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Abstract

Route planning algorithms have gained considerable interest in the last ten years.
Contraction hierarchies (CHs) [44] are a well-known algorithmic framework for
fast and exact route planning on road networks with constant travel costs. Like
most other route planning techniques, CHs enable fast querying at the cost of a
slow preprocessing. This thesis generalizes CHs to work with time-dependent
travel costs. Considered kinds of time-dependent travel costs are travel times
as well as travel times with additional time-invariant costs. The travel times must
fulfill the FIFO property; that is, a later departure never results in an earlier arrival.

A possible application of time-dependent travel times is to avoid regular con-
gestions and rush hours extracted from statistically collected data. Additional
time-invariant costs only seem to be a slight generalization on the first glance,
but make the route computation much more difficult; that is, NP-hard.1 From the
application point of view, additional time-invariant costs can be used to penalize
inconvenient roads (e.g., narrow, winding, steep, or dangerous). Another use case
are monetary travel costs that consist of a time-invariant part (e.g., motorway tolls)
and a time-dependent part proportional to travel time (e.g., the wages of a truck
driver).

Without additional time-invariant costs, we achieve fast and exact time-de-
pendent route planning. The underlying time-dependent contraction hierarchies
(TCHs), and its variants approximate TCHs (ATCHs) and inexact TCHs, are far
from being a straightforward extension of CHs. Instead, several sophisticated
algorithmic ingredients are necessary to make them run efficiently. The most
important concept is the careful use of approximate computations to find small
subgraphs that contain all relevant nodes and edges. Exact computations are per-
formed afterwards, only on the small subgraphs. This simple but effective idea

1The NP-hardness of time-dependent route planning with additional time-invariant costs fol-
lows from the NP-hardness of a very restricted special case [3].



• makes the running time of the TCH preprocessing at all feasible,

• speeds up expensive exact computations without loosing exactness, and

• enables exact computations with space saving approximate data.

For an instance of the German road network with 4.7million nodes and 10.8mil-
lion edges we are able to answer an earliest arrival query—that is, a point-to-point
query asking for the minimum travel time for a given single departure time—
within less than 1.2 msec. For a travel time profile query—that is, a point-to-point
query asking for a function that yields the minimal possible travel times over an
interval of departure times—we need less than 35msec, if the departure interval
has a width of 24 hours. For inexact travel time profile queries with an error of
up to 1% this reduces to 2.6 msec. The underlying ATCHs and inexact TCHs that
represent the instance of the German road network all need less than 1 GiB space
and can be generated within about 30 minutes. With 8 parallel threads this even
reduces to about 5 minutes.

With additional time-invariant costs, we only achieve inexact route planning.
The underlying variant of TCHs is a heuristic TCH that does not guarantee to
provide minimum cost paths for all possible combinations of start, destination, and
departure time. In our experiments, however, the error is practically negligible.
The answering of a minimum cost query—that is, a point-to-point query asking for
a minimum cost path for a given single departure time—takes less than 35 msec
for the hardest instance considered in our experiments. This is, again, an instance
of the German road network, but this time with monetary travel costs where

• the time-invariant part represents motorway tolls as well as a simple approxi-
mation of energy costs proportional to the travel distance, and

• the time-dependent part represents an amount of money proportional to the
travel time as defined by a given hourly rate.

The preprocessing takes 1 hour and 23 minutes with 8 parallel threads for this set
of time-dependent travel costs. But note that the underlying implementation of the
preprocessing is prototypical. So, smaller preprocessing times may be possible.
Of course, we expect larger preprocessing times than without additional costs,
even with a well-tuned implementation.

The resulting heuristic TCH structure needs 9 GiB, but we have not applied ap-
proximation to reduce space usage so far (as we do in case of ATCHs and inexact
TCHs). The main outcome is that heuristic TCHs allow practically exact and suffi-
ciently fast preprocessing and querying for the tested instances. The computation
of cost profile queries—that is, of point-to-point queries asking for a function that
yields the minimal possible travel costs over an interval of departure times—is
only considered as part of the preprocessing. We show, however, that cost profiles
have exponential worst case size, which makes them significantly more complex



than travel time profiles.2 An interesting observation is that heuristic TCH struc-
tures have to deal with more general TTFs with points of discontinuity and with
more general additional costs that are time-dependent. This suggests that heuristic
TCHs may work if an original road networks comes with such generalized travel
costs (though waiting gets beneficial in this setup).

We not only evaluate our TCH-based route planning techniques experimen-
tally, but provide proofs of correctness for all of them. All these route planning
techniques are assembled from a number of basic algorithmic ingredients that are
variants of Dijkstra’s well-known algorithm. We speak of Dijkstra-like algorithms
hence. Some of these algorithms compute exact results and some approximate re-
sults. We provide proofs of correction for all of these ingredients to build a basis
for the proofs of correctness of the TCH-based route planning techniques.

2According to Foschini et al. [36], travel time profiles have a worst-case size of K · nO(logn),
where n is, in principle, the size of the road network without travel time data and K the total size
of the travel time data.





�

Acknowledgements

I would like to thank a number of people. First of all, I want to thank my doctoral
advisor Peter Sanders for inspiring and fruitful discussions, his advice and his sup-
port. Also, I want thank the other route planning people who are or were at Karl-
sruhe. Thank you, Robert Geisberger, for many interesting (not only route plan-
ning related) discussions and good acquaintance. Thank you, Dominik Schultes,
for a lot of help when I started working on route planning. Thank you, Chris-
tian Vetter, for creative problem solving during the student research project and as
a student assistant. Thank you, Daniel Delling, Julian Dibbelt, Andreas Gemsa,
Dennis Luxen, Moritz Kobitzsch, and Dennis Schieferdecker for several fruitful
discussions. Also, I want to thank Sabine Neubauer for providing us her im-
plementation of the Imai-Iri algorithm that she produced in her student research
project. Further, I want to thank all the coauthors I had in the last years. Their
names are a subset of the names already mentioned.

Especially, I want to thank all the office mates that I had during my years at
KIT. Thank you, Dominik Schultes, Dennis Luxen, Robert Geisberger, and Timo
Bingmann for inspiring discussions (sometimes work-related and sometimes not)
and the good atmosphere. I also want to thank all the other people at the groups
of Peter Sanders and Dorothea Wagner for the atmosphere; especially, Anja Blan-
cani, who supports us all, Dennis Schieferdecker, for the coffee breaks, and Jochen
Speck, for several interesting lunch discussions.

Of course, I want to thank family and friends. Fist, I want to thank my parents
for their constant encouragement and support. Further, I want to thank my friends
David, Jonathan, Jonathan, Markus, Moritz, Steffi and Daniel, Tobias, as well as
several others. Last but not least, I want to thank my lord and savior Jesus Christ.
All good things come through him.





�

Contents

1 Introduction 15
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Time-Dependent Route Planning . . . . . . . . . . . . . . 15
1.1.2 Varieties of User Queries . . . . . . . . . . . . . . . . . . 17
1.1.3 Exact versus Inexact Route Planning . . . . . . . . . . . . 20
1.1.4 Contraction Hierarchies (CHs) . . . . . . . . . . . . . . . 21

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Time-Dependent Travel Times with Additional Costs . . . 22
1.2.2 Algorithmic Ingredients . . . . . . . . . . . . . . . . . . 23
1.2.3 Minimizing Time-Dependent Travel Times . . . . . . . . 24
1.2.4 Additional Time-Invariant Costs . . . . . . . . . . . . . . 26

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 Route Planning with Constant Travel Costs . . . . . . . . 28
1.3.2 Time-Dependent Route Planning . . . . . . . . . . . . . . 36
1.3.3 Route Planning with Other Generalized Travel Costs . . . 44

1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Fundamentals 49
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.1.1 Real Functions . . . . . . . . . . . . . . . . . . . . . . . 50
2.1.2 Directed Graphs and Shortest Paths . . . . . . . . . . . . 52
2.1.3 Pareto Optimal Paths . . . . . . . . . . . . . . . . . . . . 54
2.1.4 Points and Line Segments . . . . . . . . . . . . . . . . . 55

2.2 Basic Data Structures and Algorithms . . . . . . . . . . . . . . . 57
2.2.1 Adjacency Arrays . . . . . . . . . . . . . . . . . . . . . . 57
2.2.2 Priority Queues . . . . . . . . . . . . . . . . . . . . . . . 58



2.2.3 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . 59
2.2.4 Bidirectional Search . . . . . . . . . . . . . . . . . . . . 61
2.2.5 A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.6 Multi-Label Search . . . . . . . . . . . . . . . . . . . . . 64

2.3 CHs with Constant Travel Costs . . . . . . . . . . . . . . . . . . 67
2.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.2 Querying . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Time-Dependent Road Networks 77
3.1 Time-Dependent Travel Times . . . . . . . . . . . . . . . . . . . 78

3.1.1 Travel Time Functions (TTFs) . . . . . . . . . . . . . . . 78
3.1.2 Basic Operations on TTFs . . . . . . . . . . . . . . . . . 81
3.1.3 Minimum Travel Time Paths . . . . . . . . . . . . . . . . 87
3.1.4 Computing Basic Operations on TTFs Efficiently . . . . . 90

3.2 Time-Dependency with Additional Costs . . . . . . . . . . . . . . 97
3.2.1 Minimum Cost (MC) Paths . . . . . . . . . . . . . . . . . 98
3.2.2 Basic Operations with Additional Costs . . . . . . . . . . 102
3.2.3 Computing with Additional Costs Efficiently . . . . . . . 110
3.2.4 MC Paths with Piecewise Constant Additional Costs . . . 112

3.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4 Algorithmic Ingredients 115
4.1 Common Structure of Dijkstra-like Algorithms . . . . . . . . . . 115

4.1.1 Characterizing Different Dijkstra-like Algorithms . . . . . 116
4.1.2 Predecessor Graphs . . . . . . . . . . . . . . . . . . . . . 117

4.2 Forward Single-Label Searches . . . . . . . . . . . . . . . . . . . 118
4.2.1 Time-Dependent Dijkstra . . . . . . . . . . . . . . . . . . 119
4.2.2 Travel Time Profile Search . . . . . . . . . . . . . . . . . 123
4.2.3 Travel Time Profile Interval Search . . . . . . . . . . . . 125
4.2.4 Approximate Travel Time Profile Search . . . . . . . . . 128
4.2.5 Earliest Arrival Interval Search . . . . . . . . . . . . . . . 136

4.3 Backward Single-Label Searches . . . . . . . . . . . . . . . . . . 139
4.3.1 Backward Travel Time Profile Search . . . . . . . . . . . 140
4.3.2 Backward Travel Time Profile Interval Search . . . . . . . 141
4.3.3 Backward Approximate Travel Time Profile Search . . . . 142
4.3.4 Latest Departure Interval Search . . . . . . . . . . . . . . 144
4.3.5 Backward Cost Profile Search . . . . . . . . . . . . . . . 149
4.3.6 Backward Cost Profile Interval Search . . . . . . . . . . . 155
4.3.7 Backward Approximate Cost Profile Search . . . . . . . . 157

4.4 Multi-Label Searches . . . . . . . . . . . . . . . . . . . . . . . . 165



4.4.1 Time-Dependent Multi-Label Search . . . . . . . . . . . 165
4.4.2 Time-Dependent Multi-Label A* Search . . . . . . . . . 172

4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5 Minimizing Time-Dependent Travel Times 179
5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.1.1 Requirements to Make TCHs Exact . . . . . . . . . . . . 180
5.1.2 Requirements to make TCHs Fast . . . . . . . . . . . . . 181

5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.2.1 Contracting a Node . . . . . . . . . . . . . . . . . . . . . 182
5.2.2 Constructing a TCH Structure . . . . . . . . . . . . . . . 187
5.2.3 Ordering the Nodes . . . . . . . . . . . . . . . . . . . . . 197
5.2.4 Parallel Preprocessing in Shared Memory . . . . . . . . . 204
5.2.5 Differences to CHs with Constant Travel Costs . . . . . . 205

5.3 Exact Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.3.1 Earliest Arrival Queries . . . . . . . . . . . . . . . . . . 208
5.3.2 Travel Time Profile Queries . . . . . . . . . . . . . . . . 214
5.3.3 Stall-on-Demand . . . . . . . . . . . . . . . . . . . . . . 219

5.4 Exact Space Efficient Querying . . . . . . . . . . . . . . . . . . . 227
5.4.1 Approximate Time-Dependent Contraction Hierarchies . . 228
5.4.2 Earliest Arrival Queries . . . . . . . . . . . . . . . . . . 229
5.4.3 Travel Time Profile Queries . . . . . . . . . . . . . . . . 237

5.5 Inexact Space Efficient Querying . . . . . . . . . . . . . . . . . . 242
5.5.1 Inexact Time-Dependent Contraction Hierarchies . . . . . 242
5.5.2 Inexact Travel Time Profile Queries . . . . . . . . . . . . 243
5.5.3 Inexact Earliest Arrival Queries . . . . . . . . . . . . . . 245

5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 247
5.6.1 Input Road Networks . . . . . . . . . . . . . . . . . . . . 247
5.6.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.6.4 Comparison with Goal-Directed Techniques . . . . . . . . 263

5.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6 Minimizing Time-Dependent Travel Times with Additional Costs 267
6.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

6.1.1 NP-Hardness of Minimum Cost Queries . . . . . . . . . . 268
6.1.2 Exponential Complexity of Cost Profiles . . . . . . . . . 270

6.2 Heuristic Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 271
6.2.1 Obstacles of Node Contraction . . . . . . . . . . . . . . . 272
6.2.2 Heuristic Node Contraction . . . . . . . . . . . . . . . . 278
6.2.3 Heuristic TCH Structures . . . . . . . . . . . . . . . . . . 282



6.2.4 TCH Construction and Node Ordering . . . . . . . . . . . 283
6.3 Minimum Cost Queries . . . . . . . . . . . . . . . . . . . . . . . 285

6.3.1 Basic MC Querying . . . . . . . . . . . . . . . . . . . . 286
6.3.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . 290
6.3.3 Stall-on-Demand . . . . . . . . . . . . . . . . . . . . . . 295

6.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 297
6.4.1 Input Instances . . . . . . . . . . . . . . . . . . . . . . . 297
6.4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

6.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

7 Discussion 307
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Bibliography 322

List of Notations 323

Deutsche Zusammenfassung 329



1
Introduction

1.1 Motivation

In the last decade route planning has gained considerable interest of the algorithm
research community (see some overview papers [4, 25, 28, 80, 83]). Especially
route planning in road networks has really become a success story. The fastest
current algorithms compute optimal routes in continental size networks in sig-
nificantly less than a microsecond [1]. With the availability of highly efficient
algorithms, route planning has become popular for practical use: not only for
individuals planning car trips but also for companies planning truck tours for ex-
ample. Web mapping services like Bing Maps, Google Maps, or HERE usually
provide route planning capability and have become part of our everyday life.

It is important to know that such a great availability of on-line route plan-
ning services would not have been possible without the last decades progress in
the development of route planning algorithms. The reason is that Dijkstra’s algo-
rithm [33]—once the state-of-the-art method to compute optimal routes in road
networks—runs much too slowly to be used on high-throughput servers. On con-
tinental size road networks, for example, Dijkstra’s algorithm takes up to several
seconds. The current algorithmic methods for route planning run several orders
of magnitudes faster than Dijkstra’s algorithm. The time needed to answer a route
planning query should be in the area of milliseconds or below. Times around 0.1
seconds are still tolerable, which is, from the users point of view, virtually at once.

1.1.1 Time-Dependent Route Planning

Most of the progress in route planning algorithms regards to the special case that
travel costs are considered as non-negative constant values, often highly corre-
lated with travel time. On the one hand, this relatively simple model implies a
convenient problem structure that simplifies the design of efficient algorithms a
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lot. On the other hand, there are real-life factors that can not be handled by con-
stant travel costs. These are, for example,

• travel costs that depend on the time of day,

• knowledge about the uncertainty of travel costs, or

• the need to asses routes with respect to different criteria that can not be com-
pared directly.

As a consequence, several practical aspects—like rush hours, regularly occurring
congestions, reliability, or multiple modes of transport—can not be dealt with
properly or must be ignored. So, researchers started to work on route planning
with more general kinds of travel costs.

In this thesis we focus on time-dependent route planning where travel costs
depend on departure time. This may be the time of day, a day of the week, or
a combination of both. Two types of such time-dependent travel costs are con-
sidered: time-dependent travel times as well as time-dependent travel times with
additional time-invariant costs. Uncertainty of travel costs and incomparable cost
criteria are not considered in this thesis. These aspects are subject of stochastic
and multi-criteria route planning respectively—two areas which are considerable
challenges on their own.

Time-Dependent Travel Times. Time-dependent travel times are the simplest
type of time-dependent travel costs. The edge weights are travel times that depend
on the departure time. They are especially suited to model periodically occurring
effects like the aforementioned rush hours and regularly occurring congestions.
The knowledge about such effects has to be gathered from statistical data. An-
other possible source of time-dependent travel time data could be traffic simula-
tion based on the current traffic situation. This can be combined with statistically
gathered data of course.

Note that time-dependent travel times exhibit a far less convenient problem
structure than constant travel costs. This results in increased computational com-
plexity and memory consumption. Attacking these issues requires careful consid-
eration, which makes time-dependent route planning a serious challenge.

Additional Time-Invariant Costs. To obtain a more general type of time-de-
pendent travel costs than time-dependent travel times, we add additional time-
invariant (i.e., constant) cost values. This is interesting from the application point
of view because dealing only with travel time lets several highly practical aspects
unconsidered. Additional time-invariant costs can model, for example,

• energy consumption to avoid large detours that only save a few minutes of
travel-time (even non-environmentalists may appreciate that),
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• tolls that users want to get rid off if this does not need too much time, or

• penalties to avoid residential areas, inconvenient roads (i.e., narrow, winding,
steep, bumpy), or forces of nature (i.e., falling rocks, snow, black ice).

Above we state that time-dependent travel times are more difficult to deal with
than constant travel costs. With additional time-invariant costs this is even worse:
Route planning gets NP-hard and so far we only have a heuristic route planning
algorithm for this setup.

1.1.2 Varieties of User Queries

Our goal is to efficiently answer different varieties of user queries in the context
of time-dependent route planning. In route planning we are mainly interested in
one-to-one queries. This means that a fixed start and a fixed destination are given
by the user. In this thesis we distinguish queries with a given single departure
time from queries with a given departure interval. The former are usually referred
to as single departure queries, the latter as profile queries. Also, we distinguish
queries where the travel costs are simply the travel times from queries with more
general travel costs. Table 1.1 outlines the four resulting varieties of user queries.
A single departure query is needed to compute a good route if a fixed departure
time is given. A profile query is helpful if the user wants to choose a convenient
departure time, for example, to avoid congestions or high travel costs at all.

In route planning, road networks are usually modeled as directed graphs G=
(V,E) with some travel cost assigned to each edge. Nodes represent junctions
and edges represent road segments for example.1 Routes in the road network
correspond to paths �s → ·· · → t� in G and vice versa. Optimal routes in the
road network correspond to paths in G with optimal total travel cost. In case of
non-negative constant travel costs we simply assign a value ce ∈ R≥0 to every
edge e ∈ E. In time-dependent route planning, edge weights are not only constant
values but functions Ce : R→ R≥0 where Ce(τ) is the cost of traveling edge e at
time τ .

Minimizing Time-Dependent Travel Times. First, we consider the case that
the travel cost of a route is the time needed to travel this route. This is a relatively
special case of time-dependent route planning. The weight of an edge e ∈ E is a
travel time function (TTF) fe :R→R≥0; that is, Ce := fe. The TTF fe yields the
amount of time fe(τ) that we need to travel along the edge e when departing at
time τ . In this thesis all TTFs of edges are continuous piecewise linear functions.

1This is not the only possible interpretation of course. Alternatively, nodes could represent road
segments and edges could represent transitions between road segment. This edge-based model is
a possible way to include turn restrictions and turn costs into route planning [15, 85].
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kind of user query
cost type single departure time departure interval

travel time earliest arrival (EA) query travel time profile (TTP) query

only O(|V | logF+ |V | log |V |) time O(|V |2 log |V |) ·F |V |O(log |V |) time
(see Section 4.2.1) (from [36], see Section 1.3.2)

additional time- minimum cost (MC) query cost profile (CP) query
invariant costs NP-hard NP-hard

(from [3], see Section 6.1.1) (from [3], see Section 6.1.1)

Table 1.1. The four different kinds of time-dependent user queries considered in this
thesis (printed in italics) and their complexity. If travel cost and travel time are the same
(“travel time only”), we have earliest arrival queries and travel time profile queries. For
more general travel costs—that is, travel time with “additional time-invariant costs”—
we have minimum cost queries and cost profile queries. If the user gives a departure
interval and not only a single departure time, then we have profile queries instead of
single departure queries. With F we denote the maximum complexity (i.e., number of
bend points) of any travel time function in the underlying road network. The underlying
road networks are assumed to be sparse (i.e., every node has O(1) edges) with all TTFs
fulfilling the FIFO property (i.e., a later departure never results in an earlier arrival).

Also, they all fulfill the FIFO property which means that nobody arrives earlier
if one starts later. More formally, a TTF f fulfills the FIFO property if τ < τ �

implies f (τ) + τ ≤ f (τ �) + τ �. The resulting problem structure is considerably
more complicated than in case of constant edge weights. Depending on the fact
whether the user gives a single departure time or a departure interval we have two
kinds of user queries in this setting: earliest arrival (EA) queries and travel time
profile (TTP) queries.

Earliest Arrival (EA) Query. Given a start node s ∈ V , a destination node t ∈ V ,
and a departure time τ0 ∈Rwe want to know the earliest possible time for arriving
at t as well as a corresponding path in G.

Travel Time Profile (TTP) Query. Given a start node s ∈V , a destination node t ∈
V , and a departure interval I ⊆R we want to compute a travel time profile; that is,
a function f : I→R≥0 that maps every departure time τ ∈ I to the corresponding
minimal possible time duration for traveling from s to t in G.

Minimizing Time-Dependent Travel Times with Additional Costs. Second,
we consider the more general case, that the travel cost of a route can be different
from the time needed to travel this route. As said before, the weight of an edge
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e ∈ E is a function Ce : R→ R≥0 where Ce(τ) is the cost of traveling along the
edge e when departing at time τ . We call Ce the travel cost function (TCF) of
e. Without travel time information, however, we do not know where in time we
are when traveling along the edge e. So, the TTF fe is still necessary. As a
consequence, the weight of e actually consists of both functions, fe andCe, butCe

carries the actual cost information.
In this thesis we only consider a pretty restricted subset of possible TCFs;

namely, functions Ce of the form

Ce(τ) = fe(τ)+ ce

with ce ∈ R≥0 for all e ∈ E. We speak of time-dependent route planning with
additional time-invariant costs in this case. This model seems to be simple.
We will see, however, that user queries are already NP-hard in this setting (see
Section 6.1). Again, we have two kinds of user queries depending on the fact
whether the user gives a single departure time or a departure interval: minimum
cost queries and cost profile queries.

Minimum Cost (MC) query. Given a start node s ∈ V , a destination t ∈ V , and a
departure time τ0 ∈ R we want to compute the minimal possible travel cost in G
as well as a corresponding path in G.

Cost Profile (CP) Query. Given a start node s ∈ V , a destination t ∈ V , and a
departure interval I ⊆ R we want to compute a cost profile; that is, a function
D : I→R≥0 which maps every departure time τ ∈ I to the corresponding minimal
possible cost for traveling from s to t in G.

Difficulty of Different Time-Dependent Queries. It must be noted that profile
queries are usually much harder to answer than queries with a single departure
time. And generalized time-dependent travel costs—compared to the case where
travel costs and travel times are the same—also make everything much harder.
In Table 1.1, as a consequence, difficulty increases from top left to bottom right:
EA queries are the easiest kind of queries and CP queries are the hardest kind of
queries. Note that the complexity of EA queries is due to the well-known fact that
Dijkstra’s algorithm can be adapted to work with time-dependent travel times as
travel costs [35] (see Section 4.2.1) while assuming that road networks are sparse
(i.e, each node has O(1) edges) and that all TTFs fulfill the FIFO property. That
TTP queries need running time O(|V |2 log |V |) ·F · |V |O(log |V |) can be derived from
Foschini et al. [36] (for a short summary see Section 1.3.2 on page 38). Note that
the underlying road network is again assumed to be sparse. The NP-hardness of
MC queries follows from the NP-hardness of a more special problem (see Ahuja



20 Chapter 1. Introduction

et al. [3], for a short summary see page 39) as discussed in Section 6.1.1. CP
queries are a generalization of MC queries and are as least as hard. Note that the
complexities reported in Table 1.1 require that all TTFs in the underlying road
network fulfill the FIFO property. Otherwise, querying would even be harder.

Periodic Time-Dependent Travel Costs. In this thesis all time-dependent travel
costs are periodic. More precisely, all TTFs and all TCFs are periodic with a pe-
riod of 24 hours. Regarding profile queries this enables us to choose I := R as
interval of possible departure times. This means that profile queries compute the
minimum time-dependent travel times and the minimum time-dependent travel
costs for all departure times respectively.

Note that non-periodic TTFs and TCFs would not make a real difference for
the techniques discussed in this thesis. In context of real-live applications an
appropriate time window with a sufficient large period should be chosen. This
may change the memory usage of course. Regarding the preprocessing time we
expect a change by a constant factor.

1.1.3 Exact versus Inexact Route Planning

In practice, the accuracy of travel cost data delivered with road network data may
be arguable. Not only because of potential weaknesses in the process of data
collection but also because of the constantly changing conditions in the real world.
A route computed by a route planning algorithm may be the optimal route with
respect to the available travel cost data, but it may not be the best route for some
specific traveler on some specific day. There may be unforeseen bad weather or
unusual high traffic volume on that very day. The computed route may still be a
good route, but not the best one. So, is the ability to compute optimal routes at all
interesting? We answer this question with a clear yes.

To understand that, think of the possible alternatives. On the one hand, there
are heuristic algorithms. Designing such algorithms may sometimes be easier
than exact ones, but the routes computed by such algorithms can get arbitrarily
bad. Even if bad routes are rare, a few dissatisfied users may already be enough to
raise bad publicity. This, of course, can negatively affect the success of product or
service. On the other hand, there are approximation algorithms with known error
bound. Such algorithms would be a good alternative if the error is small enough.
In the context of time-dependent route planning, however, developing such algo-
rithms is still challenging. This is because of the usually non-linear structure of
the time-dependent travel costs. Especially, this makes it hard to analyze the error
of approximate algorithms. Here it must be noted that at least for EA and TTP
queries with continuous TTFs, an upper bound of the maximum possible relative
error can be stated depending on the maximum slope of the present TTFs [42]. For
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non-continuous TTFs and for generalized time-dependent travel costs this may be
a different story.

So, we see that route planning algorithms should not only be fast. Route plan-
ning algorithms should also be exact in the sense, that the computed routes are
provably optimal. Depending on the structure of the underlying travel cost model
and depending on the type of user queries, however, fast and exact algorithms can
be very difficult to design. So, inexact (or heuristic) algorithms can still be an
alternative; namely,

• if we fail to design a sufficiently efficient exact algorithm, or

• if the speedup gained or the memory saved by the inexact algorithm justifies
the loss in accuracy.

In any case, the inexact algorithm should be evaluated experimentally to ensure
that the obtained routes are sufficiently well-behaved.

1.1.4 Contraction Hierarchies (CHs)

The last decades research resulted in numerous fast and exact route planning algo-
rithms for road network with constant travel costs. Contraction hierarchies (CHs)
are a very efficient and influential technique in this area [44]. The aim of this
thesis is to adapt CHs to the needs of time-dependent route planning.

Like most other route planning techniques CHs work in two stages. In the
first stage—the expensive preprocessing, which is usually performed off-line—we
construct a special representation of the road network. In the second stage—the
querying—we use this precomputed representation for fast and exact answering of
one-to-one queries with very high throughput. The idea behind CHs is to exploit
the inherent hierarchical structure of road networks. Some parts of a road network
are usually more important than others in the sense that the majority of convenient
connections leads through them. Accordingly, a CH is a hierarchical representa-
tion of the original road network where more important nodes are higher up in the
hierarchy. Note that the term CH is used for both the speedup technique and the
hierarchical representation of the road network.

The crucial property of a CH is that there is always an optimal path �s →
·· · → x→ ··· → t�, such that �s→ ·· · → x� only goes upward and �x→ ·· · → t�
only goes downward in the hierarchy. The guaranteed existence of such opti-
mal up-down-paths in CHs enables the following very efficient query procedure:
For given start node s and destination node t we perform a bidirectional Dijk-
stra search in the CH that only goes upward—a forward search starting from s
and a backward search starting from t. Searching upward means that we only re-
lax edges that lead higher up in the hierarchy. The efficiency of this approach is
due to the fact that well-constructed CHs are usually flat and sparse. So, upward
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searches reach the top of a CH quite soon and the branching factor of the searches
is not too large.

It is important to know that the guaranteed existence of optimal up-down-paths
requires the presence of shortcut edges in the CH. A shortcut (edge) is an “artifi-
cial” edge that represents a path in the original road network. The CH consists of
the original edges from the original road network together with several shortcuts
and some additional information stored with every shortcut (for details see Sec-
tion 2.3.1). Using the additional information, shortcuts (and hence up-down-paths
containing shortcuts) can be expanded to the original paths they represent.

1.2 Contributions

This thesis describes how contraction hierarchies (CHs) [44]—the algorithmic
framework for fast and exact route planning with non-negative constant travel
costs recapitulated in Section 1.1.4—can be adapted to the needs of time-dependent
route planning. The underlying goal is to enable fast and exact time-dependent
one-to-one queries. Regarding EA and TTP queries, we succeed. Regarding MC
queries, we only provide fast but inexact computation so far—but with negligible
error in practice. CP queries have not been worked out with CHs yet.

The time-dependent contraction hierarchies (TCHs) described this thesis in-
cluding its variants are far from being a straightforward extensions of the original
CHs. Instead, several sophisticated algorithmic ingredients are necessary to make
them run efficiently. This applies to both stages of TCHs, preprocessing as well
as querying. The most important idea utilized in this thesis is the careful use of
approximate computations to find small subgraphs that contain all relevant edges.
The exact computations are performed afterwards, only on that subgraphs. This
simple but effective idea enables us

• to perform bidirectional search in the context of time-dependent travel costs
(this is important, as it is bidirectional search that makes CHs so effective),

• to considerably accelerate some very expensive exact computations without
losing exactness, and

• to perform exact computations in the presence of space-saving approximate
data which decreases the memory consumption of TCHs a lot.

1.2.1 Time-Dependent Travel Times with Additional Costs

Our first contribution is a thorough discussion of time-dependent travel costs and
time-dependent minimum cost paths, as far as they are relevant to this thesis (see
Chapter 3). For the case that travel costs are time-dependent travel times, this
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is not new. However, we provide a relatively detailed description, how the basic
operations on TTFs can be realized efficiently (see Section 3.1.4). This might be
interesting for people willing to put efficient time-dependent route planning into
practice.

Regarding more general time-dependent travel costs, we consider the special
case of time-dependent travel times (i.e., TTFs) with additional time-invariant
(i.e., constant) non-negative costs (see Section 3.2). This not only includes a dis-
cussion of the corresponding class of time-dependent minimum cost (MC) paths
(see Section 3.2.1) but also of the basic operations that are necessary to deal with
this kind of time-dependent costs. This results in the definition of an algebraic
structure that is not only powerful enough to express everything we need, but that
is also well-behaved in the sense that it is closed under linking and merging (see
Section 3.2.2). Algorithms for the basic operations on this algebraic structure are
also discussed (see Section 3.2.3). Note that this algebraic structure is able to han-
dle more general time-dependent shortest path problems; namely, the case that
TTFs have points of discontinuity and that additional costs are time-dependent
(i.e., piecewise constant). We provide a short discussion of the corresponding
class of MC paths (see Section 3.2.4). This is necessary because the TCH-based
MC queries described in this thesis have to deal with this kind of costs, even if the
underlying original road network comes with time-invariant additional costs.

1.2.2 Algorithmic Ingredients

Our second contribution is a relatively detailed discussion of several basic time-
dependent Dijkstra-like shortest path algorithms that we use as ingredients of
TCHs (see Chapter 4). This includes a discussion of the structures that are com-
mon to all these algorithms (see Section 4.1). The Dijkstra-like algorithms are
either single label searches running in forward direction (see Section 4.2), sin-
gle label searches running in backward direction (see Section 4.3), or multi-label
searches (see Section 4.4).

Some of the Dijkstra-like algorithms compute exact results, the others are ap-
proximate versions of the exact ones. The approximate versions play an important
role in this thesis, because their exact counterparts are often very slow and the ap-
proximate versions run considerably faster. This is in fact the reason, why running
approximate computations before exact ones can be used to speed up exact com-
putations a lot. The faster approximate algorithms are used to reduce the search
space. The slow exact algorithms are applied afterwards to the reduced search
space to compute the desired exact result.

We provide proofs of correctness for all Dijkstra-like algorithms used in this
thesis. All these proofs follow a similar pattern and some Dijkstra-like algorithms
are even special cases of others. So, details of proofs can often be omitted.
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1.2.3 Minimizing Time-Dependent Travel Times

Our third contribution is to make CHs [44] run efficiently when the time-dependent
travel costs are the travel times (see Chapter 5). This includes several aspects that
require careful consideration: preprocessing (see Section 5.2), fast exact EA and
TTP queries (see Section 5.3), as well as space efficiency (see Section 5.4). Inter-
estingly, the more space efficient setup enables us to further speed up exact TTP
queries. Also, we consider heuristic inexact EA and TTP queries (see Section 5.5).

Preprocessing. For the fast and exact answering of EA queries and TTP queries
we have to build a TCH structure first. This computationally expensive process
is performed in a preprocessing step, just like in case of original CHs. It must be
noted, however, that the construction of a TCH is much more expensive than the
construction of a CH. In fact, we have to apply several ideas to make the TCH
preprocessing reasonably fast. This includes

• cheap approximate time-dependent searches to quickly find a result or at least
to derive small corridors in which expensive exact searches are done,

• caching of previously computed intermediate results, and

• thinning of the aforementioned corridors in a heuristic way.

This yields an exact TCH even if heuristic is used for intermediate steps. Also,
the preprocessing parallelizes quite well for shared memory (see Section 5.2).

Note that the shared memory parallelization has been contributed by Vetter in
his student research project [82]. Vetter also introduced the mentioned heuristic
thinning of corridors and the caching of intermediate results when he was working
on the implementation of the preprocessing as a student assistant (see Section 5.7
for details). His contributions are crucial for the preprocessing as they reduce its
running time a lot.

Exact EAQueries. Fast and exact answering of EA queries with TCHs includes
bidirectional search. This raises the problem that we would already have to know
the earliest possible arrival time—but this is part of we want to compute. To
overcome this, we perform an approximate time-dependent shortest path search as
backward search. Afterwards, we perform a time-dependent variant of Dijkstra’s
algorithm but only using edges that have been touched by the backward search—
the downward search as we call it. This yields the earliest possible arrival time for
the given departure time as well as a corresponding optimal up-down-path. The
up-down-path can be expanded to the corresponding optimal path in the original
road network. Note that the result of the computation is exact even if the backward
search is approximate (see Section 5.3.1).
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Exact TTP Queries. Fast and exact answering of answering TTP queries with
TCHs also includes bidirectional search. But in contrast to exact EA queries it is
not a problem to apply bidirectional search directly. This is because of the fact
that we want to compute the minimum travel time for all possible departure times
and there is no dedicated arrival time hence. The resulting algorithm is simple and
has feasible running time. But we can be much faster: To reduce the search space
we perform an approximate bidirectional search first. The much more expensive
exact bidirectional search is performed only on a subset of the edges touched by
the approximate bidirectional search. This brings a considerable speedup while
the result of the computation stays exact (see Section 5.3.2).

Saving Memory and Speeding up TTP Queries. TCHs—just like the origi-
nal CHs—make intensive use of shortcut edges. In case of TCHs, however, this
requires much more memory. The reason is that the time-dependent travel time
information associated with the shortcuts is usually quite complex. In fact, it
contains a lot of redundancy. This can be utilized to greatly reduce the mem-
ory consumption of TCHs: For shortcuts we only store approximated travel time
information and for original edges we store exact travel time information. The
resulting structure—we call it an approximated TCH (ATCH)—needs much less
space than the underlying TCH (see Section 5.4.1).

Although ATCHs contain a lot approximate data, they can be used to answer
exact EA and TTP queries (see Sections 5.4.2 and 5.4.3). The resulting algorithm
for EA queries is still very fast, although it runs moderately slower than the query
algorithm we use with TCHs. Our method performs approximate searches on the
ATCH to obtain small subgraphs that usually contain shortcuts. Expanding all
these shortcuts we get a subgraph of the original road network. There, all stored
travel time information is exact and we apply exact time-dependent searches. In
case of TTP queries we even get a considerable speedup. We achieve this by
contracting whole subgraphs.

Inexact EA and TTPQueries. In Section 1.1.3 we argued that inexact heuristic
route planning is still interesting when the gained speedup justifies the loss in
accuracy. For inexact TTP queries (see Section 5.5.2) this is definitely the case as
we save a lot of running time by accepting a small error. We achieve this by using
an inexact TCH instead of an exact one. There, we not only store the travel time
information of the shortcut edges but also of the original edges in an approximate
manner (see Section 5.5.1). Inexact TCHs are similarly space efficient as ATCHs.
It must be noted that inexact TCHs can also be used to perform inexact EA queries
(see Section 5.5.3). Though ATCHs already provide fast, exact, and space efficient
EA queries, an extra ATCH may be too memory-consuming if we already have an
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inexact TCH in memory.

Experimental Evaluation. To support our claims we have implemented all the
techniques mentioned above in C++ and report an extensive experimental evalu-
ation. As inputs we use the road networks of Germany and Western Europe with
time-dependent travel time information. Both networks have been provided by
PTV AG [71] (see Section 5.6).

1.2.4 Additional Time-Invariant Costs

Our fourth contribution is to make CHs [44] run efficiently when the time-de-
pendent travel costs are time-dependent travel times with additional time-invariant
costs (see Chapter 6). It turns out that the answering of MC queries and CP queries
is much more complex than answering EA queries and TTP queries, even in this
relatively restricted special case. So, we only come up with a heuristic preprocess-
ing procedure. The resulting heuristic generalized TCHs can be used to answer
MC queries fast. The resulting routes are not necessarily optimal, which means
that exactness is lost. But note that we only consider small errors in our experi-
ments

Complexity. It turns out that the size2 of a cost profile (CP) can be exponential
in the number of nodes of the road network . This corresponds to the fact that one-
to-one MC queries are NP-hard, even in the relatively special case that the travel
costs are time-dependent travel times with additional time-invariant costs. This
follows from the NP-hardness of an even more restricted special case considered
by Ahuja et al. [3], where the choice of additional time-invariant costs is very
limited (we recapitulate this in Section 1.3.2 on page 39). We report a translation
of their proof into the context of additional time-invariant costs that can be chosen
freely (see Section 6.1).

Heuristic Preprocessing. After discussing what makes node contraction prob-
lematic in the presence of additional time-invariant costs, we describe our heuris-
tic preprocessing procedure. To obtain a heuristic TCH from a given time-de-
pendent road network with additional time-invariant costs, we use essentially the
same techniques as without additional time-invariant costs. Some modifications
have to be made of course. The resulting heuristic TCH structure still guarantees

2In this work we model travel time functions (TTFs) as continuous piecewise linear functions
(see Section 1.1.2). As a consequence, travel time profiles (TTPs) and cost profiles (CPs) are also
piecewise linear functions. The size of a TTP or of a CP, respectively, is simply the number of its
bend points.



1.3. Related Work 27

that an up-down-path from a start to a destination node is present. However, this
up-down-path is not necessarily an optimal one (see Section 6.2).

Heuristic Minimum Cost Queries. The algorithm we use for fast MC queries
is a modification of TCH-based EA query. The main difference is that forward and
downward search are performed in the manner of a multi-label search. The result-
ing method is exact if this is the case for the underlying generalized TCH structure.
There, a TCH structure counts as exact if the existence of Pareto prefix-optimal
MC up-down-paths is guaranteed for every possible combination of start node,
destination node and departure time. Unfortunately, our preprocessing procedure
is not able to provide such exact TCHs. However, according to our experiments,
the query algorithm runs fast on our heuristic TCH structures and the returned
routes are only slightly worse than the optimal ones (see Section 6.3).

Experimental Evaluation. We have implemented our heuristic preprocessing
procedure and our MC query procedure in C++. Our experimental evaluation
again uses the road network of Germany provided by PTV AG [71]. The addi-
tional time-invariant costs are proportional to travel distance to obtain a very sim-
ple approximation of energy costs, additionally combined with motorway tolls.
Regarding the heuristic preprocessing, we evaluate the parallel running time of
node ordering—though it must be noted that our node ordering procedure is im-
plemented only as a prototype and probably slower than necessary. We also eval-
uate the running time of MC queries. Especially, we evaluate the relative error of
MC queries that turns out to be negligibly small.

1.3 Related Work

There has been a lot of research on route planning in road networks in the last
several years. This section gives a brief overview of the results related to this
thesis. Overview papers have been provided by Delling et al. [25], by Delling
and Wagner [28], by Wagner [83], by Bast et al. [4], and by Sommer [80]. Much
research on route planning deals with constant travel costs (see Section 1.3.1).
More recently, time-dependent route planning also gained considerable interest
(see Section 1.3.2). Other kinds of generalized travel costs increasingly get into
focus (see Section 1.3.3). If not stated otherwise, all route planning techniques
discussed in this section are exact.

Many of the algorithmic methods for route planning—often referred to as
speedup techniques—are either hierarchical techniques, goal-directed techniques,
or combinations of these. Speedup techniques usually work in two stages: pre-
processing and querying. In the preprocessing stage, which is usually expensive
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and thus performed off-line, we construct a special representation of the road net-
work that is especially well suited for fast and exact answering of route planning
queries. The properties of this representation depend on the particular speedup
technique. Having finished the preprocessing, we switch over to the querying
stage and use the resulting representation for fast and exact answering of one-to-
one queries for example. This principle has already been described in the context
of CHs, which are one of the hierarchical speedup techniques (see Section 1.1.4).

1.3.1 Route Planning with Constant Travel Costs

The basic method for computing optimal paths in road networks with constant
travel costs is Dijkstra’s well known algorithm [33] (more details can be found
in Section 2.2.3). For general graphs with non-negative constant edge weights
no faster algorithm has been developed since. For the special case that the graph
represents a road network, much faster algorithms have been found; namely, the
speedup techniques mentioned above. On road networks, these algorithms run
several orders of magnitudes faster than Dijkstra’s algorithm. This may, in fact,
be the reason where the term “speedup technique” comes from.

Usually, the performance of a speedup technique is compared to the perfor-
mance of Dijkstra’s algorithm by an experimental evaluation. The resulting fig-
ures are often reported in terms of

• speedup, which is the average running time needed by Dijkstra’s algorithm di-
vided by the average running time that the speedup technique needs to answer
user queries,

• preprocessing time, which is the time the preprocessing stage needs to gen-
erate the representation of the road network that the speedup technique uses
during the query stage, and

• space overhead, which is how much this representation increases the memory
usage compared to the graph representation used by Dijkstra’s algorithm.

Table 1.2 reports speedup, preprocessing time, and space overhead of all the
speedup techniques for answering exact one-to-one queries with constant travel
costs that are described in this section; excluding mobile, approximate, and cus-
tomizable CHs.

Speedup and space overhead are reasonably machine-independent measures.
By now, reporting the speedup has even become standard in research on route
planning. To obtain a reasonably machine-independent measure of preprocessing
time, we divide the measured absolute preprocessing time by the average run-
ning time of Dijkstra’s algorithm measured on the same machine. This yields the
relative preprocessing time reported in Table 1.2.
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space preprocessing time query time

data overh. absolute relative avg. speed
method from machine [B/n] [h:m] [×Dijk.] [ms] up

Western Europe, PTV

Dijkstra [78] Opteron 2.0 GHza 0 0:00 0 6060.4 1
HHs [78] 48 0:13 129 0.61 9 935
HNR [78] 2.4 0:15 149 0.85 7 130

Dijkstra [11] Opteron 2.6 GHzb 0 0:00 0 5591.6 1
arc-flags [77] 81 196:29 126 500 0.80 6 990
ALT [26] 512 1:08 730 19.6 285
CALT [11] 15.4 0:11 118 1.34 4 173
CHs [11] −2.7 0:25 268 0.18 31 064
CHASE [11] 12 1:39 1 062 0.017 328 918
SHARC [10] 14.5 1:21 869 0.29 19 281

HL [1, 11] Xeon 3.33 GHzc ≈ 313 3:16d n/a 0.0005 5.5mio

Table 1.2. Comparing different speedup techniques (“method”) for one-to-one queries
with constant travel costs with respect to space overhead (“overh.”) in byte per node
(“B/n”), preprocessing time, and query time. Preprocessing time is not only reported as
absolute values in hours and minutes but also relative to the average (“avg.”) running time
of one-to-one Dijkstra search on the same machine. Query time is reported in terms of the
average measured running time as well as the speedup compared to the average running
time of one-to-one Dijkstra search, also on the same machine.
All results are measured using instances of the Western European road network provided
by PTV AG [71] for scientific use, all with about 18mio nodes. The number of edges
varies a little more: 42.2mio [78], 42.6 mio [10, 11, 26], and 44 mio [77, 1]. Figures
printed in italic are not directly present in the underlying data but have been calculated.
The table is partitioned with respect to the machine on which the experiments are per-
formed. In case of Opteron 2.0 GHz, the running time of one-to-one Dijkstra is calculated
from speedup and query time of HHs. In case of arc-flags, relative preprocessing time and
speedup are reported compared to a one-to-one Dijkstra that runs on the same machine
but with SUSE Linux 10.1 instead of 10.3. In case of HL, space overhead and speedup are
calculated from the figures in [1] and [11]. In case of speedup this utilizes that [1] reports
a scale factor for running times from [11]. The reported space overhead of HL is only an
estimate assuming exactly 18 mio nodes.

aAMD Opteron 270 with 2.0 GHz, 8GB RAM, 2×1MB of L2 cache, and SUSE Linux 10.0.
bAMD Opteron 2218 with 2.6GHz, 16 GB RAM, 2×1MB of L2 cache, and SUSE Linux 10.3

(except for arc-flags where SUSE Linux 10.1 is used)
c2 × Intel Xeon with 3.33 GHz and 6 cores each, 96 GB RAM; 6 × 64 kB L1, 6 × 256 kB L2,

and 12 MB L3 cache per CPU; Windows 2008R2 Server.
dIn parallel with 12 threads.
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Hierarchical Techniques. Hierarchical speedup techniques exploit the inherent
hierarchical structure of road networks to provide fast and exact answering of
route planning queries. Some parts of a road network are usually more important
than others in the sense that optimal routes rather lead through them than through
other parts. This is reflected by the structure of the special representations of road
networks that are generated by the preprocessing stages of hierarchical speedup
techniques. These preprocessed representations are usually hierarchical in the
sense that the more important parts of a road network are located on a higher
level than the less important parts. What makes hierarchical speedup techniques
fast, is the property that, in hierarchical representations, shortest paths can be
found using bidirectional Dijkstra searches that only go upward. Usually, this
needs little running time, because hierarchical representations are usually flat and
sparse. This fundamental idea has already been mentioned in the context of CHs
(see Section 1.1.4).

Highway hierarchies (HHs) [75]. HHs are one of the earlier hierarchical speedup
techniques for fast and exact route planning. Compared to CHs they are more
complicated, especially with respect to preprocessing but also with respect to
querying. Similar to CHs, the query algorithm of HHs is a bidirectional Dijk-
stra search that goes upward. But before going further upward, HHs search the
neighborhood of the entrance node to the current hierarchy level. What the neigh-
borhood of a node is, has to be determined by the preprocessing and to be main-
tained during querying. Note that HHs apply shortcuts to bypass several nodes.
During the query this brings a further speedup.

Highway Node Routing (HNR) [74, 78]. HNR has a simpler query procedure than
HHs. HNR, in contrast to HHs, is not aware of the neighborhood that a node
has on a certain level. This requires the presence of shortcut edges to ensure
correctness; that is, to ensure that optimal routes are computed (in contrast to
HHs where shortcuts are not used to ensure correctness but only to speed up the
computation). The shortcut edges are added to the hierarchy during preprocessing.
There, sets of covering paths are computed; that is, sets of paths that are part of
optimal routes. The shortcuts added to the hierarchy represent these paths. This is
necessary because the paths represented by the shortcuts contain downward edges
which can not be found by a query algorithm that only searches upward.

Contraction Hierarchies (CHs) [44]. CHs are an extreme case of HNR. Concep-
tually, CHs and HNR have the same query algorithm, but CHs have a simpler
preprocessing procedure. Every node of a CH structure has a level on its own. As
a consequence, shortcuts edges are restricted to represent paths of two hops only.
This simplifies the decision whether a shortcut is necessary: A shortcut u → v
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representing a path �u→ x→ v� is added to the hierarchy only if �u→ x→ v� is a
shortest path. To decide this, a one-to-one Dijkstra search from u to v can be used
(see Section 2.3 for details).

Mobile CHs [76]. CHs have also been adapted to the needs of mobile devices.
Usually, mobile devices have little main memory. So, the CH structure has to be
stored on flash memory and the primary bottleneck is the number of blocks read
from flash memory during querying. To remedy this, the adjacency array that
represents the CH structure is reordered in a way that the number of blocks read
is reduced. To provide fast generation of driving directions, shortcuts have to be
expanded fast. To achieve that, the original path represented by each shortcut is
computed during preprocessing and stored in a table on flash memory.

Approximate CHs [45]. This inexact version of CHs computes routes that are not
too far away from the optimal ones. The idea is that less shortcut edges can be
added during preprocessing to reduce preprocessing time, query time, and mem-
ory consumption. But on road networks with travel time as travel cost, this ap-
proach only brings partial improvements. However, if the travel cost is the dis-
tance or if the underlying network is a grid or a sensor network, then the pre-
processing time, the query time, and the memory consumption are significantly
smaller.

CHs with Flexible Edge Restrictions [41]. This variant of CHs computes optimal
routes in the presence of dynamic edge constraints. The preprocessing must hence
provide a CH structure being able to deal with all possible configurations of con-
straints. To achieve this, more shortcut edges must be added to the CH structure
than without constraints, and even parallel shortcuts are used. The resulting run-
ning times for preprocessing and querying are significantly larger than without
edge constraints but definitely good enough for practice. Combining with Land-
mark A* (ALT [47], see page 34) either reduces the time needed for querying or
for preprocessing.

Many-to-Many Queries. Hierarchical techniques are not only suited for one-to-
one queries but also for many-to-many queries. There, we do not have single start
and destination nodes but a start set S⊆V and a destination set T ⊆V . The result
of the computation is an |S|×|T |-table containing the exact shortest path distances
from all nodes in S to all nodes in T . The idea is essentially to build |S|+ |T | up-
ward search spaces and then to intersect these search spaces in an efficient way
to compute the table. This has first been done using HHs [56, 78] and then using
CHs [43, 44], where it runs even faster. The resulting running time needed to com-
pute a complete |S|× |T |-table lies far below the running time needed by |S| · |T |
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one-to-one queries. Using CHs with |S|= |T |= 10000, the table can be computed
in 10.2 sec. Compared to 10000 ·10000 one-to-one queries with CHs the speedup
is 1 490. Compared to 10 000 average one-to-one Dijkstra searches (which may
be a reasonable approximation of 10 000 one-to-many Dijkstra searches) this is a
speedup of 5 481.

PHAST [22]. The PHAST technique is an adaption of CHs for the fast and exact
answering of one-to-all queries: Given a start node s we want to compute the
shortest path distance from s to all other nodes in the road network. The basic
idea is to build the complete upward search space of s in a CH structure and then
to search downward from all nodes that lie in that upward search space. There, the
downward search is not a Dijkstra search, but exploits the fact that the downward
edges of a CH structure form a DAG. So, processing all downward edges in a
convenient order turns the downward search into a linear sweep with high locality
which is very cache efficient. This results in a speedup of 16.4 compared to a
one-to-all Dijkstra search.

Answering a several-to-all query in this setup—that is, computing the shortest
path distances from k start nodes to all other nodes—leads to an improved speedup
compared to k one-to-all Dijkstra searches: a speedup of 76.2 or 29.2 with or with-
out SSE instructions, respectively, for k = 16. Without SSE instructions, PHAST
parallelize well on shared memory architectures. With SSE instructions, however,
the speedup obtained with 4 cores is only around 2 (though the absolute running
times are still better with SSE). There is also a GPU implementation of PHAST:
Answering several-to-many queries with an Nvidia GTX580 clocked at 772 MHz
brings a speedup of 1 279 for k = 16.

Hub labels (HL) [1]. The idea of hub labels is to query shortest distances in a
road network without actually searching in the road network. A forward label
L f (u) ⊆ V ×R≥0 and a reverse label Lr(u) ⊆ V ×R≥0 is attached to every node
u ∈V . For every two nodes s, t ∈V the labels Lf (s) and Lr(t) both contain a node
x that lies on a shortest path from s to t; that is, (x,c f ) ∈ Lf (s) and (x,cr) ∈ Lr(t),
such that a shortest path �s→ ·· ·→ x→ ·· ·→ t� ⊆G exists and c f +cr equals the
shortest path distance from s to t. If one represents all node labels as sequences
that are sorted with respect to the node id, shortest distance queries can simply be
answered by scanning through the labels Lf (s) and Lr(t) together.

The labels are obtained from CHs [44] by considering the forward and back-
ward search space of every node; that is, all nodes that are reachable in upward
direction by following forward and backward edges respectively. Applying the
pruning technique stall-on-demand [44, 74] offline (i.e., not in the query stage
but during preprocessing) as well as other pruning and compression techniques
reduces the size of the resulting labels a lot. This leads to the very small average
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query time of 0.5 µsec on continental size road networks, but preprocessing takes
more than three hours, with 12 parallel threads running in shared memory.

Customizable Route Planning. Customizable route planning introduced by Del-
ling et al. [23] attends to the problem that small query times usually come at the
cost of large preprocessing times. This makes it difficult to take the current traffic
situation into account. To overcome this, Delling et al. split the preprocessing
into two sub-phases: a first sub-phase that is independent from the travel costs
and solely depends on the topology of the road network, and a second sub-phase
that computes the information depending on the travel costs. It turns out that
the second sub-phase, the customization, can be performed quite fast; namely,
within 0.35 sec for the Western European road network using 12 cores in shared
memory [29]. So, the preprocessed structures can be updated easily to provide
route planning depending on the latest traffic data. The query times stay below
2 msec. The first sub-phase of preprocessing can be done within 13 minutes.

Very recently, Dibbelt et al. described a customizable version of CHs [31].
The first sub-phase of the preprocessing computes a metric-independent CH; that
is, a CH where no shortcut edge is omitted. This means the contraction of a
node produces a clique in the remaining graph. It turns out that the original node
order procedure of CHs [44] is not feasible with metric-independent CHs, as it
provokes too many shortcut edges. Instead, a different node order is build from top
to bottom by recursively dividing the road network into partitions with possibly
small separators [51]. The nodes in the current separator are attached to the current
lower end of the node order. For the Western European road network, this takes
69 hours sequential running time (see the extended version [32] of the article [31]
by Dibbelt et al.). All shortcuts of the corresponding metric-independent CH can
be determined within 15.5 sec. The customization, which takes 0.74 sec using 16
cores, assigns travel costs to the original edges and propagates them upward to
the top of the CH. The query algorithm processes the nodes in appropriate order
without using a priority queue. It answers one-to-one queries within 0.41 msec.

It must be noted that the reported figures include support for turn costs in case
of CRP, but no support for turn costs in case of customizable CHs.

Goal-Directed Techniques. The idea behind goal-directed speedup techniques
is to perform a biased Dijkstra search from the start to the destination node. That
is, a one-to-one Dijkstra search that does not spread out in a more or less circular
way—as the original Dijkstra search does—but rather in direction of the destina-
tion node. Effective goal-directed techniques utilize information computed in a
preprocessing stage.
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A* Search. A typical example of a goal-directed technique is A* search. Though
this well-known algorithm is originally described by Hart et al. [49], we rather
follow the style it is presented in the textbook by Mehlhorn and Sanders [61] (see
Section 2.2.5 for details). A* search estimates the shortest path distance µ(u, t)
from each processed node u to the destination node t by a lower bound πt(u) ≤
µ(u, t), and this estimate is used to change the order in which Dijkstra’s algorithm
processes the nodes (πt is also known as potential function). If we manage to
choose a relatively tight lower bond, then this order is changed in a way that only
few nodes are processed before the destination node is reached. The running time
can be reduced significantly this way. All known lower bounds that are sufficiently
tight on road networks, however, require precomputed information.

Landmark A* (ALT) [47]. An example of A* search with a sufficiently tight lower
bound is based on landmarks and the triangle inequality. This setup is known as
landmark A* or ALT.3 A set of landmarks is a small set {�1, . . . , �k} ⊆V of wisely
chosen nodes. Together with every node u ∈ V we store the 2k shortest path
distance values µ(u, �i),µ(�i,u) with 1 ≤ i ≤ k. The k landmarks and the 2k · |V |
shortest path distance values are computed during preprocessing. In the query
stage, we use

πt(u) := max
�

µ(�i, t)−µ(�i,u), µ(u, �i)−µ(t, �i)
�
� 1≤ i≤ k

�

as lower bound of µ(u, t) whenever a node u is processed. Experiments show that
this lower bound is tight enough to achieve a significant speedup over the original
Dijkstra search, which does not have a bias towards the destination node. ALT
is usually performed in a bidirectional manner, though bidirectional ALT requires
some sophistication.

Arc-Flags [57, 63]. Goal-directed techniques are not necessary variants of A*
search. An example is the arc-flags technique. The idea is to partition the road
network into k regions R1, . . . ,Rk and then to annotate every edge e ∈ E with k so
called arc-flags ae1, . . . ,a

e
k ∈ {true, false}. The i-th arc-flag aei of an edge e is set to

true if, and only if, e lies on a shortest path that leads into the region Ri. Whether
this is the case or not, has to be found out in a pretty expensive preprocessing step:
For every region Ri and each of its border nodes we perform a backward Dijkstra
search that starts at the respective border node. Then we iterate over all edges e
of the resulting shortest path tree setting aei := true each. The partitioning of the
road network is also part of the preprocessing. Note that the choice of the regions
during partitioning influences the running times, especially of preprocessing.

3In fact, the three letters ALT stand for A*, landmarks, and triangle inequality.
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The query algorithm of the arc-flags technique is a very simple modification of
Dijkstra’s algorithm: Assume we want to answer a one-to-one query with a start
node s and a destination node t where t lies in region Rj. Then, before relaxing
an edge e we always check whether aej = true is fulfilled. If this is not the case,
we do not relax e. Uniting regions to “super regions” on the next higher level and
applying this idea recursively makes arc-flags a multilevel approach. Compared to
simply increasing the number of regions this saves space and preprocessing time.
The arc-flag technique becomes a goal-directed multi-level approach this way. A
further improvement is to apply arc-flags to bidirectional search. This is nothing
but a bidirectional Dijkstra where both forward and backward search are modified
in the way just described. Of course, this requires that arc-flags are computed for
both search directions. This increases preprocessing time and memory usage, but
the query time is reduced a lot.

Combinations. Hierarchical and goal-directed speedup techniques can be con-
sidered as orthogonal approaches to some degree. This suggest that a combination
of hierarchical and goal-directed techniques may yield even better speedups. Sev-
eral results show that this is really the case. Here we only recapitulate core-based
routing combined with ALT (Core-ALT or CALT), arc-flags combined with short-
cuts (SHARC), and CHs combined with arc-flags (CHASE).

Combinations of goal-directed techniques with other speedup techniques seem
also to be motivated by the fact that the preprocessing of goal-directed techniques
(and especially of arc-flags) tends to be expensive. So, goal-directed techniques
are often applied only to a smaller graph that is derived from the original road
network. CALT, SHARC, and CHASE are examples of this approach.

Core-Based Routing with ALT (Core-ALT or CALT) [11]. Core-based routing
means that a two-level hierarchy is created while shortcuts are added to the upper
level to represent two-hop paths that contain downward edges. This is actually
similar to CHs. CHs, however, have much more levels and the selection of levels
is also different. The query algorithm is, as it is usual when hierarchies are used,
a bidirectional Dijkstra search that goes upward. On the upper level (the core)
an additional goal-directed speedup technique is used, in this case landmark A*
(ALT). The resulting query is actually a bidirectional upward search in a two-level
hierarchy where ALT is used to accelerate the searches on the upper level. CALT,
compared to traditional ALT, shows better query times, better preprocessing times,
and needs less memory.

Arc-Flags with Shortcuts (SHARC) [10]. SHARC improves the arc-flags tech-
nique, which we described before, by adding shortcuts. The idea is to remove
the paths that are represented by the shortcuts from the graph during the arc-flags
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preprocessing. As a consequence, the preprocessing takes less time. Having com-
puted the arc-flags, the removed paths are re-added to the road network and the
arc-flags ae1, . . . ,a

e
k of the first edge e of such a path are all set to false—except

for flags aei where the region Ri is crossed by the path. The arc-flags of all other
edges of the path could be set to true. Better arc-flags, however, can be obtained
by propagating the arc-flags information backward from the end of the path to
its beginning. Applying this approach recursively makes SHARC a goal-directed
multi-level approach, just like in case of arc-flags without shortcuts. The resulting
query and preprocessing time as well as the memory usage are much better than
for arc-flags without shortcuts.

CHs with Arc-Flags (CHASE) [11]. CHASE, like CALT, uses hierarchy to obtain
the subgraph to that the goal-directed technique is applied. Here, the hierarchy is a
CH structure and the goal-directed technique is the arc-flags technique. This upper
part is called the core, just like in case of CALT. The query algorithm is in princi-
ple a CH query, but with an “interruption”. This means the query has two phases:
The first phase is the original CH query (i.e., a bidirectional upward search) with
the modification that the search is pruned at core nodes. Also, core nodes are
added to a target set S or a destination set T , respectively, if they are reached
by the forward or backward search. The second phase is now able to determine
the target core regions; that is, all core regions Ri1 , . . . ,Ri� with Ri j ∩T �= /0. The
source core regions are defined analogously as the core regions that intersect with
S. Then, the second phase continues the bidirectional CH query but only relaxing
edges where the arc-flags for the target and source regions are true respectively.
There is also partial CHASE. In this case the core is not completely contracted or
only partly contracted. This reduces preprocessing time but increases query time.

1.3.2 Time-Dependent Route Planning

Besides the work presented in this thesis there are also other results on route plan-
ning with time-dependent travel costs. Most of that work, however, deals with the
special case that the time-dependent travel costs are travel times.

Fundamental Results. Before we focus on road networks, we first summarize
some fundamental results that deal with general time-dependent graphs.

Time-Dependent Dijkstra [35]. An early result on route planning with time-de-
pendent travel costs is a time-dependent variant of Dijkstra’s algorithm described
by Dreyfus. This time-dependent Dijkstra deals with the special case that the
travel costs are travel times. It answers EA queries as described in Section 1.1.2.
Dreyfus does not mention, however, that his algorithm requires that all TTFs fulfill
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the FIFO property. The algorithm works in principle the same way as the original
Dijkstra’s algorithm. Especially, nodes are never reinserted into the priority queue
(for details see Section 4.2.1). The only difference is how new node labels are
computed during edge relaxation. With the assumption that road networks are
sparse graphs (i.e., every node has O(1) edges) this yields that time-dependent
Dijkstra needs O(logF · |V | log |V |) time, where F is the maximum size of any
TTF in the road network. This is because TTFs can be evaluated in O(logF)
time if binary search is used to look up the required bend points of a TTF. In this
thesis. binary search is not used for evaluating TTFs. Instead, we use a bucket
data structure (see Section 3.1.4 on page 90) that enables us to evaluate TTFs in
constant average time (under the assumption that the x-values of the bend points
are uniformly distributed).

