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1
I N T R O D U C T I O N

In the summer of 2012 ATLAS and CMS at CERN announced the discov-

ery of a scalar boson, see Refs. [1, 2]. But it remains an open question

whether the discovered particle is indeed the Higgs boson of the Standard

Model (SM). In forthcoming years the couplings of the found boson to the

various gauge bosons and fermions will be measured with improved preci-

sion in order to verify their compatibility with the values dictated within the

SM.

One fundamental property of theories such as Quantum Electrodynam-

ics (QED) and Quantum Chromodynamics (QCD), which are experimentally

confirmed, is gauge invariance. The correct description also of weak interac-

tions requires massive vector bosons W± and Z0. In contrast, photons γ in

QED and gluons g in QCD are massless. However, introducing masses (of

vector bosons and fermions) directly as parameters of a theory that includes

also weak interactions violates gauge invariance. Instead, a scalar doublet

field accompanied by a potential is considered. The form of the potential

gives rise to a non-vanishing vacuum expectation value which is phrased as

“spontaneous symmetry breaking”. After a reparametrization of the theory,

the “broken phase” of the SM, massless photons but massive Z0- and W±-

bosons emerge. QED and weak interactions are unified in this electroweak

theory and in addition a massive scalar particle remains, the Higgs boson.

All masses of fermions and vector bosons are generated by their couplings

to this Higgs boson.

The main subject of this thesis is the inclusive cross section of the SM

Higgs boson in the gluon fusion production mode. Even though gluon fu-

sion is dominant at the LHC other partonic production modes have to be

accounted for, too. The complete list reads:

• gluon fusion (gg → H),

• vector boson fusion (qq→ qqH),

• Higgs strahlung (qq̄′ → HW± and qq̄, gg → HZ0),

• production in association with top quark pairs (qq̄, gg → tt̄H).

Weighting the partonic cross sections with the corresponding parton distri-

bution functions (PDFs) and integrating over the momentum fractions gives

the hadronic cross sections. Then, in order to relate the hadronic cross sec-

tion to the signals experimenters actually measure, a vast program of theoret-

ical and experimental techniques comes into play.

From theoretical side these are:

• combination with the partial width of each decay mode (fermion and

gauge boson pairs) to form a hard subprocess,
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introduction

• parton showers (radiation cascades) for the initial and final state parti-

cles of the hard subprocess,

• hadronization and hadronic decay chains of unstable into (meta)stable

particles,

• underlying events for the incoming hadron’s remains not taking part

in the hard scattering,

• multiple parton interactions involving a hard subprocess

to arrive at a full event presenting itself in the detector.

The decays H → bb̄, ττ̄, W+W−, Z0Z0, γγ are of most interest since

they either dominate numerically (like bb̄, ττ̄ and W+W−) or allow by clear

signatures (of subsequent decays) for a good identification and separation

from background processes (like γγ, W+W− → 2l2ν and Z0Z0 → 4l).

Before actually producing a Higgs boson partons may emit additional

quarks or gluons, not relevant for the hard subprocess but modifying the

provided energy. For the final state partons the situation is similar and

in both cases Monte Carlo parton showers give a quantitative description.

Followed by hadronization and hadronic decays the evolution to smaller

energy scales and higher-multiplicity final states in the detector is done.

Sample events generated in this way used together with detector simula-

tions enable experimentalists to tune their machinery for event reconstruc-

tion. Only then the set of signals recorded by the different components of the

detector can be translated into a snapshot of kinematic quantities of a multi-

particle final state and finally put into data analysis. These sets of recorded

events from experiment enable extraction of distributions for quantities that,

in the end, are confronted with the respective theoretical predictions (made

on the basis of Monte Carlo events, too).

We emphasize that the total cross section for Higgs boson production via

gluon fusion is merely one puzzle piece needed to connect the abstract pic-

ture of elementary interactions described by Quantum Field Theory (QFT)

to physical reality. However, the Higgs boson cross section is an important

puzzle piece, itself put together from various ingredients.

why higher-order corrections?

Within the next decade the data acquired by the LHC and its upgrades

will reduce statistical errors. Ultimately, the remaining uncertainties in the

measurement of the Higgs boson cross section will challenge the precision

of available theoretical predictions which is about 10%. Theory uncertain-

ties are partly due to the PDFs, partly due to unknown higher-order cor-

rections in the perturbation series of the partonic cross section. The lead-

ing order (LO), next-to-leading order (NLO) and next-to-next-to leading or-

der (NNLO) terms of the perturbation series are known but rather slow

convergence of the series was found. Therefore, the next-to-next-to-next-to-

leading (N3LO) term is the objective at present. Albeit, the N3LO calculation

is a testing ground for new theoretical methods.
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outline

Chapters 2 and 3 of this thesis lay the technical foundation for calculations

of inclusive partonic cross sections which are topic of Chapters 4 and 5.

In Chapter 2 a very detailed discussion of methods to handle classes of

Feynman diagrams is given. Reversed unitarity, enabling treatment of real

corrections as loop integrals, is explained in Chapter 3. Chapter 4 is devoted

to higher-order corrections to Higgs boson production. Chapter 5 describes

two more applications of the techniques described before: Higgs boson pair

production and the Drell-Yan process.
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2
F E Y N M A N I N T E G R A L FA M I L I E S

The following is the first of two technical chapters giving a pedagogical

introduction to analytic methods used in nowadays calculations of matrix

elements in terms of Feynman diagrams. Commonly, it is preferred to work

initially with families of Feynman integrals which will be subject of this

chapter. We lay out the notation for quantities, derive and motivate some of

their useful properties and also formulate precisely algorithms for system-

atic solutions to particular problems arising in such kind of calculations. All

of this is illustrated by numerous examples from real applications. These

are selected to be as simple as possible without their characteristic features

going astray.

2.1 definition and notation

With the beginning of this section we shall give a clear definition of a Feyn-

man diagram class, alternatively called Feynman integral familiy or plainly

referred to as “topology”. Even though the term topology in this context is

actually an abuse of the name for an area of mathematics, we will stick to it.

The mathematics behind “our” topologies is a mixture of rather elementary

linear algebra and graph theory.

2.1.1 Topology: integral class or family

We will denote topologies by capital letters, e.g. T, T1, T2 and so on. A topol-

ogy is a collection of N f scalar factors {Fi} raised to arbitrary powers {ai},
usually referred to as “indices”. In these sets we do not allow for duplicates,

viz. factors with the same representation in momentum space are immedi-

ately identified. If the indices {ai} are fixed to particular values we have a

definite Feynman integral which we denote by capital letters, e.g. I, I1, I2

and so on to distinguish from topologies. Symbols used for indices with

subscripts omitted are to be understood as the sum of all indices,

a =
N f

∑
i=1

ai. (1)

If one considers a particular index aj ≤ 0, we speak of Fj =: Nj as a

“pure numerator” or “irreducible scalar product” with which we will con-

cern shortly. Reversely, if the sign of aj is not restricted we call Fj =: Dj a

“real denominator” or “propagator”. Usually indices can be regarded as in-

tegers but for some applications even complex numbers are admissible. As

an example consider the recursive integration of massless one-loop propaga-

tors appearing as subintegral. The result of each integration has the form of
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a propagator raised to a power involving ǫ, a complex number describing

the deviation from four space-time dimensions. Accordingly, Nd and Nn are

the numbers of real denominators and pure numerators, respectively, and

we have:

N f = Nd + Nn. (2)

The Nd propagators {Di} with ai unrestricted depend in general on Nd

masses {mi} assigned to corresponding particles and “line momenta” {qi}
flowing through these real denominators, such that we can write

1

Di
=: di = m2

i ± q2
i (3)

for the quadratic forms {di}. Therefore, the {di} are of mass dimension two.

The plus sign in Eq. (3) applies when working with Euclidean momenta and

the minus sign applies when working with Minkowskian momenta. Com-

pared to the usual form of a scalar Feynman propagator

1

Pi
:= q2

i −m2
i + iǫ, (4)

we omitted the +iǫ-prescription merely for convenience. Furthermore, we

implicitly multiply all integrals by a factor (−1)a because then we do not

have to care about additional sign changes induced by switching between

Minkowski and Euclidean space via Wick-rotation.

The line momenta {qi} are linear combinations with the integer coeffi-

cients
{

cij

}
and

{
dij

}
of the Np independent external momenta {pi} and

the Nk internal or integration momenta {ki} of the Feynman integral whose

graph always has NL = Nk loops:

qi =
Np

∑
j=1

cij pj +
Nk

∑
j=1

dij kj with cij, dij ∈ Z. (5)

The notation with a
(

Np + Nk

)
-dimensional vector of common momenta v

and a common coefficient Nd ×
(

Np + Nk

)
matrix C is a more compact alter-

native:

qi = Cij vk with

v =
(

p1, . . . , pNp , k1, . . . , kNk

)

and Cij = cij, Ci,Np+j = dij.
(6)

For a particular kinematic setup, i.e. given external and internal momenta,

supplemented by optional constraints, e.g. putting particles on-shell, one

can form all possible scalar products

xpi,pj
:= pi · pj, spi,k j

:= pi · kj, ski ,k j
:= ki · kj, (7)

where
{

xpi,pj

}

are external scalar products or invariants,
{

spi,k j

}

and
{

ski ,k j

}

are internal or mixed scalar products. From expressions containing the ex-

ternal scalar products
{

xpi,pj

}

one usually defines the (generalized) Man-

delstam variables. The momentum symbols p and k may also be omitted if
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2.1 definition and notation

there is no danger of confusion. Internal and mixed scalar products can then

be labeled collectively
{

sij

}
. To obtain the maximum number of possible in-

ternal scalar products N̂sp (cf. Tab. 1 on Page 16) one has to combine each

of the external with each of the internal momenta and form additionally all

sorted pairs of internal momenta:

N̂sp = NpNk + Nk
Nk + 1

2
=

Nk

2

(
2Np + Nk + 1

)
. (8)

N̂sp must be reduced by the number of imposed scalar conditions Nsc to give

the number of actually appearing scalar products Nsp:

Nsp = N̂sp − Nsc. (9)

An example follows below.

Scalar products occur linearly in all the { fi} where

1/Fi =: fi, (10)

especially as some arbitrary linear combination in the pure numerators

1

Ni
=: ni with ai ≤ 0. (11)

Combining all these notations, we have for a topology T in D = 4− 2ǫ

dimensions:

T
(

a1, . . . , aN f

)

=
Nk

∏
i=1

∫

dkD
i







N f

∏
j=1

1

f
aj

j






=

T(a1, . . . , aNd
, aNd+1, . . . , aNd+Nn)

=
Nk

∏
i=1

∫

dkD
i







Nd

∏
j=1

1

d
aj

j







{
Nd+Nn

∏
j=Nd+1

n
−aj

j

}

=
Nk

∏
i=1

∫

dkD
i







Nd

∏
j=1

1
[

m2
j ± q2

j

]aj







{
Nd+Nn

∏
j=Nd+1

n
|aj|
j

}

,

(12)

where the factor µ2ǫNk fixing the mass dimension of the integration measure

is here and also the following suppressed, as well as the dependence on

dimension D and external invariants
{

xpi,pj

}

in the argument of T. Even

though the { fi} are strictly speaking the reciprocal topology factors, we will

often call them the topology factors.

Example 1. The topology Tbasic
H,NLO is defined below. It appears in our cal-

culation for the NLO corrections to Higgs boson production via forward

scattering. This means we have four external legs with momenta p1, . . . , p4

fixed by p1 and p2 only:

p3 = p1, p4 = p2.
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feynman integral families

In addition, all external particles are put on-shell:

p2
1 = p2

2 = 0.

Here, we have Nk = 1 and Np = 3 resulting in N̂sp = 4. Our kinematic

setup demands that

p3 · k1 = p1 · k1,

meaning Nsc = 1 and thus Nsp = 3 (p4 is not independent). This leaves us

explicitly with the scalar products

{
xij

}
= {p1 · p2 = −s/2} ,

{
sij

}
=
{

p1 · k1, p2 · k1, k2
1

}
.

Inspecting all diagrams for Higgs boson production at NLO, we find a

single topology with N f = Nd = 3 and Nn = 0 for

m1 = mH,

m2 = 0,

m3 = 0,

q1 = k1,

q2 = p1 + p2 + k1,

q3 = p2 + k1.

All in all, this can be represented as follows:

Tbasic
H,NLO(a1, a2, a3) =

∫

dkD
1

1

da1
1 da2

2 da3
3

=

p2

p1 d2

d3

p1

p2
d1

with d1 = m2
H + k2

1,

d2 = (p1 + p2 + k1)
2 = −s + 2p1 · k1 + 2p2 · k1 + k2

1,

d3 = (p2 + k1)
2 = 2p2 · k1 + k2

1.

Labels on external lines state the momenta flowing in and out, labels on

internal lines their corresponding topology factors. Simple plain black lines

represent massless propagators (corresponding to quarks or gluons), the

double black line a massive propagator (for the Higgs boson). Arrows

indicate the directions of line momentum flow.

2.1.2 From integrals to graphs

Topologies usually have a diagrammatic representation. However, these rep-

resentations are not unique (cf. Example 2) and certain propagators and
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2.1 definition and notation

kinematic conditions cannot be envisioned as graph elements, e.g. the prop-

agators of linear form in heavy quark effective theory (HQET):

1

−2v · q + iǫ
, (13)

where q is a line momentum and v the velocity of a heavy quark. Therefore,

the graph of a topology does not give a complete definition but is at least

more tangible in practical use than just a mere list of quadratic forms.

In most cases topologies are deduced directly from Feynman diagrams.

The lines in a diagram correspond to propagators and are also called edges.

These edges are oriented due to the direction of the momentum flowing

from a start vertex to an end vertex. It is admissible for multiple edges to

connect to the same pair of vertices (one can think of self-energy insertions).

In graph language this property is termed as “non-simple” or the corre-

sponding graph as “multigraph”. Thus, the graphs we are dealing with in

the context of QFTs are directed and non-simple.

Example 2. In the calculation for Higgs boson production via forward scat-

tering two non-isomorphic diagrams appear that can both be attached to

the same topology (this example will reappear in greater detail later on

Page 43 and is also discussed in Ref. [3]):

←→ .

The notation is as in Example 1 with the exception that arrows on external

legs show entrance and exit only for momentum p1 since this is sufficient.

One should not confuse the number of internal lines NI with the number

of propagators Nd. Internal lines not part of a loop are not counted among

the real propagators since they do not have to be considered in loop inte-

grations and are “constants” in this sense. See Example 3, where NI = 4

but Nd = 3. Moreover, different edges of a graph could be associated with

a single denominator factor of a topology (if they have the same mass in

addition to the same momenta flow), resulting in a double counting. See

Example 4, again with NI = 4 but Nd = 3.

Example 3. The topology associated with virtual NLO corrections for Higgs

boson production containts a massive propagator without loop momentum
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Table 1: Equations (8) and (14) applied for illustration purposes to various values
of Np and Nk. Note that the results for N̂I are meaningless for NE = Np + 1 ≤ 2
and NL = Nk = 0, it is more sensible to define N̂I = 0 in these cases.

N̂sp, N̂I Nk = 0 Nk = 1 Nk = 2 Nk = 3 Nk = 4 Nk = 5

Np = 0 0,−2 1, 1 3, 4 6, 7 10, 10 15, 13

Np = 1 0,−1 2, 2 5, 5 9, 8 14, 11 20, 14

Np = 2 0, 0 3, 3 7, 6 12, 9 18, 12 25, 15

Np = 3 0, 1 4, 4 9, 7 15, 10 22, 13 30, 16

Np = 4 0, 2 5, 5 11, 8 18, 11 26, 14 35, 17

which can be contracted immediately (giving a constant −1/s) and is not

part of the topology:

p2

p1
p1

p2
∼ −1/s

−→ −1

s
×

p2

p1
p1

p2

.

Example 4. There is an alternative picture for Tbasic
H,NLO from Example 1 as

planar box diagram that has two propagators with identical line momenta

(and masses) which can be identified readily, viz. one line is contracted:

p2

p1 d2

d3

p1

d4

p2d1

d4=d3−−−→

p2

p1 d2

d3

p1

p2
d1

.

The maximum number of internal lines or edges N̂I of a graph (cf. Tab. 1)

can be derived from the number of external lines or legs NE (= Np + 1 due

to momentum conservation) and the number of loops NL = Nk. Quantities

with a hat refer to the possible maximum value within a kinematic setup,

corresponding quantities without hat refer to a particular topology. We as-

sume the number of edges connecting to a vertex, called vertex degree, is

three for all vertices. Let us call such graphs complete or maximal. Graphs

with higher-degree vertices can always be obtained by contracting edges in

maximal graphs. Imposing the condition NE > 2 for NL = 0, this means

N̂I = NE + 3 (NL − 1) = Np + 3 Nk − 2. (14)

With NL = 1 the maximum number of internal lines equals the number

of external legs which is incremented by one compared to the number of

independent external momenta Np. For every additional loop one has to
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2.1 definition and notation

. . . . . .

2

1

−→ . . . . . .

2

1

4

5

3

Figure 1: Generic graph where one loop is added by insertion of a line at the cuts
of two edges. This guarantees that graphs built up in this manner have the pos-
sible maximum number of edges (otherwise higher-degree vertices would appear).
Dashed areas denote generic parts of the graph kept unchanged.

insert an extra line by intersecting two present lines (giving two additional

lines, see Fig. 1). Vacuum graphs can be understood as having one external

leg with no momentum. The number of internal lines NI of an arbitrary

graph is related to the number of vertices NV and NL via

NI = NV + NL − 1. (15)

Adding to NV connected vertices one additional edge is bound to result in

one additional loop (consider the right diagram in Fig. 1).

In Tab. 1 we show the maximum numbers of scalar products N̂sp and inter-

nal lines N̂I for various configurations of external and internal momenta Np

and Nk. It can be seen that N̂sp grows more rapidly with Nk than N̂I (quadrat-

ically compared to linearly; this issue will be adressed later). Some of the

most complicated problems of interest at the moment are four-loop on-shell

propagator integrals (Np = 1 and Nk = 4), Higgs boson production in the

effective theory via forward scattering (Nsc = Nk) at three-loop level (Np = 2

and Nk = 3) or Higgs boson production in association with one jet at two

loops in the full theory. The number of masses appearing in a process has

also strong impact on the complexity.

2.1.3 Completeness

Definition 1. If all internal scalar products
{

sij

}
can be expressed by linear

combinations of the factors { fi} of a topology, we call the topology “com-

plete”, otherwise we call it “incomplete”.

It is possible to start with a set { fi} = {di} directly inferred from the Nd

unique denominators of a certain diagram that is in the sense of Definition 1

still incomplete. One then joins to this set the missing scalar products {ni}
(or linear combinations of scalar products involving the missing ones) in

such a way that the resulting set is complete where at least Nsp−Nd of these

irreducible scalar products are needed.

Example 5. If we invert the expressions for d1, d2 and d3 in Tbasic
H,NLO from

Example 1 for the scalar products k2
1, p1 · k1 and p2 · k1, we find:

k2
1 = d1 −m2

H,

17
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p1 · k1 =
1

2

(
d2 + s− 2 p2 · k1 − k2

1

)
=

1

2
(d2 − d3 + s) ,

p2 · k1 =
1

2

(
d3 − k2

1

)
=

1

2

(
d3 − d1 + m2

H

)
.

Hence, we know that Tbasic
H,NLO is a complete topology. Now, let us remove d3

and observe what changes:

∫

dkD
1

n−a3
3

da1
1 da2

2

=
p2

p1

d2

p1

p2

d1

with

k2
1 = d1 −m2

H,

p1 · k1 =
1

2

(
d2 + s− 2 p2 · k1 − k2

1

)
=

1

2

(
d2 − d1 − 2 n3 + m2

H + s
)

,

p2 · k1 = n3.

After removing d3 one scalar product (we chose p2 · k1 instead of p1 · k1)

could not be expressed by denominator factors. Therefore, we introduced

a n3 = p2 · k1 which can only appear in the numerator. This choice is

arbitrary; another suggestion would have been

n3 = (p2 ± k1)
2 = ±2 p2 · k1 + k2

1.

By contracting d3 we not only made the topology incomplete, we also

made it impossible to express integrals with more than two propagators

within the contracted topology. By introducing n3 we remedied the incom-

pleteness of the topology but n3 cannot represent a propagator and we have

to restrict its power a3 ≤ 0.

In general, one cannot contract an arbitrary propagator in an arbitrary

topology to transform a topology with n external legs to one with (n− 1)
external legs; such a property depends on the considered kinematics. This

works in Example 5 since we have forward scattering.

As will be explained later in more detail (see Section 2.6), we require at cer-

tain steps of our calculation complete topologies. Put briefly: for technical

reasons in the numerators of expressions for individual diagrams constitut-

ing the amplitude, all scalar products may appear. But more fundamental

is the fact that the same holds for the integration-by-parts relations. Scalar

products also appear as parts of the denominators but for the integral reduc-

tion it is beneficial to operate on a representation by factor symbols { fi} ex-

clusively. Thus, we need to express the
{

sij

}
completely in terms of the { fi}.

Note that after this notation change the {ni} only appear in the numerator,

that is with negative indices, see Eq. (12).

Inspecting Eqs. (8) and (14), one can see that the number of scalar prod-

ucts N̂sp grows with N2
k compared to the number of candidate propaga-

tors N̂I growing with Nk. It follows that the problem of initially incomplete
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topologies becomes more complex when going to more loops. It can even

get worse, e.g., when one deals with diagrams containing effective higher-

degree vertices (for example in Higgs boson pair production, see Section 5.1).

Then, it may happen that only incomplete or non-maximal graphs occur

which give less propagators than complete graphs (containing only degree-

three vertices).

2.1.4 Linear independence

Definition 2. If there exist linear relations among the factors of a topol-

ogy { fi}, possibly involving masses {mi} and external quantities
{

xij

}
, we

label the topology as “linearly dependent” or just “dependent”, otherwise

as “linearly independent” or just “independent”.

Example 6. Besides Tbasic
H,NLO, introduced in Example 1 on Page 13, the topol-

ogy T
generic
H,NLO shown below also appears when computing diagrams of NLO

contributions to Higgs boson production. It differs from Tbasic
H,NLO by an ad-

ditional denominator d4 whereby it becomes a box diagram with external

momenta p1 and p2 passing through in a non-planar way.

T
generic
H,NLO(a1, a2, a3, a4) =

∫

dkD
1

1

da1
1 da2

2 da3
3 da4

4

=

p2

p1 d2

d3

p1

p2

d4

d1d1

with

d1 = m2
H + k2

1,

d2 = (p1 + p2 + k1)
2 = −s + 2 p1 · k1 + 2 p2 · k1 + k2

1,

d3 = (p2 + k1)
2 = 2 p2 · k1 + k2

1,

d4 = (p1 + k1)
2 = 2 p1 · k1 + k2

1.

We can choose the same inversion for internal scalar products as for Tbasic
H,NLO

written down in Example 5 which is accompanied by one scalar relation

among the {di}:

d1 + d2 − d3 − d4 = m2
H − s.

Above relation can be used to perform a partial fractioning as we will see

in Section 2.2.

Imposing external conditions such as vanishing external momenta or for-

ward scattering that afflict the number of mixed external-internal scalar

products
{

spi,k j

}

gives rise to linear dependence relations. Another circum-

stance for linearly dependent propagators are different masses, for example
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. . . . . .
d1 d2 −→

. . . . . .
d1

, . . . . . .
d2

Figure 2: Typical graph with a self-energy insertion. If the two propagators d1 and
d2 connecting to the bubble subgraph have the same masses m1 = m2, they can
immediately be identified because they carry the same momenta q. Otherwise they
are related via d1 − d2 = m2

1 −m2
2. Partial fractioning gives two contributions, each

involving only one of the propagators and its respective mass. In any case a vertex
of degree four arises.

on lines connecting to self-energy insertions, see Fig. 2. In the first case the

dimension of the space of scalar products spanned by the propagators is

reduced, whereas in the latter case the space of propagators is augmented.

The planar box representation for Tbasic
H,NLO in Example 4 or topologies of

the type as in Fig. 2 with m1 = m2 can also be seen as trivial examples for

linearly dependent topology factors (where partial fractioning turns out to

be just an identification of equal propagators).

The issue with linearly dependent topologies is that one cannot uniquely

express internal scalar products
{

sij

}
in terms of the topology factor sym-

bols { fi}, there may be several possibilities. We will encounter this issue

again later in Section 2.6 where the reduction of integral families is described

and linearly independent topologies are a prerequisite. But single dependent

topologies can always be related, via partial fraction decomposition, to sets

of independent topologies and the systematic solution to this problem will

be presented in the next section, Section 2.2.

2.1.5 Coefficient matrix

We close this Section by giving merely an alternative bookkeeping device for

topology factors { fi}, namely the coefficient matrix of a topology T denoted

by M̃. If we define the vector of all quadratic quantities

s̃ =
(
m2, x, s

)

=
(
m2

1, m2
2, . . . , xp1,p1

, xp1,p2 , . . . ,

sp1,k1
, sp1,k2

, . . . , sk1,k1
, sk1 ,k2

, . . .
)

,

(16)

then we can write all topology factors as

fi = M̃ij s̃j. (17)

Thus, we can fit the complete description of a topology into such a “topology

matrix”. If we drop all columns associated with masses and external scalar
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2.1 definition and notation

products we obtain the N f × Nsp matrix M, the “reduced topology matrix”.

Its rank can be used together with the numbers of scalar products Nsp and

topology factors N f to reformulate the properties of completeness and inde-

pendence of topology T:

T is complete ⇔ rankM = Nsp,

T is independent ⇔ rankM = N f .
(18)

Example 7. Applied to T
generic
H,NLO of Example 6 with rows corresponding to

the vector f = (d1, d2, d3, d4) and columns to s̃ =
(
m2

H, s, p1 · k1, p2 · k1, k2
1

)
,

we find for the topology matrices:

M̃ =







1 0 0 0 1

0 1 2 2 1

0 0 0 2 1

0 0 2 0 1







, M =







0 0 1

2 2 1

0 2 1

2 0 1







with rankM = 3.

Clearly, T
generic
H,NLO is complete (Nsp = 3) but linearly dependent (N f = 4).

Deleting the last rows gives us directly the results for Tbasic
H,NLO which was

complete and linearly independent. Removing yet another row would leave

us obviously with an incomplete topology of only rank two.

2.1.6 Different types

Lastly, we fix a manner of speach for different types of topologies.

Definition 3. Generic topologies or diagram topologies may in general be in-

complete and also linearly dependent. As the name indicates they act as

mapping patterns for Feynman diagrams and are usually constructed in a

direct one-to-one correspondence to scalar denominators from a particular

diagram. See the planar box representation for Tbasic
H,NLO in Example 4 on

Page 16 or the non-planar box for T
generic
H,NLO in Example 6 on Page 19.

Definition 4. In contrast, Basic topologies or reduction topologies need to be

linearly independent and complete. Here, the name indicates that they are

in an appropriate form to be passed to a reduction algorithm, e.g. Laporta’s

algorithm, cf. Section 2.6. See Tbasic
H,NLO in Example 1 on Page 13, Example 3

on Page 15 or Example 5 on Page 17 after completion with n3.

Note that each basic topology is also a generic topology but in practice

not always used as such. This is justified by basic topologies appearing as

“subtopologies” to generic topologies, hence they are included by construc-

tion in the treatment of generic topologies whose number should not be too

large. The precise definition of a subtopology follows in Section 2.4.4 on

Page 52.
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2.2 linear dependence

As mentioned before the problem of linearly dependent topologies and their

partial fractioning can be solved in a sytematic way. By partial fractioning

of a topology we mean partial fractioning of expressions that involve ar-

bitrary powers of linearly dependent propagators. This involves Gröbner

bases which we introduce in Section 2.2.1. Originally this idea was pre-

sented by A. Pak in Ref. [3], we provide here a more elaborate access to it.

The following is loosely based on Refs. [4–8] but much more literature can

be found on the subject of Gröbner bases.

2.2.1 Gröbner bases

Gröbner bases are sets of multivariate polynomials with certain appealing

properties. These properties often enable elegant solutions to problems from

different fields of mathematics being unrelated at first sight. For us the most

prominent application are algebraic relations among polynomials and their

manipulation. But first of all we have to give two basic defintions.

Definition 5. If we have the set of polynomials F = { f1, . . . , fm} in vari-

ables {x1, . . . , xn}, then the ideal 〈F〉 is the set spanned by all polynomial

linear combinations of “basis polynomials” from F,

〈F〉 =
{

m

∑
i=1

pi fi : fi ∈ F, pi ∈ K[x1, . . . , xn]

}

, (19)

where K denotes a field of numbers (e.g. rationals Q), K[x1, . . . , xn] the col-

lection of polynomials built up from variables x1, . . . , xn and coefficients

from K. The ideal 〈F〉 can be thought of as the space of relations constructed

algebraically from elements in the set F, thus containing the exact same in-

formation as F.

Definition 6. For the monomials xa := ∏
n
i=1 xai

i we adopt a total ordering

which can also be understood as acting on their exponent vectors a. If within

this ordering a monomial xa comes before a monomial xb or is “simpler”, we

denote this by the relation xa ≺ xb. Such an ordering (admissible for Gröbner

bases) must be multiplicative for monomials xa and xb or additive for their

respective exponent vectors a and b,

xa ≺ xb ⇒ xa+c ≺ xb+c ∀xc, (20)

and it must begin with 1 as the “smallest” monomial,

1 ≺ xa ∀xa 6= 1. (21)

Furthermore, we demand that monomials are positioned within polynomi-

als in descending order from left to right where the “highest-ranked” term

(coefficient times monomial) on the very left is the leading term. Symbolically

we denote the leading term by LT and in explicit examples we underline it.
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Example 8. Two common orderings also used in the following examples

are

lexicographic
1 ≺ x1 ≺ x2

1 ≺ . . .

. . . ≺ x2 ≺ x1x2 ≺ x2
1x2 ≺ . . . ,

(22)

degree-lexicographic
1 ≺ x1 ≺ x2

≺ x2
1 ≺ x1x2 ≺ x2

2 ≺ . . . .
(23)

Both are easier understood when writing exponent vectors,

lexicographic
(0, 0) ≺ (1, 0) ≺ (2, 0) ≺ . . .

. . . ≺ (0, 1) ≺ (1, 1) ≺ (2, 1) ≺ . . . ,
(24)

degree-lexicographic
(0, 0) ≺ (1, 0) ≺ (0, 1)

≺ (2, 0) ≺ (1, 1) ≺ (0, 2) ≺ . . . .
(25)

In case of degree-lexicographic ordering we first sort by the sums of expo-

nents. If the sums agree, we sort by the exponents of the first variable. If

the first exponents agree, we sort by the second exponents and so on.

With this in mind we note that the outcome of polynomial division or

reduction of multivariate polynomials depends on the ordering adopted for

monomials. The polynomial reduction step of h0 modulo f resulting in h1

subtracts from h0 a suitable (monomial) multiple of f such that some term

in h0 cancels against the leading term LT ( f ). This is written as

h1 = h0 mod f or h0 → f h1. (26)

There are several possibilities of picking an f ∈ F with differing results h1 to

reduce some h0. This step can be iterated by reducing resulting polynomials

further and further modulo polynomials from F until all terms are “simpler”

than any leading term present in F, according to our ordering. We write for

this sequence of operations:

h0 →F hF . (27)

Not a single term in hF can be reproduced by multiplication of a leading

term from F with some monomial. It is known that an iteration of this kind

always terminates but its result is in general not unambigious. It depends

on the reduction chain, enabling

h0 →F hF , h0 →F h′F but hF 6= h′F. (28)

Example 9. Observe the possible outcomes of polynomial divisions for the

polynomial h by polynomials from the set F assuming degree-lexicographic

ordering, see Eq. (23). Concretely:

h = x2y3,

F = { f1, f2} =
{

−y3 + x2, y2 + x
}

.
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The two different possibilities of reduction terminate immediately after

only one step because no leading term in F allows for further simplifica-

tion:

h→ f1
x2y3 + x2

(

−y3 + x2
)

= x4,

h→ f2
x2y3 − x2y

(

y2 + x
)

= −x3y.

With additional combinations of elements from F, e.g. f1 + y f2 = xy + x2,

the reduction could of course lead further.

Definition 7. One possible definition of Gröbner bases is by the property to

yield a unique reduction of any polynomial h0, assuming an acceptable con-

vention for monomial ordering, see Eqs. (20) and (21):

h0 →G hG, h0 →G h′G ⇒ hG = h′G. (29)

This definition is not of constructive nature, it does not even allow one to

check in practice if a basis is a Gröbner basis since one cannot perform all re-

ductions of all polynomials. Luckily, there exist many equivalent definitions,

also constructive ones.

Example 10. Now, take the Gröbner basis G below as given and perform all

possible polynomial divisions by elements of G for the same polynomial h

as in Example 9:

h = x2y3,

G = {g1, g2} =
{

y2 + x, x2 − y
}

.

For G the two initially different reduction paths meet again and terminate

with the same result:

h→g1
x2y2 − x2y

(

y2 + x
)

= −x3y

→g2 −x3y + xy
(

x2 − y
)
= −xy2,

h→g2 x2y3 − y3
(

x2 − y
)
= y4

→g1
y4 − y2

(

y2 + x
)

= −xy2,

−xy2 →g1
−xy2 + x

(

y2 + x
)

= x2

→g2 x2 −
(

x2 − y
)
= y.

Coming back to ideals, the “main problem of ideal theory”, namely whether

a polynomial h lies within some ideal 〈F〉 can be answered for a Gröbner

basis F = G trivially by checking if successive reduction terminates in zero:

h ∈ 〈G〉 ⇔ h →G 0. (30)
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For G the reduction leads uniquely to zero or not, meaning each single re-

duction path gives the right answer. For an arbitrary polynomial basis F

some reductions may lead to zero while others do not, making assertion of

membership to 〈F〉 a way harder problem. For a Gröbner basis, interpreted

as set of basic relations, we can thus answer directly if and how its elements

allow to reexpress any given polynomial.

Example 11. Using the same Gröbner basis G as in Example 10 one may

assert that all possible reduction paths (we do not show them here explic-

itly) of the polynomial h = xy4 + y3 end indeed in 0. Thus, h lies within the

ideal of G.

The Buchberger algorithm, stated below, gives for any polynomial basis F

a Gröbner basis G that generates the same ideal as F, although the number

of elements in each base may differ:

F
Buchberger−−−−−−→ G : 〈F〉 = 〈G〉 . (31)

It is contructive, i.e. it generates Gröbner bases, and it is also a simple device

for checking whether a given set of polynomials forms already such a basis.

The algorithm can be stated easily as soon as we specify what subtraction

polynomials or “S-polynomials” are.

Definition 8. The S-polynomial denoted by S[ f1, f2] is the difference of poly-

nomials f1 and f2 multiplied each by appropriate monomial factors such

that their leading terms drop out:

S[ f1, f2] := LCM (LT ( f1) , LT ( f2))

(
f1

LT ( f1)
− f2

LT ( f2)

)

, (32)

where LCM is the least common multiple of two monomials. Note that

this least common multiple of leading terms corresponds to the “simplest”

polynomial allowing in principle for branching reduction chains.

Starting from an arbitrary finite set of polynomials F, the Buchberger

algorithm can always transform this set in a finite number of steps to a

Gröbner basis G. This algorithm is a generalization of the Euclidean algo-

rithm, computing the greatest common divisor of univariate polynomials,

and the Gaußian algorithm, solving linear systems of equations.

Algorithm 1 (Buchberger). The Gröbner basis is initialized with G = F.

Then, for some pair ( f1, f2) from G compute the reduction of their S-poly-

nomial with respect to G, giving h:

S[ f1, f2]→G h. (33)

Only if h 6= 0 join h to G and iterate these steps for the new G until also all

new pairs have been checked.
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Gröbner bases are not required to be minimal, viz. a subset of G could

generate the same ideal as G and would thereby be a Gröbner basis by itself.

The minimal form, additionally fulfilling restrictions on the coefficients of

leading monomials and on the trailing monomials, is called the reduced

Gröbner basis but we will not cope with it in more detail.

Example 12. Using G from Example 10 one more time, one can compute

the single S-polynomial

S[g1, g2] = y3 + x2

and verify easily that all possible reductions end up in zero, asserting G to

be a Gröbner basis:

y3 + x3 →g1
y3 + x3 − y

(

y2 + x
)

= x3 − xy

→g2 x3 − xy− x
(

x2 − y
)
= 0,

y3 + x3 →g2 y3 + x3 − x
(

x2 − y
)
= y3 + xy

→g1
y3 + xy− y

(

y2 + x
)

= 0.

To mention another nice property of Gröbner bases, solving the “elimina-

tion problem”, note that

〈G〉 ∩ K[x1, . . . , xi] = 〈G ∩ K[x1, . . . , xi]〉 ∀i ≤ n, (34)

meaning the ideal for elimination of x1, . . . , xi on the left-hand side is just

the ideal spanned by the elements from G involving only x1, . . . , xi on the

right-hand side. If we are interested in the set of roots of a system F, its vari-

ety, we compute its Gröbner basis G which has the same ideal and solutions.

In G we can simply start by inspecting a subset of univariate equations, sub-

stitute their solutions in the next bigger subset involving also the second

variable and continue in this manner until all solutions are determined. The

elimination property of Gröbner bases presumes of course an appropriate or-

dering such as the lexicographic ordering in Eq. (22) used in the following

example.

Example 13. Suppose we want all solutions to a system of polynomial rela-

tions F equating zero, e.g.

F =
{

−xy2 + x2y, y2 + x2 − 1
}

.

F exposes the same variety as its Gröbner basis

G =
{

2y5 − 3y3 + y, 2y4 − 2y2 + xy, y2 + x2 − 1
}

.

Taking only the first relation from G, we find all solutions for y to be

y ∈
{

0, ±1, ± 1√
2

}

.
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These we can substitute into the remaining two equations from G to find

all sets of solutions

(y, x) ∈
{

(0, −1) , (±1, 0) ,

(

± 1√
2

, ∓ 1√
2

)}

.

The initial system F is in this case not very complicated and one can solve

it also directly. The solution via a Gröbner basis is, however, algorithmic

and works also in more complicated cases.

To conclude, Gröbner bases are a powerful tool with a plethora of appli-

cations, e.g. in commutative algebra (system solvability, polynomial ideals,

diophantine equations, etc.), invariant theory, partial differential equations,

hypergeometric functions, symbolic summation. Another interesting appli-

cation, directly from our field of research, is the “S-bases approach” for

Feynman integral reduction, see Refs. [9–11]. As a sidenote: it was observed

that an S-bases reduction performs good for cases where a Laporta reduc-

tion (cf. Section 2.6) struggles and vice versa. Both approaches complement

one another. Our next step is to apply Gröbner bases to the problem of

partial fractioning of linearly dependent topologies (or more precisely: their

propagators).

2.2.2 Partial fractioning relations

Expressions stemming from scalar diagrams as in Fig. 2 on Page 20 could

involve terms containing

d2
1d2, d1/d2, d2

2/d1, . . .

with linearly dependent topology factors d1 and d2 related by

d1 − d2 = m2
1 −m2

2,

where m1 and m2 denote different particle masses. These diagram expres-

sions can be simplified by transforming terms with dependent factors to

sums of terms where each involves only independent factors. We can work

out such a system of transformation rules from the linear dependence rela-

tion:

d2 → −m2
1 + m2

2 + d1,

d1

d2
→ m2

1

d2
− m2

2

d2
+ 1,

1

d1d2
→ − 1

m2
1 −m2

2

1

d1
+

1

m2
1 −m2

2

1

d2
.

Clearly, all possible combinations of positive and negative powers of d1

and d2 will be reduced by these rules to terms containing solely d1 or d2

each.

In the aforementioned case it is trivial to find the set of partial fractioning

relations for propagators. For the general case it is, however, often laborious
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to arrive at a complete (applying to all kinds of monomials, including also

negative powers) and terminating (repeated execution without loops) system

of decomposition rules. We have to consider simplification of products of

arbitrary powers {ai} of topology factors { fi},
N f

∏
i=1

f ai
i with ai ∈ Z, (35)

employing N f − rankM possible linear relations (the topology matrix M was

defined in Section 2.1.5 on Page 20) containing masses {mi} and external

invariants
{

xij

}
,

N f

∑
i=1

ci

(
fi −m2

i

)
=

Np

∑
i≤j

dijxij, with ci, dij ∈ Q. (36)

In order to faciliate the use of Gröbner bases, we first need to rewrite

negative powers of topology factors in terms of Fi = 1/ fi and treat them as

independent variables. Products of arbitrary powers of topology factors can

then be written as

N f

∏
i=1

f
a′i
i F

b′i
i with

(
a′i, b′i

)
=

{

(ai, 0) , for ai ≥ 0,

(0, −ai) , otherwise,
(37)

supplemented by the additional relations,

fi Fi = 1 with i = 1, . . . , N f . (38)

Furthermore, we have to formalize our notion of what is “simpler” by in-

troducing a suitable ordering. One possibility is a linear weighting of an ex-

ponent vector {ai, bi} by lexicographically comparing component-wise M a

with M a′ for two such vectors a and a′ where

Mij =

{

1, for i ≥ j,

0, otherwise.
(39)

The matrix M is just the lower left triangle matrix including the diagonal

filled with ones and the rest with zeros, making the sum of exponents the

primary criterion.

Based on this ordering one computes the Gröbner basis to the set of poly-

nomial relations equating zero obtained from Eqs. (36) and (38). Our starting

relations and the Gröbner basis contain the same information since both gen-

erate the same ideal which can be taken as all possibilities to algebraically

manipulate these relations. But in the Gröbner basis these relations are rear-

ranged as manifestly terminating equivalence rules. Each element (equating

zero) can be reinterpreted as replacement rule with its most “complicated”

monomial in the
{

fi, Fj

}
as left-hand side.

The fact that this works becomes clearer if we mention another property

of Gröbner bases that is essentially equivalent to its definition via unique

polynomial division in Eq. (29). The leading power property of a Gröbner
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basis G connotes that all leading monomials in the ideal 〈G〉 are multiples

of at least one of the leading monomials in G. Thus, we will find for all

possible monomials in Eq. (37) at least one replacement rule resulting in

easier monomials, given the monomial was not already in its simplest form.

On each resulting term the same applies until an initial expression is in its

final form completely mapped to terms of independent monomials.

Example 14. Returning to the generic box topology T
generic
H,NLO for NLO Higgs

boson production of Example 6 with the linear dependence

d1 + d2 − d3 − d4 = m2
H − s,

the method laid out in this subsection gives the rules

d4 → −m2
H + s + d1 + d2 − d3,

d3

d4
→ 1

d4

(
−m2

H + s + d1 + d2 − d4

)
,

d2

d3d4
→ 1

d3d4

(
m2

H − s− d1 + d3 + d4

)
,

d1

d2d3d4
→ 1

d2d3d4

(
m2

H − s− d2 + d3 + d4

)
,

1

d1d2d3d4
→ 1
(
m2

H − s
)

d1d2d3d4
(d1 + d2 − d3 − d4) .

The right-hand sides in above transformation rules give rise to new terms.

Note that each right-hand side term has either less or “simpler” denomina-

tors than the left-hand side. If the denominators in a right-hand side term

are not simpler than on the left-hand side, the numerators of the right-hand

side term are simpler than on the left-hand side. The transformation rules

above represent the computed Gröbner basis where the leading term of

each basis polynomial is now a left-hand side. In this case the Gröbner ba-

sis has five elements which equals the number of conditions from Eqs. (36)

and (37). This is no generic feature.

The decomposition has a diagrammatic representation, namely the map-

ping of terms leads to each possible contraction of lines whose factors ap-

pear in the initial linear relations:

T
generic
H,NLO(a1, a2, a3, a4) =

p2

p1 d2

d3

p2

d4

p1d1

−→

p2

p1 d2

p1
d3

p2

d4
,

p2

p1 p2

d4d3

p1d1

,
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p2

p1

d2 p2

d4

p1d1

,
p2

p1 d2

d3

p2

p1

d1

.

As a side note: in the application to Higgs boson production, contributions

of the first two topologies would be discarded since they do not expose

s-channel cuts through the massive line. The last two topologies are in fact

symmetric and identical to the basic topology Tbasic
H,NLO.

The outcome of this transformation of dependent monomials, from expres-

sions attributed to generic topologies, into independent monomials can be

seen as a set of expressions where each term attributes to a basic topology.

It is the mapping of a generic topology onto a set of independent subtopolo-

gies. Candidates for such subtopologies can be readily identified by those

subsets of rows from the coefficient matrix in Eq. (17) exposing the same

matrix rank as the full matrix.

2.3 parametric representations

In this section we state a well-known parametric representation for Feyn-

man integrals, usually called alpha-representation. It is closely related to

Feynman parametrization where denominator factors of an integrand are

combined into a single (still quadratic) one. We, however, will use these

names synonymously. This section is based on the books by V.A. Smirnov,

see Refs. [12–14], and the educational review on Feynman integral polyno-

mials in Ref. [15].

2.3.1 Symanzik polynomials

All factors
{

f j

}
of a scalar Feynman integral can be rewritten by means of

the Schwinger-representation

1

f
aj

j

=
iaj

Γ
(
aj

)

∫ ∞

0
dαj α

aj−1

j exp
[
−i f jαj

]
, (40)

where integration over auxiliary variables
{

αj

}
, the Feynman or alpha-para-

meters, has been introduced. Now, the order of integration over Nk loop

momenta {ki} and N f alpha-parameters
{

αj

}
can be interchanged, exponen-

tials are combined and terms are collected by loop momenta. Then, we are

left with D-dimensional Gaußian integrals which can be evaluated via

∫

dkD
i exp

[
i
(

A k2
i − 2B · ki

)]

=
(π

A

)D/2
exp

[
iπ

2

(

1− D

2

)]

exp

[

−i
B2

A

]

, (41)

where A is a number and B a linear combination of external and internal

momenta involving the parameters {αi}.
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Example 15. Applied to the one-loop massless propagator in Minkowski

metric, we obtain

P1(a1, a2) = p

a2

p

a1

=
∫

dkD 1

[−k2]a1

1

[−(p + k)2]a2

=
ia1+a2

Γ(a1) Γ(a2)

∫ ∞

0
dα1 dα2 αa1−1

1 αa2−1
2

×
∫

dk exp
[
i
(
(α1 + α2) k2 + 2α2 p · k + α2 p2

)]

= πD/2 exp
[

iπ
2

(
a1 + a2 + 1− D

2

)]

Γ(a1) Γ(a2)

×
∫ ∞

0
dα1 dα2

αa1−1
1 αa2−1

2

(α1 + α2)
D/2

exp

[

−i
p2α1α2

α1 + α2

]

.

Above procedure can be generalized and written for all Nk loop integra-

tions in the matrix form

Nk

∏
i=1

∫

dkD
i exp

[

i

(

∑
m,n

Amn km · kn + 2 ∑
m

Bm · km

)]

= exp

[

Nk
iπ

2

(

1− D

2

)]

πNkD/2 (det A)−D/2

× exp

[

−i ∑
m,n

A−1
mn Bm · Bn

]

, (42)

where Amn now denotes a matrix of coefficients and Bm a linear combina-

tions of external momenta. Applied to a general topology T, this results in

the first form of the alpha-representation:

T
(

a1, . . . , aN f

)

= (−1)a πNkD/2 exp

[
iπ

2

(

a + Nk

(

1− D

2

))]

×
[

N f

∏
i=1

Γ(ai)

]−1 N f

∏
j=1

∫ ∞

0
dαj

[
N f

∏
i=1

αai−1
i

]

U−D/2 exp

[

−i
W
U

]

, (43)

where as usual a = a1 + . . . + aN f
is the sum of all indices and the factor

(−1)a is due to convention. Two polynomials, defined in graph-theoretical

language and referred to as the first and second Symanzik or alpha-poly-

nomials, enter this form as

U = ∑
τ∈τ1

∏
j/∈τ

αj, V = ∑
τ∈τ2

∏
j/∈τ

αj p2
τ . (44)

In these formulae τ denotes a specific graph composed of several lines as-

sociated to alpha-parameters and belonging to a family of graphs. These

families are the (one-)trees τ1 and the two-trees τ2. (One-)Trees consist of
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lines connecting all vertices of the graph but without any loop. Two-trees

have in addition two disjoint connectivity components and the combination

of external momenta flowing inbetween these components is p2
τ . A third

polynomial is defined as the combination

W = −V + U
N f

∑
j=1

m2
j αj, (45)

where mj is a possible mass associated with a topology denominator.

Example 16. Comparing Eq. (43) with Example 15, we can identify:

U = α1 + α2, V = −W = p2α1α2.

We recover the same polynomials by applying the graph-theoretical formu-

lae Eqs. (44) and (45) on the one-trees and two-trees depicted below where

line labels stand generically for propagators, indices or alpha-parameters:

τ1 :

2

,

1

; τ2 : ;

U = α1 + α2 , V = p2α1α2 .

