**: 822-830.

Vidali G, Boffa LC, Bradbury EM & Allfrey VG (1978) Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. *Proc Natl Acad Sci U S A* **75**: 2239-2243.

Visconti A, Logrieco A & Bottalico A (1986) Natural occurrence of Alternaria mycotoxins in olives--their production and possible transfer into the oil. *Food Addit Contam* **3**: 323-330.

Vodisch M, Scherlach K, Winkler R, Hertweck C, Braun HP, Roth M, Haas H, Werner ER, Brakhage AA & Kniemeyer O (2011) Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. *J Proteome Res* **10**: 2508-2524.

von Dohren H (2009) A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. *Fungal Genet Biol* **46 Suppl 1**: S45-52.

Wang C, Yang H, Chen M, Wang Y, Li F, Luo C, Zhao S & He D (2012) Real-time quantitative analysis of the influence of blue light on citrinin biosynthetic gene cluster expression in Monascus. *Biotechnol Lett* **34**: 1745-1748.

Wittkowski M (1984). Beitrag zur Analytik von Paulin und Alternaria-Toxinen in Obst- und Gemüseprodukten. *Bundesgesundheitsamt.*

Wolfers S, Kamerewerd J, Nowrousian M, Sigl C, Zadra I, Kurnsteiner H, Kuck U & Bloemendal S (2015) Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA. *J Basic Microbiol*.

Woloshuk, CP, Sisler, HD and Vigil, EL (1993) Action of the anti-penetrant, tricyclazole, on appressoria of Pyricularia oryzae. Physiol. Plant. Pathol. 22: 245-259.

Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE & Payne GA (1994) Molecular characterization of afIR, a regulatory locus for aflatoxin biosynthesis. *Appl Environ Microbiol* **60**: 2408-2414. **Wu D, Oide S, Zhang N, Choi MY & Turgeon BG (2012)** ChLae1 and ChVel1 regulate Ttoxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. *PLoS Pathog* **8**: e1002542.

Yang D, Mori T, Matsui T, Hashimoto M, Morita H, Fujii I & Abe I (2014) Expression, purification and crystallization of a fungal type III polyketide synthase that produces the csypyrones. *Acta Crystallogr F Struct Biol Commun* **70**: 730-733.

Yin W & Keller NP (2011) Transcriptional regulatory elements in fungal secondary metabolism. *J Microbiol* **49**: 329-339.

Yin WB, Chooi YH, Smith AR, Cacho RA, Hu Y, White TC & Tang Y (2013) Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. *ACS Synth Biol* **2**: 629-634.

Yu JH & Keller N (2005) Regulation of secondary metabolism in filamentous fungi. *Annu Rev Phytopathol* **43**: 437-458.

Zaehle C, Gressler M, Shelest E, Geib E, Hertweck C & Brock M (2014) Terrein biosynthesis in Aspergillus terreus and its impact on phytotoxicity. *Chem Biol* 21: 719-731.

Liste der Veröffentlichungen

Fetzner R., Seither K., Wenderoth M., Herr A. & Fischer R. (2014). *Alternaria alternata* transcription factor CmrA controls melanization and spore development. *Microbiology* **160**: 1845.1854.

Pruss S., Fetzner R., Seither K., Herr A., Pfeiffer E., Metzler M, Lawrence CB & Fischer R (2014). Role of the *Alternaria alternata* blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism. *Appl Environ Microbiol* **80**: 2582-2591.

	20	40	60	80
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae	MSNLEPIAIVGSACRFPGDSDTPSKLWQLIK MSNSEPIAIVGSACRFPGDSDTPSKLWQLIK MSNLEPIAIVGSACRFPGDSDTPSKLWQLIK MSNLEPIAIVGSACRFPGDSDTPSKLWQLIK MSNLEPIAIVGSACRFPGDSDTPSKLWQLIK	SPRDLLRQVPEERFDAE/ SPRDLLRQVPEERFDAE/ SPRDLLRQVPEERFDAE/ SPRDLLRQVPEERFDAE/ SPRDLLRQVPEERFDAE/ SPRDLLRQVPEERFDAE/	AFYHPDSKHHGTTNA I KSYFI AFYHPDSKHHGTTNA I KSYFI AFYHPDSKHHGTTNA I KSYFI AFYHPDSKHHGTTNA I KSYFI FYHPDSKHHGTTNA I KSYFI AFYHPDSRHHGTTNA I KSYFI	DEDPALFDNGFFNIPQ 85 DEDPALFDNGFFNIPQ 85 DEDPALFDNGFFNIPQ 85 DEDPALFDNGFFNIPQ 85 DEDPALFDNGFFNIPQ 85 DEDPALFDNGFFNIPQ 85
A. tangelonis A. mali	MSNLEPIAIVGSACRFPGDSDTPSKLWQLIK MSNLEPIAIVGSACRFPGDSDTPSKLWQLIK	SPRDLLRQVPEERFDAE# SPRDLLRQVPEERFDAE#	AFYHPDSKHHGTTNAIKSYFI AFYHPDSKHHGTTNAIKSYFI	DEDPALFDNGFFNIPQ 85 DEDPALFDNGFFNIPQ 85
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis	100 I SEAEAVDPQQRLLMETVYDSLCAAGQTIEEL SEAEAVDPQQRLLMETVYDSLCAAGQTIEEL SEAEAVDPQQRLLMETVYDSLCAAGQTIEEL GEAEAVDPQQRLLMETVYDSLCAAGQTIEEL SEAEAVDPQQRLLMETVYDSLCAAGQTIEEL SEAEAVDPQQRLLMETVYDSLCAAGQTIEEL	120 I RGSSTAVYVGLMCDDWAC RGSSTAVYVGLMCDDWAC RGSSTAVYVGLMCDDWAC RGSSTAVYVGLMCDDWAC RGSSTAVYVGLMCDDWAC RGSSTAVYVGLMCDDWAC	140 I I LAQDPDVL PQYGATGMARS I LAQDPDVL PQYGATGMARS I LAQDPDVL PQYGATGMARS I LAQDPDVL PQYGATGMARS I LAQDPDVL PQYGATGMARS I LAQDPDVL PQYGATGMARS	160 SIMSNRISYFFDWHGPS 170 SIMSNRISYFFDWHGPS 170
A. IIIdii		NG55TAV I VGEMODDWAC		240
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	MT I DTACSSSL VAVHQA I QT LRSGESQVA I A MT I DTACSSSL VAVHQA I QT LRSGESQVA I A	AGANLILTPGMYIAESKI AGANLILTPGMYIAESKI AGANLILTPGMYIAESKI AGANLILTPGMYIAESKI AGANLILTPGMYIAESKI AGANLILTPGMYIAESKI AGANLILTPGMYIAESKI AGANLILTPGMYIAESKI	SML SPSGRS RMWDKD VDGY SML SPSGRS RMWDKD VDGY	RGEGIAAVVLKPLSAA 255 RGEGIAAVVLKPLSAA 255
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	I RDNDH I ECL I RGTGVNQDGRTNG I TMPSAT I RDNDH I ECL I RGTGVNQDGRTNG I TMPSAT	AQAAL I RDT YARAGLDVN AQAAL I RDT YARAGLDVN	IKPEDRPQFFHAHGTGTAAGI IKPEDRPQFFHAHGTGTAAGI IKPEDRPQFFHAHGTGTAAGI IKPEDRPQFFHAHGTGTAAGI IKPEDRPQFFHAHGTGTAAGI IKPEDRPQFFHAHGTGTAAGI IKPEDRPQFFHAHGTGTAAGI IKPEDRPQFFHAHGTGTAAGI IKPEDRPQFFHAHGTGTAAGI	PQEAEAISKAFYSTND 340 PQEAEAISKAFYSTND 340 PQEAEAISKAFYSTND 340 PQEAEAISKAFYSTND 340 PQEAEAISKAFYSTND 340 PQEAEAISKAFYSTND 340 PQEAEAISKAFYSTND 340 PQEAEAISKAFYSTND 340 PQEAEAISKAFYSTND 340
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	CDETLYVGSIKTVIGHTEGTAGLASLISTSL CDETLYVGSIKTVIGHTEGTAGLASLISTSL CDETLYVGSIKTVIGHTEGTAGLASLISTSL CDETLYVGSIKTVIGHTEGTAGLASLISTSL CDETLYVGSIKTVIGHTEGTAGLASLISTSL CDETLYVGSIKTVIGHTEGTAGLASLISTSL CDETLYVGSIKTVIGHTEGTAGLASLISTSL GDETLYVGSIKTVIGHTEGTAGLASLISTSL	ALQHKVI PPNMH FNTLNF ALQHKVI PPNMH FNTLNF ALQHKVI PPNMH FNTLNF ALQHKVI PPNMH FNTLNF ALQHKVI PPNMH FNTLNF ALQHKVI PPNMH FNTLNF ALQHKVI PPNMH FNTLNF	PRLKPFYDHLEVPTRAIAWP PRLKPFYDHLEVPTRALAWP PRLKPFYDHLEVPTRAIAWP PRLKPFYDHLEVPTRAIAWP PRLKPFYDHLEVPTRALAWP PRLKPFYDHLEVPTRALAWP PRLKPFYDHLEVPTRALAWP PRLKPFYDHLEVPTRALAWP	PRSGQPFRASVNSFGF 425 PRSGQPFRASVNSFGF 425 PRSGQPFRASVNSFGF 425 PRSGQPFRASVNSFGF 425 PRPGQPFRASVNSFGF 425 PRPGQPFRASVNSFGF 425 PRPGQPFRASVNSFGF 425
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	GGTNAHAILDAYEPQPHPQSEGPLLTPLTFS GGTNAHAILDAYEPQPQPQVKGPLLTPLTFS GGTNAHAILDAYEPQPHPQSEGPLLTPLTFS GGTNAHAILDAYEPQPHPQSEGPLLTPLTFS GGTNAHAILDAYEPQPHPQVEGPLLTPLTFS GGTNAHAILDAYEPQPQPQVEGPLLTPLTFS GGTNAHAILDAYEPQPQPQVEGPLLTPLTFS GGTNAHAILDAYEPQPQPQVEGPLLTPLTFS GGTNAHAILDAYEPQPQPQVEGPLLTPLTFS GGTNAHAILDAYEPQPQPQVEGPLLTPLTFS	ASSETS LRSMLADYAEYF ASSETS LRSMLADYAEYF ASSETS LRSMLADYAEYF ASSETS LRSMLADYAEYF ASSETS LRSMLADYAEYF ASSETS LRSMLADYAEYF ASSETS LRSMLADYAEYF ASSETS LRSMLADYAEYF	RSTPDISLHDVAYTLQTRR RSTPDISLHDVAYTLQTRR RSTPDISLHDVAYTLQTRR RSTPDISLHDVAYTLQTRR RSTPDISLHDVAYTLQTRR RSTPDISLHDVAYTLQTRR RSTPDISLHDVAYTLQTRR RSTPDISLHDVAYTLQTRR F60	TEGHRVTLTATGVEEA 510 TEGHRVTLTATGVEEA 510 TEGHRVTLTATGVEEA 510 TEGHRVTLTATGVEEA 510 TLGHRVTLTATGVEEA 510 TLGHRVTLTATGVEEA 510 TLGHRVTLTATGVEEA 510 STLGHRVTLTATGVEEA 510 STLGHRVTLTATGVEEA 510 STLGHRVTLTATGVEEA 510 STLGHRVTLTATGVEEA 510
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	VSQIDAIVSGELDSTLATRQLNKSSPKILGV VSQIDAIVNGELDSTLATRQLNKSSPKILGV VSQIDAIVSGELDSTLATRQLNKSSPKILGV VSQIDAIVSGELDSTLATRQLNKSSPKILGV VSQIDAIVSGELDSTLATRQLNKSSPKILGV ISQIDAIVSGELDSTLATRQLNKSSPKILGV ISQIDAIVSGELDSTLATRQLNKSSPKILGV	FTGQGAQWPRMGAKLLET FTGQGAQWPRMGAKLLET FTGQGAQWPRMGAKLLET FTGQGAQWPRMGAKLLET FTGQGAQWPRMGAKLLET FTGQGAQWPRMGAKLLET FTGQGAQWPRMGAKLLET	SPYVAKRLSELDQALAESL SPYVAKRLSELDQALAESL SPYVAKRLSELDQALAESL SPYVAKRLSELDQALAESL SPYVAKRLSELDQALAESL SPYVIKRLSELDQALAESL SPYVKRLSELDQALAESL SPYVAKRLSELDQALAESL	GECPSWTLAEMILANA 595 GECPSWTLAEMILADA 595 GECPSWTLAEMILANA 595 GECPSWTLAEMILANA 595 GECPSWTLAEMILADA 595 GECPSWTLAEMILADA 595 GECPSWTLAEMILADA 595 GECPSWTLAEMILADA 595
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	KSSRMAEAA I SQPLCTAVQ IVLVDLLRFAG I KSSRMAEAA I SQPLCTAVQ IVLVDLLRFAG I	KFEAVVGHSSGEIGAAYA KFETVIGHSSGEIGAAYA KFEAVVGHSSGEIGAAYA KFEAVVGHSSGEIGAAYA KFETVVGHSSGEIGAAYA KFETVVGHSSGEIGAAYA KFETVVGHSSGEIGAAYA	AGLLTARDA I RIAYYRGLY AGLLTARDA I RIAYYRGLY	KLAESPRGGKGAMMAV 680 KLAKSPCGKGAMMAV 680 KLAESPRGGKGAMMAV 680 KLAESPRGGKGAMMAV 680 KLAKSPRGGKGAMMAV 680 KLAKSPRGGKGAMMAV 680 KLAKSPRGGKGAMMAV 680 KLAKSPRGGKGAMMAV 680
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	GTTVEDATEFCNLEDFQGRIQIAAENSPTSI GTTVEDATEFCNLEDFQGRIQIAAENSPTSI GTTVEDATEFCNLEDFQGRIQIAAENSPTSI GTTVEDATEFCNLEDFQGRIQIAAENSPTSI GTTVEDATEFCNLEDFQGRIQIAAENSPTSI GTTVEDATEFCNLEDFQGRIQIAAENSPTSI GTTVEDATEFCNLEDFQGRIQIAAENSPTSI	TLSGDEDAIIEAVEIFKU TLSGDEDAIIEAVEIFKU TLSGDEDAIIEAVEIFKU TLSGDEDAIIEAVEIFKU TLSGDEDAIIEAVEIFKU TLSGDEDAIIEAVEIFKU TLSGDEDAIIEAVEIFKU	DEGKFARQLKVDTAYHSSHVI DEGKFARQLKVDTAYHSSHVI DEGKFARQLKVDTAYHSSHVI DEGKFARQLKVDTAYHSSHVI DEGKFARQLKVDTAYHSSHVI DEGKFARQLKVDTAYHSSHVI DEGKFARQLKVDTAYHSSHVI	PCAEAYIAAMEKCGIE 765 PCAEAYIAAMEKCGIE 765 PCAEAYIAAMEKCGIE 765 PCAEAYIAAMEKCGIE 765 PCAEAYIAAMEKCGIE 765 PCAEAYIAAMEKCGIE 765 PCAEAYIAAMEKCGIE 765 PCAEAYIAAMEKCGIE 765

	780	800	820	840	
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	YSTPTGAKWHSSVHKGTIMGLDQL YSTPTGAKWHSSVHKGTIMGLDQL YSTPTGAKWHSSVHKGTIMGLDQL YSTPTGAKWHSSVHKGTIMGLDQL YSTPTGAKWHSSVHKGTIMGDQL YSTPTGAKWHSSVHKGTIMGDQL YSTPTGAKWHSSVHKGTIMGLDQL	TCQYWVDNMTNPVLFSSAVAG TCQYWVDNMTNPVLFSSAVAG TCQYWVDNMTNPVLFSSAVAG TCQYWVDNMTNPVLFSSAVAG TCQYWVDNMTNPVLFSSAVAG TCQYWVDNMTNPVLFSSAVAG TCQYWVDNMTNPVLFSSAVAG	AASKSGSFDLILEVGPHPV AASKSGSFDLILEVGPHPV AASKSGSFDLILEVGPHPV AASKSGSFDLILEVGPHPV AASKSGSFDLILEVGPHPV AASESGSFDLILEVGPHPV AASESGSFDLILEVGPHPV	LKTPCLDSLDEDARPPYSGVI LKTPCLDSLDEDAHPPYSGVI LKTPCLDSLDEDARPPYSGVI LKTPCLDSLDEDARPPYSGVI LKTPCLDSLDEDAHPPYSGVI LKTPCLDSLDEDARPPYSGVI LKTPCLDSLDEDARPPYSGVI	850 850 850 850 850 850 850 850
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	ARGKDDVKEFSNVLGFIWTHLGAG ARGKNDVREFSNALGFIWTHLGAG ARGKDDVKEFSNVLGFIWTHLGAG ARGKDDVKEFSNVLGFIWTHLGAG ARGKDDVREFSNALGFIWTHLGAG ARGKDDVREFSNALGFIWTHLGAG ARGKDDVREFSNALGFIWTHLGAG	880 SVDFDRFSRAASGSSVPRKFL SVNFDRFSRAASGSSVPRKFL SVDFDRFSRAASGSSVPRKFL SVDFDRFSRAASGSSVPRKFL SVDFDRFSRAASGSSVPRKFL SVDFDRFSRAASGSSVPRKFL SVDFDRFSRAASGSSVPRKFL	HDLPKYRFDHSRRFMTLSF HDLPKYRFDHSRRFMTLSF HDLSKYRFDHSRRFMTLSF HDLPKYRFDHSRRFMTLSF HDLPKYRFDHSRRFMTLSF HDLPKYRFDHSRRFMTLSF HDLPKYRFDHSRRFMTLSF	920 KSGLYKSLKAPPHPLLGKRCT KSGLYKSLKAPPHPLLGKRCT KSGLYKSLKAPPHPLLGKRCT KSGLYKSLKAPPHPLLGKRCT KSGLYNSLKAPPHPLLGKRCI KSGLYNSLKAPPHPLLGKRCI KSGLYNSLKAPPHPLLGKRCI	935 935 935 935 935 935 935 935
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	JAU DRETSRSI QWRNVLHPKE I GWLHG DRETSRSI QWRNVLHPKE I GWLHG	HQIQQLVFPATGYVAMAVEA HQIQQQLVFPATGYVAMAVEA HQIQQQLVFPATGYVAMAVEA HQIQQQLVFPATGYVAMAVEA HQIQQQLVFPATGYVAMAVEA HRIQQQLVFPATGYVAMAVEA HRIQQQLVFPATGYVAMAVEA HQIQQQLVFPATGYVAMAVEA HQIQQQLVFPATGYVAMAVEA	U INSILAGESPMSLLTIEDLF INSILAGESPMSLLTIEDLF INSILAGESPMSLLTIEDLF INSILAGESPMSLLTIEDLF INSILAGESPMSLLTIEDLF INSILAGESPMSLLTIEDLF INSILAGESPMSLLTIEDLF INSILAGESPMSLLTIEDLF INSILAGESPMSLLTIEDLF 1.000	I TRAMA FNDDDSSVEAVFDVR I TRAMA FNDDDSSVEAVFDVR I TRAMA FNDDDSSVEAVFDVR I TRAMA FNDDDSSVEAVFDVR I TRAMA FNDDDSSVEAVFDVR I TRAMA FNDDDSSVEA I FDVR I TRAMA FNDDDSSVEA I FDVR I TRAMA FNDDDSSVEA I FDVR I TRAMA FNDDDSSVEA I FDVR I TRAMA FNDDDSSVEA I FDVR	1020 1020 1020 1020 1020 1020 1020
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	I I QTNSE I EATWSCSSAAPTDHR II QTNNE I EATWSCSSAAPTDHR II QTNSE I EATWSCSSAAPTDHR II QTNSE I EATWSCSSAAPTDHR II QTNSE I EATWSCSSAAPTDHR II QTNNE I EATWSCSSAAPTDHR II VQNNE I EATWSCSSAAPTDHR II VQNNE I EATWSCSSAAPTDHR II QTNNE I EATWSCSSAAPTDHR II 1QTNNE I EATWSCSSAAPTDHR II 1QTNNE I EATWSCSSAAPTDHR	ATLATNATGSVKVTLGAPAPH ATLATNATGSVKVTLGAPAPH ATLATNATGSVKVTLGAPAPH ATLATNATGSVKVTLGAPAPH ATLATNATGSVKVTLGAPAPH ATLATNATGSVKVTLGAPAPH ATLATNATGSVKVTLGAPAPH ATLATNATGSVKVTLGAPAPH ATLATNATGSVKVTLGAPAPH 1.140	I ISLPSIETDKLNLSEVAIDF ISLPSIETDKLNLSEVAIDF ISLPSIETDKLNLSEVAIDF ISLPSIETDKLNLSEVAIDF ISLPSIETDKLNLSEVAIDF ISLPSIETDKLNLSEVAIDF ISLPSIETDKLNLSEVAIDF ISLPSIETDKLNLSEVAIDF 1.160	FYSSLSRLGYNYSWPFHGTSS FYSSLSRLGYNYSWPFHGTSS FYSSLSRLGYNYSWPFHGTSS FYSSLSRLGYNYSWPFHGTSS FYSSLSRLGYNYSWPFHGTSS FYSSLSRLGYNYSWPFHGTSS FYSSLSRLGYNYSWPFHGTSS FYSSLSRLGYNYSWPFHGTSS 1.180	1105 1105 1105 1105 1105 1105 1105 1105
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	I GRKADYATG I LEDQSGMNWEDRL I QRKADYATG I LEDQSGMDWEDRL I QRKADYATG I LEDQSGMNWEDRL I QRKADYATG I LEDQSGMNWEDRL I QRKADYATG I LEDQSGMDWEDRL I QRKADYATG I LEDQSGMDWEDRL	IVHPGMLDTALQTGFAAFSCF IVHPGMLDTALQTGFAAFSCF IVHPGMLDTALQTGFAAFSCF IVHPGMLDTALQTGFAAFSCF IVHPGMLDTALQTGFAAFSCF IVHPGMLDTALQTGFAAFSCF IVHPGMLDTALQTGFAAFSCF IVHPGMLDTALQTGFAAFSCF	GDERLWALIVPTSFKSIVI GDERLWALIVPTSFKSIVI GDERLWALIVPTSFKSIVI GDERLWALIVPTSFKSIVI GDERLWALIVPTSFKSIVI GDERLWALIVPTSFKSIVI GDERLWALIVPTSFKSIVI	NPYFTSAGIGKQERYQYVSVA NPYFTSAGIGKQERYQYVSVA NPYFTSAGIGKQERYQYVSVA NPYFTSAGIGKQERYQYVSVA NPYFTSAGIGKQERYQYVSVA NPYFTSAGIGKQERYQYVSVA NPYFTSAGIGKQERYQYVSVA NPYFTSAGIGKQERYQYVSVA	1190 1190 1190 1190 1190 1190 1190 1190
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	KEYKKGKAITELNLLTEQDGQTFL KEYKKGKAITELNLLTEQDGQTFL KEYKKGKAITELNLLTEQDGQTFL KEYKKGKAITELNLLTEQDGQTFL KEYKKGKAITELNLLTEQDGQTFL KEYKKGKAITELNLLTEQDGQTFL KEYKKGKAITELNLLTEQDGQTFL	QIEGMELVPFSAALEENDAVL QIEGMELVPFSAALEENDAVL QIEGMELVPFSAALEENDAVL QIEGMELVPFSAALEENDAVL QIEGMELVPFSAALEENDAVL QIEGMELVPFSAALEENDAVL QIEGMELVPFSAALEENDAVL QIEGMELVPFSAALEENDAVL	F SRF DYQLAYPNGQ I TAAS F SRF DYQLAHPDGQYTAAS F SRF DYQLAYPNGQ I TAAS F SRF DYQLAYPNGQ I TAAS F SRF HYQLAHPNGQYTAAS F SRF DYQLAHPDGQYTAAS F SRF DYQLAHPDGQYTAAS	CTYKAEDLE I ALDSER I AFFY CTYKAEDLE I ALDSER I AFFY	1275 1275 1275 1275 1275 1275 1275 1275
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	LRUVDS I TPEEKANAL FQYRHLV LRRLVDS I TSEEKANAL FQYRHLV LRRLVDS I TPEEKANAL FQYRHLV LRRLVDS I TPEEKANAL FQYRHLV	EWAAHVVPKVLRGENPYIPQE EWAAHVVPKVLRGENPYIPQE EWAAHVVPKVLRGENPYIPQE EWAAHVVPKVLRGENPYIPQE EWAAHVVPKVLRGENPYIPQE EWAAYVVPKVLRGENPYIPQE EWAAYVVPKVLRGENPYIPQE	A QND TR FD I NALLKKHYHF A QND TR FD I NALLKKHYHF	TDVRLLESVGENLPQCVRDGS TDVRLLESVGENLPQCVRDGS TDVRLLESVGENLPQCVRDGS TDVRLLESVGENLPQCVRDGS TDVRLLESVGENLPQCVRDGS TDVRLLESVGENLPQCVRGS TDVRLLESVGENLPQCVRDGS	1360 1360 1360 1360 1360 1360 1360
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tragelonis A. mali	I LEHMTKDGMLDDVYEEGFGLDF NILEHMTKDGMLDDVYEEGFGLDF NILEHMTKDGMLDDVYEEGFGLDF NILEHMTKDGMLDDVYEEGFGLDF NILEHMTKDGMLDDVYEEGFGLDF NILEHMTKDGMLDDVYEEGFGLDF NILEHMTKDGMLDDVYEEGFGLDF NILEHMTKDGMLDDVYEEGFGLDF 1460	I AUU I VNEY I ARMTAQIAHRYPRMNV VNEY I ARMTAQIAHRYPRMNV 1480	LE I GAGTGGSTRR I L PRLG LE I GAGTGGSTRR I L PRLG 1500	1440 SAFLSYTYTDVSGGFFSHAED SAFLSYTYTDVSGGFFSHAED SAFLSYTYTDVSGGFFSHAED SAFLSYTYTDVSGGFFSHAED SAFLSYTYTDVSGGFFSHAED SAFLSYTYTDVSGGFFSHAED SAFLSYTYTDVSGGFFSHAED SAFLSYTYTDVSGGFFSHAED 1520	1445 1445 1445 1445 1445 1445 1445 1445
A. alternata A. citriarbusti A. limoniasperae A. turkisafria A. tenuissima A. fragariae A. tangelonis A. mali	RFKDFASRMIFKTFDMNTDPAAQG RFKDFASRMIFKTFDMNTDPAAQG RFKDFASRMIFKTFDMNTDPAAQG RFKDFASRMIFKTFDMNTDPAAQG RFKDFASRMIFKTFDMNTDPAAQG RFKDFASRMIFKTFDMNTDPAAQG RFKDFASRMIFKTFDMNTDPAAQG	YVPGSYDLVIASNVLHATLEN YVPGSYDLVIASNVLHATLEN YVPGSYDLVIASNVLHATLEN YVPGSYDLVIASNVLHATLEN YVPGSYDLVIASNVLHATLEN YVPGSYDLVIASNVLHATLEN YVPGSYDLVIASNVLHATLEN	ID AMMONVRSLLKPGGYLI ID AMMONVRSLLKPGGYLI ID AMMONVRSLLKPGGYLI ID AMMONVRSLLKPGGYLI ID AMMONVRSLLKPGGYLI ID AMMONVRSLLKPGGYLI ID AMMONVRSLLKPGGYLI ID AMMONVRSLLKPGGYLI	LETVNNNCLRIGLPMGSLPGW LETVNNNCLRIGLPMGSLPGW LETVNNNCLRIGLPMGSLPGW LETVNNNCLRIGLPMGSLPGW LETVNNNCLRIGLPMGSLPGW LETVNNNCLRIGLPMGSLPGW LETVNNNCLRIGLPMGSLPGW	1530 1530 1530 1530 1530 1530 1530 1530

