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Abstract

During the past decade, risk-sensitive considerations have become more and more

popular in the field of Markov Decision Processes. Most of the research focused on

using special utility functions or mean-variance trade-offs to express risk-sensitivity.

In this thesis, we apply the Target Value Criterion to an MDP with a random plan-

ning horizon. In many decision problems appearing in innovative areas, the planning

horizon of a project usually cannot be specified in advance. An approximation by an

infinite planning horizon often turns out to be an oversimplification. A deterministic

planning horizon considered so far in the literature is too restrictive for many appli-

cations. An estimation of the mean running time of the decision process, however, is

usually possible due to historical data or expert knowledge. Also variability around

the mean value can often be supposed to increase with the mean value. To take the

random planning horizon into account, we use the geometric distribution.

Applying the Target Value Criterion means to minimize the probability that the total

reward is below a predetermined target, referred to as the target value. We derive

an optimality equation and prove the existence of an optimal stationary policy in a

generalized state space, where the target space incorporates the realized one-stage

rewards. The structure of the value function, that means the monotonicity and the

asymptotic behavior is exploited to approximate the target space by a finite subset.

Based on these structural results, upper and lower bounds are derived for the value

function as well as nearly optimal policies. We show that the value function is

continuous from the left side and we introduce an error integral to study the distance

between the value function of the original problem and the one of the discretized

problem. The discretization allows a decomposition of the problem, which is utilized

to recursively determine its solution.
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As an extension we combine the Total Reward Criterion and the Target Value Cri-

terion in a penalty approach. The structure of the value function and the optimality

of a stationary policy is proven. Moreover, we study the dependence of the optimal

stationary policy on the penalty factor.

The thesis closes with a case study regarding an exemplary application.

ii



Contents

1 Introduction 2

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Total Reward Criterion in Markov Decision Processes 5

2.1 The standard infinite horizon model . . . . . . . . . . . . . . . . . . . 6

2.1.1 Structured Policies . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Markov Decision Processes with an Absorbing Set . . . . . . . . . . . 9

2.3 Markov Decision Processes with random planning horizon . . . . . . . 11

2.4 Solution methods for the random horizon model . . . . . . . . . . . . 13

2.4.1 Value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Linear programming . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Motivating example for alternative optimality criteria . . . . . . . . . 20

3 Target Value Criterion in Markov Decision Processes 23

3.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 The decision model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 An equivalent model without discounting . . . . . . . . . . . . . . . . 28

3.4 Discretization of the target space . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Proposal to construct X∆ . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Error Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.4 Decomposition of the discretized MDP . . . . . . . . . . . . . 40

3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



Contents

4 Extensions of the model 64

4.1 Chance Constraint Approach . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Multi-criteria approach . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Discretization of the target space . . . . . . . . . . . . . . . . 68

4.2.2 Decomposition of the discretized MDP . . . . . . . . . . . . . 69

4.2.3 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4 Limit behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Parametric penalty cost . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Case Study 78

5.1 Inventory Management . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Conclusion 85

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



List of Figures

2.1 Motivating Example, simulated distribution function for state 1 . . . 21

2.2 Motivating Example, simulated distribution function for state 2 . . . 22

2.3 Motivating Example, simulated distribution function for state 3 . . . 22

3.1 Example 1, discretization according to the proposal with ∆ = 0.01 . . 46

3.2 Example 1, discretization according to a uniform discretization scheme

with ∆ = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Example 1, comparison of the bounds for state s = 0 . . . . . . . . . 47

3.4 Example 1, comparison of the bounds for state s = 1 . . . . . . . . . 48

3.5 Example 1, comparison of the bounds for state s = 2 . . . . . . . . . 48

3.6 Example 1, policies according to the proposal . . . . . . . . . . . . . 49

3.7 Example 1, policies according to a uniform discretization . . . . . . . 50

3.8 Example 2, discretization according to the proposal with ∆ = 0.01 . . 52

3.9 Example 2, discretization according to the proposal with ∆ = 0.01 . . 52

3.10 Example 2, comparison of the bounds for state s = 0 . . . . . . . . . 53

3.11 Example 2, comparison of the bounds for state s = 1 . . . . . . . . . 53

3.12 Example 2, comparison of the bounds for state s = 2 . . . . . . . . . 54

3.13 Example 2, policies according to the proposal . . . . . . . . . . . . . 55

3.14 Example 2, policies according to uniform discretization . . . . . . . . 56

3.15 Example 2, modified comparison of the bounds for state s = 0 . . . . 57

3.16 Example 2, modified comparison of the bounds for state s = 1 . . . . 58

3.17 Example 2, modified comparison of the bounds for state s = 2 . . . . 58

3.18 Example 3, upper and lower bounds for ∆=0.0125 . . . . . . . . . . . 60

3.19 Example 2, upper and lower bounds for ∆=0.00625 . . . . . . . . . . 61

v



List of Figures

3.20 Example 4, discretization according to the proposal with ∆ = 0.01

and closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.21 Example 4, discretization according to the proposal with ∆ = 0.01

and closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Example 6, limit behavior for ∆=0.0125 . . . . . . . . . . . . . . . . 75

4.2 Example 6, limit behavior for ∆=0.0125 . . . . . . . . . . . . . . . . 76

5.1 Case Study, policies according to initial inventory level . . . . . . . . 81

5.2 Case Study, policies according to initial inventory level continued . . 82

5.3 Case Study, smoothed policies according to initial inventory level . . 83

5.4 Case Study, smoothed policies according to initial inventory level con-

tinued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vi



List of Tables

2.1 Motivating Example, problem data . . . . . . . . . . . . . . . . . . . 20

3.1 Example 1 to 3, input data . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Example 1, comparison of number of iterations . . . . . . . . . . . . . 46

3.3 Example 1, discretization error with 1− β = 0.1 . . . . . . . . . . . . 51

3.4 Example 2, number of iterations for 1− β = 0.04 . . . . . . . . . . . 52

3.5 Example 2, discretization error with 1− β = 0.04 . . . . . . . . . . . 57

3.6 Example 2, number of iterations 1− β = 0.04 . . . . . . . . . . . . . 59

3.7 Example 2, number of iterations for each ∆ with 1− β = 0.04 . . . . 62

3.8 Example 2, evolution of the discretization error with 1− β = 0.04 . . 62

3.9 Example 4, reduction of computational effort . . . . . . . . . . . . . . 63

4.1 Example 6, comparisons of value iteration with value iteration with

extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Probability distribution inventory management . . . . . . . . . . . . . 80

vii



List of Algorithms

1 Value Iteration, risk neutral . . . . . . . . . . . . . . . . . . . . . . . 14

2 Value Iteration with Extrapolation, risk neutral . . . . . . . . . . . . 16

3 Policy Iteration, risk neutral . . . . . . . . . . . . . . . . . . . . . . . 18

4 Value Iteration, Target Value . . . . . . . . . . . . . . . . . . . . . . 36

5 Policy Iteration, Target Value . . . . . . . . . . . . . . . . . . . . . . 37

6 Value Iteration with Decomposition case 1, Target Value . . . . . . . 43

7 Value Iteration with Decomposition case 2, Target Value . . . . . . . 44

8 Value Iteration with Extrapolation, Penalty Approach . . . . . . . . . 71

9 Policy Iteration, Parametric Approach . . . . . . . . . . . . . . . . . 74

1



Chapter 1

Introduction

In the classical theory of Markov Decision Processes (MDPs) one of the most com-

monly used performance criteria is the Total Reward Criterion. Therein, a risk neu-

tral decision maker is assumed, that concentrates on the maximization of expected

revenues. However, in many applications, practitioners are concerned with the devi-

ation of expected performance criteria and consider them too risky to adapt. Among

these applications are portfolio management, revenue management, insurance and

the management of energy systems. In these settings, the Total Reward Criterion is

not appropriate to measure performance because it does not account for the involved

risk of possible deviations from the expected value. Therefore, risk-sensitive decision

maker may be interested in additional distributional properties of the Total Reward.

In the literature, risk aversion has, so far, been addressed by special utility function,

certainty equivalent approaches, minmax approaches and mean-variance tradeoffs.

For an exemplary application of the exponential utility function to address risk-

aversion, we refer to Barz and Waldmann (2007) who considered a risk-averse capac-

ity control problem in revenue management and to Bouakiz and Sobel (1992) who

analyzed an inventory model in a risk-averse setting. Certainty equivalent approaches

and mean-variance tradeoffs are dealt with in Van Dijk, Sladkỳ, et al. (2006),Sladkỳ

and Sitavar (2004). For an overview, we refer to White (1988b), Howard and Math-

eson (1972). A drawback of the utilization of general utility functions is the enlarge-

ment of the state space, that makes the problems hard to solve from an algorithmical

point of view. Moreover, the existence of an optimality equation, as well as, the
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Chapter 1 Introduction

existence of deterministic policies is not guaranteed. Especially for practitioners it is

difficult to implement policies that are randomized.

Utilizing the Target Value Criterion minimizes the probability of failing a predeter-

mined target. This enables the decision maker to choose a target according to the

risk attitude. Moreover, the existence of an optimal policy as well as the existence

of an optimal deterministic policy can be proven.

1.1 Outline

Chapter 2 provides an introduction to Markov Decision Process (MDPs). We formally

define sequential decision making under uncertainty in the MDP framework. As an

optimization criterion, the Total Reward Criterion is introduced. Solving an MDP

involves the determination of the optimal value function and the corresponding policy.

A policy allows the control of the system at each point in time and is a sequence

of decision roles. A decision rule prescribes the action the decision maker has to

choose in each possible state of the system. In addition, structured policies are

considered. The are desirable since they feature a simple structured form that can

be exploited to efficiently calculate optimal decision rules. Next, MDPs with random

planning horizon are discussed and the relationship to standard infinite MDPs is

discussed. Section 2.4 introduces three methods for solving the optimality equation:

Value Iteration including an efficient extrapolation method, Policy Iteration and

Linear Programming. Chapter 2 closes with a motivating example that contains a

simulation study illustrating the spreading of the realized total reward around the

expected value.

Chapter 3 deals with the Target Value Criterion in MDPs with geometrically dis-

tributed planning horizon. First, an overview of the related literature is provided.

Afterwards, the decision model is discussed. In order to apply the Target Value Cri-

terion, the state space has to be extended by a second dimension - which we refer to

as the target space - that incorporates the realized one-stage rewards and expresses

the remaining contribution to the target that has to be achieved in the remaining

3



Chapter 1 Introduction

time of the planning horizon. Moreover, the definition of decision rules and poli-

cies have to be adopted to the new context. Finally, the existence of an optimality

equation as well as the corresponding optimal stationary policy is proven. Section

3.3 introduces an equivalent model without discounting. For numerical calculations

o the minimal probability of failing a predetermined target value, a discretization

scheme for the target space is given. Since the target space is not a compact set, we

develop a non-uniform discretization scheme that, based on an equidistant grid on

the probability of failing a predetermined target and the exploitation of the structure

of the geometrically distributed planning horizon, provides a possibility to recursively

determine discretization points for the target space. Section 3.4.2 adopts the clas-

sical solution methods Value Iteration, Policy Iteration and Linear Programming to

the new context. Upper and lower bounds of the value function are calculated. In

order to evaluate the quality of the discretization scheme, an error integral based on

the area between the lower and upper bound is proposed. Finally, a decomposition

scheme of the target space into closed subsets is treated. Chapter 2 closes with nu-

merical examples, concerning the proposed discretization scheme, the decomposition

method and the evolution of the error integral dependent on the discretization step

width.

Chapter 4 provides a combination of the Total Reward Criterion and the Target

Value Criterion as an extension. Section 4.1 deals with a Chance Constrained ap-

proach, where the property that the probability of not achieving a predetermined

Target Value is below a given threshold is treated as an additional constraint. In

addition, a weighted sum approach, where the probability of not achieving a prede-

termined target value is treated as a penalty is proposed. Moreover, the existence

of an optimality equation and the existence of a corresponding optimal stationary

policy is proven. Section 4.2.1 adopts the discretization scheme to the new context.

After that, an extrapolation method for the value Iteration Algorithm that speeds up

the convergence is treated. Section 4.2.4 shows the limiting behavior of the objective

function by varying the penalty parameter towards the Total Reward Criterion on

the one hand, and towards the Target Value Criterion on the other hand. Section

4.3 provides a parametric programming approach for the penalty parameter. This

chapter closes with numerical examples.

Chapter 5 provides a case study containing an application in inventory management.
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Chapter 2

Total Reward Criterion in Markov

Decision Processes

Markov Decision Processes (MDPs) provide a unified framework for the optimization

of problems arising from sequential decision making under uncertainty. Applications

cover a wide range of domains. To mention some of them, MDP models have been

applied to revenue management, communication networks, inventory control, queu-

ing systems, health care management, medical decision making and transportation

science. For an overview, we refer to the survey papers of White (1985), White

(1988a), White (1993b) and the textbook on methods and applications of Feinberg

(2002). The recent survey of Altman (2001) on applications in communication net-

works contains nearly 200 references and emphasizes the importance of MDPs in that

domain. For application examples in medical decision making we refer to Schaefer

et al. (2005). A recommendation for the application of MDPs in medical decision

making is given by the tutorial in Alagoz et al. (2010). For a variety of optimality

criteria, these problems can be solved by dynamic programming. The main strength

of this approach is that fairly general stochastic and nonlinear dynamics can be

considered.

In the MDP framework, systems are characterized by collections of state variables

evolving over time. State variables summarize the history of the system, containing

all information that is relevant for describing future events. In formulating a problem

as an MDP, state variables must be designed to satisfy the Markov property. That

5



Chapter 2 Total Reward Criterion in Markov Decision Processes

means, conditioned on the current state of the system being known, its future is

independent from its past.

The evolution of state variables depends on actions taken by the decision maker

and on a probability distribution governing possible state transitions. We consider

systems running in discrete time and occupy the discounted sum of rewards as an

optimality criterion, which we refer to as the total reward criterion. Rewards accrue

at each time step and depend on the state of the system and action being taken at

that time.

