Der Einfluss von Kohlendioxid auf Störungszonen in Deckgesteinen geologischer CO₂-Speicher

Zur Erlangung des akademischen Grades einer DOKTORIN DER NATURWISSENSCHAFTEN von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Geow. Jennifer Blume

aus

Karlsruhe

Tag der mündlichen Prüfung: 13.02.2015

Referent: PD Dr. Jörg-Detlef Eckhardt

Korreferent: Prof. Dr. Thomas Neumann

Karlsruhe (2014)

Erklärung über die Erstellung der Dissertation

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, alle wörtlichen und sinngemäßen Entlehnungen deutlich als solche gekennzeichnet und die Grundsätze des Karlsruher Instituts für Technologie (ehemals Universität Karlsruhe TH) zur Sicherung guter wissenschaftlicher Praxis in ihrer aktuell gültigen Fassung beachtet habe. Karlsruhe im Juni 2014

Die schwierigste Aufgabe, die jeder Mensch zu bewältigen hat, ist die,

nie aufzugeben.

Ernst Ferstl (*1955)

Ich danke....

Herrn Prof Dr. H.-G. Stosch & Herrn PD Dr. J.-D. Eckhardt für die Möglichkeit zur Bearbeitung des spannenden Themas am Institut für Angewandte Geowissenschaften, in der Abteilung Mineralogie & Petrologie.

Herrn PD Dr. J.-D. Eckhardt für die Betreuung bei dieser Arbeit.

Herrn Prof. Dr. Th. Neumann für die Übernahme des Korreferats und die Möglichkeit einen Großteil der Analytik am Institut für Mineralogie und Geochemie durchführen zu können.

Herrn Prof. Dr. Th. Triantafyllidis für die Ermöglichung aller am Institut für Bodenund Felsmechanik durchgeführter Arbeiten.

Herrn Dipl.-Ing. Th. Mutschler & Dipl.-Ing. K. Balthasar für die Entwicklung der Reaktionszellen, die umfangreiche wissenschaftliche Unterstützung, sowie für die Unterstützung beim Erzeugen der künstlichen Störungszone mittels Druckprüfmaschine.

Herrn Dr. U. Kramar für die ausführliche Hilfe bei den Messungen mit µEDXRF und WDXRF.

Frau C. Haug & Frau B. Oetzel für die Unterstützung bei den Messungen mit der ICP-OES, sowie der STA, CSA und XRD.

Herrn Zibat für die Möglichkeit und Unterstützung von REM/ESEM Aufnahmen.

Herrn Dipl.-Geoökol. A. Hartmann für die Unterstützung bei der Fluidgewinnung während der Experimente, der analytischen Bestimmung von pH-Wert, Redoxspannung und Leitfähigkeit und bei den unzähligen Messungen an der ICP-OES.

Herrn K. Nikoloski bei der Hilfe der Bearbeitung der Bohrkern, der Anfertigung von Dünnschliffen, der Unterstützung bei der Erstellung von Schmelzlingen.

Frau Dr. K. Ziaja & Frau Dr. E. Eiche für das kritische Durchlesen meiner Arbeit.

Herrn Dipl.-Geol. P. Illner für den Nachschub an benötigten Papern und seiner unermüdlichen Geduld dabei.

Herrn Dr. P. Bossart & Dr. Christophe Nussbaum und den weiteren Mitarbeitern vom Mont Terri Projekt für das Bohren und zur Verfügung stellen des Opalinustons.

Der Firma Shell International Exploration and Production (Niederlande) für die speziellen Deckgesteinsproben.

Dem GeoForschungsZentrum Potsdam für die Bohrkernproben des Tonsteins der Weser-Formation aus Ketzin.

Dem Centre d'Étude de l'énergie Nucléaire (Belgien) für die Proben des Boom Clay.

Meiner Familie und meinen Freunden dafür, dass sie immer hinter mir standen und mich unterstützt haben.

Zusammenfassung

Die Speicherung von CO₂ im geologischen Untergrund ist von großem Interesse hinsichtlich der durch das Kyoto-Protokoll angestrebten Reduktion der Treibhausgasemission. Neben der Wechselwirkung des Kohlendioxids mit dem Speichergestein, ist ein weiterer bedeutender Punkt dessen Interaktion mit dem Deckgestein, welches den Speicher abdichtet und somit einen Aufstieg des CO₂ an die Oberfläche verhindert. Denn nur wenn Reaktionsprozesse, Reaktionszeit und die Auswirkungen von Veränderungen im Gestein bekannt sind, lässt sich eine präzise Aussage über die Sicherheit und Langzeitstabilität der Deckgesteine und damit verbunden von geologischen CO₂-Speichern treffen.

An diesem Punkt setzt die vorliegende Arbeit an. Mit dem Ziel der Untersuchung des Einflusses einer CO₂-gesättigten Lösung auf verschiedene Deckgesteine wurden Reaktionsexperimente am Opalinuston (Schweiz), am Boom Clay (Belgien), am Tonstein der Weser-Formation (Deutschland) und an einem Deckgestein der Firma Shell (Lokation geheim) durchgeführt. Zur Realisierung der Experimente erfolgte ein Einbau der Deckgesteinsproben (Höhe: 2 cm, Durchmesser: 6 cm) in spezielle Reaktionszellen, welche über ein Zuleitungssystem kontinuierlich mit der CO₂-gesättigten NaCl-Lösung versorgt werden konnten. Die gleichmäßige Verteilung der insgesamt 56 Reaktionszellen (44 x Opalinuston als Hauptreferenzgestein, je 4 x Boom Clay, Tonstein der Weser-Formation und Deckgestein von Shell) auf Heizschränke mit unterschiedlichen Temperaturen (45°C, 60°C, 75°C und 100°C) und das Fahren der Experimente über verschieden lange Reaktionszeiten (3 bis 18 Monate) sollte eine genaue Klassifizierung der im Gestein ablaufenden Mineralreaktionen ermöglichen.

Da Mineralreaktionen im Bereich von Störungszonen deren Permeabilität und Stabilität und damit verbunden die Integrität des Deckgesteins beeinflussen können, wurden bereits im Vorfeld zu den Reaktionsexperimente an allen 56 Proben künstliche Störungszonen erzeugt. Die Charakterisierung möglicher Veränderungen in diesem Bereich sollte es dann ermöglichen das Risiko einer CO₂-Leckage zu bewerten und somit minimieren zu können. Die Ergebnisse aus den durchgeführten Experimenten zeigen, dass keine der Proben der vier Deckgesteinstypen analytisch nachweisbare Alterationen aufwiesen. Dies gilt für alle

Reaktionszeiten bei 45°C, 60°C, 75°C und 100°C. Zu einem Teil lässt sich dies auf den

Anteil der Elemente, die während der Experimente aus den Gesteinen mobilisiert wurden, zurückführen. Eine wöchentliche Fluidentnahme aus den Reaktionszellen zeigte, dass alle Deckgesteine die Mobilisation der Elemente Calcium, Magnesium, Kalium, Natrium und Silizium gemein hatten. Berechnet und am Opalinuston dargestellt ergab sich die über die gesamte Reaktionszeit aus einer Probe gesamt gelöste Menge eines Elements zu < 210 mg. Bezogen auf einen definierten Bereich des Probenkörpers, durch den das CO₂-gesättigte Fluid am wahrscheinlichsten perkoliert ist und somit Mineralreaktionen stattgefunden haben, ergibt sich, dass im Schnitt << 10 % von dem jeweiligen Elementanteil der Festprobe gelöst wurde.

Unabhängig der nicht nachweisbaren Alterationen der Festphasen konnte anhand der Fluidanalytik und mittels mathematischen Berechnungen mit dem Programm PHREEQC modellhaft ermittelt werden, welche Mineralreaktionen während der Experimente stattgefunden haben müssen. Neben Kationenaustauschprozessen der Tonminerale, sind dies Lösungsreaktionen von Karbonaten und Sulfaten sowie von Silikaten. Calcium, dessen Konzentrationen sich in den Fluiden in Abhängigkeit der Temperatur und im Vergleich zwischen den verschiedenen Deckgesteinsproben unterschied, wurde primär den im Zusammenhang mit der CO₂-Speicherung häufig dokumentierten Lösungsreaktionen der Karbonate (u.a. Calcit, Dolomit) zugeordnet. Im Tonstein der Weser-Formation ist zudem die Lösung von Anhydrit anzunehmen. Ähnlich wie Calcium, stand auch die Konzentration von Magnesium in den Fluiden in Abhängigkeit der Temperatur und unterschied sich im Vergleich zwischen den vier Deckgesteinstypen. Zurückgeführt wird das mobilisierte Magnesium auf die Lösung von Dolomit, sowie Lösungsreaktionen der Tonminerale.

Die in den Fluiden nachgewiesenen Elemente Silizium und Kalium beruhen ausschließlich auf Reaktionen der Silikate. Demnach wird Silizium, dessen Konzentration sich in den Fluiden bei 100°C deutlich von denen bei ≤ 75 °C unterschied, zum Teil durch die Lösung von Quarz freigesetzt. Kalium hingegen stammt überwiegend aus Lösungsreaktionen von Illit, Chlorit, Muskovit und / oder K-Feldspäten.

Natrium in den Fluiden konnte keiner bestimmten Mineralreaktion zugeordnet werden, was sich auch durch den Einfluss der experimentellen Zufuhr von NaCl erklären lässt. Nicht auszuschließen sind jedoch Kationenaustauschprozesse der Tonminerale und andere Lösungsreaktionen der Silikate.

Der Einfluss einer CO₂-gesättigten Lösung auf die Permeabilität und Stabilität von Störungszonen in Deckgesteinen konnte in dieser Arbeit nicht eindeutig geklärt werden. Es zeigt sich jedoch im Ansatz, dass die Deckgesteine bei den gegebenen experimentellen Bedingungen und Parametern (Temperatur: 45°C bis 100°C, initialer Druck des CO₂gesättigten Fluids: 5 bar) primär permeable Bereiche / Störungszonen ausbilden. Die während der Experimentphase abgelaufenen Reaktionen der Minerale in den Deckgesteinen führten dabei weder zu einer Verheilung der Störungszonen noch zu einer Erhöhung der Permeabilität.

Schlagwörter: CO₂, Deckgestein, Mobilisation, Störungszone

Abstract

The storage of CO_2 in the geological underground is of great interest concerning the intended reduction of greenhouse gas emissions, that is defined by the Kyoto-Protocol. In addition to the interaction of carbon dioxide with the reservoir rock, another important point is the interaction with the caprock of a geological CO_2 storage site. The security and long-term stability of storage sites can only be characterized if reaction processes of the caprock, the reaction time and the effect of alterations are known.

In the following, the influence of a CO₂-saturated brine on four potential caprocks (Opalinus Clay (Switzerland), Boom Clay (Belgium), mudstone of the Weser-Formation (Germany), caprock from Shell (location confidential)) have been investigated. For the realization of the reaction experiments the caprock samples (height: 2 cm, diameter: 6 cm) were installed in special reaction vessels. These vessels were connected via a pipeline with a saturation unit that ensures the continuous supply of the caprock samples with the CO₂-saturated brine. The uniform distribution of the 56 reaction vessels (44 x Opalinus Clay as the main reference rock, 4 x Boom Clay, mudstone of the Weser-Formation and caprock from Shell) on heating cabinets with different temperatures (45° C, 60° C, 75° C and 100° C) and the driving of the experiments for a various reaction time (3 to 18 months) should enable an accurate classification of the mineral alterations.

To determine the effect of alterations on the permeability and stability of fault zones, the reaction experiments were made with samples that have artificial fault zones. The characterization of possible alterations in this area, that is a potential weakness in the caprock, should allow the evaluation of the risk of a CO_2 -leakage and thus to minimize it.

The results of the experiments show, that none of the samples of the four caprocks had analytically detectable alterations. This applies the entire reaction time at 45°C, 60°C, 75°C and 100°C. The measurement of the effluent from the reaction vessels showed that the CO₂-saturated brine, which is percolated through the caprocks during the experiment, resulted in a mobilization of the elements calcium, magnesium, potassium, sodium and silicon. Measured and calculated for the Opalinus Clay, the total dissolved amount of an element from one sample over the whole reaction time is < 210 mg. In relation to a defined area of the caprock sample, through that the CO₂-saturated brine is percolated, less than

10 % of the element content were dissolved.

Independent of not detected alterations of the solid phases, fluid analysis in combination with mathematical and geochemical calculations based on PHREEQC permitted the identification of reaction processes which must have occurred during the experiments. Thus calcium, whose concentrations differed in the fluids as a function of temperature and between the different caprocks, was primarily assigned to carbonate (e.g. calcite and/or dolomite) reactions that are frequently documented in the context of the CO₂-storage. For the mudstone of the Weser-Formation the dissolution of anhydrite must also be considered.

The concentration of magnesium in the fluids also depended on temperature and differed between the four caprocks. The mobilization of magnesium takes place through dissolution of dolomite as well as reactions of clay minerals. In contrast to calcium and magnesium, silicon and potassium are assigned exclusively to the reactions of the silicates. Thus, silicon in the brine is primarily assigned to dissolution of quartz and potassium predominantly on dissolution reactions of illite, chlorite, muscovite and feldspars.

Sodium in the fluids could not be clearly assigned to a mineral reaction; this is explained by the influence of the experimental supply of NaCl. Cation exchange processes of clay minerals and other solution reactions of silicates, however cannot be excluded.

The effect of the CO₂-saturated brine on the permeability and stability of fault zones in caprocks could not be clarified in this work. It turns out, however, in the approach that at the given experimental conditions and parameters (temperature: 45° C to 100° C, initial pressure of the CO₂-saturated brine: 5 bar) the caprocks form primarily permeable areas / fault zones. The mineral reactions in the caprocks that occurred during the reaction experiments led neither to a healing of the fault zones nor to an increase in permeability.

Keywords: CO₂, caprock, mobilization, fault zone

Inhaltsverzeichnis

Ku Ab	Kurzfassung Abstract				
1.	Einle	eitung	1		
2.	Grundlagen				
	2.1	Grundlagen der geologischen CO ₂ -Speicherung	3		
	2.2	Deckgesteine	7		
		2.2.1 Eigenschaften von Deckgesteinen	7		
		2.2.2 Mineralogie und Kinetik	8		
	2.3	CO ₂ -Leckagen aus dem geologischen Speicher	20		
	2.4	Stand der Forschung zur Deckgesteinsalteration	22		
3.	Lokation und Lithologie der Deckgesteine				
	3.1	Opalinuston			
	3.2	Boom Clay	27		
	3.3	Deckgestein der Firma Shell	28		
	3.4	Tonstein der Weser-Formation	29		
4.	Experimenteller Aufbau und Parameter				
	4.1	Erzeugung künstlicher Störungszonen			
	4.2	Versuchsaufbau und Durchführung der Reaktionsexperimente	34		
	4.3	Experimentelle Parameter	36		
		4.3.1 Probenmaterial	36		
		4.3.2 Druck, Temperatur und Zeit	36		
		4.3.3 Fluid und CO ₂ -Sättigung	37		
5.	Instrumentelle Analytik und Modellierungen				
	5.1	.1 Fluidanalytik			
	5.2	Analytik der Festphasen			
	5.3	Geochemische Modellierung			

6. Ergebnisse

rgebnisse					
6.1	Opalinuston				
	6.1.1	Mineralogische und chemische Zusammensetzung			
	6.1.2	Charakterisierung der Scherspannung			
	6.1.3	Charakte	erisierung der künstlich erzeugten Störungszone	52	
	6.1.4	Alterationseffekte im Opalinuston in Abhängigkeit von Tempe tur und Zeit			
		6.1.4.1	Alterationseffekte bei 45°C	54	
		6.1.4.2	Alterationseffekte bei 60°C	61	
		6.1.4.3	Alterationseffekte bei 75°C	65	
		6.1.4.4	Alterationseffekte bei 100°C	69	
	6.1.5	Experim	entelle Veränderung der Störungszonen	76	
	6.1.6	Geochemische Modellierung			
6.2	Alterationseffekte in vergleichbaren Referenzdeckgesteinen				
	6.2.1	Boom C	lay	85	
		6.2.1.1	Mineralogische und chemische Zusammensetzung	85	
		6.2.1.2	Charakterisierung der Scherspannung	87	
		6.2.1.3	Alterationseffekte im Boom Clay	88	
	6.2.2	Deckgestein der Firma Shell			
		6.2.2.1	Mineralogische und chemische Zusammensetzung	94	
		6.2.2.2	Charakterisierung der Scherspannung	96	
		6.2.2.3	Alterationseffekte im Deckgestein von Shell	97	
	6.2.3	Tonstein	der Weser-Formation	103	
		6.2.3.1	Mineralogische und chemische Zusammensetzung	103	
		6.2.3.2	Charakterisierung der Scherspannung	104	
		6.2.3.3	Alterationseffekte im Tonstein der Weser-Formation	106	
	6.2.4	Geochemische Modellierung			
		6.2.4.1	Boom Clay	111	
		6.2.4.2	Deckgestein der Firma Shell	112	
		6.2.4.3	Tonstein der Weser-Formation	113	

7.	Interpretation und Diskussion				
	7.1	Temperatur- und zeitabhängige Deckgesteinsalterationen bei Kontakt mit einer CO ₂ -gesättigten NaCl-Lösung			
		7.1.1 Elementmobilisation aus dem Opalinuston	117		
		7.1.2 Elementmobilisation aus vergleichbaren, potentiellen Deckgesteinen	127		
	7.2	Der Einfluss von CO_2 auf die Permeabilität und Stabilität von Störungszonen in Deckgesteinen	136		
	7.3	Laborexperiment im Vergleich mit einem natürlichen Analoga	140		
8. Schlus		ssfolgerung und Ausblick			
Lit	eratu	verzeichnis	146		
Ab	Abkürzungsverzeichnis				
Ab	Abbildungsverzeichnis				
An	Anhang				

Kapitel 1 Einleitung

Im Kyoto - Protokoll (1997) und dessen Fortführung als Kyoto - Protokoll II (2013) wurde festgelegt, dass bis 2012 (Beschluss 1997) bzw. 2020 (Beschluss 2013) die Emissionsrate der sechs wichtigsten Treibhausgase (CO₂, CH₄, N₂O, HFC, PFC, SF₆) um 5,2 % (gegenüber 1990) gesenkt werden soll. Bedeutendstes Treibhausgas ist derzeitig das Kohlendioxid (CO₂), da es mit \geq 75 % der globalen Treibhausgasemission den mengenmäßig größten Anteil ausmacht (HTTP://WWW.BMU.DE, 2013; HTTP://WWW.UMWELTBUNDESAMT-DATEN-ZUR-UMWELT.DE, 2013).

Als mögliche Übergangstechnologie zur Reduktion der Emission von CO₂ soll das sogenannte "*Carbon Capture and Storage / Sequestration* (CCS)" zum Tragen kommen. Darin beinhaltet ist die Abscheidung und Separierung des Kohlendioxids von einer stationären Quelle (z.B. Kohlekraftwerke), dessen Transport zur Speicherstätte und die anschließend dauerhafte Speicherung. Diese kann u.a. im geologischen Untergrund, am Meeresboden oder im industriellen Sektor erfolgen (BENSON ET AL., 2005).

Die Speicherung des Kohlendioxids im geologischen Untergrund, als mögliche Schlüsseltechnologie, benötigt zum einen eine geeignete Speicherformation (engl. reservoir), zum anderen ein Deckgestein (engl. caprock), welches das CO₂ daran hindert wieder an die Oberfläche zu gelangen. Als Speicher stehen Salinare Aquifer, Öl- und Gaslagerstätten und nichtabbaubare Kohleflöze im Fokus (BENSON ET AL., 2005). Deren Mindesttiefe liegt bei 600 bis 800 m, denn nur ab dieser Tiefe sind Druck und Temperatur hoch genug, um die Zustandsform des in superkritischer Form gespeicherten Kohlendioxids beizubehalten (BENTHAM & KIRBY, 2005). Auf Grund ihrer Größe und ihres weltweiten Vorkommens liegen besonders die salinaren Aquifere, welche meist aus Sandsteinen mit hoher Porosität und Permeabilität bestehen, im vordergründigen Interesse.

Als abdichtendes Medium der CO₂-Speicherformation, wirkt eine gering permeable Deckgesteinsschicht. Besonders geeignet sind hierfür Tonsteine, Schiefer und Evaporite (u.a. NEDERLOF & MOHLER, 1981; GRUNAU, 1987; STEVENS ET AL., 2001). Die geologische CO₂-Speicherung als Schlüsseltechnologie ist jedoch seit Jahren sehr umstritten. Begründung findet dies vor allem in der Angst der Bevölkerung vor einem entweichen des Kohlendioxids aus dem Speicher - "[...] Bürger fürchten aber ein unkontrolliertes Entweichen des Gases. [...]" (HTTP://WWW.FOCUS.DE, 2012); "[...] Irgendwann und irgendwo tritt es wieder an die Oberfläche und wird Schaden anrichten. [...]" (Kommentar Beate07 zu Artikel: CO₂-Speicherung. Mit der Kohle ist wieder zu rechnen, HTTP://WWW.TAGESSPIEGEL.DE, 2011). Folglich ist es von besonderer Wichtigkeit den Fokus der Forschung auf die Eigenschaften, das reaktive Verhalten und die damit verbundene Langzeitstabilität der Deckgesteine zu legen. Darauf basierend ist das erste Ziel dieser Arbeit, die Untersuchung des temperatur- und zeitabhängigen Einflusses einer CO₂gesättigten NaCl-Lösung auf potentielle Deckgesteine.

Neben einer möglichen Einwirkung des Kohlendioxids auf die Dichtigkeit und Stabilität der Deckgesteine im Allgemeinen, können besonders Störungszonen und Klüfte ein potentielles Risiko für eine CO₂-Leckage darstellen (ZWEIGEL ET AL., 2004; ESPIE, 2004 und BENSON ET AL., 2005). Anhand dieses Aspekts ergibt sich das zweite Ziel dieser Arbeit. Es soll geklärt werden, ob und in wieweit mögliche CO₂ induzierte Alterationen des Deckgesteins im Bereich von Störungszonen, deren Permeabilität und Stabilität über die Zeit verändern.

Kapitel 2 Grundlagen

2.1 Grundlagen der geologischen CO₂-Speicherung

Die Übergangstechnologie "*Carbon Capture and Storage / Sequestration*", den Eintrag von Kohlendioxid (CO₂) in die Atmosphäre reduzieren soll, umfasst u.a. die in Kapitel 1 aufgeführte Abscheidung des CO₂ aus Kohlekraftwerken und dessen Speicherung im geologischen Untergrund. Damit eine Speicherung im Untergrund möglich ist, wird das CO₂ im Vorfeld soweit verdichtet, bis es den superkritischen Zustand erreicht. Der Punkt, an dem ein Phasenübergang von gasförmig zu superkritisch erfolgt, liegt bei 31°C und 73,8 bar. Als Folge kommt es zu einer starken Volumenverkleinerung, die es ermöglicht große Mengen CO₂ zu speichern (Abb. 2.01). Bezogen auf den durchschnittlichen geothermischen Gradienten von 25°C/km (nach ANGUS ET AL., 1973) und den hydrostatischen Druck beträgt die minimale Tiefe eines möglichen Speichers, bei der dieser Zustand im Untergrund erhalten bleibt, 800 m (u.a. VAN DER MEER, 1992).

Abb. 2.01: Veränderung der Dichte von CO_2 mit der Tiefe, unter Berücksichtigung des hydrostatischen Drucks und des durchschnittlichen geothermischen Gradientens von 25°C/km (nach AN-GUS ET AL., 1973). Die Kreise markieren das relative Volumen des Kohlendioxids bei jeweiliger Tiefe. Dichte und Volumen nehmen bis 800 m Tiefe rapide ab und bleiben ab 1,5 km Tiefe nahezu konstant.

Zusätzlich zu der definierten Mindesttiefe müssen potentielle Speicher eine nutzbare Größe (Volumen) aufweisen und sich in einer geologisch stabilen Gegend befinden. Andernfalls kann es in Folge von tektonischen Aktivitäten zu einer Reaktivierung von vorhandenen Störungszonen kommen, die eine Leckage des CO₂ aus dem Speicher begünstigen würden (BENTHAM AND KIRBY, 2005; SHUKLA ET AL., 2010).

Das größte Potential für die geologische Speicherung des Kohlendioxids im Untergrund bilden die salinaren Aquifere in sedimentären Becken (Abb. 2.02). Ihre Gesteine sind sowohl hinreichend permeabel, als auch porös und können dadurch große Mengen CO_2 in den Poren aufzunehmen. Zusätzlich ist der Mineralgehalt in den Formationswässern so hoch, dass es nicht zur Trinkwassergewinnung geeignet ist (BACHU ET AL., 1994; HOLLO-WAY 1997; GUNTER ET AL., 1998; BENTHAM AND KIRBY, 2005). Ihre Speicherkapazität liegt in Deutschland bei 6 bis 12 Gt (KNOPF ET AL., 2010) und weltweit schätzungsweise bei 2000 bis 11000 Gt CO_2 (METZ ET AL., 2005).

Abb. 2.02: Schematischer Querschnitt mit möglichen geologischen CO₂-Speicherstätten: Salinare Aquifere, Öl- und Gaslagerstätten und Kohleflöze (modifiziert nach BACHU ET AL., 2003)

Neben salinaren Aquiferen bieten auch Öl- und Gaslagerstätten, sowie nicht abbaubare Kohleflöze eine Option zur Speicherung von CO_2 (Abb. 2.02). Ihre Speicherkapazität ist jedoch deutlich geringer, so können in Deutschland schätzungsweise 0,1 Gt in Öllagerstätten, 2,75 Gt in Gaslagerstätten und 1,7 Gt in Kohleflözen gespeichert werden (VON GOERNE, 2009; MAY ET AL., 2003).

Die Art der CO₂-Speicherung in Öl- und Gaslagerstätten kann in ökonomisch unterschiedlicher Weise stattfinden. Sind die Lagerstätten erschöpft, können sie ausschließlich zur Speicherung genutzt werden. Im Gegensatz dazu kann das CO₂ beim Einbringen in aktive Lagerstätten den Druck im Speicher und damit die Förderraten des Öls bzw. Gases erhöhen. Dieser Vorgang wird als Enhanced Oil Recovery (EOR) bzw. Enhanced Gas Recovery (EGR) bezeichnet und wurde bereits angewandt bevor das Konzept der CO₂-Speicherung im Untergrund zur Minimierung der Treibhausgasemission entwickelt wurde (HEDDLE, HERZOG AND KLETT, 2003; BAINES AND WORDEN, 2004; BENSON ET AL., 2005). Eine weitere Option ist die CO₂-Speicherung in nicht abbaubaren Kohleflözen. Das dort injizierte CO₂ wird an die Oberfläche der Kohle adsorbiert und damit langfristig gebunden. Da in Kohleflözen häufig auch große Mengen an wirtschaftlich wertvollem Methan auftreten, kann dessen Förderrate durch das Einbringen von CO₂ erhöht werden. Dies ist möglich, da durch die gegenüber zu Methan größere Affinität der Kohle zur CO₂-Sorption, eine Verdrängung des Methans von der Kohleoberfläche stattfindet. Diese Art der Förderung wird Enhanced Coal Bed Methane Recovery (ECBMR) genannt (IPCC- BENSON ET AL., 2005; KÜHNE AND CLAUSER, 2006; GUNTER ET AL., 2005).

Sobald das CO₂ in den Untergrund eingebracht wurde, sorgt eine Kombination mehrerer Fallenmechanismen (engl. *trapping*; Abb. 2.03) für eine langfristige Rückhaltung.

Abb. 2.03: CO_2 -Fallenmechanismen (engl. trapping) in einem Speicher. Dargestellt als prozentual wirkender Anteil in Abhängigkeit der Zeit nach Injektionsende. Mit zunehmender Zeit steigt der Anteil an physikalischen und chemischen Mechanismen, welche das CO_2 dauerhaft fixieren (angepasst nach BENSON ET AL., 2005).

In den ersten Jahrzehnten nach Injektion bewahren vor allem strukturelle und stratigraphische Fallen das CO₂ vor einer unbegrenzten Ausbreitung bzw. einer Leckage. Stratigraphische Fallen bezeichnen den Wechsel der Lithologie vom permeablen Speichergestein zu gering permeablen Schichten. Sie wirken primär, wenn das CO₂ auf Grund seiner geringen Dichte gegenüber dem Formationswasser aufzusteigen beginnt und an die obere Grenze des Reservoirs gelangt. Strukturelle Fallen, zu denen Antiklinalen und undurchlässige Störungszonen zählen, verhindern hingegen primär eine laterale Ausdehnung des CO₂ (engl. *physical trapping*; GUNTER ET AL. 2004).

Ein weiterer physikalischer Prozess ist das r*esidual trapping* (engl.), bei dem ein Teil des injizierten CO₂ durch den Kapillardruck im Porenraum des Speichergesteins immobilisiert wird. Das solubilty trapping (engl.) hingegen ist ein chemischer Prozess, der ebenfalls bereits in der ersten Phase nach Injektion zum Tragen kommt. Hierbei wird das CO₂ über die Zeit der Speicherung im Formationswasser gelöst und liegt dadurch nicht länger als freie Phase vor. Infolgedessen ist seine Auftriebskraft unterdrückt (KOIDE ET AL., 1992; BENSON ET AL., 2005).

Beim *Mineral Trapping* (engl.) reagiert das im Wasser gelöste CO_2 mit dem Gestein des Reservoirs (GUNTER ET AL., 1993; BENSON ET AL., 2005), wodurch es im Laufe der Zeit (> 100 Jahre) zur Bildung von stabilen Mineralphasen kommt. Dieses Verfahren stellt somit die permanenteste Form der CO₂-Speicherung dar. Von besonderer Bedeutung ist dabei die Bildung von schwerlöslichen Karbonaten, wie beispielsweise Dawsonit (NaAlCO₃(OH)₂) (JOHNSON ET AL., 2001; KÜHN UND CLAUSER, 2006), das u.a. bei der CO₂-Speicherung durch Reaktionen mit Kalifeldspäten (KAlSi₃O₈) gebildet werden kann:

$$KAlSi_{3}O_{8}(s) + CO_{2}(aq) + Na^{+} + H_{2}O \rightarrow K^{+} + NaAlCO_{3}(OH)_{2}(s) + 3SiO_{2}(s)$$
 [2.1]

2.2 Deckgesteine

2.2.1 Eigenschaften von Deckgesteinen

Ein Deckgestein (engl. *caprock*) ist eine Gesteinsformation über einem natürlichen Ölbzw. Gasfeld oder über einem anthropogen genutzten geologischen CO₂-Speicher, welche das Gas oder die Flüssigkeit daran hindert aus dem Speicher (engl. *reservoir*) zu entweichen (stratigraphische Falle).

Damit Deckgesteine einen potentiellen Speicher abdichten und so den Austritt von Gas oder Öl verhindern können, müssen sie sich kontinuierlich lateral über das Reservoir erstrecken und stratigraphisch homogen sein. Zudem müssen eventuell vorhandene Störungszonen verdichtet sein (VAVRA ET AL., 1992).

Einer der wichtigsten Faktoren, die das Abdichtvermögen bestimmen, ist die Lithologie (NEDERLOF AND MOHLER, 1981). In Frage kommen neben Evaporiten vor allem Schiefer und Tonsteine, da sie bereits weltweit in natürlichen Analoga das CO₂ über einen geologisch relevanten Zeitrahmen vor einem Austritt bewahrt haben (GRUNAU, 1987; STEVENS ET AL., 2001; HASZELDINE ET AL., 2005; LU ET AL., 2009; RUBERT ET AL., 2009; ALEMU ET AL., 2010).

Besondere Eigenschaften solcher tonreicher Deckgesteine sind ihre große spezifische Mineraloberfläche, die starke physiko-chemische Interaktion zwischen den Wassermolekülen und der Mineraloberfläche sowie die ausgeprägte Verbindung zwischen hydraulischen und mechanischen Reaktionen (HO ET AL., 2005). Darüber hinaus ist ihre Permeabilität in der Regel niedrig (μ D, 10⁻¹⁸ m²) bis sehr niedrig (nD, 10⁻²¹ m²) und die Porosität häufig gering (< 15 %) (FLEURY ET AL., 2009). Die geringe Permeabilität der Deckgesteine beruht dabei größtenteils auf den sehr kleinen (< 10 µm) Poren (BLUM, 1992), den Porenhälsen, welche die einzelnen Poren miteinander verbinden und den damit zusammenhängenden hohen Kapillarkräften (DANIEL AND KALDI, 2009). Diese hohen Kapillarkräfte halten das Porenwasser im Gestein und unterhalb eines bestimmten Drucks, dem sogenannten Kapillarschwellendruck (engl. *capillary entry pressure*) kann das CO₂ nicht in die Poren eindringen und das Wasser verdrängen (BERG, 1975; DULLIN, 1992; VAVRA ET AL., 1992). Deckgesteine, deren Abdichteigenschaften auf diesen Kapillarkräften beruhen, werden als *membrane seals* bezeichnet (BERG, 1975). Ihr Abdichtvermögen nimmt mit abnehmender

Porengröße, abnehmender Benetzbarkeit (engl. *wetability*) und zunehmender Gas-Wasser Grenzflächenspannung zu (HO ET AL., 2005).

Gesteine, bei denen der Kapillarschwellendruck extrem hoch ist (z.B. dichte Schiefer oder Evaporite) werden als *hydraulic seals* bezeichnet (WATTS, 1987; HO ET AL. 2005). Bei diesem Deckgesteinstyp spielt die Mächtigkeit eine große Rolle, da ein Versagen der Abdichteigenschaft hauptsächlich durch Bruchbildung auftritt. Eine Bruchbildung erfolgt dann, wenn der Druck des Porenfluids am Übergang von Reservoir zu Deckgestein soweit zunimmt bis die mechanische Festigkeit des Gesteins überschritten wird (WATTS, 1987).

2.2.2 Mineralogie und Kinetik

In der folgenden Betrachtung hinsichtlich der Mineralogie von Deckgesteinen und dessen reaktiven Verhalten wird der Begriff Deckgestein ausschließlich auf Tonsteine und Schiefer bezogen. Evaporite und andere mögliche Typen bleiben unberücksichtigt, da sie nicht Bestandteil dieser Arbeit sind.

Nach KASZUBA ET AL. (2003 U. 2005), GAUS ET AL. (2005), GHERARDI ET AL. (2007), KOH-LER ET AL. (2009) und CREDOZ ET AL. (2009) sind Tonminerale, Karbonate, Feldspäte, sowie Quarz und Anhydrit die Minerale in Deckgesteinen, bei denen Reaktionen im Zusammenhang mit der CO₂-Speicherung am häufigsten beschrieben wurden.

Tonminerale

Die am häufigsten vorkommenden Tonminerale in Deckgesteinen, vor allem auch in Bezug auf den in dieser Arbeit verwendeten Proben, sind Kaolinit, Illit, Montmorillonit (Smektit; häufig als Wechsellagerung Illit - Smektit) und Chlorit (Tab. 2.01). In vielen bereits untersuchten Deckgesteinen liegt der Gesamtanteil in der Regel nicht unter 40 %. Tonminerale gehören zu den wasserhaltigen Alumosilikaten, welche zu der Gruppe der Schichtsilikate zählen (STRUNZ, 1941). Ihr Teilchengröße ist mit < 2 µm sehr klein und ihre äußere spezifische Oberfläche von 30 bis 100 m²/g sehr groß (LAGALY AND KÖSTER, 1993). Strukturell bestehen sie aus Kombinationen von [SiO₄]-Tetraederschichten (T) und [Me[O, OH)₆]-Oktaederschichten (O), mit Me für divalente (Mg²⁺, Fe²⁺, Mn²⁺, etc.) oder trivalente (Al³⁺, Fe³⁺, Mn³⁺, etc.) Kationen. Die Verbindung der Tetraederschichten mit den Oktaederschichten erfolgt über Sauerstoffionen (MACKENZIE AND MITCHELL, 1966).

Kaolinit wird strukturell aus einer einfachen Tetraeder-Oktaeder Verbindung aufgebaut und gehört somit zu den 1:1 Schichtsilikaten. Montmorillonit und Illit dagegen gehören, wie die meisten Tonminerale, mit einer Tetraeder-Oktaeder-Tetraeder (T-O-T) Verbindung zu den 2:1 Schichtsilikaten. Sie besitzen in der Regel eine negative Oberflächenladung, mit einer Schichtladung [ξ] zwischen 0,2 und 2 pro Formeleinheit (Tab. 2.01).

Chlorit zählt ebenfalls zu den 2:1 Schichtsilikaten, enthält aber neben den negativ geladenen T-O-T Verbindungen noch eine einzelne positiv geladene Oktaederschicht, die über H⁺-Ionen mit den anderen verbunden ist. Aus diesem Grund wird Chlorit auch als Vierschichtmineral bezeichnet (HEIM, 1990; BRIGATTI ET AL., 2006).

Tab. 2.01: Einteilung der am häufigsten in Deckgesteinen vorkommenden Tonminerale. Neben der allgemeinen chemischen Formel sind der Schichttyp, ihre Schichtladung und die Kationen-Austausch-Kapazität (KAK) dargestellt (modifiziert nach JASMUND AND LAGALY, 1993).

Schichttyp ¹	Gruppe	Ladung ²	Untergruppe	Beispiel	chemische Formel	KAK
		ξ				[mval/100g]
1:1	Serpentin- Kaolin- Gruppe	0	Kaoline (di)	Kaolinit	$Al_2Si_2O_5(OH)_4$	5 -1 5
2:1	Smektite	0,2 - 0,6	Smektit (tr) Smektit (di)	Montm.	(Na,Ca) _{0.3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ *4H ₂ O	80 - 120
	Illite	0,6 - 0,9	Illit (tr) Illit (di)	Illit	$(K,H_3O)Al_2(Si_3Al)O_{10}(H_2O,OH)_2$	20 - 50
	Chlorite	variabel	alle Komb. (tr;di)	Chlorit ³	(Fe,Mg,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₈	10 - 40

¹1:1 - Zweischichttonminerale; 2:1 - Dreischichttonminerale

 $^{2}\xi$ – Schichtladung (Ladung pro Formeleinheit)

³ vereinfacht, stellvertretend für verschiedene Chlorite

Die bereits erwähnte permanente negative Oberflächenladung der 2:1 Tonminerale wird dadurch hervorgerufen, dass höherwertige Kationen durch niederwertige Kationen ersetzt werden (isomorpher Ersatz), wie der Ersatz von dreiwertigen Metallionen der Oktaederschichten durch zweiwertige (z.B. Al³⁺ durch Mg²⁺). Eine weitere Möglichkeit ist die Substitution (vorwiegend Si⁴⁺ durch Al³⁺) in den Tetraederschichten. Solche Substitutionen in den Tetraeder- und Oktaederschichten treten u.a. bei Vermiculiten und Illiten auf. Neben Substitutionen können freie Plätze im Kristallgitter ebenfalls zu einer negative Schichtladung führen.

Die negative Schichtladung kann elektrostatisch ausgeglichen werden. Dies geschieht zum einen durch die Einlagerung von Oktaederzwischenschichten ([Al(O, OH)₆]- oder [Mg(O, OH)₆]-Oktaeder) oder von Wassermolekülen in die Zwischenschichten. Die Einlagerung von Wassermolekülen führt dabei zu einer Hydratisierung der Zwischenschichtkationen und bewirkt beispielsweise beim Montmorillonit eine Aufweitung des Zwischenschichtabstandes (innerkristalline Quellung) (HEIM, 1990).

Zum anderen kann die negative Ladung durch den Austausch von Kationen ausgeglichen werden. Dieses Vermögen ist eine der wichtigsten Eigenschaften der Tonminerale und wird durch die Kationen-Austausch-Kapazität (KAK; Tab. 2.01) definiert. Bei sehr fest gebundenen Kationen, wie z.B. den Kaliumionen in den Illiten bezieht sich der Kationenaustausch nur auf die an den Rändern und äußeren Flächen befindlichen Kationen, wohingegen bei Smektiten ein vollständiger Austausch stattfindet. Die wichtigsten austauschbaren Kationen sind, sortiert nach abnehmender Wertigkeit und somit nach abnehmender Stärke der Fixierung an die Tonmineralschichten: $Al^{3+} > Ba^{2+} > Sr^{2+} Ca^{2+} > Mg^{2+} > K^+ =$ $H^+ > Na^+ > Li^+$ (HEIM, 1990; LAGALY, 1993; MEUNIER, 2005).

Neben dem Kationenaustauschvermögen können Tonminerale auch Anionen austauschen, definiert als Anionen-Austausch-Kapazität (AAK). Dieses Vermögen beruht auf der variablen Ladung der Tonminerale, welche hauptsächlich die Kanten, Ränder und Ecken der Schichtsilikate betrifft. In diesem Bereich befinden sich die Kationen der Tetraeder- und Oktaederschichten in einer unvollständigen tetraedischen- / oktaedrischen Umgebung, so dass sie polarisierte (OH)-Gruppen oder Wassermoleküle anlagern können. In Abhängigkeit des pH-Wertes können dadurch im sauren Bereich Protonen angelagert werden, die eine positive Ladung der Tonminerale zur Folge haben (HEIM, 1990).

Weitere besondere Eigenschaften der Tonminerale sind ihre Interaktionen mit Wasser und ihre Verbindung mit organischen Komponenten. Die Interaktion der Tonminerale mit Wasser kann, wie bereits erwähnt, zu einer Hydratisierung der Zwischenschichtkationen führen, die sog. innerkristalline Quellung. Eine weitere Möglichkeit der Quellung ist die osmotische Quellung, die auf dem Unterschied der Ionenkonzentration an der Tonmineraloberfläche zur Konzentration der Ionen in der Porenlösung beruht. Dieses Gefälle entsteht, da Kationen durch die permanente negative Ladung der Tonminerale elektrostatisch angezogen werden und sich dabei in diffusen Schichten konzentrieren. Wenn zwei Mineralflächen zueinander orientiert sind, wird die Konzentration der Ionen in den Zwischenräumen größer als die in der Porenlösung. Zum Ausgleich dieses Unterschiedes wandern Wassermoleküle in die diffuse Ionenschicht und es zu kommt zur Quellung (HEIM, 1990; MÜL-LER-VONMOOS AND KOHLER, 1993).

Die Bindung von organischen Komponenten erfolgt bei Tonminerale auf unterschiedlichste Weise, sowohl über die äußeren Oberflächen als auch in den Zwischenschichten. Während Kaolinit als 1:1 Schicht-Mineral neutrale organische Verbindungen zwischen die Silikatschichten einlagert, können die 2:1 Schicht-Tonminerale u.a. neutrale organische Moleküle im Zwischenschichtraum binden u./o. zusammen mit den Zwischenschichtkationen Komplexe bilden. Zusätzlich kann auch ein Austausch von anorganischen Zwischenschichtkationen mit organischen Kationen stattfinden (HEIM, 1990; LAGALY, 1993; MEUNIER, 2005; BRIGATTI ET AL. 2006).

Im Hinblick auf die Speicherung von CO₂ reagieren die Tonminerale der Deckgesteine nicht direkt mit dem im Formationswasser gelösten CO₂, jedoch wird ihre Lösungs- und Fällungsrate durch die veränderten Randbedingungen beeinflusst. So kommt es in Folge des Eintrages von Kohlendioxid zu einem Absinken des pH-Werts der Lösung, welcher die Lösungsraten der Tonminerale beeinflusst (CAROLL AND KNAUS, 2005; GOLUBEV ET AL., 2005). Die Lösungsrate eines (Ton-)Minerals (Rm), welche sich aus dessen reaktiver Oberfläche pro kg Wasser (A), der temperaturabhängigen Konstanten (k(T)), der Protonenaktivität (a_{H+}), der Reaktionsordnung des Minerals (n), sowie der Gleichgewichtskonstanten (K) und des dementsprechenden Ionenaktivitätsprodukts (Q) ergibt, kann durch eine nach LASAGA (1984) vereinfacht Formel dargestellt werden:

$$R_m = A_m k(T)_m (a_{H+})^n \left[1 - \left(\frac{Q_m}{K_m}\right) \right]$$
[2.2]

Die temperaturabhängige Konstante (k(T)) berechnet sich dabei aus der Konstanten bei 25° C (k₂₅) [mol/m²s], der Gaskonstanten R (8,31 J/molK), der Aktivierungsenergie E_a [J/mol] und T als absolute Temperatur (K):

$$k(T) = k_{25} exp\left[\frac{-E_a}{R}\left(\frac{1}{T} - \frac{1}{298, 15}\right)\right]$$
[2.3]

Daraus ergibt sich, dass die Lösung im sauren und basischen Milieu am schnellsten abläuft, während sie im neutralen Bereich (pH 6 - 8) am langsamsten ist (Abb. 2.04 a - d). Zusätzlich ändert sich die Lösungsgeschwindigkeit in Abhängigkeit der Temperatur, so dass durch einen Anstieg der Temperatur eine Zunahme der Geschwindigkeit der Tonminerallösung erfolgt (Abb. 2.04). Eine Erhöhung von 25°C auf 80°C führt beispielsweise bei Kaolinit, Illit und Smektit zu einer Zunahme der Lösungsrate um 10^{0,5} bis 10¹ mol/m²s (MARINI, 2007).

Neben einer reinen Lösung kann es im Zusammenhang mit der CO₂-Speicherung, auch zu Umwandlungen u./o. Neubildung von Tonmineralen kommen. Hier steht besonders die Illitisierung des Smektits der Illit-Smektit-Wechsellagerungen (I/S) im Vordergrund, welche hauptsächlich im sauren Milieu stattfindet. Die Umwandlung erfolgt dabei durch einen irreversiblen Einbau von Kalium-Ionen (K⁺), welche u.a. bei der Lösung von Kalifeldspäten (KAlSi₃O₈) freigesetzt werden (CREDOZ ET AL. 2011). Nach SRODON ET AL. (1992) läuft dieser Prozess wie folgt ab:

$$I/S + K^+ \rightarrow Illit + SiO_2$$
 [2.4]

Die Freisetzung von Aluminium aus den Feldspäten kann hingegen in Verbindung mit dem im Wasser gelösten CO_2 zur sekundären Bildung von Kaolinit ($Al_2Si_2O_5(OH)_4$) und Calcit (CaCO₃) führen (GAUS AND CZERNICHOWSKI-LAURIOL, 2005):

$$CaAl_2Si_2O_8 + CO_2 + 2H_2O \rightarrow CaCO_3 + 2Al_2Si_2O_5(OH)_4$$
 [2.5]

Abb. 2.04: Logarithmus der Lösungsraten von Kaolinit, Chlorit, Illit und Smektit in Abhängigkeit von pH-Wert und Temperatur. Anpassung der Grafiken nach MARINI (2007), die abgebildeten Datenpunkte stammen aus Experimenten der unter den Diagrammen gelisteten Autoren. **a**) Löslichkeit von Kaolinit mit durchschnittlicher Lösungsrate bei 25°C u. 80°C. Die geringste Lösungsrate für beide Temperaturen liegt im schwach sauren bis neutralen Bereich. **b**) Löslichkeit von Illit bei 5°C, 25°C u. 50°C weist für alle Temperaturen die geringste Lösungsrate im neutralen Bereich auf. Bei 5°C reicht das Minimum bis ins basische Milieu (pH~10). **d**) Löslichkeit von Smektit bei 25°C u. 80°C. Es zeigen sich deutliche Unterschiede der Lösungsrate zwischen den Autoren HUERTAS ET AL. (2001) und PALANDRI AND KHARAKA (2004) (P & K). Die minimale Lösungsrate liegt auch hier im neutralen Bereich, mit leichter Verschiebung bei tiefen Temperaturen ins Basische.

Karbonate

Die häufigsten Karbonate in Deckgesteinen sind Calcit (CaCO₃), Dolomit (CaMg(CO₃)₂) und Siderit (FeCO₃). Chemisch gesehen sind sie Salze der Kohlensäure, die in ihrer Grundstruktur den $(CO_3)^{2^-}$ -Ionenkomplex gemeinsam haben (MATTHES, 1996). Häufig können in ihrer Struktur durch Substitution weitere Kationen eingebaut sein. Liegt z.B. Calcit nicht in reiner Phase vor, kann neben geringen Mengen an Strontium häufig Magnesium mit eingebaut werden. Daneben kommen bei Siderit und gelegentlich bei Dolomit Substitutionen von Fe²⁺ gegen Mg²⁺ und umgekehrt vor (REEDER ET AL., 1990; DEER ET AL. 1992).

Im Zusammenhang mit der Speicherung von CO_2 sind die Lösungs- und Fällungsreaktionen der Karbonate von besonderer Bedeutung. Ihre Lösung kann nach PLUMMER ET AL. (1978), CHOU ET AL. (1989), WOLLAST (1990) und POKROVSKY ET AL. (2009) allgemein durch drei parallel ablaufende Reaktionen beschrieben werden:

$$MeCO_3 + H^+ \xrightarrow{\kappa_1} Me^{2+} + HCO_3^-$$
[2.6]

$$MeCO_3 + H_2CO_3 \xrightarrow{\kappa_2} Me^{2+} + 2HCO_3^-$$
 [2.7]

$$MeCO_3 \stackrel{k_3}{\leftrightarrow} Me^{2+} + CO_3^{2-}$$
 [2.8]

Me steht hierbei für Calcium und/oder Magnesium, k_i ist die Geschwindigkeitskonstante der jeweiligen Reaktion. Gleichung 2.8 beschreibt zudem die Bildungsreaktion von Karbonaten, deren Reaktionsrate sich durch folgende Gleichung beschreiben lässt:

$$R = k1 * a_{H^+}^n + k_2 * a_{H_2CO_3^*}^p + k_3 - k_{-3} * a_{Me^{2+}} * a_{CO_3^{2-}}$$

$$[2.9]$$

mit a_i für die Aktivität der aquatischen Spezies, der Exponent n ist 1 für Calcit (PLUMMER ET AL., 1978), 0,5 - 0,75 für Dolomit (BUSENBERG UND PLUMMER, 1982; CHOU ET AL., 1989) und p ist 1 (BUSENBERG UND PLUMMER, 1982). Abhängig sind diese Reaktionen dabei vom CO₂-Gehalt des Wassers, dem damit verbundenen pH-Wert, der Temperatur sowie der Ionenstärke.

Der Eintrag von Kohlendioxid ins Wasser führt zur Bildung von Kohlensäure, deren Dissoziation H⁺-Ionen freisetzt (Gl. 2.10, ROCHELLE ET AL., 2004). Ihr Anteil bestimmt dabei maßgeblich den pH-Wert des Wassers.

$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^- \leftrightarrow CO_3^{2-} + 2H^+$$

$$[2.10]$$

Für Calcit gilt, dass seine Lösung im niedrigen pH-Bereich stark von dessen Wert abhängig, aber unabhängig von der Ionenstärke ist. Bei Werten < 6 verhält sie sich proportional zur Aktivität der H⁺-Ionen (a_{H^+}), so dass bei steigender Anzahl und dem damit verbundenen Abfall des pH-Wertes, die Lösungsrate ebenfalls deutlich steigt (CHOU ET AL., 1989; PLUMMER ET AL., 1978; BUSENBERG AND PLUMMER, 1986). Nach PLUMMER ET AL. (1978) führt beispielsweise eine pH-Wert Erniedrigung von 5 auf 3 bei 25°C und einem bar CO₂-Partialdruck (pCO₂), zu einem Anstieg der Lösungsrate von rund 10^{-4,7} mol/m²s auf 10^{-3,2} mol/m²s.

Im neutralen bis alkalischen pH-Bereich, bei dem die Lösungsrate aus der Interaktion von Transportprozessen und oberflächenchemischer Reaktion bestimmt wird, besteht keine Abhängigkeit vom pH-Wert, jedoch zur Ionenstärke der Lösung (RICKARD AND SJÖBERG, 1983; SJÖBERG AND RICKARD, 1984 A,B; MARINI, 2007). Nach PALANDRI AND KHARAKA (2004) liegt dabei die durchschnittliche Lösungsrate im neutralen Bereich bei 10^{-5,8} mol/m²s.

Die Rate der Präzipitation von Calcit ist in diesem pH-Bereich deutlich von der Ionenkonzentration abhängig. Nach ZHANG AND DAWE (1998) nimmt bei einer Ionenstärke zwischen 0,1 und 2 mol/kg, einem pH-Wert zwischen 6 und 8,6 und einer Temperatur von 25°C, die Fällungsrate linear zum Quadrat der Ionenstärke zu.

Neben dem pH-Wert und der Ionenstärke hat auch die Temperatur Einfluss auf die Lösung von Calcit. Generell gilt für Karbonate, dass ihre Löslichkeit mit steigender Temperatur bei konstantem CO₂-Druck, abnimmt (MILLER, 1952; GARRELS AND CHRIST, 1965). Dies begründet sich zum einen dadurch, dass die Lösungsreaktion der Karbonate exotherm abläuft (LANGMUIR, 1997) und zum anderen, dass bei niedriger Temperatur mehr Kohlendioxid im Wasser gelöst wird. Die erhöhte Kohlendioxidlösung bedingt eine vermehrte Freisetzung von H⁺-Ionen (Gl. 2.8) welche, wie bereits erwähnt, ein wichtiger Kontrollfaktor für die Löslichkeit von Karbonaten (Calcit) sind (Gl. 2.5). Da mit zunehmender Temperatur die Bildung von CaCO₃⁰-Komplexen begünstigt wird, kommt es darüber hinaus zunehmend zur Präzipitation von Karbonaten (MERKEL UND PLANER-FRIEDRICH, 2008). Neben diesen Faktoren können Kationen in der Lösung deutlichen Einfluss auf die Lösungs- und Fällungsrate von Calcit haben (u.a. TERJESEN ET AL., 1961). Unter anderem können folgende Ionen dabei als Hemmstoffe: Mg²⁺, Sr²⁺, Ba²⁺,Mn²⁺, Fe²⁺, Pb⁺ wirken. Im neutralen bis alkalischen Bereich kann zudem auch Ca²⁺ in Lösung Einfluss auf die Reaktionsgeschwindigkeit von Calcit haben (MARINI, 2007).

Die Löslichkeit von Dolomit ist in ihrer Abhängigkeit von Temperatur, pH und Ionenstärke ähnlich derjenigen von Calcit, jedoch ist die Lösungsrate im Allgemeinen geringer. So liegt sie bei neutralem pH im Schnitt bei 10^{-7,5} mol/m²s (PALANDRI AND KHARAKA, 2004), kann aber im gleichen pH-Bereich sehr unterschiedlich sein (MARINI, 2007). So ergeben sich bei pH-Werten zwischen 6 und 12 Lösungsraten von 10⁻¹¹ bis 10⁻⁷ mol/m²s.

Für Siderit gilt ebenfalls eine ähnliche Abhängigkeit der Kinetik von den genannten Einflussfaktoren, wie Temperatur und pH-Wert. Wie beim Dolomit sind auch in diesem Fall die Lösungsraten niedriger als die von Calcit. Nach GOLUBEV ET AL. (2009) erfolgt für den sauren Bereich (2 < pH < 5) eine lineare Abnahme der Lösungsrate mit zunehmendem pH-Wert und nach GREENBERG AND TOMSON (1992) ein Abnahme der Lösungsrate mit steigender Temperatur ($10^{-10,8}$ mol/m²s bei 25°C auf $10^{-11,4}$ mol/m²s bei 94°C).

Quarz

Quarz, welcher nahezu aus 100% SiO₂ besteht und nur in Spuren andere Oxide eingebaut hat, liegt in Tonsteinen in trigonaler Form vor. Sein Anteil ist sehr variabel, liegt in den meisten beschriebenen Deckgesteinen aber zwischen 10 und 25 % (u.a. GAUS ET AL., 2005; ANDREANI ET AL., 2008; KOHLER ET AL., 2009; ALEMU ET AL., 2011). Die Lösung von Quarz erfolgt nach der Gleichung:

$$SiO_{2(s)} = SiO_{2(aq)}$$

$$[2.11]$$

Bei tiefen Temperaturen ($\leq 100^{\circ}$ C), welche für diese Arbeit von Bedeutung sind, wird die Löslichkeit deutlich durch die Temperatur beeinflusst. So nimmt die Lösungsrate mit steigender Temperatur (23°C bis 100°C) zu (BRADY AND WALTHER, 1990; PALANDRI AND KHARAKA, 2004). Eine Temperaturerhöhung von 23°C auf 100°C führt beispielsweise zu einem Anstieg der Lösungsrate von 10^{-13,4} auf 10^{-10,2} mol/m²s (Tab. 2.02).

Temperatur	Log R*	
[°C]	[mol/m ² s]	
23	-13,4	
50	-12,2	
70	-11,3	
100	-10,2	

Tab. 2.02: Temperaturabhängiger Logarithmus der Lösungsraten von Quarz in Wasser bei neutralem pH-Wert (nach PALANDRI, J.L. AND KHARAKA, Y.K., 2004)

*Die Ermittlung der Lösungsrate durch TESTER ET AL. (1994) erfolgte auf Basis der geometrischen Oberflächenberechnung.

Neben dem Einfluss der Temperatur besteht bei Lösungsvorgängen von Quarz auch eine Abhängigkeit vom pH-Wert. Während sich im pH-Bereich zwischen 3 und 6,5 die Lösungsrate kaum ändert, erfolgt bei Werten > 6,5 eine deutliche Zunahme mit steigendem pH. So führt bei 25°C der Anstieg des pH-Wertes von 5,5 auf 11 zu einer Erhöhung der Lösungsrate von $10^{-16,4}$ auf $10^{-15,2}$ mol/m²s, bei einer pH-Wert Änderung von 4,7 auf 10,8 bei 60°C sogar von $10^{-15,4}$ auf $10^{-13,3}$ mol/m²s (BRADY AND WALTHER,1990). Im Zusammenhang mit der CO₂-Speicherung erfolgt nicht nur die Lösung von Quarz, son-

dern auch dessen Neubildung. Insbesondere Reaktionen von Kalifeldspäten können dabei zu einer Bildung von sekundärem Quarz führen (Gl. 2.12).

Feldspäte

Neben den drei Hauptmineralphasen (Tonminerale, Karbonate und Quarz) treten mit einem Anteil < 10 % auch Feldspäte in Deckgesteinen auf. An Reaktionsvorgängen in Verbindung mit der Speicherung von CO₂ können sowohl Kalifeldspäte (KAlSi₃O₈), also auch Albit (NaAlSi₃O₈) u./o. Anorthit (CaAl₂Si₂O₈) beteiligt sein.

Nach KETZER ET AL. (2009) reagieren K-Feldspäte und Albit mit dem gelösten CO_2 und dem auf der Lösung von Calcit basierenden Eintrag von Calcium, zu Calcit (CaCO₃), Kaolinit (Al₂Si₂O₅(OH)₄) und Quarz (SiO₂):

$$2KAlSi_{3}O_{8} + 2NaAlSi_{3}O_{8} + Ca^{2+} + CO_{2} + 4H_{2}O$$

$$\rightarrow 2CaCO_{3} + 2Al_{2}Si_{2}O_{5}(OH)_{4} + 2Na^{+} + 2K^{+} + 8SiO_{2} \qquad [2.12]$$

Neben Kalifeldspat und Albit können aus Reaktionen von Anorthit die Minerale Calcit und Kaolinit neu gebildet werden (GAUS AND CZERNICHOWSKI-LAURIOL, 2005):

$$CaAl_2Si_2O_8 + CO_2 + 2H_2O \rightarrow CaCO_3 + 2Al_2Si_2O_5(OH)_4$$
 [2.13]

Allen beschriebenen Feldspäten gemein, ist dabei die Abhängigkeit des Lösungsverhaltens von der Temperatur und dem pH-Wert (HELGESON ET AL., 1984; MURPHY AND HELGESON, 1987). Wie auch bei den Tonmineralen gilt für den pH-Wert, dass die Lösungsrate im neutralen Bereich (zwischen 5 und 8) am geringsten ist. Mit zunehmender Alkalinität, sowie Versauerung der Lösung steigt die Rate hingegen deutlich an (Abb. 2.05). Eine Zunahme der Lösungsrate erfolgt auch mit steigender Temperatur, ihr Einfluss ist jedoch für die jeweiligen Feldspäte unterschiedlich stark. Bewirkt ein Anstieg von 25°C auf 100°C für Anorthit eine Zunahme der Lösungsrate von rund 10⁻⁹ auf rund 10^{-8,5} mol/m²s, erhöht sie sich für Kalifeldspat von rund 10^{-12,5} auf 10⁻¹¹ mol/m²s und für Albit von rund 10⁻¹¹ auf rund 10^{-9,5} mol/m²s (Abb. 2.05; MARINI, 2007). Neben dem deutlichen Einfluss der Temperatur auf das Lösungsverhalten von Albit zeigt sich zudem, dass die Lösung von Kalifeldspat im Vergleich zu Anorthit und Albit deutlich langsamer abläuft.

Abb. 2.05: Logarithmus der Lösungsrate von Albit, Kalifeldspat und Anorthit in Abhängigkeit vom pH-Wert und der Temperatur. **a**) Die Lösungsrate von Albit steigt mit zunehmender Temperatur sowie Versauerung und/oder Alkalinität der Lösung und ist am geringsten im pH-Bereich zwischen 6 und 8. **b**) Die Lösungsrate von K-Feldspat steigt mit zunehmender Temperatur sowie Versauerung und/oder Alkalinität der Lösung. Bei neutralem pH-Wert ist die Lösungsrate am geringsten. Bei 25°C erstreckt sich der Bereich geringster Lösungsrate bis zu einem pH-Wert zwischen 10 und 11. **c**) Die Lösungsrate von Anorthit steigt mit zunehmender Versauerung der Lösung und ist am geringsten bei leicht saurem bis neutralem pH-Wert. Für den alkalischen Bereich existiert keine Datengrundlage. Der Einfluss der Temperatur auf das Lösungsverhalten ist gegenüber Albit und Kalifeldspat deutlich geringer (MARINI, 2007).

Anhydrit

Anhydrit (CaSO₄), welcher im orthorhombischen Kristallsystem kristallisiert, gehört zu den wasserfreien Sulfaten und tritt in einigen tonigen Deckgesteinen mit einem Gehalt von < 15 % auf. Die Art und Geschwindigkeit der Lösungsprozesse von Anhydrit ist nur wenig dokumentiert, generell verhält sich seine Löslichkeit im Gegensatz zu vielen hier beschriebenen Mineralen retrograd zur Temperatur (MARSHALL ET AL. 1964; BLUNT AND DICKSON, 1969), so dass mit zunehmender Temperatur (Bereich 40 - 450°C) seine Löslichkeit sinkt. Neben der Temperatur hat auch die Salinität der Lösung Einfluss auf das Lösungsverhalten von Anhydrit. Mit zunehmendem Salzgehalt steigt die Löslichkeit deutlich an, so nimmt sie bei 25°C und einem Anstieg des Salzgehaltes von 0 auf 1 mol/kg um den Faktor 3 zu, bei 100°C sogar um den Faktor 5 (MARSHALL ET AL. 1964, BLUNT AND DICKSON, 1969).

2.3 CO₂-Leckagen aus dem geologischen Speicher

"Die Grundvoraussetzung für die Auswahl von Speichern ist, dass kein CO_2 austritt. Da Leckagen aber nicht ausgeschlossen werden können, dürfen pro Jahr maximal 0,01 Prozent der gespeicherten CO_2 -Menge entweichen" (UMWELT BUNDES AMT, 2010).

Damit diese Zahl nicht überschritten wird, ist es wichtig, potentielle Möglichkeiten einer Leckage im Vorfeld zu erkennen und damit das Risiko eines Austritts von Kohlendioxid einzudämmen. Nach ZWEIGEL ET AL. (2004) und ESPIE (2004) lassen sich Wegsamkeiten mit größter Wahrscheinlichkeit für eine CO₂-Leckage in drei Bereiche einteilen:

Leckage durch anthropogen geschaffene Wegsamkeiten

Bei anthropogen erschaffenen Wegsamkeiten (Abb. 2.06 E), handelt es sich in erster Linie um aktive Injektionsbohrungen und alte verschlossene Bohrungen. Sie gelten als die wahrscheinlichsten Quellen einer schnellen CO₂-Leckage, da eine kontinuierliche Verbindung zwischen der Erdoberfläche und dem Untergrund besteht (GASDA ET AL., 2004; BENSON ET AL., 2005). Misslingt bei einer Bohrung beispielsweise die Bohrlochwandung oder verlieren alte versiegelte Bohrungen unter Einfluss von CO₂ ihre Dichtigkeit, stellt dies ein potentielles Risiko für einen Gasaustritt dar (GASDA ET AL., 2004).

Migration durch das Deckgestein

Die Migration von Gas durch das Deckgestein (Abb. 2.06 A) hat KROOS ET AL., 1992 in zwei Hauptmechanismen zusammen gefasst. Der erste ist die molekulare Diffusion der Gaspartikel durch den mit Wasser gesättigten Porenraum des Deckgesteins. Ein kontinuierlich, langsam stattfindender Prozess, dessen Leckagerate deutlich geringer ist, als beim zweiten Migrationsprozess (LI ET AL., 2006). Dieser zweite Prozess wird als langsamer Darcy-Fluss bzw. Volumenstrom bezeichnet und ist eine Migration der Gasphase (CO₂) durch das Porensystem. Er findet dann statt, wenn der Differentialdruck, bei dem das Gas das Deckgestein erreicht, den Kapillarschwellendruck des Deckgesteins überschreitet und dadurch das Porenwasser aus den Poren verdrängt wird (DULLIN, 1992; LI ET AL., 2005).

Leckage durch Öffnungen im Deckgestein und Störungszonen

Klüfte und Störungszonen können, neben der CO₂ Migration durch das Deckgestein ebenfalls zu einem Austritt aus dem Speicher führen (Abb. 2.06 B, C, D). Dabei steht die Reaktivierung von dichten Störungszonen im Vordergrund, welche sowohl durch natürliche Prozesse, als auch durch anthropogene Einflüsse erfolgen kann. Anthropogen induzierte Reaktivierung kann während der Injektion von CO₂ in den Speicher erfolgen. Dies geschieht, wenn der entstehende Druck die effektive Normalspannung reduziert und somit die Scherfestigkeit einer Störungszone im Deckgestein herabsetzt. Als Folge ist eine Reaktivierung von Störungszonen ermöglicht (SHUKLA ET AL., 2010). Neben anthropogenen Einflüssen können auch natürliche Veränderungen, wie tektonische Aktivitäten zur Bildung von undichten Störungszonen oder Reaktivierung von ehemals dichten Störungszonen führen.

A - CO2 überschreitet kapillaren Schwellendruck und tritt in den Siltstein ein

- B Freies CO₂ gerät über A in ein Störungszone
- C CO₂ entweicht durch eine Lücke im Deckgestein in den höher gelegenen Aquifer
- D Injiziertes CO₂ migriert abwärts u. erhöht den Druck im Reservoir und die Permeabilität von Störungszonen
- E CO₂ entweicht durch alte, ungenügend abgedichtete Bohrungen
- F Natürlicher Fluss löst das CO2 an der CO2-Wasser Grenzschicht und transportiert es weg

Abb. 2.06: Natürliche und anthropogen induzierte Möglichkeiten für einen Austritt von Kohlendioxid (CO₂) aus einem geologischen Speicher (modifiziert aus BENSON ET AL., 2005).

2.4 Stand der Forschung zur Deckgesteinsalteration

Die meisten Studien hinsichtlich CO₂-Wasser-Gesteinsreaktionen beziehen sich auf die Lithologie der Reservoire in denen das CO₂ gespeichert wird. Die Forschung an Deckgesteinen gewann erst in den letzten Jahren an Bedeutung und Veröffentlichungen, die sich nicht nur auf theoretische Modellierungen beziehen, sind lediglich in begrenzten Umfang vorhanden. Autoren wie KASZUBA ET AL. (2003), ANDREANI ET AL. (2008), CREDOZ ET AL. (2009), KOHLER ET AL. (2009), ALEMU ET AL. (2011) und LIU ET AL. (2012) haben Batchexperimente an Deckgesteinen durchgeführt und veröffentlicht.

Experimente an einem Gesteinsmodell, das einen Aquifer und einen Aquitard repräsentiert, erfolgten durch KASZUBA ET AL. (2003). Als Aquifer diente eine künstlich erzeugte Arkose, den Aquitard bildeten Proben des Silurian Maplewood Shale (Monroe County, New York). Aquifer und Aquitard wurden zur Reaktion und bis zum Erreichen eines Fließgleichgewichts für 59 Tage bei 200°C und 200 bar einer sich an dem Fluidchemismus des Delaware-Beckens orientierten, künstlich Lösung ausgesetzt. Im Anschluss wurde in das System CO₂ injiziert und das Experiment für 89 Tage bei gleichen T- und p- Bedingungen weiter-

geführt. Infolge der Reaktionen nach Injektion des CO_2 kam es zu einem einmaligen Anstieg der Konzentration der Ionen (K⁺, Ca²⁺, Mg²⁺, Cl⁻, Na⁺) in Lösung, gefolgt von einer kontinuierlichen leichten Abnahme über die gesamte Dauer des Experimentes. Texturen an den Silikaten des Silurian Maplewood Shales wiesen auf abgelaufene Reaktionen hin. Zudem wurde die Präzipitation von Karbonaten, sowie die Bildung von Magnesit und Analcim nachgewiesen (KASZUBA ET AL., 2003).

ANDREANI ET AL. (2008) führten Durchflussexperimente an gebrochenen Tonsteinen (Upper Toarcia Formation, Tournemire) bei einem CO₂-Druck von 0,12 MPa und einer Temperatur von 25° C durch. In der Zeit von 33 Tagen wurde dabei sowohl eine CO₂-gesättigte Lösung, als auch wassergesättigtes CO₂ durch das Deckgestein geleitet. Die Ergebnisse zeigten in Folge der Lösung von Calcit und Quarz einen starken Anstieg der Porosität im Bereich des Bruchs. Der Wechsel zwischen Gas- und Fluidphase führte zudem zu einer Erweiterung dieses Bereichs.

CREDOZ ET AL. (2009) veröffentlichten eine Kombination von experimentellen und modellierten Ergebnissen zur geochemischen Reaktivität der Deckgesteine (Chinle Formation, Utah, USA und Comlanchien Formation, Pariser Becken, Frankreich) bei Kontakt mit CO₂ unter Speicherbedingungen. Die Experimente erfolgten über einen Zeitraum von 30 bis 360 Tagen, bei Temperaturen von 80°C bis 100°C und Drücken von 1 bis 150 bar. Die unterschiedlichen Drücke ermöglichten es, zum einen die Reaktivität der Deckgesteine in Kontakt mit Lösung und gelöstem CO₂, zum anderen die Reaktivität in Kontakt mit Lösung und superkritischem CO₂ zu untersuchen. Die Experimente mit superkritischem CO₂ und Lösung führten zu einer starken Calcit- und Fe-Dolomit-Lösung und zur partiellen Lösung von Kaolinit. Bei den Experimenten mit gelöstem CO₂ kam es ebenfalls zur Lösung von Calcit und Fe-Dolomit, so wie zu einer Neubildung von Karbonaten, deren Zusammensetzung nicht bestimmt wurde (CREDOZ ET AL., 2009). Zusätzlich wurde bei 150°C eine Destabilisierung des Smektits in den Illit/Smektit-Wechsellagerung beobachtet, welche zusammen mit der Lösung von Kaolinit zur Bildung von neuen Mg-Fe-Smektiten führte.

Batchexperimente am Deckgestein der Callovo-Oxfordian Formation bei Saint Martin de Bossenay (Pariser Becken, Frankreich) wurden durch KOHLER ET AL. (2009) durchgeführt. Bei einer Temperatur von 150°C und einem Druck von 100 bar sind sowohl Pulverproben, als auch Bruchstücke für 30 bis 60 Tage einer Lösung mit unterschiedlichem CO_2/H_2O -Verhältnis ausgesetzt worden. Die Alteration der Festphasen unterschied sich, unabhängig der unterschiedlichen CO_2/H_2O -Verhältnisse, nicht groß voneinander. Es kam zu einer Neubildung von Tonmineralen (Kaolinit) und Karbonaten. Zudem wurde die Lösung und Repräzipitation von Anhydrit und eine Illitisierung des Smektits in der Illit/Smektit-Wechsellagerung nachgewiesen. In Abhängigkeit des CO₂-Gehaltes kam es zu unterschiedlichen Kationenanreicherungen im Illit. Die CO₂-reichen Proben zeichneten sich durch Fe²⁺- und K⁺-angereicherten Illit aus, wohingegen in den CO₂-freien Proben Illit nachgewiesen wurde, welcher Al³⁺-abgereichert und Mg²⁺-angereichert war. Nach KOHLER ET AL. (2009) ist es möglich, dass besonders die Illitisierung zu einer Abnahme der Plastizität führt, welche das mechanische Verhalten des Gesteins stark beeinflussen kann.

ALEMU ET AL. (2011) untersuchte bei 80°C bis 250°C und 110 bar in Batchexperimenten das reaktive Verhalten von zwei Deckgesteinstypen aus der Adventdalen Group und Janusfjellt Subgroup (Norwegen). Hierzu wurden die Deckgesteine (karbonatreicher Schiefer und tonreicher Schiefer) zerkleinert und für 1 bis 5 Wochen mit einer Mischung aus Lösung und superkritischem CO₂ zur Reaktion gebracht. In allen Experimenten kam es in dieser Zeit zu einer Zunahme von Ca²⁺, Mg²⁺, Fe³⁺, K⁺, Al³⁺ und SiO₂ in Lösung. Während jedoch der tonreiche Schiefer keine Alterationen aufwies, erfolgte beim karbonatreichen Schiefer eine Lösung und Repräzipitation der Karbonate. Außerdem wurden Plagioklas, Illit und Chlorit gelöst und sekundärer Smektit gebildet. Die Bildung des Smektits wurde dabei nach ALEMU ET AL. (2011) vor allem durch die Lösung von Ankerit und die damit verbundene Mg²⁺-Freisetzung bedingt.

In Batchexperimenten von LIU ET AL. (2012) sind Gesteinschips vom Deckgestein der Eau Claire Formation (Wisconsin) bei 300 bar und 200°C für 29 Tage mit einer synthetischen Lösung in ein Fließgleichgewicht gebracht und anschließend für 23 Tage unter gleichen Bedingungen mit CO₂ versetzt worden. Danach erfolgte über 28 Stunden eine Abkühlung des Systems auf 56°C und eine Fortführung der Experimente für eine Woche. Bedingt durch die experimentellen Parameter kam es in den Gesteinsproben zu einer geringen Lösung von K-Feldspat und Anhydrit. Die Lösung von Anhydrit wurde nach LIU ET AL. (2012) als Folge des Abkühlens des Systems gewertet. Ferner wurden die Präzipitationen von porenfüllendem und porenüberbrückendem Illit und/oder Smektit, sowie die Präzipitation von Siderit nachgewiesen.
Kapitel 3

Lokation und Lithologie der Deckgesteine

Für die Versuchsreihen wurden vier pelitische Deckgesteine aus unterschiedlichen Lokationen ausgewählt. Es handelt sich um Bohrkernproben vom Opalinuston aus der Nordschweiz (St. Ursanne), vom Boom Clay aus Belgien (Mol) und vom Tonstein der Weser-Formation aus Deutschland (Ketzin) (Abb. 3.01). Zusätzlich wurden Kernstücke eines Deckgesteins der Firma Shell International Exploration and Production verwendet, dessen genaue Lokation der Geheimhaltung unterliegt.

Abb. 3.01: Geographische Lage der drei Deckgesteinsvertreter aus Europa: (1) Opalinuston in der Nordschweiz (St. Ursanne), (2) Boom Clay in Belgien (Mol) und (3) Tonstein der Weser-Formation in Deutschland (Ketzin) (Kartenmaterial: GOOGLE EARTH, 2014)

3.1 Opalinuston

Der Opalinuston, welcher in dieser Arbeit als Hauptreferenzmaterial verwendet wurde, ist ein dunkelgrauer, feinkörniger, überkonsolidierter Tonstein mit einer homogenen Lithologie. Die Bohrung der Proben erfolgte senkrecht zur Schichtung in der siltig-schiefrigen Fazies im Felslabors von Mont Terri. Das seit 1996 aktive Labor im Berg *Mont Terri* befindet sich im Kanton Jura, in der Nähe von Saint-Ursanne (Schweiz). In ihm wird der Opalinuston als potentielles Wirtsgestein für radioaktive Endlagerung ausführlich hydrogeologisch, geochemisch und geotechnisch charakterisiert (HTTP://WWW.MONT-TERRI.CH, Stand Oktober 2011).

