
Architectural Design Decision
Documentation through

Reuse of Design Patterns

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Zoya Durdik geb. Alexeeva
aus Sankt Petersburg

Tag der mündlichen Prüfung: 27. Juni 2014
Erster Gutachter: Prof. Dr. Ralf Reussner
Zweite Gutachterin: Prof. Dr. Barbara Paech (Univ. Heidelberg)

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum der Helmholtz-Gemeinschaft www.kit.edu

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung –
Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

Abstract

Software design patterns are evaluated and recognised architectural solutions for recurring design problems.

They are often described in pattern catalogues that contain known patterns for a certain application domain,

for example, patterns for object-oriented software by Gamma et al. or patterns for distributed computing

by Buschmann et al.. However, design patterns are still often misunderstood and inappropriately applied.

While design decisions on the application of patterns involve complex trade-offs between desired function-

ality and various quality properties, such decisions are often spontaneous and do not follow a systematic

process. Moreover, documentation of such decisions and trace links to related artefacts is usually insufficient

or completely omitted. Finally, even if design decisions on pattern application are documented, there are

often mistakes during the architectural modelling of design patterns or their implementation in code. Thus,

some design decisions on the application of patterns may be misunderstood or overseen and overridden.

Even worse, correction of design decision mistakes causes costs and overhead. All these factors negatively

influence evolution of software systems.

The existing approaches usually focus only on one of the above mentioned aspects of the problem, such

as documentation of design decisions or improvement of design pattern application in architecture or code.

Hereby, the documentation of rationale and trace links has to be done and maintained manually.

The approach proposed in this thesis provides a support to overcome the above mentioned problems. It

combines support for evaluation of design pattern application, semi-automated documentation of decision ra-

tionale, trace links between requirements, decisions and architectural elements, and support for goal-oriented

architecture-driven requirements engineering. The contribution is the lightweight support of evaluation of

decisions and the documentation of rationale for design pattern application. This approach is based on a

new kind of design pattern catalogue, where usual design pattern descriptions are captured together with

pattern-specific questions (question annotations to the patterns) and the information on architectural struc-

ture of patterns. The question annotations are sets of questions about the main properties of design patterns,

which are fragments of a rationale for a potential pattern application. The contributions can be summarized

as follows:

1. A lightweight process for goal-oriented requirements engineering and simplified documentation
of rationale for the design decisions on design pattern application: Extension of the general devel-

opment process with a process that supports the proposed approach. The process describes application

of the developed catalogue for evaluation of decisions on pattern application and documentation of the

rationale. Besides the documentation of rationale and elicitation of requirements, the developed pro-

cess supports several other design and evolution scenarios. These sub-processes are incorporated into

the main development process.

2. A new type of design pattern catalogue with rationale question annotations: A new kind of cat-

alogue was developed, in which design patterns are stored together with question annotations. This

allows for the documentation of rationale for design decisions, documentation of trace links between

i

Abstract

various project artefacts, such as design model elements and requirements, goal-oriented elicitation of

requirements and evaluation of decisions on pattern application.

3. An exemplary design pattern catalogue: The exemplary catalogue contains 12 design patterns de-

scribed according to the proposed approach (called AM3D, Architectural Modelling with Design De-

cision Documentation) and annotated with questions for rationale documentation and requirements

elicitation. This catalogue was used during the approach’s validation. The treatment group used it for

design and evolution tasks to make and to re-evaluate design decisions on pattern application.

The benefits of this approach are: (1) Documented rationale of design decisions on the pattern applica-

tion; (2) Semi-automated documentation of trace links between requirements, decisions, and architectural

elements; (3) More appropriate use of design patterns and design pattern variants (reduced number of design

mistakes connected to ungrounded design decisions on pattern application and pattern application design), es-

pecially by less experienced software engineers, through systematic pattern evaluation with the help of ques-

tion annotations; and (4) Goal-oriented architecture-driven requirements engineering (a more goal-oriented

and efficient elicitation and prioritisation of requirements that are highly-relevant for the design-phase).

The approach and contributions were published in the refereed conferences and workshops [1–15], as well

as in technical reports [16, 17].

The validation of the proposed AM3D approach consists of three parts: (1) A survey with 25 engineers and

students to validate the motivation of the approach and the feasibility of the annotated pattern catalogue as a

potential solution for the problems with design pattern application and documentation. Motivation and feasi-

bility of the catalogue were positively qualitatively evaluated. (2) Application on a CoCoME-based example

(a Common Component Modelling example, which is a benchmark for modelling of the component-based

systems) to demonstrate appropriateness of the AM3D approach, its artefacts and the process. Process and

artefacts could be applied on the example without exclusions. (3) An empirical study based on a controlled

experiment involving 20 students to validate the applicability and benefits of the approach. The empirical

study validates that design patterns annotated according to the AM3D approach can be better understood and

applied more correctly than the design pattern catalogue based on the standard approach. The validation re-

sults show statistically significant improvement over the control group. Furthermore, the study validates that a

system architecture that is documented according to the AM3D approach can be better maintained,compared

to a system documented according to the standard catalogue approach. The validation results show noticeable

improvement over the control group; however, no statistically significant results were obtained.

ii

Zusammenfassung

Software-Entwurfsmuster sind erprobte und verbreitete Lösungen für wiederkehrende Entwurfsprobleme.

Entwurfsmuster sind in mehreren Muster-Katalogen, wie zum Beispiel in denen von Gamma et al. oder

von Buschmann et al., beschrieben. Dennoch werden Architekturentwurfsmuster oft missverstanden und un-

passend eingesetzt. Die Entscheidungen über den Einsatz von einem Muster beziehen zumeist komplizierte

Abwägungen und Entscheidungen zwischen den unterschiedlichen Qualitätseigenschaften und der Funktio-

nalität mit ein. Dabei sind die Musterentscheidungen oft intuitionsbasiert und unzureichend dokumentiert.

Dazu können eine inkorrekte Entwurfsmodellierung in den Architekturmodellen und eine fehlerhafte Im-

plementierung im Code kommen. Diese Faktoren erschweren eine spätere Systemwartung erheblich, wobei

manche Entscheidungen zum Einsatz von Mustern einfach übersehen werden und von der ursprünglichen

Entwurfsidee abgewichen wird oder die Fehlentscheidungen mühsam korrigiert werden müssen.

Die existierenden Ansätze konzentrieren sich hauptsächlich auf einzelne Aspekte dieses Problems. Ent-

weder werden die Architekturentwurfsmuster umfangreich textuell beschrieben, um das Verständnis für die

Muster zu ermöglichen – dabei braucht man aber viel Zeit für die Dokumentation – oder es wird die Ent-

scheidungsdokumentation als Ziel gesetzt. Dabei werden die Entscheidungen nicht in Frage gestellt und die

Begründung für die Entscheidungen wird oft entweder missachtet oder kann nur mühsam manuell angegeben

werden.

Mein Ansatz geht alle diese Probleme an – die Evaluation der Architekturentwurfsmuster, die Dokumen-

tation davon zusammen mit den semi-automatisiert generierten Begründungen und die Unterstützung bei der

korrekten Modellierung der Muster. Der Beitrag meiner Dissertation ist eine Methode für die leichtgewichti-

gere Evaluation und Dokumentation der für die Architekturentwurfsmuster relevanten Entwurfsentscheidun-

gen zusammen mit deren Begründungen. Die Methode basiert auf einer neuen Art eines Entwurfsmusterka-

talogs, bei dem zusätzlich zu den textuellen Musterbeschreibungen auch die Entwurfsbegründungen in Form

von Fragen zu den Mustern und die Informationen zu dem Architekturbau des Musters enthalten sind. Die

Beiträge sind wie folgt zusammengefasst:

1. Leichtgewichtiger Prozess für ein zielgerichtetes architekturgetriebenes Anforderungs-Engineering
und eine erleichterte Dokumentation von Begründungen zu den Musterentwurfsentscheidungen:
Der Prozess beschreibt die Anwendung des entwickelten Architekturmusterkatalogs für die Evaluation

von den Musterentwurfsentscheidungen und dessen Dokumentation zusammen mit den semiautoma-

tisch aus den Fragen zu den Mustern erstellten Begründungen. Außerdem definiert der Prozess die

notwendigen Schritte zur Erstellung eines Musterkataloges und für die Erstellung und Annotation von

Fragen zu den Mustern.

2. Neuartiger Entwurfsmusterkatalog mit den Fragen zu der Musterbegründung: Es wurde eine

neue Art des Entwurfsmusterkataloges entwickelt, der Fragen zu der Musterbegründung zusammen

mit der Beschreibung der Entwurfsmuster enthält. Dieser Entwurfsmusterkatalog unterstützt die Do-

kumentation der Begründung von Entwurfsentscheidungen, die Dokumentation der Verfolgbarkeitsbe-

iii

Zusammenfassung

ziehungen zwischen Anforderungen, Entscheidungen und Architekturelementen und ein zielgerichtetes

architekturgetriebenes Anforde-rungs-Engineering.

3. Exemplarischer Entwurfsmusterkatalog mit den Begründungsannotationen: Basierend auf dem

entwickelten Prozess und dem Ansatz (genannt AM3D , “Architectural Modelling with Design Decisi-

on Documentation”) wurde ein initialer Musterkatalog erstellt, der die Entwurfsmuster und die Fragen

zu dessen Begründung beinhaltet. Der Katalog wurde bei der Validierung eingesetzt.

Die Vorteile des Ansatzes sind eine verbesserte Systemevolution durch: (1) Leichtgewichtige Dokumenta-

tion von den Begründungen der Musterentwurfsentscheidungen; (2) die semi-automatisierte Dokumentation

von den Verfolgbarkeitsbeziehungen zwischen Anforderungen, Entwurfsmusterentscheidungen und Archi-

tekturelementen; (3) Reduzierte Anzahl der Entwurfsfehler, vor allem durch weniger erfahrene Software-

Entwickler, durch die systematische Evaluation von den Musterentwurfsentscheidungen mittels der im Ka-

talog gespeicherten Fragen zu den Mustern und den Architekturvorlagen mit den OCL-Randbedingungen

(OCL, Object Constraint Language); und (4) Das zielgerichtete architekturgetriebene Anforde-rungs-Engineering

(Die zielgerichtete Erhebung der Anforderungen, die für den Entwurf relevant sind).

Es wurden folgende begutachtete Konferenz- und Workshopspublikationen [1–15] und technische Berichte

[16, 17] mit Beiträgen meines Dissertationsvorhabens veröffentlicht.

Die Validation der Arbeit besteht aus drei Teilen: (1) Eine Studie für die Evaluation der Idee des Ansatzes

und exemplarischen Einträgen aus dem Katalog, basierend auf den strukturierten Befragungen (Structured

Interviews, qualitative Untersuchungsmethode) mit 25 Software-Entwicklern und Studierenden. Die Motiva-

tion und die Idee konnten qualitativ positiv evaluiert werden. (2) Die Anwendbarkeitsuntersuchung anhand

beispielhafter Instanziierungen des Kataloges mit den Mustern und Begründungen und der Anwendung der

Methode an einem auf dem Common Component Modelling Example (CoCoME) basierten Beispielsystem.

CoCoME ist ein Benchmark für die Modellierung von einem auf Komponenten basierenden Beispielsystem.

Die Methode und der Katalog konnten ohne Ausnahmen angewandt werden. (3) Ein kontrolliertes Experi-

ment mit 20 Studenten aus dem Software-Entwicklungspraktikum zur Validierung der Vorteile des annotier-

ten Musterkatalogs im Vergleich zu einem klassischen Katalog, wie z.B. der von Gamma et al.. Der Vergleich

erfolgte anhand zweier Szenarien: Entwurfsentscheidungen für den neuen Entwurf und die Re-Evaluierung

von bereits getroffenen Entscheidungen während der Systemevolution. Bei den Aufgaben zu dem neuen Ent-

wurf machte die Behandlungsgruppe statistisch signifikant weniger Fehler. Bei den Aufgaben zu der Re-

Evaluierung machte die Behandlungsgruppe erkennbar weniger Fehler, die Ergebnisse der Validierung waren

in dem Fall jedoch nicht statistisch signifikant.

iv

Acknowledgements

I am truly and deeply grateful to the many people who have supported and encouraged me on this journey

that culminates with the accomplishment of this dissertation project. I hope I am able to remember all of you.

First of all, I would like to express gratitude to my advisor Prof. Dr. Ralf Reussner for his support,

motivation, understanding and encouragement as I studied for my PhD. His venerable advice and scientific

supervision gave me many profound insights into both scientific work and the principles of good research.

I would also like to thank my secondary advisor Prof. Dr. Barbara Paech for her willingness to and

expertise in co-supervising my thesis, as well as for the many helpful discussions and valuable feedback she

provided. In addition to my advisers, I would also like to thank the members of the defence committee: Prof.

Dr. rer. nat. Jörn Müller-Quade and Prof. Dr. Walter Tichy, who both kindly agreed to take on examiner

positions.

Further thanks are due to the members of the SDQ group, the secretaries, and my colleagues at FZI for

the fruitful discussions and wonderful company throughout my stay as a member. I would especially like to

thank Franz Brosch, Thomas Goldschmidt, Anne Koziolek, Philipp Merkle and Tanja Rhode for their great

company and advice; Erik Burger and Jörg Henß for the extremely helpful paper reviews and corrections

of my endless article mistakes; and Klaus Krogmann for his good example and professional insights. I am

also very grateful to my students for their contributions, specifically: Nelli Kaiser, Azim Khakulov, Markus

Heller, Michael Tänzer, Anas Saber, Felix Schad and Sergej Werfel. I am certainly lucky to have met so many

talented people. Outside of the SDQ and FZI, I would also like to thank Marco Konersmann for the great

team-work experience.

I also want to express my special thanks to Raffaela Mirandola, Diego Perez, Alessandra Viale and mem-

bers of the DEEPSE group for their kind reception, great work atmosphere, fresh view on the research, and,

of course, all the great times I had in Milano. Cari Raffaella e Diego, molte grazie per il tempo fantastico

passato insieme. Spero che questa collaborazione potrà continuare in futuro.

Additionally, I want to thank all of the dear friends who accompanied me throughout the years and put up

with work-life balance, or lack thereof – especially these last few years. Many warm thoughts go to Mauro,

who, by being there and providing care, encouragement, and guidance motivated me to see this dissertation

through to completion. Thank you as well to Mauro’s family for the wonderful time we spent together.

Finally, none of this would have been possible without the love, support, patience, and trust from my own

family – especially from my mother Marina and grandmothers Zoya and Nadezda. I love you and appreciate

everything you have done for me. I am deeply sorry that neither my father nor grandmothers, who were so

proud of me and looking forward to my graduation, are not here to share this moment with me.

Karlsruhe, June 2014 Zoya Alexeeva

v

Contents

Abstract . i

Zusammenfassung . iii

Acknowledgements . v

1. Introduction . 1

1.1. Motivation . 1

1.2. Goals and Contributions . 3

1.3. Application Scenarios . 7

1.4. Validation . 8

1.5. Outline . 8

2. Foundations . 11

2.1. Software Development Processes . 11

2.1.1. Basic Concepts . 11

2.1.2. Agile Methods . 12

2.2. Requirements Engineering . 14

2.2.1. Basic Concepts . 14

2.2.2. Classification of Requirements . 15

2.2.3. Stakeholders . 17

2.2.4. Requirements Engineering Process . 18

2.3. Software Architecture and Architectural Design . 21

2.3.1. Basic Concepts . 21

2.3.2. Design Decisions and Rationale . 27

2.3.3. Architectural Styles . 29

2.3.4. Architectural Design Patterns . 30

2.3.5. Component-Based Software Architecture . 31

2.4. Model-Driven Software Development . 33

2.4.1. Basic Concepts . 33

2.4.2. Models, Meta-Models and Instances . 34

2.4.3. Eclipse Modelling Tools . 36

2.5. Additional Foundations . 36

2.5.1. Palladio Component Model . 37

2.5.2. Common Component Modelling Example (CoCoME) 40

2.5.3. Controlled Natural Languages . 44

vii

Contents

3. Approach Overview . 47

3.1. Overview . 47

3.2. Process to Use the Catalogue . 50

3.2.1. General Information on the Base Process . 50

3.2.2. Application Scenarios . 51

3.3. Traceability Support . 57

3.4. Goal-Oriented Architecture-Driven Requirements Elicitation 59

3.5. Difference between Expert Systems and AM3D Approach 60

3.6. Example Application . 62

3.6.1. Design . 62

3.6.2. Evolution Scenario . 65

4. Pattern Catalogue and Approach Details . 71

4.1. Purpose of the Catalogue . 71

4.2. Structure of the Catalogue . 72

4.2.1. General Information About Patterns . 73

4.2.2. Question Annotations . 79

4.2.3. Architectural Implementation Structure . 82

4.3. Pattern Catalogue Questions . 87

4.3.1. Purpose . 87

4.3.2. Ways of Formulating a Question . 90

4.3.3. Question Types and Corresponding Styles . 92

4.3.4. Answers to Questions . 95

4.3.5. Process to Add Questions to a Pattern . 96

4.4. Process to Fill in Catalogue . 100

4.5. Types of Patterns in Catalogue . 102

4.6. Approach formalization with Meta-Models . 102

4.6.1. Metadata . 105

4.6.2. Effects . 106

4.6.3. Users . 107

4.6.4. Glossary . 108

4.6.5. Requirements . 109

4.6.6. Issues . 112

4.6.7. Solutions . 113

4.6.8. Patterns . 114

4.6.9. Questions . 117

4.6.10. Components . 119

4.6.11. Implementations . 119

4.6.12. Decisions . 122

4.6.13. Rationales . 124

4.6.14. Relations . 125

5. Pattern Catalogue Example Entries . 129

5.1. Model View Controller . 129

viii

Contents

5.2. Client-Server Style . 130

5.3. Multi-Tier Style . 131

5.4. Fat Client . 132

5.5. Thin Client . 133

5.6. Proxy . 134

5.7. Façade . 135

5.8. Adaptor . 136

5.9. Singleton . 137

5.10. Class Table Inheritance . 137

5.11. Single Table Inheritance . 138

5.12. Concrete Table Inheritance . 139

5.13. Collected Experience . 140

6. Validation . 141

6.1. Types of Validation . 142

6.2. What is Validated? . 144

6.3. The Goal Question Metric Approach (GQM) . 145

6.4. Survey . 147

6.4.1. Research Questions . 148

6.4.2. Research Method . 151

6.4.3. Survey Design . 152

6.4.4. Testing the Method . 153

6.4.5. Survey Results . 153

6.4.6. Threats to Validity, Limitations of the Evaluation 163

6.4.7. Summary of the Results . 165

6.5. Controlled Experiment . 167

6.5.1. Research Questions . 167

6.5.2. Research Method . 171

6.5.3. Experiment Design . 172

6.5.4. Testing the Method . 176

6.5.5. Experiment Results . 177

6.5.6. Threats to Validity, Limitations of the Evaluation 186

6.5.7. Summary of the Results . 189

6.6. Validation Summary . 190

7. Related Work . 193

7.1. Classification Scheme . 193

7.2. Formalisation and Documentation of Design Patterns . 197

7.2.1. Textual Approaches . 197

7.2.2. Visual Approaches . 198

7.2.3. Structural Approaches . 199

7.3. Formalisation and Capture of Design Decisions and Rationale 200

7.3.1. Textual Approaches . 201

7.3.2. Visual Approaches . 201

ix

Contents

7.3.3. Structural Approaches . 202

7.4. Reasoning About and Selection of Patterns . 205

7.4.1. Quality- and Category-Based Approaches . 205

7.4.2. Question-Based Approaches and Expert Systems 206

7.5. Goal-Oriented Architecture-Driven Requirements Engineering 207

7.6. Summary . 208

8. Conclusion . 211

8.1. Summary . 211

8.1.1. Contributions . 211

8.1.2. Publications . 212

8.1.3. Benefits . 213

8.1.4. Validation . 215

8.1.5. Overall Summary . 215

8.2. Assumptions and Limitations . 216

8.3. Open Questions and Future Work . 219

8.3.1. Short-Term User-Relevant Open Questions and Future Work 219

8.3.2. Long-Term User-Relevant Open Questions and Future Work 221

8.3.3. Empirical Open Questions and Future Work . 222

A. Appendix. Survey Documentation . 225

B. Appendix. Experiment Documentation . 233

B.1. Introduction Texts for Groups A and B . 235

B.2. Introduction Slides Group A . 238

B.3. Introduction Slides Group B . 248

B.4. Pre-Experiment (Warm-Up) Tasks . 254

B.5. Experiment Tasks for Group A . 256

B.6. Experiment Tasks for Group B . 267

B.7. Post-Experiment (Cool-Down) Tasks . 275

B.8. List of System Requirements . 278

B.9. List of System Decisions for Group A . 280

B.10. List of System Decisions for Group B . 284

B.11. Pattern Catalogue for Group A . 285

B.12. Pattern Catalogue for Group B . 293

B.13. Experiment Time Table . 298

List of Figures . 299

List of Tables . 303

Bibliography . 305

x

1. Introduction

Software design is of particular importance for the development of stable and easy-to-maintain software

systems. Design decisions for the application of architectural solutions are an inevitable part of software

design. Design patterns are established reusable solutions for common architectural problems, and design

decisions for the application of design patterns are therefore one of the important classes of design decisions.

This thesis focuses on architecture-relevant design patterns1 and design decisions for the application of

design patterns. In particular, the focus lies on the evaluation of design patterns as suitable solutions for given

design problems and on the documentation of decisions on pattern application or pattern withdrawal, together

with the rationale for the decisions. The goal of the thesis is a step forward in establishing more correct and

better documented designs in order to support the software evolution.

The remainder of this chapter explains the motivation for the work in Section 1.1, describes goals and

contributions of the proposed approach in Section 1.2, and lists the application scenarios in Section 1.3.

Section 1.4 provides an introduction to the validation of the approach, and, finally, Section 1.5 provides an

outline for the rest of the thesis. The motivation described in Section 1.1 is based on our previous publica-

tions [1, 3, 4, 11].

1.1. Motivation

The proposed approach addresses the four following problems in system design and evolution:

1. Poor documentation of the rationale for design decisions design pattern application: The doc-

umentation of design decisions and their rationale supports the evolution of software systems, as it

eases the comprehension of the design and enables easier implementation of changes [18, 19]. How-

ever, design decisions and the rationale for them are seldom explicitly documented. Instead, design

decisions are usually implicitly captured in architectural design models in the form of applied architec-

tural solutions, for example, in the form of applied patterns or components. The rationale is typically

completely omitted [20–23]. Such implicit documentation is a problem, as design decisions are sub-

jective and often based on the experience of the engineer designing the system. Therefore, capturing

the rationale behind the decisions is of particular importance, as it is hard to grasp without proper doc-

umentation [24,25]. If documentation for the decision’s rationale is missing, the reasons for a decision

are not clear, nor are the considered alternatives and constraints known [24, 25].

However, documentation of design decisions together with the rationale requires significant effort when

it is done manually [25]. Moreover, the documentation quickly becomes out of date, and its manual

update is tedious as well [26]. The immediate benefit of the documentation is not clear and a high effort

is hard to justify during the design time.

2. Missing documentation of trace links between requirements, decisions and architectural ele-
ments: Requirements to the system change during the course of the system’s evolution. These changes

1Unlike some related work, this thesis does not distinguish between the terms “Architectural design patterns” and “Design patterns”.

They are used as synonyms throughout the thesis.

1

1. Introduction

requires new design decisions and render some of the already met decisions obsolete. Such outdated

decisions shall be replaced or modified. However, decisions are typically neither linked to the trigger-

ing requirements nor linked to the architectural elements implementing the decisions [21,22,24,26,27].

A manual documentation of trace links is tedious and error-prone [22, 26, 27].

Due to the lack of documentation of such links, design decisions and architectural elements may re-

main untouched in the architectural design or, even worse, may be easily overseen and accidentally

modified [27]. Documentation of trace links between requirements, design decisions, their rationale,

and architectural elements minimises such problems during the system evolution.

3. Inappropriate use of design patterns and their variants: Software design patterns are evaluated

and recognised architectural solutions for recurring design problems [28,29]. They are often described

in pattern catalogues that contain known patterns for a certain application domain, for example, pat-

terns for enterprise architectures by Fowler [30] or patterns for distributed computing by Buschmann

et al. [31]. Pattern design solutions contribute to the system comprehension and to architectural knowl-

edge reuse. They serve as a common language and a solution for common design problems. Therefore,

from one side, design patterns enable better architectural designs, which are also easier to communicate

and to maintain. Appropriately applied design patterns with an explicit documentation of their use help

to stabilise software design during software evolution [32].

From the other side, while design patterns may improve the comprehension and some non-functional

properties of the system, they may also worsen other properties at the same time. For example, an addi-

tional flexibility achieved in design may result in performance bottlenecks or security issues. Moreover,

the application of a design pattern not only solves design problems, but also infers costs in the form of

a more complex design. If these are not properly documented, the system may be harder to understand

and maintain. Inappropriately used design patterns only incur costs without having benefits or may

even become anti-patterns in the system design.

There are several other potential problems connected to the pattern application. First, design patterns

are often not well-understood by the engineers [1,33]. While the main purpose of a design pattern may

be clear, its properties and especially its potential negative influences may remain unnoticed [1]. This

might be particularly true for the less-experienced software engineers, who expect design patterns to

be well-evaluated solutions and, therefore, do not expect drawbacks from their application. Second,

even if a pattern and its influences are properly understood, there might still be problems with its

application in architectural models. The architectural structure of a pattern may be misinterpreted and

wrongly applied in a model, leading to follow-up mistakes in the implementation [1]. In such cases, the

intended properties of a pattern may be lost and unconsidered drawbacks may appear. Third, similar

to the other types of design decisions, decisions on the design pattern application are often intuitive.

Most engineers decide on the use of a pattern through a rather informal process. Their own experience

and unevaluated estimates of the usefulness of design patterns are often the main guides of the process,

instead of a rational approach. The above mentioned problems were also confirmed by the results of

our survey, described in Section 6.4.

4. Unfocused requirements engineering: Software system development typically starts from a require-

ment specification. It is followed by stepwise refinement of available requirements through transferring

them into the system architecture with the help of design decisions [11]. In such an approach, the gran-

ularity and the amount of requirements to be elicited for a successful architectural design are not well

2

1.2. Goals and Contributions

understood [11,34]. The later the important requirements are discovered, the more expensive their con-

sideration may become [11,35,36]. Sometimes, an expensive re-design of subsystems may be required

to be able to consider required properties of a system that were discovered later [36]. This is particu-

larly true for the quality requirements, careful consideration of which is often neglected until the later

design phases [34, 36–39]. Even if the quality requirements are elicited, their prioritisation may differ

for the different subsystems. Quality requirements actually sometimes need to be re-prioriti-zed for

certain design decisions. However, this often remains unconsidered during the requirements engineer-

ing phase. Thus, some design decisions may become a result of an unauthorised and badly informed

design process. Such a process results from insufficient requirements engineering, where effort was

wasted on elicitation of irrelevant requirements.

Therefore, it is important to consider that not only does requirement engineering inform architectural

design, but architectural design may also inform requirement engineering [40–42]. This is a relatively

new direction of research, where system design contributes to the on-demand elicitation and priori-

tisation of requirements. Such requirements engineering is called goal-oriented architecture-driven

requirements engineering [3, 43, 44].

The main directions in the related approaches on design decisions and design patterns are either ways

of documentation of design decisions, including decisions on pattern application, rationale and trace links

(e.g., [45–56], see also survey [57]); formalisation, capture and visualisation of design patterns (e.g., [28, 29,

58–68], see also the survey [69]); or selection and evaluation of design patterns (e.g., [23, 55, 70–75], see

also surveys [76–78]). The goal-oriented architecture-driven requirements engineering is an emerging area

of research, and there are comparably few related approaches (e.g., [40–43, 79, 80]).

To the author’s best knowledge, none of the related approaches provides an integrated support to jointly

overcome the aforementioned problems and to automate the documentation of rationale and trace links.

In particular, there is no approach combining support for evaluation of design pattern application, semi-

automated documentation of decision rationale and trace links between requirements, decisions and architec-

tural elements, and support for goal-oriented architecture-driven requirements engineering.

1.2. Goals and Contributions

The main goal of the approach proposed in this thesis is to support and improve software evolution through:

(1) Lightweight documentation of design decisions on design pattern applications together with the semi-

automated generated rationale for the decisions, and trace links between requirements, decisions and archi-

tectural elements; (2) Reduced number of design mistakes, especially connected to ungrounded decisions on

pattern application (through decision evaluation with the help of questions from the pattern catalogue) and

design mistakes in the pattern application design (through OCL constraints check); (3) Goal-oriented elicita-

tion of requirements, avoiding later consideration of relevant requirements, while wasting effort on elicitation

and management of low-relevant requirements.

This goal is achieved with the help of the proposed approach, which focuses on the lightweight evaluation

and documentation of design decisions on design pattern application, together with the semi-automated gen-

erated rationale for the decisions and trace links to requirements and architectural elements. The proposed

approach is called AM3D (Architectural Modelling with Design Decision Documentation).

The approach is based on a new kind of design pattern catalogue, where usual design pattern descriptions

are captured together with pattern-specific questions and information on architectural structure of patterns.

3

1. Introduction

The pattern-specific questions are questions on general positive and potential negative properties of design

patterns and their importance to the approach user. The target users of the approach are software architects

and engineers. In particular, the approach shall be most beneficial to those having less design experience.

The questions concept has the following purposes: First, to provide a short reference on the characteristic

properties of design patterns (both positive and potentially negative properties). Second, to support the eval-

uation of a pattern as a design solution for the given problem in a particular project context. The questions

are actually design rationale fragments and reflect the properties of a pattern that were the most important

for the user to make a decision on the pattern application or the pattern withdrawal. Finally, the questions

support goal-oriented architecture-driven requirements engineering through triggering inquiries about miss-

ing requirements needed to take a design decision and thus supporting their on-demand elicitation. Details

on the approach are described in Section 3 and Section 4.

To summarise, the contributions of this dissertation are the following:

1. Extension of the general development process with the lightweight process for goal-oriented require-

ments engineering and simplified documentation of rationale for the design decisions on design pattern

application. Besides the documentation of rationale and elicitation of requirements, the developed pro-

cess supports several other design and evolution scenarios, proving corresponding sub-processes to be

incorporated into the main development process.

2. A new type of design pattern catalogue with the rationale question annotations, allowing for the doc-

umentation of rationale for the design decisions, documentation of trace links between various project

artefacts, such as design model elements and requirements, goal-oriented elicitation of requirements

and evaluation of decisions on pattern application.

3. An exemplary design pattern catalogue is developed and provided to instantiate the proposed approach.

The exemplary catalogue contains 12 design patterns described according to the AM3D approach, and

annotated with questions for rationale documentation and requirements elicitation.

In the following, the contributions are discussed in more detail.

1. Lightweight process for simplified documentation of rationale for the design decisions on design
pattern application and goal-oriented elicitation of requirements.

• Process for goal-oriented requirements engineering and rationale documentation through deci-
sion evaluation: The general software development process is extended with the explicit support of

goal-oriented requirements engineering, for decision evaluation and semi-automatic documentation of

decision rationales. For this, the needs of the users are analysed with regard to the lightweight decision

evaluation and documentation of the rationale. The sequences of required actions are defined as pro-

cesses, and the corresponding processes are then incorporated into the software development process.

In addition, the process defines actions for creation of such a design pattern catalogue with question

annotations, and steps to annotate the design patterns in the catalogue with questions.

The AM3D approach process is based on the reuse of design patterns and their rationale. Design

patterns are reused to solve reoccurring design problems. The main properties of design patterns are

formulated as questions to an architect wishing to apply a pattern, and are reused to document the

rationale behind decisions on pattern application (the questions are fragments of design rationale).

4

1.2. Goals and Contributions

The AM3D approach is easily incorporated into any software development process that has an explicit

architectural design phase (for example into the V-model [81, 82] or the RUP model [83]). It can

also be incorporated into the agile processes, such as Scrum [84], because the approach supports the

documentation of decisions on demand, which fits well with the philosophy of the agile methods.

• Better supported processes for design and evolution scenarios: The AM3D approach supports sev-

eral other design and evolution scenarios, proving corresponding sub-processes to be incorporated into

the development process. These scenarios include: Gaining information about a design pattern, choos-

ing between similar patterns, pattern application, retrieving information about used patterns during

system evolution (system maintenance), understanding architectural elements during system evolution

(system maintenance), understanding pattern design decisions during system evolution (system mainte-

nance), and checking architectural implementation violations of a pattern. The scenarios are explained

in Sections 1.3 and 3.2.2.

• Goal-oriented architecture-driven requirements engineering: The AM3D approach process explic-

itly includes and triggers goal-orien-ted requirements engineering. During the evaluation of a design

pattern as a potential solution to a given design problem, known requirements to the system might be

insufficient or require a re-prioritisation in order to make a decision on whether to apply or to withdraw

a pattern. In such a case, a user of the approach would be triggered to precisely acquire additional

information about the system or to prioritise the already-available requirements. The trigger is released

through the catalogue questions to design patterns, which describe the exact properties of a pattern.

Such on-demand inquiries of requirements triggered by architectural decision-making processes con-

tribute to a goal-oriented architecture-driven requirements engineering. Therefore, the requirements

are elicited and prioritised in a lightweight on-demand process, contrary to the extensive requirements

elicitation phase at the beginning of the development. The latter simply tries to elicit as many of the

requirements as possible, without consideration for if and when these requirements would actually be

useful for the system design and development.

A detailed description of the application scenarios and corresponding process, together with the general

process can be found in Section 3.2. More on the agile processes and architectural modelling can be found

in our publication [10]. Goal-oriented requirements engineering with the AM3D approach is described in

Section 3.4 and in our publications [3, 11].

2. A new type of design pattern catalogue with rationale question annotations.

• Support in documentation of decision rationale: The AM3D approach defines a new type of design

pattern catalogue, which contains definitions of design patterns, together with the question annotations.

These question annotations are the fragments of rationale for a design pattern application. They de-

scribe the goal, intents and consequences of a pattern, as well as the difference in properties between

design pattern variants. While answering the questions, a user of the catalogue automatically generates

a rationale for the decision to apply or to discard a pattern candidate. This rationale is then documented,

together with the decisions. Thus, the user receives support in documentation of the rationale for the

decisions.

• More appropriate use of design patterns: The question annotations to design patterns in the AM3D

pattern catalogue support the decision making process. While answering the questions, a user is trig-

gered to explicitly think about the goal, intents and consequences of a pattern, and to compare these

5

1. Introduction

with the system requirements. Such sets of questions can be seen as a check-list to be used before

the pattern application. They reduce spontaneity and subjectivity of the decisions of a user, and the

application of design patterns is no longer solely based on the user’s own experience and opinion.

• Semi-automated documentation of trace links between requirements and architectural elements:
Answers to the question annotations are justified with the existing requirements to the system. The

user may select to provide IDs of the most important requirements, contributing to the answers to the

questions. By doing so, the AM3D approach receives information about the connection between a

decision to apply or to withdraw a design pattern and the requirements contributing to this decision.

Moreover, if a decision is made to apply a design pattern candidate, the candidate is then instantiated in

the architectural model. In this case, the design decision is related with the corresponding architectural

elements.

Thus, the AM3D approach supports establishing a connection between several project artefacts via

documentation of trace links: First, the requirements in the requirement specification are related with

the design documentation, and second, they are then related with the architectural model elements.

The requirements are linked to the architectural elements via documented design decisions and their

rationale.

3. Exemplary design pattern catalogue.

• Support in instantiation of the AM3D approach in a project context to document design ratio-
nale and to establish trace links: An exemplary design pattern catalogue with the rationale question

annotations was developed based on the defined process and formalisation of the AM3D approach, and

provides an initial starting point in the application of the AM3D process.

The catalogue contains common design patterns from books by Gam-ma et al. [28] and Buschmann et

al. [29] documented following the approach proposed in this thesis. Each of the patterns, besides the

description based on the developed template (described in detail in Section 4.2), has question annota-

tions attached to it. These questions are pattern-specific, but general enough to be project-independent.

It means that they describe a design pattern in a way that the properties and consequences of a pattern

can be understood independently of the project for which the design pattern is being considered. The

questions are design rationale fragments describing expected pattern properties and assumptions, and

they support the goals of the AM3D approach. In addition, each of the patterns in the catalogue has

an architectural structure description based on the role-connector notation, described in Section 4.2.3.

Such architectural descriptions allow for automated checks in component models in order to verify if

the structure of the pattern is applied correctly and is not occasionally violated during the maintenance

of the model. The catalogue is provided in Section 5.

• Reference for creation of the catalogues based on the AM3D approach: The developed exemplary

catalogue provides a reference for the creation of the catalogues based on the AM3D approach, and

can serve as a starting point for this purpose.

The developed exemplary catalogue was also used for the validation of the approach in the survey and in

the conducted controlled experiment. The subjects used the catalogue during the experiment to solve tasks

on design pattern application and maintenance.

6

1.3. Application Scenarios

1.3. Application Scenarios

Several application scenarios are considered for the proposed AM3D approach. The scenarios are indepen-

dent from each other, however, they can be used in a sequence. While some of them require a complete

application of the approach and related artefacts, others can be applied only with a part of them. The scenar-

ios are the following:

• Gaining information about a design pattern: Reading the proposed pattern catalogue to get infor-

mation about some pattern, similar to the classical approaches based on the book catalogues.

• Evaluation of the design pattern suitability for a given problem: Once there is a potential design

pattern candidate to solve a given design problem, the candidate can be evaluated with the help of the

AM3D approach. Such evaluation reduces the spontaneity of design decisions on pattern application.

• Semi-automated documentation of decision rationale: The information collected during pattern

evaluation is used for semi-automated documentation of decisions to apply or to withdraw patterns

together with the rationale for the decisions.

• Selection between similar patterns for a given problem: Evaluation of the design pattern suitability

for a given problem can be done for several patterns, thus highlighting the differences in the expected

properties of patterns and supporting the selection between them.

• Goal-oriented requirements elicitation: The questions in the catalogue explicitly ask details required

for making a decision on a pattern application. If the information is insufficient or if the functional

and quality requirements contradict each other, requirements elicitation and prioritisation are triggered.

Such requirements engineering is goal-oriented and is driven through the system design and its archi-

tecture.

• Retrieving information about patterns applied in the system: Once the system has been documented

according to the proposed approach, it is possible to retrieve information on design decisions that have

been made about the pattern application.

• Understanding pattern design decisions during system maintenance: Similar to the previous sce-

nario, the rationale for the design decisions can be extracted from the decisions and supports an under-

standing of the pattern application.

• Understanding the rationale of architectural elements through trace links to requirements: If the

rationale and decisions to pattern application were documented using the proposed AM3D approach,

the semi-automatically created trace-links between requirements, design decisions and architectural

elements could be used for understanding the architectural elements.

• Tracing change of requirements during maintenance: Similar to the previous point, captured trace

links can be used to trace change of requirements through design decisions and their rationale for the

architectural elements. In this case, deprecated design decisions and architectural elements can be

updated on demand.

• Architectural implementation violations checks: The structural information is captured in the cata-

logue, together with design pattern descriptions and question annotations. It can be used to automati-

cally check structural violation in pattern implementation at the architectural level.

7

1. Introduction

Application scenarios are presented in detail in Section 3.2.2, together with the relevant process steps and

artefacts.

1.4. Validation

This dissertation thesis defines four types of empirical validation for the architectural knowledge management

research area, based on the three types of empirical evaluations for the model-based performance prediction

methods proposed by Böhme et al. [85] and Koziolek [86]. The goal of the explicit validation type definition

is to avoid ambiguities in the validation of the approach and its clustering the research area. These types shall

provide a common language for the validation in the area and reflect the maturity of the proposed approaches

in regard to their validation. The developed types are: Feasibility, Appropriateness, Applicability and Cost-

benefit. They are described in Section 6.1 and were applied for the description of the carried validations of

the AM3D approach in Chapter 6.

Overall, the proposed AM3D approach is validated in three parts (described in Chapter 6).

First, a survey was conducted to evaluate the motivation of the approach and to evaluate the feasibility

of the proposed annotated pattern catalogue as of a potential solution for the problems with design pattern

use and documentation. The survey research method was to use structured interviews, and the results were

evaluated in a qualitative way. The survey and its results are described in detail in Section 6.4.

Second, the AM3D approach was applied on a common example to demonstrate the appropriateness of the

AM3D approach, its artefacts and the process. It is described in detail in Chapter 4.

Third, an empirical study was conducted to validate the applicability and claimed benefits of the approach.

The empirical study validates if design patterns annotated according to the AM3D approach can be better

understood and applied more correctly as compared to the design pattern catalogue based on the standard

approach. Further on, it is validated if a system architecture, which is documented according to the AM3D

approach and, thus, is the result of development of the system using the AM3D approach, can be better

maintained compared to the system documented according to the standard catalogue approach. The empirical

study research method is a controlled experiment, which is a quantitative research method. The experiment

is described in detail in Section 6.5.

1.5. Outline

The rest of this thesis is organized as follows:

• Chapter 2 introduces concepts and terms required to gain an understanding of the approach. Sec-

tion 2.1 gives an overview of the software development process. The requirements engineering and

related artefacts are explained in Section 2.2. Section 2.3 provides an overview of the software archi-

tecture and software design. It explains software design decisions and their rationale. It introduces

concepts of architectural styles and design patterns, and explains the difference between these. Sec-

tion 2.4 deals with the foundations of model-driven development and explains the concept of a meta-

model, model and model instance together with the hierarchy levels they undergo. Finally, Section 2.5

provides an overview of the additional foundations of the AM3D approach, such as Palladio Com-

ponent Model (PCM), Common Component Modelling Example (CoCoME), and Controlled natural

languages.

8

1.5. Outline

• Chapter 3 gives an overview of the proposed AM3D approach and of all the related concepts. First,

Section 3.1 provides an overview of the main concepts of the proposed approach. Section 3.2 introduces

the developed process to use the proposed catalogue of design patterns. First, the base process is

introduced, which is followed by a detailed description of application scenarios for the approach, and

of the corresponding processes for these application scenarios. Section 3.3 describes the traceability

support given by the AM3D approach. Section 3.4 explains the contribution of the AM3D approach

to goal-oriented architecture-driven requirements elicitation. Section 3.5 highlights the differences

between the proposed approach and expert systems in order to avoid ambiguities in the understanding

of further sections. Finally, Section 3.6 introduces an example that is used to demonstrate the proposed

approach.

• Chapter 4 provides a detailed explanation of the proposed AM3D approach and details on the core of

the approach – the AM3D pattern catalogue. Section 4.1 explains the purpose of the proposed pattern

catalogue. Section 4.2 explains the structure of the catalogue, which consists of three blocks: General

information on patterns, question annotations and architectural structure. Section 4.3 details the con-

cept of question annotations, which are proposed as a solution for problems with pattern application

and decision documentation. The purpose of the question annotation is explained in detail, followed by

a discussion of the ways to formulate the questions, types of questions and supporting styles of formu-

lating the questions. The section then provides a discussion of answers to the question annotations, and

is concluded with a description of a process to add questions to the patterns in the proposed catalogue.

Section 4.4 introduces a process to fill in the catalogue. The types of pattern in the catalogue are dis-

cussed in Section 4.5. A detailed presentation and discussion of the developed formalisation method

for the approach based on the meta-models is provided in Section 4.6. Each of the subpackages of

the developed meta-model is described in detail in the subsections. Section 4.7 concludes the chapter,

highlighting the important details about the presented approach.

• Chapter 5 presents an exemplary pattern catalogue, developed according to the proposed AM3D ap-

proach. The catalogue contains descriptions of 12 common design patterns, each of which is provided

with question annotations. The catalogue was also used during validation of the approach. It concludes

with a summary of experiences collected during the creation of the catalogue.

• Chapter 6 introduces developed validation types for the architectural knowledge management area,

gives details on the conducted validations and presents the results. The developed validation types are

provided in Section 6.1. Section 6.2 discusses how and what was validated for the AM3D approach.

Section 6.3 introduces the Goal Question Metric approach, which was used to formulate goals and

the research questions for the conducted validations. Section 6.4 provides details on the conducted

survey, its research questions and method, survey design, testing of the research method, and survey

results. It discusses threats to validity and limitations of the survey and gives a summary of the results.

Section 6.5 provides details on the conducted empirical study, based on the controlled experiment, its

research questions, research method, experiment design, testing of the method, and experiment results.

It discusses threats to validity and limitations of the experiment and provides a summary of the results.

Finally, Section 6.6 concludes the chapter.

• Chapter 7 provides an overview of the related work in the area and outlines the differences between

the approach proposed here and other related approaches. First, Section 7.1 introduces the developed

9

1. Introduction

classification scheme for the related work approaches. It explains what areas of the related work re-

search are in the focus of the AM3D approach. Further on, Section 7.2 provides a review of the related

approaches in the formalisation and documentation of design patterns research area. The section is

structured based on the underlying formalisation method used by the approaches. Section 7.3 provides

a review of the related approaches in the formalisation and documentation about the design decisions

research area. The section is also structured based on the underlying formalisation method used by

the approaches. Section 7.4 provides a review of the related approaches that deal with the reasoning

about and selection of design patterns. The approaches are structured based on the mechanism used

for the pattern selection, such as approaches based on the influence on non-functional properties and

question-based approaches. Section 7.6 provides a summary of related approaches and points out the

main differences between them and the AM3D approach.

• Chapter 8 concludes the thesis with a summary of the most important contributions described in this

thesis, of the approach benefits and of conducted validations (Section 8.1). Assumptions and limitations

are discussed in Section 8.2. Open questions and future work are presented in Section 8.3, which is

structured according to the three categories: Short-term user-relevant open questions and future work

(Section 8.3.2); long-term user-relevant open questions and future work (Section 8.3.1); and empirical

user-relevant open questions and future work (Section 8.3.3).

10

2. Foundations

This chapter provides foundations for the AM3D approach. The goal of the chapter is to enable uniform un-

derstanding of the concepts that are used by the AM3D approach and are required to understand the approach.

First, an overview of the software development process is given in Section 2.1. The requirements engi-

neering and related artefacts are explained in Section 2.2. Section 2.3 provides an overview of the software

architecture and software design main terms and concepts. It explains what is understood under software

design decisions and their rational, what are the reusable architectural solutions, explains Styles and Design

Patterns and difference between them, and provides a short introduction into main concepts of component-

based software development. Section 2.4 deals with foundations on model-driven development and explains

the concept of a meta-model, model and model instance together with the hierarchy they undergo. These

concepts are used later on to formalise the proposed design pattern catalogue and the relevant project con-

text. Finally, Section 2.5 provides an overview of the additional foundations of the AM3D approach, such as

Palladio Component Model (PCM), Common Component Modelling Example (CoCoME), and Controlled

natural languages.

2.1. Software Development Processes

This section introduces the concept of a software development process (in Section 2.1.1) and provides a brief

description of agile process models (in Section 2.1.2).

2.1.1. Basic Concepts

Software development typically consists of several standard phases, such as: Requirements specification (elic-

itation, negotiation, prioritisation and capture of requirements to the system), Architectural design (transfor-

mation of requirements into architectural design, architectural design decision making and capture, architec-

tural modelling, architectural evaluation), Implementation (transformation of architectural design into code),

Testing (various level of tests to the system, such as unit, integration, system and acceptance testing), Deploy-

ment (installation of developed software on running productive systems) and Maintenance (implementation

of change requests, new requirements and bug fixing).

The overview of these general software development phases is provided on Figure 2.1 (adapted from [87]).

The arrows schematically depict possible order of connections between the development phases (please note

that this is only one of the many process options). The dotted arrow schematically depicts the start of a new

development iteration.

The development phases are always interconnected in an order following one of the known development

patterns. The order in which the phases are followed is defined by the selected software development process

model. Software development process model is “an abstract representation of a set of activities that leads to

the production of a software product” [87]. According to Sommerville [87], the generic process models are

“not definitive descriptions of software processes. Rather, they are abstractions of the process that can be

used to explain different approaches to software development”.

11

2. Foundations

Requirements
Specification

Architectural
Design

DeploymentMaintenance

Implementation

Testing

Figure 2.1.: Overview of General Software Development Phases (Adapted from [87])

Definition 2.1 Software Development Process Model [87]

Software development process model is an abstract representation of software process, which is a set of

activities that leads to the production of a software product.

The order of activity phases defined by process models may be linear, non-linear, iterative, incremental

or a combination of these. Lineal development might be well-suitable for short projects or projects in the

known domain with clear defined and unlikely to change requirements, where final systems require a strict

conformance with the specification and extensive testing, for example systems in a military domain. Iterative

and incremental development is better suited for less known domain or domains with changing requirements

that have to be reconsidered in design and implementation.

Some of the examples of the common process models are: Waterfall model [87], V-Model [81, 82], Ra-

tional Unified Process (RUP) [83] and so-called Agile Methods, such as Scrum [84, 88] or Extreme Pro-

gramming [89]. Most of the process models can be considered frameworks, which define general rules and

artefacts, and shall be tailored to fit a particular project.

The approach described in this thesis proposes a set of actions to extend any base process having explicit

architectural design phase, and using artefacts form the requirements phase. More details on requirements

engineering are provided in Section 2.2, and on architectural design in Section 2.3.

2.1.2. Agile Methods

A software process models family called “agile methods” was developed to anticipate the rapidly changing

software developing environment.

Since there is no uniform definition for the agile methods, this thesis provides its own definition for the agile

methods: Agile methods are software development process models that follow an iterative and incremental

approach, are concentrated on a software development with a lowest possible management overhead and

on execution of activities that are the most relevant for the project success at the current moment. Such

development is called goal-oriented development.

Definition 2.2 Agile Methods

Agile methods are software development process models that follow an iterative and incremental approach,

are concentrated on a software development with a lowest possible management overhead and on execution

of activities that are the most relevant for the project success at the current moment.

12

2.1. Software Development Processes

The most famous agile methods are: Extreme Programming (XP) [89], Scrum [84,88], Crystal Clear [90],

Feature Driven Development [91] and Adaptive Software Development [92].

While classical software engineering methods, such as RUP [83] or V-Model [81, 82], require careful

planning up-front, the agile methods concentrate on quick reaction and adoption to changes. Because of this,

they became popular in the broader developer community, and there are a high number of success reports,

especially for Scrum and XP [93–98]. The empirical studies on the quality and efficiency of these methods

are less clear [99, 100]. It seems that agile methods improve well over ad-hoc processes. However, common

practices, such as as pair-programming and test-driven development, are not demonstrated yet to improve

over established classical software development quality assurance techniques, such as code and architectural

reviews.

The agile methods are based on the agile manifesto and have the following common characteristics

(from [10]):

• Iterative and incremental process: Developing software in steps and iterations over a complete pro-

cess steps circle.

• Lightweight process: As few forward planning as possible with code being the main artefact, some

classical practices, such as forward-planning and architecture modelling are considered to be abundant.

• Flexible: Quick response to a changing environment, and new requirements are welcomed at any stage

of development.

• Goal-oriented: Project value oriented, every development increment shall add value to the product.

• Customer oriented: Strong customer involvement.

• Team-oriented: The team has the main role in the development process and is self-organized.

These properties are not unique for agile methods, however the agile community is focused on them.

The agile manifesto explicitly states the principles of agile development [101] as the following: Individuals

and interactions over processes and tools; Working software over comprehensive documentation; Customer

collaboration over contract negotiation; and responding to change over following a plan.

One of the key keywords in agile methods is a word “lightweight”, which is typically used to characterise a

low overhead of an action. Another one is a concept of “waste”. As wastes are considered all the activities in

the project that do not directly contribute to the project success. Therefore, architectural design and software

documentation are often misinterpreted in waste, and are neglected.

An example of an Agile process is presented on Figure 2.2, which depicts a Scrum development process.

On the figure’s upper part is depicted one Scrum process iteration. It consists of four steps, which are also

associated with meetings in the Scrum process:

• Planning: Planning meeting to plan the development during the next Sprint, usually a 2-4 hours time

slot.

• Sprint: A single development iteration unit, usually a 2-4 weeks time slot. During the Sprint there

are Daily meetings every day. A Daily meeting is a meeting to briefly discussed planned activities

for the day, to identify dependencies and to notify about impediments in the development, and look-

ahead activities, such as contribution to planning of the next Sprint iterations and some organisational

activities.

13

2. Foundations

Sprint

Planning

Review

Retrospective

Look-ahead activities

Daily
Meeting

Daily
Meeting

Daily
Meeting

Daily
Meeting

Sprint

Planning

Review

Retrospective

Look-ahead activities

Daily
Meetin

g

Daily
Meetin

g

Daily
Meetin

g

Daily
Meetin

g

Sprint

Planning

Review

Retrospective

Look-ahead activities

Daily
Meetin

g

Daily
Meetin

g

Daily
Meetin

g

Daily
Meetin

g

Sprint

Planning

Review

Retrospective

Look-ahead activities

Daily
Meetin

g

Daily
Meetin

g

Daily
Meetin

g

Daily
Meetin

g

Sprint

Planning

Review

Retrospective

Look-ahead activities

Daily
Meeting

Daily
Meeting

Daily
Meeting

Daily
Meeting

Sprint

Planning

Review

Retrospective

Look-ahead activities

Daily
Meeting

Daily
Meeting

Daily
Meeting

Daily
Meeting

Sprint

Planning

Review

Retrospective

Look-ahead activities

Daily
Meeting

Daily
Meeting

Daily
Meeting

Daily
Meeting

Figure 2.2.: Overview of Scrum Development Process

• Review: Review meeting to accept the development results of a past Sprint, usually a 2 hours time slot.

• Retrospective: Retrospective meeting to review good and bad practices during the past Sprint, usually

a 2-4 hours time slot.

All of these four steps together are called one Sprint iteration. A sequence of such Sprint iterations com-

prises a Scrum process, depicted on the bottom of Figure 2.2.

The AM3D approach proposed in this thesis originates from the idea of more agile architectural design

and documentation, as published in our publications [10, 13]. It includes definition of actions, which would

simplify documentation of architectural design and reduce required planning up-front. In particular, one of

the claimed benefits of the approach is the light-weight documentation of design decisions, their rationale

and trace links. The other related benefit is a goal-oriented elicitation of requirements, whereby the AM3D

approach stimulates elicitation and prioritisation of requirements relevant to the current design tasks. Thus,

architectural design documentation and requirements engineering are more lightweight and require less over-

head in terms of agile methods. Moreover, the AM3D approach helps to avoid waste in respect to improper

design decision on pattern application, which make design more stable with less mistakes, which require

correction.

2.2. Requirements Engineering

This section introduces the requirements engineering phase of a software development process. First, the

basic concepts such as requirements engineering itself and requirements are described in Section 2.2.1. Then,

Section 2.2.2 introduces classification of requirement types, which are used throughout this thesis. Sec-

tion 2.2.3 introduces the concept of stakeholder in requirements engineering. Finally, requirement engineer-

ing process is explained in Section 2.2.4, together with the role of requirements engineer, ways to capture

requirements, and the relation between requirements and architecture.

2.2.1. Basic Concepts

Requirements engineering is the first phase of a classical system development life cycle and is focused on the

requirements to the system. However, neither an established definition of requirements and of requirements

14

2.2. Requirements Engineering

engineering exists, nor there is a consensus how to structure and to write requirements. The state of the art

typically simply omits the definition of what is understood under requirements and requirements engineering

in the proposed method.

This thesis uses the definition of requirements engineering by the IEEE 29148-2011 Standard [102], which

defines the requirements engineering as “an interdisciplinary function that mediates between the domains of

the acquirer and supplier to establish and maintain the requirements to be met by the system, software or ser-

vice of interest”. According to the IEEE standard, requirements engineering “is concerned with discovering,

eliciting, developing, analyzing, determining verification methods, validating, communicating, documenting,

and managing requirements” [102].

Definition 2.3 Requirements Engineering [102]

Requirements engineering is an interdisciplinary function that mediates between the domains of the acquirer

and supplier to establish and maintain the requirements to be met by the system, software or service of inter-

est. Requirements engineering is concerned with discovering, eliciting, developing, analyzing, determining

verification methods, validating, communicating, documenting, and managing requirements.

The requirement is defined in the IEEE 29148-2011 Standard [102] as “a statement which translates or

expresses a need and its associated constraints and conditions”.

Definition 2.4 Requirement [102]

Requirement is a statement which translates or expresses a need and its associated constraints and conditions.

It is a formal and quite general definition. A more comprehensive definition is given by Sommerville et

al. in [103], where a requirement is defined as “a specification of what should be implemented”, and as “a

description of how the system should behave, or of a system property or attribute”. Thus, requirements are

specifications of the system, which describe various aspects, such as functionality, quality properties, context,

and constraints. This thesis uses the definition by Sommerville et al. in [103], as it includes attributes and

properties as elements of requirements engineering.

Definition 2.5 Requirement [103]

Requirements are defined during the early stages of a system development as a specification of what should

be implemented. They are descriptions of how the system should behave, or of a system property or attribute.

2.2.2. Classification of Requirements

The classification of requirements is an even more complicated and controversial topic. The most typical clas-

sification is to divide all requirements into functional (describing functions of a system) and non-functional

(also called extra-functional, describing all other requirements). Sommerville et al. [103] provides the follow-

ing explanation of funcitonal and non-functional requirements: “Functional requirements describe what the

system should do and non-functional requirements place constraints on how these functional requirements

are implemented.” Following this classification, non-functional requirements describe quality features of a

system, constrains on the system and its context, etc.. However, depending on how the requirements are

formulated, a quality requirement might actually be rather a functional requirement and vice versa.

15

2. Foundations

Another option to describe requirements is to associate them with system goals, as proposed for example

in [44] van Lamsweerde. The requirements are then structured according to the goals and concerns at the

different levels of abstraction, from “high-level strategic concerns to low-level technical details”.

In this thesis, the first classification is used. In particular, the AM3D approach relies on the definitions and

classification proposed by Glinz [104]. The classification proposed by Glinz [104] is based on the taxonomy

of terms, that in their turn are based on concerns. According to Glinz, “the set of all requirements of a

system is partitioned into functional requirements, performance requirements, specific quality requirements,

and constraints” [104].

Definition 2.6 Classification of requirements types [104]

The set of all requirements of a system is partitioned into functional requirements, performance requirements,

specific quality requirements, and constraints.

Here, Glinz [104] defines a functional requirements as “a requirement that pertains to a functional concern”.

Definition 2.7 Functional requirement [104]

A functional requirement is a requirement that pertains to a functional concern.

A performance requirements is “a requirement that pertains to a performance concern” [104].

Definition 2.8 Performance requirement [104]

A performance requirement is a requirement that pertains to a performance concern.

A specific quality requirement is “a requirement that pertains to a quality concern other than the quality of

meeting the functional requirements” [104].

Definition 2.9 Specific quality requirement [104]

A specific quality requirement is a requirement that pertains to a quality concern other than the quality of

meeting the functional requirements.

And finally, a constraint is “a requirement that constrains the solution space beyond what is necessary for

meeting” [104].

Definition 2.10 Constraint [104]

A constraint is a requirement that constrains the solution space beyond what is necessary for meeting.

This classification (taxonomy) is presented on Figure 2.3. In the classification, the requirements are first

structured according to their general role: Project requirements, system requirements and process require-

ments. Furthermore, system requirements are fined into: Functional requirements, attributes and constraints.

The attributes consist of: Performance requirements, such as throughput, volume, etc., and specific quality

requirements, such as legal requirements, cultural requirements, etc..

Compare this classification to the one provided by IEEE Standard [102] and depicted on Figure 2.4. The

IEEE classification presents a much more flat hierarchy, with a larger consideration of human influence fac-

tor. Here, in addition to the types specified by Glinz [104], a performance requirement “defines the extent

16

2.2. Requirements Engineering

Functionality
and behavior:
Functions
Data
Stimuli
Reactions
Behavior

Time and
space bounds:
Timing
Speed
Volume
Throughput

“-ilities”:
Reliability
Usability
Security
Availability
Portability
Maintainability

Physical
Legal
Cultural
Environmental
Design&Im-
plementation
Interface

... ...

Functional

requirement

System

requirement

Attribute Constraint

Performance

requirement

Specific quality

requirement

Requirement

Project

requirement

Process

requirement

Figure 2.3.: A Concern-based Taxonomy of Requirements [104]

or how well, and under what conditions, a function or task is to be performed”. A usability or quality-

in-Use requirement “provides the basis for the design and evaluation of systems to meet the user needs”.

An interface requirement “defines of how the system is required to interact with external systems (external

interface), or how system elements within the system, including human elements, interact with each other

(internal interface)”. And a human factors requirement “states required characteristics for the outcomes of

interaction with human users (and other stakeholders affected by use) in terms of safety, performance, effec-

tiveness, efficiency, reliability, maintainability, health, well-being and satisfaction”. However, even though

this classification might be more detailed, it is of less practical use for the AM3D approach.

The classification by Glinz [104] was selected because of its comprehensive overview and structure of

requirements types. It contains all categories of requirements that are important in the context of design pat-

tern selection, documentation and for the reasoning about patterns. It also contains a classification of quality

requirements that are connected to the quality influence dimensions of the design patterns. This classifica-

tion of requirements was used to structure the classes in the AM3D requirements meta-model, described in

Section 4.6.

2.2.3. Stakeholders

Another important attribute of requirements, besides the type classification, is the stakeholder. Sommerville

et al. in [103] defines stakeholders as “people who will be affected by the system and who have a direct or

indirect influence on the system requirements”.

17

2. Foundations

Requirement

Functional
requirement

Performance Interface Design
constraint

Process
Requirement

Non-
functional
requirement

Quality
requirement

Human factors
requirement

Usability / Quality-
in-Use
requirement

“-ilities”:
Transportability
Survivability
Flexibility
Portability
Reusability
Reliability
Maintainability
Security

Safety
Performance
Effectiveness
Efficiency
Reliability
Maintainability
Health
Well-being
Satisfaction

Quantitative
requirements of
system
performance

Functions or
tasks to be
performed

Interaction with
other external or
internal systems

Immovable
boundaries and
limits

Figure 2.4.: An IEEE Standard Taxonomy of Requirement Types (Abstracted from Textural Description in [102])

Definition 2.11 Stakeholder [103]

System stakeholders are people who will be affected by the system and who have a direct or indirect influence

on the system requirements.

As clear from the definition, its focus lies on the system stakeholders. A more generic definition of stake-

holders is provided by the IEEE 29148-2011 Standard [102] and includes system stakeholders as a subclass.

According to the IEEE Standard, a stakeholder is “an individual or organization having a right, share, claim,

or interest in a system or in its possession of characteristics that meet their needs and expectations” [102].

This thesis uses the definition by the IEEE 29148-2011 Standard [102], as it more precisely specifies influence

by stakeholders on the system.

Definition 2.12 Stakeholder [102]

Stakeholder is an individual or organization having a right, share, claim, or interest in a system or in its

possession of characteristics that meet their needs and expectations.

Stakeholders take active part in the process of requirement elicitation. Elicitation of requirements is “a

process through which the acquirer and the suppliers of a system discover, review, articulate, understand, and

document the requirements on the system and the life cycle processes” [102].

2.2.4. Requirements Engineering Process

An important part of requirement engineering process is requirement elicitation. It is a process through

which the acquirer and the suppliers of a system discover, review, articulate, understand, and document the

requirements on the system and the life cycle processes.

18

2.2. Requirements Engineering

Definition 2.13 Requirement elicitation [102]

Requirement elicitation is a process through which the acquirer and the suppliers of a system discover, review,

articulate, understand, and document the requirements on the system and the life cycle processes.

A requirements engineering process is “a structured set of activities which are followed to derive, validate

and maintain a systems requirements document” [103].

Definition 2.14 Requirements Engineering Process [103]

A requirements engineering process is a structured set of activities which are followed to derive, validate and

maintain a systems requirements document. A complete process description should include what activities

are carried out, the structuring or schedule of these activities, who is responsible for each activity, the inputs

and outputs to/from the activity and the tools used to support requirements engineering.

The requirement engineering process is a complex set of steps and requires a support of specially trained

individuals – requirements engineers. A requirement engineer is “a person responsible for communication

with stakeholders, and for the elicitation, capture, prioritisation, testing, update and communication of the

requirements with or without them, depending on the organisational structure” [103].

Definition 2.15 Requirement Engineer [103]

A requirement engineer is a person responsible for communication with stakeholders, and for the elicita-

tion, capture, prioritisation, testing, update and communication of the requirements with or without them,

depending on the organisational structure.

There are multiple ways to capture the requirements. The most common way is to capture requirements

in textual specification documents. In this case, requirements are captured as structured text (for example, as

a Microsoft Word document or as a Microsoft Excel table), provided with identification number and textual

description. A more advanced form of a textual description is a description template, for example the Volere

Requirements Specification Template by Robertson et al. [105]. A process using this specification template

is described in the book by Robertson et al. [106].

The Volere template proposes a fixed and use-proven structure to capture the requirements (also called

Volere Atomic Requirement Template), which contains a set of fields describing the most common-used

properties of requirements, such as ID, description, priority, etc.. In addition to this, it proposed a set of

sections for the general process and context description, such as information about project stakeholders,

context constraints, functional and non-functional requirements specified according to the Volere Atomic

Requirement Template, project risks, etc.. For more information to the Volere Requirements Specification

Template please refer to [105, 106].

Another way to capture requirements is to formulate them as User Stories. User Stories are very often used

in Agile development to capture the requirements. A User Story is a kind of requirement description tem-

plate, where requirements are described as short stories with an explicit actor, benefit for the actor, estimated

required effort and priority. An example of a User Story is presented on Figure 2.5.

In the example, an actor of the story is a Web page user. The user wants to be able to change a profile

picture on the Web page. A rationale for this requirement is that the user would like to keep his profile picture

up-to-date, and the picture shall reflect the current state of the user’s life and taste. The story has an estimate

effort of 8 Story Points (a measure to estimate effort in User Stories, for more information on effort estimation

19

2. Foundations

ID: 012

I want

because

 as a: User of the Web page 8/H

to be able to change my profile
picture

it shall be up-to-date and reflect my
current state

Acceptance criteria

1. I can click on the picture and select
an option “change picture”

2. I can select either “browse my
computer”, or “upload from a link
(URI)”
3. I can edit the size /borders of the
new picture before I confirm it

Figure 2.5.: An Example of a User Story

in Agile Methods please refer to [107]), and a high priority. One of the most important fields in the User Story

is the acceptance criteria block. These criteria are a kind of post condition, and describe conditions when a

Story is considered to be implemented (finished). User Stories can have different granularity levels, from

very large (Epic User Stories) to very small user stories (Working User Story). The latter are comparable to

the typical detailed requirements in textual requirements specifications. For more information on User Stories

refer to [107, 108].

The form of requirements description also depends on specialized tool support. The most famous commer-

cial tools in the area are IBM Rational DOORS [109], IBM Rational RequisitePro [110], Polarion REQUIRE-

MENTS [111]. Some of the open source tools in the area are: Open Source Requirements Management

Tool [112] and Unicase [113] (a CASE-tool for modelling artefacts in a software engineering project).

Finally, even though requirements engineering is a first step of the system development life cycle, it is

an ongoing activity throughout the whole life of a system. The new requirements and change requests trig-

ger changes in the system design and implementation, and also system design and implementation actually

trigger new requirements. In the latter case, the requirements are systematically elicited as a by-product, as

very often information about certain expected properties, features or behaviour of the system is incomplete.

Architects and developers often have to ask requirements engineers to elicit additional information on the

missing features and properties.

As the focus of this thesis lies primarily in the area of software architecture, and not in the implementation,

a relation between requirements and architecture is of a primary interest. A two-way relationship between

requirements and architectural design is schematically presented on Figure 2.6.

Requirements are important triggers for the feature demand in software architecture. Decisions on archi-

tectural design are taken based on the current requirement specification of a system, and requirements serve as

a rationale for the taken design decisions. On the other hand, architectural design and architectural design de-

cisions deliver a feedback back to requirements engineering, and constraint further requirement engineering

or trigger updates in the existing requirement specifications.

In the AM3D approach, the existing requirements to the system are linked to the taken or discarded pattern

design decisions as triggers, constraints or rationale attributes. Change of the existing requirements is propa-

gated through these trace links into the architectural model to warn the architect about changes and potential

decision obsolescence, and also back to the requirements engineer to warn about the impact of change and

about potential inconsistencies. For more information about relation of requirements and architectures please

refer to [42, 114].

20

2.3. Software Architecture and Architectural Design

Requirements
Engineering

Architectural
Design

New Requirements and
Requirements Updates

Architectural
Decisions Rationale

Figure 2.6.: Relation Between Requirements and Architectural Design

2.3. Software Architecture and Architectural Design

This section provides an introduction to the concept of software architecture, architectural design and mod-

elling. It explains the concept of design decisions and design decisions rationale, reusable architectural design

solutions, such as architectural styles and patterns, and gives an introduction to component-based software

development.

The concept of software architecture is explained in Section 2.3.1. Design decisions and rationale are

explained in Section 2.3.2. Section 2.3.3 introduces a concept of architectural styles, and Section 2.3.4 the

concept of architectural design patterns. Finally, component-based software development is explained in

Section 2.3.5.

2.3.1. Basic Concepts

This section is based on the books by Taylor et al. [115], Clements et al. [116], Rozanski et al. [117], Paul-

ish [118], and on material collected in our previous publications [1, 9, 17].

2.3.1.1. Software Architecture Definition

The main term throughout this section is the term “software architecture”. However, there is no acknowl-

edged single definition available. In fact, there are multiple definitions of software architecture that are used

throughout the research area.

Taylor et al. [115] provide the following definition of software architecture: A software architecture is “the

set of principal design decisions made about the system”.

Definition 2.16 Software Architecture [115]

A software system’s architecture is the set of principal design decisions made about the system.

Clemets et al. [116] define architecture as “a high level abstraction of software”.

Definition 2.17 Software Architecture [116]

A software architecture is a high level abstraction of software.

Paulish [118] replies on the definition of Soni et al [119], where software architecture is “concerned with

capturing the structures of a system and relationships among elements . . . ”.

21

2. Foundations

Definition 2.18 Software Architecture [119] via [118]

Software architecture is concerned with capturing the structures of a system and relationships among ele-

ments.

Rozanski et al. [117] define software architecture as a “structure or structures of the system, which comprise

software elements, the externally visible properties of those elements, and the relationships among them”.

Definition 2.19 Software Architecture [117]

Software architecture is a structure or structures of the system, which comprise software elements, the exter-

nally visible properties of those elements, and the relationships among them.

The key concepts of these definitions are abstraction, design decisions, structure and relationships between

elements. This thesis further on relies on the definition of Rozanski et al. [117], as it is simultaneously

concerned with the system structure, properties and relations between elements.

2.3.1.2. Software Architect

The person responsible for the system architecture is called the system architect. In some cases, this role

is merged with a more general role of software engineer. Taylor at al. [115] define software architect as “a

person combining the skills of a domain expert, a software designer, a technologist, a standards compliance

expert, and a software engineering economist”. The authors point out that, unfortunately, a title of software

architect is rather randomly assigned, which leads persons with insufficient experience to be responsible for

important design decisions.

Definition 2.20 Software Architect [115]

Software architect is a person combining the skills of a domain expert, a software designer, a technologist, a

standards compliance expert, and a software engineering economist.

The responsibilities of a software architect include [115]: Development of project strategies, system design,

leading, and communication with stakeholders. Thus, the software architect can be seen as an experienced

software engineer. In this thesis, the role of software architect is replaced with the role of software engineer.

This is because the AM3D approach is not limited to the application by a professional software architect

at the architectural level. It is also suitable to the application of software engineers, and in particular, less

experience software engineers, who might profit the most from the approach application.

2.3.1.3. Architectural Design and Modelling

Software architecture is comprised of architectural design, which shall be documented in design documen-

tation. This includes architectural models, textual descriptions, taken design decisions with the rationale for

them.

According to Taylor et al. [115], architectural model is “an artefact that captures some or all of the design

decisions that comprise a system’s architecture”. Architectural modelling is “reification and documentation

of those design decisions”.

Definition 2.21 Architectural Model and Modelling [115]

Architectural model is an artefact that captures some or all of the design decisions that comprise a system’s

architecture. Architectural modelling is reification and documentation of those design decisions.

22

2.3. Software Architecture and Architectural Design

The architecture can be represented either visually in a model, for example with the help of the Unified

Modelling Language (UML) [120], or formally with the help of Architectural Description Languages (ADL)

[121]. Some of the ADLs also include a visual model representation. Depending on the definition of the

ADLs, UML can be also considered an ADL.

An ADL is “any form of expression for use in architecture descriptions. An ADL provides one or more

model kinds as a means to frame some concerns for its audience of stakeholders. An ADL can be narrowly

focused, defining a single model kind, or widely focused to provide several model kinds, optionally organized

into viewpoints. Often an ADL is supported by automated tools to aid the creation, use and analysis of its

models” [122].

Definition 2.22 Architectural Description Language (ADL) [122]

An ADL is any form of expression for use in architecture descriptions. An ADL provides one or more model

kinds as a means to frame some concerns for its audience of stakeholders. An ADL can be narrowly focused,

defining a single model kind, or widely focused to provide several model kinds, optionally organized into

viewpoints. Often an ADL is supported by automated tools to aid the creation, use and analysis of its models.

The ISO/IEC/IEEE 42010 standard [122] defines minimum requirements to an ADL:

• The identification of one or more concerns to be expressed by the ADL

• The identification of one or more stakeholders having those concerns

• The model kinds implemented by the ADL which frame those concerns

• Any architecture viewpoints

• Correspondence rules relating these model kinds

An opinion about documenting architecture presented by Kruchten

[123], and also shared in this thesis, is that documentation of architecture is a matter of documenting the

relevant views and then adding documentation that applies to more than one view. An architectural view is a

representation of a set of system elements and the relations associated with them [116].

Definition 2.23 Architectural View [116]

An architectural view is a representation of a set of system elements and the relations associated with them.

The famous “4 + 1 View Model” by Kruchten “describes software architecture using five concurrent views,

each of which addresses a specific set of concerns” [123]. The model is depicted on Figure 2.7. It consists

of the logical view describing the functionality of the system, the development view describing static orga-

nization of software in the development environment, the process view describing design’s concurrency and

synchronization aspects, the physical view describing mapping of the software onto the hardware, and the

scenarios describing system’s use cases. The architectural model includes views on its static structure, such

as components and connectors, the inter-component control flow and the deployment of components and

connectors on virtual or physical resources (virtual machines or hardware knots).

Architecture and architecture modelling have the following benefits

[10, 116, 124]:

23

2. Foundations

Figure 2.7.: 4 + 1 View Model [123]

• Communication: Software architecture may be used to focus discussion by system stakeholders, such

as engineers, requirements engineers and customers.

• Comprehension: Architectural models ease comprehension of architectural design, and of complex

dependencies in a system. The details are raised to the next abstraction level, which is easier to grasp

than the very detailed descriptions or code. However, this requires (1) a common understanding of the

used modelling formalism, such as UML or of some other ADL, and (2) a correct definition of the

abstraction level. The later is a subject of decisions of the software architect, and may be accordingly

over- or under-detailed. There is no precise definition for the right level of abstraction and details in

software architectures.

• Analysis: Software architecture allows for consistency checking, checks of conformance to constraints

and to quality attributes, dependence analysis and others. Architectural models allow for a design-time

analysis of quality properties of a system, such as performance or reliability. Such design-time feedback

to the architect helps to avoid costly design mistakes, which are hard to correct at later development

phases.

• Reuse: Architecture design stimulates reuse at multiple levels and across a range of systems. The

reuse is achieved through reusable architectural solutions, such as styles, design patterns, components,

frameworks or even code.

• Management: Architectural design demands practical and precise understanding of the requirements

to the system. It typically leads to a much clearer understanding of requirements, design and imple-

mentation strategies and potential risks (cost-estimation, mile stone organization, dependency analysis,

change analysis, staffing); evaluation of an architecture

• Implementation support: Architectural models and design provide a partial blueprint for development

of system code by indicating the major components and dependencies between them.

24

2.3. Software Architecture and Architectural Design

• Evolution: Architectural design supports system evolution by definitions of the directions and di-

mensions along which a system is expected to evolve. Usually, a system design included pre-defined

support for some evolution scenarios that were anticipated during the system design.

Often, there is no other documentation than the architectural models. Therefore, architectural design de-

cisions are often documented in an implicit way, as elements of design models. Having significant benefits,

architecture modelling has disadvantages as well. Architectural design and modelling require technical skills

and domain knowledge. They cause significant overhead, and in particular, a significant overhead when

maintaining the documentation and models. The value of the architecture modelling is not always understood

(especially by the customers), as it does not directly contribute to the value of the product, while creating

additional cost, time and effort overhead.

The architecture is strongly influenced by the context and by the persons designing the architecture. Thus,

given the same set of system requirements and constraints, different architectural designs will be developed.

These are called variants of software architecture. Usually, multiple valid variants of system design exist,

and the task of a software architect is to optimise various properties of the system in design according to the

quality requirements to the system (non functional properties).

2.3.1.4. Architectural Knowledge Reuse

Another key concept in architectural design is a reusable architectural design solution. A reusable architec-

tural design solution is an architectural solution that can be reused in the context of multiple projects main-

taining the solution structure, design details and expected positive and potential negative properties. Some

examples of reusable architectural solutions are architectural styles, design patterns, reusable components,

such as thirds-party components (COTS) or in-house components.

Definition 2.24 Reusable Architectural Design Solution

Reusable architectural design solution is an architectural solution that can be reused in the context of mul-

tiple projects maintaining the solution structure, design details and expected positive and potential negative

properties.

The different levels of architectural reuse and reusable solutions are depicted on Figure 2.8.

Domain

System

System Component

Level

Reference Architectures, Standards, etc.

Product Lines, Architectural Styles, etc.

Design Patterns, Components,
Interfaces, Services

How

Figure 2.8.: Levels of Architectural Knowledge Reuse and Corresponding Reusable Solutions

The reusable architectural solutions, such as design styles or patterns, services and components are low-

level examples of knowledge reuse. In addition to them, there are reference or domain-specific architectures,

25

2. Foundations

software product lines, generative approaches, frameworks and design or domain standards. The latter pro-

vide a kind of framework, which an architect can then fill with more specific low-level design solutions.

The reuse of architectural knowledge is important due to several reasons. First, it saves effort through

reuse of existing design elements and increases the design speed. Second, it contributes to improvement of

quality through recognised and tested design solutions. Then, it improves comprehension through a common

language based on the reusable design solutions. Finally, it allowed for more elegant design solutions also for

less experienced architects Architectural design is a creative process, which highly depends on the experience

of a software architect. Reusable architectural knowledge allows for achieving a certain quality level of

design, allowing for a more predictable standard architectures and less deign mistakes. The advantage of

architectural knowledge reuse is also grasped by this thesis, which emphasises on the advantages of reuse of

design documentation based on the reusable architectural solutions.

2.3.1.5. Software Architecture and Evolution

Software architecture typically plays a key role as a bridge between requirements and implementation [124]

and supports evolution of the system. The extent of the evolution support depends on the quality of the archi-

tecture and its documentation, and if the documentation properly maintained. Once defined, the architectural

design usually does not remain stable. It has to be changed due to the change requests, bug fixes and imple-

mentation of new requirements. This is a natural process of software evolution, which includes architectural

design evolution.

When code implementation of system is in process, it has to be monitored for its conformance with the

defined architectural design. This comparison is called comparison between is- and should-architectures. If

a system has been changed, the architectural design and its documentation has to be accordingly updated.

Taylor at al. [115] introduce these types of architecture as prescriptive and descriptive architectures. A pre-

scriptive architecture is a set of design decisions reflecting the intent of the software architect during design

time. A descriptive architecture describes how the system has been realized, and design derisions relevant to

this aspect.

Definition 2.25 Prescriptive and Descriptive Architectures [115]

A prescriptive architecture is a set of design decisions reflecting the intent of the software architect during

design time. A descriptive architecture describes how the system has been realized, and design derisions

relevant to this aspect.

If software architecture and its documentation are not maintained, they degrade over time due to the loss of

architectural knowledge and due to the design decisions becoming obsolete and contradicting. Such degrada-

tion is called architectural erosion. Taylor at al. define architectural erosion as “the introduction of architec-

tural design decisions into a system’s descriptive architecture that violate its prescriptive architecture”.

Definition 2.26 Architectural Erosion [115]

Architectural erosion is the introduction of architectural design decisions into a system’s descriptive architec-

ture that violate its prescriptive architecture.

For further reading on software architecture and design aspects please refer to the book of Taylor et

al. [115].

26

2.3. Software Architecture and Architectural Design

2.3.2. Design Decisions and Rationale

Design decisions are a very important concept in software architecture. They comprise architectural design

and influence functional and qualitative properties the system. As with many other architectural concepts,

there is no accepted definition of design decisions. Most of the state-of-the-art works on design decisions

simply do not provide any definition. Few others usually define design decisions though their main aspects.

For example, design decisions “embrace all aspects of the development, such as system structure, functional

behaviour, interaction, non functional properties and their prioritisation, and implementation” according to

Taylor et al. [115]. Thus, the aspects included into the design decisions are the following [115]: System

structure, functional behaviour, interaction, non-functional properties, and system implementation.

Definition 2.27 Design Decision (adopted from [115])

Design decisions are core elements of software development, which are concerned with its design and em-

brace all aspects of the development, such as system structure, functional behaviour, interaction, non func-

tional properties and their prioritisation, and implementation.

Taylor et al. [115] distinguish between architectural design decisions and design decisions. According to

the difference lies in a degree of importance and topicality, and their influence on the system architecture.

Tyree et al. [125] define architectural decisions as “a primary representation of architecture”. Jansen et

al. [126] define architectural decisions though the set of elements, including rationale, design rules and design

constraints, and additional requirements, where architectural design decisions are “the outcome of a design

process during the initial construction or the evolution of a software system” [126]. For this thesis, a combined

definition based on these two definitions is used.

Definition 2.28 Architectural Design Decision (adopted from [125] and [126])

Architectural design decision is an outcome of a design process during the initial construction or the evolution

of a software system and is a primary representation of architecture.

The person making architectural design decisions is a software architect, while design decisions are met

by a software engineer or even a system developer. The focus of this thesis lies on the architectural design

decisions, therefore, under design decisions in the rest of this thesis the architectural design decisions are

understood.

An overview of main elements of design decisions by [127] (from [128]) is provided on Figure 2.9.

Despite their importance, the treatment of design decisions as of first-class entities is not self-evident. In

fact, design decisions are often viewed as a by-product of software design and are implicitly documented in

as model elements (e.g. components or services) in software architectural design models. One of the first

proposals to treat design decisions as first-class entities due to their importance comes from Bosch [129] and

Kruchten [130]. The idea is based on the previous idea from Perry et al. [131] (as stated in by Kruchten in

Chapter 3 of [128]). According to it [50, 128], the architectural design together with design decisions form

architecture and knowledge about it.

The decisions are met based on a rationale, which is an “explanation, justification or reasoning about

architecture decisions that have been made” [122]. The rationale for a decision includes such aspects, as the

reasoning behind a decisions, alternative architectural solutions, trade-off between these solutions, intent of

a selected solutions and awareness of the possible negative consequences of a solution. Lee [132] defines

design rationale, as “not only the reasons behind a design decision but also the justification for it, the other

27

2. Foundations

Figure 2.9.: Elements of Design Decisions [127] (Taken from [128])

alternatives considered, the trade-offs evaluated, and the argumentation that led to the decision”. This later

definition is used throughout this thesis.