General Time-Dependent Travel Times [69]. Orda and Rom consider quite gen-
eral time-dependent travel times where TTFs may violate the FIFO property or
may even have points of discontinuity. Without FIFO property waiting can be
beneficial and optimal paths may include intermediate stops hence. If waiting is
allowed at every node, however, time-dependent Dijkstra can still be used to an-
swer EA queries correctly. The authors achieve this by using the auxiliary TTF
f �e with f �e(τ) = min{ fe(τ + τ �)+ τ � | τ � ≥ 0} instead of the original TTF fe for
every edge e (note that fe fulfills the FIFO property). All waiting times can be
derived easily after the time-dependent Dijkstra has terminated. Orda and Rom
also describe how to answer TTP queries (see Section 1.1.2) in this setup. Their
algorithm is similar to the travel time profile (TTP) search that we describe in Sec-
tion 4.2.2 but without priority queue. Accordingly, their version of profile search
works in a Bellmann-Ford-like4 and not in a Dijkstra-like manner.

If waiting is forbidden completely, everything gets much harder: The authors
show that no finite optimal path may exist or that optimal paths may include loops
in this case. They also state that forbidden waiting makes the problem NP-hard (a
proof can be found in a manuscript by the authors [68]). By allowing waiting at the
start node and at every node having an incoming edge with a point of discontinuity,
however, the authors are again able to apply time-dependent Dijkstra and their
version of profile search—provided that all TTFs fe with e ∈ E are piecewise
continuous. Again, the waiting times are computed in a subsequent step.

General Time-Dependent Travel Costs [70]. In another article, Orda and Rom
consider time-dependent travel costs beyond travel times. The allowed TCFs even

4The Bellmann-Ford algorithm is a well-known method to compute shortest paths if travel
costs are constant but can be negative. It is described in several textbooks including, for example,
the one by Mehlhorn and Sanders [61].
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include piecewise continuous functions. TTFs need not to fulfill the FIFO prop-
erty, but they have to be continuous (such TTFs are in fact less general than the
TTFs in the article discussed before [69], where time-dependent costs are travel
times). Again, waiting on nodes can be beneficial. Each node has a parking
weight density that specifies the times when waiting is allowed at this node and
how much it costs for arbitrary time intervals. Interestingly, finite optimal paths
may not exists even if all TTFs are constant and waiting is completely forbidden.

The authors describe an algorithm that answers minimum cost (MC) queries if
a finite optimal path exists for the given start node, destination node, and departure
time. Remarkably, this method is not a multi-label search, although it runs forward
in a setup where prefix optimality in the classical sense is not guaranteed.5 Instead,
it works similar to travel time profile search (see Orda and Rom [69] as well as
Section 4.2.2) and backward cost profile search (see Section 4.3.5), even though
only a single departure time is given. The algorithm works in the manner of the
Bellmann-Ford algorithm and computes node labels that are cost profiles mapping
arrival time to travel cost. This works, because a relatively restricted (and also
quite technical) notion of prefix-optimality is provided.

Time-Dependent Travel Times with FIFO Property. Dean provides a nice intro-
duction to time-dependent travel times where the FIFO property is fulfilled [17].
He discusses different kinds of queries in this setup. These are one-to-one, one-
to-all, all-to-one, and all-to-all queries, each for a single departure time or a de-
parture interval as well as a single arrival time or an arrival interval. This way he
directly obtains a backward version of time-dependent Dijkstra computing latest
departure times for given destination node and arrival time.6 Dean also describes
a label setting algorithm to compute TTPs and conjectures the size of TTPs to be
superpolynomial.

Foschini et al. [36] consider the complexity of TTP queries when the FIFO
property is fulfilled. As their main result they show that the worst-case size of a
TTP lies in |V |Ω(log |V |) and K · |V |O(log |V |), where K is the total number of bend
points over all TTFs in G. This settles the conjecture made by Dean [17] just
mentioned. For restricted TTFs where all line segments have slopes from a set
{−1,α−β − 1, . . . ,α−1− 1,0,α1− 1, . . . ,αβ − 1} with α > 1 and β ∈ N (and

5We say that a shortest path problem exhibits prefix optimality if prefix paths of optimal paths
are optimal paths themselves; or, in a weaker form, there always exists an optimal path with this
property, even if some optimal paths may not fulfill it. Lack of prefix-optimality usually spoils the
applicability of Dijkstra’s algorithm and similar single-label searches. Switching to multi-label
search [48, 60] (see Section 2.2.6 for a short introduction) can often fix this problem (though other
solutions may be possible).

6The backward version of time-dependent Dijkstra works in terms of departure time function
(see Section 3.1.1 on page 81). Latest departure interval search (see Section 4.3.4) is an approxi-
mate version of this backward time-dependent Dijkstra.
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positive discontinuities7 are also allowed), Foschini et al. determine polynomial
worst-case size for a TTP. They also describe an algorithm for one-to-all TTP
queries that has in principle a running time of O((log |V |)2 · |E|) times the total size
of the computed TTPs; or, more precisely, O((log |V |)2 · |E|) ·K · |V |O(log |V |) time.
For sparse graphs (i.e., every node has O(1) edges) this reduces to O(|V | log |V |) ·
K · |V |O(log |V |) time. With F being the maximum complexity of any TTF in the
graph, we can write this as O(|V |2 log |V |) ·F · |V |O(log |V |), or even F · |V |O(log |V |)

with the lower order terms hidden in the asymptotically written exponent. Dehne
et al. [18] describe an algorithm for one-to-one TTP queries with a running time
of O((M+K)(|E|+ |V | log |V |)), where M is the size of the computed TTP.

Doing O(Kε−1 logR · log(Lε−1)) time-dependent Dijkstra searches in forward
and backward direction, Foschini et al. manage to answer an approximate one-to-
all TTP query with relative error ε; where R is the maximum occurring factorial
elevation of a concave section of any TTP, and L is proportional to the maximum
occurring spread with respect to the X-axis of such a section. The resulting TTPs
have size O(Kε−1 logR) each. Another interesting result is that the best EA path
in a given departure time interval can be found in polynomial time. To do so, the
authors perform several time-dependent Dijkstra searches in forward and back-
ward direction. Dehne et al. also discuss an approximate method for one-to-one
TTP queries. For given absolute error εabs and a departure interval of width Δ,
they perform �Δ/εabs� time-dependent Dijkstra searches in backward direction.

Minima of TTFs as Additional Time-Invariant Costs [3]. Ahuja et al. examine
discrete time-dependent travel times with quite restricted additional time-invariant
costs that can also be negative. There, a TCF Ce of an edge e is of the form

Ce : τ �→ β fe(τ)+(α−β )min fe

where fe : Z→N≥0 is the TTF of e and α,β ≥ 0. Note that α and β are chosen
globally for the complete graph and thus equal for all edges. For α > β > 0, we
obtain a quite restricted special case of time-dependent travel times with additional
time-invariant costs; namely, with TCFs of the form

Ce : τ �→ fe(τ)+
(α−β )

β
min fe ,

which is the same as Ce : τ �→ fe(τ)+λ min fe with globally chosen λ > 0. For
0 ≤ α < β , we obtain a restricted version of time-dependent travel times with
negative additional time-invariant costs, which is no longer a special case of the
time-dependent minimum cost routing problem considered in this thesis. The

7A point of discontinuity a ∈ R of a TTF f is called positive if limx→a− f (x) < limx→a+ f (x)
holds (limx→a− and limx→a+ denote the one-side limit from the left and the right respectively).
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authors show that their setup yields an NP-hard problem for all choices of non-
negative α and β , as long as α �= β and β > 0 holds. To do so, they reduce
the number partitioning problem (see “subset sum problem” in Garey and John-
son [38]). With α > β > 0, this already implies that the MC queries considered
in this thesis are also NP-hard. This thesis reports a translation of their proof into
the context of additional time-invariant costs that can be chosen freely from R≥0

(see Section 6.1.1).

Time-Dependent Route Planning on Road Networks. We now pass over to
the work that has been done on time-dependent road networks. This includes a
brief review of the time-dependent versions of some goal-directed speedup tech-
niques for constant travel costs already reviewed in Section 1.3.1. Note that
none of these techniques deals with generalized time-dependent travel costs be-
yond travel times. A comparison with the time-dependent contraction hierarchies
(TCHs) described in this thesis can be found in Section 5.6.4.

Relevance of Time-Dependent Route Planning [30]. In a case study Demiryurek
et al. investigate whether time-dependent travel times make at all a difference
compared to constant travel times: For a road network of California they find that
time-dependent routes are 36% better on average. During rush hours—that is,
7:00 to 9:30 AM and 4:00 to 6:00 PM—this rises to 68 % and 43% respectively.
The similarity (i.e., the percentage of shared edges) of time-dependent routes and
constant cost routes is 28% on average, never exceeding 87 %. A very interesting
result is the number of distinct optimal routes over the day: 7 on average, and at
most 12. To obtain the TTFs, the authors use a traffic model based on traffic sensor
data from highways and arterial streets all over Los Angeles County (together
6 300 traffic sensors). The data has been collected over a period of two years.

The 68% improvement of time-dependent routes during morning rush hours
suggests that the resulting TTFs are relatively strongly varied; at least, in com-
parison with the TTFs of the German road network data that we use for the ex-
periments in this thesis. There, the TTFs vary up to 36 % on average (see Sec-
tion 5.6.1). This raises the question, whether the TTFs of Demiryurek et al. model
the travel time changes of a single day or, for example, the average travel time
changes of midweek traffic over a whole year. In the latter case, TTFs tend to
be less varied. Of course, the travel time changes of single day are still relevant
for time-dependent route planning in practice; for example, if traffic simulation is
constantly performed based on the current traffic situation. Then, it is possible to
provide TTFs that predict the travel times of the next few hours. We describe such
a scenario at the end of this thesis (see Section 7.3).
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Time-Dependent ALT (TD-ALT) [65]. An early attempt to provide fast and ex-
act EA queries is the time-dependent version of the goal-directed technique ALT
(see page 34). The lower bound πt is computed as in case of ALT with constant
travel costs, where min fe is used as constant travel cost for every edge e. This
works, however, not so effective: The difference between values min fe used to
compute πt and values fe(τ) used during edge relaxation seems to be too large to
provide sufficiently tight lower bounds. The resulting speedup compared to time-
dependent Dijkstra is only 3.6. Using bidirectional search to some extend makes
everything even slower. Allowing inexact results yields better running times with
small average error but relatively large maximum error.

Time-Dependent CALT (TD-CALT) [24]. The time-dependent version of CALT
(see page 35) works better than of ALT. The query algorithm is a bidirectional
search that goes upward, similar as in case of constant travel costs. The back-
ward search works in terms of minima min fe of TTFs fe. The forward search is
also allowed to hop downward, but only on the nodes where the backward search
reached the core (i.e., the upper level). Within the core TD-ALT is used, again
with πt in terms of minima min fe. TD-CALT shows reasonable EA query times
as well as low preprocessing times and moderate memory consumption. Allowing
inexact results decreases the EA query time significantly. As in case of TD-ALT
the average error is low, but the maximum error is relatively large.

Time-Dependent SHARC (TD-SHARC) [21]. The most successful goal-directed
technique for time-dependent route planning is the time-dependent version of
SHARC (see page 35). TD-SHARC shows moderate memory consumption and
very good EA query times if time-dependency is weak. If time-dependency is
strong, however, EA query times are worse (but still fair). The preprocessing of
TD-SHARC takes rather long, and if time-dependency is strong this gets even
worse. TD-L-SHARC, a combination with TD-ALT, improves this significantly
and yields reasonable running times at the cost of increased (but still moderate)
memory consumption. If inexact queries are allowed (heuristic variant), TD-
SHARC performs much better: Though preprocessing times get even larger, the
answering of EA queries gets really fast. Thereby, the maximum error is rather
small. Note that TD-SHARC is the only speedup technique besides TCHs that
can answer TTP queries. Compared to TCHs, however, this runs pretty slow.

Time-dependency affects the performance of SHARC a lot: EA queries are
considerably slower than queries with constant travel costs, and preprocessing
takes much longer. This is because arc-flags are very difficult to compute in the
time-dependent case. To compute high-quality arc-flags, one would have to per-
form a great amount of one-to-all backward travel time profile (TTP) searches
(see Section 4.3.1), preferably on all levels of the underlying multi-level parti-
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tion (remember that SHARC recursively partitions the road network into regions
making it a multi-level approach). These one-to-all backward searches start at the
border nodes of the regions. Of course, this is not feasible. Instead, TD-SHARC
performs backward one-to-all Dijkstra-searches in terms of min fe and max fe for
e ∈ E (economical variant), or conservatively approximated backward one-to-all
profile searches where the number of interpolation points is fixed to 24 (gener-
ous variant), or additional exact backward one-to-all profile searches on the high-
est level (aggressive variant). The heuristic variant performs 12 time-dependent
backward Dijkstra searches, each with a fixed arrival time, as well as two Dijkstra
searches in terms of min fe and max fe for e ∈ E.

Space Efficient TD-SHARC [14]. Space efficient TD-SHARC reduces the mem-
ory consumption of heuristic (i.e., inexact) TD-SHARC significantly at the cost
of slower (but still fast) EA querying. To achieve this, three different techniques
are used: arc-flags are represented in a compressed way, some shortcuts are omit-
ted, and some shortcuts stored without TTFs. The compressed representation of
arc-flags simply maps all occurring flag patterns to a small number of conserva-
tive patterns which do not alter the result of the computation but prune the search
less effectively (i.e., a lossy but conservative compression). Whenever a shortcut
without TTF is relaxed during querying, it is unpacked on-the-fly to enable the
evaluation of the omitted TTF. This is quite similar to unpacking-on-demand as
used by ATCHs (see Section 5.4.2 on page 233). The difference is that ATCHs
store approximate versions of the shortcuts’ TTFs. Space efficient TD-SHARC
omits them completely. Note that exact TD-SHARC already compresses arc-flags
(but in a lossless manner). Also, it already omits some shortcuts.

Distributed TCHs [54]. TCHs not only parallelize well on shared memory archi-
tectures, but also on distributed memory. To achieve this, Kieritz et al. divide
the road network into as many partitions as available processing units (PUs). Dur-
ing preprocessing each PU is responsible for contracting the nodes in its particular
partition. To do so, each PU not only maintains its partition, but also a (�k/2�+1)-
halo8 around it to enable witness searches with a hop limit of k (see Section 5.2.2
on page 196). The preprocessing works similar as described in Section 5.2, but
before the nodes in the next independent node set can be contracted (also see
Section 5.2.2), the newly created shortcut edges must be send to the affected PUs.

During querying, each PU also maintains more than its own partition; namely,
the part of the CH that can be reached from the nodes in the partition by searching
upward. To answer an EA query with start node s and destination node t, the

8The �-halo of a subgraph G� ⊆ G is the part of G that is reachable from G� via paths of � or
less hops.
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two PUs that are responsible for s and t, respectively, each perform a complete
upward search starting from s and t. The PU responsible for s then sends the
complete search space to the PU responsible for t, which performs the downward
search afterwards (for details how TCHs can be used to answer EA queries see
Section 5.3.1).

The main benefit of distributed TCHs is that the memory intensive preprocess-
ing of TCHs can be performed on a cluster of cheap PUs with rather little main
memory. Though the overall data redundancy is relatively large for distributed
TCHs, the data volume arising on a single PU is nevertheless significantly reduced
compared to a complete TCH. For querying when main memory is restricted, one
could also use ATCHs (see Section 5.4). ATCHs show reduced memory consump-
tion without utilizing distributed memory.

Time-Dependent Many-to-Many [42]. TCHs are, like CHs, not only useful to an-
swer one-to-one queries, but also to perform many-to-many EA and TTP compu-
tations. The authors describe five different algorithms that precompute different
sets of information. One of these algorithms precomputes a table; namely, a full
|S|×|T |-table of TTPs. The other four algorithms only compute some information
that is used to make EA and TTP “lookups” faster. More precisely, given a start
node s ∈ S and a destination node t ∈ T there is still some work left that has to be
done before the resulting EA time or TTP can be returned. This is different from
the original many-to-many approach that has been developed for constant travel
costs (see the short summary in Section 1.3.1 on page 31).

For exact TTP lookups, only the full table brings a speedup of more than 26
compared to the fastest TCH-based algorithm (namely, exact TTP queries using
ATCHs as described in Section 5.4.3). Looking up a TTP in the full table requires
no computation at all. However, the full table needs lots of space. For |S| =
|T | = 500 it needs 27 GiB for example. For exact EA lookups, the full table is
also fastest, but the other algorithms, which are more space efficient, show good
speedups too; that is, nearly three orders of magnitude further speedup compared
to exact TCH-based EA queries.

Note that the results of exact time-dependent many-to-many precomputations
are quite space consuming, even if the full table is avoided. That is one of the
reasons why the authors consider inexact querying, which reduces memory con-
sumption a lot. The running times needed by precomputation and TTP lookups
are also reduced. EA lookups, in contrast, do not get much faster. An interesting
result is an upper bound of the relative error of inexact travel time computations
with piecewise linear functions. It not only depends on the maximum relative error
of the involved TTFs but also on the maximum occurring slope of any such TTF.
It turns out that the observed error is usually much smaller than this theoretical
error bound.
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Time-Dependent One-to-All [39]. The algorithmic ingredients used to speed up
time-dependent many-to-many computations can also be used to speed up one-to-
all TTP queries. In fact, Geisberger combines them with ideas taken from PHAST
(see Section 1.3.1 on page 32): He exploits that the downward graph of a TCH is
a DAG and utilizes the pruning techniques from time-dependent many-to-many.
This ideas, however, are not applied to a complete TCH, but only to the most
important 10 000 nodes of a TCH (i.e., a core of a TCH). The resulting one-to-all
TTP queries on the core take about half a minute of time on average. Compared to
10 000 random one-to-one TTP queries that are performed not only on the core but
on the complete hierarchy using ATCHs (see Section 5.4.3), the speedup is one
order of magnitude. It also turns out that the one-to-all TTP queries on the core
parallelize well in shared memory: The speedup achieved with 8 threads is 5.7.
Geisberger suggests that his method could be used to generate high-quality time-
dependent arc-flags on the core of a TCH enabling a time-dependent version of
CHASE (see Section 1.3.1 on page 36). Although this sounds promising, nobody
has tried that so far.

1.3.3 Route Planning with Other Generalized Travel Costs

Besides time-dependent travel costs, there are also other kinds of generalized
travel costs that have been considered so far. We only summarize three exam-
ples here that all deal with multi-dimensional costs in some way.

Flexible CHs [40]. Flexible CHs answer one-to-one queries if the constant travel
costs of edges e are linear combinations of two different kinds of cost; that is

ce = ae+ p ·be

where ae could be the travel time and be the fuel consumption for example. The
discrete parameter p ∈ {0,1,2, . . . ,N} needs not to be fixed before preprocessing.
Instead, users can choose it dynamically just when submitting a query. On the first
glance this looks somewhat similar to time-dependent travel times with additional
time-invariant costs, but it is different. There, the optimal path depends on the
departure time. Here, the optimal path depends on the parameter p.

Adapting CHs to this setup, the main challenge is that more shortcuts must be
added during preprocessing to preserve the shortest paths for all possible values
of p. The resulting hierarchy would be less sparse which means that memory
consumption and query time would increase. To overcome this, the hierarchy is
split into multiple hierarchies for different values of p. However, the authors do it
in a way that the lower part is equal for all hierarchies. It hence suffices to store
the lower part only once. Applying this approach recursively, one gets a flexible
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CH that is split multiple times in a tree-like manner. Flexible CHs bring good
speedups, especially in combination with CALT (see Section 1.3.1 on page 35).

Flexible CHs can also be used to answer parameter profile queries: Given a
start node s and destination node t one computes a function

cst : {0,1,2, . . . ,N}→R≥0

that maps the parameter p to the corresponding optimal cost for traveling from s
to t. If there are k different optimal paths from s to t, then O(k) one-to-one queries
with appropriate values of p in the flexible CH are performed. This works be-
cause cst is concave. Note that the witness search works similar, but with multiple
plain Dijkstra searches for different values of the parameter p on the respective
remaining graph (for details of CH construction see Section 2.3.1).

CHs for Multi-Dimensional Costs. Storandt [81] adapts CHs to the two-dimen-
sional constraint shortest path (CSP) problem to do route planning for bicycles.
The cost of an edge e is a pair ce|de, where ce ≥ 0 is the distance and de ≥ 0 the
difference in elevation. A user query asks for a minimum distance path whose
total difference in elevation does not exceed a given bound. To make CHs work in
this setup, the witness search does not utilize multi-label search (see Section 2.2.6
for an explanation). This would be too expensive. Instead, Storandt performs
multiple conventional Dijkstra searches where edges e have cost

Le := x · ce+(1− x) ·de

for different values of a parameter x∈ [0,1], which is similar to witness and profile
search as performed by flexible CHs [40]. Again, this works because the parame-
ter cost profiles are concave for every path. Note that some witness paths may be
missed. The query algorithm is a bidirectional multi-label search that only goes
upward, a preceding conventional CH query suffices if the resulting up-down-
path already fulfills the elevation bound. The query times are an improvement
compared to multi label search without hierarchy but are still very large. Note
that the most important 0.5 % of nodes are not contracted to save preprocessing
and query time (there would be too much shortcuts). A combination with arc-flags
may bring a further improvement, but Storandt only tries this for small graphs.

Funke and Storandt [37] further generalize this kind of CHs to costs with more
than two dimensions. In this setup, however, they only answer conic combination
shortest path queries exactly. These are the continuous, multi-dimensional ver-
sion of the queries answered by flexible CHs. CSP queries are only answered
approximately. The reason is that the query algorithm uses no longer multi-label
search but multiple conic combination shortest path queries for different param-
eter configurations. These configurations are determined by some kind of multi-
dimensional binary search in the parameter space. For more than two dimensions
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the problem structure gets less convenient. As a consequence, it can happen that
no path fulfilling the constraints is found, even if there is one.

For conic combination shortest paths with three dimensional costs, the query
times are quite reasonable. With two dimensional costs, they are quite good. For
an instance of the Californian road network with about 11 million nodes, three-
dimensional approximate CSP queries are answered within less than 1.5 sec, for
two dimensions within about 20msec. The rate of missed paths for three dimen-
sions is 0.05 % and the found paths are not more than 1.04 times worse than the
optimum for the Californian instance.

Pareto SHARC [27]. Pareto SHARC generalizes the original SHARC (for a sum-
mary see Section 1.3.1 on page 35) to compute a set of Pareto optimal paths (see
Section 2.1.3). An arc-flag aei must be true if the edge e is part of a Pareto op-
timal path that leads into region Ri. The authors find that the number of Pareto
optimal labels per node can increase dramatically with the size of the road net-
work. Preprocessing and query time can increase even more. To overcome this
problem, the authors relax the notion of dominance, both during preprocessing
and querying. More precisely, a label � = (C,c1, . . . ,ck) of a node u is also con-
sidered to dominate another label �� = (C�,c�1, . . . ,c

�
k) of u if (1+ ε) ·C < C� or

γ ·C/C� < ∑i c
�
i/∑i ci holds for two fixed values ε ≥ 0, γ > 0.

This means that of the k+1 different travel costs is considered as the leading
cost (namely, the cost C). The first condition says that paths are ignored if their
leading cost is worse than the leading costs of another path by a factor above 1+ε .
The second condition (also known as pricing) says that paths are ignored if a loss
in the leading cost is not justified by a gain in the other costs compared to other
paths. With this relaxed notion of dominance and conveniently chosen parameters
ε and γ , the authors achieve to compute about 5 different Pareto optimal paths
within less than 40 msec for an instance of the Western European road network.
With about 5 hours, the preprocessing takes rather long, but this is still tolerable.

1.4 References

Many results presented in this thesis have already been published on confer-
ences [5, 6, 9], in a journal [8], and in an early technical report [7]. All these arti-
cles have been published by the author of this thesis together with Daniel Delling,
Robert Geisberger, Sabine Neubauer, Peter Sanders, and Christian Vetter in dif-
ferent combinations. Many wordings of these articles have been used or rephrased
in the thesis. This is also the case for this first chapter.

Christian Vetter made very important contributions to the TCH preprocessing
as described Section 5.2 during his student research project [82] and as a student
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assistant. Altogether, Vetter is responsible for a substantial part of the preprocess-
ing, both regarding concepts and implementation (for details see Section 5.7).

Sabine Neubauer provided an implementation of the Imai-Iri Algorithm [52]
that she prepared during her student research project [66]. It is heavily used by
our ATCHs and inexact TCHs, two variants of TCHs discussed in Chapter 5.

1.5 Outline

Chapter 2 introduces basic concepts like real functions, basic graph theory, Pareto
optimal paths, intersection of line segments. Also, it summarizes basic data
structures and algorithms, including adjacency arrays, priority queues, Dijk-
stra’s algorithm, bidirectional search, A* search, and multi-label search. It
also contains an introduction to original CHs.

Chapter 3 considers the basic properties of time-dependent edge weights and the
corresponding time-dependent shortest paths. The first part considers the spe-
cial case that time-dependent travel costs are only travel times. This includes
a discussion of travel time functions (TTFs), earliest arrival (EA) paths, ba-
sic operations on TTFs including their efficient computation, and convenient
rules for calculating with TTFs. The second part essentially provides the
analogous discussion for time-dependent travel times with additional travel
costs.

Chapter 4 discusses all the basic Dijkstra-like algorithms that are used as ingre-
dients of the route planning techniques described in this thesis. This in-
cludes single-label searches in forward and backward direction as well as
time-dependent multi-label searches. Chapter 4 also provides proofs of cor-
rectness for all these algorithms and discusses other aspects like running time
or how to stop them early if they are used to answer one-to-one queries.

Chapter 5 in depth discusses all variants of time-dependent contraction hierarchies
(TCHs) that deal with time-dependent travel times as travel costs. This in-
cludes the preprocessing, basic earliest arrival (EA) and travel time profile
(TTP) querying with TCHs, the pruning technique stall-on-demand, space ef-
ficient querying with approximate TCHs (ATCHs), and also inexact TCHs,
whose main purpose is to provide even faster TTP queries. All described
techniques are evaluated experimentally.

Chapter 6 discusses how TCHs can be adapted to work in the presence of additional
time-invariant costs. This includes a discussion of complexity, a discussion
why exact preprocessing is problematic with additional costs, and also some
preliminary ideas how exact preprocessing may be achievable. Chapter 6
also describes a heuristic preprocessing procedure and a query procedure that
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would be exact with exact TCH structures. The chapter ends with an experi-
mental evaluation.

Chapter 7 provides a conclusion, a discussion of possible future work, and an out-
look how time-dependent route planning techniques could be deployed to be-
come beneficial for a larger number of users.



2
Fundamentals

This chapter briefly summarizes the fundamentals that are needed to understand
the contributions made in this thesis. Nothing in this chapter is new. Some of
the material is assumed to be known to many readers. This includes real func-
tions, directed graphs, shortest paths, some basic computational geometry, adja-
cency arrays, priority queues (PQs), Dijkstra’s algorithm [33], and A* search [49]
(see Sections 2.1.1, 2.1.2, 2.1.4, 2.2.1, 2.2.2, 2.2.3, and 2.2.5). Other things—like
Pareto optimal paths, bidirectional search, and multi-label search—are well estab-
lished but less widely known (see Sections 2.1.3, 2.2.4, and 2.2.6). Pareto optimal
paths and multi-label search are described by Hansen [48] and Martins [60]. The
other things are either folklore or explained much more detailed in the textbook by
Mehlhorn and Sanders [61]. The basic geometry is taken from Cormen et al. [16],
Hill [50], and Sedgewick [79].

There is also some material in this chapter (see Section 2.3) which is relatively
advanced; namely, the original CHs that provide fast and exact route planning for
constant non-negative travel costs. This hierarchical route planning technique is
one of the results of the rather recent research on route planning (see Geisberger
et al. [43, 44]). It forms the basis of the time-dependent contraction hierarchies
considered in this thesis. So, we provide a relatively detailed explanation. Many
important aspects, however, have been omitted. These things are discussed in the
original papers.

A reader that is already familiar with the one or another subject treated in this
chapter may skip the respective sections of course.

2.1 Preliminaries

This section covers the most basic notation, definitions and facts. This includes
real functions, directed graphs, shortest paths, and Pareto optimal paths.



50 Chapter 2. Fundamentals

2.1.1 Real Functions

Most functions that occur in this thesis map real numbers to real numbers. In this
case the following three operations are well defined.

1. The composition g◦ f (we say g “after” f ) of two real functions f ,g :R→R

is defined by g◦ f : x �→ g( f (x)).

2. The pointwise sum f + g of two real functions f ,g : R→ R is defined by
f +g : x �→ f (x)+g(x).

3. The pointwise minimum min( f ,g) of two real functions f ,g : R→ R is de-
fined by min( f ,g) : x �→min{ f (x),g(x)}.

The set of real functions is closed under these three operations.
Composition, pointwise sum, and pointwise minimum are associative. That

is, for arbitrary real functions f ,g,h :R→R the following equations hold:

h◦ (g◦ f ) = (h◦g)◦ f (2.1)

f +(g+h) = ( f +g)+h (2.2)

min( f ,min(g,h)) = min(min( f ,g),h) (2.3)

Pointwise sum and pointwise minimum are also commutative:

f +g= g+ f (2.4)

min( f ,g) = min(g, f ) (2.5)

In general, composition is not commutative. It is also not fully distributive over
pointwise sum and minimum, but at least right-distributive:

( f +g)◦h= f ◦h+g◦h (2.6)

min( f ,g)◦h= min( f ◦h, g◦h) (2.7)

By id : R→ R we denote the identity (function). It is defined by id : x �→ x,
which means that every real number is mapped to itself. Composed with other
functions, the identity leaves them completely unchanged:

f = f ◦ id = id◦ f (2.8)

Note that the identity is the linear function with slope 1 that goes right through
the origin of the Cartesian coordinate system (see Figure 2.1). If a function f is
a one-to-one mapping (i.e., f (x) = f (y) implies x = y), then f can be inverted.1

More precisely, there exists a function f−1 :R→R with

f ◦ f−1 = f−1 ◦ f = id . (2.9)

1One-to-one mappings are often called injective mappings.
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id

x

x

Figure 2.1. The graph of the identity function.

The inverse function f−1 of a one-to-one mapping f is unique. Geometrically, the
graph of the inverse function f−1 is just the reflection of the graph of f with the
graph of the identity function as axis. If f is no one-to-one mapping, then f−1 is
defined by

f−1(x) := {y ∈R | y= f (x)} (2.10)

as a set-valued function. Note that

(g◦ f )−1 = f−1 ◦g−1 (2.11)

holds true, regardless whether f and g are one-to-one mappings or not. To under-
stand that consider

y ∈ (g◦ f )−1(x)⇔ x= (g◦ f )(y) = g( f (y))⇔ f (y) ∈ g−1(x)

⇔ y ∈ f−1(g−1(x)) = f−1 ◦g−1(x) .

A real function f : D→R that is only defined on a strict subset ofR (i.e., D⊆
R but D �= R) is called a partial real function. We sometimes write dom f := D
to denote the domain of f . In case dom f = R, we call f a total real function.
In this thesis, we always have dom f = R or dom f is an interval. A real func-
tion f : D→ R is called continuous if f (x0) = limx→x0 f (x) holds for all x0 ∈ R.
If limx→x0 f (x) does not exist for some x0 ∈ R or if f (x0) �= limx→x0 f (x) holds,
then x0 is called a point of discontinuity (or discontinuity for short) of f . If f
only fulfills f (x0) = limx→x−0

f (x) for all x0 ∈R, then f is called left-continuous.

Right-continuous functions fulfill the analogous condition. A (point of) disconti-
nuity x0 is called positive if limx→x−0

f (x) < limx→x+0
f (x) holds, and negative if

limx→x−0
f (x)> limx→x+0

f (x) holds.

Note that the left-sided limit limx→x−0
f (x) of f : D → R is the unique real

number a∈D that fulfills the following condition: For all ε > 0 there is δ > 0 such
that | f (x)−a|< ε holds for all x∈ (x0−δ ,x0). The right-sided limit limx→x+0

f (x)

is defined analogously.

Lemma 2.1. The composition of left-continuous functions is again left-continuous.
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Proof. A possible proof for continuous functions utilizes convergent sequences
(e.g., see Sections 6.4 and 6.7 in Walter’s textbook [84]). It can easily be adapted
to work with left-continuous functions.

2.1.2 Directed Graphs and Shortest Paths

Given a finite set V and a subset E ⊆V ×V we call G= (V,E) a directed graph.
The elements ofV are the nodes and the elements of E the edges of G. We usually
write u→ v to denote an edge (u,v) ∈ E. Edges u→ v of G often have a non-
negative real value c ∈ R≥0 assigned, which we call edge cost or travel cost. We
often write u→c v. If we reverse all edges of G we obtain the transpose graph G�

of G defined by

G� :=
�
V, E�

�
with E� := {v→ u |u→ v ∈ E} , (2.12)

which fulfills (G�)� = G of course.
A sequence of k−1 edges �u1 → u2,u2 → u3, . . . ,uk−1 → uk� of G, such that

the target node ui of an edge ui−1 → ui is the source node of the succeeding
edge ui → ui+1, is called a path in G. We write P = �u1 → u2 → ·· · → uk� for
short. The number of edges of P is denoted by |P|. It is also called the number
of hops of P. A subpath �u1 → ·· · → ui� of P is called a prefix (path) of P, a
subpath �ui → ·· · → uk� of P is called a suffix (path) of P. If there is another path
P� = �v1 → ·· ·→ v�� such that uk = v1, then P� can be appended to P. This results
in the concatenated path

PP� := �u1 → ·· · → uk = v1 → ·· · → v�� . (2.13)

We also need the k-hop neighborhood of a node u in a graph G defined by

Nk
G(u) :=

�
v ∈V \{u}

�
� G contains an undirected path

from u to v or v to u of k or less hops
�
.

(2.14)

A path �u→ ·· · → u�, where start and destination node are the same, is called a
cycle.

The graph formed by all paths from a node s to a node t in a subgraph U ⊆ G
is denoted by PU(s, t). For sets of nodes S,T ⊆V , we generalize this notation to

PU(S,T ) :=
�

s∈S, t∈T

PU(s, t) . (2.15)

Note that we use the symbol “∪” not only to denote the union of sets but also
of graphs in this thesis. For S = {s} or T = {t}, respectively, we simply write
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Figure 2.2. A simple directed graph with constant edge costs that contains two shortest
paths from v1 to v4; namely, �v1 → v2 → v4� and �v1 → v3 → v2 → v4�. They both have
total cost 5.

PU(s,T ) or PU(S, t). We mainly use this to denote corridors and cones. Given
a subgraph U ⊆ G, an opening cone is a subgraph of U that contains all paths
from a node s to the nodes T ⊆V ; that is, PU(s,T ). Analogously, a closing cone
contains all paths from the nodes S ⊆ V to a node t in U ; that is, PU(T, t). Note
that PU(S, t)⊆U ⊆ G is a closing cone if, and only if, PU�(t,S)⊆U� ⊆ G� is
an opening cone. Moreover, we have

PU�(S,T ) =
�
PU(T,S)

��
. (2.16)

A corridor is the special case that both S and T are singleton sets; that is, a sub-
graph PU(s, t).

If G has edge costs, then a path P= �u1 →c1 u2 →c2 · · · →ck−1
uk� in G has the

(total) cost cP := c1+c2+ · · ·+ck−1. Since all edge costs are non-negative, there
is a minimum possible total cost that a path from a node s to a node t in G can
have; namely, the value

µG(s, t) := min
��

CP�
�
�P� is a path from s to t in G

�
∪{∞}

�
. (2.17)

We call µG(s, t) the minimum (constant) travel cost from s to t in G. A path P from
s to t with cP = µG(s, t) is called a shortest path from s to t. In general there can
be multiple shortest paths from s to t. Figure 2.2 shows an example. All subpaths
of shortest paths are shortest paths themselves. If all edge costs in G are positive,
then a shortest path can not contain any cycles. Note that µG(s, t) = ∞ means that
G does not contain any path from s to t. We say t is not reachable from s in G.

A subgraph T = (VT ,ET ) ⊆ G with a distinguished node r ∈ VT is called a
directed tree2 with root r if T has no cycles and all nodes u∈VT \{r} have exactly
one incoming edge in ET (see Section 4.9 in [55]). As it is well-known, directed
trees can also be characterized by paths.

Lemma 2.2 ([55]). The following two statements are equivalent: (i) The subgraph
T ⊆ G is a directed tree with root node r. (ii) There is exactly one path in T from
r to all nodes u ∈VT \{r}.

2also known as arborescence
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If all the unique paths from the root r to the other nodes u ∈VT \{r} are shortest
paths in G, then T is called a shortest path tree in G.

2.1.3 Pareto Optimal Paths

Pareto optimality3 is a generalized notion of optimality that can be used in the
context of multidimensional costs. Consider the set of real �-tuples R�. We say
that (x1, . . . ,x�)∈R

� (weakly) dominates (y1, . . . ,y�)∈R
� if x1 ≤ y1∧·· ·∧x�≤ y�

holds. If there is also at least one i∈ {1, . . . , �}with xi < yi, then we speak of strict
dominance. A set M ⊆R� is called a Pareto set (or sometimes a Pareto optimum)
if no �-tuple in M is dominated by another �-tuple in M. These concepts can
be applied to directed graphs which results in a generalized notion of a shortest
path [48, 60]. Note that we restrict ourselves to �= 2 in this thesis.

Consider a graph G where each edge u →c|d v has two non-negative values
c,d ∈ R≥0 assigned. Note that we usually write c|d for two-dimensional costs
(c,d). Then, the total cost of a path P := �u1 →c1|d1

· · · →ck−1|dk−1
uk� is two-

dimensional and amounts to

cP |dP := c1+ · · ·+ ck−1 |d1+ · · ·+dk−1 . (2.18)

The notion of dominating paths only makes sense for paths with the same start
and destination node. We say a path P from s to t (weakly) dominates a path P�

from s to t if cP|dP weakly dominates cP� |dP� . Strict dominance of paths is defined
analogously. A path P from s to t in G is called Pareto optimal if it is not strictly
dominated by any other path from s to t—or, more precisely, if the following
condition holds:

∀ paths P� from s to t :
�
cP� |cP� �= cP |dP =⇒ cP� > cP or dP� > dP

�
(2.19)

In case of two-dimensional costs one often speaks of bicriteria shortest paths.
Hansen [48] shows that exponentially many Pareto optimal paths can occur in

bicriteria settings. To do so he uses the construction in Figure 2.3. We recapitulate
his argument in the following. The graph in Figure 2.3 contains 2k+3 nodes and
2k+1 different paths from v0 to vk+1. All these 2k+1 paths are Pareto optimal. To
understand that consider two different paths P and P� from v0 to vk+1 with total
costs cP|dP and cP� |dP� respectively. We see that cP+ dP = 2k+1− 1 = cP� + dP�
holds. But then cP|dP can not strictly dominate cP� |dP� . Assume otherwise that
w.l.o.g. cP < cP� and dP ≤ dP� holds. But then we have cP+dP < cP�+dP� , which
is a contradiction. The case cP = cP� and dP = dP� is also not possible for P �= P�

as no two paths from v0 to vk+1 have the same total two-dimensional cost. In other

3Named after the Italian sociologist and economist Vilfredo Federico Pareto (1848–1923).



2.1. Preliminaries 55

v0

w0

v1

w1

v2

w2

v3
1|0

0|1 0|0

2|0

0|2 0|0

4|0

0|4 0|0

· · · vk

wk

vk+1
2k|0

0|2k 0|0

Figure 2.3. The graph used by Hansen [48] to show that exponentially many Pareto
optimal paths can occur in bicriteria settings. It has 2k+3 nodes and contains 2k+1 paths
from v0 to vk+1 that all have different costs not dominating each other.

words, a graph with n := 2k+ 3 nodes can have 2k+1 = 21+(n−3)/2 = Ω(2n/2) =
Ω(1.41n) Pareto optimal paths between two nodes.

Subpaths of Pareto optimal paths are Pareto optimal paths themselves [60].
Otherwise, a Pareto optimal path P = �s→ ·· · → t� could be decomposed into
subpaths P = RS with R = �s → ··· → u� such that R is strictly dominated by
another path R� from s to u. So, we had cR� ≤ cR, dR� ≤ dR, and cR�+dR� < cR+dR
implying cR�S = cR� + cS ≤ cR+ cS = cP, dR�S = dR� +dS ≤ dR+dS = dP, and

cR�S+dR�S = cR� + cS+dR� +dS < cR+ cS+dR+dS = cP+dP .

This means the concatenation R�S would strictly dominate P, a contradiction.

2.1.4 Points and Line Segments

In Section 1.1.2 we say that time-dependent costs are modeled as functions; namely,
as TTFs and TCFs. In this thesis, such functions are modeled using piecewise lin-
ear functions (see Section 3.1.1 and 3.2.2). The algorithms that deal with piece-
wise linear functions (see Section 3.1.4) require basic computational geometry in
two dimensions, which we explain in this section.

Two basic concepts of geometry are points and line segments. A points is
written as a pair (x,y)∈R2, a line segment between the points p,q∈R2 is written
as (pq)⊆R2. Note that we consider the end points p and q as excluded from the
line segment; that is, p,q �∈ (pq). The set of common points of two line segments
(pq),(p�q�) is denoted by (pq)∩ (p�q�). So, |(pq)∩(p�q�)|= 1 means that the two
segment have exactly one point in common. We call this point (which has to be
different from p,q, p�,q�) the intersection point.

To determine whether two line segments intersect, we use the perp dot product
(see Hill [50]) of two points (x,y) and (x�,y�) defined as

(x,y)• (x�,y�) := xy� − x�y . (2.20)
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With this product we can determine the orientation of three points in the plane.
More precisely, to find out whether three points p,q,r∈R2 of an ordered sequence
�p,q,r� are located clockwise, collinear, or counterclockwise relative to each
other, we use the predicate ccw (see Chapter 24 in Sedgewicks’ textbook [79])
defined as

ccw(p,q,r) :=






1 if �p,q,r� is oriented clockwise
0 if p,q,r are collinear

−1 if �p,q,r� is oriented counterclockwise
. (2.21)

Note that Sedgewick uses a slightly different definition of ccw that only returns
zero if r lies on the line segment (pq). Cormen et al. (see Section 33.1 in their text-
book [16]) explain how the perp dot product can be used to obtain the orientation
of three points; that is, to calculate ccw.

Lemma 2.3 ([16]). Given p,q,r ∈R2, we have

ccw(p,q,r) = sgn
�
(q− p)• (r− p)

�
, (2.22)

where sgn is the sign function.4

Note that the ‘−’ in Equation (2.22) is a component-by-component operation on
points. Sedgewick explains, how ccw can be used to determine whether two line
segments intersect; that is, to check the condition |(pq)∩ (p�q�)|= 1.

Lemma 2.4 ([79]). Two line segments (pq),(p�q�) without end points intersect in
exactly one point if, and only if, ccw(p,q, p�) ·ccw(p,q,q�)< 0 and ccw(p�,q�, p) ·
ccw(p�,q�,q)< 0 holds.

Note that Sedgewick discusses a slightly different version of this statement, be-
cause of his different definition of ccw and because he considers intersection of
line segments including end points.

To actually obtain the single intersection point r of (pq) and (p�q�) (provided
that there is one), we make again use of the perp dot product, as Hill [50] suggests.

Lemma 2.5 ([50]). The intersection point of two line segments (pq),(p�q�) with
|(pq)∩ (p�q�)|= 1 is

r = p+
(p� −q�)• (p� − p)

(p� −q�)• (q− p)
· (q− p) . (2.23)

In the above equation, ‘+’ and ‘−’ are component-by-component operations on
points.

4sgn(x) yields 1 or −1 for positive or negative x respectively. For x= 0 it yields 0.
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2.2 Basic Data Structures and Algorithms

In this section we recapitulate the most basic algorithmic ingredients that are fun-
damental for this thesis. This includes Dijkstra’s well known algorithm and some
of its variants—bidirectional search, A* search, and multi-label search—as well
as adjacency arrays and priority queues (PQs), two very basic data structures.

2.2.1 Adjacency Arrays

An adjacency array is a simple data structure that represents a directed graph
G = (V,E) (e.g., see Section 8.2 in the textbook by Mehlhorn and Sanders [61]).
It needs Θ(|V |+ |E|) space and iterating over all outgoing edges u→ v ∈ E of a
node u ∈V can be done in O(1) time per edge.

Every node u ∈ V and every edge u→ v ∈ E is identified by a unique node
id from {0, . . . , |V |− 1} and a unique edge id from {0, . . . , |E|− 1} respectively.
So, every node u ∈ V and every edge u → v ∈ E can be identified with its id,
which is as good as to say u ∈ {0,1, . . . , |V |− 1} and u→ v ∈ {0,1, . . . , |E|− 1}
respectively. An array targetNodeId of size |E| contains exactly one entry for
every edge u→ v ∈ E; namely, the entry targetNodeId[u→ v]. It stores the node
id iv of the target node v. All edges u→ v1, . . . ,u→ vk with common source node
u have consecutive edge ids. So, the array targetNodeId is partitioned into |V |
subarrays, each containing the target node ids of the outgoing edges for each node
in V . For every node u we store the smallest edge id of its outgoing edges in an
array firstEdgeId of size |V |+ 1; namely, at the entry firstEdgeId[u]. Hence, the
subarray of targetNodeId that corresponds to the node u reaches from the index
firstEdgeId[u] to the index firstEdgeId[u+ 1]− 1. The last entry firstEdgeId[|V |]
does not correspond to any existing node of G but is necessary to determine the

v1

v2

v3

v4

3

1

2 1
2

2

5

0 1 2 3 4

firstEdgeId 0 2 4 6 7
0 1 2 3 4 5 6

targetNodeId 1 2 3 2 1 3 1
0 1 2 3 4 5 6

cost 3 1 2 1 2 5 2

Figure 2.4. The simple directed graph from Figure 2.2 (left) represented by an adjacency
array (right). The nodes v1, v2, v3, and v4 have the node ids 0, 1, 2, and 3 respectively.
The small numbers denote the indices of the array entries and correspond to node and
edge ids respectively. With firstEdgeId[1] = 2 and firstEdgeId[2] = 4, for example, we
know that the edge ids of the outgoing edges of v2 are 2 and 3 and that the subarray
targetNodeId[2..3] contains the target nodes of the respective edges. They entry cost[3] =
1 says that edge v2 → v3 has cost 1.
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end of the last subarray of targetNodeId.
Additional information about nodes and edges can be stored in further arrays

of size |V | and |E| respectively. If G has edge costs, for example, the costs can
be stored in an array cost of size |E|. Figure 2.4 shows a simple example of an
adjacency array representation of a directed graph with constant edge costs.

2.2.2 Priority Queues

A priority queue (PQ) Q is a fundamental data structure to store elements that
are prioritized with keys (e.g., see Chapter 6 in the textbook by Mehlhorn and
Sanders [61]). More precisely, Q stores a subset of Elements×Keys where the set
Elements defines the possible data elements and Keys is a totally ordered set. The
set Keys is called totally ordered if there is a relation “�” that is

• antisymmetric (i.e., x� y and y� x implies x= y for all x,y ∈ Keys),

• transitive (i.e., x� y and y� z implies x� z for all x,y,z ∈ Keys), and

• total (i.e., for all x,y ∈ Keys we have x� y or y� x).

Totally ordered sets are also reflexive; that is, x � x holds for all x ∈ Keys. Re-
flexivity follows directly from totality. Note that PQs also work if “�” is not
antisymmetric. But this is never the case in this thesis. A PQ Q must support the
four following operations:

1. Q.insert(e : Elements, x : Keys). Adds the pair (e,x) ∈ Elements×Keys to the
set stored by Q. Usually we require that no pair (e,x�) is already present in Q.

2. Q.deleteMin() :Elements. Removes a pair (e,x) from Q such that x is minimal
amongst all keys in Q. More precisely, for all (e�,x�) in Q we have x � x�. If
(e0,x0) is the removed pair, then e0 is given back as return value.

3. Q.updateKey(e : Elements, x : Keys). Replaces the pair (e,x�) in Q by the pair
(e,x). If no pair (e,x�) is present in Q, then this operation is illegal.

4. Q.min(). Returns the currently minimal key in Q and ∞ if Q is empty.

Note that updateKey is often referred to as decreaseKey. In this case, the new key
x must be “smaller” than the old key x�; that is, x� x� must hold. In route planning
keys are often non-negative numbers q,r ∈ R≥0 with q � r if, and only if, q ≤ r.
Sometimes, however, q � r is equivalent to q ≥ r, as in case of latest departure
interval search (see Section 4.3.4, Algorithm 4.6). To express that, we use the
operations deleteMax instead of deleteMin and call Q a maximum PQ.

There are many different realizations of the abstract data type PQ. These are,
for example, binary heaps and Fibonacci heaps. Binary heaps are relatively sim-
ple and provide logarithmic asymptotic running time for all the operations except
for min(), which takes constant time. Fibonacci heaps have better asymptotic
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running time, but they are more complicated and usually not so fast in practice.

2.2.3 Dijkstra’s Algorithm

Dijkstra’s algorithm5 [33] is a well-known method to compute shortest paths in
a directed graph G= (V,E) with non-negative constant edge costs (e.g., see Sec-
tion 10.3 and 10.4 in the textbook by Mehlhorn and Sanders [61]). Given a start
node s ∈ V , we want to compute the minimum cost µG(s,u) for traveling from s
to u for every u ∈ V as well as a corresponding shortest path Pu. To do so, we
maintain a tentative cost d[u] ∈ R≥0, which we call a node label, and a tentative
predecessor information p[u] ∈ V for all u ∈ V . Initially, we set d[u] := ∞ and
p[u] := ⊥ for all nodes u ∈ V ; only for the start node s, we set d[s] := 0. The
symbol ⊥ means that a node has currently no predecessor. Every node has one of
two possible states, either settled or unsettled. Initially, all nodes are unsettled.

During execution we successively settle one node after another. More pre-
cisely, we always choose an unsettled node u with minimal tentative cost; that is,
a node u ∈ argmin{d[v] | v ∈ V is unsettled}. Having chosen such a node u we
relax all its outgoing edges u→c v ∈ E. This means that for each such edge we
check whether d[u]+ c is smaller than d[v] and if so, we set d[v] := d[u]+ c and
p[v] := u. So, we update the tentative cost and the tentative predecessor informa-
tion of the target node v whenever we find a better path to v. When all outgoing
edges of u are relaxed, we consider u as settled. The execution of Dijkstra’s al-
gorithm stops when all nodes being reachable from s are settled. This is the case
when all unsettled nodes have tentative cost ∞.

Dijkstra’s algorithm obeys some monotonicity property: If a node u is settled
before a node v, we always have d[u] ≤ d[v] after u is settled. Also, as soon as
u settled, we have d[u] = µG(s,u) (see Section 10.3 in [61]). So, as Dijkstra’s
algorithm never increases d[u], no node is ever settled twice. This is actually
where the term “settling” comes from: As soon as the state of a node u changes
from unsettled to settled, we know that d[u] has reached µG(s,u) and cannot be
decreased anymore.

A shortest path from s to u is given implicitly by the predecessor information
as soon as u is settled. More precisely, a shortest path from s to a settled node u
can be constructed starting from u by successively looking up the predecessor of
each node until we arrive at s. The resulting shortest path is of the form

Pu =
�
s= d[. . .d[d[u]] . . . ]→ ··· → d[d[u]]→ d[u]→ u

�
. (2.24)

This only works if u is reachable from s of course. Today, Dijkstra’s algorithm
is usually formulated using a PQ (see Section 2.2.2). Algorithm 2.1 shows the

5Named after the Dutch computer scientist Edsger W. Dijkstra (1930–2002).
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Algorithm 2.1. The one-to-one version of Dijkstra’s algorithm. For a given start

node s and a destination node t that is reachable from s, the algorithm returns a

shortest path from s to t. If t is not reachable from s, it returns the empty path ��.

The pseudocode is mainly adopted from Mehlhorn and Sanders [61].

1 function dijkstra(s, t :V ) : Path
2 d[u] := ∞, p[u] :=⊥ for all u ∈V , d[s] := 0
3 Q : PriorityQueue
4 Q.insert(s,0)
5 while Q �= /0 do
6 u := Q.deleteMin() // settle node u
7 if u= t then return �s→ ·· · → d[d[t]]→ d[t]→ t�
8 foreach u→c v ∈ E do // relax outgoing edges of u
9 if d[u]+ c< d[v] then
10 if d[v] = ∞ then Q.insert(v, d[u]+ c)
11 else Q.updateKey(v, d[u]+ c)
12 d[v] := d[u]+ c
13 p[v] := u

14 return �� // t not reachable from s

respective pseudo code. There, the settled nodes are exactly the nodes u fulfilling

d[u]< ∞ and u �∈ Q .

Thus, a node is settled by removing it from the PQ (see Line 6). As nodes are
never settled twice, no node is ever reinserted into the PQ by Dijkstra’s algorithm.

In route planning we are usually not interested in shortest paths from s to all
other nodes u ∈ V . Instead, we often look for a shortest path from s to one given
node t. For such one-to-one queries we do not have to execute Dijkstra’s algorithm
completely, but we can stop it earlier. In fact we can stop as soon as the node t is
settled (see Line 7). If Line 7 is omitted, the algorithm computes a shortest path
from s to all nodes that are reachable from s.

It is important to note that the predecessor information p, which is computed
by Dijkstra’s algorithm, implicitly represents a subgraph of G; namely, the graph
G(p) := (V (p), E(p)) with

V (p) :=
�
u ∈V

�
� p[u] �= /0 or u ∈ p[v] with v ∈V

�
, (2.25)

E(p) :=
�
u→ v ∈ E

�
�u= p[v]

�
. (2.26)

Note that G(p) as defined by Equation (2.25) and (2.26) is a tree because of the
condition in Line 9. We call G(p) the predecessor tree represented by p. After
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termination of Dijkstra’s algorithm, G(p) is even a shortest path tree in G. Note
that we generalize the notion of a predecessor tree to the notion of a predecessor
graph in Section 4.1.2.

2.2.4 Bidirectional Search

The fact that we are mainly interested in one-to-one queries from a start node s
to a destination node t enables us to apply Dijkstra’s algorithm in a bidirectional
manner (e.g., see Section 10.8 in the textbook by Mehlhorn and Sanders [61]).
The idea behind this bidirectional search is to run two instances of Dijkstra’s
algorithm “at the same time”: a forward search starting from s and a backward
search starting from t. Both searches can be stopped when they meet somewhere
in the middle. More precisely, we stop them as soon as a node has been settled by
both searches.

Algorithm 2.2 shows a possible pseudocode for bidirectional search. We can
see that forward and backward search are not really performed at the same time
but in an alternating manner. The variable Δ stores the current search direction:
Δ = s for forward and Δ = t for backward search. The search direction is flipped
in every step of the while loop (see Line 8). Both searches maintain their own
tentative costs and predecessor information as well as their own PQ. In case of
the forward search these are ds, ps, and Qs, in case of the backward search dt , pt ,
and Qt . The backward search relaxes all edges in reverse direction. Actually, the
backward search is an instance of Dijkstra’s algorithm running on the transpose
graph G�. This is reflected by the fact that Et is identified with E� (see Line 16).

Note that the first node settled by both searches is not necessarily part of a
shortest path. To obtain µG(s, t) and a corresponding shortest path from s to t,
we have to inspect some more nodes w that have been reached by both searches.
While doing so, we choose a node that minimizes ds[w] + dt [w] (see Line 12).
It is not necessary to inspect all nodes that have been reached by both searches.
According to Mehlhorn and Sanders it suffices to inspect the reached but unsettled
nodes with respect to the forward search as well as the first node settled by both
searches (see Section 10.8 in [61]).

On road networks, bidirectional search runs roughly two times faster than the
unidirectional one-to-one version of Dijkstra’s algorithm (according to experi-
ments by Bauer et al. [11]). This is because the Dijkstra search spreads out in
a more or less circular manner and the number of settled nodes is somehow pro-
portional to µG(s, t)

2 hence. But forward and backward search of the bidirectional
search meet somewhere in the middle. As a consequence the radius of the circular
area is about half as big each. But then, they each settle a number of nodes that
is roughly proportional to µG(s, t)

2/4. So, together they settle a number of nodes
roughly proportional to µG(s, t)

2/2. This is illustrated in Figure 2.5.
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Algorithm 2.2. Bidirectional Dijkstra search. Both searches have their own PQ and

maintain their own tentative cost and tentative predecessor information. In case of

the forward search, there are Qs, ds, and ps respectively. In case of the backward

search, there are Qt , dt , and pt respectively. The variable Δ∈ {s, t} stores the current

search direction.

1 function bidirectionalDijkstra(s, t :V ) : Path
2 ds[u] := dt [u] := ∞, ps[u] := pt [u] :=⊥ for all u ∈V
3 ds[s] := dt [t] := 0
4 Qs,Qt : PriorityQueue
5 Qs.insert(s,0), Qt .insert(t,0)
6 Δ := t // current search direction
7 while Qs �= /0 or Qt �= /0 do
8 Δ := ¬Δ // with t = ¬s and s= ¬t
9 if QΔ = /0 then Δ := ¬Δ
10 u := QΔ.deleteMin()
11 if d¬Δ[u]< ∞ and u �∈ Q¬Δ then // u also settled by other search?
12 Choose v ∈ argmin

�
ds[w]+dt [w]

�
�w ∈ Qs∪{u}

�

13 Ps := �s→ ·· · → ds[ds[v]]→ ds[v]→ v�
14 Pt := �v→ dt [v]→ dt [dt [v]]→ ·· · → t�
15 return PsPt

16 foreach u→c v ∈ EΔ do // where Es = E and Et = E�

17 if dΔ[u]+ c< dΔ[v] then
18 if dΔ[v] = ∞ then QΔ.insert(v, dΔ[u]+ c)
19 else QΔ.updateKey(v, dΔ[u]+ c)
20 dΔ[v] := dΔ[u]+ c
21 pΔ[v] := u

22 return ��

2.2.5 A* Search

The purpose of the bidirectional search presented in the section before is to pro-
vide an algorithm for one-to-one queries that is faster than the slow one-to-one
version of Dijkstra’s algorithm. However, the achieved speedup of roughly two is
by far not sufficient. Another way to provide faster one-to-one queries is to apply
goal-direction. A well-known example of this approach is A* search [49] (e.g.,
see Section 10.8.1 in the textbook by Mehlhorn and Sanders [61]).

The idea of goal-direction is to bias the search in a way that it spreads out
rather towards the destination node t than in a circular manner (see Figure 2.5 for
an illustration). In case of A* search we achieve this bias by using a potential
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s t s t s t

Figure 2.5. Mehlhorn and Sanders [61] as well as Schultes [78] illustrate how the search
on a graph spreads out for different algorithms: Dijkstra’s algorithm (left), bidirectional
search (middle), and A* search (right).

function πt(u) that conforms to the following two conditions:

πt(u)≤ c+πt(v) for all u→c v ∈ E (2.27)

0≤ πt(u)≤ µG(u, t) for all u ∈V (2.28)

Having such a potential function at hand, A* search is just a very slight modifi-
cation of Dijkstra’s algorithm: We simply use d[u]+πt(u) instead of d[u] as key
when inserting a node u into the PQ. This is actually the same as running Dijk-
stra’s algorithm on a graph with transformed edge costs. The transformation can
be done by replacing the cost c of an edge u→c v with

c� := c+πt(v)−πt(u) . (2.29)

It is important to note that the shortest paths in the graph are not changed
by this transformation (e.g., see Lemma 10.9 in the textbook by Mehlhorn and
Sanders [61]). This is because of the well-known fact that the sum that makes up
the transformed travel cost c�P of a path P= �u1 →c1 · · · →ck−1

uk� ⊆G telescopes;
that is,

c�P =
k−1

∑
i=1

�
ci+πt(ui+1)−πt(ui)

�
= πt(uk)−πt(u1)+

k−1

∑
i=1

ci , (2.30)

which means the transformation of a path’s cost solely depends on its start and
destination node. Also, because of Condition (2.27) the transformed edge costs
from Equation (2.29) are never negative. As a consequence, Dijkstra’s algorithm
can really be applied after the transformation. Moreover, from Condition (2.28)
we know that πt(t) = 0 holds, which implies d[t] = µ(s, t) is fulfilled at the mo-
ment when t is removed from the PQ and the algorithm is stopped (see Line 7 of
Algorithm 2.1). Altogether, we see that A* search really returns a shortest path
for a given start node s and destination node t.

The purpose of πt(u) is to estimate the minimum travel cost µG(u, t) to t from
all u∈V . The smaller the difference µG(u, t)−πt(u) is for all u∈V , the less nodes
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should be settled by the A* search before it stops. To understand that, compare
the PQ key of a node u that lies on a shortest path from s to t and of a node v that
lies apart such a shortest path: If µG(w, t)−πt(w) is small for most nodes w ∈V ,
then it is likely that

d[u]+πt(u)≈ µG(s,u)+µG(u, t)≤ µG(s,v)+µG(v, t)≈ d[v]+πt(v)

holds for the final values of d[u] and d[v], which means that u is very probably
settled before v. So, the nodes on shortest paths from s to t are more likely to be
settled than the other nodes. But as soon as t is settled we are finished.

To understand why πt is called a potential function, we again assume that
µG(w, t)−πt(w) is small for most nodes w ∈ V . Then, it is likely that µG(u, t) >
µG(v, t) implies πt(u) > πt(v), which means that the transformed cost c� = c+
πt(v)−πt(u) of an edge u→c v fulfills c� < c. Analogously, µG(u, t) > µG(v, t)
suggests c� > c. This means that the transformed costs of edges that “point to-
wards” t tend to be smaller and of the other edges tend to be larger. So, πt actually
characterizes a warp of the plain6 such that t lies at the bottom of a valley. An A*
search is a search on this warped plain which is biased towards the valley and thus
towards t.

A good potential function must fulfill two requirements: On the one hand, it
should reduce the number of settled nodes a lot. On the other hand, it should be
evaluable fast. If both is fulfilled, one-to-one queries can be answered much faster
than with Dijkstra’s algorithm.

2.2.6 Multi-Label Search

Multi-label search [48, 60] is a generalization of Dijkstra’s algorithm (see Sec-
tion 2.2.3) to compute the set of all Pareto optimal paths from a start node s to
all reachable nodes (see Section 2.1.3). Remember that we only consider bicri-
teria shortest paths in this thesis. The structure of multi-label search is similar to
Dijkstra’s algorithm, but there are some remarkable differences.

Instead of a single tentative travel cost and a single tentative predecessor in-
formation we maintain a label set L[u] for each node u ∈ V . Every label � ∈ L[u]
of a node u corresponds to a path P� from the start node s to the node u and is of
the form �= (i,u,γ|δ , i�) where

• i ∈N is a unique id of the label �,

• γ|δ = cP� |dP� is the two-dimensional total cost of P�, and

• i� is the unique id of the preceding label �� = (i�,u�,γ �|δ �, i��) ∈ L[u�].

6Road networks can be viewed as nearly planar graphs that are “embedded” into the plain.
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Algorithm 2.3. Extracts the path that corresponds to the label with the given id i.

1 function extractPathFromLabelId(i : LabelId) : Path
2 P := ��
3 while true do
4 let (i,u,γ|δ , i�) be the label with id i
5 if i� =⊥ then break
6 let (i�,u�,γ �|δ �, i��) be the label with id i�

7 append u� → u to the front of P
8 set i := i�

9 return P

Algorithm 2.4. Computes the set of all Pareto optimal paths from s to t. To extract

the Pareto optimal paths that correspond to the labels of t, Algorithm 2.3 is invoked.