	1.540	1.560	1.580	1.600	
A alternata					KTD 1615
Δ citriarbusti	WIGAETGBBWGPTLTLEOWDS			RTPLIDVSMLPATKAPGIVILGG	KTP 1615
A. citilarbusti A. limoniaeperae	WIGAETGROWGPTLTLEOWDS				KTP 1615
A turkisafria	WIGAETGROWGPTLTLEOWDS				KTP 1615
Δ tenuissima	WIGAETGBBWGPTLTLEOWDS			RTPLIDVSMLPATKAPGIVILGG	KTP 1615
A fragariae	WIGADTGBBWGPTI TI FOWDS			RTPLIDVSMLPATKAPGIVILGG	KTP 1615
A tangelonis	WIGAETGBBWGPTLTLEOWDS			RTPLIDVSMLPATKAPGIVILGG	KTP 1615
A. tangcionis A mali	WIGAETGBBWGPTLTLEOWDS			RTPLIDVSMLPATKAPGIVILGG	KTP 1615
A. mai	1.620	1640	1660	1 680	1 700
	1	1	1.000	1	1.700
A. alternata	SVFTLSGQIAAMLAPRYSQIT	RIKSVEALSHMGLADSSTV	LSLTELDEPLYADMTAEKL	EAMQILYRQSGNILWLTTGARSE	NPY 1700
 A. citriarbusti 	SVFTLSGQIAAILAPRYSQIT	RIKSVEALSHMGLADSSTV	LSLTELDEPLYADMTAEKL	EAMQILYRQSGNILWLTTGARSE	NPY 1700
A. limoniasperae	SIFTLSGQIAAMLAPRYSQIT	RIKSVEALSHMGLADSSTV	LSLTELDEPLYADMTAEKL	EAMQILYRQSGNILWLTTGARSE	NPY 1700
A. turkisafria	SVFTLSGQIAAMLAPRYSQIT	RIKSVEALSHMGLADSSTV	LSLTELDEPLYADMTAEKL	EAMQILYRQSGNILWLTTGARSE	NPY 1700
A. tenuissima	SVFTLSGQIAAMLAPRYSQIT	RIKSVEALSHKGLADSSTV	LSLTELDEPLYADMTAGKL	EAMQILYRQSGNILWLTTGARSE	NPY 1700
A. fragariae	SVFTLSGQIAAMLAPRYSQIT	RIKSVEALIHMGLADSSTV	LSLTELDEPLYADMTAEKL	EALQILYRKSGNILWLTTGARSE	NPY 1700
A. tangelonis	SVFTLSGQIAAMLAPRYSQIT	RIKSVEALSHMGLADSSTV	LSLTELDEPLYADMTAEKL	EAMQILYRKSGDILWLTTGARSE	NPY 1700
A. mali	SVFILSGKIAAMLAPRYSQII	RIKSVEALSHMGLADSSIV	LSLIELDEPLYADMIAEKL	EAMQILYRQSGNILWLIIGARSE	NPY 1700
	1.720 I	1.74	1.	760 1.780 I	
A. alternata	SNMSLGVSRCLRYEYPNITLQ	ILDLNSPSHRQPGIIAEYL	LRLEMLDKWSKELAPNDLM	CTLEPELHLEDDTVLIPRLYPYV	SGN 1785
A. citriarbusti	SNMSLGVSRCLRYEYPNITLQ	ILDLNSPSHRQPGIIAEYL	LRLEMLDKWSKELAPNDLM	CTLEPELHLEDDTVLIPRLYPYV	SGN 1785
A. limoniasperae	SNMSLGVSRCLRYEYPNITLQ	ILDLNSPSHRQPGIIAEYL	LRLEMLDKWSKELAPNDLM	CTLEPELHLEDDTVLIPRLYPYV	SGN 1785
A. turkisafria	SNMSLGVSRCLRYEYPNITLQ	ILDLNSPSHRQPGIIAEYL	LRLEMLDKWSKELAPNDLM	CTLEPELHLEDDTVLIPRLYPYV	SGN 1785
A. tenuissima	SNMSLGVSRCLRYEYPNITLQ	ILDLNSPSHRQPGIIAEYL	LRLEMLDKWSKELAPNDLM	CTLEPELHLEDDTVLVPRLYPYV	SGN 1785
A. fragariae	SNMSLGVSRCLRYEYPNITLQ	ILDLNSPSHRQPGIIAEYL	LRLEMLDKWSKELAPNDLM	CTLEPELHLEDDTVLIPRLYPYV	<mark>SGN</mark> 1785
A. tangelonis	SNMSLGVSRCLRYEYPNITLQ	ILDLNSPSHRQPGIIAEYL	LRLEMLDKWSKELAPNDLM	CTLEPELHLEDDTVLIPRLYPYI	<mark>SGN</mark> 1785
A. mali	SNMSLGVSRCLRYEYPNITLQ	ILDLNSPSHRKPEIIAEYL	LRLEMLDKWSKELAPNDLM	CTLEPELHLEDDTVLIPRLYPYV	SGN 1785
	1.800	1.820	1.840	1.860	
A alternata	ABYNTABBYVSEOVDPOETSU	METGDDDSWGLORASPLHI	PTPLPETGETRTIRITYEL	I STVN I I PGCSI MVCVGTDSSTO	EKI 1870
A citriarhueti	ABYNTABBYVSEOVDPOETSU	METGDDDSWGLORASPLHI	PTPI PETGETRTIRITYEI	L STVN LL PGCSL MVCVGTDSSTK	EKI 1870
A. limoniasperae	ABYNTABBYVSEOVDPOETSU	METGDDDSWGLOBASPLHI	PTPLPFTGETRTIBITYFI	LSTVNILPGCSI MVCVGTDSSTO	EKL 1870
A turkisafria	ABYNTABBVVSFOVDPOFTSI	METGDDDSWGLOBASPLHI	PTPLPFTGFTBTIBITYFL	I STVN I PGCSI MVCVGTDSSTQ	EKI 1870
A tenuissima	ABYNTABBYVSEOVDPOETSI	METGDEDSWGLOBASPLHI	PTPLPESGETRTIBLTYFL		EKI 1870
A fragariae	ABYNTABBYVSEOVDPOETSI	METGDDDSWGLOBASPLHI	PTPLPETGETRTIBLTYFL	I STVN I PGCSI MVCVGTDSSTO	EKI 1870
A tangelonis	ABYNTABBVVSFOVDPOFTSI	METGDGDSWGLEBASPLHI	PTPLPETGETBTIBITYEL	I STVN I I PGCSI MVCVGTDSSTQ	EKI 1870
A. mali	ARYNTARRVVSEQVDPQETSI	MFTGDDDSWGLQRASPLHI	PTPLPFTGETRTIRVTYFL	LSTVNILPGCSLMVCVGTDSSTQ	ERL 1870
	1.880	1.900	1.920	1.940	
•					
A. alternata	LAVTHTAESPATIPSSWYTPI	EGLDASSVLGLAAANMVAS	SISRLTDKGDVLIVHEPHP	MVAAALLKGSKSVHITTSRQQEA	KNG 1955
A. citriarbusti				MVAAALLKGSKSVHIIISRQQEA	NG 1955
A. Ilmoniasperae				MVAAALLKGSKSVHITTSRQQEA	NG 1955
A. tonuissima			SISPITNKODVI IVHEDHD	MVAAALLKGSKSVHITTSROOEA	KNG 1955
A. tenuissiina		GI DASSVI GI AAANMVAS	SISBI TOKODVI IVHEPHP	MVAAALLKGSKSVHITTSROOFA	KNG 1955
A tangelonis	LAVTHTAESPATIPSSWCTPI		SISBITDKGDVLIVHEPHP	MVAAALLKGBKSVHLTTSBOOFA	KNG 1955
A. mali	LAVTHTAESPATIPSSWCTPI	EGLDASSVLGLAAANMVAS	SISRLTDKGDVLIVHEPHP	MVAAALLKGSKSVHITTSRQQEA	KNG 1955
	1.960	1.980	2.000	2.020	2.040
	1			l	1
A. alternata	WQYVNKNLPERLVQKLLPFNA	NKFIDLSQICWGSEKSHVI	PAALPRNCQVIDEARLFGT	STELRPFVSEAEVSEQLRAAFSE	IKG 2040
A. citriarbusti	WQYVNKNLPERLVQKLLPFNA	NKFIDLSQICWGSEKSHVI	PAALPRNCQVIDEARLFGT	STELRPFVSEAEVSEQLRAAFSE	1KS 2040
A. Ilmoniasperae	WQYVNKNLPERLVQKLLPFNA	NKFIDLSQICWGSEKSHVI	PAALPRNCQVIDEARLFGI	STELRPFVSEAEVSEQLRAAFSE	1KG 2040
A. turkisatria	WQYVNKNLPERLVQKLLPFNA	NKFIDLSQICWGSEKSHVI	PAALPRNCQVIDEARLFGT	STELRPFVSEAEVSEQLRAAFSE	LKG 2040
A. tenuissima		NKFIDLSQICWGSEKSHAI	PAALPRNCQVIDEARLFGT	STELRPFVSEAEVSEQLRAAFSE	LKG 2040
A. Iraganae		NKFIDLSQICWGSEKSHAI	PAALPRNCQVIDEARLLGT	STELRPFVSEAEVSEQLRAAFSE	2040
A. tangelonis	WOYVNKNI PERLVOKI I PENA	NKFIDLSOLCWGSEKSHAI	PAAL PRINCOVIDEARLEGT	STEL PPFVSEAEVSEQLAAAFSE	LKG 2040
A. IIIali	2060		PAALFINGOVIDLANLIGI		2040
	1			I I	
A. alternata	STPASVASIVPLQDISEFAAA	GGRFAVADCTIPSVTAQLT	PIDTGNIFQPDRTYFLVGL	SGELGQSLLKWMVVHGARYIAVT	SRR 2125
A. citriarbusti	STPASVASIVPLQDISEFAAA	GGRFAVADCTIPSVTAQLT	PIDTGNIFQPDRTYFLVGL	SGELGQSLLKWMVVHGARYIAVT	SRR 2125
A. Iimoniasperae	STPASVASIVPLQDISEFAAA	GGREAVADOTIPSVTAQLT	PIDIGNIFQPDRTYFLVGL	SGELGQSLLKWMVVHGARYIAVT	SHH 2125
A. turkisafria	STPASVASIVPLQDISEFAAA	GGRFAVADCTIPSVTAQLT	PIDTGNIFQPDRTYFLVGL	SGELGQSLLKWMVVHGARYIAVT	SRR 2125
A. tenuissima	STPASVASTVPLQDISEFAAA	GGRFAVADCTIPSVTAQLT	PIDIGNIFQPDKIYFLVGL	SGELGQSLLKWMVVHGARYTAVT	SRR 2125
A. tragariae	STPASVASIVPLQDIAEFAAA	GGRFAVADCTIPSVIAQLI		SGELGQSLLKWMVVHGARYTAVT	SRR 2125
A. tangelonis	STPASVASIVPLQDISEFAAA	GGRFAVADCTIPSVIAQLI		SGELGQSLLKWMVVHGARYTAVT	SRR 2125
A. mai	STPASVASTVPLQDISEFAAA	GGRFAVADCIIPSVIAULI	PIDIGNIFQPDKIFFLVGL	SGELGQSLLKWMVVHGARTIAVI	5RR 2125
	2.140 I	2.160	2.180 I	2.200 I	
A. alternata	PNVQPEFIAGMERMGATVKVL.	AMDITVRESLHACHAEIVK	TMPPIAGVANGAMVLQDGL	FDNMSYDAFAKVLKPKVLGSQLL	DEL 2210
 A. citriarbusti 	PNVQPEFIAGMERMGATVKVL.	AMDITVRESLHACHAEIVK	TMPPIAGVANGAMVLQDGL	FDNMSYDAFAKVLKPKVLGSQLL	DEL 2210
A. limoniasperae	PNVQPEFIAGMERMGATVKVL.	AMDITVRESLHACHAEIVK	TMPPIAGVANGAMVLQDGL	FDNMSYDAFAKVLKPKVLGSQLL	DEL 2210
A. turkisafria	PNVQPEFIAGMERMGATVKVL.	AMDITVRESLHACHAEIVK	TMPPIAGVANGAMVLQDGL	FDNMSYDAFAKVLKPKVLGSQLL	DEL 2210
A. tenuissima	PNVQPEFIAGMERMGATVKVL.	AMDITVRESLHACHAEIVK	TMPPIAGVANGAMVLQDGL	FDNMSYDAFAKVLKPKVLGSQLL	DEL 2210
A. fragariae	PNVQPEFIAGMERMGATVKVL.	AMDITVRESLHACHAEIVK	TMPPTAGVANGAMVLQDGL	FDNMSYDAFAKVLKPKVLGSQLL	DEL 2210
A. tangelonis	PNVQPEFIAGMERMGATVKVL.	AMDITVRESCHACHAEIVK	IMPPIAGVANGAMVLQDGL	FUNMSYDAFAKVLKPKVLGSQLL	DEL 2210
A. mali	PNVQPEFTAGMERMGATVKVL	AMDIIVRESCHACHAEIVK			DEL 2210
	2.220	2.240 I	2.260 I	2.280 I	
A. alternata	FYDTPLDFFIFFSSATAVMGN	SGQSNY I AGNMYMNALAAQ	RKKRGVPASSMNIGSIIGI	GYVERAADIDEHTFLKMGYKPMS	EQD 2295
A. citriarbusti	FYDTPLDFFIFFSSATAVMGN	SGQSNY I AGNMYMNALAAQ	RKKRGVPASSMNIGSIIGI	GYVERAADIDEHTFLKMGYKPMS	EQD 2295
A. limoniasperae	FYDTPLDFFIFFSSATAVMGN	SGQSNYIAGNMYMNALAAQ	RKKRGVPASSMNIGSIIGI	GYVERAADIDEHTFLKMGYKPMS	EQD 2295
A. turkisafria	FYDTPLDFFIFFSSATAVMGN	SGQSNY I AGNMYMNAL AAQ	RKKRGVPASSMNIGSIIGI	GYVERAADIDEHTFLKMGYKPMS	EQD 2295
A. tenuissima	FYDTPLDFFIFFSSATAVMGN	SGQSNYIAGNMYMNALAAQ	RKKRGVPASSMNIGSIIGI	GYVERAADIDEHTFLKMGYKPMS	EQD 2295
A. fragariae	FYNTPLDFFIFFSSATAVMGN	SGQSNYIAGNMYMNALAAQ	RKKRGVPASSMNIGSIIGI	GYVERAADIDEHTFLKMGYKPMS	EQD 2295
A. tangelonis	FYDTPLDFFIFFSSATAVMGN	SGQSNYIAGNMYMNALAAQ	RKKRGVPASSMNIGSIIGI	GYVERAADIDEHTFLKMGYKPMS	EQD 2295
A. mali	FYDIPLDFFIFFSSATAVMGN	SGQSNYIAGNMYMNALAAQ	RKKRGVPASSMNIGSIIGI	GIVERAADIDENTFLKMGYKPMS	EQD 2295

	2.300	2.320	2.340	2.360	2.380	
A altornata				AVCATCKTSSVDVKVOLAEAK		00
A. aitemata				AVGATOKTSSVPVKVQLAEAK	TKADAVALIT 230	00
Δ limoniasperae				AVGATGKTSSVPVKVQLAEAK	TKADAVALLT 23	80
A turkisafria			(DOYLKDVKESHEVMERVN	AVGATGKTSSVPVKVQLAEAK	TKADAVALLT 23	80
A tenuissima			(DOYLKDVKESHEVMERVN	AVGATGKTSSVPVKVQLAEAK	TKADAVALLT 23	80
A fragariae			DOVIKDVKESHEVMEBVN	AVGATGKTSSVPVKVQLAFAK	TKADAVALLT 23	80
A tangelonis			DOVIKDVKESHEVMEBVN	AVGATGKTSSVPVKIQLAFAK	TKADAVALLT 23	80
A mali			DOVIKDVKESHEVMEBVD	AVGATGKTSSVPVKVQLAFAK	TKADAVALLT 23	80
,		2 400	2 420	2 440	2 460	
		- i			- 1	
A. alternata	ESFMARLRRILAVSF	DEVINEKVTLVDQGVDSLMA	/EVRSWFLKELDVDIPVLK	ILGGSSPLDLLTEALKLLSPS	ADLSALKPG 24	65
A. citriarbusti	ESFMARLRRILAVSF	DEVINEKVTLVDQGVDSLMA	/EVRSWFLKELDVDIPVLK	ILGGSSPLDLLTEALKLLSPS	ADLSALKPG 24	65
A. limoniasperae	ESFMARLRRILAVSF	DEVINEKVILVDQGVDSLMA	EVRSWFLKELDVDIPVLK	TLGGSSPLDLLTEALKLLSPS	TADESALKPG 240	65
A. turkisatria	ESFMARLRRILAVSF				ADLSALKPG 24	05
A. tenuissima	ESEMABLER ILAVSE				ADLSALEPG 24	00
A. Iraganae	ESEMARL RAILAVSE		EVRSWELKELDVDIPVLK		IADLSALEPG 24	65
A mali	ETEMARI BRILAVSE		EVESWELKELDVDIPVLK		LADISALEPG 24	65
71. 1101	24	80 2 500	2	520 2 540		00
	1	1		1		
A. alternata	QAAQAAVPKAAPKAA	PKGTPSPAVNPIIEIKRPDN	SNGRPSSSSGDSSADESP	SRRTPTSTAANTAGYNTPMTS	SALSTASIQL 25	,50
A. citriarbusti	QAAQAAVPKAAPKAA	(PKGTPSPAVNPIIEIKRPDN)	SNGRPSSSSGDSSADESP	SRRTPTSTAANTAGYNTPMTS	SALSTASIQL 25	50
A. limoniasperae	QAAQAAVPKAAPKAA	PKGTPSPAVNPITEIKRPDN	SNGRPSSSSGDSSADESP	SRRTPTSTAANTAGYNTPMTS	SALSTASIQL 25	50
A. turkisatria	QAAQAAVPKAAPKAA		ISNGRPSSSSGDSSADESP	SRRIPISIAANTAGYNIPMIS	SALSTASTOL 25	50
A. tenuissima	QAAQAAVPKAAPKAA		I SNGRPSSSSGDSSADESP	SRRIPISIAANTAGYNIPMIS	SALSTASTUL 25	50
A. Iraganae	QAAQAAVPKAAIKAA			SPRIFTSTAANTAGTNTFMTS	SALSTASIQL 25	50
A. tangelonis	QAAQAAVPKAAIKAA	PKGTPSPAVNELLELKPPSN		SPRIFISIAANTAGINIPMIS	SALSTASIQUE 25	50
A. mai	QAAQSAVPRAAIRAP	IFROIPSPAVINSI IE IKRESNI	SNGRF3333GD33ADESF	SHATPISTAANTAGTNIPMIS	JALSTASTQL 23	50
	2.560 I	2.580 I	2.600	2.620		
A. alternata	ASEKNARSSYFSNQF	{PDESTSPMSFGQTGFWFLNE	/LAEKKAFNMAVMLKLTGP	VRIRSLEDALHLVGNRHEILR	FRFFWSGEGE 263	35
 A. citriarbusti 	ASEKNARSSYFSNQF	{PDESTSPMSFGQTGFWFLNE	/LAEKKAFNMAVMLKLTGP	VRIRSLEDALHLVGNRHEILR	FRFFWSGEGE 26	35
A. limoniasperae	ASEKNARSSYFSNQF	IPDESTSPMSFGQTGFWFLNE	ILAEKKAFNMAVMLKLTGP	VRIRSLEDALHLVGNRHEILR	FRFFWSGEGE 263	,35
A. turkisafria	ASEKNARSSYFSNQF	PDESTSPMSFGQTGFWFLNE	LAEKKAFNMAVMLKLTGP	VRIRSLEDALHLVGNRHEILR	FRFFWSGEGE 263	35
A. tenuissima	ASEKNARSSYFSTQF	PDESTSPMSFGQTGFWFLNE	LAEKKAFNMAVMLKLTGP	VRIRSLEDALHLVGNRHEILR	FRFFWSGEGE 263	35
A. fragariae	ASEKNARSSYFSTQS	PEESTSPMSFGQTGFWFLNE	/LAEKKTFNMAVMLKLTGP	VRIRSLEDALHLVGNRHEILR	FRFFWSGEGE 263	35
A. tangelonis	ASEKDARSSYFFTQS	PEESTSPMSFGQTGFWFLNE	LAEKKAFNMAVMLKLTGP	VRIRSLEDALHLVGNRHEILR	FRFFWSGEGE 26	35
A. malı	ASEKNARSSYFSTQS	PEESTSPMSFGQTGFWFLNE	<u>IAEKKAFNMAVMLKLTGP</u>	VRIRSLEDALHLVGNRHEILR	IRFFWSGEGE 263	35
	2.640	2.660	2.680	2.700	2.720	
A. alternata	DRKPMQGIRALSELF	LTTKRIRSEAEAKAELQAVH	DEIWDLSSGDAMKVSLLSQ	SDQKHYLVLGMHHIFMDGYSF	SVFFKDLDAA 27	20
A. citriarbusti	DRKPMQGIRALSELF	LTTKRIRSEAEAKAELQAVH	DEIWDLSSGDAMKVSLLSQ	SDQKHYLVLGMHHIFMDGYSF	SVFFKDLDAA 27	20
A. limoniasperae	DRKPMQGIRALSELF	ILTTKRIRSEAEAKAELQAVHI	DEIWDLSSGDAMKVSLLSQ	SDQKHYLVLGMHHIFMDGYSF	SVFFKDLDAA 27	20
A. turkisafria	DRKPMQGIRALSELF	{LTTKRIRSEAEAKAELQAVHI	DEIWDLSSGDAMKVSLLSQ	SDQKHYLVLGMHHIFMDGYSF	SVFFKDLDAA 27	20
A. tenuissima	DRKPMQGIRALSELK	LTTKRIRSEAEAKAELQAVHI	DEIWDLSSGDAMKVSLLSQ	SDQKHYLVLGMHHIFMDGYSF	SVFFKDLDAA 27	20
A. fragariae	DRKPMQGIRALSELK	LTTKRIRSEAEAKEELQAVH	DEIWDLSSGDAMKFSLLSQ	SDQKHYLVLGMHHIFMDGYSF	SVFFKDLDAA 27	20
A. tangelonis	DRKPMQGIRALSGLK	LTTKRIRSEAEAKEELQAVH	DGIWDLSSGDAMKVSLLSQ	SDQKHYLVLGMHHIFMDGYSF	SVFFKDLDAA 272	20
A. mali	DRKPMQGIRALSELK	LTTKRIRSEAEAKEELQAVHI	DEIWDLSSGDAMKVSLLSQ	SDQKHYLVLGMHHIFMDGYSF	SVFFKDLDAA 272	20
		2.740	2.760	2.780	2.800	
A alternata	VNRKTI SPI PSESOV		HYBNTIPOFEKSKPIELE		RIFAGMAAKI 28	05
A citriarbusti	YNRKTI SPL PSESOY	BHEAMOOIKAYESGAEDKTI	HYBNTIPOFFKSKPIFIF	PEARSATROPMITYSOOFASVI	RIEAGMAAKI 28	:05
A. limoniasperae	YNRKTLSPLPSESQY	RHFAMQQIKAYESGAFDKTI	HYRNTLPQEFKSKPIELF	PFARSATRQPMLTYSQQEASVI	RLEAGMAAKI 28	05
A. turkisafria	YNRKTLSPLPSESQY	RHFAMQQIKAYESGAFDKTI	HYRNTLPQEFKSKPIELF	PFARSATRQPMLTYSQQEASVI	RLEAGMAAKI 28	05
A. tenuissima	YNRKTLSPLPSESQY	RHFAMQQIKAYESGAFGKTI	HYRNTLPQEFKSKPIELF	PFARSATROPMLTYSQQEASVI	RLEAGVAAKI 28	05
A. fragariae	YNRKTLSPLPSESQY	RHFAMQQIKAYESGAFDKTI	EHYRNTLPQEFKSKPIELF	PFARSATRQPMLTYSQQEASVI	RLEPGVAAKI 28	05
A. tangelonis	YNRKTLSPLPSESQY	RHFAMQQIKAYESGAFDKTI	HYRNTLPREFKSKPIELF	PFARSATRQPMLTYSQQEASVI	RLEAGVAAKI 280	05
A. mali	YNRKTLSPLPSESQY	RHFAMQQIKAYESGAFDKTI	HYRNTLPQEFKSKPIELF	PFAQSATRQPMLTYSQQEASVI	RLEAGVAAKI 280	,05
	2.8	20 2.840	2.	860 2.880)	
	BOLABONSSTSEHV			INI I DI HERRSEAGTSI ASI II	KSARDTAVGA 28	an
A citriarbusti	BOLABONSSTSERVY	(ISALBVILESILESTDDIC)	GLADTNBTDKNYMNSIGFF		KSARDTAYGA 28	190
A. limoniasperae	RQLARQNSSTSFHVY	LSALRVLLFSLLPSTDDICIC	ADTNRTDKNYMNSIGFF	LNLLPLHFRRSEAGTSLASI	KSARDTAYGA 28	90
A. turkisafria	RQLARQNSSTSFHVY	LSALRVLLFSLLPSTDDICIC	GIADTNRTDKNYMNSIGFF	LNLLPLHFRRSEAGTSLASIII	KSARDTAYGA 28	90
A. tenuissima	RQLARQNSSTSFHVY	LSALRVLLFSLLPSTDDICIC	GIADTNRTDKNYMNSIGFF	LNLLPLHFRRGEAGTSLASIII	KSARDTAYGA 28	90
A. fragariae	RQLARQNSSTSFHVY	LSALRVLLFSLLPSTDDICIC	GIADTNRTDKNYMNSIGFF	LNLLPLHFRRSEAGTSLASIII	KSARDTAYGA 289	90
A. tangelonis	RQLARQNSSTSFHVY	LSALRVLLFSLLPSTDDICIC	GIADTNRTDKNYMNSIGFF	LNLLPLHFRRSEVRTSLASIII	KSARDTAYGA 289	90
A. mali	RQLARQNSSTSFHVY	LSALRVLLFSLLPSTDDICIC	GIADTNRTDKNYMNSIGFF	LNLLPLHFRRSEAGTSLASIII	KSARDTAYGA 28	,90
	2.900	2.920	2.940	2.960		
Δ alternata		NVSBSNAVTRIEOVELDVBO	VOEBBSCVGCKLDGEDWC	NASTGYDVALELTENANTDTLL		175
Δ citriarbusti		NVSRSNATTPIEOVELDVROU	VOERPSCVGCKLDGEDWC	NASTGYDVALEITENANTDIL	SIRLODSIC 29	175
A limoniasperae		NVSBSNAYTPIEQVELDYBO	VOEBPSCVGCKI DGEDWC	NASTGYDVALELTENANTDTL	SIBLODSIC 29	175
A. turkisafria	LQHSQLPLDVLLKEL	NVSRSNAYTPIFQVFLDYRO	/VQERPSCVGCKLDGEDWC	NASTGYDVALEITENANTDTL	SLRLQDSLC 29	075
A. tenuissima	LQHSQLPLDVLLKEL	NVSRSNAYTPIFQVFLDYRO	/VQERPSCVGCKLDGEDWC	NASTGYDVALEITENANTDTL	SLRLQDSLY 29	75
A. fragariae	LQHSQLPLDVLLKEL	NVSRSNAYTPIFQVFLDYBO	VQERPSCVGCKLDGEDWC	NASTGYDVALEITENANTDTLI	LSLRLQDSLY 29	75
A. tangelonis	LQHSQLPLDVLLKEL	NVSRSNAYTPIFQVFLDYRQ	VQERPSCVGCKLDGEDWC	NASTGYDVALEITENANTDTLI	LSLRLQDSLY 29	75
Ā. mali	LQYSQLPLDVLLKEL	NVSRSNAYTPIFQVFLDYRQ	VQERPSCVGCKLDGEDWC	NASTGYDVALEITENANTDTLI	LSLRLQDSLY 29	75
	2.980	3.000	3.020	3.040	3.060	
A -14	COLOTOL L DO EVIN					
A. alternata	SGESTQLLLRSEVNV				PTVAHRIEQL 300	00
A. citriarbusti	SOESTQUELEKSEVNU				PTVARRIEQU 300	00
A turkioofria	SOESTOLLIBEEVAN		RNDVAAAL TAGOGE LEDET		PTVARRIEQL 300	00
A. turkisairia	SOESTQUELENSEVNU		RNDVAAAL TAGOGELSDST	GOVEELADKT LEGSLESKWNOI	PTVAHRIEQU 300	00
A fragerieg	SQESTOLLESEVAN		RNDVAAAL TAGOGELSDET	GGVQELADKTVEQSLESKWNQ	PTVAHRIEOL 300	190
A. tangelonis	SQESTQLUESEVNY	LKHIVDAPSBAVVGDI PTWP	RNDVAAAL TAGO	FOSLESKWNO	TVAHRIEQI 30.	142
A. mali	SQESTQLLLRSEVN	LKHMIDAPSRAVVGDLPIWP	NDVAAALTAGQGEISDST	GGVQEIADKTIEKSLESKWNO	PTVAHRIEQL 30	160