Definition 2.29 Design Decision Rationale [132]

Design decision rationale includes not only the reasons behind a design decision but also the justification for

it, the other alternatives considered, the trade-offs evaluated, and the argumentation that led to the decision.

Other important aspects of design decisions are their types, relations between each other and their status in

the development process. An overview of these is provided in Figure 2.10.

Constraint
Exclude
Trigger
Enable

Open
Taken

Reviewed
Obsolete

Parent of
Child of

Replaced
Conflicted

Relationship Status
Architectural

Design
Component
Deplyoment
Technology

Design Pattern

Type

…

Figure 2.10.: Possible Types, Relationships and Statuses of Design Decisions

These aspects are used for classification of design decisions, and are the following:

• Types: Design decision can be classified based on types. The most common types are above mentioned

architectural and design decision types, component decisions, deployment decisions, decisions on style

or pattern application, decision on a use of service, and others.

• Relationships: Design decision can be classified based on relations between each other. A decision

may be a trigger for some other decisions, it may constraint or even completely exclude some other

28

2.3. Software Architecture and Architectural Design

types of design decisions. A decision may include some sub-decisions (a parent-of relationship) or be

a sub-part of some design decisions (a child-of relationship).

• Status: Design decision can be classified based on the status in development process. Design decisions

go through several states of their status, since there is usually a review process accompanying archi-

tectural design. These are: Open, taken, reviewed, obsolete, replaced, and conflicted. A decision may

become obsolete or conflicted due to requirements of other design decision changes (in particular, if it

was dependant on some other design decision).

There are also other classifications of types, relations, and statuses available. For example, Babar et

al. [128] provide a different classification of the status of a design decisions: Idea, tentative, decided, ap-

proved, challenged, rejected, and obsolesced. However, this thesis relies on the classification from Fig-

ure 2.10.

Independent of their type, the documentation of design decisions, their rationale and relations to each other

is important, as it supports the evolution of software systems, eases the comprehension of the design and

enables easier implementation of changes [18,19]. However, documentation of design decisions causes effort

and time prone. Therefore, documentation of all design decisions is not reasonable due to their high number

and difference in their importance [128], and only significant design decisions shall be documented.

There are multiple ways proposed for documentation of design decisions. The methods include textual

description templates, such as by Tyree et al. [45], ontologies, such as by Kruchten [130], meta-models, such

as by Tang et al. [133], and others. A detailed overview of documentation and formalisation approaches is

provided in Section 7.3.

2.3.3. Architectural Styles

This Section text is also used in the Section 4.3 “Architectural Styles” of the Chapter 4 “Architectural Reuse”

of the book by Reussner et al. [134]. The author of the Section’s 4.3 text in the book is this thesis’s author.

Architectural styles are one of the important classes of reusable architectural solutions, and are means of

architectural knowledge reuse. Some famous examples of architectural styles are component-based 2.3.5,

multi-tier [87], layered [87] or client-server styles [87].

The idea of architectural style originated from two observations. First that a certain problem context leads

to a repeating set of architectural design decisions. And second that there are better and worse sets of solutions

to satisfy the given problem. However, despite of the understanding of architectural styles origins, there is

still no common understanding about where an architectural style starts and where it ends.

This variety results a wide range of architectural style definitions. However, in this book we rely on the

definition by Taylor et al. [115]: “Architectural style is a named collection of architectural design decisions

that (1) are applicable in a given development context, (2) constrain architectural design decisions that are

specific to a particular system within that context, and (3) elicit beneficial qualities in each resulting system”.

Definition 2.30 Architectural Style [115]

Architectural style is a named collection of architectural design decisions that (1) are applicable in a given

development context, (2) constrain architectural design decisions that are specific to a particular system within

that context, and (3) elicit beneficial qualities in each resulting system.

29

2. Foundations

According to this definition an architectural style has therefore three important influence points on system

architecture: Collective, restrictive and qualitative. In the following, these influence points are described in

detail:

• Collective: Architectural style can be seen as a large coarse-grain design decision and it is followed

by a collection of finer-grained design decisions. This coarse-grain design decision is based on the

experience with similar problems in a similar context. It can be seen as a kind of “best-practice” to

approach the solution in a general way.

• Restrictive: This coarse-grain decision immediately limits the design solution space. For example,

decisions for a component-based architectural style forces structuring of the subsystem parts inside of

smaller reusable entities - components. It limits all kinds of following design decisions, starting from

management and organisational design decisions (e.g. which developers shall work on the project), to

the technological decisions (e.g. decisions on deployment and frameworks).

• Qualitative: This is the most interesting property of the architectural styles from the point of view

of this book. Architectural style is, to a certain extent, a warranty that the following to-be selected

solutions are those, which are more suitable for the given problem in the given context. And although

the final result still strongly depends on how the style was followed by the architect and development

team, the architectural style creates borders for the potentially better architectural design. Therefore,

the selection of style assures qualities and properties of the to-be built system.

The important property of the styles, on the contrary to the architectural design patterns discussed later in

this thesis, is that architectural styles are not meant to be mixed. Once the architectural style is selected, it

shall be followed throughout the system. Clearly, design of the large complex system includes several styles,

but they are not mixed; precisely, they shall not be mixed at the same level of granularity. So for example, in

a large system built according to the client-server style, the server side can be implemented following layered

architectural style. This is not considered to be a mix of styles, as the styles are situated at the different

granularity levels.

2.3.4. Architectural Design Patterns

This Section text is also used in the Section 4.4 “Architectural Patterns” of the Chapter 4 “Architectural Reuse”

of the book by Reussner et al. [134]. The author of the Section’s 4.4 text in the book is this thesis’s author.

While architectural styles are system-comprehensive, architectural patterns (also called design patterns) are a

more fine-grained way of architectural knowledge reuse.

Similar to architectural styles, there is a high number of controversy for architectural pattern definitions and

naming conventions – architectural patterns vs. design patterns. We do not distinguish between architectural

and design patterns, but propose that these are just different names for the same architectural knowledge

reuse concept. In this book we use the definition by Taylor et al. [115]: “An architectural pattern is a named

collection of architectural design decisions that are applicable to a recurring design problem, parametrized to

account for different software development contexts in which that problem appears”.

30

2.3. Software Architecture and Architectural Design

Definition 2.31 Architectural Design Pattern [115]

An architectural pattern is a named collection of architectural design decisions that are applicable to a re-

curring design problem, parametrized to account for different software development contexts in which that

problem appears

In their principle, architectural patterns are similar to the architectural styles. However, while architectural

styles shall not be mixed and provide a high-level restraint to the system design, multiple architectural patterns

can be used in the same architecture and usually more than once, and can even overlap. While styles are

more abstract and have more degrees of freedom in the realisation, architectural patterns are strictly defined

and well-described. There is a plenty of pattern catalogues available, such as by Buschmann et al. [29],

Schmidt et al. [135], Gamma et al. [28], Kircher et al. [136], Douglass [137], Fowler [58], Erl [138] and

Schumacher et al. [61]. In catalogues patterns are grouped by the specific topic (security patterns, SOA

patterns, etc.) and goals (organisational, behavioural, etc.). These catalogues provide information on pattern’s

goals - which problem the pattern solves, details on pattern’s structure - which set of design decisions is

required, advantages and consequences of pattern application and implementation details. Some IDEs, such

as Eclipse, have a built in support for common patterns. Some famous examples of architectural patterns are:

Façade, Decorator, Model-View-Controller, Observer and Factory.

Similar to architectural styles, architectural patterns have three influence points on system architecture:

Collective, restrictive and qualitative. Like architectural styles, architectural pattern is a collection of archi-

tectural design decisions. A decision to use architectural pattern at the same time constrains and enables

design possibilities: While some solutions get excluded, some solutions get enables and can be used together

only with the pattern.

Architectural pattern is similar to the architectural style a warranty to achieve certain qualitative properties

in design. So, architectural patterns are tightly related with the non-functional properties, such as perfor-

mance, security and maintainability. They usually influence several properties at a time, both in positive and

negative ways. Therefore, their application is often a trade-off between non-functional goals of the solution.

For example, a Façade pattern (a unified interface to a set of components in a sub-system) improves the main-

tainability of the system component, but at the same time might decrease its performance. The final quality

influence of a pattern application, however, depends on how pattern is implemented in the system.

The application of architectural patterns brings several advantages to the system. The first advantage is

improved system comprehension. Patterns can be seen as a common language between team members. Ap-

plied pattern tells information about problem that was to be solved, and details about its solution. Patterns

can be seen a a way of system structure documentation. The second advantage is design quality. As patterns

are approved solutions to the re-occurring problems, these solutions most probably bring a better quality and

are less error-prone compared to the self-invented solutions. In face of architectural pattern one reuses avail-

able knowledge about architectural solutions. However, there are also drawbacks of the pattern application.

The most common problems are pattern misuse and false implementation. Thus, instead of expected qual-

ity improvement and improved system comprehension, there are performance or maintenance problems and

confusing implementation.

2.3.5. Component-Based Software Architecture

Components are one of the means of a reuse-driven software development. Szyprski [139] defines a software

component as “a unit of composition with contractually specified interfaces and explicit context dependencies

31

2. Foundations

only. A software component can be deployed independently and is subject to composition by third parties”.

Definition 2.32 Software Component [139]

A software component is a unit of composition with contractually specified interfaces and explicit context

dependencies only. A software component can be deployed independently and is subject to composition by

third parties.

Taylor et al. [115] defines a software component as “an architectural entity that (1) encapsulates a subset

of the system’s functionality and/or data, (2) restricts access to that subset via an explicitly defined interface,

and (3) has explicitly defined dependencies on its required execution context”. The software components are

“embodiment of software engineering principles of encapsulation, abstraction, and modularity” [115].

Definition 2.33 Software Component [115]

A software component is an architectural entity that (1) encapsulates a subset of the system’s functionality

and/or data, (2) restricts access to that subset via an explicitly defined interface, and (3) has explicitly defined

dependencies on its required execution context.

The above provided definitions of components all rely on a concept of an interface. There are two types of

interfaces: Provided and required interfaces. A provided interface is the interface that “specifies the services

that a component provides to its environment via a defined contract between a component and the users of the

environment, and contains all information that users can rely on when interacting with the component” [139].

One component may have multiple interfaces, and such interfaces are access points to the components.

Definition 2.34 Provided Interface of a Component [139]

A provided interface of a component is the interface specifying the services that a component provides to its

environment via a defined contract between a component and the users of the environment, and contains all

information that users can rely on when interacting with the component.

A required interface of a component is “the interface to services provided by other components in a system

on which this component depend for its ability to perform its operations” [115]. With the help of required

interfaces a component explicitly specifies its needs to be able to function and provide functionality described

in provided interfaces.

Definition 2.35 Required Interface of a Component [115]

A required interface of a component is the interface to services provided by other components in a system on

which this component depends for its ability to perform its operations.

The components are related with each other via connectors. A software connector is “an architectural

element tasked with effecting and regulating interactions among components though the interfaces” [115].

Definition 2.36 Component Connector [115]

A software connector is an architectural element tasked with effecting and regulating interactions among

components though the interfaces.

32

2.4. Model-Driven Software Development

Component-based software development is “development based on the existence of a significant number

of reusable components . The system development process focuses on integrating these components into a

system rather than developing them from scratch” [87].

Definition 2.37 Component-Based Software Development [87]

A component-based software development is the development based on the existence of a significant number

of reusable components. The system development process focuses on integrating these components into a

system rather than developing them from scratch.

Finally, this thesis defines a component-based architecture as an architecture that is comprised of com-

ponents and of decisions on use or reuse of those. The architecture of such system consists of a set of

components and interfaces, and interaction between them.

Definition 2.38 Component-Based Architecture

A component-based architecture is an architecture that is comprised of components and of decisions on use

or reuse of those, and interaction between them.

This thesis has a two-perspective connection to components and component-based software architectures.

First, a component is one type of the reusable architectural solutions, and decision of component applications

are, therefore, in the focus of the AM3D approach. Components can be handled by the AM3D approach

to be annotated with questions in order to support design decisions documentation. Second, the architec-

tural modelling of the AM3D approach relies on the Palladio Component Model, which is an approach for

architecture-based performance and reliability prediction for the component-based software systems. Thus,

the design decisions are instantiated in component diagrams in terms of the AM3D approach. These com-

ponent diagrams are assembly models of the Palladio approach. Palladio Component Model is described in

Section 2.5.1.

2.4. Model-Driven Software Development

This section introduces the model-driven software development together with its main concepts. In particular,

the focus lies on the definition of the hierarchy of the models and meta-models, and on the explanation of the

instances of the meta-models.

First, the basic concepts are explained in Section 2.4.1. Then, Section 2.2.2 introduces classification of

requirement types, which are used throughout this thesis. Section 2.4.2 introduces the idea of meta-model

and model in terms of model-driven development, and explains their hierarchy.

These concepts are used later on to formalise the proposed design pattern catalogue and the relevant project

context. The information in the section is based on the book of Stahl et al. [140], dissertation thesis of

Goldschmidt [141], and on the student thesis of Khakulov [142].

2.4.1. Basic Concepts

Model-driven software development (MDSD) is a software development methodology which goal is to im-

prove development of systems though a shift from code-based development to the model-based development.

The shift to the model-based development shall optimise and ease the development process. Thus, the sys-

tem can be developed at a model level and the system code is afterwards generated from the models. The

33

2. Foundations

process of generation is often described as a transformation. Transformation can be executed from model to

code, from code to model and between different models. The models, used during the development can be

(partially) reused, as well as the transformations.

Another advantage of the model-driven development is its independence from the target platforms. The

transformations from models to models and to code can be defined for various platforms based on various

technologies. Thus, once a transformation is developed, it can be reused. The system, therefore, needs to be

developed only once, and other implementation variants can be simply generated. The transformations also

assure consistency of architectural and code level.

Moreover, the models used for the development of the system are easier to comprehend as code, and they

serve as a documentation of a system and its architecture.

The problem is, however, the shift of complexity from code to the model level. The level of abstraction is

much higher, and requires additional training in understanding. In particular, the complexity is shifted into

the development of transformations. The transformations also require significant effort for their development

and their regular maintenance, since the underlying technology changes.

2.4.2. Models, Meta-Models and Instances

The main artefact of the model-driven development is a model. The common definition of it according to

Goldschmidt [141] is the definition by [143]: “A formal representation of entities and relationships in the real

world (abstraction) with a certain correspondence (isomorphism) for a certain purpose (pragmatics)” (cited

via [141]). This definition originates from the Stachowiak [144].

Definition 2.39 Model (in the MDD context) [143] via [141]

A model is a formal representation of entities and relationships in the real world (abstraction) with a certain

correspondence (isomorphism) for a certain purpose (pragmatics).

Goldschmidt [141] further on names three main characteristics of a model by Stachowiak [144]:abstraction,

isomorphism and pragmatism. Abstraction means that “a model has relevant selection of the original object’s

attributes” [142]. Pragmatism means that “a model needs to used for a certain purpose” [142]. Isomorphism

means that “a model represents an original object” [142].

The next important artefact is a meta-model. Goldschmidt [141] provides the following definition by

Ernst [145]: “A meta-model is a precise definition of the constructs and rules needed for creating semantic

models”. Thus, “a central task in MDD is the process of creating such meta-models for a modelling language,

which is also called meta-modelling” [141].

Definition 2.40 Meta-Model [145] via [141]

A meta-model is a precise definition of the constructs and rules needed for creating semantic models.

The meta-meta-model is “the foundation of the meta-modelling hierarchy, which is used to define the

meta-models” [146]. The Meta Object Facility (MOF) [146] is “a meta-meta-model, defined as a standard

by the Object Management Group (OMG), which is used for the definition of meta-models” [141]. MOF is

based on the UML and “ uses class diagrams with its main constructs classes, attributes and associations as

basis” [141].

34

2.4. Model-Driven Software Development

Definition 2.41 Meta-Meta-Model [146] via [141]

The meta-meta-model is the foundation of the meta-modelling hierarchy, which is used to define the meta-

models.

The third artefact, which is important for the AM3D approach, is the model instance. Instance is a real-life

object which is described in terms of the model and is filled with the world-relevant information.

Definition 2.42 Model Instance
Model instance is a real-life object which is described in terms of the model and is filled with the world-

relevant information.

An overview of these terms and their hierarchy is presented on Figure 2.11. The Figure also displays the

corresponding models of the AM3D approach, which are depicted on the same level as the related MDD

term.

Meta-Meta-
Model

Meta-Model

Model

Model
Instance

Meta-Model Framework

Domain Meta-Model

Domain Model

Domain Model Instances

Ecore

ADM3D Approach
Meta-Model

ADM3D Models
(Requirements, Design Pattern

Catalogue, Design Decisions, etc.)

Catalogue Model Instances
(Design pattern instances, Architectural

Solutions instances, etc.)

Figure 2.11.: Hierarchy Structure of Models in Model-Driven Development and of Corresponding AM3D Approach

Models

The first column on Figure 2.11 provides a hierarchy of the terms meta-meta-model, meta-model, model

and model instance. It means, that while there is one meta-meta-model, it can be used to define many meta-

models. On its own turn, one meta-model can be used to define multiple models. And finally, each model

can have multiple instances. The middle column provides an explanation for the term of the first column.

The third column provides corresponding models of the AM3D approach, related to each of the previously

mentioned terms. So, the meta-meta-model used by the AM3D approach is the Ecore model [147]. The meta-

model is the AM3D approach meta-model, which is used to formalise the approach, its supporting artefacts

and related project context. Models in the context of the AM3D approach are instances of the meta-model,

such as Requirements models, Design Decision models, Design Pattern Models, and others. Some of these

models do have further instances, which is called a double-step instantiation in this thesis. In this case, some

of the models, such as Design Patterns model and Architectural Solutions model, actually define types of

design patterns and architectural solutions that can be reused. Thus, an instance of such a model is a concrete

implementation of a design pattern or some other architectural solution in an architectural model. Thus, the

moment a pattern is assigned to some component in the architectural model, it becomes a model instance of

a particular patter type defined n the Pattern model.

35

2. Foundations

Besides these artefacts, the AM3D approach makes use of the OMG Object Constraint Language (OCL) [148].

OCL is “a formal language used to describe expressions on UML models. These expressions typically spec-

ify invariant conditions that must hold for the system being modelled or queries over objects described in a

model”. An OCL constraint is a constraint on a model. It constraints the classes and relationships between

the classes in the model and allows for automated check if the constraint was violated.

Definition 2.43 Object Constraint Language (OCL) [148]

Object Constraint Language is a formal language used to describe expressions on UML models. These

expressions typically specify invariant conditions that must hold for the system being modelled or queries

over objects described in a model.

The AM3D approach uses OCL constraints to support correctness of architectural implementation of de-

sign patterns. It allows verification, if all the roles and connectors of a pattern were defined in the architectural

model, and if the connectors between the roles follow the direction and scheme defined in the catalogue. For

example, if the View in the Model View Controller design pattern [28] is communicating directly with the

Model, an architect can be warned about violation of the Model View Controller architectural structure.

2.4.3. Eclipse Modelling Tools

The AM3D approach relies on the Eclipse Modelling Tools to support the formalisation and development of

the approach tooling.

The Eclipse Modelling Framework (EMF) [147] is used for the meta-modelling of the AM3D -relevant

artefacts. Eclipse Modelling Framework (EMF) is an open source Eclipse-based framework, which support

the model-driven development in the Eclipse environment. The EMF is “a modelling framework and code

generation facility for building tools and other applications based on a structured data model. From a model

specification described in XMI, EMF provides tools and runtime support to produce a set of Java classes for

the model, along with a set of adapter classes that enable viewing and command-based editing of the model,

and a basic editor” [147].

The EMF meta-model is called Ecore, which support “describing models and runtime support for the

models including change notification, persistence support with default XMI serialization, and a reflective

API for manipulating EMF objects generically” [147].

EMF includes support to generate tree editors for the models instantiated from the meta-models. The

editor support can be further on extended with the help of the Graphical Editing Framework (GEF) [149] and

the Graphical Modelling Framework (GMF) [150]. The Graphical Editing Framework “provides technology

to create rich graphical editors and views for the Eclipse Workbench UI” [149]. The Graphical Modelling

Framework “provides a set of generative components and runtime infrastructures for developing graphical

editors based on EMF and GEF” [150].

2.5. Additional Foundations

This section introduces additional foundations required for understanding of the AM3D approach. The Palla-

dio Component Model (PCM), which is used as an architectural modelling approach for the AM3D approach,

is described in Section 2.5.1. A Common Component Modelling Example (CoCoME) is introduced in Sec-

tion 2.5.2. CoCoME is used as an example system to demonstrate the AM3D approach in this thesis. Finally,

Section 2.5.3 explains the main idea of the Controlled Natural Languages and provides some examples. The

36

2.5. Additional Foundations

AM3D approach uses a simplified version of one of the controlled English languages (SBVR Structured

English [151]) to define the question annotations to design patterns (the definitions of the question anno-

tations and the question styles concept based on the simplified SBVR Structured English is described in

Section 4.3.3).

2.5.1. Palladio Component Model

The Palladio Component Model (PCM) is an approach for architecture-based performance and reliability

prediction for the component-based software systems [152]. The goal of the PCM is to support architectural

design decision making through quantitative analysis of quality properties of architectural designs at design

time. The currently supported quality properties are performance (throughput, response time, potential load

of resources) [152] and reliability (mean time to failure, mean time to repair, reliability of the system) [153].

For each of these quality properties, the PCM has a defined set of analysis and sensors available. Sensors

allow for a measurement and aggregation of the quality data at different points of system design. The overall

view on PCM approach is presented in Figure 2.12.

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component
Developer>>

part of

part of

part of

pa
rt

of

<<System
Architect>>

<<System
Deployer>>

<<Domain
Expert>>

PCM
Instance

Mod
el-

to-
Mod

el

Tran
sfo

rm
ati

on

Stochastic Regular Expressions

Queueing Network Model

Performance Prototype

Java Code Skeletons

Model-to-Model

Transformation

Model-to-Code
TransformationModel-to-Code

Transformation

Figure 2.12.: The Overview of the PCM Approach [152]

The assumption for the analysis is that all of the architectural models are captured in PCM (or are trans-

formed into PCM models). The models are UML-compatible views on the software system design from

different perspectives, in the tradition of “4+1” model of architecture by Kruchten [123]. PCM supports five

following views on the software architecture [152], which are depicted on Figure 2.13:

• Component View (Repository Model): The Component view is used for the definitions of compo-

nents, interfaces (provided and required interfaces), and component-relevant information, such as op-

erations (defined with SEFF models) and signatures. Interfaces are “first-class entities in the PCM and

thus exist independently from components” [152]. The component and interface definitions are inde-

pendent, and can be seen as reusable architectural solutions – reusable components. Once a component

or an interface is defined, they can be reused in different projects from this repository.

• System View (System Model): In the System view, components and interfaces defined in the repos-

itory get instantiated and connected to form system architectures. Components and interfaces can be

37

2. Foundations

instantiated multiple times. The connections between the components are called AssemblyConnec-

tors. They are attached to the Provided- and RequiredRoles of components. Finally, each system

has provided and required interfaces, called SystemOperationProvidedRoles and SystemOperationRe-

quiredRoles, which define interfaces to and from the system.

• Behaviour View (SEFFs Models): The SEFF Models define behaviour of operations of components,

and therefore are a behavioural view on the system. Besides various possibilities for the behavioural

specification, the recourse demands (e.g., required processor time or length of an operation) are defined

in the SEFF to enable quality evaluation of the system design.

• Allocation View (Deployment Model): Once the system architecture is defined, it can be deployed

in the allocation view on the defined computing resources. System can be deployed on one or through

several hardware knots. The hardware knots contain definitions of the available processing resources,

and can be connected through a network with a specified throughput.

• Usage View (Usage Profiles Model): In the Usage view it is possible to define typical usage scenarios

for the system. The usage scenarios can be parametrised with type of the workload on the system,

information on size of artefacts or their amount, etc..

For each of these views, the PCM defines an assigned role in the software engineering process. The

definitions of the roles are independent from the definitions of the roles of software architect and requirements

engineer provided earlier in this thesis, because the PCM roles are defined from the performance evaluation

perspective. The PCM roles are [152]:

• Component developer: Component developers specify and implement components. They also specify

the behaviour of the components and their required resource demands. Component developers are

responsible for the Repository Model and SEFF Models of the system.

• Software architect: Software architect design systems using the component and interface definitions

from the repository. They are responsible for the System Model.

• System deployer: System deployers deploy the the designed system on the defined hardware knots.

They are responsible for the Deployment Model.

• Business domain expert: Business domain experts define usage scenarios of the system. They are

responsible for the Usage Profile Model and its parametrisation.

There is no requirements engineer role defined for the PCM, because the requirements view is only im-

plicitly present in PCM (through requirements on performance and reliability). However, the existence of

this role or ots substitute is assumed by PCM. The requirements engineer is responsible for elicitation of

PC-relevant quality requirements and evaluation of PCM system evaluation results.

The AM3D approach uses PCM as architectural modelling approach for capture of design decisions con-

nected to design pattern application. In particular, the approach uses the PCM System Model (UML-like

Component Model, see Figure 2.13: (b) System Model). While design patterns are specified in their own

repository, similar to the Repository Model concept of the PCM approach, they can be instantiated in the

PCM system models. The instantiation required at least one component to be assigned to represent the design

38

2.5. Additional Foundations

(a) Repository Model (b) Assembly Model

(c) SEFF Model (d) Usage Profile Model

(e) Deployment Model

Figure 2.13.: PCM Model Views [152, 154]

pattern in the design model. The instantiated components in PCM are called AssemblyContext, and connec-

tions between components are represented through AssemblyConnectors between an OperationProvidedRole

of a component and an OperationRequiredRole of other component. The AssemblyContext is than annotated

with information an instance of a design pattern is assigned to it.

The PCM approach was selected for the AM3D approach as an architectural modelling notation because

PCM supports quality evaluation of system design at the architectural level. Thus, it is not only an architec-

tural representation of system design (architectural model documentation), but can also be used for design-

time evaluation of expected quality of the design. Such design-time evaluation provides a quick feedback

into the decision making process. It allows for a lightweight modification of problematic system parts, which

would otherwise be connected with higher costs, once system is implemented. Overall, it contributes to better

evaluated design decisions, which is one of the goals of the a.pproach.

39

2. Foundations

2.5.2. Common Component Modelling Example (CoCoME)

CoCoME (Common Component Modelling Example) is an example business information management sys-

tem, which was developed as an open source benchmark system for component-based modelling approaches

[155].

Besides the extensive documentation, which includes a complete requirement specification, use case def-

initions, architectural design models and textual descriptions, the functionality is implemented in Java as a

component-based and as a SOA-based implementations. This allows CoCoME to be used as an example for

a wide variety of modelling and quality prediction (performance and reliability) approaches. For example, it

is used as an example by PCM [152], KLAPER [156], SOFA [157] and others. The implementations of the

CoCoME can be deployed and run, thus allowing for measurements and comparison of the analysis prediction

results.

Cash Desk Cash Box

Card
Reader

Printer

Light
Display

Bar Code
Scanner

Cash Desk
PC

Bank

Store

Cash Desk
Line
Cash Desk

Cash Desk

Cash Desk

Cash Desk

Store Server

Store Client

Enterprise

Store

Store

Store

Store

Enterprise
Server

Enterprise
Client

*
1

* 1

Figure 2.14.: Overview of the CoCoME System (Adopted from [155])

CoCoME is a trading system for management of goods at a supermarket, which can be a part of a super-

market chain. The system consists of three main parts: Cash desk, store subsystem and enterprise subsystem.

The overview of the CoCoME is provided on Figure 2.14.

Each cash desk includes a card reader, a display, a bar code scanner, a printer and a cash box. Cash desk

can built up a connection to bank for operations with the card. Store subsystem manages one particular

supermarket, which can have multiple cash desks installed. Store subsystem has a client part, which has a

reporting purpose, and a back-end part, which is responsible for management of the store database, inventory

management support report generation, and other functionality related to a supermarket. Enterprise subsystem

manages the whole chain of the supermarkets. It has a client part, responsible for reporting, and a back-end

40

2.5. Additional Foundations

part, responsible for management of the store database, inventory management at the chain level, and other

activities.

Customers come to the supermarket to buy goods. They fill in carts and proceed to the cash desks, where

goods are scanned with a bar code scanner, the final sum is displayed on cash desk display and can be paid

with card or a cash. Finally, customers receive a receipt. The goods can be re-ordered for a supermarket to

fill in supplies via a request to an enterprise subsystem.

The CoCoME was selected as an example for demonstration of the applicability of the AM3D approach and

its supporting artefacts later in this thesis. The reason why the CoCoME was preferred over other examples

is that it represents a realistic system, which is complex enough to demonstrate the facets of the AM3D

approach, but is still easy to understand and to follow. It is independent on the author of the thesis, and,

therefore, provides a more objective demonstration of the AM3D approach. Moreover, the CoCoME is

comparably well-known and recognised in the community.

The demonstration on the CoCoME example is based on the original CoCoME requirements and archi-

tectural models. The later are adapted to support an evolution scenario for the AM3D demonstration (the

extension is described in Section 3.6), since the original CoCoME version does not define any evolution

scenarios.

2.5.2.1. Requirements

An overview of the use cases of the CoCoME Trading System is presented on Figure 2.15 [155].

Figure 2.15.: An Overview of All Considered Use Cases of the CoCoME Trading System [155]

41

2. Foundations

In the following, a brief description of the use cases is provided (text comes from [155]):

• UC 1 - Process Sale: At the Cash Desk the products that a Customer wants to buy are detected and the

payment - either by credit card or cash - is performed.

• UC 2 - Manage Express Checkout: If some conditions are fulfilled a Cash Desk automatically

switches into an express mode. The Cashier is able to switch back into normal mode by pressing a

button at his Cash Desk. To indicate the mode the Light Display shows different colours.

• UC 3 - Order Products: The Trading System provides the opportunity to order product items.

• UC 4 - Receive Ordered Products: Ordered products which arrive at the Store have to be checked for

correctness and inventoried.

• UC 5 - Show Stock Reports: The possibility to generate stock-related reports is provided by the

Trading System.

• UC 6 - Show Delivery Reports: The Trading System provides the possibility to calculate the average

time that a delivery takes from each supplier to a considered enterprise store.

• UC 7 - Change Price: The System provides the possibility to change the sales price for a product.

• UC 8 - Product Exchange Among Stores: If a store runs out of a certain product (or a set of products;

“required good”), it is possible to start a query to check whether those products are available at other

Stores of the Enterprise (“providing Stores”).

• Extension on use case 8 - Remove Incoming Status: If the first part of use case 8 (as described above)

has passed, for moved products a quantity marked as incoming is added to the Inventory of the Store

receiving the products. An extension allows for removing that incoming mark via a user interface at

the Store Client if the moved products arrive at a Store.

2.5.2.2. Architecture

A component model of the CoCoME architecture in PCM System View is provided on Figure 2.16.

The application of the AM3D approach for the CoCoME as an example in this thesis is focused on the

Enterprise subsystem, therefore, the related components are highlighted in grey on the Figure. The Enterprise

subsystem consists of one component implementing the client (GUI of the reporting functionality), and of

five components implementing the server (ProductDispatcher, Reporting, Persistence, Enterprise and Store).

The report on CoCoME [155] describes the functionality of the components as follows: The component

ProductDispatcher updates the Enterprise Server database with the latest stock data of all Stores, which is

extracted from their cache. It is also responsible for logistical calculations for good transportations from a

number of Stores to the requesting Store. The reporting component process statistics by queering the database

and generates reports about the enterprise. The reporting component in the GUI part is responsible for visual-

isation of various report types. Persistence component is the component responsible for management, storage

and retrieval of the data. Enterprise component is the component responsible for synchronisation of the data

between enterprise server and store servers. It manages the queries for the reporting and for the stores to

verify of there are certain good left and to analyse if products shall be shipped from store to store. Another

query type is a mean time to delivery considering all the stores.

42

2.5. Additional Foundations

Figure 2.16.: Component Model of the CoCoME Architecture in PCM System View [158]

Figure 2.17.: Deployment Model of the CoCoME Architecture in PCM System View [158]

A deployment model of the CoCoME architecture in PCM Allocation View is provided on Figure 2.17.

The main subsystems of the CoCoME are deployed each on separate hardware knots. The subsystems

are the above described CashDesk (with devices), Store subsystem (consisting of the StoreClient and Store-

Server), and Enterprise subsystem (consisting of EnterpriseClient and EnterpriseServer). Each of these sub-

systems is deployed on the own hardware. A CashDesk is deployed on a CashDesk hardware knot, a Store-

Client on a StoreClient knot, and so on. A StoreServer is one per supermarket, to which many cash desks are

connected. An Enterprise Server is one per supermarket chain, and StoreServers of different supermarkets

in the chain connect to it. On the Figure 2.17, the modelled CoCoME system consists of two stores. The

implementation of the system allows to deploy the subsystems on the same hardware knots or to replicate

them to support higher usage load scenarios.

43

2. Foundations

2.5.3. Controlled Natural Languages

This section is based on the information from a survey on controlled natural language (CNL) by Kuhn [159],

a survey by Schwitter [160] and a technical draft by Sowa [161].

There is no generally agreed-upon definition for controlled natural languages and related terms, such

as controlled language, constrained natural language, simplified language and controlled English [159].

Kuhn [159] defines controlled natural languages as “constructed languages that are based on a certain natural

language, being more restrictive concerning lexicon, syntax and/or semantics while preserving most of their

natural properties”.

Definition 2.44 Controlled Natural Language [159]

A controlled natural language is a constructed language that is based on a certain natural language, being

more restrictive concerning lexicon, syntax and/or semantics while preserving most of its natural properties.

The important difference to formal languages is that a controlled natural language can be intuitively and

correctly understood by the speakers. However, it is an artificial language, which is constructed and defines

strict rules on how the language is built up. The advantage of such languages is that while they are still

understood by humans, they can be also better processed automatically. The controlled natural languages are

naturally expressive and therefore are well-suited for knowledge representation [160].

Some of the examples of the controlled languages are Attempto Controlled English [162], Common Logic

Controlled English [161] and SBVR Structured English [151]. These are just some of the examples, alone for

the English controlled language there are over hundred of approaches [159]. For a survey of controlled natural

languages please refer to Kuhn [159] and Schwitter [160]. Kuhn proposes a classification of controlled natural

languages, for which he defines several criteria based on the followed goal (comprehensibility, translation or

formal representation, including automatic execution), intent (language is intended to be written or spoken),

origin of the language (academia, industry or a government), and if it was designed for a specific narrow

domain.

The AM3D approach is interested in the written controlled languages which target improvement of compre-

hensibility and automatic execution. The AM3D approach uses the above mentioned properties of controlled

natural languages (intuitive and correct understanding by the speakers) for the definitions of question annota-

tions to design patterns. The definitions of the question annotations and the question styles concept described

in Section 4.3.3 are based on the simplified version of the SBVR Structured English [151]. An example of

SBVR Structured English is provided on Figure 2.18 (from [159]).

Figure 2.18.: An Example of SBVR Structured English [159]

According to Kuhn [159] “the vocabulary of SBVR Structured English is extensible and consists of three

types of sentence constituents: terms (i.e., concepts), names (i.e., individuals), verbs (i.e., relations), and

keywords (e.g., fixed phrases, quantifiers, and determiners)”. Some of the used keywords in the sentences

have a precise meaning, other keywords are relaxed. The sentence structure can be partially ambiguous.

Some structures are strictly defined (such as word or word groups members of the sentence), while others

(such as order of them) are more flexible. The AM3D approach uses the idea of strict definition of word

44

2.5. Additional Foundations

types and groups and of a rather loosely order of them in a question. It also uses two types of keywords –

strictly defined in a vocabulary (described later in this section) and free-keywords that can be used by a user

independently.

In addition to the simplified controlled English, the AM3D approach uses a so-called controlled vocabulary.

Kuhn [159] (from ANSI/NISO 2005 [163]) defines controlled vocabularies as standardized collections of

names and expressions, including “lists of controlled terms, synonym rings, taxonomies, and thesauri”.

Definition 2.45 Controlled Vocabulary [159] from ANSI/NISO 2005 [163]

Controlled vocabularies are standardized collections of names and expressions, including lists of controlled

terms, synonym rings, taxonomies, and thesauri.

The goal of the vocabulary is to limit the word choice for the sentences. It does not define rules on the

language construction. Controlled languages, however, often define both the language construction rules

and the vocabulary to be used. The AM3D approach uses such vocabulary, called glossary in the thesis, in

order to limit choice of keywords used throughout artefacts, such as requirement specifications and question

annotations.

45

3. Approach Overview

This is an introductory chapter to the AM3D approach. The goal of the chapter is to provide an overview of

the approach, its parts and their interconnection, and to enable the reader to fit the following chapters into the

overall picture of the approach. This chapter continues with the motivation line and structure presented in the

introduction of Chapter 1. It highlights the main motivational aspects and aligns them to the technical details

about the approach.

First, an overview of the AM3D approach is given in Section 3.1. The envisioned process is introduced

in Section 3.2 together with the application scenarios. The process consists of multiple sub-processes for the

application scenarios. Section 3.5 explains the difference between expert systems and the proposed approach.

Section 3.3 describes the traceability support by the AM3D approach. Section 3.4 explains the contribution

of the AM3D approach to the goal-oriented architecture-driven requirements elicitation. Finally, Section 3.6

introduces a CoCoME-based example and demonstrates the application of the AM3D approach on it.

3.1. Overview

This section gives an overview of the proposed approach called AM3D, it is partially based on previous

publications, such as [1–4, 11, 15].

The approach focuses on architectural design patterns, as a class of recurring architectural design solutions.

Such patterns are, for example, classical patterns by Gamma et al. [28] — Façade, Proxy, Adaptor, and others.

The goal of the approach is two-fold. First, it is to support the evaluation of pattern design solutions,

thus supporting the decision to apply or not to apply a design pattern, and contributing to a more goal-

oriented requirements elicitation driven by the architectural design. Second, it is to support the lightweight

documentation of the rationale of the decisions to apply or to discard a pattern, to support correct pattern

application and to capture trace links between requirements, design decisions and architectural elements.

In order to achieve this goal, a new kind of a pattern catalogue is proposed. In this catalogue, design

patterns are seen as a kind of recurring architectural design solution (solutions, which are known in advance

and can be reused between projects) and are annotated with a set of solution-specific, but project-independent

questions. The target users of the AM3D catalogue and of the AM3D approach based on it are software

engineers and architects.

The catalogue is based on the idea that the goals and the properties of design patterns, as a type of ar-

chitectural design solution, are well-known in advance. Thus, it is possible to prepare documentation stubs

that describe goals and features of a pattern in advance and to store them in the catalogue together with the

pattern description. These documentation stubs are stored in the form of questions to the desired properties

of a pattern. Each question attached to the pattern in the catalogue is a fragment of a design rational, and a set

of questions to each pattern forms a complete rationale for the pattern application. The questions in the set

are divided into four groups – questions about the goal, advantages, consequences and variants of the pattern,

and are used to generate documentation of a decision to use or to discard a design pattern.

Thus, the question annotations have two goals. First, they are a quick check-list to verify the suitability

of the selected architectural design pattern for a given problem that the architect or engineer (the user of the

47

3. Approach Overview

approach) wants to solve. For this, the architect or engineer first does the transition between a question about

the project-independent design pattern and a particular problem in the project-context. Second, answers to the

check-lists are saved as a rationale for a decision to use or to discard the pattern. This lightweight rationale

documentation can later be used during the system maintenance and evolution, for example to understand why

the pattern was used, and to retrieve trace links to the triggering requirements or implementing architectural

elements.

The structure of the question annotations and form of the questions is not an arbitrary choice, but the result

of trial-and-error process and external reviews, partially explained in Heller [164].

An example of question annotations to a pattern catalogue entry is provided for the“Façade pattern”on

Figure 3.1. In the example one can see three types of questions, which altogether define goals, intent and

consequences that are properties of the Façade pattern. The fourth type is the questions to the variants of a

pattern, available for some patterns.

ff

Figure 3.1.: An Example Catalogue Entry: Façade Pattern Questions with Answers

Answers to the questions are limited to the “yes”, “no”, and “I don’t know” options, and can be accompa-

nied with a comment. The answers to the questions are given by a user of the approach. The answer “yes”

means that the feature (goal, intent, consequence or a variant feature) is important for the problem. The an-

swer “no” means that the feature is important and cannot be met by the solution. The answer “I don’t know”

means that either the feature is not important and can be neglected, or that the user has no information on this

aspect. In the latter case, the user would need to acquire additional information by a requirements engineer or

a project stakeholder directly. Answering the questions produces a kind of instantiation of the pre-saved frag-

ments of design rationale for the pattern. If the questions cannot be answered by users based on the known

requirements to the system, they may require elicitation of additional requirements or re-prioritization of the

existing by requirements engineers. In this case, the requirements engineering is triggered by the system

design.

The questions to the patterns have no uniform importance, as an issue pointed out by a question may have

different values for different project problems. For example, the same consequence question can be replied

“no” (“it is important, but the pattern does not support it”) in two cases of pattern usage, but in one case the

pattern can be still used and in the other it may be the reason to discard the pattern application. Thus, the

pattern cannot be accepted or discarded automatically without the user’s intervention.

48

3.1. Overview

Finally, once a decision to apply a pattern has been made, it shall be modelled in the architecture. The

trace links are captured in parallel, to enable comprehension on which architectural elements implement each

decision and what requirements have contributed to the decisions, and, vice versa, what decisions and why

they are implemented with architectural elements.

As the structure of design patterns is well known in advance, design pattern entries in the catalogue are also

annotated with architectural model stubs. These stubs support the user of the approach throughout the pattern

modelling process. The purpose of the stubs is two-fold. First, they ease the modelling process, as a prepared

modelling structure is made available through the catalogue entry. Second, the prepared structure allows one

to define the constraints that can be used to check the correctness of the instantiated model and to notify the

user in case of modelling mistakes. The modelling stubs, however, provide only the structural information

and the logic of the pattern, and the relationship with the problem system has to be modelled and implemented

by hand. The purpose of this manual step is the following. First, the connection to the context of the pattern

application (such as other required and provided components and interface invocations) cannot be completely

automated. Second, a complete automation would remove part of the creative work of the user. For example,

the user may decide to instantiate a pattern in an already existing component. Therefore, the AM3D approach

only offers structural architectural stubs for design pattern instances, and requires a manual assignment of

design pattern roles and connectors to components and connectors in architectural models. Thus, the current

implementation of the AM3D approach requires the user of the approach to decide manually which design

pattern shall be implemented by which components in the architectural models. The AM3D approach guides

the user and supports structural checks through the OCL constraints, however, it does not instantiate patterns

on its own.

The AM3D approach works as outlined on Figure 3.2 (an older version of it was published in [1]).

Requirements

Solutions
Catalogue

Proxy
Facade
Adaptor
Bridge

Evaluation

Façade:
Question 1
Question 2
Question 3
Question 4
Question 5

G
I
I
C
C

…
…
…
…
…

Use the solution?

Implementation
stubs

Architectural Design

Decision

Rationale
(checklist)

Documentation
5

2

3

7

6

8

Requirements

1

Trace
Links

4

Figure 3.2.: Overview of the AM3D Approach (Adopted from [1])

In the first step, the user of the approach has an idea that a certain architectural design pattern could be

suitable for solving his design problem (1). To select a pattern alternative they use either their own experience

or other methods, such as expert systems, e.g. by Garbe et al. [73]. Once there is a potential pattern solution,

the user proceeds to Step two. The design pattern is looked up in the pattern catalogue (2) and verified via

49

3. Approach Overview

the check-list (question annotations) attached to the pattern (3). If the information is not available to reply

to the question annotations, a user may trigger elicitation of the additional requirements or re-prioritization

of the existing ones (4). Such feedback from design to requirements engineering is called goal-oriented

architecture-driven requirements engineering. In Step five, the user’s decision to use or to discard the pattern

(5) is recorded together with the provided answers and comments to the check-list (6). The trace links

between requirements, design decisions are established. In the final sixth step, if the user decides to apply the

pattern, the pattern can be instantiated in the architectural models (7), for example, in a composite diagram,

using architectural model stubs saved in the catalogue. The trace links are accomplished with the information

about the architectural elements implementing the decisions. Afterwards, it could be possible to generate

implementation stubs (8) for the code implementation of a design pattern, the AM3D approach, however,

focuses on the design level. The detailed process with the usage scenarios is presented is Section 3.2.

The results of the AM3D approach are: An evaluated and semi-automatically documented design decisions

on accepted and discarded architectural design pattern , semi-automated captured rationale for the decisions,

and trace links connecting design decisions to the triggering requirements and to the implementing architec-

tural elements.

The proposed approach is not intended to be used as an expert system for pattern selection, but as a support

for pattern validation and as lightweight documentation of the decisions about design patterns and rationale.

The discussion of the relation of the proposed approach with expert systems is provided in Section 3.5. The

AM3D approach is published most prominently in [1], [3], [2] and [4].

To summarize, the proposed catalogue of annotated design patterns is a new kind of design pattern cat-

alogue, where patterns are pre-annotated with design rationales and architectural implementation details.

Therefore, the proposed AM3D approach consists of three major parts: Pattern catalogue, question annota-

tions and architectural stubs (architectural structure). Details on the pattern catalogue are provided in Sec-

tion 4, question annotations are discussed in detail in Section 4.3. More details on answering the questions

are given in Section 4.3.4.

3.2. Process to Use the Catalogue

The AM3D approach can be incorporated into any software development process having an explicit architec-

tural design phase, for example, into the V-model [81, 82] or the RUP model [83]. This section describes the

application scenarios of the AM3D catalogue of architectural design pattern and corresponding processes,

starting from a general base process and detailing it for each of the application scenarios.

3.2.1. General Information on the Base Process

The AM3D approach is based on an incremental and iterative development process. Such a type of a pro-

cess is schematically depicted on Figure 3.3. It consists of four recurring phases Requirements Engineering,

Architectural Design, Implementation and Test. The AM3D approach concerns the requirements of the engi-

neering and architectural design phases.

During the requirements engineering phase, information about the system, i.e., its goals, required func-

tionality and environment conditions are collected. This information is received both, from external triggers,

such as the customers, and internal triggers, such as technical and organisational constrains. This information

is required to justify the design decisions and is the rationale for them. The AM3D approach makes use of

50

3.2. Process to Use the Catalogue

Requirement
Engineering

Architectural
Design

ImplementationTest

Figure 3.3.: Schematic Representation of an Iterative Incremental Software Development Process

this rationale, in form of links to requirements and free text notes and explanations, if it is provided by the

user.

During the architectural design phase, architects and engineers transform collected requirements into the

architectural composition of the system. The transformation is done though design decisions, and the AM3D

approach is used for recurring design solutions and decisions on such solutions. The iterative and incremental

properties of a base process are important, as the AM3D approach assumes a feedback loop from its user to

the design and requirements, and back.

3.2.2. Application Scenarios

This section describes the application scenarios of the proposed AM3D approach, based on the annotated

pattern catalogue. The application scenarios are summarized in the use case diagram on Figure 3.4.

User

Gain general information about a
design pattern

Choose between similar patterns

Check and apply a pattern

Retrieve information about used
patterns

Understand existing pattern
design decision

Check architectural
implementation violations of a

pattern

ADM3D Pattern Catalogue

Understand rationale of an
architectural element

Trace impact caused by
changed requirement

Elicit and prioritize requirements
on-demand

Figure 3.4.: Use Case Diagram of the Pattern Catalogue Application Scenarios

The supported usage scenarios for the AM3D approach are:

51

3. Approach Overview

• Gaining general information about a design pattern

• Choosing between similar patterns

• Pattern application with evaluation and semi-automated rationale documentation

• Elicitation and prioritization of requirements on-demand

• System evolution: Retrieving information about used patterns

• System evolution: Understanding pattern design decision

• Tracing impact caused by changed requirements during maintenance

• Understanding the rationale of architectural elements through trace links to requirements

• Checking architectural implementation violations of a pattern

These scenarios are parts of the main approach process and are explicitly supported by the developed meta-

model. While some of the application scenarios require a complete application of the AM3D approach with

all the process steps and artefacts, others require only a partial application of the AM3D approach and its

artefacts. In the following the scenarios and involved artefacts are explained in more detail:

• Gaining information about a design pattern: In addition to the question annotations, the AM3D

pattern catalogue contains pattern descriptions from the classical pattern sources, such as Gamma et

al. [28] or Buschmann et al. [29]. Thus, the catalogue supports a standard use as a pattern catalogue, as

depicted on Figure 3.5, whereby a user can look up information about a pattern in the catalogue during

the architectural design, evolution or just for general information on a pattern.

Figure 3.5.: Activity Diagram for Gaining Information About Pattern Use Case

In this case, the user opens the catalogue, navigates in it to find the desired pattern and reads the

contained information about the pattern.

• Pattern Application with Evaluation and Documentation: The catalogue’s main purpose is to

support the user at design pattern application, providing checklists to evaluate a pattern and semi-

automatically support documentation of the decision on it together with its rationale. This process is

depicted on Figure 3.6.

During architectural design or evolution, a user encounters a particular problem stated in one or several

requirements. This problem can be potentially solved by an architectural design pattern. The initial

idea on which pattern may be suitable to solve the problem can be based on a suggestion of an expert

or of an expert system, on his own experience or on his own intuition. Once there is a pattern candidate

52

3.2. Process to Use the Catalogue

Pattern
Catalogue

Design Pa tern

Analyse the problem

Select pattern based on
own knowledge

Select pattern based on
expert knowledge

Find pattern in the
catalogue

Document design decision
to apply the pattern

Evaluate the pattern doing
the checklist

Is pattern suitable to
solve the problem?

Update architectural modelSearch for other solution

Document design decision
to withdraw the pattern

Search for other pattern

No
Yes

Design
Documentation

Architectural
design model

Requirements

Figure 3.6.: Activity Diagram of Pattern Application Use Case

to solve the given design problem, the user can answer the questions to the pattern provided by the

AM3D catalogue in order to evaluate if the pattern is indeed the right solution. While answering the

questions, the user may also link requirements and provide free text notes and explanations to each of

the question or to the whole pattern, as a rationale for his answers and decisions. The decision to use

or to discard the pattern is then documented by the tool support together with the user’s answers, and

if provided, with links to requirements and free text explanations and notes. If the pattern is used, the

architectural model stubs in the catalogue can be added to the architectural model of the system.

• Choosing between similar patterns for pattern application: In some cases, there are several pattern

candidates potentially suitable to solve the given design problem. This case is depicted on Figure 3.7.

During architectural design or evolution, a user encounters a particular problem stated in one or several

requirements. This problem can be potentially solved by two or more seemingly similar architectural

design patterns. The user can compare the patterns using questions from the pattern catalogue, and see

if they are really suitable as a solution for the given problem and then decide which of the patterns is the

most appropriate. The design decision is then captured together with its rationale (answers to questions

and, if applicable, links to requirements) and decisions to discard the alternatives. In case of a positive

decision, the selected pattern candidate is then modelled using provided architectural modelling stubs.

• Goal-oriented requirements elicitation: The questions in the catalogue refer to explicitly asked de-

tails required for making a decision on a pattern application. If the information is insufficient or if

the requirements contradict each other (for example, a conflict between functional and quality require-

ments), requirements elicitation and prioritization is triggered. Such requirements engineering is goal-

oriented and is driven through the system design and its architecture. This use case is depicted on

Figure 3.8.

53

3. Approach Overview

Pattern
CatalogueDesign Pat ern

Analyse the problem

Select pattern based on
own knowledge

Select pattern based on
expert knowledge

Proceed with the „Apply
pattern“ process

Document design decision
to apply the most suitable

pattern candidate

Evaluate patterns doing
the checklists

Is at least one of the selected patterns
satisfactory for the problem?

Update architectural model

Search for other solution

Document design decision
to withdraw candidate

patterns

No Yes

Design
Documentation

Is there more then one
possible pattern?

Find candidate patterns in
the catalogue

Yes No

Document design decision
to withdraw other

candidate patterns

Architectural
design model

Requirements

Figure 3.7.: Activity Diagram of Select Between Similar Patterns Use Case

If during the analysis of an architectural solution requirements are insufficient to make a decision,

or their prioritization requires a review, the help of a requirements engineer may be inquired. The

requirements engineer then either answers the question himself, or inquires a stakeholder to obtain

additional information about the system. Once there is enough information to make decisions, the

user may proceed with the process to apply or to withdraw a pattern. The design decisions on pattern

application or withdrawal are semi-automatically documented together with the rationale.

• System evolution: Retrieving information about used patterns: After the system was designed

using the proposed approach, there is a set of documentations available on completed pattern design

decisions. This documentation can be used to gain information on which patterns were applied in the

system design. The process to this use case is depicted on Figure 3.9.

During the evolution the user needs to add or to remove functionality. This change may affect existing

design decisions, and in particular a decision to apply a design pattern. Using the documentation of

54

3.2. Process to Use the Catalogue

Pattern
Catalogue

Design Pat ern

Analyse the problem

Select pattern based on
own knowledge

Select pattern based on
expert knowledge

Find pattern in the
catalogue

Proceed with the procces
to apply a pattern

Evaluate the pattern doing
the checklist

Is information about the system
sufficient to reply the questions?

Trigger elicitation or re-
prioritisation of
requirements

No
Yes

New Requirements

Requirements

Figure 3.8.: Activity Diagram of Requirements Elicitation and prioritization Use Case

Pat ern
Instance

Catalogue

Load pattern instance
catalogue

Browse the list of pattern
instances

Figure 3.9.: Activity Diagram of Retrieve Information About Used Patterns Use Case

decisions on pattern application, a user can retrieve information about patterns used in the system and

architectural elements that implement the patterns. This documentation is a result of usage of the

proposed pattern catalogue during the system design.

As decisions are documented, the user can be warned if he is violating and causing inconsistencies

in an existing design. In particular, sometimes there are a few structural differences between pattern

architectural implementations. For example, a Proxy [28] and a Facade [28] patterns may look the

same in an architectural model. The user may understand which pattern is actually used by using the

produced documentation.

• System evolution: Understanding pattern design decision: If a system was designed using the

AM3D approach, design decisions of pattern applications are documented together with their rationale.

In this case, it is possible to retrieve the rationale for each pattern design decision, as depicted on

Figure 3.10. This information is helpful to understand exactly which pattern is used, why it is used,

what requirements triggered the decision to use the pattern and where it is implemented.

To evolve the system the user requires an understanding of why a design pattern was used. Using the

documentation of a decision on pattern application with the AM3D approach, the user can retrieve

design rationale for the pattern application. This rationale consists of answers to questions, and if

provided, links to requirements and free text explanations and notes. Checking the answers, the user

can understand which assumptions were made for the pattern application and which features of the

pattern were the most important in deciding to apply it.

55

3. Approach Overview

Pattern
Instance

Catalogue

Design Pat ern
Instance

Select documented pattern
instance

Check stored answers to
the questions in the

checklist

If available, check manual
notes and rationale

If available, check links to
the involved requirements

Manual notes
and rational

Tracelinks to
requirements

Figure 3.10.: Activity Diagram of Understanding Pattern Design Decision Use Case

• Tracing impact caused by changed requirements during maintenance:

If requirements change, the decisions triggered by such requirements or decisions based on such re-

quirements can be found through the trace links captured as a result of the AM3D approach. Further

on, the architectural elements that implement these decisions can be traced as well. The process for

this use case is depicted on Figure 3.11.

Changed
requirement

Pat ern
Instance

Catalogue

Select changed
requirement

Load pattern instance
catalogue

Filter pattern instances based on
the requirement ID and stored

pattern rationales

Load list of related
architectural elements

Tracelinks to
architectural elements

Tracelinks to
requirements

Architectural
design model

Check stored answers to
the questions in the

checklist

Decisions on pattern
applications are up-to-date

Figure 3.11.: Activity Diagram of Tracing Impact Caused by Changed Requirements Use Case

The rationale for the decisions stored together with the decisions may then be verified and a decision

may be re-evaluated. The rationale consists of the answers to the questions from the AM3D catalogue

and may also contain textual explanations and links to requirements.

• Understanding the rationale of architectural elements through trace links to requirements: Cap-

tured trace links between requirements, design decisions and architectural elements allow retrieving

of the decisions behind the architectural elements. The decisions are captured together with the ratio-

nale. Thus, it is possible to retrieve the rationale for each architectural element used in the model. The

process for this use case is depicted on Figure 3.12.

56

3.3. Traceability Support

Pattern
Instance

Catalogue

Design Pat ern
Instance

Select architectural
element

Load design decisions
related to the element

Check stored answers to
the questions in the

checklist

If available, check links to
the involved requirements

Manual notes
and rational

Tracelinks to
requirements

Figure 3.12.: Activity Diagram of Understanding of Rationale of Architectural Elements Use Case

This is especially helpful during the system evolution, when the system undergoes changes and com-

prehension is important for its success. To evolve the system the user needs to understand why the

architectural elements are used, and what dependencies they have. By using the documentation of

decisions connected to the architectural elements, the user can retrieve such design rationale.

• Checking architectural implementation violations of a pattern: The AM3D catalogue contains

structural information about the patterns for their implementation in architectural diagrams. This in-

formation is expressed through roles, connectors, and constrains. Such structural information not only

allows the dynamic instantiation of patterns in architectural models, but also allows automated checks

on design violation and inconsistencies. The process for this use case is depicted on Figure 3.13.

For example, the user selects a basic variant of the Model View Control (MVC) pattern [28], where

Views collaborate with the Model through a Controller. However, by mistake or misunderstanding, the

user applies another variant of MVC, where View collaborates directly with the Model, thus omitting

the Controller in the communication path between the Model and View(s). Predefined constraints saved

in the catalogue allow the user to check such pattern structure violation and to warn the user about it at

design time.

3.3. Traceability Support

One of the contributions of the AM3D approach is a semi-automated documentation of trace links between

requirements, architectural decisions and architectural elements. This section explains the traceability sup-

port.

At the step (6) of the process presented on Figure 3.2, trace links are captured together with design decisions

and their rationale. This step is schematically depicted on Figure 3.14.

As can be seen on the Figure, the documentation of rationale, decisions and trace links are the result of the

evaluation of design patterns with the help of question annotations to the patterns. When users reply to the

questions, they base their answers on the requirements to the system and establish a link to the most relevant

requirements which justify their answers. If the requirements are insufficient to be able to reply to a question

or if there are ambiguities in the prioritization of requirements, the users may need to contact the requirements

engineers to elicit additional requirements or to re-prioritize the existing ones.

The result of this process is a semi-automated documentation of decision together with the rationale and

trace links. It is schematically depicted on Figure 3.15. Hereby, the rationale for the decision is generated

57

3. Approach Overview

Is pattern already modelled
in the architecture?

Are there pattern-related
errors or warnings?

Read error or warning
information

Decision to apply
a pattern

Architectural
Stub

Retrieve architectural
implementation information

from the catalogue

Assign pattern roles to
components

Assign pattern connectors
to component connectors

Check list of errors and
warnings

Correct the pattern
structure

No

Yes

Yes
No

Figure 3.13.: Activity Diagram of Check Architectural Implementation Violations Use Case

from the responses to the questions and notes to the responses, eventually provided by the user. As the

responses are based on the requirements to the systems, the links between requirements and decisions are

established. Moreover, if a decision to apply a pattern is made, a trace link to the architectural instance of

the pattern can be established too. The meta-model, which is described in detail in Section 4.6, supports this

process and allows its automation. The documentation is called “semi-automated”, because the users reply to

the questions and provide links to the requirements.

Such traceability support demands several properties from the used requirements model. First, the re-

quirements model shall support unique identification of requirements, such as requirements IDs or something

similar. Second, it shall be possible to make a reference to these IDs during the pattern evaluation. Elicitation,

capture, prioritization and management of requirements may succeed with the help of any of the exiting re-

quirements engineering methods, which support the two above-mentioned properties. The requirements may

be captured with the help of natural languages or in a formal way.

During the evolution of the system, requirements may change and design decisions may become obsolete.

Trace links help to identify such potentially obsolete design decisions, as they capture a link from require-

ments to decisions. They also support identification of affected components in the architectural models. If a

decisions is changed, trace links are updated with e.g. information about a new decision implementation. If

a decisions is withdrawn, trace links are removed together with the corresponding architectural implementa-

tion. However, if documentation of design decisions is not updated during the system evolution, trace links

naturally become obsolete.

58

3.4. Goal-Oriented Architecture-Driven Requirements Elicitation

Requirements

Evaluation

Façade:
Question 1
Question 2
Question 3
Question 4
Question 5

G
I
I
C
C

…
…
…
…
…

Decision

Rationale
(checklist)

Documentation

Trace Links

Requirements are sufficient
to take a decision?

Elicit additional requirements
Re prioritize existing

requirements

Figure 3.14.: Schematic Representation of Process to Document Trace Links

Evaluation

Façade:
Question 1
Question 2
Question 3
Question 4
Question 5

G
I
I
C
C

…
…
…
…
…

Decision

Rationale
(checklist)

Documentation

Trace Links

Requirements

Answers to
Questions

Links to
Requirements

Architectural Design

Links to
Architectural
Elements

Decision about
Pattern

(if appl.)
Pattern
Model

Figure 3.15.: Schematic Representation of Information Sources for Trace Link Documentation

3.4. Goal-Oriented Architecture-Driven Requirements Elicitation

System development typically starts from a requirement specification followed by stepwise refinement of

available requirements while transferring them into the system architecture though design decisions made [11].

This classical approach is schematically depicted on Figure 3.16.

ArchitectureRequirements
Decisions

Decisions

Figure 3.16.: Transfer of Requirements into Architectural Design via Design Decisions

In such an approach, the granularity and the amount of requirements to be elicited for a successful archi-

tectural design are not well understood [11]. Moreover, there may be different priorities in the requirements

for different system parts. This is particularly true for the quality requirements, which sometimes need to

be re-prioritized for certain design decisions. While this usually happens for the local decision making, it is

59

3. Approach Overview

more of a result of an unauthorised and unconscious process.

The AM3D approach supports a goal-oriented elicitation and prioritization of requirements. The elicitation

and prioritization happen on-demand and are directly connected to the current design decisions. They are in

fact triggered during the design by the question annotations to design patterns. When available information

about the system in the form of requirements to the system is not sufficient to reply certain questions, a user

may need to contact stakeholders and requirements engineers in order to be provided additional informa-

tion. In this case, the elicitation of requirements directly related to the current design state is triggered. The

information is elicited on demand and its granularity is suited for the design question. Such on-demand re-

quirements elicitation and prioritization forms a goal-oriented architecture-driven requirements engineering.

It is schematically depicted on Figure 3.17.On the figure, not only requirements contribute to the archi-

tectural design, but also architectural design contributes to the requirements engineering. New requirements

and re-prioritization of existing requirements are marked with a star (*), as architectural design does not

provide new requirements or priorities directly. In fact, architectural design triggers requirements engineer

to elicit new relevant requirements or to re-prioritize relevant existing requirements. Thus, architectural de-

sign creates a necessity for requirements engineering, rather than directly contributing new requirements and

priorities itself.

ArchitectureRequirements
Decisions

New Requirements*,
Re-Prioritisation*

Figure 3.17.: Both-way Connection Between Requirements and Architectural Design

For example, Concrete Table Inheritance, Single Table Inheritance and Class Table Inheritance patterns

solve the same problem of mapping from objects to relational database tables as they do not support in-

heritance [58] (this example was previously partially published in [11]). While answering the questions to

these patterns, a user discovers a question “Are there few changes to the objects (classes) expected?” to the

Concrete Table Inheritance pattern. In this case, a new elicited requirement could be the following: “The

system must support a regular introduction of new object types or modification of existing object types”, or

an explicit constraint requirement would be formulated “New object types or modification of existing object

types is not supported by the system”.

This part of the AM3D approach was published in [11] and in [3].

3.5. Difference between Expert Systems and AM3D Approach

This thesis provides its own definition of an Expert System, as definitions found in the literature did not

sufficiently detail properties of an expert system. According to this thesis, an expert system is “a question-

based system that guides the user with the help of questions in a top-down approach to a possible solution.

The questions are of different granularity levels, stating from more generic questions in the beginning of the

60

3.5. Difference between Expert Systems and AM3D Approach

process, and up to low level questions at the end of the process. Answer to each question determines which

set of questions will be shown in the next step, thus narrowing the solution space”.

Definition 3.1 Expert System

A question-based system that guides the user with the help of questions in a top-down approach to a pos-

sible solution. The questions are of different granularity levels, stating from more generic questions in the

beginning of the process, and up to low level questions at the end of the process. Answer to each question

determines which set of questions will be shown in the next step, thus narrowing the solution space.

Thus, the purpose of expert systems is to help to retrieve a solution for a given problem. The user is

guided through the solution space with the help of a question, until a final list of prioritized solutions is being

produced. For an overview of expert systems for pattern selection refer to Section 7.

The goal of the AM3D approach is to help the user to evaluate and document a given solution candidate.

Thus, the AM3D approach is complimentary to the expert systems. The AM3D approach uses a solution

proposed by such a system, and supports the user in its evaluation, and in documentation of decision to apply

or whether to discard the given solution. This relation between the AM3D approach and expert systems in

terms of a process is presented on Figure 3.18.

Expert systemRequirements Pattern
candidates ADM approach

Obtain pattern solution
candidates

Document the decision
together with the

rationale

Documented
design decision

of pattern
application

Evaluate pattern
candidates doing the

checklists

Take a decision on
solution use

Figure 3.18.: Relation of an Expert System and the AM3D Approach in a Design Process

An expert system produces a list of suitable pattern solutions. However, decisions to use these solutions

cannot be automated, as the solution list may be imprecise. As the user is guided through the solution space

with the help of questions, the answer to each question narrows down the final result list. A wrong answer to

one or several questions, leads to the distortion of the final result list. The earlier such a mistake happens, the

higher the risk that an actual right solution will be either low prioritized or even completely excluded from

the final result list. Even though, some expert systems use a probabilistic approach to prioritize the solution

list, this does not significantly reduce this risk of a wrong solution being mistakenly higher prioritized due

to the wrong answers from the user. The AM3D approach is used to evaluate such solution candidates of an

expert system or solution candidates based on the intuition of the user.

Comparison of the use cases of a pattern expert system and of an AM3D approach is provided in Table 3.1.

The goal of an expert system is to provide suitable solutions, while the goal of the AM3D approach is

to evaluate these solutions. Thus, an expert system is used to search for the possible solutions, while the

AM3D approach is used to evaluate the results produced by the expert system (or any other approach) and to

document the decision about the use of the solutions.

61

3. Approach Overview

Property Expert System AM3D Approach
Search for a suitable solution, when a solution is un-

known

� �

Search for a suitable solution, when a solution is

known, but other potential solutions are not known

� �

Evaluate given candidate solution � �

Compare multiple given candidate solutions � �

Document a solution with a decision rationale � �

Table 3.1.: Expert system and the AM3D approach: Use case comparison

3.6. Example Application

This section describes the application of the AM3D approach on example to demonstrate the idea of the

approach. The example is also used throughout the next chapters to demonstrate concepts of the proposed

AM3D approach, and was partially published as a part of the [2] publication. Please note that this example is

different from the example that used in the empirical study, described in Section 6.5.

Number Requirement
NFR01 Support 700 stores

NFR02 Response time of UC3 is equal or less than 3 seconds.

NFR03 Response time of UC5 is equal or less than 5 seconds.

NFR04 Response time of UC7 is equal or less than 3 seconds.

NFR05 Maintain independence and low coupling between subsystems to enable easier

exchange of the subsystems for technology changes.

Table 3.2.: Additional Non-functional (Quality) Requirements to the Hexxon CoCoME System

The example is based on the Common Component Modelling Example (CoCoME) [155], introduced in

Section 2.5.2. The context of the example is the evolution of two systems following the merge of two petrol

station groups: Hexxon and Nobil. The Hexxon petrol station group uses a CoCoME system to sell and

manage goods at the cash desks of their petrol stations. The Hexxon CoCoME system was developed with

the AM3D approach. The Hexxon CoCoME design decisions and design models are documented, including

the pattern design decisions documented together with their rationale, trace links to requirements and design

models, according to the AM3D approach. The functional requirements for the Hexxon CoCoME system

remain the same as those for the original CoCoMe system, described in [155].

The non-functional requirements as well remain the same (listed in the description [155]), with the addition

of the requirements provided in Table 3.2. An example of the NFR02 requirement entry in the AM3D meta-

model instance is provided on Figure 3.19 (the AM3D meta-model is explained in detail in Section 4.6).

3.6.1. Design

The components and deployment overview of the original CoCoMe is presented on Figure 3.20. The archi-

tecture consists of five logical parts: Enterprise Server, Enterprise Client, Store Server, Store Client and Cash

Desk PC with devices connected to it.

The CoCoME enterprise server was adapted for the Hexxon CoCoME running example (it was also pub-

lished in [2]), and its architecture is presented on Figure 3.21. The original architecture of the CoCoME can

be seen on Figure 2.16 n PCM System View.

62

3.6. Example Application

Figure 3.19.: NFR02 Requirement Entry in the AM3D Meta-Model Instance

The adopted Hexxon CoCoME enterprise server consists of the following components:

• Inventory Management: A component responsible for the management of the stock items. It is

responsible for the use cases U3 “Order Products” and U7 “Change Price”.

• Reporting: A component implementing the reporting functionality of the use case U5 “Show stock

reports”.

• Authentication: A component implementing the login-in features of the enterprise server.

• Data Access: A component implementing operations on the database.

• Cache: A component caching data acquired from the database for performance optimisation.

• Database: Database system, deployed on a separate node.

• Façade: A component responsible for the abstraction of the subsystem and separation of the calls to

the subsystem through a unified interface. This component does not implement any additional func-

tionality. Its duty is to forward invocations from the outside world to the abstracted subsystem and

back.

It is assumed that the system was developed following the AM3D approach. Thus, the design decisions

and their rationale are documented together with the trace links from requirements through decisions to the

architectural elements.

63

3. Approach Overview

Figure 3.20.: Deployment Model of the CoCoME Architecture in PCM System View [158] (Repetition from Sec-

tion 2.5.2)

Store Client

Store Server

Cash Desk

Enterprise Client

Enterprise Server

Inventory
Management

Reporting

Authentication

Data
Access

Cache

DB

Facade

Application

Database

Figure 3.21.: Hexxon CoCoMe Architecture of the Enterprise Server (Adopted from [2])

An example of a trace link connecting requirements NFR01 and NFR02, decision on Façade application

and architectural elements implementing the decision is presented on Figure 3.22.

Architectural element implementing the decision on the Figure 3.22 is called “Pattern Architecture In-

stance”. It is an instance of Façade pattern solution that is linked to the elements in the PCM System model.

An example of the PCM System Model with the Façade design pattern instantiated in it and links to the PCM

elements is presented on Figure 3.23.

With the help of the trace links, it is possible to track which requirements triggered which decisions and

requirements, and which architectural elements implement which design decisions. Several design decisions

64

3.6. Example Application

Figure 3.22.: An Example of Trace Link Between Requirements NFR01 and NFR01, Façade Decision and Façade

Architectural Implementation

relevant for the example are provided in Table 3.3 and Table 3.4 together with the rationale based on the

catalogue questions.

The answers marked with (*) are relevant for the evolution scenario described in the next section.

3.6.2. Evolution Scenario

In order to demonstrate the proposed AM3D approach, an evolution scenario for the Hexxon CoCoME sys-

tem is defined. In this evolution scenario the Hexxon and Nobil petrol station groups merge. The Hexxon

CoCoME system thus needs to support not only the Hexxon petrol stations, but also the Nobil petrol stations

with their stores.

As a result, the existing non-functional requirements are modified. In particular, the requirement NFR01

is changed, as due to the expanded installation the system needs to support 1400 petrol stations instead of

700 (change request CR01). Because of the saved trace links, also dependent requirements NFR02, NFR03

and NFR04 can be identified and their fulfilment in the system can be verified using a performance analysis.

During their verification the finding is that these requirements are indeed violated. Thus, the architecture of

the enterprise server has to be redesigned in order to improve the performance of the system.

As to our publication in Konersmann et al. [2], there will be the following steps involved. Software archi-

tects may identify the following possible modification of the architecture: Adding a new component “Load

Balancer”, Replication of the enterprise Server part, deployment on additional hardware knots, and eventu-

65

3. Approach Overview

Figure 3.23.: Instantiation of the Façade Pattern in a PCM System Model

ally reconfiguration of Hibernate. Such modified architecture of the Hexxon CoCoMe enterprise server is

presented on Figure 3.24 (adapted from our publication in [2]).

Inventory
Management

Reporting

Authentication

Data
Access

Cache

DB

Proxy

Application

Database

Load Balancer

Load
Balancer

Application...

Application...
...

Figure 3.24.: Modified Hexxon CoCoMe Architecture of the Enterprise Server (Adopted from [2])

The implementation of a new component Load Balancer would require its connection before the Façade

component. As the Façade component might be a potential bottleneck, software architects would want to

re-evaluate the decision to use a Façade using the AM3D approach. They can check the rationale saved for

the decision – answers to the questions from the solution catalogue, which are provided in the Table 3.3

66

3.6. Example Application

Design decision DD01
Façade application Isolate the components of the Enterprise Server from the direct access of the rest

of the Hexxon CoCoME system.

QT Questions Answer
G Would you like to provide a unified interface to a set of interfaces in a subsystem? �

I

Would you like to minimize the communication and dependencies between sub-

systems?

�

An additional functionality wrapped into the unified interface is not your intent?

(otherwise → Proxy)

�(*)

Is a stateless unified interface your intent? (otherwise → Proxy) – (*)

Is it desired that subsystem classes know nothing about the Façade object(s)? (oth-

erwise → Mediator)

–

A new interface for an object is not your intent? (otherwise → Adaptor) �

C
You are not wishing to be able to extend the object’s properties dynamically?

(otherwise → Decorator)

�

Is a potential performance bottleneck not an issue? �

Table 3.3.: Extract from Design Decisions to the Hexxon CoCoME System, 1

Design decision DD02
Concrete Table Inher-

itance application

Select a Concrete Table Inheritance strategy as a configuration option of the Hi-

bernate (Data Access Component).

QT Questions Answer
G Would you like to present an inheritance hierarchy of classes in relational

database?

�

I
Shall one database table be used for each concrete class in the hierarchy and no

tables for abstract classes?

�

Would you like to spread the request load between the tables? �

Would you like the Database to be used by other applications that are not using

(or do not know) objects?

–

C
Are there few changes to the objects (classes) expected? �(*)

Is data collection (retrieval) from all of the tables seldom demanded in your appli-

cation? (otherwise → Single Table Inheritance)

�(*)

Table 3.4.: Extract from Design Decisions to the Hexxon CoCoME System, 2

and Table 3.4. In fact, the application of the Façade component is based on several assumptions which

are based on the previous requirements. A question “An additional functionality wrapped into the unified

interface is not your intent? (otherwise use Proxy)” is answered as being relevant for the decision. However,

it contradicts the implementation of a Load Balancer, as the application component will be replicated and the

Façade component would need to implement additional functionality in order to manage the sessions. The

AM3D pattern catalogue suggests a Proxy pattern is such a case.

Architects can evaluate the Proxy pattern for its suitability for the given problem. The main requirement

here is to keep on satisfying the relevant requirements (NFR01-NFR05) and to allow the adjustment of the

functionality according to the requirements changes (CR01). The answers to the evaluation of the Proxy

pattern as a solution are provided in Table 3.5.

While from the functional point of view, the Proxy pattern seems to be suitable, there are two non-

functional properties that require clarification.

In this case architects would need to evaluate if a Proxy pattern could be a performance bottleneck and

67

3. Approach Overview

Design decision DD03 (Replaces DD01)
Proxy application Provide a substitute in order to isolate the components of the Enterprise Server

from the direct access of the rest of the Hexxon CoCoME system and adding

a sessions control.

QT Questions Answer

G
Would you like to provide an interface to some other object, resource, network

connection, etc.?

�

I
Would you like to provide or to restrict the access to functionalities provided by

another object or server?

�

Would you like to provide an interface with some additional functionality, e.g.

management of objects state, etc.?

�

Would you like to provide a representative for an object in different address-

space?

–

C
You do not plan to extend the object’s properties dynamically? (otherwise →
Decorator)

–

Is a potential performance bottleneck not a problem? ?�→ �

Is a higher level of indirection not a problem? ?�→ �

Table 3.5.: Evaluation of the Proxy Pattern Applicability

cause additional indirection, for example with the help of the Palladio approach described in Section 2.5.1.

If it is not, the question is clarified. If it is, architects would need to ask requirements engineers to prior-

itize requirements related to performance and requirements related to the system’s flexibility (NR01-NR04

vs. NR05). In this case, either potential performance problems or the flexibility may be neglected for the

subsystem part.

If assumed that the questions were clarified and a decision is made to apply a Proxy patten, this decision is

semi-automatically documented together with the rationale and trace links to the new involved requirements.

Thus, not only an outdated decision about Façade pattern was identified, replacing decisions about the appli-

cation of the Proxy pattern was not spontaneous, but were a result of a systematic design and requirements

engineering approach.

There is a second way to discover that the Façade design decision is deprecated [2]. Software architects

could have started analysing the requirements to the system. They would have discovered the requirements

contributing to the Façade pattern application decision. These requirements would be outdated due to the

change request CR01. Based on the outdated requirements, software architects could obtain a list of design

decisions, where the deprecated requirements triggered the decisions or were used as a rationale for them.

Further on, the next decision linked through requirements is a Hibernate mapping configuration strategy –

Concrete Table Inheritance application. The rationale for it is provided in Table 3.3 and 3.4. Re-evaluation

of these decisions also discovers a flaw due to the change of requirements. First, there are multiple expected

changes to the objects (classes) due to the merge of the two petrol station chains. This contradicts a previous

assumption in the data model’s stability. Moreover, due to the change of requirement NFR01 caused by the

change request CR01, there is a significant increase in reporting, and thus, a significant increase in data col-

lection (retrieval) from all of the data tables. The AM3D catalogue proposed trying a Single Table Inheritance

pattern in such a case.

Architects can evaluate the Single Table Inheritance pattern for its suitability as a new mapping strategy

configuration. The answers to the evaluation of the Single Table Inheritance to the questions from the AM3D

catalogue are provided in Table 3.6.

68

3.6. Example Application

Design decision DD04 (Replaces DD02)
Single Table Inheri-

tance application

Select a Single Table Inheritance strategy as a configuration option of the Hi-

bernate (Data Access Component) instead of Concrete Table Inheritance strat-

egy due to the increased number of reporting inquires and expected frequent

data object changes

QT Questions Answer
G Would you like to present an inheritance hierarchy of classes in relational

database?

�

I
Would you like to keep all data in a single table? (otherwise → Class Table

Inheritance or Concrete Table Inheritance)

–

It is important to avoid joins in retrieving data? ?�→ �

C
Frequent locks on one table are not an issue? �

A non-straightforward relationship between database and domain model is not

a problem?

�

Is it not your intent for the Database to be used by other applications that are

not using (or do not know) objects? (otherwise → Concrete Table Inheritance)

? → �

Table 3.6.: Evaluation of the Single Table Inheritance Pattern Applicability

Once again, there are open questions that require additional input and trigger systematic design and require-

ments engineering processes. First, the architects need to evaluate if it is important to avoid joins in retrieving

data. This would require an application of a performance analysis tool. Second, there is an open question if

the database has to be used by other applications that are not using (or do not know) objects. Here, architects

would require help from the requirements engineers to elicit additional requirements about use case scenarios

of the existing database outside of the Hexxon CoCoME system. When questions are clarified and there is

a decision to apply a new strategy or to keep the old one, this decision is semi-automatically documented

together with the rationale and trace links to the involved requirements and architectural elements.

69

4. Pattern Catalogue and Approach Details

This chapter provides a detailed explanation of the AM3D pattern catalogue as a core of the AM3D approach,

and details on the AM3D approach formalization based on the developed meta-models. The purpose of the

subparts of the AM3D approach are listed together with the information on structure and process to create

the catalogue and to create the question annotations for it.

First, the purpose of the AM3D pattern catalogue is explained in Section 4.1. Then, Section 4.2 provides

details of the structure of the catalogue, including blocks on general information about pattern, question

annotations and architectural implementation. Section 4.3 explains the pattern catalogue questions, their

structure, ways of formulation the questions and answers to the questions. It also provides a process to add

questions to patterns. The process to create an AM3D pattern catalogue is defined in Section 4.4. The types

of the patterns supported by the approach are listed in Section 4.5. Approach formalization based on the

developed meta-models is presented and explained in detail in Section 4.6. Finally, Section 4.7 provides the

summary of the approach and concludes the chapter.

4.1. Purpose of the Catalogue

While the general information about patterns, such as goal, properties and structure is available in different

sources, e.g. [28] or [29], all this information is typically described in a free-text form. Such form requires

time for reading and understanding. From the one side, such pattern catalogues are good for gaining funda-

mental understanding and knowledge about the subject. From the other side, they are less suitable as a short

reference material. They cannot be used to quickly check a feature or to check pattern structure violations.

Meta-models and ontologies have been proposed to structure the pattern information in a better-accessible

way (see Section 7 for more information). They have several advantages. First, they are easily supported

by tolls and allow for automated tool-generation. They can be used to generate documentation of model

elements, such as design documentation and their rationale, and to document trace links between various

artefacts, such as requirements, design decisions, and architectural elements. Moreover, automated checks

can be run on the instances of the meta-models. For example, the structure of the pattern in a model can be,

thus, automatically checked for correctness.

However, meta-models usually concentrate only on one of the two aspects. Either it is descriptive informa-

tion about the pattern, such as the pattern goal and advantages, or they focus on implementation details, such

as UML class-diagrams and code. Such approaches are more information sources thanguidance for pattern

selection, application and documentation.

The purpose of the proposed pattern catalogue is to join these aspects into one approach. The goals can be

summarised as following:

• Structure available information about patterns and present it in a quick assessable way: The

AM3D catalogue shall structure the available information about patterns. This information is taken

from the common catalogue sources and is structured with the help of the meta-model. It shall provide

a quick overview about a pattern, its properties, advantages, disadvantages, structure, and related pat-

71

4. Pattern Catalogue and Approach Details

terns. However, it is not full-text information from the catalogues, but rather an essence with the goal

to give an overview.

• Support evaluation of patterns suitability for the given design problems: The catalogue supports

the evaluation of a pattern’s suitability for the given design problems. The user is able to check what

properties of the pattern satisfies the given requirements, and what properties are in the contradiction.

Moreover, the consequences of a pattern application are made clear. The user is still responsible for the

final decisions, but the catalogue supports him during the decision making process. The important part

is to make the support quick and lightweight, avoiding the drawback of long textual descriptions.

• Support semi-automated documentation of the use of design pattern as a solution for the problem
together with the rationale for the pattern selection, and documentation of trace links between
requirements, decisions and architectural elements: Based on the support for pattern evaluation,

the user is also supported at documentation of the pattern decisions and trace links between artefacts.

Thus, the catalogue supports semi-automated documentation of design pattern as a solution for the

problem. The rationale collected during the evaluation of the design pattern is saved together with

the decisions to use or to discard the pattern for later software evolution. The focus here is on a

lightweight documentation of not only decisions to use or to discard a pattern, but also on a lightweight

documentation of the rationale for this decision.

• Support goal-oriented architecture-driven requirements engineering: While evaluation design pat-

terns as solution candidates, the user may require additional information to be able to make a decision.

