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Abstract

3D elastic full waveform inversion (FWI) aims at reconstructing highly-resolved images of the

elastic subsurface parameters from seismic data. In contrast to conventional seismic imaging

methods, the full information content of the seismograms is exploited by minimising the misfit

between observed and modelled waveforms. However, mainly due to the high computational

costs of this method, applications nowadays are mostly limited to the 2D or acoustic approx-

imation of the seismic wave equation. In this thesis, I present the theory and implementation

of a 3D elastic FWI which allows for the reconstruction of 3D subsurface structures parame-

terised by seismic velocities and density. The approach is based on the adjoint state method

and minimizes the misfit in the conjugate gradient direction. A velocity-stress finite difference

scheme in time domain enables a fast and efficient simulation of wavefields. The gradients, by

contrast, are calculated in frequency domain from monochromatic particle velocity wavefields

resulting in significantly lower storage costs compared to an implementation in the time do-

main. A discrete Fourier transform is employed to extract monochromatic wavefields on the fly

during forward propagation.

The inversion of data of a random medium velocity model resembling crystalline rock shows

the ability of the method to reconstruct small-scaled 3D heterogeneities in transmission geom-

etry. Even with a very simple geometry of a line of sources and a line of receivers, differently

sized 3D structures adjacent to the source-receiver plane are recovered. In comparison, a 2D

FWI yields a similar resolution in the source-receiver plane. However, in this approximation,

artefacts are caused by explaining the 3D scattering with a 2D inversion scheme.

To optimise the 3D FWI method and to allow for the inversion of complex surface geometry

models, two optimisations were investigated: the use of a diagonal Hessian approximation for

preconditioning and the L-BFGS algorithm. The diagonal Hessian approximation is calculated

once per frequency stage from partial derivative wavefields in frequency domain. To mitigate

computational costs, only a subset of receivers is employed. The L-BFGS method includes in-

formation about the misfit curvature by considering gradient and model changes in the previous

few iterations. A dimensionless L-BFGS scheme is implemented using a parameter normalisa-

tion. This method automatically scales the parameter classes with respect to each other. Both

approaches were validated for a simple box model.

These optimisations are used in a 3D FWI applied to a complex 3D layered surface model. Due

to surface acquisition geometry and the presence of surface waves, the misfit gradients mainly

emphasise very shallow areas. A simple tapering of gradients around sources and receivers

was not sufficient for the inversion to succeed. Preconditioning with the diagonal Hessian ap-
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proximation, by contrast, enables a successful reconstruction of the seismic velocity models,

including the deeper layers. In this approach the approximate Hessian accounts for geometric

amplitude effects in the gradient. Preliminary results using the L-BFGS approach result in a

comparable image. The main advantage is the significant reduction in computational effort by

increasing the convergence.
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Chapter 1

Introduction

Seismic waves are influenced by various physical subsurface parameters, such as wave veloc-

ities, density, attenuation and anisotropy. The role of inversion is the inference of this infor-

mation about the subsurface from recorded seismic data to reconstruct a detailed and correct

subsurface model. The seismic inversion is applied in various areas, including exploration seis-

mics, geotechnical surveys or research on structures and processes in the earth’s interior, among

others. Conventional methods mainly evaluate the travel times of different seismic phases, like

direct, refracted or reflected waves. In the 1980’s, however, Lailly (1983), Tarantola (1984)

and Mora (1987) suggested a new inversion strategy known as adjoint full-waveform inversion

(FWI). By iteratively minimising the misfit between observed and modelled seismograms this

technique uses the full information content given by the waveforms. It thus promises a signifi-

cantly improved resolution compared to conventional methods.

A straightforward approach to perform the FWI is a global search of the parameter space, like a

neighbourhood algorithm. However, this is only possible for a simple subsurface characterised

by few unknown parameters, which strongly limits the field of application. On the assumption

of a 3D model described by a huge number of parameters, the global search is far too expensive

and cannot be conducted. Thus, in general, FWI is restricted to the use of a local optimisation

method, which converge towards the misfit minimum in the vicinity of the starting model. How-

ever, due to the high number of model parameters combined with a generally bad data coverage,

the problem becomes highly non-linear. Local inversion methods, therefore, bear the danger to

end up in a local minimum of the misfit function. A good starting model and thorough inversion

strategies are required for a successful inversion.

FWI of realistic models is computationally expensive and only feasible due to major advances in

computer technology. The most widely used optimisation methods in seismic FWI are gradient-

based algorithms, which update the model in the direction of the steepest descent of the misfit

function. Gradient directions can be implemented very efficiently with the adjoint approach

(e.g. Tarantola, 1984; Mora, 1987) and these methods are thus applicable even for larger prob-

lem sizes. More sophisticated is the class of Newton methods which take the Hessian, the

second derivative of the misfit function, into account. They lead to a better convergence and can

result in improved subsurface images. Still, the high computational costs make them unattrac-

tive for large inverse problems (Pratt, 1999). An alternative are quasi-Newton algorithms, such

as the L-BFGS method proposed by Byrd et al. (1995). It estimates the Hessian from changes

in the misfit gradient and can therefore be implemented at lower computational costs. Another

method successfully applied in FWI is the truncated Newton method, which approximates the
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Hessian from second order adjoint formula (Métevier et al., 2012; Fichtner & Trampert, 2011).

The adjoint method was originally formulated in the time domain (e.g., Tarantola, 1984; Mora,

1987). Additionally, in the 90’s frequency domain FWI was developed by the group of Pratt

(e.g., Pratt & Worthington, 1990; Pratt, 1990, 1999). In contrast to time domain FWI, wave-

fields are modelled and inverted only for few frequencies which corresponds to a limitation of

data. This can be of advantage, especially from the numerical point of view. To use advantages

of time-domain forward modelling and frequency inversion, a mixed approach was proposed

(Sirgue et al., 2008), which is referred to as time-frequency approach in this thesis. Hereby

modelling is performed with an efficient forward solver in time domain (e.g., Virieux, 1986;

Bohlen, 2002), whereas the inverse problem is solved for discrete frequencies in frequency do-

main. This can be particularly attractive for 3D FWI.

Of course, an accurate modelling of seismic wavefields is a basic requirement for a successful

FWI. This implies a good physical model representation of the subsurface. The sensitivity of the

waveforms to different parameter classes offers the opportunity to perform multi-parameter in-

versions of complex 3D structures. However, with an increase of model parameters, the nonlin-

earity of the inverse problem is enforced and the computational costs rise. Hence, depending on

the problem, it is common to use certain approximations of the wave equation. A main area of

FWI application is the marine environment. Here wave propagation is mainly approximated us-

ing the acoustic and visco-acoustic wave equation. which only considers compressional waves.

For land seismic, the abundance of prominent shear waves and surface waves favours an in-

version, involving the according parameters, such as compressional-wave velocity, shear-wave

velocity and density. Depending on the subsurface, attenuation and anisotropy need to be in-

cluded. Still, these parameter classes are very challenging to invert for (Virieux & Operto, 2009)

and are often integrated only as passive parameters in the forward simulation.

Many applications are still restricted to the 2D approximation which assumes a 2D model

of the subsurface. This is especially the case for elastic applications (e.g. Sheen et al., 2006;

Sears et al., 2008; Brossier et al., 2009; Groos et al., 2012; Köhn et al., 2012). The main reason

is the dramatic increase in computational costs for a 3D compared to a 2D FWI. Additionally,

data sets are often recorded along single profiles. Nevertheless, the 2D approximation is unable

to explain 3D scattering arising from 3D heterogeneous subsurface structures. Furthermore,

only 2D images of the 3D subsurface are reconstructed. Thus, today, an increasing number of

acoustic FWI are performed in 3D and satisfactory results were obtained for real data applica-

tions, such as Plessix (2009), Sirgue et al. (2010a), Vigh et al. (2011) and Etienne et al. (2012).

A study by Warner et al. (2013) even includes anisotropy. By contrast, studies on the imple-

mentation and application of 3D elastic FWI as performed by Epanomeritakis et al. (2008),

Fichtner et al. (2009), Castellanos et al. (2011), Guasch et al. (2012) and Butzer et al. (2013)

are rare and computationally still very expensive.

The main objective of this thesis is the implementation of a 3D elastic FWI and its applica-

tion to multi-parameter problems with complex 3D structures. The implementation 3D-AWAIT

(3D-Adjoint WAveform Inversion Tool) is based on the conjugate gradient method using the

time-frequency approach. It is optimised regarding runtime and storage to enable the solution

of the large 3D inverse problem. To improve the performance in case of complex models I

tested a preconditioning technique based on a diagonal Hessian approximation and the L-BFGS

method. Simple toy examples are used for validation of the code. Additionally, the performance
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of 3D FWI is presented for two larger applications, including the inversion of small-scaled 3D

heterogeneities in transmission geometry and the inversion of sedimentary layers using a sur-

face acquisition geometry.

Chapter 2 will start with an overview of elastic wave propagation. The concept of FWI and

local optimisation methods are introduced. Afterwards I focus on the conjugate gradient ap-

proach applied for the 3D elastic wave equation. The gradient calculations for different elastic

parameters are derived in time and frequency domain.

Chapter 3 presents the implementation of the theoretical aspects discussed in chapter 1. The

modelling of wavefields is performed with a finite-difference solver in time domain, whereas

the gradient calculation is conducted in frequency domain. The implementation and the main

advantages of this time-frequency approach are discussed. Additionally, the complete workflow

and its realisation is presented and visualised by means of a toy example.

Chapter 4 shows the application of 3D elastic FWI on small-scale heterogeneities of crystalline

structures, described by a random medium model in transmission geometry. I compare a 2D and

a 3D acquisition geometry for a simple checkerboard model and the random medium model.

Additionally the influence of 3D scattered waves on the results of a 2D FWI is shown.

Chapter 5 deals with the preconditioning of the gradient with a diagonal Hessian approxima-

tion. Both theory and implementation of the diagonal Hessian approximation are explained and

tested for a simple box model in transmission geometry. Finally, the approach is applied to a

complex surface-geometry model of 3D sedimentary layers.

Chapter 6 extends the conjugate gradient approach with the L-BFGS method. It comprises

theoretical considerations, implementation and validation for a simple box example. Finally,

first inversion results with L-BFGS of the surface-geometry model are presented.

Chapter 7 gives a summary and conclusion of my thesis.
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Chapter 2

Theory of full-waveform inversion

In this chapter I will introduce the theory of full-waveform inversion (FWI). For a general under-

standing I start with a short section about wave propagation in elastic medium. This is followed

by a general introduction of the seismic inverse problem in FWI. I will give an overview about

the underlying concept of Newton and gradient methods as local optimisation methods before

concentrating on the gradient approach, which will be discussed in detail. From perturbation

theory, I derive the expressions for the gradients in time domain, which are calculated with

the adjoint method. Additionally, gradient equations in frequency domain and for different

parametrisation are formulated.

2.1 Wave propagation in elastic media

FWI aims to find the subsurface model by minimising the misfit between the observed and mod-

elled data. In order to do this, a sufficiently accurate description of seismic wave propagation

is essential. In this section, I will give an overview about seismic wave propagation in a three-

dimensional elastic medium. For more detailed information I refer to the general literature, like

such as Lay & Wallace (1995) and Aki & Richards (1980).

I consider a small subvolume of an elastic continuum. Forces can either act within the subvol-

ume as body forces or on its surface as contact forces. If we consider an internal plane with

surface S intersecting the medium, the contact forces at one point P of the plane are described

by the traction vector ΣΣΣ defined as

ΣΣΣ(n) = lim
∆S→0

(

∆F

∆S

)

, (2.1)

where ∆F denotes the force acting on the small element with surface ∆S around point P and

n is the normal on this surface element. As a general description, the nine component stress

tensor τi j (i=1,2,3; j=1,2,3) is introduced. Its elements define the stress components acting on

the Cartesian coordinate planes. For the arbitrary plane with normal n the i-th component of the

traction vector is then calculated as

Σi = τi jn j (2.2)

In this and the following theory I use the Einstein notation and sum up over double indices.

Forces acting on an elastic medium also cause deformation and thus spatial gradients of the

11
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displacement u(x). For small displacement and strain this internal deformation can be described

by the symmetric, nine-component infinitesimal strain tensor εi j given by

εi j =
1

2

(

∂ui

∂x j
+

∂u j

∂xi

)

. (2.3)

The relationship between stress and strain for linear elasticity is described by Hook’s law

τi j =Ci jklεkl, (2.4)

which is mostly valid for the materials of the subsurface.

The third-order stiffness tensor Ci jkl contains 21 independent components to describe the gen-

eral anisotropic medium. In case of an elastic, isotropic medium the tensor can be reduced to

two elasticity coefficients, the Lamé parameters λ and µ:

Ci jkl = λδi jδkl +µ(δikδ jl +δilδ jk). (2.5)

Wave propagation in continuous media follows the equation of motion, which can be derived

from Newton’s second law. It states that the change in momentum equals the sum of all forces:

∫

V
fdV +

∫

S
ΣΣΣ(n)dS =

∂

∂ t

∫

V
ρ

∂u

∂ t
dV. (2.6)

f denotes the body force per unit volume and ΣΣΣ the traction acting on the surface element dS.

Rewriting the equation by using equation 2.2 and Gauss’s theorem we find

ρ
∂ 2ui

∂ t2
= fi +

∂τi j

∂x j
. (2.7)

The relation between stress and displacement is then given by Hook’s law (equation 2.4). To-

gether with suitable boundary and initial conditions, the equations 2.7 and 2.4 describe the wave

propagation in elastic medium caused by an external force described as body force f and can

thus be used for the modelling of seismic waves. This formulation is known as displacement-

stress formulation.

For the isotropic medium equation 2.4 simplifies with the use of equation 2.5 to

τi j−λΘδi j +2µεi j = 0. (2.8)

The trace of the stress tensor Θ is given as Θ = τxx + τyy + τzz.

Wave propagation can also be expressed using a velocity-stress formulation. This formulation

uses the particle velocity v = ∂u/∂ t as wavefield parameter. For the elastic isotropic medium

wave propagation due to a force f can then be described as first order differential equations:

ρ
∂vi

∂ t
= fi +

∂τi j

∂x j
,

∂τi j

∂ t
−λ

∂Θ

∂ t
δi j +2µ

∂εi j

∂ t
= 0,

∂εi j

∂ t
=

1

2

(

∂vi

∂x j

+
∂v j

∂xi

)

.

(2.9)
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2.2 The inverse problem

Seismic tomography aims to derive properties of the subsurface from seismic data observed at

different receiver locations for a number of shots. Thus, model parameters in model space are

determined from measurements in data space. The seismic inverse problem is generally under-

determined as only limited data from restricted receivers and sources is available to deduce a

3D subsurface model. Conventional methods additionally only use few information from the

seismograms, like travel times or dispersion curves. The full-waveform inversion, by contrast,

uses the full information content given in the waveforms and can consequently offer a much

better resolved image of the 3D subsurface structures. By minimising the misfit between the

observed and some modelled data it aims to determine the optimal model, which explains the

observed data best. The direct way is to apply a global search, like the Monte Carlo approach

to find the global misfit minimum. However, this is computationally accomplishable only for a

very limited set of model parameters and thus not suited for the general three dimensional mul-

tiparameter model. Therefore, local optimisation methods, like Newton methods and gradient

methods are commonly used in FWI, which can be implemented very efficiently. These meth-

ods search for a minimum of the misfit function in the vicinity of the starting model. However,

the seismic inverse problem is generally highly nonlinear and the misfit function is not smooth,

but characterised by local minima. A local inversion method bears the danger to end up in one

of the local minima, which is a major problem in FWI. Thus, a sufficiently accurate starting

model is essential for a successful inversion. Additionally, a multistage procedure, where data

information is included piecewise, can help to mitigate the nonlinearity.

2.3 The concept of Newton and gradient methods

In the following, I will describe the idea of Newton and gradient methods for the solution of

the optimisation problem. Detailed description of these methods are for example given by

Pratt et al. (1998) and Nocedal & Wright (1999). I minimise the misfit function E, which is

a measure for the fit between modelled and observed data. A Taylor expansion of the misfit

function E around the model parameters m = (m1, ...,mn)
T leads to:

E(m+δm) = E(m)+δmT ∇mE(m)+
1

2
δmT Hδm+O(|δm|3) (2.10)

with the misfit gradient as ∇mE(m) = ( ∂
∂m1

E(m), ..., ∂
∂mn

E(m))T . H is the Hessian operator,

defined as the second derivative of the misfit with respect to the model parameters, i.e.,

Hi j =
∂ 2E(m)

∂mi∂m j

(i = 1, ...n) ( j = 1, ...n). (2.11)

The index n is the total number of model parameters. We use a quadratic approximation and

neglect terms higher than second order in equation 2.10, which corresponds to a linearisation

of the inverse problem. To find the minimum of the misfit function the derivative of equation

2.10 with respect to the model perturbation δm is set zero. This gives us the following model

update:

δm =−H−1∇mE (2.12)
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which is used in the full Newton method. In case of a linear inversion problem, an update with

δm would lead into the minimum of the misfit function within one step. Non-linear inversion

problems, like FWI are linearised step-wise and iteratively approach the minimum. Then, the

Newton method iteratively updates the model in iteration k+1 with

mk+1 = mk−H−1
k ∇mEk. (2.13)

The use of the Hessian, which includes information of the second derivative of the misfit func-

tion leads to a good convergence. However, the calculation and inversion of the large n× n

Hessian matrix is highly expensive and not possible for larger scaled problems, as they occure

in FWI. Hence, different approximations of the full Newton method developed. The Gauss-

Newton method uses an approximation of the Hessian, known as the “approximate Hessian”

(Pratt et al., 1998). It is still computationally costly, as it calculates the full approximate Hes-

sian matrix with n×n elements. Additionally, quasi-Newton methods, like the L-BFGS method

and the truncated Newton method were developed. They do not calculate the Hessian matrix

directly, but use information about the change of the gradients and model parameters to include

information about the second derivative of the misfit function. These methods are computation-

ally less expensive and still offer a superlinear convergence (Nocedal & Wright, 1999).

Another class of optimisation methods are the gradient methods, where the search direction

shows in the direction of steepest descent of the misfit function. The gradient method uses the

following simplified update

mk+1 = mk−αkpk with pk = P∇mEk. (2.14)

In this case, the gradient is not scaled and preconditioned by the inverse Hessian. Consequently,

a preconditioning operator P and the estimation of an appropriate step length α are required for

the inversion to succeed. The search direction is given by the preconditioned gradient pk. The

corresponding convergence is low compared to the Newton method. Nevertheless, gradient

methods can be implemented very efficiently and require less computational operations per

iteration and less storage than Newton and also quasi Newton methods. Thus, they are suitable

for larger FWI applications, as they occure in 3D FWI. Some improvement in convergence of

the gradient method is gained by using the conjugate gradient ck as search direction (Mora,

1987), which is given by

ck = P∇mEk +βkck−1. (2.15)

This stabilises the inversion by adding some part of the previous gradient. The scalar β can be

estimated with the Polak-Ribiére method as

βk =
pT

k (pk−pk−1)

||pk−1||2
for βk > 0; βk = 0 for βk < 0. (2.16)

The distinction of cases ensures, that the model is updated in the decent direction of the misfit

function. The new model is updated by

mk+1 = mk−αkck. (2.17)

In the following I will concentrate on the theory of the conventional conjugate gradient method
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for FWI in more detail. Its implementation and performance for 3D elastic FWI are shown

in the chapters 3 and 4, respectively. For an optimisation of the conventional conjugate gradi-

ent approach it is sensible to include some information about the Hessian in the inversion. In

chapter 5, I will show the implementation and application of an approximation of the diagonal

Hessian for preconditioning. Finally, in chapter 6 the effects of the L-BFGS approach in 3D

FWI are investigated.

2.4 Calculation of the misfit gradient

I consider the L2-norm based misfit function E

E(m) =
1

2
∑
s

∫ T

0
dt ∑

r

δui(xs,xr, t)
2, (2.18)

with the i-th component of the displacement residual δui = ui−ui,obs at source position xs and

receiver position xr. uobs denotes the observed data, whereas u denotes the modelled data. The

squared residuals are summed up over all sources s and receivers r and integrated over time t

for the full record length T . In this and the following equations I use the Einstein notation to

sum up over double indices.

Differentiating E with respect to the model parameter m j leads to

∂E(m)

∂m j

= ∑
s

∫ T

0
dt ∑

r

∂ui

∂m j

δui (2.19)

Gradients can be calculated with the adjoint method, which can be derived from perturbation

theory (e.g. Tarantola, 1984; Mora, 1987). I consider the linearised forward problem and cal-

culate a small perturbation in data space δu resulting from a small perturbation in model space

δm, expressed as

δu = Dδm and δui =

∫

V
dV (x)

∂ui

∂m j
δm j. (2.20)

The kernel of the linear operator D is given by the Fréchet derivatives ∂ui/∂m j. The adjoint

problem can be described as

δm′ = D∗δm and δm′j = ∑
s

∫ T

0
dt ∑

r

∂ui

∂m j
δui. (2.21)

To derive the adjoint equation, I used the fact that the kernels of the linear operator D and its

adjoint D∗ are the same (Tarantola, 1984; Mora, 1987). By comparing equation 2.21 and equa-

tion 2.19 it is visible that the gradient of the misfit function describes the transformation from

data space to model space corresponding to a small perturbation δu as given in equation 2.21

and that ∇mE = δm′.
I now turn to the seismic inverse problem and consider a small model perturbation (δρ ,δCi jkl)

which causes a perturbation in displacement (δu), in stress (δτi j) and in strain (δεkl). To es-

timate the effects of the disturbed medium on the wavefield, I insert the perturbations into the

second order wave equation (2.7) and Hook’s law (equation 2.4) and find:

(ρ +δρ)
∂ 2

∂ t2
(ui +δui)−

∂

∂x j
(τi j +δτi j) = fi (2.22)
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(τi j +δτi j)− (Ci jkl +δCi jkl)(εkl +δεkl) = 0. (2.23)

Taking only first order perturbations into account the wave equations of the perturbed wavefield

can be written as

ρ
∂ 2δui

∂ t2
− ∂δτi j

∂x j
= ∆ fi with ∆ fi =−δρ

∂ 2ui

∂ t2
(2.24)

and

δτi j−Ci jklδεkl = ∆Ti j with ∆Ti j = δCi jklεkl. (2.25)

Thus, in first order approximation, the model perturbations cause a secondary wavefield, which

propagates through the unperturbed medium and is described in the form of an elastic wave

equation. The new source terms ∆ fi and ∆Ti j, also known as “secondary Born sources”, contain

the model perturbations.