The current chapter provides an introduction to risk-neutral MDPs. We formally

define sequential decision-making under uncertainty in the MDP framework. We

start with standard infinite horizon MDPs to introduce the theory, methodology and

solution methods. A comprehensive introduction to MDPs is provided, e.g. by White

(1993a), Puterman (2005) and Waldmann and Stocker (2013). General foundations

of stochastic dynamical programming can, e.g. be found in Hinderer (1970). In the

sequel, we allow MDPs to posses a structured state space, containing an absorbing

set. That leads us to MDPs with random planning horizon that offer a framework for

the risk-sensitive MDPs considered later on. MDPs with random planning horizon

can be equivalently transformed to infinite horizon MDPs extending the state space

by an absorbing state that indicates whether the process is still running or is already

terminated. As a consequence, solution methods based on standard infinite horizon

MDPs can be applied. We limit our discussion to finite state and action spaces.

2.1 The standard infinite horizon model

An infinite horizon MDP describes a stochastic system at discrete points in time t ∈

N0. At each point in time t ∈ N0 the system state st from the state space S is observed

and a decision maker chooses an action at among the admissible actions D(s). This

action results in an immediate one-stage reward r(st, at) and in a transition to system

state st+1 at time t + 1 with probability pt(st, at, st+1). In the case of a stationary

MDP, the one-stage rewards, the actions and the stochastic transition law do not

6



Chapter 2 Total Reward Criterion in Markov Decision Processes

depend on the decision epoch. In summary we can state the following definition of

an infinite horizon MDP.

Definition 1. An infinite horizon MDP consists of a five tuple (S,A, p, r, α) with

(i) a finite state space S,

(ii) a finite action space A, where D(s) ⊂ S is the non-empty set of admissible

actions in state s ∈ S, and the constrained set D := {(s, a)|s ∈ S, a ∈ D(s)},

(iii) a stochastic transition law p : D × S → [0, 1], that represents the probability

p(s, a, s′) for a transition from state s ∈ S to state s′ ∈ S for a given action

a ∈ D(s),

(iv) an one-stage reward function r : D → R, that represents the reward r(s, a) for

choosing action a in state s,

(v) one-stage discount factor α ∈ (0, 1).

Notice that given s and a, (p(s, a, s′), s′ ∈ S) is a counting density on S. The discount

factor α is a scalar between zero and one and represents inter-temporal preferences,

indicating how rewards incurred at different time steps are combined in a single

optimality criterion. In finance problems, α has a concrete interpretation: the same

nominal value is worth less in the future than in the present, since in the latter case

it can be invested for a risk-free return. Values of α greater than one can be allowed

if the state space contains an absorbing set. For a detailed discussion of the critical

discount factor we refer to Hinderer and Waldmann (2003).

The problem of sequential decision making amounts to the selection of a policy that

optimizes a given criterion.

Definition 2. A decision rule is a function f : S → A, that specifies the ac-

tion a = f(s) in state s ∈ S. The set of all decision rules is denoted by F :=

{f : S × A|f(s) ∈ D(s) for all s ∈ S}.

Definition 3. A Markov policy π = (f0, f1, . . .) is a sequence of decision rules f ∈ F ,

specifying the action an = fn(sn) chosen in state sn ∈ S at time n. The set of all

stationary policies is denoted by F∞.

7



Chapter 2 Total Reward Criterion in Markov Decision Processes

Mainly we are interested in stationary policies π = (f, f, . . .) for some f ∈ F .Given a

stationary policy π = (f, f, . . .) ∈ F∞, the dynamics of the system follows a Markov

chain with transition probabilities p(s, f(s), s′), s, s′ ∈ S. Due to our assumptions it

suffices to consider stationary policies. Extending considerations to policies depend-

ing on the history of the system or randomization does not improve performance

(e.g. Puterman (2005)). We employ the total reward criterion. The state process is

denoted by (ζt)t∈N0
.

For π ∈ F∞ and s ∈ S let

Vπ(s) := Eπ

[

∞
∑

t=0

αtr(ζt, ft(ζt))|ζ0 = s

]

be the discounted expected total reward starting in state s and following policy π.

Finally, we use

V (s) := sup
π∈F∞

Vπ(s)

to denote the maximal expected total reward starting in state s ∈ S.

A policy π∗ is called reward-optimal (r-optimal), if Vπ∗(s) = V (s) holds for all s ∈ S.

We also say that a decision rule f ∗ is r-optimal, if the corresponding stationary policy

π∗ = (f ∗, f ∗, . . .) is r-optimal.

2.1.1 Structured Policies

Many applications comprise structures that correspond to optimal decision rules that

can be exploited to efficiently calculate optimal policies. Consequently, using this

structure, not all possible values of s ∈ S have to be determined, since they feature

a simply structured form. Some policies can even be completely characterized using

only a few parameters.

A well-known example of a structured policy is the (s, S) policy in dynamic inventory

problems. Its decision rule can be summarized as follows. If the inventory is above

the level s then do not order, and if the inventory level is below the level s, order a

quantity so that the inventory becomes S. In that example of a structured policy,

only two values are necessary for the description of the policy.

8



Chapter 2 Total Reward Criterion in Markov Decision Processes

A decision problem that provides an optimal structured policy is generally desirable.

According to Powell (2011) the importance of identifying structured optimal poli-

cies is one of the most dramatic success stories from the study of Markov Decision

Processes. Moreover, a structured policy is easily understood and implemented by

end users which again increases the acceptance of the strategy. Finding structured

optimal policies that can be computed efficiently and which are intuitive and exer-

cisable in practice is one of the central challenges of dynamic optimization. For more

examples on structured policies, we refer to Waldmann and Stocker (2013).

2.2 Markov Decision Processes with an Absorbing Set

An MDP with an absorbing set is a natural extension of the standard MDP, which

allows a discount factor α = 1, or more precisely, a discount factor α smaller than

a critical discount factor α∗ ≥ 1, resulting from both, the original discount factor α

and the asymptotic behavior of the system.

It is realized by a structured state space S, containing an absorbing set J0 ⊂ S, i.e.
∑

s′∈J0
p(s, a, s′) = 1 with r(s, a) = 0 for s ∈ J0, a ∈ D(s). That means if the process

enters an absorbing set, the evolution of the process is stopped and the rewards are

equal to zero. For a more formal introduction, see Hinderer and Waldmann (2005)

or Waldmann (2006).

Note that J0 may be empty and need not be unique. In this section, however, we

only consider J0 6= ∅ and assume J0 to be arbitrary but fixed. The set J := S \ J0 of

transient states is called the essential state space because the behavior of the process

is only of interest up to the entrance time into J0 and not within J0.

The absorbing property of J0 is used there to find conditions that ensure the con-

vergence of Vπ(s) for s ∈ S. Let τ := inf {t ∈ N|ζt ∈ J0} ≤ ∞ denote the entrance

time into the absorbing set J0, i.e. the first time that the state process (ζt) is in J0,

having started in some state s ∈ S. Note that using τ , the expected total reward is

Vπ(s) = Eπ

[

τ−1
∑

n=0

αnr(ζt, f(ζt))|ζ0 = s

]

, s ∈ J.

9



Chapter 2 Total Reward Criterion in Markov Decision Processes

Given a policy π ∈ F∞ and an initial state s ∈ J , the distribution of τ can be

obtained by evaluating Pπ(τ > t|ζ0 = s), t ∈ N recursively.

In order to find an upper bound for Pπ(τ > t|ζ0 = s), define an operator H on V,

the set of all bounded functions on J with respect to the supremum norm, by

Hv(s) := max
a∈D(s)

∑

s′∈J

p(s, a, s′)v(s′),

for s ∈ J and v ∈ V. Let H t+1v = H(H tv) and H0v = v, v ∈ V, t ∈ N0. Then,

H t1(s) = sup
π∈F∞

Pπ(τ > t|ζ0 = s),

with 1 denoting a vector with entries 1. Obviously, ‖H t1‖ is an upper bound for the

probability that the process has not entered the absorbing set J0 at time t.

Hinderer and Waldmann (2005) show that the following equivalent assumptions en-

sure the existence of the maximal total expected reward.

(AS) αt ‖H t1‖ < 1 for some t ∈ N,

(AS’) αt ‖H t1‖ → 0 as t → ∞.

They prove the following theorem.

Theorem 1. Given (AS) or (AS’),

(i) The expected total reward

V (s) = sup
π∈F∞

Eπ

[

∞
∑

n=0

αnr(ζn, f(ζn))|ζ0 = s

]

,

is the unique bounded solution of the optimality equation V = UV ,

V (s) = max
a∈D(s)

{

r(s, a) +
∑

s′∈J

αp(s, a, s′)V (s′)

}

, s ∈ J.

(ii) A decision rule f is r-optimal if and only if f is a maximizer of UfV (i.e.

UV (s) = UfV (s) for all s ∈ J). Thus, there exists an r-optimal decision rule.

10



Chapter 2 Total Reward Criterion in Markov Decision Processes

(iii) Value iteration works, i.e. for all v0 ∈ V it holds that vn := Uvn−1, n ∈ N,

converges in norm to V (i.e. ‖V − vn‖ → 0 as n → ∞).

Given the assumption that the upper bound for the probability that the process has

not entered the absorbing set J0 at time n, αn ‖Hn1‖, converges to zero as n tends to

infinity, value iteration can be used for finding the optimal policy and the associated

maximal expected total reward. For α = 1 this is equivalent to assuming that there

is some n′ ∈ N for which it is ensured that this upper bound of Pπ(τ > n′|ζ0 = s) is

smaller than 1.

2.3 Markov Decision Processes with random planning

horizon

In the analysis of decisions concerning innovative products, the planning horizon of

a project often cannot be specified exactly in advance. An approximation by an

infinite planning horizon is often an oversimplification. Consequently, a determin-

istic planning horizon considered so far in the literature is too restrictive for many

applications. An estimation of the mean running time, however, is often possible

due to former experiences or expert knowledge. Also variability around the mean

value can often be supposed to increase with the mean value. The geometric distri-

bution, which will be used in the sequel, meets these requirements and distinguishes

from other distributions by its mathematical simplicity of use due to the well known

property of being memory-less.

It is well known (see e.g. Hinderer and Waldmann (2005), Ross (1995)) that the

standard infinite-horizon MDP with discount factor α ∈ (0, 1) is equivalent to a finite

horizon MDP with geometrically distributed planning horizon. The reformulation is

essentially based on an extension of the state space by a stopping state, which is

reached with transition probability 1 − α from each of the (transient) states s ∈ S.

Moreover, it is a special case of an MDP with an absorbing set.

To be more precise, we state the following definition.

11



Chapter 2 Total Reward Criterion in Markov Decision Processes

Definition 4. An MDP with random planning horizon, following a geometric distri-

bution consists of a seven tuple (S,A, p, r, h, α, 1− β) with

(i) a finite state space S,

(ii) a finite action space A, where D(s) ⊂ A is the non-empty set of admissible

actions in state s ∈ S, and the constrained set D := {(s, a)|s ∈ S, a ∈ D(s)},

(iii) a stochastic transition law p : D × S → [0, 1], that represents the probability

p(s, a, s′) for a transition from state s ∈ S to state s′ ∈ S for a given action

a ∈ D(s),

(iv) an one-stage reward function r : D → R, that represents the reward r(s, a), for

choosing action a in state s,

(v) a terminal reward function h : S → R, that represents the terminal reward h(s)

in state s,

(vi) one-stage discount factor α ∈ (0, 1),

(vii) the planning horizon τ , following a geometric distribution on N with parameter

1 − β, i.e. P (τ = n) = (1 − β)βn−1 for n ∈ N , (independent of the state

process).

For π ∈ F∞ and s ∈ S let

V τ
π (s) := Eπ

[

τ−1
∑

t=0

αtr(ζt, ft(ζt)) + ατh(ζτ )|ζ0 = s

]

be the expected total reward starting in state s and following policy π. We use

V τ (s) := sup
π∈F∞

V τ
π (s)

to denote the maximal total reward starting in state s ∈ S. Finally, a policy π∗ ∈ F∞,

fulfilling V τ
π∗(s) = V τ (s) for all s ∈ S, is called r-optimal. Extending the state space

S by a stopping state sabs, that indicates whether or not the process is still running,

the problem can be reformulated as an MDP with an absorbing set in the sense

of Hinderer and Waldmann (2005), with state space S ′ = S ∪ {sabs}, action space

12
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A′ = A, sets D′(s) = D(s), s ∈ S,D′(sabs) = A of admissible actions, transition

probabilities p′(s, a, s′) = βp(s, a, s′), s′ ∈ S, p(s, a, sabs) = 1 − β for (s, a) ∈ D and

p(sabs, a, sabs) = 1 for a ∈ A, one-stage rewards r′(s, a) = r(s, a) on D, where

r(s, a) := r(s, a) + α(1− β)
∑

s′∈S

p(s, a, s′)h(s′), (s, a) ∈ D.

and r′ = 0 otherwise, and, finally, discount factor α′ = α. Then it follows from

Theorem 3.1 in Hinderer and Waldmann (2005) that V τ is the unique solution of the

optimality equation

V τ (s) = max
a∈D(s)

{

r(s, a) + αβ
∑

s′∈S

p(s, a, s′)V τ (s′)

}

, s ∈ S (2.1)

and that there exists an r-optimal decision rule f ∗ ∈ F formed by actions f ∗(s) ∈

D(s) maximizing the right hand side of (2.1). Thus, a geometrically distributed

planning horizon τ can be interpreted as a standard infinite-horizon MDP with one-

stage rewards r(s, a) and discount factor αβ. Moreover, the efficient methods for

solving the standard infinite-horizon model can be applied successfully.

2.4 Solution methods for the random horizon model

There are several iterative approaches for solving infinite horizon or random horizon

problems. The first, Value Iteration, is the most widely used method. It involves

iteratively estimating the value function. At each iteration the estimate of the value

function determines which decisions will be made and, thus, defines a policy.

The second approach is the Policy Iteration . At each iteration a policy is defined

and the according value function is calculated. Moreover, based on the test quantity

the policy that is used in the next iteration is determined.

Finally, the third major iterative approach exploits the observation that the value

function can be viewed as the solution to a specially structured linear programming

problem.

