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1. Introduction

We want to know the fundamental laws of nature since the dawn of humanity. In the year 2012
a new level of success has been achieved by the discovery of the Higgs boson by the ATLAS and
CMS experiments at the LHC in 2012 [1; 2], which is essential for the Standard Model (SM)
of particle physics. With the Higgs boson, the Standard Model of particle physics is complete.
Nevertheless, the Standard Model cannot be the fundamental theory describing everything,
e.g. it does not describe the dark matter, which makes up more than 80% of the matter in the
universe [3]. A popular extension of the Standard Model is supersymmetry (SUSY), see [4–6]
for a review. SUSY is a symmetry between fermions and bosons, which can only be realized in
nature if one doubles the particle spectrum of the SM. i.e. one introduces a boson (fermion) for
each fermion (boson). SUSY provides with the lightest supersymmetric particle a perfect can-
didate for the dark matter (DM) in the universe and makes clear predictions for the production
of supersymmetric particles. The supersymmetric partners of the W and Z bosons with spin
1/2 are the so-called charginos (χ̃±1 ) and neutralinos (χ̃0

2 ), which can be produced in pairs,
just like the WZ production. The SUSY particles decay into the SM particles plus the weakly
interacting DM candidate, which is the lightest supersymmetric particle. Since these weakly
interacting DM particles behave like neutrinos, they produce missing energy and momentum
in the events. This leads to multilepton events with missing transverse energy Emiss

T if the
charginos and neutralinos decay leptonically. Such signatures have been searched for at lower
energies [7–9] and no SUSY signatures were found, possibly because the centre-of-mass (CM)
energy was not high enough. In this thesis the SUSY searches in multi-lepton signatures have
been optimized for the high energies and backgrounds of the LHC. With the present luminosity
of 19.7 fb−1 at a CM energy of 8 TeV one could explore a large region of the hitherto unexplored
region of the SUSY parameter space, published in [10]. No signal has been found so far, but
an outlook for the expected 150-fold increase in the luminosity after an almost doubling of the
CM energy will be given.
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2 1. Introduction

The thesis is organized as following: After introducing the theoretical basis in Chapter 2, the
LHC program with a focus on the CMS detector will be presented in Chapter 4. The observables
needed to perform this analysis will be introduced in Chapter 5. Chapter 6 discusses the signal
signatures and Chapter 7 the Standard Model backgrounds. The search strategy and the result
are presented in Chapter 8. The interpretation of the results into SUSY signatures is given in
Chapter 9. Chapter 10 summarizes this thesis and gives an outlook. Natural units are used in
this thesis (h̄ = c = 1).

2



2. Theory

In this chapter, the theoretical basis of this thesis will be introduced. First the ideas and
concepts of the Standard Model of particle physics will be presented. Afterward, several prob-
lems of the Standard Model will be discussed. Then the idea behind supersymmetry will be
explained, and some aspects of the Minimal Supersymmetric Standard Model (MSSM) will be
discussed. Some features about colliding protons will be presented at the end of this chapter

2.1. Standard Model
The particle physics of the late 20th and the beginning of the 21st century is a great success
story of the Standard Model (SM) of particle physics. A few selected topics are presented in
this section. An extensive introduction can be found in [11; 12]. In the Standard Model, all
fundamental particles are fermions (spin=1/2), with a wavefunction denoted by a spinor |Ψ〉.
The spinors are solutions of the Dirac equation:

(γi∂i −m) |Ψ〉 = (/∂ −m) |Ψ〉 = 0, (2.1)

with γ the so-called gamma or Dirac matrices and m the mass of the particle. The four-
dimensional space-time index i runs from 0 to 3. This equation also allows solutions that
travel back in time. It was Paul Dirac who identified these solutions as particles with opposite
quantum numbers, which are called antiparticles denoted as |Ψ̄〉. The spinors are wavefunctions
with a complex phase. The detection of a particle compromises the measurement of the real
amplitude of its wavefunction 〈Ψ| |Ψ〉. Therefore, the spinor |Ψ〉 is invariant under an e−iφ

transformation. This invariance leads to a conserved quantity that is called chirality and has
two eigenvalues [13]. All spinors can be written as a linear combination of the two corresponding
eigenstates:

|Ψ〉 = sinα |ΨL〉+ cosα |ΨR〉 , (2.2)

3



4 2. Theory

with sinα2 + cosα2=1. The component |ΨL〉 is called left-handed and ΨR right-handed, re-
spectively.

The interaction between these particles is mediated by three forces:1: the electromagnetic
force, the strong force, and the weak force. A forces couples to the charge of a particle and this
charge is a conserved quantity arising from a symmetry [13]. The three basic symmetries and
the resulting fundamental forces will be introduced in the next three subsections 2.1.1-2.1.3.

2.1.1. Quantum Electrodynamics (QED)

The Quantum ElectroDynamics (QED) is the theory that describes the electromagnetic force.
Every particle with an electromagnetic charge does interact with this force. The Lagrangian
LQED of the QED is defined as:

LQED = −1
4FµνF

µν + Ψ̄(i/∂)Ψ−mΨ̄Ψ + eΨ̄ /AΨ, (2.3)

with Ψ the particle (electron), A the photon field, Fµν=∂µAν − ∂νAµ the (electromagnetic)
field strength tensor, m the mass of the fermion (=electron) and e the electromagnetic coupling
constant (=elementary charge). Applying the Euler-Lagrange equation to LQED results in the
Dirac and Maxwell equation. The source of the charge is a local UA(1) symmetry, meaning
that the Lagrangian L of the QED is invariant under a local gauge transformation generated by
Λ(x). The fields transform like: Ψ(x)→ eieΛ(x)Ψ(x), ¯Ψ(x)→ e−ieΛ(x) ¯Ψ(x) andAµ(x)→ Aµ(x)+
∂µΛ(x). The LQED can be rewritten with the so-called covariant derivative Dµ = ∂µ − ieAµ:

LQED = −1
4FµνF

µν + Ψ̄(i /D −m)Ψ (2.4)

This notation is elegant since it shows that the requirement of local gauge invariance generates
the interaction term (eΨ̄ /AΨ). The quantization of the fields leads to the fermion (electron)
propagator, photon propagator, and photon vertex, which are presented in table 2.1.

2.1.1.1. Running of the coupling constant

The term “constant” usually implies that a variable is constant. In quantum field theory, this is
not true. In leading order, the coupling constant e is given by the photon fermion vertex. The
corrections to this vertex also couples with the constant e. These corrections depend on the
energy (so-called virtuality Q2) mediated by this vertex. The measured value of e includes all
orders of corrections simultaneously, and so e can be written as a series depending on the energy
scale. The definition of e as the elementary charge is given in the Thomson limit (Q2 →0).
With this input, we can calculate e at every energy scale.

1Gravitation is not included in the SM.
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2.1. Standard Model 5

Table 2.1.: Feynman diagrams of the QED.

Name Diagram Description
Fermion propagator: The fermion propagator results from

the Dirac part (Ψ̄(i/∂−m)Ψ) of the La-
grangian. Meaning a fermion with mo-
mentum p travels from the left to the
right or the antifermion travels from
the right to left.

Photon propagator: The photon propagator results from the
photon potential part (−1

4FµνF
µν) of

the Lagrangian, meaning that a pho-
ton with momentum p travels from the
left to the right.

Photon vertex: The photon vertex results from the
interaction part (eΨ̄ /AΨ) of the La-
grangian, meaning that incoming pho-
ton decays into a fermion anti-fermion
pair in this representation. The ver-
tex can also be rotated by 180 degrees,
meaning that a fermion anti-fermion
pair annihilate into a photon or rotated
in such way that a fermion radiate a
photon.

2.1.2. Quantum Chromodynamics (QCD)

The basic symmetry behind the Quantum Chromodynamics (QCD) is the SU(3) group. It has
eight generators (Ta with a=1,..,8) which are the so-called Gell-Mann matrices. The charge of
the QCD is the so-called color charge and is represented by three different colors. The sum of
all colored eigenstates results in a color neutral state. The SU(3) group is non-abelian. For
this reason, the force carriers mediating this force, which are called gluons (Ga

µ), are charged.
Only a subset of the fermions interacts with the strong force, which are called quarks and are
written as q. The Lagrangian of the QCD can be written as:

LQCD = −1
4F

a
µνF

aµν + q̄(i /D −m)q, (2.5)

with the covariant derivative Dµ = ∂µ − igsTaG
a
µ and the field strength tensor F a

µν=∂µGa
ν −

∂νG
a
µ+gsfabcGb

µG
c
ν . The fabc are called structure constants. The quantization of this Lagrangian

leads to a new Feynman propagator and new vertices listed in table 2.2.

5



6 2. Theory

Table 2.2.: Feynman diagrams of the QCD.

Name Diagram Description
Gluon propagator: The gluon propagator results from the

potential part (−1
4F

a
µνF

aµν) of the La-
grangian, meaning that a gluon with
momentum p and color travels from the
left to the right.

Quark-gluon vertex: The quark-gluon vertex results from
the interaction part (gsq̄γµT aGa

µq) of
the Lagrangian, meaning that incom-
ing gluon decays into a fermion anti-
fermion pair in this representation.
The vertex can also be rotated by 180
degrees, meaning that a quark anti-
quark pair annihilates into a gluon or
rotated in such way that a quark radi-
ates a gluon.

Three-gluon vertex: Three-gluon vertex results from the po-
tential part (−1

4F
a
µνF

aµν) of the La-
grangian, meaning that incoming gluon
split into two gluons. The vertex can
also be rotated by 180 degrees, mean-
ing that a gluon pair fuses to one gluon.

Four-gluon vertex: The four-gluon vertex results from the
potential part (−1

4F
a
µνF

aµν) of the La-
grangian, meaning that two gluons fuse
into two other gluons.

2.1.2.1. Confinement and Asymptotic freedom

The QCD coupling constant gs is not constant in the same way as it is not constant for QED.
For the coupling constant gs the limit Q2 →0 tends to infinity due to the gluon self-interaction.
By trying to separate two colored particles, they will start to exchange gluons. The force
increases with distance and so the energy density. Above the pair building threshold the gluons
will create quark pairs. This phenomenon is known as confinement. For this reason, quarks
live only in a small volume bounded by gluons. These bound states are known as mesons or
baryons, e.g. the proton is a baryon with a size in the order of fm. In order to investigate theses

6



2.1. Standard Model 7

small scales, a high energy (Q2) of the order of a GeV is needed. Below this threshold, the QCD
is not valid2. Instead, one interacts with the bound states as a whole, which is described by
effective theories. If Q increases gs is getting smaller, which leads to the so-called asymptotic
freedom. It explains the fact that the series expansion of gs converges, and the QCD predictions
are meaningful in this regime.

2.1.3. Electroweak unification
The missing force is the weak force, which is responsible for the decay of heavy particles.
The basic symmetry describing this force is the SU(2) symmetry. The weak force has some
unique properties. It only couples to left-handed particles and to right-handed anti-particles.
In addition, the force carriers mediating the weak force are massive. With these requirements,
it is not possible to write the Lagrangian, so that is invariant under the SU(2) symmetry.
The solution to this problem gives the Higgs mechanism by introducing a new scalar field, the
so-called Higgs field. This field has the following potential:

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (2.6)

where µ and λ are simple parameters. If µ2 is smaller than zero, the vacuum expectation value
becomes non-zero |Φ|2 = −µ

2λ = v. The Higgs field can be written as:

Φ(x) =
Φ+(x)

Φ0(x)

 = 1√
2

φ1(x) + iφ2(x)
φ3(x) + iφ4(x)

 = 1√
2

 0
v + h(x)

 , (2.7)

where the representation of the form φ1,φ2,φ3 and φ4 illustrates that this complex scalar field
has four degrees of freedom. In the right-hand side, only one degree of freedom is visible, which
is represented by the field h(x) and ends in the Higgs boson. The other three degrees of freedom
are carried by so-called Goldstone bosons which give the W+, W− and the Z boson mass3. This
Higgs field breaks the SUL(2)×UY (1) symmetry into the UA(1) symmetry (QED). The kinetic
term of the Higgs Lagrangian reads as:

T (Φ) = (DµΦ)†(DµΦ), (2.8)

with Dµ = ∂µ − ig τ
j

2 Wµ − ig′ 12Bµ, W are the gauge field of SU(2) with the coupling constant
g, B is the gauge field of UY (1) with the coupling g’. The Pauli matrices τ j (j=1,2,3) are the
generators of the SU(2) symmetry. The charge of the SU(2) symmetry is called the isospin
(I) and the charge of the U(1) is known as the hypercharge (Y). Q=I3+Y/2 connects the
electric charge Q with the hypercharge and isospin. The Higgs Lagrangian and the electroweak
Lagrangian leads to many new Feynman propagator and vertices, which are illustrated in table
2.3. The field of the electroweak gauge bosons is a linear combination of these fields:

2Which means that QCD cannot make predictions for this energy regime.
3The Goldstone boson goes into the longitudinal polarization of the W+, W− and the Z boson.

7



8 2. Theory

• Photon (γ) Aµ = sin(ΘW )W 3
µ + cos(ΘW )Bµ

• Z boson Zµ = cos(ΘW )W 3
µ + sin(ΘW )Bµ

• W boson W±µ = 1√
2(W 1

µ ∓ iW 2
µ)

The angle ΘW is the Weinberg angle and has a value of sin2(ΘW ) = 0.231 at Q=91.2 GeV. The
masses of the W and Z boson are determined by the coupling to the Higgs field. The photon
field does not couple to the Higgs field and stays massless. The masses of the fermions are also
generated by the coupling to the Higgs field. E.g the mass term of the down quark md reads:

yd(ū, d̄)L

 0
v+h(x)√

2

 dR + cc→ md = ydv√
2
, (2.9)

with yd the Yukawa coupling of the down quark to the Higgs field h(x). Each massive particle
has its own Yukawa coupling, which is a free parameter of the Standard Model.

2.1.4. Particle content of the Standard Model
The particles, which are fermions (spin=1/2), and the force carriers, which are mediated by
gauge boson (spin=1), were introduced above. In order to give the weak gauge bosons mass
via the Higgs mechanism, one Higgs field has to be introduced as weak isospin doublet with
4 degrees of freedom. Three of them are needed to give mass to the W+, W- and Z boson.
The remaining degree of freedom results in the Higgs boson, which is essential for the Standard
Model. In table 2.1.4 all particles and forces of the Standard Model are listed. The quantum
number SU(2)L gives the representation of the field in the SU(2)L symmetry, e.g. (νe, e)TL is a
doublet state, meaning it has eigenvalues of I3=1/2,-1/2. If it is a singlet (I3=0) the particle
does not interact with this force. The same meaning has the quantum number SU(3)C , but
since this symmetry is unbroken we denote only one single particle. E.g. the d-quark is a
triplet state (dC1,dC2,dC3), with C1,C2,C3 as colors index. There are eight different gluons
(g1..g8), which can transfer this triplet state into another triplet state. The U(1)Y number
shows direct the Y quantum number and the electric charge is given by the formula Q=I3+Y/2.
For the fermions, three different generations are known. Each generation is a copy of the first
generation, but with different Yukawa couplings leading to different masses. The full particle
spectrum also includes the anti-particles, which have opposite charges. The anti-particles are
grouped into right-handed doublet states and left-handed singlet states for representation in
the SU(2) symmetry.

2.1.5. Measurements of the Standard Model particles
With the data collected in 2011 and 2012, it was possible to measure the production cross
section of several Standard Model processes and compare the results with the prediction from
theory. Figure 2.1 shows the recent preliminary results published by CMS [14]. The agreement
between data and prediction is amazing and confirms the Standard Model one more time.
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2.1. Standard Model 9

Table 2.3.: Additional Feynman diagrams from the electroweak and Higgs part of the
Lagrangian.

Name Diagrams Description
Additional propagators:

The additional propagators result
from the individual potential part
of the Lagrangian. The first prop-
agator is either a uncharged Z bo-
son or a charged W±. The sec-
ond probegater is the Higgs bo-
son propagator, meaning that the
particle travels from the left to
the right.

Additional vertices:
The additional vertices result
from the different kinetic parts of
the Lagrangian. It includes Higgs
and boson decays into fermion
anti-fermion pairs, bosons pairs
or Higgs pairs. For the decay
of the W boson, it is the de-
cay into left-handed fermion and
right-handed anti-fermion of the
iso-doublet partner. On all ver-
tices, the quantum numbers have
to be conserved.

2.1.6. Problems of the Standard Model

The Standard Model was developed in the 1970’s and improved the understanding of particle
physics deeply. However, some phenomena are not included in the Standard Model and still
leave some questions unanswered:

• Free parameters: It has at least 18 free parameters4, and these parameters are very
different. E.g the electron mass is ∼ 0.0005 GeV and the mass of the top is ∼ 170 GeV,

4The parameters of the neutrino masses does not appear in this counting.
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10 2. Theory

Table 2.4.: The particle content of the Standard Model. For further explanation, please note
the text above.

Fermions Spin=1/2
1. Gen 2. Gen 3. Gen SU(3)C SU(2)L U(1)Y Q

Quarks
(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

3 2 1/3 2/3
−1/3

uR cR tR 3 1 4/3 2/3
dR sR bR 3 1 -2/3 -1/3

Leptons
(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

1 2 -1 0
−1

eR µR τR 1 1 -2 -1
Gauge bosons Spin=1

Interaction Boson SU(3)C SU(2)L U(1)Y Q
Electromagnetic γ 1 1 0 0

Weak Z0

W± 1 3 0 0
±1

Strong g1..g8 8 1 0 0

Higgs bosons Spin=0
Field Boson SU(3)C SU(2)L U(1)Y Q
Higgs h 1 2 1 0

which is strange for a fundamental theory.

• Fine tuning problem: The Higgs mass is at the electroweak scale (∼100 GeV). In order
to have a valid theory up to the Planck scale (∼1019 GeV) large fine tuning is necessary
due to the radiative loop corrections to the Higgs mass.

• In the SM there are three very different couplings for the three forces, which also do not
unify at high energy.

• Dark matter: No particle of the SM can form the so-called dark matter.

• Gravitation: The Standard Model ignores the gravitational force.

Since the Standard Model is validated to a high precision, the most challenging part for new
physics is to recap the results from the Standard Model.

2.2. SUSY
Supersymmetry is a possible extension of the Standard Model. The shortcut for supersymmetry
is SUSY. This section gives a short overview of what supersymmetry is and discusses some
aspects of of supersymmetry. Further information can be found in [5].

10
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Figure 2.1.: Recent measurements of the production cross section of Standard Model particles
with the CMS detector compared to the prediction from theory. The figure is taken
from [14].

2.2.1. Motivation

Many problems of the Standard Model (section 2.1.6) can be solved by introducing SUSY. Two
topics will be discussed in this subsection.

2.2.1.1. The way to the Grand Unified Theory (GUT)

One of the biggest wishes of particle physics is the unification of the Standard Model into one
great symmetry. The group SU(5)5 is the smallest group which allows such an unification.
This unification should happen at the so-called GUT scale. The SU(5) symmetry has overall
N2-1=24 gauge fields and as a result 12 new force carriers must be introduced. The proton
decay (P → e+ + π0) is allowed with one of these new force carrier, which leads to a proton
lifetime τP of:

τP ≈
1

αSU(5)

M4
X

m5
P

, (2.10)

where mP is the proton mass, αSU(5) is the unified coupling constant of the force carrier causing
the proton decay andMX is the unified mass of this force carrier. Since no proton decay has been

5SO(10) is also a possible group.
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12 2. Theory

found so far, these force carriers must be heavy. With a lifetime of the proton τP >1033 follow
Mx > 2.4 · 1015 GeV [15]. This result needs a knowledge about the unified coupling constant
αSU(5). The couplings are computed with the so-called renormalization group equations. Figure
2.2 shows the running of the coupling constants for the Standard Model and SUSY. In the right
figure for the SUSY scenario, the running of the coupling constants have some kinks. These
kinks represent the energy scale where the SUSY particle starts to exist. It is a general feature
of SUSY that it can unify all couplings at a typical GUT scale of 1016 GeV, which is sufficient
to increase the predicted proton lifetime above its experimental limit.