For the second form of the alpha-representation, one makes the substitu-

tion αj = ηα′j where the sum α′1 + . . . + α′N f
= 1 is kept fixed and one inte-

grates over η from 0 to ∞, thus getting rid of the exponential in the first

form, see Eq. (43):

T
(

a1, . . . , aN f

)

= (−1)a
(

iπD/2
)Nk

Γ

(

a− Nk
D

2

)[ N f

∏
i=1

Γ(ai)

]−1

×
N f

∏
j=1

∫ ∞

0
dαj δ

(
N f

∑
i=1

αi − 1

)[
N f

∏
i=1

αai−1
i

]

U a−(Nk+1)D/2W−a+NkD/2. (46)

Note that the Jacobian for the change of variables gives not ηN f but ηN f−1

due to the above condition for the fixed sum. If we were to apply integration

of a particluar αj over the delta-function we would find the familiar form of

Feynman parametrization. It was made use of the definition of the Gamma-

function for complex z:

Γ (z) :=
∫ ∞

0
dt tz−1e−t. (47)

Example 17. Applying the substitution αj = ηα′j for α1 and α2 to the result

of Example 15, we find as expected

iπD/2 Γ
(
a1 + a2 − D

2

)

Γ(a1) Γ(a2)
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×
∫ ∞

0
dα1 dα2 δ(a1 + a2 − 1) αa1−1

1 αa2−1
2

(α1 + α2)
a1+a2−D

(p2 α1α2)
a1+a2+D/2

.

This is in agreement with Eq. (46) up to the factor (−1)−a1−a2 which was

due to convention in Eq. (43). The massless one-loop propagator integral

for general powers of denominators can be expressed in terms of Gamma-

functions:

iπD/2 Γ(2− ǫ− a1) Γ(2− ǫ− a2)

Γ(a1) Γ(a2) Γ(4− a1 − a2 − 2ǫ)

Γ(a1 + a2 + ǫ− 2)

(−p2)a1+a2+ǫ−2
.

Example 18. An other example whose alpha-representation will be made

use of later is the two-loop massless propagator topology:

P2(a1, . . . , a5) =

1

2

3

5

4

=⇒

τ1 :

, , , ,

, , , ;

τ2 :

, , , ,

, , , ,

, ;

U = α13 + α14 + α15 + α23 + α24 + α25 + α35 + α45 ,

V = p2 (α123 + α124 + α125 + α134 + α145 + α234 + α235 + α345) .

Pictures for one- and two-trees are ordered according to terms in U and V
where we used the abbreviation α1...i = α1 . . . αi. The fifth and ninth two-

trees do not appear in V since they each multiply a squared momentum

equal to zero flowing between their two components.
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Example 19. Also for one of our standard examples from Higgs boson pro-

duction T
generic
H,NLO we show this diagrammatically:

T (a1, a2, a3, a4) =
2

3 4
1

=⇒

τ1 : , , , ;

τ2 :

, , ,

, , ;

U = α1 + α2 + α3 + α4 , V = −s (α12 − α34) .

Again, only some of all possible two-trees contribute, namely the first

and the last one. In this case we used Minkowski space propagators for

T
generic
H,NLO. The arrows in the first picture indicate the routing of external

momentum p1. We still have the same kinematics introduced before and

thus (p1 + p2)
2 = −s and (p1 − p2)

2 = s.

2.3.2 Properties

Let us remark on some features which are apparent from above derivations

and examples:

• All Nk integrations over the D-dimensional loop momenta have been

carried out and traded for N f integrations over scalar parameters. This

representation for dimensionally regularized integrals is explicitly co-

variant and its integrand is unique up to renaming of the alpha-para-

meters.

• When starting from a graphical representation, the polynomials U and

V can be read off directly in terms of trees and two-trees. Otherwise

U and V can be computed algebraically as long as one deals with at

maximum quadratic factors, viz. by completing the square as done

above.

• The prefactor of the integral and the powers of U and W in Eq. (46)

depend on the number of loops Nk, the number of dimensions D and

the indices
{

aj

}
only. The two characteristic polynomials themselves

do not depend on the indices, they are universal in this sense for all

integrals of the topology and their indices can be fixed later.
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• The polynomial U is linear and homogeneous in the
{

αj

}
with degree

Nk, as are the polynomials V and W but with degree Nk + 1. The pair

U and V encodes the information of possible graphs of a topology. In

addition, V has also information on the kinematic setup andW on the

mass configuration of lines of the topology.

• There is a strict correspondence between an alpha-parameter and its

former topology factor or graph line. All topology factors can be

treated on the same ground, regardless whether they are real denomi-

nators or pure numerators (restrictions on the signs of their indices).

• Working with propagators in Euclidean space (plus sign in Eq. (3))

results always in U and V having negative signs for each term, whereas

Minkowski space propagators (minus sign in Eq. (3)) result in positive

signs.

The alpha-representation is a good starting point for numericical evalua-

tion, e.g., via sector decomposition. Singularities of the initial loop integral

translate to singularities in the parametric integral and can be revealed sys-

tematically. But also analytic methods make use of the alpha-representation.

For example, direct symbolic integration leading to special functions, see

Refs. [16, 17], or reading off certain properties to derive canonical forms of

differential equations, see Refs. [18, 19]. We, however, use the characteristic

polynomials U andW as unique identifiers for Feynman integrals as will be

explained in Section 2.4.

2.3.3 Recursiveness

Until now we encountered two ways of calculating Symanzik polynomials,

firstly by explicit integration over loop momenta after rewriting propaga-

tors in Schwinger-representation and completing squares, secondly via cor-

respondence to one- and two-trees of diagrammatic representations. An-

other possibility is to define the alpha-representation in a recursive way,

see Ref. [15], and from this definition a useful property can be seen: con-

traction of a line or factor can be achieved by setting the corresponding

alpha-parameter to zero. Related to this is factorization of integrals or corre-

sponding disentangled loops in diagrams when both Symanzik polynomials

factorize.

The recursive definition of U and V reads for topology T:

U (T) = U (T/j) + αj U (T − j) , V (T) = V (T/j) + αj V (T − j) , (48)

where T/j denotes contraction of line or factor j and T − j denotes deletion

of j which should neither be “bridge” or “self-loop”. A bridge corresponds

to a sole propagator connecting two parts of a graph. Such a propagator

would not contain loop momenta and the corresponding graph would be

one-particle reducible. We do not consider such cases. A tadpole, or self-

loop in graph language, consists of a propagator connecting only to a single

vertex. Upon contraction of a self-loop, the number of loops is effectively
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lowered and corresponding to line deletion. The recursion ends in the “ter-

minal forms” U0 and V0 which correspond to products of self-loops with the

trivial one-tree (containing no lines) only and no two-trees:

U0 =
Nk

∏
j=1

αj, V0 = 0. (49)

From Eq. (48) it can be seen that by setting αj to zero in the polynomi-

als of a “full” topology T one gets the corresponding polynomials of the

subtopology T/j with factor j contracted:

U (T/j) = U (T) |αj→0, V (T/j) = V (T) |αj→0. (50)

On the right-hand sides of Eq. (48), αj does not appear anywhere but in front

of the second terms which thereby drop out. The same holds also for the

polynomialW , see Eq. (45). This is demonstrated in the next example.

Example 20. We return to T
generic
H,NLO from Example 19 and contract it to Tbasic

H,NLO.

Setting α4 in the polynomials for T
generic
H,NLO to zero has the same effect as

contracting line 4 in the graph and inspecting one- and two-trees anew:

Tbasic
H,NLO(a1, a2, a3) =

2

3

1

=⇒

τ1 : , , ;

τ2 : , , ;

U = α1 + α2 + α3 , V = −sα12.

If line j is contracted one-trees containing this line will persist as will

corresponding terms in U . One-trees not containing j will inevitably form

a loop and should therefore not contribute, their terms contain αj and thus

drop out. For V the reasoning is similar: two-trees not containing j turn

upon contraction to one-trees and their terms again have an αj. This property

holds also for sets of alpha-parameters.

For a factorizing integral in a diagrammatic or momentum-space represen-

tation, also its alpha-representation factorizes. The converse statement is not

proven, however. If we compute the U and V (orW ) polynomials for the NF

factors of the integral, numerated by subscripts, the combined polynomials

are of the form

U =
NF

∏
m=1

Um, V =
NF

∑
m=1

Vm

NF

∏
n 6=m

Un. (51)
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Note, for factorizing graphs all possible combinations of one-trees (picking

only one from each factor) are again one-trees relevant for U and combining

each two-tree of each factor with one-trees from the remaining factors gives

all two-trees linked to V . In practice, we use this property to check if an

integral factorizes and to extract alpha-representations of its various factors

instead of resorting to graph-based techniques.

Example 21. Contracting line 5 turns the two-loop massless propagator

topology of Example 18 into a product of two one-loop bubbles and allows

us to observe aforementioned property. Compare one- and two-trees of

Example 16 to those shown below:

P2(a1, a2, a3, a4, 0) = P1(a1, a2)× P1(a3, a4) =

1

2

3

4

=⇒

τ1 : , , , ;

τ2 : , , , ;

U = (α1 + α2) (α3 + α4) , V = p2 [α12 (α3 + α4) + α34 (α1 + α2)] .

2.3.4 Scalefulness

The form of the Symanzik polynomials in Eqs. (44) and (45) can be used

as tool to probe if an integral or a whole class of integrals lacks an inher-

ent scale. Within dimensional regularization, see Ref. [20], such scaleless

integrals vanish and can be discarded. The criterion we elaborate on here

originated from Ref. [21] where it was used to identify relevant regions af-

ter expanding integrands of Feynman integrals in a given limit of external

invariants. Regions usually refer to distinct scalings of integration momenta

relative to external invariants but this transfers also to the scalings of alpha-

parameters. The idea is to sum contributions from all regions integrated over

the whole parameter space to obtain an equivalent to the Taylor expansion

of the integral (without having to evaluate it exactly before).

Scalelessness implies existence of a rescaling of parameters or a subset

of them that leaves the integrand invariant. This is connected to massless

tadpoles amounting to zero within dimensional regularization, see Ref. [20].

In momentum space this means:

T ({ki}a , {c ki}b) = cDT T ({ki}) ⇔ T ({ki}) = 0, (52)

where c 6= 0 is some constant and DT a scaling dimension of topology

T. We emphasize the fact that we consider an explicit momentum space
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representation of topology T by using the set of loop momenta {ki} as ar-

gument. The indices a and b indicate disjunct subsets of loop momenta

{ki} = {ki}a ∪ {ki}b.

Example 22. In the one-loop massless tadpole diagram with arbitrary power

a for the propagator, we rescale the loop momentum k by c 6= 0 and find

that the integral must vanish:

P1(a, 0) =

k, a

=
∫

dkD 1

[k2]a
k→ck
= cD−2a

∫

dkD 1

[k2]a
= 0.

Above argument can be transferred to the polynomials U and W giving:

U
({

αj

}

a
,
{

c αj

}

b

)

= cDU U
({

αj

})
,

W
({

αj

}

a
,
{

c αj

}

b

)

= cDW W
({

αj

})
,

(53)

where the same disjunct subset b is scaled for U andW . The symbol D with

a subscript denotes the respective scaling dimension. Instead of two simul-

taneous scalings, we can evidently consider just the scaling of the product

U ×W , see Eq. (46):

(U ×W)
({

αj

}

a
,
{

c αj

}

b

)

= cDU×W (U ×W)
({

αj

})
. (54)

Upon inspecting Eq. (46), it is clear that all factors but the delta-function in

the integrand produce scaling factors which can be moved in front of the

integral sign.

By homogeneity the full set
{

αj

}
always produces trivial scaling factors

for the Symanzik polynomials. Therefore, the subset of rescaled parameters
{

αj

}

b
should not coincide with the full set, we demand it to be a strict subset.

The Cheng-Wu theorem, see Ref. [22], states that the integral is invariant under

the replacement

δ
(

∑
N f

j=1 αj − 1
)

= δ
(

∑α∈{αj} α− 1
)

−→ δ
(

∑α∈{αj}a

α− 1
)

, (55)

where the sum over all alpha-parameters in the delta-function is changed

into a sum over a subset
{

αj

}

a
corresponding to the non-scaled parame-

ters. Integration for scaled parameters is thereby not anymore bounded

from above by one which is still the case for non-scaled parameters (due to

the delta-function). Details can also be found Ref. [14]. This shows that also

the delta-function is compatible with the scaling of the polynomials.

To check if such a scaling exists, we can resort to geometrical arguments.

Every term in U ×W in the variables
{

αj

}
can be interpreted as point in a

N f -dimensional space spanned by the exponent vectors v of monomials:

N f

∏
j=1

α
vj

j with v =
(

v1, . . . , vN f

)T
. (56)
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From homogeneity of U andW follows also homogeneity of U ×W and

N f

∑
j=1

vj = 2Nk + 1 (57)

describes thereby an
(

N f − 1
)
-dimensional hyperplane covering all points

from the polynomial.

In a particular problem the points of U ×W have a complex hull with

maximum dimensionality N f − 1 embedded in the plane given by Eq. (57).

The dimension of this hull can be checked by computing the rank of a

matrix made up of vectors connecting all points of the hull, denoted by

rank[U ×W ]. These vectors can for example be the vectors between all

ridges of the convex hull or just the difference vectors to one arbitrary refer-

ence point from U ×W .

Now, suppose the hull dimensionality is less or equal to N f − 2. Then,

we can find at least one vector lying within the plane described by Eq. (57)

but perpendicular to any edge or facet of the hull. These vectors correspond

precisely to possible scalings of strict subsets of parameters. They character-

ize directions in exponent space orthogonal to all directions (differences of

points) encoded in the polynomial.

We can formulate the criterion for scalefulness, or conversely scaleless-

ness, by asking whether the volume given by rank[U ×W ] is
(

N f − 1
)
-

dimensional or not:

rank[U ×W ] < N f − 1 ⇔ topology T is scaleless,

rank[U ×W ] = N f − 1 ⇔ topology T is scaleful.
(58)

By construction the rank cannot be greater than N f − 1. Note that even if an

integral is scaleful, it could still be zero for other reasons.

Example 23. We contract lines 4 and 5 in the two-loop massless propagator

topology from Example 18 to obtain a scaleless subtopology:

P2(a1, a2, a3, 0, 0) =

1

2 3

with
U = α13 + α23, W = −p2α123;

U ×W = −p2
(

α2
1α1

2α2
3 + α1

1α2
2α2

3

)

⇒ points:











2

1

2



 ,





1

2

2










, rank





1

−1

0



 = 1 < 2 = N f − 1.

By “points” we mean the set of coordinates in exponent space from each

term in the polynomial U ×W . For having two points in exponent space

that mark just one direction we can freely choose a perpendicular direction

w to this connection vector and within the homogeneity plane, see Eq. (57).
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These rescaling vectors w are to be understood in the sense of αj → cwj αj.

For example w = (1, 1,−2)T which is a linear combination of (1, 1, 0)T and

(0, 0, 1)T corresponding to the obvious possible scalings for U ×W given

by α1,2 → c α1,2 and α3 → c α3, respectively. These vectors are not perpen-

dicular to the normal vector of the plane which is (1, 1, 1)T. Applying the

scaling w here results in U ×W changing by a factor 1/c.

Example 24. In contrast to the previous example, if we contract lines 2 and

3 in the two-loop massless propagator topology the resulting subtopology

remains scaleful. Here, one cannot construct a vector perpendicular to both,

the normal of the homogeneity plane and the edges of the envelope of

exponent vectors.

P2(a1, 0, 0, a4, a5) =

1

4

5

with
U = α14 + α15 + α45, W = −p2α145;

U ×W = −p2
(

α2
1α2

4α1
5 + α2

1α1
4α2

5 + α1
1α2

4α2
5

)

⇒ points:











2

2

1



 ,





2

1

2



 ,





1

2

2










,

rank





1 1

0 −1

−1 0



 = 2 = N f − 1.

To conclude, the criterion in Eq. (58) is simple, can be automated easily

and it does not depend on graph information of an integral, even though

we used massless tadpoles as illustratory examples. Together with the line

contraction property of the alpha-representation for topologies mentioned in

Section 2.3.3, one can readily identify all its vanishing subtopologies. Pure

numerators of a topology can always be neglected for checking scalefulness.

In momentum space representation the numerators can be expanded and in

each resulting integral the scaling of the integration momenta will apply.

2.4 canonically ordered polynomials

This section is devoted to the systematics behind topology classification. For

that purpose the parametric representations for Feynman integrals derived

in Section 2.3 are employed not for explicit evaluation but for constituting a

proper identifier made up of the Symanzik polynomials.
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2.4.1 Topology identification

One aspect of multi-loop problems is the vast complexity in form of the

number of Feynman diagrams one has to handle and their individual intri-

cacy with increasing number of loops. Even more so if the problem is in

addition of multi-scale nature. This is partly due to the Feynman rules that

leave arbitrariness to some degree by not fixing the routing of external and

internal momenta completely.

The task is to reduce this complexity as much as possible to cope with the

calculation of some process. A crude breakdown would be:

1. The large number of diagrams gives rise to a comparable number of

common distinct integrals, in the ballpark of O
(
104−7

)
.

2. These diagrams or their integrals can be classified into a much smaller

set of topologies, typically O
(
101−2

)
, which can be treated separately.

3. The reduction of the initial integrals within these topologies expresses

each integral as a linear combination of only a few “master integrals”,

typically of the order of the number of topologies.

This requires one to be able to decide for Feynman integral families T1, T2, . . .

whether

• topologies T1 and T2 are equivalent (though their explicit definitions

in momentum-space may differ)

T1 ≡ T2,

• topology T1 is contained in topology T2 (or T1 is a genuine subtopology

to T2)

T1 ⊂ T2,

• topology T1 is contained in or equivalent to topology T2 (combining

the previous two statements)

T1 ⊆ T2,

• topology T1 can be expressed in topology T2 (all denominators of T1

can be mapped directly to those of T2 whereas numerators may require

shifts of loop momenta)

T1
⊂∼ T2.

And for specific Feynman integrals I1, I2, . . . (with fixed values of indices) if

• integrals I1 and I2 are one and the same (each represented as single

integral in some topology),

I1 ≡ I2,
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• integral I1 is member of topology T2 (I1 represented as single integral

from T2)

I1 ∈ T2.

• integral I1 can be expressed in topology T2 (I1 is a linear combination

of integrals from T2)

I1
⊂∼ T2.

Here, let us complete the notation by also introducing newly constructed

entities besides the previous relations between topologies and integrals:

• a greatest common subtopology of topologies T1 and T2

T1 ∩ T2,

• a topology completely containing both topologies T1 and T2

T1 ∪ T2.

The relations ∩ and ∪ for topologies can be understood in terms of all the

integrals of a topology. For example in the last case: all integrals from T1

and all integrals from T2 are included in the integrals of T1 ∪ T2.

The main pieces of technology making these tasks feasible are adressed in

this section and based on a unique way of writing down parametric repre-

sentations of Feynman integrals involving the Symanzik polynomials U and

W discussed in Section 2.3. Before, we discuss briefly alternative ways to

tackle these problems, their disadvantages and how we intend to improve

upon them. Suppose the following situation: we are given two Feynman

diagrams and explicit momentum-space representations for their integrals.

How can we know if both integrals are equal?

An obvious approach would be to try and transform one diagram into

the other by renaming edges in all possible ways. Diagrammatically, this

corresponds to repositioning vertices which leaves the adjacency structure

intact. Graph identification in this sense is for example implemented in

the program exp, see Refs. [23, 24]. This problem is computationally very

demanding, checking isomorphism for (sub)graphs is of NP(-complete) com-

plexity. Loosely speaking, this means the problem can be solved in a time

Polynomially dependent on its size but only in a Non-deterministic way.

Conversely, this means (probably) the problem cannot be solved determinis-

tically more efficient than with exponential growth. The name “exp” hints to

the program’s capabilities to perform also expansion in some limit of masses

or invariants on diagram level.

There is also a very elegant way to encode a graph in a unique string of

symbols, called the “Nickel-index”, see for example Ref. [25]. It is basically

an ordered way of writing down the adjacency list of a graph (for each vertex

a listing of vertices to which it connects) leaving out possible redundancies.

Computing and comparing these strings then gives the answer but soon we
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will realize that one should not rely too much on graph information. For

this purpose let us return to Example 2 that was already used in Ref. [3],

here we modified it slightly.

Example 25. Compared to Example 2, we explicitly label propagators of

both graphs and fix a routing of loop momenta.

d1 = m2
H + k2

1,

d2 = (p2 + k2)
2 ,

d3 = (p1 + k1 − k2)
2 ,

d4 = k2
2,

d5 = (k1 − k2)
2 .

p2

p1 d3

d2

p1

p2

d1
d5

d4

←→
p2

p1 d3

d2

d5

p1

d1

p2

d4

Surprisingly, we find that the same set of propagators can be used for the

two non-isomorphic graphs, meaning they are different representations of

the same integral. This is explained below but there are cases where this

is not possible. Both graphs can be embedded in a larger graph where,

due to identical propagators and symmetries, only two diagrammatically

distinct contractions are possible, each corresponding to one of the graphs.

The right-most of the lines assigned d5 is contracted, indicated by a slashed

symbol, together with one of the lines assigned d4.

p2

p1 d3

d2

p1

d5

p2

d4d4

d5

d1

←→

p2

p1 d3

d2

p1

d5

p2

d4d4

d5

d1

This example shows a basic fact: there can be various non-isomorphic

graphs attached to one and the same topology (there is even more precar-

iousness involved when coming back to this topic in Section 2.7) and for

graph-based algorithms to give us a full solution to the question of member-

ship in a topology, we would have to construct all valid graphs to a topology

and operate on these. But eventually, there exists an alternative approach

described below.

Comparing integrands is also a valid way: one has to match Nd,1 prop-

agators from the first topology to Nd,2 propagators from the second topol-

ogy. These propagators are given in terms of scalar products, viz. in explicit
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momentum-space representations which can differ but are related by shifts

in the loop momenta which will be topic in Section 2.4.5. Naively, one has

to try all (Nd,1

Nd,2
) ways of combining propagators and for each combination

one must look for (discrete) shifts in the Nk loop momenta. Using restric-

tions from mass scales or external invariants appearing in propagators can

improve the combinatorics to some extent. That is the philosophy behind

the program reg, see Ref. [26]. We use this tool to find for each diagram a

topology and the corresponding permutation of denominators together with

the transformation of loop momenta. The name “reg” is an abbreviation of

regions, referring to transformations on scalar products rather than graph

lines.

2.4.2 Canonical ordering

The following discussion is general for any multivariate polynomial and can

thus be seen completely loosened from the context of U - andW -polynomials

and alpha-parameters. It was first described in this connection by A. Pak in

Ref. [3], here it is given in a more formal way with one important modifica-

tion described below.

Given some polynomial P with constant coefficients {ci} for m terms in

n variables
{

xj

}
, we look for a procedure that brings each polynomial P′

obtained from P by applying an arbitrary permutation of variables
{

xσ(j)

}

,

also including the identical case P′ = P, into a single unique form P̂ for all

P′.
The procedure itself needs not to be unique for there could be various

ways to rename the
{

xj

}
in order to arrive from any P′ at a fixed P̂, i.e. if

the polynomial exhibits symmetries in all or some of its variables. Moreover,

P̂ by itself can be chosen to be any of the possible P′. This procedure of

canonical ordering is achieved by defining a metric on a polynomial P′ and

picking one of those permutations of parameters
{

xσ(j)

}

that maximize this

metric. The metric of a polynomial P′ should depend on its structure, i.e.

on the coefficients {ci} and the powers of variables
{

xj

}
in monomials. For

this purpose one needs an ordering of coefficients which can be fixed in any

way. In a real implementation one can use for this mandatory ordering con-

veniently the one provided by the particluar computer algebra system (CAS).

But for the following discussion let us assume lexicalic ordering, see Eq. (22).

Algorithm 2 (canonical ordering). The following steps describe the imple-

mentation of one suitable metric and its maximization, also constituting the

very core of the Mathematica package TopoID presented in Section 2.5. A

polynomial P on the input is converted to its canonical form P̂.

1. Convert the polynomial P with m terms and n variables into the m×
(n + 1) matrix M(0). Each row corresponds to a term, the first column

to the monomial coefficients {ci}, the remaining columns to the non-

negative integer powers of variables
{

xj

}
. For simplicity, we assign the
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first column the index zero, such that M
(0)
i0 = ci denotes the vector of

constant coefficients. We write symbolically:

P
(
{ci} ,

{
xj

})
→ M

(0)
ij .

2. To start with the following considerations in the second column which

we assign the index one, set the variable k to one and initialize the set

of matrices S(k=1) to contain only M(0):

S(1) =
{

M(0)
}

, k = 1.

3. The set S(k) =
{

M(k),σ
}

contains all matrices still present in step k.

For all these matrices M(k),σ compute in addition all transpositions

of column k (corresponding to xk) with all remaining columns l =

k + 1, . . . , n (corresponding to xk+1, . . . , xn) to obtain the set S′(k) =
{

M′(k),σ
}

⊃ S(k). The index σ collects all the permutations applied

to a specific matrix so far and σ(k, l) symbolizes incorporation of the

transposition k↔ l into the permutation σ. More specifically:

M
′(k),σ(kl)
ik = M

(k),σ
il , M

′(k),σ(kl)
il = M

(k),σ
ik ,

M
′(k),σ(kl)
ij = M

(k),σ
ij for j 6= k, l.

4. For each matrix in S′(k) sort rows lexicographically by inspecting the

first k columns only to obtain the set S′′(k) =
{

M′′(k),σ
}

:

M′′(k),σ = sort[1..m, 1..k] M′(k),σ,

with fixed ordering operation “sort” acting on M
′(k),σ
i,1..k only.

5. Extract from each M′′(k),σ the vectors of column k and compare all m

elements to determine the lexicographically largest one M̂
′′(k)
ik :

M̂
′′(k)
ik = max

{

M
′′(k),σ
ik

}

.

6. Keep all matrices from S′′(k) which exhibit the maximized column k in

the set S(k+1) and discard all with non-maximal column k. If k < n− 1,

increment k by one and perform Steps 3 to 6 iteratively:

S(k+1) =
{

M′′(k),σ
∣
∣
∣ M

′′(k),σ
ik = M̂

′′(k)
ik

}

,

if k < n− 1 : set k→ k + 1, go to Step 3.
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7. When k = n− 1 is reached the algorithm terminates and all the matri-

ces in S(n) encode the same polynomial P̂ = P̂σ with relabeled variables

maximizing the metric corresponding to M(n),σ. The requested permu-

tations of variables
{

xσ(j)

}

are precisely the set of remaining collective

indices σ̂ in S(n).

These permutations
{

xσ(j)

}

are in the following referred to as “canonical

permutations”, “canonical (re-)orderings”, “canonical (re-)labelings”, etc. of

variables and the polynomial P̂ onto which one of these permutations was

leading as “canonical polynomial”.

In contrast to what is stated as Step (v) in Section 2 of Ref. [3], it is in

Step 6 mandatory to proceed not recursively but iteratively. The difference

may appear very subtle at first glance but it causes wrong results in the

output. Recursion is usually understood as a branching of the algorithm

whereby results of different branches are independent. Then, however, all

matrices selected in Step 6 would in general not correspond to one and

the same maximum column vector and the result could contain, besides all

canonical permutations, also permutations for local maxima of the metric.

So either one has to post-process the output from the procedure of Ref. [3]

or assert that already during their build-up all permutations belong to the

global maximum.

Example 26. It is in order to demonstrate the workings of this algorithm

step-by-step for some simple polynomials, still without relatation to any

topology. The various steps are indicated by equation labels, also stating

the number of iterations if applicable and a filled black box shows that the

procedure has halted. For convenience, matrix blocks relevant for sorting

rows in Step 4 are marked in Step 3 and maximized columns in Step 5 or

Step 6 are highlighted in previous results of Step 4.

P = x2
1 + 2x1x2 + x2

2 + x2
3 → M(0) =







1 2 0 0

2 1 1 0

1 0 2 0

1 0 0 2







. (Step 1)

S(1) =
{

M(0)(123) = M(0)
}

, k = 1. (Step 2)

S′(1) : M′(1)(123) =







1 2 0 0

2 1 1 0

1 0 2 0

1 0 0 2







, M′(1)(213) =







1 0 2 0

2 1 1 0

1 2 0 0

1 0 0 2







,

M′(1)(321) =







1 0 0 2

2 0 1 1

1 0 2 0

1 2 0 0







.

(Step 3-1)
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S′′(1) : M′′(1)(123) =







1 0 0 2

1 0 2 0

1 2 0 0

2 1 1 0







, M′′(1)(213) =







1 0 2 0

1 0 0 2

1 2 0 0

2 1 1 0







,

M′′(1)(321) =







1 0 0 2

1 0 2 0

1 2 0 0

2 0 1 1







.

(Step 4-1)

M̂′′(1) =







0

0

2

1







. (Step 5-1)

S(2) =
{

M′′(1)(123), M′′(1)(213)
}

, k = 2. (Step 6-1)

S′(2) : M′(2)(123) =







1 0 0 2

1 0 2 0

1 2 0 0

2 1 1 0







, M′(2)(132) =







1 0 2 0

1 0 0 2

1 2 0 0

2 1 0 1







,

M′(2)(213) =







1 0 2 0

1 0 0 2

1 2 0 0

2 1 1 0







, M′(2)(231) =







1 0 0 2

1 0 2 0

1 2 0 0

2 1 0 1







.

(Step 3-2)

S′′(2) : M′′(2)(123) =







1 0 0 2

1 0 2 0

1 2 0 0

2 1 1 0







, M′′(2)(132) =







1 0 0 2

1 0 2 0

1 2 0 0

2 1 0 1







,

M′′(2)(213) =







1 0 0 2

1 0 2 0

1 2 0 0

2 1 1 0







, M′′(2)(231) =







1 0 0 2

1 0 2 0

1 2 0 0

2 1 0 1







.

(Step 4-2)

M̂′′(2) =







0

2

0

1







. (Step 5-2)

S(2) =
{

M′′(2)(123), M′′(2)(213)
}

. (Step 6-2)

P̂ = P = x2
3 + x2

2 + x2
1 + 2x1x2 , σ̂ = {(123), (213)} . � (Step 7)

The polynomial P has an obvious symmetry under x1 ↔ x2 which is also re-

produced by the algorithm since two canonical permutations {(123), (213)}
are returned. We also see that P was already in canonical form. The permu-
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tation (213) denotes the simultaneous replacement (x1, x2, x3)→ (x2, x1, x3)
transforming P into P̂.

Example 27. Now, let us trade in P the term x2
3 for the term 2x2x3 and trace

how the steps change.

P = x2
1 + 2x1x2 + x2

2 + 2x2x3 → M(0) =







1 2 0 0

2 1 1 0

1 0 2 0

2 0 1 1







. (Step 1)

S(1) =
{

M(0)(123) = M(0)
}

, k = 1. (Step 2)

S′(1) : M′(1)(123) =







1 2 0 0

2 1 1 0

1 0 2 0

2 0 1 1







, M′(1)(213) =







1 0 2 0

2 1 1 0

1 2 0 0

2 1 0 1







,

M′(1)(321) =







1 0 0 2

2 0 1 1

1 0 2 0

2 1 1 0







.

(Step 3-1)

S′′(1) : M′′(1)(123) =







1 0 2 0

1 2 0 0

2 0 1 1

2 1 1 0







, M′′(1)(213) =







1 0 2 0

1 2 0 0

2 1 1 0

2 1 0 1







,

M′′(1)(321) =







1 0 0 2

1 0 2 0

2 0 1 1

2 1 1 0







.

(Step 4-1)

M̂′′(1) =







0

2

1

1







. (Step 5-1)

S(2) =
{

M′′(1)(213)
}

, k = 2. (Step 6-1)

S′(2) : M′(2)(213) =







1 0 2 0

1 2 0 0

2 1 1 0

2 1 0 1







, M′(2)(231) =







1 0 0 2

1 2 0 0

2 1 0 1

2 1 1 0







.

(Step 3-2)
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S′′(2) : M′′(2)(213) =







1 0 2 0

1 2 0 0

2 1 0 1

2 1 1 0







, M′′(2)(231) =







1 0 0 2

1 2 0 0

2 1 0 1

2 1 1 0







.

(Step 4-2)

M̂′′(2) =







2

0

0

1







. (Step 5-2)

S(2) =
{

M′′(2)(213)
}

. (Step 6-2)

P̂ = x2
2 + x2

1 + 2x1x3 + 2x1x2 , σ̂ = {(213)} . � (Step 7)

By the change of terms we destroyed the former symmetry x1 ↔ x2 and

apparently this is why the algorithm produces thereafter only one canonical

ordering.

Henceforth, we may understand the various steps of the algorithm in more

general terms:

• By converting a polynomial P into a matrix M in Step 1 the arbitrary

order of monomials of P translates into rearranging rows of M freely,

whereas renaming pairs of variables (xk, xl) corresponds to interchang-

ing columns (Mik, Mil). However, in contrast to row interchanges, col-

umn interchanges must be kept track of (by the collective index σ) for

they give in the end the permutations we are interested in.

• Steps 2, 3 and 6 ensure that all possible permutations of the
{

xj

}
are

considered as candidate orderings and systematically excluded in each

iteration to keep computational effort in check.

• As stated initially, this procedure depends on monomial coefficients

{ci} and powers of variables
{

xj

}
. As one can see from Step 4 and

Step 5 in the above examples, the ordering works such that for the

“first” variables “more complicated” coefficients are preferred as pri-

mary criterion and higher powers as secondary criterion. However,

this depends on the internal implementation in a CAS of “sort” in

Step 4 and “max” in Step 5 that do not need to bother us any fur-

ther as long as they provide a unique ordering. We assumed a simple

lexical ordering in the examples. Changing this ordering will surely

change the canonical form resulting in the end but not the fact that it

is unambigiously defined.

• Later, in context of U - and W -polynomials, it will become clear that

the {ci} encode the kinematics and mass configuration of a Feynman

diagram topology and the exponents of the
{

xj

}
the graph structure

itself.

Considering canonically reordered polynomials appears to be mathemat-

ically equivalent (or at least related) to the usage of matroids, structures
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which generalize the notion of linear dependency. A special class of ma-

troids, cycle matroids, have in general multiple graph representations in

analogy to topologies. The public code Reduze, see Ref. [27], is based on

such matroids.

2.4.3 Application to topologies

We have seen in Section 2.3 that for any given topology, or Feynman integral

with specified values for powers of denominators and numerators from such

a topology, one can readily write down the alpha- or Feynman parametriza-

tion in terms of the two Symanzik polynomials U and W . As already men-

tioned, these representations have the advantage that integration over loop

momenta has already been carried out. Thus, one got rid of the to some ex-

tent arbitrary routing of loop momenta that had to be introduced according

to the Feynman rules. While this ambiguity is resolved, the one associated

with relabeling of alpha-parameters corresponding to renaming of lines in

the graph or factors in the integral remains.

Now, this last freedom can also be removed by employing the technique

described in Section 2.4.2 for the polynomials U and W . Thereafter one can

use these canonically reordered Û - and Ŵ-polynomials together as unique

identifier for a topology. This property applies to all different kinds of

topologies and subtopologies, regardless if complete or incomplete, linearly

dependent or independent and also to specific Feynman integrals, taking

their reordered vector of indices into account.

The ordering procedure was defined in Section 2.4.2 only for a single

polynomial but now we want to apply it to the pair (U ,W). In the case

of multiple polynomials one can introduce just as many auxiliary variables

(considered part of monomial coefficients) as there are polynomials, form

the sum of polynomials weighted with their respective marker and finally

apply our procedure. It proved sufficient in practice to use either U ×W or

U +W as characteristic polynomial. The product U ×W was suggested by

A. Pak in Ref. [3] and has the advantage that one can also infer scalefulness

from it (see Section 2.3.4). For comparison purposes this is less efficient than

the sum U +W where the total number of terms is only the sum of the

numbers of terms in U and W and not their product, in the worst case. Ad-

ditionally, uniqueness is for the polynomial expression U +W evident since

the degrees of homogeneity differ for U and W by one. On the contrary, it

is not obvious that one can always factorize U ×W uniquely to reconstruct

the characteristic pair (U ,W) and one cannot exclude misidentification.

In the following we want to demonstrate this reordering on some of the

simplest examples available, namely one-loop propagator topologies and the

basic and generic topologies for Higgs boson production Tbasic
H,NLO and T

generic
H,NLO,

we encountered in Example 1 and Example 6, respectively. Since we work

now with Feynman parametrizations for propagators defined in Euclidean

metrics, we label graph lines with numbers corresponding to Feynman pa-

rameters and refrain from giving directions for the flows of line momenta.

Canonically reordered topologies are denoted with an additional hat on their
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symbols, meaning the canonical permutation has been applied to variables

in their Symanzik polynomials and to the order of propagators.

Example 28. The massless one-loop propagator topology (in Euclidean met-

rics) with its Symanzik polynomials looks as follows:

P̂1(a1, a2) = p

1

p

2

,

U = −α1 − α2, W = −p2α1α2.

The symmetry in interchanging lines 1 and 2 is obvious from the graph

and the polynomials. Regardless whether we use U × W or U +W as

characteristic polynomial, we see that they are already in canonical form:

U ×W = Û × Ŵ = p2α2
1α2 + p2α1α2

2,

U +W = Û + Ŵ = −p2α1α2 − α1 − α2.

Algorithm 2 gives us for the reorderings the obvious answer {(12) , (21)}.
We modify this example by putting a mass m on the first line, leaving the

second one massless (masses are indicated next to the line labels):

P̂1,m(a1, a2) = p

1, m

p

2, 0

,

U = −α1 − α2, W = −m2α2
1 −m2α1α2 − p2α1α2.

As expected, the symmetry between lines 1 and 2 is destroyed by terms

involving the mass m (similar to Example 27) and the algorithm prefers

the reordering (12) that leaves mass m on line 1. Again, the characteristic

polynomials were canonical from the beginning:

U ×W = Û × Ŵ = m2α3
1 + 2m2α2

1α2 + p2α2
1α2 + m2α1α2

2 + p2α1α2
2,

U +W = Û + Ŵ = −m2α2
1 −m2α1α2 − p2α1α2 − α1 − α2.

Example 29. The application of canonical reordering to the basic and generic

topologies for Higgs boson production at NLO, Tbasic
H,NLO and T

generic
H,NLO, should

not be missing:

T̂basic
H,NLO(a1, a2, a3) =

p2

p1 3

2
p1

p2
1

=⇒

51



feynman integral families

Û = −α1 − α2 − α3,

Ŵ = −m2
Hα2

1 −m2
Hα1α2 −m2

Hα1α3 + sα1α3.

We had to apply (132) to the initial order of factors and alpha-parameters

to arrive at the canonically reordered topology T̂basic
H,NLO. For T

generic
H,NLO we find

again a symmetry, reflected in the two orderings {(1342) , (1432)}. Both

orderings give:

T̂
generic
H,NLO(a1, a2, a3, a4) =

p2

p1 4

2

p1

p2

3

11

=⇒

Û =− α1 − α2 − α3 − α4,

Ŵ =−m2
Hα2

1 −m2
Hα1α2 −m2

Hα1α3 −m2
Hα1α4 + sα1α4 − sα2α3.

In this example we did not explicitly state the characteristic polynomials

since especially the prodcuts become already quite lengthy.

In Example 29 both choices of characteristic polynomials give the same

answers for reordering which is unfortunatelly no generic feature. In the fol-

lowing we will stick for reordering to the more manageable sum of Symanzik

polynomials alone.

2.4.4 Subtopologies

As explained in Section 2.3.3 the alpha-representation to a subtopology can

be readily obtained by setting all but the alpha-parameters corresponding

to factors of the subtopology to zero. In case these factors are depictable as

lines in a graph this corresponds to contraction of these lines. Naturally, the

question arises if the alpha-representation once brought into canonical form

by means of the procedure discussed in Section 2.4.2 will still be in canonical

form after applying contractions. First, let us see by an easy counter-example

that it is unfortunately not possible to define an ordering of variables that im-

plements this property. One can, however, handle the problem of subtopol-

ogy classification by different means that will be laid out thereafter.

Example 30. The polynomial P(1234) in variables x1, . . . , x4 is ordered ac-

cording to our procedure,

P(1234) = P̂(1234) = x1x2
2x3 + x2

1x2x4 .

There is a symmetry in simultaneously changing x1 ↔ x2 and x3 ↔ x4,

reflected in the canonical orderings {(1234) , (2143)}. If we now apply the

contraction x3 = 0, corresponding to the permutation (124), and the con-

traction x4 = 0, corresponding to the permutation (123), we obtain:

P(124) = x2
1x2x3 , P(123) = x1x2

2x3 .
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Here, the terms of P(1234) were simply separated into both contractions.

After the contraction x3 = 0 in P(124) also the renaming x4 → x3 has been

applied. Inspecting both contracted polynomials more closely, we find the

canonical orderings:

σP(124)
= {(123), (132)} , σP(123)

= {(213), (231)} .

Hence, the canonical ordering is destroyed by the contraction (123). Now,

let us try to understand why this happened and if one can circumvent it by

applying a different ordering prescription. Writing down the matrix M(0),

which would be the starting point for every sensible metric construction,

we get:

M(0) =

(
1 1 2 1 0

1 2 1 0 1

)

.

Based on this matrix it is always possible to define uniquely an order of

present variables. However, upon contraction of any variable, say xk, all

terms involving xk are removed or equally any row l in M(0) with M
(0)
lk 6= 0

and thereafter the column M
(0)
ik itself:

M
(0)
(124)

=
(
1 2 1 1

)
, M

(0)
(123)

=
(
1 1 2 1

)
, M

(0)
(124)
6= M

(0)
(123)

.

It becomes obvious that by contraction of xk = 0 the relative importance of

all xj 6=k present in terms involving xk gets changed in general. Or equally

for xj if there is an l with M
(0)
lj 6= 0 and M

(0)
lk 6= 0.

We have to realize that it is impossible to envise a specific ordering of vari-

ables in a polynomial that persists after the contraction of arbitrary variables.

There is no contraction property for canonically ordered polynomials.

We want to compare Feynman integrals or classes of them in order to

identify a minimal set of the objects we had in the beginning. This means

topologies present as subtopology in an arbitrary topology with more fac-

tors or as alternative momentum space representation can immediately be

dropped. To check if some topology T1 is isomorphic to a subtopology of

some other topology T2 with more lines than T1, in the sense of T1 ⊂ T2, the

following steps are necessary:

• Perform all possible contractions leaving T2 with the same number of

lines as T1.

• Bring the corresponding alpha-representations of subtopologies into

canonical form.

• Finally, compare to the canonical form of alpha-representation of T1.

Alternatively but more efficient, we determine for each and every possible

contraction of factors of a topology the canonical permutation of alpha-

parameters in the corresponding subtopology and store only the resulting
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“canonical contraction” or “canonical subset”. Applying these reordered

contractions onto the canonical Symanzik polynomials of the initial topol-

ogy results then in canonical representations also for the subtopologies.

Example 31. Observe in Example 30 that if we had applied one of the re-

ordered versions of the contraction (123) to P(1234), in this case just (213) or

(231), the resulting polynomials P(213) = P(231) = x2
1x2x3 would have been

in canonical form.

In general, upon performing a contraction, denoted by a subset of factors

of a topology (or their positions), we can freely choose the order of selected

factors and still end up with the same subtopology. We can make use of

this freedom and incorporate into the contraction one of the canonical re-

orderings valid for the emerging subtopology, while the other reorderings

represent its symmetries. By this strategy also different contractions leading

to identical subtopologies can be found and grouped. Together with the cri-

terion for scalelessness a complete classification of a topology into groups

of equivalent subtopologies is possible, one group describing all scaleless

subtopologies.

Example 32. If we apply the canonial reordering (23451) to the massless

two-loop propagator topology of Example 18 (in Euclidean metrics), we

find:

P̂2(a1, . . . , a5) =

2

3

4

1

5

,

Û = α12 + α13 + α14 + α15 + α24 + α25 + α34 + α35 ,

Ŵ = p2 (α123 + α125 + α134 + α145 + α234 + α235 + α245 + α345) .

Note that the reordering of alpha-parameters also applies to lines in the

graph. By the technique described before we can classify all its distinct and

vanishing subtopologies encoded in the following sets of subsets of lines:

distinct groups of identical subsets:
{
{(12345)} ,

{(2345)} ,

{(1254) , (1345) , (1432) , (1523)} ,

{(125) , (134)}
}

,

vanishing subsets:

{(123) , (124) , (135) , (145) , (234) , (235) , (245) , (345)} .

The first group contains the full topology, i.e. the identity. Each of the

following groups gives subsets of lines to be considered equivalent, they

have identical Û - and Ŵ-polynomials. The last group is made up of subsets

54



2.4 canonically ordered polynomials

corresponding to scaleless integrals where even smaller subsets of these

were left out intentionally for not providing anything new. In this example

each group corresponds to a class of isomorphic graphs (due to symmetries

of the subtopology) shown below. In general there can be multiple classes

of isomorphic graphs for each group.

Non-vanishing subtopologies :

, , .

Vanishing subtopologies :

, .

For demonstration purposes we apply (1254) and (1432), corresponding to

the second non-vanishing topology illustrated above, to Û and Ŵ :

Û(1254) = Û(1432) = α12 + α13 + α14 + α23 + α24 ,

Ŵ(1254) = Ŵ(1432) = p2 (α123 + α134 + α243) .

As intended both contractions have the same outcome. The general recipe

for a canonical contraction is just the application of a canonical ordering in

the subtopology (given as inverse permutation) on the corresponding sub-

set. The subset (1235) gives as reorderings (1423) and (4123). Permuting

the subset by the first reordering gives (1523), as in the previous complete

classification list, but also (5123) from the second reordering would be valid

and produce equal polynomials due to the symmetry of lines 1 and 5 once

line 4 is absent.

More complex examples of this kind of classification are presented in

Chapter 4 devoted to Higgs boson production and Section 2.5 explaining

the usage of some features of TopoID. Details on the implementation of tech-

niques described in this chapter will be published elsewhere, see Ref. [28].

2.4.5 Finding momenta shifts

It has already been mentioned on several occasions that a topology can be

represented in different ways in momentum space since one can always

shift integration momenta {ki} by (integer) amounts of other integration

momenta or external momenta {pi}. In analogy to Eq. (5), we write

ki → k′i =
Np

∑
j=1

ck
ij pj +

Nk

∑
j=1

dk
ij kj with ck

ij, dk
ij ∈ Z . (59)
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In addition we can admit transformations on (independent) external mo-

menta,

pi → p′i =
Np

∑
i=1

c
p
ij pj with c

p
ij ∈ Z . (60)

Such general transformations on external momenta can be used to con-

nect topologies of different kinematic configurations, e.g. vertex type topolo-

gies (with independent external momenta p1 and p2) with propagator type

topologies (by p′1 = p1 + p2, p′2 = 0). For implementing crossing of external

momenta it suffices to allow permutations:

pi → p′i = pσ(i). (61)

In any case, transformations on both kinds of momenta in Eqs. (59) and (60)

can be encoded in a single matrix:














p′1
...

p′Np

k′1
...

k′Nk














=














cp 0

ck dk














·













p1
...

pNp

k1
...

kNk













or v′ = C v, (62)

where we defined implicitly common vectors of momenta v(′) and a common

transformation matrix C. Note that the (linear) transformation of integration

momenta comes with the Jacobian factor det ck. When comparing vectors of

factors { fi} and { f ′i } of two topologies with the same number of factors

(e.g. one topology before and after shifting momenta), shifts in Eq. (62) can

generate permutations σ such that

fi = f ′σ(i). (63)

The other way around, suppose we want to find such permutation of topol-

ogy factors and corresponding momenta shifts. One could test all possible

permutations and some restricted set of discrete momenta shifts by brute

force. Our approach answers this question more elegantly since from canon-

ical reordering the relation between both sets of factors is known readily.

Thereby the only thing left to do is comparing coefficients in these sets to

obtain the transformations in Eqs. (59) and (60).

In conclusion, it does not matter in which way one routes external and

interal momenta trough the lines of a topology. Once the procedure of

canonical ordering is applied to any momentum-space representation, al-

ways the same characteristic polynomial from the Feynman parametrization

will emerge. However, one has to take care for different choices of irre-

ducible scalar products. On the one hand, this can be achieved by neglect-

ing topology numerators in the characteristic polynomials (by contraction).

If correspondence of denominators can be established and a shift of integra-

tion momenta exists (this is not guaranteed), then two topologies are related
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in the sense of T1
⊂∼ T2. On the other hand, if we can relate the full set of

factors of two topologies, in the sense of T1 ≡ T2, momenta shifts are not

necessary.

