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Abstract (English Version)

In this thesis we treat the nonlinear Schrödinger equation (NLS for short) formulated
for a non-negative, selfadjoint linear operator (A, D(A)) on L2(Ω), whereby Ω is an ar-
bitrary measure space. In this setting we formulate a local existence result for mild so-
lutions in D(As) under the assumption of Strichartz estimates with loss of derivatives.
We obtain an abstract framework as a generalization of methods given in [BGT04b] by
a systematic study of spectrally localized Strichartz and dispersive estimates. These
concepts are used successfully in the literature to prove Strichartz estimates with loss
of derivatives. We show that the above methods can be applied in a unified way to the
situations in [BGT04b, Ant08, BFHM12, YZ04].
Our approach leads to new results for the NLS formulated for the Laplace-Beltrami
operator on Rn × M, whereby M is a connected, compact Riemannian C∞-manifold
without boundary and dim(M) = m. We provide Strichartz estimates with loss for
(eit∆Rn×M)t∈R exploiting the dispersive estimates for (eit∆Rn )t∈R and the spectrally local-
ized dispersive estimates for (eit∆M)t∈R. For n = m = 1 we extend the known global
existence result in [TTV14] with respect to the growth of the nonlinearity.

Abstract (German Version)

In dieser Dissertation behandeln wir die nichtlineare Schrödingergleichung (kurz NLS)
für einen nicht-negativen, selbstadjungierten linearen Operator (A, D(A)) auf L2(Ω)
mit einem beliebigen Maßraum Ω. In diesem Rahmen formulieren wir ein lokales
Existenzresultat für milde Lösungen in D(As) unter der Annahme von Strichartzab-
schätzungen mit Verlust von Ableitungen. Wir abstrahieren Methoden aus [BGT04b]
durch ein systematisches Studium von spektral lokalisierten Strichartz- und disper-
siven Abschätzungen. Diese Konzepte werden in der Literatur mit großem Erfolg
dazu verwendet Strichartzabschätzungen mit Verlust von Ableitungen herzuleiten. Wir
zeigen, dass die obigen Methoden sich in einheitlicher Form auf die Situationen in
[BGT04b, Ant08, BFHM12, YZ04] anwenden lassen.
Unser Zugang erlaubt uns die Herleitung neuer Resultate für NLS für den Laplace-
Beltrami Operator auf Rn ×M mit einer zusammenhängenden, kompakten Riemann-
schen C∞-Mannigfaltigkeit M ohne Rand und dim(M) = m. Wir beweisen Strichartz-
abschätzungen mit Verlust für (eit∆Rn×M)t∈R unter Verwendung der dispersiven Ab-
schätzungen für (eit∆Rn )t∈R und der spektral lokalisierten dispersiven Abschätzungen
für (eit∆M)t∈R. Im Fall n = m = 1 erweitern wir das globale Existenzresultat aus
[TTV14] im Hinblick auf das zulässige Wachstum der Nichtlinearitäten.
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Introduction

Over the last three decades the nonlinear Schrödinger equation on Rd given by

i∂tu(t, x) = −∆u(t, x)± |u(t, x)|βu(t, x), t 6= 0, x ∈ Rd,

u(0, x) = f (x), x ∈ Rd,
(NLS)

with β ∈ (0, ∞) has been subject to extensive study regarding its local and global
wellposedness as well as long time dynamics in general, which has led to a good
understanding of these aspects (see e.g. [Tao06] for an overview). The results on
global wellposedness highly depend on the sign of the nonlinearity. One therefore
distinguishes the defocusing (+) and focusing (-) cases with respect to the nonlinearity
and the corresponding equation. From a physicist’s point of view this widespread
interest in (NLS), in particular with β = 2, stems from its rather versatile applications.
They include

• laser beam models in Kerr media, where several reductions of Maxwell’s equa-
tions lead to (NLS) (e.g. Section 1.2 of [SS99]),

• models for Bose-Einstein condensates, where (NLS) with an additional potential
describes the common state of the particles of a quantum gas at extremely low
temperatures (e.g. [PS03]),

• the theory of water waves, where so-called breather solutions of (NLS) serve as a
prototype for rogue waves in the ocean (e.g. [CKOP13]).

Although all these applications are interesting in their own right, from now on we take
a mathematician’s point of view and shed some light on the mathematical challenges
we face when constructing solutions of (NLS). Firstly, we provide the proper context
for our results by a description of the development of the existing theory for (NLS).
After that we state our main results and describe the structure of this thesis.

Historical and methodological background

In the framework of nonlinear evolution equations we formulate the partial differential
equation (NLS) as the nonlinear ordinary differential equation on L2(Rd) given by

u′(t) = i∆u(t)∓ i|u(t)|βu(t), t 6= 0,
u(0) = f ,

(CP)

1



Introduction

with f ∈ L2(Rd) and i∆ realized on L2(Rd) with D(i∆) = H2
2(R

d). The method to
construct a solution of (CP) provided by semigroup theory is to solve, in a suitable
space, the fixed point equation

u(t) = eit∆ f ∓ i
∫ t

0
ei(t−s)∆|u(s)|βu(s) ds. (FP)

Here (eit∆)t∈R denotes the C0-group on L(L2(Rd)) generated by i∆. Also, eit∆ is an
isometry on Hs

2(R
d) for all s ∈ [0, ∞) and t ∈ R. The parabolic theory of nonlinear

evolution equations is therefore not available for (eit∆)t∈R, since it clearly lacks the
crucial smoothing estimates for analytic semigroups (e−tA)t∈[0,∞) on L(L2(Rd)) of the
form

∀t∈(0,∞), k∈N : ‖e−tA‖L2(Rd)→D(Ak) ≤ C(t, k)t−k, (1)

(see e.g. [Lun95] for a good introduction). In 1977 Robert S. Strichartz took the first
step in the direction of a suitable substitute for (1) (see Section 3 of [Str77]), by proving
for p = q = 2(n+2)/n the estimates

‖ei(·)∆ f ‖Lp(R,Lq(Rd)) . ‖ f ‖L2(Rd), (HS)∥∥∥∥ ∫ ·0 ei(·−s)∆F(s) ds
∥∥∥∥

Lp(R,Lq(Rd))

. ‖F‖Lp∗ (R,Lq∗ (Rd)). (IS)

p∗, q∗ denote the Hölder conjugates of p and q, respectively. At the heart of his ar-
gument is a restriction theorem for Fourier transformed functions on Rd to quadratic
surfaces, which exposes a noteworthy connection between harmonic analysis and the
theory of partial differential equations. In honor of his important contribution esti-
mates of the form (HS) and (IS) are called Strichartz estimates.
In the subsequent development of Strichartz estimates several authors observe that
(HS) and (IS) also hold for pairs (p, q) with p 6= q and use them to construct solu-
tions of (FP). In 1987 Kato provided in [Kat87] one of the most successful approaches
via a contraction argument involving Banach’s fixed point theorem. For initial data
f ∈ H1

2(R
d) and β ∈ (0, 4/max{d−2,0}) he first constructs a unique solution u of (FP) in

XT := L∞([0, T], H1(Rd)) ∩ Lp([0, T], H1
q (R

d)), (p, q) = (4(β+2)/βd, β + 2), (2)

with T small enough. The key observation is the completeness of the metric space
(BXT (0, R), dT) with

dT(v, w) := ‖v− w‖L∞([0,T],L2(Rd)) + ‖v− w‖Lp([0,T],Lq(Rd)), (3)

where we stress that dT contains no derivatives in space, in contrast to the norm on XT.
The local solution is a posteriori in C([0, T], H1

2(R
d)) and can be extended to a maximal

existence interval [0, T+) such that

T+ < ∞ =⇒ lim
t→T+

‖u(t)‖H1
2 (R

d) = ∞. (4)

This property is called the blow-up alternative. Combined with the energy conserva-
tion

1
2
‖∇u(t)‖2

L2(Rd) ±
1

β + 2
‖u(t)‖β+2

Lβ+2(Rd)
=

1
2
‖∇ f ‖2

L2(Ω) ±
1

β + 2
‖ f ‖β+2

Lβ+2(Rd)
(5)
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for all t ∈ [0, T+) he finally derives criteria for u : [0, T+) → H1
2(R

d) to be bounded.
With (4) this implies global existence in H1

2(R
d), i.e. T+ = ∞. Note that β < 4/max{d−2,0}

provides H1
2(R

d) ↪→ Lβ+2(Rd) by Sobolev’s embedding theorem and the expressions
in (5) are therefore finite. In the literature this is known as the energy subcritical or
Ḣ1-subcritical case.
Up to now, variants of Kato’s scheme presented above have been extensively used in
more general situations. As a rule of thumb the availability of Strichartz estimates
always leads to a good local existence theory. It is therefore of interest to have as much
flexibility for the pairs (p, q) in these estimates as possible.
In that context Ginibre and Velo showed in [GV92] by means of complex interpolation
and the dispersive estimate

‖eit∆‖L1(Rd)→L∞(Rd) . |t|−
d/2, t 6= 0, (6)

that (HS) and the following extension of (IS)∥∥∥∥ ∫ ·0 ei(·−s)∆F(s) ds
∥∥∥∥

Lp(R,Lq(Rd))

. ‖F‖L p̃∗ (R,Lq̃∗ (Rd)) (IS’)

hold for all sharp d/2-admissible (p, q), ( p̃, q̃) ∈ [2, ∞]2, i.e.

2
p
+

d
q
=

d
2

, (p, q, d) 6= (2, ∞, 2),

with the additional restriction q, q̃ < 2d/(d−2) if d ≥ 3. The pair (p, q) = (2, 2d/(d−2)) for
d ≥ 3 is known as the endpoint of this admissibility scale. In 1998 Keel and Tao suc-
cessfully prove in their groundbreaking paper the Strichartz estimates (HS) and (IS’) in
an operator theoretic setting for all (p, q), ( p̃, q̃) sharp d/2-admissible including the end-
points for d ≥ 3. Not only do they completely answer the question of necessary and
sufficient criteria on (p, q) for (HS) to hold, but the striking generality of their result
allows for very versatile applications. Note that the sharp d/2-admissibility of the pairs
(p, q), ( p̃, q̃) is not necessary for the inhomogeneous Strichartz estimate (IS’) to hold
(see e.g. [Vil07]).
Today there are countless results of dispersive and Strichartz estimates for more gen-
eral operators on Rd than the Laplacian (see e.g. [Sch07, ST02, DFVV10]). In all of
them the availability of euclidean Fourier analysis is of great importance.
In contrast to this rather favorable situation on Rd where the availability of Strichartz
estimates has lead to a well developed local and global existence theory, there is consid-
erably less development of (FP) for the Laplacian on either a compact C∞-manifold or
a bounded C∞-domain with additional boundary conditions. The main problem here
is on the one hand the failure of the dispersive estimate (6), due to the pure point spec-
trum of the respective Laplacian, and on the other hand the lack of euclidean Fourier
analysis.
In his famous paper [Bou93b] Bourgain combines the theory of Fourier series and
analytic number theory to produce a weaker form of the Strichartz estimate (HS), a
so-called Strichartz estimate with “ε-loss of derivatives” for (eit∆

Td )t∈R generated by
the Laplacian ∆Td on the flat torus. In these estimates the L2-norm on the right-hand
side of (HS) is substituted by the fractional Hε

2(T
d)-norm with ε ∈ (0, ∞). Here Hε

2(T
d)

denotes the fractional domain D((−∆Td)
ε/2), which is the natural extension of the clas-

sical Sobolev spaces.
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Introduction

Inspired by this approach Burq, Gerard, and Tzvetkov produce in [BGT04b] Strichartz
estimates with loss of derivatives for the Laplace-Beltrami operator (−∆M, D(−∆M))
on an arbitrary connected, compact Riemannian C∞-manifold M without boundary
and dim(M) = d ∈ N. Their key observation is the validity of the spectrally localized
dispersive estimate

‖ψ(2−2k∆M)eit∆‖L1(M)→L∞(M) . |t|−
d/2, 0 < |t| . 2−k, (7)

for k ∈ N0 and ψ ∈ C∞
c (R). For particular ψ0, ψ ∈ C∞

c (R) the decomposition estimate
of Littlewood-Paley type

‖eit∆M f ‖Lq(M) . ‖ψ0(∆M)eit∆ f ‖Lq(M) +

( ∞

∑
k=1
‖ψ(2−2k∆M)eit∆ f ‖2

Lq(M)

)1/2

with q ∈ [2, ∞) and the abstract Keel-Tao result [KT98] applied to the operator families
(ψ(2−2k∆M)eit∆M)t∈R for k ∈N imply

‖ei(·)∆M f ‖Lp([0,T],Lq(M)) ≤ C(T)‖ f ‖
H

1/p
2 (M)

, (LS)

with (p, q) ∈ [2, ∞]× [2, ∞) sharp d/2-admissible. As in the case of the flat torus the loss
of derivatives is measured in terms of the fractional domains H1/p(M) = D((−∆M)1/2p)
of the Laplace-Beltrami operator. Based on (LS) they prove previously unknown global
wellposedness results for (FP) with initial data in H1

2(M). They provide in particular
a global wellposedness result in H1

2(M) for d = 2 with arbitrary growth of the non-
linearity and for d = 3 with cubic growth of the nonlinearity. One important step in
their analysis is solving (FP) for initial data in Hs

2(M) with arbitrary growth of the
nonlinearity. This is done following a straightforward adaptation of the arguments in
[Kat87] on the space

XT := L∞([0, T], Hs
2(M)) ∩ Lp([0, T], Hσ

q (M)), s > σ +
1
p

, σ >
d
q

, (8)

and (p, q) sharp d/2-admissible with p large enough. In contrast to (3), the loss of
derivatives in (LS) forces the authors to work with the metric

dT(w, v) := ‖v− w‖L∞([0,T],Hs
2(M)) + ‖v− w‖Lp([0,T],Hσ

q (M)),

which includes the fractional domain space Hs
2(M). It is also noteworthy that in the

case d = 3 with cubic growth of the nonlinearity they adapt the crucial logarithmic
L∞-estimate (2) used in [BG80] by Brezis and Gallouet.
They proceed to show that the loss of derivatives in (LS) is optimal on the sphere in
the endpoint case for d ≥ 3 and reduce the loss of derivatives under the geometric
assumptions on M that all geodesics are closed with a common period. Up to this day
the interplay of the geometry of the state space and the loss of derivatives phenomenon
is only partially understood and remains an active area of research (see e.g. [Bou14]
and the references therein).
The considerable success of [BGT04b] and the follow up paper [BGT04a] (treating (CP)
on non-trapping exterior domains) unfolds in the impact their methods and ideas had
in the subsequent developments. The spirit of their arguments is found for example
in the papers [Ant08, BFHM12, Iva10, BSS12] and [YZ04], which deal with Strichartz

4
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estimates with loss of derivatives and wellposedness of (CP) for the Laplacian on C∞-,
polygonal and exterior domains, compact manifolds with boundary, and on Rd with
an added superquadratic potential.
It is natural to ask for local and global existence for (CP) formulated for the Lapla-
cian ∆Ω on the product space Ω = Rn × M with an arbitrary connected, compact
Riemannian C∞-manifold M without boundary. However, results in that area are
rare. Recently, there has been considerable progress in the case M = Tm (see e.g.
[TV14, GPT15] and the references therein). For a treatment of a general compact C∞-
manifold we are only aware of [TTV14] and [TV12], in which the respective initial data
belongs to H1

2(R
n × M) or modified anisotropic Sobolev spaces. We are interested

in the Cauchy problem (CP) with initial data in Hs
2(R

n × M) and point out that the
Strichartz estimates used in the local existence result in [TTV14] exclusively rely on the
dispersive estimate (6) for the Laplacian on Rn. The authors solve (FP) in the spirit of
[Kat87] in a space exhibiting mixed Rn ×M integrability, which limits their argument
with respect to the growth of the nonlinearity. However, the spectrally localized disper-
sive estimates (7) for the Laplacian on the compact manifold M provided by [BGT04b]
are not exploited in this work. It is reasonable to expect that using (7) improvements
are possible since (eit∆Ω)t∈R decomposes as eit∆Ω = eit∆Rn eit∆M for t ∈ R.

Main results and organization of this thesis

We pursue the following goals:

(A) A systematic development of a functional analytic framework for (CP) based on
generalizations of the methods introduced by [BGT04b] and [Kat87]. It covers
many of the existing examples presented above and allows us to reproduce known
local and global existence results in a unified way.

(B) The derivation of Strichartz estimates with loss of derivatives for (eit∆Rn×M)t∈R on
Rn ×M with an arbitrary connected, compact Riemannian C∞-manifold M with-
out boundary, using the dispersive estimates (6) for (eit∆Rn )t∈R and the spectrally
localized dispersive estimate (7) for (eit∆M)t∈R. As an application we prove a global
existence result for (NLS) in H1

2(R×M) with dim(M) = 1 for nonlinearities with
larger growth than considered in [TTV14].

This thesis is organized as follows. In Chapter I we consider the Cauchy problem

iu′(t) = Au(t) + F(u(t)), t 6= t0,
u(t0) = f ,

(ACP)

with a non-negative, selfadjoint linear operator (A, D(A)) on a Hilbert space H and
aim to provide conditions for the existence of solutions of (ACP).
Section I.1 and I.2 give an accessible introduction into the necessary concepts involved
in the subsequent analysis. First we recall important facts from the spectral theory
for non-negative, selfadjoint operators on Hilbert spaces. Then we recall the notion of
strong and weak solutions of (ACP) and present the usual criteria for them to be given

5
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by mild solutions, i.e. solutions of the fixed-point equation

u(t) = e−i(t−t0)A f − i
∫ t

t0

ei(s−t)AF(u(s)) ds. (AFP)

In view of Kato’s scheme we also recall the important concepts of H- and energy
conservation and give several criteria for a solution to fulfill these conservation laws.
Section I.3 contains the central local existence theorem for maximal mild solutions
of (AFP) in fractional domain spaces D(As), which forms our first main result. The
crucial assumptions that we make in this theorem are Strichartz estimates with loss of
the form

‖e−i(·)A f ‖Lp(I,Lq(Ω)) ≤ C(|I|)‖ f ‖D(A`) (ALS)

for bounded intervals I and mapping properties of the nonlinearity on D(As). Crite-
ria for the boundedness of strong solutions in D(A1/2) are also provided. These results
generalize the local existence result in [BGT04b] and the energy methods used in Kato’s
scheme. As there are many interesting examples where the established existence result
for mild solutions cannot be applied, we provide a standard argument for the construc-
tion of weak solutions in D(As) by means of an approximation with strong solutions.
The methods for the construction of mild and weak solutions are applied in Chapter
III and IV. In particular, we provide there all the needed estimates for the nonlinearity,
which we assumed in the existence result for mild solutions.
In the final Section I.4 we provide the necessary estimates for the model nonlinearity
F(u(t)) := ±|u(t)|βu(t) with β ∈ (0, ∞) to fit into the framework of Section I.2. We
additionally prove a criterion for energy conservation of a strong solution of the cor-
responding nonlinear Schrödinger equation (ACP), which will be used frequently in
Chapter III and IV.

Having applied the Strichartz estimates with loss from (ALS) in Section I.3 to the con-
struction of solutions of (AFP), we focus in the first part of Chapter II exclusively on
the derivation of (ALS). The second part is devoted to the presentation of further meth-
ods abstracted from the “d = 3”-case in [BGT04b] with respect to solutions of (ACP).
Section II.1 provides a systematic introduction to the concepts of Strichartz and dis-
persive estimates. We prove a variant of the important Keel-Tao result with complex
interpolation spaces instead of real interpolation spaces in the non-endpoint situation.
We present in Section II.2 a precise formulation of the following hierarchy:

Spectrally localized dispersive estimates
=⇒ Spectrally localized Strichartz estimates
=⇒ Strichartz estimates with loss (ALS).

To underline the relevance of the previous approach we provide in Section II.3 several
examples from the literature where the arguments and ideas of Section II.2 are used
to provide Strichartz estimates with loss of derivatives. In Chapter III we will further
develop some of these examples.
In the final Section II.4 we come back to the Cauchy problem (ACP). We provide criteria
for uniqueness of weak solutions of (ACP) in D(As) with s ≥ 1/2 and a priori estimates
for strong solutions of (ACP) in D(As) with s > 1/2. In these results we highlight the

6



Main results and organization of this thesis

role of so-called Bernstein inequalities and the spectrally localized Strichartz estimates
from Section II.2.

In Chapter III we provide several applications in order to underline the flexibility
of the abstract framework developed so far. In Section III.1 we treat the nonlinear
Schrödinger equation (ACP) for (A, D(A)) being the Laplace-Beltrami operator on a
connected, complete Riemannian C∞-manifold Ω without boundary, with bounded
geometry, and dim(Ω) = d. We derive the crucial mapping properties for the model
nonlinearity on Sobolev spaces for such manifolds. We formulate a local existence
result in Hs

2(Ω) for d ≥ 2 and a global existence result in dimensions d ∈ {2, 3} in
H1

2(Ω). Doing so allows us to recover known results for Ω = Rd from [Kat87] and
Ω = M from [BGT04b], where M is a connected, compact Riemannian C∞-manifold
without boundary. We furthermore show that our framework can be applied to the
following situations:

• A = −div(B(·)∇) + V on Rd with diagonal B ∈ C∞
b (Rd, Rd×d) and V ∈ C1

b(R
d)

(see the appendix of [BGT04b] for V = 0).

• A = −∆ + V on Rd with superquadratic potential (see [YZ04]).

• A = −∆D on a polygonal or C∞-domain in R2 with homogeneous Dirichlet
boundary conditions (see e.g. [BFHM12, Ant08])

We recover all the respective local existence results and almost all of the global existence
results stated there. In some cases we obtain results beyond the statements in the
respective papers.

In Chapter IV we turn to the product situation. We in particular construct local and
global strong solutions of

iu′(t) = −∆Rn×Mu(t)± |u(t)|βu(t), t 6= 0,
u(0) = f ,

(9)

whereby M is a connected, compact Riemannian C∞-manifold without boundary and
dim(M) = m. (−∆Rn×M, D(−∆Rn×M)) denotes the Laplace-Beltrami operator on the
product manifold Rn ×M.
In an abstract setting we consider in Section IV.1 an operator family U in L(L2(X×Y)),
which can be decomposed as U(t) = Ux(t)Uy(t) for t ∈ R, with commuting operator
families Ux in L(L2(X)) and Uy in L(L2(Y)). We show that U satisfies Strichartz
estimates with loss under the assumption that Ux and Uy satisfy spectrally localized
dispersive estimates. This result provides in Section IV.2 Strichartz estimates with loss
of 1/p derivatives for (eit∆Rn×M)t∈R, whereby the loss is comparable to the loss in (LS).
We then use the local existence result of Section III.1 to produce a local existence result
for (9) in Hs

2(R
n × M) with arbitrary n, m ∈ N. Combined with the energy methods

in Section I.3 we prove global existence in H1
2(R × M) for m = 1 and defocusing

nonlinearity with β ∈ [2, ∞). We are not aware of these results in the literature. The
only comparable global existence result in H1

2(R × M) with m = 1 we know of is
contained in [TTV14]. Their methods work under the restriction β < 4.
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Introduction

Notation

In this section let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be normed K-vector spaces with K ∈ {C, R}.

Normed spaces and linear operators

• For x ∈ X and R ∈ [0, ∞) we put BX(x, R) := {x ∈ X | ‖x‖X < R} and
BX(x, R) := BX(x, R). If (X, ‖ · ‖X) = (Rd, | · |) we let B(x, R) := BRd(x, R).

• Let S be a set. T1, T2 : S → R. Then T1 . T2 denotes the existence of a constant
C ∈ [0, ∞) such that T1(s) ≤ CT2(s) for all s ∈ S. Moreover, T1

∼= T2 denotes
T1 . T2 and T2 . T1. We write T1 ≤ C(r)T2 if we want to stress the dependence
of the constant on the expression r.

• (X, ‖ · ‖X) ∼= (Y, ‖ · ‖Y) means X = Y and ‖ · ‖X ∼= ‖ · ‖Y. (X, ‖ · ‖X) ≡ (Y, ‖ · ‖Y)
denotes isomorphic equivalence, i.e. the existence of a bounded isomorphism
I : X → Y.

• X ↪→ Y denotes that X is continuously embedded in Y, i.e. there is a continuous,
injective mapping e : X → Y. The embedding is said to be compact if e is compact.
If e(X) is dense in Y, then the embedding is said to be dense.

• By (X∗, ‖ · ‖X∗) we denote the topological dual space of (X, ‖ · ‖X) and for x∗ ∈ X∗

and x ∈ X we write 〈x∗, x〉 = 〈x∗, x〉X∗,X := x∗(x).

• Let (xn)n∈N be a sequence in (X, ‖ · ‖X) and x ∈ X. The expression xn
n→∞−→ x

denotes strong convergence and xn ⇀ x weak convergence of (xn)n∈N to x in X
as n→ ∞.

• Let (X, Y) be a Banach interpolation couple and θ ∈ (0, 1). Then [X, Y]θ denotes
the complex interpolation space generated by the complex interpolation method
explained in Section A.1. For q ∈ [1, ∞] we denote by (X0, X1)θ,q the real interpo-
lation space generated in Section 1.3 of [Tri95].

• Let D(A) be a subspace of X and A : D(A)→ Y be K-linear. The pair (A, D(A))
is called a linear operator from X to Y. We call ‖ · ‖D(A) := ‖ · ‖X + ‖A · ‖Y the
graph norm of A on D(A). ρ(A) and σ(A) denote the resolvent set and the
spectrum of A, respectively.

• Let (A, D(A)) and (B, D(B)) be linear operators from X to Y. (A, D(A)) ⊆
(B, D(B)) denotes the situation D(A) ⊆ D(B) and A f = B f for f ∈ D(A).
A = B means A ⊆ B and B ⊆ A.

• C(X, Y) denotes the set of densely defined, closed and L(X, Y) the set of bounded
linear operators from X to Y. For A ∈ L(X, Y) we denote by ‖A‖X→Y the operator
norm of A. Moreover, C(X) := C(X, Y) and L(X) := L(X, X).

• Let (A, D(A)) be a linear operator on an inner product space (H, (·, ·)H). Then
we call (·, ·)D(A) := (·, ·)H + (A·, A·)H the graph inner product of A on D(A).
(A, D(A)) is called non-negative if (A f , f )H ≥ 0 for all f ∈ D(A). It is called
positive definite if there is a constant C ∈ (0, ∞) such that (A f , f )H ≥ C‖ f ‖2

H for
all f ∈ D(A).
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Notation

Intervals and special function spaces

• Neven := {n ∈ N | n is even}. N≤k and N≥k are the sets of n ∈ N0 with n ≤ k
and n ≥ k, respectively.

• We let I := {I ⊆ R | I is an interval } and define the subclasses Io, Ib and Ic of
open, bounded and compact elements of I . For I ∈ I we let |I| := λ(I), where λ
is the Lebesgue measure on R.

• Let (Ω, S , µ) be a measure space and p ∈ [1, ∞]. M(Ω) denotes the space of
measurable complex valued functions and Mb(Ω) the set of bounded elements
in M(Ω). Lp(Ω) denotes the usual Lebesgue space of equivalence classes of
f ∈ M(Ω) with | f |p Lebesgue integrable if p ∈ [1, ∞) or with | f | bounded almost
everywhere if p = ∞.

• By B(Rd) we denote the Borel σ-algebra on Rd and by λ the Lebesgue measure
on B(Rd). For Ω ⊆ Rd we denote the trace σ-algebra of B(Rd) with respect to
Ω by B(Ω).

• Let Ω be either an open subset of Rd or a Riemannian C∞-manifold and s ∈ [0, ∞),
p ∈ [1, ∞], q ∈ (1, ∞).

– Ws
p(Ω) denotes for s ∈N0 the classical Sobolev space of C-valued functions

defined via weak or covariant derivatives, respectively.

– We define the fractional Sobolev space Hs
q(Ω) := [W [s]

q (Ω), W [s]+1
q (Ω)]s−[s]

for s /∈N and we let Hs
q(Ω) := Ws

q(Ω) for s ∈N0.

– C∞
c (Ω) denotes the set of complex valued C∞ functions on Ω with bounded

support and Hs
q,0(Ω) denotes the closure of C∞

c (Ω) with respect to ‖ · ‖Hs
q(Ω).

• For I ∈ I and α ∈ (0, 1] we define:

Cw(I, X) :=
{

u : I → X | u is weakly continuous
}

,

Cb(I, X) :=
{

u ∈ C(I, X) | u is bounded
}

,

Cb,u(I, X) :=
{

u ∈ Cb(I, X) | u is uniformly continuous
}

,

C0,α(I, X) :=
{

u ∈ Cb,u(I, X) | ‖u‖C0,α(I,X) < ∞
}

,

‖u‖C0,α(I,X) := ‖u‖L∞(I,X) + sup
t,s∈I, s 6=t

‖u(t)− u(s)‖X

|t− s|α .

• Let I ∈ I , p ∈ [1, ∞], and (X, ‖ · ‖X) be a Banach space. Lp(I, X) and W1
p(Io, X)

denote the respective Lp and Sobolev space for functions u : I → X described in
Section A.3.
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I. A functional analytic framework for the
nonlinear Schrödinger equation

This chapter contains the exposition of a functional analytic framework for the nonlin-
ear Schrödinger equation

iu′(t) = Au(t) + F(u(t)), t 6= t0,
u(t0) = f ,

(I.1)

with a non-negative selfadjoint linear operator (A, D(A)) on a Hilbert space H. It is
organized as follows.
In Section I.1 we recall the functional calculus in Hilbert spaces and the extrapolation
theory for the operator (A, D(A)). We furthermore review some useful properties of
the fractional powers (As, D(As)) for s ∈ [0, ∞).
In Section I.2 we use these concepts to give a precise formulation of the Cauchy prob-
lem (I.1) for f ∈ D(As) and F : D(As) → D(A1/2)∗ with s ∈ [1/2, ∞). We recall the
standard notions of solutions, namely strong, weak and mild solutions and discuss
their relation depending on the mapping properties of F. In addition, we give criteria
for solutions to have a conserved H-norm or energy.
In Section I.3 we present methods to construct mild and weak solutions of the Cauchy
problem (I.1). Under the assumption of Strichartz estimates with loss and suitable
estimates for the nonlinearity we prove the central existence result for maximal mild
solutions of (I.1) with f ∈ D(As). This existence theorem is our first main result and
it will be applied frequently in Chapter III and IV in various situations. There we will
also provide the needed estimates for the nonlinearity, which we have assumed here.
For situations in which the latter result can not be applied, we provide a standard
approximation scheme, which allows us to construct weak solutions of (I.1) from a se-
quence of strong solutions.
In the final Section I.4 we review the most commonly used nonlinearity in this thesis,
namely the model nonlinearity F(u(t)) := ±|u(t)|βu(t) with β ∈ (0, ∞). We provide
the needed mapping properties to fit this nonlinearity into the framework of Section
I.2 and prove an additional criterion for strong solutions of the corresponding Cauchy
problem to have energy conservation.

Throughout this chapter (H, (·, ·)H) denotes a complex Hilbert space, which we equip
with the real scalar product 〈·, ·〉H := Re(·, ·)H. We always consider H and H∗ iden-
tified via f 7→ 〈 f , ·〉H. Oberserve that the complex scalar product (·, ·)H and the real
scalar product 〈·, ·〉H induce an equivalent norm on H. We let (A, D(A)) be a non-
negative, selfadjoint C-linear operator on (H, 〈·, ·〉H) if not stated otherwise.
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I. A functional analytic framework for the nonlinear Schrödinger equation

I.1. Spectral calculus, extrapolation, and energy space

The spectral theorem for selfadjoint operators on Hilbert spaces in multiplication form
in Theorem 1.7 of [Tay11] states the existence of a measure space (ΩA, ΣA, µA), a uni-
tary map VA : H → L2(ΩA), and a function mA ∈ M(ΩA) with mA(ΩA) ⊆ R such
that

D(A) = {h ∈ H | mAVAh ∈ L2(Ω)}, A = V∗AmAVA on D(A).

Theorem VII.3.1 in [Wer00] states that (ΩA, ΣA, µA) is σ-finite if (H, 〈·, ·〉H) is separable.
It is easy to show that mA ≥ 0 almost everywhere on ΩA since (A, D(A)) is non-
negative. For ϕ ∈ M(R) the spectral theorem allows us to define the linear operator
(ϕ(A), D(ϕ(A))) by

D(ϕ(A)) := {h ∈ H | (ϕ ◦mA)VAh ∈ L2(ΩA)},

ϕ(A) := V∗A(ϕ ◦mA)VA on D(ϕ(A)).

This definition gives rise to the following map.

Theorem I.1.1
The map

ΦA : M(R)→ C(X), ϕ(A) := ΦA(ϕ)

has the following properties for ϕ, η ∈ M(R):

(SC1) ϕ(A) + η(A) ⊆ (ϕ + η)(A) and ϕ(A)η(A) ⊆ (ϕη)(A), whereby

D(ϕ(A)η(A)) = D((ϕη)(A)) ∩ D(η(A)),

(SC2) ϕ|σ(A) = 0 =⇒ ϕ(A) = 0 and ϕ|σ(A) = 1 =⇒ ϕ(A) = id,

(SC3) ϕ(A)∗ = ϕ(A),

(SC4) ΦA : (Mb(R), ‖ · ‖L∞([0,∞)))→ L(H) is a bounded algebra homomorphism.

Remarks: The first assertion in (SC2) implies that exclusively the part of the function ϕ
on σ(A) is relevant for the definition of ΦA. Recall that every non-negative, selfadjoint
operator has its spectrum in [0, ∞). The functions in use will therefore only be defined
on [0, ∞).

Proof. Let ϕ ∈ M(R), m := ϕ ◦mA, and the linear multiplication operator (Tm, D(Tm))
on L2(ΩA) be defined by

D(Tm) := { f ∈ L2(ΩA) | m f ∈ L2(ΩA)},

Tm f := m f on D(Tm).

The unitary equivalence of ϕ(A) and Tm implies

(ϕ(A), D(ϕ(A))) ∈ C(H) ⇐⇒ (Tm, D(Tm)) ∈ C(L2(ΩA)).
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I.1. Spectral calculus, extrapolation, and energy space

The latter follows from the fact that ΩA admits the measurable partition

ΩA =
⋃

n∈N

{ω ∈ ΩA | |m(ω)| ≤ n}

and

span
{

f ∈ L2(ΩA) | ∃n∈N : supp( f ) ⊆ {ω ∈ ΩA | |m(ω)| ≤ n}
}
⊆ D(Tm).

For the density of the set on the left-hand side in L2(ΩA) we use Theorem 2.28 in [Els05]
on each set {ω ∈ ΩA | |m(ω)| ≤ n}. The properties (SC1) - (SC3) are straightforward
consequences of the definition of ϕ(A) and its unitary equivalence to the multiplication
operator Tm. Property (SC4) follows from (SC1) and D(ϕ(A)) = H for ϕ ∈ Mb(R).

For further reference we fix the following notion for ΦA and ΦA|Mb(R) to emphasize its
origin.

Definition I.1.2
The maps ΦA and ΦA|Mb(R) from Theorem I.1.1 are called the spectral calculus and bounded
spectral calculus of (A, D(A)), respectively. We always equipp D(ϕ(A)) with the graph norm
‖ · ‖ϕ(A).

The spectral calculus introduced in Theorem I.1.1 can be used to construct important
operators, including fractional powers and the unitary C0-group of isometries gener-
ated by (A, D(A)).

Corollary I.1.3
Let θ ∈ (0, 1) and α, β ∈ [0, ∞).

(a) Let pα ∈ M([0, ∞)) be defined by pα(λ) := λα. The fractional powers Aα := pα(A)
satisfy:

• The embedding (D(Aα+β), ‖ · ‖D(Aα+β)) ↪→ (D(Aβ), ‖ · ‖D(Aβ)) is dense,

• Aα Aβ = Aα+β,

• [D(Aα), D(Aβ)]θ ∼= D(A(1−θ)α+θβ).

(b) U : R→ L(H) defined by U(t) := e−itA is a unitary C0-group of isometries on D(Aα).

Remarks:

(1) Assertion (b) is known as Stone’s theorem. We denote U also by (e−itA)t∈R and call
it the Schrödinger group of (A, D(A)).

(2) Since D(A1/2) ↪→ H is dense and H is identified with its dual space H∗, we also
have D(A1/2) ↪→ D(A1/2)∗ with e : D(A1/2)→ D(A1/2)∗ defined by e( f ) := 〈 f , ·〉H.

Proof. (a) Let us first prove the properties of the fractional powers. For h ∈ D(Aα+β)
holds

‖mβ
AVAh‖L2(ΩA) ≤ ‖VAh‖L2(ΩA) + ‖1{|mA|>1}m

α+β
A VAh‖L2(ΩA)

≤ ‖h‖H + ‖Aα+βh‖H.
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I. A functional analytic framework for the nonlinear Schrödinger equation

Hence, D(Aα+β) ↪→ D(Aβ) and with (SC1) follows Aα+β = Aα Aβ. Concerning the den-
sity of D(Aα+β) in D(Aβ) it is enough to prove the density of D(mα+β

A ) in D(mβ
A). Let

f ∈ D(mβ
A). Since D(mα+β

A ) is dense in L2(ΩA) by Theorem I.1.1, there are sequences
( f1,n)n∈N and ( f2,n)n∈N in D(mα+β

A ) with

‖ f1,n − f ‖L2(ΩA) + ‖ f2,n −mβ
A f ‖L2(ΩA)

n→∞−→ 0. (I.2)

The sequence ( fn)n∈N in D(mβ+α
A ) defined by

fn : ΩA → C, fn := 1{|mA|≤1} f1,n + 1{|mA|>1}
f2,n

mβ
A

satisfies ‖ fn − f ‖D(mβ
A)

n→∞−→ 0 and thus D(Aα+β) is dense in D(Aβ). It remains to prove
the interpolation property. For f ∈ D(Aα) follows

‖(mA + 1)αVA f ‖L2(ΩA) . ‖VA f ‖L2(ΩA) + ‖1{|mA|>1}m
α
AVA f ‖L2(ΩA)

. ‖ f ‖H + ‖Aα f ‖H.

Hence, D(Aα) ↪→ D((id+ A)α) and the same argument yields D((id+ A)α) ↪→ D(Aα).
Consequently, D(Aα) ∼= D((id + A)α). Since (id + A, D(A)) is positive definite the
interpolation rule for fractional powers (A.4) implies

[D(Aα), D(Aβ)]θ ∼= [D((id + A)α), D((id + A)β)]θ

∼= D((id + A)(1−θ)α+θβ) ∼= D(A(1−θ)α+θβ).

(b) Let ϕt : [0, ∞) → C be defined by ϕt(λ) := e−itλ. The properties of the family
(ϕt)t∈R and (SC2)-(SC4) immediately provide that U is a unitary group of isometries
on H. For h ∈ H additionally holds

‖e−itAh− h‖H
t→0−→ 0 ⇐⇒ ‖ϕtVAh−VAh‖L2(ΩA)

t→0−→ 0,

where the latter assertion follows from the dominated convergence theorem. The fact
that U(t) and Aα commute on D(Aα) implies all the mentioned properties of U on
L(H) additionally on L(D(As)).

In the next theorem we prove the existence of an extension of the linear operator
(A, D(A)) on H to a linear operator (Ã, D(A1/2)) on D(A1/2)∗. We additionally prove
useful properties of (Ã, D(A1/2)) for Section I.2.

Theorem I.1.4
There is a linear operator (Ã, D(A1/2)) on D(A1/2)∗ such that:

(a) Ã = A on D(A).

(b) (Ã, D(A1/2)) is non-negative and selfadjoint.

(c) The Schrödinger group Ũ : R→ L(D(A1/2)∗) generated by (Ã, D(A1/2)) satisfies Ũ(t) =
U(t) on H for t ∈ R.
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I.1. Spectral calculus, extrapolation, and energy space

Remark: In (a) the assertion A = Ã on D(A) means 〈Ã f , ·〉 = 〈A f , ·〉H for all f ∈ D(A).
The equality in (c) has to be understood in the same way.

Proof. First note that A1/2 : D(A1/2)→ H is bounded. By the Cauchy-Schwarz inequal-
ity and D(A1/2) ↪→ H holds∣∣〈A1/2 f , A1/2g〉H

∣∣ ≤ ‖ f ‖D(A1/2)‖g‖D(A1/2).

Then the C-linear operator

Ã : D(A1/2)→ D(A1/2)∗, 〈Ã f , ·〉 := 〈A1/2 f , A1/2·〉H

is well-defined and bounded. From now on we consider (Ã, D(A1/2)) as an unbounded
operator on D(A1/2)∗.
(a) For f ∈ D(A) holds 〈Ã f , g〉 = 〈A f , g〉H for all g ∈ D(A1/2). Since D(A1/2) is dense
in H we have that Ã = A on D(A).
(b) We first show that

id + Ã : D(A1/2)→ D(A1/2)∗, 〈(id + Ã) f , ·〉 := 〈 f , ·〉D(A1/2)

is a bijection. For f ∈ D(A1/2) holds

‖(id + Ã) f ‖D(A1/2)∗ = sup
‖g‖

D(A1/2)
≤1
|〈 f , g〉D(A1/2)| = ‖ f ‖D(A1/2). (I.3)

This implies that id + Ã is an isometry, hence injective. The bilinear form 〈·, ·〉D(A1/2)
is furthermore bounded and coercive. The Lax-Milgram Lemma (see [Eva10] Section
6.2.1) applied to 〈·, ·〉D(A1/2) guarantees for each f ∗ ∈ D(A1/2)∗ a unique f ∈ D(A1/2)

with 〈 f ∗, ·〉 = 〈 f , ·〉D(A1/2). id + Ã is therefore surjective and in particular −1 ∈ ρ(Ã).
With −1 ∈ ρ(A) ∩ ρ(Ã) we have (id + A)−1 = (id + Ã)−1 on H. For f ∈ D(A1/2) then
holds

(id + Ã)−1Ã f = f − (id + A)−1 f . (I.4)

We then define a scalar product on D(A1/2)∗ by

〈 f ∗, g∗〉D(A1/2)∗ f := 〈(id + Ã)−1 f ∗, (id + Ã)−1g∗〉D(A1/2).

Note that the induced norm is equivalent to the prior ‖ · ‖D(A1/2)∗-norm and we use
the same symbol for both of them. The equalities (I.3) and (I.4) as well as the fact that
(I + A)−1 is positive definite allows for f ∈ D(A1/2) the estimate

‖ f ‖ D(A1/2)∗ + ‖Ã f ‖D(A1/2)∗

∼= ‖ f ‖D(A1/2) +
(
‖ f ‖2

D(A1/2)
+ ‖(id + A)−1 f ‖2

D(A1/2)
− 2〈 f , (id + A)−1 f 〉D(A1/2)

)1/2

. ‖ f ‖D(A1/2) . ‖ f ‖D(A1/2)∗ + ‖Ã f ‖D(A1/2)∗ .
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I. A functional analytic framework for the nonlinear Schrödinger equation

Hence, (Ã, D(A1/2)) is closed. The equality (I.4) also gives for f , g ∈ D(A1/2)

〈Ã f , g〉D(A1/2)∗ = 〈(id + Ã)−1Ã f , (id + Ã)−1g〉D(A1/2)

= 〈 f , (id + A)−1g〉D(A1/2) − 〈(id + A)−1 f , (id + A)−1g〉D(A1/2)

= 〈(id + A)−1 f , g〉D(A1/2) − 〈(id + A)−1 f , (id + A)−1g〉D(A1/2)

= 〈 f , Ãg〉D(A1/2)∗ .

(Ã, D(A1/2)) is therefore symmetric and clearly non-negative on D(A1/2). Proposition
1.1.9 in [Roy07] implies that (Ã, D(A1/2)) is selfadjoint since −1 ∈ ρ(Ã).
(c) (Ã, D(A1/2)) also generates a Schrödinger group Ũ : R → L(D(A1/2)∗) by the
spectral calculus. For f ∈ D(A) we define u : R→ D(A) by u(t) := U(t) f . Proposition
9.10 in [Tay11] yields that u ∈ C(R, D(A)) ∩ C1(R, H) is the unique solution of

iu′(t) = Au(t), t ∈ R,
u(0) = f .

We have u(t) ∈ D(A) for t ∈ R and therefore Au(t) = Ãu(t). Consequently, u is also
the unique solution of

iu′(t) = Ãu(t), t ∈ R,
u(0) = f .

This implies Ũ(t) = U(t) for t ∈ R on D(A). By means of the density of D(A) in H
we additionally have Ũ(t) = U(t) for all t ∈ R on H.

Definition I.1.5
We call the Hilbert space

(EA, 〈·, ·〉EA) := (D(A1/2), 〈·, ·〉D(A1/2))

the energy space and ‖ · ‖EA the energy norm associated to (A, D(A)). We furthermore call the
non-negative, selfadjoint linear operator (Ã, EA) from Theorem I.1.4 the extrapolation operator
of (A, D(A)) and Ũ its extrapolation group.

Recall that EA ↪→ E∗A with the map f 7→ 〈 f , ·〉H as mentioned in the remark after
Corollary I.1.3. The notion of the energy space will become clear in Section I.2 due to
its relation to the energy functional.

Examples I.1.6
We end this section with the two main examples of differential operators considered in
this thesis and their energy spaces. The example in (2) will be explained more detailed
in Section III.1.

(1) Elliptic operators in euclidean space: Let Ω ⊆ Rd be an open set, which equipped
with the trace Borel σ-algebra B(Ω) and the Lebesgue measure λ becomes a mea-
sure space. Let B ∈ C1(Ω, Rd×d) be uniformly elliptic, i.e. ‖ξ‖2 ∼= ξTBξ for all
ξ ∈ Rd, and V ∈ L∞(Ω) with V ≥ 0. We define the differential expression

A : C∞
c (Ω)→ L2(Ω), A f := −div(B∇ f ) + V f .
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I.2. The nonlinear Cauchy problem and conservation laws

By means of integration by parts we have for f , g ∈ C∞
c (Ω)

〈A f , g〉L2(Ω) = 〈B∇ f ,∇g〉L2(Ω) + 〈V f , g〉L2(Ω) =: a( f , g).

The sesquilinear form a : H1
2,0(Ω)× H1

2,0(Ω) → C is accretive, symmetric, continu-
ous, closed and densely defined. Proposition 1.24 in Section 1.2.3 of [Ouh05] yields
the existence of a non-negative, selfadjoint linear operator (AD, D(AD)) on L2(Ω)
such that D(AD) ⊆ H1

2,0(Ω) and 〈AD f , g〉L2(Ω) = a( f , g) for all f ∈ D(AD) and
g ∈ H1

2,0(Ω). (AD, D(AD)) is called the realization of the differential expression
A in L2(Ω) with homogeneous Dirichlet boundary conditions. For f ∈ D(AD)
integration by parts yields

‖A1/2
D f ‖2

L2(Ω) + ‖ f ‖2
L2(Ω) = 〈AD f , f 〉L2(Ω) + ‖ f ‖2

L2(Ω)

∼= ‖∇ f ‖2
L2(Ω) + ‖ f ‖2

L2(Ω). (I.5)

Hence, ‖ · ‖EAD
∼= ‖ · ‖H1

2 (Ω) on D(AD), which implies H1
2,0(Ω) ↪→ D(A1/2

D ). The
converse embedding follows from the density of D(AD) in EAD so that EAD

∼=
H1

2,0(Ω). For further details consult Chapter 6 in [Tri92a] or Chapter 4 in [Ouh05].
For the characterization of the domain of the square root of a differential operator
with complex coefficients see for example [AHL+02] or [AHMT01] for Ω = Rd

and [AT03] for certain Lipschitz domains and Dirichlet- or Neumann boundary
conditions. The assertion, that in these situations the fractional domain of the
square root of the operator is equivalent to the corresponding first order Sobolev
space as above is part of the famous Square-Root Problem formulated by Tosio
Kato.

(2) The Laplace-Beltrami operator on manifolds with bounded geometry: Let Ω be a
connected, complete Riemannian C∞-manifold with bounded geometry and with-
out boundary and let (−∆Ω, D(−∆Ω)) denote the Laplace-Beltrami operator on Ω
(for definitions and details see Section III.1). In Section III.1 we present a charac-
terization of D((−∆Ω)

1/2) ∼= X with a Hilbert space X such that X ∼= W1
2 (Ω). The

defintion of X will not rely on covariant derivatives. However, using the latter,
it would also be possible to prove D((−∆Ω)

1/2) ∼= W1
2 (Ω) directly by establishing

an analogon of the integration by parts formula for the Laplace-Beltrami operator.
Then we can proceed as in the first example to get the norm equivalence from (I.5)
and use the density of C∞

c (Ω) in W1
2 (Ω) shown in Theorem 3.1 in [Heb99]. For

more details on this and on Sobolev spaces on Riemannian manifolds in general
see the textbooks [Aub98, Heb99].

I.2. The nonlinear Cauchy problem and conservation laws

The abstract theory for the nonlinear Schrödinger equation in this section is derived
from the standard theory of inhomogeneous Cauchy problems. This theory can be
found in Section 4.1 of [CH98] or Section 4.2 of [Paz83]. For the readers convenience
we will prove some assertions which are not explicitly proven in the given references,
but which follow with the same methods used to prove the analogous result in the

17



I. A functional analytic framework for the nonlinear Schrödinger equation

inhomogeneous case.
Let I ∈ I with t0 ∈ I and U := (e−itA)t∈R. For the moment let f ∈ D(A), F ∈
C(I × D(A), H) and consider the nonlinear Cauchy problem

iu′(t) = Au(t) + F(t, u(t)), t 6= t0,
u(t0) = f .

(I.6)

If u ∈ C(I, D(A)) ∩ C1(I, H) solves (I.6), then the method of proof of Corollary 4.1.2 in
[CH98] (with f (t) := F(t, u(t))) gives rise to the representation formula

∀t∈I : u(t) = U(t− t0) f − i
∫ t

t0

U(t− s)F(s, u(s)) ds. (I.7)

Observe that u ∈ C(I, D(A)) and (I.7) imply∫ t

t0

U(t− s)F(s, u(s)) ds ∈ C(I, D(A)). (I.8)

Conversely, a solution u ∈ C(I, D(A)) of (I.7) belongs to C1(I, H) and solves the
Cauchy problem (I.6). This follows with the semigroup methods applied in the proof of
Proposition I.2.4. Note also that if we drop the condition u ∈ C(I, D(A)), then this di-
rection might fail even in the inhomogeneous situation. To see this let F(·, h) := U(·)g
for all h ∈ D(A) with some g ∈ H \ D(A) and f := 0. Then F ∈ C(I × D(A), H) but
the integral expression in (I.8) is not in D(A) for fixed t ∈ I \ {t0}.
The formula in (I.7) allows us to establish a meaningful notion of a solution for the
above Cauchy problem (I.6) for initial data in arbitrary fractional domain spaces D(As)
instead of D(A). However, the most desirable space to consider initial values and so-
lutions in is the energy space EA due to its favorable relation to global existence results
(see the discussion at the end of this section). In this thesis we aim at a global existence
theory for initial data in EA and subspaces of it. More precisely, we aim at a treatment
of (I.6) with initial data in D(As) with s ∈ [1/2, ∞). We therefore “extrapolate” the
nonlinear equation (I.6) from D(A) to EA using the extrapolation Theorem I.1.4.

Definition I.2.1
Let I ∈ I , t0 ∈ I, s ∈ [1/2, ∞), f ∈ D(As) and F : I × D(As) → E∗A. We call the nonlinear
Cauchy problem

iu′(t) = Ãu(t) + F(t, u(t)), t 6= t0,
u(t0) = f ,

(NLS)

the extrapolated nonlinear Schrödinger equation.

In our applications we consider only the cases F(t, u(t)) = F(t) and F(t, u(t)) =
F(u(t)). In the rest of the section we recall several concepts of solutions of (NLS)
and provide some useful properties for them. We begin with a precise definition of
strong and weak solutions.

Definition I.2.2
Let s ∈ [1/2, ∞) and u : I → D(As).

(a) u is called a strong solution of (NLS) on I, if u ∈ C(I, D(As)) ∩ C1(I, E∗A) solves the
Cauchy problem on E∗A for all t ∈ I.
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I.2. The nonlinear Cauchy problem and conservation laws

(b) u is called a weak solution of (NLS) on I, if u ∈ L∞(I, D(As)) ∩W1
∞(Io, E∗A) solves the

Cauchy problem on E∗A for almost all t ∈ I.

A function u : R → D(As) is called a global strong or weak solution, if for all I ∈ Ib the
restriction u|I is a strong or weak solution, respectively.

Remarks:

(1) Let u : I → EA and recall EA ↪→ E∗A. Then u ∈ C1(I, E∗A) means that u : I →
E∗A is continuously differentiable in the sense that t 7→ 〈u(t), ·〉H is continuously
differentiable. u ∈ W1

∞(Io, E∗A) means that u, u′ ∈ L∞(Io, E∗A). We point out that the
latter assertions mean that there is a function fu′ ∈ L∞(Io, E∗A) such that

∀φ∈C∞
c (Io) :

∫
I

φ′(t)u(t) dt = −
∫

I
φ(t) fu′(t) dt.

We’re not going to distinguish u : I → EA and u : I → E∗A in our notation, since it
will be clear from the context how u should be interpreted. If u ∈ C1(I, H), then
d
dt 〈u(t), g〉H = 〈u′(t), g〉H for all g ∈ H.

(2) Some care is needed when dealing with the imaginary unit on E∗A. Let H = L2(Ω).
For all g, h ∈ EA holds 〈ig, h〉L2(Ω) = 〈g,−ih〉L2(Ω). We therefore define 〈ig∗, h〉 :=
〈g∗,−ih〉 for g∗ ∈ E∗A.

(3) Let f ∈ D(A) and F ∈ C(I × D(A), H). Then any strong solution u : I → D(A) of
(NLS) satifies u ∈ C1(I, H) and solves (I.6).

By a straightforward generalization of the ideas presented at the beginning of this
section, in particular formula (I.7), we introduce the following weaker concept of a
mild solution.

Definition I.2.3
Let s ∈ [1/2, ∞), f ∈ D(As), and F : I × D(As) → E∗A. We call a function u : I → D(As) a
mild solution of (NLS) on I if:

∀t∈I : u(t) = U(t− t0) f − i
∫ t

t0

Ũ(t− s)F(s, u(s)) ds in E∗A. (I.9)

From now on we refer to (I.9) as Duhamel’s formula. If it only holds almost everywhere on I,
then u is called an almost everywhere (or a.e.) mild solution on I.

The properties of the extrapolation group Ũ of (A, D(A)) reduce (I.9) to equation (I.7)
if F(s, u(s)) ∈ H for almost all s ∈ I.
Next we gather the equivalence of mild and strong (or a.e. mild and weak) solutions
in the inhomogeneous and autonomous nonlinear case. For further reference we state
these equivalences for initial data f ∈ D(As) with s ∈ [1/2, ∞).

Proposition I.2.4
Let s ∈ [1/2, ∞) and f ∈ D(As).

(a) Let u ∈ L∞(I, D(As)) and F : I → E∗A. If u is a weak solution of (NLS) on I, then u is an
a.e. mild solution. If u is an a.e. mild solution of (NLS) on I and F ∈ L∞(I, E∗A), then u is
a weak solution.
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(b) Let u ∈ L∞(I, D(As)) and F : D(As)→ E∗A. If u is a weak solution of (NLS) on I, then u
is an a.e. mild solution. If u is an a.e. mild solution of (NLS) on I with F(u) ∈ L∞(I, E∗A),
then u is a weak solution.