	3.080	3.100	3.120	3.140
A alternata				UDI DI DESTADI ASIV 3145
A. diternata	TRAHPEKTAIRDONGNTLTYAOMAARVDT	I PKALEDSSVRKGDI VGVE		VDI DI DESTADIACIV 3145
A. Citilarbusti	TRANPEKTA I RDCNCNTL TY AOMAARVDT		OEDCADWICSMLAIFRAGAVY	VPLDLRSSTARLASTV 3145
A. Innoniasperae	TRANPEKTAL PRONONTLETTAQMAARVDT		QEPCADWICSMLAIFRAGAVY	VPLDLRSSTARLASTV 3145
A. turkisaina	TRANPEKTAL PRONONTLETTAQMAARVDT		QEPCADWICSMLAIFRAGAVY	VPLDLRSSTARLASTV 3145
A. tenuissima	TRAIPEKTAL PRONONTLEY AQMAARVDT	I RKALEGSSVRKGDI VGVF	GEPCADWICSMLAIFRAGAVY	TPLDLRSSTARLASTV 3145
A. Iraganae	TRAIPEKTAL PRONONTLEY AQMAARVDT	I REALEGSSVRKGDI VGVF	GEPCADWICSMLAIFRAGAVY	PLDLRSSTARLASTV 3145
A. tangelonis	TRAHPEKTATRUGNGNTLTYAQMAARVDT	IRKALEGSSVCKGDIVGVF	QEPCADWICSMLAIFRAGAVY	TPLDLRSSTARLASTV 3127
A. mali	TRAHPEKTATRDGNGNTLTYAQMAARVDT	IRRALESSNVRKGDIVGVF	QEPCADWICSMLAIFRAGAVY	PLDLRSSIARLASIV 3145
	3.160	3.180	3.200	3.220
	RVSRPSTILTONTTADKISLIGATNVTVL		ADAVIL ETSGSTGEPKGLNMTI	VNMVTSAFASSBTEM 3230
A citriarbusti	RVSRPSTILTDNTTADKISLIGATNVTVL	SVSGI MPANTSVPNBAEPN		VNMVTSAEASSCTEM 3230
A limoniasperae	RVSRPSTILTDNTTADKISLIGATNVTVL	SVSGI MPANTSVPNBAEPN		IVNMVTSAEASSBTEM 3230
A turkisafria	RVSRPSTILTDNTTADKISLIGATNVTVL	SVSGLMPANTSVPNBAEPN	AQAVILETSGSTGEPKGLNMT	VNMVTSAEASSBTEM 3230
	RVSRPSTILTDNTTADKISLIGATNVIVI	SVSGIMPAKTSVPNBAEPN	ADAVILETSGSTGERKGLNMT	VNMVTSAEASSBTEV 3230
A fragariae	RVSOPSTIL TONTTADKISLIGATNVTVL	SVSGI MPAKTSVPNBAEPN		VNMVTSAEASSBTEV 3230
A tangelonis	RVSORST LLTDNNTADKISLIGATNVTVL	SVSGLMPAKTSVPNBAEPN	ADAVILETSGSTGERKGLNMT	VNMVTSAEASSBTEV 3212
Λ. tangelomb Δ mali	RVSRPSTILTDNTTADKISLIGATNVTVL	SVSGIMPANTSVPNBAEPN	ADAVILETSGSTGERKGLNMT	VNMVTSAEASSBTEV 3230
7mai	3 240 3	260	3 290	200
	5.240 5.	1	1 S.200 S.3	I
A. alternata	TSSGGNLVVLQQSPYSFDFSLDQTFAALT	NGGCLCVVPACYRGDPVEI	SRIMAAEEVTYTSGTPSEFAM\	VLRYGASNLSQCRSWT 3315
 A. citriarbusti 	TSSGGNLVVLQQSPYSFDFSLDQTFAALT	NGGCLCVVPACYRGDPVEI	SRIMAAEEVTYTSGTPSEFAM	VLRYGASNLSQCRSWT 3315
A. limoniasperae	TSSGGNLVVLQQSPYSFDFSLDQTFAALT	NGGCLCVVPACYRGDPVEI	SRIMAAEEVTYTSGTPSEFAM	VLRYGASNLSQCRSWT 3315
A. turkisafria	TSSGGNLVVLQQSPYSFDFSLDQTFAALT	NGGCLCVVPACYRGDPVEI	SRIMAAEEVTYTSGTPSEFAM	VLRYGASNLSQCRSWT 3315
A. tenuissima	TSSGGNLVVLQQSPYSFDFSLDQTFAALT	NGGCLCVVPACYRGDPVEI	SRIMAAE <mark>K</mark> VTYTSGTPSEFAM\	VLRYGASNLSQCRSWT 3315
A. fragariae	TSSGGNLVVLQQSPYSFDFSLDQTFAALT	NGGCLCVVPACYRGDPVEI	SRIMAAEKVTYTSGTPSEFAM	VLGYGASNLSQCHFWT 3315
A. tangelonis	TSSGGNLVVLQQSPYSFDFSLDQTFAALT	NGGCLCVVPACYRGDPVEI	SRIMAAEKVTYTSGTPSEFAM	VLRYGASNLSQCHSWT 3297
A. mali	TSSGGNLVVLQQSPYSFDFSLDQTFAALT	NGGCLCVVPACHRGDPVEI	SRIMAAEKVTYTSGTPSEFAM	VLRYGASNLSQCRSWT 3315
	3.320 3.340	3.360	3.380	3.400
			T	- T
A. alternata	HVFSGGEAMSHGLAREFSTLNLPQLHVST	GYGPAETTMFSTKIELNYT	SPDLPNPLPAGHMLAGYSICI	/DANVQPVPLGVSGEI 3400
A. citriarbusti	HVFSGGEAMSHGLAREFSTLNLPQLHVST	GYGPAETTMFSTKIELNYT	SPDLPNPLPAGHMLAGYSICI	/DANVQPVPLGVSGEI 3400
A. limoniasperae	HVFSGGEAMSHGLAREFSTLNLPQLHVST	GYGPAETTMFSTKIELNYT	SPDLPNPLPAGHMLAGYSICI	DANVQPVPLGVSGEI 3400
A. turkisafria	HVFSGGEAMSHGLAREFSTLNLPQLHVST	GYGPAETTMFSTKIELNYT	SPDLPNPLPAGHMLAGYSICI	DANVQPVPLGVSGEI 3400
A. tenuissima	HVFSGGEAMSHGLAREFATLNLPHLHVST	GYGPAETTMFSTKIELNYT	SPDLPNPLPAGHMLAGYSVCI	DANVQPVPLGVSGEI 3400
A. fragariae	HVFSGGEAMSHGLARDFATLNLPQLHVST	GYGPAETTMFSTKIELNYT	SPDLPNPLPAGHMLAGYSVCI	DANVQPVPLGVSGEI 3400
A. tangelonis	HVFSGGEAMSHGLAREFATLNLPQLHVST	GYGPAETTMFSTKIELNYT	SPDLPNPLPAGHMLAGYSVCI	DANVQPVPLGVSGEI 3382
A. mali	HVFSGGEAMSHGLAREFATLNLPQLHVST	GYGPAETTMFSTRIELNYT	SSDLPDPLPAGHMLAGYSVCI	DANVQPVPLGVSGEI 3400
	3.420	3.440	3.460	3.480
A. alternata	VIGGRCVVDGYFGNPELTKQRFLQDSFFG	TPGKVYRSGDRGRLLADGT	LFVEGRLEGDTQVKIRGFRVE	TEIENVLLKRAAGAL 3485
A. citriarbusti	VIGGRCVVDGYFGNPELTKQRFLQDSFFG	TPGKVYRSGDRGRLLADGT	LFVEGRLEGDTQVKIRGFRVE	ITEIENVLLKRAAGAL 3485
A. limoniasperae	VIGGRCVVDGYFGNPELTKQRFLQDSFFG	TPGKVYRSGDRGRLLADGT	LFVEGRLEGDTQVKIRGFRVE	TEIENVLLKRAAGAL 3485
A. turkisafria	VIGGRCVVDGYFGNPELTKQRFLQDSFFG	TPGKVYRSGDRGRLLADGT	LFVEGRLEGDTQVKIRGFRVE	TEIENVLLKRAAGAL 3485
A. tenuissima	VIGGRCVVDGYFGNPESTKQKFLQDSFFG	TPGKVYRSGDRGRLLADGT	LFVEGRLEGDTQVKIRGFRVE	ITEIENLLLKRAAGAF 3485
A. fragariae	VIGGRCVVDGYFGNPESTKQKFLQDSFFG	TPGKVYRSGDRGRLLADGT	LFVEGRLEGDTQVKIRGFRVE	ITEIENILLKRAAGAL 3485
A. tangelonis	VIGGRCVVDGYFENLESTKQKFLQDSFFG	TPGKVYRSGDRGRLLADGT	LFVEGRLDGDTQVKIRGFRVE	ITEIENILLKRAAGAL 3467
A. mali	VIGGRCVVDGYFGNPESTKQKFLQDTFFG	TPGNVYRSGDRGRLLADGT	LFVEGRLEGDTQVKIRGFRVE	ITEIENVLLKRAAGAL 3485
	3.500	3.520	3.540	3.560
A alternate				
A. aitemata				CALQAL PLPSAGEATO 3570
A. Citriarbust	SHAVVIL DOCODAKYLAAHVVEODEVDEE			CALQAL PL PSAGEATO 3570
A. Imoniasperae				CALQAL PLPSAGEATO 3570
A. turkisaina	SHAVVIL DOCODAKYLAAHVVEODEVDEE			CALQAL PL PSAGEATO 3570
A. tenuissima				CALQAL PLPS I QEATQ 3570
A. Irayanae	SHAVVIL DOCODAKYL AAHVVEODEVDEE			CALQAL PL PSAGEATO 3570
A. tangelonis				CALQALPLPSAGEATQ 3552
A. mali	3500			MATGALFLFSAGEATG 35/0
	3.580 3.	500 I	3.620 3.4	140 I
A. alternata	TSENLSETERKLGDVWRQVLPLHPGPLHL	DSDFFLVGGNSILLVRLQS	LLRDAFSATPKLFTLMGASTL	SEMAATITANVSTAID 3655
A. citriarbusti	TSENLSETERKLGDVWRQVLPLHPGPLHL	DSDFFLVGGSSILLVRLQS	LLRDAFSATPKLFTLMGASTL	SEMAATITANVSTAID 3655
A. limoniasperae	TSENLSETERKLGDVWRQVLPLHPGPLHL	DSDFFLVGGNSILLVRLQS	LLRDAFSATPKLFTLMGASTL	SEMAATITANVSTAID 3655
A. turkisafria	TSENLSETERKLGDVWRQVLPLHPGPLHL	DSDFFLVGGNSILLVRLQS	LLRDAFSATPKLFTLMGASTL	SEMAATITANVSTAID 3655
A. tenuissima	TSENLSETERKLGDVWRQVLPLHPGPLHL	DSDFFLVGGNSILLVRLQS	LLRDAFSATPKLFTLMGASTL	SEMAATITANGSTAID 3655
A. fragariae	TSENLSETERKLGDVWRQVLPPHPGPLYL	DSDFFLVGGNSILLVRLQS	LLRDAFSATPKLFTLMGASTL	SEMAATITASVSTAID 3655
A. tangelonis	TSENLSETERKLGDVWRQVLPLHPGPLYL	DSDFFLVGGNSILLVRLQS	LLRDAFSATPKLFTLMGASTL	SEMAATITASVSTAID 3637
A. mali	TSENLSEIERKLGDVWRQVLPLHPGPLHL	DSDFFLVGGNSILLVRLQS	LLRDAFSATPKLFTLMGASTL	SEMAATIKANVSTAID 3655
	3.660 3.680	3.700	3.720	3.740
A. alternata	WDTETSLAESLKQIVPTKRTTNAGTKTML	LKGSSGYLGRHLLAQLAED	PNLKQVICLVRQADSGSLTLG	INNKITFVQTDISQHN 3740
A. citriarbusti	WDTETSLAESLKQIVPTKRTTNAGTKTML	LTGSSGYLGRHLLAQLAED	PNLKQVICLVRQADSGSLTLG	INNKITEVQTDISQHN 3740
A. limoniasperae	WDIETSLAESLKQIVPTKRTTNAGTKTML	LIGSSGYLGRHLLAQLAED	PNLKQVICLVRQADSGSLTLG	INNKITEVQTDISQHN 3740
A. turkisafria	WDIETSLAESLKQIVPTKRTTNAGTKTML	LIGSSGYLGRHLLAQLAED	PNLKQVICLVRQADSGSLTLG	INNKITEVQTDISQHN 3740
A. tenuissima	WDTETSLPESLKQIVPTKRTTNAGTKTML	LTGSSGYLGRHLLAQLAED	PNLKQIICLVRQADSGSLTLG	INNKITEVQADISQHN 3740
A. fragariae	WDTETSLPESLKQIVPTKRTTNAGTKTML	LTGSSGYLGRHLLAQLAED	PNLKQIVCLVRQADSDSLTLG	INNKITEVQADISQHN 3740
A. tangelonis	WDTETSLLESLKQIVPTKRTTNADTKTML	LTGSSGYLGRHLLAQLAED	PNLKQIICLVRQADSGSLTLG	INNKITFVQADISQHN 3722
A. mali	WDTETSLPESLKQIMPTKRITNAGTKTML	LTGSSGYLGRHLLTQLAED	PNFEQIICLVRQVDSGSLTQG	INNKITFVQADISQHN 3740
	3.760	3.780	3.800	3.820
A alternat-				
A. alternata				
A. citriarbusti				
A. IIIIoniasperae	LOLODOGE CALVERADVVVHCAANRSFWD			AGINT PPODGSDGYVAA 3825
A. turkisatria				AGMIPPODGSDGYVAA 3825
A. tenuissima		RTEVERHUNENSVKELARL		AGT PPODGSDGYVAA 3825
A. tragariae	LGLSDGGFSALVEKADVVVHCAANRSFWD	RTEVERHONENSVKELARL	AANHAIPLHFISSGAVKTYVD	AGINT PPODGSDGYVAA 3825
A. tangelonis	LGLSDGGFSALVEKADVVVHCAANRSFWD	RYEVERHONENSVKELARL	AAHHAIPLHFISSGAVKTYVD	AGMTPPQDGSDGYVAA 3807
A. mali	LGLSDGGFSALVEKADVVVHCAANRSFWD	RIEVERHUNENSVKELARL	AAHHAIPLHFISSGAVETYID	AGMIPPQDGSDGYVAA 3825

	3.840		3.860	3.880	3.900		
A alternata						INDEAVES 3	2010
	KWAAETEL HKAAVALKID	VIHERTCL PKATEC				INDEAVES 2	2010
A. citnarbust	KWAAEIFLIKAAVALKIP	TINKPIGLPKAISG	DNATERAVVIDEL			INRSATES S	1910
A. Ilmoniasperae	KWAAEIFLHKAAVALKIP	THRPIGLPKAISG	DNATERAVVIDEL	LKTAGKLGTRPSF	DIVKGIVDVVPVHDVVQA	THRSATES 3	910
A. turkisafria	KWAAETFLHKAAVALKIP	YIHRPTGLPKATSG	IDNATERAVVTDEL	LKIAGKLGTRPSF	DTVKGTVDVVPVHDVVQA	THRSAYFS 3	3910
A. tenuissima	KWAAETLLHKAAVALNIP	YIHRPTGLPKATSG	DNATEHAVLTDEL	LKIAGKLGTRPSF	DTVKGTVDVVPVHDVVQA	IHRSAYFS 3	3910
A. fragariae	KWAAETLLHKAAVALNIP	Y I HRPAGLPKATSG	DNATERAVVTDEL	LKIASKLGMRPSFI	DTVKGTVDVVPVHDVVQA	IHRSAYFS 3	3910
A. tangelonis	KWAAETLLHKAAVALNIP	YIHRPTGLPKETSG	DNVTERAVVTDEL	LKIAGKLGTRPSF	DTVKGTVDVVPVHDVVQA	IHRSAYFS 3	3892
A. mali	KWAAETLLHKAAVALNIP	YIHRPTGLPNVTSG	DNATERAIVTDEL	LKIAGKLGTRPSF	DTVKGTVDVVPVHDVVQA	IHRSAYFS 3	3910
	3.920	3.940		3.960	3.980		
	I	I		I	1		
A. alternata	IGASLHGKNGGLVEILHHI	AVLRVSVDEFAALM	IQEQKGLSSLPSVP	I LEWFGQAKKAG -		FSFFY 3	3973
 A. citriarbusti 	IGASLHGKNGGLVEILHHI	AVLRVSVDEFAALM	IQEQKGLSSLPSVP	I LEWFGQAKKAG -		FSFFM 3	3973
A. limoniasperae	IGASLHGKNGGLVEILHHI	AVLRVSVDEFAALM	IQEQKGLSSLPSVP	ILEWFGQAKKAGS	PADMAYHVPVPITLGTSL	TLHFLVFS 3	3995
A. turkisafria	IGASLHGKNGGLVEILHHI	AVLRVSVDEFAALM	IQEQKGLSSLPSVP	I LEWFGQAKKAG -		FSFFM 3	3973
A. tenuissima	IGADLHGKNGGLVEILHHI	AVLRVSVDEFAALM	IQEQKGLSSLPSVP	I LEWFGQAKKAG -		FSFFM 3	3973
A. fragariae	IGADLHGKNGGLVEILHHI	AVLRVSVDEFAALM	IQEQKGLSSLPSVP	I LEWFGQAKKAG -		FSFFM 3	3973
A. tangelonis	IGADLHGKNGGLVEILHHI	AVLRMSVDEFAALM	IQEQKGLSSLPSVP	I LEWFGQAKKAG -		FSFFM 3	3955
A mali	IGADI HGNNGGI VETI HHI	AVIBUSUDEEAAIM	OFOKBLSSLPSVP	LI EWEGOAKKAG		ESEEM 3	3973
7	4 000	4.020	4 040		4.060	4.090	
	4.000	4.020	4.040		4.000	4.000	
A. alternata	GGAGFEYGDCGCGVGFE -					3	3990
A. citriarbusti	AAQ					3	3976
A. limoniasperae	ATWVKMVGASSGVVEVDL	FPRNETYAPTAYLP	IIFAFQNSHLAPF	LDPLIHIDAYLVQ	NANGSTPQWAPPESIDLE	QLRWANFT 4	1080
A. turkisafria	A					3	3974
A. tenuissima	AA					3	3975
A. fragariae	AA					3	3975
A. tangelonis	AA					3	3957
A. mali	AA					3	3975
		1.100	4.120	4.	140	4.160	
		1	1			1	
A. alternata					TLSLGFEG	3	3998
A. citriarbusti					DL SMG TAG	3	3984
A. limoniasperae	NNDTYFAYPTYQRNEFTF	TEG I WQV TWT F NWA	VCTEDSLANNIFI	RNESQRTTTLTIR	KDAQEVDLVSGTMGKSCS	GQDGVAVN 4	+165
A. turkisafria					AQ DLSMGTAG	3	3984
A. tenuissima					QDL SMGTAG	3	3984
A. fragariae					QDL SMG TAG	3	3984
A. tangelonis					QDLSMGTAG	3	3966
A. mali					QDLSMGTAG	3	3984
	4.180		4.200	4.220	4.240		
A alternata		VMI		I			1011
A. aitemata			VEDD				2001
A. Citilarbust		WEGOGDMCASTASS	VEKEDBCBVELDB	AAAASISCSITEC	COANECTTTCCI TODER	KKEAACCI 4	1250
A. Innoniasperae	TINTENTFSSAnwedgebr	WEGGGDWCASTASS	Vep	AAAASISCSIIFG	SSAANFSTITSSLICFEL	ARSAAGUL 4	200
A. turkisaina		ALL	Von				1990
A. tenuissima		ALL	V 5R			3	1990
A. Iraganae		ALL	V 5R			3	1990
A. tangelonis		ALL	V 5R			3	1972
A. mai		ALL	V 5H			3	1990
	4.260						
A. alternata	4)11					
A citriarbusti		991					
A limoniasperae	TVGGLAALEGVESVLLH 4	267					
A turkisafria	P 2	991					
A tenuissima		991					
A franariae		991					
A tangelonie		973					
A mali		991					
/							