Example 33. Using one more time the two-loop massless propagator topol-

ogy of Example 32 for which we know the correspondence of all subtopolo-

gies, e.g. (1254) and (1523), we first have to give a momentum-space defi-

nition of factors:

q1 = k1 + k2,

q2 = k1,

q3 = p− k1,

q4 = k2,

q5 = p + k2.

=⇒

d1 = k2
1 + 2k1 · k2 + k2

2,

d2 = k2
1,

d3 = p2 − 2p · k1 + k2
1,

d4 = k2
2,

d5 = p2 + 2p · k2 + k2
2.

Hence, we can equate representations for the subsets (1254) and (1523) (the

latter is distinguished with primed variables):

k2
1 + 2k1 · k2 + k2

2 = k′21 + 2k′1 · k′2 + k′22 ,

k2
1 = p2 + 2p · k′2 + k′22 ,

p2 + 2p · k2 + k2
2 = k′21 ,

k2
2 = p2 − 2p · k′1 + k′21 .

We can simply read off k′1 = p + k2 and k′2 = p− k1. This transformation

can now be applied to integrals (with numerators) from (1523) to map them

completely onto subtopology (1254). For example:

P2(1, 1, 1,−1, 2) =
∫

dk′1 dk′2
d4

d1d2d3d2
5

=
∫

dk′1 dk′2
k′22

d1d2d3d2
5

=

∫

dk1 dk2
p2 − 2pk1 + k2

1

d1d2
2d4d5

=
∫

dk1 dk2
d3

d1d2
2d4d5

= P2(1, 2,−1, 1, 1) .

This case corresponds to a global symmetry of P2, namely the last one of

the global reorderings {(12345) , (13254) , (14523) , (15432)}.

In general, when mapping an integral I1 of a topology T1 to a subtopology

of another topology T2, one obtains multiple terms on the right-hand side

after reexpressing scalar products in the numerator of I1 by topology factors

of T2.

2.4.6 Symmetries

We already saw that the set of all canonical orderings of a topology corre-

sponds to its symmetries. The contraction property of Feynman parameters,

see Eq. (50), together with a single canonical ordering for each subtopology

allowed us to define canonical contractions to give a complete classification.

If we combine all reorderings in a subtopology with the corresponding con-
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traction, we obtain the symmetries in this subtopology. One can consider

symmetries of different subsets of lines that lead to equal subtopologies sep-

arately or combined for such subsets. We opted for the latter. In contrast to

the structure for subtopology classification (see Example 32), the structure

build up for symmetries can for example contain groups of subsets that are

already completely incorporated in a group of subsets with more lines. This

means there is a contraction that does not allow for new symmetries. Groups

of subsets of this kind are discarded.

Symmetries are useful for simplification of expressions. If variables (sym-

metric integrals within some topology in this case) are identified, their co-

efficients can be combined and the expression becomes more manageable.

However, from all possible representations of one integral originating from

symmetries one particular must be preferred to the others. This preferred

form is dictated by an underlying strict ordering on the indices of integrals.

E.g. for lexicalic ordering and a symmetry {(123) , (231)}, the integral repre-

sentation Tbasic
H,NLO(1, 2,−1) would be preferred to Tbasic

H,NLO(2,−1, 1).

In general, a symmetry is present if we are free to rearrange denominators

of a (sub)topology, possibly supplied with additional transformations. By

the latter we can distinguish different attributes of symmetries:

Global symmetry All factors of the topology give multiple canonical re-

orderings. See Example 28 and T̂
generic
H,NLO in Example 29.

Sector symmetry Different selections of topology factors resulting in the

same characteristic polynomial which can be used to classify the com-

plete structure of distinct subtopologies. See the third and fourth iden-

tical groups in Example 32.

Subtopology symmetry Different reorderings of the same subset of topol-

ogy factors or their combination with all sector symmetries. An exam-

ple will follow.

Momenta shift symmetries Rearrangement of (a subset of) denominators

that comes together with a transformation of momenta (optionally ex-

ternal). See Example 33.

Direct symmetry Rearrangement of (a subset of) factors without shift in

momenta. Thereby, no completely generic numerator can be present,

only numerator factors included in the symmetry itself. As an example

consider P2(1, 1, 1, 0, 2) which lacks a numerator and therefore requires

no shifts of loop momenta in Example 33.

External or crossing symmetry A transformation of topology factors that

comes together with a linear transformation of external momenta re-

flected in the invariants
{

xij

}
. For example {p1, p2} → {p2, p1}.

Mass symmetry A transformation of topology factors together with a per-

mutation of masses {mi} present in the problem.

Jacobian symmetry A transformation of topology factors together with a

non-unit Jacobian factor of det ck in Eq. (62).
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Master integral symmetry Possible functional dependence on masses and

kinematic invariants not yet covered by crossing and mass symmetries.

Crossing and mass symmetries can be detected with our techniques by

comparing characteristic polynomials after transforming the
{

xij

}
and {mi}.

Jacobian and master integral symmetries are listed only for completeness.

Example 34. The symmetries of the massless two-loop propagator topology

P2 from before are:

{
(# = 4)

{(12345) , (13254) , (14523) , (15432)} ,

(# = 8)

{(1234) , (1325) , (1452) , (1543) , (2451) , (3541) , (4231) , (5321)} ,

(# = 8)

{(2345) , (2354) , (3245) , (3254) , (4523) , (4532) , (5423) , (5432)} ,

(# = 12)

{ (125) , (134) , (143) , (152) , (215) , (251) , (314) , (341) , (413) ,

(431) , (512) , (521)}
}

We indicated the number of elements each group has in parentheses. In the

first group valid for all lines, the “top-level” or global symmetries are listed.

The second group corresponds to a subtopology with one line contracted.

The third group gives different ways to represent the double-bubble graph,

the last group belongs to the sunrise graph. The latter are examples of

subtopology symmetries, whereas the corresponding groups in Example 32

are sector symmetries. Here, we have for example (2345) and (2354) in the

third group which are different reorderings of the same subset.

The knowledge of all existing symmetries of a topology is advantageous

for various reasons. The number of integrals in an expression can be reduced

drastically by applying symmetries of the corresponding topology. Also, the

coefficients of the integrals tend to simplify or cancel for some integrals

even completely. Therefore, the amount of expressions and their complexity

is decreased. This concerns both, the calculation of Feynman diagrams in

terms of scalar integrals from a topology and the subsequent reduction of

the integrals within this topology to master integrals. We will comment on

the practical use of symmetries in Section 2.6.

2.4.7 Mapping relations

Dealing with sets of topologies, it becomes necessary to introduce a nota-

tion for relations among different (sub)topologies. This means we want to

describe how a subset of factors of one topology is related to a subset of fac-

tors of another topology. We need to generalize and combine our notation

for permutations and subsets using the symbol σ.
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We defined a subtopology Tσ to topology T via the subset σ of factors or

lines:

Tσ

(

a1, . . . , aN f

)

⊆ T
(

a1, . . . , aN f

)

with ∀i /∈ σ : ai ≤ 0. (64)

In contrast to this, a (sub)sector Tρ is usually defined via a subset of factors ρ

in the following way:

Tρ

(

a1, . . . , aN f

)

with

{

ai ≤ 0, if i /∈ ρ,

ai > 0, otherwise.
(65)

The difference is that sectors are mutually exclusive, whereas subtopologies

contain all those subtopologies which have less factors. This is a conse-

quence of ai for i ∈ σ not being restricted in Eq. (64). An alternative notation

via a set of directions {di} with di = ±1 in the space of indices translates to

the sector notation by:

d =
(

d1, . . . , dN f

)

with (ai − 1/2) di > 0, (66)

where di = +1 for ai > 0 and di = −1 for ai ≤ 0.

Before, σ was a permutation for canonical reorderings or a subset of in-

tegers for subtopologies. We extend the notation by allowing σ to be a

multiset of non-negative integers, meaning elements may repeat. A zero de-

notes contraction of a line, duplicate positive integers mean identification of

lines. Such a multiset gives a directed relation between (sub)topologies with

respect to a “source” and a “target” topology. Rearrangement of elements is

understood in the sense of an inverse permutation: the position of an element

refers the order of factors in the source, the value of an element refers to the

order of factors in the target. For definiteness, if topologies Tsource and Ttarget

are related by

Tsource({ai}) = Ttarget(σ({ai})) , (67)

we denote this by

Tsource
σ−→ Ttarget. (68)

Mappings can be composed, i.e. two or multiple of them can be combined

into a single one. Note that if a mapping incorporates a contraction or iden-

tification of lines, it is in general not possible to reverse it unambigiously.

Example 35. We illustrate the notion of mappings by the different cases

mentioned in the text and Examples 28 and 29, using p = p1 + p2 for P̂1,m.

Pure (canonical) permutation

Tbasic
H,NLO

(132)−−→ T̂basic
H,NLO,

T
generic
H,NLO

(1342)−−−→ T̂
generic
H,NLO, T

generic
H,NLO

(1432)−−−→ T̂
generic
H,NLO.
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Line contraction

T̂basic
H,NLO

(102)−−→ P̂1,m,

T̂
generic
H,NLO

(1002)−−−→ P̂1,m.

Line identification

T̂
generic
H,NLO

(1223)−−−→ T̂basic
H,NLO.

Reverse mapping

P̂1,m
(13)−−→ T̂basic

H,NLO, P̂1,m
(14)−−→ T̂

generic
H,NLO,

T̂basic
H,NLO

(124)−−→ T̂
generic
H,NLO, T̂basic

H,NLO

(134)−−→ T̂
generic
H,NLO.

Composed mapping

T
generic
H,NLO

(1342)−−−→ T̂
generic
H,NLO

(1223)−−−→ T̂basic
H,NLO = T

generic
H,NLO

(1232)−−−→ T̂basic
H,NLO.

Analogously to a symmetry within one topology, a mapping can coincide

with a momentum shift transformation or not. Especially for mappings be-

tween subtopologies of different topologies such shifts of momenta need not

to exist necessarily.

2.5 the package topoid

All the techniques and algorithms described in the previous sections have

been implemented in the Mathematica, see Ref. [29], package TopoID (the

name refers to Topology IDentification). This implementation was one of

the mayor pieces of work done in context of this thesis. In the last part of

this chapter we summarize capabilities built into TopoID. Also in some of

the next chapters we will encounter examples for tasks it can handle. A

dedicated user manual and full documentation (especially of the generated

code) would be rather technical and exceed the scope of this thesis. Thus, it

will appear elsewhere, see Ref. [28].

TopoID is a generic, process independent tool that aims to bridge the gap

in the calculation workflow between Feynman diagrams and unrenormal-

ized results expressed in terms of master integrals. By this we mean ac-

tual master integrals, i.e. taking into account non-trivial relations discussed

in Section 2.7.3 in a completely automatic way. In principle, one can also

perform the operations of TopoID manually but with numerous topologies

this quickly becomes tidious and error-prone. It is written as a package for

Mathematica which offers a high-level programming environment and the

demanded algebraic capabilities. However, for the actual calculation FORM

code, see Refs. [30–32], is generated to process the diagrams in a more ef-

ficient way. TopoID also generates configuration files for the programs exp,
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see Refs. [23, 24], and reg, see Ref. [26], which are used to map each dia-

gram to a topology. An implementation of Laporta’s algorithm is not part

of TopoID but usefull properties of a topology such as symmetries, unitarity

cuts and scaleless subtopologies can be provided to assist in the reduction

of integrals by an external code. Results obtained with the external code can

then be post-processed by TopoID to give a minimal set of master integrals.

Let us briefly summarize features the package has to offer:

• topology identification and construction of minimal sets of topologies,

• classification of distinct and scaleless subtopologies,

• treatment of properties such as completeness, linear dependence, etc.,

• construction of partial fractioning relations,

• revealing symmetries (completely within all levels of subtopologies),

• graph manipulation, treatment of unitarity cuts, factorizing topologies,

• FORM code generation (diagram mapping, topology processing, Laporta

integral reduction),

• master integral identification (arbitrary base changes, non-trivial rela-

tions).

2.5.1 Example: massless propagators to five loops

Let us demonstrate one application of TopoID by the identification of all

topologies necessary for the calculation of massless propagator integrals up

to five loops. In a first step we generate the diagrams with QGRAF, see

Ref. [33]. For topology identification it is not necessary to work in “real”

QCD. A simplified theory containing only gluons is sufficient and results

in a much smaller number of diagrams which improves the combinatorics

for TopoID. Let us briefly introduce some of the functions we need for this

identification process:

• Information on the kinematic setup is given once at the beginning to

the commandSetup Setup[<rules>] to initialize a data structure that can

later be passed to functions that need this information. By <rules>

we denote a list of rules specifying external and internal momenta,

masses and constants, kinematic constraints and transformation rules

(for introduction of a notation). Some of the entries in <rules> are

optional. A self-explanatory example is given below.

• The functionGetDiagrams GetDiagrams[<file>] reads and parses QGRAF output

into the internal data structure for topologies. This is bound to the

standard .sty file coming together with TopoID. Alternatively, another

included .sty file allows to generate directly TopoID compatible QGRAF

output that can be read simply with Get[<file>].
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• MapDiagramTo-

Topology

MapDiagramToTopology[<top(s)>, <setup>] first constructs from the

routing of line momenta produced by QGRAF, particle masses and kine-

matic constraints specified in <setup> a list of quadratic propagators.

Identical propagators can immediately be identified after this step.

Then, the canonical alpha-representation is derived and propagators

reordered accordingly. Single topologies or whole sets can be passed

as input. The output contains also information on the applied reorder-

ings in the form of mappings (exemplified below).

• The command MinimizeTopolo-

gies

MinimizeTopologies[<tops>] can be invoked to mini-

mize a given set of topologies. The output consists of the new, minimal

set of topologies and a set of mappings that relates the topologies in

the input and output. In the course of minimization, the complete

subtopology structure is revealed for each topology in the output.

• A simple way to obtain graphical representations for topologies are the

commands TopologyPlot

TopologyGrid

TopologyPlot[<top>] and TopologyGrid[<tops>]. The

output may not always be aestetically appealing but is in practice in-

dispensable.

Massless propagator topologies are by construction linear independent. Prop-

agators carrying the same momentum can be readily identified and there are

no conditions on external momenta. Therefore, we need not take care of lin-

ear independence in this application. Nevertheless, the topologies still need

to be completed.

Example 36. A typical Mathematica session for the identification process

looks as shown below. The code has to be modified only marginally to

proceed from one to five loops. Therefore, we show and comment only the

three-loop case. We give, however, the final results produced from one to

four loops below and in Figs. 3 and 4. Results to five loops are given in

Appendix A.1.

In[1]:= << TopoID ‘ ;

_______ _ ____

--->---+--- |__ __| ------------------ | | | _ \ ---+--->---

\ | | __ ____ __ | | | | \ \ |

+ | | / \ | _ \ / \ | | | | \ \ |

|\ | | / /\ \ | | \ \ / /\ \ | | | | / / +--->---

| \ | | \ \/ / | |_/ / \ \/ / | | | |_/ / /

| \ |_| \__/ | __/ \__/ |_| |____/ +

| \ | | / \

--->-----+----+---------- |_| ----------------------+---+--->---

PACKAGE:

TopoID -- [Topo]logy [ID]entification

VERSION:

1.2 (2014-10-16)

AUTHORS:

Jens Hoff & Alexey Pak

MAILTO:

[jens.hoff@kit.edu]
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DESCRIPTION:

- Starting from Feynman diagrams, the underlying generic topologies are

identified and their set is minimized. These are decomposed into

(linearly independent) Laporta topologies.

- FORM code can be generated in order to map diagrams onto them and to

process both types of topologies.

- Afterwards emerging sets of master integrals can be minimized. This

includes base changes.

- Usage information is available through ?TopoID, for instance.

Provided functions and used symbols are listed in the variables

$TopoIDFunctions and $TopoIDSymbols.

- The debugging mode can be enabled with

$TopoIDDebug = True;

before loading the package.

In[2]:= setup3 = Setup [

E x t e r n a l s −> {p1 } , (∗ one e x t e r n a l momentum ∗ )

I n t e r n a l s −> {v1 , v2 , v3 } , (∗ t h r e e i n t e r n a l momenta ∗ )

Masses −> {” g l ” −> 0 } ] ; (∗ on ly g lu on s with mass 0 ∗ )

In[3]:= dias3 = GetDiagrams [ ” 3 . gg . raw” ] ; (∗ g e n e r a t e d by QGRAF ∗ )

Read 10 diagrams.

In[4]:= TopologyGrid [

dias3 , 2 ,

ImageSize −> {140 , 100} ,

PlotLabel −> Automatic ]
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In[5]:= {dmaps3 , dtops3} = MapDiagramToTopology [ dias3 , setup3 ] ;

Map 10 diagrams to topologies.

Created 10 mappings and 10 topologies.

In[6]:= TopologyGrid [

dtops3 , 2 ,

ImageSize −> {140 , 70} ,
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PlotLabel −> Automatic ]
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In[7]:= Scan [ Print , dmaps3 ] ;

{fr -> "D1", to -> "DT1", id -> {7, 8, 5, 6, 1, 2, 3, 4}}

{fr -> "D2", to -> "DT2", id -> {5, 6, 5, 6, 2, 1, 4, 3}}

{fr -> "D3", to -> "DT3", id -> {3, 4, 5, 6, 1, 7, 8, 2}}

{fr -> "D4", to -> "DT4", id -> {5, 6, 7, 8, 4, 3, 1, 2}}

{fr -> "D5", to -> "DT5", id -> {4, 5, 6, 7, 3, 7, 2, 1}}

{fr -> "D6", to -> "DT6", id -> {4, 5, 6, 7, 3, 7, 2, 1}}

{fr -> "D7", to -> "DT7", id -> {4, 5, 6, 7, 3, 3, 2, 1}}

{fr -> "D8", to -> "DT8", id -> {6, 7, 7, 2, 3, 4, 5, 1}}

{fr -> "D9", to -> "DT9", id -> {5, 6, 6, 2, 1, 4, 3, 6}}

{fr -> "D10", to -> "DT10", id -> {5, 6, 6, 3, 4, 4, 2, 1}}

In[8]:= {gmaps3 , gtops3} = MinimizeTopologies [

dtops3 ,

Naming −> I t e r a t e [ ”P3L” ] ] ; (∗ how t o p o l o g i e s a r e named ∗ )

Minimize set of 10 topologies.

Minimized 10 to 3 topologies.

In[9]:= TopologyGrid [
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gtops3 , 1 ,

ImageSize −> {280 , 90} ,

PlotLabel −> Automatic ]

Out[9]=

p1
7

8

5
1

3
6

2

4

p1

P3L1

p1
3

4
1

5
7

6
8

2p1

P3L2

p15 7

6 8

3

4

1 2

p1
P3L3

In[10]:= Scan [ Print , gmaps3 ] ;

{fr -> "DT1", to -> "P3L1", id -> {1, 2, 3, 4, 5, 6, 7, 8}}

{fr -> "DT10", to -> "P3L1", id -> {1, 5, 4, 3, 7, 8}}

{fr -> "DT2", to -> "P3L1", id -> {1, 2, 3, 4, 7, 8}}

{fr -> "DT3", to -> "P3L2", id -> {1, 2, 3, 4, 5, 6, 7, 8}}

{fr -> "DT5", to -> "P3L2", id -> {1, 3, 2, 6, 5, 8, 7}}

{fr -> "DT6", to -> "P3L2", id -> {1, 3, 2, 6, 5, 8, 7}}

{fr -> "DT9", to -> "P3L2", id -> {1, 3, 2, 5, 8, 7}}

{fr -> "DT4", to -> "P3L3", id -> {1, 2, 3, 4, 5, 6, 7, 8}}

{fr -> "DT7", to -> "P3L3", id -> {1, 2, 4, 5, 6, 7, 8}}

{fr -> "DT8", to -> "P3L3", id -> {1, 2, 3, 4, 6, 7, 8}}

Note that in the topologies produced by MapDiagramToTopology propaga-

tors connecting formerly to self-energy insertions are contracted. We also

printed the mapping information from dmaps3 and gmaps3. The key fr in-

dicates the “source” topology, the key to the “target” topology. We use id

to assign propagators of the source (by the position of a number in the list)

to propagators of the target (via the value of the number in the list). This

allows for retracing the identification process. In D10 for example, lines 2

and 3 carry the same momentum. Therefore, they can both be assigned to

the propagator 6 in DT10. The values of id in dmaps3 appear completely

reshuffled which is a consequence of the canonical reordering. In gmaps3

we can see that DT10 is identified with a subset of 6 lines in P3L1.
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1
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35
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Figure 3: Minimal sets of massless propagator topologies identified by TopoID at
one loop in Fig. a and at two loops in Fig. b. In both cases, the set consists of
only one topology. Each graph is labeled by the generated topology name. Labels
on external legs indicate the single external momentum, labels on internal lines
number the propagators which are massless in this case.

As expected, at one and two loops only one topology is found respectively,

see Fig. 3. Three topologies are identified at three loops in Example 36 and

eleven topologies at four loops, see Fig. 4. For the 64 topologies at five loops

see Appendix A.1.

As one can also read off in Tab. 1 with Np = 1 and Nk = 1, . . . , 5 we have

the following numbers of propagators for each identified topology at each

loop order: 2 at one loop, 5 at two loops, 8 at three loops, 11 at four loops

and 14 at five loops. All topologies have “maximal” graphs, consisting only

of three-valent vertices without any self-loops.

All the code needed to perform actual calculations with the found topolo-

gies and its properties can be obtained with TopoID:

• exp configuration filetopsel.<problem> for mapping diagrams on “diagram topologies”

at the level of graph representations,

• FORM code<topology>.EXP transforming diagram topologies to generic topologies,

• reg configuration file<problem>.reg for mapping diagrams on generic topologies at

the level of momentum space representations,

• FORM code<topology>.gen for processing generic topologies and their mapping to basic

topologies,

• FORM code<topology>.def for processing basic topologies and as input for the Laporta

algorithm rows.

It can be found in electronic form in the supplementory material to this

thesis, see Ref. [34]. Sample code generated for the case of Higgs boson pro-

duction at NNLO is given in Appendix C but the structure of the generated

code is independent of the considered process.

2.6 laporta’s algorithm

In this section, we want to convey the idea of integral reduction and also

sketch one driving component, Laporta’s agorithm, that made calculations

over the last decade feasible that were impossible before.
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Figure 4: Minimal set of massless propagator topologies at four loops.
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2.6.1 Integration-by-parts relations

We introduce integration-by-parts identities (IBPs) for classes of Feynman

integrals, see Refs. [35, 36]:

T({ai}) =
Nk

∏
i=1

∫

dkD
i t
({

aj

})
with t

({
aj

})
=

N f

∏
j=1

f
−aj

j , (69)

where we abbreviated in comparison to Eq. (12) the integrand by the symbol

t. Then, we have

0 =
Nk

∏
i=1

∫

dkD
i

∂

∂k
µ
m

[
v

µ
n t
({

aj

})]
, (70)

where the divergence is taken with respect to a loop momentum km and vn is

a component of the vector of all momenta vn = (p1, . . . , k1, . . .). Equation (70)

can be understood as consequence of Gauß’s theorem since the surface term

vanishes with infinite integration bounds. We can rewrite Eq. (70) as

0 =
Nk

∏
i=1

∫

dkD
i

[

D δkm,vn
+

N f

∑
l=1

(−al

fl

)

v
µ
n

∂ fl

∂k
µ
m

]

t
({

aj

})
. (71)

If we have quadratic topology factors { fi} and demand that the topology

T({ai}) is a complete one, then v
µ
n ∂ fl/∂k

µ
m (in general leading to all possible

scalar products) can always be rewritten in terms of the { fi} (integrals stay

within their familiy):

v
µ
n

∂ fl

∂k
µ
m

=
Nei

∑
p=1

cmnlp xp +
Nsp

∑
p=1

dmnlp sp

=
Np

∑
p=1

b′mnlp mp +
Nei

∑
p=1

c′mnlp xp +
N f

∑
p=1

d′mnlp fp, (72)

where the vector of Nei (independent) external invariants is denoted by x

and the vectors of scalar products and masses by s and m, respectively. The

coefficients c, d, b′, c′ and d′ are just numbers. Hence, Eq. (71) can be applied

to obtain recurrence relations which allow to linearly express many different

integrals from a family in terms of only a few integrals, so-called master

integrals.

Let us define “index-shift” operators 1±, 2±, . . . such that

p±T
(

a1, . . . , ap, . . . , aN f

)

= T
(

a1, . . . , ap ± 1, . . . , aN f

)

(73)

increases or decreases a specific index p. Plugging Eqs. (72) and (73) into

Eq. (71), we find:

0 =

[

D δm,Np+n −
N f

∑
l=p=1

al dmnlp l+p−
]

T
({

aj

})
. (74)
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Indices are raised or lowered at most by one. Note that Eq. (74) for a par-

ticular choice of m, n and an index ai ≤ 0 can never result in a term where

ai > 0. A contracted line cannot reappear due to IBP relations.

The requirement for completeness of a topology is thus related to building

up a recurrence structure and therefore essential to integral reduction. The

same holds for the Laporta algorithm, soon to be explained. Linear inde-

pendence of topologies is not an essential requirement for integral reduction

but it makes life easier to consider independent topologies that have fewer

indices than a common dependent topology and which are less entangled.

Equation (74) can be studied systematically for certain classes of integrals

to find a set of recurrence relations that terminates for arbitrary integrals

as input in a linear combination of fixed master integrals as output. This

implies some ordering prescription on integrals to distinguish reducible in-

tegrals from master integrals. The two most prominent examples for this

approach are MINCER, see Refs. [37, 38] and Example 36, for massless propa-

gator topologies to three loops and MATAD, see Ref. [39], for massive tadpole

topologies to three loops.

Recent studies on IBPs have shown that their generating operators Omn =

∂/∂km · vn form a Lie algebra, see Ref. [40]. This means, not all Nk×
(

Np + Nk

)

IBP relations generated by Eq. (74) are independent, there exists a basis of

only Np + Nk + 1 relations. Moreover, a second class of recurrence relations,

so-called Lorentz invariance identities (LIs), is entirely determined by IBPs,

thus providing no additional information. In Ref. [41], it was proven that the

number of master integrals is finite and a technique to calculate this number

has been developed in Ref. [40] (the corresponding code is named MINT).

Example 37. Let us show the IBPs for Tbasic
H,NLO of Example 1, employing the

inversion of Example 5. We start from Eq. (71) and reexpress the scalar

products
{

p1 · k1, p2 · k1, k2
1

}
in vn · ∂dl/∂km by topology factors {d1, d2, d3}.

Using index-shift operators from Eq. (73), we find:

0 = (−a2 + a3)− a1 1+ − a1 1+2− + a1 1+3− + a2 2+3−

− a3 2−3+, (R1)

0 = (a1 − a3)− a1x 1+ + a2(1− x) 2+ − a3x 3+ − a1 1+3− + a2 1−2+

− a2 2+3− + a3 1−3+, (R2)

0 = (D− 2a1 − a2 − a3) + 2a1x 1+ − a2(1− x) 2+ + a3x 3+

− a2 1−2+ − a3 1−3+ (R3)

for the IBP operators ∂/∂k1 · p1, ∂/∂k1 · p2 and ∂/∂k1 · k1, respectively.

At this level of complexity, we can manipulate above equations into a use-

ful recursive definition of integrals Tbasic
H,NLO(a1, a2, a3) terminating in master

integrals. Since in this case lines 1 and 2 are cut, all integrals with a1 ≤ 0

or a2 ≤ 0 vanish. Let us form the linear combinations R1 + R2 + R3 with

a1 → a1 − 1 for a3 = 0 and R1 + R2 for a3 → a3 − 1:

0 = (1− x) (1− a1) + (5− 2ǫ− a1 − 2a2) 1− + (1− a1) 2−, (R4)
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0 = (1− a1)
(

x− 1− + 2−
)
+ (a1 − a2) 3− − a1

(
1 + x + 2−

)
3−1+

+ a2

(
1− x + 1−

)
3−2+. (R5)

According to R4 and assuming a3 = 0, either a1 or a2 will reduce to zero.

Therefore, repeated application of R4 will operate as Tbasic
H,NLO(a1, a2, 0) →

Tbasic
H,NLO(1, 1, 0). For a3 6= 0 relation R5 will always lower the sum of all

indices. Then, a3 can always be reduced to zero according to the rule

Tbasic
H,NLO(a1, a2, a3) → Tbasic

H,NLO(a1, a2, 0) and where R4 applies again. There

will be no new master integral apart from Tbasic
H,NLO(1, 1, 0). Note that the

linear combinations of IBPs R4 and R5 we picked correspond to contraction

with the momenta flowing through lines 2 and 3, respectively.

Surely, other sets of recurrence relations exist for this case which may lead

with fewer steps to a reduced result. We only wanted to demonstrate a ter-

minating set of relations. Unfortunately, this strategy cannot be transferred

to higher loop orders easily which demands for adoption of Laporta’s strat-

egy. Quite logically, a Laporta reduction for above topology (including cuts)

ends up in the same single master integral Tbasic
H,NLO(1, 1, 0).

2.6.2 Integral reduction

The foundation of a problem independent approach to integral reduction

was laid by S. Laporta in Ref. [42]. The basic idea is not to try and solve

the generic IBP relations (in symbolic {ai}) but to consider a linear homo-

geneous system of equations generated from a restricted set of specific inte-

grals, so-called “seeds”. The selection of seeds can be related to the integrals

to be reduced.

To date many implementations of Laporta’s algorithm have been written.

Public codes include:

• AIR, see Ref. [43], written in the CAS Maple,

• FIRE, see Refs. [44–46], written in Mathematica and C++ (also employ-

ing S-bases) and

• Reduze, see Refs. [27, 47], written in C++.

But many more private codes exit, e.g. Crusher by P. Marquard and D. Sei-

del. Here, we give some details on rows which originated from A. Pak, see

Ref. [48]. We adapted and improved some aspects of rows for our purposes

in this work, see Ref. [49]. One can regard the strategy of Ref. [42] not as

clear-cut but as merely stating the necessary ingredients for a working inte-

gral reduction:

• recurrence relations (from IBPs and/or LIs),

• generation of seed integrals,

• ordering or complexity of integrals,
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• Gauß elimination.

In practice, one’s computing resources are limited and different schemes for

management and processing of reduction tables had to be devised by the

different authors of Laporta algorithm codes. This concerns for example

parallel processing of parts of the table or database storage. However, some

ingredients like GiNaC/CLN, see Ref. [50], for algebraic operations in C++ or

Fermat, see Ref. [51], for fast polynomial GCD (greatest common divisor)

computations are a common part of most implementations.

In contrast to Laporta’s algorithm more systematic treatments include

• Baikov’s method implemented in the private FORM code BAICER, see

Refs. [52–56],

• S-bases/Gröbner bases, see Refs. [9–11],

• LiteRed, see Refs. [57, 58], using heuristic rules to “solve” IBPs sym-

bolically before specifying indices to integer values.

We also want to mention the idea to use a mapping to prime fields for im-

proved simplification of polynomial coefficients in the Gauß elimination, see

Refs. [59, 60].

complexity of integrals Complexity of integrals can be defined in

many ways but it must be unique, complete and should preferably reflect

the intuitive notion of “simple” and “complicated”. The details of this or-

dering determine the form of master integrals remaining in the end of the

reduction. We define for index-vectors {ai} the number of denominators N+,

the (absolute) sums of denominator indices S+ and numerator indices S−:

N+({ai}) =
N f

∑
i=1

θ(ai − 1/2) , (75)

S+({ai}) =
N f

∑
i=1

ai θ(ai − 1/2) , S−({ai}) = −
N f

∑
i=1

ai θ(−ai) . (76)

Imposing a complete ordering on two sets of indices {ai} and {bi} proceeds

for rows by the following comparisons:

1. N+({ai}) < N+({bi}),

2. S+({ai}) < S+({bi}),

3. S−({ai}) < S−({bi}),

4. {ai} ≺lexicalic {bi}.

Whenever a condition brings no decision (the = case) we go to the next one

until we find a decision (the < or > cases). Then, we can say {ai} is simpler

than {bi}, written {ai} ≺rows {bi}, or the other way around. We denoted

the Laporta ordering by the symbol ≺rows and lexicographic ordering by

≺lexicalic. In human language this reads: fewer lines are simpler, fewer “dots”
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are simpler, less numerators are simpler and for any two integrals with the

same first three properties decide by lexicographic ordering.

These criteria are in rows encoded as single-valued function O returning

a unique positive integer for each index-vector {ai}. This can be achieved by

using numbers of base 2N where N is larger than any absolute value of N+,

S± or {ai}, N > max [N+({ai}) , S±({ai}) , {ai}] and we have:

O({ai}) =(2N)N f +2N+ + (2N)N f +1S+ + (2N)N f S−

+ (2N)N f−1(a1 + N) + . . . + (2N)0(aN f
+ N). (77)

This function can be inverted easily, meaning a complexity value can be

decoded to retrieve an index-vector O−1(O({ai})) = {ai}. This allows for

using index-vector and complexity in an interchangeable way.

seed generation We dicuss seed generation only briefly and how it

works in rows. We note that it is mandatory to constrain the system of IBP

relations. The selection of seed integrals A to be plugged into the IBPs must

be related to the set of integrals B appearing in an unreduced result. On

the one hand, the table’s size must still be manageable and it should not be

crowded by integrals that are irrelevant for B. On the other hand, a complete

reduction of all integrals B to only a few master integrals is desired.

The observation after Eq. (74), that the IBPs (together with the order-

ing of integrals) cannot restore lines once contracted, means that integrals

a ∈ A with NA
+ = N+({ai}) will be reduced only by integrals b ∈ B

with NA
+ ≥ N+({bi}). The maximal absolute sums of positive and nega-

tive indices Smax,A
± = max

[
S±({ai}) |N+({ai}) = NA

+

]
are used to delimit

seeds within each such subset. The vectors of minimal and maximal indices

{ai}min and {ai}max can be taken as absolute bounds (over all integrals in A)

to further constrain the set of generated seeds.

The index of an irreducible numerator ni has never to be considered pos-

itive, the same holds for corresponding seed integrals. There is much space

for improvement in above prescription. For example, within each subtopol-

ogy one could consider bounds for index vectors {ai}min,A and {ai}max,A

individually. One could also generate less relations for each seed integral

using Lee’s ideas, see Ref. [40].

gauß elimination Since Gauß elimination can be assumed as well-

known to the reader, we remark only on some aspects of this final step

of the Laporta algorithm.

• The order in which relations are placed in the table is crucial to the

performance of the implementation. A rather good choice for this or-

dering is to use the complexity of the seed integral.

• When normalizing relations with respect to the highest-complexity in-

tegral and performing substitutions into other relations, the most time-

consuming operation is the simplification of integral coefficients. This

involves computation of GCDs of polynomials in the space-time di-

mension D and Niv = Nei − 1 independent (scaleless) variables.
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• The implementation rows allows for sequential updates to a table. Un-

diagonalized relations can be appended to the table before Gauß elim-

ination is performed anew. Thus, a table can be grown to the desired

range of reduced integrals.

As one can see, Laporta’s reduction scheme can be varied easily in many

aspects. This can be exploited to optimize an implemention with regard to

a special class of problems.

2.6.3 Asset of TopoID

The asset to integral reduction that comes from TopoID (apart from auto-

matic topology definition) is the total symmetrization of integrals and detec-

tion of scaleless subtopologies. The philosophy is: nowhere and never keep

identical representations of an integral (within each topology). The various

steps of a calculation are affted by this as follows:

• Unreduced scalar integrals appearing in the sum of diagrams are sym-

metrized and scaleless integrals are discarded before handing them

over to the reduction.

• Based on the previous step, seed integrals are selected and subsequently

simplified again by the rules from TopoID (identification of identical

and vanishing integrals).

• The same simplification is applied to integrals appearing in the gener-

ated IBP relations.

The advantage of this symmetrization scheme is that less expressions of

smaller individual size arise in a calculation, resulting in a significant speed-

up.

The symmetrization procedure itself works such that we allow for change

of notation between each and every symmetric representation of each unique

(sub)topology. The used CAS (FORM or Mathematica) picks one of the pro-

posed notations as its preferred one. Symmetries valid for more lines are

applied before those valid for less lines. Application of symmetries in this or-

der is repeated until the notation for an integral undergoes no more change.

This is guaranteed to always terminate in a minimal form for an expression.

We observed that it is sufficient to include symmetries without momenta

shifts only (global, sector and subtopology symmetries, see Section 2.4.6) for

the procedure to be exhaustive. This, however, is also related to the choice

of IBPs generated for each seed. The results for all reductions performed

with symmetries from TopoID never contained different representations of

the same master integral. This is a strong check for complete symmetriza-

tion.
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2.7 completing topologies

In the last section we saw that the IBPs require complete topologies. Let

us return to the issue of completing topologies already mentioned in Sec-

tion 2.1.3.

2.7.1 Irreducible scalar products

One can freely choose how to incorporate irreducible scalar products. E.g.,

in case p1 · k2 cannot be expressed in terms of propagators of the topology,

one can use it directly as additional factor of the topology. Let us call this

choice “pure scalar products”.

In our case, another natural choice is (p1 ± k2)
2 = ±p1 · k2 + k2

2 where

external momenta are on-shell and p2
1 = p2

2 = 0. Such a choice guarantees

that the scalar product p1 · k2 can be expressed in the new, extended set

of topology factors. We name this choice “pseudo-propagator” or “inverse

propagator” with reference to the fact that a flow of momenta can be at-

tached to this construction which is of quadratic form. This is not the case

for the irreducible scalar product itself.

Definition 9. If the scalar product v · k, where v is an external or internal

momentum v ∈ {pi} ∪ {ki} and k is an internal momentum k ∈ {ki}, is

irreducible, we need to complete the topology. Three possible choices for a

new topology factor n that guarantee completion are:

pure scalar product: n := v · k, (78)

pseudo- or inverse propagator: n := (v± k)2 . (79)

In practice pseudo-propagators seem superior to pure scalar products.

One reason is that pseudo-propagators have a greater potential for admit-

ting symmetries in the topology. Picking pure scalar products on the other

hand, restricts symmetries to those which transform pure scalar products

into one another.

It depends on the particular routing of momenta in the real propagators

of a topology whether “plus” or “minus” pseudo-propagators are more ad-

vantageous. By advantageous we mean that a pseudo-propagator can be

represented as line in the graph (possibly after contractions).

2.7.2 Supertopologies

A more sophisticated idea is to merge or “stack” topologies, resulting in

“supertopologies”. They can be regarded as unified sets of propagators, such

that particular subsets of propagators correspond to topologies that have

been merged. By this we mean not the naive joining of sets of propagators

in momentum space representation. We require minimality and ask for the

smallest set of propagators that allows to represent all topologies that have

been merged.
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Suppose we want to merge two topologies in canonical form T̂1 and T̂2

whose subtopologies have been classified completely, see Section 2.4.4. Mul-

tiple topologies can be handled by iterating the procedure to be described.

We can pick a greatest common subtopology T̂1 ∩ T̂2 for which we have

in each topology at least one momentum space representation T̂′1 ≡ T̂′2 ≡
T̂1 ∩ T̂2 (there can be multiple due to symmetries) and compute transforma-

tions of the momenta v = (p1, . . . , k1, . . .) that relate the two momentum

space representations T′1 and T′2, see Eq. (62),

T̂′1
v′=C v−−−→ T̂′2. (80)

Applying the same shift to those factors fi of topology T̂1 that are not in-

cluded in the greatest common subtopology fi ∈ T̂1 \ T̂′1 gives a set of prop-

agators “fitting” to the routing of momenta in T̂2. This set forms together

with T̂2 a supertopology T̂1 ∪ T̂2. A supertopology can in general be linearly

dependent, even if the initial topologies were linearly independent. Note an

interesing mathematical property in this context: topologies can have ambi-

gious greatest common subtopologies.

These ideas are implemented as yet experimental features of the package

TopoID. The functions TopologyIntersection(s), TopologyComplement(s)

and UnionTopology give access to the corresponding generalized set opera-

tions for topologies. In a future version SuperTopology will be available as

an extension to UnionTopology. The routine TopologyGraphs reconstructs

for a set of propagators all existing graphs which serves as a sufficient check

for the construction of the supertopology. TopoID can handle supertopolo-

gies in the same way as “ordinary” topologies. Therefore, we are confi-

dent in the validity of this approach. However, supertopologies still have to

proove their value in a real calculation.

Example 38. The three massless topologies from Example 36 have 8 inde-

pendent propagators each. But with one external and three internal mo-

menta, there exist 9 scalar products. The above procedure results indeed

in a single complete supertopology with 9 propagators. For simplicity, we

write only the line momenta, not the quadratic propagators and give the

three graphical representations:

q1 = k1,

q2 = p− k1,

q3 = k2,

q4 = p− k1 − k2,

q5 = k3,

q6 = p− k1 − k2 − k3,

q7 = k1 + k2 + k3,

q8 = k1 + k2,

q9 = k1 + k3.
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P3(a1, . . . , a8, 0) =
p p

q7

q8

q1

q2

q4

q3

q6

q5 ,

P3(a1, 0, a3, . . . , a9) =
p p

q6
q5

q4

q8

q3

q1
q7q9

,

P3(a1, . . . , a7, 0, a9) =
p p

q7

q9

q1

q2

q4

q6

q5q3q3
.

The greatest common subtopology is obtained by contracting the line

with q8 for the planar ladder topology, the line with q5 of the Benz topology

and the line with q9 for the non-planar topology. In this case, it can be seen

that the construction is related to contracting a propagator such that a four-

valent vertex arises which is subsequently pulled in a different way into two

seperate vertices again. There are always three possible ways to pull such

a vertex, corresponding to s-, t- and u-channel type subgraphs. However,

it is not clear if such a graphical procedure is in general able to create the

Nsp − NI new propagators that are needed for completion of a topology.

Note that the same construction applies to a massive four-loop tadpole

which can be seen by connecting external legs in this example by an addi-

tional propagator.

All 9 factors of the supertopology are real propagators but one has never

to consider an integral with 9 positive indices. Only integrals in one of the

three distinct subtopologies (12345678), (13456789) and (12345679) are rel-

evant for physical quantities. An integral with nine positive indices cannot

result from any diagram in this case.

The unification of topologies can also happen accidentally when using

pseudo-propagators. In context of diagram cuts this issue has to be handled

with care. All valid cuts of all possible diagrammatic representations of the

topology have to be accounted for.
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2.7.3 Revealing non-trivial relations

Let us close this chapter by presenting some ideas that connect topology

completeness, linear dependency and supertopologies to the problem of

linear relations among “master” integrals. In a calculation with multiple

topologies it may happen that that a subset of all the master integrals among

the topologies is related in a linear way. That is, some integrals are actually

no master integrals since they can be expressed by the other integrals in this

subset. Either direct evaluation of integrals or conditions on independent

contributions (e.g. from the gauge parameter or different fermion numbers)

can hint to such relations.

Let us assume the master integrals in each topology taken separarely are

indeed “local” master integrals, they are minima of the complexity function

used by the Laporta algorithm. But a Laporta algorithm usually works only

on a single (complete and independent) topology and it is usually not the

case that such relations can be expressed within a single topology. Therefore,

the Laporta algorithm (in the described flavor) alone cannot reveal these

relations.

One possible way to circumvent this problem will be discussed together

with its application to a real problem in Section 4.5.2.2. Here, we merely

want to point out further possibilities to find non-trivial relations, both em-

ploying supertopologies. The central idea is to have a supertopology for

all topologies in a certain problem or an independent subclass. If the su-

pertopology should still be incomplete, it must be completed by the means

described in Section 2.7.1. In general it will contain linearly dependent prop-

agators to be dealt with partial fractioning relations obtained via the tech-

niques described in Section 2.2.

supertopology partial fractioning The reduction is done in the

usual way: independently for each ordinary topology. The partial fraction-

ing relations for the supertopology can be used to systematically map prop-

agators of remaining integrals to a preferred subset of propagators of the

supertopology. As result one has in general multiple terms on the right-

hand sides which can be rewritten in terms of a subset of initial topologies.

A subsequent reduction may be necessary but the result are the demanded

linear dependencies among former master integrals.

supertopology reduction The mapping of supertopology denomi-

nators described above (via the set of always terminating rules from the

Gröbner basis) can also be incorporated directly into the Laporta algorithm.

A single table would cover the whole calculation. An excellent management

of computing resources and parallelization is mandatory if this strategy is

to be followed.

supersector integral reduction The reduction of integrals which

lie within a “supersector” could also lead to linear relations of integrals

formerly taken as master integrals. Therefore, the picked integral must be

79



feynman integral families

completely reducible to Feynman integrals (which have a diagrammatic rep-

resentation). Since the IBP reduction usually leads from more complicated

integrals to simpler ones, integrals from a supersector have the potential to

reduce to integrals from different ordinary topologies.

80



3
R E V E R S E D U N I TA R I T Y

All calculations described in this thesis are based on the technique of re-

versed unitarity introduced in Ref. [61] for the NNLO computation of the

total cross section for Higgs boson production via gluon fusion. We want

to proceed in this process to N3LO and apply the same techniques also in

the process of Higgs boson pair production at NLO and NNLO. From the

technical point of view, the Drell-Yan process is almost equivalent to single

Higgs boson production, suggesting itself as another application.

Usually, the optical theorem is understood to relate the imaginary part of

a forward scattering amplitude to the total production cross section of all

considered intermediate states. It is a direct consequence of the unitarity

of the S-matrix or the intuition that the probability for a state to propagate

unchanged is complementary to the probability to undergo any interaction.

In the context of perturbation theory, the optical theorem applies to single

Feynman diagrams and to individual contributions of intermediate states to

the imaginary part. The Cutkosky rules relate specific sets of propagators

put on-shell, so-called cuts, to these contributions to the imaginary part.

One possible way to apply the optical theorem is to obtain a total cross sec-

tion or decay width by computing the complete amplitude in forward scat-

tering kinematics and taking the imaginary part of the full result at the very

end. Being interested in inclusive cross sections for a selection of final states,

we will apply it in a slightly different way. For Higgs boson production at

N3LO, these states consist of a single Higgs boson in association with up to

three additional partons. We trade computation of different squared ampli-

tudes and their integration over different phase spaces for computation of

the related imaginary parts of the forward scattering amplitude. These imag-

(a) s-channel cut (b) no cut

Figure 5: Candidate diagrams for contributions to single Higgs boson production
at NNLO in the gq-channel. Curly lines are gluons, straight lines quarks and the
thick dashed line represents the Higgs boson. Zigzag lines denote possible cuts of
the diagram. Both diagrams contain a single Higgs boson but the second one can be
discarded since it gives a zero contribution. Only the first one has valid cuts. That is
through the Higgs boson and additional quarks and gluons, separating all incoming
from all outgoing momenta (the s-channel) such that exactly two connected remains
emerge.
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11
22

(a) two- and three-particle cuts

11

(b) two-particle cut (c) no cut

22

(d) three-particle cut

Figure 6: Figure a shows a topology that can be inferred from the diagram in
Fig. 5a. The lower line shows subtopologies for possible contractions of propaga-
tors. Single lines are massless, the double line is massive and cuts are labeled by
integers. The subtopologies in Fig. b and Fig. d correspond each to one of the cuts
the “parent” topology has, whereas the topology in Fig. c has none of the cuts and
can be neglected. Not a single integral from this topology is relevant for Higgs
boson production.

inary parts are distinguished by cuts matching the selection of final states

as mentioned before. In the diagram in Fig. 5a, the drawn cuts contribute

to the production of a Higgs boson together with a quark and an additional

gluon.

In greater detail, this facilitates us to proceed as follows:

1. Neglect diagrams part of the forward scattering amplitude but without

any contributing cut from the very start, see Fig. 5.

2. Discard complete subtopologies not exhibiting cuts during the reduc-

tion of scalar integrals to master integrals, see Fig. 6.

3. Compute the different phase space contributions to a master integral

only at the end (for that purpose think of the topology in Fig. 6a as a

master integral with both cuts).

For example, the topology in Fig. 6a describes at the same time classes of

contributions with one and two additionally produced partons. It is a box-

topology in simplified kinematics without special reference to phase spaces

(with exception of its cuts). The same is true for all other topologies we

need. Hence, all the technology developed for multi-loop integrals is still

applicable. Thus, the number of scalar integrals can be reduced drastically

by employing Laporta’s algorithm based on IBP relations. Only for the small

number of remaining master integrals, we make the transition back to phase

space integrals to evaluate them. In summary, we can treat different kinds

of phase space integrals in a unified way.

This chapter first reviews the optical theorem and the Cutkosky rules and

then moves on to the realization of an algorithm that checks a given dia-

gram for relevant cuts. This algorithm acts as filter for diagrams in Step 1,

subtopologies in Step 2 and specific cuts in Step 3.
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3.1 optical theorem and cutkosky’s rules

The following is mostly based on the more pedagogical discussions given in

Refs. [62–65] compared to Cutkosky’s original publication in Ref. [66].