(c) Let u ∈ C(I, D(As)) and F : D(As) → E∗A. If u is a strong solution of (NLS) on I, then
u is a mild solution. If u is a mild solution of (NLS) on I and F(u) ∈ C(I, E∗A), then u is
a strong solution.

Proof. We make use of the following instance of the product rule: If h : I → E∗A is
differentiable and h(I) ⊆ EA, then the map Ũ(·)h : I → E∗A is differentiable with

[Ũ(·)h]′ = −iÃŨ(·)h + Ũ(·)h′. (I.10)

For F̃ ∈ L1
loc(I, E∗A) the function

G : I → E∗A, G(t) :=
∫ t

t0

Ũ(−s)F̃(s) ds (I.11)

is well-defined and G ∈ C(I, E∗A) by means of the dominated convergence theorem.
Proposition 1.4.29 in [CH98] additionally states that G is almost everywhere differen-
tiable on I with G′(t) = Ũ(−t)F̃(t) for almost all t ∈ I.
(a+b) Let u ∈ L∞(I, D(As)) and let either F̃ := F or F̃ := F ◦ u. Observe that
F̃ ∈ L∞(I, E∗A) ⊆ L1

loc(I, E∗A) is sufficient that the function G from (I.11) has the men-
tioned properties.
“=⇒”: Let u be a weak solution of (NLS) on I. First, (NLS) directly implies F̃ ∈
L∞(I, E∗A). Let t ∈ I and

g : I → E∗A, g(s) := Ũ(t− s)u(s). (I.12)

By the product rule (I.10) g is differentiable on I such that for almost all s ∈ I holds

g′(s) = iÃŨ(t− s)u(s) + Ũ(t− s)
(
− iÃu(s)− iF̃(s)

)
= −iŨ(t− s)F̃(s). (I.13)

Hence, g ∈W1
1,loc(I, E∗A). Using A.3.5;(1) and (I.13) we compute for almost all t, s ∈ I

u(t) = U(t− s) f +
∫ t

s
g′(τ) dτ = U(t− s) f − i

∫ t

s
Ũ(t− τ)F̃(τ) dτ, (I.14)

what in particular implies the equality for s = t0. In case t0 is excluded by the null set,
we approximate t0 with a sequence which belongs to the null set and use the continuity
of the above expressions in s.
“⇐=”: Let u ∈ L∞(I, D(As)) be an a.e. mild solution of (NLS) on I with F̃ ∈ L∞(I, E∗A).
Clearly u(t0) = f and

G(t) = iŨ(−t)u(t)− iŨ(−t0) f a.e. on I. (I.15)

Since Ũ(t)(D(As)) = D(As) for all t ∈ R we have G ∈ L∞(I, D(As)) and ÃG ∈
L∞(I, E∗A). We already know that G : I → E∗A is almost everywhere differentiable on
I with G′(t) = Ũ(−t)F(t) for almost all t ∈ I. We therefore have G′ ∈ L∞(I, E∗A) and
G ∈ W1

∞(I, E∗A). The product rule in (I.10) implies that Ũ(·)G(·) : I → E∗A is almost
everywhere differentiable with

[Ũ(·)G(·)]′ = −iŨ(·)ÃG(·) + F̃(·).
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Hence, U(·)G(·) ∈W1
∞(I, E∗A). Moreover, U(· − t0) f ∈ C1

b(I, E∗A) ⊆W1
∞(I, E∗A) with

[iŨ(· − t0) f ]′ = Ũ(· − t0)Ã f .

The previous two equations combined with (I.15) show u ∈ W1
∞(I, E∗A) and for almost

all t ∈ I

iu′(t) = Ã
(
Ũ(t− t0) f − iŨ(t)G(t)

)
+ F̃(t) = Ãu(t) + F̃(t).

Hence, u is a weak solution of (NLS) on I.
(c) Let u ∈ C(I, D(As)), F : D(As)→ E∗A and F̃ := F ◦ u.
“=⇒” Let u be a strong solution of (NLS) on I. Then the equation (NLS) again yields
F̃ ∈ C(I, E∗A). We define g as in (I.12) to generate the formulas (I.13) and (I.14) for all
t, s ∈ I by the product rule and the fundamental theorem.
“⇐=” Let u ∈ C(I, D(As)) be a mild solution of (NLS) on I with F̃ = F ◦ u ∈ C(I, E∗A).
Then the equation (I.15) holds everywhere on I. With F̃ ∈ C(I, E∗A) in (I.11), the conti-
nuity of the integrand implies G ∈ C1(I, E∗A) with G′(t) = Ũ(−t)F̃(t) for all t ∈ I. The
rest of the proof is similar to (a+b) “⇐=”.

The above Proposition yields the equivalence between strong and mild solutions of
(NLS) under suitable assumptions on the nonlinearity. It therefore provides the pos-
sibility to construct strong solutions to the nonlinear Schrödinger equation (NLS) by
solving the fixed-point equation given by the Duhamel formula on C(I, D(As)). This
scheme is for example carried out in Theorem I.3.4 with initial data in D(As) by means
of Banach’s fixed-point theorem. However, it is common, that this contraction argu-
ment does not work in C(I, D(As)) (for example for small s) and one rather considers
C(I, D(As))∩Y(I) with an auxiliary space Y(I) as contraction space. With this in mind
we formulate the following notion of uniqueness.

Definition I.2.5
Let s ∈ [1/2, ∞), I ∈ Ib and XI ⊆ C(I, D(As)) (or L∞(I, D(As))). A strong (or weak) solu-
tion u ∈ XI of (NLS) is called unconditionally unique , if it is unique in the space C(I, D(As))
(or L∞(I, D(As)) respectively). If it is unique in XI , we use the expression of a (conditionally)
unique solution u ∈ XI .

In the rest of this section we discuss the two most relevant conservation laws admitted
by the nonlinear Schrödinger equation (NLS) with an autonomous nonlinearity F :
EA → E∗A. We also provide basic conditions for their validity.
The first conservation law is the conservation of ‖ · ‖H along the graph of a solution u
of the Cauchy problem (NLS).

Definition I.2.6
Any solution (weak, strong, mild, or a.e. mild) u : I → EA of (NLS) on I is said to fulfill
H-conservation, if ‖u(t)‖H = ‖ f ‖H for all t ∈ I.

One frequently applied method to prove such a conservation law is to differentiate the
quantity in question and show that its derivative vanishes on I. For this method it
is of great interest to have as much regularity of a given solution as possible. In the
next Proposition we show that the regularity of either a weak or a strong solution u is
enough to have differentiability of ‖u(·)‖2

H. We also provide some additional a-priori
regularity of u.
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Proposition I.2.7
Let I ∈ I , u : I → EA and g : I → R defined by g(t) := ‖u(t)‖2

H.

(a) If u ∈ C(I, EA) ∩ C1(I, E∗A), then g ∈ C1(I) with g′(t) = 2〈u′(t), u(t)〉 for all t ∈ I.

(b) If u ∈ L∞(I, EA) ∩W1
∞(Io, E∗A), then u ∈ C0,1/2(I, H) ∩ C0,1(I, E∗A) and g ∈ Cb(I) ∩

W1
∞(Io) with g′(t) = 2〈u′(t), u(t)〉 for almost all t ∈ Io.

Remarks:

(1) We do not need the specific structure of the Hilbert space EA in the above assertions.
Both of them stay valid if we substitute EA with a Banach space X with X ↪→ H.

(2) The proofs of (a) and (b) are essentially known. Let EA = H1
2,0(Ω) with a domain

Ω ⊆ Rd. The assertion in (a) is contained in Lemma 3.3.6 of [Caz03]. If Ω is
bounded and has C2-boundary the assertion in (b) is contained in section 5.9 of
[Eva10].

Proof. (a) Let u ∈ C(I, EA) ∩ C1(I, E∗A) and t ∈ I. We put I0 := [t− 1, t + 1] ∩ I and
with h ∈ R such that t + h ∈ I0 follows

‖u(t + h)− u(t)‖2
H

h
≤ ‖u(t + h)− u(t)‖EA

‖u(t + h)− u(t)‖E∗A
h

h→0−→ 0,

and∣∣∣∣ g(t + h)− g(t)
h

− 2〈u′(t), u(t)〉
∣∣∣∣

≤ 2
∣∣∣∣〈u(t + h)− u(t)

h
− u′(t), u(t)

〉∣∣∣∣+ ‖u(t + h)− u(t)‖2
H

h
h→0−→ 0.

Hence, g is differentiable on I and the continuity of g′ = 2〈u′(·), u(·)〉 is obvious.
(b) Let u ∈ L∞(I, EA) ∩W1

∞(I, E∗A). The embedding W1
∞(Io, E∗A) ↪→ C0,1(I, E∗A) con-

tained in A.3.5;(2) implies that there is a null set N ⊆ I such that for all t, s ∈ I \ N
holds

‖u(t)− u(s)‖2
H = |〈u(t)− u(s), u(t)− u(s)〉H |

≤ 2‖u‖L∞(I,EA)‖u(t)− u(s)‖E∗A ≤ C(u)|t− s|. (I.16)

To construct a version of u which belongs to C0,1/2(I, H) we define ũ : I → H by ũ(t) :=
u(t) for t ∈ I \N and ũ(t) := limn→∞ u(tn) for t ∈ N, whereby (tn)n∈N ⊆ I \N satisfies
tn

n→∞−→ t. With (I.16) it is straightforward to check that ũ is well-defined and belongs to
C0,1/2(I, H) with ‖ũ‖L∞(I,H) = ‖u‖L∞(I,H). We can therefore choose a continuous version
g ∈ Cb(I).
The property u ∈ L∞(I, EA)∩W1

∞(Io, E∗A) implies g̃ := 2〈u′(·), u(·)〉 ∈ L∞(Io). Since the
differentiability of g is a local property it is enough to show that g is almost everywhere
differentiable with g′ = g̃. It is furthermore enough to treat the case I ∈ Ib. Then
u ∈ L2(I, EA) ∩W1

2 (Io, E∗A) and we define the extension

u0 : R→ EA, u0(t) :=

{
u(t), t ∈ I,
0, t ∈ Ic.
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Let (ϕn)n∈N be an approximate identity and (un)n∈N be defined by un := ϕn ∗ u0. Then
un ∈ C1

c (R, EA) and the following properties are valid:

(i) un
n→∞−→ u in L2(I, EA) and un

n→∞−→ u in EA almost everywhere on I.

(ii) u′n
n→∞−→ u′ in L2(J, E∗A) for all J ∈ Io with J ⊆ Io.

The property (i) immediately follows from Lemma 1.3.3 in [ABHN11]. For (ii) we show
that there is n0 ∈ N such that for all n ≥ n0 holds u′n(t) = (ϕn ∗ u)′(t) on E∗A almost
everywhere on J and can again use Lemma 1.3.3 in [ABHN11]. Indeed, if we let n0 ∈N

such that for n ≥ n0 holds J− supp(ϕn) ⊆ Io, then ϕn ∗ u0 = ϕn ∗ u on I. For φ ∈ C∞
c (J)

and g ∈ EA then follows

〈−
∫

Io
φ′(t)un(t) dt, g〉 =

∫
Io

φ(t)
∫

R
ϕn(s)

(
〈u(t− r), g〉H

)′ dr dt

= 〈
∫

Io
φ(t)(ϕn ∗ u′) dt, g〉.

We then apply the sequence (un)n∈N and its properties in the following way. From (a)
we know ‖un(·)‖2

H ∈ C1(R) with (‖un(·)‖2
H)
′ = 2〈u′n(·), un(·)〉H since un ∈ C1(R, E∗A).

The fundamental theorem of calculus and (i) then imply for almost all s, t ∈ I∫ t

s
2〈u′n(r), un(r)〉H dr = ‖un(t)‖2

H − ‖un(s)‖2
H

n→∞−→ ‖u(t)‖2
H − ‖u(s)‖2

H. (I.17)

Let s, t ∈ Io with s < t satisfy the convergence property in (I.17) and let J := (s, t).
Property (i) implies the boundedness of (un)n∈N in L2(J, EA) and (ii) the boundedness
of (u′n)n∈N in L2(J, E∗A). Furthermore

∣∣ ∫
J
〈u′n(r), un(r)〉H − 〈u′(r), u(r)〉 dr

∣∣
. ‖un − u‖L2(J,EA) + ‖u

′
n − u′‖L2(J,E∗A)

n→∞−→ 0.

The convergence in (I.17) therefore yields for almost all s, t ∈ Io

‖u(t)‖2
H = ‖u(s)‖2

H +
∫ t

s
g̃(r) dr.

We recall that g̃ ∈ L∞(I) and use A.3.5;(1) to ensure that g is almost everywhere differ-
entiable on Io with g′ = g̃.

With the aid of Proposition I.2.7 we introduce the following simple structural condition
on the nonlinearity in (NLS) to ensure that all strong and weak solutions have H-
conservation.

Proposition I.2.8
Let s ∈ [1/2, ∞) and u : I → D(As) be either a strong or weak solution of (NLS) on I. If
〈F(t, u(t)), iu(t)〉 = 0 for almost all t ∈ I, then u fulfills H-conservation.
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Proof. Let t ∈ I and J := [min{t0, t}, max{t0, t}]. Due to J ∈ Ib, every strong solution
on J is a weak solution on J and we only need to prove H-conservation in the case that
u : I → EA is a weak solution of (NLS).
From Proposition I.2.7 we know that g : J → R with g(t) := ‖u(t)‖2

H belongs to
Cb(J) ∩W1

∞(Jo) with g′(t) = 2〈u′(t), u(t)〉 for almost all t ∈ Jo. Then differentiating g
and using the equation (NLS) yields almost everywhere on Jo

g′(t) = 2〈u′(t), u(t)〉

= −2
(
〈Ãu(t), iu(t)〉+ 〈F(t, u(t)), iu(t)〉

)
= 2i Im〈A1/2u(t), A1/2u(t)〉H = 0.

Thus, there is a constant C ∈ [0, ∞) such that ‖u(s)‖2
H = C for almost s ∈ Jo. Fi-

nally, g ∈ Cb(J) extends this almost everywhere equality to all t ∈ J and consequently
‖u(t)‖H = g(t)1/2 = g(t0)

1/2 = ‖u(t0)‖H.

The structural condition 〈F(g), ig〉 = 0 for all g ∈ D(As) is proven in Proposition I.4.2
for H := L2(Ω) and the model nonlinearity F := Fβ,± introduced in Section I.4. In our
applications in Chapter III and IV we always use the model nonlinearity. The above
proposition will therefore be sufficient to ensure L2(Ω)-conservation of solutions there.
The second important conservation law for the nonlinear Schrödinger equation (NLS)
concerns the so-called energy functional. To define it in a meaningful way, we need
additional assumptions on the nonlinearity F.

Definition I.2.9
Let F : EA → E∗A have a real antiderivative F̂ on EA, i.e. there is a differentiable F̂ : EA → R

with F̂′ = F.

(a) The energy functional associated to (NLS) is defined as

E : EA → R, E( f ) :=
1
2
‖A1/2 f ‖2

H + F̂( f ).

(b) Any solution (weak, strong, mild, or a.e. mild) u : I → EA to (NLS) on I is said to fulfill
energy conservation, if E(u(t)) = E( f ) for all t ∈ I.

Remark: It is easy to show that the energy functional E : EA → R is differentiable with
E ′ : EA → E∗A fulfilling E ′(g) = Ãg + F(g). Consequently, the nonlinear Schrödinger
equation (NLS) can be formulated as

iu′(t) = E ′(u(t)), t 6= t0,
u(t0) = f .

(I.18)

Energy conservation of a solution u : I → EA usually requires more regularity than our
notions of weak and strong solutions provide. One strategy to circumvent this problem
is approximating the given solution with more regular strong solutions on which the
following proposition applies.

Proposition I.2.10
Let u ∈ C(I, EA) be a weak solution of (NLS) on I which is almost everywhere differentiable .
Then u fulfills energy conservation.
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Proof. The chain rule and u′ ∈ EA almost everywhere imply for almost all t ∈ I

[E(u(t))]′ = 〈E ′(u(t)), u′(t)〉

= 〈iu′(t), u′(t)〉H = −i Im〈u′(t), u′(t)〉H = 0.

Hence, there is a constant C ∈ R such that E(u(·)) = C almost everywhere on I. Finally,
u ∈ C(I, EA) implies E(u(·)) ∈ C(I) and consequently E(u(t)) = E(u(t0)) = E( f ) for
all t ∈ I.

Another strategy is approximating the energy functional E itself with a family (Eε)ε∈(0,1)
of more regular ones. The family (Eε)ε∈(0,1) has to be chosen such that it can be han-
dled in a similar fashion as in the above proposition and the convergence of Eε(u(·))
to E(u(·)) for ε → 0 is strong enough to carry over the differentiability properties of
Eε(u(·)) to its limit. This is carried out in Lemma I.4.3 in the special case of (NLS) with
the model nonlinearity F := Fβ,±.
The introduced conservation laws are important quantities in the context of global
existence of solutions to (NLS) in the energy space EA, since they yield the possibil-
ity to control a solution in the ‖ · ‖EA -norm. Consider for example a strong solution
u : I → EA of (NLS) with f ∈ EA and F : EA → E∗A. If u additionally satisfies H- and
energy conservation, then for all t ∈ I holds

‖u(t)‖2
EA

= 2E(u(t)) + ‖u(t)‖2
H − 2F̂(u(t)) = ‖ f ‖2

H + 2E( f )− 2F̂(u(t)).

If for example F̂(g) ≥ 0 for all g ∈ EA, then

‖u‖L∞(I,EA) .
(
E( f ) + ‖ f ‖2

H
)1/2. (I.19)

This a priori estimate clearly prevents ‖u(t)‖EA −→ ∞ as t → inf I and t → sup I.
The relevance of this estimate lies in the fact that the local solutions we are going to
construct in Theorem I.3.4 have the property that their existence time T? depends on
‖ f ‖EA in a non-increasing manner. Then (I.19) allows us to restart (NLS) with initial
value u(t0 + T?) and uniquely extend the solution u to the interval [t0 + T?, t0 + 2T?],
and so on. This is the reason that the energy space EA is the most favorable one in
view of global existence results. An estimate of the form (I.19) with EA substituted by
D(As) with s > 1/2 is usually more difficult to prove. This will be the topic of Section
II.4.
In the previous example the presence of H- and energy conservation induced (I.19)
merely by assuming that F̂(g) ≥ 0 for all g ∈ EA. For further reference we introduce
such a condition on F̂ in the following definition.

Definition I.2.11
Let F : EA → E∗A have a real antiderivative F̂ : EA → R. Then F is said to be defocusing, if
F̂(h) ≥ 0 for all h ∈ EA and focusing if F̂(h) ≤ 0 for all h ∈ EA. The corresponding nonlinear
Schrödinger equation is then also called defocusing or focusing, respectively.
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I. A functional analytic framework for the nonlinear Schrödinger equation

I.3. Strichartz estimates with `-loss and construction of
solutions

In this section we provide construction schemes for mild and weak solutions of (NLS).
We always assume (A, D(A)) to be a non-negative, selfadjoint linear operator on
(L2(Ω), 〈·, ·〉L2(Ω)), whereby (Ω, S , µ) is an arbitrary measure space. Recall that we
defined 〈 f , g〉L2(Ω) := Re( f , g)L2(Ω). As in the previous section we denote by U the
Schrödinger group generated by (A, D(A)). Moreover, (Ã, EA) denotes the extrapo-
lation operator and Ũ the extrapolation group of (A, D(A)). If needed, we denote
by (Aq, D(Aq)) with q ∈ (1, ∞) the realization of (A, D(A)) on Lq(Ω). In this case
we implicitly assume that this realization admits the definition of fractional powers
(Aα

q , D(Aα
q)) as closed linear operators on Lq(Ω).

First, we turn to the construction of mild solutions of (NLS), i.e. we seek solutions
u ∈ C(I, D(As)) of the fixed-point equation

u(t) = U(t− t0) f − i
∫ t

t0

Ũ(t− s)F(u(s)) ds =: [Φ f (u)](t). (I.20)

Motivated by the structure of the right-hand side of (I.20) we introduce the following
notation.

Notation I.3.1
We define the homogeneous flow U and the inhomogeneous flow Φ of U as follows:

U : L2(Ω)→ L∞(R, L2(Ω)), (U f )(t) := U(t) f , (I.21)

Φ : L1(R, L2(Ω))→ L∞(R, L2(Ω)), (ΦF)(t) :=
∫ t

−∞
U(t− τ)F(τ) dτ, (I.22)

Our method to solve (I.20) is based on a contraction argument in C(I, D(As)). In many
applications the nonlinearity F does not have the mapping property F : D(As) →
D(As), in particular if s is small. We therefore need a suitable space X(I) ⊆ C(I, D(As))
for a contraction argument to work. A very successful tool when searching for such
a space X(I), are so-called Strichartz estimates for U and Φ (see Section II.1 for a
systematic introduction). For (A, D(A)) = (−∆, H2

2(R
d)) such estimates are available

and the existence theory for solutions of (I.20) is developed very well in this case. If
we change the state space from Rd to an arbitrary domain or a Riemannian manifold
such estimates for the corresponding Laplacian might fail. The consequence is that
the existence theory in these cases is much less developed. However, there are several
examples in which one can prove weaker versions compared to the Strichartz estimates
for (−∆, H2

2(R
d)) and can still prove local and global existence results. We will formal-

ize these weaker estimates in the following definition. For a list of examples in which
such estimates are available we refer to Section II.3.

Definition I.3.2
Let ` ∈ [0, ∞) and (p, q) ∈ [1, ∞]2. U satisfies a local (p, q) Strichartz estimate with `-loss, if
there is a non-decreasing CU : [0, ∞)→ [0, ∞) such that for all I ∈ Ib holds

‖U‖D(A`)→Lp(I,Lq(Ω)) ≤ CU (|I|). (I.23)
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I.3. Strichartz estimates with `-loss and construction of solutions

If ` = 0, then we omit the dependency on `. If U ∈ L(L2(Ω), Lp(R, Lq(Ω)), then we say U
satisfies a global (p, q) Strichartz estimate.

Remarks:

(1) Let (p, q) ∈ [1, ∞]× [2, ∞) and (A, D(A)) := (−∆, H2
2(R

d)). The Sobolev embded-
ding A.2.1 implies D((−∆)`

?/2) ↪→ Lq(Rd) for `? := d( 1
2 −

1
q ). For I ∈ Ib and

f ∈ D(A`?) therefore holds

‖U f ‖Lp(I,Lq(Rd)) . ‖U f ‖
Lp(I,D((−∆)`

?/2))
∼= |I|1/p‖ f ‖H`?

2 (Rd). (I.24)

Hence, (p, q) Strichartz estimates with `?/2-loss hold. The goal when proving esti-
mates of the form (I.23) is therefore to generate a loss, which is below `?/2. Other-
wise no results can be expected, which do not follow from methods involving the
Sobolev embedding directly. `? is known as the Sobolev loss in the literature.

(2) We stress, that we measure the loss in (I.23) in terms of the fractional domain
D(A`). This has to be remembered when comparing our notion to the existing
literature, in which the loss is usually measured in terms of Sobolev spaces. In
the previous example the loss in terms of the fractional domain of the involved
operator is `?/2 and the loss in terms of Sobolev spaces is `?.

(3) The phenomenon in (I.23) is often referred to as Strichartz estimates with “loss of
derivatives”. This notion explains itself in example (1) where the fractional domains
of the involved operator are the Bessel potential spaces.

(4) We restrict our study to local Strichartz estimates with `-loss, because in this thesis
the case of global Strichartz estimates with loss will not occur. Such estimates can
for example be proven for the classical Wave equation on Rd, where the loss is
measured in terms of the homogeneous Sobolev space Ḣ`(Rd) (see Corollary 8.27
in [BCD11]).

As a consequence of the notion of a local (p, q) Strichartz estimates with `-loss we can
collect the following estimates.

Corollary I.3.3
Let I ∈ Ib, `, δ ∈ [0, ∞), (p, q) ∈ [1, ∞] and U satisfy a local (p, q) Strichartz estimate with
`-loss. Let additionally θ ∈ [0, 1] and

˜̀ = `θ, p̃ =
p
θ

,
1
q̃
=

1− θ

2
+

θ

q
. (I.25)

Then there is a non-decreasing CU : [0, ∞) → [0, ∞) such that for f ∈ D(A ˜̀+δ) and F ∈
L1(I, D(A ˜̀+δ)) holds

‖U f ‖L p̃(I,Lq̃(Ω)) + ‖AδU f ‖L p̃(I,Lq̃(Ω)) ≤ CU (|I|)‖ f ‖D(A ˜̀+δ), (I.26)

‖ΦF‖L p̃(I,Lq̃(Ω)) + ‖AδΦF‖L p̃(I,Lq̃(Ω)) ≤ CU (|I|)‖F‖L1(I,D(A ˜̀+δ)). (I.27)
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I. A functional analytic framework for the nonlinear Schrödinger equation

Remark: This is a consequence of the mapping properties of the linear flow U and
complex interpolation. If D(A`) is replaced by any Banach space X ⊆ L2(Ω) an anal-
ogous result for δ = 0 holds, in which the right hand side D(A ˜̀

) is substituted by
[L2(Ω), X]θ .

Proof. Let δ = 0. We have by assumption U ∈ L(L2(Ω), L∞(R, L2(Ω))) and U ∈
L(D(A`), Lp(I, Lq(Ω))), which is our claim for θ ∈ {0, 1}. By means of complex inter-
polation (A.2) and Corollary I.1.3;(a) the operator U is then bounded from D(A ˜̀

) to
L p̃(I, Lq̃(Ω)) with ˜̀, p̃, q̃ given in (I.25) and θ ∈ (0, 1). This proves (I.26).
For F ∈ L1(I, D(A ˜̀

)) holds ΦF ∈ L∞(I, L2(Ω)) and Corollary I.1.3;(b) implies

‖ΦF‖L p̃(I,Lq̃(Ω)) ≤
∫

I
‖UU(s)∗F(s)‖L p̃(I,Lq̃(Ω)) ds

≤ CU (|I|)‖F‖L1(I,D(A ˜̀ )).

This shows (I.27). If δ ∈ (0, ∞), then we apply the previous estimates to Aδ f and
AδF, respectively. In this argument we also use the commutativity of Aδ and U(s)∗

on D(Aδ) for all s ∈ R as well as the embedding D(A ˜̀+δ) ↪→ D(A ˜̀
) ∩ D(Aδ) from

Corollary I.1.3;(a).

The estimates (I.26) and (I.27) will be useful for the following local existence result for
the nonlinear Schrödinger equation (NLS). The proof relies on a contraction argument
to generate mild solutions. Such an argument was carried out for the Laplacian on Rd

in [Kat87] and for the Laplace-Beltrami operator on a compact manifold in [BGT04b].
The key assumptions are local (p, q) Strichartz estimates with `-loss and mapping prop-
erties of the nonlinearity F on the fractional domains D(As). Both are used in a purely
functional analytic argument.

Theorem I.3.4
Let α, β1, ..., β5 ∈ [0, ∞), `, s, s̃ ∈ [0, ∞) with s ≤ s̃, (p, q) ∈ [1, ∞]2 and (A, D(A)) be a
selfadjoint, non-negative linear operator on L2(Ω). We furthermore assume:

(i) U satisfies a local (p, q) Strichartz estimate with `-loss.

(ii) F : D(As) ∩ L∞(Ω)→ D(As) satisfies F(0) = 0 and the following estimates:

‖F(g)‖D(As) . (1 + ‖g‖β1
L∞(Ω)

)‖g‖D(As), (I.28)

‖F(g)− F(h)‖D(As) . (1 + ‖g‖β2
L∞(Ω)

+ ‖h‖β2
L∞(Ω)

)‖g− h‖D(As) (I.29)

+(1 + ‖g‖β3
L∞(Ω)

+ ‖h‖β3
L∞(Ω)

)(1 + ‖g‖β4
D(As)

+ ‖h‖β4
D(As)

)‖g− h‖L∞(Ω),

‖F(g)− F(h)‖L2(Ω) . (1 + ‖g‖β5
L∞(Ω)

+ ‖h‖β5
L∞(Ω)

)‖g− h‖L2(Ω). (I.30)

(iii) p > max{β1, β2, β3 + 1, β4, β5} and either (s, q) = (`, ∞) or s > ` and D(As−`
q ) ↪→

L∞(Ω).
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I.3. Strichartz estimates with `-loss and construction of solutions

Then for each f ∈ D(As) there is a Tf ∈ (0, ∞) such that with I := [t0 − Tf , t0 + Tf ] the
equation

∀t∈I : u(t) = U(t− t0) f − i
∫ t

t0

U(t− s)F(u(s)) ds (I.31)

has a unique solution u f ∈ C(I, D(As)) ∩ Lp(I, L∞(Ω)) with the following properties:

(a) ‖u f ‖L∞(I,D(As))∩Lp(I,L∞(Ω)) . ‖ f ‖D(As).

(b) Tf = G(‖ f ‖D(As)) for some decreasing, continuous function G : [0, ∞)→ (0, ∞).

(c) There are T± ∈ [Tf , ∞] and a unique solution u ∈ C(I( f ), D(As)) ∩ Lp
loc(I( f ), L∞(Ω))

of (I.31) on I( f ) := (t0 − T−, t0 + T+) with

T± < ∞ =⇒ lim
t→t0±T±

‖u(t)‖D(As) = ∞. (I.32)

(d) If additionally f ∈ D(As̃) and (I.28) holds with s substituted by s̃, then u from (b) belongs
to C(I( f ), D(As̃)) and satisfies (I.32) for s substituted by s̃ .

(e) For each I ∈ Ic with I ⊆ I( f ) there is δ ∈ (0, ∞) such that the nonlinear flow

N : BD(As)( f , δ)→ C(I, D(As)) ∩ Lp(I, L∞(Ω)), g 7→ v,

is well-defined and Lipschitz continuous. Here v denotes the solution from (c) of (I.31) with
v(t0) = g.

Remarks:

(1) We call the solution of (I.31) a mild solution of (NLS), although s < 1/2 is possible.
Recall that we have introduced this notion of solution in Definition I.2.3 under the
assumption s ≥ 1/2. However, in the examples in Chapter III and IV we will always
have that F ∈ C(D(As), E∗A) with s ≥ 1/2. Every solution of (I.31) will therefore be
a strong solution in these cases.

(2) The above theorem is meant for situations in which D(As) ↪→ L∞(Ω) does not
hold. If D(As) ↪→ L∞(Ω) is true we only need to assume the nonlinear estimates
(I.28) and (I.29) to construct a unique solution in C(I, D(As)) of (I.31).

(3) In the case s > ` and q < ∞ the Lipschitz continuity of the nonlinear flow N
is valid in the topology of C(I, D(As)) ∩ Lp(I, D(As−`

q )), which is stronger than
the one given in the theorem. Also, the estimate (I.30) is only needed to show
uniqueness in the space C(I, D(As))∩ Lp(I, L∞(Ω)). If we drop this assumption all
the statements remain true if L∞(Ω) is substituted by D(As−`

q ).

(4) For f ∈ D(As) we call I( f ) the maximal existence interval and u the maximal
mild solution of (NLS) with respect to f . A useful property of the maximal solu-
tion from (c) is the so-called blow-up alternative in (I.32). It states that either u is
global or ‖u(t)‖D(As) blows up if we approach t0 ± T± in time. The property that
u ∈ C(I( f ), D(As̃)) if f ∈ D(As̃) from (d) is called transport of D(As̃) regularity.
Property (e) is called the local Lipschitz continuity of the nonlinear flow.
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I. A functional analytic framework for the nonlinear Schrödinger equation

Proof. We restrict the proof to the forward in time problem as all assertions follow
with the same arguments backwards in time. Let I := [t0, t0 + T] with some T ∈ (0, 1],
β := max{β1, β2, β3 + 1, β4, β5} and Y(I) := L∞(I, D(As)) ∩ Lp(I, L∞(Ω)) as well as
u, v ∈ Y(I). With estimate (I.29), Hölder’s inequality, and p > β follows

‖F(u) − F(v)‖L1(I,D(As))

.
( ∫

I
(1 + ‖u(τ)‖β2

L∞(Ω)
+ ‖v(τ)‖β2

L∞(Ω)
dτ

)
‖u− v‖L∞(I,D(As))

+
∫

I
(1 + ‖u(τ)‖β3

L∞(Ω)
+ ‖v(τ)‖β3

L∞(Ω)
)

× (1 + ‖u(τ)‖β4
D(As)

+ ‖v(τ)‖β4
D(As)

)‖u(τ)− v(τ)‖L∞(Ω) dτ

. T1− β
p
(
1 + ‖u‖Y(I) + ‖v‖Y(I)

)2β‖u− v‖Y(I). (I.33)

Exploiting the estimates (I.28), (I.30), and again Hölder’s inequality we obtain

‖F(u)‖L1(I,D(As)) . T1− β
p
(
1 + ‖u‖Lp(I,L∞(Ω))

)β‖u‖L∞(I,D(As)), (I.34)

and

‖F(u) − F(v)‖L1(I,L2(Ω))

. T1− β
p
(
1 + ‖u‖Lp(I,L∞(Ω)) + ‖v‖Lp(I,L∞(Ω))

)β‖u− v‖L∞(I,L2(Ω)). (I.35)

We can choose the same constant in all previous three estimates. Then the map

Φ f : Y(I)→ C(I, D(As)), Φ f (u) := τt0U f − iΦ(F(u))

is well-defined. Since U f ∈ C(I, D(As)), we only need to prove the same for Φ(F(u)).
Indeed, F(u) ∈ L1(I, D(As)) and the continuity of U in the strong operator topology
imply for all t, r ∈ I with t ≥ r

∥∥[Φ(F(u))](t)− [Φ(F(u))](r)
∥∥

D(As)

≤
∥∥∥∥ ∫ t

r
U(t− τ)F(u(τ)) ds

∥∥∥∥
D(As)

+

∥∥∥∥ ∫ r

t0

(
U(t− τ)−U(r− τ)

)
F(u(τ)) dτ

∥∥∥∥
D(As)

≤ ‖F(u)‖L1([r,t],D(As)) +

∥∥∥∥(U(t)−U(r)
) ∫ r

t0

U(−τ)F(u(τ)) ds
∥∥∥∥

D(As)

t→r−→ 0.

For f ∈ D(As) we write (I.31) as the fixed-point problem

Φ f (u) = u, u ∈ C(I, D(As)) ∩ Lp(I, L∞(Ω)). (I.36)

We first show that this problem has at most one solution. Let J ∈ I with J ⊆ I and
u, v ∈ C(I, D(As)) ∩ Lp(I, L∞(Ω)) be two solutions of (I.36) on I. We put

M := max{‖u‖Lp(I,L∞(Ω)), ‖v‖Lp(I,L∞(Ω))}
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I.3. Strichartz estimates with `-loss and construction of solutions

and we use (I.35) to provide

‖u− v‖L∞(J,L2(Ω)) = ‖Φ f (u)−Φ f (v)‖L∞(J,L2(Ω))

≤ ‖F(u)− F(v)‖L1(J,L2(Ω))

≤ C0|J|1−
β
p (1 + M)β‖u− v‖L∞(J,L2(Ω)). (I.37)

This implies

‖u− v‖L∞(J,L2(Ω)) > 0 =⇒ 1 ≤ C0|J|1−
β
p (1 + M)β. (I.38)

If |J| ≤
(
2C0(1 + M)2β

) p
β−p , then C0|J|1−

β
p (1 + M)β ≤ 1

2 and therefore u = v on J since
(I.38) implies ‖u− v‖L∞(J,L2(Ω)) = 0. This allows us to conclude u = v on I by covering
I with finitely many overlapping intervals J with above length.
Let us turn to the construction of a solution of (I.36), which will involve a contrac-
tion argument exploiting the Strichartz estimates from Corollary I.3.3. With the a pri-
ori uniqueness of (I.36) it is enough to construct a solution in a suitable subspace of
C(I, D(As)) ∩ Lp(I, L∞(Ω)). For this we make the following minor case distinction.
If q = ∞ we choose

X(I) :=
(
C(I, D(As)) ∩ Lp(I, L∞(Ω)), ‖ · ‖Y(I)

)
as contraction space. If q < ∞ we still want our solution to be in Lp(I, L∞(Ω)) and
therefore we substitute L∞(Ω) by D(As−`

q ) since we assumed D(As−`
q ) ↪→ L∞(Ω). Then

we choose

X(I) :=
(
C(I, D(As)) ∩ Lp(I, D(As−`

q )), ‖ · ‖L∞(I,D(As))∩Lp(I,D(As−`
q ))

)
.

In the following the only relevant information on X(I) is the embedding X(I) ↪→ Y(I)
as it is sufficient to exploit the nonlinear estimates (I.33)-(I.35). We therefore do not
distinguish between the above cases.
Let R ∈ (0, ∞) and u, v ∈ X(I) with ‖u‖X(I), ‖v‖X(I) ≤ R. Using (I.37) and X(I) ↪→ Y(I)
yields

‖Φ f (u)−Φ f (v)‖X(I) ≤ C‖F(u)− F(v)‖L1(I,D(As))

≤ CT1− β
p
(
1 + ‖u‖Y(I) + ‖v‖Y(I)

)2β‖u− v‖Y(I)

≤ C1T1− β
p
(
1 + R

)2β‖u− v‖X(I). (I.39)

Then

T =
(
2C1(1 + R)2β

) p
β−p =⇒ C1T1− β

p (1 + R)2β =
1
2

, (I.40)

in which case the map Φ f is Lipschitz continuous with Lipschitz constant 1/2. In this
situation we additionally have to find R such that ‖u‖XT ≤ R implies ‖Φ f (u)‖XT ≤ R.
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The boundedness of U, the Strichartz estimates from corollary I.3.3, and estimate (I.34)
imply

‖Φ f (u)‖X(I) ≤ C
(
‖ f ‖D(As) + ‖F(u)‖L1(I,D(As))

)
≤ C

(
‖ f ‖D(As) + T1− β

p (1 + ‖u‖Lp(I,L∞(Ω)))
β‖u‖L∞(I,D(As))

)
≤ C

(
‖ f ‖D(As) + T1− β

p (1 + ‖u‖β

X(I))‖u‖X(I)

)
≤ C2

(
‖ f ‖D(As) + T1− β

p (1 + R)βR
)

.

Then

T =
(
2C2(1 + R)2β

) p
β−p =⇒ C2T1− β

p (1 + R)β ≤ 1
2

, (I.41)

in which case we have the estimate

‖Φ f (u)‖X(I) ≤ C2‖ f ‖D(As) +
R
2

. (I.42)

We put C3 := max{1, C1, C2}, R̃ ≥ 2C3, as well as

R := R̃‖ f ‖D(As) and Tf :=
(
2C3(1 + R)2β

) p
β−p . (I.43)

Then Tf satisfies the left-hand sides in (I.40) and (I.41) and we fix I := [t0, t0 + Tf ].
Since XR(I) := BX(I)(0, R) equipped with the metric d(w, z) := ‖w− z‖X(I) is a com-
plete metric space, we conclude that Φ f (XR(I)) ⊆ XR(I) and Φ f is a strict contraction
on XR(I). Thus, Banach’s fixed-point theorem guarantees the existence of a unique
u f ∈ XR(I), which satisfies (I.36).
Now we come to the additional properties (a)-(e). Property (a) is clear since u ∈
XR(I) ↪→ C(I, D(As)) ∩ Lp(I, L∞(Ω)) and R ∼= ‖ f ‖D(As).
(b) The choices in (I.43) suggest that Tf = G(‖ f ‖D(As)) with

G : [0, ∞)→ (0, ∞), G(x) :=
(
2C3(1 + R̃x)2β

) p
β−p , (I.44)

which is clearly a decreasing, continuous function.
(c) Recall that we only consider the problem forward in time, hence we only prove the
existence of T+. We put

T+ :=
{

T ∈ (0, ∞) | there is a unique solution u ∈ X([t0, t0 + T]) of (I.31)
}

.

Note that Tf ∈ T+ implies T+ 6= ∅. Let additionally T+ := sup T+ for which we check
the blow-up alternative (I.32). We let T+ < ∞ and assume

∃(tn)n∈N⊆[0,T+), (tn)
n→∞−→T+

: L := sup
n∈N

‖u(t0 + tn)‖D(As) < ∞. (I.45)

Then we choose n ∈ N such that T+ − tn < G(L) with G from (I.44). Then tn ∈ T+
with unique solution u ∈ X(I) on I := [t0, t0 + tn]. Since ‖u(t0 + tn)‖D(As) ≤ L and G
is decreasing, we have

T+ − tn < G(‖u(t0 + tn)‖D(As)) =: T0. (I.46)
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With the above scheme we construct a unique solution v ∈ X(J) of (I.31) on J :=
[tn, tn + T0] subject to the initial conditions v(tn) = u(tn). Note that (I.46) implies that
J covers [tn, tn + T+). With K := I ∪ J the function

w ∈ X(K), w(t) := 1I(t)u(t) + 1J\I(t)v(t)

is a unique solution of (I.31) on K, what is a contradiction to the maximality of T+.
Hence the assumption (I.45) is false, which implies

∀(tn)n∈N⊆[t0,t0+T+), (tn)
n→∞−→T+

: lim
n→∞
‖u(t0 + tn)‖D(As) = sup

n∈N

‖u(t0 + tn)‖D(As) = ∞.

The construction of the maximal solution u on I( f ) := [t0, t0 + T+) with T+ ∈ (0, ∞]
is straightforward. Let (tn)n∈N in [0, T+) with tn

n→∞−→ T+ and tn < tn+1. With In :=
[t0, t0 + tn] the corresponding unique solutions un ∈ X(In) of (I.31) on In satisfy un+1 =
un on In for all n ∈N by uniqueness. Then the function

u : I( f )→ D(As), u(t) := 1I1(t)u1(t) + ∑
n∈N

1In+1\In(t)un+1(t)

is well-defined and belongs to C(I( f ), D(As)) ∩ Lp
loc(I( f ), L∞(Ω)). By definition u is a

unique solution of (I.31) on I( f ).
(d) Let f ∈ D(As̃) with s̃ ∈ (s, ∞) and u ∈ C(I( f ), D(As)) ∩ Lp

loc(I( f ), L∞(Ω)) be the
maximal mild solution constructed in (c), which exists since D(As̃) ↪→ D(As). We
again put I := [t0 − T, t0 + T] and define for R ∈ (0, ∞)

X̃R(I) :=
{

u ∈ X(I) ∩ C(I, D(As̃)) | ‖u‖X(I)∩L∞(I,D(As̃)) ≤ R
}

.

Since D(As̃) is reflexive and D(As̃) ↪→ D(As) Theorem 1.2.5 in [Caz03] provides that
(X̃R(I), d) is a complete metric space. Then the validity of (I.28) for s substituted with
s̃ allows us to repeat the above existence proof with XR(I) substituted by X̃R(I); note
that we only need (I.28) for Φ f (X̃R(I)) ⊆ X̃R(I), since we did not change the metric d.
Thus there is a unique mild solution

ũ ∈ C( Ĩ( f ), D(As̃)) ∩ Lp
loc( Ĩ( f ), L∞(Ω)) ⊆ C( Ĩ( f ), D(As)) ∩ Lp

loc( Ĩ( f ), L∞(Ω))

on Ĩ( f ) := [t0, t0 + T̃+), where T̃+ satisfies the blow-up alternative (I.32) with respect
to ‖ · ‖D(As̃). By means of the uniqueness of u follows u = ũ on I( f ) ∩ Ĩ( f ) and
consequently u ∈ C(I( f ) ∩ Ĩ( f ), D(As̃)). We proceed by checking Ĩ( f ) = I( f ).
First we assume T̃+ < T+. Then

T̃+ < ∞, (I.47)

and we define K(T, ε) := [t0 + T̃+ − T, t0 + T̃+ − ε] with ε < T < T̃+ and K := [t0, t0 +
T̃+]. Duhamel’s formula and (I.28) with s = s̃ provide the estimate

‖ũ‖L∞(K(T,ε),D(As̃))

≤ C
(
‖u(t0 + T+ − T)‖D(As̃) + T1− β

p (1 + ‖u‖Lp(K,L∞(Ω)))
2β‖ũ‖C(K(T,ε),D(As̃))

)
.

Consequently for T <
(
2C(1 + ‖u‖Lp(K,L∞(Ω)))

2β
) p

β−p we have

‖ũ‖C([t0+T̃+−T,t0+T̃+),D(As̃)) . ‖u(t0 + T+ − T)‖D(As̃) < ∞.
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The last inequality implies with the blow-up alternative for ũ that T̃+ = ∞ and this is
clearly a contradiction to (I.47). Hence, T̃+ ≥ T+.
Now we assume T̃+ > T+. Then T+ < ∞ and D(As̃) ↪→ D(As) immediately imply

‖u‖C([t0,t0+T+),D(As)) ≤ ‖ũ‖C([t0,t0+T+],D(As)) < ∞.

Thus, T+ = ∞ by the blow-up alternative for u. This contradicts T+ < T̃+, so that
T̃+ = T+.
(e) Without loss of generality we put I0 := [t0, t0 + T] ⊆ I( f ) and first prove

∃δ∈(0,∞)∀g∈BD(As)( f ,δ) : I ⊆ I(g), (I.48)

for the nonlinear flow N to make sense. Let g ∈ D(As) and v ∈ C(I(g), D(As)) ∩
Lp

loc(I(g), L∞(Ω)) be the corresponding maximal solution of (I.31) on I(g). We put
‖g − f ‖D(As) ≤ δ with δ ∈ (0, 1), r := 1 + ‖u‖L∞(I0,D(As)) < ∞ and R := 2C3r. This
implies

‖g‖D(As) ≤ ‖g− f ‖D(As) + ‖ f ‖D(As) ≤ δ + ‖u‖L∞(I0,D(As)) < r.

With ‖ f ‖D(As) < r property (b) yields I1 := [t0, t0 + G(r)] ∩ I ⊆ I(g) ∩ I( f ) and (a)
yields ‖v‖X(I1) ≤ R. For i ∈ {1, 2} we let gi ∈ D(As) with ‖gi − f ‖D(As) ≤ δ and vi ∈
C(I(gi), D(As)) ∩ Lp(I(gi), L∞(Ω)) be the corresponding maximal solution of (I.31).
Then I1 ⊆ I(gi) and ‖vi‖X(I1) ≤ R. With the Strichartz estimates from Corollary I.3.3
and (I.39) we obtain

‖v1 − v2‖X(I1) ≤ C‖g1 − g2‖D(As) + ‖F(v1)− F(v2)‖L1(I1,D(As))

≤ C‖g1 − g2‖D(As) + C3G(r)1− β
p (1 + R)2β‖v1 − v2‖X(I1)

= C‖g1 − g2‖D(As) +
1
2
‖v1 − v2‖X(I1),

and therefore

‖v1 − v2‖X(I1) . ‖g1 − g2‖D(As). (I.49)

In case t1 < T let I2 := [t0 + G(r), t0 + 2G(r)] ∩ I0. Then (I.49) yields for i ∈ {1, 2}

‖vi(t0 + G(r))‖D(As) ≤ ‖u− vi‖X(I1) + ‖u(t0 + G(r))‖D(As)

≤ Cδ + ‖u‖L∞(I0,D(As)).

Hence, we choose δ < min{1, 1/c} so that ‖vi(t0 + G(r))‖D(As) < r and repeat the
previous argument on I2 to generate

‖v1 − v2‖X(I2) . ‖v1(t0 + G(r))− v2(t0 + G(r))‖D(As)

. ‖v1 − v2‖X(I1) . ‖g1 − g2‖D(As). (I.50)

Successively repeating this argument on Ij := [t0 + (j− 1)G(r), t0 + jG(r)] with j ∈ N

finitely often until jG(r) ≥ T leads to a further reduction of δ. This implies (I.48) and
analogous to (I.50) the estimate

‖v1 − v2‖X(Ij+1) . ‖v1 − v2‖X(Ij). (I.51)
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With (I.48) for some δ ∈ (0, 1) the map

N : BD(As)( f , δ)→ X(I), N (g) := v

is well-defined and Lipschitz continuous since (I.51) implies

‖N (g1)−N (g2)‖X(I) . sup
j∈{1,...,N}

‖v1 − v2‖X(Ij) . ‖g1 − g2‖D(As).

Finally, the embedding X(I) ↪→ C(I, D(As)) ∩ Lp(I, L∞(Ω)) finishes the proof.

The above constructed maximal solution satisfies the blow-up alternative (I.32). It is
therefore of interest to have criteria for these solutions to be bounded on their maximal
existence interval since this is sufficient to conclude I( f ) = R. If s = 1/2 such a
criterion is provided in the next Lemma using L2(Ω)- and energy bounds, which are
often available. The case s > 1/2 is considerably harder and will be dealt with in Section
II.4 under much stronger assumptions.

Lemma I.3.5
Let I ∈ I with t0 ∈ I, β1 ∈ [0, ∞), and β2 ∈ [0, 2]. Let additionally f ∈ EA, F ∈ C(EA, E∗A)
with antiderivative F̂ ∈ C1(EA, R), and u ∈ C(I, EA) be a strong solution of (NLS). We
furthermore assume:

(i) ‖u(t)‖L2(Ω) . ‖ f ‖L2(Ω) and E(u(t)) . E( f ) for all t ∈ I,

(ii) F̂(h) & −‖h‖β1
L2(Ω)
‖h‖β2

EA
for h ∈ EA.

If either β2 < 2 or ‖ f ‖L2(Ω) is small enough, then ‖u‖L∞(I,EA) < ∞.

Remark: A defocusing nonlinearity satisfies (ii) with β1 = β2 = 0 without any addi-
tional assumptions. A major limitation arises in the focusing case. Consider for ex-
ample Ω = Rd and (A, D(A)) = (−∆, H2

2(R
d)). Put furthermore F(z) := −|z|βz with

β ∈ (0, ∞) such that β(d− 2) < 4. In Section I.4 we show that F̂(g) = − 1
β+2‖g‖

β+2
Lβ+2(Rd)

for g ∈ H1
2(R

d). We have Hs
2(R

d) ↪→ Lβ+2(Rd) with s = dβ/2(β+2) ∈ (0, 1). By means of
complex interpolation A.1.4;(2) and (A.1) follows

‖g‖β+2
Lβ+2(Rd)

. ‖g‖β+2
Hs

2(R
d)
. ‖g‖(1−s)(β+2)

L2(Rd)
‖g‖s(β+2)

H1
2 (R

d)
. (I.52)

Then s(β + 2) = βd/2 and s(β + 2) < 2 if and only if β < 4/d. This gives a hint, that
for d ≥ 2 the focusing cubic nonlinear Schrödinger equation may not be treatable with
the energy methods in the above lemma. In fact Theorem 6.5.10 in [Caz03] shows that
there are blow-up solutions in finite time for the cubic focusing nonlinear Schrödinger
equation with radial H1

2(R
2)-initial data with negative energy. However, initial data

with small L2(Ω)-norm are still treatable.

Proof. For t ∈ I follows with (i) and (ii) the estimate

‖u(t)‖2
EA

= ‖u(t)‖2
L2(Ω) + ‖A1/2u(t)‖2

L2(Ω)

≤ C1
(
‖ f ‖2

L2(Ω) + E( f )
)
− 2F̂(u(t))

≤ C1
(
‖ f ‖2

L2(Ω) + E( f )
)
+ C2‖ f ‖β1

L2(Ω)
‖u(t)‖β2

EA
. (I.53)
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If β2 < 2 the last term of (I.53) can be estimated further by means of ab ≤ a(2/β2)
∗
+ b2/β2

for a, b ∈ [0, ∞). Then for t ∈ I holds

‖u(t)‖2
EA
≤ C( f ) +

1
2
‖u(t)‖2

EA

and we can conclude ‖u‖L∞(I,EA) < ∞.
Next assume ‖ f ‖L2(Ω) < C−

1/β1
2 . If t ∈ I satisfies ‖u(t)‖EA ≥ 1, then ‖u(t)‖β2−2

EA
≤ 1.

The estimate (I.53) additionally implies

‖u(t)‖2
EA
(1− C2‖ f ‖β1

L2(Ω)
) ≤ ‖u(t)‖2

EA
(1− C2‖ f ‖β1

L2(Ω)
‖u(t)‖β2−2

EA
) ≤ C( f ).

With 1− C2‖ f ‖β1
L2(Ω)

> 0 the previous estimate implies ‖u‖L∞(I,EA) < ∞.

This Lemma states more precisely what we discussed on a heuristic level after Propo-
sition I.2.10 and again emphasizes the relevance of the energy functional E and energy
conservation in particular.
A further situation where energy conservation is useful arises as follows. Unfortu-
nately, there are situations where Theorem I.3.4 cannot be applied to construct mild
solutions in the energy space EA due to the magnitude of either the loss ` or of the
exponent α from the embedding D(Aα

q) ↪→ L∞(Ω). In this situation one can try to
construct a solution u of (NLS) by a weak limit argument applied to a sequence of
solutions (un)n∈N from a sequence of related equations, whereby either the nonlinear-
ity F or the initial value f is approximated. In the next lemma we formulate such a
scheme, in which we approximate f ∈ D(As) by a sequence of initial data ( fn)n∈N with
corresponding strong solutions (un)n∈N. As we will see, energy conservation for the
solutions (un)n∈N can be transferred into an energy bound for the solution u. However,
this is not necessary for the scheme itself to work but it provides additional informa-
tion on the approximated solution.
Since we could not find a reference for the result below, we give a full proof. Note that
we use a similar approximation argument as in Theorem 3.3.5 in [Caz03], in which the
nonlinearity F is “smoothened” with the resolvent of the Laplacian.

Theorem I.3.6
Let I ∈ Ic with t0 ∈ I, s ∈ [1/2, ∞), e ∈ (2, ∞], p, q ∈ [2, e) and (A, D(A)) be a non-negative,
selfadjoint linear operator on L2(Ω). We furthermore assume:

(i) The embedding EA ↪→ Le(Ω) is dense.

(ii) F : EA → E∗A satisfies F(0) = 0, 〈F(g), ig〉 = 0 for all g ∈ EA, and for all L ∈ [0, ∞)
holds

g, h ∈ BEA(0, L) =⇒ ‖F(g)− F(h)‖Lp∗ (Ω) ≤ C(L)‖g− h‖Lq(Ω) . (I.54)

(iii) There is an at most countable family of sets S ⊆ S such that
⋃

S∈S S = Ω and any
weakly convergent sequence in EA is convergent in Lp(S) for all S ∈ S .

(iv) There is a sequence ( fn)n∈N ⊆ D(As) such that ( fn)
n→∞−→ f in D(As) and a bounded

sequence (un)n∈N in C(I, D(As)) of strong solutions of (NLS) on I with un(t0) = fn.

Then the following holds:
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(a) There is a weak solution u ∈ Cw(I, D(As)) ∩ C0,1(I, E∗A) of (NLS) with initial value
u(t0) = f and L2(Ω)-conservation. Moreover, u ∈ C(I, Lr(Ω)) for all r ∈ [2, e).

(b) In case F has a real antiderivative, the following assertions hold:

• If un has energy conservation for all n ∈N, then E(u(t)) ≤ E( f ) for all t ∈ I.

• If u has energy conservation, then u is a strong solution of (NLS) on I. In particular,
u ∈ C(I, D(As)) ∩ C1(I, E∗A).

Remarks:

(1) The above weak solution u from (a) may not be unique, since it is constructed by
choosing a subsequence of (un)n∈N, which converges weakly in D(As) for all t ∈ I.
The question of uniqueness of weak solutions will be picked up in Section II.4 in
the next chapter. Note that the weak solution u from (a) belongs to L∞(I, EA) ∩
W1

∞(Io, E∗A).

(2) The core of the proof is Theorem B.0.1, which is proven in Appendix B.

