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We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics beyond the 
leading order of the small electron mass expansion in the leading logarithmic approximation. In contrast 
to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative corrections are induced by 
a soft electron pair exchange and result in enhancement of the power-suppressed contribution, which 
dominates the amplitudes at extremely high energies. Possible applications of our result to the analysis 
of the high-energy processes in quantum chromodynamics is also discussed.
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In a renowned paper [1] V.V. Sudakov derived the leading 
asymptotic behavior of an electron scattering amplitude in quan-
tum electrodynamics (QED) at high energy. It is determined by the 
“Sudakov” radiative corrections, which include the second power 
of the large logarithm of the electron mass me divided by a char-
acteristic momentum transfer of the process per each power of the 
fine structure constant α. Sudakov double logarithms exponentiate 
and result in a strong universal suppression of any electron scatter-
ing amplitude with a fixed number of emitted photons in the limit 
when all the kinematic invariants of the process are large. This re-
sult plays a fundamental role in particle physics. Within different 
approaches it has been extended to the nonabelian gauge theo-
ries and to the subleading logarithms [2–7], which is crucial for a 
wide class of applications from deep inelastic scattering to Drell–
Yan processes and the Higgs boson production. At the same time 
no significant progress has been achieved in the study of the log-
arithmically enhanced corrections to the subleading contributions 
suppressed by a power of electron mass at high energies. However, 
the power-suppressed contributions are of great interest. They can 
become asymptotically dominant at very high energies due to Su-
dakov suppression of the leading terms. At the intermediate ener-
gies the power corrections in many cases are phenomenologically 
important [8–11]. Moreover, in contrast to the Euclidean operator 
product expansion [12] or nonrelativistic threshold dynamics [13]
very little is known about the general all-order structure of the 
large logarithms beyond the leading-power approximation in the 
high-energy limit, which is a real challenge for the effective field 
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theory approach. This problem is now actively discussed in various 
contexts (see e.g. [14–19]). In this Letter we make the first step 
toward the solution of the problem and generalize the result of 
Ref. [1] to the leading power-suppressed contribution. We present 
a detailed analysis of the electron scattering in the external field 
and later discuss the extension of the result to more complex pro-
cesses.

The amplitude F of the electron scattering in an external field 
can be parameterized in the standard way by the Dirac and Pauli 
form factors

F = ψ̄(p1)

(
γμF1 + iσμνqν

2me
F2

)
ψ(p2). (1)

The Pauli form factor F2 does not contribute in the approximation 
discussed in this Letter and we mainly focus on the high-energy 
behavior of the Dirac form factor F1. We consider the limit of 
the on-shell electron p2

1 = p2
2 = m2

e and the large Euclidean mo-
mentum transfer Q 2 = −(p2 − p1)

2 when the ratio ρ ≡ m2
e /Q 2 is 

positive and small. The Dirac form factor can then be expanded in 
an asymptotic series in ρ

F1 = Sλ

∞∑
n=0

ρn F (n)
1 , (2)

where F (n)
1 are given by the power series in α with the co-

efficients depending on ρ only logarithmically. The factor Sλ =
exp

[− α
2π B(ρ) ln

(
λ2/m2

e

)]
with B(ρ) = lnρ + O(1) accounts for 

the universal singular dependence of the amplitude on the aux-
iliary photon mass λ introduced to regulate the infrared diver-
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gences [20]. In the double-logarithmic approximation the lead-
ing term is given by the Sudakov exponent F (0)

1 = e−x , with x =
α

4π ln2 ρ [21]. Let us outline our approach for the analysis of the 
power-suppressed double logarithmic contributions. We use the 
expansion by regions method [22–24] to get a systematic expan-
sion of the Feynman integrals in ρ . In this method the coefficients 
F (n)

1 are given by the sum over contributions of different virtual 
momentum regions. Each contribution is represented by a Feyn-
man integral which in general is divergent. These spurious diver-
gences result from the process of scale separation and have to 
be dimensionally regulated. The singular terms cancel out in the 
sum of all regions but can be used to determine the logarithmic 
contributions to F (n)

