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Abstract

Data fusion aims at integrating multiple data sources that can be redundant or comple-
mentary to produce complete, accurate information of the parameter of interest. In this
work, data fusion of precipitable water vapor (PWV) estimated from remote sensing
observations and data from the Weather Research and Forecasting (WRF) modeling
system is applied to provide complete, accurate grids of PWV. Our goal is to infer spa-
tially continuous, precise grids of PWV from heterogeneous data sets. This is done by
a geostatistical data fusion approach based on the method of fixed-rank kriging. The
first data set contains absolute maps of atmospheric water vapor produced by combin-
ing observations from Global Navigation Satellite Systems (GNSS) and Interferometric
Synthetic Aperture Radar (InSAR). These PWV maps have a high spatial density and
an accuracy of submillimeter; however, data are missing in regions of low coherence
(e.g., forests and vegetated areas). The PWV maps simulated by the WRF model rep-
resent the second data set. The model maps are available for wide areas, but they have
a coarse spatial resolution and a yet limited accuracy. The PWV maps inferred by the
data fusion at any spatial resolution are more accurate than those inferred from single
data sets. In addition, using the fixed-rank kriging method, the computational burden is
significantly lower than that for ordinary kriging.

1 Introduction

Water vapor is a vital constituent of the Earth’s electrically neutral atmosphere (neu-
trosphere). Although its average volumetric concentration does not exceed 4 %, the
impact of water vapor is important in many respects. Due to the dynamic nature of the
neutrosphere and the complex energy exchange with the Earth’s surface, the spatio-
temporal distribution of water vapor can be highly variable. Accurate information about
its content and tendency is the main prerequisite for a precise prediction of clouds and
precipitation. Water vapor is important for studies of climate and natural disasters such
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as floods, droughts, deluge or glacier melting. On the other hand, signals transmit-
ted from spaceborne sensors are refracted when traversing the Earth’s neutrosphere.
Neutrospheric water vapor contributes to less than 10 % of the signal path delay; how-
ever, this error source is not easily eliminated. Accurate information about the water
vapor concentration along the signal path is required, which is not always obtainable.
Although many efforts have been made to produce accurate information about water
vapor using ground-based, space-based or humerical methods, the available informa-
tion is often limited in the temporal resolution, spatial resolution or accuracy (Bevis
et al., 1992). In this paper, we present a method to produce water vapor maps of a high
spatial resolution by fusing water vapor estimates from space-borne signals and atmo-
spheric prediction models.

The amount of remote sensing data available for monitoring the Earth and its atmo-
sphere is growing in a rapid, continuous way. Interferometric Synthetic Aperture Radar
(InSAR) has proved its capability for detecting surface deformation, landslides, tectonic
movements (Massonnet et al., 1993; Zebker et al., 1994) and for deriving digital eleva-
tion models (Zebker and Goldstein, 1986). The influence of water vapor in the obser-
vations can be reduced by averaging a large number of interferograms (Zebker et al.,
1997) or by time series analysis that indicates the stable persistent scatterers (Ferretti
et al., 2001; Hooper et al., 2007). Besides, INSAR has recently been used to derive
the atmospheric phase from the interferograms or by time series analysis (Hanssen,
2001; Meyer et al., 2008; Pichelli et al., 2010; Alshawaf et al., 2012). Global Naviga-
tion Satellite Systems (GNSS), however, have been considered since the 1990s as an
efficient microwave-based tool for atmospheric sounding (Bevis et al., 1992; Rocken
et al., 1995). Since then, numerous methods exploited the GNSS observations to pro-
duce estimates of the integrated atmospheric water vapor, and for generating water
vapor maps (Luo et al., 2008; Jade and Vijayan, 2008; Karabati¢ et al., 2011). INSAR
and GNSS signals are affected in a similar way by the atmosphere (Onn and Zebker,
2006). Therefore, Alshawaf (2013) presented a new approach to derive absolute, high-
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resolution maps of precipitable water vapor (PWV) by combining data from INSAR and
GNSS.

Atmospheric modeling systems are standard approaches to simulate three-
dimensional distributions of the neutrospheric water vapor at arbitrary temporal and
spatial sampling. Dynamic local area models (LAM) are common tools for scaling
down the coarse grids of global circulation models to meso-scale applicability. Sev-
eral studies employed the Weather Research and Forecasting modeling system (WRF,
Skamarock and Klemp, 2008) to compare the LAM simulations of PWV with GNSS
point estimates (Mateus et al., 2010; Bender et al., 2008; Cimini et al., 2012) and
PWV maps from MERIS (MEdium Resolution Imaging Spectrometer) (Alshawaf et al.,
2012). These studies conclude that the medium to long scale water vapor signals are
well predicted, whereas short scale fluctuations are often hardly captured in a realistic
way. The presence of convective motion or rapid dynamic effects are still a challenge
for the model performance. Hence, the model data can be considerably biased with re-
spect to the actual state of the atmosphere. In addition, WRF combines a large number
of alternative models for the representation of individual physical compartments. This,
in addition to the configurations of the model domains, highly affects the quality of the
model simulations (Gong et al., 2010; Fersch and Kunstmann, 2014) as well as the
model’s intrinsic water balance (Fersch et al., 2012; Fersch and Kunstmann, 2014).