(3) Recall that for α ∈ (0, 1] the space C0,α(I, X) is the space of bounded, uniformly
continuous functions v : I → X such that

‖v‖C0,α(I,X) := ‖v‖L∞(I,X) + sup
t,s∈I, t 6=s

(
‖v(t)− v(s)‖X

|t− s|α

)
< ∞.

Proof. First note that EA ↪→ Le(Ω) yields EA ↪→ Lr(Ω) for all r ∈ [2, e) by complex
interpolation. This embedding is also dense and we therefore have Lr∗(Ω) ↪→ E∗A.
Let s̃ ∈ [1/2, ∞) and L ∈ [0, ∞). The estimate (I.54) and D(As̃) ↪→ D(As) yield for
g, h ∈ BD(As̃)(0, L) that

‖F(g)− F(h)‖E∗A ≤ ‖F(g)− F(h)‖Lp∗ (Ω)

≤ C(L)‖g− h‖Lq(Ω) ≤ C(L)‖g− h‖D(As̃). (I.55)

With F(0) = 0 this implies that F : D(As̃) → E∗A is Lipschitz continuous on bounded
sets for all s̃ ∈ [1/2, ∞). We furthermore put

M := sup
n∈N

‖un‖L∞(I,D(As)) < ∞.

(a) Let f , ( fn)n∈N and (un)n∈N be as in (iv) and let n ∈ N. Then un has L2(Ω)-
conservation on I by assumption (ii) and Proposition I.2.8. Moreover, un ∈ L∞(I, D(As))
and (I.55) imply

‖u′n‖L∞(Io ,E∗A)
≤ ‖Ãun‖L∞(I,E∗A)

+ ‖F(un)‖L∞(I,E∗A)

≤ C‖un‖L∞(I,D(As)) + C(M)‖un‖L∞(I,D(As)) ≤ C(M).

(un)n∈N is therefore a bounded sequence in L∞(I, D(As)) ∩W1
∞(Io, E∗A). We want to

choose a sequence (n(k))k∈N such that (un(k)(t))k∈N converges weakly in D(As) for
all t ∈ I. We achieve this by checking the assumptions of Theorem B.0.1, where we
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take X := D(As) and Z := E∗A. Since D(As) is a Hilbert space with D(As) ↪→ E∗A,
the conditions in B.0.1;(i) are satisfied. The embedding W1

∞(Io, E∗A) ↪→ C0,1
b (I, E∗A) in

A.3.5;(2) implies the boundedness of (un)n∈N ⊆ C0,1(I, E∗A) and we define

N := sup
n∈N

‖un‖C0,1(I,E∗A)
< ∞.

For all s, t ∈ I then holds

sup
n∈N

‖un(s)− un(t)‖E∗A ≤ N|s− t|

and thus (un)n∈N is uniformly equicontinuous (even uniformly Lipschitz continu-
ous) on E∗A. The boundedness of (un)n∈N in L∞(I, D(As)) then completes the val-
idation of the assumptions in B.0.1;(ii). Theorem B.0.1 guarantees the existence of
u ∈ Cw(I, D(As) ∩ C0,1(I, E∗A) and a sequence (n(k))k∈N such that

∀t∈I : (un(k)(t)) ⇀ u(t) in D(As). (I.56)

Then the weak lower semicontinuity of ‖ · ‖D(As) (see e.g. (B.2)) yields

‖u‖L∞(I,D(As)) ≤
∥∥ lim inf

n∈N
‖un(·)‖D(As)

∥∥
L∞(I) ≤ M,

and u ∈ C0,1(I, E∗A) implies u ∈W1
∞(Io, E∗A) by A.3.5;(2).

We proceed by analyzing (F(un(k)))k∈N. For k ∈ N Proposition I.2.7 yields un(k) ∈
C0,1/2(I, L2(Ω)) which combined with (I.55) and complex interpolation (A.1) yields

‖F(un(k))‖C0,α(I,Lp∗ (Ω))

≤ C(M)

(
‖un(k)‖L∞(I,D(As)) + sup

s,t∈I, s 6=t

(‖un(k)(s)− un(k)(t)‖Lq(Ω)

|s− t|α

))

≤ C(M)

(
1 + sup

s,t∈I, s 6=t

(‖un(k)(s)− un(k)(t)‖θ
L2(Ω)
‖un(k)(s)− un(k)(t)‖1−θ

Le(Ω)

|s− t|α

))
≤ C(M)

(
1 + ‖un(k)‖1−θ

L∞(I,D(As))
sup

t,s∈I, s 6=t

(
|t− s| θ2−α

))
≤ C(M),

where 1
q = 1−θ

e + θ
2 and α := θ

2 = e−q
q(e−2) ∈ (0, 1/2). The sequence (F(un(k)))k∈N is

therefore bounded in C0,α(I, Lp∗(Ω)). As above (F(un(k)))k∈N is uniformly equicon-
tinuous in Lp∗(Ω). The latter space is reflexive since p∗ ∈ (e∗, 2] and therefore we
can apply Theorem B.0.1 with X = Z = Lp∗(Ω). This establishes the existence of
F̃ ∈ C0,α(I, Lp∗(Ω)) and a subsequence of (n(k))k∈N, which we will still denote by
(n(k))k∈N, such that

∀t∈I : F(un(k)(t)) ⇀ F̃(t) in Lp∗(Ω). (I.57)

Let S be the family of sets from assumption (iii) and let S ∈ S as well as t ∈ I. Then
F(0) = 0 and 〈F(g), ig〉L2(Ω) = 0 for all g ∈ D(As) implies

|〈F̃(t), iu(t)〉L2(S)|

=
∣∣〈F̃(t), iu(t)〉L2(S) − 〈F(un(k)(t)), iun(k)(t)〉L2(S)

∣∣
≤
∣∣〈i1Su(t), F̃(t)− F(un(k)(t))〉L2(Ω)

∣∣+ ∣∣〈F(un(k)(t)), i(u(t)− un(k)(t))〉L2(S)
∣∣.
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Due to (I.57) and 1Su(t) ∈ Lp(Ω) the first expression converges to 0 for k → ∞. The
same holds true for the second term, since with Hölder’s inequality follows∣∣〈F(un(k)(t)), i(u(t)− un(k)(t))〉L2(S)

∣∣ ≤ ‖F(un(k)(t)‖Lp∗ (S)‖u(t)− un(k)(t)‖Lp(S)

≤ C(M)‖u(t)− un(k)(t)‖Lp(S).

(I.56) and (iii) imply un(k)(t)
k→∞−→ u(t) in Lp(S). Consequently, 〈F̃(t), iu(t)〉L2(S) = 0 and

since F̃(t)u(t) ∈ L1(Ω) the dominated convergence theorem implies

〈F̃(t), iu(t)〉L2(Ω) = ∑
S∈S
〈F̃(t), iu(t)〉L2(S) = 0. (I.58)

We proceed by showing that u is a weak solution on I of the equation

iu′(t) = Ãu(t) + F̃(t), t 6= t0,
u(t0) = f .

(I.59)

Let g ∈ EA, η ∈ C∞
c (Io, R) and t ∈ I. Then g ∈ Lp(Ω) so that by (I.57) and (I.56) follows

〈iu′n(k)(t), g〉 = 〈Ãun(k)(t) + F(un(k)(t)), g〉

= 〈Ãg, un(k)(t)〉+ 〈g, F(un(k)(t)〉L2(Ω)

k→∞−→ 〈Ãg, u(t)〉+ 〈g, F̃(t)〉L2(Ω) = 〈Ãu(t) + F̃(t), g〉. (I.60)

Moreover, the weak convergence (I.56) combined with A.3.3;(4) and the dominated
convergence theorem (note that the integrand and I are bounded) yields〈 ∫

Io

(
u′n(k)(t)− u′(t)

)
η(t) dt, g

〉
=
〈 ∫

Io

(
u(t)− un(k)(t)

)
η′(t) dt, g

〉
=
∫

Io
〈u(t)− un(k)(t), g〉L2(Ω)η

′(t) dt k→∞−→ 0. (I.61)

(I.60) and (I.61) imply iun(k)(t)
k→∞−→ Ãu(t) + F̃(t) and iu′n(k)(t)

k→∞−→ iu′(t) with respect
to the weak* topology on E∗A a.e. on I. Consequently, iu′(t) = Ãu(t) + F̃(t) on E∗A a.e.
on I and therefore u is a weak solution of (I.59). Observe that u(t0) = f follows from
fn(k)

k→∞−→ f and fn(k) ⇀ u(t0) in D(As).
It remains to show F̃(t) = F(u(t)) for t ∈ I. First a familiar argument involving (I.54),
EA ↪→ Le(Ω), and complex interpolation (A.1) implies

‖F(un(k)(t))− F(u(t))‖Lp∗ (Ω) ≤ C(M)‖un(k)(t)− u(t)‖Lq(Ω)

≤ C(M)‖un(k)(t)− u(t)‖1−θ
Le(Ω)
‖un(k)(t)− u(t)‖θ

L2(Ω)

≤ C(M)‖un(k)(t)− u(t)‖θ
L2(Ω). (I.62)

(I.58) implies L2(Ω)-conservation of u by Proposition I.2.8 and this also holds for all
elements of (un(k))k∈N. Then fn(k)

k→∞−→ f in L2(Ω) implies that ‖un(k)(·)‖L2(Ω)
k→∞−→

‖u(·)‖L2(Ω) uniformly on I. Theorem B.0.1;(c) yields un(k)
k→∞−→ u in C(I, L2(Ω)) since

un(k)(t) ⇀ u(t) in L2(Ω) for all t ∈ I. This information and estimate (I.62) imply
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un(k)
k→∞−→ u in C(I, Lq(Ω)) and F(un(k))

k→∞−→ F(u(t)) in C(I, Lp∗(Ω)). Consequently,
F(u(t)) = F̃(t) for all t ∈ I. Note that in the spirit of (I.62) we can easily prove
un(k)

k→∞−→ u in C(I, Lr(Ω)) for all r ∈ [2, e) and thus u ∈ C(I, Lr(Ω)).
(b) Now let F have a real antiderivative F̂. The continuity of F implies F̂ ∈ C1(EA, R)
and consequently E ∈ C1(EA, R).
For the first statement we assume that un has energy conservation for all n ∈ N. With
A1/2 ∈ L(EA, L2(Ω)) and (I.56) we have (A1/2un(k)(t)) ⇀ A1/2u(t) in L2(Ω) for all t ∈ I.
The weak lower semicontinuity of ‖ · ‖L2(Ω) and E ∈ C1(EA, R) then imply

E(u(t)) = 1
2
‖A1/2u(t)‖2

L2(Ω) + F̂(u(t))

≤ lim inf
k∈N

(
E( fn(k)) + F̂(u(t))− F̂(un(k)(t))

)
= lim

k→∞
E( fn(k)) + lim

k→∞

(
F̂(u(t))− F̂(un(k)(t))

)
= E( f ).

The second limit is 0 since∣∣F̂(u(t)) − F̂(un(k)(t))
∣∣

=

∣∣∣∣ ∫ 1

0
[

d
ds

F̂
(
(·)u(t) + (1− (·))un(k)(t)

)
](s) ds

∣∣∣∣
≤
∫ 1

0

∣∣∣∣〈F(su(t) + (1− s)un(k)(t)
)
, u(t)− un(k)(t)〉L2(Ω)

∣∣∣∣ ds

≤
∫ 1

0
‖F
(
su(t) + (1− s)un(k)(t)

)
‖Lp∗ (Ω) ds‖u(t)− un(k)(t)‖Lp(Ω)

≤ C(M)‖u(t)− un(k)(t)‖Lp(Ω)
k→∞−→ 0. (I.63)

For the second statement let s, t ∈ I. The L2(Ω)- and energy conservation of u implies

‖u(s)‖2
EA
− ‖u(t)‖2

EA

= ‖u(s)‖2
L2(Ω) − ‖u(t)‖

2
L2(Ω) + 2

(
E(u(s))− E(u(t)) + F̂(u(s))− F̂(u(t))

)
= 2

(
F̂(u(s))− F̂(u(t))

)
.

Similar to (I.63) we have∣∣F̂(u(t))− F̂(u(s))
∣∣ ≤ C(M)‖u(t)− u(s)‖Lp(Ω).

The fact that u ∈ C(I, Lp(Ω)) implies the continuity of F̂(u(·)) on I and consequently
the continuity of ‖u(·)‖EA . Since u ∈ Cw(I, D(As)) and thus u ∈ Cw(I, EA), the uniform
convexity of EA yields u ∈ C(I, EA) (see (B.4)). We then have Ãu, F(u) ∈ C(I, E∗A) and
the function

v : I → E∗A, v(t) := −i
∫ t

t0

Ãu(τ) + F(u(τ)) dτ + u(t0),

belongs to C1(I, E∗A). The equation (NLS) then implies u ∈ W1
∞(Io, E∗A) with u′ = v′

in E∗A almost everywhere on Io. Consequently, A.3.5;(1) yields u = v in E∗A almost
everywhere on Io. Finally, the continuity of u and v implies u = v in E∗A everywhere
on I. We therefore have that u ∈ C(I, D(As)) ∩ C1(I, E∗A) is a strong solution of (NLS)
on I.
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I.4. The model nonlinearity

I.4. The model nonlinearity

In this section we introduce the model nonlinearity Fβ,±, which is the most commonly
used nonlinearity in this thesis. The structure of these nonlinearities naturally arises
in physical applications of the nonlinear Schrödinger equation. From a mathematical
point of view it is worth mentioning that these nonlinearities are only differentiable
up to a certain degree, which depends on its growth. This will restrict the availability
of important nonlinear estimates, which are needed for Theorem I.3.4. We will prove
these estimates later in Chapter III.
In this section we provide the necessary material to fit Fβ,± in the functional analytic
framework of Section I.2. We also introduce the notion of the energy subcritical non-
linear Schrödinger equation. All these concepts and results can be transferred to more
general local nonlinearities F : C → C with minor or no modifications if suitable
growth and structural assumptions are in place. However, we do not strive for max-
imal generality. The model nonlinearities are already a rich class which allows us to
expose important underlying principles.
If not stated otherwise, in this section we always let (A, D(A)) be a non-negative, self-
adjoint linear operator on (L2(Ω), 〈·, ·〉L2(Ω)), whereby (Ω, S , µ) is an arbitrary mea-
sure space.

Notation I.4.1
Let β, ν ∈ (0, ∞). We put

Fβ,± : C→ C, Fβ,±(z) := ±ν|z|βz,

and call the induced Nemytskii map g 7→ Fβ,± ◦ g for g : Rd → C the model nonlinearity. We
additionally put

F̂β,± : Lβ+2(Ω)→ R, F̂β,±(g) :=
±ν

β + 2
‖g‖β+2

Lβ+2(Ω)
.

Remarks:

(1) Note that by a change of sign we switch between the defocusing (+) and the focus-
ing (-) case. We always assume ν = 1 from now on, but every result holds for an
arbitrary ν by changing the involved constants.

(2) We usually ignore the difference between a function F : C → C and its induced
Nemytskii map g 7→ F ◦ g in our notation.

(3) For F : C→ C and k ∈N0 the notation F ∈ Ck(R2, R2) means that the function

FR : R2 → R2, FR(Re z, Im z) := (Re F(z), Im F(z))

belongs to Ck(R2, R2). This corresponds to the identification C ≡ R2 given by
z ≡ (Re z, Im z) for z ∈ C. Moreover, we define ∂αF(z) := ∂αFR(Re z, Im z) for
α ∈N2

0.

The next proposition contains important assertions for Fβ,± with respect to mapping
properties on Lp(Ω-spaces and the structural condition introduced in Section I.2 for
L2(Ω)-conservation.
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I. A functional analytic framework for the nonlinear Schrödinger equation

Proposition I.4.2
Let β ∈ (0, ∞), k ∈N, α ∈N2

0 and p ∈ [β + 1, ∞].

(a) Fβ,± ∈ Ck(R2, R2) for k < β + 1 with |∂αFβ,±(z)| . |z|β+1−|α| for |α| < β + 1. If β ∈
Neven, then additionally Fβ,± ∈ C∞(R2, R2) with |∂αF(z)| . |z|β+1−|α| if |α| ≤ β + 1
and ∂αF = 0 for |α| > β + 1. Moreover,

|Fβ,±(w)− Fβ,±(z)| . (|w|β + |z|β)|w− z|. (I.64)

(b) Let g, h ∈ Lp(Ω). Then Fβ,± : Lp(Ω)→ Lp/(β+1)(Ω) satisfies

‖Fβ,±(g)− Fβ,±(h)‖Lp/(β+1)(Ω) .
(
‖g‖β

Lp(Ω)
+ ‖h‖β

Lp(Ω)

)
‖g− h‖Lp(Ω). (I.65)

(c) Let EA ↪→ Lβ+2(Ω) and g, h ∈ EA. Then Fβ,± : EA → E∗A satisfies

‖Fβ,±(g)− Fβ,±(h)‖E∗A .
(
‖g‖β

EA
+ ‖h‖β

EA

)
‖g− h‖EA , (I.66)

and

• Fβ,±(g) ∈ L1+ 1
β+1 (Ω) and 〈Fβ,±(g), ig〉L2(Ω) = 0,

• F̂β,± ∈ C1(EA, R) with 〈F̂′β,±(g), h〉 = 〈Fβ,±(g), h〉L2(Ω).

Remarks:

(1) The expression Fβ,± : EA → E∗A means that

F∗β,± : EA → E∗A, 〈F∗β,±(g), ·〉 := 〈Fβ,±(g), ·〉L2(Ω)

is well-defined. Any property of Fβ,± : EA → E∗A has to be understood as a property
of F∗β,±. We usually do not distinguish between Fβ,± and F∗β,± in our notation.

(2) In (c) we actually prove more than is stated, namely that all statements are valid
for EA substituted by Lβ+2(Ω). The embedding EA ↪→ Lβ+2(Ω) then yields the
corresponding assertions on EA.

Proof. Surely, it is enough to consider the defocusing case. We fix the function

F : R2 → R2, F(x) := |x|βx,

and denote by F1, F2 the component functions. In the proof below always let α ∈N2
0.

(a) First, we assume that β ∈ Neven. Then x 7→ |x|β belongs to C∞(R2, R) and so
F ∈ C∞(R2, R2). For |α| ≤ β + 1 furthermore holds

|∂αF(x)| .
2

∑
i=1
|∂αFi(x)| =

2

∑
i=1

∣∣∣∣ ∑
|γ|=β+1−|α|

Cγxγ

∣∣∣∣ . |x|β+1−|α|.

We now let β ∈ (0, ∞) and |α| < β + 1. Let i ∈ {1, 2}. On R2 \ {0}, Fi is infinitely often
differentiable as a composition of C∞-functions with

∂αFi(x) = ‖x‖β−2|α| ∑
|γ|=|α|+1

Cγxγ.

42



I.4. The model nonlinearity

With ∂αFi(0) := 0 the previous equality implies that ∂αFi is differentiable in x = 0 with
∂ej ∂αFi(0) = 0. Consequently, F ∈ Ck(R2, R2) and

|∂αF(x)| . |x|β+1−|α|.

This estimate and a simple application of the mean value theorem yield the Lipschitz
estimate (I.64).
(b) Let p ∈ [β + 1, ∞] and g, h ∈ Lp(Ω). Then ‖Fβ,+(g)‖Lp/(β+1)(Ω) = ‖g‖β+1

Lp(Ω)
. The

Lipschitz estimate (I.64) for Fβ,+ : C→ C yields

‖Fβ,+(g)− Fβ,+(h)‖L∞(Ω) . (‖g‖β

L∞(Ω)
+ ‖h‖β

L∞(Ω)
)‖g− h‖L∞(Ω).

For p < ∞ the Lipschitz estimate (I.64) and Hölder’s inequality with β
β+1 + 1

β+1 = 1
imply

‖Fβ,+(g)− Fβ,+(h)‖Lp/(β+1)(Ω) .
( ∫

Ω

(
|g|

pβ
β+1 + |h|

pβ
β+1
)
|g− h|

p
β+1 dµ

)(β+1)/p

.
(
‖g‖β

Lp(Ω)
+ ‖h‖β

Lp(Ω)

)
‖g− h‖Lp(Ω).

(c) Let g, h ∈ EA and p := β + 2. Then p∗ = 1 + 1
β+1 . All the assertions on map-

ping properties of Fβ,+, in particular the Lipschitz estimate (I.66), follow with Hölder’s
inequalitity, (I.65), and EA ↪→ Lβ+2(Ω). We additionally have

〈Fβ,+(g), ig〉L2(Ω) = Re
∫

Ω
i|g(ω)|β+2 dω = 0.

It remains to prove the continuous differentiability of F̂β,+ : EA → R. For this let
F̂ : R2 → R with F̂(x) := 1

β+2‖x‖β+2 and g := (Re g, Im g), h := (Re h, Im h). First,
observe that

〈Fβ,+(g), h〉L2(Ω) = Re
∫

Ω
|g|βgh dµ

=
∫

Ω
F(g) · h dµ =

∫
Ω
(∇F̂)(g) · h dµ.

The fundamental theorem, Fubini’s theorem, Hölder’s inequality, and the Lipschitz
estimate (I.65) then provide∣∣∣∣F̂β,+(g + h) − F̂β,+(g)− 〈Fβ,+(g), h〉L2(Ω)

∣∣∣∣
=

∣∣∣∣ ∫Ω
F̂(g + h)− F̂(g) dµ−

∫
Ω
(∇F̂)(g) · h dµ

∣∣∣∣
=

∣∣∣∣ ∫Ω

∫ 1

0

(
(∇F̂)(g + sh)− (∇F̂)(g)

)
ds · h dµ

∣∣∣∣
≤
( ∫ 1

0
‖Fβ,+(g + sh)− Fβ,+(g)‖L(β+2)∗ (Ω) ds

)
‖h‖Lβ+2(Ω)

.
(
‖g‖β

Lβ+2(Ω)
+ ‖h‖β

Lβ+2(Ω)

)
‖h‖2

Lβ+2(Ω) .
(
‖g‖β

EA
+ ‖h‖β

EA

)
‖h‖2

EA
.
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This implies that F̂β,+ : EA → R is differentiable with F̂′β,+(g) = 〈Fβ,+(g), ·〉L2(Ω).
Furthermore, (I.66) and EA ↪→ Lp(Ω) yield

‖F̂′β,+(g)− F̂′β,+(h)‖E∗A . ‖Fβ,+(g)− Fβ,+(h)‖Lp∗ (Ω)

.
(
‖g‖β

EA
+ ‖h‖β

EA

)
‖g− h‖EA .

Hence, F̂′β,+ ∈ C(EA, E∗A) and F̂β,+ ∈ C1(EA, R).

The condition EA ↪→ Lβ+2(Ω) in the above Lemma plays an important role for the
following reasons. Firstly, it ensures that the corresponding model nonlinearity Fβ,± :
EA → E∗A is Lipschitz continuous on bounded sets, hence continuous and bounded
on bounded sets. This establishes equivalence of the different notions of solutions
which were introduced in the previous section (see Proposition I.2.4). Secondly, we
have shown that F̂β,± ∈ C1(EA, R) is the antiderivative of Fβ,±. The energy functional
E : EA → R is therefore defined and belongs to C1(EA, R).
Recall from the examples in I.1.6 that in many cases the energy space EA is the cor-
responding Sobolev space on Ω of order 1. Let us for a moment discuss the case
EA
∼= W1

2 (R
d). Then W1

2 (R
d) ↪→ Lβ+2(Rd) if and only if β(d − 2) ≤ 4. This can be

seen via the Sobolev embedding A.2.1. Since the Sobolev embedding will be available
in our applications, we also refer to β(d− 2) < 4 as the energy subcritical condition.
If d ≥ 3 we call the case β = 4/(d−2) energy critical. Moreover, there is an important
heuristic which leads to these notions, namely scaling invariance. Let u : R×Rd → C

be a sufficiently regular solution of the equation

i∂tu(t, x) = −∆u(t, x) + Fβ,±(u(t, x)), (t, x) ∈ R \ {0} ×Rd,

u(0, x) = f (x), x ∈ Rd.
(I.67)

For all λ ∈ (0, ∞) the function u(λ, ·, ·) : R×Rd → C, u(λ, t, x) := λ2/βu(λ2t, λx) then
satisfies

i∂tu(λ, t, x) = −∆u(λ, t, x) + Fβ,±(u(λ, t, x)), (t, x) ∈ R \ {0} ×Rd,

u(0, x) = λ
2/β f (λx), x ∈ Rd.

We define for λ ∈ (0, ∞) the space scaling (Sλu)(t, x) := λ2/βu(t, λx). It is straightfor-
ward to check for all t ∈ R

‖(Sλu)(t, ·)‖L2(Rd) = λ
2
β−

d
2 ‖u(t, ·)‖L2(Rd),

‖∇(Sλu)(t, ·)‖L2(Rd) = λ
2
β−

d−2
2 ‖∇u(t, ·)‖L2(Rd).

The invariance of ‖ · ‖L2(Rd) under the space scaling Sλ is therefore valid if and only
if β = 4/d, which is called the mass or L2-critical case. The invariance of ‖∇ · ‖L2(Rd)

is valid if and only if β = 4/(d−2), which is called the energy critical or Ḣ1
2-critical

case. Compared to the case β < 4/(d−2) the global existence theory in Ḣ1
2(R

d) for
β = 4/(d−2) is much harder. Here, the existence time in local existence results depends
on the Ḣ1

2(R
d)-norm and on the profile of the initial data. See for example Chapter 6 in
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[Caz03] for a further discussion of the blow-up phenomenon for (I.67) in the focusing
and defocusing case.
We already mentioned that the embedding EA ↪→ Lβ+2(Ω) allows the meaningful
definition of the energy functional E ∈ C1(EA, R) and we turn back to the question
of energy conservation. In Propsition I.2.10 we have proven a first basic criterion for
energy conservation. It relied on the differentiablility of the solution u : I → EA of
(NLS). Next, we give a more elaborate criterion, in which we assume that u : I → D(A)
is continuously differentiable as map from I to L2(Ω).

Lemma I.4.3
Let β ∈ (0, ∞) and f ∈ D(A). Let furthermore D(A) ↪→ L2(β+1)(Ω) and u ∈ C(I, D(A))
be a strong solution of the nonlinear Schrödinger equation

iu′(t) = Au(t) + Fβ,±(u(t)), t 6= t0,

u(t0) = f .

If u ∈ C1(I, L2(Ω)), then u has energy conservation on I.

Remark: The embedding D(A) ↪→ L2(β+1)(Ω) in particular yields D(A) ↪→ Lβ+2(Ω)
by means of the complex interpolation results in Theorem A.1.3 and (A.1) and the
trivial embedding D(A) ↪→ L2(Ω).

Proof. We argue as in Theorem 13.2 of [HMMS13] with an approximative energy func-
tional and lift the given proof to our situation of an arbitrary measure space (Ω, S , µ).
Let J ∈ Ic with t0 ∈ J ⊆ Io be arbitrary. It is surely enough to prove that E ◦ u is
constant almost everywhere on J since E ◦ u ∈ C(I, R).
For ε ∈ (0, 1) we put

F̂ε : D(A)→ R, F̂ε(g) :=
∫

Ω
ηε(g) dµ,

whereby ηε(·) := ε−2η(ε| · |) with η ∈ C1
b(R) defined by

η(x) :=
1

β + 2

(
1[0,1](x)xβ+2 + 1(1,∞)(x)

(
1 + arctan

( (β + 2)(x2 − 1)
2

)))
.

An elementary calculation shows

|ηε(x)| . 1B(0,1/ε)(x)εβ|x|β+2 + 1B(0,1/ε)c(x)|x|2,

|∇ηε(x)| . 1B(0,1/ε)(x)εβ|x|β+1 + 1B(0,1/ε)c(x)|x|.

We therefore have

|(∇ηε)(x)| . |x|, |ηε(x)| . |x|β+2, |(∇ηε)(x)| . |x|β+1. (I.68)

Next, we define the “approximative energy functional” as

Eε : D(A)→ R, Eε(g) :=
1
2
‖A1/2g‖2

L2(Ω) + F̂ε(g).
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First we show that the functions

e1, e2 : J → R, e1(t) :=
1
2
‖A1/2u(t)‖2

L2(Ω), e2(t) := F̂ε(u(t))

are differentiable. Let t ∈ J and h ∈ R \ {0} with t + h ∈ J. Then u ∈ C(I, D(A)) ∩
C1(I, L2(Ω)) implies∣∣∣∣ e1(t + h)− e1(t)

h
− 〈Au(t), u′(t)〉L2(Ω)

∣∣∣∣
. ‖Au(t + h)− Au(t)‖L2(Ω) +

∥∥∥∥u(t + h)− u(t)
h

− u′(t)
∥∥∥∥

L2(Ω)

h→0−→ 0.

e1 is therefore continuously differentiable with

e′1 : J → R, e′1(t) = 〈Au(t), u′(t)〉L2(Ω). (I.69)

For e2 we show that F̂ε : L2(Ω) → C is differentiable. Let (hn)n∈N be a null sequence
in L2(Ω). Then (hn)n∈N is a Cauchy sequence in L2(Ω) which contains a subsequence
(hnk)k∈N such that hnk

k→∞−→ 0 almost everywhere and

H : Ω→ R, H := |hn1 |+
∞

∑
l=1
|hnl+1 − hnl |

belongs to L2(Ω). For all k ∈N holds |hnk | ≤ H almost everywhere. Then (I.68) yields

|(∇ηε)(g + shnk)− (∇ηε)(g)| . |g|+ |H| a.e. on Ω.

We furthermore have

|(∇ηε)(g + shnk)− (∇ηε)(g)| k→∞−→ 0 a.e. on Ω

and the dominated convergence theorem yields∫ 1

0
‖(∇ηε)(g + sh)− (∇ηε)(g)‖L2(Ω) ds→ 0 for h→ 0 in L2(Ω). (I.70)

With this information we assume g, h ∈ L2(Ω) with h 6= 0. The usual identification
C ∼= R2 and the same arguments as in the proof of Proposition I.4.2;(b) yield∣∣∣∣F̂ε(g + h) − F̂ε(g)−

∫
Ω
(∇ηε)(g)h dµ

∣∣∣∣
=

∣∣∣∣ ∫Ω

∫ 1

0

(
(∇ηε)(g + sh)− (∇ηε)(g)

)
ds · h dµ

∣∣∣∣
. ‖h‖L2(Ω)

∫ 1

0

∥∥(∇ηε)(g + sh)− (∇ηε)(g)
∥∥

L2(Ω)
ds.

Then (I.70) implies the differentiability of F̂ε : L2(Ω) → C and the chain rule implies
the differentiability of e2 with

e′2 : J → R, e′2(t) :=
∫

Ω
(∇ηε)(u(t))u′(t) dµ.
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I.4. The model nonlinearity

The latter equation combined with (I.69) implies for t ∈ J

(Eε ◦ u)′(t) = 〈Au(t), u′(t)〉L2(Ω) +
∫

Ω
(∇ηε)(u(t))u′(t) dµ. (I.71)

Let t ∈ J. The growth estimates (I.68) imply

|ηε(u(t))| . |u(t)|β+2, |(∇ηε)(u(t))u′(t)| . |u(t)|β+1|u′(t)| a.e. on Ω, (I.72)

and u(t) ∈ D(A), u′(t) ∈ L2(Ω) as well as D(A) ↪→ Lβ+2(Ω) ∩ L2(β+1)(Ω) yield

|u(t)|β+2, |u(t)|β+1|u′(t)| ∈ L1(Ω). (I.73)

Moreover, we have

ηε(u(t))
ε→0−→ 1

β + 2
|u(t)|β+2 a.e. on Ω,

(∇ηε)(u(t))u′(t)
ε→0−→ (∇F̂β,±(u(t))u′(t) =

1
β + 2

|u(t)|β Re(u(t)u′(t)) a.e. on Ω.

With (I.72) and (I.73) the dominated convergence theorem and the equation (NLS)
provide

(Eε ◦ u)(t) ε→0−→ E(u(t)), (Eε ◦ u)′(t) ε→0−→ 0.

Since u ∈ C(J, D(A)) ∩ C1(J, L2(Ω)) it is easy to prove that

sup
ε∈(0,1)

(
‖Eε ◦ u‖L∞(J) + ‖(Eε ◦ u)′‖L∞(J)

)
< ∞,

so that once again the dominated convergence theorem yields

Eε ◦ u ε→0−→ E ◦ u, (Eε ◦ u)′ ε→0−→ 0 in L1(J).

Consequently, E ◦ u ∈ W1
1 (Jo) with (E ◦ u)′ = 0 and therefore E ◦ u is constant almost

everywhere on J.
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II. Strichartz and spectrally localized
estimates

In Section I.3 we have derived the central existence result for maximal mild solutions
of the Cauchy problem

iu′(t) = Au(t) + F(u(t)), t 6= t0,
u(t0) = f ,

(II.1)

where (A, D(A)) was a non-negative, selfadjoint linear operator on L2(Ω) with Schrö-
dinger group U. The crucial assumptions in this result were suitable estimates for F on
D(As) and a local (p, q) Strichartz estimate with `-loss. In the first part of this chapter
we will provide criteria and examples for local (p, q) Strichartz estimates with `-loss.
In the second part we further exploit the tools developed in the first part to provide a
priori information on solutions of (II.1). We proceed as follows.
In Section II.1 we recall the notions of dispersive and Strichartz estimates. We prove a
slight variation of the important result of Keel-Tao from [KT98] with complex interpo-
lation spaces instead of real interpolation spaces in the non-endpoint situation.
In Section II.2 we turn to a method to prove local (p, q) Strichartz estimates with `-loss.
It was initially used in [BGT04b] in a special case and is based on the following idea:
Let (p, q) ∈ [2, ∞]2 and (ψk)k∈N0 be a dyadic partition of unity, which in particular
satisfies ∑∞

k=0 ψk = 1 and | supp(ψk)| ∼= 2k for k ∈ N0 (see Definition II.2.4). If the
estimate

‖U f ‖Lp(I,Lq(Ω)) .
( ∞

∑
k=0
‖ψk(A)U f ‖2

Lp(I,Lq(Ω))

)1/2

(II.2)

holds, then Strichartz estimates for (ψk(A)U(t))t∈R imply Strichartz estimates for U.
In order to formalize this approach, we highlight the following crucial ingredients:

(1) Spectrally localized Strichartz estimates on intervals J with |J| ∼= 2−k/2:

‖ψk(A)U f ‖Lp(J,Lq(Ω)) . ‖ψk(A) f ‖L2(Ω). (II.3)

(2) Inequalities derived from Littlewood-Paley decompositions:

∀ f∈L2(Ω) : ‖ f ‖Lq(Ω) .
( ∞

∑
k=0
‖ψk(A) f ‖2

Lq(Ω)

)1/2

. (II.4)

We show that the spectrally localized dispersive estimates

‖ψk(A)U(t)‖L1(Ω)→L∞(Ω) . |t|−σ, 0 < |t| . 2−kγ, (II.5)
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II. Strichartz and spectrally localized estimates

are sufficient for spectrally localized Strichartz estimates of the form (II.3) to hold with
|J| ∼= 2−kγ. Such estimates are frequently used in the literature and we call them (p, q)
Strichartz estimates of SL-type (γ, ν) (SL for spectrally localized). We then discuss the
availability of the decomposition estimates of the form (II.4) for q = 2 and q 6= 2. We
give the proof that (p, q) Strichartz estimates of SL-type (γ, ν) combined with (II.4)
imply a local (p, q)-Strichartz estimate with `-loss. Section II.3 contains an extensive
list of examples where the arguments in Section II.2 are applied in the literature.
In Section II.4 we return to the Cauchy problem (II.1). We combine (p, q) Strichartz
estimates of SL-type γ with so-called Bernstein inequalities to provide further abstract
versions of the arguments used in [BGT04b]. In particular, we provide criteria for weak
solutions of (II.1) with sub-cubic nonlinearity in D(As) with s ≥ 1/2 to be unique, and
a priori estimates for strong solutions in D(As) with s > 1/2. Both of these results will
be applied in the global existence Theorem III.1.6 in Chapter III.

II.1. Strichartz estimates and the Keel-Tao result

In Section I.3 we proved a local existence theorem for the fixed point equation

u(t) = U(t− t0) f − i
∫ t

t0

U(t− s)F(u(s)) ds (II.6)

in C(I, D(As)) under the assumption of estimates for F on D(As) and local (p, q)
Strichartz estimates with `-loss. However, we did not specify how to prove the lat-
ter estimates. In order to do so we review the abstract Keel-Tao result from [KT98].
First, let us introduce a rather elementary notation, which is used throughout this
thesis. It arises by separating the two terms in (II.6) and abstract the unitary group
U ∈ L(L2(Ω)) to a bounded family T ∈ L(H, X∗) (compare to I.3.1).

Notation II.1.1
Let I ∈ I , H a Hilbert space, X a Banach space, T : I → L(H, X∗) be bounded. We put

T : H → L∞(I, X∗), (T f )(t) := T(t) f , (II.7)

Φ : L1(I, X)→ L∞(I, X∗), (ΦF)(t) :=
∫ t

−∞
T(t)T(s)∗F0(s) ds, (II.8)

whereby F0(s) := F(s) for s ∈ I and F0(s) := 0 for s ∈ Ic. T is called the homogeneous and
Φ the inhomogeneous flow of T.

Remarks:

(1) The operator T is bounded and for F ∈ L1(I, X) holds

T ∗F =
∫

I
T(s)F(s) ds.

Indeed, an application of Hille’s Theorem stated in A.3.3;(4) implies for all h ∈ H

〈F, T h〉L∞(I,X)∗,L∞(I,X) =
∫

I
〈F(t), T(t)h〉X∗,X dt =

〈 ∫
I

T(t)∗F(t) dt, h
〉

H.

Then T T ∗ ∈ L(L1(I, X), L∞(I, X∗)) is bounded and by means of A.3.4;(4), so is Φ.
Note that we usually consider T ∗ : L∞(I, X∗)∗ → H to be restricted onto L1(I, X).
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II.1. Strichartz estimates and the Keel-Tao result

(2) The homogeneous flow of the Schrödinger group U is denoted by U .

In the following we always consider T given as in II.1.1. The mapping properties of T
and Φ are generated without any additional assumptions on T. The most prominent
estimate to improve these properties is the so-called dispersive estimate. In our abstract
setting it takes the following form.

Definition II.1.2
Let σ ∈ (0, ∞), I ∈ I and X1 a Banach space. We call T (σ, X1)-dispersive on I, if for all
t, s ∈ I with t 6= s and f ∈ X ∩ X1 holds

‖T(t)T(s)∗ f ‖X∗1 . |t− s|−σ‖ f ‖X1 . (II.9)

In the case I = R we omit the reference to the interval. An estimate of the form (II.9) is
generally referred to as a dispersive estimate for T.

Remark: Let σ ∈ (0, ∞), I = R, X = H = L2(Ω), X1 = L1(Ω) and U be a unitary group
on L(L2(Ω)). We then have U(t)U(s)∗ = U(t− s) on L2(Ω) and for the estimate (II.9)
to hold, it is sufficient that for all f ∈ L2(Ω) ∩ L1(Ω) and t ∈ R \ {0} holds

‖U(t) f ‖L∞(Ω) . |t|−σ‖ f ‖L1(Ω). (II.10)

For (eit∆)t∈R with the Laplacian (−∆, H2
2(R

d)) on L2(Rd) the latter is obtained by the
kernel representation

(eit∆ f )(x) = (4πit)−d/2
∫

Rd
e

i|x−y|2
4t f (y) dy, (II.11)

which holds for all f ∈ S(Rd) and t ∈ R \ {0}. We refer to Section 2.2 in [Tao06] for a
proof of this formula. If we either change the state space Rd or consider other differ-
ential operators, then a kernel representation such as (II.11) is not available in general.
However, there is a vast literature concerning the question whether for Schrödinger
operators −∆ + V the generated unitary group (eit(∆−V))t∈R still admits the dispersive
estimate (II.10). For a good overview of this topic consult [Sch07]. We like to point
out that if V is bounded and periodic, dispersive estimates for (eit(∆−V))t∈R have been
established for d = 1 in [Fir96, Cai06, Cuc08]. For d > 1 this is still an open problem.

Next, we state a result along the lines of Theorem 10.1 in [KT98] (see [Tag08] for a
proof), where we use the complex interpolation scale instead of the real interpolation
scale in the non-endpoint situation. This enables us to review the proof of that particu-
lar case. We furthermore include the case of a local in time dispersive estimate, which
leads to a corresponding local in time result.

Theorem II.1.3
Let σ ∈ (0, ∞), I ∈ I , (X0, X1) be a Banach interpolation couple as well as T : I → L(H, X∗0 )
and Xν ∈ {(X0, X1)ν,2, [X0, X1]ν} for ν ∈ (0, 1). Let additionally

Nσ :=


[0, 1], σ < 1,

[0, 1/σ), σ ≥ 1,
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II. Strichartz and spectrally localized estimates

and p := 2/σθ, p̃ := 2/σθ̃ with θ, θ̃ ∈ Nσ. If T is bounded and (σ, X1)-dispersive on I, then

T ∈ L(H, Lp(I, X∗θ )), (II.12)

Φ ∈ L(L p̃∗(I, Xθ̃), Lp(I, X∗θ )). (II.13)

If σ ∈ (1, ∞) and either θ = 1/σ and/or θ̃ = 1/σ, the above estimates hold for Xθ = (X0, X1)θ,2
and Xθ̃ = (X0, X1)θ̃,2, respectively.

Remarks:

(1) ‖T ‖H→Lp(I,X∗θ )
and ‖Φ‖L p̃∗ (I,Xθ̃)→Lp(I,Xθ)

do not depend on I.

(2) We are not aware of any result concerning the question whether the endpoint case
in the complex interpolation scale holds. However, the proof of the endpoint case
in the real interpolation scale heavily relies on subtleties in the context of real
interpolation of certain weighted sequence spaces and bilinear real interpolation.
These methods do not carry over to the complex case.

Proof. We proceed as in [Tag08] and [KT98], where in the prior reference the case
Xθ = (X0, X1)θ,2 is proven including the endpoint case. Hence, we only consider the
complex interpolation case Xθ = [X0, X1]θ in the non-endpoint situation. In (a) we
assume I = R, which in (b) easily implies the same result for an arbitrary I.
Before we start, let us gather some helpful notations and results. Let X be a Banach
space, p ∈ [1, ∞] and F ∈ Lp∗(I, X∗), G ∈ Lp(I, X). We identify F as an element in
Lp(I, X)∗ in the fashion of A.3.4;(1) and for abbreviation we let

〈F, G〉I := 〈F, G〉Lp(I,X)∗,Lp(I,X) =
∫

I
〈F(t), G(t)〉X∗,X dt.

We will constantly use X ↪→ X∗∗ and Lp(I, X) ↪→ Lp(I, X∗∗) as well as restrict bounded
linear operators acting on X∗∗ and Lp(I, X∗∗) to X and Lp(I, X), respectively.
As we have seen in (II.8) the operator Φ has an explicit integral representation on
L1(I, X0). We are going to use it by exploiting the fact, that L1(I, X0) ∩ Lp(I, Xθ) is
dense in Lp(I, Xθ) for p < ∞ and θ ∈ [0, 1). For θ = 0 this is obvious and for θ ∈ (0, 1)
we use the density of X0 ∩ X1 in Xθ stated in A.1.2;(1) to approximate an element
F ∈ Lp(I, Xθ) by a sequence (Fn)n∈N of step functions with values in X0 ∩ X1 and
λ(supp(Fn)) < ∞ for n ∈N. This sequence clearly belongs to L1(I, X0) ∩ Lp(I, Xθ).
(a) Let I = R. We first prove (II.12) and let θ ∈ Nσ and p := 2/σθ. We already
know T ∈ L(H, L∞(R, X∗0 )) and therefore we assume θ > 0. Since p < ∞ we have
Lp(R, X∗θ ) ↪→ Lp∗(R, Xθ)

∗ from A.3.4;(1) and for f ∈ H with ‖ f ‖H = 1 therefore holds

‖T f ‖Lp(R,X∗θ )
= sup
‖G‖

Lp∗ (R,Xθ )
≤1
|〈T f , G〉Lp∗ (R,Xθ)∗,Lp∗ (R,Xθ)

|

= sup
‖G‖

Lp∗ (R,Xθ )
≤1
|〈 f , T ∗G〉H | ≤ sup

‖G‖
Lp∗ (R,Xθ )

≤1
‖T ∗G‖H.

By the density of Lp∗(R, Xθ) ∩ L1(R, X0) in Lp∗(R, Xθ) it is enough for (II.12) to prove
for G ∈ Lp∗(R, Xθ) ∩ L1(R, X0) the estimate

‖T ∗G‖H . ‖G‖Lp∗ (R,Xθ)
. (II.14)
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II.1. Strichartz estimates and the Keel-Tao result

We fix G ∈ Lp∗(R, Xθ) ∩ L1(R, X0). Then Fubini’s and Hille’s Theorem A.3.3;(4)+(5)
yield

‖T ∗G‖2
H =

〈 ∫
R

T(s)∗G(s) ds,
∫

R
T(t)∗G(t) dt

〉
H

=
∫

R

∫
R
〈T(s)∗G(s), T(t)∗G(t)〉H ds dt

=
∫

R

∫ t

−∞
〈T(s)∗G(s), T(t)∗G(t)〉H ds dt

+
∫

R

∫ ∞

t
〈T(s)∗G(s), T(t)∗G(t)〉H ds dt. (II.15)

To estimate the latter integrals we consider for t, s ∈ R with t 6= s the sesquilinear form

τs,t : (X0 ∩ X1)
2 → C, τs,t( f , g) := 〈T(s)∗ f , T(t)∗g〉H.

By means of the Cauchy-Schwarz inequality for f , g ∈ X0 ∩ X1 holds

|τs,t( f , g)| ≤ ‖T(s)∗ f ‖H‖T(t)∗g‖H . ‖ f ‖X0‖g‖X0 ,

and the dispersive estimate (II.9) yields

|τs,t( f , g)| = |〈T(t)T(s)∗ f , g〉X1 |

≤ ‖T(t)T(s)∗ f ‖X∗1‖g‖X1 . |s− t|−σ‖ f ‖X1‖g‖X1 .

Thus, the bilinear complex interpolation result from Theorem A.1.3;(a) provides for
f , g ∈ Xθ

|τs,t( f , g)| ≤ C|s− t|−σθ‖ f ‖Xθ
‖g‖Xθ

. (II.16)

For further reference we define the sesquilinear form

τ : L1(R, X0)× L1(R, X0)→ C, τ(F, G) :=
∫

R

∫ t

−∞
τs,t(F(s), G(t)) ds dt. (II.17)

Estimate (II.16) then yields for all F ∈ Lp∗(R, Xθ) ∩ L1(R, X0) with Hölder’s inequality

|τ(F, G)| .
∫

R

∫ t

−∞
|s− t|−σθ‖F(s)‖Xθ

‖G(t)‖Xθ
ds dt

.
∥∥ ∫ ∞

0

1
|r|1−(1−σθ)

‖F(· − r)‖Xθ
dr
∥∥

Lp(R)
‖G‖Lp∗ (R,Xθ)

. ‖F‖Lp∗ (R,Xθ)
‖G‖Lp∗ (R,Xθ)

. (II.18)

In the last line we have applied the Hardy-Littlewood-Sobolev Inequality of Theorem
A.2.2. Its requirements are met since

1 < p∗ < 2 < p < ∞,
1
p∗
− 1

p
= 1− σθ ∈ (0, 1). (II.19)

Estimate (II.18) applied in (II.15) clearly implies (II.14). A closer look on (II.19) reveals
that the Hardy-Littlewood-Sobolev Inequality is not applicable for θ = 1/σ in the case
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II. Strichartz and spectrally localized estimates

σ ∈ [1, ∞) since p∗ < p is not satisfied.
We turn to (II.13) and define p(θ) := 2/σθ for θ ∈ Nσ. Recall that the operator

T T ∗ : L1(R, X0)→ L∞(R, X∗0 ), (T T ∗F)(t) :=
∫

R
T(t)T(s)∗F(s) ds,

is bounded as mentioned after Definition II.1.1. This allows us to exclude the case
θ1 = θ2 = 0 in the following consideration.
We first prove several estimates for the sesquilinear form τ from (II.17). For this reason
let θ ∈ Nσ and F, G ∈ Lp(θ)∗(R, Xθ) ∩ L1(R, X0). Estimate (II.18) implies

|τ(F, G)| . ‖F‖Lp(θ)∗ (R,Xθ)
‖G‖Lp(θ)∗ (R,Xθ)

.

With the Cauchy-Schwarz inequality, T ∗ ∈ L(L1(R, X0), H) and the Christ-Kiselev
Lemma A.3.4;(4) additionally follows

|τ(F, G)| =
∣∣∣∣ ∫

R

〈 ∫ t

−∞
T(s)∗F(s) ds, T(t)∗G(t)

〉
H dt

∣∣∣∣
.

∥∥∥∥ ∫ ·−∞
T(s)∗F(s) ds

∥∥∥∥
L∞(R,H)

( ∫
R
‖T(t)∗G(t)‖H dt

)
. ‖F‖Lp(θ)∗ (R,Xθ)

‖G‖L1(R,X0).

By means of the Cauchy-Schwarz inequality, (II.12), and the previous estimate we get

|τ(F, G)| ≤ ‖T ∗F‖H‖T ∗G‖H + |τ(G, F)| ≤ ‖F‖L1(R,X0)‖G‖Lp(θ)∗ (R,Xθ)
.

Gathering the previous estimates yields that for all θ ∈ Nσ the sesquilinear form

τ :
(

Lp(θ)∗(R, Xθ) ∩ L1(R, X0)
)
×
(

Lp(θ)∗(R, Xθ) ∩ L1(R, X0)
)
→ C

satisfies for F, G ∈ Lp(θ)∗(R, Xθ) ∩ L1(R, X0) the estimates

|τ(F, G)| . ‖F‖L1(R,X0)‖G‖Lp(θ)∗ (R,Xθ)
, (II.20)

|τ(F, G)| . ‖F‖Lp(θ)∗ (R,Xθ)
‖G‖Lp(θ)∗ (R,Xθ)

, (II.21)

|τ(F, G)| . ‖F‖Lp(θ)∗ (R,Xθ)
‖G‖L1(R,X0). (II.22)

Now, let θ1, θ2 ∈ (0, 1) with θ1 6= θ2 and pi := p(θi) for i ∈ {1, 2}. We first assume
θ1 ∈ (0, θ2). With (II.20) and (II.21) follows for F, G ∈ Lp∗2 (R, Xθ2) ∩ L1(R, X0)

|τ(F, G)| . ‖F‖L1(R,X0)‖G‖Lp∗2 (R,Xθ2 )
,

|τ(F, G)| . ‖F‖
Lp∗2 (R,Xθ2 )

‖G‖
Lp∗2 (R,Xθ2 )

.

For θ := θ1/θ2 ∈ (0, 1) the complex interpolation results A.1.2;(3) and (A.1) imply

Lp∗1 (R, Xθ1) ↪→ Lp∗1 (R, [X0, Xθ2 ]θ1/θ2
) ∼= [L1(R, X0), Lp∗2 (R, Xθ2)]θ .
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Theorem A.1.3 then provides for F ∈ Lp∗1 (R, Xθ1) ∩ L1(R, X0) the estimate

|τ(F, G)| . ‖F‖
Lp∗1 (R,Xθ1 )

‖G‖
Lp∗2 (R,Xθ2 )

.

If θ2 < θ1 we just switch the roles of θ1 and θ2 in the above argument and use inequality
(II.22) instead of (II.20).
Consequently, we have for all θ1, θ2 ∈ Nσ, F ∈ Lp∗1 (R, Xθ1) ∩ L1(R, X0) and G ∈
Lp∗2 (R, Xθ2) ∩ L1(R, X0) the estimate

|τ(F, G)| . ‖F‖
Lp∗1 (R,Xθ1 )

‖G‖
Lp∗2 (R,Xθ2 )

. (II.23)

We now let θ̃ ∈ Nσ, p̃ := p(θ̃) and F ∈ L p̃∗(R, Xθ1) ∩ L1(R, X0). T T ∗F ∈ L∞(R, X∗0 )
and duality (see A.3.4;(1)) imply

‖T T F‖Lp(R,X∗θ )
= sup

G∈L p̃∗ (R,Xθ̃)∩L1(R,X0)
‖G‖

Lp̃∗ (R,X
θ̃
)
≤1

|〈T T ∗F, G〉I |.

For G ∈ L p̃∗(R, Xθ̃) ∩ L1(R, X0) holds

〈T T ∗F, G〉I =
∫

R
〈(T T ∗F)(t), G(t)〉X∗0 ,X0 dt

=
∫

R

〈 ∫
R

T(s)∗F(s) ds, T(t)∗G(t)
〉

H dt

= τ(F, G) + τ(G, F). (II.24)

(II.24) combined with estimate (II.23) provides

‖T T ∗F‖Lp(R,X∗θ )
. ‖F‖L p̃∗ (R,Xθ̃)

.

The last estimate implies (II.13) by the density of L p̃∗(R, Xθ̃) ∩ L1(R, X0) in L p̃∗(R, Xθ̃).
Finally, p̃∗ < 2 < p allows us to apply the Christ-Kiselev Lemma A.3.4;(4) to obtain
(II.12).
(b) Let I ∈ I , T be (σ, X1) dispersive on I and (p, θ), ( p̃, θ̃) chosen as in (a). We define
S : R→ L(H, X∗0 ) by S(t) := T(t) for t ∈ I and S(t) := 0 for t ∈ Ic. Then S is bounded
and for t, s ∈ R with t 6= s and f ∈ X0 ∩ X1 we have the estimate

‖S(t)S(s)∗ f ‖X∗1 = ‖1I(t)1I(s)T(t)T(s)∗ f ‖X∗1 . |t− s|−σ‖ f ‖X1 .

Let f ∈ H, F ∈ L p̃∗(I, Xθ̃) ∩ L1(I, X0) and F0 be the continuation of F to R by 0. The
assertions in (a) applied to S implies the estimates

‖T f ‖Lp∗ (I,Xθ)
= ‖S f ‖Lp∗ (R,Xθ)

. ‖ f ‖H

‖ΦF‖Lp∗ (I,Xθ)
=

∥∥∥∥ ∫ ·−∞
S(·)S(s)∗F0(s) ds

∥∥∥∥
Lp∗ (R,Xθ)

. ‖F‖L p̃∗ (I,Xθ̃)
.
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In the example considered after the Definition II.1.2 we showed that the Schrödinger
group (eit∆)t∈R on L2(Rd) is (d/2, L1(Rd))-dispersive. The above theorem therefore
implies the estimates (II.12) and (II.13) with Xθ = [L2(Rd), L1(Rd)]θ ∼= L2−θ(Rd) (see
(A.1)). In our applications we are always interested in the Lp scale, which enables us
to introduce the following notion.

Definition II.1.4
Let σ ∈ (0, ∞) and (p, q) ∈ [1, ∞]2. We call (p, q) sharp σ-admissible, if p, q satisfy

p, q ≥ 2,
1
p
+

σ

q
=

σ

2
, (p, q, σ) 6= (2, ∞, 1).

By (e1(σ), e2(σ)) we denote the endpoint of the sharp σ-admissibility scale, which is given by

(e1(σ), e2(σ)) :=


( 2

σ , ∞), σ ∈ (0, 1],

(2, 2σ
σ−1 ), σ ∈ (1, ∞).

Remarks:

(1) Observe that

(p, q) is sharp σ-admissible ⇐⇒ 1
p∗

+
σ

q∗
=

σ

2
+ 1.

For θ ∈ (0, 1) and (p0, q0), (p1, q1) sharp σ-admissible, the pair (p, q) defined by

1
p
=

1− θ

p0
+

θ

p1
,

1
q
=

1− θ

q0
+

θ

q1

is sharp σ-admissible, too.

