
Physics Letters B 746 (2015) 330–334
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Decoupling of heavy quarks at four loops and effective Higgs-fermion 

coupling

Tao Liu, Matthias Steinhauser ∗

Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 February 2015
Received in revised form 8 May 2015
Accepted 9 May 2015
Available online 14 May 2015
Editor: A. Ringwald

We compute the decoupling constant ζm relating light quark masses of effective nl-flavour QCD to
(nl +1)-flavour QCD to four-loop order. Immediate applications are the evaluation of the MS charm quark 
mass with five active flavours and the bottom quark mass at the scale of the top quark or even at GUT 
scales. With the help of a low-energy theorem ζm can be used to obtain the effective coupling of a Higgs 
boson to light quarks with five-loop accuracy. We briefly discuss the influence on �(H → bb̄).
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1. Introduction and notation

Perturbative calculations in QCD are quite advanced and have 
reached, at least for some observables, the four and even five-
loop level (see Refs. [1,2] for a recent review). This concerns in 
particular the renormalization group functions which have been 
computed at four loops in Refs. [3–7]. The first five-loop result has 
been obtained recently in Ref. [8] where the quark mass anoma-
lous dimension has been computed to this order.

In order to consistently relate the quark masses and strong cou-
pling constant evaluated at different energy scales, both the renor-
malization group functions and also the decoupling relations have 
to be available. The latter take care of integrating out heavy quark 
fields. In fact, N-loop running goes along with (N − 1)-loop de-
coupling. Thus, besides the five-loop anomalous dimensions also 
the four-loop decoupling relations are needed. In Refs. [9,10] a 
first step has been undertaken in this direction and the four-
loop decoupling constant for αs has been computed (although the 
five-loop beta function is not yet available). In this paper we com-
plement the result by computing the four-loop corrections to the 
decoupling constant for the light quark masses, which supplements 
the five-loop result for γm [8].

In Ref. [11] a formalism has been derived which allows for an 
effective calculation of the N-loop decoupling constants with the 
help of N-loop vacuum integrals. In the following we present the 
formulae which are relevant for the calculation of the quark mass 
decoupling constant.
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The bare decoupling constant ζ 0
m is defined via the relation

m0′
q = ζ 0

mm0
q , (1)

where m0
q and m0′

q are the bare quark mass parameters in the 
full n f - and effective nl (≡ n f − 1)-flavour theory. Introducing the 
renormalization constants in both theories leads to the equation

m′
q(μ) = Zm

Z ′
m

ζ 0
mmq(μ) = ζmmq(μ), (2)

which relates finite quantities and defines ζm . Note that primed 
quantities depend on α(nl)

s and non-primed quantities on α(n f )
s . 

Four-loop results for Zm and Z ′
m can be found in Refs. [3,4,7] and 

ζ 0
m can be computed with the help of

ζ 0
m = 1 − �0h

S (0)

1 + �0h
V (0)

, (3)

where �0h
S (0) and �0h

V (0) are the scalar and vector parts of the 
light-quark self energy evaluated at zero external momentum. The 
superscript “h” reminds that one has to consider only the hard part 
which involves at least one propagator of the heavy quark.

In the next section we discuss the calculation of ζ 0
m and its 

renormalization to arrive at ζm . Section 3 applies a low-energy 
theorem to derive, from the four-loop result of ζm , the effective 
Higgs-fermion coupling constant to five-loop order. We summarize 
our findings in Section 4.

2. Decoupling for light quark masses

In this section, we compute the decoupling constant ζ 0
m and 

combine it with the four-loop result for Zm to obtain the finite 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Sample Feynman diagrams contributing to the hard part of the light-quark 
propagator up to four loops. Solid and curly lines denote quarks and gluons, respec-
tively. At least one of the closed fermion loops needs to be the heavy quark.

quantity ζm . The computation of ζ 0
m requires the knowledge of 

the hard contribution to the scalar and vector part of the light-
quark propagator, see Fig. 1 for sample Feynman diagrams. The 
first non-vanishing contribution arises at two loops where one di-
agram contributes. At three-loop order there are 25 and at four 
loops we have 765 Feynman diagrams.