13
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The advantage of Value Iteration is the easy possibility of incorporating the structure

of an optimal decision rule. This leads to a tremendous reduction of the calculation

effort. As an example we refer to Grävenstein (2008) who exploited the structure of

an optimal decision rule in a reservoir control problem.

Policy Iteration offers the possibility of applying a sensitivity analysis or parametric

programming, as we will see later on. The linear programming method for discounted

MDPs was proposed by Manne (1960). It is widely known that in the presence of

a discount factor Howard’s Policy Iteration routine corresponds precisely to block

pivoting in a linear program. That was exhaustively studied in by d’Epenoux (1960).

2.4.1 Value iteration

The problem of finding an optimal policy can be converted into the problem of com-

puting the maximum total reward V (s), which we refer to as the value function. The

set V denotes the set of all bounded functions on S. Starting with an arbitrary start-

ing point v0 ∈ V, a sequence of approximations (vn) is constructed that converges

uniformly towards the value function. The algorithm can be found in Algorithm 1.

For a proof and convergence properties we refer to Puterman (2005).

Algorithm 1 Value Iteration, risk neutral

Input: n = 0, v0 ∈ V, ε > 0
repeat

n = n+ 1
for all s ∈ S do

vn(s) = max
a∈D(s)

{

r(s, a) + αβ
∑

s′∈S

p(s, a, s′)vn−1(s
′)

}

fn(s) = argmax {vn(s)}
end for

until ‖vn − vn−1‖ < ǫ
V τ = vn
f ∗ = fn
Output: approximation of the value function V τ and a r-optimal decision rule f ∗

14
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Value Iteration with Extrapolation

The convergence of the basic Value Iteration algorithm is usually very slow. Combin-

ing the Value Iteration (vn) with an extrapolation giving monotone upper and lower

bounds

w+
n (s) = vn(s) +

αβ

1− αβ
sup
s′∈S

{vn(s)− vn−1(s)}

w−
n (s) = vn(s) +

αβ

1− αβ
inf
s′∈S

{vn(s)− vn−1(s)} , s ∈ S

for the value function at each step n of iteration, the quality of the approximation

can usually be improved considerably. Moreover, a lower bound for the expected

total reward associated with fn can be given. The details of the approach credited to

MacQueen for the standard infinite horizon model are summarized in the following

theorem.

Theorem 2. For all n ∈ N and all s ∈ S it holds that

(i) w−
n (s) ≤ w−

n+1(s) ≤ V (s) ≤ wn+1(s) ≤ w+
n (s),

(ii) lim
n→∞

w−
n (s) = lim

n→∞
w+

n (s) = V (s).

(iii) Let fn ∈ F with vn = Uvn−1. Then it holds that Vfn ≥ w−
n .

Proof. The proof is contained in Waldmann and Stocker (2013).

The algorithm is stated in Algorithm 2.
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Algorithm 2 Value Iteration with Extrapolation, risk neutral

Input: n = 0, v0 ∈ V, ε > 0
repeat

n = n+ 1
for all s ∈ S do

vn(s) = max
a∈D(s)

{

r(s, a) + αβ
∑

s′∈S

p(s, a, s′)vn−1(s
′)

}

fn(s) = argmax {vn(s)}
end for

for all s ∈ S do

w−
n (s) = vn(s) +

αβ

1− αβ
inf
s′∈S

{vn(s)− vn−1(s)}

w+
n (s) = vn(s) +

αβ

1− αβ
sup
s′∈S

{vn(s)− vn−1(s)}

end for

until ‖w+
n − w−

n ‖ < 2ǫ
V τ = (w−

n + w+
n )/2

f ∗ = fn
Output: approximation of the value function V τ and a r-optimal decision rule f ∗
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2.4.2 Policy Iteration

While the Value Iteration is based on successive approximations of the value function,

we have that the Policy Iteration constructs a sequence of policies converging towards

a r-optimal policy π∗.

For the equivalence between Policy Iteration and the Newton-Kantorovich iteration

procedure applied to the functional equation of dynamic programming, as well as

proofs of the uniqueness of the solution and convergence rates in context with the

standard MDP, we refer to Puterman and Brumelle (1979).

The Policy Iteration can be split into two steps: policy evaluation and policy im-

provement. Starting with an arbitrary decision rule f0 ∈ F , the expected discounted

total reward is calculated for the given decision rule. In a second step, based on

the total reward associated with the decision rule, the optimality equation is used to

decide whether or not the decision rule is r-optimal. If the maximizer can be chosen

equal to the former decision rule, the algorithm terminates. In the other case, the

maximizer is thought of as a new decision rule and is evaluated using the policy eval-

uation step. The properties of the policy iteration are summarized in the following

theorem.

Part (i) ensures that fn is optimal, if and only if UVfn = UfnVfn holds;

part (ii) guarantees the monotonicity property, that isVfn+1
≥ Vfn .

Theorem 3.

(i) Let f ∈ F with UfVf (s) = UVf (s) for all s ∈ S. Then it holds that

Vf (s) = V (s), s ∈ S.

(ii) Let f, f ′ ∈ F with Uf ′Vf (s) = UVf (s) for all s ∈ S.

Vf ′(s) ≥ Vf (s) s ∈ S.

Proof. For the proof we refer to Waldmann and Stocker (2013).
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The algorithm can be found in Algorithm 3.

Algorithm 3 Policy Iteration, risk neutral

Input: n = 0, f0 ∈ F
Policy evaluation:
Calculate Vfn as the unique solution of the linear system

Vfn(s) = r(s, fn(s)) + αβ
∑

s′∈S

p(s, fn, s
′)Vfn , s ∈ S

Policy improvement:
Calculate the test quantity

UVfn(s) = max
a∈D(s)

{

r(s, a) + αβ
∑

s′∈S

p(s, a, s′)Vfn(s), s ∈ S

}

if fn is maximizer of the test quantity UVfn for all s ∈ S then

fn is optimal
else

n = n+ 1
goto Policy evaluation

end if

V τ = Vfn

f ∗ = fn
Output: value function V τ and a r-optimal decision rule f ∗

2.4.3 Linear programming

The primal problem can be stated as follows.

min
∑

s∈S

w(s)

subject to

w(s)− αβ
∑

s∈S

p(s, a, s′)w(s′) ≥ r(s, a), s ∈ S, a ∈ D(s).

The variables w(s) of the primal problem correspond to the total reward V (s).
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Theorem 4. It holds for the optimal solution w∗(s), s ∈ S of the primal problem

that

w∗(s) = V (s), s ∈ S.

Proof. For the proof we refer to Waldmann and Stocker (2013).

The dual problem can be stated as follows.

max
∑

s∈S

∑

a∈D(s)

r(s, a)x(s, a)

subject to

∑

a∈D(s′)

x(s′, a)− αβ
∑

s∈S

∑

a∈D(s)

p(s, a, s′)x(s, a) = 1, s′ ∈ S

x(s, a) ≥ 0, s ∈ S, a ∈ D(s)

Theorem 5. Let x∗(s, a) ∈ D be an optimal solution of the dual problem. Then it

holds that

(i) For each s ∈ S there exists exactly one a ∈ D(s) with x∗(s, a) > 0. The

remaining x∗(s, a) equal zero.

(ii) The decision rule f ∗ ∈ F resulting from the actions corresponding to x∗(s, x)

with x∗(s, a) > 0, is r-optimal.

Proof. For the proof we refer to Waldmann and Stocker (2013).

The linear program has |S ×A| inequality constraints. This formulation was viewed

as primarily a theoretical result for many years, since it requires formulating a linear

program where the number of constraints is equal to the number of states and ac-

tions. While even today this limits the size of problems it can solve, modern linear

programming solvers can handle problems with tens of thousands of constraints with-

out difficulty. This size is greatly expanded with the use of specialized algorithmic

strategies, which are an active area of research.
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2.5 Motivating example for alternative optimality

criteria

The following example is a motivating example and illustrates that the policy that

results from the application of the Total Reward criterion may lead to a high prob-

ability that the expected total reward will not be achieved.

Table 2.1 comprises the problem data. The first column contains the states, the

second column the available actions in the corresponding state, the third column

denotes the one-stage rewards and the following columns the transition probabilities

to subsequent states. The discount factor α is set to one and the parameter 1− β of

the geometric distribution is 0.2.

s a r(s, a) p(1, a, 1) p(1, a, 2) p(1, a, 3)

1 1 8 1/2 1/4 1/4
2 11/4 1/16 3/4 3/16
3 17/4 1/4 1/8 5/8

2 1 16 1/2 0 1/2
2 15 1/16 7/8 1/16

3 1 7 1/4 1/4 1/2
2 4 1/8 3/4 1/8
3 9/2 3/4 1/16 3/16

Table 2.1: Motivating Example, problem data

The distribution function is determined by a simulation study. Notice that given a

policy, the problem can be analyzed as a Markov Chain. For a detailed introduction

to stochastic simulation we refer to Law and Kelton (2000) or Ross (2013). In total

1000 simulation runs are processed. The planning horizon is simulated according to

a geometric distribution with parameter 1 − β and the subsequent states according

to the given transition probabilities. The realizations are determined by applying the

Inverse Transform Method. Since the example serves as a motivating example we do

not provide confidence intervals.

Figures 2.1 to 2.3 depict the distribution function for each possible initial state of the

Markov Chain, following the risk-neutral policy. Notice that the distribution function
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is continuous from the left side. The dashed vertical line depicts the expected total

reward that results from applying a risk-neutral policy. Φ(s, x) depicts the simulated

distribution function when the process starts in ininital state s ∈ S. The probability

that the expected total reward is not achieved is about 70 per cent independent of

the initial state.

A risk averse decision maker could prefer a lower expected total reward that will

be achieved with a higher probability. This idea is connected with the satisficing

approach that was first published in Simon (1955). According to behavioral science,

risk averse decision makers tend to choose low targets that should be achieved with

a high probability. Risk loving decision makers want to realize high total rewards

that bear the risk of not being achieved with a high probability. For a more detailed

discussion we refer to Simon (1957).

Figure 2.1: Motivating Example, simulated distribution function for state 1
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Figure 2.2: Motivating Example, simulated distribution function for state 2

Figure 2.3: Motivating Example, simulated distribution function for state 3
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Chapter 3

Target Value Criterion in Markov

Decision Processes

In this chapter, we apply the Target Value criterion to an MDP with geometrically

distributed planning horizon. The chapter is organized as follows. Section 3.1 pro-

vides an overview of the related literature. In Section 3.2 we prove the existence of

an optimal stationary policy δ = (g, g, . . .) determined by a decision rule g specify-

ing action g(s, x) ∈ D(s) to be taken in the generalized state (s, x) ∈ S × X. In

Section 3.3 the structure of the value function, e.g. the monotonicity as well as the

asymptotic behavior is exploited to approximate the target space by a finite subset.

Based on these structural results, upper and lower bounds are derived for the value

function as well as nearly optimal policies. Since the value function is left continuous

in x only, an error integral is introduced to study the area between the value func-

tion of the discretized and the original problem. The error integral can be used to

evaluate the quality of the approximation. The discretization allows a decomposition

of the problem, which is utilized to recursively determine its solution. Section 3.5

contains numerical results that demonstrate the efficiency of the method. Moreover,

the proposed discretization scheme is compared with a uniform discretization scheme

indicating that the number of essential discretization points is less in the proposed

discretization scheme to achieve a comparable approximation accuracy. Finally we

show that the error integral tends to zero as the discretization step width ∆ tends

to zero.
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3.1 Related Literature

Within the setting of a finite and infinite-horizon MDP, several authors study the

probability that the total discounted reward does not exceed a target value (cf. White

(1993b),Bouakiz (1995),Wu and Lin (1999),Ohtsubo (2003)). This is done by extend-

ing the state space S by a set X := R of target values (target space), where x ∈ X

describes the total discounted reward to be received in the remaining time, and re-

sults in policies depending on both the actual state and the actual target value.

Bouakiz (1995) derive an optimality equation and prove various properties of the

value function. Wu and Lin (1999) additionally prove the existence of an optimal

policy for the finite-horizon model and give sufficient conditions for the optimality of

an infinite-horizon policy. Finally, in Ohtsubo and Toyonaga (2002) it is shown that

an optimal policy is right continuous in the target value. We also refer to Koenig and

Meissner (2009), who consider an application of the target value criterion in revenue

management and provide a comparison of different risk-sensitive policies.

3.2 The decision model

Recall that the planning horizon τ of the MDP is geometrically distributed with

parameter 1 − β. To derive an optimal policy we extend the state space S and the

set F∞ of policies by incorporating the discounted sum of realized one-stage rewards.

In particular, at time t ∈ N0 the generalized state space (st, xt) and the action depend

on the actual state st ∈ S as well as on the updated target value xt ∈ X := R,

xt :=
xt−1 − r(st−1, at−1)

α
,

to be realized in the remaining running time of the process. The adopted definition

of a decision rule and a policy are stated below.

Definition 5. A decision rule with respect to the target value criterion is a function

g : S ×X → A, that specifies the action a = g(s, x) in state (s, x) ∈ S ×X. The set

of all decision rules is G := {g : S ×X × A|g(s, x) ∈ D(s) for all (s, x) ∈ S ×X}.
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Definition 6. A policy δ = (g0, g1, . . .) with respect to the target value is a sequence

of decision rules specifying the action at = gt(st, xt) to be taken in the generalized

state (st, xt) at time t ∈ N0. The corresponding set of policies is denoted by G∞.

Now, for policy δ = (g0, g1, . . .) ∈ G∞ and initial state (s, x) ∈ S ×X let

Φδ(s, x) := Pδ

(

τ−1
∑

t=0

αtr(ζt, gt(ζt, ξt)) + ατh(ζτ ) < x|ζ0 = s, ξ0 = x

)

(3.1)

be the probability that the total discounted reward x will not be achieved starting

in state s and applying policy δ.

A policy δ∗ is called optimal with respect to the target value criterion (t-optimal), if

Φδ∗(s, x) = Φ(s, x) := inf
δ∈G∞

Φδ(s, x)

holds for all (s, x) ∈ S×X. We also call a decision rule g∗ t-optimal, if the associated

stationary policy δ∗ = (g∗, g∗, . . .) is t-optimal.