1 . The double logarithmic contributions are de-
termined by the leading singular behavior of the integrals and can 
be found by the method developed in Refs. [1,21,25]. Though the 
method is blind to the power corrections, it can be applied in this 
case since the expansion by regions provides the integrals which 
are homogeneous in the expansion parameter. Sudakov logarithms 
are produced by the soft virtual photons, which are collinear to ei-
ther p1 or p2. We have found that such a configuration of virtual 
momenta does not produce double logarithms in the first order 
in ρ . This observation agrees with the analysis [26] of the cusp 
anomalous dimension, which determines the double-logarithmic 
corrections to the light-like Wilson line with a cusp. For the large 
cusp angle corresponding to the limit ρ → 0 from the result of 
Ref. [26] one gets


cusp = − α

π
lnρ

(
1 +O(ρ2)

)
, (3)

with vanishing first-order term in ρ . Nevertheless, the O(ρ)

double-logarithmic contribution does exist but originates from 
completely different virtual momentum configuration described 
below. Let us consider an electron propagator S = /pi−/l+me

(pi−l)2−m2
e

, 
where l is the momentum of a virtual photon with the propagator 
D = −gμν

l2−λ2 . In the soft-photon limit l → 0 the electron propagator 

becomes eikonal S ≈ − /pi+me
2pil

and develops a collinear singular-
ity when l is parallel to pi . Alternatively, we may consider the 
soft-electron limit l′ → 0, where l′ = pi − l. Then the electron prop-
agator becomes scalar S ≈ me

l′ 2−m2
e

while the photon propagator be-

comes eikonal D ≈ gμν

2pil′−m2
e +λ2 . Thus the roles of the electron and 

photon propagators are exchanged. The existence of non-Sudakov 
double-logarithmic contributions due to soft electron exchange has 
actually been known for a long time [25,27]. However in our case 
this virtual momentum configuration does not produce a double-
logarithmic contribution in one loop because the momentum shift 
distorts the eikonal structure of the second electron propagator 
and removes the soft singularity at small l′ necessary to get the 
second power of the large logarithm. This may be avoided only in 
the two-loop diagram of nonplanar topology, Fig. 1(a). After shift-
ing the photon virtual momenta by p1 and p2 the diagram can be 
twisted into the shape of Fig. 1(b), (c) with soft electron pair ex-
change between the eikonal lines. The corresponding contribution 
has an explicit suppression factor m2

e from two soft electron prop-
agators. Hence the integration over the virtual momenta can be 
performed in the leading order of the small electron mass expan-
sion. Note that in the case under consideration the electron mass 
regulates both soft and collinear divergences and we can put λ = 0. 
The calculation is conveniently performed by using the light-cone 
coordinates where p1 ≈ p1− and p2 ≈ p2+ . In this representation 
only the interaction of the transverse photons to soft electrons is 
not mass-suppressed and we can use g⊥

kl
2pil

for the eikonal photon 
propagators. To get the double-logarithmic part of the correction 
Fig. 1. Different representations of the two-loop Feynman diagram giving the leading 
power-suppressed double-logarithmic contribution. In figure (c) the double line ar-
row represents the soft electron pair propagator and the empty blobs represent the 
nonlocal interaction of the soft electron pair to the eikonal electrons and positrons.

Fig. 2. Feynman diagrams contributing to the double-logarithmic correction fac-
tors φa,b,c , Eq. (7).

we use Sudakov parametrization of a virtual photon momentum 
l = up1 + vp2 + l⊥ . After integrating over the transverse com-
ponents l⊥ we get the following representation of the two-loop 
power-suppressed form factor

F (1)
1

∣∣∣
2-loop

= −4x2
∫

K (η1, η2, ξ1, ξ2)dη1dη2dξ1dξ2, (4)

where η = ln v/ lnρ , ξ = ln u/ lnρ , the integration goes over the 
four-dimensional cube 0 < ηi, ξi < 1, and the kernel

K (η1, η2, ξ1, ξ2) = θ(1 − η1 − ξ1)θ(1 − η2 − ξ2)

× θ(η2 − η1)θ(ξ1 − ξ2) (5)

selects the kinematically allowed region of double-logarithmic in-
tegration. This gives F (1)