The perturbative expansion of Eq. (3) to four loops leads to

ζ 0
m = 1 − �0h

S (0) − �0h
V (0) + �0h

V (0)
[
�0h

S (0) + �0h
V (0)

]
+ . . . ,

(4)

where in the last term on the right-hand side only two-loop ex-
pressions for �0h

S (0) and �0h
V (0) have to be inserted.

We generate the Feynman diagrams with the help of QGRAF
[12]. FORM [13,14] code is then generated by passing the out-
put via q2e [15,16], which transforms Feynman diagrams into 
Feynman amplitudes, to exp [15,16]. After processing the latter 
one obtains the result as a linear combination of scalar functions 
which have a one-to-one relation to the underlying topology of 
the diagram. The functions contain the exponents of the involved 
propagators as arguments. At this point one has a large number 
of different functions. Thus, in the next step one passes them to 
a program which implements the Laporta algorithm [17] and per-
forms a reduction to a small number of so-called master integrals. 
We use, for the latter step, the C++ program FIRE [18]. Our four-
loop result is expressed in terms of 13 master integrals which we 
take from Ref. [19] (see also [20–22] and references therein). All 
ε coefficients are known analytically in the literature except the 
ε3 term of integral J6,2 (in the notation from Ref. [19]) which has 
been provided from [23].

Note that for our calculation we have used a general gauge pa-
rameter ξ of the gluon propagator. At four loops, in intermediate 
steps terms up to order ξ6 are present, however, in the final result 
for ζ 0

m all ξ terms drop out. The last term on the right-hand side of 
Eq. (4) is separately ξ -independent since at two loops �0h

S (0) and 
�0h

V (0) are individually ξ -independent. The results up to three-
loop order have been checked with the help of MATAD [24] which 
avoids the use of the program FIRE since it implements the ex-
plicit solution of the recurrence relations.

To obtain ζ 0
m we have to renormalize αs and the heavy quark 

mass mh to two-loop order. The corresponding MS counterterms 
are well-known (see, e.g. Ref. [7]). ζ 0

m still contains poles in ε
which are removed by multiplying with the factor Zm/Z ′

m (see, 
Eq. (2)) which is needed to four-loop order [3,4,7]. Note that Z ′

m
depends on the strong coupling constant of the effective theory, 
α

(nl)
s , whereas Zm and ζ 0

m are expressed in terms of α(nl+1)
s . In or-

der to achieve the cancellation of the ε poles the same coupling 
constant has to be used in all three quantities. We have decided 
to replace α(nl)

s in favour of α(nl+1)
s which is done using the corre-

sponding decoupling constant ζαs up three-loop order [11]. Note, 
however, that higher order terms in ε are also needed since ζαs

gets multiplied by poles present in Z ′
m . Up to two-loop order they 
can be found in Refs. [25,26]; the three-loop terms of order ε can 
be extracted from Refs. [9,10].

Our final result for the decoupling constant parametrized in 
terms of the MS heavy quark mass, mh ≡ mh(μ), reads

ζ MS
m = 1 +

(
α

(n f )
s

π

)2 (
89

432
− 5

36
ln

μ2

m2
h

+ 1

12
ln2 μ2

m2
h

)

+
(

α
(n f )
s

π

)3 [
2951

2916
+ 1

9
ζ(2) ln2 2

− 1

54
ln4 2 − 407

864
ζ(3) + 103

72
ζ(4) − 4

9
a4

−
(

311

2592
+ 5

6
ζ(3)

)
ln

μ2

m2
h

+ 175

432
ln2 μ2

m2
h

+ 29

216
ln3 μ2

m2
h

+ nl

(
1327

11664
− 2

27
ζ(3) − 53

432
ln

μ2

m2
h

− 1

108
ln3 μ2

m2
h

)]