This information may be either an elicitation of new requirements to the system or re-prioritization of

the existing requirements.

• Support pattern modelling formalization in order to simplify modelling and to allow checks for
modelling violations: Once there is a decision to use a pattern, the catalogue supports instantiation

and checks of the patterns structure. Thus, the catalogue supports pattern modelling formalization in

order to simplify modelling and to allow automatised checks for structure modelling violations.

The purpose of the proposed pattern catalogue is to (1) structure the information, which is already available

in other catalogues, in a better accessible way; and (2) integrate support for evaluation of design patterns for

their application, documentation together with the rationale and modelling.

4.2. Structure of the Catalogue

This section provides details on the AM3D pattern catalogues structure. The overview is schematically

presented on Figure 4.1.

Each pattern description is based on the AM3D pattern description template which consists of three build-

ing blocks:

• General information about a pattern

• Question annotations for pattern evaluation and documentation

• Architectural implementation structure (pattern structural information for UML-alike system diagrams

and constraints).

They are explained in detail in the following subsections.

72

4.2. Structure of the Catalogue

Pattern Catalogue

Question Annotations
(Evaluation)

Arch. Implementation Structure

Goal
Keywords
Category
Advantages
Drawbacks
Quality dimensions
Relationships to other patterns
Structure image
[Pattern variants]

General Information
(based on [Gamma1995])

Proxy
Facade
Adaptor
Bridge

Figure 4.1.: Overview of the Catalogue Structure

4.2.1. General Information About Patterns

General information block of the AM3D pattern description template comprises the pattern name, goal, key-

words, type (e.g., object-oriented or security), category (e.g., structural or behavioural), identification number

(ID), short description, advantages, drawbacks, influence on quality dimensions, structural image, informa-

tion source, and, if existent, variants of a pattern and relations to other patterns, inspired by [28, 29].

These blocks are summarised on the left of the Figure 4.1 and are explained in the following:

• Name: A common name of a pattern, as defined in pattern catalogues. For example, a pattern name

is a“Model View Controller”, and a common known shortening of it is “MVC”. An example, for the

Name of a Model View Controller pattern is listed on Figure 4.2.

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP001

Short Description:

The pattern isolates “domain logic” (the application logic for the user) from the user inter-

face (input and presentation), enabling independent development, testing and maintenance

of each of them (separation of concerns).

Goal of the Pattern:

– Decouple user-interface aspects of a system from its functional core.

– Interaction is limited to calling an update procedure.

Figure 4.2.: An example of Name, ID, Type, Category, Goal and Short Description of an AM3D Catalogue Entry for

Model View Controller Pattern

73

4. Pattern Catalogue and Approach Details

• Type: A type of a pattern, as defined in pattern catalogues. Usually pattern catalogues are dedicated to

one of the types, for example to object-oriented patterns, security patterns or to patterns of distributed

computing. This type is then listed in the AM3D pattern catalogue in the “Type” field. An example,

for the Type of a Model View Controller pattern is listed on Figure 4.2.

• Category: A category of a pattern, as defined in pattern catalogues. Usually, the authors of a pattern

catalogue define several categories for the listed patterns. For example, Gamma et al. [28] define the

following categories for the object-oriented patterns: Structural, Creational, Behavioral and Concur-

rency patterns. This category is then listed in the AM3D pattern catalogue in the “Category” field. An

example for the Category of a Model View Controller pattern is listed on Figure 4.2.

• Information source: A source from which the pattern information is adapted from. The source can

be single or multiple. If multiple information sources are listed, it means that the information about

a pattern in the pattern catalogue was merged from several information sources. An example for the

Information source of a Model View Controller pattern is listed on Figure 4.2.

• Identification number: A unique identification number assigned to the pattern in the AM3D cata-

logue. This number is used to search information about patterns, and to reference patterns while de-

scribing the relationships between patterns in the AM3D catalogue. An example for the Identification

number of a Model View Controller pattern is listed on Figure 4.2.

• Goal: A goal of a pattern. The goal describes an intent behind a pattern application, for example a

high-level description of a problem that can be solved by a pattern. A goal can be divided into several

small sub-goals, forming the main pattern application scenario. An example for the Goal is listed on

Figure 4.2.

• Short description: A short description of a pattern. While a goal is a short description of the main

application scenario of a pattern, a short description provides a summary of pattern properties. It

shall provide a short introduction on pattern usage, which can be used as an alternative to a long-text

description in other catalogues. The short description should also include the main characteristics of

the pattern. If a pattern is unknown to a user, such a description might not be sufficient to understand all

the features of a pattern. However, together with the other bits of information of the AM3D description

template for the patterns, this description shall provide enough information to be able to structure the

properties of a pattern for the user. Understanding of a pattern based on it shall be then enough to

quickly access relation of a pattern and of a given problem. An example for the Short description of a

Model View Controller pattern is listed on Figure 4.2.

• Advantages: Advantages of a pattern. A pattern application may bring a set of advantages for the

reason why a user decides to select and to apply a pattern. For example, an advantage of the pattern

Model View Control [28] can be a strict separation of a model from views, and thus exchangeability

of the views without influence on a model. Usually, there is a set of advantages a pattern application

brings. However, these advantages are intended advantages of a pattern. The final properties of a

pattern depend on many factors. Some of these factors are an actual suitability of a pattern for the given

problem, correct application of a pattern in the architectural design, correct implementation of a pattern

in the system code and documentation of pattern application and of the rationale for it. Especially the

74

4.2. Structure of the Catalogue

given problem and the problem context influence the actual advantages of a pattern a lot. Sometimes,

they do limit applicability of a pattern a lot and turn its advantages into drawbacks.

Therefore, the listed advantages shall be treated with care. They shall be seen and treated as a potential

of a pattern, properties that a correct pattern application may bring and shall not be blindly relied on.

And as these advantages are envisioned properties of the final implementation, and, therefore, they

shall be controlled and re-evaluated in the final implementation in the code.

Finally, the advantages of a pattern are a subject of change over time, point of view or with the technol-

ogy advance. For instance, some of the patterns that were considered to be useful in the past, are revised

and considered to be anti-patterns nowadays. Some examples of this reconsideration are Visitor and

Listener patterns. Another example are the patterns that can be considered useful or harmful depending

on the point of view. For example, a Façade pattern [29] can be considered useful and its advantages

valuable. However, in some cases this pattern is a clear anti-pattern and is a bottle-neck or can be seen

as a god-class. In these cases, the advantages of the Façade pattern are actually its drawbacks. An

example for the Advantages of a Model View Controller pattern is listed on Figure 4.3.

Advantages: Drawbacks:

– Multiple views on the same model

– Strict model separation from view

– Synchronized views

– Pluggable views and controllers

– Exchangeability of “look and feel”

– Framework potential

– Increased complexity

– Potential for excessive number of updates

– Intimate connection between view and

controller

– Close coupling of views and controller to

a model

– Efficiency of data access in view

– Inevitability of change to view and

controller when porting

– Difficulty of using MVC with high-level

GUIs

Figure 4.3.: An Example of Advantages and Drawbacks of an AM3D Pattern Catalogue Entry for Model View Con-

troller Pattern

• Potential Drawbacks: Drawbacks are disadvantages of a pattern. Similar to the facts, that a pattern

application follows a goal and brings a set of advantages, it also brings a set of drawbacks and problems.

As patterns are considered to be standardized and well-approbed solutions, many users applying the

patterns are actually not aware of the drawbacks of a pattern application. These drawbacks can be either

light and reversible (can be avoided with some precautionary measures), or severe and unavoidable.

Drawbacks of a pattern are the reason why a user decides to discard his idea to apply a pattern. For

example, a drawback of the pattern Model View Control [28] can be an increased complexity of its

implementation, and a higher number of bugs connected to it.

Similar to the advantages, usually, there is a set of drawbacks a pattern application brings. These

drawbacks are intended disadvantages of a pattern. Also here, the final properties of a pattern depend

on many of the factors, such as its application in the architectural design, its implementation in the

75

4. Pattern Catalogue and Approach Details

system code, problem and problem context. Especially the given problem and the problem context

influence the actual advantages of a pattern a lot.

The listed drawbacks shall be also treated with care. They shall be seen and treated as a potential threat

of a pattern, negative properties that a pattern application may bring. Depending on a problem and

its context, some of the drawbacks may never occur. However, also depending on a problem and its

context, there may be additional drawbacks, which are not listed in the catalogue.

As a set of drawbacks is known in advance, the user shall make use out of it. The measures to avoid or

to minimise the negative pattern influence shall be taken during design, propagated into the implemen-

tation and monitored during later evolution of the system.

Finally, the drawbacks of a pattern are also a subject to change with the time, point of view or with the

technology advance. In some cases, a technology and hardware advances can eliminate the drawback’s

feasibility. For example, in a Model View Controller pattern a potentially longer updates of the views

can become infeasible because of a more powerful hardware. An example for the Drawbacks of a

Model View Controller pattern is listed on Figure 4.3.

• Keywords: Keywords characterizing a pattern. A set of keywords reflecting the main properties of a

pattern and its goal. Keywords can be used for a search for a pattern, for structuring a pattern in the

pattern catalogue, for aligning a pattern in relationships to other patterns, and for a brief overview of

pattern properties. An example for the Keywords of a Model View Controller is listed on Figure 4.4.

Keywords: Quality Attributes:

– views

– data display

– independent presentation

– various data presentation

– separation logic and presentation

– multiple user groups

– interactivity

– Performance 0

– Scalability +

– Reliability 0

– Understandability +

– Flexibility +

Figure 4.4.: An Example of a Keywords and Influence on Quality Dimensions of an AM3D Pattern Catalogue Entry for

Model View Controller Pattern

• Potential impact on quality dimensions: Influence on quality dimensions of a pattern. The influ-

ence on quality dimensions describes the expected influence of a pattern on non-functional (quality)

attributes of a system, such as performance, reliability, scalability, maintainability, security, under-

standability and flexibility. The influence can be positive, neutral, negative or not available.

A positive influence means that a pattern is expected to improve this quality dimension. In this case,

the positive influence is indicated as a “+” against this quality attribute. A neutral influence means that

a pattern is expected neither to improve nor to decrease the quality in this dimension. In this case,

the positive influence is indicated as a “0” against this quality attribute. Negative influence means that

a pattern is expected to decrease the quality in this dimension. In this case, the positive influence is

indicated as a “–” against this quality attribute. Not available means that influence on a quality property

76

4.2. Structure of the Catalogue

cannot be evaluated for the pattern and that it may have a positive, neutral or negative influence on the

given quality dimension depending on the architectural design, implementation and a problem context.

In this case, the positive influence is indicated as an “n/a” against this quality attribute.

For example, the Proxy pattern [28] contributes to the separation of concerns (scalability “+”), but may

negatively influence the response time (performance “–”). Influence of Proxy pattern on security cannot

be estimated without evolution of architectural design, and surrounding components. Therefore, for the

security the influence is indicated as “n/a”.

However, a quality influence of a pattern cannot be precisely evaluated and predicted in advance in

a general pattern catalogue, such as the AM3D catalogue. Thus, the influence on quality dimensions

category of the pattern description template is only an indicator. It is possible to predict quality level

for some quality attributes already at the design time, for example for performance or reliability. There-

fore, it is possible to analyse the pattern’s influence on one of these quality dimensions at the design

time. Nevertheless, actual quality influence of a pattern on the to be developed system can only be

precisely evaluated when the implementation is complete and can differ depending on context and im-

plementation details. Therefore, these descriptors only specify the influence type, positive or negative

influence, but serve only for information purposes.

Another aspect is quantification of the quality influence. For some quality attributes, such as above

mentioned performance and reliability, it is possible to derive a quantified influence of a pattern from

a design time architecture-based prediction. However, for the other quality attributes a precise quan-

tification at the architectural level is not possible. There are methods helping to obtain an evaluation

for some of these quality dimensions, such as ATAM [165] for maintainability or security attack tree

analysis for security [166] (based on [167]), however, they do not provide a precise quantified result.

In general, they are highly dependent on a person or a group of persons performing the analysis.

It becomes even more complex at the implementation level. To be able to measure an actual influence

of a pattern application, two system implementation variants are required – with and without a design

pattern. However, it is hardly feasible and practicable in practice. Moreover, measurement does not

work for most of the quality dimensions. The two exclusions are again performance or reliability

influence, which can be measured in a running system. Thus, at the architectural level, a precise

evaluation of a pattern’s influence on a quality dimension is not possible at the architectural level.

In overall, a quantification of a pattern’s influence on a quality dimension is not possible in a generic

pattern catalogue, such as the AM3D catalogue. Therefore, a selected form of an influence is simplified

to the 4 above mentioned categories – positive, negative, neutral and not available. It serves only as

an indicator, whereby the actual influence values depend on actual design and implementation of the

system where a pattern is used. An example for the Influence on quality dimensions of a Model View

Controller pattern is listed on Figure 4.4.

• Variants of a pattern: Variants of a pattern capture variants of a pattern known by the same name.

Variants of a pattern have a similar goal as the base pattern, but they differ in some properties, as

well as in advantages and drawbacks, on the structural level (in roles and connectors between them)

and/or in the semantics. For example, a Façade pattern [28] can be implemented using either a single

or multiple Façade objects. Or in the base variant of the Model View Controller pattern [28] a direct

communication between the Views and the Model is not possible, however, it is possible in its variant,

77

4. Pattern Catalogue and Approach Details

where a Controller can be omitted in the communication. In this case, some of the properties of

the Model View Controller pattern change. So, the potential drawback of a controller becoming a

performance bottleneck in the system is relaxed, as the load on the Controller is reduced through the

allowed direct communication between the Views and the Model. An example for the Variants of a

pattern of a Model View Controller pattern is listed on Figure 4.5.

Variants:

– Variant 1: The view is directly connected to the Model

– Variant 2: Mixed form of base variant and Variant 1. The view is connected to the model

through a controller but in some case has a direct access to the model.

Figure 4.5.: An Example of Variants of an AM3D Pattern Catalogue Entry for Model View Controller Pattern

• Relations to other patterns: Relationships of a pattern to other patterns. There are several types of

relationships between patterns.

First, some of the patterns target similar problems, thus having similar goals and some of the prop-

erties, advantages and drawbacks. In this case, the patterns are related between each other as similar

patterns and form a “similar to” relationship. It is important to notify a user about other patterns with

similar goals and to support the user at the selection between these similar patterns. For example, the

Single Table Inheritance pattern [30] is similar to the Class Table Inheritance pattern [30]. They follow

the same goal, share most of the properties, and differ only in some fine details. These details are

highlighted in the AM3D catalogue with the help of catalogue question annotations discussed later.

Second, some of the patterns are (often) used together. In this case, they form a “used with” relation-

ship. For example, a Model-View-Controller and Observer patterns [28] are often used together, where

an Observer is used to notify the Controllers in the Model View Controller about changes to a View or

to a Model.

Third, patterns may exclude the application of some other patterns. Thus, if a decision is made to apply

a pattern, a user shall be clear that certain other patterns, and thus goals in their face, cannot be applied

any more in that subsystem. An example for the Relationships of a Model View Controller pattern is

listed on Figure 4.6.

• Structural image: Structural image of a pattern. An image depicting a structure of a pattern in a UML

notation [168,169]. It provides a quick graphical overview of the main structural elements of a pattern,

such as roles and connectors between roles (structural elements of a pattern are explained in detail in

Section 4.2.3), interconnections between them (directions of connectors, relations between roles and

connectors), involved structural elements of a system where pattern is applied to (e.g., invoked com-

ponents, system subsystems, etc.), and of interconnection between pattern elements and elements of a

system. Typically, the structure is depicted as a UML class diagram [168, 169] or a UML component

diagram [169]. An example, for the Structural image of a Model View Controller pattern is listed on

Figure 4.6.

A complete example of the general information block of a pattern catalogue for the Model View Controller

entry is presented on Figure 4.7.

78

4.2. Structure of the Catalogue

Relationships: Architectural Structure Image:

Recommended Co-Patterns:

–Observer

–Command processor pattern

Similar Patterns/Solutions:

–Presentation Abstraction Control

–Locks on data

–Offline user communication

Excluded patterns:

– Not listed.

Controller

View Model

Figure 5.1.: Structure of Model View Controller

Figure 4.6.: An Example of Relationships and a Structural Image of an AM3D Pattern Catalogue Entry for Model View

Controller Pattern

4.2.2. Question Annotations

The question annotations block of the AM3D pattern description template is the main difference of the pro-

posed pattern catalogue to other catalogues, such as catalogues by Gamma et al. [28], Buschmann et al. [31]

or Fowler [30].

The goal of the question annotations block is first to support the catalogue user at evaluation if a selected

design pattern is really appropriate to solve a problem the user has. Secondly, it is to semi-automatically

support documentation of the user’s decisions to apply or withdraw a pattern together with the rationale for

the decision. The rationale is captured based on the answers to the questions, and can also contain links to

the involved requirements, if these were provided.

Thus, the question annotations are design rationale fragments, captured in form of a checklist in the cata-

logue. Their attachment to the patterns has two goals. The first goal is to verify if the selected design pattern

is indeed a suitable solution for the given problem in a given context. Here, the user of the AM3D catalogue

does the transition between a question to the project-independent design pattern in the catalogue and a partic-

ular problem in the project-context. The user goes through the question checklists and answers the questions,

so evaluating the suitability of the pattern. Secondly, answers to the checklist questions are saved as a ra-

tionale for a decision to use or to discard the pattern. The rationale is formed based on the questions in the

checklist and answers to them. This rational can be later used during the system maintenance and evolution,

for example to understand why the pattern was used.

There are four types of question annotations in the catalogue: Questions to the goal of a pattern, questions

to the advantages of a pattern, questions to the drawbacks of a pattern and, if available, questions to the

variants of a pattern. These types and their relation to the pattern are schematically depicted on Figure 4.8.

79

4. Pattern Catalogue and Approach Details

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP001

Short Description:

The pattern isolates “domain logic” (the application logic for the user) from the user inter-

face (input and presentation), enabling independent development, testing and maintenance

of each of them (separation of concerns).

Goal of the Pattern:

– Decouple user-interface aspects of a system from its functional core.

– Interaction is limited to calling an update procedure.

Advantages: Drawbacks:

– Multiple views on the same model

– Strict model separation from view

– Synchronized views

– Pluggable views and controllers

– Exchangeability of “look and feel”

– Framework potential

– Increased complexity

– Potential for excessive number of updates

– Intimate connection between view and

controller

– Close coupling of views and controller to

a model

– Efficiency of data access in view

– Inevitability of change to view and

controller when porting

– Difficulty of using MVC with high-level

GUIs

Keywords: Quality Attributes:

– views

– data display

– independent presentation

– various data presentation

– separation logic and presentation

– multiple user groups

– interactivity

– Performance 0

– Scalability +

– Reliability 0

– Understandability +

– Flexibility +

Relationships: Architectural Structure Image:

Recommended Co-Patterns:

–Observer

–Command processor pattern

Similar Patterns/Solutions:

–Presentation Abstraction Control

–Locks on data

–Offline user communication

Excluded patterns:

– Not listed.

Controller

View Model

Figure 5.1.: Structure of Model View Controller

Variants:

– Variant 1: The view is directly connected to the Model

– Variant 2: Mixed form of base variant and Variant 1. The view is connected to the model

through a controller but in some case has a direct access to the model.

Information Source:

Pattern-oriented software architecture, Buschmann et al., 1996 [39].

Figure 4.7.: An Example of a General Information Block

80

4.2. Structure of the Catalogue

Types of Question
Annotations to a Pattern

Questions to
Goal

Questions to
Drawbacks

Questions to
Advantages

Questions to
Pattern Variants

Figure 4.8.: Types of Question Annotations and Their Relation to a Pattern

While the first three groups of question annotations form a question block to a particular pattern and are

always available in this setting in the catalogue, the fourth group of question annotations – questions to the

variants, is present only if variants are available and is independent on the first question annotation block.

Some of its questions may repeat the questions from the first block, but the goal of them is to support the user

at distinguishing between pattern variants. These four types are selected because they are capable of covering

of all types of questions. In some cases, the question types may overlap, for example a goal question can be

also an intent question. Such overlaps are allowed by the AM3D approach.

Answers to the questions can be “yes”, “no”, and “I don’t know”. A free-text comment and links to

requirements can be provided as an explanation. The answers to the questions in the checklist are given by

a user of the approach. Answer on a question depends on a particular problem, and may be different for the

same patterns applied multiple times in the system. An example of the question annotations block of a pattern

catalogue for the Model View Controller pattern entry is presented on Figure 4.9.

Question Annotations Information Block

Goal Would you like to present the same information in different ways e.g.,

through multiple views?

Intent
Would you like to enable to change the GUI (views) at run-time?

Do you plan to exchange the underlying data model or the views representing

this data? (design time)

Consequence
Is it acceptable to have potential delays by the view updates when larger

amounts of data are transferred?

The data in the model (e.g. DB) is not changed directly though the views

(but though a controller), and will this be an issue in the future?

Figure 4.9.: Example of Question Annotations for Model View Controller Pattern

81

4. Pattern Catalogue and Approach Details

Section 4.3 provides detailed information on question annotations, types of questions, answers to the ques-

tion, a process to annotate pattern with the questions and a discussion on questions form and structure.

4.2.3. Architectural Implementation Structure

The architectural implementation structure block of the AM3D pattern description template contains infor-

mation on the pattern implementation in UML system diagrams. In the catalogue presented in this thesis, the

architectural implementation details are schematically represented with the help of textual template which is

explained later on.

4.2.3.1. Goals of the Architectural Implementation Block

The goal of the architectural implementation details block is threefold. First, it is to provide information

on the architectural implementation of a design pattern. For this, the user can see the details of the pattern

structure and on the structure of its variants, including the differences to the base pattern. The user can see

how the structural parts of a pattern are connected between each other and how they are connected to the

surrounding system.

Secondly, it is to support the user at modelling of a pattern. Once the user meets a decision to apply a

pattern, the structure of a pattern or of its variant can be automatically instantiated (see details on the two-

step instantiation of a pattern in Section 4.6.11. Such semi-automated instantiation helps to avoid structural

mistakes while modelling a pattern. An example of a Façade design pattern instantiated in the PCM system

model is presented on Figure 4.10 (repetition from Section 3).

Figure 4.10.: An Example of Instantiation of the Façade Pattern in a PCM System Model (Repetition from Section 3)

82

4.2. Structure of the Catalogue

Third, the structural information in the catalogue is enriched with constraints (OCL constraints, see Sec-

tion 2.4.2), and implementation-based constraints). These constraints can be checked at the model level to

notify the user if certain parts of a pattern are missing, if the connections between pattern parts are missing,

and if the connections of the pattern parts to each other or to the rest of the system are structurally wrong. An

example of such a check on a PCM model is presented on Figure 4.11.

Figure 4.11.: An Example of Structural Check of the Façade Pattern in a PCM System Model

Moreover, once a pattern is modelled in the architecture, a check on the model level can be performed

later to verify if a pattern was unintentionally modified during other design activities. For example, a part

of a pattern may be accidentally deleted, or connections between parts may be changed. Such kind of check

also goes beyond the pattern structure. It is capable of notifying the user if two contradicting patters are

accidentally used together or if a required co-pattern is missing. For more information on relationships

between patterns please refer to Section 4.2.1 and to Section 4.6.11.

4.2.3.2. Roles and Connectors Representation

There are multiple ways to model a pattern structure, for an overview of possible approaches please refer

to Section 7.2. For this thesis the roles and connectors approach was selected to capture the architectural

implementation details of a pattern in theAM3D catalogue. The roles and connectors approach, explained

in [62], provides an ADL-independent way of capturing patterns structure as a set of roles and connectors

between them. It supports modelling of all AM3D -relevant design patterns types (see Section 4.5 for the

pattern types supported by the AM3D approach). Moreover, not only can they be represented with the same

modelling formalism, but also at the same level of granularity and abstraction.

The level of abstraction is particularly important for the AM3D catalogue. A highly-detailed architectural

representation of a pattern may be good for pattern comprehension, however, it is quite heavy-weight and

requires a lot of time and effort for comprehension. An overly detailed description is actually often skipped

by a user or misunderstood because of not enough time to deal with all of the provided details.

The goal of the AM3D pattern catalogue is to provide an easy and quick reference to a pattern, and to

support the user at its evaluation for applicability and documentation. Therefore, a not over-detailed structural

modelling of pattern is of high importance. The roles and connectors approach is detailed enough to be able to

achieve all of the architectural implementation details block goals, including the constraint check possibility.

However, it is still high-level enough to provide a quick reference for the pattern structure. The roles and

connectors approach is sufficient for the mapping of pattern structure to the UML system components and

system diagrams (please refer to Section 7.2.2 for other approaches on pattern modelling in architectural

diagrams, such as UML). For the implementation in code a user can still consult the detailed architectural

structure of a pattern from classical catalogues.

83

4. Pattern Catalogue and Approach Details

The idea behind the roles and connectors approach is that main actors in a pattern can be represented as

roles and the relationships and actions between the roles can be represented as connectors. This concept

is similar to the concept of a component diagram where the main acting units are components, and where

the relationships between components are defined as component connectors. An example of the roles and

connectors structure of a pattern is presented on Figure 4.12 for the Model View Controller design pattern.

Controller

ModelView

V C C M

V M

*

*

Figure 4.12.: An Example of Roles and Connectors Representation for the Model View Controller pattern

The Model View Controller pattern consists of three roles: Model, View and Controller. Each of these

roles can be implemented through several components or classes, however, structurally these classes form

only three roles to be distinguished. Further on, there are three connectors: View → Controller, View →
Model and Controller → Model. The connectors are directed and mean that roles has an interaction with

other roles in the given order. For the Model View Controller, the connector View → Controller (View to

Controller) means that a View knows the controller and invokes it, whereby the controller cannot directly

invoke the View. The Model role has no invocations to the other roles of the pattern, while it can be invoked

by the View and by the Controller. This structural representation clearly reflects the nature of the Model

View Controller pattern. The Model does not know anything about the Views and Controllers. However, the

View of course knows data of which Model it is reflecting. On the user’s actions, the View would notify

the Controller that some changes need to be implemented to a Model. However, the View cannot directly

implement these changes. This is the limitation of the roles and connectors representation – although, it

displays which roles of a pattern interact with which other roles, it does not reflect the behavioural details. So

looking at the structural representation, a user cannot know what kind of interactions a View can undertake

with the Model. However, this limitation is also true for the other modelling approaches to a patterns, unless

for the very detailed ones. To overcome this limitation, a constraint on the action type can be stored in the

pattern catalogue to notify the user about possible interactions between roles of a pattern.

Another example of a roles and controllers notation is presented on Figure 4.13 for the Façade pattern.

The Façade pattern also consists of three roles: a Façade Client, a Façade itself and a Subsystem. The

notable difference between the roles of the Model View Controller and the roles of Façade, is that the roles

of the later involve the surrounding system, while the Model View Controller is independent from it. So, the

Façade Client is the Client communicating to the Subsystem. Subsystem consists of multiple interconnected

parts, which are abstracted under a single Subsystem pattern role. A Façade role is the actual design pattern

Façade whose role is to decouple a subsystem from the invoking clients.

Façade pattern has two connectors: Façade Client → Façade and Façade → Subsystem. The Façade Client

knows the Façade, but does not know the Subsystem, as it communicates with the Subsystem only through

84

4.2. Structure of the Catalogue

Facade SubsystemFacadeClient

...SubsystemPart1 SubsystemPart2 SubsystemPartN

Subsystem

C F F S*

Figure 4.13.: An Example of Roles and Connectors Representation for the Façade Pattern

the Façade role. Façade role forwards the requests to the Subsystem role and returns its replies. The Façade

pattern in the AM3D catalogue is annotated with the corresponding constraints, and if the user mistakenly

models communication between the Façade Client and the Subsystem, a corresponding warning is produced1

In this case the user is aware of the pattern violation. However, the final decision if the violation of the pattern

structure is acceptable or not is left to the user and is on purpose not automated by the AM3D approach. The

AM3D approach supports informed decision making on design patterns, but on the contrary to the expert

systems, does not take over the decision making from the user of the approach.

Controller

ModelView *

*

V M

Figure 4.14.: An Example of Roles and Connectors Representation for the Variant of Model View Controller Pattern

If a pattern has a variant, its representation as roles and connectors may be different from the base pattern.

Figure 4.14 depicts representation for the variant of the Model View Controller pattern, where View roles can

communicate directly with the Model, and the Connector role is deprecated.

Another example is depicted on Figure 4.15, which is a representation for the variant of the Façade pattern.

Here Client roles can communicate with the Subsystem both through the Façade or directly.

4.2.3.3. Textual Notation of the Roles and Connectors Representation

In order to be able to present details of architectural implementation block of the sample pattern catalogue in

this thesis, a textual notation for the roles and connectors is introduced.

1Unless, the user actually selected to use a non-strict variant of the Façade pattern, where such a direct communication is allowed.

85

4. Pattern Catalogue and Approach Details

Facade SubsystemFacadeClient
C F F S*

C S

Figure 4.15.: An Example of Roles and Connectors Representation for the Variant of Façade Pattern

The textual representation consists of two subsections: Roles and connectors. The roles of a pattern are

listed as a list in the roles subsection of the description template in alphabetic order. The connectors of a

pattern are listed in the connector’s subsection of the description template in alphabetic order. The connectors

have the following notation: Role1 → Role2. It means that the Role1 of a pattern has a directed interaction

with the Role2 of a pattern. Unless a connector Role2 → Role1 is also present in the list, this interaction will

be only mono directional, meaning that Role2 does not know about the Role1 invoking it.

Architectural structure:

Roles: Connectors:
- Controller
- Model
- View

- Controller Model
- View Controller
- View Model

Controller

ModelView

V C C M

V M

*

*

Figure 4.16.: An Example of a Textual Representation for the Model View Controller Pattern

An example of such textual representation for the Model View Controller pattern is presented on Fig-

ure 4.16. An example of the textual representation for the Model View Controller variant is presented on

Figure 4.17. List of Roles contains three Role of the Model View Controller pattern, and list of Connectors

contains three Connectors of the Model View Controller pattern. In the example, Controller → Model Con-

nector means that the Controller can access the Model, while as there is no opposite Connector, the Model

does not know about the Connector directly and cannot access it. In the variant, the crossed-through items of

the Roles and Connectors lists mean the deprecated Roles and Connectors of the base pattern.

A complete example of the architectural structure information block of a pattern catalogue entry for the

Model View Controller pattern entry is presented on Figure 4.18. A Model View Controller pattern is saved

86

4.3. Pattern Catalogue Questions

Structure variant: Variant 1

Roles: Connectors:
- Controller
- Model
- View

- Controller Model
- Controller View
- Model View
- View Model
- View Controller

Controller

ModelView *

*

V à M

Figure 4.17.: An Example of a Textual Representation for the Model View Controller Pattern Variant

together with its two variants in the catalogue. Therefore, on Figure 4.18 the pattern has one subsection

dedicated to its base structure, and two subsections dedicated to the structure of its variants. The differences

between the variants are highlighted with the stroke through deprecated Roles and Connectors in the variants.

4.3. Pattern Catalogue Questions

This section explains the concept of pattern question annotations in detail. First, the purpose of the question

annotation is explained in Section 4.3.1. Afterwards, an overview of possible ways to formulate a question

to a pattern is given in Section 4.3.2. Section 4.3.3 explains types of question annotations, and Section 4.3.3

provides details on answers to question annotations. Finally, a process to add a question to the AM3D pattern

is listed in Section 4.3.5. This process was used to annotate patterns in the sample AM3D pattern catalogue

provided in Section 5.

4.3.1. Purpose

Pattern catalogue questions annotations are check-lists containing sets of questions that summarize the core

features of a pattern, such as its goal, its intent or consequence of its application.

Pattern question annotations support the overall goal of the AM3D approach to lightweight support pattern

evaluation and documentation for the decision on pattern application. The questions support critical evalua-

tion of the applicability of the selected pattern from different points of view. These points include the main

goal of a pattern, its positive features (advantages), its negative features (drawbacks) and its variants.

Often, the user is aware of the pattern goal and of some of its advantages. Very common the drawbacks

of a pattern are forgotten or neglected, as a user does not expect a pattern to have any. This is due to the

87

4. Pattern Catalogue and Approach Details

Architectural Structure Information Block

Structure:

Roles: Connectors:

– Model

– View

– Controller

– View → Controller

– Controller → Model

– View → Model

Structure variant: Variant 1

Roles: Connectors:

– Model

– View

– Controller

– Controller → Model

– Controller → View

– Model → View

– View → Model

– View → Controller

Structure variant: Variant 2

Roles: Connectors:

– Model

– View

– Controller

– Controller → View

– Controller → Model

– Model → View

– View → Model

– View → Controller

Figure 4.18.: Example of Complete Architectural Structure Information Block

establish image of the design patterns as common and approved solutions for design problems. Another

common problem with design patterns is that they are often misunderstood or only partially understood. So,

the important features of a pattern may remain hidden to the user. These features can be both positive and

negative. Finally, users are often unaware of pattern variants. Therefore, questions pointing out the features

of pattern’s variants are not to be forgotten by an all-round pattern description. Thus, the goal of the AM3D

question annotations to a pattern is to make the user aware of all of the above mentioned features.

While answering the questions, the users receive hints about patterns and their aspects that they might have

forgotten or might not have considered otherwise. The answers to these questions reflect the most important

factors contributing to the selection or to discard of a pattern. If captured, these answers can serve as a

rationale behind the decision to apply or to the discarding of a pattern and as a documentation for the pattern

application.

An important feature is that question annotations are generic and project-independent. Answers to the

questions are, however, project- and problem-specific. A user of the catalogues does the translation from

a generic project-independent question to a project-specific question application in a context of the given

problem of a particular project. For the same pattern in the catalogue, a potential application in different parts

of the same project may bring different answers to the questions in the question check-lists. This is because at

various parts of the project various pattern features matter in different ways. Thus, what in one place may be

88

4.3. Pattern Catalogue Questions

an important drawback, in another place in the system may be neglected or may even become an advantage.

In general, the generic description of pattern features through the question annotations provides only hints

on the potential properties if a pattern is applied. The real and final properties of a pattern depend on how

the pattern is applied in the existing architecture of a system, and how it is implemented in its code imple-

mentation. Thus, the expected benefits of a pattern become benefits only if a pattern is correctly placed and

modelled in a system, and then also correctly implemented in the code.

To summarise, the pattern question annotations have the following goals:

• Support users at understanding the features of the pattern: The users become aware of what fea-

tures a pattern has, including goals of a pattern, advantages of a patterns, drawbacks of a pattern and

variants of a pattern. Especially, the drawbacks and variants of a pattern are often omitted by the users,

and with the help of AM3D catalogue questions it is assured that the users received hints also to these

pattern properties.

• Support users at understanding whether they really want to apply a pattern or if a pattern is
an over-engineered solution with too many drawbacks to their problem: The users are faced with

a brief but comprehensive list of pattern features. Seeing all features at a glance, the users can re-

evaluate their initial estimation on the appropriateness of a pattern for a particular problem. Seeing

a pattern’s drawbacks directly together with the advantages supports a better-balanced evaluation of

a pattern. Sometimes, a pattern may be a fairly good solution to a particular problem a user has,

however, a correct implementation of a pattern with sight on preventing its drawback would require so

much effort, that a solution without pattern would be more appropriate. The AM3D catalogue questions

may help a user to realize this situation.

• Prevent quick decisions of users on pattern application: Answering questions from the question

annotations check-lists prevents users from a quick decision to apply a pattern. The users are faced

with properties of a pattern and are thus forced to spend some time evaluating their decisions.

• Support users at generating documentation with the rationale for their decision about pattern:
As question annotations contain a general description of pattern’s features, answers to the question

highlight the relation between general features of a pattern and a particular context of a problem in

the project. Answers to the question form a rationale for a decision to apply or to discard a pattern.

A decision of a user can be thus semi-automatically saved together with the rationale generated while

answering the questions. This documentation together with the rationale improves later software evo-

lution.

Please note, that the question annotations are not intended to help with the initial selection of a possible

pattern, in the meaning that the AM3D pattern catalogue is not intended to be used as an expert system. For

a detailed discussion on this topic please refer to Sections 3.5.

The question annotation concept differentiates the AM3D pattern catalogue approach from other related

approaches. In the following sections, ways of formulating questions in question annotations and types of the

questions are described. They are followed by several examples of such questions and an explanation of the

process that was used to add questions to the sample AM3D catalogue.

89

4. Pattern Catalogue and Approach Details

4.3.2. Ways of Formulating a Question

There are multiple ways of formulating a question to a pattern. The ways to formulate a question differ in

the level of abstraction and level of granularity. The higher are these levels, the higher level of reuse between

question to patterns can be achieved. Lover levels of abstraction allow for a better understanding of a ques-

tion, as there are more details included into a question. However, fine-granular questions to a pattern also

require a deeper knowledge of a pattern from the user.

For this thesis, two of the possible approaches were designed, analysed and compared with the help of

examples and by independent reviewers as a part of a diploma thesis by Heller [164]:

• Two-step question annotations: The first approach to formulate a question consists of two-step ques-

tion annotations – of generic questions and of fine-grained questions. The fine-grained questions de-

scribe and summarize the properties of a pattern in detail. They include the pattern’s intent and im-

portant interactions among roles of a pattern. Thus, a fine-grained question annotations set consists

of questions to intent and to interactions between pattern’s roles. Each of these fine-grained questions

is linked to a generic question. Such generic questions describe recurring properties of patterns and

are formulated based on a set of keywords, generated from pattern descriptions related to the software

development process (e.g. communication, separation of concerns or creator).

The results are a pair of questions, where a generic question describes a problem to be solved, and a

fine-grained question describes how this problem is solved by a particular pattern (which feature of a

pattern solves this problem). These pair of questions requires from the user a more detailed knowledge

and understanding of a pattern in order to be able to understand the questions. An example of such

question pairs is represented on Figure 4.19.

Model-View-Controller 2.3.3 [BMR+96][BHS07a][Fow02]

No. general question pattern refinement

1 Separate the user interface
from the underlying logic
and/or data.

Divide an interactive application into three parts: the Model
contains data and domain logic, the View displays the in-
formation contained in the Model, the Controller processes
input of the user.

2 Support a loose coupling
betweenModel and user in-
terface.

Use an OBSERVER to propagate updates of the Model to-
wards the user interface (Controller and View). NFR: ”+”
Portability

3
opt.

Support a loose coupling
between View and Con-
troller.

When building thin-client web applications a strong separa-
tion of Controller and View occurs when the View runs on
the client and the Controller on the server [TMQ+03]. Im-
plement e.g. the Controller using a PAGE CONTROLLER
when building simpler web applications or use a FRONT
CONTROLLER for more complex ones.

Figure 4.19.: An Example a Question Pair: Generic Question and Fine-grained Question for Model View Controller

Pattern [164]

The focus here lies in the reusability of questions between patterns. The fine-grained question to pattern

properties are not limited and are extended through additional information in form of generic questions.

The generic questions are added to a question repository on demand, meaning that if a suitable generic

question was not found in the repository, it can be created, otherwise an existing question is reused. The

90

4.3. Pattern Catalogue Questions

basis for generic questions is a keyword repository – a glossary (keywords are highlighted in italic in

the example Figure 4.19). These keywords in the glossary allow for relating generic questions solving

the similar problems between each other. Further on, the fine-grained questions can be also related, in

this case based on their relation to the generic question and keywords used in the generic questions.

• Four-types question annotations: The second approach is to formulate rather fine-grained questions

to a pattern omitting a generic question, but structuring the fine-grained questions into sets of four

question types. In this approach, a question is linked directly to a pattern. Each question corresponds

to a certain property of a pattern (positive or negative) or to a property of pattern variants. The pos-

sible types of a question are questions to: Goal, advantages (pattern’s intent), drawbacks (pattern’s

consequences) and variants. These types are explained in the following Section 4.3.3. An example of

questions formulated using this second approach is presented of Figure 4.9. The roles of a pattern are

not considered by the questions, as it would make questions too specific and detailed.

For the second approach to formulate questions, a coarse-grained understanding of a pattern is sufficient

for the user to be able to understand the question. This was also confirmed as a part of evaluation

conducted for the AM3D approach and is described in detail in Section 6.4.

For the details on the comparison of these two approaches with corresponding examples please refer to the

diploma thesis by Heller [164].

The second approach to formulate the questions was selected based on the results of the conducted com-

parison and on the opinion of independent reviewers, to whom both variants of questions were presented to.

The reviewers considered it as comprehensive and sufficient for the AM3D catalogue’s goal, especially for

the cases when there is few knowledge about a design pattern available in advance.

Besides the structure of question annotation sets, another issue is the formulation of the text of the question

itself. It is clearly a creative step, which is comparable to architectural design itself. However, it is possible

to use predefined question templates, as some kinds of questions are more suitable than the other.

Examples of such question templates are: “Would you like to ... through ... ?”, “Are potential ... acceptable

in ...?”, “Is ... probable in the future?”. Ultimate question forms are avoided, as they might be always replied

with “yes”. For example, “Would you like to improve the ABC’s maintainability?” will likely be always

answered with “yes”. Also the disadvantages shall never be named directly, as such questions will be likely

always replied with “no”. For example, “Do you want to reduce the throughput of the ABC?” will likely be

always answered with “no”.

The question templates actually differ depending on the type of question annotation (goal, intent, conse-

quence or variants). To assure the understandability it is important to ask questions in the same style for each

section of question annotations. Moreover, as sometimes a user might be inconsistent in the answers (e.g.,

mentioning that a potential increase in performance can be tolerated, however, that the performance of the

system shall be increased at the same time), there are pairs of questions matched to identify when such in-

consistencies among answers appear. The styles and pairs are explained in detail the following Section 4.3.3

together with the question types.

Clearly, the approach and the style which was chosen to formulate the questions is not the only approach

possible. This topic falls under the subpart of Computational linguistics – Structural Approaches research

area (see a survey of controlled natural languages by Kuhn [159]). The approach to and the rules to formulate

pattern questions can be further refined and are part of the future work described in Section 8.3.

91

4. Pattern Catalogue and Approach Details

4.3.3. Question Types and Corresponding Styles

Several ways to formulate the questions to validate hypotheses on the appropriate use of patterns were inves-

tigated. An initial idea of two question types of question annotations for the AM3D approach was proposed

in [4]. The idea was evolved into two approaches analysed and compared in Heller [164], where two types of

questions were proposed and compared on an example from Buschmann et al. [31]. Based on the comparison

and on the reviews by researchers of the initial catalogue entries, it was concluded to distinguish in total

four types of questions to validate hypotheses on the appropriate use of patterns: General questions, Intent

questions, Consequences questions and Variant questions.

As described in the previous Section, a style to formulate questions to a pattern depends on its belonging

to one of these types. These styles are semi-formal and allow for a question’s understandability and a similar

level of abstraction in the formulation. They allow for standardized question annotations throughout the

pattern catalogue. The styles idea is inspired by the SBVR Structured English [151] (for more information

on controlled natural languages please refer to Section 2.5.3).

The AM3D approach does not require a special role to be defined to formulate questions to patterns in the

catalogue and to use the styles for this purpose. Questions to design patterns may be created by an expert in

the area of architectural design patterns or other architectural solutions that are planned to be added to the

catalogue.

In the following, the types and the styles are described in detail:

• General questions. General questions deal with the main goal of the pattern. Their goal is to help

to distinguish if the general idea of a pattern is intact with the main idea of the problem the user

wants to solve with this pattern. For example, general questions help to distinguish between groups of

patterns, such as structural and behavioural patterns, or point out infrastructure constraints that would

limit possible pattern application, such as service-oriented systems or embedded systems.

Usually there is only one general question to a pattern in the question annotations set, as patterns

usually follow just one main goal.

The semi-formal style template to formulate the general questions uses the “Would you like to G-VERB

(improve, separate, map, etc.) . . . G-OBJECT (presentation, subsystem, etc.) . . . OPTIONAL . . . ?”

question form. Where: G-VERB is a compulsory verb stored in the glossary as a verb-keyword and

describing an action that shall happen in the system; G-OBJECT is a compulsory object stored in the

glossary as an object-keyword and describing an object to which the action shall happen; OPTIONAL

are other verbs and objects, which are not necessarily stored in the glossary and usually refine the

details on action or on the object. An example of a question to a goal is presented in Table 4.1.

ID Pattern catalogue question Type
01 Would you like to present the same information in different ways e.g.,

through multiple views?

G

Analysis of the template style:
| “Would you like to” | PRESENT | the same | INFORMATION | in different ways e.g., through

MULTIPLE VIEWS | “?” |

Table 4.1.: Example of a Goal Question for Model View Controller Pattern

In the example the main purpose of the Model View Controller pattern is formulated as a “Would you

like to . . . ?” types of question. The G-VERB from the glossary is “to present” and the G-OBJECT from

92

4.3. Pattern Catalogue Questions

the glossary is “information”. The additional OPTIONs specify what kind of information is presented

and how – through “multiple views”, where”views” and “multiple” is also a keyword pair from the

glossary. The expected answer to the question is “yes”.

• Intent questions. Intent questions clarify the intent of a pattern. They provide hints on the intended

features and properties of the pattern. Usually these features and properties can be seen as positive and

desired, basically, as the advantages of a pattern.

Usually there is a set of intent questions to a pattern. Such questions help to distinguish between

patterns inside of one target group. For example, Model View Controller and Presentation Abstract

Control belong to the same structural patterns group and have the same goal question: However, the

features and properties are partially different and intent questions can be used for the differentiation.

The semi-formal style template to formulate intent questions uses the “Would you like to G-VERB

(improve, map, etc.) . . . G-OBJECT (presentation, subsystem, etc.) . . . OPTIONAL . . . ?” question

form. Where: G-VERB is a compulsory verb stored in the glossary as a verb-keyword and describing

an action that shall happen in the system; G-OBJECT is a compulsory object stored in the glossary

as an object-keyword and describing an object to which the action shall apply; OPTIONAL are other

verbs and objects, which are not necessary stored in the glossary and usually refine the details on action

or on the object. An example is presented in Table 4.2.

ID Pattern catalogue question Type
02 Would you like to add at run-time new views or delete existing views? I

03 Do you plan to exchange underlying data model or views representing this

data? (Design Time)

I

Analysis of the template style:
| “Would you like to” | ADD | at run-time new | VIEWS | or | DELETE| existing |VIEWS | “?”

| “Do you plan to” | EXCHANGE | underlying | DATA MODELS | or | VIEWS | representing this

data | “?” | (DESIGN TIME) |

Table 4.2.: Example of a Intent Question for Model View Controller Pattern

In the example the two described features of the Model View Controller pattern are formulated as

“Would you like to . . . ?” and “Do you plan to . . . ?” questions. The G-VERBs from the glossary are

“to add”, “to delete” and “to exchange”. The G-OBJECTs from the glossary are “views” and “data

model”. There are no additional OPTIONs specified. The expected answers to the questions are “yes”.

• Consequence questions. Consequence questions clarify possible consequences of the pattern. This

consequences can be side-effects and negative features that might be undesired in a system. Conse-

quence questions often reflect possible negative impact on non-functional properties, e.g. decrease of

maintainability or performance. However, these possible consequences are only hints, and final main-

tainability or performance of the system depends on how the pattern is actually implemented. Still,

provided hints on the possible pattern drawbacks, the user gets a chance to neutralize potential negative

influence or even might decide not to apply the pattern as one of the drawbacks in not compatible with

the desired system properties. Usually there is a set of consequences questions to a pattern, as a pattern

may have several potential drawbacks.

The semi-formal style template to formulate consequences questions uses the “Can you G-VERB (ne-

glect, accept, map, etc.) . . . G-OBJECT (delays, changes, etc.) . . . OPTIONAL . . . ?” question form.

93

4. Pattern Catalogue and Approach Details

Where: G-VERB is a compulsory verb stored in the glossary as a verb-keyword and describing an

action that shall happen in the system; G-OBJECT is a compulsory object stored in the glossary as an

object-keyword and describing an object to which the action shall happen; OPTIONAL are other verbs

and objects, which are not necessary stored in the glossary and usually refine the details on action or

on the object. An example of questions to consequences is presented in Table 4.3.

ID Pattern catalogue question Type
04 Can you accept potential delays by the view updates because of larger

amounts of data?

C

05 Can you neglect changes of the data in the model though the views now and

also in the future?

C

Analysis of the template style:
| “Can you “| ACCEPT | potential | DELAYS | by the | VIEW UPDATES | because of larger

amounts of | DATA | “?” |

| “Can you “| NEGLECT | CHANGES | of the | DATA | though the | VIEWS | now and also in the

future | “?” |

Table 4.3.: Example of a Consequence Question for Model View Controller Pattern

In the example the two described features of the Model View Controller pattern are formulated as

“Can you . . . ?” questions. The G-VERBs from the glossary are “to accept”, “to neglect”. The G-

OBJECTs from the glossary are “delays” and “data changes”. The additional OPTIONs specified are

“view updates” and “views”. The expected answers to the questions are “yes”. If the consequence

question is relied as “no”, it does not mean that the pattern will be discarded. Some of the drawbacks

can be prevented by the contra-measures. In this case, an answer of “no” means that a drawback is

considerably important, however, it can be neglected because of the planned measures against it.

• Variant questions. Variant questions deal with the properties of variants of a pattern. For example, a

classical Model View Controller pattern (a base pattern) differs in some properties to the variant where

the Controller role is omitted.

Base patterns and their variants have the same general goal, and similar intent and consequences that

can be generalized to the most common pattern variant called base variant. However, some of the

intents of a variant are different, and also some of the consequences differ from the base pattern.

Moreover, some of the advantages may even become drawbacks and vice versa, some of the drawbacks

may become advantages.

The goal of the pattern variant questions is to help to identify the most suitable pattern variant, and

to inform the user about its possible advantages or disadvantages. Usually there is a set of variant

questions to a pattern.

The semi-formal style template to formulate variants questions uses the “Would you like to G-VERB

(improve, add, etc.) . . . G-OBJECT (delays, data, etc.) . . . negative G-VERB* (reducing, skipping,

etc.) . . . G-OBJECT* (changeability, performance, etc.) . . . paired with . . . G-OBJECT** (data model,

subsystem, etc.) . . . OPTIONAL?” question form. Where: G-VERB is a compulsory verb stored in

the glossary as a verb-keyword and describing a positive (an improvement) action that shall happen

in the system; G-OBJECT is a compulsory object stored in the glossary as an object-keyword and

describing an object to which the action shall happen; G-VERB* is a compulsory verb stored in the

94

4.3. Pattern Catalogue Questions

glossary as a verb-keyword and describing a negative (a decrease) action that shall happen in the sys-

tem; G-OBJECT* is a compulsory object stored in the glossary as an object-keyword and describing

an influence of the action by the G-VERB*; G-OBJECT** is a compulsory object stored in the glos-

sary as an object-keyword and describing an object pair to the G-OBJECT* to which the action by the

G-VERB* shall happen; OPTIONAL are other verbs and objects, which are not necessary stored in the

glossary and usually refine the details on action or on the object. An example of questions to variants

is presented in Table 4.4.

ID Pattern catalogue question Type
06 Would you like to improve delays in the view updates reducing the changeability

of underlying data model?

V

07 Would you like to add data manipulation through view reducing the changeabil-

ity of underlying data model?

V

Analysis of the template style:
| “Would you like to” | IMPROVE | DELAYS | in the view updates | REDUCING | the | CHANGE-

ABILITY | of underlying | DATA MODEL | “?” |

| Would you like to“ | ADD | DATA MANIPULATION | through a view | REDUCING | the |

CHANGEABILITY | of underlying | DATA MODEL| “?” |

Table 4.4.: Example of a Variant Question for Model View Controller Pattern

In the example the two described variant features of the Model View Controller pattern are “Would

you like to . . . ?” questions. The positive G-VERBs from the glossary are “to improve” and “to add”.

The negative G-VERB* from the glossary is “to reduce”. The G-OBJECTs from the glossary is “de-

lays” and “data manipulation”. The G-OBJECT* from the glossary are “changeability”. The paired

G-OBJECT* from the glossary is “data model”. There are no additional OPTIONs specified. The

expected answers to the questions are “yes”, in order to favour a pattern variant over a base pattern.

The question styles presented here can be further formalized through a more strict formalisms, such as

those described in the survey by Kuhn [159]. Please refer to the Section 8.3 for a discussion about it.

4.3.4. Answers to Questions

There are several ways how to formulate a question, and therefore several possible answer types, and finally

several ways to interpret the answers.

To simplify this multi-dimensional answer space, the AM3D approach formulates questions in a way to

allow only four types of answers. These types of answers were considered as the most suitable for the purpose

of the approach. These four preferred answers to the questions are: Relevant property (a question replied as

“yes”), irrelevant property (a question replied as “no”), unknown property (a question replied as “I don’t

know”) and empty property (a question left without an answer). In the following they are explained in detail:

• Answer “Yes”: An answer “yes” on a question to a pattern indicates that the feature described by

a question is actively desired and is important for the target system. Questions replied to with “yes”

therefore indicate the most important features and properties that contributed to the decision to apply

the pattern. This does not imply that the other features are undesired or wrong. Answering “yes” solely

indicates that the selected features were the ones to contribute to the decision.

95

4. Pattern Catalogue and Approach Details

• Answer “No”: An answer of “no” on a question to a pattern indicates that the feature described by a

question is undesired in the target system. Questions replied with a “no” therefore indicate the most

important features and properties that contributed to the decision to discard the pattern. Similar to the

answer “yes”, answer “no” solely indicates that the selected features were the ones to contribute to the

decision, but does not imply that other features are correct or wrong.

• Answer “I don’t know”: An answer of “I don’t know” on a question to a pattern indicates that the

feature described by a question is either unclear or that there are insufficient requirements to a system

known in order to be able to answer the question. In that case, the requirements are insufficient, and a

user may inquire a requirement engineer to elicit additional requirements. The “I don’t know” answer

may be linked to an event in the requirement engineering process in the tool chain. However, such

events are beyond the scope of the AM3D approach and are not reviewed here. In any case, the answer

“I don’t know” is saved as a part of rationale for the decision to apply or discard a pattern. Usually, a

question with such an answer is neither positively nor negatively contributing to the decision, however,

it explains the circumstances under which the decision was taken. For example, later during the system

evolution, a decision can be reviewed and discarded, if it was mistakenly taken due to the insufficient

information about a problem or a context.

• No answer: If no answer to a question was provided, it indicates that the feature described by a

question is irrelevant for the given problem and its context. The question remains unanswered, when

the user sees no value in the feature and simply ignores it. In this case, the question is not included into

rationale generation, unless a comment to a question was provided by the user. A comment can be a

short explanation why the feature is not important or is not considered for the decision making. In this

case, it is of course important to save the rational for the future evolution of a system.

The questions to the patterns and answers to them are aligned to requirements to the system. To be able

to answer the questions, a user requires either to know the corresponding requirements to the system, or

to be able to ask a requirements engineer to provide additional information on the subject. If currently

available requirements are not sufficient to answer the pattern questions, the requirements engineer may elicit

new additional requirements that are needed at the current stage of the project. In this case, requirements

elicitation is driven through the architectural design process and is called an architecture-driven requirements

engineering.

4.3.5. Process to Add Questions to a Pattern

This section describes a process to use in order to add question annotations to a pattern in the catalogue.

Adding questions to a pattern in the catalogue is a creative process. Moreover, all the questions are formu-

lated in a semi-formal but still natural language, and the risk of inconsistencies in their form and organisation

is fairly high. If the catalogue contains information in various forms, which is not comparable between its en-

tries, its usability is likely to be reduced. Such a catalogue is then likely to become confusing and misleading

mean, instead of a support for an improved system design and evolution.

A defined process reduces such a risk, because a user follows the same process for all the catalogue entries,

and is more likely to produce similar result. Thus, the goal of the process is to assure that all the patterns

in the catalogue are treated in a similar way and that the provided question sets are unified and homogenous

between the patterns.

96

4.3. Pattern Catalogue Questions

The process defined for the AM3D approach is depicted on Figure 4.20. This process was used to annotate

patterns with questions for the sample AM3D catalogue provided in this thesis. In the following its steps are

explained in detail:

Fact groups:
General
Intent
Concequences
Variants
Roles
Role interations
Relationships

Excerpt pattern intent Divide the intent into facts Cluster the facts into the
groups

Eliminate duplicates in the
groups

Organize questions review
and correct questions

Express remaining items in
the G-, I-, C-, and V-
groups as questions

Pattern
Description

Pattern Intent
Summary

Set of pattern
facts

Question
formulation

guidelines and
glossary

Fact groups
Question

annotations,
draft

Question
annotations,

final

Repeat on
demand

Figure 4.20.: A Process to Add Questions to a Pattern

1. Excerpt pattern’s summary: Excerpt pattern’s summary out of the pattern description in the source.

Source can be a description of a design pattern, e.g. a book or a conference article. The so-collected

pattern summary may be long. Another passage through it helps to reduce the length. This step can be

omitted, if a description of a pattern in the source is short and well-structured.

2. Divide the summary into facts: Divide the summary into facts, where each fact of the pattern sum-

mary is a single item. Ideally, the fact list shall form a list of short sentences briefly describing the main

features of a pattern. An example excerpt of such a fact list summary for the Model View Controller

pattern is presented on Figure 4.21.

3. Cluster the facts into groups: Cluster the exacted items into the following groups:

a) General goal or idea: General Goal or idea can be shared between several patterns.

b) Intent: What can be achieved through pattern application, e.g. improved changeability of the GUI

or reduced number of joints for the tables.

c) Consequences: Potential drawbacks of pattern application, e.g. decreased performance of the

subsystem.

d) Variants: Design and implementation variants of a pattern. Variants follow the same goal as a

base pattern, however, their positive and negative properties differ.

e) Pattern roles and connectors: Main actors of a pattern and interactions between them., e.g. a

Controller role in the Model View Controller is interacting both with Model and with Views.

97

4. Pattern Catalogue and Approach Details

Summary:
- Isolates domain logic from the user interface
- Decouple user interface
- Multiple views on the same data
- Strict data and presentation separation
- Exchangeability of data model
- Interaction with data through a controller
- Requires an Observer pattern
- Strict model separation from view
- Synchronized views
- Potential performance problems
- Controller potentially a bottleneck
- Improved flexibility through exchangeable

views

- Improved support of multiple platforms
- Potential data time out
- Potential data consistency
- A version where Controller can be omitted
- A version where communication both

through and without Controller
- Has View, Model, Controller roles
- Controller communication with View and

Model
- Model does not know about View and

Controller
- …

Figure 4.21.: An Excerpt of a Fact List for the Model View Controller Pattern

f) Relationships: Relationships between pattern and other patterns, including similar patterns, pat-

ters that shall be used together and patterns that cannot be used together.

An example excerpt of a fact list clustered by groups for the Model View Controller pattern is presented

on Figure 4.22. Content of questions to design patterns may require questions to various patterns

properties. This information is not only relevant for creation of questions to design patterns, but also to

fill in the general information block of a design pattern in the AM3D catalogue.

Groups:

Goal
- Isolates domain logic from the user interface

Intent
- Decouple user interface
- Multiple views on the same data
- Strict data and presentation separation
- Exchangeability of data model
- Strict model separation from view
- Synchronized views
- Improved flexibility through exchangeable

views
- Improved support of multiple platforms
- …

Consequences
- Potential performance problems
- Potential data consistency problem
- Potential data time out
- Controller potentially a bottleneck
- …

Variants
- A version where Controller can be omitted
- A version where communication both

through and without Controller
- …

Relationships
- Requires an Observer pattern
- …

Roles and Connectors
- Has View, Model, Controller roles
- Controller communication with View and

Model
- Model does not know about View and

Controller
- Interaction with data through a controller
- …

Figure 4.22.: An Excerpt of Fact Groups for the Model View Controller Pattern

4. Eliminate fact duplicates: After the facts are clustered into groups, eliminate duplicated or synonym

items. Merge similar facts if they provide details on the same pattern property.

98

4.3. Pattern Catalogue Questions

5. Express facts as questions: Express the facts in the four Groups – Goal, Intent, Consequences

and Variants – in a question form. This is a creative step, which is comparable to architectural

design itself. However, it is possible to use a predefined question template to warranty structural

and logical similarity in question and expected answers to them. Examples of such question tem-

plates are: “Would you like to . . . though . . . ?”, “Do you plan to . . . by . . . ?” or “Can you accept

. . . ?”. A semi-formal version of the “Would you like to . . . ?” Question is: “Would you like to G-

VERB (improve, separate, map, etc.) . . . G-OBJECT (presentation, subsystem, etc.) . . . OPTIONAL

. . . ?”. Avoid ultimate questions, such as “Do you want to . . . ” etc., as such questions might be al-

ways replied with “yes”. Also avoid naming disadvantages directly, as such questions will be most

likely always replied with “no”. The styles to formulate questions are described in detail in Sec-

tion 4.3.3. An example formulated questions for the Model View Controller pattern is presented on

Figure 4.23.

Questions:
- Would you like to present the same information in different ways e.g., through multiple views? (G)
- Would you like to add at run time new views or delete existing views? (I)
- Can you accept potential delays by the view updates because of larger amounts of data? (C)
- Would you like to improve delays in the view updates reducing the changeability of underlying data

model? (V)
- …

Figure 4.23.: An Excerpt of Questions for the Model View Controller Pattern

6. Perform a review: Perform a review of the draft of the question annotations. It is better to have several

patterns with question annotations collected for the review, in order to minimize the review process.

The goals of the review are:

• To check the understandability of formulated questions to an independent reviewer (an indepen-

dent user)

• To check the precision of a pattern description through the questions, and in particular, if provided

questions are sufficient to uniquely characterise a pattern and to correctly distinguish it from the

other patterns, and especially from the similar patterns following a similar goal

• To check if the generic questions can be translated to the concrete problems and desired properties

in a sample project

• To check correctness of the language

• To check the level of abstraction used to describe pattern properties in the questions

• To check the completeness of pattern properties described in question annotations

• To check if all described pattern properties indeed belong to the pattern

• To check if provided technical details are sufficient, but not overwhelming in the question anno-

tations

The potential reviewers are available software engineers, developers or any other third party experts

having sufficient knowledge in the area. In case of project-specific solutions that were selected to

99

4. Pattern Catalogue and Approach Details

include into the pattern catalogue, select an expert involved into the project to perform the review.

After the review, correct the questions according to the review results.

Some liabilities of the questions that may be encountered during the review are: Low precision of the

formulations of question annotations, too technical question annotations, too abstract question annota-

tions, unclear definition of properties, irrelevance for the real pattern application as compared to known

theory about a pattern, relevant questions (propertied of a pattern) missing, or pattern core intent cannot

be definitely concluded from the question annotations.

7. Repeat the review: Repeat the review with another reviewer and after the review, correct the ques-

tions according to the review results. If again many liabilities of the questions annotations were found,

one more review round is required. The experience collected during creation of the AM3D sample

pattern catalogue showed that in most cases two reviews were sufficient to reach more than 95% un-

derstandability rate by the question (also see the Survey results in Section 6.4.5 for more details on the

understandability of questions). Although, the reviews are effort-demanding, they assure the objectivity

of the question annotations and reduce the personal influence of the original catalogue author.

Despite following this defined process to add question annotations to a pattern, definition of question

annotations is still a creative task. However, the architectural design is also a highly creative, subjective and,

thus, often an error-prone task. Systematic reviewers of question annotations help to reduce this negative side

and to assure the quality of questions and their comparability between each other.

4.4. Process to Fill in Catalogue

This section describes a process to add patterns to the catalogue. The definition of this process follows similar

goals as the definition of the process to add questions to a patter, described in Section 4.3.5. The information

about a pattern is formulated in free-text natural language. Even though it follows a description template (see

Section 4.2), the risk of inconsistencies in the description and organisation is high without a defined process.

If the catalogue contains information that is not comparable between its entries, its usability is likely to be

reduced. A defined process forces a user to follows the same steps while filling in the catalogue with patterns.

Thus, the goal of the process is to assure that all the pattern in the catalogue are treated in a similar way,

follow the same description template and are thus homogenous.

The process to add a pattern to the catalogue defined for the AM3D approach is depicted on Figure 4.24.

This process was used to add patterns to the sample AM3D catalogue provided in this thesis. The process

consists of the following steps:

1. Prepare a list of patterns: Prepare a list of patterns to add to the catalogue. Such a list can be

obtained based on the project area or particular project demand. A list of sample patterns for the

sample AM3D pattern catalogue was obtained based on the results of survey of most common used

and famous patterns. The survey was based on the results from internet, from the related work and

from the available lecture slides. The list was updated with the patterns, that were mentioned in the

relationships of the initially selected patterns (similar patterns and co-usable patterns).

2. Select a pattern to add: Pick up a pattern from the list. Usually a group of similar patterns is processed

one by one in a row, as it allows for easier cross-references and questions between their descriptions.

100

4.4. Process to Fill in Catalogue

Select a pattern Extract pattern information
according to the template Add question annotations

Add structural information
Organize a review
and correct pattern

information

Pattern List Pattern Pattern
Information

Use additional source
(optional)

Figure 4.24.: Process to Add Patterns to a Catalogue

3. Extract general pattern information according to the template: Extract the information available

in the literature source filling up the pattern description template. In this step, fill in the general infor-

mation block of the description template. Please note that the process to add questions to a pattern,

described in Section 4.3.5, only deals with the properties relevant for the questions. The general in-

formation block, however, contains more properties than the questions describe. Therefore, in this

process the current and the following steps are separated, unlike the corresponding steps of the process

described in Section 4.3.5

4. Add question annotations: Add question annotations to the pattern. For this, use the before collected

general information in order to generate a pattern’s summary. Then follow the process to add question

annotations to a pattern, as described in Section 4.3.5.

5. Add structural information: Add structural information to fill in the architectural implementation

details block of the description template. This information contains roles of a pattern, and interactions

between them – connectors.

6. Organize a review: Review the filled in pattern template. In order to optimise the review process, it is

better to have a set of several patterns ready for the review. Especially similar patterns shall be reviewed

together, to assure that the fine differences between them are highlighted clearly and sufficiently.

The potential reviewers are available software engineers, developers or any other third party experts

having sufficient knowledge in the area. If the catalogue contains project-specific design patterns,

select an expert involved into the project to perform the review.

7. Correct pattern information: Correct the information about a pattern based on the review results.

8. Use additional source (optional): Depending on the review results, use additional information source.

Sometimes, a merge of information from several literature sources is required in order to obtain enough

information about a pattern and to be able to distinguish properties of similar patterns.

This process may seem simple. Nevertheless, one must ensure that the same steps are followed for each

pattern, and that the same pattern template and its parts are filled in with the information about a pattern.

Quality and completeness of question annotations and structural information of a pattern depend on how

well the general information about a pattern was understood and captured. Thus, filling in the template in a

different order may lead to inconsistencies in the description, and to the low quality of it.

101

4. Pattern Catalogue and Approach Details

4.5. Types of Patterns in Catalogue

The AM3D approach was developed for the architectural design patterns. Under architectural design patterns

in the AM3D approach are understood the patterns defined by Taylor at al. as:

Definition 4.1 Architectural design pattern [115]

An architectural pattern is a named collection of architectural design decisions that are applicable to a re-

curring design problem, parametrized to account for different software development contexts in which that

problem appears

The AM3D approach does not distinguish between architectural design patterns and design patterns ex-

plicitly, as do some literature sources. In this thesis, the term “design pattern” is used as a synonym for the

term “architectural design pattern”.

In other words, all patterns that are visible at the architectural level, are of interest for the AM3D pattern

catalogue. Whereby, the visibility implies one of the following properties:

• A pattern can be presented in at least one of the supported architectural diagram types

• A pattern cannot be presented in the supported diagram types, but its influence is visible on the archi-

tectural level

• A pattern can be presented in at least one of the supported architectural diagram types and its influence

is visible on the architectural level

If a pattern satisfies one of these properties, it is considered to be an architectural design pattern in terms

of the AM3D approach. Such pattern can be captured and used following the AM3D approach.

Despite that this thesis focuses on the architectural design patterns, it does not exclude support of other

pattern types or support of other architectural design solutions. Moreover, the AM3D approach can be also

extended to support design solutions that are invisible at or cross-cutting to the system architecture. For

the discussion about possible extensions of the AM3D approach to support further solutions please refer to

Section 8.3.

4.6. Approach formalization with Meta-Models

This section presents the formalization of the design patterns, decisions and connected project contexts with

the help of a developed meta-model of the AM3D approach. The meta-model is based on state of the art,

such as works by Kruchten [130], Tang et al. [133], Wang et al. [55], and others. For more information on

related meta-models refer to Sections 7.3.3 and 7.2.3. The meta-model was developed in several stages. M.

Heller [164], A. Khakulov [142] and S. Werfel [170] have contributed to its development during their diploma

theses, executed under my supervision.

The goal of the meta-model is to formalize architectural design patterns with question annotations and

design decisions connected to them together with the involved project context. The project context involves

requirements, issues, design solutions with the design patterns as a sub-part, solution implementation, glos-

sary, effects, relations and users.

Usage of the meta-model has the advantage of an easy tool-support, as it allows for automated tool-

generation. Also the documentation of model elements can be documented with the help of a meta-model.

102

4.6. Approach formalization with Meta-Models

Meta-model allows for automated checks on the meta-model instances. Thus, the structure of the pattern in

an architectural model can be automatically checked on its correctness.

The meta-model is directly involved in the support of the all-but-one usage scenarios, described in detail

in Section 3.2.2: Systematic capture of information about design patterns to allow to gain information about

patterns, select a pattern or to select between similar patterns, and to check architectural implementation

violations of a pattern; and documentation of decisions on design pattern application to allow to retrieve in-

formation and rationale for the used patterns, trace changes from requirements to architectural models, and

understand rationale of architectural elements. The meta-model also supports “elicitation and prioritization

of requirements” usage scenario, however, it does this indirectly through the formalization of question anno-

tations to design patterns. The instances of the questions, in their turn, facilitate elicitation and prioritization

of requirements. To summarise, the meta-model is an important support of the AM3D approach, allowing

formalization, and systematic modelling of all the relevant concepts, and in particular, of design patterns and

question annotations to them. Moreover, the developed meta-model allows to generate a tool to support all

of the processes described in Section 3.2.2, as it also formalizes the relevant project context artefacts and

required interactions and dependencies between them. These artefacts include requirements, architectural

solutions, actors (users), decisions and decision-making process, and relations between these. Hereby, design

patterns are a sub-type of possible architectural solutions.

The developed meta-model is divided into several packages; the general structure is presented on Fig-

ure 4.25.

Figure 4.25.: Overview of Meta-model Packages

The packages are:

• Metadata: Metadata package contains classes to abstract the recurring information about the model

elements, such as Name,ID and to manage the dates of their creation and modification.

103

4. Pattern Catalogue and Approach Details

• Effects: Effects package describes effects, such as quality or general effects, which can be produced

by other meta-model elements, such as decisions or design patterns.

• Users: Users package describes users of the approach, such as stakeholders of requirements, solutions

or decisions.

• Glossary: Glossary package classes are responsible for presentation of glossary and of terms that are

used to formulate requirements, text of the rationale, keywords or questions to a pattern.

• Requirements: Requirements package describes the requirements space, types of requirements and

relationships between them.

• Issues: Issues package formalizes the concept of issues, which are triggered by the requirements and

require a solution in term of the AM3D approach.

• Solutions: Solutions package describes the concept of a solution in the AM3D approach, including

possible alternatives and types of solutions. It contains Patterns, Components and Implementations

packages.

• Patterns: Patterns package is a subpackage of Solutions, and describes architectural design patterns as

a subclass of architectural design solutions. It formalizes the AM3D pattern catalogue.

• Questions: Questions package is a package describing the questions concept of the AM3D approach

in a generic way, to enable application not only with design patterns, but also with other solution

subclasses.

• Components: Components package is a subpackage of solutions and describes reusable components

(COTs) as a subclass of architectural design solutions.

• Implementations: Implementations package is a subpackage of solutions and describes implementa-

tion of solutions, such as patterns and components, in architecture and in code. As the AM3D approach

is focused on architecture, the code implementation is kept as an abstract class, which can be extended

with the help of other approaches. The implementations packages focuses on implementation of pat-

terns and components on the architectural level – in architectural models.

• Decisions: Decisions package formalizes the decisions concept of the AM3D approach, where deci-

sions on patterns and components can be re-evaluated and documented together with the rationale.

• Rationale: Rationale package is a subpackage of Decisions package and describes rationale of design

decisions, which can be text, requirements or answers to the AM3D approach questions.

• Relations: Relations package is a help package that contains formalization of relations between various

approach concepts, such as decisions, requirements, patterns or issues, with the focus of relations

between one or similar concepts.

The meta-model is developed and structured in a modular way to facilitate its extension and reuse. Most of

the packages are stand-alone meta-models, which can be easily extracted for a separate use. The concepts in

the meta-model are formalized in a way to allow easy editing and addition of new subtypes and subsolutions,

without the need to restructure depending or connected meta-models.

104

4.6. Approach formalization with Meta-Models

In the following, the meta-model packages are explained in detail. The sections are sorted starting from the

most basic packages, which have no dependencies on other packages, and continuing to the more complex

packages requiring understand of the basic packages. For example, package issues are explained after the

requirements package, as understanding of requirements package concepts is required to follow on the issues

concept.

4.6.1. Metadata

The Metadata meta-model is presented on Figure 4.26. The goal of the meta-model is to abstract the recurring

information about the model elements, such as Name, ID and to manage the dates of their creation and

modification.

Figure 4.26.: Metadata Meta-Model Package

The meta-model contains the following classes:

• IDElement: ��������� describes an element of the meta-model having an ��. Together with the ��;

it also always has a 	
�����
� date, and can optionally have one or multiple ��������
� date.

• Date: ���� is an interface that can be implemented by other meta-model classes accordingly on de-

mand.

• TextDate: �������� is the date option implemented by the AM3D meta-model to define 	
�����
�

and ��������
� dates.

• NamedElement: ��������� describes an element of the meta-model that has a Name in addition to

the �� and 	
�����
� and ��������
� dates.

105

4. Pattern Catalogue and Approach Details

Most of the other meta-model elements inherit from the Metadata classes ��������� and 	
����������,

therefore they have a ��, �
�
����� and ����������� dates and a 	
��.

4.6.2. Effects

The Effects meta-model is presented on Figure 4.27. The goal of the Effects package is to describe effects

that can be produced by other meta-model elements, such as decisions or design patterns.

Figure 4.27.: Effects Meta-Model Package

The meta-model contains the following elements:

• EffectRepository: EffectRepository is the root repository contains all effects known in the context of

the project. The repository can be reused between projects, once it is defined.

• EffectCategory: EffectCategory is a class to define a manual category during the project. The category

can then be referenced from an Effect of type of CategoryEffects.

• Effect: Effect class describes all known effects of other meta-model classes. It is an abstract class and

needs to be defined trough one of the provisioned Effect types. An example of an effect is a solution

that may have a quality effect on the system if it is decided for, or a decision that may have a restrictive

technology effect on other decisions. Effect has an EffectType, which is “neutral” by default, but

otherwise can be “positive” or “negative”.

• SimpleEffect: SimpleEffect is one of the provisioned Effect type classes. It describes a simple textual

Effect.

• QualityEffect: QualityEffect is one of the provisioned Effect type classes. It describes a quality effect

of a decision, solution, etc., and is connected to one of the known QualityTypes from the Requirements

meta-model.

106

4.6. Approach formalization with Meta-Models

• CategoryEffect: CategoryEffect is one of the provisioned Effect type classes. It describes a complex

effect of a type that is defined by a user of the approach with the help of the EffectCategory.

• EffectType: EffectType is an enumeration describing known types of effects, such as “neutral”, “posi-

tive” or “negative”. New types of effects can be easily added to the enumeration on demand.

The effects are important for the AM3D approach, as they are an important part of the decision making,

usually involving trade-offs between quality requirements to the system. The effects are an important part of

the rationale behind decisions and solutions, and an important part of description of issues.

4.6.3. Users

The Users meta-model is presented on Figure 4.28. The goal of the Users package is to describe users of the

approach, such as stakeholders of requirements, solutions or decisions.

Figure 4.28.: Users Meta-Model Package

The meta-model contains the following classes:

• UserRepository: UserRepository is the root repository that contains the users known in the context of

the project. The repository can be reused between projects, once defined.

• User: User is a class to define users in the project. The user may have different roles defined by

RoleType, and be stakeholders of several elements of the model, such as requirements, decisions or

solutions.

• RoleType: RoleType is a class to define the role of a user in a project. It is an abstract class and is

specified by several defined role possibilities, such as an architect or an engineer.

• ReqEngineer: ReqEngineer is one of the provisioned role type classes and specifies a requirement

engineer role in a project.

• Architect: Architect is one of the provisioned role type classes and specifies an architect role in a

project.

107

4. Pattern Catalogue and Approach Details

• Engineer: Engineer is one of the provisioned role type classes and specifies a regular software engineer

role in a project.

• Other: Other is one of the provisioned role type classes and specifies an option to add a project-specific

role to a project.

Once role types are defined for the project and stored in the user repository, the users can be added and

roles can be assigned to them. The Users meta-model is kept simple, as it is a help concept to the approach.

The meta-model can be easily extended to support more complex user environments and descriptions.

4.6.4. Glossary

The Glossary meta-model is presented on Figure 4.29. The goals of the meta-model are to present the glossary

and terms that are used to formulate requirements, text of the rationale, keywords or questions to a pattern.

Figure 4.29.: Glossary Meta-Model Package

The meta-model contains the following elements:

• Glossary: Glossary is a class presenting the concept of the term collection for reuse, it is a repository

of terms.

• GlossaryTerm: GlossaryTerm is a term that can be used to build questions, rationales, and other textual

descriptions. Terms can have antonyms and synonyms, which can be linked to each other. Each term

has a category and an influence property.

• TermCategory: TermCategory enumeration describes possible types of terms. The default type is

a “keyword”. Other types, such as “gobejct”, “gverb” and “question”, describe term types used in

question annotations, as detailed in Section 4.2.2.

• TermInfluenceProperty: TermInfluenceProperty is an enumeration describing types of influence of a

term, such as “neutral”, “positive” or “negative”. The default state of a term influence is “neutral”.

108

4.6. Approach formalization with Meta-Models

Terms may be used to formulate questions and requirements, and to be referenced to from various textual

descriptions. The main purpose of glossary is to use a limited subset terms, whereby terms do not comprise a

sentence completely. The term are used as main subjects and objects recognisable and reusable between such

descriptions, while details and joins can be expressed also with terms that are not contained in the glossary.

Thus, all textual descriptions are combinations of terms from glossary and freely selected terms that are not

included into the glossary.

4.6.5. Requirements

The Requirements meta-model is presented on Figure 4.30. The goal of the meta-model is to describe the

requirements space, types of requirements and relationships between them.

The meta-model contains the following elements:

• ReqRepository: ReqRepository is the root repository that contains the requirements known in the con-

text of the project. The repository can be partially reused between projects, once defined, in particular

when a project is related to a previously built system. The repository is divided into three types of the

requirements: system requirements, process requirements and project requirements, according to the

classification by Glinz [104].

• SystemRequirements: SystemRequirements is one of the provisioned types of the requirements and

contains system requirements.

• ProcessRequirements: ProcessRequirements is one of the provisioned types of the requirements and

contains process requirements.

• ProjectRequirements: ProjectRequirements is one of the provisioned types of the requirements and

contains the requirements of a project.

• Requirement: Requirement is a class to define requirements in a project. It is an abstract class, and can

be instantiated with defined types – system requirement, process requirement or project requirement.

Each requirement has at least one stakeholder (a user) responsible for it. A text of a requirement is

build using terms from the project glossary. Requirements have defined status, e.g. “accepted”, and a

priority, e.g. “medium”.

• SystemRequirement: SystemRequirement class is the provisioned type of the requirements class and

describes a system requirement of a project. SystemRequirement is contained in the SystemRequire-

ments repository. It is an abstract class and can be redefined as a quality requirement, functional

requirement or constraint, following the classification by Glinz [104].

• ProcessRequirement: ProcessRequirement class is the provisioned type of the requirements class and

describes a process requirement of a project. ProcessRequirement is contained in the ProcessRequire-

ments repository.

• ProjectRequirement: ProjectRequirement class is the provisioned type of the requirements class and

describes a project requirement of a project. ProjectRequirement is contained in the ProjectRequire-

ments repository.

109

4. Pattern Catalogue and Approach Details

• QualityRequirement: QualityRequirement class is the provisioned type of the system requirements

class and describes a quality requirement of a project. Quality requirements has a reference to a quality

type, defining which quality attributes defined in a project are related to the requirement. For example,

a quality requirement may refer to maintainability and performance quality attributes.

• FunctionalRequirement: FunctionalRequirement class is the provisioned type of the system require-

ments class and describes a functional requirement of a project.

• Constraint: Constraint class is the provisioned type of the system requirements class and describes a

constraint of a project.

• QualityTypeRepository: QualityTypeRepository is a repository that contains the definitions of quality

types known in the context of the project. The repository can be partially reused between projects.

There are several quality types already predefined by the AM3D meta-model, such as performance,

reliability, security, usability and maintainability.

• QualityType: QualityType is a class to define known types of quality dimensions in a project. It is an

abstract class, and has a set of predefined quality dimensions, according to Glinz [104].

• Performance: Performance class is the provisioned type of the QualityType class and defines perfor-

mance quality dimension of a project.

• Reliability: Reliability class is the provisioned type of the QualityType class and defines reliability

quality dimension of a project.

• Security: Security class is the provisioned type of the QualityType class and defines security quality

dimension of a project.

• Usability: Usability class is the provisioned type of the QualityType class and defines usability quality

dimension of a project.

• Maintainability: Maintainability class is the provisioned type of the QualityType class and defines

maintainability quality dimension of a project.

• ReqPriorityEnum: ReqPriorityEnum is an enumeration describing a priority of a requirement, and

can be “neutral”, “low”, “medium” or “high”, as according to Glinz [104].

• ReqStatusEmun: ReqStatusEmun is an enumeration describing a status of a requirement, and can be

“new”, “accepted”, “rejected”, “replaced” or “done”.

Types of the requirements are explained in detail in Section 2.2. The AM3D approach usually operates

with functional and quality requirements, but also uses process and project requirements in some cases. The

requirements are not only triggers of decisions making process, but form the point of view f the AM3D

approach, they are one of the main rationale for taken design decisions and shall be linked, if possible, as a

rationale for the decisions.

110

4.6. Approach formalization with Meta-Models

Figure 4.30.: Requirements Meta-Model Package

111

4. Pattern Catalogue and Approach Details

4.6.6. Issues

The Issues meta-model is presented on Figure 4.31. The goal of the meta-model is to formalize the concept

of issues, which are triggered by the requirements and require a solution in term of the AM3D approach.

Figure 4.31.: Issues Meta-Model Package

The meta-model contains the following elements:

• IssueRepository: IssueRepository is the root repository that contains issues known in the context of

the project. The repository can be partially reused between projects, once defined, in particular when a

project is related to a previously built system.

• Issue: Issue is a class to define issues in a project. It is an abstract class and can be instantiated with pre-

defined types – text issues and requirement issues. Each issue has a status, which can be e.g. “accepted”

or “resolved”. Issues have at least one stakeholder defined by though the link to stakeholders of the user

repository. Issues have a trigger, which is an interface which can be implemented by various model

elements of the AM3D meta-model.

• TextIssue: TextIssue is one of the provisioned types of issues and defines a simple text issue.