	20	40	60	80	
A. citriarbusti	MEPIAIVGLAFKLPQDVEDEASFWQI	LEQGQSVMTEWPKSRVDVN	AFARSPEASLNTLTSTRGHFLKQN	LASFDAPFFSISSKEA 85	
A. tenussima	MEPIAIVGLAFKLPQDIEDEASFWRI	LEQGQS <mark>M</mark> MTEWPKSRVDVN	AFARSPEA <mark>ALNTL</mark> TSTRGHFLKQN	LASFDAPFFSISSKEA 85	
A. alternata	MEPIAIVGLAFKLPQDIEDEASFWRI	LEQGQSMMTEWPKSRVDVN	AFARSPEAALNT	57	
A. limoniasperae	MEPIAIVGLAFKLPQDVEDEASFWQI	LEQGQSVMTEWPKSRVDVN	AFARSPEASLNTLTSTRGHFLKQN	LASFDAPFFSISSKEA 85	
A. tangelonis	MEDIALVCLAFKLPQDIEDEASFWSI	LEQGQSVMTEWPKSRVDVN	AFARSPEAALNTLTSTRGHFLKQN	LASEDAPEESISSKEA 85	
A. Iraganae A. mali	MEPIAIVGLAFKLPQDIEDEASFWRI		AFATSPEASENTETSTRGHFLKON	LASEDADEESISSKEA 85	
A. turkisafria	MEPIAIVGLVFKLPQDIDDEASFWHI	LEOGOSMMTEWPKSBVDVN	AFARSPEASLNTLTSTRGHFLRON	LASEDAPEESISSKEA 85	
, ii turnournu	100	120	140	160	
A situi subsecti					-
A. citriarbusti		GVEVGTMESDYH		NELSWYFDLKGPSMQL 15	7
A alternata	SAMDF QQRMEELTS THALLN				'
A. limoniasperae	SAMDPQQRMLLETSYHALEN	GVFVGTMESDYH	RTISKDPDDAPMTTATGTSVSIMA	NRLSWYFDLKGPSMQL 15	7
A. tangelonis	SAMDPQQRMLLETSYHALEN	GVFVGTMESDYH	RTISKDPDDAPLTTATGISVSIMA	NRLSWYFDLKGPSMQL 15	7
A. fragariae	SAMDPQQRMLLETSYHALEN	GVFVGTMESDYH	RTISKDPDDAPLTTATGISVSIMA	NRLSWYFDLKGPSMQL 15	7
A. mali	SAMDPQQRMLLETSYHALEN	GVFVGTMESDYH	RTISKDPDDAPMTTATGISASIMA	NRLSWYFDLKGPSMQL 15	7
A. turkisatria	SAMDPQQRMLLETSTHALENAGIPLS	STAGTETGVFVGTMESDYH	RMISKUPUUAPMITAIGISVSIMA	NRLSWYFDLKGPSMQL 1/0	0
	I	1	I	I	
A. citriarbusti	NTACSSSMIAVDLGCQSIRSGQSSTV	LVAGSSLMLDPEYSLYLSN	MNMLSPDGICHSFDDRANGYSRGE	GVIVLILKKLSTAISD 24	2
A. tenussima	NTACSSSMIAVDLGCQSIRSGQSSTV		MNML SPDG I CHNFDDRANGYSRGE	GVTVMILKKLSTAISD 243	2
A. alternata	NTACSSSMIAVDIGCOSIBSGOSSTV			GVIVIILKKISTAISD 241	2
A. tangelonis	NTACSSSMIAVDLGCQSIRSGQSSTV	LVAGSSLMLDPEYSLYLSN	MNMLSPDGICHSFDDRANGYSRGE	GVIVMVLKRLSTAISD 24	2
A. fragariae	NTACSSSMIAVDLGCQSIRSGQSSTV	LVAGSSLMLDPEYSLYLSN	MNMLSPDGICHSFDDRANGYSRGE	GIIVMVLKRLSTAISD 242	2
A. mali	NTACSSSMIAVDLGCQSIRSGQSSTV	LVAGSSLMLDPEYSLYLSN	MNML SPDG I CHSFDDRANGYSRGE	GVIVMILKKLSTAISD 242	2
A. turkisafria	NTACSSSMIAVDLGCQSILSGQTSTV	LVAGSSLMLDPEYSLYLSN	MNMLSPDGICHSFDDRANGYSRGE	GVIVMILKKLSTAISD 25	5
	260 280	300	320	340	
A. citriarbusti	GDNIRAVIRGTGSNQDGRTPGITQPS	SVSQENLIRHTYRTCNLGF	ESTRYIEAHGTGTQIGDAMEMRAL	GAVERTARSPRAPLEV 32	7
A. tenussima	GDNIRAIIRGTGSNQDGRTPGITQPS	SVSQENLIRHTYRTCNLGF	ESTRYIEAHGTGTQIGDAMEMRAL	GAVERTARSPRAPLEV 32	7
A. alternata	GDNIRAIIRGTGSNQDGRTPGITQPS	SVSQENLIRHTYRTCNLGF	ESTRYIEAHGTGTQIGDAMEMRAL	GAVERTARSPRAPLEV 202	2
A. Iimoniasperae	GDNIRAVIRGIGSNQDGRIPGIIQPS	SVSQENLIRHIYRICNLGF	ESTRYTEAHGIGIQIGDAMEMRAL	GAVERTARSPRAPLEV 32	7
A fragariae	GDN I BAV I BGTGSNODGBTPG I TOPS	SVSQENLIBHTYBTCNIGE	ESTRYLEAHGTGTGTGTGDAMEMRAL	GAVERTARSPRAPLIV 32	7
A. mali	GDNIRAIIRGTGSNQDGRTPGITQPS	SVSQENLIRHTYRTYNLGF	ESTRYIEAHGTGTQIGDAMEMRAL	GAVERTARSPRAPLEV 32	7
A. turkisafria	GDN I RAV I RGTGSNQDGRTPG I TQPS	SVSQENLIRHTYRTCNLGF	ESTRYIEAHGTGTQIGDAMEMRAL	GAVERTARSPKAPLEV 340	0
	360	380	400	420	
A. citriarbusti	GSVKTNIGHLEGGSGLAGIAKSILIL	EKGFIPPNALFERLNTKVN	AKRNNIEVPMSCIRWPGEGLBRIS	VNSFGFGGSNAHAILD 41	2
A. tenussima	GSVKTNIGHLEGGSGLAGIAKSILIL	EKGFIPPNALFEKLNTKVN	AKRNYIQVPTSCIRWPGEGLRRIS	VNSFGFGGSNAHAILD 41	2
A. alternata	GSVKTNIGHLEGGSGLAGIAKSILIL	EKGFIPPNALFEKLNTKVN	AKRNYIQVP <mark>T</mark> SCIRWPGEGLRRIS	VNSFGFGGSNAHAILD 28	7
A. limoniasperae	GSVKTNIGHLEGGSGLAGIAKSILIL	EKGFIPPNALFERLNTKVN	AKRNNIEVP <mark>M</mark> SCIRWPGEGLRRIS	VNSFGFGGSNAHAILD 412	2
A. tangelonis	GSVKTNIGHLEGGSGLAGIAKSIFIL	EKGFIPPNALFERLNTKVN	AKRNNIQVPASCIRWPGEGLRRIS	VNSFGFGGSNAHAILD 41	2
A. tragariae	GSVKINIGHLEGGSGLAGIAKSILIL	EKGELDDNALEERLNIKVN	AKRNNIEVPASCIRWPGEGLRRIS	VNSFGFGGSNAHAILD 41	2
A. man A turkisafria	GSVKTNIGHLEGGSGLAGIAKSILIL	EKGELPPNAL FEBLNTKVN	AKRNNIQVPASCIRWPGEGLRRIS	VNSEGEGGSNAHALLD 42	2
/ tarrioania	440	460	480	500	Č
A citriorbucti		ATENCHHODOVKVMCEVEE			7
A tenussima	DAYHALETESERDSERSIETPRVALP	ATSNGHHODGVKVMGSVSE		HVVALTTINGLSALLS 49	7
A. alternata	DAYHTLETLSLRDSLRSIETPRVALP	ATSNGHHQDGVKVMGSVSE	EKSDGPTLGMDNGARADGAASPST	HVVALTTTNGLSAILS 37	2
A. limoniasperae	DAYHALETLSLRDSLRSIETPRVAPP	A TSNGH <mark>g</mark> qndak vmgsvse	EKVDGPTSG I DDAARANGVTSSST	DVVALTTINGLSAILS 49	7
A. tangelonis	DAYHTLETLSFRDSLRSIETPRVALP	ATSNGHRONDVKMMGSVSE	EKVDGPASGIDDAARANGVTSSST	GVVALTTINGLSAILS 49	7
A. fragariae	DAYHTLETLSSRDSLRSIETPRVALP	ATSNGHRQNDAKVMGSVSV	EKVDGSTSGIDDAARANGVTLSST	DVVALTTINGLSAILS 49	7
A. mail	DAYHTLETLSERDSERSTETPNIALP	A I SNGRRQNDVKVMGSVSE	EKVDGPISGIDDAARANGVISSSI	DVVALITINGLSAVLS 49	/ 0
A. turkisaina	520	540	560	580	0
	Ĩ			Ĩ	
A. citriarbusti	ETETOSTOGSEKKTDONTVSNGTSPN	HRQILIFTAREEAALKRIH		LAARENIMAMESETVA 58	2
A. alternata	ETETQSTQGSEKKTDGNTVSNGTSPN	HRQILTFTARFFAALKRIH		LAARBNTMAMBSETVA 58	2
A. limoniasperae	ETDTQSTQGSERKINGNTVSNGTSPN	HRQILTFTARDEAALKRIH	QQYAEYYDRSIAGAPRMLDDLAYT	LAARRNTMAMRSFTVA 58	2
A. tangelonis	ETDTQSAQGSEKKINGNTVSNGTSPS	HRQILTFTARDEAALKRIH	QQYAEYYDRS I AGAPRMLDDLAYT	LAARRNTMAMRSFAVA 58	2
A. fragariae	ETETQLTQGSEKKTDDNTVSHGASPN	HRQILTFTARDEAALKRIH	QQYAEYYDRSIVGAPRMLDDLAYT	LAARRNTMSMRSFIVA 582	2
A. mali	ETETQLTQGSEKKTDDNTVSHGISPN	HRQILTFTARDEAALKRIH	QQYAEYYDRS I AGAPRMLDDLAYT	LAARRNTMSMRSFIVA 582	2
A. turkisatria	ETETUSTKUSEKKTUGNTVSNUTSPN	TRUILVFIARDEAALKRIN	QUTAETTDRSTVGAPRMLDDLATT	LAIRRNIMAMRSFIVA 59	5
	I				
A. citriarbusti	DSNSSSSSLGLPNLNCVRSSGEPQLC	FVFTGQGAQYAKMGLELID	YPVFKNILTQADRIFQSIGAEWSL	FDEMESGERINLPQFS 66	7
A. tenussima	DSNSSSSSLGLPNLNCVRSSGEPQLC	EVETGOGAQYAKMGLELID	YPVFKNIL TQADRIFQSIGAEWSL	FDEMESGERINLPOFS 66	1
A limoniasperae	DSNSSSSSS GI PNI NCVRSSGEPOLC	EVETGOGAQYAKMGEELID	YPVEKNVLTQADRVEONIGAEWSL	LDEMKSGEBINIPOES 66	2
A. tangelonis	DSNSSSLSLGLPDLNCVRSSGEPQLC	FVFTGQGAQYAKMGLELID	YTVFKDVLTQANRIFQSIGAEWSL	FDEMESGERINLPOFS 66	7
A. fragariae	GSDSSSSSLGLPNLKCVRSSGEPQLC	FVFTGQGAQYAKMGLELID	YPVFKDVLNQADHVFQSIGAEWSL	FDEMKGGKRINLPQFS 66	7
A. mali	GLDSSSSSLGLPNLKCVRSSGEPQLC	FVFTGQGAQYAKMGLELID	YPVFKDVLTQADHIFQGIGAEWSL	FDEMKSGERINFPQFS 66	7
A. turkisafria	DSDSSSSSLGLPNLNCVRSLGEPQLC	FVFTGQGAQYVNMGLELID	YPVFKDVLTQADRVFQSTGAEWSL	FDEMKSGERINLPQFS 680	0
	700 I	720 I	740 I	760 I	
A. citriarbusti	QPLCTALQLALVELLKSFHIAPVAVV	GHSSGEIAAAYAVGALSLE	SACRISYHRGRLSGQLAAQLAASM	KTGAMMSANLQEGQVR 752	2
A. tenussima	QPLCTALQLALVELLKSFH I APVAVV	GHSSGEIAAAYAVGALSLE	SACRISYHRGRLSGQLAAQLAASM	KTGAMMSANLQEGQVR 75	2
A. alternata	QPLCTALQLALVELLKSFHIAPVAVV	GHSSGE LAAAYAVGALSLE	SACRISYHRGRLSGQLAAQLAASM	KIGAMMSANLQEGQVR 62	7
A tangelonie	OPI CTALOLALVELLKSFH LAPVAVV	GHSSGELAAATA IGALCLE	SACRISTINGELSGULAAQLAASM	KTGAMMSVNLOEGOVE 75	2
A. fradariae	QPLCTALQIALVELLKSFH I APVAVV	GHSSGEIAAAYAVGALSLE	SACRISYHRGRLSSQLAAQLAASM	KTGAMMSANLQEGOVR 75	2
A. mali	QPLCTALQ A VELLRS FY APVAVV	GHSSGEIAAAYAVGALSLE	SACRISYHRGRLSGQLATQLAASM	KTGAMMSANLQEGQVR 75	2
A. turkisafria	QPLCTALQIALVELLKSFHIAPVAVV	GHSSGEIAAAYAIGALSLE	SACRISYHRGRLSGQLAAQLASSI	KTGAMMSANLQEGQVR 76	5

	780	800	820	840	
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	AYVDKYRLDAN I RVACVNSPSNVTI AYVDKYRLDAN I RVACVNSPSNVTI AYVDKYRLDAN I RVACVNSPSNVTI AYLDKYRLDAN I RVACVNSPSNVTI AYVDKYLSDAN I RVACVNSPSNVTI AYVDKYLSDAN I RVACVNSPSNVTI AYVDKYLSDAN I RLACVNSPSNVTI AYUDKYRLDAN I RVACVNSPSNVTI AYIDKYRLDAN I RVACVNSPSNVTI	AGPEADVDALKRHLDDDH AGPEADVDALKRHLDDDH AGPEADVDALKRHLDDDH AGPEADVDALKRHLDDDR AGPEADVDALKRHLDDDH AGPEADVDALKRHLDDDH AGPEADVDALKRHLDDDH AGPEADVDALKRHLDDDR AGPEADVDALKCHLDDR	I FAQKLNTG I AYHTAVMNEMA I FAQKLNTG I AYHTAVMNEMA	QEYISCLNDLIESTPGSCATL QEYISCLNDLIESTPGSCATL QEYISCLNDLIESTPGSCATL QEYISCLNDLVESTPGSCATL QEYISCLNDLVESTPGSCATL QEYISCLNDLVESTPGSCATL KEYILCLNDLVEPTPGSCATL QEYVSCLSNLVESTPGSCATL	837 837 712 837 837 837 837 850
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	MVSSVTGQRVTATDLCTAQYWADNI MVSSVTGQRVTATDLCTAQYWADNI MVSSVTGQRVTATDLCTAQYWADNI MVSSVTGQRVTATDLCTAQYWADNI MVSSVTGQRVTATDLCTAQYWADNI MVSSVTGQRVTATDLCTAQYWADNI MVSSVTGQRVTATDLCTAQYWADNI MVSSVTGQRVTATDLCTAQYWADNI	TSPVRFLDALQYLAIAAP TSPVRFLDALQYLAIAAP TSPVRFLDALQYLAIAAP TSPVRFLDALQYLAIAAP TSPVRFFDALQYLAIAAP TSPVRFLDALQYLAIAAP TSPVRFLDALQYLAIAAP TSPVRFLDALQYLAIAAP	KLDG I KA I SDY I EVGPHGALR KLDG I KA I SDY I EVGPHGALR	RPIKETLSQVPNYRTFAYVSV RPIKETLSQVPNYRTFAYVSV RPIKETLSQVPNYRTFAYVSV RPIKETLSQVPNYRTFAYVSV RPIKETLSQVPNYRTFAYVSV RPIKETLSQVPNYRTFAYVSV RPIKETLSQVPNYRTFAYVSV RPIKETLSQVPNYRTFAYVSV RPIKETLSQVPNYRTFAYVSI 000 1020	922 922 797 922 922 922 922 922 935
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	LSKLVSPVKTTMEVAGHLFTRGYP) LSKLVSPVKTTMEVAGHLFTRGYP) LSKLVSPVKTTMEVAGHLFTRGYP) LSKLVSPVKTTMEVAGHLFTRGYP) LSKLWSPVKTTMEVAGHLFTRGYP) LSKLVSPVKTTMEVAGHLFTRGYP) LSKLVSSIKTTMKVAGHLFTRGYP) LSKLVSSIKTTMKVAGHLFTRGYP)	/SITAVNRYTASSNLPMLLS /SITAVNRYTASSNLPMLLS /SITAVNRYTASSNLPMLLS /SITAVNRYTASSNLPMLLS /SITAVNRYTASSNLPMLLS /SITAVNRYTASSNLPMLLS /SITAVNRYTASSNLPMLLS /SIAAVNRYTASSNLPMLLS /.060	SDTPKYPFDRTQQHWFESRLS SDTPKYPFDRTQQHWFESRLS SDTPKYPFDRTQQHWFESRLS SDTPKYPFDRTQQHWFESRLS SDTPKYPFDRTQQHWFESRLS SDTPKYPFDRTQQHWFESRLS SDTPKYPFDRTQQHWFESRLS SDIPKYPFDRTQQHWFESRLS SDIPKYPFDRTQQHWFESRLS	RDWRLRGAAPRSVLGIRVTDW RDWRLRGAAPRSVLGIRVTDW RDWRLRGAAPRSVLGIRVTDW RDWRLRGAAPRSVLGIRVTDW RDWRLRGAAPRSVLGIRVTDW RDWRLRGAAPRSVLGIRVTDW RDWRLRGAAPRSVLGIRVTDW RDWRLRGAAPRSVLGIRVTDW RDWRLRGAAPRSVLGIRVTDW	1007 1007 882 1007 1007 1007 1007 1020
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	I NPLEPRWRKMLSTQEMPWIAEHVVS NPLEPRWRKMLSTQEMPWIAEHVVS NPLEPRWRKMLSTQEMPWIAEHVVS NPLEPRWRKMLSTQETPWIAEHVVS NPLEPRWRKMLSTQETPWIAEHVVS NPLEPRWRKMLSTQETPWIAEHVVS NPLEPRWRKMLSTQETPWIAEHVVS NPLEPRWRKMLSTQETPWIAEHVVS NPLEPRWRKMLSTQETPWIAEHVVS	SGVIVFPAAGMLVMALEAV SGVIVFPAAGMLVMALEAV SGVIVFPAAGMLVMALEAV SGVIVFPAAGMIVMALEAV SGVIVFPAAGMIVMALEAV SGVIVFPAAGMIVMALEAV SGVIVFPAAGMIVMALEAV SGVIVFPAAGMIVMALEAV SGVIVFPAAGMIVMALEAV	LIGO	I TPIFVDTERKTEVVTQLRPIK TPIFVDTERKTEVVTQLRPIK TPIFVDTERKTEVVTQLRPIK TPIFVDTERKTEVVTQLRPIK TPIFVDTERKTEVVTQLRPIK APICVGTERKTEVVTQLRPIK TPIFVDTERKTEVVTQLRPIK TPIFVDTERKTEVVTQLRPIK 1.180	1092 1092 967 1092 1092 1092 1092 1105
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	AAYEREAL RFD VVI FSI DDNGRWTE AAYEREAL RFD VVI FSI DDNGRWTE	CFKATVHAQPKIGAISEV CFKATVHAQPKIGAISEV CFKATVHAQPKIGAISEV CFKATVHAQPKTGATSEV CFKATVHAQPKTGATSEV CFKATVHAQPKTGATSEV CFKATVHAQPKTGATSEV CFKATVHAQPKTGATSEV CFKATVHAQPKTGATSEV	DGGREARETAEACVSRYKEAK DGGREARETAEACVSRYKEAK DGGLEARETAEACVSRYKEAK DGGLEARETAEACVSRYKEAK DGGLEARETAEACVNRYKEAK DGGLEARETAEACVSRYKEAK DGGLEARETAEACVSRYKEAK DGGLEARETAEACVSRYKEAK 1,240	LSCNKC I SSQDF YEWLDRQGL LSCTKC I SSQDF YEWLDRQGL LSCTKC I SSQDF YEWLDRQGL PSCTKP I SSRDF YEWLDRQGL LSCTKR I SSQDF YEWLDRQGL LSCTKR I SSQDF YEWLDRQGL LSCTKR I NSQDF YEWLDRQGL 1280	1177 1052 1177 1177 1177 1177 1177 1190
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	SYGEAFALSKD I FWDGSELCVSRVI SYGEAFALSKD I FWDGSELCVSRVI	I DNSEEPYEGVVHPTVLDNCI DNSEEPYEGVVHPTVLDNCI DNSEEPYEGVVHPTVLDNCI INSEESYEGVVHPTVLDNCI INSEESYEGVVHPTVLDNCI DNSEEPYEGVVHPTVLDNCI DNSEEPYEGVVHPTVLDNCI DNSGELYEGVMHPTVLDNCI 00	QLCCTAPSGGMTKKLSTFIP QLCCTAPSGGMTKKLSTFIP QLCCTAPSGGMTKKLSTFIP QLCCTAPSGGMTKKLSTFIP QLCCTAPSGGMTKKLSTFIP QLCCTAPSGGMTKKLSTFIP QLCCTAPSGGMKKLSTFIP QLCCTAPSGGMKKLSTFIP QLCCTAPSGGMKKLSTFIP QLCCTAPSGGMTKKLSTFIP	I SNMRDLWVSATGWQHPETNSI SNMRDLWVSATGWQHPETNSI SSMRDLWVSATGWQHPETNSI SSMRDLWVSATGWQHPETNSI SSMRDLWVSATGWQHRETNSI SSMRDLWVSATGWQHPETNSI SSMRDLWVSATGWQHPETNSI 340 1380	1262 1262 1137 1262 1262 1262 1262 1275
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	RIMTQAQPNIQMTGLNCSMMAFSEF RIMTQAQPNIQMTGLNCSMMAFSEF RIMTQAQPNIQMTGLNCSMMAFSEF RIMTQAKPNIQMTGLNCSMMAFSEF RIMTQAKPNIQMTGLNCSMMAFSEF RIMTQAKPNIQMTGLNCSMMAFSEF RIMTQAKPNIQMTGLNCSMMAFSEF RIMTQARPNIQMTGLNCSMMAFSEF RIMTQARPNIQMTGLNCSMMAFSEF RIMTQARPNIQMTGLNCSMMAFSEF	GQLLCNAKHLGMSAVAGK PGQLLCNAKHLGMSAVAGK PGQLLCNAKHLGMSAVAGK PGQLLCNAKHLGMSAVAGK PGQLLCDAKHLGMSAVAGK GQLLCNAKHLGMSAVAGK GQLLCNAKHLGMSAVAGK PGQLLCDAKHLGMSAVAGK 1.400	I SADDGQKRLVHSIDWKPQLS ISADDGQKRLVHSIDWKPQLS ISADDGQKRLVHSIDWKPQLS SADHGQKRLVHSIDWKPQLS ISADDGQKRLVHSIDWKPHLS ISADDGQKRLVHSIDWKPLS STDDGQKRLVHSIDWKPQLS ASADGQQKRLVHSIDWKPQLS 1420	I LITKQQLVEHCKSDNKDDETS LITKQQLVEHCKSDNKDDETS LLTKQQLVEHCKSDNKDDETS LITKQQLSEHCRSDNKDDEIS LITKQQLSEHCRSDNKDDEIS LLTKQQLSEHCKSDNKDDEIS LLTKQQLSEHCRSNNKDDETS 1440	1347 1222 1347 1347 1347 1347 1347 1360
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	I EYCISLEDAIRARLORILPOLOG EIEYCISLEDAIRARLORILPOLOG KIEYCISLEDAIRARLORILPOLOG EIEYCISLEDAIRARLORILPOLOG EIEYCLSLEDAIRARLORILPOLOG EIEYCLLEDAIRARLORILPOLOG EIEYCLSFEDAIRARLORILPOLOG EIEYCISLEDAIRARLORILPOLOG 1460	LVEPGTPTHLKRFVMWVEF LVEPGTPTHLKRFVMWVEF LVEPGTPTHLKRFVMWVEF LVEPGTPTHLKRFVMWVEF SVGPGTPTHLKRFVMWIEF SSVEPGTPTHLKRFVMWIEF LVEPGTPTHLKRFVMWIEF LVEPGTPTHLKRFVMWIEF	ROL ROMPGKAADE VSDAQLGL ROL ROMPGKAADE VSDAQLGL ROL ROMPGKAADE VSDAQLGL ROL ROT PGKAADE VSDAQLGL 1,500	LERLRESRPSWRLCFEVLDN RLERLRESRPSWRLCFEVLDN RLERLRESRPSWRLCFEVLDN RLEHLRESRPSWRLCLEVLDN RLERLRESRPSWRLCLEVLDN RLERLRESRPSWRLCLEVLDN RLERLRESRPSWRLCLEVLDN RLERLRENRPSWRLCLEVLDN 1.520	1432 1432 1307 1432 1432 1432 1432 1432
A. citriarbusti A. tenussima A. alternata A. limoniasperae A. tangelonis A. fragariae A. mali A. turkisafria	LPSIIRGETDALDLLFTTPVAHDL LPSIIRGETDALDLLFTTPVAHDL LPSIIRGETDALDLLFTTPVAHDL LPSIIRGETDALDLLFTTPVAHDL LPSIIRGETDALDLLFTTPVAHDL LPSIIRGETDALDLLFTTPVAHDL LPSIIRGETDALDLLFTTPVAHDL LPSIIRGETDALDLLFTTPVAHDL	/DAFFRRTCNKKLYNYLEL /DAFFRRTCNKKLYNYLEL /DAFFRRTCNKKLYNYLEL /DAFFRRTCNKKLYSYLVL /DAFFRRTCNKKLYSYLEL /DAFFRRTCNKKLYSYLEL /DAFFRRTCNEKLYNYLEL /DAFFRRTCNEKLSRYLEL	I VHQNPNQK I LE VGAGTGGMT I VHQNPNQK I LE VGAGTGGMT	NQ I LTMLHQI EQRTGGTSFRE NQ I LTMLHQI EQRTGGTSFRE	1517 1517 1392 1517 1517 1517 1517 1517