To determine Φ(s, x) and a t-optimal decision rule g∗, let V be the set of all bounded

Borel-measurable functions on S ×X. In order to simplify notation, set

c(s, x, a) := (1− β)1(0,∞)(x− r(s, a)− α
∑

s′∈S

p(s, a, s′)h(s′)).

On V define the operators Ug, g ∈ G, and U by

Ugv(s, x) := c(s, x, g(s, x)) + β
∑

s′∈S

p(s, g(s, x), s′)v(s′,
x− r(s, g(s, x))

α
)

Uv(s, x) := min
a∈D(s)

{

c(s, x, a) + β
∑

s′∈S

p(s, a, s′)v(s′,
x− r(s, a)

α
)

}

and, for n ∈ N, let Unv := U(Un−1v), where U0v = v. Define Un
g , g ∈ G analogously.

The operator U has the property of being monotone, i.e. v ≤ v′ implies Uv ≤ Uv′.

The same holds for Ug, g ∈ G.

Moreover, the probability of failing a target value for a given policy g fulfills the
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functional equation Φg = UgΦg. The solution can be obtained by the method of

successive approximations. These results are summarized in Proposition 1.

Proposition 1. Let g ∈ G. It holds that

(i) Φg is the unique solution to Φg = UgΦg in V,

(ii) Φg = lim
n→∞

Un
g v, v ∈ V.

Proof.

(i) For notational convenience, let Pg,s,x := Pg(·|ζ0 = s, ξ0 = x) and γk := (1 −

β)βk−1. Fix (s, x) ∈ S×X. Set a := g(s, x). Conditioning on τ = 1 and τ > 1,

we then obtain

Φg(s, x) = Pg,s,x

[

τ−1
∑

t=0

r(ζt, g(ζt, ξt)) + ατh(ζτ )|τ = 1

]

(1− β)

+Pg,s,x

[

τ−1
∑

t=0

αtr(ζt, g(ζtξt)) + ατh(ζτ |τ > 1

]

β

= Pg,s,x

[

r(s, a) + α
∑

s′∈S

p(s, a, s′)h(s′) < x

]

(1− β)

+
∞
∑

k=2

Pg,s,x

[

k−1
∑

t=0

αtr(ζt, g(ζt, ξt)) + αkh(ζk) < x

]

γk

= c(s, x, a)

+
∞
∑

k′=1

Pg,s,x

[

r(s, a) +
k′−1
∑

t′=0

αt′+1r(ζt′+1, g(ζt′+1, ξt′+1))

+αk′+1h(ζk′+1) < x
]

βγk′

= c(s, x, a) + β
∑

s′∈S

p(s, a, s′)Φg(s
′,
x− r(s, a)

α
)

= UgΦg(s, x).

Thus, Φg is a fixed point of Φg = UgΦg. Moreover, by applying the contraction

mapping theorem, it follows that Φg is the unique fixed point of Φg = UgΦg in

V.

26



Chapter 3 Target Value Criterion in Markov Decision Processes

(ii) Applying the contraction mapping theorem once again, if follows that Φg =

lim
n→∞

Un
g v, v ∈ V.

Now we are in a position to minimize the probability of failing a target value. We

state the following theorem, that regards the optimality equation, the corresponding

decision rules, convergence properties of successive approximations and properties of

the value function.

Theorem 6.

(i) Φ is the unique solution in V to the optimality equation Φ = UΦ, i.e. we have

for all s ∈ S, x ∈ X

Φ(s, x) = min
a∈D(s)

{

c(s, x, a) + β
∑

s′∈S

p(s, a, s′)Φ(s′,
x− r(s, a)

α
)

}

. (3.2)

(ii) Each decision rule g∗ ∈ G formed by actions g∗(s, x), minimizing the right hand

side of (3.2) (i.e., for which UΦ = Ug∗Φ holds) is t-optimal.

(iii) Φ = lim
n→∞

Unv, v ∈ V.

(iv) Φ(s, ·), s ∈ S, is increasing and left continuous in x.

(v) For s ∈ S, the smallest minimizer g∗ ∈ G of (3.2) is left continuous in x.

Proof. Using the contraction mapping theorem, there exists a unique v∗ ∈ V such

that v∗ = Uv∗. Moreover, v∗ = lim
n→∞

Unv0 for any v0 ∈ V.

To verify v∗ = Φ, fix δ = (g0, g1, . . .) ∈ G∞, zn := (s0, x0, . . . , sn, xn) ∈ (S × X)n+1.

Let N ∈ N, n ≤ N . Set rt = r and ht+1 = h for t < N and rt = 0, ht+1 = 0 for

t ≥ N . Then, for

ΦN
δ,n(zn) := Pδ

(

τ−1
∑

t=n

rt(ζt, gt(ζt, ξt)) + ατ−nht(ζτ ) < xn|τ > n, ζ0 = s, . . . , ξn = n

)

,
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it follows by induction on n = N − 1, N − 2, . . . , 0 that

ΦN
δ,n(zn) = UgnΦ

N
δ,n+1(zn) ≥ Un0(sn, xn).

Thus ΦN
δ,0 ≥ UN0. Finally, by letting N → ∞,Φδ = lim

N→∞
ΦN

δ,0 ≥ lim
N→∞

UN0 = v∗,

which implies Φ = inf
δ∈G∞

Φδ ≥ v∗.

On the other hand, since D(s) is finite for all s ∈ S, there exists g∗ ∈ G such that

v∗ = Ug∗v
∗. By Proposition 1, Φg∗ = v∗. Thus Φ ≤ inf

g∈G
Φg ≤ Φ∗

g, which completes

the proof of (i)-(iii).

Recall that D(s), s ∈ S, is finite. Starting value iteration with v0 = 1, it easily

follows on induction on n that vn = Uvn−1 is increasing and left continuous in x.

Thus (iv) holds. Since D(s), s ∈ S, is finite, (v) is an immediate consequence of (iv)

and (3.2).

Note that Φ(s, ·), s ∈ S, is only left continuous but not continuous, since, for r = 1

and h = 0, we have Φ(s, x) = 0 for x ≤ 1 and Φ(s, x) = 1−βj for j < x ≤ j+1, j ∈ N.

3.3 An equivalent model without discounting

The optimality equation (3.2) depends on the parameter 1 − β of the geometric

distribution of τ as well as on the discounting factor α. In this section, we show

that under certain conditions, the model can be equivalently transformed to a model

without discounting factor.

In the sequel, we use the well known result that the standard infinite-horizon MDP

with discount factor α < 1 can be reduced to an MDP with discount factor α = 1 by

extending the state space S by an absorbing state sabs /∈ S. To exploit the approach

for the target value criterion, we introduce an MDP′ with state space S ′ = S∪{sabs},

action space A′ = A, sets D′(s) = D(s), s ∈ S and D(sabs) = A of admissible

actions, transition probabilities p′(s, a, s′) = αp(s, a, s′), s ∈ S, p′(s, a, sabs) = 1 − α

for (s, a) ∈ D and p′(sabs, ·, sabs) = 1, one-stage rewards r′(s, a) = r(s, a), (s, a) ∈ D,
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and r(sabs, a) = 0 for a ∈ A, and h(sabs) = 0, discount factor α′ = 1, and planning

horizon τ = τ ′.

Each decision rule g ∈ G can be extended to a decision rule g′ ∈ G′ in MDP′ such

that g(s, x) = g′(s, x), (s, x) ∈ S × X. Moreover, the restriction of a decision rule

g′ ∈ G′ to S×X coincides with a decision rule g ∈ G. Finally, it is easily verified that

Φg(s, x) = Φ′
g′ , (s, x) ∈ S × X. In summary, we immediately obtain the following

theorem.

Theorem 7. We have Φg(s, x) = Φ′
g′(s, x), (s, x) ∈ S × X. Further, the exten-

sion (reduction) of a t-optimal decision rule in MDP (MDP ′) is t-optimal in MDP ′

(MDP).

Applied to MDP′, optimality equation (3.2) is modified to

Φ′(s, x) = min
a∈D′(s)

{

(1− β)1(0,∞)(x− r′(s, a)−
∑

s′∈S

p′(s, a, s′)h(s′)) (3.3)

+β
∑

s′∈S

p′(s, a, s′)Φ′(s′, x− r′(s, a))

}

.

Inserting Φ′(sabs, x) = 1(0,∞)(x), x ∈ X, into (3.3), we obtain for s ∈ S

Φ′(s, x) = min
a∈D(s)

{

(1− β)1(0,∞)(x− r(s, a)− α
∑

s′∈S

p(s, a, s′)h(s′)) (3.4)

+β(1− α)1(0,∞)(x− r(s, a)) + αβ
∑

s′∈S

p(s, a, s′)Φ′(s′, x− r(s, a))

}

.

For the special case that there is no terminal reward, that is h = 0, we arrive at

Φ′(s, x) = min
a∈D(s)

{

(1− αβ)1(0,∞)(x− r(s, a)) + αβ
∑

s′∈S

p(s, a, s′)Φ(s′, x− r(s, a))

}

,

which implies that the planning horizon is the minimum of two geometric distribu-

tions, the original one (with parameter 1 − β) on the one hand and a second one

(with parameter 1− α) resulting from discount factor α on the other hand.

Hence, the results of this section show:
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(a) MDP is equivalent to an MDP′ with discount factor α′ = 1 and extended state

space S ∪ {sabs}.

(b) If h = 0, then MDP is equivalent to an MDP′ with discount factor α′ = 1 and

a planning horizon τ ′, which follows a geometric distribution with parameter

αβ.

To simplify our approach, we therefore suppose an MDP with discount factor α = 1

in the sequel.

3.4 Discretization of the target space

For numerical calculations it is necessary to approximate the target space X by a

finite set X∆. Instead of using a discretization scheme with equidistant points on a

finite subinterval of X, we use a non-equidistant scheme which results in a natural

way from a simplified reward structure. Therefore, we first derive upper and lower

bounds for Φ(·, x) by exploiting the properties of the geometric distribution. These

bounds enable us to determine X∆ as a finite set of representatives of X which are

equidistant with respect to a monotone function.

Since r and h are bounded, there exist r±, h± ∈ R such that, for all (s, a) ∈ D, hold:

(a) r− ≤ r(s, a) ≤ r+;

(b) h− ≤
∑

s′∈S

p(s, a, s′)h(s′) ≤ h+.

Based on r±, h± and ρ±x : N0 → R, x ∈ R, defined by ρ±x (t) := x−(t+1)r∓−h∓, t ∈ N0,

introduce Ψ± : X → [0, 1],

Ψ±(x) := (1− β)
∞
∑

t=0

βt1(0,∞)(ρ
±
x (t)), x ∈ X.
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It is easily verified that Ψ+(x) and Ψ−(x) are upper and lower bounds to Φδ(·, x), δ ∈

G∞. In fact, for (s, x) ∈ S ×X,

Φδ(s, x) ≤ Pδ

(

τ−1
∑

t=0

αtr− + ατh− < x|ζ0 = s, ξ0 = x

)

=
∞
∑

ν=1

(1− β)βν−11(0,∞)(ρ
+
x (ν − 1))

= Ψ+(x).

Since the bounds are independent of δ, the same holds for Φ, that is

Ψ−(x) ≤ Φ(s, x) ≤ Ψ+(x), (s, x) ∈ S ×X. (3.5)

To simplify the calculation of Ψ±(x), first introduce t±0 (x) ∈ N0 and t±0 (x) ≤ t±1 (x) ∈

N0 ∪ {∞}, defined by

t±0 (x) := inf
{

t ∈ N0|ρ
±
x (t) > 0

}

t±1 (x) := sup
{

t ∈ N|ρ±x (t− 1) > 0
}

,

where inf ∅ = 0, sup ∅ = 0. Then, based on the sign of r±, the following properties of

ρ±x (·) are easily verified to hold.

Lemma 1. For all x ∈ X, the map t → ρ±x (t) is affine and it holds that

(i) If r± ≥ 0, then ρ±x (·) is decreasing. Further, ρ
±
x (t) > 0 on

{

t±0 (x), · · · , t
±
1 (x)− 1

}

and ρ±x (t) ≤ 0, otherwise, where t±0 (x) = 0.

(ii) If r± ≤ 0, then ρ±x (·) is increasing. Further, ρ
±
x (t) > 0 on

{

t±0 (x), · · · , t
±
1 (x)− 1

}

and ρ±x (t) ≤ 0, otherwise, where t±1 (x) = ∞ in case of t±0 (x) > 0.

By Lemma 1, Ψ±(x) is positive on the interval
{

t±0 (x), . . . , t
±
1 (x)− 1

}

only, which

allows us to rewrite Ψ±(x) as

Ψ±(x) = (1− β)

t±1 (x)−1
∑

t=t±0 (x)

βt = βt±0 (x) − βt±1 (x). (3.6)
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By combining (3.5) with (3.6) we immediately get

βt−0 (x) − βt−1 (x) ≤ Φ(s, x) ≤ βt+0 (x) − βt+1 (x). (3.7)

One easily verifies that t±0 (x) → 0 and t±1 (x) → ∞ as x → ∞, from which we

conclude, together with (3.7), that limx→∞Φ(s, x) = 1, s ∈ S. Similarly we also

obtain lim
x→−∞

Φ(s, x) = 0, s ∈ S.

It is convenient to work with the following more detailed presentation of the bounds

(3.7).

Proposition 2. It holds:

(i) If r− ≥ 0, then 1−βt−1 (x) ≤ Φ(·, x) ≤ 1−βt+1 (x) for x > r−+h− and Φ(·, x) = 0,

otherwise.

(ii) If r+ ≤ 0, then βt−0 (x) ≤ Φ(·, x) ≤ βt+0 (x) for x ≤ r+ + h+ and Φ(·, x) = 1,

otherwise.

(iii) If r− < 0 < r+, then 1− βt−1 (x) ≤ Φ(·, x) ≤ βt+0 (x) for x ∈ X.

Additionally we have lim
x→−∞

Φ(s, x) = 0 and lim
x→∞

Φ(s, x) = 1 for s ∈ S.