• RequirementIssue: RequirementIssue is one of the provisioned types of issues and defines a require-

ment issue, which is triggered by a requirement.

• IssueTrigger: IssueTrigger is an interface that can be implemented by various model elements of

the AM3D meta-model. Issue trigger describes a trigger of the issue, such as the requirements or a

decision.

112

4.6. Approach formalization with Meta-Models

• IssueStatusEnum: IssueStatusEnum is an enumeration describing a status of an issue, and can be

“new”, “accepted”, “rejected”, “inProcess”, “resolved”, “closed”, “reopened” or “replaced”.

4.6.7. Solutions

The Solutions meta-model is presented on Figure 4.32. The goal of the meta-model is to formalize the concept

of a solution in terms of the AM3D approach, including possible alternatives and types of solutions.

Figure 4.32.: Solutions Meta-Model Package

The meta-model contains the following classes:

• SolutionRepository: SolutionRepository is the root repository that contains potential and selected

solutions of the project. The repository can be partially reused between projects, once defined, in

particular when a project is related to a previously built system.

• SolutionAlternative: SolutionAlternative is an abstract class to define solution alternatives of a project.

As an abstract class it can be instantiated with pre-defined types – architectural design pattern and

reusable component solutions. An alternative solution may become a selected solution, once a decision

on its behalf is taken. An alternative solution is aware of other alternative solutions to a given problem

through an “alternatives” reference link. Each solution alternative may have certain effects, defined in

the Effects repository of the project, for example an effect on one of the quality dimensions. Once a

113

4. Pattern Catalogue and Approach Details

solution is selected, it may be implemented through a SolutionInstance, defined in the Implementations

repository.

• PatternSolution: PatternSolution is one of the provisioned types of the solution alternatives in the

AM3D approach. It links design patterns defined in the pattern catalogue as potential solution alterna-

tives to the problem.

• ComponentSolution: ComponentSolution is one of the provisioned types of the solution alternatives

in the AM3D approach. It links reusable components defined in the component repository as potential

solution alternatives to the problem.

The Solutions meta-model is describes a generic solution concept and contains Patterns, Components and

Implementations subpackages.

4.6.8. Patterns

The Patterns meta-model is presented on Figure 4.33. The goal of the meta-model is to describe architectural

design patterns as a subclass of architectural design solutions. It formalizes the AM3D pattern catalogue.

The meta-model contains the following elements:

• PatternCatalogue: PatternCatalogue is the root repository that contains patterns defined in the cat-

alogue and potentially useful for the project. The catalogue can be reused between projects, once

defined. It is one of the core concepts of the AM3D approach.

• Pattern: Pattern is a core class and formalized pattern description in term of the AM3D approach. The

details on pattern description are explained in Section 4.2. The pattern formalization with the help of

the meta-model follows the pattern catalogue structure described in the section. Pattern has a Name, an

ID, creation and modification dates, domain type, a category and three additional blocks of description

– general description, question annotations and architectural structure description. Patterns may be

involved into pattern-specific relationships, such as being similar to a pattern, exclusion of a pattern,

and co-usage with a pattern, defined through an abstract class PatternRelations of the Patterns meta-

model package. If pattern has a variant, the variant can be defined using the same description template

as a pattern under a pattern type PatternVariant. Pattern variant is in a relation to its base pattern, and

vice versa, allowing for navigation and a comparison between them. Besides quality effects, a design

pattern as a sybtype of a solution may have some general effects defined in the Effect repository.

• PatternVariant: PatternVariant class defines a variant of a pattern. It is formalized with the same

structure, as its base pattern, however carries a type of a pattern variant. It has a reference to its base

pattern, and its base pattern has a reference to all of its variants.

• GeneralPatternDescription: GeneralPatternDescription is an abstract class, and defines general de-

scription information block of the description template. It contains various properties of a pattern, links

to the information sources and diagrams, and a short description.

• Property: Property class describes general pattern properties for the general information block of

the pattern description template. Properties are goals of a pattern, its keywords, potential advantages,

drawbacks and quality influence. Each property description can be linked to the known terms of the

glossary.

114

4.6. Approach formalization with Meta-Models

• Goal: Goal is one of the provisioned types of the pattern property. It describes goals of a pattern.

• Keyword: Keyword is one of the provisioned types of the pattern property. It describes keywords

characterising a pattern.

• Advantage: Advantage is one of the provisioned types of the pattern property. It describes potential

advantages of a pattern application.

• Drawback: Drawback is one of the provisioned types of the pattern property. It describes potential

drawbacks of a pattern application.

• QualityInfluence: QualityInfluence is one of the provisioned types of the pattern property. It describes

potential quality influence of a pattern and is linked to the quality effects of the Effects repository.

• QuestionAnnotations: QuestionAnnotations is an abstract class, which refers question annotations to

a pattern. It contains links to questions from the question repository. These questions are used for

pattern evaluation as a possible design solution, and for a decision documentation to use or to withdraw

a pattern as a solution candidate. Questions in the repository have a back reference to a pattern to be

able to track, which pattern use similar questions and to propose alternative pattern candidates based

on the answers to questions. The reference “noCaseCandidates” refers to the candidate patterns, which

shall eb proposed in case of an answer “no” to a question.

• ArchitecturalStructure: ArchitecturalStructure is an abstract class, and defines architectural structure

information block of the description template. It contains of a Role and Connector classes.

• Role: Role class defines roles of a pattern explained in Section 4.2.

• Connector: Connector class defines connectors between pattern roles, as explained in Section 4.2.

• PatternRelations: PatternRelations class defines possible relations between patterns. It is an abstract

class, which can be specified with the following types of relations: Similar, Exclusion and CoUsage.

• Similar: Similar class is one of the provisioned types of the relationships between patterns. It links

similar patterns to each other. Similar patterns can be then proposed as solution candidates instead of

the currently actively selected pattern solution, based on the answers to the questions to a pattern.

• Exclusion: Exclusion class is one of the provisioned types of the relationships between patterns. It

links patterns that cannot be used together. This relationship is useful to detect potential violations,

when user attempts to use to excluding patterns together in a subpart of a system design.

115

4. Pattern Catalogue and Approach Details

Figure 4.33.: Patterns Meta-Model Package

116

4.6. Approach formalization with Meta-Models

• CoUsage: CoUsage class is one of the provisioned types of the relationships between patterns. It

links patterns that can be used together, in the meaning of help patterns. Such co-patterns can be then

proposed to a user, once a decision to apply a pattern is taken. An example of co-used patterns is a

Model View Controller pattern or an Observer pattern.

• DomainType: DomainType is a class describing known domain types of a pattern, such as architectural

patterns or security patterns. Known types are contained in the pattern catalogue, and can be referenced

to from patterns.

• Category: Category is a class describing known domain categories of a pattern, such as creational or

structural patterns. Known categories are contained in the pattern catalogue and can be referenced to

from patterns.

The Pattern Meta-Model is one of the core concepts of the AM3D approach. It formalizes the pattern ap-

plication in a way to be used for the benefits, such as decisions evaluation and documentation to together with

the rationale. The Pattern Meta-Model is a subpackage of the Solutions Meta-Model package, as architectural

design patterns are a subclass of reusable architectural design solutions.

4.6.9. Questions

The Questions meta-model is presented on Figure 4.34. The goal of the meta-model is to formalize the

questions concept of the AM3D approach in a generic way, to enable application not only with design patterns,

but also with other solution subclasses.

The meta-model contains the following classes:

• QuestionRepository: QuestionRepository is the root repository that contains all defined questions for

question annotations of solutions. The repository can be reused between projects. Question repository

contains definitions of known AnswerTypes.

• Question: Question is an abstract class to define questions to solutions and is one of the core concepts

of the AM3D approach. Questions are used for solution evaluation and documentation of decisions to

apply or to discard a solution together with the rationale for decision. The rationale for the decisions

is based on the answers to the questions annotated to the solutions. It is an abstract class, and can be

instantiated with pre-defined types – the AM3D meta-model currently pre-defines PatternQuestion and

ComponentQuestion as a type. A question text refers to the defined glossary terms and their types, such

as “gverb”, “gobject” or “keyword”.

• PatternQuestion: PatternQuestion is a provisioned type of the questions and defines pattern question

annotations. It is an abstract class and can be specified as a goal question, intent question, consequnce

question and a variant question. Pattern question has a defined AnswerType – PatternAnswerType,

picked up from the defined AnswerTypes of the QuestionRepository. For a detailed information on

pattern question annotations and their types refer to Section 4.3.

• GoalQuestion: GoalQuestion is a provisioned type of the pattern questions and defines goal pattern

question annotations. It describes questions to the goals of a pattern. Refer to Section 4.3 for more

information on question to pattern goals.

117

4. Pattern Catalogue and Approach Details

• IntentQuestion: IntentQuestion is a provisioned type of the pattern questions and defines intent pattern

question annotations. It describes questions to the (potential) intent of a pattern. Refer to Section 4.3

for more information on question to pattern intent.

Figure 4.34.: Questions Meta-Model Package

• ConsequenceQuestion: ConsequenceQuestion is a provisioned type of the pattern questions and de-

fines consequence pattern question annotations. It describes questions to the consequences of a pattern.

Refer to Section 4.3 for more information on pattern consequences.

• VariantQuestion: VariantQuestion is a provisioned type of the pattern questions and defines variant

pattern question annotations. It describes questions to the variants of a pattern. Refer to Section 4.3 for

more information on question to pattern variants.

• ComponentQuestion: ComponentQuestion is a provisioned type of the questions and defines compo-

nent question annotations. Component question has a defined AnswerType – TextAnswerType, picked

up from the defined AnswerTypes of the QuestionRepository.

• AnswerType: AnswerType is an abstract class to define the supported answer type by a question. It

can be specified to pre-defined PatternAnswerType and TextAnswerType.

• PatternAnswerType: PatternAnswerType is one of the provisioned types of the answers to the ques-

tion annotations. It defines that a question can be answered as “yes”, “no”, “I do not know” and “no

answer”. For detailed information on answers to pattern question annotations refer to Section 4.3.4.

• TextAnswerType: TextAnswerType is one of the provisioned types of the answers to the question

annotations. It defines that a question can be answered as a free-text question.

Each architectural design pattern can have multiple questions annotated to it and stored in the generic ques-

tion repository for reuse. Questions can be reused between patterns. During pattern instantiation, questions

118

4.6. Approach formalization with Meta-Models

are mapped to requirements through the answers to the questions. Question annotations are one of the core

concepts of the AM3D approach.

4.6.10. Components

The Components meta-model is presented on Figure 4.35. The goal of the meta-model is to and describes

reusable components (COTs) as a subclass of architectural design solutions.

Figure 4.35.: Components Meta-Model Package

The meta-model contains the following classes:

• ComponentRepository: ComponentRepository is the root repository that contains all components

defined as solutions for the project. The repository can be reused between projects, once defined.

• Component: Component is a class describing reusable and third-party component solutions. Compo-

nent has a Name, an ID, creation and modification dates. Components as a subtype of a solution may

have effects defined in the Effect repository, and question annotations in terms of the AM3D approach,

for a component evaluation as of a solution candidate and its documentation with the rationale.

The Component Meta-Model is a subpackage of the Solutions Meta-Model package, as reusable and third-

party components are a subclass of reusable architectural design solutions.

4.6.11. Implementations

The Implementations meta-model is presented on Figure 4.36. The goal of the meta-model is to describes

implementation of solutions, such as of patterns and components, in architecture and in code.

The meta-model contains the following classes:

• ImplementationRepository: ImplementationRepository is the root repository that contains the im-

plementations of the selected solutions of the project. The repository has two subtypes – a pattern

instance repository and a component instance repository. The supported types of implementation are

architectural and code implementations, whereby the focus is on the architectural ones.

• SolutionInstance: SolutionInstance is an abstract class defining implementation instances of the se-

lected solutions, which can be either architectural or in code.

119

4. Pattern Catalogue and Approach Details

• ArchitectureInstance: ArchitectureInstance is one of the provisioned types of the SolutionInstance

implementation types and describes an architectural implementation of a selected solution.

• CodeInstance: CodeInstance is one of the provisioned types of the SolutionInstance implementation

types and describes a code implementation of a selected solution.

• PatternInstanceRepository: PatternInstanceRepository is one of the provisioned types of the Imple-

mentationRepository and contains implementations of selected architectural design pattern solutions –

pattern instances.

• PatternInstance: PatternInstance is one of the provisioned types of the SolutionInstance and describes

an implementation of a selected architectural design pattern solution.

• PatternArchitectureInstance: PatternArchitectureInstance is one of the provisioned types of the Ar-

chitectureInstance and describes an architectural implementation of a selected architectural design pat-

tern solution. PatternArchitectureInstance contains role and connector instances of a pattern’s roles and

connectors.

• RoleInstance: RoleInstance is a class describing instance of a pattern role in architecture or in code.

• ConnectorInstance: ConnectorInstance is a class describing instance of a pattern connector between

roles in architecture or in code.

• PCMRole: PCMRole is an abstract class describing how an architectural instance of a role is imple-

mented in terms of a PCM architectural model; it contains its references to the classes AssemblyContext

and OperationProvidedRole of the PCM meta-model.

• PCMConnector: PCMConnector is an abstract class describing how an architectural instance of a

connector is implemented in terms of a PCM architectural model; it contains its references to the

AssemblyConnector class of the PCM meta-model.

• ComponentInstanceRepository: ComponentInstanceRepository is one of the provisioned types of

the ImplementationRepository and contains implementations of selected reusable component solutions

– third-party (COT) component instances.

• ComponentInstance: ComponentInstance is one of the provisioned types of the SolutionInstance and

describes an implementation of a selected component solution.

• ComponentArchitectureInstance: ComponentArchitectureInstance is one of the provisioned types

of the ArchitectureInstance and describes an implementation of a selected component solution.

• Component: Component is a class describing instance of a reusable component in an architecture or

in code.

• PCMComponent: PCMComponent is an abstract class describing how an architectural instance of

a component is implemented in terms of a PCM architectural model, it contains its references to the

classes AssemblyContext and OperationProvidedRole of the PCM meta-model.

120

4.6. Approach formalization with Meta-Models

Figure 4.36.: Implementations Meta-Model Package

121

4. Pattern Catalogue and Approach Details

As the AM3D approach is focused on architecture, the code implementation is kept as an abstract class,

which can be extended with the help of other approaches. The implementations package focuses on imple-

mentation of patterns and components in architectural models.

The Implementations meta-model represents a concept of a two-step instantiation of solutions in the AM3D

approach. This concept is based on the idea that a solution is first described and captured in a solution

catalogue. At this level, it is a generic and reusable solution. It can be used multiple times in one project

and in different projects. In this case a solution is instantiated in the first step in the catalogue. Then, a

solution is instantiated in an architectural model or in code via the implementations repository. At this level,

it is a project and problem specific solution, as it is assigned to e.g. components in a model, or to classes in

code implementing it. This is the second step of the solution instantiation, this time in an implementations

repository. The Implementations meta-model is a subpackage of Solutions Meta-Model package.

4.6.12. Decisions

The Decisions meta-model is presented on Figure 4.37. The goal of the meta-model is to formalize the

decisions concept of the AM3D approach, where decisions on patterns and components can be re-evaluated

and documented together with the rationale. abstract the recurring information about the model elements,

such as Name, ID and to manage the dates of their creation and modification.

The meta-model contains the following elements:

• DecisionRepository: DecisionRepository is the root repository that contains decisions met during the

project.

• Decision: Decision is an abstract class formalizing the concept of a decision of a project. As an

abstract class it can be instantiated with pre-defined types – pattern decisions, deployments decisions,

component decisions and constraint decisions.

Each decision has a Name, ID, a description and a status, for example an “obsolete” decisions. A

decision may be characterised with a set of defined keywords. Keywords and decision description can

use terms from the project Glossary of terms. Decisions have two flags – “isModelled” and “isImple-

mented”, identifying the status of a decision, if it was modelled in the architecture model and if it has

a code implementation. Each decisions has a trigger and typically solved an issue with a referenced

selected architectural solution, and referred discarded architectural solutions. If a decision is modelled

or is implemented, it also has a reference to its architectural and code implementations from the Im-

plementation package. Finally, each decision has a rationale. This is one of the core concepts of the

AM3D approach. Rationale is based on the Rationale meta-model package of the AM3D meta-model.

It can be a simple text rationale, or in case of patterns and components it can be a rationale based on

the answers to the pattern or components question annotations. Answers to the questions are saved

together with the decisions about a pattern or a component.

• Constraint: Constraint is one of the provisioned types of the decisions and defines a constraint in a

project.

• PatternDecision: PatternDecision is one of the provisioned types of the decisions and defines a pattern

decision of a project (a positive or negative decision about a pattern application).

122

4.6. Approach formalization with Meta-Models

Figure 4.37.: Decisions Meta-Model Package

123

4. Pattern Catalogue and Approach Details

• DeploymentDecision: DeploymentDecision is one of the provisioned types of the decisions and de-

fines a deployments in a project.

• ComponentDecision: ComponentDecision is one of the provisioned types of the decisions and defines

a component decision of a project.

• DecisionStatusEnum: DecisionStatusEnum is an enumeration describing a status of a decision, and

can be “open”, “taken”, “reviewed”, “obsolete”, “replaced” or “inConflict”.

The Decisions meta-model links selected or discarded solutions through issues to requirements of a project.

A concept of the decision is one of the core concepts of the AM3D approach. If a pattern or a component

was selected or discarded while answering questions in the annotations, answers to the questions are saved

together with taken decisions and are a kind of semi-automated generated rationale for the decisions enabling

a lightweight documentation of latter.

4.6.13. Rationales

The Rationales meta-model is presented on Figure 4.38. The goal of the meta-model is to formalize rationale

of design decisions, which can be text, requirements or answers to the AM3D approach questions.

Figure 4.38.: Rationales Meta-Model Package

The meta-model contains the following elements:

• Rationale: Rationale is an abstract class formalizing the concept of a decision rationale. As an abstract

class it can be instantiated with pre-defined types – pattern decision rationale, requirement decision

rationale and text decision rationale. The rationale can be question-based, depending on its type.

124

4.6. Approach formalization with Meta-Models

• RequirementRationale: RequirementRationale is one of the provisioned types of the decision ra-

tionale and defines a rationale mainly based on a requirement. This rationale is linked to existing

requirements of a project.

• TextRationale: TextRationale is one of the provisioned types of the decision rationale and defines a

rationale based solely on a textual explanation.

• PatternRationale: PatternRationale is one of the provisioned types of the decision rationale and de-

fines a rationale based on answers to provided question annotations to a solution. It is one of the core

concepts of the AM3D approach. The solution is a design pattern defined in the pattern catalogue.

• ComponentRationale: ComponentRationale is one of the provisioned types of the decision rationale

and defines a rationale based on answers to provided question annotations to a solution. In this case,

solution is a reusable component.

• Answer: Answer is an abstract class formalizing the concept of an answer as of a part of a decision

rationale. Answer has an answer text specified with the ADMAnswerTypeEnum, which is specific for

the AM3D approach. Answer can also have a rationale, which can be based on requirements to the

system or can be provided as text. If a user wants to provide a detailed explanation to the question

answer, a requirement or a text rationale can be attached to it.

• PatternAnswer: PatternAnswer is one of the provisioned types of the answers and defines an answer

to the pattern question annotations. It is linked to the question in question repository.

• ComponentAnswer: ComponentAnswer is one of the provisioned types of the answers and defines an

answer to the component question annotations. It is linked to the question in question repository.

• ADMAnswerTypeEnum: ADMAnswerTypeEnum is an enumeration describing possible answers to

the question annotations in terms of the AM3D approach. The answer can be “no answer”, “yes”, “no”

or “I do not know”. Answers to the AM3D questions are described in detail in Section 4.3.4.

The Rationales Meta-Model is a subpackage of the Decisions Meta-Model package and is one of the core

concepts of the AM3D approach. This formalization allows for a semi-automated documentation of answers

to the solution questions serving as a rationale for the taken decisions.

4.6.14. Relations

The Relations meta-model is presented on Figure 4.39. Its goal is to formalize relations between various

approach concepts, such as decisions, requirements, patterns or issues, with the focus of relations between

one or similar concepts.

The meta-model contains the following classes:

• RelationsModel: RelationsModel is the root repository that contains possible types of relations be-

tween elements of the AM3D meta-model and references to known relations between the objects. The

repository can be reused between projects.

• RelationType: RelationType is a class describing a type of a relationship between objects. Relation

reference to the relation types contained in the relations model.

125

4. Pattern Catalogue and Approach Details

• Relation: Relation is a class defining relations that can be implemented by various objects of the

AM3D meta-model. A relation can be bidirectional (to and from) and has a type defined by the Rela-

tionType. Relation is a generic relationship, awarding flexibility to the participating objects to define

their own relationships at run-time.

• RelationObject: RelationObject is an abstract class defining objects involved in the relationship. A

RelationObject can be an Issue, a Requirement, a Decision and a GlossaryTerm. Some of these objects

also contain additional pre-defined relationships specified by the Relations meta-model.

• AllRelations: AllRelations is an abstract class defining all additional pre-defined relationships speci-

fied by the Relations meta-model. It is implemented for a convince purpose, as most of the RelationOb-

jects implement all of the pre-defined relationships.

• Trigger: Trigger is one of the provisioned types of the additional pre-defined relationships and defines a

“trigger” relationship between the objects, where one of the involved objects is a trigger of the other(s).

• Dependency: Dependency is one of the provisioned types of the additional pre-defined relationships

and defines a “dependency” relationship between the objects, where one of the involved objects is

dependent the other(s).

• Duplication: Duplication is one of the provisioned types of the additional pre-defined relationships

and defines a “duplication” relationship between the objects, where one of the involved objects is a

duplicate of the other(s).

• Parental: Parental is one of the provisioned types of the additional pre-defined relationships and de-

fines a “parental” relationship between the objects, where one of the involved objects is a parent of the

other(s), while other are children of the parent(s).

• Conflict: Conflict is one of the provisioned types of the additional pre-defined relationships and defines

a “conflict” relationship between the objects, where one of the involved objects is in a conflict with the

other(s).

The Relations meta-model is a help meta-model, its purpose is to abstract and to structure the relationships

between various objects in a package.

126

4.6. Approach formalization with Meta-Models

Figure 4.39.: Relations Meta-Model Package

127

4. Pattern Catalogue and Approach Details

4.7. Summary

In this chapter, the AM3D pattern catalogue, which is a core of the AM3D approach, was explained in detail.

The goal of the AM3D pattern catalogue is to structure available information about patterns and to present

it in a quick and assessable way. At the same time, the catalogue supports evaluation of patterns suitability

for the given design problems together with the support of semi-automated documentation of design patterns,

as of solutions for design problems together with the rationale for the pattern selection. Moreover, pattern

modelling formalisation is co-saved in the catalogue and allows to simplify modelling and to allow checks

for architectural modelling violations.

The pattern description in the catalogue is structured with the help of the defined pattern template. The

template consists of three building blocks: General information about patterns, question annotations and

architectural structure of a pattern. The description template is explained in Section 4.2.

The goal of the question annotations to a pattern is to support the overall goal of the AM3D approach

for a lightweight pattern evaluation and documentation together with the rationale for the decision on pat-

tern application. Question annotations support users at understanding the features of the pattern and whether

they really want to apply a pattern, as a pattern may have too many drawbacks, as compared to the won

advantages of its application. They support users at generating documentation with the rationale for the de-

cisions about patterns. For these purposes, the question annotations are of four types: Goals questions, intent

questions, consequence questions and variant questions. They are formulated following the rules defined in

Section 4.3.3. Answers to the questions are given by a user and are rationale for the decision to apply or to

withdraw a pattern.

The AM3D approach is supported by the formalisation of the pattern catalogue of this new type, design

decisions on pattern application and of connected project contexts. The formalisation results through a devel-

oped meta-model, explained in detail in Section 4.6. The meta-model supports systematic approach to capture

and management of patterns, decisions on pattern application and other relevant project context artefacts and

elements. It also allows automated tool-generation, documentation of model elements and automated checks

on the meta-model instances (e.g. to verify structural correctness of a pattern instance in an architectural

model). Thus, the meta-model structurally and conceptually supports the application scenarios of the AM3D

approach (defined in Section 3.2.2), and provides a tool support for them. The target user of the meta-model

and its instances is the same as the target use of the AM3D approach (a software engineer or a system archi-

tect). It can be also used by a requirements engineer.

The next Section 5 provides a version of a pattern catalogue filled in with pattern instances as an example

of the AM3D pattern catalogue. The sample patterns in the catalogue are described with the developed

description template, and following the process defined in the current chapter. Also the questions annotations

to the sample patterns follow the here-defined guidelines. The catalogue was used for the approach evaluation

in the conducted survey and during the empirical study. For more details on validation of the approach please

refer to Section 6.

128

5. Pattern Catalogue Example Entries

This chapter contains entries of the AM3D pattern catalogue. It is a sample pattern solution catalogue devel-

oped following the AM3D approach. Each of the pattern entries in the catalogue is provided with question

annotations in terms of the AM3D approach. The entries of the catalogue were used in the validation of the

AM3D approach – for the survey and for the controlled experiment, as described in Section 6. The descrip-

tion of the AM3D catalogue entries used for the survey and the experiment was shortened down to a short

description and question annotations sections.

These entries are a combination of a set of well-known design patterns from Gamma et al. [28] and

Buschmann et al. [29], together with a set of lesser known and more complex patterns of enterprise archi-

tectures by Fowler [30]. The goal of the combination of various patterns was to demonstrate that the AM3D

pattern catalogue can be used to describe all patterns in an easy and comprehensible way, so that the users of

the pattern catalogue can successfully understand both pattern sets, patterns that are well-known to them, and

patterns that they have never applied or have even never heard about.

There are currently 12 patterns described: Model View Controller in Section 5.1, Client-Server style in

Section 5.2, Multi-Tier style in Section 5.3, Fat Client in Section 5.4, Thin Client in Section 5.5, Proxy in

Section 5.6, Façade in Section 5.7, Adaptor in Section 5.8, Singleton in Section 5.9, Class Table Inheritance

in Section 5.10, Single Table Inheritance in Section 5.11, and Concrete Table Inheritance in Section 5.12.

5.1. Model View Controller

Model View Controller pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP001

Short Description:
The pattern isolates “domain logic” (the application logic for the user) from the user interface (input and presen-

tation), enabling independent development, testing and maintenance of each of them (separation of concerns).

Goal of the Pattern:
– Decouple user-interface aspects of a system from its functional core

– Interaction is limited to calling an update procedure

Potential Advantages: Potential Drawbacks:
– Multiple views on the same model

– Strict model separation from view

– Synchronized views

– Pluggable views and controllers

– Exchangeability of “look and feel”

– Framework potential

– Increased complexity

– Potential for excessive number of updates

– Close coupling of views and controller to a model

– Low efficiency of data access in view

– Inevitability of change to view and controller when

porting

– Difficulty of using MVC with high-level GUIs

Information Source:
Pattern-oriented software architecture, Buschmann et al., 1996 [29].

129

5. Pattern Catalogue Example Entries

Recommended Co-Patterns/Solutions:
– Observer

– Command processor pattern

Similar Patterns/Solutions:
– Presentation Abstraction Control

– Locks on data

– Offline user communication

Excluded Patterns/Solutions:
– Not listed

Variants:
– Variant 1: The view is directly connected to the Model.

– Variant 2: Mixed form of base variant and Variant 1. The view is connected to the model through a controller

but in some cases has a direct access to the model.

Question Annotations Information Block

Goal Would you like to present the same information in different ways e.g., through multiple

views?

Intent
Would you like to enable to change the GUI (views) at run-time?

Do you plan to exchange the underlying data model or the views representing this data?

(design time)

Conse-
Is it acceptable to have potential delays by the view updates when larger amounts of data are

transferred?

quence The data in the model (e.g. DB) is not changed directly through the views (but through a

controller), and will this be an issue in the future?

5.2. Client-Server Style

Client-Server Style pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP002

Short Description:
The pattern structures the system into servers (centralized systems) and clients referring to that system and using

its resources through a connecting network.

Goal of the Pattern:
– Structure the system as a distributed system with independent clients and servers and a connecting network

between them

– Provide a centralized source to store the data and centralized access to it

Potential Advantages: Potential Drawbacks:
– Higher security

– Centralized data access

– Ease of maintenance

– Light (Thin) clients possible

– Support of multiple clients and client types

– Centralized data management, storage, and backup

– High coupling

– Reliability of server

– Performance bottlenecks

– Central target of security attacks

– High dependency on connectivity

– Data consistency problems

Information Source:
Wikipedia, design articles and Microsoft MSDN.

“Software Architecture and Design” [171].

130

5.3. Multi-Tier Style

Recommended Co-Patterns/Solutions:
– Redundancy

– Client-side Caching

Similar Patterns/Solutions:
– Multi-Tier Style

Excluded Patterns/Solutions:
– Not listed

Variants:
– Variant 1: Client-Queue-Client, where clients communicate with other clients through a server-based queue.

Clients can read data from and send data to a server that acts simply as a queue to store the data. This allows

clients to distribute and synchronize files and information [171].

– Variant 2: Peer-to-Peer (P2P), where client and server swap their roles in order to distribute and synchronize

files and information across multiple clients. It extends the Client-Server style through multiple responses to

requests, shared data, resource discovery, and resilience to removal of peers [171].

– Variant 3: Application server-based style, where the server hosts and executes applications and services that a

thin client accesses through a browser or specialized client installed software [171].

Question Annotations Information Block

Goal
Would you like to design a distributed system with independent servers (capture resources),

clients (demand resources), and a network connection between them?

Intent
Would you like to have central data storage and a centralized access to the system data?

Is a better control over security essential for your system?

Would you like multiple clients to have access to the data?

Would you like to support different client types or different devices?

Conse-
Is dependency on connectivity acceptable in your application?

quence Are investments in server redundancy and data consistency manageable in your project?

5.3. Multi-Tier Style

Multi-Tier Style pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP003

Short Description:
The pattern defines a Client-Server architecture, in which presentation, application processing and data man-

agement functions are logically separated.

Goal of the Pattern:
– Logically separate functions so that specific layers can be added or modified, instead of reworking the entire

application

– Separate system according to physical structure of an infrastructure

Potential Advantages: Potential Drawbacks:
– Higher maintainability and scalability of compo-

nents through lower coupling

– Flexibility via independent tier management

– Higher overall availability

– One tier may become a bottleneck for the entire

application

– Security flaws in one tier may endanger complete

application

– Increased management complexity

– Backups and updates need to be synchronised

– Different evolution cycles of used technologies

131

5. Pattern Catalogue Example Entries

Information Source:
Pattern-oriented software architecture, Buschmann et al., 1996 [29].

“Software Architecture and Design” [171].

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Presentation-Abstraction-Controller

– Client-Server Style

Excluded Patterns/Solutions:
– Not listed

Variants:
– Variants are variations in the number of tiers, starting from the classical 3-Tier application with business,

presentation and data access tiers.

Question Annotations Information Block

Goal
Would you like to be able to add or modify specific components instead of reworking the

whole application?

Intent
Would you like to structure the system according to the underlying physical infrastructure?

Would you like to prevent the client from accessing the data directly?

Would you like to have a linear communication model in your system, a strong linear hier-

archy of communication?

Conse-
Are you aware that all communication will run through a middle tier, which can become a

bottleneck?

quence Is potential involvement of multiple communication protocols with different evolution cycles

not an issue in the future?

5.4. Fat Client

Fat Client pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP004

Short Description:
The pattern describes a computer (client) in a client-server architecture that provides rich functionality indepen-

dent of the central server.

Goal of the Pattern:
– Provide (partial) independence of the client from the server

– Assure the ability to work offline (at least partially)

– Improve performance of complex computations on the client side

Potential Advantages: Potential Drawbacks:
– Reduced dependency on connectivity to the server

– Reduced server and network load

– Lower server requirements

– Possibility to work offline

– Offloading costs on the client-side

– Maintainability of the clients

– Slower application start-up

– Higher requirements to client resources

– Data security problems due to decentralized stor-

age

– Data consistency and back up problems

Information Source:
Wikipedia, design articles.

132

5.5. Thin Client

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Thin Client

Excluded Patterns/Solutions:
– Not listed

Variants:
– Not listed

Question Annotations Information Block

Goal
Would you like a client to be able to perform the functionality in circumstances of potential

disconnection to the main server?

Intent
Would you like to reduce the load on your main server or network offloading the processing

and capacity demands to the client devices?

Is working offline essential for your application?

Conse-
Will the application be running on powerful devices and porting to low-performance devices

can be excluded in the future? (otherwise – Thin Client)

quence Is your infrastructure standardized with little software heterogeneity, and will it stay like this

in the future? (otherwise → Thin Client)

Is potential slower start-up of the application acceptable?

5.5. Thin Client

Thin Client pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP005

Short Description:
The pattern describes a computer (client) in client-server architecture that heavily depends on the functionality

provided by a central server.

Goal of the Pattern:
– Put role responsibilities on the server (e.g. computation, persistence, or even GUI rendering)

– Keep updates centralized and simplify the maintenance of computational services

Potential Advantages: Potential Drawbacks:
– Centralized updates

– Higher data consistency

– Reliable backups

– Fast application start-ups

– Low load on the client resources

– Easier maintainability of clients

– Usage data available on company site

– Reduced dependencies on OSs

– Increased network load

– High server load

– Data availability depends on the network

– Higher requirements to the server, higher server

costs

– Dependency on network connection

Information Source:
Pattern-oriented software architecture, Buschmann et al., 1996 [29].

133

5. Pattern Catalogue Example Entries

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Fat client

Excluded Patterns/Solutions:
– Not listed

Variants:
– Not listed

Question Annotations Information Block

Goal
Would you like to put responsibility for data computation, persistence, etc. on the server

side?

Intent
Would you like to keep SW updates centralized?

Is your infrastructure heterogeneous?

Would you like to support low-performance devices?

Conse-
Is working offline not essential for your application? (otherwise → Fat Client)

quence Are main changes (SW updates) expected to be on the server side? (otherwise → Fat Client)

5.6. Proxy

Proxy pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP006

Short Description:
The pattern provides a representative (a place-holder) for another object to control access to it.

Goal of the Pattern:
– Provide an interface to some other object, resource, network connection, etc.

Potential Advantages: Potential Drawbacks:
– Hide real object, recourse, etc., and its address

– Add additional functionalities to an object, re-

source or network connection

– Restrict or manage access to an object, resource or

network connection

– State-full object, resource, etc., access possible

– Only statical extensions possible

– Decreased performance via access to an additional

object

– Higher level of indirection

– Increased complexity

Information Source:
Design Patterns. Elements of Reusable Object-Oriented Software, Gamma et al., 1995 [28].

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Façade

– Mediator

– Adaptor

Excluded Patterns/Solutions:
– Not listed

Variants:
– Variant 1: Remote proxy provides a local representative for an object in a different address space.

– Variant 2: Virtual proxy creates expensive objects on demand.

– Variant 3: Protection proxy controls access to the original object.

134

5.7. Façade

Question Annotations Information Block

Goal
Would you like to provide an interface to some other object, resource, network connection,

etc.?

Intent
Would you like to provide or restrict the access to functionalities provided by another object

or server?

Would you like to provide an interface with some additional functionality (management of

objects state, etc.)?

Would you like to provide a representative for an object in different address-space?

Conse-
Are you not planning to be able to extend the object’s properties dynamically? (otherwise

→ Decorator)

quence Is a potential performance bottleneck not a problem?

Is a higher level of indirection not a problem?

5.7. Façade

Façade pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP007

Short Description:
The pattern provides a unified interface to a set of interfaces in a subsystem.

Goal of the Pattern:
– Minimize the communication and dependencies between subsystems

– Simplify a number of complicated interfaces with a subsystem into a single interface

Potential Advantages: Potential Drawbacks:
– Unified access to the subsystem

– Reduced communication between subsystems

– Reduced cohesion

– Hide subsystem implementation details

– Performance bottleneck

– Only stateless access possible

– Only static access

– No modification of functionality

– No additional interface implementation

Information Source:
Design Patterns. Elements of Reusable Object-Oriented Software, Gamma et al., 1995 [28].

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Proxy

– Mediator

– Adaptor

Excluded Patterns/Solutions:
– Not listed

Variants:
– Variant 1: Singleton Façade (implemented through singleton pattern)

– Variant 2: Multiple Façade objects provide the same interfaces to the same set of subsystems

– Variant 3: Multiple Façades provide different interfaces to the same set of subsystems

135

5. Pattern Catalogue Example Entries

Question Annotations Information Block

Goal Would you like to provide a unified interface to a set of interfaces in a subsystem?

Intent
Would you like to minimize the communication and dependencies between subsystems?

An additional functionality wrapped into the unified interface is not your intent? (otherwise

→ Proxy)

Is a stateless unified interface your intent? (otherwise → Proxy)

Is it desired that subsystem classes know nothing about the Façade object(s)? (otherwise →
Mediator)

A new interface for an object is not your intent? (otherwise → Adaptor)

Conse-
Are you not wishing to be able to extend the object’s properties dynamically? (otherwise →
Decorator)

quence Is a potential performance bottleneck not an issue?

5.8. Adaptor

Adaptor pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP008

Short Description:
The pattern converts an interface of a class into another interface that clients expect.

Goal of the Pattern:
– Convert the interface of a class into another interface that clients expect

– Adapter lets classes work together, that could not otherwise, because of incompatible interfaces

Potential Advantages: Potential Drawbacks:
– Add additional interface without direct object

modification

– Improve interoperability of classes

– Decreased maintainability

– Increased code complexity

Information Source:
Design Patterns. Elements of Reusable Object-Oriented Software, Gamma et al., 1995 [28].

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Façade

– Mediator

– Proxy

Excluded Patterns/Solutions:
– Not listed

Variants:
– Variant 1: Object Adaptor, contains an instance of class it wraps and makes calls into the instance of wrapped

object.

– Variant 2: Class Adapter, includes multiple polymorphic interfaces by implementing or inheriting both the

interface that is expected and the interface that is pre-existing.

136

5.9. Singleton

Question Annotations Information Block

Goal
Would you like to convert an interface of a class (or an object) into another interface that

clients expect?

Intent
Would you like to make interfaces of incompatible classes compatible?

Would you like to change the interface of an existing object (a new interface design for an

object)? (otherwise → Proxy or Decorator)

Conseq. Are you aware of the size of the code you have to write and maintain to adapt the class?

5.9. Singleton

Singleton pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Structural pattern ID: AP009

Short Description:
The pattern restricts the instantiation of a class to one object.

Goal of the Pattern:
– Ensure a class only has one instance

– Provide a global point of access to it

Potential Advantages: Potential Drawbacks:
– Global access to an object possible

– Restricted data modification

– Decreased maintainability

– Security issues

– Limited parallelization of application

– Limited multi-thread capability

Information Source:
Design Patterns. Elements of Reusable Object-Oriented Software, Gamma et al., 1995 [28].

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Not listed

Excluded Patterns/Solutions:
– Not listed

Variants:
– Variant 1: Singleton permits a number of its instances; the number can be configured in the Class.

Question Annotations Information Block

Goal Would you like to ensure that a class has only one instance?

Intent Would you like to make class instance easily accessible (globally)?

Conse-
If you are developing a distributed application, is it not an issue that the data stored in the

instance can not change too often?

quence Having global access to the class instance is not a potential threat to the application?

You are not developing a multi-thread application, respectively have you extended singleton

for this case?

5.10. Class Table Inheritance

Class Table Inheritance pattern entry of the AM3D catalogue described using the description template:

137

5. Pattern Catalogue Example Entries

General Information Block

Type: Architectural pattern Category: Object-Relational Pattern ID: OP001

Short Description:
The pattern represents an inheritance hierarchy of classes with one table for each class. Database structure maps

clearly to objects and allows links anywhere in the inheritance structure.

Goal of the Pattern:
– Map fields in inheritance hierarchy to a relational database

– Straightforward relationship between database and domain model

– Tables are easy to understand and don’t waste space

Potential Advantages: Potential Drawbacks:
– Compact data structure

– Lower complexity of domain model relationship

– Lower data-base application interoperability

– Low extendibility

– Reduced performance because of frequent joins

Information Source:
Patterns of Enterprise Application Architecture, Fowler, 2005 [30].

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Single Table Inheritance

– Concrete Table Inheritance

Excluded Patterns/Solutions:
– Not listed

Variants:
– Not listed

Question Annotations Information Block

Goal Would you like to represent an inheritance hierarchy of classes in relational database?

Intent Would you like a straightforward relationship between the database and the domain model

to achieve easier understanding of the Database?

Conse-
Is it not a problem that the majority of requests can be satisfied only with performance

expensive joins?

quence Is it not your intent for the Database to be used by other applications that are not using (or

do not know) objects? (otherwise → Concrete Table Inheritance)

Is the final number of tables in the database structure limited (small) and is it unlikely to

change in the future?

5.11. Single Table Inheritance

Single Table Inheritance pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Object-Relational Pattern ID: OP002

Short Description:
The pattern represents an inheritance hierarchy of classes in a relational database as a single table that has

columns for all the fields of the various classes. It maps all fields of all classes of an inheritance structure into a

single table. Each class stores relevant data to it in one single row. .

138

5.12. Concrete Table Inheritance

Goal of the Pattern:
– Map fields in inheritance hierarchy to a relational database

– Minimization of joins

Potential Advantages: Potential Drawbacks:
– Centralized data storage

– Minimisation of joins

– Control of individual class extensions

– Lower scalability of larger tables

– Frequent lock on the table

– Higher complexity of domain model relationship

– Lower data-base application interoperability

Information Source:
Patterns of Enterprise Application Architecture, Fowler, 2005 [30].

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Class Table Inheritance

– Concrete Table Inheritance

Excluded Patterns/Solutions:
– Not listed

Variants:
– Not listed

Question Annotations Information Block

Goal Would you like to represent an inheritance hierarchy of classes in relational database?

Intent
Would you like to keep all data in a single table? (otherwise → Class Table Inheritance or

Concrete Table Inheritance)

Is it important to avoid joins in retrieving data?

Conse-
Frequent locks on one table are not an issue?

quence A non-straightforward relationship between database and domain model is not a problem?

Is it not your intent for the Database to be used by other applications that are not using (or

do not know) objects? (otherwise → Concrete Table Inheritance)

5.12. Concrete Table Inheritance

Concrete Table Inheritance pattern entry of the AM3D catalogue described using the description template:

General Information Block

Type: Architectural pattern Category: Object-Relational Pattern ID: OP003

Short Description:
The pattern represents an inheritance hierarchy of classes in a relational database with one table for each con-

crete class. Database structure maps clearly to objects and allows links anywhere in the inheritance structure.

Goal of the Pattern:
– Map fields in inheritance hierarchy to a relational database

– Spread the load between tables

– Assure that Database can be used by other applications that are not using the objects

– Assure each table is self-contained and has no irrelevant fields

Potential Advantages: Potential Drawbacks:
– Improved data-base application interoperability

– Improved request load between the tables

– Low modifiability

– Reduced extendibility

– Reduced performance through expensive joins

139

5. Pattern Catalogue Example Entries

Information Source:
Patterns of Enterprise Application Architecture, Fowler, 2005 [30].

Recommended Co-Patterns/Solutions:
– Not listed

Similar Patterns/Solutions:
– Single Table Inheritance

– Class Table Inheritance

Excluded Patterns/Solutions:
– Not listed

Variants:
– Not listed

Question Annotations Information Block

Goal Would you like to represent an inheritance hierarchy of classes in relational database?

Intent
Shall one database table be used for each concrete class in the hierarchy and no tables for

abstract classes?

Would you like to spread the request load between the tables?

Would you like the Database to be used by other applications that are not using (or do not

know) objects?

Conse-
Are there few changes to the objects (classes) expected?

quence Is data collection (retrieval) from all of the tables seldom demanded in your application?

(otherwise → Single Table Inheritance)

5.13. Collected Experience

The experiences collected during the creation of the example catalogue are also summarized under the steps

of the processes to add questions to a pattern in Section 4.3.5 and to fill in the catalogue in Section 4.4.

First of all, creation of such a catalogue is a time-demanding task. It requires an expert who would go

through the common design pattern descriptions and would extract the required information out of those

descriptions. The expert is then responsible to structure the extracted information according to the defined

AM3D pattern description. Afterwards, the entries shall be sequentially reviewed by two independent re-

viewers. Such a process assures a high understandability of the catalogue entries, as demonstrated by the

conducted AM3D approach validations, where the example catalogue was used for the approach’s validation

(see Chapter 6 for details).

Second, the meta-model used for the approach’s formalization and the process supported by it could be

applied to describe patterns in the example catalogue without limitations. The descriptions could also be used

for the application on the CoCoME example, described in Section 3.6.

Finally, the descriptions of some design patterns may vary from source to source. Such ambiguities have

to be solved by an expert in the area – an expert in architectural design patterns or an expert in other solutions

that are to be described in the catalogue.

140

6. Validation

This chapter describes the validation of the AM3D approach. The AM3D approach improves ease and fea-

sibility of application of architectural design patterns, and supports architects and software engineers in doc-

umentation of corresponding design decisions, together with their rationale and trace links between design

decisions, patterns as design solutions, requirements and architecture, thus improving maintainability of the

system architecture during system evolution.

To describe and to classify the validation, four types of empirical validation in architectural knowledge

management area were defined together with validation goals, subjects, objects, artefacts and effort estima-

tions. The validation types are based on the common types for the model-based performance prediction

methods from [85] and [86]. The types include: Feasibility (Type 0), Appropriateness (Type I), Applicability

(Type II) and Cost-Benefit (Type III).

The validation of the AM3D approach consists of three parts: (1) A survey, (2) application on a common

example, and (3) an empirical study based on a controlled experiment.

The goal of the survey is to evaluate the feasibility of the motivation of the approach and to evaluate the

feasibility of the proposed annotated pattern catalogue as of a potential solution for the problems with design

pattern use and documentation (Type 0 validation: Feasibility). The survey research method is structured

interviews, which is a qualitative research method. It is described in detail in Section 6.4.

The goal of the application on a common example is to demonstrate applicability of the AM3D approach,

including the applicability of its artefacts and the process (Type I validation: Appropriateness). It is described

in detail in Section 4.

The goal of the empirical study is to validate the claimed benefits of the approach (Type II validation:

Applicability). The empirical study validates if design patterns annotated according to the AM3D approach

can be better understood and applied more correctly as compared to the design pattern catalogue based on

the standard approach. Further-on, it is validated if a system architecture, which is documented according

to the AM3D approach and, thus, is the result of development of the system using the AM3D approach,

can be better maintained compared to the system documented according to the standard catalogue approach.

The empirical study research method is controlled experiment, which is a quantitative research method. The

experiment is described in detail in Section 6.5.

This chapter is structured as follows. Section 6.1 introduces types of validation and explains them. It

presents our developed validation type classification for the area of the design decisions research. Section 6.2

describes the validation goals together with the kinds of validation, which were conducted for the AM3D

approach. Section 6.3 introduces the Goal Question Metric approach by Basili [172], which is used to define

the research goals and questions for the survey and the experiment. Section 6.4 explains in detail the con-

ducted survey, its research questions, its method, and its design, including the context, subjects, process and

materials. It explains test of the method, provides information on participants and the analysis of the results,

together with the discussion of the treats to validity and summary of the survey results. Section 6.5 explains

in detail the conducted experiment, its research questions, its method, and its design, including the context,

subjects, process and materials. It explains test of the method, provides information on participants and the

141

6. Validation

analysis of the results, together with the discussion of the treats to validity and summary of the experiment

results. Finally, Section 6.6 concludes the chapter.

6.1. Types of Validation

An overview of validation and verification methods in knowledge engineering research area is provided by

Preece in [173]. It is an overview for the whole area and is not detailed enough for our approach. Koziolek

proposed three types of empirical evaluations for the model-based performance prediction methods in [86].

They are sketched on Figure 6.1.

Laboratory Field

Type I

Type II

Type III

External
Validity

Figure 6.1.: Types of Empirical Validation [86]

We adopt these three types by Koziolek [86] to the area of the design decisions research, and define four

types of the empirical evaluations for the area. The empirical evaluations type summary is provided in Ta-

ble 6.1.

In the following we explain the design decisions area empirical evaluations types:

• Type 0 (Feasibility): The entry level evaluation of the application feasibility of design decision capture

and management approaches. Authors of an approach develop means to capture and manage design

decisions (e.g., meta-models, models, text templates, etc.) and instantiate them with several example

decisions. The goal is to demonstrate that a developed template or a model can be used for this goal.

In such evaluation a comparison is done to a no-approach situation, where e.g. undocumented design

decisions are compared to documented design decisions. The authors either use no example, or use a

simple self-invented example to place the provided decisions into some context. The authors sketch

a usage process for the proposed approach. A tool-support for the approach, if any, is a research

prototype. Usually it is a pure research evaluation with no industrial context application. Typo 0

evaluation is a low-effort evaluation.

• Type I (Appropriateness): The evaluation of the appropriateness of design decision capture and man-

agement approaches. The goal is to demonstrate that developed artefacts can be used to capture and

manage design decisions and other relevant context information, such as requirements, which are part

of a decision rationale, architectural models where decisions are implemented, trace links between

various artefacts, documentation, etc. A reference approach for the comparison by such evaluation is

142

6.1. Types of Validation

Type Goal Who How Tools Example Effort
Type 0
(Feasibility)

Demonstrate fea-

sibility

Authors Models, Meta-Models, Text

description templates, Text

applied on an example

though a comparison to the

“no-approach” situation or

though a survey with users

No tool, Re-

search pro-

totype

Research

example

+

Type I
(Appro-

priateness)

Demonstrate ap-

plicability in a

system context

Authors Type 0 artefacts + Require-

ments model, Trace links,

Architectural model applied

on an example

Research

prototype

Research

example

in a

context

+ / ++

Type II
(Applicability)

Demonstrate ap-

plicability by ex-

tern users in a

system context

Authors,

Extern

users

Type I artefacts + and real-

world-alike artefacts applied

on an example

Stable

research

proto-

type, Tool

support

Real-

world

example

++

Type III
(Cost-Benefit)

Demonstrate

benefit-over-cost

applicability by

extern users in a

real-life system

context

Authors,

(Inde-

pendent)

Extern

users

Type II artefacts + applied

in a real-world-alike con-

text over a longer period of

time or on a project executed

twice, with and without the

method and analysed in a

longer time perspective

Mature tool

support

Real-

world

system

+++

Table 6.1.: Types of Empirical Evaluations in the Design Decision Area

usually a no-approach situation, where e.g. undocumented design decisions are compared to a pos-

sibility to document design decisions with the proposed approach. The authors use a self-invented

example to demonstrate the approach and have a process (often informal) about how the approach shall

be applied. A tool-support for the approach is a research prototype. In some cases of Type I evaluation

authors ask subjects to anticipate and to speculate about a potential approach application and to fill in

their opinion in a questionnaire. In this case evaluation is performed as interviews, which are usually

based on the (fixed) questionnaires.

If the Type I evaluation is a comparison-based evolution, it requires a comparably low effort. In case

of a survey, especially with industrially-employed participants, a Type I evaluation involves a moderate

effort.

• Type II (Applicability): Type-II studies evaluate (or actually validate) the applicability of a method,

when it is used by the targeted users of an approach instead of the authors of the method [86]. Target

users are usually software architects, engineers, developers, testers or students. The evaluation subjects

are often students, whose suitability for the computer science area is discussed by Tichy in [174].

The developed approach is put into a real-world-alike context and demonstrated with the help of a

stable research prototype tool used by the subjects. The type II evaluation compares the proposed

approach and its artefacts and tool-support to an approach common for the research area, such as e.g.

no documentation of design decisions or pure textual documentation of them. Type II evaluation is

effort and cost prone.

• Type III (Cost-Benefit): This form of evaluation (actually, of validation) is a cost-benefit analysis [86],

and relies on a mature tool support, capable of handling real world problems in hands of extern users.

Documentation of design decisions, their rationale, involved requirements and architectural elements,

and implementation of trace links between these artefacts causes high initial costs. It is not clear if

these costs pay off during the later system life-cycle phases. Type III evaluation compares the later

143

6. Validation

maintenance costs and their reduction (if any) with the initial investments connected to the approach

introduction and usage. As to Koziolek [86], ideally, the improvement claim shall be checked by

conducting the same software project at least twice; once without applying the approach and accepting

the costs for late life-cycle maintenance, and once applying the approach thereby investing higher

upfront costs. Comparing the respective costs for both projects enables assessing the benefit of a

prediction method in terms of a business value. However, such evaluation is extremely cost and effort

intense. To our best knowledge, this type of evaluation cannot be found in the design decisions research

field.

Evaluation and validation in the area of knowledge management is highly time and cost consuming in

general. Thus, approach evaluations seldom go beyond the Type II validation. The most common evaluations

are of Type I and Type II, which is a well known and accepted fact in the community. Type III evaluation

is almost never used (to our best knowledge, it have been never used up to now), as it requires a stable

connection to an industrial context over a long period of time (usually, for several years). Thus, the majority

of the related work approaches (see Section 7) is limited to the Type 0, Typo I and Type II validations.

6.2. What is Validated?

We have evaluated our approach using Type 0, Type I and Type II evaluation types. A summary of the AM3D

approach validation, artefacts and description sources is listed in Table 6.2.

In the following, we provide details on the conducted validation, which consisted of three parts:

• Type 0 (Feasibility): Type I validation is carried out on the survey. In this type of the evaluation, we

designed and conducted a survey based on the structured interviews, which is a qualitative research

method. The goals of the survey are to evaluate the feasibility of the motivation of the approach, and to

evaluate the feasibility of the proposed annotated AM3D pattern catalogue as a potential solution for

some problems with design pattern application. The survey goals, design and analysis of the results are

provided in Section 6.4.

• Type I (Appropriateness): Type I evaluation was carried out with the help of meta-models developed

to formalise the approach and described in Section 4.6, and meta-model instances in the form of a

the AM3D pattern catalogue, provided in Section 5. In this type of evaluation, the proposed AM3D

approach was applied on an example CoCoME-based system to demonstrated the applicability of the

proposed AM3D approach. The application on example is described in Section 3.

• Type II (Applicability): Type II validation is an empirical study based on the controlled experiment.

Controlled experiment is a quantitative research method. In the empirical study, we validate the claimed

benefits of the AM3D approach. We validate if design patterns annotated according to the AM3D ap-

proach can be better understood and applied more correctly, as compared to the design pattern catalogue

based on the classical approach (well-established book-catalogues, such as books by Buschmann2007b

et al. [31] or Gamma et al. [28]). Further-on, we validate if a system architecture documented accord-

ing to the AM3D approach, as the result of development following the AM3D approach, can be better

maintained compared to the system documented according to the classical catalogue approach. The

empirical study goals, design and analysis of results are provided in Section 6.5.

144

6.3. The Goal Question Metric Approach (GQM)

Evaluation
Type

How What Explained
in

Type 0
(Feasibility)

Survey based

on structured

interviews

with 25

participants

– Justified motivation of the

approach.

– Feasibility of the applica-

bility of the proposed an-

notated pattern catalogue

evaluated by independent

subjects.

Section 6.4

Type I
(Appro-

priateness)

AM3D

approach

artefacts and

process,

– Support of capture and

management of pattern

design decisions and re-

lated artefacts in a context

of a system.

Section 3

Type II
(Appli-

cability)

A case study

based on the

controlled

experiment

with 20

participants

– Improvement of under-

standability and correct-

ness of pattern applica-

tion in a system design

using AM3D compared to

the standard approach.

– Improvement of main-

tainability of the system

architecture documented

with AM3D compared to

the standard approach.

Section 6.5

Table 6.2.: The AM3D Validation Summary

Table 6.3 presents the relations between the validation types and the AM3D approach application scenarios

and benefits. A positive relation (�) means that the application scenario or benefit was one of the goals of

the validation. Correspondingly, a negative relation (�) means that the validation of the application scenario

or benefit was not one of the goals.

As explained in Section 6.1, Type III validation is, in fact, impossible for the problem area. It is a recog-

nized practice in the community, and Type 0 to Type II evaluations are considered to be sufficient.

6.3. The Goal Question Metric Approach (GQM)

In this section we briefly explain the Goal Question Metric approach that is used to derive the validation plans

for the survey and the experiment.

The Goal Question Metric approach was proposed by Basili et al. [172] and aims to improve the measure-

ability of results. The result of the application of the Goal Question Metric approach is the “specification of

a measurement system targeting a particular set of issues and a set of rules for the interpretation of the mea-

surement data” [172]. The approach builds upon so-called measurement model that consists of three levels:

Conceptual level (“Goal”), Operational level (“Question”) and Quantitative level (“Metric”). These levels

built a hierarchical structure of the approach and are depicted on Figure 6.2.

Basili et al. [172] describe these levels as follows (direct text citation):

• Goal: A goal is the purpose of the measurement in respect to the object for which the measurement is

conducted. This object can be a product, a production object, a process, an activity or a resource. Goal

defines the viewpoint from which the measure is taken and the reason for it.

145

6. Validation

Scenario Type 0 Type I Type II
Gaining general information about a de-

sign pattern

� � �

Choosing between similar patterns � � �

Pattern application with evaluation and

semi-automated rationale documentation

� � �

Elicitation and prioritisation of require-

ments on-demand

� � �

System evolution: Retrieving information

about used patterns

� � �

System evolution: Understanding pattern

design decision

� � �

Tracing impact caused by changed require-

ments during maintenance

� � �

Understanding the rationale of architec-

tural elements through trace links to re-

quirements

� � �

Checking architectural implementation vi-

olations of a pattern

� � �

Benefit Type 0 Type I Type II
Documented rationale of design decisions

on the pattern application

� � �

Semi-automated documentation of trace

links between requirements, decisions and

architectural elements

� � �

A more appropriate use of design patterns

and design pattern variants

� � �

Goal-oriented architecture-driven require-

ments engineering

� � �

Table 6.3.: Relations Between Covered Validation Types and Scenarios and Benefits

• Question: A question specifies how the goal can be measurably achieved. The purpose of the question

is to characterise the goal from the quality perspective, and to specify the quality issue. Usually the

goal is refined into several questions – a set of questions.

• Metric: A metric characterises an answer to a question in a quantitative way. A metric can measure

time, performance and any other measurable and comparable attribute. Each question usually refined

into several metrics – a set of metrics. The same metric can be used in order to answer different

questions under the same goal. And several goals can reuse questions and metrics. However, clearly

no metrics can be defined in a case where the evaluation of the goal is done in a non-quantitative way.

A set of metrics is therefore an optional characteristic of the Goal Question Metric approach and shall

be defined only when meaningfully applicable.

Goal # . . .
Purpose [The purpose of the measurement]

Issue [a property to be validated]

Object (Process) [object, which property shall be validated]

Viewpoint [target user of the object that is measured]

Comparison object (optional) [comparison object for the measurement]

Table 6.4.: A Sample Table to Describe a Goal Question Metric Plan (Adopted from Basili et al. [172])

146

6.4. Survey

Goal 1

Question Question

Metric Metric Metric

Goal 2

Question Question Question

Metric Metric Metric

Figure 6.2.: Hierarchical Structure of the Goal Question Metric Approach [172]

A classical way to describe Goal Question Metric plans is to use a table, such as a sample Table 6.4

(adopted from Basili et al. [172]). An example of such a table usage is presented on Figure 6.3. Here the goal

“Improve the timeliness of change request processing from the project manager’s viewpoint” is first defined

using the sample table, and then it is refined into questions. Questions are supplied with the defined metrics

in order to measure the achievement of the goal. For more details about the Goal Question Metric approach

please refer to [172].

6.4. Survey

This section provides details on the conducted survey with 25 doctoral researchers and developers. The survey

is one of the validation methods of the AM3D approach.

The survey followed two goals: Firstly, to elicit an opinion on design patterns and their application as a

check of the motivation of the AM3D approach. Secondly, to validate the applicability of the proposed pattern

catalogue and of the pattern question annotations on example of three sample pattern catalogue entries.

The conducted survey is exploratory and is based on structured interviews, which is a qualitative research

method. Its aim is the collection of descriptive statistics and not an evaluation of hypotheses. The applicability

of the proposed pattern catalogue and of the pattern question annotations is validated based on the opinions

of the survey participants.

The survey was conducted with participants both from academia and industry, whereby 25 valid question-

naires were collected1. The obtained questionnaires have an approximately equal distribution of academia and

industry. The feasibility and representability of the survey together with other threats to validity is discussed

in Section 6.4.6.

This section is structured as follows. Section 6.4.1 defines the goals and research questions of the survey.

Section 6.4.2 describes the research method. Survey design is explained in Section 6.4.3, and testing of the

method in Section 6.4.4. Survey results are analysed and presented in Section 6.4.5, whereby the data is

structured according to the defined research questions. Section 6.4.6 discusses internal and external threats to

validity. Finally, Section 6.4.7 concludes with the summary of the evaluation.

1The survey results were published in [1]. The paper reports the analysis of the results for 21 obtained questionnaire. The question-

naire was since still available online, and we have obtained four more valid questionnaires.

147

6. Validation

Goal Purpose Improve
Issue the timeliness of
Object (process) change request processing
Viewpoint from the project manager's viewpoint

Question Q1 What is the current change request processing speed?
Metrics M1

M2
M3

Average cycle time
Standard deviation
% cases outside of the upper limit

Question Q2 Is the (documented) change request process actually
performed?

Metrics M4
M5

Subjective rating by the project manager
% of exceptions identified during reviews

Question Q3 What is the deviation of the actual change request
processing time from the estimated one?

Metrics M6

M7

Current average cycle time - Estimated average cycle time

Current average cycle time
100∗

Subjective evaluation by the project manager

Question Q4 Is the performance of the process improving?
Metrics M8 Current average cycle time

Baseline average cycle time
100∗

Question Q5 Is the current performance satisfactory from the
viewpoint of the project manager?

Metrics M7 Subjective evaluation by the project manager

Question Q6 Is the performance visibly improving?
Metrics M8 Current average cycle time

Baseline average cycle time
100∗

Figure 6.3.: An Example of a Goal Question Metric Plan [172]

6.4.1. Research Questions

The goal of the survey is to qualitatively evaluate the motivation of the AM3D approach, and the appropri-

ateness of the proposed pattern catalogue and of the pattern question annotations on example of three sample

pattern catalogue entries.

First, it surveys the extent of the widespread of the design pattern usage, general perception of engineers

towards the design patterns and problems potentially faced during pattern application and during the evolution

of systems with applied patterns.

Second, the survey investigates the potential impact of the AM3D pattern catalogue on the problems with

the design pattern application, implementation of the new functionality with the help of design patterns, as

well as impact on the modification of the system during its evolution.

Finally, it researches the understandability of the AM3D question annotations for the persons who were

148

6.4. Survey

not involved into the question annotation creation. The understandability is researched on example of three

sample catalogue entries selected based on their usage wide-spread (very common, moderate known, and

likely unknown).

To plan the survey we have implemented a Goal Question Metric plan for the validation, which is described

in the following. As the survey is a qualitative research method, and thus it collects descriptive statistics

instead of hypotheses evaluation, the Goal Question Metric approach is implemented only up to the question

definition. The definition of the hypotheses and of the corresponding metrics is omitted.

6.4.1.1. Goals

We define the goal of our experiment using the Goal-Question-Metric approach [172], explained in Sec-

tion 6.3.

The six goals of the Goal Question Metric plan defined for the survey are provided in Table 6.5 in the usual

Goal Question Metric form. These goals were chosen for the survey due to the survey target audience, who

were participants from the industry. Questions to these goals, in our estimation, could be more meaningfully

answered by such participants then questions to the design tasks requiring direct catalogue application and

training. Moreover, the correctness of the assumed motivation of the AM3D approach based on the scientific

publications had to be evaluated before conducting the controlled experiment. These goals are:

• Goal I: The first goal is to qualitatively evaluate the motivation of the AM3D approach from the point

of view of software engineers or architects. The goal evaluates if design patterns are used on practice,

and if there are problems with selection and application of patterns.

• Goal II: The second goal is to qualitatively evaluate the positive impact of the AM3D pattern catalogue

on the pattern application from the point of view of software engineers or architects.

• Goal III: The third goal is to qualitatively evaluate the positive impact of the AM3D pattern catalogue

on system evolution in case of implementation of new or change of the existing functionality with the

help of design patterns from the point of view of software engineers or architects.

• Goal IV: The fourth goal is to qualitatively evaluate the positive impact of the AM3D pattern catalogue

on system evolution in case an applied pattern is outdated due to the requirement changes from the point

of view of software engineers or architects.

• Goal V: The fifth goal is to qualitatively evaluate the understandability of the question annotations by

software engineers or architects who were not involved in the catalogue development.

• Goal VI: The sixth goal is to qualitatively evaluate if the question annotations are sufficient to describe

a pattern from the point of view of software engineers or of architects.

The next step of the Goal Question Metric approach is to derive the research questions to the defined goals.

These questions are listed in the Section 6.5.1.2.

6.4.1.2. Questions and Metrics

The research questions to the goals were defined following the Goal Question Metric approach. The questions

are divided into two groups: (1) General research questions about patterns, and (2) pattern catalogue research

149

6. Validation

Goal I
Purpose Qualitatively evaluate

Issue the feasibility

Object of the motivation of the AM3D approach

Viewpoint from the point of view of software engineers or architects.

Goal II
Purpose Qualitatively evaluate

Issue the positive impact of the AM3D pattern catalogue

Object on the pattern application

Viewpoint from the point of view of software engineers or architects.

Goal III
Purpose Qualitatively evaluate

Issue the positive impact of the AM3D pattern catalogue

Object on system evolution in case of implementation of new or change of the existing functionality with the

help of design patterns

Viewpoint from the point of view of software engineers or architects.

Goal IV
Purpose Qualitatively evaluate

Issue the positive impact of the AM3D pattern catalogue

Object on system evolution in case of evaluation whether an applied pattern is outdated due to the requirement

changes

Viewpoint from the point of view of software engineers or architects.

Goal V
Purpose Qualitatively evaluate

Issue the understandability

Object of the question annotations

Viewpoint from the point of view of software engineers or architects who were not involved into the catalogue

development.

Goal VI
Purpose Qualitatively evaluate

Issue if the question annotations are sufficient

Object to describe a pattern

Viewpoint from the point of view of software engineers or architects.

Table 6.5.: Goals of the GQM Plan of the Survey

questions. Please note that goals and questions do not have a one-to-one relation. According to Basili [172],

the same question can be used for evaluation of several goals.

The general research questions about patterns are:

• Q1. Are patterns used in practice, and to what extent? This question evaluates if the patterns are

indeed common solutions that are applied on practice, of if the patterns are rather theoretical solutions

and are only seldom used in real life projects. Further on, this question evaluated to which extent the

design patterns are used – if the usage is limited only to a few patterns or if a wide variety of patterns

is applied. Question I is related to Goal I.

• Q2. What is the attitude towards patterns, and are they considered worthwhile and helpful?
This question evaluates the attitude towards design patterns. If the attitude towards design patterns is

rather negative, the proposed AM3D approach will be most likely rejected by the participants, since

the design patterns are already evaluated as useless. Question II is related to Goal I.

• Q3. Are there any problems with application or documentation of patterns? This question eval-

uates if there are any problems connected to pattern selection, application and modification of already

applied design patterns in order to evaluate the feasibility of the motivation of the pattern catalogue.

Question III is related to Goal I.

150

6.4. Survey

The pattern catalogue research questions are:

• Q4. Can the proposed catalogue of patterns be helpful during the pattern application? This

question evaluates if the proposed pattern catalogue could potentially solve some of the problems with

design patterns, if there are any. Question IV is related to Goal II.

• Q5. Can the usage of pattern catalogue ease system evolution, in case of (a) the implementation
of new or change of the existing functionality and (b) evaluation whether an applied pattern be-
comes outdated due to the requirement change? This question evaluates the use of the catalogue for

two scenarios: Implementation of the new functionality, and modification of the existing functionality

on the example of estimation if a pattern becomes outdated in a course of changes or not. Question V

is related to Goals III and IV.

• Q6. Are the catalogue questions understandable to persons who were not involved into the cata-
logue development and do they reflect the pattern intent? This question evaluates if the catalogue

questions actually characterise the pattern and if the questions can be understood by the persons, who

did not participate in the catalogue creation. The understandability of the questions to the external users

is an important point, since the questions are generic enough to be reused between different projects,

but they also need to be well understood to be translated into the project’s context. Question VI is

related to Goals V and VI.

6.4.2. Research Method

This section describes the applied research method. The research method is a survey, as defined by Defini-

tion 6.1. The aim of the survey is to develop generalized conclusions about the AM3D approach motivation

and its potential usage.

Definition 6.1 Survey [175] from [176]

A survey is a system for collecting information from or about people to de-

scribe, compare or explain their knowledge, attitudes and behaviour. The pri-

mary means of gathering qualitative or quantitative data are interviews or question-

naires.

For the evaluation of the AM3D approach, we chose structured interview (see Definition 6.2) as a method

of gathering the data in the survey.

Definition 6.2 Structured Interviews [176]

A structured interview is a quantitative research method, which

ensures that each interview consists of exactly the same ques-

tions.

Though the structured interviews are typically a quantitative research method, they can be also used for the

qualitative evaluations [176]. Thus, we have used structures interviews to perform the qualitative evaluation

of the defined research questions.

The structured interviews were held with the help of a developed questionnaire, as in [177]. The question-

naire was available in two forms – as an online document in Google Docs, and as an offline Word document.

The questionnaire can be found in Appendix A of this thesis.

151

6. Validation

As mentioned by Wohlin [176], the surveys may be tedious for respondents to fill out, and the data qual-

ity may consequently decline. However, the goal is to provide a broad overview, and not a detailed matter

understanding [176].

6.4.3. Survey Design

This section provides details on the survey design. It describes the survey context, object and subjects of the

survey, and the survey materials – questionnaire.

6.4.3.1. Survey Context, Object and Subjects

The survey took part during a three week period, in which the invitations to participate in the survey were

distributed, and the replies were collected.

The survey object is the questionnaire with general questions about the pattern application, and specific

questions about the AM3D pattern catalogue and its question annotations, as well as with questions collecting

the information about participants. The questionnaire is described in detail in the following Section 6.4.3.2.

The subjects of the survey were software engineers, software architects and doctoral researchers (doc-

toral researchers). The analysis of the data collected during the survey resulted in an approximately equal

distribution between participants having an industrial and academia experience

In particular, developers from andrena objects AG and developers from Wincor Nixdorf AG were asked

to participate. Other ways of promoting the survey included SDQ mailing list, Facebook and VKontakte

announcements. The participation was anonymous; therefore, there is no information on which of the ways

was the most efficient.

While some of the participants from academia knew the authors personally, the participants from industry

did not. Nevertheless, as survey was anonymous, fair replies are assumed. This threat to validity is discussed

in Section 6.4.6.

6.4.3.2. Survey Materials: Questionnaire

As mentioned above, a questionnaire was developed following Punch [177] to support the structured inter-

views. The questionnaire was available online as a Google Docs form, and offline as a Word document. The

questionnaire can be found in Appendix A of this thesis.

The questionnaire consists of four parts and an introduction. Most of the questions are multiple choice

and check-box questions, with a few free-text questions. The questions in the questionnaire are only one of

the possibilities to investigate the earlier defined research questions. However, these questions seemed more

appropriate for the target audience of survey. They define a perspective on the survey. The questions were

reviewed and tested by two people each, as described in the following Section 6.4.4.

In the introduction, information on the proposed approach was provided, together with the survey goal and

instructions on how to fill in the questionnaire. The purpose of the introduction was to clarify the goals of the

survey, to explain the approach in focus and to instruct the participants on data safety and anonymity.

In the first part of the questionnaire, the participants were pre-screened on their knowledge of patterns. It

focuses on the investigation of the general research questions of the survey. The second part is divided into

the sections dedicated to the three sample AM3D catalogue patterns and five question annotations to each.

Due to the time constraint, only three catalogue entries could be included into the survey.

152

6.4. Survey

The included patterns were Model View Controller, Fat Client and Single Table Inheritance. They were

intentionally selected to be different on their level of renomination and specificity to provide a better demon-

stration of the AM3D catalogue. The Model View Controller pattern is expected to be well known to the

participants. In this case, the participants were able to evaluate if the question annotations of the AM3D

pattern catalogue match with the perception and understanding of the pattern. The Fat Client pattern is less

known, however, it is easy to understand. In this case, the participants have a chance to rely on their knowl-

edge and common understanding of the topic. The Single Table Inheritance pattern is usually rather unknown,

and few of the participants were expected to be aware of it and its details. In this case, the participants were

expected to rely solely on understanding of the question annotations and on their software engineering knowl-

edge. Such different patterns were selected with the goal to provide a simulation of three various scenarios

for the usage of the catalogue.

A question to check if the pattern is known to the participant was included into the questionnaire, together

with the questions to evaluate catalogue question annotations on their relevance and clarity. The participants

had four options to evaluate the catalogue questions: Relevant, somewhat relevant, irrelevant or unclear, and

an option “I don’t know”, if they did not know if the feature captured in the question belongs to the pattern.

The “I don’t know” answer option is, in fact, important, as it prevents the participants from a random selection

of some other answer option, and thus, it increases the reliability of the results. An example was provided to

assure that the participants understand how to reply to the questions.

In the third part, questions to evaluate if the proposed catalogue of patterns could be helpful during the pat-

tern application from the participants perspectives were asked. The participants were also asked to evaluate

potential usefulness of the catalogue for two given evolution scenarios. The first scenario was the imple-

mentation of the new functionality with the help of a pattern. The second scenario was modification of the

existing functionality on the example of estimation if a pattern becomes outdated because of requirements

changes.

Finally, in the fourth part, the questions concerning the background of the participants were asked, e.g.

about education and practical experience.

The questionnaires took about 20 minutes to complete.

6.4.4. Testing the Method

The pattern catalogue entries underwent a review process by two external reviewers. To test the survey,

reviews of the questionnaire and test interviews were organized. The review of questionnaire was performed

by two external persons. The first reviewer was an expert in the research method, and the second reviewer was

a doctoral researcher in the computer science area. The test interviews were performed with two computer

science doctoral researchers. The questionnaire was improved first based on the review results, and then

based on the results from the test interviews.

In addition, a feedback was collected while performing the survey to be used during the data evaluation

and for the further experiment development.

6.4.5. Survey Results

This section presents the results of the survey aligned to the research questions formulated in Section 6.4.1.

The results summarize the data from the 25 valid questionnaires that were collected during the survey.

153

6. Validation

First, the outline removal is described in Section 6.4.5.1, followed by the information about the participants

in Section 6.4.5.2. The data on general research questions about patterns is presented in Section 6.4.5.3, and

the data on the pattern catalogue research questions is presented in Section 6.4.5.4. Feedback and analysis

of other questions is provided in Section 6.4.5.5. Threats to validity are discussed in Section 6.4.6. Finally,

Section 6.4.7 concludes the survey description.

6.4.5.1. Data Validation and Outlier Removal

Some of the questionnaires were removed before the data analysis, since they were incomplete (aban-

doned before the questionnaire was completed). In the next step, the data in the questionnaires was anal-

ysed and one more of the questionnaires had to be removed from the data set, due to the unserious an-

swers provided to it. At the end, a set of 25 valid questionnaires were left and used for the data analy-

sis.

6.4.5.2. Background of the Participants

The questionnaires were distributed between people with different levels of experience and academic back-

ground, but all of the participants were related to software engineering in their occupation. Table 6.6 displays

the data summary about the survey participants.

1. Industrial experience # %
I have worked in industry for about 1 – 5 years 10 40

I participated in industrial projects 5 20

Practice during my studies 4 16

I have worked in industry for more than 5 years 3 12

I have worked in industry for about a year 2 8

No experience 0 0

Other 1 4

2. Current academic degree # %
Graduate (Master /Diplom) 17 68

Doctoral researchers 4 16

Graduate (Bachelor) 3 12

Other 1 4

Undergraduate 0 0

No academic degree 0 0

3. Occupation # %
Doctoral researcher 8 32

Both academia and industry mixed 7 28

Industry 6 24

Student 3 12

Post-Doctoral researcher 1 4

Research division of a company 0 0

Professor 0 0

Table 6.6.: Information about Survey Participants

From the table it follows that 24% of the survey participants stated to be employed solely in industry, 28%

in industry and academia mixed, and 48% were involved in academia.

About 40% have worked in industry for about one to five years, 20% participated in industrial projects,

12% have worked in industry for more than five years, 8% worked in industry for less than one year, and 16%

154

6.4. Survey

had industrial practice during their studies. None of the participants selected the option “No experience”.

One participant selected “Other”, and stated to “programmed over 7 years within a small project as a side

job”, and to have participated in a practice during the studies.

This data shows balanced proportions between industry and academic participants, all having industrial ex-

perience. The comparison of opinions of three persons with over five years of experience and of participants

who collected their doing a practice during their studies is of particular interest, as these are two extremities

in the industrial experience. The amount of the questionnaires is not sufficient to draw statistically signif-

icant conclusions, however, they provide valuable insight on their opinions and give directions to the main

validation experiment described in Section 6.5.

The most common academic degree was graduate (master or diploma) in 68% of cases, 16% held a doc-

toral degree, 12% held a Bachelor degree, and one participant selected “Other”as the degree mentioning to

have almost completed the Diploma graduate degree. This data means that all of the participants must have

received at least a theoretical training in architectural design pattern , and are familiar with the survey main

topic.

Experience # %
Very low (I have not applied any) 0 0

Low (I have applied patterns during one or two test or study projects) 6 24

Medium (From time to time I am applying patterns during my work) 10 40

High (I am regularly applying design patterns) 6 24

Very high (My work is connected to design patterns, I am proficient in application of

design patterns, I regularly apply design pattern from different domains)

3 12

Table 6.7.: Experience in Applying Design Patterns

Table 6.7 provides data on the amount of the experience in applying the design patterns of the survey

participants. About 40% of the participants applied design patterns from time to time during their work.

About 24% applied patterns regularly and in 12% of the cases, the participants stated to be proficient in

application of design patterns and to regularly apply design pattern from different domains. Thus, the majority

of the participants had real experience in design pattern application and their opinion can be considered

particularly valuable for the goals of the evaluation. Another target group is participants who have applied

patterns during one or two test or study projects (24%). These participants might profit the most from the

AM3D pattern catalogue, as do not apply pattern on a regular basis and are more likely to forget the precise

specification of a design pattern.

6.4.5.3. General Research Questions About Patterns

The data connected to the general research questions about design patterns is analysed in this section. The

section is structured according to the research questions:

• Q1. Are patterns used in practice, and to what extent?

The majority of the participants stated to apply design patterns at least from time to time in their work,

and many apply patterns regularly, as well, as also 12% of the participants apply design patterns very

often (see Table 6.7). A number of regularly used design patterns is rather low – it is about 14 patterns

on average per participant. Despite the moderate number of survey participants, this is an interesting

data indicating that the design patterns are used on practice.

155

6. Validation

However, these numbers cannot be fully anticipated, as some of the participants stated to have high

experience in design pattern application, but apply regularly relatively few patterns (about 10). While

some of the participants stated to have medium experience, but have regularly applied more than 20

design patterns. Clearly, self perception is highly subjective. However, this data can be also interpreted

in terms of a security feeling during the design pattern application.

No definite conclusion about the connection between participant’s education degree or occupation and

the extend of design pattern application could be drawn from the data, besides that the student partic-

ipants and the participants with the bachelor degrees have low experience in applying design patterns

and have applied only few of them. This means that the amount of practical experience during the

studies is rather low and that the main experience in design pattern application is collected during the

employment, both in academia and in industry. All of the participants with a year and more of indus-

trial experience stated that they at least apply design patterns from time to time during their work. And

two of three participants with more than five years of experience apply patterns very often during their

work.

From this data, the conclusion is drawn that the design patterns are commonly applied in practice, and

that the participants are mostly experienced with the pattern application.

• Q2.What is the attitude towards patterns, are they considered worthwhile and helpful?

As provided in the Table 6.8, none of the participants discarded the idea of patterns and only one

participant considered the usefulness of patterns for better quality of software (e.g., maintainability,

non-functional properties, extendibility) as low. In general, design patterns are estimated as highly

useful by 40% of the participants and as absolutely useful (very high) by 28% of them. About 28%

consider patterns as average useful for the software quality.

Usefulness # %
Very low 0 0

Low 1 4

Medium 7 28

High 10 40

Very high 7 28

Table 6.8.: Usefulness of Design Patterns for Quality of Software

Hereby, four from six participants occupied in industry specified that the design patterns are absolutely

useful, while students were moderately convinced in the usefulness of the design pattern application.

Interestingly, the only low consideration came from the participant occupied in research. No other

definite conclusions about the connection between participants’ education degrees, ages of experience

or occupation and the attitude towards design patterns could be drawn from the data.

The general attitude towards the design patterns can be summarized as positive or even as highly posi-

tive.

• Q3. Are there any problems with application or documentation of patterns?

This question was inspired by an empirical study by Vocac et al. [32], uncovering pattern application

problems. Our results on this question are provided in the first section of Table 6.9.

Only two participants have not encountered any problems while applying or working with design pat-

terns. However, almost half of the participants (44%) have not witnessed any inappropriate use or

156

6.4. Survey

Problems with Application (multiple choice) # %
Yes, I was unsure which pattern (of several appropriate patterns I knew) was the most

suitable for the problem

15 60

Yes, I did not know which pattern could be used to solve my problem 13 52

Yes, the implementation of the pattern was unclear 9 36

Yes, the structure of the pattern was unclear 7 28

Yes, it happened to me to overlook some properties of a pattern or some consequences of

a pattern application and then to discover that the choice was non optimal

6 24

Yes, while modifying the system or code I have not noticed that there was a pattern ap-

plied, and modified its structure

5 20

No, never 2 8

Other 1 4

Problems with Maintenance # %
Yes 13 52

No 11 44

Other 1 4

Table 6.9.: Problems with Application, Documentation or Maintenance of Design Patterns

documentation of pattern in the projects they have worked in. From whom, however, only one of the

participants had no problem with pattern application personally. This interesting result may be ex-

plained by two factors. First, pattern application is not obvious, and can be easily overseen unless

it is explicitly documented. Second, the participants may have had higher trust in the pattern appli-

cation by other persons, as compared to their own pattern application. Considering that the majority

of the participants had some problems with pattern application personally, most probably, also other

pattern applicants were similarly troubled. In addition, people with longer industrial experience seem

more likely to have experienced problems with the patterns application and documentation. This cor-

responds to the previous observation that the employed persons are more likely to practically apply

design patterns then the students.

The variety of problem types is rather large. The majority of the participants (60%) had experienced

problems to decide which pattern (of several appropriate patterns known) was the most suitable for

the given problem. About 52% of them did not know which pattern may be suitable to solve their

problem. The structure and the implementation of the pattern were unclear to 36% and to 28% of the

participants. About 24% of the participants happened to overlook some properties or consequences

of a pattern application, and then to discovered that the choice was non optimal. About 20% of the

participants have not noticed that there was a pattern applied, while modifying the system or code, and

have occasionally modified its structure. One of the participants had problems using the pre-existing

pattern in an API. Even participants with large experience had problems to select one of the similar

patterns they knew, or to find a pattern suitable to solve the problem.

Moreover, the participants provided an estimation that the inappropriate use of patterns was encoun-

tered by them in 40% percent of projects and inappropriate documentation in 54% of the projects.