Due to the availability of various data sources that can be complementary or redun-
dant, data fusion has received increasing attention in the Earth observation studies.
The focus is put on the combination of multiple sources, which may be spatially, tem-
porally, or spectrally inhomogeneous, to produce a more complete representation of
a geophysical process. In this work, we use remote sensing data and numerical atmo-
spheric models through a data fusion approach to provide improved information about
the distribution of atmospheric water vapor. This information is important not only for
weather forecasting and climate research, but also to better understand how the INSAR
interferograms are affected by water vapor, and which is the most appropriate method
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to reduce this noise. In turn, reliable local water vapor maps can support adapting the
WRF model configurations and, hence, may improve the model performance.

In the following, we present water vapor maps derived from microwave remote sens-
ing data and numerical atmospheric models. Since the available data have different
spatial level of aggregation, it is important to discuss the change of support problem.
Then, we present the data fusion approach based on the kriging technique or fixed-
rank kriging. We first describe the ordinary kriging and how it can be extended for
fusing multiple data sets. Then, we present the reasons behind using the fixed-rank
kriging. We use the data fusion approach for predicting maps of the atmospheric PWV
from remote sensing data and atmospheric models.

2 Atmospheric water vapor

Several observation systems are used to continuously monitor the vertical and hori-
zontal distributions of water vapor in the atmosphere. These devices are used either
from the ground, such as radiosondes and ground-based water vapor radiometers, or
from space, such as space-based water vapor radiometers and infrared sensors. In
this work, we employ microwave remote sensing systems as well as numerical atmo-
spheric models to provide accurate maps of the atmospheric water vapor at a high
spatial resolution.

2.1 Water vapor from remote sensing data

Alshawaf (2013) presented a new approach to derive absolute, high-resolution maps
of PWV by combining data from INSAR and GNSS. The data are collected in the region
of Upper Rhine Graben in Germany and France over the period 2003—2008. Persistent
Scatterer INSAR (PSI) using the Stanford Method for Persistent Scatterers (StaMPS,
Hooper et al., 2007) was applied to derive PWV maps from the INnSAR interferograms.
These maps contain the water vapor signal of short scale spatial variations, while
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the elevation-dependent and long wavelength water vapor components are eliminated
when forming the interferograms or phase filtering. Therefore, GNSS-based PWV es-
timates were used to reconstruct the missing components. Figure 1 shows a map of
PWYV derived by combining PSI and GNSS data and the corresponding map extracted
from MERIS observations. The spatial correlation between the maps is 95 % and the
root mean square (RMS) value of the differences is 0.68 mm. We can observe that the
persistent scatterers are dense in the urban areas, while they almost disappear in the
low coherence regions.

Since PWV data are spatial, their covariance function is exploited by geostatistical
techniques to reasonably infer the PWV at regular grids. In order to improve the inferred
PWV maps, especially in the areas where the PWV estimates are sparse, we apply
data fusion of the remotely-sensed PWV maps with maps produced by the WRF model.

2.2 Water vapor from regional atmospheric models

As depicted in Fig. 2, the WRF model (version 3.1.1, Skamarock et al., 2008) was set
up with a parent domain of 27 km x 27 km resolution and two nests with 9 km x 9 km
and 3 km x 3km, respectively. Vertically, the model divides into 42 layers and the model
top is defined at 50 hPa. The selection of the physical modules is based on the study of
Berg et al. (2013); accordingly, the WRF single moment (WSM) 5-class scheme (Hong
et al., 2004) was selected for microphysics. Short and longwave radiation were com-
puted with the community atmospheric model (CAM) scheme (Collins et al., 2004). The
processes in the planetary boundary layer were represented by the Yonsai University
scheme (Hong et al., 2006). The surface layer was simulated with the Monin—Obukhov
scheme, and the Noah land-surface-model (Chen and Dudhia, 2001) was applied
for the surface physics. Sub-grid convective processes were included with the Kain-
Fritsch parametrization (Kain, 2004). The global dynamic boundary conditions were
ingested from the European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-INTERIM reanalysis at 6 h interval (Uppala et al., 2008).
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The WRF simulations cover the period between July 2004 and September 2005,
such that the first 5 months were considered as spin-up. The PWV content was deter-
mined at every output time-step (10 min) by a vertical integration of all moisture fields
from the land surface to the model top. Two output time slices were compared with
the simultaneous MERIS observations. From the compared maps shown in Fig. 3, we
observe that the spatial atmospheric patterns are not always correctly resembled by
the model. On 27 June 2005, WRF and MERIS PWV maps are strongly correlated with
a coefficient of 0.8, whereas the analysis of 5 September 2005 show a lower spatial
correlation (0.71). While the patterns in the east of the Upper Rhine valley are reason-
ably resembled, an unexpected discontinuity exists in the area around 7.7° E, 48.7° N.