Proof. (i)-(iii) follow from (3.7) by specifying the constants t±0 (x), t
±
1 (x) and conclud-

ing Φ(·, x) = 0 (resp. Φ(·, x)=1) from Ψ+(x) = 0 (resp. Ψ−(x) = 1).

According to Proposition 2, Φ(·, x) is close to one for sufficiently large values of x and

close to zero for sufficiently small values of x. Therefore we can restrict attention to

a subinterval of X in order to calculate Φ approximately. Within this subinterval we

select a finite number of representatives. These representatives, extended by +∞ and

−∞, then form the target space in the discretized version of the MDP. To be more

precise, fix ∆ > 0, k = k(∆) ∈ {2, 3, . . .} such that k∆ = 1. Depending on ∆ and k,

we now choose the representatives xj ∈ X∆, say, such that Φ(·, xj) is nearly equal to

j/k for j = 0, . . . , k. The technical details are given in the following Proposal.
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3.4.1 Proposal to construct X∆

Determine constants ∆ > 0, k = k(∆) ∈ {2, 3, . . .} such that k∆ = 1. Let ε > 0

arbitrary.

(1) r− ≥ 0.

By Proposition 2(i), Φ(·, x) = 0 for x ≤ xmin := r− + h−. Therefore choose

X∆ = {−∞, x0, x1, . . . , xk−1,∞}, where, for j = 0, . . . , k − 1,

xj = xmin +
ln(1− j/k)

ln(β)
· r+, (3.8)

where xj results from both 1 − βtj = j/k, which is equivalent to tj = ln(1 −

j/k)/ ln(β), and xj − r− − h− − tjr
+ = xj − xmin − tjr

+ = 0.

(2) r+ ≤ 0.

By Proposition 2(ii), Φ(·, x) = 1 for x ≥ xmax := r++h++ ε. Therefore choose

X∆ = {−∞, x−k+1, . . . , x−1, x0,∞}, where, for j = 1, . . . , k,

x−k+j = xmax +
ln(j/k)

ln(β)
· r−, (3.9)

where x−k+j results from both βtj = j/k, which is equivalent to tj = ln(j/k)/ ln(β),

and x−k+j − xmax − tjr
− = 0.

(3) r− < 0 < r+.

First apply (3.9) with xmax = 0 to get X−
∆ = {−∞, x−k+1, . . . , x−1}, where, for

j = 1, . . . , k − 1,

x−k+j =
ln(j/k)

ln(β)
· r−. (3.10)

Then apply (3.8) with xmin = 0 to obtain X+
∆ = {0, x1, . . . , xk−1,∞}, where,

for j = 1, . . . , k − 1,

xj =
ln(1− j/k)

ln(β)
· r+. (3.11)

Finally, set X∆ = X−
∆ ∪X+

∆ .
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The idea of our Proposal can be generalized in the following way: For some k ∈ N

define a set X1/k of representatives of X by

X1/k :=
{

x0, . . . , xk ∈ I|xj = η−1(j/k) for j = 0, . . . , k
}

∪ {±∞} ,

where I is a closed interval in R ∪ {±∞} such that Φ(·, x) ∈ {0, 1} for x /∈ I and

η : I → [0, 1] is a surjective map, which is strongly increasing.

It is easily verified that the representatives (3.8) result from η2(z) := 1− β(z−xmin)/r
+

for z ∈ I = [xmin,∞]. Further (3.9) results from η1(z) := β(z−xmax)/r− for z ∈ I =

[−∞, xmax]. Finally, (3.10) and (3.12) then result from η(z) := 0.5η1(z) for z ≤ 0

and η(z) := 0.5(1 + η2)) for z ≥ 0.

After having made a proposal for selecting the set X∆ of representatives of X, we

next look at discretized versions of the MDP with finite target space. Let X∆ be

a finite subset of R ∪ {±∞} (not necessarily resulting from our proposal). For all

x ∈ R, introduce ⌈x⌉∆ (resp. ⌊x⌋∆) to be the smallest (resp. largest) xk ∈ X∆ such

that x ≤ xk (resp. x ≥ xk). For notational convenience we also use ⌈x⌋+∆ (resp.

⌈x⌋−∆) in case of ⌈x⌉∆ (resp. ⌊x⌋∆). Let V∆ be the set of all bounded functions on

S ×X∆. On V∆ introduce operators U+
∆ and U−

∆ , defined by

U±
∆v(s, x) := min

a∈D(s)

{

c(s, x, a) + β
∑

s′∈S

p(s, a, s′)v(s′, ⌈x− r(s, a)⌋±∆)

}

(3.12)

for all (s, x) ∈ S ×X∆, where v(·,∞) = 1, v(·,−∞) = 0, and ⌈±∞⌋±∆ = ±∞.

The operators U±
∆ fulfill the assumptions of the contraction mapping theorem, from

which we conclude that there exist Φ+
∆,Φ

−
∆ ∈ V∆ such that Φ±

∆ = U±
∆Φ

±
∆ and Φ±

∆ =

limn→∞(U±
∆)v, v ∈ V∆. Further, exploiting monotonicity of U+

∆ and U−
∆ , it easily

follows by induction on n that Φ−
∆(s, x) ≤ Φ+

∆(s, x), (s, x) ∈ S×X∆. Finally, interpret

G∆ := {g : S ×X∆|g(s, x) ∈ D(s)} as the corresponding set of decision rules. In

particular, a minimizer of Φ+
∆ = U+

∆Φ
+
∆ (resp. Φ−

∆ = U−
∆Φ

−
∆) is called t+∆-optimal

(resp. t−∆optimal).

We are now in a position to present the desired upper and lower bounds to Φ and

nearly optimal decision rules on the basis of X∆.
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Theorem 8. Let g ∈ G, g(s, x) := g+∆(s, ⌈x⌉∆), be an extension of an t+∆-optimal

decision rule g+∆ ∈ G∆. Then it holds that

Φ−
∆(s, x) ≤ Φ(s, x) ≤ Φg(s, x) ≤ Φ+

∆(s, ⌈x⌉∆)

for all (s, x) ∈ S ×X.

Proof. Recall that Φ = lim
n→∞

vn,Φ
±
∆ = lim

n→∞
v±n , where vn = Uvn−1, v

±
n = U±

∆v
±
n−1.

Starting value iteration with v0 = 0 and v±0 = 0, respectively, and exploiting that c is

increasing in x, it follows by induction on n that v−n (·, ⌊x⌋) ≤ vn(·, x) ≤ v+n (·, ⌈x⌉), x ∈

X. Finally, by letting n → ∞, we get Φ−
∆(s, ⌈x⌉∆) ≤ Φ(s, x) ≤ Φ+

∆(s, ⌈x⌉∆), (s, x) ∈

S ×X.

Let v(·, x) := Φ+
∆(·, ⌈x⌉∆), x ∈ X. Then, for all (s, x) ∈ S × X, using that c and v

are increasing in x, it follows that

Ugv(s, x) = c(s, x, g(s, x)) + β
∑

s′∈S

p(s, g(s, x), s′)v(s′, x− r(s, g(s, x))

≤ c(s, ⌈x⌉∆, g
+
∆(s, ⌈x⌉∆))

+β
∑

s′∈S

p(s, g+∆(s, ⌈x⌉∆), s
′)v(s′, ⌈⌈x⌉∆ − r(s, g+∆(s, ⌈x⌉∆))⌉∆)

= Φ+
∆(s, ⌈x⌉∆)

= v(s, x),

which is well known to imply Φg(s, x) ≤ Φ+
∆(s, ⌈x⌉∆), (s, x) ∈ S ×X.

3.4.2 Solution Methods

Value Iteration, Target Value

In order to solve the optimality equation, Value Iteration, Policy Iteration and Linear

Programming can be used. This section starts with the presentation of the Value

Iteration algorithm. With φn, we denote the iterates. The convergence results can

be found in Proposition 1. The algorithm can be found in Algorithm 4.
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Algorithm 4 Value Iteration, Target Value

Input: n = 0, φ0 ∈ V, ε > 0
repeat

n = n+ 1
for all (s, x) ∈ S ×X∆ do

φn(s, x) = min
a∈D(s)

{

(1− αβ)1(0,∞)(x− r(s, a))

+αβ
∑

s′∈S

p(s, a, s′)φn−1(s
′, x− r(s, a))

}

gn(s, x) = argmin {vn(s, x)}
end for

until ‖φn − φn−1‖ < ǫ
Φ = φn

g∗ = gn
Output: approximation of the value function Φ and a t-optimal decision rule g∗
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Policy Iteration, Target Value

The Policy Iteration algorithm is stated in Algorithm 5.

Algorithm 5 Policy Iteration, Target Value

Input: n = 0, g0 ∈ G
Policy evaluation:
Calculate Φfn as the unique solution of the linear system

Φgn(s) = (1− αβ)1(0,∞)(x− r(s, g(s, x)))

+αβ
∑

s′∈S

p(s, gn(s, x), s
′)Φgn(s

′, x− r(s, x− g(s, x)), (s, x) ∈ S ×X∆

Policy improvement:
Calculate the test quantity

UΦfn(s) = min
a∈D(s)

{

(1− αβ)1(0,∞)(x− r(s, a))

+αβ
∑

s′∈S

p(s, a, s′)Φfn(s
′, x− r(s, a)), s ∈ S

}

if gn is maximizer of the test quantity UVgn for all (s, x) ∈ S ×X∆ then

gn is optimal
else

n = n+ 1
goto Policy evaluation

end if

Φ = Φgn

g∗ = gn
Output: value function Φ and a t-optimal decision rule g∗
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3.4.3 Error Integral

In order to quantify the discretization error, we determine σs(∆), that is the area

between Φ(s, ·) and its discretized versions Φ±
∆(s, ·). Furthermore, we show that

σs(∆) → 0 as ∆ → 0.

We first introduce for x ∈ R

Ψ(x) :=

∫ x

−∞

Ψ+(u)du, Ψ(x) :=

∫ ∞

x

(1−Ψ−(u))du

in order to state the following proposition.

Proposition 3.

(i) Let x− r+ − h+ > 0. If r+ > 0, then

0 ≤ Ψ(x) = r+β⌈(x−h+)/r+⌉−1

(

⌈
x− h+

r+
⌉ −

x− h+

r+
+

β

1− β

)

.

Otherwise (i.e. r+ ≤ 0) we have Ψ(x) = 0.

(ii) Let x− r− − h− ≤ 0. If r− < 0, then

0 ≤ Ψ(x) = −r−β⌈(x−h−)/r−⌉−1

(

⌈
x− h−

r−
⌉ −

x− h−

r−
+

β

1− β

)

.

Otherwise (i.e. r− ≥ 0) we have Ψ(x) = 0.

Proof. Let x− r+ −h+ > 0. If r+ ≤ 0, then x− r+ −h+ − tr+ > 0 for all t ∈ N0 and

Ψ(x) = (1− β)
∞
∑

t=0

βt

∫ ∞

x

(1− 1(0,∞)(u− r+ − h+ − tr+))du = 0.

Therefore let r+ > 0. Then there exists a smallest N = N(x) ∈ N such that
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x− r+ − h+ − tr+ ≤ 0 for t ≥ N and we get

Ψ(x) = (1− β)
∞
∑

t=0

βt

∫ ∞

x

(1− 1(0,∞)(u− r+ − h+ − tr+))du

= (1− β)
∞
∑

t=N

βt

∫ ∞

x

(1(−∞,0](u− r+ − h+ − tr+)du

= (1− β)βN

∞
∑

t=0

∫ (t+1+N)r++h+

x

1du

= βN

(

r+

1− β
+Nr+ − (x− h+)

)

= r+β⌈(x−h+)/r+⌉−1

(

⌈
x− h+

r+
⌉ −

x− h+

r+
+

β

1− β

)

.

Since Ψ(x) is nonnegative, assertion (i) holds. (ii) can be shown analogously.

Proposition 3(ii) corresponds to the left tail of the value function and shows that the

area, i.e. the area between the x-axis and Φ(s, ·), restricted to the interval (−∞, x),

converges to zero as x → −∞. Moreover, regarding Proposition 3(i), an analogous

result also holds for the asymptotic behavior of Φ(s, ·) as x → +∞, i.e. the right tail

of the value function.

For notational convenience, let X∆ := {−∞, x0, . . . , xk,∞} (with xj ∈ R, xj ≤ xj+1).

Using the asymptotic behavior of Φ(s, ·) resulting from Proposition 3 and utilizing

the bounds Φ−
∆(s, ⌊x⌋∆) ≤ Φ(s, x) ≤ Φ+

∆(s, ⌈x⌉∆), (s, x) ∈ S×X, stated in Theorem

8, we consider

σs(∆) :=

∫ xk

x0

(Φ+
∆(s, ⌈x⌉∆)− Φ−

∆(s, ⌊x⌋∆))dx+Ψ(x0) + Ψ(xk)

=
k−1
∑

j=0

(Φ+
∆(s, xj+1)− Φ−

∆(s, xj))(xj+1 − xj) + Ψ(x0) + Ψ(xk), s ∈ S,

in the sequel to measure the area between Φ(s, ·) and its discretized versions Φ±
∆(s, ·).

If σs(∆) → 0 as ∆ → 0, then the jump discontinuities (and jump heights) of the

discretized versions of Φ(s, ·) converge to the original ones.
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3.4.4 Decomposition of the discretized MDP

In order to improve the efficiency of the optimization procedure, we present a decom-

position scheme for the discretized MDP. Therefore, we introduce the concept of ⌈·⌉

and ⌊·⌋-closeness to partition the target space. Based on the partition, we identify

subsets of the target space, where the value function is already known in advance.

As a result, we only need to use successive approximations in the single subset, that

is neither ⌈·⌉∆-1-absorbing nor ⌊·⌋∆-0-absorbing.

Definition 7. A subset J ⊂ S×X∆ fulfilling
∑

s′∈S p(s, a, s
′)1J(s

′, ⌈x−r(s, a)⌉∆) = 1

for (s, x) ∈ J is said to be ⌈·⌉∆-closed. ⌊·⌋∆-closeness is defined analogously (with

⌈·⌉∆ replaced by ⌊·⌋∆). By construction, the sets S ×{−∞} and S ×{+∞} are both

⌈·⌉∆-closed and ⌊·⌋∆-closed.