This data shows that despite of numerous related work and tools, the problems with pattern selection

and application are not yet eliminated in practice and there are still problems with pattern application

that the majority of the engineers meet. This observation is most probably valid also for other design

techniques, since they are usually highly vulnerable to the subject’s experience with design in general.

The classification of mentioned reasons for the encountered problems with the pattern application is

presented in Table 6.10.

157

6. Validation

Reasons (multiple choice) # %
. . . few experience with patterns 16 64

. . . insufficient understanding of requirements to the system 6 24

Other 2 8

No problems 2 8

. . . low experience in programming in general 1 4

Table 6.10.: Reasons for the Problems with Pattern Application

Little experience with patterns was the main reason for the encountered problems named by 62% of

the participants, while 24% named insufficient understanding of requirements to the system. This is a

remarkable finding, as according to the information the participants have provided on their background,

all of the participants were experienced engineers. It seems that one cannot conclude the experience

with patterns from the general experience. Additionally, two participants named an existing pattern

API implementation and insufficient documentation as reasons (comments to the option “Other”).

The participants had a possibility to provide free-text comments on the topic. Part of the comments

was concerned with the quality of teaching of the design patterns at universities. For example2, “In

education, there is too few time spent on teaching and especially on applying patterns, although it is

very important. In the lecture it was said, that you must practice it at home. It should be more in

the focus on mandatory exercises.”, “At university and also in literature, one only learns the theory of

patterns and a selection of patterns. Yet, it takes much more time and *practice* to get the necessary

know-how for everyday work.”, “Not enough real world examples in handbooks/lectures. It would be

useful to show a problem solved with a pattern and without it, in order to learn the advantages of pattern

use.” and “large amount of patterns, unclear how to implement, few training during studies”.

Some other comments were3: “Experience in abstract reasoning about design and architecture is hard

to obtain”, “”Some patterns are mainstream knowledge and therefore easy to apply because you have

often seen them and were taught often in different lectures”, “large amount of known patterns, interest-

ing application domains of different patterns, different interpretations of the same pattern by different

persons”, “depends on the difficulty and complexity of the pattern especially if several patterns are

mixed”, and “I only apply patterns with which I’m already familiar with. I almost never search for un-

known patterns to solve a problem I encounter. I think the appliance of patterns should be encouraged

in projects and the developers trained. An application of a pattern should be documented properly. Es-

pecially if it is a rather unknown and complex pattern”. These are interesting insights into the pattern

application problems. All of them can be generalized to the need to improve practical education on

design patterns.

To summarise, the results are: The knowledge on patterns and on documentation of patterns remains

a big problem in development projects. It is assumed that the inappropriate documentation of patterns

can be one of the major contributors to the resulted high percent of problems with the maintenance

connected to the patterns.

2Some of these comments are translated from German into English
3Some of these comments are translated from German into English

158

6.4. Survey

6.4.5.4. Pattern Catalogue Research Questions

The data connected to the pattern-specific research questions is analysed in this section. The section is

structured according to the research questions:

• Q4. Can the proposed catalogue of patterns be helpful during the pattern application?

The results of the survey to this question are listed in the Table 6.11.

Usage scenario (multiple choice) # %
It might help clarifying properties and consequences of a pattern 17 68

It might help to select the most suitable pattern between several candidate patterns 15 60

It might solve documentation problem, if answers to the questions are automatically doc-

umented

14 56

It might help to find a pattern that the person does not know 13 52

It might help to better apply a pattern, through explicit hits to the pattern’s structure or

implementation

11 44

It will not solve any problems connected to the pattern application 2 8

Other 2 8

Table 6.11.: Potential Use of the Pattern Catalogue

The majority of the participants (68%) indeed believe that such a pattern catalogue with questions to

patterns might help to clarify properties and consequences of a pattern, and 56% supported that it might

solve documentation problems, if answers to the questions are automatically documented. About 60%

of the participants believe that the pattern catalogue might also help to select the most suitable pattern

between several candidate patterns, thus supporting the evaluation of the pattern candidates.

This is an encouraging result, supporting the motivation of the AM3D approach, as one of the goals

of the survey evaluation. Only two participants remained sceptical and said that the catalogue will not

solve any problems connected to the pattern application. These participants also selected “Low im-

provement” for the usefulness of the AM3D pattern catalogue in both of the evolution scenarios. One

of these participants is employed as a doctoral researcher, and another in a combination of academic

research and industry. However, in general, no definite conclusion about the connection between par-

ticipants’ education degrees or occupations and their views on the pattern catalogue usage could be

done.

An interesting point is, that although the proposed catalogue is not intended to be used as an expert

system, 52% of the participants believe that the pattern catalogue could be used to find a pattern that

the person does not know, which is a task of expert systems.

Based on the obtained answers, the focus of the second empirical study (described in Section 6.5)

was laid on the validation of the here top-mentioned expected benefits: Clarification of properties and

consequences of a pattern, selection of the most suitable pattern between several candidate patterns and

documentation of pattern application together with the rationale, based on answers to the questions.

• Q5. Can the usage of pattern catalogue ease system evolution, in case of (a) the implementation
of new or change of the existing functionality and (b) decision whether an applied pattern is
outdated or not due to the requirement change?

The participants were asked to estimate two given evolution scenarios considering usefulness of the

AM3D pattern catalogue to support them. In particular, they were asked to estimate to what degree

159

6. Validation

such a catalogue of patterns with questions could improve software evolution if the requirements have

changed or a new functionality would need to be added. Clearly, a quantitative answer cannot be

given without a concrete project. However, the goal of the survey was to elicit opinions for the further

research and validation directions, and not to statistically validate the AM3D approach.

The proposed condition for the evaluation tasks was that the system was previously developed follow-

ing the AM3D approach. Thus, the questions for the patterns and provided answers to the question

annotations were documented in an accessible form together with the applied patterns. The results are

summarised in Table 6.12.

Task A. Finding a location to change functionality # %
Low (No improvement) 9 36

Medium (Some improvement) 13 52

High (Noticeable Improvement) 3 12

Task B. Deciding whether an applied pattern is outdated due to the requirement
changes

%

Low (No improvement) 3 12

Medium (Some improvement) 12 48

High (Noticeable Improvement) 10 40

Table 6.12.: Potential Use of the Pattern Catalogue in Evolution

For the Task A “Find a location where functionality needs to be changed” (the first section of the Table),

36% of the participants supposed that the catalogue would bring no improvement (9 participants, three

from whom were employed in academia and industry, and one solely in academia, thus about 44%

actively present in industry). Some improvement was expected by 52% participants (13 participants,

four of whom were employed in industry, and three in academia and industry, thus about 62% actively

present in industry), and only 12% of the participants expected some noticeable improvement. No

definite conclusion about the connection between participants’ education degrees or occupations and

their views on the pattern catalogue usage in evolution could be done.

For the Task B “Decide whether an applied pattern is outdated or not due to the requirement change”

(the second section of the Table), the participants were rather positive and about 40% of them expected

the AM3D catalogue to bring a noticeable improvement (30% of participants are employed in industry

or related), and about 48% of the participants (67% of whom are employed in industry or related) ex-

pected at least some improvement. This time, only 12% of the participants expected no improvement at

all (all of the participants employed in industry or related). Here, the observation is that the participants

from academia tended to estimate the catalogue improvement higher than the participants from the in-

dustry. This observation can be disputed from two points of view. The first one, is that the participants

from industry have more of the practice-related experience and tend to better realise the real needs of

the projects. The second view is that the participants from industry might not value the documentation

of design and investments into its update, since it does not directly contribute to the project’s value

(so-called “Waste” concept).

Thus, according to the participants, the main benefit of the AM3D approach during the evolution can

be expected from the pattern decision documentation, e.g. to detect outdated pattern decisions.

• Q6. Are the catalogue questions understandable to persons who were not involved in the cata-
logue development and do they reflect the pattern intent?

160

6.4. Survey

This research question was evaluated on three sample catalogue patterns, that gradually varied in their

complexity and usage.

The familiarity of sample design patterns to the participants is summarised in Table 6.12.

Model View Controller # %
No 0 0

Somewhat (I have read about it) 7 28

Yes (I have applied it several times) 18 72

Fat Client # %
No 3 12

Somewhat (I have read about it) 12 48

Yes (I have applied it several times) 10 40

Single Table Inheritance # %
No 10 40

Somewhat (I have read about it) 11 44

Yes (I have applied it several times) 4 16

Table 6.13.: Familiarity with Sample Patterns

While the majority not only knew about the Model View Controller pattern, but had also applied it on

practice several times, the Fat Client pattern was lesser known and was less applied. The Single Table

Inheritance pattern was even lesser known, as was assumed, as only four participants have applied it

directly.

This information is taken into account while evaluating the understandability and correctness of the

AM3D pattern catalogue questions. While the understandability of question annotations can be eval-

uated by all participants, the correctness of pattern question annotations may be evaluated only by

those, who have applied the patterns in question on practice or at least know about them. The results to

the question annotations understandability are presented in the Table 6.14, in accordance to the above

mentioned distinction. Values marked with “*” in the table are calculated for all of the participants.

For all of the above mentioned patterns, the understandability was evaluated as high. So, for the Model

View Controller pattern, the understandability of questions was between zero and one fails, besides

the factor number four, which was not understood by four of the participants. The understandability

is even better for the Fat Client pattern, where only last two questions had received each one negative

score. For the Single Table Inheritance, the understandability is in average 93%, whereby the question

number two having six negative scores. Such overall high understandability can be explained through

the careful review process, which pattern question annotations underwent before the survey. Even par-

ticipants who were not familiar with patterns could understand the questions, according to the answers

they have provided. This data shows good understandability of the questions for the participants, who

have never seen the catalogue questions before.

Further on, the collected data lets to evaluate how the participants estimated the relevance of the

question annotations, taking into the account how well the participants were familiar with the pat-

terns.

For the Model View Controller pattern, question number five was evaluated as either “irrelevant” or “

somewhat relevant”, even by the participants with experience who were familiar with the pattern. How-

ever, this question actually describes a serious drawback of the pattern, which can have a significant

negative influence on the performance quality attribute (a potential quality influence).

161

6. Validation

Pattern Factors
Model View Controller 1 2 3 4 5

Irrelevant
1 10 3 3 15 #
4 40 12 12 60 %

Somewhat relevant
3 5 13 11 4 #

12 20 52 44 16 %

Relevant
21 4 6 8 2 #
84 16 24 32 8 %

I don’t know
0 2 3 2 3 #
0 8 12 8 12 %

I haven’t understood the factor*
0 4 0 1 1 #
0 16 0 4 4 %

Fat Client 1 2 3 4 5

Irrelevant
1 3 0 10 1 #
5 14 0 45 5 %

Somewhat relevant
2 6 4 6 14 #
9 27 18 27 64 %

Relevant
19 11 18 2 5 #
86 50 82 9 23 %

I don’t know
0 2 0 3 1 #
0 9 0 14 5 %

I haven’t understood the factor*
0 0 0 1 1 #
0 0 0 4 4 %

Single Table Inheritance 1 2 3 4 5

Irrelevant
1 2 6 3 2 #
7 13 40 20 13 %

Somewhat relevant
0 4 5 4 4 #
0 27 33 27 27 %

Relevant
13 1 1 4 5 #
87 7 7 27 33 %

I don’t know
0 5 3 4 4 #
0 33 20 27 27 %

I haven’t understood the factor*
1 6 0 0 2 #
4 24 0 0 8 %

Table 6.14.: Understandability of Questions to Patterns (* for All Participants)

The question two describes another potential negative consequence of the pattern application and is

also negatively evaluated. For the Fat Client, the data shows similar results. Questions (four and five)

describing potential negative consequences for maintainability and performance were evaluated as low

relevant. For the Single Table Inheritance, question number three, describing the potential negative

extendibility influence, was rated as irrelevant. Other questions, however, were evaluated to be relevant

or somewhat relevant.

The following conclusion can be drawn from the obtained samples (further validation is, however,

required): The evaluation of pattern questions follows two trends. First, the more well-known the

pattern is, the higher seem to be the perception of its general positive influence on the system. Hereby,

the potential negative consequences of a pattern seem to be discarded and considered as low relevant.

Second, the less pattern is known, the more persons rely on the expert knowledge provided in the

catalogue, and are more eager to accept potential negative properties of a pattern. Of course, only

three sample patterns available for the evaluation, and the amount of data points is not significant. This

conclusion clearly requires further validation.

The participants were also asked to provide information on potentially under-represented pattern qual-

ities described by the questions. As a result, three participants provided comments for each, the Model

View Controller and for the Fat Client patterns. Interestingly, the factors provided by the participants

162

6.4. Survey

were also formulated as questions.

To summarize, the understandability of the questions to the sample pattern has shown to be high by the

persons who were not participating in the creation of the catalogue. The perception of the relevance

of the question annotations seem to depend on how self-confident the person is, but in general, the

potential negative influence of patterns seems to be neglected.

6.4.5.5. Feedback

The participants were asked to provide feedback on the suitability of the questionnaire for the goals of the

survey, and, if desired, to provide comments and suggestions.

Only two of the participants commented on this question. Both of them stated that they did not know,

if the questionnaire was suitable or not. These few comments can be considered a result of the mis-

take in the questionnaire design, because the question was marked as optional. The participants prob-

ably did not take time to think on the topic, especially, as this question was the last in the question-

naire.

6.4.6. Threats to Validity, Limitations of the Evaluation

This section provides discussion on threats to validity, divided into internal and external validity.

For the description of threats to validity we use the classification by Yin [178] via Wohlin [176], and the

definitions of types of threats by Wohlin [176].

According to them, there are four types of validity: Construct validity, internal validity, external validity,

and reliability. The construct validity reflects to what extent the operational measures that are studied really

represent what the researcher has in mind and what is investigated according to the research questions 6.3.

Internal validity reflects if causal relations are examined 6.4. External validity is concerned with to what

extent it is possible to generalize the findings, and to what extent the findings are of interest to other people

outside the investigated case 6.5. Finally, reliability is concerned with to what extent the data and the analysis

are dependent on the specific researchers 6.6.

Definition 6.3 Construct Validity [176, 178]

Construct validity reflects to what extent the operational measures that are studied really represent what the

researcher has in mind and what is investigated according to the research questions.

Definition 6.4 Internal Validity [176, 178]

Internal validity reflects if causal relations are examined. When the researcher is investigating whether one

factor affects an investigated factor there is a risk that the investigated factor is also affected by a third factor.

Definition 6.5 External Validity [176, 178]

External validity is concerned with to what extent it is possible to generalize the findings, and to what extent

the findings are of interest to other people outside the investigated case. During analysis of external validity,

the researcher tries to analyse to what extent the findings are of relevance for other cases.

163

6. Validation

Definition 6.6 Reliability Validity [176, 178]

Reliability is concerned with to what extent the data and the analysis are dependent on the specific researchers.

Hypothetically, if another researcher later on conducted the same study, the result should be the same.

The next sections deal with the above mentioned threats to validity types for the conducted survey evalua-

tion.

6.4.6.1. Construct Validity

The participants were aware of the topic of the survey and it might have influenced their answers. They could

have become more sensitive to the problems with pattern application and documentation. It is a natural threat

and is common to surveys and experiments involving humans as subjects.

The participants, obviously, could have also guessed the desired outcome of the survey, and modified their

answers in accordance to their attitude to the survey. However, the participants took part in the survey on their

free will, and thus should have not had any significant predisposition about the survey. Part of the participants

from academia personally knew the survey authors. However, the survey was anonymous and fair replies are

assumed (the participants were explicitly asked to be objective).

Some participants might have “improved” their stated experience with the design pattern application, in

order to look more professional. The perception of own experience is usually rather subjective. This is a

common threat, and one can only rely on honesty of the provided data.

6.4.6.2. Internal Validity

The main survey was held in August. It clearly influenced the number of the participants in the survey.

It might have also influenced the results of the survey, since it was a vacation time in Germany and the

participants might have been not completely concentrated on the survey. Once again, since the participation

was voluntary, we assume that only the motivated participants took part in it.

The survey used three sample patterns from the AM3D pattern catalogue. The number and the selection

of these design patterns for the survey might have influenced the results. In order to minimize this threat,

the sample patterns were selected from different domains and with different levels of complexity and renom-

ination. Although the survey indicates potential usefulness of the approach for the pattern applicability and

documentation of pattern application, an empirical study with more AM3D catalogue entries is required to

validate if the catalogue questions and answers to these questions indeed ease the system evolution.

The questions in the survey were formulated in a natural language. A common problem is that the questions

might be misinterpreted or become so-called leading questions. To minimize this threat, the survey design was

relied on recommendations of acknowledged literature on empirical research, such as [177]. The participants

had a possibility to select “I don’t know” option where appropriate to avoid being lead by a question. Finally, a

survey review was held also by an expert in the research method and the recommendations were implemented.

The selection of the participants, who have participated in the survey, might have influenced the results.

However, the selection was accidental (based on their own will). It might have been influenced through the

choice of mailing lists and companies, where the questionnaires were distributed. However, we did not really

had choice, as only few companies are ready to spend time of their engineers on participation in a survey.

Similarly, not every mailing list can be used to distribute the invitations with a confidence to get serious and

trustworthy replies.

164

6.4. Survey

Several participants did drop out from the survey (did not complete the survey). All this data points were

removed.

6.4.6.3. External Validity

The data of the survey is based on the opinion of 25 participants, and therefore reflects their opinions on design

patterns, the proposed AM3D pattern catalogue and the questions. This perception does not necessarily reflect

the actual situation with design patters in the projects.

Answers to the questions in the questionnaire are subjective and reflect personal opinions. For example,

even if the experience with design patterns is stated to be high, it does not mean that the experience of two

participants can be compared between each other.

Part of the participants from academia personally knew the survey author. However, the survey was anony-

mous and fair replies are assumed.

The survey was conducted on a sample selection from the catalogue, presented in a form suitable for the

survey. The participants might have replied differently, if they had a real instance of the AM3D catalogue at

hand. Unfortunately, it was not possible due to the strict time constraints.

The amount of the participants is not enough to draw statistically significant conclusions. Moreover, as

stated above, the survey does not substitute an empirical study for the AM3D catalogue’s validation. Never-

theless, the survey results provide a valuable indication on the potential usefulness of such a catalogue.

6.4.6.4. Reliability and Conclusion Validity

The data sample is too small to make any definite statements in the evaluation. It, however, reflects the

possible trends in the data and clarifies direction for further evaluation.

In general, percentages are not always the appropriate way to present the data. But since the survey statistics

is of a descriptive nature, it is acceptable in this case. Reliability of the survey can only be checked with an

increased number of participants. Since the questionnaire can be used independently of the survey designers,

we would expect the results similar to those we have collected. All the material is available online in a free

access and the survey can be repeated any time, by anybody, following the description of the process provided

in this thesis.

6.4.7. Summary of the Results

The goals of the survey were (1) to elicit an opinion on design patterns and their application as a check of the

feasibility of the motivation of the AM3D approach, and (2) to validate the applicability of the proposed pat-

tern catalogue and of the pattern question annotations on example of three sample pattern catalogue entries.

These goals were refined into six research goals described in Section 6.4.1.1. All of the evaluation goals were

achieved.

Both, academia and industry were represented approximately equally in the survey, with all of the par-

ticipants having industrial experience. Moreover, all of the participants have received at least a theoretical

training in architectural design patterns, and are familiar with the survey main topic.

Based on the survey data, it can be concluded that the design patterns are indeed commonly applied in

practice, and that the participants are mostly experienced with the pattern application. The attitude towards

design pattern was shown to be positive, as only one of the 25 participants considered patterns as not useful

to improve the quality of software (e.g., maintainability, non-functional properties, extendeability).

165

6. Validation

Most of the participants (90%) have encountered problems both with the application of patterns in their

work and with the already applied patterns, as well as their documentation. Moreover, the participants pro-

vided an estimation that the inappropriate use of patterns was encountered by them in 40% percent of projects

and inappropriate documentation of patterns in 54% of the projects. Only two of the participants have never

faced problems applying patterns, one of whom, however, commented that he/she could not select the right

pattern for the design problem he/she has had.

It seems that when patterns are applied by other persons, the participants seem to be more confident in the

pattern application and to consider the patterns to be more appropriately applied in such a case, then when

they apply patterns themselves. 44% of the participants said to have not witnessed any inappropriate use or

documentation of pattern in the projects they have worked in. However, from these 44% only one of the

participants had no problem with pattern application personally. Even participants with larger experience had

problems to select one of the similar patterns they knew, or to find a pattern suitable to solve the problem.

Little experience with patterns was the major reason for the encountered problems, named by 62% of the

participants, while 24% named insufficient understanding of requirements to the system. However, according

to the information the participants have provided on their background, all of the participants were experi-

enced software engineers. It seems that one cannot conclude the experience with patterns from the general

experience. In addition, participants commented on the need to improve especially practical education on

design patterns. These results show that the knowledge of patterns and on documentation of patterns remains

a big problem in the development projects. This is despite numerous related work and tool support in the

area. The problems of pattern selection and application are not yet eliminated in practice. This data supports

the motivation of the AM3D approach, as there are still open research questions in the area to be solved.

Another goal of the survey was to evaluate the idea of the AM3D pattern catalogue and some of its entries.

The catalogue idea was in general perceived positively, with 68% of the participants expecting such a pattern

catalogue with question annotations to help clarify properties and consequences of a pattern, and with 56%

of the participants expecting it to solve the documentation problems, if answers to the questions are automati-

cally documented. About 60% of the participants also supposed that the AM3D pattern catalogue might help

to select the most suitable pattern between several candidate patterns, thus supporting the evaluation of the

pattern candidates.

From the evolution tasks, the catalogue was estimated to be useful to clarify which patterns are outdated

due to the requirement changes, and only 12% of the participants expected no improvement at all in this area.

The AM3D catalogue was estimated to be less useful for the task of finding a location where functionality

needs to be changed, with 36% of the participants expecting no improvement in this area.

For all of the sample patterns, the understandability of the questions was estimated as very high. Thus,

even people who did not participate in creation of the catalogue do understand the question annotations. Such

overall high understandability can be explained through the careful review process, which pattern question

annotations had undergone.

The positive opinion on the benefits of the AM3D approach and the high understandability of the ques-

tion annotations are encouraging results, empirically supporting the main expected benefits of the AM3D

approach, as one of the goals of the survey evaluation. Based on the obtained results, the focus of the second

empirical study (described in Section 6.5) is laid on the validation of the here top-mentioned expected bene-

fits: Clarification of properties and consequences of a pattern, selection of the most suitable pattern between

several candidate patterns and documentation of a pattern application together with the rationale, based on

answers to the question annotations in the AM3D catalogue.

166

6.5. Controlled Experiment

Even though the collected data sample is too small to draw statistically significant conclusions and reflects

personal opinions of 25 professionals, still the survey provides valuable insights into the situation with the

design pattern application and on the potential usefulness of the catalogue.

6.5. Controlled Experiment

This section provides details of the empirical study conducted to validate two of the claimed benefits of the

approach. First, it validates if design patterns annotated according to the AM3D approach can be better

understood and applied more correctly as compared to the design pattern catalogue based on the standard

approach. Second, it validates if system architecture documented with the AM3D approach can be better

maintained compared to the system documented with the standard approach. The study is based on the

controlled experiment, combined with a quantitative research method.

The experiment was executed during a half-year long software development practical course (PSE course)

at Karlsruhe Institute of Technology (KIT). The experiment subjects were 20 students enrolled in the course.

The feasibility and representability of the students as experiment subjects are discussed later on. The exper-

iment object was a user management system called PSE system, which was used by the students for their

implementations during the practical course. The AM3D study was one of three overall experiments con-

ducted during the course, and some of the practical materials and training were shared with other experiment

designers.

This section is structured as follows. Section 6.5.1 describes the evaluation goals according to the Goal

Question Metric plan. It lists goals, questions to the goals and metrics to measure the goals. Finally, it lists the

so derived hypotheses for the empirical study. In Section 6.5.3 we present the design of the empirical study,

including the experiment context, object, subjects, experiment process and materials. Section 6.5.4 explains

how the research method was tested. Participant information is summarized in Section 6.5.5.2. The results

of the experiment are analysed and presented in Section 6.5.5, including information on the participants,

description of the statistical method used to analyse the results, and analyses of the research questions. The

threats to validity and limitations of the evaluation are discussed in Section 6.5.6. Finally, Section 6.5.7

concludes the survey description.

6.5.1. Research Questions

The goal of the empirical study is to empirically validate if the proposed AM3D pattern catalogue can improve

applicability and documentation of design patterns.

First, it tests whether design patterns annotated according to the AM3D approach can be better understood

and applied more correctly as compared to the design pattern catalogue based on the standard approach.

Second, it tests whether system architecture documented with the AM3D approach can be better maintained

compared to the system documented with the standard approach. Hereby, it is evaluated if the effort to use

the AM3D pattern catalogue is at least comparable to that to use the standard approach.

To plan the study, a Goal Question Metric plan for the validation was implemented, and is described in

detail in the following section.

6.5.1.1. Goals

This section describes the goals of the experiment using the Goal-Question-Metric approach [172], explained

in Section 6.3.

167

6. Validation

First, two higher-order goals for the generalized AM3D approach were derived to enable an overview of

the validation plan. An overview of the Goal Question Metric plan in the usual Goal Question Metric form is

provided in Table 6.15.

Goal I
Purpose Empirically validate

Issue if the AM3D pattern catalogue can improve applicability and documentation

Object of patterns

Viewpoint from the software engineer’s or architect’s point of view

Goal II
Purpose Empirically validate

Issue if design patterns documented in terms of the AM3D approach can support

Object maintenance

Viewpoint from the software engineer’s or architect’s point of view

Table 6.15.: High-order Goals of the Goal Question Metric Plan for the AM3D Approach

The first goal is to empirically validate if the AM3D pattern catalogue can improve applicability and doc-

umentation of patterns from the software engineer’s or architect’s point of view. The second goal is to em-

pirically validate if documented patterns can support maintenance from the software engineer’s or architect’s

point of view. These goals are defined for the AM3D approach.

The refinement of the general Goal Question Metric goals of the validation is presented in Table 6.16. The

refinement details the high-level goals. It also adds a third cross-cutting goal related to the potential overhead

cause by the approach throughout design and maintenance (relevant for both previous goals). In the following

these goals are explained in detail:

Goal I
Purpose Empirically validate

Issue the more appropriate applicability

Object of annotated patterns

Viewpoint from the software engineer’s or architect’s point of view

Comp. obj. compared to regular pattern catalogue

Goal II
Purpose Empirically validate

Issue the positive impact of the better documented patterns

Object on the software evolution (list tasks)

Viewpoint from the software engineer’s or architect’s point of view

Goal III
Purpose Empirically validate

Issue no significant additional overhead caused by

Object the semi-automatic documentation of the appropriate application of annotated

patterns

Viewpoint from the software engineer’s or architect’s point of view

Table 6.16.: Detailed Goals of the GQM Plan of the Experiment for the Annotated Design Pattern Catalogue

• Goal I: The first goal is to empirically validate the more appropriate applicability of annotated patterns

from the software engineer’s or architect’s point of view compared to regular pattern catalogue. The

AM3D approach claims that question annotations support evaluation of design solutions for a specific

problem. The first validation goal targets this claim. If users of a catalogue with patterns annotated

with such questions make more correct choices of the patterns than users of a standard catalogue, the

168

6.5. Controlled Experiment

question annotations are helpful for the pattern evaluation and lead to less mistakes during the design

phase.

• Goal II: The second goal is to empirically validate the positive impact of the better documented pat-

terns on the software evolution (list tasks) from the software engineer’s or architect’s point of view.

The AM3D approach claims that a decision to use a pattern can be semi-automatically documented

with the help of answers provided to question annotations, and this documentation can be than used

to re-evaluate decisions in face of changes during system evolution. Thus, the maintainers of the sys-

tem documented using the AM3D approach have can more accurately evaluate if the used pattern is

still optimal for the specific problem, than the maintainers of a system documented with the standard

approach.

• Goal III: The third goal is to empirically validate that no significant additional overhead is caused by

the semi-automatic documentation of the application of annotated patterns from the software engineer’s

or architect’s point of view. This goal has a similar idea to that of the Type III evaluation type (quantita-

tive cost-benefit evaluation). Here the usage of the approach for the solution of the task is qualitatively

evaluated during the experiment.

The next step of the Goal Question Metric approach is to derive the research questions to the defined goals.

These questions are listed in the Section 6.5.1.2.

6.5.1.2. Questions and Metrics

The following research questions were formulated to follow on the the goals of the experiment validation:

• QI. Can annotated patterns be more appropriately selected and re-evaluated if documented with
the proposed approach than without it?

This question evaluates if there is a difference in common usage scenarios of design patterns of the

approaches for cases described by questions II and III (for design and for maintenance). Question I is

related to Goals I and II.

• QII. Can annotated patterns be more appropriately selected if documented with the proposed
approach than without it?

This question validates the suitability of a limited pre-selected choice of pattern solutions though the

catalogue questions. Its goal is to measure the influence of the annotation of patterns with questions on

the pattern selection. This validation is based on the question annotations to the patterns stored with

each pattern in the AM3D catalogue. Question II is related to Goal I.

• QIII. Can the outdated patterns (decisions to use a pattern) be more easily found if documented
with the proposed approach than without it?

This question validates the re-evaluation of saved outdated patterns though the catalogue questions. Its

goal is to measure the influence of the annotation of patterns on recovering the rationale of the decisions

to use these patterns. Question III is related to Goal II.

169

6. Validation

Question Metric
Question I (Quantitative)
Can annotated patterns be more appropri-

ately selected and re-evaluated if docu-

mented with the proposed approach than

without it?

Metric 1.1 Number of correct patterns

Metric 1.2 Number of incorrect patterns

Metric 1.3 Number of undecided

Question II (Quantitative)
Can annotated patterns be more appropri-

ately selected if documented with the pro-

posed approach than without it?

Metric 2.1 Number of correct patterns

Metric 2.2 Number of incorrect patterns

Metric 2.3 Number of undecided

Question III (Quantitative)
Can the outdated patterns (decisions to use a

pattern) be more easily found if documented

with the proposed approach than without it?

Metric 3.1 Number of correct patterns

Metric 3.2 Number of incorrect patterns

Metric 3.3 Number of undecided

Question IV (Qualitative)
Is the annotated pattern catalogue easier to

use as compared to the standard design pat-

tern catalogue?

Metric 4.1 Easiness to select a pattern measured on a 4 point scale

Metric 4.2 Easiness to re-evaluate a pattern measured on a 4 point

scale

Metric 4.3 Usability of the catalogue to select a pattern measured

on a 6 point scale

Metric 4.4 Usability of the catalogue to re-evaluate a pattern mea-

sured on a 6 point scale

Table 6.17.: Summary of Questions and Corresponding Metrics

• QIV. Is the annotated pattern catalogue easier to use as compared to the standard design pattern
catalogue?

This question evaluates if there is a difference in usability of the approaches for cases described by

questions I, II and III (for design and for the maintenance). Question IV is related to Goal IV.

For each of these questions, metrics are defined in order to be able to measure the goal achievement. The

metrics are summarized in Table 6.17.

For questions I, II and III the number of cases where patterns were selected correctly, the number of cases

where patterns were selected incorrectly, and the number of cases where a pattern could not be selected is

measured. These metrics are quantitative. For the question IV anticipated easiness of catalogue usage on a

four-point scale, and the usability of the catalogue to perform the tasks on a six-point scale for both of the

cases is measured.

6.5.1.3. The Experiment Hypotheses

In order to be able to evaluate the data collected for the defined metrics, the analysis hypotheses has to be

defined. The hypotheses are defined for each of the question’s metrics. The defined hypotheses are presented

in Table 6.18, where μ is the mean of the variable for the experiment. The defined hypotheses are so-called

null hypotheses.

Definition 6.7 A null hypothesis [176]

The null hypothesis refers to a general or default position that there is no relationship between two measured

phenomena, or that a potential treatment has no effect. Rejecting or disproving the null hypothesis means that

there is a relationship between two phenomena or that a potential treatment has a measurable effect.

170

6.5. Controlled Experiment

Question I: Null Hypotheses
H1a

0 : μa
c = μb

c The AM3D approach group has the same number of the correct answers to the tasks, as

the standard approach.

H1b
0 : μa

i = μb
i The AM3D approach group has the same number of the incorrect answers to the tasks, as

the standard approach.

H1c
0 : μa

dn = μb
dn The AM3D approach group has the same number of the “I do not know” answers to the

tasks, as the standard approach.

Question II: Null Hypotheses
H2a

0 : μa
c = μb

c The AM3D approach group has the same number of the correct answers to the tasks for

Q I, as the standard approach .

H2b
0 : μa

i = μb
i The AM3D approach group has the same number of the incorrect answers to the task for

Q I, as the standard approach.

H2c
0 : μa

dn = μb
dn The AM3D approach group has the same number of the “I do not know” answers to the

task for Q I, as the standard approach.

Question III: Null Hypotheses
H3a

0 : μa
c = μb

c The AM3D approach group has the same number of the correct answers to the tasks for

Q II, as the standard approach.

H3b
0 : μa

i = μb
i The AM3D approach group has the same number of the incorrect answers to the task for

Q II, as the standard approach.

H3c
0 : μa

dn = μb
dn The AM3D approach group has the same number of “I don’t know” answers to the task

for Q II, as the standard approach.

Question IV: Null Hypotheses
H4a

0 : μa
es = μb

es The AM3D approach group requires the same effort to select the right pattern as the

standard approach group.

H4b
0 : μa

e f = μb
e f The AM3D approach group requires the same effort to re-evaluate the patterns as the

standard approach group.

H4c
0 : μa

us = μb
us The AM3D approach group receives the same support from the AM3D catalogue to select

the right pattern as the standard approach group receives from the standard catalogue.

H4d
0 : μa

us = μb
us The AM3D approach group receives the same support from the AM3D catalogue to re-

evaluate patterns as the standard approach group receives from the standard catalogue.

Table 6.18.: Experiment Hypotheses for Statistical Analysis

It means, there is an assumption that there is no difference between the number of correct, incorrect and

“I do not know” answers for the tasks for the both of the approaches. Thus, for the Question I it is assumed

that the experiment participants will have the same success in all tasks for both approaches. For the Question

II it is assumed that the experiment participants will have the same success rate in selecting the right design

pattern from the catalogue for both approaches, and that there will be a comparable number of participants

who could not select the right pattern. For the question III it is assumed that the experiment participants will

have the same success rate in finding the right design pattern to be changed for both approaches, and that

there will be a comparable number of participants who could not find the right pattern.

Furthermore, it is assumed that both of the approaches are comparably easy to use and that they have

a comparable effectiveness in guiding of the participants though the tasks. Thus, for the question IV it

is assumed that it makes no difference whether to use an AM3D annotated pattern catalogue, or to use a

standard pattern catalogue. These assumptions are validated based on the data collected from the experiment

6.5.2. Research Method

This section describes the research method. The research method of the empirical study is a subtype of a

controlled experiment – a quasi-experiment, which a quantitative research method. For the definition of a

controlled experiment see the Definition 6.8, for the definition of a quasi-experiment see the Definition 6.9.

171

6. Validation

The subjects were assigned quasi-randomly to one of the treatments, as due to the differences in their per-

formance we had to ensure a comparable proportion between very good and good students in each of the

groups.

Definition 6.8 A controlled experiment [176]

A control experiment in software engineering is an empirical enquiry that manipulates one or several factors

or variables of the studied setting.

Definition 6.9 A quasi-experiment [176]

A quasi-experiment is an empirical enquiry similar to an experiment, where the assignment of treatments to

subjects cannot be based on randomization, but emerges from the characteristics of the subjects or objects

themselves.

The experiment is a one factor with two treatments experiment, where subject’s performance in the ar-

chitectural tasks is compared between the AM3D approach (Group A, AM3D) and the standard approach

(Group B, Book). For the definition of a one factor with two treatments experiment see the Definition 6.10.

Definition 6.10 A one factor with two treatments experiment [176]

A one factor with two treatments experiment compares the two treatments against each other. The most

common is to compare the means of the dependent variable for each treatment.

The experiment design is balanced, as there is the same amount of subjects per each treatment. For the

definition of a balanced experiment see the Definition 6.11.

Definition 6.11 A balanced experiment [176]

The treatments are assigned in a way so that each treatment has equal number of subjects in order to have a

balanced design. Balancing simplifies and strengthens the statistical analysis of the data.

It is a multi-test study, as there is one object of study and a set of subjects performing actions with the

object. For the definition of a balanced experiment see the Definition 6.12.

Definition 6.12 A Multi-test study [176]

A Multi-test study is a study that examines a single object across a set of subjects.

To summarize, the research method of the empirical study is a controlled multi-test balanced quasi-

experiment with one factor with two treatments.

6.5.3. Experiment Design

This section provides details on the experiment design. It describes the experiment context, the experiment

object, the experiment subjects, their group assignments, the experiment tasks and the experiment process

and materials.

172

6.5. Controlled Experiment

PSE System

Event
Mngmt

Mensa
Server

User
Service
Apache

User
Service
Tomcat

User
Mngmt

User
DAO

DB
Access

User
DB

Authen-
tication
Repor-

ting
Mensa
Import

Mensa
DB

P2 P4

P3 P5

P6 P6

P1

Figure 6.4.: System View of the PSE Architecture with Marked Pattern Positions (P)

6.5.3.1. Experiment Context

The AM3D experiment took place during a half-a-year long software development practical course at Karl-

sruhe Institute of Technology (KIT) involving 20 bachelor students as subjects. In the practical course

students had to develop two mobile applications in four groups. All of these groups had to use a user-

management system (PSE system) which was the subject of the experiment. Everybody received several

trainings to the practical course topics and to the experiment topics to assure the required knowledge. In

particular, training on design patterns and on the component-based software development was given, as these

topics were required to manage the experiment.

The AM3D experiment was one of the three independent experiments that took place at the end of the

course. Therefore, materials, such as PSE system design (experiment object), PSE system requirements and

implementation, warm-up and cool-down tasks are a contribution of the complete experiment team. The

trainings were held by each of the experiment designers to the own topic.

This thesis only reports the results of the experiment related to the AM3D approach.

6.5.3.2. Experiment Object

The experiment object is a user management system (a composite component) called PSE. The system view

is presented on Figure 6.4. Grey circles with “P” mark components with implemented design patterns, which

were subject of change during the experiment.

The PSE system was designed and implemented by practical course supervisors together with the experi-

ment designers. The students received specification of the PSE system interface, PSE system documentation

and PSE system implementation (running on the provided Web server) to be used for their mobile application

implementations.

The goal of the PSE system is to manage the users of mobile applications. Besides the usual user infor-

mation, such as name, gender or age, the users of the PSE system may have food and event preferences lists.

Two main use-cases of the PSE system are (1) storing user votes and preferences for the menus and food

options of the University canteen, and (2) storing user votes and preferences for the participation in events.

The experiment subjects had to use the PSE system to manage and authenticity users of the apps that were

developed during the practical course. Therefore the subjects were familiar with the system functionality and

173

6. Validation

provided and required interfaces, as they had to program towards them. They were, however, not familiar

with the implementation details and the PSE system architecture was a black box for them.

During the experiment, the PSE architecture and detailed documentation were revealed to the subjects. The

subjects were provided with time to get acquainted with the system: The first part of the experiment contained

easy warm-up tasks to assure that each of the subjects knew about available artefacts, had an overview of them

and of the PSE architecture in general. All of the subjects succeeded in these warm-up tasks.

6.5.3.3. Experiment Subjects and Assignment of Subjects to Experiment Groups

The subjects of the experiments were 20 bachelor students (mainly third year) taking part at the half-a-year

long software development practical course at Karlsruhe Institute of Technology (KIT).

During the PSE course, a large difference in the participants knowledge was observed. Some of the par-

ticipants have shown a very high motivation and skill levels, while some were moderate. Thus, it was not

possible to assign the participants to the treatment and control groups completely randomly. The characteris-

tics of the participants had to be taken into account, to avoid accidental concentration of the top participants

in one of the groups.

Therefore, the following approach to assign the participants to the groups was used. The course supervisors

have provided two lists of students to the experiment organisers – top students and other students. The

randomisation was then performed on both of these lists. The result was four lists of participants – two

lists with top participants, and two lists with the other participants. These lists were then merged into two,

combining each top-participant list with one other-participants list. Even though the assignment to the groups

is not completely random, the experiment designers did not influence assignment of students to one or other

of the groups.

In the following, the treatment group will be called the Group A, and the control group will be called the

Group B.

6.5.3.4. Process and Materials

At the beginning of the practical course, subjects received a list of requirements to the planned mobile apps,

requirements to the PSE system, PSE system documentation and its implementation. Besides an introduction

organised by the course supervisors, subjects received trainings, as explained in Section 6.5.3.1. The AM3D

experiment took place at the end of the course together with one more experiment on the architectural decision

views. Due to this topic similarity the introduction materials and warm-up and cool-down questionnaires were

shared.

The plan of the experiment is outlined on Figure 6.5, and consisted of the following parts:

• General introduction: General introduction contained a short reminder about key architectural terms

required for the experiment, and introduction to the PSE system.

• Group-specific introduction: Group-specific introduction explained the corresponding approaches

(the AM3D approach, and the standard approach), handled in experiment materials and their structure,

and usage of them. . Both of the introductions were done according to the protocol for the reproducibil-

ity of the experiment. The introduction texts have the same structure and length, and differ only in the

approach details.

174

6.5. Controlled Experiment

Feedback

Supervisor A
Room A

Supervisor B
Room B

Introduction A Introduction B

Tasks A Tasks B

General Introduction

Tasks Introduction Ti
m

e

Figure 6.5.: Plan of the Experiment

• Warm-up tasks: After the introduction, both groups proceeded with the first questionnaire containing

the warm-up tasks. The participants had a chance to get acquainted with each of the provided artefacts,

such as lists of requirements, the reminder of the PSE system design, the PSE system architecture (was

also explained in introduction), list of design decisions and the AM3D pattern catalogue or a book with

excerpts from the pattern books. The participants had a paper version of the introductory presentations

at their side, together with the transcript, for the case they would need a reference.

• Design decision views tasks: After 10 minutes the first questionnaire was collected, and the partici-

pants proceeded with the second one dedicated to the design decisions. This questionnaire is not related

to the AM3D approach and, therefore, is not described here.

• The AM3D tasks: After 30 minutes, the second questionnaire was collected and the participants

proceeded with the third one, dedicated to the AM3D approach. Time was captured once a participant

was done with the questionnaire. The AM3D questionnaire consisted of two parts, each containing the

main task and three feedback questions. The first task was to evaluate already met design decisions on

design pattern taking into the account provided requirements changes. In this case, both groups had

a list of design decisions to the PSE system, documents either with the AM3D approach or with the

classical approach. The second task topics was to evaluate which of the given design pattern could

solve the given design problems. The tasks are listed in the Appendix B.

Each of the two tasks had a defined process to follow to solve the task, and an example with the solution.

Each of these tasks had 4 data points – 4 patterns to decide on, or 4 problems to find a pattern for. All

tasks were multiple choice.

The feedback questions collected information on how easy the task was for the participants according to

their own perception, an estimation if the AM3D catalogue (or the book for the Group B) was helpful

175

6. Validation

to solve the task, and a chance to provide a free-text comment to the task. The participants had 30

minutes to complete the tasks.

• Cool-down tasks: Finally, the participants received the last fourth questionnaire, which collected the

information on their background, their knowledge of programming, design and design patterns, com-

ments to the understandability of the questionnaires, information on problems with the questionnaires

and if the problems were solved or not, and a general comment to consider by the experiment organis-

ers.

All materials including the experiment protocol can be found in Appendix B.

6.5.3.5. Tool-Supported vs. Questionnaire-Based Experiment

The empirical study about the AM3D design pattern catalogue was not tool-based. This decision was taken

based on the following arguments:

• Too high risk to end up validating the tool instead of the idea of the AM3D pattern catalogue.

• A tool requires some time to get proficient with. It would either require an additional training to the

students, or more time for the experiment, which was no option.

• In particular, a tool would be a research prototype and not a matured tool, and thus most likely would

have not the best usability.

• A tool requires certain pre-installed technical environment. The experiment organisers, however, had

only a limited influence on the lab computers. A risk on an unexpected Java-update or some other

technical defect was too high, considering that there was only one time slot for the experiment with a

rather tight schedule.

The drawback of the decision is that the tool support is not validated to the end. However, it was neither a

contribution of the approach, nor the focus of a dissertation project. Another drawback is that the tool support

would have enabled tracking of the participants actions, which was not possible with the paper questionnaires

and catalogues. To tangle this drawback, a process was defined for the participants to follow during the

task solution. This process ensured similarity of participant’s actions and common understanding of the task

between all of the participants. Moreover, the feedback questions were included into the tasks to collect

information on the participant’s actions.

At the end, the decision not to use the tool during the experiment has proven to be right, as one of the exper-

iment organizers indeed experienced technical problems with the lab computers, even despite the installations

were tested in the lab before.

6.5.4. Testing the Method

The validity of the experiment design was assured in two ways. First, the experiment design was carried out

in a team with regular meetings and discussions. Two of the meeting participants had grounded experience

in empirical work, and have organized a controlled experiment before. The experience collected during the

survey was also considered during the design, in particular during the questionnaire design. In overall, the

design phase of the experiment lasted over half a year. During this half a year, the students were regularly

provided with required artefacts and training, and the final experiment part was designed and reviewed.

176

6.5. Controlled Experiment

Second, the experiment was pretested in three steps. In the first step, a review of the complete experi-

ment was conducted and the collected comments were implemented in the design. In the second step, the

experiment was simulated with two doctoral researchers, one of whom is an expert in the body of empirical

work, with a detailed feedback session after they have completed the experiment. The doctoral researchers

were assigned accordingly to the treatment and to the control groups. Once again, the collected feedback

was implemented in the experiment design. Finally, in the third step, one more simulation of the experiment

took place with three doctoral researchers. This time, one doctoral researcher student was assigned to the

treatment group, and two to the control group. The collected feedback was implemented in the experiment

design.

6.5.5. Experiment Results

This section presents the results of the experiment aligned to the research questions formulated in Sec-

tion 6.5.1. The results summarize the data from the 20 valid questionnaires that were collected during the

experiment.

First, the outline removal is described in Section 6.5.5.1, followed by the information about the participants

in Section 6.5.5.2. Section 6.5.5.3 explains the method that was selected for the statistical evaluation. Sec-

tion 6.5.5.4 analyses the data related to the pattern common tasks research question, Section 6.5.5.5 analyses

the data related to the pattern selection task research question, Section 6.5.5.6 analyses the data related to the

pattern re-evaluation task during the system evolution research question. Section 6.5.5.7 analyses the data

related to the AM3D catalogue easiness of usage. Finally, Section 6.5.5.8 analyses all the data considering

the comments, the participants have provided as a justification to their answers. Feedback is summarized in

Section 6.5.5.9.

6.5.5.1. Data Validation and Outlier Removal

Before the data analysis, one of questionnaires from the Group B was removed, as the solution for the tasks

was incomplete due to the external factors. This participant came too late and also changed the work station

during the experiment, as the result, the task I was missing completely, and Task II was only partially solved.

This participant also did not complete other questionnaires. In the next step, the data in the questionnaires

was analysed for the outliers. No outliers were detected. At the end, a set of 20 valid questionnaires was left

and used for the data analysis.

6.5.5.2. Participant Information

The experiment participants were students who voluntary enrolled into the half-a-year practical course on

software development. The information on the participant’s background is presented in Table 6.19.

All of the participants were bachelor students. From 20 participants, 14 were in the third semester, three

in the fifth semester and one in the 7th, and two students provided no information. From all the participants,

9 had no practical programming experience before the PSE course beyond the regular studies, while 5 had

developed software for money. Some of the students provided no answer to the question. Similarly, 14

participants had no experience in system design before the PSE course. None of the participants selected

“no knowledge of patterns”, while 14 had collected the knowledge from the lectures, 5 have collected an

additional knowledge from the personal research, and 7 have applied patterns on practice before.

177

6. Validation

Study semester #
Third 14

Fifth 3

Seventh 1

No answer 2

Practical programming experience (multiple choice) #
Yes, during studies 6

Yes, in addition to studies 6

Yes, software development for money 5

No 9

Practical architectural design experience (multiple choice) #
Yes, during studies 1

Yes, in addition to studies 2

No 14

Knowledge of design patterns (multiple choice) #
Yes, from lectures 14

Yes, self-education 5

Yes, applied on practice 7

No 0

Table 6.19.: Information on Experiment Participants

6.5.5.3. Selected Statistical Test

To be able to select the right statistical test, we need to find out if the collected data forms a normally

distributed population or not. The data sets are presented in Table 6.20.

Group A Group B
Task I Task II Task I Task II

Correct answers (6,5,9,6) (6,10,6,8) (3,6,5,6) (2,8,5,3)

Incorrect answers (4,3,0,3) (4,0,4,2) (7,3,4,5) (8,2,5,7)

“I don’t know” answers (0,2,1,1) (0,0,0,0) (0,1,1,0) (0,0,0,0)

Table 6.20.: Experiment Data

To test if the datasets have the normal (Gaussian) distribution, the Shapiro-Wilk Test was selected. The

results of the Shapiro-Wilk Test for the data sets are presented in Table 6.21. The dataset distribution is

normal, when the results of the Shapiro-Wilk Test (�) exceed the critical value, characteristic for the data set

sample size. The null hypothesis (H0) here means the normal data distribution.

Numbers of “I don’t know” answers for the Group A in Task I and II, and for the Group B in Task II do not

follow a normal distribution. Thus, for evaluation of the data, which is normally distributed, a two sample

paired t-test [179] is used to evaluate the null hypotheses. Otherwise, a two sample paired Wilcoxon signed

rank test [180] is used. The confidence level is 95% in both cases (α = 0.05), which is a standard confidence

level for the statistical evaluations.

The data is analysed with the help of the R Statistic program (The R Project for Statistical Comput-

ing) [181], which is a strict functional language and environment for statistical calculations.

6.5.5.4. Question I: Common Pattern Tasks

The results for the research Question I “Can annotated patterns be more appropriately selected and re-

evaluated if documented with the proposed approach than without it?” are summarized in Table 6.22. Box-

plots to the data in the table are presented on Figure 6.6.

178

6.5. Controlled Experiment

Gr. Task Data Mean St.
Dev.

Var. W Crit. W
(5% s.l.)

H0

A All corr (6,5,9,6,6,10,6,8) 7.0 1.8 3.2 0.850 0.818 �

B All corr (3,6,5,6,2,8,5,3) 4.8 2.0 4.0 0.948 0.818 �

A All incorr

(4,3,0,3,4,0,4,2)

2.5 1.7 2.9 0.814 0.818 �

B All incorr

(7,3,4,4,8,2,5,7)

5.0 2.1 4.6 0.938 0.818 �

A All dntk (0,2,1,1,0,0,0,0) 0.5 0.8 0.6 0.724 0.818 �

B All dntk (0,0,0,0,0,0,0,0) 0.0 0.0 0.0 n/a 0.818 �

A I corr (6,5,9,6) 6.5 1.7 3.0 0.840 0.748 �

A II corr (6,10,6,8) 7.5 1.9 3.7 0.863 0.748 �

B I corr (3,6,5,6) 5.0 1.4 2.0 0.827 0.748 �

B II corr (2,8,5,3) 4.5 2.7 7.0 0.946 0.748 �

A I incorr (4,3,0,3) 2.5 1.7 3.0 0.840 0.748 �

A II incorr (4,0,4,2) 2.5 1.9 3.7 0.863 0.748 �

B I incorr (7,3,4,4) 4.5 1.7 3.0 0.840 0.748 �

B II incorr (8,2,5,7) 5.5 2.7 7.0 0.946 0.748 �

A I dntk (0,2,1,1) 1.0 0.8 0.7 0.945 0.748 �

A II dntk (0,0,0,0) 0 0 0 n/a 0.748 �

B I dntk (0,1,1,0) 0.5 0.6 0.3 0.729 0.748 �

B II dntk (0,0,0,0) 0.0 0.0 0.0 n/a 0.748 �

Table 6.21.: Shapiro-Wilk Test

Hypothesis Mean Δ p-value H0

H1a
0 : μa

c = μb
c 2.25 0.01994 �

H1b
0 : μa

i = μb
i -2.5 0.005266 �

H1c
0 : μa

dn = μb
dn 0.25 0.1573 �

Table 6.22.: Analysis of the Research Question I

According to the data, the first null hypothesis that the treatment Group A has the same number of correct

answers to tasks as the control Group B is rejected. The treatment Group A has significantly more of correct

answers than the Group B (p-value = 0.01994). The second null hypothesis that the treatment Group A has

the same number of incorrect answers as the control Group B is also rejected.

The treatment Group A has significantly less of incorrect answers than the Group B (p-value = 0.005266).

The third null hypothesis that the treatment Group A has the same number of “I do not know” answers to

the pattern selection tasks as the control Group B can neither be rejected, nor confirmed. The p-value in

this case is 0.1573, which might be an indicator that the treatment Group A in cases of uncertainty tends

to select “I don’t know option” instead of a definite decision. This could be a positive effect by the AM3D

approach, however, it requires further validation. For critical discussion of threats to validity please refer to

Section 6.5.6.

6.5.5.5. Question II: Pattern Selection

The results for the research Question II “Can annotated patterns be more appropriately selected if documented

with the proposed approach than without it?” are summarized in Table 6.23 (the Question I evaluation is based

on the Task II data, as questions were in a reversed order in the experiment). Boxplots to the data in the table

are presented on Figure 6.7.

179

6. Validation

A

B

2 4 6 8 10

G
roups

Number of Answers

(a) Correct Answers

A

B

0 2 4 6 8

G
roups

Number of Answers

(b) Incorrect Answers

A

B

0.0 0.5 1.0 1.5 2.0

G
roups

Number of Answers

(c) “I don’t know” Answers

Figure 6.6.: Boxplots to Common Pattern Tasks

Hypothesis Mean Δ p-value H0

H2a
0 : μa

c = μb
c 3 0.04621 �

H2b
0 : μa

i = μb
i -3 0.04621 �

H2c
0 : μa

dn = μb
dn n/a n/a �

Table 6.23.: Analysis of the Research Question II

A

B

2 4 6 8 10
G

roups

Number of Answers

(a) Correct Answers

A

B

0 2 4 6 8

G
roups

Number of Answers

(b) Incorrect Answers

A

B

-1.0 -0.5 0.0 0.5 1.0

G
roups

Number of Answers

(c) “I don’t know” Answers

Figure 6.7.: Boxplots to Pattern Selection

According to the data, the first null hypothesis that the treatment Group A has the same number of correct

answers as the control Group B is rejected. The treatment Group A has significantly more of correct answers

180

6.5. Controlled Experiment

than the Group B (p-value = 0.04621).

The second null hypothesis that the treatment Group A has the same number of incorrect answers as the

control Group B is also rejected. The treatment Group A has significantly less of incorrect answers than the

Group B (p-value = 0.04621).

The third null hypothesis that the treatment Group A has the same number of “I do not know” answers as

the control Group B is confirmed. In both cases there were no “I don’t know” answers. For critical discussion

of threats to validity please refer to Section 6.5.6.

6.5.5.6. Question III: Pattern Re-Evaluation

The results for the research Question III “Can the outdated patterns (decisions to use a pattern) be more easily

found if documented with the proposed approach than without it?” are summarized in Table 6.24 (please

note, that the Question III evaluation is based on the Task I data, as questions were in a reversed order in the

experiment). Boxplots to the data in the table are presented on Figure 6.8.

Hypothesis Mean Δ p-value H0

H3a
0 : μa

c = μb
c 1.5 0.2967 �

H3b
0 : μa

i = μb
i -2 0.1162 �

H3c
0 : μa

dn = μb
dn 0.5 0.1573 �

Table 6.24.: Analysis of the Research Question III

A

B

3 4 5 6 7 8 9

G
roups

Number of Answers

(a) Correct Answers

A

B

0 1 2 3 4 5 6 7

G
roups

Number of Answers

(b) Incorrect Answers

A

B

0.0 0.5 1.0 1.5 2.0

G
roups

Number of Answers

(c) “I don’t know” Answers

Figure 6.8.: Boxplots to Pattern Re-Evaluation

According to the data, the first null hypothesis that the treatment Group A has the same number of correct

answers as the control Group B cannot be rejected with statistical significance, as the p-value equals 0.2967.

Even though the hypothesis cannot be rejected, the p-value = 0.2967 is still a good result. It means that in

70% of the cases, the treatment Group A will give correct answers, compared to the control Group B.

The second null hypothesis that the treatment Group A has the same number of incorrect answers as

the control Group B. It also cannot be rejected with a statistical significance, as the p-value equals 0.1162.

181

6. Validation

However, also in this case, the p-value = 0.1162 is a good result. It means that in 82% of the cases, the

treatment Group A will give less incorrect answers, compared to the control Group B.

The third null hypothesis that the treatment Group A has the same number of “I do not know” as the control

Group B cannot be rejected with a statistical significance, as the p-value equals 0.1573. Also here, the p-value

= 0.1573 may be an indicator that the treatment Group A in cases of uncertainty tends to select “I don’t know

option” instead of a definite decision, which is positive effect for the evolution as it produces less mistakes

through the too-quick decisions. For critical discussion of threats to validity please refer to Section 6.5.6.

6.5.5.7. Question IV: Easiness of Usage

The results for the research Question IV “Is the annotated pattern catalogue easier to use as compared to the

standard design pattern catalogue?” are summarized in Table 6.25 and Table 6.26. The block diagrams to the

data in the tables are presented on Figure 6.9. As the data scale is not ordinary in both questions (which is

an experiment design mistake, but there are no perfect experiments in real world [174]), the hypothesis test

based on statistics cannot be performed. Instead the results are evaluated descriptively and are compared with

the help of block diagrams.

Group A Group B
Task I Task II Task I Task II

The answers to the questions from the catalogue

saved together with the taken decisions were

sufficient to solve the tasks

4 – – –

I felt myself supported by the catalogue / by the

book

4 4 10 5

I felt myself supported by the catalogue / by the

book , but I have had or had required additional

materials

0 1 0 2

I could partially use the catalogue / the book to

solve the tasks, but the information was in most

of the cases insufficient

0 2 0 3

The catalogue / the book were useless to solve

the tasks

1 1 0 0

The tasks were so simple that I did not need the

catalogue / the book

0 1 0 0

Table 6.25.: Data to the Research Question IV: Support

Group A Group B
Task I Task II Task I Task II

Right 2 3 4 3

Partially right 5 3 6 5

Partially wrong 2 2 0 2

Wrong 0 1 0 0

Table 6.26.: Data to the Research Question IV: Easiness

According to the diagrams (A) and (B), the treatment Group A seem to require less effort to select the right

pattern and to re-evaluate the patterns as the control Group B . The participants of the treatment Group A also

seem to have felt easier doing the tasks, than the participants from the Group B. This observation is based on

the mostly positive comments provided about the perception of the easiness of the tasks on pattern selection.

182

6.5. Controlled Experiment

0

1

2

3

4

5

6

7

Right Partially right Partially wrong Wrong

A

B

(a) Effort by Pattern Selection

0

1

2

3

4

5

6

Right Partially right Partially wrong Wrong

A

B

(b) Effort by Pattern Re-Evaluation

0

2

4

6

8

10

12

1 2 3 4 5

A

B

(c) Support by Pattern Selection, where: (1) I felt my-

self supported by the catalogue / by the book, (2) I

felt myself supported by the catalogue / by the book

, but I have had or had required additional materials,

(3) I could partially use the catalogue / the book to

solve the tasks, but the information was in most of

the cases insufficient, (4) The catalogue / the book

were useless to solve the tasks, and (5) The tasks

were so simple that I did not need the catalogue / the

book (1) The answers to the questions from the cat-

alogue saved together with the taken decisions were

sufficient to solve the tasks,

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6

A

B

(d) Support by Pattern Re-Evaluation, where: (1) The

answers to the questions from the catalogue saved

together with the taken decisions were sufficient to

solve the tasks, (2) I felt myself supported by the cat-

alogue / by the book, (3) I felt myself supported by

the catalogue / by the book , but I have had or had re-

quired additional materials, (4) I could partially use

the catalogue / the book to solve the tasks, but the

information was in most of the cases insufficient, (5)

The catalogue / the book were useless to solve the

tasks, and (6) The tasks were so simple that I did not

need the catalogue / the book

Figure 6.9.: Boxplots to Easiness of Usage of the Catalogue

Furthermore, according to the diagrams (C) and (D), the treatment Group A received a better support from

the AM3D catalogue to select the right pattern and to re-evaluate patterns as the control Group B by the

book. Also here, the participants of the treatment Group A seem to have felt more supported by the AM3D

catalogue doing the tasks, than the participants from the control Group B by the book. This observation is, as

well, based on the mostly positive comments provided about the perception of the support by the catalogue

to complete the tasks, both during the pattern selection and during the pattern re-evaluation.

We have also captured the time for the cases, when the participants finished the questionnaires quicker

than the given time. However, unfortunately in few cases the participants have kept the questionnaire for

themselves until they finished the part and did not notify the supervisors that the tasks were completed before

time. Therefore, the time data cannot be used for the precise evaluation. The only valid observation is that in

the Group A, the participants tended to finish the tasks quicker, than in the Group B. About half of the Group

183

6. Validation

A participants have finished the tasks earlier then the given time, while in the Group B only two participants

have completed the tasks earlier, to our best knowledge. For critical discussion of threats to validity please

refer to Section 6.5.6.

6.5.5.8. Evaluation of Data Considering Comments

Up to now the answers to the tasks were evaluated solely based on what answer was selected. However, an

actual correctness of the answer depends on how the subject understood the task and what reasoning was the

subject following solving the task. This difference is due to the different assumptions the participants might

have took while solving the tasks.

The participants were asked to provide comments to their answers, with an explanation why this or that

answer was selected. These comments were used to evaluate the answers of the participants, considering

if the tasks were indeed understood and done correctly. From this point of view, there are four classes of

answers, which are presented in Table 6.27.

Type Answer Justification Final Task Evaluation
AA Correct Correct justification Answer is considered correct

AB Correct Incorrect justification Answer is considered incorrect

BA Incorrect Correct justification Answer is considered correct

BB Incorrect Incorrect justification Answer is considered incorrect

Table 6.27.: Types of Answers According to Provided Justifications

All questionnaires were re-evaluated based on this classification. In cases, where the answer was correct,

but had an incorrect explanation, the answer to the task was marked to be actually incorrect. Vice versa,

if the answer to the task was initially incorrect, but the justification for the answer was correct, the answer

was considered to be correct. For example, if a participant has selected that the Singleton decision shall

be re-evaluated, because it may be used in the change request C001 due to the potential change of session-

management in the authentication singleton component. Even though the answer is not correct in the context

of the task, the reasoning behind the provided answer is correct. In this case, the answer to the task shall be

considered as correct, since the participant’s reasoning went beyond the task and a special case was analysed.

This principle was, of course, equally applied to both, to the control and to the treatment group.

The results are summarised in Table 6.28 (the data was checked for normality of distributions to select the

right tests), whereby the hypotheses to “I don’t know” answers are excluded, as the answers did not change

for these types of hypotheses. Boxplots to the data are presented on Figure 6.10.

Hypothesis Data Mean Δ p-value H0

H1a∗
0 : μa

c = μb
c

A(7,7,9,8,6,10,9,8),

B(3,7,5,5,2,8,5,3)
3.25 0.0006543 �

H1b∗
0 : μa

i = μb
i

A(3,1,0,1,4,0,1,2),

B(7,2,4,5,8,2,5,7)
-3.5 0.0001305 �

H2a∗
0 : μa

c = μb
c A(6,10,9,8), B(2,8,5,3) 3.75 0.009447 �

H2b∗
0 : μa

i = μb
i A(4,0,1,2), B(8,2,5,7) -3.75 0.009447 �

H3a∗
0 : μa

c = μb
c A(7,7,9,8), B(3,7,5,5) 2.75 0.06222 �

H3b∗
0 : μa

i = μb
i A(3,1,0,1), B(7,2,4,5) -3.25 0.02267 �

Table 6.28.: Analysis of the II and III Research Questions Considering Comments (* Hypothesis with Comments)

The results of the task evaluation with comments are actually even better for the AM3D approach. So, the

hypothesis H3b∗
0 : μa

i = μb
i can be rejected since the p-value in inside the accepted confidence interval. Also

184

6.5. Controlled Experiment

A

B

2 4 6 8 10

G
roups

Number of Answers

(a) Correct Answers for All Tasks

A

B

0 2 4 6 8

G
roups

Number of Answers

(b) Incorrect Answers for All Tasks

A

B

3 4 5 6 7 8 9

G
roups

Number of Answers

(c) Correct Answers for Task I

A

B

0 1 2 3 4 5 6 7

G
roups

Number of Answers

(d) Incorrect Answers for Task I

A

B

2 4 6 8 10

G
roups

Number of Answers

(e) Correct Answers for Task II

A

B

0 2 4 6 8

G
roups

Number of Answers

(f) Incorrect Answers for Task II

Figure 6.10.: Boxplots to Pattern Re-Evaluation

the hypothesis H3a∗
0 : μa

c = μb
c has almost reached the 95% level. Other null hypotheses have been already

rejected in evaluation without the comments. However, for all of the hypotheses the results have additionally

improved.

The threat to validity is that this re-evaluation is subjective, and that not all of the participants have provided

comments. In cases, where no comments were provided, the answer could not be checked. Therefore, the

data provided in this section shall be taken with care. It solely shows the trend. In case of the experiment

replication, the participants shall be checked better, to prevent the comment field left blank.

6.5.5.9. Feedback

The participants were asked to provide feedback to the tasks to patterns, and to the experiments in general.

In particular, the participants were asked to mention the artefacts and tasks that have caused some mis-

understanding or confusions, and if the questions about those artefacts or tasks could be answered by the

experiment supervisors. There were no understandability comments to the AM3D experiment. Those partici-

pants, who have stated that they had problems with some tasks or artefacts named only the AM3D experiment

unrelated materials. The participants were also asked to provide a detailed feedback to each of the tasks of

the AM3D experiment.

185

6. Validation

To the tasks on the pattern selection, the following comments were received from the Group A (trans-

lated from German into English): “Question to the patterns (Qxxx) have very well supported me during the

selection of patterns, in particular the alternatives part was the most interesting”, “The catalogue was help-

ful, however, the differences between the X Table Inheritance patterns could have been pointed out better”,

and “Trade-off decisions are most meaningful, when the priorities for the problems are set (performance,

maintenance, security, simplicity)?”.

To the tasks on the pattern re-evaluation, the following comments were received from the Group A (trans-

lated from German into English): “The catalogue is good, I would have gladly had one privately”, and “Too

few information on priorities”. As one of the participants commented on the understanding of the Table

Inheritance patterns, the catalogue entries to them could be reviewed for additional questions.

In the Group B, the following comments were received to the tasks on the pattern selection (translated from

German into English): “The client was not really explained well”, and “Long descriptions”. However, as for

the Group B the information was taken from the common public catalogues, the organisers had no influence

on the information quality and length.

The fact that the Group B provided little feedback can be explained by the fact that they were more under

pressure than the participants of the Group A, as explained before.

6.5.6. Threats to Validity, Limitations of the Evaluation

This section provides discussion on threats to validity, using the same classification, as the classification of

threats in Section 6.4.6, namely: Construct validity, internal validity, external validity, and reliability.

6.5.6.1. Construct Validity

The questionnaire design was not optimal for the measurement of the metrics for the research question IV

“Is the annotated pattern catalogue easier to use as compared to the standard design pattern catalogue?”. The

possible answer options to the questions about effort and about support were not forming an ordinary scale.

As the result, the hypothesis test could not be performed. Even though it would be possible to assign nominal

values to the answer option, e.g. “right” = 2, “partially right = 1”, “partially wrong = “-1” and “wrong = -2”,

the distance between the answers actually cannot be precisely estimated. So such an assignment would rather

be incorrect from the statistical point of view. Nevertheless, the collected data allowed for the descriptive

statistics and data analysis.

Some of the students forgot to notify the experiment supervisors when they have completed their tasks

before time. Therefore, no time metric could be collected with enough precision and we had to omit the time

evaluation for the research question IV.

The participants were aware of the topic of the experiment and it might have influenced the answers. It

is a natural threat and is common to surveys and experiments involving humans as subjects. However, the

participants were unaware to which group they were assigned to and did not know what the difference to the

other group was. Both groups took part in the experiment at the same time, and thus, they could not exchange

information.

None of the participants knew the topic, the AM3D experiment designer was working on. Therefore,

the participants could not have unlikely guessed the desired outcome of the experiment, and modified their

answers in accordance to their attitude to the experiment and experiment object.

186

6.5. Controlled Experiment

The participation in the experiment was on a semi-free will, and might have negatively affected the attitude

towards the experiment and the motivation in the experiment. The following measures were taken to reduce

this threat: The usage of the additional materials was multiple times explained during the trainings and

course. We have tried to explain the benefit the participants would get from the experiment, such as additional

experience in the design-related tasks, since the experience possibilities are rare during the University studies.

The participants were also provided with snacks after the experiment and were in general in a good-mood

and cooperative.

Some participants might have “improved” their stated experience with software design and development,

however, this “improvement” had no influence on the correctness of their solutions to the tasks.

To reduce the threat of mono-operation bias, and to create more realistic conditions, the participants have

received multiple artefacts they had to work with. The time was limited, so that participants could not spend

as much time as they liked doing the tasks, since it is also not the case in the real-life work environment.

There might have been an interaction of testing and treatment, and the participants might have felt under

pressure to produce the best possible results. To reduce the stress, the participants were informed that the

results do not influence the PSE course mark and are anonymous. This fact might have actually influenced

the participants towards the other direction, making them less motivated.

Another factor for motivation could potentially be the assignment to the control and treatment groups.

However, as mentioned before, the participants were not aware about these divisions and did not know what

the other alternatives were. Thus, the motivation shall have been rather personal and not related to the group

assignments.

The PSE system might be not representative enough for the real-world problems. This treat was tangled

in several ways. First, the system was still complex enough to contain several architectural twists and to be

not immediately comprehensive for the participants. Second, the participants have worked with the system

code during the PSE course and were familiar with its functionality. This reflects a real-world scenario,

where engineers work with parts of the system, however, do not necessary know how its structured and what

decisions and why were taken in it. Then a change request arrives, which requires changing a part of the

system the engineers actually know only through interfaces. Here, both, engineers and student participants

face similar problem – they have to take design decisions and to modify existing design decisions, while

trying to understand why the design is like it is and if the modifications would fit into it.

To avoid restricted generalizability across constructs, the research questions were defined with a goal to co-

evaluate also the potential additional influence of the AM3D approach – namely the influence on the easiness

to use. If the catalogue would help to achieve better results for the pattern application, it is important to know

how high is the price for this improvement in terms of time, effort and comfort feeling.

The design of the tasks and questions in the questionnaire might have influenced the collected results.

To reduce this threat, the experiment design was regularly reviewed in a group. Moreover, the tasks were

modified by two of the reviewers, and also modified after the pre-tests based on the feedback of the test

participants. The version of the tasks the students have received was, thus, hardly a reflection of a personal

desire of the experiment designer, since all of the material underwent a critical review process. In particular,

the own interest of the designer was to do the experiment as objective and real-life close as possible, and to

avoid as many threats as possible, in order to obtain a valid and replicable data.

187

6. Validation

6.5.6.2. Internal Validity

The experiment took part after the course, and this could have potentially affected the motivation of partici-

pants to perform well in the experiment. If it was the case, the effect shall be random for both groups, since

the distribution between groups was semi-random.

The experiment had only a limited number of patterns per task, all together 8 cases of pattern usage with

four options per each usage. However, despite this, the statistically significant results could be achieved at

least for parts of the hypotheses.

The tasks and questions in the questionnaire were formulated in a natural language. A common problem

is that questions might be misinterpreted or become so-called leading question. To minimize this threat, the

experiment design followed recommendations of literature on empirical research, such as Punch [177] and

Wohlin [176], and underwent several reviews. This is a common threat for the experiments.

The selection of the participants, who have participated in the experiment, might have influenced the re-

sults. However, the selection was accidental, as the participants have enrolled into the course on their own

will.

Since the participants performance was expected to be unequal (based on the experience during the course),

the assignment to groups was semi-random. The participants were divided into two groups (high performance

and normal performance), and then randomisation was carried out on both of these groups.

The experiment was based on the paper artefacts. The drawback is that tool support was not validated and

the participant’s actions could not be tracked. However, on the other side, the negative influence of inmature

user interface and of inmature tool support was removed as a variable, as well as instability of software in the

lab environment.

As already mentioned, the participants were not aware if they belong to the control or to the treatment

group, and what kind of treatment they were receiving. This factor could not have influenced their replies.

The treatment group was supervised by two experiment designers, and the control group was supervised by

one. The AM3D experiment designer was supervising the treatment group. It is potentially a threat; however,

the materials that were used by the supervisors for the introduction and execution were the same, besides

differences in the checked methods. The materials were also carefully reviewed before the experiment. Each

of the supervisors used a written script (available in the Appendix B for both groups), thus, assuring, that no

additional information could be passed or no important information could be forgotten. The AM3D designer

had regularly checked the control group during the experiment, to assure that the control group was following

the same plan as the treatment group.

The control group B provided fewer comments to the task answers, than the treatment group A. This

can be explained through more time pressure on the group B, since their pattern catalogue contained longer

descriptions. However, this actually can be seen as one more positive effect of the pattern catalogue. Its

pattern entries are kept short on purpose, and the fact that the group B took longer to solve the tasks, and still

did more mistakes, may be an indicator that the catalogue explains the material in a more compact way and

still precisely enough to complete the tasks correctly.

6.5.6.3. External Validity

The data of the experiment is based on 20 student participants, and might not be suitable to apply the obser-

vations to the real-world projects with software developers. However, Tichy [174] describes cases, where the

students are acceptable as subjects. As the participants of the experiment have been sufficiently trained, they

188

6.5. Controlled Experiment

at least are as well prepared, as the job beginners in the companies who are ex-students themselves. More-

over, the students are used to establish a trend [174] between usage of the AM3D approach and the usage of

the classical approach. Since the results show a considerable difference, the arguments of Tichy [174] can be

applied: “If one method has a clear relative advantage over the other with student subjects, then one can make

the argument that there will be a difference in the same direction (although perhaps of a different magnitude)

for professionals, provided the professionals use the methods in a similar fashion”.

Answers to the questions on the effort and on the support amount in the questionnaire are subjective and

reflect personal opinions of the participants. The comparison between the same option selected by several

participants, therefore, is possible only with a descriptive statistic and is not statistically measurable.

Similarly to the survey, the experiment was conducted on a selection from the catalogue, presented in a

form suitable for the experiment. The participants might have replied differently, if they had a real instance

of the catalogue at hand. However, the sample selection contained 12 patterns, which is a realistic number.

All of the tasks had each four pattern alternatives to choose from or to analyse in the task. The control group

had up-to-date materials, which were based on the common catalogue books.

6.5.6.4. Reliability Validity

To assure the reliability validity of the experiment, all the materials were captured and are available in the

Appendix B of this thesis.

All the trainings, and introductions to the experiment groups were transcribed and the introduction was

done reading the script. This was done for several purposes. First, to assure both groups have received

exactly the same introduction and have an equal chance in the experiment. Second, to be able to recheck what

was explained during the introduction, in case there would be some problems with collected questionnaires.

Finally, to enable replicability of the experiment.

6.5.7. Summary of the Results

The goals of the controlled experiment were to test whether (1) design patterns annotated according to the

AM3D approach can be better understood and applied more correctly as compared to the classical pattern

catalogue, and (2) system architecture documented with the AM3D approach can be better maintained com-

pared to the system documented with the standard approach. The usage of the AM3D catalogue shall remain

as easy as the usage of the classical catalogue. These goals were refined into three research goals followed

on by four research questions, described in Sections 6.4.1.1 and 6.4.3.2. All of the evaluation goals were

achieved.

The validation results of the experiment can be summarized as follows. The treatment Group A using the

AM3D catalogue had significantly more correct answers when selecting between several patterns, than the

Group B using the standard catalogue. The Group A also had significantly fewer mistakes than the Group B.

When re-evaluating the pattern decisions, the Group A outperformed the control Group B in number of

correct answers, and also had fewer incorrect answers. However, the null hypotheses in both cases could

neither be rejected nor accepted within the defined confidence level, as the p-value was 0.2967 and 0.1162

accordingly.

According to the data, there may be an indicator that the treatment Group A in cases of uncertainty tends

to select “I don’t know option” more often instead of a definite decision, than the control Group B. Is can be

seen as a positive effect, as fewer mistakes are done because of quick decisions.

189

6. Validation

In general, if considering both tasks together, the treatment Group A clearly outperformed the control

Group B, as shown by the statistically significant results.

The hypotheses on the ease of usage of the AM3D catalogue as compared to the classical catalogue could

not be statistically evaluated due to the mistake in the experiment design, because the answers to the ques-

tions were not placed on an ordinary scale. Instead, a descriptive approach was used to compare the data.

The treatment Group A seemed to require less effort to select the right pattern and to re-evaluate the patterns,

as the control Group B. The participants of the treatment Group A seemed to have felt easier doing the tasks,

than the participants from the control Group B. This observation is based on the mostly positive comments

provided by the participants about the perception of the difficulty of the tasks connected to the pattern selec-

tion. Furthermore, the treatment Group A received a better support from the AM3D catalogue to select the

right pattern and to re-evaluate patterns as the control Group B by the book. Also here, the participants of

the treatment Group A seem to have felt more supported by the AM3D catalogue doing the tasks, than the

participants from the control Group B by the book.

Since the time measurement was not mistake-free, the time data was not used for the statistical evaluation.

The only valid observation made is that in the Group A the participants tended to finish the tasks quicker, than

in the Group B. About half of the Group A participants have finished the tasks earlier then the given time,

while in the Group B only two participants completed the tasks earlier, to our best knowledge.

Thus, to summarise, the treatment Group A achieved at least better, and in some cases, significantly better

results doing pattern selection and decision re-evaluation compared to the control Group B. Hereby, the

treatment Group A had less effort and felt more supported during the tasks by the AM3D catalogue, than the

control Group B using the classical approach.

6.6. Validation Summary

In Section 6.2 we have described the goals and types of the validations of the AM3D approach. In this

section, we summarise the obtained results of the validations. Table presents the summary of what

is validated and what results were obtained during the validation. For the relations between the validation

types and the AM3D approach application scenarios and benefits, please refer to Table 6.3, presented earlier

in the chapter.

The feasibility of the approach was demonstrated on the application of the AM3D developed artefacts on

the CoCoMe-based system. All artefacts were successfully applied following the defined process, and are

capable of supporting the AM3D approach.

The motivation of the AM3D approach was successfully evaluated during the conducted survey. Not

only the design patterns are indeed often applied in practice, but also there is still a plenty of problems

connected to their application, despite the extensive research and the established information sources in the

area. Problems mentioned particularly often are selection between similar pattern alternatives, documentation

of patterns, problems with understanding of structure and implementation of patterns, and also the search for

a new/unknown pattern suitable for the problem.

190

6.6. Validation Summary

Eval.
Type

How What Results Section

Type 0
(Feasi-

bility)

Survey

based

on the

structured

interviews

with 25

partici-

pants

Feasibility of the motiva-

tion of the approach, and

of the potential applicability

of the proposed AM3D cata-

logue evaluated by indepen-

dent subjects.

Motivation supported: Design patterns are com-

monly applied on practice, and only 10% of the

participants did not experience problems with

their application or documentation. Potential ap-

plicability supported: The majority of the par-

ticipants positively evaluated applicability of the

catalogue for clarification of properties and con-

sequences of a pattern (68%), for selection be-

tween pattern alternatives (60%), and for improv-

ing documentation of pattern decisions (55%).

Understandability to the extern users was evalu-

ated as high.

Section 6.4

Type
I (Ap-

pro-

priate-

ness)

Approach

artefacts

and pro-

cess

Support capture and man-

agement of pattern decisions

and related artefacts a system

context.

AM3D approach artefacts and process success-

fully used to support capture and management of

the pattern decisions and related artefacts in sys-

tem context.

Section 3

Type II
(Appli-

cabil-

ity)

A case

study

based on

controlled

experi-

ment with

20 partici-

pants

Improvement of understand-

ability and correctness of pat-

tern application in design us-

ing AM3D , and improve-

ment of maintainability of

the architecture documented

with AM3D compared to the

standard approach.

Statistically significant improvement of correct-

ness of pattern selection (> 95%) and noticeable

improvement of correctness of re-evaluation of

pattern design decisions (> 70%). The AM3D

catalogue users estimated to have spent less ef-

fort for pattern-selection and evaluation, and to

be better supported by the AM3D catalogue at

these tasks, then the users of the classical ap-

proach based on the common book cataogues.

Section 6.5

Table 6.29.: The AM3D Validation Summary

The potential applicability of the AM3D approach was also positively evaluated. The participants sug-

gested the AM3D approach can be beneficial for the selection between similar patterns, for pattern documen-

tation, and also for the search of new pattern solution. Since number of survey participants was rather small,

these results show the trends and shall not be treated as statistically significant results. Details on the survey,

including the discussion of the threats to validity, are listed in Section 6.4.

In the next step, the AM3D approach was validated in the controlled experiment for the pattern selection

and re-evaluation tasks. The treatment group using the AM3D approach showed significantly more of the

correct answers, and significantly less mistakes when selecting the right pattern between several similar alter-

natives, then the control group using the classical book approach. For the re-evaluation of the taken pattern

design decisions no statistically significant results were achieved. However, the treatment group had notice-

ably more of the correct answers (> 70%) and noticeably less of the incorrect answers to the tasks on the

decision re-evaluation. Even though the results for re-evaluation tasks did not reach the confidence level of

95 %, they can still be considered as positive. Moreover, the treatment group stated to feel better supported

and to have spent less effort to do the tasks, then the control group. Details on the experiment, including the

discussion of the threats to validity, are listed in Section 6.5.

191

7. Related Work

This chapter describes and analyses work related to the AM3D approach. The AM3D approach belongs

to the area of software architecture knowledge management. The area is consists of a very large number

of topics related to architecture, architectural design, its capture and management, and there are a lot of

research activities going on in the area. Therefore, it is meaningful to narrow down the topic and to define

criteria characterizing the AM3D approach in order to be able to select really relevant approaches in this large

research field. Section 7.1 provides an overview of the criteria and introduces the classification scheme, based

on which the related work is structured in the later sections.

Section 7.2 reviews related approaches on formalisation and documentation of design patterns. It is divided

into three subsections, each describing a sub-area defined by the classification scheme. The subsections are:

Textual approaches for formalisation and documentation of design patterns 7.2.1, visual approaches 7.2.2,

and structural approaches 7.2.3.

Section 7.3 reviews related approaches on formalisation and documentation of design decisions and their

rationale. It is divided into three subsections, each describing a sub-area defined by the classification scheme.

The subsections are: Textual approaches for formalisation and documentation of design decisions 7.3.1, vi-

sual approaches 7.3.2, and structural approaches 7.3.3. Approaches dealing with documentation of decisions

on design pattern application are also described in this section.

Section 7.4 discusses the approaches that support search for and selection of suitable pattern candidates.

The approaches are divided into the approaches that support search for and selection of patterns based on

quality attributes and category definitions, discussed in Section 7.4.1, and approaches based on guiding ques-

tions, discussed in Section 7.4.2.

Section 7.5 gives an overview the approaches in architecture-driven requirements engineering area. Finally,

Section 7.6 concludes the chapter.