(2) We have to exclude the case (p, q, σ) = (2, ∞, 1) in the above definition since there
are counterexamples for Ω = Rd. For the wave equation this is due to Klainer-
man and Machedon [KM93] and for the Schrödinger equation this was shown by
Montgomery-Smith in [MS98].

Using the notion of sharp σ-admissible pairs, Theorem II.1.3 takes the following form.

Corollary II.1.5
Let σ ∈ (0, ∞), (p, q), ( p̃, q̃) be sharp σ-admissible, and T : R → L(L2(Ω)). If T is bounded
and (σ, L1(Ω))-dispersive, then for f ∈ L2(Ω) holds

‖T f ‖Lp(R,Lq(Ω)) . ‖ f ‖L2(Ω), (II.25)

and for F ∈ L p̃∗(R, Lq̃∗(Ω)) ∩ L1(R, L2(Ω)) holds

‖ΦF‖Lp(R,Lq(Ω)) . ‖F‖L p̃∗ (R,Lq̃∗ (Ω)). (II.26)

Remarks:

(1) The estimate (II.25) is referred to as homogeneous Strichartz estimate and (II.26) as
inhomogeneous Strichartz estimate for T.
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II.1. Strichartz estimates and the Keel-Tao result

(2) Since we want to reproduce the Strichartz estimates including the endpoint cases,
we are forced to use the real interpolation spaces (L2(Ω), L1(Ω))θ,2 for θ ∈ (0, 1).
By means of Theorem 1.18.6;2 in [Tri95] we have (L2(Ω), L1(Ω))θ,2

∼= L2/(1+θ),2(Ω),
where Lr,s(Ω) denotes the classical Lorentz spaces. These are defined in Section
1.18.6 of [Tri95] or Section 1.4 of [Gra08]. The latter reference contains all the
needed properties for the proof.

Proof. In Theorem II.1.3 we take H = X0 = L2(Ω) and X1 = L1(Ω) and we let (p, q)
sharp σ-admissible. (p, q) = (∞, 2) is the trivial case and we can assume q ∈ (2, ∞].
First, we assume σ ≥ 1. We then have q < ∞ and

1
p
= σ

(
1
2
− 1

q

)
=

σ

2

(
1− 2

q

)
.

For fixed θ := 1− 2
q ∈ (0, 1) holds p = 2/σθ. As mentioned in the above remark we

have

Xθ := (L2(Ω), L1(Ω))θ,2
∼= L2/(1+θ),2(Ω) = Lq∗,2(Ω).

Proposition 1.4.10 and Theorem 1.4.13 in [Gra08] imply the density of the embedding
Lq∗(Ω) ↪→ Lq∗,2(Ω). Following the proof of Theorem 1.4.16;(iv) we conclude Lq,2(Ω) ↪→
Lq∗,2(Ω)∗. Hence, Lq,2(Ω) ↪→ Lq(Ω) and

Lp(R, X∗θ ) ↪→ Lp(R, Lq(Ω)),

Lp∗(R, Lq∗(Ω)) ↪→ Lp∗(R, Xθ).

Combined with the real interpolation version of Theorem II.1.3, these embeddings
imply the claimed Strichartz estimates (II.25) and (II.26).
For σ < 1 the complex interpolation version of Theorem II.1.3 immediately proves our
claim. Note that if q < ∞, then complex interpolation A.1.4;(1) yields Xθ

∼= Lq∗(Ω)
with θ = 1− 2

q . Hence, X∗θ ≡ Lq(Ω).

For the sake of completeness we close this section with a brief discussion of necessary
conditions for the pairs ( p̃, q̃), (p, q) such that (II.25) and (II.26) hold. The methods
used below are closely related to the scaling arguments given after Proposition I.4.2.
We start with an examination of the homogeneous estimate (II.25) for T and formulate
the necessity of the sharp σ-admissibility of the pair (p, q). This result can be applied
to T = (eit∆)t∈R with the Laplacian (−∆, H2

2(R
d)).

Lemma II.1.6
Let σ ∈ (0, ∞), (p, q) ∈ [1, ∞]2 such that (p, q, σ) 6= (2, ∞, 1) and T : R → L(L2(Ω)). Let
additionally T 6= 0 be bounded, (σ, L1(Ω))-dispersive and fulfill T(t)T(s)∗ = T(t + r)T(s +
r)∗ for all r, s, t ∈ R. If T satisfies (II.25), then (p, q) is sharp σ-admissible.

Proof. Let T satisfy (II.25) with (p, q) ∈ [1, ∞]2. For λ ∈ (0, ∞) we let S : R →
L(L2

σ(Ω)) given by Sλ(t) := T(t/λ) where Lp
σ(Ω) := Lp(Ω, λσµ) and L∞

σ (Ω) = L∞(Ω).
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II. Strichartz and spectrally localized estimates

S then is bounded and for t, s ∈ R with t 6= s and f ∈ L2
σ(Ω) ∩ L1

σ(Ω) holds

‖Sλ(t)Sλ(s)∗ f ‖L∞(Ω) = ‖T(t/λ)T(s/λ) f ‖L∞(Ω)

. |t− s|−σλσ‖ f ‖L1(Ω)
∼= |t− s|−σ‖ f ‖L1

σ(Ω).

We then apply Corollary II.1.5 to S and T to provide (II.25) with

‖Sλ‖L2
σ(Ω)→Lp(R,Lq

σ(Ω))
∼= ‖T ‖L2(Ω)→Lp(R,Lq(Ω)) > 0. (II.27)

If we assume 1
p +

σ
q 6=

σ
2 , then we have for all f ∈ L2

σ(Ω) with ‖ f ‖L2
σ(Ω) ≤ 1

‖Sλ f ‖Lp(R,Lq
σ(Ω)) = λ

1
p+

σ
q ‖T f ‖Lp(R,Lq(Ω))

. λ
1
p+

σ
q ‖ f ‖L2(Ω)

∼= λ
1
p+

σ
q−

σ
2 → 0,

for λ → 0 or λ → ∞, respectively. Hence, ‖Sλ‖L2
σ(Ω)→Lp(R,Lq

σ(Ω)) → 0 in both these
cases. Combined with (II.27) this implies ‖T ‖L2(Ω)→Lp(R,Lq(Ω)) = 0, which is absurd.
1
p + σ

q = σ
2 then implies q ∈ [2, ∞] since otherwise p < 0. Moreover, (II.25) for T

implies T T ∗ ∈ L(Lp∗(R, Lq∗(Ω)), Lp(R, Lq(Ω))). For r ∈ R and F ∈ Lp∗(R, Lq∗(Ω)) ∩
L1(R, L2(Ω)) we additionally have

τr(T T ∗F) =
∫

R
T(t− r)T(s)∗F(s) ds

=
∫

R
T(t)T(s)∗F(s− r) ds = T T ∗(τrF).

Using the density of Lp∗(R, Lq∗(Ω))∩ L1(R, L2(Ω)) in Lp∗(R, Lq∗(Ω)) the operator T T ∗
is translation invariant. Theorem 1.1 in [Hör60] then states p∗ ≤ p and thus p ∈
[2, ∞].

For the inhomogeneous estimate (II.26) the situation is not so clear. Even for the
Schrödinger group (eit∆)t∈R with the Laplacian (−∆, H2

2(R
d)) the sharp σ-admissibility

of (p, q) and ( p̃, q̃) is not necessary for (II.26) to hold. For results in that direction see for
example [Caz03, Fos05, Tag08, Vil07] where more general inhomogeneous Strichartz es-
timates are proven for (eit∆)t∈R. However, in the generality of Lemma II.1.6 we at least
have the following.

Lemma II.1.7
Let σ ∈ (0, ∞), (p, q), ( p̃, q̃) ∈ [1, ∞]2 and T : R → L(L2(Ω)). Let additionally T be
bounded, (σ, L1(Ω))-dispersive and T(t)T(s)∗ = T(t + r)T(s + r)∗ for all r, s, t ∈ R. If T
satisfies (II.26), then 1

p +
σ
q + 1

p̃ +
σ
q̃ = σ and p̃∗ ≤ p.

Proof. The first condition again arises from scaling. Hence, we consider S : R →
L(L2

σ(Ω)) given by S(t) := T(t/λ) and its induced inhomogeneous flow ΦS. Then we
establish the translation invariance of ΦS ∈ L(L p̃∗(R, Lq̃∗(Ω)), Lp(R, Lq(Ω))) and again
use Theorem 1.1 of [Hör60] to conclude p̃∗ ≤ p.
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II.2. Spectrally localized dispersive and Strichartz estimates

In this section we recall the concepts of spectrally localized dispersive and Strichartz
estimates. These estimates have far reaching consequences with respect to local (p, q)
Strichartz estimates with `-loss and solutions of the Cauchy problem (II.1). The latter
will be explored in Section II.4. We provide in this section an abstract scheme for
the proof of local (p, q) Strichartz estimates with `-loss. All the tools which will be
introduced in this section are justified in Section II.3 in various situations.
In this section we always let (Ω, S , µ) be a measure space, T : R → L(L2(Ω)) be
bounded and (P, D(P)) a selfadjoint linear operator on (L2(Ω), 〈·, ·〉L2(Ω)).
Similar to Definition II.1.2 we introduce the following notion.

Definition II.2.1
Let σ ∈ (0, ∞) and γ ∈ [0, ∞). T is called σ-dispersive of SL-type (γ, P), if for all ϕ ∈ C∞

c (R),
h ∈ (0, 1] and t, s ∈ R with 0 < |t− s| ≤ hγ holds

‖ϕ(hP)T(t)T(s)∗ϕ(hP)‖L1(Ω)→L∞(Ω) . |t− s|−σ. (II.28)

Remark: For T = (e−itP)t∈R to be σ-dispersive of SL-type (γ, P), it is sufficient that for
all ϕ ∈ C∞

c (R), h ∈ (0, 1] and t ∈ R with 0 < |t| ≤ hγ holds

‖ϕ(hP)T(t)‖L1(Ω)→L∞(Ω) . |t|−σ. (II.29)

In this case we say T is σ-dispersive of SL-type γ and omit the dependency on (P, D(P)).

The next proposition shows how σ-dispersive estimates of SL-type imply (p, q) Strichartz
estimates of SL-type by means of Corollary II.1.5.

Proposition II.2.2
Let σ ∈ (0, ∞), γ ∈ [0, ∞), (p, q), ( p̃, q̃) be sharp σ-admissible, and T : R → L(L2(Ω) be
bounded. We furthermore let ϕ ∈ C∞

c (R), h ∈ (0, 1], and I ∈ I with |I| ≤ hγ. If T is
σ-dispersive of SL-type (γ, P) and commutes with ϕ(hP) on L2(Ω), then for all f ∈ L2(Ω)
and F ∈ L1(I, L2(Ω)) with ϕ(hP)F ∈ L p̃(I, Lq̃(Ω)) holds

‖ϕ(hP)T f ‖Lp(I,Lq(Ω)) . ‖ϕ(hP) f ‖L2(Ω),

‖ϕ(hP)ΦF‖Lp(I,Lq(Ω)) . ‖ϕ(hP)F‖L p̃∗ (I,Lq̃∗ (Ω)).

Remark: The assumption that T commutes with ϕ(hA) is for example satisfied if
T := (e−itP)t∈R by the properties of the spectral calculus on L2(Ω).

Proof. Let h ∈ (0, 1], I ∈ I with |I| ≤ hγ and (p, q), ( p̃, q̃) sharp σ-admissible as
well as ϕ, ϕ̃ ∈ C∞

c (R) such that ϕ̃(supp(ϕ)) = {1}. Let furthermore f ∈ L2(Ω) and
F ∈ L1(I, L2(Ω)) satisfy ϕ(hP)F ∈ L p̃∗(I, Lq̃∗(Ω)). The operator family

T̃h : R→ L(L2(Ω)), T̃h(t) := 1I(t)ϕ̃(hP)T(t),
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is bounded by ‖T‖L∞(R,L(L2(Ω))) due to the properties of the spectral calculus on L2(Ω).
For t, s ∈ R with t 6= s additionally holds with the σ-dispersivity of SL-type (γ, P) of T
that

‖T̃h(t)T̃h(s)‖L1(Ω)→L∞(Ω) = ‖1I(t)1I(s)ϕ̃(hP)T(t)T(s)∗ ϕ̃(hP)‖L1(Ω)→L∞(Ω)

. |t− s|−σ.

Corollary II.1.5 and the commutativity of T and ϕ(hP) on L2(Ω) then yield

‖ϕ(hP)T f ‖Lp(I,Lq(Ω)) = ‖T̃h ϕ(hP) f ‖Lp(R,Lq(Ω)) . ‖ϕ(hP) f ‖L2(Ω).

With F0 := F on I and F0 := 0 on Ic we also have

‖ϕ(hP)ΦF‖Lp(I,Lq(Ω)) =

∥∥∥∥ ∫ ·−∞
T̃h(·)T̃h(s)ϕ(hP)F0(s) ds

∥∥∥∥
Lp(R,Lq(Ω))

. ‖ϕ(hP)F‖L p̃∗ (J,Lq̃∗ (Ω)).

We formalize the estimates from the previous proposition into a notion of its own,
which will be the basis of our study.

Definition II.2.3
Let (p, q), ( p̃, q̃) ∈ [1, ∞]2, and γ, ν ∈ [0, ∞).

(a) T fulfills (p, q)-Strichartz estimates of SL-type (γ, ν, P) if for all ϕ ∈ C∞
c (R), h ∈ (0, 1],

I ∈ I with |I| ≤ hγ and f ∈ L2(Ω) holds

‖ϕ(hP)T f ‖Lp(I,Lq(Ω)) . h−ν‖ϕ(hP) f ‖L2(Ω). (II.30)

(b) T fulfills a ( p̃, q̃)-(p, q) Strichartz estimate of SL-type (γ, ν, P) if for all ϕ ∈ C∞
c (R),

h ∈ (0, 1], I ∈ I with |I| ≤ hγ and F ∈ L1(I, L2(Ω)) with ϕ(hP)F ∈ L p̃(I, Lq̃(Ω))
holds

‖ϕ(hP)ΦF‖Lp(I,Lq(Ω)) . h−ν‖ϕ(hP)F‖L p̃(I,Lq̃(Ω)). (II.31)

Remarks:

(1) If T = (e−itP)t∈R we omit the dependency on P in the notation above. Moreover,
we omit the dependency of ν if ν = 0.

(2) We stress that the constants in (II.30) and (II.31) are not allowed to depend on h
and I. They may however depend on ϕ.

(3) Estimate (II.30) can be established in many examples, which will be listed in Section
II.3. We stress that there other methods to prove (II.30) than by means of spectrally
localized dispersive estimates, which was shown in Lemma II.2.2.
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We now aim to present the important argument how to deduce a local (p, q) Strichartz
estimates with `-loss for an operator family T from (p, q) Strichartz estimates of SL-
type (γ, ν, P).
In order to utilize the (p, q) Strichartz estimates of SL-type we first need a decompo-
sition estimate of the form (II.3). To that end we first fix the dyadic partition of unity,
which is frequently used throughout this thesis.

Definition II.2.4
Let ψc ∈ C∞

c (R, [0, 1]) such that

supp(ψc) ⊆
{

λ ∈ R | 1
2
< λ < 2

}
, ∀λ∈(0,∞) :

∞

∑
k=−∞

ψc(21−kλ) = 1. (II.32)

We call the sequence (ψk)k∈N0 defined by

ψk := ψc(21−k| · |), k ∈N, ψ0 := 1−
∞

∑
l=1

ψl , (II.33)

a dyadic partition of unity. We additionally define the sequence (ψ̃k)k∈N0 ⊆ C∞
c (R, [0, 1]),

supp(ψ̃0) ⊆ (−2, 2), supp(ψ̃1) ⊆ (−4,− 1
4 ) ∪ ( 1

4 , 4) and ψ̃k(supp(ψk)) = {1} for k ∈
{0, 1} as well as ψ̃k := ∑k+1

l=k−1 ψl for k ≥ 2. Note that for k ∈N0 holds

ψ̃kψk = ψk. (II.34)

The existence of the function ψc and the partition (ψk)k∈N0 is proven in Lemma 6.1.7
of [BL76]. If not otherwise stated ψc, (ψk)k∈N0 , and (ψ̃k)k∈N0 will always be taken from
Definition II.2.4.
The spectral calculus on L2(Ω) allows us to define the following operators.

Notation II.2.5
Let (P, D(P)) be selfadjoint linear operator on L2(Ω) and k ∈ N0. We put Pk := ψk(P) and
P̃k := ψ̃k(P) and call Pk and P̃k a spectral localization. The sequence (Pk)k∈N0 is called the
spectral decomposition of (P, D(P)).

Let us recall some important properties of spectral decompositions on L2(Ω) first.

Lemma II.2.6
Let α ∈ (0, ∞) and (P, D(P)) a selfadjoint linear operator on L2(Ω).

(a) For all k ∈N0 holds Pk = P̃kPk = PkP̃k on L2(Ω).

(b) Let f ∈ L2(Ω). Then f = ∑∞
k=0 Pk f , whereby the sum converges unconditionally, and

‖ f ‖L2(Ω)
∼=
( ∞

∑
k=0
‖Pk f ‖2

L2(Ω)

)1/2

. (II.35)

(c) Let (P, D(P)) be additionally non-negative and f ∈ D(Pα). Then holds:

‖Pk f ‖L2(Ω)
∼= 2−kα‖PkPα f ‖L2(Ω), k ∈N, (II.36)

‖ f ‖D(Pα)
∼=
( ∞

∑
k=0

22kα‖Pk f ‖2
L2(Ω)

)1/2

. (II.37)
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Proof. Our claims are consequences of the properties (SC1)-(SC4) of the spectral cal-
culus in Theorem I.1.1 and well known. We present these short proofs since similar
arguments are used frequently in this thesis.
(a) This is a consequence of ψk = ψ̃kψk and (SC2).
(b) Let f ∈ L2(Ω). The first assertion immediately follows from the almost orthogonal-
ity lemma by Cotlar and Stein formulated in Lemma 18.6.5 of [Hör07]. The equivalence
(II.35) immediately follows with the Cauchy-Schwarz inequality and (a) via

‖ f ‖2
L2(Ω) =

∞

∑
k=0

(Pk f , P̃k f )L2(Ω)

.
∞

∑
k=0
‖Pk f ‖2

L2(Ω) +
∞

∑
k=0
|(Pk f , Pk+1 f )L2(Ω)|

.
∞

∑
k=0
‖Pk f ‖2

L2(Ω) .
∥∥ ∞

∑
k=0

ψ2
k
∥∥

L∞(R)
‖ f ‖2

L2(Ω) . ‖ f ‖2
L2(Ω).

(c) Let α ∈ (0, ∞) and f ∈ D(Pα). We first prove (II.36) and let k ∈ N. For β ∈ R we
define the functions ψk,β, ψ̃k,β ∈ C∞

c (R) by

ψk,β(λ) := λβψk(λ), ψ̃k,β(λ) := λβψ̃k(λ),

so that ‖ψk,β‖L∞(R) . 2kβ. Then (a), (SC1), and (SC4) yield

‖Pk f ‖L2(Ω) = ‖ψ̃k,−α(P)ψk,α(P) f ‖L2(Ω)

. 2−kα‖PkPα f ‖L2(Ω) . 2−kα‖ψ̃k,α‖L∞(R)‖Pk f ‖L2(Ω) . ‖Pk f ‖L2(Ω).

We now turn to (II.37) and let α ∈ (0, ∞) and f ∈ D(Pα). By means of (II.35), (SC4) and
(II.36) we have

‖Pα f ‖2
L2(Ω)

∼=
∞

∑
k=0
‖PkPα f ‖2

L2(Ω)

.
∞

∑
k=0

22kα‖Pk f ‖2
L2(Ω) . ‖ f ‖2

L2(Ω) +
∞

∑
k=1
‖PkPα f ‖2

L2(Ω) . ‖ f ‖2
D(Pα).

Combined with (II.35) the previous estimate yields (II.37).

Lemma II.2.6 yields a stronger assertion than (II.3) for q = 2, which based exclusively
on the spectral calculus of (P, D(P)) on L2(Ω). For q 6= 2 such a functional calculus
can not be provided without making stronger assumptions on the operator (P, D(P)).
We therefore introduce the following notion, which captures (II.3). For an exensive list
of examples where such estimates are valid we refer to Section II.3.

Definition II.2.7
Let (P, D(P)) be selfadjoint linear operator on L2(Ω).

(a) (Pk)k∈N0 has the (LP) property, if for each q ∈ [2, ∞) and f ∈ L2(Ω) holds: If (Pk f )k∈N0 ∈
`2(N0, Lq(Ω)), then f ∈ Lq(Ω) and

‖ f ‖Lq(Ω) ≤ C(q)
( ∞

∑
k=0
‖Pk f ‖2

Lq(Ω)

)1/2

. (II.38)
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(b) (Pk)k∈N0 has the reversed (LP) property, if for each q ∈ (1, 2] and f ∈ L2(Ω) holds: If
f ∈ Lq(Ω), then (Pk f )k∈N0 ∈ `2(N0, Lq(Ω)) and

‖ f ‖Lq(Ω) ≥ C(q)
( ∞

∑
k=0
‖Pk f ‖2

Lq(Ω)

)1/2

. (II.39)

Next, we show how the above notions result in local (p, q) Strichartz estimates with
`-loss. Our method of proof is abstracted from an argument initially used in [BGT04b].
It is one of the most important tools in this thesis and we give a detailed proof.

Lemma II.2.8
Let I ∈ Ib, (p, q), ( p̃, q̃) ∈ [2, ∞)2, γ, ν ∈ [0, ∞), and T : R → L(L2(Ω)) be bounded.
Let (P, D(P)) be a non-negative, selfadjoint operator on L2(Ω) and (Pk)k∈N0 satisfy the (LP)
property.

(a) Let ` := γ
p + ν and T admit a (p, q) Strichartz estimate of SL-type (γ, ν, P). Then there is

a non-decreasing CT ∈ C([0, ∞), [0, ∞)) such that for all f ∈ D(P`) holds

‖T f ‖Lp(I,Lq(Ω)) ≤ CT (|I|)‖ f ‖D(P`). (II.40)

(b) Let additionally (P, D(P)) fulfill the reversed (LP) property and ϕ(P) can be extended to
a bounded operator on Lq̃∗(Ω) for all ϕ ∈ C∞

c (R). If T admits a ( p̃∗, q̃∗)-(p, q) Strichartz
estimate of SL-type (γ, ν, P), then for all F ∈ L1(I, D(Pν)) with PνF ∈ L p̃∗(I, Lq̃∗(Ω))
holds

‖ΦF‖Lp(I,Lq(Ω)) . ‖F‖L p̃∗ (I,Lq̃∗ (Ω)) + ‖P
νF‖L p̃∗ (I,Lq̃∗ (Ω)). (II.41)

Remark: We exclude q, q̃ = ∞ since the (LP) property is usually not valid in these
cases.

Since a similar time splitting argument as in the proof below is used frequently in the
subsequent sections, we define the following partition of a bounded interval.

Notation II.2.9
Let I ∈ Ib and ρ ∈ (0, ∞) and N := [|I|/ρ]. The family (Ii)

N
i=0 defined by

Ii :=
[

inf I + iρ, inf I + (i + 1)ρ
]
∩ I, (i ∈ {0, ..., N − 1}),

IN :=
[

inf I + Nρ, b
]
∩ I

is called the ρ-partition of I. Observe that λ(Ij) ≤ ρ for j ∈ {0, ..., N}, ⋃N
j=0 Ij = I and

Io
j ∩ Io

i = ∅ for j 6= i.

Proof of Lemma II.2.8. We let I ∈ Ib with 2(1−k)γ-partition (Ii)
Nk
i=0 for k ∈ N0. Then

Nk
∼= 2kγ|I|.

(a). Let f ∈ D(P`). First note that there is l ∈ N such that Nk ≥ 1 for k ≥ l. We
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II. Strichartz and spectrally localized estimates

use the (LP) property (II.38), Minkowski inequality and the (p, q) Strichartz estimate of
SL-type (γ, ν, P) to produce

‖T f ‖Lp(I,Lq(Ω)) .

∥∥∥∥( ∞

∑
k=0
‖PkT f ‖2

Lq(Ω)

)1/2∥∥∥∥
Lp(I)

.
( ∞

∑
k=0

( Nk

∑
i=0
‖PkT f ‖p

Lp(Ii ,Lq(Ω))

)2/p)1/2

.
( ∞

∑
k=0

(Nk + 1)
2
p 22kν‖Pk f ‖2

L2(Ω)

)1/2

. (1 + |I|2/p)

(
‖ f ‖L2(Ω) +

( ∞

∑
k=l

22k`‖Pk f ‖2
L2(Ω)

)1/2)
. C(|I|)‖ f ‖D(P`).

(b) Let F ∈ L1(I, D(Pν)) with PνF ∈ L p̃∗(I, Lq̃∗(Ω)). The idea of the proof remains
the same since we use the same splitting procedure of the time interval as in (a).
Minkowski’s integral inequality (A.8), the (LP) property, the ( p̃∗, q̃∗)-(p, q) Strichartz
estimate of SL-type (γ, ν, P), and ` p̃∗(N0) ↪→ `p(N0) yield

‖ΦF‖Lp(I,Lq(Ω)) .
( ∞

∑
k=0

( Nk

∑
i=0
‖PkΦF‖p

Lp(Ii ,Lq(Ω))

)2/p)1/2

.
( ∞

∑
k=0

22kν‖PkF‖2
L p̃∗ (I,Lq̃∗ (Ω))

)1/2

.

Continuing this estimate with Minkowski’s integral inequality and the reversed (LP)
property yield

‖ΦF‖Lp(I,Lq(Ω)) .

∥∥∥∥( ∞

∑
k=0

22kν‖PkF(·)‖2
Lq̃∗ (Ω)

)1/2∥∥∥∥
L p̃∗ (I)

.

∥∥∥∥‖F(·)‖Lq̃∗ (Ω) +

( ∞

∑
k=1
‖PkPνF(·)‖2

Lq̃∗ (Ω)

)1/2∥∥∥∥
L p̃∗ (I)

. ‖F‖L p̃∗ (I,Lq̃∗ (Ω)) + ‖P
νF‖L p̃∗ (I,Lq̃∗ (Ω)).

In particular, we used the estimate

‖Pkg‖Lq̃∗ (Ω) . 2−kν‖PkPνg‖Lq̃∗ (Ω)

for k ∈ N and g ∈ D(Pν) with Pνg ∈ Lq̃∗(Ω). It follows similarly to (II.36), whereby
we use the boundedness of ψk(P)P−ν as an operator on L p̃∗(Ω) instead of L2(Ω).

Combining Proposition II.2.2 and Lemma II.2.8 allows us to formulate the following
important special case of the results developed so far. It will be used in some of the
coming applications.

Corollary II.2.10
Let σ ∈ (0, ∞), γ ∈ [0, ∞), and (p, q), ( p̃, q̃) ∈ [2, ∞)2 be sharp σ-admissible. Let furthermore
(A, D(A)) be a non-negative, selfadjoint linear operator on L2(Ω) such that (Ak)k∈N0 has the
(LP) property and its generated Schrödinger group U be σ-dispersive of SL-type γ.
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II.3. Examples for Strichartz estimates with `-loss

(a) U fulfills a local (p, q) Strichartz estimate with γ/p-loss.

(b) If (Ak)k∈N0 satisfies the reversed (LP) property and ϕ(A) may be extended to a bounded
operator on Lq̃∗(Ω) for all ϕ ∈ C∞

c (R), then Φ ∈ L(L p̃∗(R, Lq̃∗(Ω)), Lp(R, Lq(Ω))).

Proof. Let (p, q), ( p̃, q̃) ∈ [2, ∞)2 be sharp σ-admissible as well as f ∈ D(Aγ/p) and
F ∈ L p̃∗(R, Lq̃∗(Ω)). Proposition II.2.2 and Lemma II.2.8 yield for all I, Ĩ ∈ Ib with
Ĩ ⊆ I the estimates

‖U f ‖Lp(I,Lq(Ω)) . CU (|I|)‖ f ‖D(Aγ/p),

‖Φ(1 Ĩ F)‖Lp(I,Lq(Ω)) . ‖1 Ĩ F‖L p̃∗ (R,Lq̃∗ (Ω)).

Since I ∈ Ib is arbitrary in the latter estimate, we have for all k ∈ N that Φ(1[−k,k]F) ∈
L p̃∗(R, Lq̃∗(Ω)) by the monotone convergence theorem. Finally, 1[−k,k]F

k→∞−→ F in
L p̃∗(R, Lq̃∗(Ω)) lets us conclude Φ ∈ L(L p̃∗(R, Lq̃∗(Ω)), Lp(R, Lq(Ω)).

II.3. Examples for Strichartz estimates with `-loss

In this section we present several situations in which the above scheme can be applied.
The examples II.3.1-II.3.3 as well as the abstract example II.3.7 are based on dispersive
estimates of SL-type.

II.3.1. The Laplacian on Rd

Let Ω = Rd with d ∈N and (A, D(A)) := (−∆, H2
2(R

d)) as well as U = (eit∆)t∈R. Since
U is (d/2, L1(Rd))-dispersive Corollary II.1.5 provides the full set of homogeneous and
inhomogeneous Strichartz estimates. It is interesting to compare these estimates to the
estimates provided by means of the results of Section II.2. For k ∈ N0 and f ∈ S(Rd)
we have Ak f = ψk(−∆) f = (F−1ψk(| · |2)) ∗ f . By means of the Mikhlin multiplier
theorem we extend Ak to a bounded operator on Lq(Rd) for all q ∈ (1, ∞). Exercise
5.1.11 in [Gra08] or Section 6.7.14 in [Ste93] show furthermore for q ∈ (1, ∞)

‖ f ‖Lq(Rd)
∼= ‖A0 f ‖Lq(Rd) +

∥∥( ∞

∑
k=1
|Ak f |2

)1/2∥∥
Lq(Rd)

. (II.42)

Minkowski’s integral inequality yields for q ∈ [2, ∞) the estimate

‖ f ‖Lq(Ω) .
( ∞

∑
k=0
‖Ak f ‖2

Lq(Rd)

)1/2

,

which is the (LP) property for (Ak)k∈N0 . For q ∈ (1, 2] the same argument provides the
reversed (LP) property (II.39). Note that we use 2−k/2 as frequency dilation instead of
2−k. For ϕ ∈ C∞

c (R) holds F−1[ϕ(| · |2)] ∈ L1(Rd) and Young’s inequality implies

‖ϕ(−h∆)‖L∞(Rd)→L∞(Rd) ≤ ‖F−1ϕ(h| · |2)‖L1(Rd) = ‖F−1ϕ(| · |2)‖L1(Rd). (II.43)
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II. Strichartz and spectrally localized estimates

For h ∈ (0, 1] and t ∈ R \ {0} therefore holds

‖ϕ(−h∆)U(t)‖L1(Ω)→L∞(Ω) . |t|−σ.

Hence, U is σ-dispersive of SL-type 0. For (p, q), ( p̃, q̃) ∈ [2, ∞)2 sharp d/2-admissible
Corollary II.2.10 provides Φ ∈ L(L p̃∗(R, Lq̃∗(Ω)), Lp(R, Lq(Ω)). We additionally have
‖U‖L2(Ω)→Lp(I,Lq(Ω)) . 1 for all I ∈ Ib. The last argument in the proof of Corollary
II.2.10 even provides U ∈ L(L2(Ω), Lp(R, Lq(Ω))). Hence, we recover the full set of
Strichartz estimates for U provided by Corollary II.1.5, except the cases where q = ∞
or q̃ = ∞.

II.3.2. Divergence form operators on Rd

Let Ω = Rd and d ∈ N. Section A.1. of [BGT04b] contains the proof of local (p, q)
Strichartz estimates with 1/2p-loss for U = (e−itA)t∈R for certain divergence form op-
erators (A, H2

2(R
d)) (see Section III.2 for details). This is an interesting situation, since

the authors use the spectral decomposition (Pk)k∈N0 with (P, D(P)) = (−∆, H2
2(R

d))
and U and (Pk)k∈N0 may not commute. To bypass this problem they show that there
is ϕ1 ∈ C∞

c (R) with supp(ϕ1) ⊆ (0, ∞) and ϕ1(supp(ψ1)) = {1} such that with
ϕk(λ) := ϕ1(21−kλ) holds

∀k∈N, s∈(0,∞) : ‖Pk(id− ϕk(A))‖L2(Rd)→Hs
2(R

d) . 2−k.

Let I ∈ Ib and (p, q) ∈ [2, ∞] × [2, ∞) be sharp d/2-admissible. With s > d
2 −

d
q the

Sobolev embedding A.2.1 yields

‖U f ‖Lp(I,Lq(Rd)) .
( ∞

∑
k=0
‖PkU f ‖2

Lp(I,Lq(Ω))

)1/2

. C(|I|)‖ f ‖L2(Rd) +

( ∞

∑
k=1
‖Pk(id− ϕk(A))U f ‖2

Lp(I,Hs
2(R

d))

)1/2

+

( ∞

∑
k=0
‖PkU ϕk(A) f ‖2

Lp(I,Lq(Rd))

)1/2

. C(|I|)
(
‖ f ‖L2(Rd) +

( ∞

∑
k=1
‖PkU ϕk(A) f ‖2

Lp(I,Lq(Rd))

)1/2)
.

Since U is shown in Lemma A.3 of [BGT04b] to be d/2-dispersive of SL-type (1/2,−∆)
we apply the time splitting procedure from the proof of Lemma II.2.8;(a) to the sum on
the right-hand side to obtain

( ∞

∑
k=1
‖PkU ϕk(A) f ‖2

Lp(I,Lq(Rd))

)1/2

.
( ∞

∑
k=1

2k/p‖ϕk(A) f ‖2
L2(Rd)

)1/2

. ‖A1/2p f ‖L2(Rd).

Hence, (A, H2
2(R

d)) satisfies local (p, q) Strichartz estimates with 1/2p-loss.
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II.3.3. The Laplace-Beltrami on compact manifolds without boundary

Let Ω be a connected, compact Riemannian C∞-manifold with ∂Ω = ∅ and dim(Ω) =
d ∈ N. For the Laplace-Beltrami operator (−∆Ω, H2

2(Ω)) on Ω the (LP) property
(II.38) is shown in Corollary 2.3 of [BGT04b]. Lemma 2.5 there furthermore contains
estimate (II.29) with γ = 1/2 and σ = d/2, i.e. (eit∆Ω)t∈R is d/2-dispersive of SL-type
1/2. Hence, Corollary II.2.10;(a) provides local (p, q) Strichartz estimates with 1/2p-loss
for all (p, q) ∈ [2, ∞]× [2, ∞) sharp d/2-admissible. This corresponds to Theorem 1 in
[BGT04b].

II.3.4. The Dirichlet and Neumann Laplacian on manifolds with boundary

Let Ω be a connected, compact Riemannian C∞-manifold with boundary and dim(Ω) =
d ≥ 2. In [BSS12] local (p, q) Strichartz estimates with `-loss for U = (eit∆Ω)t∈R with the
Dirichlet and Neumann Laplacian (−∆Ω, D(−∆Ω)) on Ω are proven. The (LP) prop-
erty for ((−∆Ω)k)k∈N0 is provided by heat kernel methods (see also example II.3.7). In
our notation (put λ = 2k/2 in [BSS12]) Theorem 2.1 there contains the following esti-
mates for I ∈ I with |I| . 2−k/2 with k ∈ N0: If (p, q) ∈ (2, ∞]× [2, ∞) and s ∈ [0, ∞)
satisfy

2
p
+

d
q
=

d
2
− s, and


3
q +

2
q ≤ 1, d = 2,

1
p +

1
q ≤

1
2 , d ≥ 3,

(II.44)

then

‖(−∆Ω)kU f ‖Lp(I,Lq(Ω)) . 2
ks
2 ‖(−∆Ω)k f ‖L2(Ω).

Consequently, U satisfies (p, q) Strichartz estimates of SL-type (1/2, s/2) for all pairs
(p, q) and s, which satisfy (II.44). Lemma II.2.8;(a) once more yields a local (p, q)
Strichartz estimates with s

2 +
1

2p -loss. This corresponds to Theorem 1.2 in [BSS12]. See
also [BSS08] for local (p, q) Strichartz estimates with 2/3p-loss on compact C∞-manifolds
with boundary for sharp d/2-admissible pairs (p, q).

II.3.5. The Dirichlet and Neumann Laplacian on bounded domains

Let Ω ⊆ Rd be a bounded domain. Let (A, D(A)) be either the Dirichlet or Neumann
Laplacian on Ω and U = (eitA)t∈R. For details on the definitions in the following
examples see the provided references or Section III.4 for the Dirichlet case.
Let d = 2 and ∂Ω be polygonal. In [BFHM12] local (p, q) Strichartz estimates with 1/2p-
loss for U are proven. The method used is a doubling procedure of the domain which
transfers the problem to the consideration of the linear flow on an euclidean surface
(S, g) with conical singularities. For the Laplacian (−∆S, D(−∆S)) on such surfaces the
(LP) property is provided by Gaussian upper bounds. Estimate (3.7) in [BFHM12] gives
a (p, q)-Strichartz estimate of SL-type (1/2, 0) for (eit∆S)t∈R for all sharp 1-admissible
pairs (p, q). Applying Theorem II.2.8;(a) for such pairs consequently yields a local
(p, q) Strichartz estimate with 1/2p-loss for (eit∆S)t∈R. This corresponds to Theorem 1.5
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II. Strichartz and spectrally localized estimates

in [BFHM12] since D((−∆S)
1/2p) ∼= H1/p

2 (S).
Let d ∈ {2, 3} and Ω have a C∞ boundary. In [Ant08] a similar reflection argument
as above transfers the problem to the Laplace-Beltrami operator (−∆Ω̃, W2

2 (Ω̃)) on
a compact, connected, Riemannian C∞-manifold Ω̃ whose metric g is only Lipschitz
continuous. Let A = (Oj, κj)j∈J be an atlas of Ω̃ with subordinate C∞-partition of
unity (χj)j∈J and (χ̃j)j∈J ⊆ C∞

c (M) such that supp(χ̃j) ⊆ Oj and χ̃j(supp(χj)) = {1}.
For k ∈N0 we put

(Pk f )(·) := ∑
j∈J

χ̃j(·)
(

ψk((−∆)1/2)[(χj f ) ◦ κ−1
j ]

)
(κj(·)).

Proposition 4.17 in [Ant08] contains for k ∈ N, f ∈ H1(Ω̃), I ∈ Ib and (p, q) ∈ [2, ∞]2

sharp d/2-admissible the estimate

‖Pkei(·)∆Ω̃ f ‖Lp(I,Lq(Ω̃)) ≤ C(|I|)2k( 3
2p−1)‖ f ‖H1(Ω̃).

A very similiar approach as in the proof of Lemma II.2.8, involving the triangle in-
equality instead of the (LP) property, then provides (p, q) Strichartz estimates for U
with `-loss for all ` > 3/2p.

II.3.6. The Dirichlet Laplacian on exterior domains

Let K ⊆ Rd with d ∈ N≥2 be a compact, strictly convex C∞-domain and Ω = Rd \ K.
Let (−∆D, H2

2(Ω) ∩ H1
2,0(Ω)) be the Dirichlet Laplacian and U = (eit∆D)t∈R. The (LP)

property for ((−∆D)k)k∈N0 is proven in [IP08] for general C∞-domains. In [Iva10]
global (p, q) Strichartz estimates for U are proven. Proposition 3.1 in [Iva10] provides
for k ∈N0 and f ∈ L2(Ω) the estimate

‖(−∆D)kU f ‖Lp(R,Lq(Ω)) . ‖(−∆D)k f ‖L2(Ω)

for (p, q) ∈ (2, ∞]× [2, ∞) sharp d/2 admissible. Hence, (p, q) Strichartz estimates of
SL-type 0 hold and we derive a global (p, q) Strichartz estimate by means of the (LP)
property.

II.3.7. Operators with Gaussian upper bounds on metric measures spaces

Let (Ω, S , µ, dΩ) be a σ-finite metric measure space, whose measure µ has the doubling
property (see the beginning of chapter 7 in [Ouh05]). Let (A, D(A)) be a non-negative,
selfadjoint linear operator on L2(Ω) and U = (eitA)t∈R. We additionally assume that
the generated C0 semigroup (e−tA)t∈[0,∞) has an integral kernel pt : Ω ×Ω → R for
t ∈ (0, ∞), which satisfies the following Gaussian upper bound:

∀t∈(0,∞) : |pt(x, y)| . t−d/2 exp
(
− Ct−1dΩ(x, y)2) a.e. on Ω×Ω. (II.45)

For Ω = Rd and (A, D(A)) = (−∆, H2
2(R

d)) a standard argument involving Fourier
analysis gives (II.45). However, such an estimate (or generalized versions of it) are valid
for more general differential operators of second order on Rd, domains and manifolds
(see e.g. [Ouh05, SC10]).

68



II.4. Criteria for uniqueness of weak solutions and a priori estimates

The spectral multiplier result in Theorem 7.23 of [Ouh05], provides that Ak with k ∈N0
can be extended to a bounded operator on Lq(Ω) with q ∈ (1, ∞). Let (rk)k∈N0 be
sequence of Rademacher functions on [0, 1] and q ∈ [2, ∞). The properties of (rk)k∈N0

and the fact that Lq(Ω) is a type 2 Banach space, imply for f ∈ Lq(Ω) the estimate

‖ f ‖Lq(Ω) .
∫ 1

0

∥∥ ∞

∑
k=0

rk(t)ψk(A) f
∥∥

Lq(Ω)
dt .

( ∞

∑
k=0
‖ψk(A) f ‖2

Lq(Ω)

)1/2

. (II.46)

Hence, (A, D(A)) has the (LP) property. Furthermore, (II.45) implies

‖e−tA‖L2(Ω)→L∞(Ω) . t−d/4. (II.47)

Let ϕ ∈ C∞
c (R, [0, 1]) and h ∈ (0, 1]. Then (II.47) and the spectral calculus of (A, D(A))

show

‖ϕ(hA) f ‖L∞(Ω) . ‖e−hA‖L2(Ω)→L∞(Ω)‖ehA ϕ(hA) f ‖L2(Ω) . h−d/4‖ f ‖L2(Ω). (II.48)

Hence, ϕ(hA) ∈ L(L2(Ω), L∞(Ω)). Then ϕ(hA)∗|L1(Ω) ∈ L(L1(Ω), L2(Ω)) satisfies
ϕ(hA)∗ = ϕ(hA) on L1(Ω) ∩ L2(Ω), whereby the latter space is dense in L1(Ω).
Consequently, ϕ(hA) can be extended from L1(Ω) ∩ L2(Ω) to a bounded operator in
L(L1(Ω), L2(Ω)) which coincides with ϕ(hA)∗|L1(Ω) and

‖ϕ(hA)‖L1(Ω)→L2(Ω) = ‖ϕ(hA)‖L2(Ω)→L∞(Ω).

For t ∈ R with 0 < |t| ≤ h then holds by means of (II.48)

‖ϕ(hA)U(t)ϕ(hA)‖L1(Ω)→L∞(Ω) ≤ ‖ϕ(hA)‖2
L2(Ω)→L∞(Ω)‖U(t)‖L2(Ω)→L2(Ω) . |t|−

d/2.

Consequently, U is d/2-dispersive of SL-type 1 and Corollary II.2.10 provides local (p, q)
Strichartz estimates with 1/p-loss for U for all (p, q) ∈ [2, ∞)2 sharp d/2-admissible. For
(A, D(A)) = (−∆, H2

2(R
d)) we can compare this to Remark (2) after Definition I.3.2

where we called `? = d( 1
2 −

1
q ) = 2/p Sobolev-type loss. γ = 1 therefore corresponds

to the loss which can be deduced by the Sobolev embedding. There is also a deep
connection between the estimate (II.47) and the Sobolev embedding itself (see e.g.
[SC02, CSCV92]). The approach for spectral decompositions involving Rademacher
functions as in (II.46) is applied in more general situations (see e.g. [KW14]).

II.4. Criteria for uniqueness of weak solutions and a priori
estimates

In this section we want to further exploit the spectrally localized Strichartz estimates
from Definition II.2.3. In Section II.2 we used them to deduce local (p, q) Strichartz es-
timates with `-loss. In this section we come back to the Cauchy problem from Chapter
I for the nonlinear Schrödinger equation given by

iu′(t) = Ãu(t) + F(u(t)), t 6= t0,
u(t0) = f .

(CPA)
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II. Strichartz and spectrally localized estimates

Recall that (A, D(A)) is a non-negative, selfadjoint operator on (L2(Ω), 〈·, ·〉L2(Ω)), f ∈
D(As), and F : D(As) → E∗A, whereby s ∈ [1/2, ∞). The results we will present are
generalizations of the methods used in Section 3.3 of [BGT04b] to (CPA). To formulate
them we need to recall an additional type of estimate, for which we give the following
motivation.

Example: Let Ω = Rd, q ∈ (2, ∞) and s = d
2 (

1
2 −

1
q ). Assume for the moment that

D(As) ∼= H2s
2 (Rd). Then the Sobolev embedding A.2.1 yields D(As) ↪→ Lq(Rd). For

ϕ ∈ C∞
c (R), h ∈ (0, 1] and f ∈ L2(Rd) the property (SC4) of the spectral calculus

furthermore implies

‖ϕ(hA) f ‖Lq(Rd) . ‖ϕ(hA) f ‖L2(Rd) + ‖ϕ(hA)As f ‖L2(Rd)

. h
d
2 (

1
q−

1
2 )‖ f ‖L2(Rd). (II.49)

On the other hand, we now assume that (II.49) holds for all ϕ ∈ C∞
c (R) and h ∈

(0, 1]. Then Hölder’s inequality and (II.36) imply for f ∈ D(As+ε) with ε ∈ (0, ∞) the
estimate

‖ f ‖Lq(Rd) . ‖A0 f ‖Lq(Rd) +
∞

∑
k=1
‖Ak f ‖Lq(Rd)

. ‖ f ‖L2(Rd) +
∞

∑
k=1

2−εs‖Ak As+ε f ‖L2(Rd) . ‖ f ‖D(As+ε).

Hence, D(As+ε) ↪→ Lq(Rd) for all ε ∈ (0, ∞). If (Ak)k∈N0 additionally has the (LP)
property then for f ∈ D(As) we use (II.37) to produce

‖ f ‖Lq(Rd) . ‖A0 f ‖Lq(Rd) +

( ∞

∑
k=1
‖Ak f ‖2

Lq(Rd)

)1/2

. ‖ f ‖L2(Rd) +

( ∞

∑
k=1

22ks‖Ak f ‖2
L2(Rd)

)1/2

∼= ‖ f ‖D(As).

Hence, D(As) ↪→ Lq(Rd).

The previous example illustrates the intimate relationship between the Sobolev embed-
ding and estimates of the form (II.49). In the literature these are called Bernstein or
Nikol’skij inequalities. We abstract (II.49) in the following notion and provide several
examples afterward.

Definition II.4.1
Let p, q ∈ [1, ∞] with p ≤ q and α ∈ (0, ∞). (A, D(A)) is said to fulfill (p, q, α)-Bernstein
inequalities, if for all ϕ ∈ C∞

c (R), h ∈ (0, 1] and f ∈ Lp(Ω) ∩ L2(Ω) holds

‖ϕ(hA) f ‖Lq(Ω) . hα( 1
q−

1
p )‖ f ‖Lp(Ω). (II.50)

(A, D(A)) is said to fulfill the full range of (p, q, α)-Bernstein inequalities, if (A, D(A)) fulfills
(p, q, α)-Bernstein inequalities for all p, q ∈ [1, ∞] with p ≤ q.
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II.4. Criteria for uniqueness of weak solutions and a priori estimates

Remarks:

(1) For (A, D(A)) = (−∆, H2
2(R

d)) the operators ϕ(−h∆) are convolution operators
which are translation invariant and not the zero map. Theorem 1.1 in [Hör60]
provides p ≤ q if ϕ(−h∆) ∈ L(Lp(Rd), Lq(Rd)). The restriction of p, q in the above
definition is therefore justified.

(2) For p < ∞ the estimate (II.50) implies that ϕ(hA) can be uniquely extended to an
element of L(Lp(Ω), Lq(Ω)).

(3) Let p0, q0, p1, q1 ∈ [1, ∞] and α ∈ (0, ∞). If (A, D(A)) fulfills (p0, q0, α) and (p1, q1, α)
Bernstein inequalities. Then (A, D(A)) fulfills (p, q, α)-Bernstein inequalities if
there is θ ∈ (0, 1) such that

1
p
=

1− θ

p0
+

θ

p1
,

1
q
=

1− θ

q0
+

θ

q1
.

This immediately follows with complex interpolation (see Theorem A.1.3 and (A.1)).

(4) If (A, D(A)) fulfills (p, q, α)-Bernstein inequalities, then for k ∈N0 holds

‖Ak‖Lp(Ω)→Lq(Ω) . 2kα( 1
p−

1
q ). (II.51)

The previous estimate will be used frequently in the following proofs.

Examples II.4.2
Here we list some (classes of) operators for which Bernstein inequalities are available.

(1) Let (A, D(A)) = (−∆, H2
2(R

d)) and ϕ ∈ C∞
c (R) with |max supp(ϕ)| < C as well

as p, q ∈ [1, ∞] with p ≤ q. For f ∈ S(Rd) and h ∈ (0, 1] holds

supp(F [ϕ(−h∆) f ]) = supp(ϕ(h| · |2)F f ) ⊆ B(0,
√

C/h).

Lemma 2.1 in Section 2.1 of [BCD11] applied to u = ϕ(−h∆) f yields

‖ϕ(−h∆)‖Lp(Rd)→Lq(Rd) . h
d
2 (

1
q−

1
p ).

Hence, (−∆, H2
2(R

d)) fulfills (p, q, d/2)-Bernstein inequalities. Moreover, the cited
lemma implies for all l ∈N that

∑
|α|=l
‖∂α ϕ(−h∆) f ‖Lp(Rd) . h−l‖ϕ(−h∆) f ‖Lp(Rd). (II.52)

If additionally supp(ϕ) ⊆ R \ {0}, then

∑
|α|=l
‖∂α ϕ(−h∆) f ‖Lp(Rd)

∼= h−l‖ϕ(−h∆) f ‖Lp(Rd). (II.53)

(2) Let (A, D(A)) = (−∆Ω, D(−∆Ω)) be the Laplace-Beltrami operator on a connected,
compact Riemannian C∞-manifold Ω without boundary and dim(Ω) = d ∈ N.
Corollary 2.2 of [BGT04b] provides the full range of (p, q, d/2)-Bernstein inequali-
ties.
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II. Strichartz and spectrally localized estimates

(3) Recall that in Example II.3.7 we have shown the (2, ∞, d/2)-Bernstein inequalities
(II.48) by means of gaussian upper bounds of the heat kernel.

Having recalled the notion of Bernstein inequalities we come back to the Cauchy prob-
lem (CPA). The results of this section require rather strong assumptions on the involved
operator (A, D(A)) and the nonlinearity F. It makes sense to fix these assumptions
since they are needed frequently in the coming proofs.

Convention
In the rest of this section we fix I ∈ Ib with t0 ∈ I, α ∈ (0, ∞), γ ∈ [0, ∞), s ∈ [1/2, ∞) as
well as (p, q) ∈ [2, ∞)× (2, ∞) and r ∈ [q, ∞) with the following properties:

(A1) Ak ∈ L(Lr∗(Ω), Lq∗(Ω)) for k ∈N and the embedding EA ↪→ Lr(Ω) holds.

(A2) U satisfies (p, q) Strichartz estimates of SL-type γ.

(A3) F : D(As)→ Lr∗(Ω) satisfies AkF : L∞(I, D(As))→ L∞(I, Lq∗(Ω)) for k ∈N.

Remarks:

(1) Recall that (Ak)k∈N0 denotes the spectral decomposition of (A, D(A)).

(2) (A1) implies in particular EA ↪→ Lq(Ω) by complex interpolation of EA ↪→ L2(Ω)
and EA ↪→ Lr(Ω).

(3) If U is σ-dispersive of SL-type γ, then Lemma II.2.2;(a) provides (A2).

With this convention in mind we state the following central result of this section.

Lemma II.4.3
Besides (A1)-(A3) let β ∈ [1, p] and ρ(x) := x− γ

p . There is a non-decreasing C : [0, ∞) →
[0, ∞) such that for all weak solutions u ∈ L∞(I, D(As)) of (CPA) and k ∈N holds

‖Aku‖Lβ(I,Lq(Ω))

≤ C(|I|)
(

2−kρ(s)‖Aku‖Lmax{β,2}(I,D(As)) + 2−kρ( γ
p∗ )‖AkF(u)‖L∞(I,Lq∗ (Ω))

)
. (II.54)

Remarks:

(1) The estimate (II.54) is used in this section to bound ‖Aku‖Lβ(I,Lq(Ω)) for a solution
u of (CPA) in terms of norms involving the fractional domains D(As). This will be
the key tool in the subsequent results.

(2) Let I ∈ I and |I| ≤ 2(1−k)γ. Then (A2) implies for F ∈ L1(I, L2(Ω))∩ L p̃∗(I, Lq̃∗(Ω))
the estimates

‖AkUU ∗AkF‖Lp(I,Lq(Ω)) . ‖AkU‖L2(Ω)→Lp(I,Lq(Ω))‖(AkU )∗F‖L2(Ω) . ‖F‖L1(I,L2(Ω)),

‖AkUU ∗AkF‖Lp(I,Lq(Ω)) . ‖AkU‖L2(Ω)→Lp(I,Lq(Ω))‖(AkU )∗F‖L2(Ω) . ‖F‖Lp∗ (I,Lq∗ (Ω)).

Then the Christ-Kiselev Lemma in A.3.4;(4) yields (1, 2)-(p, q) and (p∗, q∗)-(p, q)
Strichartz estimates of SL-type γ for U . In the following proof we use exclusively
this consequence of (A2), not (A2) itself.
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Proof. Let k ∈ N be fixed and for convenience put h := 21−k. Let furthermore (Ij)
N
j=0

be the hγ/4-partition of I from Definition II.2.9 with N = [4|I|h−γ]. We prove our claim
by estimating Aku on each Ij and in order to do so we introduce the following cover of
(Ij)

N
j=0 and a smooth partition of unity subordinate to it. For j ∈ {0, ..., N} we let

I′j :=
(

Ij +
[
− hγ

8
,

hγ

8
])
∩ I, mj := inf I +

jhγ

4
+

hγ

8
.

We additionally choose χ ∈ C∞
c (R, [0, 1]) with supp(χ) ⊆ [− 1

4 , 1
4 ] and χ([− 1

8 , 1
8 ]) = {1}

and define the function χj := χ(h−γ(· −mj)) for j ∈ {0, ..., N}. For j ∈ {0, ..., N} then
holds

χj(Ij) = {1}, supp(χj) ∩ I ⊆ I′j , ‖χ′j‖L∞(R) ≤ h−γ‖χ′‖L∞(R). (II.55)

For j ∈ {0, ..., N} we put uj := χj Aku ∈ L∞(I, D(As)) and let g ∈ EA. Then for all t ∈ I′j
holds

〈uj(t), g〉L2(Ω) = 〈u(t), χj(t)Akg〉L2(Ω). (II.56)

Since χj Akg ∈ C1(I, EA) with derivative χ′j Akg and u ∈ W1
∞(Io, E∗A), equation (II.56)

and the product rule yields that uj ∈W1
∞(Io, E∗A) with

〈u′j, g〉 = 〈u′, χj Akg〉+ 〈χ′j Aku, g〉L2(Ω) a.e. on I.