The solution of the elastic wave equation can be expressed in terms of the elastic Green’s func-

tions Gi j (equation A.2). For the perturbation δui this results in (e.g. Wu & Aki, 1985; Mora,

1987)

δui(xr, t) =

∫

V
dV

∫ T

0
dτGi j(xr, t;x,τ)∆ f j(x,τ)−

∫

V
dV

∫ T

0
dτ

∂

∂xk

Gi j(xr, t;x,τ)∆Tjk(x,τ).

(2.26)

In the following I will consider only the isotropic case, where Ci jkl can be rewritten with the

Lamé parameters λ and µ as given in equation 2.5. In this case, ∆Ti j becomes

∆Ti j = δi jεkkδλ +(εi j + ε ji)δ µ = δi j
∂uk

∂xk

δλ +

(

∂ui

∂x j
+

∂u j

∂xi

)

δ µ. (2.27)

Hereby we used equation 2.3 to express stress values with displacement derivatives. If I insert

the forces ∆Tjk and ∆ f j from equations 2.24 and 2.27 into equation 2.26 the equation has the

form:

δui(xr, t) =

∫

V
dVK

ρ
i δρ(x)+

∫

V
dVKλ

i δλ (x)+

∫

V
dV K

µ
i δ µ(x). (2.28)

Comparing this equation to equation 2.20 it becomes clear, that K
ρ
i , Kλ

i and K
µ
i are the Fréchet

derivative kernels ∂ui/∂m j. They are given by

∂ui(xr, t)

∂ρ(x)
= K

ρ
i =−

∫ T

0
dτGi j(xr, t;x,τ)

∂ 2u j(x,τ)

∂τ2
=−

∫ T

0
dτ

∂

∂τ
Gi j(xr, t;x,τ)

∂u j(x,τ)

∂τ

∂ui(xr, t)

∂λ (x)
= Kλ

i =−
∫ T

0
dτ

∂

∂xk

Gi j(xr, t;x,τ)δ jk

∂up(x,τ)

∂xp

=−
∫ T

0
dτ

∂

∂x j

Gi j(xr, t;x,τ)
∂up

∂xp

∂ui(xr, t)

∂ µ(x)
= K

µ
i =−

∫ T

0
dτ

∂

∂xk

Gi j(xr, t;x,τ)

(

∂u j(x,τ)

∂xk

+
∂uk(x,τ)

∂x j

)

(2.29)

In the expression of K
ρ
i , the time derivatives could be interchanged as a property of convolution.

The Fréchet derivatives (equation 2.29) can now be inserted into the gradient equations 2.19 and
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I find:

∂E(m)

∂ρ(x)
= ∑

s

∫ T

0
dt ∑

r

[

−
∫ T

0
dτ

∂

∂τ
Gi j(xr, t;x,τ)

∂u j(x,τ)

∂τ

]

δui(xs,xr, t)

∂E(m)

∂λ (x)
= ∑

s

∫ T

0
dt ∑

r

[

−
∫ T

0
dτ

∂

∂x j

Gi j(xr, t;x,τ)
∂up(x,τ)

∂xp

]

δui(xs,xr, t)

∂E(m)

∂ µ(x)
= ∑

s

∫ T

0
dt ∑

r

[

−
∫ T

0
dτ

∂

∂xk

Gi j(xr, t;x,τ)

(

∂u j(x,τ)

∂xk

+
∂uk(x,τ)

∂x j

)]

δui(xs,xr, t).

(2.30)

To simplify these equations, I define a function ΨΨΨ(x,τ) which components are given as

Ψ j(x,τ) = ∑
r

∫ T

0
dtGi j(xr, t;x,τ)δui(xr, t). (2.31)

Then, the equations 2.30 become

∂E(m)

∂ρ(x)
=−∑

s

∫ T

0
dτ

∂Ψ j(x,τ)

∂τ

∂u j(x,τ)

∂τ

∂E(m)

∂λ (x)
=−∑

s

∫ T

0
dτ

∂Ψ j(x,τ)

∂x j

∂up(x,τ)

∂xp

∂E(m)

∂ µ(x)
=−∑

s

∫ T

0
dτ

∂Ψ j(x,τ)

∂xk

(

∂u j(x,τ)

∂xk

+
∂uk(x,τ)

∂x j

)

.

(2.32)

The wavefield Ψ j in equation 2.31 describes the adjoint or back-propagated wavefield. We use

the spatial reciprocity of the Green’s function (equation A.3) and estimate the wavefield at a

time T − τ as

Ψ j(x,T − τ) = ∑
r

∫ T

0
dtG ji(x, t;xr,T − τ)δui(xr, t). (2.33)

We now transform the time t to t ′ = T − t (dt ′ =−dt) and apply time reciprocity of the Green’s

function (equation A.4) which results in

Ψ j(x,T − τ) = ∑
r

∫ T

0
dt ′G ji(x,τ;xr, t

′)δui(xr,T − t ′). (2.34)

Thus, the back-propagated wavefield at time T−τ is caused by the time-reversed residual wave-

field δui acting at receiver position xr. In this case, the initial condition of Ψ j(x,T ) = 0 is

fulfilled. This adjoint field can be modelled with the elastic forward solver. The gradients can

then be estimated as a zero-lag cross-correlation between the forward wavefield and the back-

propagated wavefield (equation 2.32). The gradient of µ can be slightly reformulated to find

the final symmetric gradient expressions in time domain:

∂E(m)

∂ρ(x)
=−∑

s

∫ T

0
dτ

∂Ψ j(x,τ)

∂τ

∂u j(x,τ)

∂τ

∂E(m)

∂λ (x)
=−∑

s

∫ T

0
dτ

∂Ψ j(x,τ)

∂x j

∂up(x,τ)

∂xp

∂E(m)

∂ µ(x)
=−1

2
∑
s

∫ T

0
dτ

(

∂Ψ j(x,τ)

∂xk

+
∂Ψk(x,τ)

∂x j

)(

∂u j(x,τ)

∂xk

+
∂uk(x,τ)

∂x j

)

.

(2.35)
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2.5 The gradient in frequency domain

It is also possible to perform the gradient calculation in frequency domain. This brings several

advantages in FWI, which will be discussed in detail in the next chapter.

Using Fourier transforms the wavefield in time domain u(x, t) can be transformed into frequency

domain ũ(x,ω) and backwards with

ũ(x,ω) =
1√
2π

∫ +∞

−∞
u(x, t)e−iωtdt u(x, t) =

1√
2π

∫ +∞

−∞
ũ(x,ω)eiωtdω (2.36)

Thus, we get complex valued wavefields in frequency domain. The gradient in time domain

(equations 2.35) is a zero-lag correlation of the form

∫ +∞

−∞
dtA(t)B(t) =

∫ +∞

−∞
dt

∫ +∞

−∞
dω

1√
2π

Ã(ω)eiωtB(t) =

=
∫ +∞

−∞
dωÃ(ω)

∫ +∞

−∞
dt

1√
2π

B(t)eiωt =

=

∫ +∞

−∞
dωÃ(ω)B̃(−ω)

B(t)∈R
=

∫ +∞

−∞
dωÃ(ω)B̃∗(ω)

(2.37)

Thus, in frequency domain, the zero-lag cross-correlation of two real signals A and B in time

domain is replaced by a multiplication of one signal with the conjugate of the other signal

integrated over the full frequency spectra in frequency domain. This is now applied to the time-

domain gradient expressions in 2.35. The time integration
∫ T

0 dτ can be extended to
∫ +∞
−∞ dτ if

the condition of u(x, t) = 0 and ∂u(x, t)/∂ t = 0 for t < 0 and t > T is fulfilled. In the density

gradient, the time derivatives each transform to frequency domain by multiplication with a

factor of iω . Spatial derivatives are not affected by the transformation. This results in:

∂E(m)

∂ρ(x)
= ∑

s

∫

dωRe[ω2ũi(x,ω)Ψ̃∗i (x,xs,ω)]

∂E(m)

∂λ (x)
=−∑

s

∫

dωRe

[

∂up(x,ω)

∂xp

∂Ψ∗j(x,ω)

∂x j

]

∂E(m)

∂ µ(x)
=−1

2
∑
s

∫

dωRe

[(

∂u j(x,ω)

∂xk

+
∂uk(x,ω)

∂x j

)(

∂Ψ∗j(x,ω)

∂xk

+
∂Ψ∗k(x,ω)

∂x j

)]

.

(2.38)

Hence, the simultaneous inversion of the full frequency spectra corresponds to the time domain

inversion. However, when applying frequency domain FWI the gradients are generally only

calculated for discrete frequencies (e.g. Pratt, 1999; Sirgue & Pratt, 2004; Brossier, 2011) as

∂E(m)

∂ρ(x)
= ∑

s

n f

∑
v=1

Re[ω2
v ũi(x,ωv)Ψ̃

∗
i (x,xs,ωv)]

∂E(m)

∂λ (x)
=−∑

s

n f

∑
v=1

Re

[

∂up(x,ωv)

∂xp

∂Ψ∗j(x,ωv)

∂x j

]

∂E(m)

∂ µ(x)
=−1

2
∑
s

n f

∑
v=1

Re

[(

∂u j(x,ωv)

∂xk

+
∂uk(x,ωv)

∂x j

)(

∂Ψ∗j(x,ωv)

∂xk

+
∂Ψ∗k(x,ωv)

∂x j

)]

.

(2.39)
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In this case, a group of n f discrete frequencies is inverted simultaneously in each iteration.

Even the use of a single frequency per iteration is possible (Sirgue & Pratt, 2004; Plessix, 2009;

Brossier, 2011). The inversion with a single frequency in frequency domain corresponds to the

inversion of monochromatic wavefields in time domain which are of the form

ui(x, t) = ũi(x,ωv)e
iωvt . (2.40)

By using a discrete frequency domain FWI, information is neglected compared to time domain

FWI. However, Sirgue & Pratt (2004) found, that a similar result can be achieved as long as

the wavenumber spectra is covered continuously during the discrete frequency inversion. Still,

an increased redundancy in the wavenumber spectra caused by denser frequency sampling or

time domain FWI can mitigate the nonlinearity of the inverse problem (Brossier et al., 2009).

This can especially lead to a better performance in case of complex wavefields, such as surface

waves (Virieux & Operto, 2009) or complex acoustic wavefields (Kurzmann, 2012).

2.6 The seismic velocity parametrisation

The choice of parametrisation influences the performance of multi-parameter FWI due to dif-

ferent sensitivities and coupling of the parameter classes. So far, we calculated the gradient

for the Lamé parameters λ , µ and the density ρ . Other possibilities include, for instance, the

seismic-velocities-parametrisation with compressional velocity vp, shear-wave velocity vs and

the density ρ or the parametrisation with seismic impedances and density. To study the effects

of parametrisation it is possible to analyse diffraction patterns of point scatterers as a function

of the scattering angle for different parametrisation (e.g. Tarantola, 1986; Forgues & Lambaré,

1997). These studies can give information about the coupling of the different parameters, and

thus show how successful the inversion can separate these parameters. The best behaviour for

reflection geometry was found with the seismic impedance parametrisation for small offsets and

the seismic velocity parametrisation for large offsets. The Lamé parametrisation, by contrast,

shows high ambiguities between its parameters especially for small offsets. In transmission

geometry the best parametrisation is the seismic velocity parametrisation, however, in this case,

the inversion is nearly not sensitive for changes in density. Another parametrisation study per-

formed by Köhn et al. (2012) tested how well perturbations of single parameters included as

crosses, triangles and squares in a homogeneous model can be resolved independently in a mul-

tiparameter inversion in reflection geometry. In this study they also found the best performance

for seismic velocity parametrisation or parametrisation by impedances. Overall, density shows

the highest ambiguity and is thus the most difficult parameter to resolve.

In this thesis I will concentrate on the seismic velocity parametrisation. The gradients for vp, vs

and ρ ′ can be derived from the gradients of λ , µ and ρ (equation 2.38). The relations between

the different parameters are given by

vp =

√

λ +2µ

ρ
vs =

√

µ

ρ
ρ ′ = ρ

λ = ρ ′(v2
p−2v2

s ) µ = ρ ′v2
s ρ = ρ ′

(2.41)
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For the gradients of vp, vs and ρ ′ we find by applying the chain rule

∂E

∂vp
=

∂E

∂λ

∂λ

∂vp
+

∂E

∂ µ

∂ µ

∂vp
+

∂E

∂ρ

∂ρ

∂vp

= 2ρvp
∂E

∂λ
∂E

∂vs

=
∂E

∂λ

∂λ

∂vs

+
∂E

∂ µ

∂ µ

∂vs

+
∂E

∂ρ

∂ρ

∂vs

=−4ρvs
∂E

∂λ
+2ρvs

∂E

∂ µ

∂E

∂ρ ′
=

∂E

∂λ

∂λ

∂ρ ′
+

∂E

∂ µ

∂ µ

∂ρ ′
+

∂E

∂ρ

∂ρ

∂ρ ′

= (v2
p−2v2

s )
∂E

∂λ
+ v2

s

∂E

∂ µ
+

∂E

∂ρ

(2.42)

Thus, the gradients for the velocity parametrisation can be calculated as linear combinations of

the Lamé-gradients. Note, that the density gradient depends on the choice of parametrisation.



Chapter 3

Implementation of 3D FWI

In this chapter I introduce the implementation of the 3D elastic full-waveform inversion (FWI)

code 3D-AWAIT (3D-Adjoint WAveform Inversion Tool). The aim of 3D-AWAIT is the multi-

parameter reconstruction of 3D subsurface structures in high resolution. Hereby, it inverts for

the elastic parameters, like the wave velocities vp and vs and density. Anisotropy and attenua-

tion are not taken into account. To minimise the misfit the code employs the conjugate gradient

approach. Gradients are calculated using the adjoint method. The theory underlying this imple-

mentation was discussed in chapter 2.

3D elastic FWI is a very large-scaled problem and only possible due to computational advance-

ments in recent years. Hence, the implementation has to be optimised regarding runtime and

storage costs. This is realised by using a time-frequency approach where the simulation of

wavefields is performed in time domain, whereas gradients are calculated in frequency domain.

The characteristics of this approach, as well as the pros and cons will be discussed in this chap-

ter.

I will start by introducing the forward solver, which is a key ingredient for a successful and

efficient FWI. Afterwards the implementation of the 3D FWI is shown by means of a workflow

followed by a detailed discussion of the individual inversion steps.

3.1 Forward modelling

3D elastic FWI requires a forward solver, which accurately simulates seismic wave propagation

in the elastic media. Otherwise artefacts and deviations in the inversion result can be caused

by fitting modelling errors in the wavefield. Additionally, a computationally efficient forward

solver is required, because the inversion process is characterised by a high number of forward

modellings and the FWI runtime is thus mainly influenced by the runtime spend for wavefield

modelling.

In this implementation I use the elastic version of the time-domain finite-difference solver

“SOFI3D” (Bohlen, 2002) for wavefield modelling, which very efficiently and fast solves the

3D elastic wave equation. The code discretizes the velocity stress formulation of the elastic

wave equation on a staggered grid (Virieux, 1986; Levander, 1988). It is able to accurately

model wave propagation in 3D complex media. In the following, I will give a short overview

about finite-difference modelling in general and about the main characteristics of this forward

21
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solver.

3.1.1 The finite-difference approach

To simulate wave propagation, the FD code numerically solves the elastic wave equation by ap-

proximating partial derivatives by finite differences. We use the description of wave propagation

exited by a point source in the velocity-stress formulation as introduced in section 2.1:

ρ
∂vi

∂ t
= fi +

∂τi j

∂x j
,

∂τi j

∂ t
−λ

∂Θ

∂ t
δi j +2µ

∂εi j

∂ t
= 0,

∂εi j

∂ t
=

1

2

(

∂vi

∂x j

+
∂v j

∂xi

)

.

(2.9)

For the calculation of partial derivatives, the wavefield parameters and model parameters are

discretised on a staggered-grid system (Virieux, 1986; Levander, 1988). The 3D staggered-grid

system is sketched in Figure 3.1. We use a Cartesian grid (x,y,z)=(i,j,k). The model parameters

λ , µ and ρ and the diagonal stress components σii are localised on the full grid points, whereas

velocities and off-diagonal stress components are calculated on a grid which is half a grid point

shifted to the original system. Compared to a conventional Cartesian grid, the staggered grid

enables a larger grid spacing for the same level of accuracy.

The derivatives are approximated by centered finite differences. The easiest finite-differences

are of second order, where the two adjacent grid points with a grid space dh are used to calculate

the derivative between these grid points as follows

∂ f (x)

∂x
|i+1/2 ≈

f [i+1]− f [i]

dh
(3.1)

The consideration of additional grid points in higher order schemes can increase the accuracy

and thus enable a larger grid spacing. However, it needs to be considered, that the number of

operations increases and the parameters which need to be interchanged during MPI communi-

cation rises. Additionally, high order finite-difference operators can cause problems in case of

large discontinuities, like tunnels. The SOFI code uses second order temporal and second to

12th order spatial finite difference operators, which can be chosen according to the problem.

To solve the system of equations 2.9 two steps are performed for each time step:

• velocity updates are calculated using spatial stress derivatives and added to the previous

velocity values

• stress value updates are calculated using spatial velocity derivatives and Hook’s law and

summed to the previous stress values

Hereby the summation of the update values over all time steps accounts for the time derivatives

of velocity and stress values.
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Figure 3.1: Staggered-grid coordinate system used for 3D FD modelling in SOFI3D
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3.1.2 Grid dispersion and stability

To mitigate numerical dispersion and grid anisotropy of the wavefield the grid spacing must

be chosen sufficiently small. For a fourth-order spatial and second-order temporal scheme the

criterion

dh <
λmin

6
=

vmin

6 fmax

(3.2)

ensures a wavefield error of less than 5% (Bohlen, 2002). It depends on the minimum wave-

length λmin, defined by the minimum velocity vmin and the maximum frequency fmax. Higher

order FD-operators enable a larger grid spacing.

In order to ensure stability of the simulation, the temporal spacing must satisfy the Courant-

Friedrichs-Levy (CFL) stability criterion (Courant et al., 1967). It is related to the maximum

velocity vmax and is given by

dt <=
dh

h
√

3vmax

. (3.3)

The constant factor h amounts to 7
6

for a Taylor operator of fourth order.

3.1.3 Boundary conditions

C-PML boundary condition

The finite-sized models used in the simulations require the implementation of boundary con-

ditions, which prevent reflections at the boundaries travelling back into the medium. A good

suppression of boundary reflections is especially important in full-waveform inversion, where

waveforms need to be as accurate as possible. This is generally done by surrounding the model

with a boundary area, in which waves are damped. A straightforward method is the use of ab-

sorbing boundaries, where velocities within the boundary are multiplied with an exponentially

decaying factor (Cerjan et al., 1985). However, for a sufficient damping, the thickness of the

absorbing boundary needs to be at least 30 grid points and the model size needs to be increased

accordingly. Additionally, problems occure in case of grazing incidence of the waves.

I implemented another technique in SOFI, which is the use of convolutional perfectly matched

layers (C-PMLs) (Berenger, 1994; Komatitsch & Martin, 2007), which have shown very good

performance in seismic modelling. For a continuous medium, this method is characterised by a

zero reflection coefficient between medium and boundary layer for all angles and frequencies.

I will shortly discuss the concept of the original PMLs and of C-PMLs and refer to the work of

Collino & Tsogka (2001) and Komatitsch & Martin (2007) for more details.

For the original PMLs a boundary in x-direction is considered, with a damping function of

dx(x)> 0 within the boundary layer. By introducing a new complex coordinate x′ with

x′ = x− i

ω

∫ x

0
dx(s)ds

∂

∂x′
=

iω

iω +dx

∂

∂x
=

∂

sx∂x
(3.4)

an exponentially decaying plane wave solution within the boundary is generated:

Ae−i(kx−ωt)e
kx
ω

∫ x
0 dx(s)ds. (3.5)

The vector k denotes the wave number. This is done similarly for boundaries in y- and z-

directions. In case of a continuous medium, di can be chosen high enough to reach strong
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damping within the boundary area. After discretisation the reflection coefficient is no longer

zero and very high damping functions cause reflections at the PML-boundaries. Still, it needs

to be chosen large enough to ensure sufficient damping within the boundary area.

The extent of damping depends on the angle of incidence and is best for waves of normal

incidence. To improve the method in case of grazing incidence, convolutional PMLs (C-PMLs)

were introduced in elastodynamics by Komatitsch & Martin (2007). A stronger attenuation of

waves entering the C-PML-boundary can be achieved by introducing two additional real C-PML

coefficients, κx and αx and rewrite sx in equation 3.4 as

sx = κx +
dx

αx + iω
(3.6)

For the implementation of the C-PML boundaries I follow the approach of Komatitsch & Martin

(2007). C-PML layers are implemented by introducing memory variables for the spatial deriva-

tives of velocities and stresses to perform the complex coordinate transformation ∂/∂x →
∂/∂x′. Thus, additional storage for the memory variables and the vectors of the C-PML co-

efficients needs to be provided.