7.1. Classification Scheme

The software architecture knowledge management (SAKM) is a general topic spanning over multiple research

directions. Its overview can be found in a book “Software Architecture Knowledge Management” by Babar

at al. [182]. Tang et al. [183] compares five architectural knowledge management tools for the provided

support in the architecture life-cycle (ADDSS [184], Archium [126], AREL [133], and The Knowledge

architect [185], all of which are also reviewed in this chapter).

Since not all of the research directions of the SAKM are really related to the AM3D approach, this section

defines criteria to characterise and to classify the AM3D approach in the field of the related work. The main

topics of the AM3D approach from the SAKM research field are summarised in Table 7.1.

These topics are: Design decision evaluation, documentation, formalisation, design decisions on design

pattern application, design pattern formalisation, design pattern catalogues or repositories, and reasoning and

selection of design patterns. In addition, the AM3D approach also deals with goal-oriented requirements

engineering, therefore this chapter also provides an overview of the approaches related to this area.

193

7. Related Work

Topics of the AM3D approach
Design decision evaluation

Design decision documentation

Design decisions formalisation

Design decisions on design pattern application

Design pattern formalisation

Design pattern catalogues or repositories

Reasoning and selection of design patterns

Table 7.1.: Topics of the AM3D Approach from the SAKM Research Area

The topics in the SAKM area are divided between design decisions and design patterns, whereby they

overlap considering decisions about design pattern application. Moreover, the related approaches on both of

these topics (design decisions and design patterns) can be clustered in two dimensions – by their goal and by

the formalisation method used. An overview of the usual goals for design pattern approaches is presented in

Table 7.2.

Goals Followed by Design Pattern Approaches
Document information on existing patterns (Books, wikis, web-based repositories, etc.)

Formalise pattern description and application (Pattern languages, meta-models, pattern conflict detection,

etc.)

Enable search for patterns (Wikis, web-based repositories, other electronic repositories)

Propose pattern candidates as solutions to a problem (Expert systems, search-based pattern repositories)

Document decisions on pattern application (Textual documents, web-decision repositories, etc.)

Design systems based on patterns (Pattern languages)

Pattern code generation (Support implementation of patterns in code)

Detection of patterns in code (Recover used patterns from code)

Visualize pattern application in architectural models

Table 7.2.: Goals of the Pattern Related Approaches

The typical goals are to: Document information on patterns, formalise pattern description and application,

enable search for patterns, propose pattern candidates as solutions to a problem, document decisions on

pattern application, design systems based on patterns, generate pattern code, detect patterns in code, and

visualize patterns in architectural models.

An overview of the usual goals for decision pattern approaches is presented in Table 7.3.

Goals Followed by Design Decision Approaches
Formalize design decision description (Description templates, meta-models, etc.)

Document taken design decisions (Textual documents, wikis, web-repositories, etc.)

Trace requirements in design and code (Tracelinks between various artefacts)

Support decision-making process (Trade-off decisions, quality goals, etc.) Restore taken design decisions

(Design recovery)

Document and restore decision rationale (Textual, semi-automated, etc.)

Visualize taken design decisions (Decision views, graphs, etc.)

Visualize change propagation (Impact views, graphs, etc.)

Comprise architectural design (Decisions as part of design, often implicit)

Table 7.3.: Goals of the Decision Related Approaches

194

7.1. Classification Scheme

The typical goals of design decision approaches are to: Formalize design decision description, document

taken design decisions, trace requirements in design and code, support decision-making process, restore taken

design decisions, document and restore decision rationale , visualize taken design decisions, visualize change

propagation, and comprise architectural design. The related approaches usually follow several of these goals.

Formalisation Methods
Textual

Ontology-based

Graph-based

Meta-model-based

ADL-based (including UML)

Code-based

Table 7.4.: Formalisation Methods in the Related Approaches

Finally, the approaches use different formalisation methods. An overview of the methods is presented in

Table 7.4. The related work, therefore, can be classified either based on the followed goals or based on the

formalisation method or based on the subtopics of the SAKM research are.

Based on this, the following related work classification for the AM3D approach is proposed: First, the

approaches are structured based on their relation to one of the research subfields, such as design patterns

formalisation and documentation, design decisions formalisation and documentation, reasoning about and

selection of patterns, and architecture-driven requirements engineering. Further on, sections on documenta-

tion and formalisation are divided based on the formalisation methods, such as textual (textual description

templates, wikis, etc.), visual (graphs, UML, etc.) and structural (meta-models, ontologies, etc.). The section

on reasoning about and selection of patterns is structured based on the selection and reasoning methods, such

as quality- and categories-based selection and question-based selection (expert systems).

Such classification scheme covers all of the main AM3D approach aspects and allows for comprehensive

related work coverage. The dimensions of the classification scheme, however, allow some overlap in topics or

formalisation methods of the related work classifications. This is due to the complex nature of the approaches,

which usually follow multiple goals and combine multiple topics and formalisms. In such cases, approaches

are described in detail in one section, while another section only gives a short reference to the approach.

An overview of approaches based on their belonging to the defined clusters can be found on Figure 7.1.

These related work approaches are described in the next sections.

195

7. Related Work

D
es

ig
n

Pa
tte

rn
s

D
es

ig
n

D
ec

is
io

ns
R

ea
so

ni
ng

 a
nd

Se

le
ct

io
n

Te
xt

ua
l

Vi
su

al

St
ru

ct
ur

al

W
an

g2
01

0

Zi
m

m
er

m
an

n2
01

0/
C

ap
illa

20
11

H
ar

ris
on

20
07

Ja
ns

en
20

07

B
us

ch
m

an
n1

99
6

S
ch

um
ac

he
r2

00
5

Ti
ch

y1
99

7
Fo

w
le

r2
01

2
So

ur
ce

m
ak

in
g2

01
4

G
am

m
a1

99
5

Fo
w

le
r2

00
2

O
O

D
es

ig
n2

01
4

E
la

as
ar

20
06

G
ue

nn
ec

20
00

M
ak

20
04

Ka
m

al
20

08

D
on

g2
00

7
Ka

js
a2

01
1

Ki
m

20
03

Su
ny

e2
00

0
Ka

m
al

20
07

Ka
m

al
20

10
IB

M
R

A

H
en

ni
ng

er
20

06
D

ie
tri

ch
20

08

Pa
vl

ic
20

08
Sc

ha
ef

er
20

10
M

ap
el

sd
en

20
02

Al
bi

n2
00

1
E

lB
ou

ss
ai

di
20

07
Bo

tto
ni

20
10

C
ap

illa
20

08
Sc

hu
st

er
20

08
/Z

im
m

er
m

an
n2

01
0

Ty
re

e2
00

5
Ba

ch
m

an
n2

00
5

Zh
u2

00
8

Bo
er

20
09

K
ru

ch
te

n1
99

5/
K

ru
ch

te
n2

00
9

H
ee

sc
h2

01
2

Ba
ni

as
sa

d2
00

3

D
ut

oi
t2

00
2

Bo
er

20
07

/F
ar

en
ho

rs
t2

00
6

Kr
uc

ht
en

20
04

Ta
ng

20
07

G
u2

00
8

Ve
n2

00
6

Bu
rg

e2
00

5/
Bu

rg
e2

00
8

Le
e2

00
8

C
ar

ig
na

no
20

09

Zh
an

g2
01

1
Ly

tra
20

13

Q
ue

st
io

n-
ba

se
d

Q
ua

lit
y-

ba
se

d

Zd
un

20
07

Pe
na

m
or

a1
99

7

Am
el

le
r2

01
2

Zi
m

m
er

m
an

n2
00

8

Sv
ah

nb
er

g2
00

3

Bo
de

20
10

G
ro

ss
20

00

Zh
an

g2
01

1

W
an

g2
01

0

Bi
ru

ko
u2

01
0

M
ou

da
m

20
12

G
ar

be
20

06

Th
ab

as
um

20
12

M
ue

lle
r2

01
1

A
rc

hi
te

ct
ur

e-
D

riv
en

 R
eq

ui
re

m
en

ts
 E

ng
in

ee
rin

g
Zh

u2
00

4
D

ur
di

k2
01

3

N
us

ei
be

h2
00

1
W

oo
ds

20
11

Pe
tro

v2
01

2
Ko

zi
ol

ek
20

12
a

Ko
zi

ol
ek

20
12

b
D

ur
di

k2
01

2
Fe

rra
ri2

01
0

M
ille

r2
00

9
R

es
ea

rc
h

Fi
el

d

Fi
el

d
A

re
a

H
es

se
20

13

U
ni

ca
se

Figure 7.1.: Overview of the Related Approaches According to the Clusters

196

7.2. Formalisation and Documentation of Design Patterns

7.2. Formalisation and Documentation of Design Patterns

An extensive overview of pattern formalization techniques is provided by Taibi et al. [69]. This section

focuses on the related work selected according to the previously defined classification – on the approaches

for design pattern formalisation and documentation that are the most related to the AM3D approach. The

strictly formal approaches typically engage into verification and formal composition checks of design pattern

application. Therefore, they are omitted on purpose, since their goal and methods are very different from the

AM3D approach.

Documentation of design patterns here means a collection of information on patterns (pattern catalogues,

etc.), and not documentation of application of design patterns (decisions on pattern application). Related

work on documentation of pattern application is provided in the next Section 7.3.3.

The idea of formalizing and documenting design patterns is not new. The documentation can be carried

out with textual approaches, based on books and Wikis (various kinds of pattern catalogues), with structural

approaches, based on ontologies and meta-models, with the visual approaches based on UML models and

graphs, or in the code. Some of the approaches form so-called pattern languages, that define how to use

pattern design solutions to form a complete and complex system design.

While textual approaches, such as books, provide comprehensive but long descriptions of patterns, the

meta-models re-capture this information in a similar to book structure, or deal with pattern implementation

in the architectural models or code. The majority of the approaches cover only a part of these aspects, such

as documentation or implementation on UML diagrams. The AM3D approach, however, combines several

of them, namely: Formalisation of design pattern documentation in a new type of pattern catalogue, design

pattern application documentation, and design pattern modelling in architectural diagrams.

In the next sections, the related approaches are described based on their affiliation to the textual approaches

in Section 7.2.1, visual approaches in Section 7.2.2 and structural approaches in Section 7.2.3.

7.2.1. Textual Approaches

The main goal of textual approaches is usually to provide structured and comprehensive information of a set

of patterns from a certain domain, in order to be used as a reference. Textual approaches are typically based

on textual description templates.

The most common way to document design patterns is to capture them in a book, which is a kind of a

pattern catalogue. There is a significant amount of books on design patterns. Usually the books describe

patterns from the same application domain, for example, object-oriented design patterns or security patterns.

Some of the most common pattern catalogues of this type are: “Design Patterns. Elements of Reusable

Object-Oriented Software” by Gamma et al. [28], “A System of Patterns: Pattern-Oriented Software Architec-

ture” by Buschmann et al. [29], “Pattern-Oriented Software Architecture: A Pattern Language for Distributed

Computing” by Buschmann et al. [31], “Patterns of Enterprise Application Architecture” by Fowler [58] or

“Security Patterns: Integrating Security and Systems Engineering” by Schumacher et al. [61]. These are just

some few examples of the pattern catalogue books.

Each of the book catalogues follows its own description template. While inside of one book, such template

is helpful for quicker understanding of patterns, different templates for patterns of different domains compli-

cate understanding and working with the design patterns. To the author’s best knowledge, there is neither an

established standard, nor a re-usable template available for the description of design patterns in the catalogue.

197

7. Related Work

The majority of the other approaches to document the design patterns are based on such book catalogues,

e.g. following the description template out of books or deriving the information out of them. Also the AM3D

approach follows this tendency, both, being inspired by the description template and using the content of the

books. Wikis

Another subtype of textual approaches are the purified catalogues, e.g. by Tichy [186], who organizes

the patterns based on the problems they solve, or online catalogues, such as catalogue by Fowler [187],

who organizes patterns of enterprise application architecture in a short online catalogue based on the pattern

goals. Such catalogues typically provide shorter information and/or are available online. Other examples are

a catalogue at Sourcemaking [188] and a catalogue at OO Design [189].

Since the main goal of these approaches is to provide a reference on design patterns, other aspects of the

AM3D approach are not covered.

7.2.2. Visual Approaches

This group of descriptive approaches is based on graphical representations, such as UML and UML profiles or

Role-Connector modelling. These approaches usually focus on pattern visualisation in architectural models.

Such visualisation can be seen as a way of documenting pattern design decisions, with the focus on structural

representation of taken decisions, which is also a subpart of the AM3D approach.

A large part of approaches concentrate on UML pattern representation and its extensions. So, already in

2000, Sunye et al. [190] and Guennec et al [191] have proposed modification to the UML notation to better

support design pattern modelling. Sunye et al. [190] proposed to extend the parametrized collaborations in

UML to better support the semi-automatic application of design patterns, and Guennec et al [191] target was

to improve automatic processing of pattern applications within CASE (Computer-Aided Software Engineer-

ing) tools. Mak et al. [192] propose extension of UML with stereotypes to allow a specification of patterns

without over-specifying the information.

In [193] Kamal et al. provide the evaluation of ADLs on modelling design patterns for software architec-

ture. They comment, that despite UML is a kind of standard, it provides little support to model architectural

patterns. The authors evaluate UML 2.0 [194, 195], ACME [196], Wright [197], UniCon [198], xADL [199]

and AESOP

[200] with the help of the developed evaluation framework.

Dong et al. [64] propose extension of UML with pattern UML-profile. The goal of the approach is to

support visualization of design patterns in UML diagrams. UML model elements can be annotated with

different tags related to pattern application, such as role in the pattern or name of a pattern. Such visualisation

annotation is an implicit documentation of pattern design decisions in design models, however, the authors

actually do not concentrate on this aspect. Other relevant to the AM3D approach aspects, such as a reusable

catalogue, pattern decision evaluation, or documentation of rationale, are not supported.

Kamal et al. [65] propose UML profiles to model patterns in UML models with the help of a set of ar-

chitectural primitives, such as callback, indirection, aggregation cascade etc.. The primitives are defined as

extensions of existing meta-classes using stereotypes, tagged values, and constraints. They provide examples

for Pipes and Filters, Model View Controller and Layers. This work is extended by Kamal et al. in [201] to

support variability in modelling of pattern solutions.

A method of design pattern instantiation support in code and architectural model is proposed by Kajsa et

al. [202]. The authors extend UML and define transformation from models to UML models, and then to code.

198

7.2. Formalisation and Documentation of Design Patterns

Another approach to pattern visualisation is the presentation of design patterns with the help of role-

connector concept. This concept was first proposed by Mary Shaw at the end of the 90s, and has been

regularly used to depict design patterns in architectural diagrams since then.

For example, a UML-based pattern specification language called “Role-based Metamodeling Language”

(RBML) is proposed by Kim et al. [60, 69]. The approach defines design patterns as a solution domain in

terms of roles at the meta-model level. The goal of the RBML is to “support the development of precise

pattern specifications that can be used for the development of pattern tools”, and in particular, in UML-based

tools. It is possible to generate architectural model stubs (for UML) of design patterns. The RBML deals

with various design perspectives of patterns, such as static structure, interactions, and state-based behaviours.

Roles are played by UML model elements, such as classes, and can be represented either graphically or

textually in the OCL (Object Constraint Language, [148]).

Another example is approach by Elaasar et al. [62], which uses the role and connector notation in their

meta-modelling approach, described in detail in the next section.

Finally, some modelling tools, such as Rational Software Architect by IBM [203], support modelling of

some of design patterns (e.g., so-called GoF patterns, from Gamma et al. [28]) through predefined models

available in their repositories.

The number of approaches in this area is high, and this section lists only several exemplary approaches.

The AM3D approach relies on the state-of-the-art and uses role-connector mechanism together with the UML

notations as utilized by Gamma et al. [28] to depict pattern structures.

7.2.3. Structural Approaches

This group of descriptive approaches for pattern documentation is called structural approaches. These ap-

proaches are based on ontologies or meta-models, which structure the information about patterns, and thus

formalize pattern application.

An example of ontology-based approach is the approach proposed by Pavlic et al. [66], who formalize

design pattern specifications in order to organize design patterns in a Web-based repository. The repository

supports searching for and proposing potentially useful design patterns. Pavlic et al. propose to use questions

in order to guide the selection of patterns for certain design situations. The answers to the questions are pre-

defined, and depending on what answer the user selects, one of the patterns is recommended with a certain

probability (see also Section 7.4.2 for related work on expert systems). Pavlic et al. do not consider potential

quality influence of patterns and pattern application decision documentation.

Another ontology-based approach is by Dietrich et al. [69, 204]. The authors use OWL (Web Ontology

Language, [205]) to describe patterns with the goal to “facilitate the use of patterns as knowledge artefacts

shared by the software engineering community”. One of their envisioned goals is to enable discover of

pattern definitions in social networks, to define and to publish patterns, to rate patterns, to establish the

trustworthiness of patterns found, and finally search for pattern instances in Java projects.

Besides the ontology-based approaches, another subtype of the structural pattern documentation ap-

proaches are approaches based on the meta-models. Albin-Amiot et al. [206] propose to formalise design

patterns with the help of the meta-model. The goal of the formalisation is to enable code generation and

design pattern detection. The meta-model does not focus on the general information about patterns, but on

how the patterns are used, their relations and structural representation. Pattern selection, pattern application

decision evaluation and documentation, and potential quality influence are out of the work’s scope.

199

7. Related Work

Schaefer et al. [67] propose another specification of software patterns based on the meta-model. The goal is

to support pattern description and management. This meta-model, similar to the AM3D meta-model, is also

based on the description template from the Gamma et al. book [28]. It supports pattern variants, relations

between patterns, and general description information. The information includes data on the pattern’s intent

and consequences, as in Gamma et al.. The patterns can be structured by keywords and category. The meta-

model is thought as aid for students working with patterns during the course at the Paderborn University. It

does not support pattern selection or evaluation and documentation of pattern application decisions.

Henninger et al. [63] propose a hybrid approach based on an ontology-based meta-model for design pat-

terns. The goal of the approach is to formalise pattern specifications in order to create a pattern catalogue and

to support pattern languages for composite design based on patterns. Since the approach is ontology-based,

it supports search for patterns (probably based on keywords). Note, that the concept of the meta-model in

Henninger et al. is different from the AM3D definition of the meta-model. In terms of the AM3D approach

the meta-model of Henninger et al. would be rather a pure ontology. The approach does not support pattern

selection or evaluation and documentation of pattern application decisions. Influence on quality probably

can be depicted through the concept of “forces”, however, it is not explained in the paper and can only be

assumed.

Elaasar et al. [62] propose a Pattern Modeling Framework (PMF), which is a meta-modelling approach

for pattern specification and detection. The authors define an “Epattern” meta-model, that allows for pattern

specification at a model level. The PMF focuses on the architectural details of patterns, in particular, on

their modelling in EMOF-compatible models. The authors state that the notation for Epattern is based on the

notation of the class and composite structure diagrams of UML 2.0.. Elaasar et al. use role and connector

notation for pattern depiction, extended with Port, Association and Constraint.

El Boussaidi et al. [207] propose an interesting concept, where pattern applications are divided into three

areas: Problem area, solution area and transformations area, which is a rule-based representation of the trans-

formations for the application of the pattern. While, usually the problem is depicted through the requirements-

issue relationships, the authors propose a modelling language for definition of problem space.

Mapelsden et al. [59, 69] define a Design Pattern Modelling Language (DPML) is a meta-model and a

notation for specifying pattern solutions and instances within object models to support modelling and reuse

of patterns. The DPML allows to define patterns and to instantiate them in UML. While pattern definition

remains the same, instances can be changed according to the needs and then attached to the UML model

elements.

A language-independent formalization of patterns is proposed by Bottoni et al. [68] to support language-

independent modelling. It allows for transformation into other modelling notations, such as models by meta-

model-based approaches, and others.

7.3. Formalisation and Capture of Design Decisions and Rationale

This section is structured based on the in Section 7.1 proposed classification scheme, and focuses on the

approaches for design decision formalisation and documentation. Approaches dedicated to decisions on

pattern application are also a part of this section. Under documentation of design decisions the collection and

capture of information on decision decisions is understood in the section.

Most of the approaches do not distinguish between types of design decisions, and do not consider reusable

solutions to support rationale documentation. The somewhat simplified view on design decisions is also an

200

7.3. Formalisation and Capture of Design Decisions and Rationale

outcome of the analysis by Bu et al. in [208], where they provide an analysis of decision-centric architectural

design approaches, based on the case study. The authors investigate support for design reasoning from three

perspectives: (1) architectural knowledge modelling, (2) decision making techniques, and (3) design rationale

management. The conclusion is that most approaches assume that architecturally significant requirements are

given and clear, and that the design reasoning is based only one dimension.

In the next sections, the related approaches are described based on their affiliation to the textual approaches

in Section 7.3.1, visual approaches in Section 7.3.2 and structural approaches in Section 7.3.3.

7.3.1. Textual Approaches

One of the most common ways to document design decisions is to capture them in a textual document, which

is specific for each project. The decisions can be captured as unstructured text, however, there is usually a

description template to follow.

If there are some links to requirements or rationale descriptions, than usually these are textual references

to the requirement numbers or textual descriptions of the rationale.

The common problem with such approaches is that capture of design decisions, and in particular rationales

and links to requirements, requires significant effort. Once requirements or decisions change, the maintenance

of such documents becomes even more complicated, as all the changes have to be done manually. It is easy

to oversee decisions that need ot be re-evaluated, as no automated triggers are possible.

Tyree et al. [45] propose a textual architecture decision description template, which is based on REMAP

(Representation and Maintenance of Process Knowledge) and DRL (Decision Representation Language)

meta-models. The decision template can be used to describe any kind of decisions, although, the authors

do not distinguish between decision types. All information, including the rationale, has to be written in

textual form and cannot be reused or derived from solutions.

The architecture design decision support system tool (ADDSS) by Capilla et al. [46] supports capturing

and documenting architectural design based on a template. The approach supports relationships between

decisions, and to other project context element, such as links to requirements and architecture diagrams.

Architectural Decision Knowledge Wiki (ADkwik) is proposed by Schuster et al. [47, 209] (quoted from

Shahin [57]) and is a model-based collaboration system that implements the approach proposed by Zimmer-

mann et al. [48, 210, 211] and explained later on. ADkwik is a classical wiki, and supports reusing deci-

sions from the architectural decision repository, import and export of decision content, search of decisions

by various attributes and support collaboration features [57]. Another Wiki-based approach is proposed by

Bachmann et al. [212], and describes a Wiki-based tool for documentation of software architectures, and, in

particular, for documentation of design decisions.

7.3.2. Visual Approaches

Another very common way to document design decisions are diagram-based approaches, whereby design

decisions are typically implicitly captured in the system architecture and design documents [45]. Some of the

approaches, however, support explicit documentation of decisions with the help of annotations to the model

elements.

Nevertheless, the common problem with such approaches is that the rationale for the decisions, as well as

links to the triggers and other contextual information are often completely omitted and this kind of informa-

201

7. Related Work

tion is lost. Moreover, the architectural documents are seldom updated, and typically quickly become out of

date and practically useless.

Zhu et al. [49] propose a UML profile for modelling design decisions and an associated UML profile for

modelling non-functional requirements in a generic way. In both cases, the elements in question are treated as

first-class entities. Modelled design decisions refer to existing architectural elements to maintain traceability.

An ontology-driven visualization of architectural design decisions is proposed by Boer et al. [213]. The

ontology is based on quality criteria, and their effects. The supported usage scenarios are: Trade-off analysis,

impact analysis, and if-then scenario (what would happen if another option would be selected in previous

scenarios).

A specialised decision view in additions to classical views on software architecture was proposed by

Kruchten [123] and Kruchten et al. in [24]. Van Heesch et al. [214] extended the work of Kruchten and

a documentation framework for architecture decisions. This framework consists of four viewpoints based on

the ISO/IEC/IEEE 42010 standard describing system and software architectures. The four viewpoints are:

Decision Detail viewpoint, Decision Relationship viewpoint, Decision Chronology viewpoint, and Decision

Stakeholder Involvement viewpoint.

7.3.3. Structural Approaches

The last group of approaches for documentation of design decisions and rationale are structural approaches,

based on the ontologies, models and meta-models. A survey by Shahin et al. [57] provides on overview of

some of the existing model-based approaches to formalize and to document design decisions, such as mature

approaches by Kruchten [130], Zimmermann [48], Lee et al. [215], Tang et al. [133]. These approaches, as

well as others, are discussed in detail in this section from the perspective of the AM3D approach.

Most of these approaches focus on the general class of design decisions and are a foundation for our AM3D

approach. The few of the related approaches that treat the design patterns as a class of design decisions are

presented at the end of the section.

Although the original goal of the approach by Dutoit et al. [216] is different from this Section’s topic

(the approach main focus is on integrating rationale with requirements engineering), the authors present an

interesting concept model in detail describing decisions and elements leading to the decisions. A decision is

triggered by the issues, which result from different requirement types. Decisions include solution alternatives

(called Options in the model), which are assessed based on provided arguments and quality requirements.

Question concept depicts “needs to be solved for the requirements process to proceed”, and can “indicate a

design issue, a request for clarification or a possible defect”.

Kruchten [130] proposed an ontology of architectural design decisions for software-intensive systems. The

goal of the ontology is to capture decisions and all their interdependencies in order to support the evolution

and maintenance of the systems. Kruchten distinguishes between different higher-order types of decisions,

such as existence decisions, property decisions, and executive decisions. Decisions may have textual ratio-

nale. In [50], Kruchten et al. enhance the previous work and describe a use-case model for an architectural

knowledge base and updated ontology. The meta-model based on the ontology by Kruchten was a foundation

for the development of the decision meta-model of the AM3D approach.

Baniassad et al. [217] propose a graph-based approach to connect pattern design with the code implemen-

tation, and to represent such connections in a graphical form. In particular, Design Pattern Rationale Graphs

(DPRG) are proposed to make the design pattern rationale accessible to developers with the help of links

between elements in code with rationale from common design patterns.

202

7.3. Formalisation and Capture of Design Decisions and Rationale

Boer et al. [51, 218, 219] define a “core model” of architectural knowledge, with the goal to establish a

standardized terminology in the area of architectural knowledge management, and to define which elements

belong to the models in the area. The approach does not consider architectural solutions directly, but offers a

class for “alternatives”, which are implicit design solutions. Design patterns and quality influences (or other

influences) of design decisions are also excluded from the approach.

Gu et al. [220] focus on the process decisions in the SOA domain, and map these decisions against the

above described “core model”. The authors propose an extension of the “core model”, which deals with the

SOA-specific concepts and does not include the above mentioned elements.

Babar et al. [221] present a data model for development of knowledge sharing repositories. A model of

architectural design decisions for making architectural design decisions more explicit is proposed by Choi

et al. [222]. A fuzzy-logic-based approach for design decision making and documentation is developed by

Lytra et al. [223].

Tang et al. [133] propose AREL, an approached based on a rationale-based architectural model for design

traceability and reasoning. The model captures design decisions, their rationale and constraints. The main

focus is on support of traceability between elements. The model supports extensive project context, such as

requirements, architectural models and environment descriptions. It also supports trade-off and risks analyses,

based on the textual annotations. The alternatives are encapsulated into the rationale, and the rationale can

have various types (quantitative and qualitative).

Interestingly, a large cluster of approaches (including those, listed above) does not consider connection

between the concept of the architectural solution and architectural decisions. The decisions and solutions,

actually, are treated as synonyms or solutions are simply omitted. Some of the few approaches, which separate

both of the concepts are listed in the following.

Carignano et al. [52] propose another model to capture the design rationale. The model also includes means

for description of some of the project context information, such as Requirements, Stakeholders, Quality

Attributes and others. Architectural solutions are explicitly considered by the model, but are not first-class

entities, but a sub-class of architectural design decisions and are included into decisions.

A solution recommendation approach is envisioned in the work of Zhang et al. [53], who also propose a

meta-model for modelling design decisions. The goal of the approach is to select a set of the most suitable

solutions, so that the quality goals of the system are the most satisfied.

Van der Ven et al. [224] propose an approach for explicit modelling of design decisions in the software

architecture. The authors in discussed the rationale behind the architecture, and the way to capture it through

decisions modelling. They explicitly distinguish between solutions and decisions. The proposed approach

is based on the Archium, which is a tool combining an architectural description language together with the

decision model. Archium is described later on. In this approach, the documentation of decisions and rationale,

are however, still a completely manual process with no reuse facilitation.

Finally, there are few approaches considering design patterns as a type of design decisions. Jansen et

al. [54, 126] view software architecture as a composition of a set of explicit decisions, and propose a model

and a meta-model for architectural decisions reflecting this view. The meta-model is a base for their approach

and tool-support called Archium. Archium approach by Jansen et al. [126] considers design patterns first

class in the realization, and not as sub-sets of predefined decisions.

Harrison et al. [225, 226] suggest that architectural design patterns can support documentation of design

decisions. The authors write that pattern selection helps to relate decisions with each other and that pattern

description is comparable to the design description templates, besides the fact that the pattern descriptions

203

7. Related Work

focus on timeless and generic knowledge, and can be used for the decision documentation. The authors

provide an comparison of patterns and decisions in terms of documentation. The paper describes the idea,

but does not provide a concrete approach. To our best knowledge, there are no follow up approaches by these

authors. The AM3D approach extends the idea by Harrison et al. and proposes its implementation.

Zimmermann et al. [48,72,210,211] propose a decision framework based on reusable architectural decision

models. Design patterns are a type of decision described through decision alternatives. The approaches use

requirements models and decision templates to instantiate decision models. The templates describe knowl-

edge collected in other projects, e.g. utilizing the same architectural style. The purpose is to avoid decisions

being done solely based on the experience of an architect, to support the collaboration and exchange of

rationale between project teams. The decisions modelled in the model refer to the design elements in the

architectural models. The approach by Zimmermann et al. is close to the AM3D approach. It makes use

of already available information, in order to support decision making. It follows similar main steps in the

decisions making process – decision identification, decision making and decision enforcement. However, it

focuses on reuse of decisions and decision information itself, and not on the reuse of solutions and reuse

of rationale through the solutions. The solutions are actually included into decision and are not treated as

separate (first class) entities. The decision making is carried out though decision supporting techniques, such

as SWOT tables [227] and “formal alternative scoring algorithms” [228] (quoted from [211]). The decision

enforcement is done through the code injection through Eclipse JET Templates. In [229], Zimmermann et al.

describe a way to reuse certain decisions based on the analysis of applied design patterns. The authors also

provide an excerpt of a generic meta issue catalogue, which is independent of application domain. The idea

here is that some issues do reoccur, and therefore, the design decisions for these issues reoccur. The idea of

the AM3D approach is to support evaluation of pattern application and to reuse properties of design patterns

for decision documentation, and in particular, for the rationale generation.

Capilla et al. [56] extend the work further on, and introduces meta-model extensions to capture and to share

architectural decisions in order to support evolution of decisions, decision identification, decision making and

to support runtime decisions. The extension adds links to design artefacts, support for decision history and

support of modification during runtime, such as changes of operation mode or routes of service invocations.

An approach “Software Engineering Using Rationale” (SEURAT) was proposed by Burge et al. [21, 230,

231] and extend for design patterns by Wang et al. [55] . The main goal of SEURAT is documentation of

design decisions together with the rationale in the project context with the focus on software maintenance

support. The support for the rationale is extensive, and includes capture of intent of developers and capture of

all considered alternatives together with the decisions-making process (arguments for and against solutions).

Besides other features, SEURAT has a pre-defined argument ontology, which contains a hierarchy of common

arguments that serve as types of claims that can be used for communication of properties in the system.

SEURAT also defines a concept of questions that need to be answered as part of the decision-making process.

The questions in SEURAT have other purpose than in AM3D approach, they indicate “what information

is required before making the decisions and by specifying the source of the information needed or used to

answer the question”. The rationale can be also linked to code, as developers are the main targets of the

approach.

UNICASE [113] UNICASE is a “CASE-Tool integrating models from the different development activities,

such as requirements, use cases, UML models, schedules, bug and feature models into a unified model”. It

support traceability between various artefacts, and allows the viewing and editing of various models in various

representations. The tool was recently extended to support decisions on design patterns and their application.

204

7.4. Reasoning About and Selection of Patterns

The main goal of UNICASE is to support a set of project-related activities, such as requirements engineering

and UML modelling, and to integrate these various actions into one tool environment. Thus, its goals differ

from the goals of the AM3D approach. UNICASE can be rather seen as a complementary approach, and a

good tool-base for integration with the AM3D approach, which is a subject for future work.

The extension added by Wang et al. [55] has a pre-defined pattern library and used the non-functional

requirements to guide the selection of patterns. Each pattern is seen as an alternative solution in the decision

made, and decisions are captured with the rationale recorded. This extension has several levels to distinguish

between patterns: Pattern categories, design problem categories, affected quality attributes and decisions

required to adopt a pattern and their alternative patterns. List of potential pattern candidates can be generated

based on the defined criteria. The catalogue of patterns is based on the other sources, such as Microsoft

MSDN.

The major difference between the AM3D approach and other related approaches is that the goal of the

AM3D approach is to only to support documentation of design decisions, and in particular of those con-

nected to design patterns, but also to support re-evaluation of decisions and to reuse the architectural solution

descriptions for the semi-automated documentation of decision rationales. The AM3D approach also allows

for the architectural constraint checks in order to enforce correct pattern solution modelling. This combina-

tion of decision re-evaluation, documentation together with the rationale and of support during the modelling

makes the AM3D approach, differentiates our approach from the related approaches.

7.4. Reasoning About and Selection of Patterns

Multiple approaches are introduced to reason about and to select suitable design patterns. A survey and

comparison of eight existing decision-making techniques for general decision making approaches is provided

by Falessi et al. in [78]. This section focuses solely on selection and reasoning about design patterns. Ap-

proaches that support search for and selection of patterns based on quality attributes and category definitions

are discussed in Section 7.4.1. Approaches that support search for and selection of patterns based on guiding

questions are discussed in Section 7.4.2.

7.4.1. Quality- and Category-Based Approaches

Among the approaches supporting search for and selection of design patterns are the approaches based on the

quality attributes and on potential quality influence of design patterns.

For example, Pena-Mora et al. [23] proposed a methodology to combine design rationale and design pat-

terns and developed a design recommendation and intent model already in 1997. The methodology focuses

on the code level and covers patterns from Gamma et al. [28].

A solution recommendation approach is envisioned in the work of Zhang et al. [53]. The approach is based

on the meta-model for modelling design decisions. The approach calculates quality value vectors for different

candidate solutions, as well as quality weight vector. The quality goals are derived from requirements. The

final goal is to select a set of solutions that satisfies the defined quality goals the most.

Gross et al. [70] researched the influence of non-functional properties of the patterns on the application

of design patterns, and proposed a way for reasoning about the design patterns based on the non-functional

requirements. The non-functional aspects of descriptions of patterns are systematically considered when

applying patterns during design. Hereby, the known non-functional requirements to the system (treated as

205

7. Related Work

design goals) are compared with available solutions,a nd how these solutions can achieve the defined goals.

The approach supports documentation of claims both for and against different choices.

Svahnberg et al. [228] propose a framework for comparison of different solution candidates based on

quality attributes via Analytic Hierarchy Process (AHP), and allows comparing benefits and liabilities to

evaluate resulting decision. The framework was tested on five patterns from Buschmann et al. [29], being

examples of architectural solutions. The software quality attributes need to be prioritized in order to carry out

the comparison. The final comparison is carried out by participants.

An approach to support selection of patterns based on desired quality attributes by Zdun et al. [71] is based

on formalisation of the pattern relationships in a pattern language grammar. The grammar is annotated with

effects on quality goals. The defined relationships between patterns allow for pattern selection. Patterns are

considered to be design solutions. The influence of quality goals is defined on a five-point scale, from a very

positive influence to a very negative influence. The approach uses a questions, options, and criteria notation

(from MacLean et al. [232]) to visualize alternatives for design decisions and related design considerations.

The questions highlight the key issues to be considered in a design situation (they describe a pattern category

or domain), options are the possible answers to the questions, and criteria are the reasons that argue for or

against the possible options of a question. The goal of this notation is to support a detailed analysis of each

decision, and to “provide a detailed decision map” for a design decision.

Zimmermann et al. [72] propose an approach that supports domain-specific pattern selection based on

the provided requirement models, and provides traceability from platform-independent patterns to platform-

specific decisions.

Bode et al. [233] refine and map quality goals to properties of design patterns to improve the design.

For this, the authors evaluate a set of architectural patterns and provide a calculation scheme to enable the

evaluation of the patterns to support design decisions. To select suitable solutions (design patterns), the

authors first propose to use architectural constraints to eliminating all unsuitable solutions. Afterwards, all

left solutions are evaluated and ranked regarding the relevant quality goals. The ranking is calculated based

on the predefines values for the solutions.

Ameller et al. [234] propose a tool ArchiTech for decision-making based on quality attributes. ArchiTech

proposes alternative architectural decisions based on the quality requirements. First, the architect specifies

the quality requirements and constraints. These are used by the tool to generate a prioritized list of decisions

that satisfy the provided requirements. The architect selects from the list decisions to be applied. The tool

analyses selected decisions, and, if applicable, notifies the architect about possible issues with decisions and

actions to resolve them. Finally, the process to proceed with decisions may be generated.

The extension to the SEURAT approach proposed by Wang et al. [55] allows for generating a list of poten-

tially suitable pattern candidates based on the defined criteria. The approach is described in Section 7.3.3.

More of related approaches can be found in surveys by Birukou [76] and by Thabasum et al. [77].

7.4.2. Question-Based Approaches and Expert Systems

A large class of related work can be described as expert or recommendation systems for pattern selection.

One of the approaches is KARaCAs by Garbe et al. [73]. KARaCAs is an expert system based on the

Bayesian Belief Network, where questions are used to select the most appropriate pattern. Such approaches

aim to support software engineer to select the right pattern for their design problem. These approaches are

complimentary to our approach, because our approach is not indented to be used as an expert system for

pattern selection itself. Once a pattern is selected, our approach helps to evaluate the applicability of this

206

7.5. Goal-Oriented Architecture-Driven Requirements Engineering

pattern and captures the pattern decision with its rationale. One has to keep in mind that most of the expert

systems bear the drawback that the “right” answer (“the right pattern”) might be negatively weighted or even

excluded early in the decision making process due to the wrongly answered introductory questions.

Zdun et al. [71] support selection of patterns based on quality attributes of pattern relationships, and ques-

tions for definitions of problem spaces (categories and domains). This approach is described in the previous

section.

In [74] Moudam et al. present a support system for making decision to choose design patterns. The

authors define a modelling language (XML- and XMI-based) to define patterns to support their design pattern

management system. The system captures data on applicability of design patterns and allows for searching

for suitable patterns based on the situations in which desired design pattern could be used. First, users select

a set of keywords that match the scope of the user interest, and in the next step, selection of situations relevant

for the user, which are proposed based on the selected keywords. Finally, once the situations are selected, a

list of suitable design patterns is generated.

Mueller et al. [75] propose a question-based approach for efficiently finding architecture candidates using

annotated pattern and style catalogues. Questions guide the selection of solution candidates form the cata-

logue. The solution candidates in catalogue are extended with rated questions, and answering these reduces

the candidate space. The authors propose the following rating for the solutions based on questions: A solution

contributes positively (0, 1.0) to a problem, a solution contributes negatively (–1.0, 0) to a problem, a solution

contradicts the problem. The final evaluation of candidate solution is based on the evaluation of architectural

instances, whereby quality requirements and the constraints are analysed.

More of related approaches can be found in surveys by Birukou [76] and by Thabasum et al. [77].

7.5. Goal-Oriented Architecture-Driven Requirements Engineering

The related work in this section is described according to our overview in publications [3, 11].

Goal-oriented architecture-driven requirements engineering is a rather new research area. The related

work in the area typically focus on “closing the gap” between requirements and architecture, rather than

contributing to requirements engineering via software design.

The influence of existing architecture and reusable elements on requirements has been evaluated and con-

firmed in several studies, such as Boer [79] or Ferrari et al. [40, 41, 235]. The later explore the influence of

existing architecture on requirements in multiple steps, finishing with a case study on a large-scale proto-

typical project in [41]. Neither of them, however, considers a practical approach to inform the requirement

engineering from architectural design.

Engelsman et al. [236] investigate elicitation of requirements from the existing architecture and architecture-

based requirement specification reuse. The focus is on obtaining specifications for the development of the

new systems, based on the similar previously developed systems.

A Goal Solution Scheme [237] was proposed to map quality goals and goal refinements to architectural

principles and solutions. However, it does not consider requirements elicitation. The KARaCAs approach by

Garbe et al. [73] is as well focused on establishing the connection from requirements into architectural solu-

tions. Gruenbacher et al. [238] propose an approach called CBSP to establish and to maintain a connection

between requirements and architectural elements. Hesse et al. [239] propose a model for decisions supporting

the intertwined documentation of related requirements and architecture knowledge.

207

7. Related Work

The idea to use architecture as a basis for further requirement discovery and determination of the alternative

design solutions was first proposed by Nuseibeh [42] and Woods [240]. In particular, Nuseibeh proposes to

use the view on models, prototypes and commercially available software to emerge new requirements. There

are few details about the method itself. Another method using a similar idea is [241]. It uses information

extraction to improve the architecture evolution process by mining architecture and design patterns. However,

its goal is to support the system’s evolution and to extract general scenarios for it.

Petrov et al. [242] propose to integrate decision analysis into requirements engineering. The authors deal

with specific information sources that can contribute to requirements specification – contextual environment

concerns and architectural patterns and heuristics (architectural patterns, in this case, are a kind of “macro-

architectural” best practices). These additional information sources can be used complimentary to the AM3D

approach proposed in this thesis, as it does not consider “macro-architectural requirements” explicitly.

Koziolek discusses the relationship of design space exploration and quality requirements prioritization

in [43] and proposes a method to systematically support quality requirements prioritization [80]. In the area

of software architecture optimization, a large number of approaches have been suggested to improve a given

design with respect to several quality properties at once [3]. However, as to [3], none of the approaches

discusses the feedback that multi-criteria optimization can give to the requirements decisions of other than

quantifiable quality requirements. As to the prioritisation of quality requirements and software architecture,

methods like ATAM [165] help to qualitatively uncover quality requirements conflicts and find appropriate

trade-offs [3].

A prior to this thesis, we have briefly investigated into the possibility to use the design patterns for the

elicitation of non-functional requirements in [4]. Further on, we have together extended the work by Kozi-

olek [43, 80] in [3], focusing on the interplay of design space exploration with other design decisions and

general requirements decisions, i.e. considers more than quality requirements.

An overview of some additional related approaches can be further on found in [40, 41].

7.6. Summary

This chapter provided an overview of the related approaches, which were structured according to the pro-

posed classification scheme. The scheme defines the following related research areas: Formalisation and

documentation of design patterns, formalisation and documentation of design decisions and rationale, rea-

soning about and selection of design patterns, and goal-oriented architecture-driven requirements engineer-

ing. Furthermore, approaches to formalisation and documentation of design patterns and formalisation and

documentation of design decisions and rationale are classified based on the formalisation method they use:

Textual, Visual and structural approaches. Approaches to reasoning about and selection of design patterns

are classified based on their underlying methodology: Quality- and category-based and question-based ap-

proaches.

The AM3D approach builds upon several state of the art approaches, such as approaches by Kruchten [130],

Zimmermann et al. [72], Burge et al. [21], Wang et al. [55], Nuseibeh [42] and Koziolek [43, 80].

One of the most related approaches to the AM3D approach is the SEURAT approach proposed by Burge

et al. [21, 231] and extended by Wang et al. [55]. It, however, has a different focus. While it support docu-

mentation of design decisions and selection of design patterns trough quality attributes, it does not support

evaluation of such pattern design decisions beyond the quality attributes, and does not generate rationale for

the decisions. A textual rationale may be provided manually. The approach supports requirements capture,

208

7.6. Summary

management and usage in trace links, however, support of requirements elicitation and prioritisation is out of

its focus.

Other closely related approach is UNICASE [113]. The main goal of UNICASE is to support a set of

project-related activities, which differs from the goals of the AM3D approach. Similar to the SEURAT,

UNICASE approach does not focus on evaluation of decisions or extraction of rationale, as well as on-demand

requirements elicitation and prioritisation. AREL approach by Tang et al. [133] captures decisions, rationale

and constraints in order to support of traceability between elements. The approach requires a manual input

of design rationale, and does not focus on evaluation of design solutions. The approach by Mueller et al. [75]

evaluates candidate solutions based on the evaluation of architectural instances, whereby quality requirements

and the constraints are analysed. KARaCAs approach by Garbe et al. [73] is an expert system using questions

to select the most appropriate pattern. Both of these approaches use questions in a way typical for the expert

systems, which differs from the AM3D approach. For the detailed discussion of the difference between the

AM3D approach and expert systems please refer to Section 3.5.

As to the architecture-driven requirements elicitation area, the most related are the approaches by Nu-

seibeh [42] and Koziolek [43, 80]. The AM3D approach continues these work, and in particular, work pro-

posed by Koziolek in cooperation in [3] and in this thesis.

To summarise, the main novelty of the AM3D approach is the concept of the question annotations to

reusable design solutions. Such question annotations allow for evaluation of solutions, semi-automated gen-

eration of rationale for decisions on design solutions and trigger on-demand requirements elicitation and

prioritisation. Thus, unlike questions in the expert systems, they do not guide a user to a solution, but rather

support the user in solution evaluation and documentation of decision on a solution. In addition to decision

documentation and management, supported by the above mentioned approaches, the AM3D approach adds

support for the semi-automated decision generation and simplified capture of the trace links between require-

ments, decisions and architecture. Trace links are triggered in the process of answering the questions. Finally,

in addition to requirements capture and management, also supported by the above mentioned approaches, the

AM3D approach also triggers on-demand elicitation and prioritisation of requirements that are relevant to

the current architectural design. All of these benefits are, in fact, achieved through the concept of question

annotations.

209

8. Conclusion

This chapter concludes the thesis, summarizing the main contributions, benefits and validation results in

Section 8.1. Section 8.2 summarises the assumptions and limitations of the approach and the conducted val-

idations. Section 8.3 discusses open research questions and directions for future work, structured according

to the three categories: Short-term user-relevant open questions and future work (Section 8.3.1); long-term

user-relevant open questions and future work (Section 8.3.2); and empirical user-relevant open questions and

future work (Section 8.3.3).

8.1. Summary

This thesis addresses the problems with elicitation and prioritisation of requirements, application of design

patterns and documentation of the decisions about the application of design patterns. In particular, the de-

cisions to apply design patterns similar to the decisions on other reusable architectural solutions are often a

result of a spontaneous process and not of a systematic approach. The outcome depends on the experience

of the software engineer. Our survey showed that even experienced software engineers face problems with

design pattern application, and in particular, they are not always sure which pattern is the most appropriate

for a problem and are often underestimating potential drawbacks of design patterns (see Section 6.4). Ac-

cording to the survey, even the experienced software engineers had problems with the correct architectural

implementation of patterns and faced problems with poor documentation of pattern decisions. Indeed, the

decisions on pattern application, together with other design decisions, often are only implicitly documented.

The rationale is typically not captured and there is no traceability between various artefacts, such as require-

ments, decisions and architectural model elements. All these factors may result in poor and undocumented

designs, which are overly complicated due to the wrongly applied design patterns, and expose unexpected

and rather negative design properties. The maintenance of such systems and such design documentation is

accordingly complicated. As to requirements engineering, elicitation and prioritisation of requirements prior

to design is complicated, since it is not clear how much and with what level of detail the requirements shall

be elicited. The initial prioritisation of requirements seldom holds for all subsystems. Moreover, there is a

high risk of discovering really relevant requirements late during the system design, which leads to expensive

design corrections.

The solution, proposed in this thesis, is called the AM3D approach. The AM3D approach supports the goal-

oriented architecture-driven requirements engineering, lightweight evaluation of design decisions on pattern

application and semi-automated documentation of the rationale, together with trace links to requirements and

architectural elements.

8.1.1. Contributions

The contributions towards the proposed approach are summarized as follows (for more details on contribu-

tions, please refer to Section 1.2):

211

8. Conclusion

1. Extension of the general development process with the lightweight process for goal-oriented require-

ments engineering and simplified documentation of rationale for the design decisions on design pattern

application. Besides the documentation of rationale and elicitation of requirements, the developed pro-

cess supports several other design and evolution scenarios, proving corresponding sub-processes to be

incorporated into the main development process. It is compatible with all process models that have an

explicit design phase. It can also be embedded into agile methods, such as Scrum, as documentation

of decisions and rationale happens on demand as a by-product of a single design step and is neither

planned in advance, nor detached from the engineer’s activities. The developed process is detailed for

several defined application scenarios (see Section 3.2.2), each provided with a specialised process to

follow when applying the AM3D approach. These scenarios reflect the needs of software engineers

during design and evolution.

2. A new type of design pattern catalogue with the rationale question annotations, allowing for a more

appropriate use of design patterns, supporting the documentation of rationale for the design decisions,

documentation of trace links between various project artefacts, such as design model elements and

requirements; and supporting goal-oriented elicitation of requirements and evaluation of decisions on

the pattern application. The catalogue is described in detail in Section 4.

3. An exemplary design pattern catalogue: An exemplary design pattern catalogue with the rationale

question annotations was developed based on the defined process and formalisation and is provided

in Section 5. The catalogue contains common design patterns, documented following the approach

proposed in this thesis. The exemplary catalogue provides a reference for the creation of the catalogues

based on the AM3D approach. It represents an expert knowledge in the area structured in terms of the

AM3D approach. The developed exemplary catalogue was also used for the validation of the approach

in the conducted controlled experiment (see Section 6.5). The subjects used the catalogue during the

experiment to solve tasks on design pattern application and maintenance.

8.1.2. Publications

The contributions of the approach have been partially published in various peer-reviewed conferences and

workshops.

Co-authored [14] provides a state of the initial research of software evolution problems of the long-living

systems. It describes some of the root causes, one of which is that longevity is not considered during the con-

struction. The other cause is that approaches tend to focus on symptoms of evolution problems, rather than on

the real causes of those problems. This line of research is continued in co-authored [5, 7, 12]. Among others,

the developed sustainability guidelines for the evolution support are first proposed and then reported. In par-

allel, an extensive state-of-the-art survey was carried out and an overview is provided in the co-authored [17].

This line of research contributed to a better understanding of software evolution and practical needs in the

area. The AM3D approach was tangled according to the gained insights.

In [13], a relationship between agile methods and architectural modelling is discussed. An initial version of

the AM3D approach is proposed to drive requirements elicitation through the use of patterns and components.

The publication received a CompArch Young Investigator Award. The reviewed version was then published

in [10], and validation possibilities for the proposed approach are discussed and published in [9]. The dis-

cussion of architectural design and agile methods is continued in [6], where results of the survey on agile

methods and architectural documentation are also presented. The research on the goal-oriented elicitation of

212

8.1. Summary

requirements with the AM3D approach is continued in [11] and in co-authored [3]. In the latter, the effects of

design decisions on requirements engineering are discussed and the AM3D approach is joined with a design

space exploration approach as a new approach for design-informed requirement elicitation and prioritisation.

In [4], the AM3D approach is extended to support documentation of design decisions during architectural

modelling. Finally, in [1, 15], the approach idea is presented in detail, together with the initial results of the

survey, which is also one of the validations of the AM3D approach (described in Section 6.4). An integrated

approach, which includes support for software evolution, starting from requirements through decisions up to

the code, is presented in the co-authored [2].

Part of the research on the supporting meta-models is published in [16]. The paper outlines a generic ap-

proach for a meta-model- and domain- independent model variability, with one of the approach’s application

examples being variants of design patterns and their modelling. Another part is co-authored in [8], where

problems arising through the requirement to connect the existing architectural meta-models with the meta-

models of the AM3D approach in a non-invasive way (currently done as a decorator pattern) are described

and a potential solution is proposed.

8.1.3. Benefits

The main goal of the AM3D approach is to support the evolution of software systems. The specific benefits

of the proposed approach are:

• Documented rationale of design decisions on the pattern application

• Semi-automated documentation of trace links between requirements, decisions and architectural ele-

ments

• A more appropriate use of design patterns and design pattern variants

• Goal-oriented architecture-driven requirements engineering

In the following, the benefits are explained in more detail:

• Documented rationale of design decisions on the pattern application: Design decisions on pattern

application documented together with the rationale provide positive effects on software evolution. In

particular, the AM3D approach contributes to detection and supports the re-evaluation of outdated deci-

sions on design pattern application. The re-evaluation is based on the captured rationale behind design

decisions on design pattern application. The rationale is semi-automatically captured through the an-

swers provided by software engineers to the pattern question annotations during design. The validation

of the AM3D approach could not demonstrate a statistical significance in this benefit; nevertheless, an

improvement with 70% probability as compared to the classical documentation can be considered an

encouraging result (the benefit, of course, requires further empirical validation).

• Semi-automated documentation of trace links between requirements, decisions and architectural
elements: Answers to the question annotations are justified with the existing requirements to the sys-

tem. The users have certain system requirements in mind while replying to the questions. Therefore,

they are more likely to choose to provide links (in the form of IDs) to the most important requirements,

contributing to the answers to the questions, in order to justify their answers. By doing so, the AM3D

213

8. Conclusion

approach receives information about the connection between a decision to apply or to withdraw a de-

sign pattern, and the requirements contributing to this decision. Moreover, if a decision is met to apply

a design pattern candidate, the candidate is then instantiated in the architectural model. In this case,

the design decision is related with the corresponding architectural elements. While instantiation of the

pattern itself requires manual actions from the users (see Section 3.1 and Section 8.3 for discussion

about manual and automated instantiation), trace links from decisions to the corresponding architec-

tural elements can be generated automatically, as this can be facilitated though the meta-model design.

Details on the traceability support are provided in Section 3.3. Details on architectural instantiation of

design patterns are provided in Section 4.2.3.

Thus, the AM3D approach supports establishing a connection between several project artefacts via

the documentation of trace links: First, the requirements in the requirement specification are related

to the design documentation, and second, they are then related to the architectural model elements.

The requirements are linked to the architectural elements via documented design decisions and their

rationale.

• A more appropriate use of design patterns and design pattern variants: A more appropriate use of

design patterns is validated to be achieved for the less experienced software engineers in the example

of students who participated in the conducted empirical study (see Section 6.5). More appropriate

use is achieved through the AM3D pattern catalogue question annotations provided for each pattern in

the catalogue and describing its core properties (both desired and undesired). We argue this benefit is

also viable for more experienced engineers, since the data from our survey indicates that experienced

software engineers also face problems with design pattern application (see Section 6.4 for details on

the survey).

In addition, the AM3D approach automatically supports a more correct architectural pattern applica-

tion, as explained in Section 4.2.3. Each design pattern in the AM3D catalogue contains information on

its architectural structure, expressed through roles and connectors [62]. This information allows for an

automatic check of architectural models, where patterns are instantiated with the help of defined OCL

constraints. Engineers can be notified in case the architectural structure is incorrect during the design or

if it is occasionally violated during system evolution. The AM3D approach supports structural checks

at the architectural level and, in the current version, does not apply to the code level, which is a subject

of future work.

• Goal-oriented architecture-driven requirements engineering: The AM3D approach supports a

goal-oriented architecture-driven requirements engineering method. The requirements directly con-

nected to the current design decisions are elicited and prioritised on demand. The elicitation and

prioritisation are triggered by the question annotations to design patterns, and when the available in-

formation (such as system requirements) is not sufficient to answer certain questions. In such cases,

an engineer may contact stakeholders (e.g., requirements engineers) in order to be provided with addi-

tional information in the missing area. Thus, the information is elicited and prioritised on demand and

is highly relevant to the current design state, unlike in a non-triggered requirement elicitation process.

This benefit of the AM3D approach was not empirically validated. However, we have successfully

published several publications on the topic [3, 11].

214

8.1. Summary

8.1.4. Validation

The validation of the AM3D approach is described in detail in Chapter 6. The overall validation of the AM3D

approach consists of three steps:

1. A survey: A survey based on structured interviews was conducted to validate the motivation of the

AM3D approach and to evaluate the feasibility of the proposed example from the annotated pattern

catalogue as a solution to some of the problems with design patterns. This is a “Type 0 validation”,

which evaluated the Feasibility of the approach (see Section 6.1 for the description of validation types).

The survey subjects were 25 software engineers employed in industry and academia. The survey results

confirmed that even experienced software engineers do face various problems with design patterns and

their application. The AM3D approach was evaluated as potentially feasible to solve some of the prob-

lems, such as documentation of design patterns and selection of the most appropriate design patterns.

Moreover, the survey results evaluated that question annotations can be successfully understood by the

persons who were not involved into the creation of the catalogue. The survey is described in detail in

Section 6.4.

2. Application on a common example: The developed artefacts and process of the AM3D approach

were applied on the CoCoME-based example to demonstrate their appropriateness for the goals of the

approach. This is a “Type I validation”, which evaluated the Appropriateness of the approach. All

artefacts and the process could be applied to model the example and to perform the evolution scenario.

The application on example is presented in Section 3.6.

3. An empirical study: An empirical study based on a controlled experiment was conducted to validate

the following benefits of the approach: The design patterns annotated with questions could be bet-

ter understood and applied more correctly, as compared to the design pattern catalogue based on the

standard approach (common books); Decisions documented with rationale generated from answers to

the questions can be re-evaluated more easily during system maintenance. This is a “Type II valida-

tion”, which evaluated the Applicability of the approach. The experiment subjects were 20 students,

who were divided semi-randomly into two groups – the treatment group and the control group. The

experiment results showed that design patterns annotated with questions can be better understood and

applied more correctly, as compared to the standard approach, with a statistically significant difference.

The re-evaluation of design decisions, as well, was shown to be more correct, even though the result

did not pass the statistically significant difference border. In this case, the probability was about 70%.

Altogether, the treatment group performed significantly better than the control group. The experiment

is described in detail in Section 6.5.

8.1.5. Overall Summary

To summarise, this thesis provides several insights into the area of architecture-driven requirements elicitation

and prioritisation (more efficient on-demand elicitation and prioritisation, see Section 3.4), design decision

evaluation on design pattern application and documentation of their rationale (semi-automated generation

and documentation of rationale for design decisions on pattern application, see Section 4), and establishment

of trace links between requirements, decisions and architectural elements (see Section 3.3). The thesis is

focused on design patterns, as a subclass of reusable architectural solutions.

215

8. Conclusion

First of all, despite a significant amount of research in the area of design pattern application and documen-

tation, the transfer to the application in industry is not yet complete, as also shown in the survey. There are

still open research questions left in the area.

The design patterns, as a subclass of reusable solutions, can be used to trigger and support documentation

of design decisions connected to their application. Moreover, they can be used to support evaluation of cor-

rectness of design decisions. For this, they have to be captured in a new kind of design pattern catalogue – the

AM3D catalogue, which is a new format to describe design patterns. It enables the derivation of documenta-

tion of project-specific design decisions from the pattern-specific and project-independent questions to design

patterns. These questions are called AM3D pattern question annotations, and they can be seen as rationale

fragments attached to design patterns in the catalogue. Such question annotations allow for goal-oriented

questioning not only about the reasons behind a potential decision, but also about the requirements of the

system. Missing requirements can be thus elicited on demand, altogether contributing to a more lightweight

software design. While answering the questions, the trace links between elements of various artefacts are

established in a semi-automated way. These elements include requirements, decisions and architectural ele-

ments.

To profit from the proposed approach, an investment into the initial development of the design pattern

catalogue according to the AM3D approach is required. In return on this investment, the catalogue then sup-

ports more correct software design with fewer design mistakes connected to design pattern application (both

for inappropriately applied design patterns and for inappropriately applied structure of patterns). Moreover,

there is also an improvement in the maintenance of the systems developed according to the AM3D approach

through fewer design mistakes and a more lightweight design documentation.

8.2. Assumptions and Limitations

This section discusses assumptions and limitations of this thesis. Some of them were discussed in detail in

the previous chapters of the thesis; in such cases, the references to the chapters and sections are provided.

The assumptions and limitations of the AM3D approach are the following:

• Presence of explicit design phase and design documentation: The main assumption of the AM3D

approach is the presence of an explicit design phase, which includes explicit architectural modelling,

since the AM3D approach is operating at the architectural level. The AM3D process presented in

this thesis is assumed to be integrated into the development process that has or is compatible with

a design phase. This is a feasible assumption, since (1) the main goal of the AM3D approach is to

support evolution of software systems, and (2) an explicit design and its documentation is of particular

importance for a bearable evolution of larger and long-living software systems [18, 19, 24, 26].

The AM3D pattern catalogue can be used for evaluation of design decisions on pattern application

also without an explicit design or modelling. In this case, however, the benefit of semi-automated

documentation of decisions and rationale is lost due to the absence of design artefacts.

• Necessity of design documentation maintenance: Once design documentation is created, it has to

be maintained. This is another important assumption of the AM3D approach. The maintenance of the

design documentation of often not the case in practice, however, as there is tendency in interest towards

having updated documentation. The approach provides support in maintenance of documentation of

design decisions on pattern application, however it is not completely automated. Once documentation

216

8.2. Assumptions and Limitations

becomes out of date, the benefit of documented decisions is lost. In this case the AM3D approach can

still be used to support new decisions on design pattern application and their documentation together

with the rationale.

• Necessity for engineers to answer question annotations: The AM3D approach supports the eval-

uation and documentation of design decisions. This is, however, based on the assumption that the

engineers use the AM3D catalogue with question annotations to design patterns and do reply on these

questions. Thus, it is assumed that the engineers are ready to reply to the questions in the catalogue if

they want to use the AM3D approach.

• Dependency of trace links on software engineers: Similar to the previous assumption, the engineers

have to be eager to provide rationale, such as links to the triggering requirements and links to the

implementing elements in the architecture. The AM3D approach supports these actions, but does not

completely automate them.

• Necessity for an initial AM3D catalogue: Another assumption of the AM3D approach is the presence

of the initial AM3D catalogue in order to profit from the AM3D approach. Such a catalogue has to be

provided for the start of the design phase, and then shall be regularly extended to include design patterns

or other reusable solutions that are regularly used throughout the projects or for other projects. Clearly,

the catalogue is a rather significant initial investment. A cost-benefit evaluation shall be conducted to

validate the benefits of the AM3D approach (such as a more correct design) over the initial costs of

creating the catalogue. However, a catalogue with common reusable solutions can be reused between

projects and even between organisations, and an effort for its creation can be distributed in an open

source project, which is a part of future work. Moreover, an initial AM3D catalogue is provided in this

thesis as a starting point for the development.

• Limitations of natural language: The common limitation in the area of architectural knowledge

management is the natural language that is used in the majority of artefacts (e.g., requirement spec-

ifications, design documentation, rationale descriptions). Such descriptions are not precise, may be

misinterpreted, and the possibilities of their automated processing are limited.

The description of design patterns in the AM3D catalogue and the question annotations are captured in

a natural language. The language of the questions and the text quality strongly influences the usability

of such questions for the pattern selection, evaluation and documentation. Answered questions serve

as a rationale for the pattern usage, and naturally misleading questions may form a wrong rationale.

However, this problem is common and affects other language-dependent approaches, such as expert

systems or ontologies.

Although formal pattern specifications have been proposed, for example expressed in a LISA formal

specification language [243], there is no empirical evaluation on the effort required for understanding

such formal definitions and the application of them. The overtaking of such strict formal methods to the

wide industrial design practice seems rather questionable. However, an investigation of possibilities of

usage of strict formal definitions n the AM3D approach can be a part of future work.

In order to reduce potential ambiguities in descriptions of design patterns in the AM3D catalogue, a de-

scription template was defined and used throughout the sample catalogue, provided in this thesis. Some

parts of the information from the template are linked to the glossary, which limits a natural language

217

8. Conclusion

subset to a so-called controlled natural language (see Section 2.5.3 for more information on controlled

natural languages). The same approach is also used for the definitions of question annotations. They

are formulated in semi-formal language, which is explained in Section 4.3.3.

Since such natural language descriptions influence the understandability of question annotations, this

was defined to be one of the research questions during the survey validation of the AM3D approach.

In particular, the understandability of questions was evaluated for persons who were not involved into

the AM3D approach and catalogue designs. The survey results have shown high understandability of

the provided questions. The positive results can be explained through the review process, which the

catalogue entries have undergone. A two-step review process of question annotations to design patterns

shall reduce this threat.

• Indeterminacy in the process of adding question annotations: Creation of question annotations is a

creative process. Its outcome depends on the experience of the software engineer following it. There-

fore, the review process of question annotations (discussed in Section 4.3.5) is important to assure the

quality and understandability of the annotations. The results of our validations show that the questions

are understandable to the uninvolved persons, and are sufficient to support correct decisions on pattern

application.

• Ambiguity in question annotations types: The question annotation types described in Section 4.3.3

are a limitation of the AM3D approach, as they provide a non-excluding categorisation of the pattern

properties described by the questions. This means that some questions can be referred to in more than

one question type category. In particular, this might be the case for questions about the goals and

intent of design patterns. The focus of the categorisation was placed in an extensive description of all

the properties of a pattern (the question types are sufficient to describe any property), while possible

overlaps in some question types are considered to be acceptable.

• Dependency of the design documentation quality on the quality of the catalogue entries: Since

the design decisions documentation is partially based on the catalogue entries (the decisions rationale

is semi-automatically generated from the answers to question annotations), the quality of the catalogue

entries influences the quality of the documentation. Therefore, a review process for the catalogue

entries is recommended before the catalogue is used. The initial AM3D catalogue provided in this

thesis has undergone a review process and was also used for the validation of the approach.

• Dependency of documentation quality on software engineers: Similar to the previous limitation, the

quality of the design documentation is influenced by the answers provided by the engineer using the

approach and the catalogue. The ambiguities in answers to the question annotations and correctness

of trace links to other artefacts can be checked only to a limited extent. This is a general issue with

all documentation approaches, as documentation highly depends on the willingness and cooperation of

software engineers.

• Potential deficiency of quality classification: One of the limitations of the AM3D approach is that

used quality classification can be insufficient to for some specific domains. However, the quality aspects

in the meta-model formalisation can be easily extended or replaced with the required quality classifi-

cation. This is also true for the used requirement classification, and in particular, the classification of

quality requirements.

218

8.3. Open Questions and Future Work

• Potential deficiency of selected architectural representation: Another limitation of the AM3D ap-

proach is that the selected architectural modelling method is based on the Palladio Component Model

(PCM, [152]), and its system modelling part. The roles and connectors modelling formalism of design

pattern representation is compatible with the PCM. It is also compatible with other UML-like mod-

elling notations, where a system can be represented through components and connectors, or similar

modelling units, e.g. through classes. The selected modelling mechanism allows for automated checks

of the pattern structure, as information on the pattern structure is saved in the catalogue together with

the pattern description and question annotations.

Behavioural modelling representations and others would require extension of the AM3D modelling

formalism. They are not supported by the current state of the AM3D approach.

• Threats to validity and limitations of the validation: Threats to validity and limitations of the carried

out validations are carefully discussed in the chapter dedicated to the AM3D approach’s validation.

For the discussion of threats to validity and limitations of the validation for the survey, please refer

to Section 6.4.6. For the discussion of threats to validity and limitations of the validation for the

experiment, please refer to Section 6.5.6.

8.3. Open Questions and Future Work

This section discusses open research questions and ideas for future work. It is structured according to the three

categories: Short-term user-relevant open questions and future work (Section 8.3.2), long-term user-relevant

open questions and future work (Section 8.3.1), and empirical user-relevant open questions and future work

(Section 8.3.3).

8.3.1. Short-Term User-Relevant Open Questions and Future Work

The following actions can be undertaken to extend and to improve the AM3D approach in the short-term:

• Extension to an expert system: First of all, the approach can be extended to support pattern selec-

tion triggered through the question annotations, thus implementing an expert system. For a detailed

explanation of the difference between the current state of the AM3D approach and the expert systems

please refer to Section 3.5. The current purpose of the question annotations in the AM3D catalogue is

to support the evaluation of applicability of a pattern and to document decisions on pattern application.

However, the questions to the patterns are already available and are structured according to the four

types of design pattern properties (see Section 4.3.3). Therefore, it is possible to extend the AM3D

approach to implement an expert system, which would support selection of design patterns starting

from the design problem. In this case, the selection will be based on the proposed pattern catalogue,

similar to [73]. The entry top-level questions will be general pattern questions from the catalogue, and

the further refinement can be done by intent and consequences questions. Finally, the choice between

pattern variants could be performed by the pattern variant questions.

Another way to extend the functions of the AM3D approach to an expert system is to add the filtering

of the pattern proposals based on quality goals, similar to the [55] and [233]. By doing this, the choice

of the patterns would be guided through the defined and prioritized list of quality requirements (quality

goals) to the system. Ideally, both of these extensions shall be implemented to enable a better proposal

of patterns, which is would be tailored to the current system requirements and engineer’s needs.

219

8. Conclusion

A more far line of research connected to this area would be a semi-automated proposal of design pattern

solutions based on the architectural models, for example as in [244,245], or in code, as proposed by [2].

However, here a full automation is questionable, as a final decision on pattern application still has to

be met by the engineers.

• Extension of proposing of alternative pattern candidates: Together with the extension to expert

systems, the AM3D approach can extended to support better proposing of alternative pattern candi-

dates, once a patten candidate under consideration has proven to be suboptimal. The current version of

the AM3D approach may propose better pattern candidates, if the question is shared by two or more

design patterns, and is answered negatively in one of the cases. The additional featured to be add

may include automated check for ambiguities in the answers to design patterns, when answers to the

questions in fact contradict each other or are suboptimal for the pattern solutions in question. Such an

extension would require conceptual work for the extension of question annotations formalisation, and,

potentially, modification of the question annotation formalisation in the meta-model.

• Generalisation to other reusable solutions: Despite the fact that this thesis focuses on the architec-

tural design patterns, it does not exclude support of other pattern types or support of other architec-

tural design solutions, and in particular, support of reusable architectural solutions, such as third-party

components and Web services. The current support for components includes components as means

of instantiation of design patterns (design pattern instances are assigned to the implementing com-

ponents). Although reusable third-party components can be annotated with questions already in the

current version of the approach, the support was not detailed. For example, different types of third-

party components and their potential influence of question styles were not investigated. The AM3D

approach can be also extended to support design solutions that are invisible at or cross-cutting to the

system architecture.

Once a solution is reusable (can be unmodified used more than once, similar to design patterns), its

properties are known in advance. In such case it can be described with the help of question annotations,

and then be used to evaluate the solution and to document related decisions with the rationale generated

out of answers to the questions.

Such an extension will require modification in the formalisation of the approach (however, the formal-

isation was already designed with the possible extensions in mind). It will also require replication of

validation for the new supported solution types. Once new architectural solutions types are supported

by the approach, the formalisation has to be extended to support new design decision types connected

to these solutions.

• Tool support improvement: The current tool support of the AM3D approach is a research prototype.

Even though the catalogue can be used without any tool support, a mature tool support would bring

the benefits of the AM3D approach that are connected to the automation. In particular, a mature tool

support with a user-friendly GUI would ease semi-automated documentation of design decisions with

generated rationale, and would assure architectural checks on correct pattern application.

The current research prototype is based on Eclipse. It is thinkable to create extensions for other lan-

guages that would use the same core (the AM3D pattern catalogue, saved in an XML format).

• UNICASE integration: As part of the tool support improvement, the AM3D approach and its sup-

porting artefacts can be integrated into one of the existing open-source tools. UNICASE [113] is an

220

8.3. Open Questions and Future Work

open-source CASE-tool that operates with different artefacts of a project. It already supports “require-

ments, use cases, UML models, schedules, bug and feature models”, which are integrated into one

unified model. It has a mature implemented client that allows for viewing and editing of these artefacts

in various visualization forms. Besides its functionality and maturity, UNICASE is Eclipse-based and

utilises EMF. These features do it to a good candidate for the integration with AM3D approach. The

initial investigation conducted on this topic has shown a high potential of such an integration.

• Extension of the exemplary AM3D pattern catalogue: The exemplary AM3D patter catalogue

presented in this thesis shall be extended to contain more of the common design pattern descriptions,

in order to be applicable in the industrial practice. Ideally, the catalogue shall be extended to describe

all of the common design patterns presented in Gamma et al. [28] and in Buschmann et al. [29].

8.3.2. Long-Term User-Relevant Open Questions and Future Work

The following actions can be undertaken to extend and to improve the AM3D approach in the long term:

• Automated instantiation in architectural models and code: The current implementation of the

AM3D approach requires the user of the approach to decide manually which design pattern shall be

implemented by which components in the architectural models. The AM3D approach guides the user

and supports structural checks through the OCL constrains, however, it does not instantiate patterns

on its own, as discussed in Section 3.1. A complete automated instantiation of design patterns in

architectural models could be the next step. However, such automated instantiation of design patterns

(both in architecture and code) was left out of focus of the AM3D approach on purpose. The main

reason was that analysis techniques in order to assure a correct integration of design patterns into the

existing model are a rather large research question, which is sufficient for a separate PhD thesis.

The main problem is to obtain the context from the design model and to automatically derive a proper

design pattern application place and order. In the simplest case, which can be also supported by the

AM3D approach, a new architectural model element is generated for every element form the architec-

tural pattern description (for roles and connectors). It is then placed in the model and the user connects

it to the rest of the elements. However, often, a design pattern part shall become a part of the other

already existing architectural element or even elements. In this case, an automated analysis and the

correct automated pattern application is a non-trivial task, since behavioural aspects shall be extracted

from the existing design sand correctly considered for the pattern application.

• Traceability of design patterns and design decisions to code and reversed: Similar to the previous

point, another possibility to extend the AM3D approach would be its extension to support reverse

engineering of design decisions on pattern application (and not only) from the code level for the systems

that were not developed using the AM3D approach. Also here, an additional contribution would be

reverse of trace links from design decisions in code back to the decisions making on requirement and

decision changes. Research work in this direction is currently held by Konersmann et al. in [2].

• Extension to support behavioural models: The AM3D approach, at the moment, only supports

UML-like component diagrams, and similar to those. It can be extended to support the behavioural

information on design patterns in order to enable checks of during the pattern application, and to en-

able automated pattern instantiation, as described above.

221

8. Conclusion

• Integration of the AM3D pattern catalogue into a Wiki: An automated import and export function-

ality for the AM3D pattern catalogue to and from a Wiki form for design pattern description may be

beneficial. Such form would allow a larger community to contribute to the extension of the AM3D

catalogue and to review the catalogue entries in a structured review process.

• Reverse engineering and reverse traceability of design patterns and design decisions from archi-
tectural models: The current version of the AM3D approach supports only forward design. However,

it could be plausible to extend the approach to support reverse engineering of the architectural models

in order to extract design decisions on pattern application (and not only) for the systems that were not

developed using the AM3D approach. Another potential contribution here would be enabling of reverse

trace links from design decisions back to the decisions making on requirement and decision changes.

This is a kind of design decision change impact detection and notification, similar research work in this

direction is currently held by Küster et al. in [246].

8.3.3. Empirical Open Questions and Future Work

The following actions can be undertaken to extend and to improve the AM3D approach:

• Cost-benefit validation of the approach: The usage of an AM3D pattern catalogue and the documen-

tation of design rationales involve additional overhead and costs. Such overhead might not pay off for

smaller or short-living systems. However, the AM3D approach enables semi-automated documentation

of decisions on design pattern application, and the rationale behind those decisions. Such automation

saves the effort required for manual documentation of the taken pattern decisions and their rationale.

The AM3D approach is therefore assumed to be most beneficial for the development of large, complex

or long-living systems. However, the appropriateness of this assumption shall undergo a cost-benefit

empirical validation. As explained in Section 6.1, the cost-benefit validation in the area of architec-

tural knowledge management is connected to extremely high effort and costs. However, it would also

provide insight in the usability of the AM3D approach in the long term compared to the investment

costs.

There are several potential difficulties in the validation design that can already be anticipated. First, the

starting point of the validation can vary from an existing AM3D catalogue, to a new project-specific

catalogue. It is unclear, who shall be responsible for the initial creation of the catalogue, since it is also

likely to be an open source solution in the future. It is unclear how many design patterns the initial

catalogue shall contains. Moreover, it is unclear if the catalogue entries shall be limited to the design

patterns, or, which is more realistic, shall also include other reusable solutions, such as third party

components. This would cause differences in the initial costs. Second, it is unclear, of the validation

shall run only for one system, which shall be then monitored and evolved over time, or if it shall

include several systems, since the catalogue can be reused between projects. Then, it is unclear if there

are differences in the extent of the design pattern use depending on the problem domain. In this case,

the validation results can be seriously disturbed into a positive or a negative side. These factors are just

some of the variables of the cost-benefit validation, which provide a strong influence on the validation

outcome.

• Effort validation of the approach: Besides the cost-benefit validation, an additional validation on the

effort connected to the use of the AM3D approach as compared to the classical approach shall be con-

222

8.3. Open Questions and Future Work

ducted. Initial results obtained during the controlled experiment (described in Section 6.5) indicate that

the AM3D approach application is actually connected to less effort, than the application of the classical

approach. However, this aspect shall be re-validated more carefully, based on the time measurements,

in addition to the qualitative statistics obtained during the conducted experiment.

• Extension of the question annotations formalisation: The general formalisation of question annota-

tions can be further extended. In the current state of the AM3D approach a simplified notation based

on the controlled natural languages was used. It can be extended to implement one of the common

used controlled languages (see Section 2.5.3 for an overview of natural controlled languages) to better

support automated processing and filtering. In the body of this work, also the approach to and the rules

to formulate pattern questions can be further refined.

This chapter provided a summary of the AM3D approach. Although the presented AM3D approach has

limitations and there are open research questions, which are listed above, it provides a foundation for the

further improvement of the poor documentation of design decisions rationale on design pattern application

and trace links between requirements, decisions and architectural elements. It also provides an improvement

on the inappropriate use of design patterns and their variants, which was demonstrated to be statistically

significant by the approach’s validation, and contributes to a more-focused requirements elicitation and pri-

oritisation.

223

A. Appendix. Survey Documentation

This Appendix is the questionnaire that was used for the survey. In consists of the introduction, general

questions, general questions, pattern-specific questions for three sample patterns, general questions about

pattern application and questions to retrieve additional information. Survey parts are:

• Introduction: The introduction gives an overview of the survey. It explains the goals, gives an intro-

duction to the AM3D approach, explains how to fill in the questions and gives information on the data

privacy.

• I. General questions: This section contains general questions on pattern application experience of the

participants.

• II. Pattern-specific questions: This section contains questions to elicit the opinion on the proposed

pattern catalogue on the example of three sample patterns – Model-View-Controller (MVC), Thick

Client and Single Table Inheritance. For each pattern there is an excerpt of several catalogue questions

listed in order to evaluate questions to the patterns.

• III. General questions about pattern application: This section contains questions to elicit a general-

ized opinion on the proposed approach.

• IV. Additional information: This section contains questions to elicit participant’s background infor-

mation.

The text of the survey questionnaire is included in the following.

225

24/08/12

1

PATTERN APPLICATION QUESTIONNAIRE

Introduction

In this survey, we would like to collect the opinions on the potential applicability of an approach utilizing pattern
catalogue (containing patterns annotated with pattern-specific questions) in general, and, more specifically, the
appropriateness of the questions for the application by software engineers in practice.

Software patterns are approved solutions for reoccurring problems, e.g. Model-View-Controller, Factory, Observer,
Iterator, etc.

We propose an approach to support software engineers in evaluating if selected patterns are really suitable for
application, and if so, which variant of the pattern is the most appropriate. The approach is based on a pattern
catalogue, where each pattern is annotated with pattern-specific questions. These catalogue questions provide
hints on the basic properties of the pattern, its intent and consequences.

* Here and later: “Catalogue questions” are pattern-specific questions that are stored together with the
pattern in the proposed pattern catalogue, and “Questions” are the questions of this questionnaire.

The general idea of the proposed approach is the following:
First, the software engineer selects a pattern that is potentially suitable to solve a problem of software
engineering. The selection is based either on own experience or is proposed by a pattern expert system (if
any in use).
Second, the software engineer answers the catalogue questions connected to the selected patterns. The
catalogue questions shall be answered by a software engineer before the decision to apply a pattern. If the
software engineer cannot answer some catalogue question (for example, because the system functionality
is not fully defined), he or she should translate the catalogue question to the responsible requirements
engineer, who can elicit new requirements to answer the question.
Finally, if the answers to questions have confirmed the appropriateness of the selected pattern, the
pattern can be implemented in architecture and code.

Although the proposed approach is based on catalogue questions to the patterns, its intent is not pattern selection
itself (not an expert system), but support of evaluation of applicability of a selected pattern for the given problem.

Given the proper automation, answers to the catalogue questions can be automatically saved as rationale for the
selected or discarded pattern. This information can be later used to support system evolution.

Data Privacy Information

Please note that this survey collects some data on your education and experience. Your participation in this survey
is anonymous, unless you choose to provide your E-Mail address. Your E-Mail address will be solely used to
provide you the survey results, it and the other data will be kept confidential and will not be disclosed by us.

Information collected in this questionnaire, except your E-Mail address, may be disclosed (in anonymous form) in
research reports and will be used for research purposes only. For any further information about the usage of your
data feel free to contact one of the investigators listed below.

List of investigators:
M. Sc. Zoya Durdik, PhD at Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. Email:
zoya.durdik@kit.edu.
Prof. Dr. Ralf Reussner, Professor at Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. Email:
ralf.reussner@kit.edu.

Organizational

Please answer all questions, unless they are marked as optional. The questionnaire takes 20 minutes to complete
in total and is organized in four sections.
Thank you very much for your collaboration.

A. Appendix. Survey Documentation

226

24/08/12

2

I. General questions:
This section deals with general questions about pattern application.

1. How would you estimate your experience with applying patterns:

Very low (I have not applied any)
Low (I have applied patterns during one or two test or study projects)
Medium (From time to time I am applying patterns during my work)
High (I am regularly applying design patterns)
Very high (My work is connected to design patterns, I am proficient in application of design patterns, I
regularly apply design pattern from different domains)

2. How many patterns have you applied (approximately)?

 I have applied ca. ___________ patterns

3. Please estimate usefulness of patterns for better quality of software (e.g., maintainability, non-functional
properties, extendability) from your point of view:

Very low
Low
Medium
High
Very high

4. Please specify if you have ever experienced some problems while applying or working with patterns:

Yes, it happened to me to overlook some properties of a pattern or some consequences of a pattern
application and then to discover that the choice was non optimal
Yes, I was unsure which pattern (of several appropriate patterns I knew) was the most suitable for the
problem
 Yes, I didn’t know which pattern could be used to solve my problem
 Yes, the structure of the pattern was unclear
 Yes, the implementation of the pattern was unclear
 Yes, while modifying the system or code I have not noticed that there was a pattern applied, and modified
its structure
No, never
Other, please specify: ___

5. If you have not answered no in the previous question, then were the encountered problems due to …:

 … few experience with patterns
 … insufficient understanding of requirements to the system
 … low experience in programming in general
 Other, please specify: ___

6. Inappropriate use of patterns I have encountered in ____ percent of projects I have worked in.

7. Inappropriate documentation of patterns I have encountered in ____ percent of projects I have worked in.

8. Have you experienced problems with patterns in systems that you have not developed yourself but you had to
maintain?

No
Yes
Other, please specify: ___

 If you answered yes, please specify with which patterns: _____________________________

9. (Optional) Please provide your opinion if it is difficult to apply patterns and why (e.g. insufficient
documentation, large amount of known patterns, lack of appropriate training, ..)?