Seinen Namen verdankt das aus dem Dogger α (180 bis 178 Ma) stammende Gestein, welches zum Faltenjura der Schweiz gehört, dem häufig vorkommenden Ammoniten *Leioceras opalinum* (QUENSTEDT 1843, 1858). Im Bereich des Felslabors ist der Opalinuston zusammen mit Kalksteinen und Evaporiten nördlichster Bestandteil einer 50 km langen Antiklinalen, die in Mont Terri eine asymmetrische, domförmige Falte bildet. Der SSE gerichtete Einfallswinkel reicht von 20° bis 60° (MARSCHALL ET AL., 2004). Stratigraphisch liegt der Opalinuston unter den Kalksteinen des Doggers und über den Mergeln und Kalksteinen des Lias (Abb. 3.02). Seine 150 m breite Sequenz ist im Bereich des Felslabors in fünf lithologische Untereinheiten unterteilt: der siltig-schiefrigen Fazies (80 m) im Nordwesten, der karbonatreichen-sandigen Fazies (5 bis 15 m), der sandig-mergeligen Fazies (10 bis 15 m), der siltig-schiefrigen Fazies (20 m) und der sandigen Fazies (40 m mächtig) im Südosten (Abb. 3.03; PEARSON ET AL., 2003).

Abb. 3.02: Geologischer Querschnitt durch die Mont Terri Antiklinale mit dem Felslabor und der parallel zum Felslabor verlaufenden Autobahn (weiß) (HTTP://WWW.MONT-TERRI.CH, Stand 2013, nach FREIVOGEL & HUGGENBERGER, 2003).

Abb. 3.03: Geologisch-strukturelle Karte des Faltenjuras, im speziellen vom Opalinuston, im Bereich des Felslabors. Dargestellt sind außerdem das Faltensystem und die Lokation der gebohrten Proben (rotes Kreuz) (HTTP://WWW.MONT-TERRI.CH, 2011).

3.2 Boom Clay

Die Proben des Boom Clay stammen aus Mol im Nordosten von Belgien, rund 50 km südöstlich von Antwerpen und 90 km westlich von Mönchengladbach. Zur Verfügung gestellt wurden sie von ONDRAF/NIRAS SCK-CEN (HADES Projekt).

Im Untertagelabor HADES, das sich in 224 m Tiefe befindet, werden am 100 m mächtigen Boom Clay Untersuchungen hinsichtlich seiner Eignung für radioaktive Endlagerung durchgeführt (HTTP://WWW.SCKCEN.BE; Stand 2011).

Der Boom Clay ist ein dunkelbrauner, normal konsolidierter, homogener, mariner Ton des Rupeliums (Oligozän). Er steht im Campine-Becken an und streicht entlang einer NW-SE-Linie nahe an Mechelen vorbei und wird Richtung NE von der belgischen Provinz Campine und den Niederlanden begrenzt (BEAUCAIRE ET AL., 2000). Stratigraphisch liegt er unter den frühmiozänen bzw. lokal spätoligozänen Sanden (VINKEN, 1988). Er überlagert früholigozäne, diachronische Ruisbroek-Sande (ECHELPOEL & WEEDEN, 1990; BEAUCAIRE ET AL. 2000). Zusammen mit den Sanden von Berg aus der Bilzen-Formation bilden die Ruisbroek-Sande den "Rupelium Aquifer" (BEAUCAIRE ET AL. 2000).

Abb. 3.04: Geologischer Querschnitt durch das Campine Becken im Nordosten von Belgien. Im Bereich C befindet sich das Untertagelabor Hades (WWW.SCKCEN.BE, 2011).

3.3 Deckgestein der Firma Shell

Bei dem Probenmaterial handelt es sich um ein schwarzes, pelitisches Gestein aus einer Tiefe zwischen 825 und 823 m. Die genaue Herkunft des Gestein wird aus Geheimhaltungsgründen nicht dargestellt. Da das Probenmaterial von *Shell International Exploration and Production* zur Verfügung gestellt wurde, werden die Proben im Folgenden als Deckgesteine von Shell bezeichnet.

3.4 Tonstein der Weser-Formation

Die verwendeten Tonsteinproben der Weser-Formation stammen aus Ketzin, einem Pilotstandort für CO₂-Speicherung (HTTP://WWW.CO2KETZIN.DE; Stand 2011). Er befindet sich rund 50 km westlich von Berlin und 20 km nordwestlich von Potsdam und gehört zum NEdeutschen Becken (NEDB; PREVEDEL ET AL. 2008). Gebohrt wurden die zur Verfügung gestellten Bohrkerne (Bohrung: Ktzi 200/2007) im Rahmen des CO₂SINK-Projektes. Der Anhydrit führende, rotbraune, feinkörnige Tonstein der Weser-Formation (Abb. 3.05)

gehört der Playa-Fazies an. Diese setzt stratigraphisch mit der Grabfeld-Formation (Hoer Blob) gehört der Playa-Fazies an. Diese setzt stratigraphisch mit der Grabfeld-Formation und wird durch die 80 m mächtigen Schilfsandsteine der Stuttgart-Formation unterbrochen. Darüber folgt die in 629 bis 560 m Tiefe gelegene Weser-Formation (Oberer Gipskeuper), welche zusammen mit der darüber liegenden Arnstadt-Formation die Deckgesteine des CO₂-Speichers bildet (PREVEDEL, 2008). Die Playa-Fazies wird schließlich durch die Exter-Formation beendet. Bedingt durch Bewegung von Salzmassen im Norddeutschen Raum sind die Gesteinsschichten lokal stark deformiert. Der Standort Ketzin bildet die südliche Flanke einer leicht einfallenden NNO-SSW streichenden Antiklinale. Geformt hat sie sich über einem in 1500 bis 2000 m Tiefe gelegenem Salzkissen, dessen Flanken mit 15° einfallen (FÖRSTER ET AL., 2006).

Abb. 3.05: Vereinfachtes geol. Modell der Antiklinale bei Ketzin, mit Aquifer (gelb) und Aquitard (rosa). Die Bezeichnungen Ktzi xx/xx zeigen die Bohrungen mit genauem lithologischem Profil an. Störungen sind als schwarze gestrichelte Linien dargestellt. Der dunkelblaue Bereich in der CO₂-Speicherformation markiert das injizierte CO₂ (FÖRSTER ET AL., 2009).

Kapitel 4 Experimenteller Aufbau und Parameter

Um Reaktionen zwischen Deckgestein und CO₂-gesättigter Lösung, speziell im Bereich von Störungszonen, zu untersuchen und daraus Rückschlüsse über die Entwicklung der Integrität und Stabilität in diesem Bereich (Kapitel 2.3) ziehen zu können, wurden die im Folgenden beschriebenen Versuchsreihen durchgeführt.

4.1 Erzeugung künstlicher Störungszonen

Der erste experimentelle Abschnitt diente der Erzeugung von künstlichen Störungszonen und der Bestimmung geomechanischer Eigenschaften von potentiellen Deckgesteinen vor und nach Einwirkung einer CO₂-gesättigten Lösung. Entworfen und durchgeführt wurde diese Versuchsreihe am Institut für Bodenmechanik und Felsmechanik (IBF, KIT). Zu Beginn wurden die Bohrkerne auf einen Durchmesser von 5,9 < 6 cm reduziert (Abb. 4.01 a; Fräsen bei Maus GmbH in Grötzingen (Karlsruhe) u. Drehen am IBF) und anschließend mit *UHU plus endfest 3002-K-Epoxidharzkleber* in einen Edelstahlring eingeklebt (Abb. 4.01 b; Werkstoff Nr. 1.4571, Innendurchmesser: 6 cm, Höhe: 2 cm). Danach erfolgt das Planschleifen der Probenoberflächen auf Ringhöhe (Abb. 4.02 a).

Abb. 4.01: **a)** Opalinuston nach Reduktion des Durchmessers mittels Fräsmaschine bei Maus GmbH. **b)** Edelstahl Probenringhalter (Innendurchmesser: 6 cm, Außendurchmesser: 7 cm, Höhe: 2 cm) mit äußerem Dichtring (schwarz).

Für die Erzeugung der ringförmigen Störungszone wurden die Proben, zusammen mit einer Stanzmatrize (Probenoberseite; Abb.4.02 b vorne links) und einem Stempel (Probenunterseite; \emptyset 2,5 cm; Abb.4.02 b vorne rechts), zwischen zwei Druckstempel platziert und in ein dickwandiges Mantelrohr eingeschoben. Danach erfolgte das Einspannen der gesamte Einheit in eine 600 kN Druckprüfmaschine mit Wegeregelung (Abb.4.02 c - d) und das Aufbringen eines beidseitigen Drucks (F). Der eingestellte Scherweg der Maschine lag bei 1,5 mm, die Geschwindigkeit des Stanzvorganges betrug v = 0,02 mm/min.

Abb. 4.02: Versuchsaufbau zur Erzeugung künstlicher Störungszonen und Bestimmung geomechanischer Eigenschaften. a) In den Edelstahlring eingebaute und plangeschliffene Probe (Opalinuston) b) Stanzmatrize und Stempel (vorne), sowie Druckstempel mit aufgesetzter Matrize und Stempel (hinten) c) Durchlässigkeitsmesszelle mit Stanzwerkzeug (in diesen Versuchsreihen erfolgten keine Durchlässigkeitsmessungen). d) Durchlässigkeitsmesszelle mit Stanzwerkzeug eingesetzt in 600 kN Druckprüfmaschine (Bilder b bis d zur Verfügung gestellt vom IBF).

Aus dem Stanzvorgang einer Probe ergab sich die in Abbildung 4.03 dargestellte Entwicklung der Scherspannung über den Scherweg, angegeben als Kraft-Verschiebungs-Kennlinie. Im ersten Abschnitt erfolgt eine progressive Zunahme der Scherspannung (grün), welche in eine degressive Zunahme übergeht (rot) und im Maximum der Scherspannung endet.

Das Maximum der Scherspannung, im höchsten Punkt der Kurve, bestimmt die Scherfestigkeit des Probenmaterials unter den gegebenen experimentellen Bedingungen. Die Höhe des Scherspannungsmaximums und die Länge des Scherweges bis zum Erreichen dieses Maximums hängt dabei im wesentlichen von den Materialeigenschaften und der Zusammensetzung des Gesteins ab. Grundsätzlich gilt, je dichter das Material ist, desto kürzer ist der Scherweg bis zum Erreichen des Scherspannungsmaximums und je fester, desto höher die Scherspannung (PRINZ, 1982).

Im hinteren Abschnitt der Kurve befindet sich der Bereich der durch die Restscherfestigkeit (minimaler Wert der Scherspannung nach Erreichen des Maximums) bestimmt wird (ENGL ET AL., 2008). Die Restscherfestigkeit wird nach großem Scherweg erreicht, ist stoffabhängig und kann mit der Einregelung von Schichtsilikaten erklärt werden (PRINZ, 1982; BROSCH & RIEDMÜLLER, 1988).

Abb. 4.03.: Beispielergebnis aus dem Stanztest am Opalinuston (CS_34: Bohrung BCS-3; Tiefe 1,25-1,3 m) zeigt die Entwicklung der Scherspannung über den Scherweg. Die grün und rot markierten Kurvenabschnitte zeigen schematisch die progressive (grün) und degressive Zunahme (rot) der Kurve.

4.2 Versuchsaufbau und Durchführung der Reaktionsexperimente

Um die Reaktivität von Deckgesteinen, im speziellen im Bereich von Störungszonen, bei Kontakt mit einer CO₂-gesättigten Lösung bestimmen zu können, wurden die folgend beschriebenen Reaktionsexperimente durchgeführt.

Im ersten Schritt erfolgte der Einbau der gescherten Deckgesteinsproben in die Reaktionszellen (Abb. 4.04). Hierfür wurden die Proben inklusive Stanzmatrize und Stempel in die Reaktionszellen, bestehend aus zwei Deckplatten und einem Außenring, eingebracht. Stempel und Stanzmatrize dienten dem späteren kontrollierten Fluiddurchfluss durch die Störungszone, zudem sollten sie eine Aufweitung der Proben im Bereich des Ein- und Austritts des Fluides unterbinden. Um einen Eintrag möglicher aus den Proben gelöster Partikel in die CO₂-gesättigte Lösung zu verhindern, wurde das System zu beiden Seiten mit Filterplatten (Siperm R60; Porendurchmesser: 0,06 mm) abgedeckt (Abb.4.04 a). Im unteren Bereich der Reaktionszelle, zwischen Probe und Filterplatte, diente ein Delrinring¹ als Platzhalter für den Stempel. Der dadurch entstandene Hohlraum ist anschließend mit hochreinem, geglühtem Quarzsand verfüllt worden. Für einen kontrollierten Ein- und Auslass der Fluide in die bzw. aus den Reaktionszellen (Außendurchmesser: 13 cm, Höhe: 6 cm) sorgten spezielle Absperrhähne (Abb. 4.04 b).

Abb. 4.04: Reaktionszelle zur Bestimmung der Reaktivität von Deckgesteinen mit einer CO₂gesättigten Lösung im Bereich künstlich erzeugter Störungszonen. a) Schematischer Querschnitt der Reaktionszelle mit gescherter Probe in der Mitte und markiertem Fluiddurchfluss b) Reaktionszelle mit Ausflusshahn und Messzylinder für das Fluid.

¹Handelsmarke der Firma DuPont. Delrin ist ein hochmolekularer thermoplastischer Kunststoff. (HTTP://WWW.DUPONT.COM; 2012)

Zur Durchführung der Experimente bei unterschiedlichen Temperaturen wurden die Reaktionszellen in zwei Reihen in Heizschränke der Firma Memmert (Memmert 700) eingebracht und dort an ein Röhrensystem angeschlossen (Abb. 4.05). Das Röhrensystem ermöglichte die Beaufschlagung der Proben mit der unter konstantem Druck verteilten CO₂gesättigten Lösung.

Abb. 4.05: a) Querschnitt der Heizschränke mit vier Temperaturstufen von 45°C bis 100°C. Dargestellt ist die Verteilung der Proben in den Schränken, sowie die CO_2 - Sättigungs- / Beaufschlagungs - Anlage in der Mitte. b) Heizschänke mit CO_2 - Sättigungs- / Beaufschlagungs - Anlage

Die Sättigung der Lösung mit CO₂ erfolgte über das in Abbildung 4.05 dargestellte Vorlagengefäß, einem hohlen Stahlzylinder mit einem Innenvolumen von 4 l. Dieser wurde mit einer NaCl-Lösung (Kapitel 4.3.3) gefüllt und anschließend an eine handelsübliche CO₂-Flasche (Reinheit \geq 99,995 %, p \leq 60 bar) angeschlossen. Unter definiertem Druck konnte so das CO₂ mit der Lösung in Kontakt gebracht werden. Nach Sättigung erfolgte die Zufuhr zu den in den Heizschränken befindlichen Proben. Druckmesser und Verteilereinheit gewährten während der gesamten Versuchsdauer eine gleichmäßige Verteilung bei konstantem Druck.

4.3 Experimentelle Parameter

4.3.1 Probenmaterial

Für die Experimentreihe stand Probenmaterial verschiedener Lokalitäten zur Verfügung (Kapitel 3). Das Hauptreferenzgestein bildete der Opalinuston aus Mont Terri, zum Vergleich wurden im kleineren Umfang die gleichen Experimente am Boom Clay, am Deckgestein von Shell und am Tonstein der Weser-Formation durchgeführt. Eine genaue Beschreibung der Mineralogie und Geochemie findet sich in Kapitel 6.

4.3.2 Druck, Temperatur und Zeit

Druck

Die Sättigung des Fluids mit CO_2 und die Beaufschlagung der Proben mit der gesättigten Lösung erfolgte bei einem Druck von 5 bar. Die Wahl des Drucks orientierte sich dabei hauptsächlich an der geringen Druckstabilität des gescherten Probenmaterials. Aus Vorversuchen im Rahmen dieser Studie, bei denen der Druck auf die in die Reaktionszellen eingebauten Proben kontinuierlich erhöht wurde, war festzustellen, dass Drücke > 5 bar zu einem Durchbruch der Proben führten. Dies geschah dann, wenn es bei Öffnung des Einund Auslasshahns zu einer Druckdifferenz zwischen Beaufschlagungsdruck (> 5 bar) und Beprobungsdruck (1 bar / Luftdruck) kam.

Temperatur

Für die Versuche wurden vier verschiedene Reaktionstemperaturen (45°C, 60°C, 75°C und 100°C) gewählt. Neben der Darstellung temperaturabhängiger Alterationsprozesse, sollten vor allem die hohen Temperaturen mögliche, in natürlicher Umgebung relativ langsam ablaufende Mineralreaktionen beschleunigen. Verdeutlichen lässt sich dies mit der Arrhenius-Gleichung (GILL, 1993):

$$k = A e^{\frac{-E_a}{RT}}$$
[4.1]

Die Reaktionsgeschwindigkeitskonstante wird durch k dargestellt (Einheit ist abhängig von ihrer Ordnung), A ist der präexponentielle Faktor und E_a (J/mol) die Aktivierungsenergie. Die Faktoren A und E_a sind materialcharakteristische Konstanten, R ist die Gaskonstante (8,314 J/mol K) und T die absolute Temperatur in Kelvin.

Für die meisten Reaktionen gilt die Faustregel (VAN'T HOFFSCHE REGEL, 1884), dass eine Temperaturerhöhung um 10°C die Reaktionsgeschwindigkeit um das zwei- bis vierfach erhöht.

Zeit

Um mögliche Alterationen des Gesteins zeitabhängig charakterisieren zu können, wurden vier verschiedene Reaktionszeiten gewählt. Die Dauer der jeweiligen Experimente am Opalinuston betrug 3 Monate, 6 Monate, 1 Jahr und 1,5 Jahre. Die Experimentdauer der drei anderen Deckgesteinsvertreter lag bei 9 Monaten bis 1 Jahr.

4.3.3 Fluid und CO₂-Sättigung

Um die Wechselwirkungen zwischen CO₂ und Gestein besser charakterisieren und Nebenreaktionen mit vorhandenen Ionen unterdrücken zu können, wurde für die Experimentreihe ein vereinfachtes Fluid aus H₂O (demineralisiert) und 10 g/l Natriumchlorid (zur Analyse; CAS-Nr. 7647-14-5) hergestellt. Die maximale Konzentration von Calcium und Kalium in der Lösung lag unter 10 mg/l, die von Magnesium, Silizium, Mangan, Aluminium und Eisen unter 1 mg/l und der pH-Wert im Schnitt bei 5,3.

Um die synthetische Lösung mit CO₂ zu sättigen, wurde das Fluid bei Raumtemperatur mit handelsüblichem CO₂ (Reinheit > 99,995%) beaufschlagt. Der CO₂-Druck wurde dabei auf 5 bar eingestellt. Wie viel CO₂ im Fluid gelöst wird, ist maßgeblich von der Salinität, der Temperatur, dem Partialdruck und dem pH-Wert abhängig und lässt sich in reinem Wasser mit dem Henry Gesetz (1803) ermitteln:

$$c(x) = \frac{p(x)}{k_H}$$
[4.2]

Die gelöste Menge c(x) ergibt sich dabei aus dem Partialdruck p(x) der zu lösenden Substanz und der temperaturabhängigen Henry-Konstanten k_H.

Nach CAROLL, SLUPSKY & MATHER (1991) lässt sich die Henry-Konstanten (k_H) bei geringen Drücken, unter Vernachlässigung des Aktivitätskoeffizienten, wie folgt berechnen:

$$\ln(k_H) = -6,8346 + \frac{1,2817*10^4}{T} - \frac{3,7668*10^6}{T^2} + \frac{2,997*10^8}{T^3}$$
[4.3]

T ist definiert als Temperatur in Kelvin. Die in CAROLL, SLUPSKY & MATHER (1991) verwendete Bezeichnung für die Henry Konstante H21 ist durch die allgemein gebräuliche Bezeichnung k_H ersetzt worden. Limitiert wird das Berechnungsmodell auf einen Druck von 1 MPa (entspricht 10 bar), da bei größeren Drücken die Löslichkeit von CO₂ bis zu einem Punkt ansteigen würde, an dem der Aktivitätskoeffizient nicht mehr vernachlässigbar ist (CAROLL, SLUPSKY & MATHER 1991).

Aus der gelösten Menge von CO_2 in reinem Wasser lässt sich nach ENICK & KLARA (1990) die Löslichkeit in Abhängigkeit der Salinität bestimmen:

$$\omega_{CO2,b} = \omega_{CO2,w} * (1,0 - 4,8934 * 10^{-2} * S + 0,1302 * 10^{-2} * S^2 - 0,1871 * 10^{-4} * S^3)$$
[4.4]

mit ω_{CO2} als CO₂-Löslichkeit, S Salinität des Wassers (Total Dissolved Solids -TDS- in Gew%), w für reines Wasser und b für salinare Lösungen.

Basierend auf den Berechnungen nach Gleichung 4.2 bis 4.4 ergibt sich, dass die Lösung nach Sättigung und bei Zufuhr zu den Heizschränken / Proben 8,14 gCO₂/lH₂O enthält. Es zeigt sich zudem, dass bei den gewählten Reaktionstemperaturen die CO₂-Löslichkeit sinkt (Tab. 4.01). In einem offenen System würde dies eine Entgasung des bei Raumtemperatur gesättigten Fluids bedeuten. In einem geschlossenem System wird hingegen bei Erhitzen des mit 8,14 gCO₂/l gesättigten Fluids, der Partialdruck des CO₂ deutlich ansteigen (bis 24 bar bei 100°C).

Temperatur	$\omega_{CO2,w}$	ω _{CO2,b}	ω _{CO2,b}
[°C]	[gCO ₂ /kgH ₂ O]	[gCO ₂ /kgH ₂ O]	[gCO ₂ /lH ₂ O] ¹
20^2	8,65	8,24	8,14
45	4,78	4,55	4,52
60	3,69	3,51	3,45
75	3,02	2,87	2,80
100	2,41	2,29	2,20

Tab. 4.01: CO₂-Löslichkeit in Wasser (w_{CO2,w}) und in salinaren Lösungen (w_{CO2,b}) in Abhängigkeit der Temperatur.

¹ Bezogen auf die Dichte der Lösung bei einer Salinität von 1 % (0,17 M) ² Durchschnittliche Raumtemperatur, bei der die Sättigung des Fluides mit CO_2 durchgeführt wurde

Der pH Wert des CO₂-gesättigten Fluides lag im Durchschnitt bei 4,5.

Kapitel 5 Instrumentelle Analytik und Modellierungen

Um die mineralogische und geochemische Zusammensetzung der Gesteinsproben qualitativ und quantitativ zu bestimmen und die durch die Experimente induzierte Alterationen zu ermitteln, wurden verschiedene analytische Methoden angewandt. Die Analytik wurde überwiegend am Institut für Mineralogie und Geochemie (IMG, KIT) durchgeführt. Die Aufnahmen per Rasterelektronenmikroskop erfolgten am Laboratorium für Elektronenmikroskopie (LEK, KIT) und die mikroskopischen Aufnahmen am Institut für Angewandte Geowissenschaften (Abteilung Mineralogie und Petrologie, KIT). Auf Basis der Fluidanalytik wurden zusätzlich mit dem Programm PHREEQC numerische Modellierungen durchgeführt.

5.1 Fluidanalytik

Für die Quantifizierung der Elemente, welche während der Reaktionsprozesse zwischen Gestein und CO₂-gesättigter Lösung mobilisiert wurden, sind aus den Reaktionszellen 1x wöchentlich Fluidproben entnommen und analysiert worden. Die Entnahme erfolgte durch öffnen der Auslasshähne an den Reaktionszellen und das Auffangen des austretenden Fluides mittels Messzylindern (Abb. 5.01).

Abb. 5.01: Lösungen nach CO₂-Fluid-Gesteinsreaktion aus 100°C Experimenten am Opalinuston. Verschiedene Färbungen basieren auf unterschiedlich hohem Anteil an gelöstem Probenmaterial, welches vor den analytischen Untersuchungen aus den Fluiden abfiltriert wurde.

pH-Wert, Redoxspannung und Leitfähigkeit

Für die Bestimmung des pH-Wertes und der Redoxspannung (U) der Fluide wurden Messung mit dem Handmessgerät pH 3110 der Firma WTW (Wissenschaftlich Technische Werkstätten) und den jeweils spezifischen Messelektroden durchgeführt.

Die Messungen erfolgten durch Eintauchen der Elektroden in die Flüssigkeiten (Mindestvolumen: 0,3 ml) bis zu einem stabilen Messwert. Die Genauigkeit kann mit \pm 0,4 Einheiten (\pm 0,1 pH 3110 und \pm 0,3 Messelektrode für pH und U) angegeben werden.

Die Leitfähigkeit (æ), der spezifische Widerstand (ρ), die Salinität (SAL) und der Filtrattrockenrückstand (TDS) wurden mit dem Leitfähigkeitsmessgerät COND 3310 der Firma WTW ermittelt. Die Genauigkeit der Leitfähigkeit, des spezifischen Widerstands und des Filtrattrockenrückstands lag bei ± 0,5 %, die der Salinität bei ± 0,1 (5 - 25°C) bzw. ± 0,2 (25 - 30°C) Einheiten.

Optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES)

Mit der ICP-OES (engl. Inductively Coupled Plasma - Optical Emission Spectrometry) des Typs Varian 715ES wurden die aus den Experimenten gewonnen Fluide auf ihren Elementgehalt hin analysiert. Die Messungen erfolgten für Calcium, Kalium, Magnesium, Natrium, Aluminium, Eisen, Mangan und Silizium, mit Nachweisgrenzen $\leq 0,1$ mg/l (K⁺: 0,5 mg/l). Als Standard dienten unterschiedlich konzentrierte (0; 5; 1; 10 und 50 mg/l) und zertifizierte Trinkwasserstandards (HPS - High Purity Standards).

Um eine einwandfreie Messung zu gewährleisten wurden im Vorfeld größere Partikel aus der Lösung entfernt. Dies geschah durch ein Aufziehen in eine Einmalspritze und ein Durchspülen der Lösung durch einen auf die Spritze aufgesetzten Celluloseacetat-Filter mit 0,2 µm Porenweite. Die zusätzliche Ansäuerung der gefilterten Fluide mit 1%iger HNO₃ unterdrückte mögliche Ausfällung.

5.2 Analytik der Festphasen

Dünnschliffmikroskopie

Zur optischen Bestimmung der, durch die Experimente hervorgerufenen mineralogischen Veränderungen im Bereich der Störungszonen, wurden Dünnschliffe des Referenzmaterials und der alterierten Proben hergestellt und mittels Durchlicht mit dem Mikroskop der Firma *Leica* untersucht.

Rasterelektronenmikroskopie (REM/ESEM)

Für Aufnahmen von kleinen Gesteinsbruchstücken, vor allem aus dem Bereich der Störungszonen und der Probenmitte, kam in Zusammenarbeit mit Herrn Zibat am Laboratorium für Elektronenmikroskopie (KIT) das Rasterelektronenmikroskop *LEO 1530 Gemini* zum Einsatz. Um eine Aufladung der Proben unter dem Mikroskop zu vermeiden, wurden diese im Vorfeld mit Kohlenstoff bedampft. Die anschließenden Aufnahmen erfolgten im Hochvakuum. Für genauere Bestimmung einzelner Mineralphasen ist zusätzlich die energiedispersive Röntgenstrahl - Analyse (EDX - engl. Energy Dispersive X - Ray Analysis) zur Verwendung gekommen.

Da es aufgrund der schlechten Leitfähigkeit des Materials weiterhin vereinzelt zu starken Aufladungen kam, erfolgten Analysen einzelner Proben am Elektronenmikroskop *Quanto FEG 650*. Vorteil des FEG 650 ist es, dass es auch im Niedrigvakuum und ESEM-Modus (engl. Environmental Scanning Electron Microscope) arbeiten kann. Zusammen mit dem Einbringen von Wasserdampf in die Probenkammer konnten Aufladungseffekte weitestgehend unterbunden werden. Da Gaspartikel in der Probenkammer jedoch generell eine Streuung des Elektronenstrahls hervorrufen, ist die Auflösung dieser Aufnahmen deutlich herabgesetzt.

Röntgenpulverdiffraktometrie (XRD)

Die qualitative Analyse der Mineralphasen erfolgte mit einem Diffraktometer des Typs *Siemens D500* (CuK α -Strahlung mit Wellenlänge 1,5405 Å; Bragg-Brentano-Geometrie). Gemessen wurden Pulverproben (Korngröße < 20 µm) bei einer Röhrenspannung des Gerätes von 40 kV und einem Röhrenstrom von 30 mA. Der Winkelbereich lag zwischen 3 und 63° Theta, die Winkelgeschwindigkeit bei 0,5°/min.

Um die Tonminerale besser charakterisieren zu können, sind zusätzlich Texturpräparate hergestellt und analysiert wurden. Hierzu ist ein Teil des Probenpulvers mit destilliertem Wasser und Ammoniak (10 ml NH₃ auf 1 l H₂O dest.) durch Schütteln im Ultraschalbad in Suspension gebracht worden. Im anschließendem Setzungsprozess kam er zur Abtrennung der Kornfraktion > 2 μ m nach dem Stoke´schen Gesetz, bei der die Tonfraktion in Schwebe blieb und abpipettiert werden konnte. Für die Messung dieser abgetrennten Fraktion erfolgte pro Probe die Herstellung von drei unterschiedlich behandelten Präparaten. Ein Präparat blieb unbehandelt, eins wurde 24 Stunden im Trockenschrank bei 60°C mit Glykol bedampft und eins für drei Stunden im Muffelofen bei 550°C geglüht. Die Bedampfung mit Glykol führt zu einer Aufweitung der quellfähigen Tonminerale und durch den dadurch hervorgerufenen größeren Schichtabstand zu einer Verschiebung der Peaklage im Diffraktogramm. Das Heizen der Tonproben kann bei einigen Mineralen (z.B. Kaolinit) zur Zerstörung des Kristallgitters führen, so dass im Diffraktogramm kein Peak mehr angezeigt wird. Ein Vergleich der Ergebnisse lässt dadurch eine genaue Charakterisierung der Tonminerale zu.

Winkeldispersive Röntgenfluoreszenzanalytik (WDXRF)

Die qualitative und quantitative Bestimmung der Elemente in den Feststoffproben erfolgt an Schmelztabletten mit dem Röntgenfluoreszenzspektrometer *S4 Explorer* der Firma *Bruker AXS* GmbH. Gemessen wurden die Elemente Natrium, Magnesium, Aluminium, Silizium, Phosphor, Kalium, Calcium, Titan, Mangan, Eisen, im späteren dargestellt als Oxide in Gew%, sowie Vanadium, Chrom, Kobalt und Nickel in ppm. Zur Herstellung der Schmelztabletten wurde das getrocknete Probenmaterial fein gemahlen und anschließende im Ofen bei 950°C geglüht, so dass flüchtige Bestandteile entweichen und Fe²⁺ zu Fe³⁺ umgewandelt werden konnte. Die flüchtigen Bestandteile (u.a. Wasser, Schwefelverbindungen und Kohlenstoff) führen zu einem Gewichtsverlust in der Probe, aus dem der Glühverlust (LOI - engl. loss on ignition) ermittelt werden kann.

Im Anschluss an den Glühvorgang sind 0,5 g des Probenmaterials mit 5 g Lithiumtetraborat (Schmelzmittel) schrittweise in Platintiegeln bei 1200°C aufgeschmolzen und anschließend in Tablettenform abgekühlt wurden.

Mikro-Röntgenfluoreszenzanalytik (µEDXRF)

Um an ausgewählten Proben die Elementverteilung über die Störungszone zu ermitteln, wurden Ausschnitte der Probenkörper mit dem *ORBIS Mikro EDXRF Spektrometer*, einem Röntgenfluoreszenzspektrometer für Punktanalysen und Mappings im μ m- bis mm- Bereich, analysiert. Die Messung erfolgte linienförmig über einen Bereich von 5 mm x 1 cm, mit jeweils einem Messpunkt im Abstand von < 75 μ m. Bei einer Spannung von 30 kV und einem Röhrenstrom von 250 μ A wurden die Elemente Natrium, Magnesium, Aluminium, Silizium, Kalium, Calcium, Eisen, Mangan und Chlor gemessen.

Simultane Thermoanalyse (STA - DTA/TG)

Neben der Phasenbestimmung mit dem Röntgendiffraktometer erfolgten zusätzlich Messungen mit dem *STA409 PC LUXX*. Das STA 409 PC LUXX ist ein Gerät zur simultanen Thermoanalyse. Neben temperapaturabhängigen Gewichtsverlusten in der Probe, die auf Entwässerung und Freisetzung von CO₂, SO₃ etc. beruhen (TG - Thermogravimetrie), werden auch die temperaturspezifischen Reaktions- und Umwandlungsprozesse, in Form von exothermen und endothermen Ausschlägen (DTA - Differentialthermoanalyse) nachgewiesen. Für die Messungen wurden 100 mg pulverisierte Proben, bei einer Heizrate von 10 K/min und 40 Messpunkten pro Minute, von 20 bis 1200°C erhitzt. Als Vergleichssubstanz (Standard) diente gebrannter Korund (Al₂O₃).

Kohlenstoff-Schwefel-Analytik (CSA)

Die Bestimmung des Gesamtkohlenstoffgehaltes (TC - engl. total carbon) und des Gesamtschwefelgehaltes (TS - engl. total sulfur) erfolgte an ausgewählten Pulverproben (250 mg) mit dem Gerät *ELTRA CS 2000*. Die Freisetzung von Kohlenstoff in Form von CO₂ und Schwefel in Form von SO₂, wurde durch Aufheizen auf 1550°C erzielt und mittels Infrarotmessung aufgezeichnet.

Um aus dem Gesamtkohlenstoff den organischen und anorganischen Kohlenstoff zu bestimmen wurde der anorganische Kohlenstoff mit 10 %iger HCl-Lösung aus den Proben ausgetrieben und diese anschließend ebenfalls mit dem Analysator gemessen. Mit den Resultaten des Gesamtkohlenstoff (TC) und den in zweiter Messung ermittelten Werten des organischen Kohlenstoffs (TOC) konnte, mit der in Gleichung 4.1 dargestellten Formel, der anorganische (karbonatische) Kohlenstoff (TIC - engl. total inorganic carbon) berechnet werden:

$$TIC = TC - TOC$$
[4.1]

5.3 Geochemische Modellierung

Sättigungsindex

Für die Berechnung der in dieser Arbeit dargestellten Sättigungsindizes (SI) verschiedener Karbonat- und Silikatphasen wurde das Programm PHREEQC (Version 3.04.771; PARK-HURST AND APPELO, 1999) mit dem Datensatz *lln.dat* verwendet. Die Datengrundlage bildeten die Ergebnisse der Fluidanalytik, zusammen mit dem unter Experimentalbedingung berechneten CO_2 -Partialdruck (p(CO_2) und dem theoretischen pH-Wert.

Der Sättigungsindex, welcher sich aus dem Quotienten von Ionenaktivitätsprodukt (IAP) und Löslichkeitsprodukt (K) ergibt (Gl. 4.2), ermöglicht die Bestimmung des thermodynamischen Gleichgewichtszustandes zwischen Mineral und der umgebenden Lösung. Ein thermodynamisches Gleichgewicht herrscht bei SI = 0, hingegen ist bei SI < 0 die Lösung untersättigt und bei SI > 0 übersättigt. Untersättigung bedeutet, dass das Mineral in Lösung gehen kann, Übersättigung, dass eine Tendenz zum Ausfallen aus der Lösung besteht.

$$SI = \log \frac{IAP}{K}$$
[Gl. 4.2]

Inverse Modellierung

Mit dem Datensatz *wateq4f.dat* erfolgte aus den Ergebnissen der Fluidanalytik eine inverse Modellierung. Mit Hilfe dieser Modellierung sollten mögliche abgelaufene Mineralreaktionen bestimmt werden. Für die Berechnungen wurde die Zusammensetzung der Ausgangslösung und die Zusammensetzung der aus den Experimenten gewonnenen Fluide zu bestimmten Reaktionszeitpunkten verwendet. Zusätzlich erfolgten Eingaben über die im Gestein vorhandenen und am wahrscheinlichsten an Reaktionen beteiligten Mineralphasen. Je nach Anzahl der Mineralphasen und Fluidzusammensetzung liefert das Programm ein oder mehrere Modelle, die darstellen welche Minerale beim Durchgang der CO₂gesättigten Lösung durch das Gestein gelöst bzw. aus den Fluiden ausgefällt worden sein

müssen. Nicht berücksichtigt bleibt der reale Anteil der Mineralphasen im Gestein und somit die Menge die insgesamt für die Reaktionen zur Verfügung steht.

Kapitel 6 Ergebnisse

Im Folgenden sind die Ergebnisse aus den Experimenten hinsichtlich der Reaktivität von Deckgesteinen unter Einfluss einer CO₂-gesättigten Lösung und deren Auswirkung auf die Eigenschaften und Stabilität von Störungszonen dargestellt. Aufgeteilt sind diese Ergebnisse in zwei Abschnitte. Der erste Abschnitt beschäftigt sich mit der Charakterisierung und den experimentell bedingten Veränderungen des als Hauptreferenzdeckgesteins gewählten Opalinuston. Im zweiten Abschnitt werden drei vergleichbare Referenzdeckgesteine charakterisiert und deren experimentelle Ergebnisse dargestellt. Aufgrund der geringen Anzahl von einer Probe pro Temperaturstufe wurden für diese Gesteine nur die mineralogischen und geochemischen Veränderungen untersucht.

6.1 Opalinuston

Der für diese Experimente verwendete Opalinuston stammt aus zwei Bohrungen, welche in der schiefrigen Fazies, senkrecht zur Sichtung und im Abstand von 50 cm durchgeführt wurden (Kapitel 3). Die Bohrkernlänge betrug 4,3 m (BCS-1) und 3,5 m (BCS-3).

6.1.1 Mineralogische und chemische Zusammensetzung

Mineralogie des Opalinustons

Mittels mineralogischen Analysen (Kapitel 5) wurden in beiden Bohrkernen die Mineralphasen Quarz (~ 14 $\%^1$), Calcit (13 - 20 $\%^1$; Abb. 6.02 b), Dolomit / Ankerit (0 - 3 $\%^1$), Albit (~ 4 $\%^1$) und Pyrit (1 - 2 $\%^1$), sowie die Tonminerale Illit (35 - 38 $\%^1$; Abb. 6.02 a), Kaolinit (17 - 18 $\%^1$) und Chlorit (5 - 6 $\%^1$) bestimmt (Abb. 6.01). Daneben traten im Gestein organische Komponenten (< 1%) auf.

¹ Die Berechnung des Anteils der Mineralphasen im Gestein erfolgte semi-quantitativ nach PFEFFER (1996; Anhang I)

Untersuchungen an Texturpräparaten (Kapitel 5) wiesen zudem auf eine Illit/Smektit-Wechsellagerung hin (Abb. 6.01 b). Basierend auf der Tonmineralcharakterisierung nach HEIM (1990) geben der relativ breite und bauchige Peak bei 10 Å (d = 1 nm; Texturpräparat) und die leichte Peakverschiebung nach Erhitzen Hinweis auf eine unregelmäßige Illit/Smektit-Wechsellagerung.

Abb. 6.01: a) Röntgenbeugungsdiagramm vom Opalinuston (BCS-3: 2,2 m; CS_35) ergibt den eindeutigen Nachweis von acht unterschiedlichen Mineralphasen im Gestein. **b**) Röntgenbeugungsdiagramm an Texturpräparaten des Opalinustons. Die schwarze Linie repräsentiert das unbehandelte Texturpräparat, die grüne Linie das mit Glykol behandelte und die rote Linie das Texturpräparat nach Erhitzen auf 550°C.

Abb. 6.02: BSE-Aufnahmen vom Opalinuston a) Illite des Opalinustons. b) Tafelförmige Calcite auf toniger Matrix.

Chemie des Opalinustons

Zur chemischen Quantifizierung des Ausgangsmaterials wurden die Konzentrationen von Natrium, Magnesium, Aluminium, Silizium, Kalium, Calcium, Eisen, Mangan, Phosphor und Titan (angegeben als Oxide) an 12 Proben bestimmt (Tab. 6.01). Die Ergebnisse beider Bohrungen zeigen keine auffälligen Unterschiede im Chemismus, bei Betrachtung der einzelnen Bohrkerne können allerdings in Abhängigkeit der Tiefe Variationen in der Konzentrationsverteilung verzeichnet werden. Die größten Variationen treten bei SiO₂ (maximale Differenz 4,5 Gew% (BCS-1) und 5,4 Gew% (BCS-3)), Al₂O₃ (maximale Differenz 4 Gew% (BCS-1) und 5,7 Gew% (BCS-3)) auf.

Bohrun	ng	SiO ₂	Al_2O_3	K ₂ O	MgO	Na ₂ O	CaO	Fe ₂ O ₃	MnO	P_2O_5	TiO ₂
		[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]
BCS-1	n=8										
	Maximum	45,0	19,7	2,9	2,3	0,5	12,0	6,0	0,1	0,2	0,9
	Miniumum	41,5	18,3	2,7	2,1	0,4	8,0	5,4	<0,1	0,2	0,8
	Mittelwert	43,4	19,1	2,8	2,2	0,4	9,9	5,7	0,1	0,2	0,8
BCS-3	n=4										
	Maximum	44,2	19,5	2,9	2,3	0,5	12,8	5,9	0,1	0,2	0,8
	Minimum	38,8	17,0	2,5	2,0	0,4	7,1	4,8	<0,1	0,1	0,7
	Mittelwert	42,7	18,7	2,8	2,2	0,4	9,1	5,5	<0,1	0,2	0,8

Tab. 6.01: Elemente und Variationsbreite ihrer Konzentrationen (Maximum, Minimum, Mittelwert) in den zwei Bohrkernen (BCS-1 und BCS-3) des Opalinustons (Mont Terri). Die Anzahl der Proben wird mit n angegeben.

Die Daten im Bohrlochprofil BCS-1 (Abb. 6.03) zeigen, dass in Bereichen mit höheren SiO₂-Konzentrationen auch Al₂O₃ und K₂O, MgO und Na₂O höhere Konzentrationen aufweisen. Dies bezieht sich vor allem auf die Bohrlochtiefe bis 2 m. Im Gegensatz dazu liegt CaO in diesem Abschnitt bei 8 bis 9,5 Gew% und steigt ab einer Bohrlochtiefe > 2 m an, um dann in einen relativ konstanten Konzentrationsverlauf von 11,2 bis 12 Gew% überzugehen.

Abb. 6.03: Elementverteilung im Bohrprofil BCS-1 des Opalinustons aus der schiefrigen Fazies. Durchgeführt wurden acht Messungen im Bereich 0,8 bis 4,3 m Tiefe.

Ähnliche Variationen wie in Bohrung BCS-1 treten auch im Bohrkern der Bohrung BCS-3 auf (Anhang II b). Bei einer Bohrkerntiefe von 2,5 bis 3 m liegt ein CaO-reicher (~ 13 Gew% gegenüber durchschnittlich 7 bis 8 Gew%) und u.a. SiO₂-ärmerer (39 Gew% gegenüber durchschnittlich 44 Gew%) Abschnitt vor. Im Gegensatz zu der Bohrung BCS-1 erstreckt sich dieser Bereich jedoch auf weniger als 50 cm. Ab einer Tiefe von 3,45 m liegt die Konzentration von CaO im anfänglich durchschnittlichen Bereich von 7 bis 8 Gew%.

6.1.2 Charakterisierung der Scherspannung

Die Scherfestigkeit von potentiellen Deckgesteinen wurde durch Experimente zur Erzeugung künstlicher Störungszonen im Opalinuston ermittelt (Kapitel 4). Die Scherspannungskurven (Abb. 6.04) zeigen eine maximale Scherspannung von 10 bis 16 MPa, welche in Abhängigkeit der einzelnen Proben nach einem Scherweg von 0,4 bis 0,6 mm erreicht ist. Bei vereinzelten Proben (gestrichelte Linien) liegt eine deutliche Abweichung gegenüber dem durchschnittlichen Kurvenverlauf vor. So wird das Scherspannungsmaximum bei diesen Proben erst nach einem Scherweg von > 0,6 mm, bzw. bei einer Probe bei deutlich < 0,4 mm, erreicht. Zudem können bei zwei Proben höhere Scherspannungsmaxima mit bis zu 22,5 MPa nachgewiesen werden. Äußerlich zeigen diese vom Durchschnitt abweichenden Proben keine Auffälligkeiten, jedoch weisen sie einen erhöhten CaO-Gehalt (Anhang II b, Tab. 6.01) und damit verbunden auch einen erhöhten Calcitanteil auf. Liegt die Konzentration von Calcium im Schnitt bei 7 bis 9 Gew% (Calcit: 13 - 18 %), haben die Proben mit vom Durchschnitt abweichender Scherspannung Gehalte zwischen 13 und 29 Gew% (Calcit: 25 - 50 %).

Abb. 6.04: Scherspannungskurven, aufgezeichnet während der Versuche zur Erzeugung von Störungszonen im Opalinuston. Die Ergebnisse umfassen die Bohrungen BCS-1 und BCS-3. Die gestrichelten Kurven markieren Proben, die deutlich abweichende Werte in Scherspannung und / oder Scherweg aufweisen.

6.1.3 Charakterisierung der künstlich erzeugten Störungszone

Die bei den Scherexperimenten gestanzten Proben zeichnen sich durch einen in der Probenmitte befindlichen, im Durchschnitt ca. 2,5 cm runden, Stempelbereich (Stempel) und einen äußeren ringförmigen Probenbereich (Rand) aus (Abb. 6.05). Stempel und Rand sind durch die 0,5 bis 2 mm breite Störungszone voneinander getrennt.

Abb. 6.05: a) Aufsicht auf obere Fläche einer gestanzten Probe des Opalinustons aus der Bohrung BCS-3 (Tiefe: 1,88 - 1,92 m; CS_35). **b)** Aufsicht auf die untere Fläche derselben Probe.

Die Störungszone bildete einen durch das Stanzen aufgelockerten Bereich, der durch strukturelle Zerstörung der Schichten und Zerkleinerung des Probenmaterials gekennzeichnet ist (Abb. 6.06). Im Bereich der Störungszone treten neben feinst zerriebenem Material auch größere Bruchstücke ($\leq 0,5$ mm; Abb. 6.06 dunkle Bereich in der Störungszone) auf. Sowohl das feinste Material als auch die größeren Bruchstücke zeigen eine leicht der Stanzrichtung folgende Orientierung an, die besonders deutlich am Übergang zum Stempel ausgeprägt ist. An diesem Übergang bildet ein sub-mm breiter Bereich aus feinst zerriebenem Material eine deutliche Scherfläche. Beginnende Desintegration infolge von kleinen Rissen markiert zudem den Übergang zwischen Störungszone und Stempel.

Abb. 6.06: Dünnschliff im Bereich der Störungszone im Opalinuston (BCS-3: 2,65 - 2,69 m; CS_36). Der Stempel (rechts) wird durch die während des Schervorgangs erzeugte Störungszone vom Randbereich (links) getrennt. Die Scherrichtung wird durch die roten Pfeile markiert.

6.1.4 Alterationseffekte im Opalinuston in Abhängigkeit von Temperatur und Zeit

Zur Bestimmung der während der Reaktionsexperimente abgelaufenen Reaktionen zwischen CO₂-gesättigter Lösung und dem Opalinuston als Deckgestein wurden während der Versuchsreihe von Januar 2010 bis Mai 2010 2x wöchentlich und ab Ende Mai 2010 bis September 2011 1x wöchentlich Proben der, mit dem Gestein reagierten Fluide gewonnen und analysiert. In Verbindung mit dem pro Beprobung ausgetretenen Fluidvolumen konnte zusätzlich die aus den Festphasen insgesamt gelöste Menge eines Elements berechnet werden. Hierfür wurde bei jeder Beprobung der Quotient von Konzentration zum Volumen gebildet. Die Summe aus allen über die gesamte Reaktionszeit ermittelten Ergebnissen bildete die insgesamt gelöste Menge aus einer Probe. Neben diesen Berechnungen wurde zusätzlich der Sättigungsindex der Fluide, nach Reaktion und unter bestehenden experimentellen Parametern, ermittelt (Kapitel 5.3). Mit ihm sollten abgelaufene bzw. zukünftige Lösungen oder Fällung von Mineralphasen besser gedeutet werden.

Die Festphasen wurden nach Beendigung der jeweiligen Versuchsreihe aus den Reaktionszellen ausgebaut, getrocknet und mit unterschiedlichen analytischen Methoden genauer untersucht (Kapitel 5). Eine detaillierte Auflistung der Ergebnisse ist im Anhang zu finden (Anhang II).

Die Perkolation der CO₂-gesättigten Fluide durch die Proben und das daraus resultierende, aus dem Gestein (Reaktionszelle) austretende Volumen dieser Fluide war bei jeder Probe unterschiedlich. Der erste Austritt der Lösung erfolgte bei 23 % der Proben nach 7 Tagen, bei 48 % zwischen 7 und 14 Tagen, bei 7 % zwischen 14 und 21 Tagen und bei 20 % zwischen 21 und 67 Tagen. Beim größten Teil der Proben fand der Durchlass des CO₂gesättigten Fluids anschließend unregelmäßig statt. Bei allen Proben des Opalinustons, die bei 75°C über 18 Monate beaufschlagt wurden, endete der Durchfluss nach weniger als 40 Tagen fast gänzlich. Solch ein Ende der Permeabilität konnte vereinzelt auch bei anderen Temperaturbereichen beobachtet werden. Eine Abhängigkeit von Temperatur und Zeit oder von Schwankungen im Druck spiegelten sich dabei zu keiner Zeit wider.

Das Volumen pro 5 Minuten (Zeitintervall der Beprobung), welches bei den durchlässigen Proben aus den Reaktionszellen austrat, reichte von 1,5 ml (für die Analysen nötiges Minimum) bis 15 ml (vereinzelte Messungen bis 47 ml). Bezogen auf die einzelne Feststoffprobe blieb das Fluidvolumen dabei über die Zeit relativ konstant.

6.1.4.1 Alterationseffekte bei 45°C

Chemische Entwicklung des Fluids

Die bei 45°C abgelaufenen Reaktionen vom Opalinuston mit dem CO₂-gesättigten Fluid waren charakterisiert durch eine Mobilisation von Calcium, Magnesium, Kalium, Silizium und Natrium (Abb. 6.07) sowie vereinzelt Mangan. Die Elemente Eisen und Aluminium konnten trotz geringer Nachweisgrenzen (ICP-OES: Fe²⁺ 0,02 mg/l; Al³⁺ 0,1 mg/l) mess-technisch nicht erfasst werden. Die Konzentrationsentwicklung aller Elemente verlief relativ einheitlich, mit vereinzelt Ausreißern in wenigen Messungen. Eine genaue Quantifizierung der Ursachen wird in Kapitel 7 näher diskutiert.

Die Entwicklung der Calcium-Konzentration in den Fluiden (Abb. 6.07, Ca^{2+}) folgte im Rahmen der Versuchszeit einem deutlichen Trend. In den ersten 100 Tagen wurden relativ geringe Mengen aus den Proben mobilisiert, im Anschluss kam es zu einer starken Calcium-Mobilisation. In Abhängigkeit der einzelnen Proben lagen die gemessenen Konzentrationen bei 3 ± 0,4 mg/l bis 468 ± 61 mg/l und eine sich daraus ergebende maximale gelöste Menge an Calcium pro Gesteinsprobe zwischen 0,1 mg (12 Monate) und 175 mg (18 Monate).

Die Kalium- und Magnesium-Konzentrationen in den Lösungen (Abb. 6.07, K⁺ und Mg²⁺) verhielten sich über die Zeit ähnlich und nahmen exponentiell ab. Die Magnesium-Konzentration war dabei zu Beginn mit 467 ± 61 mg/l in etwa doppelt so hoch wie die von Kalium. Ein Abfall auf minimal 51 ± 7 mg/l gegen Ende der Versuchsphase entsprach einer rund 90% geringeren Mobilisation aus den Proben als zu Beginn. Für Kalium wurden anfänglich Konzentrationen bis 267 ± 48 mg/l gemessen, die sich mit der Zeit auf ein Minimum von 15 ± 3 mg/l reduzierten, was ebenfalls eine Abnahme um 90 % bedeutete. Aus diesem Lösungsverhalten ergibt sich eine gelöste Gesamtmenge von 0,7 mg (12 Monate) bis 68 mg (18 Monate) für Magnesium und 0,4 mg (12 Monate) bis 37 mg (6 Monate) für Kalium.

Die Konzentration von Silizium (Abb. 6.07, Si⁴⁺) blieb im untersuchten Zeitraum relativ konstant. Im Vergleich der gelösten Elemente zeigt sich, dass die Mobilisation von Silizium aus den Proben mit einer minimalen Konzentration von $6 \pm 0,6$ mg/l und einer maximalen Konzentration von 17 ± 2 mg/l und einer insgesamt gelösten Menge von < 0,1 mg (6 Monate) bis 2,7 mg (18 Monate) am geringsten war.

Bei der Betrachtung der Konzentration von Natrium in den Fluiden nach Reaktion (Abb. 6.07, Na⁺) musste beachtet werden, dass durch die Zusammensetzung der verwendeten Ausgangslösung bereits 3930 mg Na⁺/l, entsprechend 10 g NaCl/l, in das System eingebracht wurden. Ähnlich wie bei Magnesium und Kalium zeigte Natrium zuerst einen exponentiell abnehmenden Verlauf der Konzentration, der nach ca. 100 Tagen in relativ konstante Werte überging, mit einer maximalen Konzentration von 6850 ± 480 mg/l (entspricht 2920 ± 205 mg/l nach Abzug der Ausgangslösung) und einer minimalen Konzentration von 3600 ± 252 mg/l (entspricht - 327 ± 23 mg/l nach Abzug der Ausgangslösung). Die gelöste Gesamtmenge lag dabei zwischen 4,7 mg bei 12 Monaten und 326 mg bei 18 Monaten.

Die Messungen der pH-Werte zeigte für alle Proben einen sofortigen Anstieg von $4,5 \pm 0,1$ (Ausgangslösung) auf durchschnittlich $7,2 \pm 0,1$ mit einem Minimum von $6,4 \pm 0,1$ und einem Maximum von $8,2 \pm 0,1$.

Abb. 6.07: Entwicklung des pH-Werts und der Elementkonzentration in den Fluiden, die während der Experimentreihe bei 45°C aus dem Opalinuston gewonnen wurden. Dargestellt sind die Proben aller Reaktionszeiträume (3, 6, 12 und 18 Monate), jede Linie repräsentiert das Fluid welches aus jeweils einer Festphasenprobe ausgetreten ist (gesamt 11 Festphasenproben). Die bei Na⁺ dargestellte gestrichelte Linie repräsentiert die Natrium-Konzentration (3930 mg/l) der Ausgangslösung.

Der Anhand der Elementkonzentration in den Fluiden (Abb. 6.07), bei Experimentalbedingung (gegeben: T, berechnet: pCO_2 und pH-Wert), ermittelte Sättigungsindex (SI; Kapitel 5.3) zeigte über die gesamte Reaktionszeit eine Untersättigung (SI < -0,05) der Fluide gegenüber Calcit und Unter- sowie auch Übersättigung (SI > 0,05) gegenüber Dolomit (Abb. 6.08). Die stärkste Untersättigung und damit das größte Potential um Karbonate zu lösen lag dabei im Zeitraum zwischen 50 und 150 Tagen vor.

Abb. 6.08: Sättigungsindex für Calcit und Dolomit ermittelt aus Berechnungen mit PHREEQC. Grundlage bildet die Zusammensetzung der aus den Proben ausgetretenen Fluide (Abb. 6.07, Anhang II) bei einer Reaktionstemperatur von 45°C. Die Kreuze markieren die minimalen und maximalen Sättigungsindizes zum Reaktionszeitpunkt 12 Tage, sowie 3, 6, 12 und 18 Monate.

Ein quasi-Gleichgewicht (0,05 > SI < -0,05) bis zur leichten Untersättigung (SI_{min} = -0,2) gegenüber Quarz konnte über den gesamten Versuchsraum von 18 Monaten in allen Fluiden ermittelt werden (Abb. 6.09). Gegenüber Albit und den Tonmineralphasen Kaolinit, Illit, Smektit und Chlorit waren die Fluide, mit Sättigungsindizes von SI_{max} = - 3,8 (Albit) bis SI_{min} = -23,5 (Chlorit), hingegen immer sehr stark untersättigt.

Abb. 6.09: Sättigungsindizes für Silikate des Opalinustons. Die mathematische Grundlage bildet die Zusammensetzung, der aus den Proben ausgetretenen Fluide (Abb. 6.07, Anhang II) bei einer Reaktionstemperatur von 45°C. Die Kreuze markieren die minimalen und maximalen Sättigungsindizes zum Reaktionszeitpunkt 12 Tage, sowie 3, 6, 12 und 18 Monate.

Alteration der Festphase

Die Analytik der Festphasen (Kapitel 5.2) zeigt, dass die Versuchsreihe bei 45°C zu keinen nachweisbaren Alterationen führte. Anhand der Röntgenbeugungsdiagramme (Abb. 6.10) ist jedoch ersichtlich, dass es zwischen dem Referenzmaterial Unterschiede in der Intensität für Chlorit und Kaolinit gibt.

Abb. 6.10: Gestapelte Röntgenbeugungsdigramme vom Opalinuston. Dargestellt sind Referenzmaterial und Proben nach Reaktion von 3 bis 18 Monaten bei 45°C. Alle Proben stammen aus der Bohrung BCS-3 mit Tiefen zwischen 1 und 2,2 m. Die Bezeichnung der Mineralphasen erfolgte am Peak erster oder zweiter Ordnung.

Die geochemischen Daten (Anhang II b) zeigen im Vergleich der bei 45°C reagierten Proben Variationen im Anteil der Elementoxide, treten jedoch ebenfalls nicht in Abhängigkeit der Reaktionszeit auf. Die größten Differenzen zwischen minimalem und maximalem Gehalt liegt für SiO₂ bei \pm 2,2 Gew%, für Al₂O₃ bei \pm 1,5 Gew%, für CaO \pm 2 Gew%, für Fe₂O₃ bei \pm 0,7 Gew%, für K₂O bei \pm 0,5 Gew% und für MgO bei \pm 0,2 Gew% und befindet sich damit im natürlichen Schwankungsbereich des Ausgangsmaterials (vgl. Abschnitt 6.1.1). Eine Ausnahme bildet Na₂O mit 0,4 bis 1,5 Gew%, woraus sich eine maximale Abweichung von \pm 1,1 Gew% ergibt. Werte > 0,5 Gew% übersteigen die Natriumgehalte des Ausgangsmaterials (Na₂O: 0,4 - 0,5 Gew%) zum Teil deutlich.

In einzelnen Proben wurden geringe Unterschiede zwischen dem äußeren und dem gestanzten Bereich nachgewiesen. Ein Beispiel hierzu zeigt eine über 18 Monate reagierte Opalinustonprobe (Abb. 6.11, Tab. 6.02). Gekennzeichnet ist diese Probe durch eine von außen nach innen verlaufende leichte Abnahme von Silizium, Aluminium, Calcium und Eisen. Während der Anteil von Kalium und Magnesium nahezu identisch bleibt, erfolgt für Natrium eine Zunahme.

Abb. 6.11: Probe des Opalinustons (BCS-3: 2,12 - 2,16 m; CS_35) nach 18 monatigem Reaktionsexperiment bei 45°C. Der äußere Bereich wird markiert durch A, der innere durch I. Die zugehörigen Elementgehalte sind in der Tab. 6.02 aufgeführt.

	Außen (A)	Innen (I)		
	[Gew%]	[Gew%]		
SiO ₂	43,3	42,6		
Al_2O_3	18,8	18,4		
K ₂ O	2,8	2,7		
Na ₂ O	0,4	0,7		
MgO	2,2	2,1		
CaO	8,4	7,4		
Fe ₂ O ₃	5,7	5,5		

Tab. 6.02: Ausgewählte Elemente und ihr Anteil im äußeren und inneren Bereiche des in Abbildung 6.10 dargestellten Opalinustons.

Neben den dargestellten geringen chemischen Veränderungen im Opalinuston nach Reaktion mit der CO₂-gesättigter Lösung wiesen weder makroskopische, noch mikroskopische Untersuchungen auf Alterationserscheinungen der einzelnen Mineralphasen oder Repräzipitationen von Karbonaten hin (Abb. 6.12).

Abb. 6.12: BSE-Aufnahmen am Opalinuston nach Reaktion bei 45°C. **a**) Tonminerale (überwiegend Illit) nach dem Reaktionsexperiment. **b**) Primär gebildete Calcite unter einer Tonmineral-schicht.
6.1.4.2 Alterationseffekte bei 60°C

Die Ergebnisse der Reaktionsexperimente bei 60°C unterschieden sich im Wesentlichen nicht von denen, die bei 45°C durchgeführt wurden. Leichte Abweichungen zeigten sich in den Konzentrationen der Elemente in Lösung, die bei 60°C generell etwas höher waren. Zudem kam es zu bei zwei Proben der 18 monatigen Versuchsreihe zu einem Aussetzen des Fluidausstritts nach weniger als 400 Tagen.

Chemische Entwicklung des Fluids

Die größte Differenz zwischen den Ergebnissen der Experimente bei 45°C und denen bei 60°C tritt beim Verlauf der Calcium-Konzentration in den Fluiden auf, die während der Versuche aus den Proben des Opalinustons ausgetretenen sind. Im Vergleich der Elementverläufe aus Abbildung 6.07 (45°C, Ca²⁺) und 6.13 (60°C, Ca²⁺) wird deutlich, dass besonders in den ersten 50 Tagen bei 60°C mehr Calcium freigesetzt wurde (Maximum: 743 \pm 97 mg/l) und dessen Konzentrationsabfall sich der Entwicklung von Magnesium und Kalium ähnelte. Zwischen dem 50sten und 200sten Tag wurde tendenziell die geringste Konzentration in Lösung nachgewiesen (Minimum: 3 \pm 0,4 mg/l), jedoch mit relativ großen Konzentrationsunterschieden (bis zu 450 mg/l) zwischen den Fluiden aus den verschiedenen Gesteinsproben. Auch waren in dieser Zeit die Konzentrationsschwankungen in den einzelnen Fluidproben am stärksten ausgeprägt. Ab 200 Tagen Reaktionszeit lagen die Werte von Calcium in Lösung dann bei durchschnittlich 300 mg/l mit deutlich geringerer Differenz zwischen den Konzentrationen der einzelnen Proben. Die für jede Gesteinsprobe aus dem gelösten Anteil ermittelte Gesamtmenge an Calcium lag zwischen 2 mg (3 Monate) und 209 mg (6 Monate).

Die Mobilisation von Magnesium, Kalium und Silizium (Abb. 6.13, Mg^{2+} , K^+ und Si⁴⁺) aus den Proben unterschied sich, mit Ausnahmen von einer Probe aus der 6-monatigen und einer aus der 18-monatigen Versuchsreihe, kaum von den Reaktionsexperimenten bei 45°C. Die minimalen ($Mg^{2+} = 40 \pm 7 \text{ mg/l}$; $K^+ = 14 \pm 4 \text{ mg/l}$; $Si^{4+} = 2 \pm 0.2 \text{ mg/l}$) und maximalen Konzentrationen ($Mg^{2+} = 764 \pm 138 \text{ mg/l}$; $K^+ = 368 \pm 48 \text{ mg/l}$; $Si^{4+} = 17 \pm 2 \text{ mg/l}$) waren generell denen bei 45°C sehr ähnlich. Ebenso verhielt es sich mit der daraus resultierenden insgesamt gelösten Mengen der einzelnen Elemente von 5 mg (3 Monate) bis 75 mg (6 Monate) Magnesium, 5 mg (3 Monate) bis 37 mg (6 Monate) Kalium und 0,2 mg (3 Monate) bis 6 mg (6 Monate) Silizium.

Die Entwicklung der Natrium-Konzentration in den Fluiden aus den einzelnen Feststoffproben (Abb. 6.13, Na⁺) verhielt sich tendenziell ähnlich zu denen bei 45°C. Zu Beginn lag die Konzentration mit maximal 7460 ± 522 mg/l um 500 mg/l höher als in der Experimentreihe bei 45°C. In den ersten 50 Tagen kam es zu einer starken exponentiellen Abnahme, mit Annäherung an die Ausgangslösung von 3930 mg/l, gefolgt von einem relativ konstanten Konzentrationsverlauf.

Der pH-Wert bei einer Versuchstemperatur von 60° C lag bei $6,2 \pm 0,1$ bis $8,1 \pm 0,1$ und somit deutlich über der Ausgangslösung (pH = $4,5 \pm 0,1$). Die sehr deutlichen Schwankungen der Messwerte lassen sich dabei mit den auf dem Fluidvolumen basierenden Ungenauigkeiten der Messelektrode erklären

Abb. 6.13: Entwicklung des pH-Werts und der Elementkonzentration in den Fluiden die während der Experimentreihe bei 60°C aus dem Opalinuston bestimmt wurden. Dargestellt sind die Proben aller Reaktionszeiträume (3, 6, 12 und18 Monate). Jede Linie repräsentiert das Fluid welches aus jeweils einer Festphasenprobe ausgetreten ist (11 Festphasenproben). Die bei Na⁺ dargestellte, gestrichelte Linie repräsentiert die Natrium-Konzentration (3930 mg/l) der Ausgangslösung.

Die unter Experimentalbedingung (gegeben: T, berechnet: pCO_2 und pH-Wert) anhand der Fluidzusammensetzung (Abb. 6.13, Anhang II) ermittelten Sättigungsindizes (SI) ergaben für die gesamte Reaktionszeit von 18 Monaten eine Übersättigung der Fluide gegenüber Dolomit. Hingegen waren sie gegenüber Calcit sowohl unter- als auch übersättigt mit einem Trend zur kontinuierlichen Übersättigung nach > 150 Tagen Reaktionszeit (Abb.6.14). Mit einem über die Zeit relativ konstantem Sättigungsindex für Illit (\emptyset SI = -8,0), Smektit (\emptyset SI = -6,1), Kaolinit (\emptyset SI = -5,3) und Albit (\emptyset SI = -4,9) lag bezüglich der Silikate eine stark Untersättigung vor. Für Chlorit ergab sich eine mit der Zeit zunehmende Untersättigung von SI_{min} = -16,9 auf SI_{max} = -19,3. Mit einem SI_{min} = -0,1 bis SI_{max} = -0,4 blieben die Fluide gegenüber Quarz permanent leicht untersättigt.

Abb. 6.14: Sättigungsindex für Calcit und Dolomit, ermittelt aus Berechnungen mit PHREEQC. Grundlage bildet die Zusammensetzung, der aus den Proben ausgetretenen Fluide (Abb. 6.13, Anhang II) bei einer Reaktionstemperatur von 60°C. Die Kreuze markieren die minimalen und maximalen Sättigungsindizes zum Reaktionszeitpunkt 12 Tage sowie 3, 6, 12 und 18 Monate.

Alteration der Festphase

Die Mobilisation der in Abbildung 6.13 aufgeführten Elemente aus den Proben des Opalinustons führte bei einer Reaktionstemperatur von 60°C und Reaktionszeiten von 3 bis 18 Monaten nicht zu nachweisbaren Alterationserscheinungen im Bereich der Störungszone und des Stempels. Beispielhaft zeigt sich dies u.a. an Aufnahmen mit dem Rasterelektronenmikroskop (Abb. 6.15). Die plättchenförmigen Tonminerale, im speziellen Illit, unterscheiden sich nach Reaktion nicht von Illiten des Ausgangsmaterials (Abb. 6.02 a). Die Oberflächen der Calcite (Abb. 6.15 b), welche in den Proben nur sehr selten und jeweils in unterschiedlicher Ausbildung auftreten, weisen ebenfalls nicht auf Lösungserscheinungen hin. Die für Calcium in einzelnen Proben nachgewiesenen Konzentrationsunterschiede mit maximal 20,5 Gew% (6 Monate) gegenüber durchschnittlich 8 Gew% basieren auf den unterschiedlichen CaO-Konzentrationen des Ausgangmaterials (Tab. 6.01; Anhang II b). Sie sind somit nicht als Folge der Reaktion des Gesteins mit der CO₂-gesättigten Lösung zu werten.

Abb. 6.15: BSE-Aufnahmen vom Opalinuston nach einer Reaktionszeit von 18 Monaten bei 60°C. a) Alterationserscheinungen an den plättchenförmigen Illiten sind nicht zu erkennen. b) Calcitkristalle in Tonmatrix (Illit).

6.1.4.3 Alterationseffekte bei 75°C

Die bei 75°C durchgeführte Versuchsreihe lieferte ähnliche Ergebnisse wie die, die bei 45°C und 60°C durchgeführt wurden. Abweichend von diesen Ergebnissen, war jedoch das Ausbleiben des Fluidaustritts aus den Proben der 18-monatigen Versuchsreihe nach 65 und 399 Tagen.

Chemische Entwicklung des Fluids

Im Zeitraum von 399 Tagen wurden wie bei 45°C und 60°C auch bei 75°C die Hauptelemente Calcium, Magnesium, Kalium, Silizium und Natrium aus den Proben des Opalinustons mobilisiert.

Die Konzentration von Calcium (Abb. 6.16, Ca^{2+}) in den aus den Proben ausgetretenen Fluiden folgte in den ersten 50 Tagen einem stark abnehmenden Trend von 712 ± 93 mg/l auf 7 \pm 1 mg/l. Während zwischen dem 50sten und 150sten Tag am wenigsten mobilisiert wurde, mit deutlichen Konzentrationsunterschieden zwischen den Fluiden aus unterschiedlichen Proben des Opalinustons, erfolgte nach 150 Tagen Reaktionszeit ein Anstieg auf maximal 314 \pm 41 mg/l, der in eine tendenziell gleichbleibende Mobilisation überging. In Abhängigkeit des pro Probe ausgetretenem Fluidvolumens ergaben diese Konzentrationsentwicklungen rein gelöstes Calcium von 1 mg (12 Monate) bis 30 mg (6 Monate).

Die Mobilisation von Magnesium und Kalium (Abb. 6.16, Mg^{2+} und K⁺) aus dem Opalinuston führte, wie bei 45°C und 60°C, ebenfalls zu einer über die Zeit exponentiell abnehmenden Konzentration in Lösung. Die maximale Magnesiumkonzentration von 614 ± 111 mg/l fiel über die Zeit auf 138 ± 25 mg/l ab, die von Kalium von 377 ± 49 mg/l auf 97 ± 13 mg/l. Für die pro Probe insgesamt gelöste Mengen ergab sich daraus für Magnesium 3 mg (12 Monate) bis 29 mg (6 Monate) und für Kalium 3 mg (12 Monate) bis 22 mg (6 Monate).

Im Gegensatz zu Calcium, Magnesium und Kalium nahm auch bei 75°C die Konzentration von Silizium in den Fluiden über die Zeit zu (Abb. 6.16, Si⁴⁺). Während die Zunahme in den ersten 50 Tagen am stärksten war, führte die Mobilisation aus dem Opalinuston im Anschluss zu einem konstanten leicht steigendem Verlauf. Die maximal Konzentration von $22 \pm 2 \text{ mg/l}$ Silizium in den Fluiden wurde nach 300 Tagen erreicht. Gegenüber der minimalen Konzentration von $9 \pm 1 \text{ mg/l}$ zu Beginn bedeutete dies einen Anstieg um das 2,4-fache. In Abhängigkeit der einzelnen Proben ergibt sich eine pro Probe insgesamt gelöste Menge an Silizium von 0,3 mg (6 Monate) bis 2 mg (6 Monate).

Auch die Konzentrationen von Natrium (Abb. 6.16, Na⁺) der 75°C-Reihe waren, wie bei den Experimenten < 75°C, gegenüber der eingebrachten Konzentration von 3930 mg/l deutlich erhöht. Nach einer starken Abnahme in den ersten 30 Tagen erfolgte über die restliche Zeit von 12 Monaten eine leichte Abnahme mit Schwankungen der Konzentrationen zwischen einzelnen Messungen und zwischen den Fluiden unterschiedlicher Feststoffproben. Die maximale Konzentration von Natrium lag in dieser Zeit bei 6930 ± 485 mg/l und die minimale bei 4345 ± 304 mg/l.

Der gemessene pH-Wert aller Lösungen stellte sich gleich zu Beginn der Experimente im neutralen Bereich ein und lag im gesamten Zeitraum von 350 Tagen im Durchschnitt bei 7,2. Über die Zeit kam es dabei zu Variationen mit Werten von $6,4 \pm 0,1$ bis $8,1 \pm 0,1$.

Abb. 6.16: Entwicklung des pH-Werts und der Elementkonzentration in den Fluiden die während der Experimentreihe bei 75°C aus dem Opalinuston gewonnenen wurden. Dargestellt sind die Proben aller Reaktionszeiträume (3, 6 12 und 18 Monate), jede Linie repräsentiert das Fluid welches aus jeweils einer Festphasenprobe ausgetreten ist (gesamt 11 Festphasenproben). Die bei Na⁺ dargestellte gestrichelte Linie repräsentiert die Natrium-Konzentration (3930 mg/l) der Ausgangslösung.

Auf Grundlage der Elementkonzentrationen (Abb. 6.16, Anhang II b) und der Experimentalbedingungen (gegeben: T, berechnet: pCO₂ und pH-Wert) waren die Fluide nach Reaktion über die gesamte Versuchsreihe gegenüber Dolomit (SI_{min} = 1,5; SI_{max} = 3,1) stark übersättigt. Bezüglich Calcit lag zu Beginn (\leq 150 Tage) auf Basis der unterschiedlichen Calcium-Konzentrationen in den Lösungen sowohl Untersättigung (SI = -0,1) als auch Übersättigung (SI = 0,8) vor. Nach \geq 150 Tagen waren die Fluide gegenüber dieser Phase ausschließlich übersättigt.

Wie bereits in den Versuchsreihen der bei 45°C und 60°C durchgeführten Experimente, ergab sich für die Silikate keine wesentliche Änderung im Grad der Untersättigung. Sättigungsindizes zwischen -4 und -16 bedeuteten weiterhin eine starke Untersättigung der Fluide gegenüber Albit (\emptyset SI = -5,3), Chlorit (\emptyset SI = -16), Kaolinit (\emptyset SI = -6), Illit (\emptyset SI = -8), sowie Smektit (\emptyset SI = -6,4). Über die Reaktionszeit von 18 Monaten blieben die Fluide permanent leicht untersättigt bezüglich Quarz (SI_{min} = -0,2; SI_{max} = -0,4)

Alteration der Festphase

In den Festphasen der Reaktionsreihe bei 75°C traten zwischen einzelnen Proben Konzentrationsunterschiede der Elementoxide (Tab. 6.03) auf, jedoch keine sichtbaren Alterationen (Abb. 6.17) wie Lösungs- oder Umbildungserscheinungen an Mineraloberflächen und / oder Präzipitationen von Mineralphasen.

Abb. 6.17: BSE - Aufnahmen am Opalinuston nach einjähriger Reaktionszeit bei 75°C. **a**) primär gebildetes Aggregat aus Calcitkristallen in toniger Matrix. **b**) Detailaufnahme der Calcite aus dem in a) dargestelltem Aggregat.

Aus Tabelle 6.03 wird ersichtlich, dass für Silizium deutliche Konzentrationsunterschiede zwischen den Proben einer Versuchszeit (3 Monate 42,9 zu 45,1 Gew%) und auch zwischen dem Referenzenmaterial (Referenz 2,9 - 3,04 m mit 38,8 Gew% zu 41,3 Gew% nach 6 Monaten) vorliegen. Begleitet werden diese durch Variationen bei Calcium. So ergibt

sich bei den Experimenten der 6-monatigen Reihe zwischen den Proben eine Differenz für Calcium von 3,1 Gew%. In den gleichen Proben unterscheiden sich auch die Konzentrationen von Silizium um 3,3 Gew%. Diese Variationen können jedoch entsprechend der Tiefenlage und Bohrung dem Ausgangsmaterial zugeordnet werden und stehen nicht in direkter Verbindung zu den Reaktionszeiten.