3 Change of support problem

Spatial data, for which close observations correlate more than distant ones, can be
collected at points or areal units. The former are called point-level data or simply point
data and the latter are areal-level or block data (Gelfand et al., 2001). In geostatis-
tics, this defines the spatial support of the data. When both data types are available,
data fusion can be applied to infer the underlying process at any level of support. The
change of support problem is concerned with the inference of the underlying process
at point- or block-levels different from those at which the data are available. This also
includes fusing data at different support levels. Based on the available input data and
the desired output grid, there are four prediction possibilities: points to points, points
to blocks, blocks to points, or blocks to blocks. These prediction possibilities may be
collected under the umbrella of kriging (Cressie, 1993).

For block data that can be expressed as an average of point data as if it is collected
within the block, such as rainfall, temperature, surface elevation, and atmospheric water
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vapor, the following model is appropriate

1
Y(B)) = B Z Y (s)ds (1)

where Y (B;) and Y (s) define the block and point data, respectively (Fig. 4). B; refers to
the block over which the data are aggregated and |B,| is the volume (or cardinality) of
the data. The block-level covariance can then be related to the point-level covariance
as follows:

y
C(B;,B;) = cov |B/|/Y(U)d / (2)

1
- 515 Z Z Clu,v)dudv (3)

where C(B;,B;) is the block-to-block or block covariance function and C(u,v) is the
point covariance function.

4 Spatial data fusion using kriging methods
4.1 Ordinary kriging

In geostatistics, a spatial process can be inferred over a continuous spatial domain by

exploiting the covariance function as an important source of information. Predictions

are obtained based either on single or multiple sets. Kriging is a geostatistical interpo-

lation technique that infers values at new locations by considering spatial correlations

(Cressie, 1993). If the considered spatial data set is denoted by Z, the kriging equa-

tions are presented by Cressie and Johannesson (2008) as follows. Each element of
370
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Z is given by:
Z(s)=Y(s)+e(s) (4)

where Y(s) is the spatial process and e(s) is an independent error term, which is
assumed to be a white noise process with a mean of zero and variance os. For ordinary
kriging (OK), Y (-) is expressed using the following linear model:

Y(8)=T(s)-a +v(s) (5)

where T(s)-a defines a deterministic linear trend, T has a size of Nx3 and each row has
the following entries: [1 longitude(s) latitude(s)]. N is the number of observations and
N =1in Eq. (5), a is a vector of the least squares regression coefficient. v(s) captures
the spatial covariance structure of the process, and it is assumed to have a mean zero
and generally a non-stationary covariance function. If the kriging technique is used to
infer the signal at a new location, it is required to center the data by estimating and
subtracting the linear trend, i.e.,

Z=Z-Ta with a=(T)'TZ (6)
The kriging estimator )7(30) at the location s is then determined as follows:
Y(so)=a'Z 7)

where the vector a contains the kriging weighting coefficients. The best linear unbiased
estimator is found by solving the following constrained minimization problem:

min E{()A/(s)—Y(s))z} subject to
E{Y(s)} = E{Y(s)}

The constraint is added to guarantee that the estimator is unbiased with respect to the
true process. Note that the deterministic signal is calculated from T (sy)@ and added to
the estimate in Eq. (7) to get the total estimated value of Y (s,).
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In the next section, a similar strategy is followed to solve for the best unbiased esti-
mator using two data sets as presented in Braverman et al. (2009).

4.2 Spatial statistical data fusion

The spatial statistical data fusion (SSDF) is a method that statistically combines two
data sets to optimally infer the quantity of interest and calculate the corresponding un-
certainties at any predefined grid (Nguyen, 2009; Braverman et al., 2009). This method
extends the kriging technique described above to find the optimal estimator using mul-
tiple data sets. Let the underlying process Y (s) to be estimated at the location s from
the data in Z, and Z, with the size N, and N,, respectively. The estimator Y (s) at the
location s is obtained from the two data sets as follows:

Y(s)=a,Z, +ayz, (9)

where a4 and a, are the fusion weighting coefficients, and 21 and 22 are detrended
data sets of Z, and Z,, respectively. Following Eq. (8) and Eq. (9), the Lagrangian
function L for the minimization problem under the unbiasedness constraint is

L = 3;21131 + 31222232 + 23{12123,2 —23{1 01 - 23,202
(10)
+2m(@ 1y, + a1y, - 1)

where Z;; = cov(z ) Zjj = cov(Z,,z ), and ¢; = cov(z,, Y (s)) are the covariance func-
tions. 1, is a vector W|th all entries one and a length N;, and m denotes the Lagrange
multlpller The last term of L accounts for the unbiasedness constraint. By differentiat-
ing L with respect to ay,a,, m and assigning the results to zero, we get in the following
system of equations:

2y Zp 1y,
1, 1
372

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

HESSD
12, 363-404, 2015

Atmospheric water
vapor by data fusion

F. Alshawaf et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/363/2015/hessd-12-363-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/363/2015/hessd-12-363-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

and hence

aq 2 Zyp 1N

a| = 221 222 1N2 2 (12)
m 1

There are several important discussion points for the solution in Eq. (12). The co-
variance matrices 2;; are determined without assuming that the underlying process is
isotropic or statlonary This is important for atmospheric parameters, particularly the
atmospheric water vapor that shows spatial anisotropy as observed from the spatial
autocorrelation function in Fig. 5. The covariance function ¢; should account for the
change of the support between the input and the output data. For massive data sets,
the the size of the covariance matrix is huge and the solution in Eq. (12) is not anymore
feasible. Also, the covariance matrices should be modeled such that they would allow
data prediction to any level of aggregation. The Fixed-rank kriging covariance model
suggested by Cressie and Johannesson (2008) provides a comprehensive solution for
these problems for single data sets and the generalized model for fusing multiple data
sets was presented by Nguyen (2009) and Braverman et al. (2009). In the next sec-
tion, we describe the Fixed-rank kriging method and the associated covariance model.
Then, we describe how the data fusion approach is applied to our data sets.

4.3 Fixed-rank kriging

The Fixed-rank kriging (FRK) approach splits the spatial process into two or three com-
ponents depending on the roughness of the spatial variations, i.e,

Y(s)= T(s)-a +S(s)-n+¢(s) (13)
linear trend V(s)

The model in Eq. (13) is called the spatial random effects (SRE) model (Cressie and
Johannesson, 2008). The first component represents a deterministic linear trend that
373
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reflects the large scale spatial variations. The second component S(s) - n captures the
relatively smooth spatial variations, which form the covariance structure of the pro-
cess. That is, cov(S(u)-n,S(v)-n) = S(u) KS'(v) with K the covariance function of n.
This component is modeled by a linear combination of spatial random effects at mul-
tiple spatial scales. The vector n contains r hidden spatial random effects, which are
estimated from the data at predefined nodes. Therefore, we should be able to estimate
n regardless of the aggregation level of the input data. When neglecting the last term
in Eq. (13), the weighted sum Z;=1Sj(s)qj should give the detrended value of Y at the
location s.

The weights stored in the matrix S for each location s depend on the distance be-
tween s and each node. The weighting function S(s) has the following form:

2

2

sis < d[1- s =ml/r?]". forlls-mi<r, .
0 otherwise

m, is the node location, and r; is a predefined effective radius. The formula in Eq. (14)
represents a bisquare bell-shaped function that has its maximum value at m; and de-
creases smoothly until it reaches zero outside the circle. To demonstrate, a schematic
diagram for the nodes setup is shown in Fig. 6. Within the domain of the data, four
nodes, my,---,m,, are defined with a corresponding radius. In Fig. 6, if s is located
within the radius of a certain node, it gets a positive weight, otherwise the weight is
zero. Hence, S(s) =0, 0, 0, S(s)].

The last component in Eq. (13) accounts for the roughness of the process that has
not been captured so far (Kang and Cressie, 2011). The component ¢ is assumed to
be an uncorrelated Gaussian process with a mean zero and a variance of.

Based on the model in Eq. (13), the FRK estimator is found when n and ¢ are deter-
mined, i.e.,

Y (80) = Sp(8,) - 1+ {(5,)
=S5,(5,)KS'’Z"'Z + 02E(s, = s)z'Z
374
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where S,(s,) is the weighting matrix for the prediction location and Z is the covariance
matrix of the input data. The matrix E in Eq. (15) has a value of one if s = s, and zero
elsewhere. Y represents the detrended estimator. f and ¢ are the optimal a postriori
estimates of n and ¢, respectively (Braverman et al., 2011). In order to get the total
value of Y;, we calculate

Yt(so) = T(so) a+ Y(so) (16)

The steps followed to obtain the predictions based on the FRK method are summa-
rized in Fig. 7. The methods to estimate the noise variance ag, the covariance matrix
K, and the variance of the fine-scale signal a? are shown in Appendix A.

We classify the spatial variations of the atmospheric water vapor signal into three
components: long wavelength, medium to short wavelength, and uncorrelated fine
scale. Therefore, we express the water vapor signal using the linear model in Eq. (13)
and use the FRK method for prediction.

We applied the OK and FRK to estimate the zenith-directed wet delay derived from
remote sensing data. For the FRK, the matrix S is constructed using the node setup
shown in Fig. 8. The nodes or center locations of 93 basis functions are established at
three spatial resolutions, the first resolution is 40 km, the second resolution is 20 km,
and the third resolution is 10 km. The results are shown in Fig. 9; the map has a res-
olution of 3km x 3km. Due to the lack of ground truth data that should be used to
estimate the bias in the model data, we do not add the long-wavelength component
into the figures to enable unbiased comparison. We observe similar results from both
ordinary kriging and fixed-rank kriging that agree with the original WRF map. The spa-
tial correlation coefficients with the WRF data are approximately 85 and 83 % for FRK
and OK, respectively. For using OK, we assumed the signal spatially isotropic to ease
the computations; therefore, the OK prediction map shows results sightly different from
the FRK. The most impressive point here is the computational time reported for both
algorithms. The FRK algorithm is fast, so that it requires significantly shorter time to
produce the predictions. Most of the time is invested in the calculations of the covari-

375

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

HESSD
12, 363-404, 2015

Atmospheric water
vapor by data fusion

F. Alshawaf et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/363/2015/hessd-12-363-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/363/2015/hessd-12-363-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

ance model parameters and constructing the matrices S and X. On the other hand,
we implemented the OK algorithm such that the predictions are found iteratively. Also,
to estimate a value at the location s, we do not use the entire data, but only those
which exist within a predefined radius around the prediction location. Nevertheless, the
OK algorithm requires computational time with an order of magnitude higher than that
required by the FRK method using the same machine.