		1.540	1.560	1.580	1.600		
Aci	itriarbusti	YVYTDISPAYFEGAGEREV	TYGSBMTEKTVDLESDISAN	LEPGSCDMLLAGSVI HATK	NI AKTMENI BRALKPGGO		1602
A. te	enussima	YVYTDISPAYFEGAGERFV	TYGSRMTFKTVDLESDISAN	I EPGSCDMILAGSVLHATK	NLAKTMRNLRRALKPGGQ	LVFLEITQA	1602
Α.	alternata	YVYTDISPAYFEGAGERFV	TYGSRMTFKTVDLESDISAN	I E P G S C D M I L A G S V L H A T K	NLAKTMRNLRRALKPGGQ	LVFLEITQA	1477
A. limon	iasperae	YVYTDISPAYFEGARERFA	NYGSRMTFKTIDLESDISAN	I E P G S C D M I L A G S V L H A T K	NLARTMRNLRCALKPGGQ	LVFLEITQA	1602
A. ta	angelonis	YVYTDISPAYFEGARERFA	NYGSRMTFKTVDLESDISAN	IEPGSCDMILAGSVLHATK	NLAKTMRNLRRALKPGGQ	LVFLEITQA	1602
Α.	fragariae	YVYTDISPAYFEGARERFA	NCGSRMTFKTIDLESDISAN	IEPGSCDMILAGSVLHATK	NLAKTMRNLRRALKPGGQ	LVFLEITQA	1602
	A. mali	YVYTDISPAYFEGARERFA	NYASRMTFKTIDLESDISAN	I EPGSCDMVLAGSVLHATK	NLARTMRNLRSALKPGGQ	LVFLEITQA	1602
A. ti	urkisafria	YVYTDISPAYFEGARERFA	NYGSRMTFKTIDLESDISAN	I EPGSCDMIFAGSVLHATK	NLAKTMRNLRRALKPGGQ	LVFLEITQA	1615
		1.620	1.640	1.660	1.680	1.700	
A ci	itriarbueti				ANVVTLLTSTAFKTDKAV	TEVERVIII	1697
Α. U	nueeima	PECEPMGEGEGVL PGWWCA	EETSREWCPTLTEVOWDVLL	KETGETGNELLVKDVEDPE	ANYVTIITSTAEKTPKAV	TEVSRVLLI	1687
Δ	alternata	PECEPMGEGEGVLPGWWCA	EETSBEWCPTLTEVOWDVLL	KETGETGNELLVKDVEDPE	ΔΝΥΥΤΙΙΤSTAFKTPKAV	TEVSBVILL	1562
A. limon	iasperae	PECFPMSFGFGVLPGWWCA	EETSREWCPTLTEVOWDVLL	KETGFTGNELLVKDYEDPF	ANYVTIITSTAEKTSKAV	IEVSBMLLV	1687
A. ta	angelonis	PECFPMSFGFGVLPGWWCA	EETSREWCPTLTEVQWDVLL	KETGFTGNELLVKDYEDPF	ANYVTIITSTAEKTSKAV	IEVSRVLLV	1687
Α.	fragariae	PECFPMSFGFGVLPGWWCA	EETSREWCPTLTEVQWDVLL	KETGFTGNELLVKDYEDPF	ANYVTIITSTAEKTSKAV	TEVSRVLLI	1687
	A. mali	PECFPMSFGFGVLPGWWCA	EETSREWCPTLTEMQWDVLL	KGTGFTGNELLVKDYEDPF	ANYVTIITSTAEKTSKAA	IEVSRVLVV	1687
A. ti	urkisafria	PECFPMSFGFGVLPGWWCA	EETSREWCPTLTEVQWDVLL	KETGFTGNELLVKDHEDPF	ANYVTIITSTAEKTPKAL	IEVSRVLLI	1700
		1.	720 1	740	1.760	1.780	
A ci	itriarbueti	INDHDKOOGDI ABGVSTAL	SASETCOVVVETISDIAEAK		EPSKDEERI VOTWI OOSK		1772
Δ te	anussima	INDHDKOOGDLABGVSTAL	SASETCOVVVETLSDIAEAK	VSPSDCILELADIOGSILA	EPSKDEEBL VOTWLOOSK		1772
A.	alternata	INDHDKQQGDLARGVSTAI	SASFTCOVVVFTLSDIAEAK	VSPSDCILFLADIQGSILA	EPSKDEFRLVQTWLQQSK	HLLWVTAAL	1647
A limon	iasperae	INDHDEQQEDLAQAVSTAI	SASFTCQVIVFTLSDIAEAE	VGPSDCILFLADMQGSILA	EPSQDEFRMVQTWLQQSK	HLLWVTAAL	1772
A. ta	angelonis	INDHDEQQEDLAQAVSTAI	SASFTCQTVVFTLSQIAEAE	VSPSDCILFLAEMQGSILA	EPSKDEFRLVQTWLQQSK	HLLWVTAAL	1772
Α.	fragariae	INDHDEQQENLARAVATAI	SASLTYQVTVITLSHIAEAE	VSPSDCILFLADIHGSILA	EPSKDEFRLIQTWLQQSK	YLLWVTAAL	1772
	A. mali	INDHDEQQRSLARAVSTAI	SASFTCEVILFTLSHIAEAE	IGPSDCILFLADMQGSILA	EPSRDEFRLVQTWLQQSK	HLLWVTAAL	1772
A. ti	urkisafria	INNHDEQQENLARAVSTAI	SASFTCQVIVFTLPDIAEAK	VGPSDCILFLADMQGSILA	EPSKDEFRLIQTWLQQSK	HLLWVTAAL	1785
		1.800	1.820	1.840	1.860		
A	itriorbuoti	TEOOSEBCTELKDCLLBVL		LOLCOOXLYOVERSAEEDA			1057
A. C	nuesima	TSOOSSPETSIKDGLIBVI	RAENNSKRIJSLILEHDASD		SPELETMVRDGKIMIGRL	VEEADLNRD	1857
Δ	alternata	TSOOSSPCTSIKDGLLBVI	BAENNSKBLISLTLEHDASD	IQICQQYIVQVERSAFEDA	SPEL EYMVBDGKIMTGRL	VEEADLSED	1732
A limon	iasperae	TSOOSSPCTSIKDGLIBVI	BAENNSKRIJSITIEHDASD	IQVCQQCIVQVEBSAFEDA	SPELEYTVBDGKIMTGBL	VEEADLNBD	1857
A. ta	angelonis	TSQQFSPCTGIKDGLLBVI	RAENNSKRIJSLTLEHDASD	IQICQQYIVQVFHSAFEDA	SPELEYMVQDGKIMTGRL	VFEADLNRD	1857
Α.	fragariae	TSQQFSPCTSIKDGLLRVI	RAENNSKRIISLTLEHDASD	LQVCQQCILQVFRSAFDDA	SPELEYTVRDGKIMTGRL	VFEVGLNRD	1857
	A. mali	TSQQFSPCTSIKDGLLRVI	RAENNSKRIISLTLKHDASD	IQICQQCIVKVFRSAFENV	SPELEYTVRDGKIMTGRL	VFEADLNRD	1857
A. ti	urkisafria	TSQQFSPCTSIKDGLLRVI	RAENNSKRIISLTLEHDASD	LQVCQQCIVQVFRSAFEDA	SPELEYTVRDGKIMTGRL	VFEAGLNRD	1870
		1.880	1.900	1.920	1.940		
<u>م</u>		VVCCMCD I TOUCAWL DODD		VOCELODIELELETOAWAY			1010
A. CI	Interbusu	VVSCMSPITRHEAWLPGPP		VDTEL CDTELELETOAWAW	GFRDVFGALGRLDENEFG		1942
Α. ιε	alternata	VVSCMSPTTRHEAWLPGPP		VSSEL GRIELELELETOAWAW	GERDVEGALGRI DENEEG	TDCAGTVRR	1942
A limon	iasperae	VVSCMI PITRHEAWLPGPP		VSSEL GPTELELETOAWAY	GEBDVEGALGBL DENEEG	TDCAGTVSB	1942
A ta	angelonis	VVSCMSPITBHEAWIPGPP		YPTELGPTELELETQAWAY	GEBDVEGAL GBL DENEEG	TDCAGTVBB	1942
A. 10	fragariae	MVSCMLPITRHEAWLPGPP	LKLHVASRGSLESLCFIEDE	YSTELGPTEIEIETQAWAY	GFRDVFGALGRLDENEFG	TDCAGTVRR	1942
,	A. mali	VVSCMSPITRHEAWLPGPP	LKLHVASRGSLESLCFIEDE	YSSELGPTEIEIETQAWAY	GFRDVFGALGRLDENEFG	TDCAGTVRR	1942
A. ti	urkisafria	VVSCMLPITRHEAWLPGPP	LKLHVASRGSLESLCFIEDQ	YLTELGPTEIEVETQAWAV	GFRDVFGALGRLDENEFG	TDCAGKVTR	1955
		1.960	1.980	2.000	2.020	2.040	
A. CI	itriarbusti	VGSGCTQLCPGDRVSTSMF	GCMRTYVYCDEGDAIKVPDT	LSLEEACGVINPVMTAWHS		SGGTGQVAI	2027
A. te	enussima	VGSKCTQLRPGDRVSTSMF	GCMRTYVYCNEGDAIKVPDT			SGGTGQVAT	2027
A. limon	allemala	VGSGCTQLCPGDRVSTSMF				SGGTGQVAI	1902
	angelonis	VGSKCTOL BPGDBVSTSMF	GCMRTYVYCDEGDAIKVPDT			SGGTGOVAL	2027
Δ	franariae	VGSKCTOL BPGDBVSTSME	GCMBTYVYCDEGDAIKVPDT			SGGTGQVAI	2027
73.	A mali	VGPKCIQI BPGDBVSTSME	GCMBTYVYCDEGDAIBVPDT	I SI FFACGV INPVMTAWHS		SGGTGQVAI	2027
A. ti	urkisafria	VGSKCTQLRPGDRVSTSMF	GCMRTYVYCDEGDAIKVPDT	LSLDEACGVINPVMTAWHS	LVDVARLQKGEKILIHAA	SGGTGQVAI	2040
		2.	060 2	080	2.100	2.120	
A. CI	urlarbusti	OVAQMLGAEVYATVGYDHK				VGREVELCK	2112
A. IE	altornata	OVAOMLGAEVYATVGYDHK	KELLIKEVGI DAANIEVSPO			VCREVEICK	1097
A limon	iasnerae	OVAOMI GAEVYATVGYDHK	KELLIKEVGISAANIEVSBD			VGBEVELGK	2112
A ta	angelonis	QVAQMI GAEVYATVGYDHK	KELLIKEYGIPAANIEYSBD	LSFAQGIMBYTNGYGVDVV	LNSLVGEGOKASWECVAP	YGREVELGK	2112
A. 1	fragariae	QVAQMLGAEVYATVGYDHK	KELLIKEYGIPAANIFYSRD	LSFAQGIMRVTNGYGVDVV	LNSLVGEGLKSSWECVAP	YGREVEIGK	2112
	A. mali	QVAQMLGAEVYATVGYDHK	KELLIKEYGIPAANIFYSRD	LSFAQGIMRVTKGYGVDVV	LNSLVGEGQKASWKCVAP	YGRFVEIGK	2112
A. ti	urkisafria	QVAQMLGAEVYATVGYDHK	KELLIKKYGIPATNIFYSRD	LSFAQGIMRVTKGYGVDVV	LNSLVGEGQKSSWECVAP	YGRFVEIGK	2125
		2.140	2.160	2.180	2.200		
۸ ما	itriarhuati					DOTODVIVT	2407
A. C	nueeima	ADIYANSPLPMASPANNRS	ESAVDI DDI AEHDDEASDAI		NKERVSALEDAERYMOTO	RETORVIVI	2197
Δ	alternata	ADI VANSPI PMASEANNES			NKERVSALEDAERVMOTG	RSTGRVIVT	2072
A limon	iasperae	AD LYANSPL PMASEANNES	ESAVDI BGI AFHRPEASBAL	EHKTMNI VOEKAIVCPTPI	NKEPVSALEDAEBYMOTG	BSTGBVIVT	2197
A. ta	ngelonis	ADIYANSPLPMASFANNRT	FSAVDLRDLAFHRPEASRAL	FHKTMNLVREKAIVCPTPL	NKFPVSAIEDAFRYMQTG	RSTGRVIVT	2197
Α.	fragariae	ADIYANSPLPMASFANNRS	FSAVDLRNLAFHRPEASRAL	FHKTMNLVQEKAIVCPTPL	NKFPVSAIEDAFRYMQTG	RSTGRVIVT	2197
	A. mali	ADIYANSPLPMASFANNRS	FSAVDLRDLAFHRPEASRAL	FHKTMNLVQEKAIRCPTPL	NKFPVSAIEDAFRYMQTG	RSTGRVIVT	2197
A. t	urkisafria	ADIYANSPLPMASFAHNRT	FSAVDLRDLAFHRPEASRAL	FHRTMNLVQEKAIFCPTPL	NKFPVSAIEDAFRYMQTG	RSTGRVIVT	2210
		2.220	2.240	2.260	2.280		
۸ a	itriarbusti			MISEGAKOLIVESESCERC	FAAFKIVIDALKSOVTU	TRSCDVSDM	2282
Λ. Cl Δ te	nussime		FAAYI VVGGI GGVGRSII RW	MITEGAKOL LVPSRSCPRC	FAAFKIVIDAIKSGVTIL	TPSCDVSDM	2282
Α. ιε	alternata	LDHGDVKNLIHBPTWTEDP	EAAYMVVGGLGGVGBSLLBW	MISRGAKOLIVPSRSGPRG	EAAFKIVIDAIKSGVTII	TPSCDVSDM	2157
A. limon	iasperae	LNHGDVKNLIHRPTWTFDP	EAAYLVVGGLGGVGRSILRW	MISRGAKQLIVPSRSGPRG	EAAFKIVIDAIKSGVTIL	TPSCDVSDM	2282
A. ta	ingelonis	LDHGDVKNLIHRPTWTFDP	EAAYLVVGGLGGVGRSILRW	MITRGAKQLIVPSRSGPRG	EAAFKIVIDAIKSGVTIL	TPSCDVSDM	2282
A. 1	fragariae	LNHGDVKNLMHRPTWTFDP	EAAYLVVGGLGGVGRSILRW	MISRGAKQLIVPSRSGPRS	EAAFKIVIDAIKSGVTIL	TPSCDVSDM	2282
	A. mali	LDHGDVKNLIHRPTWKFDP	EAAYLVVGGLGGVGRSILRW	MISRGAKQLIVPSRSGPRG	EAAFKTVIDAIKSGVTIL	TPSCDVSDM	2282
A. t	urkisafria	LDHGDVKNLIHRPAWTFDS	EAAYLVVGGLGGVGRSILRW	MISRGAKQLIVPSRSGPRG	EAAFKIVIDAIKSGVTIL	TPSCDVSDM	2295

A. citriarbusti A. citriarbusti A. tenussima A. alternata A. alternata A. alternata A. alternata A. alternata A. alternata A. alternata A. SLKLMLDECAPVVGPI RGC I NAAMV LQDS I FDNMTHAQWKKT I DSKVK SSWN LHALL PNDLDFFI LLSSAAGVLGNAGOSNYAA A. alternata A. SLKLMLDECAPVVGPI RGC I NAAMV LQDS I FDNMTHAQWKKT I DSKVK SSWN LHALL PNDLDFFI LLSSAAGVLGNAGOSNYAA A. tangelonis A. SLKLMLDECAPVVGPI RGC I NAAMV LQDS I FDNMTHAQWKKT I DSKVK SSWN LHALL PNDLDFFI LLSSAAGVLGNAGOSNYAA A. fragariae A. fragariae A. SLKLMLDECAPVVGPI RGC I NAAMV LQDS I FDNMTHAQWKKT I DSKVK SSWN LHALL PNDLDFFI LLSSAAGVLGNAGOSNYAA A. fragariae A. SLKLMLDECAPVVGPI RGC I NAAMV LQDS I FDNMTHAQWKKT I DSKVK SSWN LHALL PNDLDFFI LLSSAAGVLGNAGOSNYAA A. fragariae A. SLKLMLDECAPVVGPI RGC I NAAMV LQDS V FDNMTHAQWKKT I DSKVK SSWN LHALL PNDLDFFI LLSSAAGVLGNAGOSNYAA A. turkisafria A. SLKLMLDECAPVVGPI RGC I NAAMV LQDS V FDNMTHAQWKKT I DSKVK SSWN LHALL PNDLDFFI LLSSAAGVLGNAGOSNYAA A. turkisafria 2400 2400 240 240 240 240 240 240	2367 2367 2242 2367 2367 2367 2367 2380
A. terussima ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. alternata ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. alternata ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. limoniasperae ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. tangelonia ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. fragariae ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. mail AALKLMLDQCAPVVGSIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHAVLPNDLDFFILLSSAAGVLGNAGQSNYAA	2367 2242 2367 2367 2367 2367 2380 2452
A. alternata ASLKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHALL PNDLDFFILLSSAAGVLGNAGQSNYAA A. limoniasperae ASLKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHALL RNDLDFFILLSSAAGVLGNAGQSNYAA A. tangelonia ASLKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHALL PNDLDFFILLSSAAGVLGNAGQSNYAA A. tangelonia ASLKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHALL PNDLDFFILLSSAAGVLGNAGQSNYAA A. fragariae ASLKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHALL PNDLDFFILLSSAAGVLGNAGQSNYAA A. mail ALKLMLDQCAPVVGSI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHALL PNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafiria ALKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHALL PNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafiria ALKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHALL PNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafiria ASLKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHAVLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafiria ASLKLMLDECAPVVGPI RGC INAAMVLQDSI FDNMTHAQWKKT IDSKVKSSWNLHAVLPNDLDFFILLSSAAGVLGNAGQSNYAA	2242 2367 2367 2367 2367 2367 2380 2452
A. limoniasperae ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. tangelonia ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. fragariae ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. fragariae ASLKLMLDQCAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDQCAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHAVLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria 2400 2420 2400 <th>2367 2367 2367 2367 2380 2452</th>	2367 2367 2367 2367 2380 2452
A. tangelonis ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. fragariae ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. mali AALKLMLDQCAPVVGSIRGCINAAMVLQDSVFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. mali AALKLMLDCCAPVVGSIRGCINAAMVLQDSVFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDECAPVVGSIRGCINAAMVLQDSVFDNMTHAQWKKTIDSKVKSSWNLHAVLPNDLDFFILLSSAAGVLGNAGQSNYAA 2.400 2.420 2.440 2.440 2.460	2367 2367 2367 2380 2452
A. fragariae ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. mali AALKLMLDQCAPVVGSIRGCINAAMVLQDSVFDNMTHAQWKKTTDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDECAPVVGPIRGCINAAMVLQDSVFDNMTHAQWKKTIDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHAVLPNDLDFFILLSSAAGVLGNAGQSNYAA 2.400 2.420 2.440 2.460	2367 2367 2380 2452
A. mali AALKLMLDQCAPVVGSIRGCINAAMVLQDSVFDNMTHAQWKKTTDSKVKSSWNLHALLPNDLDFFILLSSAAGVLGNAGQSNYAA A. turkisafria ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHAVLPNDLDFFILLSSAAGVLGNAGQSNYAA 2400 2.420 2.440 2.460	2367 2380 2452
A. turkisafria ASLKLMLDECAPVVGPIRGCINAAMVLQDSIFDNMTHAQWKKTIDSKVKSSWNLHAVLPNDLDFFILLSSAAGVLGNAGQSNYAA 2400 2.420 2.440 2.460 2.460	2380 2452
2,400 2,420 2,440 2,460	2452
	2452
	2452
A alternata GCTFQDALSSFRNSQERKAVSIDLGLMSTVGFVAENEGVKKTLERYEGLBAIDEAEFLALMDILCDLEHPPNLSTINGQVTMGIT	2327
A. limoniasperae GCTFQDALSSFRKSQGRKAVSIDLGLMSTVGFVAENEDVRKTLERYQGLRAIDEEFLALMDILCDPEHPPNLSTINGQVTMGIT	2452
A. tangelonis GCTFQDALSSFGKSQGRKAVSIDLGLMSTVGFVAENEDVRKTLERYQGLRAIDEGEFLALMDILCDPEHPQNLSTVNGQVTMGIT	2452
A. fragariae GCTFQDALSSFRKSQGRKAVSIDLGLMSTVGFVAENEGVKKTLERYEGLRAIDEAEFLALMDILCDLEHPTNISTINGQVTMGIT	2452
Ă. mali GCTFQDALSSFRKSQGRKAVSIDLGLMGTVGFVAENEGVKKTLERYEGLRAIDEAEFLALMDILCDPEHPPNLSTVNGQVTMGIT	2452
A. turkisafria GCTFQDALSSFRKSQGRKTVSIDLGLMSTVGFVAENEGVKKTLERYEGLRAIDEAEFLALMDILCDLEHPPNISTINGQVTMGIT	2465
2.480 2.500 2.520 2.540	
	2527
	2537
A alternate T ADDI AL DISTRIMENTIONS FAVEVOTEAMASSSMOANGVISAAL FROAFSVEEDRVVVESL VRK LABAL SMSL EDVDTDKAL	2007
A limonasperae TPADIAL DNGTMPMEHMHQSL FAYEVQTEAMASSSMQANGVNSAAL FBQAESVEEMDBLVVESLVBK LVBALSMSL EDVDTDKAL	2537
A tagelonis TPADIAL DNGTMPMEHMHSL FAYEVQTEAMASSSMQANGVNSAAL FBQAESVEEMDRVVVESI VRK LABAL SMSL EDVDTDKAL	2537
A fragariae TPADLVLDNGTMPMEHMHQSLFAYFVQTEAMASSSMQANGVNSAALFBQAESVEEMDRVVVESLVRKLABALSMSLEDVDTDKAL	2537
A. mali TPADLALDNGTMPMVHMHQSLFAYFVQTEAMASSSMQANGVNSAALFRQAESIEEMDRIVVESLVRKVARALSMSLEDVDTDKAL	2537
A. turkisafria TPADLALDNGTMPMEHMHQSLFAYFVQTEAMASSSMQANGVNSAALFRQAESVEEMDRIVVESLVRKIARALSMSLEDVDTDKAL	2550
2.560 2.580 2.600	
A. CITIATOUSTI HEYGVOSEVAVEI INNI I KEYMADVPVFELMSGKSI LAIAQUVI KNSQI TIKI I VAKA 2593	

Role of the Alternaria alternata Blue-Light Receptor LreA (White-Collar 1) in Spore Formation and Secondary Metabolism

Sonja Pruß,^a Ramona Fetzner,^a Kristin Seither,^a Andreas Herr,^a Erika Pfeiffer,^c Manfred Metzler,^c Christopher B. Lawrence,^b Reinhard Fischer^a

Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany^a; Virginia Bioinformatics Institute & Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA^b; Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Department of Food Chemistry, Karlsruhe, Germany^c

Alternaria alternata is a filamentous fungus that causes considerable loss of crops of economically important feed and food worldwide. It produces more than 60 different secondary metabolites, among which alternariol (AOH) and altertoxin (ATX) are the most important mycotoxins. We found that mycotoxin production and spore formation are regulated by light in opposite ways. Whereas spore formation was largely decreased under light conditions, the production of AOH was stimulated 2- to 3-fold. ATX production was even strictly dependent on light. All light effects observed could be triggered by blue light, whereas red light had only a minor effect. Inhibition of spore formation by light was reversible after 1 day of incubation in the dark. We identified orthologues of genes encoding the *Neurospora crassa* blue-light-perceiving white-collar proteins, a cryptochrome, a phytochrome, and an opsin-related protein in the genome of *A. alternata*. Deletion of the white-collar 1 (WC-1) gene (*lreA*) resulted in derepression of spore formation in dark and in light. ATX formation was strongly induced in the dark in the *lreA* mutant, suggesting a repressing function of LreA, which appears to be released in the wild type after blue-light exposure. In addition, light induction of AOH formation was partially dependent on LreA, suggesting also an activating function. *A. alternata* Δ *lreA* was still able to partially respond to blue light, indicating the action of another blue-light receptor system.

A *lternaria* is a genus of filamentous ascomycetes containing many species of economic importance, including saprophytes, phytopathogens, and zoopathogens. Many *Alternaria* species are potent producers of mycotoxins and allergens, properties which may directly affect human life. Every year, large amounts of food and feed are contaminated and destroyed because of *Alternaria* growth and toxin production. Worldwide epidemiological studies indicate that *Alternaria* sensitivity is closely linked with the development of asthma (1). Despite the great importance of *Alternaria* species, little is known about the molecular biology underlying *Alternaria* biology.

A. alternata is a widespread saprophytic species which produces a wide variety of different secondary metabolites, among which are the mutagenic mycotoxins alternariol (AOH) and altertoxin (ATX) (2-4). For AOH and its monomethylether (AME), it has been shown recently that they have potential to cause DNA double-strand breaks in mammalian cells in vitro (5). The altertoxins ATX-I, -II, and -III are mutagenic in the Ames test and are more potent and acutely toxic to mice than AOH and AME (6). Surprisingly, it is not clear yet how AOH or ATX is produced or how their production is regulated. Alternariol biosynthesis requires the activity of a polyketide synthase, 10 of which were identified recently in the genome. One of them, PksJ, was identified to catalyze the initial steps of alternariol biosynthesis (7). It was already reported 30 years ago that blue light reduced alternariol production in A. alternata (8). Blue light has also been reported to inhibit sporulation in A. tomato and A. cichorii. The effect was, in addition, temperature dependent and occurred only in mature conidiophores (9). These observations suggest that Alternaria species are able to sense and respond to light. It has been well established, meanwhile, that many fungi are able to respond to light and employ one or several photoreceptors (10-12). The existence of light receptors in filamentous fungi has been shown for Neurospora crassa, Aspergillus nidulans, Coprinus cinereus, Cryptococcus neoformans, Phycomyces blakesleeanus, and Physarum polycephalum and for many others. Some of them possess receptors for blue, red, and green light and are therefore able to sense light over a broad spectral range. The perception of light in these fungi has been shown to influence asexual conidiation, sexual development, pigmentation, the circadian clock, and secondary metabolism (10, 12). The blue-light response often seems to be the most important one; e.g., all light-dependent processes in *N. crassa* are regulated by UV or blue light (13, 14). In contrast, *A. nidulans* responds well to red light in addition to blue light (15, 16). It was discovered recently that the blue- and red-light-sensing chromoproteins along with some additional proteins form a light-regulator complex in this fungus (17).

Here we studied the effect of light on the regulation of spore formation and mycotoxin production in *A. alternata* and assigned a function to LreA, the white-collar 1 (WC-1) orthologue, as the main photoreceptor in this fungus.

MATERIALS AND METHODS

Culture conditions and harvesting of spores. Alternaria alternata DSM 12633 cultures were grown on modified Czapek Dox broth (mCDB) agar if not stated differently and incubated 1 to 7 days at 28°C. For white-light experiments, a 10-W energy-saving lamp (Flair energy) was used; for red-

Received 29 January 2014 Accepted 7 February 2014 Published ahead of print 14 February 2014 Editor: A. A. Brakhage Address correspondence to Reinhard Fischer, reinhard.fischer@KIT.edu. Copyright © 2014, American Society for Microbiology. All Rights Reserved. doi:10.1128/AEM.00327-14 and blue-light conditions, light-proof, ventilated boxes with wavelength (450- and 680-nm)-specific LEDs were used. The intensities of the blueand red-light-emitting diodes (LEDs) were measured at 0.72 W/m² and 1.45 W/m², respectively.

All plates were inoculated with 5 \times 10⁴ spores. For quantification, the spores were harvested in sterile H₂O, filtered for separation from the mycelium, and centrifuged. The pellet was resuspended in 5 ml H₂O, and the optical density at 600 nm (OD₆₀₀) was measured with a spectrophotometer (Pharmacia Ultraspec III). The relation of the OD₆₀₀ to the amount of spores was calculated before via counting spores in a Helber chamber. All experiments were done with three technical replicates.

Analysis of mycotoxins using TLC and LC/MS. For the extraction of mycotoxins, three disks from each plate were excised with the back of a blue pipette tip and extracted by shaking with 1 ml ethyl acetate for 1 h. The solvent was vaporized in a SpeedVac and the pellet resolved in 60 μ l ethyl acetate. A 20- μ l volume was used for thin-layer chromatography (TLC) with a mobile phase composed of toluole, ethyl acetate, and formic acid (5:4:1) on silica plates (Merck TLC silica gel 60) and visualized under UV light at 365 nm. As a standard, TLC-prepared AOH was used. For liquid chromatography-mass spectrometry (LC/MS) analysis, the same extracts were used but the ethyl acetate was evaporated and the pellet resolved in 100 μ l methanol.