Tab. 6.03: Ausgewählte Elemente, dargestellt als Oxide, mit Konzentrationen in drei Referenzproben des Opalinustons (Reaktionszeit = Referenz) gegenüber den bei 75°C und für 3, 6, 12 und 18 Monate reagierten Proben. Für jede Zeit sind jeweils Ergebnisse zweier Proben mit den größten Differenzen zwischen den Elementgehalten dargestellt.

Reaktionszeit	Bohrtiefe	SiO ₂	Al ₂ O ₃	K ₂ O	MgO	Na ₂ O	CaO	Fe ₂ O ₃
[Monat]	[m]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]
Referenz	2,2	43,5	18,9	2,8	2,2	0,4	8,3	5,4
Referenz	2,90 - 3,04	38,8	17,0	2,5	2,0	0,4	12,8	4,8
Referenz	3,45	44,2	19,5	2,9	2,3	0,4	8,2	5,9
3	3,29 - 3,39	42,9	18,9	2,8	2,2	0,7	9,6	5,8
3	3,33 - 3,37	45,1	19,4	2,9	2,3	0,5	7,9	5,7
6	1,09 - 1,13	44,6	19,8	3,0	2,3	0,4	7,5	6,3
6	2,85 - 2,89	41,3	18,0	2,7	2,1	0,5	10,6	5,1
12	2,97 - 3,04	40,1	17,5	2,6	2,0	0,5	11,4	5,4
12	2,65 - 2,69	41,6	18,1	2,6	2,1	0,5	10,0	5,3
18	1,25 - 1,30	43,7	19,2	2,8	2,2	0,4	7,7	5,7
18	1,76 - 1,79	43,2	18,8	2,8	2,2	0,4	8,2	5,4

6.1.4.4 Alterationseffekte bei 100°C

Die bei 100°C durchgeführten Experimente ergaben keine signifikant abweichenden Ergebnisse gegenüber den Experimenten der Temperaturreihen ≤ 75 °C. Die Entwicklung der Elemente in den, aus den Proben ausgetretenen Fluiden verlief tendenziell ähnlich wie bei den niedrigeren Temperaturen und auch die Festphasen wiesen keine nachweisbaren Unterschiede auf.

Chemische Entwicklung des Fluids

Die Fluidanalytik der Experimentreihe, welche bei 100°C durchgeführt wurde (Abb. 6.18), unterschied sich prinzipiell nicht signifikant von den Experimenten bei ≤ 75 °C. Nachgewiesene Unterschiede zeigten sich bei der Entwicklung von Calcium in den Fluiden und zum Teil in den Konzentrationen der anderen mobilisierten Elemente (Magnesium, Kalium, Silizium, Natrium). Zudem waren die Konzentrationsschwankungen der Elemente zwischen den Messungen der Fluidreihe aus jeweils einer Probe häufiger und stärker ausgeprägt.

Die Mobilisation von Magnesium, Kalium und Calcium aus den Proben (Abb. 6.18, Mg^{2+} , K^+ und Ca^{2+}) führte bei 100°C zu einem exponentiell abnehmenden Verlauf der Konzentrationen in Lösung. Die maximalen Calcium-Werte wurden zu Beginn gemessen (Maximum 777 ± 101 mg/l) und fielen in den ersten 100 bis 150 Tagen deutlich auf ein Minimum von 78 ± 10 mg/l ab. Zwischen den Fluidproben der verschiedenen Proben des Opalinustons traten in dieser Zeit deutliche Unterschiede in der Höhe der Konzentrationen auf mit einer maximalen Differenz von 500 mg/l. Im Vergleich zu den Ergebnissen bei Temperaturen $\leq 75^{\circ}$ C waren die Konzentrationen zwischen dem 50sten und 150sten Tag im Schnitt höher. Nach 150 Tagen erfolgte lediglich ein leichter, jedoch über die Zeit konstanter Anstieg. Die insgesamt gelöste Menge an Calcium pro Feststoffprobe des Opalinustons lag zwischen 5 mg (3 Monate) und 79 mg (12 Monate).

Magnesium und Kalium (Abb. 6.18, Mg^{2+} und K⁺) wiesen einen starken Konzentrationsabfall in den ersten 50 Tagen auf, der anschließend in eine sehr flache Abnahme bis hin zu einem konstanten Verlauf überging. Die maximale Konzentration von Magnesium mit 530 \pm 95 mg/l war im Vergleich aller Temperaturen am geringsten und ab 100 Tagen, mit einem Schwankungsbereich von 50 mg/l bis 150 mg/l, am konstantesten. Pro Probe berechnet wurde über die Zeit zwischen 5 mg (3 Monate) und 33 mg (18 Monate) an reinem Magnesium gelöst. Kalium wies zu Beginn der Experimente eine maximale Konzentration von 445 \pm 58 mg/l auf und fiel über die Zeit auf ein Minimum von 38 \pm 5 mg/l ab. Die aus dieser Konzentrationsentwicklung pro Probe berechnete insgesamt gelöste Menge an Kalium lag zwischen 2 mg (6 Monate) und 34 mg (18 Monate).

Die Mobilisation von Silizium zeigte, ähnlich wie bei 75°C, eine Zunahme von $14 \pm 1 \text{ mg/l}$ auf bis zu 49 ± 5 mg/l mit deutlichen Konzentrationsschwankungen zwischen den Fluiden aus einer Feststoffprobe des Opalinustons (Abb. 6.18, Si⁴⁺). Die maximale Differenz zwischen den Konzentrationen betrug 27 mg/l und wurde nach 140 Tagen gemessen. Im Vergleich zu den Ergebnissen der Experimentreihen mit Temperaturen $\leq 75^{\circ}$ C, welche maxi-

mal 22 mg/l Silizium in Lösung aufwiesen, erfolgte bei 100°C eine deutlich höhere Mobilisation. Insgesamt wurden dadurch bei 100°C in den einzelnen Proben zwischen 1 mg (3 Monate) und 11 mg (12 Monate) an Silizium gelöst.

Für die Konzentration von Natrium in Lösung ergab sich in den ersten Tagen der Experimente ein Maximum von 8580 ± 601 mg/l. Bis zum 50sten Tag fielen die Werte aller Proben auf einen Bereich von 4000 mg/l bis 6000 mg/l ab, um anschließend in einen über die Zeit relativ konstanten Verlauf überzugehen. Gelöst wurden, nach Abzug der mit der Ausganslösung eingebrachten Natrium-Konzentration von 3930 mg/l, zwischen 27 mg (3 Monate) und 278 mg (18 Monate). Die gemessenen pH-Werte aller Fluide lagen über die Zeit zwischen 6,0 ± 0,1 und 8,4 ± 0,1 mit einem durchschnittlichen Wert von 7,1 ± 0,1.

- 3 - 6 - 12 - 18 Monate

Abb. 6.18: Entwicklung des pH-Werts und der Elementkonzentration in den Fluiden die während der Experimentreihe bei 100°C aus dem Opalinuston gewonnenen wurden. Dargestellt sind die Proben aller Reaktionszeiträume (3, 6, 12 und 18 Monate), jede Linie repräsentiert das Fluid welches aus jeweils einer Festphasenprobe ausgetreten ist (gesamt 11 Festphasenproben). Die Natrium-Konzentration (3930 mg/l) der Ausgangslösung wird durch die bei Na⁺ dargestellte gestrichelte Linie repräsentiert.

Bei einer Reaktionstemperatur von 100°C und im Zusammenhang mit dem berechneten CO₂-Partialdruck und dem berechneten pH-Wert waren die Fluide kontinuierlich gegenüber Calcit und Dolomit übersättigt (Abb. 6.19).

Abb. 6.19: Sättigungsindex für Calcit und Dolomit, ermittelt aus Berechnungen mit PHREEQC. Grundlage bildet die Zusammensetzung der aus den Proben ausgetretenen Fluide (Abb. 6.18, Anhang II) bei einer Reaktionstemperatur von 100°C. Die Kreuze markieren die minimalen und maximalen Sättigungsindizes zum Reaktionszeitpunkt 12 Tage, sowie 3, 6, 12 und 18 Monate.

Untersättigt hingegen waren die Fluide bezüglich Albit (ØSI = -5,1), Chlorit (ØSI = -12,6), Kaolinit (ØSI = -7,0), Illit (ØSI = -9,2) sowie Smektit (ØSI = -6,3) (Abb. 6.20). Ebenfalls lag über die Zeit eine Untersättigung gegenüber Quarz ($SI_{min} = -0,4$; $SI_{max} = -0,07$) vor, jedoch mit einem tendenziellen Übergang in ein quasi-Gleichgewicht zwischen Fluid und Mineral (Abb. 6.20)

Abb. 6.20: Sättigungsindizes für Silikate des Opalinustons. Die mathematische Grundlage bildet die Zusammensetzung der aus den Proben ausgetretenen Fluide (Abb. 6.18, Anhang II) bei einer Reaktionstemperatur von 100°C. Die Kreuze markieren die minimalen und maximalen Sättigungsindizes zum Reaktionszeitpunkt 12 Tage sowie 3, 6, 12 und 18 Monate.

Alteration der Festphase

Die Analytik der Festphasen zeigte auch bei einer Reaktionstemperatur von 100°C keine eindeutigen, durch die Elementmobilisation hervorgerufenen, Alterationseffekte.

Röntgenbeugungsdiagramme (Abb. 6.21) zeigen tendenziell gleichbleibende Mineralphasenpeaks vor und nach den verschiedenen Reaktionszeiten. Variationen der Elementgehalte zwischen den reagierten Proben, mit Differenzen von ± 0.8 Gew% für Na₂O, ± 1 Gew% für MgO, ± 11 Gew% für Al₂O₃, ± 24 Gew% für SiO₂, ± 2 Gew% für K₂O, ± 21 Gew% für CaO und ± 2.5 Gew% für Fe₂O₃, wurden zwar nachgewiesen, waren aber nicht zeitlich beeinflusst. Vielmehr konnten sie den verschiedenen Tiefenlagen und dem damit verbundenen unterschiedlichen Elementgehalt des Ausgangsmaterials zugeordnet werden.

Abb. 6.21: Gestapelte Röntgenbeugungsdiagramme für den Opalinuston (Referenz und nach Reaktion von 3 bis 18 Monaten bei 100°C). Die Proben stammen aus Bohrung BCS-1 und BCS-3.

Unabhängig von der Reaktionszeit wurde in einzelnen Proben eine tendenziell geringe von außen nach innen verlaufende Abnahme der Elementgehalte von SiO₂ und Al₂O₃ verzeichnet (Abb. 6.22; Tab. 6.04). Während K₂O, MgO und CaO nahezu identisch blieben, verhielt sich die Konzentration von Natrium gegenläufig. Ein Anstieg von 0,5 Gew% im Randbereich auf 1,1 Gew% im Stempel bedeutet eine Zunahme um das Doppelte auf einer Distanz von < 3 cm.

Abb. 6.22: Probe des Opalinustons (BCS-3: 3,37 - 3,41 m; CS_37) nach 12-monatigem Reaktionsexperiment bei 100°C. Der äußere Bereich wird durch A markiert, der Innere durch I. Die zugehörigen Elementgehalte sind in der Tab. 6.04 dargestellt.

	Außen (A)	Innen (I)
	[Gew%]	[Gew%]
SiO ₂	43,9	43,1
Al_2O_3	19,3	18,6
K ₂ O	2,9	2,8
Na ₂ O	0,5	1,1
MgO	2,2	2,2
CaO	7,9	7,8
Fe ₂ O ₃	5,4	5,4

Tab.6.04: Anteil ausgewählter Elemente im äußeren und inneren Bereich der in Abb. 6.22 dargestellten Probe des Opalinustons.

6.1.5. Experimentelle Veränderungen der Störungszonen

Die Proben des Opalinustons aus den bei verschiedenen Zeit- und Temperaturstufen durchgeführten Reaktionsexperimenten zeigten alle ähnliche makroskopische und mikroskopische Veränderungen. Die Probenoberflächen waren durch Risse und Ausbrüche (vor allem auf der unteren Seite der Proben) in den Schichten gekennzeichnet (Abb. 6.23 a und b). Der Stempelbereich der Proben war infolge struktureller Zerstörung und des vorherrschenden Fluiddrucks deutlich nach oben angehoben und brach häufig beim Öffnen der Reaktionszellen ab (Abb. 6.23 a, b). Abbildung 6.23 c und d zeigen Beispiele einer Desintegration des Stempelbereichs nach Reaktion mit dem CO₂-gesättigtem Fluid. In Abbildung 6.23 c ist eine Probe (BCS-1; 3,3m; 18 Monate; 100°C) dargestellt bei der der untere Bereich des Stempels strukturell völlig erhalten geblieben ist. In diesem Bereich fand die Fluidbewegung bzw. der Eintritt der CO₂-gesättigten Lösung erst entlang der eigentlichen Störungszone statt, gekennzeichnet durch die Desintegration der Proben in diesem Bereich, und breitete sich dann im gesamten Stempel aus. Im Vergleich dazu erfolgte, unabhängig

von der Menge des gesamten Fluiddurchflusses, in den meisten Proben die Desintegration des ganzen Stempelbereichs (Abb. 6.23 d; BCS-3, 2,32-2,36 m, 12 Monate, 60°C).

Mikroskopische Aufnahmen belegen die von Temperatur, Zeit und Fluiddurchlass (Gesamtvolumen über die Reaktionszeit, sowie Häufigkeit des Fluidaustritts aus der Probe) unabhängige Entwicklung der Störungszonen. Sie reichen von grob desintegriert (Abb. 6.23 e) bis zur Zerstörung in submikroskopische Partikel (Abb. 6.23 f). Vergleiche der Störungszone des Ausgangsmaterials mit den mikroskopischen Aufnahmen der Störungszonen nach Reaktion mit der CO₂-gesättigten Lösung (Abb. 6.23 e und f) verdeutlichen die unterschiedlichen Möglichkeiten der Ausbildungen von Störungszonen. Auf dieser Grundlage ist eine experimentell hervorgerufene Veränderung jedoch schlecht nachweisbar. So konnten Mineralpräzipitationen oder Lösungen des Probenmaterials entlang der Störungszone nicht beobachtet werden und schließen dadurch an die in Kapitel 6.1.4 dargestellten Ergebnisse für den Opalinuston an.

Abb. 6.23: a) Opalinuston (BCS-3: 2,12 - 2,16 m; CS_35; 18 Monate; 45°C) nach Reaktion und Trocknung. Deutlich ersichtlich ist die Desintegration des Stempels und die Störungszone, welche durch den auf der Trocknung basierenden Wasserverlust in der Probe deutlich verbreitert wurde. Zusammengehalten wird die Probe lediglich durch den umgebenen Kleber. **b)** Gleiche Probe von der Unterseite, charakterisiert durch Ausbrüche und Ablösung einzelner Schichten. Helle Punkte an der Oberfläche sind mit der Probe verbundene Quarzkörner, aus dem zur Verfüllung verwendeten Quarzsand. **c)** Querschnitt durch eine reagierte Probe des Opalinustons (BCS-1: 3,3 m; CS_30; 18 Monate; 100°C). Bereiche der Fluidbewegung während der Reaktionszeit sind durch strukturelle Zerstörung charakterisiert. **d)** Weiterer Querschnitt einer anderen Probe des Opalinustons (BCS-3: 2,32 - 2,36 m; CS_35; 12 Monate; 60°C). **e)** Dünnschliff im Bereich einer Störungszone im Opalinuston nach Reaktionszeit von 12 Monaten und 45°C (BCS-3: 2,4 - 2,48 m; CS_35). Die Störungszone ist durch Desintegration und randliche Zerreibung des Materials in submikroskopische Partikel gekennzeichnet. Die hellen Linien sind durch Präparation hervorgerufene Risse im Material. **f)** Der Dünnschliff im Bereich einer Störungszone im Opalinuston 12 Monaten und 75°C (BCS-3: 3,18 - 3,25 m; CS_36) zeigt die starke Zerkleinerung des Probenmaterials.

Aufnahmen der μ XRF unterstreichen die These, dass die Gas- / Fluidbewegungen nicht ausschließlich entlang der Störungszone stattgefunden hat. Die semiquantitative Darstellung der Chlorgehalte (Abb. 6.24, Cl⁻), welche überwiegend aus der CO₂-gesättigten NaCl-Lösung stammen und somit als Indikator des Fluidweges genutzt werden können, zeigen sowohl im Bereich der Störungszone als auch im Stempel erhöhte Konzentrationen. Neben höheren Chlorgehalten weisen diese Bereich im Vergleich zum umgebenden Abschnitt teilweise geringere Konzentrationen der Elemente Mg²⁺, K⁺ und Si⁴⁺ auf .

Abb. 6.24: Semiquantitative Ergebnisse der μ XRF - Aufnahme im Bereich der Störungszone im Opalinuston (BCS-1: 3,3m; 18 Monate; CS_30; 100°C). Auf Grundlage der unterschiedlichen Ausgangskonzentrationen im Gestein deuten gleiche Farben bei den verschiedenen Elemente nicht zwangsläufig auf gleiche Konzentrationen hin.

Elementmobilisation aus dem Stempel

Die in Kapitel 6.1.4 dargestellten Ergebnisse lassen darauf schließen, dass während der Reaktionsexperimente eine Reaktion der CO₂-gesättigten Lösung mit dem gesamten Stempel (\emptyset 2,5 cm, Höhe 2 cm), sowie in einem begrenzten Bereich zwischen Stempel und äußerem Probenrand (festgesetzt auf 2,5 mm) stattgefunden hat (Abb. 6.23; 6.24 und 6.25). Unter Einbezug der insgesamt gelösten Menge der Elemente pro Temperaturbereich (Kapitel 6.1.4) lässt sich semiquantitativ der prozentual gelöste Elementanteil aus der Probe ermitteln.

Abb. 6.25: a) Aufsicht auf eine gestanzte Opalinustonprobe (BCS-1: 3,3m; CS_30) vor Beginn der Experimentphase. b) Querschnitt durch die gleiche Probe nach Reaktion mit der CO₂-gesättigten Lösung (18 Monate; 100°C). Die helle, weiß umrandete Zone kennzeichnet den Bereich in dem die CO₂-Wasser-Gesteins-Reaktionen während des Experiments am wahrscheinlichsten stattgefunden hat.

Zur Bestimmung der Masse eines Elements (in g) im Stempelbereich der Probe wurde von einer homogenen Elementverteilung, homogener Dichte (\emptyset 2,2 g/cm³) und einer durchschnittlich konstanten Masse des Stempels von 22 g ausgegangen. Auflockerungen, Materialverlust und Änderungen der Dichte durch den Stanzvorgang blieben bei der Berechnung unberücksichtigt.

Durch die Umrechnung des prozentualen Anteils des Elementoxids (Anhang II b) in den prozentualen Anteil des Elements ließ sich eine anteilige Menge im Stempel von 1,7 - 2,7g Calcium, 0,4 - 0,5 g Magnesium, 0,7 - 0,8 g Kalium, 6,4 - 6,9 g Silizium und 0,1 g Natrium bestimmen. Vergleiche dieser Werte mit der insgesamt gelösten Menge in den Fluiden ergeben den im Stempel gelösten Anteil der Elemente (Tab. 6.05).

Die Ergebnisse der Berechnung (Tab. 6.05) zeigen, dass mit Ausnahme von Natrium, prozentual am meisten Magnesium (≤ 1 bis 26 %), gefolgt von Kalium (≤ 1 bis 7 %) aus den Stempel der Proben in Lösung gegangen ist. Die Werte ≥ 10 % für Magnesium, welche tendenziell häufiger mit bei höherer Reaktionszeit erreicht werden, sind verbunden mit einer stärkeren Lösung von Calcium und Kalium. In allen anderen Proben ist, gemessen am Gehalt in Lösung, nur relativ wenig Calcium (≤ 1 % bis 4 %) mobilisiert worden. Der Anteil an gelöstem Silizium aus dem Stempel liegt für alle Proben ≤ 1 %. Im Gegensatz zu den in Tabelle 6.05 dargestellten Elementen ergibt die in Lösung gemessene Menge an Natrium (nach Abzug des eingebrachten Gehalts) einen theoretisch aus den Proben gelösten Anteil von > 100 %. Werte > 100 % zeigen an, dass nicht allein Mobilisierungsvorgänge aus dem markierten Bereich für den Gehalt in Lösung verantwortlich sein können.

Tab. 6.05: Prozentuale gelöster Anteil der in den Fluiden nachgewiesenen Elemente aus dem Bereich des Stempels im Opalinuston. Dargestellt sind die Proben der verschiedenen Reaktionszeiten und -temperaturen. *Die einzelnen Proben wurden unter der Probenbezeichnung der CO₂Seals Datenbank (CS_XX) für den jeweiligen Gesteinstyp und die Tiefenlage zusammengefasst.

	3 Monate					6 Monate			
	Ca ²⁺	Mg^{2+}	\mathbf{K}^{+}	Si ⁴⁺		Ca ²⁺	Mg ²⁺	\mathbf{K}^{+}	Si ⁴⁺
Probe*	[%]	[%]	[%]	[%]	Probe*	[%]	[%]	[%]	[%]
45°C CS_35	5 ≤1	4	≤1	≤1	CS_33	≤1	2	≤1	≤1
CS_35	5 ≤1	≤ 1	≤ 1	≤ 1	CS_35	≤ 1	≤ 1	≤ 1	≤ 1
					CS_35	≤1	5	2	≤ 1
60°C CS_35	5 ≤1	3	2	≤1	CS_31	12	26	7	≤ 1
CS_35	5 ≤1	2	≤ 1	≤ 1	CS_31	≤1	8	3	≤ 1
					CS_35	2	8	3	≤ 1
75°C CS_36	5 ≤1	2	≤1	≤1	CS_31	2	10	3	≤1
CS_36	5 ≤1	2	≤ 1	≤ 1	CS_33	≤1	9	4	≤ 1
					CS_36	≤ 1	2	≤ 1	≤ 1
100°C CS_36	5 ≤1	2	≤1	≤1	CS_31	3	10	5	≤1
CS_36	5 ≤1	2	≤ 1	≤ 1	CS_31	2	7	4	≤ 1
					CS_36	≤1	3	2	≤1
		12 M	onate				18 M	onate	
	Ca ²⁺	12 Mo Mg ²⁺	onate K ⁺	Si ⁴⁺		Ca ²⁺	18 Mo Mg ²⁺	onate K ⁺	Si ⁴⁺
Probe*	Ca ²⁺ [%]	12 Me Mg ²⁺ [%]	onate K ⁺ [%]	Si ⁴⁺ [%]	Probe*	Ca ²⁺ [%]	18 Me Mg ²⁺ [%]	onate K ⁺ [%]	Si ⁴⁺ [%]
Probe* 45°C CS_33	Ca ²⁺ [%] 5 ≤1	12 Me Mg ²⁺ [%] 1	onate K ⁺ [%] ≤1	Si⁴⁺ [%] ≤1	Probe*	Ca²⁺ [%] ≤1	18 Me Mg ²⁺ [%] 5	onate K ⁺ [%] 2	Si⁴⁺ [%] ≤1
Probe* 45°C CS_35 CS_35	$ \begin{array}{c} Ca^{2+} \\ [\%] \\ [\%] \\ 5 \\ 5 \\ 5 \\ 5 \end{array} $	12 Me Mg ²⁺ [%] 1 ≤1	bnate K ⁺ [%] ≤1 ≤1	Si⁴⁺ [%] ≤1 ≤1	Probe* CS_35 CS_35	Ca²⁺ [%] ≤1 13	18 M Mg²⁺ [%] 5 23	onate K ⁺ [%] 2 7	Si⁴⁺ [%] ≤1 ≤1
Probe* 45°C CS_33 CS_33 CS_33 CS_33	$ \begin{array}{c} \text{Ca}^{2+} \\ [\%] \\ 5 \leq 1 \\ 5 \leq 1 \\ 3 2 \end{array} $	12 M Mg ²⁺ [%] 1 ≤1 7	onate K⁺ [%] ≤1 2	Si ⁴⁺ [%] ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_35	Ca ²⁺ [%] ≤1 13 3	18 Mo Mg ²⁺ [%] 5 23 13	onate K ⁺ [%] 2 7 4	Si ⁴⁺ [%] ≤1 ≤1 ≤1
Probe* 45°C CS_33 CS_33 CS_33 60°C CS_33	$ \begin{array}{c} Ca^{2+} \\ [\%] \\ 5 \\ 5 \\ 5 \\ 3 \\ 2 \\ 5 \\ 7 \end{array} $	12 M Mg²⁺ [%] 1 ≤1 7 16	bnate K ⁺ [%] ≤1 ≤1 2 6	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_35 CS_35 CS_31	Ca ²⁺ [%] ≤1 13 3 ≤1	18 M Mg ²⁺ [%] 5 23 13 6	onate K ⁺ [%] 2 7 4 2	Si ⁴⁺ [%] ≤1 ≤1 ≤1 ≤1
Probe* 45°C CS_33 CS_33 CS_33 60°C CS_33 60°C CS_33 CS_33	$\begin{array}{c c} \mathbf{Ca}^{2+} \\ \hline [\%] \\ \hline 5 & \leq 1 \\ \hline 5 & \leq 1 \\ \hline 3 & 2 \\ \hline 5 & 7 \\ \hline 5 & \leq 1 \end{array}$	12 M Mg ²⁺ [%] 1 ≤1 7 16 4	onate K⁺ [%] ≤1 ≤1 2 6 ≤1	Si ⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_35 CS_31 CS_31	$ \begin{array}{c} \mathbf{Ca}^{2+} \\ [\%] \\ \leq 1 \\ 13 \\ 3 \\ \leq 1 \\ 2 \end{array} $	18 M Mg²⁺ [%] 5 23 13 6 14	bnate K ⁺ [%] 2 7 4 2 4 2 4	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
Probe* 45°C CS_3: CS_3: CS_3: 60°C CS_3:	$\begin{array}{c c} \mathbf{Ca}^{2+} \\ \hline [\%] \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $	12 Mg Mg ²⁺ [%] 1 ≤1 7 16 4 2	Denate K⁺ [%] ≤1 ≤1 2 6 ≤1 ≤1	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_35 CS_31 CS_31 CS_31	$\begin{array}{c} \mathbf{Ca}^{2+} \\ [\%] \\ \leq 1 \\ 13 \\ 3 \\ \leq 1 \\ 2 \\ 3 \end{array}$	18 M Mg ²⁺ [%] 5 23 13 6 14 13	bnate K ⁺ [%] 2 7 4 2 4 2 4 3	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
Probe* 45°C CS_33 CS_33 CS_33 60°C CS_35 CS_35 CS_35 75°C CS_36	$\begin{array}{c c} Ca^{2+} \\ [\%] \\ 5 & \leq 1 \\ 5 & \leq 1 \\ 3 & 2 \\ 5 & < 1 \\ 5 & \leq 1 \\ 5 & \leq 1 \\ 5 & \leq 1 \end{array}$	12 M g ²⁺ [%] 1 ≤1 7 16 4 2 ≤1	onate K ⁺ [%] ≤1 ≤1 6 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_35 CS_31 CS_31 CS_31 CS_31 CS_33	$\begin{array}{c} \mathbf{Ca}^{2+} \\ [\%] \\ \leq 1 \\ 13 \\ 3 \\ \leq 1 \\ 2 \\ 3 \\ \leq 1 \end{array}$	18 Mg ²⁺ [%] 5 23 13 6 14 13 4	bnate K ⁺ [%] 2 7 4 2 4 3 ≤1	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
Probe* 45°C CS_33 CS_33 CS_33 60°C CS_33 CS_33 CS_33 75°C CS_36	Ca ²⁺ [%] 5 ≤ 1	$ \begin{array}{c} 12 \text{ Mg} \\ \text{Mg}^{2+} \\ [\%] \\ 1 \\ \leq 1 \\ 7 \\ 16 \\ 4 \\ 2 \\ \leq 1 \\ 3 \end{array} $	mate K ⁺ [%] ≤1 ≤1 2 6 ≤1 ≤1 ≤1 2 6 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_35 CS_31 CS_31 CS_31 CS_33 CS_33 CS_33	$\begin{array}{c} \mathbf{Ca}^{2+} \\ [\%] \\ \leq 1 \\ 13 \\ 3 \\ \leq 1 \\ 2 \\ 3 \\ \leq 1 \\ \leq 1 \end{array}$	18 M g ²⁺ [%] 5 23 13 6 14 13 4 4	onate K⁺ [%] 2 7 4 2 4 3 ≤1 2	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
Probe* 45°C CS_3: CS_3: CS_3: 60°C CS_3: CS_3: CS_3: 75°C CS_3: CS_3: CS_3: CS_3: 75°C CS_3: CS_3: CS_3: 75°C CS_3: CS_3: 75°C CS_3: CS_3: CS_3: CS_3: 75°C CS_3: CS_3: CS_3: 75°C CS_3:	$\begin{array}{c c} Ca^{2+} & [\%] \\ \hline 5 & \leq 1 \end{array}$	$\begin{array}{c} 12 \text{ Mg} \\ \text{Mg}^{2+} \\ [\%] \\ 1 \\ \leq 1 \\ 7 \\ 16 \\ 4 \\ 2 \\ \leq 1 \\ 3 \\ 5 \end{array}$	Second te K ⁺ [%] ≤1 ≤1 2 6 ≤1 ≤1 ≤1 2 6 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≥1 2	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_31 CS_31 CS_31 CS_31 CS_33 CS_33 CS_33 CS_28	$\begin{array}{c} \mathbf{Ca}^{2+} \\ [\%] \\ \leq 1 \\ 13 \\ 3 \\ \leq 1 \\ 2 \\ 3 \\ \leq 1 \\ \leq 1 \\ \leq 1 \end{array}$	18 Mg Mg ²⁺ [%] 5 23 13 6 14 13 4 4 3	onate K ⁺ [%] 2 7 4 2 4 3 ≤1 2 ≤1 2	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
Probe* 45°C CS_33 CS_33 CS_33 60°C CS_33 CS_33 CS_33 75°C CS_36 CS_36 CS_36 100°CCS_33	$\begin{array}{c c} Ca^{2+} \\ \hline [\%] \\ \hline 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$	$ \begin{array}{c} 12 \text{ Mg} \\ \text{Mg}^{2+} \\ [\%] \\ 1 \\ \leq 1 \\ 7 \\ 16 \\ 4 \\ 2 \\ \leq 1 \\ 3 \\ 5 \\ 6 \\ \end{array} $		Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_31 CS_31 CS_31 CS_31 CS_33 CS_33 CS_28 CS_31	$\begin{array}{c} \mathbf{Ca}^{2+} \\ [\%] \\ \leq 1 \\ 13 \\ 3 \\ \leq 1 \\ 2 \\ 3 \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ 4 \end{array}$	18 Mg ²⁺ [%] 5 23 13 6 14 13 4 4 3 12	onate K ⁺ [%] 2 7 4 2 4 3 ≤1 2 ≤1 7 7	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
Probe* 45°C CS_33 CS_33 60°C CS_35 CS_35 CS_35 75°C CS_36 CS_36 100°CS_36 100°CS_36 100°CS_36 100°CCS_36 100°CS_36 100°CS_36 100°CS_36 100°CCS_36 100°	$\begin{array}{c c} Ca^{2+} \\ \hline [\%] \\ \hline 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$	$\begin{array}{c} 12 \text{ Me} \\ \text{Mg}^{2+} \\ [\%] \\ 1 \\ \leq 1 \\ 7 \\ 16 \\ 4 \\ 2 \\ \leq 1 \\ 3 \\ 5 \\ 6 \\ 5 \end{array}$		Si⁴⁴ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1	Probe* CS_35 CS_35 CS_31 CS_31 CS_31 CS_31 CS_33 CS_33 CS_28 CS_31 CS_31 CS_31 CS_33 CS_23 CS_31 CS_33 CS_35 CS_33 CS_33 CS_33 CS_35 C	$\begin{array}{c} \mathbf{Ca}^{2+} \\ [\%] \\ \leq 1 \\ 13 \\ 3 \\ \leq 1 \\ 2 \\ 3 \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ 4 \\ 3 \end{array}$	18 Mg ²⁺ [%] 5 23 13 6 14 13 4 4 3 12 8	bonate K^+ [%] 2 7 4 2 4 3 ≤ 1 2 ≤ 1 7 5	Si⁴⁺ [%] ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1

6.1.6 Geochemische Modellierung

Zur Bestimmung der abgelaufenen Mineralreaktionen, welche während der Experimente beim Kontakt der CO₂-gesättigten Lösung im Opalinuston stattgefunden haben, wurden geochemische Modellierungen mit dem Programm PHREEQC (Kapitel 5) durchgeführt.

Inverse Modellierung

Basis der inversen Modellierung war die Gegenüberstellung des initialen CO_2 -gesättigten Fluids gegen die Fluide, welche regelmäßig nach der Reaktion mit dem Opalinuston aus den Reaktionszellen entnommen wurden. Die Auswahl der möglichen Reaktanten im Gestein (Calcit, Ankerit, Quarz, Albit, Kaolinit, Chlorit, Illit) basierte zum einen auf ihrer Konzentration im Gestein (Konzentrationen > 1%), zum anderen auf experimentellen Ergebnissen und Berechnungen, welche durch verschiedene Autoren wie u.a. ADREANI ET AL. (2008), CREDOZ ET AL. (2009) und ALEMU ET AL. (2011), SHIRAKI & DUNN (2000) veröffentlicht wurden. Nach ihnen können Minerale wie Albit, Chlorit, Illit und Quarz bei Experimenten mit CO₂ gelöst und Kaolinit, sowie Karbonate (z.B. Calcit und Ankerit) gelöst und auch präzipitiert werden.

Mit den aufgeführten Mineralphasen und einem gewählten Fehler der Fluidzusammensetzung von 5 % konnte die Anzahl der Modelle in allen Temperaturbereichen auf zwei reduziert werden. Das Modell A (Tab. 6.06) sieht die Lösung von Ankerit, Chlorit, Illit und eine Ausfällung von Kaolinit vor, während in Modell B Calcit anstelle von Ankerit gelöst worden sein muss.

Tab.6.06: Mittels PHREEQC ermittelte Modelle zur Minerallösung und Fällung im Opalinuston. Dargestellt sind die während der Versuchsreihe reagierte Mineralphasen und ihre Mineralformeln für die Modelle A und B. Ein positives Zeichen (+) bedeutet Minerallösung ein negatives (-) Mineralpräzipitation; nb - Phase ist im Modell nicht an den Reaktionen beteiligt.

Reaktant	Mineralformel	Modell A	Modell B
Calcit	CaCO ₃	nb	+
Ankerit	$CaFe(CO_3)_2$	+	nb
Chlorit	$Mg_5Al_2Si_3O_{10}(OH)_8$	+	+
Illit	$K_{0,6}Mg_{0,25}Al_{2,3}Si_{3,5}O_{10}(OH)_2$	+	+
Kaolinit	$Al_2Si_2O_5(OH)_4$	-	-

Die Menge der Mineralphasen pro kg Wasser, welche beim Durchgang der CO₂gesättigten Lösung durch das Gestein gelöst bzw. präzipitiert wurde, weist in beiden Modellen, neben Variation in Abhängigkeit der Elementkonzentrationen in den Fluiden, eine tendenzielle Abnahme über die Zeit auf. Ausnahmen liegen bei 45°C für die Minerale Calcit und Ankerit vor, da hier eine zunehmende Lösung berechnet wurde. Abbildung 6.26 (Modell B) macht am Beispiel jeweils einer Probe aus der 45°C und 100°C Reaktionsreihe, sowohl die leicht abnehmende Lösung (positive Werte) und Präzipitation (negative Werte), als auch einen leichten Temperatureinfluss deutlich. Während Calcit bei 45°C stärker gelöst wurde, wurde bei 100°C mehr Chlorit und Illit gelöst und Kaolinit aus der Lösung ausgefällt.

Abb. 6.26: Mineralmenge der pro kg Wasser gelösten und gefällten Mineralphasen (Moltransfer) in Abhängigkeit der Zeit. Dargestellt sind die Ergebnisse von Modell B. Positiver Wert bedeutet Minerallösung aus dem Gestein, negativer Wert zeigt die Ausfällung einer Mineralphase aus der Lösung an.

Für alle Temperaturen und Zeiten zusammengefasst liegt die Molalität der Minerale, welche bei einer Kontaktzeit des CO_2 -gesättigtens Fluids mit dem Gestein von einer Woche gelöst bzw. präzipitiert sein müsste, im Bereich zwischen 10^{-1} und 10^{-4} mol/kgWasser (Tab. 6.07). Unberücksichtigt bleibt hierbei der initiale Anteil der Mineralphasen im Gestein. Aus diesem Grund weisen die in Tabelle 6.07 dargestellten Werte lediglich eine tendenzielle Größenordnung des berechneten gelösten bzw. gefällten Anteils der einzelnen Mineralphasen und damit deren Lösungs- und Fällungsverhältnisse zueinander auf.

Tab. 6.07: Aus der Modellierung mit PHREEQC ermittelter tendenzieller Moltransfer für die jeweiligen Minerale (Reaktanten), welche während der Experimente über die Zeit aus dem Opalinuston gefällt bzw. gelöst wurden. Dargestellt sind zwei Modelle (A und B) mit minimalen und maximalen Werten für die Reaktanten (Minerale), bei Reaktionstemperaturen von 45°C bis 100°C. Positive Werte bedeuten, dass Lösung stattgefunden hat, negative, dass das Mineral ausgefällt wurde. In einem Modell nicht berücksichtige Minerale werden mit nb gekennzeichnet.

Temperatur [°C]	Modell	Calcit	Ankerit	Reaktant Chlorit [mmol/kg]	Illit	Kaolinit
45	А	nb	1 - 10	0,8 - 1	0,8 - 10	-2 - (-6)
	В	0,9 - 10	nb	0,4 - 1	0,8 - 20	-6 - (-20)
60	А	nb	7 - 10	0,9 - 4	10 - 20	-4 - (-10)
	В	7 - 20	nb	0,9 - 4	2 - 10	-4 - (-30)
75	А	nb	4 - 20	1 - 4	1 - 4	-10 - (-30)
	В	4 - 20	nb	1 - 4	4 - 10	-9 - (-30)
100	А	nb	5 - 20	0,8 - 5	4 - 10	-9 - (-10)
	В	5 - 20	nb	0,8 - 5	2 - 20	-5 - (-10)

6.2 Alterationseffekte in vergleichbaren Referenzdeckgesteinen

Wie beim Opalinuston wurden die vier Referenzdeckgesteinen (Boom Clay, Tonstein der Weser-Formation und Deckgestein von Shell) im Vorfeld mineralogisch, chemisch untersucht und ihre Scherfestigkeit ermittelt. Im Zeitraum der Versuchsreihe sind von Januar 2010 bis Mai 2010 2x wöchentlich und ab Ende Mai 2010 bis September 2011 1x wöchentlich Proben der Fluide, welche mit den Deckgesteinen reagiert hatten, aus den Reaktionszellen gewonnen und analysiert wurden. Aus dem Fluidvolumen pro Probennahme konnte zusätzlich die aus den Festphasen insgesamt gelöste Menge eines Elements berechnet werden. Hierfür wurde bei jeder Fluidprobe der Quotient aus der Konzentration zum Volumen gebildet. Die Summe aus aller über die gesamte Reaktionszeit ermittelten Ergebnisse bildete die insgesamt gelöste Menge pro Feststoffprobe. Neben diesen Berechnungen wurde zusätzlich der Sättigungsindex der Fluide nach Reaktion und unter bestehenden experimentellen Parametern ermittelt (Kapitel 5.3). Mit ihm sollten abgelaufene bzw. zukünftige Lösungen oder Fällung von Mineralphasen besser gedeutet werden.

Die Festphasen wurden nach Beendigung der jeweiligen Versuchsreihe aus den Reaktionszellen ausgebaut, getrocknet und mit unterschiedlichen analytischen Methoden genauer untersucht (Kapitel 5). Eine detaillierte Auflistung der Ergebnisse ist im Anhang zu finden (Anhang III).

6.2.1 Boom Clay

Die Proben vom Boom Clay stammen aus dem Bohrkern Nr. 18, welcher in der Hauptgalerie (Tiefe: 223 m) des Untertagelabors HADES gewonnen wurde. Die Tiefe aus dem der Bohrkern stammt (Hauptgalerie als Ausgangsbasis) ist mit 25,85 - 26,5 m angegeben.

6.2.1.1 Mineralogische und chemische Zusammensetzung

Für den Boom Clay wurde ein Hauptelementanteil von rund 58 Gew% SiO₂, 18 Gew% Al₂O₃, 7 Gew% Fe₂O₃, 3 Gew% K₂O, 2 Gew% MgO, 1 Gew% TiO₂, 0,6 Gew% Na₂O sowie 0,5 Gew% CaO nachgewiesen. Aus diesen Werten wurde semiquantitativ der Gehalt

(PFEFFER, 1996; Anhang I) der analytisch nachgewiesenen Mineralphasen (Abb. 6.27) ermittelt. Die Tonminerale (Bsp. Abb. 6.27 b) Illit, Smektit (I-S Wechsellagerung), Kaolinit und Chlorit ergaben, zusammen mit den Glimmern (Muskovit), in Summe einen Anteil von 56 %. Daneben traten Quarz (~ 26 %), mit 6 % K-Feldspat (Orthoklas) und 6 % Albit, sowie untergeordnet (\leq 5 %) Pyrit, Dolomit und Siderit (Abb. 6.27 c) auf. Akzessorisch wurde mit dem Rasterelektronenmikroskop organischer Kohlenstoff und Apatit nachgewiesen.

Abb. 6.27: a) Röntgenbeugungsdiagramm vom Boom Clay (CS_22) mit charakteristischen Mineralpeaks. Aus Gründen der Übersichtlichkeit sind nicht alle zu den Mineralphasen gehörenden Peakpositionen markiert. **Unten**: BSE-Aufnahmen von Mineralphasen im Boom Clay **b**) BSE-Aufnahmen am Boom Clay zeigt Illit dominierte Tonmatrix. **c**) BSE-Aufnahmen am Boom Clay zeigt selten vorkommenden Siderit. Überdeckt wird dieser von Matrix bildenden Tonmineralen.

6.2.1.2 Charakterisierung der Scherspannung

Durch die Erzeugung einer künstlichen Störungszone konnte wie bereits beim Opalinuston (Kapitel 6.1) auch am Boom Clay der Scherwiderstand anhand der pro Scherweg gemessenen Scherspannungen bestimmt werden (Abb. 6.28). Die Scherspannung der vier Proben, die für die Experimente ausgewählten wurden, nahm bis zu einem Scherweg von 0,4 - 0,6 mm zu und verlief anschließend relativ konstant. Über den gesamten Scherweg stellte sich dabei kein deutliches Scherspannungsmaximum ein. Mit maximalen Werten zwischen 1,6 und 3 MPa war die maximale Scherspannung sehr gering, was im Vergleich zum Opalinuston einen um mindestens 7 MPa niedrigeren Wert entsprach.

Abb. 6.28: Scherspannungskurven die während der Erzeugung der Störungszonen im Boom Clay (CS_22) aufgezeichnet wurden.

6.2.1.3 Alterationseffekte im Boom Clay

Die Reaktionsexperimente am Boom Clay fanden bei allen Temperaturstufen (45° C: BC_04, 60°C: BC_02, 75°C: BC_01 und 100°C: BC_03) parallel zu denen am Opalinuston, jedoch in einfacher Bestückung und über einen Zeitraum von 9 Monaten, statt. Während dieser Zeit wurden die gestanzten Proben (Abb. 6.29) ebenfalls mit der in Kapitel 4 beschriebenen CO₂-gesättigten NaCl-Lösung beaufschlagt und auch die Entnahme der Fluide, welche aus den Proben / Reaktionszellen austraten, erfolgte wöchentlich. Zur Charakterisierung möglicher Alterationen wurden die Festphasen nach Ende der Reaktionszeiten analytisch untersucht (Kapitel 5).

Abb. 6.29: a) Aufsicht auf oberer Fläche einer gestanzten Boom Clay Probe (CS_22; BC_01) vor Versuchsbeginn. Die Ausbrüche und Risse in der Probe basieren auf mechanischen Beanspruchung während des Präparationsvorganges. **b**) Aufsicht auf die unterer Fläche der gleichen Probe.

Chemische Entwicklung des Fluids

Der erste Fluidaustritt aus den Feststoffproben / Reaktionszellen fand beim Boom Clay bei 60°C nach 5 Tagen und bei 45°C, 75°C sowie 100°C nach 18 bzw. 19 Tagen statt. In der darauf folgenden Zeit kam es bei Temperaturen \leq 75°C nur noch sehr selten, bei 100°C, mit wenigen Ausnahmen, hingegen wöchentlich zu einem Fluidaustritt. Das Volumen der Fluide lag bei 100°C zwischen 5 und 8,5 ml, bei 45°C bis 75°C bei < 4 ml. Während der Reaktionszeit von 9 Monaten wurde eine eindeutige Mobilisation von Ca²⁺, Mg^{2+} , K^+ , Si⁴⁺, Na⁺ und Mn²⁺ nachgewiesen (Anhang III, Tab. IIIa 1 - 4). Ebenfalls konnten bei den 100°C Experimenten regelmäßig Eisengehalte in den gewonnen Fluiden bestimmt werden. Ihre Konzentration nahm über die Zeit ab (min.: 78 ± 11 mg/l, max.:312 ± 44 mg/l). Bei 75°C wurde kein Eisen nachgewiesen, bei 45°C und 60°C unregelmäßig mit Konzentrationen zwischen 5 ± 1 mg/l und 60 ± 8 mg/l. Eine Aluminiummobilisation konnte bei allen vier Temperaturstufen analytisch nicht erfasst werden.

Die Fluidanalytik (Abb. 6.30) zeigt für die Elemente Ca^{2+} , Mg^{2+} und K^+ über den gesamten Temperaturbereich (Ausnahme: Calcium bei 100°C) vergleichbare Entwicklungen der Konzentrationen in Lösung, mit einem kurzen Anstieg in den ersten zwei bis vier Wochen, dem anschließend eine tendenziell exponentielle Abnahme folgte.

Für Calcium wurde als Maximalwert eine Konzentration von 584 ± 76 mg/l gemessen, die bis zum Ende der Experimentreihe auf ein Minimum von 94 ± 12 mg/l abfiel (Abb. 6.30, Ca²⁺). Die stärksten Reaktionen die zur dieser Freisetzung führten traten im Versuchszeitraum bei 45°C (max. 584 ± 76 mg/l) auf und wurden mit steigender Temperatur geringer (max. 214 ± 28 mg/l bei 100°C). Die Mobilisation von Calcium bei 100°C unterschied sich zudem deutlich von den Temperaturen ≤ 75 °C mit anfänglich abnehmender Konzentration, die anschließenden konstanten bis leicht steigenden verliefen.

Die Entwicklung von Magnesium (Abb. 6.30, Mg^{2+}) zeigte einen ähnlichen Verlauf wie Calcium, mit einer Maximalkonzentration von 1022 ± 183 mg/l und einer Abnahme auf ein Minimum von 164 ± 30 mg/l. Der Einfluss der Temperatur spiegelte sich auch hier deutlich wider, mit höchsten Konzentrationen in Lösung bei 45°C und geringsten bei 100°C, sowie einer deutlich schnelleren und stärkeren Abnahme der Magnesiumkonzentration bei 100°C.

Mit einer Maximalkonzentration von 539 ± 70 mg/l Kalium in Lösung nach 32 Tagen Reaktionszeit sowie der exponentiellen Abnahme mit einer Minimalkonzentration von 116 \pm 15 mg/l erfolgte die Mobilisation von Kalium (Abb. 6.30, K⁺) in nahezu gleichem Maß wie die von Calcium. Ein Temperatureinfluss mit tendenziell geringerer Konzentration in den Fluiden bei steigender Temperatur konnte auch hier nachgewiesen werden. Eine Ausnahme bildete das Experiment bei 75°C, mit den höchsten Werten über die gesamte Reaktionszeit von 9 Monaten.

Die Konzentration von Silizium in der Lösung (Abb. 6.30, Si^{4+}) blieb über die Zeit zwischen 40 ± 4 mg/l und 6 ± 1 mg/l relativ konstant und zeigte dabei ebenfalls einen deutli-

chen Temperatureinfluss. Während für Temperaturen $\leq 75^{\circ}$ C zwischen 15 und 20 mg/l in Lösung gemessen wurden, lag die Konzentration bei 100°C mit 30 bis 40 mg/l doppelt so hoch.

Bei Natrium (Abb. 6.30, Na⁺) zeigte sich hingegen keine Temperaturabhängigkeit. Zu Beginn der Experimentreihe lagen Konzentrationen von bis zu 5866 \pm 411 mg/l vor, denen anschließend ein leichter Abfall folgte. Nach 100 Tagen blieben die Werte dann relativ konstant. Während dieser Zeit lag die Konzentration von Natrium deutlich über der mit der Ausgangslösung eingebrachten Menge von 3930 mg/l.

In Abhängigkeit der einzelnen Temperaturen wurde im Versuchszeitraum pro Probe insgesamt zwischen 36 mg (45°C; BC_04) und 239 mg (100°C; BC_03) Calcium, zwischen 71 mg (45°C; BC_04) und 459 mg (100°C; BC_03) Magnesium, zwischen 38 mg (45°C; BC_04) und 249 mg (100°C; BC_03) Kalium und zwischen 6 mg (45°C; BC_04) und 43 mg (100°C; BC_03) Silizium gelöst. Für Natrium blieb nach Abzug der Anfangskonzentration eine gelöste Gesamtmenge von 15 mg (60°C; BC_02) bis 125 mg (100°C; BC_03) übrig.

Die gemessenen pH-Werte lagen im neutralen bis leicht saurem Bereich (pH = 5 bis $6 \pm 0,1$ bei 100°C). Aufgrund des geringen Austrittvolumens der Fluide aus allen vier Reaktionszellen des Boom Clays war eine, den vollständigen Zeitraum umspannende Angabe des pH-Wertes jedoch nicht möglich (Abb. 6.30).

Abb. 6.30: Entwicklung der pH-Werte und der Elementkonzentrationen in den Fluiden, die während der 9-monatigen Experimentreihen bei 45°C (BC_04), 60°C (BC_02), 75°C (BC_01) und 100°C (BC_03) für die Boom Clay Proben bestimmt wurden. Jede Linie repräsentiert das Fluid, welches aus jeweils einer Festphasenprobe ausgetreten ist (gesamt 4 Festphasenproben). Die Rauten markieren die Zeitpunkte, an denen genug Fluidvolumen für die Analytik vorhanden war. Die bei Na⁺ dargestellte gestrichelte Linie repräsentiert die Natrium-Konzentration (3930 mg/l) der Ausgangslösung

Nach Reaktion mit dem Boom Clay und unter Experimentalbedingung (gegeben: T, berechnet: pCO₂ und pH-Wert) waren die Fluide bei allen Temperaturen gegenüber Dolomit übersättigt (SI_{min} = 0,5, SI_{max} = 1,9), mit tendenzieller Zunahme des Sättigungsindex bei höherer Temperatur (\emptyset SI = 0,6 (45°C); \emptyset SI = 1,5 (100°C)). Über die Reaktionszeit von 9 Monaten nahm die Übersättigung leicht ab. Bezüglich Siderit lag sowohl Über- als auch Untersättigung vor. Während bei 45°C (\emptyset SI = -0,9) und 75°C (\emptyset SI = -7) die Fluide über die Zeit permanent untersättigt blieben, waren sie in Abhängigkeit der Höhe des Eisengehalts in den Fluiden (Anhang IIIa, Tab. IIIa.2 und IIIa.4) bei 60°C (SI_{min} = -1,1, SI_{max} = 0,16) sowohl unter- als auch übersättigt und bei 100°C (SI_{min} = 0,7, SI_{max} = 1,5) permanent übersättigt. Eine zeitliche Entwicklung spiegelte sich hauptsächlich bei 100°C wider mit einer tendenziellen Abnahme der Übersättigung über die Zeit.

Für die Feldspäte und Tonminerale im Boom Clay ergab sich für alle Temperaturen eine relativ starke Untersättigung der Fluide. Die Sättigungsindizes lagen während dieser Zeit zwischen SI_{min} = -3,5 (K-Feldspat; 60°C) und SI_{max} = -20,9 (Chlorit; 60°C). Bezüglich Quarz lag der Sättigungsindex für alle Temperaturen bei SI_{min} = -0,6 (75°C) bis SI_{max} = 0,03 (45°C). Unabhängig der relativ hohen Konzentration von Silizium in den Fluiden bei 100°C gegenüber $\leq 75^{\circ}$ C zeigte sich keine Abhängigkeit der Sättigungsindizes von der Temperatur.

Alteration der Festphase

Die in Abbildung 6.30 dargestellte Elementmobilisation führte beim Boom Clay zu keinen signifikanten Alterationen der Festphasen. So unterscheidet sich der Gehalt der analysierten Elemente in den reagierten Proben nur geringfügig von den Gehalten in den Ausgangsproben. Eine Abhängigkeit von der Temperatur liegt dabei nicht vor (Tab. 6.08). Mit einer maximalen Differenz zwischen den reagierten Proben und der Referenzprobe von rund 2 Gew% treten die größten Unterschiede bei SiO₂ und Fe₂O₃ auf. Während die Proben \geq 75°C geringere SiO₂-Konzentrationen gegenüber den Ausgangsproben aufweisen erreichten die Konzentrationen bei \leq 60°C höhere Werte. Für Fe₂O₃ sind dagegen alle Werte der reagierten Proben im Vergleich zum Ausgangsmaterial geringer. Der Anteil an Calcium, Aluminium, Kalium und Magnesium ist im Vergleich zum Ausgangsmaterial in den reagierten Proben tendenziell niedriger.

er Kontakt zwischen CO_2 -gesättigten Fluid und Probe angenommen wurde.									
Temperatur	SiO ₂	Al ₂ O ₃	CaO	K ₂ O	MgO	Fe ₂ O ₃	Na ₂ O	LOI	
[°C]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	
Referenz	57,8	17,3	0,4	2,9	1,7	6,7	0,6	10,6	
45	59,1	16,6	0,2	2,7	1,5	4,7	0,6	12,6	
60	59,8	16,7	0,2	2,7	1,5	4,5	0,7	12,2	
75	55,7	16,5	0,3	2,7	1,6	5,2	0,9	10,5	
100	56,6	16,5	0,2	2,6	1,4	6,0	0,6	14,3	

Tab. 6.08: Gewichtsprozent ausgewählter Elementoxide im Boom Clay für das Ausgangsmaterial (Referenz) und den bei unterschiedlichen Temperaturen reagierten Proben. Die analysierten Proben stammen aus dem mittleren Bereich der Probe (Stempel/Störungszone) an dem eine möglichst großer Kontakt zwischen CO₂-gesättigten Fluid und Probe angenommen wurde.

Die leichten chemischen Veränderungen konnten bei allen Proben weder in Zusammenhang mit analytisch nachweisbaren Neubildungen, noch mit vollständigen Lösung von Mineralphasen oder anderen nachweisbaren Alterationen der einzelnen Minerale gebracht werden (Abb. 6.31, Beispiel - Illit).

Abb. 6.31: BSE-Aufnahmen an zwei Boom ClayProben (CS_22) nach 9-monatiger Reaktion.a) Illite nach Reaktion bei 45°C.b) Illite nach Reaktion bei 100°C.

6.2.2 Deckgestein der Firma Shell

Für die Reaktionsversuche wurden Deckgesteinsproben der Firma Shell (Kapitel 3) aus zwei Tiefenlagen einer Bohrung verwendet. Die Proben für die Versuche bei 45°C bis 75°C stammten aus 824,48 - 824,65 m (CS_01) die für 100°C (CS_07) aus derselben Bohrung aus 823,45 - 823,56 m Tiefe.

6.2.2.1 Mineralogische und chemische Zusammensetzung

Die Hauptelemente im Deckgestein der Firma Shell setzten sich anteilig wie folgt zusammen: 57 Gew% SiO₂, 17 Gew% Al₂O₃, 8 Gew% Fe₂O₃, 3,3 Gew% K₂O, 1,5 Gew% MgO, 1,1 Gew% Na₂O und 1 Gew% CaO. Aus dieser Zusammensetzung, der analytischen Bestimmung der Mineralogie (Abb. 6.32 a) und Berechnungen nach PFEFFER (1996; Anhang I) wurden Kaolinit (4 %), Illit (34 %), als Wechsellagerung mit Smektit sowie Chlorit (5 %) bestimmt, welche zusammen einen Tonmineralgehalt von 43 % im Gestein ergaben. Daneben konnten Quarz (26 %), Glimmer (Muskovit; 9 %), Albit und K-Feldspäte (9 %), sowie Siderit (6 %; tritt nicht in Probe CS_07 auf) und Pyrit (1 %) nachgewiesen werden. Organische Komponenten (Abb. 6.32 e) bildeten rund 2,5 % des Gesteins, untergeordnet trat dazu elementarer Schwefel, Dolomit (Abb. 6.32 d) und Apatit auf.

Abb. 6.32: a) Röntgenbeugungsdiagramm und gekennzeichnete Mineralpeaks einer ausgewählten Deckgesteinsprobe der Firma Shell (CS_01). Der Übersichtlichkeit halber sind nicht alle Peakpositionen der einzelnen Mineralphasen aufgeführt. **Unten:** BSE-Aufnahmen der Referenzprobe (CS_01) **b**) Plättchenförmige Illite **c**) Kaolinit **d**) Dolomit in toniger Matrix. **e**) Organische Komponente in toniger Matrix

6.2.2.2 Charakterisierung der Scherspannung

Die anhand der Stanztests ermittelte Scherspannung pro Scherweg für die Deckgesteinsproben von Shell (Abb. 6.33) zeigten im Vergleich zu den anderen, in den Experimentreihen verwendeten Deckgesteinstypen (vgl. Abb. 6.04, 6.28 und 6.38), die höchsten Scherwiderstände mit Maximalwerten von 34 bis 52 MPa.

Im Vergleich zueinander traten zwischen den Proben gleicher Tiefenlage und Mineralzusammensetzung (CS_01: S_01, S_02, S_03) und der Probe aus rund 1 m geringerer Tiefe (CS_07: S_04) Unterschiede im Kurvenverlauf und im Scherwiderstand auf. Die Probe aus geringerer Tiefe (S_04), welche sich durch das Fehlen von Siderit, deutlich geringerer Al₂O₃ Konzentration, sowie höherer SiO₂ Konzentration von den übrigen Shell Proben unterscheid, wies mit 52 MPa das höchste Scherspannungsmaximum auf. Im Gegensatz zu den Proben mit Maxima zwischen 34 und 40 MPa lag hier jedoch kein sehr deutlich ausgeprägtes Maximum vor.

Abb. 6.33: Scherspannungskurven die während der Erzeugung der Störungszonen im Deckgestein von Shell (S_01, S_02 und S_03 (CS_01) und S_04 (CS_07)) aufgezeichnet wurden.
6.2.2.3 Alterationseffekte im Deckgestein der Firma Shell

Die Reaktionsexperimente an den gestanzten Shell Proben (Abb. 6.34) wurden unter den gleichen Bedingungen wie beim Boom Clay durchgeführt. Pro Temperatureinheit wurde dabei ein Probe (45° C - S_03, 60° C - S_02, 75° C - S_01 und 100° C - S_04) für eine Reaktionszeit von 9 Monaten verwendet und analytisch untersucht. Die Entnahme der aus den CO₂-Wasser-Gesteins-Reaktionen hervorgegangen Fluide erfolgte wöchentlich und die Analytik der Festphasen wurde mit den in Kapitel 4 dargestellten Methoden durchgeführt.

Abb. 6.34: a) Aufsicht auf oberer Fläche der gestanzten Deckgesteinsprobe von Shell (CS_07; S_04) vor Versuchsbeginn. **b**) Aufsicht auf die unterer Fläche der gleichen Probe.

Chemische Entwicklung des Fluids

Der Fluidaustritt aus den, im Bezug zu den anderen untersuchten Deckgesteinen, harten Gesteinen bzw. aus den Reaktionszellen fand nach unterschiedlicher Reaktionszeit statt. Beim Experiment mit 45°C konnte bereits nach 4 Tagen ein Durchfluss verzeichnet werden, während dieser bei 75°C und 100°C nach 11 bzw. 19 Tagen eintrat. Die Probe bei 60°C unterschied sich deutlich von den anderen, mit einem messbaren ersten Fluidaustritt nach 110 Tagen. Nach dem ersten Durchfluss erfolgte der Fluidaustritt aus allen vier Proben nahezu wöchentlich. Das Fluidvolumen aus den einzelnen Gesteinsproben zeigte über

die Zeit zum Teil deutliche Variationen. Am geringsten waren diese mit 3 - 7 ml (\emptyset 5 ml) bei 45°C und 1,5 - 5 ml (\emptyset 4 ml) bei 100°C. Im Gegensatz dazu traten bei 60°C mit 8 - 16 ml Volumenunterschiede von bis zu 8 ml und bei 75°C (3 - 13 ml) von bis zu 10 ml auf. Diese Schwankungen und unterschiedlichen Volumina aller Proben hatten jedoch keinen Einfluss auf die Entwicklung der dargestellten Elemente in Lösung. Es zeigten sich jedoch bei 45°C zwischen den einzelnen Messungen stärkere Konzentrationsschwanken (K⁺, Na⁺) (Abb. 6.35).

Für die Konzentration von Calcium (Abb. 6.35, Ca^{2+}) in den Fluiden zeigte sich eine deutliche Temperaturabhängigkeit, mit geringster Konzentration bei 100°C und höchster bei 45°C. Unabhängig von der Temperatur nahm die Mobilisation aus den Proben und damit verbunden die Konzentration in Lösung im Verlauf des Experiments zu. Die geringste Konzentration wurde bei 100°C mit 42 ± 5 mg/l gemessen, die höchste bei 45°C mit 227 ± 30 mg/l. Über die Zeit wurde, bezogen auf eine Festprobe, 6 mg (100°C; S_04) bis 34 mg (75°C; S_03) Calcium gelöst worden.

Die Mobilisation von Magnesium aus den Proben (Abb. 6.35, Mg^{2+}) verhielt sich über die Zeit für den einzelnen Temperaturbereiche relativ konstant, jedoch zeigte sich eine Abhängigkeit der Konzentration zwischen den unterschiedlichen Temperaturen. Während bei 45°C mit maximal 78 ± 14 mg/l die höchsten Konzentrationen gemessen wurden, wies das Experiment bei 100°C mit 15 ± 3 mg/l die geringsten Konzentrationen auf. Der Verlauf und die Konzentrationen der Versuche bei 60°C und 75°C waren dagegen relativ identisch, mit Werten von durchschnittlich 40 mg/l. Sie lagen somit zwischen den Werten, die bei 45°C und 100°C gemessen wurden. Die gelöste Gesamtmenge an Magnesium lag nach Abschluss der Experimente zwischen 1,5 mg (100°C; S_04) und 12 mg (75°C; S_01).

Die Mobilisation von Kalium (Abb. 6.35, K⁺) unterschied sich deutlich zu der von Calcium und Magnesium. Gekennzeichnet wurde sie durch eine für alle Temperaturen relativ identische und zeitlich leicht abnehmende Kalium-Konzentration in den Fluiden. Zudem waren die Konzentrationsschwankungen zwischen den einzelnen Messungen einer Temperaturstufe stärker. Die höchste Kalium-Konzentration wurde mit 144 ± 19 mg/l (75°C) zu Beginn, die geringste mit 54 ± 7 mg/l (60°C und 75°C) am Ende der Experimente gemessen. Mit 6,5 mg (100°C; S_04) bis 22 mg (75°C; S_01) wurde, wie für Calcium und Magnesium, die geringste Gesamtmenge an Kalium bei der höchsten Temperatur (100°C) erreicht und die größte Menge bei der 75°C.

Silizium (Abb. 6.35, Si⁴⁺) wies erst ab $T > 75^{\circ}C$ eine temperaturabhängige Lösung, mit relativ konstanten Konzentrationen über den Versuchszeitraum und pro Temperatureinheit

auf. Die größte Mobilisation fand bei 100°C mit einem Maximum von 43 \pm 4 mg/l statt. Zwischen 45°C und 75°C wurden dagegen deutlich geringere Konzentrationen in den Fluiden gemessen, welche im Konzentrationsbereich zwischen 5 und 20 mg/l lagen und dem Wertebereich der Experimente mit Opalinuston und Boom Clay entsprachen. Für die gesamte Menge an Silizium bedeutet dies eine Lösung zwischen 1,5 mg (45°C; S_03) und 5 mg (75°C; S_01).

Bei Natrium (Abb. 6.35, Na⁺) zeigte sich zu Beginn der Reaktion eine relativ hohe Konzentration in Lösung, welche über die Zeit abnahm und anschließend temperaturunabhängig in einen relativ konstanten Verlauf überging. Wie bei Kalium waren die Konzentrationsunterschiede zwischen den einzelnen Messungen einer Temperaturstufe zum Teil relativ stark.

Die Messungen der pH-Werte ergaben Werte zwischen 6 und 8, mit einem Durchschnitt von 6.9 ± 0.1 und lagen somit im neutralen Bereich. Ein Einfluss der Temperatur auf den pH-Wert stellte sich nicht heraus, jedoch nahmen die Werte über die Zeit leicht ab.

- 45°C - 60°C - 75°C - 100°C

Abb. 6.35: Entwicklung der pH-Werte und der Elementkonzentrationen in den Fluiden, die während der 9-monatigen Experimentreihen bei 45°C (S_03), 60°C (S_02), 75°C (S_01) und 100°C (S_04) für die Deckgesteinsproben von Shell (CS_01 und CS_07) bestimmt wurden. Jede Linie repräsentiert das Fluid welches aus jeweils einer Festphasenprobe ausgetreten ist (gesamt 4 Festphasenproben). Die Rauten markieren die Zeitpunkte, an denen genug Fluidvolumen für die Analytik vorhanden war. Die bei Na⁺ dargestellte gestrichelte Linie repräsentiert die Natrium-Konzentration (3930 mg/l) der Ausgangslösung

Die gemessenen Elementkonzentrationen in den Fluiden der Reaktionsexperimente ergaben unter experimentellen Bedingungen (gegeben: T, berechnet: pCO₂ und pH-Wert) über die gesamte Zeit von 9 Monaten und für alle Temperaturen ein quasi-Gleichgewicht bis Übersättigung der Fluide bezüglich Dolomit (SI_{min} = 0,01 (75°C), SI_{max} = 1,1 (75°C). Hingegen lag eine über die Zeit konstante und bei allen Temperaturen relativ gleich starke Untersättigung (ØSI = -7,1) bezüglich Siderit vor. Lediglich in einigen Fluidproben, welche Eisen > 10 mg/l enthielten (Anhang III a, Tab. III a 10 und 11), befanden sich die Fluide in einem quasi-Gleichgewicht gegenüber dieser Phase.

Mit Ausnahme von Quarz, gegenüber dem die Fluide bei 45°C permanent in einem quasi-Gleichgewicht (-0,05 > SI < 0,05) standen und bei 60°C, 75°C und 100°C leicht untersättigt waren (SI_{min} = -0,6 (75°C); SI_{max} = -0,1 (60°C)), lag bei alle Temperaturen gegenüber anderen Silikatphasen eine starke Untersättigung vor (Tab. 6.09). Während der Reaktionszeit von 9 Monaten stieg die Untersättigung tendenziell noch weiter an. Ausnahme trat bei Chlorit auf, gegenüber dieser Phase nahm die Untersättigung über die Zeit leicht ab.

Tab. 6.09: Über die Reaktionszeit gemittelter Sättigungsindex für die Fluide der Reaktionsexperimente am Deckgestein der Firma Shell. Negative Zahlen bedeuten eine Untersättigung der Lösung bezüglich der jeweiligen Mineralphase. Positive Zahlen bedeuten eine Übersättigung der Lösung bezüglich der jeweiligen Mineralphase.

		Ø Sättigungsindex (SI)						
Temperatur [°C]	Albit	K-Fsp	Kaolinit	Chlorit	Illit	Smektit		
45	-4,4	-3,7	-4,5	-23,1	-7,1	-5,4		
60	-4,5	-4,1	-5,2	-20,6	-7,9	-6,0		
75	-7,4	-4,8	-6,1	-19,6	-8,3	-7,2		
100	-9,0	-5,1	-7,0	-16,1	-8,3	-7,0		

Alterationen der Festphase

Der Vergleich der Elementgehalte in den Ausgangsproben und den bei unterschiedlichen Temperaturen reagierten Deckgesteinsproben der Firma Shell zeigt für SiO₂, Al₂O₃, CaO und Fe₂O₃ auffällige Unterschiede (Tab. 6.10). Eine eindeutige temperaturabhängige Veränderung, wie es im Fluidchemismus sichtbar wurde, tritt jedoch nicht auf. Gegenüber den Ausgangsproben weisen die Gesteine nach Reaktionen bei 45°C, 75°C und 100°C weniger CaO und Fe₂O₃ und für 45°C und 100°C deutlich mehr SiO₂ auf (Tab. 6.10). Die reagierte Probe bei 60°C zeichnet sich hingegen durch höhere Fe₂O₃ und geringere SiO₂ und Al₂O₃ Gehalte aus.

Tab. 6.10: Gewichtsprozent ausgewählter Elementoxide im Deckgestein der Firma Shell für das
Referenzmaterial und die, bei unterschiedlichen Temperaturen, reagierten Proben. Pro Temperatur-
stufe wurde jeweils an einer Probe ein Reaktionsexperiment durchgeführt. Die analysierten Proben
stammen aus dem mittleren Bereich der Probe (Stempel / Störungszone), an dem ein möglichst
großer Kontakt zwischen CO ₂ -gesättigten Fluid und Probe angenommen wird.

Temperatur	SiO ₂	Al ₂ O ₃	CaO	K ₂ O	MgO	Fe ₂ O ₃	Na ₂ O	LOI
[°C]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]
Referenz	57,1	16,8	1,0	3,3	1,4	7,5	1,1	10,2
45	60,2	16,6	0,4	3,3	1,2	4,9	1,0	10,5
60	54,4	15,7	0,9	3,1	1,5	9,0	0,9	12,3
75	56,7	17,2	0,5	3,5	1,4	6,0	1,0	11,5
100	65,5	14,7	0,5	3,0	1,1	4,6	1,1	8,5

Bei diesem Deckgesteinstyp führten die Reaktionsexperimente, wie beim Opalinuston und Boom Clay und unabhängig der unterschiedlichen Elementkonzentrationen, weder zu einer analytisch nachweisbaren Mineralneubildung, noch zu Umwandlungen oder kompletten Lösungen von einzelnen Mineralphasen (Abb. 6.36).

Abb. 6.36: Gestapelte Röntgenbeugungsdiagramme des Deckgesteins der Firma Shell für das Referenzmaterial und der bei unterschiedlichen Temperaturstufen reagierten Proben. Die verschiedenen Mineralphasen sind durch die Peaks 1er bzw. 2er Ordnung markiert. Die fehlenden Peaks für Siderit und die etwas anderen Intensitäten bei 100°C begründen sich in der unterschiedlichen Tiefenlage dieser Probe und der leicht veränderter Mineralzusammensetzung.

6.2.3 Tonstein der Weser-Formation

Die Proben des Tonstein der Weser-Formation (Kapitel 3) stammen aus einer Tiefe 626,57 bis 626,7 m (CS_37) und einer Tiefe von 619,85 bis 620,05 m (CS_38).

6.2.3.1 Mineralogische und chemische Zusammensetzung

Charakterisiert waren die Tonsteine durch die Matrix bildenden Tonminerale Illit (45%) und Chlorit (2%) (Abb. 6.37 b). Daneben traten Dolomit (23%), Quarz (10%), K-Feldspäte und Plagioklas (je 3%), Hämatit (2%), sowie Halit auf (Abb. 6.37 a). Während die meisten Minerale eine relativ homogene Verteilung im Gestein aufwiesen lag Anhydrit, mit einem Anteil von 11%, häufig heterogen zu kleinen mm bis wenige cm großen Linsen angereichert im Gestein vor. Ein mineralogischer Unterschied zwischen den zwei Tiefenlagen wurde nicht festgestellt. Die Hauptelemente im Tonstein setzten sich prozentual wie folgt zusammen: 39 Gew% SiO₂, 12 Gew% Al₂O₃, 11 Gew% CaO, 5,6 Gew% MgO, 5,6 Gew% Fe₂O₃, sowie 3,4 Gew% K₂O und 1,4 Gew% Na₂O.

Abb. 6.37: a) Röntgenbeugungsdiagramm und gekennzeichnete Mineralpeaks eines Tonsteins der Weser-Formation bei Ketzin. Aus Gründen der Übersichtlichkeit sind nicht alle Peakpositionen der einzelnen Mineralphasen aufgeführt. Unten: BSE-Aufnahmen von Mineralphasen im Wesertonstein. b) Illite im Wesertonstein. c) Ausschnitt eines Anhydritkristalls. Die Oberflächen der Minerale sind auf Grund der hohen Salinität des Porenwassers (0,2 kg NaCl/kg, LENGLER, U. (2012)) häufig mit einer feinen Salzkruste bedeckt.

6.2.3.2 Charakterisierung der Scherspannung

Die vier aus den Stanztests ermittelten Scherwiderstände des Tonsteines der Weser-Formation waren durch unterschiedliche Scherspannungsmaxima gekennzeichnet (Abb. 6.38). Während zwei Proben Maxima von rund 21 MPa (K_02, K_04) aufwiesen, lag die maximale Scherspannung der dritten Probe bei 29 MPa (K_01) und die der vierten Probe bei 30 MPa (K_03). Mit Erreichen der maximalen Scherspannung nach 0,8 mm Scherweg war dieser im Vergleich zu K_01, K_02 und K_04, deren Maxima nach 0,3 bis 0,4 mm Scherweg auftraten, zudem deutlich später erreicht.

Die Proben K_01 und K_03 mit deutlich höherer Scherfestigkeit wiesen den höchsten CaO-Gehalt auf, welcher in diesem Gestein größtenteils karbonatisch (Dolomit) und sulfatisch (Anhydrit) gebunden ist. Gestaffelt nach abnehmender Konzentration von 18 Gew% bis rund 5 Gew% CaO, nahm auch der maximale Scherwiderstand ab und zeigte damit eine deutlich Abhängigkeit zum Gehalt der Elemente bzw. Mineralphasen. Eine Abhängigkeit zu anderen Gesteinseigenschaften wurde im Rahmen dieser Experimente nicht festgestellt.

Abb. 6.38: Scherspannungskurven die während der Erzeugung der Störungszonen im Tonstein der Weser-Formation (K_01, K_02 und K_03 (CS_37) und K_04 (CS_38)) aufgezeichnet wurden.

6.2.3.3 Alterationseffekte im Tonstein der Weser-Formation

Die Versuche am gestanzten Tonstein der Weser-Formation (Abb. 6.39) wurden für alle vier Temperaturstufen (45°C, 60°C, 75°C und 100°C) und einer Reaktionszeit von einem Jahr in einfacher Bestückung durchgeführt. Die Entnahme der an den Reaktionen beteiligten Fluide erfolgte wöchentlich. Für die Analytik der Fluide und Festphasen wurden die in Kapitel 5 dargestellten Methoden gewählt.

Abb. 6.39: a) Aufsicht auf oberer Fläche des gestanzten Tonsteins der Weser-Formation (CS_37; K_01) vor Versuchsbeginn. **b**) Aufsicht auf die unterer Fläche der gleichen Probe. Ausbrüche, wie sich im Bild sichtbar sind, beruhen auf der mechanischen Beanspruchung während des Stanzvorganges.

Chemische Entwicklung des Fluids

Der erste Fluidaustritt aus den Gesteinsproben / Reaktionszellen ab Experimentbeginn setzte nach zwei Wochen bei der zweiten Entnahme der Fluidproben ein. Unabhängig der unterschiedlichen Temperaturen konnte ein relativ konstanter wöchentlicher Durchfluss mit Volumina zwischen 2 und 15 ml pro 5 Minuten nachgewiesen werden. Das durchschnittliche Volumen aus allen vier Gesteinsproben lag bei 10 ml.