The C-PML coefficients are chosen according to Komatitsch & Martin (2007). Hereby αi is a

linear function, which is proportional to the dominant frequency of the wavefield and di is a

quadratic function, which is proportional to the maximum velocity at the boundaries and κi is a

scalar >= 1.

In Figure 3.2 I show a comparison of C-PML and absorbing boundary for a simple homoge-

neous model. The model contains a boundary area of 30 m thickness which equals 30 gridpoints.

The source is a vertical point source excited at (x,y,z)=(40 m,40 m,40 m) and is relatively close

to the boundary at all sides. Thus, waves enter the boundary area at low angles. A snapshot of

the vertical wavefield is plotted for two exemplary times for the absorbing boundary in a) and

b) and for the C-PML boundary in c) and d). The amplitudes are normalised to their maximum

value and clipped at ±20% to see the boundary reflections. For the absorbing boundaries, I

observe a distortion of the wavefronts at time 1 and strong boundary reflections, which reach

few percent of the absolute value in the inner model at time 2. The C-PMLs by contrast show

no distortion of the wavefronts and very low boundary reflections of less than 0.1% of the max-

imum vz amplitude in the inner model.

This example confirms the result by Collino & Tsogka (2001) and Komatitsch & Martin (2007)

who showed the very good damping abilities of the (C-)PML layers. In contrast to absorbing

boundary conditions, a thickness of 10-20 grid points is sufficient for the C-PML boundary,

so that the model size becomes significantly smaller, especially in 3D. Hence, even though

the number of operations increases from absorbing to C-PML boundary, the computations can

become more efficient.

Free surface condition

Seismic measurements are often carried out along the earth’s surface and free surface condi-

tions need to be integrated in the forward modelling. At the free surface, the vertical stress

components σxz,σyz and σzz are zero. This is implemented implicitly in SOFI by using the mir-

roring technique described by Levander (1988). The implementation only allows for planar free

surfaces.
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Figure 3.2: Comparison vz snapshots of PML and absorbing boundary (ABS) for homogeneous

model at z = 40m, normalised to their maximum value: a) ABS at time 1, b) ABS at time 2, c)

C-PML at time 1 and d) C-PML at time 2



CHAPTER 3. IMPLEMENTATION OF 3D FWI 27

3.1.4 Parallelisation

Figure 3.3: Subdivision of model area into sub-models with node to node communication within

the padding areas (from: Bohlen (2002))

FWI requires a large number of forward modellings, and thus a fast and efficient forward solver.

For 3D models, this cannot be provided by single processors or even on single workstations.

Even for relatively small to medium sized models the inversion requires large numbers (typi-

cally several hundreds to thousands) of processors. Consequently, the code needs to perform

well on large computer clusters.

The SOFI code is optimised for parallel computing architectures, using the message passing

interface (MPI) library specification (Bohlen, 2002). The time-domain forward solver allows

3D domain decomposition. In each spatial direction the model is subdivided into sub-models,

which are assigned to individual processors. One processor performs the wavefield calculations

described in section 3.1.1 in its sub-model. To calculate the finite-difference operators for the

spatial derivatives adjacent to the sub-model boundaries, the sub-models overlap in so-called

padding layers. Here wavefield parameters are exchanged by node to node communication be-

tween the processors (Figure 3.3). The thickness of these padding layers depends on the order

of FD operator. In case of 4th spatial order, the sub-models are extended by two grid points. Of

course, exchange times increase with increasing order of the FD operators, which needs to be

considered for higher order FD-modelling.

The domain decomposition is maintained during the whole inversion process and thus enables a

good performance of 3D-AWAIT on large computer clusters like the JUROPA cluster in Jülich

and the Cray XE6 at HLRS in Stuttgart.
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3.1.5 Single frequency transformation of wavefields

In 3D-AWAIT, I implemented the gradient calculation in frequency domain, even though I ap-

ply the time-domain forward solver SOFI. The gradient calculation is performed for few dis-

crete frequencies and requires the frequency-domain forward and adjoint wavefields for these

frequencies. I follow the approach by Sirgue et al. (2008) and use the discrete Fourier transfor-

mation

Ãi(x,ω) =
nt

∑
l=0

exp(iωl∆t)Ai(x, l∆t)∆t, (3.7)

to extract the monochromatic wavefields, where nt is the number of timesteps, ∆t the time

sampling and Ai a wavefield parameter. The discrete Fourier transformation is performed on the

fly, summing up Fourier summands of Ai in each time step. Therefore, no storage of the time

domain wavefields at different time steps is required. Furthermore, the number of additional

operations is low, as long as the transformation is only performed for few frequencies. Thus,

the change from time to frequency domain can be achieved at low extra costs.

3.1.6 Filtering of seismograms

The inversion strategies can require the filtering of wavefields and seismograms. To implement

this I added the cseife library written by Erhard Wielandt. Filtered wavefields are generated by

applying a filter to the source wavelet. Additionally seismograms, like the observed data can be

filtered directly within the inversion. The cseife library offers different kinds of filters, including

lowpass, highpass and bandpass butterworth filters of diverse orders. As a standard, the lowpass

butterworth filter of 4th order is used in 3D-AWAIT.

3.2 Workflow

The workflow shown in Figure 3.4 should provide an overview of the 3D-AWAIT inversion

code. The steps shown in the workflow are performed within each iteration k. The input in each

iteration is the model of the previous iteration mk−1, which corresponds to the starting model

in the first iteration, and the observed data. Using this input, the gradient of the misfit function

is computed, preconditioning is applied and the conjugate gradient direction is calculated. Fi-

nally a line search for the step length calculation is performed and the model is updated. The

following sections will provide a detailed descriptions of the individual steps.

The different steps of the inversion will be illustrated by means of a simple toy example, which

I shortly introduce here. The model is small with 100× 100× 120 grid points in x-, y- and

z-direction, respectively and a grid spacing of 1m. A box of the size of 30m×25m×20m with

increased velocity vp and vs and density ρ is inserted into homogeneous media, as can be seen

in Figure 3.5. The acquisition geometry is a transmission geometry with nine sources and 225

receivers each arranged in a x-y-directed plane as indicated in the plot. The sources are excited

as vertical point forces with a dominant frequency of 200Hz. I use a sin3 source wavelet.

I used the homogeneous background velocities of vp = 6000 m/s, vs = 3200m/s and a density

of ρ = 2800kg/m3 as starting models. The inversion with a total of 43 iterations is separated

into four different frequency stages applying five frequencies per stage as given in Table 3.1.
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Figure 3.4: The workflow of 3D-Await shows the different steps performed during each iteration.
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iteration frequencies in Hz

1-15 140,150,160,170,180

16-25 180,190,200,210,220

26-35 220,230,240,250,260

36-43 260,270,280,290,300

Table 3.1: Frequency stages used for the toy example.

Figure 3.5: A simple box model is used as a toy example. Stars indicate the source positions and

crosses indicate the receiver positions.

3.3 The gradient direction

In this section I will introduce the implementation of the gradient calculation in 3D-AWAIT, as

sketched in the blue box of the workflow (Figure 3.4). The calculation of the gradient is based

on the adjoint method, which theory is explained in section 2.4. The gradients are estimated for

the model mk in each iteration k. I use a self-adjoint second-order state equation for the inver-

sion algorithm, but calculate the wavefields with the velocity-stress forward solver SOFI3D as

introduced previously. This needs to be considered in the implementation.

The implementation is based on a time-frequency approach calculating wavefields in time do-

main, but performing the gradient calculation in frequency domain as described by Sirgue et al.

(2008) and Sirgue et al. (2010b). The advantages of this approach will be discussed in sec-

tion 3.6. During the forward and backpropagation of wavefields in time domain, monochro-

matic wavefields are extracted on the fly as described in section 3.1.5. The gradient can then be

calculated as a multiplication of forward and conjugate back-propagated wavefield in frequency

domain (see equation 2.39). In the following I will describe the steps of gradient calculation in

more detail.
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3.3.1 Wavefield calculation

For each shot, two forward modellings are performed for the gradient calculation. In a first

step, the forward-propagated wavefield is simulated, which travels from source into medium.

At each receiver position the seismograms v(xr, t) are stored. Additionally, by applying a dis-

crete Fourier transformation (equation 3.7), I calculate the particle velocities ṽ(x,ω), which

are stored in memory for each discrete inversion frequency and at each grid point. At the re-

ceiver positions, the L2-norm based misfit between the modelled seismograms and the observed

seismograms is calculated according to equation 2.18 from the displacement values ui(xr, t).
The displacements at time step tp are calculated from the velocities by discrete integration as

ui(xr, tp) = ∑
tp

1 vi(xr, tp)∆t, where ∆t is the time spacing.

The back-propagated wavefield Ψ(x,T − t) was defined in equation 2.34. As a source-time

function, the time-reversed displacement residual δui(xr,T − t ′) is calculated at the receiver

positions. This residual is back-propagated from all receivers into the medium simultaneously.

Hereby I use the same forward solver, which is based on the first-order wave-equation and

therefore calculates the time derivative ∂Ψ/∂ t = Ψ̇. For the backpropagation, the time line is

reversed and I calculate wavefields starting from time T backwards. Same as for the forward

propagation, I extract the frequency wavefields ˜̇Ψ(x,ω) on the fly. These frequency wavefields

are stored in memory for each frequency.

Exemplary frequency domain wavefields for one source-receiver combination of the box model

are shown in Figure 3.6. The figure shows the real part of the normalised z-component of the

forward- and back-propagated wavefields for 140 Hz (a, b) and 200 Hz (c, d) in the y=50 m

plane, which cuts through the source and receiver locations. The forward-propagated wavefield,

excited at the source (a, c) shows the frequency domain wavefield propagation in homogeneous

medium. The higher frequencies in c) compared to a) are clearly visible. The back-propagated

wavefield (b, d) excited at the receiver contains the information about the data residual at this

receiver.

3.3.2 Gradient calculation

For each shot the gradients are calculated using the stored forward wavefield ṽ(x,ω) and back-

propagated wavefield ˜̇Ψ(x,ω) according to the equations 2.39. It would also be possible to

reformulate this expressions and to calculate gradients from stresses and particle velocities,

which is often used, when using a velocity-stress forward solver (e.g. Shipp & Singh, 2002;

Castellanos et al., 2011; Köhn et al., 2012). However, in this case, velocity and stress compo-

nents need to be stored. The calculation of gradients from particle velocities only (Brossier,

2011) has the main advantage that only three wavefield components instead of nine need to be

stored. Hereby the gradient of ρ can be calculated directly as multiplication of velocity com-

ponents ṽi and ˜̇Ψi. To derive displacements ũi and Ψ̃i as required for the computation of the

gradients of λ and µ , the frequency domain enables a simple integration with

ũi(x,ω) =
1

iω
ṽi(x,ω). (3.8)

The spatial derivatives of ũi(x,ω) and Ψ̃i(x,ω) are calculated with the use of finite differences.

To finally find the total gradient, the gradients for each frequency and each source are summed
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Figure 3.6: Real parts of normalised forward- and back-propagated wavefields (z-component) in

frequency domain for source at (xs,ys,zs)=(30 m, 50 m, 90 m) and receiver at (xr,yr,zr)=(70 m, 50 m,

30 m) shown at y=50 m: a) forward wavefield (ṽz) at 140 Hz, b) back-propagated wavefield ( ˜̇Ψz) at

140 Hz, c) ṽz at 200 Hz and d) ˜̇Ψz at 200 Hz.

up. A change to the seismic velocity parametrisation is implemented, using the chain rule (equa-

tions 2.42).

Figure 3.7 shows the normalised gradients for 140 Hz and 200 Hz calculated for the source-

receiver combination, which wavefields I showed in Figure 3.6. The vp gradient at 140 Hz

shows the largest wavelengths. The shorter wavelengths of the vp gradient for the higher fre-

quency of 200 Hz can be clearly seen in b). The wavelengths in the vs gradients (c,d) are much

smaller, which results in the higher nonlinearity but better resolution of the vs compared to vp

at a given frequency. The density is the most difficult parameter to resolve, which also shows

in the somehow messy structure of its gradients (e,f). The box is not yet recognisable in the

gradients but becomes visible when summing up the gradients over all source-receiver pairs.

Figure 3.8 presents the total gradients for the first iteration (first frequency stage) normalised to

their maximum value. The zones of alternating amplitudes seen in the single source-receiver

gradients (Figure 3.7) now vanished in the summed velocity gradients (a,b). In the area of the
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Figure 3.7: Normalised gradients of box model FWI for one source-receiver pair at

(xs,ys,zs)=(30 m, 50 m, 90 m) and (xr,yr,zr)=(70 m, 50 m, 30 m) shown at y=50 m for two exem-

plary frequencies: a) gradient vp at 140 Hz, b) gradient vp at 200 Hz, c) gradient vs at 140 Hz, d)

gradient vs at 200 Hz, e) gradient ρ at 140 Hz and f) gradient ρ at 200 Hz.
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a) b)

c)

Figure 3.8: The total gradients for the first iteration of the box model normalised to their maximum

values, a) gradient vp, b) gradient vs and c) gradient ρ

box, the negative gradient values are clearly visible. However, they amount to only 2-3% of

the maximum values. The highest amplitudes are found around source and receiver positions,

which clearly shows the need for preconditioning. Overall, the vp gradient is much smoother

due to the larger wavelength of the P-wave velocity than the vs gradient. The density gradient

(c) is still very messy, and does not show low density amplitudes in the box area. These diffi-

culties of the density inversion will also be seen in the final inversion result shown later.
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3.4 Preconditioning

The gradients are calculated from the forward- and back-propagated wavefields. In a 3D full

space, their amplitudes decay with 1/R due to geometric spreading, where R is the distance

to the source. This amplitude decay of the wavefields becomes noticeable in the gradients,

which show high amplitudes around source and receiver positions. Without preconditioning,

the model update would thus focus to the area next to sources and receivers, and the inversion

fails. A thorough preconditioning which mitigates geometric effects in the gradients is therefore

significant for a successful inversion.

A local approach is the damping of the gradient at and adjacent to source and receiver positions

by applying spherical tapers at these positions or by tapering the area around the whole source

or receiver plane. I use exponential functions of the form

D1(x) = (1+ae−br)−1 or D2(x) = (1+ae−br2

)−1. (3.9)

The parameter r is the distance to the source position (|x− xs|) or receiver position (|x− xr|).
For a damping around receiver and source plane, r denotes the distance to these planes. The

functions D are characterised by small values adjacent to xs or xr but approach the value one

for large r. Hereby the positive value a defines the minimum value of D, whereas b defines

the taper radius, as can be seen in Figure 3.9. Here the functions D1 and D2 are plotted for

a constant a = 1000 and different values of b. The function D1 allows a smooth taper over a

larger distance, whereas the function D2 is a sharper taper, which is especially suited for very

local tapering. In practise, the latter taper can often be used to damp receiver artefacts, which

generally extend only few grid points, whereas the D1 taper is useful for elimination of the more

extended source artefacts.

For preconditioning, one damping function is estimated for sources Ds(x) and receivers Dr(x)
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Figure 3.9: Taper functions D1 (a) D2 (b) with a = 1000 for a source or receiver located at zero

distance plotted for different values of b.

each and multiplied to the gradient at each grid point. This damps artefacts locally around

source and receiver positions and leaves the remaining gradient unchanged.

The FWI tends to generate artefacts within the C-PML boundaries. Therefore, a tapering of the

C-PML boundaries DPML(x) is implemented using the D2-function, where the distance to the

model boundary is used for r.
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The total preconditioned gradient can then be estimated as

pk(x) = DsDrDPML∇Ek. (3.10)

This local preconditioning technique was applied to the gradients of the box model (Figure 3.8).

a) b)

c)

Figure 3.10: The preconditioned gradients for the first iteration of the box model normalised to their

maximum values, a) gradient vp, b) gradient vs and c) gradient ρ

Hereby the D1-function with a = 1000 and b = 0.7 was used for the damping of the sources,

and the D2-function with a = 1000 and b = 0.7 was applied to damp the local receiver artefacts.

Furthermore, the 10 gridpoints C-PML-boundary was tapered with the D2-function (a = 1000

and b = 0.05). The preconditioned, normalised gradients are plotted in Figure 3.10. Here the

high amplitudes around sources and receivers are removed and the model update of the velocity

gradients (a, b) concentrates on the area between source and receiver plane, where the box is
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located. The density gradient (c) is still dominated by artefacts.

A main disadvantage is that we get no significant model update next to source and receiver

positions. This can lead to problems if the model parameters in source and receiver areas

are unknown. Additionally, this local preconditioning only accounts for the high amplitudes

around sources and receivers, but does not correct for the geometrical spreading in the remain-

ing model. This is generally sufficient for transmission geometry applications. However, for

reflection geometries, where surface waves propagate along the free surface, improved precon-

ditioning methods can be required. A more sophisticated approach is the concept of Hessian

preconditioning, which accounts for the geometrical amplitude effects in the gradient. This

method will be discussed in detail in chapter 5.

3.5 The model update

In the conjugate gradient method the model in iteration k is updated with (−αkck) (section 2.3).

Hereby the direction of the model update is given by the negative conjugate gradient ck, whereas

the steplength αk defines its size.

3.5.1 The conjugate gradient

The conjugate gradient direction is estimated from the preconditioned gradient of the current

iteration (pk) and the preconditioned gradient (pk−1) and conjugate gradient (ck−1) of the pre-

vious iteration according to the equations 2.15 and 2.16. Thus, the application of the conjugate

gradient method requires the storage of pk−1 and ck−1. In the first iteration and after a change

of frequencies the preconditioned gradient is used for model update and I define ck = pk.

The conjugate gradient does not offer information about the size of the model update and about

the relative model update of the different parameter classes compared to each other. I therefore

normalise ck to its maximum for each parameter and scale them by multiplication with some

average of the respective model parameter, i.e.

c
vp

k (x)→ c
vp

k (x)

max(c
vp

k (x))
v0

p c
vs

k (x)→
c

vs

k (x)

max(cvs

k
(x))

v0
s c

ρ
k (x)→

c
ρ
k (x)

max(c
ρ
k (x))

ρ0 (3.11)

3.5.2 Steplength calculation

In Newton or Gauss-Newton methods, the Hessian operator accounts for the size of the model

update and steplengths close to one can be expected. By contrast, gradient methods require a

good estimation of αk to reach a good convergence of the inversion. In spite of this, I expect the

line search for αk to be relatively cheap and do not want to afford too many forward modellings

for the steplength estimation. I decided to use a parabola method (e.g. Kurzmann et al., 2009)

which is relatively cheap, but offers reasonable results.

Hereby I update the model with two test steplengths and estimate the corresponding misfit val-

ues for a subset of shots (Ns(step)). Additionally to the misfit value of the current iteration with

steplength zero, these values define a parabola. Its minimum gives us some optimal steplength.

Thus, this method requires (2×Ns(step)) additional forward modellings.
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The parabola method only offers a rough approximation and several problems can occure and

need to be accounted for in the implementation. I defined the following conditions:

1. in case, the parabola extremum is maximum, I use the test steplength with the smallest

misfit

2. a maximum steplength is defined, which cannot be exceeded

3. if a steplength of zero is estimated or the steplength is negative, the model is updated

using a small ratio of the first test-steplength and a warning is given

Of course, the choice of the test steplengths is crucial. They can generally be larger at the be-

ginning of the inversion to estimate the rough model, whereas smaller steplengths are essential

in the later part of the inversion, when smaller details are reconstructed. A model update of

few percent of the scaled gradients (equation 3.11) is generally a good choice at the start of the

inversion, which can be decreased down to few per mill during the inversion process.

Only one steplength is estimated simultaneously for all parameter classes, which I invert for.

Hereby, the scaling of the gradients (equation3.11) accounts for the different update sizes. Ad-

ditionally it can be sensible to decrease the model update for some parameter classes by using

only a ratio of the (test) steplength in the model update.

After the estimation of αk the model can finally be updated and I proceed to the next iteration.

3.6 Time-frequency method

3D elastic full-waveform inversion is computationally very demanding and its applications are

still limited by long runtimes and high storage costs. Thus, its implementation needs to ac-

count for these issues, to achieve an optimal computational performance. The time-frequency

approach offers great advantages for 3D elastic waveform inversion which arise from modelling

of 3D wavefields in time domain but performing the inversion for discrete frequencies in fre-

quency domain.

I use a time-domain finite-difference forward solver, which is computationally more efficient in

3D compared to a frequency-domain solver (Nihei & Li, 2007; Sirgue et al., 2008). Operto et al.

(2007) found, that direct frequency modelling requires O(n6) operations and a high memory

consumption of O(35n4). By contrast, a finite-difference time-domain forward solver uses

O(n3NsNt) operations and less storage space of only O(n3). Hereby, n3 is the number of grid-

points, Ns the number of sources and Nt the number of timesteps. The lower number of op-

erations and less storage combined with the efficient parallelisation of the time domain solver

makes it very attractive.

The calculation of wavefields in time-domain also offers the advantage of straightforward time-

windowing. Hereby, only data within a particular time window are inverted simultaneously.

This is not yet implemented in 3D-AWAIT.

However, gradient calculations in time domain (equations 2.35) are performed during back-

propagation, but need the information about the full forward wavefield to perform the zero-lag

cross-correlation between forward- and back-propagated wavefield. Even though time stepping

for inversion can be chosen larger than required for modelling, the storage of these wavefields
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takes a considerable amount of storage space (Kurzmann, 2012). By contrast, for the inversion

in frequency domain only a few discrete frequencies per iteration can be sufficient for the model

reconstruction and wavefields are stored only for these frequencies. This leads to a storage de-

crease of two to three orders of magnitude compared to time-domain FWI and significantly

affects the performance of 3D FWI. Other approaches to decrease storage costs in time domain

include the recalculation of the wavefield from values stored at checkpoints (Symes, 2007) or

the reconstruction of the forward wavefield during backpropagation from the last wavefield

snapshot and wavefield values stored along the boundary (Gauthier et al., 1986). The main

drawback of these approaches is the increased number of operations.