1 function multiLabelSearch(s, t :V ) : Set
2 L[u] := /0 for all u ∈V
3 Q := /0 : PriorityQueue
4 Q.insert

�
(0,s,0|0,⊥),0

�

5 L[s] := {(0,s,0|0,⊥)}
6 inext := 1 // the next unused label id
7 while Q �= /0 do
8 (i,u,γ|δ , i�) := Q.deleteMin()
9 if γ +δ > max

�
γ∗+δ ∗

�
�(·, t,γ∗|δ ∗, ·) ∈ L[t]

�
then break

10 foreach u→c|d v ∈ E do // relax outgoing edges of u

11 �new := (inext, v, γ + c|δ +d, i)
12 if � is not dominated by any label in L[v] then
13 Q.insert(�new, γ + c+δ +d)
14 remove all labels dominated by �new from L[v] and Q
15 add �new to L[u]
16 inext := inext+1

17 M := /0 // build up set of Pareto optimal paths
18 foreach (i,u,γ|δ , i�) ∈ L[t] do
19 add the path extractPathFromLabelId(i) to M

20 return M
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For u = s there is no preceding label and we have i� = ⊥. For u �= s, in contrast,
the preceding label �� = (i�,u�,γ �|δ �, i��) has to exist and the condition

γ|δ = γ �+ c
�
�δ �+d (2.31)

must be fulfilled with P� = �s→ ·· · → u� →c|d u�. All this implies that P� can be
extracted from the labels by successively looking up the preceding label starting
from u until we encounter the special symbol⊥. Algorithm 2.3 shows pseudocode
for this extraction process. The condition in Line 5 holds true if, and only if, u= s.

Multi-label search, in contrast to Dijkstra’s algorithm, does not settle nodes
but labels. Settling a label (i,u,γ|δ , i�) means that all outgoing edges of u are
relaxed. This is similar to settling a node u as Dijkstra’s algorithm does it. Note
that the elements that we put into the PQ are also labels instead of nodes. As key
of a label � = (i,u,γ|δ , i�) we could use the two-dimensional cost γ|δ together
with the lexicographic order (Martins [60] does this for example). But in our
experience, using the sum γ +δ as key runs faster on road networks.

Algorithm 2.4 shows pseudocode for the one-to-one version of multi-label
search that computes the set of all Pareto optimal paths from a start node s to
a destination node t, but ruling out paths with the same two-dimensional costs.
The notion of dominance is extended from the context of two-dimensional costs
to the context of labels (e.g., see Line 12). We say, that a label (i,u,γ|δ , j) of
a node u is (weakly) dominated by a another label (i�,u,γ �|δ �, j�) of u, if γ � ≤
γ and δ � ≤ δ hold. If additionally γ � < γ or δ � < δ holds, we speak of strict
dominance. Note that updateKey is never invoked. Instead, the PQ must support
the removal of arbitrary elements (Line 14). Similar to Dijkstra’s algorithm, multi-
label search shows monotonous behavior: If label (iu,u,γu|δu, ju) is settled before
a label (iv,v,γv|δv, jv), then we have γu + δu ≤ γv + δv. As a consequence, the
algorithm can be stopped as soon as the current minimum key of the PQ exceeds
the maximum key amongst the labels of the target node t (Line 9).

Note that we also could formulate multi-label search in a way that we put
nodes into the PQ instead of labels. In this case we use the minimum key amongst
all unsettled labels in L[u] as key of a node u. Whenever a label of a node u is
settled, we invoke updateKey for this node. As soon as the last node in L[u] is set-
tled, u is removed from the PQ by invoking deleteMin. However, this formulation
of multi-label search is more complicated, so we opted to describe the simpler
one. But it must be noted that the implementation of time-dependent multi-label
search (see Section 4.4.1) that we use in our experiments (see Section 6.4) puts
nodes into the PQ instead of labels.



2.3. CHs with Constant Travel Costs 67

2.3 CHs with Constant Travel Costs

In this section we give an introduction to the aforementioned original CHs [44]
(also see Section 1.1.4 as well as Section 1.3.1 on page 30), an algorithmic tech-
nique for fast and exact route planning with constant travel costs. As already said,
they form the basis of the time-dependent CHs (TCHs) described in this thesis,
which generalize CHs to deal with time-dependent travel costs. In Section 2.3.1
we explain the expensive preprocessing stage, where we construct the CH struc-
ture representing the road network. In Section 2.3.2 we describe the querying
stage, where we use the precomputed CH structure for the fast and exact answer-
ing of one-to-one queries.

2.3.1 Preprocessing

CHs exploit the inherent hierarchical structure of road networks. Some parts of a
road network G have usually much higher capacity than others, which naturally
corresponds to the routes chosen by many drivers. Accordingly, all nodes of G
have to be ordered by some notion of importance with more important nodes
higher up in the hierarchy. The idea is roughly that a node is more important the
more shortest paths run over it. So, before we are able to construct the hierarchy,
we have to derive an appropriate node order first. That is why preprocessing
consists of two phases: the node ordering and hierarchy construction.

Node Ordering. The choice of the node order has great influence on the perfor-
mance of CHs. A good node order results in a CH which is flat and sparse. Using
a flat and sparse CH to answer one-to-one queries is fast because the query algo-
rithm of CHs is a bidirectional Dijkstra search that only goes upward (for details
see Section 2.3.2). A bad node ordering, in contrast, results in a CH which is so
high or so dense that bidirectional upward searches take too much time. Finding
a good node order is not a trivial task.

In this thesis, however, we do not explain the node ordering techniques devel-
oped for the original CH with constant travel costs, but only how the hierarchy
construction works. This is because of two reasons:

1. The node ordering techniques of original CHs are not necessary to provide a
basic understanding how the preprocessing step of CH works.

2. Later in this thesis we describe other node ordering techniques which are
more suited for time-dependent road networks.

The node ordering techniques of the original CHs are discussed by Geisberger et
al. [43, 44].
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In the rest of this section we assume that the node ordering has already hap-
pened and that the resulting node order is a total order “≺” (see Section 2.2.2) of
the set V . There, u ≺ v means, that u is less important than v or, in other words,
that v is higher up in the hierarchy than u. Note that total orders are also reflexive;
that is, u≺ u holds for all u ∈V . Reflexivity follows directly from totality.

Hierarchy Construction. Conceptually, the hierarchy consists of |V | stacked
overlay graphs. An overlay graph of a graph G = (V,E) is a graph G� = (V �,E �)
with V � ⊆V such that µG�(s, t) = µG(s, t) for all s, t ∈V � [51]. In other words, all
the travel costs between the nodes of G� are the same as in G.

We construct the CH bottom up by successively contracting one node after
another from the least important to the most important node; that is, in the order
given by “≺”.7 Contracting a node x of a graph G= (V,E) means, that we remove
x and all its incident edges from G to obtain an overlay graph G� = (V �,E �) with
V � :=V \{x}. However, in an overlay graph all minimum travel costs between the
remaining nodes must be preserved. So, if the removal of a path �u→c x→d v�
increases the minimum travel cost from u to v, then we must add an artificial
shortcut (edge) u →c+d v to E �. Otherwise, some minimum travel costs in G�

would be greater than in G. When adding the shortcut u →c+d v to E �, it can
happen that an edge u→c� v is already present. We replace the old edge u→c� v
by the new shortcut edge in this case.

Let G := (V ,E) := (V \{x}, {u→ v ∈ E | u,v �= x}) be the graph we get when
we remove x and its incident edges from G. Then,

Ex :=
�
u→c+d v

�
� �u→c x→d v� is path in G and c+d < µG(u,v)

�
(2.32)

is the set of shortcuts that we add when x is contracted (we say the shortcuts in
Ex are necessary). This means that the edge set E � of the overlay graph has the
following form:

E � = Ex ∪
�
u→c v ∈ E

�
� u→c� v �∈ Ex

�
(2.33)

Note that a shortcut u→c+d v is added to Ex if, and only if,

• the corresponding path �u→c x→d v� is a shortest path in G and

• there is no shortest path from u to v in G that lies completely in G.

We say that the shortcut u→c+d v represents the path �u→c x→d v�. Figure 2.6
shows an example how an overlay graph G� is constructed from a very simple
graph G. The following lemma shows that the construction of G� as given by the
Equations (2.32) and (2.33) really yields an overlay graph.

7As the node order “≺” is a total order, we can write down the set V in the form x1 ≺ x2 ≺
·· · ≺ x|V | with {x1, . . . ,x|V |}=V . We contract the least important node x1 first. Then we continue
with x2, x3, and so on until we finish x|V |.
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Figure 2.6. An example graph G where we want to contract the node v4 (top left). Re-
moving v4 and all its incident edges yields the graph G (top right). The obtain an overlay
graph G� (bottom), where the travel costs between all nodes except for v4 are the same as
in G, we construct G� as determined by the Equations (2.32) and (2.33). All shortcuts are
displayed dotted. Note that G contains the shortest path �v3 →2 v4 →2 v5�, which is re-
moved together with v4, but there is no shortcut v3 →4 v5 in G� representing this path. This
is because G still contains another shortest path from v3 to v5. So, the shortcut v3 →4 v5 is
not necessary. Also note that the shortcut v2 →3 v6 replaces the edge v3 →4 v6. Otherwise,
the travel cost from v3 to v6 would not be preserved but increased on the contraction of v4.

Lemma 2.6. Contracting a node x in a graph G preserves all travel costs between
the remaining nodes. That is, µG�(s, t) = µG(s, t) holds for all s, t ∈V � =V \{x}.

Proof. Consider a path P� from s to t in G�. Every edge of P� is either contained
in G ⊆ G or a newly inserted shortcut edge from Ex. Every such shortcut edge
u→c+d v corresponds to some path �u→c x→d v� ⊆ G. We just replace these
shortcuts by the corresponding subpaths and get a path from s to t in G which has
the same total cost as P�. So, µG�(s, t)≥ µG(s, t) holds for all s, t ∈V .

Now, consider a path P from s to t in G with s, t �= x. If P contains a subpath
�u →c x →d v�, then we have c+ d ≥ µG(u,v) or Ex contains a shortcut edge
u→c+d v. In both cases we can remove the subpath �u→c x→d v� from P and
replace it by a path in G� which has a total cost less or equal c+ d. It can also
happen that P contains an edge u→c v ∈ E, but u→c� v ∈ Ex with c > c� holds.
Then, we can reduce the edge cost of u→ v from c to c�. Altogether, there is a path
from s to t in G� which has no greater total cost than P⊆G. So, µG�(s, t)≤ µG(s, t)
holds for all s, t ∈V .
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Contracting all nodes of a road network G from the least important to the most
important one, we get a hierarchy of overlay graphs G1,G2, . . . ,G|V | with G1 =G.
There, Gi+1 = (Vi+1,Ei+1) is an overlay graph of Gi = (Vi,Ei) for 1 ≤ i < |V |.
Remember that we only contract one node to obtain the next overlay graph. So,
we have |Vi+1| = |Vi|−1, |V|V || = 1, and E|V | = /0. Of course, it would need very
much memory to store all the graphs G1, . . . ,G|V | at the same time. However, the
CH-based algorithm for one-to-one queries (see Section 2.3.2) suffices with a far
more compact representation. In fact, we store the hierarchy of graphs in a very
condensed way: Every node is materialized exactly once and the original edges
of the graph G are put together with the artificial shortcut edges. So, we have the
graph H := (V, EH) with

EH :=
�
u→c v

�
�
� u→ v ∈

�|V |

i=1
Ei and

c= min
�
c�
�
� u→c� v ∈ Ei for some i

��
.

(2.34)

Note that an edge u→ v can occur in multiple sets Ei with 1≤ i≤ |V |, sometimes
with different costs. This happens, for example, if u→c v is already present in G
but with c> µG(s, t). In this case we choose the minimal possible cost.

An additional information that we store together with H is whether an edge
leads upward or downward in the hierarchy. With “≺” being the node order, we
call u→c v an upward edge if u ≺ v holds, and a downward edge if v ≺ u holds.
We also store information about the paths that are represented by every shortcut.
Consider a shortcut u →c+d v representing the path �u →c x →d v�. Then we
annotate the shortcut u→c+d v with the middle node x. The middle node is enough
information to expand a shortcut to the path it represents (see Section 2.3.2). Note
that the graph H—together with the annotated middle nodes and the information
whether an edge leads upward or downward—is in fact all information that the
CH query needs. It is thus the final result of the preprocessing and what we call a
CH structure.

Algorithm 2.5 shows pseudocode summarizing the hierarchy construction.
The CH H = (V,EH) is constructed from G by successively adding shortcuts
to EH . To do so, the nodes of the given road network (V,E) are successively
contracted in the order x1 ≺ x2 ≺ ·· · ≺ x|V |. During construction, the algorithm
maintains the remaining graph R= (VR,ER) that consists of all nodes not yet con-
tracted as well as all original edges and shortcuts between these nodes. After
removing the current node xi (see Line 7), the remaining graph R acts as G as on
page 68. Then, after adding or replacing all necessary shortcut edges respectively
(see Line 11 and 12), R acts as overlay graph G� with edge set E � as in Equa-
tion (2.33). Line 11 ensures that the travel costs of a shortcut is always minimal,
as required by Equation (2.34). The annotated middle node is always updated to-
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Algorithm 2.5. Given a graph (V,E) with non-negative constant travel costs as well

as a node order “≺” this algorithm constructs a CH.

1 function constructCh((V,E) : Graph, ≺ : NodeOrder) : Graph
2 EH := E
3 (VR,ER) := (V,E) // the “remaining graph” R= (VR,ER)
4 sort V according to “≺” yielding x1 ≺ x2 ≺ ·· · ≺ x|V |
5 for i= 1 to |V | do
6 M := all paths �u→c xi →d v� in (VR,ER)

7 remove xi and all its incident edges from (VR,ER) // at this point R= G
8 foreach path �u→c xi →d v� in M do
9 mark u→ xi as downward and xi → v as upward edge in EH

10 if c+d < µ(VR,ER)(u,v) then // see Equation (2.32)

11 remove u→ v from EH and ER if present
12 add u→c+d v to EH and ER

13 annotate u→c+d v with the middle node xi

// at this point R= G�

14 return (V, EH)

gether with a shortcuts travel cost and always corresponds to the minimal current
travel cost hence (see Line 13).

To check the condition in Line 10 one can perform a one-to-one Dijkstra
search from u to v in R. A shortest path different from �u →c xi →d v� found
by this Dijkstra search is called a witness path, as it proofs that �u→c xi →d v�
is not a unique shortest path from u to v and the shortcut can be omitted hence.
The one-to-one Dijkstra search is called witness search accordingly. Note that, in
reality, witness search not only consists of a simple one-to-on Dijkstra search. In
fact, several sophisticated optimizations are applied to make the CH construction
as fast as possible (see Section 5.2.5 on page 207).

A complete preprocessing would include the node ordering phase of course.
But as said before, we do not explain the node ordering for constant travel costs
in this thesis. We close this section with a basic property of CHs.

Lemma 2.7. Let H be a CH constructed from a road network G = (V,E). Then,
we have G⊆ H and µH(s, t) = µG(s, t) for all s, t ∈V.

Proof. According to Equation (2.34), H contains every edge that occurs in any of
E1, . . . ,E|V | (though with minimal occurring travel cost each). So, with E1 = E
we have G⊆H and this implies µH(s, t)≤ µG(s, t) for all s, t,∈V . But µH(s, t)<
µG(s, t) can never be true. This is because every edge in H that is not present in G
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is taken from an overlay graph of G. But this means that none of these edges can
introduce a smaller cost for traveling from one node to another.

2.3.2 Querying

We already said that a one-to-one query with a CH is a bidirectional Dijkstra
search that only goes upward. More precisely, the forward search only relaxes
upward edges. The backward search only relaxes downward edges but in reverse
direction. We define H↑ and H↓ to be the subgraphs of H that only consist of
upward and downward edges respectively:

H↑ := (V,E↑) := (V,{u→c v ∈ EH | u≺ v})

H↓ := (V,E↓) := (V,{u→c v ∈ EH | v≺ u})
(2.35)

We call H↑ and H↓ the upward graph and the downward graph respectively. So,

the forward search is a Dijkstra search in H↑ and the backward search in H�
↓ .

Because of the fact that ≺ is a total order (see page 58), we know that H↑ and
H↓ are edge disjoint DAGs. That is, H↑ and H↓ do not contain any cycles and
E↑ ∩E↓ = /0 holds. A path

P := �u1 → ·· · → uk = x= v1 → ·· · → v��

with u1 ≺ ·· · ≺ uk and v� ≺ ·· · ≺ v1 is called an up-down-path with top node x.
Obviously, we have �u1 → ·· · → uk� ⊆ H↑ and �v1 → ·· · → v�� ⊆ H↓; that is, the
prefix path �u1 → ·· · → uk� goes only upward and the suffix path �v1 → ·· · → v��
goes only downward. If P is also a shortest path, then it is called a shortest up-
down-path.

It must be noted that a shortest path in H↑ is not necessarily a shortest path
in H. The same holds analogously for H↓. This raises the question whether bidi-
rectional upward search really yields a shortest path in H. This, however, follows
from the guaranteed existence of shortest up-down-paths, which is ensured by the
following lemma.

Lemma 2.8 ([44]). Let H be a CH constructed from a road network G = (V,E)
and s, t ∈ V such that t is reachable from s in G. Then, there is a shortest up-
down-path from s to t in H.

Proof. We recapitulate the proof by Geisberger et al. [44], because it provides a
good understanding of how CHs work.

Consider a shortest path P := �s = u1 →c1 u2 →c2 · · · →ck−1
uk = t� in the

original road network G ⊆ H. Further consider the inner local minima of this
path and choose the smallest one amongst them. More precisely, choose the inner
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Algorithm 2.6. Query algorithm of CHs with constant non-negative travel costs.

Given a CH structure H as well as a start node s and a destination node t, this

algorithm computes a shortest up-down path from s to t in H. The pseudocode is

similar to the one given by Geisberger et al. [44].

1 function chQuery(s, t :V ) : Path
2 ds[u] := dt [u] := ∞, ps[u] := pt [u] :=⊥ for all u ∈V
3 ds[s] := dt [t] := 0
4 Qs,Qt : PriorityQueue
5 Qs.insert(s,0), Qt .insert(t,0)
6 Δ := t // current search direction
7 x :=⊥, B := ∞ // top node and total cost of the best up-down-path found so far
8 while (Qs �= /0 or Qt �= /0) and min{Qs.min(),Qt .min()} ≤ B do
9 Δ := ¬Δ // with t = ¬s and s= ¬t
10 if QΔ = /0 then Δ := ¬Δ
11 u := QΔ.deleteMin()
12 if ds[u]+dt [u]< B then x := u, B := ds[u]+dt [u]

13 foreach u→c v ∈ EΔ do // where Es = E↑ and Et = E�↓
14 if dΔ[u]+ c< dΔ[v] then
15 if dΔ[v] = ∞ then QΔ.insert(v, dΔ[u]+ c)
16 else QΔ.updateKey(v, dΔ[u]+ c)
17 dΔ[v] := dΔ[u]+ c
18 pΔ[v] := u

19 P↑ := �s= ps[. . . ps[x] . . . ]→ ··· → ps[x]→ x�
20 P↓ := �x= pt [. . . pt [t] . . . ]→ ··· → pt [t]→ t�
21 return P↑P↓

node ui �= s, t with ui ≺ ui−1,ui+1, such that all other inner nodes u j �= s, t with
u j ≺ u j−1,u j+1 fulfill ui ≺ u j. At the time when ui was contracted during the CH
construction (see Algorithm 2.5), there has either been a shortest path Puv from
ui−1 to ui+1 in (VR,ER) or a shortcut ui−1 →ci−1+ci ui+1 (which is also a shortest
path) has been added to EH . In either case we replace the subpath �ui−1 →ci−1

ui →ci ui+1� by Puv or the shortcut respectively. This yields a new shortest path
P� from s to t in H where all inner local minima y fulfill ui ≺ y. So, applying this
construction repeatedly finally terminates because V is a finite set. The resulting
path is a shortest path without any inner local minimum. So, the resulting path is
a shortest up-down-path from s to t in H.

Lemma 2.8 tells us that the CH query, which is actually a bidirectional up-
ward search, surely finds a shortest up-down-path in H. Algorithm 2.6 shows the
respective pseudocode. In fact, the pseudocode is quite similar to the pseudocode
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of a bidirectional Dijkstra search without hierarchy (see Algorithm 2.2). The only
differences are that the forward and backward search are done in H↑ and H↓ re-
spectively and that the while loop can not be stopped as soon as the first node is
settled by both searches. Instead, the algorithm maintains the top node x and the
total cost B of the best up-down-path found so far. The execution can be stopped
as soon as the minimum keys in both PQs exceed B (see Line 8).

It is important to note that the shortest up-down-paths computed by Algo-
rithm 2.6 contain shortcuts, which are artificial edges that are not present in the
original road network. Hence, they can not be used directly to generate driving
directions. In Section 2.3.1, however, we said that every shortcut u→c+d v repre-
sents a path �u→c x→d v� and that u→c+d v is annotated with the middle node x.
So, u→ v can be expanded to the represented path. If u→ x or x→ v is a shortcut
itself, it can be expanded recursively. Because of the fact that “≺” is a total order,
this process surely terminates and results in a path P from u to v that has total cost
c+d and completely lies in G. This idea can be applied to whole up-down-paths
of course.

Corollary 2.9 ([44]). Let H be a CH constructed from a road network G and
P ⊆ H an up-down-path from s to t. Expanding all shortcuts in P recursively
yields a path P� ⊆ G from s to t with the same total travel cost.

Especially, expanding a shortest up-down-path yields a shortest path in the origi-
nal road network. So, one-to-one queries can be answered by using Algorithm 2.6
and expanding the resulting shortest up-down-path. Using the annotated middle
nodes to expand up-down-paths recursively, is an important concept in the con-
text of CHs. Given an up-down-path P = �s→ ·· · → t� ⊆ H, we call the fully
expanded version P� = �s→ ·· · → t� ⊆ G of P the original path in G represented
by P.

So far, we only considered how the query algorithm works and why it is cor-
rect. More precisely, we argued that a bidirectional upward Dijkstra search finds a
shortest up-down-path, which is guaranteed to exists by the CH construction, and
that expanding a shortest up-down-path yields a corresponding shortest path in G.
In other words, we have shown that CHs provide exact answering of one-to-one
queries. However, a good route planning technique must also provide fast an-
swering. CHs, in fact, provide very fast answering. Originally, this is only shown
experimentally, but there are also some theoretical analyses meanwhile [2, 62].

Experiments show that the search spaces of forward and backward search are
very small in practice. The reason is that well-constructed CH structures are flat
and sparse. The former means, that all purely upward paths and all purely down-
ward paths in a CH structure have quite a limited number of hops. The latter
means, that most nodes in a CH structure have not too many incident upward
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edges. Both conditions help to keep search spaces of bidirectional Dijkstra small,
which results in small running times.

2.4 References

Nothing in this chapter is new. Except for Pareto optimal paths and multi-label
search, all these things are either quite common or explained in much more detail
in the textbook by Mehlhorn and Sanders [61]. Pareto optimal paths and multi-
label search are described by Hansen [48] and Martins [60] for example. The basic
geometry is taken from Cormen et al. [16], Hill [50], and Sedgewick [79]. Con-
traction hierarchies (CHs) [43, 44] are a well established algorithmic framework
for route planning with constant travel costs.
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3
Time-Dependent Road Networks

This chapter provides a detailed description of time-dependent road networks as
they are understood in this thesis. We already explained in the introduction (see
Section 1.1.2) that time-dependent road networks are modeled as directed graphs
G= (V,E). A route in the road network corresponds to a path in G and vice versa.
Every edge u→ v∈ E has two functions f :R→R≥0 andC :R→R≥0 assigned:
the travel time function (TTF) f and the travel cost function (TCF) C. The TTF f
specifies the travel time f (τ) one needs to get from the node u to the node v via
the edge u→ v when starting at departure time τ . Similarly, the TCF C specifies
the travel cost C(τ) one must pay to get from the node u to the node v via the edge
u→ v with departure time τ . We usually write u→ f |C v.

TTFs are modeled as periodic continuous piecewise linear (p.w.l.) functions.
Moreover, all TTFs fulfill the FIFO property; that is, τ < τ � implies f (τ)+ τ ≤
f (τ �) + τ �. The FIFO property means that a later departure never results in an
earlier arrival. TCFs are relatively restricted in this thesis, as G is only allowed
to have TCFs of the form C : τ �→ f (τ)+ c where c ∈ R≥0 depends on the edge
u→ v but not on the departure time. That is why we speak of time-dependent
travel times with additional time-invariant costs. Note that we also consider the
case that c is time-dependent. This is necessary for one of the route planning
techniques discussed in this thesis, because it needs such generalized additional
costs to work properly.

In Section 3.1 we take a closer look at TTFs and at paths that are optimal with
respect to travel time only. In Section 3.2 we consider additional time-invariant
and additional time-dependent costs as well as the respective optimal paths.
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3.1 Time-Dependent Travel Times

This subsection considers the properties of TTFs (see Section 3.1.1) and also of
three basic operations that we define on TTFs (see Section 3.1.2). These opera-
tions enable us to define paths with minimum time-dependent travel times conve-
niently. Such paths are, in fact, the optimal time-dependent paths if travel time
is the only cost that arises during traveling; that is, if C = f holds for all edges
u→ f |C v ∈ E (see Section 3.1.3). Finally, we explain how the three basic opera-
tions on TTFs can be computed efficiently (see Section 3.1.4). This is important,
because it affects the performance of the route planning algorithms described in
this thesis.

Much of the material discussed in this section is not new or relatively straight-
forward. Especially the time-dependent minimum travel time paths explained in
Section 3.1.1 are already discussed by Dean [17]. We nonetheless consider these
things in a detailed way, because they are fundamental to the time-dependent route
planning techniques described in this thesis (for details see Section 3.3).

3.1.1 Travel Time Functions (TTFs)

To denote that C = f holds for edge u→ f |C v, we usually write u→ f v instead.
As a periodic p.w.l. function, f is represented as a sequence of bend points

�(x0,y0),(x1,y1), . . . ,(xn−1,yn−1)� (3.1)

with y0,y1, . . . ,yn−1 ∈ R≥0 and 0 ≤ x0 < x1 < · · · < xn−1 ≤ Π where Π is the
period. Fulfilling the FIFO property is equivalent, in the context of continuous
p.w.l. TTFs, to the condition that all line segments have slope −1 or greater. As
an example, Figure 3.1 shows two simple periodic continuous p.w.l. TTFs, one of
them fulfilling the FIFO property and the other one violating it.

To denote the complexity of f—that is, the number of bend points that f has—
we write | f | := n. Note that this is the same as the number of line segments. The
periodicity of TTFs allows us to write (xi,yi) even for i < 0 and i ≥ n. To do so,
we define

(xi,yi) :=
�
ximodn+ �i/n� ·Π, yimodn

�

where i mod n is the unique number r ∈ {0,1, . . . ,n−1} with ∃z ∈Z : x= zn+ r.
The value f (τ) is simply defined as yi for τ = xi with i ∈ Z. Otherwise, f (τ) is
obtained by linear interpolation. More precisely, for i0 ∈ Z with τ ∈ (xi0 ,xi0+1)
we define

f (τ) :=
yi0+1− yi0
xi0+1− xi0

· (τ− xi0)+ yi0 . (3.2)
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Figure 3.1. The drawing on the left shows a continuous p.w.l. TTF f with the five bend
points (1,2),(2,4),(4,3),(7,3),(8,2) and period Π = 10. The drawing on the right shows
the TTF g, a slightly modified version of f where the fifth bend point (8,2) is replaced
by (8,0.5). The TTF f fulfills the FIFO property because the smallest occurring slope
is −1 (between the bend point (7,3) and (8,2)). The TTF g does not fulfill the FIFO
property because the slope of the line segment between (7,3) and (8,0.5) is −2.5 <−1.
The oblique dashed line on the right, which has slope −1, illustrates how g violates the
FIFO property.

We sometimes write fi for the i-th bend point (xi,yi). By fi.x and fi.y we denote
xi and yi respectively. To represent a constant TTF—that is, a TTF f with f ≡ c ∈
R≥0—we do not need a sequence of bend points. The number c is already enough.
Nevertheless, we define | f | := 1 in this case. Note that we generally identify every
real number c ∈ R≥0 with the corresponding constant TTF τ �→ c. To denote the
set of continuous p.w.l. linear functions f :R→R≥0 that have period Π and fulfill
the FIFO property, we write FΠ.

Every TTF f implicitly defines an arrival time function arr f := f + id; that is,
arr f (τ) = f (τ)+ τ . Obviously, arr f (τ) is the time one arrives when departing
at time τ if traveling takes f (τ) time. As an example, Figure 3.2 shows a simple
periodic continuous p.w.l. TTF and its corresponding arrival time function.

Corollary 3.1. There is a one-to-one correspondence between a TTF f and its
arrival time function arr f . Moreover, the following three statements hold true:

1. f fulfills the FIFO property if, and only if, arr f is increasing. That is, τ ≤ τ �

implies arr f (τ)≤ arr f (τ �).

2. f is piecewise linear if, and only if, the same holds true for arr f .

3. f is continuous if, and only if, arr f is continuous. If f is not continuous, then
f and arr f have the same points of discontinuity.

The first statement of the above Corollary makes clear how the FIFO property
manifests itself in the context of arrival time functions. A TTF f ∈FΠ fulfills the
FIFO property if, and only if, no line segment of arr f has slope less than 0. This
is illustrated in Figure 3.3. Note that the first statement of the above Corollary can
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Figure 3.2. The drawing on the left shows TTF f from Figure 3.1. The drawing on the
right shows the corresponding arrival time function arr f = f + id. The dashed line of
slope 1 is the graph of the identity function id. The bend points of f correspond to the
points (1,2+ 1),(2,4+ 2),(4,3+ 3),(7,3+ 7),(8,2+ 8) of arr f . The slope −1, as it
occurs in f between the bend points (7,3) and (8,2), corresponds to the slope 0 in arr f .
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Figure 3.3. The drawing on the left shows TTF g from Figure 3.1, which violates the
FIFO property by having slope −2.5 between the bend points (7,3) and (8,0.5). The
drawing on the right shows the corresponding arrival time function arrg= g+ id. On the
right, one can see what violating the FIFO property means in the context of arrival time
functions; namely, that a line segment has a slope less than 0.
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further be sharpened in the following way.

Corollary 3.2. An arrival time function arr f is not only increasing but strictly
increasing if, and only if, the corresponding TTF f fulfills a strengthened version
of the FIFO property; that is, if τ < τ � implies f (τ)+ τ < f (τ �)+ τ .

To denote the subset of FΠ that only contains TTFs fulfilling the strengthened
version of the FIFO property mentioned in Corollary 3.2, we write F+

Π .
We further define the departure time function dep f := (arr f )−1, which yields

the time dep f (τ) one has departed to arrive at time τ when traveling took a time
period of f (dep f (τ)). Of course, dep f is only a real-valued function if arr f
is a one-to-one mapping, which means that arr f is strictly increasing (or, equiv-
alently, f ∈ F+

Π ). Otherwise, dep f (τ) yields a set of possible departure times.
The statement

dep f ◦arr f = arr f ◦dep f = id (3.3)

follows directly from the definitions of arrival and departure time functions, pro-
vided that f ∈F+

Π holds.

3.1.2 Basic Operations on TTFs

For TTFs in FΠ we need three basic operations: evaluation, linking, and mini-
mum. They are explained in the following.

Evaluation of TTFs. Given a TTF f ∈FΠ and a departure time τ ∈R we want
to compute the travel time f (τ). This can be done according to Equation (3.2).
However, only the bend points (x0,y0), . . . ,(x| f |−1,y| f |−1) are really available, but

because of the periodicity we have f (τ) = f (τ mod Π).1 So, we have to find
i0 ∈ {0, . . . , | f |− 1} such that τ mod Π ∈ [xi0 ,xi0+1) holds. With binary search2,
we could do this in O(log | f |) time. However, we do something different, which
we explain later (see Section 3.1.4).

Linking of TTFs. Given two adjacent edges u→ f v and v→g w, with f ,g∈FΠ,
we want to know the TTF of the whole path �u→ f v→g f �. Traveling along the
edge u→ f v takes f (τ) time when departing at time τ . We hence arrive at the node
v at time arr f (τ) = f (τ)+ τ , which is just the time we depart at node v to travel
along the edge v→g w. So, if we start traveling along the path �u→ f v→g w� at

1Note that the modulo operation can be extended to real numbers by defining x mod q as the
unique real number r ∈ [0,q) with ∃z ∈Z : x= zq+ r.

2Binary search is a well-known method to lookup an element in a sorted sequence in logarith-
mic time. An explanation can be found in the textbook by Mehlhorn and Sanders for example [61].
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time τ , we need g( f (τ)+ τ)+ f (τ) time to reach w. Accordingly, we define the
linking of the TTFs f and g as

g∗ f := g◦arr f + f (3.4)

(say g “after” f ) to denote the overall TTF of the path �u→ f v→g w�. Linking of
TTFs fulfills the properties

arr(g∗ f ) = arrg◦arr f (3.5)

dep(g∗ f ) = dep f ◦depg (3.6)

h∗ (g∗ f ) = (h∗g)∗ f (3.7)

for TTFs f ,g,h. If arr f or arrg is no one-to-one mapping, then Equation (3.6)
speaks about sets instead of real numbers (see Equation (2.10)). To understand
Equation (3.5) consider

arrg◦arr f = (g+ id)◦arr f = g◦arr f + id◦arr f = g◦arr f +arr f

= g◦arr f + f + id = g∗ f + id = arr(g∗ f ) .

Equation (3.6) follows easily with Equation (2.11):

dep(g∗ f ) = (arr(g∗ f ))−1 = (arrg◦arr f )−1

= (arr f )−1 ◦ (arrg)−1 = dep f ◦depg

A very important property of the linking operation is its associativity as stated by
Equation (3.7). To prove this property we calculate

h∗ (g∗ f ) = h◦arr(g∗ f )+g∗ f = h◦arrg◦arr f +g◦arr f + f

as well as

(h∗g)∗ f = (h∗g)◦arr f + f = (h◦arrg+g)◦arr f + f

= h◦arrg◦arr f +g◦arr f + f

and are finished. The following lemma states a very important property of linking.

Lemma 3.3. The set FΠ is closed under linking; that is, g∗ f is again a contin-
uous p.w.l. TTF with period Π and FIFO property for two such TTFs f ,g ∈FΠ.

Proof. Foschini et al. [36] show in Lemma 2.1 of their paper that the composi-
tion arrg◦arr f of p.w.l. and increasing arrival time functions arrg and arr f is
again p.w.l. and increasing. So, with Corollary 3.1 and Equation (3.5), we find
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that g ∗ f is p.w.l. with FIFO property if the same holds for the TTFs f ,g. It is
well-known that the composition of continuous functions is again continuous. So,
Corollary 3.1 also yields that g∗ f is continuous if f and g are.

The period Π is also passed from f and g on to g ∗ f . To prove that, we
remember that the periodicity of f and g is characterized by the conditions f (τ +
Π) = f (τ) and g(τ +Π) = g(τ) for all τ ∈R. So, with

g∗ f (τ +Π) = g( f (τ +Π)+ τ +Π)+ f (τ +Π)

= g( f (τ)+ τ +Π)+ f (τ) = g( f (τ)+ τ)+ f (τ)

= g∗ f (τ)

we know that g∗ f has period Π, too.

It is relatively easy to see that ming+min f ≤ g∗ f (τ)≤maxg+max f holds
for all τ ∈R. By induction, this generalizes to

min fk+ · · ·+min f1 ≤ fk ∗ · · · ∗ f1(τ)≤max fk+ · · ·+max f1 (3.8)

for all τ ∈R and arbitrary k ∈N.

Minimum of TTFs. Consider two paths P and R that both go from u to v, where
the TTFs f ∈FΠ and g ∈FΠ describe how long it takes to travel along the path
P and R, respectively, depending on the departure time. We want to know the
“common TTF” of P and R; that is, the TTF describing how long it takes to travel
from u to v if we are allowed to travel along the path P or R (where we always
choose the better path for every departure time of course). The resulting merged
TTF is just the pointwise minimum of f and g; namely,

min( f ,g) .

The minimum of TTFs is only a special case of the pointwise minimum of real
functions that we already considered in Section 2.1.1. From that, the minimum of
TTFs inherits associativity and commutativity; that is,

min(h,min( f ,g)) = min(min(h, f ),g)

min( f ,g) = min(g, f )

with TTFs f ,g,h (see Equations (2.3) and (2.5)). There are two interesting rela-
tions; namely

arrmin( f ,g) = min(arr f ,arrg) (3.9)

depmin( f ,g) = max(dep f ,depg) (3.10)
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with TTFs f ,g, where arr f ,arrg have to be one-to-one mappings in case of
Equation (3.10). To understand Equation (3.9) it is enough to remember, that
the pointwise sum distributes over the pointwise minimum. For Equation (3.10)
we argue geometrically that the graph of an inverse function is obtained by just
reflecting it at the graph of id as axis. More precisely, for strictly increasing func-
tions a,b :R→R≥0 we have min(a,b)−1 = max(a−1,b−1) and calculate

depmin( f ,g) =
�
arrmin( f ,g)

�−1
=
�
min(arr f , arrg)

�−1

= max
�
(arr f )−1, (arrg)−1

�
= max(dep f , depg) .

If arr f or arrg is no one-to-one mapping, only a weakened version of Equa-
tion (3.10) holds true; namely depmin( f ,g) �max(dep f ∪depg).

It is also important to note that the set FΠ is closed under minimum, just like
in case of linking.

Corollary 3.4. The set FΠ is closed under minimum; that is, min( f ,g) is again
a continuous p.w.l. TTF with period Π and FIFO property for two such TTFs
f ,g ∈FΠ.

Equivalence of TTFs and Arrival Time Functions. We have learned that the
set FΠ is closed under linking and minimum (see Lemma 3.3 and Corollary 3.4).
Moreover, with Corollary 3.1 as well as the Equations (3.5) and (3.9), we see that
FΠ and arrFΠ = {arr f | f ∈ FΠ} form equivalent structures. More precisely,
the one-to-one mapping f �→ arr f preserves the structure of linking and mini-
mum and can thus be viewed as an isomorphism3. FIFO property and continuity
(or the points of discontinuity) are also preserved. But note that the FIFO prop-
erty is defined differently in the context of arrival time functions: An arrival time
function fulfills the FIFO property if it is increasing.

Distributive Property. From the right-distributivity of function composition
over minimum (see Equation (2.7)) we inherit the right-distributivity of linking
over minimum. More precisely, we have min( f ,g)∗h=min( f ∗h, g∗h) for TTFs
f ,g,h. But interestingly, left-distributivity is also provided. On the first glance,
this looks surprising, because linking of TTFs inherits some behavior from the
composition of arrival time functions (see Corollary 3.1 and Equation (3.5)), and
function composition does not distribute over pointwise minimum in general. But
it turns out that left-distributivity follows from the FIFO property.

3An isomorphism is a structure preserving one-to-one mapping. Here, preserving the structure
means that arr( f ∗g) = arr f ◦arrg and arrmin( f ,g) = min(arr f ,arrg) holds true.
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Lemma 3.5. With FIFO property, linking of TTFs distributes over minimum, both
from the left and the right. That is, for TTFs f ,g,h ∈FΠ we have:

min( f ,g)∗h= min( f ∗h, g∗h) (3.11)

h∗min( f ,g) = min(h∗ f , h∗g) (3.12)

Proof. We utilize the aforementioned fact that f �→ arr f is an isomorphism and
argue completely in terms of arrival time functions, which are equivalent to TTFs.
This way, Equation (3.11) follows from Equation (2.7) because of

min(arr f , arrg)◦arrh= min
�
arr f ◦arrh, arrg◦arrh

�
.

To prove Equation (3.12), we remember that arrh is increasing because h ful-
fills the FIFO property. This means arrh(arr f (τ)) ≤ arrh(arrg(τ)) holds for
arr f (τ)≤ arrg(τ), which we w.l.o.g. presume. So, we calculate

arrh◦min(arr f , arrg)(τ) = arrh
�
min

�
arr f (τ), arrg(τ)

��

= min
�
arrh

�
arr f (τ)

�
, arrh

�
arrg(τ)

��

= min
�
arrh◦arr f , arrh◦arrg

�
(τ)

and are finished.

Calculating with TTFs. Besides the properties of linking and minimum con-
sidered so far, there are several more useful calculation rules for TTFs. Consider
the TTFs f ,g,h ∈FΠ. Then we have

∀τ ∈R :
�
g(τ)≥ h(τ) =⇒ f ∗g(τ)≥ f ∗h(τ)

�
(3.13)

as well as the somewhat dual statement

∀τ ∈R : g(τ)≥ h(τ) =⇒ ∀τ ∈R : g∗ f (τ)≥ h∗ f (τ) . (3.14)

Note that Equation (3.14) makes much greater demands on the TTFs g,h than
Equation (3.13). To prove Equation (3.13), consider the equivalence

f ∗g(τ)≥ f ∗h(τ) ⇔ arr( f ∗g)(τ)≥ arr( f ∗h)(τ)

⇔ arr f ◦arrg(τ)≥ arr f ◦arrh(τ)

⇔ arr f
�
g(τ)+ τ

�
≥ arr f

�
h(τ)+ τ

�
,

whose last statement is true because of g(τ)≥ h(τ) and because f fulfills the FIFO
property, which implies arr f is increasing. To prove Equation (3.14), consider
the equivalence

g∗ f (τ)≥ h∗ f (τ) ⇔ arrg◦arr f (τ)≥ arrh◦arr f (τ)

⇔ arrg
�
arr f (τ)

�
≥ arrh

�
arr f (τ)

�
,
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where the last statement is true, because g(τ) ≥ h(τ) holds for all τ ∈ R. Note
that the FIFO property is not needed to prove Equation (3.14), which is contrary
to Equation (3.13). There are two important special cases of Equation (3.13)
and (3.14):

∀τ ∈R : f ∗g(τ)≥ f (τ) (3.15)

∀τ ∈R : f ∗g(τ)≥ g(τ) (3.16)

Equation (3.15) is derived from Equation (3.13) by setting h :≡ 0 and calculat-
ing f ∗ g(τ) ≥ f ∗ 0(τ) = f (0+ τ)+ 0 = f (τ). Equation (3.16) is derived from
Equation (3.14) by exploiting f (τ) ≥ 0 for all τ ∈ R and calculating f ∗ g(τ) ≥
0∗g(τ) = g(τ).

Another interesting question is, what happens if a TTF f ∈FΠ is linked with
a constant γ ∈R≥0. Linking the constant from the left, we obtain

γ ∗ f = γ + f , (3.17)

because of γ ∗ f (τ) = γ( f (τ)+ τ)+ f (τ) = γ + f (τ). In other words, f is simply
shifted upward by γ . Linking the constant from the right, we obtain

f ∗ γ(τ) = γ + f (τ + γ) , (3.18)

which means that f is not only shifted upward, but also to the left, each by an
amount of γ .

We also take a closer look at dep f for f ∈ FΠ, including the case that f
is no one-to-one mapping. We already pointed out that the “graph” of dep f is
obtained by just reflecting the graph of arr f at the graph of id. So, mindep f and
maxdep f are increasing because arr f is increasing, which follows from the fact
that f fulfills the FIFO property. Note that the “graph” of dep f never lies above
the graph of id for any departure time; that is,

∀τ ∈R : maxdep f (τ)≤ τ . (3.19)

This is because f (τ) ≥ 0 for all τ ∈ R and this implies that the graph of arr f
never lies below the graph of id. The dual statement for arrival function is

∀τ ∈R : arr f (τ)≥ τ . (3.20)

A direct consequence of Equation (3.19) is

σ ∈ dep f (τ) =⇒ σ ≤ τ . (3.21)
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3.1.3 Minimum Travel Time Paths

Consider a path P := �u1 → f1 u2 → f2 · · · → fk−1
uk� in G with f1, . . . , fk−1 ∈FΠ.

The time needed for traveling from v1 to vk along the path P depends on the
departure time τ0 and amounts to fP(τ0) with

fP := fk−1 ∗ fk−2 ∗ · · · ∗ f1 . (3.22)

The corresponding arrival time at vk is fP(τ0)+ τ0 = arr fP(τ0) = arr fk−1 ◦ · · · ◦
arr f1(τ0) (see Equation (3.5)). We call fP the TTF of path P. Remember that
linking is associative and parentheses can be omitted in Equation (3.22) hence.
Because of Lemma 3.3 we have fP ∈FΠ and arr fP is increasing hence.

Lemma 3.6 ([17]). If every TTF f with u→ f v ∈ E fulfills the FIFO property,
then the following two statements hold true:

1. Waiting in a node never results in an earlier arrival.

2. A cycle in a path never results in an earlier arrival.

Proof. Dean [17] rightfully points out, that the first statement follows directly
from the fact, that arr fP is increasing for every path P in G. He also points out
that every cycle can obviously be replaced by waiting in a node, which implies
the second statement.

Lemma 3.7. Consider s, t ∈ V where t is reachable from s in G. Let τ0 ∈ R be
a departure time. Then, there is always a path P0 = �s→ ·· · → t� with minimum
travel time. That is, P0 minimizes fP(τ0) amongst all paths P from s to t.

Proof. Because of the FIFO property, it is enough to consider only cycle-free
paths (due to Lemma 3.6). But there are only finitely many cycle-free paths in a
finite directed graph. So, one of these paths, we call it P0, has minimal arrival time
arr fP0(τ0). This directly corresponds to the minimum travel time fP0(τ0).

Lemma 3.7 ensures that there always exists an earliest arrival (EA) time for
traveling from a node s to a node t with departure time τ0 in G; namely, the time

EAG(s, t,τ0) := min
�
fQ(τ0)+ τ0

�
� Q is path from s to t in G

�
∪{∞} .

If fP(τ0) + τ0 = EAG(s, t,τ) holds for some path P = �s → ·· · → t�, then P is
called an earliest arrival (EA) path in G. If we want to be more specific, we say
that P is an (s, t,τ0)-EA-path in G. If a node t is not reachable from a node s in G,
then we have EAG(s, t,τ) = ∞ for all τ ∈R.

Lemma 3.8. If �u1→ f1 · · ·→ fk−1
uk� is a (u1,uk,τ0)-EA-path in G, then every suf-

fix �ui→ fi · · ·→ fk−1
uk� is a (ui,uk,arr f�u1→···→ui�(τ0))-EA-path in G and we have

EAG(u1,uk,τ0) = EAG(ui,uk,arr f�u1→···→ui�(τ0)) = EAG(ui,uk,EAG(u1,ui,τ0)).
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Figure 3.4. Simple time-dependent road network where the travel costs are the travel
times. All edges have constant TTFs, except for v4→ f v5. The TTF f , which has slope−1
on the interval (2,6) is depicted on the right. There are two paths from v1 to v5 and both
of them are (v1,v5,1)-EA-paths. However, �v1 → v3 → v4 → v5� has a non-optimal prefix.
More precisely, �v1 → v3 → v4� is no (v1,v4,1)-EA-path, because of arr f�v1→v3→v4�(1) =
5 > 4 = arr f�v1→v2→v4�(1).

Proof. With EAG(u1,ui,τ0)≤ arr f�u1→···→ui�(τ0) and utilizing that all arrival time
functions (including EAG(ui,uk, ·)) are increasing because of the FIFO property,
we calculate

EAG(u1,uk,τ0) = fk−1 ∗ · · · ∗ f1(τ0)+ τ0

= arr fk−1 ◦ · · · ◦arr fi ◦arr fi−1 ◦ · · · ◦arr f1(τ0)

= arr f�ui→···→uk�

�
arr f�u1→···→ui�(τ0)

�

≥ EAG

�
ui,uk,arr f�u1→···→ui�(τ0)

�

≥ EAG

�
ui,uk,EAG(u1,ui,τ0)

�

≥ EAG(u1,uk,τ0)

and learn that the statement holds true, because there is no earlier arrival time than
EAG(u1,uk,τ0) at uk for departure time τ0.

We refer to the property characterized by Lemma 3.8 as suffix-optimality of EA
paths. The analogous condition for prefix paths does not hold in general. More
precisely, a graph G can contain an (s, t,τ0)-EA-path �s → ·· · → u → ·· · → t�
where the prefix �s→·· ·→ u� is not an (s,u,τ0)-EA-path. Such a situation is only
possible if f�u→···→t� has slope−1 on some interval [a,b]⊆R. Then, arr f�u→···→t�

is constant on [a,b] and a later arrival at u does not result in a later arrival at
t (provided that EAG(s,u,τ0) and f�s→···→u�(τ0) both lie in the interval [a,b]).
Figure 3.4 shows a simple example. However, if no TTF has slope −1, (i.e.,
f ∈F+

Π for all u→ f v ∈ E) then all EA paths are prefix-optimal, as Dean already
mentions [17].

Corollary 3.9 ([17]). Let every TTF f with u→ f v ∈ E fulfill the strengthened
FIFO property mentioned in Corollary 3.2. Then, every prefix �u1 → ·· · → ui� of
a (u1,uk,τ0)-EA-path �u1 → ·· · → uk� is a (u1,ui,τ0)-EA-path.
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A slightly weakened version of prefix-optimality, however, is always provided
in the context of EA paths, even if the FIFO property is only fulfilled in the non-
strict sense.

Lemma 3.10 ([17]). Consider s, t ∈V where t is reachable from s in G. Let τ0 ∈R
be a departure time. Then, there is always an (s, t,τ0)-EA-path �s = u1 → u2 →
·· · → uk = t� in G such that, for every i= 1, . . . ,k, the prefix �s= u1 → ·· · → ui�
is an (s,ui,τ0)-EA-path. Such an EA path is called prefix-optimal.

Proof. Let P := �s= v1 → f1 · · · → f�−1
v� = t� be a cycle-free (s, t,τ0)-EA-path in

G. Choose the maximal i ∈ {2, . . . , �} such that the prefix Pi := �s→ ·· · → vi� of
P is not an (s,vi,τ0)-EA-path. Lemma 3.7 guaranties the existence of a cycle-free
(s,vi,τ0)-EA-path R and we get

EAG(s, t,τ0) = arr fP(τ0)

= arr f�vi→···→t� ◦arr fPi(τ0)

≥ arr f�vi→···→t� ◦arr fR(τ0)

≥ EAG(s, t,τ0) .

So, we have arr fR�vi→···→t� = EAG(s, t,τ0) and replacing the prefix Pi of P by R
yields another (s, t,τ0)-EA-path P� hence.

The new cycle-free path P� = �s = w1 → ·· · → w�� = t� has the following
important property: If we choose the maximal j ∈ {2, . . . , ��}, such that the prefix
P�j := �s → ·· · → wj� of P� is not an (s,wj,τ0)-EA-path, then wj comes on P�

before vi; that is,

P� = �s→ ·· · → wj → ·· · → vi → ·· · → t� .

So, if we repeatedly replace maximal prefix paths in the described manner, this
process surely terminates. This is because cycle-free paths can not have arbitrarily
many hops in a finite graph like G, and the suffix of the path �wj → ·· · → vi →
·· · → t� of P� gains at least one hop in every step. The resulting path is a prefix-
optimal (s, t,τ0)-EA-path after termination.

Dean also proves Lemma 3.10 by repeatedly replacing subpaths of EA path with
EA paths [17]. But his procedure is non-deterministic and he does not explain
whether it ever terminates.

A directed tree T = (VT ,ET )⊆ G with root s, where each path Pu ⊆ T from s
to u ∈VT is an (s,u,τ0)-EA-path in G, is called an earliest arrival (EA) tree. Or if
we want to be more specific, we say T is an (s,τ0)-EA-tree. The unique EA paths
in T are all prefix-optimal of course.
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Obviously, the minimum time duration for traveling from s to t for departure
time τ0 ∈R can be obtained from the EA time easily and amounts to

TTG(s, t,τ0) := EAG(s, t,τ0)− τ0 .

Note that TTG(s, t, ·) forms a TTF; namely, the TTF that yields the minimum
possible travel time from s to t for all departure times. In fact, TTG(s, t, ·) is
exactly what we call a travel time profile (TTP) in Section 1.1.2.

As TTG(s, t, ·) is the minimum of the TTFs of finitely many cycle-free paths
from s to t, we can be sure that TTG(s, t, ·) ∈FΠ holds. Obviously, EAG(s, t,τ0)
and TTG(s, t, ·) is just what an EA query and a TTP query computes respectively
(see Section 1.1.2). Dual to the EA time is the interval of latest departure (LD)
times

LDG(s, t,σ0) :=
�
depTTG(s, t, ·)

�
(σ0) ⊆ R

for traveling from s to t with arrival time σ0. The respective kind of one-to-
one query that computes LDG(s, t,σ0) for given s, t ∈ V and σ0 ∈ R is called an
LD query. Obviously, LDG(s, t, ·) = depTTG(s, t, ·) = (EAG(s, t, ·))

−1 holds. If
all TTFs in G fulfill the strengthened FIFO property, then LDG(s, t, ·) is a real
function. We further define an upper and a lower bound of the minimum travel
times from s to t; namely,

TTG(s, t) := min
� k−1

∑
i=1

max fi

�
�
� �s= u1 → f1 · · · → fk−1

uk = t� ⊆ G
�
∪{∞} ,

TTG(s, t) := min
� k−1

∑
i=1

min fi

�
�
� �s= u1 → f1 · · · → fk−1

uk = t� ⊆ G
�
∪{∞} .

They fulfill TTG(s, t) ≤ TTG(s, t,τ) ≤ TTG(s, t) for all τ ∈ R thanks to Equa-
tion (3.8).

3.1.4 Computing Basic Operations on TTFs Efficiently

In Section 3.1.2 we consider the properties of the three basic operations on TTFs
(i.e., evaluation, linking, and minimum). Here, we discuss how the three opera-
tions can be computed efficiently. This is interesting, because all three basic oper-
ations are invoked as subprocedures by the route planning algorithms described in
this thesis and affect the performance of these algorithms hence. We also discuss,
how complex the resulting TTFs of linking and minimum can get.

Efficient Evaluation of TTFs. When computing the evaluation f (τ0) of a TTF
f ∈ FΠ for an argument τ0 ∈ R, we want to avoid the binary search mentioned
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earlier (see page 81) to get rid of the logarithmic factor. So, the idea is to partition
[0,Π) into �| f |/4� intervals, each of length Π/�| f |/4�. Each such interval is
associated with a bucket. The bend points that lie in each interval have to be
stored in the associated bucket. If the x-values of the bend points are uniformly
distributed, then i with τ0 ∈ [xi,xi+1) is found in O(1) average time by searching
the bucket with number

b :=
�
(τ0 mod Π) ·

�
| f |/4

�
/Π

�
(3.23)

only. We also want to avoid expensive divisions and multiplications during evalu-
ation.4 So, what we really do is to partition [0,Π) into

Kf :=

�
Π

2�log(4Π/| f |)�

�

buckets of length Lf := 2�log(4Π/| f |)�, which fulills | f |/4− 1 ≤ Kf ≤ | f |/2 and
2Π/| f | ≤ Lf ≤ 4Π/| f |. This has the advantage that Equation (3.23), which con-
tains division and multiplication, can be replaced by the expression

b := max
�
0,
��

τ0 mod Π
�
�

�
log(4Π/| f |)

��
−1

�
, (3.24)

which only contains a much cheaper right shift. Note that the number Bf :=
�log(4Π/| f |)� ∈N0 has to be stored together with the bucket and bend point data
of a TTF f . This means the logarithm and the division are only computed once;
namely, when the data of f is set up.

Some readers may notice that computing �τ0 mod Π� also includes division.
Within the context of time-dependent route planning, however, it is not likely that
τ0 gets larger than k ·Π for a small k ∈ N. For τ0 ∈ [Π, 2Π), for example, we
simply compute τ0−Π to obtain τ0 mod Π. So, in most cases τ0 mod Π can be
computed without division too. The multiplication in Equation (3.2), however,
can not be avoided. But the division in Equation (3.2) could be avoided by storing
the slopes of all | f | line segments. This would need Θ(| f |) additional space of
course.

Efficient Linking of TTFs. The linking g ∗ f of TTFs f ,g ∈ FΠ can be com-
puted in O(|g|+ | f |) time using Algorithm 3.1. On the one hand, this algorithm

4Multiplication and especially division still belong to the slower operations provided by todays
CPUs. Replacing them by cheaper operations can speedup computations considerably. The integer
division of k by 2� (with k, �∈N) is equivalent to shifting the binary representation of k to the right
by � digits. We denote this right shift by k � �. So, we have k � � = �k/2��. Right shifts are
usually performed very fast.
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works similar to the merging of sorted sequences5, where �g0.x, . . . ,g|g|−1.x� and
� f0.x+ f0.y, . . . , f| f |−1.x+ f| f |−1.y� are considered as the sequences to be merged
(the second sequence consists actually of the y-values of the bend points of arr f ).
On the other hand, the algorithm can be viewed as a simple sweep line algorithm.
The running time obviously lies in O(| f |+ |g|). To understand the algorithm, it is
also helpful to consider the equivalent composition of the according arrival time
functions; that is, arrg ◦ arr f . The algorithm computes arrg ◦ arr f , but stores
g∗ f = arrg◦arr f − id. That is, it successively appends bend points (x,y) to the
sequence result, such that (x,y+ x) is a bend point of arrg◦arr f .

The composition arrg ◦ arr f is actually a transformed version of arrg. It is
obtained by partly stretching and partly shrinking arrg in x-direction. Which parts
of arrg are stretched or shrunken depends on the different slopes of the line seg-
ments of arr f : shrinking, if the slope lies in the interval (1,∞), stretching, if the
slope lies in the interval (0,1), and neither shrinking nor stretching if the slope is 1.
If the slope of arr f is 0 on an interval [a,b], then arrg◦arr f is constant on [a,b].
For example, if arr f has slope 2 on an interval [a,b], then [arr f (a),arr f (b)] has
length 2 · (b−a). But this means, that arrg◦arr f runs through the same values
on the interval [a,b] as arrg on the interval [arr f (a),arr f (b)], which has double
length. So, arrg appears shrunken by the factor 1/2 as part of arrg ◦ arr f on
[a,b].

Note that arrg is not only shrunken or stretched, but also shifted to the left.
How far a point of arrg is shifted depends on arr f . More precisely, the point�
arr f (τ), arrg(arr f (τ))

�
of arrg is shifted to the left by f (τ). This means

that the corresponding point of g is effectively shifted to the upper left by f (τ).
So, arrg ◦arr f is a left shifted and shrunken or stretched version of arrg. Cor-
respondingly, f ∗ g = arrg ◦ arr f − id is a left upward shifted and shrunken or
stretched version of g. Figure 3.5 illustrates the linking of two simple TTFs of
period 10.

The composition arrg ◦ arr f has three kinds of bend points that are treated
by the three different cases of the conditional construction inside the loop.

• First, bend points that originate from f ; that is, from f j for some index j ∈
{0, . . . , | f |−1}. The corresponding bend point of arrg◦arr f is

�
f j.x, arrg(arr f ( f j.x))

�
=
�
f j.x, arrg( f j.x+ f j.y)

�
.

Its y-coordinate is computed from the line segment (gi−1gi) by linear inter-
polation, as we have f j.x+ f j.y ∈ [gi−1.x, gi.x). This kind of bend points is
treated in Line 14 to 18 of Algorithm 3.1.

5Merging of sorted sequences is an algorithmic standard technique. The well-known sorting
algorithm merge sort, for example, is nothing but recursively applying the idea that already sorted
subsequences can be merged in linear time by scanning them simultaneously. More details can be
found in the textbook by Mehlhorn and Sanders [61] for example.
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Algorithm 3.1. Given the TTFs f ,g ∈FΠ, this algorithm computes g∗ f . As TTFs

are represented as sequences of bend points with strictly increasing x-values, the

resulting TTF is build simply by appending the computed bend points to the end of

the sequence result.

1 function linkTTF(g, f : TTF) : TTF
2 result := �� : Sequence
3 i := min{k |gk.x≥ f (0)}
4 j := 0
5 while true do
6 if gi.x= f j.x+ f j.y then
7 (x,y) := ( f j.x, gi.y+ f j.y) // gi.y+ f j.y= gi.x+gi.y− f j.x
8 i := i+1, j := j+1

9 else if gi.x< f j.x+ f j.y then
10 marr f := ( f j.x+ f j.y− f j−1.x− f j−1.y)/( f j.x− f j−1.x)
11 x := 1/marr f · (gi.x− f j−1.x− f j−1.y)+ f j−1.x
12 y := gi.x+gi.y− x
13 i := i+1

14 else
15 mg := (gi.y−gi−1.y)/(gi.x−gi−1.x)
16 x := f j.x
17 y := gi−1.y+mg · ( f j.x+ f j.y−gi−1.x)+ f j.y
18 j := j+1

19 if x≥Π then break
20 if |result| ≥ 2 then
21 let p,q be the last two bend points of result
22 if ccw(p,q,(x,y)) = 0 then remove last bend point from result

23 append bend point (x,y) to result

24 return result
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Figure 3.5. Linking g ∗ f of two simple TTFs f ,g ∈ F10. The result g ∗ f is the same
as arrg ◦ arr f − id. So, in principle, g ∗ f can be obtained by computing arrg ◦ arr f ,
which is the same as shrinking and stretching arrg depending on the slopes that occur in
arr f . On the interval [1,2], for example, arr f has slope 3. So, arrg|[arr f (1),arr f (2)] =
arrg|[3,6] appears on interval [1,2] in arrg ◦ arr f ; that is, shrunken by a factor of 1/3.
The corresponding parts of arr f , arrg, and arrg◦arr f are highlighted gray.
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• Second, bend points that originate from g; that is, from gi for some index
i ∈ Z. The corresponding bend point of arrg ◦ arr f is (x f , arrg(gi.x)) =
(x f , gi.x+gi.y) for some x f ∈ [ f j−1.x, f j.x) with

gi.x ∈ [ f j−1.x+ f j−1.y, f j.x+ f j.y) .

The x-coordinate x f is obtained by linear interpolation of the line segment
( f j−1 f j) (see Line 9 to 13 of Algorithm 3.1).

• Third, bend points that originate from both f and g; that is, gi.x = f j.x+
f j.y = arr f ( f j.x). The corresponding bend point of arrg ◦ arr f is simply
( f j.x, gi.x+gi.y). This kind of bend points is very easy to deal with, because
the x- and the y-coordinate can both be taken directly from g and f , without
any linear interpolation (see Line 6 to 8 of Algorithm 3.1).

This makes clear why the linking of TTFs can be done in a way that is simi-
lar to the merging of sorted sequences. One simply goes through the intervals
[ f j−1.x, f j.x] with j ∈ {0, . . . , | f |−1} and, for each such interval, through all bend
points of gi with

gi.x ∈
�
arr f ( f j−1.x), arr f ( f j.x)

�
=
�
f j−1.x+ f j−1.y, f j.x+ f j.y

�
.

The three possible cases just discussed also make clear how complex the linked
TTF g∗ f can get. A bend point of g∗ f = arrg◦arr f − id can only emerge from
a bend point of g, a bend point of f , or of both—a consideration also made by
Foschini et al. (see Lemma 2.4 of their paper [36]).

Corollary 3.11. Consider f ,g ∈ FΠ. Then, we have |g ∗ f | ≤ |g|+ | f | and this
bound is tight.

There are two reasons why |g∗ f | can be smaller than | f |+ |g|. First, if gi.x=
f j.x+ f j.y occurs, then we append one bend point that corresponds to two original
bend points (see Line 6 to 8). Second, if we append a bend point (x,y) to result=:
�p1, . . . , pk�, such that �pk−1, pk,(x,y)� are collinear, then pk can be removed (see
Line 20 to 22).

Efficient Minimum of TTFs. The minimum min( f ,g) of TTFs f ,g ∈FΠ can
be computed with Algorithm 3.2. This algorithm is, like in case of linking, a
simple sweep line algorithm. It is also similar to merging two sorted sequences,
where the sequences are the x-values of the bent points of f and g; that is, the
sequences � f0.x, . . . , f| f |−1.x� and �g0.x, . . . ,g|g|−1.x�. Again, the running time lies
in O(| f |+ |g|).