Figure 2.2.: This Figure shows the inverse of the coupling constants vs. the logarithmic energy
scale. α1 is the coupling of the unbroken UY (1) symmetry, α2 of the unbroken
SUL(2) symmetry, and α3 of the SU(3) symmetry. The evolution of the measured
gauge couplings at LEP is shown for the Standard Model on the left and a SUSY
model (MSSM) on the right [16].

2.2.1.2. Dark Matter

Ordinary baryonic matter provides about 5% of the energy density of our universe, which is
known from satellite experiments [3; 17]. 27% of the energy density is built of so-called cold
dark matter. This matter does not interact with photons as the name dark suggests. The
characteristic cold means that the particles forming this dark matter are non-relativistic and
have a large mass with respect to the temperature of the early universe (at the time of structure
formation). For this reason, no Standard Model particle has the right attributes to form dark
matter.
One other constrain on dark matter is coming from restrictions of the Big Bang. The universe
was hot at the very beginning. Consequently, all particle masses were low compared to the

12



2.2. SUSY 13

temperature of the very early universe. As a result, the dark matter particles annihilated and
were produced with a the same rate and stayed in thermodynamical equilibrium with each
other. With the expansion of the universe, the temperature decreases. As a consequence the
amount of dark matter decreased since the production of dark matter particles was impossible
but the annihilation process still continued. All dark matter particles would have annihilated
in a static universe. However, the universe expands, and if the expansion rate exceeds the
annihilation rate, freeze-out occurs. This freeze-out leads to a finite relic density [18]:

ΩDMh
2 = mDMnDM/ρC ≈ 3 · 10−27/ < σDMv >, (2.11)

with ΩDM the energy density of the dark matter normalized to the critical density ρC , h the
Hubble constant, mDM the mass of the dark matter particle, nDM the number density and
< σDMv > is the thermally averaged annihilation cross section of the dark matter particle.
Since h and ΩDM are known, the cross section for the dark matter particles are also known.
This cross section is in the order of the weak force, and those dark matter particles are also
known as Weakly Interacting Massive Particles (WIMPS). SUSY predicts with the lightest
neutralino (χ̃0

1 ) a particle with the right attributes to be a WIMP.

2.2.2. Some aspects of Supersymmetry

Supersymmetry introduces a new symmetry between bosons spin 0,1,2 and fermions spin 1
2 ,

3
2 .

At least one new operator Q is needed which transforms a fermion state into a boson state:

Q |fermion〉 ∝ |boson〉 and Q |boson〉 ∝ |fermion〉 (2.12)

The simplest SUSY model consists of doublets given in table 2.5. In SUSY models the num-

Table 2.5.: This table shows the possible doublets in this simple SUSY model(
ϕ Ψ

) (
λ Aµ

) (
g̃ g

)
Spin 0 Spin 1

2 Spin 1
2 Spin 1 Spin 3

2 Spin 2
scalar chiral majorana vector gravitino graviton

fermion fermion

ber of fermions must be equal to the number of bosons. Since the Standard Model has 28
bosonic degrees of freedom and 90 fermionic degrees of freedom, the SM bosons cannot be the
superpartners of the SM fermions. Therefore, SUSY requires the introduction of new particles.

2.2.3. The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is one well-studied realization of su-
persymmetry. It introduces the minimal number of new particles. The particles are given in

13



14 2. Theory

table 2.6. Half of the particles are known from the Standard Model, the new supersymmetric
particles are all marked with a ˜. For the naming, the following convention is chosen. The
supersymmetric fermions get an -ino added, e.g. The wino is the superpartner of the SM W-
boson. The supersymmetric bosons get and s as prefix, e.g. slepton is the superpartner of the
lepton.

Table 2.6.: Particle content of MSSM. For further explanation, please note the text above.

Superfield Bosons Fermions SUC(3) SUL(2) UY (1)
Gauge
Ga ga g̃a 8 1 0
Vk Wk (W±,Z) W̃ k(W̃±, Z̃) 1 3 0
B B(γ) B̃(γ̃) 1 1 0
Matter
Li L̃i = (ν̃, ẽ)L Li = (ν, e)L 1 2 -1
Ei Ẽi = ẽr Ei = eR 1 1 -2
Qi Q̃i = (ũ, d̃)L Qi = (u, d)L 3 2 1/3
Ui Ũi = ũR UI = uR 3∗ 1 4/3
Di D̃i = d̃R Di = dR 3∗ 1 -2/3
Higgs
Hu Hu H̃u 1 2 -1
Hd Hd H̃d 1 2 1

The supersymmetric Lagrangian6 can be written as:

L = Lgauge + LY ukawa + LSoftBreaking (2.13)

The LSoftBreaking is new and responsible for the breaking of SUSY. It has many free parameters
(O(100)). Usually terms that would allow proton decays are forbidden in the Lagrangian. This
leads to the conservation of the R-parity:

R = (−1)3(B−L)+2S, (2.14)

with B the number of baryons, L the number of leptons and S the spin. The R-parity for
Standard Model particles is +1 and for SUSY particles is -1. The conservation of the R-
parity forbids the decay of the lightest supersymmetric (LSP) particle into Standard Model
particles. Since LSP is heavy, it is a perfect candidate for a cold dark matter particle. Another
consequence of conserved R-parity is that SUSY particles are always produced in pairs.

6This lagrangian is supersymmetric since it consists of superfields.

14



2.3. Colliding Particles 15

2.2.3.1. Charginos, Neutralinos and Sleptons

The superpotential for the Yukawa part of the Lagrangian can be written as:

WR = εij(yUabQj
qU

c
bH

i
2 + yDabQ

j
aD

c
bH

i
1 + yLabL

j
aE

c
bH

i
1 + µH1H2), (2.15)

with i,j=1,2 the indices of the SU(2) symmetry and the a,b=1,2,3 are the indices for the
three different generations. In SUSY two Higgs fields must be introduced. One Higgs field
couples to the up-type fermions (Hu) and the other couples to the down-type fermions (Hd).
The supersymmetric partners of the left-handed particles can have different masses as the
supersymmetric partners of the right-handed particles. It is possible that the left-handed and
right-handed particles mix, which is enhanced for the third generation particles.

The supersymmetric transformation of the two Higgs fields leads to the higgsinos. They have the
same quantum numbers as the wino and bino and, for this reason, all these fields will blend into
a mixed state. Therefore, a distinction is drawn between neutralinos (χ̃0

n) and charginos(χ̃±m).
The four neutralinos (n=1,2,3,4) can be written as:

χ̃0
n = N1nB̃ +N2nW̃ 3 +N3nH̃0

u +N4nH̃0
d , (2.16)

where N is a 4×4 unitary matrix. The four states are classified by their masses: mχ̃0
1
<mχ̃0

2
<mχ̃0

3
<mχ̃0

4
.

In usual SUSY scenarios, the χ̃0
1 dominantly consists of bino, χ̃0

2 dominantly consists of wino
and χ̃0

3/χ̃0
4 dominantly consists of higgsinos. The two charginos (m=1,2) are:

χ̃±m = M1mW̃± +M2m
˜H±u/d, (2.17)

where M is a 2×2 unitary matrix. The two states are classified by their masses: mχ̃±
1
<mχ̃±

2
. In

the usual SUSY scenario, the χ̃±1 dominantly consists of wino and χ̃±2 dominantly consists of
higgsino.

2.3. Colliding Particles
The Large Hadron Collider (LHC) collides protons with an center of mass energy of 8 TeV
in 2012. The proton is not a fundamental particle since it is build of three so-called valence
quarks (two up-quarks and one down-quark). The valence quarks frequently exchange gluons
with each other. These gluons can split into virtual quark anti-quark pairs, which are the so-
called sea quarks. All of these constituents carry a fraction x of the momentum of the proton.
This information is summarized in the so-called parton distribution function (pdf). The pdf
is a function of f(x,Q2), since the strong coupling depends on the virtuality Q2. The pdf for
Q2 =100 GeV is shown in figure 2.3. The gluons have a high density and, for this reason, the
LHC is sometimes called gluon collider. However, at high x values the valence quarks are still
important. These high x values are needed to produce heavy particles, e.g. SUSY particles.
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16 2. Theory

Figure 2.3.: Parton distribution function (pdf) of a proton. The x-axis represents the energy
fraction x and the y-axis represents the probability scaled with x. The values are
from the NNPDF collaboration and the figure is taken from [19; 20]
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3. Statistical Model

In order to make a statistical interpretation, a confidence level (CL) has to be defined. For this
reason, we use the so-called CLs method, which is based on the likelihood formalism [21–23].
The likelihood function consists of two different ingredients. First the statistical component,
which follows a Poisson function:

Poisson(n|µ) = e−µ
µn

n! , (3.1)

with n the number of measured events and µ the number of excepted events. Second are
the systematic uncertainties, which are called nuisance parameters, and can follow different
probability density function (pdf)1. In this analysis, all systematic δ uncertainties follow the
log-normal distribution [24]:

Lognormal(δ|µ, σ) = 1
δσ
√

2π
e−

(lnδ−µ)2

2σ2 , (3.2)

where µ is the so-called location parameter and σ is the shape parameter. The likelihood
function for the combination on Nbins search bins can be written as:

L(n|H) =
Nbins∏
k

Poisson(nk|r · sk + bk)
Nnuis∏
i

Lognormal(f ik · δi|ln(bk), σi), (3.3)

where nk denotes the number of observed events per bins, bk the number of events predicted
by backgrounds and sk the number of events predicted by signal. The variable r is the so-
called signal strength parameter. The scale factor fik gives the contribution of each nuisance
parameter (δi) into this search bin. Nnuis is the number of nuisance parameters. In this analysis,
we have uncertainties which are commonly shared by each bin. However, there are also so-called
bin-by-bin uncertainties, which are only valid for one individual bin, e.g the uncertainties on

1Attention, it is different to the parton density function, which also is called pdf!
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18 3. Statistical Model

the statistics of the background sample. In order to get rid of the nuisance parameters, they
get profiled out under the requirement to maximize the likelihood function. The profiled test
statistic calculated as:

Q = max(L(n|r · s, b, δ̂b))
max(L(n|r̂ · s, b, δ̂b))

, (3.4)

where the hat ˆ indicates that this variable is profiled out. This test statistic Q is converted
into q=-2ln(Q). The result for some possible test statistics q’s are shown in figure 3.1, where
qobs is the observed value and ps+b = P (q ≥ qobs|s+ b) is the probability to measure this signal
+ background hypothesis with a signal strength of r=1 (illustrated as f(q|1) on the left plot
and as f(q(s+b) on the right plot). The probability for the background only hypothesis is
1− pb = 1− P (q ≤ qobs|b) (illustrated as f(q|0) on the left plot and as f(q|b) on the right plot).
Now the 95% CLs limit is defined as following:

CLs(r) = pr·s+b
1− pb

< 0.05 (3.5)

The advantage is visible on the right plot of figure 3.1. Here both hypothesis are very similar
and does not match data (qobs) due to a statical downward fluctuation. The use of the 1-pb as
denominator prevents from making exclusion on signal models, where we are not sensitive to.
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Figure 3.1.: Test statistic q distribution for the two example analysis. These figures are taken
from [25].

The expected limit is calculated from pseudo-data using the likelihood function L(n|0, b, δ̂b).
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4. The CMS-Experiment at the LHC

The CMS-experiment is a general-purpose detector built on the the Large Hadron Collider
(LHC), which is hosted by the European Organization for Nuclear Research (CERN) near
Geneva. Without the enormous effort of thousands of people working for CERN it would be
impossible to build and run the accelerators, maintenance of the computing facilities, develop-
ment of the software tools and contributions to the experiments, which are largely built by the
external users. Therefore, it is important to keep in mind that the analysis of the data is only
the last step. In this chapter, the important facilities as well as the important tools used in
this thesis are presented.

4.1. The Large Hadron Collider (LHC)
The LHC is the largest particle collider built by CERN. It has a circumference of 27 km and is
up to 175 m deep in the underground of the Franco-Swiss border near Geneva. It accelerates
protons up to an energy of 7 TeV in both directions. The ring consists of two vacuum pipes
inside superconducting magnets with a field strength of up to 8.33 Tesla. The magnet field is
continually adapted to hold the protons on a circuit. The beamlines intersect at four different
positions, where the four main experiments are located. The name of these detectors are:
ATLAS (A Toroidal LHC ApparatuS, CMS (Compact Muon Solenoid), LHCb (Large Hadron
Collider beauty) and ALICE (A Large Ion Collider Experiment) [26–29]. The LHCb experiment
is designed to study physics with b-quarks. The physics of the strong force and, in particular,
the search for the quark-gluon plasma is investigated with the ALICE detector. CMS and
ATLAS are general purpose detectors sharing the same physics program with a focus on the
discovery of the Higgs boson and the search for new physics.
The protons are pre-accelerated before they get injected into the LHC. An overview of the
different accelerators is given in figure 4.1. First the protons are accelerated to 50 MeV by a
linear accelerator (LINAC2). They obtain an energy of 1.4 GeV after the Proton Synchrotron
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20 4. The CMS-Experiment at the LHC

Booster (PSB). Then they get injected into the Proton Synchrotron (PS) which accelerates
the protons to 26 GeV. The last accelerator before the LHC is the Super Proton Synchrotron
(SPS) which gives the protons an energy of 450 GeV. The LHC is designed to accelerate ∼2800
bunches of protons to an energy of 7 TeV. A bunch consist of to 1.15 × 1011 protons and the
spacing between the bunches is 25 ns. The event rate is given by:

dN

dt
= σprodL, (4.1)

where σprod is the production cross section and L is the luminosity. The design luminosity is
L = 1034 cm−2s−1. In 2012 LHC ran with a center-of-mass energy of 8 TeV (=4 TeV per beam)
and reached a peak luminosity of L = 0.76× 1034 cm−2s−1. The LHC can also accelerate and

Figure 4.1.: Overview of the LHC ring and the preaccelerators. The picture is taken from [30].

collide ions instead of protons, which is of special interest for the ALICE detector.

20



4.2. The CMS Detector 21

4.2. The CMS Detector
The Compact Muon Solenoid (CMS) detector is a general purpose detector at the LHC [31]. It
is located near Cessy (France) close to the Franco-Swiss border. It has a length of 21.6 m, a di-
ameter of 14.6 m and weight of about 14500 tons. With these sizes, the name “compact” sounds
ironic but is explained by the design of the detector. A silicon tracker, a crystal calorimeter,
and a hadron calorimeter are placed inside of a large solenoid magnet as shown schematically
in figure 4.2. Only the muon chambers are placed in between the iron yoke of the magnet. The
solenoid magnet is 13m long, has an inner diameter of 5.9m and reaches a field strength of 3.8T,
which allows good momentum resolution for the charged particles. The coordinate system is

Figure 4.2.: Overview of the CMS detector. The picture is taken from [32].

defined as follows:

• The origin is in the center of the CMS detector.

• The z-axis is along the beam pipe.

• The x-axis is the horizontal axis, The y-axis is the vertical axis.

• The φ angle lies in the x-y plane and is zero along the x-axis.

• The θ angle is defined between the x-y plane and the z-axis. It is zero along in the z-axis.

• The pseudorapidity η is defined as η=-ln(tan(θ/2)).
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22 4. The CMS-Experiment at the LHC

CMS has an onion-like structure of the sub-detectors, which are presented in the following
subsections. More extensive information about the detector can be found in [28]. Figure 4.3
shows the arrangement of the sub-detector parts.

4.2.1. Tracker

The tracker system is the heart of the CMS and built of silicon. It consists of pixel and strip
detectors. The pixel detectors are placed next to the beam pipe. The over 66 million pixels have
a resolution of 10 µm in the r-φ plane and 20 µm in the z direction. The strip detectors surround
the pixel detectors. They consists of 9.6 million stripes. The resolution is between 23-52 µm in
the r-φ plane and 230-530 µm in the z direction. The tracker system covers the pseudorapidity
|η| < 2.5. The software of the tracker system is responsible for the track reconstruction and the
vertex reconstruction. It is possible to reconstruct thousands of tracks and up to 100 vertices
in one single event.

4.2.2. Calorimeter

CMS has two calorimeters, an electromagnetic calorimeter, and a hadron calorimeter. The
readout of the calorimeter system is very fast and is used as a seed for the trigger.

4.2.2.1. Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECAL) consists of lead tungstate crystals, with a radiation
length of X0=0.89cm. It is separated in the barrel region |η| < 1.479 and the endcaps region
1.479 |η| < 3.0. The 75848 crystals measure 2.2 × 2.2 × 23cm (∼26X0) in the barrel and 3
× 3 × 22cm (∼24.7X0) in the endcaps. All electrons and photons are stopped in the ECAL.
The read out of the crystals is done via avalanche photodiodes (vacuum phototriodes) in the
barrel (endcaps) region. The ECAL is responsible for the energy measurement of the electrons
and photons. It cannot distinguish between them, but due to the fine granularity the energy
deposit can be matched to the information obtained by the tracker.

4.2.2.2. Hadron Calorimeter

In order to stop hadrons material with a high density is needed. For this reason, brass is used in
the magnet, and stainless steel is used elsewhere. Fluorescent scintillators are located between
the absorbers to extract a light signal. This signal is sent via optic fiber to the photodetectors,
which amplify the signal. The amount of photons is proportional to the energy of the particle.
The HCAL stops and measures all hadronic particles. Therefore, it is built not to miss any
particle in the range of 0 |η| < 3.0. Moreover, together with the hadron forward calorimeter, |η|
< 5.0 are covered. This great coverage is necessary for observables including multiple particles,
e.g the missing transverse energy which will be defined later.
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4.2.3. Muon Chambers

The muon chambers lie outside of the solenoid. They are implemented in between the iron layer
of the yoke and consists of three different types. Drift tubes (DT) and cathode strip chambers
(CSC) are used for a good resolution. Additional resistive plate chambers (RPC) are used for a
good time resolution and a fast response. All three components use the fact that muons ionize
gas, which is measurable with the help of electric fields. The RPC uses the avalanche effect to
be very fast and, for this reason, it is used as input for the trigger system. The muon system
covers |η| < 2.4

Figure 4.3.: Longitudinal view of one-quarter of the CMS detector. One can see the onion-like
structure of the CMS detector. The tracker system is placed in the center sur-
rounded by the electromagnetic calorimeter. The next layer is the hadron calorime-
ter that is still inside of the solenoid. The muon chambers (MB and ME) are placed
in between the yoke. The picture is taken from [33].

4.2.4. Trigger

The trigger system selects those events that will be worthwhile to be transferred to the next
selection stage [34; 35]. It is impossible to store all events, E.g. with an event rate of 20 MHz

23



24 4. The CMS-Experiment at the LHC

(50 ns bunch spacing) and an average event size of ∼ 1.5 MB would lead to 30 TB per second.
For this reason, the trigger system must decide which events contain interesting physics. In
order to satisfy all these requirements the triggering is split into two parts: the L1 hardware
triggers and the HLT (L3) software triggers. The L1 trigger system reduces the event rate to
100 kHz by using raw objects. E.g. large energy deposits in some ECAL crystals, which can be
either from a photon or an electron. The HLT trigger system is realized by a large computing
farm, which uses information from all sub-detectors. The HLT object reconstruction is very
similar to the offline reconstruction. An event will be transmitted to the offline computing if
it fulfills certain requirements, e.g. the event consists of two isolated electrons with momenta
above a certain threshold. The HLT output rate is 150 Hz leading to 225 MB/s which will be
stored offline.