Another advantage in frequency-domain inversion is that it is straightforward to successively

invert higher frequencies, which mitigates the cycle skipping problems. This so-called multi-

scale approach will be discussed in section 3.7.1. When performing a frequency inversion, the

wavefields used for gradient calculation are automatically filtered by the choice of frequencies

per iteration. Still, in our implementation, the misfit is calculated in time domain, so that addi-

tional filtering of the seismograms is required to get a representative misfit value.

The main drawback of the discrete frequency domain inversion is the loss of redundancy com-

pared to time-domain FWI which can lead to problems in case of highly nonlinear problems

such as surface waves (Virieux & Operto, 2009) or complex acoustic wavefields (Kurzmann,

2012). Of course, this can be mitigated by using a denser frequency sampling. However for

high numbers of frequencies per iteration, the storage space increases and the higher number

of discrete Fourier transformations slows the inversion down. Thus, the time-frequency method

becomes less efficient. Still, successful applications showed that the discrete frequency inver-

sion in general offers very good results for a reasonable number of 3-5 frequencies per iteration

(e.g. Pratt, 1999; Sirgue & Pratt, 2004; Brossier et al., 2009).

3.7 The full inversion process

So far I described the different steps to estimate the model update in one iteration, i.e. to

calculate the final conjugate gradient direction and the step length. This section will give an

overview about the whole inversion process. The seismic inverse problem is highly nonlinear

and requires an iterative approach to fit the modelled and observed data. Consequently, the

previously explained steps are repeated for a number of iterations until the inversion converges

to sufficiently low misfit values. In this case a model is found which explains the observed data

well.

As a local inversion method, FWI bears the danger to end up in one of the numerous local

minima of the objective function. It is possible, that the final model does explain the observed

data well, even though it is not the correct model. To mitigate this problem, a better starting

model can be required. Additionally, different inversion strategies, like the multi-stage inversion

can help to avoid the local minima and consequently be required for a successful inversion. The

multi-stage inversion will be explained in the first part of this section.

Another important aspect of the elastic FWI is the multi-parameter inversion, which inverts for

several parameters simultaneously. Different issues of this topic will be discussed in the second

part of this section.
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3.7.1 Multi-scale inversion

Figure 3.11: Illustration of the misfit function for scale lengths increasing from a) to e) [from:

Bunks et al. (1995)].

In the so-called multi-stage approach we do not invert all data simultaneously, but separate

the inversion in stages, in which the data is limited to some frequency band, to a certain time

window or to a particular offset range. This can help to mitigate the nonlinearity of the inversion

and to improve the result. Of particular importance is the multi-scale approach, in which the

inversion is divided into different frequency stages. Hereby we start from low frequencies and

increase the frequencies during inversion (Bunks et al., 1995). Especially for more complex

problems, this strategy is essential to reach the global misfit minimum. The main reason is

that the form of the misfit function is strongly influenced by the frequency content of the data.

This is well illustrated in Figure 3.11 from Bunks et al. (1995). The misfit function is plotted

for different scale lengths, which increase from a) to e). With increasing scale, and thus with

decreasing frequency, the misfit function becomes smoother and the number of local minima

decreases. Therefore, to reach the global minimum, a model can be much farther away from the

real model for low frequencies, whereas a much closer model is required for high frequencies.

This can also be understood when looking at the data. Phase differences between the modelled

and the observed data need to be smaller than half a period, so that the phases can be assigned

correctly to each other. Otherwise cycle skipping can occure and the inversion might end up

in a local minimum. This condition is easier to fullfill for lower frequencies. Hence, a multi-

scale approach in FWI can mitigate the problem of cycle-skipping and help to reach the global

minimum.
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Starting model and lowest frequency

Still, the starting model data needs to be close enough to the real data in the first frequency

stage. Hence, the starting model and the starting frequency are crucial for a successful FWI.

This can especially cause problems in field data applications, where the lowest frequency is de-

fined by the frequency content of the data. In these applications, the starting frequency generally

corresponds to the lowest available frequency (Warner et al., 2013). Furthermore, in frequency

inversion it needs to be considered that frequencies below this starting frequency are not used

in inversion, even if lower frequency data is available. In general, less information in the start-

ing model, like a smoother starting model means, that lower starting frequencies are required.

In my synthetic applications I choose the starting frequencies low enough that the frequency

content below the starting frequency in the data is explained for the most part. In transmission

geometry FWI is able to resolve structures down to one wavelength. Thus, it is possible to use

a homogeneous starting model, when starting from frequencies, which correspond to a wave-

length of the size of the largest structures.

Frequency intervals

The choice of the frequency interval needs to ensure a continuous coverage of the wavenumber

spectra. Sirgue & Pratt (2004) showed, that this can generally be fulfilled for frequency intervals

larger the sampling interval of 1/T (T : length of time series), when considering not only one

trace but a range of offsets. Hereby larger offsets enable the coverage of the wavenumber

spectra with a lower frequency sampling. For a simple 1D model, the relevant frequencies can

be calculated with

fn+1 =
fn

αmin
, (3.12)

where αmin depends on the offset-to-depth ratio and is smaller for larger maximum offsets

(Sirgue & Pratt, 2004). Still, the use of additional frequencies increases the redundancy of

the data which generally results in improved images, especially in case of higher nonlinearity

of the inversion.

Frequency stages

The multi-scale inversion is separated into different frequency stages, in which one to few fre-

quencies are used. Brossier et al. (2009) tested three different approaches:

• sequential approach: single frequency inversion using one frequency at a time

• Bunks approach: starting from one low frequency, one higher frequency per stage is

added, so that the number of frequencies per stage increases

• simultaneous approach: a group of typically 3-5 frequencies is inverted in each stage,

with overlapping frequency bands

Overall, they found the best performance for the simultaneous inversion of several frequencies,

with overlapping frequency bands for their reflection geometry application. Thus, the entrain-

ment of the lower, already inverted frequencies in the Bunks approach does not seem to be
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improve the inversion. Pratt (1999) also showed an improved performance, when using five

instead of three frequencies during one frequency stage. Thus a higher number of frequencies

can improve the inversion and a single frequency approach does not seem to be favourable, even

though successful applications show that single frequency inversions are possible.

Fortunately, the use of frequency groups with few frequencies per stage instead of a single

frequency in a time-frequency FWI does not increase the computational costs by much. By

contrast, when applying a frequency domain forward solver, these frequencies need to be sim-

ulated additionally.
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Figure 3.12: a) Misfit behaviour of the toy example shows convergence within the four frequency

stages and b) steplength used for update plotted for each iteration.

Inversion process of the toy example

For the toy example, I used four groups of overlapping frequencies given in Table 3.1. The pro-

ceedings of the inversion can be seen in the misfit curve shown in Figure 3.12a). Additionally,

the steplengths of each iteration are plotted in Figure 3.12b). By multiplying them to the nor-

malised and scaled gradients, they define the size of the total model update. The test steplengths

for the steplength calculation were decreased from 2% to 0.3%. The inversion starts with large

steplengths and rapid convergence within the first frequency stage to find rough models. In the

following stages, the steplengths are smaller and the misfit decreases slower, as finer changes

within the model are made. The last frequency stage only gives very little model update and the

misfit curve stagnates, so that I did not continue the inversion for higher frequencies.

The good convergence can also be seen in the fit of the seismograms presented exemplarily

for one shot and receiver combination in Figure 3.13. In Figure 3.13 a), the waveforms of the

starting model and the observed data, both filtered below 180 Hz are plotted, which show clear
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Figure 3.13: Multi-component waveforms normalised to one trace for exemplary receiver at

(xr,yr,zr)=(80 m, 30 m, 30 m) and source at (xs,ys,zs)=(30 m, 70 m, 90 m), a) starting data versus

observed data filtered below 180 Hz and b) observed versus final inverted data filtered below 300 Hz.

differences caused by the box. The residuals were successfully fitted during the inversion, and

the observed and final inverted data, plotted in Figure 3.13 b) hold a good agreement.

3.7.2 Multi-parameter inversion

Wave propagation in the subsurface is influenced by various parameters. Here, I already approx-

imate the wave propagation with the elastic wave equation, which does not consider anisotropy

and attenuation. Still, 3D elastic FWI is a highly complex multi-parameter problem. Compared

to the acoustic case, where often only the P-velocity is used as inversion parameter, the number

of model parameters and consequently the nonlinearity of the inverse problem increases dra-

matically. The choice of parametrisation in the elastic case was already discussed in section 2.6

and I will stick to the choice of the seismic velocities vp and vs and density ρ in my applications.

From these parameters, ρ is generally the most difficult parameter to resolve and especially in

transmission geometry it is often not possible. This can also be seen in the simple toy example.

In future applications in this thesis, I will therefore invert for the seismic velocities only and

keep ρ constant during inversion.

A main difficulty of the inversion of vp and vs is caused by the different wavelengths of these

parameters. Due to the smaller velocities, and thus smaller wavelengths of the S-wave, they

require a lower starting frequency, but offer higher resolution for lower frequencies. Therefore,

the elastic case generally requires lower starting frequencies or better starting models than the

acoustic case. Additionally, if the inversion fails for high frequencies, I might be able to get a

very good resolved vs model but only a smooth vp model.

Of course, a major difficulty of the multi-parameter inversion is the scaling of the individual

parameters. So far, I obtained good results by normalising the gradients to their maximum and

individually scaling them with some representative value as described in section 3.5.1. Still, re-

sults might be improved by Newton methods which offer a scaling of the individual parameter

updates with respect to each other.
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The final results for the multi-parameter FWI of the toy example are presented in Figure 3.14.

The high velocity box could be nicely reconstructed in the velocity models vp (a) and vs (b).

Hereby, the box is sharper and better confined in vs than in vp due to its smaller wavelengths.

The inversion of density (Figure 3.14c) was not successful. Only the edge of the box is in-

dicated by a zone of higher density, whereas low density artefacts are caused within the box

and surrounding the box. I repeated the same inversion for a box varying in density only and

inverting for density only. This mono-parameter inversion could successfully fit modelled and

observed data. A better reconstruction of the box could be achieved (Figure 3.14d), where the

outline of the box is clearly visible. Still, low density artefact surrounding the box and no sig-

nificant density updates within the box show the low sensitivity of the inversion to density and

the difficulties which arise during density inversion in transmission geometry.

a)

c) d)

b)

Figure 3.14: In a)-c): Final multi-parameter inversion results of the box-model with a) P-velocity,

b) S-velocity and c) density, in d) final result for mono-parameter density inversion of box model.



Chapter 4

Reconstruction of small-scale

heterogeneities in transmission geometry

4.1 Motivation

In this chapter I show the application of 3D FWI for the reconstruction of 3D heterogeneous

crystalline rock structures. Two different transmission geometries are compared: an “optimal”

3D geometry with planes of sources and receivers and a more realistic 2D geometry, resembling

two boreholes. The crystalline rock model is presented by a complex random medium model,

which is characterised by differently sized 3D structures. Additionally a checkerboard test is

performed to test the resolution in both geometries. This study tests the ability of 3D FWI to

resolve differently sized 3D structures. Additionally we address the question, whether it can be

beneficial to perform a 3D FWI even for a simple 2D cross-hole geometry. The 3D FWI results

are compared to a 2D FWI of the 3D heterogeneous medium data to show the effects of 3D

scattering on the 2D FWI result. The study was published in Butzer et al. (2013).

4.2 Inversion setup

Model and acquisition geometry

The model size is 240m×160m×280m, that is 300×200×350 gridpoints in X -, Y - and Z-

direction, respectively. The grid spacing is dh = 0.8m. Average material parameters of the real

models were adapted with vp = 6300m/s, vs = 3500m/s and ρ = 2800kg/m3. These average

parameters correspond to the crystalline crust found at the German Continental Drilling site

(KTB) drilling site at 3000 m to 6000 m depth (Kneib, 1995). The models do not contain a free

surface. The seismic velocities show checkerboard or random medium structures whereas the

density is kept homogeneous and constant during inversion.

The acquisition geometries are shown in Figure 4.1. The grey area corresponds to checkerboard

or random medium structure, which changes to homogeneous medium (white area) towards

source and receiver planes. For the 3D acquisition geometry (Figure 4.1a) 416 receivers and

12 sources, marked as crosses and stars, respectively, were regularly arranged in X -Y oriented

45
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b)a)

Figure 4.1: Acquisition geometries. Source and receiver positions are indicated by stars and crosses,

respectively. a) 3D geometry with 12 sources and 416 receivers; b) 2D geometry with 10 sources

and 100 receivers.

source and receiver planes. This configuration is used to test the performance of the 3D FWI

in favourable geometry. For the 2D acquisition geometry only a line of 10 sources and a 200 m

distant line of 100 receivers at Y = 80m was used, as indicated in Figure 4.1b. Compared to

the 3D geometry, additional sources and receivers were added in these lines to increase the

coverage. With this geometry, the reconstruction of 3D structures using a 2D geometry is

tested and compared to 2D FWI results. We applied point forces in Z-direction with a central

source frequency of 200 Hz, emitting both P- and S-waves. Generally, we used all three receiver

components in the 3D inversion and the X - and Z-component in the 2D inversion. The source

wavelet is assumed to be known during inversion.

Inversion parameters

Overall, seven different inversion tests, varying in model, acquisition geometry, number of re-

ceiver components and dimensionality of the FWI as listed in Table 4.1, are presented here.

We inverted for vp and vs and chose homogeneous starting models, hereby adapting the aver-

age seismic velocities. The gradients were tapered around source and receiver planes and along

the model boundaries to avoid artefacts in these areas. No regularisation was used. The inver-

sion parameters, like the number of iterations and the frequency range of the FWI, are listed in

Table 4.1. For the 3D FWI with 3D geometry up to three frequencies per iteration were used,

which were successively increased in 20 Hz steps. In case of the 3D FWI with 2D geometry,

the number of frequencies was increased to five, to refine the frequency sampling to 10 Hz.

This improves the convergence and the quality of the results. The 2D FWI is performed with

an elastic FWI code developed by Köhn (2011). This code is based on the same adjoint-state

method but is a pure time-domain implementation which considers the full frequency content.

The data was low-pass filtered in 20 Hz steps during inversion to obtain a better comparability.
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model FWI acquisition inverted S-wave- P-wave- number of

geometry frequencies (Hz) lengths (m) lengths (m) iterations

Test 1 3D checker 3D 3D, 3C 160→ 320 22→ 11 39→ 20 69

Test 2 3D checker 3D 2D, 3C 160→ 320 22→ 11 39→ 20 75

Test 3 3D random 3D 3D, 3C 140→ 320 25→ 11 45→ 20 73

Test 4 3D random 3D 2D, 3C 100→ 320 35→ 11 63→ 20 89

Test 5 3D random 3D 2D, 1C 100→ 320 35→ 11 63→ 20 73

Test 6 2.5D random 2D 2D, 2C < 320 > 11 > 20 93

Test 7 3D random 2D 2D, 2C < 220 > 16 > 2948 80

Table 4.1: Inversion tests varying in method, models, acquisition geometry and number of compo-

nents (C) with applied inversion parameters.

4.3 Preliminary investigation - the checkerboard test

The checkerboard model (Figure 4.2) consists of alternating cubes of 20 m edge length and

±5% velocity variation in both vp and vs. The checkerboard is chosen antisymmetric to the 2D

geometry source-receiver plane at Y = 80m, indicated with a white dashed line in Figure 4.2.

Note that the Y -Z slice shown here is 12 m distant from this plane.

Inversion parameters used for FWI with 3D geometry (test 1) and 2D geometry (test 2) are

given in Table 4.1. We used a minimum frequency of 160 Hz (S-wavelength 22 m) and in-

creased it in 20 Hz steps to 320 Hz (S-wavelength 11 m, P-wavelength 20 m).

The models of P-wave and S-wave velocity inverted using data acquired with 3D and 2D ge-

ometries are plotted in Figure 4.3. When using data of a 3D source-receiver geometry (Fig-

ure 4.3a), the inversion can resolve the cubes well in vs. The inversion is not able to resolve

the sharp edges, as this would require the use of higher frequencies. The frequency range and

number of iterations is not sufficient for a satisfactory resolution of vp (Figure 4.3b), but a gen-

eral checkerboard pattern is visible. The minimum P-wavelength we used is about the size of

the checkerboard cubes. Thus, we can observe a minimum resolution at the scale of a wave-

length (λ ). This is much smaller than the width of the first Fresnel zone of
√

λL = 63 m, where

L = 200 m denotes the minimum propagation distance. The 3D FWI of data acquired with a 2D

source-receiver geometry is capable to reconstruct the checkerboard pattern in the area adjacent

to source-receiver plane in vs (Figure 4.3c). Structures up to 40 m apart from the plane, which

corresponds to about two wavelengths, could be recovered. Furthermore, the antisymmetric

pattern of the checkerboard could be resolved. However, resolution is less than for the 3D ge-

ometry, which is due to the lower wave path coverage. The vp model (Figure 4.3d) could not

be inverted successfully for this simple geometry and in this frequency range. This example

indicates that 3D FWI is capable to recover 3D structures in the vicinity of the direct propaga-

tion path and also structures outside the first Fresnel zone of the direct rays. However, it also

indicates difficulties, that might arise during multiparameter inversion for simple geometries.
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Figure 4.2: Checkerboard model vs and vp with 20 m edge length and ±5% velocity perturbations.

The source-receiver plane of the 2D acquisition geometry at Y = 80 m is indicated by a white dashed

line.

4.4 The random medium application

The crystalline crust can be characterised with statistical parameters of a random medium model

as derived in studies by Kneib (1995) and Mueller & Shapiro (2001) for the German Continen-

tal Drilling site (KTB). In our tests we use a random medium (Figure 4.4) described by an

exponential autocorrelation function in space with a correlation length of 30 m and a standard

deviation of 5% for the Gaussian distributed seismic velocities. The average velocities are the

same as in the previous section with vp = 6300m/s and vs = 3500m/s and a constant vp/vs ratio

of 1.8. The model features differently sized 3D structures and is used here to test resolution of

the FWI results for different scales.

The 3D scattering which is caused by the 3D heterogeneous structures contains all phases of

first order scattering, that is PP, PS, SS and SP waves. Thus we aim to reconstruct the P-wave

and S-wave velocities. Nevertheless, the resolution of the structures depends on the wavelength,

which is 1.8 times larger for vp than for vs. Thus a lower resolution in vp than in vs is to be

expected.

4.4.1 Results 3D full-waveform inversion

Inversion parameters are given in Table 4.1, test 3. The maximum S-wavelength of 25 m corre-

sponds to half the size of the largest model structures. The smallest wavelengths are 20 m and

11 m of P- and S-waves, respectively. For the 2D acquisition geometry (test 4) lower frequen-

cies of down to 100 Hz corresponding to S-wavelengths of about 35 m were required for the

inversion to succeed.

The misfit was successfully decreased to final values of 1.5% of the initial misfit for the 3D
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b)a)

d)c)

Figure 4.3: Checkerboard inversion results: a) 3D geometry (Figure 4.1a), test 1, S-wave velocity,

b) 3D geometry (Figure 4.1a), test 1, P-wave velocity, c) 2D geometry (Figure 4.1b), test 2, S-wave

velocity and d) 2D geometry (Figure 4.1b), test 2, P-wave velocity
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Figure 4.4: The random medium velocity model.

geometry data and 2.1% for the 2D geometry data. Figure 4.5 shows the observed, initial and

inverted 3-component waveforms at one exemplary receiver and for one shot. Starting from a

homogeneous model, the main phases of P- and S-waves as well as the scattered waves in the

observed data can be well explained by the final model for all components.

In Figure 4.6a and Figure 4.6b the final inverted models of vs and vp for the 3D acquisition

data are plotted. Compared to the true model in Figure 4.4, the differently sized 3D struc-

tures of the random medium are well resolved in vs. Structures with an extension of about a

wavelength could be recovered. Resolvability along the Z-axes is lower than in lateral direc-

tion. The vp model is smoother due to its larger wavelengths. The quality decreases towards

the model boundaries where wavefield coverage is lower. Overall, the seismograms computed

for the homogeneous starting model in transmission geometry can explain the low frequency

observed data sufficiently for the inversion to succeed. The lack of low frequencies, surface

acquisition geometries or complex phenomena, such as the involvement of surface waves or

multiple reflections, might require the improvement of the starting model and the application

of further multi-stage strategies such as time windowing (e.g. Sears et al., 2008; Brossier et al.,

2009; Kurzmann, 2012).

24The vs model obtained for the 2D acquisition geometry data is shown for comparison in Fig-

ure 4.6c. Maximum wave path coverage is along the source-receiver plane at Y = 80 m. In

this plane the main structures are recovered by the inversion. However, even though we used

a denser spacing of sources and receivers within this plane and a refined frequency sampling,

the quality is less than for the FWI with 3D geometry data. Similar to the checkerboard test,

we observe that the 3D FWI succeeds to reconstruct 3D structures outside the source-receiver

plane. Using multi-component 3D scattered waves, some structures up to two wavelengths apart

from the plane are recovered. The vp result in Figure 4.6d shows a smoother version of the vs
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Figure 4.5: Observed, initial and inverted waveforms of 3D FWI with 3D acquisition geometry data

(test 3) at one representative receiver (136 m, 72 m, 32 m) and for one shot at (96 m, 80 m, 232 m).

result. In contrast to the failed vp checkerboard inversion with 2D geometry (Figure 4.3d) the

inversion could recover the general random structures, even though its resolution is limited due

to the large wavelengths.