+
(

α
(n f )
s

π

)4 [
131 968 227 029

3 292 047 360
− 1 924 649

4 354 560
ln4 2

+ 59

1620
ln5 2 + 1 924 649

725 760
ζ(2) ln2 2

− 59

162
ζ(2) ln3 2 − 353 193 131

40 642 560
ζ(3) + 1061

576
ζ(3)2

+ 16 187 201

580 608
ζ(4) − 725

108
ζ(4) ln 2

− 59 015

1728
ζ(5) − 3935

432
ζ(6) − 1 924 649

181 440
a4

− 118

27
a5 +

(
−2 810 855

373 248
− 31

216
ln4 2

+ 31

36
ζ(2) ln2 2 − 373261

27648
ζ(3)

+ 4123

288
ζ(4) + 575

72
ζ(5) − 31

9
a4

)
ln

μ2

m2
h

+
(

51 163

10 368
− 155

48
ζ(3)

)
ln2 μ2

m2
h

+ 301

324
ln3 μ2

m2
h

+ 305

1152
ln4 μ2

m2
h

+ nl

(
−2 261 435

746 496
+ 49

2592
ln4 2 − 1

270
ln5 2

− 49

432
ζ(2) ln2 2 + 1

27
ζ(2) ln3 2

− 1075

1728
ζ(3) − 1225

3456
ζ(4) + 49

72
ζ(4) ln 2

+ 497

288
ζ(5) + 49

108
a4 + 4

9
a5

+
(

16 669

31 104
+ 1

108
ln4 2 − 1

18
ζ(2) ln2 2

+ 221

576
ζ(3) − 163

144
ζ(4) + 2

9
a4

)
ln

μ2

m2

h
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− 7825

10 368
ln2 μ2

m2
h

− 23

288
ln3 μ2

m2
h

− 5

144
ln4 μ2

m2
h

)

+ n2
l

(
17 671

124 416
− 5

864
ζ(3)

− 7

96
ζ(4) +

(
− 3401

46 656
+ 7

108
ζ(3)

)
ln

μ2

m2
h

+ 31

1296
ln2 μ2

m2
h

+ 1

864
ln4 μ2

m2
h

)]

μ=mh= 1 +
(

α
(n f )
s (mh)

π

)2

0.2060

+
(

α
(n f )
s (mh)

π

)3

(1.848 + 0.02473nl)

+
(

α
(n f )
s (mh)

π

)4 (
6.850 − 1.466nl + 0.05616n2

l

)
, (5)

with α(n f )
s ≡ α

(n f )
s (μ). In the analytic expression ζ(n) denotes the 

Riemann zeta function evaluated at n and an = Lin(1/2).
Often it is convenient to express ζm in terms of the on-shell 

heavy quark mass, Mh . The corresponding analytic expressions are 
obtained from Eq. (5) with the help of the two-loop relation be-
tween mh(μ) and Mh which can be found in Refs. [27–29]. We 
refrain from showing the corresponding analytic result and restrict 
the presentation to the numerical expression which is given by

ζ OS
m = 1 +

(
α

(n f )
s

π

)2 (
0.2060 − 0.1389 ln

μ2

M2
h

+ 0.08333 ln2 μ2

M2
h

)

+
(

α
(n f )
s

π

)3 [
1.477 − 0.9550 ln

μ2

M2
h

+ 0.7384 ln2 μ2

M2
h

+ 0.1343 ln3 μ2

M2
h

+ nl

(
0.02473 − 0.1227 ln

μ2

M2
h

− 0.009259 ln3 μ2

M2
h

)]

+
(

α
(n f )
s

π

)4 [
0.2233 + 2.674 ln

μ2

M2
h

+ 6.227 ln2 μ2

M2
h

+ 2.165 ln3 μ2

M2
h

+ 0.2648 ln4 μ2

M2
h

+ nl

(
−1.504 − 0.6470 ln

μ2

M2
h

− 0.9260 ln2 μ2

M2
h

− 0.1632 ln3 μ2

M2
h

− 0.03472 ln4 μ2

M2
h

)

+ n2
l

(
0.05616 + 0.005016 ln

μ2

M2
h

+ 0.02392 ln2 μ2

M2
h

+ 0.001157 ln4 μ2

M2

)]
. (6)
h

On the webpage [30] we provide analytic results in computer-
readable form for a general SU(Nc) gauge group.