In the next section, we describe the extension of the FRK method for predicting the
atmospheric PWV by fusing remote sensing data and the WRF model.

5 Data fusion for water vapor estimation

In this section, we fuse the PWV maps derived from the remote sensing data and
WRF model. Since we classify the spatial variations of the atmospheric water vapor
signal into long wavelength, medium to short wavelength, and uncorrelated fine scale
components, we use the following model setup for prediction.

5.1 Model setup

PWV maps will be derived from the remote sensing data, denoted Z,, and those from
the WRF model, denoted Z, with the size Ny and N,, respectively. Z; contains the
point PWV estimates from remote sensing data and Z, contains the block WRF data.
Following the SME model in Eq. (13), the two data sets can be expressed as

2)-Rle 5] [5]- 2] o

The regression coefficient @ should be estimated jointly from both data sets. How-

ever, we do not have apriori information about the biases; therefore, we estimate a

in this contribution independently for each data set. The matrices S§; and S, contain

the weights of each location for each data set. To distinguish between point and block
376
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data, we used the notation S, for block-level data. The model components for point
and block data are given in Table 1. The WRF data are available at a resolution of
3km x 3km; therefore, the highly variable signal of water vapor is smoothed. Hence,
we do not consider the component ¢ for the model data.

To solve the system in Eq. (12), we determine the covariance structure associated
with each SRE model in Eq. (17), i.e

X, =var(Z;) = S;KS +a2v§+a V., (18)
35 = var(Zy) = S,K8, + 02 V., (19)
212 = COV(21 ,22) = S1 K§,2 = 2121 (20)

where agvg and oﬁve are diagonal covariance matrices for ¢ and e, respectively. Note
that when computing the cross covariance functions Z,, and Z,,, the only part of the
signals that is assumed correlated is n. In order to solve Eq. (12), we need not only
to specify the covariance matrices of the input data, but also to find the covariance
between the observations and the spatial process at the prediction locations. The co-
variance terms are obtained from:

¢y = cov(Z4(s), Y (S,))
= 5,(5,)KS/(s) + agE(s =5,) (21)
Cp = COV(Z,, Y (S,)) = S,(5,)KS,, (22)

The matrix E in Eq. (21) has a value of one if s = 5, and zero elsewhere. By skoing
for a; and a, in Eq. (12) and substituting the results in Eq. (9), the estimator Y(s,)
becomes

2
e (el (V) 2T

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

HESSD
12, 363-404, 2015

Atmospheric water
vapor by data fusion

F. Alshawaf et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/363/2015/hessd-12-363-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/363/2015/hessd-12-363-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

The mean squared prediction error (MSPE) corresponding to Y can be obtained from
MSPE = afl 21131 + 3'222232 + 23; 21232 - 23’1 01 - 23’202 (24)

Using the FRK covariance model in Eq. (20) makes the matrix inversion of Eq. (23)
scalable. That is, the matrix inversion can be achieved by applying a recursive block-
wise inversion as follows:

A B]" [o, O
c o) -[o, o @

where

O,=A"+A'B(D-CA'B)"'CA™’
0,=-A"'B(D-CA'B)"’
O,=-(D-CA'B)"'CA™’
0,=(D-CA'B)’

and A,B,C,D are matrices of any size, and A, D must be square. The inversion of indi-
vidual matrices in Eq. (25) is achieved by applying the formula of Sherman—Morrison—
Woodbury, which is made possible due to the FRK covariance structure,

3 =(D;+SK;S)"

! -1 -1 1 -1 1 -1 (26)
=D, -D; ' S,(K"'+SD;'S;)"'S'D;
The computations require the inversion of the matrices K and (K'1 + S;-D,.'1S,-), where
each of them has the size r x r with r significantly smaller than the data size. Note that
D, is a diagonal matrix, for which the inversion is achieved by inverting the diagonal
elements. Using the FRK covariance model makes the computational burden for the
matrix inversion linear with the data size (Cressie and Johannesson, 2008).
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5.2 Results and discussion

In this section, we build PWV maps by fusing remote sensing and model data using
the spatial statistical data fusion method. The first PWV map, derived by combining
GNSS and PSI, has 169688 points. The WRF model provides a block-level map of
1296 cells of the size 3km x 3km. The data to be fused have different qualities, huge
size, different spatial support, and gaps in the remote sensing data. The output maps
are compared with the MERIS PWV maps.

Following the work flow in Fig. 7, we first estimate the long wavelength trends and
remove them from the data using Eq. (6). By comparing the PWV from the WRF model
and remote sensing data, we found it is most likely that the model data have a bias.
Due to the lack of apriori information about the bias and accurate ground truth data, we
estimated a independently for each data set. The centered maps are shown in Fig. 10.