Highest amplitudes of the S-wave in the source-receiver plane are found on the X-component

seismograms. We repeated the 3D FWI with 2D source-receiver geometry using only the X-

component of the observed data to see the influence of multi-component data (test 5). The final

vs model is plotted in Figure 4.7. Within source-receiver plane the reconstructed structures look

quite similar to the three component result in Figure 4.6c. The main difference is, that gradi-

ents and model updates of the X-component inversion are symmetric to source-receiver plane.

Structures antisymmetric to source-receiver plane cannot be resolved correctly without the ad-

ditional information about the Y-component waveforms.

4.4.2 Comparison of 3D and 2D inversion results

In many applications 2D FWI is applied to cross-well seismic experiments (e.g. Pratt et al.,

2005; Zhang et al., 2012). In these studies structures outside the acquisition plane are neglected

but may distort the inversion results. To study the possible site effects of 3D structure we com-

pare the 3D FWI results with the results of a 2D FWI. For the 2D FWI we used the same 2D

acquisition geometry as previously. We thus try to resolve the plane at Y = 80 m of the random

medium. Two tests were performed: test 6 and test 7 (Table 4.1). As a reference result a 2D

FWI of 3D modelled data of the 2.5D random medium was performed (test 6). The 2.5D model

extends model parameters at Y =80 m of the random medium constant in Y -direction. The data

of this model are thus not influenced by 3D scattering and a 2D approximation is valid. In test 7
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Figure 4.6: 3D FWI results for the random medium model using different acquisition geometries:

a) model vs inverted with 3D geometry (test 3), b) model vp inverted with 3D geometry (test 3), c)

model vs inverted with 2D geometry (test 4) and d) model vp inverted with 2D geometry (test 4).

Figure 4.7: 3D FWI result (vs) for the random

medium model using the 2D acquisition geometry

and inverting only X-component.
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Figure 4.8: Waveform comparison of 2D data cal-

culated for 2D random medium compared to 3D to

2D transformed data of the 2.5D random medium

at receiver (111 m, 80 m, 32 m) for source location

(96 m, 80 m, 232 m).

the data of the 3D random medium were inverted, which contain the 3D scattered waves.

To invert the 3D data with a 2D method, a transformation of observed data from 3D to 2D was

applied to account for the differences between line source and point source wavefields. We

convolved seismograms with 1√
t

as phase correction and multiplied amplitudes with
√

t as am-

plitude correction (Pica et al., 1990). The transformed 3D modelled data for the 2.5D model

agree very well with the 2D data modelled for the plane at Y = 80m. This is shown for one shot

and receiver in Figure 4.8. It proves, that the transformation works well for the given scenarios.

We applied a 2D FWI to the transformed data of the 2.5D model and of the 3D model. In both

cases the 2D inversion successfully minimised the misfit to 1-2% of the initial value.

The 2D FWI results for vs and vp are shown in Figure 4.9. The slice of the true model (Fig-

ure 4.9a) is smoothed, to enable a better comparison. The 2D FWI of the 2.5D model data

(Figure 4.9b and c) successfully recovered the random medium structure in vs and vp. Resolu-

tion is again lower in vp. Its quality and resolution is comparable to the 3D FWI result achieved

with 3D source-receiver geometry (Figure 4.6a and b). The main features in vs can still be

reconstructed when inverting the data of the 3D heterogeneous random medium with 2D FWI

(Figure 4.9d). However, smaller structures suffer in resolution and artefacts are caused by 3D

site-scattering. This can also be seen in the vp model in Figure 4.9e. The artefacts become more

dominant for higher frequencies and we therefore show the result for a maximum inversion

frequency of 220 Hz here, where large scale structures are still reliable. The artefacts can be

explained when looking at the effects of 3D scattering on the waveforms. Figure 4.10a shows

a comparison between the 2.5D random medium data without 3D scattering versus the 3D ran-

dom medium data with 3D scattering for X-, Y-, and Z-component at one exemplary receiver.

3D scattering has a significant influence on the wavefields. In Figure 4.10b the observed, initial

and inverted waveforms of the 2D FWI filtered with 220 Hz are plotted and it is evident, that

the 2D FWI tries to fit the 3D scattered waveforms. However, the 2D FWI is unable to interpret

the 3D scattering correctly, leading to artefacts and the lack of resolution. The quality and res-

olution of 2D FWI thus suffers from the presence of 3D small scale heterogeneities.

A 3D FWI with 2D source-receiver geometry (test 4) has the advantage to gain information

about 3D structures outside source-receiver plane, as was shown in the previous section. A

comparison of the final model achieved with 3D FWI (Figure 4.6b) and the 2D FWI result of

the 3D random medium (Figure 4.9c) shows, that the resolution within source-receiver plane

is comparable. However, the 3D FWI does not suffer from artefacts caused by the 3D scattering.
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Figure 4.9: Model reconstruction using 2D FWI; sources (stars) and receivers (crosses) are marked.

a) real smoothed model vp and vs, b) vs for 2.5D random medium data (test 6) as reference, c) vp

for 2.5D random medium data (test 6), d) vs for 3D random medium data (test 7) and e) vp for 3D

random medium data (test 7).
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Figure 4.10: Waveforms (low-pass filtered with 220 Hz) at receiver (111 m, 80 m, 32 m) for source

location (96 m, 80 m, 232 m): a) The comparison of waveforms for the 3D and the 2.5D random

medium model shows the influence of 3D scattering. b) Observed, initial and final inverted wave-

forms of the 2D FWI with 3D random medium data (test 7).
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Table 4.2 gives a comparison of the computation times for 2D FWI and 3D FWI. The 2D FWI

requires only about 64 core hours in total for our example and was performed on a 8 CPU

workstation. The 3D FWI requires 28.000 core hours and can be realised nowadays on high

performance computers.

3D FWI 800 cores 73 iterations 300×200×350 35 hours

2D FWI 8 cores 67 iterations 300×350 8 hours

Table 4.2: Comparison of run times for a 2D and a 3D elastic FWI using 10 sources, 28 forward

modellings per iteration and 3300 timesteps.

4.5 Conclusion

The performance of the 3D FWI was shown for a random medium and a checkerboard exam-

ple in transmission configuration inverting for vp and vs. Using a 3D acquisition geometry the

3D elastic FWI can successfully recover the 3D checkerboard and the differently sized random

medium velocity structures starting from a homogeneous initial model, if sufficiently low fre-

quencies are included in the inversion. Using an acquisition geometry of two boreholes 3D

structures of checkerboard and random medium are recovered up to one to two wavelengths

adjacent to the source-receiver plane, however with less resolution. Inverted models for the

compressional velocity are generally smoother due to its larger wavelengths. The consideration

of only one component oriented parallel to the source-receiver plane, causes a symmetric shape

of the inversion result and structures antisymmetric to this plane cannot be reconstructed cor-

rectly. The results indicate, that the application of 3D FWI to multi-component cross-well data

might be used to detect 3D structures in an area around the acquisition plane. For comparison a

2D FWI was performed. In the presence of 3D small-scale heterogeneities the 2D FWI results

for shear and compressional velocity suffer from artefacts due to 3D scattering effects, espe-

cially when inverting at higher frequencies. Only the main structures in the acquisition plane

were reconstructed.
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Chapter 5

Applying a diagonal Hessian

approximation for preconditioning

5.1 Motivation

The misfit gradients offer information about structures of the true model. However, the am-

plitude distribution of the misfit gradients is affected by acquisition geometry, the illumination

by the different wavetypes propagating through the medium and by the amplitude decay of the

wavefields. Due to geometric amplitude spreading of forward- and back-propagated wavefields,

the amplitudes of the gradients decrease with distance from sources and receivers. This be-

comes especially evident in the vicinity of source and receiver positions, where high amplitudes

in the gradients occur. Additionally, we have areas of low wave path coverage, such as towards

the boundaries, where amplitudes are smaller. In reflection geometries, where sources and re-

ceivers are located at the surface, we generally observe an amplitude decay with depth. On the

one hand, this is caused by the geometric spreading of the wavefields. On the other hand, less

energy penetrates the deeper parts due to reflection and diffraction of wavefields at the model

structures. Additionally, if a free surface is considered, the high amplitude surface wave causes

high amplitudes of the gradients near the surface, which strongly decay with depth.

The gradient preconditioning corrects some of these amplitude dependencies of the gradient

and is generally required for a successful FWI with gradient methods. It aims to optimise the

inversion by improving its convergence and by regularising the inversion to find a physically

plausible model (Fichtner, 2011). Hereby it can, for example, correct for source and receiver

artefacts and enhance the image with depth.

Different approaches of preconditioning exist for FWI. Empirically, the gradients can be radi-

ally tapered around source and receiver positions to remove high amplitude artefacts in these

areas, as discussed in section 3.4. A main disadvantage hereby is, that we do not get a signif-

icant model update close to source and receiver positions. This can cause problems, if model

parameters in this area are unknown. Additionally, it only corrects the geometrical amplitude

decay in the gradients locally. This can be sufficient for transmission geometry applications

(see chapter 4). However, more complex examples, like reflection geometry applications, might

require additional preconditioning. Another empirical method uses a gain function to scale the

gradient with depth (e.g. Köhn, 2011) and to enhance deeper structures for reflection geome-

tries.

57
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A preconditioning to correct for geometric amplitude spreading based on wavefield parameters

is also possible (Fichtner et al., 2009; Kurzmann, 2012). Hereby, the distribution of the maxi-

mum amplitudes of forward- and back-propagated wavefields is used. This method takes into

account model inhomogeneities and thus offers an improved correction compared to a radial

taper, especially in the vicinity of sources and receivers.

A different type of preconditioning is physically motivated and based on an approximation of

the diagonal Hessian. Hence, it includes information about the second derivative of the misfit

function in order to optimise the inversion process. To understand this idea we compare the up-

date of the Newton method (−H−1
k ∇mEk) and the update of the gradient method (−αkP∇mEk) as

introduced in section 2.3. The gradient method approximates the inverse Hessian H−1
k by some

preconditioning operator P scaled with a steplength αk. Hence, it is reasonable to include some

information about Hk in P to design an efficient, physically funded preconditioning operator,

which can be seen as an optimisation of the gradient-based FWI. The Hessian precondition-

ing could be proven in several successful applications, such as Shin et al. (2001); Operto et al.

(2006); Brossier et al. (2009); Warner et al. (2013). Hereby different approximations are used

for calculation to ensure computational efficiency, as for example the pseudo-Hessian intro-

duced by Shin et al. (2001) or the calculation for only a subset of shots (Operto et al., 2006).

In this chapter I will present the concept of Hessian preconditioning for the time-frequency

method. Different approximations of the diagonal approximate Hessian are made, to allow its

computation at reasonable costs. I will start with the theory, discuss its implementation in 3D-

AWAIT. After validation of the approach with the inversion of a simple box model I will apply

the method for the inversion of a complex surface geometry model.

5.2 Theory

5.2.1 The Hessian operator

The Hessian operator was already shortly introduced in section 2.3. Here I want to take a

closer look at its calculation and its role in the inversion. The elements of the Hessian operator

H jl are defined as the second derivative of the misfit function E(m) with respect to the model

parameters m j and ml .

H jl =
∂ 2E(m)

∂m j∂ml

( j = 1, ...n) (l = 1, ...n). (2.11)

The indices j and l run over all n model parameters, which results in a very large matrix H. I

use the L2-norm based misfit function E as given in equation 2.18. Its second derivative can be

expressed as

H jl = ∑
s

∫ T

0
dt ∑

r

∂ui

∂m j

∂ui

∂ml

+∑
s

∫ T

0
dt ∑

r

∂ 2ui

∂m j∂ml

δui = (Ha) jl +R jl. (5.1)

The i-th displacement component is denoted by ui(xs,xr, t), whereas δui(xs,xr, t) is the com-

ponent of the displacement residual. To calculate the Hessian in equation 5.1 we sum over all

data points, i.e. over all sources s, receivers r, components i and integrate over time. The cal-

culation of the full Hessian requires two terms. The first term Ha is calculated as a zero-lag
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cross-correlation of the first order partial derivative wavefields, and is known as “approximate

Hessian”. The second term R contains the second order partial differential wavefields. This

term is often difficult and expensive to compute (Pratt et al., 1998) and most applications of

Newton methods constrain to the Gauss-Newton method, which only takes into account the ap-

proximate Hessian Ha. The full Newton method, by contrast, takes into account the full Hessian

matrix.

Compared to gradient methods, Newton methods offer a much better convergence and can result

in improved reconstruction of the subsurface by using the information contained in the Hessian.

The role of the Hessian is well described in Pratt et al. (1998); Virieux & Operto (2009) and

Brossier (2011). Ha is dominated by its diagonal elements, which are calculated as zero-lag

autocorrelation of the partial derivative wavefields. These elements predict the geometrical am-

plitude spreading contained in the gradient and can thus be used to find an improved spatial

scaling of the gradient. In surface seismic, the scaling of the gradient with the diagonal ele-

ments of Ha enhances the influence of deeper parts of the model. I will use an approximation

of this diagonal part of Ha for preconditioning. The off-diagonal elements of the approximate

Hessian account for the limited-bandwidth effects caused by the acquisition geometry. They

additionally allow a correct scaling of the different inversion parameters, which can be very

favourable for multiparameter inversion. Overall, applying the inverse Hessian to the gradient

can be seen as a sharpening and focusing of the gradient, which leads to a better performance.

Further improvements can be achieved with the use of the full Hessian, in which the second

term R takes multi-scattering events into account.

The main drawback of the Gauss-Newton and especially the full Newton method are the exten-

sive computational costs of runtime and storage to calculate and invert the large Hessian matrix.

A good alternative is given by quasi-Newton methods, which I will discuss in chapter 6.

The use of an approximation of the diagonal Ha for preconditioning in the gradient method,

which I will present in this chapter, is not equal to a Gauss-Newton method and therefore does

not share all benefits. Still I will show, that it can improve our inversion sheme and enable the

inversion of complex models and that it can be implemented at reasonable computational costs

in a 3D elastic FWI.

Same as for the calculation of the gradients, we use a time-frequency approach for the Hessian

calculation. This essentially means, that the wavefields required for the Hessian are simulated

in time domain, but the Hessian calculation is performed in frequency domain for n f discrete

frequencies. The approximate Hessian in equation 5.1 in frequency domain for discrete fre-

quencies can be expressed as

(Ha) jl = ∑
s

∑
r

n f

∑
v=1

∂ ũi

∂m j

(

∂ ũi

∂ml

)∗
, (5.2)

where ũi(xs,xr,ωv) is the displacement in frequency domain and ∗ denotes its complex conju-

gate.

5.2.2 The partial derivative wavefields

For the calculation of the approximate Hessian (equation 5.2) the explicit calculation of the

partial derivative wavefields, also known as Fréchet derivative kernels, is required. This is

a main difference to the calculation of the gradient, where the adjoint method avoids these
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expensive calculations by introducing the adjoint wavefield. In section 2.4 the Fréchet derivative

kernels for the model parameters λ , µ and ρ were already derived as (see equation 2.29)

∂ui(xr, t)

∂ρ(x)
= K

ρ
i =−

∫ T

0
dτ

∂

∂τ
Gi j(xr, t;x,τ)

∂u j(x,τ)

∂τ
,

∂ui(xr, t)

∂λ (x)
= Kλ

i =−
∫ T

0
dτ

∂

∂x j
Gi j(xr, t;x,τ)

∂up

∂xp
,

∂ui(xr, t)

∂ µ(x)
= K

µ
i =−

∫ T

0
dτ

∂

∂xk

Gi j(xr, t;x,τ)

(

∂u j(x,τ)

∂xk

+
∂uk(x,τ)

∂x j

)

.

(2.29)

The Green’s functions Gi j(xr, t;x,τ) only depend on the time difference t− τ and with the use

of spatial reciprocity (equation A.3) they can be written as

Gi j(xr, t;x,τ) = G ji(x, t− τ;xr,0). (5.3)

These Green’s receiver functions thus describe the j-th component of the displacement wave-

field, which is generated at the receiver position xr by a delta pulse point force in i-direction. I

can thus calculate the partial derivative wavefields from equation 2.29 with the following for-

mulas

∂ui(xr, t)

∂ρ(x)
=−

∫ T

0
dτ

∂

∂τ
G ji(x, t− τ;xr,0)

∂u j(x,τ)

∂τ
,

∂ui(xr, t)

∂λ (x)
=−

∫ T

0
dτ

∂

∂x j
G ji(x, t− τ;xr,0)

∂up

∂xp
,

∂ui(xr, t)

∂ µ(x)
=−1

2

∫ T

0
dτ

(

∂

∂xk

G ji(x, t− τ;xr,0)+
∂

∂x j
Gki(x, t− τ;xr,0)

)(

∂u j(x,τ)

∂xk

+
∂uk(x,τ)

∂x j

)

.

(5.4)

These equations contain a convolution of the Green’s receiver functions with the forward-

propagated wavefields. To find the partial derivatives for discrete frequencies, I transform the

equations 5.4 using the convolution theorem, i.e.,

C(t) =

∫

dτA(τ− t)B(τ) → C̃(ω) =
√

2πÃ(ω)B̃(ω) (5.5)

Hereby, the Fourier transform as defined in equation 2.36 is used. I now apply this theorem to

the equations 5.4. The time derivatives transform to the Fourier domain with a factor of iω .

This results in

∂ ũi(xr,ωv)

∂ρ(x)
= ω2

v G̃ ji(x,ωv;xr,0)ũ j(x,ωv),

∂ ũi(xr,ωv)

∂λ (x)
=− ∂

∂x j

G̃ ji(x,ωv;xr,0)
∂ ũp(x,ωv)

∂xp

,

∂ ũi(xr,ωv)

∂ µ(x)
=−1

2

(

∂

∂xk

G̃ ji(x,ωv;xr,0)+
∂

∂x j
G̃ki(x,ωv;xr,0)

)(

∂ ũ j(x,ωv)

∂xk

+
∂ ũk(x,ωv)

∂x j

)

.

(5.6)

These equations can finally be used to calculate the Hessian preconditioner.
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5.2.3 The calculation of the diagonal Hessian preconditioner

We only use the diagonal of Ha in equation 5.2, which is

(Ha) j j = ∑
s

∑
r

n f

∑
v=1

∂ ũi

∂m j

(

∂ ũi

∂m j

)∗
. (5.7)

So far, the index j runs over all model parameters. Because we only use the diagonal, we can

also reformulate this in one expression for λ , µ and ρ each:

Hρ
a (x) = ∑

s
∑
r

n f

∑
v=1

∂ ũi(xr,ωv)

∂ρ(x)

(

∂ ũi(xr,ωv)

∂ρ(x)

)∗
,

Hλ
a (x) = ∑

s
∑
r

n f

∑
v=1

∂ ũi(xr,ωv)

∂λ (x)

(

∂ ũi(xr,ωv)

∂λ (x)

)∗
,

Hµ
a (x) = ∑

s
∑
r

n f

∑
v=1

∂ ũi(xr,ωv)

∂ µ(x)

(

∂ ũi(xr,ωv)

∂ µ(x)

)∗
.

(5.8)

The diagonal approximate Hessian for λ , µ , and ρ are calculated from the partial derivative

wavefields given in equation 5.6 multiplied with their complex conjugate value and summed up

over all data points, i.e., all source-receiver combinations and frequencies.

As preconditioning operator (Pρ(x), Pλ (x) and Pµ(x)) for the different parameters I use the

inverse of the diagonal of Ha, which is straightforward for a diagonal matrix, and I get

Pρ(x) = (Hρ
a (x)+ ερ)

−1,

Pλ (x) = (Hλ
a (x)+ ελ )

−1,

Pµ(x) = (Hµ
a (x)+ εµ)

−1.

(5.9)

The coefficients ερ ,ελ and εµ are water levels, which are summed to the Hessian approxima-

tions for reasons of stability. Otherwise, very small elements of Ha in areas of very low wave

coverage cause a strong increase of the gradient in these areas which can result in artefacts.

I employ the seismic velocity parametrisation with vp, vs and ρ ′ and thus require the precondi-

tioning operators for these parameters. For their calculation, I transform the partial derivative

wavefields with respect to λ , µ , and ρ as calculated in equation 5.6 to wavefield derivatives with

respect to the seismic velocities. The transformation is similar to the gradient transformation

described in section 2.6. This results in

∂ ũi

∂vp
=

∂ ũi

∂λ

∂λ

∂vp
+

∂ ũi

∂ µ

∂ µ

∂vp
+

∂ ũi

∂ρ

∂ρ

∂vp
= 2ρvp

∂ ũi

∂λ
,

∂ ũi

∂vs
=

∂ ũi

∂λ

∂λ

∂vs
+

∂ ũi

∂ µ

∂ µ

∂vs
+

∂ ũi

∂ρ

∂ρ

∂vs
=−4ρvs

∂ ũi

∂λ
+2ρvs

∂ ũi

∂ µ
,

∂ ũi

∂ρ ′
=

∂ ũi

∂λ

∂λ

∂ρ ′
+

∂ ũi

∂ µ

∂ µ

∂ρ ′
+

∂ ũi

∂ρ

∂ρ

∂ρ ′
= (v2

p−2v2
s )

∂ ũi

∂λ
+ v2

s

∂ ũi

∂ µ
+

∂ ũi

∂ρ
.

(5.10)

Inserting these partial derivative wavefields into equation 5.8, I can calculate the Hessian ap-

proximations H
vp
a (x), Hvs

a (x) and H
ρ ′
a (x). Finally, the preconditioning operators for the seismic

velocity parametrisation Pvp(x), Pvs(x) and Pρ ′(x) can be calculated similar to equation 5.9.



62 5.3. IMPLEMENTATION

5.3 Implementation

The workflow presented in Figure 5.1 illustrates the steps for the estimation of the Hessian

preconditioner, which will be described in the following. The approximate Hessian does con-

tain information about the model of the k-th iteration (mk), and about the acquisition geometry.