In the remaining part of this section we discuss two applica-
tions which involve the evaluation of light quark masses at high 
scales. In the first one we compute the running bottom quark 
mass at the scale μ = Mt , where Mt is the top quark pole mass. 
mb(Mt) appears as an intermediate step in analyses concerned 
with Yukawa coupling unification. Here the role of the heavy quark 
is taken over by the top quark. In the second application we 
cross the bottom threshold and evaluate the charm quark mass for 
μ = M Z using m(4)

c (3 GeV) as input. As input parameters for the 
numerical analyses we use [31,32]

α
(5)
s (M Z ) = 0.1185 ,

m(5)

b (m(5)

b ) = 4.163 GeV ,

m(4)
c (3 GeV) = 0.986 GeV . (7)

As a first phenomenological application we consider the eval-
uation of the bottom quark mass at the scale of the top quark 
with six active flavours using m(5)

b (m(5)

b ) as input. We are inter-

ested in the dependence of m(6)

b (Mt) on the decoupling scale of 
the top quark. Since this scale is unphysical it should get weaker 
after including higher order corrections. Our results, which are 
shown in Fig. 2a, are obtained using the following scheme, where 
N ∈ {1, 2, 3, 4, 5} refers to the number of loops:

• Use N-loop running: m(5)

b (m(5)

b ) → m(5)

b (μdec
t )

• Use (N − 1)-loop decoupling: m(5)

b (μdec
t ) → m(6)

b (μdec
t )

• Use N-loop running m(6)

b (μdec
t ) → m(6)

b (Mt)

The values for αs involved in this procedure, α
(5)
s (m(5)

b (m(5)

b )), 
α

(5)
s (μdec

t ), α(6)
s (μdec

t ), and α(6)
s (Mt), are obtained from α(5)

s (M Z )

using the same loop-order for the running and decoupling as de-
scribed above for the bottom quark mass.

In Fig. 2a m(6)

b (Mt) is shown as a function of the scale μdec
t

where the transition from five- to six-flavour QCD is performed 
normalized to the on-shell top quark mass. For the on-shell top 
quark mass we choose Mt = 173.34 GeV [33]. We vary μdec

t /Mt

by a factor of 10 around the central scale μdec
t /Mt = 1. The one-

loop result leads to m(6)

b (Mt) ≈ 2.9 GeV and is not shown in the 
plot. One observes that already the result where two-loop run-
ning is used (short-dashed line) shows only a weak dependence on 
μdec

t . It becomes even weaker at three and four loops (results with 
higher perturbative order have longer dashes) and results in an 
almost flat curve at five loops (solid line) which can barely be dis-
tinguished from the four-loop curve. The five-loop results depends 
on the unknown five-loop coefficient β4 of the beta function. Our 
default choice in Fig. 2a is β4 = 100β0 (β0 = 11/4 − n f /6) which 
is numerically close to the Padé estimate obtained in Ref. [34]. For 
β4 = 0 and β4 = 200β0 one observes a shift of the five-loop result 
by about +0.5 MeV and −0.5 MeV, respectively.

It is interesting to look at the shift on m(6)

b (Mt) at the cen-
tral scale μdec = Mt . The two-, three- and four-loop curves lead to 
shifts of about −201 MeV, −21 MeV and −2 MeV, respectively. For 
β4 = 100β0 the five-loop result leads to a shift of about −0.5 MeV.