Proposition 4. Let J be a ⌈·⌉∆-closed (resp. ⌊·⌋∆-closed) subset of S × X∆. If

c(s, x, a) = (1−β)γ for all (s, x) ∈ J, a ∈ D(s), and some γ ∈ {0, 1}, then Φ+
∆(s, x) =

γ (resp. Φ−
∆(s, x) = γ) for all (s, x) ∈ J .

Proof. Let J be ⌈·⌉∆-closed. Then value iteration (vn) based on (3.10) can be re-

stricted to J . Starting with v0 = 0, then Φ+
∆ = lim

n→∞
vn = lim

n→∞
(1 − βn)γ = γ. The

second case follows analogously.

A ⌈·⌉∆-closed subset J of S × X∆, for which Φ+
∆ is known, is said to be ⌈·⌉∆-

absorbing. In particular, a ⌈·⌉∆-closed subset J is called ⌈·⌉∆-1-absorbing (resp.

⌈·⌉∆-0-absorbing), if Φ
+
∆ takes on the constant value 1 (resp. 0) on J . By construc-

tion, the sets S×{−∞} and S×{+∞} are 0-absorbing and 1-absorbing, with respect

to both ⌈·⌉∆ and ⌊·⌋∆. Moreover, in case of r ≤ 0 we may expect that S × {x} is

⌈·⌉∆-1-absorbing for large enough x ∈ X∆. Some details will be given in the following

examples.

In the sequel, we will simply speak of a closed (absorbing,. . .) set, if the statement is

true for both types of rounding.

The discretization of the target space leads to a partition J1 ∪ . . . ∪ Jm of the state

space S×X∆ consisting of m ∈ N closed subsets J1, . . . , Jm. The partition allows us

to determine Φ±
∆ on J1, . . . , Jm, separately by restricting the corresponding optimality
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equations to the closed subset under consideration. Some of these subsets are also

absorbing for which, using Proposition 4, Φ±
∆ is already known in advance.

Moreover, a closed subset J may have an absorbing subset K ⊂ J . In this case, we

may restrict our calculation to J \ K, the set of essential states of J . To be more

precise, first recall that Φ±
∆ is known on K. Then, for (s, x) ∈ J \K, a ∈ D(s) and

v : J → R, we may introduce

c±J\K(s, x, a) := c(s, x, a) + β
∑

s′∈S

p(s, a, s′)(1K · Φ±
∆)(s

′, ⌈x− r(s, a)⌋±∆)

L±
J\Kv(s, x, a) :=

∑

s′∈S

p(s, a, s′)(1J\K · v)(s′⌈x− r(s, a)⌊±∆)

U±
J\K := min

a∈D(s)

{

c±J\K(s, x, a) + βL±
J\Kv(s, x, a)

}

(3.13)

in order to obtain Φ±
∆ as the unique fixed point of v∗ = U±

J\Kv
∗ on J \K. To hold the

notation simple, we do not distinguish between 1J\K · v and the restriction of v to

J \K; in other words we also interpret U±
J\Kv as a function on J \K with extension

1J\KU
±
J\Kv to J .

The following example illustrates the reduction in the computational effort resulting

from the use of the additional structure. Suppose we are interested in calculating Φ+
∆

on the basis of X∆ introduced in the proposal. Let β > 0.5. We consider two cases:

(1) 0 ≤ r− < r+.

Recall that X∆ = {−∞, x0, x1, . . . , xk−1,∞} with representatives xj defined by

(3.8). It is easily verified that

xk−j − xk−j−1 = (ln β)−1 ln(j/(j + 1)) · r+,

is decreasing in j (j = 1, . . . , k − 1). Since β > 0.5, there exists

j∗ := max {j ∈ {1, . . . , k − 1} | ln(j/(j + 1)) < ln β} . (3.14)

For j ≤ j∗,

⌈xk−j − r(s, a)⌉∆ − xk−j−1 ≥ (ln β)−1 ln(j/(j + 1)) · r+ − r+ > 0,
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which implies that S × {xk−j∗} , S × {xk−j∗+1} , . . . , S × {xk−1} , S × {∞} are

⌈·⌉∆-closed subsets of S×X∆. If h = 0, the these sets are also ⌈·⌉∆-1-absorbing.

Set xk := ∞. Further, let

j∗∗ := max
{

j ∈ {0, 1, . . . , j∗} |xk−j − r+ − h+ > 0
}

.

Then the set S ×{xk−j∗∗} , . . . , S ×{xk−1} , S ×{∞} are ⌈·⌉∆-1-absorbing. On

the other hand, since r ≥ 0, we have ⌈xk−j∗−1− r(s, a)⌉∆ ≤ xk−j∗−1 for (s, a) ∈

D. Hence, S × {x0, . . . , xk−j∗−1} is ⌈·⌉∆-closed. Finally, let S × {−∞, x0} is

⌈·⌉∆-0-absorbing. These observations allow us to decompose the optimization

problem: First solve Φ+
∆ = U+Φ+

∆ on S×{x0, . . . , xk−j∗−1} using that S×{x0}

is ⌈·⌉∆-0-absorbing. Then, for j
∗∗ < j ≤ j∗, solve Φ+

∆ = U+Φ+
∆ on S × {xk−j}.

On the remaining subset S×{xk−j∗∗ , . . . ,∞}, Φ+
∆ is ⌈·⌉∆-1-absorbing and thus

already known.

(2) r− < 0 < r+.

Recall that X∆ = {−∞, x−k+1, . . . , x−1, 0, x1, . . . , xk−1,∞} with representa-

tives xj defined by (3.9) and (3.10). Define j∗ and j∗∗ as in (1). Then

S × {xk−j∗∗ , . . . ,∞} is ⌈·⌉∆-1-absorbing, and S × {xk−j∗ , . . . , xk−1,∞} is ⌈·⌉∆-

closed.

Since we round up, an analogous line of argumentation is not possible for

negative values of X∆. However, for small enough j, that is for 1 ≤ j∗∗∗ ≤ k

such that r− ln(j/(j + 1)) < r+ ln β, the sets S × {x−k+j∗∗∗ , . . . , xk−1,∞} is

⌈·⌉∆-closed. Finally, set S × {−∞} is ⌈·⌉∆-0-absorbing.

These observations allow us to decompose the optimization problem: First solve

(3.12) on the subset S×{xk−j∗ , . . . ,∞} using that S×{xk−j∗∗ , . . . ,∞} is ⌈·⌉∆-

1-absorbing. Then solve (3.12) on the subset S ×{x−k+j∗∗∗ , . . . ,∞} using that

Φ+
∆ is already known on S × {xk−j∗ , . . . ,∞} using that Φ+

∆ is already known

on S × {xj−j∗ , . . . ,∞}. Finally, for j < j∗∗∗, based on the knowledge of Φ+
∆ on

S × {x−k+j+1, . . . ,∞} solve (3.12) on S × {x−k+j, . . . ,∞}.
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Algorithm 6 contains the Decomposition scheme for case 1.

Algorithm 6 Value Iteration with Decomposition case 1, Target Value

Input: n = 0, φ0 ∈ V, ε > 0
for all (s, x) ∈ S × {−∞, x0} do

φn(s, x) = 0
end for

repeat

n = n+ 1
for all (s, x) ∈ S × {x0, . . . , xk−j∗−1} do

φ+
n = U+φ+

n

gn(s, x) = argmin {φn(s, x)}
end for

until ‖φn − φn−1‖ < ǫ
n = 0
repeat

n = n+ 1
for all (s, x) ∈ S × {xj∗ , . . . , xk−j∗∗} do

φ+
n = U+φ+

n

gn(s, x) = argmin {φn(s, x)}
end for

until ‖φn − φn−1‖ < ǫ
Φ = φn

g∗ = gn
Output: approximation of the value function Φ and a t-optimal decision rule g∗
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Algorithm 7 contains the Decomposition scheme for case 2.

Algorithm 7 Value Iteration with Decomposition case 2, Target Value

Input: n = 0, φ0 ∈ V, ε > 0
for all (s, x) ∈ S × {xk−j∗∗ , . . . ,∞} do

φn(s, x) = 1
end for

repeat

n = n+ 1
for all (s, x) ∈ S × {xk−j∗ , . . . ,∞} do

φ+
n = U+φ+

n

gn(s, x) = argmin {φn(s, x)}
end for

until ‖φn − φn−1‖ < ǫ
n = 0
repeat

n = n+ 1
for all (s, x) ∈ S × {x−k+j∗∗∗ , . . . ,∞} do

φ+
n = U+φ+

n

gn(s, x) = argmin {φn(s, x)}
end for

until ‖φn − φn−1‖ < ǫ
Φ = φn

g∗ = gn
Output: approximation of the value function Φ and a t-optimal decision rule g∗
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3.5 Numerical Examples

This section provides numerical examples for the methods discussed so far. Example

1 compares the upper and lower bounds that result from a uniform discretization of

the target space with those resulting from the application of the proposal.

Example 2 examines the number of discretization points needed to achieve a simi-

lar value of the error integral when using the uniform discretization instead of the

discretization resulting from the proposal.

Example 3 illustrates that the error integral tends to zero as the discretization step

width tends to zero.

Example 4 investigates the reduction in computation effort that results from the

utilization of the decomposition approach.

The following table contains the transition probabilities and the one-stage rewards

for all examples. Notice that there are no terminal rewards nor discounting.

s a r(s, a) p(s, a, 1) p(s, a, 2) p(s, a, 3)

1 1 8 1/2 1/4 1/4
2 11/4 1/16 3/4 3/16
3 17/4 1/4 1/8 5/8

2 1 16 1/2 0 1/2
2 15 1/16 7/8 1/16

3 1 7 1/4 1/4 1/2
2 4 1/8 3/4 1/8
3 9/2 3/4 1/16 3/16

Table 3.1: Example 1 to 3, input data

45



Chapter 3 Target Value Criterion in Markov Decision Processes

Example 1. We apply the discretization step width ∆ = 0.01 and 1− β = 0.9. The

resulting number of discretization points is 102. Figure 3.1 illustrates the distribu-

tion of the discretization points resulting from the application of the proposal. The

Figure 3.1: Example 1, discretization according to the proposal with ∆ = 0.01

increasing gaps between the discretization points result from the use of the structure

resulting from the geometrical distributed planning horizon.

Figure 3.2 depicts the uniform discretization scheme. The 102 discretization points

are distributed uniformly between the minimal and maximal discretization point of

the discretization scheme according to the proposal.

Figure 3.2: Example 1, discretization according to a uniform discretization scheme
with ∆ = 0.01

Table 3.2 shows the number of iterations needed for the lower and upper bound on

the value function resulting from the utilization of both discretization schemes. The

application of the proposal leads to a reduced number of iterations for the lower

bound.

discretization scheme iterations lower bound iterations upper bound

uniform 38 45
proposal 32 45

Table 3.2: Example 1, comparison of number of iterations
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Figures 3.3 to 3.5 illustrate the upper and lower bounds on the value function resulting

from both discretization schemes for each state of the state space. The red and dark

green colored distribution functions correspond to the upper and lower bound on the

value function resulting from the discretization scheme of the proposal. The blue

and light green colored distribution functions belong to the upper and lower bound

on the value function resulting from the uniform discretization scheme.

The upper and lower bounds of the discretization schemes resulting from the proposal

are tighter than those resulting from the uniform discretization scheme.

Figure 3.3: Example 1, comparison of the bounds for state s = 0
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Figure 3.4: Example 1, comparison of the bounds for state s = 1

Figure 3.5: Example 1, comparison of the bounds for state s = 2
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Figure 3.6: Example 1, policies according to the proposal
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Figure 3.7: Example 1, policies according to a uniform discretization

50



Chapter 3 Target Value Criterion in Markov Decision Processes

Table 3.3 shows that the area between the lower and the upper bound of the dis-

cretized version are smaller for the discretization scheme resulting from the utilization

of the proposal.

discretization scheme σ0(∆) σ1(∆) σ2(∆)

proposal 45.87 45.30 45.86
uniform 66.84 67.32 76.50

Table 3.3: Example 1, discretization error with 1− β = 0.1
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Example 2. Now, we set the parameter of the geometrical distribution to 1− β =

0.04. Both discretization schemes are constructed in the same way as in Example

1. Figure 3.8 depicts the discretization scheme utilizing the proposal and Figure 3.9

illustrates the uniform discretization scheme.

Figure 3.8: Example 2, discretization according to the proposal with ∆ = 0.01

Figure 3.9: Example 2, discretization according to the proposal with ∆ = 0.01

Table 3.4 shows the necessary iterations for the upper and lower bounds.

discretization scheme iterations lower bound iterations upper bound

proposal 56 92
uniform 92 92

Table 3.4: Example 2, number of iterations for 1− β = 0.04

Figures 3.10 to 3.12 illustrate the upper and lower bounds on the value function

resulting from both discretization schemes. Each figure corresponds to a state of the

original problem.
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Figure 3.10: Example 2, comparison of the bounds for state s = 0

Figure 3.11: Example 2, comparison of the bounds for state s = 1
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Figure 3.12: Example 2, comparison of the bounds for state s = 2
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Figure 3.13: Example 2, policies according to the proposal
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Figure 3.14: Example 2, policies according to uniform discretization
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Table 3.5 depicts the discretization error for both discretization schemes. To get a

discretization scheme σ0(∆) σ1(∆) σ2(∆)

proposal 242.23 240.20 242.39
uniform 409.92 409.92 409.92

Table 3.5: Example 2, discretization error with 1− β = 0.04

comparable discretization error in the second example, we need 202 discretization

points instead of 102. The resulting bounds are plotted in Figures 3.15 to 3.17.

Figure 3.15: Example 2, modified comparison of the bounds for state s = 0
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Figure 3.16: Example 2, modified comparison of the bounds for state s = 1

Figure 3.17: Example 2, modified comparison of the bounds for state s = 2
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discretization scheme iterations lower bound iterations upper bound

proposal 56 92
uniform 92 92

Table 3.6: Example 2, number of iterations 1− β = 0.04
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Example 3. In this example, we vary the discretization step width ∆ and show that

the smaller the discretization step width is, the smaller the value of the error integral

is. Figures 3.18 to 3.19 illustrate the upper and lower bounds for ∆ = 0.0125 and

∆ = 0.00625, respectively.