First, we explore the connection between the imaginary part of the for-

ward scattering amplitude and the total cross section which follows directly

from the unitarity of the S-matrix. This is the optical theorem as it is usually

understood. It can also be regarded as consequence of a more fundamental

statement applicable for single Feynman integrals that appear in the expan-

sion of S-matrix elements.

The imaginary part of each diagram can have various contributions which

leads us to Cutkosky’s rules relating these contributions to cuts, specific sets

of propagators in the diagram put on-shell. They turn out to allow for a

diagrammatic interpretation: cut propagators dissect the diagram into two

parts, each connected to either all incoming or all outgoing legs. Cutkosky

also showed how to compute the contribution of an individual cut (there

can be multiple) of a single diagram, closely related to the computation

of a phase space integral. This results in the optical theorem holding also

separately for specific classes of cuts.

3.1.1 Optical theorem

From the unitarity of the S-matrix, S†S = 1, and the decomposition in terms

of the unit matrix and the transition matrix T between states, S = 1 + iT,

one finds

−i
(

T − T†
)

= T†T. (81)

Taking the matrix element M of transitions between the states |a〉 and |b〉,
subsequently inserting a complete set of (intermediate) states, gives

− i [M(a→ b)−M⋆(b→ a)]

= ∑
f

∫

dΠ f M⋆(b→ f )M(a→ f ) δ
(

∑
{

p f

}
−∑ {pa,b}

)
,

(82)

where f denotes all possible intermediate states with momenta
{

p f

}
and

both sides are understood to include a delta-function that ensures total mo-

mentum conservation. The Lorentz invariant phase space integral in the

equation above is defined as
∫

dΠ f =
∫

dpD
f (2π)D δ

(

p2
f −m2

f

)

δ
(

p−∑
{

p f

})
, (83)

where p is the total incoming momentum and
{

m f

}
are the masses of the

intermediate state particles.

In forward scattering, initial and final states are the same. Therefore, we

set a = b = i to show the connection with the total cross section σtot:

ImM(i → i) =
1

2 ∑
f

∫

dΠ f |M(i→ f )|2 = 2 Ecm pcm σtot(i → f ) , (84)

83



reversed unitarity

with the total energy Ecm and the modulus of three-momentum of an incom-

ing particle pcm in the center-of-mass frame. The flux factor Ecm pcm stems

from the definition of a cross section. In our setting with massless on-shell

particles in the initial state p1,2 = (Ecm/2, 0, 0,±Ecm/2), the prefactor can be

expressed as 2 Ecm pcm = E2
cm = −s with s > 0. Equation (84) can also be

represented in a graphical way:

︸︷︷︸

i

...
...

︸︷︷︸

i

∝ ∑
f

∫

dΠ f

︸︷︷︸

i

...
...

︸︷︷︸

i

...
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f

= ∑
f

∫

dΠ f
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∣
∣
∣
∣
∣
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∣
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︸︷︷︸

f

∣
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∣
∣
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∣
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∣
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2

,
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where the zigzag line represents imaginary parts (or cuts or discontinuities)

associated with states which are intermediate in the forward scattering am-

plitude but final for the squared modulus of the production amplitudes.

Below the threshold s0 of the lightest intermediate multiparticle state, the

amplitude as function of the center-of-mass energy
√

s is manifestly real:

M(s) = [M(s⋆)]⋆ . (86)

The analytic continuation of Eq. (86) for s above the threshold s0 and near the

positive real axis , parametrized by an infinitesimal ǫ, such that M(s + iǫ)
acquires an imaginary part, gives

ReM(s + iǫ) + i ImM(s + iǫ) = ReM(s− iǫ)− i ImM(s− iǫ) . (87)

Starting at the threshold s0, we have a branch cut singularity associated with

the discontinuity

discM(s) =M(s + iǫ)−M⋆(s− iǫ) = 2i ImM(s) . (88)

Equations (84) and (88) obviously hold separately in each order of pertur-

bation theory and for each appearing diagram, if regarded as an analytic

function. The only source of imaginary parts in the Feynman diagrams can

be the iǫ-prescription relevant for virtual particle propagators put on-shell

together with an overall factor i from the definition of M (as an expansion

in terms of Feynman diagrams). We have seen that only branch cut type

singularities contribute and that the magnitude is intimately linked to the

disontinuity across the branch cut. What remains to be answered, is how to

expose these singularities in an arbitrary multi-loop diagram and calculate

the dicontinuities systematically.
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3.1.2 Cutkosky’s rules

We focus on the derivation given by ’t Hooft and Veltman in Refs. [63–65].

Cutkosky’s original work in Ref. [66] is formulated in the language of the

Landau equations, see Ref. [67], and therefore not very illuminating for our

purposes.

Propagators PF(q) in momentum space (q-space) are treated with the usual

Feynman prescription for their poles. They are of the form:

PF(q) =
i

q2 −m2 + iǫ
. (89)

Via a D-dimensional Fourier transformation, we get PF(x) in coordinate

space (x-space) from Eq. (89):

PF(x) =
∫

dqD

(2π)D

i exp(−iq · x)
q2 −m2 + iǫ

. (90)

Since the scalar propagator is the time-ordered amplitude for a free particle

moving some distance x, we split Eq. (89). Each of the two terms captures

separately the behavior for x0 > 0 and x0 < 0 associated with positive and

negative energy flow, respectively:

PF(x) = θ
(

x0
)

P+
F (x) + θ

(
−x0

)
P−F (x) . (91)

For the functions P+
F (x) and P−F (x) we also have representations in terms of

Fourier transforms:

P±F (x) = 2π
∫

dqD

(2π)D
θ
(
±q0

)
δ
(
q2 −m2

)
exp(−iq · x) . (92)

One can verify above representation by evaluating the q0 integrals in Eq. (90)

with the iǫ-prescription and Eq. (91) with Eq. (92) plugged in. Obviously,

we have for P±F (x) and PF(x) the following behavior under complex conju-

gation:
[
P±F (x)

]⋆
= P∓F (x) = P±F (−x) , (93)

[PF(x)]⋆ = θ
(

x0
)

P−F (x) + θ
(
−x0

)
P+

F (x) , (94)

where Eq. (94) follows from Eq. (93). In q-space, we have from Eq. (92)

additional Feynman rules for on-shell propagators:

P±F (q) = 2π θ
(
±q0

)
δ
(
q2 −m2

)
= 2π δ±

(
q2 −m2

)
. (95)

Note that compared to Refs. [63–65], we omitted the generalization via the

Källén-Lehmann spectral function and adapted the notation to our number

of space-time dimensions, metric and definition of a scalar propagator as of

the form in Eq. (89).

In the x-space representation of some scalar Feynman integral I, each of

the NV vertices comes with a coordinate variable xj. We have a simple prod-

uct of x-space propagators for edges in the corresponding diagram:

I
({

xj

})
= iNV ∏

j≤k

PF

(
xj − xk

)
Mjk, (96)
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where we neglected coupling constants. The adjacency matrix M encodes a

connection of vertices j and k as Mjk = 1 if there is an edge between them

and Mjk = 0 otherwise. One arrives at the q-space form of I by integration

over all
{

xj

}
after multiplying with plane wave functions for the amputated

external legs. A momentum pi incoming at a vertex xj gives exp
(
−ipi · xj

)

and exp
(
ipi · xj

)
in case it is outgoing.

Example 39. Take an integral just as in Fig. 6a whose x-space representation,

see Eq. (96), reads:

I(x1, . . . , x6) =

p2

p1

p2

p1
x1

x2

x3

x4

x5

x6

= (−1) PF(x1 − x2) PF(x1 − x5) PF(x2 − x6)

× PF(x3 − x5) PF(x3 − x6) PF(x4 − x6) .

We introduce the concept of underlined variables xk and xl which denote

vertices that belong to the complex conjugate of an amplitude. We modify

the original expression for

I
({

xj

})
= I(x1, . . . , xk, . . . , xl , . . . , xNV

) (97)

according to a set of rules, using a shorthand notation for the distances

x = xk − xl,

PF (x)→ PF (x)

PF (x)→ P+
F (x)

PF (x)→ P−F (x)

PF (x)→ P⋆
F (x)

if xk and xl ,

if xk and xl ,

if xk and xl ,

if xk and xl ,

(98)

i → −i in Eq. (96) for each xk or xl . (99)

The rule in Eq. (99) means to replace for every underlined vertex xk or xl a

factor of i in Eq. (96) by a factor of −i. Equations (98) and (99) can be taken

as complex conjugation of a subset of vertices (the underlined variables) and

the propagators they connect. Variables not underlined are referred to as

plain variables.

Now suppose, we start from an integral I without any underlinings and

for which we know x0
k to be the largest time component amongst all

{
xj

}
.

For this we write x0
k = max

{

x0
j

}

. We create two versions of I, both with the

same arbitrary variables underlined or not but xk plain in one and under-

lined in the other version. Then, we have the so-called largest time equation:

I(. . . , xk, . . .) = −I
(
. . . , xk, . . .

)
, (100)

where the minus sign is purely due to Eq. (99).
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Example 40. For clarity, let x6 have the largest time component in Exam-

ple 39 and consider

I
(

x1, x2, x3, x4, x5, x6

)
= −I

(
x1, x2, x3, x4, x5, x6

)
.

The minus sign is caused by the numbers of underlined variables differing

by one on both sides. Any additional difference would come from propa-

gators connecting to x6:

I
(

x1, x2, x3, x4, x5, x6

)
=

= . . . PF(x2 − x6) P+
F (x3 − x6) PF(x4 − x6) . . .

= . . . P−F (x2 − x6) P+
F (x3 − x6) P−F (x4 − x6) . . . ,

I
(

x1, x2, x3, x4, x5, x6

)
=

= . . . P−F (x2 − x6) P⋆
F(x3 − x6) P−F (x4 − x6) . . .

= . . . P−F (x2 − x6) P+
F (x3 − x6) P−F (x4 − x6) . . . ,

where we circled vertices corresponding to underlined variables. From

Eqs. (92), (93) and (94), we see that propagators involving the largest time

always reduce to P±F (x). This verifies the largest time equation in Eq. (100)

not only for this particular case but also in general.

Detached from some largest component under time ordering, Eq. (100)

leads directly to

∑
underlinings

I
(
{xk} ,

{
xl

})
= 0, (101)

where the sum runs over all 2NV possible ways to partition NV vertices
{

xj

}

into a plain set {xk} and an underlined set
{

xl

}
of variables. For some xk

with the largest time component, there exist in Eq. (101) always a term

with xk plain and a term with xk underlined which cancel by virtue of

Eq. (100).

Transforming Eq. (101) into q-space will result in loop integrals involving

propagators of the form of Eqs. (89) and (95) with appropriate routing of in-

ternal momenta. Two of these integrals stand out: the Fourier transforms of I

with plain variables only and with underlined variables only. By the rules of

Eqs. (98) and (99), the latter is precisely the complex conjugate of the former.

Only certain other terms will survive and give non-zero contributions in the

end. The reason is the collection of Heaviside theta-functions θ
(
±q0

i

)
from

Eq. (95) where the line momenta {qi} involve now linear combinations of

external momenta {pi} and integration momenta {ki}. The configuration of

these on-shell propagators indicates a directed boundary over which energy

87



reversed unitarity

is to be transferred, always from uncircled to circled vertices. However, this

can conflict with momentum conservation and thereby restrain the region

for loop integrations to a volume of effectively zero.

Ultimately, we arrive at the so-called cutting equation:

I({pi}) + [I({pi})]⋆ = − ∑
c∈cuts

Ic({pi}) , (102)

where we have on the left-hand side the two terms which are complex con-

jugate to each other and on the right-hand side terms which give a non-zero

contribution from Eq. (101). The sum runs over all possible “cuts”, special

ways to dissect the diagram along the aforementioned boundaries such that

the sum of momenta passing this threshold is compatible with total momen-

tum conservation.

Example 41. The two examples for configurations of circled vertices from

Example 40 give zero in our kinematic setup. In both cases only p1 is trans-

ported over the cut. In principle, cuts with different numbers of external

legs on each side are valid but since we consider forward scattering, these

cases drop out. For us all outgoing legs need to be attached to circled

vertices. In contrast, the configuration

cleary contributes. All incoming legs connect uncircled vertices, all outgo-

ing legs connect circled vertices. Both types of vertices form connected re-

gions whose boundary line is a diagrammatic cut that is crossed by p1 + p2.

The case

gives again zero. On the one hand, external momenta are directed from the

left to the right through the graph. On the other hand, the three propaga-

tors involving the circled vertex require energy to flow towards it. This is a

contradiction.

concluding remarks

• Equation (102) strongly resembles Eq. (81) and in fact we can regard

unitarity of the S-matrix as consequence of the cutting equation for

single Feynman integrals. This is true, because the expansion of the

transition matrix T in terms of Feynman graphs comes with an addi-

tional factor of −i.
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3.1 optical theorem and cutkosky’s rules

• The two components of a cut diagram form together an interference

term of diagrams one would have to account for when computing the

cross section via the right-hand side of Eq. (84). For the different final

state phase spaces separately, contributions to the amplitudes of vari-

ous orders in the perturbation series mix to appear in a given order of

its squared modulus.

• There is no q-space equivalent to Eq. (100) that implies a time order-

ing since one has to integrate over all coordinates and thereby also

all times. Loosely speaking, in momentum space one can not isolate

discontinuities easily.

• The discussions in Refs. [63, 64] handle the case of self-energy inser-

tions via the Källén-Lehmann representation. The problem arises when

a propagator on one side of an insertion is put on-shell and we have an

equivalent propagator on the other side that gives a pole. We omitted

this for simplicity but for correct treatment of these insertions Eqs. (90),

(92) and (95) need only slight modification.

• We did not discuss the case of non-scalar, e.g. fermionic, on-shell prop-

agators since in practice we only need to cope with scalar integrals. All

non-scalar structures in diagrams can be handled without any modifi-

cation in the usual way.

• For propagators of the form of Eq. (4), Eq. (95) acquires an additional

factor of i. In practice this means that we can freely replace on-shell

propagators by their discontinuity in the manner of

1

m2 − q2
←→ 2πi θ

(
q0
)

δ
(
m2 − q2

)
. (103)

This presumes we know which particles’ propagators are to be put on-

shell. Propagators raised to higher powers must be reduced to simple

denominators before applying above replacement.

• The algorithm we describe in the following Section 3.2.1 works along

a very similar line of thought that lead to the cutting equation in

Eq. (102).

• In Ref. [66], the problem is basically translated into the solvability of

a system of equations, namely Landau’s conditions for an integral to

develop a singularity. After that, it is shown how to reparametrize

generically such an integral as a phase space integral for those propa-

gators that are put on-shell.

3.1.3 Extension

The discussion so far applied to total cross sections but there exists a pow-

erful generalization for differential quantities. The method pioneered by
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Anastasiou and Melnikov in Ref. [61] was extended and applied in Refs. [68–

71] to rapidity distributions for Higgs boson production and the Drell-Yan

process up to NNLO.

The main idea is to introduce an additional delta-function in the phase

space integrals. This delta-function is chosen such that it catches the de-

pendence on a selected kinematic variable x which must be expressed in a

covariant way in terms of incoming external momenta
{

pin
i

}
= {pi} and

final state momenta of the phase space integral
{

pout
i

}
:

δ
(

x′ − f
({

pin
i

}

,
{

pout
i

}))

. (104)

These delta-functions can be replaced in the same way as delta-functions im-

posing on-shell conditions as in Eq. (103). Final state momenta of the phase

space integral now become linear combinations of internal and external mo-

menta in such propagators.

For example, the rapidity y of a final state particle with momentum pout
y

is defined in the rest frame of the hadrons as

y =
1

2
ln

(

p0,out
y + p3,out

y

p0,out
y − p3,out

y

)

. (105)

By change to the variable u, one gets rid of the exponential function and

arrives at

u =
x1

x2
exp(−2y) =

p1 · pout
y

p2 · pout
y

, (106)

where x1 and x2 are the momentum fractions of incoming partonic mo-

menta p1 and p2, respectively. Accordingly, one can chose a delta-function

capturing the correct dependence on u and replace it by a propagator, e.g.

δ

(

pout
y · (p1 − u p2)

pout
y · p2

)

←→
pout

y · p2

pout
y · (p1 − u p2)

. (107)

Obviously, these propagators introduce in general extra scales in compari-

son to a total cross section computation and are not of the standard form of

Eq. (4). In the example above, even a scalar product appears in the numera-

tor. However, these propagators are still polynomial in external and internal

momenta. Thus, standard reduction techniques, like Laporta’s agorithm,

can be applied. Note, for each single distribution one is interested in, this

insertion of a new propagator with subsequent reduction must be done from

scratch.

3.2 handling cut diagrams

3.2.1 Detecting cuts

We present an algorithm that allows us to work with the concept of cuts of

Feynman diagrams. Its abstract formalization is followed by some descrip-

tive examples that should clarify the way it works. We encourage the reader
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3.2 handling cut diagrams

to look ahead into the examples which follow the same enumeration and

notation as the algorithm in order to understand its steps. Its first version

was due to A. Pak and applied in calculations described in Refs. [72, 73]. In

this PhD thesis it has been extended to work also in the case of Higgs boson

pair production and was generalized in some aspects.

Algorithm 3 (find cuts). The problem is posed as follows: given the graph

G of a Feynman diagram and a specification of ranges how often which

particle is allowed to be cut, does the diagram have allowed cuts and if it

has, how are these cuts defined?

For definiteness, the graph is given by a list of edges {ei}, each denoted

by a pair of vertex labels
(
vin

i , vout
i

)
and having attached a particle type pi:

G = {ei} , ei =
{(

va
i , vb

i

)

, pi

}

. (108)

The superscripts “a” and “b” indicate the two vertices of an edge which

are elements of the whole set of internal vertices of the graph {v1, . . . , vNV
}.

Moreover, we have for all particle types
{

pj

}
ranges

{
r
(

pj

)}
for the valid

number of cuts:

r
(

pj

)
=
[
r1

(
pj

)
, r2

(
pj

)]
. (109)

1. From the ranges
{

r
(

pj

)}
we can classify each edge ei by a value of

c(pi) obtained according to

c(pi) =







N, if r1(pi) = r2(pi) = 0,

C, if r1(pi) = 0 < r2(pi) ,

M, if 0 < r1(pi) ≤ r2(pi) .

(110)

The letters “N”, “C” and “M” abbreviate that a line is Not to be cut,

Can be cut or Must be cut, respectively. For external legs we have

c(pi) = N, irrespective of particle species pi since they cannot be cut

by definition.

2. Depending on the nature of demanded cuts (in s-, t- or u-channel or

a generalization thereof), we assign external vertices of incoming and

outgoing legs to either a “source” vertex v+ or a “sink” vertex v−. For

simplicity, we map the set of vertices (v+, v−, v1, . . . , vNV
) to the set of

integers (1, 2, 3, . . . , NV + 2).

3. Next, we have to build the symmetric adjacency matrix M of the graph.

Rows and columns correspond to vertex labels, matrix entries to edge

classifications. If vertex j connects via edge ei to vertex k and vice versa,

we set Mjk = Mkj = c(pi), otherwise Mjk = Mkj = 0.

Stricly speaking, this can only be done for simple graphs, viz. any pair

of vertices is only connected by a single edge; no loop is spanned
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between two vertices only. For this reason we need to merge cut-

conditions imposed on non-simple edges according to the rules:

C∧ c(pi)→ c(pi) for c(pi) ∈ {N, C, M} ,

M ∧ c(pi)→ M for c(pi) ∈ {C, M} ,

N∧ c(pi)→ N for c(pi) ∈ {N, C} ,

M ∧N→ ∅ (no cut is possible).

(111)

Or graphically:

?
→ ? ,

→ ,

→ ,

→ ∅ .

(112)

Here, we introduce the notation for line classes as: thin for lines that

can be cut, dashed for lines that must be cut and thick for lines that

cannot be cut.

At this stage, if a non-simple edge is classified as ∅, we can readily

infer that the graph in question has not a single cut whatsoever, re-

gardless of its nature. For example, one can think of a Higgs loop

attached to a top-quark propagator or its counter-part in the EFT, a

Higgs tadpole:

→ ∅ , → ∅ .

Both will lead to contradictions and thus no cuts. In the first case edges

cannot be merged. The second case is discarded later, more precisely

in Step 4, because the vertices have to be in different classes for the

attached Higgs line being cut. This is impossible for a tadpole or a

self-loop in the language of graph theory which has only one vertex.

What follows is the stepwise coloring of the vertices of the underlying

simple graph by connectivity components. Generally speaking, by coloring

we mean the assignment of properties to elements of a graph. Vertices that

connect by an uncut line belong to the same class, vertices connecting with a

cut edge are assigned different classes. In the end, if a graph can be dissected

completely and in a correct way, only two vertex classes remain, one for each

side of the cut. For intermediate steps we make use of temporary classes.

For a completely unclassified graph with NV + 2 vertices (also counting

source and sink) one would naively assume NV + 2 possible classes (if all

edges are cut). But we will make use of classes labeled by the integers

−NV − 2, . . . , NV + 2 which allows us to encode in the sign if two adjoining
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vertices are located on the same or opposite sides of the cut. Classes NV + 2

and −NV − 2 are reserved as vertex classes for the source and the sink and

unconstrained vertices are of class 0. The complete list of classes and their

meaning is:

0 : unconstrained,

j ∈ (1, NV + 1] : same side as j− 1,

j ∈ [−NV − 1,−1) : opposite side to −j + 1,

NV + 2 : class of the source, vertex 1,

−NV − 2 : class of the sink, vertex 2.

(113)

Assigned classes for the vertices in a graph are stored in a vector V =

(NV + 2,−NV − 2, . . .) of length NV + 2 where the first two components are

fixed to the classes of source and sink. Thus, the vector is initialized as

V = (NV + 2,−NV − 2, 0, . . . , 0).

4. The initial constraints (of lines that must or must not be cut) based on

the adjacency matrix M are applied to the vertex classes V. Therefore,

we basically iterate over each vertex j and each adjacent vertex k and

distinguish different cases for the values of Mjk, Vj and Vk as depicted

in Pseudocode 1 below.

The value of f is the sign of vertex classes encoding the relative position

of vertices with respect to a cut. Every combination of the two vertices

being classified or not is checked. Whenever the setting of a vertex

class cannot be ensured, the graph has no cuts. If a value for a vertex

class is set, iteration over adjacent vertices of vertex j is halted and

conditions are applied recursively to vertices adjacent to vertex k. In

the case of vertex j depending on vertex k, nothing is done for that

iteration step.

In the first two graphs on the right-hand side of the diagrammatic

formula in Example 14 on Page 29 or in the graph in Fig. 6c on Page 82,

ensuring correct setting of vertex classes would not succeed. There

is a conflict whenever a vertex exists connecting to both, incoming

and outgoing external legs. If a line that must be cut links vertices,

on their part connecting to external legs of the same side, we have

another situation without cut. Both cases are revealed at this step of

the algorithm.

5. The previous step will in general leave some subset of vertices unclas-

sified, i.e. they will have Vj = 0. For these we will basically have

to test every possible assignment to either source or sink vertex class.

When these vertices are fixed, an assignment for dependent vertices

(previously in temporary classes) can be concluded from the defini-

tion of vertex classes in Eq. (113) and proceeds by an iteration. Setting

Mj,k = 0 for each vertex pair with Vj 6= Vk applies the constraints back
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onto the adjacency matrix. For details on both steps, see Pseudocode 2.

Note that this and the next step is understood to operate on copies of

M and V obtained after Step 4.

At this point the only classes appearing in V are either NV + 2 or

−NV − 2 and M contains no more “M”-entries for lines that must be

cut since these have been deleted.

6. All vertices are now put definitely on one side of the cut. However, it

is not clear yet if all vertices on either side form a single connectivity

component. Starting from some vertex connected to the source and

aided by the modified matrix M, we seek all connected vertices. The

same is done for the sink and in the end we check if any vertices are

left over. See Pseudocode 3 and Pseudocode 4. If it is not the case that

a vertex is left over, we found a candidate for a valid cut.

At this stage the diagram in Fig. 5b would be discarded since the vertex

connecting to the upper right external quark leg gives a third connec-

tivity component. Knowing which vertices lie on which side of the cut,

we would simply not find a way to connect the two vertices to the right

of the cut.

7. Last but not least, we translate vertex classifications returned in Step 6

back to selections of diagram propagators that are cut. Cut propagators

have vertices with vertex classes of opposite sign, propagators with

vertices of classes of equal sign are not cut and the sign tells us to which

side of the cut they belong. After that, we can impose the counting

conditions
{

r
(

pj

)}
on the particle types appearing in the diagram.
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Constrain Classes(j)

for k = 1 to NV + 2 do

if Mjk = N then (encode link type in f )

f←1

else if Mjk = M then

f←− 1

else (no link between j and k)

return

if Vj = 0 then (handle independent classes)

if Vk = 0 then

Vk← f (j + 1)
Constrain Classes(k)

else

ensure Vk = f (j + 1)

else (handle dependent classes)

if Vk = 0 then

if Vj = f (k + 1) then (j depends on k)

continue

else

Vk← f Vj

Constrain Classes(k)

else

ensure Vk = f Vj

Pseudocode 1: Apply constraints on vertex classes V starting from vertex j.

for j = 1 to NV + 2 do (fix dependent vertex classes)

if Vj ∈ {NV + 2,−NV − 2} then

continue

if Vj > 0 then

Vj←Vj−1

else if Vi < 0 then

Vj←−V−j−1

for j, k = 1 to NV + 2 do (apply constraints back to M)

if Vj 6= Vk then

Mjk←0

Pseudocode 2: Fix dependent vertex classes in V and apply constraints to M.
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Connect Vertices(j)

for k = 1 to NV + 2 do

if Mjk = 0 then (no link present)

continue

if Vk = 0 then (claim unrestricted vertex)

Vk←Vj

Connect Vertices(k)

continue

ensure Vj = Vk (conflicting classifications in M and V)

Pseudocode 3: Color component connected to vertex j by adjacency matrix M.

V← (NV + 2,−NV − 2, 0, . . . 0)
(l, m)← (0, 0)
for k = 3 to NV + 2 do (find source and sink start vertices)

if Mk1 6= 0 and l = 0 then

l←k

Vk←NV + 2

if Mk2 6= 0 and m = 0 then

m←k

Vk←− NV − 2

Connect Vertices(l)

Connect Vertices(m)

ensure 0 /∈ V (check that no unmapped vertices remain)

Pseudocode 4: Map components connected to source and sink.
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Example 42. We give a demonstration of this algorithm where we stress the

point of vertex classification and conclude with some explanations in this

regard. Consider the topology introduced in Fig. 6a:

e2

e1

e5e7

e3

e4
i2

i1

o2

o1v1

v2

v3

v4

v5

v6

e6e6

.

We explicitly show labels for external and internal vertices and also edges.

The particle type pi can as usual be seen from the line style.

1. In single Higgs boson production we have r(H) = [1, 1], r(g) = r(q) =

[0, ∞) and thereby c(H) = M, c(g) = c(q) = C. Each graph must con-

tain exactly one cut Higgs boson line and can have arbitrarily many

cuts through parton lines. For Higgs boson pair production we have

r(H) = [2, 2], r(g) = r(q) = [0, ∞) and thus again c(H) = M and

c(g) = c(q) = C since we always have a cut with two Higgs bosons

plus optional partons. Working in the full theory where top-quarks

persist which cannot be cut for our purposes, we set r(t) = [0, 0] and

get c(t) = N.

This translates to the graph of the topology as follows:

i2

i1

o2

o1v1

v2

v3

v4

v5

v6
.

2. In our case of forward scattering, external vertices of all incoming legs

are identified with the source and those of all outgoing legs with the

sink.

This identification and mapping to integer vertex labels (from 1 to 8)

gives:

1 2

3

4

5

6

7

8
.
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3. In this example no merging of edges is necessary. The symmetric

adjacency matrix and the inital vector of vertex classes (from −10 to

10) read:

M =
















0 0 N N 0 0 0 0

0 0 0 N N 0 0

0 C 0 0 C 0

0 0 0 0 M

0 0 C C

0 C C

0 0

0
















,

V = (10,−10, 0, 0, 0, 0, 0, 0) .

4. Application of initial constraints to the vertex classes V gives:

1 2

3

4

5

6

7

8

10 −10

101

102

−104

−105

0

−103 ,

V = (10,−10, 10, 10,−10,−10, 0,−10) .

We indicated vertex classes and the order in which they have been

assigned by subscripts also in the graph.

5./6. The next to last component in V is 0. Thus, we have the two alterna-

tives −10 and 10. Here, no fixing of dependent vertices is needed and

how constraints apply back onto M can also be seen from the graphs

for both alternatives:

a) V = (10,−10, 10, 10,−10,−10,−10,−10) :

1 2

3

4

5

6

7

8

10 −10

10

10

−10

−10

−10

−10
.
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b) V = (10,−10, 10, 10,−10,−10, 10,−10) :

1 2

3

4

5

6

7

8

10 −10

10

10

−10

−10

10

−10
.

Coloring of the two connected components succeeds obviously in

both cases, leaving us with two candidates.

7. Translating the vectors V back to particle labels in the graph we

started from, we find that in the first case the Higgs boson and a quark

are cut. In the second case the Higgs boson, a quark and a gluon are

cut. All particle counts lie within their respective ranges. Therefore

both candidates also pass this last condition and we found two valid

cuts, identical to those in Fig. 6a. We denote the two-particle cut by

(e1, e7) and the three-particle cut by (e1, e3, e5), see the first diagram of

this example.

concluding remarks

• The number of loops NL, together with the requirement to cut a dia-

gram into two connected pieces, allows for the total number of cuts to

be at most NL + 1.

• As can be seen in Pseudocode 1 and Pseudocode 3, various steps of

this algorithm are backtracking recursions.

• This algorithm has been implemented in Perl to efficiently filter out-

put of the Feynman diagram generator QGRAF, see Ref. [33], for dia-

grams with valid cuts. Another implementation exists in the Mathe-

matica package TopoID and allows to inspect topologies for cuts.

• In practice we found this algorithm to be very effective. We applied

it to five-loop diagrams relevant for Higgs boson pair production. Fil-

tering of O
(
107
)

diagrams takes roughly a day and leaves only about

O
(
105
)
. Usually, information on the cuts of a single diagram is re-

turned almost instantaneously.

• The main ingredient for this good performance are the (intermediate)

vertex classification and propagating of constraints in Step 4 and Step 5.

This improves combinatorics drastically and leaves only very few pos-

sibilities compared to a brute force approach (based on checking for

connectivity components of a graph). Before using trial-and-error, we

build “islands” of connected and “canals” of disconnectes portions of

the graph.
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• Alternatively, one could try to set particles on-shell and demand that

the total momentum is still preserved at each vertex. This is equivalent

to checking whether all conditions from delta- and theta-functions can

be satisfied simultaneously in a phase space integral.

• Our algorithm works on a graph whose edges are colored by a correct

routing of external and internal momenta. This graph coloring and

momentum conservation at each vertex are essentially interchangeable.

Example 43. Let us consider a second topology appearing in NNLO Higgs

boson production where some cases occur that have been missing so far.

1. In the graph we use the notation for lines that can, cannot or must be

cut:

e2

e5

e7

e3

e4

e1

e6
i2

i1

o2

o1v1

v2

v3

v4

v5

v6
.

2. Vertex relabeling and identification with source and sink give:

1 2

3

4

5

6

7

8
.

3. Again, no edge merging is necessary and we have for M and V:

M =
















0 0 N N 0 0 0 0

0 0 0 N N 0 0

0 C 0 0 C 0

0 0 0 0 C

0 C C 0

0 0 C

0 M

0
















,

V = (10,−10, 0, 0, 0, 0, 0, 0) .
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4. After imposing constraints, we have the classification:

1 2

3

4

5

6

7

8

10 −10

101

102

−103

−104

0

−85 ,

V = (10,−10, 10, 10,−10,−10, 0,−8) .

In this case, the order of assignments is slightly different compared

to Example 42 and the case of dependent classes can be observed for

vertex 8. The assignment of this class can be understood from the

defintion of vertex classes in Eq. (113) and Pseudocode 1.

5./6. Again, we have two alternatives for the next to last vertex class. Pick-

ing one, the dependence of the last vertex class can be fixed as pre-

scribed in Pseudocode 2.

a) V = (10,−10, 10, 10,−10,−10,−10,−8)
→ V = (10,−10, 10, 10,−10,−10,−10, 10):

1 2

3

4

5

6

7

8

10 −10

10

10

−10

−10

−10

10
.

b) V = (10,−10, 10, 10,−10,−10, 10,−8)
→ V = (10,−10, 10, 10,−10,−10, 10,−10):

1 2

3

4

5

6

7

8

10 −10

10

10

−10

−10

10

−10
.

7. After successful coloring of vertices, we find here two symmetric

three-particle cuts (e1, e4, e6) and (e1, e5, e7).

3.2.2 Cut integral reduction

Having at hand a list of valid cuts for a topology we use this knowledge

during the reduction (and classification) procedure. Suppose we have a sin-
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gle cut, then every integral where one of the cut propagators is completely

absent or appears only in the numerator is zero. This is true because these

integrals do not contribute to the imaginary part one is interested in. If

there are multiple cuts, every possibility for a cut must be excluded before

an integral can be set to zero.

Boolean algebra helps to translate the list of cuts into a more useful form: a

list of subtopologies that do not expose any cut and are therefore zero. These

can also be combined with scaleless subtopologies, see Section 2.3.4. Note

that taking into account valid cuts renders operations such as subtopology

classification, symmetrization, partial fractioning, etc. as described in Chap-

ter 2 much more efficient. The total amount of objects is simply less, by a

factor ofO
(
10−1

)
toO

(
10−2

)
in the case of Higgs boson production at N3LO.

Laporta algorithms work such that more complicated integrals are expressed

in terms of simpler ones, a lot of those simpler integrals can immediately be

discarded when they have no cut.

We are given the list of cuts in the form C = {Ci} where Ci =
(
bj

)

i
is a list of boolean variables bj denoting that an edge ej part of cut Ci ex-

ists in the graph (compared to before, we just replaced edges by boolean

variables). Then, the condition that no cut is possible in the corresponding

(sub-)topology can be formulated as

no cut =̂
∧

i

¬
∧

b∈Ci

b =
∧

i

∨

b∈Ci

¬b , (114)

where b runs over the boolean variables of each line in each cut. The symbol

∧ denotes logical conjunction, ∨ logical disjunction and ¬ logical negation.

One specific cut is impossible if one of its propagators is missing and this

has to hold for all valid cuts. This condition can be brought into disjoint

normal form where each alternative states a subtopology without any of

the demanded cuts. The boolean variable bj is linked to the index aj of a

propagator pj via bj = aj > 0. Only for a positive index of a propagator one

can assign it also to an edge in a graph (which can then be cut).

Example 44. We can operate on the cuts of the topology from Example 42

stated in terms of edges of its graph: (e1, e7) and (e1, e3, e5). The condition

for no cuts is then

¬ (b1 ∧ b7) ∧ ¬ (b1 ∧ b3 ∧ b5) = (¬b1 ∨ ¬b7) ∧ (¬b1 ∨ ¬b3 ∨ ¬b5)

= ¬b1 ∨ (¬b3 ∧ ¬b7) ∨ (¬b5 ∧ ¬b7) .

The three alternatives on the right-hand side give precisely the subtopolo-

gies without cuts. In the notation of line subsets, they are given by (234567),

(12456) and (12346). Note that (12346) is shown in Fig. 6c on Page 82.
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4
H I G G S B O S O N P R O D U C T I O N

We open this chapter by a general description of the process in Section 4.1.

As motivated in Chapter 1, the focus lies on the inclusive production rate for

the Higgs boson via gluon fusion in the SM. We expose the analytic structure

that underlies the partonic cross section and that allows for a breakdown of

contributions. Simultaneously, we review available theoretical predictions.

After that, we describe necessary theoretical tools in Section 4.2. Section 4.3

describes the calculation of cross sections up to NNLO while Section 4.4

shows how LO to NNLO cross sections enter collinear subtraction terms

at N3LO. The chapter is closing by Section 4.5, discussing completed parts

of the calculation in the qq′-channel at N3LO and our strategy for the full

calculation.

4.1 introduction

In the SM the coupling of the Higgs boson to strongly interacting particles

is mediated predominantly by the top quark’s large mass. The process starts

at order αs with one-loop diagrams which contain already three scales: the

partonic center-of-mass energy
√

s, the Higgs mass mH and the top quark

mass Mt. See the diagram on the left-hand side in Fig. 7. The LO result for

the total partonic cross section σ
(0)
gg reads:

σ
(0)
gg

(
s, m2

H , M2
t

)
=

π

4v2N2
g

(αs

π

)2
δ

(

1− m2
H

s

)

× 16M4
t

m4
H

[

1 +

(

1− 4M2
t

m2
H

)

arcsin2

(
mH

2Mt

)]2

, (115)

with the Higgs field vacuum expectation value v. The factor 1/N2
g stems

from averaging over the number of gluons Ng = N2
c − 1 = 8 (Nc is the

number of colors).

Including higher-order corrections means not only to compute virtual but

also real corrections. Meaning, one has to consider more loops as well as

additional partons in the final state. For virtual corrections we have s = m2
H,

as for the LO process. Hence, for virtual corrections the three scales are not

independent. It is beyond scope of present calculational technology in our

field to directly compute diagrams relevant beyond NLO exactly in the three

scales. However, at NNLO calculations are available, see Refs. [72–77] where

the full dependence on the three scales has been reconstructed.

One alternative is to work within an effective field theory (EFT) where

the top quark is integrated out by assuming M2
t ≫ m2

H, s. In this way, a

separation of scales is achieved and the dependence on Mt is absorbed into

the effective coupling C1. We deal with a new set of Feynman rules where
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Mt √
s, mH

Mt → ∞−−−−−→ √
s, mH

C1

Figure 7: LO diagram for Higgs boson production via gluon fusion in the full
theory on the left-hand side and in the EFT on the right-hand side. Curly lines
represent gluons, the dashed line the Higgs boson and the thick gray lines top
quarks. The transition between theories corresponds to the limit Mt → ∞ and can
be visualized as contraction of the top quark loop to an effective vertex, denoted by
a gray dot.

the Higgs boson couples directly to gluons. This modification is sketched in

the right-hand side of Fig. 7 and makes Higgs boson production a process

of Drell-Yan type where we have dependence only on m2
H and s. Expanding

Eq. (115) in the parameter m2
H/M2

t leads to

σ
(0)
gg

(
s, m2

H , M2
t → ∞

)
=

π

9v2N2
g

(αs

π

)2
δ

(

1− m2
H

s

)

, (116)

which allows us to infer C2
1 = α2

s /(9π2) at LO. We give further details on the

EFT and C1 sufficient for Higgs boson production at N3LO in Section 4.2.1.

The total cross section is given in terms of squared amplitudes for the vari-

ous final states at higher orders integrated over the full corresponding phase

space. Instead of computing these contributions separately, one can employ

the optical theorem, presented in great detail in Chapter 3. Let us take a

different point of view depicted in Fig. 8. Squaring diagrams in one specific

contributing amplitude generates various interference terms. Each term is

interpreted as forward scattering diagram with a cut that corresponds to the

final state of its dedicated amplitude. Among all squared amplitudes there

are interference terms that generate the same forward scattering diagram

but with different cuts.

4.1.1 General procedure

In the approach we chose, that is within the EFT and using the optical theo-

rem, we need to calculate diagrams with four external legs, two scales (mH

and
√

s) and three loops for N3LO. We have forward scattering kinematics

p3 = p1 and p4 = p2 where p1, . . . , p4 are the momenta of external legs. Ex-

ternal momenta are put on-shell p2
1 = p2

2 = 0 and p1 · p2 = s/2. We have only

one massive propagator with the Higgs mass mH in the diagrams but need

to consider all possible cuts through the Higgs line and additional parton

lines. The problem can be fully described by a single dimensionless vari-

able x = m2
H/s. We state our general strategy for calculating the described

diagrams:

1. Integrals appearing in the set of all diagrams are reduced in “full kine-

matics”, that is full dependence on the variable x, to fewer and simpler

“master integrals”.
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∫
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∣
∣
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∣
∣
∣
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+ . . .
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+ . . . + + . . . + + . . .

Figure 8: Schematics of the optical theorem applied to the inclusive cross section
for Higgs boson production in the EFT. Terms abbreviated by dots stand for omitted
diagrams within an order, higher orders of an amplitude or futher amplitudes as a
whole. The left-hand side of the equation shows the sum of partial cross sections
for a Higgs boson together with zero partons, one parton and so on. Phase spaces
with different multiplicity are therefore denoted by dΠi. The right-hand side shows
interference terms originating from squared amplitudes with phase space integra-
tions translated to cuts. The last two interference diagrams are the same but differ
in the cut that has to be taken. The first stems from an interference of diagrams in
the amplitude with one additional parton, the second from the amplitude with two
additional partons.

2. For these master integrals we construct a system of (in general coupled)

differential equations in x.

3. As boundary conditions for these differential equations we use the

“soft limit” x → 1 where only soft partons are produced besides the

Higgs boson.

In Step 1 we utilize the techniques described in Chapter 2. Steps 2 and 3 are

not subject of this thesis but will be discussed in the thesis of M. Höschele,

see Ref. [78]. Nevertheless, we give here a very brief survey.

The method of differential equations for Feynman integrals was intro-

duced in Refs. [79–82] and nicely reviewed in Ref. [83]. See also the recent

review by Henn in Ref. [18]. The central idea is very simple: the derivative

of some master integral with respect to one of its kinematic invariants (or

equivalently to a dimensionsless variable) raises the powers of some denom-
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inators. The resulting integrals are subsequently reduced to master integrals

again by the methods of Step 1. Thus, one obtains a coupled system of

first order differential equations. Recently, see Ref. [84], J. Henn identified a

canonical form of differential equations,

d

dx
f j({xi} , ǫ) = ǫAjk({xi}) fk({xi} , ǫ) with x ∈ {xi} , (117)

where f ({xi} , ǫ) is a vector of master integrals and A({xi}) the matrix of the

coupled system. In this form, the dependence on kinematic variables {xi}
and the dimensional regulator ǫ is factorized and one can thereby integrate

the system order-by-order in ǫ. The matrix A({xi}) has a special form linked

to the “alphabet” (see Section 4.3.3.1 on Page 134) of the functions appearing

in the solution of f ({xi} , ǫ). However, the existence of master integrals

obeying a canonical form of differential equations is a conjecture and it is

not proven that such a basis of master integrals f ({xi} , ǫ) exists for all kind

of topologies at all orders. Partially systematic methods for constructing this

kind of basis were developed in Refs. [19, 85] and there exists a claim for a

complete algorithmic solution in Ref. [86].

In general, it is not straightforward to perform the soft expansion x → 1.

One cannot simply expand propagators under the integral sign, contributing

regions of loop momenta have to be inspected carefully. In Refs. [21, 87]

this task was fulfilled on completely general grounds using a geometrical

formulation and providing also an algorithm called asy.m. Otherwise, the

soft expansion has to be constructed case-by-case, as was done in Refs. [88,

89] for example. Our course of action is to perform the soft expansion in the

Mellin-Barnes representation of an integral to evaluate the leading term and

a few subleading terms (if possible).

4.1.2 Anatomy of the total cross section

Expressions for Higgs boson production cross sections at each order expose

a rich structure one can exploit to partition the computation into smaller

blocks. This is inevitable, being confronted with the numbers of diagrams

and topologies at N3LO being approximately 180 000 and 200.

Partonic channels are labeled by the particles in the initial state which

can be quarks q, quarks of different flavor q′, antiquarks q̄ and gluons g.

In total there are five: gg starting at LO, qq̄ and qg contributing on from

NLO, completed by qq′ and qq opening up at NNLO. This is demonstrated

in Fig. 9. Note that we need not to consider indistinguishable contributions

separately. For example qg, q′g and q̄g are equivalent, as are qq′ and qq̄′ and

so forth. For the qq-channel initial states are equal and there are additional

crossed diagrams compared to the qq′-channel.

With every additional order on top of the first non-vanishing order of a

channel, apart from the gg-channel at tree-level, there come fermionic contri-

butions we can distinguish by powers of the number of light quark flavors nl.

For example nl and n2
l in the qg-channel at N3LO. See also Tab. 3 on Page 127

and Tab. 4 on Page 149. The quark channels qq′, qq and qq̄ can furthermore
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(a) LO: gg (b) NLO: qq̄ (c) NLO: qg (d) NNLO: qq′ (e) NNLO: qq

Figure 9: Sample diagram for each channel at its first relevant order. These are the
gg-channel at LO in Fig. a, the qq̄- and qg-channels at NLO in Figs. b and c, the qq′-
and qq-channels at NNLO in Figs. d and e. Curly lines represent gluons, straight
lines quarks, the dashed line is the Higgs boson with its effective coupling to gluons
marked with a gray dotted vertex. A quark of different flavor is represented by a
gray line in Fig. e. We hold on to this notation in the following.

Table 2: Contributions from different cuts in each partonic channel. The letter
“T” for the gg-channel at LO signals that it is a Tree-level contribution. All other
contributions are combinations of Virtual and Real corrections denoted by powers
of “V” and “R”, respectively. T, R, VV, R2, VRV and R3 stem from squares of
amplitudes.

Channel(s)
Order

LO NLO NNLO N3LO

qq′, qq – – R2 VR2, R3

qq̄, qg – R RV, R2 VRV, V2R, VR2, R3

gg T V, R VV, V2, RV, R2 VV2, V3, VRV, V2R, VR2, R3

be split into singlet and non-singlet type contributions. But this is more

important for the Drell-Yan process as we will see in Section 5.2.

Furthermore, we can classify contributions within a channel by the nature

of its cuts which correspond to interference terms in the modulus square

of production amplitudes, see Tab. 2. We have the following interference

classes of N3LO corrections:

VV2 one-loop virtual times two-loop virtual,

V3 three-loop virtual times tree-level,

VRV one-loop virtual with one real emission squared (self-interference),

V2R two-loop virtual with one real emission times tree-level,

VR2 one-loop virtual with two real emissions times tree-level,

R3 three real emissions (self-interference).

For sample diagrams see Fig. 10. Note that purely virtual corrections exist

only for the gg-channel. Each purely virtual diagram can be assigned either

to VV2 or V3. On the other hand, contributions involving real radiation mix.

Diagrams can have cuts of different multiplicity classes, see also Figs. 10c,

10d and 10e. Only diagrams with self-energy insertions from classes VRV,

V2R or VR2 can possibly have a single kind of cut in
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(a) VV2 (b) V3

(c) VRV (d) V2R

(e) VR2 (f) R3

Figure 10: Sample diagrams from the gg-channel at N3LO. The notation is as in
Fig. 9 but with the zigzag line indicating the contribution of a specific cut. Figures a
and b show purely virtual corrections, Fig. f shows a purely real correction, Figs. c,
d and e show different virtual-real mixed corrections. Note that the latter have also
other contributing cuts not drawn here.

In this setting we can have three kinds of singularities. Ultraviolet (UV)

divergences from the loop integrations extending to infinity are removed

systematically by renormalization of the strong coupling constant αs and the

operator O1 of the effective coupling of the Higgs boson to gluons. Soft sin-

gularities occur when a massless particle of vanishing momentum is emitted

by a parton before participating in the hard process. If an initial state parton

emits a parton under a vanishing angle we have a collinear singularity. Soft

and collinear singularities can mix and belong both into the infrared (IR)

category. UV and collinear divergences manifest themselves in simple poles

1/ǫ, whereas soft divergences come with double poles 1/ǫ2. The soft dou-

ble poles cancel by the Kinoshita-Lee-Nauenberg (KLN) theorem between

virtual and real corrections once they are added. The remaining simple

collinear poles are absorbed into a redefinition of the PDFs by mass factor-

ization.
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For purely virtual contributions we have s = m2
H. Hence, they enter the

partonic cross section with a factor δ(1− x). Real contributions to the par-

tonic cross section diverging in the soft limit x → 1 can be identified in

phase space and have the form (1− x)−1+bǫ with some integer b. They need

to be regularized properly in terms of delta-distributions δ(1− x) and plus-

distributions
[

lnk(1−x)
1−x

]

+
via the prescription

(1− x)−1+bǫ =
δ(1− x)

bǫ
+

[
1

1− x

]

+

+ bǫ

[
ln(1− x)

1− x

]

+

+
(bǫ)2

2

[

ln2(1− x)

1− x

]

+

+O
(
ǫ3
)

. (118)

This prescription will be derived in Section 4.2.2. Exactly due to Eq. (118)

soft divergences coincide with double poles and come with delta-functions

while collinear singularities have single poles and plus-distributions. Since

only the gg-channel has a purely virtual component and the sum with real

corrections is required to be finite, only the gg-channel has terms with plus-

distributions in its result. All other channels are regular at the threshold

for x = 1.