Während dieser Zeit kam es zu einer kontinuierlichen Mobilisation von Calcium, Magnesium, Kalium, Silizium und Natrium aus den Gesteinsproben (Abb. 6.40). Gelegentlich konnte außerdem Mangan und sehr selten Eisen sowie Aluminium nachgewiesen werden (Anhang IIIa, Tab. IIIa 5 - 8). Die Mobilisation von Calcium (Abb. 6.40, Ca^{2+}) verlief über die Reaktionszeit von einem Jahr relativ konstant. Mit minimal 268 ± 48 mg/l Calcium in Lösung bei 100°C und maximal 1105 ± 110 mg/l bei 45°C lag zudem ein deutlicher Einfluss der Temperatur vor. Aus diesem Verlauf ergab sich eine insgesamt gelöste Menge an Calcium zwischen 97 mg (100°C; K_04) und 405 mg (45°C; K_01).

Die Entwicklung von Magnesium (Abb. 6.40, Mg^{2+}) in den Fluiden verlief ähnlich konstant wie die von Calcium, jedoch mit deutlich geringerer Konzentration (Mg^{2+}_{min} = 88 ± 16 mg/l, Mg^{2+}_{max} = 297 ± 39 mg/l) und einer insgesamt gelösten Menge pro einzelner Gesteinsprobe von 34 mg (100°C; K_04) bis 67 mg (75°C; K_02). Während die Mobilisation bei 60°C und 75°C über die gesamte Reaktionszeit relativ konstant verlief, fand bei den Experimente bei 45°C und 100°C zu Beginn eine deutliche Abnahme statt, der nach 70 Tagen ein leichten Zunahme, sowie nach 100 Tagen eine relativ konstanter Verlauf in allen Lösungen folgte.

Die Kalium-Konzentration (Abb. 6.40, K⁺) verlief im Versuchszeitraum exponentiell abnehmend und ohne auffällige Konzentrationsschwankungen zwischen den einzelnen Messungen. Die größte Mobilisation erfolgte, mit einer maximalen Konzentration von 798 ± 104 mg/l (60°C; K_03), zu Beginn des Experiments. Dies stellte gegenüber Magnesium eine mehr als doppelt so hohe Anfangskonzentration dar. Bis zum 50sten Tag kam es zu einem starken Abfall der Kalium-Konzentration auf rund 1/3 des Ausgangswertes. Zwischen dem 50sten Tag und einem Jahr war die Abnahme nur noch relativ gering und endete in einer minimalen Konzentration von 26 ± 3 mg/l. Innerhalb eines Jahres wurden dadurch insgesamt, bezogen auf eine Gesteinsprobe, zwischen 38 mg (100°C; K_04) und 60 mg (60°C; K_03) Kalium gelöst.

Silizium in Lösung (Abb. 6.40, Si⁴⁺) zeigte bei 45°C, 60°C und 75°C keinen Temperatureinfluss und verlief relativ konstant zwischen 8 ± 1 mg/l und 22 ± 2 mg/l. Die Konzentrationen in dem bei 100°C durchgeführten Experiment, mit 34 ± 3 mg/l bis 45 ± 8 mg/l, unterschieden sich dagegen deutlich von denen bei niedrigeren Temperaturen. Bezogen auf die real gelöste Menge pro Gesteinsprobe, mit 6 mg (45°C; K_01 und 60°C; K_03) bis 10 mg (100°C; K_04), spiegelte sich der Temperatureinfluss jedoch nur gering wider.

Die Mobilisation von Natrium (Abb. 6.40, Na⁺) verlief exponentiell abnehmend, wobei wie bei Kalium, die größte Konzentrationsabnahme in den ersten 50 Tagen stattfand. Mit einem maximalen Wert von 23074 mg/l (45°C; K_01) war die gemessene Konzentration zu Experimentbeginn nahezu um das 6-fache höher als die anfänglich in Lösung einge-

brachte Konzentration (3930 mg/l Natrium). Ab dem 50sten Tag lagen die Werte anschließend nur noch leicht über 3930 mg/l.

Die gemessenen pH-Werte waren mit 7,7 \pm 0,1 bis 6,1 \pm 0,1 über die Zeit relativ konstant und zeigten zudem keine Temperaturabhängigkeit. Der Durchschnittswert lag bei 6,7 \pm 0,1.

Abb. 6.40: Entwicklung der pH-Werte und der Elementkonzentrationen in den Fluiden, die während der 12-monatigen Experimentreihen bei 45°C (K_01), 60°C (K_03), 75°C (K_02) und 100°C (K_04) für den Tonstein der Weser-Formation (CS_37, CS_38) bestimmt wurden. Jede Linie repräsentiert das Fluid welches aus jeweils einer Festphasenprobe ausgetreten ist (gesamt 4 Festphasenproben). Die Rauten markieren die Zeitpunkte, an denen genug Fluidvolumen für die Analytik vorhanden war. Die bei Na⁺ dargestellte, gestrichelte Linie repräsentiert die Natrium-Konzentration (3930 mg/l) der Ausgangslösung

Anhand der Elementmobilisation aus den Proben ließ sich unter experimenteller Bedingung (gegeben: T; berechnet: pCO₂ und pH-Wert) in den Fluiden für alle Temperaturen und Zeitpunkte der Sättigungsindex für Calcit (SI_{min} = 0,6 (45°C); SI_{max} = 1,2 (100°C)) und Dolomit (SI_{min} = 1,8 (45°C); SI_{max} = 3,5 (100°C)) ermitteln. Mit Werten > 0 lag somit bezüglich dieser Karbonate eine kontinuierlich starke Übersättigung der Lösung vor. Der Einfluss der Temperatur auf die Sättigungsindizes war dabei tendenziell sehr gering, auch ergaben sich während der 12-monatigen Reaktionszeit keine signifikanten Änderungen.

Bezüglich Anhydrit waren die Fluide bei allen Temperaturen kontinuierlich untersättigt. Mit Sättigungsindizes zwischen SI_{min} = -19,5 (Chlorit, 45°C) und SI_{max} = -3,0 (Kalifeld-spat, 45°C) ergab sich ebenfalls ein permanente Untersättigung gegenüber den Silikaten im Tonstein der Weser-Formation. Bezüglich Quarz lag eine leichte Untersättigung (SI_{min} = -0,2 (45°C, 75°C und 100°C)) bzw. ein quasi-Gleichgewicht vor (SI_{max} = -0,02 (60°C)) vor. Die hohen Silizium-Konzentrationen in den Fluiden des Reaktionsexperiments bei 100°C spiegelten sich nicht im Sättigungsindex wider.

Alterationseffekte der Festphasen

Der temperaturabhängig gelöste Elementanteil aus dem Tonstein der Weser-Formation führte zu keinen nachweisbaren Alterationserscheinungen der einzelnen Mineralphasen, jedoch zeigten sich Veränderungen im Elementgehalt. Deutliche temperaturbeeinflusste Unterschiede treten zwischen Referenzmaterial und den reagierten Proben (Tab. 6.11) für SiO₂, Al₂O₃ und CaO auf. Wie bei den Fluiden und somit entgegengesetzt der zu erwartenden Änderung zeigen die Proben bei 45°C und 60°C die höchsten CaO-Gehalte und bei 75°C und 100°C die geringsten. Mit der Abnahme geht gleichzeitig eine Zunahme von SiO₂, Al₂O₃ einher. Die hohen CaO- und niedrigen SiO₂-, Al₂O₃-Werte bei 60°C können neben Resultaten möglicher Alterationen Folge der inhomogenen Verteilung von Anhydrit im Gestein sein.

Tab. 6.11: Konzentrationen ausgewählter Elemente im Tonstein der Weser-Formation für das Referenzmaterial und die bei unterschiedlichen Temperaturen reagierten Proben. Pro Temperaturstufe wurde jeweils an einer Probe ein Reaktionsexperiment durchgeführt. Die analysierten Proben stammen aus dem mittleren Bereich der Probe (Stempel / Störungszone), an dem ein möglichst großer Kontakt zwischen CO₂-gesättigten Fluid und Probe angenommen wird.

Brower montaint Br		2 803000		11000		ion where		
Temperatur	SiO ₂	Al ₂ O ₃	CaO	K ₂ O	MgO	Fe ₂ O ₃	Na ₂ O	LOI
[°C]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]
Referenz	38,6	12,4	11,0	3,4	5,6	5,6	1,4	12,3
45	39,3	12,3	10,2	3,4	5,8	5,7	0,9	16,9
60	28,7	9,1	18,3	2,4	5,4	4,2	0,6	15,2
75	44,2	14,2	6,4	4,1	6,1	6,5	0,8	14,3
100	47,9	14,8	4,6	4,1	5,8	6,2	1,0	12,0

Die in Tabelle 6.11 dargestellten Veränderungen der Elementkonzentrationen führten zu keinen analytisch nachweisbaren Veränderungen der Mineralphasen (Abb. 6.41). Die höheren Intensitäten für Chlorit und Kaolinit bei 75°C gehen hierbei mit erhöhten SiO₂ und Al₂O₃- Gehalten einher und zeigen somit an, dass dies Proben einen höheren Tonmineralanteil aufweist. Bei 100°C spiegelt sich die Zunahme der Elementgehalte hingegen nicht in einer Änderung des Mineralanteils wider.

Abb.6.41: Gestapelte Röntgenbeugungsdiagramme der Proben des Tonsteins der Weser-Formation. Im Vergleich das Ausgangsmaterial (Referenz) und die bei unterschiedlichen Temperaturstufen reagierten Proben. Die verschiedenen Mineralphasen wurden durch die Peaks 1er bzw. 2er Ordnung markiert

6.2.4 Geochemische Modellierung

Zur Bestimmung der abgelaufenen Mineralreaktionen, welche bei 45°C, 60°C, 75°C und 100°C, während des Kontaktes der Deckgesteinsproben (Boom Clay, Tonstein der Weser-Formation und Deckgestein von Shell) mit der CO₂-gesättigten NaCl-Lösung stattgefunden haben, wurden geochemische Berechnungsmodelle mit dem Programm PHREEQC (Version 3.04.771, PARKHURST AND APPELO, 1999) durchgeführt.

6.2.4.1 Boom Clay

Die inverse Modellierung am Boom Clay erfolgte mit Dolomit, Quarz, Kalifeldspat, Kaolinit, Chlorit, Illit und Halit als mögliche Reaktanten. Auf dieser Grundlage konnten für alle Temperaturen von 45°C bis 100°C und einem Ungenauigkeitswert der Lösungszusammensetzung von $\leq 5 \%$ vier theoretische Reaktionsmodelle (Tab. 6.12) ermittelt werden.

Den Modellen A und B ist die Lösung von Dolomit, sowie die Fällung von Kaolinit gemein. Während hingegen in Modell A Illit gelöst wird, findet in Modell B die Lösung von Kalifeldspat statt. Modell C und D sehen die Lösung von Chlorit als mögliche abgelaufen Reaktion vor. Der Unterschied zwischen Modell C und D ist ebenfalls die Lösung von Illit (Modell C) und Kalifeldspat (Modell D).

Tab. 6.12: Mit PHREEQC ermittelte Modelle zur Bestimmung abgelaufener Mineralreaktionen im Boom Clay. Dargestellt sind die während der Versuchsreihe reagierten Mineralphasen, ihre Mineralformel und die ermittelten Modelle A bis D. Ein positives Zeichen (+) bedeutet Minerallösung ein negatives (-) Mineralfällung; nb - Phase ist im Modell nicht an den Reaktionen beteiligt.

Reaktant	Mineralformel	Modell				
		Α	В	С	D	
Dolomit	CaMg(CO ₃) ₂	+	+	+	+	
Chlorit	$Mg_5Al_2Si_3O_{10}(OH)_8$	nb	nb	+	+	
Illit	$K_{0,6}Mg_{0,25}Al_{2,3}Si_{3,5}O_{10}(OH)_2$	+	nb	+	nb	
Kaolinit	$Al_2Si_2O_5(OH)_4$	-	-	-	-	
K-Feldspat	KAlSi ₃ O ₈	nb	+	nb	+	

Die Molalität (Moltransfer) der bei allen Temperaturen gelösten bzw. gefällten Mineralphasen liegt im Bereich von 10^{-3} bis 10^{-2} mol/kg_{Wasser}. Aufgrund der relativ ähnlichen Werte stellt sich über die Zeit von neun Monaten kein dominanter Lösungsprozesse für eine einzelne Mineralphase heraus. Die maximale für alle Modelle und Phasen gültige Differenz zwischen maximalen und minimalen Moltransfer lag bei 22 mmol/kg Wasser.

6.2.4.2 Deckgestein der Firma Shell

Für das Deckgestein der Firma Shell ergab die inverse Modellierung hinsichtlich der möglichen abgelaufenen Reaktionen drei Modelle. Wie beim Boom Clay traten über die Zeit von 9 Monaten und Temperatur von 45°C bis 100°C lediglich Unterschiede in der Konzentration der gelöste Minerale auf. Die Kombination an abgelaufenen Reaktionen blieb gleich.

Die geochemischen mathematische Modellierungen ergeben, dass während der Experimente ein Lösung von Dolomit, sowie eine Fällung von Chlorit und Kaolinit stattgefunden haben muss (Tab. 6.13). Während in Modell A zusätzlich Muskovit gelöst wird, findet in Modell B die Lösung von Illit und in Modell C die Lösung von Kalifeldspat statt.

Reaktant	Mineralformel		Modell	
		Α	В	С
Dolomit	$CaMg(CO_3)_2$	+	+	+
Chlorit	$Mg_5Al_2Si_3O_{10}(OH)_8$	-	-	-
Illit	$K_{0,6}Mg_{0,25}Al_{2,3}Si_{3,5}O_{10}(OH)_2$	nb	+	nb
Kaolinit	$Al_2Si_2O_5(OH)_4$	-	-	-
K-Feldspat	KAlSi ₃ O ₈	nb	nb	+
Muskovit	KAl ₃ Si ₃ O ₁₀ (OH) ₂	+	nb	nb

Tab. 6.13: Mittels PHREEQC ermittelte Modelle zur Bestimmung abgelaufener Mineralreaktionen im Deckgestein der Firma Shell für alle Temperaturen zusammengefasst. Dargestellt sind die während der Versuchsreihe reagierte Mineralphasen, ihre Mineralformel und die ermittelten Modelle A bis D. Ein positives Zeichen (+) bedeutet Minerallösung ein negatives (-) Mineralfällung; nb - Phase ist im Modell nicht an den Reaktionen beteiligt.

Die pro kg Wasser gelöst bzw. gefällt Mineralmenge, welche sich in den einzelnen Modellen leicht unterscheidet, liegt bei 10⁻⁴ bis 10⁻³ mol/kg_{Wasser}. Für die einzelnen Phasen bedeutet dies in Bezug auf die zeitliche Entwicklung einen relativ konstanten Verlauf an Lösung und Fällung, welcher im Bereich der in Tabelle 6.14 aufgeführten Größenordnung liegt. Da es für alle Modelle, über den gesamten Zeitraum und bei allen Temperaturen keine signifikanten Veränderungen gibt, ist hier eine spezielle Unterteilung nicht nötig. Es zeigt sich zudem dass der Anteil an gelösten und gefällten Mineralphasen relativ homogen verteilt ist und somit kein Mineral dominierend gelöst bzw. gefällt wurde.

Tab. 6.14: Mineralphasen, ihr chemisch Formel und die Größenordnung ihrer, während der Experimente am Deckgestein der Firma Shell, gelösten bzw. gefällten Menge pro kg Wasser. Der Moltransfer der reagierten Mineralphasen ist in seiner Größenordnung bei alle Temperaturen (45°C, 60°C, 75°C und 100°C) über die Zeit identisch.

Reaktant	Mineralformel	Moltransfer
		[mol/kg _{Wasser}]
Dolomit	$CaMg(CO_3)_2$	10 ⁻³
Chlorit	$Mg_5Al_2Si_3O_{10}(OH)_8$	10 ⁻⁴
Illit	$K_{0,6}Mg_{0,25}Al_{2,3}Si_{3,5}O_{10}(OH)_2$	(-)10 ⁻³
Kaolinit	$Al_2Si_2O_5(OH)_4$	(-)10 ⁻³
K-Feldspat	KAlSi ₃ O ₈	10 ⁻³
Muskovit	$KAl_3Si_3O_{10}(OH)_2$	10 ⁻³

6.2.4.3 Tonstein der Weser-Formation

Für die inversen Modellierung am Tonstein der Weser-Formation wurden Calcit, Dolomit, Anhydrit, Chlorit, Illit, K-Feldspat, Quarz und Halit als mögliche Reaktanten bei Kontakt des Gesteins mit der CO₂-gesättigter NaCl-Lösung gewählt.

Für diesen Tonstein ergaben sich für alle Temperaturen und einer Reaktionszeit von einem Jahr vier verschiedenen Reaktionsmodelle (Tab. 6.15). Alle vier Modelle sehen eine Lösung von Dolomit und die Präzipitation von Chlorit vor. Während in Modell A bei 45°C zusätzlich Anhydrit und Kalifeldspat gelöst wird, wird bei $\geq 60^{\circ}$ C in Modell A Anhydrit ausgefällt. In Modell B findet zusätzlich die Lösung von Illit statt. Modell C hingegen geht neben der Lösung von Dolomit und der Fällung von Chlorit zusätzlich von einer Kalifeldspat- und Quarzlösung aus. Im Modell D wird, wie in Modell A, bei 45°C von einer Lösung von Anhydrit und bei $\geq 60^{\circ}$ C von dessen Fällung ausgegangen. Für alle Temperaturen findet diese jedoch in Kombination mit einer Lösung von Illit statt.

Die Lösung von Halit, beruht bei diesem Gesteinstyp hauptsächlich auf Lösungen an der Gesteinsoberfläche. Die hohe Salinität des Porenwassers (0,2 kg NaCl/kg, LENGLER, U. (2012)) führte in diesem Bereich zur starken Ausfällung von Halit.

Tab. 6.15: Mittels PHREEQC ermittelte Modelle zur Bestimmung abgelaufener Mineralreaktionen im Tonstein der Weser-Formation, zusammengefasst für alle Temperaturen. Dargestellt sind die während der Versuchsreihe reagierten Mineralphasen, ihre Mineralformel und die ermittelten Modelle A bis D. Ein positives Zeichen (+) bedeutet Minerallösung ein negatives (-) Mineralfällung; nb - Phase ist im Modell nicht an den Reaktionen beteiligt.

Reaktant	Mineralformel	Modell			
		Α	В	С	D
Calcit	CaCO ₃	nb	nb	nb	-
Dolomit	$CaMg(CO_3)_2$	+	+	+	+
Anhydrit	CaSO ₄	+/-	nb	nb	+/-
Chlorit	$Mg_5Al_2Si_3O_{10}(OH)_8$	-	-	-	-
Illit	$K_{0,6}Mg_{0,25}Al_{2,3}Si_{3,5}O_{10}(OH)_2$	nb	+	nb	+
K-Feldspat	KAlSi ₃ O ₈	+	nb	+	nb
Quarz	SiO ₂	nb	nb	+	nb

Abbildung 6.42 zeigt am Beispiel von Modell A den Unterschied zwischen dem Moltransfer der Mineralphasen bei 45°C und 100°C über die Reaktionszeit des Gesteins von einem Jahr. Deutlich ersichtlich ist die erhöhte Lösung (+) und Fällung (-) der Mineralphasen zu Beginn der Experimente bei 100°C gegenüber denen bei 45°C. Ebenfalls zeigt sich über die Zeit eine tendenziell leichte Abnahme der Konzentration der gelösten und gefällten Mineralphasen bei 100°C. Bei 45°C nimmt die Lösung von Dolomit über den Versuchszeitraum tendenziell ab, mit stärkstem Rückgang > 200 Tagen. Anhydrit hingegen wird zunehmend gelöst. Im Vergleich der Lösung von Anhydrit bei 45°C zu 100°C wird deutlich das bei geringer Temperatur (45°C) das Modell eine zunehmende Lösung aus dem Gestein beschreibt, bei hoher Temperatur (100°C) eine Präzipitation aus der Lösung, die jedoch über die Zeit rückläufig ist.

Abb. 6.42: Moltransfer der, während der Reaktionsexperimente (45°C und 100°C; 12 Monate) pro Probennahme, aus dem Tonstein der Weser-Formation gelösten bzw. präzipitierten Mineralphasen. Die Markierungen stehen für Beginn der Reaktionsexperimente, 3 Monate. Positiver Moltransfer bedeutet Minerallösung aus dem Gestein, negativer Moltransfer zeigt die Ausfällung einer Mineralphase aus der Lösung an.

Kapitel 7 Interpretation und Diskussion

7.1 Temperatur- und zeitabhängige Deckgesteinsalterationen bei Kontakt mit CO₂-gesättigter NaCl-Lösung

Die Reaktionsexperimente (Kapitel 4) am Opalinuston und an den drei Vergleichsdeckgesteinen (Boom Clay, Tonstein der Weser-Formation, Deckgestein der Firma Shell) führten in Abhängigkeit von Zeit und Temperatur zu einer Mobilisation von Natrium, Kalium, Calcium, Silizium, Magnesium. Zudem wurde aus einzelnen Proben aller vier Deckgesteinstypen unregelmäßig Eisen mobilisiert. Eine durch die Freisetzung der Elemente bedingte Alteration konnte jedoch bei keiner der insgesamt 56 Proben (44 x Opalinuston als Hauptreferenzgestein, je 4 x Boom Clay, Tonstein der Weser-Formation und Deckgestein von Shell) nachgewiesen werden. Dies lässt sich zum Teil auf die insgesamt gering mobilisierte Menge der Elemente zurückführen. Berechnungen am Opalinuston zeigten für alle in den Fluiden nachgewiesenen Elemente, dass über die gesamte Reaktionszeit aus einer Probe insgesamt < 210 mg eines Elements gelöst wurde (Kapitel 6). Bezogen auf einen definierten Bereich des Probenkörpers (Reaktionsraum, Abb. 6.25), durch den das CO_2 gesättigte Fluid am wahrscheinlichsten perkoliert ist und somit Mineralreaktionen stattgefunden haben, ergibt dies im Schnitt << 10 % des jeweiligen Elementanteils der Festprobe (Tab. 6.05).

Infolgedessen basieren die dargestellten Rückschlüsse hinsichtlich abgelaufener Reaktionen primär auf den Ergebnissen der Fluidanalytik und den darauf basierenden mathematisch, geochemischen Modellierung.

7.1.1 Elementmobilisation aus dem Opalinuston

Die Experimente an den insgesamt 44 Proben des Opalinustons zeigten, dass die Reaktionen zwischen CO₂-gesättigter NaCl-Lösung und Gestein bei einem Initialdruck von 5 bar und Temperaturen zwischen 45 und 100°C eine Elementmobilisation bewirkten, die sich für jedes Element über die Zeit von 18 Monaten unterschiedlich änderte. Ein Einfluss der Temperatur auf das Lösungsverhalten, bzw. die Konzentration der Elemente in den aus den Reaktionszellen gewonnenen Fluiden, trat lediglich bei Calcium und Silizium auf (Kapitel 6.1).

Calcium

Die Konzentrationsentwicklung von Calcium zeigte im Vergleich zu allen mobilisierten Elementen die größte Abhängigkeit von der Temperatur. Unter Berücksichtigung der Parameter Reaktionszeit, CO_2 -Partialdruck im System und pH-Wert der Fluide sowie der Tatsache, dass Calcium im Opalinuston größtenteils karbonatisch (> 90%, davon überwiegend in Calcit; Kapitel 6) gebunden ist, kann primär von einer Mobilisation durch die Lösung von Karbonaten (u.a. Calcit, Dolomit) ausgegangen werden. Diese Annahme wird unterstützt durch die mit PHREEQC berechneten Lösungsmodelle, bei denen das in den Fluiden nachgewiesene Calcium ausschließlich auf der Lösung von Calcit und Ankerit im Opalinuston basiert (Kapitel 6.1.6). Für eine Lösung des in der Probe nur sehr gering vorkommenden Ankerits (< 3 %) würden auch die in einigen Fluidproben nachgewiesenen Eisengehalte sprechen, welche mit erhöhten Konzentrationen an Calcium einhergehen (Anhang II a). Eine durch die Lösung von Karbonaten bewirkte Pufferung würde zudem den Anstieg des gemessenen pH-Wertes in allen Fluidproben von schwach sauer (4,5 eingebrachtes Fluid) auf neutral (Ø 7,1) erklären.

Der Vergleich mit Veröffentlichungen verschiedener Autoren, wie ADREANI ET AL. (2008), CREDOZ ET AL. (2009) und ALEMU ET AL. (2011), die Reaktionsexperimente von Deckgesteinen mit CO₂ im Temperaturbereiche zwischen 25°C und 250°C und bei Drücken von 1,2 - 150 bar durchgeführt haben, zeigt, dass unabhängig der unterschiedlichen Randparameter (Druck, Temperatur und Zeit, Deckgesteinstyp bzw. Karbonatgehalt), in allen Experimenten eine Mobilisation von Calcium stattgefunden hat. Die daraus resultierende Konzentration in den Fluiden ist vergleichbar mit den eigenen Daten. Während bei den eigenen Experimenten zwischen 3 und 743 mg/l Calcium pro Fluidentnahme nachgewiesen wurde, wurden in Experimenten von ADREANI ET AL. (2008) zwischen 600 und 680 mg/l Calcium, bei CREDOZ ET AL. (2009) zwischen 1040 und 1520 mg/l Calcium und bei ALEMU ET AL. (2011) 73 bis 454 mg/l Calcium gelöst. Da alle Autoren die Mobilisation von Calcium auf die Reaktionen der Karbonate (überwiegend Lösung) zurückgeführt haben, deckt sich dies gut mit der Annahme zur Lösung der Karbonate in den eigenen Experimenten.

Für die experimentell basierte Entwicklung der Ca²⁺⁻Konzentration in den Fluiden (Abb. 7.01) bedeutet dies, dass zu Beginn der Experimente bei jeder Temperatur eine starke, jedoch rückläufige Lösung der Karbonate stattfand. Das sich die Konzentration von Calcium in den ersten 50 Tagen prograd zur Temperatur verhielt (45°C: max. Ca²⁺-Konzentration < 200 mg/l; 60°C - 100°C: Ca²⁺-Konzentration 200 bis 777 mg/l; Abb.7.0) lässt sich wahrscheinlich mit dem höheren CO₂-Druck bei höherer Temperatur erklären.

Abb. 7.01: Schematische Darstellung der Entwicklung der Konzentration von Calcium über die Zeit und in Abhängigkeit der Temperatur (45°C, 60°C, 75°C und 100°). Grundlage bilden die Fluiddaten, welche während der Experimente aus den insgesamt 44 Opalinustonproben gewonnen wurden.

Das besonders zu Beginn der Experimente auch große Konzentrationsunterschiede zwischen den Fluidproben eines Temperaturbereichs (Abb.6.07, 6.13, 6.16, 6.18) auftraten lässt sich auf mehrere Ursachen begründen. Es ist wahrscheinlich, dass die vorexperimentelle Beanspruchung des Gesteins (Bohrungen aus dem anstehendem Gestein, Lagerung, Probenpräparation; Kapitel 4) zu starken Materialveränderungen, insbesondere im Bereich der Störungszone, geführt hat. Besonders ist hier auch der eigentlich Stanzvorgang zu erwähnen, der zu unterschiedlich ausgebildeten / desintegrierten Störungszonen, Reaktionsbereichen geführt hat (Abb. 6.06; 6.23). Solche Veränderungen, die u.a. die Zerkleinerung von Teilen der Proben in Partikel unterschiedlicher Größe beinhalten, haben zu einer unterschiedlich starken Auswaschung des Materials beigetragen. Gekennzeichnet waren diese Auswaschungen durch eine unterschiedliche Trübung der Fluide (Abb. 5.01).

Die geringen Ca²⁺-Konzentrationen, welche bei allen Temperaturen zwischen dem 50sten und 250sten Tag vorlagen, (Abb. 7.01) lassen sich schwer deuten. Die Konzentrationen der Fluide, welche aus einer Gesteinsprobe gewonnen wurden, unterlagen in dieser Zeit jedoch ebenfalls starken Schwankungen (Abb.6.07, 6.13, 6.16, 6.18, Anhang II a). Die Variationen und die Höhe des Schwankungsbereichs standen dabei in Zusammenhang mit der Häufigkeit des Fluidaustritts aus den Proben und damit verbunden mit deren Permeabilität. Es zeigte sich, dass die Konzentrationen weniger stark abfielen bei Proben die einen Fluidaustritt bei nahezu jeder wöchentlichen Beprobung aufwiesen. Demzufolge wurde durch den regelmäßigen Fluidfluss eine kontinuierliche und damit stärkere Lösung der Calciumführenden Phasen verursacht.

Während bis zum 150sten bzw. 250sten Tag die größte Mobilisation tendenziell bei höheren Temperaturen erfolgte, weist der folgende starke Anstieg der Ca²⁺-Konzentrationen und der Wechsel zu einer retrograden Abhängigkeit der Konzentration zur Temperatur auf eine Änderung der im Gestein abgelaufenden Reaktionen hin. Die anschließend kontinuierlichen bis leicht steigenden Konzentrationen zeigen zudem ein beginnendes Fließgleichgewicht an. Zusammen mit der Änderung des Sättigungsindex mit steigender Temperatur (Kapitel 6.1.4.3) von tendenziell untersättigt bezüglich Calcit (SI: -0,1 bis -2,9) und bezüglich Dolomit (SI_{min}= -1,1) bei 45°C, hin zu permanent übersättigt bei 100°C (Calcit: SI = 0,4 - 1; Dolomit: SI = 2,4 - 3,2) spricht dies für die Möglichkeit einer zusätzlichen Repräzipitation bei höheren Temperaturen. Eine tatsächlich abgelaufene Fällung kann allerdings anhand des Fluidverlaufs weder bestätigt noch ausgeschlossen werden. Wie bereits erwähnt weist der Verlauf der Ca²⁺-Konzentrationen in den Fluiden darauf hin, dass Calcium neben der Lösung von Calcit und Dolomit noch durch anderen Mineralreaktion mobilisiert wurde. Möglich wären Kationenaustauschprozesse der Tonminerale oder ihre Lösung. Eine genaue Zuordnung in wieweit und wann welche Mineralreaktionen verstärkt gewirkt haben ist an dieser Stelle jedoch nicht eindeutig möglich.

Magnesium

Magnesium, welches ebenfalls aus dem Opalinuston mobilisiert wurde, zeigte über den Reaktionszeitraum von 18 Monaten eine andere Entwicklung der Konzentration in Lösung als Calcium. Die größte Mobilisation von Magnesium (daraus resultierende maximale Konzentration: 467 und 764 mg/l) erfolgte bei allen vier Temperaturstufen (45°C bis 100°C) zu Beginn der Experimente. Anschließend erfolgte eine exponentielle Abnahme der Konzentration in Lösung, welche besonders stark in den ersten 50 Tagen war (Abb. 6.07, 6.13, 6.16, 6.18, Anhang II a). Die zu Beginn unterschiedlich hohen Konzentrationen sowie die Konzentrationsvariationen zwischen den einzelnen Messpunkten der Fluidproben eines Temperaturbereiches lassen sich, wie bei Calcium, u.a. mit einen unterschiedlich starken Austrag des zerkleinerten Probenmaterials erklären.

Der Zusammenhang zwischen Temperatur und Stärke der Lösung von Magnesium spiegelt sich dahingehend wider, dass bei 45°C und 60°C die Konzentration stetig abfiel, wohingegen sich bei 75°C und 100°C nach 50 Tagen ein Fließgleichgewicht einstellte (Abb. 6.07, 6.13, 6.16, 6.18). Zusammen mit einer temperaturabhängigen, tendenziell linearen Korrelation zu Kalium (Abb. 7.02) lässt diese Entwicklung auf ähnlich abgelaufene Lösungsprozesse schließen. Möglich sind in diesem Fall Lösungsreaktionen der Tonmineralen, wie Chlorit und/oder Illit (berechneter Anteil im Opalinuston 5 - 6 %). Dies wird auch durch die mit PHREEQC ermittelten Lösungsmodelle bestätigt, nach denen Magnesium durch Lösungsreaktionen der Tonminerale freigesetzt wurde. Sättigungsindizes der Tonminerale, welche bei bei allen Temperaturen im stark negativen Bereich (SI = -3 bis -24) liegen, bestätigen weiterhin, dass ihre Lösung möglich ist.

Abb.7.02: Korrelation des bei 45°C bis 100°C aus dem Opalinuston mobilisierten Magnesiums und Kaliums.

Reaktionen von Tonmineralen wurden zwar ebenfalls bei verschiedenen Temperaturen und Drücken im Zusammenhang mit Experimenten zur CO₂ Speicherung durch diverse Autoren dokumentiert (u.a. CREDOZ ET AL 2009, FLEURY ET AL., 2009, KOHLER ET AL. 2009, ALEMU ET AL. 2011), jedoch nicht im Zusammenhang mit einer Mobilisation von Magnesium. Diese wurde primär den deutlich schneller ablaufenden Karbonatreaktionen zugeordnet.

Dass die Lösung von Magnesium-führenden Karbonaten neben den Tonmineralreaktionen ebenfalls möglich ist, zeigt neben der leicht unterschiedlichen temperaturabhängigen Entwicklung auch die Veränderung des Mg^{2+}/K^+ -Verhältnisses Richtung Kalium, welche mit steigender Temperatur zunimmt. Solch eine Änderung des Mg^{2+}/K^+ -Verhältnisses lässt sich mit dem zusätzlichen Einfluss der temperatuabhängigen Lösung von Dolomit deuten. Da der Gehalt von Dolomit im Opalinuston bei < 3 %, der berechnete, aus dem Gestein theoretisch gelöste Anteil an Calcium-führenden Karbonaten ebenfalls sehr gering (< 2 %) ist, kann die Lösung von Dolomit nur Anteilig die Mg^{2+} -Konzentration in den Fluiden steuern.

Wahrscheinlich ist hier die Lösung von Karbonaten (Dolomit) und Reaktionen von Illit und Chlorit.

Kalium

Die Mobilisation von Kalium erfolgte über die Zeit von 18 Monaten und für alle Temperaturen exponentiell abnehmend. Ähnliche Entwicklungen zeigten sich, wie bereits beschrieben, für Magnesium und vor allem auch für Natrium. Der relativ gleiche Verlauf der Elemente in den Fluiden spiegelt sich dabei in einer positiven Korrelation von Kalium zu Natrium wider (Abb. 7.03). Der geringe Temperatureinfluss auf das Verhältnis von Kalium zu Natrium weist dabei darauf hin, dass die Lösung von Kalium und Natrium in einem engeren Zusammenhang steht, als die von Kalium und Magnesium.

Abb.7.03: Korrelation des bei 45°C bis 100°C aus dem Opalinuston mobilisierten Kaliums und Natriums.

Mögliche Reaktionen, die zur Freisetzung von Kalium geführt haben sind Alterationen von Feldspäten, insbesondere K-Feldspat, deren Reaktionen bereits durch diverse Autoren in Reservoirgesteinen nachgewiesen wurden. Nach WIGAND ET AL. (2008) und KETZER ET AL. (2009) führen Temperaturen von $\geq 60^{\circ}$ C und Drücke von ≥ 100 bar bereits nach 4 bzw. 60 Tagen Reaktionszeit zu einer Lösung der Feldspäte. Die nach KETZER ET AL. (2009) beschriebene Reaktion von K-Feldspat und Albit im Zusammenhang mit einem Eintrag von CO₂ und der damit verbundene, auf der Lösung von Calcit basierende, Eintrag von Calcium, kann als möglicher Reaktionsprozesse, welcher zur Freisetzung von Kalium und Natrium führte, in Betracht gezogen werden:

$$2KAlSi_{3}O_{8} + 2NaAlSi_{3}O_{8} + Ca^{2+} + CO_{2} + 4H_{2}O$$

$$\rightarrow CaCO_{3} + 2Al_{2}Si_{2}O_{5}(OH)_{4} + 2Na^{+} + 2K^{+} + 8SiO_{2}$$
[7.1]

Für Feldspatreaktionen würde auch der exponentiell abnehmender Verlauf der Kalium-Konzentration in Lösung sprechen, welcher ebenfalls durch SHIRAKI & DUNN (2000) bei Experimenten an Reservoirgesteinen bei 80°C und 166 bar dokumentiert und auf Alterationen der K-Feldspäte zurückgeführt wurde. Die ähnlichen Kalium-Konzentrationen bei den verschiedenen experimentell angewandten Temperaturen lassen sich mit den für alle Proben gleichen pH-Bereich erklären, da nach BLUM & STILLING (1995) und MARINI (2007) bei pH-Werten im neutralen Bereich (pH 6 - 8) die Lösungsrate der K-Feldspäte deutlich geringer von der Temperatur beeinflusst wird als im saurem- oder alkalischem Bereich.

Da der Anteil an K-Feldspat im Opalinuston generell bei < 5 % liegt (PEARSON ET AL., 2003) und mit den angewandten analytischen Methoden in der eigenen Arbeit nicht eindeutig bestimmt werden konnte ist davon auszugehen, dass dessen Lösung nicht als alleinige Reaktion für die Mobilisation von Kalium verantwortlich sein kann.

Bei Betrachtung der Ergebnisse von ANDREANI ET AL. (2008), die schon bei 25°C und 1,2 bar über einen Reaktionszeitraum von 800 Stunden eine Mobilisation von Kalium im Bereich von $\leq 0.5*10^{-2}$ bis $1.0*10^{-2}$ mol/kg (entspricht 195 - 390 mg/kg) aus den Experimenten an Deckgesteinen (Tonmineralgehalt: 24 % Kaolinit, 10 % Illit/Smektit, 1 % Chlorit) nachgewiesen und diese auf eine Tonminerallösung zurückgeführt haben, sind Lösungsund Umwandlungsreaktionen von Tonmineralen (im speziellen Illit) im Opalinuston sehr wahrscheinlich. Vergleiche der Ergebnisse von ANDREANI ET AL. (2008) mit den eigenen Werten (Kalium $0.03*10^{-2}$ bis $1.2*10^{-2}$ mol/l für alle Temperaturen) ergaben, unabhängig der unterschiedlichen Tonmineralgehalte (Kapitel 6.1.1), eine sichtbare Überschneidung in der Konzentration. Ähnliche Gehalte (Kalium $0.1*10^{-2}$ bis $1.0*10^{-2}$ mol/kg) in experimentell gewonnenen Fluiden wurden auch durch ALEMU ET AL. (2011) postuliert. Ihre Experimente an Deckgesteinen (Silikatgehalt: Plagioklas/Albit 6 - 8 %, Illit 22 - 26 %, Chlorit 19 - 38 %) führten unabhängige des deutlich höheren Drucks (110 bar) und teilweise höheren Temperaturen (80°C bis 250°C) zu einer mit der Zeit und Temperatur zunehmenden Mobilisation von Kalium, welche ebenfalls auf Tonmineralreaktionen zurückgeführt wurde.

Unabhängig von Experimenten bezüglich der Speicherung von CO₂ verläuft die Entwicklung der Kaliumkonzentration in Lösung zudem gleich derer, die durch SCHLABACH (2000) an Durchflussexperimenten zur Auflösung von Illit gewonnen wurde. Demnach nahm die Konzentration über die Zeit ab und es stellte sich nach ca. 50 Tagen ein Fließgleichgewicht ein.

Neben den experimentellen Beobachtungen und Ableitungen unterstütz die mit PHREEQC durchgeführte inverse Modellierung ebenfalls eine Kaliummobilisation durch Reaktionen des Illits im Opalinuston.

Natrium

Ähnlich der Entwicklung der Konzentration von Kalium und Magnesium in den Fluiden, die während der Experimente aus den Proben gewonnen wurden, verhielt sich auch die Konzentration von Natrium.

Bei allen vier Temperaturen fand zu Beginn eine ähnlich hohe Elementmobilisation statt (maximale Konzentrationen von Natrium nach Abzug der eingebrachten 3930 mg NaCl/l: 2920-4650 mg/l), der eine starke Abnahme in den ersten 50 Tagen und ein anschließend leicht fallender bis konstanter Verlauf folgte (Kapitel 6, Abb. 6.07, 6.13, 6.16, 6.18). Es zeigte sich, dass sich bei Temperaturen $\leq 75^{\circ}$ C nach 50 Tagen ein Fließgleichgewicht einstellte, während es bei 100°C zu deutlichen Schwankungen zwischen den einzelnen Messungen kam. Zurückführen lassen sich diese Schwankungen zum Teil auf einen sehr variablen Fluiddurchlass bei den einzelnen Proben und eine unterschiedlich starker Salinität der Lösung. So kann besonders bei 100°C neben einer unterschiedlich starken Mobilisation auch eine verstärkte Verdunstung der Flüssigkeit stattgefunden haben. Damit zusammenhängend könnte eine Konzentrationszunahme von NaCl Einfluss auf die Werte gehabt haben.

Auf Grund der sehr hohen Natrium-Konzentrationen in den Fluiden, welche mit Anfangswerten von 7000 bis 9000 mg/l um das 2- bis 3-fache über dem eingebrachten Wert von 3930 mg/l lagen, ist eine eindeutige Zuordnung zu abgelaufenen Mineralreaktionen nicht möglich. Die hohen Anfangswerte in allen Lösung sprechen jedoch für einen Eintrag durch schnelle Reaktions-/Lösungsvorgänge. Wie bei Magnesium und Kalium sind auch bei Natrium Austauschprozesse mit den Tonmineralen (Illit, Illit/Smektit-Wechsellagerung) möglich. PEARSON ET AL. (2005) dokumentiert Natrium als das Kation, welches am schnellsten und dominantesten im Opalinuston ausgetauscht wird. Es wurde dabei vor allem ein Ca²⁺-Na⁺ Austausch an der Tonmineraloberfläche beobachtet. Das Calcium resultiert dabei aus Lösung von Calcit und Dolomit.

Nach dem Erreichen des Fließgleichgewichts in den eigenen Experimenten, bei dem die Konzentrationen von Natrium sich dem eingebrachten initialen Wert annäherte, wird Na⁺ anschließend primär durch NaCl bestimmt.

Veröffentlichte Ergebnisse von Experimenten die an Deckgesteinen durchgeführt wurden zeigen nach ALEMU ET AL. (2011; Batchversuchen, 80 bis 250°C, 110 bar, 5 Wochen) und CREDOZ ET AL. (2009; Batchversuchen, 80°C und 150°C, 1 bar und 150 bar, 90 Tage) keine den Reaktionsprozessen zuzuordnenden Veränderungen der Natrium-Konzentration in Lösung. Dies gilt sowohl für Reaktionen mit superkritischen CO₂, als auch mit CO₂ gesättigter Lösung. Vielmehr ist der Anstieg der Natrium-Konzentration in Lösung nach ALEMU ET AL. (2011) als Resultat eines durch Leckage bedingten Wasserverlustes zu interpretieren.

Silizium

Neben Kalium, Magnesium und Natrium erfolgte während der Experimente ebenfalls eine Mobilisation von Silizium aus dem Opalinuston. Mit deutlich geringerer Konzentration in den Fluiden (Kapitel 6 und Tab.7.1) gegenüber den anderen Elementen unterlag die Entwicklung von Silizium jedoch einem deutlichen Einfluss von Temperatur und Zeit.

So zeigte sich, dass bei 45°C die Konzentration von Silizium unter 20 mg/l blieb und über die Zeit tendenziell eine leichte Abnahme erfolgte (Abb. 6.07). Für die Temperaturen 60°C, 75°C und 100°C kam es hingegen zu einer kontinuierlichen Zunahme (Abb. 6.13, 6.16, 6.18). Ein Einfluss der Temperatur auf die Konzentration trat erst bei 100°C auf, gekennzeichnet durch eine deutlich höhere Lösung (Tab. 7.01).

Die Ergebnisse aus den Blindversuchen, bei denen Reaktionszellen ausschließlich mit hochreinem Quarzsand verfüllt und anschließend mit der für die Experimente verwendeten CO₂-gesättigten Lösung beaufschlagt wurden, zeigen ebenfalls eine temperaturabhängige Mobilisation von Silizium (Tab. 7.01). Dabei fielen bei entsprechender Temperatur die Silizium-Konzentrationen in den Fluiden aus dem Opalinuston in die Konzentrationsbereiche des Siliziums in den Blindwerten. Zusammen mit der von den anderen Elementen abweichenden Konzentrationsentwicklung ist es wahrscheinlich, dass ein großer Teil des gelösten Silizium aus der Lösung von Quarz stammt.

Temperaturstufen.		
	Blindwerte Si ⁴⁺ [mg/l]	Opalinuston Si ⁴⁺ [mg/l]
45°C		
Maximum	28,1	17,4
Minimum	3,5	5,7
60°C		
Maximum	37,4	17,0
Minimum	4,6	1,8
75°C		
Maximum	40,9	21,7
Minimum	9,5	2,0
100°C		
Maximum	66,5	48,6
Minimum	19	12,0

Tab. 7.01: Konzentration von Silizium (Si⁴⁺) in den Fluiden, welche während der Experimente aus den Blindwerten und dem Opalinuston gewonnen wurden. Dargestellt sind die minimalen und maximalen Konzentrationen zusammengefasst aus allen vier Temperaturstufen.

Das eine experimentell bedingte Lösung von Quarz möglich sein kann ergibt sich auch im Vergleich mit Veröffentlichungen von u.a. BRADY UND WALTHER (1990), die bereits bei tiefen Temperaturen von 25 und 60°C eine Lösung des im Deckgesteinen vorkommenden Quarz nachgewiesen haben. Auch wurde durch ADREANI ET AL. (2008) in Durchflussexperimenten an Deckgesteinen mit niedriger Temperatur (25° C) und einem Druck von 1,2 bar nach < 300 Stunden ein Anstieg von Silizium in den aus den Gesteinsproben ausgetretenen Fluiden nachgewiesen, welcher auf die Lösung von Quarz zurückgeführt wurde. Ebenso zeigen PALANDRI UND KHARAKA (2004), dass eine Temperaturerhöhung von 23°C auf 100°C bei neutralem pH des Wassers zu einer deutlichen Zunahme der Lösungsrate von Quarz führt (Tab. 2.2: Log R= -13,4 mol/m²s bei 23°C auf Log R=-10,2 mol/m²s bei 100°C). Somit würden sich auch in den eigenen Experimenten die deutliche höheren Konzentrationen bei 100°C erklären lassen.

7.1.2 Elementmobilisation aus vergleichbaren potentiellen Deckgesteinen

Neben dem Opalinuston wurden die in dieser Arbeit beschriebenen Reaktionsexperimente an drei weiteren Deckgesteinsvertretern (Tonstein der Weser-Formation (Ketzin), Boom Clay (Mol), Deckgestein (Shell)) durchgeführt. Während die Reaktionstemperaturen gleich derer für den Opalinuston waren, lag die Reaktionszeit bei 9 und 12 Monaten. Bedingt durch die nicht identische mineralogische Zusammensetzung der drei Deckgestei-

ne unterschied sich zum Teil die Entwicklung der aus den Gesteinen mobilisierten Elemente und damit ihre Konzentration in den Fluiden. Grundsätzlich wurden aus allen drei Deckgesteinsvertretern Calcium, Magnesium, Kalium, Natrium und Silizium sowie vereinzelt Eisen mobilisiert.

Silizium

Am ähnlichsten verlief für alle Gesteine die Konzentration von Silizium in den Fluiden. Im Gegensatz zu einer Abhängigkeit der meisten nachgewiesenen Elemente vom Fluiddurchlass (Volumen und Häufigkeit), zeigte sich für dieses Element nur eine Abhängigkeit zur Temperatur. Da alle Vergleichsdeckgesteine, wie beim Opalinuston, über die Zeit und unabhängig der Konzentrationen der anderen gelösten Elemente einen ähnlichen temperaturabhängige Konzentrationsbereich ($\leq 75^{\circ}$ C bei 10 - 25 mg/l und bei 100°C im Schnitt zwischen 30 und 50 mg/l (Anhang III a)) in den Fluiden aufwiesen, lässt sich auch bei diesen Gesteinstypen die Mobilisierung am ehesten der Lösung von Quarz zuordnen.

Kalium und Natrium

Eine weitere große Ähnlichkeit im Vergleich zwischen den verschiedenen Deckgesteinen lag für die Mobilisation von Natrium und Kalium vor. In allen Deckgesteinen nahm die Konzentration beider Elemente in den Fluiden kontinuierlich über die Zeit ab (Abb. 6.07, 6.13, 6.16, 6.18, 6.30, 6.34 und 6.38). Ein signifikanter Einfluss der Temperatur auf das Lösungsverhalten und damit auf die Konzentration trat dabei nirgends auf. Während allerdings die aus dem Tonstein der Weser-Formation gewonnen Fluide in den ersten 50 Tagen durch eine sehr starke Abnahme von Kalium mit bis zu 527 mg/l (Δ K, 45°C, Anhang II a) und Natrium mit bis zu 17800 mg/l (Δ Na, 45°C, Anhang II a) charakterisiert waren, verlief

die Mobilisation beim Boom Clay (Abb. 6.30) und dem Deckgestein von Shell (Abb. 6.34) kontinuierlich über die Zeit abnehmend. Daraus resultiert, dass beim Tonstein der Weser-Formation in den ersten 50 Tagen andere Prozesse dominant gewirkt haben, als beim Boom Clay und beim Deckgestein von Shell. Die vergleichbare Entwicklung des Konzentrationsverlaufes in Abhängigkeit von Temperatur und Zeit von Kalium und Natrium in den Fluiden der Proben des *Tonsteins der Weser-Formation*, deren Konzentrationen in Lösung mit max. 798 mg/l Kalium (60°C) und 23 g/l Natrium (45°C) (Anhang III a) zu Beginn am höchsten waren, zeigen eine verstärkten Zusammenhang zwischen beiden Elemente. Die hohe Salinität des Formationswassers in Ketzin (Speicherformation: u.a. 172,8 g/l NaCl und 0,6 g/l KCl; FÖRSTER ET AL., 2006; FISCHER ET AL., 2010), die deutliche Ablagerungen von Salz an den Oberflächen der in den Experimenten verwendeten Proben sowie eine Salinität der Fluide von bis zu 69 g/l (Anhang III a) sprechen dafür, dass die hohen Na⁺-und K⁺-Konzentrationen zu Beginn auf Lösung und Auswaschung von Salz (NaCl und KCl) und auf der Verdrängung des vorhanden Porenwassers aus dem Gestein beruhen.

Vergleiche des Salzgehaltes zur Natrium-Konzentration in den Fluidproben, welche während der Reaktionsexperimente aus den Reaktionszellen des Deckgesteins von Shell und dem Boom Clay gewonnen wurden, zeigen wie zu erwarten, dass auch bei diesen Deckgesteinen die Salinität und die gemessene Na⁺-Konzentration der Fluide in Abhängigkeit stehen (Abb. 7.04, Anhang III a). Dies wird besonders durch den einheitlichen Verlauf in den Fluiden der bei 100°C reagierten Boom Clay Probe deutlich (Abb. 7.04 b). Sowohl die Na⁺-Konzentration, als auch die Salinität in den Proben von Shell und dem Boom Clay, welche über den Werten der initial eingebrachten Konzentration (3930 mg/l) liegen, sprechen für eine zusätzlichen Eintrag von Salz. Wie beschrieben können dies unter anderem Lösungsvorgänge und / oder Verdrängung des vorhanden Porenwassers aus dem Gestein sein. Unterschiede wie sinkende Natrium-Konzentrationen bei steigender Salinität bzw. ein Verhältnis von Na⁺ zu NaCl (dargestellt als Salinität), das von 1:2,54¹ abweicht, können zum einen damit begründet werden, dass neben NaCl u.a. auch KCl in den Fluiden vorliegen kann, zum anderen kann es auf zusätzliche reaktionsbedingte Veränderungen hinweisen. Wie beim Opalinuston sind Austauschprozesse von beispielsweise Kalium und / oder Calcium gegen Natrium in den Tonmineralen möglich (LAGALY, 1993; MEUNIER, 2005).

¹ Molverhältnis von Na in NaCl, ergibt sich aus 22,989 g/mol Na : 58,4429 g/mol NaCl

Abb.7.04: Abhängigkeit der Salinität zur Natrium-Konzentration in den Fluiden die aus den Experimenten am Deckgesteinen von Shell und dem Boom Clay gewonnenen wurden. **a**) Natrium-Konzentration in den Fluiden aus den 45°C Experimenten am Deckgestein von Shell im Vergleich zu deren Salzgehalt. **b**) Natrium-Konzentration in den Fluiden aus den 100°C Experimenten des Boom Clay im Vergleich zu derem Salzgehalt.

Im Gegensatz zu Natrium lässt sich das in den Fluiden nachgewiesene Kalium, dessen Konzentrationsverlauf über die Zeit sich in allen drei Deckgesteinsproben (Boom Clay, Tonstein der Weser-Formation, Shell) tendenziell ähnelte (Kapitel 7), auf Silikatreaktionen zurückführen. Die Theorie zur Lösung von Silikaten wird auch hier durch die geochemischen Modellierungen mit PHREEQC unterstützt. Die Modelle sehen bei allen drei Deckgesteinsvertretern die Lösung von Illit oder K-Feldspat vor. Eine gleichzeitige Lösung beider Phasen wird dabei nicht berücksichtigt. Neben Reaktionen von K-Feldspat und Illit,

kann Kalium auch durch Reaktionen von Muskovit mobilisiert worden sein. So beispielsweise bei den Modellberechnungen für die *Deckgesteinsproben der Firma Shell* (Kapitel 6.2.4.2). Der Anteil von Muskovit (KAl₃Si₃O₁₀(OH)₂) in diesem Deckgesteinsvertreter liegt bei rund 9 %. Im Gegensatz zu der in dieser Arbeit verwendeten Modellberechnung postulieren Autoren wie ROCHELLE ET AL. (2004) und BENSON ET AL. (2005) die Bildung von Muskovit in Folge der Lösung von K-Feldspat. Nach BENSON ET AL. (2005) bewirkt dabei der Eintrag von CO₂ ins Wasser eine Senkung des pH-Wertes und dadurch bedingt eine Lösung der Feldspäte:

$$3KAlSi_3O_8 + 2H_2O + 2CO_2 \leftrightarrow KAl_3Si_3O_{10}(OH)_2 + 6SiO_2 + 2K^+ + 2HCO_3$$
 [7.3]

Prinzipiell ist die Lösung von Muskovit unter Abgabe von Kalium jedoch durchaus möglich (u.a. JASMUND 1993). Im Gegensatz zu Illit ist dessen Lösungsrate bei gleicher Temperatur und neutralem pH-Bereich zudem tendenziell höher (u.a. NICKEL, 1973; KNAUSS &WOLERY, 1989), so dass die im Modell vorgesehene Lösung auch in den eigenen Experimenten in Betracht gezogen werden kann.

Magnesium

Für Magnesium, welches ebenfalls aus allen Proben mobilisiert wurde, zeigten sich bei der zeitlichen und temperaturabhängigen Entwicklung in den Fluiden deutliche Unterschiede zwischen den einzelnen Deckgesteinsvertretern. Die Konzentration in den Fluidproben aus dem *Boom Clay* nahm über die Zeit ab und unterlag dabei einem deutlichen Temperatureinfluss (Kapitel 6.2.1.3). Im Vergleich mit den anderen Deckgesteinsvertretern wurden die höchsten Konzentrationen (1022 mg/l, entspricht 42 mmol/l) zu Beginn der Experimentphase (Tag 13) bei niedrigster Temperatur (45°C) und geringen Austrittsvolumen (3 ml in 5 min) gemessen. Mit Ausnahme der ersten Messung bei 100°C lagen dagegen die Konzentrationen bei höheren Temperaturen (60°C - 100°C) kontinuierlich unter denen von 45°C (Abb. 6.2.9).

Im Gegensatz zum Boom Clay stellte sich bei den Fluidproben aus dem Deckgestein von Shell und dem Tonstein der Weser-Formation bereits zu Beginn, spätestens nach 50 Tagen, ein Fließgleichgewicht ein. Die Konzentration von Magnesium in den Fluiden beider Deckgesteine lag dabei in den ersten 100 Tagen deutlich unter denen des Boom Clays. Für den Tonstein der Weser-Formation zeigte sich mit 100 und 300 mg/l Magnesium (4 bis 12 mmol/l) bei konstanten Fluiddurchlass und Volumen keine Abhängigkeit von der Temperatur. Hingegen stellte sich eine solche Temperaturabhängigkeit für die Proben des Deckgesteins der Firma Shell ein. Die Konzentrationen von Magnesium lagen kontinuierlich unter 80 mg/l (< 3,3 mmol/l) und wurden bei höheren Temperaturen geringer. Bei 60°C und 75°C zeigte sich ein nahezu kongruenter Verlauf, was bedeutet, dass Änderungen in diesem Temperaturbereich wenig bzw. keinen Einfluss auf das Lösungsverhalten von Magnesium gehabt haben.

Die ungleiche Konzentrationsentwicklung von Magnesium in den Fluiden der drei Referenzdeckgesteine (Abb. 6.30, 6.34 und 6.38) kann Hinweis auf eine Mobilisation durch unterschiedliche Mineralreaktionen geben. Beim *Boom Clay*, dessen Gehalt an magnesiumhaltigen Karbonaten (Dolomit) bei < 5 % liegt, in Verbindung mit einer Entwicklung der Konzentration in Lösung welche Hinweis auf Silikatreaktionen gibt (SHIRAKI & DUNN, 2000), ist eine eindeutige Zuordnung nicht möglich. Da im Vergleich Magnesium eine ähnlich Entwicklung der Konzentration in den Fluiden zeigt wie Calcium und Kalium (Abb. 6.30), jedoch mit schwankenden Verhältnissen (Mg²⁺/Ca²⁺ = 2/1 - 8/1; Mg²⁺/K⁺ = 2/1 - 4/1), ist ein gleichzeitiger Prozess aus Lösung von Dolomit und Reaktionen von Illit und / oder Chlorit wahrscheinlich. Unterstützt wird die Theorie durch die geochemischen Berechnungen mit PHREEQC, welche die Mobilisation von Magnesium ebenfalls auf gleichzeitige Reaktionen der drei genannten Mineralphasen begründen (Abb. 6.12).

Die abweichende Entwicklung der bei 100°C durchgeführten Experimente zu den Experimenten bei ≤ 75 °C lässt sich an dieser Stelle schlecht deuten. Begründet wird dies durch den Unterschied an Häufigkeit der Durchlässigkeit und des Volumens im Zusammenhang mit der Durchführung der Experimente bei einfacher Bestückung. Da bei den 100°C Experimenten, im Gegensatz zu allen anderen Deckgesteinsproben, regelmäßig Eisen in Lösung gemessen wurde (Anhang III a) und dies nahezu lineare mit Magnesium korreliert (Abb. 7.05) spricht dies für Reaktionsvorgänge die zu einer gleichmäßigen Mobilisation beider Element geführt haben. Möglich wäre hier auch eine zusätzlich Reaktion des im Boom Clay vorkommenden eisenreichen Smektits (DECLEER ET AL., 1982).

Abb. 7.05: Korrelation von Magnesium und Eisen in Fluidproben des bei 100°C reagierten Boom Clays.

Das aus den Deckgesteinen von Shell und den Tonsteinen der Weser-Formation mobilisierte Magnesium basiert sehr wahrscheinlich ebenfalls auf einer Kombination aus mehreren Lösungs- (Dolomit, Chlorit, Illit) und Fällungsprozessen (magnesiumhaltige Karbonate). Der relativ konstante Verlauf in den Fluiden, welche während der Experimente aus den Proben des *Tonsteins der Weser-Formation* gewonnen wurden, spiegelt sich auch im Verlauf der Konzentration von Calcium (Abb. 6.37) und einem, mit der Temperatur abnehmenden jedoch pro Temperaturstufe relativ gleichbleibenden Ca²⁺/Mg²⁺-Verhältnis (Ø 4/1 bei 45°C bis Ø 2/1 bei 100°C) wider. Das gleichbleibende Verhältnis spricht dafür, dass die Lösung von Dolomit, dessen Anteil im Gestein bei rund 23 % liegt, wahrscheinlich zum großen Teil als Quelle des Magnesiums gesehen werden kann. Der Einfluss der Temperatur und der höhere Anteil von Calcium in den Fluidem, im Gegensatz zu einem höheren Magnesiumanteil im Dolomit (Abb. 7.06), lassen sich durch zusätzliche Reaktionen anderer Mineralphasen erklären, welche im Folgenden noch diskutiert werden.

Abb. 7.06: EDX - Spektrum mit BSE-Aufnahme eines Dolomits im Tonstein der Weser-Formation.

Dass trotz des hohen Anteils an Karbonaten die Konzentrationen von Magnesium im Verhältnis zum Boom Clay und zum Opalinuston relativ gering sind, kann zum einen mit der inhomogenen Verteilung von Dolomit im Gestein begründet werden, zum andern im Zusammenhang mit möglichen Ausfällungsprozessen stehen. Bei Sättigungsindizes der Fluide nach Reaktion mit dem Gestein von 1,8 bis 3,5 für Dolomit (SI_{Calcit} = 0,6 - 0,9; Kapitel 6.2.3.3.) die eine deutliche Übersättigung gegenüber diesen Phasen anzeigen, sind bei allen Temperaturen zusätzlich zu den Lösungsprozessen auch Ausfällungen möglich. Die bei 45°C und 100°C abnehmende Konzentration in den ersten 50 Tagen, wie sie auch bei Kalium aufgetreten ist, könnte Hinweis auf einen zusätzlichen Eintrag durch Silikatreaktionen sein. Silikatreaktionen werden auch durch die Modellrechnung mit PHREEQC bestätigt, die neben der Lösung von Dolomit in zwei Modellen auch eine Lösung von Illit vorsehen. Die Fluidproben aus den Reaktionsexperimenten am Deckgestein von Shell zeigen keine vergleichbare Entwicklung der Mobilisation von Magnesium zu der von Kalium (abnehmende Konzentration) oder Calcium (zunehmenden Konzentrationen). Lediglich der Temperatureinfluss auf die Mobilisation spiegelt sich tendenziell im Vergleich zu Calcium wider. Da magnesiumhaltige Karbonate jedoch nur akzessorisch auftreten ist ihre Lösung zwar möglich, kann jedoch nicht ausschlaggebend für die Konzentration in Lösung sein.

Neben Austauschprozessen der Tonminerale und / oder Feldspatreaktionen, sind Einträge über die initiale Lösung nicht auszuschließen (Anhang IV).

Calcium

Die größten Unterschiede bei der Elementmobilisation aus allen Deckgesteinsvertretern traten bei Calcium auf. Beim Boom Clay lagen bei der zeitabhängigen Konzentrationsentwicklung in den Fluiden deutliche Unterschiede zwischen den Experimenten bei 45°C bis 75°C und dem Experiment bei 100°C vor. Während im Temperaturbereich von 45°C bis 75°C bis zum 50sten Tag die Konzentrationen von Calcium kurzzeitig auf maximal 584 mg/l anstiegen und anschließend kontinuierlich abfielen, waren die Konzentrationen bei 100°C deutlich geringer und konstanter mit leicht steigender Tendenz über die Zeit (Abb. 6.30). Wie schon im Abschnitt hinsichtlich der Mobilisation von Magnesium erwähnt, ist es wahrscheinlich, dass der Durchlass mit geringerem Volumen (2 bis 4 ml pro5 min) bei \leq 75°C im Gegensatz zum relativ kontinuierliche Fluiddurchlass bei 100°C diesen Unterschied der Konzentrationsentwicklung bewirkte. Die Abnahme von Calcium in den Fluiden hängt u.a. mit der geringen Permeabilität des Gesteins zusammen. Es ist wahrscheinlich, dass der Fluidfluss während der Experimentphase nur entlang eines deutlich eingeschränkteren Weges erfolgte und dadurch über die Zeit weniger Calcium-führende Phasen zur Reaktion zur Verfügung standen. Das starke Verkleben des Boom Clay mit Teilen der Reaktionszellen und das nachgewiesene Aufquellen des mittleren Stempelbereichs unterstützen die These des eingeschränkten Fluidweges gegenüber anderen Proben. Eine genaue Zuordnung von Calcium zu den reagierten Phasen im Boom Clay ist schwer, generell kann jedoch Dolomit als eine Quelle in Betracht gezogen werden. In Übereinstimmung steht dies mit den auf PHREEQC basierenden Berechnungen, welche bei allen Temperaturen die Lösung von Dolomit vorsehen. Die Übersättigung der Fluide unter Experimentalbedingung und nach Reaktion mit dem Boom Clay gegenüber Dolomit (SI = 0.5 - 1.9) weisen darauf hin, dass neben der Lösung von Dolomit auch dessen Repräzipitation möglich gewesen ist. Im Gegensatz zum Boom Clay erfolgte bei den Deckgesteinen von Shell über die Zeit eine ständige Zunahme der Ca²⁺-Konzentration in den Fluiden (Abb. 6.33, Anhang III a). Ein Einfluss der Temperatur lag bei diesem Deckgestein im Vergleich zwischen 45°C und \geq 60°C vor, im Temperaturbereich zwischen 60°C und 100°C erfolgte die Konzentrationszunahme relativ kongruent. Mit maximal 149 mg/l (100°C) waren die Konzentration von Calcium in den Fluiden der Experimente 60°C bis 100°C geringer als die von 45°C. Da Dolomit als einzige nachgewiesene Calcium-führende karbonatische Phase nur untergeordnet (< 5 Gew%) im Deckgestein auftritt, müssen hier ebenfalls Reaktionen mit anderen Phasen zu einer Mobilisation von Calcium beigetragen haben. Wie bereits für den Opalinuston diskutiert, wären Austauschprozesse von Kationen der Tonmineralen in Betracht zu ziehen. Die Berechnungen mit PHREEQC bestätigen an dieser Stelle, aufgrund des im Modell nicht berücksichtigen Mineralgehalts im Gestein, nur die Lösung von Dolomit.

Die größte Mobilisation von Calcium erfolgte aus dem *Tonstein der Weser-Formation*, welcher neben einem hohen Anteil an Karbonaten (Ø 23 % Dolomit) auch Anhydrit (Ø 11 %) als Calcium-führende Phase aufweist. Der, mit Ausnahme einzelner Messpunkte, bei jeder Temperaturstufe konstante Verlauf gibt Hinweis auf ein homogenes Lösungsverhalten, bzw. auf ein sich schnell einstellendes Fließgleichgewicht. Neben einem konstanten Konzentrationsverlauf zeigte sich bei diesem Deckgestein ein deutlicher Einfluss der Temperatur, mit maximaler Mobilisation bei 45°C und minimaler bei 100°C (Abb. 6.37). Zusammen mit einem temperaturunabhängigem Mg²⁺/Ca²⁺-Molverhältnis von 1/10 und 1/5 lässt dies darauf schließen, dass neben Mobilisation durch Dolomitreaktionen, Calcium auch aus anderen Phasen mobilisiert wurde. Aufgrund seiner retrograden Temperaturlöslichkeit (BLUNT & DICKSON, 1969) und einem Anteil von Ø 11 % im Gestein, kann auf die Lösung von Anhydrit geschlossen werden. Da nach BLUNT & DICKSON (1969) die Löslichkeit von Anhydrit auch von der Salinität abhängt, kann dies in Verbindung mit der hohen Salinität zu Beginn der Experimente (Anhang III a), die hohen anfänglichen Konzentrationen bei 60°C bis 100°C erklären.

Die Annahme, dass neben Dolomit auch Anhydrit bei Kontakt mit der CO₂-gesättigten Lösung gelöst wurde, wird teilweise durch die Modelberechnungen mit PHREEQC unterstützt. Diese sehen sowohl eine Lösung, als auch eine Fällung vor. Während bei 45°C in den Modellen von einer Lösung ausgegangen wird, die konstant bis leicht zunehmend verläuft (9 - 14 mmol/kg, Modell A), sehen die Modelle ≥ 60 °C dessen Fällung vor, welche über die Zeit tendenziell abnimmt (44 mmol/kg auf 7 mmol/kg, Abb. 6.39, Modell A - Vergleich 45°C zu 100°C). Die Präzipitation von Anhydrit in den Modellen und in Bezug auf die eigenen Experimente ist kritisch zu betrachten, da die Modelle keine Erklärung bzw. Lösungsreaktionen aufzeigen aus denen das für die Fällung von Anhydrit benötigte Sulfatanion stammt. Das eine Präzipitation von Anhydrit bei CO₂-Experimenten mit Deckgesteinen generell möglich ist zeigen KOHLER ET AL. (2009), die bei 150°C und 150 bar nach 60 Tagen die Präzipitation von Anhydrit nachwiesen haben. Diese steht neben der Lösung von Dolomit und Calcit im Zusammenhang mit der Oxidation von Pyrit. Solch

eine Oxidation wurde in den eigenen Experimenten am Tonstein der Weser-Formation allerdings nicht nachgewiesen. Aus diesem Grund ist im Vergleich von Modell zu Experiment eher von einer geringeren Anhydritlösung mit steigender Temperatur auszugehen, als von einer reinen Präzipitation. Das eine Lösung von Anhydrit möglich ist wurde unabhängig der experimenteller Parameter in Laborexperimenten sowohl in Speichergesteinen u.a. FISCHER ET AL. (2010) (55 bar, 40°C) und SHIRAKI & DUNN (2000) (166 bar 80°C), als auch in Deckgesteinen u.a. HOLLOWAY ET AL. (1996) (200 bar, 80°C) nachgewiesen.

7.2 Der Einfluss von CO₂ auf die Permeabilität und Stabilität von Störungszonen in Deckgesteinen

Anhand der makro- und mikroskopischen Veränderungen der Festphasen sowie den Ergebnissen der μ XRF am Opalinuston ergibt sich, dass die CO₂-gesättigte NaCl-Lösung nicht ausschließlich entlang der Störungszone durch das Gestein perkoliert sein kann. Es muss von einem Durchfluss im gesamten Stempelbereich ausgegangen werden (Abb. 6.23, 6.24). Deutlich zeigt sich dies an den Querschnitten zweier bei je 60°C und 100°C reagierter Proben (Abb. 6.23), deren Stempel in Folge des Durchflusses der CO₂-gesättigten Lösung und in Verbindung mit dem in den Reaktionszellen vorherrschenden Drucks sichtbar desintegriert wurden. Die mittels μ XRF bestimmte Verteilung von Chlor in den reagierten Proben, dessen Anreicherung im Stempel nur aus der CO₂-gesättigten Lösung stammen kann (Abb. 6.24), bestätigt den veränderten Fluidweg. Zusammen mit den in den Fluiden nachgewiesenen Elementen Magnesium, Kalium und Silizium, welche im Bereich erhöhter Chlorkonzentration im Gestein in geringerer Konzentration vorlagen (Abb. 6.23), kann die Theorie des Fluidflusses durch den gesamten Stempel als belegt angesehen werden.

Im Vergleich zum Opalinuston waren der Boom Clay, der Tonstein der Weser-Formation und das Deckgestein von Shell nach einer Experimentzeit von neun bis zwölf Monaten deutlich weniger desintegriert. Es weisen jedoch Ausbrüche in vielen Proben sowie sekundäre, senkrecht durch die Proben verlaufende Risse darauf hin, dass ein Durchfluss des CO₂-gesättigten Fluids auch bei diesen Proben nicht ausschließlich entlang der Störungszone erfolgt sein kann (Abb. 7.07).

Abb. 7.07: Potentielle Deckgesteinsproben nach Reaktion mit CO_2 -gesättigter NaCl-Lösung bei 60°C. a) Aufsicht auf untere Probenfläche des Deckgesteins von Shell nach einer Reaktionszeit von neun Monaten bei 60°C. Im rechten Bereich sind Teile der Probe weggebrochen. Die sehr hellen Bereiche auf der linken Seite markieren Salzabscheidungen am Rand der Störungszone und an feinen Rissen in der Probenoberfläche. b) Aufsicht auf obere Probenoberfläche des Tonsteins der Weser-Formation nach einer Reaktionszeit von zwölf Monaten bei 60°C. Der Stempel in der Mitte zeigt leichte Quellerscheinungen. Die Oberfläche der Probe ist teilweise in Schichten abgeplatzt.

Die Desintegrationen und das teilweise Versagen des Verbundklebers zwischen Probe und Ring (Abb. 7.07 b) hatten zur Folge, dass im Anschluss an die Reaktionsexperimente keine weiteren Stanztests durchgeführt werden konnten. Ein Nachweis einer durch das CO₂ hervorgerufenen Veränderung der geomechanischen Eigenschaften der Deckgesteine, spezielle im Bereich der Störungszonen, war dadurch nicht möglich. Es zeigte sich jedoch Anhand der zu Beginn durchgeführten Stanztests zur Erzeugung der künstlichen Störungszone (Kapitel 5), dass bestimmte Mineralphasen (insbesondere Karbonate und / oder Sulfate) Einfluss auf die Scherfestigkeit des Gesteins hatten. Besonders deutlich trat diese Abhängigkeit in einigen Proben des Opalinustons und des Tonsteins der Weser-Formation hervor. Die Opalinustonproben mit einem überdurchschnittlich hohem Calciumgehalt (CaO: 20 < 30 Gew% gegenüber durchschnittlich 9 Gew%), dessen Bindung überwiegend karbonatisch ist (Karbonatgehalt > 25 %), wiesen eine deutlich höhere Scherfestigkeit (20 - 22 MPa, Abb. 6.04) auf, als die Proben mit einem CaO ≤ 20 Gew% (Karbonatanteil ~ 14 %). Eine ähnliche Abhängigkeit spiegelte sich auch bei den Proben des Tonsteins der Weser-Formation wider, bei dem die Scherfestigkeit (Abb. 6.38) deutlich durch den Anteil an Calcium-führenden Phasen (Anhydrit und Dolomit) beeinflusst wurde. Die höchste Scherfestigkeit von 30 MPa wurde bei der Probe mit höchstem Calciumgehalt (CaO: 18,3 Gew%) bzw. Dolomit- (~ 26 %) und Anhydritanteil (~ 14 %), die geringste Scherfestigkeit von 21 MPa bei niedrigsten CaO-Gehalt (4,6 Gew%, entspricht ~ 21 % Dolomit und ~ 8 % Anhydrit) erreicht. Ein eindeutiges Verhältnis zwischen dem Anteil von Calcium in den Proben zur Höhe der Scherfestigkeit stellte sich jedoch nicht heraus.

Eine Abhängigkeit des mechanischen Verhaltens von Tonsteinen (Opalinuston und Callovo-Oxfordium Tonstein) in Bezug auf den Karbonatgehalt wurde bereits durch KLIN-KENBERG (2008) belegt. Danach hat neben dem Anteil an Karbonaten vor allem das Mikrogefüge (Korngröße, Ausbildung und räumliche Verteilung) eine großen Einfluss auf die mechanischen Eigenschaften. So ist es möglich, dass ein hoher Karbonatanteil sowohl zu einer höheren als auch zu einer Reduktion der Festigkeit führen. Daraus ergab sich auch: "*Es kann weiterhin geschlossen werden, dass kein für Tonsteine allgemein gültiges Stoffgesetz (Modell zur Berechnung des mechanischen Verhaltens) erstellt werden kann, das nicht solche Anisotropien einschließt.*" KLINKENBERG (2008).

Die allgemeinen Ergebnisse von KLINKENBERG (2008) und die eigenen Ergebnisse zur Scherfestigkeit und somit der Stabilität des Deckgesteins zeigen deutlich an, dass eine Änderung der Scherfestigkeit mit fortschreitender Karbonat- und / oder Sulfatlösung zu erwarten ist. Ob eine Abnahme erfolgt kann an dieser Stelle nicht geklärt werden.

Neben der Abhängigkeit des Anteils von Karbonaten und / oder Sulfaten auf die Scherfestigkeit der Deckgesteine zeigte sich für drei der vier in den Experimenten verwendeten Probentypen eine deutliche Beziehung zwischen dem Fluidaustritt aus der Probe und der Scherfestigkeit. Die Deckgesteinsproben von Shell mit Scherfestigkeiten zwischen 34 und 52 MPa und der Tonstein der Weser-Formation mit Scherfestigkeiten zwischen 21 und 30 MPa wiesen nach Einsetzen des ersten Fluidastritts einen wöchentlichen Durchlass (Abb. 7.08) mit bis zu 17 ml pro 5 min auf. Im Gegensatz dazu war der Fluidaustritt beim weichen, tendenziell duktilem Boom Clay (Scherspannungen < 3 MPa, Abb. 6.28) unregelmäßig und sehr gering (Abb. 7.08). Eine Ausnahme bildete die Probe aus dem 100°C Experiment mit einem relativ kontinuierlichen Fluidaustritt. Erklärt werden kann dieser wöchentlichen Durchlass (5 - 8 ml pro 5 min) durch einen deutlichen Riss, welcher sich während der Experimentphase gebildet hatte und somit wahrscheinlich eine sekundäre Wegsamkeit für die CO₂-gesättigte Lösung darstellte. Beim Opalinuston hingegen lag solch eine Abhängigkeit nicht vor. Die Scherfestigkeit lag zwischen 10 und 22,5 MPa, das Fluidasutrittsvolumen war zudem sehr variabel (Abb. 7.08 a). Die austretenden Fluide in den verschiedenen Proben waren somit in Häufigkeit und Volumen sowohl vergleichbar mit dem des Boom Clays, als auch mit dem Deckgestein von Shell und dem Tonstein der Weser-Formation.