Figure 3.18: Example 3, upper and lower bounds for ∆=0.0125
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Figure 3.19: Example 2, upper and lower bounds for ∆=0.00625
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∆ iterations lower bound iterations upper bound

0.0125 56 92
0.00625 92 92

Table 3.7: Example 2, number of iterations for each ∆ with 1− β = 0.04

The evolution of the discretization error is depicted in Table 3.8.

∆ σ0(∆) σ1(∆) σ2(∆) iter. lower bound iter. upper bound

0.01 242.23 240.20 242.40 56 92
0.005 130.67 129.77 130.80 74 92
0.0025 60.93 60.61 60.95 90 92
0.00125 28.36 28.37 28.37 92 92
0.000625 14.04 14.07 14.03 92 92
0.0003125 6.85 6.86 6.86 92 92

Table 3.8: Example 2, evolution of the discretization error with 1− β = 0.04
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Example 4. This example shows the effects of the decomposition scheme. Figure

3.20 shows the results of the decomposition scheme for 1 − β = 0.1 and Figure the

results for 1− β = 0.04.

Figure 3.20: Example 4, discretization according to the proposal with ∆ = 0.01 and
closed sets

Figure 3.21: Example 4, discretization according to the proposal with ∆ = 0.01 and
closed sets

Table 3.9 shows the reduction of iterations by utilizing the decomposition approach.

1− β iteration lower bound iteration upper bound

0.1 28 40
0.04 50 70

Table 3.9: Example 4, reduction of computational effort
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Extensions of the model

It is common to address risk by considering special utility functions (e.g. the ex-

ponential utility function) or by penalizing deviations from the mean value in the

objective function. The main problem of using standard deviation as a measure of

risk is that fluctuations above and below the mean are treated in the same way.

For example, an investor aims to maximize the expected return subject to the con-

straint that the probability of achieving a return below a predefined target level is

below a certain threshold. This constraint is called shortfall-constraint and reflects

the desire of risk-averse investors to limit the maximum likely loss. We assume that

investors have in mind some disaster level of returns and that they aim to minimize

the probability of disaster.

In this chapter we combine the risk-neutral approach form Chapter 2 with the Tar-

get Value Criterion discussed in Chapter 3. Section 4.1 deals with the Chance-

Constrained Programming formulation, where the probability of failing a predeter-

mined target value has to be below some predefined threshold and is treated as an

additional constraint. Chance-Constrained Programming dates back to the original

paper of Charnes and Cooper (1959) and is primarily used in the domain of Stochas-

tic Programming. In Section 4.2 we combine both criteria in a hybrid approach

as a weighted sum in the objective function. The optimality equation and struc-

tural properties are discussed. In order to derive a numerical solution Section 4.2.1

contains a discretization scheme of the target space based on the discretization ap-

proach contained in Chapter 3. In Section 4.2.2 we discuss a decomposition method
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that reduces the computational effort. Section 4.2.3 deals with solution methods

and especially an extrapolation method for the Value Iteration Algorithm. Section

4.2.4 contains the limit behavior of the hybrid model that results from varying the

penalty cost k. Section 4.3 provides an algorithm that treats the penalty cost k in a

parametric programming manner. The value functions and corresponding policies in

dependence on k are calculated in an efficient way. The chapter closes with several

numerical examples.

4.1 Chance Constraint Approach

Chance-Constrained Programming belongs to the common approaches for treating

random parameters in optimization problems. Typical application domains are en-

gineering and finance, where uncertainties like product demand, meteorological or

demographic conditions, currency exchange rates, enter the inequalities describing

the proper working of a system under consideration. Often a constrained violation

can be compensated. For example power generating companies can buy energy on

the liberalized market if they are faced with unforeseen peaks of electrical load. As

long as the costs of compensating decisions are known, these may be considered as a

penalization for constrained violation.

In our model, we assume that the cost of compensating decisions are known. That is

why we state the Chance-Constrained Programming formulation in a brief way, but

turn our attention towards the hybrid approach in Section 4.2.

In the case of α = 1, given initial state s and target value x, maximize the total

expected reward

Eδ

[

τ−1
∑

t=0

r(ζt, gt(ζt, ξt)) + h(ζτ )|ζ0 = s, ξ0 = x

]

with respect to g ∈ G∞ subject to subject to

Pδ

(

τ−1
∑

t=0

r(ζt, gt(ζt, ξt)) + h(ζτ ) < x|ζ0 = s, ξ0 = x

)

≤ Φ
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for some predetermined constant Φ ∈ [0, 1]. The problem can be used by applying

standard methods of linear programming.

4.2 Multi-criteria approach

Mixed criteria are linear combinations of standard criteria that cannot be represented

as standard criteria. We consider linear combinations of both the target value crite-

rion and the total reward criterion as a weighted sum. The penalty cost k ∈ R, k ≥ 0

quantify the costs of compensating a constrained violation. That means, the expected

discounted total reward is maximized an the probability of missing a predetermined

target is penalized.

Again, we allow the control to depend on the actual state st ∈ S and the updated

target xt ∈ X := R, to be realized in the remaining time. The decision rules and

stationary policies are defined analogously to the previous chapter. Now, for policy

δ = (g0, g1, . . .) ∈ G∞, initial value (s, x) ∈ S ×X and penalty cost k ∈ R, k ≥ 0, let

Vδ(s, x) = Eδ

[

τ−1
∑

t=0

r(ζt, gt(ζt, ξt))|ζ0 = s, ξ0 = x

]

−kPδ

(

τ−1
∑

t=0

r(ζt, gt(ζt, ξt)) < x|ζ0 = s, ξ0 = x

)

be the objective function. Using the reformulation without discounting, the formu-

lation can be simplified by using the results of the former chapter.

First we show that the expected discounted reward for a given policy g fulfills the

functional equation Vg = UgVg and that the solution can be obtained by the method

of successive approximations. These results are summarized in Proposition 5.

Proposition 5. Let g ∈ G and h = 0. Then Vg is the unique solution to Vg = UgVg

and we have that Vg = lim
n→∞

Un
g ν, ν ∈ V.
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Proof. For notational convenience, let Eg,s,x := Eg(·|ζ0 = s, ξ0 = x) and Pg,s,x(·|ζ0 =

s, ξ0 = x), respectively. Set a := g(s, x). Then we have

Vg(s, x) = Eg,s,x

[

τ−1
∑

t=0

αtr(ζt, g(ζt, ξt))

]

− k · Pg,s,x

[

τ−1
∑

t=0

αtr(ζt, g(ζt, ξt)) < x

]

= Vg(s, x)− k · Φg(s, x)

= r(s, a) + αβ
∑

s′∈S

p(s, a, s′)Vg(s
′, x− r(s, a))

−k ·

[

(1− αβ)1(0,∞))(x− r(s, a)) + αβ
∑

s′∈S

p(s, a, s′)Φg(s
′, x− r(s, a))

]

= r(s, a)− k(1− αβ)1(0,∞)(x− r(s, a))

+αβ

[

∑

s′∈S

p(s, a, s′) [Vg(s
′, x− r(s, a))− k · Φg(s, x− r(s, a))]

]

= r(s, a)− k(1− αβ)1(0,∞)(x− r(s, a))

+αβ
∑

s′∈S

p(s, a, s′)Vg(s
′, x− r(s, a))

Now we are in a position to state the optimality equation, the corresponding policies,

the convergence of the method of successive approximations and properties of the

value function.

Theorem 9.

(i) V(s, x) is the unique solution in V for the optimality equation V = UV, i.e. we

have for all s ∈ S, x ∈ X

V(s, x) = max
a∈D(s)

{

r(s, a)− k(1− αβ)1(0,∞)(x− r(s, a))

+αβ
∑

s′∈S

p(s, a, s′)V(s, x− r(s, a))
}

.

(ii) Each decision rule g∗ ∈ G formed by actions g∗(s, x), minimizing the right hand

side of (xx) (i.e., for which UV = Ug∗V holds) is optimal.

(iii) V = lim
n→∞

Unν, ν ∈ V.
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(iv) V(s, ·), s ∈ S, is decreasing and left continuous in x.

(v) For s ∈ S, the smallest (largest) minimizer g∗ ∈ G of (xx) is left continuous in

x.

Proof. The proof is in analogy to the proof contained in Theorem 6.

4.2.1 Discretization of the target space

For numerical calculations it is necessary to approximate the target space X by a

finite set X∆. The discretization is based on the former chapter and adopted to the

new context. Due to the mixed-criterion approach, we have to adapt the upper and

lower bound of the value function. Based on r±, h± and ρ±x : N0 → R, x ∈ R, defined

by ρ±x (t) := x− (t+ 1)r∓ − h∓, t ∈ N0, introduce κ± : X → R,

κ±(x) :=
r±

(1− β)
− k(1− β)

∞
∑

t=0

βt1(0,∞)(ρ
∓
x (t)), x ∈ X.

It is easily verified that κ+(x) and κ−(x) are upper and lower bounds to Vδ(·, x), δ ∈

G∞. In fact, for (s, x) ∈ S ×X,

Vδ(s, x) ≤ Eδ

[

τ−1
∑

t=0

αtr+|ζ0 = s, ξ0 = x

]

− kPδ

(

τ−1
∑

t=0

αtr− + ατh− < x|ζ0 = s, ξ0 = x

)

=
r+

1− β
− k

∞
∑

ν=1

(1− β)βν−11(0,∞)(ρ
+
x (ν − 1))

= κ+(x).

Since the bounds are independent of δ, the same holds for V , that is

κ−(x) ≤ V(s, x) ≤ κ+(x), (s, x) ∈ S ×X. (4.1)

Proposition 6. It holds:

(i) If r− ≥ 0, then r−

1−β
−k(1−βt+1 (x)) ≤ V(·, x) ≤ r+

1−β
−k(1−βt−1 (x)) for x > r−+h−

and r−

1−β
≤ V(·, x) ≤ r+

1−β
, otherwise.
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(ii) If r+ ≤ 0, then r−

1−β
− kβt+0 (x) ≤ V(·, x) ≤ r+

1−β
− kβt−0 (x) for x ≤ r+ + h+ and

V(·, x) = E(s, x), otherwise.

(iii) If r− < 0 < r+, then 1− βt−1 (x) ≤ V(·, x) ≤ βt+0 (x) for x ∈ X.

Additionally we have lim
x→−∞

V(s, x) = E(s, x) and lim
x→∞

V(s, x) = E(s, x)−k for s ∈ S.

Proof. The proof is a direct consequence of the former chapter.

4.2.2 Decomposition of the discretized MDP

In order to improve the efficiency of the optimization procedure, we present a decom-

position scheme for the discretized MDP that is based on the decomposition scheme

presented in the former chapter.

The discretization of the target space leads to a partition J1∪J2 . . .∪Jm of the state

space S×X∆ consisting of m ∈ N closed subsets J1, . . . , Jm. The partition allows us

to determine V ±
∆ , separately by restricting the corresponding optimality equations to

the closed subset under consideration. Some of these subsets are also absorbing for

which V ±
∆ is already known in advance.

Example 5. Suppose we are interested in calculating V±
∆ on the basis of X∆ intro-

duced in the proposal. Let β > 0.5. We consider two cases:

(1) 0 ≤ r− < r+.

Recall that X∆ = {−∞, x0, x1, . . . , xk−1,∞}. The determination of j∗ and j∗∗

from the former chapter leads to the following partition of the state space. The

sets S×{xk−j∗∗} , . . . , S×{xk−1} , S×{∞} are ⌈·⌉∆-1-absorbing. Consequently,

V(s, xj) = E(s, xj)− k within this set. The set {−∞, x0} is ⌈·⌉∆-0-absorbing.

Consequently, V(s, xj) = E(s, xj) within this set. These observations allow

us to decompose the optimization problem: First solve V+
∆ = UV+

∆ on S ×

{x0, . . . , xk−j∗−1} using that S × {x0} is ⌈·⌉∆-0-absorbing and V+ = E(s, x0).

Then, for j∗∗ < j ≤ j∗, solve V+
∆ = U+V+

∆ on S × {xk−j}. On the remaining

subset S×{xk−j∗∗ , . . . ,∞}, V+
∆ is ⌈·⌉∆-1-absorbing and thus V+ = E(s, x0)−k.
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(2) r− < 0 < r+.

Recall that X+
∆ = {−∞, x−k+1, . . . , x−1, 0, x1, . . . , xk−1,∞} with representa-

tives xj. Define j∗ and j∗∗ as in (1). Then S × {xk−j∗∗ , . . . ,∞} is ⌈·⌉∆-1-

absorbing, and S × {xk−j∗ ,∞, xk−1,∞} is ⌈·⌉∆-closed.

Since we round up, an analogous line of argumentation is not possible for

negative values of X∆. However, for small enough j, that is for 1 ≤ j∗∗∗ ≤ k

such that r− ln(j/(j + 1)) < r+ ln β, the sets S × {x−k+j∗∗∗ , . . . , xk−1,∞} is

⌈·⌉∆-closed. Finally, set S × {−∞} is ⌈·⌉∆-0-absorbing.

These observations allow us to decompose the optimization problem: First solve

V+
∆ = UV+

∆ on the subset S×{xk−j∗ , . . . ,∞} using that S×{xk−j∗∗ , . . . ,∞} is

⌈·⌉∆-1-absorbing. Then solve V+
∆ = UV+

∆ on the subset S × {x−k+j∗∗∗ , . . . ,∞}

using that Φ+
∆ is already known on S×{xk−j∗ , . . . ,∞} using that V+

∆ is already

known on S × {xj−j∗ , . . . ,∞}. Finally, for j < j∗∗∗, based on the knowledge of

Φ+
∆ on S × {x−k+j+1, . . . ,∞} solve V+

∆ = UV+
∆ on S × {x−k+j, . . . ,∞}.