LC-DAD-MS analysis. A LXQ Linear Ion Trap multiple-stage MS (MSn) system (Thermo Fisher Scientific, Waltham, MA) together with a Finnigan Surveyor high-performance LC (HPLC) system equipped with a binary pump, autosampler, diode array detector (DAD), and Xcalibur 2.0.7 software for data collection and analysis was used. This allowed on-line analysis of UV absorption and MS. Extracts (10 µl) were injected. Separation was carried out on a 5-µm-pore-size, reversed-phase Luna C8 column (Phenomenex, Torrance, CA) (250 mm by 4.6 mm inside diameter [id]). Solvent A was deionized water, and solvent B was acetonitrile (CAN). A gradient was started at 30% B and was changed from 30% B to 100% in 20 min. After the column was eluted with 100% B for 10 min, the initial 30% B was reached in 3 min. The flow rate was 0.5 ml/min. The mass spectrometer was operated in the negative electrospray ionization (ESI) mode. Nitrogen was used as the sheath gas, auxiliary gas, and sweep gas, with flow rates of 40.0, 10.0, and 0.02 liters/min, respectively. Spray voltage was 5.5 kV, spray current 0.05 µA, capillary voltage -1.0 V, capillary temperature 300°C, and tube lens voltage -69.89 V. For MSn analysis, the collision-induced dissociation (CID) voltage was set to 1.75 V.

Generation of an IreA deletion strain by fusion PCR. For the fusion of *lreA* upstream and downstream regions to a selection marker cassette, the protocol of Szewczyk and coworkers was essentially followed (18). One-kilobase upstream and downstream regions of the *lreA* open reading frame (ORF) were amplified with primers wc1_LB_fw_P1, wc1_LB_rv_P3, wc1_RB_fw_P4. and wc1_RB_rv_P6. P3 and P4 contain overhangs complementary to the ends of the hygromycin B cassette used as the selection marker and amplified with primers hph_sfia_fw_neu2 and hph_sfib_rv_neu2 from the pPK2 vector (kindly provided by N. Requena, Karlsruhe, Germany). The sequences of all primes are listed in Table 1. The cassette consists of the gpdA promoter from A. nidulans, the hygromycin phosphotransferase gene from Escherichia coli, and the trpC terminator from A. nidulans. The borders and cassette were amplified via fusion PCR in one step with nested primers wc1_P2 and wc1_P5. As the polymerase, PrimeStar polymerase (TaKaRa Bio Inc., Japan) was used. PCR conditions were as follows: an initial denaturing step at 98°C for 2 min, followed by 25 cycles of 10 s of denaturation at 98°C, 7 s of annealing at 60°C, 55 s of elongation at 72°C with an increase of 10 s per cycle, and a final elongation at 72°C for 7 min. The purified product was directly used for transformation.

For control PCRs, *Taq* polymerase was used with primers wc1_ up_LB_fw2 and Hyg_gpd_rv for the left border and Hyg_end_fw and wc1_p6 for the right border. Southern blot analyses were performed following standard procedures (19).

TABLE 1	Primers	used i	in this	study ^a

Primer	Sequence ^a
wc1_LB_fw_P1	TCCAGAGGGAAGTGACATGG
wc1_P2	GAGCAACTCCAAGGTAACGTC
wc1_LB_rv_P3	CGTATTTCAGTGTCGAAAGATCTGTAAG
	GTTGGGATGCGAAG
wc1_RB_fw_P4	CCCACTCCACATCTCCACTCGATTTTCC
	TCTTCTGTTTCGTGTC
wc1_P5	ACGTTCCTCATTCTGCTTCC
wc1_RB_rv_P6	GCCCCCCAATCTAGTTGTAAT
hph_sfia_fw_neu2	GGCCATCTAGGCCCCGGGGATCTTTCG
	ACACTGAAATACG
hph_sfib_rv_neu2	GGCCTGAGTGGCCGGTCGAGTGGAGA
	TGTGGAGTGGG
wc1_up_LB_fw2	CTGTCTTGTCTCCGTCTTTG
hyg_gpd_rv	CTCGACGTATTTCAGTGTCG
hyg_end_fw	GTCCGAGGGCAAAGGAATAG
pksC_RT_fwd	GCCAATGAAGACGGCCAC
pksC_RT_rev	CCGATCCAACTGTGTTCAG
pksD_RT_fwd	CGTGTTTGTTGGCACGATG
pksD_RT_rev	GAGATCTACTGCGATCATGC
pksA_RT_fw	AGTTCCGCCCGCTATCGCTCGTC
pksA_RT_rv	GTAACGCCAATCGCGGATACCGAGCAAT
J_RT_fwd_N	GTCCCAAATTCCTACCCTCAC
J_RT_Rv_N	GATAGCCATCGAAAGCATTCCC
lreA_P1	GTGACTTCAAGAGAGATGATG
lreA_P2	TCCAGAGGGAAGTGACATGG
lreA_P3	GTAGTTGGCATTGGCTTTCCCTAGGCCC
	CCCAATCTAGTTGTAATC
nptII_P4	CCTAGGGAAAGCCAATGCCAACTACGAC
	GTTAACTGATATTGAAGGAG
nptII_P5	AACCCAGGGGCTGGTGA
nptII_P6	GCTGAGGAACTTGCAAAGCA

^{*a*} Orientation, $5' \rightarrow 3'$. Overhangs and restriction sites are indicated in italics.

Protoplast transformation of A. alternata. The transformation procedures based on the protocol of A. brassicicola (20) were used, with modifications. Fungal spores were harvested from a mCDB culture plate, filtered, and inoculated into 100 ml Richard's liquid medium (sucrose at 20 g/liter, KNO₃ at 10 g/liter, KH₂PO₄ at 5 g/liter, MgSO₄·6H₂O at 2.5 g/liter, yeast extract at 1 g/liter) for 19 to 24 h at 30°C and 150 rpm. The mycelium was harvested by filtering, washed with 0.7 M NaCl, and digested in a Kitalase (Wako Chemicals) suspension (60 mg in 6 ml 0.7 M NaCl) for 1 h with soft shaking at 80 rpm and 30°C. Protoplast quality and quantity were checked via microscopy. Protoplasts were separated by filtering through miracloth and glass wool and washed with 0.7 M NaCl by centrifugation at 7,000 rpm and 4°C for 10 min, followed by a second washing step with STC (1 M sorbitol, 50 mM CaCl₂, 50 mM Tris-Cl, pH 8.0). The pellet was resuspended in 200 to 500 µl STC, and protoplasts were counted in a Helber chamber. Protoplasts (4×10^6) were prepared for DNA absorption by 1 min of incubation at 37°C. A 4-µg volume of DNA was added, and the mixture was incubated on ice for 30 min. Cells were subjected to heat shock for 2 min at 42°C and, after addition of 2 ml PEG (40% polyethylene glycol [PEG] 4000, 50 mM Tris-Cl [pH 8.0], 50 mM CaCl₂), incubated for 20 min at room temperature. The suspension was spread on regeneration medium containing hygromycin B (HygB) (1 M sucrose, 0.5% caseic acids, 0.5% yeast extract, 80 µg/ml HygB) and incubated for 3 days at 28°C.

Purification of transformants. Transformation results were confirmed via PCR and Southern blot analysis with probes against hygromycin phosphotransferase and *lreA*. Because only heterokaryotic strains were obtained, strains were purified via 3 rounds of single-spore isolation and 1 round of protoplast isolation.

FIG 1 Scheme of A. alternata proteins involved in light regulation in other fungi. Predicted intron borders were not confirmed experimentally. The number of amino acids is given to the right of each protein structure. The protein sequences were derived from the genomic sequence.

Expression analysis. Cultures were grown for 2 days in the dark in static liquid cultures at 28°C and subsequently for 1 h in blue light (450-nm wavelength). The mycelium was dried, frozen in liquid nitrogen, and crushed with glass beads in buffer RLT (Qiagen, Hilden, Germany) (without mercaptoethanol) using a Retsch MM 200 mixer mill. RNA was extracted with a Qiagen RNeasy Plant minikit (Qiagen, Hilden, Germany) following the manufacturer's instructions. Gene expression in the wild-type strain and in the transformants was analyzed by quantitative real-time PCR in an iCycler iQ detection system from Bio-Rad. For expression analysis of the polyketide synthases, cultures of the wild-type and transformant strains were incubated for 7 days in the dark or in white light in static liquid cultures at 28°C. The mycelium was dried, frozen in liquid nitrogen, and crushed. RNA was then extracted with a Qiagen RNeasy Plant minikit (Qiagen, Hilden, Germany). Primers are listed in Table 1.

Recomplementation of the *lreA* **deletion strain.** For the recomplementation of the $\Delta lreA$ strain, a fusion construct was used. First, *lreA*, including the putative promoter and terminator regions and a linker, was amplified with primers lreA_P1 and lreA_P3. The Geneticin resistance gene was amplified with primers nptII_P4, which also contains the linker, and nptII_P6. With primers lreA_P2 and nptII_P5, a fusion product of *lreA* and the Geneticin resistance gene was amplified. This PCR product was directly used after a purification step for transformation. A total of 12 transformants growing in the presence of the aminoglycoside antibiotic Geneticin were tested by PCR, and 1 was shown to be positive for *lreA*. Whether the strain was a heterokaryon or whether the original knockout cassette was replaced was not tested.

RESULTS

The *A. alternata* genome harbors orthologues of all known fungal photoreceptor proteins. The *A. alternata* genome has recently been sequenced using 454 deep sequencing technology, and a first draft of the genome sequence has been used to search for orthologues of proteins known from other fungi to be involved in light signaling. The complete genome sequence will be published elsewhere. Applying standard BLAST searches, orthologues for all three types of fungal photoreceptors, i.e., for the three light qualities red, blue (and UV), and green, have been identified. In detail, there are orthologues of the white-collar 1 and 2 proteins, one orthologue of a cryptochrome, a phytochrome, and an opsin-related protein. This composition of photoreceptors resembles that in *A. nidulans* (12). In contrast, *N. crassa* harbors two phytochromes and the zygomycetes *Phycomyces blakesleeanus* and *Mucor circinelloides* employ several white-collar orthologues for bluelight perception (10, 21, 22). Therefore, the A. alternata proteins are mainly compared here to the ones from A. nidulans. The domain structures of the A. alternata photoreceptors have been analyzed with SMART, WoLFPSORT, epestfind, ELM, ScanProsite, and InterPro Scan software tools using standard parameters (Fig. 1). The putative A. alternata phytochrome is 1,511 amino acids (aa) long and harbors in the N-terminal part a PAS domain, a GAF domain, and a PHY domain and in the C-terminal part a histidine-related kinase domain, a HATPase domain, and a response regulator domain. As in A. nidulans, it contains two nuclear localization signals (NLS). The cysteine in the PAS domain of the phytochrome of A. nidulans is conserved in A. alternata, suggesting functionality of the protein. Following the nomenclature of A. nidulans, we named the white-collar proteins light regulator protein A (LreA) and LreB, respectively. LreA comprises 1,073 amino acids and harbors a LOV domain, two PAS domains, a GATA-type zinc finger domain, and a NLS. In N. crassa WC-1 and in many orthologues of this protein in other fungi, the chromophore is attached to a conserved cysteine residue in the LOV domain. This residue is also conserved in the A. alternata WC-1 homologue (data not shown). LreB is 442 amino acids long and contains a PAS domain and also a GATA-type zinc finger as well as a NLS. As a third blue-light receptor homologue, we found a putative cryptochrome with 680 aa, comprising a photolyase and a FAD binding domain, like the one in A. nidulans (23). The possible green-light receptor homologue NopA harbors a rhodopsin domain and is 310 aa long. The function of this protein is not well analyzed in A. nidulans, and it is not yet clear whether light perception via this protein is possible at all (our unpublished studies). In addition to the light receptors, we found a 604-aa homologue to the VeA protein which coordinates light signaling with fungal development and secondary metabolism in A. nidulans by taking part in a complex with the light receptors FphA, LreA, and LreB as well as in the velvet complex with VeB and LaeA (24-27). It contains a potential PEST domain like that in A. nidulans VeA, but a nuclear localization signal (NLS) or nuclear export signal (NES) was not found.

Blue light inhibits spore formation. Previous reports suggested that sporulation in *A. alternata* is light dependent and that the effective quality is blue light (28). In order to confirm this and

FIG 2 Inhibition of sporulation in blue light on two different media. (A) The upper row shows cultures grown for 6 days in constant darkness and the lower row cultures grown for 6 days in constant blue light. Growth is faster on rice flour agar. In blue light, formation of aerial hyphae is favored and sporulation is strongly inhibited. (B) Microscopic pictures of the colonies on top. The inset shows a multicellular spore in the process of germination. Bar, 20 μ m (inset bar, 5 μ m).

bring it into relation to the putative photoreceptors in A. alternata, we studied the effect of light on sporulation. We inoculated agar plates with a defined number of conidiospores and incubated the plates for 1 to 7 days in constant white light as well as constant dark and, later, additionally in blue (450 nm) and red light (680 nm). The cultures showed different colors of the mycelia, and a view under the light microscope revealed a drastic decrease of spore numbers on the plates incubated in constant blue light in relation to dark (Fig. 2). The experiment was done with two different media, mCDB and rice flour medium. The effect was the same on both, but because the fungus grows faster on rice flour medium, it produced more spores in the same time period. The larger number of spores in the dark-grown cultures was already visible by the naked eye, because the spores are black pigmented and thus the agar plates appear dark. To quantify this inhibitory effect, we harvested the spores and determined their numbers via optical density measurements (Fig. 3A). Blue light had nearly the same effect as white light, whereas the effect of red light was similar to that of dark conditions, with the exception of day 7 (Fig. 3B).

FIG 3 Spore numbers produced in different light qualities. (A) Cultures were incubated on mCDB agar plates for 7 days in constant white light or constant darkness at 28°C. Spores were harvested and counted every 24 h. (B) The same experiment with additional cultures in constant blue and constant red light. Blue- and white-light cultures show similar spore numbers, as do red-light and dark cultures. The difference in the red and dark samples on day 7 may be due to the large standard deviation in the dark samples.

Further on, we were interested in the time of blue-light exposure that is necessary for the inhibition of sporulation and tested different exposure times from 1 min to 24 h. Before the cultures were exposed to blue light, they were grown for 2 days in the dark, and after irradiation, the plates were put back in the dark for 18 h. A significant inhibition occurred after 2 or more h of blue-light irradiation (data not shown).

To address the issue of whether the inhibition effect persists or is reversible in the dark, we compared cultures that were incubated for 4 days in constant blue light or for 4 days in constant darkness to cultures that were grown for the first 3 days in blue light and afterward for 1 day in the dark. Whereas the blue-light cultures showed the expected sporulation reduction of about 50%, the sporulation in the dark-after-blue-light culture was nearly fully restored (92%; data not shown). This reversibility is not surprising if it is assumed that the phenotypic effects are caused by a bluelight regulator acting in the way WC-1 does.

Blue light stimulates mycotoxin production. Because *A. alternata* is known as producer of a large spectrum of secondary metabolites, we analyzed the effect of light on the amount of secondary metabolites by thin-layer chromatography (TLC). Häggblom and Unestam described an inhibitory effect of blue light on the production of alternariol (AOH) and alternariol monomethyl ether (AME) in 1979 (8). We inoculated mCDB agar plates in the way described above and incubated them for 7 days. Both mycelium and agar medium were extracted with ethyl acetate and an-

FIG 4 Thin-layer chromatography analysis of secondary metabolites in dependence of light and temperature. (A) Extracts from cultures grown for 7 days on mCDB agar at 28°C under conditions of constant darkness and of white, blue, and red light, respectively. AOH is marked by an arrow, the circle marks AME, and the asterisk marks ATX-I. The latter two are visible only under white- and blue-light conditions. For AOH, the amount is increased under these conditions. (B) Cultures grown 7 days on mCDB agar in darkness at different temperatures. AOH and AME are produced in the same amounts at 22, 25, and 28°C, but the production of both was strongly reduced at 30°C. Growth was not reduced at 30°C.

alyzed by TLC. It was confirmed that the dry weights of dark and blue-light cultures were the same. AOH was identified with a TLCprepared standard, and the yellow band running below the AOH band could be characterized as altertoxin I (ATX-I) in a LC/MS analysis. In addition, AME and ATX-II were identified, although for ATX-II the proposed structure relies as yet only on the m/zvalues and the UV absorption spectrum. All substances visible on our TLC plates were more abundant in white- and blue-lightgrown cultures, although the increases were different for different substances (Fig. 4A). The red-light extracts showed results very similar to those from the dark samples. Whereas AOH was already produced under constant dark conditions, ATX-I production strictly depended on light. The same results were obtained for extracts from cultures grown on rice flour agar (data not shown). The AOH amount on the TLC plates was quantified with InfinityCapt software. Considering the peak volume, AOH showed a 2-fold increase in blue light compared to the dark sample.

AOH and AME production is temperature regulated. Because the parameters for mycotoxin production in fungi may be divers, we checked, among other factors, the influence of the temperature on alternariol production. We tested four incubation temperatures and found no difference in the AOH or AME production when the strain was incubated at 22, 25, or 28°C. At 30°C, AME production was completely and AOH production nearly completely lost (Fig. 4B).

Deletion of the lreA white-collar homologue. To start the mo-

lecular analysis of light regulation in A. alternata, the role of lreA, the white-collar 1 orthologue, has been studied by gene deletion. One-kilobase *lreA* upstream (left) and downstream (right border) regions were PCR amplified and fused to the hygromycin B (*hph*) resistance cassette by fusion PCR (18). The 5.9-kb-long PCR product (4 µg) was directly used for protoplast transformation and homologous replacement of the *lreA* open reading frame (Fig. 5A to C). Transformants were analyzed by PCR and Southern blotting. The integration of the construct into the genome was proven by PCR with primers for the 1-kb hph gene (data not shown). Homologous integration of the construct was demonstrated by PCR using primers derived from the hygromycin B cassette and primers outside the left or the right border sequences (Fig. 5D). For two of the three transformants, the PCR results showed the expected bands for both sides. Southern blot analysis with a probe for hygromycin B confirmed the results (data not shown). However, a wild-type copy of *lreA* was still detectable by PCR and Southern blotting in all 3 transformants (data not shown). We anticipated that the transformants still harbored nontransformed wild-type nuclei as a heterokaryon. The other possibility of multiple copies in the genome was excluded because there was only one band detected in the Southern blot. To purify the mutants, 3 rounds of single-spore isolation were performed with no effect concerning the existence of the wild-type band. Therefore, protoplasts were generated and regrown to single colonies, 18 of which were further analyzed. In two of them, the wild-type band in the PCR with *lreA* primers was lost and the mycelium of these two strains appeared much darker on agar plates than that of the wild type (Fig. 5B, no. 4 and 5). The other 16 analyzed strains still showed the wild-type signal in the PCR and essentially the same phenotype as the wild type, as shown for no. 2 and 6 in Fig. 5B. For further studies, strain no. 4 was chosen. In Southern blot analyses with the *lreA* probe, the wild-type band was no longer visible in this strain and the *hph* probe still confirmed the homologous integration (Fig. 5E). This strain was recomplemented as described in Materials and Methods (Fig. 5C). As a final proof for the deletion of the *lreA* gene, real-time reverse transcription-PCR (RT-PCR) was performed also to identify small amounts of wildtype mRNA in the deletion strain. In comparison to wild-type results, *lreA* mRNA could no longer be detected. In contrast, the nonpurified heterokaryotic transformant showed a reduction in the expression level. Expression analysis of the recomplemented strain showed *lreA* expression like that of the wild type (Fig. 6F).

Spore formation in blue light is restored in the *lreA* **mutant and increased in the dark.** With confirmed deletion mutant no. 4 and the recomplemented strain, we analyzed the spore numbers in darkness and blue light in comparison to wild-type numbers. Given that spore formation is inhibited by blue light and that LreA is likely to be involved in blue-light signaling, we expected a release of the repression in the *lreA* mutant. Interestingly, after 7 days of culturing, the amount of spores in the *lreA* mutant strain grown under blue light was slightly higher than in the cultures kept in the dark. Surprisingly, the number of spores obtained in the dark in the *lreA* mutant was 1.61 higher than the number seen with the wild type. The recomplemented strain behaved like the wild type (Fig. 6). These results suggest that LreA acts as a repressor independently of light conditions. Evidence for LreA as a light sensor and activator came from the study of AOH formation.

Blue-light induction of AOH depends partially on LreA. The qualitative detection of the mycotoxins in the TLC assay already

FIG 5 Deletion of *lreA*. (A) Scheme for the homologous recombination of the knockout construct containing *lreA* left and right borders and a hygromycin B resistance cassette (hph) at the lreA locus. NdeI restriction sites used for the Southern blot are shown. The arrows in the upper part mark the sites of the primers and the sizes of the amplicons shown in panel D. (B) Phenotype of the wild-type (WT) strain and of 4 strains after the last purification step. Only no. 4 and 5 show a clear difference in comparison to the WT. (C) Colony pictures of the wild-type DSM 12633 strain, the recomplementation (Rec) strain, and the knockout strain of IreA. Colonies were grown 4 days on solid mCDB media. (D) Confirmation of homologous integration of the deletion construct by PCR with primers binding in the hph cassette and upstream or downstream of the regions used for the construct. (Left panel) Amplicon for the upstream region (1.7 kb). (Right panel) Amplicon for the downstream region (1.9 kb). As a marker, a 1-kb ladder (NEB) was used. (E) Southern blot analysis with a probe for IreA (left panel) confirms the deletion event. The correct integration is shown with a probe for hph (right panel). For the band pattern, see the scheme in panel A. (F) Expression analysis of IreA in the wild-type (WT) strain, the heterokaryotic (Het) strain, and the recomplemented (Rec) strain. Strains were incubated 2 days in static liquid culture at 28°C. Expression data of all strains were normalized to wild-type expression.

deletion strains grown in blue-light cultures in comparison to the wild type (data not shown). The increase of the production of AOH in blue light was reduced to only a small increase in the dark 🖸 blue ΔlreA Rec

FIG 6 Spore numbers in the A. alternata wild-type (WT) strain, the lreA knockout strain, and the recomplementation strain. Spores were harvested from the surface of an agar plate after 7 days of incubation either in blue light or in darkness. Three independent plates of each strain were analyzed, and the mean values for the three samples are displayed. The standard deviation is indicated.

indicated changes in the concentrations of mycotoxins in lreA

mutant, suggesting an activating function for LreA. In comparison, the wild type produced ATX-I only under blue-light conditions. Interestingly, the lreA mutant also produced this compound in the dark, suggesting a repressing function of LreA. To quantify these results, LC/MS analysis has been done with the same samples (Fig. 7A). The results for AOH in the wild type showed a 2.8-fold increase in blue light (Fig. 7B). In contrast, AOH in the lreA mutant was increased only slightly by a factor of 1.4 in blue light in relation to the dark. This residual blue-light induction suggests the presence of an alternative blue-light receptor, possibly the cryptochrome (Fig. 1).

Altertoxins I and II were not detectable in the dark in wild-type cultures. After blue-light exposure, ATX-I and ATX-II appeared. In the *lreA* mutant, the concentrations for ATX-I and -II were quite similar in blue light and darkness, with only a slight increase in blue light.

LreA controls the expression of several polyketide synthases. To test the influence of LreA on the expression level of genes involved in secondary metabolism, the expression of several polyketide synthases was measured in the wild-type strain in comparison to the $\Delta lreA$ mutant in darkness and white light (Fig. 8). Among the 10 polyketide synthase-encoding genes, 2 were silent and only 8 were expressed (7). From those, we have chosen pksA,

DSM12633

14

12

10

8

6

4

2

0

Spores / ml x 10⁶

FIG 7 LC/MS analysis of the secondary metabolite profile of the *A. alternata* wild-type (WT) strain and the *lreA* knockout strain. (A) Chromatogram of secondary metabolites extracted from the WT strain grown under blue-light conditions. *m/z* values are given for the most prominent peaks. Known and proposed structures are indicated in the legend. The peak for AOH exceeds the limit of the graph. (B) Secondary metabolite amounts in dark- and blue-light cultures in the WT and *lreA* knockout strains (in nmol/sample). The mycelial dry weights of cultures grown under conditions of blue light and of dark were similar. (C) Formula for alternariol and altertoxin I.

FIG 8 Expression analysis of selected polyketide synthases. Expression of *pksA*, *pksC*, *pksD*, and *pksJ* under dark and light conditions by the wild-type strain is compared to that of the Δ *lreA* mutant strain. All data are normalized to the wild-type dark situation.

because it is involved in melanin biosynthesis (29; R. Fetzner, M. Wenderoth, K. Seither, A. Herr, R. Fischer, submitted for publication), and *pksI*, because it is involved in alternariol biosynthesis (7). In addition, two genes of unknown function, *pksC* and *pksD*, were chosen. *pksA* was upregulated 2-fold in the wild type under light conditions. This stimulation did not occur in the $\Delta lreA$ mutant strain, suggesting an activating function of LreA. The levels of expression of *pksC* were similar in dark and light for the wild type but higher in the $\Delta lreA$ mutant in light, suggesting an inhibiting effect of LreA on the expression of *pksC* in light (Fig. 8). In the wild type, the expression of *pksD* was slightly (1.3-fold) upregulated under light conditions. In the $\Delta lreA$ strain, in contrast, the expression was upregulated about 2-fold in the dark as well as in light, which suggests an inhibiting effect of LreA independent of light. The expression of *pksJ* was 3.4-fold upregulated in light in comparison to the dark. In the deletion strain, the expression levels were similar in the two light situations. This indicates an inhibiting effect of LreA in darkness. This fits to the data obtained for alternariol formation, where the production is stimulated in the dark in the absence of LreA (Fig. 7B). In summary, our data suggest different roles of LreA at the promoters of different pks genes.