4.3. Computing

The computing is the third important part of the CMS experiment. Without the powerful
Grid, it would be impossible to analyze the large amount of data. This section introduces the
resources and tools that are used for this thesis.

4.3.1. The Grid

In order to handle the large amount of data, the grid has been constructed [36]. The grid
is a network of computer centers distributed all over the world. It consists of three layers.
There is one tier 0 center which is located at CERN and is connected to nine tier 1 centers.
They are located in: KIT (Germany), PIC (Spain), IN2P3 (France), IFN-CNAF (Italy), JINR
(Russian Federation), ASGC (Taipei), GridPP (United Kingdom), Fermilab-CMS (US), and
CERN (Switzerland). The tier 0 and tier 1 centers are responsible for the reconstruction of the
raw CMS data. In order to prevent data loss, the data is stored twice. One copy is saved at the
tier 0 center and one copy is saved at one of the tier 1 centers. Each tier 1 center is connected
to several tier 2 centers. The tier 2 centers are designated for the data analyzers. The tier 2
centers can get a local copy of the reconstructed data from a tier 1 center, and analyzers can
run jobs that need these data on the batch system of the tier 2. In order to use the computing
resources in a more efficient way, it is also possible for analyzers to run their jobs on available
recourses of tier 1 centers.

4.3.2. Software

Several software package are used in this thesis. This subsection gives an overview of the most
important of them.
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4.3.2.1. ROOT

ROOT is a data analysis framework [37]. It is written in cpp, with a strict class hierarchy. It is
open source and can be included in other frameworks. ROOT comes with its data files, which
are the so-called root files. These root files are used to store the data. ROOT also provides
functions to make 1D,2D or 3D histograms out of the data, which allows a nice representation
of the experimental results.

4.3.2.2. ROOFIT and ROOSTAT

The ROOFIT and ROOSTAT are two important cpp classes embedded in the ROOT framework.
They include many statistic and fitting tools, which can be used to analyze and understand the
data.

4.3.2.3. TMVA

The Toolkit for MultiVariate data Analysis (TMVA) contains many multivariate tools for an-
alyzing the data [38]. It is embedded in the ROOT framework and helps to distinguish signal
and background on an event by event basis. The inputs are several observables that can help
to discriminate signal from background. One popular tool is the Boosted Decision Tree (BDT).
In order to distinguish between signal and background, a BDT gets trained on a training sam-
ple. After this training it can be applied to data. The output for each event of the BDT is
a discriminator value between -1 and 1. The larger the discriminator value, the more likely is
the signal hypothesis for this event. The BDT shows very good discrimination power also with
correlated input variables.

4.3.2.4. CMSSW

The CMSSW framework was developed to analyze events that are recorded with the CMS
detector. It is highly modular and can be complemented with different software packages. E.g.
with the MC interfaces it is possible to produce simulated events by only using this framework.
The CMSSW package uses the cpp and the python language. It combines the two main features
of them, the flexibility of python and the fast calculation of cpp. The file format used to store
the data bases on the root file format and filled with classes containing physics objects and their
properties. The typical CMSSW workflow is to load an event, compute and add new properties
to the event and then make decisions based on the related information.

4.3.2.5. Tag and Probe

In order to determine the reconstruction efficiencies for leptons, one has to ensure that the
test object is a real lepton. This is provided by the so called tag-and-probe package. It uses
resonances decaying into lepton pairs. For our purpose, Z bosons are sufficient. It works in two
steps. At first one has to collect the tag-and-probe pairs. A tag lepton fulfills all identification
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criteria, whereas the probe lepton has not to fulfill all of them. The invariant mass of the tag
and probe pair is calculated and stored and so the information if the probe passes or fails the
identification. The second step is applying fits on the invariant mass distributions of passing and
failing sample. The fit includes a signal and a background hypothesis. It is done separately for
all pairs where the probe passes the identification and where the probe fails the identification.
An example fit is shown in figure 4.4. The advantage of this method is that all leptons of the
signal hypothesis are real lepton. The efficiency of lepton identification calculate as:

ε =
Npass
sig

Npass
sig +N fail

sig

(4.2)

with Npass
sig all signal events where the probe passes the identification and N fail

sig all signal events
where the probe fails the identification. The determination of differential efficiencies is possible
because the LHC produced many Z events.
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Figure 4.4.: This figure shows one fit from the tag and probe package. The fit is done on events
where the probe passes (top left), where the probe fails (top right), and on all
pairs (bottom left). The info box (bottom right) shows the combined result of the
fit. The dashed lines are the background hypothesis, and the solid lines are the
background plus signal hypothesis described in the text.

This software package is written in C + +, uses the ROOT and ROOFIT libraries and has an
interface to CMSSW.
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4.3.2.6. Combine tool

The Combine tool is a software package which includes the statistical model presented in section
3 [21; 22; 39]. It is built as a CMSSWmodule that provides an interface to the Roostats package.
It is highly modular, and different test statistics can be used. The user only has to provide
standardized data cards as input. The outcome are confidence intervals obtained with the CLs

method. This method does not always provide the best limit, but it is robust against statistical
downward fluctuation. For this reason, ATLAS and CMS agreed to publish their results with
these CLs intervals.

4.3.2.7. Monte-Carlo event generation

The generation of simulated events is a multi-step procedure. The so-called Monte-Carlo (MC)
generators are used for calculating the hard process of an event. In this thesis following MC
generators are used: MadGraph 5, POWHEG BOX and PYTHIA 6 [40–42]. After the hard
process has been computed it must be matched with the fragmentation, which is done with the
PYTHIA package. The fragmentation step builds the hadrons and decays unstable particles.
In the next step, the events are passed trough the detector simulation, which is done with
GEANT 4 [43]. Now the simulated events have the same quality like “real“ events and are
passed through the same reconstruction algorithm.

4.3.2.8. DELPHES

DELPHES is designed to simulate different detectors [44]. For this reason, it uses efficiency as
input and avoids the simulation of a detector and the reconstruction. E.g. the lepton efficiency,
which will be presented in chapter 5, can be used as input. All efficiencies were validated with
a full CMS detector simulation. DELPHES is used if extensive statistics is needed, e.g. for the
projection to high luminosity.

27





5. Objects

With the measurements of all sub-detectors, the physics objects can be reconstructed. All
particles leave their individual signature in the detector. A charged particle leaves a track
in the tracker system. Photons and electrons lose their whole energy in the electromagnetic
calorimeter and hadrons in the hadron calorimeter. Muons escape the yoke and leave hits in
the muon chambers. In this analysis electrons, muons, tau leptons, missing transverse energy
(Emiss

T ) and b-jets are used and will be introduced below.

5.1. Leptons
The most important objects for a search in the three and four lepton final state are leptons.
The CMS-Detector can detect all three charged lepton flavors, electrons, muons, and taus. Tau
leptons have a short life-time since they are heavy. As a result, all produced taus decay within
the tracker system. In order to detect a tau, one has to search for its decay products. Taus can
either decay into lighter leptons (electrons and muons) or hadrons, e.g. pions or kaons. For the
latter, a particular reconstruction algorithm is necessary.

5.1.1. Electron and Muons

Electrons and muons carry electric charge, and as a result they leave a single track in the tracker
system (section 4.2.1). An electron deposits its whole energy in the ECAL (section 4.2.2), while
on the contrary the muon can escape the calorimeter system with almost no energy loss and
leaves a track in the muon chambers (section 4.2.3). The measurements of these sub-detectors
result in several variables helping to identify electrons and muons. These identification variables
are commonly used within the CMS collaboration for many analyses [45; 46]. For the electron
identification we use a BDT (section 4.3.2.3), because it has good efficiency at low electron
momenta. More information about the electron identification can be found in [45]. For muons,
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30 5. Objects

the identification is based on simple cuts since they already have a good efficiency, even at
small energies. Further information for the muon identification are given in [46]. The isolation
variable is treated separately, because this is the critical variable to distinguish prompt leptons
from objects that fake leptons, in the following just called fakes. Non-prompt leptons produced
in jets are also called fakes in the context of this thesis. The source of fakes are jets, which are
often produced in addition to the main process. A more detailed discussion of faked leptons will
follow in section 7.1.1. The leptons from our signal process are prompt leptons with a similar
kinematic signature as leptons from a Z boson. As a result, the Z boson is the perfect object
for calibrating the lepton performance. With the help of the tag-and-probe method (section
4.3.2.5) it is possible to test the identification and isolation efficiency. The comparison of the
efficiencies obtained by data and simulation is shown in figure 5.1 for electrons and figure 5.2 for
muons. Only leptons with a transverse momentum pT > 10 GeV and a pseudorapidity |η| < 2.4
are considered. For electrons, a veto in the transition region (1.4442 < |η| < 1.566 ) is applied,
because this region has a high fake rate. The isolation must be corrected with the so-called
pileup correction to remove the influence of additional interactions per bunch crossing [47; 48].
For this reason, the computed isolation efficiency is almost constant with respect to the number
of vertices1, which is illustrated in the plot showing the isolation efficiency versus the number
of vertices. The plots at the bottom of figure 5.1 and 5.2 prove that the efficiency was stable
during the data taking period in 2012. Here the horizontal axis shows the run number that
represents the time, e.g. run number 190645 was the first run in April 2012 and run number
208686 corresponds to the last run in December 2012.

Correction factors are applied for the remaining differences between data and simulation. The
factors are given in table 5.1. The correction factors for muons are close to one, and the
corrections for electrons are below one.

The chosen fit function has an influence on the determined efficiency, which is explained by the
example below. Considering a lepton, which fails the final state radiation requirement. The
failing probes lost energy, and the invariant mass is shifted to lower values. This shift leads to
a different invariant mass shape compared to the passing probes which have no energy lost. Of
course, the variables also have some correlations between each other. E.g. it is more likely for a
lepton making final state radiation also to fail the isolation requirement. In order to determine
the systematic uncertainty for the reconstruction of a prompt lepton, different fit functions have
been used. The scale factors obtained with this other fit functions are all between 3% (pT >

20 GeV) and 5% (pT < 20 GeV) of the values given in the table. An uncertainty of 3% (5%)
for prompt leptons with pT > 20 GeV (pT < 20 GeV) has been assigned.

5.1.1.1. Lepton Trigger

In this analysis, we trigger on events containing either two electrons, two muons or one elec-
tron and one muon. These are the so-called double lepton triggers. Electrons and muons are

1Because the number of reconstructed vertices is proportional to the number of interactions per bunch crossing.
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Figure 5.1.: Efficiency for an electron to pass the identification (left) and isolation (right) cri-
teria. The first row shows the efficiency over the transverse momentum pT. The
second row shows the efficiency over the pseudorapidity η. The third row shows
the efficiency over the number of vertices, and the fourth row shows the efficiency
over the run number. The plots include only statistical uncertainties.
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Figure 5.2.: Efficiency for a muon to pass the identification (left) and isolation (right) criteria.
The first row shows the efficiency over the transverse momentum pT. The second
row displays the efficiency over the pseudorapidity η. The third row shows the
efficiency over the run number, and the fourth row shows the efficiency over the
run number. The plots include only statistical uncertainties.
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Table 5.1.: Muon and electron MC scale factors

pseudorapidity |η| 0 - 0.8 0.8 - 1.442 1.442 - 1.556 1.556 - 2.0 2.0 - 2.4
Muon mc scale factors

pT: 10 - 15 GeV 0.917 1.161 0.826 1.323 1.207
pT: 15 - 20 GeV 0.957 0.917 1.023 1.162 1.536
pT: 20 - 30 GeV 0.963 0.981 1.073 0.913 1.356
pT: 30 - 40 GeV 0.975 0.984 1.050 1.010 1.138
pT: 40 - 50 GeV 0.970 0.979 0.969 0.948 1.046
pT: ≥ 50 GeV 0.982 0.983 0.993 0.976 1.011

Electron mc scale factors
pT: 10 - 15 GeV 0.853 0.947 - 0.775 0.313
pT: 15 - 20 GeV 0.947 0.867 - 0.848 0.652
pT: 20 - 30 GeV 0.868 0.913 - 0.898 0.918
pT: 30 - 40 GeV 0.921 0.939 - 0.930 0.975
pT: 40 - 50 GeV 0.942 0.943 - 0.958 0.967
pT: ≥ 50 GeV 0.951 0.967 - 0.990 0.983

reconstructed online for each event. If this event contains the constituents as given above with
a transverse momentum greater than 17 GeV and 8 GeV, it will be recorded and sent to the
offline reconstruction. The four triggers used for this analysis are:

Trigger leading lepton trailing lepton
Double muon muon pT > 13 GeV muon pT > 8 GeV
Double electron electron pT > 17 GeV electron pT > 8 GeV
Muon electron muon pT > 17 GeV electron pT > 8 GeV
Electron muon electron pT > 17 GeV muon pT > 8 GeV

All leptons passing our offline selection can fire the trigger. Therefore the trigger efficiency is
calculated as:

εTrigger = Events pass trigger requirements and trigger fired
Events pass trigger requirements (5.1)

In order to have an unbiased data sample2, we take data which was recorded with hadronic
triggers. From this sample, we can obtain the trigger efficiency from data and compare it with
simulation. In figures 5.3,5.4,5.5 and 5.6 the efficiencies depending on the leading and trailing
lepton kinematics are shown. The trigger efficiency is constant if the leading (trailing) lepton
has a transverse momentum greater than 20 (10) GeV. Hence, each event has to have at least one
lepton with pT > 20 GeV, and all other leptons must satisfy pT > 10 GeV. The trigger efficiency
of the double muon trigger considering simulation is about 5%-10% to high and depends on
the muon kinematics. Besides this, small discrepancies for the muon object in the electron

2A data sample recorded without leptonic requirements.
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muon trigger shows up. For all this differences, corrections are applied. Data and simulation
agree within 5% for all other trigger objects. However, it is redundant to trigger with double
lepton triggers when taking events with three or four leptons. As a result, the combination of
all four triggers gives a trigger efficiency close to one and a reduced uncertainty. If there are
only two leptons to fire the trigger an uncertainty of 5% is applied. If the event consist of three
or more leptons with only one lepton having a transverse momentum greater than 20 GeV, an
uncertainty of 3% is applied. An uncertaity of 1% is applied if an event contains three or more
leptons, and two of them have at lest a transverse momentum greater than 20 GeV.
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Figure 5.3.: Efficiency of the double muon (DoMu) trigger for data and MC simulation. On the
left (right) the efficiency for the leading (trailing) muon. The top row shows the
efficiency versus the transverse momentum. The bottom row shows the efficiency
over the pseudorapidity.

All four triggers were fully functional during the 2012 data taking period, which can be seen in
figure 5.7.

5.1.2. Tau leptons

In order to identify tau leptons one has to search for their decay products, since all taus will
decay within the CMS detector with a typical decay length of a few millimeters. The tau decay
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Figure 5.4.: Efficiency of the double electron (DoEl) trigger for data and MC simulation. On the
left (right) the efficiency for the leading (trailing) electron. The top row shows the
efficiency versus the transverse momentum. The bottom row shows the efficiency
over the pseudorapidity.

modes are well-known [15]. In about 35%, the tau decays into one charged lepton(electron and
muon) and two neutrinos. This decay mode leads to a final state with one isolated electron or
one isolated muon and two neutrinos. The performance of the electron and muon identification
has already been discussed in section 5.1.1. The other decay modes involve charged hadrons,
mostly π± (section 2.3), and only one neutrino. One can distinguish between three different
final states:

1. Single Prong (about 12% of total decay width)

2. Single Prong + π0 (about 37% of total decay width)

3. Three Prong (about 15% of total decay width)

In CMS, the so-called Hadron Plus Stripes (HPS) algorithm was developed to account for all
three final states [49]. This algorithm is based on a MVA (section 4.3.2.3) method to suppress
the background. The isolation variable is crucial to identify taus and separate them from jets.
In addition, discriminators are used to filtering out electrons and muons that may be miss-
identified as taus. Measuring the tau properties is harder, because there is no clean selection
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Figure 5.5.: Efficiency of the muon-electron (MuEl) trigger for data and MC simulation. On the
left (right) the efficiency for the muon (electron). The top row shows the efficiency
versus the transverse momentum. The bottom row shows the efficiency over the
pseudorapidity.

that only contains prompt taus. This tau identification is used by many analyses within the
CMS collaboration, and the tau properties are well known. For a prompt tau, no correction
factor is needed, and the uncertainty is 6%. For electrons faking a tau a correction factor of
1.4 in the barrel region and 0.8 in the endcap region is applied, which was studied in [49]. No
correction factor is needed for events containing a muon that fakes a tau. The uncertainty for
this process is 30%. The dominant source for fake taus are jets and will be discussed in section
7.2.3.

5.2. Particle Flow Objects
CMS has established the so-called particle flow concept [50]. This is possible due to the fine
granularity of the ECAL (section 4.2.2). Each single track can be assigned to an energy deposit
in the calorimeter system. The energy deposits that cannot be assigned to a track, seeds the
neutral particle flow candidates. It is possible to allocate a particle hypothesis to each energy
flow. This knowledge improves the resolution. The particle flow concept has the advantage
that all sub-detector parts work like one detector. Therefore, the particle flow objects are more
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Figure 5.6.: Efficiency of the electron-muon (Elmu) trigger for data and MC simulation. On the
left (right) the efficiency for the electron (muon). The top row shows the efficiency
versus the transverse momentum. The bottom row shows the efficiency over the
pseudorapidity.

accurate than just the addition of all measurements from the sub-detectors.

5.2.1. Jets and b-tagged jets

Because of the confinement a color charged particle (a quark or a gluon) always hadronizes 3 and
leads to jets of hadrons, photons and leptons. Jets leave a clear signature in the detector. In the
tracker system, they produce collimated tracks, in the electromagnetic calorimeter they deposit
electromagnetic energy and in the hadron calorimeter they deposit the remaining energy. The
CMS jet reconstruction uses the so-called anti-kt 05 algorithm [51]. The particle flow objects
are taken as input. The results are jets, which are cones (diameter R=

√
∆η2 + ∆φ2 < 0.5) filled

with pf objects. At last some minimal requirements are applied on the jets: The jet should
contain at least one charged hadron and have some energy deposit in the hadron calorimeter.
Jets originating from b-quarks have a slightly different signature than jets form light quarks or
gluons. A b-quark hadronizes into B-mesons. The B-mesons have a long lifetime, because of
the CKM suppression [15]. So they fly a few millimeters before they decay. The b-meson has a

3Except for the heavy top quark, which decays before it can hadronizes.
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Figure 5.7.: Time evolution of the trigger efficiency for the four triggers used in this analysis.

large mass and for this reason, the decay products are boosted from the initial B-meson flight
direction. This boost leads to kinked tracks and produces a secondary vertex. The B-mesons
have a long decay chain, and, as a result, the jets consist of many tracks. All this information
are put together in the combined secondary algorithm [52; 53]. This algorithm is based on a
likelihood function, and the output is a discriminator value. A jet with a discriminator value
above a certain threshold is a b-tagged jet (b-jet). In this thesis, the medium working point is
used as the threshold. Meaning the b-tagging has an efficiency of about 70% and a miss-tag
rate of 1% for light jets and 20% for jets originating from c-quarks.