While the algorithm runs, it successively appends points to the sequence result.
There are four kinds of bend points of min( f ,g). They are treated by the condi-
tional construction inside the loop.
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Algorithm 3.2. Given the continuous piecewise linear TTFs f ,g with period Π, this

algorithm computes min( f ,g). Like in Algorithm 3.1, the computed bend points are

successively appended to the end of the sequence result.

1 function minTTF( f ,g : TTF) : TTF
2 result := �� : Sequence
3 i := j := 0
4 while j < | f | or i< |g| do
5 if

�
�( f j−1 f j)∩ (gi−1gi)

�
�= 1 then

6 let (x,y) be the intersection point of ( f j−1 f j) and (gi−1gi)
7 if x≥ 0 then append bend point (x,y) to result

8 if f j.x= gi.x then
9 if f j.y= gi.y then append bend point ( f j.x, f j.y) to result
10 else append bend point ( f j.x, min{ f j.y,gi.y}) to result
11 j := j+1, i := i+1

12 else if f j.x< gi.x then
13 if ccw(gi−1, f j,gi)≤ 0 then
14 if ccw(gi−1, f j,gi) = 0 then
15 if ccw(gi−1, f j−1,gi)< 0 or ccw(gi−1, f j+1,gi)< 0 then
16 append bend point f j to result

17 else append bend point f j to result

18 j := j+1

19 else
20 if ccw( f j−1,gi, f j)≤ 0 then
21 if ccw( f j−1,gi, f j) = 0 then
22 if ccw( f j−1,gi−1, f j)< 0 or ccw( f j−1,gi+1, f j)< 0 then
23 append bend point gi to result

24 else append bend point gi to result

25 i := i+1

26 if
�
�( f| f |−1 f| f |)∩ (g|g|−1g|g|)

�
�= 1 then

27 let (x,y) be the intersection point of ( f| f |−1 f| f |) and (g|g|−1g|g|)

28 if x< Π then append bend point (x,y) to result

29 return result



3.2. Time-Dependency with Additional Costs 97

• First, there are the bend points that emerge from the input TTF f or g if one
of the TTFs lies beneath the other. To find out whether f or g lies beneath,
we often use the predicate ccw explained in Section 2.1.4. This kind of bend
points is appended in Line 10, 17, and 24.

• Second, there are bend points that emerge from the input TTF f or g if a
bend point lies on a line segment of the other TTF each. Such a bend point
is not always appended. A bend point of f j lying on a segment (gi−1gi) is
added if the segment ( f j−1 f j) or ( f j f j+1) lies beneath (gi−1gi) (see Line 14
to 16). Appending a bend point g j lying on a segment ( f j−1 f j) depends on
the analogous condition (see Line 21 to 23).

• Third, there are the bend points that emerge both from the input TTFs f and g.
More precisely, if f and g have a bend point in common, then this point is
appended to result. This kind of bend points is appended in Line 9.

• Fourth, there are bend points that emerge from an intersection of f and g.
Such points have to appear in the result TTF because they are the points where
it changes whether f or g is beneath. This kind of bend points is appended in
Line 7 and 28.

Considering Algorithm 3.2 makes clear how complex a minimum TTF min( f ,g)
can get. The loop is executed not more than | f |+ |g| times never appending more
than two bend points each. Having finished the loop, one additional bend point
may be appended.

Corollary 3.12. Consider f ,g∈FΠ. Then, we have |min( f ,g)| ≤ 2| f |+2|g|+1.

That |min( f ,g)| is smaller than 2| f |+ 2|g|+ 1 is not unlikely. If f and g only
intersect rarely, then several bend points of f and g do not appear in min( f ,g)
while few additional bend points (i.e., intersection points) are added.

3.2 Time-Dependency with Additional Costs

We now consider the more general case that the travel cost is different from the
travel time; that is, C �= f for u→ f |C v ∈ E in general. However, the TCFs as-
sociated with the edges of G are still relatively restricted in this thesis; that is,
C(τ) = f (τ)+ c with c ∈ R≥0 only depending the edge and not on the departure
time. This is, as already said, where the term of “additional time-invariant costs”
comes from. We usually write u→ f |c v instead of u→ f | f+c v.

This kind of TCFs can be used to model travel costs where traveling an edge
is proportional to travel time with an additional time-invariant offset. An example
is the computation of routes that minimize the salary of a driver, which we assume
to be proportional to travel time, together with toll costs occurring on motorways,
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which are assumed to be time-invariant. Another example is the computation of
routes with small travel time, but inconvenient roads (e.g., narrow winding, steep,
bumpy) are avoided by making them more expensive with an additional penalty.

If c = 0 holds for all edges u→ f |c v in G, then we have the special case that
the travel cost is simply the travel time; that is, C = f . If f ∈FΠ holds, then we
also have C = f + c ∈FΠ. It is very important to note that the travel time is part
of the travel cost in this setup. So, waiting is not for free, but waiting an amount
of time Δτ exactly raises the cost Δτ .

First in this section, we consider the properties of minimum cost paths for
time-dependent travel times with additional constant (i.e., time-invariant) costs
(see Section 3.2.1). Then, we extend the basic operations on TFFs to work with
additional time-invariant costs. However, TCFs f + c with a TTF f ∈ FΠ and
an additional constant cost c ∈R≥0 are not closed under the minimum operation.
To fix that, we allow f to have points of discontinuity and c to be a piecewise
constant function instead of a simple constant value. Now, c describes an addi-
tional time-dependent cost (see Section 3.2.2). We then explain how the resulting
generalized basic operations can be computed efficiently (see Section 3.2.3). That
the generalized basic operations not only include time-invariant but also piecewise
constant (i.e., time-dependent) costs, raises the question how minimum cost paths
behave in such a more general setup (see Section 3.2.4).

3.2.1 Minimum Cost (MC) Paths

Consider a path P := �u1 → f1|c1
u2 → f2|c2

· · · → fk−1|ck−1
uk� in G with fi ∈ FΠ

and ci ∈ R≥0 for i = 1, . . . ,k− 1. The time needed for traveling from v1 to vk
along the path P for departure time τ0 is fP(τ0) = fk−1 ∗ fk−2 ∗ · · · ∗ f1(τ0) (see
Equation (3.22)). The total additional time-invariant cost along P is independent
of the departure time τ0 and amounts to

cP := c1+ c2+ · · ·+ ck−1 . (3.25)

So, the total time-dependent cost of traveling along P when departing at τ0 is
simply the sum

CP(τ0) := fP(τ0)+ cP . (3.26)

Of course,CP is a TCF; namely, the TCF of path P. With fP ∈FΠ and cP ∈R≥0,
we obviously haveCP ∈FΠ. That is,CP is a periodic p.w.l. function formally ful-
filling the FIFO property. We define an upper and a lower bound of CP; namely,
CP :=max f1+ · · ·+max fk−1+cP andCP :=min f1+ · · ·+min fk−1+cP respec-
tively.

Like in the special case, where travel times and travel costs are the same,
cycles are not beneficial.
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Lemma 3.13. If every TTF f with u→ f |c v ∈ E fulfills the FIFO property, then
cycles in paths never result in a lower travel cost.

Proof. From Lemma 3.6 we know that cycles never result in lower travel times.
The additional time-invariant costs do not depend on time, which means that cy-
cles can only increase the total additional time-invariant costs. So, cycles can only
increase time-dependent travel costs.

Remember that travel cost is travel time plus a time-invariant additional cost.
Especially, travel time is part of the travel cost, which means that we do not con-
sider waiting time as free. So, waiting is, just like cycles, not beneficial either.

Lemma 3.14. If every TTF f with u→ f |c v ∈ E fulfills the FIFO property, then
waiting in a node never result in a lower travel cost.

Proof. From Lemma 3.13 we know that cycles never results in lower travel costs.
But waiting an amount of time Δτ in a node u can always be simulated by adding
a cycle �u→h|0 u� →h�|0 u� with h≡ h� ≡ Δτ/2. So, waiting is not beneficial.

Lemma 3.15. Consider s, t ∈ V where t is reachable from s in G. Let τ0 ∈ R be
a departure time. Then, there is always a path P0 = �s→ ·· · → t� with minimum
travel cost. That is, P0 minimizes CP(τ0) amongst all paths P from s to t.

Proof. We argue as in the proof of Lemma 3.7: From Lemma 3.13 we know
cycles can be ignored. But there are only finitely many cycle-free paths from s
to t in G. At least one of them has minimum total travel cost for departure time
τ0.

Lemma 3.15 ensures that there always exists a minimum travel cost from a
node s to a node t for departure time τ0; namely, the cost

CostG(s, t,τ0) := min
�
CQ(τ0)

�
� Q is path from s to t in G

�
∪{∞} . (3.27)

If P = �s→ ··· → t� fulfills CP(τ0) = Cost(s, t,τ0), then P is called a minimum
cost (MC) path in G. To be more specific, we say that P is an (s, t,τ0)-MC-path.

In Section 3.1.3 we learned, that there is always a prefix-optimal (s, t,τ0)-EA
path for all s, t ∈ V and τ0 ∈ R (provided that t is reachable from s). However,
things are much less convenient in the presence of additional time-invariant costs
because the existence of prefix-optimal MC paths is no longer guaranteed. More
precisely, it can happen that all MC paths for given s, t ∈ V,τ0 ∈ R have a prefix
path that is not an MC path. Figure 3.6 shows a simple example of such a situation.
This lack of prefix-optimality implies that Dijkstra-like algorithms do not yield
the correct result if they only maintain a single label per node. This is because
maintaining only one label per node means that suboptimal intermediate results
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v1

v2

v3

v4 v5

2.5|7 2|7

1.5|12 2|8

f |3

4 5

3

10 f

Figure 3.6. A simple time-dependent example graph with additional time-invariant costs.
Most edges have constant TTFs. Only v4 → v5 has the non-constant TTF f depicted on
the right. The path �v1 → v3 → v4 → v5� is the only minimum total cost path from v1

to v5 for departure time 0.5, with Cost(v1,v5,0.5) = 6.5+ 23 = 29.5 (a travel time of
6.5 and a total additional cost of 23). Its prefix path �v1 → v3 → v4�, however, has total
cost 23.5 = 3.5+ 20 and is not a (v1,v4,0.5)-MC-path, because �v1 → v2 → v4� has a
smaller total cost of 18.5 = 4.5+ 14. The path �v1 → v2 → v4 → v5�, which has total
cost 31.5 = 14.5+ 17 for departure time 0.5, is not a (v1,v5,0.5)-MC-path of course.
The arrival times at node v4 are the travel times plus the departure time 0.5. So, in case
of �v1 → v3 → v4� the arrival time is 4 and the TTF f yields f (4) = 3, which makes
�v1 → v3 → v4 → v5� a (v1,v5,0.5)-MC-path.

are thrown away. Instead, one has to perform time-dependent multi-label search
(see Section 4.4).

So, there is no guarantied prefix-optimality in the context of time-dependent
route planning with additional time-invariant costs. Suffix-optimality of MC paths,
however, is always provided.

Lemma 3.16. If �u1 → f1|c1
· · · → fk−1|ck−1

uk� is a (u1,uk,τ0)-MC-path, then every
suffix �ui → ·· · → uk� is a (ui,uk,arr f�u1→···→ui�(τ0))-MC-path. In other words,
we have CostG(u1,uk,τ0) = CostG(ui,uk,arr f�u1→···→ui�(τ0))+C�u1→···→ui�(τ0).

Proof. Assume the existence of a suffix that is no (ui,uk,arr f�u1→···→ui�(τ0))-
MC-path and replace it by a respective MC path (which exists due to Lemma 3.15)
to obtain a contradiction.

In Section 3.1.3 we define upper and lower bounds for the minimum travel
times. Now we do the same for minimum travel costs by defining

CostG(s, t) := min
�
CQ

�
�Q is path from s to t in G

�
∪{∞} ,

CostG(s, t) := min
�
CQ

�
�Q is path from s to t in G

�
∪{∞} .

(3.28)

Obviously, CostG(s, t)≤CostG(s, t,τ)≤CostG(s, t) holds for all τ ∈R. Of course,
CostG(s, t, ·) forms a TCF; namely, the TCF that yields the minimum possible
travel cost from s to t for all departure times. In fact, CostG(s, t, ·) is the cost pro-
file (CP) mentioned in Section 1.1.2. Obviously, CostG(s, t,τ0) and CostG(s, t, ·)
are just what a minimum cost (MC) query and a CP query compute respectively.



3.2. Time-Dependency with Additional Costs 101

The MC paths considered in this thesis can not change arbitrarily over time.
More precisely, MC paths can only be valid for closed departure intervals or for
isolated departure times. This generalizes an observation made by Foschini et al.
in the context of EA paths (see Observation 2.3 in [36]), which we recapitulate in
Section 5.2.1 (see Observation 5.2).

Lemma 3.17. Consider an (s, t,τ0)-MC-path P in G. Then, there is an interval
[a,b] � τ0, such that P is either an (s, t,τ)-MC-path for all τ ∈ [a,b], or not an
(s, t,τ)-MC-path for all τ ∈ [a,b]\{τ0}.

Proof. CostG(s, t, ·) is the pointwise minimum of TCFsCRi = fRi +cRi with fRi ∈
FΠ and cRi ∈ R≥0 for finitely many cycle-free paths R1, . . . ,Rk from s to t in G
with P= Ri for some i. All these TCFs are obviously continuous p.w.l. functions.
Whether P is an MC path or not, can only change at departure times where at
least two such TCFs CRi and CRj intersect. But as p.w.l. functions they can only
intersect in isolated points or in line segments.

With a similar argument we obtain that CostG(s, t, ·) is the minimum of finitely
many well-behaved TCFs and hence well-behaved itself.

Lemma 3.18. CostG(s, t, ·) is a continuous p.w.l. function with period Π. For-
mally, it even fulfills the FIFO property; that is, CostG(s, t, ·) ∈FΠ.

Proof. We argue like in the proof of Lemma 3.17 that CostG(s, t, ·) is the minimum
of the TCFs CR1 , . . . ,CRk

of finitely many paths R1, . . . ,Rk, which are of the form
CRi = fRi + cRi with CRi ∈ FΠ for all i ∈ {1, . . . ,k}. But FΠ is closed under
minimum (see Corollary 3.4), which implies CostG(s, t, ·) ∈FΠ.

For every (s, t,τ0)-MC-path P there is a corresponding travel time; namely,
the travel time fP(τ0) of the path P. Accordingly, we define

MCTTG(s, t,τ0) := lim
τ→τ−0

min
�
fQ(τ)

�
�Q is (s, t,τ)-MC-path in G

�
∪{∞} (3.29)

to denote the left-continuous minimum travel time of an (s, t,τ0)-MC-path. Choos-
ing the minimum is necessary in case of multiple (s, t,τ0)-MC-paths. Note that
MCTTG(s, t, ·) is a TTF with

CostG(s, t,τ)≥MCTTG(s, t,τ)≥ TTG(s, t,τ)

for all τ ∈R. In general, MCTTG(s, t, ·) is not continuous, but it is guaranteed to
be left-continuous. The latter comes from the left-sided limit in Equation (3.29).6

6Whether points of discontinuity are treated as left- or right-continuous should depend on the
application context. In this thesis, they are treated as left-continuous.
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Note that MCTTG(s, t, ·) yields the minimum possible travel time of a minimum
cost path except for points of discontinuity. Otherwise left-continuity could not
be guaranteed. However, every travel time MCTTG(s, t,τ) corresponds to a real
(s, t,τ)-MC-path for all departure times τ ∈R. This follows from the fact fP is a
continuous TTF for every path P in G.

Lemma 3.19. For s, t ∈ V, where t is reachable from s in G, MCTTG(s, t, ·) is a
left-continuous real function with period Π that has only finitely many points of
discontinuity on [0,Π).

Proof. That MCTTG(s, t, ·) can have points of discontinuity becomes clear from
the example in Figure 3.7. To show that MCTTG(s, t, ·) is left-continuous with
finitely many points of discontinuity, we argue as follows: From Lemma 3.6
and 3.13 we know that MCTTG(s, t,τ0) arises from finitely many cycle-free paths
in G. Together with Lemma 3.17, we obtain that [0,Π) can be partitioned into
finitely many subsets {0},(0,a1),{a1},(a1,a2), . . . ,{ak−1},(ak−1,Π), such that
paths Q1, . . . ,Qk exist that are (s, t,τ)-MC-paths with MCTT(s, t,τ) = fQi(τ) for
all τ ∈ (ai−1,ai) with 1≤ i≤ k (with a0 = 0 and ak = Π). But then, discontinuities
can only occur at 0,a1, . . . ,ak−1 in [0,Π). That MCTTG(s, t, ·) is left-continuous,
follows from its definition, because all TTFs fQi are continuous.

Lemma 3.19 prompts us to define a generalized set of TTFs; namely the set
F ��

Π of all functions f :R→R≥0 such that

• f has period Π and is left-continuous,

• f |[0,Π) has finitely many points of discontinuity 0≤ a0 < · · ·< ak−1 < Π,

• f is p.w.l. and continuous on (a0, a1],(a1,a2], . . . ,(ak−1, a0+Π] each, and

• f fulfills the FIFO property on (a0, a1],(a1,a2], . . . ,(ak−1, a0+Π] each.

So, all f ∈ F ��
Π are p.w.l. left-continuous TTFs with period Π and finitely many

points of discontinuity on [0,Π). The FIFO property may be violated at the points
of discontinuity; namely, if limτ→τ−0

f (τ)> limτ→τ+0
f (τ) holds.

3.2.2 Basic Operations with Additional Costs

Earlier in this thesis (see Section 3.1.2) we define three basic operations on TTFs;
namely, evaluation, linking, and pointwise minimum. Here, we consider three
analogous basic operations that we need if the edges of the road network have
additional time-invariant costs. These operations have to deal both with travel
times and travel costs. This is necessary, because time-dependent travel costs can
only be interpreted properly together with the travel time. For this reason, we
extend the basic operations not only to deal with TCFs but with a combination of
TTFs and TCFs.
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CostG(v1,v4, ·) f := 2∗h1
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MCTTG(v1,v4, ·)

CostG(v1,v4, ·)

g := 0.5∗h2

Figure 3.7. Example of a simple time-dependent road network G with additional time-
invariant costs, where CostG(s, t, ·) has points of discontinuity. The TTFs h1,h2 ∈ F10

are non-constant (top). The TTFs of the paths �v1 → v2 → v4� and �v1 → v3 → v4� are
the TTFs f := 2 ∗ h1 = 2+ h1 and g := 0.5 ∗ h2 = 0.5+ h1, respectively, the total addi-
tional costs of these paths amount to c := 2 = 1.3+ 0.7 and d := 1 = 0.8+ 0.2. The
resulting TCFs of the two paths are C := f + c and D := g+ d (middle). One sees that
CostG(v1,v4, ·) = min(C,D) is a continuous p.w.l. function with period 10 (bottom left).
In contrast, MCTTG(v1,v4, ·) has discontinuities at 4 and 9 (but it is still left-continuous).
The reason is, that MCTTG(v1,v4, ·) equals f on the interval (4,9] and g on the intervals
(0,4] and (9,10] (bottom right).
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For the computation of time-dependent MC paths as discussed in this thesis
it is also not enough to consider TCFs of the form f + c with TTF f ∈ FΠ and
additional time-invariant cost c ∈ R≥0 only. Lemma 3.19 already suggests this.
There, CostG(s, t, ·) is continuous, but MCTTG(s, t, ·), which is a corresponding
TTF in the sense that it yields the travel time on a corresponding MC path, is non-
continuous. So, CostG(s, t, ·) cannot be the sum of a corresponding continuous
TTF and a constant value. It turns out, however, that TCFs of the form f + c are
enough if the TTF f is allowed to have points of discontinuity (i.e., f ∈F ��

Π) and c
is a non-negative piecewise constant (p.w.c.) real function. We call c an additional
cost function (ACF). We thus extend the basic operations to work on pairs f |c with
a TTF f ∈F ��

Π and an ACF c : R→ R≥0. The pair f |c implicitly represents the
TCF f + c. We write tcf f |c defined as tcf f |c := f + c to denote the represented
TCF.

Piecewise Constant Functions. An ACF c : R→ R≥0 is always taken from
the set XΠ of p.w.c. left-continuous real functions. Every c ∈ XΠ fulfills the
following conditions:

• c :R→R≥0 has period Π and is left-continuous,

• c|[0,Π) has finitely many points of discontinuity 0≤ a0 < · · ·< ak−1 < Π, and

• c is constant on (a0, a1],(a1,a2], . . . ,(a�−1, a0+Π] each; that is, c|(a0,a0+Π] is
of the form

c : τ �→






γ0 if τ ∈ (a0,a1]
γ1 if τ ∈ (a1,a2]
...
γk−1 if τ ∈ (ak−1,a0+Π]

. (3.30)

The use of p.w.c. functions is perfectly compatible with way how we denote time-
dependent edges with additional time-invariant costs. We only have to identify the
constant c ∈ R≥0 in u→ f |c v ∈ E with the constant function τ �→ c. We write |c|
to denote the complexity of c. That is, |c| := k is the number discontinuities that
c has on the interval [0,Π). Note that we set |c|= 1 if c is constant, although c is
actually continuous in this case.

Evaluation with Piecewise Constant Additional Costs. Given f |c∈F ��
Π×XΠ

as well as a departure time τ0 we want to compute tcf( f |c)(τ0) = f (τ0)+ c(τ0).
Assume we represent f |c as sequence

�( f (0),γ0),( f
(1),γ1), . . . ,( f

(k−1),γk−1)� (3.31)

with continuous partial real functions f (0), . . . , f (k−1) and γ0, . . . ,γk−1 ∈R≥0, such
that dom fi = (ai,ai+1] holds with ak = a0+Π and 0≤ a0 < · · ·< ak−1 <Π. Then,
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f (τ0) and c(τ0) can be obtained by choosing ( f (i),γi) with (τ0 mod Π) ∈ dom f (i)

utilizing that f (τ0) = f (τ0 mod Π) and c(τ0) = c(τ0 mod Π) hold. So, c(τ0) = γi
can be obtained directly and f (τ0) can be computed by linear interpolation (see
Section 3.1.2).

Linking with Piecewise Constant Additional Costs. Given two adjacent edges
u→ f |c v and v→g|d w, with f |c, g|d ∈F ��

Π×XΠ, we want to know the TTF as
well as the ACF of the whole path �u→ f |c v→g|d w�.

We first consider the TCF. Traveling along the edge u → f |c v simply costs
f (τ)+c(τ) for τ being the time we depart from u. Traveling along v→g|d w then
costs (g+d)(arr f (τ)) = g(arr f (τ))+d(arr f (τ)), because arr f (τ) is the time
we arrive at v and also the time we depart from this node (remember that waiting
does not result in a lower travel cost, see Lemma 3.14). So, traveling the whole
path costs

(g+d)(arr f (τ))+( f + c)(τ) = g(arr f (τ))+d(arr f (τ))+ f (τ)+ c(τ)

= g(arr f (τ))+ f (τ)+d(arr f (τ))+ c(τ)

= g∗ f (τ)+d(arr f (τ))+ c(τ) .

Obviously, g∗ f is the TTF of the whole path. We correspondingly define

d ∗ f c := d ◦arr f + c (3.32)

to denote the p.w.c. ACF along the whole path. This justifies the definition

g|d � f |c := g∗ f |d ∗ f c (3.33)

to obtain an extension of the linking operation that works with F ��
Π×XΠ. The

TCF represented by g∗ f |d ∗ f c is

g∗ f +d ∗ f c= (g+d)◦arr f + f + c .

Lemma 3.20. The set F ��
Π×XΠ is closed under linking; that is, f |c, g|d ∈F ��

Π×
XΠ implies g|d � f |c ∈F ��

Π×XΠ.

Proof. Lemma 2.1 tells us that compositions of left-continuous functions are again
left-continuous. Further, let {τ0, . . . ,τk−1}, {γ0, . . . ,γ�−1} and {δ0, . . . ,δm−1} be
all the points of discontinuity, respectively, that f , c and d have on [0,Π). Then,
d ∗ f c= d ◦arr f + c can have no other points of discontinuity than {τ0, . . . ,τk−1,
γ0, . . . ,γ�−1} as well as {maxdep f (δ0), . . . ,maxdep f (δm−1)}, which are finitely
many. So, d ∗ f c ∈XΠ follows easily, g∗ f ∈F ��

Π holds analogously.
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Linking with additional cost fulfills the law of associativity. More precisely,
f |c, g|d, h|e ∈F ��

Π×XΠ always fulfill

h|e � (g|d � f |c) = (h|e � g|d) � f |c . (3.34)

To prove that we calculate

h|e � (g|d � f |c) = h|e �
�
g∗ f

�
�d ∗ f c

�
= h∗g∗ f

�
�e∗g∗ f (d ∗ f c)

= h∗g∗ f
�
�e◦arr(g∗ f )+d ◦arr f + c

= h∗g∗ f
�
�e◦arrg◦arr f +d ◦arr f + c

as well as

(h|e � g|d) � f |c=
�
h∗g

�
�e∗g d

�
� f |c= h∗g∗ f

�
�(e∗g d)∗ f c

= h∗g∗ f
�
�(e◦arrg+d)◦arr f + c

= h∗g∗ f
�
�e◦arrg◦arr f +d ◦arr f + c .

It is interesting to note that the “second component” of the generalized linking
(i.e., the linking of the p.w.c. additional costs) is not associative. More precisely,
only a variety of associativity is fulfilled there; namely,

e∗g∗ f (d ∗ f c) = (e∗g d)∗ f c . (3.35)

Generalizing the Notation. So far, the symbols fP, cP, CP, CP, CP, with P
being a path, as well as CostG(s, t, ·), MCTTG(s, t, ·), CostG(s, t), and CostG(s, t),
with s and t being nodes, are only defined in the context edge weights taken from
FΠ×R≥0 (see Section 3.1.3 and 3.2.1). Having generalized the linking operation,
we are now able to define these symbols to work with edge weights taken from
F ��

Π×XΠ instead of FΠ×R≥0. There, it must be noted that such generalized
edge weights and the corresponding shortest path structure are not a main issue
of this thesis. But we have to discuss them because one of the route planning
techniques described in this thesis needs to deal with this kind of edge weights to
work properly (see Chapter 6).

Consider a path P = �u1 → f1|c1
· · · → fk−1|ck−1

uk� in G with fi ∈F ��
Π and ci ∈

XΠ for all i = 1, . . . ,k− 1. The original definition of fP (see Equation (3.22)),
which defines fP in terms of TTFs taken from FΠ, is perfectly compatible with
TTFs taken from F ��

Π. In case of the additional cost cP things are a little more
complicated because the ACFs c1, . . . ,ck−1 cannot be linked conveniently without
considering the TTFs f1, . . . , fk−2. For example, we could write

cP = ck−1 ∗ fk−2∗···∗ f1

�
ck−2 ∗ fk−3∗···∗ f1

�
. . .c3 ∗ f2∗ f1 (c2 ∗ f1 c1) . . .

��
,
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which is very complicated and the brackets cannot be omitted. Due to Equa-
tion (3.35) we could also write

cP =
��

. . .(ck−1 ∗ fk−2
ck−2)∗ fk−3

. . .c3

�
∗ f2 c2

�
∗ f1 c1 ,

which is a little less complicated, and the brackets cannot be omitted, too.
So, we utilize the generalized linking operation defined before to obtain a

generalized definition of fP and cP by setting

fP|cP := fk−1|ck−1 � . . . � f1|c1 . (3.36)

Still,CP = fP+cP yields the TCF of the path P, but note that the original definition
of CP (see Equation (3.26) in Section 3.2.1) only covers additional time-invariant
costs (i.e., cP ∈R≥0). We generalize this by defining

CP(τ) := fP(τ)+ cP(τ) , (3.37)

which is perfectly compatible with Equation (3.26). Generalizing CP and CP,
the only problem is that piecewise continuous TTFs do not have a well-defined
minimum or maximum in general. To fix that, we use infimum and supremum,
which are always well-defined, and redefine

CP := inf f1+ · · ·+ inf fk−1+minc1+ · · ·+minck−1 ,

CP := sup f1+ · · ·+ sup fk−1+maxc1+ · · ·+maxck−1 .
(3.38)

Then, the definitions of CostG(s, t) and CostG(s, t) (see Equation (3.28)) general-
ize in a natural way. Regarding the redefinition of CostG(s, t, ·) and MCTTG(s, t, ·),
the question arises whether an (s, t,τ)-MC path actually exists for all s, t ∈V and
τ ∈ R. In fact, we strongly conjecture that this is the case but have not worked
out a proof so far. A simple condition that should always be fulfilled in prac-
tice, however, guarantees the existence of MC paths easily (see Lemma 3.23 in
Section 3.2.4).

Minimum with Piecewise Constant Additional Costs. Consider two paths P
and P� that both go from u to v. Let f := fP, g := fP� ∈ F ��

Π be the TTFs and
c := cP, d := cP� ∈ XΠ be ACFs of these paths respectively. We want to know
a “common TTF” and a “common ACF” that together represent the “common
TCF” of these two paths. The latter means the TCF describing how expensive it
is to travel from u to v, if we are allowed to travel along P or P� always choosing
the better path for every departure time. The resulting merged TCF is just the
pointwise minimum of f + c and g+d; namely,

min( f + c, g+d) .
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To obtain a “common TTF” we define

minc,d( f ,g) : τ �→ lim
σ→τ−






f (σ) if f + c(σ)< g+d(σ)
g(σ) if f + c(σ)> g+d(σ)
min( f ,g)(σ) if f + c(σ) = g+d(σ)

, (3.39)

which yields the minimum possible left-continuous travel time of traveling along
P or P� at minimum cost for every departure time τ . At points of discontinuity,
minc,d( f ,g) is not guaranteed to yield the minimum travel time of such a minimum
cost travel. However, it is always minc,d( f ,g)(τ0) = fP(τ0) or minc,d( f ,g)(τ0) =
fP�(τ0), even if minc,d( f ,g) is discontinuous at τ0.

A “common ACF” of a minimum cost travel along P or P�, that corresponds
to the travel time given by minc,d( f ,g), amounts to

min f ,g(c,d) := min( f + c, g+d)−minc,d( f ,g) . (3.40)

Note that min f ,g(c,d) is left-continuous too, just like minc,d( f ,g). There is a more

explicit construction of min f ,g(c,d) than the definition in Equation (3.40).

Lemma 3.21. For f ,g ∈F ��
Π and c,d ∈XΠ we have

min f ,g(c,d)(τ) = lim
σ→τ−






c(σ) if f + c(σ)< g+d(σ)
d(σ) if f + c(σ)> g+d(σ)
max(c,d)(σ) if f + c(σ) = g+d(σ)

. (3.41)

Proof. Utilizing that f , g, c and d are all left-continuous, we consider three dif-
ferent cases. First, we assume f + c(σ) < g+ d(σ) holds for all σ ∈ (τ − δ ,τ)
and some δ > 0. Then, we calculate

min f ,g(c,d)(τ) = min( f + c, g+d)(τ)− lim
σ→τ−

f (σ)

= lim
σ→τ−

f (σ)+ c(σ)− f (σ)

= lim
σ→τ−

c(σ) ,

because f and c are left-continuous. Second, we assume f + c(σ) > g+ d(σ)
for all σ ∈ (τ−δ ,τ) and obtain min f ,g(c,d)(τ) = limsigma→τ− d(τ) analogously.
Third, we assume f + c(σ) = g+ d(σ) for all σ ∈ (τ − δ ,τ). Also, we assume
w.l.o.g. that c(σ)≤ d(σ) holds. But this implies f (σ)≥ g(σ) and we calculate

min f ,g(c,d)(τ) = min( f + c, g+d)(τ)− lim
σ→τ−

min{ f (σ), g(σ)}

= lim
σ→τ−

g(σ)+d(σ)−g(σ)

= lim
σ→τ−

max{c(σ), d(σ)}

and are finished.
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We now extend the minimum operation to work with F ��
Π×XΠ and define

min( f |c, g|d) := minc,d( f ,g) |min f ,g(c,d) . (3.42)

This means

tcfmin( f |c, g|d) = minc,d( f ,g)+min f ,g(c,d) = min( f + c, g+d)

is the TCF for traveling along P or P� while always choosing the cheaper path for
every departure time.

Lemma 3.22. The set F ��
Π ×XΠ is closed under minimum; that is, f |c, g|d ∈

F ��
Π×XΠ implies min(g|d, f |c) ∈F ��

Π×XΠ.

Proof. The left-continuity of minc,d( f ,g) follows directly from the definition in
Equation (3.39), because f ,g,c,d are already left-continuous. Then, minc,d( f ,g)∈

F ��
Π follows easily. With Lemma 3.21 we obtain min f ,g(c,d) ∈XΠ analogously.

The Minimum of TTFs with additional p.w.c. costs behaves well in the sense
that the associative and the commutative property is are fulfilled; that is,

min(min( f |c, g|d), h|e) = min( f |c, min(g|d, h|e)) , (3.43)

min( f |c, g|d) = min(g|d, f |c) . (3.44)

Both can be verified easily. However, the linking operation “�” does in general
not distribute over the minimum, which is unlike the minimum on TTFs alone.
At least, right-distributivity is fulfilled, a property inherited from Equation (2.7).
More precisely,

min( f |c, g|d) � h|e= min( f |c � h|e, g|d � h|e) (3.45)

holds for all f |c, g|d, h|e ∈F ��
Π×XΠ. To understand that, we calculate

minc∗he,d∗he( f ∗h, g∗h)

= minc◦arrh+e,d◦arrh+e( f ◦arrh+h, g◦arrh+h)

= minc◦arrh,d◦arrh( f ◦arrh, g◦arrh)+h

= minc,d( f ,g)◦arrh+h

= minc,d( f ,g)∗h .

with respect to Equation (3.39). Analogously, Equation (3.41) yields

min f∗h,g∗h(c∗h e, d ∗h e) = min f ,g(c,d)∗h e .



110 Chapter 3. Time-Dependent Road Networks

3.2.3 Computing with Additional Costs Efficiently

Section 3.2.2 extends the three basic operations (evaluation, linking, and mini-
mum) to work with pairs of TTFs and ACFs f |c ∈F ��

Π×XΠ. Here, we discuss
how these three operations can be computed efficiently.

Efficient Evaluation with Additional Costs. Evaluating a pair f |c∈F ��
Π×XΠ

for a given τ0 ∈ R (see page 104) can be done by applying binary search to the
sequence

�( f (0),γ0),( f
(1),γ1), . . . ,( f

(k−1),γk−1)�

that represents f |c just like in Equation (3.31). But in our experience, c has usu-
ally few points of discontinuity. So, one can store the ACF c separately as a
(supposedly short) sequence

�(ξ0,γ0),(ξ1,γ1), . . . ,(ξ�−1,γ�−1)� , (3.46)

such that c(τ) = γi for all τ ∈ (ξi,ξi+1]. To compute c(τ0) one can choose the
appropriate interval (ξi,ξi+1] by a linear scan7 and return γi as result. To compute
f (τ0), one can store the TTF f as sequence of bend points

�(x0,y0),(x1,y1), . . . ,(xm−1,ym−1)� (3.47)

as in Equation (3.1) and use the bucket data structure described in the context of
evaluating TTFs (see page 91) for fast evaluation. The only problem is how to
handle points of discontinuity. But this can be done easily by allowing xi = xi+1 if
f is discontinuous at xi (in the context of continuous TTFs we require xi < xi+1).

Efficient Minimum with Additional Costs. A method to compute the general-
ized minimum min( f |c, g|d) for given f |c, g|d ∈ F ��

Π×XΠ can be obtained by
generalizing how the minimum of TTFs is computed (see Algorithm 3.2 in Sec-
tion 3.1.4). To do so, one represents f |c and g|d as described by Equations (3.46)
and (3.47). More precisely, f |c is represented as a pair of sequences

��
(ξ0,γ0), . . . ,(ξ�−1,γ�−1)

�
,
�
(x0,y0), . . . ,(xm−1,ym−1)

��
,

where the first sequence represents the TTF f and the second represents the ACF
c. If g|d is represented analogously as

��
(ζ0,δ0), . . . ,(ζk−1,δk−1)

�
,
�
(x�0,y

�
0), . . . ,(x

�
n−1,y

�
n−1)

��
,

then min( f |c, g|d) can be computed by simultaneously scanning these four se-
quences from left to right, which takes O(| f |+ |c|+ |g|+ |d|) time. The details
are left to the reader.

7Though a linear scan takes linear time in theory, it is very cache efficient on arrays. So, it can
be performed very fast in practice if the sequence is not too long.



3.2. Time-Dependency with Additional Costs 111

Efficient Linking with Additional Costs. The generalized linking g|d � f |c
with f |c, g|d ∈ F ��

Π ×XΠ can be computed by generalizing the algorithm for
linking TTFs described in Section 3.1.4 (see Algorithm 3.1). This is analogous
to the minimum operation, where we also generalize the algorithm for computing
the minimum of TTFs. In case of linking, however, things are more complicated
and the resulting algorithm has superlinear running time.

Again, f |c and g|d are represented as pairs of sequences as described by Equa-
tions (3.46) and (3.47). That is, f |c is represented as

��
(ξ0,γ0), . . . ,(ξ�−1,γ�−1)

�
,
�
(x0,y0), . . . ,(xm−1,ym−1)

��
,

and g|d is represented as
��

(ζ0,δ0), . . . ,(ζk−1,δk−1)
�
,
�
(x�0,y

�
0), . . . ,(x

�
n−1,y

�
n−1)

��
.

The first sequence is the TTF and the second sequence is the ACF each. Anal-
ogously to Algorithm 3.1, g|d � f |c can be computed by scanning the four se-
quences. However, if f has negative discontinuities (see Section 2.1.1), we may
have to jump back when scanning through g and d. This is because of g|d � f |c=
g∗ f |d ∗ f c= g◦arr f + f |d ◦arr f +c, which means that the scanning through g
and d is governed by the scanning through arr f . So, if f has a negative disconti-
nuity, the same holds true for arr f , and we have to go back.

In the worst case, f has Θ(| f |) negative discontinuities on [0,Π). Moreover,
in the extreme case, f may increase arbitrarily heavily between two points of
discontinuity, which means that g and d must be scanned L/Π times, for L =
f (b)− limτ→a+ f (τ) being the increase of f between two neighboring points of
discontinuity a and b with a< b. This leads to a worst-case running time of

Θ
��
|g|+ |d|

�
·
Lf · | f |

Π
+ |c|

�

with Lf := max f −min f , because f and c are only scanned once, g and d may
be scanned Lf times for any negative discontinuity of f .

In the context of road networks with additional time-invariant costs, however,
things are better becauseCP = fP+ cP ∈FΠ is guaranteed for every path P, even
if fP and cP alone have discontinuities. That is, fP+cP is continuous and formally
fulfills the FIFO property. As a consequence, a TTF f can never increase more
than Π between two discontinuities in this setup. This means that g and d are
scanned at most once for every bend point of f . So, the worst-case running time
can be bounded by

O
��
|g|+ |d|

�
· | f |+ |c|

�
.

As in case of the generalized minimum operation, we omit the details of the
generalized linking algorithm and leave them to the reader.
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3.2.4 MC Paths with Piecewise Constant Additional Costs

The generalized basic operations not only work with constant (i.e., time-invariant)
but also with piecewise constant (i.e., time-dependent) additional costs. This
raises the question what properties MC paths have if edge weights are taken from
F ��

Π×XΠ instead of FΠ×R≥0.
It is relatively obvious that waiting can be beneficial in this setup. To under-

stand that, take a look at the TCF in Figure 3.8. This TCF has a negative disconti-
nuity, which violates the FIFO property and makes waiting beneficial. If waiting
is forbidden, then cycles can still be beneficial. Assume a cycle �u→ ·· · → u� is
present at the node u with τ � = arr f�u→···→u�(τ). If c�u→···→u�(τ) is sufficiently
small, then we have

C
�
arr f�u→···→u�(τ)

�
+ f�u→···→u�(τ)+ c�u→···→u�(τ)

=C(τ �)+ τ � − τ + c�u→···→u�(τ)<C(τ)

and by traveling the cycle we save some cost.
Note that time-dependent road networks with edge weights taken from F ��

Π×
XΠ (i.e., with additional time-dependent costs) are not a primary issue of this the-
sis. Instead, we only deal with MC queries for edge weights from FΠ×R≥0 (i.e.,
with additional time-invariant costs), which is already difficult enough. The route
planning technique for fast MC queries discussed in Chapter 6, however, needs to
deal with edge weights taken from F ��

Π×XΠ and forbidden waiting; regardless
whether additional costs of the underlying road network are time-dependent or
not. Although we strongly conjecture that (for given s, t ∈V,τ0 ∈R) there always
exists an MC paths in this setup, we have not worked out a proof so far. But there
is a simple condition that guaranties the existence of MC paths easily.

Lemma 3.23. Consider a graph G with edge weights taken from F ��
Π×XΠ and

s, t ∈V,τ0 ∈R where t is reachable from s. If inf f > 0 or minc> 0 holds for all
u→ f |c v ∈ E, then G contains an (s, t,τ0)-MC-path—though maybe with cycles.

Proof. Consider an arbitrary path P= �s→ ··· → t� ⊆ G. Set

Cmin := min
�

inf f +minc
�
� u→ f |c v ∈ E

�
,

which fulfills Cmin > 0. A path R= �s→ ·· · → t� with |R|> supCP/Cmin fulfills
infCR ≥ |R| ·Cmin > supCP. So, amongst all paths from s to t, only the ones with
�supCP/Cmin� or less hops (i.e., finitely many) can have a travel cost of supCP or
less for any departure time. That means, an (s, t,τ0)-MC-path exists in G.

The condition inf f > 0 or minc > 0 for all u→ f |c v should always be fulfilled
in practice. Note that we write inf f and sup f for TTFs f ∈F ��

Π instead of min f
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τ τ �

τ0

C = f + c

Figure 3.8. How waiting gets beneficial if edge weights are taken from F ��
Π×XΠ instead

of FΠ×R≥0. Assume the TCFC= f +c of an edge u→ f |c v with f |c ∈F ��
Π×XΠ has a

negative discontinuity at τ0. Arriving in the node u at time τ ≤ τ0, it pays off to wait until
τ � > τ0 before traveling along u→ f |c v. This is because of C(τ �)+ τ � − τ <C(τ).

and max f respectively, because f has points of discontinuity in general and may
not have a defined minimum or maximum hence. The statement of Lemma 3.23
is somewhat similar to a “finiteness criterion” by Orda and Rom (see Lemma 2 in
their article [70]). There, the TCF Ce of each edge e also must fulfill minCe > 0.
Note that Orda and Rom also consider waiting at nodes, which we do not allow.

Provided that the condition from Lemma 3.23 is fulfilled, we are able to prove
a generalized version of Lemma 3.17.

Lemma 3.24. Consider a graph G with f |c ∈ F ��
Π×XΠ and inf( f + c) > 0 for

all u→ f |c v ∈ E. For every (s, t,τ0)-MC-path P⊆G, there is δ > 0 such that P is
an MC path either for all τ ∈ (τ0−δ ,τ0) or for no τ ∈ (τ0−δ ,τ0).

Proof. Considering the proof of Lemma 3.23, we find that CostG(s, t, ·) is the
pointwise minimum of finitely many left-continuous TCFs, andCP is one of them.
So, whether P is an MC path or not can only change at departure times where two
such TCFs touch (including intersections) or at a point of discontinuity. That
two TCFs touch is only possible for isolated departure times and on intervals.
Moreover, there are only finitely many points of discontinuity.

This enables us to show the guaranteed existence of MC paths that are not only
valid on isolated departure times but on a right-closed and left-open interval.

Lemma 3.25. Consider a graph G with f |c ∈ F ��
Π×XΠ and inf( f + c) > 0 for

all u→ f |c v ∈ E. For s, t ∈V,τ0 ∈ R there is always a path P= �s→ ·· · → t� in
G, such that CP(τ) = CostG(s, t,τ) for all τ ∈ (τ0−δ ,τ0] with some δ > 0.

Proof. Lemma 3.23 ensures that one or more (s, t,τ0)-MC-paths exist in G and
considering the proof of this lemma we also find that CostG(s, t, ·) is the pointwise
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minimum of finitely many left-continuous TCFs CP1 , . . . ,CPk of paths P1, . . . ,Pk
in G. So, δ > 0 exists with CPi(τ) = CostG(s, t,τ) for all τ ∈ (τ0− δ ,τ0) with
some i ∈ {1, . . . ,k}. However, CPi and CostG(s, t, ·) are left-continuous, because
F ��

Π×XΠ is closed under linking and minimum (see Lemma 3.20 and 3.22). So,
CPi(τ0) = limτ→τ−0

CPi(τ) = limτ→τ−0
CostG(s, t,τ) = CostG(s, t,τ0) holds.

3.3 References

This chapter is partly based on a journal article published together with Geis-
berger, Sanders and Vetter [8] and also on two conference articles published to-
gether with Geisberger, Neubauer, and Sanders [6] as well as with Sanders [9].
Several wordings of these articles have been used or rephrased. Especially, this
applies to basic definitions, like earliest arrival (EA) and minimum cost (MC)
paths for example.

The detailed discussion of the properties of MC paths with additional time-
invariant (see Section 3.2.1) and time-dependent (see Section 3.2.4) costs has been
worked out newly for this thesis. This is also the case for the algebraic structure
(F ��

Π ×XΠ, � ,min) (see Section 3.2.2). The efficient computation of the basic
operations on TTFs (see Section 3.1.4) is also new but relatively straightforward.
It may, nevertheless, be interesting for people who want to put time-dependent
route planning algorithms into practice.

Much of the material in Section 3.1 is not new. The fundamental properties
of time-dependent minimum travel time paths (see Section 3.1.3) are already dis-
cussed by Dean [17]. Orda and Rom [69] already consider functions as first-class
citizens, but their notation is still in terms of function evaluation with real-valued
arguments. Arrival time functions and departure time functions of edges and paths
(as in Section 3.1.1) have also been used by Dean in the past [17]. Explicit alge-
braical operations on TTFs (as in Section 3.1.2) have become common in the last
few years (see Delling [19] or Batz et al. [6] for example).8 Using the equiva-
lent arrival time functions with function composition as linking operator is also
common (see Foschini et al. [36]).

8Delling usually writes f ⊕g instead of g∗ f to denote linking of TTFs f ,g.



4
Algorithmic Ingredients

This chapter describes the basic time-dependent shortest path algorithms utilized
by TCHs and provides proofs of correctness for all of them. These algorithms
are all variants of Dijkstra’s algorithm and have similar structure hence. This
means they all grow a search space from the start node while repeatedly processing
and updating node labels and predecessor information by relaxing edges. We
begin this chapter with a closer look at the common structure of these Dijkstra-
like algorithms (see Section 4.1).

Most of the basic Dijkstra-like algorithms in this thesis only assign a single
label to every node. Some of these basic single-label searches run in forward
direction and some in backward direction. We provide detailed descriptions and
proofs both for forward (see Section 4.2) and backward searches (see Section 4.3).
Two Dijkstra-like algorithms, however, assign multiple labels to a node. This
is similar to the basic multi-label search described earlier in Section 2.2.6. We
provide descriptions and proofs of correctness for these time-dependent multi-
label searches, too (see Section 4.4).

4.1 Common Structure of Dijkstra-like Algorithms

The basic Dijkstra-like algorithms considered in this thesis can be distinguished
from one another by a few behavioral characteristics. These characteristics are
described in Section 4.1.1. Dijkstra-like algorithms compute information not only
about time-dependent travel times and costs but also about the corresponding op-
timal routes. This information is stored by the predecessor information set up
during the computation. It implicitly represents a predecessor graph. This is ex-
plained in Section 4.1.2.
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4.1.1 Characterizing Different Dijkstra-like Algorithms

Dijkstra-like search algorithms all have a very similar structure: Just like the orig-
inal Dijkstra search (see Section 2.2.3), they grow a search space from the start
node s while repeatedly processing and updating node labels and predecessor in-
formation by relaxing edges. Usually, a label of a node u represents some kind
of minimum distance from s to u. The predecessor information of u stores one
or more predecessor nodes of u on the corresponding optimal paths. In case of
single-label search, nodes can have two possible states during computation: They
are either active or inactive. The outgoing edges u→ v of a node u are relaxed
whenever the current label of the node u is somehow minimal amongst all labels
of currently active nodes. After relaxing all its edges the node u gets inactive. In
case of multi-label search it is similar, but with the difference that it is not the
nodes but the labels that are either active or inactive.

The final node labels and the final predecessor information represent the de-
sired result of a Dijkstra-like shortest path computation. The final predecessor in-
formation of all nodes implicitly represents a subgraph that contains one or more
optimal paths from s to every reachable node (see Section 4.1.2). It is, in fact, a
generalization of the predecessor tree mentioned in Section 2.2.3

A Dijkstra-like computation is usually controlled by a priority queue (PQ, see
Section 2.2.2). More precisely, the distinction of active and inactive nodes (or
labels) is usually determined by the membership in the PQ. A node (or label)
that has minimal key with respect to the PQ is the node (or label) whose edges
are relaxed next. The common structure of Dijkstra-like algorithms suggests the
following few characteristics by that the different algorithms can be distinguished:

1. What is a node label?

2. Has a node a single label or multiple labels?

3. What is the structure of the predecessor information?

4. What is the key of a node or label with respect to the PQ?

5. How are the node labels updated on edge relaxation?

6. How is the predecessor information updated on edge relaxation?

7. How is the start node labeled initially?

8. Can the state of a node or label change from inactive to active multiple times?

The 8th item in the above list is, at least in case of single-label searches, as good
as to ask whether a node can be reinserted into the PQ during computation or not.
In case of multi-label searches, labels do not change from inactive to active (at
least in this thesis).

As a basic example of single-label search, Dijkstra’s algorithm [33], which
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we recapitulate in Section 2.2.3 (see Algorithm 2.1), fits in the above taxonomy
as follows: The label of a node v ∈ V is a non-negative real number d[v] ∈ R≥0.
The predecessor information of v is simply the node u = p[v] ∈ V from that the
label d[v] of v has been improved last by relaxing an edge u→c v ∈ E. The key
with respect to the PQ is simply the label d[v] itself. Updating the label d[v]
is done by assigning d[v] := min{d[v], d[u] + c} when u →c v is relaxed. The
predecessor node p[v] is updated by assigning p[v] := u if relaxing u→c v results
in an improvement of the label d[v] (i.e., if d[u]+c< d[v] holds before relaxation).
The initial node label of the start node s is simply d[s] = 0. As a result of the simple
structure of the node labels, a node never gets active again once it changed from
active to inactive. For this reason, one usually speaks of settling a node in the
context of Dijkstra’s algorithm.

The basic multi-label search [48, 60], which we recapitulate in Section 2.2.6
(see Algorithm 2.4), also fits in the above taxonomy. Because of the two-dimen-
sional travel costs, there is no unique optimal path in general (see Section 2.1.3),
and every tentative travel cost of a node corresponds to another tentative path.
For this reason, travel costs and predecessor information of a node u are stored
together in one label (i,u,γ|δ , i�). Removing (i,u,γ|δ , i�) from the PQ triggers
the relaxation of the outgoing edges of u. Relaxing an edge u→c|d v triggers the
creation of a label ( j,v,γ + c|δ + d, i) with j being the next available label id. A
node label is never updated, but may be deleted if a newly created label of the same
node dominates its two-dimensional cost. The predecessor information needs not
to be updated separately of course. The start node s gets the single initial label
(0,s,0|0,⊥) assigned. A label, once changed from active to inactive, can never
get active again.

4.1.2 Predecessor Graphs

Dijkstra’s algorithm [33] (see Section 2.2.3) not only computes shortest distances
from a start node s to all other nodes in a graph, but also a shortest path tree. This
shortest path tree is just the predecessor tree G(p). For the other Dijkstra-like
algorithms it is similar. For example, time-Dependent Dijkstra [35] (see Sec-
tion 4.2.1), which computes EAG(s,u,τ0) for all nodes u ∈ V that are reachable
from s with departure time τ0, also builds a predecessor tree. This predecessor
tree is an (s,τ0)-EA-tree with route node s (see Section 3.1.3). For most Dijkstra-
like algorithms in this thesis, however, the predecessor information must be able
to encode multiple paths to every reachable node.

Single-Label Searches. In case of single-label searches, it can happen that not
only a single departure time must be considered, but intervals of departure time
(an example is TTP search [69], see Section 4.2.2). Other single-label searches
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compute approximate results (as in case of EA interval search, for example, see
Section 4.2.5). In both cases, the predecessor information must be able to encode
multiple paths to every reachable node. For this reason, it is no longer enough
that the predecessor information p[u] of a node u consists of a single node, as it is
the case for Dijkstra’s algorithm and time-dependent Dijkstra. Instead, p[u] stores
a set of predecessor nodes. Given a set of predecessor nodes p[u] for all nodes
u ∈V we often write G(p) := (V (p), E(p)) with

V (p) :=
�
u,v ∈V

�
�u→ v ∈ E(p)

�
, (4.1)

E(p) :=
�
u→ v ∈ E

�
�u ∈ p[v]

�
(4.2)

to denote the predecessor graph of the underlying single-label search. This graph,
which is implicitly represented by the predecessor information p, is simply the
subgraph of G made up by all edges u→ v with u ∈ p[v].

Note that the earlier definition of G(p) as predecessor tree (according to Equa-
tions (2.25) and (2.26)) perfectly fits into the above generalized definition of G(p)
as predecessor graph: If a node u is the predecessor of a node v (i.e., p[v] = u), we
simply identify u with the singleton set {u}. If a node v has no predecessor (i.e.
p[v] =⊥), we identify ⊥ with the empty set /0.

Multi-Label Searches. In case of multi-label searches, there is no separate set
of predecessor nodes p[u] for every node v. Instead, the predecessor information
of u is attached to the labels � ∈ L[u] of u (see Section 2.2.6 where a basic multi-
label search is described). Every label � = (i,u,γ|δ , i�) not only contains its own
unique id i, but also the unique id i� of its preceding label. This leads to the
definition of G(L) := (V (L), E(L)) with

V (L) :=
�
u,v ∈V

�
�u→ v ∈ E(L)

�
, (4.3)

E(L) :=
�
u→ v ∈ E

�
� there is (i,v, ·|·, i�) ∈ L[v],(i�,u, ·|·, ·) ∈ L[u]

�
(4.4)

to denote the predecessor graph of the underlying multi-label computation.

4.2 Forward Single-Label Searches

This section describes basic time-dependent single-label search algorithms that
run in forward direction. Single-label searches that run backward are described
in Section 4.3. We start with two well-known time-dependent single-label search
algorithms, namely time-dependent Dijkstra [35] (see Section 4.2.1) and travel
time profile (TTP) search [69] (see Section 4.2.2). All other single label search
algorithms considered in this section have been developed in the context of TCHs.
These are TTP interval search (see Section 4.2.3), approximate TTP search (see
Section 4.2.4), and earliest arrival (EA) interval search (see Section 4.2.5).
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4.2.1 Time-Dependent Dijkstra

Given a start node s and a departure time τ0, the well known time-dependent
Dijkstra [35] (see Algorithm 4.1) computes EAG(s,u,τ0) for all u ∈ V as well
as a corresponding (s,τ0)-EA-tree. The initial node label τ[s] of the start node
s is the departure time τ0, the label τ[u] of a node u is the tentative EA time for
traveling from s to u. The predecessor information p[u] of u is the predecessor
node of u on a corresponding tentative EA path. When we relax an edge u→ f v,
we update the label τ[v] of v by

τ[v] := min{τ[v], arr f (τ[u])} . (4.5)

Note that the arrival time function arr f is not directly present in G and cannot be
evaluated directly. Instead, we evaluate the corresponding TTF f , which is stored
with the edge u→ f v. So, we actually compute f (τ[u])+ τ[u] which is the same
as arr f (τ[u]) (for efficient evaluation of TTFs see Section 3.1.4).

If τ[v] gets decreased (see Line 8 and 9), we also update the predecessor infor-
mation by p[v] := u (see Line 10). As PQ key of a node v we simply use its current
label τ[v] (see Lines 11 and 12). Time-dependent Dijkstra works very similar to
the original Dijkstra (see Algorithm 2.1 in Section 2.2.3). This implies that nodes
are never reinserted into the PQ. The details are explained in the following.

Correctness. Step by step we prove that time-dependent Dijkstra really com-
putes the desired result; that is, the EA times of all reachable nodes for a given

Algorithm 4.1. The time-dependent version of Dijkstra’s algorithm computes final

labels τ[u] = EAG(s,u,τ0) for all reachable nodes u (and τ[u] = ∞ if u not reach-

able). The final predecessor graph G(p), which is implicitly represented by the

array p, is a (s,τ0)-EA-tree.

1 procedure tdDijkstra(s :V, τ0 :R)
2 τ[u] := ∞ for all u ∈V , τ[s] := τ0 // initial node labels
3 p[u] :=⊥ for all u ∈V // initial predecessor information
4 Q := {(s,τ0)} : PriorityQueue
5 while Q �= /0 do
6 u := Q.deleteMin()
7 foreach u→ f v ∈ E do
8 if arr f (τ[u])≥ τ[v] then continue
9 τ[v] := arr f (τ[u]) // update node label of v
10 p[v] := u // update predecessor information of v
11 if v �∈ Q then Q.insert(v, τ[v])
12 else Q.updateKey(v, τ[v]) // maintain PQ
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departure time as well as a corresponding EA tree. We start with the observation
that every current label τ[v] of v ∈V is always the arrival time of the correspond-
ing current path from s to v represented by the predecessor information. This
implies that the labels maintained by time-dependent Dijkstra approach the EA
times from above.

Lemma 4.1. During execution of time-dependent Dijkstra, we always have τ[v] =
arr fPv(τ0) with Pv := �s= p[. . . p[v] . . . ]→ ·· · → p[v]→ v� for all v ∈V reached
so far.

Proof. We argue by induction over |Pv|. For |Pv|= 1 the statement is clearly true.
For |Pv| > 1 assume τ[u] = arr fPu(τ0) for all Pu := �s = p[. . . p[u] . . . ]→ ··· →
p[u]→ u� with |Pu| < |Pv|. As τ[v] has been set by relaxing the edge p[v]→ f v,
we have τ[v] = arr f (τ[p[v]]) = arr f (arr fPp[v]

(τ0)) = arr fPv(τ0).

Corollary 4.2. During execution of time-dependent Dijkstra, τ[v]≥ EAG(s,v,τ0)
is always true for all v ∈V.

The following proof of correctness is very simple. It exploits that time-dependent
Dijkstra relaxes the edges of at least one EA path from the start node s to each
node u in the right order.

Lemma 4.3. After time-dependent Dijkstra terminates, τ[v] = EAG(s,v,τ0) holds
for all v ∈V.

Proof. Assume, there is a node v with τ[v] �= EAG(s,v,τ0) after termination. Con-
sider a prefix-optimal (s,v,τ0)-EA-path P = �s→ ·· · → v�, which exists due to
Lemma 3.10. Choose the minimum hop prefix path �s→ ·· ·→ u→ f w� of P such
that τ[w] �= EAG(s,w,τ0), which implies τ[u] = EAG(s,u,τ0). The edge u→ f w
is relaxed as soon as u is removed from the PQ and we can be sure that

τ[w]≤ arr f (τ[u]) = arr f (EAG(s,u,τ0)) = EAG(s,w,τ0)

holds afterwards, because P is a prefix-optimal EA path. But Corollary 4.2 yields
τ[w]≥ EAG(s,w,τ0) implying τ[w] = EAG(s,w,τ0), a contradiction.

Together, Lemma 4.1 and 4.3 directly yield the correctness of time-dependent
Dijkstra.

Corollary 4.4. After time-dependent Dijkstra terminates, τ[v] =EAG(s, t,τ0) holds
for all v ∈V, and G(p) is an (s,τ0)-EA-tree.

So far, we only showed that time-dependent Dijkstra yields an EA path for
all reachable nodes after the PQ has run empty. But for us this is not enough.
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To obtain fast route planning techniques, we want to terminate the execution of
Dijkstra-like algorithms as early as possible. Typically, Dijkstra-like algorithms
show a certain kind of monotonous behavior that enables us to stop their execution
earlier.

Lemma 4.5. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during time-dependent Dijkstra. Let τ1,τ2, . . . be the respective node labels at
time of removal. Then, τ1 ≤ τ2 ≤ . . . holds.

Proof. We argue by induction over the number i of removals from the PQ. For
i = 2, consider the removal of v2, which has been inserted by relaxing the edge
s→ f v2 (with s = v1). We have τ2 = arr f (τ1) = f (τ1)+ τ1 ≥ τ1. For larger i,
assume τ1 ≤ τ2 ≤ ·· · ≤ τi−1 and consider what happens when vi is removed. The
node vi has been updated last by relaxing an edge v j → f vi with j< i. So, we have
τi = arr f (τ j) = f (τ j)+ τ j ≥ τ j. For j = i−1, this means τi ≥ τi−1. Otherwise,
vi is already in the PQ when vi−1 is removed, which implies τi−1 ≤ τi.

Interestingly, the above proof does not utilize the FIFO property. Instead, it is
enough that the travel costs are non-negative.

Lemma 4.5 implies that Q.min() never decreases during the execution of time-
dependent Dijkstra. Moreover, it is obvious that time-dependent Dijkstra never
increases a node label during execution. Both is used in the proof of Lemma 4.6
below. Note that all other Dijkstra-like algorithms in this thesis fulfill analogous
properties.

Lemma 4.6. The label τ[v] of v does not change anymore as soon as Q.min() ≥
τ[v] is fulfilled. This implies that τ[v] = EAG(s,v,τ0) is guaranteed afterwards.

Proof. As Q.min() never decreases and τ[v] never increases, we know that the
condition Q.min() ≥ τ[v], once fulfilled, stays true until the execution ends. Let
qv and τv be the values of Q.min() and τ[v] at the moment when Q.min() ≥ τ[v]
gets true (i.e., qv ≥ τv). The label τ[v] can only be further changed by removing
a node u from the PQ and then relaxing an edge u→ f v. But relaxing this edge
cannot further improve τ[v] because of arr f (τ[u]) ≥ arr f (qv) ≥ arr f (τv) ≥ τv.
The reason is that τ[u] = Q.min()≥ qv holds whenever a node u is removed after
Q.min()≥ τ[v] got true.

Obviously, the condition Q.min()≥ τ[v] gets true not later than the moment when
v is removed from the PQ.

Corollary 4.7. As soon as time-dependent Dijkstra removes a node v from the
PQ, τ[v] = EAG(s,v,τ0) is always fulfilled afterwards. Time-dependent Dijkstra
never reinserts a node into the PQ hence.
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It must be noted that other Dijkstra-like algorithm may reinsert nodes into the PQ.
This is due to the usually more complicated structure of node labels. In the context
of time-dependent Dijkstra, node labels are, in fact, very simple.

Of course, the condition Q.min()≥ τ[v] not only implies that the node label of
v is the sought-after EA time of v. It also implies, that the predecessor information
p[v] represents a corresponding EA path to v, because of Lemma 4.1.

Corollary 4.8. As soon as Q.min() ≥ τ[v] gets true, p[v] does not change any-
more, and Pv = �s = p[. . . p[v] . . . ] → ·· · → p[v] → v� is guaranteed to be an
(s,v,τ0)-EA-path afterwards.

We summarize Corollary 4.7 and 4.8 in a single statement.

Corollary 4.9. As soon as time-dependent Dijkstra removes a node v from the
PQ, we can be sure that τ[v] = EAG(s,v,τ0) holds, and that �s= p[. . . p[v] . . . ]→
·· · → p[v]→ v

�
is a prefix-optimal (s,v,τ0)-EA-path (if v is reachable from s).