In a second application we consider the evaluation of m(5)
c (M Z )

with m(4)
c (3 GeV) as input. The calculation proceeds in analogy to 

the bottom quark case discussed before, where for the on-shell 
bottom quark mass we use the value Mb = 4.7 GeV. Our results are 
shown in Fig. 2b. Again one observes a flattening of the curves af-
ter including higher order corrections. However, for μdec

b ≈ 1 GeV, 
which corresponds to the left border of Fig. 2b, all curves show 
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Fig. 2. m(6)

b (Mt ) as a function of μdec
t (a) and m(5)

c (M Z ) as a function of μdec
b (b). 

The numbers indicate the loop order used for the running.

a strong variation which indicates the breakdown of perturbation 
theory for small scales. Around μdec

b /Mb � 0.3 both the four- and 
five-loop curves are basically flat.

At the central scale μdec
b = Mb one observes shifts in m(5)

c (M Z )

of −55 MeV, −7 MeV and −1 MeV after including two-, three-
and four-loop running accompanied by one-, two- and three-loop 
decoupling. The shift at five loops is below 1 MeV for β4 = 100β0
but also for β4 = 0 and β4 = 200β0.

3. Low-energy theorem: Higgs-fermion coupling

The effective Lagrangian describing the coupling of a Higgs bo-
son to gluons and light quarks can be written in the form

Leff = − H0

v0

(
C1O′

1 + C2O′
2

)
, (8)

where the effective operators, which are constructed from light de-
grees of freedom [35], are given by

O′
1 = (

Ga,μν
)2

,

O′
2 =

nl∑
i=1

m0′
qi

ψ̄0′
qi

ψ0′
qi

. (9)

The residual dependence on the mass mh of the heavy quark h
is contained in the coefficient functions C0

1 and C0
2 . In Eq. (8) H

denotes the Higgs field and v the vacuum expectation value. The 
superscript “0” reminds us that the corresponding quantities are 
bare. For the renormalization of C0

1, C0
2, O′

1 and O′
2 we refer to 

Refs. [11,35]; for the purpose of this paper it is of no further rel-
evance. In Ref. [11] a low-energy theorem has been derived which 
relates the computation of the renormalized coefficient function C2
to derivatives of ζm w.r.t. the heavy mass mh . It is given by

C2 = 1 + ∂ ln ζm

∂ ln mh
. (10)

It should be stressed that Eq. (10) is valid to all orders in αs . Note 
that Eq. (10) contains the derivative w.r.t. ln mh and furthermore 
the mh dependence of C2 appears in the form ln(μ/mh). Thus 
we can exploit renormalization group techniques to construct all 
logarithmic terms of the next, not computed perturbative order. 
In particular, on the basis of our four-loop calculation for ζm we 
can compute C2 to five-loop accuracy using the recently computed 
five-loop result for the quark mass anomalous dimension [8]. Note 
that the four-loop anomalous dimensions have been computed in 
Refs. [3,4] (γm) and Refs. [5,6] (β), respectively.

Inserting ζ MS
m into Eq. (10) we obtain the following result

CMS
2 = 1 +

(
α

(n f )
s

π

)2

0.2778 +
(

α
(n f )
s

π

)3

(2.243 + 0.2454 nl)

+
(

α
(n f )
s

π

)4 (
2.180 + 0.3096 nl − 0.01003 n2

l

)

+
(

α
(n f )
s

π

)5 (
66.71 + 13.44 nl − 3.642 n2

l

+ 0.07556 n3
l

)
, (11)

where we have chosen μ = mh to obtain more compact expres-
sions. Analytic result valid for general μ are provided from [30].