5.2.2. Missing transverse Energy

Missing transverse energy Emiss
T is the critical variable for many SUSY searches. The source

of this missing energy are particles that do not interact with the detector. In the Standard
Model, such particles are neutrinos and in supersymmetric extensions of the Standard Model
the lightest supersymmetric particles are additional sources. The reason, why only the trans-
verse component gives a reliable result, is that the beam pipe is located along the z-direction.
Therefore, it is possible that particles escape the detector in the longitudinal direction. Since
the colliding partons only carry a fraction (see Section 2.3) of the proton momentum, the re-
maining partons carry much energy and fly close to the beam pipe.
The missing transverse energy Emiss

T calculated as:

Emiss
T =

∣∣∣∣∣ ∑
all PF

~pT

∣∣∣∣∣ (5.2)
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so Emiss
T is the magnitude of the sum of the transverse components of all particle flow candi-

dates momenta. Even if the calculation looks simple the Emiss
T is one of the most complicated

quantities, since the measurement of each single particle is included in the calculation. All
corrections and uncertainties of the individual particles must be considered for the Emiss

T cal-
culation, too. In order to get the best possible Emiss

T performance, we use a MVA algorithm for
the Emiss

T calculation [54]. This methode reduces the dependency on the noise within the de-
tector. Noise smears the true Emiss

T . The missing transverse energy obtained with this method
has an improved resolution compared to the classical sum. Nevertheless, this method depends
on the detector noise and of the correct modeling of this noise in the simulation. So-called
recoil corrections are applied [54]. In order to determine the recoil corrections, events with two
opposite sign muons that are originating from a Z boson are selected. Their invariant mass has
to be between 75 GeV and 105 GeV and we treat the sum of the 4-momenta as Z candidate.
Then we split the Emiss

T into two components, one perpendicular to the Z boson direction and
the other parallel to it. In the Z-direction, we are sensitive to the recoil of the hard scattering
and can measure the resolution of it. The perpendicular component is sensitive to all sources of
noise that are not affected by the proper event. We correct for the small differences. In figure
5.8 the uncorrected and the corrected Emiss

T distributions are shown. After the recoil correction,
the Emiss

T in data and simulation shows a good agreement. Further information about the Emiss
T

performance in the CMS detector can be found in [54–56].
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Figure 5.8.: Emiss
T distribution for events with two muons is shown. Data is compared to sim-

ulation. Most of these events stems from Z→ µµ decays (blue). On the left the
Emiss

T distribution before the correction and on the right the Emiss
T distribution

after applying the corrections are shown.

Many effects contribute to the uncertainty since Emiss
T dependence on many input variables.

The largest part of the uncertainty stems from the jets (jet energy scale) [57]. By varying all
input variables by ± 1σ the uncertainty of the missing transverse energy can be obtained. Later
the data is split into different Emiss

T regions, and an uncertainty for each region is determined.
Typical values for the uncertainty of Emiss

T is in order of 2% to 15%.
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6. Signal

This analysis is a search for supersymmetry in the 3` and 4` final states. In order to emphasize
the strength of this analysis, so-called simplified models are used. A simplified model does not
claim to be a model that could be realized in nature. The idea is to test individual signatures,
which are subsets of full models. With the combination of different simplified signatures several
full models can be recovered. A general analysis of full models (pMSSM) can be found in [58].
This paper takes simplified model results, e.g. this analysis, as input.

The main advantage of a simplified model is that it only depends on two or three parameters.
These parameters are:

• The mass of the produced supersymmetric particles

• The mass of the supersymmetric particles in the decay chain.

• The mass of the lightest supersymmetric particle

In this analysis, the involved supersymmetric particles are neutralinos, charginos, and sleptons
since they can produce final states with three or four leptons. Since R-parity conservation is
assumed, supersymmetric particles are always produced in pairs. An other consequence of the
R-parity conservation is that the lightest supersymmetric particle (LSP) is stable. The LSP is
assumed to be uncharged and for this reason it does not interact with the detector. This leads
to events which have a large amount of Emiss

T . The amount of Emiss
T depends on the kinematic

of the supersymmetric particles. E.g if the two LSP are flying back to back the Emiss
T is reduced

since they partly chancel each other. Typical values reach from 50 GeV up to several hundred
GeV.

6.1. Chargino-Neutralino production
The associated production of a χ̃±1 χ̃0

2 pair is of special interest for the three lepton final state.
Here the lightest supersymmetric particle is the χ̃0

1 , which is assumed to be bino-like. The χ̃±1
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42 6. Signal

and χ̃0
2 are both wino-like and are expected to have the same mass, so we assume mχ̃±

1
= mχ̃0

1
1.

The full process is: pp → χ̃±1 χ̃0
2 → χ̃0

1 χ̃
0
1 `

+`−`±ν. For the production of the χ̃±1 χ̃0
2 pair the

mass mχ̃±
1

(= mχ̃0
2
) is the only free parameter. It is possible to calculate a cross section since

we have assumed they are wino-like. The program resummino is used, which gives NLO+NLL
results [59–61]. The values, as well as the uncertainties, are given in table 6.1. The charge
asymmetry meaning that more χ̃+

1 χ̃0
2 than χ̃−1 χ̃0

2 are produced, increases for heavy particles,
as demonstrated in table 6.1.

Table 6.1.: NLO+NLL cross section for the pp → χ̃±1 χ̃0
2 production at a center of mass energy

of 8 TeV. It includes the assumption that χ̃±1 χ̃0
2 are Wino like and mχ̃±

1
= mχ̃0

1
. The

uncertainties include scale uncertainties as well as the uncertainty of the parton
density functions

mass (GeV) 100 200 300 400 500 600 700 800
pp → χ̃+

1 χ̃0
2 (fb) 7385.1 530.11 100.79 27.50 9.00 3.26 1.28 0.52

pp → χ̃−1 χ̃0
2 (fb) 4128.1 246.50 40.97 10.08 3.05 1.05 0.40 0.16

pp → χ̃±1 χ̃0
2 (fb) 11513.2 776.61 141.76 37.58 12.05 4.31 1.68 0.68

uncertainty ±1σtheory (fb) 327.5 30.02 7.08 2.29 0.84 0.33 0.15 0.07

For the decay into the three lepton final state (χ̃±1 χ̃0
2 → χ̃0

1 χ̃
0
1 `

+`−`±ν) we have more freedom.
The first parameter is the mass of the χ̃0

1 . The particle which mediates the decay also plays
an important role. Two scenarios are distinguished. First the decay via sleptons are considered
and then the decay via Standard Model bosons will be presented.

6.1.1. Decays via Sleptons

In this scenario the χ̃±1 and the χ̃0
2 decay via sleptons into the χ̃0

1 . Therefore, the slepton mass
must be between the mass of χ̃±1 and the mass of χ̃0

1 (mχ̃0
1
< m˜̀< mχ̃±

1
= mχ̃0

2
). The kinematic

of the decay product depends on the mass of the slepton, and this influences the acceptance of
our analysis. For this reason, three different slepton mass scenarios are considered:

• Light slepton mass: m˜̀ = 0.05mχ̃0
2
+ 0.95mχ̃0

1

• Moderate slepton mass: m˜̀ = 0.5mχ̃0
2
+ 0.5mχ̃0

1

• Heavy slepton mass: m˜̀ = 0.95mχ̃0
2
+ 0.05mχ̃0

1

The last free parameter is the type of the slepton. They can be the superpartner of a left
or a right-handed lepton. Sleptons are also called left and right-handed meaning that they
are superpartners of left or right-handed leptons, but they have spin 0 and differ in the weak
isospin quantum number. The mass of the left and right-handed sleptons differ in many SUSY

1In a natural model the differences are in order of few GeV.
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6.1. Chargino-Neutralino production 43

scenarios. Their coupling to neutralinos and charginos can be different depending on the lepton
flavor. If the neutralino or chargino decay via its higgsino component the decay via staus is
enhanced. Three flavor scenarios are considered:

• The flavor democratic scenario: All left-handed sleptons are considered and so the sneu-
trinos must be considered, too. They lead to a 50% reduction of the branching ratio into
the three lepton final state. The χ̃±1 and χ̃0

2 decay democratically into all lepton flavors.

• The tau enriched scenario: All right-handed sleptons are considered. The χ̃±1 decays
exclusively via a stau and the χ̃0

2 decays equally into all lepton flavors.

• The tau dominated scenario: Only right-handed staus are considered. Therefore, the χ̃±1
and χ̃0

2 decays into final states with taus.

The different scenarios are illustrated in figure 6.1.
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Figure 6.1.: Feynman diagrams for Chargino Neutralino production with slepton mediated de-
cays. On the top left, the flavor democratic scenario is illustrated. On the top right
the tau enriched and on the bottom the tau dominated scenario. Explanations can
be found in the text.

6.1.2. Decays into WZ χ̃0
1 χ̃

0
1

In this scenario sleptons are heavy such that they do not influence the chargino and neutralino
decay. The charginos and neutralinos must decay via Standard Model bosons. The most natural
way is the decay into W and Z bosons, which is illustrated in figure 6.2. In order to get final
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44 6. Signal

states with three leptons, the W boson, and the Z boson must decay into leptons. Therefore,
only about 3% of the events can be collected, which reduces the sensitivity of this final state
compared to the scenario with light sleptons. Nevertheless, the three lepton search plays the
significant role for this final sate, because it has little backgrounds.

P1

P2

χ̃±
1

χ̃0
2

W

Z

χ̃0
1

χ̃0
1

Figure 6.2.: Feynman diagrams for Chargino Neutralino production with decay into a W boson
and a Z boson.

6.2. Neutralino-Neutralino production with Decays into
Z Bosons

In this scenario two neutralinos are produced, which subsequently decay into a Z boson and the
LSP. However, the cross section for neutralino pair production is suppressed at the LHC. To
avoid this, we use a supersymmetric model with gauge mediated symmetry breaking (GMSB)
[62–64]. Although it is a full model, it has similar properties to a simplified model in our
realization. The gaugino mass parameters are set to M1 = M2 = 1 TeV and the ratio of the
Higgs bosons vacuum expectation values are set to tan β = 2. The χ̃±1 , χ̃0

2 and χ̃0
1 are higgsino-

like and are almost mass degenerated. Their masses are approximately the same as the value
of the higgsino mass scale parameter µ (mχ̃±

1
≈ mχ̃0

2
≈ mχ̃0

1
≈ µ). This is the parameter

that determines the production cross section. The cross section itself is the addition of all
possible combinations of charginos neutralino pairs since all of them will decay into the χ̃0

1 .
This decays are very soft and leave no measurable signature in the detector because they are all
mass degenerated. In this scenario, the almost massless gravitino is the LSP, and the χ̃0

1 must
decay via a Standard Model boson into the gravitino. The Feynman diagram of this process is
shown in figure 6.3.

For low µ values, the decay into Z bosons is almost 100%. For higher µ values, the decay via
a Higgs boson is possible. The branching ratio for GMSB → ZZ+Emiss

T at µ =420 GeV goes
down to about 85%. The cross section for this model can be found in table 6.2. The uncertainty
on this cross section is set to 5% that covers scale uncertainties as well the uncertainty of the
parton density functions.
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Figure 6.3.: Feynman diagrams for the GMSB model. Details can be found in the text.

Table 6.2.: NLO+NLL cross section for pp → χ̃i χ̃j → χ̃0
1 χ̃

0
1 production in a GMSB model at

a center of mass energy of 8 TeV.

µ (GeV) 110 150 200 250 300 350 400 420
full σ (fb) 7288 2141 682.8 271.0 122.4 60.80 32.44 25.37
BR (Z Z G̃ G̃ ) 1 0.997 0.945 0.905 0.88 0.865 0.855 0.854
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7. Backgrounds

Searching for SUSY is always searching for the unknown. An exact knowledge about the
backgrounds producing 3` and 4` events is essential for this analysis. These backgrounds are
well-known SM-processes, for example, double boson production or tt̄ production. First the
objects and variables needed for this thesis are recapped. Then the individual backgrounds will
be discussed until the end of this chapter.

7.1. Summary of Objects and Variables
This section summarizes the objects and variables used in this analysis. More information can
be found in chapter 5.

7.1.1. Leptons

Leptons are the key part of this analysis. If we measure a lepton, it can originate from three
different sources. The so-called prompt leptons originate from decays of heavy objects such as
SUSY particles, vector bosons or Higgs bosons. They are all produced at the primary vertex
because heavy objects have a short lifetime. Figure 7.1 shows the invariant mass distribution
for events with two opposite sign leptons µ+µ−, e+e− and µ±τ∓. The blue region contains
simulated Z → `+`− events consisting of prompt leptons. For µ+µ− and e+e− small differences
around the Z resonance shows up. These differences originate from soft photon radiation of
the charged leptons, which is not correctly modeled in the simulation. Leading to a shift of
the Z peak of ∼1 GeV for electrons and ∼0.5 GeV for muons. Later on, we define the onZ
region for two opposite-sign same-flavor leptons between 75 GeV and 105 GeV. Within this
interval, these effect is negligible and covered by the uncertainty. The µ±τ∓ plot shows that
the tau identification works as discussed in section 5.1.2. Here the Z-peak, from prompt Z →
τ+τ− → µ±τ∓had + 3ν events, is shifted to values around 60 GeV because the neutrinos are not

47



48 7. Backgrounds

considered in the invariant mass calculation. In this plot, the amount of other Standard Model
backgrounds is large. The major part of this background stems from events with a fake tau,
which will be discussed later in this chapter. The visible Z-peak around 90 GeV originates from
Z → µ+µ− events, where one muon fails the muon identification, but fakes a tau.
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Figure 7.1.: Invariant mass distribution for events with two opposite sign leptons. On the top
left (right) the invariant mass distribution for tow opposite sign muons (electrons)
are shown. On the bottom, the invariant mass distribution of a tau and a muon is
shown.

Then there are so-called non-prompt leptons. Such leptons are produced in jets and can escape
them so that they can fulfill the isolation criteria. Additionally there are hadrons, mostly π±’s
and K±’s, which are wrongly reconstructed as leptons. We do not distinguish between them
and summarizes both as fakes. The fake rate depends on the jet characteristics. For this reason,
the fake rate will be controlled separately in the DY and the tt̄ sample. More information will
follow in section 7.2.3.

The third source are leptons from photon conversion. There are again two processes, real and
virtual photons. Both processes are similar and will be studied in section 7.2.1.2
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7.1.2. Missing transverse Energy and transverse Mass

Large missing transverse Energy (Emiss
T ) is a typical signature of events including supersym-

metric particles, but Standard Model processes can also produce a visible amount of missing
transverse energy. For the three lepton final state, these are WZ events, where the Z decays
into lepton pairs and the W into one lepton and one neutrino. The neutrino is the source of
the missing transverse energy. In order to suppress this kind of background, we introduce the
transverse mass variable. It is similar to the invariant mass, but only the transverse components
are used, since Emiss

T is only defined in the x-y plane. It is calculated as:

MT =
√

2 · Emiss
T · pWlep

T (1− cos ∆φ), (7.1)

where ∆φ is the angle between the lepton and the Emiss
T in the x-y plane and pWlep

T is the
transverse momentum of the lepton originate from the W boson. For events where the whole
Emiss

T originates from one neutrino coming from a W-decay, this variable is lower than the W
mass. For events including other Emiss

T sources like SUSY, this relation does not hold.

7.2. Validation of Backgrounds

Dedicated MC samples for each background with 3` and 4` events are used. Most of these
samples are produced with the Madgraph framework [40]. Some rare backgrounds are produced
with the Powheg package and Pythia package [41; 42]. These events are passed through a
detector simulation and have the same observables as real data. Correction factors are applied
for the differences between the simulation and real data. The corrections for the prompt lepton
efficiency and the Emiss

T resolution have been explained in chapter 5. In order to match the
correct number of interactions per bunch crossings, the simulated events are re-weighted.
For the cross section NLO predictions are used [65–80]. All samples get scaled to an integrated
luminosity of Lint = 19.7 fb−1, which corresponds to the full 2012 dataset. The used MC
samples are listed in table 7.1. All but one sample have been produced centrally and validated
by the CMS collaboration. The ZZ→ 4 ` was produced privately, without applying the invariant
mass cut used in the centrally produced sample. The cross section of this private sample is
obtained due to normalization to the centrally produced sample. Control plots are shown in
Appendix B.
The samples are subdivided into four different groups: double boson, fake, photon conversion
and rare. The double boson group includes the WZ and ZZ production. They are the most
important backgrounds for the 3` and 4` final states. The WW counts into the fake group
since it only produces two prompt leptons. The fake group covers all relevant contribution to
the 3` and 4` final state including fakes, e.g. tt̄ and DY. The photon conversion group includes
all backgrounds with a photon in the final state. Additionally, the Zγ∗ → 3 ` is listed there,
which is the same sample as the ZZ → 4 `. But which covers the case if the γ∗ undergoes an
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asymmetric conversion and one lepton gets lost. The last group covers the rare backgrounds,
which includes processes with a small σ×BR into the 3` and the 4` final state.

Table 7.1.: Summary of used MC samples. If not quoted otherwise they are computed with
the madgraph package. The first column shows the group the of produced sample.
The second column gives the production process. The third column shows the cross
section for this process that is multiplied by the branching ratio if it is included in
the process. The last column gives comments for some processes.

Group Process pp → σ×BR (pb) Comment
Double Boson WZ → 3` 1.06

ZZ → 4 ` 1.0 private MC(1)

Photon conversion Zγ∗ → 3 ` 1.0 private MC(1)

Zγ 159
tt̄ γ 1.444
WWγ 0.528

Fake Z → 2` 3532.8 mZ >50 GeV
Z → 2` 907.3 10 GeV<mZ < 50 GeV
tt̄ → 2` 25.1
tt̄ → 1` 107.7
tW 11.0 produced with powheg
t̄W 11.0 produced with powheg
WW → 2` 5.995
W → 1 ` 37509

Rare VBF H 1.578 produced with pythia
ggF H 19.27 produced with pythia
ZH; WH; tt̄ H 1.17 inclusive; produced with pythia
tt̄ W 0.232
tt̄ Z 0.208
tt̄ WW 0.00204 LO cross section
WWW 0.08217
WWZ 0.0633
WZZ 0.01922
ZZZ 0.00459
tbZ 0.217

(1) private MC, more information about this sample can be found in [81]

In this section the MC prediction gets tested, the uncertainty determined and if necessary
corrections to this MC samples are applied. In order to do this, we look at a selection which
is close to the final selection but does not contain signal events. The following definitions are
valid for all selections:

• Lepton means an electron or a muon with pT > 10 GeV and |η| < 2.4.

• Veto on events containing opposite-sign same-flavor lepton pairs (µ+µ− or e+e−) with
an invariant mass < 12 GeV. This rejects events originating from decays of low mass
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resonances (for example J/Ψ Meson [15]).

• Tau means a reconstructed hadronic tau lepton with pT > 20 GeV and |η| <2.1.

• Emiss
T is the missing transverse energy calculated with a MVA method.

• MT is the transverse mass of Emiss
T and one lepton or one tau.

• b-jet is a jet with pT > 30 GeV and |η| < 2.1, where the b-tagging algorithm fulfills the
medium requirements.

7.2.1. Double Boson

Double boson backgrounds are the full-leptonic WZ and ZZ decays. They have 3` and 4` events
containing exclusively prompt leptons.

7.2.1.1. WZ

WZ is the most essential background for the 3` final state. It has three prompt leptons, like our
signal, and with the neutrino also a source of Emiss

T . The MT variable is used to suppress this
kind of background. In order to validate the MC prediction events with three leptons (µ,e) are
selected. These leptons should have at least one opposite-sign same-flavor pair onZ, meaning
that the invariant mass of the pair is between 75 GeV and 105 GeV. The remaining lepton and
the Emiss

T are used to calculate the transverse mass MT. In figure 7.2 the result of the selection
is shown. The shape is well described, but more data is observed. This is consistent with the
outcome of the cross section measurement, which is based on the same events. The problem
is that these overshot or a fraction of it could also originate from events with supersymmetric
particles. We could oversee the possible SUSY contribtuon by just scaling to the MC prediction.
The pure MC-prediction is taken but with an uncertainty of 20% which covers the differences
between data and measurement.