It is easy to check that the right-hand side belongs to L∞(Io, E∗A). With (CPA) and the
commutativity of Ak and A1/2 on EA we furthermore have

〈iu′j, g〉 = 〈iu′, χj Akg〉+ 〈iχ′j Aku, g〉L2(Ω)

= 〈Ãu, χj Akg〉+ 〈F(u), χj Akg〉L2(Ω) + 〈iχ′j Aku, g〉L2(Ω)

= 〈Ãuj, g〉+ 〈iχ′j Aku + χj AkF(u), g〉L2(Ω). (II.57)

In the last line we used that 〈g1, Akg2〉L2(Ω) = 〈Akg1, g2〉L2(Ω) for g1 ∈ Lr∗(Ω) and
g2 ∈ EA. This is trivial for g1 ∈ Lr∗(Ω) ∩ L2(Ω) and the rest follows by density and
Ak ∈ L(Lr∗(Ω), Lq∗(Ω)). The latter also implies that the function

Fj : I → E∗A, Fj(t) := iχ′j(t)Aku(t) + χj AkF(u(t)),

satisfies Fj ∈ L∞(I′j , E∗A). Indeed, Ak ∈ L(Lr∗(Ω), Lq∗(Ω)) and (A3) yield

‖Fj‖L∞(I′j ,E
∗
A)

. h−γ‖Aku‖L∞(I′j ,EA) + ‖AkF(u)‖L∞(I′j ,L
q∗ (Ω))

. h−γ‖u‖L∞(I,EA) + ‖AkF(u)‖L∞(I,Lq∗ (Ω)).

Equation (II.57) additionally shows that uj with j ∈ {1, ..., N} is a weak solution of

iv′(t) = Ãv(t) + Fj(t), t ∈ I′j ,

v(min I′j) = 0,
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II. Strichartz and spectrally localized estimates

and u0 is a weak solution of

iv′(t) = Ãv(t) + F0(t), t ∈ I′0,
v(max I′0) = 0.

With Proposition I.2.4 the functions uj are in fact a.e. mild solutions on I′j and for
almost all t ∈ I′j holds

uj(t) = −
∫ t

min I′j
U(t− τ)χ′j(τ)Aku(τ) dτ + i

∫ t

min I′j
Ũ(t− τ)χj(τ)AkF(u(τ)) dτ

if j ∈ {1, ..., N}. For almost all t ∈ I′0 holds

u0(t) = −
∫ max I′0

t
U(t− τ)χ′j(τ)Aku(τ) dτ + i

∫ max I′0

t
Ũ(t− τ)χ0(τ)AkF(u(τ)) dτ.

Both integrals are treated in a uniform fashion. Let j ∈ {0, ..., N}. Hölder’s inequality
and the (p∗, q∗)-(p, q) and (1, 2)-(p, q) Strichartz estimates of SL-type γ derived from
(A2) yield

‖Aku‖Lβ(Ij,Lq(Ω)) . hγ( 1
β−

1
p )‖uj‖Lp(I′j ,L

q(Ω))

. hγ( 1
β−

1
p )
(
‖χ′j Aku‖L1(I′j ,L

2(Ω)) + ‖AkF(u)‖Lp∗ (I′j ,L
q∗ (Ω))

)
. (II.58)

Let β′ := max{β, 2}. In the first term we apply (II.55) and Lemma II.2.6;(c) to get

‖χ′j Aku‖L1(I′j ,L
2(Ω)) . hs−γ‖Ak Asu‖L1(I′j ,L

2(Ω)) . hs− γ
β′ ‖Aku‖Lβ′ (I′j ,D(As)).

We estimate the second term as before with (A1) and Hölder’s inequality to get

‖AkF(u)‖Lp∗ (I′j ,L
q∗ (Ω)) . h

γ
p∗ ‖AkF(u)‖L∞(I,Lq∗ (Ω)).

Applying the previous two estimates in (II.58) yields

‖Aku‖Lβ(Ij,Lq(Ω))

. hρ(s)+γ( 1
β−

1
β′ )‖Aku‖Lβ′ (I′j ,D(As)) + hρ( γ

p∗ )+
γ
β ‖AkF(u)‖L∞(I,Lq∗ (Ω)), (II.59)

with ρ(s) = s− γ
p . Recall that N . |I|h−γ so that for j ∈ {0, ..., N} we can apply (II.59)

and Hölder’s inequality to obtain

‖Aku‖Lβ(I,Lq(Ω)) =

( N

∑
j=0
‖Aku‖β

Lβ(Ij,Lq(Ω))

)1/β

. hρ(s)+γ( 1
β−

1
β′ )
( N

∑
j=0
‖Aku‖β

Lβ′ (I′j ,D(As))

)1/β

+(1 + |I|)
1
β hρ( γ

p∗ )‖AkF(u)‖L∞(I,Lq∗ (Ω))

. (1 + |I|)
1
β

(
hρ(s)‖Aku‖Lβ′ (I,D(As)) + hρ( γ

p∗ )‖AkF(u)‖L∞(I,Lq∗ (Ω))

)
.
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Here we used that by the definition of (I′j)
N
j=0 we have

( N

∑
j=0
‖Aku‖β′

Lβ′ (I′j ,D(As))

)1/β′

.
( N

∑
j=0
‖Aku‖β′

Lβ′ (Ij,D(As))

)1/β′

∼= ‖Aku‖Lβ′ (I,D(As)).

In the following two results we are going to exploit the a priori estimate (II.54) from
Lemma II.4.3. It should be no surprise that both of them require a summation over all
k ∈ N0. In order to deal with the expression in (II.54) involving the nonlinearity F, it
is convenient to introduce the following function:

SF : L∞(I, D(As))→ [0, ∞], SF(u) :=
∞

∑
k=1

2k( α
q +

γ
p−

γ
p∗ )‖AkF(u)‖L∞(I,Lq∗ (Ω)). (II.60)

In the applications of the results of this section in Chapter III we will discuss this
expression and prove suitable bounds for it. For now we just accept it as one building
block of the proofs below.
Let us formulate the first result, which gives a criterion for two weak solutions of (CPA)
to be equal.

Theorem II.4.4
Besides (A1)-(A3) let s ≥ α

q +
γ
p and β ∈ [1, 2]. We additionally assume:

(i) (A, D(A)) satisfies (q, b, α)-Bernstein inequalities for all b ∈ [q, ∞).

(ii) F : C→ C satisfies F(0) = 0 and |F(z)− F(w)| . (|z|β + |w|β)|z− w|.

If u, v ∈ L∞(I, D(As)) are weak solutions of (CPA) with max{SF(u), SF(v)} < ∞, then
u = v on I.

Remarks:

(1) Recall that in (A1) we assumed EA ↪→ Lr(Ω) with r > q ≥ 2. Then D(As) ↪→ Lr(Ω)
and by complex interpolation we have D(As) ↪→ Lr̃(Ω) for all r̃ ∈ [2, r].

(2) The restriction β ≤ 2 is essential for the method of proof and we do not know how
to get rid of this restriction.

(3) If all weak solutions u ∈ L∞(I, D(As)) of (CPA) satisfy SF(u) < ∞, then each weak
solution u : I → D(As) of (CPA) is unconditionally unique.

Proof. Let u, v ∈ L∞(I, D(As)) ∩W1
∞(Io, E∗A) be two weak solutions of (CPA) on I with

max{SF(u), SF(v)} < ∞. Then u, v ∈ C(I, L2(Ω)) by Proposition I.2.7;(b) and u(t0) =
v(t0). Throughout the proof we fix R ∈ [0, ∞) such that

‖u‖L∞(I,D(As)) + ‖v‖L∞(I,D(As)) + SF(u) + SF(v) ≤ R. (II.61)

The proof is divided into two parts. In (a) we provide suitable a priori estimates for the
weak solutions u, v in spaces of the form Lp(J, Lq(Ω)) with J ⊆ I. In (b) we use these
estimates for a contradiction argument to prove ‖u(t)− v(t)‖L2(Ω) = 0 on I.
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(a) Let J ∈ Ib with J ⊆ I and b ∈ [q, ∞). Minkowski’s integral inequality and the
(q, b, α)-Bernstein inequalities from (i) yield

‖u‖Lβ(J,Lb(Ω)) ≤ ‖A0u‖Lβ(J,Lb(Ω)) +
∞

∑
k=1
‖Aku‖Lβ(J,Lb(Ω))

≤ C(|I|)
(
‖u‖L∞(I,D(As)) +

∞

∑
k=1

2kα( 1
q−

1
b )‖Aku‖Lβ(J,Lq(Ω))

)
. (II.62)

Since β ≤ 2 ≤ p we can apply estimate (II.54) for k ∈N to get

‖Aku‖Lβ(J,Lq(Ω)) ≤ C(|I|, R)
(

2−kρ(s)‖Aku‖L2(J,D(As)) + 2−kρ( γ
p∗ )‖AkF(u)‖L∞(I,Lq∗ (Ω))

)
,

with ρ(x) = x − γ
p . The condition s ≥ γ

p + α
q implies ρ(s) − α

q ≥ 0. The previous
estimate and (II.62) then yield

‖u‖Lβ(J,Lb(Ω)) ≤ C(|I|, R)
( ∞

∑
k=1

2−k( α
b +ρ(s)− α

q )‖Aku‖L2(J,D(As)) + SF(u) + 1
)

≤ C(|I|, R)
( ∞

∑
k=1

2−
kα
b ‖Aku‖L2(J,D(As)) + 1

)
. (II.63)

We observe that

1
b

∞

∑
k=1

2−
2kα

b =
1

b(1− 2−2α/b)
− 1

b
b→∞−→ 1

2α log(2)

implies the boundedness of the first expression uniformly in b ∈ [q, ∞). Continuing
the estimation in (II.63) with Hölder’s inequality yields

‖u‖Lβ(J,Lb(Ω)) ≤ C(|I|, R)
(

b
1
2

(
1
b

∞

∑
k=1

2−
2kα

b

)1/2( ∞

∑
k=1
‖Aku‖2

L2(J,D(As))

)1/2

+ 1
)

≤ C(|I|, R)
(

b
1
2 ‖u‖L2(J,D(As)) + 1

)
≤ C(|I|, R)

(
(|J|b) 1

2 + 1
)
.

We have chosen R such that (II.61) holds, so that the previous estimate also holds for v
instead of u. We conclude for b ∈ [q, ∞)

‖u‖β

Lβ(J,Lb(Ω))
+ ‖v‖β

Lβ(J,Lb(Ω))
≤ C(|I|, R)

(
|J|β/2b + 1

)
. (II.64)

With this estimate at our disposal we proceed to the next step.
(b) Let g : I → R be given by g(t) := ‖u(t)− v(t)‖2

L2(Ω)
. Then g(t0) = 0 and Proposi-

tion I.2.7;(b) provides g ∈ Cb(I) ∩W1
∞(Io) with g′ = 2〈u′ − v′, u− v〉. We assume the

following:

∃t2∈Io\{t0} : g(t2) > 0. (II.65)

Without loss of generality we assume t2 > t0 as the following argument also works in
the case t2 < t0 without any change. g ∈ C(I) and g(t0) = 0 imply

∃t1∈[t0,t2) : g(t1) = 0 ∧ ∀t∈(t1,t2) : g(t) > 0. (II.66)
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With the observation β ≤ 2 < q we let ν ∈ (1, min{ r
2 , 1 + β

q−β}) be arbitrary. We use
(CPA) and (ii) to generate for almost all t ∈ (t1, t2) the inequality

g′(t) = 2〈iu′(t)− iv′(t), iu(t)− iv(t)〉

= 2
(
〈A1/2[u(t)− v(t)], iA1/2[u(t)− v(t)]〉L2(Ω)

+〈F(u(t))− F(v(t)), i[u(t)− v(t)]〉L2(Ω)

)
.
∫

Ω
|F(u(t))− F(v(t))||u(t)− v(t)| dµ

.
∫

Ω
(|u(t)|β + |v(t)|β)|u(t)− v(t)|2 dµ

. (‖u(t)‖β

Lβν∗ (Ω)
+ ‖v(t)‖β

Lβν∗ (Ω)
)‖u(t)− v(t)‖2

L2ν(Ω).

Then we choose θ ∈ (0, 1) such that 1
2ν = 1−θ

2 + θ
r so that complex interpolation yields

for all t ∈ (t1, t2)

‖u(t)− v(t)‖2
L2ν(Ω) . ‖u(t)− v(t)‖2(1−θ)

L2(Ω)
‖u(t)− v(t)‖2θ

Lr(Ω)

. g(t)1−θ‖u(t)− v(t)‖2θ
D(As)

≤ C(R)g(t)1−θ ,

with C(R) ≥ 1. Consequently, for almost all t ∈ (t1, t2) holds

g′(t)g(t)θ−1 ≤ C(R)
(
‖u(t)‖β

Lβν∗ (Ω)
+ ‖v(t)‖β

Lβν∗ (Ω)

)
. (II.67)

Now we put Jε := (t1, t1 + ε) with some ε ∈ (0, t2− t1). The weak chain rule in Theorem
7.8 of [GT01] yields that gθ ∈ W1

∞,loc(Jε) with (gθ)′ = θgθ−1g′ almost everywhere on Jε.
By means of A.3.5;(1) then follows that for almost all t, s ∈ Jε holds

g(t)θ − g(s)θ = θ
∫ t

s
g′(τ)g(τ)θ−1 dτ. (II.68)

Then there is t ∈ Jε and a sequence (sn)n∈N in Jε with sn
n→∞−→ t1 such that (II.67) and

(II.64) (note βν∗ ≥ q since ν < 1 + β
q−β ) imply

g(t)θ − g(sn)
θ = θ

∫ t

sn

g′(τ)g(τ)θ−1 dτ

≤ C(|I|, R)
ν∗

(
‖u‖β

Lβ(Jε,Lβν∗ (Ω))
+ ‖v‖β

Lβ(Jε,Lβν∗ (Ω))

)
≤ C(|I|, R)

(
ε

β/2 +
1
ν∗

)
.

Since g(sn)
n→∞−→ 0 we also have

g(t)θ ≤ C(|I|, R)
(

ε
β/2 +

1
ν∗

)
. (II.69)

Now let ε ∈ (0, min{t2 − t1, C(|I|, R)−2/β}). Then (II.69) and 1
θν∗ = 1− 2

r yields

g(t)
r

r−2 ≤
(

C(|I|, R)
(
ε

β/2 +
1
ν∗
))ν∗

=
(
C(|I|, R)εβ/2

)ν∗
(

1 +
1

εβ/2ν∗

)ν∗
ν∗→∞−→ 0.
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II. Strichartz and spectrally localized estimates

Hence, g(t) = 0 with t ∈ (t1, t2), what clearly contradicts (II.66). (II.65) must therefore
be false and consequently u = v on I.

The next result deals with a priori estimates for the strong solutions of (CPA) con-
structed by means of Theorem I.3.4 in L∞(I, D(As)) with s > 1/2. For s = 1/2 we can
deduce such bounds with L2(Ω)- and energy conservation. Indeed, Lemma I.3.5 pro-
vides a criterion for a strong solution u to satisfy ‖u‖L∞(I,EA) < ∞. Such an estimate is
one of the crucial ingredients of the following proof.

Theorem II.4.5
Besides (A1)-(A3) let s ∈ (1/2, ∞), R ∈ [0, ∞), and β ∈ [1, p]. We additionally assume:

(i) (A, D(A)) satisfies (q, ∞, α)-Bernstein inequalities.

(ii) ‖F(g)‖D(As) . (1 + ‖g‖β

L∞(Ω)
)‖g‖D(As) for all g ∈ D(As) ∩ L∞(Ω).

(iii)
1
2
≥ γ

p
+

α

q
if β ≤ 2 and “>” in the previous inequality if β > 2.

Then there is an increasing C : [0, ∞) → [0, ∞) such that for all strong solutions u ∈
C(I, D(As)) ∩ Lβ

loc(I, L∞(Ω)) of (CPA) on I with ‖u‖L∞(I,EA) + SF(u) ≤ R holds:

(a) There is a decreasing T ∈ C([0, ∞), (0, 1]) such that for all t ∈ I holds

‖u‖L∞([t−T(R),t+T(R)]∩I,D(As)) ≤ C(R)
(
‖u(t)‖D(As) + ‖u(t)‖2

D(As)

)
. (II.70)

(b) u ∈ L∞(I, D(As)) and ‖u‖Lβ(I,L∞(Ω)) ≤ C(R, |I|) log(exp(1) + ‖u‖L∞(I,D(As))).

Proof. (a;1) Let t1 ∈ I, T ∈ (0, 1] and define J := [t1 − T, t1 + T] ∩ I. We first prove a
logarithmic estimate for ‖u‖Lβ(J,L∞(Ω)) similar to the estimate in (b), which will enable
us in (a;2) to use Gronwall’s lemma for the desired bound on ‖u‖L∞(J,D(As)) if T is
suitably small.
The (q, ∞, α)-Bernstein inequalities from (i) and (II.54) imply for all k ∈ N and s̃ ∈
[1/2, ∞) the estimate

‖Aku‖Lβ(J,L∞(Ω)) . 2
kα
e ‖Aku‖Lβ(J,Le(Ω))

. 22kε(s̃)‖Aku‖Lmax{β,2}(J,D(As̃)) + 22kε( γ
p∗ )‖AkF(u)‖L∞(I,Lq∗ (Ω)), (II.71)

with ε(x) := 1
2 (

α
q +

γ
p − x). Then ε(s) < ε(1/2) ≤ 0 by (iii). Let l ∈ N. If β ≤ 2, we use

the triangle inequality, (II.71), and EA ↪→ Lq(Ω) from (A1) to produce

‖u‖Lβ(J,L∞(Ω))

≤ ‖A0u‖Lβ(J,L∞(Ω)) +
∞

∑
k=1
‖Aku‖Lβ(J,L∞(Ω))

. ‖u‖L∞(I,EA) +
l

∑
k=1

22kε( 1
2 )‖Aku‖L2(J,EA) +

∞

∑
k=l

22kε(s)‖Aku‖L2(J,D(As)) + SF(u).
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II.4. Criteria for uniqueness of weak solutions and a priori estimates

By means of ‖u‖L∞(I,EA) + SF(u) ≤ R, ε(s) < ε(1/2) ≤ 0, and Hölder’s inequality we
continue the previous estimate as follows:

‖u‖Lβ(J,L∞(Ω)) ≤ C(R)
( l

∑
k=1
‖Aku‖L2(J,EA) + 2lε(s)

∞

∑
k=l

2kε(s)‖Aku‖L2(J,D(As)) + 1
)

≤ C(R)
(

l
1
2

( l

∑
k=1
‖Aku‖2

L2(J,EA)

)1/2

+ 2lε(s)
( ∞

∑
k=l
‖Aku‖2

L2(J,D(As))

)1/2

+ 1
)

≤ C(R)
(
(lT)

1
2 ‖u‖L∞(J,EA) + 2lε(s)‖u‖L2(J,D(As))

)
≤ C(R)

(
l

1
β T

1
2 + 2lε(s)‖u‖L∞(J,D(As))

)
. (II.72)

If β > 2 we have ε(1/2) < 0 by (iii) so that similarly

‖u‖Lβ(J,L∞(Ω)) ≤ C(|I|, R)
( ∞

∑
k=1

22kε( 1
2 )‖Aku‖Lβ(J,EA)

+ 1
)

≤ C(R)
(( ∞

∑
k=1

22kε( 1
2 )β∗
)1/β∗( ∞

∑
k=1
‖Aku‖β

Lβ(J,EA)

)1/β

+ 1
)

≤ C(R)
(
‖u‖Lβ(J,EA)

+ 1
)
≤ C(R)

(
(lT)

1
β + 1

)
. (II.73)

With K := [ 1
−ε(s) log(2) ] + 1 it is straightforward to check that the function

H : [0, ∞)→ [0, ∞), H(x) := 2Kε(s) log(exp(1)+x)x

is bounded. In the estimates (II.72) and (II.73) we fix l := [K log(exp(1)+ ‖u‖L∞(J,D(As)))]
to ensure

2Kε(s) log(exp(1)+‖u‖L∞(J,D(As)))‖u‖L∞(J,D(As)) ≤ ‖H‖L∞([0,∞)).

We therefore have

‖u‖β

Lβ(J,L∞(Ω))
≤ C1(R)

(
log(exp(1) + ‖u‖L∞(J,D(As)))T

β
2 + 1

)
, β ≤ 2, (II.74)

‖u‖β

Lβ(J,L∞(Ω))
≤ C1(R)

(
log(exp(1) + ‖u‖L∞(J,D(As)))T + 1

)
, β > 2. (II.75)

We can choose C1 ∈ C([0, ∞)) increasing with C1(x) ≥ 1 for all x ∈ [0, ∞).
(a;2) Since u is a strong solution of (CPA) on I, it satisfies Duhamel’s formula

∀t∈I : u(t) = U(t− t1)u(t1)− i
∫ t

t1

U(t− τ)F(u(τ)) dτ.

Combined with the estimate for F in (ii) this implies for all t ∈ I

‖u(t)‖D(As) ≤ ‖u(t1)‖D(As) +
∫ t

t1

‖F(u(τ)‖D(As) dτ

≤ ‖u(t1)‖D(As) + C2

∫ t

t1

(1 + ‖u(τ)‖β

L∞(Ω)
)‖u(τ)‖D(As) dτ,
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with some C2 ≥ 1. The Lemma of Gronwall formulated in Lemma 4.2.1 in [CH98]
implies

‖u(t)‖D(As) ≤ ‖u(t1)‖D(As) exp
(

C2

∫ t

t1

(1 + ‖u(τ)‖β

L∞(Ω)
) dτ

)
. ‖u(t1)‖D(As) exp

(
C2‖u‖β

Lβ(J,L∞(Ω))

)
. (II.76)

We put T(R) := (2C1(R)C2)−
2/β. Then T(·) is a continuous decreasing function. If

β ≤ 2 and T := T(R), then (II.74) and (II.76) yield

‖u‖L∞(J,D(As)) ≤ C(R)‖u(t1)‖D(As) exp
(

log(exp(1) + ‖u‖L∞(J,D(As)))T
β
2 C1(R)C2

)
= C(R)‖u(t1)‖D(As)

(
1 + ‖u‖L∞(J,D(As))

)1/2.

If β > 2 and T := T(R)β/2, then (II.75) and (II.76) similarly yield

‖u‖L∞(J,D(As)) ≤ C(R)‖u(t1)‖D(As)

(
1 + ‖u‖L∞(J,D(As))

)1/2.

In the previous two estimates C(R) ∼= exp(C1(R)C2). Hence, with the above choices
for T we have in case ‖u‖L∞(J,D(As)) > 0 that

‖u‖L∞(J,D(As)) ≤ C(R)‖u(t1)‖2
D(As)

(
1

‖u‖L∞(J,D(As))
+ 1
)

≤ C(R)
(
‖u(t1)‖D(As) + ‖u(t1)‖2

D(As)

)
. (II.77)

This is trivial if ‖u‖L∞(J,D(As)) = 0, and therefore the proof of (II.70) is finished.
(b) We take T from (a;2) and let (Ij)

N
j=0 be the T-partition of I where tj ∈ Io

j denotes the
center of Ij for j ∈ {0, ..., N}. Then (II.77) yields for j ∈ {0, ..., N}

‖u‖L∞(Ij,D(As)) ≤ C(R)
(
‖u(tj)‖D(As) + ‖u(tj)‖2

D(As)

)
,

and we therefore have

‖u‖L∞(I,D(As)) ≤ C(R) max
j∈{0,...,N}

(
‖u(tj)‖D(As) + ‖u(tj)‖2

D(As)

)
< ∞.

Finally, (II.74), (II.75) and T ≤ 1 imply the estimate in (b) by

‖u‖Lβ(I,L∞(Ω)) =

( N

∑
j=0
‖u‖β

Lβ(Ij,L∞(Ω))

)1/β

≤ C(|I|, R)
(

log(exp(1) + ‖u‖L∞(I,D(As)))
1
β (T

1
2 + T

1
β ) + 1

)
≤ C(|I|, R) log(exp(1) + ‖u‖L∞(I,D(As))).
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III. Local and global existence results for
the nonlinear Schrödinger equation

This chapter is devoted to the application of the existence results provided in Section
I.3 and the refined results of Section II.4 to the nonlinear Schrödinger equation

iu′(t) = Au(t)± |u(t)|βu(t), t 6= 0,
u(0) = f ,

(III.1)

in various situations. It is organized as follows.
In Section III.1 we first provide some background material on Riemannian manifolds
(Ω, g) with bounded geometry. We recall a useful characterization of Sobolev spaces
defined on such manifolds, which will allow us to prove the crucial nonlinear estimates
for an application of Theorem I.3.4. We first deduce a local existence result in Hs

2(Ω)
for strong solutions of (III.1) where (A, D(A)) is the Laplace-Beltrami operator on Ω.
This result will also be applied in Chapter IV.
On the basis of the local existence result in Hs

2(Ω) we prove a global existence result
in H1

2(Ω) for the defocusing nonlinear Schrödinger equation in dimension d ∈ {2, 3}.
One of the the crucial assumptions in this result are (p, q) Strichartz estimates of SL-
type so that the results of Section II.4 are available. This global existence result shows
how the global existence theory relies on the quality of the (p, q) Strichartz estimates
of SL-type. It contains the global existence results of [BGT04b] as a special case.
In the remaining Sections III.2-III.4 we show that Theorem I.3.4 contains known local
and global existence results from the literature. We consider the following situations:

III.2: A = −div(B(·)∇) + V on Rd with diagonal B ∈ C∞
b (Rd, Rd×d) and V ∈ C1

b(R
d)

(see the appendix of [BGT04b] for V = 0).

III.3: A = −∆ + V on Rd with superquadratic potential (see [YZ04]).

III.4: A = −∆D on a polygonal or C∞-domain in R2 with homogeneous Dirichlet
boundary conditions (see e.g. [BFHM12, Ant08])

In the corresponding section, each of the existence theorems given in the references
above will be compared to the results that we deduce by means of Theorem I.3.4. In
some cases we can even slightly extend the existing results.

III.1. The Laplace-Beltrami operator on C∞-manifolds with
bounded geometry

In this section let (Ω, g) always be a connected, Riemannian C∞-manifold without
boundary and dim(Ω) = d ∈ N. We always consider (Ω, g) to be equipped with the
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III. Local and global existence results for the nonlinear Schrödinger equation

Levi-Civita connection. For details and some standard notation used throughout this
thesis we refer to Appendix A.4. We aim at a treatment of the nonlinear Schrödinger
equation formulated on manifolds with bounded geometry. We therefore introduce the
following property and discuss some useful consequences of it afterward.

(M) The injectivity radius satisfies inj(Ω) ∈ (0, ∞] and (Ω, g) has bounded geometry,
i.e. for all α ∈Nd

0 and k, l ∈ {1, ..., d} there is C ∈ (0, ∞) such that |∂αgk,l | ≤ C

Let us gather some properties of manifolds (Ω, g) which satisfy (M). We refer to Section
7.2.1 of [Tri92b] for the proof of the assertions in (M1) and (M2) below and further
details.

(M1) There is r0 ∈ (0, inj(Ω)) such that for r ∈ (0, r0/4) there is an at most countable
and uniformly locally finite geodesic atlas A (r) = {(Oi(r), κi) | i ∈ I}, i.e.

sup
i∈I

(
#{j ∈ I | Oj(r) ∩Oi(r)}

)
< ∞. (III.2)

Recall that κi is defined via the inverse of the exponential map and Oi(r) is a
geodesic ball (for details see A.12).

(M2) There is a smooth partition of unity (ψi,r)i∈I with the following properties:

• ψi,r ∈ C∞(Ω, [0, 1]) with supp(ψi,r) ⊆ Oi(r) and ∑
i∈I

ψi,r = id.

• For all β ∈Nd
0 there is C ∈ (0, ∞) such that ‖∂βψi,r‖L∞(Oi(r)) ≤ C.

We say that (ψi,r)i∈I is subordinate to A (r).

(M3) For i ∈ I we define

J(i) :=
{

j ∈N | supp(ψr,i) ∩ supp(ψr,j) 6= ∅
}

.

By means of (III.2) we have supi∈I(#J(i)) < ∞. By means of r < r0/4 < inj(Ω) for
all j ∈ J(i) follows supp(ψj,r) ⊆ Oj(r) ⊆ Oi(r0). This implies that we can treat all
localizations to a chart Oj(r) with j ∈ J(i) in the local chart Oi(r0).

Convention
From now on we always let (Ω, g) be a connected, (geodesically) complete Riemannian C∞-
manifold without boundary and dim(Ω) = d ∈ N. If (Ω, g) satisfies (M), then we consider
(Ω, g) to be equipped with a geodesic atlas A (r) in (M1) with r ∈ (0, r0/4). In that case
(ψi,r)i∈I denotes the smooth partition of unity subordinate to A (r) from (M2).

Examples III.1.1
The following examples are the most relevant ones in view of our applications.

(1) (Rd, id) is complete and satisfies (M).

(2) Let (Ω, g) be a connected Riemmanian C∞-manifold, which is additionally com-
pact. Then (Ω, g) is complete and (M) is satisfied. Indeed, the Hopf-Rinow Theo-
rem formulated in Theorem 1.37 in Section 1.4 in [Aub98] implies that Ω is com-
plete. Theorem 1.36 in [Aub98] shows that inj(Ω) > 0. Since (Ω, g) is compact we
can always choose a finite atlas for (Ω, g) and therefore the geometry is bounded.
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(3) In Lemma IV.2.1 of Section IV.2 we will show that Rn ×M with a connected, com-
pact Riemannian C∞-manifold (M, g) without boundary is complete and satisfies
(M).

We continue with the definition of Lp(Ω) and the introduction of the Laplace-Beltrami
operator. First, we need an integral and for S ∈ B(Ω) we put

µ(S) := ∑
i∈I

∫
κ(S∩Oi)

(
(ψr,i det(G)

1/2) ◦ κ−1)(z) dz.

This definition is well known to be independent of the atlas and the partition of unity.
µ is furthermore a Radon measure and therefore induces an integral which satisfies
all the properties of the Lebesgue integral on euclidean spaces (for details see Section
3.4 in [Aub98]). Hence, the Lp(Ω) spaces with respect to µ for p ∈ [1, ∞] are Banach
spaces. L2(Ω) equipped with the inner product

( f , g)L2(Ω) :=
∫

Ω
f g dµ

is a Hilbert space.
The operator we want to consider is the canonical generalization of the Laplacian on
euclidean space to Riemannian manifolds. For f ∈ C∞

c (Ω) and a local chart (O, κ) we
define the differential expression ∆ by

∆ f :=
d

∑
k,l=1

gk,l
(

∂ωk ∂ωl −
d

∑
m=1

Γm
k,l∂ωm

)
f . (III.3)

Here (gk,l)k,l=1,...,d = (gk,l)
−1
k,l=1,...,d and Γm

k,l denotes the Christoffel symbols from (A.10).
In [Str83] it was shown that (−∆, C∞

c (Ω)) is a non-negative, essentially selfadjoint lin-
ear operator on L2(Ω). Then there is a unique non-negative selfadjoint extension

(−∆Ω, D(−∆Ω)), D(−∆Ω) := C∞
c (Ω)

‖·‖D(−∆) . (III.4)

Theorem 3.5 in [Str83] additionally states that the heat semigroup (et∆Ω)t∈[0,∞) given by
the spectral calculus on L2(Ω), can be extended to a contraction semigroup on Lq(Ω)
for all q ∈ [1, ∞]. With this extended semigroup the fractional powers (−∆Ω)

α
q on

Lq(Ω) for α ∈ [0, ∞) \N0 and q ∈ (1, ∞) can be defined via

D((−∆Ω)
α
q) :=

{
f ∈ Lq(Ω) | lim

ε→0

∫ ∞

ε
t−α−1et∆Ω f dt exists

}
,

(−∆Ω)
α
q f :=

1
Γ(−α)

∫ ∞

0
t−α−1et∆Ω f dt on D((−∆Ω)

α
q).

This defines a closed linear operator on Lq(Ω). For q = 2 this definition coincidces
with the fractional powers defined by the spectral calculus of (−∆Ω, D(−∆Ω)). In the
following theorem we gather some important properties of the introduced operators.
We in particular provide a convenient characterization of the fractional domains of the
Laplace-Beltrami operator via pullback of the corresponding fractional domains of the
Laplacian on Rd.
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Theorem III.1.2
Let s, s0, s1 ∈ [0, ∞), p, p0, p1 ∈ (1, ∞), and k ∈N. If (Ω, g) satisfies (M), then the space

Hs
p(Ω) :=

{
f ∈ Lp(Ω)

∣∣ ‖ f ‖Hs
p(Ω) :=

(
∑
i∈I

∥∥(ψi,r f ) ◦ κ−1
i

∥∥p
Hs

p(R
d)

)1/p

< ∞
}

.

has the following properties:

(a) Hs
p(Ω) is a Banach space and independent of the geodesic atlas A (r) and the smooth

partition of unity (ψi,r)i∈I .

(b) Hs
p(Ω) ∼= D((−∆Ω)

s/2
p ) and C∞

c (Ω) is dense in Hs
p(Ω).

(c) [Hs1
p1(Ω), Hs2

p2(Ω)]θ ∼= Hs
p(Ω) with s = (1− θ)s1 + θs2 and 1

p = 1−θ
p1

+ θ
p2

for all θ ∈
(0, 1).

(d) Let e(d, s) := 2d/(max{d−2s,0}) with 2d/0 := ∞. The following embeddings hold:

(d1) Hs
p(Ω) ↪→ L∞(Ω) if s > d

p .

(d2) Hs
2(Ω) ↪→ Lq(Ω) if either q ∈ [2, e(d, s)) or d > 2s and q = e(d, s). These

embeddings are dense.

(e) If q ∈ [2, e(d, 1)), then any weakly convergent sequence in H1
2(Ω) is convergent in

Lq(Oi(r)) for all i ∈ I.

Remarks:

(1) In Theorem 7.4.5 in [Tri92b] it is shown that for k ∈ N0 and p ∈ (1, ∞) holds
Hk

p(Ω) ∼= Wk
p(Ω). Wk

p(Ω) is the classical Sobolev space defined via covariant
derivatives.

(2) (b) includes the assertion D(−∆Ω) ∼= H2
2(Ω) and (−∆Ω, H2

2(Ω)) is therefore non-
negative and selfadjoint on L2(Ω).

(3) The assertion in (e) is needed for an application of Theorem I.3.6 (see I.3.6;(iii)).
Recall that the geodesic atlas A (r) with r ∈ (0, r0/4) is at most countable.

Proof. Chapter 7 in [Tri92b] contains the assertions (a), (c) and the density claim in (b).
Combined with the results of [Str83] also D((−∆Ω)

s/2
p ) ∼= Hs

p(Ω) follows. It remains to
show (d) and (e).
(d1) We let δ ∈ (0, 1/2) such that s − d

p ≥ 2δ > 0 and f ∈ Hs
p(Ω). Then Theorem

7.4.2;(ii)+(iv) in [Tri92b] implies Hs
p(Ω) = Fs

p,2(Ω) ↪→ Fs
p,∞(Ω) ↪→ Bs−δ

p,∞(Ω) ↪→ C0,δ(Ω)
and

‖ f ‖C0,δ(Ω) = sup
i∈I
‖(ψr,i f ) ◦ κ−1

i ‖C0,δ(Rd).

For a definition of the Besov- and Triebel-Lizorkin spaces on manifolds with bounded
geometry we refer to Section 7.2.1 and 7.3.1 in [Tri92b]. By means of C0,δ(Rd) ↪→
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L∞(Rd), Hs
p(Ω) ↪→ C0,δ(Ω) and supi∈I(#J(i)) < ∞ follows

‖ f ‖L∞(Ω) = sup
i∈I
‖ f ◦ κ−1

i ‖L∞(κi(Oi(r)))

≤ sup
i∈I

∑
j∈J(i)

‖(ψr,j f ) ◦ κ−1
j ◦ κj ◦ κ−1

i ‖L∞(κi(Oi(r)∩Oj(r)))

≤ sup
i∈I

(
#J(i)

)
sup
j∈I
‖[ψj,r f ] ◦ κ−1

j ‖L∞(κj(Oj(r)))

. sup
j∈I
‖(ψj,r f ) ◦ κ−1

j ‖C0,δ(Rd) . ‖ f ‖Hs
p(Ω).

(d2) Let either q ∈ [2, e(d, s)) or d > 2s and q = e(d, s). The Sobolev embedding A.2.1
implies Hs

2(R
d) ↪→ Lq(Rd) and we have `2 ↪→ `q. For f ∈ Hs

2(Ω) then follows

‖ f ‖Lq(Ω) =

(
∑
i∈I
‖(ψr,i f )κ−1

i ‖
q
Lq(Rd)

)1/q

.
(

∑
i∈I
‖(ψr,i f )κ−1

i ‖
2
Hs

2(R
d)

)1/2

= ‖ f ‖Hs
2(R

d).

The density of this embedding follows from the density of C∞
c (Ω) in Lq(Ω).

(e) Let i ∈ I, j ∈ J(i), q ∈ [2, e(d, 1)), and f ∈ H1
2(Ω). Let additionally ( fn)n∈N be a

sequence in H1
2(Ω) with fn ⇀ f in H1

2(Ω). From (b) we know that H1
2(Ω) ∼= H1

2,0(Ω)
so that ψr,j fn, ψr,j f ∈ H1

2,0(Oi(r0)) for all n ∈N and

ψr,j fn ⇀ ψr,j f in H1
2,0(Oi(r0)). (III.5)

Since Oi(r0) = exp(B(0, r0)) and exp is a diffeomorphism we can equipp Oi(r) with the
atlas Ai := {(Oj(r), κj) | j ∈ J(i)}. Then (Oi(r), g) is a connected, compact Riemannian
C∞-manifold with boundary. Theorem 10.1 in [Heb99] states the compactness of the
embedding H1

2,0(Oi(r)) ↪→ Lq(Oi(r)). The weak convergence in (III.5) therefore implies
ψr,j fn

n→∞−→ ψr,j f in Lq(Oi(r0)). Finally,

‖ fn − f ‖Lq(Oi(r)) ≤ ∑
j∈J(i)

‖ψj,r( fn − f )‖Lq(Oi(r0))
n→∞−→ 0.

By means of a localization argument we can transfer nonlinear estimates for Hs
2(R

d) to
Hs

2(Ω). This is done in the following Lemma.

Lemma III.1.3
Let s ∈ (0, ∞), k, m ∈ N and (Ω, g) satisfy (M). We put S(Ω)k := S(Ω, Rk) for S ∈
{Hs

2, L∞} and let g, h ∈ Hs
2(Ω)m ∩ L∞(Ω)m. We then have:

(a) ‖g · h‖Hs
2(Ω) .

(
‖g‖L∞(Ω)m‖h‖Hs

2(Ω)m + ‖g‖Hs
2(Ω)m‖h‖L∞(Ω)m

)
.

(b) For F ∈ C[s]+1(Rm, Rk) with F(0) = 0 holds F : L∞(Ω)m ∩ Hs
2(Ω)m → Hs

2(Ω)k and
there is a non-decreasing C1,F : [0, ∞)→ [0, ∞) such that

‖F(g)‖Hs
2(Ω)k ≤ C1,F

(
‖g‖L∞(Ω)m

)
‖g‖Hs

2(Ω)m . (III.6)
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(c) For F ∈ C[s]+2(Rm, Rk) there is a non-decreasing C2,F : [0, ∞)→ [0, ∞) such that

‖F(g) − F(h)‖Hs
2(Ω)k

≤ C2,F
(
‖g‖L∞(Ω)m + ‖h‖L∞(Ω)m

)
‖g− h‖Hs

2(Ω)m (III.7)

+C1,F′
(
‖g‖L∞(Ω)m + ‖h‖L∞(Ω)m

)(
‖g‖Hs

2(Ω)m + ‖h‖Hs
2(Ω)m)

)
‖g− h‖L∞(Ω)m .

More precisely, there is C ∈ [2, ∞) such that

C1,F(x) ∼= (1 + x)[s] sup
1≤|α|≤[s]+1

‖∂αF‖L∞(B(0,Cx))k , (III.8)

C2,F(x) ∼= sup
|α|=1
‖∂αF‖L∞(B(0,Cx))k . (III.9)

Remarks:

(1) Let Ω = Rd. The estimates stated above can be found in Lemma A.8, A.9, and
Exercise A.12 of [Tao06]. The estimates in (a) and (b) with F ∈ C∞(R, R) can also
be found in Chapter II.A of [AG07]. However, all these result do not state a precise
enough information on how the functions C1,F and C2,F depend on ‖g‖L∞(Rd)m and
‖h‖L∞(Rd)m . This is an important information for our local and global existence
theory and we are forced to repeat the necessary proofs. In contrast to that, the
dependencies on s and d in the constants are irrelevant and will be omitted.

(2) If F is a polynomial of order k ∈N with F(0) = 0, then the product estimates in (a)
easily yields the estimates (III.6) and (III.7) with

C1,F(x) ∼= (1 + x)k−1, C2,F ∼= C1,F. (III.10)

Proof. It is surely enough to treat the case k = 1. In (a+b;1) we show all the estimates
in (a) and (b) for (Ω, g) = (Rd, id). We use these estimates in (a+b;2) for the general
case. In (c) we show (III.7). In all parts of the proof we let s ∈ (0, ∞), F ∈ C[s]+1(Rm),
and g, h ∈ L∞(Ω)m ∩ Hs

2(Ω)m. We put

g∞ := ‖g‖L∞(Ω)m , h∞ := ‖h‖L∞(Ω)m , r∞ := g∞ + h∞.

(a+b;1) Let Ω = Rd and F(0) = 0. Lemma A.8 in [Tao06] contains the product estimate
in (a), what leaves (III.6). Since F ∈ C[s]+1(Rm) we have F|B(0,r∞) ∈ C[s]+1(B(0, r∞)) and
the mean value theorem yields

‖F(g)− F(h)‖L2(Rd) ≤ ‖∇F‖L∞(B(0,r∞))m‖g− h‖L2(Rd)m . (III.11)

We recall the following Littlewood-Paley projections with (ψk)k∈N0 from Definition
II.2.4. For k ∈N0 we define

∆k := ψk((−∆)1/2) = F−1ψk(| · |)F , ∆≤k :=
k

∑
l=0

∆k, ∆>k :=
∞

∑
l=k+1

∆k.
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We use the characterization of Hs
2(R

d) given by Theorem 6.2.6 in [Gra09]. It states that
for f ∈ L2(Ω) holds

‖ f ‖Hs
2(R

d)m
∼= ‖∆0 f ‖L2(Rd)m +

( ∞

∑
k=1

22ks‖∆k f ‖2
L2(Rd)m

)1/2

. (III.12)

This has to be interpreted as follows: If the right-hand side is finite, then f ∈ Hs
2(R

d)
and (III.12) holds, and vice versa. Recall that the Bernstein inequalities in II.4.2;(1) yield
for k, N ∈N and p, q ∈ [1, ∞] with p ≤ q the estimates

‖∆<k‖Lp(Rd)→Lq(Rd) . 2
kd
2 ( 1

p−
1
q ), ∑

|α|=N
‖∂α∆k‖Lp(Rd)→Lq(Rd)

∼= 2k( d
2 (

1
p−

1
q )−N).(III.13)

F(0) = 0 and the Lipschitz estimate (III.11) yield F(g) ∈ L2(Rd). Then the isometry
properties of the Fourier transform provide

‖∆0F(g)‖L2(Rd) ≤ ‖F(g)‖L2(Rd) ≤ ‖∇F‖L∞(B(0,g∞))m‖g‖L2(Rd)m .

For k ∈N additionally holds

‖∆kF(g)‖L2(Rd) ≤ ‖F(g)− F(∆<kg)‖L2(Rd) + ‖∆kF(∆<kg)‖L2(Rd). (III.14)

In view of (III.12) we have to estimate the `2-norms of both expressions on the right-
hand side of (III.14). We treat these expressions seperately.
For the first term observe that (III.13) implies ‖∆<kg‖L∞(Rd)m + ‖g‖L∞(Rd)m ≤ Cg∞. Then
the Lipschitz estimate (III.11), (II.36), and Hölder’s inequality imply( ∞

∑
k=1

22ks‖F(g) − F(∆<kg)‖2
L2(Rd)

)1/2

≤ ‖∇F‖L∞(B(0,Cg∞))m

( ∞

∑
k=1

22ks‖∆≥kg‖2
L2(Rd)m

)1/2

≤ C(F, g∞)

( ∞

∑
k=1

22ks
( ∞

∑
l=k

2−ls‖∆l(−∆)s/2g‖L2(Rd)m

)2)1/2

≤ C(F, g∞)

( ∞

∑
k=1

22ks
( ∞

∑
l=k

2−ls
)( ∞

∑
l=k

2−ls‖∆l(−∆)s/2g‖2
L2(Rd)m

))1/2

≤ C(F, g∞)

( ∞

∑
k=1

∞

∑
l=k

2(k−l)s‖∆l(−∆)s/2g‖2
L2(Rd)m

)1/2

= C(F, g∞)

( ∞

∑
l=1

( l

∑
k=1

2ks
)

2−ls‖∆l(−∆)s/2g‖2
L2(Rd)m

)1/2

≤ C(F, g∞)

( ∞

∑
l=1

22ls‖∆l g‖2
L2(Rd)m

)1/2

≤ C1(F, g∞)‖g‖Hs
2(R

d)m . (III.15)

The `2-norm of the second term in (III.14) is a bit more delicate to handle. We put
N := [s] + 1. Recall ∆<kg ∈ L2(Rd) ∩ L∞(Rd). Theorem 1.7.5 in [Hör76] provides the
analyticity of ∆<kg as it is a Fourier transformed L2-function with compact support.
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Since F ∈ CN(Rm) we deduce F(∆kg) ∈ CN(Rd) ∩ L2(Rd) ⊆ WN
2 (Rd). (III.13) then

yields

‖∆kF(∆<kg)‖L2(Rd)
∼= 2−kN ∑

|α|=N
‖∂α∆kF(∆<kg)‖L2(Rd)

∼= 2−kN ∑
|α|=N

‖∂αF(∆<kg)‖L2(Rd). (III.16)

The given regularity properties of F and ∆<kg allow us to apply the chain and Leibniz
rule on ∂αF(∆<kg). With the set

Mn :=
{

B = (β1, ..., βn) ∈
(
Nd

0 \ {0}
)n
∣∣∣∣ n

∑
i=1
|βi| = N

}
we have

∂αF(∆<kg) =
N

∑
n=1

∑
B∈Mn

C(B)F(n)(∆<kg)(∂β1
∆<kg, ..., ∂βn

∆<kg).

Since (III.13) yields ‖∆<kg‖L∞(Rd) ≤ C‖g‖L∞(Rd) we additionally have

‖∂αF(∆<kg)‖L2(Rd) (III.17)

. sup
1≤|γ|≤N

(
‖∂γF‖L∞(B(0,Cg∞))

)
sup

1≤n≤N, B∈Mn

( n−1

∏
i=1
‖∂βi

∆<kg‖L∞(Rd)m‖∂βn
∆<kg‖L2(Rd)m

)
.

An application of the previous estimate, (II.52), and |βi| > 0 yields

‖∂αF(∆<kg)‖L2(Rd)

≤ C(F, g∞) sup
1≤n≤N, B∈Mn

(
∑

0≤k1,...,kn<k

n−1

∏
i=1
‖∂βi

∆ki g‖L∞(Rd)m‖∂βn
∆kn g‖L2(Rd)m

)

≤ C(F, g∞)(1 + g∞)
N−1 sup

1≤n≤N, B∈Mn

(
∑

0≤k1≤...≤kn<k

n−1

∏
i=1

2|β
i |ki‖∆kn g‖L2(Rd)m

)

≤ C(F, g∞) sup
1≤n≤N, B∈Mn

(
∑

0≤k3≤...≤kn<k

n−1

∏
i=3

2|β
i |ki

(
∑

0≤k2≤k3

2(|β
1|+|β2|)k2

)
‖∆kn g‖L2(Rd)m

)
≤ C(F, g∞) ∑

0≤l<k
2lN‖∆l g‖L2(Rd)m . (III.18)

Observe that the Cauchy Schwarz and Young inequality yield for any real, non-negative
sequence (al)l∈N0 that

∞

∑
k=1

22k(s−N)

(
∑

0≤l<k
2(N−s)lal

)2

=
∞

∑
l,m=0

( ∞

∑
k=max{l,m}+1

2(s−N)2k
)

2(N−s)(l+m)alam

∼=
∞

∑
l=0

( ∞

∑
m=0

2(s−N)|l−m|am

)
al

. ‖(2(s−N)l)‖`1(N0)‖(al)‖2
`2(N0)

.
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Then (III.16), (III.18), the previous estimate with al := 2ls‖∆l g‖L2(Rd)m , and (III.12) imply

( ∞

∑
k=1

22ks‖∆kF(∆<kg)‖2
L2(Rd)

)1/2

≤ C(F, g∞)

( ∞

∑
k=1

22k(s−N)

(
∑

0≤l<k
2lN‖∆l g‖L2(Rd)m

)2)1/2

≤ C(F, g∞)

( ∞

∑
l=0

22ls‖∆l g‖2
L2(Rd)m

)1/2

≤ C2(F, g∞)‖g‖Hs
2(R

d)m . (III.19)

Applying the estimates (III.15) and (III.19) in (III.12) consequently yields

‖F(g)‖Hs(Rd) ≤
(
C1(F, g∞) + C2(F, g∞)

)
‖g‖Hs

2(R
d)m ≤ C1,F(g∞)‖g‖Hs

2(R
d)m . (III.20)

We have chosen C ∈ [2, ∞) large enough and

C1,F(x) := C(1 + x)[s] sup
1≤|α|≤[s]+1

‖∂αF‖L∞(B(0,Cx)). (III.21)

(a+b;2) Let (Ω, g) satisfy (M) and F(0) = 0. Recall that the smooth partition of unity
(ψr,i)i∈N satisfies ∑j∈J(i) ψr,j(supp(ψr,i)) = {1} and supi∈I #J(i) < ∞. For any real,
non-negative sequence (aj)j∈N then holds

∞

∑
i=1

∑
j∈J(i)

aj =
∞

∑
j=1

(#J(j))aj .
∞

∑
j=1

aj. (III.22)

The product estimate for Ω = Rd in (a+b;1) and Theorem 4.3.2 in [Tri92b] yields for all
i ∈ I

‖(ψr,ig · h) ◦ κ−1‖Hs
2(R

d)

≤ ∑
j∈J(i)

‖
(
(ψr,ig) · (ψr,jh)

)
◦ κ−1

i ‖Hs
2(R

d)

. ∑
j∈J(i)

‖ψr,ig‖L∞(Ω)m‖(ψr,jh) ◦ κ−1
j ‖Hs

2(R
d)m + ‖(ψr,ig) ◦ κ−1

i ‖Hs
2(R

d)m‖ψr,jh‖L∞(Ω)m

. g∞

(
∑

j∈J(i)
‖(ψr,jh) ◦ κ−1

i ‖
2
Hs

2(R
d)

)1/2

+ h∞‖(ψr,ig) ◦ κ−1
i ‖Hs

2(R
d).

With (III.22) we therefore obtain

‖g · h‖Hs
2(Ω) . g∞

(
∑
i∈I

∑
j∈J(i)

‖(ψj,rh) ◦ κ−1
j ‖

2
Hs

2(R
d)

)1/2

+ h∞

(
∑
i∈I
‖(ψr,ig) ◦ κ−1

i ‖
2
Hs

2(R
d)

)1/2

. g∞‖h‖Hs
2(Ω)m + h∞‖g‖Hs

2(Ω)m .

The same approach also works for the nonlinear estimate (III.6) due to F(0) = 0. More
precisely, we additionally apply Theorem 4.2.2 in [Tri92b] and the uniform bounded-
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ness of the derivatives of (ψr,i)i∈I from (M2) to provide

‖F(g)‖Hs
2(Ω) =

(
∑
i∈I

∥∥(ψr,iF
(

∑
j∈J(i)

ψr,jg
))
◦ κ−1

i

∥∥2
Hs

2(R
d)

)1/2

.
(

∑
i∈I

∥∥(F( ∑
j∈J(i)

ψr,jg
))
◦ κ−1

j

∥∥2
Hs

2(R
d)

)1/2

. C1,F(g∞)

(
∑
i∈I

∑
j∈J(i)

∥∥(ψr,jg) ◦ κ−1
j

∥∥2
Hs

2(R
d)m

)1/2

. C1,F(g∞)‖g‖Hs
2(Ω)m .

(c) Let (Ω, g) satisfy (M) and additionally F ∈ C[s]+2(Rm). We define G ∈ C[s]+2(Rm)
by G(x) := F(x)− (∇F)(0)x. Then ∇G ∈ C[s]+1(Rm, Rm) with (∇G)(0) = 0. We use
the fundamental theorem, the product estimate in (a) and (III.6) to prove

‖G(g)− G(h)‖Hs
2(Ω) ≤

∫ 1

0
‖(∇G)(h + t(g− h)) · (g− h)‖Hs

2(Ω) dt

.
(

sup
t∈[0,1]

‖(∇G)(h + t(g− h))‖L∞(Ω)m‖g− h‖Hs
2(Ω)m

+ sup
t∈[0,1]

‖(∇G)(h + t(g− h))‖Hs
2(Ω)m‖g− h‖L∞(Ω)m

)
.
((
|∇F(0)|+ ‖∇F‖L∞(B(0,2r∞))m

)
‖g− h‖Hs

2(Ω)m

+C1,∇G(r∞)(‖g‖Hs
2(Ω)m + ‖h‖Hs

2(Ω)m)‖g− h‖L∞(Ω)m

)
.
(

sup
|α|=1
‖∂αF‖L∞(B(0,2r∞))‖g− h‖Hs

2(Ω)m

+C1,F′(r∞)(‖g‖Hs
2(Ω)m + ‖h‖Hs

2(Ω)m)‖g− h‖L∞(Ω)m

)
.

If we take C ∈ [2, ∞) large enough and put

C2,F(x) := sup
|α|=1
‖∂αF‖L∞(B(0,Cr)),

then we have

‖F(g) − F(h)‖Hs
2(Ω)

≤ ‖G(g)− G(h)‖Hs
2(Ω) + |(∇F)(0)|‖g− h‖Hs

2(Ω)m

. C2,F(r∞)‖g− h‖Hs
2(Ω)m + C1,F′(r∞)(‖g‖Hs

2(Ω)m + ‖h‖Hs
2(Ω)m)‖g− h‖L∞(Ω)m .

From the previous lemma we can extract the nonlinear estimates for the model nonlin-
earity Fβ,± on Hs

2(Ω), which are needed for an application of Theorem I.3.4. However,
for an application of the results in Section II.4 the estimates in Hs

2(Ω) are not sufficient.
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We in particular need to control the expression SFβ,± defined in (II.60). For this we
prove that Fβ,± : H1

2(Ω)→ H1
r∗(Ω) for some r∗ < 2 is bounded on bounded sets. In the

next Lemma we gather all the nonlinear estimates for the model nonlinearity, which
will be used frequently throughout this section.

Lemma III.1.4
Let s, β ∈ (0, ∞) and (Ω, g) satisfy (M). We then have:

(a) Fβ,± : L2(Ω) ∩ L∞(Ω)→ L2(Ω) and

‖Fβ,±(g)− Fβ,±(h)‖L2(Ω) .
(
‖g‖β

L∞(Ω)
+ ‖h‖β

L∞(Ω)

)
‖g− h‖L2(Ω). (III.23)

(b) If β > [s], then Fβ,± : Hs
2(Ω) ∩ L∞(Ω)→ Hs

2(Ω) and

‖Fβ,±(g)‖Hs
2(Ω) . ‖g‖

β

L∞(Ω)
‖g‖Hs

2(Ω). (III.24)

If additionally β > [s] + 1, then

‖Fβ,±(g) − Fβ,±(h)‖Hs
2(Ω)

.
(
‖g‖β

L∞(Ω)
+ ‖h‖β

L∞(Ω)

)
‖g− h‖Hs

2(Ω) (III.25)

+
(
‖g‖β−1

L∞(Ω)
+ ‖h‖β−1

L∞(Ω)

)(
‖g‖Hs

2(Ω) + ‖h‖Hs
2(Ω)

)
‖g− h‖L∞(Ω).