In the spirit of Ref. [90], let us factor out the LO dependence and denote

corrections to the finite partonic cross section as

σij =
πC2

1

v2N2
g

[

σ̃
(0)
ij +

αs

π
σ̃
(1)
ij +

(αs

π

)2
σ̃
(2)
ij +

(αs

π

)3
σ̃
(3)
ij +O

(

α4
s

)]

, (119)

such that σ̃
(0)
ij = δigδjg δ(1− x). C1 is given explicitly on Page 116.

All divergences shall be subtracted by a common UV and IR counterterm

δσ̃
(k)
ij from the bare cross section σ̃

0,(k)
ij at each order,

σ̃
(k)
ij = σ̃

0,(k)
ij + δσ̃

(k)
ij , (120)

where quantities on the right-hand side now contain only poles up toO
(
ǫ−k
)

since real and virtual contributions have been summed. The structure of

phase space integrals in the soft limit for a cut through the Higgs line and

up to k partons gives singular behaviors like
{

(1− x)−2ǫ, (1− x)−3ǫ, . . . , (1− x)−2kǫ
}

. (121)

Together with Eq. (118) and accounting also for regular terms in the limit

x→ 1, we can write

σ̃
(k)
ij = σ̃

(k),S
ij + σ̃

(k),R
ij

= δ(1− x) σ̃
(k,−1),S
ij +

2k−1

∑
l=0

[

lnl(1− x)

1− x

]

+

σ̃
(k,l),S
ij

+
2k−1

∑
l=0

lnl(1− x) σ̃
(k,l),R
ij , (122)

where σ̃
(k,l),S
ij and σ̃

(k,l),R
ij denote coefficients of singular and regular terms,

respectively. Analogous expansions can be written down for counterterms

and bare quantities in Eq. (120).
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4.1.3 Status of theoretical predictions

In this subsection, we give a short review of selected results gathered by

several groups over the years, leading to N3LO calculations for Higgs boson

production being presently in focus or providing ingredients for these cal-

culations. For a complete review of Higgs boson production cross sections

(and decay widths) we refer to Ref. [91] in case of inclusive quantities and to

Ref. [92] in case of differential quantities.

lo and nlo cross sections The LO process, see Fig. 7, has already

been computed right after the beginnings of quantum field theory and the

Standard Model half a century ago. It is known with exact dependence on

the Higgs boson and top quark masses, see Refs. [93–96]. Also at NLO such

an exact computation was realized about twenty years ago in Refs. [97–99].

For the LHC, the NLO correction has the same size as the LO cross section.

The K-factor, defined as ratio of the NLO result (including LO) and the

LO result, amounts roughly to two. For this reason information on NNLO

corrections was mandatory.

nnlo corrections in the eft An exact calculation for the partonic

cross section at NNLO requires massive three-loop triangle, two-loop box

and one-loop pentagon amplitudes. Even nowadays, such a calculation is

not feasible. The NNLO corrections were therefore obtained within the EFT

about ten years ago by three independent collaborations, see Refs. [61, 100,

101]. Working out the NLO corrections in the same EFT framework, leads

only to a very small deviation of about 2% relative to the exact NLO result

for mH < 2Mt. This justified the use of the EFT at NNLO. Moreover, it

was observed in Ref. [100] that the majority of the NNLO corrections can be

encaptured by an expansion around the soft limit x → 1. Already the third

expansion term, proportional to (1− x)1, leaves an error of only 1% relative

to the exact result.

nnlo corrections beyond the eft Strictly speaking, since
√

s is

only constrained by the beam energy that is much larger at the LHC than

the top quark mass, the limit M2
t ≫ s is not valid. However, the gluon lumi-

nosity accentuates effects at low values of the momentum fraction x ≈ 0.1

which could lead to a suppression in the region where M2
t ≈ s. Never-

theless, this questions the validity of the EFT which has been addressed in

Refs. [72–77, 102]. Asymptotic expansions were used in a full theory setup

with the top quark to compute subleading terms in the small parameter

m2
H/M2

t . The procedure of asymptotic expansion allows to reduce the four-

loop three-scale diagrams in the full theory to products of simpler diagrams;

in the sense of less loops and less scales. Virtual contributions were ob-

tained by computing triangle graphs in Refs. [74, 75]. Real corrections were

computed via the optical theorem in Ref. [72] and by computing amplitudes

with one or two additional partons in Ref. [76]. These results reached up to

four terms in the expansion in m2
H/M2

t . In Refs. [73, 77], they were matched
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to the high-energy behavior of the partonic cross section first computed in

Ref. [102] since in this region the m2
H/M2

t expansion shows no convergence.

It was found that corrections due to a finite top quark mass at NNLO amount

only to about 1% which encouraged the proceeding within the EFT to N3LO.

effective coupling and renormalization The Wilson coefficient

C1, also called effective coupling or matching coefficient, depends only on

the masses of particles which have been integrated out. Thus, in case of

the SM it depends only on the top quark mass and solely via ln
(
µ2/M2

t

)
.

Three-loop results for C1 in the SM can be found in Refs. [103, 104], see

also Ref. [105]. In Ref. [103] the four-loop coefficient has been inferred via a

low-energy theorem from the three-loop decoupling constant of the strong

coupling, whereas in Refs. [106, 107] a genuine four-loop computation lead

to the same result. For N3LO Higgs boson production C1 is needed to four-

loop order, viz. O
(
α4

s

)
. The renormalization of the operator O1, responsible

for the direct coupling of gluons to the Higgs boson, is entirely determined

by the QCD beta-function, see Ref. [108]. Thus, we need only the renormal-

ization constant of the strong coupling to three-loop order which was first

published in Refs. [109, 110]. We collect necessary results for the matching

coefficient C1 and the renormalization of O1 in Section 4.2.1 on Page 114.

collinear singularities

• The NNLO or three-loop parton splitting functions in the singlet and

non-singlet cases, describing collinear emission of partons, were com-

puted in Refs. [111, 112].

• Higher orders in the ǫ-expansion of the NNLO master integrals were

calculated in Refs. [73, 113].

• Accordingly, the NNLO cross sections have been computed to higher

orders in ǫ in Refs. [90, 114]. More specifically: at LO to O
(
ǫ3
)
, at

NLO to O
(
ǫ2
)

and at NNLO to O(ǫ). The LO to NNLO cross sections

including higher orders in ǫ are needed for the UV renormalization at

N3LO.

• These higher ǫ-orders, together with the NNLO splitting functions, al-

lowed to form all convolution integrals necessary for N3LO. They were

evaluated systematically in Refs. [90, 114, 115]. In Ref. [115] also results

applying to the Drell-Yan process and a public code performing con-

volution integrals were given.

• In Ref. [114], the appearing convolution integrals were combined to

proper collinear counterterms at N3LO. Including also the UV countert-

erms, this allowed for a prediction of the complete scale dependence

at N3LO. The authors estimate the residual scale uncertainty at N3LO

to lie between 2% and 8% percent.

The requirement for all poles of the known counterterm δσ̃
(k)
ij and the

unknown bare cross section σ̃
0,(k)
ij to cancel, fixes in the finite cross section in
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Eq. (120) all coefficients proportional to lnl(µ2/s
)

for 1 ≤ l ≤ k. The scale

dependence of σ̃
0,(k)
ij is caused by 1/ǫl-poles multiplying factors of

(
µ2/s

)kǫ

which are expanded as

(
µ2

s

)kǫ

=
∞

∑
l=0

(kǫ)l

l!
lnl

(
µ2

s

)

. (123)

Hence, we have a system of equations from the coefficients of poles in ǫ:

σ̃
0,(k)
ij =

(
µ2

s

)kǫ ∞

∑
l=−k

ǫl σ̃
0,(k,l)
ij = −δσ̃

(k)
ij = −

∞

∑
l=−k

ǫl δσ̃
(k,l)
ij , (124)

where we defined coefficients σ̃
0,(k,l)
ij with

(
µ2/s

)kǫ
unexpanded. We can

solve this system for the coefficients of the lnl(µ2/s
)

terms appearing in

the finite contribution σ̃
(k,0)
ij . The highest power of the renormalization scale

logarithm lnk(µ2/s
)

is fixed by the highest pole of the counterterm δσ̃
(k,−k)
ij .

The next lower power lnk−1(µ2/s
)

can be determined from the two lowest

poles δσ̃
(k,−k)
ij and δσ̃

(k,−k+1)
ij . This reconstruction of the renormalization scale

dependence at N3LO was done in Ref. [114].

n3lo results

• The Gluon and quark form factors to three loops were calculated in

Refs. [116, 117]. The gluon form factor gives the purely virtual contri-

butions VV2 and V3 in Figs. 10a and 10b. (The quark form factor is the

counter part for the Drell-Yan process.)

• In Ref. [89], contributions of type VRV in Fig. 10c were computed in

full kinematics as expansion in ǫ and to all orders in ǫ for the first

coefficients in the expansion around the threshold. In Ref. [118], coef-

ficients in the threshold expansion were computed to O(ǫ) and then

used to reconstruct the result with full x-dependence.

• Corrections to the single-soft current operator to two-loop order were

computed in Ref. [119] toO
(
ǫ2
)

and even to all orders in ǫ in Ref. [120].

This quantity is universal in the sense that it describes the emission of a

soft parton in presence of two hard partons. It describes contributions

of type V2R in Fig. 10d in the soft limit, that is to the coefficient of

δ(1− x) in Eq. (122).

• The V2R contributions were computed in full kinematics in Ref. [121].

In Ref. [122], the two-loop splitting amplitudes were computed. They

describe the factorization of QCD when two external partons become

collinear. This result was also applied in order to obtain the full x-

dependence for the V2R contribution.

• The first terms in the threshold expansion for type VR2 contributions,

shown in Fig. 10e, were considered in Refs. [123, 124]. In Ref. [124]

they have been calculated to all orders in ǫ.
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• The R3 type contributions, exemplified in Fig. 10f, are known only as

an expansion to second order around the threshold, see Ref. [88]. The

relevant region for an expansion by regions on integrand level has also

been identified in Ref. [88]. This could proof beneficial in order to

calculate subleading terms in the expansion.

• In Ref. [19], all master integrals of a particular topology of R3 type,

the “sea snake”, have been calculated retaining also full x-dependence.

There, also an algorithm has been devised to transform coupled sys-

tems of differential equations into canonical form.

• In Refs. [123, 125], the complete first and second terms in the thresh-

old expansion are given. They include contributions from all final

state multiplicities in Fig. 10, see also Ref. [126]. The first term of the

expansion around x → 1 is the complete singular part in Eq. (122),

that is all coefficients of delta- and plus-distributions. The second

term is given by the coefficient σ̃
(k,l),R
ij of ln0(1− x). The authors of

Refs. [123, 125] claim that the situation at N3LO differs substantially

from NNLO where the soft expansion provided for a good approxi-

mation to the full result. According to them, the soft expansion in its

currently available depth does not allow to make a reliable prediction.

From the full x-dependence of all N3LO counterterms and the VRV

and V2R contributions, the authors of Ref. [125] could also determine

the coefficients σ̃
(3,l),R
ij for l ∈ {3, 4, 5} in Eq. (122) for full kinematics.

resummations Driven by the large NLO and NNLO corrections, over

the last ten years many groups have contributed to various resummed re-

sults aiming to improve the convergence of the perturbation series. Before

the NNLO calculation was available, this has already been done for the NLO

case in Ref. [105]. The starting point is to identify certain structures recur-

ring at each order in the perturbation series, such as logarithms or terms

proportional to π2. Then, these structures are resummed to all orders in the

perturbative expansion which is formally equivalent to a redefinition of the

expansion parameter. Higgs production seems to be dominated by contri-

butions where only soft additional partons are emitted. This is the reason

why the expansion around the threshold x = 1 works so well up to NNLO.

Resummation of soft radiation effects were studied in Refs. [127–136] to im-

prove the fixed-order calculations. Soft radiation is related to the structure

of Eq. (122) and resummations give access to the contributions in the thresh-

old expansion. Therefore, the coefficients of plus-distributions σ̃
(k,l),S
ij were

already known from Ref. [129], constituting the soft N3LO approximation.

Since the coefficient of the delta-function σ̃
(k,0),S
ij was calculated in Ref. [123]

it has also been taken into account in Refs. [137–140] to construct resumma-

tions based on this N3LO soft-virtual approximation. The mentioned studies

differ mostly in the precise resummation prescription (often performed in

Mellin space) or in the way knowledge on the top quark mass dependence

and on the high-energy limit s → ∞ is included. In Refs. [130, 132, 133],
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resummations were performed by working in the soft-collinear effective the-

ory (SCET). “Conventional” resummation and SCET at NNLO are compared

in Ref. [141]. The coefficients σ̃
(3,l),R
ij for l ∈ {3, 4, 5} calculated in Ref. [125]

were predicted correctly in Ref. [140].

In view of current results for the threshold expansion, see Refs. [123, 125,

126], and the ambiguities involved in resummations, a computation of the

N3LO cross section with full dependence on x or more terms in the soft

expansion are still required. Missing ingredients to the former are only due

to contributions of types VR2 and R3 .

4.2 calculational techniques

We briefly discuss the two essential theoretical techniques for this calculation

already mentioned in the previous section.

4.2.1 Effective theory

The effective field theory (EFT) where the top quark is integrated out is an

indispensable ingredient for computing higher order corrections to Higgs

boson production. The number of scales, loops and also diagrams is dimin-

ished in the EFT. The heavy top quark EFT is constructed via an operator

product expansion (OPE).

In the first step, an effective Lagrangian L′ is assumed that has the same

structure of the full Lagrangian L but without dependence on the heavy

fields {Φi}. The fields {φ′i} and parameters {x′i} in the EFT are related to

light fields {φi} and parameters {xi} in the full theory via so-called decou-

pling relations:

φ′i = ζi φi, x′i = ζi xi. (125)

The decoupling constants {ζi} are defined analogously to renormalization

constants but are finite.

In the second step, local operators {Oi} are constructed from the light

fields {φi} to mediate interactions due to heavy fields {Φi} that were in-

tegrated out. The {Oi} appear in the effective Lagrangian multiplied by

corresponding Wilson coefficients {Ci}. The {Ci}, also referred to as effec-

tive couplings, contain the residual dependence on the heavy degrees of

freedom (the same is true for the {ζi}). In general, the {Oi} mix under

renormalization, as do the {Ci}.
In our case of Higgs boson production in the Mt → ∞ EFT only one

composite operator is relevant:

O1 =
1

4
Ga

µνGa,µν, (126)

where Ga
µν is the gluon field strength tensor. The other operators, see for

example Refs. [103, 104], are either not gauge-invariant and do not contribute
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to observables or are suppressed by light quark masses. Hence, we calculate

within five-flavor QCD with an additional interaction term:

L = L(5)
QCD + LY,eff with LY,eff = −

H

v
C1O1, (127)

where H is the Higgs field and v its vacuum expectation value.

4.2.1.1 Renormalization

The renormalization of all
{
O0

i

}
and {Ci} is given in terms of QCD renor-

malization constants, see Ref. [108]. For O0
1 and C0

1 it is entirely determined

by the QCD beta-function and related via

C0
1O0

1 =
(

Z−1
O1

C0
1

) (
ZO1
O0

1

)
= C1O1, (128)

where

ZO1
= 1 + αs

∂ln Zαs

∂αs
(129)

= 1− αs

π

β0

ǫ
+
(αs

π

)2
(

β2
0

ǫ2
− β1

ǫ

)

+
(αs

π

)3
(

−β3
0

ǫ3
+

2β0β1

ǫ2
− β2

ǫ

)

+O
(

α4
s

)

. (130)

The perturbative expansion of the QCD beta-function up to three loops reads,

see Refs. [109, 110, 142]:

β(αs) = −
(αs

π

)2 ∞

∑
i=0

(αs

π

)i
βi =

−
(αs

π

)2
[

β0 +
αs

π
β1 +

(αs

π

)2
β2 +O

(
α2

3

)
]

, (131)

where

β0 =
1

4

(
11

3
CA −

4

3
TFnl

)

, (132)

β1 =
1

16

(
34

3
C2

A −
20

3
CATFnl − 4CFTFnl

)

, (133)

β2 =
1

64

(
2857

54
C3

A −
1415

27
C2

ATFnl −
205

9
CACFTFnl +

158

27
CAT2

Fn2
l

+2C2
FTFnl +

44

9
CFT2

Fn2
l

)

. (134)

Here and in the following:

CF =
N2

c − 1

2Nc
=

Ng

2Nc
=

4

3
, CA = Nc = 3, (135)

denote the Casimir invariants of the SU(Nc) gauge group in fundamental

and adjoint representation, respectively. TF = 1/2 is the normalization of the

trace in fundamental representation. Nc = 3 is the number of colors, Ng =
N2

c − 1 = 8 the number of gluons or generators in the adjoint representation.
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4.2.1.2 Matching coefficient

In principle, C1 can be computed by matching any Green’s function involv-

ing O1 calculated in the EFT to its counter-part in the full theory. This

matching is performed in the limit of vanishing external momenta pi = 0,

justified by Mt → ∞. One possible choice is the computation of corrections

to the vertex of two gluons and a Higgs boson for external momenta set to

zero, see Fig. 7 on Page 104. See Ref. [104] for a comprehensive explanation

of the matching procedure between full and effective theory.

Furthermore, an alternative approach to calculate C1 is via the low-energy

theorem (LET), see Refs. [103, 104, 143], that relates C1 to the decoupling

constant of the strong coupling ζαs and reads for renormalized quantities:

C1 = −
M2

t

2

∂ln ζαs

∂M2
t

. (136)

This is possible since matching coefficients and decoupling constants are

both calculated via the same set of Green’s functions. ζαs depends only via

logarithms lni
(
µ2/M2

t

)
on the top quark mass. These logarithms can be

reconstructed via renormalization group methods to one order higher than

ζαs is available (currently four loops, see Refs. [106, 107]). Therefore, a five

loop expression is known for C1 involving, however, presently unknown

coefficients of the beta-function.

The LET can also be motivated by the observation that

m2
t

∂

∂m2
t

1

/q −mt
=

1

/q −mt

mt

2

1

/q −mt
. (137)

The derivative acting on a top quark propagator generates the top quark

Yukawa vertex with nullified momentum for the Higgs boson. This connects

for example the gluon self-energy which enters ζαs and the triangle graph in

Fig. 7 on Page 104 which enters C1.

The matching coefficient C1 expressed by the strong coupling with five

active flavors αs = α
(5)
s and the on-shell mass of the top quark Mt up to

O
(
α3

s

)
reads:

C1 =−
αs

3π

{

1 +
αS

π

(

−3

4
CF +

5

4
CA

)

+
(αS

π

)2
[

27

32
C2

F −
25

12
CFCA −

1

12
CFTF +

1063

576
C2

A −
5

96
CATF

+ TFnl

(

− 5

16
CF −

47

144
CA +

1

2
CF ln

(
µ2

M2
t

))

+

(

−11

16
CFCA +

7

16
C2

A

)

ln

(
µ2

M2
t

)]}

. (138)

Results up to O
(
α4

s

)
needed for N3LO Higgs boson production can be found

in, e.g., Refs. [103, 104, 106, 107].
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(a) (b) (c)

(d) (e) (f)

Figure 11: Relevant diagrams for scattering of a virtual photon off a quark (par-
tonic subprocess to DIS) at tree-level in Fig. a and at NLO in Figs. b, c, d, e and
f. Figures b, c and d show virtual propagator and vertex corrections, Figs. e and f
show corrections due to real radiation.

4.2.2 Mass factorization

There are two types of IR singularities which can both be linked to special

configurations of momenta in a diagram: soft singularities (vanishing energy

of a particle) and collinear singularities (vanishing angle between particles).

There are general theorems, the Bloch-Nordsiek theorem for QED and

the Kinoshita-Lee-Nauenberg theorem for QCD, that state the cancellation

of purely soft singularities in the sum of virtual and real contributions to a

scattering process.

Mass factorization terms the systematic removal of collinear infrared sin-

gularities from partonic cross sections. These divergences are present in

massless QCD and universal for all processes computed in this approxima-

tion. In this sense, mass factorization accomplishes for these IR singularities

the same as renormalization does for UV singularities.

4.2.2.1 Singular structure

To get a rough idea, consider deep inelastic scattering (DIS) of an electron e

off a proton p: e + p → e + X where X is a hadronic state subject to further

decays. The partonic subprocess is scattering of a virtual photon γ⋆ off a

quark q: q(p) + γ⋆(q) → q(p′) beginning at Born level, q(p) + γ⋆(q) →
q(p′) + g(pg) starting at NLO and so on. We indicated the momenta of the

respective particles in parentheses. There are real and virtual corrections to

the tree-level process, as one can see in Fig. 11. We do not give a rigorous

treatment of these diagrams here. Detailed discussions can instead be found

in most textbooks on collider physics, e.g. Refs. [144, 145].

Taking a closer look at the t-channel type real radiation diagram in Fig. 11e,

we see that the propagator carries the momentum p− pg. If we parametrize
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the external momenta in the center-of-mass system (CMS) of the incoming

momenta p and q, we have

p = |~p| (1, 0, 0, 1) , pg =
∣
∣~pg

∣
∣ (1, 0,− sin θ,− cos θ) . (139)

The angle between the spacial components of p and p′ is given by θ. Since

p′ and pg always point in opposite directions, a single parameter θ suffices

to describe the angular dependence in these kinematics. Therefore, the de-

nominator of the propagator with momentum p− pg becomes

(p− pg)
2 = −2p · pg = −2 |~p|

∣
∣~pg

∣
∣ (1 + cos θ), (140)

leading to two different kinds of divergences which are called:

Soft for vanishing energy of the additionally emitted particle (in this case:

a gluon with
∣
∣~pg

∣
∣→ 0),

Collinear for configurations of parallel momenta (here: quark and gluon

momenta are parallel, ~p ‖ ~pg or cos θ → −1).

As for UV divergences, dimensional regularization (DREG) is used to cope

with above soft-collinear divergences. A calculation of the NLO diagrams

in Fig. 11 involves bubble (Figs. 11b and 11c) and triangle (Fig. 11d) loop

integrals for the virtual contributions. The real contributions at NLO require

a two-particle phase space integration (Figs. 11e and 11f).

Bubble integrals with external momentum p2
1 6= 0 contribute via self-

energy insertions in the quark propagator. They contain only simple poles

in ǫ, see Example 17 on Page 32:

∫

dkD
1

1

k2
1

1

(k1 + p1)
2
∼ Γ2(1− ǫ)

Γ(2− 2ǫ)

(−p2
1)
−ǫ

ǫ
. (141)

The computation of virtual vertex corrections involves scalar triangle dia-

grams with incoming momenta p2
1 = 0, p2

2 6= 0 and outgoing momentum

p2
3 = (p1 + p2)2 = 0 which have double poles in ǫ:

∫

dkD
1

1

k2
1

1

(k1 + p1)
2

1

(k1 − p2)
2
∼ Γ2(1− ǫ)

Γ(1− 2ǫ)

(−p2
2)
−1−ǫ

ǫ2
. (142)

Both types of integrals can be evaluated easily in an expansion in ǫ using

Feynman parameters (presented in Section 2.3). We extracted all poles in ǫ

from the Gamma-functions, defined in Eq. (47) on Page 32, using the identity

Γ(1 + z) = z Γ(z) . (143)

Real radiation corrections demand for two-particle phase space integra-

tions. The Lorentz invariant two-particle phase space in D = 4− 2ǫ dimen-

sions reads:

∫

dΠ2 =
∫

dp′D dpD
g (2π)Dδ

(
p + q− p′ − pg

)
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∼ s−ǫ 1

Γ(1− ǫ) Γ(1 + ǫ)

∫ 1

0
dy

1

[y(1− y)]ǫ
, (144)

where y = (1 + cos θ)/2 contains the dependence on the polar angle θ intro-

duced earlier. Contributions of the type as in Fig. 11f with propagators like

Eq. (140) give for example the integral

∫ 1

0
dy

1

[y(1− y)]ǫ
1

y
= −Γ2(1− ǫ)

1− 2ǫ

1

ǫ
(145)

which has a simple pole in ǫ. This still has to be combined with the fac-

tors s−ǫ and 1/(|~p|
∣
∣~pg

∣
∣). With the virtuality of the photon q2 = −Q2 and

the variable z defined as the fraction of the inital quark momentum that is

probed by the photon p− pg = zp, these factors give rise to

s−ǫ

|~p|
∣
∣~pg

∣
∣
∼ (1− z)−1−ǫ. (146)

For details on the kinematics describing DIS, let us refer to Ref. [144]. We

simply want to point out that Eq. (146) has to be expanded via Eq. (118) and

combined with Eq. (145) also leads to a double pole in ǫ. If the propagator

were not soft, the factor (1− z)−1 would be absent and the divergence purely

collinear.

In the actual calculation the numerators of diagrams involve also traces

over the gamma-matrices giving non-singular terms in ǫ and cancellation of

poles may occur. We just wanted to show how singular different divergences

can possibly be:

Soft divergences lead to double poles 1/ǫ2,

Collinear divergences lead to simple poles 1/ǫ.

The former may occur for vanishing energy of propagators, regardless whether

they appear in a loop integral or a phase space integral.

4.2.2.2 Redefinition of the PDFs

The sum of the Born contribution and all NLO corrections gives for the

partonic structure function F0
2 , see Refs. [144, 145] for its precise definition,

a result which is free of 1/ǫ2-poles but not of 1/ǫ-poles:

F0
2

(
z, Q2

)

x
= δ(1− z)− αs

π

{

Pqq(z)

[

1

ǫ
+ ln

(

µ2
r

µ2
f

)]

+ (. . .)

}

, (147)

where x = Q2/(2P · q) is the Bjorken variable and x/z is the momentum

fraction of the proton passed to the quark p = x/z P. Contributions with a

pole were identified with the quark-quark splitting function Pqq, given below

in Eq. (181). We introduced the factorization scale µ f , not to be confused with

the renormalization scale µr. All terms collected in ellipses are finite and can
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depend on the ratios of µ2
r , µ2

f , and Q2. The hadronic structure function F2,h

is obtained after weighting F0
2 with the quark distribution function φ0

q :

F2,h

(
x, Q2

)

x
=
∫ 1

x

dz

z
φ0

q

( x

z

) F0
2

(
z, Q2

)

x
, (148)

where the superscript 0 indicates bare quantities.

Formally, the 1/ǫ-term in Eq. (147) can be absorbed into the quark distri-

bution φ0
q by defining its “mass factorized” version φq:

φq(x) = φ0
q(x)− αs

π

∫ 1

x

dz

z
φ0

q

( x

z

)

×
{

Pqq(z)

[

1

ǫ
+ ln

(

µ2
r

µ2
f

)]

+ (. . .)

}

,

(149)

where (. . .) stands for the constant finite terms absorbed into the redefinition

of quantities within the MS-scheme. We insert Eqs. (147) and (149) into

Eq. (148) to find

F2,h

(
x, Q2

)

x
=
∫ 1

x

dz

z
φq

( x

z

) [

δ(1− z)− αs

π
Cq(z)

]

=
∫ 1

x

dz

z
φq

( x

z

) F2

(
z, Q2

)

x
,

(150)

with the so-called coefficient function Cq which is finite since collinear singu-

larities have been factorized off. Notice that Cq depends on µr and µ f . The

expression in brackets in the first line of Eq. (150) is F2/x, the finite version

of F0
2 /x.

convolution integrals The convolution integral is usually abbrevi-

ated with the symbol ⊗ and defined as

[ f ⊗ g](x) =
∫ 1

0
dx1 dx2 δ(x− x1x2) f (x1) g(x2)

=
∫ 1

x

dx1

x1
f (x1) g

(
x

x1

)

.

(151)

The lower integration bound x in the second line of Eq. (151) is due to the

initial integration bounds of [0, 1]. Note that convolutions are commutative.

This notation allows for more compact formulae.

4.2.2.3 DGLAP evolution equation

We can rewrite Eq. (149) with the abbreviation introduced in Eq. (151):

φq(x) =
[

Γqq ⊗ φ0
q

]

(x) , (152)

introducing the “transition function” Γqq:

Γqq(x) = δ(1− x)− αs

π

{

Pqq(x)

[

1

ǫ
+ ln

(

µ2
r

µ2
f

)]

+ (. . .)

}

. (153)
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As bare quantity, φ0
q does not depend on the scale µ f where the factoriza-

tion is performed. Thus, we can motivate the DGLAP (Dokshitzer-Gribow-

Lipatov-Altarelli-Parisi) evolution equation at NLO:

d

dln µ2
f

φq(x) =

[

dΓqq

dln µ2
f

⊗ φ0
q

]

(x)

=

[

dΓqq

dln µ2
f

⊗ Γ−1
qq ⊗ φq

]

(x) =
αs

π

[
Pqq ⊗ φq

]
(x) .

(154)

concluding remarks

• It is not sufficient to consider only quark-quark transitions. The distri-

butions of all partons are coupled by the splitting functions Pij:

d

dln µ2
f

φq =
αs

π

[
Pqq ⊗ φq

]
(x) +

αs

π

[
Pqg ⊗ φg

]
(x) , (155)

d

dln µ2
f

φg =
αs

π

[
Pgq ⊗ φq

]
(x) +

αs

π

[
Pgg ⊗ φg

]
(x) . (156)

See also Fig. 12. This can be written as single matrix equation in the

space of parton species:

d

dln µ2
f

φi =
αs

π

[
Pij ⊗ φj

]
(x) . (157)

Only (flavor) non-singlet quark distributions evolve independently from

the singlet distributions of quarks and gluons.

• Solving the DGLAP equations corresponds to resummation of

αs ln
(

µ2
f /Q2

)

contributions. These can be thought of as cascades or

chains of multiple splittings, see Fig. 12.

• Replacing αs in Eq. (154) with the running coupling αs

(
Q2
)

accounts

for leading logarithmic contributions from vertex and propagator in-

sertions.

• The DGLAP equation can be proven rigorously to all orders in pertur-

bation theory with an OPE.

delta- and plus-distributions Results for partonic cross sections

and splitting functions can contain delta- and plus-distributions since the

conversion to hadronic cross sections involves convolution integrals with the

PDFs. Both distributions are a remnant of the phase space integration: the

delta-distribution alone in case of purely virtual corrections that come with a

one-particle phase space and a combination of delta- and plus-distributions

in case of real corrections with multiple additional particles in the final state.

The definition of the plus-distribution reads:

∫ 1

0
dx

[

lni(1− x)

1− x

]

+

f (x) =
∫ 1

0
dx

lni(1− x)

1− x
[ f (x)− f (1)] , (158)
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⊗
(a) Pqq ⊗ φq

⊗ ⊗
(b) Pqq ⊗ Pqq ⊗ φq

⊗ ⊗
(c) Pqg ⊗ Pgq ⊗ φq

⊗
(d) Pqg ⊗ φg

⊗ ⊗
(e) Pqq ⊗ Pqg ⊗ φg

⊗ ⊗
(f) Pqg ⊗ Pgg ⊗ φg

Figure 12: Sketch of the coupled evolution of parton distributions exemplified by
the quark case. The left-most lines in each diagram can be thought of as the parton
distributions on the right-hand side of Eq. (155). These are convoluted with splitting
functions Pij which is represented by the symbol ⊗. The right-most lines are then
the quark distribution on the left-hand side of Eq. (155). Figures a and d correspond
to logarithmic contributions to the evolution. Figures b, c, e and f correspond to
double-logarithmic contributions.

where f (x) is a smooth test function and the effect is subtraction of the

divergence at x = 1. One often finds the alternative notation

D+
i (1− x) =

[

lni(1− x)

1− x

]

+

. (159)

In general, products of regular functions in the limit x → 1 and plus-

distributions can be split into terms, each completely regular or proportional

to a plus-distribution.

Example 45. Using the definiton in Eq. (158) it is easy to show that

x

[

lni(1− x)

1− x

]

+

=

[

lni(1− x)

1− x

]

+

− lni(1− x) ,

1

x

[

lni(1− x)

1− x

]

+

=

[

lni(1− x)

1− x

]

+

+
lni(1− x)

x
.

These formulae (and similar ones for other regular functions) can be ap-

plied repeatedly to separate regular and irregular behavior of expressions.

This functionality is also implemented in the package MT, see Ref. [115].

The expansion in Eq. (118) can be motivated by the following chain of

equations, see also Ref. [146]:

∫ 1

0
dx (1− x)−a+bǫ f (x)

=
∫ 1

0
dx (1− x)−a+bǫ [ f (x)− f (1)] +

∫ 1

0
dx (1− x)−a+bǫ f (1)

=
∫ 1

0
dx (1− x)−a

[
∞

∑
i=0

(bǫ)i

i!
lni(1− x)

]

[ f (x)− f (1)] +
f (1)

1− a + bǫ
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=
∫ 1

0
dx

{
∞

∑
i=0

(1− x)1−a (bǫ)i

i!

[

lni(1− x)

1− x

]

+

f (x)

+
δ(1− x)

1− a + bǫ
f (x)

}

. (160)

In the first step, we split off the divergency for ǫ = 0 and x → 1. In the

second step, we wrote a Taylor series in ǫ for the first terms and integrated

the last term. In the last step, we identified the definitions of the delta- and

plus-distributions. Thus, we have

(1− x)−a+bǫ =
δ(1− x)

1− a + bǫ
+ (1− x)1−a

∞

∑
i=0

(bǫ)i

i!

[

lni(1− x)

1− x

]

+

. (161)

Equation (118) is just the special case of Eq. (161) for a = 1. Plus-distributions

enter partonic cross sections and splitting functions through the expansion

of (1− x)−1+bǫ factors from the phase space in DREG via Eq. (161). Hence,

divergences of the form 1/(1− x) in the unregularized phase space are re-

expressed as δ(1− x) /ǫ + . . . with regulator ǫ.

4.2.2.4 Parton splitting functions

Let us briefly address the parton splitting functions at higher orders since

they will be an important ingredient in what follows. In principle, they can

be extracted from each process that shows collinear divergences. The easiest

choice is deep inelastic scattering of a probe particle on a parton.

The distributions φqi
and φq̄i

of quarks qi and antiquarks q̄i have hadron

dependent “valence” parts φV
qi

and φV
q̄i

, as well as independent “sea” parts

φS
qi

and φS
q̄i

. Hence, one can write

φqi
= φV

qi
+ φS

qi
, φq̄i

= φV
q̄i
+ φS

q̄i
. (162)

Accordingly, the quark and antiquark splitting functions Pqiq̄ j
and Pqiq j

are,

using charge conjugation,

Pqiq j
= Pq̄i q̄ j

= δijP
V
qq + PS

qq, Pqiq̄ j
= Pq̄iq j

= δijP
V
qq̄ + PS

qq̄. (163)

The coupled evolution equations for the PDFs are further simplified by a

decomposition of quark and antiquark distributions into singlet and non-

singlet under the SU(nl) flavor symmetry for nl massless quarks. The non-

singlet type contributions are distributions of flavor differences or asymme-

tries φ±ns,qiqk
and the total valence distribution φV

ns. They evolve indepen-

dently, as does the singlet type constribution φs. These distributions are

defined as

φ±ns,qiqk
=
(
φqi
± φq̄i

)
−
(
φqk
± φq̄k

)
, φV

ns =
nl

∑
i=1

(
φqi
− φq̄i

)
, (164)

φs =
nl

∑
i=1

(
φqi

+ φq̄i

)
. (165)
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This translates directly to splitting functions governing their evolution and

reads:

P±ns = PV
qq ± PV

qq̄, (166)

PV
ns = PV

qq − PV
qq̄ + nl

(

PS
qq − PS

qq̄

)

= P−ns + PS
ns, (167)

PS
qq = PV

qq + PV
qq̄ + nl

(

PS
qq + PS

qq̄

)

= P+
ns + Pps, (168)

where PS
qq is the quark singlet splitting function and we implicitly defined

PS
ns and the “pure singlet”: Pps

PS
ns = nl

(

PS
qq − PS

qq̄

)

, Pps = nl

(

PS
qq + PS

qq̄

)

. (169)

One can choose any independent set of four quark splitting functions in

Eqs. (163), (166), (167), (168) and (169) to fully describe parton evolution. In

the results from Refs. [111, 112] we need for our purposes, these are provided

by P±ns, PS
ns and Pps. The quark singlet PS

qq is coupled to the gluonic splitting

functions Pqg, Pgq and Pgg. The former two are related to their corresponding

single quark quantities by:

Pqg = nlPqig, Pgq = Pgqi
, (170)

where in Pqg the final state is not fixed by the inital state and the contrary is

true for Pgq.

The calculation performed in Refs. [111, 112] also employed the optical the-

orem to circumvent phase space integration. They considered deep inelastic

scattering of certain “probe” particles on partons. These were photons γ,

W-bosons and scalars coupling directly to the gluon φ giving full access to

all seven contributions in Eqs. (166), (169) and (170) and Pgg. They operated

in Mellin space and obtained symbolic results for the Mellin moments of

the partonic structure functions which can be related by an inverse Mellin

transform to results in momentum space. The universal part, expressed by

the splitting functions, can be extracted from these. For more information on

the methods used in Refs. [111, 112], see Refs. [147, 148]. We will encounter

the Mellin transform in more detail later in Section 4.4.

To accomplish factorization of collinear singularities in the quark chan-

nels qq, qq′ and qq̄, we need to map the splitting functions P±ns, PS
ns and Pps

onto splitting functions corresponding to our “physical” production chan-

nels. Starting from Eq. (163) and using the inversion of Eqs. (166) and (169),

we obtain for these:

Pqq = PV
qq + PS

qq =
1

2

(
P+

ns + P−ns

)
+

1

2nl

(

Pps + PS
ns

)

, (171)

Pqq̄ = PV
qq̄ + PS

qq̄ =
1

2

(
P+

ns− P−ns

)
+

1

2nl

(

Pps − PS
ns

)

, (172)

Pqq′ =
1

2nl

(
Pps + Ps

ns

)
, (173)

Pqq̄′ =
1

2nl

(
Pps − Ps

ns

)
. (174)

124



4.2 calculational techniques

Here, we distinguished only two different quark flavors denoted by q and

q′. Note that we will somewhat deviate from the standard notation concern-

ing higher orders, also used in Refs. [111, 112]. We will shift superscripts

indicating the order of the perturbation series by 1 so that the sum of orders

of all factors in a term of the cross section will give the term’s total order.

Moreover, for Higgs boson production we do not need Pqq̄′ in Eq. (174) but

is appears in vector boson production. Since the Higgs boson carries no

electric charge, we have for its partonic cross sections σqq̄′ = σqq̄. For the W-

boson the situation is not that simple which will be relevant in Section 5.1

on Page 167.

It is instructive to inspect the first non-zero contibutions to the splitting

functions. Pqg, Pgq, Pgg and PS
qq start already at tree-level which is the LO.

This is also true for P+
ns and P−ns for which we have P

+(1)
ns = P

−(1)
ns = P

S(1)
qq =

P
(1)
qq . At NLO Pns starts to contribute, as well as Pqq̄ and Pqq′ and we have

three different quark splitting functions:

P
(2)
qq =

1

2

(

P
+(2)
ns + P

−(2)
ns

)

+
1

2nl
P
(2)
ps , (175)

P
(2)
qq̄ =

1

2

(

P
+(2)
ns − P

−(2)
ns

)

+
1

2nl
P
(2)
ps , (176)

P
(2)
qq′ = P

(2)
qq̄′ =

1

2nl
P
(2)
ps . (177)

We have P
(2)
qq′ = P

(2)
qq̄′ since PS

ns begins to appear at NNLO where it contains

a new color structure dabcdabc that was absent in other contributions so far.

For completeness, we list the first non-zero orders of the different Pij:

P
(1)
qg = TF

1− 2x + 2x2

2
, (178)

P
(1)
gq = CF

2− 2x + x2

2x
, (179)

P
(1)
gg = CA

[
1

1− x

]

+

+ δ(1− x)

(

CA
11

12
− TF

nl

3

)

+ CA
1− 2x + x2 − x3

x
, (180)

P
(1)
qq = CF

[
1

1− x

]

+

+ CA
3

4
δ(1− x)− CF

1 + x

2
, (181)

P
(2)
qq′ = CFTF

(
(1− x)(10 + x + 28x2)

18x
+

3 + 15x + 8x2

12
H0(x)

−1 + x

2
H0,0(x)

)

, (182)

P
(2)
qq̄ = C2

F

(

H0,0(x)
1 + x2

2(1 + x)
−H−1,0(x)

1 + x2

1 + x
+ H0(x)

1 + x

2

−π2

12

1 + x2

1 + x
+

1− x2

1 + x

)

+ CACF

(

−H0,0(x)
1 + x2

4(1 + x)
+ H−1,0(x)

1 + x2

2(1 + x)
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⊗

(a) ∈ P
(2)
qq′ ⊗ σ

(1)
qq̄

⊗

(b) ∈ P
(2)
qq ⊗ σ

(1)
qq̄

⊗

(c) ∈ P
(2)
qq̄ ⊗ σ

(1)
qq̄

Figure 13: Distinct convolution contributions to the qq′-, qq- and qq̄-channels at
N3LO. The left-hand sides of the cuts show a collinear singularity arising in the
subprocess where two quarks scatter to produce a Higgs boson in association with
three partons. The right-hand sides of the cuts are faded and only meant to show
the twisting of quark lines in Fig. b. In the left-hand sides those parts of the dia-
grams above the convolution symbol ⊗ represent contributions to the quark split-
ting functions at NLO. The parts below ⊗ stand for the partonic cross section in the

qq̄-channel at NLO. Figure a is a contribution from P
(2)
ps or P

(2)
qq′ which consist only

of diagrams of this type. Figures b and c cannot be linked directly to the other non-
singlet and singlet pieces P±ns and PS

ns but they clearly represent two independent

classes. P
(2)
qq recieves corrections of the types in Figs. a and b, P

(2)
qq̄ from the types in

Figs. a and c.

−1 + x

4
H0(x) +

π2

24

1 + x2

1 + x
− 1− x2

2(1 + x)

)

+ CFTF

(

−H0,0(x)
1 + x

2
+ H0(x)

3 + 15x + 8x2

12

+
(1− x)(10 + x + 28x2)

18x

)

. (183)

The remaining splitting functions up to two loops can be found in Ap-

pendix B.1. Note the appearence of delta- and plus-distributions introduced

in Section 4.2.2 and of the harmonic polylogarithms H...(x) which will be

subject in Section 4.3.3.1 on Page 134. To get an impression of the three

distinct quark splitting functions relevant to Higgs boson production, we

sketched in Fig. 13 some convolutions appearing in the quark channels.

4.3 cross sections to nnlo

At NNLO all five distinct partonic channels contribute, for the number of

diagrams in each channel see Tab. 3. Let us describe the generic setup of our

calculation first and then come to the generation of topologies with TopoID.
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Table 3: Number of diagrams appearing up to NNLO in each channel and in their
sum. The numbers in the right columns indicate dissection in fermionic contribu-
tions. Gluonic channels include also diagrams with ghosts as incoming and outgo-
ing particles. Purely virtual diagrams in the gg-channel are listed for completeness.

Order Channel Number of diagrams (fermionic loops)

LO gg #1

NLO

qq̄ #1

qg #1

ggvirt #10

ggreal #38

∑ #50

NNLO

qq′ #1

qq #2

qq̄ #84 = #81 +#3 nl

qg #124 = #122 +#2 nl

ggvirt #294 = #252 +#42 nl

ggreal #2458 = #2293 +#165 nl

∑ #2964 = #2752 +#212 nl

4.3.1 Setup of the calculation

The effective Lagrangian in Eq. (127) contains three vertices mediating the

coupling of the Higgs boson to two, three and four gluons which we denote

by g2H, g3H and g4H, respectively. At LO only g2H is relevant. At NLO also

g3H contributes and at NNLO finally g4H. The vertices g3H and g4H are not

implemented as higher-degree vertices but via gσH and σ2H vertices where

σ is an auxiliary field with a momentum independent propagator. The same

trick (and the same field σ) is used in pure QCD to split the four-gluon

vertex g4 into two g2σ vertices such that each diagram has a global color

factor, see Ref. [149]. The g3H vertex, for example, is obtained from a gσH

and a g2σ vertex. Note that this splitting of higher-degree vertices increases

the number of Feynman diagrams on the one hand. But their handling is

simplified on the other hand.

Color algebra, contraction of Lorentz indices and traces over Dirac gamma-

matrices are treated with a code written in FORM. Since we need to compute

higher orders in the dimensional regulator ǫ we list the crucial steps of our

calculation where ǫ-depencence enters:

• application of projectors (discussed below),

• traces over gamma-matrices,

• reduction of scalar integrals (usually expanded in ǫ).
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projectors and physical polarizations We need to apply projec-

tors Pi Pj depending on the considered initial state particles i and j.

Pq = aq

[

/pq + mq

]

δij, Pq̄ = aq

[

/p
T
q + mq

]

δij, (184)

Pg = ag gµνδab, Pc =Pc̄ = ac δab, (185)

where pq and mq are momentum and mass of a quark or antiquark, respec-

tively. We have mq = 0 in our case. Each projector comes with an “averaging

factor” ai. They are the reciprocal number of averaged states, including color

and polarizations. Quarks and antiquarks have two spin states and Nc =
CA = 3 color states. Gluons and ghosts have Ng = (N2

c − 1) = 2CFCA = 8

color states. They have no longitudinal component and thus D− 2 polariza-

tions in D dimensions. This leaves us with:

aq =
1

2Nc
=

1

2CA
, (186)

ag = ac =
1

2(1− ǫ)Ng
=

1

4(1− ǫ)CFCA
. (187)

It is not sufficient to consider ghosts only as internal particles, we always

need to include channels with ghosts and antighosts in the initial state when-

ever we consider a gluonic channel. Only thereby we subtract unphysical

degrees of freedom completely. Otherwise we needed to construct a more

complicated projector for the gluon than Eq. (185). Gauge invariance violat-

ing terms in the scalar amplitude surviving Pg are precisely canceled by the

contributions from the ghost-channels. In summary, we have for physical

polarizations:

σ
phys
qg = σqg + σcg − σc̄g (188)

σ
phys
gg = σgg + 2σcc − 2σcc̄ − 4σcg. (189)

The full ǫ-dependence of the LO result is only due to averaging of the two

gluon polarizations and the trace over gamma-matrices,

σ̃
(0)
gg = δ(1− x)

1

1− ǫ
= δ(1− x)

(

1 + ǫ + ǫ2 + ǫ3 +O
(

ǫ4
))

. (190)

4.3.2 Definition of topologies

A detailed description of the generation of topologies with TopoID will be

given in Section 4.5.2 on Page 155. Here, we show instead the connection be-

tween generic and basic topologies as they were introduced in Section 2.1.6

on Page 21. We use a scheme in which generic topologies need not to be

complete.

Using diagrams provided by QGRAF for the simplified QCD model without

fermions, TopoID finds 16 generic topologies, see Fig. 15. These topologies

(named NNLOrGT1, NNLOrGT2, . . . ) are in general incomplete and linearly

dependent. Subsequently, linearly independent subtopologies are identified
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Figure 14: Minimal set of 16 generic topologies for NNLO Higgs boson production
identified by TopoID. In order to distinguish propagators more clearly we allowed
interchange of external outgoing momenta.
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Figure 15: Minimal set of 11 basic topologies for NNLO Higgs boson production.
Note that each topology has 7 lines which means that no irreducible scalar product
or pseudo-propagator needs to be included.

for each generic topology (named NNLOrGT1s1, NNLOrGT1s2, . . . ). In the set

of these independent topologies duplicates appear. Thus, in the next step a

minimal set of 11 independent topologies is constructed, see Fig. 15. Usu-

ally, the last step in this scheme is completion of topologies. However, in

this particular case each topology in the minimal set of independent topolo-

gies is already complete and therefore constitutes a basic topology (named

NNLOrBT1, NNLOrBT2, . . . ).

The organization of topologies as just stated is also depicted in Fig. 16.

Note that troughout this scheme it was made use of the cuts of the topolo-

gies, otherwise linearly independent subtopologies without cut would oc-

cur, for example without the Higgs boson line. As one can see in Fig. 16,

some generic topologies are also basic topologies, for example NNLOrGT1→
NNLOrGT1s1 → NNLOrBT8. The other cases demonstrate that many generic

topologies share common linearly independent subtopologies. The FORM

code realizing this scheme in the calculation of all diagrams for NNLO
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Figure 16: Graphical representation of the mapping scheme. We intentionally left
out the prefix NNLOr of topology names. Generic topologies are arranged at the top
level of each cluster in the graph, followed by their individual linearly independent
set of subtopologies. At the bottom of each cluster topologies from the minimal set
of linearly independent ones appear.

Higgs boson production is explained in Appendix C.1 for generic and in

Appendix C.2 for basic topologies.