Solch eine Abhängigkeiten der Permeabilität von der Scherfestigkeit des Gesteins, wie sie beim Tonstein der Weser-Formation, dem Deckgestein von Shell und dem Boom Clay auftrat, wurde bereits durch INGRIM & URAI (1999) belegte. Nach ihnen werden durch Überkonsolidierung und / oder Lithifizierung Brüche in festen Tonsteinen permeabel bzw. ist die Permeabilität generell höher als in eher weichen duktilen Gesteinen.

Unabhängig von der Scherfestigkeit zeigte sich für alle Probe, dass das Fluidvolumen zwischen den einzelnen Beprobungen sichtbaren Schwankungen unterlegen war (Abb. 7.08). Mögliche Ursachen, die zu solchen Schwankungen führen, können u.a. das unregelmäßige Verschließen und die Auswaschung von kleinsten Probenpartikeln entlang der Wegsamkeit des Fluides sein. Ein Verschließen kann dabei u.a. durch die Akkumulation von Tonpartikeln zustande kommen, welche während des Fluidflusses durch die Probe mitgeführt und nicht ausgespült wurden (NOIRIEL ET AL., 2007).

Da diese Schwankungen während der gesamten Experimentphase von bis zu 18 Monaten in einem relativ gleichen Wertebereich bleiben (Abb. 7.08), führten mögliche Verschlüsse und Veränderungen von Wegsamkeiten, sowie die abgelaufenen Mineralreaktionen weder zur Erhöhung der Gesamtpermeabilität des Gesteins, noch zur Verheilung. Zusammen mit dem Ergebnis, dass die Störungszonen in Gesteinen mit höherer Scherfestigkeit tendenziell eine höherer Permeabilität besitzen und aus den Proben mit kontinuierlichem Fluiddurchlass über die Zeit eine größerer Elementmobilisation und damit Verbunden eine Lösung erfolgte, ist unter den gegebenen Laborbedingungen die Möglichkeit einer Verheilung von Störungszonen unter Einflusses von CO₂ unwahrscheinlich.

Abb. 7.08: Wöchentliches Fluidaustrittsvolumen aus allen vier Deckgesteinsvertretern. Gemessen wurde das Gesamtvolumen nach einer Beprobungsdauer von 5 min. Jede Linie repräsentiert das Volumen aus einer Festgesteinsprobe. **a**) Austrittsvolumen aus dem Opalinuston bei 45°C, 60°C, 75°C und 100°C. **b**) Austrittsvolumen aus den drei Vergleichsdeckgesteinen (Tonstein der Weser-Formation, Boom Clay und Deckgestein von Shell) bei 45°C, 60°C, 75°C und 100°C.

7.3 Laborexperiment im Vergleich mit natürlichen Analoga

Eine Extrapolation der in dieser Arbeit gewonnen Ergebnisse auf einen natürlichen Maßstab ist, wie bei vielen Experimenten die im Labormaßstab durchgeführt wurden, nur begrenzt möglich. Die Ursache liegt vor allem an den unbekannten und unterschiedlichen Parametern, wie p-T Bedingungen (minimale Bedingung für Speicherung im superkritischen Zustand: 73,8 bar und 31,1°C (ANGUS ET AL., 1973); eigene experimentelle Parameter: initialer Druck 5 bar und 45°C - 100°C) sowie an den nur begrenzt vorhandenen bzw. zugänglichen analytischen Daten aus natürlichen CO₂-Lagerstätten. Damit jedoch der Einfluss von Druck und Temperatur auf mögliche Mineralreaktionen sowie auf die Stabilität und Integrität von Störungszonen in Deckgesteinen besser charakterisiert werden kann, ist ein Vergleich dennoch sinnvoll.

Ein bekanntes Beispiel, bei dem natürlich akkumuliertes CO₂ fokussiert an die Oberfläche austritt, sind die im Paradox Becken (Südost Utah) gelegene Salt Wash Fault und Little Grand Wash Fault (Abb. 7.09). Der Austritt der CO₂-geladenen Wässer an die Oberfläche erfolgt in Form von CO₂-reichen Quellen, Travertinen, als freies Gas und aus undichten Bohrungen. Die Entstehung des an der Oberfläche austretenden Kohlendioxids wird auf thermale Ton-Karbonatreaktionen in mehr als 1,5 km Tiefe zurückgeführt (Abb. 7.09; SHIPTON ET AL. 2004; EVANS ET AL. 2004).

Tab. 7.02: Kationen und ihr Konzentrationsbereich in drei Fluidproben des Crystal Geysirs (Little Grand Wash fault; Daten aus SHIPTON ET AL. 2004)

Kationen	Konzentration		
	[mg/l]		
Ca ²⁺	95 - 432		
Mg ²⁺	212 - 226		
K^+	305 - 306		
Na ⁺	3858 - 4012		

Abb. 7.09 Schematischer Querschnitt der *Little Grand Wash fault* zeigt die Entstehung des CO_2 in der Tiefe, dessen Migration und die Leckage (Geysir aus Bohrung "Crystal Geysir" und neue, aktive Quelle) an die Erdoberfläche (modifiziert nach SHIPTON ET AL., 2005).

Die Wässer im Bereich der *Little Grand Wash fault*, welche aus dem Crystal Geysir² stammen (Tab. 7.02), sind vergleichbar mit den Daten der Fluide, welche bei den Reaktionsexperimenten aus den vier Deckgesteinen (Tab. 7.03) gewonnen wurden. Es zeigt sich, dass sich der Konzentrationsbereich der Elemente in den Fluiden aus dem natürliche Analoga und den Reaktionsexperimenten überschneiden. Tendenziell lagen jedoch die Konzentrationen aus den Experimenten über denen natürlichen Ursprungs. Unabhängig der unterschiedlichen Mineralogie des mit der CO₂-gesättigten Lösung reagierten Gesteins, die Einfluss auf die Konzentrationen der mobilisierten Element hat, findet scheinbar im Labormaßstab eine stärkere Lösung bzw. geringere Präzipitation statt. Dies zeigt sich auch im Vergleich der ermittelten Sättigungsindizes. Während die Fluide nach Reaktion bei niedriger Temperatur (unter experimental Bedingung) primär gegenüber den Karbonaten (z.B. Calcit, Dolomit) untersättigt waren und somit Lösungsprozesse wahrscheinlicher sind, zeigte sich im natürlichen Analoga eine Übersättigung gegenüber Calcit (SI = 0,3 - 0,6), Aragonit (SI = 0,2 - 0,4) und Dolomit (SI = 0,7 - 1,3; SHIPTON ET AL., 2004), welche besonders an der Oberfläche zu einer Ausfällung führen kann.

Die Ursachen der Unterschiede begründen sich bezüglich der Karbonate besonders auf den unterschiedlichen Randbedingungen, u.a. Temperatur, Druck und pH-Werten. Somit ist ein präziser Vergleich signifikant erschwert, da eine Beprobung bzw. Analysen unter identischen Bedingungen nicht möglich ist.

	Kationen			
Deckgestein	Ca²⁺ [mg/l]	Mg²⁺ [mg/l]	K ⁺ [mg/l]	Na⁺ [mg/l]
Opalinuston	3 - 777	37 - 764	15 - 445	3600 - 8580
Boom Clay	94 - 584	164 - 1022	14 - 368	3900 - 7460
Tonstein W-F	268 - 1105	88 - 297	26 - 798	3911 - 23074
Deckgestein Shell	42 - 227	15 - 78	54 - 144	4064 - 6616

Tab. 7.03: Konzentrationen ausgewählter Kationen, welche während der Experimente in den Fluidproben aus dem Opalinuston, dem Boom Clay, dem Tonstein der Weser-Formation und dem Deckgestein von Shell nachgewiesen wurden. Dargestellt sind die zusammengefassten Ergebnisse aller Fluidproben über die Reaktionszeiten von drei bis maximal achtzehn Monaten und Temperaturen 45° C - 100° C.

²Der Crystal Geysir ist im Jahr 1935 als Folge einer fehlgeschlagenen Bohrung, bei der in rund 215 m ein CO_2 -geladener Aquifer durchstoßen wurde, entstanden. Seither kommt es dort zu einem regelmäßigen Austritt CO_2 -geladener Wässer (SHIPTON ET AL., 2004).

Unabhängig der aus der Bohrung gewonnen chemischen Fluiddaten zeigt sich im Bereich der Salt Wash Fault und Little Grand Wash Fault, dass die Schiefer-reichen Einheiten, welche als Deckgesteine wirken, ihre Undurchlässigkeit im Bereich von Störungszonen verlieren. Nach EVANS ET AL. 2004 müssen die undichten Störungszonen bzw. Frakturen, die im Bereich der Störungszonen gebildet wurden, seit langer Zeit undicht sein. Wie in den eigenen, vergleichsweise kurzzeitigen Experimenten, kam es auch im natürlichen Analoga zu keiner Selbstheilung und somit zu einem kontinuierlichen Durchlass der CO2reichen Wässer. Darauf bezogen ist ein besonders kritischer Faktor, der schwer zu bestimmen bzw. zu kontrollieren ist, die Fließgeschwindigkeit durch eine permeable Störungszone. Dies gilt für die eigenen durchgeführten Experimente, deren Durchfluss- / Austrittsvolumen (Volumen pro 5 min) sich während der Experimentphase zwar nicht stark geändert hat, aber pro Beprobung zum Teil deutlich variabel war (Abb. 7.07), als auch für die natürlichen Analoga und anthropogen genutzte geologische CO₂-Speicher. Dass die Fließgeschwindigkeit bei der Fragestellung hinsichtlich der Stabilität und Integrität von Störungszonen in Deckgesteinen besonders wichtig ist, zeigt sich ebenfalls am Beispiel der Salt Wash Fault und der Little Grand Wash fault, bei dem die Transportrate des CO₂gesättigten Grundwassers zur Oberfläche schneller ist als die Rate der Mineralpräzipitation (EVANS ET AL. 2004). Zusammen mit den in Abschnitt 7.3 diskutierten Ergebnissen ergibt sich, dass die Verheilung einer undicht gewordenen Störungszone eher kritisch zu betrachten ist. Und generell ein Vergleich zwischen natürlichem Analoga und experimentell hervorgerufenen Veränderungen weiterhin nur bedingt möglich ist.

Kapitel 8

Schlussbetrachtung und Ausblick

In dieser Arbeit wurde experimentell die Einwirkung einer CO₂-gesättigten NaCl-Lösung auf Störungszonen in vier Deckgesteinen aus unterschiedlichen Lokationen untersucht. Bei einem initialen Druck von 5 bar dienten unterschiedliche Temperaturen (45°C, 60°C, 75°C und 100°C) sowie unterschiedlich lange Reaktionszeiträume (3 bis 18 Monate) dazu, die abgelaufenen Reaktionen besser bestimmen und quantifizieren zu können. Zu einer genaueren Interpretation der abgelaufenen Mineralreaktionen wurden zudem mathematisch geochemische Modellierungen durchgeführt.

Die Ergebnisse der Reaktionsexperimente zeigen, dass die Reaktionen der CO₂-gesättigten NaCl-Lösung bei Temperaturen zwischen 45°C und 100°C, bei allen vier potentiellen Deckgesteinen eine Elementmobilisation (Ca²⁺, Mg²⁺, K⁺, Si⁴⁺, Na⁺, z.T. Fe²⁺) bewirkte. Aufgrund der im Verhältnis zum ermittelten Reaktionsraum sehr gering mobilisierten Menge führte der Kontakt der CO₂-gesättigten Lösung mit dem Gestein im Versuchszeitraum von maximal 18 Monaten nicht zu einer nachweisbaren Alteration der Festphasen.

Auf Basis der Mineralogie der Deckgesteine, der Zusammensetzung der Fluide über die Zeit und in Abhängigkeit der Temperatur, konnten zusammen mit den mathematisch geochemischen Modellierungen die abgelaufenen Reaktionsvorgänge rekonstruiert werden. Es kann davon ausgegangen werden, dass besonders zu Beginn der Experimentphase verstärkt Kationenaustauschprozesse gewirkt haben. Zusätzlich müssen Lösungen der Karbonate, Sulfate und auch der Silikate (Tonminerale, Feldspäte, Quarz) stattgefunden haben.

Bezüglich der Störungszonen zeigt sich, dass die durchgeführten Experimente primär zur Bildung permeabler Störungszonen geführt haben und die Durchlässigkeit dabei in Deckgesteinsproben mit hoher Scherfestigkeit (Tonstein der Weser-Formation, Deckgestein von Shell) ebenfalls tendenziell höher ist. Unabhängig davon, dass bei einigen Proben die Durchlässigkeit noch vor Beendigung der Experimentphase aufhörte, kam es generell nicht zu einer Verheilung der Störungszonen. Umgekehrt führten die Lösungsvorgänge jedoch auch nicht zu einer Erhöhung der Permeabilität über die Zeit. Da im Rahmen dieser Arbeit nicht geklärt werden konnte in wieweit sich die dokumentierten Veränderungen auf die Stabilität der Störungszonen auswirken, die gewonnen Ergebnisse jedoch tendenziell für Lösungsprozesse sprechen und neben den eigenen Ergebnissen Autoren wie EVANS ET AL. 2004 am Beispiel natürlicher Analoga aufzeigen, dass permeabel gewordene Störungszonen nicht verheilen, ist es von größter Wichtigkeit weitere und ausführlichere Experimente durchzuführen. Dies umfasst sowohl Reaktionsexperimente, als auch geomechanische Tests an Deckgesteinen mit induzierten Störungszonen. Folgende Punkte und Kriterien sollten dabei in zukünftigen Arbeiten beachtet bzw. untersucht werden:

- Größeres Format der zu untersuchenden Deckgesteine
- Höherer aufgebrachter CO₂-Fluid-Druck unter Beachtung der Sensibilität des Deckgesteins, insbesondere der Störungszone, gegenüber Druckdifferenzen. Für Versuche im Labormaßstab ist die maximale Druckdifferenz zu ermitteln.
- Spezielle Apparaturen, welche es ermöglichen die Stabilität der Deckgesteine auch nach den Reaktionsexperimenten zu ermitteln.

Eine Idealvorstellung wären "All-in-One" Reaktionszellen. Nach Einbringen der intakten Deckgesteinsproben würde in ihnen sowohl die Erzeugung der Störungszonen, als auch die Durchströmung mit dem CO₂-gesättigtem Fluid bei unterschiedlichen Temperaturen und Drücken stattfinden. Ideal wäre, wenn anschließende geomechanischen Test durchgeführt werden könnten ohne die Proben aus den Reaktionszellen zu entfernen.

- Ermittlung der Randbedingung hinsichtlich der Permeabilität von Störungszonen.
 - ➤ Wann werden dichte Störungszonen permeabel?
 - > Was ist nötig damit permeable Störungszonen wieder verheilen?
 - > Ab wann ist eine Verheilung nicht mehr möglich?

Unter diesem Aspekt ist es weiterhin wichtig herauszufinden ob und wann sich deutliche mineralogische Veränderungen einstellen. Hier wären die Faktoren Zeit, Temperatur und Druck für Folgeexperimente zu überdenken bzw. weiter zu variieren.

Literaturverzeichnis

А

- Alemu, B. L., Aagaard, P., Munz, I. A., Skurtveit, E. (2011): Caprock interaction with CO₂: A laboratory study of reactivity of shale with supercritical CO₂ and brine, Applied Geochemistry, in press
- Andreani, M., Gouze, P., Luquot, L., Jouanna, P. (2008): Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO₂ seepage, Geophysical Research Letters 35, L14404, 1-6
- Angus, S., B. Armstrong and K.M. de Reuck (1973): International Thermodynamic Tables of the Fluid State Volume 3. Carbon Dioxide. IUPAC Division of Physical Chemistry, Pergamon Press, London, pp. 266–359.

В

- Bachu, S, Gunter, W D and Perkins, E H, (1994): Aquifer disposal of CO₂: hydrodynamic and mineral trapping, Energy Conversion and Management 35, (4), 269-279.
- Baines, S.J. and Worden, R.H. (2004): Geological storage of carbon dioxide. Tulsa: Geological Society
- **Bauer A. and Berger G. (1998):** Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80°C. Applied Geochemistry 13, 905–916
- Beaucaire, C., Pitsch, H., Toulhoat, P., Motellier, S., Louvat, D. (2000): Regional fluid characterisation and modelling of water-rock equilibria in the Boom clay Formation and in the Rupelian aquifer at Mol, Belgium, Applied Geochemistry 15, 667-686
- **Bentham, M., Kirby, G. (2005):** CO₂ storage ins saline Aquifers, Oil & Gas Science and Technology Rev. IFP, Vol. 60, No. 3, 559-567
- **Benson et al. (2005):** Underground geological Storage, in: Metz et al. (2005), IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University, 431
- **Berg, R.R.** (1975): Capillary pressure in stratigraphic traps, American Association of Petroleum Geologist Bullentin 59, 939-956
- **Bertier, P., Swennen, R., Laenen, B., Lagrou, D., Dreesen, R. (2006):** Experimental identification of CO₂-water rock interactions caused by sequestration of CO₂ in Westphalian and Buntsandstein sandstones of Campine Basin (NE-Belgium), Journal of Geochemical Exploration 89, 10-14

- **Blount, C.W. and Dickson F.W. (1969):** The solubility of anhydrite (CaSO₄) in NaCl-H₂O form 100 to 450°C and 1 to 1000 bars. Geochimica et Cosmochimica Acta, Vol. 33, 227 245
- Blum, W. E. H. (1992): Bodenkunde in Stichworten, Gebrüder Borntraeger Verlagsbuchhandlung, Stuttgart, 175
- Brady, P.V. and Walther, J.V. (1990): Kinetics of quartz dissolution at low temperatures. Chemical Geology 82, 253-264
- Bradbury, M.H. & Baeyens, B. (1998): A Physicochemical Characterization and Geochemical Modeling Approach for Determining Porewater Chemistries in Argillaceous Rocks, Geochimica et Cosmochimica Acta, Volume 62, Issue 5, 783-795
- Brigatti, M.F., Galan, E., Theng, B.K.G. (2006): Structures and Mineralogy of Clay Minerals, in Handbook of Clay Science, Bergay, F., Then, B.K.G., Lagaly, G., Developments in Clay Science 1, 19-86
- **Brosch, F.J. & Riedmüller, G. (1988)**: Dünne, tonige Trennflächenbelege als Ursache von Böschungsbewegungen in grobklastischen Sedimenten, Felsbau 6, 69-72
- **Busenberg, E., Plummer, L.N. (1982):** The kinetics of dissolution of dolomite in CO₂– H₂O systems at 1.5 to 65 °C and 0 to 1 atm pCO₂. American Journal of Science 282, 45–78
- **Busenberg, E., Plummer, L.N. (1986):** A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. In: Mumpton, F.A. (ed.) Studies in Diagenesis. U.S.G.S Bulletine, 1578, 139-168

С

- Cain, J.S., Evans, J.P., Forster, C.B. (1996): Fault zone architecture and permeability structure, Geology, v.24, no. 111025-1028
- Cama, J., Ganor, J., Ayora, C., Lasaga, A.C. (2000): Smectite dissolution kinetics at 80°C and pH 8.8, Geochemica et Cosmochimica Acta 64, 2701-2717
- Caroll, J. J., Slupsky, J.D. and Mather, A. E. (1991): The solubility of Caron Dioxide in Water at Low Pressure, Journal of Physical Chemical Reference Data, Vol. 20, No. 6, 1201-1209
- **Caroll, S.A. and Knaus, K.G. (2005):** Dependence of labradorite dissolution kinetics on CO_{2(aq)}, Al_(aq) and temperature, Chemical Geology 217, 213-225
- **Carroll S. A. and Walther J. V. (1990):** Kaolinite dissolution at 25°, 60° and 80° C. American Journal of Science 290, 797–810.
- Caroll-Webb, S.A. and Walther J.V. (1988): A surface complex reaction mode for the pH-dependence of corundum and kaolinite dissolution rates. Geochemica et Cosmochimia Acta 52, 2609-2623

- Chen, Y. and Brantley, S.L. (1997): Temperature- and pH-dependence of albite dissolution rate at acid pH, Chemical Geology, 135, 275-290
- Chou, L., Garrels, R.M., Wollast, R. (1989): Comparative study of the kinetics and mechanism of dissolution of carbonate minerals, Chemical Geology 78, 269-282
- Credoz, A., Bildstein, O., Jullien, M., Rayan, J., Pétronin, J.-C., Lilli, M., pozo, C., Geniaut, G. (2009): Experimental and modelling study of geochemical reactivity between clayey caprocks and CO₂ in geological storage conditions, Energy Proccedia, 3445-3452
- Credoz, A, Bildstein, O., Jullien, M., Raynal, J. Trotignon, L., Pokrovsky, O. (2011): Mixed-layer illite-smectite reactivity in acidified solutions: Implications for clayey caprock stability in CO₂ geological storage; Applied Clay Science 53 (2011) 402–408

D

- **Daniel, R. F., Kaldi, J.G. (2009):** Evaluating Seal Capacity of Cap Rocks and Intraformational Barriers for CO₂ Containment, AAPG Special Volumes, 335 345
- Decleer, J., Viaene, W., Vandenberghe, N (1982): Relationships between chemical. physical and mineralogical characteristics of the Rupelian Boom Clay, Belgium, *Clay Minerals* (1983) 18, 1-10
- **Deer, W.A., Howie, R.A., Zussman, J. (1992):** An Introduction to the Rock Forming Minerals, 2nd edition, 549
- **Devidal, J.-L., Schott, J. and Dandurand, J.-L. (1997):** An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8 and 7.8, Geochemica et Cosmochemica Acta 61, 5164-5186
- **Dullin, F.A.L. (1992):** Porous Media: Fluid Transport and Pore Structure, 2nd edition, Academic Press, San Diego, CA

Е

Echelpoel, E. van, Weedon, G.P. (1990): Milankovitch cyclicity and the Boom Clay Formation: an Oligocene siliciclastic shelf sequence in Belgium, Geological Magazine 127 (6), 599-604

Egholm, D.L., Clausen, O.R., Sandiford, M., Kristensen, M.B., Korstgård, J.A. (2011): The mechanics of clay smearing along faults, Geology, v.36, no. 10, 787-790

- Engl, D.A., Fellin, W., Zangerl, C. (2008): Scherfestigkeiten von Scherzonen-Gesteinen Ein Beitrag zur geotechnischen Bewertung von tektonischen Störungen und Gleitzonen von Massenbewegungen, Bulletin für angewandte Geologie Vol. 13/2, 2008, 63-81
- Enick, R.M., Klara, S. M. (1990): CO₂ solubility in Water and Brine under Reservoir Conditions, Chemical Engineering Communications, 90, 23-33

Espie, T. (2004): Understanding risk for the long-term storage of CO_2 in geologic formations, Paper 42, 7th international conference on greenhouse gas control technologies, Vancouver, Canada

Evans, J.P., Heath, J., Shipton, Z.K., Kolesar P.T., Dockrill, B., Williams, A., Kirchner, D., Lachmar, T.E., Nelson, S.T. (2004): Natural Leaking CO₂-charged Systems as Analogs for Geologic Sequestration Sites, Third annual Conference on Carbon Capture & Sequestration

F

- **Fessenden, J. E., P. H. Stauffer, and H. S. Viswanathan (2009):** Natural analogs of geological CO₂ sequestration: Some general implications for engineered sequestration, in Carbon Sequestration and Its Role in the Global Carbon Cycle, Geophys. monogr. Ser.
- **Fischer, S., Liebscher, A., Wandrey, M. and the CO₂SINK Group (2010):** CO₂-brinerock interaction - First results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO₂ reservoir; Chemie der Erde - Geochemistry, 70, Suppl. 3, 155-164
- Flett, M A, Gurton, R M and Taggart, I J, (2005): Heterogeneous saline formations: long-term benefits for geosequestration of greenhouse gases. *In*: E S Rubin, D W Keith & C F Gilboy (eds.) Greenhouse Gas Control Technologies: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Volume I, 5, Vancouver, Canada. Elsevier, Oxford, 501-509

Fleury, M., Pironon, J., Le Nindre, Y.M., Bildstein, O., Berne, P., Lagneau, V., Brosta, D., Pichery, T., Fillacier, S., Lescanne, M. and Vidal, O. (2009): Evaluating sealing efficiency of caprocks for CO₂ storage: an overview of the Geocarbon Integrity program and results., Energy Procedia 4 (2011) 5227–5234

Förster, A., Norden, B., Zinck-Jørgensen, K., Frykman, P., Kulenkampff, J., Spangenberg, E., Erzinger, J., Zimmer, M., Kopp, J., Borm, G., Juhlin, C., Cosma C.-G. and Hurter, S. (2006): Baseline characterization of the CO₂SINK geological storage site at Ketzin, Germany, Environmental Geosciences, v. 13, no. 3, 145-161

- **Förster, A., Giese, R., Juhlin, C., Norden, B., Springer, N., CO₂SINK Group (2009):** The Geology of the CO₂SINK Site: From Regional Scale to Laboratory Scale, GHGT-9, Energy Procedia 1, 2911-2918
- Freivogel M., Huggenberger P. (2003): Modellierung bilanzierter Profile im Gebiet Mont Terri-La Croix (Kanton Jura). In: Heitzmann P, Tripet JP (eds) Mont Terri Project Geology, Paleohydrology and Stress Field of the Mont Terri Region, Reports of the Federal Office for Water and Geology,
- **Füchtbauer, H. (1988):** Sedimente und Sedimentgesteine Sediment-Petrologie, Teil II, Schweizbart Verlag Stuttgart, 1141

G

- Ganor, J., Mogollón, J.L. and Lasaga, A.C. (1995): The effect of pH on kaolinite dissolution rates and on activation energy, Geochemica et Cosmochimica Acta 59, 1037-1052
- Garrels, R. M. and Charles L. C. (1965): Solutions, Minerals and Equilibria, Harper & Row, New York, 450 pp.
- **Gasda, S.E., Bachu, S., Celia, M.A. (2004):** The potential for CO₂ leakage from storage sites in geological media: analysis of well distribution in mature sedimentary basin, Environmental Geology, 46 (6-7), 707-720
- **Gaus, I., Azaroual, M., Czernichowski-Lauriol, I. (2005):** Reactive transport modelling of the impact of CO₂ injection on the clayey cap rock at Sleipner (North Sea), Chemical Geology 217, 319-337
- **Gherardi, F., Xu, T., Pruess, K. (2007):** Numerical modelling of self-limiting and selfenhancing caprock alteration induced by CO₂ storage in a depleted gas reservoir, Chemical Geology 244, 103-129
- Gill, R.C.O. (1993): Chemische Grundlagen der Geowissenschaften, Ferdinand Enke Verlag Stuttgart, 293
- Golubev, S.V., Bénézeth, P., Schott, J., Dandurand, J.L. and Castillo, A. (2009): Siderite dissolution kinetics in acidic aqueous solutions from 25°C to 100°C and 0 to 50 pCO₂, Chemical Geology 265, 13-19
- **Golubev, S.V., Pokrovsky, O.S. and Schott, J. (2005):** Experimental determination of the effect on the dissolution kinetics of Mg and Ca silicates at 25°C, Chemical Geology 217, 227-238
- Greenberg, J. and Tomson, M. (1992): Precipitation and dissolution kinetics and equilibria of aqueous ferrous carbonate vs. temperature, Applied Geochemistry 7, 195-190
- Grunau, H.R. (1987): A world wide look at the caprock problem, Journal of Petroleum Geology, no, 10, 245-266
- **Gunter, W.D., E.H. Perkins and T.J. McCann (1993):** Aquifer disposal of CO₂-rich gases: reaction design for added capacity. Energy Conversion and Management, 34, 941-948.
- **Gunter, W.D., Wong, S., Cheel, D.B., Sjostrom, G. (1998):** Large CO₂ sinks: their role in the mitigation of greenhouse gases from an international, national (Canada) and provincial (Alberta) perspective. Appl. Energy 61, 209-227

- Gunter, W.D., S. Bachu and S. Benson (2004): The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage for carbon dioxide. In: Geological Storage of Carbon Dioxide: Technology. S. Baines and R.H. Worden (eds.), Special Publication of Geological Society, London, UK. Special Publication 233, pp. 129–145
- **Gustafsson, Â.,B., Puigdomenech, I. (2003):** The effect of pH on chlorite dissolution rates at 25°C. Material Research Symposium Proceedings 757, 649-655

Η

- Hammer, M., Graham, R.C., Amrhein, C. and Bozhilov, K.N. (2003): Dissolution of ripidolite (Mg, Fe-Chlorite) in organic and inorganic acid solutions, Soil Science Society American Journal 67, 654-661
- Haszeldine, R.S., Quinn, O., England, G., Wilkinson, M., Shipton, Z. K., Evans, J.P.,
 Heaths, J., Crossey, L., Bellentines, C. J., Graham, C. M. (2005): Natural Geochemical Analogues for Carbon Dioxide Storage in Deep Geological Porous Reservoirs, a United Kingdom Perspective, Oil & Gas Science and Technology – Rev. IFP, Vol. 60, No. 1, pp. 33-49
- Hayashi, H. adn Yamada, M. (1990): Kinetics of dissolution of noncrystalline oxides and crystalline clay minerals in basic Tiron solution, Clays Clay Mineralogy 38, 308-314
- Heddle, G., Herzoh, H., Klett, M. (2003): The Economics of CO₂ storage, Massachusetts Institute of Technology, Laboratory for Energy and the Environment, Publication No. LFEE 2003-003 RP
- Heim, D. (1990): Tone und Tonminerale: Grundlagen der Sedimentologie und Mineralogie, Ferdinand Enke Verlag Stuttgart, 157
- Helgeson, H.C., Murphy, W.M., Aagaard, P. (1984): Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar, Geochimica et Cosmochimica Acta, 48, 2405-2432
- **Heydemann, A. (1966):** Über die chemische Verwitterung von Tonmineralen (Experimentelle Untersuchungen), Geochimica et Cosmochimica Acta 30, 995-1035
- Ho, A., Fokker, P.A., Orlic, B. (2005): Caprock Integrity of Deep Saline Reservoirs and Coupled Processes, TNO report, Netherlands Institute of Applied Geosciences TNO
- Hoff, J.H. van 't (1884): Etudes de dynamique chimique, Amsterdam, Frederik Müller und Co., 215
- Holdren, G.R. and Berner, R.A. (1979): Mechanism of feldspar weathering I. Experimental studies. Geochemica and Cosmochemica Acta 43, 1161-1171

Holloway, S., J.P. Heederik, L.G.H. van der Meer, I. Czernichowski-Lauriol, R. Harrison, E. Lindeberg, I.R. Summerfield, C. Rochelle, T. Schwarzkopf, O. Kaarstad, B.

- Berger (1996): The Underground Disposal of Carbon Dioxide Summary Report, Joule II. British Geological Survey, Keyworth, Nottingham, UK
- Holloway, S. (1997): An Overview of the underground disposal of carbon dioxide, Energy Conversion Management 38, 193-198
- Holloway, S., Pearce, J.M., Ohsumi, T. and Hards, V.L. (2005): A review of natural CO₂ occurrences and releases and their relevance to CO₂ storage, BGS External Report CR/05/104, 117 pp. Also IEA GHG Report Number 2005/8, September 2005. British Geological Survey, Keyworth, Nottingham, UK.
- Huertas F. J., Chou L., and Wollast R. (1999): Mechanism of kaolinite dissolution at room temperature and pressure Part II: kinetic study. Geochimica Cosmochica Acta 63, 3261–3275.

Huertas F.J., Caballer, E., Jiménez de Cisneros, C, Huertas, F., and Linares, J. (2001): Kinetics of montmorillonite dissolution in granitic solution, Applied Geochemistry 16, 397-407

I

Ingrim, G.M., Urai, J.L.(1999): Top-seal leakage through faults and fractures: the role of mudrock properties, In: Aplin, a.C., Fleet, A.J. &Macquaker, J.H.S. (eds) Muds and Mudstones: Physical and Fluid Properties. Geolocial Society London, special Publication, 158

J

Johnson, J. W., J. J. Nitao, C. I. Steefel, and K. G. Knauss (2001): Reactive transport modeling of geologic CO₂ sequestration in saline aquifers: The influence of intraaquifer shales and the relative effectiveness of structural solubility and mineral trapping during prograde and retrograde sequestration, paper presented at First National Conference on Carbon Sequation, Natl. Energy Technol. Lab., U.S. Dep. of Energy, Washington, D. C.,

K

- Kaszuba, J.P., Janecky, D.R., Snow, M.G. (2003): Carbon dioxide reaction processes in a model brine aquifer at 200°c and 200 bars: implications for geological sequestration of carbon, Applied Geochemistry 18, 1065-1080
- Kaszuba, J.P., Janecka, D.R., Snow, M.G. (2005): Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologica carbon repository, Chemical Geology 217, 277-293

Ketzer, J.M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., de Lim, V. (2009): Water-rock-CO₂ interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), south Brazil, Applied Geochemistry 24, 760-467

- Klinkenberg, M. (2008): Einfluss des Mikrogefüges auf ausgewählte petrophysikalische Eigenschaften von Tongesteinen und Bentoniten, Veröffentlichte Dissertation, Georg-August-Universität zu Göttingen,
- Knauss, K.G. & Wolery, T.J. (1989): Muscovite dissolution kinetics as a function of pH and time at 70°C, Geochemica et Cosmochimica Acta 53, 1493-1501
- Knopf, B., May, F., Müller, C. und Gerling J. P. (2010): Neuberechnung möglicher Kapazitäten zur CO₂-Speicherung in tiefen Aquifer- Strukturen, *Energiewirtschaftliche Tagesfragen*, 60 (4), 76-80
- Kohler, E., Parra, T., Vidal, O. (2009): Clayey cap-rock behaviour in H₂O-CO₂ Media at low pressure and temperature conditions: an experimental approach, Clays and Clay Minerals, Vol. 57, No. 5, 616-637
- Köhler, S.J., Dufaud, F. and Oelkers, E.H. (2003): An experimental study of illite dissolution kinectis as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C. Geochemica et Cosmochimica Acta 67, 3583-3594
- Kodama, H. and Schnitzer, M. (1973): Dissolution of chlorite minerals by vulvic acid, Canadian Journal of Soil Science 53, 240-243
- Koide, H, Tazaki, Y, Noguchi, Y, Nakayama, S, Iijima, M, Ito, K and Shindo, Y, (1992): Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Conversion and Management 33 (5-8), 619-626.
- **Krooss, B. M., Leythaeuser, D. & Schäfer, R. G. (1992):** The quantification of diffusive hydrocarbon losses through cap rocks of natural gas reservoirs a re-evaluation. The American Association of Petroleum Geologists Bulletin, 76, 403-406
- Kühn, M., Clauser, C. (2006): Mineralische Bindung von CO₂ bei der Speicherung im Untergrund in geothermischen Reservoiren, Chemie Ingenieur Technik 78, No. 4
- Kühn et al. (2006): CO₂Trap Development and Evaluation of Innovative Strategies for Mineral and Physical Trapping of CO₂ in Geological Formations and of Long-Term Cap Rock Integrity, Progress Report

L

- Lagaly, G., Köster, H.M. (1993): Tone und Tonminerale, in Tonminerale und Tone: Struktur, Eigenschaft, Anwendung und Einsatz in Industrie und Umwelt, Steinkopf Verlag Darmstadt, 1-32
- Langmuir, D. (1997): Aqueous Environmental Geochemistry, Prentice-Hall, Inc., upper Sanddle River, NJ, 600.
- Lengler, U. (2012): Einfluss von heterogenen Permeabilitätsfeldern auf die CO₂-Speicherung in salinen Aquiferen am Beispiel vom Pilotstandort Ketzin. Dissertation, urn:nbn:de:gbv:830-tubdok-11536

- Lehner, F., Mandl, G., Pilaar, W.F., Precious, R.G., Weber, K. (1978): The role of faults in Hydrocarbon migration and trapping in Nigerian fault structures, Offshore Technology Conference Houston, 1 13
- Li, S., Dong, M., Li, Z., Huang, S., Qing, H., Nickel, E. (2005): Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for security of long-term CO₂ storage in the Weyburn field, Geofluids 5, 326-334
- Li, Z., Dong, M., Li, S., Huang, S. (2006): CO₂ sequestration in depleted oil and gas reservoirs caprock characterization and storage capacity, Energy Conversion and Management 47, 1372-1382
- Liu, F., Lu, P., Griffith, C., Hegdes, S.W., Soong, Y., Hellevang, H., Zhu, C. (2012): CO₂-brine-caprock interaction: Reactivity experiments on Eau Claire shale and review of relevant literature, International Journal of Greenhouse Gas Control 7, 153-167
- Lowsen, R.T., Comarmond M.-C.J., Rajartanam, G., Brown, P.L. (2005): The kinetics of the dissolution of chlorite as a function of ph and at 25°C. Geochemica et Cosmochimica Acta, 69, 1687-1699
- Lu, J.M., Wilkinson, M., Hazeldine, R.S., Fallick, A.E. (2009): Long-term performance of mudrock seal in natural CO₂ storage, Geology 37, 35-38

М

- Mackenzie, R. C., and Mitchell, B. D. (1966): Clay mineralogy, Earth Science Review 2, 47-91.
- Malmström, M. and Banwart, S. (1997): Biotite dissolution at 25°C: the pH dependence of dissolution rate and stoichiometry. Geochemica et Cosmochimica Acta 61, 2779-2799
- Marini, L. (2007): Geological Sequestration of Carbon Dioxide, Thermodynamics, Kinetics and Reaction Path Modeling, Developments in Geochemistry 11, Elsevier Netherlands
- Marshall, W.L., Slusher, W.R. and Jones, E.V. (1964): Solubility and Thermodynamic Relationships for CaSO₄ in NaClH₂O Solutions from 40° to 2OO°C., 0 to 4 Molal NaCl, Journal of Chemical Engineering VOL. 9, No. 2, April 1964
- Marschall, P., Croisé, J., Schlickenrieder, L., Boisson, J.-Y., Vogel, P., Yamamoto, S. (2004): Synthesis of Hydrogeological Investigations at Mon Terri Site (Phases 1 to 5) in Mont Terri Project Hydrogeological Synthesis, Osmotic Flow, Reports of the FOWG, Geology Series, No.6, 7-89
- Matthes, S. (1996): Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 5. Auflage Springer-Verlag, 499

- May, F., Brune, S., Gerling, J.P. und Krull, P. (2003): Möglichkeiten zur untertägigen Speicherung von CO₂ in Deutschland eine Bestandsaufnahme, Geotechnik, 26(3), 162.
- May, H.M., Acker, J.G. Smyth, J.R., Bricker, O.P., Dyar, M.D. (1995): Aqueous dissolution of low iron chlorite in dilute acid solutions at 25°C. Clay Minerals Society Progression Abstract 32, 88
- Merkel, B.J. und Planer-Friedrich, B. (2008): Grundwasserchemie. Praxisorientierter Leitfaden zur numerischen Modellierung von Beschaffenheit, Kontamination und Sanierung auqatischer Systeme, 2. Auflage, Springer-Verlag, 242
- Metz et al. (2005): IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University, 431
- Meunier, A. (2005): Clays, Springer Verlag, Auflage 2005, 472
- Miller, J.P. (1952): A portion of the system calcium carbonate-carbon dioxide-water with geological implications, American Journal of Science 250, 161-203
- Murphy, W.M. and Helgeson, H.C. (1987): Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solution. III. Activated complexes and the pH-dependence of the rates of feldspar, pyroxene, wollastonite, and olivine hydrolysis, Geochimica et Cosmochimica Acta, 51, 3137-3153
- Müller-Vonmoos M. and Kohler E. E. (1993) Geotechnik und Entsorgung. In: Tonminerale und Tone: Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt (ed. K. Jasmund and G. Lagaly), 312-357. Steikopff Verlag.

Ν

- Nagay, K.L. (1995): Dissolution and Precipitation kinetics of sheet silicates, In: Chemical weathering rates of silicate minerals, Reviews in Mineralogy Volume 31, 173-293
- Nederlof, M.H., Mohler, H.P. (1981): Quantitative investigation of trapping effect of unfaulted caprock, AAPG Bullentine, Vol. 65, 964
- Nelson, C.R., Evans, J.M., Sorensen, J.A., Steadman, E.N., Harju, J.A. (2005): Factors affecting the potential for CO₂ Leakage from Geological Sinks, Plains CO₂ Reduction (OCOR) Partnership
- Nickel, E. (1973): Experimental dissolution of light and heavy minerals in comparison with weathering and intrastratal solutions. Contribution Sedimentology 1, 3-68
- Noiriel, C., Madé, B., Gouze, P. (2007): Impact of coating development on the hydraulic and transport properties in argillaceous limestone fractures, Water Resource Research, Vol. 43, W09406

Nussbaum, C., Bossart, P., Amann, F., Aubourg, C. (2011): Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland), Swiss Journal, Geoscience, 104, 187-210.

Ο

Р

- Palandri, J.L. and Kharaka, Y.K. (2004): A Compilation of rate parameters of watermineral interactions for application to geochemical modeling, U.S. Geological Survey, open file report, 2004-1068
- Parkhurst, D. L. & Appelo, C. A. J. (1999): User's Guide To PHREEQCC (version 2) A Computer Program For Speciation, Batch-reaction, One-dimensional Transport, And Inverse Geochemical Calculations. U.S. Geological Survey, Water-Resources Investigations Report 99-4259.
- Pauwels, H., Gaus, I., le Nindre, Y. M., Pearce, J., Czernichowski-Laurioa, I. (2007): Chemistry of fluids from a natural analogue for a geological CO₂ storage site Montmiral, France): Lessons for CO₂-water-rock interaction assessment and monitoring, Applied Geochemistry 22, 2817–2833

Pearson, F.J., Arcos, D., Bath, A., Boisson, J.-Y., Fernández, A.M., Gäbler, H.-E., Gaucher, E., Gautschi, A., Griffault, L., Hernán, P., Waber, H.N. (2003): Mont Terri Project – Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory, Reports of the FOWG, Geology Series No. 5, 1-319

- **Petrovic, R. (1981a):** Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates. I. Deformation and dissolution of quartz under laboratory conditions. Geochima Cosmochimica Acta 45, 1665-1674
- **Petrovic, R. (1981b):** Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates. II. Deformation and dissolution of oxides and silicates in the laboratory and at the earth surface. Geochima Cosmochimica Acta 40, 537-548
- **Plummer, L.N., Wigley, T.M.L., Parkhust, D.L. (1978):** The kinetics of calcite dissolution in CO₂-water systems at 5° to 60°C an 0.6 to 1.0 atm CO₂, American Journal of Science, 278, 179-216
- **Pokrovsky, O.S., Golubev, S.V., Schott, J. (2005):** Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO₂. Chemical Geology, 217, 239-255
- **Pokrovsky, O.S., Golubev, S.V., Schott, J., Castillo, A. (2009)**: Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO₂; New contrains on CO₂ sequestration in sedimentary basins, Chemical Geology 265, 20-32

Prevedel, B., Wohlgemuth, L., Henninges, J., Krüger, K., Norden, B., Förster, A., CO₂ Drilling Group (2008): The CO₂SINK Boreholes for Geological Storage Testing, Progress Reports, Scientific Drilling No. 6

Prinz, H. (1982): Abriß der Ingenieurgeologie. Mit Grundlagen der Boden- und Felsmechanik sowie des Erd-, Grund- und Tunnelbaus. Verdinand Enke Verlag Stuttgart, 252 Abbildungen, 50 Tabellen, 419

Q

- Quenstedt, F.A. (1843): Das Flözgebirge Württembergs. Mit besonderer Rücksicht auf den Jura, Laupp&Siebeck Verlag, Tübingen
- Quenstedt, F.A. (1858): Der Jura, Laupp & Siebeck Verlag, Tübingen

R

- Reeder, R.J. (1983;1990): Carbonates: Mineralogy and Chemistry; Reviews in Mineralogy, Volume 11, 399
- Rickard, D.T. and Sjöberg, E.L. (1983): Mixed kinetic control of Calcite dissolution rates, American Journal of Science 283, 815-830
- Rochelle, C., Bateman, K. and Pearce, J.M. (1996): Fluid-rock interactions resulting from the underground disposal of carbon dioxide. In: Botrell, S.H. (ed) Proceedings. 4th International Symposium- Geochemistry Earth Surfaces. University of Leed, Department of Earth Sciences, Leeds,
- Rochelle, C.A., Czernichowski-Lauriol, I., Milodowski, A.E. (2004): The impact of chemical reactions on CO₂ storage in geological formations: a brief review, In: Baines, S.J. & Worden, R.H. (2004): Geological Storage of Carbon Dioxide, Geological Society, London, Special Publications, 233, 87-106
- **Ross, G.J.** (1967): Kinetics of acid dissolution of an orthochlorite mineral, Canadian Journal of Chemistry 45, 3031-3034
- **Rubert, Y., Ramboz, C., Le Nindre, Y., Leurouge, C., Lescanne, M. (2009):** Evidence for long term deep CO₂ confinement below thick Jurassic shales at Montmiral site (SE Basine of France), Geophysical Research Abstracts 11, 11677

S

- Salmon, S.U. and Malmström, M. (2001): Mineral weathering rates in mill tailings from Kristinenberg, Northern Sweden, 11th Annual V.M. Goldsmith Conference, Abstract No. 3375, LPI contribution No. 1088, Lunar and Planetary Institute, Houston
- Schlabach, Sabine (2000): Auflösungsexperimente von Kaolinit, Montmorillonit, Illit und Serizit und Talk in Batch- und Durchfluss-Reaktoren, Dissertation an der Mathematisch-Naturwissenschaftlichen Fakultät, Georg-August-Universität zu Göttingen.

- Shipton, Z.K, Evans, J.P., Kirschner, D., Kolesar, P.T., Williams, A.P. & Heath, J. (2004): Analysis of CO₂ leakage through 'low-permeability' faults form natural reservoirs in the Colorado Plateau, east-central Utah, In: Baines S.J. & Warden R.H. (eds) 2004: Geological Storage of Carbon Dioxide. Geological Society, London, Special Publications, 233, 43-58
- Shipton, Z.K, Evans, J.P., Dockrill, B., Heath, J.M., Williams, A., Kirchner, D. and Kolesar, P.T. (2005): Natural leaking CO₂-charged systems as analogues for failed geologic storage reservoirs, In: Thomas, D.C. and Benson, S.M., Carbon Dioxide Capture for Storage in Deep Geologic Formation, Volume 2, 695-708
- Shiraki, R., Dunn, T.L. (2000): Experimental study water-rock interactions during CO₂ flooding in the Tensleep Formation, Wyoming, USA, Applied Geochemistry 15, 265-279
- Shukla, R., Ranjith, P., Haque, A. Choi, X. (2010): A review of studies on CO₂ sequestration and caprock integrity. Elsevier, Volume 89, Issue 10, 2651–2664
- Sjöberg, E.L. and Rickard, D.T. (1984 A): Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence, Chemical Geologist 42, 119-136
- Sjöberg, E.L. and Rickard, D.T. (1984 B): Temperature dependence of calcite dissolution kinetics between 1 and 62°C at pH 2.7 to 8.4 in aqueous solutions, Geochemica and Cosmochemica Acta. 48, 485-493
- **Soldal, M. (2008):** Caprock interaction with CO₂-geomechanical and geochemical effects Master Thesis, Department of Geosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 79
- Srodon, J., Elsass, F., Mchardy, W.J., Morgan, D.J. (1992): Chemistry of illite–smectite inferred from TEM measurements of fundamental particles. Clay Minerals 27 (2), 137–158.
- Stevens, S.H., Pearce, J.M., Rigg, A.J. (2001): Natural Analogs for Geological Storage of CO₂: An integrated global research program, First National Conference on Carbon Sequestration, U.S. DOE, Washington D.C.
- Strunz, H. (1941): Mineralogische Tabellen; eine Klassifizierung der Mineralien auf kristallchemischer Grundlage, mit einer Einführung in die Kristallchemie, Leipzig, Akademische Verlagsgesellschaft, 308
- **Sverdrup, H.U. (1990):** The kinetics of base cation release due to chemical weathering. Lund: Lund University Press, 246

Т

Terjesen, S.G., Erga, O., Thorsen, G., Ve, A. (1961): I1. Phase boundary processes as rate determining steps in reactions between solids and liquids. The inhibitory action of metal ions on the formation of calcium bicarbonate by the reaction of calcite with aqueous carbon dioxide, Chemical Engineering Science 74, 277-288

Tester J. W., Worley W. G., Robinson B. A., Grigsby C. O., and Feerer J. L. (1994): Correlating quartz dissolution kinetics in pure water from 25 to 625°C. Geochimica et Cosmochimica Acta 58, 2407-2420.

U

- V Van der Meer, L.G.H. (1992): Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands; Energy Conversion and Management 33, Issus 5-8, 611-618
- Vavara, C.L., Kaldi, J.G. (1992): Geological applications of capillary pressure: A review, American Association of Petroleum Geologists, Volume 76:6, 840-850
- Vinken, R. (ed.) (1988): The Northwest European Tertiary Basin (Results of IGCP 124), Geologisches Jahrbuch A100, 1-508
- Von Goerne, G. (2009): CO₂-Abscheidung und -Lagerung (CCS) in Deutschland, www.germanwatch.org/klima/ccsdeu09.htm, 31

W

- Watts, N.L. (1987): Theoretical aspects of cap-rock and fault seals for single- and twophase hydrocarbon columns, Marine and Petroleum Geology, Vol. 4, 274-307
- Wigand, M., Carey, J.W., Schütt, H., Spangenberg, E., Erzinger, J. (2008): Geochemical effects of CO₂ sequestration of deep saline aquifers, Applied Geochemistry 23, 2735-3745
- Wieland E. and Stumm W. (1992): Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C. Geochimica Cosmochimica Acta 56, 3339–3355
- Wollast, R. (1990): Rate and mechanism of dissolution of carbonates in the system CaCO₃ - MgCO₃. In: Stumm, W. (Ed.), Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters. J. Wiley & Sons, 431-445
- Х

- Zweigel P, Lindeberg E, Moen A, Wessel-Berg D (2004): Towards a methodology for top seal efficacy assessment for underground CO₂ storage. In: Seventh international conference on greenhouse gas control technologies, Vancouver, Canada
- Zhang, Y and Dawe, R (1998): The kinetic of calcite precipitation from high salinity water. Applied Geochemistry 13, 177-184

Y

Ζ

Zysset M. and Schindler P. W. (1996): The proton promoted dissolution kinetics of K-montmorillonite. Geochim. Cosmochim. Acta 60, 921–931

Internet

http://www.co2ketzin.de http://www.focus.de http://www.bmu.de http://www.mont-terri.ch http://www.sckcen.be http://www.tagesspiegel.de http://www.umweltbundesamt-daten-zur-umwelt.de

Abkürzungsverzeichnis

A	Außen
a.u.	Willkürliche Einheit (engl. arbitrary unit)
BC	Bezeichnung der Proben vom Boom Clay
BCS	Bezeichnung der Bohrung in Mont Terri (Schweiz) - Opalinuston
BSE	Zurückgestreute Elektronen (eng. Backscattered Electron Image). Abbildungsverfahren bei der Rasterelektronenmikroskopie
CCS	Carbon Capture and Storage
CS	Für das Projekt CO ₂ Seals gewählte Bezeichnung der verwendeten Proben
DTA	Differentialthermoanalyse
ESEM	Spezielles Rasterelektronenmikroskop (engl. Environmental Scanning Elektron Microscope)
Fsp	Feldspat
ICP-OES	Optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (eng. Inductively Coupled Plasma - Optical Emission Spectrometry)
Ι	Innen
I/S	Bezeichnet eine Illit-Smektit Wechsellagerung
К	Bezeichnung der Proben vom Tonstein der Weserformation aus Ketzin
max	Maximum
min	Minimum
nb	nicht bestimmt
nn	nicht nachgewiesen
р	Druck
pCO ₂	Partialdruck von CO ₂

REM	Rasterelektronenmikroskopie
S	Bezeichnung der Proben, die von der Firma Shell zur Verfügung gestellt wurden
SI	Sättigungsindex
Т	Temperatur
TDS	Filtrattrockenrückstand (engl. Total Dissolved Solids)
TG	Thermogravimetrie
XRD	Röntgenpulverdiffraktometrie (engl. X-Ray Diffraction)
XRF	Röntgenfluoreszenz (engl. X-Ray Fluorescence)

Abbildungsverzeichnis

Abbildung		Seite
2.01	Veränderung der Dichte von CO ₂ mit der Tiefe	3
2.02	Schematischer Querschnitt mit möglichen CO2 Speicherstätten	4
2.03	CO ₂ -Fallenmechanismen (engl. trapping) in einem Speicher	5
2.04	Logarithmus der Lösungsraten von Kaolinit, Chlorit, Illit und Smektit in Abhängigkeit von pH-Wert und Temperatur	13
2.05	Logarithmische Lösungsrate von Albit, Kalifeldspat und Anorthit in Abhängigkeit von pH und Temperatur	19
2.06	Natürliche und anthropogen induzierte Möglichkeiten für einen CO ₂ Austritt aus einem geologischen Speicher	22
3.01	Geographische Lage der drei Deckgesteinsvertreter aus Europa	25
3.02	Geologischer Querschnitt durch die Mont Terri Antiklinale mit dem Felslabor und der parallel zum Felslabor verlaufenden Autobahn	26
3.03	Geologisch-strukturelle Karte des Faltenjura im speziellen des Opalinustons im Bereich des Felslabors mit eingetragenem Faltensys- tem und Lokation der gebohrten Proben	27
3.04	Geologischer Querschnitt durch das Campine Becken in Nordosten von Belgien	28
3.05	Vereinfachtes geologisches Modell der Antiklinalen bei Ketzin, mit Aquifer und Aquitard	29
4.01	a) Opalinuston nach Reduktion des Durchmessers mittels Fräsmaschi- ne b) Edelstahl Probenringhalter (Innendurchmesser 6 cm, Außen- durchmesser 7 cm, Höhe 2 cm) mit äußerem Dichtring	31
4.02	Versuchsaufbau zur Erzeugung künstlicher Störungszonen und Be- stimmung geomechanischer Eigenschaften.	32
4.03	Beispielergebnisse aus dem Stanztest am Opalinuston zeigt die Ent- wicklung der Scherspannung über den Scherweg.	33
4.04	Reaktionszelle zur Bestimmung der Reaktivität von Deckgesteinen mit CO ₂ -gesättigter Lösung im Bereich künstlich erzeugter Störungszonen.	34
4.05	a) Querschnitt der Heizschränke mit vier Temperaturstufen von 45° C bis 100°C. Dargestellt ist die Verteilung der Proben in den Schränken, sowie die CO ₂ -Sättigungs- / Beaufschlagungs - Anlage in der Mitte. b) Heizschänke mit CO ₂ -Sättigungs- / Beaufschlagungs - Anlage	35
5.01	Lösung nach CO ₂ -Fluid-Gesteinsreaktion aus 100°C Experimenten am Opalinuston	41
6.01	a) Röntgenbeugungsdiagramm vom Opalinuston aus Bohrung BCS-3.	48

49 aus der 50 e zur Er- 51 s aus der 52 Frobe 52 53 den Flui- alinuston 56 omit und
aus der 50 e zur Er- 51 s aus der 52 Frobe 52 53 den Flui- alinuston 56
e zur Er- 51 s aus der Probe 52 53 den Flui- alinuston 56 omit und
s aus der Probe 52 53 den Flui- balinuston 56 omit und
53 den Flui- alinuston 56 omit und
den Flui- alinuston 56 omit und
omit und
57
alinuston EQC 58
59
nonatigem 60
C 60
den Flui- alinuston 63
omit und 64
t von 18 65
den Flui- alinuston 67
nszeit bei 68
den Flui- alinuston 72
omit und 73
ston vor- C 74
75
°C 76

6.23	a) Opalinuston nach Reaktion und Trocknung. b) Gleiche Probe von der Unterseite. c) Querschnitt durch eine reagierte Opalinustonprobe d) Querschnitt durch reagierte Opalinustonprobe. e) Dünnschliff im Be- reich einer Störungszone im Opalinuston nach Reaktionszeit von 12 Monaten und 45°C. f) Dünnschliff im Bereich einer Störungszone im Opalinuston nach Reaktionszeit von 12 Monaten und 75°C. Die Probe ist im Bereich der Störungszone größtenteils in kleinste Partikel zerrie- ben.	78
6.24	Semiquantitative Ergebnisse der µRFA-Aufnahme im rot markierten Bereich der Störungszone für den Opalinuston	79
6.25	a) Aufsicht auf den gestanzten Opalinuston vor der Reaktion. b) Quer- schnitt durch die gleiche Probe des Opalinuston nach der Reaktion mit CO ₂ -gesättigter Lösung	80
6.26	Mineralmenge der pro kg Wasser gelösten und gefällten Mineralpha- sen (Moltransfer) in Abhängigkeit der Zeit.	83
6.27	a) Röntgenbeugungsdiagramm des Boom Clay (CS_22) mit charakte- ristischen Mineralpeaks. b) BSE-Aufnahmen am Boom Clay zeigt Illit dominierte Tonmatrix. c) BSE-Aufnahmen am Boom Clay zeigt selten vorkommende Siderit wird Matrix bildenden Tonmineralen überdeckt.	86
6.28	Scherspannungskurven die während der Erzeugung der Störungszonen im Boom Clay aufgezeichnet wurden	87
6.29	a) Aufsicht auf oberer Fläche einer gestanzten Boom Clay Probe vor Versuchsbeginn. b) Aufsicht auf die unterer Fläche der selben Probe	88
6.30	Entwicklung der pH-Werte und der Elementkonzentrationen in den Fluiden, die während der 9-monatigen Experimentreihen bei 45°C (BC_04), 60°C (BC_02), 75°C (BC_01) und 100°C (BC_03) für die Boom Clay Proben bestimmt wurden	91
6.31	BSE-Aufnahmen an zwei Boom Clay Proben nach 9 monatiger Reak- tion	93
6.32	Oben: a) Röntgenbeugungsdiagramm und gekennzeichnete Mineral- peaks einer Shell Probe. Unten: BSE-Aufnahmen Shell Referenzprobe b) plättchenförmige Illite c) Kaolinit d) Dolomitkristall in Tonmatrix. e) organische Komponente in toniger Matrix	95
6.33	Scherspannungskurven die während der Erzeugung der Störungszonen im Shell Deckgestein aufgezeichnet wurden	96
6.34	a) Aufsicht auf oberer Fläche der gestanzten Deckgesteinsprobe von Shell (CS_07; S_04) vor Versuchsbeginn. b) Aufsicht auf die unterer Fläche der gleichen Probe.	97
6.35	Entwicklung der pH-Werte und der Elementkonzentrationen in den Fluiden, die während der 9-monatigen Experimentreihen bei 45°C (S_03), 60°C (S_02), 75°C (S_01) und 100°C (S_04) für die Deckgesteinsproben von Shell (CS_01 und CS_07) bestimmt wurden.	100
6.36	Gestapelte Röntgenbeugungsdiagramme des Deckgesteins der Firma Shell für das Referenzmaterial und der bei unterschiedlichen Tempera- turstufen reagierten Proben	102

6.37	Oben: a) Röntgenbeugungsdiagramm und gekennzeichnete Mineral- peaks eines Tonsteins der Weser-Formation bei Ketzin. Unten: BSE- Aufnahmen von Mineralphasen im Wesertonstein. b) Illite im Weser- tonstein. c) Ausschnitt eines Anhydritkristall	104
6.38	Scherspannungskurven die während der Erzeugung der Störungszonen im Wesertonstein aufgezeichnet wurden	105
6.39	a) Aufsicht auf oberer Fläche des gestanzten Tonsteins der Weser- Formation vor Versuchsbeginn. b) Aufsicht auf die unterer Fläche der selben Probe	106
6.40	Entwicklung der pH-Werte und der Elementkonzentrationen in den Fluiden, die während der 12-monatigen Experimentreihen bei 45°C (K_01), 60°C (K_03), 75°C (K_02) und 100°C (K_04) für den Tonstein der Weser- Formation (CS_37, CS_38) bestimmt wurden.	108
6.41	Gestapelte Röntgenbeugungsdiagramme der Proben des Tonsteins der Weser-Formation	110
6.42	Moltransfer der, während der Reaktionsexperimente (45°C und 100°C; 12 Monate) pro Probennahme, aus dem Tonstein der Weser-Formation gelösten bzw. präzipitierten Mineralphasen.	115
7.01	Schematische Darstellung der Entwicklung der Konzentration von Calcium über die Zeit und in Abhängigkeit der Temperatur (45°C, 60°C, 75°C und 100°). Grundlage bilden die Fluiddaten, welche aus den insgesamt 44 Opalinustonproben gewonnen wurden	118
7.02	Korrelation des bei 45°C bis 100°C aus dem Opalinuston mobilisierten Magnesium und Kalium	121
7.03	Korrelation des bei 45°C bis 100°C aus dem Opalinuston mobilisierten Kalium und Natrium	122
7.04	Abhängigkeit der Salinität zur Natriumkonzentration in den Fluiden, die aus den Experimenten am Deckgesteinen von Shell und dem Boom Clay gewonnenen wurden	129
7.05	Korrelation von Magnesium und Eisen in Fluidproben des bei 100°C reagierten Boom Clay	132
7.06	EDX-Spektrum mit BSE-Aufnahme eines Dolomits im Tonstein der Weser-Formation	133
7.07	Potentielle Deckgesteinsproben nach Reaktion mit CO ₂ -gesättigter NaCl-Lösung bei 60°C.	137
7.08	Fluidaustrittsvolumen aus den Deckgesteinsvertretern während der wöchentlichen Beprobung.	140
7.09	Schematischer Querschnitt der <i>Little Grand Wash fault</i> zeigt die Ent- stehung des CO ₂ in der Tiefe, dessen Migration und die Leckage	141

Tabellenverzeichnis

Tabelle		Seite
2.01	Einteilung der am häufigsten in Deckgesteinen vorkommenden Tonminerale	9
2.02	Temperaturabhängiger Logarithmus der Lösungsraten von Quarz in Wasser bei neutralem pH-Wert	17
4.01	CO_2 -Löslichkeit in Wasser ($w_{CO2,w}$) und in salinaren Lösungen ($w_{CO2,b}$) in Abhängigkeit der Temperatur.	39
6.01	Elemente und Konzentrationen der zwei Bohrungen in Mont Terri aus der schiefrigen Fazies des Opalinustons	49
6.02	Ausgewählte Elemente und Konzentrationen, des äußeren und inne- ren Bereiches des in Abb. 5.13 dargestellten Opalinuston	60
6.03	Ausgewählte Elemente, dargestellt als Oxide, mit Konzentrationen in drei Referenzproben des Opalinustons (Reaktionszeit = Referenz) gegenüber den bei 75°C und für 3, 6, 12 und 18 Monate reagierten Proben.	69
6.04	Konzentrationen ausgewählter Elemente im äußeren und inneren Bereich des in Abb. 5.18 dargestellten Opalinustons.	76
6.05	Aus Elementmobilisation ermittelte prozentuale Elementlösung aus dem Bereich des Stempel im Opalinuston	81
6.06	Mittels PHREEQC ermittelte Modelle zur Minerallösung und Fäl- lung im Opalinuston	82
6.07	Aus der Modellierung mit PHREEQC ermittelte gelöste und ausge- fällte Mineralmengen für die Modelle A und B bei Reaktionstempe- raturen zwischen 45°C und 100°C	85
6.08	Konzentrationen ausgewählter Elemente im Boom Clay für das Refe- renzmaterial und denen bei unterschiedlichen Temperaturen reagier- ten Proben	93
6.09	Über die Reaktionszeit gemittelter Sättigungsindex für die Fluide der Reaktionsexperimente am Deckgestein der Firma Shell	101
6.10	Konzentrationen ausgewählter Elemente im Shell Shale für das Refe- renzmaterial und die bei unterschiedlichen Temperaturen reagierten Proben	102
6.11	Konzentrationen ausgewählter Elemente im Tonstein der Weser- Formation für das Referenzmaterial und die bei unterschiedlichen Temperaturen reagierten Proben	110
6.12	Mit PHREEQC ermittelte Modelle zur Minerallösung und Fällung im Boom Clay	111
6.13	Mittels PHREEQC ermittelte Modelle zur Minerallösung und Fäl- lung im Deckgestein der Firma Shell für alle Temperaturen zusam-	112

mengefasst

Mittels PHREEQC ermittelte Modelle zur Minerallösung und Fäl- lung im Tonstein der Weser-Formation zusammengefasst für alle Temperaturen	114
Konzentration von Silizium in den Fluiden, welche während der Ex- perimente aus den Blindwerten und dem Opalinuston gewonnen wurden	126
Kationenkonzentrationen in drei Fluidproben des Crystal Geysirs (Little Grand Wash fault)	141
Konzentrationen ausgewählter Kationen, welche während der Expe- rimente in den Fluidproben aus dem Opalinuston, dem Boom Clay, dem Tonstein der Weser-Formation und dem Deckgestein von Shell nachgewiesen wurden. Dargestellt sind die zusammengefassten Er- gebnisse aller Fluidproben über die Reaktionszeiten von drei bis ma- ximal achtzehn Monaten und den Temperaturen 45°C bis 100°C.	142
	 Mittels PHREEQC ermittelte Modelle zur Minerallösung und Fällung im Tonstein der Weser-Formation zusammengefasst für alle Temperaturen Konzentration von Silizium in den Fluiden, welche während der Experimente aus den Blindwerten und dem Opalinuston gewonnen wurden Kationenkonzentrationen in drei Fluidproben des Crystal Geysirs (Little Grand Wash fault) Konzentrationen ausgewählter Kationen, welche während der Experimente in den Fluidproben aus dem Opalinuston, dem Boom Clay, dem Tonstein der Weser-Formation und dem Deckgestein von Shell nachgewiesen wurden. Dargestellt sind die zusammengefassten Ergebnisse aller Fluidproben über die Reaktionszeiten von drei bis maximal achtzehn Monaten und den Temperaturen 45°C bis 100°C.
Anhang

Anhang I: Normativer Mineralbestand

Angepasstes Berechnungsmodell des normativen Mineralbestandes, basierend auf einem nach PFEFFER (1996) entwickelten Schema für Tone:

- Zur Anwendung des Berechnungsschemas sind die chemischen, auf 100 % normierten Daten folgender Elementoxide nötig: CO₂, SiO₂, Al₂O₃, Fe₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅, S, LOI (H₂O). Für Fe₂O₃ in FeO wird ein Umrechnungsfaktor von 0,8998 gewählt.

- Wie bei der bekannten CIPW-Norm wird, sofern möglich, jedes Elementoxid, mit Ausnahme von SiO₂ und Al₂O₃, einem Mineral zugeordnet.

- Aus der Idealzusammensetzung der Normminerale ergeben sich die im Folgenden dargestellten Umrechnungsfaktoren der Endglieder in Berechnungsreihenfolge. Vor jedem dargestellten Berechnungsschritt ist eine Korrektur jedes Oxides um den aus dem vorigen Abschnitt verbrauchten Wert durchzuführen.

Bei einem Überschuss von P₂O₅ wird dies in weitere Phosphate verrechnet.

 $\begin{array}{c} \text{CO}_2 \text{ wird als } \textbf{Calcit} (\text{CaCO}_3) \text{ verrechnet.} \\ \text{Umrechnungsfaktoren:} \\ \text{CaO} & \text{CO}_2 \\ 1,27 & 1 \\ 1 & 0,78 \end{array}$

Bei einem Überschuss an CO_2 wird das restliche CO_2 im **Dolomit** (Ca Mg (CO_3)₂, verrechnet.

Umrechnungsfaktoren:

CaO	MgO	CO_2
1	0,72	1,57
1,39	1	2,18

Alternativ,	sofern vorhan	den, kann eber	nfalls eine Ver	rechnung des C	CO ₂ in Ankerit (Ca
$(\mathrm{Fe}^{2+},\mathrm{Mg},$	$Mn^{2+})(CO_3)_2)$	oder Siderit (FeCO ₃) erfolge	en.	
Umrechnu	ngsfaktor:				
CaO	MgO	CO_2	MnO	FeO	
0,64	0,18	1	0,12	0,42	Ankerit
X	Х	1	Х	1,6	Siderit
K ₂ O wird a	als Illit (diokt.) (K, Na, Ca _{0,5}) _{1,33} Al ₄ (OH) ₄ (Al _{1,33} Si _{6,67} O ₂₀)verrechnet.
Umrechnu	ngsfaktoren:				
K ₂ O	Al_2O_3	SiO_2	H_2O		
1	4,34	6,40	0,58		
Natrium un	nd Calcium we	erden bei diese	r Rechnung ver	rnachlässigt.	
Rest Al-O	wird als Kao	linit (A_{1}, OH)	$(Si_0 O_2))$ verrec	hnet	
Umrechnu	ngsfaktoren	IIIII (Al ₂ (011))	4(31205))/01100	inici.	
SiO ₂	Al ₂ O ₃				
1,18	1				
Alternativ	wird MgO als	Chlorit Mg ₆ (OH) ₈ Si ₄ O ₁₀ ve	rrechnet.	
Umrechnu	ngsfaktoren:		/0 10		
MgO	Al ₂ O ₃	SiO ₂	H ₂ O		
1	1,265	0,745	0,447		
Na ₂ O wird	in Albit (NaA	AlSi ₃ O ₈)verrecl	nnet.		
Umrechnu	ngsfaktoren:	2 07			
Na ₂ O	Al ₂ O ₃	SiO ₂			
1	1,65	5,82			
Der Rest a	n SiO2 wird no	ormativ als Ou	arz (SiO ₂) verre	echnet.	
Umrechnu	ngsfaktoren.		(2)		

Umrechnungsfaktoren: SiO₂ Rest

Die Berechnung des Pyrits (FeS $_2$) erfolgt über den Rest FeO plus die Hälfte des gesamten Schwefels.

Zu beachten ist, dass Variationen im Chemismus der Tonminerale sowie Wechsellagerun-

gen nicht berücksichtigt werden können.

Sofern für andere Gesteine weitere Mineralphasen vorhanden sind, muss eine Anpassung erfolgen.