The estimates (III.24) and (III.25) also hold under the assumption β ∈Neven.

(c) If s = 1, then (III.24) holds for β > 0 and (III.25) holds for β > 1.

(d) Let q ∈ [2, ∞) such that H1
2(Ω) ↪→ Lq(Ω) and r ∈ (1, ∞) with 1

r∗ =
1
2 +

β
q . Then holds

Fβ,± : H1
2(Ω)→ H1

r∗(Ω) and

‖Fβ,±(g)‖H1
r∗ (Ω) . ‖g‖

β+1
H1

2 (Ω)
. (III.26)

Proof. In all the parts of the proof we let s, β ∈ (0, ∞) and g, h ∈ Hs
2(Ω) ∩ L∞(Ω) with

‖g‖L∞(Ω) > 0 if not stated otherwise. The nonlinear estimates of Lemma III.1.3 are
available for Fβ,± through the identification Hs

2(Ω, C) and Hs
2(Ω, R2). Similar to the

proof of Proposition I.4.2 we define F : R2 → R2 by F(x) := ±|x|βx, which satisfies
with g := (Re g, Im g)

‖g‖Hs
2(Ω)
∼= ‖g‖Hs

2(Ω,R2), ‖Fβ,±(g)‖Hs
2(Ω)
∼= ‖F(g)‖Hs

2(Ω,R2).

We will use these identifications in the proof below without mentioning.
(a) The Lipschitz estimate (I.64) in Proposition I.4.2 directly implies for g, h ∈ L2(Ω) ∩
L∞(Ω)

‖Fβ,±(g)− Fβ,±(h)‖L2(Ω) =

( ∫
Ω
|Fβ,±(g)− Fβ,ν(h)|2 dµ

)1/2

.
(
‖g‖β

L∞(Ω)
+ ‖h‖β

L∞(Ω)

)
‖g− h‖L2(Ω).
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(b) We assume β > [s] and put g̃ := g/‖g‖L∞(Ω). Proposition I.4.2;(a) yields Fβ,± ∈
C[s]+1(R2, R2) and |∂αFβ,±(x)| . |x|β+1−|α|. Then the homogeneity of Fβ,± of order
β + 1 and (III.6) from Lemma III.1.3 imply

‖Fβ,±(g)‖Hs
2(Ω) . ‖g‖

β+1
L∞(Ω)

(1 + ‖g̃‖L∞(Ω))
[s] sup

1≤|α|≤[s]+1
‖∂αFβ,±‖L∞(B(0,C‖g̃‖L∞(Ω)))

‖g̃‖Hs
2(Ω)

. ‖g‖β

L∞(Ω)
sup

1≤|α|≤[s]+1
‖| · |β+1−|α|‖L∞(B(0,C))‖g‖Hs

2(Ω)

. ‖g‖β

L∞(Ω)
‖g‖Hs

2(Ω).

Now we assume β > [s] + 1. We put r∞ := ‖g‖L∞(Ω)+ ‖h‖L∞(Ω) and g̃ := g/r∞, h̃ := h/r∞.
Proposition I.4.2;(a) provides Fβ,± ∈ C[s]+2(R2, R2) and again the homogeneity of Fβ,±
of order β + 1 and (III.7) from Lemma III.1.3 yield

‖Fβ,±(g) − Fβ,±(h)‖Hs
2(Ω)

. rβ+1
∞

(
(1 + ‖g̃‖L∞(Ω) + ‖h̃‖L∞(Ω))

β‖g̃− h̃‖Hs
2(Ω)

+(1 + ‖g̃‖L∞(Ω) + ‖h̃‖L∞(Ω))
β+[s]−1(‖g̃‖Hs(Ω) + ‖h̃‖Hs

2(Ω))‖g̃− h̃‖L∞(Ω)

)
. (‖g‖β

L∞(Ω)
+ ‖h‖β

L∞(Ω)
)‖g− h‖Hs

2(Ω)

+(‖g‖β−1
L∞(Ω)

+ ‖h‖β−1
L∞(Ω)

)(‖g‖Hs
2(Ω) + ‖h‖Hs

2(Ω))‖g− h‖L∞(Ω).

If we assume β ∈ Neven, then Proposition I.4.2;(a) yields Fβ,± ∈ C∞(R2, R2) with
|∂αFβ,±(x)| . |x|max{β+1−|α|,0}. The estimates (III.24) and (III.25) follow as above.
(c+d) Let s = 1. We show the assertions with the same localization argument, which
was used in the proof of Lemma III.1.3;(a+b). In (c+d;1) we show (III.24) and (III.26)
for the case Ω = Rd and use this in (c+d;2) for the general case and (III.25).
(c+d;1) Let Ω = Rd. From Theorem 2.1.6 in [Zie89] and its proof, we can derive the
following useful criterion for a function h ∈ Lp(Rd) with p ∈ (1, ∞) to belong to the
Sobolev space H1

p(R
d):

h ∈ H1
p(R

d) ⇐⇒ sup
y 6=0

‖h(·+ y)− h‖Lp(Rd)

|y| < ∞. (III.27)

In particular, h ∈ H1
p(R

d) implies

sup
y 6=0

‖h(·+ y)− h‖Lp(Rd)

|y| ≤ ‖∇h‖Lp(Rd). (III.28)

Let g ∈ H1
2(R

d) ∩ L∞(Ω). Then Fβ,± ◦ g ∈ L2(Rd) and for y ∈ Rd \ {0} the Lipschitz
estimate in (a) yields

‖Fβ,±(g(·+ y))− Fβ,±(g)‖L2(Rd) . ‖g‖
β

L∞(Rd)
‖g(·+ y)− g‖L2(Rd).
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By means of (III.27) and (III.28) we have Fβ,± ◦ g ∈ H1
2(R

d) and for i ∈ {1, ..., d}

‖∂xi Fβ,±(g)‖L2(Rd) ≤ sup
y 6=0

‖Fβ,±(g(·+ y))− Fβ,±(g)‖L2(Rd)

|y|

. ‖g‖β

L∞(Rd)
sup
y 6=0

‖g(·+ y)− g‖L2(Rd)

|y| . ‖g‖β

L∞(Rd)
‖∇g‖L2(Rd).

The previous estimate implies

‖Fβ,±(g)‖H1
2 (R

d) . ‖g‖
β

L∞(Rd)
‖g‖H1

2 (R
d). (III.29)

Now let g ∈ H1
2(R

d) and choose q, r as in (d). Then we have 1
r∗ = 1

2 + β
q < 1 and

2 ≤ (β + 1)r∗ < e(d, 1). By means of the Sobolev embedding A.2.1 we have H1
2(R

d) ↪→
L(β+1)r∗(Rd) and therefore Fβ,± ◦ g ∈ Lr∗(Rd) with

‖Fβ,±(g)‖Lr∗ (Rd) . ‖g‖
β+1
H1

2 (R
d)

. (III.30)

Hölder’s inequality yields for y 6= 0 as above

‖Fβ,±(g(·+ y))− Fβ,±(g)‖Lr∗ (Rd) . ‖g‖
β

Lq(Rd)
‖g(·+ y)− g‖L2(Rd).

Then (III.27), (III.28), and H1
2(R

d) ↪→ Lq(Rd) imply Fβ,± ◦ g ∈ H1
r∗(R

d) and

‖∇Fβ,±(g)‖Lr∗ (Rd) . ‖g‖
β

Lq(Rd)
‖∇g‖L2(Rd) . ‖g‖

β+1
H1

2 (R
d)

. (III.31)

Consequently, (III.30) and (III.31) provide

‖Fβ,±(g)‖H1
r∗ (R

d) . ‖g‖
β+1
H1

2 (R
d)

. (III.32)

(c+d;2) Let (Ω, g) satisfy (M). The estimate (III.29), Fβ,±(0) = 0, and Theorem 4.2.2 and
4.3.2 in [Tri92b] yield

‖Fβ,±(g)‖H1
2 (Ω) .

(
∑
i∈I

∥∥(Fβ,±
(

∑
j∈J(i)

ψr,jg
))
◦ κ−1

j

∥∥2
H1

2 (R
d)

)1/2

. ‖g‖β

L∞(Ω)

(
∑
i∈I

∑
j∈J(i)

‖
(
ψr,ig

)
◦ κ−1

j ‖
2
H1

2 (R
d)

)1/2

. ‖g‖β

L∞(Ω)
‖g‖H1

2 (Ω).

We apply the same results of [Tri92b] combined with (III.32) and the embedding `2 ↪→
`(β+1)r∗ to prove

‖Fβ,±(g)‖H1
r∗ (Ω) .

(
∑
i∈I

∥∥(Fβ,±
(

∑
j∈J(i)

ψr,jg
))
◦ κ−1

j

∥∥r∗

H1
r∗ (R

d)

)1/r∗

.
(

∑
i∈I

(
∑

j∈J(i)
‖
(
ψr,jg

)
◦ κ−1

j

∥∥
H1

2 (R
d)

)(β+1)r∗)1/r∗

.
(

∑
i∈I

∑
j∈J(i)

‖
(
ψr,jg

)
◦ κ−1

j

∥∥2
H1

2 (R
d)

)(β+1)/2

. ‖g‖β+1
H1

2 (Ω)
.

This leaves the proof of estimate (III.25). We use the exact same argument as in the
proof of the estimate (III.7) in Lemma III.1.3;(c). It relies on the product estimate in
Lemma III.1.3;(a) and estimate (III.24). We omit the details.
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Having gathered all the necessary background material and nonlinear estimates we
now come back to the nonlinear Schrödinger equation. We aim at local and global
existence results of strong solutions for

iu′(t) = −∆̃Ωu(t) + Fβ,±(u(t)), t 6= t0,

u(t0) = f ,
(CPM)

whereby (Ω, g) satisfies (M) and f ∈ Hs
2(Ω) with s ∈ [1, ∞). Recall that (−∆̃Ω, H1

2(Ω))
is the extrapolation operator of (−∆Ω, H2

2(Ω)).
We first derive the following local existence result as a corollary of Theorem I.3.4.
We state this as a base result from which we develop the existence theory for (CPM)
further. Moreover, the next result can be applied in Chapter IV to construct maximal
strong solutions for a nonlinear Schrödinger equation on certain product manifolds. It
therefore plays a major role in one of the main results of this thesis.

Theorem III.1.5
Let d ∈ N≥2, ` ∈ [0, ∞), s, s̃ ∈ [1, ∞) with s ≤ s̃, β ∈ (1, ∞) and (p, q) ∈ [2, ∞)× [2, ∞]
with p > max{β, 2}. We additionally assume:

(i) (eit∆Ω)t∈R satsifies a local (p, q) Strichartz estimate with `-loss.

(ii) Either β ∈Neven or β > [s] + 1 or s = 1.

(iii) β(d− 2s) ≤ 2(s + 1) and s > d
q + 2`.

Then for each f ∈ Hs
2(Ω) the nonlinear Schrödinger equation (CPM) has a conditionally

unique maximal strong solution u ∈ C(I( f ), Hs
2(Ω)) ∩ Lp

loc(I( f ), L∞(Ω)) with the following
properties:

(a) u has L2(Ω)-conservation and the induced nonlinear flow is locally Lipschitz continuous.

(b) The nonlinear flow transports H s̃
2(Ω) regularity if either β ∈ Neven or β > [s̃]. In that

case u satisfies the blow-up alternative with respect to H s̃
2(Ω).

(c) If β(d− 4) ≤ 4 and the nonlinear flow transports H s̃
2(Ω) regularity with some s̃ ≥ 2, then

u has energy conservation.

Remark:

(1) The key result of the proof is Theorem I.3.4. Let (A, D(A)) be a non-negative,
selfadjoint linear operator on L2(Ω) with D(As/2) ∼= Hs

2(Ω) for all s ∈ [1, ∞) and
D(Aα

q) ↪→ L∞(Ω) for α > d/2q. Then the assertions of the above theorem remain
true if we substitute (−∆Ω, H2

2(Ω)) with (A, D(As/2)). See for example Theorem
III.2.2 for a similar result.

(2) The case d = 1 is not interesting, since H1
2(Ω) ↪→ L∞(Ω). In this case the nonlin-

ear estimates (III.24) and (III.25) itself are sufficient for the construction of strong
solutions of (CPM) in C(I, H1

2(Ω)). No Strichartz estimates are required.

Proof. Recall that by Theorem III.1.2;(b+d) holds Hs
2(Ω) ∼= D((−∆Ω)

s/2) and the usual
Sobolev embeddings, in particular D((−∆Ω)

α
q) ↪→ L∞(Ω) for α > d/2q. Since Hs

2(Ω) ∼=
D((−∆Ω)

s/2) we want to stress that we apply Theorem I.3.4 with s/2, not s.
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Let f ∈ Hs
2(Ω). We first check that the conditions in Theorem I.3.4 are satisfied. (i)

clearly matches I.3.4;(i) and (iii) implies I.3.4;(iii). The condition in (ii) and Lemma
III.1.4 imply the nonlinear estimates (III.23)-(III.25). Hence, the nonlinear estimates
in I.3.4;(ii) are satisfied. Theorem I.3.4 provides a conditionally unique maximal mild
solution u ∈ C(I( f ), Hs

2(Ω)) ∩ Lp
loc(I( f ), L∞(Ω)) of (CPM) with locally Lipschitz con-

tinuous nonlinear flow. Let us show that u is in fact a strong solution of (CPM). The
condition β(d − 2s) ≤ 2(s + 1) implies Hs

2(Ω) ↪→ Lq(Ω) with q := 2d(β+1)/(d+2) by
Theorem III.1.2;(d). The Lipschitz estimate (I.65) from Proposition I.4.2 implies for
g, h ∈ Hs

2(Ω)

‖Fβ,±(g)− Fβ,±(h)‖H1
2 (Ω)∗ . ‖Fβ,±(g)− Fβ,±(h)‖

L
2d

d+2 (Ω)

.
(
‖g‖β

Lq(Ω)
+ ‖h‖β

Lq(Ω)

)
‖g− h‖Lq(Ω)

.
(
‖g‖β

Hs
2(Ω)

+ ‖h‖β

Hs
2(Ω)

)
‖g− h‖Hs

2(Ω).

Fβ,± : Hs
2(Ω) → H1

2(Ω)∗ is therefore Lipschitz continuous on bounded sets. Proposi-
tion I.2.4;(c) then provides that u is a strong solution of (CPM). L2(Ω)-conservation of u
follows with Lemma I.4.2;(c) and Proposition I.2.8. This ends the proof of our existence
claim and (a). It remains to show (b) and (c).
(b) This property follows from the nonlinear estimate (III.24) for s̃ and Theorem I.3.4;(d).
(c) We assume β(d − 4) ≤ 4 and let s̃ ≥ 2 for which the nonlinear flow transports
H s̃

2(Ω) regularity. It is enough to show energy conservation on an arbitrary I ∈ Ic with
t0 ∈ I ⊆ I( f ). We fix such an interval I and let ( fn)n∈N ⊆ H s̃

2(Ω) with fn
n→∞−→ f in

Hs
2(Ω) with corresponding strong solutions (un)n∈N of (NLS) with un(t0) = fn. Since

H s̃
2(Ω) regularity is transported by the nonlinear flow, we have un ∈ C(I( fn), H s̃

2(Ω))∩
Lp

loc(I( fn), L∞(Ω)) for all n ∈ N. The local Lipschitz continuity of the nonlinear flow
in Hs

2(Ω) implies the existence of n0 ∈ N such that for all n ≥ n0 holds I ⊆ I( fn) and
un(t)

n→∞−→ u(t) in Hs
2(Ω) for all t ∈ I. From now on let n ≥ n0. Note that β(d− 4) ≤ 4

and Theorem III.1.2;(d) imply the embedding H s̃
2(Ω) ↪→ H2

2(Ω) ↪→ L2(β+1)( Omega).
The Lipschitz estimate (I.65) shows for n ≥ n0 and t, s ∈ I

‖Fβ,±(un(t)) − Fβ,±(un(s))‖L2(Ω)

. (‖un(t)‖β

L2(β+1)(Ω)
+ ‖un(s)‖β

L2(β+1)(Ω)
)‖un(t)− un(s)‖L2(β+1)(Ω)

. ‖un‖β

L∞(I,H s̃
2(Ω))
‖un(t)− un(s)‖H s̃

2(Ω).

Hence, Fβ,±(un) ∈ C(I, L2(Ω)). The equation iun = −∆Ωun + Fβ,±(un) in H1
2(Ω)∗

implies un ∈ C1(I, L2(Ω)). Lemma I.4.3 then provides energy conservation for un. Let
t ∈ I. un(t)

n→∞−→ u(t) in Hs
2(Ω) and E ∈ C(Hs

2(Ω), R) then shows

E(u(t)) = lim
n→∞
E(un(t)) = lim

n→∞
E( fn) = E( f ).

The remaining section is devoted to the application of the results of Section II.4 in the
context of the nonlinear Schrödinger equation (CPM). For these results to be applicable,
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we need much stronger assumptions on the properties of the Laplace-Beltrami oper-
ator. We need in particular that (eit∆Ω)t∈R satisfies the spectrally localized Strichartz
estimates and (−∆Ω, H2

2(Ω)) satisfies Bernstein inequalities and the (LP) property. All
of these properties have been introduced in Section II.2.

Convention
In the rest of this section we let γ ∈ [0, 1] and assume the following:

(O1) (−∆Ω, H2
2(Ω)) satisfies (p, q, d/2)-Bernstein inequalities for all 1 ≤ p ≤ q ≤ ∞.

(O2) (eit∆Ω)t∈R satisfies (p, q) Strichartz estimates of SL-type γ if (p, q) is sharp d/2-admissible.

(O3) The spectral decomposition ((−∆Ω)k)k∈N0 has the (LP) property.

Remarks:

(1) In the examples of Section II.3 and II.4.2 we already gathered two operators for
which the conditions (O1)-(O3) are satisfied. The first one is (−∆, H2

2(R
d)) with

γ = 0. The second one is (−∆Ω, H2
2(Ω)) on a connected, compact Riemannian

C∞-manifold (Ω, g) without boundary and γ = 1/2.

(2) We restrict our study to the case γ ∈ [0, 1]. We already mentioned in Section II.3.7
that γ = 1 induces the Sobolev-type loss. The case γ > 1 is therefore not relevant.

Let us bring the conditions (O1)-(O3) into the context of Section II.2 and II.4, in partic-
ular with respect to (A1)-(A3). Let (p, q) be a sharp d/2-admissible pair.
The Bernstein inequalities in (O1) and the Sobolev embedding H1

2(Ω) ↪→ Lq(Ω) for
q ∈ [2, e(d, 1)) do compare to the assumption in (A1). (O2) provides (A2) for the pair
(p, q). Condition (A3) involves the nonlinearity and will be checked separately for Fβ,±
in the proof of Theorem III.1.6. There we also analyze the expression SFβ,± from (II.60),
which played a major role in Section II.4. By means of (O2) and (O3) we can also apply
Lemma II.2.8;(a) to produce local (p, q) Strichartz estimate with γ/p-loss.
Now we state the central global existence result for d ∈ {2, 3} for the defocusing non-
linear Schrödiner equation (CPM). The proof combines the existence results in Theorem
III.1.5, Theorem I.3.6 and the results of Section II.4.

Theorem III.1.6
Let d ∈ {2, 3}, γ ∈ [0, 4−d

2 ], and β ∈ [2, ∞). Besides (O1)-(O3) we assume one of the
following:

(i) γ = 4−d
2 and β = 2,

(ii) γ < 4−d
2 and β(d− 2) < 4(1− γ).

Then for each f ∈ H1
2(Ω) the defocusing nonlinear Schrödinger equation (CPM) has a global

strong solution u ∈ Cb(R, H1
2(Ω)) with the following properties:

(a) u has L2(Ω)- and energy conservation.

(b) If β = 2, then u is unconditionally unique. If β > 2, then there is p ∈ (β, ∞) such that u
is conditionally unique in Cb(R, H1

2(Ω)) ∩ Lp
loc(R, L∞(Ω)).

(c) The induced nonlinear flow transports H2
2(Ω) regularity. If γ < 4−d

2 , then the nonlinear
flow is locally Lipschitz continuous.
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Remarks:

(1) The cases d ∈ {2, 3} and γ = 1/2 in the above theorem recover Theorem 2 and 3 in
[BGT04b].

(2) For Ω = R3 and γ = 0, the above theorem provides global solutions for (CPM)
for β ∈ [2, 4) in H1

2(R
3). This compares well to [Kat87], which establishes global

existence in H1
2(R

3) for β < 4.

(3) For d = 4 and β = 2 our method of proof fails. With Ω = R4 and γ = 0 this
corresponds to the energy-critical nonlinear Schrödinger equation. In this case
global existence in H1

2(R
4) was established in [RV07] by means of a much more

refined analysis than presented below.

Proof. Some differences in the Sobolev embeddings and the sharp d/2-admissibility
scales for d = 2 and d = 3 force us to consider these cases seperately. We start in (1)
with the harder one d = 3 and use the same arguments in (2) for d = 2.
(1) Let d = 3. In (1.1) and (1.2) we consider β = 2. (1.1) contains the unconditional
uniqueness for γ ≤ 1/2 and the global existence for γ < 1/2. (1.2) contains global exis-
tence for γ = 1/2. (1.3) contains our claims for β > 2.
(1.1) Let β = 2 and γ ≤ 1/2. We fix I ∈ Ic with t0 ∈ I. Since H1

2(Ω) ∼= D((−∆Ω)
1/2)

we want to apply Theorem II.4.4 with s := 1/2 and the sharp 3/2-admissible pair
(p, q) = (2, 6). Then 1

2 ≥
3
2q +

γ
p . Due to (O1) and the Sobolev embedding H1

2(Ω) ↪→
L6(Ω) condition II.4.4;(i) is fulfilled. Also F2,+ satisfies II.4.4;(ii) by (I.64). Now let u ∈
L∞(I, H1

2(Ω)) be a weak solution of (CPM). Lemma III.1.4;(d) provides for g ∈ H1
2(Ω)

the estimate

‖F2,+(g)‖H1
6/5

(Ω) . ‖g‖3
H1

2 (Ω)
. (III.33)

With SF2,+(u) from (II.60) the Bernstein inequalities for (−∆Ω, H2
2(Ω)) from (O1) and

(II.36) imply

SF2,+(u) =
∞

∑
k=1

2k( 3
2q+γ( 1

p−
1

p∗ ))‖(−∆Ω)kF2,+(u)‖L∞(I,Lq∗ (Ω))

.
∞

∑
k=1

2−
k
4 ‖(−∆Ω)k(−∆Ω)

1/2F2,+(u)‖L∞(I,L6/5(Ω))

. ‖F2,+(u)‖L∞(I,L6/5(Ω)) . ‖u‖
3
L∞(I,H1

2 (Ω))
. (III.34)

Hence, every weak solution u satisfies SF2,+(u) < ∞. Theorem II.4.4 provides that there
is at most one weak solution to (CPM). The same then holds true for strong solutions
of (CPM).
Let either γ < 1/2 and s = 1 or γ = 1/2 and s ∈ (1, 2). We fix f ∈ Hs

2(Ω). In both
cases we choose a sharp 3/2-admissible pair (p, q) with p > 2 such that s > 3

2 +
2(γ−1)

p
(put p ∈ (2, 4(1 − γ)) if γ < 1/2). The sharp 3/2-admissibility of (p, q) implies s >
3
q + 2γ

p . By means of (O2), (O3), and Lemma II.2.8 we have a local (p, q) Strichartz
estimate with γ/p-loss. Since β = 2 we also have the nonlinear estimates (III.24) and
(III.25) at our disposal. Theorem III.1.5 then provides a unique maximal strong solution
u ∈ C(I( f ), Hs

2(Ω)) ∩ Lp
loc(I( f ), L∞(Ω)) with blow-up alternative, L2(Ω)-conservation
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and locally Lipschitz continuous nonlinear flow. (III.24) additionally holds for s = 2
and Theorem III.1.5;(b+c) therefore yields transport of H2

2(Ω) regularity and energy
conservation, respectively. The conservation laws and the defocusing nature of F2,+
imply

‖u‖L∞(I( f ),H1
2 (Ω)) = sup

t∈I( f )

(
‖u(t)‖2

L2(Ω) + 2E(u(t))− 1
2
‖u(t)‖4

L4(Ω)

)1/2

.
(
‖ f ‖2

L2(Ω) + E( f )
)1/2

=: R < ∞. (III.35)

If γ < 1/2 and s = 1, then estimate (III.35) proves I( f ) = R with the blow-up alterna-
tive.
For the case γ = 1/2 and s ∈ (1, 2) we assume T+ < ∞ and put I+( f ) := [t0, t0 + T+).
We want to use the a priori estimate from Theorem II.4.5 in D((−∆Ω)

s/2) ∼= Hs
2(Ω). We

again put (p, q) = (2, 6) so that 1
2 ≥

3
2q +

γ
p . II.4.5;(iii) is therefore satisfied. By means

of β = 2 and (O1) the conditions in II.4.5;(i)+(ii) are also satisfied. We combine (III.34)
and (III.35) to prove with C(x) := x + x3 the estimate

‖u‖L∞(I+( f ),H1
2 (Ω)) + SF2,+(u) . C(R).

Theorem II.4.5;(b) then yields u ∈ L∞(I+( f ), Hs
2(Ω)) and therefore T+ = ∞ by the

blow-up alternative. T− = ∞ follows with the exact same argument.
(1.2) Let β = 2 and γ = 1/2. We fix f ∈ H1

2(Ω) and choose ( fn)n∈N ⊆ H2
2(Ω)

with fn
n→∞−→ f in H1

2(Ω). Then (1.1) provides a sequence (un)n∈N ⊆ C(R, H2
2(Ω)) ∩

Lp
loc(R, L∞(Ω)) of global strong solution of (CPM) with un(t0) = fn, which satisfy

L2(Ω)- and energy conservation. With E ∈ C1(H1
2(Ω), R) we provide similar to (III.35)

a n0 ∈N such that

sup
n≥n0

‖un‖L∞(R,H1
2 (Ω)) .

(
1 + ‖ f ‖2

L2(Ω) + E( f )
)1/2

< ∞. (III.36)

Let us check the assumptions of Theorem I.3.6. The density of the embedding H1
2(Ω) ↪→

L4(Ω) and Proposition I.4.2;(b) show that I.3.6;(i)+(ii) is satisfied (with (p, q) = (4, 4)).
Moreover, I.3.6;(iii) has been checked in Theorem III.1.2;(e). Theorem I.3.6 then pro-
vides on IT := [t0 − T, t0 + T] with an arbitrary T ∈ (0, ∞) a weak solution uT ∈
Cw(IT, H1

2(Ω)) of (CPM) on IT with uT(t0) = f , L2(Ω)-conservation and E(u(t)) ≤
E( f ) for all t ∈ IT. We in particular have

‖uT‖L∞(IT ,H1
2 (Ω)) .

(
‖ f ‖2

L2(Ω) + E( f )
)1/2 (III.37)

and uT ∈ C0,1/2(IT, L2(Ω)) by Proposition I.2.7;(a). In (1.1) the weak solution uT
was shown to be unqiue . For t1 ∈ I \ {t0} we can then construct a unique vT ∈
Cw(IT, H1

2(Ω)) with v(t1) = u(t1), which satisfies E(v(s)) ≤ E(v(t1)) for all s ∈ IT. The
uniqueness implies u(r) = v(r) for all r ∈ IT. This implies E( f ) ≤ E(u(t1) ≤ E( f )
and uT therefore has energy conservation. Then Theorem I.3.6;(b) provides uT ∈
C(IT, H1

2(Ω)) and that uT is a strong solution of (CPM) on IT. As T was arbitrary and
uT unique we can construct a well-defined global strong solution u ∈ C(R, H1

2(Ω)) of
(CPM) by

u : R→ H1
2(Ω), u(t) := u1(t) +

∞

∑
n=2

un|In\In−1
(t),
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III.1. The Laplace-Beltrami operator on C∞-manifolds with bounded geometry

which also satisfies L2(Ω)- and energy conservation. Finally, (III.37) yields that u ∈
L∞(R, H1

2(Ω)).
(1.3) Let β ∈ (2, 4(1− γ)) and γ < 1/2. We fix f ∈ H1

2(Ω). We choose (p, q) sharp
3/2-admissible such that p ∈ (β, 4(1− γ)). Then the sharp 3/2-admissibility implies the
inequality 1 > 3

2 −
2(γ−1)

p = 3
q + 2γ

p . As in (1.1) Theorem III.1.5 provides a maximal
strong solution u ∈ C(I( f ), H1

2(Ω)) ∩ Lp
loc(I( f ), L∞(Ω)) of (CPM) with L2(Ω)- and

energy conservation, blow-up alternative and locally Lipschitz continuous nonlinear
flow. We additionally have transport of H2

2(Ω) regularity, since β > 2 and therefore
(III.24) holds with s = 2. I( f ) = R follows via the energy bound (III.35). This follows
from the fact that Fβ,+ is defocusing.
(2) Let d = 2. We proceed as for d = 3 where in the case γ = 1 instead of γ = 1/2

Theorem III.1.5 fails.
(2.1) Let β = 2 and γ ≤ 1. We fix I ∈ Ic with t0 ∈ I. We first show that (CPM)
has at most one strong solution. We use Theorem II.4.4 for s = 1/2 and the sharp 1-
admissible pairs (p, q) = (4, 4). The sharp 1-admissibility condition yields 1

2 ≥
1
q +

γ
p .

Hs
2(Ω) ↪→ L4(Ω) and (O1) imply II.4.4;(i). Also Fβ,+ satisfies II.4.4;(ii) by (I.64). Let

u ∈ L∞(I, H1
2(Ω)) be a weak solution of (CPM) on I. Lemma III.1.4;(d) provides for

g ∈ H1
2(Ω) the estimate

‖F2,+(g)‖H1
4/3

(Ω) . ‖g‖3
H1

2 (Ω)
. (III.38)

With the Bernstein inequalities for (−∆Ω, H2
2(Ω)), (II.36) and (III.38) follows

SF2,+(u) =
∞

∑
k=1

2k( 1
q+γ( 1

p−
1

p∗ ))‖(−∆Ω)kF2,+(u)‖L∞(I,Lq∗ (Ω))

.
∞

∑
k=1

2−
k(1+2γ)

4 ‖(−∆Ω)
1/2(−∆Ω)kF2,+(u)‖L∞(I,L4/3(Ω))

. ‖F2,+(u)‖L∞(I,H1
4/3

(Ω)) . ‖u‖3
L∞(I,H1

2 (Ω))
. (III.39)

Hence, every weak solution u satisfies SF2,+(u) < ∞. Theorem II.4.4 provides that there
is at most one strong solution of (CPM) as before.
Let either γ < 1 and s = 1 or γ = 1 and s ∈ (1, 2). We fix f ∈ Hs

2(Ω). In both cases there
is (p, q) sharp 1-admissible with p > β and s > 1 + 2(γ−1)

p = 2
q +

2γ
p . Theorem III.1.5

provides a unique maximal strong solution u ∈ C(I( f ), Hs
2(Ω)) ∩ Lp

loc(I( f ), L∞(Ω))
with blow-up alternative, L2(Ω)-conservation and Lipschitz continuous nonlinear flow.
By means of β = 2 and (III.24) for s = 2 we have transport of H2

2(Ω) regularity and
therefore energy conservation. With the conservation laws and the defocusing nonlin-
earity Fβ,+ we have

‖u‖L∞(I( f ),H1
2 (Ω)) .

(
‖ f ‖2

L2(Ω) + 2E( f )
)1/2

=: R < ∞. (III.40)

If γ < 1 and s = 1 the estimate (III.40) proves I( f ) = R by the blow-up alternative.
For the case γ = 1 and s ∈ (1, 2) we assume T+ < ∞ and put I+( f ) := [t0, t0 + T+).
We want to use the a priori estimate from Theorem II.4.5 in D((−∆Ω)

s/2) ∼= Hs
2(Ω).

We put (p, q) = (4, 4). Then s
2 > 1

2 ≥
1
q +

1
p . II.4.5;(iii) is therefore satisfied and so are

II.4.5;(i)+(ii). With (III.39) and (III.40) follows with C(x) := x + x3 the estimate

‖u‖L∞(I+( f ),H1
2 (Ω)) + SF2,+(u) . C(R).
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III. Local and global existence results for the nonlinear Schrödinger equation

Theorem II.4.5 then implies u ∈ L∞(I+( f ), Hs
2(Ω)) and therefore T+ = ∞ by the blow-

up alternative. The same argument provides T− = ∞, hence I( f ) = R.
(2.2) In the limit case β = 2 and γ = 1 we repeat the exact same argument as in (1.2).
(2.3) Let β ∈ (2, 4(1− γ)) and γ < 1/2. We fix f ∈ H1

2(Ω). We choose (p, q) sharp
1-admissible such that p ∈ (β, 4(1− γ)). Then the sharp 1-admissibility implies the
inequality 1 > 1− 2(γ−1)

p = 2
q + 2γ

p . As in (2.1) Theorem III.1.5 provides a maximal

strong solution u ∈ C(I( f ), H1
2(Ω)) ∩ Lp

loc(I( f ), L∞(Ω)) of (CPM) with L2(Ω)- and
energy conservation, blow-up alternative and locally Lipschitz continuous nonlinear
flow. We additionally have transport of H2

2(Ω) regularity, since β > 2 and (III.24) holds
with s = 2. I( f ) = R follows via the energy bound (III.40). This follows from the fact
that Fβ,+ is defocusing.

III.2. Divergence form operators with potential on Rd

The appendix of [BGT04b] contains the proof for local (p, q) Strichartz estimates with
1/2p-loss for all sharp d/2-admissible pairs (p, q) for the Schrödinger group (e−itP)t∈R

generated by a certain divergence form operator (P, H2
2(R

d)) on Rd. It is indicated
in [BGT04b] that the global existence results of the paper should carry over to this
situation but no proof is given.
In this section we want to consider operators of the form P + V on Rd, whereby V is
a bounded potential. By means of a perturbation argument we transfer the local (p, q)
Strichartz estimates 1/2p-loss for (e−itP))t∈R to the Schrödinger group (e−it(P+V))t∈R.
As a consequence, we are able to prove the existence of maximal strong solutions in
Hs

2(R
d) for the corresponding nonlinear Schrödinger equation. We furthermore derive

a global existence result in H1
2(R

2).
Let b ∈ C∞(Rd, Rd), B := diag(b1, ..., bd), and V ∈ C1(Rd, R) satisfy the following:

(C1) b− := inf
i∈{1,...,d},x∈Rd

bi(x) > 0 and V− := inf
i∈{1,...,d},x∈Rd

Vi(x) ≥ 0,

(C2) For all α ∈Nd
0 holds ‖∂αb‖L∞(Rd,Rd) < ∞ and sup

α∈Nd
0 , |α|≤1

‖∂αV‖L∞(Rd) < ∞.

We define the linear operators

P : C∞
c (Rd)→ Lq(Rd), P f := −det(B)−1/2 div(det(B)1/2B−1 · ∇ f ),

A : C∞
c (Rd)→ Lq(Rd), A f := P f + V f .

(III.41)

Then we realize (A, C∞
c (Rd)) on the space Lq(Rd) for q ∈ (1, ∞) by means of the

operator (Aq, D(Aq)) defined by

D(Aq) := { f ∈ H1
q (R

d) | A f ∈ Lq(Rd) in distributional sense},

Aq f := A f on D(Aq).

We gather the needed properties of (Aq, D(Aq)) and its fractional powers in the next
Lemma.
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III.2. Divergence form operators with potential on Rd

Lemma III.2.1
Let d ∈ N, q ∈ (1, ∞), and θ ∈ (0, 1). Then (Aq, D(Aq)) is a closed linear operator with the
following properties:

(a) D(Aq) ∼= H2
q (R

d) and (Aq, D(Aq)) has fractional powers (Aθ
q, D(Aθ

q)) with D(Aθ
q) ↪→

L∞(Rd) if θ > d/2q.

(b) (A2, H2
2(R

d)) is non-negative and selfadjoint on L2(Rd) with respect to the weighted scalar
product 〈·, · det(B)1/2〉L2(Rd) and D(Aθ

2)
∼= H2θ

2 (Rd).

(c) (e−itA2)t∈R satisfies (p, r) Strichartz estimates with 1/2p-loss for all sharp d/2-admissible
(p, r) ∈ [2, ∞]× [2, ∞).

Remarks:

(1) In (b) the induced norm of the weighted scalar product 〈·, · det(B)1/2〉L2(Rd) is equiv-
alent to ‖ · ‖L2(Rd) on L2(Rd) by means of the properties of b.

(2) The perturbation argument we use in (c) can be applied for all sharp d/2-admissible
pairs (p, q), to prove local (p, q) Strichartz estimates for (eit(∆−V))t∈R with V ∈
L∞(Rd).

Proof. Let q ∈ (1, ∞). Note that the conditions on b imply that there are C1, C2 ∈ (0, ∞)
such that C1 ≤ det(B(x)) ≤ C2 for all x ∈ Rd. We will use this fact below without
mentioning.
(a) Since

A f = −
d

∑
i=1

bi∂
2
xi

f −
d

∑
i=1

(
det(B)−1/2bi(∂xi det(B)1/2) + ∂xi bi

)
∂xi f + V f

the conditions (C1) and (C2) imply that −A satisfies the assumptions in Theorem 3.1.1
in [Lun95]. Consequently, we have D(Aq) ∼= H2

q (R
d) and (Aq, H2

q (R
d)) is closed. Sec-

tion 3.1.1 in [Lun95] furthermore provides that (−Aq, H2
q (R

d)) is sectorial. Then we
can define fractional powers (Aθ

q, D(Aθ
q)) such that Proposition 2.2.15 in [Lun95] and

Theorems 2.4.2.2 and 2.8.1;(d) in [Tri95] provide for θ ∈ (d/2q, 1) the embedding

D(Aθ
q) ↪→ (Lq(Rd), H2

q (R
d))θ,∞

∼= B2θ
q,∞(R

d) ↪→ L∞(Rd).

For a definition of the Besov space Bs
p,q(R

d) and further details we refer to Section 2.3
in [Tri95].
(b) Let q = 2. The sesquilinear form

a : H1
2(R

d)× H1
2(R

d)→ C,

a( f , g) :=
d

∑
i=1

∫
Rd

bi∂xi f · ∂xi g det(B)1/2 dλ +
∫

Rd
V f g det(B)1/2 dλ

is densely defined, continuous, accretive, closed and symmetric. Proposition 1.24 in
Section 1.2.3 of [Ouh05] implies that (Ã, D(Ã)) given by

D(Ã) :=
{

f ∈ L2(Rd) | ∃g∈L2(Rd)∀ϕ∈H1
2 (R

d) : a( f , ϕ) = 〈g, ϕ det(B)1/2〉L2(Rd)

}
,

Ã f := g on D(Ã),
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III. Local and global existence results for the nonlinear Schrödinger equation

is a well-defined, non-negative, and selfadjoint linear operator on L2(Ω) with respect to
the inner product 〈·, · det(B)1/2〉L2(Rd). We have H2

2(R
d) ⊆ D(Ã) and D(Ã) ⊆ D(A2) ∼=

H2
2(R

d). Hence, D(Ã) = H2
2(R

d). Integration by parts and det(B)(H1
2(R

d)) = H1
2(R

d)
then imply

∀ f∈H2
2 (R

d),g∈H1
2 (R

d) : 〈Ã f , g〉L2(Rd) = 〈A f , g〉L2(Rd).

Thus, (Ã, D(Ã)) = (A2, D(A2)) and Corollary I.1.3;(c) yields for θ ∈ (0, 1)

D(Aθ
2)
∼= [L2(Rd), D(A2)]θ ∼= [L2(Rd), H2

2(R
d)]θ ∼= H2θ

2 (Rd).

(c) Let (p, q) ∈ [2, ∞]× [2, ∞) be sharp d/2-admissible. The realizations of (P, C∞
c (Rd))

and (A, C∞
c (Rd)) given in (III.41) on L2(Rd) are non-negative and selfadjoint opera-

tors on L2(Rd). We denote them by (P2, H2
2(R

d)) and (A2, H2
2(R

d)), respectively. We
furthermore have D(Aθ/2

2 ) ∼= D(Pθ/2
2 ) ∼= Hθ

2(R
d) for θ ∈ (0, 2), which implies

‖e−i(·)A2‖L∞(R,L(Hθ
2 (R

d)))
∼= ‖e−i(·)P2‖L∞(R,L(Hθ

2 (Ω)))
∼= 1. (III.42)

Local (p, q) Strichartz estimates are translation invariant in I. It is therefore enough
to prove such an estimate for I := [0, T] with an arbitrary T ∈ (0, ∞). Moreover, we
can assume f ∈ H2

2(R
d) since H2

2(R
d) is dense in H1/p

2 (Rd). Theorem 5 in [BGT04b]
provides a non-decreasing C : [0, ∞)→ [0, ∞) such that

‖e−i(·)P2 f ‖Lp(I,Lq(Rd)) ≤ C(T)‖ f ‖
H

1/p
2 (Rd)

. (III.43)

We define the function u ∈ C1(R, H2
2(R

d)) by u(t) := e−itA2 f . u is the unique solution
of the Cauchy problem

iu′(t) = P2u(t) + Vu(t), t 6= 0,
u(0) = f .

(III.44)

Observe that (C2) yields V ∈ W1
∞(R

d) and therefore V ∈ L(H1
2(R

d)). By means of
complex interpolation with V ∈ L(L2(Rd)) we have V ∈ L(Hθ

2(R
d)) for all θ ∈ (0, 1).

We then have Vu ∈ C(R, H1
2(R

d)) and we can consider (III.44) as an inhomogeneous
equation with respect to (P2, H2

2(R
d)). Duhamel’s formula yields for all t ∈ R

u(t) = e−itA2 f = e−itP2 f − i
∫ t

0
e−i(t−s)P2Vu(s) ds.

The previous formula combined with Minkowski’s integral inequality, (III.43), V ∈
L(H1/p

2 (Rd)), and (III.42) provides

‖e−i(·)A2 f ‖Lp(I,Lq(Rd)) ≤ ‖e−i(·)P2 f ‖Lp(I,Lq(Rd)) + ‖e−i(·)P2Ve−i(·)A2 f ‖
L1(I,H

1/p
2 (Rd))

≤ C(T)‖ f ‖
H

1/p
2 (Rd)

∼= C(T)‖ f ‖
D(A

1/2p
2 )

.
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We now turn to the construction of solutions for the nonlinear Schrödinger equation

iu′(t) = Ã2u(t) + Fβ,±(u(t)), t 6= t0,

u(t0) = f .
(III.45)

Recall that (Ã2, H1
2(R

d)) is the extrapolation operator of (A2, H2
2(R

d)). Compared to
Theorem III.1.5 in the previous section we could say that we are in a “γ = 1/2” situation
and we expect analogous results to hold.
Indeed, we first apply Theorem I.3.4 to deduce an existence result for maximal strong
solutions of (III.45) in Hs

2(R
d).

Theorem III.2.2
Let d ∈N≥2, s, s̃ ∈ [1, 2] with s ≤ s̃, and β ∈ (1, ∞), which are assumed to satisfy:

(i) β(d− 2s) ≤ 2(s + 1) and s > d
2 −

1
β .

(ii) Either β ∈Neven or β > [s] + 1 or s = 1.

Then there is p ∈ (max{β, 2}, ∞) such that for each f ∈ Hs
2(R

d) the nonlinear Schrödinger
equation (III.45) has a conditionally unique maximal strong solution u ∈ C(I( f ), Hs

2(R
d)) ∩

Lp
loc(I( f ), L∞(Rd)) with the following properties:

(a) u has L2(Rd)-conservation and the induced nonlinear flow is locally Lipschitz continuous.

(b) The nonlinear flow transports H s̃
2(Ω) regularity if either β ∈ Neven of β > [s̃]. In that

case u satisfies the blow-up alternative with respect to H s̃
2(Ω).

(c) If β(d− 4) ≤ 4 and u transports H s̃
2(R

d) regularity for some s̃ ≥ 2, then u has energy
conservation.

Proof. We fix f ∈ Hs
2(R

d) and let (p, q) be a sharp d/2-admissible pair such that p ∈
(max{β, 2}, ∞) and s

2 > d
4 −

1
2β > d

2q + 1
2p . Condition (ii) and Lemma III.1.4 yield

the nonlinear estimates (III.23), (III.24), and (III.25). Lemma III.2.1;(c) provides a local
(p, q) Strichartz estimate with 1/2p-loss. Theorem I.3.4 then implies the existence of a
unique maximal mild solution u ∈ C(I( f ), Hs

2(R
d))∩ Lp

loc(I( f ), L∞(Rd)) of (III.45) with
a locally Lipschitz continuous nonlinear flow. The condition β(d− 2s) ≤ 2(s + 1) and
the Sobolev embedding A.2.1 imply that Hs

2(R
d) ↪→ Lq(Rd) with q = 2d(β+1)/(d+2). The

Lipschitz estimate (I.65) from Proposition I.4.2;(b) then implies for g, h ∈ Hs
2(R

d)

‖Fβ,±(g)− Fβ,±(h)‖H1
2 (R

d)∗ . ‖Fβ,±(g)− Fβ,±(h)‖L2d/(d+2)(Rd)

.
(
‖g‖β

Lq(Rd)
+ ‖h‖β

Lq(Rd)

)
‖g− h‖Lq(Rd)

.
(
‖g‖β

Hs
2(R

d)
+ ‖h‖β

Hs
2(R

d)

)
‖g− h‖Hs

2(R
d).

Hence, Fβ,±(u) ∈ C(I( f ), E∗A) and Proposition I.2.4 yields that u is in fact a strong so-
lution of (III.45). Moreover, Lemma I.2.8 provides L2(Rd)-conservation. This finishes
the proof of (a).
(b) This property follows from the nonlinear estimate (III.24) for s̃ and Theorem I.3.4;(d).
(c) We repeat the exact same argument from the proof of Theorem III.1.5;(c) and we
provide all the details. We assume β(d− 4) ≤ 4 and let s̃ ≥ 2 for which the nonlinear
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flow transports H s̃
2(R

d) regularity. It is enough to show energy conservation on an
arbitrary I ∈ Ic with t0 ∈ I ⊆ I( f ). We fix such an interval I and let ( fn)n∈N ⊆ H s̃

2(R
d)

with fn
n→∞−→ f in Hs

2(R
d) with corresponding strong solutions (un)n∈N of (III.45) with

un(t0) = fn. Since H s̃
2(R

d) regularity is transported by the nonlinear flow, we have
un ∈ C(I( fn), H s̃

2(R
d)) ∩ Lp

loc(I( fn), L∞(Rd)) for all n ∈N. The local Lipschitz continu-
ity of the nonlinear flow in Hs

2(R
d) implies the existence of n0 ∈ N such that for all

n ≥ n0 holds I ⊆ I( fn) and un(t)
n→∞−→ u(t) in Hs

2(R
d) for all t ∈ I. From now on let

n ≥ n0. Note that β(d− 4) ≤ 4 and the Sobolev embedding A.2.1 imply the embedding
H s̃

2(R
d) ↪→ H2

2(R
d) ↪→ L2(β+1)(Rd). The Lipschitz estimate (I.65) shows for n ≥ n0 and

t, s ∈ I

‖Fβ,±(un(t)) − Fβ,±(un(s))‖L2(Ω)

. (‖un(t)‖β

L2(β+1)(Ω)
+ ‖un(s)‖β

L2(β+1)(Ω)
)‖un(t)− un(s)‖L2(β+1)(Ω)

. ‖un‖β

L∞(I,H s̃
2(Ω))
‖un(t)− un(s)‖H s̃

2(Ω).

Hence, Fβ,±(un) ∈ C(I, L2(Rd)). The equation iun = Ã2un + Fβ,±(un) in H1
2(R

d)∗

implies un ∈ C1(I, L2(Rd)). Lemma I.4.3 then provides energy conservation for un.
Let t ∈ I. un(t)

n→∞−→ u(t) in Hs
2(R

d) and E ∈ C(Hs
2(R

d), R) then shows

E(u(t)) = lim
n→∞
E(un(t)) = lim

n→∞
E( fn) = E( f ).

The energy methods from Lemma I.3.5 allow us to deduce the following global exis-
tence result for (III.45) in H1

2(R
2).

Corollary III.2.3
Let β ∈ [2, ∞), p ∈ (β, ∞), and f ∈ H1

2(R
2). Then the nonlinear Schrödinger equa-

tion (III.45) has a conditionally unique maximal strong solution u ∈ C(I( f ), H1
2(R

2)) ∩
Lp

loc(I( f ), L∞(R2)) with the following properties:

(a) u has L2(R2)- and energy conservation.

(b) If either the equation is defocusing or β = 2 and ‖ f ‖L2(R2) is small enough, then I( f ) = R

and u ∈ Cb(R, H1
2(R

2)).

(c) The induced nonlinear flow is locally Lipschitz continuous. It furthermore transports
H2

2(R
2)-regularity.

Proof. We fix f ∈ H1
2(R

2). Since β ≥ 2 the conditions III.2.2;(i)+(ii) are satisfied.
Theorem III.2.2 provides a unique maximal strong solution u ∈ C(I( f ), H1

2(R
2)) ∩

Lp
loc(I( f ), L∞(R2)) of (III.45). Theorem III.2.2;(a) provides L2(R2)-conservation and the

local Lipschitz continuity of the nonlinear flow. Moreover, Theorem III.2.2;(b)+(c) pro-
vides transport of H2

2(R
2) regularity (recall β ≥ 2) and energy conservation of u. It

remains to show (b). We derive the criteria for I( f ) = R from Lemma I.3.5, whose
assumptions we check now. We have already established L2(R2)- and energy con-
servation and therefore I.3.5;(i) is satisfied. Since (β + 2)F̂β,±(g) = ±‖g‖β+2

Lβ+2(R2)
the
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III.3. Schrödinger operators with superquadratic potentials on Rd

condition I.3.5;(ii) is satisfied in the defocusing case. For the focusing case and β = 2
the estimate (I.52) shows for g ∈ H1

2(R
2) that

−‖g‖4
L4(R2) & −‖g‖

2
L2(R2)‖g‖

2
H1

2 (R
2)

.

Hence, I.3.5;(ii) is satisfied with β2 = 2. In both cases Lemma I.3.5 provides u ∈
L∞(I( f ), H1

2(R
2)) under the given assumptions in (b) above. This shows I( f ) = R by

the blow-up alternative.

III.3. Schrödinger operators with superquadratic potentials
on Rd

The remark after Lemma III.2.1 states that local (p, q) Strichartz estimates without
loss hold for the Schrödinger group generated by Schrödinger operators −∆ + V with
bounded potential. In [YZ04] local (p, q) Strichartz estimates with `-loss are shown for
the Schrödinger group generated by Schrödinger operators with certain unbounded
potentials. Moreover, a local existence result in the fashion of Theorem I.3.4 is proven.
In this section we briefly want to discuss their setting and how it fits into the framework
of Section I.3. We additionally state a slightly extended version of Theorem 1.5 in
[YZ04].
Let q ∈ (1, ∞) and V ∈ C∞(Rd, R) which satisfies infx∈Rd V(x) ≥ 1. We assume that
there is m ∈ (2, ∞) with the following properties:

(V1) There is R > 0 such that V(x) ∼= (1 + |x|2)m
2 for x ∈ B(0, R)c,

(V2) For all α ∈Nd
0 holds |(∂αV)(x)| ≤ Cα(1 + |x|2)

m−|α|
2 .

We define the differential expression

A : C∞
c (Rd)→ Lq(Rd), A f := −∆ f + V f .

In [HS96] Theorem 8.14 it is shown that (A, C∞
c (Rd)) is essentially selfadjoint on L2(Rd)

with unique selfadjoint and positive definite extension (A2, D(A2)). Lemma 2.4 in
[YZ04] shows for s ∈ [0, ∞) that (As

2, D(As
2)) can be extended to a closed operator on

(As
q, D(As

q)) on Lq(Rd). They additionally show

D(As/2
q ) = C∞

c (Rd)
‖·‖

D(A
s/2
q ) , ‖ f ‖D(As/2

q ) := ‖ f ‖Hs
q(R

d) + ‖(1 + | · |2)
ms
4 f ‖Lq(Rd).

Consequently, the Sobolev embedding A.2.1 implies D(Aα
q) ↪→ L∞(Rd) for α > d/2q

and D(As/2
2 ) ↪→ Lq(Rd) for either q ∈ [2, e(d, s)) or q = e(d, s) if d > 2s. Theorem 1.3 in

[YZ04] states for the Schrödinger group (e−itA2)t∈R local (p, q) Strichartz estimates with
`-loss for all sharp d/2-admissible pairs (p, q) and ` > 1

p (
1
2 −

1
m ). The Lipschitz estimate

(I.64) implies for g, h ∈ L2(Rd, φdλ) ∩ L∞(Rd) with some φ ∈ C(Rd) the estimates

‖Fβ,±(g)‖L2(Rd,φdλ) . ‖g‖
β

L∞(Rd)
‖g‖L2(Rd,φdλ),

‖Fβ,±(g)− Fβ,±(h)‖L2(Rd,φdλ) .
(
‖g‖β

L∞(Rd)
+ ‖h‖β

L∞(Rd)

)
‖g− h‖L2(Rd,φdλ).
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III. Local and global existence results for the nonlinear Schrödinger equation

Combined with the nonlinear estimates of Lemma III.1.4 we have all the nonlinear
estimates from I.3.4;(ii) for Fβ,± on D(As/2

2 ). With α > d/2q and ` > 1
p (

1
2 −

1
m ) follows

α + ` >
d
2q

+
1
p

(
1
2
− 1

m

)
=

d
4
− 1

p

(
1
2
+

1
m

)
.

As a consequence of Theorem I.3.4 we then recover the following existence result for
the nonlinear Schrödinger equation

iu′(t) = Ã2u(t) + Fβ,±(u(t)), t 6= t0

u(t0) = f .
(III.46)

Theorem III.3.1
Let t0 ∈ R, d ∈ N, s ∈ [0, ∞), β ∈ (1, ∞) and (p, q) ∈ [2, ∞)2 sharp d/2-admissible with
p > β. We furthermore assume:

(i) s >
d
2
− 1

p

(
1 +

2
m

)
.

(ii) Either β ∈Neven or β > [s] + 1 or s = 1.

Then for each f ∈ D(As/2
2 ) the nonlinear Schrödinger equation (III.46) has a conditionally

unique maximal mild solution u ∈ C(I( f ), D(As/2
2 )) ∩ Lp

loc(I( f ), L∞(Rd)) with the following
properties:

(i) The induced nonlinear flow is locally Lipschitz continuous.

(ii) If β(d− 2s) ≤ 2(s + 1), then u is a strong solution of (III.46) with L2(Rd)-conservation.

Remark: Compared to Theorem 1.5 in [YZ04] we state in the above theorem maximal
solutions with uniqueness in C(I( f ), D(As

2))∩ Lp
loc(I( f ), L∞(Rd)) instead in the smaller

space C(I( f ), D(As
2))∩ Lp

loc(I( f ), D(As−`
q )). We additionally obtain local Lipschitz con-

tinuity of the nonlinear flow instead of continuity.