4.3.3 Results

Using the topologies defined above in Section 4.3.2, we found agreement

with our results from a previous calculation, see Ref. [90]. In the main text,

we only exemplify the results for the finite partonic cross sections up to

NNLO including higher orders in ǫ. The complete set of expressions can be

found in electronic form in Refs. [34, 150]. Renormalization is performed for

the operator O1 and the strong coupling αs as explained in Section 4.2.1.1 on

Page 115. Collinear counterterms are used to remove remaining singularities

and topic of the upcoming Section 4.4.2 on Page 139. Terms to O
(
ǫ2
)

are
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given for σ̃
(1)
qq̄ and terms to O(ǫ) for σ̃

(2)
qq′ = σ̃

(2),0
qq′ + ǫ σ̃

(2),1
qq′ . In the latter, we

set µ = mH to shorten the result.

σ̃
(1)
qq̄ =

32

27
(1− x)3

×
{

1 + ǫ

[

2 H1(x) + H0(x) +
2

3
+ ln

(
µ2

m2
H

)]

+ ǫ2

[

4 H1,1(x) + 2 H1,0(x) + 2 H2(x) + H0,0(x)

+
4

3
H1(x) +

2

3
H0(x)− π2

4
+

13

9

+

(

2 H1(x) + H0(x) +
2

3

)

ln

(
µ2

m2
H

)

+
1

2
ln2

(
µ2

m2
H

)]}

, (191)

σ̃
(2),0
qq′ = − (x + 2)2

[
16

9
H3(x) +

32

9
H2,1(x) +

8

3
H2,0(x) +

8

9
H0,0,0(x)

]

− (x + 3)(1− x)

[
64

9
H1,1(x)− 16

3
H1,0(x)

]

+
8

9
(5x2 + 8x− 12)H2(x) +

16

9
(x2 + 4x− 3)H0,0(x)

− 4

3
(5x + 17)(1− x)H1(x)

+

[
2

9
(29x2 + 44x− 59) +

4

27
(x + 2)2π2

]

H0(x)

− 4

27
(3x2 + 4x− 6)π2 − 2

9
(11x + 105)(1− x), (192)

σ̃
(2),1
qq′ = − (x + 2)2

[
64

3
H2,1,1(x) +

128

9
H2,1,0(x) +

128

9
H2,2(x)

+ 8 H2,0,0(x) +
32

3
H3,1(x) +

64

9
H3,0(x)

+
16

3
H4(x) +

8

3
H0,0,0,0(x)

]

− (x + 3)(1− x)

[
128

3
H1,1,1(x) +

256

9
H1,1,0(x) +

256

9
H1,2(x)

+16 H1,0,0(x)

]

+
16

9
(13x2 + 16x− 44)H2,1(x) +

8

9
(17x2 + 20x− 60)H2,0(x)

+
8

9
(11x2 + 32x− 44)H3(x) +

8

9
(5x2 + 20x− 22)H0,0,0(x)

− 8

9
(53x + 177)(1− x)H1,1(x)− 32

3
(3x + 10)(1− x)H1,0(x)

+

[
4

9
(84x2 + 140x − 193) +

44

27
(x + 2)2π2

]

H2(x)
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+

[
14

27
(2 + x)2π2 +

2

9
+ (99x2 + 172x− 193)

]

H0,0(x)

+

[
88

27
(x + 3)(1− x)π2 − 2

9
(131x + 727)(1− x)

]

H1(x)

+

[
8

3
(2 + x)2ζ(3) − 1

27
(23x2 + 104x− 100)π2

+
1

9
(229x2 + 880x− 711)

]

H0(x)

+
2

405
(x + 2)2π4 − 8

9
(5x2 + 28x− 18)ζ(3)

− 1

54
(245x2 + 348x − 469)π2 − 2(8x + 65)(1− x). (193)

Below, we describe the procedure of inserting master integrals into the

reduction, see Ref. [73]. Moreover, we give a short review of harmonic poly-

logarithms which appear in the partonic cross sections and in the splitting

functions, see Section 4.2.2.4.

singular behavior Having the reduction to master integrals and ana-

lytic expressions for the ǫ-expansion of these master integrals at hand, one

has to carefully insert the second into the first. The reason is the following:

the boundary condition of a master integral in the soft limit has in general

terms with different singular behavior

∑
{i}

(1− x)−ai+bi ǫ , (194)

where {ai > 0} and {bi} are integers, that are factored off before performing

the expansion in ǫ in the integrand and evaluating integrals order-by-order.

First, we need to combine the expression for a master integral in the soft

limit I(x→ 1), exposing above form of singularities, with the expression

containing the full x-dependence I(x). In the latter, the singular factors are

usually not apparent anymore since they were expanded to allow for the

matching of the differential equation to a boundary value. The form of I(x)
and I(x → 1) is

I(x → 1) = ∑
{i}

(1− x)−ai+bi ǫ
jmax,i+1

∑
j=jmin,i

ǫj I
(j)
i (x → 1) , (195)

I(x) =
jmax

∑
j=jmin

ǫj I(j)(x) , (196)

where jmin and jmax give the highest pole and the needed depth of the ex-

pansion, respectively. Thus, we need to apply the following replacement to

the reduced result:

I(x)→ I(x)− I(x)
∣
∣

x→1
+ I(x→ 1) , (197)

where I(x)
∣
∣

x→1
denotes the Taylor expansion of the full kinematics result.

We subtract the behavior in the soft limit expanded naively in ǫ and add
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the correct behavior. The coefficients of a master integral in the reduced

result can contain additional factors of (1− x)−ci whose powers need to be

combined with the singular behaviors of the master integral to be then ex-

panded in terms of delta- and plus-distributions such that singularities are

properly regularized, see Eqs. (118) and (161). This expansion can generate

a shift of orders in the ǫ-expansion (we wrote jmax,i + 1 as upper bound in

Eq. (195) for this reason) and one needs to evaluate the soft limit of a master

integral one order higher compared to the solution of the differential equa-

tion. By their coefficients in the reduced result, master integrals not singular

on their own, can therefore give rise to singular terms. We emphasize that

this procedure has to be followed only for the gg-channel where delta- and

plus-distributions are relevant.

4.3.3.1 Harmonic polylogarithms

Harmonic polylogarithms, in short HPLs, were introduced by Remiddi and

Vermaseren in Ref. [151]. They form the basis for many analytic results for

higher-order corrections and related quantities. For convenience, we list here

their most important properties.

• HPLs are denoted by H~w(x) where ~w = (w1, . . . , wm) is the vector

of indices and its length m is called weight. They are defined in a

recursive fashion as nested integrals over the weight functions fw(x)
where ~wn−1 = (w2, . . . , wn) is the weight vector with the first compo-

nent dropped,

H~w(x) =
∫ x

0
dx′ fw1

(
x′
)

H~wn−1

(
x′
)

with

f0(x) =
1

x
, H0(x) = ln x,

f1(x) =
1

1− x
, H1(x) = − ln(1− x) ,

f−1(x) =
1

1 + x
, H−1(x) = ln(1 + x) .

(198)

The denominators of the weight functions are also referred to as the

alphabet of the HPLs. From this definition, relations for derivatives

of HPLs follow directly. Index vectors allow for a shorter notation by

increasing the absolute values of the weights ±1 by the length of a

sequence of pure zeros directly to their left. For example:

H0,1,1,0,0,−1(x) = H2,1,−2(x) .

• HPLs through weight three can be represented by Nielsen polyloga-

rithms (by linear combinations with algebraic arguments). Beginning

from weight four they cover a larger class of functions than polylog-

arithms Lin(x) or Nielsen polylogarithms Sn,m(x) which are defined

via:

Li0(x) =
x

1− x
, Lin(x) =

∫ x

0
dx′

1

x′
Lin−1

(
x′
)

, (199)
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Sn,m(x) =
(−1)n+m+1

(n− 1)! m!

∫ 1

0
dx′

1

x′
lnn−1(x′

)
lnm(1− x x′

)
. (200)

For example, H−1,3(x) cannot be expressed in terms of Sn,m(x), even

when permitting algebraically transformed arguments.

• HPLs follow a product algebra called “shuffle algebra”. Products of

HPLs can be expressed as sum of HPLs where the weight of each term

equals the combined weight of the former product. This can be de-

noted as:

H~w1
(x) H~w2

(x) = ∑
~w∈~w1

⊎
~w2

H~w(x) , (201)

where
⊎

is the “shuffling” operation on indices, preserving the relative

order within each initial set, e.g.

H0,1(x)H1,−1(x) = 2 H0,1,1,−1(x) + H0,1,−1,1(x) + H1,0,1,−1(x)

+ H1,0,−1,1(x) + H1,−1,0,1(x) .

The same algebra holds for harmonic sums which are closely related

to HPLs in a one-to-one correspondence.

• Identities from the product algebra can be used in conjunction with

integration-by-parts identities to transform arbitrary HPLs to a min-

imal set. Also by this method, singularities behaving like lni x or

lni(1− x) can be extracted and made explicit.

• There exist relations among HPLs with transformed arguments for

x → x′ with x′ ∈
{
−x, 1− x, 1/x, x2, (1− x)/(1 + x)

}
.

• HPLs evaluated at x = 1 can be expressed as combination of multiple

zeta values (MZVs) which are transcendental numbers. For example,

H3(x) = ζ(3) and H−4(x) = 7/8 ζ(4) where ζ(n) is the Riemann zeta-

function.

• HPLs have convergent power series expansions which allow for stable

numerical evaluation.

• There exist convenient implementations in computer algebra systems.

The harmpol package for FORM, see Refs. [152, 153], and the HPL package

for Mathematica, see Refs. [154, 155].

Example 46. The HPLs through weight one are related to ordinary loga-

rithms by:

H(x) = 1,

H0(x) = ln x,

H1(x) = − ln(1− x) ,

H−1(x) = ln(1 + x) .

(202)
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HPLs up to weight three can still be mapped to combinations of Nielsen

polylogarithms, e.g.

H0,0(x) =
1

2
ln2(x) ,

H2(x) = Li2(x) ,

H1,0(x) = − Li2(x)− ln(1− x) ln(x) ,

H−1,1(x) = Li2

(
1 + x

2

)

− ln(2) ln(1 + x)− Li2

(
1

2

)

,

H1,−1,−1(x) = Li3

(
1 + x

2

)

− Li3

(
1

2

)

− Li2

(
1 + x

2

)

ln(1 + x)

− 1

2
ln2(1 + x) ln

(
1− x

2

)

,

H2,1(x) = S1,2(x) ,

where Li2(x) is Euler’s dilogarithm and Li3(x) the trilogarithm.

4.4 convolutions of nnlo cross sections

To render partonic cross sections finite, those singularities associated with

collinear initial state radiation need to be subtracted from the sum of real

and virtual corrections which is free of soft singularities. As we motivated

in Section 4.2.2 on Page 117, collinear singularities can be absorbed into a

redefinition of the parton distribution functions φi(x) by so-called transi-

tion functions Γij(x). At each order of perturbation theory the transition

functions are constructed from convolution integrals of the parton splitting

functions P
(k)
ij (x) including those from lower orders and coefficients of the

QCD beta-function. The infrared counterterms to the cross sections σ
(k)
ij (x)

are then given by the (double-)convolution with the (inverse) transition func-

tions.

4.4.1 Transition functions to N3LO

The transition functions Γij(x) describe all collinear emissions off a parton

and are used to define parton distibutions φi(x) in a renormalization scheme.

The redefinition is carried out via a convolution integral:

φi(x) =
[

Γij ⊗ φ0
j

]

(x) , (203)

where φi(x) denotes a PDF in the MS-scheme and φ0
i a bare quantity. In

this subsection all quantities with superscript zero are to be understood

as infrared-bare quantities. We suppressed here the dependence on the

factorization scale µ that φi(x) acquires. The renormalization group equa-

tion (RGE) for φi(x) reads:
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0 =
d

d ln µ2
φ0

i =
d

d ln µ2

[

Γ−1
ij ⊗ φj

]

(x) =

πβD(αs)

[
∂Γ−1

ij

⊗ ∂αs

]

(x) φj +

[

Γ−1
ij ⊗

dφj

d ln µ2

]

(x) , (204)

where π βD(αs) = dαs/ dln µ2 defines the D-dimensional beta-function of

QCD and we made use of the fact that within the MS-scheme the transition

function must not depend on any scale explicitly: ∂Γ−1
ij (x)/∂µ2 = 0. Since

Γ−1
ij (x) is allowed to have poles in ǫ starting at order αs, we need to include

terms of O(ǫ) in βD(αs). As usual, we have

α0
s = Zαs αs µ2ǫ with Zαs = 1 +

∞

∑
i=1

1

ǫi
Z
(i)
αs , (205)

where we wrote the expansion in poles and not the coupling. From this and

RGE-invariance we obtain the following:

0 =
d

dln µ2
α0

s =

[
dαs

d ln µ2

∂Zαs

∂αs
αs + Zαs

dαs

d ln µ2
+ Zαs αsǫ

]

µ2ǫ. (206)

The D-dimensional beta-function βD(αs) is then entirely determined by the

coefficient of the first pole Z
(1)
αs in Eq. (205):

βD(αs) = −
αs

π
ǫZαs

(
∂Zαs

∂αs
αs + Zαs

)−1

=

− αs

π
ǫ− αs

π

∂

∂αs
αsZ

(1)
αs = −αs

π
ǫ + β(αs). (207)

Equation (207) can be obtained by expansion in αs and the requirement to

be free of poles in ǫ. The O(ǫ) term is usually omitted since it vanishes

for ǫ → 0. The 4-dimensional beta-function β(αs) in Eq. (207) is given in

Eq. (131) on Page 115.

The evolution of physical, i.e. renormalized, PDFs with an energy scale is

governed by the DGLAP equations (we use a different convention for Pij in

comparison to Eq. (157) on Page 121) given by

d

d ln µ2
φi(x) =

[
Pij ⊗ φj

]
(x) , (208)

where the splitting functions Pij(x) do not depend explicitly on the scale µ,

assuming the MS-scheme. Plugging Eq. (208) into Eq. (204) and realizing

that the equation must hold also for the integrand of the common convolu-

tion integral leads to

πβD(αs)
∂Γ−1

ij (x)

∂αs
+
[

Γ−1
ik ⊗ Pkj

]

(x) = 0. (209)

The perturbative expansion of the splitting functions can be written as

Pij(x) =
αs

π
P
(1)
ij (x) +

(αs

π

)2
P
(2)
ij (x) +

(αs

π

)3
P
(3)
ij (x) +O

(

α4
s

)

. (210)
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In Ref. [90], the expansion of Pij(x) had in addition to Eq. (208) the term

δijδ(1− x). With this term we could form all convolutions entering the N3LO

calculation. But in order to describe PDF evolution in Eq. (208) correctly, it

must be omitted. Note that in Eq. (208) we absorbed a factor αs/π in Pij to

obtain the form of Eq. (210). At lowest order no interaction or splitting takes

place. In a hard process each collinear radiation comes with a pole in ǫ and

splitting functions are extracted from the coefficients of these poles. Thus,

we make an ansatz for the transition function and its inverse analogously to

a MS-scheme renormalization constant:

Γij(x) = δijδ(1− x) +
αs

π

Γ
(1,1)
ij (x)

ǫ
+
(αs

π

)2




Γ
(2,2)
ij (x)

ǫ2
+

Γ
(2,1)
ij (x)

ǫ





+
(αs

π

)3




Γ
(3,3)
ij (x)

ǫ3
+

Γ
(3,2)
ij (x)

ǫ2
+

Γ
(3,1)
ij (x)

ǫ



+O
(

α4
s

)

. (211)

Using Eqs. (131), (207) and (210) as well as the expansion for Γ−1
ij , we can

expand Eq. (209) and solve for the coefficients in the ansatz for Γ−1
ij (x) at

each order in αs. To order α3
s the solution reads:

Γ−1
ij (x) = δijδ(1− x) +

αs

π

1

ǫ
P
(1)
ij (x)

+
(αs

π

)2
{

1

2ǫ2

([

P
(1)
ik ⊗ P

(1)
kj

]

(x)− β0P
(1)
ij (x)

)

+
1

2ǫ
P
(2)
ij (x)

}

+
(αs

π

)3
{

1

6ǫ3

([

P
(1)
ik ⊗ P

(1)
kl ⊗ P

(1)
lj

]

(x)

−3β0

[

P
(1)
ik ⊗ P

(1)
kj

]

(x) + 2β2
0P

(1)
ij (x)

)

+
1

6ǫ2

(

2
[

P
(1)
ik ⊗ P

(2)
kj

]

(x) +
[

P
(2)
ik ⊗ P

(1)
kj

]

(x)

−2β0P
(2)
ij (x)− 2β1P

(1)
ij (x)

)

+
1

3ǫ
P
(3)
ij (x)

}

. (212)

To get Γij(x), we simply invert the above result using
[

Γ−1
ik ⊗ Γkj

]

(x) =

δijδ(1− x):

Γij(x) = δijδ(1− x)− αs

π

1

ǫ
P
(1)
ij (x)

+
(αs

π

)2
{

1

2ǫ2

([

P
(1)
ik ⊗ P

(1)
kj

]

(x) + β0P
(1)
ij (x)

)

− 1

2ǫ
P
(2)
ij (x)

}

+
(αs

π

)3
{

− 1

6ǫ3

([

P
(1)
ik ⊗ P

(1)
kl ⊗ P

(1)
lj

]

(x)

+3β0

[

P
(1)
ik ⊗ P

(1)
kj

]

(x) + 2β2
0P

(1)
ij (x)

)

+
1

6ǫ2

([

P
(1)
ik ⊗ P

(2)
kj

]

(x) + 2
[

P
(2)
ik ⊗ P

(1)
kj

]

(x)

+2β0P
(2)
ij (x) + 2β1P

(1)
ij (x)

)
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− 1

3ǫ
P
(3)
ij (x)

}

. (213)

We agree with the result presented in Ref. [156]. In comparison to Eq. (2.8)

of Ref. [114] where the same collinear singularities are discussed, there is a

discrepancy in the α3
s /ǫ2-term. In our notation for the P

(k)
ij , they have the

combination 3
2 P

(1)
ik ⊗ P

(2)
kj + 3

2 P
(2)
ik ⊗ P

(1)
kj instead of P

(1)
ik ⊗ P

(2)
kj + 2P

(2)
ik ⊗ P

(1)
kj

in Eq. (213). This typo in Ref. [114] was also mentioned in the first footnote

of Ref. [125].

It should be kept in mind that the transition functions are process indepen-

dent quantities, as universal as the parton distributions, but perturbatively

computable. They can be interpreted as one-particle reducible version of

the splitting functions. Higher orders contain irreducible parts of the same

order and reducible parts composed of splitting functions and self energy

insertions at lower orders.

4.4.2 Collinear counterterms to N3LO

In Section 4.2.2 we saw that the hadronic cross section σh(xh) with the di-

mensionless variable xh = m2
H/sh related to the hadronic process, can be

written as

σh(xh) = xh

[

φ0
i ⊗

σ0
ij(x)

x
⊗ φ0

j

]

(xh) . (214)

All quantities on the right-hand side taken separately contain collinear sin-

gularities whereas the left-hand side is finite. We define cross sections di-

vided by dimensionless variables σ̂h = σh/xh and σ̂0
ij = σ0

ij/x. We insert the

renormalization of PDFs via φ0
i = Γ−1

ij φj and find:

σ̂h(xh) =
[

φ0
i ⊗ σ̂0

ij ⊗ φ0
j

]

(xh) =
[
φi ⊗ σ̂ij ⊗ φj

]
(xh) with (215)

σ̂ij(x) =
[

Γ
−1,T
ik ⊗ σ̂0

kl ⊗ Γ−1
lj

]

(x) , σ̂0
ij(x) =

[

ΓT
ik ⊗ σ̂kl ⊗ Γlj

]

(x) . (216)

We expand the finite cross section σ̂ij in the usual manner as

σ̂ij(x) = σ̂
(0)
ij (x) +

αs

π
σ̂
(1)
ij (x) +

(αs

π

)2
σ̂
(2)
ij (x)

+
(αs

π

)3
σ̂
(3)
ij (x) +O

(

α4
s

)

.

(217)

The same form holds for the divergent version σ̂0
ij and the counterterm δσ̂ij

which we define via σ̂ij = σ̂0
ij + δσ̂ij. We can solve Eq. (216) order by order

for the mass factorization counterterms δσ̂ij and find:

−δσ̂
(0)
ij = 0, (218)

−δσ̂
(1)
ij =

[

Γ
(1)
ik ⊗ σ̂

(0)
kj

]

(x) +
[

σ̂
(0)
ik ⊗ Γ

(1)
kj

]

(x) , (219)

−δσ̂
(2)
ij =

[

Γ
(1)
ik ⊗ σ̂

(0)
kl ⊗ Γ

(1)
lj

]

(x) +
[

Γ
(1)
ik ⊗ σ̂

(1)
kj

]

(x) +
[

Γ
(2)
ik ⊗ σ̂

(0)
kj

]

(x)
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+
[

σ̂
(0)
ik ⊗ Γ

(2)
kj

]

(x) +
[

σ̂
(1)
ik ⊗ Γ

(1)
kj

]

(x) , (220)

−δσ̂
(3)
ij =

[

Γ
(1)
ik ⊗ σ̂

(0)
kl ⊗ Γ

(2)
lj

]

(x) +
[

Γ
(1)
ik ⊗ σ̂

(1)
kl ⊗ Γ

(1)
lj

]

(x)

+
[

Γ
(2)
ik ⊗ σ̂

(0)
kl ⊗ Γ

(1)
lj

]

(x) +
[

Γ
(1)
ik ⊗ σ̂

(2)
kj

]

(x)

+
[

Γ
(2)
ik ⊗ σ̂

(1)
kj

]

(x) +
[

Γ
(3)
ik ⊗ σ̂

(0)
kj

]

(x) +
[

σ̂
(0)
ik ⊗ Γ

(3)
kj

]

(x)

+
[

σ̂
(2)
ik ⊗ Γ

(1)
kj

]

(x) +
[

σ̂
(1)
ik ⊗ Γ

(2)
kj

]

(x) . (221)

Next, we specify the generic formulae Eqs. (218), (219), (220) and (221)

to the channels we have in Higgs boson production. Due to symmetries of

cross sections σ̂ij = σ̂ji and convolution integrals, non-trivial combinatorical

factors arise. In addition, we have equivalence for different quark-flavors,

e.g. σ̂q′g = σ̂q̄g = σ̂qg or Pq′g = Pq̄g = Pqg. We also need to account for the

number of light flavors nl when summing free parton indices over quarks.

For example, from P
(1)
kg ⊗ P

(1)
gk ⊗ σ̂

(0)
gg we get a term 2 nl P

(1)
qg ⊗ P

(1)
gq ⊗ σ̂

(0)
gg since

quarks and antiquarks give the same contribution. Diagrammatically dif-

ferent chains of collinear emission can be related to the same convolution

integral. Or the other way around, there are different ways to visualize a

convolution integral, each corresponds to a collinear divergence of a cut in

the four-point function diagrams we compute.

In this way we constructed all infrared counterterms needed for N3LO

Higgs boson production. The results up to NNLO are given below in terms

of convolutions of finite partonic cross sections and splitting functions.

δσ̂
(0)
gg = δσ̂

(1)
qq̄ = 0, (222)

δσ̂
(1)
qg =

1

ǫ

[

P
(1)
gq ⊗ σ̂

(0)
gg

]

(x) , (223)

δσ̂
(1)
gg =

2

ǫ

[

P
(1)
gg ⊗ σ̂

(0)
gg

]

(x) , (224)

δσ̂
(2)
qq′ = δσ̂

(2)
qq =

− 1

ǫ2

[

P
(1)
gq ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

]

(x) +
2

ǫ

[

P
(1)
gq ⊗ σ̂

(1)
qg

]

(x) , (225)

δσ̂
(2)
qq̄ =− 1

ǫ2

[

P
(1)
gq ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

]

(x)

+
2

ǫ

{[

P
(1)
qq ⊗ σ̂

(1)
qq̄

]

(x) +
[

P
(1)
gq ⊗ σ̂

(1)
qg

]

(x)
}

, (226)

δσ̂
(2)
qg =− 1

2ǫ2

{[

P
(1)
qq ⊗ P

(1)
gq ⊗ σ̂

(0)
gg

]

(x) + 3
[

P
(1)
gq ⊗ P

(1)
gg ⊗ σ̂

(0)
gg

]

(x)

+β0

[

P
(1)
gq ⊗ σ̂

(0)
gg

]

(x)
}

+
1

2ǫ

{[

P
(2)
gq ⊗ σ̂

(0)
gg

]

(x) + 2
[

P
(1)
qg ⊗ σ̂

(1)
qq̄

]

(x)

+ 2
[

P
(1)
gg ⊗ σ̂

(1)
qg

]

(x) + 2
[

P
(1)
qq ⊗ σ̂

(1)
qg

]

(x)

+2
[

P
(1)
gq ⊗ σ̂

(1)
gg

]

(x)
}

, (227)

δσ̂
(2)
gg =− 1

ǫ2

{

2
[

P
(1)
gg ⊗ P

(1)
gg ⊗ σ̂

(0)
gg

]

(x) + 2nl

[

P
(1)
qg ⊗ P

(1)
gq ⊗ σ̂

(0)
gg

]

(x)
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+β0

[

P
(1)
gg ⊗ σ̂

(0)
gg

]

(x)
}

+
1

ǫ

{

2
[

P
(1)
gg ⊗ σ̂

(1)
gg

]

(x) +
[

P
(2)
gg ⊗ σ̂

(0)
gg

]

(x)

+4nl

[

P
(1)
qg ⊗ σ̂

(1)
qg

]

(x)
}

. (228)

The N3LO expressions are quite lengthy and for this reason we exemplify

them in the main text only by the counterterm to the qq′-channel. This

expression will be used in Section 4.5.1, all remaining expressions can be

found in Appendix B.2. The complete set of expressions is also provided in

electronic form in Ref. [34].

δσ̂
(3)
qq′ =

1

ǫ3

{[

P
(1)
qq ⊗ P

(1)
gq ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

]

(x)

+
[

P
(1)
gq ⊗ P

(1)
gg ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

]

(x)

+β0

[

P
(1)
gq ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

]

(x)
}

− 1

ǫ2

{[

P
(1)
gq ⊗ P

(1)
qg ⊗ σ̂

(1)
qq̄

]

(x) + 3
[

P
(1)
qq ⊗ P

(1)
gq ⊗ σ̂

(1)
qg

]

(x)

+
[

P
(1)
gq ⊗ P

(1)
gg ⊗ σ̂

(1)
qg

]

(x) +
[

P
(1)
gq ⊗ σ̂

(1)
gg ⊗ P

(1)
gq

]

(x)

+
[

P
(1)
gq ⊗ σ̂

(0)
gg ⊗ P

(2)
gq

]

(x) + β0

[

P
(1)
gq ⊗ σ̂

(1)
qg

]

(x)
}

+
1

ǫ

{

2
[

P
(1)
qq ⊗ σ̂

(2)
qq′

]

(x) + 2
[

P
(1)
gq ⊗ σ̂

(2)
qg

]

(x)

+
[

P
(2)
qq′ ⊗ σ̂

(1)
qq̄

]

(x) +
[

P
(2)
gq ⊗ σ̂

(1)
qg

]

(x)
}

. (229)

Here, it is rather obvious why we needed to evaluate higher orders in ǫ for

the cross sections up to NNLO. The collinear counterterms cancel not only

singularities in the N3LO cross sections but give also finite contributions.

Therefore, as can be seen in Eq. (229) where only σ̂
(k)
ij retains dependence on

ǫ, we need the LO cross section to O
(
ǫ3
)
, the NLO cross sections to O

(
ǫ2
)

and the NNLO cross section to O(ǫ). The same is true for the ultraviolet

counterterms.

4.4.3 Systematic approach to convolution integrals

Having at hand expressions for the collinear subtraction terms, given by

convolutions of cross sections and splitting functions, the task of their evalu-

ations remains. We only have to consider five different types of convolutions

which are picured in Fig. 17. For mass factorization at NLO only 2 different

convolutions are needed, at NNLO 15 more convolutions must be consid-

ered and 63 more for N3LO accuracy (exploiting all symmetries). It stands

to reason to evaluate them in a systematic fashion. Note that some of the

convolutions of up to three splitting functions involve only the LO cross

section. Since σ̂
(0)
gg is proportional to δ(1− x) one of these convolutions is

trivial. On the other hand, convolutions involving essentially only splitting

functions have universal character for QCD corrections to the parton model.
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⊗

(a) P
(1)
gg ⊗ σ̂

(0)
gg

⊗

⊗

(b) P
(1)
gq ⊗ P

(1)
gg ⊗ σ̂

(1)
gg

⊗

⊗

(c) P
(2)
gq ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

⊗

⊗

⊗

(d) P
(1)
gq ⊗ P

(1)
qg ⊗ P

(1)
gq ⊗ σ̂

(0)
gg

⊗

⊗

⊗

(e) P
(1)
gq ⊗ P

(1)
gg ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

Figure 17: Examples for the five convolution topologies we need to consider for
Higgs boson production at N3LO. Note that we only showed convolutions involving
LO quantities. In the one-fold and two-fold convolutions in Figs. a, b and c they
can be replaced by their contributions up to NNLO and NLO, respectively. The
figure labels state the specific sequence of convolutions indicated by the ⊗ symbol
connecting splitting function and cross section lines. Apart from that, the notation
is as before. Cross sections can be distinguished by the effective coupling to a
Higgs line. Each convolution comes with a pole in ǫ. Figure d shows the case of
a convolution that comes with a factor 2 nl , accounting for an internal quark line
which represents light quarks and antiquarks of all flavors. Figure a appears first at
NLO, Figs. b and c first at NNLO, Figs. d and e only at N3LO.

The following building blocks arise in the splitting functions and in our case

also in the cross sections: constant terms or terms proportional to one of the

distributions δ(1− x) and
[

lnk(1−x)
1−x

]

+
, containing HPLs of argument x up to

some maximum weight (weight four in the O(ǫ) terms of the NNLO Higgs

boson production cross sections), multiplied by polynomials in x, factors of
1

1−x , 1
x and 1

1+x .

4.4.3.1 Mellin transform and harmonic sums

The Mellin transform of an x-space function f (x) to n-space is defined as

Mn[ f (x)] =
∫ 1

0
dx xn−1 f (x) , (230)

where Mn is also called the n-th Mellin moment. Once transformed to Mellin

space, convolution integrals turn into ordinary products

Mn[[ f ⊗ g](x)] = Mn[ f (x)]Mn[g(x)] . (231)
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This is because integrations in Eq. (151) are bounded by [0, 1] and therefore

also the product x1 x2. The Mellin transform links HPLs and their deriva-

tives to harmonic sums S~w(n). Harmonic sums are defined as nested sums,

similarly to the HPLs:

S(n) = 1, S~wm
(n) =

n

∑
i=1

fw1
(i) S~wm−1

(i) ,

with fw(i) =

{

i−w, w ≥ 0,

(−1)iiw, w < 0.

(232)

But in contrast to HPLs, the weight of harmonic sums is the sum of absolute

values of indices, not their number.

Example 47. The Mellin transforms of HPLs through weight one read:

Mn[1] =
1

n
,

Mn[H0(x)] = − 1

n2
,

Mn[H1(x)] =
S1(n)

n
,

Mn[H−1(x)] = − (−1)n

n
(S−1(n) + ln 2) +

ln 2

n
.

(233)

Note that in general on the right-hand sides transcendental numbers from

HPLs evaluated at x = 1 appear.

From the definition of the Mellin transform in Eq. (230), we trivially have

an index-shift identity:

Mn

[

xk f (x)
]

= Mn+k[ f (x)] . (234)

For the derivative d f (x)/ dx of a function f (x) we have the integration-by-

parts relation:

Mn

[
d f (x)

dx

]

= xn−1 f (x)
∣
∣
∣

1

0
− (n− 1)Mn−1[ f (x)]

= f (1)− (n− 1)Mn−1[ f (x)] ,

(235)

assuming f (x) is regular in the limit x → 1 and n is larger than the highest

pole of f (x) for x→ 0.

4.4.3.2 Regularized derivative

In case f (x) is not regular for x → 1, we need to treat logarithmic singulari-

ties in Eq. (235) properly. This can be achieved by introducing “regularized

derivatives”, denoted ∂̂x, as follows:

Mn

[

∂̂x1
]

= 1, Mn

[

∂̂x f (x)
]

= R[ f (x)]− (n− 1)Mn−1[ f (x)] , (236)
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where R regulates the boundary term for x→ 1. To see the precise action of

R, let us assume f (x) has the form

f (x) =
m

∑
i=0

fi(x) lni(1− x), (237)

where m corresponds to the highest power of a logarithm. The effect of R is

just to drop all logarithmically divergent constributions:

R[ f (x)] = f0(1). (238)

Another way to regulate these singularities is by the more common delta-

and plus-distributions. Let us demonstrate in a simple example that these

two approaches are equivalent.

Example 48. The Mellin transform Mn[d f (x)/ dx] in the case d f (x)/ dx =

1/ (1− x) is not defined because f (x) = H1(x) = − ln(1− x) is divergent

in the limit x → 1. Sticking to our definitions in Eqs. (236) and (238), we

observe:

Mn

[

∂̂x H1(x)
]

= R[− ln(1− x)]− (n− 1)Mn−1[− ln(1− x)]

= 0− (n− 1)
S1(n− 1)

n− 1
= − S1(n− 1) .

Apart from that, making the replacement 1
1−x →

[
1

1−x

]

+
, we can directly

evaluate the Mellin transform:

Mn

[[
1

1− x

]

+

]

=
∫ 1

0
dx xn−1

[
1

1− x

]

+

=
∫ 1

0
dx

xn−1− 1

1− x

=
∞

∑
i=0

∫ 1

0
dx
(

xn+i−1− xi
)

=
∞

∑
i=0

(
1

n + i
− 1

i + 1

)

= −
n−1

∑
i=1

1

i
= − S1(n− 1) ,

where we used the definition of the plus-distribution in Eq. (158) on Page 121,

the infinite geometric series 1/(1 − x) = ∑
∞
i=0 xi and identified the har-

monic sum S1(n− 1). As we can see, regularization with the plus-distribution

and subsequent explicit evaluation of the Mellin moment gives the same re-

sult as application of the regularized derivative.

Example 49. In addition, the regularized derivative reduces to the ordinary

derivative when applied to a function without divergence in the limit x → 1,

e.g.:

∂̂x H0(x) =
d

dx
H0(x) =

1

x
,

∂̂x H−1(x) =
d

dx
H−1(x) =

1

1 + x
,

(239)
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∂̂x H−1,1(x) =
d

dx
H−1,1(x) =

H1(x)

1 + x
.

Some other applications of the regularized derivative give:

∂̂x1 = δ(1− x),

∂̂x H1(x) =

[
1

1− x

]

+

,
(240)

∂̂x H1,1(x) = −
[

ln(1− x)

1− x

]

+

,

∂̂x H1,1,1(x) =
1

2

[

ln2(1− x)

1− x

]

+

,

∂̂x H1,2(x) =
π2

6

[
1

1− x

]

+

+
H2(x)− π2

6

1− x
.

Note that ∂̂x1 = δ(1− x) by the definition in Eq. (236), although f (x) = 1

does not diverge for x → 1. Otherwise we would have Mn

[
d

dx 1
]

= 0 but

Mn

[

∂̂x1
]

= 1 is needed to incorporate convolutions involving also delta-

functions.

In conclusion, the notion of the regularized derivative gives us a handle to

treat Mellin transforms of derivatives of HPLs in a consistent way, regardless

whether they diverge for x → 1 or not. This is related to regularization

by means of delta- and plus-distributions and therefore Mellin transforms

containing these generalized functions are accessible within our framework.

Before coming finally to the description of an algorithm that allows for

computing convolutions of the type described in the beginning of the sub-

section, we elaborate on the examples for quantities of weight one. They will

serve as illustration of the way the algorithm works.

Example 50. Mellin transforms of regularized derivatives of quantities up

to weight one read:

Mn

[

∂̂x1
]

= 1,

Mn

[

∂̂x H0(x)
]

=
1

n− 1
,

Mn

[

∂̂x H1(x)
]

= − S1(n− 1) ,

Mn

[

∂̂x H−1(x)
]

= (−1)n−1 S−1(n− 1) + (−1)n−1 ln 2.

(241)
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For completion, we also list the inverse Mellin transforms of weight-one

quantities:

M−1
x [1] = ∂̂x1,

M−1
x

[
1

n

]

= 1,

M−1
x

[
1

n2

]

= −H0(x) ,

M−1
x [S1(n)] = −x∂̂x H1(x) ,

M−1
x

[
S1(n)

n

]

= H1(x) .

(242)

Algorithm 4 (MT). With our formalism laid out, we set up a linear system of

relations that is restricted by the maximum weight of the considered expres-

sions. One input are Mellin images of HPLs and their regularized deriva-

tives, see for example Eqs. (233) and (241). The other input are index-shift

and integration-by-parts identities, see Eqs. (234) and (235), relating the just

mentioned Mellin transforms. Solving this system for monomials of the

form
{

1

nk
,

S~w(n)

nk
, (−1)n S~w(n)

nk

}

(243)

gives consequently the inverse Mellin transforms, see Eq. (242). In more

detail, the convolution [ f ⊗ g](x) of two functions f (x) and g(x) can be

found by the following procedure:

1. Transform expressions for f (x) and g(x) to Mellin space where the

convoltion integral turns into a simple product, see Eq. (231).

2. For HPLs up to a weight that is fixed by the sum of maximum weights

in f (x) and g(x), compute the table of Mellin transforms, see Eq. (233).

3. Provide the corresponding table of regularized derivatives for the HPLs

from Step 2, see Eq. (241).

4. Solve the linear system of equations built from the two tables of Step 2

and Step 3, see Eq. (242).

5. Inserting the results from Step 4 allows evaluation of the inverse Mellin

transform and thereby the convolution integral initially asked for:

[ f ⊗ g](x) = M−1
x [Mn[ f (x)] Mn[g(x)]] . (244)
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Example 51. We list some results for convolutions of building blocks ap-

pearing in the calculation of the infrared counterterms and involving plus-

distributions. They were found with the help of Algorithm 4.

[[

ln3(1− x)

1− x

]

+

⊗
[

1

1− x

]

+

]

(x) =

5

4

[

ln4(1− x)

1− x

]

+

− π2

2

[

ln2(1− x)

1− x

]

+

+ 6ζ(3)

[
ln(1− x)

1− x

]

+

− π4

15

[
1

1− x

]

+

+ 6ζ(5)δ(1− x)

+
6

1− x
(H1,1,2(x) + H1,2,1(x) + H2,1,1(x) + H1,1,1,0(x)) ,

[[

ln4(1− x)

1− x

]

+

⊗
[

1

1− x

]

+

]

(x) =

6

5

[

ln5(1− x)

1− x

]

+

− 2π2

3

[

ln4(1− x)

1− x

]

+

+ 12ζ(3)

[

ln2(1− x)

1− x

]

+

− 4π4

15

[
ln(1− x)

1− x

]

+

+ 24ζ(5)

[
1

1− x

]

+

− 8π6

315
δ(1− x)

− 24

1− x
(H1,1,1,2(x) + H1,1,2,1(x) + H1,2,1,1(x) + H2,1,1,1(x)

+H1,1,1,1,0(x)) ,
[

H1,1,1,0(x)⊗
[

1

1− x

]

+

]

(x) =

−H1,1,1,0,0(x)− 3 H1,1,1,1,0(x)−H1,1,1,2(x)−H1,1,2,0(x)

−H1,2,1,0(x)−H2,1,1,0(x) +
π2

6
H1,1,1(x)− 2ζ(3)H1,1(x)

− π4

72
H1(x)− 3ζ(5) +

π2

6
ζ(3).

concluding remarks

• Results for the convolution integrals relevant to N3LO Higgs boson

production contain HPLs up to weight five, even though in interme-

diate steps quantities of weight six occur. Inverse Mellin transforms

of the form (−1)n/n are not listed in Eq. (243) since they cannot be

expressed in terms of HPLs. For the same reason they cannot be de-

termined from the system of Step 4 but they cancel in the final results

for convolutions of splitting functions and cross sections. Both ob-

servations can be linked to the fact that integrals of specific order in

perturbation theory and in ǫ give rise only to quantities of a certain

maximum weight.

• In Refs. [90, 115, 150, 157], we presented explicit results for all convolu-

tions of LO to NNLO cross sections needed for physical Higgs boson
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production cross sections at N3LO. In Refs. [115, 157], we made our

implementation of above algorihm publicly available together with a

full-fledged user manual and convolutions needed for vector boson

production to N3LO. Convolutions involving quark flavor dependent

splitting functions were missing in Refs. [90, 150]; these were supple-

mented together with Refs. [115, 157].

• Our implementation of Algorithm 4 in Mathematica, called MT, is built

upon the HPL package, see Refs. [154, 155]. It originated from an earlier

version due to A. Pak and was used in Ref. [73] where also a sketch

of the algorithm was first published. Mellin transforms of HPLs were

obtained via the FORM package harmpol, see Refs. [152, 153]. All Mellin

images we had to deal with can also be found in Refs. [158, 159].

• An alternative approach is described in Ref. [114] and agreement can

be found with our results. In intermediate steps it is made use of multi-

ple polylogarithms which form an even more generic class of functions

compared to HPLs.

4.5 contributions to higgs boson production at n3 lo

The calculation of the total Higgs boson production rate at N3LO, that is

at three loops within the EFT, is without any doubt a highly demanding

and formidable task. This required the build-up of a powerful toolchain.

Those parts concerned with the calculation of diagrams, management of

topologies and reduction of scalar intergals were presented in Chapters 2

and 3. The calculation of master integrals is not part of this thesis. The

qq′-channel at N3LO serves as testing ground for our approach and will be

discussed in Sections 4.5.1 and 4.5.2. In Section 4.5.3, we give an outlook for

the calculation of the remaining partonic channels.

Table 4 gives an overview of the total number of diagrams in each par-

tonic channel and the dissection into fermionic contributions at N3LO. For

channels with gluons in the initial state, these numbers also account for the

corresponding subchannels initiated by ghosts. As on lower loop orders, the

gg-channel has by far the largest number of diagrams. On the other side, one

can expect that most topologies and master integrals already appear in the

qq̄- and qg-channels since they involve already all classes of cuts, see Tab. 2,

apart from purely virtual corrections which are known, see Refs. [116, 117].

The numbers in Tab. 4 cannot be produced directly with QGRAF. When

setting up the needed forward scattering process, a large excess of diagrams

that are not relevant for Higgs boson production is the outcome. Therefore,

we use a filter, see Ref. [160], that implements Algorithm 3 in order to select

diagrams with valid cuts and a non-zero color factor only. As described

before, valid cuts go through the Higgs line and up to three partons in the

s-channel (separating incoming from outgoing momenta). It proved more

practical to check first for valid cuts and only then, if a diagram passed, to

compute the color factor. Table 5 compares the original numbers of diagrams

given by QGRAF to the numbers of diagrams accepted by the filter.
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Table 4: Number of diagrams appearing at N3LO in each channel and in their sum.
The numbers in the right columns indicate dissection in fermionic contributions.
Gluonic channels include also diagrams with ghosts as incoming and outgoing par-
ticles. Purely virtual diagrams in the gg-channel are listed for completeness.

Channel Number of diagrams (fermionic loops)

qq′ #220 = #216 +#4 nl

qq #404 = #396 +#8 nl

qq̄ #4889 = #4438 +#445 nl +#6 n2
l

qg #9591 = #8976 +#612 nl +#3 n2
l

ggvirt #9538 = #7266 +#2180 nl +#92 n2
l

ggreal #150246 = #128676 +#21196 nl +#374 n2
l

∑ #174938 = #150014 +#24449 nl +#475 n2
l

4.5.1 Fermionic contribution in the qq′-channel

One of the simplest independent contributions to the N3LO Higgs boson

production cross section from genuine three-loop diagrams is the fermionic

contribution in the qq′-channel, cf. Tab. 4. The qq′-channel starts at NNLO

with a single diagram. Hence, at N3LO only four diagrams exist with an

additional fermionic insertion in different places, see Fig. 18a on Page 154.

They only have a three-particle cut and consequently belong to the VR2 class.

This subchannel is on its own a physical contribution. It can be UV and

IR renormalized independently and is gauge independent. The NNLO qq′-
channel cross section enters via UV renormalization of αs and O1 because

β0 has a term proportional to the number of light quark flavors nl. For mass

factorization already 7 of the 13 convolution integrals in Eq. (229) become

relevant. The dependence on nl of

[

P
(1)
gq ⊗ P

(1)
gg ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

]

(x) , β0

[

P
(1)
gq ⊗ σ̂

(0)
gg ⊗ P

(1)
gq

]

(x) ,
[

P
(1)
gq ⊗ P

(1)
gg ⊗ σ̂

(1)
qg

]

(x) ,
[

P
(1)
gq ⊗ σ̂

(0)
gg ⊗ P

(2)
gq

]

(x) , β0

[

P
(1)
gq ⊗ σ̂

(1)
qg

]

(x) ,
[

P
(1)
gq ⊗ σ̂

(2)
qg

]

(x) ,
[

P
(2)
gq ⊗ σ̂

(1)
qg

]

(x)

is implicit in Eq. (229).

Based on the four diagrams with 10 propagators each, it is possible to in-

fer a single topology with 7 propagators and 5 irreducible scalar products,

see Fig. 18b. This was accomplished with the package TopoID. In this pro-

cess, three propagators in each of the initial diagrams were identified due to

identical momentum flow. In Fig. 18a the three vertical propagators on the

left with labels 5, 6 and 7 are contracted. The two lines 6 and 7 connected to

the fermionic insertion can be identified in a first step. The two subsequent

identifications can be understood analoguously to Example 2 on Page 15. In

particular, propagators 3 and 5 carry the same momentum since p2 enters at

the lower left external leg and exits at the lower right external leg. Then one

arrives at the topology in Fig. 18b, up to a horizontal mirroring. All propa-
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Table 5: Statistics for filtering diagrams from LO to N3LO. The first figure indicates
the number of diagrams which exhibit a valid cut and a non-zero color factor. The
figures in parentheses show the number of diagrams generated initially by QGRAF,
followed by the numbers of discarded diagrams due to missing cuts and zero color
factor, respectively.

Order Channel Number of diagrams (initial, no cut, no color)

LO gg 1 (3 −2 −0)

NLO

qq̄ 1 (4 −3 −0)

qg 1 (18 −17 −0)

ggvirt 10 (48 −32 −6)

ggreal 38 (202 −164 −0)

∑ 50 (272 −216 −6)

NNLO

qq′ 1 (154 −153 −0)

qq 2 (298 −296 −0)

qq̄ 84 (280 −182 −14)

qg 124 (1515 −1377 −14)

ggvirt 294 (1368 −909 −165)

ggreal 2458 (12289 −9623 −208)

∑ 2964 (15922 −12549 −409)

N3LO

qq′ 220 (8818 −8572 −26)

qq 404 (16100 −15616 −80)

qq̄ 4889 (15392 −9207 −1296)

qg 9591 (84286 −72840 −1855)

ggvirt 9538 (44190 −29342 −5310)

ggreal 150246 (690624 −513385 −26993)

∑ 174938 (860118 −649316 −35864)

gators are linearly dependent and no partial fractioning is needed. This is

true also for the topologies of the full qq′-channel.
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4.5 contributions to higgs boson production at n3 lo

The factors of the topology N3LOqpnlBT1 found in the way described above

are given by

1: d7 = m2
H − s− 2p1 · v1 − 2p2 · v1 + v2

1 (p1 + p2 − v1 − v2)

− 2p1 · v2 − 2p2 · v2 + 2v1 · v2 + v2
2,

2: d9 = −2p2 · v2 + v2
2 + 2p2 · v3 − 2v2 · v3 + v2

3, (p2 − v2 + v3)

3: n10 = v2
1 − 2v1 · v3 + v2

3,

4: d5 = −2p2 · v2 + v2
2, (p2 − v2)

5: n4 = −2p1 · v2 + v2
2,

6: d4 = v2
2, (v2)

7: n2 = −2p2 · v1 + v2
1,

8: d2 = −2p1 · v1 + v2
1, (p1 − v1)

9: n9 = −2p2 · v3 + v2
3,

10: n8 = −2p1 · v3 + v2
3,

11: d10 = v2
3, (v3)

12: d1 = v2
1, (v1) (245)

where the first column of numbers are the positions of powers of these fac-

tors in the function notation N3LOqpnlBT1(a1, a2, . . . , a12). Symbols on the

left-hand side in the second column indicate whether the factor is a denom-

inator di or a numerator ni with the labels i fixed by TopoID. The right-hand

sides show the defining quadratic forms of scalar products of external and

internal momenta and the Higgs boson mass mH. External invariants have

been identified in these definitions by p2
1 = p2

2 = 0 and p1 · p2 = s/2. For

propagators di the attached flows of momenta are shown in parentheses and

the corresponding directed edges in Fig. 18b. Pseudo-propagators ni were

introduced with the prescription ni = (vk− vl)
2 in case vk · vl was irreducible

for the external or internal momenta vk and vl .