The matrices S; and S, are constructed for the first data set (remote sensing data)
and the second data set (model data). The node setup is shown in Fig. 8. The number
of nodes must be the same for both data sets and they are selected such that S does
not contain columns of zeros, otherwise the corresponding node has to be removed.
When PWYV is available at point-level, a weighting value is calculated for each point
with respect to all nodes. However, the WRF model simulates block-level data, hence
we superimpose the model grid with a lattice of regular points such that each cell in
the WRF grid contains 9 points. A weighting value is calculated for each point and the
values are averaged to get a weighing value for each WRF cell to form the matrix S,.
Building the matrix S, for the prediction locations is done in a similar way, either at
point-level or block-level, depending on the output grid.

Next, the covariance parameters (K, 0?, as) are estimated from the centered data Z 1

and 22. The error variances for both data sets, K and 0? are estimated as described in
Appendix A. Note that when the two data sets are combined to infer a single process,
i.e., PWV, one K is estimated for all data sets.
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The output grid is defined at 3km x 3 km (block-level support). So far, all components
required in Eq. (23) are obtained. In Fig. 11, we show the prediction maps obtained by
applying FRK to individual data sets as well as the map obtained by data fusion. The
figure also shows the MSPE maps associated with each prediction map. We compare
the interpolations obtained by applying FRK to single data sets with those obtained
by SSDF and we compare both with the MERIS data. The results show that the map
obtained by data fusion correlates more consistently with the map predicted only from
PSI + GNSS (Table 2). In the PWV map generated by WRF, shown in Fig. 10, the area
in the lower left corner shows artifacts that do not reflect the correct values of PWV as
observed from the MERIS PWV map, Fig. 3c and d. Applying FRK to the WRF data
does not remove these artifacts from the prediction map. However, in the map obtained
by the fusion of both data sets, the artifacts in the lower corner disappeared, but the
corresponding MSPE values are large for this region. The MSPE values corresponding
to the SSDF predictions are generally smaller, and we should note that in the regions of
sparse observations, the corresponding MSPE values tend to increase. For regions of
sparse observations in the PWV map (Fig. 10), i.e., the areas in the west of the Rhine
valley or in the lower right corner, the map from the WRF model contributes to improve
the estimation of the PWV values in the prediction map. The region in the lower right
corner has a higher topography and the wet delay values are expected to decrease
as we observe from the map of WRF. In the prediction map obtained by applying FRK
to PWV from PSI and GNSS, the predicted values tend to increase since the data in
this area are sparse and partially biased. By applying the SSDF approach, the data
available from WRF influence the predictions such that the PWV values in this area are
more reasonable and they decrease by moving to the lower right corner. In a similar
way, the data from WRF improve the predictions in the region around (7.8° E, 49.25° N),
where only sparse PWV data exist. The data from the model, however, affects the
prediction in the lower left corner such that they are smaller than those observed in the
MERIS map.
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In addition, we show the PWV profiles over the line drawn horizontally at the latitude
49.37° N in Fig. 11 (lower right). It is observed from the plots that the predictions made
by data fusion are affected more by the data from WRF in region A, where the remote
sensing data are sparse. However, in region B, the WRF data are significantly over-
estimated. In the prediction map made by data fusion, these data have a lower effect
in than those received from the remote sensing data. The map received by applying
the data fusion shows the best spatial correlation with the data from MERIS and the
smallest RMS value (see Table 2).

6 Conclusions and outlook

We presented a method to obtain the atmospheric PWV over any aggregation level by
the fusion of remote sensing data and atmospheric models. The PWV maps derived by
combining data from PSI and GNSS are available at discrete points that are absent in
regions of low coherence. On the other hand, the WRF model provides simulations of
PWYV in the atmosphere on regular grids at a coarse spatial resolution. Both the quality
of the model data, and the model skills for representing meso-scale atmospheric struc-
tures should be improved. For that purpose, the spatial statistical data fusion method,
first presented in (Nguyen, 2009), was employed. This method is based on the FRK ap-
proach and attempts to solve the problems of computational complexity of huge data
sets, change of support, and bias. We inferred PWV data on a grid of 3km x 3km and
compared the results with maps from MERIS inferred on the same grid. The results
show a strong correlation between data fusion maps and those maps from MERIS.
The difference between both maps has an RMS value of 0.82 mm, which is lower than
that obtained from inferring data based on single sets.

To further improve the results, we suggest the following. So far, the matrix S, is con-
structed for each data source by defining a set of spatial nodes. The number of the
nodes is empirically adjusted such that the covariance function computed for the data
set based on the estimated matrix K approximates the empirical covariance. In future
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work, the size and the locations of nodes have to be optimized by minimizing the dif-
ference between the empirical and the estimated covariance functions. We should also
estimate the biases for each data set (if exist), so that they can be accounted for in
the fusion approach. The data fusion approach can be extended such that more than
two data sets are used, for example, by including the MERIS maps in the fusion. With
the increasing number of satellite missions and improved atmospheric models, we are
able to produce complete, accurate information about the Earth’s atmosphere based on
data fusion approaches. Moreover, the improved PWV maps can be iteratively assim-
ilated to the local area atmospheric model to generate more accurate 3-dimensional
water vapor fields. Also, testing other combinations of physical schemes within the
WRF model can further improve the resulting water vapor maps.