In practice, one often encounters the situation where C2 has to 
be inserted in a formula expressed in terms of α(nl)

s . If we further-
more transform the heavy quark mass to the on-shell scheme we 
obtain for μ = Mh

COS
2 = 1 +

(
α

(nl)
s

π

)2

0.2778 +
(

α
(nl)
s

π

)3

(1.355 + 0.2454 nl)

+
(

α
(nl)
s

π

)4 (
−12.13 + 1.004 nl − 0.01003 n2

l

)

+
(

α
(nl)
s

π

)5 (
−140.9 + 44.20 nl − 4.332 n2

l

+0.07556 n3
l

)
. (12)

Let us briefly discuss the influence of C2 on the Higgs boson 
decay to bottom quarks where the role of the heavy quark is taken 
over by the top quark. We consider the contributions proportional 
to (C2)

2 from Eq. (8) and use the result for the massless correlator 
from Ref. [36]. For convenience we identify the renormalization 
scale with the Higgs boson mass and set μ = MH . Then the decay 
rate of the Standard Model Higgs boson to bottom quarks can be 
written in the form

�(H → bb̄) = G F M2
H

4
√

2π
m2

b(MH ) R(MH ) , (13)

R(MH ) = 1 + 5.667
(αs

π

)
+ (29.147 + 0.991)

(αs

π

)2

+ (41.758 + 13.105)
(αs

π

)3

+ (−825.7 + 50.7)
(αs

)4 + (r5 + 224.8)
(αs

)5
π π
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= 1 + 0.20400 + (0.03777 + 0.00128)

+ (0.00195 + 0.00061) + (−0.00139 + 0.00009)

+ (0.00000006r5 + 0.00001) , (14)

with αs ≡ αs(MH ) ≈ 0.1131. The first number in the round brack-
ets in Eq. (14) corresponds to the case C2 = 1 [36] and the second 
one to the contribution from (C2 − 1). At three-loop order the top 
quark induced part amounts to about 30%, at order α4

s only 6%. 
Note that the massless correlator at order α5

s , denoted by r5 in 
Eq. (14), is currently unknown. The α5

s term in Eq. (14) origins 
from the five-loop contribution in Eq. (12) and products of lower-
order contributions.

Note that in this consideration the contribution of C1 (cf. 
Eq. (8)) has been neglected. The corresponding corrections of or-
der α3

s can be found in Ref. [37]. Corrections of order α4
s which 

are proportional to C1C2 require the evaluation of massless four-
loop two-point functions and are currently unknown. Corrections 
of order α5

s to the Higgs boson decay rate involving (C1)
2 have 

been computed in Ref. [38].
In Refs. [9,10] the five-loop result for C1 is given in terms of 

α
(n f )
s and the MS quark mass. We complement this result by C1

parametrized in terms of the effective coupling constant and the 
on-shell mass:

COS
1 = − 1

12

α
(nl)
s

π

{
1 +

(
α

(nl)
s

π

)
2.750

+
(

α
(nl)
s

π

)2

(9.642 − 0.6979nl)

+
(

α
(nl)
s

π

)3 (
50.54 − 6.801nl − 0.2207n2

l

)

+
(

α
(nl)
s

π

)4 [
− 625.2 + 149.8nl

− 3.090n2
l − 0.07752n3

l + 6
(
β

(nl)

4 − β
(nl+1)

4

)]}
, (15)

where μ = Mt has been chosen. The analytic version in computer-
readable form can again be found in [30].

4. Summary and conclusions

In this paper we compute the four-loop corrections to the de-
coupling constant for light quark masses, ζm , which has to be ap-
plied every time heavy quark thresholds are crossed. It constitutes 
a fundamental constant of QCD and accompanies the five-loop 
quark anomalous dimension [8] in the “running and decoupling” 
procedure. Our results complete the calculation of the four-loop 
decoupling constants which has been started in Refs. [9,10]. Note 
that the five-loop corrections to the QCD beta function, which is 
needed to establish relations between αs(μ) and mq(μ) at low and 
high energy scales, is still missing.

As a by-product of our calculation we obtain the effective cou-
pling of a scalar Higgs boson and light quarks to five-loop order. 
It is obtained from ζm with the help of an all-order low-energy 
theorem. We briefly investigate the influence on �(H → bb̄).
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