The reduction of N3LOqpnlBT1 with rows, see Ref. [49], reveals only three

master integrals which are defined by

N3LOqpnlBT1m1 = N3LOqpnlBT(1, 1, 0, 0, 0, 1, 0, 0, 0, 0,1, 1),

N3LOqpnlBT1m2 = N3LOqpnlBT(1, 1,−1, 0, 0, 1, 0, 0, 0, 0, 1, 1),

N3LOqpnlBT1m3 = N3LOqpnlBT(1, 1, 0, 0, 0, 1, 0, 1, 0, 0,1, 1). (246)
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They were calculated by C. Anzai, M. Höschele and T. Ueda in prepara-

tion of Ref. [161]. We exemplify results for the three master integrals by

N3LOqpnlBT1m1 to O
(
ǫ2
)
:

N3LOqpnlBT1m1 = (247)

− 1

ǫ

{

H0(x) x +
(x + 1)(1− x)

2

}

− 5x H2(x) + x H0,0(x)− 5

2
(x + 1)(1− x)H1(x)

+
(x− 12)x

2
H0(x) +

5

6
xπ2 − (11x + 10)(1− x)

2

+ ǫ
{

x [−25 H2,1(x)− 3 H2,0(x) + 5 H3(x)−H0,0,0(x)]

− (x + 1)(1− x)

2
[25 H1,1(x) + 3 H1,0(x)]

+
(x− 12)x

2
[5 H2(x)−H0,0(x)]− 5

2
(11x + 10)(1− x)H1(x)

+

[
(11x− 47)x

2
+

2

3
π2x

]

H0(x) + 14xζ(3)

−14x2 − 60x− 9

12
π2 − (77x + 64)(1− x)

2

}

+ ǫ2
{

x [−125 H2,1,1(x) + 3 H2,0,0(x) + 25 H3,1(x) + 3 H3,0(x)

−5 H4(x) + H0,0,0,0(x)]− 15x [H2,1,0(x) + H2,2(x)]

+
(x + 1)(1− x)

2
[125 H1,1,1(x) + 15 H1,1,0(x) + 15 H1,2(x)

−3 H1,0,0(x)]

+
(x− 12)x

2
[25 H2,1(x) + 3 H2,0(x)− 5 H3(x) + H0,0,0(x)]

− (11x + 10)(1− x)

2
[25 H1,1(x) + 3 H1,0(x)]

+

[

2π2 +
11x− 47

2

]

5x H2(x)−
[

11x− 47

2
+

2

3
π2

]

x H0,0(x)

+

[

(1 + x)π2 − 77x + 64

2

]

5(1− x)H1(x)

+

[

8ζ(3) − x− 12

3
π2 +

7

2
(11x− 21)

]

x H0(x)

− 3

8
xπ4 − (18x2 − 84x− 11)ζ(3) − 77x2 − 122x− 45

6
π2

− (439x + 336)(1− x)

2

}

.

Results to higher orders in ǫ for all three master integrals are included in

Ref. [34] in electronic form. Only the gg-channel has a singular behaviour in

the soft limit were denominators of form (1− x) must be handled with care.

Therefore, master integrals can be inserted in this case naively, ignoring the

prescriptions in Eqs. (161) and (197) on Pages 123 and 133. For the finite
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4.5 contributions to higgs boson production at n3 lo

fermionic contribution σ̃
(3)
qq′,nl

in the qq′-channel, defined by σ̃
(3)
qq′ = σ̃

(3)
qq′,0 +

nl σ̃
(3)
qq′,nl

, we obtain:

σ̃
(3)
qq′,nl

= (x + 2)2

[
8

9
H2,1,1(x) +

40

27
H2,1,0(x) +

40

27
H2,2(x)

+
16

9
H2,0,0(x) +

4

3
H3,1(x) +

40

27
H3,0(x)

+
32

27
H4(x) +

8

9
H0,0,0,0(x)

]

+ (x + 3)(1− x)

[
16

9
H1,1,1(x) +

80

27
H1,2(x) +

80

27
H1,1,0(x)

+
32

9
H1,0,0(x)

]

+
2

27
(43x2 + 184x + 268)H2,1(x)

+
20

81
(7x2 + 40x + 76)H2,0(x) +

4

81
(23x2 + 80x + 284)H3(x)

+
4

81
(11x2 − 40x + 188)H0,0,0(x)

+ (1− x)

(
1

27
(319x + 771)H1,1(x) +

70

81
(13x + 33)H1,0(x)

)

−
[

4

81
(x + 2)2π2 +

2

243
(896x2 + 260x− 3247)

]

H2(x)

−
[

2

243
(772x2 + 1156x − 2213) +

4

81
(x + 2)2π2

]

H0,0(x)

−
[

8

81
(x + 3)(1− x)π2 − 41

486
(169x + 519)(1− x)

]

H1(x)

−
[

4

27
(x + 2)2ζ(3) +

16

81
(x2 + x + 4)π2

+
1

243
(3139x2 + 5218x − 7620)

]

H0(x)

− 49

2430
(x + 2)2π4 +

2

81
(13x2 + 184x + 4)ζ(3)

+
1

729
(215x2 − 904x− 1402)π2 +

1

324
(2549x + 15343)(1− x)

+

[
4

27
(x + 2)2 H0(x) +

8

27
(x + 3)(1− x)

]

ln3

(
µ2

m2
H

)

+

[

(x + 2)2

(
16

27
H2(x) +

4

9
H0,0(x)− 8

81
π2

)

+
32

27
(x + 3)(1− x)H1(x)

− 2

81
(x2 − 56x− 188)H0(x)

+
1

81
(227x + 615)(1− x)

]

ln2

(
µ2

m2
H

)
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(a) sample diagram

−→

{3, 5, 7, 9, 10}

8

4

2 11

1212

66

11

(b) N3LOqpnlBT1

Figure 18: Figure a shows the only type of diagram in the fermionic contribution
to the qq′-channel. The four existing diagrams differ only by the position of the
fermionic insertion. We accentuated the external quark of different flavor and the
internal quark by different shades of gray. The single topology sufficient to cal-
culate the four diagrams is shown in Fig. b. Thin black lines stand for massless
propagators, the thick black line is massive. Integer labels on the lines correspond
to the propagators defined in Eq. (245). Arrows on external legs mark the routing
the momentum p1, on internal lines they denote the flows of propagator momenta.
The integers in braces are a reminder of the irreducible scalar products that are not
represented by graph lines, in this case. The only 3-particle cut is shown by a gray
zigzag line in the background.

+

[

(x + 2)2

(
4

3
H2,1(x) +

40

27
H2,0(x) +

32

27
H3(x)

+
8

9
H0,0,0(x)

)

+ (x + 3)(1− x)

(
8

3
H1,1(x) +

80

27
H1,0(x)

)

+
4

81
(17x2 + 128x + 284)H2(x)

+
4

81
(5x2 + 8x + 188)H0,0(x)

+
2

81
(341x + 885)(1− x)H1(x)

−
(

4

81
(x + 2)2π2 +

2

243
(724x2 + 460x− 2213)

)

H0(x)

+
4

9
(x + 2)2ζ(3)− 2

243
(53x2 + 200x + 176)π2

+
2

243
(1027x + 3714)(1− x)

]

ln

(
µ2

m2
H

)

. (248)

The topology N3LOqpnlBT1 can be embedded easily in topologies of the full

qq′-channel which provided a welcome (and fulfilled) check for our method-

ology.
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4.5 contributions to higgs boson production at n3 lo

(a) N3LOqpnlBT1m1

{−13}

(b) N3LOqpnlBT1m2 (c) N3LOqpnlBT1m3

Figure 19: The tree master integrals of the topology N3LOqpnlBT1 are defined in
Eq. (246). N3LOqpnlBT1m1 in Fig. a and N3LOqpnlBT1m2 in Fig. b have only five
propagators and belong to the simpler class of triangle diagrams compared to
N3LOqpnlBT1m3 in Fig. c. N3LOqpnlBT1m3 is a box diagram with six propagators.
N3LOqpnlBT1m2 has in contrast to N3LOqpnlBT1m1 an irreducible scalar product of
power one from the third factor of the topology which is denoted by {−13}.

4.5.2 The complete qq′-channel

As at NNLO, the easiest channel at N3LO in terms of the number of di-

agrams is the scattering of two quarks of different flavor, denoted as qq′-
channel. At NNLO only one diagram has to be calculated, at N3LO 220

appear. Our calculation is organized as follows: we first define topologies

onto which we can match all the Feynman diagrams and then we perform

the reduction of all appearing integrals within these topologies. In the re-

sult expressed in terms of master integrals of each topology many of these

integrals can be eliminated. This means there still exist identities and even

linear relations among the master integrals of all families appearing in this

preliminary result for the reduction. The third step of the calculation is to

eliminate these redundancies as far as possible. This simplifies the final step

of calculating the bare forward amplitude, namely the computation of the

(almost) minimal number of master integrals. In addition, it helps to estab-

lish gauge-parameter independence which must hold even before the master

integrals have been computed and substituted into the result.

4.5.2.1 Definition of topologies

For the first step of our calculation we used two differently defined sets of

topologies based on the diagrams of the qq′-channel and obtained with the

code TopoID. The first set, in the following referred to as set A, is constructed

by the following steps:

1. Propagators carrying the same momentum are identified MapDiagramTo-

Topology

on scalar di-

agram level.

2. The set of corresponding topologies is minimized MinimizeTopolo-

gies

concerning possible

line contractions.

3. All topologies are completed CompleteTopologyby including the irreducible scalar prod-

ucts directly. The way topologies are completed can be controlled via

the option Method. Here, we assign it the value "ScalarProducts" ScalarProducts.
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4. The complete topologies are mapped onto linearly independentMapTopologyToIn-

dependents

topolo-

gies.

5. The resulting set is minimized again.

This set of topologies is illustrated in Fig. 20. The second set, denoted as set

B, was obtained in contrast with the following modifications:

1. Propagators carrying the same momentum are not identified in the

diagrams. This can be controlled by assigning the option Method the

valueKeep "Keep".

3. Topologies are completed by including irreducible scalar products in

the form of pseudopropagators, see e.g. Section 2.7. This can be accom-

plished by usingMinusPropagator "MinusPropagator" as value for Method.

The reason of the first modification was of purely technical nature connected

to mapping diagrams onto topologies via the program exp, see Refs. [23,

24]. Aforementioned program is not able to perform this identification of

propagators on graph level.

The result should of course be independent of how irreducible scalar

products are included. This makes the comparison of results obtained in

sets A and B a powerful cross-check. Completion of topologies in set B with

unidentified equal propagators and subsequent partial fractioning lead to

other topologies than those in set A. In general, the topologies were simpler

concerning the numbers of denominators but their total amount was larger.

We found 17 topologies in set A and 29 in set B. We refrain from inspecting

set B more closely since we stick to set A as basis for the coming discussions.

Some remarks on the topologies of set A in Fig. 20 are in order:

• The order of topologies is chosen by TopoID and not necessarily intu-

itive or appealing. The same holds for the order of propagators within

each topology. This is a direct consequence of the canonical ordering

procedure presented in Section 2.4.2.

• Topologies N3LOqpBT1 to N3LOqpBT5 and N3LOqpBT9 have 10 lines which

is the maximum for graphs in this process at this order, see Tab. 1 on

Page 16. In this sense, they represent complete or maximal graphs.

The remaining topologies have vertices of degree four and 9 lines or

only 8 in the case of N3LOqpBT17.

• Especially those topologies mentioned lastly can be embedded into

more generic topologies appearing in the gg-channel. During this pro-

cess merging of topologies is possible, see for example N3LOqpBT10

and N3LOqpBT17 in Fig. 20. Suppose we stretch the bubble of lines 1

and 2 in N3LOqpBT10 into a triangle and do the same for the differently

oriented bubble of lines 2 and 3 in N3LOqpBT17. Then, the modified

N3LOqpBT17 becomes a subtopology to the modified N3LOqpBT10 if line

5 is contracted there.
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(f) N3LOqpBT6

Figure 20: Set of 17 topologies derived from the 220 diagrams appearing in the qq′-
channel at N3LO. The name of a topology is given below each picture. As before,
arrows mark the flow of the external momentum p1. Plain lines are massless, the
double line is massive. Underlaid grey zigzag lines hint at the allowed cuts of
a topology. Number labels denote the indices linked to a propagator line. Since
each topology has in total 12 indices, numbers missing in a picture correspond to
irreducible numerators.
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Figure 20: Continued.
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Figure 20: Concluded.
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We performed the reduction of integrals in the two sets of topologies A

and B separately. In each case we used the combination of the programs

rows, see Ref. [49], and FIRE, see Refs. [44–46]. We observed that FIRE is

more efficient in reducing integrals with higher absolute values on partic-

ular indices. But rows on the other side handles symmetries better and

provides results in a form that can be recycled more conveniently, e.g. when

updating the reduction for a new set of integrals. For illustration, we show

N3LOqpBT4 together with its 11 master integrals revealed by rows in Fig. 21.

This topology is also called the “sea snake” topology. To see the reason for

this name it was drawn in a slightly different way as in Fig. 20d. The sea

snake topology was subject of the studies performed in Ref. [19]. In this

paper we constructed the canonical basis of master integrals and solved the

differential equations in terms of HPLs up to O
(
ǫ5
)
. This topology gov-

erns purely real contributions of the class R3. Our analytic results with full

x-dependence for this class of cuts are unique in the literature so far.

4.5.2.2 Finding additional relations

Once the reduction of all appearing integrals in each topology is done, a

crucial step is to identify equal integrals. These can be encoded as differ-

ent index vectors of the same topology or as different index vectors from

different topologies.

The first kind of identification can for example be handled by the Math-

ematica code tsort, see Ref. [45]. However, reductions of integrals per-

formed with rows show no sign of identical integrals which is a result of

exploiting all existing symmetries to their full extent.

Identical integrals of the second kind have propagators which are defined

within the routing of momenta of the corresponding original topology. Only

after some unknown transformation of momenta identity of integrals can be

established. The following algorithm gives a general solution to this prob-

lem, automatically including identities of the first kind.

Algorithm 5 (minimize master integrals). Our strategy for finding a minimal

basis of master integrals consists of the following procedure:

1. We collect all integrals
{

I
j
i

}

from all topologies
{

T j
}

appearing in the

reduced result.

2. We generate for each integral a representation that is independent of

its parent topologyMapTopologyToIn-

tegral

but information on the routing of momenta is kept.

3. Now, we find for each integral I ∈
{

I
j
i

}

systematically all possible

representations within each topology T ∈
{

T j
}

MapIntegralTo-

Topology

in the following way

(see also Section 2.4.5):

a) We neglect the numerator In of I and produce only for its denom-

inator a canonical representation Id with the techniques descibed

in Section 2.4.
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(a) N3LOqpBT4 as sea snake

(b) N3LOqpBT4m1 (c) N3LOqpBT4m2 (d) N3LOqpBT4m3

(e) N3LOqpBT4m4 (f) N3LOqpBT4m5

{−111}

(g) N3LOqpBT4m6

(h) N3LOqpBT4m7 (i) N3LOqpBT4m8

(j) N3LOqpBT4m9 (k) N3LOqpBT4m10 (l) N3LOqpBT4m11

Figure 21: The sea snake topology N3LOqpBT4 together with its 11 master integrals
in the basis chosen by rows. The notation is as in Fig. 18b and Fig. 19 but we omitted
drawing the four-particle cuts. Crosses on lines denote an index of −1.
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b) Assuming T is in a form where all relevant subtopologies are

classified, we see immediately all those subtopologies {Td} that

match Id, if there are any. This gives us essentially different mo-

mentum space representations Id and {Td} of the denominator of

the same integral.

c) Exploiting the canoncial order in which Id and all {Td} are given,

we know precisely which denominator of Id is to be transformed

into which of one of the {Td}. We can basically read off the related

shifts of loop momenta.

d) These shifts of loop momenta are applied onto the numerator In

of I to give its representations
{

IT
n

}
within the topology T. Com-

bined with the {Td} =
{

IT
d

}
, we have complete representations

{
IT
}
=
{

IT
n IT

d

}
of I within T. Note that these representations are

in general linear combinations of integrals from T due to the {In}
being transformed and reexpressed in T.

4. These representations can contain (hidden) duplicates which we get

rid of by applying symmetries of the topologiesTopologyToRules appearing on the right-

hand sides. In addition also constraints due to scalelessness and cuts

are imposed.

5. Integrals appearing in these relations are not necessarily in reduced

form. Therefore we apply the same reduction rulesLookUp used to get the

reduced result used for Step 1.

6. In the end, we have a large overdetermined system of about O
(
103
)

to O
(
104
)

linear equations. This system can be solved in terms of

a preferred set of variables, the set of genuine master integrals, to give

relations one can apply in order to eliminate linear dependent integrals

from the result of the reduction.

concluding remarks

• The solution of the system is not unique. Hence, the choice of master

integrals is arbitrary but it should somewhat reflect lower complexity

compared to eliminated integrals.

• The solvability of the system is a strong consistency check of the reduc-

tion.

• The linear system is highly overdetermined, its rank is way less than

the number of relations. This is because we use all representations

of all integrals in all topologies. Alternatively, one could build the

system up in an iterative fashion and restrict the set T in Step 3 to one

topology. Algorithm 5 would then be iterated for the topologies
{

T j
}

until all integrals from Step 2 have been mapped or until all topologies

have been tested.
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4.5 contributions to higgs boson production at n3 lo

• Auxiliary integrals, absent in the preliminary reduced result used in

Step 1 may also be present in this system. There may be several reasons

(or combinations of them):

– they do not appear in the reduction tables at all (i.e. they are

unreduced),

– they are master integrals from a sector of the topology which is

not needed,

– cancellations in the expression for Step 1 occured.

In any case, we can solve the system in terms of the integrals
{

I
j
i

}

we

started with. Thereby, auxiliary integrals are never among the set of

true master integrals that are actually needed.

• In case auxiliary integrals can be expressed by true master integrals,

two perspectives are possible. Either we obtained additional reduction

relations for these integrals that are not anywhere in the reduction ta-

bles. Or one can try and apply the reduction algorithm again on these

integrals. If this results in any new relation not yet in the described

system, this could allow to reduce the number of master integrals even

further.

• The same procedure can be applied in order to rewrite integrals de-

fined in one set of topologies A into another set of topologies B, i.e. a

generic basis transformation. The only modifications are to replace inte-

grals and topologies in Step 1 and Step 2 with reference to set A and

to apply the remaining steps with reference to set B.

One downside of the reduction via most Laporta-based algorithms is that

one can never be sure if all the integrals remaining in the end are true master

integrals. This statement holds even after identification of integrals, at least

as long as the set of seed integrals is not considerably larger than the set

of target integrals one wants to reduce. For complicated calculations one

often cannot arbitrarily enlarge the set of seeds. From our experience, the

described algorithm helps tremendously to cope with this issue. We also

observed that the algorithm finds relations among the “master” integrals of

a single topology in an intermediate reduction step where the selection of

seeds does not allow yet for a complete reduction.

For the reduction within set A the algorithm reduced the inital 332 master

integrals to only 108 in the very end. Moreover, we employed Algorithm 5

in its modified form to rewrite results obtained in set B to topology defini-

tions of set A and found agreement of both calculations. Within set B the

number of “master” integrals before changing to basis A was 161. In set B

the reduction allowed to establish independence from the gauge parameter

for the result. This was again done with Algorithm 5 which could express

the 161 reduced integrals in the ξ-term by only 27 master integrals. Each

coefficient of a master integral in the ξ-term is then independently zero.
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Example 52. We demonstrate Steps 2 to 5 of Algorithm 5 on the master

integral in Fig. 21c of the sea snake topology N3LOqpBT4 in Fig. 21a. The

master integral is defined by rows as:

N3LOqpBT4m2 = N3LOqpBT4[1, 0, 0, 0, 1, 0, 1,−1, 0, 1, 0, 0].

In Step 2 a canonical representation of this integral is generated. In Step 3

many representations are found for this integral which is just the four-

particle phase space with an additional numerator. For clarity, we show

only the three representations within topology N3LOqpBT1:

{
N3LOqpBT1[1, 0, 1, 0, 0,−1, 1, 1, 0, 0, 0, 0],

N3LOqpBT1[1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]

+ 2 N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,−1],
N3LOqpBT1[1, 0, 1, 0,−1, 0, 1, 1, 0, 0, 0, 0]

− N3LOqpBT1[1, 0, 1, 0, 0,−1, 1, 1, 0, 0, 0, 0]

+ N3LOqpBT1[1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]

+ N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

− N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1, 0,−1, 0, 0]

+ N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0]
}

.

We apply symmetries and constraints from vanishing subtopologies for

N3LOqpBT1 in Step 4 and above representations become:

{
N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1,−1, 0, 0, 0],

2 N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,−1],
N3LOqpBT1[1, 0, 1, 0,−1, 0, 1, 1, 0, 0, 0, 0]

− N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1,−1, 0, 0, 0]

− N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1, 0,−1, 0, 0]

+ N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0]
}

.

Application of the reduction table for N3LOqpBT1 in Step 5 leaves in the

end only one distinct representation for N3LOqpBT4m2 in terms of master

integrals from N3LOqpBT1:

1

2
N3LOqpBT1[1, 0, 1, 0,−1, 0, 1, 1, 0, 0, 0,0]

+
2 + x

6
N3LOqpBT1[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0].

Finding relations for master integrals with more denominators and numer-

ators (including higher absolute values for indices) proceeds by the same

steps but is less transparent. Automatization is inevitable for the above task

when applied to large systems of master integrals from many topologies.
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4.5 contributions to higgs boson production at n3 lo

The reduction of integrals in the qq′-channel and the construction of canon-

ical bases of master integrals is meanwhile completed. M. Höschele and

T. Ueda found evidence that functions of different alphabet compared to

HPLs, cf. Section 4.3.3.1, are needed for one of the topologies in this chan-

nel. See also Ref. [78]. The calculation of boundary conditions for VR2 type

integrals is underway. Integrals with a three-particle cut in the soft limit are

not available in explicit form in the literature. Once the calculation of mas-

ter integrals in this channel is finished, a large part of the master integrals

with three- and four-particle cuts needed for the complete calculation of all

channels should already be covered. These master integrals are the last miss-

ing piece for a full kinematics result for the Higgs boson production cross

section at N3LO which should resolve the issue of convergence of the soft

expansion, see Ref. [125].

4.5.3 Roadmap to the full calculation

Our strategy is to advance channel-wise from easier contributions to more

complicates ones. Building blocks encountered earlier will reappear later

and can be reused. The order of channels in Tabs. 3, 4 and 5 reflects this

complexity. For the remaining channels we classify topologies based on

diagrams of the gg-channel. Therefore, we employ the same trick of purely

gluonic interactions as in Section 2.5.1 on Page 62. All the code needed

for the complete calculation is already prepared and can be found in the

supplementory material, see Ref. [34]. There are altogether 188 topologies

in the gg-channel.
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5
O T H E R A P P L I C AT I O N S

In this chapter we describe two direct applications of the techniques pre-

sented or used in Chapters 2, 3 and 4. Higgs boson pair production, see

Section 5.1, and Drell-Yan process, see Section 5.2, are from a technical point

of view very similar to single Higgs boson production and require only few

modifications or additions.

5.1 higgs boson pair production

To gain insight into the mechanism of electroweak symmetry breaking the

Higgs boson self-interactions need to be probed. The process granting this

possibility is production of a Higgs boson pair via gluon fusion which has

two kinds of contribution, see Fig. 22. In the first kind, both Higgs bosons

couple to top quarks. The second kind involves the cubic coupling λ of the

SM Higgs potential

V(H) =
1

2
m2

H H2 + λvH3 +
1

4
λH4, (249)

with the Higgs mass mH, the vacuum expectation value v and λ = m2
H/2v2

for the SM. The influence of the second contribution is strongly suppressed

compared to the first one but becomes noticeable through its large destruc-

tive interference. The process has a relatively small cross section of O(10 fb)
and suffers from large backgrounds, making the extraction of the Higgs

self-interaction at the LHC a challenge. However, a number of studies sug-

gest the prospect of measuring λ, see Refs. [162–165], some within an ac-

curacy of about 30% with at least 3000 fb−1 accumulated luminosity, see

Refs. [164, 165]. This amount of luminosity will be within reach after a fu-

ture upgrade of the LHC.

The LO result with exact dependence on the top quark mass Mt has been

known since long, see Refs. [166, 167]. Further terms in the perturbation

series have been computed in the Mt → ∞ EFT at NLO, see Ref. [168],

and just recently at NNLO, see Ref. [169]. It is important to remark that

doing so, the exact LO result has been factored off in the NLO and NNLO

contributions to improve convergence. In Ref. [170], the Wilson coefficient

for the coupling of two Higgs bosons to gluons CHH has been computed up

to three loops where it deviates from CH = C1 for the first time. CHH was a

missing piece in the NNLO calculation of Ref. [169] where CHH = CH was

assumed. Moreover, in Ref. [170] virtual NNLO corrections were calculated

in the full theory, confirming the EFT calculation of Ref. [169].

It is known that the expansion in 1/Mt works extremely well for the case

of a single Higgs boson, see Refs. [72, 76, 102], employing the aforesaid fac-

torization procedure. For that reason we computed for Higgs boson pair
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production at NLO power corrections due to a finite top quark mass, also

factoring off the exact LO dependence on Mt. In Ref. [171] we presented re-

sults expanded up to O
(
1/M8

t

)
, in Ref. [172] to O

(
1/M10

t

)
and in Ref. [173]

they were available to O
(
1/M12

t

)
. The discussion of results has not changed

by including new terms:

• Including 1/Mt corrections is necessary to detect deviations in λ of

O(10%).

• Compared to the prediction in the Mt → ∞ limit

σNLO
HH = 19.7LO + 19.0NLO,Mt→∞ fb,

we obtained for the LHC at 14 TeV

σNLO
HH = 19.7LO + (27.3± 5.9)NLO,1/M12

t fb,

where the error refers to the difference of the two highest orders in

the expansion in 1/Mt (scale variation underestimates the theoretical

uncertainty at NLO).

• Above contributions up to O
(
1/M12

t

)
can be seen either as an improve-

ment of current precision with corrections of about 20% or at least as

reliable error estimate for a NLO computation in this process.

We refrain from discussing the phenomenological studies of Ref. [171] in

more detail. Instead we refer to the PhD thesis of J. Grigo, see Ref. [174],

whose main subject is Higgs boson pair production. In the following we

give a short account of some technical aspects.

5.1.1 Top quark mass corrections

Being interested mainly in the total cross section for gg → HH, we make

use of the optical theorem (see Chapter 3) as first ingredient. We com-

pute imaginary parts or discontinuities of the forward scattering amplitude

M(gg→ gg) related to a Higgs boson pair instead of having to square

M(gg→ HH) and perform the phase space integrations. This is sketched

in Fig. 22. Note that in contrast to single Higgs boson production a valid

cut now goes through two Higgs bosons and additional partons. On the one

hand, this method simplifies the calculation, namely: forward scattering

kinematics, common treatment of contributions related to different phase

space integrations and computation of the latter only in the very end at mas-

ter integral level. On the other hand, one has to compute a larger number

of diagrams with more loops. Purely virtual corrections are cross-checked

in a direct calculation via squaring the amplitude for M(gg → HH) and

performing the two-particle phase space integrals.

The second ingredient making this calculation feasible is the asymptotic

expansion at diagrammatic level. See, e.g., Ref. [175]. This procedure effec-

tively reduces the number of loops and scales in the integrals to be evaluated,

thus diminishing some of the drawbacks connected to use of the optical the-

orem. We give a precise formulation of the asymptotic expansion procedure

for large masses in the following.
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∫
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Figure 22: The correspondence of the total cross section and the imaginary parts
or discontinuities of the forward scattering amplitude is depicted for the LO order
contributions. For Higgs boson pair production we only need to consider cuts
through two Higgs bosons and, beginning at NLO, additional partons. Thick gray
lines represent the top quark, apart from that the notation is as before.

5.1.1.1 Large mass expansion

There exists a universal prescription to perform an expansion of a Feynman

diagram in a given hierarchy of scales at integrand level. The result of this

prescription is equivalent to the expansion of an exact analytic result. How-

ever, for complicated problems it is often impossible to compute the result

analytically with exact dependence on all scales and this prescription must

be employed. For Higgs boson pair production we assume the hierarchy

Mt ≫ mH,
√

s or the expansion parameter ρ = m2
H/M2

t together with the

variable x = 4m2
H/s.

The prescription for an “expansion by subgraphs” consists of two steps:

1. selection of subgraphs γ,

2. expansion of propagators in γ.

The selection of “asymptotically irreducible” or “hard” subgraphs in Step 1

can be formulated in graph theoretical language: valid graphs γ contain all

heavy lines (with mass Mt in our case) and each of their connectivity compo-

nents is one-particle irreducible (1PI) with respect to light lines. Thus, remov-

ing a light line must not disjoin any connectivity component of γ (in general

there can be multiple).

In Step 2 a Taylor expansion in small masses and small external momenta

of γ is performed in the propagators of the subgraph. Among small ex-

ternal momenta are also loop momenta of the inital graph Γ that are not

completely routed through γ. Loop momenta running through lines of γ

only are assumed to be of the same scale as the large mass.

Formally, we have:

Γ ∼ ∑
{γ}

Γ \ {γ} ◦ T [γ] , (250)
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(a) one subgraph
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(b) two subgraphs

Figure 23: Applying the rules for asymptotic expansion to a Feynman diagram
results in general in a sum of contributions (there is only one in Fig. a). Each
contribution in turn is a product of subgraphs (containing the hard scale; M2

t in
our case) and co-subgraphs (containing the soft scales; m2

H , s). The notation is as in
Fig. 22. Figure a shows a real contribution in the qg-channel at NLO, Fig. b a virtual
contribution in the gg-channel at NLO.

where T denotes the Taylor expansion in small parameters in Step 2 (ρ in

our case) and {γ} is the set of valid subgraphs obtained in Step 1. The co-

subgraph Γ \ {γ} is obtained from Γ by contracting all lines that are assigned

to γ.

An OPE separates physics of different scales at the level of the Lagrangian

and its outcome corresponds to an expansion by subgraphs. Expansion by

subgraphs can also be applied successively to transform a multi-scale in-

tegral entirely to single-scale integrals which gives a nested series in the

expansion parameters.

Application of the asymptotic expansion to examples from Higgs boson

pair production can be found in Fig. 23. At NLO (NNLO) massive tadpole

diagrams up to two (three) loops and box diagrams with two scales and

up to two (three) loops appear after the asymptotic expansion which is per-

formed with exp, see Refs. [23, 24]. Massive tadpoles can be calculated with

MATAD, see Ref. [39], and topologies for the box diagrams can be generated

with TopoID, see Ref. [28].
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5.1.2 Towards NNLO corrections

For advancing in this process towards NNLO, further automatization is

needed. Our toolchain for the various steps of the calculation looks as fol-

lows:

1. generation of Feynman diagrams with QGRAF, see Ref. [33],

2. selection of diagrams which have valid cuts with a filter, see Ref. [160],

3. asymptotic expansion with q2e and exp, see Refs. [23, 24],

4. reduction to scalar integrals with FORM, see Refs. [30, 32], or TFORM, see

Ref. [31],

5. reduction to master integrals with rows, see Ref. [49], and FIRE, see

Refs. [44, 45],

6. minimization of the set of master integrals with TopoID, see Ref. [28].

Step 2 is necessary since one cannot steer QGRAF in such a way that only

diagrams with a specific cut structure are generated. Therefore, we filter the

diagrams provided by QGRAF for those which exhibit an appropriate cut in

the s-channel corresponding to an interference term from squaring the am-

plitude M(gg → HH). At NLO, Step 4 turned out to be the bottleneck of

the calculation for going to higher orders in the expansion parameter ρ. The

input for Steps 3 to 6 in the above list is provided in an automatic fashion

by TopoID. More precisely: all the graphs corresponding to a topology as

“mapping patterns” for Step 3, FORM code processing aforementioned topolo-

gies in Step 4 and definitions of topologies suitable for reduction with the

programs listed for Step 5.

5.1.2.1 Mapping of topologies

We briefly discuss the mapping scheme for topologies which is realized with

exp and TopoID. The same scheme can also be used for single Higgs boson

production in the EFT, see Chapter 4.

The asymptotic expansion we apply for Higgs boson pair production

comes with a small complication: the number of loops can vary for different

(co-)subdiagrams. To identify needed topologies we use EFT diagrams from

different loop orders as input to TopoID.

Another issue is the following: exp does not map factorizing topologies

to more generic topologies (that may factorize only after contracting lines).

The co-subgraph in the second line of Fig. 23b is such an example. This

is rather inconvenient since there are non-factorizing numerators which re-

quire a tensor reduction if topology factors are treated individually. Instead,

we recombine topology factors with the help of TopoID after the mapping

with exp is performed. Also, exp is not capable to detect propagators with

identical flow of momenta which must be circumvented with TopoID.

The mapping process consists of the following steps (examples we refer to

in Appendix C are related to single Higgs boson production):
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1. A topsel.<set> file is generated with the graph data from all EFT di-

agrams. The corresponding topologies can have propagators of equal

momenta flow which are left unidentified, hence we call them “(un-

contracted) diagram topologies”. In case of factorizing topologies, sep-

arate entries are written for each topology factor to the configuration

file. See Appendix C.3.1.

2. The full theory diagrams are asymptotically expanded, subgraphs are

mapped to massive tadpoles and co-subgraphs to EFT diagram topolo-

gies from Step 1 with exp. Note that the order of entries for topologies

in the <topsel>.<set> file reflects their complexity. (In case of Higgs

boson production in the EFT ,exp performs only the mapping of a dia-

gram to a topology and no asymptotic expansion is performed.)

3. In Step 2 only few topologies from the topsel.<set> file are actu-

ally used by exp. Information on these topologies (and their combina-

tions in the case of factorizing topologies) are extracted from the <di-

agram>.src files generated by exp with the Perl script post-EXP.pl

included with TopoID. This script gives a Mathematica readable list

which can be passed (e.g. as signature file EXP.<set>.m) to TopoID or

rather to the wrapper package AuTopo (whose name refers to Automatic

Topologies), see Appendix C.3.2.

4. For the topologies from aforementioned EXP.<set>.m file, the mapping

to a generic topology is constructed and corresponding FORM code can

be generated. For factorizing topologies this step can be quite intricate

if exp picks factors from different diagram topologies which need to be

combined properly. The code for non-factorizing topologies is written

in <set>GT.EXP files and for factorizing ones in <set>FT.exp files. See

also Appendices C.3.3 and C.3.4.

In the above <set> denotes a set of diagrams which can be a complete pro-

cess or a particular (sub)channel.

5.2 drell-yan process

The Drell-Yan process, i.e. the production of a lepton pair in hadronic colli-

sions mediated by a vector boson, constitutes an important benchmark pro-

cess at hadron colliders. In particular, it provides information about the

PDFs and is a useful tool in searches for heavier gauge bosons by examining

the invariant mass of the produced leptons.

The Drell-Yan process is induced at leading order by the transition of a

quark-antiquark-pair qq̄ into a massive/virtual vector boson γ, W± or Z0.

For the calculation, we consider a generic coupling for the vector boson V

from the electroweak sector to the quark flavors qi and qj:

qi q̄jV ∼ Qv
ij γµ + Qa

ij γµγ5, (251)

where Qv
ij and Qa

ij encode the couplings of flavors i and j to the vector and

axial-vector component of the boson V = γ, W±, Z0. Note that we consider
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5.2 drell-yan process

(a) NLO: qq̄, V (b) NLO: qg, R (c) NNLO: qq̄, V2

(d) NNLO: qg, VR (e) NNLO: gg, R2

(f) N3LO: qq̄, VR2 and R3

Figure 24: Sample Feynman diagrams up to N3LO contributing to the Drell-Yan
process. The wiggly lines denote a generic vector boson, i.e. γ, W± or Z0. The
zigzag lines mark the considered cuts through a massive vector boson and addi-
tional massless particles. The captions state the perturbative order, the channel and
the type of contributions (“R” for real, “V” for virtual or their interference).

QCD corrections to this process, hence the renormalization of the coupling

in Eq. (251) is of higher orders in
√

GF.

The calculation of total cross sections can be performed with the same

techniques as for Higgs boson production, see Chapter 4. We use the optical

theorem where a valid cut goes in this case through the heavy gauge boson

and additional light quark and gluon lines. In particular, the same families

of scalar Feynman integrals, see Section 4.3, and master integrals occur, see

Refs. [73, 113]. Apart from the treatment of γ5, to be explained below, all

other aspects of the calculation are analogous to Higgs boson production.

Our aim is to evaluate all convolution integrals relevant to N3LO with the

help of MT, see Section 4.4.3 and Ref. [115]. Therefore, we need to evaluate

partonic cross sections in the following orders and channels to the indicated

order in ǫ:

LO qq̄ to O
(
ǫ3
)
,

NLO qg and qq̄ to O
(
ǫ2
)
,
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NNLO gg, qg, qq′, qq, and qq̄ to O(ǫ).

See Fig. 24 for sample diagrams for single- and double-real corrections which

are considered simultaneously.

Using the same notation as in Ref. [176], the LO result for the Drell-Yan

process, including its full ǫ-dependence, reads

∆
(0)
qi q̄ j

=
(

Qv
ij + Qa

ij

)

δ(1− x) (1− ǫ) . (252)

The ǫ-dependence originates from the trace over gamma-matrices of the only

diagram at this order, i.e. Tr
[
γµγµ

]
for the vector coupling and Tr

[
γµγ5γµγ5

]

for the axial-vector coupling.

5.2.1 Treatment of γ5

Singlet diagrams which exhibit the vector boson’s γµγ5 vertices in two dis-

tinct quark lines or traces begin to contribute at NNLO. Since diagrams of

this type are not present at lower loops they are manifestly finite and could

be evaluated within D = 4 dimensions. However, for us this is not an option

since we are interested in the terms of O(ǫ).
For each non-singlet diagram one has always zero or two γ5 in a fermion

trace. Therefore, γ5 can be anticommuted with any γµ until it cancels with a

second γ5. All non-singlet diagrams are completely unproblematic and can

be treated with this “naive” γ5.

For singlet diagrams two points of view are possible. On the one hand,

one can make explicit use of the fact that the SM is free of triangle-anomalies

when taking whole fermion families into account, see Refs. [177, 178], and

set all singlet diagrams to zero.

The other point of view employs the definition given by ’t Hooft and Velt-

man in Refs. [20, 179]. This is also known as Larin’s scheme, see Refs. [180,

181], and affects only singlet contributions:

• Axial-vector couplings are replaced by:

γµγ5 =
i

3!
ǫµνρσγ[νρσ]. (253)

• Fermion traces are computed with these antisymmetrized products of

gamma-matrices:

γ[νρσ] =
1

3!
(γνγργσ − γνγργσ ± (. . .))

=
1

2
(γνγργσ − γσγργν) . (254)

• Finally, indices of epsilon-tensors are contracted in D dimensions using

ǫαβγδǫµνρσ = −g
[α
µ g

β
ν g

γ
ρ g

δ]
σ , (255)

where parentheses denote total antisymmetrization of indices.
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5.2 drell-yan process

As cross-check we implemented this prescription in two variants: one uses

the FORM built-in epsilon-tensor and its contractions, for the other one con-

tractions are done “manually”.

In Larin’s scheme the LO result takes the form

∆
(0)
qi q̄ j

= δ(1− x)

[

Qv
ij (1− ǫ) + Qa

ij

(

1− 8

3
ǫ +

1

3
ǫ2 +

8

3
ǫ3 − 4

3
ǫ4

)]

.

(256)

Note, one has to include the finite renormalization of the axial-vector cur-

rent to find within this scheme agreement with the finite vector coupling

contributions stemming from non-singlet diagrams (always with two γ5 in a

fermion trace). The renormalization constant for the non-singlet axial-vector

current is, see Refs. [180, 181],

Zns
5 = 1− αs

π
CF +

(αs

π

)2
(

11

8
C2

F −
107

144
CFCA +

1

36
CFTFnl

)

+
(αs

π

)3
[

C3
F

(

−185

96
+

3

2
ζ3

)

+ C2
FCA

(
2917

864
− 5

2
ζ3

)

+ C2
FTFnl

(

− 31

432
− 1

3
ζ3

)

+ CFC2
A

(

−2147

1728
+

7

8
ζ3

)

+CFCATFnl

(
89

648
+

1

3
ζ3

)

+
13

324
CFT2

Fn2
l

]

. (257)

5.2.2 Results

For convenience, we treated purely virtual corrections separately. The NNLO

expression for the resulting quark form factor can be found in Refs. [182–

185], N3LO results are presented in Refs. [116, 117, 186]. Higher orders in ǫ

for purely virtual corrections agree with the results given in Ref. [185].

We checked that at the level of bare amplitudes, before using results for

the master integrals, the dependence on the gauge parameter ξ dropped out

in the sum of all diagrams. It was possible to extract some of the correction

terms in different ways from the calculated forward scattering amplitudes.

This served as inner consistency check for our setup. Moreover, the vector

part can be compared to the axial-vector part, using Eq. (257) in Larin’s

scheme.

We found agreement with Ref. [176], after implementing the information

given in the erratum and in Ref. [100] and rewriting all polylogarithms in

terms of HPLs. Concerning the O(ǫ) terms of the NLO correction terms

∆
(1)
qq̄ and ∆

(1)
qg , one has to pay attention in two aspects. First, in Ref. [176] the

definition D = 4 + ǫ and not D = 4− 2ǫ is used. Second, from the complete

series in αs the dependence of the LO coeffcient on ǫ is factored out (one is

always free to do so as long as the factor has no poles in ǫ). In the notation

of Ref. [176] this means:

∆ij = (1− ǫ)

(

∆
(0)
ij +

αs

4π
∆
(1)
ij +

( αs

4π

)2
∆
(2)
ij +O

(
α3

s

)
)

. (258)
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other applications

However, we found a discrepancy for ∆
(2),A
qq̄,AB and our result (including

O(ǫ) terms) reads

∆
(2),A
qq̄,AB =

( αs

4π

)2
CF

{

1− x +
1 + 2x

2
H0(x)

+ ǫ

[

−3x2 − 3x− 2

1− x
H2(x) + H1,0(x)− 4x2 − 3x− 5

2(1− x)
H0,0(x)

+ (5− 3x)H1(x) +
3x2 − 13x + 6

2(1− x)
H0(x)

+
π2(3x2 − 4x− 1)

6(1− x)
+

7(1− x)

2

+ (2(1− x) + (1 + 2x)H0(x)) ln

(
µ2

m2
V

)]}

. (259)

Note that we stick to the notation of Ref. [176] which uses αs/(4π) as ex-

pansion parameter. The symbol mV is used for the mass or virtuality of the

vector boson. All expressions for the correction terms to higher orders in ǫ

(one version in the naive scheme, one in Larin’s scheme for γ5) can be found

in electronic form in Ref. [34].

All convolution integrals of correction terms to the partonic cross section

and splitting functions can be computed with MT, see Ref. [115]. The tran-

sition function, see Eq. (213) on Page 139, and the generic expression for

collinear counterterms, see Eq. (218) to Eq. (221) on Page 139, can be speci-

fied to the structure of channels in the Drell-Yan process. Thus, the collinear

subtraction terms to N3LO are also known for the Drell-Yan process.
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C O N C L U S I O N

The main topics of this thesis are Higgs boson production discussed in Chap-

ter 4 and the program package TopoID.

We published results for all collinear counterterms up to N3LO (which

give also finite contrubutions) in Refs. [90, 115, 150, 157]. For a particular

class of triple-real integrals we obtained results with full dependence on x,

see Ref. [19]. A full kinematics calculation for further triple-real and also

double-real contributions is underway and was discussed in Section 4.5, see

also Ref. [161]. Aforementioned contributions are the only missing ingredi-

ents for the full N3LO Higgs boson production cross section. We emphasize

that all the code to finally tackle the calculation of the gg-channel at N3LO

is available now.

The package TopoID is designed to be a process independent tool for topol-

ogy identification, FORM code generation and finding non-trivial relations

among integrals that remain afer applying a reduction algorithm. Tech-

niques that are implemented in TopoID are carefully explained in Chapters 2

and 3. Several algorithms that are given in this thesis proved to be invaluable

in real calculations.

Methods needed for Higgs boson production were also transferred to

Higgs boson pair production and the Drell-Yan process in Chapter 5. For

Higgs boson pair production we computed corrections due to a finite top

quark mass in Refs. [171–173]. For the Drell-Yan process we provided all

convolutions for the collinear counterterms up to N3LO, see Refs. [115, 157].
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a.1 massless propagators at five loops
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Figure 25: Minimial set of massless propagator topologies at five loops.
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feynman integral families
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A.1 massless propagators at five loops
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B
H I G G S B O S O N P R O D U C T I O N

b.1 splitting functions at nnlo

The splitting functions to three loops were computed in Refs. [111, 112].

We list the results up to two loops with regularized singularities in terms

of delta- and plus-distributions. Moreover, we show the combinations of

singlet and non-singlet quark contributions corresponding to the partonic

channels qq, qq′ and qq̄. For P
(1)
ij , P

(2)
qq′ and P

(2)
qq̄ see Section 4.2.2.4 on Page 125.

P
(2)
qg = CF

(
2x2 − 2x + 1

4
H2(x) +

2x2 − 2x + 1

4
H1,1(x)

+
2x2 − 2x + 1

4
H1,0(x) +

4x2 − 2x + 1

8
H0,0(x)

− (1− x)x

2
H1(x) +

8x2 − 4x + 3

16
H0(x)

−π2(2x2 − 2x + 1)

24
+

20x2 − 29x + 14

16

)

+ CA

(

−2x2 − 2x + 1

4
H1,1(x)− 2x2 + 2x + 1

4
H−1,0(x)

− 2x + 1

4
H0,0(x) +

(1− x)x

2
H1(x)

+
44x2 + 24x + 3

24
H0(x)− π2x

12

−218x3 − 225x2 + 18x− 20

72x

)

, (260)

P
(2)
gq = + C2

F

(

− x2 − 2x + 2

2x
H1,1(x) +

x− 2

4
H0,0(x)

+
5x2 − 6x + 6

4x
H1(x) +

7x + 4

8
H0(x)− 7x + 5

8

)

+ CFCA

(
x2 − 2x + 2

2x
H2(x) +

x2 − 2x + 2

2x
H1,1(x)

+
x2 + 2x + 2

2x
H−1,0(x) +

x2 − 2x + 2

2x
H1,0(x)

+
x + 2

2
H0,0(x)− 17x2 − 22x + 22

12x
H1(x)

− 8x2 + 15x + 36

12
H0(x) +

π2

6

+
44x3 + 37x2 + 19x + 9

36x

)
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+ CFTFnl

(
x2 − 2x + 2

3x
H1(x)− 2(4x2 − 5x + 5)

9x

)

, (261)

P
(2)
gg = CFTFnl

(

−(1 + x)H0,0(x)− 5x + 3

2
H0(x)

− (1− x)(5x2 + 11x− 1)

3x

)

+ CATFnl

(

− x + 1

3
H0(x) +

23x3 − 19x2 + 29x− 23

18x

)

+ C2
A

(
(1− x + x2)2

(1− x)x
H2(x) +

(1 + x + x2)2

(1 + x)x
H−1,0(x)

+
(1− x + x2)2

(1− x)x
H1,0(x) +

(−1− x + x2)2

(1− x)(1 + x)
H0,0(x)

+
−25 + 11x− 44x2

12
H0(x) +

π2(2x3 + 2x2 + 4x + 3)

12(1 + x)

−25 + 109x

72

)

+

[
1

1− x

]

+

(

C2
A

(

−π2

12
+

67

36

)

− CATFnl
5

9

)

+ δ(1− x)

(

−CFTFnl
1

4
+ C2

A

(
2

3
+

3ζ(3)

4

)

− CATFnl
1

3

)

, (262)

P
(2)
qq =

[
1

1− x

]

+

(

−CFTFnl
5

9
+ CFCA

(
67

36
− π2

12

))

+ δ(1− x)

(

C2
F

(
3ζ(3)

2
− π2

8
+

3

32

)

+ CFCA

(

−3ζ(3)

4
+

11π2

72
+

17

96

)

+CFTFnl

(

−π2

18
− 1

24

))

+ C2
F

(
x2 + 1

2(1− x)
H2(x) +

x2 + 1

2(1− x)
H1,0(x)− x + 1

4
H0,0(x)

+
2x2 − 2x− 3

4(1− x)
H0(x)− 5

4
(1− x)

)

+ CFCA

(
x2 + 1

4(1− x)
H0,0(x) +

5x2 + 17

24(1− x)
H0(x) +

π2(x + 1)

24

−187x− 53

72

)

+ CFTF

(

− x + 1

2
H0,0(x) +

8x2 + 15x + 3

12
H0(x)

+
(1− x)(28x2 + 10 + x)

18x

+nl

(

− 1 + x2

6(1− x)
H0(x) +

11x− 1

18

))

. (263)

186



B.2 collinear counterterms at n3 lo

b.2 collinear counterterms at n3lo

The N3LO collinear counterterm, see Section 4.4.2, for the qq′-channel was

given in Eq. (229) on Page 141. Here, we give Eq. (221) evaluated for the

remaining partonic channels.