7.2.1.2. ZZ and Zγ∗

ZZ is the most essential background for the 4` final state. This background includes also the
case where one of the Z bosons is off-shell, so-called γ∗. A madgraph MC sample that includes
Zγ∗ production has been produced. A detailed description of this sample can be found in [81].
This kind of background has no intrinsic Emiss

T . In order to validate this sample events with 4`,
two opposite-sign same-flavor pairs and Emiss

T < 30 GeV are selected. The result is presented
in figure 7.3. It shows that two on-shell Z boson are produced in the most cases. However,
also the Zγ(∗), where the second opposite-sign same-flavor pair is off-shell, has a visible yield.
These events are visible in the invariant mass plot for 4 leptons. The threshold, for producing
two on-shell Z bosons, is 2× mZ ≈ 180 GeV. Below this threshold one Z has to be off shell and
the cross section is small. With a closer look at 125 GeV one can see a small resonance from
the other SM-background. This resonance originates from H→ZZ→4` decays. In contrast to
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Figure 7.2.: In the left plot the MT distribution for events with three leptons(µ,e), and at least
one opposite-sign same-flavor lepton pair onZ is shown. On the right plot the
preliminary result on the cross section measurement is shown. The right plot is
taken from [65].

the official measurement, only three H→ZZ→4` events are observed [82]. The main difference
between the H→ZZ→4` measurement is the cut on the invariant mass of opposite-sign same-
flavor lepton pairs smaller than 12 GeV and a lepton identification which is optimized also for
pT thresholds smaller than 10 GeV.

The uncertainty for on-shell ZZ production is 2% and for off-shell it is 6%. This covers differences
of the LO to NLO calculation as well as scale and pdf uncertainties [70–73].

7.2.2. Photon conversion (Zγ(∗))

Real photons only convert into electrons. Virtual photons carry some virtual mass and if this
mass is more than two times the leptons mass they can decay into this lepton flavor. The
production mode for Zγ and Zγ∗ is illustrated in figure 7.4. On the right plot, we can see two
bands. The first band originates from events with initial state radiation since the invariant
mass of the two leptons still lies on the Z mass. The second band shows final state radiation,
here the invariant mass of all the two leptons and the photon lies on the Z mass.

All gammas can decay into lepton pairs. The invariant mass <12 GeV cut will reject such
events if both leptons are successfully reconstructed. However, this cut does not work if one
lepton takes the majority of the photon momentum. For this reason, the other lepton is to soft
and fails our acceptance. This phenomena is the so-called asymmetric conversion.

In order to validate the background prediction events with three leptons and at least one
opposite-sign same-flavor pair are selected. We apply a Emiss

T < 30 GeV cut to avoid signal
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Figure 7.3.: Invariant mass distribution for events with 4` and two opposite-sign same-flavor
pairs and Emiss

T < 30 GeV. On the top left the invariant mass of the pair closest to
the Z mass is plotted and on the top right the invariant mass of the other pair. On
the bottom left the Emiss

T distribution and on the bottom right the invariant mass
of all 4 leptons is shown.

contribution. The result is shown in figure 7.5. In the plots on the left, the invariant mass
of an opposite-sign same-flavor lepton pair plus an additional electron is shown. This electron
originates from real photons (light blue) or virtual photons (dark blue). In the plots on the right
the invariant mass of an opposite-sign same-flavor lepton pair plus an additional muon is shown.
This muon can only come from virtual photons (dark blue). The difference between data and
MC prediction is about 50%. For this reason, the uncertainties of this kind of background is
50%. This also applies for the WW plus photon and the tt̄ plus photon production.

7.2.3. Fake backgrounds

In order to quantize the fake leptons, we distinguish between tight and loose leptons in this
subsection. Tight leptons are leptons that fulfill all ID and isolation requirements. Whereas
loose leptons only fulfill the ID requirements but fails the isolation criteria. The loose leptons
are dominated by fake leptons. For tau leptons, it is not possible to separate the isolation and
identification. So, taus that fulfill the medium working point are tight taus and those which
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Figure 7.4.: On the left two Feynman diagrams which show initial (top) and final state radiation
(bottom). On the right events with two opposite-sign same-flavor leptons and one
additional photon are plotted. The x-axis is the invariant mass of the lepton pair,
and the y-axis is the invariant mass of the two leptons plus the photon. The right
plot is taken from [81](figure 8.18).

fulfill the loose working point but fail the medium working point are loose tau. Again these
loose taus are dominated by objects faking taus. For electrons, muons and taus the source of
fakes are jets. The probability for a jet to produces a fake lepton depends on the jet flavor and
the jet kinematics. DY and tt̄ are the processes that yield to the 3` and 4` finale state with
fake leptons. These processes have a different jet composition. E.g. the jet has to be produced
by initial state radiation or higher order diagrams for DY processes. In contrast to that the
leading order tt̄ production always leads to final states with jets, because the top quark decays
into a b-quark and a W boson. The b-quark always hadronizes into a jet, which is the reason
for the jet characteristics being different to DY. Since these characteristics have an influence
on the fake rate, the Drell-Yan, and tt̄ background have to be controlled separately.

7.2.3.1. tt̄

For the purpose of this thesis we add the single top production (mainly tW) to the usual tt̄
production. The single top component is similar to tt̄ and sums up to about 5% of the usual
tt̄ selection. As tt̄ control selection, we use events with exactly one tight muon and one tight
electron with opposite-sign (µ±e∓). The invariant mass of those lepton pairs is shown in figure
7.6. At 50 GeV a peak from Z → τ+τ− → µ±e∓ + 4ν shows up. The Z peak is shifted because
the neutrinos are not considered in the invariant mass. To get rid of these events, an invariant
mass greater than 80 GeV is required in the tt̄ selection.

In order to test the fake rate we require events with an µ±e∓ pair and an additional loose
muon, electron or tau. The majority of these loose leptons originate from b-quarks within this
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Figure 7.5.: The invariant mass of three leptons with at least one opposite-sign same-flavor pair.
On the top left the invariant mass of two muons and one electron, on the top right
of three muons, on the bottom right of three electrons and on the bottom left of
two electrons and one muon is shown.
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Figure 7.6.: The invariant mass of an electron and a muon with opposite-sign (µ±e∓) is shown.
The peak at ∼50 GeV in the other SM sample originates from Z → τ+τ− →
µ±e∓ + 4ν events.

selection. The relative isolation variable for loose muons and electrons are shown in figure 7.7.
The fake rate for b-jets is about 20% lower in MC simulation compared to data. A scale factor
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is applied to the simulations to correct for the differences.
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Figure 7.7.: Relative isolation of a loose muon (electron) for events with a muon and electron
with opposite-sign and an additional loose lepton are shown on the left (right). The
invariant mass of the muon and electron has to be larger than 80 GeV.

Figure 7.8 shows the transverse momentum and pseudorapidity distribution for events with an
additional loose tau. The amount of such events are small, hence the fake rate for b-quarks
to fake a tau is much lower than for a light jet. Only about 50% of this loose taus originate
from a b-quarks and the rest from light jets. The fake rate for taus coming from light jets will
be validated in the next section 7.2.3.2. The fake rate for taus originate from b-jets has to be
corrected by a factor of 1.5, by considering the light jet tau fake rate.
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Figure 7.8.: Kinematics of a loose tau for events with a muon and electron with opposite-sign
and an additional loose tau. The invariant mass of the muon and electron has to
be larger than 80 GeV. On the left the transverse momentum is shown and on the
right the pseudo rapidity.

The tt̄ contribution can be validated in data. After applying all correction factors the search
variables used for the final selection are presented in figure 7.9 (fake muons), 7.10 (fake electrons)
and 7.11 (fake taus) for the tt̄ control selection. These variables are the number of b-jets the
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invariant mass of the lepton pair, Emiss
T and the MT calculated with Emiss

T and the additional
loose lepton. A good agreement between data and simulation within an uncertainty of 20% is
observed.
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Figure 7.9.: Control plots for tt̄ events with an additional loose muon. On the top left the
number of b-jets is shown. On the top right the invariant mass distribution for
the opposite-sign same-flavor lepton pair is shown. On the bottom right Emiss

T
distribution is shown and on the bottom left the MT distribution for Emiss

T and the
loose muon is shown.

7.2.3.2. Drell Yan (DY)

A DY control selection is build by taking events with two prompt opposite-sign same-flavor
leptons (µ+µ− or e+e−) and an additional loose muon, electron or tau. The invariant mass of
the opposite-sign same-flavor lepton pair has to be onZ (75 GeV < m`` < 105 GeV). Figure
7.12 shows that the relative isolation of the additional loose muon or electron. For muons and
electrons, the fake rate is described well by simulation.

Events with and additional loose tau originating form light jets are shown in figure 7.13. The
tau fake rate in simulation is about 20% higher than in data for the barrel region (|η| < 1.44).
There is almost no depends on the transverse momentum of the loose tau. A correction factor
is applied to account for this difference.
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Figure 7.10.: Control plots for tt̄ events with an additional loose electron. On the top left the
number of b-jets is shown. On the top right the invariant mass distribution for
the opposite-sign same-flavor lepton pair is shown. On the bottom right Emiss

T
distribution is shown and on the bottom left the MT distribution for Emiss

T and
the loose muon is shown.

The DY contribution can be validated in data, too. Again correction factors, as described,
are applied. The corrected distributions for the important search variables are shown in figure
7.14 (loose muons), 7.15 (loose electrons) and 7.16 (loose taus). A good agreement within 20%
uncertainty between data and simulation is observed.

7.2.4. Rare processes

All rare processes have a tiny cross section. This kind of backgrounds includes triple boson
production, tt̄ plus boson production as well as the Standard Model Higgs production. They
can produce 3` or 4` final states with prompt leptons. Because of the tiny cross section no
validation is possible, and we relay on pure MC prediction. For this reason, an uncertainty of
50% is applied to this kind of backgrounds. This number is motivated by the uncertainty on
the cross section, which are account for the differences between LO and NLO calculations, and
on the uncertainties on the couplings of the Higgs boson [76–80].
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Figure 7.11.: Control plots for tt̄ events with an additional loose tau. On the top left the
number of b-jets is shown. On the top right the invariant mass distribution for
the opposite-sign same-flavor lepton pair is shown. On the bottom right Emiss

T
distribution is shown and on the bottom left the MT distribution for Emiss

T and
the loose muon is shown.
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Figure 7.12.: Relative isolation of a loose muon (electron) for events with one opposite-sign
same-flavor lepton pair onZ and an additional loose lepton are shown on the left
(right).
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Figure 7.13.: Kinematics of a loose tau for events with one opposite-sign same-flavor lepton pair
onZ and an additional loose tau. On the left, the transverse momentum is shown
and on the right the pseudorapidity.
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Figure 7.14.: Control plots for DY events with an additional loose muon. On the top left the
number of b-tags is shown. On the top right, the invariant mass distribution for
the opposite-sign same-flavor lepton pair is shown. On the bottom right Emiss

T
distribution is shown and on the bottom left the MT distribution for Emiss

T and
the loose muon is shown.
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Figure 7.15.: Control plots for DY events with an additional loose electron. On the top left the
number of b-tags is shown. On the top right, the invariant mass distribution for
the opposite-sign same-flavor lepton pair is shown. On the bottom right Emiss

T
distribution is shown and on the bottom left the MT distribution for Emiss

T and
the loose electron is shown.
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Figure 7.16.: Control plots for DY events with an additional loose tau. On the top left the
number of b-tags is shown. On the top right, the invariant mass distribution for
the opposite-sign same-flavor lepton pair is shown. On the bottom right Emiss

T
distribution is shown and on the bottom left the MT distribution for Emiss

T and
the loose tau is shown.
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8. Result

In this chapter, the result will be presented. First the search strategy will be explained. Then
the uncertainties will be summarized. After this, the yields in the 3` and 4` final states will be
shown.

8.1. Search Strategy
Our search strategy is to split the signal region into many bins instead of considering only
one. This multi-bin approach has the advantage that shape information is considered and that
we are sensitive to many supersymmetric scenarios in parallel. The bins are chosen in such
a way that the majority of the Standard Model backgrounds are concentrated in a few bins.
These bins are also used in the statistical model since they help to constrain the background
uncertainties. More information about the statistical model can be found in section 3.

All events have at least three leptons. In order to trigger these events they must have at least
either two muons, two electrons or an electron and a muon. Additionally at least one of this
electrons or muons must have a transverse momentum greater than 20 GeV.

8.1.1. Three lepton selection

For the three lepton final state events with three leptons, including hadronic taus, are selected.
Most of the events in the 3` final states originate from WZ boson production, but also DY →
``+fake lepton and tt̄ → ``+fake are important. The following variables are used to separate
signal from background:

• Invariant mass m`+`− of two opposite-sign leptons. (µ+µ−, e+e−, µ±e∓, µ±τ∓, e±τ∓)

• Missing transverse energy Emiss
T .
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64 8. Result

• Transverse mass MT of one lepton and Emiss
T . (Formula given in section 7.1)

• Veto on events containing a b-jet

The b-jet veto is necessary since it reduces the amount of tt̄ background. In order to increase
the sensitivity for supersymmetric scenarios with different tau content, the three lepton final
states are categorized into five main categories. These categories have the following naming
convention:

• OSSF0tau: three µ, e with at least one opposite-sign same-flavor pair:
(µ+µ−µ±), (µ+µ−e±), (e+e−µ±) and (e+e−e±)

• noOSSF0tau: three µ, e with no opposite-sign same-flavor pair:
(µ+µ+e−), (e+e+µ−), (µ−µ−e+)and (e−e−µ+)

• OSSF1tau: two µ, e with opposite-sign same-flavor and one τ :
(µ+µ−τ±) and (e+e−τ±)

• SS1tau: two µ, e with same-sign and one τ :
(µ±µ±τ∓), (µ±e±τ∓) and (e±e±τ∓)

• OSOF1tau: two µ, e with opposite-sign opposite flavor and one τ :
(µ±e∓τ±) and (µ±e∓τ∓)

The next step is to search for the lepton pair, which originates most likely from a Z boson.
In events with at least one opposite-sign same-flavor electron or muon pair, the pair which is
closest to the Z boson mass (91 GeV) is chosen. In a event without any opposite-sign same-
flavor electron or muon pair the hypothesis that the event originates from a Z → ττ decay is
made. All opposite-sign lepton pairs including hadronic taus are tested. For µ±e∓ pairs the
mass is probed to be as close as possible to 50 GeV (visible in figure 7.6). If one of the pair
leptons is a tau, µ±τ∓ or e±τ∓, the pair is probed to be as close as possible to 60 GeV (visible
in figure 7.1). The pair, which is closest to its mass hypothesis is chosen. The remaining lepton
and Emiss

T are used for the MT calculation. Since this can cause some confusion, one example
is given in the following: One event has three leptons e+µ−τ−. The invariant mass of the e+µ−

pair is 59 GeV and the invariant mass of e+τ− pair is 52 GeV. The e+τ− pair is chosen since it
is closer to 60 GeV than the e+µ− to 50 GeV. Additionally, the muon and Emiss

T are used for
the MT calculation. As last step the m`+`− , the MT and the Emiss

T variables are used to bin our
result. The following bin definitions are used:

• Three m`+`− bins for events with an opposite-sign same-flavor lepton pair (OSSF0tau and
OSSF1tau):

– lowZ: m`+`− < 75 GeV

– onZ: 75 GeV < m`+`− < 105 GeV

– highZ: m`+`− > 105 GeV
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• Two m`+`− bins for events with no opposite-sign same-flavor lepton pair (noOSSF0tau,
noOSSF1tau and SSSF1tau):

– lowZ: m`+`− < 100 GeV

– highZ: m`+`− > 100 GeV

• Three MT bins:

– MT < 120 GeV

– 120 GeV < MT < 160 GeV

– MT > 160 GeV

• Five Emiss
T bins:

– Emiss
T < 50 GeV

– 50 GeV < Emiss
T < 100 GeV

– 100 GeV < Emiss
T < 150 GeV

– 150 GeV < Emiss
T < 200 GeV

– Emiss
T > 200 GeV

Summarizing we have 12 m`+`− bins, 3 MT bins, and 5 Emiss
T bins, which sums up to 180 search

bins for the three lepton final state.

In figure 8.1 the MT distribution versus the m`+`− distribution for simulated WZ, DY and tt̄
events is shown. WZ mostly concentrates in the onZ MT < 120 GeV region. The contribution
from DY clusters in the Emiss

T < 50 GeV region because DY has no intrinsic Emiss
T . For tt̄, the

events are spread over a larger area. For this reason, the b-jet veto is needed to reduce the
overall amount of events from this kind of background.

8.1.2. Four lepton selection

The main background in this search region stems from ZZ → 4` events. The strategy is to
search for the opposite-sign same-flavor lepton pairs which originate from Z bosons. The events
are distinguished by the number of taus. We count the number of the opposite-sign same-flavor
lepton pairs onZ (e+e− and µ+µ−), meaning that the invariant mass of those pairs lie in between
75 GeV and 105 GeV. We distinguish following three categories:

• Nτ=0 : four e, µ with a maximum of two onZ pairs:
(e+e−e+e−) (µ+µ−µ+µ−)(µ+µ−e+e−)

• Nτ=1 : three e, µ and one τ with a maximum of one onZ pair:
(e+e−e±τ∓) (µ+µ−µ±τ∓)(e+e−µ±τ∓) (µ+µ−e±τ∓)
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66 8. Result

Figure 8.1.: TheMT distribution in respect to the m`+`− distribution for simulated three lepton
events is presented. On the left plot, the WZ events are shown. In the middle plot
for DY events and on the right plot for tt̄ events are shown.

• Nτ=2: two e, µ and two τ with a maximum of one onZ pair:
(e+e−τ+τ−) (µ+µ−τ+τ−)(µ+e−τ+τ−)

Since the ZZ background has no intrinsic missing transverse energy, the following Emiss
T binning

is chosen:

• Emiss
T < 30 GeV

• 30 GeV < Emiss
T < 50 GeV

• 50 GeV < Emiss
T < 100 GeV

• Emiss
T > 100 GeV

In summary we have 12 search bins for the Nτ=0 category, 8 for the Nτ=1 category and 8 for
the Nτ=2 category, which sums up into 28 search bins in the 4` final state.

8.2. Uncertainties Summary
Table 8.1 shows a summary fo all uncertainties. The individual uncertainties are treated as
statistically uncorrelated. The uncertainty on the signal events stems from the parton density
function. The uncertainties on WZ and ZZ are uncertainties of the cross section. The Zγ(∗)

uncertainty of 50% is rather unimportant, because those events are concentrated in the low
Emiss

T region. For backgrounds from fake sources (mostly DY and tt̄) the uncertainty is a
mixture of the uncertainty on the cross section and the reconstruction of the fake lepton, at
which the second is the dominant source. The uncertainty for the rare backgrounds originates in
the uncertainty of their cross section. The uncertainties on the luminosity are taken from [83].
The different binning variables (Emiss

T , MT, m`+`− and b-jet veto) contribute to the uncertainty
in the binning. Nevertheless, the dominating part of this kind of uncertainties is the jet energy
scale, which directly affect Emiss

T and for this reason also MT. In a few bins, the statistical MC
uncertainty are important, but usually it is rather small.
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Table 8.1.: Summary of the estimated uncertainties for the background processes

name uncert. (%) additional information
Background/Signal only
Signal 5 (section 6)
WZ 20 (section 7.2.1.1)
ZZ 2-6 on-shell - off-shell (section 7.2.1.2)
Zγ(∗) 50 (section 7.2.2)
Fake 20 (section 7.2.3)
Rare 50 (section 7.2.4)
All events
Trigger 1-5 depending on triggerable objects (section 5.1.1.1)
Muon 3-5 per muon depending on pT (section 5.1.1)
Electron 3-5 per electron depending on pT (section 5.1.1)
Tau 6 per tau (section 5.1.2)
Luminosity 2.6 taken from [83]
Binning 3-15 dominating is JES uncert. for Emiss

T (section 5.2.2)
MC statistic 1-100

8.3. Yields

Finally, the yields can be presented. The 3` and 4` events are separated by the binning scheme
described in section 8.1. First the 3` results are shown and then the result of the 4` events.
The last word in this section is on a small excess in the 3` final state.