DISCUSSION

A. alternata is one of the most common fungal species and normally grows saprophytically. However, a number of different pathogenic variants have been described which produce certain plant-specific toxins. These variants cause necrotic disease on different plants (9, 30). Despite the wide distribution and the great economic impact, the number of molecular studies is rather limited. Only some genes have been analyzed by gene deletion; e.g.,

FIG 9 Working model for the LreA-dependent regulation of mycotoxin formation. Expression for AOH and ATX genes is differently regulated by LreA. In the case of AOH, gene expression takes place also in the dark, positively regulated by an unknown factor (left, upper panel). In light, LreA appears to additionally stimulate the expression and the transcription level is increased (left, lower panel). It is unknown whether the effect of LreA is direct or indirect. In contrast, LreA appears to repress the expression of the ATX genes. A complex of LreA and LreB as a transcriptional regulator is proposed in analogy to the situation in *N. crassa* and *A. nidulans*.

the role of peroxisomes in toxin formation has recently been addressed by deletion of a gene encoding a Pex6 homologue (31). In addition to methods for gene deletion by homologous replacement, high-throughput gene disruption methods have been established (20). Another possibility for gene inactivation is the use of RNA silencing, which has recently also been used in A. alternata (32). We encountered extreme difficulties in our efforts to obtain a clean *lreA* deletion strain. Apparently, heterokaryon formation is very common and a very stable situation. Clonal purification of strains is hindered by the fact that the asexual spores consist of several compartments, although the nuclear distribution in hyphae and during spore formation suggested earlier that spores are homokaryotic (33). We were unable to obtain homokaryotic strains by plating spores but had to generate protoplasts instead, rather suggesting that spores are heterokaryotic (Fig. 2, bottom panel, inset). Another big problem in the analysis of strains and their phenotypes is the large variability of A. alternata. Sometimes the color of the mycelium changes from green to brown or even orange. This might be due to epigenetic modifications or instabilities of the genome. There are several studies that describe a high level of genetic diversity in A. alternata (34-36) despite the fact that such great variations are more common for fungi with sexual development and that a sexual cycle for Alternaria spp. is not known. One indication for such genomic variabilities is the fact that A. alternata harbors a dispensable chromosome, on which the ACT toxin biosynthesis gene clusters are located (32). These properties of A. alternata may also explain some apparently contradictory results obtained in our study in comparison to work published earlier by Häggblom (8, 37). However, it has to be considered that the production of secondary metabolites is controlled by many parameters and is also linked to the primary metabolism. It has been reported recently that in A. nidulans, changes in the glucose concentration may have drastic effects on the light response (38). Häggblom performed drop culture experiments at a temperature of 20°C. We normally used 28°C because of the optimal growth of A. alternata at that temperature. Of course, we performed TLC experiments also with cultures grown at 20°C, but there was no difference from the results at 28°C. Häggblom also used another kind of light source in his blue-light experiments

whose intensity (0.21 W/m^2) was lower than that of the light source that we used and kept the dark controls wrapped in aluminum foil, which does often increase the water activity values. The water activity is one of the parameters that is able to influence mycotoxin production. For AOH, a maximum of production at an a_w value of 0.98 has been shown in other studies (39, 40). Given the complexity of the regulation and the as yet rather limited molecular insights into the regulatory networks, it is currently difficult to develop guidelines for food or feed storage to prevent toxin formation by *Alternaria* species. Much more work is clearly necessary to fully understand the production of secondary metabolites.

Another very interesting result of this study is that the whitecollar 1 homologue LreA has activating and repressing functions in A. alternata (Fig. 9). White-collar 1 has been studied very well in several fungi, and the molecular function is best known in the control of the circadian clock in N. crassa (41-44). Here, WC-1 forms a complex with WC-2 (WCC) which acts, for instance, as a positive regulator for the negative-feedback protein Frequency and the photoadaption protein Vivid (44, 45). It is light activated and directly binds to the promoters of light-regulated genes (46). We found that A. alternata LreA apparently fulfills a repressing function in the dark as well as an activating function in light in the control of secondary metabolism and sporulation. Interestingly, mycotoxin production is not coupled with sporulation, which was described for several mycotoxigenic genera, including Aspergillus (47), Claviceps, Penicillium, and Fusarium (26). In A. alternata, the highest toxin levels were obtained in blue light, where sporulation in contrast is strongly inhibited. The repressing function of a white-collar homologue has been reported before for A. nidulans, although the derepressing effect on conidiospore formation was very small (Purschwitz et al. [16]).

Although our results do not allow us to speculate further at the moment on a molecular model explaining how this repressing effect can be mediated and on the effect of light, the action as a repressor of the ATX-I and ATX-II biosyntheses is especially interesting because LreA might also repress other secondary metabolite biosyntheses. A complete profiling of secondary metabolites in an *A. alternata* wild type and the *lreA* mutant may reveal novel

secondary metabolites which are normally not produced under laboratory conditions. Recent studies, especially in *A. nidulans*, revealed that the induction of sleeping gene clusters is a potent strategy for the discovery of novel, bioactive secondary metabolites (48–50).

ACKNOWLEDGMENTS

This work was supported by the special program "Lebensmittel und Gesundheit" from the Baden-Württemberg Stiftung and the BMBF collaborative project NANOKAT (0316052C).

REFERENCES

- 1. Sanchez H, Bush RK. 2001. A review of *Alternaria alternata* sensitivity. Rev. Iberoam. Micol. 18:56–59.
- Brugger EM, Wagner J, Schumacher DM, Koch K, Podlech J, Metzler M, Lehmann L. 2006. Pathogenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicol. Lett. 164:221–230. http://dx.doi.org/10 .1016/j.toxlet.2006.01.001.
- Brugger EM, Wagner J, Schumacher DM, Koch K, Podlech J, Metzler M, Lehmann L. 2006. Mutagenicity of the mycotoxin alternariol in cultrued mammalian cells. Toxicol. Lett. 164:221–230. http://dx.doi.org/10 .1016/j.toxlet.2006.01.001.
- 4. Stack ME, Prival MJ. 1986. Mutagenicity of the Alternaria metabolites altertoxins I, II, and III. Appl. Environ. Microbiol. 52:718–722.
- Pfeiffer E, Eschbach S, Metzler M. 2007. Alternaria toxins: DNA strandbreaking activity in mammalian cells in vitro. Mycotoxin Res. 23:152–157. http://dx.doi.org/10.1007/BF02951512.
- Ostry V. 2008. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 1:175–188. http://dx.doi.org/10.3920/WMJ2008 .x013.
- Saha D, Fetzner R, Burkhardt B, Podlech J, Metzler M, Dang H, Lawrence CB, Fischer R. 2012. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in *Alternaria alternata*. PLoS One 7:e40564. http://dx.doi.org/10 .1371/journal.pone.0040564.
- Hägglom P, Unestam T. 1979. Blue light inhibits mycotoxin production and increases total lipids and pigmentation in *Alternaria alternata*. Appl. Environ. Microbiol. 38:1074–1077.
- 9. Rotem J. 1998. The genus Alternaria biology, epidemiology, and pathogenicity. APS Press, St. Paul, MN.
- Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R. 2010. Fungi, hidden in soil or up in the air: light makes a difference. Annu. Rev. Microbiol. 64:585–610. http://dx.doi.org/10.1146/annurev.micro.112408 .134000.
- Idnurm A, Verma S, Corrochano LM. 2010. A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet. Biol. 47:881–892. http://dx .doi.org/10.1016/j.fgb.2010.04.009.
- 12. Purschwitz J, Müller S, Kastner C, Fischer R. 2006. Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 9:566–571. http://dx.doi.org /10.1016/j.mib.2006.10.011.
- Chen CH, Dunlap JC, Loros JJ. 2010. Neurospora illuminates fungal photoreception. Fungal Genet. Biol. 47:922–929. http://dx.doi.org/10 .1016/j.fgb.2010.07.005.
- Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ. 2009. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J. 28:1029–1042. http://dx.doi.org/10 .1038/emboj.2009.54.
- Mooney JL, Yager LN. 1990. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 4:1473–1482. http://dx.doi.org/10.1101/gad.4 .9.1473.
- Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R. 2008. Functional and physical interaction of blue and red-light sensors in *Aspergillus nidulans*. Curr. Biol. 18:255– 259. http://dx.doi.org/10.1016/j.cub.2008.01.061.
- 17. Purschwitz J, Müller S, Fischer R. 2009. Mapping the interaction sites of *Aspergillus nidulans* phytochrome FphA with the global regulator VeA and the white collar protein LreB. Mol. Genet. Genomics 281:35–42. http://dx.doi.org/10.1007/s00438-008-0390-x.
- Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani SA, Oakley BR. 2006. Fusion PCR and gene targeting in

Aspergillus nidulans. Nat. Protoc. 1:3111–3120. http://dx.doi.org/10.1038/nprot.2006.405.

- 19. Sambrook J, Russel DW. 1999. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Cho Y, Davis JW, Kim K-H, Wang J, Sun Q-H, Cramer RA, Lawrence CB. 2006. A high throughut targeted gene disruption method for *Alternaria brassicicola* functional genomics using linear minimal element (LME) constructs. Mol. Plant Microbe Interact. 19:7–15. http://dx.doi.org /10.1094/MPMI-19-0007.
- Corrochano LM, Garre V. 2010. Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet. Biol. 47:893–899. http://dx.doi.org/10.1016/j.fgb.2010.04.007.
- Silva F, Torres-Martínez S, Garre V. 2006. Distinct white collar-1 genes control specific light responses in *Mucor circinelloides*. Mol. Microbiol. 61:1023–1037. http://dx.doi.org/10.1111/j.1365-2958.2006.05291.x.
- Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH. 2008. More than a repair enzyme: *Aspergillus nidulans* photolyase-like CryA is a regulator of sexual development. Mol. Biol. Cell 19:3254–3262. http://dx .doi.org/10.1091/mbc.E08-01-0061.
- Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506. http://dx.doi .org/10.1126/science.1155888.
- Calvo AM. 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet. Biol. 45:1053–1061. http://dx.doi.org/10.1016/j.fgb.2008.03.014.
- Calvo AM, Wilson RA, Bok JW, Keller NP. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66:447–459. http://dx.doi.org/10.1128/MMBR.66.3.447-459.2002.
- Sarikaya Bayram O, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 6:e1001226. http://dx.doi.org/10.1371/journal .pgen.1001226.
- Lukens RJ. 1963. Photo-inhibition of sporulation in Alternaria solani. Am. J. Bot. 50:720-724. http://dx.doi.org/10.2307/2440051.
- Kimura N, Tsuge T. 1993. Gene cluster involved in melanin biosynthesis of the filamentous fungus *Alternaria alternata*. J. Bacteriol. 175:4427– 4435.
- Thomma BPHJ. 2003. Alternaria spp.: from general sprophyte to specific parasite. Mol. Plant Pathol. 4:225–236. http://dx.doi.org/10.1046/j.1364 -3703.2003.00173.x.
- Imazaki A, Tanaka A, Haimoto Y, Yamamoto M, Akimitsu K, Park P, Tsuge T. 2010. Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen *Alternaria alternata*. Eukaryot. Cell 9:682–694. http://dx.doi.org/10.1128/EC.00369-09.
- 32. Miyamoto Y, Masunaka A, Tsuge T, Yamamoto M, Ohtani K, Fukumoto T, Gomi K, Peever TL, Akimitsu K. 2008. Functional analysis of a multi-copy host-selective ACT-toxin biosynthesis gene in the tangerine pathotype of *Alternaria alternata* using RNA silencing. Mol. Plant Microbe Interact. 21:1591–1599. http://dx.doi.org/10.1094/MPMI-21-12 -1591.
- Louw CD. 1976. Nuclear distribution in *Alternaria tenuis*. Mycopathologia 58:169–176. http://dx.doi.org/10.1007/BF00496026.
- Guo LD, Xu L, Zheng WH, Hyde KD. 2004. Genetic variation of *Alternaria alternata*, an endophytic fungus isolated form *Pinus tabulaeformis* as determined by random amplified microsatellites (RAMS). Fungal Div. 16:53–65.
- Bock CH, Thrall PH, Brubaker CL, Burdon JJ. 2002. Detection of genetic variation in *Alternaria brassicicola* using AFLP fingerprinting. Mycol. Res. 106:428–434. http://dx.doi.org/10.1017/S0953756202005762.
- Aradhya MK, Chan HM, Parfitt DE. 2001. Genetic variability in the pistachio late blight fungus, *Alternaria alternata*. Mycol. Res. 105:300– 306. http://dx.doi.org/10.1017/S0953756201003677.
- Söderhäll K, Svensson E, Unestam T. 1978. Light inhibits the production of alternariol and alternariol monomethyl ether in *Alternaria alternata*. Appl. Environ. Microbiol. 36:655–657.
- Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA, Fischer R, Calvo AM. 2010. Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genet. Biol. 47:962–972. http://dx.doi.org/10.1016/j.fgb.2010 .08.007.

- Oviedo MS, Ramirez ML, Barros GG, Chulze SN. 2010. Impact of water activity and temperature on growth and alternariol and alternariol monomethyl ether production of *Alternaria alternata* isolated from soybean. J. Food Prot. 73:336–343.
- 40. Magan N, Cayley GR, Lacey J. 1984. Effect of water activity and temperature on mycotoxin production by *Alternaria alternata* in culture and on wheat grain. Appl. Environ. Microbiol. 47:1113–1117.
- Ballario P, Vittorioso P, Margrelli A, Toalora C, Cabibo A, Macino G. 1996. White collar-1, a central regulator of blue light responses in *Neurospora crassa*, is a zinc finger protein. EMBO J. 15:1650–1657.
- Froehlich AC, Liu Y, Loros JJ, Dunlap JC. 2002. White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819. http://dx.doi.org/10.1126/science.1073681.
- He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y. 2002. White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843. http://dx.doi.org/10.1126/science.1072795.
- 44. Malzahn E, Ciprianidis S, Káldi K, Schafmeier T, Brunner M. 2010. Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–772. http://dx.doi.org/10 .1016/j.cell.2010.08.010.
- Schafmeier T, Káldi K, Diernfellner A, Mohr C, Brunner M. 2006. Phosphorylation-dependent maturation of *Neurospora* circadian clock

protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev. 20:297–306.

- 46. Smith KM, Sancar G, Dekhang R, Sullivan CZ, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M. 2010. Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot. Cell 9:1549–1556. http://dx.doi.org/10.1128/EC.00154-10.
- Guzmán-de-Peña D, Aguirre J, Ruiz-Herrera J. 1998. Correlation between the regulation of sterigmatocystin biosynthesis and asexual and sexual sporulation in *Emericella nidulans*. Antonie van Leeuwenhoek 73: 199–205. http://dx.doi.org/10.1023/A:1000820221945.
- Brakhage AA, Schroeckh V. 2011. Fungal secondary metabolites strategies to activate silent gene clusters. Fungal Genet. Biol. 48:15–22. http: //dx.doi.org/10.1016/j.fgb.2010.04.004.
- Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C. 2007. Genomics-driven discovery of PKS-NRPS hybrid metabolites from *Aspergillus nidulans*. Nat. Chem. Biol. 3:213–217. http://dx .doi.org/10.1038/nchembio869.
- Chiang YM, Szewczyk E, Davidson AD, Keller N, Oakley BR, Wang CC. 2009. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in *Aspergillus nidulans*. J. Am. Chem. Soc. 131:29652970.

Alternaria alternata transcription factor CmrA controls melanization and spore development

Ramona Fetzner, Kristin Seither, Maximilian Wenderoth, Andreas Herr and Reinhard Fischer

Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany

Melanin is a black pigment widely distributed across the kingdoms, from bacterial to human. The filamentous fungus Alternaria alternata is a typical 'black fungus', which produces melanin in its hyphal and especially its asexual spore cell walls. Its biosynthesis follows the dihydroxynaphthalene (DHN) pathway with 1,8-DHN as an intermediate. Two genes, encoding a polyketide synthase (pksA) and a 1,3,8-trihydroxynaphthalene (THN) reductase (brm2), along with a putative transcription factor, CmrA, comprise a small gene cluster. Here we show that CmrA controls the expression of pksA and brm2, but that it also controls the expression of a scytalone dehydratase encoding gene (brm1) located elsewhere in the genome. The regulatory function of CmrA was shown in a reporter assay system. Al. alternata CmrA was expressed in the filamentous fungus Aspergillus nidulans where it was able to induce the expression of a reporter construct under the control of the putative pksA promoter. This suggests direct binding of CmrA to the promoter of pksA in the heterologous system. Likewise, silencing of cmrA in Al. alternata led to white colonies due to the lack of melanin. In addition, hyphal diameter and spore morphology were changed in the mutant and the number of spores reduced. Silencing of brm2 and inhibition of melanin biosynthesis by tricyclazole largely phenocopied the effects of cmrA silencing, suggesting a novel regulatory function of melanin in morphogenetic pathways.

Received 14 March 2014 Accepted 23 June 2014

Correspondence

Reinhard Fischer

reinhard.fischer@kit.edu

INTRODUCTION

Melanin is a high-molecular-mass black pigment, which is produced across kingdoms and in general serves protective roles against UV light, reactive oxygen species (ROS) and other environmental stresses. This applies also to filamentous fungi such as Alternaria alternata. This mould belongs to the group of 'black fungi', where melanin is very abundant in cell walls especially of the spores (Carzaniga et al., 2002). Al. alternata causes large economic losses of food and feed every year, because it not only produces melanin but a large variety of secondary metabolites such as carcinogenic alternariol (Pruß et al., 2014; Saha et al., 2012; Tsuge et al., 2013). As in other organisms, it was shown that melanin-deficient strains are more sensitive to UV light (Kawamura et al., 1999). In addition to the protective function, melanin may play different roles. For instance, in Magnaporthe grisea, the causal agent of rice blast disease,

melanization of the cell walls of appressoria is required to build up sufficient pressure to penetrate the plant surface (Bechinger *et al.*, 1999; Howard *et al.*, 1991).

The biosynthesis of melanin can follow different biosynthetic routes, among which is the 1,8-dihydroxynaphthalene (DHN) pathway with 1,8-DHN as intermediate (Eisenman & Casadevall, 2012). As in many other fungi, in Al. alternata melanin is synthesized via this pathway (Kimura & Tsuge, 1993). Its biosynthesis requires a polyketide synthase (ALM or PksA in Al. alternata, Pks18 Cochliobolus heterostrophus), a 1,3,6,8-trihydroxyin naphthalene (THN) reductase (Brn2 in Coc. heterostrophus), a scytalone dehydratase (Scd1 in Coc. heterostrophus, Brm1 in Al. alternata), and a 1,3,8-THN reductase (Brn1 in Coc. heterostrophus and Brm2 in Al. alternata) (Eliahu et al., 2007). The phenolic compound DHN is then probably oxidatively polymerized. In Al. alternata, brm2 and pksA were cloned by complementation of melanindeficient Al. alternata mutants (Kimura & Tsuge, 1993; Tseng et al., 2011). Three classes of mutant of Al. alternata pear pathotype were isolated, one albino mutant, one lightbrown and a brown one. Using a cosmid library, all three mutants could be complemented with the same cosmid, suggesting that all three genes are located in a 30 kb genomic region (Kimura & Tsuge, 1993). In addition to genes encoding enzymes required for melanin biosynthesis,

Abbreviations: ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DHN, dihydroxynaphthalene; mCDB, modified Czapek–Dox Broth; ROS, reactive oxygen species; siRNA, small interfering RNA; THN, trihydroxynaphthalene.

The GenBank/EMBL/DDBJ accession number for the *crmA* sequence of ATCC66981 or DSM12633 is KJ939356.

One supplementary figure is available with the online version of this paper.

a regulator for melanin biosynthesis was discovered. It was first described in *Colletotrichum lagenarium* and *M. grisea* in a screen for *M. grisea* insertional mutants with reduced pathogenicity (Tsuji *et al.*, 2000). In *Coc. heterostrophus* the regulator gene, *cmr1* is closely linked to the polyketide synthase and *brn1* (Eliahu *et al.*, 2007).

Here, we studied the role of the Cmr1 homologue, CmrA, in *Al. alternata* and found that it is located between the *pksA* and the *brm2* genes, and that it controls the expression of at least three structural genes for melanin biosynthesis.

METHODS

Culture conditions and harvesting of spores of *Al. alternata. Al. alternata* ATCC66981 or DSM12633 cultures were grown on modified Czapek–Dox Broth (mCDB) agar. For RNA analysis, cultures were incubated in liquid mCDB medium for 3 or 7 days at 28 °C. To inhibit melanin biosynthesis, 3 mg tricyclazole was diluted in 100 µl DMSO and mixed with 100 ml mCDB agar to a final concentration of 30 µg ml⁻¹ (Lee *et al.*, 2003). *Al. alternata* strains were grown for 3 days on mCDB agar supplemented with tricyclazole and on mCDB with 100 µl DMSO as control.

Aspergillus nidulans was grown on supplemented minimal medium (MM) and standard strain construction procedures were used (Hill & Kafer, 2001). Expression of tagged genes under control of the *alcA* promoter was regulated by the carbon source; repression on glucose, derepression on glycerol, and induction on threonine or ethanol (Waring *et al.*, 1989).

Protoplast transformation of Al. alternata and of As. nidulans.

Al. alternata spores were harvested from a mCDB culture plate and inoculated in 300 ml Richard's Liquid Medium (sucrose 20 g l⁻¹, KNO₃ 10 g l⁻¹, KH₂PO₄ 5 g l⁻¹, MgSO₄.7H₂O 2.5 g l⁻¹, yeast extract 1 g l⁻¹) for 19-24 h at 30 °C and 120 r.p.m. Mycelium was harvested by filtering, washed with 0.7 M NaCl and digested in Kitalase (Wako Chemicals) suspension (60 mg in 6 ml 0.7 M NaCl) for 2-3 h under shaking at 110 r.p.m. and 30 °C. Protoplast quality and quantity were checked microscopically. Protoplasts were separated by filtering through two layers of Miracloth and washed with 0.7 M NaCl by centrifugation in a Hettich Universal 320R microfuge at 2430 r.p.m. at room temperature for 10 min, followed by a second washing step with 10 ml ice-cold 0.7 M NaCl, centrifugation again at 2430 r.p.m. at 4 °C for 10 min. A second washing step with 10 ml STC [1 M sorbitol, 50 mM CaCl₂, 50 mM Tris/HCl (pH 8.0)] and another centrifugation step (2400 r.p.m., 4 °C, 10 min) followed. The pellet was resuspended in 70 µl STC and protoplasts were placed on ice and 5-10 µg DNA were added to the protoplast suspension followed by incubation on ice for 10 min. Cells were heat-shocked for 2-10 min at 42 °C and further incubated on ice for 10 min. Next, 800 µl of 40 % PEG in STC was added to the suspension and the cells were incubated for 15 min at

room temperature. The suspension was then mixed with regeneration medium [1 M sucrose, 0.5% caseic acids, (w/v) 0.5% (w/v) yeast extract] and warmed to 42 °C. Cultures were incubated at 28 °C for 24 h and then overlaid with 25 ml regeneration medium supplemented with hygromycin B (100 mg ml⁻¹). Plates were incubated for up to 10 days (Cho *et al.*, 2006; Pruß *et al.*, 2014). Standard methods were used for plasmid constructions. All plasmids used in this study are listed in Table 1 and all oligonucleotides listed in Table 2.

Transgenic As. nidulans strains were generated by protoplast transformation as described previously (Yelton *et al.*, 1984). Al. *alternata* and As. *nidulans* strains are characterized in Table 3.

Expression analysis. All samples were harvested from mycelium grown on mCDB liquid culture for 3 or 7 days in the dark at 28 °C. Fresh mycelium was frozen in liquid nitrogen and ground to a powder in a mortar. Total RNA was extracted from mycelia by using the RNeasy Plant mini-kit (Qiagen or VWR), following the manufacturer's instructions and purified by treatment with DNase I. RNA was diluted to 50 ng μ l⁻¹ and used as a template for quantitative reverse transcriptase (RT)-PCR, which was performed on a Bio-Rad iCycler MyIQ using the SensiFAST SYBR and the Fluorescein kit (Bioline). For each sample, three technical replicates were performed.

Laccase assay. As. nidulans colonies were picked on solid medium (pH 4) containing 1 mM ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] and different carbon sources. Glucose represses the alcA promoter, whereas glycerol derepresses and threonine induces the promoter. We used 2 % (w/v) glucose, glycerol or threonine as carbon source. Glucose (0.2%, w/v) was added in addition to media containing glycerol or threonine, to allow better growth of the colonies. For the laccase assay mycelium was grown in liquid medium containing glucose to repress the alcA promoter. After 16 h of incubation at 28 °C and 120 r.p.m., mycelium was washed with sterile H₂O and transferred into a medium containing threonine to induce the promoter. After 4 h of incubation, laccase activity was measured at regular intervals. For the assay, 100 µl of the supernatant was mixed with 500 µl 100 mM sodium acetate buffer (pH 3.5), 200 µl 5 mM ABTS and 200 µl H₂O. As negative control we used 500 µl 100 mM sodium acetate buffer (pH 3.5), 200 µl 5 mM ABTS, 200 µl H2O and 100 µl medium. Absorption was measured after 1 h of incubation at 420 nm in a Pharmacia LKB -Ultrospec III spectrophotometer (Mander et al., 2006).