227

24/08/12

3

II. Pattern-specific questions:
This section contains repeating questions to 3 different patterns: (A) Model-View-Controller, (B) Fat (Thick) Client
and (C) Single Table Inheritance.
For each pattern we have listed an excerpt of 5 catalogue questions (factors) per pattern (typically there are 7-8
catalogue questions). We would like you to evaluate the provided catalogue questions (factors).

A. Model-View-Controller (MVC)

1. Are you familiar with this pattern?

No
Somewhat (I have read about it)
Yes (I have applied it several times)

2. The following factors (listed in the table) describe properties of the pattern. Would you consider these influence
factors as important for the appropriate application of this design pattern?
You have the following answer options for each factor:

 You have the following answer options for each factor:

Relevant (I believe this factor is the defining property of the pattern)
Somewhat relevant (I believe this factor is an indicator for appropriate pattern application)
Irrelevant (I believe this factor has nothing to do with the pattern application)
I don’t know
I haven’t understood the factor

Please read these factors carefully even if you are not familiar with the pattern, but please only provide answers to the
Question # 2 if you are somewhat familiar or familiar with this pattern.

Example how to fill in the answers (for the Observer pattern):

Factor Relevant Somewhat
relevant

Irrelevant I don’t
know

I haven’t
understood
the factor

If one object changes its state, would you like
other objects to be notified about this change?

YES

If your application has a strict layered
architecture, will a potential violation of this
style be a problem?

YES

Factors for the Model-View-Controller:

Factor Relevant Somewhat
relevant

Irrelevant I don’t
know

I haven’t
understood
the factor

Would you like to present the same information in
different ways e.g., through multiple views?

The data in the model is not changed through the
views, and this will not be an issue in the future?

Would you like to add new views at run-time or delete
existing views?

Do you plan to exchange underlying data model or
views representing this data? (Design Time)

Are potential delays of view updates (because of larger
amounts of data) acceptable?

3. (Optional question) were any important factors forgotten in the question #2?

A. Appendix. Survey Documentation

228

24/08/12

4

B. Fat (Thick) Client (Mobile applications)

1. Are you familiar with this pattern?

No
Somewhat (I have read about it)
Yes (I have applied it several times)

2. The following factors (listed in the table) describe properties of the pattern. Would you consider these influence
factors as important for the appropriate application of this design pattern?
You have the following answer options for each factor:

 You have the following answer options for each factor:

Relevant (I believe this factor is the defining property of the pattern)
Somewhat relevant (I believe this factor is an indicator for appropriate pattern application)
Irrelevant (I believe this factor has nothing to do with the pattern application)
I don’t know
I haven’t understood the factor

Please read these factors carefully even if you are not familiar with the pattern, but please only provide answers to the
Question # 2 if you are somewhat familiar or familiar with this pattern.

Factors for the Fat (Thick) Client:

Factor Relevant Somewhat
relevant

Irrelevant I don’t
know

I haven’t
understood
the factor

Would you like a client to be able to perform the
functionality in circumstances of potential disconnection
to the main server /service?

Would you like to reduce the load on your main server
or network through the higher processing and capacity
demands to the client devices?

Is working offline essential for your application?

Are you building upon an existing architecture with
already available devices?

Will the application be running on powerful devices and
porting to low-performance devices can be excluded in
the future?

3. (Optional question) were any important factors forgotten in the question #2

229

24/08/12

5

C. Class Table Inheritance (Root-leaf mapping in relational databases)

1. Are you familiar with this pattern?

No
Somewhat (I have read about it)
Yes (I have applied it several times)

2. The following factors (listed in the table) describe properties of the pattern. Would you consider these influence
factors as important for the appropriate application of this design pattern?
You have the following answer options for each factor:

 You have the following answer options for each factor:

Relevant (I believe this factor is the defining property of the pattern)
Somewhat relevant (I believe this factor is an indicator for appropriate pattern application)
Irrelevant (I believe this factor has nothing to do with the pattern application)
I don’t know
I haven’t understood the factor

Please read these factors carefully even if you are not familiar with the pattern, but please only provide answers to the
Question # 2 if you are somewhat familiar or familiar with this pattern.

Factors for the Single Table Inheritance

Factor Relevant Somewhat
relevant

Irrelevant I don’t
know

I haven’t
understood
the factor

Would you like to present an inheritance hierachy of
classes in relational database?

Is complex data mapping between table required to be
computed in your application?

Is the final amount of tables in the database structure
limited (small) and is this unlikely to change in the
future?

Will the tables repectively the fields hierarchy not be
subject to frequent change in the future?

Are potential performabce bottlenecks with joints or
multi-querying caused by retrieving larger amounts of
data acceptable?

3. (Optional question) were any important factors forgotten in the question #2

A. Appendix. Survey Documentation

230

24/08/12

6

III. General questions about pattern application:
This section asks questions on your opinion about the proposed approach.

1. Please provide estimation how such a catalogue of patterns (containing sets of questions for each pattern,
similar to the section II of this questionnaire) could be helpful during pattern application:

It might solve documentation problem, if answers to the questions are automatically documented
It might help clarifying properties and consequences of a pattern
It might help to select the most suitable pattern between several candidate patterns
It might help to find a pattern that the person doesn't know
It might help to better apply a pattern, through explicit hits to the pattern's structure or implementation
It will not solve any problems connected to the pattern application
Other: ___

2. Consider the following evolution scenario: The requirements have changed and a new functionality needs to be
added. The questions for the patterns and provided answers to the questions are documented in an accessible
form together with the applied pattern.

Please provide your estimation as to what degree such a catalogue of patterns with questions could improve /
ease software evolution in case of the following tasks:

Task A. Find a location where functionality needs to be changed

Low (No improvement)
Medium (Some improvement)
High (Noticeable Improvement)

If you like, provide a comment: __

Task B. Decide whether an applied pattern is outdated or not due to the requirement change.

Low (No improvement)
Medium (Some improvement)
High (Noticeable Improvement)

If you like, provide a comment: __

231

24/08/12

7

IV. Additional information:
This section asks questions on your background.

1. Please indicate your industrial experience:

Practice during my studies
I participated in industrial projects
I have worked in industry for about a year
I have worked in industry for about 1 – 5 years
I have worked in industry for more than 5 years
No experience
Other: ________________________________

2. Please select your current academic degree:

Undergraduate
Graduate (Bachelor)
Graduate (Master /Diplom)
PhD
No academic degree
Other: ________________________________

3. Please specify your occupation (or previous occupation if unemployed):

Industry
Research division of a company
Student
Doctoral researcher
Post-Doctoral researcher
Professor
Both academia and industry mixed

4. (Optional) Other comments and suggestions:

5. (Optional) If you would like to receive the survey results, please provide your E-Mail-address (Your E-Mail
address will be used only to send you the survey results):

Thank you!

A. Appendix. Survey Documentation

232

B. Appendix. Experiment Documentation

In order to enable replication of the validation experiment, the complete set of experiment documentation

is included in this Appendix B. The three groups of artefacts were used for the experiment preparation and

execution: Introduction materials, questionnaires with tasks and artefacts handled to each student, which are

required in addition to questionnaires with tasks. In the following they are explained in detail.

I. Introduction materials:

• Introduction Texts for Groups A and B: Introduction texts to the experiment tasks and the pattern

catalogue. The texts were read out during the slide demonstration with three goals: To forward better

comparability between two groups, to avoid mistakes during explanations and to improve traceability

in case of extraordinary experiment results. The texts for two groups A and B had common building

blocks, but were adopted according to the artefacts each of the groups was supposed to use during the

experiment. Each of the texts was read by the experiment group moderator before the main task part.

• Introduction Slides Group A: The slides that were used for the introduction in Group A, accompanied

by the above explained introduction text for Group A.

• Introduction Slides Group B: The slides that were used for the introduction in Group A, accompanied

by the above explained introduction text for Group B.

II. Questionnaires with tasks:

• Pre-Experiment (Warm-Up) Tasks: The questionnaire with warm-up tasks, which were asked before

the experiment tasks. The goal of these easy tasks is to help students get familiar with the available

artefacts and navigation through them.

• Experiment Tasks for Group A: Two tasks for the validation experiment for the Group A using

the proposed method (pattern catalogue with annotations). The questionnaire contains integrated list

of design decisions documented according to the proposed method and a screen-shot of the system

diagram of to be changed PSE system as a reminder.

• Experiment Tasks for Group B: Two tasks for the validation experiment for the Group B using the

standard method (pattern catalogue without annotations, such as books or Wikipedia). The question-

naire contains integrated list of design decisions documented according to the standard method and a

screen-shot of the system diagram of to be changed PSE system as a reminder.

• Post-Experiment (Cool-Down) Tasks: Questionnaire with cool-down tasks. These tasks are the so-

called control tasks to collect the background information about the experiment subjects, about their

experience in software engineering fields, to evaluate the understandability of the main experiment

artefacts and tasks, and to collect the feedback to the experiment from the experiment subjects.

III. Artefacts handled to each student, which are required in addition to questionnaires with tasks:

233

B. Appendix. Experiment Documentation

• List of System Requirements for Groups A and B: A paper version of requirements to the PSE

system. Experiment subjects have worked with these requirements during the system implementation,

thus they were familiar with the requirements and the list was a mere reminder.

• List of System Decisions for Group A: A full list of architectural decisions to the PSE system for

the group A. Experiment subjects have worked with these requirements during the system implemen-

tation and were familiar with the decisions. The decisions in this list are documented according to the

proposed method (pattern catalogue with annotations).

• List of System Decisions for Group B: A full list of architectural decisions to the PSE system for the

group B. Experiment subjects have worked with these requirements during the system implementation

and were familiar with the decisions. The decisions in this list are documented according to the standard

method (pattern catalogue without annotations, such as books or Wikipedia).

• Pattern Catalogue for Group A: A pattern catalogue documented according to the proposed method

(pattern catalogue with annotations) containing descriptions of 12 patterns. Not all of these patterns

were relevant to solve the task, which was done on purpose to achieve a more real-life problem envi-

ronment.

• Pattern Catalogue for Group B: A pattern catalogue documented according to the standard method

(pattern catalogue without annotations, such as books or Wikipedia) containing descriptions of 12 pat-

terns. Not all of these patterns were relevant to solve the task, which was done on purpose to achieve

a more real-life problem environment. These pattern description were taken from the standard pattern

catalogues, such as by Gamma et al. [28], Fowler [58] and Buschmann et al. [29] and Wikipedia de-

scription articles. Therefore, in the appendix are listed only several sample pages: sample first pages of

the standard catalogue entrees for Multi-Tier Style, Model View Controller pattern and Facade pattern

(pages number 6, 10 and 51 of the standard catalogue), “Table of Content” (page 1) and disclaimer

about material sources (page 107).

• Experiment Time Table: Time table of the experiment, including precise schedule with introduction

and tasks sessions, assigned rooms and responsible moderators.

Please note that the following artefacts were developed together with the colleges (Erik Buerger, Matthias

Huber, Martin Kuester, Max Kramer and Johannes Stammel): Pre-experiment (warm-Up) tasks, post-experiment

(cool-down) tasks, list of system requirements for groups A and B, lists of system decisions, introduction

slides for groups A and B and experiment time table.

234

26 August 2013 1

Einführung, Zoya (Zum Vorlesen)
Gruppe A:

Im drittem Teil werden Sie den Einsatz und den Einfluss von
Entwurfsmusterentscheidungen (engl. Pattern design decisions) im
Systementwurf und Evolution evaluieren.
Sie bekommen 2 Aufgaben.
Die erste Aufgabe behandelt die System-Evolution der
Benutzerverwaltung. Dabei evaluieren Sie die Gültigkeit der getroffenen
Entwurfsmuster-Entscheidungen nach den Änderungsanfragen an das User
Management.
Die Aufgabe 2 behandelt die Neuentwicklung und sucht nach passendem
Entwurfsmuster um die angegebenen Probleme zu lösen. Wir nehmen dabei
an, dass die Benutzerverwaltung neu entwickelt wird.

Für diesen Teil des Experimentes werden Sie nur Papierunterlagen
benötigen.

Für den dritten Teil bekommen Sie einen Muster Katalog, in dem die für die
Aufgaben benötigten Muster beschrieben sind.

Was ist ein Pattern Katalog?
Ein Pattern Katalog enthält Kompakte und strukturierte Informationen über
Patterns die aus den Bücher, wie z.B. Gamma, oder Artikeln kommen.
Für jedes Muster wird jeweils eine kurze Beschreibung und das Ziel des
Musters eingegeben, eine Checkliste mit Fragen, mögliche Varianten der
Musterimplementierung, wenn es welche gibt, und ähnliche Muster, die das
ähnliche Problem auf eine andere Art und Weise lösen.

Diese Fragen beschreiben das Ziel (engl. goal), die beabsichtigte
Eigenschaften (engl. intent), die mögliche Konsequenzen (engl.
consequences) einer Muster-Anwendung. Diese Fragen sollen einem
Entwickler eine schnelle Auskunft über das Muster und dessen
Eigenschaften geben.
Die Fragen sind als „Ja/Nein“ Fragen gestellt. Antwort „Ja“ bedeutet
dass diese Eigenschaft bei der Musterauswahl Ihnen wichtig ist. Antwort
„nein“ bei den Intent-Fragen bedeutet, dass diese Eigenschaft nicht im
Vordergrund steht. Die Antwort „Nein“ bei den Konsequenz-Fragen
bedeutet, dass das Muster einen oder anderen Bedienungen (z.B.
Anforderungen) nicht passt und evtl. ein anderes Muster eingesetzt werden
sollte. Je mehr „Nein“ Antworten Sie bei einem Muster machen, je
wahrscheinlicher passt dieses Muster für Ihr Problem nicht.
Keine Antwort bedeutet, dass diese Eigenschaft Ihnen nicht wichtig ist,
bzw. dass es keine Anforderungen dazu gibt.

Wie nutzt man den Katalog?
Wir haben folgendes Problem: „Die Daten sollen in der App in
unterschiedlichen GUIs (je Betriebssystem) angezeigt werden. Dabei soll es
möglich sein die GUIs auszutauschen. Keine Business-App, daher keine
besonderen Anforderungen an die Performanz.“
Evtl. könnte das MVC Muster für dieses Problem passen. Wir öffnen den
„MVC“ Katalogeintrag und lesen das Ziel des Musters durch.
Das klingt passend, daher gehen wir die Checkliste mit den Fragen durch
und versuchen diese Fragen für uns zu beantworten. Die besonders
relevante Fragen mit „Ja“, die die nicht stimmen mit „Nein“.
Z.B. hier: „Ja“, wir wollen die gleichen Informationen unterschiedlich
präsentieren.
Keinen Antwort, da es keine Anforderungen zum „Run-Time“ gibt.
„Ja“, weil die GUI-Austauschbarkeit im Problem gefordert wird. Ja, weil

keine Performanz-Anforderungen gestellt sind. Und Keine Antwort, weil es keine Anforderungen dazu gibt.

Wenn es z.B. eine Performanzanforderung geben würde, hätten wir hier
„Nein“ ausgewählt. „Nein“ bei den Konsequenzen bedeutet, dass das MVC
Muster evtl. für das Problem nicht ganz passend ist. Man kann das Muster
trotzdem verwenden oder ein anderes verwandtes Muster anschauen
(„Similar patterns“), oder eine andere Lösung ohne einem Muster
verwenden.
Gehen Sie so bei der Lösung der Aufgabe 2 aus dem dritten Teil vor.
Wenn Sie sich für das Muster entscheiden, sind Ihre Antworten auf Fragen
eine Begründung (Rationale) für die Anwendung dieses Musters und werden
mit der Muster-Entscheidung mitgespeichert. Während der System-Evolution
braucht man so eine Begründung bei den Wartungsaufgaben.

B.1 Introduction Texts for Groups A and B

235

26 August 2013 2

Wie verwendet man die Muster-Begründung (engl. rationale)?
Bei der Aufgabe 1 aus dem dritten Teil bekommen Sie eine Liste mit den
getroffenen Muster-Entscheidungen.
In dieser Liste sind für jede Entscheidung eine allgemeine Begründung,
beteiligte Architektur-Elemente und Anforderungen festgehalten.
Außerdem gibt es für jede Muster-Entscheidung noch eine zusätzliche
Muster-Begründung in Form der beantworteten Fragen aus dem Katalog wie
vorher erklärt.
Diese Muster-Begründung wurde von einem Architekt beim Entwurf
angegeben. Mit deren Hilfe kann man überprüfen, falls es
Änderungsanfragen an das System gibt, ob die Muster-Entscheidung danach
noch gültig ist.

Im Beispiel hier sehen Sie einen Auszug aus dem Papier-
Entscheidungsdokument PSE-Entscheidungen. In einer Muster-Entscheidung
wurde „Class Table Inheritance“ als Variante des OR-Mappings ausgewählt,
mit dem das Mapping zwischen Klassen und Datenbank in Hibernate
konfiguriert wird.

Nehmen wir, an jetzt kommt eine Änderungsanfrage:
 „Es soll ein neuen Benutzer-Typ „App-Admin“ unterstützt werden, der in
das Domain Model eingepflegt werden muss. In Zukunft wird es häufige
Änderungen des Domain-Modells geben“.
Lesen wir die Begründung von dem Muster in der Entscheidung durch. Laut
Q074 ging man bei der Entscheidung davon aus, dass es keine häufigen
Domain-Modell-Änderungen geben wird. Daher wird diese Entscheidung
durch die Änderungsanfrage potenziell getroffen und sollte evtl.

überdacht werden. Allerdings, wenn wir mit dem Muster nicht sehr gut vertraut sind, können wir uns auch an den Katalog
wenden, um die Muster-Beschreibung schnell zu überfliegen.

In dem Fragebogen, den Sie bekommen, sollen Sie solche Entscheidung dann als „soll überdacht werden“ markieren. Es
bedeutet nicht, dass die Entscheidung verworfen wird und aus dem System entfernt wird, sondern dass über diese
Entscheidung nachgedacht werden muss. Vergessen Sie nicht bei der Aufgabenlösung eine kurze Begründung, z.B. mit dem
Muster und dem Fragen IDs einzutragen.

B. Appendix. Experiment Documentation

236

26 August 2013 3

Einführung ins Experiment, Zoya (Zum Vorlesen)
Gruppe B:

Im drittem Teil werden Sie den Einsatz und den Einfluss von
Entwurfsmusterentscheidungen (engl. Pattern design decisions) im
Systementwurf und Evolution evaluieren.
Sie werden 2 Aufgaben bekommen.
Die erste Aufgabe behandelt die System-Evolution der Benutzerverwaltung.
Dabei evaluieren Sie die Gültigkeit der getroffenen Entwurfsmuster-
Entscheidungen nach den Änderungsanfragen an User Management.
Die Aufgabe 2 behandelt die Neuentwicklung und sucht nach passenden
Entwurfsmustern um die angegebenen Probleme zu lösen. Wir nehmen dabei an,
dass die Benutzerverwaltung neu entwickelt wird.

Für diesen Teil des Experimentes werden Sie nur Papierunterlagen benötigen.

Bei der Aufgabe 1 aus dem dritten Teil bekommen Sie einen Auszug aus
Büchern und Wikipedia, in dem die für die Aufgabe benötigten Muster
beschrieben sind, und eine Liste mit getroffenen Muster-Entscheidungen.

In dieser Liste sind für jede Entscheidung eine Begründung, beteiligte
Architektur-Elemente und Anforderungen festgehalten.
Diese Begründung wurde von einem Architekt beim Benutzerverwaltung-Entwurf
getroffen. Mit deren Hilfe kann man überprüfen, falls es Änderungsanfragen an
System gibt, ob die Muster-Entscheidung danach noch gültig ist.

Wie verwendet man die Entscheidungs-Begründung (engl. rationale)?
Im Beispiel hier sehen Sie einen Auszug aus dem Papier-Entscheidungsdokument
PSE-Entscheidungen. In einer Muster-Entscheidung wurde „Class Table
Inheritance“ als Variante des OR-Mappings ausgewählt, mit dem das Mapping
zwischen Klassen und Datenbank in Hibernate konfiguriert wird.

Nehmen wir, an jetzt kommt eine Änderungsanfrage:
 „Es soll ein neuen Benutzer-Typ „App-Admin“ unterstützt werden, der in das
Domain Model eingepflegt werden muss. In Zukunft wird es häufige Änderungen
des Domain-Modells geben“.
Lesen wir die Begründung von dem Muster in der Entscheidung durch.
Wenn wir mit dem Muster nicht sehr gut vertraut sind, wenden wir uns ans Buch
und überfliegen schnell die Beschreibung.

Wir sehen dort (Seite 262) „Any refactoring of fields up or down the hierarchy causes database changes“.
Laut der Änderungsanfrage werden aber häufigen Domain-Modell-Änderungen geben. Daher wird diese Entscheidung
durch die Änderungsanfrage potenziell getroffen und sollte evtl. überdacht werden.

Das bedeutet, dass die Änderungsanfrage potenzielle Auswirkungen auf diese Entscheidung haben kann, weil neue Objekte
eingefügt werden sollen. In dem Fragebogen, den Sie bekommen, sollen Sie solche Entscheidung dann als „soll überdacht
werden“ markieren. Es bedeutet nicht, dass die Entscheidung verworfen wird und aus dem System entfernt wird, sondern dass
über diese Entscheidung nachgedacht werden muss. Vergessen Sie nicht bei der Aufgabenlösung eine kurze Begründung, in
denen Sie z.B. Seiten Aus dem Buch referenzieren.

B.1 Introduction Texts for Groups A and B

237

FZ
I F

OR
SC

HU
NG

SZ
EN

TR
UM

IN
FO

RM
AT

IK

Introduction to for PSE students

Zoya Durdik, Martin Küster, Johannes Stammel

January 30, 2013
FZI Forschungszentrum Informatik,
Karlsruhe, Germany

V A01

Agenda

Eine Einführung (~ 30 Minuten)

Aufgaben:
Teil I: Warm-up (10 Minuten)
Teil II: Evolutionssichten (30 Minuten)
Teil III: Mustern, Evolution und Entwurf (15+15 Minuten)
Teil IV: Cool-down (5 Minuten)

Danach: Raum 333

26.08.2013 2

B. Appendix. Experiment Documentation

238

Zur Erinnerung

Änderungsanfrage (engl. change request) für ein System - Es
muss entweder neue Funktionalität entwickelt oder bestehende
Funktionalität angepasst werden. Diese Anfrage kann die
bestehende Anforderungen, Entscheidungen, Code und
Dokumentation des Systems betreffen.

Offene frage bzw. Problem (engl. Issue) - wird während der
Design-Phase ein Problem adressiert, fasst man es mit einem Issue
zusammen. Dieser kann Auslöser für eine Entscheidung sein.

26.08.2013 3

Die Benutzerverwaltung

Die Benutzerverwaltung (engl. User Management) ist ein Black-
Box-Subsystem im PSE-System, welches für die
Benutzerverwaltung der (mobilen) Anwendungen (Mensa oder
Event Management) benutzt ist

Für die Aufgaben werden wir die Benutzerverwaltungsarchitektur
und die Dokumentation der beim Entwurf getroffenen
Entwurfsentscheidungen (inkl. Mustern) vorlegen.

Notiz: Sie werden einen Gesamtüberblick über die PSE-Architektur
bekommen, die auch Mensa- und Event Managementteile
beinhaltet. Die Architektur der Mensa-Anwendung und des
Event-Managements ist als eine Beispiel-Lösung zu sehen.
Daher kann dieses Architekturbild von eurer jeweiligen Lösung
abweichen.

26.08.2013 4

B.2 Introduction Slides Group A

239

Entscheidungsmodellierung in Eclipse

26.08.2013 5

TEIL II

26.08.2013 6

B. Appendix. Experiment Documentation

240

Teil II: „Change Impact View“ kann auf .decision-
Dateien geöffnet werden

26.08.2013 7

Graph zur Visualisierung von Entscheidungen und
Architekturelementen im Detail

26.08.2013 8

B.2 Introduction Slides Group A

241

Die Bedienleiste zum Konfigurieren von Sichten

Elemente an- oder abwählen

Fokussierung auf ein Element (dynamische Sicht!)

Graph neu laden (setzt die Fokussierung zurück)

26.08.2013 9

TEIL III

26.08.2013 10

B. Appendix. Experiment Documentation

242

Teil III: Einsatz und der Einfluss von Entwurfsmuster-
Entscheidungen bei dem Systementwurf

Aufgabe 1: Evolution von PSE-Benutzerverwaltung (engl. User
management)
Aufgabe 2: Neuentwicklung von PSE-Benutzerverwaltung

Nur Papier-Unterlagen (keine Rechner)

26.08.2013 11

Muster-Katalog (engl. Pattern Catalogue)

26.08.2013 12

Was: Kompakte und strukturierte Informationen über Mustern
Source: Bücher (Gamma, Buschmann, etc.), Wikipedia, Entwurfsartikeln, etc.

Kurze Beschreibung

Checkliste mit Fragen

Ziele des Musters

Katalogeintrag, Beispiel: Model-View-Controller

Varianten der
Implementierung

Ähnliche Muster

B.2 Introduction Slides Group A

243

Fragen im Katalog

26.08.2013 13

Ziel

Konsequenzen

Absicht „Ja“ / „Nein“ Fragen

Checkliste für die Musteranwendung

„Ja“ = Besonders wichtig
„Nein“ = Nicht der Absicht (bei den Absicht-Fragen)

= Evtl. ein falsches Muster
(bei den Konsequenzen-Fragen)

„Kein Antwort“ = die Eigenschaft spielt bei der
Musterauswahl keine besondere Rolle (oder es gibt keine
Anforderung dazu)

„Ja“

„Nein“

„---“

Wie nutzt man den Katalog bei der Neuentwicklung

26.08.2013 14

Problem?
Die Daten sollen in der App in unterschiedlichen GUIs (je
Betriebssystem) angezeigt werden. Dabei soll es möglich
sein die GUIs auszutauschen. Keine Business-App, daher
keine besonderen Anforderungen an die Performanz.“

Model-View-Controller

„Ja“

„---“
„Ja“

„Ja“

„---“

B. Appendix. Experiment Documentation

244

Wie nutzt man den Katalog bei der Neuentwicklung

26.08.2013 15

Problem?
Die Daten sollen in der App in unterschiedlichen GUIs (je
Betriebssystem) angezeigt werden. Dabei soll es möglich
sein die GUIs auszutauschen. Keine Business-App, daher
keine besonderen Anforderungen an die Performanz.“

Model-View-Controller

„Ja“

„---“
„Ja“

„Ja“

„---“

„Nein“

Rationale

oder

Wie nutzt man die Muster-Entscheidungen mit
Begründung?

26.08.2013 16

Entscheidung Allgemeine
Begründung

Welche Komponenten,
Servern, etc. sind

beteiligt?

Welche
Anforderungen
sind beteiligt?

Muster -
Begründung

Antworten, die bei
der Entscheidung
gegeben wurden

B.2 Introduction Slides Group A

245

Wie verwendet man die Muster-Begründung?

26.08.2013 17

Änderungsantrage #1: „… Es soll ein neuen Benutzer-Typ „App-Admin“
unterstützt werden, der in das Domain Model eingepflegt werden muss. In
Zukunft wird es häufige Änderungen des Domain-Modells geben.“

Potenziell ungültig

Begründung: Änderungsanfrage #1 und Q073

Welche Materialen bekommen Sie? (Teil III)

Eine Liste der Muster-Entwurfsentscheidungen mit der Muster-
Begründung (die Katalog-Fragen + Antworten)
Ein PSE-Benutzerverwaltung System Diagramm zur Erinnerung, wo
die getroffene Muster-Entscheidungen an den entsprechenden
Komponenten notiert sind
Einen Pattern-Katalog
Einen Fragebogen mit 2 Aufgaben

Alle Unterlagen als Papier!

26.08.2013 18

B. Appendix. Experiment Documentation

246

Und los geht’s!

26.08.2013 19

B.2 Introduction Slides Group A

247

FZ
I F

OR
SC

HU
NG

SZ
EN

TR
UM

IN
FO

RM
AT

IK

Introduction for PSE students

Zoya Durdik, Martin Küster, Johannes Stammel

January 30, 2013
FZI Forschungszentrum Informatik,
Karlsruhe, Germany

V B01

Agenda

Eine Einführung (~ 30 Minuten)

Aufgaben:
Teil I: Warm-up (10 Minuten)
Teil II: Evolutionssichten (30 Minuten)
Teil III: Mustern, Evolution und Entwurf (30 Minuten)
Teil IV: Cool-down (5 Minuten)

26.08.2013 2

B. Appendix. Experiment Documentation

248

Zur Erinnerung

Änderungsanfrage (engl. change request) für ein System - Es
muss entweder neue Funktionalität entwickelt oder bestehende
Funktionalität angepasst werden. Diese Anfrage kann die
bestehende Anforderungen, Entscheidungen, Code und
Dokumentation des Systems betreffen.

Offene frage bzw. Problem (engl. Issue) - wird während der
Design-Phase ein Problem adressiert, fasst man es mit einem Issue
zusammen. Dieser kann Auslöser für eine Entscheidung sein.

26.08.2013 3

Die Benutzerverwaltung

Die Benutzerverwaltung (engl. User Management) ist ein Black-
Box-Subsystem im PSE-System, welches für die
Benutzerverwaltung der (mobilen) Anwendungen (Mensa oder
Event Management) benutzt ist

Für die Aufgaben werden wir die Benutzerverwaltungsarchitektur
und die Dokumentation der beim Entwurf getroffenen
Entwurfsentscheidungen (inkl. Mustern) vorlegen.

Notiz: Sie werden einen Gesamtüberblick über die PSE-Architektur
bekommen, die auch Mensa- und Event Managementteile
beinhaltet. Die Architektur der Mensa-Anwendung und des
Event-Managements ist als eine Beispiel-Lösung zu sehen.
Daher kann dieses Architekturbild von eurer jeweiligen Lösung
abweichen.

26.08.2013 4

B.3 Introduction Slides Group B

249

Entscheidungsmodellierung in Eclipse

26.08.2013 5

TEIL III

26.08.2013 6

B. Appendix. Experiment Documentation

250

Teil III: Einsatz und der Einfluss von Entwurfsmuster-
Entscheidungen bei dem Systementwurf

Aufgabe 1: Evolution von PSE-Benutzerverwaltung (engl. User
management)
Aufgabe 2: Neuentwicklung von PSE-Benutzerverwaltung

Nur Papier-Unterlagen (keine Rechner)

26.08.2013 7

Bücher und Wikipedia Artikeln

26.08.2013 8

Sie bekommen einen Auszug aus den Büchern und Wikipedia über Mustern,
die für die Aufgabenlösung hilfreich sein können.
Source: Bücher (Gamma, Buschmann, etc.), Wikipedia, Entwurfsartikeln, etc.

Muster-Entscheidungen in der PSE-Benutzerverwaltung

Entscheidung Allgemeine
Begründung

Welche Komponenten,
Servern, etc. sind

beteiligt?

Welche
Anforderungen
sind beteiligt?

B.3 Introduction Slides Group B

251

Wie verwendet man die Begründung?

26.08.2013 9

Änderungsanfrage #1: „… Es soll ein neuen Benutzer-Typ „App-Admin“ unterstützt
werden, der in das Domain Model eingepflegt werden muss. In Zukunft wird es häufige
Änderungen des Domain-Modells geben.“

PSE-Entscheidung:

Buch-Auszug:

Class Table
Inheritance

Seite 262: „Weaknesses:… Any refactoring of fields up or
down the hierarchy causes database changes“.

Potenziell ungültig

Begründung: Änderungsanfrage #1
und Buchauszug Seite 262, Text

unterstr.

Im Fragebogen:

Welche Materialen bekommen Sie?

Eine Liste der Muster-Entwurfsentscheidungen mit Begründung
(engl. rationale)
Ein PSE-Benutzerverwaltung System Diagramm zur Erinnerung, wo
die getroffene Muster-Entscheidungen an entsprechenden
Komponenten notiert sind
Einen Buch-Auszug
Ein Fragebogen mit vier Aufgaben

Alle Unterlagen als Papier!

Für die Aufgaben 3 und 4 brauchen Sie die PSE-Entscheidungen
und das System nicht, die werden Ihnen wieder entnommen.

26.08.2013 10

B. Appendix. Experiment Documentation

252

Und los geht’s!

26.08.2013 11

B.3 Introduction Slides Group B

253

Aufgaben für die Übung im Rahmen der Veranstaltung
“Praxis der Software-Entwicklung”

TEIL I

[10 Minuten]
Version 1.0

Veröffentlichung: 30.01.2013

Autor

Zoya Durdik

Martin Küster

B. Appendix. Experiment Documentation

254

Aufgaben für die Übung im Rahmen der Veranstaltung “Praxis der Software-Entwicklung”

Status: Final – öffentlich – Seite 1/2

Autor: Zoya Durdik, Martin Küster Stand: 28.01.2013 Version: 1.0

Wichtig: Alle Aufgaben beziehen sich auf die vorliegenden Artefakte (Architekturmodelle, Anforderungen, etc.), die von
Ihrem PSE-Entwurf etwas abweichen können. Schauen Sie sich bitte beiliegenden Artefakte an, um die Aufgaben zu
beantworten.

Die Fragen sollen Ihnen die Möglichkeit geben, sich mit den Artefakten und dem System vertraut zu machen.

Geben Sie bitte Ihre ID ein: ______________________

Fragen:

1. Welche Schnittstelle (engl. Interface) wird von den beiden PSE-Applikationen (Mensa und EventManagement) gemäß
dem vorgelegten Architekturmodell benutzt?

(Tipp: In ausgegebenen Workspace in Eclipse öffnen Sie z.B. das Diagramm „pse.repository_diagramm“ im Projekt
„edu.kit.ipd.sdq.pse.arch“. Allerdings, Sie können den PropertiesView durch „ShowProperties“ im Kontext-Menu aufrufen,
falls Sie die Properties von den Elementen anschauen wollen)

Die beiden Apps benutzen ______________________ (Name) Interface

2. Wie viele Felder hat der Datentype „User“ gemäß dem vorgelegten Architekturmodell des User-Management Systems?
(Tipp: Öffnen Sie z.B. das Modell „pse.repository“ im Projekt „edu.kit.ipd.sdq.pse.arch“ und suchen Sie nach dem
CompositeDataType „User“ in Baumeditor.)

Der Datentype „User“ hat _____ (Anzahl) Felder.

3. Wie viele assemblierte Komponenten hat das UserManagement-System? (Tipp: Öffnen Sie das Diagramm
„pse.system_diagramm“ im Projekt „edu.kit.ipd.sdq.pse.arch“)

Das UserManagement System hat _____ (Anzahl) Komponenten.

4. Auf wie vielen Servern ist das PSE-System laut vorgelegten Architekturmodellen im Einsatz (engl. Deployment)? (Tipp:
Öffnen Sie z.B. das Diagramm „pse.allocation_diagramm“ im Projekt „edu.kit.ipd.sdq.pse.arch“)

Das PSE System ist auf _____ (Anzahl) Servern zum Einsatz gebracht.

5. Finden Sie das Muster „Model-View-Control“ (MVC) in den ausgegebenen Materialen. Wie viele Varianten des MVC-
Musters gibt es gemäß diesen Materialeien? (Tipp: Schauen sie die Angaben unter „Variants“ in Kapitel/Sektion MVC an)

Es gibt _____ (Anzahl) Implementierungsvarianten des MVC Muster.

Falls Sie Fragen haben, wenden Sie sich bitte an uns. Geben Sie uns bitte Bescheid, wenn Sie mit den Aufgaben
fertig sind. Sie bekommen dann den weiteren Aufgabenblock. Danke!

B.4 Pre-Experiment (Warm-Up) Tasks

255

Aufgaben für die Übung im Rahmen der
Veranstaltung

“Praxis der Software-Entwicklung”

TEIL III, Aufgabe 1

Muster-Entscheidungen und Evolution

[15 Minuten]

Version 1.0

Veröffentlichung: 30.01.2013

Autor

Zoya Durdik

B. Appendix. Experiment Documentation

256

Teil III. Code: A02

Seite 1/11

Sie haben [15 Minuten] Geben Sie bitte Ihre ID ein: _________________

AUFGABE 1. Prüfen Sie, ob die im Vorfeld bereits getroffenen Entwurfsmusterentscheidungen

(engl. pattern design decisions) nach den aufgelisteten Änderungsanfragen (engl. change

requests) überdacht werden sollten.

Vorgehensweise:

Für jede Entwurfsentscheidung aus Tabelle I „Aufgabe“

1. Die Begründung für die Entscheidung in Tabelle II „PSE-Muster-Entscheidungen“ lesen.

2. Das Muster in einem Musterkatalog (engl. pattern catalogue) kurz überfliegen

3. Die Liste der Änderungsanfragen in der Tabelle III „Änderungsanfragen“ durchgehen und entscheiden „Sollte die

Entscheidung für das Pattern evtl. überdacht werden“

 „Ja“ oder „Nein“ in der Tabelle I ausfüllen.

Bitte markieren Sie mit „Ja“ wenn die Eigenschaften des Musters verletzt werden oder wenn

Voraussetzungen für den Einsatz des Musters nicht mehr erfüllt werden, oder wenn das Muster der Einsatz

des Musters nochmal detailliert überdacht werden muss.

Bitte markieren Sie mit „Nein“ wenn einfache Code-Anpassungen vorgenommen werden müssen, die die

Semantik des Musters oder die Art der Implementierung des Musters nicht verändern, bzw. wenn das

Muster nicht betroffen ist.

Eine kurze Begründung zu der Antwort in Tabelle I schreiben (ggf. IDs der Änderungsanfragen, der Mustern,

der Muster-Fragen, etc. mitnotieren).

Tipp: Eine Änderungsanfrage führt nicht unbedingt zur Ungültigkeit von den Entwurfsmusterentscheidungen. Es müssen

nicht alle von den gelisteten Entwurfsmuster-Entscheidungen durch die Änderungsanfragen betroffen sein.

Tabelle I. Aufgabe

ID* Entwurfs-
entscheidung*

Sollte die Entscheidung
für das Pattern evtl.
überdacht werden?

Begründung

D009
Class Table
Inheritance Nein

Ja
Ich weiß nicht

LautBeispiel CR000 (siehe Folien) soll die DB ein neues
Objekt unterstützen, wofür das Muster Class Table Inheritance
laut dem Pattern Catalogue Eintrag 10 QID073 nicht gut geeignet
ist.

D005 Façade Nein
Ja
Ich weiß nicht

D006 Singleton Nein
Ja
Ich weiß nicht

D007 Thin client Nein
Ja
Ich weiß nicht

D002 Multi-Tier
Architektur

Nein
Ja
Ich weiß nicht

* Siehe Tabelle II für Entscheindunsgbegründung und relevante Komponenten.

Tabelle III. Änderungsanfragen (engl. change requests):

 ID Änderungsanfrage

CR001 Das Login dauert teilweise zu lang, daher muss eine Session-Verwaltung in die UserServiceTomcat Komponente
eingebaut werden, um die Wartezeiten bei der Re-Authentifizierung zu reduzieren.

CR002 Der Client (Mensa oder Event Management) der auf mobilen Geräten läuft, soll auch im Falle temporärer
Funknetzausfalle funktionsfähig bleiben.

CR003 Das User Management soll einen neuen Report-Typ „Benutzerstatistiken“ unterstützen, der Informationen über
Benutzer und deren durchschnittliches Alter abfragt und einen allgemeinen Report daraus erstellt.

Beispiel

B.5 Experiment Tasks for Group A

257

Teil III. Code: A02

Seite 2/11

Nachfragen zu der Aufgabe 1.

1. Es fiel mir leicht die Gültigkeit von Entwurfsmuster-Entscheidungen zu prüfen

Richtig (Ich habe die Aufgabestellung gut verstanden und bin bei den meisten meiner Antworten sicher)

Teilweise richtig (Ich konnte nicht alle Entwurfsmuster-Entscheidungen sicher bewerten, habe aber am Ende die

passenden Antworten gefunden und ich bin bei den meisten meiner Antworten sicher)

Teilweise falsch (Ich konnte nicht alle Entwurfsmuster-Entscheidungen sicher bewerten, und bin nicht bei den

allen meinen Antworten sicher)

Falsch (Ich bin bei den meisten Antworten nicht sicher)

Kommentar ___

2. Hat Ihnen der beigelegte Muster-Katalog bei der Aufgabenlösung geholfen?

Die beantworteten Fragen aus dem Katalog, die mit den Entscheidungen gespeichert waren, waren ausreichend

und haben mich bei der Aufgabenlösung unterstützt.

Ich fühlte mich durch den Katalog gut unterstützt.

Ich fühlte mich durch den Katalog unterstützt, hätte aber ein Buch oder das Internet gebrauchen können, bzw.

ich hatte zusätzlichen Materialen gebraucht.

Ich konnte den Katalog für die Aufgabenlösung zwar teilweise verwenden, die Informationen waren aber

überwiegend nicht ausreichend.

Der Katalog konnte mir bei der Aufgabenlösung nicht helfen.

Die Aufgabe war so einfach, ich habe den Katalog nicht gebraucht.

Sonstiges ___

3. Sonstige Kommentare?

Geben Sie uns bitte Bescheid, wenn Sie mit diesen Aufgaben fertig sind, um weitere Aufgaben zu bekommen.

B. Appendix. Experiment Documentation

258

Teil III. Code: A02

Seite 3/11

Tabelle II. Liste der PSE—Muster-Entscheidungen

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D001 Client-
Server
Architektur

Austauschbarkeit. Grundlegende
Entscheidung über Architektur.

alle FRA001 Pattern Decision

Rationale saved for the pattern:

No additional rationale saved

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D002 Multi-Tier-
Architektur

Multi-Tier-Architektur eignet sich aus
folgenden Gründen: 1) Abstraktion von
Persistenz durch Layering. 2) Erfahrung im
JEE-Bereich (JBoss etc.) 3) Clients leicht
austauschbar.

alle FRA001 Pattern Decision

Rationale saved for the pattern:

QID Questions Answer

Q007 Would you like to be able to add or modify specific parts
instead of reworking the whole application?

Yes

Q008 Would you like to structure the system according to the
underlying physical infrastructure?

Q009 Would you like to prevent the client to access data directly? Yes

Q010 Would you like to have a linear communication model in
your system, where each tier can communicate only with 2
neighboring tiers in a strong linear hierarchy?

Q012 Are you aware that all communication will run through a
middle tier, which can become a bottleneck?

Yes

Q013 Potential involvement of multiple communication protocols
with different evolution cycles is not an issue in the future?

+ See questions for Client-Server architecture

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D003 Component-
based
Architektur

Austauschbarkeit. Grundlegende
Entscheidung über Architektur

alle - Pattern Decision

Rationale saved for the pattern:

No additional rationale saved

B.5 Experiment Tasks for Group A

259

Teil III. Code: A02

Seite 4/11

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirements

Decision Type

D004 Proxy Apache vor dem Tomcat wegen
Portumsetzung. Apache implementiert
Reverse-Proxy als Port-Mapper.
Anbindung des Apache über mod_jk an
den Tomcat via AJP-Protokoll.

UserServiceApache
Komponente

FRA003,
NFRU005

Pattern Decision

Rationale saved for the pattern:

No additional rationale saved

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirements

Decision Type

D005 Façade UserServiceTomcat Komponente als
Façade für Reporting, Authentifizierung
und User-Management. Einfacher
Zugriff auf die verschiedenen
Funktionen der Benutzerverwaltung,
inkl. Authentisierung, Reporting und
Anfragen an das User-Management-
Systems.

UserServiceTomcat
Komponente

FRU008,
NFRU001

Pattern Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q042 Would you like to provide a unified interface to a set of
interfaces in a subsystem?

Yes

Intent: Q043 Would you like to minimize the communication and
dependencies between subsystems?

Q046 An additional functionality wrapped into the unified interface
is not your intent? (otherwise Proxy)

Yes

Q047 Is a stateless unified interface your intent? (otherwise
Proxy)

Yes

Q048 Is it desired that subsystem classes know nothing about the
facade object(s)? (otherwise Mediator)

Q049 A new interface for an object is not your intent? (otherwise
Adaptor)

Consequences: Q050 Is a potential performance bottleneck not an issue? Yes

B. Appendix. Experiment Documentation

260

Teil III. Code: A02

Seite 5/11

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirements

Decision Type

D006 Singleton Kontrollierter Zugriffskontrol Authentifizierung
Komponente

FRU009 Pattern Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q064 Would you like to ensure that a class has only one instance? Yes

Intent: Q065 Would you like to make class instance easily accessible
(globally)?

Consequences: Q066 If you are developing a distributed application, it is not an
issue that the data stored in the instance cannot change too
often?

Yes

Q067 Having a global access to the class instance is not a
potential threat to the application?

Q068 You are not developing a multi-thread application,
respectively you have extended singleton for this case?

Yes

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirements

Decision Type

D007 Thin Client Zugriff auf die Funktionalität des
Servers

EventManagement
App, Mensa App

FRA002,
FRA003,
NFRM004,
NFRM006,
NFRE011

Pattern Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q027 Would you like a client to put responsibility for data
computation, persistence, etc. on the server side?

Yes

Intent: Q028 Would you like to keep SW updates centralized? Yes

Q030 Is your infrastructure heterogeneous?

Q031 Would you like to support low-performance devices? Yes

Consequences: Q032 Working offline is not essential for your application?
(otherwise Fat Client)

Yes

Q033 Are main changes (SW updates) expected to be on the
server side? (otherwise Fat Client)

B.5 Experiment Tasks for Group A

261

Teil III. Code: A02

Seite 6/11

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirements

Decision Type

D008 DAO UserDAO für Zugriff auf persistente
Benutzer. DAO ist ein etabliertes Muster
aus dem JEE-Umfeld.

UserDAO
Komponente

Pattern Decision

Rationale saved for the pattern:

No additional rationale saved

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirements

Decision Type

D009 Class Table
Inheritance

Direktes und einfaches OR-Mapping
zwischen Glossar Objekten und DB,
Konfiguration von Hibernate, nur einfache
Anfragen an DB

DBAccess
Komponente

FRU002 Pattern
Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q069 Would you like to present an inheritance hierarchy of
classes in relational database?

Yes

Intent: Q070 Would you like a straightforward relationship between
the database and the domain model to achieve easier
understanding of the Database?

Consequences: Q071 Is it not a problem that the majority of requests can be
satisfied only with performance expensive joins?

Q072 Is it not your intent for the Database to be used by
other applications that are not using (or do not know)
objects? (otherwise Concrete Table Inheritance)

Q073 Is the final amount of tables in the database structure
limited (small) and is it unlikely to change in the
future?

Yes

B. Appendix. Experiment Documentation

262

Teil III. Code: A02

Seite 7/11

B.5 Experiment Tasks for Group A

263

Teil III. Code: A02

Seite 8/11

Aufgaben für die Übung im Rahmen der
Veranstaltung

“Praxis der Software-Entwicklung”

TEIL III, Aufgabe 2

Muster-Entscheidungen und Neue Entwicklung

[15 Minuten]

Version 1.0

Veröffentlichung: 30.01.2013

Autor

Zoya Durdik

B. Appendix. Experiment Documentation

264

Teil III. Code: A02

Seite 9/11

Sie haben [15 Minuten] Geben Sie bitte Ihre ID ein: _________________

AUFGABE 2. Wählen Sie welche Entwurfsmustern (engl. design patterns) zu den angegebenen Problemen

(engl. issues) passen.

Wir betrachten dasselbe PSE-System, gehen aber davon aus, dass diese neu Entwickelt wird. Stellen Sie sich also vor,

dass Sie ein neues PSE-System mit neuen Anforderungen entwickeln.

Vorgehensweise:

Für jedes Problem (engl. issue) aus Tabelle I „Zu lösende Probleme“:

1. Das Problem aufmerksam lesen, alle Details berücksichtigen.

2. Für jede angegebene mögliche Lösung: Das Muster in dem Musterkatalog (engl. pattern catalogue) kurz

nachschlagen

3. Entscheiden welche Lösung (Muster) angesichts der Problem-Details und der im Katalog gelisteten Muster-

Eigenschaften am passendsten ist.

4. Eine Begründung ggfls. mit Vorteilen und Nachteilen zu Ihrer Lösung in Tabelle I eintragen. Die Begründung

sollte ggf. Muster und Muster-Fragen IDs (aus dem Katalog) enthalten.

5. Zu dem nächsten Problem in der Tabelle I übergehen.

Tipp: Die Mustern lösen zwar jeweils ähnliche Probleme, unterscheiden sich aber in Details. Für die Details schauen Sie

im Katalog nach, und tragen Sie die Details in der Begründung ein. Vergessen Sie nicht, dass Sie sich in der PSE-

Neuentwicklung befinden!

Tabelle I. Zu lösende Probleme (engl. issues):

ID Problem Kreuzen Sie die
richtige Lösung an

Begründung

P000 Die Data im App soll in unterschiedlichen GUIs (je
Betriebssystem) angezeigt werden. Dabei soll es
möglich sein die GUIs oder die Data Model voneinander
unabhängig auszutauschen.

PAC

MVA

MVC

Keins davon

Eintrag im Pattern Catalogue
#3: QID Q014, QID Q017

P001 Das User Management soll eine zentrale Schnittstelle
anbieten, welche die Sub-Komponente austauschbar
hält. Die Schnittstelle soll die Session-Verwaltung
übernehmen.

Adaptor

Facade

Proxy

Keins davon

P002 Der Client (Mensa oder Event Management) soll auf
mobilen Geräten laufen können. Auch ältere Geräte
(ältere Generation) sollen möglichst von den Apps
unterstützt werden. Aufgrund der häufigen gesetzlichen
Änderungen müssen evtl. häufige Änderungen an der
Software vorgenommen werden.

Fat Client

Thin Client

Keins davon

P003 Die Applikation soll auf dem Port 1022 laufen, jedoch
können die ATIS-Server auf Port 0..1023 nichts
empfangen, daher sollen die Applikationen andere Ports
benutzen.

Adaptor

Facade

Proxy

Keins davon

P004 Es sollen normale Benutzer, Premium-Benutzer und
Admin-Benutzer geben. Auf den Daten den normalen
Benutzer sollte man schnell zugreifen können. Es wird
eine andere Anwendung geben die ohne Objekte zu
kennen auf den Daten zugreifen können muss.

Class Table

Inheritance

Single Table

Inheritance

Concrete Table

Inheritance

Keins davon

Beispiel

B.5 Experiment Tasks for Group A

265

Teil III. Code: A02

Seite 10/11

Nachfragen zu der Aufgabe 2.

1. Es fiel mir leicht die richtigen Entwurfsmuster auszuwählen

Richtig (Ich habe die Aufgabenstellung gut verstanden und bin bei den meisten meiner Antworten sicher)

Teilweise richtig (Ich konnte nicht alle Entwurfsmuster sicher auswählen, habe aber am Ende die passenden

Antworten gefunden und ich bin bei den meisten meiner Antworten sicher)

Teilweise falsch (Ich konnte nicht alle Entwurfsmustern sicher auswählen, und bin nicht bei allen meinen

Antworten sicher)

Falsch (Ich bin mir bei den meisten Antworten nicht sicher)

Kommentar ___

2. Hat Ihnen der beigelegte Muster-Katalog bei der Aufgabenlösung geholfen?

Ich fühlte mich durch den Katalog gut unterstützt.

Ich fühlte mich durch den Katalog unterstützt, hätte aber ein Buch oder das Internet gebrauchen können, bzw.

ich hatte zusätzlichen Materialen gebraucht.

Ich konnte den Katalog für die Aufgabenlösung zwar teilweise verwenden, die Informationen waren aber

überwiegend nicht ausreichend.

Der Katalog konnte mir bei der Aufgabenlösung nicht helfen.

Die Aufgabe war so einfach, ich habe den Katalog nicht gebraucht.

Sonstiges ___

3. Sonstige Kommentare?

ENDE DER TEIL III

B. Appendix. Experiment Documentation

266

Aufgaben für die Übung im Rahmen der
Veranstaltung

“Praxis der Software-Entwicklung”

TEIL III, Aufgabe 1

Muster-Entscheidungen und Evolution

[15 Minuten]

Version 1.0

Veröffentlichung: 30.01.2013

Autor

Zoya Durdik

B.6 Experiment Tasks for Group B

267

Teil III. Code: B01

Seite 1/8

Sie haben [15 Minuten] Geben Sie bitte Ihre ID ein: _________________

AUFGABE 1. Prüfen Sie, ob die im Vorfeld bereits getroffenen PSE-Entwurfsmuster-

Entscheidungen (engl. pattern design decisions) nach den aufgelisteten Änderungsanfragen

(engl. change requests) überdacht werden sollten.

Vorgehensweise:

Für jede Entwurfsentscheidung aus Tabelle I „Aufgabe“

1. Die Begründung für die Entscheidung in Tabelle II „PSE-Muster-Entscheidungen“ lesen.

2. Das Muster in einem Buch kurz überfliegen

3. Die Liste der Änderungsanfragen in der Tabelle III „Änderungsanfragen“ durchgehen und entscheiden „Sollte die

Entscheidung für das Pattern evtl. überdacht werden“

 „Ja“ oder „Nein“ in der Tabelle I ausfüllen.

Bitte markieren Sie mit „Ja“ wenn die Eigenschaften des Musters verletzt werden oder wenn

Voraussetzungen für den Einsatz des Musters nicht mehr erfüllt werden, oder wenn das Muster der Einsatz

des Musters nochmal detailliert überdacht werden muss.

Bitte markieren Sie mit „Nein“ wenn einfache Code-Anpassungen vorgenommen werden müssen, die die

Semantik des Musters oder die Art der Implementierung des Musters nicht verändern, bzw. wenn das

Muster nicht betroffen ist.

Eine kurze Begründung zu der Antwort in Tabelle I schreiben (ggf. IDs der Änderungsanfragen, und

Buchseitennummer, etc. mitnotieren).

Tipp: Eine Änderungsanfrage führt nicht unbedingt zur Ungültigkeit von den Entwurfsmusterentscheidungen. Es müssen

nicht alle von den gelisteten Entwurfsmuster-Entscheidungen durch die Änderungsanfragen betroffen sein.

Tabelle I. Aufgabe

ID* Entwurfs-
entscheidung*

Sollte die Entscheidung
für das Pattern evtl.
überdacht werden?

Begründung

D009
Class Table
Inheritance Nein

Ja
Ich weiß nicht

LautBeispiel CR000 (siehe Folien) soll die DB ein neues
Objekt unterstützen, wofür das Muster Class Table Inheritance
laut dem Buch Seite 85 nicht gut geeignet ist.

D005 Façade Nein
Ja
Ich weiß nicht

D006 Singleton Nein
Ja
Ich weiß nicht

D007 Thin client Nein
Ja
Ich weiß nicht

D002 Multi-Tier
Architektur

Nein
Ja
Ich weiß nicht

* Siehe Tabelle II für Entscheindunsgbegründung und relevante Komponenten.

Tabelle III. Änderungsanfragen (engl. change requests):

 ID Änderungsanfrage

CR001 Das Login dauert teilweise zu lang, daher muss eine Session-Verwaltung in die UserServiceTomcat Komponente
eingebaut werden, um die Wartezeiten bei der Re-Authentifizierung zu reduzieren.

CR002 Der Client (Mensa oder Event Management) der auf mobilen Geräten läuft, soll auch im Falle temporärer
Funknetzausfalle funktionsfähig bleiben.

CR003 Das User Management soll einen neuen Report-Typ „Benutzerstatistiken“ unterstützen, der Informationen über
Benutzer und deren durchschnittliches Alter abfragt und einen allgemeinen Report daraus erstellt.

Beispiel

B. Appendix. Experiment Documentation

268

Teil III. Code: B01

Seite 2/8

Tabelle II. Liste der PSE—Muster-Entwurfsentscheidungen

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirements

Decision
Type

D001 Client-Server
Architektur

Austauschbarkeit.
Grundlegende Entscheidung
über Architektur.

alle FRA001 Pattern
Decision

D002 Multi-Tier-
Architektur

Multi-Tier-Architektur eignet
sich aus folgenden Gründen: 1)
Abstraktion von Persistenz
durch Layering. 2) Erfahrung im
JEE-Bereich (JBoss etc.) 3)
Clients leicht austauschbar.

alle FRA001 Pattern
Decision

D003 Component-
based
Architektur

Austauschbarkeit.
Grundlegende Entscheidung
über Architektur

alle FRA001 Pattern
Decision

D004 Proxy Apache vor dem Tomcat wegen
Portumsetzung. Apache
implementiert Reverse-Proxy
als Port-Mapper. Anbindung des
Apache über mod_jk an den
Tomcat via AJP-Protokoll.

UserServiceApache
Komponente

FRA003,
NFRU005

Pattern
Decision

D005 Façade UserServiceTomcat
Komponente als Façade für
Reporting, Authentifizierung
und User-Management.
Einfacher Zugriff auf die
verschiedenen Funktionen der
Benutzerverwaltung, inkl.
Authentisierung, Reporting und
Anfragen an das User-
Management-Systems.

UserServiceTomcat
Komponente

FRU008,
NFRU001

Pattern
Decision

D006 Singleton Kontrollierte Zugriffskontrolle Authentifizierung
Komponente

FRU009 Pattern
Decision

D007 Thin Client Zugriff auf die Funktionalität
des Servers

EventManagement
App, Mensa App

FRA002,
FRA003,
NFRM004,
NFRM006,
NFRE011

Pattern
Decision

D008 DAO UserDAO für Zugriff auf
persistente Benutzer. DAO ist
ein etabliertes Muster aus dem
JEE-Umfeld.

UserDAO
Komponente

 Pattern
Decision

D009 OR-Mapping:
Class Table
Inheritance

Hibernate, um das Binding
zwischen persistierten Objekten
in der Datenbank und den
objektorientierten Ralisierungen
zu ermöglichen. Direktes und
einfaches OR-Mapping zwischen
Glossar Objekten und DB,
Konfiguration von Hibernate,
nur einfache Anfragen an DB.

DBAccess
Komponente

FRU002 Pattern
Decision

B.6 Experiment Tasks for Group B

269

Teil III. Code: B01

Seite 3/8

Nachfragen zu der Aufgabe 1.

1. Es fiel mir leicht die Gültigkeit von Entwurfsmuster-Entscheidungen zu prüfen

Richtig (Ich habe die Aufgabestellung gut verstanden und bin bei den meisten meiner Antworten sicher)

Teilweise richtig (Ich konnte nicht alle Entwurfsmuster-Entscheidungen sicher bewerten, habe aber am Ende die

passenden Antworten gefunden und ich bin bei den meisten meiner Antworten sicher)

Teilweise falsch (Ich konnte nicht alle Entwurfsmuster-Entscheidungen sicher bewerten, und bin nicht bei den

allen meinen Antworten sicher)

Falsch (Ich bin bei den meisten Antworten nicht sicher)

Kommentar ___

2. Hat Ihnen der beigelegte Pattern Buch-Auszug bei der Aufgabenlösung geholfen?

Ich fühlte mich durch das Buch gut unterstützt.

Ich fühlte mich durch das Buch unterstützt, hätte aber ein anderes Buch oder das Internet gebrauchen können,

bzw. ich hatte zusätzlichen Materialen gebraucht.

Ich konnte das Buch für die Aufgabenlösung zwar teilweise verwenden, die Informationen waren aber

überwiegend nicht ausreichend.

Das Buch konnte mir bei der Aufgabenlösung nicht helfen.

Die Aufgabe war so einfach, ich habe das Buch nicht gebraucht.

Sonstiges ___

3. Sonstige Kommentare?

Geben Sie uns bitte Bescheid, wenn Sie mit diesen Aufgaben fertig sind, um weitere Aufgaben zu bekommen.

B. Appendix. Experiment Documentation

270

Teil III. Code: B01

Seite 4/8

B.6 Experiment Tasks for Group B

271

Teil III. Code: B01

Seite 5/8

Aufgaben für die Übung im Rahmen der
Veranstaltung

“Praxis der Software-Entwicklung”

TEIL III, Aufgabe 2

Muster-Entscheidungen und Neue Entwicklung

[15 Minuten]

Version 1.0

Veröffentlichung: 30.01.2013

Autor

Zoya Durdik

B. Appendix. Experiment Documentation

272

Teil III. Code: B01

Seite 6/8

Sie haben [15 Minuten] Geben Sie bitte Ihre ID ein: _________________

AUFGABE 2. Wählen Sie welche Entwurfsmustern (engl. design patterns) zu den angegebenen Problemen

(engl. issues) passen.

Wir betrachten dasselbe PSE-System, gehen aber davon aus, dass diese neu Entwickelt wird. Stellen Sie sich also vor,

dass Sie ein neues PSE-System mit neuen Anforderungen entwickeln.

Vorgehensweise:

Für jedes Problem (engl. issue) aus Tabelle I „Zu lösende Probleme“:

1. Das Problem aufmerksam lesen, alle Details berücksichtigen.

2. Für jede angegebene mögliche Lösung: Das Muster in dem Buch kurz nachschlagen

3. Entscheiden welche Lösung (Muster) angesichts der Problem-Details und der im Buch gelisteten Muster-

Eigenschaften am passendsten ist.

4. Eine Begründung ggfls. mit Vorteilen und Nachteilen zu Ihrer Lösung in Tabelle I eintragen. Die Begründung

sollte ggf. Buchseiten enthalten.

5. Zu dem nächsten Problem in der Tabelle I übergehen.

Tipp: Die Mustern lösen zwar jeweils ähnliche Probleme, unterscheiden sich aber in Details. Für die Details schauen Sie

im Buch nach, und tragen Sie die Details in der Begründung ein. Vergessen Sie nicht, dass Sie sich in der PSE-

Neuentwicklung befinden!

Tabelle I. Zu lösende Probleme (engl. issues):

ID Problem Kreuzen Sie die
richtige Lösung an

Begründung

P000 Die Data im App soll in unterschiedlichen GUIs (je
Betriebssystem) angezeigt werden. Dabei soll es
möglich sein die GUIs oder die Data Model voneinander
unabhängig auszutauschen.

PAC

MVA

MVC

Keins davon

Im Buch, Seite 10: Ziel des
Musters ist …, Seite
26:Konsequenzen ..

P001 Das User Management soll eine zentrale Schnittstelle
anbieten, welche die Sub-Komponente austauschbar
hält. Die Schnittstelle soll die Session-Verwaltung
übernehmen.

Adaptor

Facade

Proxy

Keins davon

P002 Der Client (Mensa oder Event Management) soll auf
mobilen Geräten laufen können. Auch ältere Geräte
(ältere Generation) sollen möglichst von den Apps
unterstützt werden. Aufgrund der häufigen gesetzlichen
Änderungen müssen evtl. häufige Änderungen an der
Software vorgenommen werden.

Fat Client

Thin Client

Keins davon

P003 Die Applikation soll auf dem Port 1022 laufen, jedoch
können die ATIS-Server auf Port 0..1023 nichts
empfangen, daher sollen die Applikationen andere Ports
benutzen.

Adaptor

Facade

Proxy

Keins davon

P004 Es sollen normale Benutzer, Premium-Benutzer und
Admin-Benutzer geben. Auf den Daten den normalen
Benutzer sollte man schnell zugreifen können. Es wird
eine andere Anwendung geben die ohne Objekte zu
kennen auf den Daten zugreifen können muss.

Class Table

Inheritance

Single Table

Inheritance

Concrete Table

Inheritance

Keins davon

Beispiel

B.6 Experiment Tasks for Group B

273

Teil III. Code: B01

Seite 7/8

Nachfragen zu der Aufgabe 2.

1. Es fiel mir leicht die richtigen Entwurfsmuster auszuwählen

Richtig (Ich habe die Aufgabenstellung gut verstanden und bin bei den meisten meiner Antworten sicher)

Teilweise richtig (Ich konnte nicht alle Entwurfsmuster sicher auswählen, habe aber am Ende die passenden

Antworten gefunden und ich bin bei den meisten meiner Antworten sicher)

Teilweise falsch (Ich konnte nicht alle Entwurfsmustern sicher auswählen, und bin nicht bei allen meinen

Antworten sicher)

Falsch (Ich bin mir bei den meisten Antworten nicht sicher)

Kommentar ___

2. Hat Ihnen der beigelegte Pattern Buch-Auszug bei der Aufgabenlösung geholfen?

Ich fühlte mich durch das Buch gut unterstützt.

Ich fühlte mich durch das Buch unterstützt, hätte aber ein anderes Buch oder das Internet gebrauchen können,

bzw. ich hatte zusätzlichen Materialen gebraucht.

Ich konnte das Buch für die Aufgabenlösung zwar teilweise verwenden, die Informationen waren aber

überwiegend nicht ausreichend.

Das Buch konnte mir bei der Aufgabenlösung nicht helfen.

Die Aufgabe war so einfach, ich habe das Buch nicht gebraucht.

Sonstiges ___

3. Sonstige Kommentare?

ENDE DER TEIL III

B. Appendix. Experiment Documentation

274

Aufgaben für das Experiment im Rahmen der Veranstaltung
“Praxis der Software-Entwicklung”

TEIL IV

[5 Minuten]
Version 1.0

Veröffentlichung: 30.01.2013

Autor

Zoya Durdik

Martin Küster

B.7 Post-Experiment (Cool-Down) Tasks

275

Aufgaben für die Übung im Rahmen der Veranstaltung “Praxis der Software-Entwicklung”

Autor: Zoya Durdik, Martin Küster Stand: 28.01.2013 Version: 1.0

Geben Sie bitte Ihre ID ein: ______________________

Fragen:

1. Sie sind derzeit:

Bachelor (Informatik) Student

Master (Informatik) Student

Diplom (Informatik) Student

Sonstiges und zwar ______________________

2. In welchem Fachsemester sind Sie jetzt?

Ich bin im _____ Fachsemester

3. Haben Sie je gegen Entgelt Software entwickelt?

Ja

Nein

4. Haben Sie bereits praktische Programmiererfahrungen sammeln können? (Mehrfachnennung möglich)

Nein, PSE ist mein erstes Software-Entwicklungsprojekt

Ja und zwar ich habe bereits in _____ (Anzahl) Entwicklungs-Projekten während des Studiums mitgearbeitet

Ja und zwar ich habe bereits in _____ (Anzahl) Entwicklungs-Projekten außerhalb des Studiums mitgearbeitet

Davon waren _____ (Anzahl) Projekte aus der Domäne der mobilen Anwendungen

5. Welche Architekturmodellierungssprachen kennen Sie? Haben Sie die praktisch in Projekten verwendet?

Ich kenne (aus Vorlesung oder Büchern):

UML Komponentendiagramme

Palladio Component Model

Sonstiges und zwar ______________________

Ich habe praktisch verwendet (Modelle erstellt oder geändert):

UML Komponentendiagramme

Palladio Component Model

Sonstiges und zwar ______________________

6. Haben Sie bereits praktische SW-Architekturentwurfs- und Architekturmodellierungserfahrungen sammeln können?

(Mehrfachnennung möglich)

Nein, PSE ist mein erstes Software-Entwicklungsprojekt

Ja und zwar ich habe bereits in _____ (Anzahl) Entwurf-Projekten während des Studiums mitgearbeitet

Ja und zwar ich habe bereits in _____ (Anzahl) Entwurf-Projekten außerhalb des Studiums mitgearbeitet

B. Appendix. Experiment Documentation

276

Aufgaben für die Übung im Rahmen der Veranstaltung “Praxis der Software-Entwicklung”

Autor: Zoya Durdik, Martin Küster Stand: 28.01.2013 Version: 1.0

7. Kennen Sie sich mit Entwurfsmustern aus? Welche der folgenden Aussagen treffen auf Sie zu? (Mehrfachnennung

möglich)

Nein, ich weiß nichts über Entwurfsmuster.

Ja, ich habe über Entwurfsmuster in einer oder mehreren Vorlesung(en) gehört und kenne ca. _____ (Anzahl)

Entwurfsmustern.

Ja, ich habe mich persönlich mit der theoretischen Seite beschäftigt (z.B. Bücher gelesen, im Internet gesucht) und

kenne ca. _____ (Anzahl) Entwurfsmuster

Ja, ich habe Entwurfsmuster praktisch selbst eingesetzt (z.B. während des Praktikums oder als studentische

Hilfskraft) und zwar folgende _________________________________

 __ (Namen) Entwurfsmuster

Kommentar: __

8. Gab es Artefakte, bei den Sie Verständnisprobleme hatten?

Nein, keine

Ja, mit folgenden Artefakten ___

Konnten diese geklärt werden?

Ja, die wurden geklärt

Nein, folgende sind noch offen geblieben _____________________________________

9. Hatten Sie Verständnisprobleme mit den Aufgaben oder mit der englischen Sprache während der Übung?

Nein, keine

Ja, mit folgende Aufgabe __

Konnten diese geklärt werden?

Ja, die wurden geklärt

Nein, folgende sind noch offen geblieben _____________________________________

10. Würden Sie gerne uns irgendetwas mitteilen wollen? (Kommentare, Wünsche, Fragen, Probleme, etc.)

Wir bedanken uns ganz herzlich!

B.7 Post-Experiment (Cool-Down) Tasks

277

1
26 August 2013

ZUR ERRINERUNG: LISTE DER PSE-ANFORDERUNGEN (ENGL. REQUIREMENTS)

Allgemeine Funktionale Anforderungen
* FRA001. Client-Server-Anwendung. Zugriff durch verschiedene Clients möglich.
* FRA002. Zugriff soll über Internet möglich sein. HTTP.
* FRA003. Daten sollen von außen zugreifbar sein. Zugriff von außerhalb ATIS Netz
* FRA004. Brücke zwischen Value Objekten und persistierten Objekten, Einführung
von Transaktionen / Sessions
* FRA005. Glossarterms: „User“, „Event“, „Food“, „Vote“
* FRA006. Benutzerdaten sollen gespeichert sein
* FRA007. OR Mapping nach gängigen Standards.

BugFix Anfragen
* BX0001. Sessions laufen über / sind nicht mehr gültig

Benutzerverwaltung, Funktionale Anforderungen
* FRU001. Benutzerdaten sollen dauerhaft gespeichert werden.
* FRU002. Ein Benutzer besteht aus (Vorname, Nachname, Nickname, E-Mail-Adresse,
Geburtsdatum, Passwort)
* FRU003. Ein Benutzer wird eindeutig durch E-Mail-Adresse ODER Nickname identifiziert, d.h.
beide Einträge erfüllen die Schlüsseleigenschaft.
* FRU004. Zugriff auf die Details eines Benutzers sollen nur möglich sein, wenn das Passwort mit
übertragen wird.
* FRU005. Die Möglichkeit einer externen Authentifikation soll möglich sein (Facebook, Google,
...). In diesem Fall soll dem System der Benutzer bekannt gemacht werden.
* FRU006. Der Zugriff auf die Daten soll über das Web (von außerhalb des Uni-Netzes) möglich
sein.
* FRU007. Einem mobilen Klienten soll es möglich sein, auf die Daten zuzugreifen.
* FRU008. Nach außen soll nur eine Schnittstelle sichtbar sein, die Subkomponente sollen
austauschbar sin.
* FRU009. Authentifizirung für Benutzer sollte nur an einer Stelle passieren
(merfache Instanziirung vermeiden)

Benutzerverwaltung, Nicht-funktionale Anforderungen
* NFRU001. Der Zugriff auf die Daten soll durch eine schlanke Schnittstelle erfolgen.
* NFRU002. Die bestehende Infrastruktur der ATIS soll verwendet werden (Virtuelle Maschine im
Uni-Netz)
* NFRU003. Das System soll in Java implementiert werden.
* NFRU004. Performance: Eine Anfrage an das System nach einem einzelnen Benutzer soll nicht
länger als 1 Sek dauern.
* NFRU005. ATIS-Server können nicht auf Port 0..1023 hören, daher die Applikationen sollen
andere Ports benutzen

Mensa, Funktionale Anforderungen
* FRM001. Der Client soll das aktuelle Angebot der Mensa sowie Bewertungen anzeigen.
* FRM002. Benutzer sollen die Möglichkeit haben, zu Angeboten der Mensa Bewertungen
abzugeben.
* FRM003. Ein Essen kann unter mehreren Namen angeboten werden; dies soll von der
Anwendung berücksichtigt werden.
* FRM004. Benutzer sollen die Möglichkeit haben Essen zusammen zu legen.
* FRM005. Benutzer sollen die Möglichkeit haben, zu Essen der Mensa Bilder hochzuladen.

Mensa, Nicht-funktionale Anforderungen
* NFRM001. Die Serveranwendung soll in Java geschrieben werden und in einem Apache Tomcat
Servlet-Container ausgeführt werden.
* NFRM002. Die Serveranwendung soll eine bereits vorhandene Benutzerverwaltung verwenden.
* NFRM003. Die Serveranwendung soll über Hibernate mit einer Datenbank kommunizieren.
* NFRM004. Die Clientanwendung soll eine nativ auf dem Apple iPhone lauffähige Anwendung
sein.
* NFRM005. Die Clientanwendung soll einfach bedienbar und durch eine ansprechende graphische
Benutzerführung leicht zugänglich sein.
* NFRM006. Die Datenhaltung soll vom Server übernommen werden. Auf den Clients sollen
lediglich Zugangsdaten gespeichert werden.
* NFRM007. Sicherheit: z.B. Passwörter nicht im Klartext speichern.
* NFRM008. Evtl. verschlüsselte Kommunikation zwischen Client und Server.

B. Appendix. Experiment Documentation

278

2
26 August 2013

Event Management, Funktionale Anforderungen
* FRE001. Die Zuteilung soll der Teilnehmer unter Berücksichtigung der Nutzerpräferenzen
sowie der zeitlichen Beschränkungen erfolgen.
* FRE002. Die Anwendung soll so gestaltet werden, dass sie für ein einzelnes
Anwendungszenario, das aus zwei Anwendungsfällen besteht eingesetzt werden kann.
* FRE003. Das Szenario könnte in dieser einfachen Form z.B im Rahmen von Konferenzen,
Workshops, Tagungen, Tutorien etc. auftreten.
* FRE009. Die Eigenheiten dieser Veranstaltungen sollen jedoch nicht berücksichtigt werden
und keine entsprechenden Verfeinerungen oder Zusatzfunktionen umgesetzt werden.
* FRE010. Mehrere Veranstaltungen sollen die Dienste der Anwendung ungestört voneinander
in Anspruch nehmen können.
* FRE011. Beim ersten starten der App muss sich der Benutzer neu registrieren oder mit
einem bestehenden Account anmelden.
* FRE012. Die Anmeldedaten werden auf dem Gerät gespeichert sodass sich der Nutzer auf
diesem Gerät nicht erneut anmelden muss.
* FRE013. Die App soll eine Möglichkeit bieten Veranstaltungen zu erstellen. Bei der Erstellung
der Veranstaltung müssen folgende Angaben gemacht werden: Name jeder Veranstaltung,
Minimale und maximale Teilnehmer je Veranstaltung, Anzahl paralleler Veranstaltungen, Anzahl
hintereinander folgender Sitzungen, E-Mailadressen der Teilnehmer
* FRE014. Bei der Erstellung der Veranstaltung können optional folgende Funktionalitäten
realisiert werden: Teilnehmer aus dem Adressbuch des Android-Gerätes einladen, Manuelle
Anpassung der automatischen Zuteilung vor der Übermittlung an die Teilnehmer, Festlegung
welche Teilnehmer bei der Zuteilung besonders zu berücksichtigen sind Festlegung fixer Termine
für einzelne Veranstaltungen
* FRE015. Bei der Anmeldung zu einer Veranstaltung müssen folgende Angaben gemacht
werden: Nutzerpräferenzen zu jeder Veranstaltung
* FRE016. Bei der Anmeldung zu einer Veranstaltung können optional folgende
Funktionalitäten realisiert werden: Anzeige der anderen Teilnehmer und deren Präferenzen (wenn
durch Veranstalter erlaubt), Feste Zuteilung zu einer Veranstaltung statt Präferenzangabe (z.B. für
Vortragende) (u.U. im Verwaltungsanwendungsfall statt im Nutzeranwendungsfall anzusiedeln)
* FRE017. Die Anwendung soll aus einer mobilen App für Android-Geräte und einem Java
Servlet bestehen.
* FRE018. Die Oberfläche der Android-App soll für die bereitgestellten Tablets optimiert
werden.
* FRE019. Die App kann optional für ein Android Smartphone optimiert werden.
* FRE020. Die Kommunikation zwischen Android-App und Server soll mittels HTTP-Anfragen
unter Verwendung des Datenformates JSON stattfinden.
* FRE021. Zum Betrieb der Serveranwendung soll eine bestehende Plattform mit einer MySQL-
Datenbank und einem Apache Tomcat Servlet-Container benutzt werden.
* FRE022. Die Serveranwendung soll als Java Servlet realisiert werden und POJOs mittels
Hibernate persistieren.
* FRE023. Benutzerdaten dürfen nicht im Servlet verarbeitet werden sondern sind zwingend in
einer dafür bereitgestellten Komponente zu verwalten.

Event Management, Nicht-funktionale Anforderungen
* NFRE009. Die Clientanwendung soll einfach bedienbar, und durch eine ansprechende
graphische Benutzerführung leicht zugänglich sein.
* NFRE010. Die Datenhaltung und Geschäftslogik soll vom Server übernommen werden.
* NFRE011. Auf den Clients sollen lediglich Zugangsdaten gespeichert werden.
* NFRE012. Die Zuteilungsberechnung soll sowohl auf einfachste Weise auf dem Server
durchgeführt werden können als auch durch Absenden einer Anfrage an einen externen Server
realisiert werden.
* NFRE013. Sicherheit: z.B. Passwörter nicht im Klartext speichern.
* NFRE014. Evtl. verschlüsselte Kommunikation zwischen Client und Server.

B.8 List of System Requirements

279

1
26 August 2013

Geben Sie bitte Ihre ID ein: ______________________

TABELLE II. LISTE DER PSE—MUSTER-ENTWURFSENTSCHEIDUNGEN

(ENGL. DESIGN DECISIONS)

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D001 Client-Server
Architektur

Austauschbarkeit. Grundlegende
Entscheidung über Architektur.

alle FRA001 Pattern Decision

Rationale saved for the pattern:

No additional rationale saved

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D002 Multi-Tier-
Architektur

Multi-Tier-Architektur eignet sich aus
folgenden Gründen: 1) Abstraktion
von Persistenz durch Layering. 2)
Erfahrung im JEE-Bereich (JBoss etc.)
3) Clients leicht austauschbar.

alle FRA001 Pattern Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q007 Would you like to be able to add or modify specific parts
instead of reworking the whole application?

Yes

Intent: Q008 Would you like to structure the system according to the
underlying physical infrastructure?

Q009 Would like to prevent the client to access data directly? Yes
Q010 Would you like to have a linear communication model in

your system, where each tier can communicate only with 2
neighboring tiers in a strong linear hierarchy?

Q011 Are you developing a web application? Yes
Consequences: Q012 Are you aware that all communication will run through a

middle tier, which can become a bottleneck?
Yes

Q013 Potential involvement of multiple communication protocols
with different evolution cycles is not an issue in the future?

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D003 Component-
based
Architektur

Austauschbarkeit. Grundlegende
Entscheidung über Architektur

alle - Pattern Decision

Rationale saved for the pattern:

No additional rationale saved

B. Appendix. Experiment Documentation

280

2
26 August 2013

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D004 Proxy Apache vor dem Tomcat wegen
Portumsetzung. Apache implementiert
Reverse-Proxy als Port-Mapper.
Anbindung des Apache über mod_jk
an den Tomcat via AJP-Protokoll.

UserServiceAp
ache
Komponente

FRA003,
NFRU005

Pattern Decision

Rationale saved for the pattern:

No additional rationale saved

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D005 Façade UserServiceTomcat Komponente als
Façade für Reporting,
Authentifizierung und User-
Management. Einfacher Zugriff auf die
verschiedenen Funktionen der
Benutzerverwaltung, inkl.
Authentisierung, Reporting und
Anfragen an das User-Management-
Systems.

UserServiceTom
cat Komponente

FRU008,
NFRU001

Pattern Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q042 Would you like to provide a unified interface to a set of
interfaces in a subsystem?

Yes

Intent: Q043 Would you like to minimize the communication and
dependencies between subsystems?

Yes

Q046 Are the encapsulated subsystems stateless? (otherwise
Proxy)

Yes

Q047 An additional functionality wrapped into the common
interface is not desired? (otherwise Proxy)

Yes

Q048 Is it desired that subsystem classes know nothing about the
facade object(s)? (otherwise Mediator)

Q049 A wrapper for multiple objects or a new interface design for
an object is not your intent? (otherwise Adaptor)

Consequences: Q050 Is a potential performance bottleneck not a problem?
Q051 A potential God Class smell of the interface is not a problem?

(Goad Class smell = A single overlarge class implementing a
lot of functionality)

Yes

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D006 Singleton Kontrollierter Zugriffskontrol Authentifizierun
g Komponente

FRU009 Pattern Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q064 Would you like to ensure that a class has only one instance? Yes
Intent: Q065 Would you like to make class instance easily accessible

(globally)?
Consequences: Q066 If you are developing a distributed application, it is not an

issue that the data stored in the instance cannot change too
often?

Yes

B.9 List of System Decisions for Group A

281

3
26 August 2013

Q067 Having a global access to the class instance is not a
potential threat to the application?

Q068 You are not developing a multi-thread application,
respectively you have extended singleton for this case?

Yes

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D007 Thin Client Zugriff auf die Funktionalität des Servers EventManageme
nt App, Mensa
App

FRA002,
FRA003,
NFRM004,
NFRM006,
NFRE011

Pattern Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q027 Would you like a client to put responsibility for data
computation, persistence, etc. on the server side?

Yes

Intent: Q028 Would you like to keep SW updates centralized? Yes
Q030 Is your infrastructure heterogeneous?
Q031 Would you like to support low-performance devices? Yes

Consequences: Q032 Working offline is not essential for your application?
(otherwise Fat Client)

Yes

Q033 Are main changes (SW updates) expected to be on the
server side? (otherwise Fat Client)

ID Decision Rationale Involved
Architectural
Elements

Involved
Requireme
nts

Decision Type

D008 DAO UserDAO für Zugriff auf persistente
Benutzer. DAO ist ein etabliertes
Muster aus dem JEE-Umfeld.

UserDAO
Komponente

Pattern Decision

Rationale saved for the pattern:

No additional rationale saved

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirements

Decision Type

D009 Class Table
Inheritance

Direktes und einfaches OR-Mapping
zwischen Glossar Objekten und DB,
Konfiguration von Hibernate, nur einfache
Anfragen an DB

DBAccess
Komponente

FRU002 Pattern
Decision

Rationale saved for the pattern:

Question
Type

QID Questions Answer

Goal: Q069 Would you like to present an inheritance hierarchy of
classes in relational database?

Yes

Intent: Q070 Would you like a straightforward relationship between
the database and the domain model to achieve easier
understanding of the Database?

Q071 Is the final amount of tables in the database structure
limited (small) and is it unlikely to change in the
future?

Yes

Q072 Usage of information stored in the tables directly is
your intent?