8.3.1. Three lepton yields

The 3` final state covers all events with three leptons including hadronic taus. In order to
trigger those events, two leptons have either to be electrons or muons. Events with more than
three leptons are not considered in this selection. The events are categorized as described in
section 8.1.1.

In figure 8.2 the background predictions and their uncertainties as well as the observed data
for the OSSF0tau category is presented. The exact numbers can be found in the table A.1 in
the appendix. The WZ background is the dominating background for most of this search bins.
Backgrounds with final state γ radiation mostly lead to lowZ and Emiss

T < 50 GeV events. For
theMT < 120 GeV region the background predictions and data agree within their uncertainties.
The region MT > 120 GeV, will be discussed in section 8.3.3.

The results of the noOSSF0tau categories can be found in figure 8.3. Numbers can be found in
table A.2. Here the yields are rather low. The prompt background from VV comes from events
where a Z boson decays into tau pairs, which decay further into two leptons with opposite
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Figure 8.2.: Result for 3` events with at least one opposite-sign same-flavor lepton pair and 0
taus: (µ+µ−µ±), (µ+µ−e±), (e+e−µ±) and (e+e−e±)

flavor. Fake and rare backgrounds are also relevant. Background prediction and data agrees
well.

Now coming to the 3` categories containing hadronic taus. The first is the OSSF1tau category.
The result of this category is presented in figure 8.4. The numbers can be found in table A.3.
Backgrounds with two prompt leptons and one faked tau dominate those events. Data and
background prediction agrees well in the most regions.
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Figure 8.3.: Result for 3` events with no opposite-sign same-flavor lepton pairs and 0 taus:
(µ+µ+e−), (e+e+µ−), (µ−µ−e+)and (e−e−µ+)

The SS1tau category is presented in figure 8.5 and the numbers can be found in table A.4.
There the most important background are again VV events where a Z boson decays into taus.
The fake background is reduced compared to the other 3` final states including taus, because of
the charge conservation. For this reason, the taus must coming from prompt sources. A good
agreement between observation and background prediction is observed in this category.

The last category for the 3` final state is the OSOF1tau. The yields are presented in figure 8.6
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Figure 8.4.: Result for 3` events with one opposite-sign same-flavor lepton pair and 1 tau:
(µ+µ−τ±) and (e+e−τ±)

and the numbers can be found in table A.5. The dominating backgrounds consists of events
including fake taus.

8.3.2. Four lepton yields

The 4` final state covers all events with four leptons including hadronic taus. In order to trigger
those events, two leptons have either to be electrons or muons. This selection does not consider
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Figure 8.5.: Result for 3` events with same-sign leptons and 1 taus: (µ±µ±τ∓), (µ±e±τ∓) and
(e±e±τ∓)

events with more than four leptons. The events are categorized as described in section 8.1.2.
The result are shown in figure 8.7 and the numbers are given in table A.6 in the appendix. The
dominant background for the Nτ=0 and Nτ=1 region is ZZ production. In the Nτ=2 region,
most of the background events stems from sources with fake leptons.
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Figure 8.6.: Result for 3` events with opposite-sign opposite flavor leptons and 1 taus: (µ±e∓τ±)
and (µ±e∓τ∓)

8.3.3. Discussion of the excesses

Some presented search bins have significantly more events than predicted. In order to quantize
the excesses the simplified ZBi metric as well as a fully frequentist approach (σfreq) including
log-normal distributed uncertainties are computed [21; 22; 39; 84–86]. The ZBi value is a good
estimate of the significance of new physics signals. The Advantage of the ZBi is that it gives
simple and transparent results. In the frequentist approach, all uncertainties are profiled out.
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Figure 8.7.: Result for 4` events.

For this reason, the numbers cannot be compared directly, and there is no claim that one of the
numbers should be better. However, the qualitative outcome of both approaches is the same
and therefore it is a matter of taste which number is chosen.

On the one hand, it is not unlikely to have two sigma fluctuations in over 180 search bins. How-
ever, on the contrary, this treatment is controversial since many of these bins have background
predictions below one. Meaning they are not sensitive to a measurement of the background
hypothesis and therefore for a statistical fluctuation of it. In table 8.2 all 3` search bins that
have a ZBi larger than two are summarized.

The two OSSF1tau region are dominated by backgrounds with fake taus, which have large
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Table 8.2.: 3` search regions with ZBi>2

Selection numbers in GeV prediction observation ZBi σfreq

OSSF0tau
lowZ, MT > 160, 50 < Emiss

T < 100 2.911 ± 0.613 8 2.1 2.4
onZ, 120 <MT < 160, Emiss

T < 50 12.01 ± 2.907 26 2.4 2.8
onZ, MT > 160, 50 < Emiss

T < 100 4.650 ± 1.221 13 2.4 2.8
highZ, 120 <MT < 160, Emiss

T < 50 0.684 ± 0.175 4 2.4 2.7
OSSF1tau
lowZ, 120 <MT < 160, 50 < Emiss

T < 100 2.506 ± 0.577 9 2.7 2.98
lowZ, MT > 160 Emiss

T > 200 0.122 ± 0.077 2 2.2 2.7

uncertainties. The statistic in the nearby bins is rather small and, therefore, these events will
not discuss further and treated as a statistical fluctuation.

Four bins with an excess originate from the OSSF0tau category. This could be expected since
in this region the main background is WZ. For WZ the theory prediction is 20% to low as
already shown in section 7.2.1.1. This seeds about one sigma excess for all bins where WZ is
dominant. Nevertheless, there are still more events than expected and therefore it is worth to
take a closer look at those events. In figure 8.8 and 8.9 three lepton events where all three
leptons are either muons or electrons and where the MT is larger than 120 GeV are shown1.
Figure 8.8 shows that the excess of events originates from events withMT smaller than 200 GeV.
A fallingMT distribution is expected but data peaks atMT =170 GeV andMT = 190 GeV. The
Emiss

T distribution shows that these extra events have Emiss
T lower than 140 GeV, which is small

for events with MT larger than 120 GeV. This low Emiss
T speaks against typical SUSY events.

However, there are more exotic SUSY scenarios where the events could have low Emiss
T , e.g. if

the two χ̃0
1 fly almost back to back. Many of these extra events include leptons from Z bosons

as seen in the m`+`− distribution. Between m`+`−= 120 GeV and 190 GeV an almost constant
data contirbution is measured, where a falling distribution is expected. The hadronic activity
for those extra events are low, but the most of these extra events have two additional jets,
which are no b-jets. Figure 8.9 shows some additional lepton variables. The extra events show
no difference concerning the lepton flavor. Interesting is that these events have a large charge
asymmetry, meaning they originate from events produced by valence quarks2. This asymmetry
is a hint that they come from a decay of heavy particles. The Emiss

T and the lepton not coming
from a Z boson are almost back to back. The invariant mass of all three leptons m``` also
shows interesting features. For small m``` values (m``` < 180 GeV) data and the background
prediction agrees well. Between m```= 180 GeV and m```= 300 GeV and around m```= 470
GeV two peaks are observed. The lower one is broader and on top of the WZ SM prediction,

1This means no b-veto, no m`+`− requirement and no Emiss
T cut are applied.

2Because of this the WZ production also have a charge asymmetry.
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while the peak at m```= 470 GeV seems to be sharp. Again the distribution is almost constant
between m```= 500 GeV and m```= 800 GeV.
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Figure 8.8.: 3` events with MT > 120 GeV are for data and background prediction are plotted.
On the top left the MT distribution and on the top right the Emiss

T distribution
are shown. The middle row presents the m`+`− for the lepton pairs best matching
a Z boson on the left and the right the scalar sum of all jets. On the bottom left
(right) the number b-jets (jets) are shown.

A guess about the origin of these extra events is off-shell WZ-production. Since, the on-shell
production already shows a discrepancy of 20%, the k-factor for the off-shell region could even
be higher. We have three hypotheses where these events are coming from:
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Figure 8.9.: 3` events with MT > 120 GeV are for data and background prediction are plotted.
The top left show the number of electrons. The top right plot shows the charge
asymmetry. The angle between Emiss

T and the lepton not matching the Z boson are
shown on the bottom left, and the bottom right plot show the invariant mass of all
three leptons.

• Statistical fluctuation

• Underestimation of the Standard Model backgrounds (WZ)

• New physics contribution (like SUSY)

Of course, it could be a mixture of all them or something that has never been thought of. The
data taking in 2015 will give the answer.
In order to bring the discussion of the excess to an end, a summary is given. In some bins we
observe an excess with a statistical significance of two to three sigma. There is no simple SUSY
scenario, which would fit all of these excesses at the same time. In addition, there is a bias
from the Standard Model WZ-prediction, which increase these excesses.
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9. Interpretation of the results

In this chapter, the results will be interpreted in scenarios with additional events from SUSY
sources. So-called simplified models (SMS) are used which were introduced in chapter 6. In
order to give quantitative statements about the results the CLs statistical model is used, which
has been discussed in detail in chapter 3. The general procedure is the following: first in the
order of 10k to 50k events are produced for each model point. These events are passed through
the analysis chain presented in the previous chapters, resulting in predictions for signal events
in the individual search bins. The ten bins with the highest expected significance are chosen
as signal hypothesis input for the statistical model. Additionally, some high statistic bins are
added since the statistical model can fit some background uncertainties in these regions. The
outcome of the statistical model is the 95% CL CLs upper limit on the cross section, which is
valid for all new physics models including this signature. In the last step, a cross section for
this model point is calculated, and the result is translated into excluded parameter space.

9.1. Basics about SMS exclusions plots
The same presentation of the results using different simplified models is used in the following
sections. The main features of these will be discussed below by using the left-hand side of figure
9.1. There the x-axis shows the mass of the χ̃±1 (=χ̃0

2 ) and χ̃0
1 respectively. The sampling is

done in steps of 20 GeV with the requirement mχ̃0
1
< mχ̃0

2
. For each of this points the observed

95% CL upper limit on the cross section is drawn on the z-axis. A three-dimensional view is
chosen for illustration1. A lower limit on the cross section allows to exclude more parameter
space. At the diagonal the limit gets worse. In this region the χ̃±1 (=χ̃0

2 ) and χ̃0
1 have almost

degenerated masses, which leads to soft decay products, so the acceptance breaks down. At
large χ̃±1 (=χ̃0

2 ) masses, the limit is in the order of 1 fb. This limit is a strong limit for a search
with Lint = 19.7 fb−1and implies that every new physics model producing ∼20 events with this

1In the proper results the z-axis is represented via a colors code.
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78 9. Interpretation of the results

signature at
√
s = 8 TeV and Lint = 19.7 fb−1is excluded. This is still true if the signature

would be produced in decay chains, with two exceptions: No reconstructed b-jet is present in
the event due to the b-jet veto2. And the objects are not boosted too hard, in which case the
Emiss

T from the χ̃0
1 cancel each other or the leptons cannot be separated.

The χ̃±1 χ̃0
2 production cross section for this analysis is shown in the right plot of figure 9.1.

Assuming a cross section allows us to translate the 95% CL upper limit on the cross section
into exclusions of the parameter space. This procedure is done for all simplified models, and
the result will be presented and discussed in the following sections. These exclusions are often
interpreted in the wrong way. So this excluded parameter space depends on the assumption of
cross section times branching ratio, which is highly model dependent. The chosen values are a
realistic best case scenario and can be interpreted up to which masses we can test this scenario.
The more robust results are the 95% CL upper limit on the cross section, which only depends
on the two mass parameter.
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Figure 9.1.: The 95% CL upper limit on the cross section for a simplified model is shown on
the left. The cross section for the process pp → χ̃±1 χ̃0

2 at a center of mass energy
of
√
s=8 TeV is presented on the right.

9.2. Chargino Neutralino production with Slepton medi-
ated decays

The first group of scenarios has slepton masses that are in between the χ̃±1 and χ̃0
1 masses (mχ̃0

1
<

m˜̀< mχ̃±
1
). As a result, χ̃±1 χ̃0

2 pairs will decay via sleptons. The details of these scenarios
were already introduced in section 6.1.1. The individual scenarios will be distinguished by the
number of produced taus. The first scenario is the flavor democratic scenario producing all
lepton flavors equally. The second scenario is called tau enriched because at least one tau is
produced in this scenario. In the last scenario, all produced leptons are taus. For this reason,
this scenario is called tau dominated.

2A dedicated analysis exist searching for multileptons plus b-jets [87].
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9.2.1. Flavor Democratic

The result of the flavor democratic scenario is shown in figure 9.2. The important search regions
are the 3` OSSF0tau channels. Near the diagonal the signal events fall into the lowZ bins. The
onZ bins become important if the mass difference is in the Z range. For large mass differences,
all signal events go into the highZ bins, which is visible in the exclusion curves for the moderate
scenario. There the expected limit slightly decreases from mχ̃±

1
= 450 GeV and mχ̃0

1
=370 GeV

to mχ̃±
1
= 500 GeV and mχ̃0

1
=350 GeV, hence the onZ region has larger backgrounds. Then the

limit increases again since the highZ region with lower backgrounds has the largest significance
there. The largest differences between observed and expected limit are in the order of one
sigma. This difference comes from the highZ, MT > 160 GeV, and 50 GeV < Emiss

T < 150 GeV
region. The Emiss

T of the signal increases at mχ̃±
1
> 700 GeV and, therefore, signal events having

mostly Emiss
T > 150 GeV. The smallest cross section that can be excluded in this scenario is in

the order of ∼ 0.7 fb. With wino-like cross section and 50% branching ratio, we can exclude
χ̃±1 with masses up to 700 GeV.

9.2.2. Tau Enriched

The result of the tau enriched scenario is presented in figure 9.3. Here the OSSF0tau and the
OSSF1tau search regions are important. The lowZ bins dominate the sensitivity in the diagonal,
and the highZ bins dominate for large mass differences, again. The one sigma difference between
mχ̃±

1
=400 GeV and mχ̃±

1
=650 GeV is driven by several bins with slightly larger observation than

expectation, e.g. events from the bin: OSSF0tau, highZ, MT <120 GeV and Emiss
T >200 GeV,

where 0.8 ± 0.2 events are expected and 3 events are observed. At higher chargino masses
mχ̃±

1
> 650 GeV the majority of the signal events falling into the MT > 120 GeV and Emiss

T

> 150 GeV region. There the prediction and observation agrees, and the one sigma excess
disappears. The smallest cross section that can be excluded in this scenario is around 1.3 fb.
χ̃±1 masses up to 700 GeV can be excluded with the assumption of wino-like cross section and
a branching ratio of 100%.

9.2.3. Tau Dominated

Only the moderate stau mass is processed for the tau dominated scenario. In this scenario
at least two of the produced taus have to decay leptonically. For this reason, we are only
sensitive to around 0.1 of the produced events. In order to increase the sensitivity for this
scenario the search regions noOSSF0tau, SS1tau and OSOF1tau were invented. All relevant
decay chains are collected adding the OSSF1tau region additionally. With the combination of
all these channels, the smallest cross section that can be excluded is about 60 fb. Under the
assumption of wino-like cross section and a branching ratio of 100%, we can exclude χ̃±1 masses
up to 300 GeV.
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Figure 9.2.: 95% CL exclusion limits in the mχ̃±
1
(=mχ̃0

2
) mχ̃0

1
plane for three different flavor

democratic scenarios are presented. The light/moderate/heavy slepton scenario
is shown in the top/middle/bottom. On the left-hand side the observed 95% CL
exclusion limit on cross section is shown. The right-hand side shows the 95% CL
excluded parameter space by assuming wino like χ̃±1 χ̃0

2 production and a branching
ratio of 0.5.
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Figure 9.3.: 95% CL exclusion limits in the mχ̃±
1
(=mχ̃0

2
) mχ̃0

1
plane for three different tau en-

riched scenarios are presented. The light/moderate/heavy slepton scenario is shown
in the top/middle/bottom. On the left-hand side, the observed 95% CL exclusion
limit on the cross section is shown. The right-hand side shows the 95% CL excluded
parameter space by assuming wino-like χ̃±1 χ̃0

2 production and a branching ratio of
1.

9.3. Chargino Neutralino production with decays into
WZχ̃0

1 χ̃
0
1

The chargino neutralino production is realized in the same way as for the slepton mediated
decays. However, in this scenario the charginos and neutralino must decay into Standard
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Figure 9.4.: 95% CL exclusion limits in the mχ̃±
1
(=mχ̃0

2
) mχ̃0

1
plane for the tau dominated sce-

nario. This plot corresponds to the moderate stau mass scenario. On the left-hand
side, the observed 95% CL exclusion limit on the cross section is shown. The right-
hand side shows the 95% CL excluded phase space by assuming wino-like χ̃±1 χ̃0

2
production and a branching ratio of 1.

Model bosons since the sleptons are too heavy. The most natural decay is into final states with
WZ bosons. For this reason, the signal looks similar to the Standard Model WZ production
but has a larger Emiss

T and MT. The result is presented in figure 9.5. If the mass differences are
small also off-shell bosons are considered. The most sensitive search region is OSSF0tau, MT

> 120 GeV and onZ (or lowZ if the mass differences is below the Z mass). The lowZ region has
lower backgrounds and therefore a better sensitivity. Getting closer to the diagonal of the mass
plane the decay products of the bosons are getting softer, and, for this reason, the acceptance
goes down. For mχ̃0

2
=150 GeV to mχ̃0

2
= 250 GeV a discrepancy of two sigma is observed. The

events causing this difference were already discussed in section 8.3.3. However, this signature
cannot fit the full discrepancy because the excess does not exceed the two sigma level. We can
exclude χ̃±1 masses up to 250 GeV with the assumption of wino-like cross section and 100%
branching ration into WZ final state. The smallest observed limit on the cross section for mχ̃0

2
=

400 GeV is about ∼ 180 fb.

9.3.1. Neutralino Neutralino production with decays into Z Boson

The gauge mediated symmetry breaking model described in section 6.2 is used to interpret the
neutralino pair production. The lightest supersymmetric particle in this model is the almost
massless gravitino. Therefore, the mass plane is reduced to one dimension. The result is shown
in figure 9.6. The 4` search region has the best sensitivity. However, the 3` OSSF0tau region is
also included since we gain sensitivity for events with one lepton falling our selection criteria.
Data and predictions agree within two sigma, but a small excess in data is observed. This
excess is driven by events coming from the 4` , Nτ=0, two onZ pairs and 30 GeV < Emiss

T < 50
GeV region where 3.4 ± 2.1 events are expected and 8 events are observed. This excess leads
to a reduced excluded µ values of µ=240 GeV compared to the expected value of µ=300 GeV

82



9.3. Chargino Neutralino production with decays into
WZχ̃0

1 χ̃
0
1 83

 (GeV)0

2
χ∼

=m±
1

χ∼m
100 150 200 250 300 350 400 450 500

 (
G

eV
)

0 1χ∼
m

0

20

40

60

80

100

120

140

160

180

200

95
%

 C
L 

up
pe

r 
lim

it 
on

 c
ro

ss
 s

ec
tio

n 
 (

pb
)

-110

1

10
-1=19.7 fbint=8 TeV  Ls

 (GeV)0

2
χ∼

=m±
1

χ∼m
100 150 200 250 300 350 400 450

 (
G

eV
)

0 1χ∼
m

0

50

100

150

200

250

-1=19.7 fbint=8 TeV  Ls

0

2
χ∼ ±

1
χ∼ →pp 

0

1
χ∼  Z → 0

2
χ∼

0

1
χ∼  W → ±

1
χ∼

95% CL CLs upper Limits

σ 2 ±expected 

σ 1 ±expected 

expected

observed

Figure 9.5.: 95% CL exclusion limits for the process pp → χ̃±1 χ̃0
2 → WZχ̃0

1 χ̃
0
1 . On the left-

hand side the observed 95% CL exclusion limit on the cross section is shown. The
right-hand side shows the 95% CL excluded phase space by assuming wino like χ̃±1
χ̃0

2 production.
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10. Summary and Outlook

In the year 2012 the LHC machine was running with a center of mass energy of
√
s = 8 TeV.