Appendix A: Estimation covariance parameters

Predicting the stochastic component of the atmospheric signal using kriging requires
obtaining the covariance function Z and fitting a covariance model. Using the FRK
covariance model, we need to estimate the matrix K, the noise variance oﬁ, and the
variance of the fine-scale signal o?. The first method proposed to estimate K is called
binned method-of-moments (MM) (Cressie and Johannesson, 2008; Nguyen, 2009).
This approach derives the empirical estimator for X and obtains K such that ||2 - 3| is
minimum, where ||-||z refers to the Frobenius norm. This method is also described in
details in Alshawaf (2013).

Another approach proposed by Katzfuss and Cressie (2009) targets to determine
the covariance parameters using the algorithm of maximum likelihood estimation
(MLE). Furthermore, they estimated the covariance paramters using the expectation-
maximization (E-M) algorithm (Dempster et al., 1977) to reduce the computational bur-
den. This algorithm provides estimates not only of K but also of 0?, where the solution
for the MLEs is found iteratively. Within each iteration the algorithm performs two steps,
the expectation and maximization. In the following, we present a description of how to
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obtain the maximum likelihood estimates of the covariance model parameters via the
E-M algorithm.

Assuming that the observations in Z follow a multivariate Gaussian distribution, that
is Z ~ N(0,2). Let the parameters of interest K and O’? be summarized in the vector O,
then the likelihood function L(©) (Katzfuss and Cressie, 2009)

~2logL (@) = —2f(Z;©)
—logdetZ+Z 3 'Z+c (A1)
—log detZ+ tr (3-'ZZ) + ¢

where ¢ = (N/2)log2m is a constant independent of ® and hence it cancels out in the
maximization step. tr(-) denotes the trace operator of a square matrix, with tr (A) =

27=13//-

In the expectation step of the algorithm, we calculate
Q(©;0!) = Egu{-2logL (1,¢;©)|Z} (A2)
given that:
—2logL(n,¢;0) = log det K+ tr (K~'nn') + Nlog o?
+ ogz tr (¢¢') + Nlogao? + o tr (e€')

Then Eq. (A2) becomes

Q(@;0!") = %[Iog detK + tr (K-"Egu{n|Z})
+Nloga? + 0,2 tr (V;'Equ{¢¢'|1Z)) (A3)

+Nlogo? + 652 tr (VS 'Egu{ee’|Z})]
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We should remind the reader that the parameters to be estimated here are K and 0?,

while ag is estimated from the robust semivariogram, as described later. To proceed
with the solution, it is required to quantify the conditional expectations in Eq. (A3). Using
the standard formula required for calculating conditional expectations for multivariate
normal distribution, the expectations will have the following form (Katzfuss and Cressie,
2009)

> t] [t
Eoun{nn'|Z} = Ty HEZ]IJ,Z[ ]
S t t] it
Eon{¢{'|Z} = 2[ ! +#£»]Il§[ !
with
~ , 1=
w1 = Egn{n|Z} =KIs'z'" ' Z
~ t 1~
u M =Egun{¢lZ} = 05[ ]ng[t] 4
31 = coven (n|2) = KU - Kl1s 5197 K
t > 1] 1] -1 _ol[t]
3! = coven(¢12) = 62"V, - o2 VT 62",
After the expectation step, we perform a maximization step. The parameters K and o?
in Eq. (A3) should be selected such that Q(-) is maximized. The partial derivative is
taken with respect to both parameters and the result is assigned to zero. Finding the
derivative here is rather simple since n and ¢ do not show dependency on each other,

as observed from Eq. (A3). The updating scheme of the E-M algorithm in each iteration
is

K = K+ KO (57207 (22507 -1, ) §) K (A4)
olt+11 _ oltl | oIl (1 -1 (55 i1 olt]
02" =624 62 tr (Nz (zzz -1 )vg (A5)
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We keep updating the solution until the algorithm converges. One criterion to monitor
convergence is to calculate the norm of the difference between the current and last
update of the vector © (which is of size r* + 1). That means [|@"*" - @"|| < b should
hold for small enough and positive value of b. Following Katzfuss and Cressie (2009),
b is assigned a value of 107%/2. The starting choice of K and o? should be valid; strictly

0
speaking, K must be symmetric and positive-definite and og[ ] must be positive, i.e.,

K = 0.9-var(2)l, and 62 = 0.1-var(2).