Anhang II a: Fluidanalytik Opalinuston

Reaktionstemperatur 45°C:

Tab. IIa.1: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 1,92-1,96 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

07.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
19.04.2010	12	3,5	5,0	9,2	6,9	148,3	19,7	296,4	217,0	13,4	6227	nn	nn	nn
22.04.2010	15	3,0	5,0	8,3	7,6	157,3	54,0	290,1	210,1	13,5	6144	nn	nn	nn
26.04.2010	19	3,5	7,5	5,4	7,4	125,1	20,9	289,3	197,5	13,2	5748	nn	nn	nn
29.04.2010	22	3,0	6,5	5,6	7,5	144,0	8,6	245,8	170,1	10,7	5401	nn	nn	nn
03.05.2010	26	3,0	5,0	6,8	7,0	170,0	10,3	237,9	162,0	10,4	5224	nn	nn	nn
06.05.2010	29	2,5	4,5	х	7,7	144,9	5,6	230,6	174,9	11,5	5417	nn	nn	nn
10.05.2010	33	2,5	4,5	х	7,9	134,0	7,0	228,2	155,9	11,1	5092	nn	nn	nn
17.05.2010	40	2,0	4,0	х	8,0	131,8	10,0	236,4	153,8	10,8	5272	nn	nn	nn
20.05.2010	43	2,5	5,0	х	8,0	132,5	4,9	228,7	141,6	11,2	4922	nn	nn	nn
25.05.2010	48	2,5	5,5	х	7,6	166,0	7,1	227,8	142,5	10,9	5032	nn	nn	nn
27.05.2010	50	2,0	5,0	х	7,9	105,0	5,9	221,5	134,7	11,0	4714	nn	nn	nn
31.05.2010	54	2,5	5,5	х	7,4	148,9	7,3	223,9	132,9	11,1	4658	nn	nn	nn
07.06.2010	61	2,0	5,5	х	7,5	118,9	3,6	226,0	119,4	10,0	4150	nn	nn	nn
14.06.2010	68	2,0	5,0	х	7,8	135,0	3,2	258,5	131,0	10,5	4559	nn	nn	nn
21.06.2010	75	3,0	6,5	х	7,4	146,5	4,6	254,3	125,6	10,4	4471	nn	nn	nn
05.07.2010	89	2,5	8,5	х	7,5	146,0	5,0	256,6	137,8	11,6	4796	nn	nn	nn

Tab. IIa.2: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,0-2,04 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

07.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
25.05.2010	48	2,0	5,5	х	7,4	82,0	135,8	381,0	200,4	6,5	6367	1,7	nn	nn
07.06.2010	61	2,0	5,5	х	7,9	121,4	19,7	364,2	176,9	8,8	5461	nn	nn	nn
14.06.2010	68	3,0	5,0	6,5	7,1	-56,9	49,9	272,0	141,3	5,7	4309	nn	nn	nn
21.06.2010	75	3,0	6,5	х	7,5	95,7	14,2	249,9	132,4	6,2	4005	nn	nn	nn
05.07.2010	89	3,0	8,5	х	7,3	154,0	8,0	241,3	122,4	6,8	3992	nn	nn	nn

Tab. IIa.3: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_33, BCS-3: 1,3-1,35 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

11.03.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
12.04.2010	31	2,0	5,0	Х	7,3	х	40,1	467,1	267,8	10,2	6759	nn	nn	nn
15.04.2010	34	3,0	5,0	5,5	7,2	х	31,9	434,1	239,5	8,9	6327	1,2	nn	nn
19.04.2010	38	2,0	5,0	х	7,8	х	16,9	391,3	226,6	8,9	6207	nn	nn	nn
22.04.2010	41	3,0	5,0	8,7	7,6	135,0	25,0	369,4	225,4	9,4	6079	nn	nn	nn
29.04.2010	48	2,0	6,5	х	7,9	х	8,1	291,7	175,7	8,3	5140	nn	nn	nn
03.05.2010	52	2,0	5,0	х	7,9	х	7,2	279,4	178,3	8,2	5251	nn	nn	nn
06.05.2010	55	3,0	4,5	х	7,6	158,0	13,9	269,4	170,7	9,5	5061	nn	nn	nn
20.05.2010	69	2,0	5,0	х	8,2	15,2	5,9	253,8	160,8	9,0	4712	nn	nn	nn
27.05.2010	76	2,5	5,0	х	7,5	143,0	7,4	249,0	156,1	10,0	4794	nn	nn	nn

Tab. IIa.4: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 1,96-2,0 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate

11.03.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	48	2,0	6,5	Х	7,8	х	167,4	460,6	199,0	6,2	6853	1,8	nn	nn
14.06.2010	94	2,0	5,0	х	7,6	145,7	10,4	339,3	148,0	9,3	5240	nn	nn	nn
21.06.2010	101	2,0	6,5	Х	7,7	124,1	17,1	322,6	146,2	7,9	5225	0,6	nn	nn

Tab. IIa.5: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,2-2,24 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate

07.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
19.04.2010	12	3,0	5,0	х	7,7	х	37,1	377,8	252,1	9,1	6299	nn	nn	nn
22.04.2010	15	2,5	5,0	х	7,6	161,1	32,0	362,7	237,3	9,6	5916	nn	nn	nn
26.04.2010	19	4,0	7,5	6,3	7,5	131,0	38,0	346,2	219,6	10,3	5899	nn	nn	nn
29.04.2010	22	3,0	6,5	х	7,8	134,2	9,1	296,2	192,2	9,7	5412	nn	nn	nn
03.05.2010	26	2,5	5,0	х	7,7	140,1	9,7	283,0	182,9	10,0	5388	nn	nn	nn
06.05.2010	29	2,0	4,5	х	7,9	161,0	6,5	275,8	175,6	10,2	5346	nn	nn	nn
10.05.2010	33	2,5	4,5	х	7,4	х	10,0	266,3	167,2	9,9	5223	nn	nn	nn
17.05.2010	40	2,5	4,0	х	7,8	118,6	16,8	264,7	168,2	9,8	5219	nn	nn	nn
25.05.2010	48	3,0	5,5	х	7,7	122,0	6,9	262,9	158,8	10,0	5121	nn	nn	nn
31.05.2010	54	2,0	5,5	х	8,0	130,0	4,8	250,1	145,0	10,0	4898	nn	nn	nn
07.06.2010	61	2,0	5,5	х	7,7	141,3	2,8	233,1	125,1	8,9	4059	nn	nn	nn
21.06.2010	75	2,0	6,5	х	7,8	127,9	3,6	236,0	122,0	9,0	3970	nn	nn	nn
05.07.2010	89	3,0	8,5	х	7,7	150,8	2,7	231,0	106,4	9,8	3603	nn	nn	nn
12.07.2010	96	2,0	6,5	х	х	х	3,3	226,5	110,3	9,8	3886	nn	nn	nn
19.07.2010	103	2,0	6,0	х	х	х	142,6	282,5	136,3	12,9	4747	nn	nn	nn
26.07.2010	110	2,0	6,5	х	7,4	152,4	234,9	301,9	143,3	14,2	4856	nn	nn	nn
02.08.2010	117	2,5	7,0	х	7,3	137,4	232,3	286,2	149,4	13,7	4653	nn	nn	nn
09.08.2010	124	2,0	5,5	х	7,9	131,0	151,1	286,4	129,1	14,0	4686	nn	nn	nn
16.08.2010	131	2,0	7,0	х	7,9	125,9	153,4	284,5	149,0	13,8	4799	nn	nn	nn
23.08.2010	138	2,0	5,5	х	8,0	151,7	130,9	284,8	136,0	13,5	4708	nn	nn	nn
06.09.2010	152	2,0	7,0	х	7,9	120,0	142,2	277,3	126,7	11,9	4820	nn	nn	nn
20.09.2010	166	2,0	6,5	х	7,1	125,0	194,0	253,3	117,7	11,6	4620	nn	nn	nn
04.10.2010	180	1,5	6,5	х	7,9	130,0	135,2	288,6	132,7	12,4	5220	nn	nn	nn

Tab. IIa.6: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,4-2,48 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

07.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
14.06.2010	68	2,0	5,0	х	7,4	3,1	59,8	342,8	190,9	7,0	5986	nn	nn	nn
21.06.2010	75	2,0	6,5	х	7,8	137,8	21,6	311,8	176,8	7,3	5758	nn	nn	nn
05.07.2010	89	2,5	8,5	х	7,6	135,0	23,7	307,1	176,8	6,3	5888	nn	nn	nn
12.07.2010	96	2,0	6,0	х	7,1	158,2	29,6	288,7	169,7	6,6	5652	nn	nn	nn
19.07.2010	103	2,0	5,5	х	8,1	123,0	173,1	280,9	155,5	10,2	5329	2,04	nn	nn

Tab. IIa.7: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,28-2,32 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

07.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	К	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
keine Eluidnr	ohen vorh	anden												

keine Fluidproben vorhanden

07.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
19.04.2010	12	2,0	5,0	х	7,2	х	29,1	135,6	112,1	8,6	4943	nn	nn	nn
22.04.2010	15	4,0	5,0	х	х	х	23,6	206,7	146,7	9,8	5328	nn	nn	nn
26.04.2010	26	3,0	7,5	х	6,7	116,0	13,3	236,1	154,4	9,9	5168	nn	nn	nn
29.04.2010	29	2,5	6,5	х	7,6	х	8,1	241,9	151,5	9,8	5039	nn	nn	nn
03.05.2010	33	2,5	5,0	х	6,5	х	8,7	250,1	154,7	9,8	5106	nn	nn	nn
10.05.2010	40	3,0	4,5	х	6,7	151,0	11,4	251,5	138,0	9,3	4741	nn	nn	nn
17.05.2010	47	2,0	4,0	х	7,8	х	16,9	259,8	139,5	8,9	4847	nn	nn	nn
20.05.2010	50	2,5	5,0	4,9	7,9	146,4	21,2	252,2	132,3	9,4	4575	nn	nn	nn
25.05.2010	55	3,5	5,5	6,6	7,2	154,7	17,9	251,7	129,9	9,7	4708	nn	nn	nn
31.05.2010	61	2,5	5,5	х	7,2	158,0	4,2	257,0	127,5	9,5	4604	nn	nn	nn
07.06.2010	68	2,0	5,5	х	7,1	152,4	7,3	252,8	124,2	8,9	4524	nn	nn	nn
14.06.2010	75	2,5	5,0	х	7,0	143,5	6,7	255,1	118,8	8,6	4163	nn	nn	nn
21.06.2010	82	3,5	6,5	8,1	7,1	141,6	4,3	265,2	111,2	9,8	4264	nn	nn	nn
05.07.2010	96	2,0	8,5	х	7,6	133,0	6,5	277,6	114,2	9,7	4411	1,28	nn	nn
12.07.2010	103	2,0	6,0	х	7,1	158,2	255,6	287,5	118,1	11,3	4650	nn	nn	nn
19.07.2010	110	3,0	5,5	х	7,7	130,0	308,6	293,4	119,6	10,6	4791	nn	nn	nn
26.07.2010	117	2,5	6,5	х	7,3	135,6	299,2	288,9	119,6	10,4	4611	nn	nn	nn
02.08.2010	124	2,5	7,0	х	7,1	126,0	213,2	281,5	116,2	9,7	4536	nn	nn	nn
09.08.2010	131	2,0	5,5	х	7,9	153,7	252,3	294,1	119,1	11,0	4524	nn	nn	nn
16.08.2010	138	2,5	7,0	х	7,3	127,1	281,1	286,9	113,8	11,3	4619	0,87	nn	nn
23.08.2010	145	2,5	5,5	х	7,3	165,7	233,8	270,2	104,3	10,7	4582	nn	nn	nn
30.08.2010	152	2,0	5,0	х	7,5	106,7	221,8	273,4	101,1	10,7	4590	nn	nn	nn
06.09.2010	159	2,0	7,0	х	7,7	129,6	302,6	250,2	95,9	9,8	4401	nn	nn	nn
20.09.2010	173	2,0	6,5	х	7,0	144,0	191,5	262,8	112,0	10,7	4887	nn	nn	nn
04.10.2010	187	2,0	6,5	х	7,9	135,6	312,1	83,8	51,6	8,0	4699	nn	nn	nn
18.10.2010	201	4,0	5,0	х	7,5	151,9	412,4	110,2	57,4	8,5	4128	nn	nn	nn
25.10.2010	208	3,0	6,0	х	х	х	375,6	133,4	61,3	9,1	4338	nn	nn	nn
08.11.2010	222	2,5	5,0	х	х	х	395,0	145,4	60,5	8,9	4049	nn	nn	nn
15.11.2010	229	3,0	5,0	х	х	х	398,8	155,9	63,7	9,0	4074	nn	nn	nn
29.11.2010	243	2,0	5,0	х	7,6	105,9	421,6	163,0	64,0	8,8	4210	nn	nn	nn
07.12.2010	241	2,5	5,0	х	х	х	403,0	162,8	62,3	9,1	4139	nn	nn	nn
17.01.2011	292	4,0	5,0	х	7,2	60,4	435,3	172,2	62,6	9,6	4409	nn	nn	nn
24.01.2011	299	2,5	7,0	х	х	х	423,8	173,7	61,7	9,9	4433	nn	nn	nn
31.01.2011	306	2,5	6,0	х	х	х	454,6	162,4	60,5	9,6	4505	nn	nn	nn

Tab. IIa.8: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_33, BCS-3: 1,03-1,25 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

11.03.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
22.03.2010	11	3,0	5,0	х	7,0	х	43,2	278,0	205,9	12,7	5661	nn	nn	nn
08.04.2010	28	3,0	5,0	х	7,3	х	35,0	271,4	201,2	12,9	5902	nn	nn	nn
12.04.2010	32	2,5	5,0	х	6,9	50,0	30,6	258,5	183,8	13,1	5687	nn	nn	nn
15.04.2010	35	2,5	5,0	х	7,4	х	19,0	254,8	170,0	12,7	5493	nn	nn	nn
19.04.2010	39	1,5	5,0	х	7,5	х	9,4	240,3	154,5	12,0	5093	nn	nn	nn
22.04.2010	42	3,0	5,0	х	7,6	150,0	9,5	239,7	154,1	12,1	5152	nn	nn	nn
26.04.2010	46	2,0	7,5	х	7,7	х	10,1	237,4	148,6	11,8	5066	nn	nn	nn
29.04.2010	49	5,0	6,5	х	6,9	х	6,1	235,7	141,7	11,5	5085	nn	nn	nn
10.05.2010	60	2,5	4,5	х	7,3	х	11,7	218,8	141,4	11,5	5101	nn	nn	nn
17.05.2010	67	2,0	4,0	х	7,7	х	6,7	226,2	135,2	12,2	5003	nn	nn	nn
25.05.2010	75	2,0	5,5	х	7,3	187,0	7,8	226,7	128,1	12,4	4786	nn	nn	nn
27.05.2010	77	2,0	5,0	х	7,7	106,0	10,9	221,9	129,5	12,2	4840	nn	nn	nn
31.05.2010	81	2,5	5,5	6,4	7,3	143,0	3,5	235,7	134,1	13,1	4804	nn	nn	nn
07.06.2010	88	3,0	5,5	х	7,3	144,0	3,1	247,8	132,8	13,3	4868	nn	nn	nn
05.07.2010	116	2,0	8,5	х	7,7	150,0	3,4	251,0	127,8	13,6	4722	nn	nn	nn
19.07.2010	130	2,0	5,5	х	7,6	131,2	115,7	272,9	130,6	17,4	4739	nn	nn	nn
26.07.2010	137	2,0	6,5	х	7,0	141,6	211,9	283,3	151,9	15,9	4968	nn	nn	nn
02.08.2010	144	2,0	7,0	х	7,2	159,1	226,3	281,5	195,5	15,9	4939	nn	nn	nn
23.08.2010	165	2,0	5,5	х	7,8	102,4	121,8	283,2	121,6	17,0	4909	nn	nn	nn
06.09.2010	179	2,0	7,0	х	7,0	107,8	159,8	266,1	119,2	14,6	4770	nn	nn	nn
04.10.2010	207	1,5	6,5	х	х	х	96,2	268,9	117,9	17,1	5113	nn	nn	nn
18.10.2010	201	2,0	6,0	х	х	х	119,3	271,2	114,6	15,8	4977	nn	nn	nn
25.10.2010	208	1,5	5,0	х	х	х	231,2	272,4	104,9	13,5	4396	nn	nn	nn
08.11.2010	222	2,0	5,0	х	х	х	102,2	288,9	115,4	13,3	4893	nn	nn	nn
15.11.2010	229	2,5	5,0	х	х	х	215,5	285,8	105,2	15,1	4570	nn	nn	nn
22.11.2010	236	2,0	5,0	х	х	х	244,1	242,9	99,1	12,8	4383	nn	nn	nn
07.12.2010	251	2,0	5,0	х	х	х	194,3	257,6	109,5	13,5	4912	nn	nn	nn
24.01.2011	299	2,0	5,0	х	х	х	244,3	245,1	101,1	14,5	4869	nn	nn	nn
28.03.2011	362	1,5	6,0	х	х	х	229,5	257,7	105,7	13,8	5444	nn	nn	nn
11.07.2011	467	1,5	5,0	х	х	х	248,7	198,0	97,7	11,1	5168	nn	nn	nn

Tab. IIa.9: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,04-2,08 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahre

NG 0.02 0.01 0.5 0.05 0.1 0.01 0.02 0.01 0.55 0.05 0.1 0.01 0.02 0.01 0.05 0.1 0.01 0.02 0.1 0.01 0.02 0.1 0.01 <th>11.03.2010</th> <th>Zeit</th> <th>\mathbf{V}</th> <th>р</th> <th>Sal</th> <th>pН</th> <th>U</th> <th>Ca</th> <th>Mg</th> <th>K</th> <th>Si</th> <th>Na</th> <th>Mn</th> <th>Al</th> <th>Fe</th>	11.03.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
Datem [Tage] [mi] bar [ar]1 [mi]2 [NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
15.03.2010 4 15.0 5.0 12.8 6.5 5.18 173.7 14.13 96.4 6.1 4897 nn m 14.37 22.03.2010 11 17.0 5.0 12.2 6.5 36.8 12.62 12.32 5.7 6.4 49.0 2.9 4.61 nn nn nd 1.4.37 20.04.2010 32 7.5 5.0 12.0 6.8 58.3 7.4.3 15.7 10.92 9.4 476 nn nn <td< th=""><th>Datum</th><th>[Tage]</th><th>[ml]</th><th>[bar]</th><th>[g/l]</th><th></th><th>[mV]</th><th>[mg/l]</th><th>[mg/l]</th><th>[mg/l]</th><th>[mg/l]</th><th>[mg/l]</th><th>[mg/l]</th><th>[mg/l]</th><th>[mg/l]</th></td<>	Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.03.2010	4	15,0	5,0	12,8	6,5	51,8	173,7	141,3	96,4	6,1	4897	nn	nn	15,67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.03.2010	7	15,0	5,0	12,3	6,4	48,3	152,6	125,7	93,5	7,6	4590	nn	nn	14,37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.03.2010	11	17,0	5,0	12,2	6,5	36,8	126,2	134,2	101,9	8,4	4546	nn	nn	14,21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08.04.2010	28	13,5	5,0	12,1	6,8	58,3	74,3	151,7	109,2	9,9	4611	nn	nn	nn
	12.04.2010	32	7,5	5,0	12,0	6,8	59,5	60,3	155,4	109,9	9,8	4587	nn	nn	nn
19.04.2010 39 8,5 5.0 12.2 6.8 98,1 60.9 14.3 99.0 9.4 453 nn nn nn 20.04.2010 46 16.0 7.5 11.9 6.7 67.8 10.05 13.4 86.3 9.4 4345 nn nn nn 0.05.2010 53 4.5 5.0 7.7 6.9 97.8 13.2 12.05 82.7 9.1 4465 nn	15.04.2010	35	14,5	5,0	12,0	6,7	49,8	83,6	154,6	104,2	10,2	4476	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.04.2010	39	8,5	5,0	12,2	6,8	98,1	60,9	143,3	99,0	9,4	4531	nn	nn	nn
26.04.2010 46 16.0 7,5 11.9 6.7 67,8 100,5 13.4 86.3 9.4 4345 nn nn nn 03.05.2010 53 4,5 5,0 7,7 6,9 97,8 13.2 12.05 82.7 9.1 44.60 nn nn nn 0.05.2010 60 10.0 4,5 11.5 6.8 14.0 87.4 88.1 86.4 4580 nn nn nn 1.05.2010 67 4,5 4,0 11.6 6.9 9.0 22.1 138.8 88.1 8.6 4580 nn nn nn 2.05.2010 77 4,5 5.0 8.2 7.0 x 17.7 156.8 83.4 10.8 441 nn nn nn 2.05.2010 72 4.5 5.0 8.2 7.0 x 17.7 156.8 83.4 10.8 449 nn nn nn nn	22.04.2010	42	11,0	5,0	8,3	6,9	83,7	55,8	153,6	99,1	9,7	4455	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.04.2010	46	16,0	7,5	11,9	6,7	67,8	100,5	134,4	86,3	9,4	4345	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.04.2010	49	5,5	6,5	11,5	6,8	117,4	25,4	117,4	75,7	8,1	4503	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03.05.2010	53	4,5	5,0	7,7	6,9	97,8	13,2	120,5	82,7	9,1	4462	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	06.05.2010	56	7,0	4,5	12,2	7,0	162,1	15,1	140,8	87,4	9,9	4504	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.05.2010	60	10,0	4,5	11,5	6,8	140,6	37,6	142,3	84,7	9,4	4465	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.05.2010	67	4,5	4,0	11,6	6,9	92,0	22,1	138,8	88,1	8,6	4580	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.05.2010	75	2,5	5,5	х	6,7	180,4	9,1	148,6	80,3	10,2	4359	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27.05.2010	77	4,5	5,0	8,2	7,0	х	17,7	156,8	83,4	10,8	4414	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.05.2010	81	4,0	5,5	10,8	7,0	149,4	16,6	154,1	85,7	10,8	4450	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07.06.2010	88	6,0	5,5	11,9	7,0	150,3	5,1	172,0	82,9	11,3	4286	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.06.2010	95	7,0	5,0	12,1	6,9	70,9	10,7	170,5	86,7	11,3	4419	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.06.2010	102	4,0	6,5	10,8	7,1	156,7	7,4	168,7	81,6	11,9	4398	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05.07.2010	116	8,5	8,5	12,3	6,8	177,9	23,4	171,6	77,3	11,5	4464	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.07.2010	123	4,5	6,0	11,5	7,1	174,0	20,4	172,8	82,9	11,7	4696	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.07.2010	130	8,0	5,5	12,9	6,7	127,6	338,8	169,1	74,6	13,7	4673	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.07.2010	137	7,0	6,5	13,0	6,7	53,8	288,7	161,3	73,6	13,3	4714	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02.08.2010	144	7,0	7,0	12,9	6,6	49,6	322,7	162,0	70,7	12,7	4614	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09.08.2010	151	4,5	5,5	12,8	6,8	95,8	330,9	154,5	74,7	11,8	4796	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.08.2010	158	5,5	7,0	12,7	6,7	78,1	310,2	154,0	71,6	12,1	4796	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.08.2010	165	4,0	5,5	11,4	6,9	103,6	305,9	145,8	70,0	11,8	4627	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.08.2010	172	4,0	5,0	12,4	7,1	144,1	327,0	145,0	73,0	12,1	4885	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06.09.2010	179	10,0	7,0	12,5	6,8	85,5	351,5	138,9	65,4	12,0	4571	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.09.2010	193	4,0	6,5	11,9	6,9	92,9	324,9	129,1	60,6	11,3	4321	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04.10.2010	207	6,0	6,5	12,3	6,9	109,6	331,0	132,8	60,4	12,3	4482	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.10.2010	221	8,0	5,0	12,3	6,8	89,9	354,4	133,2	75,3	12,9	4404	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.10.2010	228	7,0	6,0	12,4	6,6	60,2	391,7	134,9	60,7	12,3	4214	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08.11.2010	242	8,0	5,0	12,9	6,9	61,4	398,1	132,6	68,7	12,2	4612	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.11.2010	249	7,0	5,0	12,4	6,7	41,4	418,2	127,9	56,6	12,1	4456	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.11.2010	256	7,0	5,0	12,4	6,7	45,7	420,1	125,7	55,1	11,9	4367	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.11.2010	263	3,5	5,0	9,1	6,7	63,5	394,2	126,0	68,3	12,0	4459	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07.12.2010	271	6,0	5,0	12,7	6,7	40,1	416,1	126,8	53,4	12,0	4399	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.12.2010	277	7,0	5,0	12,6	6,7	46,0	417,1	126,6	55,9	12,3	4490	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.12.2010	284	6,0	5,0	12,7	6,9	37,5	397,9	127,0	60,9	12,2	4514	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.01.2011	305	8,0	5,0	12,9	6,7	37,6	412,9	125,4	78,6	12,6	4602	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.01.2011	312	9,5	5,0	12,3	6,7	43,6	423,6	122,3	48,8	13,0	4491	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.01.2011	319	10,0	7,0	12,4	6,6	42,0	453,0	114,0	50,7	12,9	4634	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.01.2011	326	9,0	6,0	12,6	6,5	44,8	449,5	112,8	50,5	12,8	4619	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07.02.2011	333	9,0	5,0	12,5	6,6	33,3	447,2	109,8	50,4	12,3	4556	nn	nn	nn
21.02.2011 347 8,0 7,0 12,6 6,7 34,5 442,3 108,1 46,9 12,1 4579 nn	14.02.2011	340	7,0	6,0	12,5	6,8	36,3	423,7	109,1	52,5	12,1	4477	nn	nn	nn
28.02.2011 354 7,0 6,0 12,6 6,8 40,0 421,9 106,0 46,9 11,6 4501 nn	21.02.2011	347	8,0	7,0	12,6	6,7	34,5	442,3	108,1	46,9	12,1	4579	nn	nn	nn
07.03.2011 361 8,0 6,0 12,7 6,5 31,3 431,7 105,3 42,2 11,4 4540 nn	28.02.2011	354	7,0	6,0	12,6	6,8	40,0	421,9	106,0	46,9	11,6	4501	nn	nn	nn
14.03.20113688,06,012,96,635,3452,1101,144,111,14476nnnnnnnn21.03.20113758,06,013,36,634,6467,298,942,210,64581nnnnnnnn28.03.20113828,55,513,66,746,1464,499,639,110,44743nnnnnnnn11.04.20113968,05,013,76,739,2468,197,750,510,84688nnnnnnnn18.04.20114038,05,013,36,630,0449,299,138,110,94465nnnnnnnn26.04.20114118,05,013,46,536,0446,996,139,111,04649nnnnnn	07.03.2011	361	8,0	6,0	12,7	6,5	31,3	431,7	105,3	42,2	11,4	4540	nn	nn	nn
21.03.20113758,06,013,36,634,6467,298,942,210,64581nnnnnnnn28.03.20113828,55,513,66,746,1464,499,639,110,44743nnnnnnnn11.04.20113968,05,013,76,739,2468,197,750,510,84688nnnnnnnn18.04.20114038,05,013,36,630,0449,299,138,110,94465nnnnnnnn26.04.20114118,05,013,46,536,0446,996,139,111,04649nnnnnn	14.03.2011	368	8,0	6,0	12,9	6,6	35,3	452,1	101,1	44,1	11,1	4476	nn	nn	nn
28.03.2011 382 8,5 5,5 13,6 6,7 46,1 464,4 99,6 39,1 10,4 4743 nn	21.03.2011	375	8,0	6,0	13,3	6,6	34,6	467,2	98,9	42,2	10,6	4581	nn	nn	nn
11.04.2011 396 8,0 5,0 13,7 6,7 39,2 468,1 97,7 50,5 10,8 4688 nn	28.03.2011	382	8,5	5,5	13,6	6,7	46,1	464,4	99,6	39,1	10,4	4743	nn	nn	nn
18.04.2011 403 8,0 5,0 13,3 6,6 30,0 449,2 99,1 38,1 10,9 4465 nn	11.04.2011	396	8,0	5,0	13,7	6,7	39,2	468,1	97,7	50,5	10,8	4688	nn	nn	nn
26.04.2011 411 8,0 5,0 13,4 6,5 36,0 446,9 96,1 39,1 11,0 4649 nn nn nn	18.04.2011	403	8,0	5,0	13,3	6,6	30,0	449,2	99,1	38,1	10,9	4465	nn	nn	nn
	26.04.2011	411	8,0	5,0	13,4	6,5	36,0	446,9	96,1	39,1	11,0	4649	nn	nn	nn

Tab. IIa.10: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,12-2,32 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahre

11.03.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
02.05.2011	417	8,0	5,0	12,9	6,6	44,7	443,7	92,4	36,6	10,6	4439	nn	nn	nn
09.05.2011	424	8,0	5,0	12,9	6,6	41,8	446,4	79,6	36,9	10,5	4535	nn	nn	nn
23.05.2011	438	11,0	5,0	12,6	6,4	43,1	412,4	74,3	32,6	9,9	4306	nn	nn	nn
30.05.2011	445	15,0	5,0	12,1	6,4	45,5	403,3	64,4	29,2	8,6	4201	nn	nn	nn
06.06.2011	452	9,0	5,0	11,8	6,5	48,8	403,5	59,4	27,2	8,2	4030	nn	nn	nn
20.06.2011	466	7,0	5,0	12,2	6,6	53,5	416,0	67,3	30,2	9,9	4294	nn	nn	nn
27.06.2011	473	12,0	5,0	12,2	6,4	47,3	408,0	63,1	27,6	9,5	4124	nn	nn	nn
04.07.2011	481	7,0	5,0	12,8	6,5	51,1	412,3	60,4	31,5	9,2	4307	nn	nn	nn
11.07.2011	488	11,0	5,0	12,6	6,4	52,3	381,7	52,3	26,3	7,5	4036	nn	nn	nn
18.07.2011	495	11,0	5,0	13,0	6,4	43,4	412,3	51,0	25,0	7,2	4196	nn	nn	nn
25.07.2011	502	7,0	5,0	13,7	6,4	59,3	431,3	56,2	26,6	8,0	4433	nn	nn	nn
01.08.2011	509	8,0	5,0	13,9	6,4	54,5	463,4	62,3	30,6	9,0	4514	nn	nn	nn
08.08.2011	516	7,0	5,0	13,5	6,4	34,1	466,2	61,4	30,0	9,7	4573	nn	nn	nn
15.08.2011	523	6,0	5,0	13,4	6,4	37,8	444,1	62,1	31,4	10,1	4614	nn	nn	nn
22.08.2011	530	7,0	5,0	13,3	6,5	31,3	440,2	60,8	28,3	10,7	4528	nn	nn	nn
29.08.2011	537	8,0	5,0	13,0	6,5	40,4	417,9	57,1	27,7	10,2	4403	nn	nn	nn
12.09.2011	552	6,0	5,0	13,0	6,4	х	402,3	58,6	28,0	10,8	4661	nn	nn	nn

Tab. IIa.11: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,48-2,5 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahre

11.03.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
22.03.2010	11	4,0	5,0	13,1	6,8	57,5	175,5	448,3	234,9	12,7	6447	1,77	nn	nn
08.04.2010	28	5,0	5,0	12,5	6,8	13,4	83,4	391,1	215,8	12,4	6238	1,74	nn	nn
12.04.2010	32	5,0	5,0	14,2	6,7	35,1	33,4	333,9	184,4	14,1	5421	nn	nn	nn
15.04.2010	35	5,0	5,0	11,4	6,8	52,8	25,4	294,6	175,3	14,1	5312	nn	nn	nn
19.04.2010	39	5,0	5,0	11,7	6,9	6,7	14,5	260,4	160,7	13,7	4988	nn	nn	nn
22.04.2010	42	5,0	5,0	11,8	7,0	101,1	13,6	251,8	160,3	13,5	4938	nn	nn	nn
26.04.2010	46	5,0	7,5	11,5	7,0	95,9	19,9	239,0	154,2	13,4	4913	nn	nn	nn
29.04.2010	49	5,0	6,5	12,1	7,0	147,0	13,1	206,7	127,9	11,8	4309	nn	nn	nn
03.05.2010	53	5,5	5,0	12,3	6,7	82,2	9,9	210,9	132,4	11,9	4426	nn	nn	nn
06.05.2010	56	4,0	4,5	8,7	7,1	175,2	6,8	207,4	127,7	11,9	4351	nn	nn	nn
10.05.2010	60	3,0	4,5	х	7,5	149,7	5,8	203,5	119,2	11,1	4340	nn	nn	nn
17.05.2010	67	4,0	4,0	10,8	7,1	116,4	16,8	201,8	121,0	11,0	4345	nn	nn	nn
20.05.2010	70	4,0	5,0	10,1	7,8	133,2	12,4	200,1	117,8	11,6	4380	nn	nn	nn
25.05.2010	75	4,5	5,5	10,4	6,9	182,6	19,1	194,0	119,0	11,5	4449	nn	nn	nn
27.05.2010	77	2,0	5,0	х	7,2	126,0	5,9	193,7	110,7	12,0	4252	nn	nn	nn
31.05.2010	81	3,0	5,5	7,4	7,2	147,7	11,7	198,3	115,7	10,9	4447	nn	nn	nn
07.06.2010	88	3,5	5,5	9,0	7,2	160,1	3,0	218,8	112,8	12,2	4224	nn	nn	nn
14.06.2010	95	4,0	5,0	6,2	7,0	97,9	9,0	212,2	172,3	11,8	4358	nn	nn	nn
21.06.2010	102	3,5	6,5	х	7,2	142,2	23,4	222,5	119,0	12,3	4340	nn	nn	nn
05.07.2010	116	3,5	8,5	х	7,2	165,5	3,0	209,1	110,6	12,4	4428	nn	nn	nn
12.07.2010	123	3,5	5,0	9,5	7,2	161,3	5,3	208,0	103,8	11,8	4254	nn	nn	nn
19.07.2010	130	4,0	5,5	9,3	7,4	138,6	193,4	217,7	113,3	12,9	4420	nn	nn	nn
26.07.2010	137	3,0	6,5	8,1	7,2	122,4	262,7	223,9	109,7	13,8	4717	nn	nn	nn
02.08.2010	144	3,0	7,0	6,9	7,1	80,0	251,2	212,3	107,7	12,8	4768	nn	nn	nn
09.08.2010	151	3,0	5,5	х	7,2	127,8	135,5	209,3	117,3	12,6	4737	nn	nn	nn
16.08.2010	158	3,0	7,0	х	7,2	132,2	219,1	211,0	121,5	13,1	4548	nn	nn	nn
23.08.2010	165	3,0	5,5	4,6	7,5	122,4	225,7	202,5	102,7	14,3	4470	nn	nn	nn
06.09.2010	179	2,0	5,0	х	8,0	111,4	184,8	211,0	98,7	15,2	5162	nn	nn	nn

11.03.2010	Zeit	V	р	Sal	рН	U		Mg	K	Si	Na	Mn		Fe
NG Datum	[Tage]	[m]]	[bar]	[σ/]]		[mV]	0,02 [mg/]]	[mg/l]	0,5 [mø/l]	0,05 [mg/]]	[mg/l]	[mg/l]	[mg/l]	0,02 [mg/]]
04.10.2010	207	3.5	6.5	5.2	7.5	113.7	219.7	200.5	92.3	15.3	4862	nn	nn	nn
18.10.2010	221	3.0	5,0	X	X	X	220,5	177,5	88,5	14,0	4722	nn	nn	nn
25.10.2010	228	2,5	6,0	х	х	х	268,8	163,7	81,3	12,1	4218	nn	nn	nn
08.11.2010	242	4,0	5,0	х	7.6	х	263,5	172,8	79.7	13,4	4520	nn	nn	nn
15.11.2010	249	3,0	5,0	х	x	х	293,1	178,4	75,1	13,2	4463	nn	nn	nn
22.11.2010	256	3,0	5,0	х	х	х	291,2	179,8	74,5	15,3	4444	nn	nn	nn
29.11.2010	263	3,5	5,0	7,9	7,4	103,4	314,2	161,9	71,9	13,7	4293	nn	nn	nn
07.12.2010	271	2,5	5,0	x	x	x	291,4	168,8	71,2	12,9	4490	nn	nn	nn
13.12.2010	277	3,0	5,0	х	х	х	333,2	167,1	67,7	13,2	4176	nn	nn	nn
20.12.2010	284	2,5	5,0	х	х	х	314,3	145,2	67,3	12,2	4489	nn	nn	nn
17.01.2011	312	3,0	5,0	х	7,1	64,3	312,6	148,8	66,3	12,9	4420	nn	nn	nn
24.01.2011	319	3,0	7,0	х	х	х	309,3	135,3	64,3	12,6	4439	nn	nn	nn
31.01.2011	326	3,0	6,0	х	х	х	317,8	156,7	64,8	13,2	4408	nn	nn	nn
07.02.2011	333	3,0	5,0	х	х	х	348,3	159,4	65,2	13,8	4452	nn	nn	nn
14.02.2011	340	2,0	6,0	х	х	х	321,9	155,4	62,1	13,3	4362	nn	nn	nn
21.02.2011	347	2,0	7,0	х	х	х	337,8	156,0	62,0	13,4	4365	nn	nn	nn
28.02.2011	354	2,5	6,0	х	х	х	309,6	148,2	58,6	12,1	4278	nn	nn	nn
07.03.2011	361	3,0	6,0	х	х	х	325,8	151,2	57,9	12,1	4325	nn	nn	nn
14.03.2011	368	2,5	6,0	х	х	х	331,1	147,5	57,8	11,9	4234	nn	nn	nn
28.03.2011	375	4,0	5,5	9,3	6,9	58,8	71,6	153,6	59,3	12,8	4414	nn	nn	nn
11.04.2011	389	2,0	5,0	х	х	х	346,9	146,4	59,0	12,4	4650	nn	nn	nn
18.04.2011	396	2,0	5,0	х	х	х	340,8	158,5	53,8	13,9	4483	nn	nn	nn
02.05.2011	410	2,0	5,0	х	х	х	329,9	134,4	48,3	11,7	4112	nn	nn	nn
09.05.2011	417	3,0	5,0	х	х	х	346,5	123,1	14,9	11,6	4241	nn	nn	nn
23.05.2011	431	3,0	5,0	х	х	х	341,8	122,7	15,0	12,2	4398	nn	nn	nn
30.05.2011	438	3,0	5,0	х	х	х	335,9	114,8	14,8	12,0	4172	nn	nn	nn
06.06.2011	445	3,0	5,0	х	х	х	351,2	111,3	14,6	11,9	4113	nn	nn	nn
20.06.2011	459	3,5	5,0	х	х	х	328,9	111,4	14,6	12,7	4263	nn	nn	nn
04.07.2011	473	2,0	5,0	х	х	х	319,2	113,6	14,9	13,3	4626	nn	nn	nn
11.07.2011	480	2,5	5,0	х	х	х	345,6	109,0	49,2	12,3	4704	nn	nn	nn
18.07.2011	487	3,0	5,0	х	х	х	363,0	104,5	45,6	12,3	4486	nn	nn	nn
01.08.2011	501	2,0	5,0	х	х	х	327,3	111,6	47,1	13,2	4579	nn	nn	nn
08.08.2011	508	4,0	5,0	х	6,6	43,0	390,5	108,6	44,9	12,9	4461	nn	nn	nn
15.08.2011	515	6,0	5,0	х	6,6	45,5	389,0	102,7	44,0	12,9	4293	nn	nn	nn
22.08.2011	522	7,0	5,0	х	6,5	42,1	380,0	101,7	44,9	12,6	4280	nn	nn	nn
29.08.2011	529	8,0	5,0	х	6,5	39,0	376,5	97,1	39,8	12,7	4150	nn	nn	nn
12.09.2011	543	6,0	5,0	х	х	х	343,2	94,2	39,1	12,8	4232	nn	nn	nn

Reaktionstemperatur: 60°C

Tab. IIa.12: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,08-2,12 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

09.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
19.04.2010	10	3,0	5,0	9,7	7,3	130,0	119,8	282,7	261,4	10,5	5939	nn	nn	nn
22.04.2010	13	3,5	5,0	10,1	7,2	22,2	194,6	282,2	231,1	6,4	5721	nn	nn	nn
26.04.2010	17	3,5	7,5	10,2	7,4	160,4	123,5	257,4	214,2	6,9	5644	nn	nn	nn
29.04.2010	20	3,5	6,5	7,5	7,4	165,4	49,5	235,6	193,9	7,2	5544	nn	nn	nn
03.05.2010	24	3,0	5,0	7,7	7,2	95,9	54,0	232,0	193,6	7,5	5513	nn	nn	nn
06.05.2010	27	3,0	5,0	х	7,5	х	24,0	218,4	177,3	7,2	5233	nn	nn	nn
10.05.2010	31	2,5	5,0	х	7,4	123,8	16,4	215,4	174,7	7,3	5305	nn	nn	nn
17.05.2010	38	3,0	5,0	х	7,5	х	11,6	217,8	180,7	7,3	5491	nn	nn	nn
20.05.2010	41	2,5	5,0	6,0	7,3	119,4	17,5	219,9	163,6	7,9	5062	nn	nn	nn
25.05.2010	46	2,5	5,5	х	7,5	107,0	8,8	216,2	164,6	8,2	5215	nn	nn	nn
27.05.2010	48	2,5	5,0	х	7,4	120,0	10,1	215,4	151,6	8,2	4924	nn	nn	nn
31.05.2010	52	2,5	5,5	х	7,4	122,0	12,4	211,6	158,2	8,1	5176	nn	nn	nn
07.06.2010	59	2,0	5,5	х	7,5	113,4	3,2	219,6	147,0	7,7	4619	nn	nn	nn
14.06.2010	66	2,0	5,5	х	7,7	122,8	5,3	220,9	156,3	8,2	4794	nn	nn	nn
21.06.2010	73	2,5	6,0	х	7,3	156,1	7,2	213,8	154,6	7,9	4467	nn	nn	nn
05.07.2010	87	3,0	8,5	х	7,4	125,8	4,9	218,1	14,0	8,4	4645	nn	nn	nn

Tab. IIa.13: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,54 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

09.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
19.04.2010	10	4,0	5,0	10,0	7,0	-63,1	201,2	289,7	251,3	5,1	6050	0,2	nn	15,7
22.04.2010	13	3,5	5,0	10,1	7,3	147,1	117,6	266,9	247,5	11,8	5504	nn	nn	nn
26.04.2010	17	4,0	7,5	10,0	7,3	118,0	122,9	257,7	229,0	11,7	5455	nn	nn	nn
29.04.2010	20	3,0	6,5	9,0	7,2	166,0	47,4	249,5	214,9	11,0	5534	0,5	nn	nn
03.05.2010	24	3,0	5,0	х	7,0	х	41,1	242,7	202,5	11,4	5472	0,2	nn	nn
06.05.2010	27	1,5	5,0	х	8,0	124,0	14,9	237,9	200,8	11,2	5491	nn	nn	nn
05.07.2010	87	1,5	8,5	х	7,9	100,0	5,1	226,6	161,0	11,0	5054	nn	nn	nn

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15.01.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
	NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Datum	[Tage]	[ml]	[bar]	[g/l]	<i>.</i> -	[mV]	[mg/l]							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.01.2010	3	2,5	5,0	13,6	6,7	19,6	266,8	259,3	139,2	2,0	4938	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.01.2010	6	23,0	5,0	12,6	6,8	213,6	214,3	169,4	94,0	1,8	4500	nn	nn	nn
28.01.2010 13 11,0 5,0 8,3 6,7 11,6 148,5 163,6 97,8 5,5 4320 nn	25.01.2010	10	32,0	5,0	12,2	6,4	122,0	246,0	122,7	74,9	2,8	4380	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.01.2010	13	11,0	5,0	8,3	6,7	111,6	148,5	163,6	97,8	5,5	4320	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01.02.2010	17	31,0	5,0	12,4	6,4	122,8	235,0	118,1	68,1	3,5	4212	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04.02.2010	20	30,0	5,0	12,0	6,4	х	225,1	96,2	50,1	2,6	4176	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08.02.2010	24	30,0	5,0	11,7	6,5	85,7	227,8	104,5	53,8	3,9	4183	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.02.2010	27	25,0	5,0	х	6,4	х	241,3	111,1	57,4	5,1	4190	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.02.2010	31	26,0	5,0	12,7	6,4	70,5	143,9	99,0	62,4	5,4	4123	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.02.2010	34	15,0	5,0	11,8	6,4	81,7	127,6	106,9	61,9	5,4	4226	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.02.2010	38	15,0	5,0	11,9	6,5	87,0	110,2	112,7	63,0	6,8	4176	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.02.2010	41	24,0	5,0	х	6,5	х	341,4	118,2	58,2	7,2	4172	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01.03.2010	45	28,0	5,0	11,7	6,4	х	307,6	103,5	50,3	6,5	4264	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04.03.2010	48	24,0	5,0	11,8	6,4	80,0	357,1	102,5	49,6	6,9	4132	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08.03.2010	52	32,0	5,0	11,6	6,5	68,3	312,7	88,7	43,6	6,2	4184	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.03.2010	55	31,0	5,0	11,6	6,5	68,2	344,8	87,4	44,1	6,7	4122	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.03.2010	59	30,0	5,0	6,9	6,5	79,0	150,8	76,7	41,6	7,2	4217	nn	nn	5,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.03.2010	62	35,0	5,0	11,5	6,3	71,1	139,8	70,1	34,0	6,8	4307	nn	nn	5,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.03.2010	66	34,0	5,0	11,5	6,2	47,1	183,1	66,9	32,4	7,0	4357	nn	nn	9,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08.04.2010	82	34,0	5,0	11,8	6,3	64,9	193,2	66,2	29,8	7,4	4511	nn	nn	7,8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.04.2010	86	27,0	5,0	11,7	6,4	52,4	197,9	69,4	31,3	7,9	4461	nn	nn	6,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.04.2010	89	25,0	5,0	11,7	6,4	68,4	195,7	65,6	31,5	8,0	4395	nn	nn	3,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.04.2010	93	26,0	5,0	11,7	6,4	69,1	214,6	65,6	32,3	8,3	4508	nn	nn	4,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.04.2010	96	25,0	5,0	11,7	6,4	80,0	207,6	64,4	28,2	8,1	4281	nn	nn	2,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.04.2010	100	30,0	7,5	11,4	6,3	73,6	223,5	38,9	16,9	5,7	4190	nn	nn	5,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.04.2010	103	21,0	6,5	12,0	6,5	104,6	204,2	64,7	24,7	7,7	4371	nn	nn	nn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03.05.2010	107	23,0	5,0	12,0	6,3	57,1	149,5	46,3	21,4	5,9	2890	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	06.05.2010	110	27,0	5,0	11,5	6,4	74,8	202,9	53,5	20,9	6,2	4016	nn	nn	nn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.05.2010	114	25,0	5,0	11,7	6,3	76,3	206,8	49,8	18,2	5,8	3610	nn	nn	nn
20.05.2010 124 30,0 5,0 11,6 6,0 115,9 206,7 28,5 11,6 3,3 4183 0,6 nn nn nn 25.05.2010 129 16,0 5,5 11,9 6,5 69,8 249,2 60,6 22,9 8,4 4215 nn	17.05.2010	121	7,0	5,0	9,1	6,2	92,5	121,8	64,8	27,4	7,6	4981	nn	nn	nn
25.05.2010 129 16,0 5,5 11,9 6,5 69,8 249,2 60,6 22,9 8,4 4215 nn	20.05.2010	124	30,0	5,0	11,6	6,0	115,9	206,7	28,5	11,6	3,3	4183	0,6	nn	nn
27.05.2010 131 19,0 5,0 11,6 6,5 64,0 298,0 55,7 20,7 7,8 4183 nn	25.05.2010	129	16,0	5,5	11,9	6,5	69,8	249,2	60,6	22,9	8,4	4215	nn	nn	nn
31.05.2010 135 19,0 5,5 11,9 6,5 55,5 335,3 50,9 19,8 7,2 4277 nn	27.05.2010	131	19,0	5,0	11,6	6,5	64,0	298,0	55,7	20,7	7,8	4183	nn	nn	nn
07.06.2010 142 40,0 5,5 12,1 6,4 61,1 139,7 44,6 21,2 8,3 4634 nn	31.05.2010	135	19,0	5,5	11,9	6,5	55,5	335,3	50,9	19,8	7,2	4277	nn	nn	nn
14.06.2010 149 15,0 5,5 12,6 6,4 53,8 171,8 39,6 18,8 7,7 4718 nn	07.06.2010	142	40,0	5,5	12,1	6,4	61,1	139,7	44,6	21,2	8,3	4634	nn	nn	nn
21.06.2010 156 22,0 6,0 12,7 6,4 42,2 229,0 46,1 20,3 9,2 4797 nn	14.06.2010	149	15,0	5,5	12,6	6,4	53,8	171,8	39,6	18,8	7,7	4718	nn	nn	nn
05.07.2010 170 21,0 8,5 13,1 6,5 57,1 261,9 52,0 21,7 9,9 4657 nn nn nn 12.07.2010 177 20,0 6,0 12,5 6,4 50,1 382,3 51,7 23,5 9,6 4495 nn nn nn	21.06.2010	156	22,0	6,0	12,7	6,4	42,2	229,0	46,1	20,3	9,2	4797	nn	nn	nn
12.07.2010 177 20.0 6.0 12.5 6.4 50.1 382.3 51.7 23.5 9.6 4495 nn nn nn	05.07.2010	170	21,0	8,5	13,1	6,5	57,1	261,9	52,0	21,7	9,9	4657	nn	nn	nn
	12.07.2010	177	20,0	6,0	12,5	6,4	50,1	382,3	51,7	23,5	9,6	4495	nn	nn	nn

Tab. IIa.14: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_28, BCS-1: 0,8-1,4 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate

15.01.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG			-		-		0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
28.01.2010	13	1,5	5,0	х	7,3	х	324,1	593,9	315,9	8,1	6732	nn	nn	nn
01.02.2010	17	6,0	5,0	9,5	6,9	61,0	280,9	614,0	367,9	9,6	7460	nn	nn	nn
04.02.2010	20	5,0	5,0	10,0	7,1	х	207,3	433,4	256,0	6,4	5711	nn	nn	nn
08.02.2010	24	6,0	5,0	11,2	7,2	27,2	161,7	368,1	234,3	7,3	5342	nn	nn	nn
11.02.2010	27	х	х	х	7,0	х	127,4	330,0	213,7	8,7	5027	nn	nn	nn
15.02.2010	31	5,0	5,0	11,8	6,8	х	73,9	269,3	188,5	7,6	4875	nn	nn	nn
18.02.2010	34	4,5	5,0	х	7,1	84,0	57,5	266,6	191,3	8,8	4894	nn	nn	nn
22.02.2010	38	5,0	5,0	6,0	6,7	85,0	57,8	246,4	178,2	8,9	4769	nn	nn	nn
25.02.2010	41	3,0	5,0	х	7,0	х	107,4	247,8	172,3	9,0	4518	nn	nn	nn
01.03.2010	45	3,5	5,0	х	7,1	х	129,1	238,4	162,1	9,1	4370	nn	nn	nn
04.03.2010	48	1,5	5,0	х	7,1	х	48,6	221,3	159,5	9,8	4818	nn	nn	nn
08.03.2010	52	3,5	5,0	6,1	7,1	х	203,5	219,3	160,2	8,4	4322	nn	nn	nn
11.03.2010	55	3,0	5,0	х	7,8	х	91,3	205,8	140,3	8,0	4210	nn	nn	nn
15.03.2010	59	3,0	5,0	х	7,2	х	25,4	204,9	150,7	10,0	4506	nn	nn	nn
18.03.2010	62	3,0	5,0	х	7,2	х	18,3	206,6	137,2	11,1	4542	nn	nn	nn
22.03.2010	66	2,0	5,0	х	7,8	х	12,2	193,2	138,0	10,4	4691	nn	nn	nn
08.04.2010	83	2,5	5,0	х	7,1	х	19,5	204,4	149,3	11,6	5187	nn	nn	nn
12.04.2010	87	2,0	5,0	х	7,5	х	29,9	207,4	139,8	11,2	4934	nn	nn	nn
15.04.2010	90	2,0	5,0	х	7,8	х	13,9	207,0	132,1	10,8	4869	nn	nn	nn
19.04.2010	94	2,0	5,0	х	7,7	х	14,8	207,4	132,0	11,9	4948	nn	nn	nn
03.05.2010	108	2,0	5,0	х	7,2	х	14,9	221,9	114,2	11,0	4461	nn	nn	nn
06.05.2010	111	2,0	5,0	х	8,2	146,0	16,9	219,9	115,5	9,3	4378	nn	nn	nn
20.05.2010	125	2,0	5,0	х	7,7	х	23,3	219,8	108,4	10,9	4394	nn	nn	nn
25.05.2010	130	2,5	5,5	х	7,7	155,0	28,4	210,6	102,5	10,0	4271	nn	nn	nn
05.07.2010	171	2,5	8,5	х	7,3	205,0	15,7	192,2	243,5	11,9	4888	nn	nn	nn

Tab. IIa.15: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_31, BCS-1: 3,3-3,8 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate

Tab. IIa	.16: Ergeb	nisse de	r Fluida	analytik aus	s den	Reaktions	experimenten an	n Opa	alinuston (CS	\$_35,
BCS-3:	1,88-1,92	m) bei	60°C,	gemessen	mit	ICP-OES,	Leitfähigkeits-	und	pH-Messger	äten.
Reaktion	nszeit: 6 M	Ionate								

09.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
26.04.2010	17	3,0	7,5	х	6,8	-57,2	457,8	392,2	270,8	8,9	6751	7,3	nn	16,8
29.04.2010	20	3,5	6,5	12,3	7,2	46,1	293,7	306,8	212,5	9,1	5797	nn	nn	nn
03.05.2010	24	3,5	5,0	7,9	7,1	8,7	159,3	262,9	191,0	11,3	5287	nn	nn	nn
06.05.2010	27	3,5	5,0	11,1	7,3	74,0	107,0	222,6	174,0	12,4	4905	nn	nn	nn
10.05.2012	31	8,0	5,0	11,7	6,9	58,0	89,0	177,7	141,8	14,4	4439	nn	nn	nn
17.05.2010	38	10,0	5,0	12,5	6,6	35,4	143,3	132,2	119,3	12,7	4178	nn	nn	nn
20.05.2010	41	15,0	5,0	11,7	6,6	43,6	162,6	83,2	74,2	9,9	3964	nn	nn	4,2
25.05.2010	46	8,5	5,5	11,6	6,7	54,1	139,8	60,0	55,4	6,3	3882	nn	nn	nn
27.05.2010	48	9,0	5,0	11,6	6,8	46,1	98,5	73,7	69,5	7,8	3875	nn	nn	nn
31.05.2010	52	7,5	5,5	12,0	6,9	42,2	84,7	77,8	75,1	8,2	4074	nn	nn	nn
14.06.2010	66	8,0	5,5	12,4	7,2	143,9	14,9	113,6	97,4	10,5	4515	nn	nn	nn
21.06.2010	73	9,5	6,0	12,4	6,9	77,0	16,3	139,2	102,9	12,4	4478	nn	nn	nn
05.07.2010	87	11,5	8,5	13,2	6,9	155,6	47,2	159,0	109,5	13,8	4786	nn	nn	nn
12.07.2010	94	7,0	6,0	13,0	6,8	136,3	54,5	160,9	104,7	13,2	4653	nn	nn	nn
19.07.2010	101	8,5	5,5	12,8	6,7	75,6	238,5	160,5	108,0	14,7	4905	nn	nn	nn
26.07.2010	108	7,5	6,5	12,6	6,9	62,5	232,6	151,2	108,1	13,8	4768	nn	nn	nn
02.08.2010	115	10,0	7,5	12,3	6,8	44,4	227,3	151,0	98,4	14,5	4664	nn	nn	nn
09.08.2010	122	5,5	5,5	12,7	7,1	108,7	235,0	151,9	101,7	14,5	4801	nn	nn	nn
16.08.2010	129	7,5	7,0	12,2	6,8	80,4	235,6	151,0	95,6	14,3	4529	nn	nn	nn
23.08.2010	136	6,0	5,5	12,5	6,9	99,9	267,0	153,4	96,2	14,4	4785	nn	nn	nn
30.08.2010	143	4,5	5,0	12,7	6,9	100,9	259,6	154,5	93,1	14,3	4716	nn	nn	nn
06.09.2010	150	8,0	7,0	12,3	6,8	80,0	274,0	157,7	90,4	14,6	4602	nn	nn	nn
20.09.2010	164	4,0	6,0	12,9	6,8	67,9	278,9	164,3	97,1	15,4	4935	nn	nn	nn
04.10.2010	178	6,0	6,5	13,5	7,1	115,1	296,7	175,0	98,9	16,6	5097	nn	nn	nn

09.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]	6.0	[mV]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]
15.04.2010	6	9,5	5,0	10,9	6,8	22,4	195,2	320,3	224,8	11,0	5795	nn	nn	7,6
19.04.2010	10	5,0	5,0	12,8	6,8	59,9 25.5	88,2	223,2	180,1	10,7	5170	nn	nn	nn
22.04.2010	13	10,0	5,0	9,7	6,9	35,5	114,5	214,8	1/3,5	11,0	4938	nn	nn	nn
26.04.2010	1/	12,5	1,5	12,0	6,8	56,0	97,0	193,8	146,4	12,3	4801	nn	nn	nn
29.04.2010	20	15,0	0,5 5 0	12,1	0,0	20,5 27 1	142,2	110,5	94,0	9,8	4/35	nn	nn	nn
05.05.2010	24	15,0	5,0	12,0	0,0	57,1	138,4	96,6	84,0 71.7	9,0 7 0	40/3	nn	nn	nn
10.05.2010	27	15,0	5,0	11,5	0,0	69,9	1/2,2	83,9 80.5	71,7	7,8	4393	1 2	nn	nn
17.05.2010	20	13,0	5,0	11,7	6.4	65 A	191,2	09,5	70,9	7,7 7 7	4597	1,5	1111 nn	1111 nn
20.05.2010	30 41	12.5	5,0	11,9	0,4 6 5	61.5	100,5	99,5 109.6	75,0	2,7	4322	1111 nn	1111 nn	1111 nn
20.05.2010	41	13,5	5,0	11,0	0,5	201,5	180,5	07.5	73,5 60.0	0,9 0 2	4504	1111 nn	1111 nn	1111 nn
23.03.2010	40	14,5	5,5	12,0	0,0 6.6	30,7 40,4	100,9	97,5	65 0	0,5 7 5	4303	nn	nn	1111 nn
27.05.2010	40 52	10.0	5,0	11,0	6.5	40,4	190,2	101 4	75 1	7,5	4365	nn	nn	78
07.06.2010	50	0.5	5,5	11,9	0,5 6 5	37,9	100,0	101,4	73,1 80.4	9,1	4490	nn	nn	7,0 nn
14.06.2010	66	9,5 16.0	5,5	12,1 12.2	67	11.0	02.1	123,7	30, 4 72.2	9,4	4250	nn	nn	nn
21.06.2010	73	15,0	5,5 6.0	12,2	6.5	27.5	149 1	100.2	72,2 58.2	9,7 7 4	4294	nn	nn	nn
05 07 2010	87	15,0	8,0 8,5	11.2	6.5	73.0	180.0	62.2	32.5	7, 1 43	4176	nn	nn	nn
12 07 2010	94	10,0	6.0	11,2	6.6	76.0	149.0	83.8	52,5 47.8	т,5 7 2	4235	nn	nn	nn
19.07.2010	101	95	5,5	12.1	6.6	68.2	315.2	112.0	59.7	10.8	4230	1.6	nn	nn
26.07.2010	101	13.0	6.5	11.8	67	47 8	301.0	109.8	574	10,0	4223	1,0	nn	nn
02.08.2010	115	14.0	75	11,0	6.6	48.1	299.0	100,0	52.8	10,7	4169	1.0	nn	nn
09.08.2010	122	6.0	5.5	11.6	6.8	58.4	299.6	94.1	50.2	9.9	4184	nn	nn	nn
16.08.2010	129	4.0	7.0	11,0	6.8	72.2	317.4	93.1	47.9	10.1	4198	nn	nn	nn
23.08.2010	136	11.0	5.5	11.7	6.6	66.2	284.0	93.8	49.0	9.6	4345	nn	nn	nn
30.08.2010	143	14.5	5.0	11.6	6.6	50.4	325.7	98.7	47.6	10.5	4341	nn	nn	nn
06.09.2010	150	9.0	7.0	11.4	6.7	51.9	310.2	86.4	42.9	9.7	4140	nn	nn	nn
20.09.2010	164	8.0	6.0	11.9	6.8	19.2	326.7	95.6	42.0	10.4	4205	nn	nn	nn
04.10.2010	178	13.5	6.5	12.0	6.6	45.1	363.8	107.4	43.4	11.9	4297	nn	nn	nn
18.10.2010	192	9.0	5,0	12,5	6,9	83,1	344,7	104,6	47,4	11,3	4429	nn	nn	nn
25.10.2010	199	12,0	6,0	12,1	6.8	42,7	324,1	100,7	43,3	10,6	4097	nn	4,4	nn
08.11.2010	213	7,0	5,0	13,4	7,4	91,5	307,6	99,9	46,8	10,4	4760	nn	nn	nn
22.11.2010	227	9,0	5,0	11,8	6,7	40,7	284,7	105,5	45,0	10,9	4500	nn	nn	nn
29.11.2010	234	8,5	4,5	11,8	6,5	17,9	378,5	112,1	43,9	12,4	4063	nn	nn	nn
07.12.2010	242	7,0	5,0	12,3	6,6	77,3	352,8	93,1	42,0	10,3	4034	nn	nn	nn
13.12.2010	248	6,0	5,0	12,0	6,9	59,2	345,0	96,0	44,0	10,8	4327	nn	nn	nn
17.01.2011	283	10,0	5,0	10,7	6,7	50,0	334,5	96,4	46,2	10,3	4216	nn	nn	nn
31.01.2011	297	6,0	6,0	12,6	6,8	53,9	355,9	93,7	44,2	11,9	4664	nn	nn	nn
07.02.2011	304	5,0	5,0	12,0	6,9	42,4	330,9	92,6	40,1	11,6	4603	nn	nn	nn
14.02.2010	311	7,0	6,0	12,4	6,7	40,3	349,5	97,2	38,3	12,6	4519	nn	nn	nn
21.02.2011	318	8,0	7,0	12,5	6,8	31,6	362,0	100,4	37,3	12,5	4594	nn	nn	nn
28.02.2011	325	7,0	6,0	13,2	6,8	48,9	342,5	102,8	41,0	12,2	4664	nn	nn	nn
07.03.2011	332	7,0	6,0	13,2	6,8	29,6	351,1	95,8	38,8	11,3	4651	nn	nn	nn
14.03.2011	339	6,0	6,0	13,7	6,8	45,7	350,7	99,8	43,9	12,3	4742	nn	nn	nn
21.03.2011	345	7,0	6,0	14,3	6,8	38,0	375,8	108,7	39,8	12,7	5035	nn	nn	nn
28.03.2011	352	5,5	5,5	13,5	7,2	80,6	351,5	103,1	38,4	12,0	4931	nn	nn	nn

Tab. IIa.17: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,16-2,2 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

00 04 2010	Zoit	V	n	Sal	nЦ	T	Ca	Ma	K	Si	Na	Mn	A1	Fo
09.04.2010	Len	v	Р	Sai	pn	U	0.02	0.01	0.5	0.05	0.1	0.01	0.1	0.02
NG D	[T]]	r11	[]]	E . /11		F X 71	0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[lage]	[ml]	[bar]	[g/1]		[mv]	[mg/I]	[mg/l]	[mg/I]	[mg/I]	[mg/I]	[mg/l]	[mg/I]	[mg/I]
22.04.2010	13	3,0	5,0	7,6	7,5	96,7	371,6	481,8	301,4	11,8	6697	nn	nn	nn
26.04.2010	17	4,0	7,5	12,8	6,9	-68,7	415,4	432,7	288,2	11,3	6519	2,29	nn	34,8
29.04.2010	20	3,0	6,5	4,8	7,3	153,3	165,6	328,4	231,5	11,5	5621	nn	nn	nn
03.05.2010	24	2,0	5,0	х	7,4	76,0	59,2	309,0	220,3	11,6	5570	1,71	nn	nn
06.05.2010	27	2,0	5,0	х	7,6	148,7	31,3	288,1	212,2	11,6	5384	nn	nn	nn
25.05.2010	46	2,0	5,5	х	7,7	89,0	9,8	236,8	178,5	11,3	4880	nn	nn	nn
27.05.2010	48	2,5	5,0	х	7,4	78,4	13,9	246,7	172,0	13,3	4762	nn	nn	nn
31.05.2010	52	3,0	5,5	х	7,2	145,3	17,0	238,3	171,4	12,6	4871	nn	nn	nn
21.06.2010	73	2,0	6,0	х	7,7	100,9	7,9	279,5	173,8	13,8	4934	nn	nn	nn
05.07.2010	87	2,0	8,5	х	7,8	150,0	8,2	250,8	190,9	13,6	5079	nn	nn	nn
09.08.2010	122	2,0	5,5	х	8,0	122,6	168,6	280,1	156,5	15,6	4979	nn	nn	nn
16.08.2010	129	3,0	7,0	11,9	7,2	122,4	186,9	252,4	151,7	14,8	4619	nn	nn	nn
18.10.2010	192	2,0	5,0	х	х	х	120,4	248,1	145,0	16,0	5184	nn	nn	nn
25.10.2010	199	1,5	6,0	х	х	х	198,6	252,6	133,1	14,2	4654	nn	nn	nn
08.11.2010	213	2,0	5,0	х	х	х	149,2	284,7	153,0	17,0	5522	nn	nn	nn
15.11.2010	220	2,0	5,0	х	х	х	180,3	228,9	123,9	13,3	4444	nn	nn	nn
22.11.2010	227	1,5	5,0	х	х	х	172,7	255,3	124,7	13,8	4521	nn	nn	nn

Tab. IIa.18: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,6 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

Tab. IIa.19: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,32-2,36 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

09.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
22.04.2010	13	2,0	5,0	х	8,1	х	328,0	408,1	278,2	9,3	6689	nn	nn	nn
26.04.2010	17	3,0	7,5	8,1	6,5	106,0	241,3	346,0	248,3	12,0	6142	nn	nn	nn
29.04.2010	20	3,0	6,5	7,0	7,5	145,4	64,9	243,9	187,7	12,1	5280	nn	nn	nn
03.05.2010	24	2,0	5,0	х	7,6	120,0	34,7	212,5	176,4	12,4	5215	nn	nn	nn
06.05.2010	27	2,5	5,0	х	7,6	156,0	52,9	206,0	174,4	11,6	5170	nn	nn	nn
10.05.2010	31	2,0	5,0	х	7,9	185,5	31,2	189,9	167,6	12,4	5199	nn	nn	nn
25.05.2010	46	4,0	5,0	11,2	7,1	137,1	29,1	178,4	153,0	13,2	4866	nn	nn	nn
31.05.2010	52	2,0	5,5	х	7,6	123,0	6,8	179,5	144,3	12,0	4737	nn	nn	nn
07.06.2010	59	2,0	5,5	х	7,9	104,4	4,6	216,2	173,3	13,4	5150	nn	nn	nn
21.06.2010	73	2,0	6,0	х	8,1	97,0	4,8	207,8	155,6	13,4	4998	nn	nn	nn
05.07.2010	87	2,0	8,5	х	8,1	136,9	4,0	208,9	161,2	12,7	5259	nn	nn	nn
02.08.2010	113	2,0	7,5	х	7,9	84,0	173,4	225,9	149,9	11,0	5182	nn	nn	nn
25.10.2010	198	2,0	5,0	х	х	х	157,9	250,7	137,0	16,7	5071	nn	nn	nn

15.01.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
18.02.2010	33	4,0	5,0	х	6,7	х	245,1	443,4	210,1	13,0	5474	nn	nn	nn
22.02.2010	37	4,0	5,0	х	6,7	х	211,0	416,6	202,1	12,7	5499	nn	nn	nn
25.02.2010	40	4,0	5,0	х	6,6	х	346,3	419,4	178,6	11,6	4840	nn	nn	nn
01.03.2010	44	3,0	5,0	х	6,4	х	267,7	380,4	174,5	11,5	4600	nn	nn	nn
04.03.2010	47	3,0	5,0	9,0	6,6	х	274,8	357,4	163,1	11,0	4472	nn	nn	nn
08.03.2010	51	2,0	5,0	х	7,0	х	118,9	307,3	164,4	12,5	4756	nn	nn	nn
11.03.2010	54	4,0	5,0	х	7,0	х	263,1	312,3	150,3	11,4	4299	nn	nn	nn
15.03.2010	58	3,0	5,0	х	7,0	х	27,2	270,0	142,9	11,7	4434	nn	nn	nn
18.03.2010	61	2,0	5,0	х	6,4	х	16,4	269,6	144,1	11,0	4472	nn	nn	nn
08.04.2010	82	2,5	5,0	х	6,8	х	52,5	268,5	136,3	13,3	4517	nn	nn	nn
15.04.2010	89	3,0	5,0	7,6	7,3	х	53,5	246,4	124,2	12,6	4342	nn	nn	nn
19.04.2010	93	3,0	5,0	х	7,1	х	37,1	241,8	121,4	12,1	4342	nn	nn	nn
22.04.2010	96	3,0	5,0	х	7,4	183,5	68,5	234,1	134,1	11,4	4600	nn	nn	nn
29.04.2010	103	2,5	6,5	х	7,5	111,0	13,0	207,5	117,5	10,6	4493	nn	nn	nn
03.05.2010	107	4,5	5,0	6,8	6,8	81,1	94,0	206,8	116,0	10,9	4649	nn	nn	nn
14.06.2010	139	3,0	5,5	х	7,4	115,7	33,0	200,1	105,0	10,6	4301	nn	nn	nn
21.06.2010	146	2,0	6,0	х	7,0	72,2	18,4	217,2	102,4	11,3	4472	nn	nn	nn
16.08.2010	202	2,0	7,0	х	7,2	179,6	284,3	212,7	92,9	13,2	5011	nn	nn	nn
06.09.2010	223	2,0	7,0	х	7,8	146,8	283,0	193,3	82,0	13,2	4809	nn	nn	nn
04.10.2010	251	1,5	6,5	2,6	8,1	148,7	200,8	201,7	88,8	15,4	5260	nn	nn	nn
25.10.2010	283	2,0	5,0	9,4	7,4	163,6	174,4	188,1	75,6	14,9	4961	nn	nn	nn
08.11.2010	304	2,0	5,0	х	х	х	267,8	178,5	73,8	13,0	4519	nn	nn	nn
15.11.2010	311	2,0	5,0	х	х	х	177,0	196,8	76,2	14,5	4829	nn	nn	nn
22.11.2010	318	2,0	5,0	х	х	х	287,1	171,9	68,2	12,6	4447	nn	nn	nn

Tab. IIa.20: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_31, BCS-1: 3,3-3,8 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahre

Tab. IIa.21: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_3	1,
BCS-1: 3,3-3,8 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Real	k-
tionszeit: 1,5 Jahre	

15.01.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na 0.1	Mn	Al	Fe
NG Determ	[Tess]	[m]]	[hoal	[~/]]		[0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
<u>Datum</u>	[Tage]	[m] 5.0	[bar]	[g/1]	7.2		[IIIg/1]	[mg/1]	[mg/1]	[mg/1]	[mg/1] 6000	[Ing/1]	[mg/1]	[mg/1]
23.01.2010	10	5,0 7.0	5,0 5,0	4,0	6.0	x 25.0	434,5	704,2 675.3	288.8	0,5 6.8	6410	nn	nn	nn
28.01.2010	13	6.0	5,0	12,5	6.0	91 1	314,5	480.3	200,0	0,0	5204	1111 nn	nn	nn
01.02.2010	14	5.0	5,0	9,9	0,9	01,1	525,2 201 2	460,5	252,7	9,4	5149	1111 nn	1111 nn	1111 nn
18 02 2010	21	3,0	5,0	X	67	90,,0	201,2	400.2	201,9	9,0 10.5	5170	1111	1111 nn	1111 nn
18.02.2010	25	4,0	5,0 5.0	X	0,7	X	217,5	400,5	187,9	10,5	5222	nn	nn	nn
22.02.2010	33 20	4,0	5,0 5.0	X	0,9 6 7	X	220,7	391,2	180,5	10,9	5225	nn	nn	nn
25.02.2010	38 42	3,0	5,0 5.0	X 12.2	0,1	X	190,5	371,2 284.4	161,/	11,8	3233	nn	nn	nn
01.03.2010	42	4,0	5,0	13,2	0,7	X	169,4	384,4 274 1	100,8	10,5	4097	nn	nn	nn
11.03.2010	52	3,0	5,0	X	7,1	X	332,7	374,1	105,7	10,0	4629	nn	nn	nn
15.03.2010	50	2,5	5,0	X	/,1	x	140,4	320,4 208_4	280,6	9,4	4401	nn	nn	nn
18.03.2010	59	2,0	5,0	х	0,0	х	/5,8	298,4	143,4	11,0	4621	nn	nn	nn
22.03.2010	63	2,0	5,0	X	6,8	X 01.0	18,1	299,0	142,6	9,5	4685	nn	nn	nn
08.04.2010	/9	3,5	5,0	9,1	0,7	91,8	33,5	284,8	134,0	10,4	4510	nn	nn	nn
15.04.2010	86	2,0	5,0	х	7,0	х	66,2	289,7	152,8	12,5	4989	nn	nn	nn
19.04.2010	90	2,5	5,0	х	7,0	х	47,7	278,9	127,7	12,4	4605	nn	nn	nn
22.04.2010	93	2,5	5,0	X	7,3	X	42,0	275,2	136,5	12,1	4586	nn	nn	nn
26.04.2010	97	3,0	7,5	3,3	7,2	85,5	62,2	255,3	119,9	11,2	4402	nn	nn	nn
29.04.2010	100	3,0	6,5	X	7,3	132,0	119,4	254,4	131,7	11,6	4634	nn	nn	nn
03.05.2010	104	3,5	5,0	6,1	6,8	26,4	40,4	223,8	122,5	10,2	4785	nn	nn	nn
14.06.2010	145	4,5	5,5	12,5	7,1	142,1	111,2	217,2	119,1	9,9	4618	nn	nn	nn
21.06.2010	152	2,0	6,0	х	7,3	127,7	63,0	218,7	112,3	11,9	4638	nn	nn	nn
12.07.2010	173	2,0	6,0	х	6,9	169,8	20,9	216,1	103,8	13,6	4696	nn	nn	nn
19.07.2010	180	3,0	5,5	х	7,4	126,0	37,0	225,9	108,2	13,6	4901	nn	nn	nn
26.07.2010	187	2,0	6,5	х	7,3	154,4	302,7	220,8	112,0	14,1	4535	nn	nn	nn
02.08.2010	194	3,0	7,5	х	7,0	11,6	327,5	218,3	106,1	13,6	4734	nn	nn	nn
09.08.2010	201	3,0	5,5	х	7,6	135,5	322,5	207,8	99,4	13,4	4759	nn	nn	nn
16.08.2010	208	2,5	7,0	х	7,3	176,9	289,1	204,8	91,3	12,8	4639	nn	nn	nn
23.08.2010	215	2,5	5,5	х	7,3	157,1	289,8	187,3	80,6	12,4	4496	nn	nn	nn
30.08.2010	222	3,0	4,0	х	7,2	136,4	266,9	186,3	92,9	12,3	4610	nn	nn	nn
06.09.2010	229	3,0	7,0	х	7,3	144,8	312,6	181,4	112,6	12,2	4743	nn	nn	nn
20.09.2010	243	2,5	6,0	х	7,3	143,3	290,4	170,9	82,3	12,1	4671	nn	nn	nn
04.10.2010	257	2,0	6,5	4,0	7,4	180,0	306,1	160,5	91,0	12,5	4616	nn	nn	nn
11.10.2010	264	2,0	5,0	х	х	х	297,6	163,5	77,0	12,9	4840	nn	nn	nn
18.10.1940	271	3,0	5,0	х	х	х	302,2	161,3	76,6	13,7	4724	nn	nn	nn
25.10.2010	278	3,0	6,0	х	7,4	105,3	267,5	153,2	67,4	10,9	3847	nn	nn	nn
08.11.2010	292	2,5	5,0	х	х	х	280,7	162,8	68,9	13,4	4336	nn	nn	nn
15.11.2010	299	3,0	5,0	х	х	х	272,4	169,2	66,2	12,0	4202	nn	nn	nn
22.11.2010	306	3,0	5,0	х	х	х	294,8	163,5	64,9	12,3	4261	nn	nn	nn
07.12.2010	321	5,0	5,0	х	7,0	187,7	315,0	174,8	74,7	11,7	4690	nn	nn	nn
13.12.2010	327	2,5	5,0	х	х	х	335,3	156,7	65,5	11,5	4290	nn	nn	nn
31.01.2011	376	2,5	6,0	х	х	х	368,2	169,9	67,4	12,1	4819	nn	nn	nn
07.02.2011	383	3,0	5,0	х	х	х	346,3	158,3	61,8	12,0	4526	nn	nn	nn
14.02.2011	390	2,5	6,0	х	х	х	355,1	148,2	56,8	12,7	4209	nn	nn	nn
21.02.2011	397	2,5	7,0	х	х	х	350,6	148,7	58,7	12,3	4374	nn	nn	nn
28.02.2011	404	2.0	6.0	х	х	х	354.7	141.8	56.9	12.4	4519	nn	nn	nn
07.03.2011	411	2.5	6.0	х	x	x	341.0	139.3	54.8	12.4	4318	nn	nn	nn
14.03.2011	418	2.5	6.0	x	x	x	333.7	144.5	56.2	12.3	4458	nn	nn	nn
21.03.2011	425	2.5	6.0	x	x	x	345.6	135.7	54.8	12.4	4384	nn	nn	nn
28.03 2011	432	5.0	5,5	74	77	108.2	321.0	136.9	54 7	12.0	4362	nn	nn	nn
18.04.2011	453	2.0	5,0	x,,,	,,, x	x	335 7	156.1	54.0	12,0	4663	nn	nn	nn
02 05 2011	467	2,0	4.0	x x	x x	v	342 1	168 1	58.3	13.0	5162	nn	nn	nn
09 05 2011	407	5,0 2 5	4,0 5 0	A V	A V	A V	35/ 6	121.0	520	12.0	4602	nn	nn	nn
30.05.2011	405	2,5	5,0	A V	A V	A V	321 7	172.2	50.0	12,0	4624	1111 pp	1111 nn	1111 nn
06 06 2011	495 502	5,5 25	5,0	A V	Á V	X	321,7	123,3	70 2	12,4	4054	1111 pp	1111 nn	1111 nn
20.06.2011	516	2,3 2.0	5,0	A V	Á v	X	3/0.0	119,0	47,5 17 5	12,4	4549	1111 nr	1111 nn	1111 p.p.
20.00.2011	510	2,0	5,0	A V	х х	X	202 1	112.5	47,J 16 1	13,9	4404	1111	1111 nn	1111 nn
27.00.2011	523	∠,)	5,0	А	Х	А	505,1	113,3	40,1	12,/	4301	1111	1111	1111

15.01.2010	Zeit	V	р	Sal	pН	U		Mg	K	Si	Na 0.1	Mn		Fe
Detum	[Tage]	[m]]	[bar]	[a/1]		[mV]	0,02	0,01 [mg/l]	0,5 [mg/l]	0,05	0,1 [mg/1]	0,01 [mg/1]	0,1 [mg/1]	0,02
25.01.2010	10	7.0	5.0	12.3	74	136.1	743 A	475 Q	314.2	7 1	6467	nn	nn	nn
28.01.2010	13	7,0	5,0	77	7,4	150,1 v	692.8	497.8	276.9	7.8	6068	nn	nn	nn
01 02 2010	14	6.0	5,0	99	69	107.0	684 9	365.4	280.9	7,0 8.0	6172	nn	nn	nn
08.02.2010	21	3.5	5,0),) x	7.2	107,0 v	591.0	493 5	200,9	0,) 7 7	5366	nn	nn	nn
18 02 2010	31	4.0	5,0	x	7,2	x	562.4	417 1	219.2	93	5315	nn	nn	nn
22 02 2010	35	3 5	5,0	x	7.2	x	546 1	308.3	206.5	95	5140	nn	nn	nn
25.02.2010	38	2.0	5.0	x	7.0	x	453.4	507.0	200,5	11.6	5334	nn	nn	nn
18 02 2010	34	$\frac{2,0}{2,0}$	5.0	x	x,0	x	453.9	517.3	199.8	12.4	5464	nn	nn	nn
22.02.2010	38	2.0	5.0	x	x	x	471.6	500.9	190.8	12,1	5421	nn	nn	nn
25.02.2010	41	22.0	5,0	x	x	x	477.4	481 2	169.1	10.4	4740	nn	nn	nn
04 03 2010	45	2.0	5.0	67	75	x	456.6	489.2	162.0	10,1	4701	nn	nn	nn
11.03.2010	52	2.0	5.0	x	7.5	x	454.8	453.8	177.3	12.9	5294	nn	nn	nn
18.03.2010	59	2.0	5.0	x	7.0	x	373.4	398.0	143.9	12.5	4747	nn	nn	nn
08.04.2010	80	2.0	5.0	x	7.4	x	371.9	457.6	169.5	13.1	5732	nn	nn	nn
15.04.2010	87	2.0	5.0	x	7.4	x	424.5	379.5	138.2	13.2	4977	nn	nn	nn
22.04.2010	94	2.0	5.0	7.7	.,.	x	420.2	353.6	130.3	13.5	4823	nn	nn	nn
26.04.2010	98	3.0	7.5	x	6.8	х	411.5	333.8	124.9	13.0	4763	nn	nn	nn
29.04.2010	101	2.5	6.5	х	7.6	х	375.4	285.0	122.6	11.6	4946	nn	nn	nn
03.05.2010	105	2,0	5,0	х	7,1	х	327,6	278,9	120,1	11,3	4950	1,10	nn	nn
20.05.2010	122	2,5	5,0	4,3	7.7	х	260,2	206,9	95,8	9.7	4111	nn	nn	nn
25.05.2010	127	2,0	5,5	x	7,5	160,0	249,2	240,5	110,0	11,6	4770	nn	nn	nn
27.05.2010	129	2,0	5,0	х	6,7	x	259,6	224,3	105,2	11,6	4594	nn	nn	nn
07.06.2010	139	2,0	5,5	х	7,4	143,3	163,3	245,4	116,3	12,1	4439	nn	nn	nn
21.06.2010	153	2,0	6,0	х	7,2	х	154,9	249,3	102,2	13,0	4631	nn	nn	nn
05.07.2010	167	2,5	8,5	x	7,2	137,6	139,4	244,8	105,3	13,0	4789	nn	nn	nn
12.07.2010	174	2,0	6,0	х	7,2	130,5	151,6	239,3	99,0	12,8	4661	nn	nn	nn
19.07.2010	181	2,0	5,5	х	7,3	130,0	421,0	233,9	98,7	14,4	4719	1,04	nn	nn
26.07.2010	188	2,0	6,5	x	7,4	130,4	441,7	233,8	96,7	14,4	4815	nn	nn	nn
02.08.2010	195	2,0	7,5	х	7,3	х	413,1	228,8	92,4	14,0	4739	nn	nn	nn
16.08.2010	209	2,0	7,0	х	7,6	162,0	373,5	211,1	111,4	13,8	4692	nn	nn	nn
30.08.2010	223	2,0	5,0	х	7,7	141,9	360,3	195,7	82,3	13,3	4602	nn	nn	nn
06.09.2010	230	2,0	7,0	х	7,4	160,0	341,2	190,7	81,5	13,6	4554	nn	nn	nn
20.09.2010	244	2,0	6,0	х	7,3	130,4	389,9	186,6	80,4	13,5	4728	1,34	nn	nn
04.10.2010	288	2,0	6,5	3,4	7,6	115,0	386,8	195,8	91,8	13,5	5271	1,94	nn	nn
18.10.2010	276	2,5	5,0	х	х	х	320,3	203,5	84,8	16,3	5405	nn	nn	nn
25.10.2010	283	2,0	6,0	х	х	х	361,8	179,9	75,6	11,9	4494	nn	nn	nn
08.11.2010	297	2,0	5,0	х	х	х	299,9	195,4	85,0	13,0	4950	nn	nn	nn
15.11.2010	304	2,0	5,0	х	х	х	322,5	173,5	72,0	12,6	4257	nn	nn	nn
22.11.2010	311	2,0	5,0	х	х	х	332,6	167,7	71,5	12,7	4277	nn	nn	nn
07.12.2010	326	2,0	5,0	х	х	х	371,5	181,6	79,1	13,4	4818	nn	nn	nn
13.12.2010	332	2,0	5,0	х	х	х	351,7	161,4	70,1	13,4	4268	nn	nn	nn