δσ̂
(3)
qq′ = δσ̂

(3)
qq =

1

ǫ3

{[

P
(1)
gq ⊗ P

(1)
gq ⊗ P

(1)
qq ⊗ σ̂

(0)
gg

]

(x)

+
[

P
(1)
gg ⊗ P

(1)
gq ⊗ P

(1)
gq ⊗ σ̂

(0)
gg

]

(x)

+β0

[

P
(1)
gq ⊗ P

(1)
gq ⊗ σ̂

(0)
gg

]

(x)
}

− 1

ǫ2

{[

P
(1)
gq ⊗ P

(1)
qg ⊗ σ̂

(1)
qq̄

]

(x) + 3
[

P
(1)
gq ⊗ P

(1)
qq ⊗ σ̂

(1)
qg

]

(x)

+
[

P
(1)
gg ⊗ P

(1)
gq ⊗ σ̂

(1)
qg

]

(x) +
[

P
(1)
gq ⊗ P

(1)
gq ⊗ σ̂

(1)
gg

]

(x)

+
[

P
(1)
gq ⊗ P

(2)
gq ⊗ σ̂

(0)
gg

]

(x) + β0

[

P
(1)
gq ⊗ σ̂

(1)
qg

]

(x)
}

+
1

ǫ

{

2
[

P
(1)
qg ⊗ σ̂

(2)
qg

]

(x) + 2
[

P
(1)
qq ⊗ σ̂

(2)
qq

]

(x)

+
[

P
(2)
qq̄ ⊗ σ̂

(1)
qq̄

]

(x) +
[

P
(2)
qg ⊗ σ̂

(1)
qg

]

(x)
}

, (264)

δσ̂
(3)
qq̄ =

1

ǫ3

{[

P
(1)
gq ⊗ P

(1)
gq ⊗ P

(1)
qq ⊗ σ̂

(0)
gg

]

(x)

+
[

P
(1)
gg ⊗ P

(1)
gq ⊗ P

(1)
gq ⊗ σ̂

(0)
gg

]

(x)

+β0

[

P
(1)
gq ⊗ P

(1)
gq ⊗ σ̂

(0)
gg

]

(x)
}

− 1

ǫ2

{

2
[

P
(1)
qq ⊗ P

(1)
qq ⊗ σ̂

(1)
qq̄

]

(x) +
[

P
(1)
gq ⊗ P

(1)
qg ⊗ σ̂

(1)
qq̄

]

(x)

+ 3
[

P
(1)
gq ⊗ P

(1)
qq ⊗ σ̂

(1)
qg
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(x) +
[

P
(1)
gg ⊗ P

(1)
gq ⊗ σ̂

(1)
qg

]

(x)

+
[

P
(1)
gq ⊗ P

(1)
gq ⊗ σ̂

(1)
gg

]

(x) +
[

P
(1)
gq ⊗ P

(2)
gq ⊗ σ̂

(0)
gg

]
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+β0

([

P
(1)
qq ⊗ σ̂

(1)
qq̄

]

(x) +
[

P
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gq ⊗ σ̂

(1)
qg
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(x)
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+
1

ǫ

{

2
[

P
(1)
qq ⊗ σ̂

(2)
qq̄

]

(x) + 2
[

P
(1)
gq ⊗ σ̂

(2)
qg

]

(x)

+
[

P
(2)
qq ⊗ σ̂

(1)
qq̄

]
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[

P
(2)
gq ⊗ σ̂

(1)
qg

]

(x)
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, (265)

δσ̂
(3)
qg =

1

6ǫ3

{[

P
(1)
gq ⊗ P

(1)
qq ⊗ P

(1)
qq ⊗ σ̂

(0)
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]
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[

P
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gg ⊗ P

(1)
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+ 8nl
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+ β0

(

3
[

P
(1)
gq ⊗ P

(1)
qq ⊗ σ̂
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+9
[
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(1)
gg ⊗ P
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gg
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)

+2β2
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P
(1)
gg ⊗ P

(1)
qq ⊗ σ̂

(1)
qg

]

(x) + 3
[

P
(1)
gg ⊗ P

(1)
gg ⊗ σ̂

(1)
qg

]

(x)

+ 3
[

P
(1)
gq ⊗ P

(1)
qq ⊗ σ̂

(1)
gg

]

(x) + 9
[

P
(1)
gg ⊗ P

(1)
gq ⊗ σ̂

(1)
gg

]

(x)

+ 4
[

P
(1)
gq ⊗ P

(2)
qq′ ⊗ σ̂

(0)
gg

]

(x) + 2
[

P
(1)
gq ⊗ P

(2)
qq̄ ⊗ σ̂

(0)
gg

]

(x)

+ 2
[

P
(1)
gq ⊗ P

(2)
qq ⊗ σ̂

(0)
gg

]

(x) +
[

P
(2)
gq ⊗ P

(1)
qq ⊗ σ̂

(0)
gg

]

(x)

+ 5
[

P
(1)
gg ⊗ P

(2)
gq ⊗ σ̂

(0)
gg

]

(x) + 4
[

P
(2)
gg ⊗ P

(1)
gq ⊗ σ̂

(0)
gg

]

(x)

+ 18nl

[

P
(1)
gq ⊗ P

(1)
qg ⊗ σ̂

(1)
qg

]

(x)

+ β0

(

3
[

P
(1)
qg ⊗ σ̂

(1)
qq̄

]

(x) + 3
[

P
(1)
qq ⊗ σ̂

(1)
qg

]

(x)

+ 3
[

P
(1)
gg ⊗ σ̂

(1)
qg

]

(x) + 3
[

P
(1)
gq ⊗ σ̂

(1)
gg

]

(x)

+2
[

P
(2)
gq ⊗ σ̂

(0)
gg

]

(x)
)

+2β1

[

P
(1)
gq ⊗ σ̂

(0)
gg

]

(x)
}

+
1

6ǫ

{

12
[

P
(1)
qg ⊗ σ̂

(2)
qq′

]

(x) + 6
[

P
(1)
qg ⊗ σ̂

(2)
qq

]

(x)

+ 6
[

P
(1)
qg ⊗ σ̂

(2)
qq̄

]

(x) + 6
[

P
(1)
qq ⊗ σ̂

(2)
qg

]

(x)

+ 6
[

P
(1)
gg ⊗ σ̂

(2)
qg

]

(x) + 6
[

P
(1)
gq ⊗ σ̂

(2)
gg

]

(x)

+ 3
[

P
(2)
qg ⊗ σ̂

(1)
qq̄

]

(x) + 6
[

P
(2)
qq′ ⊗ σ̂

(1)
qg

]

(x)

+ 3
[

P
(2)
qq̄ ⊗ σ̂

(1)
qg

]

(x) + 3
[

P
(2)
qq ⊗ σ̂

(1)
qg

]

(x)

+ 3
[

P
(2)
gg ⊗ σ̂

(1)
qg

]

(x) + 3
[

P
(2)
gq ⊗ σ̂

(1)
gg

]

(x)

+2
[

P
(3)
gq ⊗ σ̂

(0)
gg

]

(x)
}

, (266)

δσ̂
(3)
gg =

1

3ǫ3

{

4
[

P
(1)
gg ⊗ P

(1)
gg ⊗ P

(1)
gg ⊗ σ̂

(0)
gg

]

(x)

+ nl

(

10
[

P
(1)
gg ⊗ P

(1)
gq ⊗ P

(1)
qg ⊗ σ̂

(0)
gg

]

(x)

+2
[

P
(1)
gq ⊗ P

(1)
qg ⊗ P

(1)
qq ⊗ σ̂

(0)
gg

]

(x)
)

+ 6β0

[

P
(1)
gg ⊗ P

(1)
gg ⊗ σ̂

(0)
gg

]

(x)

+6nl β0

[

P
(1)
gq ⊗ P

(1)
qg ⊗ σ̂

(0)
gg

]

(x) + 2β2
0

[

P
(1)
gg ⊗ σ̂

(0)
gg

]

(x)
}

− 1

3ǫ2

{

6
[

P
(1)
gg ⊗ P

(1)
gg ⊗ σ̂

(1)
gg

]

(x) + 6
[

P
(1)
gg ⊗ P

(2)
gg ⊗ σ̂

(0)
gg

]

(x)

+ nl

(

6
[

P
(1)
qg ⊗ P

(1)
qg ⊗ σ̂

(1)
qq̄

]

(x)

188



B.2 collinear counterterms at n3 lo

+ 6
[

P
(1)
qg ⊗ P

(1)
qq ⊗ σ̂

(1)
qg

]

(x)

+ 18
[

P
(1)
gg ⊗ P

(1)
qg ⊗ σ̂

(1)
qg

]

(x)

+ 6
[

P
(1)
gq ⊗ P

(1)
qg ⊗ σ̂

(1)
gg

]

(x)

+ 4
[

P
(1)
gq ⊗ P

(2)
qg ⊗ σ̂

(0)
gg

]

(x)

+2
[

P
(2)
gq ⊗ P

(1)
qg ⊗ σ̂

(0)
gg

]

(x)
)

+ β0

(

3
[

P
(1)
gg ⊗ σ̂

(1)
gg

]

(x) + 2
[

P
(2)
gg ⊗ σ̂

(0)
gg

]

(x)

+6nl

[

P
(1)
qg ⊗ σ̂

(1)
qg

]

(x)
)

+2β1

[

P
(1)
gg ⊗ σ̂

(0)
gg

]

(x)
}

+
1

3ǫ

{

6
[

P
(1)
gg ⊗ σ̂

(2)
gg

]

(x) + 3
[

P
(2)
gg ⊗ σ̂

(1)
gg

]

(x)

+ 2
[

P
(3)
gg ⊗ σ̂

(0)
gg

]

(x)

+nl

(

12
[

P
(1)
qg ⊗ σ̂

(2)
qg

]

(x) + 6
[

P
(2)
qg ⊗ σ̂

(1)
qg

]

(x)
)}

. (267)
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C
S A M P L E C O D E

The following variables need to be defined in FORM:

d1, d2, . . . : denominator (symbol),

n1, n2, . . . : numerator (symbol),

p1, p2, . . . : external momentum (vector),

v1, v2, . . . : internal momentum (vector),

NNLOrGT1, NNLOrGT2, . . . : generic topology (function),

NNLOrBT1, NNLOrBT2, . . . : basic topology (function),

x, [1-x], [1+x], . . . : kinematic variable (symbol),

s, mh: dimensionful quantity (symbol).

c.1 generic topologies

For a graphical representation of the topology NNLOrGT6, see Fig. 14 on

Page 129. The FORM code below is an excerpt from NNLOrGT.inc.

∗−−#[ NNLOrGT6 :

∗

∗ Generated by TopoID−1.2 (2014−10−16) on 2014−12−02 1 3 : 0 5 : 1 4 .

∗

∗ Note : Delete t h i s comment on mod i f i cat ion .

∗

#+

∗ topology l i n e d e f i n i t i o n s :

∗ 1 : d7 ( g l ) , −p2 − v1 − v2 , 6 −− 5

∗ 2 : d5 ( g l ) , −v2 , 5 −− 4

∗ 3 : d6 ( g l ) , p1 + v2 , 6 −− 4

∗ 4 : d3 ( hb ) , −p2 − v1 , 5 −− 2

∗ 5 : d1 ( g l ) , −v1 , 2 −− 1

∗ 6 : d4 ( g l ) , −p1 + p2 + v1 , 6 −− 3

∗ 7 : d2 ( g l ) , −p1 + v1 , 3 −− 1

∗ ( scheme w/o completion )

#−

# include NNLOrBT2 . def

# procedure zNNLOrGT6

∗ vanishing sub−topolog ies

i f ( ( count ( d7 , 1 ) >= 0 ) )

d i scar d ;
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i f ( ( count ( d3 , 1 ) >= 0 ) )

d i scar d ;

i f ( ( count ( d2 , 1 ) >= 0 ) )

d i scar d ;

i f ( ( count ( d5 , 1 ) >= 0 ) &&

( count ( d6 , 1 ) >= 0 ) )

d i scar d ;

# endprocedure

# procedure pNNLOrGT6(MM)

∗ p a r t i a l f r a c t i o n decomposition :

∗ −d1 + d2 + d3 − d4 + s − s∗x

id d2 = d1 − d3 + d4 − ( ‘MM’)∗ [1− x ] ;

id d4/d2 = −((d1 − d2 − d3 − ( ‘MM’)∗ [1− x ] ) / d2 ) ;

id d1/(d2∗d4 ) = ( d2 + d3 − d4 + ( ‘MM’)∗ [1−x ] ) / ( d2∗d4 ) ;

id d3/(d1∗d2∗d4 ) = ( d1 − d2 + d4 − ( ‘MM’)∗ [1− x ] ) / ( d1∗d2∗d4 ) ;

id 1/(d1∗d2∗d3∗d4 ) = ( d1 − d2 − d3 + d4 ) / ( d1∗d2∗d3∗d4 ∗ ( ‘MM’ ) \

∗[1−x ] ) ;

∗ kinematic c o n s t r a i n t s

id p3 = p2 ;

id p4 = p1 ;

id p1 . p1 = 0 ;

id p2 . p2 = 0 ;

id p1 . p2 = −( ‘MM’ ) / 2 ;

# endprocedure

# procedure mNNLOrGT6tNNLOrBT2 ( marker ,MM, M2ep)

∗ subset 1

∗ map from ( 1 , 2 , 3 , 4 , 5 , 7 ) to ( 1 , 3 , 4 , 5 , 6 , 7 )

i f ( ( count ( d4 , 1 ) == 0 ) ) ;

id ( ‘ marker ’ ) = NNLOrBT2 ;

mu r e p l a c e ( d7 , d7 , d5 , d5 , d6 , d4 , d3 , d3 , d1 , d1 , d2 , d2 ) ;

mu r e p l a c e ( v1 , v1 , v2 ,−p1 − v2 ) ;

end i f ;

∗ subset 2

∗ map from ( 1 , 2 , 3 , 4 , 6 , 7 ) to ( 3 , 1 , 2 , 5 , 6 , 7 )

i f ( ( count ( d1 , 1 ) == 0 ) ) ;

id ( ‘ marker ’ ) = NNLOrBT2 ;

mu r e p l a c e ( d7 , d5 , d5 , d7 , d6 , d6 , d3 , d3 , d4 , d1 , d2 , d2 ) ;

mu r e p l a c e ( p1 , p2 , p2 , p1 ) ;

mu r e p l a c e ( v1 ,−p1 + p2 + v1 , v2 , p1 − p2 − v1 + v2 ) ;

end i f ;

. s o r t

# c a l l cNNLOrBT2 ( ( ‘MM’ ) )

. s o r t

# c a l l gNNLOrBT2( ( ‘MM’ ) , ( ‘ M2ep ’ ) )

. s o r t

# c a l l zNNLOrBT2

. s o r t

# endprocedure

# procedure NNLOrGT6

#message t h i s i s ”NNLOrGT6” . . .

∗ apply s i m p l i f i c a t i o n s

#message apply s i m p l i f i c a t i o n s . . .

r epeat ;

# c a l l zNNLOrGT6

# c a l l pNNLOrGT6( s )
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endrepeat ;

. s o r t

∗ map to independents

#message map to independents . . .

mu marker ;

# c a l l mNNLOrGT6tNNLOrBT2 ( marker , s , [ (muˆ2/ s ) ˆ ep ] )

. s o r t

i f ( count ( marker , 1 ) != 0 )

e x i t ” Error : \”NNLOrGT6\” not completely mapped to \

independents . ” ;

∗ symmetrize

# i f d e f ‘symNNLOrBT2 ’

#message symmetrize ”NNLOrBT2 ” . . .

# c a l l yNNLOrBT2

. s o r t

# end i f

∗ load reduction t a b l e s

# i f d e f ‘useNNLOrBT2’

#message read t a b l e f o r ”NNLOrBT2 ” . . .

# include NNLOrBT2 . inx

. s o r t

# end i f

# endprocedure

∗ perform mapping , change notat ion

# c a l l i n i t l i n e s

∗ t r i g g e r topology

# c a l l NNLOrGT6

∗−−#] NNLOrGT6 :

In this sample code, the procedure zNNLOrGT6 discards zero subtopologies,

pNNLOrGT6 performs partial fractioning, mNNLOrGT6tNNLOrBT2 the mapping

from NNLOrGT6 to NNLOrBT2 whose FORM code is included at the beginning.

In this case two linearly independent subtopologies (which are isomorphic)

emerge after the partial fractioning of the generic topology.

c.2 basic topologies

For a graphical representation of the topology NNLOrBT2, see Fig. 15 on

Page 130. The FORM code below is an excerpt from NNLOrBT.def.

∗−−#[ NNLOrBT2 :

∗

∗ Generated by TopoID−1.2 (2014−10−16) on 2014−11−17 1 2 : 5 7 : 5 4 .

∗

∗ Note : Delete t h i s comment on mod i f i cat ion .

∗

∗ topology l i n e d e f i n i t i o n s :

∗ 1 : d7 ( g l ) , −p1 + p2 + v1 − v2 , 6 −− 4

∗ 2 : d6 ( g l ) , p1 − v1 + v2 , 5 −− 4

∗ 3 : d5 ( g l ) , p1 + v2 , 6 −− 3

∗ 4 : d4 ( g l ) , −v2 , 5 −− 3

∗ 5 : d3 ( hb ) , −p2 − v1 , 6 −− 2
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∗ 6 : d1 ( g l ) , −v1 , 2 −− 1

∗ 7 : d2 ( g l ) , −p1 + v1 , 5 −− 1

# include fsymm . prc

# i f n d e f ‘symNNLOrBT2 ’

# d ef ine symNNLOrBT2 ”0”

# end i f

# d ef ine top ”NNLOrBT2”

# d ef ine pNNLOrBT2 ”p1 , p2”

# d ef ine kNNLOrBT2 ”v1 , v2”

# d ef ine dNNLOrBT2 ”d1 , d2 , d3 , d4 , d5 , d6 , d7”

# d ef ine vNNLOrBT2 ”x ,[1−x ]”

# procedure fNNLOrBT2 (MM, M2ep)

∗ write as f a c t o r s

id NNLOrBT2( a1 ? , a2 ? , a3 ? , a4 ? , a5 ? , a6 ? , a7 ? )

= NNLOrBT2∗ ( ‘M2ep’ ) ˆ ( − 2 )∗ ( ‘MM’) ˆ (−2∗2 − a1 − a2 − a3 − a4 \

− a5 − a6 − a7 )

∗d7ˆ(−a1 )∗d6ˆ(−a2 )∗d5ˆ(−a3 )∗d4ˆ(−a4 )∗d3ˆ(−a5 )∗d1ˆ(−a6 )\

∗d2ˆ(−a7 ) ;

# endprocedure

# procedure gNNLOrBT2(MM, M2ep)

∗ write as funct ion

id NNLOrBT2∗d7 ˆ a1 ?∗d6 ˆ a2 ?∗d5 ˆ a3 ?∗d4 ˆ a4 ?∗d3 ˆ a5 ?∗d1 ˆ a6 ?∗d2 ˆ a7 ?

= ( ‘M2ep ’ ) ˆ ( + 2 ) ∗ ( ‘MM’ ) ˆ ( + 2 ∗ 2 + a1 + a2 + a3 + a4 + a5 + a6 \

+ a7 )

∗NNLOrBT2(−a1 ,−a2 ,−a3 ,−a4 ,−a5 ,−a6 ,−a7 ) ;

# endprocedure

# procedure eNNLOrBT2 (MM)

∗ expansion of f a c t o r s

i f ( match (NNLOrBT2 ) )

id d7 = ( ‘MM’ ) − 2∗p1 . v1 + 2∗p1 . v2 + 2∗p2 . v1 − 2∗p2 . v2 + \

v1 . v1 − 2∗v1 . v2 + v2 . v2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id d6 = −2∗p1 . v1 + 2∗p1 . v2 + v1 . v1 − 2∗v1 . v2 + v2 . v2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id d5 = 2∗p1 . v2 + v2 . v2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id d4 = v2 . v2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id d3 = ( ‘MM’ ) ∗ x + 2∗p2 . v1 + v1 . v1 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id d1 = v1 . v1 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id d2 = −2∗p1 . v1 + v1 . v1 ;

. s o r t

∗ kinematic c o n s t r a i n t s

id p1 . p1 = 0 ;

id p2 . p2 = 0 ;
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id p1 . p2 = −( ‘MM’ ) / 2 ;

. s o r t

# endprocedure

# procedure cNNLOrBT2 (MM)

∗ reduction of s c a l a r products

i f ( match (NNLOrBT2 ) )

id p1 . v1 = ( d1 − d2 ) / 2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id p2 . v1 = (−d1 + d3 − ( ‘MM’ ) ∗ x ) / 2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id v1 . v1 = d1 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id p1 . v2 = (−d4 + d5 ) / 2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id p2 . v2 = (−d1 + d3 + d6 − d7 + ( ‘MM’)∗ [1−x ] ) / 2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id v1 . v2 = ( d2 + d5 − d6 ) / 2 ;

. s o r t

i f ( match (NNLOrBT2 ) )

id v2 . v2 = d4 ;

. s o r t

∗ kinematic c o n s t r a i n t s

id p1 . p1 = 0 ;

id p2 . p2 = 0 ;

id p1 . p2 = −( ‘MM’ ) / 2 ;

. s o r t

# endprocedure

# procedure zNNLOrBT2

∗ vanishing sub−topolog ies

id NNLOrBT2( a1 ? , a2 ? , a3 ? , a4 ? , a5 ? neg0 , a6 ? , a7 ? ) = 0 ;

id NNLOrBT2( a1 ? neg0 , a2 ? neg0 , a3 ? , a4 ? , a5 ? , a6 ? , a7 ? ) = 0 ;

id NNLOrBT2( a1 ? , a2 ? neg0 , a3 ? , a4 ? , a5 ? , a6 ? , a7 ? neg0 ) = 0 ;

id NNLOrBT2( a1 ? , a2 ? , a3 ? neg0 , a4 ? neg0 , a5 ? , a6 ? , a7 ? ) = 0 ;

id NNLOrBT2( a1 ? , a2 ? , a3 ? , a4 ? neg0 , a5 ? , a6 ? , a7 ? neg0 ) = 0 ;

# endprocedure

# procedure yNNLOrBT2

# r e d e f i n e top ”NNLOrBT2”

∗ change notat ion

# c a l l fNNLOrBT2 ( 1 , 1 ) ;

∗ symmetries

i f ( match (NNLOrBT2 ) ) ;

r epeat ;

# i f ( ‘ symNNLOrBT2 ’ <= 6 )

# c a l l fsymm( d7\\\ ,d6\\\ ,d5\\\ ,d4\\\ ,d3\\\ ,d2\ ,\

d5\\\ ,d4\\\ ,d7\\\ ,d6\\\ ,d3\\\ ,d2 )

# end i f

# i f ( ‘ symNNLOrBT2 ’ <= 5 )

# c a l l fsymm( d7\\\ ,d5\\\ ,d3\\\ ,d1\\\ ,d2\ ,\
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d5\\\ ,d7\\\ ,d3\\\ ,d1\\\ ,d2 )

# c a l l fsymm( d7\\\ ,d4\\\ ,d3\\\ ,d1\\\ ,d2\ ,\

d4\\\ ,d7\\\ ,d3\\\ ,d1\\\ ,d2 )

# c a l l fsymm( d6\\\ ,d5\\\ ,d3\\\ ,d1\\\ ,d2\ ,\

d5\\\ ,d6\\\ ,d3\\\ ,d1\\\ ,d2 )

# c a l l fsymm( d6\\\ ,d4\\\ ,d3\\\ ,d1\\\ ,d2\ ,\

d4\\\ ,d6\\\ ,d3\\\ ,d1\\\ ,d2 )

# end i f

# i f ( ‘ symNNLOrBT2 ’ <= 4 )

# c a l l fsymm( d7\\\ ,d4\\\ ,d3\\\ ,d2\ ,\

d6\\\ ,d5\\\ ,d3\\\ ,d2\ ,\

d5\\\ ,d6\\\ ,d3\\\ ,d2\ ,\

d4\\\ ,d7\\\ ,d3\\\ ,d2 )

# end i f

endrepeat ;

end i f ;

∗ change notat ion

# c a l l gNNLOrBT2( 1 , 1 ) ;

# endprocedure

# procedure sNNLOrBT2

∗ d iscar d vanishing sub−topolog ies

# c a l l zNNLOrBT2

. s o r t

∗ apply symmetries

# c a l l yNNLOrBT2

. s o r t

∗ s u b s t i t u t e v a r i a b l e s

mu r e p l a c e ([1−x ] , 1 − x ) ;

. s o r t

# endprocedure

∗−−#] NNLOrBT2 :

In the above code, the procedures fNNLOrBT2 and gNNLOrBT2 switch between

function and factor notation, eNNLOrBT2 and cNNLOrBT2 express topology

factors as scalar products and vice versa. The procedure yNNLOrBT2 performs

total symmetrization using fsymm.prc which is also included in TopoID.

c.3 mapping topologies

c.3.1 Configuration for exp

Configuration files for exp contain entries of the form:

{ A [ ,< options > ] ; B ; C ; D; E ; F ; H; I [ ; I ] }

where symbols A, B, . . . denote:

A: name of the topology,

B: number of lines,

C: number of loops,
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D: number of external momenta,

E: number of masses,

F: scales information,

H: simplified line specifications,

I: mass distribution.

Scales information will not be relevant for the examples given below. An

entry for H has the form

( W : Y , Z )

where W is a line momentum q1, q2, . . . and Y and Z are vertex numbers. By

convention, a line momentum is directed from Y to Z. Also, only one external

momentum is outgoing, all others are incoming.

An excerp from topsel.NNLOr:

{NNLOrTT108f1 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 3 , 2 ) ( p1 : 1 , 3 ) ( p2 : 3 , 2 ) ( p3 : 1 , 2 ) ; 2 0 0 }

{NNLOrTT109f1 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 3 , 2 ) ( p1 : 1 , 2 ) ( p2 : 3 , 2 ) ( p3 : 1 , 3 ) ; 2 0 0 }

. . .

{NNLOrTT51f2 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 2 , 1 ) ( q2 : 3 , 1 ) ( q3 : 1 , 1 ) ( p1 : 1 , 2 ) ( p2 : 3 , 2 ) ( p3 : 1 , 3 ) ; 2 0 0 }

{NNLOrTT108f2 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 1 , 3 ) ( q2 : 2 , 3 ) ( q3 : 3 , 3 ) ( p1 : 3 , 1 ) ( p2 : 3 , 2 ) ( p3 : 2 , 1 ) ; 0 0 0 }

{NNLOrTT110f2 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 3 , 2 ) ( p1 : 1 , 2 ) ( p2 : 1 , 3 ) ( p3 : 3 , 2 ) ; 0 0 0 }

{NNLOrTT49f2 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 2 , 1 ) ( q2 : 3 , 1 ) ( q3 : 1 , 1 ) ( p1 : 1 , 2 ) ( p2 : 1 , 3 ) ( p3 : 3 , 2 ) ; 0 0 0 }

{NNLOrTT46f1 , copy scale , poco sca le ; 2 ; 1 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 2 , 2 ) ( p1 : 2 , 1 ) ( p2 : 2 , 1 ) ; 2 0 }

{NNLOrTT49f1 , copy scale , poco sca le ; 2 ; 1 ; 3 ; 1 ; ;

( q1 : 2 , 1 ) ( q2 : 2 , 1 ) ( q3 : 1 , 1 ) ( p1 : 2 , 1 ) ( p2 : 2 , 1 ) ; 2 0 }

{NNLOrTT4f1 , copy scale , poco sca le ; 2 ; 1 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 2 , 2 ) ( p1 : 1 , 2 ) ( p2 : 1 , 2 ) ; 2 0 }

{NNLOrTT108f1 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 3 , 2 ) ( p1 : 1 , 3 ) ( p2 : 3 , 2 ) ( p3 : 1 , 2 ) ; 2 0 0 }

{NNLOrTT109f1 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 3 , 2 ) ( p1 : 1 , 2 ) ( p2 : 3 , 2 ) ( p3 : 1 , 3 ) ; 2 0 0 }

. . .

{NNLOrTT51f2 , copy scale , poco sca le ; 3 ; 1 ; 3 ; 1 ; ;

( q1 : 2 , 1 ) ( q2 : 3 , 1 ) ( q3 : 1 , 1 ) ( p1 : 1 , 2 ) ( p2 : 3 , 2 ) ( p3 : 1 , 3 ) ; 2 0 0 }

{NNLOrTT4 , copy scale , poco sca le ; 4 ; 2 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 2 , 2 ) ( p1 : 3 , 2 ) ( p2 : 3 , 2 ) ( p3 : 3 , 1 ) ( p4 : 3 , 1 ) ; 2 0 0 0 }

. . .

{NNLOrTT99 , copy scale , poco sca le ; 7 ; 2 ; 3 ; 1 ; ;

( q1 : 1 , 4 ) ( q2 : 2 , 4 ) ( q3 : 3 , 4 ) ( p1 : 6 , 5 ) ( p2 : 5 , 3 ) ( p3 : 4 , 3 ) ( p4 : 6 , 4 ) ( p5 : 5 , 1 )

( p6 : 2 , 1 ) ( p7 : 6 , 2 ) ; 0 2 0 0 0 0 0}

. . .
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Figure 26: Selection of factorizing diagram topologies for NNLO Higgs boson pro-
duction. Note that these topologies are picked from the topologies with uniden-
tified propagators of equal flow of momenta since these are passed to exp, see
Section 5.1.2.1.

{NNLOrTT18 , copy scale , poco sca le ; 6 ; 2 ; 3 ; 1 ; ;

( q1 : 1 , 2 ) ( q2 : 1 , 2 ) ( q3 : 3 , 2 ) ( p1 : 5 , 4 ) ( p2 : 5 , 3 ) ( p3 : 4 , 3 ) ( p4 : 5 , 1 ) ( p5 : 4 , 2 )

( p6 : 1 , 2 ) ; 0 0 0 2 0 0}

{NNLOrTT22 , copy scale , poco sca le ; 6 ; 2 ; 3 ; 1 ; ;

( q1 : 1 , 3 ) ( q2 : 1 , 3 ) ( q3 : 2 , 3 ) ( p1 : 5 , 4 ) ( p2 : 5 , 3 ) ( p3 : 4 , 3 ) ( p4 : 5 , 1 ) ( p5 : 4 , 2 )

( p6 : 1 , 2 ) ; 0 0 0 2 0 0}

{NNLOrTT26 , copy scale , poco sca le ; 6 ; 2 ; 3 ; 1 ; ;

( q1 : 2 , 1 ) ( q2 : 3 , 1 ) ( q3 : 1 , 1 ) ( p1 : 5 , 4 ) ( p2 : 5 , 3 ) ( p3 : 4 , 3 ) ( p4 : 5 , 1 ) ( p5 : 4 , 2 )

( p6 : 1 , 2 ) ; 0 0 0 2 0 0}

{NNLOrTT30 , copy scale , poco sca le ; 6 ; 2 ; 3 ; 1 ; ;

( q1 : 3 , 1 ) ( q2 : 2 , 1 ) ( q3 : 1 , 1 ) ( p1 : 5 , 4 ) ( p2 : 5 , 3 ) ( p3 : 4 , 3 ) ( p4 : 5 , 1 ) ( p5 : 4 , 2 )

( p6 : 1 , 2 ) ; 0 0 0 2 0 0}

. . .

{NNLOrTT35 , copy scale , poco sca le ; 6 ; 2 ; 3 ; 1 ; ;

( q1 : 2 , 1 ) ( q2 : 3 , 1 ) ( q3 : 1 , 1 ) ( p1 : 5 , 4 ) ( p2 : 5 , 4 ) ( p3 : 1 , 2 ) ( p4 : 4 , 2 ) ( p5 : 5 , 3 )

( p6 : 1 , 3 ) ; 0 0 2 0 0 0}

{NNLOrTT114 , copy scale , poco sca le ; 7 ; 2 ; 3 ; 1 ; ;

( q1 : 1 , 3 ) ( q2 : 2 , 3 ) ( q3 : 4 , 3 ) ( p1 : 6 , 5 ) ( p2 : 5 , 4 ) ( p3 : 6 , 4 ) ( p4 : 5 , 2 ) ( p5 : 2 , 1 )

( p6 : 6 , 3 ) ( p7 : 3 , 1 ) ; 0 0 0 2 0 0 0}

{NNLOrTT118 , copy scale , poco sca le ; 7 ; 2 ; 3 ; 1 ; ;

( q1 : 1 , 4 ) ( q2 : 2 , 4 ) ( q3 : 3 , 4 ) ( p1 : 6 , 5 ) ( p2 : 5 , 4 ) ( p3 : 6 , 4 ) ( p4 : 5 , 2 ) ( p5 : 2 , 1 )

( p6 : 6 , 3 ) ( p7 : 3 , 1 ) ; 0 0 0 2 0 0 0}

. . .

{NNLOrTT167 , copy scale , poco sca le ; 7 ; 2 ; 3 ; 1 ; ;

( q1 : 4 , 1 ) ( q2 : 3 , 1 ) ( q3 : 2 , 1 ) ( p1 : 6 , 5 ) ( p2 : 6 , 5 ) ( p3 : 3 , 1 ) ( p4 : 2 , 1 ) ( p5 : 5 , 3 )

( p6 : 6 , 4 ) ( p7 : 4 , 2 ) ; 0 0 2 0 0 0 0}

. . .

In this configuration file for exp, factors of factorizing diagram toplogies ap-

pear first, see Figs. 26 and 27. Identical factors due to different topologies

are arranged in groups. Thereafter come non-factorizing diagram topolo-

gies grouped by their corresponding generic topology. We show ellipses for

large parts of the original file. The last block gives the mapping patterns for

NNLOrGT6. Sample graphs for diagram topologies are depicted in Fig. 28.
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Figure 27: Minimal set of topology factors from the factorizing diagram topolo-
gies for NNLO Higgs boson production. For each of these factor topologies all
representations from factorizing diagram topologies, cf. Fig. 26, are written to the
topsel.<set> file.
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Figure 28: Selection of non-factorizing diagram topologies for NNLO Higgs boson
production that map all to NNLOrGT6. For NNLOrTT114 we give sample code that
performs the mapping to NNLOrGT6 in Appendix C.3.3.

c.3.2 Signature file

If the script post-EXP.pl is on the $PATH, it can be called via

post−EXP . pl [− i REGEX] SRC . . .

to scan the source files SRC... for (combinations of) used topologies. The

option -i allows to ignore topology names matching the regular expression

REGEX, e.g., in order to omit from the output tadpole topologies (tad1l, . . . )

that do not have to be handled with TopoID.

The file EXP.NNLOr.m can be created by invoking

post−EXP . pl ∗ . s r c > EXP .NNLOr.m

and results in the following:

{

{”NNLOrTT1”} ,

{”NNLOrTT10”} ,

{”NNLOrTT100”} ,
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{”NNLOrTT101”} ,

{”NNLOrTT102”} ,

{”NNLOrTT103”} ,

{”NNLOrTT104”} ,

{”NNLOrTT105”} ,

{”NNLOrTT106”} ,

{”NNLOrTT107”} ,

{”NNLOrTT108f1 ” , ”NNLOrTT108f2 ”} ,

{”NNLOrTT108f1 ” , ”NNLOrTT110f2 ”} ,

{”NNLOrTT109f1 ” , ”NNLOrTT108f2 ”} ,

{”NNLOrTT110f1 ” , ”NNLOrTT108f2 ”} ,

{”NNLOrTT110f1 ” , ”NNLOrTT110f2 ”} ,

{”NNLOrTT111f1 ” , ”NNLOrTT108f2 ”} ,

{”NNLOrTT111f1 ” , ”NNLOrTT110f2 ”} ,

{”NNLOrTT112”} ,

{”NNLOrTT113”} ,

{”NNLOrTT114”} ,

{”NNLOrTT115”} ,

{”NNLOrTT116”} ,

{”NNLOrTT117”} ,

{”NNLOrTT118”} ,

. . .

}

where combinations of topology factors appear, for example

{”NNLOrTT108f1 ” , ”NNLOrTT108f2”}

and single topologies, for example

{”NNLOrTT114”}

which is related to NNLOrGT6.

c.3.3 Non-factorizing topologies

The part of the file NNLOrGT.EXP relevant for NNLOrTT114, shown in Fig. 28,

is given below:

∗ −− NNLOrGT6 −−

∗−−#[ NNLOrTT114 :

∗ t a r g e t topology

# d ef ine INTCOMBINED ”NNLOrGT6”

∗ immediate notat ion change

mu r e p l a c e ( p ‘ JH1 ’ 1 , p ‘ JH ’ 1 ,

p ‘ JH1 ’ 2 , p ‘ JH ’ 2 ,

p ‘ JH1 ’ 3 , p ‘ JH ’ 3 ,

p ‘ JH1 ’ 4 , p ‘ JH ’ 4 ,

p ‘ JH1 ’ 5 , p ‘ JH ’ 5 ,

p ‘ JH1 ’ 6 , p ‘ JH ’ 6 ,

p ‘ JH1 ’ 7 , p ‘ JH ’ 7 ) ;

∗ convert MATAD notat ion

# procedure MATADtoNNLOrTT114

∗ propagators
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id ( p1 . p1 ) ˆ (−1 ) = d7 ˆ ( −1 ) ;

id ( p2 . p2 ) ˆ (−1 ) = d5 ˆ ( −1 ) ;

id ( p3 . p3 ) ˆ (−1 ) = d6 ˆ ( −1 ) ;

id s4m2 = d3 ˆ ( −1 ) ;

id ( p5 . p5 ) ˆ (−1 ) = d1 ˆ ( −1 ) ;

id ( p6 . p6 ) ˆ (−1 ) = d4 ˆ ( −1 ) ;

id ( p7 . p7 ) ˆ (−1 ) = d2 ˆ ( −1 ) ;

. s o r t

∗ l i n e momenta

id p1 = −ptmp2 − v1 − v2 ;

id p2 = −v2 ;

id p3 = ptmp2 + v2 ;

id p4 = −ptmp2 − v1 ;

id p5 = −v1 ;

id p6 = v1 ;

id p7 = −ptmp1 + v1 ;

. s o r t

∗ e x t e r n a l momenta

id Q1 = ptmp1 ;

id Q2 = ptmp2 ;

. s o r t

∗ temporary symbols

mu r e p l a c e ( ptmp1 , p1 , ptmp2 , p2 ) ;

. s o r t

# endprocedure

# procedure mNNLOrTT114tNNLOrGT6

∗ rename denominators

mu r e p l a c e ( d7 , d7 , d5 , d5 , d6 , d6 , d3 , d3 , d1 , d4 , d4 , d4 , d2 , d2 ) ;

∗ apply momenta s h i f t s

id p1 = ptmp2 ;

id p2 = ptmp1 ;

id v1 = −ptmp1 + ptmp2 + ptmp3 ;

id v2 = ptmp4 ;

∗ r ep lace temporary symbols

mu r e p l a c e ( ptmp1 , p1 , ptmp2 , p2 , ptmp3 , v1 , ptmp4 , v2 ) ;

# endprocedure

∗ to be c a l l e d l a t e r

# procedure i n i t l i n e s

# c a l l MATADtoNNLOrTT114

# c a l l mNNLOrTT114tNNLOrGT6

# endprocedure

∗−−#] NNLOrTT114 :

. . .

This kind of code acts as interface between exp and generic topologies cre-

ated with TopoID. The line

mu r e p l a c e ( d7 , d7 , d5 , d5 , d6 , d6 , d3 , d3 , d1 , d4 , d4 , d4 , d2 , d2 ) ;

is a typical example for an identification of identical propagators (d1 and d4

in this case) which exp cannot handle out of the box.
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c.3.4 Factorizing topologies

For factorizing diagrams, it occurs that factors from one diagram are mapped

to topology factors that stem from different “parent” topologies. These fac-

tors need to be mapped properly to a generic topology. Therefore, in an

indermediate step, the minimal set of topology factors needs to be identi-

fied from factorizing topologies. Figure 26 shows some of the factorizing

diagram topologies in NNLO Higgs boson production, Fig. 27 the corre-

sponding minimal set.

From NNLOrFT.EXP:

∗−−#[ NNLOrTT108f1xNNLOrTT110f2 :

# d e f ine FACTOR ”2”

∗ t a r g e t topology

# d ef ine INTCOMBINED ”NNLOrGT1”

∗ immediate notat ion change

mu r e p l a c e ( p ‘ JH1 ’ 1 , p ‘ JH ’ 1 , p ‘ JH1 ’ 2 , p ‘ JH ’ 2 , p ‘ JH1 ’ 3 , p ‘ JH ’ 3 ,

p ‘ JH2 ’ 1 , p ‘ JH ’ 4 , p ‘ JH2 ’ 2 , p ‘ JH ’ 5 , p ‘ JH2 ’ 3 , p ‘ JH ’ 6 ) ;

∗ convert MATAD notat ion

# procedure MATADtoNNLOrTT108f1xNNLOrTT110f2

∗ propagators

id s1m2 = d1 ˆ ( −1 ) ;

id ( p2 . p2 ) ˆ (−1 ) = d2 ˆ ( −1 ) ;

id ( p3 . p3 ) ˆ (−1 ) = d3 ˆ ( −1 ) ;

id ( p4 . p4 ) ˆ (−1 ) = d4 ˆ ( −1 ) ;

id ( p5 . p5 ) ˆ (−1 ) = d5 ˆ ( −1 ) ;

id ( p6 . p6 ) ˆ (−1 ) = d6 ˆ ( −1 ) ;

. s o r t

∗ l i n e momenta

id p1 = ptmp2 − v1 ;

id p2 = −v1 ;

id p3 = ptmp1 + v1 ;

id p4 = ptmp1 + v2 ;

id p5 = ptmp2 − v2 ;

id p6 = −v2 ;

. s o r t

∗ e x t e r n a l momenta

id Q1 = ptmp1 ;

id Q2 = ptmp2 ;

. s o r t

∗ temporary symbols

mu r e p l a c e ( ptmp1 , p1 , ptmp2 , p2 ) ;

. s o r t

# endprocedure

# procedure mNNLOrTT108f1xNNLOrTT110f2tNNLOrGT1

∗ rename denominators

mu r e p l a c e ( d1 , d3 , d2 , d1 , d3 , d2 , d4 , d6 , d5 , d5 , d6 , d4 ) ;

∗ apply momenta s h i f t s

id v1 = −ptmp3 ;

id v2 = −ptmp4 ;
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∗ r ep lace temporary symbols

mu r e p l a c e ( ptmp1 , p1 , ptmp2 , p2 , ptmp3 , v1 , ptmp4 , v2 ) ;

# endprocedure

∗ to be c a l l e d l a t e r

# procedure i n i t l i n e s

# c a l l MATADtoNNLOrTT108f1xNNLOrTT110f2

# c a l l mNNLOrTT108f1xNNLOrTT110f2tNNLOrGT1

# endprocedure

∗−−#] NNLOrTT108f1xNNLOrTT110f2 :

This snippet of code recombines a massless triangle graph and a triangle

with a massive Higgs boson line, see Fig. 27, back into a single graph (as the

last one in Fig. 26).
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[150] M. Höschele, J. Hoff, A. Pak, M. Steinhauser, and T. Ueda, result files,

http://www.ttp.kit.edu/Progdata/ttp12/ttp12-45/.

[151] E. Remiddi and J. Vermaseren, Harmonic polylogarithms.

Int.J.Mod.Phys. A15 (2000) 725–754, arXiv:hep-ph/9905237

[hep-ph].

[152] J. Vermaseren, Harmonic sums, Mellin transforms and integrals.

Int.J.Mod.Phys. A14 (1999) 2037–2076, arXiv:hep-ph/9806280

[hep-ph].

[153] J. Vermaseren, harmpol,

http://www.nikhef.nl/~form/maindir/packages/harmpol/.

[154] D. Maitre, HPL, a mathematica implementation of the harmonic

polylogarithms. Comput.Phys.Commun. 174 (2006) 222–240,

arXiv:hep-ph/0507152 [hep-ph].

[155] D. Maitre, Extension of HPL to complex arguments.

Comput.Phys.Commun. 183 (2012) 846, arXiv:hep-ph/0703052

[HEP-PH].

[156] A. Vogt, Resummation of small-x double logarithms in QCD:

semi-inclusive electron-positron annihilation. JHEP 1110 (2011) 025,

arXiv:1108.2993 [hep-ph].
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Ich konnte mich immer auf die freundschaftliche Arbeitsatmosphäre am

TTP verlassen. Neben den vorher genannten Personen ist dies auch Anasta-

sia Bierweiler, Franziska Schissler, Dominik Kara, Tobias Kasprzik, Alexan-

der Kurz, Ulises Saldaña Salazar, Nikolai Zerf, Max Zoller und allen anderen

Mitarbeitern zu verdanken. Auch der Verdienst der Sekretärinnen des TTP,

allen voran Martina Schorn, soll an dieser Stelle erwähnt sein.
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219


	1 Introduction
	2 Feynman integral families
	2.1 Definition and notation
	2.1.1 Topology: integral class or family
	2.1.2 From integrals to graphs
	2.1.3 Completeness
	2.1.4 Linear independence
	2.1.5 Coefficient matrix
	2.1.6 Different types

	2.2 Linear dependence
	2.2.1 Gröbner bases
	2.2.2 Partial fractioning relations

	2.3 Parametric representations
	2.3.1 Symanzik polynomials
	2.3.2 Properties
	2.3.3 Recursiveness
	2.3.4 Scalefulness

	2.4 Canonically ordered polynomials
	2.4.1 Topology identification
	2.4.2 Canonical ordering
	2.4.3 Application to topologies
	2.4.4 Subtopologies
	2.4.5 Finding momenta shifts
	2.4.6 Symmetries
	2.4.7 Mapping relations

	2.5 The package TopoID
	2.5.1 Example: massless propagators to five loops

	2.6 Laporta's algorithm
	2.6.1 Integration-by-parts relations
	2.6.2 Integral reduction
	2.6.3 Asset of TopoID

	2.7 Completing topologies
	2.7.1 Irreducible scalar products
	2.7.2 Supertopologies
	2.7.3 Revealing non-trivial relations


	3 Reversed Unitarity
	3.1 Optical theorem and Cutkosky's rules
	3.1.1 Optical theorem
	3.1.2 Cutkosky's rules
	3.1.3 Extension

	3.2 Handling cut diagrams
	3.2.1 Detecting cuts
	3.2.2 Cut integral reduction


	4 Higgs boson production
	4.1 Introduction
	4.1.1 General procedure
	4.1.2 Anatomy of the total cross section
	4.1.3 Status of theoretical predictions

	4.2 Calculational techniques
	4.2.1 Effective theory
	4.2.1.1 Renormalization
	4.2.1.2 Matching coefficient

	4.2.2 Mass factorization
	4.2.2.1 Singular structure
	4.2.2.2 Redefinition of the PDFs
	4.2.2.3 DGLAP evolution equation
	4.2.2.4 Parton splitting functions


	4.3 Cross sections to NNLO
	4.3.1 Setup of the calculation
	4.3.2 Definition of topologies
	4.3.3 Results
	4.3.3.1 Harmonic polylogarithms


	4.4 Convolutions of NNLO cross sections
	4.4.1 Transition functions to N3LO
	4.4.2 Collinear counterterms to N3LO
	4.4.3 Systematic approach to convolution integrals
	4.4.3.1 Mellin transform and harmonic sums
	4.4.3.2 Regularized derivative


	4.5 Contributions to Higgs boson production at N3LO
	4.5.1 Fermionic contribution in the qq'-channel
	4.5.2 The complete qq'-channel
	4.5.2.1 Definition of topologies
	4.5.2.2 Finding additional relations

	4.5.3 Roadmap to the full calculation


	5 Other applications
	5.1 Higgs boson pair production
	5.1.1 Top quark mass corrections
	5.1.1.1 Large mass expansion

	5.1.2 Towards NNLO corrections
	5.1.2.1 Mapping of topologies


	5.2 Drell-Yan process
	5.2.1 Treatment of 5
	5.2.2 Results


	6 Conclusion
	A Feynman integral families
	A.1 Massless propagators at five loops

	B Higgs boson production
	B.1 Splitting functions at NNLO
	B.2 Collinear counterterms at N3LO

	C Sample code
	C.1 Generic topologies
	C.2 Basic topologies
	C.3 Mapping topologies
	C.3.1 Configuration for exp
	C.3.2 Signature file
	C.3.3 Non-factorizing topologies
	C.3.4 Factorizing topologies


	Bibliography