However, it does not include information about the observed data, and thus about the true sub-

surface model. The Hessian approximation is calculated only once at the beginning of each

frequency stage and then applied to the gradients within this frequency stage.

Figure 5.1: Workflow for the calculation of the Hessian preconditioning operator at iteration k as

implemented in 3D-AWAIT for the seismic velocity parametrisation.

5.3.1 Computation of the Hessian approximation

The Hessian requires the knowledge of the partial derivative wavefields, which are calculated

according to equation 5.6 in frequency domain for each discrtete frequency and each source-

receiver combination.
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Green’s receiver functions

In a first step, the Green’s receiver functions are simulated. This needs to be done for each

receiver individually by propagating a δ -pulse from the receiver into the medium. Due to the

characteristics of the velocity stress solver, I use a Heaviside step function (Θ) as a force-time

function, defined as

Θ(t− tstep) =

{

0 for t < tstep

1 for t ≥ tstep,

with the δ (t− tstep)-function as its derivative. Using the Θ-function I simulate Green’s receiver

functions of displacement Gi j(xr, t;x, tstep). The time shift by tstep is applied to avoid filter-

ing artefacts. I use the same tstep for the calculation of the forward wavefield. Of course, the

correctness of the Green’s receiver functions is only warranted for frequencies which fullfill

the dispersion criterion (equation 3.2) and can cause strong dispersion for higher frequencies.

However, this is considered in the range of the inversion frequencies, in which the functions are

used.

To estimate the Green’s receiver functions in frequency domain, we apply a discrete Fourier

transform (equation 3.7) to the function Gi j(xr, t;x, tstep) as described in section 3.1.5. The

functions Gi j(xr,ωv;x,0) are stored in memory for each discrete frequency and each receiver.

The calculation of the Green’s receiver functions causes the most part of additional computa-

tional costs which occur during the calculation of the Hessian preconditioner. I therefore use

two main approximations here. First, I only propagate the wavefield for a subset of receivers.

This is justified, because the dominating artefacts in the gradient are located at the source po-

sitions, whereas the small receiver artefacts are far easier to correct. Second, I only propagate

one component of the δ -pulse. The component I use corresponds to the force direction of the

forward source. This means, that I only calculate one component of the partial derivative wave-

field (e.g., for a δ -pulse in z-direction this corresponds to ∂uz/∂m j). This generally leads to a

good correction at the source, but some artefacts remain at the receivers, where other wavefield

components are abundant. Using these two approximations, the Green’s receiver functions can

be calculated and stored at reasonable computational costs.

Partial derivative wavefields and Hessian computation

The forward wavefields for each shot are already computed and transformed to the Fourier-

domain in the framework of the gradient calculation (section 3.2). After the calculation of each

shot, I calculate the partial derivative wavefields according to equation 5.6 for this shot. For each

receiver and each discrete frequency the forward wavefield is multiplied with the corresponding

Green’s receiver function. The forward wavefield is stored as velocities vi and integrated with

(iω)−1 (equation 3.8) to find the corresponding displacements ui. Spatial derivatives of forward

field and Green’s receiver functions are calculated with the use of finite-differences, similar to

the implementation of gradient calculation (section 3.3). The partial derivative wavefields are

then multiplied with their conjugate value and summed up (equation 5.8). When this is done

for all shots, this results in an approximation of the diagonal Hessian operators H
vp
a (x), Hvs

a (x)
and H

ρ
a (x).
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5.3.2 Hessian preconditioning

Finally, the preconditioning operators Pvp(x), Pvs(x) and Pρ(x) are calculated by adding a water

level to the Hessian approximations and by using their reciprocal value (equations 5.9). At the

moment, the water level is chosen empirically. Hereby, it is chosen large enough to avoid large

artefacts in areas of low illumination, i.e., in large depth or near the boundaries. These operators

are then used for gradient preconditioning:

pk(x) = P(x)∇Ek. (5.11)

Additional local preconditioning at the receiver positions according to section 3.4 is required

due to the reduced number of Green’s receiver functions used for the Hessian calculation. Fur-

thermore, I typically taper the C-PML boundaries.

Overall, compared to the Gauss-Newton method, I make the following approximations:

• use of diagonal elements of Ha only,

• employ only a subset of receivers for its calculation,

• only one component of partial derivative wavefields by backpropagating only one com-

ponent δ -pulse and

• estimate Hessian only once for each frequency stage.

In the following I will show two examples of 3D FWI with Hessian preconditioning: a simple

toy example to validate the approach and a surface geometry example to show its performance

in a more complex application.

5.4 Transmission geometry - the subdivided box model

Even though the implementation of the Hessian preconditioning is of main interest for its ap-

plication to FWI of complex models, I choose a relatively simple test in transmission geometry

to show its effects on the gradients and to prove its performance in the inversion.

5.4.1 Model and inversion setup

I consider a box model with the size of 160×160×184 grid points corresponding to 128 m×128 m

×147.2 m in x-, y- and z-direction. The true models for the seismic velocities vp and vs are

shown in Figure 5.2. The seismic velocity models contain a box, which is divided into four

differently-sized parts with different positive and negative velocity variations. The vp/vs ratio

is not constant. The model does not contain a free surface. As starting models, the homoge-

neous background velocities outside the box are used. The density model is homogeneous with

2800 kg/m3 and kept constant during inversion.

Sources and receivers are arranged within x-y-planes, as indicated in Figure 5.2. We use 12

(3×4) sources in 92 m depth and 169 (13×13) receivers in 24 m depth. The sources are verti-

cal directed point forces with sin3-wavelets as source time functions and a source duration of
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0.0033 s. This source wavelet comprises frequencies up to about 400 Hz.

In total, I performed 80 iterations, divided into 4 different frequency stages ranging from

a) b)

Figure 5.2: Real box model of vp (a) and vs (b) with indication of sources (stars) and receivers

(crosses).

160 Hz to 320 Hz and use five frequencies in each stage (see Table 5.1). The minimum wave-

lengths for vp and vs corresponding to the maximum frequency in each stage are also given.

They correspond to the maximum resolution which is expected in this inversion. The gradients

are generally normalised to their maximum value and scaled by the homogeneous background

velocities. To account for the different wavelength of vp and vs I additionally apply empirical

scaling factors to improve the multiparameter inversion. As I expect a predominant influence

of vs for the first frequency stage I apply a scaling factor of 0.7 to reduce the vp update. In the

third and fourth frequency stage the vs update is scaled by 0.7 and 0.4, respectively. Here only

small changes are required to get the fine structures at small wavelengths, whereas the larger

P-wavelengths still allow for rougher changes in the model.

At the beginning of each frequency stage, the diagonal Hessian preconditioning matrices H
vp
a

iteration frequencies in Hz λmin(vp) in m λmin(vs) in m

1-20 160,170,180,190,200 31 18

21-40 200,210,220,230,240 26 15

41-60 240,250,260,270,280 22 13

61-80 280,290,300,310,320 19 11

Table 5.1: Frequency stages used for the transmission geometry box example with minimum wave-

lengths λmin(vp) and λmin(vs).

and Hvs
a were calculated according to the workflow (Figure 5.1) described in the last section.

In the framework of the Hessian calculation a vertically directed δ -pulse was propagated from

each receiver to find the receiver Green’s functions. These Hessian approximations were used

for preconditioning of the seismic velocity gradients within the whole frequency stage.

With the use of four sources for the steplength estimation the general conjugate gradient ap-

proach requires 32 forward modellings per iteration. The calculation of the Hessian precondi-

tioning matrices amounts to 169 additional forward modellings once in each frequency stage.
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Note, that in this example I calculate the Green’s receiver functions for all receivers. Thus,

for the full inversion 676 forward modellings are added to the 2560 forward modellings of the

general gradient approach, which is an increase of about 26% of runtime in this example.

5.4.2 Effects of Hessian preconditioning

Figure 5.3 shows the effects of the diagonal Hessian preconditioning on the gradients of vp and

vs for the first iteration, and thus for the first frequency stage. The gradients before precondition-

ing, normalised to their maximum values, are shown in Figure 5.3a) for vp and b) for vs. Note,

that the colorbar is strongly clipped to make the general gradient structure observable. The

high amplitudes around sources and receivers are clearly visible. Without preconditioning, the

model update is only significant within these areas, and the inversion fails. Figure 5.3c) and d)

shows the logarithm of the normalised diagonal Hessian approximation HD for vp and vs. The

Hessian matrix covers several orders of magnitude and, like the gradient, it shows extremely

high values at source and receiver positions. The influence of the geometric amplitude decay

of the wavefield is clearly visible. Areas with no or very low wavepath coverage show very

low values. This is, for example, visible in the blue areas of the vp Hessian. The application

of the inverse Hessian in such areas would lead to an enormous enhancement of the gradient,

even though we have no or very little information in our data. To avoid this, the water level

ε is added to the Hessian approximation, which I determine manually once for each Hessian

approximation.

The preconditioning operators P(x) are calculated according to equation 5.9. The normalised

gradients after preconditioning are shown in Figure 5.3e) and f) for vp and vs, respectively. The

high amplitudes near source and receiver positions are well corrected. Very small receiver arte-

facts are still visible, which results from my approximation to use only the vertical component

of the partial derivative wavefields for the Hessian calculation. Hence, some additional damp-

ing at receiver positions might be required and is applied locally during inversion. The highest

amplitude in the gradient now concentrates on the box area. The structure of the precondi-

tioned gradient within the box area is still very similar to the structure of the gradient before

preconditioning. Thus, for this simple transmission geometry application, the effects of Hessian

preconditioning are mainly limited to the source and receiver area. Unfortunately, some arte-

facts above the source plane are visible in the gradients. However, the inversion results show,

that these gradient artefacts do not manifest in the model.

5.4.3 Inversion results

In figure 5.4 the data fit of observed, starting and final inverted data is plotted for the x-, y-

z-component for one representative source and receiver normalised to one trace. The data is

lowpass-filtered with a corner frequency of 320 Hz, which is the maximum frequency used for

the inversion. It is visible, that the seismograms of the homogeneous starting model are already

relatively close to the data. The final inverted data and the observed data show a nearly perfect

fit.

The final models of vp and vs are shown as two 2D slices: a horizontal (x-y) slice in Figure 5.5

and a vertical (y-z) slice in Figure 5.6. For comparison, the real models are plotted. Overall, the

box compartments could be successfully reconstructed by the FWI. In the horizontal slice of

the final inverted models in Figure 5.5 b) and d) the three sub-boxes are successfully recovered
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a) b)

d)

e) f)

c)

Figure 5.3: Effects of Hessian preconditioning on the gradients of vp and vs in the box model:

a) normalised gradient vp, b) normalised gradient vs, c) logarithm (log10) of normalised Hessian

HD(vp), d) logarithm of normalised Hessian HD(vs), e) normalised preconditioned gradient vp and

f) normalised preconditioned gradient vs.
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Figure 5.4: Comparison of starting, observed and final inverted multi-component waveforms filtered

below 320 Hz for exemplary receiver at (xr,yr,zr)=(64 m, 64 m, 24 m) and source at (xs,ys,zs)=(96 m,

32 m, 92 m) normalised to one trace.

a) b)

c) d)

Figure 5.5: Results of box model inversion for horizontal slice at z = 60 m with a) real model vp, b)

inverted model vp, c) real model vs and d) inverted model vs.
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a)

c)

b)

d)

Figure 5.6: Results of box model inversion for vertical slice at x = 56 m with a) real model vp, b)

inverted model vp, c) real model vs and d) inverted model vs.

by the inversion. Due to the smaller wavelengths of the shear wave, the shape of the sub-boxes

is clearer in vs, compared to vp.

The results plotted in the vertical slice are not as well resolved. The 12 m thick high-velocity

compartment on the left side is only partly resolved in vs (Figure 5.6d) and is not visible in

the vp model (Figure 5.6b). This is not unexpected when looking at the minimum wavelengths

of 11 m for vs and 19 m for vp within this high-velocity zone. Higher frequencies would be

required for a better reconstruction.

5.4.4 Comparison with local preconditioning

For comparison, I repeated the inversion with the same data and inversion parameters, such as

frequency stages, number of iterations and and test steplengths but used a local precondition-

ing. Circular tapers were applied to damp the high amplitudes around sources and receivers,

as described in section 3.4. Figure 5.7 shows the evolution of the misfit for both methods of

preconditioning. The misfit values are normalised to the initial misfit and plotted logarithmi-

cally. The steps in the misfit curve are caused when adding new data at the start of a frequency

stage. Overall, both curves show a very good convergence in all four frequency stages. Finally,

the misfit in the frequency band up to 320 Hz could be reduced to 0.4% for the Hessian pre-

conditioning and 0.3% of the initial misfit in case of local preconditioning. Comparing the two

methods, the misfit curves behave nearly similar, even though misfit values are slightly lower
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Figure 5.7: Misfit proceedings for box

model normalised to the initial misfit.
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for local preconditioning. Thus, no improvement of the convergence could be achieved in this

example with the use of the Hessian. A comparison of the final models also results in no clear

differences between the two approaches. Note, however, that this is a very simple example,

where sources and receivers are located in homogeneous and known material. A more distinct

change is expected for more complex problems.

Overall, this simple example showed, that the method of Hessian preconditioning can success-

fully account for high amplitudes around sources and receivers in the gradients and allow a

satisfactory inversion. Still, the effects of Hessian preconditioning in this example are mainly

concentrated around sources and receivers. Applying a local tapering in these areas results in a

similar convergence and in a similar inversion result, which is computed much cheaper. Thus,

well-posed inverse problems might not profit from preconditioning with the diagonal Hessian

approximation.

5.5 Surface geometry - the 3D layered model

Most seismic applications are conducted with sources and receivers located at the surface in

so-called surface or reflection acquisition geometries. Differently to transmission geometry

experiments, where the direct wave already carries a lot information about the underground

structures, the subsurface in reflection geometry experiments is commonly inferred from re-

flected, refracted and diffracted waves. Furthermore, due to the existence of a free surface, the

wavefield also contains high amplitude surface waves. This complex wavetype increases the

nonlinearity of the inversion. However, it does contain useful information about the shallow

subsurface with a particular sensitivity to the shear wave velocity (Forbriger, 2001).

The energy of the seismic wavefield strongly decreases with depth due to the geometric ampli-

tude spreading, due to the loss off energy, which is reflected and diffracted back to the surface

and due to the strong amplitude decay of the surface waves with depth. Therefore, the FWI,

especially the reconstruction of deeper structures, requires a careful preconditioning. In this
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section I will present an inversion of a 3D layered model with surface acquisition geometry. For

preconditioning, the approximate Hessian, as discussed in this chapter, is applied.

5.5.1 Model and acquisition geometry

I consider a 3D layered onshore surface model as shown in Figure 5.8 for vp (a) and vs (b) and ρ
(c). The velocity model consists of homogeneous sedimentary layers over a basin-shaped homo-

geneous half-space. The size is 320×320×160 grid points which corresponds to 256 m×256 m

×128 m. At z = 0m, the model contains a free surface. The structures in vp and vs are similar

with vp/vs ratios between 1.67 and 1.80. The third layer (white) is a low velocity layer. I do

not invert for density in this example, but use the real density model as starting model and keep

it constant during inversion. In order to avoid the introduction of hard contrasts in the inversion

of the seismic velocities due to the density, the density model is built as a smoothed version of

the seismic velocity structures. In order to get this model I used the SMOOTH3D function of

Seismic Unix, which is based on a damped least squares approach (Liu, 1994) with an operator

length of 32 m.

The acquisition geometry can be seen in Figure 5.9. 49 vertically directed point sources (red

stars) are located in 3 m depth and in total 3025 receivers (black crosses) are located in 1.6 m

depth. Only a subset of 100 receivers (blue crosses) is used for the calculation of the Hessian.

As source time function, I apply a sin3 function with a dominant frequency of 20 Hz. Its spectra

is plotted in Figure 5.9. It contains frequencies up to about 50 Hz and a main advantage of this

wavelet is, that it also comprises the very low frequencies.

Seismograms of the vertical component are plotted for one exemplary shot along a x-profile and

a y-profile in Figure 5.11a) and b), respectively. The waveforms show the predominant influence

of the high amplitude Rayleigh wave, whereas direct, reflected and refracted body waves only

show with low amplitude and cannot be clearly identified. The waveforms along the x-profile

and y-profile look relatively similar.

5.5.2 Inversion setup

I inverted for the seismic velocities vp and vs. The starting models for the seismic velocities are

smoothed versions of the real models (Figure 5.12). They result from applying the SMOOTH3D

Seismic Unix function with an operator length of 32 m to the real models. Thus, only rough

structures of the real model are preserved. The low velocity zone is smoothed out for the greater

part.

The first frequency band used during inversion is from 2 Hz to 4 Hz. Starting at these low

frequencies was necessary for the inversion to succeed. The seismograms along a y-profile for

one representative source filtered below 4 Hz are plotted in Figure 5.13. It is obvious, that there

are already substantial differences between the data of the smoothed starting model and the

observed data in the first frequency band.

The different frequency stages are given in Table 5.2. In total, 170 iterations were performed

using six frequency stages, with frequencies ranging from 2 Hz and 22 Hz. In each frequency

stage six frequencies were employed and the frequency interval was increased to higher stages.

The minimum wavelengths for P- and S-wave are also given in the table. A resolution down to

λ/2 can be reached in the ideal case.

For preconditioning I apply the Hessian preconditioning. Its effects are discussed in more
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Figure 5.8: Real

3D surface mod-

els: a) vp, b) vs, c)

ρ .

b)

c)

a)
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Figure 5.9: Top view of the surface

acquisition geometry showing sources,

all receivers and the subset of receivers

used for the Hessian calculation.
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sin3-wavelet used for the surface applica-

tion.
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Figure 5.11: Observed unfiltered data of vertical component (trace normalised) shown for shot at

x=92 m and y=64 m for receivers along two perpendicular profiles: a) x-profile at y=64 m and b)

y-profile at x=92 m.
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Figure 5.12:
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Figure 5.13: Vertical com-

ponent of observed versus

starting data lowpass-filtered

with 4 Hz (trace normalised)

shown for source at x=92 m

and y=64 m along y-profile at

x=92 m.
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iteration frequencies in Hz λmin(vp) in m λmin(vs) in m

1-29 2.0 2.4 2.8 3.2 3.6 4.0 175 100

30-62 4.0 4.5 5.0 5.5 6.0 6.5 108 62

63-85 6.5 7.0 7.5 8.0 8.5 9.0 78 44

86-114 9.0 9.6 10.2 10.8 11.4 12.0 58 33

115-141 12.0 13.0 14.0 15.0 16.0 17.0 41 24

142-170 17.0 18.0 19.0 20.0 21.0 22.0 32 18

Table 5.2: Frequency stages used for the surface geometry application with minimum wavelengths

λmin(vp) and λmin(vs).

detail in the next section. Additionally, the vertical C-PML-boundaries are not updated to avoid

artefacts in these areas. To prevent implausible contrasts from the inner model to the boundary,

all boundary parameters in a certain depth are set to an average value of the grid point adjacent

to the boundary. This average value is calculated as the mean value of all directly neighbouring

gridpoints.

Only a subset of the receivers is used for the Hessian calculation. Therefore, an additional local

preconditioning is applied at the receiver positions. I do not apply any additional smoothing to

the gradients and models during the inversion.

5.5.3 Effects of Hessian preconditioning

The Green’s receiver functions for the Hessian are calculated for a subset of 100 receivers

and with vertically directed δ -pulse forces, only. Thus, 100 additional forward modellings are

performed for an approximate Hessian estimation compared to the gradient calculation. The

Hessian approximations are calculated once at the beginning of each frequency stage and then

applied for gradient preconditioning in this stage.

The effects of the Hessian preconditioning on the gradients are shown for two exemplary it-

erations in the Figures 5.14 and 5.15. In Figure 5.14 a) and b) the gradients for vp and vs,

normalised to their maximum value, are plotted for the first iteration and the lowest frequency

band (2 Hz - 4 Hz). The high amplitude values adjacent to the sources are clearly visible. Still,

due to the strongly clipped colorbar, gradient structure in greater depth can also be seen. The

corresponding Hessian matrices (Figure 5.14 c) and d)) are plotted logarithmically. They cover

several orders of magnitude, and contain information about the acquisition geometry and the

structure of the starting model. The calculation of the preconditioning matrix P(x) (equa-

tion 5.9) and its application to the gradients results in the preconditioned gradients presented in

Figure 5.14 e) and f). It is visible, that the source artefacts are now successfully removed and

that the main model update concentrates on the middle and deeper layers of the basin. Still, ex-

cept for the area around the sources the effects of the Hessian preconditioning are small and the

structure of the preconditioned gradients is very similar to the unpreconditioned gradients. The

preconditioned gradients still show some artefacts in the boundary and at the receiver positions,

so that additional preconditioning in these areas is useful.

The effects of Hessian preconditioning can be more substantial as I present in the second ex-

ample for the third frequency band (6.5 Hz - 9 Hz). In this case, the gradients (Figure 5.15

a) and b)) show a very strong amplitude decay with depth. This amplitude decay is probably

mainly caused by the presence of the surface wave. A model update without a correction of the
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e) f)

b)a)

c) d)

Figure 5.14: Effects of Hessian preconditioning on the gradients of vp and vs in the surface model

for the first iteration (first frequency stage, 2-4 Hz): a) normalised gradient vp, b) normalised gradient

vs, c) logarithm of normalised Hessian HD(vp), d) logarithm (log10) of normalised Hessian HD(vs),
e) normalised preconditioned gradient vp and f) normalised preconditioned gradient vs.

gradient for this depth decay would thus affect only the most shallow part of the model. After

applying the Hessian preconditioning with the Hessian operators shown in Figure 5.15 c) and

d) the gradients looks very different (Figure 5.15 e) and f). Deeper structures in the gradients

now dominate, whereas the high amplitudes in the shallow part vanish. Hereby the right choice

of the water level used in equation 5.9 is important. If the water level is too small, artefacts

in the gradient, especially in the deeper part of the model, are emphasised. By increasing the

water level, the effects of Hessian preconditioning decrease and the preconditioned gradients

approach the unpreconditioned gradients. Although the water level is necessary, its optimal

estimation is still a main difficulty in Hessian preconditioning.