Tab. IIa.22: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_31, BCS-1: 3,3-3,8 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahre

Reaktionstemperatur: 75°C

Tab. IIa.23: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_36, BCS-3: 3,29-3,39 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

23.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	6	5,0	6,5	10,6	7,1	111,0	132,3	163,1	180,6	12,3	5311	nn	nn	nn
03.05.2010	10	4,5	5,5	6,8	7,2	145,9	105,4	180,7	183,4	11,5	5242	nn	nn	nn
06.05.2010	13	4,0	5,0	12,2	7,5	126,6	98,3	189,9	180,1	11,7	5179	nn	nn	nn
10.05.2010	17	4,0	5,0	х	7,7	140,9	57,1	188,9	185,5	12,4	5298	nn	nn	nn
17.05.2010	24	3,0	5,0	х	6,5	76,2	83,9	187,3	190,8	12,6	5644	nn	nn	nn
20.05.2010	27	2,0	5,0	5,5	7,5		63,0	180,4	163,1	12,8	4962	nn	nn	nn
25.05.2010	32	2,0	5,5	х	7,6	129,4	31,1	183,4	155,7	15,5	4917	nn	nn	nn
31.05.2010	38	5,0	5,5	12,3	7,0	96,1	59,5	175,7	147,8	14,8	4739	nn	nn	nn
05.07.2010	73	2,5	8,5	х	7,7	128,5	7,3	159,1	150,9	17,3	5155	nn	nn	nn
12.07.2010	80	2,5	6,0	х	7,4	165,1	13,4	200,9	170,8	17,3	5580	nn	nn	nn
19.07.2010	87	2,0	5,5	х	7,8	103,0	161,0	207,6	169,0	19,7	5887	nn	nn	nn

Tab. IIa.24: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_36, BCS-3: 3,29-3,39 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

23.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	6	3,5	6,5	10,6	7,1	122,3	127,5	164,2	195,0	15,1	5389	nn	nn	nn
03.05.2010	10	3,5	5,5	8,1	7,2	131,7	82,1	172,3	199,6	15,1	5564	nn	nn	nn
06.05.2010	13	4,0	5,0	11,8	7,0	59,4	97,2	176,2	196,2	14,7	5513	nn	nn	nn
10.05.2010	17	2,0	5,0	х	7,7	152,0	55,3	174,7	183,0	15,9	5347	nn	nn	nn
17.05.2010	24	2,5	5,0	х	7,3	114,9	62,7	169,2	179,5	16,1	5270	nn	nn	nn
20.05.2010	27	4,0	5,0	7,9	7,0	56,5	43,0	176,3	175,5	15,9	5168	nn	nn	nn
27.05.2010	34	2,0	5,0	х	7,2	87,8	20,3	163,1	155,3	16,9	4758	nn	nn	nn
31.05.2010	38	2,0	5,5	х	7,5	97,0	15,9	167,9	154,2	16,8	4873	nn	nn	nn
07.06.2010	45	2,0	5,5	х	7,4	106,0	14,7	181,4	159,6	17,8	4987	nn	nn	nn

15.02.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG			-		-		0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
25.02.2010	10	5,0	5,0	х	6,7	Х	712,0	613,5	311,5	10,2	6428	2,31	nn	1,80
01.03.2010	14	5,0	5,0	9,5	6,7	79,7	692,9	556,0	303,0	11,0	6090	2,30	nn	2,00
04.03.2010	17	4,0	5,0	11,2	7,0	67,0	613,1	477,8	267,9	11,9	5533	1,42	nn	nn
08.03.2010	21	3,0	5,0	7,7	6,9	х	544,5	433,8	230,7	12,3	5385	1,03	nn	nn
11.03.2010	24	4,0	5,0	8,9	7,3	118,7	431,9	395,6	233,0	12,7	5201	nn	nn	nn
15.03.2010	28	3,0	5,0	7,3	7,2	х	312,4	381,2	206,7	15,0	5383	nn	nn	nn
18.03.2010	31	3,0	5,0	4,5	6,4	х	312,5	369,6	202,3	16,2	5314	nn	nn	nn
22.03.2010	35	3,0	5,0	х	6,6	х	267,6	348,7	191,0	15,2	5199	nn	nn	nn
08.04.2010	52	3,0	5,0	х	6,7	х	246,3	348,9	193,1	18,4	5357	nn	nn	nn
12.04.2010	56	3,5	4,5	11,1	7,1	102,7	346,7	380,8	189,9	17,5	5600	nn	nn	nn
15.04.2010	59	3,0	4,5	7,0	6,8	86,7	339,7	335,3	177,4	17,6	5272	nn	nn	nn
19.04.2010	63	3,0	5,0	8,1	6,8	110,4	303,1	317,1	170,6	17,7	5157	nn	nn	nn
22.04.2010	66	3,0	5,0	х	7,1	180,7	319,1	299,4	177,5	17,1	5083	nn	nn	nn
26.04.2010	70	3,0	7,0	7,7	7,3	110,5	306,0	288,4	153,6	16,9	4899	nn	nn	nn
29.04.2010	73	3,0	6,5	х	7,3	145,0	267,6	245,3	150,1	15,2	5098	nn	nn	nn
03.05.2010	77	3,5	6,5	7,6	7,5	138,4	208,9	241,7	149,7	15,7	5124	nn	nn	nn
06.05.2010	80	3,0	5,0	х	7,5	120,1	212,2	226,7	147,8	15,3	4897	nn	nn	nn
10.05.2010	84	3,0	5,0	х	х	х	196,2	218,2	138,5	16,3	4970	nn	nn	nn
25.05.2010	99	4,5	5,5	10,1	6,8	81,0	207,2	195,5	127,2	17,8	4748	nn	nn	nn
31.05.2010	105	3,0	5,5	х	7,1	55,5	164,2	188,5	123,0	17,7	4793	nn	nn	nn
05.07.2010	140	4,0	8,5	10,9	7,0	152,4	119,8	204,4	116,4	19,4	4639	nn	nn	nn
12.07.2010	147	3,5	6,0	11,8	7,0	162,3	112,7	210,7	117,5	20,2	4585	nn	nn	nn
26.07.2010	161	2,5	6,5	х	7,6	165,5	303,1	200,4	116,9	20,0	4695	1,03	nn	nn
02.08.2010	168	2,0	7,5	х	7,7	77,5	298,8	200,5	108,9	19,9	4737	1,59	nn	nn
09.08.2010	175	2,0	5,5	х	7,7	122,0	305,5	202,5	112,8	19,0	4917	2,46	nn	nn
16.08.2010	182	2,0	6,5	х	7,8	125,0	299,7	193,1	113,3	18,4	4942	3,87	nn	nn

Tab. IIa.25: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_31, BCS-1: 3,3-3,5 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate

15.02.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
25.02.2010	10	4,0	5,0	х	6,8	х	453,8	514,1	346,6	11,3	6624	3,86	nn	2,57
01.03.2010	14	3,0	5,0	х	х	х	315,9	443,8	328,0	11,4	6437	0,93	nn	nn
04.03.2010	17	4,0	5,0	11,2	7,0	79,1	275,2	376,7	307,2	12,2	5921	1,13	nn	nn
08.03.2010	21	4,0	5,0	4,9	6,9	70,0	250,2	308,6	263,8	12,6	5308	1,54	nn	nn
11.03.2010	24	4,0	5,0	7,8	7,2	150,3	215,8	284,2	241,1	13,0	4984	1,33	nn	nn
15.03.2010	28	4,0	5,0	11,8	6,6	х	111,8	244,7	215,6	13,2	5088	nn	nn	3,12
18.03.2010	31	4,5	5,0	7,9	6,8	46,2	94,5	241,4	214,6	13,7	5023	nn	nn	nn
22.03.2010	35	4,0	5,0	11,5	6,8	47,1	76,9	229,2	212,5	14,0	5104	nn	nn	1,94
08.04.2010	52	4,0	5,0	10,3	6,8	144,7	90,6	217,9	194,5	16,6	5123	nn	nn	nn
12.04.2010	56	4,0	4,5	11,9	7,2	111,2	98,6	213,9	202,9	16,1	5335	nn	nn	nn
15.04.2010	59	4,5	4,5	11,5	7,1	73,6	74,6	206,8	181,9	16,0	5115	nn	nn	nn
19.04.2010	63	4,5	5,0	12,2	7,1	110,7	87,4	199,5	185,6	16,2	5122	nn	nn	nn
22.04.2010	66	4,0	5,0	9,8	7,1	111,7	105,5	196,0	173,7	16,0	4955	nn	nn	nn
26.04.2010	70	4,5	7,0	8,6	7,0	102,6	138,2	196,0	169,8	16,5	5033	nn	nn	nn
29.04.2010	73	4,5	6,5	11,9	7,1	131,5	63,1	173,9	152,2	14,4	4684	nn	nn	nn
03.05.2010	77	4,5	6,5	10,7	7,0	142,0	75,2	167,8	154,1	14,4	4716	nn	nn	nn
06.05.2010	80	3,5	5,0	8,6	6,6	118,4	54,7	173,7	147,3	13,6	4761	nn	nn	nn
10.05.2010	84	2,5	5,0	х	6,5	154,5	40,6	162,6	138,0	15,6	4669	nn	nn	nn
17.05.2010	91	4,0	5,0	10,9	7,0	12,4	64,9	166,5	150,2	14,8	5046	nn	nn	nn
20.05.2010	94	3,5	5,0	6,1	7,1	41,6	33,0	172,6	169,5	15,9	4795	nn	nn	nn
25.05.2010	99	4,0	5,5	9,4	7,0	41,4	66,1	168,1	143,1	13,9	4915	1,15	nn	nn
27.05.2010	101	2,0	5,0	х	7,0	64,0	30,7	164,6	125,1	16,3	4521	nn	nn	nn
31.05.2010	105	2,0	5,5	х	6,8	143,0	36,0	163,6	130,4	16,7	4779	nn	nn	nn
07.06.2010	112	4,0	5,5	10,7	7,2	115,7	30,4	180,4	145,3	16,5	4989	nn	nn	nn
05.07.2010	140	4,0	8,5	12,5	7,0	126,5	47,5	216,6	159,7	15,1	5464	nn	nn	nn
12.07.2010	147	3,5	6,0	10,1	7,2	147,0	24,0	181,9	145,1	16,1	4897	nn	nn	nn
19.07.2010	154	3,0	5,5	9,6	7,2	125,6	213,2	162,3	138,7	2,0	4983	nn	nn	nn
26.07.2010	162	2,0	6,5	10,1	7,5	138,3	203,6	187,8	140,6	16,5	5307	nn	nn	nn
02.08.2010	169	4,5	7,5	10,0	7,2	106,3	187,8	163,5	131,8	16,2	5085	nn	nn	1,24
09.08.2010	176	4,0	5,5	12,5	7,4	116,2	187,3	153,3	121,1	16,3	4884	nn	nn	nn

Tab. IIa.26: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_33, BCS-3: 1,09-1,13 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate

Tab. IIa.27:	: Ergebni	sse der	Fluida	nalytik aus	den	Reaktionse	experimenten an	n Opa	alinuston (CS_	_33,
BCS-3: 1,0)9-1,13 n	n) bei	75°C,	gemessen	mit	ICP-OES,	Leitfähigkeits-	und	pH-Messgerä	ten.
Reaktionsz	eit: 6 Mo	nate		-			-			

23.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG			-		-		0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	6	2,5	6,5	х	7,7	х	165,7	258,3	251,1	11,2	5327	nn	nn	nn
03.05.2010	10	3,5	6,5	10,4	7,4	150,8	147,5	246,7	237,2	11,7	5475	nn	nn	nn
06.05.2010	13	4,0	5,0	13,4	7,2	82,7	129,6	219,8	208,9	11,3	5143	nn	nn	nn
10.05.2010	17	2,5	5,0	х	7,6	156,2	82,0	196,6	185,0	12,9	4750	nn	nn	nn
17.05.2010	24	2,0	5,0	х	8,0	х	46,8	190,5	175,5	13,1	4745	nn	nn	nn
25.05.2010	32	2,0	5,5	х	7,5	95	24,7	203,0	176,5	14,4	5180	nn	nn	nn
31.05.2010	38	2,0	5,5	х	7,6	132	23,2	171,3	154,3	12,4	4703	nn	nn	nn
07.06.2010	45	2,0	5,5	х	7,9	95	70,2	189,2	180,0	11,6	5427	nn	nn	nn

Tab. IIa.28: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_36, BCS-3: 2,85-2,89 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

23.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	6	3,0	6,5	4,6	7,5	х	124,8	264,1	266,8	13,6	5387	nn	nn	nn
03.05.2010	13	2,5	6,5	8,2	7,6	139,6	88,6	247,1	250,7	13,1	5582	nn	nn	nn
06.05.2010	16	2,0	5,0	х	7,6	х	86,4	219,9	225,0	12,7	5383	nn	nn	nn
10.05.2010	20	2,0	5,0	х	7,3	153,4	33,4	219,5	215,3	10,9	5405	nn	nn	nn
20.05.2010	30	3,0	5,0	х	8,0	98,3	36,0	213,9	196,3	13,4	5286	nn	nn	nn
07.06.2010	48	3,0	5,5	8,4	7,3	127,1	13,2	200,5	180,7	15,9	5263	nn	nn	nn

23.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG			-		-		0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
03.05.2010	10	4,5	6,5	14,9	6,9	38,1	278,5	315,8	256,3	10,7	6224	nn	nn	nn
10.05.2010	17	3,5	5,0	х	7,1	127,4	155,7	248,6	213,9	12,0	5657	nn	nn	nn
17.05.2010	24	5,0	5,0	14,6	7,0	66,3	148,2	229,4	191,6	12,8	5237	nn	nn	nn
20.05.2010	27	3,5	5,0	6,7	7,2	78,4	96,4	205,2	175,3	13,1	4966	nn	nn	nn
27.05.2010	34	2,0	5,0	х	6,9	х	31,9	190,8	155,2	13,8	4772	nn	nn	nn
31.05.2010	38	2,5	5,5	х	7,5	115,0	57,5	178,7	154,6	13,3	4713	nn	nn	nn
26.07.2010	94	2,5	5,5	х	8,0	114,0	158,5	237,5	161,7	13,1	5570	nn	nn	nn
02.08.2010	101	2,0	7,5	х	7,8	97,9	155,4	226,1	155,5	12,9	5427	nn	nn	nn
09.08.2010	108	2,0	5,5	х	7,8	111,0	174,8	225,4	155,9	14,1	5571	nn	nn	nn
30.08.2010	129	2,0	5,0	х	7,9	96,0	134,9	201,4	164,9	13,8	5685	nn	nn	nn
06.09.2010	136	2,0	7,0		7,9	123,0	178,9	202,9	158,0	15,3	5510	nn	nn	nn
18.10.2010	178	2,0	5,0	х	х	х	187,0	199,9	138,9	20,1	5714	nn	nn	nn
25.10.2010	185	2,0	6,0	х	х	х	164,7	184,4	122,1	17,9	4893	nn	nn	nn
08.11.2010	199	1,5	5,0	х	х	х	130,4	190,7	147,5	18,2	5928	nn	nn	nn
15.11.2010	206	2,5	5,0	х	х	х	184,2	186,3	129,9	18,0	5235	nn	nn	nn
22.11.2010	213	2,0	5,0	х	х	х	191,1	177,4	113,6	18,0	4630	nn	nn	nn
07.12.2010	228	2,0	5,0	х	х	х	196,2	174,5	112,8	17,3	4657	nn	nn	nn
13.12.2010	234	2,0	5,0	х	х	х	171,8	168,3	113,6	16,8	4769	nn	nn	nn

Tab. IIa.29: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_36, BCS-3: 3,18-3,25 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

Tab. IIa.30: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_36, BCS-3: 2,65-2,69 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

23.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG			-		-		0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	6	3,5	6,5	6,0	7,3	х	246,60	300,40	256,40	11,81	5705	nn	nn	nn
03.05.2010	10	3,5	6,5	7,9	7,7	117,7	151,8	273,6	244,3	12,9	5651	nn	nn	nn
06.05.2010	13	4,0	5,0	11,1	7,3	104,9	144,0	244,2	219,5	13,4	5339	nn	nn	nn
10.05.2010	17	3,5	5,0	х	7,4	138,6	139,3	236,9	200,4	12,7	5281	nn	nn	nn
17.05.2010	24	2,0	5,0	х	7,8	х	99,6	234,1	207,5	13,0	5636	nn	nn	nn
20.05.2010	27	2,0	5,0	х	7,8	109,1	29,9	216,0	183,4	14,0	5177	nn	nn	nn
25.05.2010	32	3,0	5,5	7,5	7,5	116,1	84,7	207,8	177,9	13,2	5128	nn	nn	nn
27.05.2010	34	2,0	5,0	х	7,4	х	17,7	201,9	162,3	14,5	4872	nn	nn	nn
31.05.2010	38	2,5	5,5	х	7,7	103,9	25,2	199,1	175,5	13,0	5349	nn	nn	nn
07.06.2010	45	2,5	5,5	х	7,9	110,7	10,1	220,1	168,1	16,1	5043	nn	nn	nn
05.07.2010	73	2,0	8,5	х	7,0	х	8,6	207,2	159,7	18,4	5431	nn	nn	nn
12.07.2010	80	2,0	6,0	х	х	х	14,2	199,5	185,2	19,9	5763	nn	nn	nn
19.07.2010	87	2,0	5,5	х	х	х	179,7	208,1	171,7	20,7	5622	nn	nn	nn
26.07.2010	94	2,5	6,5	х	7,6	124,4	209,3	195,0	150,4	19,7	5152	1,37	nn	nn
02.08.2010	101	2,5	7,0	х	6,9	107,5	219,9	205,1	161,9	21,1	5412	1,22	nn	nn
23.08.2010	122	2,0	5,5	х	7,7	121,3	208,4	188,8	147,3	21,1	5435	1,16	nn	nn
30.08.2010	129	2,0	5,0	х	7,9	91,2	164,6	223,6	158,5	13,2	5765	nn	nn	nn
06.09.2010	136	2,0	7,0	х	7,7	108,0	115,4	163,9	153,3	12,5	5818	nn	nn	nn
20.09.2010	150	2,0	6,0	х	7,8	125,0	130,7	137,5	132,6	15,4	5122	nn	nn	nn
04.10.2010	164	2,0	6,0	х	7,3	106,1	183,8	161,9	149,8	19,7	5962	nn	nn	nn
18.10.2010	178	1,5	5,0	х	х	х	192,0	164,1	133,2	20,2	5513	1,70	nn	nn
25.10.2010	185	2,0	6,0	х	х	х	188,2	211,4	132,0	17,6	5139	nn	nn	nn
08.11.2010	199	1,5	5,0	х	х	х	142,0	195,8	156,7	15,9	6471	nn	nn	nn
15.11.2010	206	2,5	5,0	х	х	х	170,0	173,5	124,5	16,4	5245	nn	nn	nn
22.11.2010	213	2,5	5,0	х	х	х	185,3	175,9	118,2	16,9	5023	nn	nn	nn
29.11.2010	220	2,0	5,0	х	х	х	159,0	169,9	120,7	16,6	4936	nn	nn	nn
07.12.2010	228	2,0	5,0	х	х	х	136,1	184,9	126,8	12,8	5499	nn	nn	nn
13.12.2010	234	3,0	5,0	х	х	х	120,6	175,0	121,0	13,7	5151	nn	nn	nn
21.02.2011	304	3,0	7,0	х	х	х	178,0	166,0	101,3	18,7	4890	nn	nn	nn

15 02 2010	Zeit	V	n	Sal	nH	IJ	Са	Mσ	к	Si	Na	Mn	Al	Fe
NG	Lett	•	Р	Sui	pii	U	0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
08.04.2010	52	6,0	5,0	15,8	6,8	75,0	319,6	398,6	249,9	17,2	6317	nn	nn	nn
19.04.2010	63	2,0	5,0	х	7,7	х	142,0	328,5	229,9	17,2	6184	nn	nn	nn
26.04.2010	70	2,0	7,0	х	7,4	115,0	184,9	291,1	219,8	17,0	5959	nn	nn	nn
29.04.2010	73	2,5	6,5	х	7,6	135,0	145,2	262,0	194,3	15,4	5435	nn	nn	nn
10.05.2010	84	2,5	5,0	х	7,3	162,0	104,9	227,7	173,4	15,9	5191	nn	nn	nn
07.06.2010	112	2,0	5,5	х	7,4	128,8	126,6	216,8	167,1	17,4	4897	nn	nn	nn
05.07.2010	140	2,0	8,5	х	6,9	120,4	199,0	219,7	153,6	18,3	4781	nn	nn	nn
12.07.2010	147	2,0	6,0	х	7,2	150	113,4	211,3	152,5	18,0	4953	nn	nn	nn
19.07.2010	154	2,0	5,5	х	7,0	124,0	202,2	227,2	153,2	21,3	4978	nn	nn	nn
26.07.2010	161	3,0	6,5	х	7,3	118,3	229,3	218,6	159,1	20,0	4933	nn	nn	nn
02.08.2010	168	2,5	7,0	10,7	7,5	108,7	229,3	204,0	144,9	19,1	4710	nn	nn	nn
09.08.2010	175	2,0	5,5	х	7,4	115,9	226,3	198,2	152,3	19,5	4651	nn	nn	nn
23.08.2010	189	2,5	5,0	х	7,4	130,6	220,8	189,0	145,0	19,1	4608	nn	nn	nn
30.08.2010	196	3,0	5,0	11,4	6,9	103,4	221,2	183,7	133,6	19,4	4566	nn	nn	nn
06.09.2010	203	2,5	7,0	х	7,0	140,5	232,8	177,3	138,1	19,8	4479	nn	nn	nn
04.10.2010	231	2,0	6,0	х	х	х	244,5	175,7	123,0	19,9	4800	nn	nn	nn
17.01.2011	336	3,0	5,0	х	7,1	142,3	290,9	173,5	129,7	18,8	5392	nn	nn	nn
07.02.2011	357	3,5	5,0	11,5	7,2	144,0	296,7	175,5	123,9	19,3	5074	nn	nn	nn
21.02.2011	371	2,5	5,0	х	х	х	314,0	172,5	106,4	21,2	4988	nn	nn	nn
21.03.2011	399	2,0	5,0	х	х	х	281,6	162,3	96,9	19,1	4756	nn	nn	nn

Tab. IIa.31: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am (CS_33, BCS-3: 1,25-1,3 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahr

Tab. IIa.32: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_33, BCS-3: 1,0-1,03 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahr

15.02.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
25.02.2010	10	4,0	5,0	х	6,9	х	343,4	579,6	377,0	9,3	6931	2,20	nn	nn
01.03.2010	14	5,0	5,0	5,7	7,1	х	392,9	479,0	349,7	9,2	6479	3,91	nn	nn
04.03.2010	17	5,0	5,0	10,4	7,2	62,3	324,4	434,0	308,4	10,1	5948	2,48	nn	nn
11.03.2010	24	5,0	5,0	9,5	7,2	149,8	209,3	327,2	265,4	10,7	5396	1,53	nn	nn
22.03.2010	35	2,0	5,0	х	7,0	х	21,1	265,2	223,9	13,3	5376	nn	nn	nn
08.04.2010	51	2,0	5,0	х	7,5	х	15,0	266,7	240,4	12,9	6139	nn	nn	nn
12.04.2010	55	2,0	4,5	х	7,4	х	17,5	249,2	234,4	15,7	5719	nn	nn	nn
15.04.2010	58	2,0	5,0	х	7,3	х	13,9	232,9	220,8	15,1	5670	nn	nn	nn
19.04.2010	62	2,0	5,0	х	7,5	х	16,8	219,8	208,2	15,6	5545	nn	nn	nn
22.04.2010	65	2,0	5,0	х	7,7	х	37,7	207,9	196,7	14,1	5326	nn	nn	nn

15.02.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG			-		-		0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
25.02.2010	10	2,0	5,0	х	7,2	х	433,6	377,2	264,8	10,4	6580	0,95	nn	nn
01.03.2010	14	3,0	5,0	х	7,6	171,0	302,7	316,5	268,2	10,8	6095	nn	nn	nn
04.03.2010	17	3,0	5,0	9,5	7,0	10,5	321,6	289,3	239,5	9,3	6028	1,74	nn	nn
11.03.2010	24	4,0	5,0	2,8	7,6	х	197,5	235,1	203,0	12,2	5402	nn	nn	nn
18.03.2010	31	2,5	5,0	х	7,1	х	48,2	167,1	149,1	11,9	4345	nn	nn	nn
22.03.2010	35						49,3	158,2	147,1	12,6	4403	nn	nn	nn
08.04.2010	52	2,0	5,0	х	7,6	х	34,2	160,4	191,5	15,6	5856	nn	nn	nn
12.04.2010	56	2,5	4,5	х	7,2	х	47,9	157,7	162,0	14,9	4997	nn	nn	nn
19.04.2010	63	2,0	5,0	х	7,4	х	56,7	169,8	150,6	14,7	4889	nn	nn	nn
22.04.2010	66	2,0	5,0	х	7,0	х	51,1	159,6	146,1	15,7	4837	nn	nn	nn
06.05.2010	80	2,0	5,0	х	7,6	х	46,8	170,5	148,7	17,1	5117	nn	nn	nn
20.05.2010	94	3,0	5,0	х	7,3	118,0	41,0	170,3	152,1	18,2	5347	nn	nn	nn
25.05.2010	99	2,5	5,5	х	7,2	132,0	70,3	159,7	146,5	18,0	5325	nn	nn	nn
27.05.2010	101	3,0	5,0	х	7,1	99,6	54,5	151,7	136,4	16,2	4861	nn	nn	nn
05.07.2010	140	2,5	8,5	х	7,4	148,3	31,3	162,8	142,8	19,8	5602	nn	nn	nn
12.07.2010	147	2,5	6,0	х	7,4	146,8	17,8	178,2	147,5	20,9	5424	nn	nn	nn
26.07.2010	161	2,0	6,5	х	7,5	108,5	191,9	196,0	144,4	21,7	5361	1,04	nn	nn

Tab. IIa.33: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_34, BCS-3: 1,76-1,79 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

Reaktionstemperatur: 100°C

Tab. IIa.34: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_35, BCS-3: 2,81-2,85 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

16.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	13	5,5	6,5	13,3	6,80	54,0	197,6	195,7	227,4	21,6	5213,0	nn	nn	nn
03.05.2010	17	4,5	5,5	12,9	7,01	134,3	127,4	158,6	204,3	22,9	4918,0	nn	nn	nn
27.05.2010	41	5,0	5,0	13,1	7,15	32,6	170,3	124,1	161,1	24,7	4749,0	nn	nn	nn
07.06.2010	53	3,5	5,5	8,7	7,10	68,2	118,5	141,0	174,6	30,4	4853,2	nn	nn	nn
21.06.2010	67	5,0	6,0	14,1	7,13	71,6	145,2	145,7	178,7	31,0	5286,6	nn	nn	nn
05.07.2010	72	5,5	8,5	14,2	6,96	67,0	160,3	144,6	162,6	32,7	5123,3	nn	nn	nn
12.07.2010	79	3,5	5,5	12,2	7,17	93,6	134,3	135,9	149,5	32,4	5085,6	nn	nn	nn

Tab. IIa.35: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_36, BCS-3: 3,04-3,19 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

16.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
26.04.2010	10	2,0	7,0	х	7,12	49,0	304,2	297,5	300,6	30,09	6193	nn	nn	nn
03.05.2010	17	4,0	5,5	11,1	7,04	132,5	167,0	158,3	206,4	24,36	4841	nn	nn	nn
06.05.2010	20	2,5	5,0	4,6	7,20	96,0	152,1	147,3	197,5	25,64	4692	nn	nn	nn
10.05.2010	24	3,5	5,0	х	7,03	73,3	129,3	129,8	178,3	25,60	4458	nn	nn	nn
17.05.2010	31	4,0	5,0	9,1	7,11	71,0	155,5	118,2	170,5	26,62	4417	nn	nn	nn
25.05.2010	39	4,0	5,5	10,9	7,12	53,0	164,6	113,0	163,5	27,00	4453	nn	nn	nn
27.05.2010	41	3,5	5,0	7,7	7,21	24,2	159,7	107,8	150,3	26,42	4292	nn	nn	nn
31.05.2010	45	2,5	5,5	х	7,18	56,0	139,0	104,7	145,1	27,72	4284	nn	nn	nn
21.06.2010	66	4,0	6,0	9,6	7,33	103,3	186,2	113,8	157,3	32,60	4657	nn	nn	nn
05.07.2010	80	5,0	8,5	13,2	7,05	126,8	179,5	119,0	148,3	34,18	4647	nn	nn	nn
12.07.2010	87	2,5	5,5	х	7,47	108,8	165,7	118,8	138,2	35,11	4874	nn	nn	nn

09.12.2009	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
14.12.2009	5,0	1,5	6,0	X	X	X	776,9	529,8	445,1	16,39	8580	3,24	nn	nn
07.01.2010	29	5,0	6,0	7,3	6,7	16,5	531,6	417,2	320,2	24,16	6192	1,48	nn	nn
14.01.2010	36	4,0	5,0	12,9	8,0	X	421,8	2/1,7	233,1	25,84	5352	1,36	nn	nn
18.01.2010	40	5,0	5,0	x	7,4	-18,5	354,1	222,2	200,6	23,99	4931	nn	nn	nn
21.01.2010	43	7,0	5,0	8,5	7,4	122,3	328,1	215,0	199,9	27,34	4863	nn	nn	nn
25.01.2010	48	9,0	5,0	13,3	7,1	91,7	319,9	200,7	181,3	29,19	4592	nn	nn	nn
28.01.2010	51	3,0	5,0	х	7,8	х	306,4	200,6	178,7	30,08	4684	nn	nn	nn
04.02.2010	58	6,0	5,0	X	7,3	X	314,8	183,0	163,6	30,16	4430	nn	nn	nn
08.02.2010	62	7,0	5,0	11,2	7,0	58,5	319,5	173,9	163,7	30,52	4414	nn	nn	nn
11.02.2010	65	4,0	5,0	х	7,0	х	297,2	170,9	155,5	29,77	4415	nn	nn	nn
15.02.2010	69	5,0	5,0	х	6,9	X	270,6	172,2	158,2	34,91	4717	nn	nn	nn
18.02.2010	72	5,0	5,0	х	6,8	55,0	243,8	168,4	152,7	35,06	4675	nn	nn	nn
22.02.2010	76	3,0	5,0	х	7,0	х	244,9	166,2	153,1	36,53	4774	nn	nn	nn
01.03.2010	83	4,0	5,0	x	6,6	х	232,4	164,3	150,0	37,47	4848	nn	nn	nn
04.03.2010	86	3,0	5,0	9,2	6,3	х	354,9	156,2	139,8	33,14	4329	2,38	nn	1,60
08.03.2010	90	3,0	5,0	3,4	6,8	х	214,0	156,1	148,7	37,28	4617	nn	nn	nn
11.03.2010	93	2,5	5,0	8,6	6,7	х	348,2	152,0	129,9	32,36	4186	1,89	nn	nn
15.03.2010	97	3,0	5,0	х	6,4	х	170,1	149,9	136,3	37,17	4587	nn	nn	1,21
22.03.2010	104	2,5	5,0	X	6,7	X	198,9	148,8	134,4	35,65	4760	nn	nn	nn
08.04.2010	121	6,0	5,0	13,4	6,7	64,9	278,2	146,2	133,0	36,62	4835	nn	nn	1,38
12.04.2010	125	5,5	4,5	12,3	6,8	61,6	276,0	135,9	122,8	37,46	4477	nn	nn	0,94
15.04.2010	128	4,5	4,5	11,2	6,7	51,1	264,8	128,6	119,8	36,93	4374	nn	nn	2,22
19.04.2010	132	4,9	5,0	12,4	7,0	65,6	279,9	150,8	143,1	34,40	5589	nn	nn	nn
22.04.2010	135	3,5	5,0	5,4	6,9	51,7	259,7	123,8	120,6	34,34	4618	nn	nn	nn
26.04.2010	139	4,5	7,0	10,4	6,8	42,4	236,0	124,0	111,7	36,77	4619	nn	nn	2,00
29.04.2010	142	4,0	6,5	6,7	6,9	45,1	198,3	140,3	108,8	35,33	4318	nn	nn	nn
03.05.2010	146	5,0	5,5	9,4	7,0	128,0	219,6	157,8	131,1	35,20	4348	nn	nn	nn
06.05.2010	149	5,0	5,0	11,3	6,9	41,8	192,3	130,5	100,6	34,29	4320	nn	nn	nn
10.05.2010	153	3,0	5,0	х	6,9	59,6	219,3	152,6	133,3	34,88	4548	nn	nn	nn
17.05.2010	160	4,0	5,0	11,2	7,0	42,5	205,8	119,5	104,5	33,42	4344	nn	nn	nn
20.05.2010	163	2,5	5,0	4,8	6,9	42,0	158,9	123,1	87,3	31,07	4424	nn	nn	nn
25.05.2010	168	5,5	5,5	11,7	6,7	33,5	277,0	129,2	96,2	34,69	4591	nn	nn	nn
27.05.2010	170	4,5	5,0	12,3	6,9	21,6	252,8	124,6	91,6	33,99	4417	nn	nn	nn
31.05.2010	174	5,0	5,5	12,4	6,8	33,2	277,8	118,3	87,5	34,74	4415	1,13	nn	nn
07.06.2010	181	4,5	5,5	10,4	7,0	42,7	185,0	94,7	195,0	36,01	4373	nn	nn	nn

Tab. IIa.36: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_31, BCS-1: 3,5 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate

09.12.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
14.01.2010	36,0	1,5	5,0	х	7,8	х	479,9	366,0	281,0	25,5	6102	nn	nn	nn
21.01.2010	43	1,5	5,0	х	х	х	461,2	340,1	272,8	26,8	6092	nn	nn	nn
25.01.2010	47	6,0	5,0	8,3	7,3	110,1	430,0	325,0	269,3	28,4	6029	nn	nn	nn
28.01.2010	50	1,5	5,0	х	7,9	х	399,6	317,2	271,5	30,3	6316	nn	nn	nn
01.02.2010	54	6,0	5,0	8,3	7,4	134,8	367,3	309,1	279,7	34,8	6423	nn	nn	nn
08.02.2010	61	6,0	5,0	4,8	7,0	х	378,1	228,6	209,7	29,8	5078	nn	nn	nn
15.02.2010	68	7,0	5,0	13,7	6,5	х	365,2	200,8	189,2	33,5	4929	nn	nn	nn
18.02.2010	71	7,0	5,0	9,4	6,7	59,3	372,6	198,4	187,6	34,8	4992	nn	nn	nn
22.02.2010	75	5,0	5,0	8,0	6,8	х	326,0	184,0	182,5	34,3	4855	nn	nn	nn
25.02.2010	78	4,0	5,0	х	6,6	х	417,2	173,5	171,7	29,7	4551	2,9	nn	nn
01.03.2010	82	6,0	5,0	6,5	6,8	75,9	419,7	170,0	172,5	30,6	4432	2,9	nn	nn
04.03.2010	85	2,5	5,0	2,4	6,7	78,0	415,1	164,1	182,3	29,9	4570	2,8	nn	nn
08.03.2010	89	3,0	5,0	4,1	6,4	х	416,3	164,1	163,7	31,4	4563	2,5	nn	nn
08.04.2010	130	5,0	5,0	11,0	7,0	135,5	316,1	174,4	180,1	37,0	5595	nn	nn	nn
12.04.2010	134	4,5	4,5	12,5	7,1	146,6	321,0	164,0	167,9	37,7	5207	nn	nn	nn
15.04.2010	137	3,0	4,5	7,4	6,7	75,0	295,0	152,2	152,5	37,6	4803	nn	nn	nn
22.04.2010	144	3,5	5,0	3,8	6,9	63,0	288,9	145,1	140,0	34,5	4702	nn	nn	nn
29.04.2010	151	3,5	6,5	5,8	6,9	46,4	247,7	150,5	133,4	33,4	4462	nn	nn	nn
17.05.2010	169	3,0	5,0	3,6	7,3	82,6	233,0	141,2	134,5	33,9	4709	nn	nn	nn
27.05.2010	179	2,0	5,0	х	7,1	х	278,1	140,2	122,8	34,3	4598	nn	nn	nn
07.06.2010	189	3,0	5,5	8,6	7,3	137,6	199,7	121,2	118,8	37,2	4389	nn	nn	nn

Tab. IIa.37: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_31, BCS-1: 3,4 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate.

Tab. IIa.38: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_36, BCS-3: 3,37-3,41 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 6 Monate

16.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
03.05.2010	17	4,0	5,5	9,8	7,3	141,6	113,5	174,4	221,1	24,29	5714	nn	nn	nn
06.05.2010	20	3,0	5,0	8,6	7,3	99,3	94,2	149,1	197,2	24,67	5325	nn	nn	nn
10.05.2010	24	4,0	5,0	х	7,5	х	150,0	140,4	183,6	24,06	5201	1,53	nn	nn
17.05.2010	31	5,5	5,0	14,2	6,4	66,3	141,8	122,6	164,4	22,89	4852	1,66	nn	nn
25.05.2010	39	4,0	5,5	10,8	7,1	84,4	107,8	116,7	147,7	21,54	5341	nn	nn	nn
27.05.2010	41	4,5	5,0	13,5	7,1	61,9	115,2	107,7	141,9	24,04	4797	nn	nn	nn
31.05.2010	45	3,0	5,5	х	7,1	115,0	130,3	107,6	146,6	25,87	4946	0,69	nn	nn
07.06.2010	52	3,0	5,5	х	6,7	40,1	85,2	112,0	157,2	28,03	4873	nn	nn	nn
21.06.2010	66	2,5	6,0	х	7,7	133,0	117,0	126,4	164,1	29,30	5645	nn	nn	nn
05.07.2010	80	5,0	8,5	15,6	7,1	126,8	178,6	127,8	167,7	31,80	5849	nn	nn	nn
19.07.2010	92	4,5	5,5	13,6	7,3	120,8	179,5	124,2	155,4	36,49	5181	nn	nn	nn
26.07.2010	99	1,5	6,5	х	8,4	136,5	161,6	118,9	134,9	36,42	5086	nn	nn	nn
02.08.2010	106	3,0	7,5	7,2	7,5	79,7	151,3	115,5	138,8	37,01	5222	nn	nn	nn
09.08.2010	113	4,5	5,5	14,4	7,1	98,5	156,1	109,7	146,4	37,86	5527	nn	nn	nn
16.08.2010	120	4,0	6,0	13,0	7,2	68,9	150,3	104,1	136,6	37,43	5123	nn	nn	nn
30.08.2010	134	4,0	5,0	10,8	7,1	58,5	125,4	89,0	129,4	35,55	4859	nn	nn	nn
06.09.2010	141	4,0	6,5	12,5	7,1	66,0	158,4	99,4	123,1	39,49	4833	nn	nn	nn
20.09.2010	155	3,5	6,0	9,0	7,2	66,9	153,0	91,9	112,2	37,62	4399	nn	nn	nn
04.10.2010	169	4,0	6,0	13,0	7,4	83,4	153,8	98,0	117,7	40,77	4955	nn	nn	nn

29.04.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	13	3,0	6,5	10,4	7,0	27,3	406,0	414,0	314,1	23,4	6615	nn	nn	3,2
03.05.2010	17	4,0	5,5	10,2	7,3	142,0	325,3	339,2	281,8	23,6	6313	nn	nn	nn
10.05.2010	24	2,5	5,0	х	7,1	79,3	225,3	228,3	220,3	24,1	5294	nn	nn	nn
17.05.2010	31	3,0	5,0	х	7,3	118,5	249,6	179,8	184,6	25,0	4917	nn	nn	nn
27.05.2010	41	3,0	5,0	4,5	7,3	46,7	276,6	285,4	253,8	23,5	6124	nn	nn	nn
05.07.2010	80	3,5	8,5	10,7	7,5	135,6	219,9	244,9	253,5	29,6	7382	nn	nn	nn
19.07.2010	94	4,0	5,5	11,9	7,2	127,1	290,5	208,1	228,1	30,7	6496	1,6	nn	nn
26.07.2010	101	2,0	6,5	х	7,8	130,0	227,2	171,2	204,2	29,2	5466	0,8	nn	nn
09.08.2010	115	4,5	5,5	16,5	7,3	118,2	211,8	169,5	208,9	29,1	6559	2,7	nn	nn
16.08.2010	122	4,5	6,0	15,1	7,1	91,1	200,2	152,1	182,3	27,9	5792	1,5	nn	nn
23.08.2010	129	5,0	5,5	14,2	7,3	95,8	173,9	141,1	153,5	34,1	5158	nn	nn	nn
30.08.2010	136	5,5	5,0	14,6	7,0	147,3	169,8	138,7	170,3	30,6	5338	1,7	nn	nn
06.09.2010	143	7,0	6,5	17,3	6,8	88,1	145,4	131,0	187,9	30,2	6187	3,1	nn	nn
20.09.2010	157	2,0	6,0	17,6	7,3	133,5	125,3	103,9	179,9	32,5	6305	7,1	nn	nn
04.10.2010	171	2,0	6,0	х	7,2	147,1	138,0	99,9	161,1	32,0	5656	5,4	nn	nn
18.10.2010	185	5,0	5,0	16,6	7,7	187,0	178,9	119,6	148,5	37,1	6225	4,4	nn	nn
25.10.2010	192	3,0	6,0	х	х	136,0	103,2	112,0	126,3	38,3	5947	nn	nn	nn
08.11.2010	206	2,0	5,0	х	х	х	157,3	119,3	142,6	32,3	6394	nn	nn	nn
15.11.2010	213	2,5	5,0	х	х	х	201,9	115,9	186,0	39,2	9207	2,3	nn	nn
22.11.2010	220	5,0	5,0	11,6	7,5	105,2	238,9	119,0	119,0	35,8	5913	5,5	nn	nn
29.11.2010	227	13,5	5,0	11,9	6,8	14,1	215,7	80,3	72,6	27,3	4246	nn	nn	nn
07.12.2010	235	9,0	5,0	12,1	7,1	48,7	186,2	72,4	65,3	26,3	4097	nn	nn	nn
13.12.2010	241	10,0	5,0	12,2	7,4	119,1	198,6	72,0	63,1	24,7	4545	nn	nn	nn
20.12.2010	248	11,0	5,0	12,4	7,2	47,6	199,2	65,4	65,2	27,3	4738	nn	nn	nn
10.01.2011	269	9,0	5,0	12,6	7,0	37,6	223,7	73,0	72,6	31,0	4754	nn	nn	nn
17.01.2011	276	21,5	5,0	12,2	6,8	31,6	230,5	69,5	61,1	32,4	4424	nn	nn	nn
24.01.2011	283	10,0	7,0	12,5	7,1	18,6	212,5	56,4	49,4	27,2	4906	nn	nn	nn
28.02.2011	318	12,0	6,0	13,2	7,1	67,5	200,5	79,8	57,4	34,2	4779	nn	nn	nn
07.03.2011	325	11,0	6,0	14,0	7,1	78,2	220,1	82,5	55,4	33,2	4996	nn	nn	nn
14.03.2011	332	12,0	6,0	14,3	6,9	67,6	234,9	82,5	54,4	32,8	5060	nn	nn	nn
21.03.2011	339	12,0	6,0	14,0	6,8	80,0	225,8	81,7	56,9	33,1	5085	nn	nn	nn
28.03.2011	346	44,0	5,5	11,3	6,6	64,0	83,9	26,3	18,8	12,0	4160	nn	nn	nn
11.04.2011	360	10,0	5,0	12,4	7,1	77,4	182,3	58,9	38,8	28,7	4452	nn	nn	nn

Tab. IIa.39: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am (CS_35, BCS-3: 1,88-1,92 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr.

16.04.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
29.04.2010	13	2,5	6,5	4,0	6,9	90,0	163,2	191,0	247,3	22,6	5462	nn	nn	nn
03.05.2010	17	4,0	5,5	11,0	7,3	142,1	131,6	164,7	231,1	22,5	5172	nn	nn	nn
10.05.2010	24	2,5	5,0	х	7,0	103,6	126,1	153,9	227,1	24,0	5151	nn	nn	nn
17.05.2010	31	2,0	5,0	х	7,5	х	118,1	140,6	204,3	24,7	4988	nn	nn	nn
25.05.2010	39	2,5	5,5	х	7,1	147,5	198,3	130,3	198,1	24,6	4896	1,61	nn	nn
27.05.2010	41	4,5	5,0	14,0	7,1	108,9	181,1	119,0	181,1	24,9	4563	1,31	nn	nn
31.05.2010	45	2,0	5,5	х	7,3	105,0	172,9	113,5	177,3	26,1	4559	1,28	nn	nn
07.06.2010	52	3,0	5,5	х	7,4	131,6	145,2	140,8	193,3	31,3	4791	nn	nn	nn
21.06.2010	66	3,0	6,0	х	7,6	122,0	113,6	148,0	190,4	32,4	4901	nn	nn	nn
05.07.2010	70	3,5	8,5	8,5	7,3	131,8	123,2	145,2	184,0	33,4	4896	nn	nn	nn
12.07.2010	87	2,0	5,5	х	7,4	145,0	78,3	140,4	179,5	34,1	5101	nn	nn	nn
19.07.2010	94	3,5	5,5	11,2	7,5	114,7	185,7	142,3	190,5	34,4	4960	nn	nn	1,42
26.07.2010	101	2,0	6,5	х	8,1	147,2	160,2	129,1	170,5	33,7	4739	nn	nn	nn
09.08.2010	115	3,5	5,5	12,2	7,3	111,4	175,9	128,7	161,8	34,4	4802	1,07	nn	nn
16.08.2010	122	3,5	6,0	9,6	7,3	92,2	158,1	124,5	159,0	35,6	4669	nn	nn	nn
23.08.2010	129	2,5	5,5	х	7,4	144,0	100,8	119,3	156,8	35,3	4783	nn	nn	nn
30.08.2010	136	3,0	5,0	х	7,6	103,1	165,8	119,4	156,0	35,9	4555	nn	nn	nn
06.09.2010	143	3,0	6,5	х	7,1	91,1	165,9	118,5	145,7	35,8	4541	nn	nn	nn
20.09.2010	157	2,0	6,0	х	7,5	127,2	166,7	113,2	135,1	35,3	4138	nn	nn	nn
18.10.2010	185	6,0	5,0	12,4	7,5	181,0	155,4	118,6	138,4	37,1	4502	nn	nn	nn
25.10.2010	192	3,0	6,0	х	х	х	184,1	130,6	142,6	37,7	4659	nn	nn	nn
08.11.2010	206	4,0	5,0	х	8,1	81,0	199,6	133,5	147,2	40,1	5009	nn	nn	nn
15.11.2010	213	3,0	5,0	х	х	х	225,2	142,9	142,9	40,3	4908	nn	nn	nn
22.11.2010	220	1,5	5,0	х	х	х	217,2	141,7	162,7	36,8	6065	nn	nn	nn
07.12.2010	235	2,5	5,0	х	х	х	219,4	130,1	141,6	33,5	5502	nn	nn	nn
13.12.2010	241	0,5	5,0	х	х	х	286,2	140,0	161,3	33,0	6496	nn	nn	nn
10.01.2011	269	12,5	5,0	18,2	6,7	55,5	231,5	91,5	102,8	29,8	5121	nn	nn	nn
24.01.2011	283	8,0	7,0	13,8	6,6	50,0	268,6	96,2	103,5	30,5	5226	nn	nn	nn
31.01.2011	290	8,0	6,0	13,8	6,9	57,2	256,8	104,8	98,2	34,0	4872	nn	4,13	nn
07.02.2011	297	6,0	5,0	14,1	7,3	83,8	227,6	105,7	105,5	35,8	5139	nn	nn	nn
14.02.2011	304	10,0	6,0	16,4	7,2	27,7	216,4	109,7	116,5	36,3	5876	nn	nn	nn
21.02.2011	311	8,0	7,0	14,6	7,0	38,1	186,5	106,7	101,8	36,9	5184	nn	nn	nn
28.02.2011	318	9,0	6,0	13,8	7,3	60,6	196,1	106,4	87,1	34,9	4908	0,91	nn	nn
07.03.2011	325	8,0	6,0	15,4	7,2	74,0	188,2	106,9	87,6	34,0	5466	0,80	nn	nn
14.03.2011	332	8,0	6,0	16,4	7,0	117,5	205,4	106,8	97,5	31,1	5745	5,83	nn	nn
21.03.2011	339	8,0	6,0	15,5	6,9	51,3	189,0	101,5	86,5	32,4	5318	nn	nn	nn
28.03.2011	346	8,0	5,5	14,5	6,7	22,3	168,4	90,7	79,3	30,8	4990	1,05	nn	4,60
11.04.2011	360	6,0	5,0	18,3	6,9	145,0	187,2	94,6	97,5	31,5	6509	3,13	nn	nn

Tab. IIa.40: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_34, BCS-3: 1,70-1,73 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

16.04.2010	Zeit	V	р	Sal	рН	U	Ca	Mg	К	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
26.04.2010	10	7,0	7,0	15,1	6,6	30,3	234,7	180,0	244,9	24,2	5653	2,05	nn	13,60
29.04.2010	13	3,5	6,5	12,0	6,6	65,5	122,6	122,5	185,1	18,8	4871	nn	nn	nn
03.05.2010	17	5,0	5,5	14,9	6,8	139,6	108,0	129,3	192,9	22,0	5028	nn	nn	nn
06.05.2010	20	15,0	5,0	12,4	6,5	65,5	106,8	64,4	100,4	13,7	4287	nn	nn	nn
10.05.2010	24	8,0	5,0	11,9	6,3	86,0	119,5	61,7	105,5	15,1	4203	1,73	nn	nn
20.05.2010	34	15,0	20,5	12,4	6,6	76,5	163,0	78,2	102,0	14,1	4420	1,67	nn	nn
25.05.2010	39	11,0	5,5	12,6	6,8	29,6	145,8	69,9	105,4	18,9	4303	2,15	nn	nn
27.05.2010	41	9,5	5,0	12,4	6,7	48,1	140,4	67,3	109,6	19,7	4358	1,71	nn	nn
31.05.2010	45	9,0	5,5	10,8	6,4	91,1	138,3	65,8	106,5	20,1	4039	1,58	nn	nn
14.06.2010	59	12,0	5,5	13,0	6,6	69,6	159,3	106,5	125,8	25,5	4720	nn	nn	nn
21.06.2010	66	15,0	6,0	13,4	6,8	х	158,6	106,5	122,8	28,4	4763	nn	nn	nn
05.07.2010	80	11,5	8,5	13,4	6,9	116,5	199,7	113,5	121,9	30,8	4757	1,07	nn	nn
12.07.2010	87	15,0	5,5	12,7	6,6	76,0	145,9	81,7	94,4	23,2	4710	0,98	nn	nn
19.07.2010	94	15,0	5,5	11,6	6,8	132,1	175,9	67,4	74,9	22,5	4272	1,29	nn	nn
26.07.2010	101	12,5	6,5	11,0	6,5	108,3	177,6	63,6	68,9	23,0	4118	1,24	nn	nn
02.08.2010	108	15,0	7,4	11,3	6,5	19,0	173,0	71,5	73,3	26,6	4111	1,53	nn	nn
09.08.2010	115	15,0	5,5	11,2	6,7	111,7	194,1	73,0	72,5	26,9	4131	1,06	nn	nn
23.08.2010	129	13,0	5,5	12,4	6,9	103,1	160,3	59,3	56,6	23,3	4241	1,38	nn	nn
30.08.2010	136	17,0	5,0	11,4	6,7	103,9	165,2	65,8	64,2	26,2	4256	1,23	nn	nn
06.09.2010	143	14,5	6,5	11,5	6,8	111,4	166,7	63,0	54,2	24,6	4278	1,08	nn	nn
04.10.2010	171	15,0	6,0	11,5	6,6	36,7	172,9	61,0	44,4	24,3	4300	1,72	nn	2,24
18.10.2010	185	13,0	5,0	12,4	6,8	52,6	197,7	69,7	55,0	27,6	4610	1,23	nn	nn
25.10.2010	192	14,0	6,0	11,6	7,1	166,0	182,7	70,1	50,8	27,5	4048	nn	nn	nn
08.11.2010	206	10,0	5,0	12,1	7,0	117,9	215,5	77,8	53,3	29,4	4284	nn	nn	nn
22.11.2010	220	11,0	5,0	13,9	6,9	42,5	281,6	97,9	59,7	31,1	4680	nn	nn	nn
29.11.2010	227	15,0	5,0	12,2	6,3	52,5	207,2	66,5	60,2	23,2	4209	nn	nn	2,68
13.12.2010	241	12,0	5,0	12,6	7,0	45,7	203,3	62,5	39,6	21,3	4793	nn	nn	nn
20.12.2010	248	11,0	5,0	12,7	7,0	35,0	219,8	61,0	42,1	26,3	4809	nn	nn	nn
10.01.2011	269	8,0	5,0	13,0	6,7	65,5	220,0	63,6	47,4	30,1	4904	nn	nn	nn
17.01.2011	276	17,0	5,0	11,7	6,5	84,9	235,0	61,0	39,5	31,2	4117	nn	nn	nn
24.01.2011	283	10,0	7,0	12,9	6,8	91,4	244,0	62,6	38,1	27,4	4715	nn	nn	nn
31.01.2011	290	10,0	6,0	12,5	7,0	44,7	192,8	65,6	51,7	31,1	4492	nn	nn	nn
07.02.2011	297	10,0	5,0	12,7	6,8	55,5	221,5	75,4	41,2	34,0	4521	nn	nn	nn
14.02.2011	304	10,0	6,0	12,4	6,8	42,4	210,8	70,1	39,3	32,5	4399	nn	nn	nn
21.02.2011	311	11,0	7,0	12,9	6,9	42,0	212,0	70,7	38,2	31,8	4406	nn	nn	nn
28.02.2011	318	11,0	6,0	13,4	6,9	65,1	218,3	72,9	37,0	29,3	4699	nn	nn	nn
07.03.2011	325	10,0	6,0	13,9	7,0	88,3	224,9	74,3	36,6	29,4	4887	nn	nn	nn
14.03.2011	332	11,0	6,0	14,0	6,7	60,0	242,7	80,2	37,1	30,8	4874	nn	nn	nn
21.03.2011	339	11,0	6,0	13,4	6,7	54,0	223,8	74,0	35,2	31,0	4760	nn	nn	nn
28.03.2011	346	47,0	5,5	10,8	6,2	136,2	144,1	37,2	36,8	17,3	3969	nn	nn	nn
11.04.2011	360	8,0	5,0	11,3	6,7	105,2	158,2	39,9	19,8	20,9	4162	nn	nn	nn

Tab. IIa.41: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_34, BCS-3: 1,79-1,82 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1 Jahr

09.12.2009	Zeit	\mathbf{V}	р	Sal	рН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG	(T)	r 11	п 1	F /13		F X 71	0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
<u>Datum</u> 14 12 2009	[Tage]	[mi] 3.5	[bar]	[g/1]	7.0		[mg/1] 698-3	476.6	[mg/1] 307 1	21.2	[mg/1] 7235	[IIIg/1]	[mg/1]	[IIIg/I] nn
14.01.2010	36	5.0	5.0	10.1	7,0	x	385.2	233.1	233.5	27.8	5298	nn	nn	nn
21.01.2010	43	6,5	5,0	13,0	7,4	89.9	318,3	214,9	227,6	31,5	5162	nn	nn	nn
25.01.2010	47	7,0	5,0	7,2	7,4	127,6	259,0	191,5	196,7	33,2	4948	nn	nn	nn
28.01.2010	50	4,5	5,0	х	7,9	х	198,1	179,4	187,0	33,8	4922	nn	nn	nn
01.02.2010	54	7,0	5,0	12,4	7,2	118,6	152,7	173,1	194,6	34,5	4936	nn	nn	nn
08.02.2010	61	5,5	5,0	10,7	7,4	х	154,7	145,2	484,2	32,1	4465	nn	nn	nn
11.02.2010	64	2,0	5,0	х	х	х	176,9	136,5	164,2	30,7	4499	nn	nn	nn
15.02.2010	68	7,0	5,0	12,6	6,8	X	176,2	148,0	131,5	34,7	4299	nn	nn	nn
18.02.2010	71	5,5	5,0	10,2	7,0	77,6	166,9	144,4	131,1	35,9	4501	nn	nn	nn
22.02.2010	/5 79	4,5	5,0	4,8	6,9	x	143,8	137,8	125,7	36,2	4422	nn	nn	nn
23.02.2010	10	4,5	5,0 5,0	X 11.0	0,7	X 67.6	253,9	124,4	137,3	33,2 34.6	4414	nn	nn	nn
01.03.2010	02 120	5,5	5,0	11,9	0,8 6.8	146.4	252,0	122,0	144,2	54,0 41.5	4402 5770	1111	nn	nn
12 04 2010	120	3.0	3,0 4 5	47	7.0	140,4	125.0	123.9	1517	41,5	5736	nn	nn	nn
15.04.2010	124	2.0	4.5	ч, / х	6.7	165.0	140.5	114.7	131,7	39.5	4939	nn	nn	nn
19.04.2010	131	4.5	5.0	10.6	7.0	141.9	187.6	120.6	131.9	36.6	5051	nn	nn	nn
22.04.2010	134	3.0	5,0	2,4	7,2	131,0	142,7	119,3	127,4	40,1	5345	nn	nn	nn
26.04.2010	138	4,5	7,0	10,4	7,0	64,1	163,4	116,3	141,9	40,8	5137	nn	nn	nn
29.04.2010	141	2,5	6,5	х	7,2	90,0	135,3	131,7	120,9	39,3	4687	nn	nn	nn
03.05.2010	145	3,0	5,5	8,5	7,7	119,5	98,8	135,0	123,3	39,5	5437	nn	nn	nn
06.05.2010	148	4,5	5,0	7,8	7,1	67,9	131,1	127,0	118,9	39,8	4734	nn	nn	nn
10.05.2010	152	5,0	5,0	3,6	7,0	67,0	129,2	125,2	122,1	39,7	4781	nn	nn	nn
17.05.2010	159	3,0	5,0	х	7,1	х	134,6	116,7	116,0	37,5	5113	nn	nn	nn
25.05.2010	167	4,0	5,5	11,2	6,8	145,4	234,1	126,7	135,6	42,6	5549	nn	nn	nn
27.05.2010	169	3,0	5,0	4,7	6,8	53,9	151,8	123,0	115,5	42,7	5003	nn	nn	nn
31.05.2010	1/3	3,5	5,5 5 5	8,5	7,1	65,2 160.0	108,1	113,8	140,8	42,3	4863	nn	nn	nn
07.06.2010	180	2,5	5,5 6.0	X 15.4	7,4	109,0	108,5	99,0 105 1	123,0	45,9	5419 6221	nn	nn	nn
21.00.2010	208	4,0	0,0 8 5	13,4	7,1	152,5 88.8	162.7	100,1	100,7	44,7	5146	nn	nn	nn
19.07.2010	208	3,5 4 5	0,J 5 5	11,0 14.7	73	104.3	277.2	106,5	97.2	45.1	5615	nn	nn	nn
09.08.2010	334	ч,5 6.0	5,5	15.7	7,0	56.3	281.7	111.1	92.9	46.2	5681	nn	nn	nn
16.08.2010	341	3.0	6.0	12.1	7.0	58.9	290.5	102.5	86.4	45.4	6024	nn	nn	nn
23.08.2010	348	3.0	5,5	11,4	7,3	84,4	273,1	101,2	102,1	46,7	5620	nn	nn	nn
30.08.2010	355	3,0	5,0	11,8	7,1	56,1	294,2	100,5	115,3	47,7	5851	nn	nn	nn
06.09.2010	362	3,0	6,5	х	7,2	42,6	276,6	94,5	111,6	46,5	5666	nn	nn	nn
18.10.2010	404	6,0	5,0	14,8	7,5	186,5	244,5	90,1	88,3	42,0	5580	nn	nn	nn
25.10.2010	411	4,0	6,0	х	х	171,8	195,5	92,2	75,4	30,2	4351	nn	nn	nn
08.11.2010	425	3,0	5,0	х	х	х	257,1	99,3	76,4	44,5	4534	nn	nn	nn
15.11.2010	432	4,0	5,0	х	х	х	268,5	101,3	71,7	46,5	4563	nn	nn	nn
29.11.2010	446	3,5	5,0	X	X	X	273,1	102,4	72,2	48,5	4641	nn	nn	nn
07.12.2010	454	5,0	5,0	14,5	/,5	146,4	240,3	98,9	91,2	42,4	4769	nn	nn	nn
13.12.2010	460	4,0	5,0 5,0	12,1	8,0	115,2 87.4	222,5	93,5 71.0	79,1 65.5	41,2	4247	nn	nn	nn
10.01.2011	407	3,5	5.0	13,0 v	7,4 v	07,4 v	250,7	64.4	62.3	32,0	4790	nn	nn	nn
17 01 2011	400	2.0	5,0	A Y	6.8	120.8	262 7	61.9	192,3	32,5	5023	nn	nn	nn
24.01.2011	502	3.5	7.0	x	x	120,0 X	279.4	67.4	63.8	34.7	5709	nn	nn	nn
31.01.2011	509	3.5	6.0	11.5	7.7	156.1	235.1	72.3	63.6	40.5	4818	nn	nn	nn
07.02.2011	516	2,5	5,0	x	x	x	227,4	70,4	56,2	41,4	4579	nn	nn	nn
14.02.2011	523	5,0	6,0	10,3	7,5	76,1	219,6	74,9	58,4	43,7	4521	nn	nn	nn
21.02.2011	530	5,0	7,0	12,5	7,5	67,4	224,7	75,5	56,7	45,3	4365	nn	nn	nn
07.03.2011	544	4,5	6,0	12,4	7,4	80,0	214,6	67,4	52,6	40,3	4429	nn	nn	nn
14.03.2011	551	2,5	6,0	х	Х	х	227,5	70,1	50,8	41,7	4527	nn	nn	nn
28.03.2011	565	4,5	5,5	11,9	6,9	26,3	238,9	73,1	54,7	43,1	4658	nn	nn	nn
11.04.2011	579	3,0	5,0	х	Х	х	265,1	77,7	51,7	43,8	4724	nn	nn	nn
18.04.2011	587	2,0	5,0	X	X	X	257,0	88,4	54,8	42,5	4626	nn	nn	nn
02.05.2011	600	4,0	5,0	12,9	1,3	55,4 05 2	250,1	88,1 78 2	52,3	45,7	4632	nn	nn	nn
25.05.2011	628	4,0	5,0	15,0 v	7,3 v	93,3 v	203,0	18,2 77 0	50.4	39,2 40.9	4600	nn	1111 nn	nn
50.05.2011	020	5,0	5,0	л	Λ	л	200,0	//,ð	50,4	40,ð	4023	m	1111	1111

Tab. IIa.42: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_31, BCS-1: 3,3-3,5 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahre

09.12.2009	Zeit	\mathbf{V}	р	Sal	рН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG		_		_		_	0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	Tage	[ml]	[bar]	[g/l]	7.1		[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]
18.01.2010	40	4,5	5,0	6,0	/,1	-4,8	452,3	270,6	259,1	29,6	5744	nn	nn	nn
21.01.2010	43	0,3 5.0	5,0	2.1	7,2	88,0 127.0	417,1	230,2	249,4	33,7 25.0	5210	nn	nn	nn
23.01.2010	47	3,0	5,0	2,1	7,4	157,0	200.0	228,3	233,8	33,0 26.2	5242	nn	nn	nn
01.02.2010	53	2,0	0,0 5.0	5.8	73	1/3.0	296,6	210,2	229,0	30,2 40.8	5727	nn	nn	nn
08.02.2010	61	4,J 5 5	5,0	5,8 7.0	7,5	62.6	176.1	156.4	243,1 204 7	36.1	4606	nn	nn	nn
11 02 2010	64	2.0	5,0	7,0 x	7,1 X	02,0 x	175 5	144 0	181 7	34 5	4583	nn	nn	nn
15.02.2010	68	2,0 4 5	5.0	x	71	x	141.8	132.9	160.4	38.5	4399	nn	nn	nn
18.02.2010	71	4.5	5.0	x	6.7	56.0	157.4	132.6	162.9	40.0	4513	nn	nn	nn
22.02.2010	75	4.0	5.0	x	7.1	x	147.7	127.9	160.2	40.7	4527	nn	nn	nn
25.02.2010	78	2,0	5,0	х	7.0	х	209,4	125,8	161,1	37.0	4534	nn	nn	nn
18.03.2010	99	3,0	5,0	4,4	6,0	72,7	114,3	116,9	161,8	42,6	4468	nn	nn	nn
22.03.2010	103	3,5	5,0	х	6,4	х	124,2	109,7	140,2	40,7	4365	nn	nn	nn
19.04.2010	131	2,0	5,0	х	7,1	х	100,6	108,7	132,5	43,4	4650	nn	nn	nn
22.04.2010	134	2,5	5,0	6,0	7,2	51,8	180,7	107,6	128,6	42,1	4657	nn	nn	nn
21.06.2010	194	4,5	6,0	13,2	6,9	36,5	176,2	123,0	142,7	43,9	5064	nn	nn	nn
05.07.2010	208	4,5	8,5	11,5	7,0	73,2	193,3	117,4	173,6	45,0	5015	nn	nn	nn
12.07.2010	215	5,0	5,5	13,2	6,9	90,9	260,0	121,8	125,3	46,3	5009	1,09	nn	nn
19.07.2010	222	4,0	5,5	14,7	7,3	104,3	290,5	125,0	163,7	45,5	5279	1,58	nn	nn
02.08.2010	236	3,5	7,5	8,1	7,3	95,5	268,4	123,5	127,5	46,0	5095	1,43	nn	nn
09.08.2010	243	6,0	5,5	13,4	7,0	17,9	236,1	117,6	192,9	46,9	4936	nn	nn	nn
16.08.2010	250	2,5	6,0	6,5	6,9	65,0	224,8	109,5	122,9	44,5	4864	nn	nn	nn
06.09.2010	2/1	3,0	6,0	/,/	6,8 7.0	65,4	276,8	107,8	104,5	48,2	4800	1,74	nn	nn
04.10.2010	299	4,0	6,0	11,8	7,0	28,2	247,0	97,0	90,0	48,1	4009	1,18	nn	nn
18.10.2010	313	2,5	5,0	14,8	/,5	180,5	248,0	98,7	124,8	48,0	4/88	1,34	nn	nn
23.10.2010	320	4,0	0,0 5.0	12,1 12.4	0,1 7 0	01.0	231,2	103,5	93,9 83.6	40,5	4272	nn	nn	nn
15 11 2010	341	$^{+,0}_{2,0}$	5,0	12,4 v	7,9 x	91,0 x	220,2	101,5	83,0 84 1	46.7	4314	nn	nn	nn
07 12 2010	363	2,0 5,0	5,0	14 5	75	1464	262.8	105,2	90 1	46.7	4383	nn	nn	nn
13.12.2010	369	4.0	5.0	12.1	8.0	115.0	295.5	95.1	86.7	45.4	4993	nn	nn	nn
17.01.2011	404	3.5	5.0	13.8	6.9	13.8	305.7	90.2	97.9	47.3	4979	nn	nn	nn
24.01.2011	411	4,0	7,0	12,4	7,3	20,6	291,6	92,1	86,4	47,3	4768	nn	nn	nn
21.02.2011	439	3,5	7,0	11,1	7,6	34,1	269,9	99,6	72,8	48,6	4355	nn	nn	nn
28.02.1011	446	4,0	6,0	11,8	7,6	67,0	271,0	95,4	77,6	46,8	4528	nn	nn	nn
07.03.2011	453	4,0	6,0	12,1	7,6	71,6	278,3	98,3	69,1	46,2	4468	nn	nn	nn
14.03.2011	460	4,0	6,0	11,8	7,5	35,6	291,7	98,4	70,3	46,0	4587	nn	nn	nn
21.03.2011	467	4,0	6,0	12,0	7,1	56,6	305,3	103,8	74,2	45,9	4643	nn	nn	nn
28.03.2011	473	4,0	5,5	12,7	7,0	-4,0	316,6	106,4	66,0	45,7	4549	nn	nn	nn
11.04.2011	487	4,0	5,0	13,3	7,3	-5,0	321,7	105,4	66,7	44,2	4769	nn	nn	nn
26.04.2011	502	5,0	5,0	13,2	7,0	117,0	345,2	121,9	63,1	46,5	4672	nn	nn	nn
02.05.2011	508	3,5	5,0	12,4	7,4	50,7	369,6	122,6	67,3	45,5	4678	nn	nn	nn
09.05.2011	515	2,0	5,0	X	X	X	401,3	109,1	65,0	42,3	4852	nn	nn	nn
30.05.2011	536	4,0	5,0	13,6	7,5	95,3	387,4	107,4	62,2	42,3	4776	nn	nn	nn
06.06.2011	543	3,5	5,0	х	7,1	-7,6	400,5	106,9	58,2	42,3	4441	nn	nn	nn

Tab. IIa.43: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_30, BCS-1: 3,3 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 1,5 Jahre

onszeit: 3 N	vionate													
09.12.2009	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
15.12.2009	6	1,5	6,0	х	8,0	х	776,9	548,8	441,5	18,5	8050	2,46	nn	nn
08.02.2010	61	4,5	5,0	7,3	7,0	х	591,9	353,9	279,5	34,8	6259	1,24	nn	nn
18.03.2010	99	2,5	5,0	х	6,2	х	405,3	272,9	282,5	43,2	6781	nn	nn	nn
22.03.2010	103	3,4	5,0	х	6,5	х	368,4	232,8	238,8	41,3	5738	nn	nn	nn
22.04.2010	134	3,0	5,0	4,2	6,6	50,2	342,4	202,4	223,2	40,4	5721	nn	nn	nn
14.06.2010	187	2,0	5,5	х	7,4	120,0	163,2	217,8	221,9	36,4	6387	nn	nn	nn
21.06.2010	194	3,0	6,0	14,6	6,8	38,2	276,4	199,5	200,4	40,6	5458	nn	nn	nn
05.07.2010	208	4,5	8,5	10,9	7,0	67,6	238,5	185,5	193,8	40,4	5203	nn	nn	nn
12.07.2010	215	2,0	5,5	х	7,4	191,0	184,1	198,0	192,0	41,4	5236	nn	nn	nn
23.08.2010	257	2,0	5,5	х	7,2	90,0	330,1	180,9	207,5	37,2	5186	2,33	nn	nn
06.09.2010	271	2,5	6,5	х	7,0	30,3	344,3	182,4	170,9	40,9	5077	2,26	nn	nn
25.10.2010	320	3,0	6,0	х	х	х	307,8	182,4	163,8	38,3	4975	nn	nn	nn
07.12.2010	363	3,0	5,0	х	х	х	349,8	187,4	175,7	40,0	5922	nn	nn	nn
				-			-							

Tab. IIa.44: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Opalinuston (CS_29, BCS-1: 2,3 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 3 Monate

Anhang II b: Chemie des Opalinustons

	ıli-
nuston für Referenz-und bei verschiedenen Temperaturen und Zeiten reagierten Proben.	