1 = − x2

3 +O(x3), in agreement with [8,28]. 
The higher-order double-logarithmic corrections are generated in a 
usual way through the exchange of soft photons with the propa-
gator −g+−

l2−λ2 . A key observation here is that an exchange of a soft 
photon between an eikonal and a soft electron line does not pro-
duce double logarithms. The reason for this is that such a loop is 
always separated from the second eikonal line by a scalar electron 
propagator, which does not communicate any information on the 
second external momentum. Hence the loop integral cannot de-
pend on the scalar product p1 p2, which is the only large scale in 
the problem. Thus it is sufficient to consider only the diagrams of 
the topologies given in Fig. 2. By using the factorization properties 
of the soft photon contribution [1] after separating the singular 
factor Sλ we find the following representation of the all-order 
double-logarithmic result

F (1)
1 = −4x2

∫
φb(η1, ξ2)φ

c(η1, ξ1)φ
c(ξ2, η2)

×
[
φa(η2, ξ1)K1(η1, η2, ξ1, ξ2)

+ K2(η1, η2, ξ1, ξ2)
]

dη1dη2dξ1dξ2, (6)

where the Sudakov correction factors corresponding to Fig. 2(a)–(c) 
are
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Table 1
The normalized coefficients of the series (9) up to n = 7.

n 1 2 3 4 5 6 7

n!n3cn
7

30
68

105
509
350

992
945

32 225
29 106

208 044
175 175

3 946 313
3 281 850

φa(η, ξ) = exp
[ − x (1 − η − ξ)2 ]

,

φb(η, ξ) = exp
[ − 2xηξ

]
,

φc(η, ξ) = exp
[
xη (η + 2ξ − 2)

]
, (7)

respectively, and the new kernels read

K1(η1, η2, ξ1, ξ2) = θ(1 − η2 − ξ1)θ(1 − η2 − ξ2)

× θ(η2 − η1)θ(ξ1 − ξ2),

K2(η1, η2, ξ1, ξ2) = θ(1 − η1 − ξ1)θ(1 − η2 − ξ2)

× θ(η2 − η1)θ(ξ1 + η2 − 1), (8)

with K = K1 + K2. We are not able to find the result for the four-
fold integral (6) in a closed analytic form. However, the coefficients 
of the series

F (1)
1 = − x2

3

(
1 +

∞∑
n=1

cnxn

)
(9)

can in principle be analytically computed for any given n. The first 
seven coefficients of the series are listed in Table 1. At the same 
time in the large-n limit we get an approximate result

cn = C

n3n!
[

1 +O
(

1

n1/2

)]
(10)

where C = 1.1994 . . . is a numerical constant. Eqs. (9), (10) give 
the following asymptotic behavior of the form factor at large x

F (1)
1 ∼ ex−ln x

[
− C

3
+O

(
1

x1/2

)]
, (11)

i.e. the power-suppressed amplitude is enhanced by the double-
logarithmic corrections. A similar effect has been observed before 
e.g. for the electron–muon backward scattering [25]. In the case 
under consideration the positive sign of the exponent may be re-
lated to a specific structure of the process with the soft electron 
pair exchange. Through the pair emission an ultrarelativistic elec-
tron is converted into an ultrarelativistic positron with approxi-
mately the same momentum but opposite electric charge, Fig. 1(c). 
As a result of the charge flip the double-logarithmic contribution of 
the topology of Fig. 2(c) has an opposite sign with respect to the 
one of Fig. 1(a), (b) and actually determines the behavior of the 
exponent in Eq. (11). It is interesting to compare the high-energy 
asymptotic behavior of the leading and subleading terms of Eq. (2). 
In the limit ρ → 0 we get

F (0)
1 ∼ ρ− α

4π ln ρ, ρ F (1)
1 ∼ ρ1+ α

4π ln ρ. (12)

Thus above the energy corresponding to | lnρ| = 2π
α the originally 

power-suppressed term exceeds the leading contribution of F (0)
1 . 

Note that at this energy the pure QED running coupling α(Q 2) ≈
3α and we are still in a weak coupling regime. However, this en-
ergy is too high to be phenomenologically relevant and this result 
is likely to be of pure theoretical interest.