5.5.4 Inversion results

Inversion progress

The evolution of the misfit value is plotted in Figure 5.16. The values are normalised to the

total misfit between starting data and observed data for the full frequency range up to 22 Hz.

Using only frequencies up to 4 Hz, the amplitude values of the wavefields and the correspond-
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c) d)

e) f)

a) b)

Figure 5.15: Effects of Hessian preconditioning on the gradients of vp and vs in the surface model

for iteration 63 (third frequency stage, 6.5-9 Hz): a) normalised gradient vp, b) normalised gradient

vs, c) logarithm of normalised Hessian HD(vp), d) logarithm (log10) of normalised Hessian HD(vs),
e) normalised preconditioned gradient vp and f) normalised preconditioned gradient vs.
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Figure 5.16: Misfit proceedings of the surface model inversion for the different frequency stages.

Misfit values are normalised to the misfit between observed and starting data of the full frequency

range up to 22 Hz.

ing misfit values are low for the first frequency stage. The inversion converges very rapidly and

smoothly. Several characteristics are visible over the following frequency stages. The higher

frequency stages show slower convergence than the first frequency stage. Additionally, the mis-

fit curve gets increasingly rougher. This means, that at higher frequencies, the inversion does

not always find a steplength to decrease the misfit, even though an overall convergence to lower

misfit values is visible. The jumps in the misfit curve are especially high in the last frequency

stage, which is why I decided to terminate the inversion after this stage. Looking at the final

misfit values of each frequency stage, an overall increase is visible. Thus, the inversion does not

succeed to explain all data added in each frequency stage. In spite of this, it converges in each

stage and the final misfit value of 1% of the initial misfit for the full frequency range represents

an good final data fit.

Overall, the high number of iterations, the roughness of the misfit curve, its inability to find

appropriate steplengths in each iteration and the increasing misfit between the frequency stages

are likely to be caused by the high nonlinearity of the surface acquisition geometry inversion

which is especially caused by the dominating surface waves. This nonlinearity increases to

higher frequencies. Still, the inversion successfully converged to low misfit values for frequen-

cies up to 22 Hz.

The final data fit of the vertical component is presented exemplarily for one shot along a x- and

a y-profile in Figure 5.17. Overall, the observed data is very well explained by the inversion

result for both low amplitude body waves and high amplitude surface waves. Some data misfit

is left over at far offset receivers.

Figure 5.18 shows exemplarily the development of the inverted S-wave velocity model over

the frequency stages for one vertical slice in y-direction. The starting model is smooth, and the

different layers are not clearly distinguishable. Already in the first frequency stage (b) the three

upper layers of the model, including the low velocity zone (third layer) become visible. With

further proceedings of the inversion the layer boundaries become more and more confined. This

is also the case for the deepest interface, which develops from a broad, smooth structure at the

beginning to a very defined zone at the end of the inversion.
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Figure 5.17: Comparison of observed and final inverted waveforms filtered below 22 Hz (trace

normalised) for one exemplary shot at x=92 m and y=64 m for receivers along two perpendicular

profiles: a) x-profile at y=64 m and b) y-profile at x=92 m.
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Figure 5.18: Progress of the vs inversion result for a vertical slice of the surface model at x = 128 m

over the different frequency stages: a) starting model, b) iteration 29 (up to 4 Hz), c) iteration 62 (up

to 6.5 Hz), d) iteration 85 (up to 9 Hz), e) iteration 114 (up to 12 Hz), f) iteration 141 (up to 17 Hz)

g) iteration 170 (up to 22 Hz, final inversion result).
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Computational costs

Surface geometry FWIs are computationally more expensive compared to transmission geom-

etry FWIs of models with comparable sizes for different reasons. First, the surface acquisition

geometry is less optimal and requires a higher number of sources. Second, longer recording

times are necessary to cover the full seismic wavefield with reflected waves and surface waves.

Third, the inversion of surface seismic data is more complex and thus typically requires a higher

number of iterations compared to transmission geometry data. Overall, the example shown here

was computationally quite costly, which mainly resulted from the high number of 49 sources

and the great number of 170 iterations. On 800 cores, each iteration, without the calculation

of the Hessian, took about 1.5 hours. Hereby 118 forward simulations were performed. Ad-

ditionally, 100 extra forward simulations were required for the Hessian calculations in the first

iteration of each frequency stage. These iterations were more costly and took about 2.5 hours.

However, compared to the total computational costs, the extra costs for the Hessian calculation

are reasonable. This is of course mainly due to the approximations made for its calculation.

In total, on 800 cores the inversion took about 260 hours. For future applications with higher

number of shots the computational performance would profit from a shot parallelisation, which

is employed additionally to the domain decomposition.

The final models

The final inverted models of the seismic velocities are presented for two perpendicular slices

in the Figures 5.19 to 5.22. In Figure 5.19c) the inverted vp result is plotted. Additionally, d)

compares the real, initial and inverted models along two profiles. Their locations are indicated

in the real model (a). The three upper sedimentary layers of the real model (a) are clearly re-

constructed by the inversion. These layers are not present in the starting model (b). Especially

the low velocity zone (grey layer) is well resolved. The high-velocity layer at the base of the

basin (orange) was not resolved, however, the basin base is now much better confined. Within

this frequency range it was not possible to resolve the interfaces of the real models as sharp

boundaries. They show as smoothed interfaces. The amplitudes within the second layer and

below the basin are overestimated.

A similar result can also be seen in the second vertical vp slice directed in x-direction (Fig-

ure 5.19). Overall, the layers are clearly visible (except for the fourth, orange layer) and the

basin base is much better confined compared to the starting model. Still, the layer boundaries

are not clearly defined, but are imaged as smoothed structures in the inversion result.

A better resolution of the layers was achieved by the vs inversion shown in the Figures 5.21 for

the y-z-slice and 5.22 for the x-z-slice. The inversion results plotted in c) and d) show a nice re-

construction of the sedimentary layers, including the low velocity zone. The forth, yellow layer

is not clearly resolved. Still, the upper boundary of this layer and the basin base are now much

better confined compared to the starting model plotted in b). However, the velocities within the

layers, especially in the second layer are not reconstructed homogeneously, but show some ve-

locity variations. This might cause some of the problems observed in the inversion when going

to higher frequencies.

To summarise, the conjugate gradient method with Hessian preconditioning was able to recon-

struct the sedimentary layers of the 3D surface model successfully for both vp and vs. Hereby
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Figure 5.19: Vertical slice of the vp surface model at x = 128 m: a) real model vp, b) initial model

vp, c) inverted model vp (170 iterations) with black lines indicating the layers of the real model, d)

comparison of real, initial and starting models along vertical profiles highlighted by red lines in a).
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Figure 5.20: Vertical slice of the vp surface model at y = 128 m: a) real model vp, b) initial model

vp, c) inverted model vp (170 iterations) with black lines indicating the layers of the real model, d)

comparison of real, initial and starting models along vertical profiles highlighted by red lines in a).
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Figure 5.21: Vertical slice of the vs surface model at x = 128 m: a) real model vs, b) initial model

vs, c) inverted model vs (170 iterations) with black lines indicating the layers of the real model, d)

corommparison of real, initial and starting models along vertical profiles highlighted by red lines in

a).
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Figure 5.22: Vertical slice of the vs surface model at y = 128 m: a) real model vs, b) initial model

vs, c) inverted model vs (170 iterations) with black lines indicating the layers of the real model, d)

comparison of real, initial and starting models along vertical profiles highlighted by red lines in a).
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the Hessian preconditioning allowed a reconstruction of the deeper part of the basin. Still, the

sharp model boundaries could not be clearly imaged, but would require higher frequencies.

Hereby, the shorter vs wavelengths allow a much better resolution of the layer interfaces com-

pared to the larger vp wavelengths. The observed data is well explained by the final inverted

models, even though convergence was relatively slow and a high number of iterations was nec-

essary to achieve this data fit.

5.6 Conclusion

The inversion of complex models can require more sophisticated methods for preconditioning

than local damping. In this chapter I showed the feasibility and application of Hessian pre-

conditioning for 3D elastic FWI. Hereby, a diagonal Hessian approximation is applied to the

gradient. The calculation of the Hessian matrix generally requires the calculation of the Green’s

receiver functions for each receiver and for forces directed in x-, y- and z direction, which can be

very time consuming. Additionally, the storage of these wavefields (or the forward wavefield)

is required, unless they are recalculated for each shot. I therefore use the following approxi-

mation to the full diagonal Hessian. On the one hand, only a subset of receivers is used. On

the other hand, the simulations of the Green’s receiver functions are only performed for δ -pulse

forces directed in one spatial direction. Another aspect is, that the Hessian preconditioner is

only calculated once for each frequency stage. These approximations allow the implementation

of Hessian preconditioning at reasonable computational costs. For the storage costs, the im-

plementation also benefits from the calculation of the diagonal Hessian in frequency domain,

which requires the storage of wavefields only for discrete frequencies.

The Hessian preconditioning was validated in a simple transmission geometry experiment. By

applying the Hessian preconditioning, geometric amplitude effects in the gradient were suc-

cessfully removed, which mainly affected the area around sources and receivers. The inversion

successfully reconstructed the different areas of a subdivided box. However, no higher conver-

gence and improved inversion result was visible compared to the conjugate gradient inversion

with local preconditioning. This is probably mainly due to the simplicity of this problem, which

can already be well preconditioned by local damping.

A much more significant effect of Hessian preconditioning can be observed in surface geom-

etry experiments. I inverted a model of sedimentary layers over a basin-like structure. The

wavefields are dominated by surface waves, which indicates a high nonlinearity of the inverse

problem. For a successful inversion it was necessary to start from very low frequencies of 2 Hz.

Due to the acquisition geometry and the presence of the surface waves, significant gradient

amplitudes are mainly limited to the very shallow subsurface. By applying Hessian precondi-

tioning the amplitudes could be corrected to allow a model update in the middle and deeper part

of the basin. This allowed a successful inversion of the 3D layered vp and vs model down to the

basement of the basin. The different layers, including a low-velocity zone are clearly resolved.

Even though convergence at higher frequency stages was relatively low, the final inverted data

fit the observed data very well.



Chapter 6

Optimisation with the L-BFGS approach

6.1 Introduction

As the previous chapters showed, 3D elastic full-waveform inversion (FWI) is computationally

still very costly. Nowadays, a Gauss-Newton or even full-Newton algorithm is generally too

expensive for the inversion of realistically sized 3D problems. The conjugate gradient approach

is advantageous due to its efficient calculation with the adjoint method, which features rela-

tively low numbers of operations per iteration. Additionally, storage costs are reasonably low,

especially when implemented for discrete frequencies in frequency domain. Still, the use of the

Hessian operator can significantly improve the inversion and result in higher convergence. To

optimise the conjugate-gradient approach it is possible to include information about the Hessian

in the inversion. As a first approach, I discussed the application of an inverse diagonal Hessian

approximation for preconditioning in the previous chapter. Geometric amplitude effects could

be successfully corrected. Source and receiver artefacts were removed and an improved scal-

ing of the gradient with depth was achieved. The additional use of the off-diagonal Hessian

elements provides more benefits, as already addressed in section 5.2.1. The application of the

inverse Hessian to the gradient acts as deconvolution of the gradient from limited-bandwidth

effects and geometric amplitude effects (Pratt et al., 1998; Brossier et al., 2009).

Due to the impracticability to use the Newton methods for large-scaled problems, an additional

class of optimisation methods was developed - the quasi-Newton methods. They infer informa-

tion about the second derivative of the misfit function from changes in gradient and model for a

certain range of iterations. Hence, no additional forward problems need to be solved for the cal-

culation of second derivatives, even though additional storage capacity for gradients and models

is required. The most popular quasi-Newton method for large-scaled problems is the L-BFGS

(low memory BFGS) method (e.g. Nocedal, 1980). It is a variant of the BFGS method, which

was named after its developers Broyden, Fletcher, Goldfarb and Shannon. Previous applica-

tions for 2D FWI by Brossier et al. (2009) and Brossier (2011) showed higher convergence rates

and sharper images when using the L-BFGS approach compared to the conventional conjugate

gradient method. Additionally, a correct inversion of multiple parameters without additional

empirical weighting of the different parameter classes could be achieved. Another alternative

approach is the truncated Newton method, which incorporates information about the Hessian by

using second-order adjoint formula (Fichtner & Trampert, 2011; Métevier et al., 2012). These

approximations of the Newton method can be an implemented efficiently in the FWI scheme.

87
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In this chapter I will present the L-BFGS algorithm as an optimisation to the conjugate gradient

approach in 3D elastic FWI. First, I will explain its theory and implementation. Second, the

approach will be validated using the simple box example introduced in the previous chapter.

Finally, I will present first results for the inversion of the surface geometry example.

6.2 Theory and Implementation

6.2.1 The BFGS-method

Instead of calculating the inverse Hessian H−1
k directly, quasi-Newton methods approximate

the (inverse) Hessian by using the change of the gradients over the iterations. Starting from an

initial Hessian approximation H0 the approximation of the (inverse) Hessian is updated in each

iteration to find a more accurate estimate. In the following, I will shortly introduce the concepts

of the most common quasi-Newton method,- the BFGS method. Hereby I closely follow the

theory given by Nocedal & Wright (1999).

The derivative of the Taylor expended misfit function Ek (equation 2.10) with respect to the

model perturbation δm is given by

∇Ek(m+δmk) = ∇mEk(m)+Hkδmk. (6.1)

The model update of the Newton method (see section 2.3) in iteration k is then calculated as

δmk =−H−1
k ∇mEk. (6.2)

If we consider the next iteration (k+1) the following requirement can be defined:

∇Ek(m)
!
= ∇Ek+1(m−δmk). (6.3)

Rewriting the right hand side with equation 6.1 gives

∇Ek(m) = ∇Ek+1(m)−Hk+1δmk,

∇Ek+1(m)−∇Ek(m) = Hk+1(mk+1−mk),

γγγk = Hk+1sk.

(6.4)

This equation is known as the secant equation and poses a condition on Hk+1 depending on the

changes in the gradient γγγk = ∇Ek+1−∇Ek and model changes sk = mk+1−mk. The secant

equation can also be formulated for the inverse Hessian as

H−1
k+1γγγk = sk. (6.5)

H−1
k+1 is symmetric and positive definite. To fullfill equation 6.5 the curvature condition sT

k γγγk > 0

has to be valid, which can be ensured by an adequate steplength.

The secant equation does not define H−1
k+1 uniquely. For a unique determination the BFGS

approach searches for the positive definite, symmetric matrix H−1
k+1, which is closest to H−1

k
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and fullfills the secant equation. Solving this minimisation problem for the weighted Frobenius

norm (Nocedal & Wright, 1999) leads to the BFGS-formula

H−1
k+1 = VT

k H−1
k Vk + rksksT

k with rk =
1

γγγT
k sk

and Vk = I− rkγγγksT
k . (6.6)

This equation updates H−1
k

using the changes in gradients and models of the recent iteration.

An initial guess of H−1
0 is required. These approximations of the inverse Hessian matrix can

then be applied to the gradients to find the model update (equation 6.2).

Of course, the estimation of H−1
k+1 only gives an approximation to the exact inverse Hessian,

but still the BFGS method offers superlinear convergence and tends to be robust with good

self-correcting properties (Nocedal & Wright, 1999).

6.2.2 The L-BFGS-approach

A main advantage of the BFGS approach is, that it avoids the explicit calculation of second

derivatives. However, it is not suited for problems with a high number n of model parameters ,

due to the large number of BFGS-operations of O(n2) and the high storage costs for the huge,

dense Hessian.

For these large problems, a variant of the BFGS approach was developed, known as the limited-

memory BFGS (L-BFGS) method. Instead of calculating and storing the Hessian matrix of size

n× n explicitly, the L-BFGS stores the change in gradients (γγγ) and in models (s) of the last

m iterations. It thus employs curvature information of the recent m iterations to calculate an

approximation of H−1
k

. Applying equation 6.6 repeatedly for the previous m iterations results

in the following formula (Nocedal & Wright, 1999):

H−1
k =(VT

k−1...V
T
k−m)H

−1
k0 (Vk−m...Vk−1)

+ rk−m(V
T
k−1...V

T
k−m+1)sk−msT

k−m(Vk−m+1...Vk−1)

+ rk−m+1(V
T
k−1...V

T
k−m+2)sk−m+1sT

k−m+1(Vk−m+2...Vk−1)

+ ...

+ rk−1sk−1sT
k−1.

(6.7)

Hence, instead of updating H−1
k

in each iteration, it is newly calculated with equation 6.7 with

information of the m previous iterations. -H−1
k0 is an initial inverse Hessian approximation,

which is allowed to vary from iteration to iteration.

The L-BFGS approach can be implemented very efficiently. The Hessian matrix is hereby not

calculated explicitly, but instead the product H−1
k ∇Ek is estimated with the following recursive

algorithm given in Nocedal & Wright (1999):

q← ∇Ek

for (i = k−1, ...,k−m)

αi← ris
T
i q

q← q−αiγγγ i

end for
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z←H−1
k0 q

for (i = k−m, ...k−1)

β ← riγγγ
T
i z

z← z+ si(αi−β )
end for

H−1
k ∇Ek = z

This algorithm is performed once in each iteration and consists of (4mn+ n) multiplications

if a diagonal H−1
k0 is chosen. The L-BFGS algorithm requires additional storage of (2mn+m)

floating numbers for γγγ,s and r. For reasonable numbers of m the L-BFGS method can therefore

be performed at relatively low extra costs of runtime an storage. In general, values between

5 and 20 are used for m. In the first (m− 1) iterations the result corresponds to the BFGS

method. Even though Nocedal & Wright (1999) mentioned, that convergence of the L-BFGS

can be low compared to the BFGS approach, Brossier et al. (2009) and Brossier (2011) showed

great improvements in convergence and resolution compared to the conjugate gradient method

for FWI. This, together with the low computational extra costs make it very attractive for 3D

FWI.

6.2.3 Application of L-BFGS for multi-parameter FWI

Our aim in 3D FWI is the successful, optimised, multi-parameter inversion of complex 3D

structures. In this section, I present the L-BFGS approach not as the only preconditioner for

FWI but as an additional applied technique to improve the inversion. Hereby I follow the ap-

proach discussed by Brossier (2011) and apply the L-BFGS approach using the preconditioned

gradients of normalised parameters.

L-BFGS for preconditioned gradients

The general L-BFGS approach uses the changes in gradients and model parameters as discussed

in section 6.2.2. For FWI, however, Brossier (2011) successfully applies the L-BFGS algorithm

for multi-parameter FWI by using changes in preconditioned gradients. In a first step the di-

agonal Hessian approximation is applied to the gradients for preconditioning, in a second step,

the model update is calculated using the L-BFGS approach. The preconditioning with the diag-

onal Hessian approximation was discussed in the previous chapter as a first optimisation to the

conjugate gradient approach. The L-BFGS method can then be seen as a second optimisation.

Differently to the application of the diagonal Hessian for preconditioning, the approximation

of the Hessian by L-BFGS also considers the off-diagonal elements. Additionally, the L-BFGS

algorithm is performed in each iteration, and thus offers a Hessian approximation for the cur-

rent iteration, whereas the diagonal Hessian preconditioner was approximated as constant for

the whole frequency stage.

The general L-BFGS method requires a good guess for the initial Hessian, such as a diagonal

Hessian approximation, to offer a good convergence. When applying the L-BFGS algorithm to

gradients preconditioned by the diagonal inverse Hessian a simple guess for the initial Hessian

is sufficient. I employ a scaled identity matrix as initial Hessian approximation as suggested by
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Nocedal & Wright (1999)

H−1
k0 =

sT
k−1γγγk−1

γγγk−1γγγT
k−1

I, (6.8)

which attempts to estimate the correct size of the Hessian operator, so that a steplength close to

one is valid. Still, a steplength calculation is useful and is included similar to the conventional

conjugate gradient implementation. The difference is, that test steplengths go up to one and

optimal steplengths close to one should be reached during inversion.

Parameter normalisation

In the conjugate gradient approach I normalise the conjugate gradients to their maximum values

for each parameter class and scale them with an average model parameter. No information about

the relative model update of the parameter classes compared to each other is provided by the

inversion (section 3.5.1). The L-BFGS approach, by contrast, approximates the Hessian matrix,

which can account for the scaling of the model update for the different parameter classes and

offers an absolute model update. The L-BFGS approach should therefore lead to an improved

multi-parameter FWI compared to the conjugate gradient method. Still, the multiparameter

FWI inverts for parameters of different amplitudes and units. For this reason, Brossier (2011)

suggested a normalisation of each parameter class to enable a dimensionless L-BFGS scheme.