The CMS detector was able to collect Lint = 19.7 fb−1 during this run. This energy and the
amount of data was never reached before, and the Standard Model has been tested at a new
frontier. The three and four lepton final states have rather low yields from the Standard Model
processes. For this reason, these final states are sensitive to a contribution from physics beyond
the Standard Model. The most attractive candidate for such physics is the supersymmetric ex-
tension of the Standard Model (SUSY). The lightest supersymmetric particle (LSP) is assumed
to be stable and uncharged. It does not interact with the detector and leaves an imbalance of
the transverse component of the energy measurement, which is called missing transverse energy
Emiss

T . The supersymmetric partners of the Standard Model W and Z boson can decay into
final states with leptons and Emiss

T

The lepton efficiency has been studied in detail by data-driven methods, namely by using the
SM process Z → `+ `−, where one lepton is the tag lepton and the other lepton is the probe
lepton. The uncertainty of the efficiency obtained with this data-driven method is 3%-5% for
electrons and muons. Hadronically decaying tau leptons have an uncertainty on the efficiency of
6% [49]. The other objects, namely jets coming from b-quarks (b-jets) and the Emiss

T , show reli-
able performance in the control regions, too. There are three different types of Standard Model
backgrounds that contribute to the three and four lepton final state. The first one consists of
processes that produce three or four prompt leptons. These are WZ and ZZ production as well
as the so-called rare backgrounds, which includes triple bosons and double boson plus t-quark
production. The WZ and ZZ predictions are validated with data. For WZ, an uncertainty of
20% has to be assigned to cover the differences between simulation and data. The data agree
with the predictions for ZZ having an uncertainty of 2% for on-shell production and 6% uncer-
tainty for off-shell production. The rare processes have a tiny cross section and, for this reason,
they can not be validated with this amount of data. Theory predictions with an uncertainty of
50% are used for this kind of backgrounds. The next sources are backgrounds including fake
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leptons. These are leptons produced within jets or hadrons misidentified as leptons. The most
important sources are processes with two prompt leptons, like Drell-Yan and tt̄ production,
which produce in addition one fake lepton from jets. In tt̄ events which decaying di-leptonically
the jet producing this fake lepton is typically a b-jet. A b-jet has a different fake rate compared
to fakes from light jets because of the leptonic decay modes of B-mesons. For this reason, the
fake rate in both samples has been studied separately. Corrections are applied if there are
differences between data and simulation. The uncertainty for this kind of background is 20%.
The last background sources are leptons from photon conversion. A real photon converts into
an electron pair by interacting with the detector. Electron and muon pairs can be produced by
the hard scattering, and asymmetric conversion of the photon leads to one additional lepton
in the detector. The prediction and data agrees within an uncertainty of 50% for this kind of
background.
The resulting yields for the three lepton final states are binned in 180 exclusive search chan-
nels. The channels are distinguished by the following variables: The number of reconstructed
taus, the number of opposite-sign electron/muon pairs, the invariant mass of two opposite sign
leptons, Emiss

T and the transverse mass MT (lepton,Emiss
T ). The four lepton final state consist

of 28 exclusive search bins. They are distinguished by the number of taus and the invariant
mass of opposite sign same flavor lepton pairs. Good agreement between data and background
prediction is observed for the individual search channels. In a few channels, an excess of data
in the order of 2 to 3σ is found. It is not unlikely to find such discrepancies, if one has 208
search channels, but these extra events could also originate from unknown sources.
Since no evidence for SUSY has been found an upper limit on production cross sections for
the SUSY scenarios with three and four lepton final states at 95% CL limit can be set. The
results are interpreted in the simplified model approach. Each simplified model considers only
one supersymmetric signature. As a result, the limit on the cross section only depends on
two or three parameters. The first set of simplified models consists of χ̃±1 χ̃0

2 production both
decaying into sleptons. For large χ̃±1 masses the invariant mass of the opposite-sign same-flavor
lepton pair is above 105 GeV and these events fall into the highZ region. The smallest cross
section, which can be excluded at 95% CL limit, is 0.7 fb, which corresponds to an exclusion
of all SUSY models producing ∼14 events with this signature. Assuming 50%-100% branching
ratios into sleptons, and a wino-like cross section allows us to exclude χ̃±1 masses up to 700
GeV at 95% CL limit. The next simplified model under discussion is the production of χ̃±1 χ̃0

2

decaying into W and Z bosons. If one considers a wino-like cross section the observed limit on
χ̃±1 masses is only 250 GeV, since this model has many events falling in the search region with
a two sigma excess of data. The last supersymmetric signature under discussion addresses the
production of neutralino pairs decaying into two Z bosons and two LSPs. A gauge mediated
symmetry breaking (GMSB) SUSY scenario was chosen for the interpretation of this signature.
The higgsino mass parameter µ of this GMSB model could be constrained to be µ <240 GeV
at 95% CL.
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The results presented in this thesis are an important contribution to the official CMS paper
[10].

10.1. Outlook
An interpolation of this analysis to higher energies (

√
s = 14 TeV) and higher luminosity (Lint=

3000 fb−1) has been made [88]. Such a luminosity is expected to be reached in 2033. One of the
primary motivations is to find SUSY with these data. The backgrounds, as well as the signal
processes, are computed with the Madgraph framework and passed trough the fast simulation
program Delphes, which is based on a parameterized detector response as discussed in section
4.3.2.8. This allows us to have enough statistics in all relevant regions.
The analysis is equal to the analysis presented in this thesis except for the extension of the
search region by additional Emiss

T andMT bins. This extra bins leads to an increased sensitivity
for heavy χ̃±1 χ̃0

2 , which were out of reach for the 8 TeV analysis. The focus lies on the 5σ
discovery of the simplified model process pp→ χ̃±1 χ̃0

2 → WZ χ̃0
1 χ̃

0
1 . The decay into a Z boson

is not the only possible decay chain for a χ̃0
2 . It also can decay into a Higgs boson. The best

sensitivity for this decay has a search for events with a single lepton, two b-jets, and Emiss
T .

The relation BR(χ̃0
2 → Z χ̃0

1 )+BR(χ̃0
2 → H χ̃0

1 )=1 is given for many natural SUSY models
with heavy sleptons. For this reason, I have combined the result of both analyses. The result
is presented in figure 10.1 and assumes wino-like cross sections. Charginos and neutralinos can
be discovered (5σ evidence) with Lint=3000 fb−1 at

√
s = 14 TeV if the wino-like χ̃±1 masses

are below 850 GeV and the χ̃0
1 (LSP) mass is below 200 GeV.
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Figure 10.1.: Discovery reach for the SUSY signatures pp→ χ̃±1 χ̃0
2 → WZ/WH χ̃0

1 χ̃
0
1 in the
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1
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1
plane. The filled areas give the 95 % CL observed exclusion limit obtained

with the data collected in 2012. The light (dark) areas corespondent to a five sigma
discovery with Lint=3000 (=300) fb−1 at

√
s = 14 TeV. In all scenarios the relation

BR(χ̃0
2 → Z χ̃0

1 )+BR(χ̃0
2 → H χ̃0

1 )=1 is given. The BR(χ̃0
2 → Z χ̃0

1 )=1 for the
blue area. In the yellow area the BR(χ̃0

2 → H χ̃0
1 )=1 and, the red area shows the

combination with BR(χ̃0
2 → Z χ̃0

1 )=BR(χ̃0
2 → H χ̃0

1 )=0.5. The figure is published
in [88].
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Table A.1.: Result table for the OSSF0Tau events

Selection: m`+`− < 75 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 631.7 ± 264.8 71.38 ± 20.22 187.7 ± 44.22 8.817 ± 0.938 899.6 ± 285.1 840
50-100 34.26 ± 7.622 10.49 ± 3.867 0.019 ± 0.021 3.822 ± 0.525 48.59 ± 9.146 48
100-150 4.158 ± 0.969 1.386 ± 0.483 0 ± 0 0.687 ± 0.183 6.231 ± 1.256 9
150-200 1.108 ± 0.269 0.326 ± 0.144 0 ± 0 0.114 ± 0.040 1.548 ± 0.322 1
> 200 0.492 ± 0.138 0.107 ± 0.068 0 ± 0 0.115 ± 0.050 0.715 ± 0.169 0

Selection: m`+`− < 75 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 1.406 ± 0.339 0.198 ± 0.118 2.812 ± 3.200 0.085 ± 0.026 4.500 ± 3.309 3
50-100 2.249 ± 0.552 2.344 ± 0.973 0 ± 0 0.649 ± 0.145 5.242 ± 1.212 6
100-150 0.231 ± 0.079 0.077 ± 0.109 0 ± 0 0.277 ± 0.125 0.584 ± 0.217 0
150-200 0.040 ± 0.025 0.006 ± 0.006 0 ± 0 0.009 ± 0.008 0.056 ± 0.027 0
> 200 0.061 ± 0.029 0 ± 0 0 ± 0 0.034 ± 0.028 0.095 ± 0.041 0

Selection: m`+`− < 75 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.271 ± 0.142 0 ± 0 0 ± 0 <0.001 ± 0.003 0.272 ± 0.143 0
50-100 1.758 ± 0.467 0.642 ± 0.237 0.043 ± 0.049 0.467 ± 0.117 2.911 ± 0.613 8
100-150 0.837 ± 0.212 1.189 ± 0.606 0 ± 0 0.394 ± 0.110 2.420 ± 0.688 4
150-200 0.209 ± 0.067 0.160 ± 0.088 0 ± 0 0.134 ± 0.055 0.503 ± 0.132 0
> 200 0.184 ± 0.061 0.047 ± 0.037 0 ± 0 0.061 ± 0.024 0.292 ± 0.078 0

Selection: 75 GeV < m`+`− < 105 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 1368 ± 296.6 621.7 ± 143.1 125.6 ± 47.24 28.2 ± 4.447 2144 ± 384.1 2269
50-100 534.5 ± 117.3 9.072 ± 3.440 1.765 ± 1.453 14.23 ± 3.662 559.6 ± 119 573
100-150 85.54 ± 18.91 0.690 ± 0.254 0 ± 0 4.141 ± 1.296 90.37 ± 19.17 84
150-200 23.16 ± 5.072 0.404 ± 0.172 0 ± 0 1.484 ± 0.543 25.05 ± 5.179 28
> 200 14.32 ± 3.178 0.061 ± 0.050 0 ± 0 1.106 ± 0.453 15.49 ± 3.263 14

Selection: 75 GeV < m`+`− < 105 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 10.1 ± 2.367 0.555 ± 0.387 0.942 ± 0.944 0.414 ± 0.147 12.01 ± 2.907 26
50-100 11.23 ± 3.017 0.543 ± 0.208 0 ± 0.013 0.581 ± 0.212 12.36 ± 3.115 11
100-150 1.730 ± 0.408 0.097 ± 0.073 0 ± 0 0.304 ± 0.124 2.131 ± 0.453 2
150-200 0.265 ± 0.086 0 ± 0 0 ± 0 0.140 ± 0.089 0.405 ± 0.134 1
> 200 0.168 ± 0.057 0 ± 0 0 ± 0 0.028 ± 0.018 0.196 ± 0.061 0

Selection: 75 GeV < m`+`− < 105 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 1.429 ± 0.349 0.039 ± 0.040 0.597 ± 0.609 0.118 ± 0.057 2.183 ± 0.738 5
50-100 4.106 ± 1.170 0.222 ± 0.118 0 ± 0 0.322 ± 0.132 4.650 ± 1.221 13
100-150 2.287 ± 0.522 0.259 ± 0.125 0 ± 0 0.444 ± 0.179 2.989 ± 0.594 5
150-200 0.786 ± 0.213 0.009 ± 0.009 0 ± 0 0.240 ± 0.109 1.035 ± 0.251 3
> 200 0.747 ± 0.301 0 ± 0 0 ± 0 0.220 ± 0.108 0.967 ± 0.325 2

Selection: m`+`− > 105 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 59.66 ± 13.31 9.276 ± 4.046 9.617 ± 4.606 2.265 ± 0.510 80.82 ± 16.91 105
50-100 18.41 ± 3.997 3.265 ± 0.827 0.327 ± 0.292 1.958 ± 0.425 23.96 ± 4.367 26
100-150 3.420 ± 0.791 0.644 ± 0.249 0 ± 0 0.582 ± 0.153 4.646 ± 0.914 6
150-200 0.925 ± 0.228 0.167 ± 0.109 0 ± 0 0.193 ± 0.063 1.285 ± 0.272 2
> 200 0.705 ± 0.208 0 ± 0 0 ± 0 0.092 ± 0.044 0.797 ± 0.216 3

Selection: m`+`− > 105 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.668 ± 0.170 0 ± 0.012 0 ± 0 0.016 ± 0.011 0.684 ± 0.175 4
50-100 1.061 ± 0.360 0.149 ± 0.100 0 ± 0 0.296 ± 0.094 1.506 ± 0.418 1
100-150 0.114 ± 0.044 0.110 ± 0.090 0 ± 0 0.066 ± 0.037 0.290 ± 0.111 1
150-200 0.065 ± 0.034 0 ± 0 0 ± 0 0.072 ± 0.048 0.137 ± 0.060 0
> 200 0 ± 0 0 ± 0 0 ± 0 0.037 ± 0.032 0.037 ± 0.032 1

Selection: m`+`− > 105 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.152 ± 0.051 0 ± 0 0 ± 0 0.016 ± 0.010 0.168 ± 0.053 1
50-100 0.879 ± 0.218 0.180 ± 0.092 0.048 ± 0.059 0.258 ± 0.111 1.364 ± 0.292 2
100-150 0.341 ± 0.099 0.141 ± 0.094 0 ± 0.024 0.315 ± 0.127 0.797 ± 0.207 2
150-200 0.139 ± 0.049 0.041 ± 0.041 0 ± 0 0.129 ± 0.054 0.309 ± 0.087 0
> 200 0.121 ± 0.046 0 ± 0 0 ± 0 0.101 ± 0.054 0.222 ± 0.072 0
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Table A.2.: Result table for the noOSSF0Tau events

Selection: m`+`− < 100 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 5.714 ± 1.264 5.220 ± 1.317 0.048 ± 0.054 1.808 ± 0.312 12.79 ± 2.119 19
50-100 1.913 ± 0.439 4.446 ± 1.091 0.101 ± 0.113 1.186 ± 0.260 7.646 ± 1.329 9
100-150 0.309 ± 0.095 1.067 ± 0.369 0 ± 0 0.419 ± 0.112 1.796 ± 0.436 2
150-200 0.067 ± 0.029 0.212 ± 0.119 0 ± 0 0.070 ± 0.044 0.350 ± 0.135 0
> 200 0.042 ± 0.022 0 ± 0 0 ± 0 0.024 ± 0.014 0.067 ± 0.026 1

Selection: m`+`− < 100 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.325 ± 0.178 0.176 ± 0.108 0 ± 0 0.063 ± 0.053 0.564 ± 0.256 1
50-100 0.296 ± 0.124 1.580 ± 0.825 0.145 ± 0.146 0.433 ± 0.135 2.455 ± 0.897 1
100-150 0.050 ± 0.025 0.274 ± 0.131 0 ± 0.011 0.097 ± 0.050 0.421 ± 0.153 0
150-200 0.011 ± 0.011 0.060 ± 0.061 0 ± 0 0.014 ± 0.012 0.085 ± 0.064 1
> 200 0 ± 0 0 ± 0 0 ± 0 0.014 ± 0.011 0.014 ± 0.011 0

Selection: m`+`− < 100 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.134 ± 0.134 0 ± 0 0 ± 0 0 ± 0.004 0.134 ± 0.136 0
50-100 0.256 ± 0.078 0.431 ± 0.179 0 ± 0 0.340 ± 0.089 1.027 ± 0.235 2
100-150 0.135 ± 0.049 0.449 ± 0.188 0 ± 0 0.320 ± 0.109 0.904 ± 0.232 3
150-200 0.023 ± 0.016 0.111 ± 0.082 0 ± 0 0.068 ± 0.030 0.202 ± 0.090 0
> 200 0.064 ± 0.032 0 ± 0 0 ± 0 0.063 ± 0.039 0.127 ± 0.052 0

Selection: m`+`− > 100 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.391 ± 0.111 0.376 ± 0.160 0 ± 0 0.202 ± 0.063 0.970 ± 0.217 0
50-100 0.038 ± 0.022 0.263 ± 0.132 0 ± 0 0.174 ± 0.065 0.475 ± 0.153 0
100-150 0 ± 0 0 ± 0 0 ± 0 0.054 ± 0.031 0.054 ± 0.031 0
150-200 0 ± 0 0 ± 0 0 ± 0 0.034 ± 0.030 0.034 ± 0.030 0
> 200 0 ± 0 0 ± 0 0 ± 0 <0.001 ± <0.001 <0.001 ± <0.001 0

Selection: m`+`− > 100 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.010 ± 0.016 0 ± 0 0 ± 0 0.041 ± 0.039 0.051 ± 0.047 0
50-100 0.083 ± 0.035 0.053 ± 0.059 0 ± 0 0.052 ± 0.022 0.188 ± 0.078 0
100-150 0.010 ± 0.010 0.047 ± 0.054 0 ± 0 0.044 ± 0.029 0.100 ± 0.064 0
150-200 0 ± 0 0 ± 0 0 ± 0 <0.001 ± <0.001 <0.001 ± <0.001 0
> 200 0 ± 0 0 ± 0 0 ± 0 <0.001 ± <0.001 <0.001 ± <0.001 0

Selection: m`+`− > 100 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0 ± 0.005 0 ± 0 0 ± 0 0.014 ± 0.010 0.014 ± 0.012 0
50-100 0.091 ± 0.038 0.049 ± 0.051 0 ± 0 0.187 ± 0.094 0.327 ± 0.116 1
100-150 0.040 ± 0.024 0 ± 0 0 ± 0 0.163 ± 0.078 0.203 ± 0.082 0
150-200 0 ± 0.006 0.002 ± 0.002 0 ± 0 0.026 ± 0.024 0.028 ± 0.026 0
> 200 0.043 ± 0.024 0 ± 0 0 ± 0 0.041 ± 0.030 0.084 ± 0.040 0
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Table A.3.: Result table for the OSSF1Tau events