The measurement error variance a§ is estimated separately from the empirical semi-
variogram of the data. Estimating both og and af from the data is not a trivial task. That
is because the nugget effect in the semivariogram reflects not only the error variance
but may be affected by the fine-scale variance. Therefore, having information about
the error distribution and variance is worthwhile. In our case we estimate oﬁ using the
method of robust semivariogram (Cressie, 1993),

; 1/2\ 4
(mZN(h)|Z(ui) —Z(Uj)| )
2y(h) = (A6)

0.494
(0.457 + Qo h)|)

where h is separation distance, assuming the signal is spatially isotropic. To obtain an
estimate of ag, a strait line is fitted to the estimated semivariogram at short h. Since
the slope of the structure function (variogram) describing atmospheric turbulence is
expected to vary with h, we made the line fitting based on the estimates of the first
3 km (empirically defined). Let the line fit be y(h) = y(0+) + bh, then the estimate of ag
is

62 =7(0+) (A7)

Should y(0+) have a negative value, o“g is set to zero.
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The estimate of K using the detrended PWV maps estimated from the PSI + GNSS
and model data on 5 September 2005 is shown in Fig. 12. The corresponding covari-
ance function is also shown. The matrix S is constructed as described in Sect. 4.3 us-
ing the nodes setup in Fig. 8. The Ky, has a maximum value for the element (29,29),
which is equivalent to estimate at the node in the lower right corner at the location
(8.524° E, 48.69° N), see Fig. 8. This can be explained by the sparseness of PWV es-
timates close to this node and the PWV values from PSI and GNSS are significantly
higher than those from the model. The covariance matrix is computed for the observa-
tions binned into 7 km x 7 km blocks to demonstrate covariance structure. We observe
from the covariance matrices that the variances, on the main diagonal, increase in ar-
eas of sparse observations. The reader should note that the observations do not exist
on a regular grid (due to the spatial distribution of PS points); hence, the covariance
values in the off-diagonal cells can be negative and then again positive.
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Table 1. Model components from point-level and areal-level data.

Point data Block data

True process

Trend
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Medium-scale signal
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Error
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Table 2. Spatial correlation coefficients (CC) and RMS values when comparing the prediction

maps with MERIS PWV maps.

Method Spatial CC  RMS [mm]
WRF data 0.70 1.33
Remote sensing data 0.87 0.90
Data fusion 0.91 0.82
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Figure 1. Maps of the absolute atmospheric PWV derived by combining PSI and GNSS data
and the corresponding map from MERIS. The spatial correlation coefficient is 95 % and the

RMS value of the differences is 0.68 mm.
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Figure 2. WRF model set up with a parent domain of resolution 27 km x 27 km and two nests

of 9km x 9 km and 3km x 3 km, respectively.
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(a) WRF: June 27, 2005 (b) MERIS: June 27, 2005
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Figure 3. Maps of PWV content as received from MERIS and WRF, where a linear trend is
subtracted from each map. The upper data are received on 27 June 2005 (SAR overpass), while
the lower data on 5 September 2005. Gaussian averaging is applied to scale the MERIS data
at WRF resolution, 3km x 3km. The spatial correlation coefficient between the upper maps is
0.8 and 0.71 for the lower.
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Figure 4. Point and block data, such that for spatial data, Y (B;) represents the average of the

point data within the block.
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Figure 5. Spatial autocorrelation function for a PWV map, with the long-wavelength component
removed, computed from remote sensing data acquired on 5 September 2005, 10:51 UTC.
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Figure 6. The observation domain with the black dots define the locations at which the data
are available. The black little squares indicate the nodes. The weights for each location s are
related to the distances d;. The dashed circles define the radius for each node.
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Figure 7. Obtaining predictions via the FRK method.

399

| Jadeq uoissnosigq | Jedeq uoissnosiq | Jaded uoissnosiqg
(8) ‘ll ||| ||\ ‘ll ‘ll ||\

Jaded uoissnosiq

HESSD
12, 363-404, 2015

Atmospheric water
vapor by data fusion

F. Alshawaf et al.



http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/363/2015/hessd-12-363-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/363/2015/hessd-12-363-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

49.4

49.3

49.2

49.1

Latitude [°]

49.0

48.9

48.8

48.7

Figure 8. FRK nodes or center locations of 93 basis functions at three spatial resolutions. The
first resolution is 40 km, the second resolution is 20 km, and the third resolution is 10 km.
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Figure 9. Wet delay prediction map using the block OK and FRK. The resolution of the grid is
3km x 3km. A point-level wet delay map, on 23 May 2005 at 09:51 UTC, is used as input to the
algorithms.
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Figure 10. PWV maps from PSI + GNSS combination and WRF on 5 September 2005, with
a linear trend subtracted from each map. PSI + GNSS provide point-level observations, while
WRF generates block data with a block size of 3km x 3 km.
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Figure 11. PWV prediction and MSPE maps obtained by data fusion of PWV estimates from
PSI and GNSS and maps from WRF as well as predictions obtained by applying FRK to in-
dividual data sets. The data are available on 5 September 2005 at SAR overpass time. The
output grid has a block size of 3km x 3 km.
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Figure 12. Estimate of the covariance matrix K using the E-M algorithm and the corresponding
covariance matrix for the Wet delay map from PSI + GNSS. The wet delay observations are
aggregated into maps of 7 x 7 km? cells before their covariance matrices are computed.
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