III.4. The Dirichlet Laplacian on bounded domains

In this section we treat the nonlinear Schrödinger equation for the Dirichlet Laplacian
on a bounded domain with initial data in the energy space and the model nonlinearity
Fβ,±. In order to avoid some inessential technical difficulties we choose β ∈ Neven.
Proposition I.4.2;(a) then ensures Fβ,± ∈ C∞(R2, R2).
We first fix the notion of a Lipschitz and C∞-domain.

Definition III.4.1
Let d ∈N≥2 and Ω ⊆ Rd be a bounded domain.

(a) Ω is called a Lipschitz domain, if there is N ∈N and an open cover (Ωi)
N
i=0 of Ω with the

following properties:

• Ω0 ⊆ Ω and Ωi ∩ ∂Ω 6= ∅ for i ∈ {1, ..., N}.
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III.4. The Dirichlet Laplacian on bounded domains

• There is a family of open sets (Oi)
N
i=1 in Rd−1 and functions (bi)

N
i=1 in C0,1(Oi, R)

such that for i ∈ {1, ..., N} holds (possibly after permutation of coordinates)

∂Ω ∩Ωi =
{

x ∈ Rd | (x1, ..., xd−1) ∈ Oi, xd = bi(x1, ..., xd−1)
}

,

Ω ∩Ωi ⊆
{

x ∈ Rd | (x1, ..., xd−1) ∈ Oi, xd > bi(x1, ..., xd−1)
}

.

(b) Ω is called a C∞-domain if it is a Lipschitz domain such that bi ∈ C∞(Oi, R) for all
i ∈ {1, ..., N}.

Remarks III.4.2
Let us give the most important examples and comment on possible extensions.

(1) Clearly all bounded C∞-domains are bounded Lipschitz domains.

(2) We are interested in the following special Lipschitz domains. Let Ω ⊆ R2 be a
bounded domain. We call Ω ⊆ R2 polygonal, if there is P ∈ N and x1, ..., xP such
that with xP+1 := x1 holds ∂Ω =

⋃P
i=1 Li with

Li := {x ∈ R2 | ∃t∈[0,1] : x = xi + t(xi+1 − xi)}.

(3) The notion of a bounded Lipschitz domain has a straightforward generalization to
unbounded domains. The notion of a strong local Lipschitz domain (not necessarily
bounded) introduced in Definition 4.9 of [AF03] is such a generalization. For such
domains Lemma III.4.3 below would still hold true. This is relevant since local (p, q)
Strichartz estimates with and without loss have been proven on certain unbounded
exterior domains in [BSS12] and [Iva10]. We therefore could study consequences of
Theorem I.3.4 for the nonlinear Schrödinger equation on such domains. However,
we will not pursue this here and restrict our study to the case of bounded domains.

(4) We will need a bounded extension operator in Sobolev spaces. Let Ω ⊆ Rd be a
bounded Lipschitz domain (or an unbounded strong local Lipschitz domain). Then
Stein’s extension theorem formulated in Theorem 5.24 of [AF03] states the existence
of extΩ such that for all k ∈ N0 and p ∈ [1, ∞) we have extΩ ∈ L(Hk

p(Ω), Hk
p(R

d))

and (extΩ f )|Ω = f for f ∈ Hk
p(Ω). The construction of extΩ furthermore provides

for f ∈ Hk
p(Ω) ∩ L∞(Ω) the inequality ‖ extΩ f ‖L∞(Rd) ≤ ‖ f ‖L∞(Ω). The complex

interpolation Theorem A.1.3 then implies extΩ ∈ L(Hs
p(Ω), Hs

p(R
d)) for all s ∈

[0, ∞) and p ∈ (1, ∞).

We produce next the needed nonlinear estimates for Fβ,±. We use the extension opera-
tor extΩ to transfer estimates known on Hk

2(R
d) to Hk

2(Ω). The prior have been proved
in Lemma III.1.3.

Lemma III.4.3
Let d ∈ N≥2, k ∈ N, β ∈ Neven, and Ω ⊆ Rd be a bounded Lipschitz domain. Then holds
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III. Local and global existence results for the nonlinear Schrödinger equation

Fβ,±(Hk
2(Ω) ∩ L∞(Ω)) ⊆ Hk

2(Ω) ∩ L∞(Ω) and

‖Fβ,±(g)‖Hk
2(Ω) . ‖g‖

β

L∞(Ω)
‖g‖Hk

2(Ω), (III.47)

‖Fβ,±(g)− Fβ,±(h)‖Hk
2(Ω) .

(
‖g‖β

L∞(Ω)
+ ‖h‖β

L∞(Ω)

)
‖g− h‖Hk

2(Ω) (III.48)

+
(
‖g‖β−1

L∞(Ω)
+ ‖h‖β−1

L∞(Ω)

)(
‖g‖Hk

2(Ω) + ‖h‖Hk
2(Ω)

)
‖g− h‖L∞(Ω).

Moreover, Fβ,±(H1
2,0(Ω) ∩ L∞(Ω)) ⊆ H1

2,0(Ω) ∩ L∞(Ω).

Proof. Since β ∈ Neven the nonlinearity Fβ,± ∈ C∞(R2, R2) is a polynomial in z and
z. Then the properties of the extension operator extΩ from Remark III.4.2;(4) and the
product estimate from Lemma III.1.3;(a) with Ω = Rd provides for g, h ∈ H1

2(Ω) ∩
L∞(Ω) the estimate

‖gh‖Hk
2(Ω) = ‖(extΩ g)|Ω · (extΩ h)|Ω‖Hk

2(Ω)

. ‖ extΩ g‖L∞(Rd)‖ extΩ h‖Hk
2(R

d) + ‖ extΩ g‖Hk
2(R

d)‖ extΩ h‖L∞(Rd)

. ‖g‖L∞(Ω)‖h‖Hk
2(Ω) + ‖g‖Hk

2(Ω)‖h‖L∞(Ω). (III.49)

A successive application of (III.49) implies (III.47). The estimate (III.48) then follows
via the fundamental theorem as in the proof of Lemma III.1.3;(c). For the remaining
assertion it is sufficient to prove that H1

2,0(Ω) ∩ L∞(Ω) is closed under multiplication.
We fix g, h ∈ H1

2,0(Ω)∩ L∞(Ω). By means of the estimate (III.49) we have gh ∈ H1
2(Ω)∩

L∞(Ω), which leaves us to prove gh ∈ H1
2,0(Ω). To this end we first construct a sequence

(hn)n∈N in C∞
c (Ω) such that

hn
n→∞−→ h in H1

2(Ω), sup
n∈N

‖hn‖L∞(Ω) < ∞. (III.50)

Following the proof of Theorem 3.17 in [AF03] we define

Ωm := {x ∈ Ω | |x| < m ∧ d({x}, ∂Ω) > 1/m}, (m ∈N)

Ω0 = Ω−1 := ∅,

Om := Ωm+1 ∩ (Ωm−1)
c,

Um := Ωm+2 ∩ (Ωm−2)
c.

O := {Om | m ∈ N} is an open cover of Ω which admits a C∞-partition of unity
(χm)m∈N subordinate to O such that for all m ∈ N only χm satisfies supp(χm) ⊆ Om.
Let furthermore (ϕε)ε∈(0,1) be an approximate identity and (εm)m∈N a sequence in (0, 1)
with εm < 1/(m+1)(m+2). This implies supp(ϕεm ∗ χmh) ⊆ Om. Moreover, (εm)m∈N can
be chosen such that (hn)n∈N in C∞

c (Ω) defined by

hn : Ω→ C, hn :=
n

∑
m=1

ϕεm ∗ (χmh), (III.51)
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satisfies hn
n→∞−→ h in H1

2(Ω). Since Ok ∩Om = ∅ for |k−m| > 4 we have

‖hn‖L∞(Ω) ≤ sup
k∈N

∑
1≤m≤n
|k−m|≤4

‖ϕεm ∗ (χmh)‖L∞(Uk) . ‖h‖L∞(Ω).

Consequently, (hn)n∈N from (III.51) satisfies (III.50).
We now define (pn)n∈N by pn := ghn. Then pn ∈ H1

2,0(Ω) for all n ∈N. The dominated
convergence theorem yields

‖(∇g)(h− hn)‖L2(Ω)
n→∞−→ 0. (III.52)

Indeed, (∂αg)(h− hn)
n→∞−→ 0 almost everywhere on Ω and

D ∈ L2(Ω), D(ω) := |∇g(ω)|
(
‖h‖L∞(Ω) + sup

n∈N

‖hn‖L∞(Ω)

)
a.e.

is a majorant of ((∇g)(h − hn))n∈N almost everywhere on Ω. With (III.52) and the
product rule we obtain

‖gh− pn‖H1
2 (Ω) ≤

(
‖g‖L∞(Ω) + ‖h‖L∞(Ω)

)
‖h− hn‖H1

2 (Ω) + ‖(∇g)(h− hn)‖L2(Ω)

n→∞−→ 0.

Consequently, we have gh ∈ H1
2,0(Ω).

We now turn to the nonlinear Schrödinger equation

iu′(t) = −∆̃Du(t) + Fβ,±(u(t)), t 6= t0,

u(t0) = f ,
(III.53)

with f ∈ H1
2,0(Ω) and a bounded Lipschitz domain Ω ⊆ R2. (−∆D, D(−∆D)) denotes

the Dirichlet Laplacian on Ω given by

D(−∆D) :=
{

f ∈ H1
2,0(Ω) | ∆ f ∈ L2(Ω) in distributional sense

}
,

−∆D f := −∆ f on D(−∆D).

In Example I.1.6;(1) we defined (−∆D, D(−∆D)) via a sesquilinear form and showed
that its energy space is given by E−∆D

∼= H1
2,0(Ω).

Theorem III.4.4
Let β ∈Neven, p ∈ (max{β, 4}, ∞) and Ω ⊆ R2 be a bounded domain, which is either C∞ or
polygonal. Then for each f ∈ H1

2,0(Ω) there is a conditionally unique maximal strong solution
u ∈ C(I( f ), H1

2,0(Ω))∩ Lp
loc(I( f ), L∞(Ω)) of the nonlinear Schrödinger equation (III.53) with

the following properties:

(a) u has L2(Ω)-conservation and the induced nonlinear flow is locally Lipschitz continuous.

(b) If Ω is C∞, then u has energy conservation. Then I( f ) = R if either the equation is
defocusing or β = 2 and ‖ f ‖L2(Ω) is small enough.
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III. Local and global existence results for the nonlinear Schrödinger equation

Remarks:

(1) The statements of the above theorem for a bounded C∞-domain with β ∈ (1, ∞) are
contained in [Ant08]. Since the local existence result there does not rely on the sign
of the nonlinearity, Lemma I.3.5 provides global existence for the focusing equation
if β ∈ (1, 2).

(2) In [BFHM12] the needed Strichartz estimate is proven for polygonal domains.
However, the authors do not state any existence results for the corresponding non-
linear Schrödinger equation.

(3) If β = 2 and Ω is polygonal, then Theorem 3.6.1 in [Caz03] provides that the above
solution is unconditionally unique and satisfies energy conservation. This again
results in I( f ) = R if either the equation is defocusing or ‖ f ‖L2(Ω) is small enough
by Lemma I.3.5. Compared to Theorem 3.6.1 in [Caz03] we gained the information
that u ∈ Lp

loc(R, L∞(Ω)) and the nonlinear flow is locally Lipschitz continuous with
respect to the norm of C(I( f ), H1

2,0(Ω)) ∩ Lp
loc(I( f ), L∞(Ω)).

Proof. Let us first gather the necessary function spaces, in particular the fractional
domains of −∆D. Theorem 1 in Section 5.7 of [Eva10] provides that H1

2,0(Ω) ↪→ L2(Ω)
is compact. Then there is a sequence (λk)k∈N in (0, ∞) of eigenvalues associated to the
eigenfunctions (ϕk)k∈N of (−∆D, D(−∆D)) such that λk

k→∞−→ ∞. (ϕk)k∈N additionally
forms an orthonormal basis of L2(Ω and ϕk ∈ H1

2,0(Ω) ∩ C∞
b (Ω) for all k ∈ N (see

Section 9.8 in [Bre11]). For s ∈ [0, ∞) the fractional powers ((−∆D)
s/2, Hs

2,D(Ω)) of the
Dirichlet Laplacian are given by

Hs
2,D(Ω) :=

{
f =

∞

∑
k=1
〈 f , ϕk〉L2(Ω)ϕk ∈ L2(Ω)

∣∣∣∣ ∞

∑
k=1

λs
k|〈 f , ϕk〉L2(Ω)|2 < ∞

}
,

(−∆D)
s/2 f :=

∞

∑
k=1

λ
s/2
k 〈 f , ϕk〉L2(Ω)ϕk on Hs

2,D(Ω).

We equip Hs
2,D(Ω) with the norm

‖ · ‖Hs
2,D(Ω) : Hs

2,D(Ω)→ [0, ∞), ‖ f ‖Hs
2,D(Ω) :=

( ∞

∑
k=1

λs
k|〈 f , ϕk〉L2(Ω)|2

)1/2

.

Then (Hs
2,D(Ω), ‖ · ‖Hs

2,D(Ω)) is a Banach space. Recall Weyl’s law for the asymptotic
behavior of the eigenvalues (λk)k∈N for k → ∞ from Theorem 1 in Section 11.6 of
[Str08]. It provides limk→∞

λk
k = 4π

λ(Ω)
. Then there is k0 ∈ N such that λk

∼= k for all
k > k0.
Let f ∈ C∞

c (Ω) with K := supp( f ), s ∈ [0, ∞), and s̃ ∈ N such that s− 2s̃ > 1. We use
the asymptotics of (λk)k∈N and the orthonormality of (ϕk)k∈N in L2(Ω) to provide

∞

∑
k=1

λs
k|〈 f , ϕk〉L2(Ω)|2 =

∞

∑
k=1

λs−2s̃
k |〈 f , (−∆D)

s̃ ϕk〉L2(K)|2

≤ ‖(−∆D)
s̃ f ‖2

L∞(Ω)

( k0

∑
k=1

λk +
∞

∑
k=k0+1

k2s̃−s
)
< ∞.
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Hence, f ∈ Hs
2,D(Ω) and therefore C∞

c (Ω) ⊆ Hs
2,D(Ω) for all s ∈ [0, ∞). We stress that

H1
2,0(Ω) ∼= H1

2,D(Ω) and Hs
2,D(Ω) is dense in H s̃

2,D(Ω) for 0 ≤ s̃ ≤ s.
(a) We already showed in Lemma III.4.3 the nonlinear estimates (III.47) and (III.48) for
k = 1 and Fβ,±(H1

2,0(Ω) ∩ L∞(Ω)) ⊆ H1
2,0(Ω) in Lemma III.4.3. Also the mean value

theorem yields

‖Fβ,±(g)− Fβ,±(h)‖L2(Ω) .
(
‖g‖β

L∞(Ω)
+ ‖h‖β

L∞(Ω)

)
‖g− h‖L2(Ω).

We now collect the following local (p, q) Strichartz estimates with `-loss from Theorem
1.1 in [BFHM12] and Theorem 1.2 in [Ant08]. Let f ∈ C∞

c (Ω) and (p, q) be sharp
1-admissible such that p ∈ (max{β, 4}, ∞) (note that q ∈ (2, 4) by the admissibility
condition). There is C : [0, ∞)→ [0, ∞) such that for I ∈ Ib holds

‖ei(·)∆D f ‖Lp(I,Lq(Ω)) ≤ C(|I|)‖ f ‖
H`(Ω)

2,D (Ω)
,

where we can choose `(Ω) according to

`(Ω)


= 1

p , Ω is polygonal,

> 3
2p , Ω is C∞.

We additionally have

‖(−∆D)
1/2ei(·)∆D f ‖Lp(I,Lq(Ω)) ≤ C(|I|)‖(−∆D)

1/2 f ‖
H`(Ω)

2,D (Ω)
≤ C(|I|)‖ f ‖

H`(Ω)+1
2,D (Ω)

.

Since q ∈ (2, 4) and (−∆D)
1/2e−i(·)∆D f ∈ Lq(Ω) almost everywhere on I, Theorem 7.5;(a)

in [JK95] provides the estimate

‖∇eit∆D f ‖Lq(Ω) . ‖(−∆D)
1/2eit∆D f ‖Lq(Ω) a.e on I.

We then have

‖ei(·)∆D f ‖Lp(I,H1
q (Ω)) ≤ C(|I|)‖ f ‖

H`(Ω)+1
2,D (Ω)

.

The complex interpolation results (A.1) and Theorem A.1.3 as well as Corollary I.1.3
imply for θ ∈ (2/q, 1) the estimate

‖ei(·)∆D f ‖Lp(I,Hθ
q (Ω))

∼= ‖ei(·)∆D f ‖[Lp(I,Lq(Ω)),Lp(I,H1
q (Ω))]θ

≤ C(|I|)‖ f ‖
[H`(Ω)

2,D (Ω),H`(Ω)+1
2,D (Ω)]θ

≤ C(|I|)‖ f ‖
H`(Ω)+θ

2,D (Ω)
. (III.54)

The embedding Hθ
q (Ω) ↪→ L∞(Ω) from A.2.1;(a) and (III.54) then provide

‖ei(·)∆D f ‖Lp(I,L∞(Ω)) . ‖ei(·)∆D f ‖Lp(I,Hθ
q (Ω)) ≤ C(|I|)‖ f ‖

H`(Ω)+θ
2,D (Ω)

.

The sharp 1-admissibility condition for the pair (p, q) implies that there is θ ∈ (2/q, 1)
such that `(Ω) + θ ≤ 1. This implies the following local (p, ∞) Strichartz estimate with
1/2-loss

‖ei(·)∆D f ‖Lp(I,L∞(Ω)) ≤ C(|I|)‖ f ‖H1
2 (Ω)
∼= C(|I|)‖ f ‖D((−∆D)

1/2).
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By density of C∞
c (Ω) in H1

2,0(Ω) the previous estimate holds for all f ∈ H1
2,0(Ω). This

concludes the establishment of the conditions to apply Theorem I.3.4 with s = ` = 1/2.
Hence, for all f ∈ H1

2,0(Ω) there is a conditionally unique maximal mild solution
u ∈ C(I( f ), H1

2,0(Ω)) ∩ Lp
loc(I( f ), L∞(Ω)) of (III.53) with all the properties stated in (a).

Since H1
2,0(Ω) ↪→ Lβ+2(Ω Proposition I.4.2 implies that Fβ,± ∈ C(H1

2,0(Ω), H1
2,0(Ω)∗).

Proposition I.2.4;(c) now implies that u is in fact a strong solution of (III.53). L2(Ω)-
conservation of u then follows from Proposition I.2.8.
(b) Let Ω be a bounded C∞-domain. We first prove energy conservation. By density
of C∞

c (Ω) in H1
2,0(Ω), the continuity of the nonlinear flow, and E ∈ C(H1

2,0(Ω), R)
it is enough to prove energy conservation for u with intial data in C∞

c (Ω). Let f ∈
C∞

c (Ω) and u ∈ C(I( f ), H1
2,0(Ω))∩ Lp

loc(I( f ), L∞(Ω)) be the maximal solution of (III.53)
from (a) with u(t0) = f . The regularity of the boundary ensures g ∈ H2

2(Ω) for all
g ∈ D(−∆D). Hence, D(−∆D) = H1

2,0(Ω) ∩ H2
2(Ω) and ‖g‖H2

2 (Ω) . ‖∆Dg‖L2(Ω) for
g ∈ H1

2,0(Ω) ∩ H2
2(Ω) (see Theorem 9.15 and Lemma 9.17 in [GT01]). We consequently

have

(D(−∆D), ‖ · ‖D(−∆D))
∼= (H1

2,0(Ω) ∩ H2
2(Ω), ‖ · ‖H2

2 (Ω)).

Lemma III.4.3 implies F(D(−∆D) ∩ L∞(Ω)) ⊆ D(−∆D) ∩ L∞(Ω) as well as the non-
linear estimates (III.47) and (III.48) for k = 2. Theorem I.3.4;(d) then implies u ∈
C(I( f ), D(−∆D)) ∩ Lp

loc(I( f ), L∞(Ω)). The Sobolev embedding A.2.1 provides the em-
bedding D(−∆D) ↪→ L2(β+1)(Ω) and the Lipschitz estimate (I.65) implies for t, s ∈ I( f )

‖Fβ,±(u(t)) − Fβ,±(u(s))‖L2(Ω)

. (‖u(t)‖β

L2(β+1)(Ω)
+ ‖u(s)‖β

L2(β+1)(Ω)
)‖u(t)− u(s)‖L2(β+1)(Ω)

. ‖u‖β

L∞(I,H2
2 (Ω))
‖u(t)− u(s)‖H2

2 (Ω).

Hence, Fβ,±(u) ∈ C(I( f ), L2(Ω)) and the equation iu′ = −∆Du + Fβ,±(u) yields u ∈
C1(I( f ), L2(Ω)). Lemma I.4.3 then provides energy conservation of u.
We derive the criteria for I( f ) = R from Lemma I.3.5. The condition I.3.5;(i) is satisfied
since we already have provided L2(Ω)- and energy conservation. Recall that (β +

2)F̂β,±(g) = ±‖g‖β+2
Lβ+2(Ω)

. For the defocusing equation I.3.5;(ii) is satisfied. For the
focusing case with β = 2 we use Sobolev embedding A.2.1 and complex interpolation
(A.1) to prove for all g ∈ H1

2(Ω) the estimate

−‖g‖4
L4(Ω) & −‖g‖

4
H1/2

2 (Ω)
& −‖g‖2

L2(Ω)‖g‖
2
H1

2 (Ω)
.

This provides I.3.5;(ii) with β2 = 2. Hence, Lemma I.3.5 implies u ∈ L∞(I( f ), H1
2,0(Ω))

under the conditions in (b). This shows I( f ) = R by the blow-up alternative.
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IV. The nonlinear Schrödinger equation on
product spaces

In this chapter we consider the nonlinear Schrödinger equation

iu′(t) = Au(t) + Fβ,±(u(t)), t 6= t0,

u(t0) = f ,
(IV.1)

where (A, D(A)) is a non-negative, selfadjoint linear operator on L2(Ω) and Ω :=
X × Y with σ-finite measure spaces (X, X , µx) and (Y, Y , µy). We always consider Ω
to be equipped with the product σ-algebra S := X ⊗ Y and the product measure
µ := µx ⊗ µy. We furthermore always assume that L2(X) and L2(Y) are seperable. This
will always be the case in our applications.
We are interested in situations in which the Schrödinger group U generated by A can
be decomposed into a product of two Schrödinger groups Ux and Uy acting on L2(X)
and L2(Y), respectively.
In Section IV.1 we provide local (p, q) Strichartz estimates with `-loss for U under the
assumption that Ux and Uy satisfy either dispersive estimates or dispersive estimates
of SL-type. For the proof we adapt the methods of Section II.2 to the product situation.
As a corollary of the abstract result we deduce in Section IV.2 local (p, q) Strichartz
estimates with 1/2p-loss for (eit∆Rn×M)t∈R, where (−∆Rn×M, H2

2(R
n × M)) denotes the

Laplace-Beltrami operator on the product manifold Rn×M. Here (M, g) is an arbitrary
connected, compact Riemannian C∞-manifold without boundary and dim(M) = m.
We will show that Rn × M meets the requirements on the manifolds in Section III.1.
We apply Theorem III.1.5 to deduce a local existence result in Hs

2(R
n × M) for (IV.1)

with A = −∆Rn×M and n, m ∈ N. We additionally prove a global existence result in
H1

2(R× M) with m = 1 for β ∈ [2, ∞). The latter is one of the main results of this
thesis.
The best result in this direction known to us is provided in [TTV14] under the restric-
tion β < 4. We will present the method of [TTV14], which relies on Strichartz estimates
with mixed space integrability. These are interesting in their own right, because com-
parable estimates are available on flat and distorted waveguides (see [DR12]).

We constantly use the fact that Lp(X × Y) ∼= Lp(X, Lp(Y)) ∼= Lp(Y, Lp(X)) for p ∈
[1, ∞) by A.3.4;(2) without mentioning. To shorten the notation we sometimes denote
spaces of the form R(X, S(Y)) by RxSy and R(X×Y) by Rx,y.

IV.1. Strichartz estimates with directional loss

In this section we discuss an adaptation of the methods developed in Section II.2 to the
product situation X × Y. We first present the main idea. We assume for the moment
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IV. The nonlinear Schrödinger equation on product spaces

that U ∈ L∞(R,L(L2(Ω)) is given by U = UxUy with Ux ∈ L∞(R, L2(X)) and Uy ∈
L∞(R, L2(Y)). If Ux and Uy are (σx, L1(X))- and (σy, L1(Y))-dispersive, respectively,
then for f ∈ L1(X×Y) ∩ L2(X×Y) we have the estimate

‖U(t)U(s)∗ f ‖L∞
x,y
≤
∥∥‖Ux(t− s)Uy(t− s) f ‖L∞

x

∥∥
L∞

y

. |t− s|−σx
∥∥‖Uy(t− s) f ‖L1

x

∥∥
L∞

y

. |t− s|−σx
∥∥‖Uy(t− s) f ‖L∞

y

∥∥
L1

x
. |t− s|−(σx+σy)‖ f ‖L1

x,y
. (IV.2)

U therefore is (σx + σy, L1(X × Y))-dispersive. Corollary II.1.5 yields (p, q) Strichartz
estimates for U for all sharp σx + σy-admissible pairs (p, q). Since we are interested
in situations where Ux and/or Uy may only satisfy dispersive estimates of SL-type we
use the idea of (IV.2) on the level of a spectral decomposition. We first produce (p, q)
Strichartz estimates with “directional loss”, which will become clear in the central
Theorem IV.1.1. We also deduce local (p, q) Strichartz estimates with `-loss from these
(p, q) Strichartz estimates with directional loss.
We now describe the functional analytic setup for Theorem IV.1.1. Let (Ax, D(Ax))
and (Ay, D(Ay)) be non-negative, selfadjoint linear operators on L2(X) and L2(Y),
respectively. For the action of Ax and Ay on a function in L2(X×Y) to make sense we
extend them canonically to the operators on L2(Ω) given by

D(Ãx) := L2(Y, D(Ax)), Ãx f (x, y) := (Ax f (·, y))(x) a.e. on Y,

D̃(Ãy) := L2(X, D(Ay)), Ãy f (x, y) := (Ay f (x, ·))(y) a.e. on X.

It is straightforward to check that both operators are closed, non-negative, and sym-
metric on L2(Ω). The separability of L2(Y) implies that

P := span
{

f ∈ M(X×Y) | ∃ fx∈L2(X), fy∈L2(Y) : f = fx fy
}

(IV.3)

is dense in L2(Ω). Proposition 4.8 in Chapter X.4 in [AE09] furthermore implies for all
α ∈ [0, ∞) that

EY,α := span
{

f ∈ M(X×Y) | ∃Sx∈Sx s.t. µx(Sx)<∞, fy∈D(Aα
y)

: f = 1Sx fy
}

(IV.4)

is dense in L2(X, D(Aα
y)). The density of D(Aα

y) ↪→ D(Aβ
y) given by Corollary I.1.3;(a)

additionally provides the density of L2(X, D(Aα
y)) in L2(X, D(Aβ

y)) for α ≥ β ≥ 0.
The analogous versions of these results for L2(Y, D(Aα

x)) are also valid. In particular,
(Ãx, D(Ãx)) and (Ãy, D(Ãy)) are densely defined on L2(Ω). Moreover, the sesquilinear
forms

ax : L2(Y, D(A1/2
x ))× L2(Y, D(A1/2

x ))→ C, ax( f , g) := 〈A1/2
x f , A1/2

x g〉L2(X×Y),

ay : L2(X, D(A1/2
y ))× L2(X, D(A1/2

y ))→ C, ay( f , g) := 〈A1/2
y f , A1/2

y g〉L2(X×Y),

are densely defined, continuous, accretive, closed, and symmetric. Then ax and ay
generate by means of Proposition 1.24 in Section 1.2.3 of [Ouh05] uniquely determined
non-negative, selfadjoint linear operators which coincide with Ãx and Ãy, respectively.
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IV.1. Strichartz estimates with directional loss

This can be checked using the density results for D(Ãx) and D(Ãy). (Ãx, D(Ãx))
and (Ãy, D(Ãy)) are therefore selfadjoint. We can easily check via uniqueness of the
corresponding Cauchy problem and the density properties of EY,1 and EX,1 that the
generated Schrödinger groups Ũx and Ũy satisfy for all t ∈ R and f ∈ L2(X×Y)

(Ũx f )(x, y) = (Ux f (·, y))(x), (Ũy f )(x, y) = (Ux f (x, ·))(y) a.e. on X×Y.

We then have ŨxŨy = ŨyŨx on P and the density of P in L2(X × Y) shows that Ũx
and Ũy commute on L2(X × Y). The same argument provides that (Ãx, D(Ãx)) and
(Ãy, D(Ãy)) have commuting resovents. Then by [Sz.67] (see also Section 5.3 and 5.5
in [Sch12]) we can define the following multivariate version of the spectral calculus of
Theorem I.1.1 for the pair A = (Ax, Ay). There is a map

ΦA : M(R2)→ C(L2(X×Y)), ϕ(A) := ΦA(ϕ)

such that for ϕ, η ∈ M(R2) holds:

(MC1) ϕ(A) + η(A) ⊆ (ϕ + η)(A) and ϕ(A)η(A) ⊆ (ϕη)(A), whereby

D(ϕ(A)η(A)) = D((ϕη)(A)) ∩ D(η(A)),

(MC2) ϕ|σ(Ax)×σ(Ay) = 0 =⇒ ϕ(A) = 0 and ϕ|σ(Ax)×σ(Ay) = 1 =⇒ ϕ(A) = id,

(MC3) ϕ(A)∗ = ϕ(A),

(MC4) ΦA : (Mb(R
2), ‖ · ‖L2([0,∞)2)) → L(L2(X × Y)) is a bounded algebra homomor-

phism.

The operator (A, D(A)) defined by

D(A) := L2(Y, D(Ax)) ∩ L2(X, D(Ay)),

A f := Ax f + Ay f on D(A),

is symmetric and non-negative. (MC4) implies (id + A)−1 ∈ L(L2(X × Y)). Hence,
−1 ∈ ρ(A) and (A, D(A)) is closed. In fact Proposition 1.1.9 in [Roy07] provides that
(A, D(A)) is selfadjoint on L2(Ω). The properties of the multivariate spectral calculus
also imply that the Schrödinger group U of (A, D(A)) is given by U = ŨxŨy = ŨyŨx.
From now on we are not going to distinguish the operators (Ãx, D(Ãx)), (Ãy, D(Ãy))
and (Ax, D(Ax)), (Ay, D(Ay)) in our notation. It will be clear from the context what
we mean. Recall the Definition of the dyadic partition of unity (ψk)k∈N0 from II.2.4 and
the definition of the homogeneous and inhomogeneous flows U and Φ for an operator
family U ∈ L∞(R,L(L2(Ω)) from I.3.1.
In the above setting we can prove the following main result.
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IV. The nonlinear Schrödinger equation on product spaces

Theorem IV.1.1
Let I ∈ Ib, σx, σy ∈ (0, ∞), γ, ν ∈ [0, 1], and (p, q) be sharp σx + σy-admissible with q < ∞.

(a) Let Ux be (σx, L1(X))-dispersive and Uy be (σy, L1(Y))-dispersive of SL-type γ as well as
(ψk(Ay))k∈N0 have the (LP) property. Then there is a non-decreasing C : [0, ∞)→ [0, ∞)

such that for all f ∈ L2(X, D(Aγ/p
y )) holds

‖U f ‖Lp(I,Lq
x,y)
≤ C(|I|)‖ f ‖

L2(X,D(A
γ/p
y ))

. (IV.5)

(b) Let Ux in (a) be only (σx, L1(X))-dispersive of SL-type ν and (ψk(Ax))k∈N0 satisfy the
(LP) property. Then there is a non-decreasing C : [0, ∞) → [0, ∞) such that for all
f ∈ L2(X, D(Aγ/p

y )) ∩ L2(Y, D(Aν/p
x )) holds

‖U f ‖Lp(I,Lq
x,y)
≤ C(|I|)

(
‖ f ‖

L2(X,D(A
γ/p
y ))

+ ‖ f ‖
L2(Y,D(A

ν/p
x ))

)
. (IV.6)

(c) In (a) a local (p, q) Strichartz estimate with γ/p-loss and in (b) a local (p, q) Strichartz
estimate with max{γ/p, ν/p}-loss holds.

Remark: The estimates (IV.5) and (IV.6) are the analogue to our notion of local (p, q)
Strichartz estimates with loss. In a rather natural fashion the loss only occurs in the
direction, in which the corresponding Schrödinger group satisfies dispersive estimates
of SL-type.

Proof. We fix I ∈ Ib, σ := σx + σy, and (p, q) sharp σ-admissible with q < ∞. The
claims in (a) and (b) are trivial in the case (p, q) = (∞, 2) since U ∈ L∞(R,L(L2

x,y)). We
therefore assume p < ∞ in the rest of the proof. We use the same approach as in the
proof of Theorem II.2.8, but this time pointwise in the X or Y direction.
(a) For k ∈ N0 we put hk := min{2(1−k)γ, 1} and let (Ij,k)

Nk
j=0 be the hk-partition of I

with Nk = [|I|h−1
k ] from Defintion II.2.9. For k ∈N0 and j ∈ {0, ..., Nk} we define

Ũj,k : R→ L(L2
x,y), Ũj,k(t) := 1Ij,k(t)ψ̃k(Ay)U(t).

Then Ũj,k ∈ L∞(R,L(L2
x,y)) with ‖Ũj,k‖L∞(R,L(L2

x,y))
≤ 1 by means off (MC4). We now

let f ∈ L1(X × Y) ∩ L2(X × Y) and t, s ∈ R with t 6= s. If either t /∈ Ij,k or s /∈ Ij,k, then
Ũj,k(t)Ũj,k(s)∗ = 0. If t, s ∈ Ij,k, then |t− s| ≤ hk. The σy-dispersivity of SL-type γ of Uy
and Minkowski’s integral inequality imply the estimate

‖Ũj,k(t)Ũj,k(s)∗ f ‖L∞
x,y
≤
∥∥‖1Ij,k(t)1Ij,k(s)ψ̃

2
k(Ay)Uy(t− s)Ux(t− s) f ‖L∞

y

∥∥
L∞

x

. |t− s|−σy
∥∥‖Ux(t− s) f ‖L∞

x

∥∥
L1

y
. |t− s|−σ‖ f ‖L1

x,y
. (IV.7)

We stress that the constant in this estimate is independent of j and k. Corollary II.1.5
then provides global (p, q)-Strichartz estimates for Ũj,k with a constant independent of
j and k. We fix f ∈ L2(X, D(Aγ/p

y )). By means of the (LP) property of (ψk(Ay))k∈N0 and
Minkowski’s integral inequality we have

‖U f ‖2
Lp(I,Lq

x,y)
.

∥∥∥∥( ∞

∑
k=0
‖ψk(Ay)U f ‖2

Lq
y

)1/2∥∥∥∥2

Lp(I,Lq
x)

.
∞

∑
k=0

( Nk

∑
j=0
‖Ũj,kψk(Ay) f ‖p

Lp(R,Lq
x,y)

)2/p

.
∞

∑
k=0

(1 + Nk)
2
p ‖ψk(Ay) f ‖2

L2
x,y

.
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IV.1. Strichartz estimates with directional loss

With Nk
∼= |I|2kγ for k large enough and (II.36) we continue the previous estimate to

conclude

‖U f ‖Lp(I,Lq
x,y)

. C(|I|)
(
‖ f ‖2

L2
x,y
+

∞

∑
k=0
‖ψk(Ay)Aγ/p

y f ‖2
L2

x,y

)1/2

. C(|I|)
(
‖ f ‖L2

x,y
+

∥∥∥∥( ∞

∑
k=0
‖ψk(Ay)Aγ/p

y f ‖2
L2

y

)1/2∥∥∥∥
L2

x

)
. C(|I|)‖ f ‖

L2(X,D(A
γ/p
y ))

. (IV.8)

(b) We slightly modify the above procedure but the guiding idea remains the same.
For k, l ∈N0 we put hk,l := min{2(1−k)γ, 2(1−l)ν, 1} and let (Ij,k,l)

Nk,l
j=0 be the hk,l-partition

of I . Note that as above we have Nk,l = [|I|h−1
k,l ]. For k, l ∈ N0 and j ∈ {0, ..., Nk,l} we

define

Ũj,k,l : R→ L(L2(Ω)), Ũj,k,l(t) := 1Ij,k,l (t)ψ̃k(Ay)ψ̃l(Ax)U(t).

Ũj,k,l is bounded with uniform constant in j, k, l by means of (MC4). For f ∈ L1(X ×
Y) ∩ L2(X×Y) and t, s ∈ R with t 6= s the same argument as in (IV.7) yields

‖Ũj,k,l(t)Ũj,k,l(s)∗ f ‖L∞
x,y
≤
∥∥‖12

Ij,k,l
(t)12

Ij,k,l
(s)ψ̃2

k(Ay)Uy(t− s)ψ̃2
l (Ax)Ux(t− s) f ‖L∞

y

∥∥
L∞

x

. |t− s|−σy
∥∥‖1Ij,k,l (t)1Ij,k,l (s)ψ̃

2
k(Ax)Ux(t− s) f ‖L∞

x

∥∥
L1

y

. |t− s|−σ‖ f ‖L1
x,y

,

with a uniform constant in j, k, l. Then Corollary II.1.5 again provides global (p, q)
Strichartz estimates for Ũj,k,l with a uniform constant in j, k, l. We therefore have for
f ∈ L2(X, D(Aγ/p

y )) ∩ L2(Y, D(Aν/p
x )) the estimate

‖ψk(Ay)ψl(Ax)U f ‖Lp(I,Lq
x,y)

=

( Nk,l

∑
j=0
‖Ũj,k,lψk(Ay)ψl(Ax) f ‖p

Lp(R,Lq
x,y)

)1/p

. (1 + Nk,l)
1/p‖ψk(Ay)ψl(Ax) f ‖L2

x,y
. (IV.9)

The dependency of Nk,l in estimate (IV.9) calls for a case distinction for which we define

M :=
{
(k, l) ∈N2

0 | 2(1−k)γ ≤ 2(1−l)ν}.

Then the respective (LP) properties of (ψk(Ay))k∈N0 and (ψl(Ax))l∈N0 and Minkowski’s
integral inequality yield

‖U f ‖2
Lp(I,Lq

x,y)

.

∥∥∥∥( ∞

∑
l=0
‖ψl(Ax)U f ‖2

Lq
x,y

)1/2∥∥∥∥2

Lp(I)

.

∥∥∥∥( ∞

∑
l=0

∥∥( ∞

∑
k=0
‖ψk(Ay)ψl(Ax)U f ‖2

Lq
x

)1/2∥∥2
Lq

y

)1/2∥∥∥∥2

Lp(I)
(IV.10)

. ∑
(k,l)∈M

‖ψk(Ay)ψl(Ax)U f ‖2
Lp(I,Lq

x,y)
+ ∑

(k,l)∈N2
0\M

‖ψk(Ay)ψl(Ax)U f ‖2
Lp(I,Lq

x,y)
.
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IV. The nonlinear Schrödinger equation on product spaces

It is enough to handle the first sum since the analogous result is going to hold for the
second one with Y ↔ X, k ↔ l, and γ ↔ ν. Similar to the argument in (IV.8) the
estimates (IV.9) and (II.36) provide

∑
(k,l)∈M

‖ψk(Ay)ψl(Ax)U f ‖2
Lp(I,Lq

x,y)

= ∑
(k,l)∈M

( Nk,l

∑
j=0
‖Ũj,k,lψk(Ay)ψl(Ax) f ‖p

Lp(R,Lq
x,y)

)2/p

≤ C(|I|)
∞

∑
k,l=0

(1 + 2kγ)
2
p ‖ψk(Ay)ψl(Ax) f ‖2

L2
x,y

≤ C(|I|)
∞

∑
l=0

( ∞

∑
k=0
‖ψk(Ay)ψl(Ax) f ‖2

L2
x,y
+

∞

∑
k=1
‖ψl(Ax)ψk(Ay)Aγ/p

y f ‖2
L2

x,y

)
. C(|I|)‖ f ‖2

L2(X,D(A
γ/p
y ))

.

The previous estimate and its corresponding result for the second sum in (IV.10) im-
mediately provide (IV.6).
(c) The embedding D(A) ↪→ L2(X, D(Ay)), (A.1), and Corollary I.1.3;(a) imply for all
θ ∈ (0, 1)

D(Aθ) ∼= [L2(X×Y), D(A)]θ ↪→ [L2(X, L2(Y)), L2(X, D(Ay))]θ ∼= L2(X, D(Aθ
y)).

Choosing θ = γ/p in (a) and θ = max{γ/p, ν/p} in (b) implies our claims regarding
the local (p, q) Strichartz estimate with `-loss. In the latter case we have also used
L2(Y, D(Aθ

x)) ↪→ L2(Y, D(Aθ̃
x)) for θ̃ ≤ θ.

IV.2. Existence results for the nonlinear Schrödinger
equation on Rn ×M

In this section we treat the nonlinear Schrödinger equation for the Laplace-Beltrami
operator on a cylindrical product manifold. We fix m, n ∈N and define Ω := Rn ×M,
whereby (M, gm) is a connected, compact Riemannian C∞-manifold without boundary
and dim(M) = m. We first review some of the properties of Rn and (M, gm) in order
to bring Ω into the framework of Section III.1.
We consider Rn as a connected Riemannian C∞-manifold equipped with the trivial
atlas {(Rn, id)}. We choose the Riemannian metric gn : Rn → T2Rn given by gn(x) :=
〈·, ·〉Rn for x ∈ Rn and identify gn with the identity matrix idn ∈ Rn×n. We then have
Γp

k,l = 0 on Rn for all k, l, p ∈N≤n by (A.10). The geodesic differential equations (A.11)
yield that all geodesics are given by line segments. Moreover, (Rn, idn) is geodesically
complete and we have inj(Rn) = ∞.
We already noted in Remark III.1.1;(2) that (M, gm) is complete, inj(M) > 0, and has
bounded geometry. We equip (M, gm) with the finite geodesic atlas {(Õi(r), κ̃i) | i ∈ I}
and denote by Gm the coefficient matrix of the Riemannian metric gm. We fix r and the
smooth partition of unity (ψ̃i)i∈I subordinate to A (r) are chosen as in (M1) and (M2)
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at the beginning of Section III.1. We usually denote ω ∈ Ω by ω = (x, y) with x ∈ Rn

and y ∈ M. We now equipp Ω with the finite atlas

A (r) :=
{
(Oi(r), κi) | i ∈ I

}
, Oi(r) := Rn × Õi(r), κi(x, y) := (x, κ̃i(y)).

Then (Ω, A (r)) is a connected C∞-manifold without boundary and dim(Ω) = n +
m. We choose the smooth partition of unity (ψi)i∈I subordinate to A (r) defined by
ψi(ω) := ψ̃i(y). As Riemannian metric for (Ω, A (r)) we choose

g : Ω→ T2Ω, g(x, y) = 〈·, ·〉ω := 〈π|Rn ·, π|Rn ·〉Rn + gm(y)
(
π|M·, π|M ·

)
.

π|Rn and π|M denote the respective canonical projections onto Rn and M. We conse-
quently have

G =

(
idn 0
0 G̃(y)

)
, G−1 =

(
idn 0
0 G̃(y)−1

)
. (IV.11)

In the next Lemma we check that (Ω, g) satisfies the condition (M) at the beginning of
Section III.1.

Lemma IV.2.1
Let Ω := Rn ×M as above. Then (Ω, g) is complete, has bounded geometry, and inj(Ω) > 0.
Moreover, ∆Ω = ∆Rn + ∆M.

Proof. Let d := n + m. In the proof we denote g̃ := gm with respective Christoffel sym-
bols Γ̃p

k,l for k, l, p ∈ N≤m. Equation (IV.11) yields that (Ω, g) has bounded geometry,
since Rn and M have bounded geometry and the atlas A (r) is finite. We next calculate
the Christoffel symbols Γp

k,l of (Ω, g) in an arbitrary local chart (O, κ) ∈ A (r). (A.10)
and (IV.11) imply for all k, l, p ∈N≤d

Γp
k,l =

1
2

n+m

∑
j=n+1

(
∂ωk gj,l + ∂ωl gj,k − ∂ωj gk,l

)
gj,p.

This expression is 0 if either k ≤ n or l ≤ n or p ≤ n. For k, l, p > n and ω = (x, y) ∈ Ω
additionally holds

Γp
k,l(ω) =

1
2

n+m

∑
j=n+1

(
∂ωk g̃j−n,l−n(ω) + ∂ωl g̃j−n,k−n(ω)− ∂ωj g̃k−n,l−n(ω)

)
gj−n,p−n(ω)

=
1
2

m

∑
j=1

(
∂yk−n g̃j,l−n(ω) + ∂yl−n g̃j,k−n(ω)− ∂yj g̃k−n,l−n(ω)

)
gj,p−n(ω)

= Γ̃p−n
k−n,l−n(y).

We consequently have

Γp
k,l(ω) =


Γ̃p−n

k−n,l−n(y), n + 1 ≤ k, l, p ≤ n + m,

0, otherwise.
(IV.12)
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With (IV.12) the geodesic differential equations (A.11) for (Ω, g) are

γ′′p(t) = 0, 1 ≤ p ≤ n,

γ′′p(t) = −
n+m

∑
k,l=n+1

Γ̃p−n
k−n,l−n(γn+1(t), ..., γn+m(t))γ′k(t)γ

′
l(t), n + 1 ≤ p ≤ n + m.

Hence, the geodesic differential equations of (Ω, g) decouple into the geodesic dif-
ferential equations for Rn and (M, g̃). γ is therefore a geodesic of Ω if and only if
γ = (γRn , γ̃), whereby γRn and γ̃ are geodesics of Rn and (M, g̃), respectively. For
ω = (x, y) ∈ Ω and v ∈ TωΩ = Rn × Ty M then holds

expω(v) = (expx(v1, ..., vn), expy(vn+1, ..., vn+m)).

If ‖v‖ω < r, then (v1, ..., vn) ∈ Bx(0, r) and (vn+1, ..., vn+m) ∈ By(0, r). expx is a diffeo-
morphism on Bx(0, r) and expy is a diffeomorphism on By(0, r) since r < inj(M). expω

is therefore a diffeomorphism on Bω(0, r) and consequently

∀ω∈Ω : r ∈
{

ε ∈ (0, ∞) | expω : Bω(0, ε)→ Ω is a diffeomorphism
}

.

This implies inj(Ω) ≥ r > 0. The decoupling of the geodesics also shows that (Ω, g) is
geodesically complete since Rn and (M, g̃) are geodesically complete.
(b) We already know that (−∆+, D(−∆+)) defined by

D(−∆+) := L2(Rn, H2
2(M)) ∩ L2(M, H2

2(R
n)),

−∆+ f := −∆Rn f − ∆M f on D(−∆+),

is non-negative and selfadjoint on L2(Ω). Recall that Theorem III.1.2;(b) states that
C∞

c (Ω) is dense in H2
2(Ω). Since C∞

c (Ω) ⊆ D(−∆+) ⊆ H2
2(Ω) we have

D(−∆+)
H2

2 (Ω) ∼= H2
2(Ω).

It is therefore enough to show that ∆+ = ∆Ω on C∞
c (Ω). Then (III.3) and (IV.12) imply

for f ∈ C∞
c (Ω)

∆Ω f =
n

∑
k,l=1

∂ωk ∂ωl f +
n+m

∑
k>n ∨ l>n

gkl∂ωk ∂ωl f −
n+m

∑
k,l,p=1

gklΓp
k,l∂ωp f

= ∆Rn f +
m

∑
k,l=1

g̃kl
(

∂yk ∂yl −
m

∑
p=1

Γ̃p
k,l∂yp

)
f = ∆+ f .

Having checked the condition (M) for (Ω, g) in the previous lemma, we can now apply
Theorem III.1.5 in Section III.1 to the nonlinear Schrödinger equation

iu′(t) = −∆̃Ωu(t) + Fβ,±(u(t)), t 6= t0,

u(t0) = f .
(CPP)
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But before we exploit this, let us discuss some known results for (CPP). The most stud-
ied case is M = Tm, where Tm is the m-dimensional flat torus. There has been consider-
able progress in recent years with respect to global existence in H1

2(R
n×Tm) for which

we refer to [HTT14], [HPTV14] and the references therein. The proofs given there heav-
ily rely on the availability of the theory of Fourier series and methods adapted from
the initial groundbreaking work of Bourgain in [Bou93b] and [Bou93a] on the nonlinear
Schrödinger equation on the torus. These methods unfortunately do not transfer to the
case where (M, gm) is an arbitrary connected, compact C∞-manifold without boundary.
In this general situation there are much less results. The only two references we are
aware of are [TV12] and [TTV14]. The prior paper deals with intial data in mixed-norm
Sobolev spaces. The latter paper deals with (CPP) with initial data in H1

2(R
n ×M). We

therefore compare the results below with the one given in Theorem 1.4 of [TTV14].
For a convenient comparison we state a slight extension of their existence theorem and
provide a sketch of the proof.

Theorem IV.2.2 ([TTV14])
Let n ∈N, m = 1, β ∈ (0, 4/n), (p, q) := (4(β+2)/βn, β + 2) and f ∈ H1

2(Ω).

(a) The defocusing nonlinear Schrödinger equation (CPP) has a conditionally unique global
strong solution u ∈ Cb(R, H1

2(Ω)).

(b) The focusing nonlinear Schrödinger equation (CPP) has a conditionally unique global
strong solution u ∈ Cb(R, H1

2(Ω)) if either β < 4/(n+1) or ‖ f ‖L2(Ω) is small enough.

In (a) and (b) holds L2(Ω)- and energy conservation and the conditional uniqueness holds for
all I ∈ Ib with respect to

X(I) :=
{

u ∈ Lp(I, Lq(Rn, L2(M))) | ∂yu,∇xu ∈ Lp(I, Lq(Rn, L2(M)))
}

,

‖u‖X(I) := ‖u‖Lp(I,Lq(Rn,H1
2 (M))) + ‖∇xu‖Lp(I,Lq(Rn,L2(M))).

(IV.13)

Remarks:

(1) The authors of [TTV14] are exclusively concerned with long-term dynamics of the
focusing equation. They therefore prove (b) with β < 4/(n+1), since the latter condi-
tion ensures global existence with the energy method from Lemma I.3.5. We sketch
below how to construct a maximal strong solution of (CPP) in H1

2(Ω) with blow-up
alternative if β < 4/n. Lemma I.3.5 then provides global existence for the defocusing
equation. For n = 1 this implies the restriction β < 4 on the nonlinearity.

(2) In the next proposition we provide the needed Strichartz estimates for the proof of
Theorem IV.2.2. In [DR12] the same estimates are provided on flat and distorted
waveguides. The authors do not prove any results regarding local and global exis-
tence and it would be interesting to explore the possibilities of the method below
in this context. However, we will not pursue this.

The proof is based on the following observation in the abstract setting of the previous
Section IV.1.
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IV. The nonlinear Schrödinger equation on product spaces

Proposition IV.2.3
Let σ ∈ (0, ∞) and (p, q), ( p̃, q̃) be sharp σ-admissible. If σ ≥ 1 let p, p̃ > 2. If Ux is
(σ, L1(X))-dispersive, then

‖U f ‖Lp(R,Lq
x L2

y)
. ‖ f ‖L2

x,y
, ‖ΦF‖Lp(R,Lq

x L2
y)
. ‖F‖

L p̃∗ (R,Lq̃∗
x L2

y)
. (IV.14)

Proof. By A.3.4;(1) we have (L1
xL2

y)
∗ ≡ L∞

x L2
y. With Minkowski’s integral inequality

holds for f ∈ L1(X, L2(Y)) ∩ L2(X×Y) and t, s ∈ I with t 6= s

‖U(t)U(s)∗ f ‖L∞
x L2

y
. ‖Ux(t− s) f ‖L2

y L∞
x

. |t− s|−σ‖ f ‖L2
y L1

x
. |t− s|−σ‖ f ‖L1

x L2
y
.

Theorem II.1.3 then implies (IV.14), since for θ ∈ (0, 1) with q = 2/(1+θ) holds

[L2(X×Y), L1(X, L2(Y))]θ ∼= Lq(X, L2(Y))

by means of complex interpolation and (A.2).

Proof of Theorem IV.2.2: We only sketch the local existence result. The rest of the
proof is analogous to the one given in [TTV14] with the additional criteria for global
solutions from Lemma I.3.5.
(1) Before we start the proof, the space X(I) deserves some comments. It contains the
mixed norm Sobolev space

H1
(r,2)(Ω) :=

{
g ∈ Lr(Rn, L2(M)) | ∂yg,∇xg ∈ Lr(Rd, L2(M))

}
,

‖g‖H1
(r,2)(Ω) := ‖ f ‖Lr(Rn,H1

2 (M)) + ‖∇xg‖Lr(Rn,L2(M)).

with r ∈ (1, ∞). Unfortunately we can not point to a suitable reference for the prop-
erties of these spaces. However, if (M, gm) is substituted by R, then Chapter 3 of
[BIN78] provides a systematic treatment of such spaces. In particular, Theorems 9.1
and 14.14 there assert that (H1

(r,2)(R
n+1), ‖ · ‖H1

(r,2)(R
n+1)) is a Banach space which con-

tains C∞
c (Rn+1) as a dense subset. We can check that

‖g‖H1
(r,2)(Ω) :=

(
∑
i∈I
‖(ψig) ◦ κ−1

i ‖
2
H1
(r,2)(R

n+1)

)1/2

,

with the smooth partition of unity (ψi)i∈I given at the beginning of the section, is
an equivalent norm on H1

(r,2)(Ω). Then a straightforward localization argument shows
that the latter is also a Banach space with C∞

c (Ω) as a dense subset. H1
(r,2)(Ω) is isomet-

rically isomorphic to a closed subspace of the reflexive product space Lr(Rn, L2(M))n+2,
and therefore reflexive itself. It is useful for the nonlinear estimate (IV.17) below, to
state the following variant of the characterization (III.27) for g ∈ Lr(Rn, L2(M)) and
i ∈ {1, ..., n}:

∂xi g ∈ Lr(Rn, L2(M)) ⇐⇒ sup
h 6=0

‖g(·+ hei)− g‖Lr
x L2

y

|h| < ∞. (IV.15)
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As in (III.28) the right-hand side can be bounded by ‖∂xi g‖Lr
x L2

y
if it is finite. To check

these statements we can repeat the proof of Theorem 2.1.6 in [Zie89]. The essential
ingredient for “=⇒” is the density of C∞

c (Ω) in H1
(r,2)(Ω). For “⇐=” it is the reflexivity

of Lr(Rn, L2(M)).
(2) With these preliminary remarks we start the contraction argument. We can use the
Strichartz estimates in (IV.14), since (eit∆Rn )t∈R is (n/2, L1(Rn))-dispersive. Note that
H1

2(M) ↪→ L∞(M) by Theorem III.1.2;(d). We fix f ∈ H1
2(Ω), (p, q) := (4(β+2)/βn, β + 2)

and X(I) as in (IV.13). We let T ∈ (0, 1] and put I := [t0 − T, t0 + T]. As before Φ f (u)
denotes the right-hand side of Duhamel’s formula.
We put p̃ := p/(p−2), q̃ := q/β and observe that 1

p∗ =
1
p̃ + 1

p and 1
q∗ =

1
q̃ +

1
q . The sharp

n/2-admissibility of (p, q) and β < 4/n imply

α :=
1
p̃
− β

p
= 1− β + 2

p
= 1− βn

4
∈ (0, 1).