Running Time. Like in case of original Dijkstra, nodes are never reinserted
into the PQ by time-dependent Dijkstra (see Corollary 4.7). As a consequence,
time-dependent Dijkstra works quite similar as original Dijkstra: deleteMin is
never invoked more than |V | times, insert and updateKey cannot be invoked more
than O(|E|) times. The resulting running time is mainly governed by the perfor-
mance of the PQ and by the performance of TTF evaluation (see Section 3.1.4 on
page 90). So, assuming that road networks are practically sparse graphs (i.e.,
|E| = O(|V |)) and that TTF evaluation needs average constant time (see Sec-
tion 3.1.4), we expect that time-dependent Dijkstra has similar running time and
memory usage as the original Dijkstra in practice; that is, O(|V | · log |V |) time if a
binary heap is used to realize the PQ. Implementing TTF evaluation with binary
search instead of the bucket structure described in Section 3.1.4 would result in
a worst-case running time of O(|V | · logF+ |V | · log |V |), with F being the maxi-
mum complexity of a TTF in G.

One-to-one Query. It is a well-known and obvious fact that time-dependent Di-
jkstra can be used to answer one-to-one EA queries, just like the original version
of Dijkstra’s algorithm can be used for one-to-one queries with constant travel
costs. Given a start node s, a destination node t, and a departure time τ0, one sim-
ply runs time-dependent Dijkstra. After termination, the path �s= p[. . . p[u] . . . ]→
·· ·→ p[t]→ t� is an (s, t,τ0)-EA-path and hence the desired result. However, it is
not necessary to perform a full run of time-dependent Dijkstra. Instead, it can be
stopped earlier. Due to Corollary 4.9, the computation can be stopped as soon as
t is removed from the PQ. We refer to this modification as the one-to-one version
of time-dependent Dijkstra.
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4.2.2 Travel Time Profile Search

Given a start node s, travel time profile search [69] (or TTP search for short,
see Algorithm 4.2) computes TTG(s,u, ·) for all u ∈ V . Accordingly, the node
label F [u] of a node u is a tentative TTP for traveling from s to u. The tentative
predecessor graph G(p) contains the corresponding tentative EA paths found so
far. When relaxing an edge u→ f v we update the label F [v] of v by computing

F [v] := min(F [v], f ∗F [u]) . (4.6)

The PQ key of a node u is the minimum of its current label; that is, minF[u].
The reader may notice that we check whether F [v] lies completely under gnew =
f ∗F [u] and vice versa (see Lines 9 and 10). Both are essentially the same as
computing min(gnew, F [v]) and take O(|gnew|+ |F [v]|) time hence. After termi-
nation, we have F [u] = TTG(s,u, ·), and G(p) contains an (s,u,τ)-EA-path for all
u ∈V,τ ∈R (if u is reachable from s).

Correctness. TTP search can be regarded as special case of approximate TTP
search, whose final node labels

�
F [v],F [v]

�
fulfill F [v](τ)≤TTG(s,v,τ)≤F [v](τ)

for all v ∈ V and all τ ∈ R (see Section 4.2.4). So, a node label F [v] of TTP
search corresponds to a node label

�
F [v],F [v]

�
of approximate TTP search with

F [v] = F [v]. The following statements are essentially special cases of statements
elaborately described a little later (see Section 4.2.4). So, proofs are omitted.

Algorithm 4.2. Travel time profile (TTP) search computes final labels F [u] =

TTG(s,u, ·) for all nodes u. The final predecessor graph G(p) contains an (s,u,τ)-

EA-path for all reachable nodes u and all departure times τ ∈R.

1 procedure ttpSearch(s :V )
2 F [u] := ∞ for all u ∈V , F [s] :≡ 0 // node labels are TTFs
3 p[u] := /0 for all u ∈V // predecessor information consists of sets
4 Q := {(s,0)} : PriorityQueue
5 while Q �= /0 do
6 u := Q.deleteMin()
7 foreach u→ f v ∈ E do
8 gnew := f ∗F [u]
9 if gnew(τ)≥ F [v](τ) for all τ ∈R then continue
10 if gnew(τ)< F [v](τ) for all τ ∈R then p[v] := /0
11 p[v] := {u}∪ p[v] // remove or remember tentative predecessors of v
12 F [v] := min(F [v], gnew) // update tentative node label of v
13 if v �∈ Q then Q.insert(v, minF [v])
14 else Q.updateKey(v, minF [v]) // minimum of TTF is PQ key
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Like time-dependent Dijkstra, TTP search shows a typical monotonous behav-
ior. Nearly all Dijkstra-like algorithms considered in this thesis do this.

Lemma 4.10. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during TTP search. Let F1,F2, . . . be the respective node labels at time of
removal. Then, minF1 ≤minF2 ≤ . . . holds.

So, Q.min() never decreases during TTP search runs. Obviously, maxF [v]
never increases for any node v ∈ V . Together this yields a criterion, when node
labels and predecessor information get final for a node v.

Lemma 4.11. As soon as Q.min() ≥ maxF [v] becomes true for a node v, F [v]
and p[v] do not change anymore. From that moment on, F [v] = TTG(s,v, ·) holds
true and G(p) is guaranteed to contain a prefix-optimal (s,v,τ)-EA-path for all
τ ∈R (provided that v is reachable from s).

Lemma 4.12. After TTP search terminates, F [v] = TTG(s,v, ·) holds for all v∈V.
Also, the predecessor graph G(p) contains a prefix-optimal (s,v,τ)-EA-path in G
for all τ ∈R if v is reachable from s.

Running Time. In contrast to time-dependent Dijkstra, TTP search may reinsert
nodes into the PQ after they have been removed. In our experience, however, this
happens rarely and has not much impact on the performance in the context of
time-dependent road networks. Nevertheless, TTP search is very expensive in
time and space and not feasible for larger road networks. This is confirmed by
our experiments (see Section 5.6). The reason is that the complexity of the node
labels tends to increase as TTP search goes on.

To understand that, consider how complex g ∗ f and min( f ,g) can get with
f ,g ∈ FΠ, and how this involves that node labels get more and more complex
during TTP search. In the worst case, we have |g∗ f |= | f |+ |g| and |min( f ,g)|=
Ω(| f |+ |g|) (see Section 3.1.4). First, we take a closer look at |g∗ f |. In practice,
we rather expect |g ∗ f | ≈ | f |+ |g| than |g ∗ f | being small. This is because it is
not probable that many of the values

. . . , f0.x+ f0.y, f1.x+ f1.y, . . . f| f |−1.x+ f| f |−1.y, . . .

coincide with many of the x-values . . . ,g0.x,g1.x, . . . ,g|g|−1.x, . . . . It also seems
not so probable that many bend points of g∗ f are redundant in the sense of being
collinear with neighboring bend points. It seems likely, hence, that most bend
points of f and g have a corresponding bend point in g∗ f .

In case of min( f ,g), things are different. Here, it is possible that TTFs may not
intersect very often. If this is the case, we rather expect that |min( f ,g)| stays near
| f | or |g|. If f and g have similar complexity (i.e., | f | ≈ |g|), we optimistically
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assume |min( f ,g)| ≈ | f | ≈ |g|. However, |g ∗ f | ≈ | f |+ |g| is bad enough in
practice, even if |min( f ,g)| tends to be well-behaved (i.e., |min( f ,g)| ≈ | f | ≈ |g|
instead of |min( f ,g)|= Ω(| f |+ |g|)). To understand that, consider the relaxation
of an edge u → f v. The tentative TTP F [u] is linked with the TTF f and we
basically expect | f ∗ F [u]| ≈ |F [u]|+ | f |, as explained above. In other words,
| f ∗F [u]| > |F [u]| is not unlikely. As f ∗F [u] is used to update the node label of
v by assigning F [v] := min(F [v], f ∗F [u]), we expect that the complexity of the
updated label tends to be larger than |F [u]|; that is,

�
�min( f ∗F [u],F [v])

�
�≈ | f |+

�
�F [u]

�
��

�
�F [v]

�
� ,

even if the minimum does not contribute to the increase. So, the complexity of
the processed node labels should increase during TTP search. We expect that the
processing of node labels is very time-consuming hence.

Assume, as a simple example, that G is a path �u1→ f1 · · ·→ f�−1
u��with | fi|=

M for all i∈ {1, . . . , �−1}. Now, run TTP search with start node s := u1. Relaxing
the edges u1 → f1 u2,u2 → f2 u3, . . . ,u�−1 → f�−1

u� one after another results in the
node labels F [u2],F [u3], . . . ,F [u�], respectively, with worst-case complexity

�
�F [ui]

�
�= (i−1)M ,

because of F [ui] = fi−1 ∗ · · · ∗ f1. Then, we expect that relaxing the i-th edge
ui → ui+1 takes Θ(iM) time. This leads to an overall running time of

Θ
� �−1

∑
i=1

iM
�
= Θ(�2M) (4.7)

in the worst case. If one chooses the x-values of fi in a way that none of them
coincides with the y-values of arr( fi−1 ∗ fi−2 ∗· · ·∗ f1), then this worst-case really
occurs. Note that the x-values of fi can also be chosen in a way that fi ∗ fi−1 ∗ · · ·∗
f1 does not contain any neighboring collinear bend points.

One-to-one Query. Analogous to time-dependent Dijkstra, TTP search can be
used to answer one-to-one TTP queries. To compute TTG(s, t, ·) for given s, t ∈
V , one simply runs TTP search returning the TTP F [t] after termination. It is
not necessary to run TTP search completely however. Instead the search can be
stopped as soon as Q.min() ≥ maxF [t] gets true. Then, F [t] has already reached
its final value TTG(s, t, ·) and G(p) already contains a prefix-optimal (s, t,τ)-EA-
path for all τ ∈R. This follows from Corollary 4.11.

4.2.3 Travel Time Profile Interval Search

As TTP search (see Algorithm 4.2 in Section 4.2.2) is so expensive, we use travel
time profile interval search (or TTP interval search for short, see Algorithm 4.3) as
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Algorithm 4.3. The travel time profile (TTP) interval search computes final labels

[q[u],r[u]] =
�
TTG(s,u), TTG(s,u)

�
for all nodes u. As in case of TTP search, G(p)

contains an (s,u,τ)-EA-path for all reachable nodes u and all departure times τ ∈R

after termination.

1 procedure ttpIntervalSearch(s :V )
2 [q[u],r[u]] := [∞,∞] for all u ∈V , [q[s],r[s]] := [0,0] // labels are intervals
3 p[u] := /0 for all u ∈V // predecessor information consists of sets
4 Q := {(s,0)} : PriorityQueue
5 while Q �= /0 do
6 u := Q.deleteMin()
7 foreach u→ f v ∈ E do
8 [qnew,rnew] :=

�
q[u]+min f , r[u]+max f

�

9 if qnew > r[v] then continue
10 if rnew < q[v] then p[v] := /0 // remove suboptimal predecessors
11 p[v] := {u}∪ p[v] // remember a tentative predecessor of v
12 if qnew ≥ q[v] and rnew ≥ r[v] then continue
13 [q[v],r[v]] :=

�
min{q[v],qnew}, min{r[v],rnew}

�
// update label of v

14 if v �∈ Q then Q.insert(v, q[v])
15 else Q.updateKey(v, q[v]) // lower bound of the interval is PQ key

a relatively loose approximation of TTP search. Instead of TTG(s,u, ·) it computes
the interval [TTG(s,u),TTG(s,u)] for every node u ∈ V . Hence, the label of a
node u is no more a tentative TTP but a tentative interval [q[u],r[u]]. The tentative
predecessor graph G(p) contains corresponding tentative EA paths for all possible
departure times τ ∈ R. When relaxing an edge u→ f v we update the label of a
node v by

[q[v],r[v]] :=
�
min{q[v], q[u]+min f}, min{r[v], r[u]+max f}

�
. (4.8)

As PQ key of a node u we use q[u]. Like in case of TTP search, nodes may also be
reinserted into the PQ from time to time. Again, this happens rarely in practice.

Note that the predecessor graph G(p) computed by TTP interval search is
expected to contain more edges than the one computed by exact TTP search (see
Section 4.2.2) and also more edges than the one computed by approximate TTP
search (see Section 4.2.4).

Correctness. We argue that TTP interval search is a special case of approxi-
mate TTP search (see Section 4.2.4). This is analogous to TTP search (see Sec-
tion 4.2.2), which is a special case of approximate TTP search, too. In case of TTP
interval search, the lower and upper bounds F and F , respectively, are simply con-
stant functions. Most of the following statements are essentially special cases of
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statements elaborately described a little later (see Section 4.2.4). So, proofs are
omitted.

Lemma 4.13. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during TTP interval search. Let [q1,r1], [q2,r2], . . . be the respective node
labels at time of removal. Then, q1 ≤ q2 ≤ . . . holds.

Lemma 4.14. As soon as Q.min() > r[v] becomes true for a node v, [q[v],r[v]]
and p[v] do not change anymore. From that moment on, TTG(s,v,τ) ∈ [q[v],r[v]]
is guaranteed for all τ ∈R. Also, G(p) contains a prefix-optimal (s,v,τ)-EA-path
for all τ ∈R ever after.

Note that the final label [q[v],r[v]] of a node v is not only some interval con-
taining TTG(s,v,τ) for all τ ∈ V . In fact, it is the smallest possible interval that
can be computed in terms of minima and maxima of TTFs.

Lemma 4.15. After TTP interval search terminates, we know that [q[v],r[v]] =�
TTG(s,v),TTG(s,v)

�
holds for all v ∈V.

Proof. Consider a path �s= v1 → f1 · · · → vk−1 → fk−1
vk� with

TTG(s,v j) =
j−1

∑
i=1

min fi

for 1 ≤ j ≤ k (such a path is simply a shortest path with respect to constant edge
costs that we obtain by replacing each edges TTF g with ming). Choose j minimal
such that q[v j] = TTG(s,v j) but q[v j+1] �= TTG(s,v j+1). This yields

TTG(s,v j+1) = TTG(s,v j)+min f j

= q[v j]+min f j ≥ q[v j+1]> TTG(s,v j+1) ,

which cannot be the case. Regarding the upper bound r[v], one can argue analo-
gously.

Lemma 4.15 enables us to formulate the statement of Lemma 4.14 in a more
specific way.

Corollary 4.16. As soon as Q.min()> r[v] becomes true for a node v,

TTG(s,v,τ) ∈ [q[v],r[v]] =
�
TTG(s,v),TTG(s,v)

�

is guaranteed for all τ ∈R. Also, G(p) contains a prefix-optimal (s,v,τ)-EA-path
for all τ ∈R ever after.
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Running Time. To our experience, TTP interval search has similar running time
as time-dependent Dijkstra (see Section 4.2.1) on road networks. On the one hand,
this is because reinsertions into the PQ do not happen too often. On the other hand,
this comes from the fact that edge relaxations take similar running time as in case
of time-dependent Dijkstra. To do so, we store min f and max f with each edge
u→ f v and perform edge relaxations in constant time then. Expecting only few
reinserts into the PQ, we expect a running time near O(|V | · log |V |) hence.

4.2.4 Approximate Travel Time Profile Search

Approximate travel time profile search (or approximate TTP search for short, see
Algorithm 4.4) is, like TTP interval search, an approximate version of TTP search.
Approximate TTP search is far more accurate than TTP interval search but runs
significantly slower. However, it still runs much faster than TTP search. The idea
is to use approximate TTFs and TTPs instead of exact ones, because they tend to
have much less bend points and can be processed much faster hence.

For all nodes u ∈ V the approximate TTP search computes pairs of TTFs
(F [u],F [u]) that fulfill F [u](τ)≤ TTG(s,u,τ)≤ F [u](τ) for all τ ∈R after termi-
nation. We call F [u] and F [u] lower and upper bounds respectively. Correspond-
ingly, the pairs of TTFs (F [u],F [u]) act as node labels. They represent tentative
lower and upper bounds of the TTP for traveling from s to u during computation.
The tentative predecessor graph G(p) contains corresponding tentative EA paths
for all departure times τ ∈R. As PQ key of a node u we use minF[u]. Just like in
case of TTP search, reinserts into the PQ are possible.

When an edge u→ f v is relaxed (see Line 15), the label (F [v],F [v]) of v is
updated by

�
F [v],F [v]

�
:=

�
min

�
F [v], f ∗F [u]

�
, min

�
F [v], f ∗F [u]

��
, (4.9)

where f and f are lower and upper bounds of f , respectively (i.e., f (τ)≤ f (τ)≤

f (τ) for all τ ∈R). Figure 4.1 illustrates this situation. The bounds f and f (see
Line 8 and 9) can either be computed during the execution of the algorithm or
during a preprocessing step. The use of f and f instead of f already makes F and

F lower and upper bounds respectively. The running time can be further reduced,
however, if F and F are further approximated. But this must be done during
execution (see Lines 16 to19). Note that the predecessor graph G(p) computed by
approximate TTP search is expected to contain more edges than the one computed
by exact TTP search (see Section 4.2.2), but less edges than the one computed by
TTP interval search (see Section 4.2.3).
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Algorithm 4.4. Given an s ∈ V the approximate travel time profile (TTP) search

computes pairs of bounding TTFs
�
F [u],F [u]

�
; that is, F [u](τ) ≤ TTG(s,u,τ) ≤

F [u](τ) holds for all u ∈ V and τ ∈ R. After termination G(p) ⊆ G contains a

prefix-optimal (s,u,τ)-EA-path for all nodes u that are reachable from s and for all

τ ∈R.

1 procedure approximateTtpSearch(s :V )
2 F [u] := F [u] := ∞ for all u ∈V , F [s] := F [s] :≡ 0
3 p[u] := /0 for all u ∈V
4 Q := {(s,0)} : PriorityQueue
5 while Q �= /0 do
6 u := Q.deleteMin()
7 foreach u→ f v ∈ E do
8 let f ∈FΠ be an upper bound of f with

�
� f
�
�� | f |

9 let f ∈FΠ be a lower bound of f with
�
� f
�
�� | f |

10
�
gnew, gnew

�
:=

�
f ∗F [u], f ∗F [u]

�

11 if gnew(τ)≥ F [v](τ) for all τ ∈R then continue

12 if gnew(τ)< F [v](τ) for all τ ∈R then p[v] := /0
13 p[v] := {u}∪ p[v]
14 if gnew(τ)≥ F [v](τ)∧gnew(τ)≥ F [v](τ) for all τ ∈R then continue

15
�
F [v],F [v]

�
:=

�
min

�
F [v], gnew

�
, min

�
F [v], gnew

��

16 if |F [v]| gets too large then
17 replace F [v] by an upper bound of F [v] with less bend points

18 if |F [v]| gets too large then
19 replace F [v] by a lower bound of F [v] with less bend points

20 if v �∈ Q then Q.insert(v, minF [v])
21 else Q.updateKey(v, minF [v])

Computing Lower and Upper Bounds. The idea behind the approximation is
to save running time by reducing the complexity of the involved TTFs. This means
we want to compute lower and upper bounds f , f , F [v], and F [v] with a preferably
small number of bend points. To generate such lower and upper bounds of a TTF
f with possibly small complexity and good accuracy, we choose a small relative
error ε > 0. Then, we compute an upper bound f ∈ FΠ of f with maximum
relative error ε; that is, f fulfills f (τ) ≤ f (τ) ≤ (1+ ε) f (τ) for all τ ∈ R. To
do so, one may want to use a well-known algorithm which has been discovered
independently by Rama [72] as well as Douglas and Peucker [34]. At least for
the concave parts of f this approach has obvious problems. If concave parts are
rather rare, however, this may still work well. But we have not tried this and do
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�
F [v], F [v]

�
�
f ∗F [u], f ∗F [u]

�

Figure 4.1. Illustration of
�
min(F [v], f ∗F [u]), min(F [v], f ∗F [u])

�
as computed by ap-

proximate TTP search when the label of v is updated during relaxation of an edge u→ f v
with lower bound f and upper bound f . The thick lines denote min(F [v], f ∗F [u]) and

min
�
F [v], f ∗F [u]

�
each. Note that the exact TTFs, though they may be not known, lie

somewhere in their respective “channel”.

not know how this performs in practice.
Instead, we use the less popular Imai-Iri-algorithm [52]. It has double advan-

tage: First, it runs in O(| f |) time. Second, the resulting approximate TTF f has
minimal possible complexity

�
� f
�
� such that f (τ) ≤ f (τ) ≤ (1+ ε) f (τ) holds for

all τ ∈R. The Imai-Iri-algorithm computes a polyline with a minimal number of
bend points that lies in the “channel” formed by the graphs of f and (1+ε) f (see
Figure 4.2 for an illustration). A lower bound could be computed in an analogous
manner, also using the Imai-Iri-algorithm.

However, a lower bound is already at hand, namely the lower bound f :=

(1+ ε)−1 f which is implicitly defined by f . This lower bound f fulfills (1+

ε)−1 f (τ) ≤ f (τ) ≤ f (τ) for all τ ∈ R. It should be noted that the Imai-Iri-
algorithm is relatively complicated and not easy to implement. In our experiments
(see Section 5.6), we use an implementation provided by Neubauer [66].

Running Time Versus Accuracy. The reason, why approximate TTP search
runs usually much faster than TTP search, is that linking and minimum of TTFs
takes less time if the complexity of the linked TTFs is low. This is just what
we accomplish by using lower and upper bounds instead of exact TTFs. Using
lower and upper bounds that have small error but much less bend points than
exact TTFs, can reduce running time, while accuracy stays reasonable. There is
an obvious tradeoff between running time and accuracy. Allowing larger relative
errors on the computation of lower and upper bounds usually saves bend points.
This results in better running times but worse accuracy. For smaller relative errors
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Π

f

(1+ ε) f
f

Figure 4.2. An upper bounds f (thin) of a TTF f ∈ FΠ (thick) with relative error not
greater than ε = 0.4. The upper bound f lies in the “channel” (gray) formed by the graph
of f and and the graph of (1+ε) f (dashed). With only two bend points, f has significantly
less bend points than f , which has eight bend points in [0,Π).

it is the other way round with worse running times but better accuracy.

Note that the complexity of the node labels has more impact on the running
time than the complexity of the lower and upper bounds of TTFs f with u→ f v. To
explain that, we return to the simple example from Section 4.2.2 (see page 125).
Again, we assume that G is simply a path �u1 → f1 · · · → f�−1

u�� with | fi|=M for
all i ∈ {1, . . . , �− 1}. Running a TTP search on G starting from s = u1 takes up
to Θ

�
M+2M+ · · ·+(�−1)M

�
= Θ(�2M) time. Now, we run approximate TTP

search instead of TTP search.

First, assume that we do not reduce the complexity of the node labels (i.e., of
F [v] and F [v]). Instead, we only use precomputed lower and upper bounds fi and

fi for all i ∈ {1, . . . , �− 1} respectively. Assume, that the complexity of all these
TTFs is reduced by a factor of α > 1; that is,

�
� f1

�
�, . . . ,

�
� f�−1

�
�,
�
� f1

�
�, . . . ,

�
� f�−1

�
�≤

M

α
.

As a consequence, we expect that the running time is reduced by a factor of α , too.
But � contributes quadratically to the running time. So, reducing the complexity
of f1, . . . , f�−1 only helps if � is relatively small.

Second, assume that we do not use lower and upper bounds of f when relaxing
an edge u → f v, but that we reduce the complexity of F [v] and F [v] whenever�
�F [v]

�
� and

�
�F [v]

�
� get too large (see Lines 16–19). So, if all TTFs do not vary

too much, we can always expect that a maximum complexity N exists such that�
�F [v]

�
�,
�
�F [v]

�
� ≤ N holds before v is inserted into the PQ. Then, the running time



132 Chapter 4. Algorithmic Ingredients

lies in

O
� �−1

∑
i=1

(N+M)
�
= O

�
�(N+M)

�
.

This means we get rid off the quadratic running time by approximating the node
labels if they get too complex. Note that approximating a node label

�
F [v],F [v]

�

only takes O
��
�F [v]

�
�+

�
�F [v]

�
�
�
= O(N+M), time if the Imai-Iri algorithm is used.

To summarize, reducing the complexity of the node labels is much more ef-
fective than using lower and upper bounds during edge relaxation. However, only
using lower and upper bounds f and f during the relaxation of an edge u→ f v is
nevertheless interesting; namely,

• if the paths in the graph do not have many hops (i.e., � is not large),

• if
�
� f
�
�,
�
� f
�
�� | f | holds for most such TTFs f , and

• if all such lower and upper bounds f and f are precomputed.

In case of ATCHs, a variant of TCHs that enables fast, exact, and space efficient
route planning (see Section 5.4), all three conditions are fulfilled. There is also
an inexact variant of TCHs exploiting this to provide even faster but inexact TTP
queries (see Section 5.5).

Correctness. We now discuss the correctness of approximate TTP search (see
Algorithm 4.4). This means we examine whether it really computes the desired
lower and upper bounds and whether its predecessor graph contains EA paths to
every reachable node for all departure times. Note that approximate TTP search
includes TTP search (see Algorithm 4.2 in Section 4.2.2) and TTP interval search
(see Algorithm 4.3 in Section 4.2.3) as special cases. The proofs described here
can also be applied to those algorithms. We start with a very basic observation.

Lemma 4.17. Consider the TTFs f ,g ∈ FΠ and the corresponding lower and
upper bounds f , f ,g,g. Then, the following two statements hold true:

1. min( f , g) is a lower and min( f , g) an upper bounds of min( f ,g).

2. g∗ f are lower and g∗ f are upper bounds of g∗ f .

Proof. The first statement is clearly true. Regarding the second one, we only proof
that g ∗ f is an upper bound of g ∗ f . For lower bounds everything works analo-
gously. Because arr f and arrg are upper bounds of arr f and arrg, respectively,
we calculate

arrg
�
arr f (τ)

�
≥ arrg

�
arr f (τ)

�
≥ arrg(arr f (τ)) ,

utilizing g∗ f (τ) = arrg(arr f (τ))−τ and that g fulfills the FIFO property, which
means that arrg is increasing.
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Note that the relative error of g ∗ f can be greater than the relative errors of f
and g. This is because the maximum possible relative error also depends on the
maximum slope of g [42]. Similarly, the relative error of g ∗ f depends on the
maximum slope of g.

Just like the other Dijkstra-like algorithms considered in this thesis, approxi-
mate TTP search shows a typical monotonous behavior.

Lemma 4.18. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during approximate TTP search (nodes may be removed multiple times). Let�
F1,F1

�
,
�
F2,F2

�
, . . . be the respective node labels at the time when each node is

removed. Then, minF1 ≤minF2 ≤ . . . holds.

Proof. One can argue by induction over the number of removals from the PQ,
analogous to the proof of Lemma 4.5.

Like in case of time-dependent Dijkstra, we find that tentative node labels and
tentative predecessor information always correspond to each other, though the
situation is more complicated here.

Lemma 4.19. While approximate TTP search runs, G(p) contains

1. a path Pv,τ = �s→ ·· · → v� with F [v](τ)≤ fPv,τ(τ)≤ F [v](τ) for all reached
nodes v and all τ ∈R,

2. all such paths Pv,τ where all prefixes �s→·· ·→ u� ⊆Pv,τ (including Pv,τ itself)
additionally fulfill f�s→···→u�(τ)< min

�
F [u](τ),Q.min()

�
, and

3. no path R= �s→ ·· · → v� with fR(τ)< F [v](τ) for any τ ∈R.

Proof. We start with proving that Pv,τ ⊆ G(p) exists for all reached nodes v ∈ V
and all τ ∈R such that fPv,τ (τ)≤ F [v](τ) holds.

Assume, there is a reached node v0 ∈V such that G(p) contains no path from
s to v0 at all. Presume, w.l.o.g., that v0 has no incoming edge in G(p). Consider
the first incoming edge u → f v0 of v0 in G that is relaxed by the approximate
TTP search. Surely, u is added to p[v0]. Moreover, p[v0] is never emptied without
adding another node. So, v0 has at least one incoming edge in G(p)—a contradic-
tion.

Further, assume there is v0 ∈V and τ0 ∈R such that f�s→···→v0�(τ0)>F [v0](τ0)
holds for all paths �s→ ·· · → v0� ⊆G(p). We set w := v0. There must be an edge
u→ f w in G(p) with F [w](τ0) = f ∗F [u](τ0) ≥ f ∗F [u](τ0), which has been re-
laxed earlier. If all paths �s→ ·· · → u� ⊆ G(p) fulfill f�s→···→u�(τ0) > F [u](τ0),
we set w := u, reapply this argument, and repeat this until some path �s→ ·· · →
u� ⊆ G(p) fulfills f�s→···→u�(τ0) ≤ F [u](τ0). Both f�s→···→u→ f w�(τ0) > F [w](τ0)
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and F [w](τ0)≥ f ∗F [u](τ0) also hold true. So, to obtain a contradiction, we argue

f�s→···→u→ f w�(τ0)> F [w](τ0)≥ f ∗F [u](τ0)

≥ f ∗ f�s→···→u�(τ0) = f�s→···→u→ f w�(τ0) ,

utilizing Equation (3.13) and that f fulfills the FIFO property.
Next, we show that all paths P := �s→·· ·→ v� ⊆G(p) fulfill fP(τ)≥ F [v](τ)

for all τ ∈ R. So, assume P0 := �s → ·· · → u → f v0� ⊆ G(p) with fP0(τ0) <
F [v0](τ0) for some τ0 ∈R. W.l.o.g., presume f�s→···→u�(τ0)≥ F [u](τ0). The edge
u→ f v0 lies in G(p) and has already been relaxed hence. To obtain a contradic-
tion, we utilize Equation (3.13) as well as (3.14) and argue

fP0(τ0)< F [v0](τ0)≤ f ∗F [u](τ0)≤ f ∗ f�s→···→u�(τ0) = fP0(τ0) .

At this point, we know that the first and the third statement must both be true.
To show the second statement, assume a path �s→ ··· → u→ f v0� �⊆ G(p) such
that all its prefixes �s→ ·· · → u�� ⊆ �s→ ·· · → u→ f v0� fulfill

f�s→···→u��(τ0)< min
�
F [u�](τ0), Q.min()

�

for some τ0 ∈R. W.l.o.g., presume �s→ ·· · → u� ⊆ G(p) implying that u→ f v0

is not in G(p). So, utilizing that the third statement is already proven, we argue

minF [u]≤ f�s→···→u�(τ0)≤ f�s→···→u→ f v0�(τ0)< Q.min() ,

which tells us that u has been removed from Q at least once (due to Lemma 4.18).
This means u→ f v0 has already been relaxed. So, either u→ f v0 lies in G(p),
or G(p) contains an edge w→g v0 with g ∗F [w](τ0) ≤ f ∗F [u](τ0) (see Line 11
and 12 of Algorithm 4.4). The first cannot be the case. So, again utilizing the
already proven third statement as well as Equation (3.13) and (3.14), we argue

F [v0](τ0)≤ g∗F [w](τ0)≤ f ∗F [u](τ0)≤ f ∗F [u](τ0)

≤ f ∗ f�s→···→u�(τ0) = f�s→···→u→ f v0�(τ0)< F [v0](τ0) ,

which is a contraction.

Corollary 4.20. While approximate TTP search runs, F [v](τ) ≥ TTG(s,v,τ) is
always true for all v ∈V and all τ ∈R.

The following simple proof of correctness is quite similar to the correctness
proof of time-dependent Dijkstra (see Lemma 4.3 in Section 4.2.1).

Lemma 4.21. After approximate TTP search terminates, F [v](τ)≤TTG(s,v,τ)≤
F [v](τ) holds for all τ ∈R and all v ∈V.



4.2. Forward Single-Label Searches 135

Proof. Assume, there is a node v such that F [v](τ0) > TTG(s,v,τ0) for some
τ0 ∈ R. Consider a prefix-optimal (s,v,τ0)-EA-path �s→ ·· · → v� and choose a
minimum hop prefix path �s→ ·· ·→ u→ f w� fulfilling F [w](τ0)> TTG(s,w,τ0),
which implies F [u](τ0)≤ TTG(s,u,τ0). After relaxing the edge u→ f w we have

F [w](τ0)≤ f ∗F [u](τ0)≤ f ∗TTG(s,u,τ0) = TTG(s,w,τ0)< F [w](τ0) ,

which cannot be the case. The rest follows from Corollary 4.20.

We not only want to prove that approximate TTP search computes correct lower
and upper bounds but also correct predecessor information. This follows directly
from Lemma 4.21 together with the second statement of Lemma 4.19.

Corollary 4.22. After approximate TTP search terminates, the predecessor graph
G(p) contains a prefix-optimal (s,v,τ)-EA-path for all τ ∈ R and all reachable
nodes v ∈V.

As in case of time-dependent Dijkstra, the predecessor information of a node gets
permanent as soon as Q.min() gets large enough. This relies on the monotony of
Q.min() (see Lemma 4.18).

Lemma 4.23. The predecessor information p[v] of v does not change anymore as
soon as Q.min()≥maxF [v] is fulfilled. From that moment on G(p) is guaranteed
to contain a prefix-optimal (s,v,τ)-EA-path for all τ ∈R.

Proof. As Q.min() never decreases and maxF [v] never increases for any node
v ∈V , we can be sure that the condition Q.min()≥maxF [v], once fulfilled, stays
true for a node v. Let qv and mv be the values that Q.min() and maxF [v] have,
respectively, at the momentQ.min()≥maxF [v] gets true (i.e., qv≥mv). Changing
the predecessor information p[v] requires that an edge u→ f v is relaxed. But this
can no more change p[v], since

f ∗F [u](τ)≥ F [u](τ)≥ qv ≥ mv ≥ F [v](τ)

for all τ ∈ R implies that the condition in Line 11 of Algorithm 4.4 is fulfilled.
That the final predecessor information is correct, follows from Corollary 4.22.

Not only the predecessor information of a node v gets permanent whenQ.min()
reaches maxF [v]. The same holds true for the node label.

Lemma 4.24. The label
�
F [v],F [v]

�
of v does not change anymore as soon as

Q.min()≥maxF [v] is fulfilled. So, F [v](τ)≤TTG(s,v,τ)≤F [v](τ) is guaranteed
for all τ ∈R afterwards.

Proof. If the condition in Line 11 is fulfilled, then relaxing u → f v does not
change p[v], as we argue in the proof of Lemma 4.23. This also implies that�
F [v],F [v]

�
does not change, too. That the final node labels are correct, follows

from Lemma 4.21.
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4.2.5 Earliest Arrival Interval Search

Earliest arrival interval search (or EA interval search for short, see Algorithm 4.5)
is an approximate version of time-dependent Dijkstra (see Section 4.2.1); just like
TTP interval search (see Section 4.2.3) is an approximate version of TTP search
(see Section 4.2.2). For all u ∈ V it computes intervals containing EAG(s,u,τ)
with τ ∈ [τ0,τ

�
0] for given s ∈ V , [τ0,τ

�
0] ⊆ R. The label of a node u is a tentative

arrival interval [q[u],r[u]] containing the arrival times of the approximately best
paths from s to u found so far. These paths are all contained in the current G(p).
When relaxing an edge u→ f v with lower bound f and upper bound f , we update
the label of v by

[q[v],r[v]] :=
�
min

�
q[v],arr f (q[u])

�
, min

�
r[v],arr f (r[u])

��
. (4.10)

An illustration of [qnew,rnew] = [arr f (q[u]), arr f (r[u])] is depicted in Figure 4.3.
As PQ key of u we use q[u]. After termination, the predecessor graph contains a
prefix-optimal (s,u,τ)-EA-path for all reachable nodes u and all τ ∈ [τ0,τ

�
0].

The purpose of EA interval search is not to save running time. In fact, we
expect a running time similar the running time of time-dependent Dijkstra (see
Section 4.2.1). Instead, EA interval search is needed to provide as accurate results

Algorithm 4.5. Earliest arrival (EA) interval search is an approximate version of

time-dependent Dijkstra (see Algorithm 4.1). For a given start node s and a given

departure interval [τ0,τ
�
0] this algorithm computes labels [q[u],r[u]] � EAG(s,u,τ)

for all reachable nodes u ∈V and all τ ∈ [τ0,τ
�
0].

1 procedure eaIntervalSearch(s :V , [τ0,τ
�
0] : Interval)

2 [q[u],r[u]] := [∞,∞], p[u] := /0 for all u ∈V
3 [q[s],r[s]] := [τ0,τ

�
0]

4 Q := {(s,τ0)} : PriorityQueue
5 while Q �= /0 do
6 u := Q.deleteMin()

7 for u→ f v ∈ E with the lower/upper bound f , f ∈FΠ do

8 [qnew, rnew] :=
�
arr f (q[u]),arr f (r[u])

�

9 if qnew > r[v] then continue
10 if rnew < q[v] then p[v] := /0 // remove suboptimal predecessors
11 p[v] := {u}∪ p[v] // remember a tentative predecessor of v
12 if qnew ≥ q[v] and rnew ≥ r[v] then continue
13 [q[v],r[v]] :=

�
min{q[v],qnew}, min{r[v],rnew}

�
// update label of v

14 if v �∈ Q then Q.insert(v, q[v])
15 else Q.updateKey(v, q[v]) // lower bound of the interval is PQ key
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arr f

arr f

[q[u],r[u]]

arr f (q[u])

arr f (r[u])

arr f

arr f ([q[u],r[u]])

Figure 4.3. How EA interval search obtains [qnew,rnew] = [arr f (q[u]),arr f (r[u])] from

[q[u],r[u]] when an edge u→ f v is relaxed. If only a lower bound f and an upper bound f
(drawn thick) are present instead of the exact TTF f (drawn thin), then arr f ([q[u],r[u]])
can not be computed and we compute [arr f (q[u]), arr f (r[u])] ⊇ arr f ([q[u],r[u]]) in-
stead.

as possible if only lower and upper bounds f and f are present in a road network
instead of the corresponding exact TTFs f with u→ f v∈ E. This is the case in the
context of ATCHs (see Section 5.4), a variant of TCHs for fast, exact, and space
efficient route planning.

Correctness. To show that the node labels [q[u],r[u]] computed by EA inter-
val search really fulfill q[u] ≤ EAG(s,u,τ) ≤ r[u] and that G(p) really contains a
prefix-optimal (s,u,τ)-EA-path for all u ∈ V and τ ∈ [τ0,τ

�
0], we begin with the

monotonous behavior that is typical for Dijkstra-like algorithms.

Lemma 4.25. Let u1,u2, . . . be the order in that the nodes are removed from
the PQ during EA interval search (nodes may be removed multiple times). Let
[q1,r1], [q2,r2], . . . be the respective node labels at the time when each node is
removed. Then, q1 ≤ q2 ≤ . . . holds.

Proof. One can argue by induction over the number of removals from the PQ,
analogous to Lemma 4.5.

Also like for the other Dijkstra-like algorithms, tentative node labels and ten-
tative predecessor information correspond to each other, as the following Lemma
shows.
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Lemma 4.26. While EA interval search runs, G(p) contains

1. a path Pv,τ = �s→···→ v� with q[v]≤ arr fPv,τ (τ)≤ r[v] for all reached v∈V
and all τ ∈ [τ0,τ

�
0],

2. all such paths Pv,τ where all prefixes �s→·· ·→ u� ⊆Pv,τ (including Pv,τ itself)
additionally fulfill arr f�s→···→u�(τ)< Q.min(), and

3. no path R= �s→ ·· · → v� with arr fR(τ)< q[v] for any τ ∈ [τ0,τ
�
0].

Proof. The proof follows pretty much the same pattern as the proof of the anal-
ogous Lemma in the context of approximate TTP search (see Lemma 4.19). The
obvious differences is that labels are intervals instead of pairs of TTFs. Also note
that the condition in Line 9 of Algorithm 4.5 is a little stronger than in case of
approximate TTP search (see Line 11 of Algorithm 4.4); namely, “>” instead of
“≥”. But this is a very technical detail.

Corollary 4.27. While EA interval search runs, r[v]≥ EAG(s,v,τ) is always true
for all v ∈V and all τ ∈ [τ0,τ

�
0].

During computation, the node labels [q[v],r[v]] approach EAG(s,v,τ) from
above until EAG(s,v,τ) ∈ [q[v],r[v]] holds in the end for each v ∈V,τ ∈ [τ0,τ

�
0].

Lemma 4.28. After EA interval search terminates, q[v]≤EAG(s,v,τ)≤ r[v] holds
for all v ∈V and all τ ∈ [τ0,τ

�
0].

Proof. The argument is analogous to Lemma 4.21, but with Corollary 4.27 used
in the end.

Not only the node labels are correct after execution, but the predecessor graph
contains an EA path for all reachable nodes and all relevant departure times.
This follows directly from Lemma 4.28 together with the second statement of
Lemma 4.26.

Corollary 4.29. After EA interval search terminates, G(p) contains a prefix-
optimal (s,v,τ)-EA-path for all τ ∈ [τ0,τ

�
0] and all reachable nodes v ∈V.

Again, we are not only interested that node labels and predecessor informa-
tion are correct after termination of the algorithm, but in the time when the la-
bel of a node and the predecessor information get final. This enables us to stop
the execution as early as possible. Like for the other Dijkstra-like algorithms,
the corresponding necessary condition relies on the monotony of Q.min() (see
Lemma 4.25).

Lemma 4.30. The label [q[v],r[v]] of v does not change anymore as soon as
Q.min() ≥ r[v] is fulfilled. So, q[v] ≤ EAG(s,v,τ) ≤ r[v] is guaranteed for all
τ ∈ [τ0,τ

�
0] afterwards.
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Proof. We argue analogously to the proof Lemma 4.23, although that lemma deals
with the predecessor information getting permanent rather than the node labels.
The idea behind the argument is, nevertheless, the same because the label and the
predecessor information of a node nearly get permanent together.

The predecessor information p[v] of a node v gets permanent as soon as the
slightly stronger condition condition Q.min()> r[v] gets true.

Lemma 4.31. The predecessor information p[v] of v does not change anymore as
soon as Q.min() > r[v] is fulfilled. From that moment on G(p) is guaranteed to
contain a prefix-optimal (s,v,τ)-EA-path for all τ ∈ [τ0,τ

�
0].

Proof. Again, we argue analogously to the proof of Lemma 4.23. Note that
the condition Q.min() > r[v] is slightly stronger than the corresponding one in
Lemma 4.23, because the condition in Line 9 is a little stronger than the corre-
sponding condition in approximate TTP search.

Running Time. The running time of EA interval search is similar to the running
time of time-dependent Dijkstra (see Section 4.2.1). Reinserts of nodes into the
PQ are possible, but they should happen rarely in practice. Their impact on the
running time should be negligible hence. The running time of edge relaxation is
similar to one of edge relaxation as performed by time-dependent Dijkstra. We
simply evaluate two TTFs instead of one (see Line 8 of Algorithm 4.5). Using
the bucket structure described in Section 3.1.4, we expect a running time near
O(|V | · log |V |) in practice.

4.3 Backward Single-Label Searches

This section describes basic time-dependent single label search algorithms that
run in backward direction. For constant travel costs, backward search is simple.
One simply applies Dijkstra’s algorithm to the transpose road network G� in-
stead of the original road network G and uses the destination node t as start node.
For time-dependent travel costs, things are somewhat more complicated. In most
cases, we cannot just apply the forward searches from Section 4.2 to the transpose
road network G� to obtain suitable algorithms for backward search.

Three of the time-dependent forward single label searches described in Sec-
tion 4.2—namely, TTP search, TTP interval search, and approximate TTP search—
have directly corresponding backward versions; namely, backward TTP search
(see Section 4.3.1), backward TTP interval search (see Section 4.3.2), and back-
ward approximate TTP search (see Section 4.3.3). They can be obtained from
their forward counterpart by relatively simple modifications. There is also latest



140 Chapter 4. Algorithmic Ingredients

departure (LD) interval search (see Section 4.3.4), a backward search that is dual
to EA interval search. It computes the latest possible departure times to reach the
destination node t just within a given arrival interval; the corresponding EA paths
are also computed of course.

There are also three backward search algorithms that deal with TTFs and
additional costs, namely backward cost profile (CP) search (see Section 4.3.5),
backward CP interval search (see Section 4.3.6), and backward approximate CP
search (see Section 4.3.7). All of them lack a corresponding forward counter-
part because of the inconvenient structure of time-dependent travel costs beyond
travel times; namely, that the existence of prefix-optimal MC paths is not guar-
anteed, even in the quite restricted case of time-dependent travel times with ad-
ditional time-invariant cost (see Section 3.2.1). It is important to note that these
three backward search algorithms can not only deal with time-invariant additional
costs, but also with more general time-dependent additional costs that are piece-
wise constant functions (see Section 3.2.4). This is necessary, because backward
CP search and backward CP interval search are used in the context of heuristic
TCHs where such generalized additional costs can occur (see Section 6.2.2)

Note that all backward searches solve all-to-one problems. This is dual to
forward searches, which solve one-to-all problems. The optimal paths to the des-
tination node t computed by a backward search are all contained in the predeces-
sor graphs, just like in case of forward searches. However, a backward search
runs on G�. So, its predecessor graph is not a subgraph of G but of G�; namely,
G�(p)⊆ G� with p being the predecessor information. The optimal routes com-
puted by backward searches are thus contained in the transpose predecessor graph
(G�(p))� ⊆ G.

4.3.1 Backward Travel Time Profile Search

Backward travel time profile search (or backward TTP search for short) is the
backward version of TTP search [69] (see Algorithm 4.2 in Section 4.2.2). Given
a destination node t ∈ V , it runs on G� starting from t computing TTG(u, t, ·) for
all u ∈ V . This is dual to forward TTP search, which computes TTG(s,u, ·) for
a given start node s. The node label F [u] is a tentative TTP for traveling from
u to t. The transpose tentative predecessor graph (G�(p))� ⊆ G contains the
corresponding tentative EA paths from u to t found so far. When relaxing an edge
u→ f v ∈ E�, we update the label F [v] of v by computing

F [v] := min(F [v],F [u]∗ f ) . (4.11)

The PQ key of a node u is minF [u]. After termination, (G�(p))� contains a
(u, t,τ)-EA-path for all nodes u ∈V and all departure times τ ∈R, provided that
t is reachable from u in G.
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There are only two differences between backward TTP search and its for-
ward counterpart. First, backward TTP search runs on G� instead of G. Second,
backward TTP search calculates F [u] ∗ f instead of f ∗F [u] on edge relaxation
(compare Equation (4.6) with (4.11)). That f and F [u] must be interchanged, is
because linking of TTFs is not commutative in general. Also, backward searches
compared to forward searches do no longer consider paths �s→ ·· · → u→ f v�,
but paths �v→ f u→ ·· · → t� in G. So, F [u] comes “after” f on paths from v to t.
We do not report pseudocode for backward TTP search, because it is the same as
in case of the forward version with small obvious adaptions.

Correctness. Backward TTP search can be regarded as special case of back-
ward approximate CP search, which computes final node labels

�
C[v],C[v]

�
with

C[v](τ) ≤ CostG(v, t,τ) ≤C[v](τ) for all v ∈ V and all τ ∈ R (see Section 4.3.7).
If all additional costs in G are zero, we have TTG(s, t, ·) = CostG(s, t, ·) for all
s, t ∈ V . Then, every node label F [v] with respect to backward TTP search cor-
responds to a node label

�
C[v],C[v]

�
with respect to backward approximate CP

search. This means F [v](τ) =C[v](τ) = TTG(v, t,τ) =C[v](τ) for all v ∈ V and
all τ ∈R. So, the following statements are essentially special cases of statements
elaborately described a little later (see Section 4.3.7). So, proofs are omitted.

Lemma 4.32. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during backward TTP search. Let F1,F2, . . . be the respective node labels at
time of removal. Then, minF1 ≤minF2 ≤ . . . holds.

Lemma 4.33. As soon as Q.min()≥maxF [v] becomes true for a node v, F [v] and
p[v] do not change anymore. From that moment on, F [v] = TTG(v, t, ·) holds true
and (G�(p))� is guaranteed to contain a (v, t,τ)-EA-path for all τ ∈R (provided
that t is reachable from v).

Lemma 4.34. After backward TTP search terminates, F [v] =TTG(v, t, ·) holds for
all v∈V. Also, the transpose predecessor graph (G�(p))� contains a (v, t,τ)-EA-
path in G for all τ ∈R where t is reachable from v.

Running Time. All considerations made in the context of forward TTP search
can be applied analogously to backward TTP search. We expect backward TTP
search to be as slow as its forward counterpart hence.

4.3.2 Backward Travel Time Profile Interval Search

Backward travel time profile interval search (or backward TTP interval search for
short) is the simplest backward search discussed in this section. Given a destina-
tion node t ∈V , it runs on G� starting from t and computes [TTG(u, t),TTG(u, t)]
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for all u ∈ V . This is dual to forward TTP interval search (see Algorithm 4.3 in
Section 4.2.3), which computes [TTG(s,u),TTG(s,u)] for a start node s.

The difference between forward and backward TTP interval search is very
little. One can simply use Algorithm 4.3 replacing E by E� (see Line 7) and all
occurrences of s by t. We do not report an extra pseudocode for backward TTP
interval search hence. The running time needed by backward TTP interval is the
same as in case of forward TTP interval search of course. After termination, the
transpose predecessor graph (G�(p))� ⊆ G contains a (u, t,τ)-EA-path for all
u ∈V,τ ∈R; if t is reachable from u in G.

Correctness. We argue that backward TTP interval search is a special case of
backward CP interval search (see Section 4.3.6), which is itself a special case
of backward approximate CP search (see Section 4.3.7). The difference between
backward TTP interval search and backward CP interval search is that all addi-
tional costs are zero. This means that travel costs are travel times and MC paths
are EA paths. So, the following statements are essentially special cases of state-
ments described later in this thesis (see Section 4.3.6). So, proofs are omitted.

Lemma 4.35. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during backward TTP interval search. Let [q1,r1], [q2,r2], . . . be the respective
node labels at time of removal. Then, q1 ≤ q2 ≤ . . . holds.

Lemma 4.36. As soon as Q.min()> r[v] becomes true for a node v,

TTG(v, t,τ) ∈ [q[v],r[v]] =
�
TTG(v, t),TTG(v, t)

�

is guaranteed for all τ ∈ R. Also, (G�(p))� contains a (v, t,τ)-EA-path for all
τ ∈R ever after.

Lemma 4.37. After backward TTP interval search terminates, we can be sure that
[q[v],r[v]] =

�
TTG(v, t),TTG(v, t)

�
holds for all v ∈V.

4.3.3 Backward Approximate Travel Time Profile Search

Backward approximate travel time profile search (or backward approximate TTP
search for short) is the backward version of approximate TTP search (see Algo-
rithm 4.4 in Section 4.2.4). Given a destination node t, it runs on G� starting
from t and computes a lower and an upper bound of TTG(u, t, ·) for every node
u ∈ V . The label of a node u is a pair of functions (F [u],F [u]), the tentative
lower bound F [u] and the tentative upper bound F [u]. The transpose predeces-
sor graph (G�(p))� ⊆ G contains corresponding tentative EA paths. Relaxing an
edge u→ f v ∈ E� means that the label (F [v],F [v]) of the node v is updated by

�
F [v],F [v]

�
:=

�
min

�
F [v], F [u]∗ f

�
, min

�
F [v], F [u]∗ f

��
. (4.12)
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After termination, F [u](τ) ≤ TTG(u, t,τ) ≤ F [u](τ) is fulfilled for all u ∈ V and
all τ ∈ R. Also, (G�(p))� ⊆ G contains a (u, t,τ)-EA-path for all u ∈ V and all
τ ∈R then; provided that t is reachable from the respective node u.

The difference between the update procedure of backward approximate TTP
search (see Equation (4.12)) and forward approximate TTP search (see Equa-
tion (4.9)) is that f ∗F [u] and f ∗F [u] are replaced by F [u] ∗ f and F [u] ∗ f re-
spectively. This is analogous to the difference between forward and backward
TTP search (see Section 4.3.1). Again, the reason is that linking of TTFs is not
commutative and that backward searches consider paths �u→ f v→ ··· → t� in-
stead of paths �s→ ·· · → u→ f v�. We do not report pseudocode for backward
approximate TTP search, because it is the same as in case of the forward version
with the adaptions just explained.

Note that the transpose predecessor graph (G�(p))� computed by backward
approximate TTP search is expected to contain more edges than the one computed
by exact backward TTP search (see Section 4.3.1) but less edges than the one
computed by backward TTP interval search (see Section 4.3.2)—just like in case
of the respective forward search algorithms.

Correctness. We argue that backward approximate TTP search is a special case
of backward approximate CP search (see Section 4.3.7). The difference between
backward approximate TTP search and backward approximate CP search is that
all additional costs are zero. This means that travel costs are travel times and
MC paths are EA paths. The following statements are essentially special cases of
statements elaborately described a little later (see Section 4.3.7). So, proofs are
omitted.

Lemma 4.38. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during backward approximate TTP search. Let

�
F1,F1

�
,
�
F2,F2

�
, . . . be the

respective node labels at time of removal. Then, minF1 ≤minF2 ≤ . . . holds.

Lemma 4.39. As soon as Q.min()≥maxF [v] becomes true for a node v, we know�
F [v], F [v]

�
and p[v] do not change anymore. From that moment on,

TTG(v, t,τ) ∈
�
F [v](τ), F [v](τ)

�

holds and (G�(p))� is guaranteed to contain a (v, t,τ)-EA-path for all τ ∈ R
(provided that t is reachable from v).

Lemma 4.40. After backward approximate TTP search terminates,

F [v](τ)≤ TTG(v, t,τ)≤ F [v](τ)

holds for all v ∈ V and τ ∈ R. Also, the transpose predecessor graph (G�(p))�

contains a (v, t,τ)-EA-path in G for all τ ∈R where t is reachable from v.
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Running Time. All considerations made in the context of forward approximate
TTP search can be applied analogously to backward approximate TTP search.
We expect backward approximate TTP search to be faster than backward TTP
search (see Section 4.3.1), but slower than backward TTP interval search (see
Section 4.3.2) hence.

4.3.4 Latest Departure Interval Search

Latest departure interval search (or LD interval search for short, see Algorithm
4.6) is dual to EA interval search (see Algorithm 4.5 in Section 4.2.5). Given a
destination node t and an arrival time interval [σ0,σ

�
0], it runs on G� starting from

t and computes intervals containing LDG(u, t, [σ0,σ
�
0]) for all u ∈V . Accordingly,

the label of a node u is a tentative departure time interval [q[u],r[u]]. The transpose
tentative predecessor graph (G�(p))� ⊆ G contains corresponding tentative EA
paths from u to t for every reached node u.

Note that late departure times are better than early ones. So, Q is a maximum
PQ instead of a minimum PQ in this case (see Section 2.2.2). Accordingly, we
do not remove nodes with minimal key from the PQ, but nodes with maximal key

Algorithm 4.6. Latest departure (LD) interval search is dual to EA interval search

(see Algorithm 4.5). Given destination node t ∈V and an arrival interval [σ0,σ
�
1]⊆

R, this Dijkstra-like algorithm computes intervals [q[v],r[v]] ⊇ LDG(v, t, [σ0,σ
�
0])

for every node v ∈V . After termination (G�(p))� ⊆ G contains a (v, t,τ)-EA-path

for all τ ∈ LDG(v, t, [σ0,σ
�
0]) and all nodes v such that t can be reached from v in G.

1 procedure ldIntervalSearch(s :V , [σ0,σ
�
0] : Interval)

2 [q[u],r[u]] := [−∞,−∞], p[u] := /0 for all u ∈V
3 [q[s],r[s]] := [σ0,σ

�
0]

4 Q := {(t,σ0)} : PriorityQueue
5 while Q �= /0 do
6 u := Q.deleteMax() // maximizing because later departures are better

7 for u→ f v ∈ E� with the lower/upper bound f , f ∈FΠ do

8 [qnew, rnew] :=
�
mindep f (q[u]),maxdep f (r[u])

�

9 if rnew < q[v] then continue
10 if qnew > r[v] then p[v] := /0
11 p[v] := {u}∪ p[v]
12 if qnew ≤ q[v] and rnew ≤ r[v] then continue
13 [q[v],r[v]] :=

�
max{q[v],qnew}, max{r[v],rnew}

�

14 if v �∈ Q then Q.insert(v, q[v])
15 else Q.updateKey(v, q[v]) // keys are increased here, not decreased
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arr f

arr f

arr f

mindep f (q[u]) maxdep f (r[u])

q[u]

r[u]

dep f
�
[q[u],r[u]]

�

Figure 4.4. How the LD interval search obtains [qnew,rnew] from [q[u],r[u]] when an
edge u → f v ∈ E� is relaxed. If only a lower bound f and an upper bound f (drawn

thick) are present instead of the exact TTF f (drawn thin), then dep f
�
[q[u],r[u]]

�
cannot

be computed. Instead we compute [qnew,rnew] :=
�
mindep f (q[u]), maxdep f (r[u])

�
that

contains dep f
�
[q[u],r[u]]

�
. The interval [qnew,rnew] contains the latest possible times

one must depart from v to reach u at times in [q[u],r[u]] if one travels along the edge
v→ f u ∈ E. The use of min and max is necessary because depg = (arrg)−1 is not a
one-to-one mapping if a TTF g has one or more segments of slope −1 (i.e., arrg has one
or more segments of slope 0).

(see Line 6 where deleteMax is invoked instead of deleteMin). When relaxing an
edge u→ f v ∈ E� with lower bound f and upper bound f , we update the label
and the predecessor information of the node v by

[q[v],r[v]] :=
�
max

�
q[v], mindep f (q[u])

�
,

max
�
r[v], maxdep f (r[u])

��
,

(4.13)

where [mindep f (q[u]), maxdep f (r[u])] is the departure interval at the node v
for traveling the corresponding forward edge v → f u ∈ E with arrival interval
[q[u],r[u]]. The initial label of the node t is [σ0,σ

�
0]. After termination, the trans-

pose predecessor graph (G�(p))� contains a (u, t,τ)-EA-path for all u∈V and all
τ ∈ LDG(u, t, [σ0,σ

�
0]) (provided t is reachable from u). To understand what hap-

pens in Equation (4.13), take a look at Figure 4.4. It illustrates how the departure
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interval [qnew,rnew] = [mindep f (q[u]), maxdep f (r[u])] emerges from the arrival
interval [q[u],r[u]].

LD interval search is used with approximate TTFs and hence computes ap-
proximate results, just like EA interval search. It must be noted, however, that
even if all available TTFs are exact and an exact departure time is given, the re-
sulting departure time may still be an interval. The reason is that depg may not
be a one-to-one mapping. This happens if a TTF g has one or more segments with
slope −1. However, a slightly different definition of the departure time function
of a TTF g,

dep� g : σ �→ supdepg(σ) ,

solves this problem and yields an exact backward version of time-dependent Di-
jkstra, according to Dean [17].

Correctness. Though LD interval search is dual to EA interval search, their
proofs of correctness are not fully analogous. The reason is that LD interval
search, as described in this thesis, uses q[u] instead of r[u] as PQ key of a node
label [q[u],r[u]]. Note that LD interval search solves a maximization problem and
not a minimization problem, as it is the case with the other single-label searches.
To be fully dual to EA interval search, we should have used r[u] as PQ key hence.
This would have enabled us to use Q.max() < q[u] as criterion that the label
[q[u],r[u]] of a node u has become final. However, LD interval search is only
applied to small cones in this work (see Section 5.4.2) and we do not expect early
stopping to bring much benefit hence. Also, the implementation used in the ex-
periments would have required some refactoring, then. So, we opted to keep q[u]
as PQ key of a label [q[u],r[u]]. For this reason, we omit the discussion whether
Q.max() behaves monotonous while LD interval search runs.1 Instead, we begin
with the correspondence of tentative node labels and tentative paths.

Lemma 4.41. The transpose predecessor graph (G�(p))� ⊆ G of LD interval
search contains,

1. while the search runs, for all reached v ∈ V and all σ ∈ [σ0,σ
�
0], a path

Pv,σ = �v→ ·· · → t� with dep fPv,σ (σ)∩ [q[v],r[v]] �= /0,

2. after termination, all such paths Pv,σ where all suffixes �u→ ·· · → t� ⊆ Pv,σ
(including Pv,σ itself) additionally fulfill dep f�u→···→t�(σ)∩ [q[u],r[u]] �= /0,
and

3. never a path R= �v→·· ·→ t�withmaxdep fR(σ)> r[v] for any σ ∈ [σ0,σ
�
0].

1In fact, Q.max() is non-increasing, which is dual to the other single-label searches, where
Q.min() is non-decreasing. Using r[v] as PQ key of LD interval search would result in r1≥ r2≥ . . .
for [qi,ri] being the node label on removing the i-th node from the PQ. This would be dual to
q1 ≤ q2 ≤ . . . as in case of EA interval search (see Lemma 4.25).
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Proof. That (G�(p))� contains a path from all reached nodes v to t can be shown
analogously to forward searches, where G(p) contains a path from s to every
reached node v (see Lemma 4.19).

Assume v ∈ V and σ ∈ [σ0,σ
�
0] such that maxdep f�v→···→t�(σ) < q[v] holds

for all paths �v → ·· · → t� ⊆ (G�(p))� ⊆ G. There must be an edge u → f

v in G�(p) (i.e., v → f u in G) that has been relaxed earlier, such that q[v] =
mindep f (q[u])≤mindep f (q[u]) holds. W.l.o.g., there is a path �u→ ·· · → t� ⊆
(G�(p))� that fulfills maxdep f�u→···→t�(σ)≥ q[u]. To obtain a contradiction, we
argue

maxdep f�v→ f u→···→t�(σ)< q[v]≤mindep f (q[u])≤maxdep f (q[u])

≤maxdep f
�
maxdep f�u→···→t�(σ)

�

= maxdep
�
f�u→···→t� ∗ f

�
(σ)

= maxdep f�v→ f u→···→t�(σ) .

This works because maxdep f is increasing and because of Equation (3.6).
Next, we show that all paths P := �v→ ·· · → t� ⊆ (G�(p))� fulfill the con-

dition maxdep fP(σ)≤ r[v] for all σ ∈ [σ0,σ
�
0]. Assume a path P1 := �v→ f u→

·· ·→ t� ⊆ (G�(p))� with maxdep fP1(σ1)> r[v] for some σ1 ∈ [σ0,σ
�
0]. W.l.o.g.,

presume maxdep f�u→···→t�(σ1)≤ r[u]. The edge v→ f u lies in (G�(p))�, which

means u→ f v ∈ E� has already been relaxed. To obtain a contradiction again, we
argue

maxdep fP1(σ1)> r[v]≥maxdep f (r[u])≥maxdep f (r[u])

≥maxdep f
�
dep f�u→···→s�(σ1)

�
= maxdep fP1(σ1) .

Now we know that the first and the third statement both hold true. To show
the second statement, assume a path �v→ f u→ ·· · → t� �⊆ (G�(p))� such that
all its suffixes �u� → · · · → t� ⊆ �v→ f u→ ·· · → t� fulfill

dep f�u�→···→t�(σ)∩ [q[u�],r[u�]] �= /0

for some σ ∈ [σ0,σ
�
0]. W.l.o.g., presume �u→ ·· ·→ t� ⊆ (G�(p))� implying that

v→ f u ∈ E is not in (G�(p))�. After termination, u→ f v ∈ E� has been relaxed
at least once. So, either v→ f u lies in (G�(p))�, or (G�(p))� contains an edge
v→g w, such that w→g v ∈ E� has been relaxed earlier, with mindepg(q[w]) >
maxdep f (r[u]) implying

q[v]≥mindepg(q[w])> maxdep f (r[u])

≥maxdep f
�
maxdep f�u→···→t�(σ)

�

= maxdep f�v→ f u→···→t�(σ)≥ q[v] .

In either case this is contrary to the assumptions.
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Note that the second statement of Lemma 4.41 is not fully dual to the second
statement of the corresponding Lemma 4.26. Again, this is due to the fact that we
use q[v] instead of r[v] as PQ key of a node v. This has consequences for the rest of
the correctness proof, which we formulate without an early stopping criterion like
Q.max()< q[v]. The following two Lemmas can only be applied after termination
of LD interval search hence.