Selection: m`+`− < 75 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 35.13 ± 8.571 3853 ± 835.5 651 ± 149.4 2.641 ± 0.317 4542 ± 960.4 4363
50-100 6.268 ± 1.533 56.6 ± 15.06 8.658 ± 5.048 1.114 ± 0.185 72.64 ± 19.07 77
100-150 1.035 ± 0.283 7.386 ± 1.911 0.335 ± 0.376 0.271 ± 0.108 9.028 ± 2.078 9
150-200 0.210 ± 0.071 1.037 ± 0.333 0 ± 0 0.089 ± 0.051 1.336 ± 0.352 0
> 200 0.116 ± 0.043 0.085 ± 0.087 0 ± 0 0.016 ± 0.010 0.217 ± 0.099 1

Selection: m`+`− < 75 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.060 ± 0.034 2.126 ± 2.348 0 ± 0 <0.001 ± <0.001 2.186 ± 2.358 5
50-100 0.427 ± 0.142 1.862 ± 0.525 0 ± 0 0.217 ± 0.068 2.506 ± 0.577 9
100-150 0.037 ± 0.023 3.270 ± 1.206 0 ± 0 0.016 ± 0.016 3.323 ± 1.210 2
150-200 0.043 ± 0.027 0.578 ± 0.241 0 ± 0 0 ± <0.001 0.621 ± 0.248 1
> 200 0.009 ± 0.010 0.101 ± 0.073 0 ± 0 0 ± 0 0.110 ± 0.073 1

Selection: m`+`− < 75 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.011 ± 0.015 0 ± 0 0 ± 0.110 0 ± 0 0.011 ± 0.120 0
50-100 0.180 ± 0.063 0.534 ± 0.221 0 ± 0 0.070 ± 0.033 0.784 ± 0.240 1
100-150 0.119 ± 0.051 0.749 ± 0.264 0 ± 0 0.009 ± 0.011 0.877 ± 0.275 1
150-200 0.018 ± 0.018 0.227 ± 0.146 0 ± 0 0.017 ± 0.013 0.262 ± 0.156 1
> 200 0.009 ± 0.009 0.106 ± 0.076 0 ± 0 0.008 ± 0.008 0.122 ± 0.077 2

Selection: 75 GeV < m`+`− < 105 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 190.3 ± 29.16 22200 ± 4779 506.4 ± 213 4.651 ± 0.770 22900 ± 4822 22590
50-100 54.87 ± 12 135.7 ± 66.67 5.204 ± 3.375 2.397 ± 0.487 198.1 ± 73.74 175
100-150 13.22 ± 3.133 3.341 ± 0.951 0 ± 0.014 0.660 ± 0.214 17.22 ± 3.603 16
150-200 3.876 ± 1.019 0.475 ± 0.186 0 ± 0 0.260 ± 0.102 4.611 ± 1.082 6
> 200 2.136 ± 0.551 0.048 ± 0.062 0 ± 0 0.173 ± 0.064 2.357 ± 0.590 2

Selection: 75 GeV < m`+`− < 105 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.552 ± 0.232 3.931 ± 3.004 0 ± 0.445 0.021 ± 0.015 4.504 ± 3.295 8
50-100 0.576 ± 0.179 2.573 ± 2.261 0 ± 0.025 0.031 ± 0.018 3.180 ± 2.376 3
100-150 0.199 ± 0.068 0.954 ± 0.336 0 ± 0 0.032 ± 0.016 1.185 ± 0.354 0
150-200 0.061 ± 0.030 0.184 ± 0.116 0 ± 0 <0.001 ± <0.001 0.245 ± 0.124 0
> 200 0.025 ± 0.020 0.060 ± 0.061 0 ± 0 0.008 ± 0.006 0.093 ± 0.065 0

Selection: 75 GeV < m`+`− < 105 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.024 ± 0.027 2.836 ± 3.449 0 ± 0 0 ± 0.002 2.860 ± 3.468 1
50-100 0.145 ± 0.056 8.476 ± 5.635 0 ± 0 0.023 ± 0.016 8.644 ± 5.658 0
100-150 0.049 ± 0.029 0.461 ± 0.229 0 ± 0 0.034 ± 0.025 0.544 ± 0.243 2
150-200 0.022 ± 0.018 0.237 ± 0.123 0 ± 0 0.040 ± 0.037 0.299 ± 0.132 0
> 200 0.029 ± 0.019 0.134 ± 0.102 0 ± 0 0.019 ± 0.021 0.182 ± 0.117 0

Selection: m`+`− > 105 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 11.51 ± 2.043 722.6 ± 159.6 37.21 ± 14.45 0.610 ± 0.107 771.9 ± 163.9 759
50-100 3.434 ± 0.848 36.15 ± 7.837 1.030 ± 0.815 0.528 ± 0.130 41.14 ± 8.144 49
100-150 0.825 ± 0.204 5.863 ± 1.703 0.434 ± 0.487 0.166 ± 0.071 7.288 ± 1.856 4
150-200 0.176 ± 0.080 0.538 ± 0.195 0 ± 0 0.046 ± 0.025 0.761 ± 0.229 2
> 200 0.185 ± 0.062 0.364 ± 0.171 0 ± 0 0.050 ± 0.032 0.599 ± 0.191 0

Selection: m`+`− > 105 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.036 ± 0.033 0.419 ± 0.211 0 ± 0 0.007 ± 0.007 0.461 ± 0.222 0
50-100 0.249 ± 0.091 2.219 ± 0.842 0.044 ± 0.049 0.063 ± 0.025 2.574 ± 0.861 2
100-150 0.053 ± 0.027 1.035 ± 0.372 0 ± 0.022 0.012 ± 0.009 1.099 ± 0.389 0
150-200 0.004 ± 0.004 0.587 ± 0.216 0 ± 0 0.002 ± 0.004 0.593 ± 0.217 0
> 200 0 ± 0 0.319 ± 0.176 0 ± 0 0.012 ± 0.012 0.331 ± 0.177 0

Selection: m`+`− > 105 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.026 ± 0.027 0 ± 0 0 ± 0 0 ± 0.003 0.026 ± 0.028 0
50-100 0.060 ± 0.036 0.712 ± 0.264 0 ± 0 0.036 ± 0.018 0.808 ± 0.276 1
100-150 0.019 ± 0.013 0.695 ± 0.267 0 ± 0 0.030 ± 0.016 0.744 ± 0.270 2
150-200 0.021 ± 0.016 0.280 ± 0.124 0 ± 0 0.002 ± 0.005 0.303 ± 0.126 1
> 200 0.035 ± 0.027 0.141 ± 0.096 0 ± 0 0.010 ± 0.007 0.186 ± 0.104 0
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Table A.4.: Result table for the SS1Tau events

Selection: m`+`− < 100 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 27.57 ± 6.208 26.21 ± 11.33 2.377 ± 1.941 2.983 ± 0.442 59.13 ± 14.8 50
50-100 9.440 ± 2.474 1.763 ± 0.523 0.532 ± 0.598 1.613 ± 0.310 13.35 ± 2.888 12
100-150 1.169 ± 0.316 0.233 ± 0.133 0 ± 0 0.170 ± 0.075 1.572 ± 0.391 0
150-200 0.471 ± 0.129 0.138 ± 0.111 0 ± 0 0.080 ± 0.056 0.688 ± 0.186 0
> 200 0.307 ± 0.105 0 ± 0 0.035 ± 0.040 0.044 ± 0.021 0.387 ± 0.118 1

Selection: m`+`− < 100 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.727 ± 0.208 0.092 ± 0.068 0 ± 0 0.125 ± 0.036 0.944 ± 0.232 1
50-100 1.506 ± 0.415 0.099 ± 0.114 0 ± 0 0.258 ± 0.063 1.863 ± 0.493 2
100-150 0.121 ± 0.045 0.049 ± 0.055 0 ± 0 0.125 ± 0.060 0.295 ± 0.101 0
150-200 0.014 ± 0.014 0 ± 0 0 ± 0 0.005 ± 0.003 0.018 ± 0.015 0
> 200 0.019 ± 0.017 0 ± 0 0 ± 0 <0.001 ± <0.001 0.019 ± 0.017 0

Selection: m`+`− < 100 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.160 ± 0.100 0 ± 0 0 ± 0 0.019 ± 0.012 0.179 ± 0.102 0
50-100 1.133 ± 0.330 0.337 ± 0.165 0 ± 0 0.380 ± 0.082 1.850 ± 0.421 2
100-150 0.428 ± 0.132 0.287 ± 0.150 0 ± 0 0.166 ± 0.054 0.882 ± 0.227 0
150-200 0.186 ± 0.064 0 ± 0.053 0 ± 0 0.062 ± 0.047 0.248 ± 0.118 0
> 200 0.180 ± 0.122 0 ± 0 0 ± 0 0.049 ± 0.023 0.229 ± 0.125 0

Selection: m`+`− > 100 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.659 ± 0.222 2.011 ± 2.058 0 ± 0 0.202 ± 0.078 2.871 ± 2.084 2
50-100 0.342 ± 0.191 0 ± 0 0 ± 0 0.080 ± 0.035 0.423 ± 0.203 1
100-150 0.027 ± 0.019 0 ± 0 0 ± 0 0.003 ± 0.003 0.029 ± 0.019 0
150-200 0 ± 0 0 ± 0 0 ± 0 0.004 ± 0.003 0.004 ± 0.003 0
> 200 0 ± 0 0 ± 0 0 ± 0 0.011 ± 0.011 0.011 ± 0.011 0

Selection: m`+`− > 100 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.020 ± 0.015 0 ± 0 0 ± 0 0.027 ± 0.017 0.047 ± 0.023 0
50-100 0.058 ± 0.031 0 ± 0 0 ± 0 0.062 ± 0.034 0.120 ± 0.047 1
100-150 0.023 ± 0.018 0 ± 0 0 ± 0 <0.001 ± <0.001 0.023 ± 0.018 0
150-200 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0
> 200 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0

Selection: m`+`− > 100 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0 ± 0 0 ± 0 0 ± 0 0.013 ± 0.015 0.013 ± 0.015 0
50-100 0.032 ± 0.022 0 ± 0 0 ± 0 0.021 ± 0.013 0.052 ± 0.026 0
100-150 0.022 ± 0.016 0.142 ± 0.113 0 ± 0 0.020 ± 0.015 0.184 ± 0.115 1
150-200 0 ± 0 0 ± 0 0 ± 0 <0.001 ± <0.001 <0.001 ± <0.001 0
> 200 0 ± 0 0 ± 0 0 ± 0 0.042 ± 0.021 0.042 ± 0.021 0

101



102 10. Appendix

Table A.5.: Result table for the OSOF1Tau events

Selection: m`+`− < 100 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 16.72 ± 3.884 182.5 ± 42.36 1.217 ± 0.879 3.173 ± 0.444 203.6 ± 43.43 215
50-100 5.728 ± 1.599 79.94 ± 17.21 0.006 ± 0.007 1.853 ± 0.352 87.52 ± 17.76 96
100-150 0.833 ± 0.218 15.06 ± 4.210 0.041 ± 0.047 0.183 ± 0.069 16.12 ± 4.271 19
150-200 0.236 ± 0.074 1.159 ± 0.389 0 ± 0 0.087 ± 0.049 1.482 ± 0.411 3
> 200 0.180 ± 0.062 0.346 ± 0.156 0 ± 0 0.032 ± 0.018 0.558 ± 0.177 0

Selection: m`+`− < 100 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.567 ± 0.173 3.196 ± 2.217 0 ± 0 0.056 ± 0.022 3.819 ± 2.253 2
50-100 0.687 ± 0.210 11.2 ± 2.590 0 ± 0.014 0.350 ± 0.106 12.23 ± 2.667 9
100-150 0.123 ± 0.056 2.546 ± 0.875 0 ± 0 0.029 ± 0.017 2.697 ± 0.906 5
150-200 0.024 ± 0.027 0.338 ± 0.165 0 ± 0 0.046 ± 0.044 0.407 ± 0.177 0
> 200 0.011 ± 0.011 0.152 ± 0.103 0 ± 0 0.014 ± 0.012 0.177 ± 0.107 0

Selection: m`+`− < 100 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.031 ± 0.020 0.144 ± 0.104 0 ± 0 0.026 ± 0.028 0.201 ± 0.117 1
50-100 0.592 ± 0.159 4.122 ± 1.023 0.027 ± 0.032 0.184 ± 0.054 4.926 ± 1.067 9
100-150 0.329 ± 0.102 5.608 ± 1.386 0.010 ± 0.013 0.100 ± 0.046 6.046 ± 1.415 5
150-200 0.050 ± 0.029 0.958 ± 0.294 0 ± 0 0.078 ± 0.037 1.085 ± 0.304 1
> 200 0.055 ± 0.028 1.063 ± 0.684 0 ± 0 0.039 ± 0.019 1.156 ± 0.687 0

Selection: m`+`− > 100 GeV and MT < 120 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.380 ± 0.229 11.34 ± 2.612 0.087 ± 0.076 0.208 ± 0.080 12.01 ± 2.658 10
50-100 0.074 ± 0.034 8.419 ± 1.978 0 ± 0 0.198 ± 0.080 8.691 ± 1.992 7
100-150 0.042 ± 0.025 1.591 ± 0.455 0 ± 0 0.049 ± 0.030 1.682 ± 0.464 5
150-200 0 ± 0 0.313 ± 0.171 0.086 ± 0.096 0.010 ± 0.011 0.408 ± 0.200 0
> 200 0.009 ± 0.010 0.092 ± 0.069 0 ± 0 0.003 ± 0.002 0.104 ± 0.070 0

Selection: m`+`− > 100 GeV and 120 GeV <MT < 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0.025 ± 0.021 0.388 ± 0.206 0 ± 0 0.058 ± 0.051 0.472 ± 0.227 0
50-100 0.019 ± 0.015 1.869 ± 0.579 0 ± 0 0.036 ± 0.035 1.924 ± 0.589 0
100-150 0.012 ± 0.014 0.442 ± 0.170 0 ± 0 0.025 ± 0.018 0.479 ± 0.174 2
150-200 0 ± 0.006 0.123 ± 0.084 0 ± 0 <0.001 ± <0.001 0.123 ± 0.087 0
> 200 0 ± 0 0 ± 0 0 ± 0 <0.001 ± <0.001 <0.001 ± <0.001 0

Selection: m`+`− > 100 GeV and MT > 160 GeV
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 50 0 ± 0 0 ± 0.028 0 ± 0 0.002 ± 0.002 0.002 ± 0.029 0
50-100 0.027 ± 0.018 0.825 ± 0.304 0 ± 0 0.018 ± 0.013 0.871 ± 0.309 2
100-150 <0.001 ± 0.006 0.876 ± 0.276 0.416 ± 0.466 0.052 ± 0.047 1.344 ± 0.552 1
150-200 0.011 ± 0.013 0.471 ± 0.200 0 ± 0 <0.001 ± 0.001 0.482 ± 0.204 1
> 200 0.015 ± 0.016 0 ± 0 0 ± 0 0.021 ± 0.015 0.036 ± 0.022 1
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Table A.6.: Result table for the 4` events

Selection: NZ=2 and Nτ=0
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 30 110.9 ± 14.11 0 ± 0 0 ± 0 0.418 ± 0.173 111.3 ± 14.15 114
30-50 3.204 ± 2.034 0 ± 0 0 ± 0 0.157 ± 0.078 3.361 ± 2.056 8
50-100 0.615 ± 0.268 0 ± 0 0 ± 0 0.343 ± 0.177 0.958 ± 0.333 3
> 200 0 ± 0 0 ± 0 0 ± 0 0.168 ± 0.097 0.168 ± 0.097 0

Selection: NZ=1 and Nτ=0
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 30 27.78 ± 3.818 0 ± 0 0 ± 0 2.375 ± 0.346 30.16 ± 4.034 32
30-50 1.988 ± 0.733 0.014 ± 0.014 0 ± 0 1.127 ± 0.351 3.128 ± 0.878 2
50-100 0.876 ± 0.291 0 ± 0 0 ± 0 1.766 ± 0.756 2.642 ± 0.832 2
> 200 0.201 ± 0.125 0 ± 0 0 ± 0 1.841 ± 0.827 2.042 ± 0.842 2

Selection: NZ=0 and Nτ=0
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 30 7.019 ± 1.211 0.034 ± 0.035 0 ± 0 0.928 ± 0.129 7.982 ± 1.286 5
30-50 0.294 ± 0.165 0 ± 0 0 ± 0 0.232 ± 0.088 0.526 ± 0.193 1
50-100 0.205 ± 0.132 0 ± 0 0 ± 0 0.468 ± 0.173 0.674 ± 0.225 0
> 200 0.038 ± 0.051 0 ± 0 0 ± 0 0.271 ± 0.114 0.309 ± 0.131 0

Selection: NZ=1 and Nτ=1
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 30 6.810 ± 1.352 0.041 ± 0.042 0.480 ± 0.589 0.775 ± 0.206 8.106 ± 1.690 11
30-50 3.311 ± 0.685 0.070 ± 0.071 0 ± 0.240 0.608 ± 0.167 3.989 ± 0.863 4
50-100 3.240 ± 0.726 0 ± 0.024 0 ± 0 0.735 ± 0.224 3.975 ± 0.811 2
> 200 0.708 ± 0.202 0.049 ± 0.055 0 ± 0 0.665 ± 0.265 1.421 ± 0.366 1

Selection: NZ=0 and Nτ=1
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 30 1.183 ± 0.302 0.070 ± 0.075 0.061 ± 0.068 0.200 ± 0.069 1.514 ± 0.354 1
30-50 0.400 ± 0.147 0.043 ± 0.045 0 ± 0 0.224 ± 0.085 0.667 ± 0.184 0
50-100 0.553 ± 0.217 0.041 ± 0.038 0 ± 0 0.425 ± 0.177 1.019 ± 0.308 1
> 200 0.070 ± 0.050 0.171 ± 0.122 0 ± 0 0.179 ± 0.065 0.420 ± 0.151 2

Selection: NZ=1 and Nτ=2
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 30 3.002 ± 0.746 19.59 ± 7.668 0.450 ± 0.396 0.214 ± 0.067 23.26 ± 7.813 26
30-50 1.241 ± 0.374 2.113 ± 2.337 0.027 ± 0.033 0.124 ± 0.037 3.506 ± 2.430 2
50-100 0.800 ± 0.348 0.222 ± 0.187 0.016 ± 0.022 0.156 ± 0.048 1.194 ± 0.431 2
> 200 0.087 ± 0.079 0.051 ± 0.052 0 ± 0 0.055 ± 0.031 0.193 ± 0.117 0

Selection: NZ=0 and Nτ=2
EmissT (GeV) VV Fake Zgamma Rare Bkg full Data

< 30 0.807 ± 0.272 7.909 ± 4.869 0 ± 0 0.144 ± 0.057 8.859 ± 4.889 8
30-50 0.127 ± 0.052 0.398 ± 0.175 0 ± 0 0.237 ± 0.093 0.762 ± 0.222 5
50-100 0.372 ± 0.191 1.529 ± 0.484 0 ± 0 0.337 ± 0.109 2.238 ± 0.556 1
> 200 0.038 ± 0.029 0.245 ± 0.123 0 ± 0 0.163 ± 0.077 0.447 ± 0.156 0
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B. Validation of ZZ private production
There should be no differences between the central and private produced ZZ→ 4 ` sample if all
four leptons are reconstructed. This is because of the rejection of events with m`` < 12 GeV.
Figure B.1 shows that the private produced sample and the centrally produced samples agrees
within the uncertainties.
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Figure B.1.: Validation of the private produced ZZ sample. The blue area correspond to the
private sample whereas the black points are from the centrally produced sample.
On the top left the invariant mass of the opposite sign same flavor lepton pair
closest to the Z mass is shown. On the top right the invariant mass of the second
pair. The bottom shows the Emiss

T distribution. The two samples agrees within
the statistical uncertainty.
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