Probe	Zeit	Bohrung	Tiefe	Temp	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	K ₂ O	CaO	TiO ₂	MnO	Fe ₂ O ₃	LOI	Summe
	[Monat]		[m]	[°C]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	
CS_X	Ref.	BCS-1	0,8	х	0,44	2,3	19,4	44,3	0,20	2,9	8,2	0,85	0,05	5,8	13,9	98
CS_Y	Ref.	BCS-1	1,0	х	0,44	2,3	19,3	43,7	0,21	2,8	8,8	0,83	0,05	5,8	14,6	99
CS_Z	Ref.	BCS-1	1,3	х	0,44	2,3	19,7	44,5	0,18	2,9	8,0	0,86	0,05	5,8	14,5	99
CS_28	Ref.	BCS-1	1,8	x	0,46	2,3	19,7	45,0	0,18	2,9	8,3	0,86	0,05	5,8	14,3	100
CS 29	Ref.	BCS-1	2,0	х	0,45	2,3	19,4	44,3	0,20	2,9	9,5	0,84	0,05	6,0	14,0	100
CS_30	Ref.	BCS-1	2.5	х	0.46	2.2	18.9	42.9	0.20	2.8	11.5	0.81	0.06	5.8	14.3	100
CS_30	Ref	BCS-1	33	x	0.43	2.1	18.7	42.5	0.22	2.7	11.5	0.80	0.06	5.5	14.5	99
CS_31	Ref	BCS-1	3.9	x	0.43	2.1	18.3	41.5	0.17	2.7	11.2	0.79	0.06	5,5	15.2	98
CS_{31a}	Ref	BCS-1	43	v	0.42	21	18.7	42.0	0.17	2.8	12.0	0.81	0.06	54	14.3	99
CS_33	Ref.	BCS-3	-,.) 0 9-1 18	x	0.45	2,1	19,7	44.2	0.19	2,0	7 1	0.84	0.05	57	14,5	98
CS_35	Dof	BCS 3	2 2	л х	0,43	2,5	19,5	43.5	0,17	2,2	83	0,04	0.05	5.4	15.0	08
CS_35	Dof	BCS 3	20304	A V	0,40	2,2	17.0	38.8	0.15	2,0	12.8	0,82	0,05	18	18.2	08
CS_30	Def	DCS-J	2,9-3,04	л 	0,40	2,0	10.5	14.2	0,15	2,5	0.2	0,75	0,05	4,0 5.0	14.2	90
<u>CS_30</u>	2	DCS-3	3,3	X 45	0,45	2,5	19,5	44,2	0,21	2,9	8,2	0,85	0,05	5,9	14,5	100
CS_35	3	BCS-3	1,92-1,96	45	0,44	2,3	19,6	44,8	0,19	2,9	8,8	0,85	0,05	5,8	14,5	100
CS_35	3	BCS-3	2,0-2,04	45	0,43	2,3	18,9	43,7	0,21	2,8	9,2	0,83	0,05	5,7	14,5	99
CS_34	6	BCS-3	1,3-1,35	45	0,52	2,2	18,7	42,6	0,22	2,9	8,5	0,80	0,05	5,7	16,0	98
CS_35	6	BCS-3	1,96-2,0	45	0,58	2,2	18,8	42,9	0,20	2,9	8,6	0,81	0,05	5,4	16,1	99
CS_35	6	BCS-3	2,2-2,24	45	0,80	2,1	18,3	42,4	0,18	2,8	8,8	0,81	0,05	5,5	16,4	98
CS_35	12	BCS-3	2,4-2,48	45	0,46	2,2	18,9	43,7	0,16	2,8	8,3	0,83	0,05	5,4	15,2	98
CS_35	12	BCS-3	2,28-2,32	45	1,53	2,1	18,1	42,6	0,18	3,2	7,8	0,80	0,05	5,1	16,7	98
CS_33	12	BCS-3	1,03-1,06	45	0,44	2,2	20,0	46,0	0,18	3,0	4,7	0,86	0,04	6,2	14,4	98
CS_35	18	BCS-3	2,04-2,06	45	0,53	2,2	18,6	42,7	0,18	2,8	8,7	0,80	0,05	5,5	15,9	98
CS_35	18	BCS-3	2,12-2,16	45	0,67	2,1	18,4	42,6	0,19	2,7	7,8	0,79	0,05	5,4	16,1	97
CS_35	18	BCS-3	2,48-2,5	45	0,43	2,2	19,4	44,3	0,18	2,9	7,5	0,83	0,05	5,5	15,2	98
CS_35	3	BCS-3	2,08-2,12	60	0,44	2,3	18,9	43,8	0,18	2,8	9,0	0,83	0,05	5,8	14,8	99
CS_35	3	BCS-3	2,5	60	0,67	2,4	19,9	45,9	0,19	3,0	8,0	0,88	0,05	6,1	13,7	101
CS_X/Y	6	BCS-1	0,8-1,4	60	0,49	2,2	19,2	43,8	0,21	2,8	8,9	0,82	0,05	5,8	14,5	99
CS 31	6	BCS-1	3,3-3,8	60	0,33	1.8	14,3	32,7	0,20	2,1	20,5	0,62	0,07	4,6	21,4	99
CS 35	6	BCS-3	1.88-1.92	60	0.79	2.2	18.9	43.5	0.14	2.9	7.6	0.82	0.05	5.5	15.9	98
CS_35	12	BCS-3	2.16-2.2	60	0.49	2.2	19.0	44.1	0.20	2.8	8.1	0.84	0.05	5.4	15.8	99
CS_35	12	BCS-3	2.6	60	0.43	2.2	19.1	43.5	0.19	2.8	82	0.82	0.05	5 5	15.5	98
CS_31	18	BCS-1	3 3-3 8	60	0.35	1.8	15.0	34.4	0.16	2,0	17.6	0.64	0.07	4.6	21.3	98
CS_31	18	BCS-1	33-38	60	0.40	1.0	17.0	30.2	0.16	2,2	12.6	0.71	0.06	5.1	18.2	08
CS_31	18	BCS 1	3338	60	0,40	1,9	16.7	38.1	0.14	2,5	12,0	0,71	0,00	4.0	10,2	08
<u>CS_36</u>	3	BCS 3	3 20 3 30	75	0,70	2.2	18.0	42.0	0,14	2,5	0.6	0.81	0,00	5.8	15.2	00
CS_30	2	DCS-3	2 22 2 2 27	75	0,70	2,2	10,9	42,9	0,20	2,0	9,0	0,01	0,05	5,0 57	13,2	99
CS_30	5	DCS-3	3,33-3,37	75	0,49	2,5	19,4	45,1	0,10	2,9	7,9	0,80	0,05	5,7	14,2	99
CS_33	0	BC2-3	1,09-1,13	15	0,41	2,3	19,8	44,6	0,19	3,0	7,5	0,85	0,05	0,3 5 0	15,9	99
CS_31	0	BC2-1	3,3-3,8	15	0,39	2,1	18,5	42,4	0,18	2,8	9,9	0,80	0,05	5,2	15,1	97
CS_36	6	BCS-3	2,85-2,89	/5	0,47	2,1	18,0	41,3	0,20	2,7	10,6	0,77	0,06	5,1	16,6	98
CS_36	12	BCS-3	2,97-3,04	75	0,48	2,0	17,5	40,1	0,18	2,6	11,4	0,75	0,05	5,4	17,0	98
CS_35	12	BCS-3	2,65-2,69	75	0,46	2,1	18,1	41,6	0,17	2,6	10,0	0,78	0,05	5,3	16,6	98
CS_33	18	BCS-3	1,2-1,3	75	0,42	2,2	19,2	43,7	0,15	2,8	7,7	0,82	0,05	5,7	15,7	99
CS_33	18	BCS-3	1,0-1,03	75	0,46	2,2	19,2	43,9	0,12	2,9	7,0	0,82	0,05	5,9	15,6	98
CS_34	18	BCS-3	1,76-1,79	75	0,40	2,2	18,8	43,2	0,17	2,8	8,2	0,82	0,05	5,4	16,6	99
CS_36	3	BCS-3	2,81-2,85	100	1,21	2,1	17,6	40,7	0,20	2,5	10,4	0,75	0,05	5,2	18,0	99
CS_36	3	BCS-3	3,04-3,18	100	0,82	2,2	18,2	41,9	0,19	2,7	10,7	0,78	0,06	5,6	15,9	99
CS_31	6	BCS-1	3,5	100	0,41	2,1	18,0	41,0	0,20	2,7	12,1	0,77	0,06	5,3	15,8	99
CS_31	6	BCS-1	3,4	100	0,38	2,1	17,2	39,4	0,19	2,5	13,9	0,74	0,06	5,2	16,9	99
CS_36	6	BCS-3	3,37-3,41	100	1,05	2,2	18,6	43,1	0,14	2,8	7,8	0,81	0,05	5,4	16,5	98
CS_33	12	BCS-3	1,03-1,06	100	0,58	2,4	20,9	47,3	0,18	3,1	8,2	0,89	0,06	6,9	16,0	107
CS_34	12	BCS-3	1,79-1.82	100	0,45	2.2	19.1	43.8	0,17	2,8	8.0	0,83	0,05	5.6	15.1	98
CS_31	18	BCS-1	3,3-3.8	100	0,41	2,0	17.0	39,4	0,21	2,5	12,9	0,73	0,06	4,8	18.3	98
CS 31	18	BCS-1	3.3	100	0,43	1.5	10.2	23.7	0,10	1.0	28.7	0,43	0,08	3.5	28.4	98
CS 29	18	BCS-1	23	100	0.58	2.2	187	42.9	0.15	2.8	7.9	0.80	0.05	53	17.0	98
	10	2001	-,-	100	0,00	-,-	- 0,7	· _, >	0,10	-,0	.,,	0,00	0,00	-,-	··,0	20

Anhang III a: Fluidanalytik

Boom Clay

Tab. IIIa.1: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Boom Clay (CS_22, 25,85-26,5 m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 9 Monate

16.09.2010	Zeit	v	р	Sal	pН	U	Ca	Mg	К	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
04.10.2010	18	3,0	6,5	7,0	7,7	158,4	492,2	867,5	500,0	13,2	5754,8	4,3	nn	nn
25.10.2010	32	4,0	5,5	17,5	7,0	47,0	584,1	1022,2	538,7	13,3	5866,3	5,5	nn	nn
08.11.2010	53	х	5,0	х	х	х	556,5	965,8	508,1	12,2	5727,9	3,5	nn	nn
15.11.2010	60	х	5,0	х	х	х	540,1	886,7	477,2	12,6	5529,9	3,4	nn	13,9
22.11.2010	67	х	5,0	х	х	х	515,8	823,9	451,9	11,8	5393,9	3,3	nn	15,3
07.12.2010	82	х	5,5	х	х	х	486,8	726,5	425,1	11,9	5208,8	2,8	nn	22,0
13.12.2010	88	х	5,0	х	х	х	461,8	681,3	406,3	11,6	5035,0	2,8	nn	17,4
20.12.2010	95	х	6,0	х	х	х	428,9	651,6	395,3	11,9	4952,8	2,3	nn	15,8
17.01.2011	123	х	5,0	х	х	х	395,7	556,4	365,8	10,4	4891,9	2,1	nn	nn
31.01.2011	137	х	5,0	х	х	х	334,9	549,1	309,8	11,7	4118,1	2,0	nn	21,7
18.04.2011	214	х	5,0	х	х	х	287,6	435,5	261,9	11,3	4125,6	4,9	nn	4,8

Tab. IIIa.2: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Boom Clay (CS_22, 25,85-26,5 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 9 Monate

01.09.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	К	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
06.09.2010	5	2,0	5,0	х	7,1	-12,3	213,4	464,4	304,9	13,4	4371,1	5,3	nn	nn
20.09.2010	19	4,0	6,5	14,9	6,3	14,6	356,8	748,5	419,3	20,5	5202,8	8,4	nn	63,5
18.10.2010	47	х	6,0	х	х	х	506,4	860,0	427,3	15,9	5275,6	8,9	nn	nn
08.11.2010	68	х	5,0	х	х	х	450,6	709,6	358,7	15,1	4902,6	5,5	nn	3,2
22.11.2010	82	х	5,0	х	х	х	431,1	627,9	325,6	16,7	4706,9	4,6	nn	24,5
07.12.2010	97	х	5,0	х	х	х	436,5	576,1	324,0	16,6	4942,8	15,3	nn	49,6
13.12.2010	103	х	5,5	х	х	х	328,8	472,2	277,8	17,8	4350,1	5,0	nn	47,4
20.12.2010	110	х	5,0	х	х	х	306,2	465,1	290,1	15,8	4673,3	3,5	nn	6,3
28.03.2011	208	х	6,0	х	х	х	169,9	309,5	194,9	15,8	4217,3	7,3	nn	nn
18.04.2011	229	2,0	5,0	12,7	6,5	38,0	164,0	298,1	185,4	19,3	4240,4	7,1	nn	33,2

Tab. IIIa.3: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Boom Clay (CS_22, 25,85-26,5 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 9 Monate

	nuce													
19.08.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,0	0,0	0,5	0,1	0,1	0,0	0,1	0,0
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
30.08.2010	11	х	5,0	х	х	х	379,9	501,0	479,0	18,0	4750,5	8,0	nn	nn
06.09.2010	18	3,0	5,0	14,3	7,3	111,0	447,9	584,8	522,8	18,7	5015,5	6,4	nn	nn
20.09.2010	32	3,0	6,5	7,3	7,3	113,7	439,7	540,1	476,4	16,6	4597,0	4,6	nn	nn
04.10.2010	46	3,0	6,5	7,9	7,7	96,2	452,5	541,1	501,0	17,8	5051,6	3,8	nn	nn
18.10.2010	60	3,0	6	х	х	х	423,5	524,5	513,3	18,0	5352,3	3,3	nn	nn
25.10.2010	67	1,5	6,0	х	7,9	99,6	381,9	516,9	480,4	17,6	5255,1	0,9	nn	nn
08.11.2010	81	х	5,0	х	х	х	334,5	469,4	447,4	18,6	5057,0	nn	nn	nn
15.11.2010	88	х	5,0	х	х	х	343,2	474,8	461,0	18,7	5398,6	1,0	nn	nn
22.11.2010	95	х	5,0	х	х	х	319,7	448,7	453,7	18,7	5417,1	1,1	nn	nn
07.12.2010	110	х	5,5	х	х	х	287,3	473,7	474,7	16,3	5093,0	nn	nn	nn
07.02.2011	172	х	5,0	х	х	х	222,8	367,5	374,9	19,9	5037,9	nn	nn	nn
28.02.2011	193	х	6,0	х	х	х	206,3	329,3	336,1	21,8	4877,6	1,5	nn	nn
14.03.2011	207	х	5,5	х	х	х	204,7	319,4	332,2	22,1	4842,8	nn	nn	nn
28.03.2011	221	х	5,0	х	х	х	187,1	328,9	318,8	16,1	4993,4	3,5	nn	nn
02.05.2011	256	х	5,0	х	х	х	187,3	345,3	314,0	19,3	4978,3	nn	nn	nn

zen: 9 Mi	mate													
19.08.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,0	0,0	0,5	0,1	0,1	0,0	0,1	0,0
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
22.11.2010	19	4,0	5,0	16,8	5,8	46,4	204,6	954,6	425,5	40,4	5420,4	11,7	nn	312,4
29.11.2010	26	10,0	5,0	14,7	5,5	54,4	130,7	598,1	291,7	33,2	4901,7	5,8	nn	226,5
07.12.2010	34	9,0	5,0	14,6	5,6	76,0	129,0	607,4	298,2	34,9	4730,4	5,6	nn	196,9
13.12.2010	40	12,5	5,0	14,1	5,6	83,3	113,6	499,0	233,4	27,6	4622,9	4,2	nn	170,0
20.12.2010	47	8,5	5,0	14,4	5,9	49,1	126,9	485,0	283,0	32,6	4933,5	4,0	nn	169,0
10.01.2011	68	6,5	5,0	14,5	5,6	81,0	155,6	513,4	289,6	37,1	4913,3	5,5	nn	175,6
17.01.2011	75	11,5	5,0	15,0	5,9	39,4	171,3	514,9	295,7	39,5	4999,1	6,3	nn	211,1
24.01.2011	82	9,0	7,0	14,2	5,9	63,2	134,4	391,6	233,3	29,8	4934,8	5,0	nn	145,0
31.01.2011	89	9,0	6,0	14,0	6,1	36,5	144,7	415,8	230,9	34,1	4433,7	4,1	nn	140,8
07.02.2011	96	8,0	5,0	14,1	6,1	26,6	162,2	446,0	240,0	37,8	4341,9	4,3	nn	149,4
14.02.2011	103	9,5	6,0	13,9	6,0	24,9	177,4	436,7	233,5	38,9	4261,0	4,1	nn	159,3
21.02.2011	110	7,5	7,0	15,5	6,2	10,2	190,3	430,6	237,8	36,6	4626,6	4,3	nn	161,7
28.02.2011	117	11,5	6,0	14,5	6,2	16,5	183,0	363,7	212,7	33,1	4756,3	4,0	nn	111,4
07.03.2011	124	12,0	6,0	14,6	6,1	24,9	182,7	342,0	196,3	32,6	4745,0	3,8	nn	113,8
14.03.2011	131	10,0	6,0	14,9	6,1	26,6	185,9	320,3	191,8	32,2	4911,4	3,6	nn	109,1
21.03.2011	138	10,5	6,0	14,8	6,1	19,0	202,6	342,1	192,0	35,1	4816,8	4,2	nn	116,7
28.03.2011	145	9,5	5,5	14,3	6,1	24,7	200,9	316,0	175,4	34,3	4619,9	4,2	nn	107,0
11.04.2011	159	7,5	5,0	13,1	5,9	59,5	206,1	309,8	159,8	34,5	4175,8	5,0	nn	97,4
26.04.2011	174	6,0	5,0	13,7	6,1	20,7	212,7	310,7	156,4	34,7	4224,9	5,8	nn	99,9
02.05.2011	180	8,0	5,0	14,4	6,1	24,8	214,4	317,0	159,1	34,5	4413,7	6,8	nn	96,6
09.05.2011	187	5,0	8,0	14,2	6,1	35,6	220,9	275,4	157,9	32,9	4691,0	0,6	nn	95,4
23.05.2011	201	5,0	8,5	13,0	6,1	30,9	205,0	247,3	148,1	33,0	4392,0	0,5	nn	54,6
30.05.2011	208	5,0	6,5	13,2	6,1	19,7	200,4	239,4	142,9	33,3	4509,0	0,5	nn	54,7
06.06.2011	215	7,5	5,0	12,9	6,1	20,4	198,3	227,4	136,9	34,4	4443,0	0,5	nn	72,1
20.06.2011	229	6,0	5,0	13,3	6,2	23,1	198,2	229,3	135,2	35,6	4443,0	0,6	nn	65,1
27.06.2011	236	8,5	5,0	13,1	6,1	11,3	209,0	234,3	134,8	35,1	4429,0	0,7	nn	69,9
04.07.2011	243	6,5	5,0	13,9	6,1	5,7	200,8	231,1	131,9	34,6	4689,0	0,6	nn	75,4
11.07.2011	250	5,0	7,0	14,5	6,1	14,5	205,6	248,3	129,3	36,0	4559,2	7,5	nn	85,6
18.07.2011	257	5,0	6,0	14,9	6,0	28,5	181,7	182,2	117,0	29,4	4646,3	4,1	nn	77,9
25.07.2011	264	5,0	6,0	15,3	6,0	25,9	178,9	194,2	118,1	31,3	4643,2	5,1	nn	87,5
01.08.2011	271	5,0	5,5	14,6	5,9	24,7	183,6	195,3	115,8	34,0	4496,0	4,0	nn	106,4

Tab. IIIa.4: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Boom Clay (CS_22, 25,85-26,5 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 9 Monate

Tonstein der Weser-Formation

Tab. IIIa.5: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Tonstein der Weser-Formation (CS_37, 625,57-626,7m) bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 12 Monate

07.07.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]
19.07.2010	12	7,0	5,5	69,3	6,8	-5,3	829,8	279,5	690,7	13,1	23073,6	3,4	nn	nn
26.07.2010	19	2,5	6,5	х	6,7	-4,3	981,0	223,8	445,6	16,5	15556,2	2,3	nn	10,6
02.08.2010	26	10,0	7,0	29,9	6,5	5,4	921,6	181,2	332,4	18,4	11071,7	1,6	nn	13,0
09.08.2010	33	8,0	5,5	22,6	6,7	37,8	873,9	144,9	258,2	17,5	8331,7	1,2	nn	nn
16.08.2010	40	11,5	7,0	18,8	6,6	44,4	872,8	134,5	223,1	17,7	6993,5	1,2	nn	nn
23.08.2010	47	15,0	5,5	16,1	6,5	53,0	896,8	125,7	189,1	17,1	5915,0	1,0	nn	nn
30.08.2010	54	14,5	5,0	14,5	6,5	54,4	897,7	117,1	164,0	15,9	5265,8	1,1	nn	nn
06.09.2010	61	15,0	5,0	13,0	6,4	89,5	873,0	94,8	127,4	13,0	4796,6	0,9	nn	nn
20.09.2010	75	10,0	6,5	13,0	6,4	71,3	895,5	104,2	120,6	13,5	4589,2	1,1	nn	nn
04.10.2010	89	15,0	6,5	13,1	6,5	73,0	955,5	118,1	122,7	14,5	4658,2	1,2	nn	nn
18.10.2010	103	13,0	5,0	13,7	6,4	74,4	999,3	128,1	118,8	15,7	4576,2	1,5	nn	nn
25.10.2010	110	12,0	6,0	12,9	6,6	66,2	976,4	129,4	109,2	14,8	4120,0	nn	nn	nn
08.11.2010	124	10,0	5,0	13,0	6,7	49,2	1024,8	138,1	111,0	15,3	4227,1	nn	nn	nn
15.11.2010	131	5,0	5,0	13,2	6,6	68,3	1033,0	149,7	112,8	16,2	4184,1	nn	nn	nn
22.11.2010	138	5,0	5,0	13,0	6,6	68,3	1031,5	162,5	109,1	17,2	4300,5	nn	nn	nn
29.11.2010	145	8,5	5,0	13,0	6,6	38,9	1065,1	158,5	99,4	16,6	4076,6	nn	nn	nn
07.12.2010	153	13,5	5,0	13,1	6,5	24,9	1074,6	147,8	94,5	15,2	4143,2	nn	nn	12,3
13.12.2010	159	10,0	5,0	13,1	6,5	34,0	1042,4	140,6	88,2	14,6	4089,2	0,9	nn	12,6
20.12.2010	166	13,0	5,0	13,5	6,7	44,6	1103,7	174,5	93,9	18,1	4449,7	nn	nn	nn
10.01.2011	187	8,5	5,0	13,7	6,5	42,5	1105,2	182,3	93,3	17,0	4507,5	nn	nn	7,0
17.01.2011	194	15,0	5,0	13,0	6,6	54,8	1086,4	154,8	81,0	15,6	4349,7	nn	nn	nn
24.01.2011	201	9,5	7,0	13,3	6,3	72,2	1013,8	153,9	77,3	15,3	4449,0	nn	nn	nn
31.01.2011	208	8,0	6,0	13,2	6,3	17,5	908,9	156,3	69,7	14,8	3950,3	3,2	nn	63,3
07.02.2011	215	8,5	5,0	13,1	6,4	11,1	1000,1	169,7	72,3	16,5	3944,6	1,1	nn	43,3
14.02.2011	222	11,5	6,0	13,5	6,4	40,9	1017,8	178,7	73,3	16,6	4075,8	nn	nn	10,0
21.02.2011	229	9,5	7,0	13,8	6,4	32,2	1016,3	159,1	69,2	15,5	4282,5	nn	nn	15,9
28.02.2011	236	9,5	6,0	14,4	6,4	51,5	1032,0	159,7	68,5	14,5	4566,4	nn	nn	nn
07.03.2011	243	9,0	6,0	14,6	6,3	62,6	1005,2	157,0	65,2	14,4	4598,2	nn	nn	nn
14.03.2011	250	10,5	6,0	14,8	6,5	63,6	1041,8	163,6	64,5	14,5	4657,0	nn	nn	nn
21.03.2011	257	9,0	6,0	14,4	6,4	42,4	1044,7	162,3	62,7	14,4	4573,0	nn	nn	nn
28.03.2011	264	14,0	5,5	13,6	6,5	50,8	988,9	150,9	58,0	13,8	4361,4	nn	nn	nn
11.04.2011	278	7,0	5,0	12,4	6,3	90,8	954,9	156,5	54,3	13,4	3948,5	nn	nn	nn
18.04.2011	285	12,0	5,0	12,8	6,2	54,8	815,2	134,7	43,9	11,9	3923,5	nn	nn	nn
26.04.2011	293	12,5	5,0	12,5	6,2	44,1	785,6	120,3	39,2	10,9	3901,1	nn	nn	nn
02.05.2011	299	9,5	5,0	12,8	6,2	51,4	765,1	126,2	40,1	10,9	3908,0	nn	nn	nn
09.05.2011	306	8,0	5,0	12,7	6,3	60,8	842,9	129,1	42,9	11,7	4097,0	nn	nn	nn
23.05.2011	320	11,0	5,0	13,4	6,4	46,3	988,9	160,9	49,3	13,6	4257,0	nn	nn	nn
30.05.2011	327	11,0	5,0	12,6	6,4	66,6	879,1	129,7	42,3	12,2	3988,0	nn	nn	nn
06.06.2011	334	8,5	5,0	12,5	6,2	63,5	836,2	120,6	37,5	11,4	3923,0	nn	nn	nn
20.06.2011	348	10,0	5,0	13,4	6,1	73,6	662,0	87,5	26,8	8,0	4293,0	nn	nn	nn
27.06.2011	355	8,5	5,0	14,9	6,1	63,2	699,5	94,9	26,1	8,1	4634,0	nn	nn	nn
04.07.2011	362	9,0	5,0	12,8	6,5	51,5	883,1	121,1	32,6	10,5	4749,0	nn	nn	nn

Tab. IIIa.6: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Tonstein der Weser-Formation (CS_37, 625,57-626,7m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten.

Reaktionszeit: 12 Monate

09.07.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG			-		-		0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]
19.07.2010	10	7,0	5,5	64,1	6,6	-84,4	894,5	209,1	797,7	15,4	21316,6	6,6	nn	64,9
26.07.2010	17	8,0	6,5	51,0	6,7	-10,4	790,4	220,6	666,8	18,0	17812,1	2,4	nn	10,0
02.08.2010	24	10,0	7,0	36,2	6,7	-20,9	731,2	203,7	499,1	20,2	13532,6	1,6	nn	13,1
09.08.2010	31	14,0	5,5	29,3	6,3	-1,4	688,9	187,1	409,4	20,3	10670,9	1,9	nn	4,8
16.08.2010	38	7,0	7,0	25,2	6,9	23,1	659,9	191,7	358,9	21,3	9271,2	1,2	nn	nn
23.08.2010	45	8,0	5,5	12,5	6,7	12,5	637,4	180,5	302,9	20,8	7731,4	1,7	nn	5,2
30.08.2010	52	7,0	5,0	18,0	6,8	34,9	650,3	173,4	280,6	20,8	6905,1	1,4	nn	nn
06.09.2010	59	9,0	5,0	16,0	6,7	39,6	673,4	166,5	240,8	20,7	5949,9	1,3	nn	nn
20.09.2010	73	9,0	6,5	14,9	6,7	33,3	682,7	168,8	214,9	20,9	5485,1	1,2	nn	nn
04.10.2010	87	9,0	6,5	8,2	6,7	40,3	765,8	187,4	207,1	20,5	5305,5	2,0	nn	nn
18.10.2010	101	7,0	5,0	14,4	6,9	74,0	753,7	207,7	194,9	20,5	5141,4	1,3	nn	nn
25.10.2010	108	6,5	5,0	14,4	7,0	74,1	709,4	217,1	171,2	19,8	4404,9	nn	nn	nn
08.11.2010	122	6,5	5,0	14,2	7,1	75,8	716,8	228,1	173,5	20,2	4574,7	nn	nn	nn
15.11.2010	129	5,0	5,0	13,7	6,9	60,8	722,3	239,6	178,5	21,1	4368,4	nn	nn	nn
22.11.2010	136	6,0	5,0	13,7	6,7	52,8	767,9	243,9	151,0	20,5	4183,9	nn	nn	nn
29.11.2010	143	6,0	5,0	13,2	6,6	66,6	631,3	188,0	123,9	19,6	4133,5	nn	nn	nn
07.12.2010	151	5,0	5,0	13,8	6,7	43,7	744,3	237,2	144,4	19,0	4222,9	nn	nn	3,4
13.12.2010	157	11,0	5,0	13,2	6,6	45,8	758,6	225,5	135,1	18,2	4143,1	nn	nn	nn
10.01.2011	185	6,5	5,0	14,3	6,5	47,6	819,0	196,5	137,1	15,9	4808,7	2,0	nn	6,1
17.01.2011	192	6,0	5,0	14,2	6,6	13,3	835,5	186,5	129,0	15,6	4717,0	2,5	nn	17,7
24.01.2011	199	7,0	7,0	14,2	6,4	27,8	836,7	186,4	129,3	17,0	4676,8	2,4	nn	17,3
31.01.2011	206	7,5	6,0	14,0	6,4	31,5	820,0	200,2	121,6	19,2	4355,7	nn	nn	7,3
07.02.2011	213	8,5	5,0	13,8	6,4	28,6	832,1	199,0	125,9	20,2	4507,6	nn	nn	11,8
14.02.2011	220	9,5	6,0	13,6	6,4	42,6	846,1	198,0	122,0	20,7	4627,1	nn	nn	5,2
21.02.2011	227	8,0	7,0	13,7	6,5	33,9	822,7	196,4	109,9	20,2	4381,2	nn	nn	7,6
28.02.2011	234	7,5	6,0	14,1	6,5	40,0	852,0	189,4	110,0	18,4	4619,1	0,9	5,7	nn
07.03.2011	241	8,0	6,0	14,6	6,5	38,2	883,4	198,4	109,5	18,8	4797,6	0,9	6,4	nn
14.03.2011	248	8,0	6,0	15,0	6,5	44,7	908,3	201,7	109,7	18,9	5036,7	0,9	6,7	nn
21.03.2011	255	9,0	6,0	15,0	6,6	38,4	879,4	196,2	98,6	18,3	4786,6	0,9	5,6	nn
28.03.2011	262	8,0	5,5	14,4	6,7	57,5	860,6	185,5	92,6	18,2	4693,5	0,7	nn	nn
11.04.2011	276	7,0	5,0	14,9	6,8	29,6	850,8	193,0	93,3	18,7	4812,9	0,9	nn	0,9
18.04.2011	283	7,0	5,0	13,8	6,7	43,5	806,8	188,1	84,0	18,7	4209,7	0,9	nn	nn
26.04.2011	291	8,0	5,0	13,5	6,6	34,6	806,9	186,6	81,1	18,6	4127,6	0,8	nn	nn
02.05.2011	297	7,0	5,0	13,3	6,5	49,5	798,6	179,0	76,6	18,4	4162,2	0,7	nn	nn
09.05.2011	304	8,5	5,0	12,9	6,6	45,4	822,3	171,6	74,0	17,9	4067,0	nn	nn	nn
23.05.2011	318	8,0	5,0	13,2	6,6	35,3	823,8	171,6	74,2	17,3	4229,0	nn	nn	nn
30.05.2011	325	10,0	5,0	12,7	6,7	42,0	842,2	167,1	69,0	17,8	4116,0	nn	nn	nn
06.06.2011	332	9,0	5,0	12,5	6,6	45,1	814,0	156,0	63,1	16,7	3911,5	nn	nn	nn
20.06.2011	346	8,5	5,0	12,8	6,5	42,6	836,2	157,9	60,8	16,6	4032,0	nn	nn	nn
27.06.2011	353	8,5	5,0	13,0	6,5	35,2	862,0	165,7	59,3	17,0	4077,0	nn	nn	nn
04.07.2011	360	9,5	5,0	13,9	6,5	46,4	913,2	172,2	60,7	17,0	4436,0	nn	nn	nn
Tab. IIIa.7: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Tonstein der Weser-Formation (CS_37, 625,57-626,7m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten.

Reaktionszeit: 12 Monate

23.07.2010	Zeit	\mathbf{V}	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,50	0,05	0,10	0,01	0,10	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]
26.07.2010	3	8,5	5,0	22,5	6,7	69,0	759,2	174,4	660,0	17,2	17733,7	2,3	nn	nn
02.08.2010	10	8,0	5,0	22,9	6,7	64,2	647,4	163,8	526,4	20,1	13963,0	1,8	nn	nn
09.08.2010	17	9,0	5,0	22,0	6,7	64,5	534,0	169,7	407,8	20,8	10835,1	0,9	nn	nn
23.08.2010	31	9,5	5,5	21,2	6,7	64,6	575,0	159,6	285,5	19,2	7851,6	1,1	nn	nn
30.08.2010	38	14,0	5,0	17,3	6,7	56,9	507,0	140,4	243,8	20,2	6402,5	0,9	nn	nn
06.09.2010	45	15,0	5,0	14,5	6,7	70,6	478,5	116,0	187,7	18,9	5274,7	0,7	nn	nn
20.09.2010	59	13,0	6,5	12,9	6,6	79,0	500,2	110,6	151,6	16,7	4519,3	0,8	nn	nn
04.10.2010	73	15,0	6,5	13,3	7,0	66,5	567,3	139,9	156,6	19,7	4703,1	1,0	nn	nn
18.10.2010	87	11,5	5,0	13,9	6,9	58,2	596,6	158,5	163,5	19,7	4951,3	1,6	nn	nn
25.10.2010	94	9,5	6,0	14,2	6,9	56,7	609,8	156,3	152,7	17,1	4604,1	nn	nn	nn
08.11.2010	108	11,0	5,0	14,2	6,9	80,7	614,1	169,3	143,4	17,5	4476,8	nn	nn	nn
15.11.2010	115	4,5	5,0	14,3	6,8	61,9	641,3	166,8	150,8	18,6	4809,1	nn	nn	nn
22.11.2010	122	10,0	5,0	13,3	6,6	45,7	649,0	174,6	139,2	20,2	4581,7	nn	nn	nn
07.12.2010	137	10,0	5,0	14,1	6,6	61,3	680,3	169,7	120,3	17,8	4568,3	nn	nn	nn
13.12.2010	143	12,0	5,0	13,1	6,8	75,3	636,2	156,6	113,7	17,6	4297,4	nn	nn	nn
20.12.2010	150	8,5	5,0	13,2	6,6	40,5	673,6	161,7	118,3	19,7	4651,2	nn	nn	5,6
10.01.2011	171	14,5	5,0	13,1	6,5	83,7	664,2	157,8	102,8	19,0	4595,5	nn	nn	nn
17.01.2011	178	12,0	5,0	13,4	6,6	65,9	697,9	165,2	97,4	19,7	4523,3	nn	nn	nn
24.01.2011	185	7,0	7,0	13,3	6,7	51,8	682,8	160,1	101,8	20,1	4659,3	nn	nn	nn
31.01.2011	192	7,0	6,0	14,1	7,0	59,6	660,3	208,3	98,4	21,4	4429,5	nn	nn	nn
07.02.2011	199	9,5	5,0	13,3	6,6	78,6	629,5	208,9	90,4	22,0	4191,4	nn	nn	nn
14.02.2011	206	11,0	6,0	13,3	6,6	51,4	654,9	208,5	86,5	22,0	4095,2	nn	nn	nn
21.02.2011	213	10,5	7,0	13,5	6,8	48,1	641,0	201,9	81,9	22,1	4034,7	nn	nn	nn
28.02.2011	220	9,5	6,0	14,1	6,6	64,2	683,8	198,4	89,0	20,8	4608,9	1,2	nn	nn
07.03.2020	227	12,5	6,0	15,0	6,5	68,5	722,5	206,9	86,9	21,0	4867,6	nn	nn	nn
14.03.2011	234	10,5	6,0	15,4	6,6	67,3	717,3	201,4	82,3	20,4	4944,3	nn	nn	nn
21.03.2011	241	11,5	6,0	15,7	6,6	71,3	743,9	203,9	83,1	20,7	5149,2	nn	nn	nn
28.03.2011	248	15,0	5,5	15,3	6,7	88,7	731,8	183,3	78,1	20,3	5111,9	nn	nn	nn
11.04.2011	262	5,0	5,0	15,9	6,8	43,2	714,3	179,1	77,7	19,4	5262,7	nn	nn	nn
18.04.2012	269	10,0	5,0	15,0	6,6	64,6	665,8	182,4	69,9	19,4	4695,9	nn	nn	nn
26.04.2011	277	10,0	5,0	14,4	6,6	68,4	639,9	168,4	67,5	19,2	4509,0	nn	nn	nn
02.05.2011	283	9,0	5,0	14,3	6,6	67,4	637,7	164,4	62,5	18,9	4449,9	nn	nn	nn
09.05.2011	290	9,5	5,0	13,7	6,5	79,6	655,4	153,9	61,2	19,1	4389,0	nn	nn	nn
23.05.2011	304	10,5	5,0	14,5	6,7	60,9	680,5	154,9	61,9	19,4	4631,0	nn	nn	nn
30.05.2011	311	12,0	5,0	13,4	6,7	64,6	658,5	148,9	57,7	18,9	4355,0	nn	nn	nn
06.06.2011	318	10,5	5,0	13,1	6,6	58,2	641,1	134,7	54,5	18,2	4242,0	nn	nn	nn
20.06.2011	332	9,0	5,0	14,3	6,7	67,9	662,5	139,8	55,9	18,6	4518,0	nn	nn	nn
27.06.2011	339	9,5	5,0	12,5	6,6	62,2	655,3	139,5	53,5	18,5	4373,0	nn	nn	nn
04.07.2011	346	8,5	5,0	14,2	6,5	48,9	676,4	143,0	53,1	18,4	4481,0	nn	nn	nn
11.07.2011	353	8,2	5,0	14,6	6,5	74,3	655,6	129,2	51,3	17,5	4546,7	nn	nn	nn
18.07.2011	360	10,0	5,0	15,0	6,5	33,2	680,1	131,8	50,9	17,4	4659,0	nn	nn	4,3

Tab. IIIa.8: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten Tonstein der Weser-Formation (CS_37, 625,57-626,7m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten.

Reaktionszeit: 12 Monate

21.06.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]
19.07.2010	28	8,0	5,5	47,7	7,0	х	501,9	177,1	384,1	41,4	17020,9	3,4	nn	nn
26.07.2010	35	10,0	6,5	35,0	6,9	119,0	411,1	137,9	304,2	39,0	13043,2	2,3	nn	nn
02.08.2010	42	10,0	7,0	27,0	6,9	32,1	356,1	117,1	237,3	39,2	10293,1	1,8	nn	nn
09.08.2010	49	6,5	5,5	24,1	7,1	50,4	322,0	106,0	221,2	39,5	9312,6	2,4	nn	nn
16.08.2010	56	10,0	7,0	20,6	7,0	33,0	274,4	100,8	187,7	39,0	7927,1	2,6	nn	nn
23.08.2010	63	7,0	5,5	18,7	7,2	113,2	271,0	98,8	179,4	41,7	7228,9	1,7	nn	nn
30.08.2010	70	6,0	5,0	17,5	7,0	54,7	268,1	95,9	184,9	41,7	6865,7	2,1	nn	nn
06.09.2010	77	9,0	5,0	16,7	6,9	77,4	268,2	96,3	155,2	39,4	6316,5	2,3	nn	nn
20.09.2010	91	7,0	6,5	15,4	6,9	88,2	274,8	100,9	149,1	40,8	5919,8	2,5	nn	nn
04.10.2010	105	5,0	6,5	19,0	7,1	93,2	335,7	119,1	172,7	44,3	7236,6	3,6	nn	nn
18.10.2010	119	8,5	5,0	19,8	7,2	95,5	390,0	138,3	188,9	40,9	7596,6	5,5	nn	nn
25.10.2010	126	9,0	6,0	15,9	7,4	106,0	329,1	136,1	169,7	41,3	5631,0	1,4	nn	nn
08.11.2010	140	5,0	5,0	18,6	7,7	112,7	419,6	147,2	141,7	39,9	6385,2	nn	nn	nn
15.11.2010	147	5,0	5,0	15,9	6,7	109,7	369,4	155,0	152,0	40,0	5504,5	nn	nn	nn
22.11.2010	154	5,0	5,0	16,5	6,7	107,5	453,3	155,7	141,7	37,9	4896,6	nn	nn	nn
29.11.2010	161	6,0	5,0	17,8	6,6	94,0	522,3	166,6	149,0	37,7	5755,4	1,1	nn	nn
07.12.2010	169	6,5	5,0	18,0	7,0	108,0	459,6	164,4	143,4	38,7	5982,8	1,0	nn	nn
13.12.2010	175	11,0	5,0	16,4	7,1	137,0	433,1	134,8	130,9	34,4	5450,9	3,1	nn	nn
20.12.2010	182	8,0	5,0	16,1	7,0	138,0	420,1	130,2	137,9	36,8	5614,8	1,5	nn	nn
10.01.2011	203	9,0	5,0	15,9	7,0	120,6	397,1	120,8	130,9	35,4	5474,0	0,7	nn	nn
17.01.2011	210	7,5	5,0	15,1	6,8	117,8	405,4	119,0	119,7	38,3	5212,6	1,0	nn	nn
24.01.2011	217	6,0	7,0	14,6	6,9	105,1	398,8	123,5	115,0	41,0	4927,1	0,9	nn	nn
07.02.2011	231	6,0	7,0	14,6	7,0	103,2	363,8	141,1	125,9	43,3	5287,1	nn	nn	nn
14.02.2011	238	7,0	6,0	14,1	7,1	101,6	393,2	146,4	118,4	45,1	5091,7	nn	nn	nn
21.02.2011	245	6,5	7,0	13,7	7,1	93,2	404,5	146,2	113,0	45,0	4825,9	nn	nn	nn
28.02.2011	252	5,5	6,5	13,6	7,1	95,0	414,0	143,0	106,2	42,8	4568,9	1,2	nn	nn
07.03.2011	259	4,0	6,0	13,6	7,4	123,8	424,0	150,1	112,5	43,1	4754,3	1,6	nn	nn
14.03.2011	266	4,0	6,0	13,3	7,2	97,2	461,4	152,8	111,0	42,0	4923,1	1,4	nn	nn
21.03.2011	273	3,5	6,0	13,4	7,1	89,0	466,5	162,4	107,7	42,0	4814,3	1,7	nn	nn
28.03.2011	281	3,5	5,5	11,7	6,9	43,3	499,4	167,3	111,3	42,3	5089,3	1,4	nn	nn
18.04.2011	302	4,0	5,0	12,0	70,0	50,0	681,6	210,4	90,3	36,1	4829,9	3,9	nn	nn
26.04.2011	310	5,5	5,0	16,3	7,0	117,0	525,9	210,7	93,6	36,6	5311,4	3,3	nn	nn
02.05.2011	316	5,0	5,0	14,7	7,2	106,4	505,4	191,2	101,6	40,8	4831,4	1,6	nn	nn
09.05.2011	323	2,5	5,0	х	7,1	110,0	511,2	182,3	102,2	39,3	4749,0	nn	2,2	nn
23.05.2011	337	2,5	5,0	х	7,0	134,1	482,6	177,7	109,5	38,5	4688,0	nn	1,0	nn
30.05.2011	344	4,0	5,0	14,2	6,8	113,3	460,3	167,2	98,4	38,1	4731,0	nn	nn	nn
06.06.2011	351	4,5	5,0	14,9	7,0	105,5	453,2	167,7	99,7	38,0	4975,0	nn	nn	nn
20.06.2011	365	8,0	5,0	14,7	6,8	92,4	454,7	163,7	95,6	36,1	4784,0	nn	nn	nn

Deckgestein der Firma Shell

Tab. IIIa.9: Ergebnisse der Fluidanalytik aus den Reaktionsexperimente	n am Deckgestein der Fir-
ma Shell (CS_01, 824,48-824,65 m) bei 45°C, gemessen mit ICP-OES	S, Leitfähigkeits- und pH-
Messgeräten. Reaktionszeit: 9 Monate	

16.09.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
20.09.2010	4	4,0	6,5	16,0	6,9	135,0	180,6	56,1	97,3	13,1	6236,3	8,6	nn	nn
04.10.2010	18	5,0	6,5	14,7	7,5	159,6	124,7	45,0	89,0	13,7	5935,6	3,3	nn	nn
18.10.2010	32	6,0	5,0	13,7	7,7	104,0	122,1	53,4	92,0	13,7	5551,8	nn	nn	nn
25.10.2010	39	6,0	6,0	14,6	7,2	91,2	113,3	51,4	88,1	11,4	5045,8	nn	nn	nn
08.11.2010	53	4,0	5,0	х	7,9	99,4	126,5	67,2	95,5	13,3	6002,1	nn	nn	nn
15.11.2010	60	х	5	х	х	х	127,5	72,9	124,3	13,7	7398,5	nn	nn	nn
22.11.2010	67	5,0	5,0	12,6	7,3	87,4	141,7	69,4	120,4	13,5	6687,4	nn	nn	nn
29.11.2010	74	3,0	5,0	7,2	7,6	89,0	149,0	64,7	94,9	13,4	5462,4	nn	nn	nn
07.12.2010	82	7,0	5,0	15,3	6,8	28,4	155,1	71,1	102,0	13,0	5884,4	nn	nn	nn
13.12.2010	88	6,0	5,0	14,7	6,9	17,4	158,5	69,0	100,7	13,1	5795,9	nn	nn	nn
20.12.2010	95	6,0	5,0	14,5	7,4	22,4	154,5	70,3	101,2	12,5	5678,3	nn	nn	nn
10.01.2011	116	5,0	5,0	6,1	7,6	65,8	166,0	73,9	81,8	13,6	4976,0	nn	nn	nn
17.01.2011	123	5,0	7,0	12,7	6,8	34,2	159,0	68,5	80,2	12,4	4866,9	nn	nn	nn
24.01.2011	130	5,0	6,0	12,6	6,7	30,8	163,4	71,1	78,7	12,9	4588,5	nn	nn	nn
31.01.2011	137	5,0	5,0	11,8	6,8	20,7	178,3	75,0	79,3	13,8	4835,6	nn	nn	nn
07.02.2011	144	5,0	6,0	13,2	6,8	22,3	174,8	75,8	98,5	13,3	5648,2	nn	nn	nn
14.02.2011	151	6,0	7,0	13,1	6,9	14,7	179,8	67,8	73,0	12,9	4354,6	nn	nn	nn
21.02.2011	158	5,0	6,0	12,1	6,9	19,9	178,2	70,6	77,0	12,8	4489,0	nn	nn	nn
28.02.2011	165	5,0	6,0	11,9	6,7	-3,1	186,8	72,8	71,6	12,2	4391,4	nn	nn	nn
07.03.2011	172	х	6,0	х	х	х	185,5	76,2	74,9	12,1	4650,3	nn	nn	nn
14.03.2011	179	5,0	6,0	13,7	6,7	25,0	188,4	74,5	73,7	12,1	4676,8	nn	nn	4,5
21.03.2011	186	5,0	6,0	14,3	6,7	14,1	201,6	71,3	75,8	11,7	4993,5	nn	nn	4,5
28.03.2011	193	4,0	5,5	8,8	7,2	26,8	210,3	71,4	69,0	11,0	4336,2	nn	nn	nn
11.04.2011	207	х	5,5	х	х	х	212,4	75,3	78,0	11,5	4984,3	nn	nn	4,2
18.04.2011	214	х	5	х	х	х	226,1	78,3	68,2	11,5	4546,2	nn	nn	nn
26.04.2011	222	х	5	х	х	х	220,4	74,9	74,2	11,3	4617,8	nn	nn	nn
02.05.2011	228	х	5	х	х	х	213,4	70,7	66,2	11,1	4449,2	nn	nn	4,3
09.05.2011	235	5,0	5,0	х	6,9	15,9	219,3	68,5	67,4	11,4	4345,0	nn	nn	nn
23.05.2011	249	х	5	х	х	х	209,3	68,8	88,4	11,7	5189,5	nn	nn	nn
30.05.2011	256	х	5	х	х	х	214,8	68,8	82,8	12,0	4744,1	nn	nn	nn
06.06.2011	263	х	5	х	х	х	227,0	64,7	69,0	12,3	4489,8	nn	nn	nn

Tab. IIIa.10: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Deckgestein der Firma Shell (CS_01, 824,48-824,65 m) bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 9 Monate

\mathcal{O}														
01.09.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
20.12.2010	110	х	5	х	х	х	76,8	60,9	122,7	16,1	6062,1	nn	nn	nn
10.01.2011	131	8,0	5,0	15,2	7,1	98,0	81,8	47,8	113,3	15,8	5774,5	nn	nn	nn
17.01.2011	138	9,0	6,0	14,6	7,1	92,0	92,6	47,2	108,7	15,0	5709,6	nn	nn	nn
24.01.2011	145	52,0	7,0	12	6,3	53,2	77,4	37,8	57,2	9,1	4535,4	nn	nn	5,6
31.01.2011	152	10,0	6,0	12,3	6,6	35,0	98,2	38,0	62,8	15,0	4677,8	nn	nn	nn
07.02.2011	159	11,0	5,0	12,5	6,6	27,2	97,9	43,4	73,2	16,8	4455,5	nn	nn	nn
14.02.2011	166	15,0	6,0	12,5	6,5	21,5	102,1	41,5	77,1	17,6	4598,2	nn	nn	nn
21.02.2011	173	14,0	7,0	12,2	6,4	29,7	106,3	44,5	79,0	17,8	4566,4	nn	nn	7,1
28.02.2011	180	16,0	6,0	12,4	6,5	35,5	101,5	41,1	72,6	16,1	4668,5	1,3	nn	9,3
07.03.2011	187	14,0	6,0	13,2	6,4	36,3	97,8	37,8	69,4	15,5	4877,0	1,3	nn	10,5
14.03.2011	194	11,0	6,0	13,3	6,5	38,9	100,7	39,6	67,8	14,6	4693,9	1,5	nn	8,3
21.03.2011	201	11,0	6,0	14	6,4	38,1	111,8	42,7	71,5	15,2	4721,4	1,5	nn	7,8
28.03.2011	208	30,0	5,5	13,1	6,3	49,5	107,8	40,3	57,5	12,3	4607,9	0,9	nn	14,2
11.04.2011	222	12,0	5,0	13,1	6,4	36,7	101,9	38,7	61,7	15,2	4635,0	1,2	nn	8,4
18.04.2011	229	11,0	5,0	12,7	6,5	38,0	100,5	40,2	61,1	15,2	4264,4	nn	nn	6,0
26.04.2011	237	10,0	5,0	12,6	6,3	29,2	105,4	39,2	65,5	16,1	4353,2	nn	nn	8,1
02.05.2011	243	15,0	5,0	12,2	6,4	29,7	106,1	41,0	60,7	15,7	4127,1	nn	nn	10,0
09.05.2011	250	13,0	5,0	11,9	6,4	36,4	105,9	39,8	58,5	14,8	4215,4	nn	nn	9,8
23.05.2011	264	10,0	5,0	12,2	6,4	33,1	115,7	41,5	62,7	15,6	4329,4	nn	nn	6,5
30.05.2011	271	х	5,0	х	х	х	118,5	41,1	54,4	13,2	4064,0	nn	nn	10,1

Tab. IIIa.11: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Deckgestein der Firma Shell (CS_01, 824,48-824,65 m) bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 9 Monate

19.08.2010	Zeit	V	р	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG							0,02	0,01	0,5	0,05	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
30.08.2010	11	6,0	5,0	17,1	7,3	104,9	29,1	24,3	90,8	8,4	3734,6	nn	nn	nn
06.09.2010	18	4,0	7,0	15,9	7,7	113,5	57,4	42,4	144,4	18,4	6616,4	nn	nn	nn
20.09.2010	32	3,0	6,0	6,2	8,0	104,7	49,9	36,9	118,6	16,6	5605,2	nn	nn	nn
04.10.2010	46	х	5,5	х	х	х	67,0	41,2	127,9	20,1	6207,5	nn	nn	nn
18.10.2010	60	8,5	5,0	14,7	7,8	95,7	71,1	41,0	120,6	20,8	5873,5	nn	nn	nn
25.10.2010	67	7,0	6,0	15,4	7,7	107,8	79,7	39,2	123,4	19,0	5981,5	nn	nn	nn
08.11.2010	81	6,0	5,0	13,4	8,0	127,2	79,2	41,6	126,6	20,2	5950,0	nn	nn	nn
15.11.2010	88	8,0	5,0	15,0	7,3	127,9	114,1	42,4	119,4	19,4	5640,6	nn	nn	nn
22.11.2010	95	7,0	5,0	14,9	7,1	64,2	124,6	46,2	118,6	19,3	5716,0	nn	nn	nn
29.11.2010	102	11,0	5,0	11,3	6,4	70,2	119,2	45,7	80,6	12,0	4318,2	nn	nn	nn
07.12.2010	110	10,0	5,0	12,4	6,7	39,7	138,7	33,0	64,1	16,4	4666,2	nn	nn	nn
13.12.2010	116	13,0	5,0	12,5	6,8	53,0	120,4	39,6	79,7	18,4	4706,8	nn	nn	nn
20.12.2010	123	11,0	5,0	12,6	6,5	49,3	122,0	43,6	76,2	19,3	4453,9	nn	nn	nn
10.01.2011	144	9,0	5,0	13,8	6,6	42,4	138,6	46,8	86,1	21,4	5045,6	nn	nn	nn
17.01.2011	151	50,0	5,0	11,8	6,2	80,7	146,3	53,6	84,8	18,0	4401,8	nn	nn	6,0
24.01.2011	158	11,0	7,0	12,5	6,5	39,3	118,3	34,6	59,7	16,9	4589,7	1,3	nn	9,7
31.01.2011	165	12,0	6,0	12,4	6,7	40,7	104,5	38,6	63,7	16,6	4401,4	nn	nn	5,7
07.02.2011	172	13,0	5,0	12,5	6,5	35,6	98,4	37,2	58,0	16,2	4396,4	nn	nn	9,5
14.02.2011	179	10,0	6,0	12,9	6,4	46,1	95,5	36,2	61,5	18,0	4591,3	nn	nn	10,2
21.02.2011	186	13,0	7,0	12,5	6,5	38,0	104,5	36,3	66,6	19,3	4657,7	nn	nn	6,6
28.02.2011	193	12,0	6,0	12,5	6,4	43,0	105,7	37,6	68,7	18,0	4565,0	nn	nn	8,9
07.03.2011	200	12,0	6,0	13,1	6,2	36,7	108,2	38,5	63,8	17,7	4816,3	nn	nn	12,2
14.03.2011	207	12,0	6,0	13,9	6,4	33,6	113,4	39,6	63,5	16,6	4973,2	nn	nn	13,8
21.03.2011	214	12,0	6,0	14,4	6,4	71,3	122,1	42,4	64,8	16,7	5119,6	nn	nn	15,3
28.03.2011	221	16,0	5,5	14,5	6,3	48,8	122,7	44,0	63,8	16,0	5100,3	nn	nn	16,5
11.04.2011	235	11,0	5,0	15,4	6,5	22,7	130,7	46,5	66,4	17,2	5611,2	1,0	nn	13,7
18.04.2011	242	12,0	5,0	14,0	6,5	23,9	119,8	46,2	59,4	16,7	4658,4	nn	nn	12,2
26.04.2011	250	11,0	5,0	13,8	6,5	12,1	115,7	46,0	57,4	16,6	4599,8	nn	nn	12,9
02.05.2011	256	12,0	5,0	13,2	6,5	26,8	111,1	45,3	53,6	16,1	4426,5	nn	nn	13,4
09.05.2011	263	10,0	5,0	13,1	6,4	36,8	110,0	40,0	54,4	15,4	4473,3	nn	nn	nn

Tab. IIIa.12: Ergebnisse der Fluidanalytik aus den Reaktionsexperimenten am Deckgestein der Firma Shell (CS_01, 824,48-824,65 m) bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten. Reaktionszeit: 9 Monate

03.11.2010	Zeit	V	р	Sal	рН	U	Ca	Mg	К	Si	Na	Mn	Al	Fe
NG			-		-		0,02	0,01	0,5	0,1	0,1	0,01	0,1	0,02
Datum	[Tage]	[ml]	[bar]	[g/l]		[mV]	[mg/l]							
22.11.2010	19	4,0	5,0	11,6	7,7	83,7	43,0	23,5	110,4	34,0	5466,1	nn	nn	nn
07.12.2010	34	3,5	5,0	13,3	7,5	86,5	42,3	14,9	104,0	35,0	5364,6	nn	nn	nn
20.12.2010	47	4,5	5,0	14,9	7,6	97,8	55,9	17,7	107,5	37,3	5517,7	nn	nn	nn
17.01.2011	75	2,0	5,0	х	7,4	65,7	57,1	16,2	99,8	38,0	5350,1	nn	nn	nn
07.02.2011	96	4,0	5,0	12,4	7,4	75,0	68,6	21,4	95,0	40,7	4966,3	nn	nn	nn
14.02.2011	103	5,0	6,0	13,2	7,4	30,9	67,5	20,3	89,0	41,4	4676,8	nn	nn	nn
21.02.2011	110	4,0	7,0	13,1	7,3	39,1	70,3	20,5	88,6	42,7	4648,9	nn	nn	nn
28.02.2011	117	4,0	6,0	11,2	7,7	91,5	68,0	18,7	93,5	40,2	4672,0	0,9	nn	nn
07.03.2011	124	4,0	6,0	13,5	7,5	74,8	72,5	19,6	87,5	40,9	4864,8	0,8	nn	nn
14.03.2011	131	х	6,0	х	х	х	83,1	21,1	88,8	41,2	5006,4	1,0	nn	nn
21.03.2011	138	х	5,0	х	х	х	79,1	21,3	87,3	40,8	4983,6	1,0	nn	nn
28.03.2011	145	4,0	5,5	13,1	7,1	40,2	77,3	19,5	86,5	40,2	4789,0	0,7	nn	nn
11.04.2011	159	х	5,0	х	х	х	80,6	19,0	78,3	40,7	4543,1	0,8	nn	nn
26.04.2011	174	4,0	5,0	13,1	7,4	49,5	99,8	20,7	80,9	39,0	4733,5	0,9	nn	nn
02.05.2011	180	х	5,0	х	х	х	89,3	20,3	78,7	39,4	4656,1	nn	nn	nn
09.05.2011	187	х	5,0	х	х	х	96,2	20,3	80,4	39,6	4792,8	nn	nn	nn
23.05.2011	201	3,5	5,0	12,5	7,7	56,4	95,3	20,3	85,0	42,1	4666,5	nn	nn	nn
30.05.2011	208	х	5,0	х	х	х	90,8	21,2	77,9	42,5	4683,4	nn	nn	nn
06.06.2011	215	х	5,0	х	х	х	96,0	21,6	77,0	42,3	4654,4	nn	nn	nn
20.06.2011	229	3,5	5,0	х	7,1	14,1	103,9	22,6	75,8	41,7	4496,0	nn	nn	nn
27.06.2011	236	3,5	5,0	х	7,3	13,8	108,6	22,4	77,2	42,5	4515,7	nn	nn	nn
04.07.2011	243	3,5	5,0	х	7,2	14,5	122,1	24,2	77,5	39,8	4777,1	1,2	nn	nn
11.07.2011	250	х	5,0	х	х	х	125,5	23,6	74,7	36,4	4645,9	2,0	nn	nn
18.07.2011	257	х	5,0	х	х	х	139,6	24,8	76,6	35,7	4669,8	2,3	nn	nn
25.07.2011	264	х	5,0	х	х	х	137,7	21,7	75,3	32,0	4706,3	1,6	nn	nn
01.08.2011	271	х	5,0	х	х	х	149,0	24,6	75,7	32,6	4845,9	3,0	nn	nn

Anhang III b: Chemie der Vergleichsdeckgesteine

Tab. III b: Geochemische Hauptelementanalytik mittels Röntgenfluoreszenz (WDRFA) an Proben aus Ketzin, Mol und von Shell für Referenzgestein (Ref.) und bei verschiedenen Temperaturen und Zeiten reagierter Proben.

Probe	Zeit	Bohrung	Temp	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	K ₂ O	CaO	TiO ₂	MnO	Fe ₂ O ₃	LOI	Summe
	[Monate]	[m]	[°C]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	[Gew%]	
Anhydrit	ischer Ton	stein der Weser	formatio	n (Ketzin	ı)										
CS_37	Ref.	626,57-626,7	х	1,44	5,6	12,4	38,6	0,08	3,4	11,0	0,56	0,09	5,6	12,3	91
CS_37	12	626,57-626,7	45	0,90	5,8	12,3	39,3	0,09	3,4	10,2	0,55	0,11	5,7	16,9	95
CS_37	12	626,57-626,7	60	0,63	5,4	9,1	28,7	0,06	2,4	18,3	0,40	0,10	4,2	15,2	84
CS_37	12	626,57-626,7	75	0,83	6,1	14,2	44,2	0,09	4,1	6,4	0,63	0,11	6,5	14,3	97
CS_38	12	619,85-620,1	100	0,98	5,8	14,8	47,9	0,10	4,1	4,6	0,69	0,10	6,2	12,0	97
Boom Cla	ay (Mol - H	IADES)													
CS_22	Ref.	25,85-26,53	х	0,58	1,7	17,3	57,8	0,07	2,9	0,4	0,89	0,02	6,7	10,6	99
CS_22	9	25,85-26,53	45	0,62	1,5	16,6	59,1	0,05	2,7	0,2	0,86	0,01	4,7	12,6	99
CS_22	9	25,85-26,53	60	0,72	1,5	16,7	59,8	0,05	2,7	0,2	0,87	0,01	4,5	12,2	99
CS_22	9	25,85-26,53	75	0,87	1,6	16,5	55,7	0,05	2,7	0,3	0,85	0,02	5,2	10,5	94
CS_22	9	25,85-26,53	100	0,62	1,4	16,5	56,6	0,05	2,6	0,2	0,85	0,02	6,0	14,3	99
Deckgest	ein (Shell)														
CS_01	Ref.	824,48-824,65	х	1,12	1,4	16,8	57,1	0,33	3,3	1,0	0,67	0,07	7,5	10,2	100
CS_01	9	824,48-824,65	45	1,00	1,2	16,6	60,2	0,07	3,3	0,4	0,68	0,04	4,9	10,5	99
CS_01	9	824,48-824,65	60	0,92	1,5	15,7	54,4	0,22	3,1	0,9	0,61	0,09	9,0	12,3	99
CS_01	9	824,48-824,65	75	1,05	1,4	17,2	56,7	0,10	3,5	0,5	0,70	0,06	6,0	11,5	99
CS_07	9	823,45-823,56	100	1,11	1,1	14,7	65,5	0,06	3,0	0,5	0,60	0,04	4,6	8,5	100

Anhang IV a: Fluidanalytik Blindwerte

11.10.2010	V	Sal	pH	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG					0,02	0,01	0,5	0,1	0,1	0,01	0,1	0,02
Datum	[ml]	[g/l]		[mV]	[mg/l]							
18.10.2010	15	10,7	6,3	61,8	139,2	32,3	18,8	28,1	4017,2	3,2	nn	9,4
25.10.2010	15	10,9	6,3	87,8	177,4	24,8	18,6	21,8	4016,0	3,0	nn	3,2
08.11.2010	15	11,2	6,3	48,8	161,6	26,7	14,3	18,5	4152,6	2,9	nn	9,1
15.11.2010	15	11,1	6,1	57,9	139,8	23,5	13,5	20,5	4229,0	2,7	nn	21,6
22.11.2010	15	10,9	5,9	92,8	105,8	16,6	15,0	18,9	4203,6	2,4	nn	21,4
29.11.2010	15	11,2	5,8	102,6	105,9	25,6	16,8	11,9	4265,8	0,9	nn	17,9
07.12.2010	15	11,0	5,7	111,1	73,4	20,6	16,6	8,1	4310,8	nn	nn	23,8
13.12.2010	15	11,0	5,8	109,2	64,2	17,7	10,1	8,5	4219,3	nn	nn	21,2
20.12.2010	15	11,3	5,6	121,5	56,2	16,5	9,7	8,4	4307,6	0,5	nn	20,9
10.01.2011	15	10,3	5,6	119,0	40,9	13,2	8,7	9,7	4335,8	1,2	nn	23,8
17.01.2011	15	11,1	5,7	104,2	47,7	9,1	nn	8,0	4252,7	1,1	nn	23,5
24.01.2011	15	11,0	5,6	123,0	61,2	11,5	nn	7,3	4201,6	0,9	nn	26,0
31.01.2011	15	11,1	5,6	106,1	32,1	8,9	nn	6,7	4119,9	nn	nn	23,5
07.02.2011	15	11,2	5,7	115,1	23,2	6,3	nn	6,6	4078,6	0,7	nn	42,7
14.02.2011	15	11,6	5,9	88,0	26,5	8,6	nn	5,8	4069,3	nn	nn	36,8
21.02.2011	15	11,9	5,7	112,8	47,7	8,9	nn	6,1	4263,9	1,2	nn	48,2
28.02.2011	15	12,3	5,5	119,4	20,5	6,2	nn	5,5	4334,6	2,1	nn	43,9
07.03.2011	15	12,8	5,4	141,9	18,1	4,7	8,9	6,2	4500,6	2,3	nn	45,4
14.03.2011	15	12,1	5,3	149,6	11,7	2,4	nn	4,8	4628,6	1,7	nn	36,0
21.03.2011	15	11,1	5,1	194,1	8,4	1,0	nn	4,2	4557,9	1,1	nn	24,4
28.03.2011	15	11,2	5,6	102,9	5,9	0,4	nn	3,5	4011,3	0,9	nn	16,5
11.04.2011	15	10,7	5,7	86,5	12,5	1,4	nn	4,6	4071,0	1,6	nn	39,9
18.04.2011	15	10,7	5,5	99,7	16,1	1,6	nn	4,2	3680,9	1,4	nn	57,7
26.04.2011	15	10,7	5,6	113,0	19,3	2,3	nn	3,9	3751,3	1,2	nn	52,7
02.05.2011	15	10,6	5,5	122,1	15,7	1,6	nn	4,0	3735,1	1,2	nn	49,3
23.05.2011	15	10,7	5,7	100,3	528,4	6,1	nn	5,2	3921,0	nn	nn	43,3
30.05.2011	15	10,8	5,7	107,8	943,2	10,5	nn	5,6	3916,0	nn	nn	40,3
06.06.2011	15	13,4	5,6	106,6	805,2	10,2	nn	5,5	3897,0	nn	nn	37,8
20.06.2011	15	11,0	5,7	96,9	783,3	10,0	nn	6,6	3901,0	nn	nn	41,6
27.06.2011	15	10,9	5,7	98,0	766,9	9,9	nn	6,6	3967,0	nn	nn	40,5
04.07.2011	15	11,0	5,7	99,0	681,5	8,4	nn	6,7	4096,0	nn	nn	40,6

Tab. IVa.1: Ergebnisse der Fluidanalytik der Blindwerte aus den Reaktionsexperimenten bei 45°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten.

18.10.2010	V	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG					0,02	0,01	0,5	0,1	0,1	0,01	0,1	0,02
Datum	[ml]	[g/l]		[mV]	[mg/l]							
25.10.2010	15	10,4	5,9	75,0	134,0	10,8	10,0	22,0	4083,3	nn	nn	40,1
08.11.2010	15	11,3	6,3	21,7	113,8	8,9	17,6	30,8	4385,5	nn	nn	74,6
15.11.2010	15	11,9	6,4	7,8	48,0	5,8	nn	37,4	4164,6	nn	nn	114,4
22.11.2010	15	11,2	6,0	37,7	9,8	1,5	nn	7,8	1074,6	nn	nn	21,7
29.11.2010	15	11,2	5,8	75,1	39,5	12,0	10,5	13,3	4188,6	nn	nn	44,1
07.12.2010	15	11,2	5,5	103,4	36,7	10,7	19,7	11,2	4181,3	nn	nn	41,1
13.12.2010	15	11,3	5,7	95,5	30,5	10,8	12,9	11,1	4261,9	nn	nn	28,0
10.01.2011	15	11,2	5,8	101,1	22,9	7,9	nn	14,5	4402,9	nn	nn	45,2
17.01.2011	15	11,9	6,1	49,8	15,4	4,5	nn	13,1	4241,9	nn	nn	41,8
24.01.2011	15	11,2	6,1	59,7	17,7	5,1	nn	10,1	4648,5	nn	nn	44,8
10.01.2011	15	11,7	5,9	67,6	22,9	7,9	nn	14,5	4402,9	nn	nn	45,2
17.01.2011	15	11,7	5,9	78,4	15,4	4,5	nn	13,1	4241,9	nn	nn	41,8
24.01.2011	15	11,7	5,9	65,7	17,7	5,1	nn	10,1	4648,5	nn	nn	44,8
21.02.2011	15	11,6	5,8	58,6	42,3	9,6	nn	8,9	4179,5	nn	nn	45,9
28.02.2011	15	11,6	5,8	77,5	41,9	9,2	nn	8,1	4294,8	nn	nn	40,9
07.03.2011	15	11,9	5,8	84,5	48,6	10,0	nn	8,0	4516,0	nn	nn	34,4
14.03.2011	15	12,3	5,7	84,5	49,3	10,3	nn	7,1	4644,7	nn	nn	34,7
21.03.2011	15	12,8	5,8	97,5	38,8	7,1	nn	6,2	4769,2	nn	nn	39,1
28.03.2011	15	13,0	5,7	89,0	50,6	8,8	nn	6,9	4582,0	nn	nn	32,3
18.04.2011	15	12,4	5,9	80,8	44,8	7,9	nn	7,3	4148,0	nn	nn	42,1
26.04.2011	15	11,5	6,0	58,8	41,8	7,4	nn	6,8	4224,3	nn	nn	35,2
02.05.2011	15	11,5	5,8	74,2	35,7	7,7	nn	6,7	3971,6	nn	nn	34,1
09.05.2011	15	11,4	5,8	87,1	31,1	4,8	nn	6,7	4052,0	nn	nn	46,5
23.05.2011	15	11,1	5,8	87,6	24,3	2,3	nn	5,6	4120,0	nn	nn	47,8
30.05.2011	15	11,1	5,8	66,3	20,7	2,0	nn	6,0	4046,0	nn	nn	37,4
06.06.2011	15	10,7	5,8	85,4	20,0	nn	nn	6,1	3976,0	nn	nn	36,6
20.06.2011	15	10,8	5,7	99,9	10,9	nn	nn	6,3	3920,0	nn	nn	40,0
27.06.2011	15	11,4	5,5	12,5	8,7	nn	nn	5,9	4108,0	nn	nn	36,2
04.07.2011	15	х	х	х	9,8	nn	nn	5,8	4380,0	nn	nn	35,7

Tab. IVa.2: Ergebnisse der Fluidanalytik der Blindwerte aus den Reaktionsexperimenten bei 60°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten.

18.10.2010	V	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG					0,02	0,01	0,5	0,1	0,1	0,01	0,1	0,02
Datum	[ml]	[g/l]		[mV]	[mg/l]							
25.10.2010	15	10,3	6,4	92,9	69,7	31,5	21,8	40,7	3885,5	0,8	nn	1,4
08.11.2010	15	11,5	6,7	-11,4	143,1	19,0	nn	33,6	4247,3	5,7	nn	22,1
15.11.2010	15	11,3	6,2	26,9	86,8	11,8	nn	40,9	4185,4	6,1	nn	98,9
22.11.2010	15	11,2	6,1	42,6	58,4	7,8	12,2	31,7	4266,7	2,0	nn	83,9
29.11.2010	15	11,3	5,9	61,7	43,9	10,3	11,1	21,4	4283,3	1,6	nn	50,1
07.12.2010	15	11,4	5,8	93,6	65,4	9,9	10,1	17,9	4325,6	nn	nn	38,7
13.12.2010	15	11,1	6,0	93,2	30,5	7,4	nn	13,8	4260,0	nn	nn	22,7
20.12.2010	15	11,3	5,9	78,1	27,3	6,2	nn	15,8	4359,0	nn	nn	41,1
10.01.2011	15	11,7	6,0	67,9	26,2	8,9	nn	17,6	4372,2	1,1	nn	35,6
17.01.2011	15	11,7	5,9	71,7	43,6	11,1	nn	15,1	4438,2	2,5	nn	34,5
24.01.2011	15	11,5	6,1	66,9	19,7	7,5	nn	15,1	4313,0	0,8	nn	36,3
31.01.2011	15	11,6	6,2	74,0	17,8	7,0	nn	13,8	4034,6	1,0	nn	37,1
07.02.2011	15	12,0	5,9	64,6	13,3	5,2	nn	11,7	4155,9	1,7	nn	48,7
14.02.2011	15	12,4	5,8	76,9	67,6	8,7	nn	10,4	4340,0	7,4	nn	36,2
21.02.2011	15	12,2	6,0	85,2	37,1	9,3	nn	10,8	4457,3	3,7	nn	35,6
28.02.2011	15	12,3	6,0	75,7	26,9	8,8	8,7	10,5	4419,2	3,3	nn	32,4
07.03.2011	15	12,8	5,8	84,0	32,7	11,0	10,8	10,9	4582,0	2,1	nn	32,2
14.03.2011	15	13,4	6,0	81,3	42,8	13,3	9,9	10,2	4803,0	2,0	nn	29,3
21.03.2011	15	13,9	6,0	73,3	50,7	15,6	nn	10,3	4866,9	1,8	nn	28,6
28.03.2011	15	13,4	5,8	72,0	74,4	21,2	9,5	9,5	4820,8	1,3	nn	23,5
18.04.2011	15	17,0	6,1	66,9	63,0	19,3	10,7	9,8	5953,9	3,5	nn	22,6
26.04.2011	15	13,5	6,0	63,4	79,0	24,6	13,0	11,9	4721,2	2,5	nn	25,4
02.05.2011	15	12,8	5,9	77,7	103,0	29,5	12,3	12,0	4452,8	2,1	nn	24,3
09.05.2011	15	13,0	6,0	87,7	113,0	28,4	13,8	10,5	4720,0	nn	nn	14,2
23.05.2011	15	13,7	6,0	90,1	116,5	28,8	14,3	11,5	4971,0	nn	nn	6,4
30.05.2011	15	х	х	х	152,9	35,3	14,0	10,7	4661,0	nn	nn	10,5
06.06.2011	15	12,6	6,1	80,0	133,4	30,3	13,5	11,1	4603,0	nn	nn	11,2
20.06.2011	15	12,7	5,9	96,2	129,6	28,5	12,2	11,9	4534,0	nn	nn	6,8
27.06.2011	15	12,5	5,9	86,7	98,9	20,1	9,0	9,8	4476,0	nn	nn	11,7

Tab. IVa.3: Ergebnisse der Fluidanalytik der Blindwerte aus den Reaktionsexperimenten bei 75°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten.

11.10.2010	V	Sal	pН	U	Ca	Mg	K	Si	Na	Mn	Al	Fe
NG					0,02	0,01	0,5	0,1	0,1	0,01	0,1	0,02
Datum	[ml]	[g/l]		[mV]	[mg/l]							
18.10.2010	15	11,5	6,3	60,0	47,2	16,2	13,6	66,5	4102,4	3,0	nn	20,0
25.10.2010	15	11,3	6,4	22,2	83,7	8,5	nn	47,7	4221,8	2,6	nn	32,0
08.11.2010	15	11,8	6,3	54,0	64,3	8,7	21,0	37,5	4407,1	2,9	nn	11,7
15.11.2010	15	11,2	6,1	45,0	44,5	4,9	nn	40,6	3986,0	2,3	nn	55,4
22.11.2010	15	11,5	6,1	67,3	33,7	5,9	8,6	33,6	4320,9	1,9	nn	33,9
29.11.2010	15	11,6	5,7	80,7	37,3	20,7	16,1	26,4	4461,0	1,9	nn	29,4
07.12.2010	15	11,4	5,8	117,5	22,7	10,9	7,7	24,0	4450,3	1,8	nn	25,5
13.12.2010	15	11,1	6,0	123,0	21,1	9,2	7,2	23,6	4276,6	1,6	nn	6,8
20.12.2010	15	11,4	6,0	82,6	15,9	5,8	6,2	22,4	4342,3	2,7	nn	31,0
10.01.2011	15	11,4	5,6	117,0	19,6	5,7	nn	29,0	4441,3	4,8	nn	49,1
17.01.2011	15	11,5	5,6	119,4	20,3	5,2	nn	26,6	4388,6	3,6	nn	49,3
24.01.2011	15	11,5	5,8	109,0	15,1	3,4	nn	22,2	4375,2	2,7	nn	36,6
31.01.2011	15	11,7	5,6	125,4	12,3	2,8	nn	21,6	4071,5	2,6	nn	42,3
07.02.2011	15	11,4	5,6	106,0	11,6	2,6	nn	24,2	4207,2	3,5	nn	57,4
14.02.2011	15	12,5	6,5	126,3	18,2	3,3	nn	21,9	4248,4	8,3	nn	52,8
21.02.2011	15	13,0	5,5	131,4	11,1	1,9	nn	21,3	4600,8	3,6	nn	56,1
28.02.2011	15	14,2	5,5	142,9	8,1	nn	nn	20,4	5258,1	3,9	nn	45,2
07.03.2011	15	12,3	5,0	191,1	6,8	0,7	nn	20,6	4865,8	4,0	nn	51,8
14.03.2011	15	12,8	5,2	235,1	6,1	nn	nn	19,2	4652,1	3,9	nn	53,2
21.03.2011	15	12,4	3,9	263,1	5,8	0,9	nn	19,0	4539,7	4,2	nn	68,4
28.03.2011	15	11,9	3,6	229,0	8,0	1,3	nn	20,0	4409,5	7,3	nn	67,0
26.04.2011	15	10,8	3,4	239,9	10,5	4,3	nn	31,9	3849,4	13,7	7,2	914,3
02.05.2011	15	10,8	6,1	8,8	13,0	8,7	nn	54,1	3575,7	31,2	11,0	2677,8
09.05.2011	15	11,6	6,1	32,5	90,5	7,5	nn	31,6	3895,0	nn	nn	119,9
23.05.2011	15	11,7	5,8	53,2	73,1	18,7	11,7	26,9	4120,0	nn	nn	76,6
30.05.2011	15	11,9	5,9	62,2	33,2	17,8	16,2	31,3	4176,0	nn	nn	113,1
06.06.2011	15	11,7	5,9	-65,6	30,0	14,8	11,4	30,1	4278,0	nn	nn	111,6
20.06.2011	15	11,5	5,8	-70,0	24,9	11,3	8,6	28,7	4334,0	nn	nn	105,4

Tab. IVa.4: Ergebnisse der Fluidanalytik der Blindwerte aus den Reaktionsexperimenten bei 100°C, gemessen mit ICP-OES, Leitfähigkeits- und pH-Messgeräten