Lemma 4.42. After LD interval search terminates, [q[v],r[v]]⊇LDG(v, t, [σ0,σ
�
0])

holds for all v ∈V.

Proof. Assume v ∈ V exists with r[v] < τ �0 := maxLDG(v, t,σ
�
0) after termina-

tion. Consider a (v, t,τ �0)-EA-path �v→ f u→ ·· · → t�. W.l.o.g., presume r[u] ≥
maxLDG(u, t,σ

�
0) (otherwise, choose an appropriate suffix path of �v → f u →

·· · → t�). The edge u→ f v ∈ E� must have been relaxed. So,

r[v]≥maxdep f (r[u])≥maxdep f
�
maxLDG(u, t,σ

�
0)
�

= max
�
(arr f )−1 ◦EA−1

G (u, t, ·)
�
(σ �

0)

= max
�
EAG(u, t, ·)◦arr f

�−1
(σ �

0)

holds true. Moreover, we have

σ �
0 = EAG(v, t,τ

�
0) = EAG

�
u, t,arr f (τ �0)

�
= EAG(u, t, ·)◦arr f (τ �0)

because of the suffix-optimality of EA paths. Together with

�
EAG(u, t, ·)◦arr f

�−1
◦EAG(u, t, ·)◦arr f (τ �0) � τ �0

this yields r[v]≥ τ �0 = maxLDG(v, t,σ
�
0)—a contradiction.

Further, assume q[v]> τ0 :=minLDG(v, t,σ0). There must be an edge v→ f u
in G with q[v] = mindep f (q[u]) (e.g., the transpose of the edge u → f v ∈ E�

that has been relaxed lastly during LD interval search). W.l.o.g., presume q[u] ≤
minLDG(u, t,σ0) (otherwise, set v := u, consider another edge v→ f u in G with
q[v] = mindep f (q[u]), and repeat this until q[u] ≤ minLDG(u, t,σ0) gets true).
Now, we argue

q[v]≤mindep f (q[u])≤mindep f
�
LDG(u, t,σ0)

�

= min
�
EAG(u, t, ·)◦arr f

�−1
(σ0)

and with σ0 = EAG(v, t,τ0) ≤ EAG(u, t,arr f (τ0)) = EAG(u, t, ·) ◦ arr f (τ0) we
obtain

q[v]≤min
�
EAG(u, t, ·)◦arr f

�−1
◦EAG(u, t, ·)◦arr f (τ0)≤ τ0 .

But this means q[v]≤ τ0 = minLDG(v, t,σ0)—a contradiction.
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Lemma 4.43. After LD interval search terminates, (G�(p))� ⊆ G contains a
(v, t,τ)-EA-path for all v∈V from that t is reachable and all τ ∈LDG(v, t, [σ0,σ

�
0]).

Proof. Consider a (v, t,τ)-EA-path Pv,τ in G, which exists for v ∈ V and τ ∈
LDG(v, t, [σ0,σ

�
0]) due to Lemma 3.7. Then, we have

arr f�u→···→t�(τvu) = EAG(u, t,τvu) = EAG(v, t,τ) ∈ [σ0,σ
�
0]

with τvu := arr f�v→···→u�(τ) for all suffixes �u→ ··· → t� ⊆ Pv,τ , because of the
suffix-optimality of EA paths. This implies that σ ∈ [σ0,σ

�
0] exists such that τvu ∈

dep f�u→···→t�(σ)∩LDG(u, t,σ) holds for all the suffixes. So, as the LD interval
search has already terminated, we have

/0 �= dep f�u→···→t�(σ)∩LDG(u, t,σ)⊆ dep f�u→···→t�(σ)∩ [q[u],r[u]]

for each suffix, because Lemma 4.42 guaranties LDG(u, t,σ) ⊆ [q[u],r[u]]. But
this means Pv,τ ⊆ (G�(p))�, which follows from the second statement of Lem-
ma 4.41.

Running Time. LD interval search is dual to EA interval search, which means
we expect similar running times. More precisely, we expect that reinserts of nodes
happen rarely. This results in about O(|V | log |V |) running time plus the time
needed for O(|E|) = O(|V |) edge relaxations, assuming G to be sparse. Relax-
ing an edge u→ f v ∈ E� needs constant time except for computing the interval�
mindep f (q[u]), maxdep f (q[u])

�
. The latter needs O

��
� f
�
�+

�
� f
�
�
�

time if a linear

scan through the bend points of f and f is used. Binary search would reduce this

to O
�
log

�
� f
�
�+ log

�
� f
�
�
�

time. But we expect
�
� f
�
� and

�
� f
�
� to be small. A linear scan

through the bend points of f and f should be fast enough hence—at least in the
context of ATCHs (see Section 5.4.1), which is where LD interval search is used
in this thesis (see Section 5.4.2).

4.3.5 Backward Cost Profile Search

Backward cost profile search (or backward CP search for short, see Algorithm 4.7)
is the first Dijkstra-like algorithm in this chapter that not only deals with time-
dependent travel times but also with additional costs. So, G has no longer edges
u→ f v but edges u→ f |c v with f |c ∈FΠ×R≥0. But backward CP search also
works with the more general case that additional costs are time-dependent; that is,
edge weights f |c are taken from F ��

Π×XΠ and c is a function then. This is im-
portant because backward CP search is utilized by heuristic TCH preprocessing,
where such generalized edge weights may really occur (see Section 6.2.2 on page
280).
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Given a destination node t, backward CP search computes MCTTG(u, t, ·)
as well as CostG(u, t, ·)−MCTTG(u, t, ·) and thus implicitly CostG(u, t, ·) for all
u ∈ V . The search runs backward starting from t. A node u is labeled with a
pair F [u]

�
�C[u] ∈ F ��

Π ×XΠ, where F [u] and C[u] represent the travel times and
the additional cost, respectively, of the best paths found so far. So, F [u] +C[u]
is a tentative CP for traveling from u to t. The transpose tentative predecessor
graph (G�(p))� ⊆G contains the corresponding tentative paths from u to t. After
termination, F [u] = MCTTG(u, t, ·) and C[u] = CostG(u, t, ·)−MCTTG(u, t, ·) is
fulfilled for all u ∈V , which implies F [u]+C[u] = CostG(u, t, ·). Also, (G�(p))�

contains a (u, t,τ)-MC-path for all τ ∈R if t is reachable from the node u.
Like in case of LD interval search, edges are relaxed in backward direction;

that is, relaxed edges u→ f |c v are elements of E� instead of E. When relaxing an

edge u→ f |c v ∈ E�, we update the label F [v]
�
�C[v] of the node v by

F [v]
�
�C[v] := min

�
F [v]

�
�C[v], F [u]

�
�C[u] � f |c

�
. (4.14)

Note that we link F [u]
�
�C[u] � f |c and not f |c � F [u]

�
�C[u], because the search di-

rection is backward (see Line 8). As PQ key of a node u we would use the min-
imum of the current tentative CP, but this does in general not exist because of

Algorithm 4.7. Given a destination node t, backward CP search computes final

labels F [u]
�
�C[u] with F [u] +C[u] = CostG(u, t, ·) for all u ∈ V . The components

of the label represent the travel times and the additional costs of corresponding

MC paths; that is, F [u] =MCTTG(u, t, ·) andC[u] =MCTTG(u, t, ·)−CostG(u, t, ·).

After termination (G�(p))� ⊆ G contains a (u, t,τ)-MC-path for all τ ∈ R (if t is

reachable from u).

1 procedure bwCpSearch(t :V )
2 F [u]

�
�C[u] := ∞|∞ for all u ∈V , F [t]

�
�C[t] :≡ 0|0 // labels from F ��

Π×XΠ

3 p[u] := /0 for all u ∈V // predecessor information consists of sets
4 Q := {(t,0)} : PriorityQueue
5 while Q �= /0 do
6 u := Q.deleteMin()

7 foreach u→ f |c v ∈ E� do

8 gnew|dnew := F [u]
�
�C[u] � f |c

9 if gnew+dnew(τ)> F [v]+C[v](τ) for all τ ∈R then continue
10 if gnew+dnew(τ)< F [v]+C[v](τ) for all τ ∈R then p[v] := /0
11 p[v] := {u}∪ p[v]
12 F [v]

�
�C[v] := min

�
F [v]

�
�C[v], gnew|dnew

�

13 if v �∈ Q then Q.insert(v, inf(F [v]+C[v]))
14 else Q.updateKey(v, inf(F [v]+C[v]))
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F [u]
�
�C[u] ∈ F ��

Π ×XΠ. Instead, we use inf(F [u] +C[u]) (see Line 13 and 14),
which surely exists. Like in case of TTP search, reinserts into the PQ are possible.

Correctness. Though backward CP search can be considered as a special case
of backward approximate CP search (see Section 4.3.7), we cannot argue its cor-
rectness from that. The reason is that there are, essentially, two ways to formulate
exact and approximate variants of backward CP search.

• First, the search computes information about the TTFs and the ACFs as two
separate functions. The information about TCFs is then given implicitly by
the information about TTFs and ACFs.

• Second, the search only computes the TCFs. Reconstructing the TTFs and
the ACFs cannot be done easily then.

Backward CP search as described in this thesis deals with TTFs and ACFs sep-
arately. Backward approximate CP search as described in this thesis only deals
with TCFs.

The proof of correctness of backward CP search follows the same pattern as
in case of the other Dijkstra-like algorithms. But note that the existence of MC
paths may be problematic if edge weights are taken from F ��

Π×XΠ. Although
we strongly conjecture that the existence of MC paths is guaranteed in this setup,
we have not worked out a proof so far (see Section 3.2.4). To ensure that an
(s, t,τ0)-MC-path exists for all s, t ∈V,τ0 ∈R where t is reachable from s, we use
Lemma 3.23 instead. So, in the following, inf f > 0 or minc > 0 is assumed to
hold true for all edges u→ f |c v in G.

Analogous to all Dijkstra-like algorithms considered in this thesis, backward
CP search shows the typical monotonous increase of PQ keys.

Lemma 4.44. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during backward CP search. Let F1|C1, F2|C2, . . . be the respective node labels
at time of removal. Then, inf(F1+C1)≤ inf(F2+C2)≤ . . . holds.

Proof. The proof is analogous to the one Lemma 4.54 but with the difference that
TCFs are represented implicitly as pairs of TTFs and ACFs.

This means, Q.min() never decreases during backward CP search. And, obvi-
ously, sup(F [v]+C[v]) never increases for any node v ∈ V . This yields the usual
criterion when the label and the predecessor information of a node get final, as
discussed a little later in this section. Also, we find the usual correspondence
between node labels and tentative predecessor information.

Lemma 4.45. While backward CP search runs, (G�(p))� contains a path Pv,τ =
�v→ ·· · → t� with fPv,τ (τ) = F [v](τ) and cPv,τ (τ) = C[v](τ) for all v ∈ V,τ ∈ R
(provided that t is reachable from v).
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Proof. Assume, there is v0 ∈V,τ0 ∈R such that

f�v0→···→t�(τ0) �= F [v0](τ0) or c�v0→···→t�(τ0) �=C[v0](τ0)

holds for all paths �v0 → ·· · → t� ⊆ (G�(p))� ⊆ G. There must be an earlier
relaxed edge u→ f |c v0 ∈ E� with v0 → f |c u in (G�(p))� ⊆ G that fulfills

F [v0](τ0) = lim
σ→τ−0

F [u]∗ f (σ) = F [u]∗ f (τ0) and

C[v0](τ0) = lim
σ→τ−0

C[u]∗ f c(σ) =C[u]∗ f c(τ0)

with respect to Equation (3.39) and (3.41), because all involved functions are left-
continuous. W.l.o.g., there is a path �u→ ·· · → t� ⊆ (G�(p))� with

f�u→···→t�(arr f (τ0)) = F [u](arr f (τ0)) and

c�u→···→t�(arr f (τ0)) =C[u](arr f (τ0)) .

So, to obtain a contradiction, we argue

f�v0→ f |cu→···→t�(τ0) �= F [v0](τ0) = F [u]∗ f (τ0) = F [u](arr f (τ0))+ f (τ0)

= f�u→···→t�(arr f (τ0))+ f (τ0) = f�v0→ f |cu→···→t�(τ0)

and analogously c�v0→ f |cu→···→t�(τ0) �= c�v0→ f |cu→···→t�(τ0).

Corollary 4.46. While backward CP search runs, F [v]+C[v](τ) ≥ CostG(v, t,τ)
is always true for all v ∈V,τ ∈R.

We are now ready to show that backward CP search computes the desired node
labels.

Lemma 4.47. After backward CP search terminates, F [v] +C[v] = CostG(v, t, ·)
and F [v] = MCTTG(v, t, ·) holds for all v ∈V.

Proof. We start our proof with the assumption that v1 ∈ V,τ1 ∈ R exist such that
F [v1]+C[v1](τ1) �= CostG(v1, t,τ1) holds. Consider a (v1, t,τ1)-MC-path

P1 := �v1 → f1|c1
v2 → f2|c2

· · · → fk−1|ck−1
vk = t� ⊆ G .

We write Pi := �vi → fi|ci · · · → fk−1|ck−1
vk = t� ⊆ P1 to denote the suffixes of P1 for

all i ∈ {2, . . . ,k}. We also write τi := arr fi−1(τi−1). Due to the suffix-optimality
of MC paths, we know Pi is an (vi, t,τi)-MC-path for all i ∈ {2, . . . ,k}. Choose j
maximal such that

F [v j]+C[v j](τ j) �= CostG(v j, t,τ j)
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but
F [v j+1]+C[v j+1](τ j+1) = CostG(v j+1, t,τ j+1)

holds. Corollary 4.46 tells us that F [v j]+C[v j](τ j) > CostG(v j, t,τ j) holds. Let
Fold and Cold be the values of F [v j] and C[v j], respectively, right before the trans-
pose edge v j+1 → f j|c j

v j ∈ E� is relaxed for the last time. To obtain a contradic-
tion, we argue

F [v j]+C[v j](τ)≤ tcfmin
�
Fold

�
�Cold, F [v j+1]

�
�C[v j+1] � f j|c j

�
(τ)

for all τ ∈R implying

CostG(v j, t,τ j)< F [v j]+C[v j](τ j)

≤min
�
Fold+Cold(τ j),

�
F [v j+1]∗ f j+C[v j+1]∗ f j c j

�
(τ j)

�

≤ F [v j+1]∗ f j+C[v j+1]∗ f j c j(τ j)

= (F [v j+1]+C[v j+1])◦arr f j+ f j+ c j(τ j)

= CostG(v j+1, t,τ j+1)+ f j(τ j)+ c j(τ j)

= CostG(v j, t,τ j) .

Now, we assume that F [v1](τ1) �= MCTTG(v1, t,τ1) holds, which is a little
more complicated to deal with. Again, consider the path P1 and its suffixes
P2, . . . ,Pk, but this time assuming that δ > 0 exists such that each path Pi is a
(vi, t,τ)-MC-path for all τ ∈ (τi− δ ,τi] with i ∈ {1, . . . ,k}. This is possible be-
cause of Lemma 3.25 and the suffix-optimality of MC paths. Further assume
that each path Pi fulfills fPi(τi) = MCTTG(vi, t,τi). Choose j maximal, such that
F [v j](τ j) �= MCTTG(v j, t,τ j) but F [v j+1](τ j+1) = MCTTG(v j+1, t,τ j+1) holds.
Note that we already know F [v j] +C[v j] = CostG(v j, t, ·) implying F [v j](τ j) >
MCTT(v j, t,τ j) because of Lemma 4.45 and Equation (3.29).

Let, again, Fold

�
�Cold be the value of F [v j]

�
�C[v j] right before v j+1 → f j|c j

v j ∈

E� is relaxed for the last time. We then calculate
�
F [v j+1]∗ f j+C[v j+1]∗ f j c j

�
(τ)

= F [v j+1]+C[v j+1](arr f j(τ))+ f j(τ)+ c j(τ)

= CostG(v j+1, t,arr f j(τ))+ f j(τ)+ c j(τ)

=CPj+1(arr f j(τ))+ f j(τ)+ c j(τ)

=CPj(τ)

= Cost(v j, t,τ)

≤ Fold+Cold(τ)

for all τ ∈ (τ j−δ ,τ j) and arr f j(τ)∈ (arr f j(τ j−δ ),τ j+1)with sufficiently small
δ > 0. So, it is enough to distinguish whether

�
F [v j+1]∗ f j+C[v j+1]∗ f j c j

�
(τ) is
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smaller or equal Fold+Cold(τ) for all τ ∈ (τ j−δ ,τ j), again with sufficiently small
δ > 0. In the first case, we obtain

F [v j](τ j) = minCold,C[v j+1]∗ f j
c j
(Fold, F [v j+1]∗ f j)(τ j)

= lim
τ→τ−j

F [v j+1]∗ f j(τ) = F [v j+1]∗ f j(τ j) .

In the second case, we obtain

F [v j](τ j) = lim
τ→τ−j

min
�
Fold,F [v j+1]∗ f j

�
(τ)≤ F [v j+1]∗ f j(τ j) .

Altogether, this yields

MCTTG(v j, t,τ j) = fPj(τ j) = fPj+1 ∗ f j(τ j) = fPj+1(τ j+1)+ f j(τ j)

= MCTTG(v j+1, t,τ j+1)+ f j(τ j) = F [v j+1](τ j+1)+ f j(τ j)

= F [v j+1]∗ f j(τ j)≥ F [v j](τ j)

> MCTTG(v j, t,τ j) ,

which is a contradiction.

Lemma 4.45 together with Lemma 4.47 finally provides the desired result.

Lemma 4.48. As soon as Q.min()> sup(F [v]+C[v]) becomes true for a node v,
F [v]

�
�C[v] and p[v] do not change anymore. From that moment on,

F [v] = MCTTG(v, t, ·) and C[v] = CostG(v, t, ·)−MCTTG(v, t, ·)

holds and (G�(p))� contains a (v, t,τ)-MC-path for all τ ∈R ever after.

Proof. The argument is analogous to the proofs of Lemma 4.23 and 4.24.

We summarize some parts of what we have learned in a corollary.

Corollary 4.49. After backward CP search terminates, F [v] =MCTTG(v, t, ·) and
C[v] = CostG(v, t, ·)−MCTTG(v, t, ·) holds for all v ∈V. Also, the transpose pre-
decessor graph (G�(p))� contains a (v, t,τ)-MC-path in G for all τ ∈ R if t is
reachable from v.

Running Time. As backward CP search is similar to TTP search, one would
expect similar running times. However, CPs can get much more complex than
TTPs. More precisely, if K is the total number of bend points in G, then TTPs
have no more than K · |V |O(log |V |) bend points according to Foschini et al. [36].
CPs, in contrast, have up to 2Ω(|V |) bend points, as we state in Theorem 6.2 (see
Section 6.1.2). So, backward CP search can take even more time than the already
slow TTP search, because even more bend points can emerge that have to be pro-
cessed. Whether backward CP search is slower than TTP search for road networks
in practice, must be found out experimentally.
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One-to-One Version. Like other Dijkstra-like algorithms, backward CP search
can be used to answer one-to-one queries. To compute CostG(s, t, ·) for given
s, t ∈V (i.e., to answer a CP query), one simply runs backward CP search starting
from t returning the TCF F [s] +C[s] after termination. Of course, it is not nec-
essary to run backward CP search completely, but it can be stopped as soon as
Q.min()> sup(F [s]+C[s]) becomes true, because the label F [s]

�
�C[s] of the node

s is guaranteed to be final from that time on.

Computing TCFs Only. We already said that Section 4.3.7 describes a version
of backward approximate CP search that only deals with TCFs instead of TTFs
and ACFs. It would also be possible to formulate backward CP search this way.

4.3.6 Backward Cost Profile Interval Search

As backward CP search (see Algorithm 4.7 in Section 4.3.5) is very slow, we
use backward cost profile interval search (or backward CP interval search for
short, see Algorithm 4.8) as a relatively loose but much faster approximation of
backward CP search; just like TTP interval search is a relatively loose but fast
approximation of TTP search.

Algorithm 4.8. Given a destination node t, backward CP interval search computes

final labels [q[u],r[u]] = [CostG(u, t), CostG(u, t)] for all τ ∈R and all u ∈R. After

termination, (G�(p))� ⊆G contains an (u, t,τ)-MC-path for each node u ∈V from

that t is reachable in G and all τ ∈R.

1 procedure bwCpIntervalSearch(t :V )
2 [q[u],r[u]] := [∞,∞] for all u ∈V , [q[t],r[t]] := [0,0] // labels are intervals
3 p[u] := /0 for all u ∈V // predecessor information consists of sets
4 Q := {(t,0)} : PriorityQueue
5 while Q �= /0 do
6 u := Q.deleteMin()

7 foreach u→ f |c v ∈ E� do

8 [qnew, rnew] :=
�
q[u]+ inf( f + c), r[u]+ sup( f + c)

�

9 if qnew > r[v] then continue
10 if rnew < q[v] then p[v] := /0 // remove suboptimal predecessors
11 p[v] := {u}∪ p[v] // remember a tentative predecessor of v
12 if qnew ≥ q[v] and rnew ≥ r[v] then continue
13 [q[v],r[v]] :=

�
min{q[v],qnew}, min{r[v],rnew}

�
// update label of v

14 if v �∈ Q then Q.insert(v, q[v])
15 else Q.updateKey(v, q[v]) // lower bound of the interval is PQ key
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Instead of MCTTG(u, t, ·) and CostG(u, t, ·)−MCTTG(s,u, ·) it computes the
interval [CostG(u, t), CostG(u, t)] for every node u ∈V . Hence, the label of a node
u is neither a tentative CP nor a pair taken from F ��

Π×XΠ but a tentative interval
[q[u],r[u]]. The transpose tentative predecessor graph (G�(p))� ⊆ G contains
corresponding tentative MC paths from all reached nodes to the destination node
t for all possible departure times. When relaxing an edge u→ f v ∈ E� we update
the label of a node v by

[q[v],r[v]] :=
�
min

�
q[v], q[u]+ inf( f + c)

�
,

min
�
r[v], r[u]+ sup( f + c)

��
.

(4.15)

Note that, compared to the analogous Equation (4.8), “min” and “max” are re-
placed by “inf” and “sup” respectively. This is because of f |c ∈F ��

Π×XΠ, which
means that min( f + c) and max( f + c) do in general not exist. As PQ key of
a node u we use q[u]. Like in case of backward CP search, nodes may also be
reinserted into the PQ from time to time. But we expect this to happen rarely in
practice.

Correctness. We argue that backward CP interval search is a special case of
backward approximate CP search (see Section 4.3.7) where the lower and the up-
per bound C[u] and C[u] of a node u, respectively, are simply constant functions.
Most of the following statements are essentially special cases of statements elab-
orately described a little later (see Section 4.3.7). So, proofs are omitted.

Lemma 4.50. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during backward CP interval search. Let [q1,r1], [q2,r2], . . . be the respective
node labels at time of removal. Then, q1 ≤ q2 ≤ . . . holds.

Lemma 4.51. As soon as Q.min() > r[v] becomes true for a node v, [q[v],r[v]]
and p[v] do not change anymore and CostG(v, t,τ) ∈ [q[v],r[v]] is guaranteed for
all τ ∈ R from that moment on. Also, (G�(p))� contains a (v, t,τ)-MC-path for
all τ ∈R ever after.

The final label [q[v],r[v]] of a node v is not only some interval containing
CostG(v, t,τ) for all τ ∈ V . In fact, it is the smallest possible interval that can be
computed in terms of minima and maxima of TCFs. This is analogous to forward
and backward TTP interval search.

Lemma 4.52. After backward CP interval search terminates, we know [q[v],r[v]] =�
CostG(v, t),CostG(v, t)

�
holds for all v ∈V.

Proof. The proof is analogous to the one of Lemma 4.15.
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Lemma 4.52 enables us to formulate the statement of Lemma 4.51 in a more
specific way, just like in case of forward and backward TTP interval search.

Corollary 4.53. As soon as Q.min()> r[v] becomes true for a node v,

CostG(v, t,τ) ∈ [q[v],r[v]] =
�
CostG(v, t), CostG(v, t)

�

is guaranteed for all τ ∈ R. Also, (G�(p))� contains a (v, t,τ)-MC-path for all
τ ∈R ever after.

Running Time. Backward CP interval search is very similar to TTP interval
search. Reinserts into the PQ are possible, but like in case of TTP interval search
we do not expect that this happens too often in practice. We expect similar running
times as in case of Dijkstra’s algorithm hence.

One-to-One Version. Of course, backward CP interval search can be used to
answer one-to-one queries. To compute the interval

�
CostG(s, t), CostG(s, t)

�
for

given s, t ∈ V , one only has to run backward CP interval search starting from
t returning [q[s],r[s]] after termination. The search can be stopped as soon as
Q.min()> r[s] is fulfilled.

4.3.7 Backward Approximate Cost Profile Search

Backward approximate cost profile search (or backward approximate CP search
for short, see Algorithm 4.9) is, like backward CP interval search, an approximate
version of backward CP search. Backward approximate CP search is far more
accurate than backward CP interval search but runs significantly slower. However,
it is still expected to run much faster than backward CP search. The relationship
of backward CP search, backward CP interval search, and backward approximate
CP search is analogous to the relationship of TTP search, TTP interval search, and
approximate TTP search. The idea behind backward approximate CP search is to
use approximate TTFs and ACFs as well as approximate node labels instead of
exact ones. Expecting the approximate functions to have smaller complexity than
the exact ones, we expect the search to run faster, because much less bend points
have to be processed. This idea is analogous to the idea behind approximate TTP
search of course. Note that backward approximate CP search not only works with
additional time-invariant costs but also with time-dependent additional costs; that
is, f |c ∈ F ��

Π×XΠ can hold for edges u→ f |c v ∈ E. Also note that f + c may
even have points of discontinuity. This can happen in the context of heuristic
TCHs even if the underlying road networks has edge weights only taken from
FΠ×R≥0 (see Section 6.2.2 and 6.3.2).
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Algorithm 4.9. Given a destination node t, approximate backward CP search com-

putes final labels
�
C[u],C[u]

�
with C[u](τ)≤ CostG(u, t,τ)≤C[u](τ) for all u ∈V .

After termination, (G�(p))� ⊆ G contains a (u, t,τ)-MC-path for all τ ∈ R and

each node u from that the destination node t is reachable in G.

1 procedure bwApproximateCpSearch(t :V )
2 C[u] :=C[u] := ∞ for all u ∈V

3 C[s] :=C[s] :≡ 0|0 // labels from FΠ×FΠ

4 p[u] := /0 for all u ∈V // predecessor information consists of sets
5 Q := {(t,0)} : PriorityQueue
6 while Q �= /0 do
7 u := Q.deleteMin()

8 foreach u→ f |c v ∈ E� do

9 let f ∈F ��
Π be an upper bound of f with

�
� f
�
�� | f |

10 let c ∈XΠ be an upper bound of c with |c| � |c|
11 let f ∈F ��

Π be a lower bound of f with
�
� f
�
�� | f |

12 let c ∈XΠ be a lower bound of c with |c| � |c|

13
�
Dnew, Dnew

�
:=

�
C[u]∗ f

�
f + c

�
,C[u]∗ f

�
f + c

��

14 if Dnew(τ)≥C[v](τ) for all τ ∈R then continue

15 if Dnew(τ)<C[v](τ) for all τ ∈R then p[v] := /0

16 p[v] := {u}∪ p[v]

17 if Dnew(τ)≥C[v](τ)∧Dnew(τ)≥C[v](τ) for all τ ∈R then continue

18
�
C[v],C[v]

�
:=

�
min

�
C[v], Dnew

�
, min

�
C[v], Dnew

��

19 if
�
�C[v]

�
� gets too large then

20 replace C[v] by an an upper bound from FΠ with less complexity

21 if
�
�C[v]

�
� gets too large then

22 replace C[v] by an an upper bound from FΠ with less complexity

23 if C[v] has one or more discontinuities then

24 replace C[v] by an upper bound C
�
∈FΠ with maxC

�
= supC[v]

25 ifC[v] has one or more discontinuities then
26 replace C[v] by a lower bound C� ∈FΠ with minC� = infC[v]

27 if v �∈ Q then Q.insert(v,minC[v])
28 else Q.updateKey(v,minC[v])
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For all nodes u ∈V from that t is reachable, backward approximate CP search
computes node labels of the form

�
C[u],C[u]

�
∈FΠ×FΠ that fulfill

C[u](τ)≤ CostG(u, t,τ)≤C[u](τ)

for all τ ∈ R after termination. Also, the transpose predecessor graph (G�(p))�

contains a (u, t,τ)-MC-path for all τ ∈R and all nodes u from that t is reachable
in the end. As PQ key of a node u we use minC[u]. Reinserts into the PQ are
possible. When an edge u→ f |c v ∈ E� is relaxed (see Line 18), the label of a
node v is updated by

�
C[v],C[v]

�
:=

�

min
�
C[v], C[u]∗ f

�
f + c

��
,

min
�
C[v], C[u]∗ f

�
f + c

��
� (4.16)

where f and f as well as c and c are lower and upper bounds of f as well as c,

respectively; that is, f (τ) ≤ f (τ) ≤ f (τ) and c(τ) ≤ c(τ) ≤ c(τ) for all τ ∈ R.

The bounds f , f ,c,c (see Line 9 to 12) can either be computed during the execu-
tion of the algorithm or in a preprocessing step, just like in case of approximate
TTP search. This already makes C[u] and C[u] lower and upper bounds for every
reached node u respectively. The running time can, again, be further reduced if
C[u] and C[u] are further approximated during execution (see Lines 19 to 22).

After Line 26, C[u] and C[u] are guaranteed to lie in FΠ, which means they
formally fulfill the FIFO property. Otherwise, the linking in Line 13 could yield
TCFs Dnew and Dnew that fail to be a lower and upper bound, respectively, of
the CP Dnew that emerges from the best paths �u→ ·· · → t� ⊆ G considered so
far. As a simple example, assume that an edge u → f |0 v ∈ E� is relaxed, and
�
Dnew, Dnew

�
is thus computed by

�
Dnew, Dnew

�
:=

�
C[u]∗ f

�
f +0

�
,C[u]∗ f

�
f +0

��
=
�
C[u]∗ f ,C[u]∗ f

�
.

Further assume, C[u] and C[u] have a negative discontinuity—such that C[u] and
C[u] violate the FIFO property—for some departure time τ0 ∈R where the width
of the downward jump is “sufficiently large”. Then, it can happen that Dnew lies
not completely below Dnew. Especially, Dnew or Dnew cannot be a lower or upper
bound of Dnew, respectively, because the condition Dnew(τ)≤Dnew(τ)≤Dnew(τ)
is violated for the one or another τ ∈ R. Figure 4.5 illustrates such a situation.
There, arr f (τ) and arr f (τ) are to the left and to the right of the discontinuity τ0
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arr f (τ) arr f (τ)

τ0

C[u]

C[u]

Figure 4.5. How negative discontinuities destroy the property of being a lower or an
upper bound of a TCF when linked. The negative discontinuity that the lower bound C[u]
and the upper boundC[u] of an unknown TCF have at τ0, implies that the FIFO property is
violated. To fulfill

�
C[u]∗ f

�
(τ)≤

�
C[u]∗ f

�
(τ) for a lower bound f and an upper bound

f of an unknown TTF and for some departure time τ , the value C[u](arr f (τ)) must not

lie above the dashed line of slope −1. This is because C[u](arr f (τ))>C[u](arr f (τ))+

f (τ)− f (τ) is fulfilled there.

respectively. Consider the equivalence

�
C[u]∗ f

�
(τ) ≤

�
C[u]∗ f

�
(τ)

⇔
�
C[u]◦arr f + f

�
(τ) ≤

�
C[u]◦arr f + f

�
(τ)

⇔ C[u]
�
arr f (τ)

�
≤ C[u]

�
arr f (τ)

�
+ f (τ)− f (τ) .

This shows that C[u]∗ f (τ)≤C[u]∗ f (τ) is not fulfilled because of

C[u]
�
arr f (τ)

�
>C[u]

�
arr f (τ)

�
+ f (τ)− f (τ) .

To avoid such problems, C[u] and C[u] are replaced by bounds taken from FΠ,
which fulfill the FIFO property (see Line 23 to 26).

The computation of the bounds f , c, f , and c (see Line 9 to 12) can be done
using the Imai-Iri algorithm [52], just like in case of approximate TTP search (see
Section 4.2.4). This algorithm can also be used when C[u] or C[u], respectively,
are replaced by other lower and upper bounds, which happens if

�
�C[u]

�
� or

�
�C[u]

�
�

get too large (see Line 19 to 22) or if C[u] or C[u] have points of discontinuity as
just explained (see Line 23 to 26).

Computing Travel Time and Additional Cost Separately. There is an impor-
tant difference between backward approximate CP search as described here and
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τ0 τ �0

τ

d

c

f + c

f + c

g+d
g+d

h(τ) = f (τ)

h(τ) = g(τ)

<

Figure 4.6. How the minimum operation on F ��
Π×XΠ destroys the property of being a

lower bound of a TTF. Consider f |c,g|d ∈ FΠ×R≥0 and corresponding lower bounds
f ,g ∈ FΠ of the TTFs f ,g. The lower bounds f + c and g+ d of the TCFs f + c and
g+ d intersect at τ0, which is different from τ �0 where f + c and g+ d intersect. This
means, that the points of discontinuity of h|e :=min

�
f |c, g|d

�
are different from the ones

of h|e := min
�
f |c, g|d

�
; h is discontinuous at τ �0, and h at τ0 �= τ �0. For all τ ∈ (τ0,τ

�
0), h

fails to be a lower bound of h, because of h(τ) = f (τ)> g(τ) = h(τ).

backward CP search as described in Section 4.3.5. Namely, that backward CP
search as described there does not directly compute labelsC[u] = Cost(u, t, ·), but
labels F [u]

�
�C[u] = MCTT(u, t, ·)

�
�Cost(u, t, ·)−MCTT(u, t, ·). It would also be

possible to formulate backward approximate CP search as direct generalization of
this approach by computing labels of the form

�
F [u]

�
�C[u], F [u]

�
�C[u]

�
∈
�
F ��

Π×XΠ

�2

that fulfill

�
F [u]+C[u]

�
(τ)≤ CostG(u, t,τ)≤

�
F [u]+C[u]

�
(τ)

and
F [u](τ)≤MCTTG(u, t,τ)≤ F [u](τ)

for all τ ∈ R after termination. This, however, is not completely straightforward
but requires some care.

Consider, for example, f |c, g|d ∈FΠ×R≥0 as well as corresponding lower
bounds f ,g ∈ FΠ of the TTFs f ,g. In general, the lower bound h, with h|e :=
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min
�
f |c, g|d

�
, is not a lower bound of h, with h|e := min

�
f |c, g|d

�
. This is

because points of discontinuity shift in general. Figure 4.6 illustrates such a situa-
tion. So, one cannot naively apply the minimum operation on F ��

Π×XΠ to obtain
appropriate lower bounds but has to be more careful. For upper bounds of TTFs
as well as for lower and upper bounds of ACFs this problem exists analogously.

Correctness. Proving the correctness of backward approximate CP search is
more or less analogous to proving the correctness of approximate TTP search (see
Section 4.2.4). We start with the monotonous behavior that is typical for all other
Dijkstra-like algorithms considered in this thesis.

Lemma 4.54. Let v1,v2, . . . be the order in that the nodes are removed from the
PQ during backward approximate CP search (nodes may be removed multiple
times). Let

�
C1,C1

�
,
�
C2,C2

�
, . . . be the respective node labels at the time when

each node is removed. Then, minC1 ≤minC2 ≤ . . . holds.

Proof. Analogous to the proof of Lemma 4.5, we argue by induction over the
number i of removals from the PQ. In the base case (i.e., i = 2) we remove u2

from the PQ which has been inserted by relaxing an edge t → f |c u2. We have

minC2 = inf
�
C1 ∗ f

�
f + c

��
= inf

�
0◦arr f + f + c

�
≥ 0 = minC1 .

Now we assume
minC1 ≤minC2 ≤ ·· · ≤minCi−1

and consider what happens when ui is removed. The label of node ui has been
updated lastly by relaxing an edge u j →g|d ui ∈ E� with j < i. So, we have

minCi = inf
�
Cj ∗g

�
g+d

��
= inf

�
Cj ◦arrg+g+d

�
≥minCj .

For j = i−1, this means minCi−1 ≤minCi. Otherwise, ui is already contained in
the PQ when ui−1 is removed, which implies minCi−1 ≤minCi.

As usual, Q.min() never decreases during the execution of backward approximate
CP search. Together with the fact that maxC[v] never increases for any node v,
this yields the typical criterion to determine when node labels and predecessor
information get permanent.

Of course, the above proof follows pretty much the same pattern as the proof
of Lemma 4.5. But together with Section 4.3.5, this section is the only part in this
chapter closely considering the correctness of a Dijkstra-like backward search
that deals with time-dependent travel costs beyond travel times. We opted to
present the above proof more detailed hence. The same applies for the proof
of Lemma 4.55 below.



4.3. Backward Single-Label Searches 163

Lemma 4.55. While backward approximate CP search runs, (G�(p))� contains

1. a path Pv,τ = �v→ ·· · → t� with C[v](τ)≤CPv,τ(τ)≤C[v](τ) for all reached
nodes v and all τ ∈R,

2. all such paths Pv,τ where all suffixes �u→ ·· · → t� ⊆ Pv,τ (including Pv,τ it-
self) additionally fulfill C�u→···→t�(τu) < min

�
C[u](τu),Q.min()

�
with τu :=

arr f�v→···→u�(τ), and

3. no path R= �v→ ·· · → t� with CR(τ)<C[v](τ) for any v ∈V,τ ∈R.

Proof. That (G�(p))� contains a path from all reached nodes v to t follows anal-
ogously to forward searches (see the proof of Lemma 4.19).

Assume there is v0 ∈V and τ0 ∈R such thatC�v0→···→t�(τ0)>C[v0](τ0) holds

for all paths �v0 → ·· · → t� ⊆ (G�(p))�. There must be an earlier relaxed edge
u→ f |c v0 in G�(p) with C[v0](τ0) =C[u]∗ f

�
f + c

�
(τ0). W.l.o.g., there is a path

�u→ ·· · → t� ⊆ (G�(p))� fulfilling C�u→···→t�(arr f (τ0))≤C[u](arr f (τ0)). So,
to obtain a contradiction, we argue

C�v0→ f |cu→···→t�(τ0)>C[v0](τ0) =C[u]∗ f

�
f + c

�
(τ0)

≥C�u→···→t� ∗ f ( f + c)(τ0) =C�v0→ f |cu→···→t�(τ0)

utilizing that C[u] fulfills the FIFO property (this is enforced by Line 23 to 26 of
Algorithm 4.9).

Next, we show that all paths P := �v→ ·· · → t� ⊆ (G�(p))� fulfill CP(τ) ≥
C[v](τ) for all τ ∈ R. So, assume P0 := �v→ f |c u→ ·· · → t� ⊆ (G�(p))� with
CP0(τ0) < C[v0](τ0) for some τ0 ∈ R. W.l.o.g., presume C�u→···→t�(arr f (τ0)) ≥

C[u](arr f (τ0)). The edge v0 → f u lies in (G�(p))�, which means its transpose
version has already been relaxed. To obtain a contradiction, we utilize C[u] ∈FΠ

and argue

CP0(τ0)<C[v0](τ0)≤C[u]∗ f

�
f + c

�
(τ0)

≤C�u→···→t� ∗ f ( f + c)(τ0) =CP0(τ0) .

At this point, we know that the first and the third statement must both be true.
To show the second statement, assume a path �v0 → f |c u→ ·· · → t� �⊆ (G�(p))�

such that all its suffixes �u� → · · · → t� ⊆ �v0 → f |c u→ ·· · → t� (including the
path itself) fulfill the condition

C�u�→···→t�

�
arr f�v0→···→u��(τ0)

�
< min

�
C[u�]

�
arr f�v0→···→u��(τ0)

�
, Q.min()

�

for some τ0 ∈ R. W.l.o.g., presume �u → ·· · → t� ⊆ (G�(p))� implying that
v0 → f |c u is not in (G�(p))�. So, utilizing that the third statement is already
proven, we argue

minC[u]≤C�u→···→t�(arr f (τ0))≤C�v0→ f |cu→···→t�(τ0)< Q.min() ,
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which tells us that u has been removed from Q at least once (due to Lemma 4.54).
This means u→ f |c v0 ∈ E� has already been relaxed. So, either v0 → f |c u lies in

(G�(p))�, or (G�(p))� contains an edge v0 →g|d w with C[w] ∗g
�
g+ d

�
(τ0) ≤

C[u]∗ f

�
f + c

�
(τ0) (see Line 14 and 15 of Algorithm 4.9). The first cannot be the

case. So, utilizing the already proven third statement, we argue

C[v0](τ0)≤C[w]∗g
�
g+d

�
(τ0)≤C[u]∗ f

�
f + c

�
(τ0)

≤C�u→···→t� ∗ f ( f + c)(τ0) =C�v0→ f |cu→···→t�(τ0) ,

which cannot be the case by assumption.

Corollary 4.56. While backward approximate CP search runs, we know that
C[v](τ)≥ CostG(v, t,τ) is always true for all v ∈V and all τ ∈R.

We are now ready to prove that backward approximate CP search computes
the desired node labels.

Lemma 4.57. After backward approximate CP search terminates, we can be sure
that C[v](τ)≤ CostG(v, t,τ)≤C[v](τ) holds for all τ ∈R and all v ∈V.

Proof. The proof is analogous to the proof of Lemma 4.21 using Corollary 4.56
in the end. Note that the search direction is backward this time. Also note that the
argument requires suffix-optimality instead of prefix-optimality, which is provided
in case of all MC paths.

We not only want to be sure that backward approximate CP search computes cor-
rect lower and upper bounds, but also correct predecessor information. This fol-
lows directly from Lemma 4.57 together with the second statement of Lemma 4.55.

Corollary 4.58. After backward approximate CP search terminates, (G�(p))�

contains a (v, t,τ)-MC-path for all τ ∈R and all v ∈V from those t is reachable.

As in case of most Dijkstra-like algorithms in this thesis, the predecessor infor-
mation of a node gets permanent as soon as Q.min() gets large enough. Again,
this relies on the monotony of Q.min() (see Lemma 4.54).

Lemma 4.59. The predecessor information p[v] of v does not change anymore
as soon as Q.min() ≥ maxC[v] is fulfilled. From that moment on (G�(p))� is
guaranteed to contain a (v, t,τ)-MC-path for all τ ∈R.

Proof. The argument is analogous to the proof of Lemma 4.23, in the end using
Corollary 4.58.

Not only the predecessor information of a node v gets permanent whenQ.min()
reaches maxC[v]. The same holds true for the node label.
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Lemma 4.60. The label
�
C[v],C[v]

�
of v does not change anymore as soon as

Q.min() ≥ maxC[v] is fulfilled. So, C[v](τ) ≤ CostG(v, t,τ) ≤C[v](τ) is guaran-
teed for all τ ∈R afterwards.

Proof. The argument is analogous to the proof of Lemma 4.24.

4.4 Multi-Label Searches

This section describes the two time-dependent multi-label search algorithms uti-
lized in this thesis. The first one is time-dependent multi-label search (see Sec-
tion 4.4.1). It is a generalization of the basic multi-label search [48, 60] recapit-
ulated in Section 2.2.6. The second one is time-dependent multi-label A* search
(see Section 4.4.2). It adds goal-direction in the manner of A* search [49], which
we recapitulate in Section 2.2.5, to time-dependent multi-label search to achieve
faster running times if one-to-one queries have to be answered.

Both algorithms compute MC paths in time-dependent road networks with ad-
ditional time-invariant costs. In this setup it is not obvious how Dijkstra-like single
label searches can be applied successfully—at least if they run in forward direc-
tion. The problem is that prefix-optimal MC paths are not guaranteed to exist (see
Section 3.2.1 on page 99). Multi-label search, where enough non-optimal paths
are kept to guarantee that even a non-prefix-optimal MC path can be found, is a
possible solution. Another solution might be backward search (see Section 4.3.5,
4.3.6, and 4.3.7), but it has obvious drawbacks for queries with fixed departure
time where the arrival time is unknown.

Note that we also consider how time-dependent multi-label search behaves
in the presence of time-dependent additional costs (i.e., edge weights are taken
from F ��

Π×XΠ). This is necessary because time-dependent multi-label search is
applied to heuristic TCH structures, where such more general edge weights are
allowed (see Section 6.3). In case of time-dependent multi-label A* search we
only consider time-invariant additional costs (i.e., edge weights are taken from
FΠ×R≥0).

4.4.1 Time-Dependent Multi-Label Search

Given a start node s ∈V and a departure time τ0 ∈R, time-dependent multi label
search (see Algorithm 4.10) computes CostG(s,u,τ0) for all u ∈ V as well as an
(s,u,τ0)-MC-path for all reachable nodes u. It is obtained by applying the idea of
original multi-label search [48, 60], which deals with two-dimensional constant
travel costs, to time-dependent road networks with additional costs in a straight-
forward way. Every node u ∈ V has multiple node labels of the form (i,u,τ|γ, i�)



166 Chapter 4. Algorithmic Ingredients

assigned where i∈N is the unique id of the node label itself and i� ∈N the unique
id of the preceding node label. Every node label represents a path from the start
node s to the respective node u. The path represented by a label (i,u,τ|γ, i�) can
be extracted iteratively by repeatedly looking up the preceding node label (see
Algorithm 2.3 in Section 2.2.6).

The two-dimensional cost τ|γ of a node label (i,u,τ|γ, i�) consists of the ar-
rival time τ and the additional cost γ with respect to the path represented by this
node label. More precisely, if Pi is the path represented by (i,u,τ|γ, i�) and we
travel along Pi departing from s at time τ0, then we arrive in the node u at time τ
with additional cost γ ; that is, τ = arr fPi(τ0) and γ = cPi . The total travel cost of
the path Pi for departure time τ0 is CPi(τ0) = fPi(τ0)+ cPi = τ− τ0+ γ . Note that
cPi is independent from the departure time τ0 (i.e., constant) if the underlying road
network only has time-invariant additional costs. But later in this thesis (see Sec-
tion 6.3) time-dependent multi label search is applied to heuristic TCH structures
that can contain more general edge weights; that is, there are edges u→ f |c v ∈ E
with f |c∈F ��

Π×XΠ. If this is the case, then f is a TTF and c an ACF, where both
f and c have points of discontinuity. In such a setup, time-dependent multi-label
label search only finds some path from s to t—and not necessarily an MC path.
We discuss that at the end of this section.

The PQ key of a node label (i,u,τ|γ, i�) is τ + γ . Using the pair τ|γ as key,
where the underlying order is lexicographic, is not uncommon [60] but slower in
the context of road networks in our experience. When a label (i,u,τ|γ, i�) of a
node u is removed from the PQ (see Line 8), all outgoing edges of u are relaxed.
Relaxing an outgoing edge u→ f |c v ∈ E means that a new label ( j,v,arr f (τ)|γ +
c, i) is created, where j is the next available label id (see Line 10). The new
label is attached to the node v, but only if it is not dominated by another label
( j�,v,σ |δ , j��) of v. Any node label of v dominated by the new label is removed
from v and also from the PQ if it is contained in the PQ. To store the current
non-dominated labels of a node u, a label set L[u] is maintained for every node
u. Attaching a label to u means adding it to L[u] and removing it from u means
removing it from L[u]. Obviously, all labels contained in L[u] at the same time
are Pareto optimal (see Section 2.1.3) with respect to arrival time and additional
cost. Time-dependent multi label search, in contrast to Dijkstra-like single label
searches, does not maintain any separate predecessor information. This is not
necessary because the predecessor information is already stored within the node
labels itself.

After termination, the label set L[u] of every node u reachable from s contains
a label (iu,u,τu|γu, i

�
u), such that τu+ γu− τ0 = Cost(s,u,τ0) holds true. The path

Psu := extractPathFromLabelId(iu)⊆ G(L)

extracted using Algorithm 2.3 (see Section 2.2.6) is an (s,u,τ0)-MC-path, if the



4.4. Multi-Label Searches 167

Algorithm 4.10. Computes all paths from s to every reachable node u ∈V that are

Pareto optimal with respect to arrival time and additional cost, although paths with

the same arrival time and additional costs are ruled out. The paths to each node u are

represented by the node labels in the set L[u]. After termination, an (s,u,τ0)-MC-

path is amongst the computed Pareto optimal paths from s to u for every reachable

node u—if the additional costs are time-invariant in the underlying road network G.

A node label (i,u,τ|γ, i�) representing an MC path encodes the corresponding total

minimum travel cost; that is, CostG(s,u,τ0) = τ + γ− τ0.

1 function tdMultiLabelSearch(s :V, τ0 :R) : Set
2 L[u] := /0 for all u ∈V
3 L[s] := {(0,s,τ0|0,⊥)}
4 Q := /0 : PriorityQueue
5 Q.insert

�
(0,s,τ0|0,⊥),τ0

�

6 inext := 1 // the next unused label id
7 while Q �= /0 do
8 (i,u,τ|γ, i�) := Q.deleteMin()
9 foreach u→ f |c v ∈ E do // relax outgoing edges of u

10 �new := (inext, v, arr f (τ)|γ + c, i)
11 if �new is not dominated by any label in L[v] then
12 Q.insert(�new, arr f (τ)+ γ + c)
13 remove all labels dominated by �new from L[v] and Q
14 add �new to L[u]
15 inext := inext+1

underlying road network G has time-invariant additional costs. In the presence of
time-dependent additional costs, we cannot guarantee that MC paths are found.

Correctness with Time-Invariant Additional Costs. We show that the label
set L[v] that time-dependent multi-label search computes for each node v ∈ V
contains an “optimal” label; that is, a label (i,v,τv|γv, i

�) with τv + γv − τ0 =
CostG(s,v,τ0). There, we require that the TTFs fulfill the FIFO property and that
the additional costs are time-invariant (i.e., f |c ∈FΠ×R≥0 for all u→ f |c v ∈ E).
What happens for more general edge weights is discussed later in this section.

Pareto optimal paths (see Section 2.1.3 for a short summary) are vital for the
correctness of time-dependent multi-label search. This well-known concept [48,
60] applies in the context of time-dependent road networks with additional time-
invariant costs in a straightforward manner. A path P = �s → ·· · → t� ⊆ G is
called Pareto optimal for departure time τ0 if no path R from s to t exists in G,
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such that

fR(τ0)≤ fP(τ0) ∧ cR ≤ cP ∧ fR(τ0)+ cR < fP(τ0)+ cP (4.17)

is fulfilled; that is, no other path from s to t in G strictly dominates P.

Corollary 4.61. Every (s, t,τ0)-MC-path P ⊆ G with s, t ∈ V,τ0 ∈ R is Pareto
optimal for departure time τ0.

Corollary 4.61 follows directly from the definition of travel cost as sum of travel
time and additional cost.

In Section 3.2.1 we learn that the existence of prefix-optimal MC paths is
not guaranteed in time-dependent road networks with additional time-invariant
costs. However, a weaker form prefix-optimality concerning Pareto optimal paths
is surely provided. Consider a path P= �v1→·· ·→ vk� ⊆G that is Pareto optimal
for departure time τ0. Then, P is called Pareto prefix-optimal for departure time
τ0 if all its prefix paths �v1 → ·· · → vi� ⊆ P with 1 ≤ i ≤ k are Pareto optimal
for departure time τ0. The following Lemma, which guaranties the existence of
Pareto prefix-optimal MC paths, is crucial for the correctness of time-dependent
multi-label search.

Lemma 4.62. For all s, t ∈V,τ0 ∈R there is a Pareto prefix-optimal (s, t,τ0)-MC-
path in G; if all additional costs in G are constant.

Proof. Analogous to the proof of Lemma 3.10 but replacing prefixes that are not
Pareto optimal by Pareto optimal ones.

The rest of the correctness proof follows in principle the same pattern as in
case of the other Dijkstra-like algorithms considered in this thesis. We begin with
the typical monotonous behavior.

Lemma 4.63. Let (i1,v1,τ1|γ1, i
�
1),(i2,v2,τ2|γ2, i

�
2), . . . be the order in that the

node labels are removed from the PQ during time-dependent multi-label search.
Then, τ1+ γ1 ≤ τ2+ γ2 ≤ . . . holds.

Proof. One can argue by induction over the number of removals from the PQ
analogous to Lemma 4.5. The only difference is that labels are removed instead
of nodes.

We continue with the typical statement that node labels and paths correspond.
This time, however, the statement is simpler than in case of several approximate
single-label searches (compare Lemma 4.19 in Section 4.2.4 for example). This
is because every label directly corresponds to one single path.
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Lemma 4.64. During time-dependent multi-label search runs, the path Pi = �s→
·· · → v� represented by a label (i,v,τi|γi, i

�) ∈ L[v] fulfills arr fPi(τ0) = τi and
cPi = γi, which implies τi+ γi− τ0 =CPi(τ0), for all reached nodes v ∈V.

Proof. The statement follows easily by induction over the number of hops of a
path represented by a label, similar to the proof of Lemma 4.1.

Just like basic multi-label search, time-dependent multi-label search finds all
possible two-dimensional not strictly dominated travel costs in G.

Lemma 4.65. Time-dependent multi-label search finds all Pareto prefix-optimal
paths from s to all v∈V in G, only ruling out paths with the same two-dimensional
cost; if all additional costs in G are constant.

Proof. Assume a Pareto prefix-optimal (s,v0,τ0)-MC-path P0 = �s→ ·· ·→ v0� ⊆
G such that no label (·,v0,arr fP0(τ0)|cP0 , ·) is present in L[v0]. Choose a prefix
path Pw := �s → ··· → u → f |c w� ⊆ P0 such that (·,w,arr fPw(τ0)|cPw , ·) �∈ L[w]
but (·,u,arr fPu(τ0)|cPu , ·) ∈ L[u] with Pu := �s→ ·· · → u�. This means, no la-
bel (·,w,arr f (arr fPu(τ0))|cPu + c, ·) has been added to L[w] when u→ f |c w was
relaxed after the removal of (·,u,arr fPu(τ0)|cPu , ·). This implies a label �w =
(·,w,τw|γw, ·) is already present in L[w] at that time with τw≤ arr f (arr fPu(τ0)) =
arr fPw(τ0) and γw ≤ cPu + c = cPw . But then we have τw = arr fPw(τ0) and γw =
cPw , because Pw is a Pareto optimal path—a contradiction.

The Pareto prefix-optimality of MC paths implies that an MC path has been
found from s to all reachable nodes after termination.

Corollary 4.66. After time-dependent multi-label search terminates, L[v] con-
tains a label (i,v,τi|γi, i

�) representing a path Pi := �s→ ·· · → v� with

τi+ γi− τ0 =CPi(τ0) = Cost(s,v,τ0)

for all reachable v ∈V; if all additional costs in G are constant.

Due to its monotonous behavior (see Lemma 4.63), time-dependent multi-label
search has found an MC path to a node v as soon as the first label of v is settled.

Lemma 4.67. The first label (i,v,τv|γv, i
�) of a node v that is removed from the PQ

during time-dependent multi-label search represents an (s,v,τ0)-MC-path in G; if
all additional costs in G are constant.

Proof. One can argue analogous to the proof of Lemma 4.6.
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Running Time. For every reachable node, time-dependent multi-label search
computes all node labels that are Pareto optimal with respect to arrival time and
additional costs. According to Hansen [48] this can be exponentially many in
the size of the underlying road network (we recapitulate this in Section 2.1.3).
All these labels have to be processed and trigger edge relaxations resulting in the
creation of further labels. Whenever we relax an edge u→ v, we have to check
whether the newly created label is dominated by another label that already exists
in L[v] and whether a label in L[v] is dominated by the new one. All this takes
additional running time, and even more running time the more Pareto optimal
paths exist in G, because L[v] is expected to contain more node labels then.

So, time-dependent multi-label search can take lots of time. This is supported
by the fact that answering one-to-one MC queries is NP-hard (see Section 6.1.1).
However, the more correlated travel time and additional costs are, the more paths
are likely to be dominated by other paths. For this reason we expect longer running
time if travel times and additional costs are less correlated.

One-to-One Queries. If we want to compute the cost for traveling from s to
t in a road network G where all additional costs in G are constant, then time-
dependent multi-label search can be stopped as soon a label (i, t,τt |γt , i

�) of t is
taken out of the PQ for the first time (see Lemma 4.67). This label represents
an (s, t,τ0)-MC-path and can be extracted from the label id i using Algorithm 2.3
(see Lemma 4.64). If we are only interested in the travel cost, it can be obtained
by calculating CostG(s, t,τ0) = τt + γt− τ0.

TTFs and ACFs with Points of Discontinuity. If edge weights are taken from
F ��

Π×XΠ instead of FΠ×R≥0, then time-dependent multi-label search must be
adapted a little. This is because the additional cost c of an edge u→ f |c v is no
longer a constant, but a function in general. So, c must be replaced by c(τ) in
Line 10 and 12 of Algorithm 4.10. The shortest path structure of the resulting
more general time-dependent road networks can be relatively inconvenient be-
cause the FIFO property is no longer guaranteed, neither with respect to TTFs nor
with respect to TCFs. As a result, MC paths may contain cycles, at least if waiting
is forbidden.

Note that we have not proven so far that MC paths always exist in this setup,
although we strongly conjecture that this is the case (see Section 3.2.4). Further
note that an existing MC path is not necessarily Pareto prefix-optimal. It is even
possible that no path at all from a node s to a node t is Pareto-prefix-optimal
for some departure time τ0 ∈ R. Figure 4.7 shows a simple example. In such
situations, time-dependent multi-label search cannot guarantee to compute an MC
path of course. It can not even guarantee to compute Pareto optimal paths.
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Figure 4.7. A simple example graph that has an edge with piecewise constant (i.e., time-
dependent) additional cost. All edges have constant TTFs and ACFs except for the edge
v4 → f |c v5 with f |c ∈F ��

Π×XΠ as depicted on the right, where f (thick black line) and c
(solid gray) are both discontinuous for departure time 3.5. No path from v1 to v5 is Pareto
prefix-optimal for departure time 0: f�v1→v3→v4→v5�(0)|c�v1→v3→v4→v5�(0) = 6|4 domi-
nates f�v1→v2→v4→v5�(0)|c�v1→v2→v4→v5�(0) = 7|5, but f�v1→v3→v4�(0)|c�v1→v3→v4�(0) = 4|3
is dominated by f�v1→v2→v4�(0)|c�v1→v2→v4�(0) = 3|2.

However, if one or more paths exist that are no MC paths but Pareto prefix-
optimal, then time-dependent multi-label search finds all these non-optimal Pareto
prefix-optimal paths (again ruling out paths with the same two-dimensional travel
cost). The one-to-one version of the algorithm finds the cheapest such paths. The
reason is that the proofs of Lemma 4.63, 4.64 and 4.65 do not require that the
FIFO property is fulfilled.

Corollary 4.68. If we run time-dependent multi-label search on G with edge
weights from F ��

Π ×XΠ, then we find all Pareto prefix-optimal paths from s to
all v ∈V for departure time τ0 in G; though paths with the same two-dimensional
cost are ruled out.

Corollary 4.69. If we run time-dependent multi-label search on G with edge
weights from F ��

Π ×XΠ, then the first label (i,v,τv|γv, i
�) of a node v removed

from the PQ represents a cheapest Pareto prefix-optimal path from s to v in G; if
such a path at all exists in G.

Such a cheapest Pareto prefix-optimal path is not necessarily an MC path.

It is interesting to note how Berger et al. [12] as well as Berger and Müller-
Hannemann [13] deal with the lacking Pareto prefix-optimality. Their idea is,
essentially, to partition the set of paths into classes of “comparable” paths, and
only comparable paths are allowed to dominate each other. Non-comparable paths
are kept, even if one them dominates others. Unfortunately, it is not clear how the
set of paths could be partitioned to recover the Pareto prefix-optimality here.
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4.4.2 Time-Dependent Multi-Label A* Search

Time-dependent multi-label search (see Section 4.4.1) can take lots of running
time. On time-dependent road networks with time-invariant additional costs (i.e.,
edge weights are taken from FΠ×R≥0) the running time is not feasible in our
experience. To make time-dependent multi-label search run faster, we apply goal
direction in the manner of the well-known A* star search [49] (see Section 2.2.5
for a short summary). This is heavily inspired by the multi-objective A* search
algorithm NAMOA [59] that applies the idea of A* search to Dijkstra-like multi
objective search [60] and settles labels instead of nodes. The basic idea behind A*
search is to speed up one-to-one queries using a potential function that estimates
the remaining travel costs to the destination node. In this thesis, time-dependent
multi-label A* search is used as a reference method to obtain exact query results,
which are needed to evaluate the quality of MC querying with heuristic TCHs
(see Section 6.4). Note that we apply time-dependent multi-label A* search only
to time-dependent road networks with time-invariant additional costs, in contrast
to plain time-dependent multi-label search, which we also apply if the additional
costs are time-dependent.

Given a start node s, a destination node t, and a departure time τ0, time-
dependent multi-label A* search (see Algorithm 4.11) computes CostG(s, t,τ0)
and a corresponding MC path. The algorithm is in principle the same as the one-
to-one version of the plain time-dependent multi-label search (see Algorithm 4.10).
The only difference is that we use τ + γ +πt(v) as PQ key of a label (·,v,τ|γ, ·)
instead of τ + γ . The function πt : V → R≥0 is the potential function that esti-
mates the travel cost from every node to the destination node t. It must fulfill the
condition

πt(u)≤ f (τ)+ c+πt(v) for all u→ f |c v ∈ E,τ ∈R . (4.18)

Note that the potential function πt as defined in this thesis is relatively restricted.
In a more expressive framework, πt would not only depend on the node but also
on the departure time. Ohshima et al. [67] describe this for time-dependent travel
times with FIFO property, but without additional costs.

Correctness. We only discuss the case that additional costs are time-invariant
(i.e., edge weights are taken from FΠ ×R≥0). To show that the returned path
is an (s, t,τ0)-MC-path, we argue analogously to the usual correctness argument
that is used for original A* search (see Section 10.7 and 10.8 in the textbook by
Mehlhorn and Sanders [61] for example); namely, that time-dependent multi-label
A* search is nothing but a plain time-dependent multi label search with trans-
formed edge weights (i.e., travel costs) that leave the optimal paths unchanged.
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Algorithm 4.11. Time-dependent version of multi-label A*-search. Given start

node s, destination node t, and a departure time τ0, this algorithm computes an

(s, t,τ0)-MC-path. The only differences to time-dependent multi-label search (see

Algorithm 4.10) are that the PQ key is adjusted using the potential function πt and

that the algorithm terminates as soon as a label of t is removed from the PQ. To

extract the resulting MC path, Algorithm 2.3 is invoked as a subroutine.

1 function tdMultiLabelAStarSearch(s, t :V, τ0 :R) : Path
2 L[u] := /0 for all u ∈V
3 L[s] := {(0,s,τ0|0,⊥)}
4 Q := /0 : PriorityQueue
5 Q.insert

�
(0,s,τ0|0,⊥), τ0+πt(s)

�

6 inext := 1 // the next unused label id
7 while Q �= /0 do
8 (i,u,τ|γ, i�) := Q.deleteMin()
9 if u= t then return extractPathFromLabelId(i) // see Algorithm 2.3
10 foreach u→ f |c v ∈ E do // relax outgoing edges of u

11 �new := (inext, v, arr f (τ)|γ + c, i)
12 if � is not dominated by any label in L[v] then
13 Q.insert(�new, arr f (τ)+ γ + c+πt(v))
14 remove all labels dominated by �new from L[v] and Q
15 add �new to L[u]
16 inext := inext+1

To do so, we have to remember that a pair f |c ∈FΠ×R≥0 with TTF f and addi-
tional time-invariant cost c is only a convenient representation of f |C with TTF f
and TCF C = f + c. To obtain the transformed travel costs used by a plain time-
dependent multi-label search that is equivalent to a time-dependent multi-label A*
search, we replace the TCFC of an edge u→ f |C v (withC= f +c) by the TCFC�

defined by

C� := f + c+πt(v)−πt(u) . (4.19)

It is important to note that the transformed TCFs can never be negative due to
Equation (4.18).