The normalised parameters are calculated as

v̂p(x) =
vp(x)

vp0
, v̂s(x) =

vs(x)

vs0
, ρ̂(x) =

ρ(x)

ρ0
. (6.9)

The representative parameters vp0,vs0 and ρ0 can be chosen as the average value of the initial

models. This leads to the following normalisation of the gradients

∂E

∂ v̂p(x)
=

∂E

∂vp(x)
vp0,

∂E

∂ v̂s(x)
=

∂E

∂vs(x)
vs0,

∂E

∂ ρ̂(x)
=

∂E

∂ρ(x)
ρ0. (6.10)

and the following normalisation for the diagonal Hessian approximation:

H
v̂p
a = H

vp
a v2

p0, H
v̂p
a = H

vp
a v2

p0, H ρ̂
a = Hρ

a ρ2
0 . (6.11)

This normalisation of gradients and Hessian matrices results in a normalised model update δ m̂

which needs to be denormalised before updating the model

δvp = δ v̂pvp0, δvs = δ v̂svs0, δρ = δ ρ̂ρ0. (6.12)

The normalisation finally allows a dimensionless L-BFGS algorithm joint for all parameter

classes. The vector pairs saved in the iteration k, i.e., γγγk =((γ1)k, ...,(γn)k) and sk =((s1)k, ...,(sn)k)
run over all model parameters, that is, all parameter classes and grid points. As a result, the

L-BFGS gives an absolute model update for each normalised parameter without the need of

heuristic weighting of each parameter class.
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The workflow

The combination of the Hessian preconditioning and the L-BFGS scheme for normalised pa-

rameters is implemented as follows:

for each frequency stage

• calculate diagonal Hessian approximation (H
v̂p
a ,H v̂s

a ,H
ρ̂
a ) for normalised parameters

in each iteration

• calculate gradients of normalised parameters

• apply diagonal Hessian approximation to gradient

• save change in preconditioned gradients and models, discard iterations smaller k-m

• L-BFGS algorithm to find normalised model update

• denormalise model update

• step length calculation: try steplength α = 1 first

• model update

In the following I will show first applications of this approach for 3D elastic FWI.

6.3 Validation with the subdivided box model

6.3.1 Inversion setup

For a first validation of the technique I inverted the subdivided box model dataset with the L-

BFGS approach. Its inversion with Hessian preconditioning was presented in section 5.4 and

compared to the results of the conventional conjugate gradient method with local precondition-

ing. For the L-BFGS inversion I invert the same transmission geometry data set, using the same

initial models. Inversion parameters, such as frequency stages and number of iterations, are

similar. Furthermore, the diagonal Hessian approximations calculated for each frequency stage

in the inversion with Hessian preconditioning (section 5.4) are reused for preconditioning in

this example.

Differently to the previous inversions, however, the model update is now estimated by applying

the L-BFGS algorithm, as explained in the previous section. Hereby the changes in gradients

and model parameters over the previous five iterations are employed. The gradients are not

normalised by their maximum values and scaled with an average model parameter. By contrast,

this method should provide a maximum model update for the different model parameter classes

with respect to each other. An optimal steplength is estimated by using test steplengths of 0.4

and 0.8. A steplength close to one is expected with this approach. The maximum steplength is

limited to one.
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6.3.2 Inversion process and comparison to previous results

The results of the L-BFGS approach presented in this section are compared to the conjugate gra-

dient method with Hessian preconditioning and local preconditioning discussed in section 5.4.

Figure 6.1 shows the misfit process for the three different approaches. Overall, they show a very

similar behaviour. The local preconditioning shows a slightly better convergence to a value of

0.3% of the initial misfit, whereas the Hessian preconditioning and the L-BFGS approach look

very similar and reach a value of 0.4% of the initial misfit. The same behaviour of convergence

is very interesting regarding the fact, that the estimation of the absolute model update, i.e., nor-

malisation and steplength estimation, is very different for the L-BFGS method.

Therefore, the L-BFGS approach could successfully minimise the misfit. In most iterations,

a steplength of one was used for the update. Another inversion test without limitation of the

maximum steplength to one showed, that the inversion processed very similar and optimal

steplengths close to one were estimated.

The inverted models are not plotted here, because they look very similar to the inversion results

shown in section 5.4.3. For a quantitative comparison I calculated the RMS deviations of the

initial and starting velocity models with respect to the true velocity models (Table 6.1) for the

three different approaches. The starting models have average parameter deviations of about 1%

from the true model. They are only caused by variations within the box. The model error de-

creased to about 0.53% for vp and 0.35% for vs. Variations between the different methods are

very small and no significant improvement can be observed for any of the three approaches.

RMS(vp, start) RMS(vs, start) RMS(vp, inv.) RMS(vs, inv.)

local tapering 1.09% 0.90% 0.53% 0.34%

Hessian preconditioning 1.09% 0.90% 0.54% 0.36%

L-BFGS 1.09% 0.90% 0.54% 0.35%

Table 6.1: RMS model deviation of initial and inverted models with respect to the true models.

Comparison of local tapering, Hessian preconditioning and L-BFGS.

Overall, the L-BFGS approach was successfully applied for this simple example. Its results for

the inversion of vp and vs are comparable to the conjugate gradient approach with local tapering
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and with Hessian preconditioning. In spite of this, this optimisation did neither improve the

results nor result in a better convergence. This is probably due to the limited complexity of

the transmission geometry used in this inverse problem. In this case, Hessian preconditioning

and L-BFGS optimisations are dispensable, which is likely to change for increasingly complex

inversion problems.

6.4 3D layered surface model - preliminary results

Of course, the L-BFGS optimisation is mainly intended for its application to complex problems.

This section will offer first results of the L-BFGS approach applied to the 3D layered surface

model. This complex problem was introduced in the previous chapter in section 5.5 and inverted

with the gradient approach applying Hessian preconditioning. In this section I will optimise this

former inversion scheme and test the application of the L-BFGS approach to the preconditioned

gradients for this problem.

6.4.1 Model and inversion setup

The same surface geometry data set as previously was inverted and the corresponding real mod-

els, the acquisition geometry as well as the starting models were already given in section 5.5.1.

I used the same inversion setup as described in section 5.5.2 with frequencies and frequency

stages given in Table 5.2, only the number of iterations per stage varies. Furthermore, the

same preconditioning was applied using the diagonal Hessian approximations presented in sec-

tion 5.5.3.

As already explained in this chapter, the L-BFGS algorithm estimates the absolute model up-

date and no normalisation of the gradients to their maximum is required. Five previous itera-

tions were taken into account in the L-BFGS algorithm. The test steplengths for the steplength

calculation were 0.5 and 1.0 and a maximum steplength of one was set.

6.4.2 Inversion process

In total 78 iterations were performed over the six frequency stages. The process of the inversion

can be visualised when looking at the misfit process plotted in Figure 6.2a). Overall, the mis-

fit curve converges very nicely. In each frequency stage, about 15 iterations were performed,

which corresponds to 24 hours of runtime on 800 cores. This is the maximum time per run on

the supercomputer JUROPA (Jülich). Two of the frequency stages were problematic, and did

not result in a significant misfit decrease. For frequencies from 6.5-9.0 Hz, the misfit decreased

only in the first three iterations of this stage and started increasing afterwards. Because of the

already good data fit in this stage, I decided to continue with the next frequency stage. The

other frequency stage, which failed to converge sufficiently is the last stage from 17.0-22.0 Hz.

Here only a small misfit decrease could be reached and the inversion was terminated after this

stage.

A good convergence of the misfit generally also corresponds to a successful steplength estima-

tion. The steplength curve is plotted in Figure 6.2b). Overall, it is visible, that a steplength

close to one was reached very frequently. Especially in the first two frequency stages there are

only few exceptions. However, in frequency stage three and six, very small steplengths were
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Figure 6.2: a) Misfit process of the surface model inversion for the different frequency stages. Misfit

values are normalised to the misfit between observed and starting data of the full frequency range

up to 22 Hz and b) steplengths employed for the different stages.

estimated, or the steplength calculation failed and the algorithm was forced to apply minimum

steplengths of 0.05. Here again, the problems within these stages become visible. Future work

will be necessary to solve the problems to enable a stable inversion within these frequency

stages.

In spite of the difficulties in two of the stages, the L-BFGS algorithm succeeded to improve

convergence significantly. The misfit process for the inversion applying only Hessian precondi-

tioning was presented in Figure 5.16. A comparison of the misfit curves shows, that the L-BFGS

approach

• requires less than half the iterations compared to the inversion without L-BFGS,

• provides a better data fit in all frequency stages except for the last and

• exhibits a much smoother misfit curve and thus stabilises the inversion.

Thus, overall the L-BFGS optimisation results in a much better convergence. Due to the dif-

ficulties of the L-BFGS inversion in the last frequency stage, the final misfit values of both

inversions are very similar.

6.4.3 Results

The inverted models for the inversion with L-BFGS are shown on two perpendicular vertical

slices in Figure 6.3 and 6.4 for vp and vs, respectively. The results without L-BFGS were plotted

in the Figures 5.19 to 5.22. The latter also show the starting and real models.

In the vp model the different sedimentary layers (indicated as black lines) of the true model are

successfully recovered, except for the thin high-velocity layer at the basin base. The resolution

of the interfaces is similar to the result without L-BFGS shown in the Figures 5.19 and 5.20.

Still, the L-BFGS model looks very rough, with small heterogeneities introduced within the

layers. It is possible, that these artefacts cause some problems in the last frequency stage. For
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b)

a)

Figure 6.3: Inversion result of vp for surface model inversion with L-BFGS after 78 iterations.

Black lines indicate interfaces of true model: a) slice at x = 128 m and b) slice at y = 128 m.

the future, a smoothing of vp gradients or models could be helpful.

The vs result presented in Figure 6.4 shows a very good reconstruction of the different sedi-

mentary layers. Interfaces between the layers are well resolved. The result is comparable to the

result without L-BFGS (Figures 5.21 and 5.22).

6.4.4 Discussion

Overall, the first results of the layered surface model FWI with L-BFGS are very promising.

Convergence could be improved significantly compared to the inversion without L-BFGS. Con-

sequently, less than half the iterations were sufficient and lower misfit values could be reached.

The final velocity models are comparable to the results without L-BFGS. Thus, no significantly

improved and sharpened images could be gained during this first inversion.

Some difficulties occured during the inversion of two frequency stages, including the last. Prob-

lems in the last frequency stage were already found in the inversion without L-BFGS. Appar-

ently, with increasing nonlinearity at higher frequencies, the inversion with and without L-

BFGS exhibits problems. Further work will be necessary to solve these problems and to enable

an overall stable inversion.
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b)

a)

Figure 6.4: Inversion result of vs for surface model inversion with L-BFGS after 78 iterations. Black

lines indicate interfaces of true model: a) slice at x = 128 m and b) slice at y = 128 m.
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6.5 Summary and outlook

In this chapter, the L-BFGS approach was presented as a second optimisation beside Hessian

preconditioning for 3D FWI. By using changes in gradients and models over the few former

iterations, the L-BFGS algorithm approximates the effects of the Hessian on the gradients. Ab-

solute model updates do not require further scaling, and in the optimal case, a steplength of one

can be used. For its application to multi-parameter FWI a parameter normalisation is employed,

which results in a dimensionless L-BFGS scheme and enables the simultaneous inversion of pa-

rameter classes of different scales and units. The workflow presented here applies the L-BFGS

approach to the gradients preconditioned with the approximate Hessian. Even though some ad-

ditional storage for gradients and models needs to be provided, only few additional operations

are necessary so that this optimisation can be implemented at cheap costs.

The scheme could be successfully validated for a simple box example in transmission geome-

try, even though no improvements regarding convergence and model reconstruction compared

to the inversion without L-BFGS were observed in this simple example. As the inversion of

the sedimentary layers in surface geometry showed, this is different for increasingly complex

problems. First results of this example indicate, that the L-BFGS approach can considerably

improve the convergence and enables a better data fit. Thus, even though some additional oper-

ations are required to calculate the L-BFGS update, the reduced number of iterations results in

a significant reduction of runtime. Hereby the inverted models with and without L-BFGS were

comparable.

Even though the overall performance was very promising some problems were encountered

during this first application to the surface model, which require future testing. In two frequency

stages of the inversion the inversion could not successfully decrease the misfit and failed to find

an optimum steplength. Here it might be necessary to exclude some gradients from the L-BFGS

scheme and only allow “successful’ gradients to contribute. Additionally, the number of itera-

tions in this example was defined by the maximum runtime on JUROPA, Jülich. It is possible,

that with an increasing number of iterations, the L-BFGS approach would result in improved

images compared to the results without L-BFGS. Future testing could also include the variation

of the number of iterations used for L-BFGS and different types of preconditioning applied to

the gradients before L-BFGS.
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Summary and conclusion

Full-waveform inversion (FWI) aims to deduce highly resolved, multi-parameter images of the

subsurface by minimising the misfit between observed and synthetic waveforms. Depending on

the size of the problem and the number of model parameters, it can be computationally quite

expensive. Only in recent years, with ongoing progress in computer technologies, investigations

in seismic tomography concentrate increasingly on FWI. Nevertheless, most applications today

are still restricted to the 2D or 3D acoustic or the 2D elastic wave equation. However, the

inversion of data sets from complex 3D subsurfaces, which contain significant impact of shear

waves, can require the consideration of 3D elastic wave propagation.

In this thesis I presented the theory and implementation of 3D elastic FWI and its application

for the 3D reconstruction of elastic subsurface parameters. A key aspect of this work was the

implementation of a computationally efficient FWI which enables the solution of the large-sized

3D elastic inverse problem. This was realised by employing the conjugate gradient approach

calculated with the adjoint method and with the use of a time-frequency approach. FWI results

showed, that this implementation is well capable to resolve differently sized 3D structures in

crystalline rock environment in transmission geometry.

To optimise the performance of the gradient approach for the FWI of complex data sets, two

different optimisations based on approximations of the Hessian were tested. In a first step I

applied a diagonal Hessian approximation for preconditioning. In a second step, this approach

was extended with the L-BFGS algorithm. The improved preconditioning enabled a successful

inversion of a complex 3D layered surface model. Additionally, the L-BFGS method could

considerably improve the convergence.

In the following, I describe the results gained in the different parts of this thesis in more detail.

Theory and implementation

The 3D FWI code 3D-AWAIT iteratively minimises the L2-norm based misfit of displacements

in conjugate gradient direction. Gradients are calculated with the adjoint method, which is de-

rived for the self-adjoint second-order wave equation. For a computationally efficient 3D FWI,

I employ a time-frequency approach, which simulates wavefields in time domain but performs

the gradient calculation in frequency domain. Thus, gradients are calculated as a multiplication

of forward and adjoint wavefield for discrete frequencies. The inversion in frequency domain

results in an enormous storage reduction compared to time domain. Differently to the storage

of the full forward wavefield in time domain, wavefields are saved in memory only for few fre-

99



100

quencies. A small drawback is the resulting loss in redundancy compared to time domain.

Considering the runtime, a very efficient modelling of 3D elastic wavefields can be achieved

with the finite-difference code SOFI3D in time domain. It is based on a velocity-stress formu-

lation. Its parallelisation, which is based on domain decomposition, can be maintained during

the full inversion process, leading to efficient computations on large computer clusters. During

the simulation of forward- and back-propagated wavefields discrete Fourier transforms are per-

formed on the fly to extract particle velocities at monochromatic frequencies. They are stored in

memory and used for subsequent gradient calculations. I employ the compressional and shear

wave velocities as well as density as parametrisation.

To correct the gradient from high amplitude artefacts in the vicinity of sources and receivers

a preconditioning is applied, which corresponds to a local circular taper around source and

receiver positions in its simplest form. The search direction is then calculated in conjugate gra-

dient direction. To derive the total model update, a steplength estimation is performed by means

of a parabolic line search.

Important aspects to mitigate the high nonlinearity of FWI are the choice of starting models

and the multi-scale inversion. The implementation of the multi-scale inversion is straightfor-

ward in frequency domain. Groups of discrete frequencies are inverted simultaneously with

frequencies increasing from frequency stage to frequency stage. The use of groups of overlap-

ping frequencies is favourable. Hereby the choice of starting frequency and starting model is

strongly correlated and needs to ensure, that no cycle skipping occurs.

3D FWI of small-scale heterogeneities in transmission geometry

As a first application, the synthetic inversion of small-scale 3D structures of crystalline rocks,

represented by a random medium, was presented for different transmission geometries. Addi-

tionally, results of a checkerboard resolution test were shown for the different acquisition ge-

ometries. In a favourable 3D acquisition geometry, where sources and receivers are located in

opposite planes, the inversion successfully recovered the cubes of the checkerboard and the dif-

ferently sized 3D structures of the random medium starting from homogeneous initial models.

Still, most transmission geometry measurements use a 2D cross-well geometry of two bore-

holes. My study showed, that even with this simple geometry the 3D FWI is capable to resolve

3D structures up to 1-2 wavelengths adjacent to the plane between the boreholes. The resolution

is lower compared to the 3D geometry inversion. Additionally, a 2D FWI of this data set was

performed. It offers a similar resolution in the source-receiver plane but suffers from artefacts

due to the 3D scattered waves. Thus, even in case of simple 2D geometries it can be useful to

apply a 3D FWI instead of a 2D FWI to detect 3D structures adjacent to source-receiver plane.

Methodological optimisation of the gradient approach

By considering the Hessian operator, Newton methods offer an improved convergence and can

result in better models compared to gradient methods. However, the calculation of the Hessian

matrix is computationally too expensive for 3D FWI of realistic problems. Instead, I tested two

different approximations of the Hessian in order to improve the performance of the gradient

method: the use of a diagonal Hessian approximation for preconditioning and the L-BFGS al-

gorithm.
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The inverse of a diagonal Hessian approximation can be applied for preconditioning of the

gradients as a physically funded approach to account for the geometric amplitude effects in the

gradients. To allow its calculation at reasonable costs, this preconditioning operator is only

estimated once per frequency stage. The elements of the Hessian are computed from the partial

derivative wavefields in frequency domain. To estimate these, the Green’s receiver functions

are multiplied with the forward wavefields for each source-receiver combination and each fre-

quency. The corresponding forward simulations from each receiver and the storage of these

wavefields for discrete frequencies cause most of the additional computational costs required

for this approach. In order to mitigate these costs, I only employ a subset of receivers and com-

pute only one component of the partial derivative wavefields.

The L-BFGS method approximates the Hessian in a different way. Information about the sec-

ond derivative of the misfit function is inferred from changes in gradients and models over the

few previous iterations. Hereby the L-BFGS algorithm estimates the effects of the inverse Hes-

sian on the gradient without explicitly forming the huge Hessian matrix. In my workflow, the

L-BFGS algorithm is applied as a second optimisation additionally to the Hessian precondi-

tioning. Thus, the preconditioned gradients are used for its computations. In this case a scaled

identity matrix is sufficient as an initial guess of the Hessian for the L-BFGS scheme. To allow

the inversion of different parameter classes, a parameter normalisation is implemented, which

allows a dimensionless L-BFGS scheme of all parameter classes simultaneously. The L-BFGS

method has the main advantage, that it provides absolute model updates of the parameter classes

with respect to each other. In the optimal case, a steplength close to one is valid.

For validation a dataset of a simple box in transmission geometry was inverted and the three

different approaches were compared: the conventional gradient method with local precondi-

tioning, the gradient method with Hessian preconditioning and the extension with the L-BFGS

approach. The results showed a very similar behaviour in convergence and model reconstruc-

tion. Thus, both optimisations allowed a successful inversion, but they did not improve con-

vergence and model quality. The main reason for this is, that the effects of the Hessian for

this transmission geometry example were mainly concentrated on the area around sources and

receivers. However, artefacts in this area can also be successfully removed by local tapering.

The optimisations finally allowed the inversion of a surface geometry example. The model

comprises four sedimentary layers, including a low-velocity layer over a basin-shaped homo-

geneous halfspace. The corresponding wavefields are dominated by high amplitude surface

waves, which leads to a high complexity of the inverse problem. A sufficient illumination of

the subsurface required 49 sources. The high number of sources is mainly responsible for the

high computational costs of this example. I inverted for seismic velocities and used strongly

smoothed versions of the real models as initial models.

For this example, the effects of Hessian preconditioning were much more profound. Due to

the predominant surface wave and the surface acquisition geometry the unpreconditioned gra-

dients mainly focus in shallow areas. The Hessian preconditioning allowed a model update in

the deeper layers of the basin by removing geometric amplitude effects in the gradient. This

finally resulted in a successful reconstruction of the different layers in both vp and vs. Hereby

interfaces are resolved as smoothed structures. A higher resolution in vs compared to vp was
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reached, which is likely to result from the smaller vs-wavelengths.

Preliminary results of the inversion with L-BFGS optimisation were presented. They show a

very promising performance, even though convergence problems in two of the six frequency

stages were encountered. Still, the use of the L-BFGS algorithm caused a considerably im-

proved convergence. Consequently, less than half of the iterations were required to gain a data

fit and inverted model comparable to the result without L-BFGS.

To conclude, my thesis presents an efficient implementation of 3D elastic full-waveform in-

version based on the conjugate gradient method. The synthetic applications prove the abilities

of the inversion to reconstruct multi-parameter 3D structures of the subsurface. Very promising

results for the inversion of complex models were achieved when applying the approximate di-

agonal Hessian for preconditioning combined with the L-BFGS approach. The combination of

the time-frequency approach and these optimisations results in reasonable computational costs

and is therefore very interesting for the 3D FWI of multi-parameter problems at larger scales.
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Appendix A

Theory Green’s functions

The concept of Green’s function for the seismic wave equation is well described by Aki & Richards

(1980). The Green’s function Gin(x, t;x′,τ) is the solution of the elastic wave equation (see

equation 2.7) for a unit impuls in n-direction applied at the location x = x′ at time t = τ :

ρ
∂ 2Gin

∂ t2
= δinδ (x−x′)δ (t− τ)+

∂

∂x j
(Ci jkl

∂

∂xl

Gkn) (A.1)

With the use of Green’s functions, the solution for the n-th component of the displacement

caused by a body force f or surface force Tjk can be expressed as

un(x, t) =
∫

V
dV

∫

τ
dτGni(x, t;x′,τ) fi(x

′,τ)+
∫

V
dV

∫

τ
dτ

∂

∂x′k
Gni(x, t;x′,τ)Tik(x

′,τ) (A.2)

The Green’s functions fulfil spatial reciprocity

Gin(x, t;x′,τ) = Gni(x
′, t;x,τ) (A.3)

and time reciprocity

Gin(x, t;x′,τ) = Gin(x,−τ;x′,−t). (A.4)
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