We in particular have β p̃ < p. Let u ∈ X(I). Then the nonlinear estimates from
[TTV14], (III.24) and Hölder’s inequality yield

‖∂yFβ,±(u)‖Lp∗ (I,Lq∗
x L2

y)
.
∥∥‖u‖β

L∞
y
‖u‖H1

2,y

∥∥
Lp∗ (I,Lq∗

x )

. ‖u‖β

Lβ p̃(I,Lβq̃
x L∞

y )
‖u‖Lp(I,Lq

x H1
2,y)

. Tα‖u‖β+1
Lp(I,Lq

x H1
2,y)

. Tα‖u‖β+1
X(I). (IV.16)

An application of (IV.15) as in the proof of Lemma III.1.4;(c+d) also implies

‖Fβ,±(u)‖Lp∗ (I,Lq∗
x L2

y)
+ ‖∇xFβ,±(u)‖Lp∗ (I,Lq∗

x L2
y)
. Tα‖u‖β+1

X(I). (IV.17)

Since (p, q) is sharp n/2-admissible we use (IV.14), (IV.16) and (IV.17) to provide the
estimate

‖Φ f (u)‖X(I) ≤ C1
(
‖ f ‖H1

2 (Ω) + Tα‖u‖β+1
X(I)

)
. (IV.18)

Let u, v ∈ X(I). Similar as in (IV.16) the estimates (IV.14) and Hölder’s inequality
yield

‖Φ f (u)−Φ f (v)‖Lp(I,Lq
x L2

y)
≤ C‖Fβ,±(u)− Fβ,±(v)‖Lp∗ (I,Lq∗

x L2
y)

≤ C
∥∥(‖u‖β

L∞
y
+ ‖v‖β

L∞
y

)
‖u− v‖L2

y

∥∥
Lp∗ (I,Lq∗

x )

≤ C2Tα
(
‖u‖β

X(I) + ‖v‖
β

X(I)

)
‖u− v‖Lp(I,Lq

x L2
y)

. (IV.19)

Moreover, (IV.14) provides for t, s ∈ I with s < t

‖Φ f (u)(t)−Φ f (u)(s)‖H1
2 (Ω) . ‖∂yFβ,±(u)‖Lp∗ ([s,t],Lq∗

x L2
y)
+ ‖∇xFβ,±(u)‖Lp∗ ([s,t],Lq∗

x L2
y)

.

Then (IV.16) and (IV.17) yield Φ f ∈ C(I, H1
2(Ω)). Hence, every fixed point of Φ f in

X(I) belongs to C(I, H1
2(Ω)) and we are left to construct one. To this end we put

C3 := max{C1, 2C2} and

R := 2C3‖ f ‖H1
2 (Ω), T ≤

(
2C3Rβ

)−1/α. (IV.20)
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We define the metric space (X(I), dI) by

X(I, R) := BX(I)(0, R), dI(u, v) := ‖u− v‖Lp(I,Lq
x L2

y)
.

The reflexivity of H1
(q,2)(Ω) and Theorem 1.2.5 of [Caz03] imply that (X(I, R), dI) is

complete. The choices in (IV.20) plugged into (IV.18) and (IV.19) imply that Φ f :
X(I, R) → X(I, R) is a strict contraction. Φ f has therefore a unique fixed point
u ∈ X(I, R). For the uniqueness of this fixed point in the larger space X(I) we assume
v ∈ X(I) to be a second fixed point. Then (IV.19) shows that u = v for some T̃ ≤ T.
We successively repeat this argument to the intervals [t0 + (k − 1)T̃, t0 + (k + 1)T̃],
[t0 − (k + 1)T̃, t0 − (k − 1)T̃] with k ∈ N until the whole interval I is covered. This
shows u = v on I.
Since β < 4/n we have β + 2 < e(n + 1, 1) and Theorem III.1.2;(d) provides the embed-
ding H1

2(Ω) ↪→ Lβ+2(Ω). Then Proposition I.4.2;(c) provides Fβ,± ∈ C(H1
2(Ω), H1

2(Ω)∗)
and Proposition I.2.4 yields that u is a strong solution of (CPP)

Having reviewed the arguments of the global existence result in [TTV14], let us now
state our existence results for (CPP). We first state a version of Theorem III.1.5 adapted
to the situation Ω = Rn ×M.

Theorem IV.2.4
Let m, n ∈N, s ∈ [1, ∞), and β ∈ (1, ∞). We additionally assume:

(i) β(d− 2s) ≤ 2(s + 1) and s > n+m
2 −

1
β .

(ii) Either β ∈Neven or β > [s] + 1 or s = 1.

Then there is p ∈ (max{β, 2}, ∞) such that for each f ∈ Hs
2(Ω) the nonlinear Schrödinger

equation (CPP) has a unique maximal strong solution u ∈ C(I( f ), Hs(Ω))∩ Lp
loc(I( f ), L∞(Ω))

with the following properties:

(a) u has L2(Ω)-conservation and the induced nonlinear flow is locally Lipschitz continuous.

(b) The nonlinear flow transports H s̃
2(Ω) regularity if either β ∈ Neven or β > [s̃]. In this

case u satisfies the blow-up alternative with respect to H s̃
2(Ω).

(c) If β(d− 4) ≤ 4 and the nonlinear flow transports H s̃
2(Ω) regularity with some s̃ ≥ 2, then

u has energy conservation.

Proof. We showed in Proposition IV.2.1 that the cylindrical manifold (Ω, g) fits the
framework of Section III.1 and we want to apply Theorem III.1.5. Note that the condi-
tion (ii) matches III.1.5;(ii). We are therefore left to check III.1.5;(i)+(iii).
We first prove local (p, q) Strichartz estimates with 1/2p-loss for (eit(∆Ω))t∈R. Indeed,
(eit∆Rn )t∈R is (n/2, L1(Rn))-dispersive and (eit∆M)t∈R is (m/2, L1(M))-dispersive of SL-
type 1/2. Proposition IV.2.1 also provides that eit∆Ω = eit∆Rn eit∆M for t ∈ R. Theorem
IV.1.1;(c) then implies local (p, q) Strichartz estimates with 1/2p-loss for (eit∆Ω)t∈R for
all sharp (n+m)/2-admissible pairs (p, q) with q < ∞. Hence, III.1.5;(i) will be fulfilled
as long as we choose the pair (p, q) accordingly.
Let (p, q) be sharp (n+m)/2-admissible pair such that p ∈ (max{β, 2}, ∞) and s >
n+m

2 −
1
β > n+m

q + 1
p . Combined with β(d− 2s) ≤ 2(s+ 1) the latter provides III.1.5;(iii).

Consequently Theorem III.1.5 provides all our claims.
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The standard energy methods from Lemma I.3.5 allow us to deduce the following
global existence result for n = m = 1. This extends the corresponding result in The-
orem IV.2.2 with respect to the growth β of the nonlinearity. Although this is one of
our main results, the proof is rather short. We already provided in Section III.1 all the
necessary estimates and tools that we need here.

Corollary IV.2.5
Let m = 1 and Ω = R × M. We furthermore let β ∈ [2, ∞), p ∈ (β, ∞), and f ∈
H1

2(Ω). If either the nonlinearity is defocusing or β = 2 and ‖ f ‖L2(Ω) is small, then the
nonlinear Schrödinger equation (CPP) has a conditionally unique global strong solution u ∈
Cb(R, H1

2(Ω)) ∩ Lp
loc(R, L∞(Ω)) with the following properties:

(a) u has L2(Ω)- and energy conservation.

(b) The induced nonlinear flow is locally Lipschitz continuous and transports H2
2(Ω) regular-

ity.

Remark: We stress that the comparable result in Theorem IV.2.2 requires β < 4. Here,
we are able to prove global existence for the defocusing equation for an arbitrary β ∈
[2, ∞).

Proof. We follow the lines of the proof of Corollary III.2.3. We fix f ∈ H1
2(Ω). Note

that IV.2.4;(i)+(ii) are satisfied. Then Theorem IV.2.4 provides a unique maximal strong
solution u ∈ C(I( f ), H1

2(Ω)) ∩ Lp
loc(I( f ), L∞(Ω)) of (CPP). u has L2(Ω)-conservation

and due to β ∈ [2, ∞) there is transport of H2
2(Ω) regularity by IV.2.4;(b). Then The-

orem IV.2.4;(c) also yields energy conservation. The criteria for I( f ) = R follow from
Lemma I.3.5, whose assumptions we check now. We already established L2(Ω)- and
energy conservation and therefore I.3.5;(i) is satisfied. Recall that (β + 2)F̂β,±(g) =

±‖g‖β+2
Lβ+2(Ω)

. Then I.3.5;(ii) is clearly satisfied in the defocusing case. For the focusing

case and β = 2 we follow the argument of (I.52). Theorem III.1.2 gives H1/2
2 (Ω) ↪→

L4(Ω) and [L2(Ω), H1
2(Ω)]1/2

∼= H1/2
2 (Ω). For g ∈ H1

2(Ω) follows the estimate

−‖g‖4
L4(Ω) & −‖g‖

4
H1/2

2 (Ω)
& −‖g‖2

L2(Ω)‖g‖
2
H1

2 (Ω)
.

Hence, I.3.5;(ii) is satisfied with β2 = 2. Hence, if either the equation is defocusing or
β = 2 and ‖ f ‖L2(Ω) small enough, then Lemma I.3.5 provides u ∈ L∞(I( f ), H1

2(R
2)).

This shows I( f ) = R by the blow-up alternative.

As a final remark let us briefly comment on the problems we face when dealing with
the defocusing equation (CPP) in the case n = 1, m = 2 and β = 2. This corresponds
to the case d = 3 in [BGT04b]. For a more convenient notation let (Px

k )k∈N0 , (Py
l )l∈N0

be defined by Px
k := ψk(−∆R) and Py

l := ψl(−∆M).
We fix f ∈ H1

2(Ω). Theorem IV.2.4 is not applicable directly. However, for a sequence
( fn)n∈N in H2

2(Ω) with fn
n→∞−→ f in H1

2(Ω), Theorem IV.2.4 provides a sequence of
strong maximal solutions (un)n∈N in C(I( fn), H2

2(Ω)) ∩ Lp
loc(I( fn), L∞(Ω)) to the cubic

(CPP) with un(0) = f . Now we would like to approximate a weak solution in H1
2(Ω) of

(CPP) by these strong solutions in H2
2(Ω) by means of Theorem I.3.6. A huge problem

here is that we do not have control of the maximal existence intervals I( fn). The major
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input of the a priori estimate in Theorem II.4.5 was the deduction of I( fn) = R for all
n ∈ N by means of the blow-up alternative. Then Theorem I.3.6 can be applied on
each compact subinterval in R.
Hence, one of the crucial ingredients for global existence in H1

2(Ω) is the validity of
Theorem II.4.5. The proof relied on estimates for ‖u‖L2(I,L∞(Ω)), which were obtain by
Strichartz estimates of SL-type. A straightforward adaptation of the proof of II.4.3 to
the product situation and the Bernstein inequalities for Px

k and Py
l yield for k, l ∈ N0

and I ∈ Ib

‖Px
k Py

l u‖L2(I,L∞
x,y)

. 2
k

12 2
l
6 ‖Px

k Py
l u‖L2(I,L6

x,y)

. 2
k

12 2
5l
12 ‖Px

k Py
l u‖L2(I,L2

x,y)
+ 2

k
12 2

l
6 ‖Px

k Py
l F2,+(u)‖L∞(I,L6/5

x,y )
.

Then (II.36), (MC4), and (III.26) imply

‖u‖L2(I,L∞
x,y)

≤ ‖Px
0 Py

0 u‖+
∞

∑
k=1
‖Px

k Py
0 u‖L2(I,L∞

x,y)
+

∞

∑
l=1
‖Px

0 Py
l u‖L2(I,L∞

x,y)
+

∞

∑
k,l=1
‖Px

k Py
l u‖L2(I,L∞

x,y)

. ‖u‖L∞(I,H1
2 (Ω)) +

∞

∑
k=1

(
2−

5k
12 ‖(−∆M)

1
2 Px

k u‖L2(I,L2
x,y)

+ 2
k

12 ‖Px
k F2,+(u)‖L∞(I,L6/5

x,y )

)
+

∞

∑
l=1

(
2−

l
12 ‖(−∆M)

1
2 Py

l u‖L2(I,L2
x,y)

+ 2
l
6 ‖Py

l F2,+(u)‖L∞(I,L6/5
x,y )

)
+

∞

∑
k,l=1

(
2

k
12 2

5l
12 ‖Px

k Py
l u‖L2(I,L2

x,y)
+ 2

k
12 2

l
6 ‖Px

k Py
l F2,+(u)‖L∞(I,L6/5

x,y )

)
. ‖u‖L∞(I,H1

2 (Ω)) +
∞

∑
k,l=1

2
k

12 2
5l
12 ‖Px

k Py
l u‖L2(I,L2

x,y)
+ ‖(−∆R)

1+ε
12 (−∆M)

1+ε
6 F2,+(u)‖L∞(I,L6/5

x,y )
,

for all ε ∈ (0, 1). In view of the procedure in (II.72) the first two terms in the last line
are managable. However, we still need to bound the term involving the nonlinearity by
C‖u‖L∞(I,H1

2 (Ω)). The straightforward way to achieve this is to show the boundedness
of ϕ(−∆R,−∆M) ∈ L(L6/5(Ω)), whereby

ϕ : [0, ∞)2 → R, ϕ(λx, λy) :=
λ

1+ε
6

x λ
1
12

(λx + λy)
1
2

. (IV.21)

Such boundedness results are often obtained by multivariate spectral multiplier results
(see for example [Sik09]). However, compared to the bounded spectral calculus on
L2(Ω), which only requires a function to be bounded, Theorem 2.1 of [Sik09] also
requires the partial derivatives of a function to be bounded. The partial derivatives of
ϕ in (IV.21) develop singularities for λx = 0 and λy = 0, respectively. The multivariate
spectral multiplier result in [Sik09] is therefore not applicable. Unfortunately, we are
not able to bypass this problem at this point.
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A. Supplementary Material

The following appendices are meant to supply additional material, which is used fre-
quently throughout this thesis. We focus on mentioning the necessary results and
adequate references for them so that a working basis is established. The details of
proofs can be found in the provided references.

A.1. The complex interpolation method

There are several textbooks dealing with abstract interpolation theory, see for example
[Tri95] or [BL76]. Both these textbooks contain the most commonly used results and
also the real interpolation method. For the complex interpolation method the original
article [Cal64] by A. Calderon is also worth a look. Applications to partial differential
equations can be found in the textbook [Lun95].
It is not intended to give a precise introduction into this topic here, we merely want to
present the central ideas and some relevant results used throughout this thesis.
The first instance of a complex interpolation result is the well-known Riesz-Thorin
Interpolation Theorem. The proof heavily relies on complex function theory, more
precisely, on Hadamard’s three lines theorem.

Theorem A.1.1 ([Gra08] Theorem 1.3.4)
Let (Ω, SΩ, µ) and (Σ, SΣ, ν) be measure spaces, p0, p1, q0, q1 ∈ [1, ∞], and

A : Lp0(Ω) ∩ Lp1(Ω)→ Lq0(Σ) + Lq1(Σ)

be a linear operator. Let furthermore θ ∈ (0, 1) and p, q ∈ [1, ∞] with

1
p
=

1− θ

p0
+

θ

p1
,

1
q
=

1− θ

q0
+

θ

q1
.

If there are C0, C1 ∈ [0, ∞) such that for all f ∈ Lp0(Ω) ∩ Lp1(Ω) holds

‖A f ‖Lq0 (Σ) ≤ C0‖ f ‖Lp0 (Ω),

‖A f ‖Lq1 (Σ) ≤ C1‖ f ‖Lp1 (Ω),

then A can be extended uniquely to A ∈ L(Lp(Ω), Lq(Σ)) with ‖A‖Lp(Ω)→Lq(Σ) ≤ C1−θ
0 Cθ

1 .

As it turns out, this is only a special case of a more general method called the complex
interpolation method, which is defined as follows. Let θ ∈ (0, 1) and the Banach spaces
(X0, ‖ · ‖X0) and (X1, ‖ · ‖X1) be continuously embedded into a topological Hausdorff
space (X,O). In this situation we call (X0, X1) a Banach interpolation couple. With the
strip S := {z ∈ C | 0 < Re(z) < 1} we define the class of functions F (X0, X1) as the
set of all functions F : S→ X0 + X1 with the following properties
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(1) F ∈ C(S, X0 + X1) and F|S is holomorphic,

(2) For k ∈ {0, 1} holds F(k + is) ∈ Xk for s ∈ R and F(k + is)) : R→ Xk is continuous,

(3) sup
z∈S

(
e−| Im(z)|‖F(z)‖X1+X2

)
< ∞.

For F ∈ F (X0, X1) we define

‖F‖F (X0,X1) := max
k∈{0,1}

sup
s∈R

(
e−s‖F(k + is)‖Xk

)
.

Then we define the complex interpolation space

[X0, X1]θ :=
{

x ∈ X0 + X1 | ∃F∈F (X0,X1) : F(θ) = x
}

and equipp it with the norm

‖x‖[X0,X1]θ := inf
F∈F (X0,X1),F(θ)=x

‖F(θ)‖F (X0,X1).

As in Section 9.3 in [Cal64] we define [X0, X1]0 := X0 ∩ X1
‖·‖X0 .

Facts A.1.2
Let (X0, X1) be a Banach interpolation couple and θ ∈ (0, 1).

(1) Density and Interpolation inequality (see [Tri95] Theorem 1.9.3): The complex
interpolation space ([X0, X1]θ , ‖ · ‖[X0,X1]θ ) is a Banach space and we have

X0 ∩ X1 ⊆ [X0, X1]θ ⊆ X0 + X1.

X0 ∩ X1 is dense in [X0, X1]θ . Moreover, there is C(θ) ∈ (0, ∞) such that for all
x ∈ X0 ∩ X1 holds

‖x‖[X0,X1]θ ≤ C(θ)‖x‖1−θ
X0
‖x‖θ

X1
.

(2) Duality (see [Tri95] Theorem 1.9.2): If either X0 or X1 is reflexive and X0 ∩ X1 is
dense in both, then [X0, X1]

∗
θ = [X∗1 , X∗0 ]θ .

(3) The Reiteration Theorem (see [Cal64] 12.3): Let η0, η1 ∈ (0, 1) and either X0 ↪→ X1
or X1 ↪→ X0. Then holds

[[X0, X1]η0 , [X0, X1]η1 ]θ
∼= [X0, X1](1−θ)η0+θη1

.

The proof of this fact in [Cal64] reveals that without the given additional assump-
tions on the Banach interpolation couple (X0, X1) the embedding

[X0, X1]ηθ ↪→ [X0 ∩ X1
‖·‖X0 , [X0, X1]η ]θ ∼= [X0, [X0, X1]η ]θ

is still valid. The last equivalence can be deduced from Section 9.3 there.

With these concepts we present the central interpolation result for linear and bilinear
operators.
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Theorem A.1.3 ([Cal64], Section 4 and 10.2)
Let (X0, X1), (Y0, Y1), and (Z0, Z1) be Banach interpolation couples and θ ∈ (0, 1).

(a) If a linear operator A : X0 ∩ X1 → Z0 + Z1 satisfies for all x ∈ X0 ∩ X1

‖Ax‖Z0 ≤ C0‖x‖X0 ,

‖Ax‖Z1 ≤ C1‖x‖X1 ,

then there is a uniquely determined extension A ∈ L([X0, X1]θ , [Z0, Z1]θ) with A = A on
X0 ∩ X1 and

‖A‖[X0,X1]θ→[Z0,Z1]θ ≤ C1−θ
0 Cθ

1 .

(b) If a bilinear operator B : (X0 ∩ X1) × (Y0 ∩ Y1) → Z0 + Z1 satisfies for all (x, y) ∈
(X0 ∩ X1)× (Y0 ∩Y1)

‖B(x, y)‖Z0 ≤ C0‖x‖X0‖y‖Y0 ,

‖B(x, y)‖Z1 ≤ C1‖x‖X1‖y‖Y1 ,

then there is a uniquely determined continuation B : [X0, X1]θ × [Y0, Y1]θ → [Z0, Z1]θ
with B = B on (X0 ∩ X1)× (Y0 ∩Y1) and

‖B‖[X0,X1]θ×[Y0,Y1]θ→[Z0,Z1]θ ≤ C1−θ
0 Cθ

1 .

Examples A.1.4
We close this section with some relevant examples on how complex interpolation
spaces can be characterized in particular situations.

(1) Lp-spaces (see [Tri95] Theorem 1.18.4): Let (X0, X1) be a Banach interpolation
couple, (Ω, SΩ, µ), (Σ, SΣ, ν) be measure spaces, and θ ∈ (0, 1). Let furthermore
p, p0, p1 ∈ [1, ∞) with 1

p = 1−θ
p0

+ θ
p1

. Then holds

[Lp0(Ω, X0), Lp1(Ω, X1)]θ ∼= Lp(Ω, [X0, X1]θ). (A.1)

Consult Remark 3 in Section 1.18.4 of [Tri95] for a discussion of the case p1 = ∞.
Moreover, if X0 = X1 = C then (A.1) is true if either p0 = 1 and/or p1 = ∞
(see [Tri95] Theorem 1.18.6.2). A combination of this fact with Theorem A.1.3;(a)
reproduces the Riesz-Thorin Interpolation Theorem A.1.1. In particular, if X =
Lq0(Σ), Y = Lq1(Σ) and q, q1, q2 ∈ [1, ∞] with 1

q = 1−θ
q0

+ θ
q1

, then

[Lp0(Ω, Lq0(Σ)), Lp1(Ω, Lq1(Σ))]θ ∼= Lp(Ω, Lq(Σ)). (A.2)

(2) Bessel potential spaces (see [Tri95] Theorem 2.4.2.1;(d) and Remark 2): Let s0, s1 ∈
[0, ∞) and p0, p1 ∈ (1, ∞) and s := (1− θ)s0 + θs1 and 1

p := 1−θ
p0

+ θ
p1

. Then holds

[Hs0
p0
(Rd), Hs1

p1
(Rd)]θ ∼= Hs

p(R
d). (A.3)

(3) Let (H, (·, ·)H) be a Hilbert space and (A, D(A)) be a positive definite, selfadjoint
linear operator on H. Theorem 1.18.10 in [Tri95] then ensures

[D(Aα), D(Aβ)]θ ∼= D(A(1−θ)α+θβ). (A.4)
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A.2. Sobolev’s embedding theorem

In this short section we recall one of the most important tools in the study of partial
differential equation, namely the Sobolev embeddings. We also formulate the Hardy-
Littlewood-Sobolev inequality. Recall that for p ∈ (1, ∞) and an open set Ω ⊆ Rd we
defined

Hs
p(Ω) :=

{
Ws

p(Ω), s ∈N0,

[W [s]
p (Ω), W [s]+1

p (Ω)]s−[s], s ∈ [0, ∞) \N0.

Facts A.2.1
Let Ω ⊆ Rd be an open set, s ∈ [0, ∞), p ∈ (1, ∞), q ∈ [1, ∞] and e(d, p, s) :=
pd/max{d−ps,0} with pd/0 := ∞.

(1) The following embeddings hold:

1
p
<

s
d

=⇒ Hs
p,0(Ω) ↪→ L∞(Ω), (A.5)

1
p
≤ s

d
=⇒ Hs

p,0(Ω) ↪→ Lq(Ω), q ∈ [p, e(d, p, s)), (A.6)

1
p
>

s
d

=⇒ Hs
p,0(Ω) ↪→ Lq(Ω), q = e(d, p, s). (A.7)

(2) If Ω is a bounded Lipschitz domain (or satisfies the strong local Lipschitz condition
in Definition 4.9 of [AF03]), then (A.5)-(A.7) hold with Hs

p,0(Ω) replaced by Hs
p(Ω).

In this form the above Sobolev embeddings deserve some comments. For Ω = Rd

Theorem 2.8.1 in [Tri95] provides the embeddings in (1) since

Hs
p,0(R

d) = Hs
p(R

d) = Fs
p,2(R

d).

The Triebel-Lizorkin space Fs
p,2(R

d) is defined in Section 2.3 of [Tri95]. For an arbitrary
open set Ω ⊆ Rd the density of C∞

c (Ω) in Hs
p,0(Ω) yields all the Rd-embeddings in

this case, what settles (1). For (2) we can use the extension operator extΩ in Remark
III.4.2;(3) to carry over the Rd-embeddings.
The central tools to prove the Sobolev embeddings in the Rd-case is the following
inequality. This inequality is interesting in its own right in the proof of Theorem
II.1.3.

Theorem A.2.2 (Hardy-Littlewood-Sobolev, [Gra09] Theorem 6.1.3)
Let d ∈N, s ∈ (0, d) and 1 < p < q < ∞ with 1

p −
1
q = s

d . Then the linear operator

A : S(Rd)→ Lq(Rd), (A f )(x) := p.v.
∫

Rd

f (x− y)
|y|d−s dy,

extends uniquely to A ∈ L(Lp(Rd), Lq(Rd)).
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A.3. Vector-valued Lp- and Sobolev spaces

In this thesis we extensively use integrals over functions with values in Lp-spaces de-
fined on an interval. The necessary background material presented here is covered in
many textbooks in the more general framework of functions with values in a Banach
space defined on a σ-finite measure space; see for example Chapter X in [AE09], Chap-
ter VI in [Lan93], and Section 2.2 in[DU77]. These textbooks contain all the proofs of
the below assertions. However, the definition of these spaces follows the lines of the
scalar-valued case. Moreover, assertions from the scalar-valued theory which do not
rely on non-negativity usually carry over with almost no change of proof.
In this section always let (X, ‖ · ‖X) be a Banach space equipped with the Borel σ-
algebra B(X) and (Ω, S , µ) be a σ-finite measure space.

Definition A.3.1
Let f : Ω→ X be a function.

(a) f is called simple, if there are N ∈N, Ω1, ..., Ωn ∈M with µ(Ωi) < ∞ for i ∈ {1, ..., N},
and x1, ..., xN ∈ X such that for all ω ∈ Ω holds f (ω) = ∑N

k=1 1Ωi(ω)xi.

(b) f is called strongly measurable if there is a sequence ( fn)n∈N of simple functions on X such
that fn

n→∞−→ f almost everywhere.

Consequently, every simple function is strongly measurable and every strongly mea-
surable function is measurable. Note that the function

f : (0, 1)→ L∞((0, 1), R), [ f (t)](·) := 1(0,t)(·),

is measurable but not strongly measurable. Since ‖ · ‖X : X → [0, ∞) is continuous,
additionally ‖ f (·)‖X : Ω → [0, ∞) is measurable if f : Ω → X is strongly measurable
and we can formulate the following definition.

Definition A.3.2
Let f : Ω → X be strongly measurable and ( fn)n∈N a sequence of simple functions with
fn

n→∞−→ f alomst everywhere.

(a) If f is a simple function, then
∫

Ω
f dλ :=

N

∑
i=1

µ(Ωi)xi.

(b) f is called Bochner integrable, if lim
n→∞

∫
Ω
‖ f − fn‖X dλ = 0. In this case the Bochner

integral of f is defined as ∫
Ω

f dλ := lim
n→∞

∫
Ω

fn dλ.

Facts A.3.3
All the results presented here, except Fubini’s theorem, can be found in [DU77] Section
2.2.

(1) Alteration on null sets: If f , g : Ω → X are Bochner integrable with f = g almost
everywhere, then the Bochner integrals of f and g are equal. The equivalence class
of a function f induced by almost everywhere equality is denoted by f∼.
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(2) Bochner’s Theorem: Let f : Ω → X be strongly measurable. Then f is Bochner
integrable if and only if

∫
Ω ‖ f ‖X dµ < ∞ and in this case∥∥∥∥ ∫Ω

f dµ

∥∥∥∥
X
≤
∫

Ω
‖ f ‖X dµ.

(3) The dominated convergence theorem: Let ( fn)n∈N with fn : Ω → X Bochner
integrable be almost everywhere convergent with limit function f : Ω→ X. If there
is a Bochner integrable function g : Ω → C with ‖ fn‖X ≤ |g| almost everywhere,
then f is Bochner integrable and

lim
n→∞

∫
Ω
‖ fn − f ‖X dµ = 0.

By means of (2) this implies

lim
n→∞

∫
Ω

fn dµ =
∫

Ω
f dµ.

(4) Hille’s Theorem: Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be Banach spaces, f : Ω→ X be Bochner
integrable, and (A, D(A)) be a closed linear operator from X to Y. If f ∈ D(A)
almost everywhere and A f : Ω → Y (which is defined almost everywhere) is
Bochner integrable, then we have∫

Ω
f dµ ∈ D(A), A

∫
Ω

f dµ =
∫

Ω
A f dµ.

(5) Fubini’s Theorem (see [Lan93] Theorem 8.4): Let (Ω1, S1, µ1), (Ω2, S2, µ2) be σ-
finite measure spaces and f : Ω1 ×Ω2 → X be Bochner integrable with respect to
µ1 ⊗ µ2. Then∫

Ω1×Ω2

f d(µ1 ⊗ µ2) =
∫

Ω1

( ∫
Ω2

f dµ2

)
dµ1 =

∫
Ω2

( ∫
Ω1

f dµ1

)
dµ2.

Finally, we define the Banach space valued Lp-spaces by

Lp(Ω, X) :=
{

f∼ | f : Ω→ X Bochner integrable,
∫

Ω
‖ f ‖p

X dµ < ∞
}

, p ∈ [1, ∞)

‖ f∼‖Lp(Ω,X) :=
( ∫

Ω
‖ f ‖p

X dµ

)1/p

and

L∞(Ω, X) :=
{

f∼ | f : Ω→ X strongly measurable, bounded almost everywhere
}

‖ f∼‖L∞(Ω,X) := ess supω∈Ω ‖ f (ω)‖X.

As usual we completely ignore the difference of f and f∼ in our notation.
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Facts A.3.4
As before we gather some important assertions.

(1) Elementary properties (see [DU77] Section 4.1): For p ∈ [1, ∞] the space (Lp(Ω, X), ‖ ·
‖Lp(Ω,X)) is a Banach spaces. For p < ∞ it contains the simple functions as a dense
subset and for p = ∞ it contains the countably valued functions as a dense subset.
Moreover, the map

I : Lp∗(Ω, X∗)→ Lp(Ω, X)∗, 〈I F, ·〉 :=
∫

Ω
〈F, ·〉X∗,X dµ

is an isometry. If p ∈ [1, ∞) and (X, ‖ · ‖X) is reflexive, then I is surjective, hence
Lp(Ω, X)∗ ≡ Lp∗(Ω, X∗) with isometric isomorphism I . The latter assertion has
been proven in [DU77], Theorem 1 in Section 4.1 for µ(Ω) < ∞ and in [Edw95],
Theorem 8.18.3 and 8.20.4 for (Ω, S , µ) σ-finite.

(2) Characterization of Lp(Ω1 × Ω2, X) (see [AE09] Theorem 6.22): Let (Ω1, S1, µ1)
and (Ω2, S2, µ2) be σ-finite measure spaces. For p ∈ [1, ∞) Fubini’s Theorem even-
tually implies that

Lp(Ω1 ×Ω2, X) ≡ Lp(Ω1, Lp(Ω2)),

with the isometric isomorphism

I : Lp(Ω1 ×Ω2, X)→ Lp(Ω1, Lp(Ω2, X)), [τ( f )(ω1)](·) := f (ω1, ·).

This statement is false if p = ∞, since the strong measurability of I f : Ω1 →
L∞(Ω2, X) may fail as for example shown in the counterexample in Remark 6.23 of
[AE09].

(3) Minkowski’s integral inequality (see [Gra08] 1.1.6): Let (Ωi, Si, µi) with i ∈ {1, 2}
be σ-finite measure spaces, p, q ∈ [1, ∞) with 1 ≤ q ≤ p, and F : Ω1 ×Ω2 → C be
measurable with respect to S1 ⊗S2. Then

‖F‖Lp(Ω1,Lq(Ω2)) ≤ ‖F‖Lq(Ω2,Lp(Ω1)). (A.8)

(4) The Lemma of Christ-Kiselev (see [CK01] Theorem 1.1): Let (X, ‖ · ‖X), (Y, ‖ · ‖Y)
be Banach spaces, I ∈ I , p, q ∈ [1, ∞], and K : I × I → L(X, Y) be locally integrable
such that

T : Lp(I, X)→ Lq(I, Y), (TF)(t) :=
∫

I
K(t, s)F(s) ds

is bounded. If p < q, then

T|r : Lp(I, X)→ Lq(I, Y), (T|rF)(t) := T(1(inf I,t]F)(t),

is bounded with ‖T|r‖Lp(I,X)→Lq(I,Y) . ‖T‖Lp(R,X)→Lq(R,Y).

Now we want to present the necessary material on the Sobolev space W1
p(I, X). For

details and more results see for example Chapter 1 of [CH98].
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From now on let I ∈ Io, p ∈ [1, ∞], and u ∈ Lp(I, X). We define the distributional
derivative of u via

∀η∈C∞
c (I) : u′(η) := −

∫
I

u(t)η′(t) dt.

u′ ∈ Lp(I, X) means that there is v ∈ Lp(I, X) such that

∀η∈C∞
c (I) : u′(η) =

∫
I

v(t)η(t) dt.

We then define the Sobolev space W1
p(I, X) by

W1,p(I, X) :=
{

u ∈ Lp(I, X) | u′ ∈ Lp(I, X)
}

,

‖u‖W1
p(I,X) := ‖u‖Lp(I,X) + ‖u′‖Lp(I,X).

Facts A.3.5
Let p ∈ [1, ∞]. We gather an important characterization for functions in W1

p(I, X) and
some useful embeddings.

(1) Characterization of W1
p(I, X) (see [CH98] Theorem 1.4.35): (W1

p(I, X), ‖ · ‖W1
p(I,X))

is a Banach space and for u ∈ Lp(I, X) the following assertions are equivalent.

(i) u ∈W1
p(I, X).

(ii) There is v ∈ Lp(I, X) such that for almost all s, t ∈ I holds

u(t)− u(s) =
∫ t

s
v(τ) dτ.

(iii) There are v ∈ Lp(I, X), x ∈ X, and s ∈ I, such that for almost all t ∈ I holds

u(t)− x =
∫ t

s
v(τ) dτ.

(iv) u is absolutely continuous, almost everywhere differentiable on I, and u′ ∈
Lp(I, X).

As in the scalar-valued case the function v from (ii) and (iii) coincides with the
distributional derivative u′. Moreover, if (X, ‖ · ‖X) is reflexive then a fifth charac-
terization can be added, namely:

(v) There is h ∈ Lp(I, R) such that for almost all s, t ∈ I holds

‖u(s)− u(t)‖X ≤
∣∣∣∣ ∫ t

s
h(τ) dτ

∣∣∣∣.
(2) Embeddings for W1

p(I, X): From (1) immediately follows:

(i) W1
p(I, X) ↪→ Cb,u(I, X).

(ii) If p > 1, then W1
p(I, X) ↪→ C0,1/p∗(I, X).

(iii) If X is reflexive, then for u ∈ C0,1(I, X) holds u|I ∈W1
∞(I, X).

Remark A.3.6
One important consequence of (2) is that, roughly speaking, for reflexive Banach spaces
(X, ‖ · ‖X) the Sobolev space W1

∞(I, X) coincides with C0,1(I, X).
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A.4. Some Riemannian geometry

A.4. Some Riemannian geometry

In this section we give a brief review of standard notions and concepts with respect to
Riemannian manifolds. For more information we refer to the textbooks [Aub98, Heb99,
Gri09].
Let (Ω, τ, A ) be a connected C∞-manifold without boundary, with topology τ, smooth
atlas A , and dim(Ω) = d. We usually omit the topology τ and the atlas A and simply
write Ω.
For a local chart (O, κ) ∈ A we associate a local coordinate system and distorted partial
derivatives in the following manner: For ω ∈ O we call z = (z1, ..., zd) = κ(ω) ∈ Rd the
local coordinates of ω in (O, κ). If f : Ω→ R is differentiable in ω = κ−1(z) then

∂ωk |ω f := (∂ωk f )(ω) := (∂zk( f ◦ κ−1))(z).

Here ∂zk denotes the standard partial derivative on Rd. We put ∂α
ω = ∂α1

ω1 ... ∂αd
ωd for

α ∈Nd
0.

Let ω ∈ Ω. Then the tangential space of Ω in ω is given by the d-dimensional real
vector space

TωΩ := span
{

∂ω1 |ω, ..., ∂ωd |ω
}

.

We additionally denote by TΩ :=
⋃

ω∈Ω TωΩ the tangent bundle. For k ∈ N the
space Tk

ωΩ is given by all k-linear forms on
⊗k

l=1 TωΩ and TkΩ :=
⋃

ω∈Ω Tk
ωΩ. All

these structures allow the definition of a C∞-atlas and we thus consider them as C∞-
manifolds themselves. Hence, we have a notion of differentiability on these sets.
A map v : Ω → TΩ with v(ω) ∈ TωΩ is called a vector field on Ω. VΩ denotes
the space of differentiable vector fields on Ω. Note that ∂ωk : Ω → TΩ given by
∂ωk(ω) := ∂ωk |ω is such a vector field.
Let Ω̃ be second C∞-manifold and f : Ω→ Ω̃ be differentiable. By D f : TΩ→ TΩ̃ we
denote the differential map, given by

[D f (v)](h) := v(h ◦ f )

for v ∈ TωΩ and h : Ω̃→ R differentiable.
A map g : Ω → T2Ω is said to be a Riemannian metric if it is smooth and g(ω) is a
scalar product on TωΩ for all ω ∈ Ω. We denote this scalar product by 〈·, ·〉ω and its
induced norm by ‖ · ‖ω as well as Bω(0, R) := {v ∈ TωΩ | ‖v‖ω < R}. For all ω ∈ Ω
in local coordinates the metric is uniquely determined by the matrix

G(ω) := (gk,l(ω))d
k,l=1, gk,l(ω) := g(ω)

(
∂ωk |ω, ∂ωl |ω

)
and its inverse is denoted by G(ω)−1 = (gk,l(ω))d

k,l=1. We say that Ω has bounded
geometry if for all α ∈Nd

0 there is Cα ∈ (0, ∞) such that |∂αgk,l | ≤ Cα.
As usual for ω1, ω2 ∈ Ω let

C1
p(ω1, ω2) :=

{
γ ∈ C([a, b], Ω) | γ(a) = ω1, γ(b) = ω2 and γ is piecewise C1}.

One defines the distance between ω1 and ω2 by

dg(ω1, ω2) := inf
γ∈C1

p(ω1,ω2)
Lg(γ) := inf

γ∈C1
p(ω1,ω2)

∫ b

a
〈Dγ(t), Dγ(t)〉

1
2
γ(t) dt.
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A. Supplementary Material

This defines a metric on Ω since Ω is connected. If Lg(γ) = dg(ω1, ω2) the curve
γ is called minimizing. In case a C∞-manifold can be equipped with a Riemannian
metric g, then we call (Ω, τ, A , g) a Riemannian C∞-manifold. These manifolds admit
a uniquely determined linear connection L : TΩ × VΩ → TΩ called the Levi-Civita
connection, which does not depend on the chosen atlas. In a local chart (O, κ) we
define ∇k := L(·, ∂ωk). Then for k, l ∈N≤d one has

∇k∂ωl |ω = Γm
k,l(ω)∂ωm |ω (A.9)

where the Christoffel symbols Γm
k,l are given by

Γm
k,l(ω) :=

1
2

d

∑
n=1

(
(∂ωk gn,l)(ω) + (∂ωl gn,k)(ω)− (∂ωn gk,l)(ω)

)
gn,m(ω). (A.10)

The equality (A.10) holds for the Christoffel symbols generated by the Levi-Civita
connection. The relation in (A.9) can be seen as the definition of these quantities for an
arbitrary linear connection.
Let I ∈ Ic, t ∈ I and γ : I → Ω be a curve. Then (γm(t))d

m=1 denote the local
coordinates of γ(t) in (O, κ). The curve γ is called geodesic if for m ∈ N≤d and t ∈ I
holds

γ′′m(t) +
d

∑
k,l=1

Γm
k,l(γ(t))γ

′
k(t)γ

′
l(t) = 0. (A.11)

Let ω ∈ Ω and B ⊆ TωΩ such that for all v ∈ B with coefficients (v1, ..., vd), there is a
unique geodesic γ : [0, 1]→ Ω such that γ′m(t) = vm for m ∈N≤d. Then one can define
the exponential map expω : B → Ω by expω(v) := γ(1). We say expω is global if it
is defined on TωΩ, i.e., the differential equation (A.11) equipped with the above initial
conditions has a unique global solution for all initial values for the first derivatives of
γ. The latter assertion is equivalent to the completeness of the metric space (Ω, dg) by
the famous Hopf-Rinow Theorem 1.37 in Section 1.4 of [Aub98]. In this case one can
join any two points of Ω by a minimizing geodesic curve.
We continue with the important injectivity radius. There is ε ∈ (0, ∞) such that expω :
Bω(0, ε)→ expω(Bω(0, ε)) is injective. Then one calls

inj(Ω, g) := inf
ω∈Ω

(
sup

{
ε ∈ (0, ∞) | expω : Bω(0, ε)→ Ω is injective

})
the injectivity radius of (Ω, g).
We can use the exponential map to generate special local coordinates. Let ω ∈ Ω and
ε be given as above. With Oω(ε) := expω(Bω(0, ε)) the map expω : Bω(0, ε) → Oω(ε)
is a diffeomorphism and we let κω := exp−1

ω . We call Oω(ε) geodesic ball with center
ω and ε its geodesic radius. Then (Oω(ε), κω) is a chart around ω and the induced
local coordinates are called geodesic normal coordinates of ω. If inj(Ω) > 0 and
r ∈ (0, inj(Ω)), then there is a family (ωi)i∈I in Ω with an arbitrary index set I, which
satisfies Ω =

⋃
i∈I Oωi(r). We then define the geodesic atlas A (r) with geodesic radius

r by

A (r) :=
{
(Oi(r), κi) | i ∈ I

}
, Oi(r) := Oωi(r), κi := κωi . (A.12)

138



B. Proof of the weak limit argument in
Theorem I.3.6

This appendix is devoted exclusively to the proof of the crucial ingredient of the proof
of Theorem I.3.6. Because of its relevance and to keep our exposition reasonably self-
contained, we want to give a detailed proof of this result. It can be found for example
in Proposition 1.1.2 in [Caz03], where assertions (a) and (c) are proven. However, the
exposition of [Caz03] is rather concise and we want to fill in some technical details
concerning uniformly convex Banach spaces.

Theorem B.0.1
Let I ∈ Ic and (X, ‖ · ‖X), (Y, ‖ · ‖Y) and (Z, ‖ · ‖Z) be Banach spaces, as well as (un)n∈N

with un : I → X. We furthermore assume:

(i) (X, ‖ · ‖X) is reflexive and X ↪→ Z,

(ii) sup
(n,t)∈N×I

‖un(t)‖X < ∞ and (un)n∈N ⊆ C(I, Z) is uniformly equicontinuous, i.e.,

∀ε∈(0,∞)∃δ∈(0,∞)∀(n,s,t)∈N×I×I : |t− s| < δ =⇒ ‖un(s)− un(t)‖Z < ε.

We then have:

(a) There is u ∈ Cw(I, X) ∩ C(I, Z) and a sequence (n(k))k∈N in N with un(k)(t) ⇀ u(t) in
X for all t ∈ I.

(b) If in addition (un)n∈N ⊆ C0,α(I, Z) is bounded for some α ∈ (0, 1], then u ∈ C0,α(I, Z).

(c) Let in addition (Y, ·‖Y) be uniformly convex with X ↪→ Y ↪→ Z. If (un)n∈N ⊆ C(I, Y)
and ‖un(k)(·)‖Y

k→∞−→ ‖u(·)‖Y uniformly on I, then u ∈ C(I, Y) and un(k)
k→∞−→ u in

C(I, Y).

Remarks:

(1) Examples for uniformly convex Banach spaces are Hilbert spaces, Lp(Ω) and `p(Z)
for p ∈ (1, ∞), which is enough for our purposes. For proofs see [Cla36].

(2) Note that the boundedness of (un)n∈N ⊆ C0,α(I, Z) in (b) directly implies the uni-
form equicontinuity in Z from condition (ii).

Proof. Without loss of generality we can assume that X ⊆ Y ⊆ Z. First we recall two
helpful facts from functional analysis.
(1) For z ∈ Z and a bounded sequence (xl)l∈N in X holds

xl ⇀ z in Z =⇒ z ∈ X ∧ xl ⇀ z in X. (B.1)
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B. Proof of the weak limit argument in Theorem I.3.6

Indeed, the reflexivity of X yields the existence of a sequence (l(k))k∈N ⊆N and x ∈ X
such that xl(k) ⇀ x in X. Due to X ⊆ Z holds Z∗ ⊆ X∗ and xl(k) ⇀ x in Z and therefore
x = z by the uniqueness of weak limits. For the weak convergence in X we only need
to show that Z∗ is dense in X∗. Let ` ∈ X∗∗ suffice `|Z∗ = 0. The reflexivity of X
provides a unique x ∈ X with `(x∗) = x∗(x) for all x∗ ∈ X∗. Then for all z∗ ∈ Z∗ holds
z∗(x) = `(z∗) = 0. Thus, x = 0 and therefore ` = 0. This implies the claimed density
by the Hahn-Banach Theorem.
(2) The second important tool is the weak lower semicontinuity of a norm, i.e. for a
normed space (S, ‖ · ‖S) holds

xn ⇀ x in S =⇒ ‖x‖S ≤ lim inf
n∈N

‖xn‖S. (B.2)

The case x = 0 is trivial, so let x 6= 0 and (xn)n∈N be a sequence in S with xn ⇀ x in
S. We assume the opposite of the right-hand side. Then there is a sequence (n(k))k∈N

in N with n(k) k→∞−→ ∞ and ‖xn(k)‖S < ‖x‖S for all k ∈ N. As x 6= 0 the Hahn-Banach
Theorem yields the existence of x∗ ∈ S∗ with ‖x∗‖S∗ = 1 and ‖x‖S = x∗(x). Conse-
quently, ‖x‖S = limk→∞ x∗(xn(k)) ≤ ‖xn(k)‖S < ‖x‖S, which is absurd.
(a) Let Q := I ∩ Q = {qj | j ∈ N}. By assumption (ii) the sequence (un(q1))n∈N

is bounded in X. This implies by reflexivity the existence of a sequence (n1(k))k∈N

such that (un1(k)(q1))k∈N converges weakly in X. The same argument yields that
(un1(k)(q2))k∈N admits a subsequence (n2(k))k∈N of (n1(k))k∈N such that (un2(k)(q2))k∈N

converges weakly in X. By induction, for i ∈ N \ {1}, there is a sequence (ni(k))k∈N

such that (uni(k)(qi))k∈N converges weakly in X and (ni(k))k∈N ⊆ (ni−1(k))k∈N. This
implies that for all i ∈ N the weak convergence of (uni(k)(qj))k∈N in X for all j ∈
{1, ..., i}. Consequently, the sequence (n(k))k∈N with n(k) := nk(k) admits the weak
convergence of (un(k))(qj))k∈N in X for all j ∈N. Note that the weak convergence also
holds in Z, since Z∗ ⊆ X∗. For all t ∈ I, q ∈ Q and z∗ ∈ Z∗ holds∣∣z∗(un(k)(t)− un(l)(t)

)∣∣
≤
∣∣z∗(un(k)(t)− un(k)(q)

)
+ z∗

(
un(l)(q)− un(l)(t)

)∣∣+ ∣∣z∗(un(k)(q)− un(l)(q)
)∣∣.

Let ε ∈ (0, ∞). If we choose k, l ∈N large enough, then the last term is smaller than ε/3.
The uniform equicontinuity of (un)n∈N from (ii) yields for |t− q| < δ with δ ∈ (0, ∞)
small enough that for all k, l ∈N∣∣z∗(un(k)(t) − un(k)(q)

)
+ z∗

(
un(l)(q)− un(l)(t)

)∣∣
≤ ‖z∗‖Z∗

(
‖un(k)(t)− un(k)(q)‖Z + ‖un(l)(q)− un(l)(t)‖Z

)
<

2ε

3
.

This implies that (un(k)(t))k∈N converges weakly in Z for all t ∈ I. Consequently, there
is u : I → Z with un(k)(t) ⇀ u(t) in Z for all t ∈ I. Then for s, t ∈ I with |s− t| < δ
follows by (B.2) and (ii)

‖u(t)− u(s)‖Z ≤ lim inf
k∈N

‖un(k)(t)− un(k)(s)‖Z < ε. (B.3)

Hence, u ∈ C(I, Z). Let t ∈ I and (tl)l∈N in I with tl
l→∞−→ t. Then (ii) and u ∈ Cb(I, Z)

combined with (B.1) shows that un(k)(t) ⇀ u(t) in X and u(tl) ⇀ u(t) in X. We
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therefore have u ∈ Cw(I, X).
(b) Let additionally (un)n∈N ⊆ C0,α(I, Z) be bounded, i.e,

sup
n∈N

sup
s,t∈I,s 6=t

(
‖un(s)− un(t)‖Z

|s− t|α

)
≤ sup

n∈N

‖un‖C0,α(I,Z) =: L < ∞.

As in (B.3) the weak lower semicontinuity (B.2) of ‖ · ‖Z yields for s, t ∈ I

‖u(s)− u(t)‖Z ≤ lim inf
k∈N

‖un(k)(s)− un(k)(t)‖Z ≤ L|s− t|α.

Hence, u ∈ C0,α(I, Z).
(c) We first prove a useful consequence of the uniform convexity of Y, namely

yn ⇀ y in Y ∧ ‖yn‖Y
n→∞−→ ‖y‖Y =⇒ yn

n→∞−→ y in Y. (B.4)

The uniform convexity provides per definition

∀ε∈(0,∞)∃δ∈(0,1]∀x,y∈SY(0,1) :
‖x + y‖

2
> 1− δ =⇒ ‖x− y‖ < ε. (B.5)

In the case y = 0 there is nothing to show. Thus we can consider y 6= 0 and (yn)n∈N

in Y \ {0}. We additionally define (xn)n∈N by xn := yn/‖yn‖Y and x := y/‖y‖Y. Then we
have

xn ⇀ x in Y,
xn + xk

2
⇀ x in Y,

and (B.2) implies

1 = ‖x‖Y ≤
1
2

lim inf
(n,k)∈N2

‖xn + xk‖Y

≤ 1
2

lim sup
(n,k)∈N2

‖xn + xk‖Y ≤
1
2

sup
(n,k)∈N2

‖xn + xk‖Y ≤ 1.

Consequently, ‖xn+xk‖Y/2
n,k→∞−→ 1 and (B.5) yields that (xn)n∈N is a Cauchy sequence in

Y with strong limit x, since weak limits are unique. We then have

‖yn − y‖Y =
∥∥‖yn‖Yxn − ‖y‖Yx

∥∥
Y

≤ ‖yn‖Y‖xn − x‖Y +
∣∣‖yn‖Y − ‖y‖Y

∣∣‖x‖Y
n→∞−→ 0.

Having proven (B.4) we proceed with the proof of (c). Recall that u ∈ Cw(I, X) and let
t ∈ I. Then the embedding X ↪→ Y one the one hand yields u ∈ Cw(I, Y) and on the
other hand un(k)(t) ⇀ u(t) in Y. The latter fact combined with ‖un(k)(t)‖Y

k→∞−→ ‖u(t)‖Y

yields un(k)(t)
k→∞−→ u(t) in Y by (B.4). For s, t ∈ I we have∣∣‖u(s)‖Y − ‖u(t)‖Y

∣∣
≤
∣∣‖u(s)‖Y − ‖un(k)(s)‖Y

∣∣+ ∣∣‖un(k)(t)‖Y − ‖u(t)‖Y
∣∣+ ‖un(k)(s)− un(k)(t)‖Y.

The first two terms converge to 0 for k → ∞ by assumption. un(k) ∈ C(I, Y) and
the previous estimate provide ‖u‖Y ∈ C(I). Since we already know u ∈ Cw(I, Y) the
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B. Proof of the weak limit argument in Theorem I.3.6

assertion in (B.4) provides u ∈ C(I, Y).
It is left to show that (un(k))k∈N converges in C(I, Y) to u. Let us assume the opposite.
Then a well known characterization of uniform convergence yields

∃ε∈(0,∞), (tk)k∈N⊆I∀k∈N : ‖un(k)(tk)− u(tk)‖Y ≥ ε. (B.6)

By choosing a subsequence we can assume that tk
k→∞−→ t ∈ I. Then the uniform

equicontinuity of (un)n∈N on Z and the weak convergence of (un(k)(t))k∈N in Z yield
for z∗ ∈ Z∗

z∗
(
un(k)(tk)− u(t)

)
= z∗

(
un(k)(tk)− un(k)(t)

)
+ z∗

(
un(k)(t)− u(t)

) k→∞−→ 0.

Assumption (ii) and X ↪→ Y additionally imply that (un(k)(tk))k∈N is bounded in
Y. Then (B.1) yields un(k)(tk) ⇀ u(t) in Y. Moreover, the uniform convergence of
(‖un(k)(·)‖Y)k∈N and u ∈ C(I, Y) imply∣∣‖un(k)(tk)‖Y − ‖u(t)‖Y

∣∣
≤
∣∣‖un(k)(tk)‖Y − ‖u(tk)‖Y

∣∣+ ‖u(tk)− u(t)‖Y
k→∞−→ 0.

(B.4) therefore provides un(k)(tk)
k→∞−→ u(t) in Y. Finally, u ∈ C(I, Y) implies

‖un(k)(tk)− u(tk)‖Y ≤ ‖un(k)(tk)− u(t)‖Y + ‖u(t)− u(tk)‖Y
k→∞−→ 0.

This clearly contradicts (B.6).
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Translated from the 2001 German original by Silvio Levy and Matthew Cargo.
Available from: http://dx.doi.org/10.1007/978-3-7643-7480-8.

[AF03] Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure and
Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second
edition, 2003.

[AG07] Serge Alinhac and Patrick Gérard. Pseudo-differential operators and the Nash-Moser
theorem, volume 82 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 2007. Translated from the 1991 French original by Stephen
S. Wilson.

[AHL+02] Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and Ph.
Tchamitchian. The solution of the Kato square root problem for second order
elliptic operators on Rn. Ann. of Math. (2), 156(2):633–654, 2002. Available from:
http://dx.doi.org/10.2307/3597201.

[AHMT01] Pascal Auscher, Steve Hofmann, Alan McIntosh, and Philippe Tchamitchian. The
Kato square root problem for higher order elliptic operators and systems on Rn. J.
Evol. Equ., 1(4):361–385, 2001. Dedicated to the memory of Tosio Kato. Available
from: http://dx.doi.org/10.1007/PL00001377.

[Ant08] Ramona Anton. Strichartz inequalities for Lipschitz metrics on manifolds and
nonlinear Schrödinger equation on domains. Bull. Soc. Math. France, 136(1):27–65,
2008.

[AT03] P. Auscher and Ph. Tchamitchian. Square roots of elliptic second order divergence
operators on strongly Lipschitz domains: L2 theory. J. Anal. Math., 90:1–12, 2003.
Available from: http://dx.doi.org/10.1007/BF02786549.

[Aub98] Thierry Aubin. Some nonlinear problems in Riemannian geometry. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin, 1998. Available from: http:
//dx.doi.org/10.1007/978-3-662-13006-3.

[BCD11] Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin. Fourier analysis and non-
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[Hör60] Lars Hörmander. Estimates for translation invariant operators in Lp spaces. Acta
Math., 104:93–140, 1960.
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