Lemma 4.70. MC paths do not change if all edge TCFs are transformed as in
Equation (4.19).

Proof. The transformed travel costC�P of a path P= �u1→ f1|c1
· · ·→ fk−1|ck−1

uk�⊆
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G amounts to

C�P(τ) =
k−1

∑
i=1

�
fi+ ci+πt(ui+1)−πt(ui)

�
◦arr( fi−1 ∗ · · · ∗ f1)(τ)

=
k−1

∑
i=1

fi ◦arr( fi−1 ∗ · · · ∗ f1)(τ)+
k−1

∑
i=1

�
ci+πt(ui+1)−πt(ui)

�
.

with departure time τ ∈R. Considering the second sum in the second line, we see
that the values of the potential function telescope along path P, just like in case of
original A* search (see Equation (2.30)). We hence obtain

C�P(τ) = fk−1 ∗ · · · ∗ f1(τ)+ ck−1+ · · ·+ c1+πt(uk)−πt(u1)

=CP(τ)+πt(uk)−πt(u1) .

So, as in case of original A* search, the transformation of a paths travel cost
only depends on the paths start and destination node and not on the path in be-
tween. This means MC paths stay unchanged (this would be more complicated if
πt would depend on the departure time of course).

Now we show that time-dependent multi-label A* search simulates the opera-
tion of plain time-dependent multi-label search with transformed costs.

Lemma 4.71. Time-dependent multi-label A* search is equivalent to plain time-
dependent multi-label search with transformed edge TCFs as defined by Equa-
tion (4.19).

Proof. We argue by induction over the number k of removals from the PQ that
the plain version and the A* version of time-dependent multi-label search per-
form. This way we show that both searches remove equivalent node labels in the
same order, each creating equivalent new node labels with equivalent PQ keys in
the same order. Here, “equivalent” means that additional time-invariant costs of
equivalent labels of a node v differ by πt(s)−πt(v), which only depends on v, and
that all keys differ by the constant value πt(s).

For k = 1, the plain version of the multi-label search that runs with trans-
formed costs removes the label (0,s,τ0|0,⊥) from the PQ and creates a label
(·,v,arr f (τ0)|c+πt(v)−πt(s),0) for every relaxed edge s→ f |c v ∈ E, putting it
into the PQ with key arr f (τ0)+ c+ πt(v)− πt(s) each. The A* version equiv-
alently removes the label (0,s,τ0|0,⊥) from the PQ and for every relaxed edge
s→ f |c v ∈ E it creates a new label (·,v,arr f (τ0)|c,0), putting it into the PQ with
key arr f (τ0)+ c+πt(v) each. The additional time-invariant costs stored in the
labels differ by πt(s)− πt(v) and the keys by πt(s) each. The total costs of the
initial labels of s differ by πt(s)−πt(s) = 0.
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For k> 1, the plain and the A* version both perform their k-th removal taking
the equivalent labels (i,u,τ|γ + πt(u)− πt(s), i

�) and (i,u,τ|γ, i�) out of the PQ
respectively. Then, the relaxation of an edge u→ f |c v creates the new labels

�
·, u, arr f (τ)

�
�γ +πt(u)−πt(s)+ c+πt(v)−πt(u), i

�

=
�
·, u, arr f (τ)

�
�γ + c+πt(v)−πt(s), i

�

and (i,u,arr f (τ)|γ + c, i), respectively, which are obviously equivalent (i.e., they
differ by πt(s)−πt(v)). The respective keys are arr f (τ)+ γ + c+πt(v)−πt(s)
and arr f (τ)+ γ + c+πt(v) and differ by πt(s).

Together with Lemma 4.67 this yields the desired correctness statement.

Corollary 4.72. The path returned by time-dependent multi-label A* search is an
(s, t,τ0)-MC-path and the corresponding label (·, t,τt |γt , ·) fulfills

τt + γt− τ0 = CostG(s, t,τ0) ;

if all additional costs are constant.

Running Time. The running time of time-dependent multi-label A* search de-
pends on the choice of the potential function πt . Two extreme cases are

• that πt(u) = 0 holds for all u ∈ V , which means time-dependent multi-label
A* search degenerates into a plain time-dependent multi-label search, and

• that πt(u,τ) = Cost(u, t,τ) holds for all u ∈ V,τ ∈ R, which means time-
dependent multi-label A* search only removes labels from the PQ that belong
to an (s, t,τ0)-MC path. This would require πt not only to depends on the node
but also on the time, which we do not consider in this thesis.

For πt(u) lying somewhere between 0 and CostG(u, t,τ), less labels are processed
if πt(u) lies closer to CostG(u, t,τ).

Lemma 4.73. Consider the potential functions πt ,π
�
t : V → R. Let M and M� be

the set of labels removed from the PQ if πt and π �t are used respectively. Then, we
have

∀u ∈V : CostG(u, t,τ0)≥ π �t (u)> πt(u)≥ 0 =⇒ M� ⊆M .

Proof. First, we argue πt(t) = π �t (t) = 0 because of CostG(t, t,τ0) = 0. This means
the first label removed from the PQ is of the form (·, t,τt |γt , ·), regarless whether
the potential function πt or π �t is used. Second, assume a label �x = (·,x,τx|γx, ·) ∈
M� \M of a node x. The label �x is removed from the PQ before the first label of t
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is removed, but only if the potential function π �t is used. With πt , in contrast, it is
removed after the first label of the node t is removed. This implies

τt + γt ≤ τx+ γx+πt(x)< τx+ γx+π �t (x)≤ τt + γt ,

a contradiction.

Note that M� = M is possible. As a simple example assume that G only con-
sists of a path from s to t. It is interesting that the slightly weaker condition
CostG(u, t,τ0)≥ π �t (u)≥ πt(u)≥ 0 allows the existence of labels �x ∈M� \M.

A statement analogous to Lemma 4.73 has been made in the context of original
A* search (i.e., A* search for one-dimensional constant travel costs) by Goldberg
and Harrelson [47], but without proof. They mention that the condition π �t (u) >
πt(u) can be weakened to π �t (u) ≥ πt(u) if the node id is utilized to break ties
with respect to the PQ key. In the context of multi-label A* search, an analogous
argument can be applied. But then, the label id must be utilized instead of the
node id for tie breaking.

A Simple Potential Function. A simple example of a potential function is

πt(u) := CostG(u, t) .

To show that CostG(·, t) fulfills the condition in Equation (4.18), we choose an
arbitrary edge u→ f |c v ∈ E and argue

CostG(u, t) = min
� k−1

∑
i=1

minCi

�
�
�
�
u→ f1|c1

· · · → fk|ck t
�
⊆ G

�

≤min f + c+min
� �−1

∑
i=1

minCi

�
�
�
�
v→ f1|c1

· · · → f�|c� t
�
⊆ G

�

≤ f (τ)+ c+CostG(v, t)

for all τ ∈RwithCi := fi+ci. To compute πt =CostG(·, t)we could run Dijkstra’s
algorithm in a backward manner starting from t before the time-dependent multi-
label A* search starts. But then we would process the whole graph as we would
not know when to stop. Instead we perform a backward CP interval search that
computes node labels [q[u],r[u]] = [CostG(u, t), CostG(u, t)] and can be stopped as
soon as Q.min() exceeds q[s]. This is possible, because the transpose predecessor
graph (G�(p))� of backward CP interval search already contains an (s, t,τ)-MC-
path for all τ ∈R at that time (see Corollary 4.53).

Also, time-dependent multi-label A* search can use r[u] to maintain an upper
bound of the desired result CostG(s, t,τ0) and then refrain from relaxing edges
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u→ f |c v where (τu+ γu)+ ( f (τu)+ c)+πt(v) with (·,u,τu|γu, ·) ∈ L[u] exceeds
this upper bound. Another idea is not to run time-dependent multi-label A* search
in G but to restrict it to the transpose predecessor graph (G�(p))� of backward
CP interval search, which contains all relevant paths from s to t.

If the potential function πt = CostG(·, t) works well, then the overall running
time is the running time of one-to-one backward CP interval search plus the mod-
erate running time of a time-dependent multi-label A* search that does not process
too much labels. The running time is similar to the running time of Dijkstra’s al-
gorithm in this case; which is not very fast but good enough for a reference method
used to obtain exact query results. However, if travel times and additional costs
are not so related, then the number of processed labels can nevertheless explode
leading to impractical running times; and in our experience this really happens.

Changing to a time-dependent potential function πt : V ×R→ R≥0 may fur-
ther reduce the number of processed node labels. There, πt(u, ·) is a CP estimating
the remaining travel cost to t depending on the node u. The CPs πt(u, ·) could
be computed by a preceding backward approximate CP search for example. This
takes, of course, more time than backward CP interval search but makes the multi-
label A* search faster. This yields a tradeoff between the accuracy of the CPs and
the number of processed node labels. However, we have not tried this so far.

4.5 References

This chapter is heavily based on a journal article published together with Geis-
berger, Sanders, and Vetter [8] and a conference article published together with
Geisberger, Neubauer, and Sanders [6]. It adopts all the descriptions of basic
Dijkstra-like algorithm from these articles and compiles them into one chapter,
adding several details here and there. Many wordings of these articles have been
used or rephrased. The proofs of correctness in this chapter, which are a lot of
material, have mostly been worked out newly.

The time-dependent Dijkstra (see Dreyfus [35]) described in Section 4.2.1 and
the travel time profile (TTP) search (see Orda and Rom [69]) described in Sec-
tion 4.2.2 are well established. Note that the formulation of TTP search by Orda
and Rom is rather similar to the well-known Bellmann-Ford algorithm, in contrast
to ours, which is similar to today’s typical formulation of Dijkstra’s algorithm with
PQ (i.e., “Dijkstra-like”).
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5
Minimizing Time-Dependent Travel Times

This chapter describes how CHs [44] can be generalized to deal with the case that
travel costs are time-dependent travel times. Remember that CHs are an algorith-
mic framework originally designed to provide fast and exact route planning for
constant travel costs (see Section 2.3 for an introduction). The time-dependent
CHs (TCHs) considered in this chapter are able to answer exact one-to-one EA
and TTP queries efficiently in time and space. The more general case of time-
dependent travel costs beyond travel times is treated in Chapter 6.

The original CHs, which are designed for constant travel costs, have some
crucial properties to assure that one-to-one queries are answered both fast and
exact. To provide fast and exact answering of one-to-one EA and TTP queries,
TCHs must fulfill analogous properties. This results in a list of requirements (see
Section 5.1). TCHs work in two stages, just like the original CHs: the prepro-
cessing stage and the querying stage. CH preprocessing is already quite costly
for constant travel costs. If travel costs are time-dependent travel times, however,
things get even more complicated. It is, in fact, not at all trivial to provide a
TCH preprocessing that terminates in reasonable time (see Section 5.2). In case
of original CHs, one-to-one queries can be answered relatively easily. One only
has to perform a bidirectional Dijkstra search that goes upward in the hierarchy.
For EA queries, however, one must overcome the problem that backward search
must be performed without knowing the arrival time. For TTP queries this is not
a problem, but one has to deal with the expensive operations on TTFs there (see
Section 5.3).

TCH structures allow fast and exact answering of EA and TTP queries, but
need lots of space. The reason is that TTFs associated with shortcut edges tend to
have lots of bend points. However, the information stored in the TTFs of shortcut
edges is actually redundant. For this reason it is still possible to provide fast and
exact answering of EA and TTP queries, even if we only store approximate TTFs
in case of shortcuts. The resulting approximate TCH (ATCH) structures need far
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less space than exact ones. In case of EA queries one has to accept a moderate
slowdown. In case of TTP queries one even gains an additional speedup (see
Section 5.4). Accepting a small error, TTP queries can be answered even faster
using the similarly space efficient inexact TCHs. For EA queries, inexact TCHs
are far less interesting because ATCHs already provide fast and exact answering
of EA queries with small memory requirements. Nevertheless, EA queries are
possible with inexact TCHs, too (see Section 5.5).

An experimental evaluation confirms that TCHs really accomplish what we
promise above: TCHs and ATCHs provide fast and exact EA and TTP querying.
ATCHs considerably save space, while EA queries get only moderately slower and
TTP queries even get faster. Inexact TCHs also save space while showing small
errors and small running times. Especially, they provide very fast but inexact TTP
querying (see Section 5.6).

5.1 Requirements

To provide fast and exact route planning with time-dependent travel times as costs,
TCH structures have to fulfill a number of requirements adapted from original
constant travel cost CHs [44].

5.1.1 Requirements to Make TCHs Exact

A CH structure H constructed from a road network G= (V,E)with constant travel
costs [44] (see Section 2.3 for a short summary) fulfills the following very impor-
tant properties:

• G⊆ H with µH(s, t) = µG(s, t) for all s, t ∈V (see Lemma 2.7),

• if t ∈ V is reachable from s in G, then H contains a shortest up-down-path
from s to t in H (see Lemma 2.8), and

• every up-down-path in H can be expanded recursively to a path of the same
total cost in G (see Corollary 2.9).

These three properties ensure the exactness of CHs, because bidirectional upward
search is guaranteed to find a shortest up-down-path that can be expanded to a
shortest path in G. To ensure the exactness of TCHs, three analogous properties
must be fulfilled.

First, a TCH structure H must contain the original road network G and the EA
times in H must be the same as in G. Otherwise, H could not be used to compute
EA paths in G. Theorem 5.4 confirms that the TCHs described in this chapter
fulfill this requirement (see Section 5.2.2).
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Second, a TCH structure H must guarantee the existence of prefix-optimal EA
up-down-paths. A path �s→ ··· → x→ ··· → t� ⊆ H is called an up-down-path
if its prefix path �s→ ·· · → x� only leads upward (i.e., s≺ ·· · ≺ x), and its suffix
path �x→ ·· · → t� only leads downward (i.e., t ≺ ·· · ≺ x). The node x is called
top node. If an up-down-path �s→ ··· → x→ ··· → t� is also an (s, t,τ0)-EA-
path, then it is called an earliest arrival (EA) up-down-path for departure time τ0

(or, an (s, t,τ0)-EA up-down-path for short). To ensure that bidirectional upward
search can be used to answer one-to-one EA and TTP queries, H must contain
an (s, t,τ0)-EA up-down-path for all s, t ∈ V and all τ0 ∈ R (provided that t is
reachable from s). Theorem 5.5 confirms that the TCHs described in this chapter
fulfill this requirement (see Section 5.2.2). Note that Theorem 5.5 even guarantees
the existence of prefix-optimal EA-up-down paths. This makes it possible to apply
the pruning technique stall-on-demand—which is adopted from original CHs—in
the context of TCHs (for details see Section 5.3.3).

Third, a TCH structure H must guarantee that a shortcut u→ f v can be ex-
panded to a path Pτ = �u→ ·· · → v� ⊆ G for every departure time τ ∈ R, such
that f (τ) = fPτ (τ) holds true. Note that the expansion can be different for differ-
ent departure times. Annotating the shortcut u→ f v with a single middle node,
as in case of constant travel costs [44], is obviously not enough to achieve such a
behavior. Instead, we annotate every shortcut with a shortcut descriptor storing
multiple middle nodes that are valid for different departure intervals (for details
see Section 5.2.1). The shortcut descriptors are enough to enable the required
time-dependent expansion of shortcut edges (see Corollary 5.7).

5.1.2 Requirements to make TCHs Fast

The original constant travel costs CHs [44] are not only an exact, but also a fast
route planning technique. To achieve this, CH structures must be flat and sparse
(as already mentioned in Section 1.1.4 and 2.3). We call a CH flat if the maximum
number of hops m↑ or m↓ that an upward or downward path has, respectively, is
small. We call a CH sparse if the out-degree of nodes is not too large in H↑ and H↓.
If m↑ and m↓ as well as the out-degrees are small, then the bidirectional Dijkstra
search reaches the top of the CH quite soon while relaxing not too many edges.
This results in small search spaces, which implies small query times. EA and TTP
queries, which are also based on bidirectional upward search, should profit from
flat and sparse hierarchies, too.
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5.2 Preprocessing

A TCH structure is constructed by successively contracting the nodes of G with
respect to a given node order ≺. Section 5.2.1 describes what node contraction
means if travel costs are time-dependent travel times. Section 5.2.2 explains the
complete construction process and how it can be finished within reasonable time.
Constructing a TCH requires that the importance relation ≺ is already known.
But if this is not the case, the node order has to be determined first. Node ordering
as we do it, however, is basically a construction process with a lot of additional
work. The details are can be found in Section 5.2.3. It must be noted that node
ordering not only yields the importance relation ≺ but also a corresponding TCH
structure. A further construction step is not necessary then. However, a node order
once computed can be reused to perform the construction of TCHs for other sets
of travel costs if these are not too different. We examine this in our experiments
(see Section 5.6). Note that both node ordering and TCH construction parallelize
quite naturally on shared memory architectures (see Section 5.2.4).

Note that Christian Vetter made crucial contributions to the preprocessing dur-
ing a student research project [82] and as a student assistant, both regarding con-
cepts and implementation. This includes the parallelization of the preprocessing
as well as very effective optimizations that make the preprocessing much more
faster (see Section 5.7 for details).

5.2.1 Contracting a Node

Node contraction is the basic operation that creates the next higher level of the
hierarchy from the current one. More precisely, the contraction of a node x in G
yields a time-dependent overlay graph G� := (V �,E �) of G with V � = V \ {x} ⊆
V and EAG�(s, t,τ) = EAG(s, t,τ) for all s, t ∈ V �,τ ∈ R. This generalizes the
definition of overlay graphs by Holzer et al. [51] to work with time-dependent
travel times.

Necessary Shortcuts. In principle, contracting a node x means to remove x and
all its incident edges from the graph without changing the EA times between the
remaining nodes. We achieve this by replacing each path �u → f x →g v� by a
shortcut edge u→g∗ f v when necessary. A shortcut is considered to be necessary
if �u→ f x→g v� is an EA path for some departure time; that is, if

∃τ ∈R : EAG(u,v,τ) = arr(g∗ f )(τ) (5.1)

holds. When a shortcut is necessary, an edge u →h v may already be present.
Then, we do not insert another edge but merge the edges: We replace u→h v by
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v1
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min(h,g1 ∗ f1)

g1 ∗ f3
⇒

Figure 5.1. Illustration of what happens when a node x is contracted. The situation before
and after contraction is depicted on the left and the right respectively. On the right, x and
all its incident edges are removed. Assume �u1 → f1 x→g1 v1� and �u3 → f3 x→g1 v1� are
the only removed paths that are EA paths for some departure time each. So, the shortcuts
u1 →g1∗ f1 v1 and u3 →g4∗ f1 v1 are necessary and put into Ex. An edge u1 →h v1 is already
present and merged with u1 →g1∗ f1 v1 resulting in the TTF min(h, g1 ∗ f1). The other
shortcut u3 → f3∗g1 v1 is newly inserted (drawn dashed).

u→min(g∗ f ,h) v avoiding parallel edges this way. This is different from constant
travel costs, where we simply replace parallel edges with greater travel costs by
edges with smaller ones. The reason is that, in the time-dependent case, both
parallel edges can be EA paths but for different departure times.

We write G := (V ,E) := (V \ {x},{u→ v ∈ E |u,v �= x}) to denote what re-
mains of G when x and its incident edges are removed. Then,

Ex :=
�
u→g∗ f v

�
� �u→ f x→g v� ⊆ G and

∃τ ∈R : arr(g∗ f )(τ) = EAG(u,v,τ)
� (5.2)

is the set of necessary shortcuts when x ∈ V is contracted. If parallel edges are
merged as described above, then the contraction of the node x yields an overlay
graph G� := (V \{x},E �) with edge set

E � :=
�
u→h v ∈ E

�
� u→ v �∈ Ex

�
∪

�
u→g∗ f v ∈ Ex

�
� u→ v �∈ E

�
∪

�
u→min(h,g∗ f ) v

�
� u→h v ∈ E and u→g∗ f v ∈ Ex

�
.

(5.3)

Figure 5.1 illustrates what is happening when a node x is contracted. Before the
contraction of x we have the graph G, after the contraction of x the graph G�.

Lemma 5.1. Contracting a node x in a graph G preserves all EA times between
the remaining nodes. That is, EAG�(s, t,τ) = EAG(s, t,τ) for all s, t ∈V \{x}.

Proof. Consider a path P� = �s→ ·· · → t� ⊆ G� and a departure time τ0 ∈R. Let
u→h v be an edge of P� with u→g∗ f v ∈ Ex. Then we have

fP�(τ0) = f�v→···→t� ∗h∗ f�s→···→u�(τ0) .
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We write τu := arr f�s→···→u�(τ0). There are two possible cases: If h(τu) = g ∗
f (τu), then we replace u→h v in P� by �u→ f x→g v� ⊆G. Otherwise, there is an
edge u→hold

v in G⊆G with h(τu) = hold(τu), and we replace h in u→h v by hold.
Replacing all such edges transforms P� into a path P0 ⊆ G with fP0(τ0) = fP�(τ0).
Altogether, we obtain EAG�(s, t,τ) ≥ EAG(s, t,τ) for all s, t ∈ V and all τ ∈ R,
because τ0 has been chosen arbitrarily from R.

Now, consider a path P= �s→ ·· · → t� ⊆G and a departure time τ0 ∈R. If P
contains a subpath �u→ f x→g v�, then we either have g ∗ f (τu) = EAG(u,v,τu)
or g∗ f (τu)> EAG(u,v,τu), again with τu := arr f�s→···→u�(τ0).

In case g∗ f (τu) = EAG(u,v,τu), we further distinguish whether u→hold
v ∈ E

exists or not. For u→hold
v ∈ E, we replace the subpath �u→ f x→g v� of P by

u→min(hold,g∗ f ) v ∈ E �. For u→hold
v �∈ E, we replace �u→ f x→g v� by u→g∗ f

v ∈ E �. Anyway, the subpath �u→ f x→g v� of P is replaced by an edge u→h v
with h(τu)≤ g∗ f (τu) and the resulting path has no later arrival time because of

arr fP(τ0) = arr f�v→···→t�

�
arr(g∗ f )(τu)

�

≥ arr f�v→···→t�

�
arrh(τu)

�
.

The above inequality holds because f�v→···→t� fulfills the FIFO property.
In case g ∗ f (τu) > EAG(u,v,τu), we consider a prefix-optimal (u,v,τu)-EA-

path Puv = �u→ ·· ·→ v� ⊆G, which exists due to Lemma 3.10. Replacing �u→ f

x→g v� by Puv in P does again not increase the arrival time because of

arr fP(τ0) = arr f�v→···→t�

�
arr(g∗ f )(τu)

�

≥ arr f�v→···→t�

�
arr fPuv(τu)

�
.

This way, we obtain a new version of P that contains Puv and has no later arrival
time. If Puv �⊆G holds (i.e., Puv goes via the node x) we go back to the already con-
sidered case that a subpath �u→ f x→g v� of P fulfills g ∗ f (τu) = EAG(u,v,τu),
which is the case because Puv is prefix-optimal.

It can further happen that P contains an edge u→hold
v∈ E with u→g∗ f v∈ Ex.

We replace every such edge by u→min(hold,g∗ f ) v∈ E �. In the end, we obtain a path
R� from s to t in G� with fR�(τ0)≤ fP(τ0). But τ0 has been chosen arbitrarily from
R. So, EAG�(s, t,τ)≤ EAG(s, t,τ) holds for all s, t ∈V and all τ ∈R.

Time-Dependent Shortcuts. A shortcut u→g∗ f v ∈ Ex (see Equation (5.2)) is
an artificial edge that has no corresponding single road segment in the real world.
Instead, it represents the path �u→ f x→g v�; that is, the two-hop path leading over
the middle node x. In case of constant travel costs, every shortcut is annotated with
a single middle node (as in case of original CHs [44], see Section 2.3.1). With
the middle nodes, every shortcut edge u→ v can be expanded recursively to the
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original path �u→ ·· · → v� ⊆ G it represents (see Section 2.3.2). This important
idea is also used if the travel costs are time-dependent.

However, things are more complicated in case of time-dependent travel costs
because the two-hop path represented by a shortcut may change over time. More
precisely, a time-dependent shortcut can represent different two-hop paths for dif-
ferent departure times. The reason is that necessary shortcuts u→g∗ f v are merged
with edges u→h v if present. If u→h v is a shortcut itself, with middle node y, then
u→min(h,g∗ f ) v may have two middle nodes: middle node x for departure times τ
with g∗ f (τ)< h(τ) and middle node y for g∗ f (τ)> h(τ). For g∗ f (τ) = h(τ),
we are free to choose x or y as middle node.

We hence annotate every shortcut with multiple middle nodes, each such mid-
dle node x together with a subset Ax ⊆ R containing departure times where the
middle node x is valid. Note that an edge u→h v may sometimes act as a shortcut
and sometimes as an original edge (i.e., as an edge of the original road network
G). The latter can be expressed easily by simply annotating the symbol ⊥ instead
of a middle node, together with a departure set A⊥ ⊆ R. Thanks to an observa-
tion made by Foschini et al. [36], we can be sure EA paths exist that are valid on
compact departure intervals.

Observation 5.2 ([36]). Consider s, t ∈V. The interval [0,Π] can be partitioned
into k compact intervals [a0,a1], [a1,a2] . . . , [ak−1,ak] (with a0 = 0, ak = Π), such
that P1, . . . ,Pk exist where each Pi is an (s, t,τ)-EA-path in G for all τ ∈ [ai−1,ai].

So, as all involved TTFs are periodic, it is enough to annotate every time-dependent
shortcut u→min(h,g∗ f ) v∈ E � with a finite sequence of intervals and corresponding
middle nodes; that is,

�
([a0,a1],x1),([a1,a2],x2), . . . ,([ak−1,ak],xk)

�
(5.4)

with 0 = a0 < a1 < · · ·< ak = Π and x1, . . . ,xk ∈V ∪{⊥}. With this information
at hand, a shortcut can be expanded depending on the departure time.

We call such a sequence as in Equation (5.4) a shortcut descriptor. The right
middle node for a given departure time τ0 can be found in O(logk) time using bi-
nary search. But according to our experience, k tends to be quite small in practice.
So, linear scanning is most probably faster due to caching effects.

Merging of Shortcut Descriptors. Consider the two parallel edges u → f v
and u →g v with the shortcut descriptors �([a0,a1],x1), . . . ,([ak−1,ak],xk)� and
�([b0,b1],y1), . . . ,([b�−1,b�],y�)� respectively. To compute a valid shortcut de-
scriptor of the merged edge u→min( f ,g) v, we modify Algorithm 3.2 to find out for
which departure times f or g is smaller. More precisely, we compute a minimum
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Π0

f

g

Df

Dg

merged descriptor

Figure 5.2. Illustration how merging of shortcut descriptors works. Assume that two
shortcuts u→ f v and u→g v with TTFs f (drawn solid) and g (drawn dashed) as well
as shortcut descriptors Df (black/dark gray) and Dg (white/light gray), respectively, are
merged. The merged shortcut descriptor equals the shortcut descriptor Df for departure
times where f lies below g. For departure times where g lies below f , the merged shortcut
descriptor equals Dg. The period of the TTFs is Π.

length sequence

�
([c0,c1],h1),([c1,c2],h2), . . . ,([cn−1,cn],hn)

�
(5.5)

with 0 = c0 < c1 < · · ·< cn = Π and h1, . . . ,hn ∈ { f ,g}, such that

• hi = f implies f (τ)≤ g(τ) and

• hi = g implies g(τ)≤ f (τ).

for all τ ∈ [ci−1,ci]. Computing this sequence takes O(| f |+ |g|+n) time.
A shortcut descriptor of the merged edge u→min( f ,g) v can then be obtained

by further refining the partition [c0,c1], [c1,c2], . . . , [cn−1,cn] of [0,Π]. To do so,
we overlay each interval [ci−1,ci] with the shortcut descriptor of u→ f v or u→g v
depending on hi. More precisely, for each i ∈ {1, . . . ,n}, we build the sequence

S
( f )
i :=

�
([ci−1,a ji ],x ji),([a ji ,a ji+1],x ji+1), . . . ,([a ji+ni−1,ci],x ji+ni)

�

with a ji−1 ≤ ci−1 < a ji and a ji+ni−1 < ci ≤ a ji+ni if hi = f , or the sequence

S
(g)
i :=

�
([ci−1,bki ],y ji),([bki ,bki+1],yki+1), . . . ,([bki+mi−1,ci],yki+mi

)
�
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with bki−1 ≤ ci−1 < bki and bki+mi−1 < ci ≤ bki+mi
if hi = g. The concatenation

S := S
(h1)
1 S

(h2)
2 · · ·S

(hn)
n

is then a valid shortcut descriptor for the merged edge u→min( f ,g) v. Figure 5.2
illustrates how such a merged shortcut descriptor arises from the original ones.

Note that the merged shortcut descriptor (i.e., the concatenated sequence S)
may contain consecutive pairs with the same middle node. More precisely, S may
have the form

S=
�
. . . ,([a,b],x),([b,c],x), . . .

�
.

Such pairs can be melted, which means S is transformed to S= �. . . ,([a,c],x), . . .�.
It must be noted that merged shortcut descriptors are not unique, because the TTFs
f and g may be equal on a closed interval.

The running time of merging shortcut descriptors is always linear in the com-
plexity of the involved TTFs and the size of the involved shortcut descriptors.

Lemma 5.3. Consider two edges u→ f v, u→g v with shortcut descriptors Df and
Dg, respectively. Then, computing a merged shortcut descriptor S of u→min( f ,g) v
takes O(|Df |+ |Dg|+ | f |+ |g|) time.

Proof. The sequence of length n in Equation (5.5) can be computed by a straight-
forward modification of Algorithm 3.2, which takes O(| f |+ |g|+n) time. Com-
puting S as described above takes O(|Df |+ |Dg|+ n) time in total, because si-
multaneous scanning of the two original shortcut descriptors Df ,Dg and of the
sequence in Equation (5.5) suffices. Whether f or g is smaller can only change
O(| f |+ |g|+ |min( f ,g)|) times, which implies n=O(| f |+ |g|) according to Cor-
ollary 3.12. We have a total running time of O(|Df |+ |Dg|+ | f |+ |g|) hence.

5.2.2 Constructing a TCH Structure

A TCH construction is a sequence of node contractions (see Section 5.2.1) in the
order given by ≺; that is, in the order x1 ≺ ·· · ≺ x|V |. The result of this process
(i.e., a TCH structure) is a hierarchy of time-dependent overlay graphs

G1 = (V1,E1), . . . ,G|V | = (V|V |,E|V |) (5.6)

with Vi+1 = Vi \ {xi}. For constant travel costs, however, we already explained
that CH structures are never represented this way (see Section 2.3.1). This would
need too much memory. Instead, we just store the original graph G together with
all inserted and merged shortcuts. This results in the graph H := (V,EH) with

EH :=
�
u→ f v

�
�
� u→ v ∈

�|V |

i=1
Ei and

f : τ �→min
�
g(τ)

�
� u→g v ∈ Ei for some i

��
,

(5.7)
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Figure 5.3. Illustration of the main argument used in the proof of Theorem 5.5. We look
at the TCH structure H “from the side” with the more important nodes higher up. The
node ui is a local minimum on the prefix-optimal path P. Because of the prefix-optimality,
a shortcut ui−1 → fi∗ fi−1 ui+1 (drawn dashed) must have been considered as necessary by
the preprocessing and must hence be present in H (though possibly merged with other
original edges and shortcut edges).

which is a pretty condensed representation of the hierarchy. We also have to re-
member whether an edge leads upward or downward with respect to the relation
≺. Together with the final merged shortcut descriptors created during node con-
traction, this is all information we need for fast and exact EA and TTP queries.

In fact, TCH structures as characterized by Equation (5.7) fulfill the require-
ments stated in Section 5.1.1. This is confirmed by Theorem 5.4 below, which
states that a TCH contains its original graph and has the same EA times, as well
as by Theorem 5.5 below, which guarantees the existence of prefix-optimal EA
up-down-paths. Moreover, the information stored in the shortcut descriptors is
enough to provide time-dependent expansion of shortcuts (see Corollary 5.7).

Theorem 5.4. Let H be a TCH constructed from G = (V,E). Then, we have
G⊆ H and EAH(s, t,τ) = EAG(s, t,τ) for all s, t ∈V and all τ ∈R.

Proof. We know from Equation (5.7) that H contains every edge u→ f v∈E1 =E,
though maybe with a different TTF f �. We can be sure, however, that f �(τ)≤ f (τ)
holds for all τ ∈ R. Because of the FIFO property, this implies EAH(s, t,τ) ≤
EAG(s, t,τ) for all s, t ∈ V and all τ ∈ R. But EAH(s, t,τ) < EAG(s, t,τ) is not
possible, because G1, . . . ,G|V | is a hierarchy of overlay graphs. So, no edge in any
of E1, . . . ,EV enables an earlier arrival time than the edges in E do.

Theorem 5.5. Let H be a TCH constructed from G = (V,E). For s, t ∈ V such
that t is reachable from s in G and for τ0 ∈R, there is an up-down-path in H that
is also a prefix-optimal (s, t,τ0)-EA-path.
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Proof. According to Lemma 3.10 there exists a prefix-optimal (s, t,τ0)-EA-path
P := �u1 → f1 · · · → fk−1

uk� in G. According to Theorem 5.4, P is also a prefix-
optimal (s, t,τ0)-EA-path in H. If P is not an up-down-path we choose a local
minimum of P excluding s and t; that is, we choose i ∈ {2, . . . ,k− 1} such that
ui ≺ ui−1,ui+1. By the prefix-optimality of P (and also by its suffix-optimality)
we know that �ui−1 → fi−1

ui→ fi ui+1� is an (ui−1,ui+1,EAG(s,ui−1,τ0))-EA-path
in H. So, when contracting ui during preprocessing, a shortcut ui−1 → fi∗ fi−1

ui+1

is considered to be necessary (see Section 5.2.1). Figure 5.3 illustrates this argu-
ment. This means that an edge ui−1 →h ui+1 is present in H with

arrh
�
EAG(s,ui−1,τ0)

�
≤ arr( fi ∗ fi−1)

�
EAG(s,ui−1,τ0)

�
= EAG(s,ui+1,τ0) .

This implies EAG(s,ui+1,τ0) = arrh(EAG(s,ui−1,τ0)) due to Theorem 5.4 . As a
consequence P� := �u1 → f1 · · · → fi−2

ui−1 →h ui+1 → fi+1
· · · → fk−1

uk� is a prefix-
optimal (s, t,τ0)-EA-path in H. By setting P := P� the above argument can be
applied again and again until the resulting path P∗ is an up-down-path from s to
t. Note that this process surely terminates, because P� has one edge less than
P. Also, a single edge is clearly an up-down-path. So, by construction, P∗ is an
up-down-path as well as a prefix-optimal (s, t,τ0)-EA-path in H.

The given proof is very similar to the proof by Geisberger et al. [44] that states
that CHs work correctly with constant travel costs. We recapitulate this proof in
Section 2.3.2 (see the proof of Lemma 2.8).

Like in case of CHs with constant travel costs, a TCH structure H can be
decomposed into an upward graph H↑ and a downward graph H↓ defined by

H↑ := (V,E↑) := (V,{u→ f v ∈ EH | u≺ v})

H↓ := (V,E↓) := (V,{u→ f v ∈ EH | v≺ u})
(5.8)

with H = H↑ ∪H↓. These graphs are edge disjoint DAGs; that is, E↑ ∩E↓ = /0. It
is obvious that the upward and the downward part of an up-down-path �s→ ·· ·→
x → ·· · → t� ⊆ H with top node x completely lies in H↑ and H↓, respectively.
More precisely, we have

�s→ ·· · → x� ⊆ H↑ and �x→ ·· · → t� ⊆ H↓ . (5.9)

Basic TCH Construction. Conceptually, the TCH construction yields a hier-
archy of overlay graphs G1, . . . ,G|V |. We already explained, however, that the
hierarchy is never represented this way. Instead, the construction yields the con-
densed representation characterized by Equation (5.7). During construction, the
hierarchy of overlay graphs is also never represented explicitly. Instead, we suc-
cessively construct a TCH H starting from G by inserting and merging more and
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more shortcuts. Initially, we set H := G. All shortcuts u→g∗ f v ∈ Ex that are
considered to be necessary when a node x is contracted are added to H (or merged
into H if an edge u→h v is already present respectively). We also maintain the
remaining graph R = (VR,ER). More precisely, R is the subgraph of H, which
is induced by all nodes that are not contracted yet.1 A node x and its incident
edges are removed from R as soon as x is contracted. The remaining graph R is an
overlay graph of both G and H.

The construction phase is divided in iterations. In every iteration we contract
a number of nodes. At the beginning of every iteration we build a set

I :=
�
x ∈VR

�
� ∀u ∈ N1

R(x) : x≺ u
�

(5.10)

of nodes that are less important than all their neighbors in R. Note that I is an
independent node set2 in R. Thanks to this property, it is relatively easy to paral-
lelize the TCH construction (see Section 5.2.4). Having built the set I, we contract
all the nodes in I. This includes that all necessary shortcuts are added to H (or
merged into H respectively). The remaining graph R has changed now: On the
one hand, all nodes in I and their adjacent edges have been removed from R. On
the other hand, some new shortcuts may be present in R and some edges in R may
have a modified TTF now (due to merging).

The next iteration works exactly like the one before: We build another inde-
pendent node set I, which is a subset of the now smaller set of remaining nodes
VR. Then, we contract all the nodes in the new set I while inserting some short-
cuts into H (or merging some shortcuts respectively). Then, we perform another
iteration and so on. We repeat this process until R is the empty graph. When
this process ends, all nodes are contracted and H is completely transformed into a
TCH structure.

Algorithm 5.1 shows pseudocode describing the construction process. Line 6
selects all nodes inVR that are locally minimal with respect to the total order≺ and
puts them into the set I. These are exactly the nodes specified by Equation (5.10).
Line 8 and 11 select the set Ex of shortcuts that are considered to be necessary
if a node x ∈ I is contracted (see Equation (5.2)). In Line 10 the incoming and
outgoing edges of x are marked as downward and upward edges respectively.

That nodes are not simply contracted in the order given by ≺ but repeatedly
collected into an independent set I ⊆ V of local minima with respect to ≺ (see
Equation (5.10)), is a difference to the construction procedure of original CHs [44]
that has been introduced by Vetter when he parallelized the TCH preprocessing
during a student research project [82].

1The subgraph of a graph G= (V,E) that is induced by a subset of nodes X ⊆V is defined as
the subgraph

�
X ,{u→ v ∈ E | {u,v} ⊆ X}

�
⊆ G.

2An independent node set is a set of nodes in a graph such that no two nodes in the set are
adjacent.
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Algorithm 5.1. The basic TCH construction procedure. Given a graph (V,E) with

time-dependent travel times as travel costs, and also given a node order ≺, this

algorithm constructs a TCH structure.

1 function constructTch((V,E) : Graph, ≺ : NodeOrder) : Graph
2 EH := E // G is subgraph of H
3 (VR,ER) := (V,E) // the “remaining graph” R= (VR,ER)
4 annotate all edges in EH and ER with shortcut descriptor �([0,Π],⊥)�
5 while ER �= /0 do
6 I :=

�
x ∈VR

�
� ∀u ∈ N1

(VR,ER)
(x) : x≺ u

�
// see Equation (5.10)

7 foreach x ∈ I do
8 Ex := /0 // set of necessary shortcuts when contracting x
9 foreach path �u→ f x→g v� in (VR,ER) do
10 mark u→ x as downward and x→ v as upward edge in EH

11 if ∃τ ∈R : g∗ f (τ) = TT(VR,ER)(u,v,τ) then add u→g∗ f v to Ex

12 remove x and all its incident edges from (VR,ER) // at this point R=G
13 foreach u→g∗ f v ∈ Ex do
14 if there is u→h v ∈ ER then
15 D := shortcut descriptor of u→h v
16 S := merge shortcut descriptors D and �([0,Π],x)�
17 replace u→h v by u→min(h,g∗ f ) v in EH and ER

18 annotate u→min(h,g∗ f ) v with merged shortcut descriptor S

19 else
20 add u→g∗ f v to EH and ER

21 annotate u→g∗ f v with shortcut descriptor �([0,Π],x)�

// at this point R= G�

22 return (V, EH)

Checking for Necessary Shortcuts. Line 11 checks whether a shortcut is necessary
or not. To do so, one wants to find out, whether some τ ∈R exists with g∗ f (τ) =
TT(VR,ER)(u,v,τ). The condition itself can be checked within

O
�
|g∗ f |+

�
�TTR(u,v, ·)

�
�
�

time in a manner quite similar to computing min(g ∗ f , TTR(u,v, ·)). It can be
done using an adaption of Algorithm 3.2 hence. The computation of the witness
profile TTR(u,v, ·), however, is much more difficult. The reason is that this so
called witness search requires a one-to-one TTP query on the remaining graph
R. Answering this TTP query by simply performing the one-to-one version TTP
search (see Section 4.2.2) would be so time consuming, that the TCH construction
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Figure 5.4. Merging of shortcut descriptors during TCH construction. Like in Figure 5.3,
we look at the TCH structure H “from the side” but with the difference that H is not
finished jet and still under construction. The newly created shortcut u→ v (drawn dashed)
has the simple shortcut descriptor �([0,Π],x)�, which indicates that this shortcut represents
the path �u→ x→ v� for all departure times. If another edge u→ v (drawn solid) with a
shortcut descriptor �([c0,c1],x

�
1), . . .([cm−1,cm],x

�
m)� is already present, then this shortcut

descriptor has to be merged with the simple shortcut descriptor �([0,Π],x)�. Note that the
shortcut descriptors of the edges u→ x and x→ v do not contribute to the merged shortcut
descriptor.

would not terminate within reasonable time then (as our experiments reported in
Section 5.6 show).

Alternatively, one may simply want to add all possible shortcuts to Ex, regard-
less whether they are necessary or not. This is also not good, because the resulting
TCH, which is likely to be quite dense, would probably need far too much space
and queries would probably be much slower. However, witness search can be op-
timized to make TCH construction feasible. This is explained a little later in this
section.

Merging Shortcuts. Lines 13 to 21 insert and merge the necessary shortcuts into
H as specified by Equation (5.3) and also maintain the shortcut descriptors. The
shortcut descriptor of a newly inserted shortcut is simply �([0,Π],x)�, as it repre-
sents the path �u→ f x→g v� for all possible departure times (see Line 21). If an
edge u→h v is already present, then the new shortcut is not inserted but merged of
course (see Lines 14 to 18). This also affects the shortcut descriptor, which has to
be merged, too. The simple shortcut descriptor �([0,Π],x)� that solely represents
the path �u→ f x→g v� is merged with the shortcut descriptor D of the already
present edge u→h v. Figure 5.4 illustrates such a situation.

Note that the merging of a newly created shortcut u→g∗ f v with the already
present edge u→h v can in general not be done in O(|h|+ |g∗ f |) = O(| f |+ |g|+
|h|) time. Though computing g∗ f and min(h,g∗ f ) only takes O(|h|+ |g∗ f |) time
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(see Corollary 3.11 and 3.12), we cannot apply this upper bound to the merging of
shortcut descriptors. The reason is that h may even be constant regardless whether
D contains several middle nodes emerging from earlier contractions. In practice,
however, we rather suppose |D|= O(|h|).

On-the-fly Externalization. Once contracted, a node x and its incident edges are
no longer needed by the TCH construction. The only reason why it is kept in
memory as part of the resulting TCH structure H, is that H serves as a return
value when the TCH construction is finished. However, instead of returning H
as a whole, one could also externalize H (for example, writing it to disk) on the
fly. This is especially easy if the externalized H is represented as an edge list.3

If this is the case, one simply appends the edges incident to a contracted node to
the externalized data. The contracted node and the incident edges can be deleted
afterwards.

It must be noted that especially the TTFs of shortcuts higher up in the hier-
archy can get quite complex. So, the described on-the-fly externalization of H
may save a lot of memory. The TTFs of the deleted edges must also be deleted of
course. If the graph data structure does not support the deletion of nodes or edges,
then deleting the TTFs only may already save a considerable amount of space.

Optimized Witness Search. Without further optimizations, TCH construction
as described in Algorithm 5.1 takes too much time. This is because witness search
(i.e., the computation of witness the profile TTR(u,v, ·)) makes TCH construction
impractically slow if implemented by a simple TTP search (see Section 4.2.2)
on R. To make witness search feasible, we apply five optimizations which we
explain in the following. Two of them, the heuristic corridor thinning and the
sample search have been contributed by Vetter when he was working as a stu-
dent assistant. He also adopted the hop limit from original CHs [44] choosing a
maximum hop distance of 16.

Preceding TTP Interval Search. One idea to make witness search faster is not
about improving the computation of TTR(u,v, ·), but to avoid this computation if
possible. To do so, we perform the one-to-one version of TTP interval search (see
Section 4.2.3) on R with start node u and destination node v first, computing the
interval [q[v],r[v]] =

�
TTR(u,v), TTR(u,v)

�
. So, if r[v] < min(g ∗ f ) holds, we

know that no shortcut is needed—without doing TTP search. We call [q[v],r[v]]
a witness interval in this case. Otherwise, [q[v],r[v]] and [ming ∗ f ,maxg ∗ f ]
overlap. This means we know nothing and perform TTP search.

3An edge list is a very simple representation of a graph G = (V,E) as sequence �u1 → f1
v1, . . . ,u|E| → f|E| v|E|� with E = {u1 → f1 v1, . . . ,u|E| → f|E| v|E|}.



194 Chapter 5. Minimizing Time-Dependent Travel Times

Algorithm 5.2. Given two nodes s, t and a predecessor information p, this algorithm

computes the corridor from s to t in the predecessor graph represented by p. The

computation is actually a BFS starting from t. Every touched edge is added to the

resulting corridor (VS,ES).

1 function extractCorridor(s, t : Node, p : PredInfo) : Graph
2 (VS,ES) := ( /0, /0)
3 Q := /0 : FifoQueue
4 Q.push(t)
5 mark t as visited
6 while Q �= /0 do
7 v := Q.pop()
8 foreach u ∈ p[v] do
9 add u→ v to ES

10 if u already marked as visited then continue
11 Q.push(u)
12 mark u as visited

13 add all nodes that are marked as visited to VS

14 return (VS,ES)

Restricting Witness Search to a Corridor. If TTP search is performed after a pre-
ceding TTP interval search, as just explained, then several edges can be ignored by
the TTP search: Let p be the predecessor information generated by the TTP inter-
val search performed before witness search. Then, we perform the TTP search
only on a subgraph of the predecessor graph G(p) ⊆ R; namely, the corridor
S := PR(p)(u,v) ⊆ R(p) ⊆ R, which exactly consists of all paths from u to v in
the predecessor graph R(p). A TTP search restricted to the corridor S, still com-
putes TTR(u,v, ·) correctly. This is because TTS(u,v, ·) = TTR(u,v, ·) holds, which
follows from the fact that R(p), and thus S, contains an (u,v,τ)-EA-path for all
τ ∈R. This, is due to Lemma 4.14.

The idea behind the restriction to S is to make TTP search a good deal more
goal-directed, which means that less nodes are processed and less edges are re-
laxed. We hope to exclude some nodes that do not to lie on an EA path from u to
v this way. Our experiments (see Section 5.6) show that TCH construction runs a
good deal faster with the preceding TTP interval search described above and with
the restriction to the corridor S. Note that we have not examined how much faster
the preprocessing runs with preceding TTP interval search but without restriction
to the corridor S.

To obtain the corridor S we only have to perform a BFS4 in R(p)� starting

4BFS (breadth-first search) is a fundamental method to traverse a graph starting from a given
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from v while adding a transposed version of all touched edges to S. Note that
the graph R�(p) needs not to be build explicitly (it is, in fact, already there). In-
stead, the BFS search uses the predecessor information set up by the TTP interval
search directly. Algorithm 5.2 shows the respective pseudocode. It is invoked by
S := extractCorridor(u,v, p), where p is predecessor information generated by the
preceding TTP interval search.

Thinning out the Corridor Heuristically. We can further decrease the time spend
on TTP search by using an even ”thinner“ corridor than S; that is, we use a sub-
graph of S containing less edges. To do so, we do not store the whole the predeces-
sor information during preceding TTP interval search. Instead, we only remember
two predecessors of each node v with label [q[v],r[v]] at a time: the one that lastly
improved q[v] and the one that lastly improved r[v] (i.e., |p[v]| ≤ 2). In other
words, we rather maintain two predecessor nodes pq[v], pr[v] ∈V ∪{⊥} than a set
p[v] ⊆ V . There, pq[v] and pr[v] are updated together with q[v] and r[v] respec-
tively. If the relaxation of an edge u→ f v decreases q[v], for example, then pq[v]
is updated by assigning pq[v] := u. The other predecessor node pr[v] is maintained
analogously. Of course, the resulting thinner corridor

S� := PR(pq)∪R(pr)(u,v)⊆ S⊆ R

does in general not contain all EA paths from u to v. It may even contain no EA
path for some departure times; that is, departure times τ0 ∈R may exist with

EAS�(u,v,τ0)> EAS(u,v,τ0) = EAR(u,v,τ0) = EAG(u,v,τ0) .

As a consequence, TTP search when performed on S� no longer computes
TTR(u,v, ·) but TTS�(u,v, ·), which may be greater for the one or another departure
time; that is, τ ∈ R may exist with TTS�(u,v,τ) > TTR(u,v,τ). This may lead to
unnecessary shortcuts as we may fail to prove that a shortcut is not needed. But
this happens not too often, which gets apparent from the fact that the resulting
TCH structures are sufficiently sparse to provide fast querying. Moreover, the
running time spend on TTP search is reduced greatly (our experiments confirm
this, see Section 5.6). So, thinning out the corridor is a heuristic that works very
well. It is also a conservative heuristic, as it never prevents any necessary shortcut.

Note that the corridor thinning has been contributed by Vetter when he was
working as a student assistant.

Sample Search. Another idea to further reduce the cases where witness search
is performed is sample search, a one-to-one time-dependent Dijkstra search on

node (e.g., see the textbook by Mehlhorn and Sanders [61]).
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R from u to v with departure time Π/2. Even if [q[v],r[v]], as computed by the
TTP interval search, and [min(g ∗ f ),max(g ∗ f )] overlap, sample search might
still yield EAR(u,v,Π/2) = arr(g∗ f )(Π/2). Then, we know that the shortcut is
necessary without witness search.

However, we perform sample search only occasionally: We maintain a value
β that we set to zero at the very beginning of the construction process. Every time
a shortcut is inserted, we increase β by some value λ+. If a potential shortcut
is not inserted, we decrease β by another value λ−. If β gets larger than some
threshold ξ , we switch to the sample search mode, meaning that we always per-
form a sample search before TTP interval search. If, in contrast, β gets smaller
than −ξ , we switch back to the no sample search mode. In our implementation
we chose λ+ := 4, λ− := 1, and ξ := 1000. As an intuition, we perform sam-
ple search when shortcuts are more probable, and we omit sample search, when
shortcuts are less probable.

Note that the sample search has been contributed by Vetter when he was work-
ing as a student assistant.

Hop Limit. To prevent that optimized witness search—which includes a sample
search, a TTP interval search, and a TTP search, all starting from the node u—
takes too much time, we limit the search radius to k hops. This hop limit is adopted
from the preprocessing of original CHs with constant travel costs [44]. The idea
is that the edges of a node w that is removed from the PQ are not relaxed if the EA
path from the start node u to w has more than k edges. In our implementation, we
use k= 16, which has been chosen by Vetter. It must be noted that the predecessor
graphs of TTP search and TTP interval search do not contain a unique path from
u to w. In these cases, we just use the number of hops that emerge from the edge
relaxed last.

The results of TTP interval search may be altered by the hop limit. It may then
compute labels [q[v],r[v]] with q[v] ≥ TTR(u,v) and r[v] ≥ TTR(u,v) instead of
equality. Then, the check r[v]<min(g∗ f )may fail, even if TTR(u,v)<min(g∗ f )
holds. Running TTP search on the corridor S or S� also leads to another result then.
So, the hop limit may provoke further unnecessary shortcuts, just like thinning
out the corridor S does. Our experiments show, however, that the resulting TCH
structures are sparse enough to allow small running times of EA and TTP queries
(see Section 5.6).

Note that the hop limit has been adopted from the original CHs [44] by Vetter
when he was working as a student assistant.
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5.2.3 Ordering the Nodes

We already suggested that the node ordering is actually a TCH construction plus
a lot of extra work. In every iteration the node ordering chooses an independent
node set I in the remaining graph R. Then, it contracts all nodes in I while adding
some shortcuts to H or merging them respectively. Having finished an iteration,
we choose another independent node set I in the new R and so on. This is the same
procedure as TCH construction described in Section 5.2.2 and all the techniques
described there are also applied. However, ≺ is not yet fully established during
this process. So, we need another way to decide which nodes are contracted next
than the one characterized by Equation (5.10); that is, another way to decide which
nodes are put into I. To do so, we assign a tentative cost value x.cost to every node
x ∈V . This way we estimate how attractive a node is to be contracted. The nodes
with smaller cost should be contracted earlier.

Actually, the tentative cost x.cost estimates how the remaining graph R would
change when the node x were contracted. Mainly, this means the number of edges
that would be removed and inserted respectively (though other factors are also
included). The number of removed and inserted edges, however, depends on the
incoming and outgoing edges that x has in R, because every path �u→ f x→g v� ⊆
R may provoke another necessary shortcut. Accordingly, the tentative cost of a
node x must be updated, whenever a neighbor y of x is contracted. This has two
reasons: First, x loses the edge x→ y, the edge y→ x, or both when y is contracted.
Second, x may gain additional edges. This can happen, for example, if a shortcut
x→ z representing a path �x→ y→ z� is necessary when y is contracted.

To keep the cost x.cost of a node x up-to-date, we perform a simulated con-
traction of x whenever x gains or loses an edge in R. This happens exactly when
a neighbor y of x in R is really contracted. After the simulated contraction of x we
update x.cost. Note that the simulated contraction does not alter H or R. Instead,
we compute Ex (see Equation (5.2)) solely to update x.cost.

Basic Node Ordering. Algorithm 5.3 shows pseudocode for the node order-
ing procedure. Though node ordering procedure is a TCH construction (see Al-
gorithm 5.1) plus lots of extra work, the pseudocode looks very different. The
reason is, that we use a much more compact representation here, which is more
convenient but much less detailed than in Algorithm 5.1. The treatment of shortcut
descriptors is even omitted completely. The extra work that is done by the node or-
dering happens in Lines 4 to 7, 10, and 17. Without these changes, Algorithm 5.3
would describe the same procedure as Algorithm 5.1. The only exception is the
set I, which is set up in a different way (see Line 9).

In an initial step, we determine the initial tentative cost for all nodes by per-
forming a simulated contraction for every node u ∈ V (see Lines 6 and 7). Then
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Algorithm 5.3. Computes a node order ≺ and a corresponding TCH structure H =

(V,EH) for a given graph G = (V,E). The pseudocode looks very different from

Algorithm 5.1, although it is in principle the same procedure plus lots of additional

work. This is because we use a more abstract notation here. The returned node

order ≺ is simply represented as a sequence of nodes. The most time consuming

part of the algorithm is at the end of the main loop where the simulated contractions

are performed. The treatment of shortcut descriptors is omitted, but Algorithm 5.1

shows how it is handled.

1 function orderNodes((V,E) : Graph) : (Graph, NodeOrder)
2 EH := E // G is subgraph of H
3 (VR,ER) := (V,E) // the “remaining graph” R= (VR,ER)
4 ≺ := �� // the node order represented as sequence of nodes
5 set up random bijective function noTie :V →{1, . . . , |V |}
6 foreach u ∈V do
7 simulate contraction of u and set u.cost

8 while ER �= /0 do
9 I :=

�
x ∈VR

�
�∀u ∈ N2

(VR,ER)
(x)\{x} :

�
x.cost < u.cost or

�
x.cost = u.cost and noTie(x)< noTie(u)

���

10 append all x ∈ I to ≺
11 Enew :=

�
x∈I Ex with Ex as in Equation (5.2)

12 Vneighbors := N1
VR,ER

(I)

13 for all x ∈ I mark all edges u→ x ∈ EH as downward edge
14 for all x ∈ I mark all edges x→ v ∈ EH as upward edge
15 for all x ∈ I remove x and all its incident edges from (VR,ER)
16 insert or merge all u→g∗ f v ∈ Enew into (VR,ER) and (VH ,EH)
17 simulate contraction of all u ∈Vneighbors and update u.cost each

18 return ((V, EH),≺)

we perform a sequence of iterations similar to the construction process described
in Section 5.2.2. The independent node set, however, is chosen differently this
time (see Line 9). Instead of a set I as described in Equation (5.10) we choose
I ⊆VR with the property

x ∈ I =⇒ ∀u ∈ N2
R(x)\{x} :

�
u �∈ I and x.cost ≤ u.cost

�
, (5.11)

which means that every node in I has minimal cost in its 2-hop neighborhood and
none of its 2-hop neighbors is also added to I. There, we have the problem that
a nodes y ∈ N2

R(x) \ {x} may have the same cost as x; that is, x.cost = y.cost. In
this case we use the random bijective function noTie : V → {1, . . . , |V |} for tie
breaking, which is set up in Line 5.
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Note that an independent node set I that fulfills Equation (5.11) is different
from an independent node set I as characterized by Equation (5.10). And this is
not only the case because we use the tentative cost instead of ≺. Especially, the
gap between the nodes is at least three hops instead of two hops as in case of
Equation (5.10). This is needed by the parallel node ordering in shared memory
that Vetter contributed in his student research project [82] (see Section 5.2.4).

Having build the set I, we compute the set Enew of shortcuts that are necessary
for the nodes in I (see Line 11). Having done that, we mark the incident edges
of the nodes in I appropriately as upward and downward edges, remove all nodes
in I and their incident edges from R, and insert or merge all necessary shortcuts
respectively (see Lines 13 to 16). Before we begin with the next iteration by
choosing the next independent node set I in the changed remaining graph R, we
update the tentative costs of the neighbors of the just contracted nodes. To do so,
we have to simulate the contraction of these neighbors of course (see Line 17).

During the node ordering, we successively set up the relation ≺ (see Line 10).
Let I1, . . . , Ik be the sequence of the repeatedly chosen independent node sets or-
dered by time of creation. For u ∈ Ii and v ∈ I j with i< j the node order relation
must fulfill u≺ v. For u,v∈ Ii we can choose freely between u≺ v and v≺ u. Rep-
resenting≺ as a sequence of nodes and simply appending the nodes of the current
set I to this sequence yields a node ordering that conforms with these thoughts.

Maintaining the Tentative Costs. The contraction of a node x changes the
edges of its adjacent nodes in R, and (as said above) we have to update the ten-
tative costs of these adjacent nodes. More precisely, the contraction of x means
that every node u ∈ N1

R(x) loses at least an edge u→ x or x→ u and may gain
one or more shortcuts. So, we have to update the tentative cost u.cost of all nodes
u ∈ N1

R(x) because u.cost estimates how the contraction of u would change R (and
this depends on the edges that u has in R). But updating this estimate includes
a simulated contraction of u. Having finished the simulated contraction of u, we
compute the new tentative cost of u as a linear combination of four cost terms.

Mainly, the four cost terms are chosen in a way that we obtain a hierarchy
which is flat and sparse (as mentioned earlier in this thesis). As a consequence, the
paths from the bottom of the hierarchy to its top are not too long and the hierarchy
does not contain too many edges. Such hierarchies hasten our query algorithms,
as these algorithms are based on bidirectional upward search from start and des-
tination node. However, to achieve a lower memory usage, a low complexity of
TTFs is also important. The four cost terms edge quotient, hierarchy depth, un-
packed edge quotient, and complexity quotient—here, sorted by importance—try
to ensure these properties and are explained in the following.

These four cost terms replace the cost terms of the original CHs [43] and have
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been introduced by Vetter when he parallelized the TCH preprocessing during
a student research project [82]. The hope is that they suit time-dependent road
networks better than the original terms do.

Edge Quotient. This term helps to keep the hierarchy sparse. When a node u
were contracted, all its incident edges would be removed from R and then some
shortcuts would be inserted. Accordingly, the edge quotient

Edges(u) :=
insertedR(u)

max
�
1, removedR(u)

� (5.12)

with

insertedR(u) := |Eu|

removedR(u) := |{x→ u, u→ x ∈ ER}| ,

where Eu is as defined by Equation (5.2), expresses how the number of edges
would be changed locally by the contraction of u. Note that the edge quotient
works better than the more intuitive term edge difference

insertedR(u)− removedR(u) (5.13)

would do. This is because the values of the difference could get so large that other
terms would not have enough influence any more.

Hierarchy Depth. Only considering the removed and inserted edges, one may get
quite slow queries, as the resulting hierarchy might be sparse but not flat. So,
we preferably contract nodes that are not so far away from the bottom of the
hierarchy to prevent long upward or downward paths (with “long” in terms of
hops). To ensure this, we maintain an attribute u.depth of every node u. At the
very beginning of the node ordering we set u.depth := 1 for all nodes u. Whenever
a node x is really contracted we update u.depth of all its neighbors u ∈ N1

R(x) by

u.depth := max{x.depth+1, u.depth} . (5.14)

The cost term hierarchy depth is simply the current value Depth(u) := u.depth.
Obviously, u.depth can be maintained without simulated contraction.

Note that the way we repeatedly choose the independent set I during node
ordering, helps to distribute the node contractions uniformly over the remaining
graph. This should already keep the resulting hierarchy quite flat.
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Original Edge Quotient. When a node u is contracted, all the inserted and maybe
some of the removed edges are shortcuts. The original edge quotient is the same
as the edge quotient, but with the additional idea that all shortcuts count for the
number of edges of the original path they represent; that is, for the number of
edges that we get if we expand them completely. So, the idea is to compute
something like

∑inserted shortcuts #original edges when expanded

max{1, ∑edges removed from R #original edges when expanded}
,

with the goal to balance the original path length of the shortcuts incident to a
node. This should also support a uniform distribution of node contractions, which
supports a flat hierarchy.

We maintain a value orig[u→ v] ∈N for each edge u→ v that we initially set
to 1. Whenever a node x is really contracted, we set

orig[u→ v] := orig[u→ x]+orig[x→ v]

for each u→g∗ f v ∈ Ex, provided that no edge u→h v is already present. Other-
wise, we leave orig[u→ v] unchanged.5 The original edge quotient can then be
computed by

Orig(u) :=

∑
v→w∈Eu

orig[v→ u]+orig[u→ w]

max
�
1, ∑

v→u∈ER

orig[v→ u]+ ∑
u→w∈ER

orig[u→ w]
� (5.15)

after a simulated contraction of u is performed, which means that the set Eu has
been computed.

Complexity Quotient. This is the last of the four terms. To keep the complexity of
the TTFs in a TCH low, we use the complexity quotient

Complex(u) :=

∑
v→hw∈Eu

|h|

max
�

1, ∑
v→ f u∈ER

| f |+ ∑
u→gw∈ER

|g|
� (5.16)

to measure how the number of TTF bend points in the TCH structure would
change locally when the node u would be contracted. The goal is to save memory,

5Instead, one could set orig[u→ v] :=max{orig[u→ v], orig[u→ x]+orig[x→ v]}, for exam-
ple. But whether this yields TCHs of better quality (i.e., less space and/or smaller query times) is
not known.
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because the hierarchy needs less space the fewer bend points the present TTFs
have.

Note that this may also speed up preprocessing because the TTP searches be-
ing performed as witness searches during preprocessing (see Section 5.2.2) get
slower the more bend points the processed TTFs have. This is discussed in more
detail in the context of the running time of approximate TTP search (see Sec-
tion 4.2.4). As a positive side effect, a low complexity of TTFs in the TCH may
also speed up the answering of one-to-one TTP queries after preprocessing (see
Section 5.3.2). The experiments performed for this thesis, however, do not con-
sider whether witness searches and TTP queries really get faster.