RESULTS

Identification of a *cmr1* orthologue close to the polyketide synthase gene involved in melanin biosynthesis

Among the central enzymes for the synthesis of fungal secondary metabolites are the polyketide synthases. The

Table	1.	Plasmids	used	in	this	study
-------	----	----------	------	----	------	-------

Name	Genotype	Source	
pJET1.2	Blunt-end PCR fragments cloning vector	Fermentas	
pSilent	Silencing vector	Nakayashiki et al. (2005)	
pMT-OvE	Vector for overexpression in Aspergillus nidulans using the alcA promoter	Toews et al. (2004)	
pAH16	pMT-OvE with <i>pksA</i> ^{899 bp 5'UTR} :: <i>lccC</i> , <i>argB</i>	This study	
pKS16	pJET1.2 with <i>alcA</i> (p):: <i>cmrA</i>	This study	
pRD37	pSilent :: <i>trpC</i> (p) :: <i>cmr1</i> sense :: IT :: <i>cmr1</i> antisense :: <i>trpC</i> (<i>t</i>), <i>hph</i>	This study	
pMW06	pSilent:: <i>trpC</i> (p):: <i>brm2</i> sense::IT:: <i>brm2</i> antisense:: <i>trpC</i> (<i>t</i>), <i>nptII</i>	This study	

Table 2. Oligonucleotides used in this study

Name	Sequence (5′–3′)
cmr1_XhoI_fw	CTCGAGAATGCGACAAGAAGTTTCCTTG
cmr1_HindIII_rv	AAGCTTGGCTCTCATTTTCCGGTTG
cmr1_KpnI_fw	GGTACCAATGCGACAAGAAGTTTCCTTG
cmr1_BglII_rev	AGATCTGGCTCTCATTTTCCGGTTG
RNAi_Brm2_se_fw	CTATCTCGAGGCCGTGGTATCGGAAAGGC
RNAi_Brm2_se_re	CTAAAGCTTCGATAGCCATGCACCTGG
RNAi_Brm2_as_fw	CTGGTACCGCCGTGGTATCGGAAAGGC
RNAi_Brm2_as_re	CTAGATCTCGATAGCCATGCACCTGG
pksA_RT_fwd	GATTGCCATCGTCGGTATG
pksA_RT_rev	GGCTCATCGATGAAGCAAC
Cyt-P450_RT_fwd	CATTTCGTCCAGCTTGCAC
Cyt-P450_RT_rev	CTGTGACAGCACCATGAAG
Pc_RT_fwd	CATTGACCACGTCCATAGC
Pc_RT_rev	GAAGTCTCTACATGGCGAAC
MT_RT_fwd	CTTGCGCATTACGCCAATG
MT_RT_rev	GAACACAATCAATGCCTCCC
pksA(p)_XbaI_fwd	TGCTTTCTAGAGCATGAAAAGAAATCCTTCACC
pksA(p)_BsiWI_rev	TGCTTCGTACGCAGCATACATATACTCTGGCG
Brm2_RT_f	CCGTGGTATCGGAAAGGC
Brm2_RT_r	GAAGTGGGCAACAACGTCAT
Brm1_RT_f	CAATGGTAGCGATTCGAAAATC
Brm1_RT_r	GTGCGCGGACGTTGACAT
cmr1_RT_fwd	GAA ATG TCA CCT GCG CAA AC
cmr1_RT_rev	GTCTTGGGCTGCGATAATG
H2B_RT_fwd	CTCTGGCGACAAGAAGAAG
H2B_RT_rev	TTGACGAAAGAGTTGAGAATG
β -tub_RT-fwd	GTTGAGAACTCAGACGAGAC
β -tub_RT_rev	CATGTTGACGGCCAACTTC

genome of *Al. alternata* encodes at least ten of these multidomain enzymes, one of which is required for melanin biosynthesis (Kimura & Tsuge, 1993; Saha *et al.*, 2012). The *pks* gene (*ALM*, *pksA*) is located in a genomic region (33 kb) in which the 1,3,8-THN reductase gene (*brm2*) is located (Fig. 1a, b). Originally, a second open reading frame was indicated within this region and the gene was named *brm1* (Kimura & Tsuge, 1993). It was thought that it encodes the scytalone dehydratase.

However, in a more recent paper it was shown that *pksA* and *brm2* are located close together in the genome, but that the scytalone dehydratase, *brm1* is located elsewhere (Tseng *et al.*, 2011). However, the third gene located in the cluster was not analyzed and is described here. The gene encodes a putative transcription factor containing two Cys_2His_2 and one $Zn(II)_2Cys_6$ DNA-binding motifs. Comparison of the genomic DNA to a cDNA sequence revealed the presence of three introns (100, 84 and 56 bp). The derived protein

Table 3. Strains us	ed in this study
---------------------	------------------

Name	Genotype	Source
Aspergillus nidulans		
RMS011	pabaA1; $\Delta argB::trpC\Delta B$; $veA1$	Stringer et al. (1991)
SKS07	RMS011 with pAH16	This study
SKS08	RMS011 with pAH16 and pKS16	This study
SAH27	RMS011 with pAH16	This study
SAH29	RMS011 with pAH16 and pKS16	This study
Alternaria alternata		
ATCC66981	Wild-type	ATCC, UK
DSM12633	Wild-type	DSM, Germany
SRD6	DSM12633 with pRD37	This study
SMW1	ATCC66981 with pMW6	This study

Fig. 1. Analysis of genes involved in melanin biosynthesis. (a) Schematic of the biosynthetic pathway and the role of three genes, *alm* (*pksA*), *brm1* and *brm2*. The T4HN (1,3,6,8-THN; trihydroxynaphthalene) reductase has not yet been characterized. In *Cochliobolus heterostrophus* the gene is named *brn2* (Eliahu *et al.*, 2007). The genome of *Alternaria alternata* encodes a protein with more than 80 % similarity to Brn2. DHN, dihydroxynaphthalene; T3HN, 1,3,8-THN. (b) Schematic of the gene cluster in *Al. alternata* and *Coc. heterostrophus* (Eliahu *et al.*, 2007). Two genes involved in melanin biosynthesis, *brm1* and the putative T4HN reductase gene, are not located in the melanin gene cluster. The *cmrA* sequence was deposited under the accession number Banklt1732484 KJ939356. (c) Analysis of the expression of *cmrA* and *brm2* in mycelium of wild-type and five knockdown strains (s1–s5). Strains were grown for 3 days in modified Czapek–Dox Broth medium before mycelium was harvested and RNA isolated as described in the text. In a control strain, the empty vector was transformed and the expression of *cmrA* and *brm2* studied. RT-PCR was performed as described in Methods with the β -tubulin gene as standard. The mean ± sp of three technical replicates are shown.

consists of 1010 aa and a calculated molecular mass of 112.6 kDa. The sequence was deposited at the GenBank database (accession number KJ939356). Because the protein shares 63 % identical aa with the first identified regulator of this type, Cmr1 from *Coc. heterostrophus* and 46 % with Pig1 from *M. grisea*, we named the gene *cmrA*. It is 95 % identical to the *Al. brassicicola* Amr1 protein. The same gene arrangement was described before for *Coc. heterostrophus* and is also found in *Al. brassicicola*

(Eliahu *et al.*, 2007). The alignment of the sequences is shown in Fig. S1 (available in the online Supplementary Material).

Functional analysis of cmrA and brm2

Because CmrA and its orthologues in *Magnaporthe oryzae* and *Al. brassicicola* control melanin biosynthesis, we anticipated that CmrA plays a similar role in *Al. alternata*.

To analyse such a function we lowered the transcript level by small interfering RNA (siRNA). An intron-free region (598 bp) of the gene was amplified with the forward primer cmr1_XhoI_fw, containing a XhoI site, and the reverse primer cmr1_HindIII_rv, containing a HindIII site, to amplify the sense fragment. The same region was amplified by the primers cmr1 KpnI fw and cmr1 BglII rev to get the antisense construct. Both PCR fragments were double digested with appropriate enzymes and then ligated consecutively at the multiple cloning site of the pSilent-1 vector (Nakavashiki et al., 2005), the sense fragment in front of the intron, which forms a hairpin loop, and the antisense fragment behind this intron. Al. alternata DSM12633 was transformed with the plasmid containing a hygromycin B resistance gene as the dominant marker. Five transformants appeared whitish at the colony level in comparison with the dark-green colony colour of wild-type. In addition to the colour change, the colony size was reduced to 80–90 % of the diameter of wild-type colonies. Determination of the cmrA transcript level revealed 80 % reduction in comparison with wild-type (Fig. 1c).

In order to determine whether the phenotypic changes caused by the silencing of cmrA were due to the reduction of the melanin content or to other regulatory functions of CmrA, we aimed to prevent melanin formation without disturbing the cmrA function. To achieve this, the brm2 gene was downregulated using the same approach as *cmrA*. The *brm2* gene is predicted to contain two introns (51 and 49 bp) and encodes a protein of 268 aa. For the siRNA construct, a 477 bp fragment of an intron-free region was amplified with the primers RNAi_brm2_se_fw with a XhoI restriction site and RNAi_brm2_se_re with a HindIII restriction site for the sense fragment, and RNAi_brm2_as_fw with a KpnI restriction site and RNAi_brm2_as_re with a BglII restriction site for the antisense fragment. The fragments, as well as the pSilent vector, were double digested with the corresponding enzymes and then ligated. The sense fragment was ligated in front of the hairpin loop and the antisense fragment behind. The marker in the pSilent vector was changed from the hygromycin B resistance gene to the geneticin resistance gene (nptII). This final vector construct was then transformed in Al. alternata wild-type ATCC66981. The wild-type obtained from the ATCC strain collection was used in this experiment. The phenotype compared to the wild-type obtained from the DSM strain collection was identical. Several transformants appeared as brownish colonies. Four transformants were checked by real-time RT-PCR. One of these showed a reduction in the expression of *bmr2* of 95% (Fig. 1c).

Both knockdown strains (si-*cmrA* and si-*brm2*) looked alike and were subsequently analysed in parallel (Fig. 2). Given that the dark colour of the colony is mainly due to the black spores produced by the mycelium, we anticipated that spores would be colourless instead of dark pigmented. Indeed the spores looked pale and not black. However, in addition the spore morphology was different in the mutants compared with wild-type. The multicellular spores in *Al. alternata* contain transversal and longitudinal septa. Whereas in wild-type an average of 5.3 compartments per spore were counted, in both mutant strains the number of compartments was reduced to 3.5 (si-cmrA) and 3.1 (si-brm2), respectively (Fig. 2b, c). This phenotype was described before for the brm2 mutant (Kawamura et al., 1999). Furthermore, the number of spores was reduced in both mutant strains. For wild-type we counted 1.15×10^6 spores per 0.25 cm², whereas in the *cmrA* mutant strains (RNAi-*cmrA*) only 9.2×10^4 spores per 0.25 cm² were counted (Fig. 2d). The effect was less obvious in the brm2 mutant where the spore number reached 3.5×10^5 . In the previous study, this slight reduction of the spore number was not obvious (Kawamura et al., 1999). The fact that silencing of *brm2* caused the same effects as silencing of cmrA suggested that the morphological changes were due to the absence of melanin. To further substantiate our hypothesis, melanin biosynthesis was inhibited by tricyclazole. Indeed the colour of the colony was identical to the colour of the brm2 knockdown strain, and the effects on spore septation and the number of spores were similar to the values determined for the brm2 and cmrA knockdown strains (Fig. 2a-d).

Because the colony diameter was affected in both mutant strains, hyphal morphology was also analysed. We measured hyphal diameters in 10 μ m increments starting 5 μ m behind the tip of the hypha. Mutant hyphae were about 3 μ m in diameter, whereas wild-type hyphae measured only about 2 μ m at the tip (Fig. 2e). The diameter of the hyphae of the si-*cmrA* strain varied between 3.2 and 7.4 μ m and the hyphae of the si-*brm2* mutant varied between 3.7 and 5.2 μ m.

Melanin has been reported to play a role in protecting hyphae from ROS (Jacobson *et al.*, 1995). To test whether reduction of the melanin level caused any changes in the sensitivity against H_2O_2 , strains were grown on medium containing 0 to 6 mM H_2O_2 . The wild-type reached a colony diameter of 3.4 cm without H_2O_2 in the medium, and the colony size decreased with increasing concentrations of H_2O_2 . At the final concentration of 6 mM H_2O_2 the colony was only 1.5 cm in diameter. After the same incubation time both mutants produced smaller colonies. At 6 mM H_2O_2 the si-*cmrA* strain did not grow any further (Fig. 3).

CmrA controls the expression of *pksA*, *brm1* and *brm2*

Downregulation of *cmrA* caused a similar phenotype as downregulation of *brm2*. This result suggested that CmrA is indeed involved in the regulation of the expression of the genes encoding the melanin biosynthetic enzymes. To confirm this hypothesis, the expression of *pksA* and *brm2* were studied in both the si-*cmrA* and si-*brm2* strains and compared to wild-type. In addition, the expression of *brm1*, encoding the scytalone dehydratase and not being located in the melanin gene cluster, was analysed. As a control, we studied the expression of several other genes,

Fig. 2. Analysis of the phenotypes of si-*cmrA* and si-*brm2* and the effect of melanin biosynthesis inhibition. (a) Phenotype on modified Czapek–Dox Broth (mCDB) medium or on mCDB medium supplemented with 30 mg l⁻¹ tricyclazole [WT+Tri (WT, wild-type)]. Colonies were grown for 3 days. (b) Microscopy pictures of *Al. alternata* spores in wild-type, the knockdown strains and the strain where melanin biosynthesis was inhibited. Bar, 10 μ m. (c) The number of compartments per spore was counted in wild-type, the two knockdown strains and tricyclazole-inhibited wild-type. Fifty spores were analysed for each strain. (d) Number of spores of the strains indicated. Spores were counted in three independent experiments in a 0.25 cm² area of the colony using a Neubauer chamber. (e) Hyphal diameter in wild-type and in si-*cmrA* and si-*brm2* strains. Hyphae were grown for 20 h in liquid mCDB medium. Diameters were measured in 10 μ m increments starting at the tip in five hyphae for each strain. (c–e) The mean ± sp is shown.

Fig. 3. Sensitivity test of wild-type (WT) and the *brm2* and the *cmrA* knockdown strains towards H_2O_2 . Colonies were grown on medium containing different concentrations of H_2O_2 and colony sizes were measured after 3 days of incubation. The mean \pm sD of three colonies is shown. ATCC66981 (*Al. alternate* wild-type); SRD6 (DSM12633 *Al. alternata* wild-type with pRD37); SMW1 (ATCC66981 wild-type with pMW6).

located close to pksA and brm2 in the genome (Saha *et al.*, 2012). These were a gene encoding a putative cytochrome P450 enzyme (homology to Saccharomyces cerevisiae Erg11) (Martel *et al.*, 2010), an *O*-methyl-transferase gene (*S. cerevisiae* Emg1) (Liu & Thiele, 2001), and a gene encoding a putative peroxisomal carrier protein (homology to *As. nidulans* AntA) (Hynes *et al.*, 2008) (Fig. 4). The functions of the corresponding homologues in *S. cerevisiae* and *As. nidulans* suggest roles in ergosterol biosynthesis, in 18S rRNA formation and ATP transport across the peroxisomal membrane, and make it unlikely therefore that they are involved in melanin biosynthesis. In the si*cmrA* strain only the expression of *pksA*, *brm1* and *brm2* was reduced, suggesting an activating function for CmrA. The other genes were not affected.

The expression data suggested that CmrA controls at least the expression of pksA, brm1 and brm2. In order to test whether CmrA directly controls and is sufficient for the expression of these genes, a reporter assay was performed. To this end CmrA was expressed in As. nidulans under the control of the alcA promoter. Along with the cmrA plasmid the reporter construct, consisting of the *pksA* putative promoter (899 bp upstream of the ATG start codon) fused to the As. nidulans laccase gene lccC, was cotransformed (Fig. 5). Laccase was established as a reporter in As. nidulans because the activity can easily be followed through the colorimetric change of ABTS after oxidation. Electrons are transferred to oxygen (Mander et al., 2006). From 80 transformants 20 were chosen for the analysis on medium containing ABTS. Two transformants developed a blue colour when grown on medium containing glycerol or threonine as inducers for the alcA promoter and ABTS as substrate for the laccase enzyme. The relatively low frequency of positive strains can be explained by the cotransformation of the two plasmids. Strains with either plasmid alone cannot express laccase activity. In order to demonstrate the strict dependence of laccase activity on the inducing conditions, strains were first grown in liquid medium under repressing conditions (glucose) and then transferred to the induction medium. Eight hours after the transfer, laccase activity was detectable (Fig. 5).

DISCUSSION

Melanin confers resistance of many fungi to several environmental factors and is thus an important compound for survival under different conditions. In some cases, such as *Magnaporthe oryzae* or *Aspergillus fumigatus*, melanin has been shown to be an important virulence factor (Heinekamp *et al.*, 2012; Liu & Nizet, 2009). In *Al. alternata*, melanin biosynthesis has been studied at the biochemical level and through the analysis of melanin-deficient mutants (Kimura

Fig. 4. Expression analysis in the si-*cmrA* and si-*brm2* strains. Expression pattern of melanin biosynthesis genes and control genes in the si-*cmrA* strain (a) and the si-*brm2* strain (b) compared to wild-type. Mycelium was incubated in liquid culture for 7 days in the dark and then harvested. RNA was extracted as described in the text. For quantitative RT-PCR, histone2B was used as standard. The mean ± sD of three biological and two technical replicates is displayed.

Fig. 5. Reporter gene assay in *Aspergillus nidulans*. (a) Schematic of the assay. *cmrA* expression under the *alcA* promoter [*alcA*(p)] is induced by the addition of 2% threonine to the medium. If CmrA binds to the *pksA* promoter, *lccC* is expressed and the enzyme oxidizes ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. The medium turns blue (Mander *et al.*, 2006). (b) Strains were tested under repressing and inducing conditions. Expression of genes under the control of the *alcA* promoter was regulated by the carbon source; repression on glucose, derepression on glycerol and induction on threonine. The presence of the plasmids was checked by PCR. (c) Measurement of laccase activity over time. Strains were grown under repressing (glucose) conditions for 16 h, washed and then incubated under inducing (threonine) conditions. After 8 h in medium containing threonine, laccase activity was measured in strains SKS7 and SAH29 (containing both plasmids pAH16 and pKS16) but not in wild-type (RMS011) or in the control strains (SKS8, SAH27). Laccase activity was determined in three independent cultures. The mean ± sD is displayed.

& Tsuge, 1993). Two genes required for melanin biosynthesis, alm (pksA) and brm2, were identified and are organized in a gene cluster (Kimura & Tsuge, 1993). In addition, the scytalone dehydratase gene (brm1) has been identified elsewhere in the genome and characterized (Tseng et al., 2011). In this paper we describe the role of the regulator CmrA, located between pksA and brm2 in the melanin gene cluster and show that it is required for the expression of at least brm1, brm2 and the polyketide synthase gene, pksA. The regulator was first discovered in Col. lagenarium and M. grisea in a screen for M. grisea insertional mutants with reduced pathogenicity (Tsuji et al., 2000). In Col. lagenarium, hyphae and appressoria are melanized but Cmr1 appears to control the expression of the structural genes SCD1 (encodes the scytalone dehydratase) and THR1 (encodes 1,3,8-THN reductase) in hyphae but not in appressoria. We found that brm2 (THR1), brm1

(scytalone dehytratase) and *pksA* are positively regulated by CmrA, although *pksA* was less affected by the lack of CmrA. Our data are in agreement with genome-wide expression studies in *Al. brassicicola* where *brm2* (and *brm1*) appear in the list of genes regulated by Amr1, the Cmr1 transcription factor homologue (Cho *et al.*, 2012). The polyketide synthase does not appear in this list, probably reflecting only a weak effect of Amr1 on its expression. Likewise, in *Coc. heterostrophu* polyketide synthase gene *pks18* expression was only slightly affected by the lack of Cmr1 (Eliahu *et al.*, 2007).

In this paper we hence show that the *Al. alternata* regulator CmrA controls melanin biosynthesis genes, but the absence of the protein also affects spore morphology and spore formation. This raises the question of how the two processes could be linked. One explanation for the

observed developmental phenotypes in the cmrA knockdown strain could be that CmrA does not only regulate genes involved in melanin biosynthesis but also other genes. Indeed, transcriptional profiling of a corresponding mutant in Al. brassicicola revealed that the transcription factor controls more than 260 genes (Cho et al., 2012). Most of these differentially expressed genes have a metabolic function, and hints regarding the regulation of development are not obvious from the gene list. Of course it has to be considered that differential expression in these experiments was studied at a late stage of cabbage infection. Thus it may be unlikely that the developmental genes, required for spore formation, would be expressed under those conditions. Hence, genome-wide expression analyses in Al. alternata at appropriate time points and under appropriate conditions are required to further characterize the function of CmrA, and to understand its role in developmental regulation.

Another explanation for the developmental phenotype may be a connection between melanin and ROS. One function of melanin across kingdoms is a protective role against UV light and ROS. Given that the concentration of ROS can trigger developmental decisions (Aguirre et al., 2005), the lack of melanin could alter the intracellular concentration of ROS in such a way that development is disturbed. The fact that silencing of cmrA has a more drastic effect than silencing of *brm2* could be due to the complete lack of several intermediates of melanin biosynthesis, given that in the mutant also the pksA gene is downregulated. The hypothesis was further confirmed by inhibiting melanin biosynthesis through tricyclazole. Indeed, colonies appeared brownish, the number of spores was largely reduced and septation in the spores was altered. Further experiments are required to fully understand the role of melanin and ROS and the interplay with CmrA functions.

ACKNOWLEDGEMENTS

We thank the Federal Ministry of Education and Research (BMBF) for funding within the collaborative project NANOKAT (0316052C).

REFERENCES

Aguirre, J., Rios-Momberg, M., Hewitt, D. & Hansberg, W. (2005). Reactive oxygen species and development in microbial eukaryotes. *Trends Microbiol* **13**, 111–118.

Bechinger, C., Giebel, K. F., Schnell, M., Leiderer, P., Deising, H. B. & Bastmeyer, M. (1999). Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. *Science* 285, 1896–1899.

Carzaniga, R., Fiocco, D., Bowyer, P. & O'Connell, R. J. (2002). Localization of melanin in conidia of *Alternaria alternata* using phage display antibodies. *Mol Plant Microbe Interact* **15**, 216–224.

Cho, Y., Davis, J. W., Kim, K.-H., Wang, J., Sun, Q.-H., Cramer, R. A., Jr & Lawrence, C. B. (2006). A high throughput targeted gene disruption method for *Alternaria brassicicola* functional genomics using linear minimal element (LME) constructs. *Mol Plant Microbe Interact* 19, 7–15.

Eisenman, H. C. & Casadevall, A. (2012). Synthesis and assembly of fungal melanin. *Appl Microbiol Biotechnol* **93**, 931–940.

Eliahu, N., Igbaria, A., Rose, M. S., Horwitz, B. A. & Lev, S. (2007). Melanin biosynthesis in the maize pathogen *Cochliabolus heterostrophus* depends on two mitogen-activated protein kinases, Chk1 and Mps1, and the transcription factor Cmr1. *Eukaryot Cell* **6**, 421–429.

Heinekamp, T., Thywißen, A., Macheleidt, J., Keller, S., Valiante, V. & Brakhage, A. A. (2012). *Aspergillus fumigatus* melanins: interference with the host endocytosis pathway and impact on virulence. *Front Microbiol* **3**, 440.

Hill, T. W. & Kafer, E. (2001). Improved protocols for *Aspergillus* minimal medium: trace element and minimal medium salt stock solutions. *Fungal Genet Newsl* 48, 20–21.

Howard, R. J., Ferrari, M. A., Roach, D. H. & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. *Proc Natl Acad Sci U S A* 88, 11281–11284.

Hynes, M. J., Murray, S. L., Khew, G. S. & Davis, M. A. (2008). Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in *Aspergillus nidulans*. *Genetics* **178**, 1355–1369.

Jacobson, E. S., Hove, E. & Emery, H. S. (1995). Antioxidant function of melanin in black fungi. *Infect Immun* 63, 4944–4945.

Kawamura, C., Tsujimoto, T. & Tsuge, T. (1999). Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of *Alternaria alternata*. *Mol Plant Microbe Interact* **12**, 59–63.

Kimura, N. & Tsuge, T. (1993). Gene cluster involved in melanin biosynthesis of the filamentous fungus *Alternaria alternata*. *J Bacteriol* 175, 4427–4435.

Lee, J.-K., Jung, H.-M. & Kim, S.-Y. (2003). 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in *Torula corallina*, and DHN-melanin inhibits erythrose reductase. *Appl Environ Microbiol* **69**, 3427–3434.

Liu, G. Y. & Nizet, V. (2009). Color me bad: microbial pigments as virulence factors. *Trends Microbiol* 17, 406–413.

Liu, P. C. & Thiele, D. J. (2001). Novel stress-responsive genes EMG1 and NOP14 encode conserved, interacting proteins required for 40S ribosome biogenesis. *Mol Biol Cell* 12, 3644–3657.

Mander, G. J., Wang, H., Bodie, E., Wagner, J., Vienken, K., Vinuesa, C., Foster, C., Leeder, A. C., Allen, G. & other authors (2006). Use of laccase as a novel, versatile reporter system in filamentous fungi. *Appl Environ Microbiol* 72, 5020–5026.

Martel, C. M., Parker, J. E., Warrilow, A. G., Rolley, N. J., Kelly, S. L. & Kelly, D. E. (2010). Complementation of a *Saccharomyces cerevisiae* ERG11/CYP51 (sterol 14 α -demethylase) doxycycline-regulated mutant and screening of the azole sensitivity of *Aspergillus fumigatus* isoenzymes CYP51A and CYP51B. *Antimicrob Agents Chemother* **54**, 4920–4923.

Nakayashiki, H., Hanada, S., Nguyen, B. O., Kadotani, N., Tosa, Y. & Mayama, S. (2005). RNA silencing as a tool for exploring gene function in ascomycete fungi. *Fungal Genet Biol* **42**, 275–283.

Pruß, S., Fetzner, R., Seither, K., Herr, A., Pfeiffer, E., Metzler, M., Lawrence, C. B. & Fischer, R. (2014). Role of the *Alternaria alternata* blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism. *Appl Environ Microbiol* **80**, 2582–2591.

Saha, D., Fetzner, R., Burkhardt, B., Podlech, J., Metzler, M., Dang, H., Lawrence, C. B. & Fischer, R. (2012). Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in *Alternaria alternata*. *PLoS ONE* **7**, e40564.

Stringer, M. A., Dean, R. A., Sewall, T. C. & Timberlake, W. E. (1991). *Rodletless*, a new *Aspergillus* developmental mutant induced by directed gene inactivation. *Genes Dev* 5, 1161–1171.

Toews, M. W., Warmbold, J., Konzack, S., Rischitor, P., Veith, D., Vienken, K., Vinuesa, C., Wei, H. & Fischer, R. (2004). Establishment of mRFP1 as a fluorescent marker in *Aspergillus nidulans* and construction of expression vectors for high-throughput protein tagging using recombination *in vitro* (GATEWAY). *Curr Genet* **45**, 383–389.

Tseng, M. N., Chung, P. C. & Tzean, S. S. (2011). Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. *Appl Environ Microbiol* **77**, 4508–4519.

Tsuge, T., Harimoto, Y., Akimitsu, K., Ohtani, K., Kodama, M., Akagi, Y., Egusa, M., Yamamoto, M. & Otani, H. (2013). Host-selective toxins

produced by the plant pathogenic fungus *Alternaria alternata*. *FEMS Microbiol Rev* **37**, 44–66.

Tsuji, G., Kenmochi, Y., Takano, Y., Sweigard, J., Farrall, L., Furusawa, I., Horino, O. & Kubo, Y. (2000). Novel fungal transcriptional activators, Cmr1p of *Colletotrichum lagenarium* and Pig1p of *Magnaporthe grisea*, contain Cys_2His_2 zinc finger and Zn(II)₂Cys₆ binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. *Mol Microbiol* **38**, 940–954.

Waring, R. B., May, G. S. & Morris, N. R. (1989). Characterization of an inducible expression system in *Aspergillus nidulans* using *alcA* and tubulin-coding genes. *Gene* **79**, 119–130.

Yelton, M. M., Hamer, J. E. & Timberlake, W. E. (1984). Transformation of *Aspergillus nidulans* by using a *trpC* plasmid. *Proc Natl Acad Sci U S A* **81**, 1470–1474.

Edited by: A. H. Estrella