According to a naive estimate based on the fixed-order power 
counting the double logarithmic approximation of F (1)

1 is valid for 
α 	 x 	 1/α, which covers the energy interval 1 	 | lnρ| 	 1/α
sufficient for any practical applications. For higher energies corre-
sponding to x ∼ 1/α the subleading terms proportional to powers 
of α lnρ ∼ 1 have to be resummed to all orders. The naive estimate 
given above does not work for the leading term because of its ex-
ponential suppression and the double logarithmic approximation 
of F (0)

1 is not applicable already for 1 	 x. However a system-
atic resummation of the subleading logarithms [3,4] proves that 
Eq. (12) does describe the correct asymptotic behavior of F (0)

1 up 
to x ∼ 1/α as far as the effective coupling α(Q 2) remains small. At 
the same time for 1 	 x the subleading logarithms may in princi-
ple affect the asymptotic behavior of F (1)

1 . The relevant subleading 
terms are of the form (α lnρ)n fn(x), where fn(x) is an unknown 
function. Such a term would modify Eq. (12) only if at large x the 
function fn(x) grows at least exponentially faster than ex . In this 
case the O(ρ) contribution start to dominate the form factor at 
even lower energy.

Unlike the Sudakov double logarithms, the leading power-
suppressed double-logarithmic corrections depend not only on the 
charges of the initial and final states but also on the details of 
the scattering process. For example, the O(ρ) double-logarithmic 
corrections to the scalar form factor vanish to all orders in α
due to a specific Lorentz and Dirac structure of the soft elec-
tron pair interaction with the eikonal electrons and positrons. 
A less trivial example is the Pauli form factor. The expansion of 
F2 in ρ (cf. Eq. (2)) starts with the first order term F (1)

2 . In the 
double logarithmic approximation F (1)

2 = 0 and for the leading 
mass correction from the soft electron pair exchange we obtain 
F (2)

2 = 4F (1)
1 , in agreement with [8,28]. Thus the O(ρ) correc-

tions are universally related to the soft electron pair exchange 
and can be obtained as a straightforward generalization of our 
analysis for more complicated processes such as Bhabha scatter-
ing, where only the leading result of the small electron mass 
expansion is available in two loops [29,30]. Moreover, up to two 
loops the structure of the O(ρ) double-logarithmic correction in 
quantum chromodynamics (QCD) is similar to the one in QED. 
In particular, the double-logarithmic power-suppressed term in 
two-loop corrections to the heavy-quark vector form factor dif-
fers from the QED result only by the C2

F − C A C F /2 color factor 
of the diagram in Fig. 1. Thus our method can be applied to the 
calculation of the dominant two-loop power-suppressed correc-
tions to the high-energy processes involving heavy quarks. For 
the energies ranging from approximately 10 to 100 times the 
heavy-quark mass we have | lnρ| 
 1 and ρ ln4 ρ ∼ 1, i.e. the 
double-logarithmic terms saturate the power-suppressed contri-
bution and are comparable in magnitude to the nonlogarithmic 
leading-power corrections in the strong coupling constant, which 
are phenomenologically significant. Beyond the two-loop approxi-
mation our result is not directly applicable to the QCD amplitudes 
since the eikonal gluons in Fig. 1(b) can radiate soft gluons produc-
ing additional double-logarithmic corrections. As a consequence, 
the leading power-suppressed double-logarithmic corrections to 
the heavy-quark vector form factor get a nonabelian contribution 
in every order of perturbation theory in contrast to the purely 
abelian Sudakov double logarithms.

To summarize, we have generalized the result of Sudakov [1]
to the leading power-suppressed contribution. This is an impor-
tant step towards a systematic renormalization group analysis of 
the high energy behavior of the gauge theory amplitudes beyond 
the leading power approximation. The leading power-suppressed 
double-logarithmic corrections reveal a few characteristic features 
which distinguish them from the Sudakov double logarithms. In 
particular, they are induced by a soft electron pair exchange and 
result in a strong enhancement of the power-suppressed contri-
bution. In QCD our method can be used for the analysis of the 
high-energy processes involving heavy quarks up to two loops. Ex-
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tending the analysis to the higher orders of perturbative QCD and 
to subleading logarithms is a very interesting problem which is be-
yond the scope of this Letter.
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