Yes

B. Appendix. Experiment Documentation

282

4
26 August 2013

Consequences: Q073 Are potential performance bottlenecks with joins or
multi-querying caused by retrieving larger amounts of
data acceptable? (otherwise Single Table
Inheritance)

Yes

B.9 List of System Decisions for Group A

283

1
26 August 2013

Geben Sie bitte Ihre ID ein: ______________________

TABELLE II. LISTE DER PSE—MUSTER-ENTWURFSENTSCHEIDUNGEN

(ENGL. DESIGN DECISIONS)

ID Decision Rationale Involved
Architectural
Elements

Involved
Requirem
ents

Decision
Type

D001 Client-Server
Architektur

Austauschbarkeit. Grundlegende
Entscheidung über Architektur.

alle FRA001 Pattern
Decision

D002 Multi-Tier-
Architektur

Multi-Tier-Architektur eignet sich aus
folgenden Gründen: 1) Abstraktion
von Persistenz durch Layering. 2)
Erfahrung im JEE-Bereich (JBoss etc.)
3) Clients leicht austauschbar.

alle FRA001 Pattern
Decision

D003 Component-
based
Architektur

Austauschbarkeit. Grundlegende
Entscheidung über Architektur

alle FRA001 Pattern
Decision

D004 Proxy Apache vor dem Tomcat wegen
Portumsetzung. Apache
implementiert Reverse-Proxy als Port-
Mapper. Anbindung des Apache über
mod_jk an den Tomcat via AJP-
Protokoll.

UserServiceAp
ache
Komponente

FRA003,
NFRU005

Pattern
Decision

D005 Façade UserServiceTomcat Komponente als
Façade für Reporting,
Authentifizierung und User-
Management. Einfacher Zugriff auf
die verschiedenen Funktionen der
Benutzerverwaltung, inkl.
Authentisierung, Reporting und
Anfragen an das User-Management-
Systems.

UserServiceTo
mcat
Komponente

FRU008,
NFRU001

Pattern
Decision

D006 Singleton Kontrollierter Zugriffskontrol Authentifizieru
ng
Komponente

FRU009 Pattern
Decision

D007 Thin Client Zugriff auf die Funktionalität des
Servers

EventManage
ment App,
Mensa App

FRA002,
FRA003,
NFRM004,
NFRM006,
NFRE011

Pattern
Decision

D008 DAO UserDAO für Zugriff auf persistente
Benutzer. DAO ist ein etabliertes
Muster aus dem JEE-Umfeld.

UserDAO
Komponente

 Pattern
Decision

D009 OR-Mapping:
Class Table
Inheritance

Hibernate, um das Binding zwischen
persistierten Objekten in der
Datenbank und den objektorientierten
Ralisierungen zu ermöglichen.
Direktes und einfaches OR-Mapping
zwischen Glossar Objekten und DB,
Konfiguration von Hibernate, nur
einfache Anfragen an DB.

DBAccess
Komponente

FRU002 Pattern
Decision

B. Appendix. Experiment Documentation

284

26 August 2013

1

Geben Sie bitte Ihre ID ein: _________________

MUSTER KATALOG (PATTERN CATALOGUE)

Sie können gerne Ihre Fragen-Antworten im Katalog eintragen oder Text unterstreichen, z.B. :

oder

PATTERN CATALOGUE

The catalogue contains a brief description of patterns, together with the checklists that summarize the goal, intent
and consequences of pattern use. Checklists can be used to check if the pattern is appropriate to solve your problem,
and capture the rationale for pattern use. If you use the catalogue to solve the task, please provide the pattern ID
and the questions ID(s) involved in the solution.

Question types: Pattern goal, Pattern intent, Possible negative consequences of a pattern

TABLE OF CONTENT:

1. CLIENT-SERVER STYLE 2
2. MULTI-TIER STYLE 2
3. MODEL VIEW CONTROLLER (MVC) 3
4. FAT CLIENT 4
5. THIN CLIENT 4
6. PROXY .. 5
7. FACADE .. 5
8. ADAPTOR .. 6
9. SINGLETON 6
10. CLASS TABLE INHERITANCE 7
11. SINGLE TABLE INHERITANCE 7
12. CONCRETE TABLE INHERITANCE 8

B.11 Pattern Catalogue for Group A

285

26 August 2013

2

1. CLIENT-SERVER STYLE

Structure the system into servers (centralized systems) and clients referring to that system and using its resources
though a connecting network.

Goal:
Structure the system as distributed system with independent clients and servers and a connecting network
between them
Provide a centralized source to store the data and centralized access to it

Questions:

ID Pattern Question
Type

QID Questions Answer

P001 Client-
Server
Style

Goal: Q001 Would you like to design a distributed system with
independent servers (capture resources), clients (demand
resources) and a network connection between them?

Intent: Q002 Would you like to have central data storage and a centralized
access to the system data?

Q003 Is a better control over security essential for your system?
Q005 Would you like multiple clients to have access to the data?
Q006 Would you like to support different client types or different

devices?

Information source: Wikipedia, design articles

Variants:
Not listed

Similar patterns: Not listed

2. MULTI-TIER STYLE

A Client-Server architecture, in which presentation, application processing and data management functions are
logically separated.

Goal:
Logically separate functions so that specific layers can be added or modified, instead of reworking the entire
application
Separate system according to physical structure of an infrastructure

Questions:

ID Pattern Question
Type

QID Questions Answer

P002 Multi-Tier
Style

Goal: Q007 Would you like to be able to add or modify specific parts
instead of reworking the whole application?

Intent: Q008 Would you like to structure the system according to the
underlying physical infrastructure?

Q009 Would you like to prevent the client to access data directly?
Q010 Would you like to have a linear communication model in

your system, where each tier can communicate only with 2
neighboring tiers in a strong linear hierarchy?

Consequences: Q012 Are you aware that all communication will run through a
middle tier, which can become a bottleneck?

Q013 Potential involvement of multiple communication protocols
with different evolution cycles is not an issue in the future?

 + See questions for Client-Server architecture

Information source: Wikipedia, design articles

Variants:
Not listed

Similar patterns: Layered architectural style

B. Appendix. Experiment Documentation

286

26 August 2013

3

3. MODEL VIEW CONTROLLER (MVC)

The pattern isolates "domain logic" (the application logic for the user) from the user interface (input and
presentation), enabling independent development, testing and maintenance of each of them (separation of
concerns).

Goal:
Decouple user-interface aspects of a system from its functional core
Interaction is limited to calling an update procedure

Questions:

ID Pattern Question
Type

QID Questions Answer

P003 Model-View-
Controller

Goal: Q014 Would you like to present the same information in
different ways e.g., through multiple views?

Intent: Q015 Would you like to enable to change the GUI (views) at
run-time?

Q017 Do you plan to exchange the underlying data model or
the views representing this data? (design time)

Consequences: Q018 Is it acceptable to have potential delays by the view
updates when larger amounts of data are transferred?

Q019 The data in the model (e.g. DB) is not changed directly
though the views (but though a controller), and will this
be an issue in the future?

Information source: Pattern-oriented software architecture, Buschmann, 1996

Variants:
Document-View: View combines responsibilities of View and Controller in a single component

Similar Patterns: Presentation-Abstraction-Controller

B.11 Pattern Catalogue for Group A

287

26 August 2013

4

4. FAT CLIENT

The pattern describes a computer (client) in a client–server architecture that provides rich functionality
independently of the central server.

Goal:
Provide (partial) independence of the client from the server
Assure ability to work offline (at least partially)
Improve performance of complex computations on the client side

Questions:

ID Pattern Question
Type

QID Questions Answer

P004 Fat (Thick)
Client

Goal: Q020 Would you like a client to be able to perform the
functionality in circumstances of potential disconnection to
the main server?

Intent: Q021 Would you like to reduce the load on your main server or
network offloading the higher processing and capacity
demands to the client devices?

Q022 Is working offline essential for your application?
Consequences: Q023 Will the application be running on powerful devices and

porting to low-performance devices can be excluded in the
future? (otherwise Thin Client)

Q024 Is your infrastructure limitedly heterogeneous and this is
unlikely to change in the future? (otherwise Thin Client)

Q025 Is potential slower start-up of the application acceptable?

Information source: Wikipedia, design articles

Variants:
Fat Client with Cache for connectivity problems
Mixed thin and fat (thick) client implementation

Similar Patterns: Thin client

5. THIN CLIENT

The pattern describes a computer (client) in client–server architecture that heavily depends on the functionality
provided by a central server.

Goal:
Put role responsibilities on the server (e.g. computation, persistence, or even GUI rendering)
Keep updates centralized and simplify the maintenance of computational services

Questions:

ID Pattern Question
Type

QID Questions Answer

P005 Thin
Client

Goal: Q027 Would you like a client to put responsibility for data
computation, persistence, etc. on the server side?

Intent: Q028 Would you like to keep SW updates centralized?
Q030 Is your infrastructure heterogeneous?
Q031 Would you like to support low-performance devices?

Consequences: Q032 Working offline is not essential for your application?
(otherwise Fat Client)

Q033 Are main changes (SW updates) expected to be on the
server side? (otherwise Fat Client)

Information source: Wikipedia, design articles

Variants:
Not listed

Similar Patterns: Fat (Thick) client

B. Appendix. Experiment Documentation

288

26 August 2013

5

6. PROXY

Provide a representative (a placeholder) for another object to control access to it.

Goal:
Provide an interface to some other object, resource, network connection, etc.

Questions:

ID Pattern Question
Type

QID Questions Answer

P006 Proxy Goal: Q034 Would you like to provide an interface to some other object,
resource, network connection, etc.?

Intent: Q035 Would you like to provide or to restrict the access to
functionalities provided by another object or server?

Q036 Would you like to provide an interface with some additional
functionality, e.g. management of objects state, etc.?

Q037 Would you like to provide a representative for an object in
different address-space?

Consequences: Q039 You are not wishing to be able to extend the object’s
properties dynamically? (otherwise Decorator)

Q040 Is a potential performance bottleneck not a problem?
Q041 Is a higher level of indirection not a problem?

Information source: Gamma, Wikipedia

Variants:
Remote proxy provides a local representative for an object in a different address space.
Virtual proxy creates expensive objects on demand
Protection proxy controls access to the original object

Similar Patterns: Façade, Mediator, Adaptor

7. FACADE

Provide a unified interface to a set of interfaces in a subsystem.

Goal:
Minimize the communication and dependencies between subsystems
Simplify a number of complicated interfaces with a subsystem into a single interface

Questions:

ID Pattern Question
Type

QID Questions Answer

P007 Façade Goal: Q042 Would you like to provide a unified interface to a set of
interfaces in a subsystem?

Intent: Q043 Would you like to minimize the communication and
dependencies between subsystems?

Q046 An additional functionality wrapped into the unified interface
is not your intent? (otherwise Proxy)

Q047 Is a stateless unified interface your intent? (otherwise
Proxy)

Q048 Is it desired that subsystem classes know nothing about the
facade object(s)? (otherwise Mediator)

Q049 A new interface for an object is not your intent? (otherwise
Adaptor)

Consequences: Q050 Is a potential performance bottleneck not an issue?

Information source: Gamma, Posa 1

Variants:
Singleton Façade (implemented through singleton pattern)
Multiple Façade objects provide the same interfaces to the same set of subsystems
Multiple Façades provide different interfaces to the same set of subsystems

Similar Patterns: Proxy, Mediator, Adaptor

B.11 Pattern Catalogue for Group A

289

26 August 2013

6

8. ADAPTOR

Convert an interface of a class into another interface clients expect.

Goal:
- Convert the interface of a class into another interface clients expect
- Adapter lets classes work together, that could not otherwise because of incompatible interfaces

Questions:

ID Pattern Question
Type

QID Questions Answer

P008 Adaptor Goal: Q052 Would you like to convert an interface of a class (or an
object) into another interface clients expect?

Intent: Q053 Would you like to make interfaces of incompatible classes
compatible?

Q054 Would you like to change an interface of an existing object (a
new interface design for an object)? (otherwise Proxy or
Decorator)

Consequences: Q055 Are you aware of the size of the code you have to write and
maintain to adapt the class?

Information source: Gamma, Wikipedia

Variants:
Object Adaptor, contains an instance of class it wraps and makes calls into the instance of wrapped object
Class Adapter, includes multiple polymorphic interfaces by implementing or inheriting both the interface that
is expected and the interface that is pre-existing

Similar Patterns: Proxy, Façade, Mediator

9. SINGLETON

Restrict the instantiation of a class to one object.

Goal:
Ensure a class only has one instance
Provide a global point of access to it.

Questions:

ID Pattern Question
Type

QID Questions Answer

P009 Singleton Goal: Q064 Would you like to ensure that a class has only one instance?
Intent: Q065 Would you like to make class instance easily accessible

(globally)?
Consequences: Q066 If you are developing a distributed application, it is not an

issue that the data stored in the instance cannot change too
often?

Q067 Having a global access to the class instance is not a
potential threat to the application?

Q068 You are not developing a multi-thread application,
respectively you have extended singleton for this case?

Information source: Gamma, Wikipedia

Variants:
Singleton permits a number of its instances, the number can be configured in the Class

Similar Patterns: Not specified

B. Appendix. Experiment Documentation

290

26 August 2013

7

10.CLASS TABLE INHERITANCE

Represents an inheritance hierarchy of classes with one table for each class. Database structure maps clearly to
objects and allow links anywhere in the inheritance structure.

Goal:
Map fields in inheritance hierarchy to a relational database
Straightforward relationship between Database and domain model
Tables are easy to understand and don’t waste space

Questions:

ID Pattern Question
Type

QID Questions Answer

P010 Class Table
Inheritance

Goal: Q069 Would you like to present an inheritance hierarchy of
classes in relational database?

Intent: Q070 Would you like a straightforward relationship between
the database and the domain model to achieve easier
understanding of the Database?

Consequences: Q071 Is it not a problem that the majority of requests can be
satisfied only with performance expensive joins?

Q072 Is it not your intent for the Database to be used by
other applications that are not using (or do not know)
objects? (otherwise Concrete Table Inheritance)

Q073 Is the final amount of tables in the database structure
limited (small) and is it unlikely to change in the
future?

Information source: Fowler, EAA p.285, 2005

Variants:
Not listed

Similar Patterns: Single Table Inheritance, Concrete Table Inheritance

11.SINGLE TABLE INHERITANCE

Represents an inheritance hierarchy of classes in a relational database as a single table that has columns for all the
fields of the various classes. Maps all fields of all classes of an inheritance structure into a single table. Each class
stores relevant data to it in one single row.

Goal:
Map fields in inheritance hierarchy to a relational database
Minimize joins

Questions:

ID Pattern Question
Type

QID Questions Answer

P011 Single Table
Inheritance

Goal: Q074 Would you like to present an inheritance hierarchy of
classes in relational database?

Intent: Q075 Would you like to keep all data in a single table?
(otherwise Class Table Inheritance or Concrete
Table Inheritance)

Q076 It is important to avoid joins in retrieving data?
Consequences: Q077 Frequent locks on one table are not an issue?

Q078 A non-straightforward relationship between database
and domain model is not a problem?

 Q079 Is it not your intent for the Database to be used by
other applications that are not using (or do not know)
objects? (otherwise Concrete Table Inheritance)

Information source: Fowler, EAA p.278, 2005

Variants:
Additional tables - add separate index tables that either list keys of rows that have a certain property.

Similar Patterns: Class Table Inheritance, Concrete Table Inheritance

B.11 Pattern Catalogue for Group A

291

26 August 2013

8

12.CONCRETE TABLE INHERITANCE

Represents an inheritance hierarchy of classes in a relational database with one table for each concrete class.
Database structure maps clearly to objects and allow links anywhere in the inheritance structure.

Goal:
Map fields in inheritance hierarchy to a relational database
Assure each table is self-contained and has no irrelevant fields
Spread the load between tables
Assure that Database can be used by other applications that aren’t using the objects

Questions:

ID Pattern Question
Type

QID Questions Answer

P012 Concrete Table
Inheritance

Goal: Q080 Would you like to present an inheritance hierarchy of
classes in relational database?

Intent: Q081 Shall one database table be used for each concrete
class in the hierarchy and no tables for abstract
classes?

Q082 Would you like to spread the request load between
the tables?

Q083 Would you like the Database to be used by other
applications that are not using (or do not know)
objects?

Consequences: Q084 Are there few changes to the objects (classes)
expected?

Q085 Is data collection (retrieval) from all of the tables
seldom demanded in your application? (otherwise
Single Table Inheritance)

Information source: Fowler, EAA p.293, 2005

Variants:
Not listed

Similar Patterns: Single Table Inheritance, Class Table Inheritance

B. Appendix. Experiment Documentation

292

27 August 2013

Geben Sie bitte Ihre ID ein: ______________________

MUSTER BUCH- UND WIKIPEDIA- AUSZUG

Sie können gerne den Text unterstreichen.

Seitennummer sieht folgend aus und ist in der unteren rechten Ecke der Seite zu
finden:

TABLE OF CONTENT:

1. CLIENT-SERVER STYLE ... 1

2. MULTI-TIER STYLE ... 4

3. MODEL VIEW CONTROLLER (MVC) .. 9

4. FAT CLIENT ... 28

5. THIN CLIENT ... 31

6. PROXY .. 37

7. FACADE .. 50

8. ADAPTOR.. 57

9. SINGLETON... .76

10. CLASS TABLE INHERITANCE ... 83

11. SINGLE TABLE INHERITANCE .. 92

12. CONCRETE TABLE INHERITANCE ... 99

B.12 Pattern Catalogue for Group B

293

Multitier architecture - Wikipedia, the free encyclopedia

Visual overview of a Three-tiered application

Three-tier architecture

Three-tier[3] is a client–server architecture
in which the user interface, functional
process logic ("business rules"), computer
data storage and data access are developed
and maintained as independent modules,
most often on separate platforms. It was
developed by John J. Donovan in Open
Environment Corporation (OEC), a tools
company he founded in Cambridge,
Massachusetts.

The three-tier model is a software
architecture pattern.

Apart from the usual advantages of
modular software with well-defined
interfaces, the three-tier architecture is
intended to allow any of the three tiers to
be upgraded or replaced independently in
response to changes in requirements or
technology. For example, a change of
operating system in the presentation tier
would only affect the user interface code.

Typically, the user interface runs on a desktop PC or workstation and uses a standard graphical
user interface, functional process logic that may consist of one or more separate modules running
on a workstation or application server, and an RDBMS on a database server or mainframe that
contains the computer data storage logic. The middle tier may be multi-tiered itself (in which case
the overall architecture is called an "n-tier architecture").

Three-tier architecture has the following three tiers:

Presentation tier
This is the topmost level of the application. The presentation tier displays information
related to such services as browsing merchandise, purchasing and shopping cart contents. It
communicates with other tiers by outputting results to the browser/client tier and all other
tiers in the network.

Application tier (business logic, logic tier, data access tier, or middle tier)
The logical tier is pulled out from the presentation tier and, as its own layer, it controls an
application’s functionality by performing detailed processing.

Data tier

B. Appendix. Experiment Documentation

294

B.12 Pattern Catalogue for Group B

295

Facade

 Intent
Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level interface that makes the
subsystem easier to use.

 Motivation
Structuring a system into subsystems helps reduce complexity. A common design goal is to minimize the
communication and dependencies between subsystems. One way to achieve this goal is to introduce a facade object
that provides a single, simplified interface to the more general facilities of a subsystem.

Consider for example a programming environment that gives applications access to its compiler subsystem. This
subsystem contains classes such as Scanner, Parser, ProgramNode, BytecodeStream, and ProgramNodeBuilder that
implement the compiler. Some specialized applications might need to access these classes directly. But most clients
of a compiler generally don't care about details like parsing and code generation; they merely want to compile some
code. For them, the powerful but low-level interfaces in the compiler subsystem only complicate their task.

To provide a higher-level interface that can shield clients from these classes, the compiler subsystem also includes a
Compiler class. This class defines a unified interface to the compiler's functionality. The Compiler class acts as a
facade: It offers clients a single, simple interface to the compiler subsystem. It glues together the classes that
implement compiler functionality without hiding them completely. The compiler facade makes life easier for most
programmers without hiding the lower-level functionality from the few that need it.

B. Appendix. Experiment Documentation

296

These materials were taken from:
Books:

“Design Patterns: Elements of Reusable Object-Oriented Software” by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides (1994), Addison-Wesley Professional

“Patterns of Enterprise Application Architecture” by Martin Fowler (2002), Addison-
Wesley Professional

“Pattern-Oriented Software Architecture Volume 1: A System of Patterns” by Frank
Buschmann, Regine Meunier, Hans Rohnert and Peter Sommerlad (1996), Wiley;
Volume 1 edition (1996)

Wikipedia articles on: Thin client, thick client, client-server architecture, multitier
architecture

B.12 Pattern Catalogue for Group B

297

26 August 2013 1

Zeitplan, 30.01

Zeit Gruppe A, Raum -142
(Martin, Zoya)

Zeit Gruppe B, Raum -143
(Johannes)

16:00 – 16:05 (5) (Puffer) 16:00 – 16:05 (5) (Puffer)
16:05 – 16:15 (10) Allgemeine Schulung 16:05 – 16:15 (10) Allgemeine Schulung
16:15 – 16:35 (20) Patterns und Views

Schulung
 16:15 – 16:40 (25) KAMP Schulung

16:35 – 16:45 (10) Fragebogen I
16:45 – 17:15 (30) Fragebogen II (Martin) 16:40 – 16:50 (10) Fragebogen I
17:15 – 17:20 (5) (Puffer) 16:50 – 17:20 (30) Fragebogen II (Martin)
17:20 – 17:50 (30) Fragebogen III (Zoya) 17:20 – 17:50 (30) Fragebogen III (Zoya)
17:50 – 18:00 (10) Fragebogen IV 17:50 – 18:00 (10) Fragebogen IV

B. Appendix. Experiment Documentation

298

List of Figures

2.1. Overview of General Software Development Phases (Adapted from [87]) 12

2.2. Overview of Scrum Development Process . 14

2.3. A Concern-based Taxonomy of Requirements [104] . 17

2.4. An IEEE Standard Taxonomy of Requirement Types (Abstracted from Textural Description

in [102]) . 18

2.5. An Example of a User Story . 20

2.6. Relation Between Requirements and Architectural Design 21

2.7. 4 + 1 View Model [123] . 24

2.8. Levels of Architectural Knowledge Reuse and Corresponding Reusable Solutions 25

2.9. Elements of Design Decisions [127] (Taken from [128]) 28

2.10. Possible Types, Relationships and Statuses of Design Decisions 28

2.11. Hierarchy Structure of Models in Model-Driven Development and of Corresponding AM3D

Approach Models . 35

2.12. The Overview of the PCM Approach [152] . 37

2.13. PCM Model Views [152, 154] . 39

2.14. Overview of the CoCoME System (Adopted from [155]) 40

2.15. An Overview of All Considered Use Cases of the CoCoME Trading System [155] 41

2.16. Component Model of the CoCoME Architecture in PCM System View [158] 43

2.17. Deployment Model of the CoCoME Architecture in PCM System View [158] 43

2.18. An Example of SBVR Structured English [159] . 44

3.1. An Example Catalogue Entry: Façade Pattern Questions with Answers 48

3.2. Overview of the AM3D Approach (Adopted from [1]) . 49

3.3. Schematic Representation of an Iterative Incremental Software Development Process . . . 51

3.4. Use Case Diagram of the Pattern Catalogue Application Scenarios 51

3.5. Activity Diagram for Gaining Information About Pattern Use Case 52

3.6. Activity Diagram of Pattern Application Use Case . 53

3.7. Activity Diagram of Select Between Similar Patterns Use Case 54

3.8. Activity Diagram of Requirements Elicitation and prioritization Use Case 55

3.9. Activity Diagram of Retrieve Information About Used Patterns Use Case 55

3.10. Activity Diagram of Understanding Pattern Design Decision Use Case 56

3.11. Activity Diagram of Tracing Impact Caused by Changed Requirements Use Case 56

3.12. Activity Diagram of Understanding of Rationale of Architectural Elements Use Case 57

3.13. Activity Diagram of Check Architectural Implementation Violations Use Case 58

3.14. Schematic Representation of Process to Document Trace Links 59

3.15. Schematic Representation of Information Sources for Trace Link Documentation 59

3.16. Transfer of Requirements into Architectural Design via Design Decisions 59

299

List of Figures

3.17. Both-way Connection Between Requirements and Architectural Design 60

3.18. Relation of an Expert System and the AM3D Approach in a Design Process 61

3.19. NFR02 Requirement Entry in the AM3D Meta-Model Instance 63

3.20. Deployment Model of the CoCoME Architecture in PCM System View [158] (Repetition

from Section 2.5.2) . 64

3.21. Hexxon CoCoMe Architecture of the Enterprise Server (Adopted from [2]) 64

3.22. An Example of Trace Link Between Requirements NFR01 and NFR01, Façade Decision

and Façade Architectural Implementation . 65

3.23. Instantiation of the Façade Pattern in a PCM System Model 66

3.24. Modified Hexxon CoCoMe Architecture of the Enterprise Server (Adopted from [2]) 66

4.1. Overview of the Catalogue Structure . 73

4.2. An example of Name, ID, Type, Category, Goal and Short Description of an AM3D

Catalogue Entry for Model View Controller Pattern . 73

4.3. An Example of Advantages and Drawbacks of an AM3D Pattern Catalogue Entry for Model

View Controller Pattern . 75

4.4. An Example of a Keywords and Influence on Quality Dimensions of an AM3D Pattern

Catalogue Entry for Model View Controller Pattern . 76

4.5. An Example of Variants of an AM3D Pattern Catalogue Entry for Model View Controller

Pattern . 78

4.6. An Example of Relationships and a Structural Image of an AM3D Pattern Catalogue Entry

for Model View Controller Pattern . 79

4.7. An Example of a General Information Block . 80

4.8. Types of Question Annotations and Their Relation to a Pattern 81

4.9. Example of Question Annotations for Model View Controller Pattern 81

4.10. An Example of Instantiation of the Façade Pattern in a PCM System Model (Repetition

from Section 3) . 82

4.11. An Example of Structural Check of the Façade Pattern in a PCM System Model 83

4.12. An Example of Roles and Connectors Representation for the Model View Controller pattern 84

4.13. An Example of Roles and Connectors Representation for the Façade Pattern 85

4.14. An Example of Roles and Connectors Representation for the Variant of Model View

Controller Pattern . 85

4.15. An Example of Roles and Connectors Representation for the Variant of Façade Pattern . . . 86

4.16. An Example of a Textual Representation for the Model View Controller Pattern 86

4.17. An Example of a Textual Representation for the Model View Controller Pattern Variant . . . 87

4.18. Example of Complete Architectural Structure Information Block 88

4.19. An Example a Question Pair: Generic Question and Fine-grained Question for Model View

Controller Pattern [164] . 90

4.20. A Process to Add Questions to a Pattern . 97

4.21. An Excerpt of a Fact List for the Model View Controller Pattern 98

4.22. An Excerpt of Fact Groups for the Model View Controller Pattern 98

4.23. An Excerpt of Questions for the Model View Controller Pattern 99

4.24. Process to Add Patterns to a Catalogue . 101

300

List of Figures

4.25. Overview of Meta-model Packages . 103

4.26. Metadata Meta-Model Package . 105

4.27. Effects Meta-Model Package . 106

4.28. Users Meta-Model Package . 107

4.29. Glossary Meta-Model Package . 108

4.30. Requirements Meta-Model Package . 111

4.31. Issues Meta-Model Package . 112

4.32. Solutions Meta-Model Package . 113

4.33. Patterns Meta-Model Package . 116

4.34. Questions Meta-Model Package . 118

4.35. Components Meta-Model Package . 119

4.36. Implementations Meta-Model Package . 121

4.37. Decisions Meta-Model Package . 123

4.38. Rationales Meta-Model Package . 124

4.39. Relations Meta-Model Package . 127

6.1. Types of Empirical Validation [86] . 142

6.2. Hierarchical Structure of the Goal Question Metric Approach [172] 147

6.3. An Example of a Goal Question Metric Plan [172] . 148

6.4. System View of the PSE Architecture with Marked Pattern Positions (P) 173

6.5. Plan of the Experiment . 175

6.6. Boxplots to Common Pattern Tasks . 180

6.7. Boxplots to Pattern Selection . 180

6.8. Boxplots to Pattern Re-Evaluation . 181

6.9. Boxplots to Easiness of Usage of the Catalogue . 183

6.10. Boxplots to Pattern Re-Evaluation . 185

7.1. Overview of the Related Approaches According to the Clusters 196

301

List of Tables

3.1. Expert system and the AM3D approach: Use case comparison 62

3.2. Additional Non-functional (Quality) Requirements to the Hexxon CoCoME System 62

3.3. Extract from Design Decisions to the Hexxon CoCoME System, 1 67

3.4. Extract from Design Decisions to the Hexxon CoCoME System, 2 67

3.5. Evaluation of the Proxy Pattern Applicability . 68

3.6. Evaluation of the Single Table Inheritance Pattern Applicability 69

4.1. Example of a Goal Question for Model View Controller Pattern 92

4.2. Example of a Intent Question for Model View Controller Pattern 93

4.3. Example of a Consequence Question for Model View Controller Pattern 94

4.4. Example of a Variant Question for Model View Controller Pattern 95

6.1. Types of Empirical Evaluations in the Design Decision Area 143

6.2. The AM3D Validation Summary . 145

6.3. Relations Between Covered Validation Types and Scenarios and Benefits 146

6.4. A Sample Table to Describe a Goal Question Metric Plan (Adopted from Basili et al. [172]) 146

6.5. Goals of the GQM Plan of the Survey . 150

6.6. Information about Survey Participants . 154

6.7. Experience in Applying Design Patterns . 155

6.8. Usefulness of Design Patterns for Quality of Software . 156

6.9. Problems with Application, Documentation or Maintenance of Design Patterns 157

6.10. Reasons for the Problems with Pattern Application . 158

6.11. Potential Use of the Pattern Catalogue . 159

6.12. Potential Use of the Pattern Catalogue in Evolution . 160

6.13. Familiarity with Sample Patterns . 161

6.14. Understandability of Questions to Patterns (* for All Participants) 162

6.15. High-order Goals of the Goal Question Metric Plan for the AM3D Approach 168

6.16. Detailed Goals of the GQM Plan of the Experiment for the Annotated Design Pattern

Catalogue . 168

6.17. Summary of Questions and Corresponding Metrics . 170

6.18. Experiment Hypotheses for Statistical Analysis . 171

6.19. Information on Experiment Participants . 178

6.20. Experiment Data . 178

6.21. Shapiro-Wilk Test . 179

6.22. Analysis of the Research Question I . 179

6.23. Analysis of the Research Question II . 180

6.24. Analysis of the Research Question III . 181

303

List of Tables

6.25. Data to the Research Question IV: Support . 182

6.26. Data to the Research Question IV: Easiness . 182

6.27. Types of Answers According to Provided Justifications . 184

6.28. Analysis of the II and III Research Questions Considering Comments (* Hypothesis with

Comments) . 184

7.1. Topics of the AM3D Approach from the SAKM Research Area 194

7.2. Goals of the Pattern Related Approaches . 194

7.3. Goals of the Decision Related Approaches . 194

7.4. Formalisation Methods in the Related Approaches . 195

304

Bibliography

[1] Z. Durdik and R. Reussner, “On the Appropriate Rationale for Using Design Patterns and Pattern

Documentation,” in Proceedings of the 9th ACM SIGSOFT International Conference on the Quality of

Software Architectures (QoSA 2013), June 2013.

[2] M. Konersmann, Z. Durdik, M. Goedicke, and R. Reussner, “Towards Architecture-Centric Evolu-

tion of Long-Living Systems (The ADVERT Approach),” in Proceedings of the 9th ACM SIGSOFT

International Conference on the Quality of Software Architectures (QoSA 2013), June 2013.

[3] Z. Durdik, A. Koziolek, and R. Reussner., “How the understanding of the effects of design decisions

informs requirements engineering,” in Second International Workshop on the Twin Peaks of Require-

ments and Architecture (TwinPeaks 2013) @ ICSE2013, 2013.

[4] Z. Durdik and R. Reussner, “Position Paper: Approach for Architectural Design and Modelling with

Documented Design Decisions (ADMD3),” in Proceedings of the 8th international ACM SIGSOFT

conference on Quality of Software Architectures (QoSA 2012), 2012.

[5] Z. Durdik, B. Klatt, H. Koziolek, K. Krogmann, J. Stammel, and R. Weiss, “Sustainability guide-

lines for long-living software systems,” in Proceedings of the 28th IEEE International Conference on

Software Maintenance (ICSM 2012), 2012.

[6] C. Prause and Z. Durdik, “Architectural Design and Documentation: Waste in Agile Development?”

in Proceedings of the International Conference on Software and Systems Process (ICSSP 2012) (co-

located with ICSE 2012), June 2012, to appear.

[7] B. Klatt, Z. Durdik, K. Krogmann, H. Koziolek, J. Stammel, and R. Weiss, “Identify Impacts of Evolv-

ing Third Party Components on Long-Living Software Systems,” in Proceedings of the 16th Confer-

ence on Software Maintenance and Reengineering (CSMR’12), Szeged, Hungary, March 2012, pp.

461–464.

[8] M. E. Kramer, Z. Durdik, M. Hauck, J. Henss, M. Küster, P. Merkle, and A. Rentschler, “Extending

the Palladio Component Model using Profiles and Stereotypes,” in Palladio Days 2012 Proceedings

(appeared as technical report), ser. Karlsruhe Reports in Informatics ; 2012,21, S. Becker, J. Happe,

A. Koziolek, and R. Reussner, Eds. Karlsruhe: KIT, Faculty of Informatics, 2012, pp. 7–15.

[Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/2350659

[9] Z. Durdik, “A Proposal on Validation of an Agile Architecture-Modelling Process,” in Proceedings of

Software Engineering 2011 (SE2011), Doktoranden-Symposium, 2011.

[10] Z. Durdik, “Towards a process for architectural modelling in agile methods,” in Proceedings of 7th Int.

Conf. on the Quality of Software Architectures (QoSA 2011), 2011.

305

Bibliography

[11] Z. Durdik, “An architecture-centric approach for goal-driven requirements elicitation,” in Proceedings

of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering 2011 (ESEC/FSE 2011), Doctoral Symposium, Szeged, Hungary,

September 2011.

[12] H. Koziolek, R. Weiss, Z. Durdik, J. Stammel, and K. Krogmann, “Towards Software Sustainability

Guidelines for Long-living Industrial Systems,” in Proceedings of Software Engineering (Workshops),

3rd Workshop of GI Working Group Long-living Software Systems (L2S2), Design for Future, ser. LNI,

vol. 184. GI, 2011, pp. 47–58.

[13] Z. Durdik, “Architectural modeling in agile methods,” in Proceedings of the Fifteenth International

Workshop on Component-Oriented Programming (WCOP 2010), ser. Interne Berichte, B. Bühnová,

R. H. Reussner, C. Szyperski, and W. Weck, Eds., vol. 2010-14. Karlsruhe, Germany: Karlsruhe

Institue of Technology, Faculty of Informatics, June 2010, pp. 23–30, CompArch Young Investigator

Award 2010. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018464

[14] R. Weiss, H. Koziolek, J. Stammel, and Z. Durdik, “Evolution problems in the context of sustain-

able industrial software systems,” in Proceedings of 2nd Workshop of GI Working Group "Long-living

Software Systems" (L2S2), 2010.

[15] Z. Durdik and R. Reussner, “On the Appropriate Rationale for Using Design Patterns and Pattern

Documentation,” in Proceedings of Software Engineering 2014 (SE2014), 2014, to appear.

[16] Z. Durdik, K. Krogmann, and F. Schad, “Towards a generic approach for meta-model- and

domain- independent model variability,” KIT, Karlsruhe, Germany, Karlsruhe Reports in Informatics

2012,5, ISSN: 2190-4782, 2012. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/

1000026207

[17] J. Stammel, Z. Durdik, K. Krogmann, R. Weiss, and H. Koziolek, “Software Evolution for Industrial

Automation Systems: Literature Overview,” Karlsruhe, Germany, Karlsruhe Reports in Informatics

2011,2, 2011. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022262

[18] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of architecture design rationale,” Journal of

Systems and Software, vol. 79, 2006.

[19] M. Babar, A. Tang, I. Gorton, and J. Han, “Industrial perspective on the usefulness of design ratio-

nale for software maintenance: A survey,” Proceedings of Sixth International Conference on Quality

Software (QSIC 2006), pp. 201 – 208, 2006.

[20] A. Nkwocha, J. G. Hall, and L. Rapanotti, “Design rationale capture for process improvement in

the globalised enterprise: An industrial study,” Software and Systems Modeling, vol. 12, no. 4, pp.

825–845, Oct. 2013. [Online]. Available: http://dx.doi.org/10.1007/s10270-011-0223-y

[21] J. E. Burge and D. C. Brown, “SEURAT: Integrated Rationale Management,” in Proceedings of the

30th International Conference on Software Engineering (ICSE 2008). New York, NY, USA: ACM,

2008, pp. 835–838. [Online]. Available: http://doi.acm.org/10.1145/1368088.1368215

306

Bibliography

[22] J. Burge and J. Kiper, “Capturing decisions and rationale from collaborative design,” in Design

Computing and Cognition 2008, J. Gero and A. Goel, Eds. Springer Netherlands, 2008, pp.

221–239. [Online]. Available: http://dx.doi.org/10.1007/978-1-4020-8728-8_12

[23] F. Pena-Mora and S. Vadhavkar, “Augmenting design patterns with design rationale,” Artificial Intelli-

gence for Engineering Design, Analysis and Manufacturing, vol. 11, pp. 93–108, 1997.

[24] P. Kruchten, R. Capilla, and J. Dueas, “The decision view’s role in software architecture practice,”

Software, IEEE, vol. 26, no. 2, pp. 36–42, 2009.

[25] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistrik, Rationale-Based Software Engineering. Springer

Berlin Heidelberg, 2008.

[26] M. Mirakhorli and J. Cleland-Huang, “Tracing architectural concerns in high assurance systems

(nier track),” in Proceedings of the 33rd International Conference on Software Engineering,

ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 908–911. [Online]. Available:

http://doi.acm.org/10.1145/1985793.1985942

[27] M. Mirakhorli and J. Cleland-Huang, “A pattern system for tracing architectural concerns,” Proceed-

ings of the Pattern Languages of Programming (PLoP 2011), 2011.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Elements of Reusable Object-

Oriented Software. Addison-Wesley Longman, Amsterdam, 1995.

[29] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad, A System of Patterns: Pattern-Oriented

Software Architecture. John Wiley & Sons, 1996, vol. 1.

[30] M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley Professional, 2005.

[31] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Software Architecture: A Pattern

Language for Distributed Computing. John Wiley & Sons, 2007.

[32] M. Vokac, W. Tichy, D. I. K. Sjoberg, E. Arisholm, and M. Aldrin, “A controlled experiment comparing

the maintainability of programs designed with and without design patterns - a replication in a real

programming environment,” Emp. S. Eng., vol. 9, no. 3, 2004.

[33] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First Design Patterns. O’ Reilly & Associates,

Inc., 2004.

[34] Z. Li, J. Hall, and L. Rapanotti, “On the systematic transformation of requirements

to specifications,” Requirements Engineering, pp. 1–23, 2013. [Online]. Available: http:

//dx.doi.org/10.1007/s00766-013-0173-8

[35] K. Pohl, Requirements engineering: fundamentals, principles, and techniques. Springer Publishing

Company, Incorporated, 2010.

[36] L. M. Cysneiros and J. C. S. do Prado Leite, “Non-functional requirements: From elicitation

to modelling languages,” in Proceedings of the 24th International Conference on Software

Engineering, ser. ICSE ’02. New York, NY, USA: ACM, 2002, pp. 699–700. [Online]. Available:

http://doi.acm.org/10.1145/581339.581452

307

Bibliography

[37] S. Ullah, M. Iqbal, and A. Khan, “A survey on issues in non-functional requirements elicitation,” in

International Conference on Computer Networks and Information Technology (ICCNIT 2011), July

2011, pp. 333–340.

[38] A. Matoussi and R. Laleau, “A survey of non-functional requirements in software development pro-

cess,” Laboratory of Algorithmic, Complexity, and Logic. Technical Report. TR–LACL–2008–7, 2008.

[39] L. Xu, H. Ziv, D. Richardson, and Z. Liu, “Towards modeling non-functional requirements in software

architecture,” in In Proceedings of Aspect-Oriented Software Design, Workshop on AspectOriented

Requirements Engineering and Architecture Design, 2005.

[40] J. A. Miller, R. Ferrari, and N. H. Madhavji, “Characteristics of new requirements in the presence

or absence of an existing system architecture,” 17th IEEE International Requirements Engineering

Conference (RE 2009), pp. 5 – 14, 2009.

[41] R. Ferrari, O. Sudmann, C. Henke, J. Geisler, W. Schafer, and N. H. Madhavji, “Requirements and sys-

tems architecture interaction in a prototypical project: Emerging results,” Proceedings of 16th Interna-

tional Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ

2010), vol. Volume 6182/2010, pp. 23 – 29, 2010.

[42] B. Nuseibeh, “Weaving together requirements and architectures,” Computer, vol. 34 , Issue:3, pp. 115

– 119, 2001.

[43] A. Koziolek, “Research preview: Prioritizing quality requirements based on software architecture eval-

uation feedback,” in Req. Eng.: Foundation for SW Quality, ser. Lecture Notes in Comp. Science, vol.

7195, 2012.

[44] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided tour,” in Fifth IEEE Interna-

tional Symposium on Requirements Engineering, 2001, 2001, pp. 249–262.

[45] J. Tyree and A. Akerman, “Architecture decisions: demystifying architecture,” Software, IEEE, vol. 22,

no. 2, pp. 19–27, 2005.

[46] R. Capilla, F. Nava, J. Montes, and C. Carrillo, “Addss: Architecture design decision support system

tool,” in Proceedings of 23rd IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE 2008), 2008, pp. 487–488.

[47] N. Schuster and O. Zimmermann. (2008) Architectural decision knowledge wiki. http://www.

alphaworks.ibm.com/tech/adkwik (February 2014). [Online]. Available: http://www.alphaworks.ibm.

com/tech/adkwik

[48] O. Zimmermann, “Architectural decisions as reusable design assets,” Software, IEEE, vol. 28 Issue 1,

pp. 64 – 69, 2010.

[49] L. Zhu and I. Gorton, “Uml profiles for design decisions and non-functional requirements,” in Pro-

ceedings of the Second Workshop on SHAring and Reusing architectural Knowledge Architecture,

Rationale, and Design Intent. IEEE Computer Society, 2007, p. 8.

308

Bibliography

[50] P. Kruchten, P. Lago, and H. Vliet, “Building up and reasoning about architectural knowledge,”

in Quality of Software Architectures, ser. Lecture Notes in Computer Science, C. Hofmeister,

I. Crnkovic, and R. Reussner, Eds. Springer Berlin Heidelberg, 2006, vol. 4214, pp. 43–58. [Online].

Available: http://dx.doi.org/10.1007/11921998_8

[51] R. C. Boer, R. Farenhorst, P. Lago, H. Vliet, V. Clerc, and A. Jansen, “Architectural

knowledge: Getting to the core,” in Software Architectures, Components, and Applications,

ser. Lecture Notes in Computer Science, S. Overhage, C. Szyperski, R. Reussner, and

J. Stafford, Eds. Springer Berlin Heidelberg, 2007, vol. 4880, pp. 197–214. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-77619-2_12

[52] M. Carignano, S. Gonnet, and H. Leone, “A model to represent architectural design rationale,” in

Proceedings of Joint Working IEEE/IFIP Conference on Software Architecture, 2009 European Con-

ference on Software Architecture (WICSA/ECSA 2009), 2009, pp. 301–304.

[53] L. Zhang, Y. Sun, Y. Peng, X. Cui, and H. Mei, “Towards quality based solution recommendation in

decision-centric architecture design.” in SEKE, 2011, pp. 776–781.

[54] A. Jansen, J. van der Ven, P. Avgeriou, and D. Hammer, “Tool support for architectural decisions,” in

Software Architecture, 2007. WICSA ’07. The Working IEEE/IFIP Conference on, 2007, pp. 4–4.

[55] W. Wang and J. E. Burge, “Using rationale to support pattern-based architectural design,” in ICSE

Workshop on Sharing and Reusing Architectural Knowledge, 2010.

[56] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou, and J. M. Küster, “An enhanced architectural

knowledge metamodel linking architectural design decisions to other artifacts in the software engineer-

ing lifecycle,” in ECSA, ser. Lecture Notes in Computer Science, I. Crnkovic, V. Gruhn, and M. Book,

Eds., vol. 6903. Springer, 2011, pp. 303–318.

[57] M. Shahin, P. Liang, and M. Khayyambashi, “Architectural design decision: Existing models and

tools,” in European Conf. on Softw. Architecture. WICSA/ECSA 2009., 2009, pp. 293 –296.

[58] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, Patterns of Enterprise Applica-

tion Architecture. Addison-Wesley Professional, 2002.

[59] D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern modelling and instantiation using dpml,” in

Proceedings of the Fortieth International Conference on Tools Pacific: Objects for Internet, Mobile

and Embedded Applications, ser. CRPIT ’02. Darlinghurst, Australia, Australia: Australian Computer

Society, Inc., 2002, pp. 3–11. [Online]. Available: http://dl.acm.org/citation.cfm?id=564092.564094

[60] D.-K. Kim, R. B. France, S. Ghosh, and E. Song, “A role-based metamodeling approach to specifying

design patterns,” in COMPSAC. IEEE Computer Society, 2003.

[61] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Sommerlad, Security

Patterns: Integrating Security and Systems Engineering. WILEY, 2005.

[62] M. Elaasar, L. C. Briand, and Y. Labiche, “A metamodeling approach to pattern specification,” in

Proceedings of the 9th international conference on Model Driven Engineering Languages and Systems

(MoDELS 2006), ser. MoDELS’06, 2006, pp. 484–498.

309

Bibliography

[63] S. Henninger and P. Ashokkumar, “An ontology-based metamodel for software patterns,” in 18th Int.

Conf. on SW Eng. and Knowl. Eng. (Seke2006), 2006.

[64] J. Dong, S. Yang, and K. Zhang, “Visualizing design patterns in their applications and compositions,”

IEEE Transactions on Software Engineering, vol. 33, pp. 433–453, 2007.

[65] A. W. Kamal, P. Avgeriou, and U. Zdun, “Modeling architectural pattern variants,” in EuroPLoP, ser.

CEUR Workshop Proceedings, T. Schümmer, Ed., vol. 610. CEUR-WS.org, 2008.

[66] L. Pavlic, M. Hericko, and V. Podgorelec, “Improving design pattern adoption with ontology-based

design pattern repository,” in 30th International Conference on Information Technology Interfaces (ITI

2008), 2008.

[67] W. Schaefer. (2010) Specification of Software Patterns for Pattern-Oriented Software Development:

Meta-model. PG POSE student project.

[68] P. Bottoni, E. Guerra, and J. de Lara, “A language-independent and formal approach to pattern-based

modelling with support for composition and analysis,” Information and Software Technology, vol. 52,

no. 8, pp. 821–844, Aug. 2010. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.2010.03.005

[69] T. Taibi, Design Pattern Formalization Techniques. IGI Publishing, 2007.

[70] D. Gross and E. Yu, “From non-functional requirements to design through patterns,” Requirements

Engineering, vol. 6, pp. 18–36, 2000.

[71] U. Zdun, “Systematic pattern selection using pattern language grammars and design space analysis,”

Software: Practice and Experience, vol. 37, no. 9, pp. 983–1016, 2007.

[72] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann, “Combining pattern languages and reusable

architectural decision models into a comprehensive and comprehensible design method,” in Proceed-

ings of Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA 2008), 2008, pp.

157–166.

[73] H. Garbe, C. Janssen, C. Moebus, H. Seebold, and H. de Vries, “KARaCAs: Knowledge Acquisition

with Repertory Grids and Formal Concept Analysis for Dialog System Construction,” in Managing

Knowledge in a World of Networks. Springer, 2006.

[74] Z. Moudam and N. Chenfour, “Design pattern support system: Help making decision in the choice

of appropriate pattern,” Procedia Technology, vol. 4, no. 0, pp. 355 – 359, 2012, proceedings of 2nd

International Conference on Computer, Communication, Control and Information Technology(C3IT-

2012). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2212017312003337

[75] M. Müller, B. Kersten, and M. Goedicke, “A question-based method for deriving software

architectures,” in Software Architecture, ser. Lecture Notes in Computer Science, I. Crnkovic,

V. Gruhn, and M. Book, Eds. Springer Berlin Heidelberg, 2011, vol. 6903, pp. 35–42. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-23798-0_4

[76] A. Birukou, “A survey of existing approaches for pattern search and selection,” in Proceedings of the

15th European Conference on Pattern Languages of Programs (EuroPLoP 2010), 2010.

310

Bibliography

[77] S. Thabasum and M. Sundar, “A survey on software design pattern tools for pattern selection and im-

plementation,” in Int. Journal of Comp. Science and Communication Networks (IJCSCN), vol. Volume

2, Issue 4, 2012.

[78] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques for software

architecture design: A comparative survey,” ACM Computer Survey, vol. 43, no. 4, pp. 33:1–33:28,

Oct. 2011. [Online]. Available: http://doi.acm.org/10.1145/1978802.1978812

[79] R. C. de Boer and H. van Vliet, “On the similarity between requirements and architecture,” Journal of

Systems and Software, vol. 82, 2009.

[80] A. Koziolek, “Architecture-driven quality requirements prioritization,” in First International Workshop

on the Twin Peaks of Requirements and Architecture (TwinPeaks 2012). IEEE Computer Society,

2012.

[81] W. Dröschel and M. Wiemers, Das V-Modell 97. Oldenbourg, 1999.

[82] R. Pressman, Software engineering: a practitioner’s approach, ser. McGraw-Hill higher education.

McGraw-Hill Higher Education, 2010.

[83] P. Kruchten, The Rational Unified Process: An Introduction. Addison-Wesley Professional, 2003.

[84] K. Schwaber and M. Beedle, Agile Software Development with Scrum. Pearson Studium, 2008.

[85] R. Böhme and R. Reussner, “Validation of Predictions with Measurements,” in Dependability Metrics,

ser. Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 2008, vol. 4909, ch. 3,

pp. 14–18. [Online]. Available: http://www.springerlink.com/content/662rn13014r46269/fulltext.pdf

[86] H. Koziolek, “Parameter dependencies for reusable performance specifications of software compo-

nents,” Ph.D. dissertation, University of Oldenburg, Germany, March 2008.

[87] I. Sommerville, Software Engineering, 8th ed., ser. International computer science series. Addison

Wesley, 2007. [Online]. Available: http://books.google.de/books?id=B7idKfL0H64C

[88] R. Pichler, Agile Product Management with Scrum: Creating Products that Customers Love. Addison-

Wesley Signature Series (Cohn), 2010.

[89] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change, 2nd ed. Addison-

Wesley, 2004.

[90] A. Cockburn, Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-Wesley

Longman, Amsterdam, 2004.

[91] S. R. Palmer, M. Felsing, and S. Palmer, A Practical Guide to Feature-Driven Development. Prentice

Hall International, 2002.

[92] J. A. Highsmith and K. Orr, Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems. Dorset House Publishing Co Inc.,U.S, 1999.

[93] O. Salo and P. Abrahamsson, “Agile methods in european embedded software development organisa-

tions: a survey on the actual use and usefulness of extreme programming and scrum,” Software, IET,

vol. 2 , Issue:1, pp. 58 – 64, 2008.

311

Bibliography

[94] B. Sheth, “Scrum 911! using scrum to overhaul a support organization,” Agile Conference, 2009.

AGILE ’09., pp. 74 – 78, 2009.

[95] C. Mann and F. Maurer, “A case study on the impact of scrum on overtime and customer satisfaction,”

In the Proceedings of the Agile Conf., 2005., pp. 70 – 79, 2005.

[96] T. Dingsoyr, G. K. Hanssen, T. Dyba, G. Anker, and J. O. Nygaard, “Developing software with scrum

in a small cross-organizational project,” Lecture Notes in Computer Science, vol. Volume 4257/2006,

pp. 5–15, 2006.

[97] K. Long and D. Starr, “Agile supports improved culture and quality for healthwise,” Conference Agile,

2008. AGILE ’08., pp. 160 – 165, 2008.

[98] A. Cockburn and J. Highsmith, “Agile software development, the people factor,” Computer, vol. Vol-

ume: 34 , Issue: 11, pp. 131 – 133, 2001.

[99] H. Hulkko and P. Abrahamsson, “A multiple case study on the impact of pair programming on product

quality,” Proceedings of the Software Engineering, 2005. ICSE 2005. 27th International Conference,

pp. 495–504, 2005.

[100] S. Maranzano, J.F.and Rozsypal, G. Zimmerman, G. Warnken, P. Wirth, and D. Weiss, “Architecture

reviews: practice and experience,” Software, IEEE, vol. 22 , Issue: 2, pp. 34 – 43, 2005.

[101] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning,

J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Suther-

land, and D. Thomas, “Agile manifesto,” 2001, http://agilemanifesto.org/.

[102] IEEE, IEEE Systems and software engineering – Life cycle processes – Requirements engineering –

29148-2011, IEEE Std., 2011.

[103] I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice Guide. New York, NY,

USA: John Wiley & Sons, Inc., 2003.

[104] M. Glinz, “On non-functional requirements,” in 15th IEEE International Requirements Engineering

Conference (RE ’07), 2007.

[105] J. Robertson and S. Robertson, “Volere requirements specification template,” The Atlantic Systems

Guild, Tech. Rep., 2010.

[106] S. Robertson and J. Robertson, Mastering the Requirements Process. Addison-Wesley Professional;

3 edition, 2012.

[107] M. Cohn, Agile Estimating and Planning (Robert C. Martin). Prentice Hall International, 2005.

[108] M. Cohn, User Stories Applied: For Agile Software Development. Addison-Wesley Professional; 1

edition, 2004.

[109] IBM. Ibm rational doors, a requirements management tool. http://www-03.ibm.com/software/

products/en/ratidoor/ (December 2013). [Online]. Available: http://www-03.ibm.com/software/

products/en/ratidoor/

312

Bibliography

[110] IBM. Ibm rational requisitepro, a requirements management tool. http://www-03.ibm.com/software/

products/en/reqpro/ (December 2013). [Online]. Available: http://www-03.ibm.com/software/

products/en/reqpro/

[111] Polarion. Polarion requirements, a web requirements management tool. http://www.polarion.com/

products/requirements/index.php (December 2012). [Online]. Available: http://www.polarion.com/

products/requirements/index.php

[112] A. Smith, P. Spencer, and ideaStub. Open source requirements management tool. http://sourceforge.

net/projects/osrmt/ (December 2013). [Online]. Available: http://sourceforge.net/projects/osrmt/

[113] I. f. C. S. Software Engineering Heidelberg. Unicase, an open source case-tool for modeling

artifacts in a software engineering project. University of Heidelberg, TU Muenchen. http:

//se.ifi.uni-heidelberg.de/research/projects/unicase.html (February 2014). [Online]. Available: http:

//se.ifi.uni-heidelberg.de/research/projects/unicase.html

[114] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and I. Mistrík, Eds., Relating Software Requirements and

Architectures. Springer, 2011.

[115] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture: Foundations, Theory, and

Practice. Wiley, 2009.

[116] P. Clements, F. Bachmann, L. Bass, and D. Garlan, Documenting Software Architectures: Views and

Beyond (SEI Series in Software Engineering). Addison-Wesley Longman, 2002.

[117] N. Rozanski and E. Woods, Software Systems Architecture: Working With Stakeholders Using View-

points and Perspectives. Addison-Wesley Professional, 2009.

[118] D. J. Paulish and L. Bass, Architecture-Centric Software Project Management: A Practical Guide.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[119] D. Soni, R. L. Nord, and C. Hofmeister, “Software architecture in industrial applications,” in

Proceedings of the 17th International Conference on Software Engineering, ser. ICSE ’95. New York,

NY, USA: ACM, 1995, pp. 196–207. [Online]. Available: http://doi.acm.org/10.1145/225014.225033

[120] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide. Addison-

Wesley Longman, 2005.

[121] P. Dissaux, M. F. Amine, and P. Michel, Architecture Description Languages: IFIP TC-2 Workshop on

Architecture Description Languages (WADL), World Computer Congress. Springer Verlag, 2004.

[122] ISO, Systems and software engineering – Architecture description, ISO/IEC/IEEE 42010:2011,

ISO/IEC/IEEE Std.

[123] P. Kruchten, “The 4+1 view model of architecture,” IEEE Software, vol. Volume 12 , Issue 6, pp. 42 –

50, 1995.

[124] D. Garlan, “Software architecture: a roadmap,” Proceedings of the Conference on The Future of Soft-

ware Engineering, pp. 91 – 101, 2000.

313

Bibliography

[125] J. Tyree, “Architectural design decisions session report,” in Proceedings of the 5th Working IEEE/IFIP

Conference on Software Architecture, ser. WICSA ’05. Washington, DC, USA: IEEE Computer

Society, 2005, pp. 285–286. [Online]. Available: http://dx.doi.org/10.1109/WICSA.2005.14

[126] A. Jansen and J. Bosch, “Software architecture as a set of architectural design decisions,” in

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, ser. WICSA

’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 109–120. [Online]. Available:

http://dx.doi.org/10.1109/WICSA.2005.61

[127] O. Zimmermann, S. Milinski, M. Craes, and F. Oellermann, “Second generation web services-oriented

architecture in production in the finance industry,” in Companion to the 19th Annual ACM

SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications,

ser. OOPSLA ’04. New York, NY, USA: ACM, 2004, pp. 283–289. [Online]. Available:

http://doi.acm.org/10.1145/1028664.1028772

[128] M. A. Babar, T. Dingsyr, P. Lago, and H. van Vliet, Software Architecture Knowledge Management:

Theory and Practice, 1st ed. Springer Publishing Company, Incorporated, 2009.

[129] J. Bosch, “Software architecture: The next step,” in Software Architecture, ser. Lecture Notes in

Computer Science, F. Oquendo, B. Warboys, and R. Morrison, Eds. Springer Berlin Heidelberg,

2004, vol. 3047, pp. 194–199. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-24769-2_14

[130] P. Kruchten, “An Ontology of Architectural Design Decisions in Software Intensive Systems,” in 2nd

Groningen W. Software Variability, 2004, pp. 54–61.

[131] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,” ACM

SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–52, Oct. 1992. [Online]. Available:

http://doi.acm.org/10.1145/141874.141884

[132] J. Lee, “Design rationale systems: Understanding the issues,” IEEE Expert: Intelligent

Systems and Their Applications, vol. 12, no. 3, pp. 78–85, May 1997. [Online]. Available:

http://dx.doi.org/10.1109/64.592267

[133] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for design traceability and reason-

ing,” Journal of Systems and Software, vol. 80, no. 6, pp. 918 – 934, 2007.

[134] R. H. Reussner, S. Becker, J. Happe, J. Henss, A. Koziolek, H. Koziolek, M. Kramer, and K. Krog-

mann, Modeling and Simulating Software Architectures with Palladio. To appear, 2015, Chapter 4:

Architectural Reuse. Chapter 4 Authors: Ralf Reussner, Zoya Durdik, Oliver Hummel, Benjamin Klatt

and Florian Meyerer.

[135] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software Architecture – Volume

2 – Patterns for Concurrent and Networked Objects. WILEY, 2000.

[136] M. Kircher and P. Jain, Pattern-Oriented Software Architecture: Patterns for Distributed Services and

Components. John Wiley and Sons Ltd, 2004.

[137] B. P. Douglass, Real-Time Design Patterns, ser. Object Technology Series. Addison-Wesley Profes-

sional, 2002.

314

Bibliography

[138] T. Erl, SOA Design Patterns. Prentice Hall PTR, 2009.

[139] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd ed. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[140] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Development: Technology, Engineer-

ing, Management. John Wiley & Sons, 2006.

[141] T. Goldschmidt, “View-based textual modelling,” Ph.D. dissertation, Karlsruhe Institute of Technology

(KIT), Karlsruhe, 2011. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022234

[142] A. Khakulov, “Pattern instantiation and visualisation in palladio,” Master’s thesis, Department of In-

formatics Institute for Program Structures and Data Organization (IPD), Karlsruhe Institute of Tech-

nology (KIT), 2012, reviewer: Prof. Dr. R. H. Reussner, Prof. Dr. W. F. Tichy, Advisor: Z. Durdik, A.

Rentschler.

[143] ModelWare. (2007) Information society technologies (ist) sixth framework programme: Glossary. http:

//www.modelware-ist.org/index.php?option=com_rd_glossary&Itemid=55 (February 2014). [Online].

Available: http://www.modelware-ist.org/index.php?option=com_rd_glossary&Itemid=55

[144] H. Stachowiak, Allgemeine Modelltheorie. Springer-Verlag, 1973.

[145] J. Ernst. (1999) What is metamodeling, and what is it good for? http://infogrid.org/

wiki/Reference/WhatIsMetaModeling/ (August 2008 by T. Goldschmidt). [Online]. Available:

http://infogrid.org/wiki/Reference/WhatIsMetaModeling/

[146] O. M. G. (OMG). (2012) The metaobject facility specification (mof). http://www.omg.org/mof/

(February 2014). [Online]. Available: http://www.omg.org/mof/

[147] E. Foundation. Eclipse Modeling Framework Project (EMF). http://www.eclipse.org/modeling/emf/

(February 2014). [Online]. Available: http://www.eclipse.org/modeling/emf/

[148] O. M. G. (OMG). (2012) Object constraint language (ocl). http://www.omg.org/spec/OCL/2.3.1

(December 2013). [Online]. Available: http://www.omg.org/spec/OCL/2.3.1

[149] E. Foundation. Graphical Editing Framework (GEF). http://www.eclipse.org/gef/ (February 2014).

[Online]. Available: http://www.eclipse.org/gef/

[150] E. Foundation. Graphical Modelling Framework(GMF). http://www.eclipse.org/modeling/gmp/

(February 2014). [Online]. Available: http://www.eclipse.org/modeling/gmp/

[151] O. O. M. Group). (2008) Semantics of business vocabulary and business rules (sbvr), v1.0.

http://www.omg.org/spec/SBVR/1.0/PDF (February 2014). [Online]. Available: http://www.omg.org/

spec/SBVR/1.0/PDF

[152] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component model for model-driven

performance prediction,” Journal of Systems and Software, vol. 82, pp. 3–22, 2009. [Online].

Available: http://dx.doi.org/10.1016/j.jss.2008.03.066

[153] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Architecture-based reliability prediction with

the palladio component model,” Transactions on Software Engineering, vol. 38, no. 6, 2011.

315

Bibliography

[154] SDQ. Palladio software architektur simulator. http://www.palladio-simulator.com (February 2014).

[Online]. Available: http://www.palladio-simulator.com

[155] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner, K. Krogmann, H. Koziolek, R. Mi-

randola, B. Hummel, M. Meisinger, and C. Pfaller, The Common Component Modeling Example, ser.

LNCS. Springer, 2008, vol. 5153, ch. CoCoME.

[156] V. Grassi, R. Mirandola, E. Randazzo, and A. Sabetta, “The common component modeling example,”

in CoCoME - The Common Component Modeling Example, A. Rausch, R. Reussner, R. Mirandola,

and F. Plášil, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, ch. KLAPER: An Intermediate

Language for Model-Driven Predictive Analysis of Performance and Reliability, pp. 327–356.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-85289-6_13

[157] M. Malohlava, P. Hnetynka, and T. Bures, “Sofa 2 component framework and its ecosystem,”

Electronic Notes in Theoretical Computer Science (ENTCS), vol. 295, pp. 101–106, May 2013.

[Online]. Available: http://dx.doi.org/10.1016/j.entcs.2013.04.009

[158] SDQ. (2014) The Common Component Modeling Example (cocome) palladio component models

(pcm). http://svnserver.informatik.kit.edu/i43/svn/code/CoCoME-SPP/ (February 2014). [Online].

Available: http://svnserver.informatik.kit.edu/i43/svn/code/CoCoME-SPP/

[159] T. Kuhn, “A survey and classification of controlled natural languages,” Computational Linguistics,

2013.

[160] R. Schwitter, “Controlled natural languages for knowledge representation,” in Proceedings of the 23rd

International Conference on Computational Linguistics: Posters. Association for Computational

Linguistics, 2010, pp. 1113–1121.

[161] J. F. Sowa, “Common logic controlled english,” jfsowa.com, Tech. Rep., 2004, draft. [Online].

Available: http://www.jfsowa.com/clce/specs.htm

[162] N. E. Fuchs, “First-order reasoning for attempto controlled english,” in CNL, ser. Lecture Notes in

Computer Science, M. Rosner and N. E. Fuchs, Eds., vol. 7175. Springer, 2010, pp. 73–94.

[163] ANSI/NISO Z39.19-2005 (R2010) Guidelines for the Construction, Format, and Management of

Monolingual Controlled Vocabularies. (2005) ANSI/NISO 2005. http://www.niso.org/ (February

2014). [Online]. Available: http://www.niso.org/

[164] M. Heller, “A patterns-based modeling process with traced design rationale,” Master’s thesis, Karlsruhe

Institute of Technology (KIT), 2012, reviewer: Prof. Dr. R. H. Reussner, Prof. Dr. W. F. Tichy, Advisor:

Z. Durdik, M. Küster.

[165] R. Kazman, M. Klein, and P. Clements, “ATAM: Method for architecture evaluation,” Software

Engineering Institute, Tech. Rep., Sep. 05 2000. [Online]. Available: http://www.sei.cmu.edu/pub/

documents/00.reports/pdf/00tr004.pdf

[166] J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems the Right Way.

Addison-Wesley Professional, 2001.

[167] N. Leveson, Safeware: System Safety and Computers. Addison-Wesley Professional, 1995.

316

Bibliography

[168] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition.

AW, 2003.

[169] S. Ambler, The Elements of UML(TM) 2.0 Style. Cambridge University Press, 2005, vol. 15.

[170] S. Werfel, “Eine Methode zur architekturzentrierten Unterstützung von Software Evolution durch

Dokumentation von Entwurfsentscheidungen und ihrer Begründungen,” Master’s thesis, Karlsruhe In-

stitute of Technology (KIT), 2013, reviewer: Prof. Dr. R. H. Reussner, Jun.-Prof. Dr. A. Koziolek,

Advisor: Z. Durdik, P. Merkle.

[171] M. MSDN. oftware architecture and design. chapter 3: Architectural patterns and styles.

https://msdn.microsoft.com/en-us/library/ee658117.aspx (February 2015). [Online]. Available: https:

//msdn.microsoft.com/en-us/library/ee658117.aspx

[172] V. R. Basili, “Software modeling and measurement:The Goal/Question/Metric paradigm,” Univer-

sity of Maryland, College Park, MD, USA, Computer Science Technical Report Series CS-TR-2956

(UMIACS-TR-92-96), 1992.

[173] A. Preece, “Evaluating verification and validation methods in knowledge engineering,” Industrial

Knowledge Management, pp. 123–145, 2001.

[174] W. F. Tichy, “Hints for reviewing empirical work in software engineering,” Empirical Softw. Engg.,

vol. 5, no. 4, pp. 309–312, 2000.

[175] A. Fink, The Survey Handbook, 2nd edition. SAGE, Thousand Oaks/London, 2003.

[176] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in

software engineering: an introduction. Norwell, MA, USA: Kluwer Academic Publishers, 2012.

[177] K. Punch, Introduction to Social Research: Quantitative and Qualitative Approaches. Sage Publica-

tions Ltd, 2005.

[178] R. Yin, Case Study Research: Design and Methods. Sage Publications, Beverly Hills, 2009.

[179] Wikipedia. Student’s t-test. http://en.wikipedia.org/wiki/Student’s_t-test (February 2014). [Online].

Available: http://en.wikipedia.org/wiki/Student’s_t-test

[180] Wikipedia. Wilcoxon signed-rank test. http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

(February 2014). [Online]. Available: http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

[181] J. Chambers and colleagues. The R Project for Statistical Computing. Bell Laboratories.

http://www.r-project.org/ (February 2014). [Online]. Available: http://www.r-project.org/

[182] M. A. Babar, “An exploratory study of architectural practices and challenges in using agile software

development approaches,” Proceedings of Joint Working IEEE/IFIP Conference on Software Archi-

tecture, 2009 & European Conference on Software Architecture (WICSA/ECSA 2009), pp. 81 – 90,

2009.

[183] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar, “A comparative study of architecture

knowledge management tools,” Journal of Systems and Software, vol. 83, no. 3, pp. 352 – 370, 2010.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0164121209002295

317

Bibliography

[184] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas, “A web-based tool for managing architectural design

decisions,” ACM SIGSOFT Software Engineering Notes, vol. 31, 2006.

[185] A. Jansen, T. Vries, P. Avgeriou, and M. Veelen, “Sharing the architectural knowledge of quantitative

analysis,” in Quality of Software Architectures. Models and Architectures, ser. Lecture Notes in

Computer Science, S. Becker, F. Plasil, and R. Reussner, Eds. Springer Berlin Heidelberg, 2008,

vol. 5281, pp. 220–234. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-87879-7_14

[186] W. F. Tichy, “A catalogue of general-purpose software design patterns,” in Proceedings of the Tools-23:

Technology of Object-Oriented Languages and Systems (TOOLS 1997), 1997.

[187] Z. Durdik and R. Reussner. Pattern survey, Google Docs. https://docs.google.

com/spreadsheet/viewform?formkey=dGVlMFdoel9PUnNuVFp4SnlLSUkwSUE6MA (February

2014). [Online]. Available: https://docs.google.com/spreadsheet/viewform?formkey=

dGVlMFdoel9PUnNuVFp4SnlLSUkwSUE6MA

[188] Sourcemaking. Design patterns at sourcemaking. http://sourcemaking.com/design_patterns (January,

2014). [Online]. Available: http://sourcemaking.com/design_patterns

[189] OODesign.com. (Object Oriented Design Patterns) http://www.oodesign.com (January, 2014).

[Online]. Available: http://www.oodesign.com

[190] G. Sunye, A. L. Guennec, and J.-M. Jezequel, “Design patterns application in uml,” in Proceedings of

the 14th European Conference on Object-Oriented Programming, ser. Springer-Verlag London. Lec-

ture, 2000, pp. 44–62.

[191] A. L. Guennec, G. Sunye, and J. marc Jezequel, “Precise modeling of design patterns,” in Proceedings

of UML 2000. Springer Verlag, 2000, pp. 482–496.

[192] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun, “Precise modeling of design patterns in

uml,” in Proceedings of the 26th International Conference on Software Engineering, ser. ICSE

’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 252–261. [Online]. Available:

http://dl.acm.org/citation.cfm?id=998675.999430

[193] A. W. Kamal and P. Avgeriou, “An evaluation of adls on modeling patterns for software

architecture,” in Proceedings of the 4th International Workshop on Rapid Integration of

Software Engineering techniques (RISE). Springer LNCS, 2007. [Online]. Available: http:

//www.cs.rug.nl/~paris/papers/RISE07.pdf

[194] M. Bjerkander and C. Kobryn, “Architecting systems with uml 2.0,” Software, IEEE, vol. 20, no. 4, pp.

57–61, 2003.

[195] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins, “Modeling software

architectures in the unified modeling language,” ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 11, no. 1, pp. 2–57, Jan. 2002. [Online]. Available:

http://doi.acm.org/10.1145/504087.504088

[196] D. Garlan, R. Monroe, and D. Wile, “ACME: An Architecture Description Interchange Language,” in

Proceedings of CASCON 1997, 1997, pp. 169–183.

318

Bibliography

[197] R. Allen and D. Garlan, “A formal basis for architectural connection,” ACM Transactions on Software

Engineering and Methodology (TOSEM), pp. 213–249, 1997.

[198] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik, “Abstractions for software

architecture and tools to support them,” IEEE Transactions on Software Engineering, vol. 21, pp. 314–

335, 1995.

[199] E. Dashofy, A. van der Hoek, and R. Taylor, “A highly-extensible, xml-based architecture description

language,” in Proceedings of Working IEEE/IFIP Conference on Software Architecture, 2001, pp. 103–

112.

[200] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting style in architectural design environments,”

in Proceedings of the 2Nd ACM SIGSOFT Symposium on Foundations of Software Engineering,

ser. SIGSOFT 1994. New York, NY, USA: ACM, 1994, pp. 175–188. [Online]. Available:

http://doi.acm.org/10.1145/193173.195404

[201] A. W. Kamal and P. Avgeriou, “Modeling the variability of architectural patterns,” in SAC, S. Y. Shin,

S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C. Hung, Eds. ACM, 2010, pp. 2344–2351.

[202] P. Kajsa, L. Majtás, and P. Návrat, “Design pattern instantiation directed by concretization and special-

ization,” Comput. Sci. Inf. Syst., vol. 8, no. 1, pp. 41–72, 2011.

[203] IBM. IBM Rational System Architect. http://www.ibm.com/software/products/en/ratisystarch/ (De-

cember 2013). [Online]. Available: http://www.ibm.com/software/products/en/ratisystarch/

[204] J. Dietrich, N. Jones, and J. M. Wright, “Using social networking and semantic web technology in

software engineering - use cases, patterns, and a case study,” Journal of Systems and Software, vol. 81,

no. 12, pp. 2183–2193, 2008.

[205] W3C. (2004) Owl web ontology language overview. http://www.w3.org/TR/owl-features (February

2014). [Online]. Available: http://www.w3.org/TR/owl-features

[206] H. Albin-Amiot, Y.-G. Gueheneuc, and R. A. Kastler, “Meta-modeling design patterns: Application

to pattern detection and code synthesis,” in Proceedings of ECOOP Workshop on Automating Object-

Oriented Software Development Methods 2001, 2001, pp. 01–35.

[207] G. El Boussaidi and H. Mili, “A model-driven framework for representing and applying design

patterns,” in Proceedings of the 31st Annual International Computer Software and Applications

Conference, ser. COMPSAC ’07, vol. Volume 01. Washington, DC, USA: IEEE Computer Society,

2007, pp. 97–100. [Online]. Available: http://dx.doi.org/10.1109/COMPSAC.2007.31

[208] W. Bu, A. Tang, and J. Han, “An analysis of decisioncentric architectural design approaches,” Swin-

burne University of Technology, Tech. Rep., 2009.

[209] N. Schuster, “ADkwik - a Collaborative System for Architectural Decision Modeling and Decision

Process Support based on Web 2.0 Technologies,” Master’s thesis, Hochschule der Medien, Stuttgart,

2007.

[210] O. Zimmermann, J. Koehler, and F. Leymann, “The role of architectural decisions in model-driven soa

construction,” in 4th International Workshop on SOA and Web Services (OOPSLA 2006), 2006.

319

Bibliography

[211] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster, “Reusable architectural

decision models for enterprise application development,” in Software Architectures, Components,

and Applications, ser. Lecture Notes in Computer Science, S. Overhage, C. Szyperski, R. Reussner,

and J. Stafford, Eds. Springer Berlin Heidelberg, 2007, vol. 4880, pp. 15–32. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-77619-2_2

[212] F. Bachmann and P. Merson, “Experience using the web-based tool wiki for architecture documenta-

tion,” Software Engineering Institute, Carnegie Mellon University, Tech. Rep., 2005.

[213] R. de Boer, P. Lago, A. Telea, and H. Van Vliet, “Ontology-driven visualization of architectural design

decisions,” in Proceedings of Joint Working IEEE/IFIP Conference on Software Architecture, 2009

European Conference on Software Architecture (WICSA/ECSA 2009), 2009, pp. 51–60.

[214] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation framework for architecture

decisions,” J. Syst. Softw., vol. 85, no. 4, pp. 795–820, Apr. 2012. [Online]. Available:

http://dx.doi.org/10.1016/j.jss.2011.10.017

[215] L. Lee and P. Kruchten, “Customizing the capture of software architectural design decisions,” in Cana-

dian Conf. on Electrical and Computer Engineering, 2008.

[216] A. H. Dutoit and B. Paech, “Rationale-based use case specification,” Proceedings of Requirements

Engineering (RE 2002), vol. 7, no. 1, pp. 3–19, 2002. [Online]. Available: http://dx.doi.org/10.1007/

s007660200001

[217] E. Baniassad, G. Murphy, and C. Schwanninger, “Design pattern rationale graphs: Linking design to

source,” in Proceedings of 25th International Conference on Software Engineering, 2003, 2003, pp.

352–362.

[218] R. C. D. Boer, R. Farenhorst, V. Clerc, J. S. V. D. Ven, R. Deckers, P. Lago, and H. V. Vliet, “Structuring

software architecture project memories, submitted,” in Proceedings of the 8th International Workshop

on Learning Software Organizations (LSO 2006), 2006.

[219] R. Farenhorst and R. C. de Boer, “Core concepts of an ontology of architectural design decisions,”

Vrije University Amsterdam, Tech. Rep. IR-IMSE-002, 2006.

[220] Q. Gu and P. Lago, “Soa process decisions: New challenges in architectural knowledge

modeling,” in Proceedings of the 3rd International Workshop on Sharing and Reusing Architectural

Knowledge, ser. SHARK ’08. New York, NY, USA: ACM, 2008, pp. 3–10. [Online]. Available:

http://doi.acm.org/10.1145/1370062.1370065

[221] M. Babar, I. Gorton, and B. Kitchenham, “A framework for supporting architecture knowledge and

rationale management,” in Rationale Management in Software Engineering, A. Dutoit, R. McCall,

I. Mistrík, and B. Paech, Eds. Springer Berlin Heidelberg, 2006, pp. 237–254. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-30998-7_11

[222] H. Choi, Y. Choi, and K. Yeom, “An integrated approach to quality achievement with architectural

design decisions.” Journal of Software, vol. 1, no. 3, pp. 40–49, 2006.

320

Bibliography

[223] I. Lytra and U. Zdun, “Supporting architectural decision making for systems-of-systems design

under uncertainty,” in Proceedings of the First International Workshop on Software Engineering

for Systems-of-Systems, ser. SESoS ’13. New York, NY, USA: ACM, 2013, pp. 43–46. [Online].

Available: http://doi.acm.org/10.1145/2489850.2489859

[224] J. Ven, A. Jansen, J. Nijhuis, and J. Bosch, “Design decisions: The bridge between rationale

and architecture,” in Rationale Management in Software Engineering, A. Dutoit, R. McCall,

I. Mistrík, and B. Paech, Eds. Springer Berlin Heidelberg, 2006, pp. 329–348. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-30998-7_16

[225] N. Harrison, P. Avgeriou, and U. Zdun, “Using patterns to capture architectural decisions,” Software,

IEEE, vol. 24, no. 4, pp. 38–45, 2007.

[226] N. Harrison and P. Avgeriou, “Pattern-driven architectural partitioning: Balancing functional and non-

functional requirements,” in Digital Telecommunications, 2007. ICDT ’07. Second International Con-

ference on, 2007, pp. 21–21.

[227] Wikipedia. Swot analysis. http://en.wikipedia.org/wiki/SWOT_analysis (February 2014). [Online].

Available: http://en.wikipedia.org/wiki/SWOT_analysis

[228] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson, “A quality-driven decision-support method

for identifying software architecture candidates,” International Journal of Software Engineering and

Knowledge Engineering, vol. 13, no. 05, pp. 547–573, 2003.

[229] O. Zimmermann, “Architectural decision identification in architectural patterns,” in Proceedings of

the Working IEEE / IFIP Conference on Software Architecture/European Conference on Software

Architecture 2012, Companion Volume, ser. WICSA/ECSA ’12. New York, NY, USA: ACM, 2012,

pp. 96–103. [Online]. Available: http://doi.acm.org/10.1145/2361999.2362021

[230] J. Burge, “Software engineering using rationale,” Ph.D. dissertation, Worcester Polytechnic Institute,

2005.

[231] J. Burge and D. Brown, “Software Engineering Using RATionale,” Journal of Systems

and Software, vol. 81, no. 3, pp. 395 – 413, 2008, selected Papers from the 2006

Brazilian Symposia on Databases and on Software Engineering. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0164121207001203

[232] A. MacLean, R. M. Young, V. M. E. Bellotti, and T. P. Moran, “Questions, options, and criteria:

Elements of design space analysis,” Hum.-Comput. Interact., vol. 6, no. 3, pp. 201–250, Sep. 1991.

[Online]. Available: http://dx.doi.org/10.1207/s15327051hci0603&4_2

[233] S. Bode and M. Riebisch, “Impact evaluation for quality-oriented architectural decisions regarding

evolvability,” in Software Architecture, ser. Lecture Notes in Computer Science, M. Babar and

I. Gorton, Eds. Springer Berlin Heidelberg, 2010, vol. 6285, pp. 182–197. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-15114-9_15

[234] D. Ameller, O. Collell, and X. Franch, “Architech: Tool support for nfr-guided architectural decision-

making,” in Proceedings of 20th IEEE International Requirements Engineering Conference (RE 2012),

2012, pp. 315–316.

321

Bibliography

[235] J. Miller, R. Ferrari, and N. Madhavji, “Architectural effects on requirements decisions: An exploratory

study,” Seventh Working IEEE/IFIP Conf. on Software Architecture, 2008, pp. 231 – 240, 2008.

[236] W. Engelsman, H. Jonkers, H. M. Franken, and M.-E. Iacob, “Architecture-driven requirements engi-

neering,” in Advances in Enterprise Engineering II, ser. Lecture Notes in Business Information Pro-

cessing, 2009, vol. 28.

[237] M. Riebisch, “Problem-Solution Mapping for Evolution Support of Software Architectural Design,” in

Proceedings of Software Engineering 2011, 2011.

[238] P. Gruenbacher, A. Egyed, E. Egyed, and N. Medvidovic, “Reconciling software requirements and

architectures with intermediate models,” in Software and Systems Modeling. Springer, 2003, pp.

202–211.

[239] T.-M. Hesse and B. Paech, “Supporting the collaborative development of requirements and architecture

documentation,” in Twin Peaks of Requirements and Architecture (TwinPeaks), 2013 3rd International

Workshop on the, July 2013, pp. 22–26.

[240] E. Woods and N. Rozanski, “How software architecture can frame, constrain and inspire system re-

quirements,” in Relating Software Requirements and Architectures. Springer Berlin Heidelberg, 2011.

[241] L. Zhu, M. A. Babar, and R. Jeffery, “Mining patterns to support software architecture evaluation,” 4th

Working IEEE/IFIP Conference on Software Architecture (WICSA 2004), pp. 25 – 34, 2004.

[242] P. Petrov, U. Buy, and R. Nord, “Enhancing the software architecture analysis and design process with

inferred macro-architectural requirements,” in Twin Peaks of Requirements and Architecture (Twin

Peaks), 2012 IEEE First International Workshop on the, sept. 2012, pp. 20 –26.

[243] G. Buchgeher and R. Weinreich, “Automatic tracing of decisions to architecture and implementation,”

in Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference on, 2011, pp. 46–55.

[244] L. Briand, Y. Labiche, and A. Sauve, “Guiding the application of design patterns based on uml models,”

in Software Maintenance, 2006. ICSM ’06. 22nd IEEE International Conference on, Sept 2006, pp.

234–243.

[245] H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc, and N. Jussien, “Instantiating and detecting design pat-

terns: putting bits and pieces together,” in Automated Software Engineering, 2001. (ASE 2001). Pro-

ceedings. 16th Annual International Conference on, Nov 2001, pp. 166–173.

[246] M. Kuester, “Architecture-centric modeling of design decisions for validation and traceability,” in

Proceedings of the 7th European Conference on Software Architecture (ECSA ’13), ser. Lecture Notes

in Computer Science, K. Drira, Ed., vol. 7957. Springer Berlin Heidelberg, 2013, pp. 184–191.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-39031-9_16

322