4.2.3 Extrapolation

The convergence of the value iteration algorithm is usually slow. Combining the

value iteration (νn) with an extrapolation giving monotone upper and lower bounds

ω+
n (s, x) = νn(s, x) +

αβ

1− αβ
sup

(s′,x)∈S×X∆

{νn(s
′, x)− νn−1(s

′, x)}

ω−
n (s, x) = νn(s, x) +

αβ

1− αβ
inf

(s′,x)∈S×X∆

{νn(s
′, x)− νn−1(s

′, x)} , (s, x) ∈ S ×X∆

Theorem 10. For all n ∈ N and all (s, x) ∈ S ×X it holds that

(i) ωn(s, x) ≤ ω−
n+1(s, x) ≤ V(s, x) ≤ ω+

n+1(s, x) ≤ ω+
n (s, x),

(ii) lim
n→∞

ω−
n (s, x)) = lim

n→∞
ω+
n (s, x) = V(s, x).

(iii) Let gn ∈ G with νn = Uνn−1. Then it holds that Vgn ≥ ω−
n .

Proof. The proof is in analogy to the proof contained in Waldmann and Stocker

(2013).
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Algorithm 8 Value Iteration with Extrapolation, Penalty Approach

Input: n = 0, ν0 ∈ V, ε > 0
repeat

n = n+ 1
for all (s, x) ∈ S ×X∆ do

νn(s, x) = max
a∈D(s)

{

r(s, a)− k(1− αβ)1(0,∞)

+αβ
∑

s′∈S

p(s, a, s′)νn−1(s
′, x− r(s, a))

}

gn(s, x) = argmax {νn(s, x)}
end for

for all (s, x) ∈ S ×X∆ do

ω−
n (s) = νn(s) +

αβ

1− αβ
inf

(s′,x)∈S
{vn(s)− vn−1(s)}

ω+
n (s) = νn(s) +

αβ

1− αβ
sup

(s′,x)∈S

{vn(s)− vn−1(s)}

end for

until ‖ω+
n − ω−

n ‖ < 2ǫ
V = (ω−

n + ω+
n )/2

f ∗ = fn
Output: approximation of the value function V τ and a r-optimal decision rule f ∗

4.2.4 Limit behavior

Reformulating V (s, x) as V (k)(s, x) in order to explicitly express the dependence on

k, we are in a position to obtain the models and as special cases for k → 0 the

convergence towards the risk-neutral model and for k → ∞ the convergence towards

the negative Target Value model, respectively. The set Fk and F ∗
k denotes the set of

decision rules and optimal decision rules depending on k.

Theorem 11. For all (s, x) ∈ S ×X∆ it holds that

(i) lim
k→0

V (k)(s, x) = V (0)(s, x) = V̂ (s)

(ii) lim
k→∞

V (k)(s, x)

k
= −Φ(s, x).
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(iii) There exists some k0 > 0 such that F ∗
k ⊂ F ∗ for all k < k0.

(iv) There exists some k0 > 0 such that F ∗
k ⊂ G∗ for all k > k0.

Proof. (i) For k ≥ 0, introduce U (k) such that V (k) = U (k)V (k). Note that

U (0)v − k(1− β) ≤ U (k)v ≤ U (k)v ≤ U (0)v, for all v ∈ S ×X∆.

Together wit the monotonicity of U (k) it then follows that

V (0)(s, x)− k ≤ V (k)(s, x) ≤ V (0)(s, x).

Moreover, V (0)(s, x) is easily seen to be independent of x. Thus (i) holds.

(ii) For n ∈ N, set v
(k)
n := (U (k))n0 and let fn ∈ F such that Φn = UfnΦn−1. Then

v
(k)
n ≥ U

(k)
fn

v
(k)
n−1 and it easily follows by induction on n that

lim
k→∞

v
(k)
n

k
≥ −Φn, n ∈ N.

Now let ǫ > 0 arbitrary. Then there exists k0(ǫ) and n0(ǫ) such that

∥

∥

∥
v
(k)
n − V k

∥

∥

∥

k
≤ ǫ, n ≥ n0(ǫ), k ≥ k0(ǫ).

We finally get

lim
k→∞

V (k)(s, x)

k
≥ lim

k→∞

v
(k)
n (s, x)

k
− ǫ ≥ −Φ(s, x)− ǫ.

To show the reverse inequality, first observe that, for ǫ > 0, there exists k0(ǫ)

such that
∥

∥

∥

∥

V (k)

k
−

V (k′)

k

∥

∥

∥

∥

≤ ǫ, k, k′ ≥ k(ǫ).

Next, fix V (s, x) and let ak = f
(k)
n (s, x) a maximizing action state (s, x) of

iteration n. Then there exists a convergent subsequence (akm) which is constant
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for km sufficiently large since D(s) is finite. Thus

lim
m→∞

vkmn (s, x)

km
≤ −Φ(s, x).

Finally,

lim
k→∞

V (k)

k
≤ Φ,

which competes the proof of (ii).

(iii) Suppose that F ∗
k ⊂ F ∗ does not hold for all k < k0 and some k0 > 0. Then

there exists a sequence (km) → 0 and a sequence f ∗
n1

of km-optimal decision rules

fulfilling f ∗
n1

/∈ F ∗. Since the set Fk is finite there is some subsequence (kmk
)

with constant f ∗
mk

= g, say. Now, applied to g,we have for some (s, x) ∈ S×X∆,

lim
kmk

→0
V kmk (s, x) = lim

kmk
→0

V
kmk
g (s, x)

= V̂g(s, x)

< V̂ (s, x).

On the other hand, for all f ∗ ∈ F ∗,

lim
kmk

→0
V kmk (s, x) ≥ lim

kmk
→0

V
kmk

f∗ (s, x)

= V̂f∗(s, x)

= V̂ (s, x),

which is the desired contradiction. Hence F ∗
k ⊂ F ∗ holds for all k < k0.

(iv) The proof is in analogy to the proof contained in (iii).

4.3 Parametric penalty cost

In this section we consider the penalty cost as a real parameter. We solve the problem

for the whole parameter range. We start with an initial policy and a combination of
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two right hand sides risulting from the risk-neutral and the Target Value approach.

In a second step, the policy improvement phase is deployed. For each pair of actions,

the intersection point k is calculated. As k depends on the chosen actions and k

is bounded from below we have a minimum value for the intersection points. The

minimum value of the intersection points is the upper end of the stability interval of

the actual policy. That minimum value is the upper end of the stability interval for

the actual policy.

Wg(s, x) = Vg(s, x)− k · Φg(s, x).

Algorithm 9 Policy Iteration, Parametric Approach

Input: MDP, initial decision rule fo ∈ G
n = 0
(Policy evaluation)
Calculate Vfn as a solution of the linear equation system
Vfn(s, x) = r(s, fn(s, x))) + αβ

∑

s′∈S p(s, fn(s, x), s
′)Vfn(s, x), (s, x) ∈ S ×X.

Calculate Φfn(s, x) as a solution of the linear equation system
Φfn(s, x) = c(s, x, fn(s, x)) + αβ

∑

s′∈S p(s, fn(s, x), s
′)Φfn(s

′, x− r(s, a)).
(Policy improvement and stability)
for all a ∈ D(s) do
for all (s, x) ∈ S ×X do

Va(s, x) = r(s, a) + αβ
∑

s′∈S p(s, a, s
′)Vfn(s

′, x)
Φa(s, x) = c(s, x, a) + αβ

∑

s′∈S p(s, a, s
′)Φfn(s

′, x− r(s, a))

Ṽa(s, x) = Va(s, x)− kΦa(s, x)
end for

end for

for all a ∈ D(s) do
Find minimum intersection point kmin.

end for
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4.4 Numerical Examples

Example 6. This example shows the limiting behavior. For a penalty cost of 0

the risk neutral solution is gained. With increased penalty cost the penalty solution

approaches the solution of the target value. Figure shows the limit behavior of the

value function. The lower and upper bound are plotted for penalties k1 = 0, k2 =

100, k3 = 100.

Figure 4.1: Example 6, limit behavior for ∆=0.0125
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Figure 4.2 shows the limiting behavior towards the target value criterion.

Figure 4.2: Example 6, limit behavior for ∆=0.0125
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Table 4.1 shows the reduction of the computation effort that results from the utiliza-

tion of the extrapolation method.

method iteration lower bound iteration upper bound

without extrapolation 92 92
with extrapolation 64 68

Table 4.1: Example 6, comparisons of value iteration with value iteration with ex-
trapolation
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Case Study

5.1 Inventory Management

We consider a single-product inventory model. At discrete points in time n ∈ N0,

the inventory position is reviewed. In dependence on the actual stock sn an addi-

tional amount bn ≥ 0 is ordered. The replenishment occurs instantly. an = sn + bn

determines the inventory position at time n right after the replenishment order.

The demand zn between the times n and n+1 is a realization of a discrete random vari-

able Zn with values in {0, . . . ,m}. The random variables Z0, Z1, . . . are independent

identical distributed with the distribution function P (Z = z) = q(z), z ∈ {0, . . . ,m}

with expected value µ.

In dependence on sn, an and zn the inventory position sn+1 at n+1 is sn+1 = an−zn.

The unsatisfied demand is backlogged. We assume an inventory with limited capacity.

It follows that sn ≤ an ≤ M ∈ N. A negative stock sn corresponds to a reservation,

that is satisfied by the next order, that has to take place immediately. It follows that

an ≥ 0.

The placement of an order triggers cost of c × bn. Moreover there are stock and

shortage costs l(an− zn) in dependence of the stock and shortage position an− zn at
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the end of the order period. There is

l(s) =







l1 · s for s ≥ 0

−l2 · s for s < 0

with l2 > l1 ≥ 0. We formulate a model under the following set of assumptions.

(i) The decision to order additional stock is made at the beginning of each month

and delivery occurs instantaneously.

(ii) Demand for the product arrives throughout the month but all orders are filled

on the last day of the month.

(iii) If demand exceeds inventory, the demand is backlogged.

(iv) The revenues, costs, and the demand distribution do not vary from month to

month.

(v) The product is sold only in whole items.

(vi) The warehouse has capacity of M units.

The MDP formulation is stated below.

(i) S = {−m, . . . ,−1, 0, 1, . . . ,M}. State sn denotes the inventory at time n before

the placement of an order.

(ii) A = {0, 1, . . . ,M} and D(s) = {max {0, s} , . . . ,M} for s ∈ S. Action an with

an ≥ max {0, sn} denotes the inventory at time n after the placement of an

order.

(iii) p(s, a, s′) = q(a− j) for a− j ∈ {0, . . . ,m} and 0 other times.
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(iv) the one-stage rewards

r(s, a) = −c(a− s)− α
m
∑

z=0

q(z)l(a− z).

The negative sign results from the presentation of costs as negative rewards.

The optimality equation reads

V (s) = max
a∈D(s)

{

−c(a− s)− α

m
∑

z=0

q(z)l(a− z) + α
∑

z=0

q(z)V (a− z)

}

The policy minimizing the probability of failing a target value is not unique. From

a user’s point of view, it is desirable that the policy is as smooth as possible, since

frequent changes of the inventory stock level are not desirable. Therefore, we suggest

a smoothing technique within the optimization algorithm. Since there is a large

equivalence class of policies, we can choose a suitable structure. That means if

several actions are equivalent, we choose the actions that has the smallest difference

to the discretization point in the neighborhood.

5.1.1 Numerical Example

We use the following problem data. The stock capacity is M = 4, order cost are

c = 3, l1 = 1, l2 = 10, β = 0.96, α = 1. The probability distribution of the demand

is contained in the following table.

z 0 1 2 3 4

P (Z = z) 0.1 0.1 0.4 0.2 0.2

Table 5.1: Probability distribution inventory management

The following figure shows the resulting policies. It is obvious that S∗ is not smooth.

However, it is desirable to get a smooth upper bound like in the risk neutral case.
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Figure 5.1: Case Study, policies according to initial inventory level

81



Chapter 5 Case Study

Figure 5.2: Case Study, policies according to initial inventory level continued
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Figure 5.3: Case Study, smoothed policies according to initial inventory level
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Figure 5.4: Case Study, smoothed policies according to initial inventory level contin-
ued
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Chapter 6

Conclusion

6.1 Summary

We provided an overview about risk-sensitivity in Markov Decision Processes and

showed that the research focused on using utility functions or mean-variance trade

offs to express risk-sensitivity. We introduced Markov Decision Processes with a

geometrically distributed planning horizon. A motivating example showed that the

utilization of a risk-neutral policy leads to a high probability that the calculated

expected total reward will not be achieved. This could be problematic for a risk-

sensitive decision-maker.

Applying the Target Value Criterion means to minimize the probability that the

total reward is below a predetermined target. Target that are set below the expected

value can be interpreted as risk averse behavior and targets set above the expected

value can be interpreted as risk loving behavior. We derived an optimality equation

and proved the existence of an optimal stationary policy in a generalized state space,

where the target space incorporates the realized one-stage rewards. The structure

of the value function, i.e. monotonicity and asymptotic behavior was exploited to

approximate the target space by a finite subset. Based on these structural results,

upper and lower bounds were derived for the value function as well as nearly optimal

policies. Since the value function is left continuous, an error integral is introduced

to study the area between the value function of the discretized and the original
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problem. The discretization allows a decomposition of the problem, which was used

to recursively determine its solution.

As an extension we combined the total reward criterion and the Target Value Crite-

rion in a penalty approach. The structure of the value function and the optimality of

a stationary policy was proven. Moreover, the dependence on the optimal stationary

policy on the penalty factor was examined.

The thesis closes with a case study regarding an exemplary application.

6.2 Future Research

Structure of the optimal decision rule

One of the main success stories in the application of Markov Decision Process is the

utilization of the structure of optimal decision rules. Famous examples are (s, S)-

policies in inventory management or protection level structures in capacitated revenue

management problems. It could be investigated how the utilization of the structure

of optimal decision rule can be used to reduce the computational effort.

Connection to utility functions

Another possible topic is the connection between probability distributions and utility

functions. Utility functions can be normalized between zero and one, so that they

have the same mathematical properties as a distribution function. Reversing the

roles of the transition probabilities and the utility function provides a kind of dual

problem. In the dual world, an aspiration-equivalent can be calculated by replacing

the utility function with an equivalent step utility function, which has the same

expected utility as the original utility function.
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