Combining the Cost Terms. As said before, we use a linear combination of the
above four cost terms to compute the tentative cost of a node. Of course, different
configurations are possible for assigning values to the coefficients. We use the
configuration

2 ·Edges(u) + Depth(u) + Orig(u) + 2 ·Complex(u) (5.17)

that Vetter found by trial and error. We have not performed a systematic explo-
ration.

Caching Results of Witness Searches. Node ordering takes much more time
than TCH construction, where the node order ≺ is already known. This is mainly
due to the simulated contractions that have to be performed for every node uwhose
neighbor x is really contracted. If the node u has multiple neighbors, then its
contraction may be simulated multiple times—namely, if multiple neighbors of u
are contracted before u. This, however, includes a lot of redundant work.

To understand that, consider a path �v→ f u→g w� ⊆ R. If multiple neighbors
x1, . . . ,xk �= v,w of u are really contracted, then k simulated contractions of u are
performed. All these simulated contractions perform a witness search to check,
whether a shortcut would be necessary for �v→ f u→g w� or not. If neither v→ u
nor u→ w are ever merged with a necessary shortcut edge, then the result of this
check always stays the same, because EA times never change in the remaining
graph when a node is contracted.

To avoid repeated witness searches for paths �v→ f u→g w�, we cache the
results of witness searches by maintaining a value

isShortcutNecessary
�
(v,u,w)

�
∈ {true, false,⊥} .

It tells us whether a shortcut v→w is necessary when u is contracted. The symbol
⊥, which is the initial value, means that no witness search has been performed for
the path �v→ f u→g w� yet. When a node u is contracted—regardless whether
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it is a simulated or a real contraction—one first checks the cache for each �v→ f

u →g w� ⊆ R before an expensive witness search is performed. Of course, the
cached result must be invalidated if v→ f u or u→g w is merged with a necessary
shortcut. More precisely, we set isShortcutNecessary[(v,u,w)] := ⊥ in this case.
The cached result is also invalidated if one of the nodes v,u,w is really contracted.
Depending on how isShortcutNecessary is implemented (for example, using a
hash table6), this can save memory.

It must be noted that calculating the complexity quotient (see Equation (5.16))
after the simulated contraction of u requires that |g ∗ f | is known for all u→g∗ f

v ∈ Eu. If accessing isShortcutNecessary[(v,u,w)] yields true, then g∗ f has to be
recalculated to obtain |g∗ f |. To avoid that g∗ f is calculated again and again, we
rather maintain a value

complexity
�
(v,u,w)

�
∈N0∪{⊥} ,

which can be deleted (or, equivalently, set to ⊥) after one of the nodes u,v,w is
really contracted. The initial value is ⊥. If g∗ f is computed for the first time, we
set

complexity
�
(v,u,w)

�
:= |g∗ f | .

If v→ f u or u→g w is merged with a newly created shortcut, complexity[(v,u,w)]
must be invalidated; that is, set to ⊥.

Caching the results of witness searches by maintaining isShortcutNecessary[·]
and complexity[·] has been introduced by Vetter when he was working on the pre-
processing as a student assistant. Our experiments show that this caching greatly
reduces the running time of the preprocessing (see Section 5.6).

Reusing a Node Order. We already said that the node ordering not only yields
the node order relation ≺ but also a complete TCH structure and that it is not
necessary to perform a separate construction process afterwards. However, if we
have different sets of TTFs for the road network G, we can compute a node order
for only one of these sets. Then, we can reuse this order for all the other sets
of TTFs and perform the construction process without a further node ordering
each. This is likely to increase the running times needed for construction and also
for querying, as the resulting TCH may have a somewhat worse quality. But it
may work well enough and our experiments confirm that this can be the case in
practice (Section 5.6). This way, a considerable amount of running time can be
saved during preprocessing.

6A hash table is a well-known fundamental data structure allowing random access in expected
constant time (e.g., see Mehlhorn and Sanders [61]).
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5.2.4 Parallel Preprocessing in Shared Memory

TCH construction (see Section 5.2.2) and node ordering (see Section 5.2.3) as
described in this thesis are very well suited for parallel execution in shared mem-
ory. This is enabled by iteratively choosing independent sets I as characterized
by Equation (5.10) or (5.11). This makes sure that the contraction of a node x ∈ I
does not influence the contraction of any other node in I. The details are explained
in the following. Note that this parallelization of TCH construction and node or-
dering, including how the set I is chosen, has been contributed by Vetter during a
student research project [82].

Parallel TCH Construction. In case of TCH construction (where ≺ is already
known) the set I is build as in Equation (5.10). Contracting x ∈ I has no influence
on the contraction of any other node in I because of two reasons. First, I is an
independent set in R; that is, no two nodes in x,y ∈ I are adjacent in R. So, no
node y ∈ I \{x} loses or gains any edges when the node x is contracted. Second,
the contraction of x does not alter the EA times in the remaining graph R (see
Lemma 5.1). This means that the witness searches performed for any other node
y ∈ I \ {x} yield the same results regardless whether y is contracted before or
after x. The question whether a shortcut u→g∗ f v is necessary to replace a path
�u→ f y→g v� ⊆ R is hence independent from the contraction of x. So, all nodes
in I can be contracted in an arbitrary order or even in parallel without altering the
result of this process.

With respect to the above argument, it is obvious that set Ex as defined by
Equation (5.2) can be computed in parallel for all x ∈ I. The affected parts of
Algorithm 5.1, which shows pseudocode for TCH construction, are Lines 8, 9,
and 11. Note that the access to the remaining graph R is read-only in this case.
The set I can also be computed in parallel, because the access to the node order
relation ≺ is read-only, too (see Line 6). How far the updating of R and H (see
Line 10 and 12 to 21) can be performed in parallel, depends on the graph data
structures used to represent R and H.

Parallel Node Ordering. Like in case of TCH construction, all nodes in I can be
contracted in parallel, because Equation (5.11), just like Equation (5.10), ensures
that I is an independent set. In case of parallel node ordering, however, it can
happen that two threads simulate the contraction of the same node—at least, if the
computation is assigned to the threads by assigning each node x∈ I and simulating
the contraction of all nodes u ∈ N1

R(x) with the same thread. To prevent such
redundant simulated contractions, Equation (5.11) ensures a 3-hop gap between
the nodes in an I. Another solution would be to assign each node u ∈

�
x∈I N

1
R(x)
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to a thread directly. In this case, however, one would have to check for duplicate
nodes, which our solution avoids.

The parts of node ordering (see Algorithm 5.3) that can be parallelized easily,
are the computation of the set I (see Line 9), the computation of the set Enew (see
Line 11), and the simulated contractions (see Line 17). Whether R and H can, at
least partly, be updated in parallel, depends on the graph data structure used to
represent R and H—just like in case of TCH construction.

5.2.5 Differences to CHs with Constant Travel Costs

We complete the discussion of TCH preprocessing with a comparison to the pre-
processing of the original CHs [43, 44], which is designed to deal with constant
travel costs. There are four main issues where TCH preprocessing is different
from original CH preprocessing.

Node Ordering without PQ. Just like TCHs, original CHs use tentative node
costs (“priorities”) to determine which nodes are most attractive to be contracted
next during node ordering. However, original CHs do not build an independent
node set before contraction. Instead, all nodes not yet contracted are stored in a
PQ S using the tentative node cost as key. The node x to be contracted next is, in
principle, obtained from the PQ by invoking x := S.deleteMin(). On the one hand,
using a PQ to govern the node ordering has the advantage that the next node to be
contracted can be obtained easily. On the other hand, the PQ does not support the
selection of nodes that can be contracted independently. In other words, a node
ordering process governed by a PQ is not well suited for parallel node contraction.
This is why Vetter dropped the PQ when parallelizing the TCH preprocessing in
his student research project [82].

Never Updating Tentative Costs Lazily. Original CHs allow cost terms that
not only depend on the local neighborhood of a node but on a wider area in the
remaining graph R during preprocessing. This means, it is not necessarily clear
when a tentative node cost changes. So, tentative node costs cannot always be kept
up-to-date efficiently. Instead, tentative node costs are updated “lazily”: When-
ever original CHs select a node x with minimal x.cost for contraction, it is not
contracted immediately. Instead, the tentative node cost x.cost is recalculated
first. If the tentative node cost increases such that x.cost is no longer minimal
amongst all nodes not contracted so far, then another node x with minimal x.cost
is selected. This process is repeated until x.cost stays minimal for a node x, and
this node is then contracted. If a PQ S is used to govern the node ordering, this
process works as follows: A node x with minimal x.cost is obtained by invoking
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x := S.deleteMin(). If x.cost > S.min() gets true after recalculating x.cost, then
the node x is reinserted into the PQ by performing S.insert(x, x.cost). This process
is iterated until the minimum of the PQ gets stable and the then minimal node is
contracted.

If tentative node costs can only increase during preprocessing, then lazy up-
dates are enough to preserve the resulting node order; that is, updating tentative
node costs at once, which may not be very efficient, would yield the same node
order. If tentative node costs can also decrease, however, then lazy updates may
alter the resulting node order. To keep the difference low, original CHs perform a
complete update of all tentative node costs from time to time. In case of TCHs,
things are simpler. This is because all cost terms used by TCH preprocessing only
depend on the direct neighborhood of a node. It is hence enough that TCH pre-
processing only updates the cost of a node when one or more of its neighbors get
contracted. Lazy updates or occasional complete updates are not necessary.

Different Cost Terms. The only cost term of TCHs that is adopted from orig-
inal CHs without any substantial modification is the hierarchy depth (see Equa-
tion (5.14)), which is called “cost of queries” in the context of original CHs. The
edge quotient (see Equation (5.12)) is also adopted from original CHs, but with
the change that original CHs calculate a difference instead of a quotient (see Equa-
tion (5.13)). The original edge quotient (see Equation (5.15)) combines the edge
quotient with an idea also adopted from original CHs; namely, the idea to take the
length of paths represented by shortcuts into account.

The complexity quotient (see Equation (5.16)) has no direct counterpart in the
context of original CHs. The idea behind this term is to reduce the time spend
on witness search, whose running time increases with number of present bend
points. Original CHs also consider the time spend on witness search, but in terms
of sizes of search spaces that occur during witness searches. Though consider-
ing the search space size would also be likely to reduce the running times of TCH
preprocessing, it not only depends on the direct neighborhood of a node to be con-
tracted but on a wider area. In the context of TCHs, however, all cost terms only
depend on the direct neighborhood of a node, as explained above. So, considering
search space sizes during TCH preprocessing would destroy this convenient prop-
erty, and keeping the tentative node costs up-to-date would be much more difficult
hence. Another goal of the complexity quotient is to reduce the memory usage of
TTFs in the resulting hierarchy. This is not an issue in the context of original CHs,
of course, because they only deal with constant travel cost.

Just like in case of TCHs, the node ordering of original CHs tries to create
hierarchies that are not only sparse but flat. In case of TCHs, this goal is greatly
supported by the iterated selection of independent sets of nodes to be contracted,
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which should help to distribute the node contractions uniformly over the graph.
In case of original CHs, however, the selection of the next node to be contracted
is governed by a PQ that is not necessarily aware of uniformly distributed con-
tractions. To overcome this, original CHs use cost terms that support uniformity.
These cost terms, which can be be quite complicated, are not adopted by TCHs.
Nevertheless, one cost terms used by TCHs—namely, the original edge quotient—
should also encourage uniformity.

Different Optimizations of Witness Search. Witness search is the bottleneck
of CH preprocessing. This applies both to the constant case (i.e., to original
CHs [43, 44]) and to the time-dependent case (i.e., to TCHs). However, origi-
nal CHs and TCHs utilize quite different techniques to make the witness search
faster. Consider the contraction of a node x. In case of original CHs, witness
search is performed as a “one-to-several” query. That is, for each node u with
u→ x ∈ ER, a single Dijkstra search is performed to compute the shortest path
distances µR(u,v) for all v ∈ Tx := {w |x→ w ∈ ER}. To make this faster, orig-
inal CHs perform a “simple, asymmetric form of bidirectional search” [43] that
combines a single-hop backward search with a bucket structure adopted from hi-
erarchical many-to-many querying [43, 44, 56, 78] (see Section 1.3.1 on page 31
for a short summary). Note that original CHs apply a “staged” hop limit to the
witness search; that is, the hop limit may change during preprocessing.

In case of TCHs, witness search performs one-to-one queries. On the one
hand, this has the drawback that a separate computation must be performed for all
paths �u→ x→ v� ⊆ R. On the other hand, this has the advantage that heuristic
thinning of corridors gets applicable (see Section 5.2.2 on page 195). Another op-
timization utilized by TCHs, but not by original CHs, is that the results of witness
searches are cached (see Section 5.2.3 on page 202). Heuristic thinning of corri-
dors and caching the results of witness searches, which have both been provided
by Vetter, make the slow TTP query much faster during witness search. This is
confirmed by our experiments (see Section 5.6). Note that the hop limit applied to
TCH preprocessing (see Section 5.2.2 on page 196) is not staged; that is, the hop
limit does not change over time while preprocessing runs.

5.3 Exact Querying

In this section we explain how TCH structures can be used to perform fast and
exact EA and TTP queries. We achieve this by using bidirectional upward search,
which is a bidirectional search where we only relax edges that lead upward in
the hierarchy. As said before, this is fast if the TCH structure H provided by
the preprocessing is flat and sparse. The guaranteed existence of prefix-optimal
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EA up-down-paths in TCH structures (see Theorem 5.5) ensures that the query
algorithms described in this section compute correct results. EA up-down-paths
are analogous to shortest up-down-paths, which we mention earlier in the context
of constant travel cost CHs (see Section 2.3.2).

For EA queries, bidirectional search has the problem that exact time-dependent
backward search would require us to know the arrival time, which is part of what
we want to compute. To overcome this, we apply approximation. More precisely,
we use time-dependent Dijkstra only as forward search, but TTP interval search as
backward search because it does not require a given arrival time. Even though this
does not yield an EA path yet, we know that the predecessor graphs of forward
and backward search together contain an EA up-down-path for the given depar-
ture time. All what is left to do is to perform a further time-dependent Dijkstra
search on the edges touched by the backward search (see Section 5.3.1).

TCH-based TTP queries are conceptually simpler than EA queries, though
more expensive to compute. The simplicity is due to the fact that bidirectional up-
ward TTP search works fine, because TTP search does not require a fixed arrival
time if used as backward search. As a result, TTP queries on TCHs are straight-
forward. However, we can do better: Before we perform the bidirectional TTP
search, we perform a bidirectional TTP interval search first. This yields two rel-
atively small cones in that we perform the bidirectional TTP search. This way,
the TTP query needs much less time, because much less edges have to be pro-
cessed by the bidirectional TTP search. This is an application of the idea that fast
approximate computations speed up slow exact ones (see Section 5.3.2).

Both EA and TTP queries can be made faster by applying a simple but effec-
tive pruning technique called stall-on-demand. There, we try to detect nodes that
can not lie on an EA up-down-path from the start to the destination node with
prefix-optimal upward part (see Section 5.3.3).

5.3.1 Earliest Arrival Queries

Given a start node s, a destination node t, and a departure time τ0 we want to
compute EAG(s, t,τ0) as well as a corresponding EA path in G. Using TCHs
we can do this very fast as follows: First, we run Algorithm 5.4 in H to obtain
an (s, t,τ0)-EA up-down-path. However, an EA up-down-path usually contains
artificial shortcut edges and is not a valid route with respect to the original road
network G. The EA up-down-path has to be expanded hence. To do so, we run
Algorithm 5.7 that recursively expands the EA up-down-path for departure time
τ0. Both steps take very little time.

Computing an EA Up-Down-Path. The computation of an (s, t,τ0)-EA up-
down-path (see Algorithm 5.4) is the main task of answering EA queries. It runs
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Algorithm 5.4. Computes an (s, t,τ0)-EA up-down-path in H = H↑ ∪H↓. As sub-

routines the procedures tdRelax (see Algorithm 5.5) and ttpIntervalRelax are in-

voked (see Algorithm 5.6).

1 function tchEaQuery(s, t :V, τ0 :R) : Path
2 τ[u] := ∞ for all u ∈V , τ[s] := τ0

3 [q[u],r[u]] := [∞,∞] for all u ∈V , [q[t],r[t]] := [0,0]
4 ps[u] :=⊥, pt [u] := /0 for all u ∈V
5 B := ∞ // upper bound of EA time
6 X := /0 : Set // set of candidate nodes
7 function downwardSearch() : Path
8 τdown[u] := ∞ for all u ∈V
9 Qdown := /0 : PriorityQueue // PQ for downward search
10 foreach u ∈ X do
11 if τ[u]+q[u]≤ B then
12 τdown[u] := τ[u], Qdown.insert(u,τ[u])

13 while Qdown �= /0 do
14 u := Qdown.deleteMin()
15 if u= t then return �s= ps[. . . ps[t] . . . ]→ ·· · → ps[t]→ t�
16 for v ∈ pt [u] do tdRelax(u→ f v,τdown, ps,Qdown)

17 Qs := {(s,τ0)}, Qt := {(t,0)} : PriorityQueue
18 Δ := t // current search direction
19 while (Qs �= /0 or Qt �= /0) and min{Qs.min(),Qt .min()} ≤ B do
20 if Q¬Δ �= /0 then Δ := ¬Δ // change of direction: ¬s := t and ¬t := s
21 u := QΔ.deleteMin()
22 if B< ∞ and τ[u]+q[u]≤ B then X := X ∪{u}
23 B := min{B, τ[u]+ r[u]}

24 for u→ f v ∈ EΔ do // with Es := E↑ and Et := E�↓
25 if Δ = s then tdRelax(u→ f v, τ, ps,Qs)
26 else ttpIntervalRelax(u→ f v, q,r, pt ,Qt)

27 if B= ∞ then return �� // Did forward and backward search meet?
28 return downwardSearch()

in two phases. The first phase (see Lines 17 to 26) is a time-dependent bidirec-
tional upward search in the TCH structure H. The second phase (see Lines 7 to 16
and Line 28) is a time-dependent Dijkstra search that only relaxes edges touched
by the backward search of the first phase. Note that the downward search is en-
capsulated in a nested procedure to improve the readability of the pseudocode.
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Algorithm 5.5. Edge relaxation procedure as in time-dependent Dijkstra search (see

Algorithm 4.1). The Reference parameters τ, p,Q are necessary to provide context

information of the calling time-dependent Dijkstra search. These are references to

the respective structures storing label and predecessor information, as well as to the

respective PQ.

1 procedure tdRelax(u→ f v : Edge, τ, p,Q : Reference)
2 if arr f (τ[u])≥ τ[v] then continue
3 τ[v] := min{τ[v], arr f (τ[u])}
4 p[v] := u
5 if v �∈ Q then Q.insert(v, τ[v])
6 else Q.updateKey(v, τ[v])

Algorithm 5.6. Edge relaxation procedure as in TTP interval search (see Algo-

rithm 4.3). The Reference parameters q,r, p,Q are necessary to provide context in-

formation of the calling TTP interval search. This is similar to Algorithm 5.5 with

the difference that the label information of a node u consists of intervals [q[u],r[u]]

here.

1 procedure ttpIntervalRelax(u→ f v : Edge, q,r, p,Q : Reference)
2 [qnew, rnew] := [q[u]+min f , r[u]+max f ]
3 if qnew > r[v] then return
4 if rnew < q[v] then p[v] := /0
5 p[v] := {u}∪ p[v]
6 if qnew ≥ q[v] and rnew ≥ r[v] then return
7 [q[v],r[v]] :=

�
min{q[v],qnew}, min{r[v],rnew}

�

8 if v �∈ Q then Q.insert(v, q[v])
9 else Q.updateKey(v, q[v])

Phase 1: Bidirectional Upward Search. The forward search is a time-dependent
Dijkstra (see Section 4.2.1) starting from s running in H↑. The backward search is
a backward TTP interval search starting from t running in H↓, which means that

it actually runs in H�
↓ (see Section 4.3.2). In contrast to the forward search, the

backward search yields only approximate results. This is necessary because we
do not know the EA time at t, which is part of what we want to compute. Both
searches only relax edges that lead upward in the TCH. In case of the backward
search, all edges in H↓ are relaxed in reverse direction of course. Note that for-
ward and backward search are performed alternately. This is controlled by the
variable Δ ∈ {s, t} that encodes the current direction in terms of the start node of
the respective search (s for forward and t for backward search).

To prevent rather longish pseudocode, the edge relaxation of forward and
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backward search has been factored out (see Lines 25 and 26). The respective
pseudocode can each be found in Algorithm 5.5 and 5.6, which are both invoked
by Algorithm 5.4 as subprocedures. Note that Algorithm 5.5 and 5.6 need access
to context information from Algorithm 5.4 to work correctly. That is, access to

• the respective node label information,

• the respective predecessor information, and

• the respective PQ.

This is reflected by the fact that signatures of Algorithm 5.5 and 5.6 contain some
Reference parameters allowing to pass the respective data structures. Note that
passing Reference parameters does only cause constant overhead, because one
does not pass the structures themselves but references to the structures.

The nodes where forward and backward search meet are called candidate
nodes. More precisely, a candidate node u is a node with τ[u] + r[u] < ∞. We
store the candidate nodes in the candidate set X (see Line 22). During the bidi-
rectional search we maintain an upper bound B≥ EAG(s, t,τ0) initialized with ∞.
If a node u is settled by forward or backward search (see Line 23), we update B
by setting

B := min{B,τ[u]+ r[u]} .

The bidirectional search can be stopped as soon as the minima of forward and
backward PQ both exceed B, because they can no more contribute to a better
up-down-path then (see Line 19). The upper bound B can be used to rule out
candidate nodes that can not lie on an (s, t,τ0)-EA up-down-path (see condition
in Line 22). If B = ∞ holds after finishing the while loop, then no up-down-path
from s to t exists in H (see Line 27). Otherwise, we can be sure that H↑(ps)∪

(H�
↓ (pt))

� (i.e., the predecessor graph of the forward search together with the

transpose predecessor graph of the backward search) contains at least one (s, t,τ0)-
EA up-down-path. Finding such a path is the task of the second phase.

Phase 2: Downward Search. The second phase, or downward search (see Lines 7
to 16), is actually a time-dependent Dijkstra search in the transpose predecessor
graph of the backward search; that is, in (H�

↓ (pt))
� ⊆ H↓. Note that (H�

↓ (pt))
�

needs not to be build before we run the downward search.7 Instead, the prede-
cessor information pt can be used directly. This is reflected in Line 16. The
downward search has multiple start nodes; namely, the candidate nodes, which
are inserted in the PQ Q at Lines 10 to 12. As soon as the downward search takes
t out of the PQ, an (s, t,τ0)-EA up-down-path has been found (see Lines 15).
Figure 5.5 illustrates how the two phases of the TCH-based EA query work.

7Recall that we do this during preprocessing, where we use BFS to build a corridor for the
witness search (see Algorithm 5.2 in Section 5.2.2).
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Figure 5.5. How the TCH-based EA query (see Algorithm 5.4) works. We look at the
TCH structure H “from the side” with the more important nodes higher up. Predecessor
graphs are depicted in gray. Left: The set of candidate nodes X contains the nodes where
forward and backward search meet; that is, the nodes that lie in the intersection of the
predecessor graph H↑(ps) and the transpose predecessor graph (H�

↓ (pt))
� ⊆ H↓. The

downward search only searches along paths in (H�
↓ (pt))

� starting from nodes in X . Right:
Having finished the downward search, an (s, t,τ0)-EA up-down-path is found. Its top node
is one of the candidate nodes in X and it is completely contained in H↑(ps)∪ (H�

↓ (pt))
�.

Note that we again use the upper bound B to rule out candidate nodes there.
This may remove the one or another candidate node x ∈ X , because B may have
been lowered since x has been inserted in X . It is interesting to note that the
downward search does not maintain its own predecessor information. Instead it
uses the predecessor information ps of the upward search.

Correctness. With the guaranteed existence of a prefix-optimal (s, t,τ0)-EA up-
down-path in H, which is ensured by the preprocessing (see Section 5.2.2), we
can prove that Algorithm 5.4 really computes an EA up-down-path.

Theorem 5.6. Let H be a TCH, s, t ∈V such that t is reachable from s, and τ0 ∈R.
Then, Algorithm 5.4 returns an (s, t,τ0)-EA up-down-path in H.

Proof. According to Theorem 5.5 there exists a prefix-optimal (s, t,τ0)-EA up-
down-path with top node x0 in H. So, x0 is reached both by forward and backward
search. Thus, we have x0 ∈ X and τ[x0] = EAH(s,x0,τ0). Due to Lemma 4.36
we also know (H�

↓ (pt))
� ⊆ H↓ contains a path P0 = �x0 → ·· · → t� that is an

(x0, t,EAH(s,x0,τ0))-EA-path not only in H↓ but also in H. The latter is because
P0 is suffix of an (s, t,τ0)-EA-path in H. Now, consider the graph H0 formed
by (H�

↓ (pt))
�, the start node s, and by an edge s→ fx x with fx :≡ τ[x]− τ0 =
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TTH↑(s,x,τ0) for each x ∈ X ; especially, it is fx0 ≡ τ[x0]− τ0 = TTH(s, t,τ0). We
consider the concatenated path R0 := �s→ fx0

x0�P0 and calculate

arr fR0(τ0) = arr( fP0 ∗ fx0)(τ0) = arr fP0

�
EAH(s,x0,τ0)

�

= EAH

�
x0, t,EAH(s,x0,τ0)

�
= EAH(s, t,τ0) .

Thus, it is EAH0(s, t,τ0) = EAH(s, t,τ0), because there are no better EA times in
H0 than in H for departure time τ0 by construction. But it is easy to see that
the downward search is equivalent to a time-dependent Dijkstra in H0 starting
from s. Thus, Algorithm 5.4 terminates with τdown[t] = EAH(s, t,τ0) returning an
up-down-path P↑P↓ with P↑ := �s= ps[. . . ps[x] . . . ]→ ·· · → ps[x]→ x� ⊆ H↑ and
P↓ := �x= ps[. . . ps[t] . . . ]→ ··· → ps[t]→ t� ⊆ H↓ for some x ∈ X fulfilling

EAH(s, t,τ0) = τdown[t] = arr fP↓(τ[x])

= arr fP↓
�
arr fP↑(τ0)

�
= arr fP↑P↓(τ0) ,

because of Lemma 4.1. So, Algorithm 5.4 returns the desired result.
Note that the stopping condition of the while loop (Line 19) does not affect the

correctness. This follows from the typical monotonous behavior of the Dijkstra-
like algorithms considered in this thesis (see Lemma 4.5 and 4.35). Also, the
ruling out of candidate nodes in Lines 10 to 12 and 22 only applies to nodes that
can not lie on an (s, t,τ0)-EA-path.

Expanding the EAUp-Down-Path. Having computed an (s, t,τ0)-EA up-down-
path using Algorithm 5.4, we run Algorithm 5.7 to expand this up-down-path to
obtain the corresponding original path �s→ ·· · → t� ⊆ G. The idea is to recur-
sively replace all the artificial shortcut edges by the two-hop paths they represent.
In principle, this is the same idea as expanding shortcuts for constant travel costs
(see Section 2.3). In the time-dependent case, however, it is a little more compli-
cated, because a represented two-hop path depends on the time one departs from
the source node of a shortcut. To provide the necessary time-dependent informa-
tion about middle nodes, the preprocessing annotates every edge with a shortcut
descriptor (see Section 5.2.1 and 5.2.2 for a detailed explanation).

Shortcuts must be expanded differently for different departure times. For this
reason, we maintain the departure time for the currently processed shortcut edge
during expansion. To do so we use the variable τcurrent. It is initialized with τ0,
which is the departure time at the start node s. Algorithm 5.7 realizes the recursion
in an iterative manner using a stack. This means, we always process the left-most
edge that is not fully expanded yet. As a result, τcurrent needs only to be updated
when an edge is fully expanded and then appended to the resulting original path
(see Lines 11 to 14).
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Algorithm 5.7. Expands all time-dependent shortcuts of a given path �u1 → f1

u2 → f2 · · · → fk−1
uk� in H. The result is the corresponding original path in the orig-

inal road network G. The result of the expansion depends on the given departure

time τ0. For different departure times, the shortcut may represent different paths,

which may result in different original paths.

1 function expandPath(�u1 → f1 u2 → f2 · · · → fk−1
uk� : Path, τ0 :R) : Path

2 result := �� : Path
3 τcurrent := τ0 :R
4 for i= 1, . . . ,k−1 do
5 S := /0 : Stack // a LIFO queue
6 S.push(ui → fi ui+1)
7 while S �= /0 do
8 u→ f v := S.pop()
9 let D be the shortcut descripor of u→ f v
10 consider x sucht that D= �. . . ,([a,b],x), . . .� with a≤ τcurrent < b
11 if x=⊥ then
12 append u→ f v to result
13 τcurrent := τcurrent+ f (τcurrent)
14 continue

15 S.push(x→h v) for x→h v ∈ E↑
16 S.push(u→g x) for u→g x ∈ E↓

17 return result

Corollary 5.7. Let H be a TCH constructed from a road network G, P⊆H an up-
down-path from s to t, and τ0 ∈R. Expanding P for departure time τ0 recursively
as specified in Algorithm 5.7 yields a path P� ⊆G from s to t with fP�(τ0) = fP(τ0).

5.3.2 Travel Time Profile Queries

Answering TTP queries with TCHs is more straightforward than in case of EA
queries, but also more time-consuming. An arrival time is not required, which en-
ables us to answer TTP queries by simply performing a bidirectional TTP search.
A subsequent Dijkstra-like search, like in case of EA queries, is not needed. This
yields a relatively simple basic procedure for answering TTP queries (see Algo-
rithm 5.8). Though this is already feasible, we can still be much faster: To reduce
the search space of the bidirectional TTP search, we perform a bidirectional TTP
interval search first. The TTP search is still performed afterwards, but only on
two considerably smaller cones that are extracted from the search spaces of the
bidirectional TTP interval search (see Algorithm 5.10).
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Basic TTP Querying. Given a start node s and a destination node t, we want to
compute TTG(s, t, ·). In theory, such TTP queries can be solved with the one-to-
one version of TTP search (see Section 4.2.2). However, even for middle-sized
road networks this is not feasible. Instead, we use TCHs to answer such queries
(see Algorithm 5.8). This runs much faster as our experiments show (see Sec-
tion 5.6). As in case of EA queries, we perform a bidirectional search on the TCH
structure H, where we only go upward in the hierarchy. Here, both searches are
TTP searches that run in H↑ and H↓, a forward TTP search (see Section 4.2.2) and
a backward TTP search (see Section 4.3.1). Note that the pseudo code of for edge
relaxations is, again, factored out (see Line 14 and 15 as well as Algorithm 5.9)

The labels of a node u with respect to forward and backward search are de-
noted by Fs[u] and Ft [u] each. A label Fs[u] is the current tentative TTP for travel-
ing from s to a node u. Analogously, Ft [u] is the current tentative TTP for traveling
from u to t. Of course, the backward search relaxes all edges in reverse direc-
tion, which means it runs on H�

↓ . Remember that the backward version of TTP
search links TTFs the other way round than the forward version, because link-
ing of TTFs is not commutative (see Section 4.3.1). This is reflected in Lines 14
and 15, where f is either linked from the left or from the right, depending on the

Algorithm 5.8. A TTP query using a TCH structure H = H↑ ∪H↓. For a given

start node s and a given destination node t this algorithm computes TTG(s, t, ·). As

subroutine the subprocedure ttpRelax (see Algorithm 5.9) is invoked.

1 function tchTtpQuery(s, t :V ) : TTF
2 Fs[u] := ∞ for all u ∈V \{s}, Fs[s] :≡ 0
3 Ft [u] := ∞ for all u ∈V \{t}, Ft [t] :≡ 0
4 B := ∞ // upper bound of travel time
5 X := /0 : Set // candidate set
6 Qs := {(s, 0)},Qt := {(t, 0)} : PriorityQueue // forw. and backw. PQ
7 Δ := t // search direction
8 while (Qs �= /0 or Qt �= /0) and min{Qs.min(), Qt .min()} ≤ B do
9 if Q¬Δ �= /0 then Δ := ¬Δ // with ¬s := t and ¬t := s
10 u := QΔ.deleteMin()
11 if B< ∞ and minFs[u]+minFt [u]≤ B then X := X ∪{u}
12 B := min{B, maxFs[u]+maxFt [u]}

13 for u→ f v ∈ EΔ do // with Es := E↑ and Et := E�↓
14 if Δ = s then ttpRelax(u,v, f ∗Fs[u],Fs,⊥,Qs)
15 else ttpRelax(u,v,Ft [u]∗ f ,Ft ,⊥,Qt) // ignore predecessors

16 compute fi := Ft [xi]∗Fs[xi] for all xi ∈ {x1, . . . ,xk} := X
17 return min( f1,min( f2, . . .min( fk−1, fk) . . .))
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Algorithm 5.9. Edge relaxation procedure as in TTP search (see Algorithm 4.2)

and backward TTP search. Whether the relaxation works in the manner of forward

or backward TTP search, is controlled by the parameter gnew. This is because link-

ing of TTFs is not a commutative operation. For example, f ∗Fs[u] is passed to

gnew in case forward search, Ft [u]∗ f in case backward search (as it happens in Al-

gorithm 5.8). The Reference parameters F, p,Q are necessary to provide context

information of the calling TTP search.

1 procedure ttpRelax(u→ f v : Edge, gnew, F, p,Q : Reference)
2 if gnew ≥ F [v](τ) for all τ ∈R then return
3 if gnew(τ)< F [v](τ) for all τ ∈R then p[v] := /0
4 p[v] := {u}∪ p[v] // remove or remember tentative predecessors of v
5 F [v] := min(F [v], gnew) // update tentative node label of v
6 if v �∈ Q then Q.insert(v, minF [v])
7 else Q.updateKey(v, minF [v]) // minimum of TTF is PQ key

search direction. It must also be noted that no predecessor information is main-
tained by Algorithm 5.8, because a TTP query only computes a TTF and no path.
So, the respective Reference parameter p is not used in Line 14 and 15 and no
predecessor information is passed to the relaxation procedure in Algorithm 5.9.

The minimum operation on TTFs is, in contrast to the linking operation, com-
mutative. We exploit this to speed up Line 17: A PQ controls which two TTFs are
combined using the minimum operation next. More precisely, we insert all fi in
the PQ using | fi| as key. Then, we repeatedly remove two TTFs f ,g of minimal
complexity from the PQ and insert the result min( f ,g) with key |min( f ,g)| un-
til only one TTF is left. This is the sought-after result TTH(s, t, ·). Note that this
has similarities with a technique called corridor contraction described later in this
chapter (see Section 5.4.3).

Theorem 5.8. Let H be a TCH structure generated from G and s, t ∈V. Then, the
TCH-based TTP query described in Algorithm 5.8 returns TTG(s, t, ·).

Proof. From Theorem 5.5 we know that for all departure times τ ∈ R there is
a prefix-optimal (s, t,τ)-EA up-down-path in H with top node xτ . So, xτ is
reached by forward and backward search with the final labels Fs[xτ ] and Ft [xτ ], re-
spectively, such that arrFs[xτ ](τ) = EAH(s,xτ ,τ) and arrFt [xτ ](EAH(s,xτ ,τ)) =
EAH(xτ , t,EAG(s,xτ ,τ))=EAH(s, t,τ) holds (due to Lemma 3.8, 4.11, and 4.33).
Together, we have arr(Ft [xτ ]∗Fs[xτ ])(τ)=EAH(s, t,τ)with xτ ∈X =: {x1, . . . ,xk}.
So, arr fi(τ) = arr(Ft [xτ ]∗Fs[xτ ])(τ) = EAH(s, t,τ) for xτ = xi yields

min( f1, . . .min( fi, . . .min( fk−1, fk) . . .) . . .) = TTH(s, t, ·) = TTG(s, t, ·) ,

which is the desired result.
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Accelerating TTP Queries with Cones. According to our experiments Algo-
rithm 5.8 is feasible, but still not fast enough (see Section 5.6). But the TCH-based
TTP query can be further accelerated by a preceding bidirectional TTP interval
search (see Algorithm 5.10). The idea is to extract the relatively small subgraphs
S↑ ⊆ H↑ and S↓ ⊆ H↓ from the predecessor graphs of the bidirectional TTP inter-
val search. As S↑ ∪ S↓ contains enough nodes and edges to compute TTG(s, t, ·)
correctly but not too many others, Algorithm 5.8 can then be applied to S↑ ∪S↓ for
computing TTG(s, t, ·) within much less running time.

The subgraphs S↑ and S↓ can be obtained quite easily: In case of S↑, we just

perform a BFS on the transpose predecessor graph (H↑(ps))
� of the forward

search starting from the candidate nodes stored in X . There, it is not necessary
to build (H↑(ps))

� explicitly, because the predecessor information ps can be used

Algorithm 5.10. An accelerated version of the TTP query on TCHs. It uses

bidirectional TTP interval search to obtain an opening cone S↑ ⊆ H↑ and a clos-

ing cone S↓ ⊆ H↓. The more expensive TTP query described in Algorithm 5.8

is invoked afterwards, but only to run on the heavily reduced TCH substructure

S↑∪S↓ ⊆H, which contains only few nodes and edges that are not part of an (s, t,τ)-

EA up-down-path for some τ ∈ R. Invokes tchTtpQuery (see Algorithm 5.8),

ttpIntervalRelax (see Algorithm 5.6), and extractCone (see Algorithm 5.11) as sub-

procedures.

1 function tchConeTtpQuery(s, t :V ) : TTF
2 [qs[u],rs[u]] := [qt [u],rt [u]] := [∞,∞], ps[u] := pt [u] := /0 for all u ∈V
3 [qs[s],rs[s]] := [qt [t],rt [t]] := [0,0]
4 B := ∞
5 X := /0 : Set
6 Qs := {(s,0)},Qt := {(t,0)} : PriorityQueue
7 Δ := t
8 while (Qs �= /0 or Qt �= /0) and min{Qs.min(), Qt .min()} ≤ B do
9 if Q¬Δ �= /0 then Δ := ¬Δ // with ¬s := t and ¬t := s
10 u := QΔ.deleteMin()
11 if B< ∞ and qs[u]+qt [u]≤ B then X := X ∪{u}
12 B := min{B, rs[u]+ rt [u]}

13 for u→ f v ∈ EΔ do // with Es := E↑ and Et := E�↓
14 ttpIntervalRelax

�
u→ f v, qΔ,rΔ, pΔ,QΔ

�

15 (S↑,S↓) :=
�
extractCone(s,X , ps),

�
extractCone(t,X , pt)

���

// computes (S↑,S↓) :=
�
PH↑(ps)(s,X),

�
PH�

↓ (pt)
(t,X)

��
�

16 return tchTtpQuery(s, t) using S↑ ∪S↓ as underlying TCH structure
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Algorithm 5.11. Computes the cone with start node s and end nodes X in the prede-

cessor graph represented by p. The computation is actually a BFS starting from the

nodes in X adding the transpose version of all touched edges to the resulting cone.

The computation is very similar to Algorithm 5.2 with the difference that the BFS

starts at a set X ⊆V instead of a single node.

1 function extractCone(s : Node,X : Set, p : PredInfo) : Graph
2 (VS,ES) := ( /0, /0) // the result cone, initially empty
3 Q := /0 : FifoQueue
4 for x ∈ X do
5 Q.push(x)
6 mark x as visited

7 while Q �= /0 do
8 v := Q.pop()
9 foreach u ∈ p[v] do
10 add u→ v to ES

11 if u already marked as visited then continue
12 Q.push(u)
13 mark u as visited

14 add all nodes that are marked as visited to VS

15 return (VS,ES)

s t

X
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Figure 5.6. The different subgraphs of H = H↑ ∪H↓ that occur during the accelerated
version of TCH-based TTP query (see Algorithm 5.10). We look at the TCH structure
H “from the side” with the more important nodes higher up. The predecessor graphs
H↑(ps)⊆ H↑ and (H�

↓ (pt))
� ⊆ H↓ of forward and backward TTP interval search, respec-

tively, have the candidate node set X in common. Together, the cones S↑ ⊆ H↑(ps) and
S↓ ⊆ (H�

↓ (pt))
� contain some up-down-paths from s to t. Amongst them, there is at least

one (s, t,τ)-EA up-down-path for every τ ∈R.
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directly. During the BFS, a reverted version of every touched edge of (H↑(ps))
�

is added to S↑. Algorithm 5.11 shows the respective pseudocode. For S↓ all this

works analogously but with a BFS on (H�
↓ (pt))

�. Note that it is not necessary to
perform the transposition of

extractCone(t,X , pt) = PH�
↓ (pt)

(t,X)⊆ H�
↓

in a separate step. Instead, we can modify Line 10 of Algorithm 5.11, such that
v→ u is added to ES instead of u→ v. The subgraph S↑ ⊆ H↑ and S↓ ⊆ H↓ is an
opening and a closing cone respectively. Figure 5.6 depicts the different subgraphs
of H that occur when the TCH-based TTP query described in Algorithm 5.10 is
performed.

Theorem 5.9. Let H be a TCH generated from G and s, t ∈ V. Then, Algo-
rithm 5.10 returns TTG(s, t, ·).

Proof. For every τ ∈ R there is an up-down-path with top node xτ in H which
is a prefix-optimal (s, t,τ)-EA-path in H, as Theorem 5.5 tells us. Surely, xτ is
reached both by forward and backward search of the bidirectional TTP interval
search and thus contained in X . Correspondingly, there is a (s,xτ ,τ)-EA-path
Pτ ⊆ H↑(ps) ⊆ H↑ and an (xτ , t,EAG(s,xτ ,τ))-EA-path P�τ ⊆ (H�

↓ (pt))
� ⊆ H↓

(due to Lemma 4.14 and 4.36). Of course, S↑ and S↓ are an opening and closing
cone, respectively, with Pτ ⊆ S↑ and P�τ ⊆ S↓. As xτ lies on an (s, t,τ)-EA up-
down-path, Pτ and P�τ together form an (s, t,τ)-EA up-down-path Rτ := PτP

�
τ . So,

because of Rτ ⊆ S↑ ∪ S↓, we apply Theorem 5.8 with H↑ := S↑ and H↓ := S↓ and
are finished.

5.3.3 Stall-on-Demand

The running time of EA and TTP queries using TCH structures can be further im-
proved using a technique called stall-on-demand. It has been originally developed
in the context of highway node routing [74] (for a short summary see Section 1.3.1
on page 30) and is also used with constant travel cost CHs [44]. The idea is to
stop the forward or backward search at nodes where we can easily prove that H
contains better paths than H↑ or H↓ alone, respectively. If this happens, we say
that a node u is stalled regarding the forward or backward search, respectively.
Here we explain, how the ideas of stall-on-demand can be applied if the travel
costs are time-dependent travel times.

Stall-on-Demand for EA Queries. Stall-on-demand happens during the first
phase of the TCH-based EA query (see Algorithm 5.4); that is, during the bidi-
rectional upward search. As forward and backward search are different kinds of
Dijkstra-like algorithms, stall-on-demand works a little different each.
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Figure 5.7. Stalling of a node u with respect to forward search during the bidirec-
tional phase of the TCH-based EA query. Having removed u from the PQ, we check
the downward edges w → f u ∈ E↓ and stall u if arr f (τ[w]) < τ[u] is fulfilled for
one of these edges. This is correct, because arr f (τ[w]) < τ[u] implies that the path
�s→ ·· · → p[p[w]]→ p[w]→ w→ f u� (partly drawn dashed) provides an earlies arrival
at u than the path �s→ ··· → p[p[u]]→ p[u]→ u� (partly drawn dotted) does. We look at
the TCH structure H “from the side” with the more important nodes higher up.

Stall-on-Demand Forward. With respect to the forward search, which is a time-
dependent Dijkstra in H↑, stall-on-demand works as follows: Whenever the for-
ward search removes a node u from the PQ (see Line 21 of Algorithm 5.4), we
examine all the incoming edges of the node u in H↓ trying to find an arrival time
which is better than τ[u]. More precisely, we check whether arr f (τ[w]) < τ[u]
holds for some edge w→ f u ∈ E↓. If this is the case, the node u is stalled with
respect to the forward search. This means the edges of u in H↑ are not relaxed.
It is important to note that the result of the EA query is not affected if nodes are
stalled in this manner.

Lemma 5.10. Stalling a node with respect to forward search preserves the cor-
rectness of TCH-based EA queries.

Proof. The existence of an edge w→ f u ∈ E↓ with arr f (τ[w])< τ[u] proves that
the path

Psu :=
�
s= p[. . . p[u] . . . ]→ ·· · → p[u]→ u

�
⊆ H↑

from s to u found by the forward search can not be an (s,u,τ0)-EA-path in H
(although it is an (s,u,τ0)-EA-path with respect to H↑). Figure 5.7 illustrates this.
As a consequence, Psu can not be prefix of an (s, t,τ0)-EA up-down-path in H with
prefix-optimal upward part. But this is exactly the kind of EA up-down-paths
found by Algorithm 5.4. So, Algorithm 5.4 stays correct if stall-on-demand is
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applied, because stall-on-demand only prevents upward paths that are not prefix-
optimal.

If a node u is successfully stalled, we can propagate the stalling to further
nodes as a better path to u may be part of better paths to some other nodes. The
propagation works in the manner of a BFS in H↑ and stops at nodes we fail to
stall, that are already stalled, or that are not reached by the forward search yet.
This way, we are able to examine paths

Pswuv :=
�
s= p[. . . p[w] . . . ]→ ··· → p[w]→ w→ f u→ ·· · → v

�

with �s = p[. . . p[w] . . . ]→ ·· · → p[w]→ w�,�u→ ·· · → v� ⊆ H↑, and w→ f u ∈
E↓, which are no up-down-paths and can not be examined by bidirectional upward
search, hence. Whenever a node v is removed from the PQ while arr fPswuv(τ0)<
τ[v] is fulfilled, then we know that the path

�
s= p[. . . p[v] . . . ]→ ··· → p[v]→ v

�
⊆ H↑ ,

which is the final path from s to v found by the forward search, can not be part of
an (s, t,τ0)-EA up-down-path in H with a prefix-optimal upward part.

To store information about paths Pswuv, which are detected by stalling and
propagation, we maintain a value τstall[v] for every node v and set τstall[v] :=
arr fPswuv(τ0) whenever a node v is stalled directly or by propagation. Whenever,
a node u is removed from the PQ, we check whether τstall[u]< τ[u] is fulfilled. If
this is the case, then u is already stalled because of propagation. Otherwise, we
try to stall u by examining the incoming edges of u in H↓.

Algorithm 5.12 shows the TCH-based EA query, applying stall-on-demand
with respect to both forward and backward search. The pseudocode of stalling
and propagation is factored out and can be found in Algorithm 5.13 and 5.14. Al-
gorithm 5.13 regards the forward search and Algorithm 5.14 the backward search.
The EA query specified in Algorithm 5.12 is the same as in Algorithm 5.4. The
only difference is that the Lines 18, 23, and 24 are inserted. Figure 5.8 illustrates
how stalling and propagation work with respect to the forward search.

Corollary 5.11. Propagating the stalling of a node with respect to forward search
preserves the correctness of TCH-based EA queries.

Stall-on-Demand Backward. During the backward search, which is a backward
TTP interval search in H↓ (see Section 4.3.2), stall-on-demand works similar as in
case of the forward search but with the difference that we do not have exact travel
times. Instead, we prune in terms of upper and lower bounds. Other differences
to the forward search are that the roles of H↑ and H↓ must be exchanged and that
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Algorithm 5.12. TCH-based EA query as in Algorithm 5.4 but augmented with

stall-on-demand. Additionally to tdRelax (see Algorithm 5.5) and ttpIntervalRelax

(see Algorithm 5.6), it invokes stalledForward (see Algorithm 5.13) and

stalledBackward (see Algorithm 5.14) as subprocedure, which perform stalling and

propagation for forward and backward search, respectively.

1 function tchEaQueryWithSoD(s, t : Node,τ0 :R) : Path
2 τ[u] := ∞ for all u ∈V , τ[s] := τ0,
3 [q[u],r[u]] := [∞,∞] for all u ∈V , [q[t],r[t]] := [0,0]
4 ps[u] :=⊥, pt [u] := /0 for all u ∈V
5 B := ∞ // upper bound of EA time
6 X := /0 : Set // set of candidate nodes
7 function downwardSearch() : Path
8 τdown[u] := ∞ for all u ∈V
9 Qdown := /0 : PriorityQueue // PQ for downward search
10 foreach u ∈ X do
11 if τdown[u]< ∞ and τ[u]+q[u]≤ B then
12 τdown[u] := τ[u], Qdown.insert(u,τ[u])

13 while Qdown �= /0 do
14 u := Qdown.deleteMin()
15 if u= t then return �s= ps[. . . ps[t] . . . ]→ ·· · → ps[t]→ t�
16 for v ∈ pt [u] do tdRelax(u→ f v,τdown, ps,Qdown)

17 Qs := {(s,τ0)}, Qt := {(t,0)} : PriorityQueue
18 τstall[u] := rstall[u] := ∞ for all u ∈V // propagation information for stalling
19 Δ := t
20 while (Qs �= /0 or Qt �= /0) and min{Qs.min(),Qt .min()} ≤ B do
21 if Q¬Δ �= /0 then Δ := ¬Δ // change of direction: ¬s := t and ¬t := s
22 u := QΔ.deleteMin()
23 if Δ = s and stalledForward(u,τ,τstall) then continue
24 else if Δ = t and stalledBackward(u,q,rstall) then continue
25 if B< ∞ and τ[u]+q[u]≤ B then X := X ∪{u}
26 B := min{B, τ[u]+ r[u]}

27 for u→ f v ∈ EΔ do // with Es := E↑ and Et := E�↓
28 if Δ = s then tdRelax(u→ f v, τ, ps,Qs)
29 else ttpIntervalRelax(u→ f v, q,r, pt ,Qt)

30 if B= ∞ then return ��
31 return downwardSearch()
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Algorithm 5.13. Tries to stall a given node x with respect to forward search during

the bidirectional phase of TCH-based EA query. In case of success, the stalling of

x is propagated to further nodes in the manner of a BFS on H↑. The propagation is

pruned at every node that is not reached by the forward search yet, already stalled,

or if the stalling of this node fails.

1 function stalledForward(x :V , τ,τstall : Reference) : Bool
2 procedure propagateStallingForward(x :V , τ,τstall : Reference)
3 Q := {x} : FifoQueue // propagate in manner of a BFS
4 while Q �= /0 do
5 u := Q.popFront()
6 for u→ f v ∈ E↑ do // prune if unreached, already stalled,...
7 τnew := arr f (τstall[u]) // ...or stalling fails
8 if τ[v] = ∞ or τstall[v]< ∞ or τ[v]≤ τnew then continue
9 τstall[v] := τnew

10 Q.pushBack(v)

11 if τstall[x]< τ[x] then return true // check if already stalled
12 foreach u→ f x ∈ E↓ do
13 if arr f (τ[u])< τ[x] then
14 τstall[x] := arr f (τ[u])
15 propagateStallingForward(x,τ,τstall)
16 return true

17 return false

a node label is not necessarily final when a node is removed from the PQ. The
respective factored out pseudocode can be found in Algorithm 5.14.

Whenever the backward search removes a node u from the PQ, we examine
all outgoing edges of u in H↑ to find out whether H contains a better path from u

to t than (H�
↓ (pt))

� ⊆ H↓. To do so, we check whether q[u]> max f + r[w] holds

for some u→ f w ∈ E↑. If this is the case, we know that no (u, t,τ)-EA-path with

respect to H is contained in the current (H�
↓ (pt))

� for any τ ∈R, because a path

�w→ ·· · → t� ⊆ (H�
↓ (pt))

� ⊆ H↓ exists with

TT(H�
↓ (pt))�

(u, t,τ)≥ q[u]> max f + r[w]

≥ f (τ)+ f�w→···→t�( f (τ)+ τ)

= f�w→···→t� ∗ f (τ)

= f�u→ f w→···→t�(τ)

≥ TTH(u, t,τ)
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Figure 5.8. Illustration of stalling and propagation with respect to the forward search
during the first phase of the TCH-based EA query (i.e., during the bidirectional search).
The predecessor graph H↑(ps) of the forward search is depicted in light gray. The node u
is stalled because a downward edge w→ f u ∈ E↓ is present with arr f (τ[w])< τ[u]. The
stalling of u is propagated upward in H. The subgraph of H↑ reached by the propagation
(which is actually a BFS in H↑ starting from u) is depicted in dark gray. The propagation
reaches the node v but not the node v�, because v� is not reached by the forward search
yet. Note that pruning the propagation at unreached nodes makes it a BFS in H↑(ps). The
propagation is also pruned at node u�, although u� has a successor in in H↑(ps). This is
because u� is already stalled; namely, via the edge w� → f � u

� ∈ E↓ with arr f �(τ[w�]) <
τ[u�]. Note that the propagation is also pruned at nodes that fail to be stalled by the
propagation.

for all τ ∈R. This follows from r[w]≥TTH↓(w, t)≥ f�w→···→t�(σ) for all σ ∈R as
well as the third statement of Lemma 4.55, where backward TTP interval search is
considered as a special case of backward approximate CP search. This means that
the current H↑ ∪ (H�

↓ (pt))
� does not contain an EA up-down-path from s to t in

H running through u. So, the node u can be stalled with respect to the backward
search, unless q[u] gets less or equal max f + r[w]. So, the edges u → v ∈ E�↓
are not relaxed at this removal of u from the PQ. If q[u] really gets less or equal
max f + r[w], then u must have been reinserted into the PQ with a new chance to
relax its edges.

Corollary 5.12. Stalling a node with respect to backward search preserves the
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Algorithm 5.14. Tries to stall a given node x with respect to backward search during

the bidirectional phase of TCH-based EA query (see Algorithm 5.4 and 5.12). In

case of success, the stalling of x is propagated to further nodes in the manner of

a BFS on H�
↓ . Can also be used to realize stall-on-demand with respect to the

backward TTP interval search performed during the accelerated TTP query (see

Algorithm 5.10).

1 function stalledBackward(x :V , q,rstall : Reference) : Bool
2 procedure propagateStallingBackward(x :V , q,rstall : Reference )
3 Q := {x} : FifoQueue // propagate in manner of a BFS
4 while Q �= /0 do
5 u := Q.popFront()

6 for u→ f v ∈ E�↓ do // prune if unreached, already stalled,...

7 rnew := max f + rstall[u] // ...or stalling fails
8 if q[v] = ∞ or rstall[v]< ∞ or q[v]≤ rnew then continue
9 rstall[v] := rnew

10 Q.pushBack(v)

11 if rstall[x]< q[x] then return true // check if already stalled
12 foreach x→ f u ∈ E↑ do
13 if max f + r[u]< q[x] then
14 rstall[x] := max f + r[u]
15 propagateStallingBackward(x,q,rstall)
16 return true

17 return false

correctness of TCH-based EA queries.

Stalling of nodes with respect to backward search can also be propagated to
further nodes, just like in case of forward search. To do so, we perform a BFS
in H�

↓ starting from a node u when the node u gets stalled (see Line 2 to 10 in
Algorithm 5.14). Again the BFS stops at nodes we fail to stall, that are already
stalled, or that are not reached by the backward search yet. Analogously to stall-
on-demand with respect to forward search, the propagation examines paths

Pvuwt :=
�
v→g1 · · · →gk u→ f w→ ·· · → t

�

with �v→ ·· · → u�,�w→ ·· · → t� ⊆ H↓ and u→ f w ∈ E↑. Such paths are no
up-down-paths and can not be examined by bidirectional upward search hence.
To store informations about paths like Pvuwt , we maintain a value rstall[v] for every
node v ∈ V . When the backward search removes the node v with q[v] > rstall[v]
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from the PQ, we know

TT(H�
↓ (pt))�

(v, t,τ)≥ q[v]> rstall[v]

≥maxg1+ · · ·+maxgk+max f + r[w]

≥ f�w→···→t� ∗ f ∗gk ∗ · · · ∗g1(τ)

= fPvuwt (τ)

≥ TTH(v, t,τ)

holds for all τ ∈ R, thanks to Equation (3.8) as well as the third statement of
Lemma 4.55 with backward TTP interval search considered as special case of
backward approximate CP search. So, (H�

↓ (pt))
� does not contain a (v, t,τ)-EA-

path with respect toH for any τ ∈R. This means, v can not lie on an the downward
part of an EA up-down-path from s to t unless q[v] gets less or equal rstall[v] again.
This means, the backward search can be pruned at v; at least regarding the current
removal of v from the PQ.

Corollary 5.13. Propagating the stalling of a node with respect to backward
search preserves the correctness of EA querying with TCH structures.

Note that, in case of the backward search, stall-on-demand may fail to stall a
node v, even if TTH↓(v, t,τ) > TTH(v, t,τ) holds for all τ ∈ R. This can happen,
because we only work in terms of lower and upper bounds here. If, for example,
minTTH↓(v, t, ·)≤maxTTH(v, t, ·) holds, then v is not stalled (though it would not
destroy the correctness of the EA query to do so).

Stall-on-Demand for TTPQueries. Stall-on-demand can not only be used with
EA queries, but also to TTP queries. More precisely, we apply stall-on-demand to
the accelerated version of TTP query that uses bidirectional TTP interval search
to compute cones (see Algorithm 5.10). There, we apply stall-on-demand only to
the bidirectional TTP interval search and not to the subsequent bidirectional TTP
search. Regarding the backward search, this is the same as in case of EA queries,
where the backward search is a backward TTP interval search, too.

To obtain a procedure for stalling and propagation that works with the forward
search (which now is a TTP interval search instead of a time-dependent Dijkstra),
we adapt the technique used with the backward search. This way, we are some-
times able to examine paths

�s→ ·· · → w→ f u→g1 · · · →gk v�

with �s → ·· · → w�,�u → ·· · → v� ⊆ H↑ and w → f v ∈ E↓, which can not be
detected by a bidirectional upward search in H. This enables us to prune the
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search at v, if

qs[v]> q[w]+max f +maxg1+ · · ·+maxgk

is fulfilled when the forward search removes v from the PQ. To check this con-
dition, we maintain a value rs,stall[v] for every node v and look whether qs[v] >
rs,stall[v] holds true when v is removed from the PQ. Analogous to the backward
search, we argue that this implies TTH↑(p)(s,v,τ)≥ qs[v]> rs,stall[v]≥ TTH(s,v,τ)
for all τ ∈R (due to Lemma 4.19 with TTP interval search considered as special
case of approximate TTP search). This means that no path in the current H↑(ps)
is an EA-path from s to v with respect to H. So, the correctness of the TTP query
algorithm is preserved.

That all the variants of stalling and propagation described in this section are
well-behaved, can be summarized as follows.

Theorem 5.14. Stall-on-demand as described in this section does not affect the
correctness of exact TCH-based EA and TTP queries.

Different Flavors of Propagation. As explained above, we prune the propaga-
tion of the stalling at nodes that are not reached yet, that are already stalled, or
that we fail to stall. But, in principle, we could continue the propagation even if
stalling fails at node. However, propagating the stalling to a large number reach-
able nodes may take so much time that the acceleration achieved by the stalling is
eaten up. This is an obvious tradeoff. Note that we have not examined systemati-
cally how far the stalling should be propagated. Two implementations of constant
travel cost CHs provided by Luxen and Vetter [58], for example, even propagate
the stalling only one hop.

5.4 Exact Space Efficient Querying

With the techniques described in Section 5.3, TCHs allow very fast answering of
EA and TTP queries. Unfortunately, TCH structures need a lot of memory com-
pared to the data structure needed to run time-dependent Dijkstra. We overcome
this problem by the careful use of approximation. More precisely, we generate
approximate versions of the TCH structures which need much less space (see Sec-
tion 5.4.1). For EA queries we get a moderate slowdown this way, but the results
of the computations are still exact (see Section 5.4.2). For profile queries we also
get exact results but we additionally obtain a further speedup (see Section 5.4.3).
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5.4.1 Approximate Time-Dependent Contraction Hierarchies

To save memory, we use approximate TCHs (ATCHs) and Min-Max-TCHs. Al-
though these variants of TCHs contain partly approximated data, they can be used
to compute exact results. An ATCH structure with relative error ε > 0 is gener-
ated from a given TCH structure H as follows: For all original edges u→ f v (i.e.,
u→ f v∈E ⊆EH), nothing happens. All other edges u→ f v (i.e., u→ f v∈EH \E)
are shortcuts and their TTFs f are replaced by TTFs f with

∀τ ∈R : f (τ)≤ f (τ)≤ (1+ ε) f (τ) . (5.18)

The TTF f is an upper bound of f . Implicitly, f also represents a lower bound

f : τ �→ f (τ)/(1+ ε) . (5.19)

For all original edges u→ f v ∈ E we set f := f := f . To denote an edge u→

v with lover bound f and upper bound f of an ATCH structure, we sometimes
write u→( f , f ) v. Note that we often write u→ f v for edges of ATCH structures,

although the exact TTF f is no longer materialized.
Usually,

�
� f
�
� is considerably smaller than | f |. Correspondingly, an ATCH

structure needs considerably less memory than the corresponding TCH structure
(see Section 5.6). To compute f from an exact TTF f , we use an implementation
of an efficient geometric algorithm by Imai and Iri [52], which has been provided
by Neubauer [66] (it is already mentioned in Section 4.2.4). The Imai-Iri algo-
rithm yields an f of minimal complexity

�
� f
�
� for a given ε in time O(| f |). The

computed f may violate the FIFO property, but this can be repaired in O
��
� f
�
�
�

time. If f fulfills the FIFO property, then f = (1+ ε)−1 f also does.
A Min-Max-TCH structure is an extreme case of an ATCH structure. For

edges u→ f v ∈ EH\E we set f :≡ min f and f :≡ max f , which means we only
store a pair of numbers in this case. Min-Max-TCHs need even less memory
than ATCHs. The query times, in contrast, get larger. Especially TTP queries
are significantly slower with Min-Max-TCHs, as our experiments show (see Sec-
tion 5.6).

Note that we do not apply approximation during preprocessing. In this work
approximation is only applied after preprocessing. Thus, ATCHs and Min-Max-
TCHs are generated from complete exact TCHs only. However, applying approx-
imation during preprocessing is an interesting idea. First, TCH preprocessing
could be further accelerated this way, because approximate TTP search runs much
faster than exact TTP search. If an approximate TTP search already shows that
no shortcuts is needed, then the slow exact TTP search can be omitted. Second,
TCH preprocessing could be made more robust. The idea is to store shortcuts with
upper and lower bounds instead of exact TTFs even during preprocessing. This
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can prevent that necessary shortcuts are mistakenly not added because of round-
ing errors, as decisions in terms of lower and upper bounds are more conservative.
Especially for very large road networks, rounding errors may become a problem.
It must be noted, however, that more unnecessary shortcuts may be inserted this
way. If the number of shortcuts increases too much, than preprocessing and query-
ing may get significantly slower. Whether this happens or not, must be found out
experimentally of course.

5.4.2 Earliest Arrival Queries

Given an ATCH structure H with relative error ε we want to compute the exact
value of EAG(s, t,τ0) and a corresponding EA path. To do so, we use Algo-
rithm 5.15, which works in three phases. Actually, to obtain an exact result, we
had to perform a time-dependent Dijkstra in G, because we only have exact TTFs
in G ⊆ H. But this would be slow, so the idea is to restrict the time-dependent
Dijkstra to a very small corridor S ⊆ G. For this reason we first use the ATCH
structure H to perform several approximate Dijkstra-like searches one after an-
other to select and successively build and thin out a subgraph of H (phases 1
and 2). Then, we expand all shortcuts in that subgraph to obtain the corridor S and
perform the time-dependent Dijkstra only there (phase 3). Note that there are two
versions of the third phase. They are specified in Algorithm 5.18 and 5.19 each.
As usual, the different edge relaxations have been factored out to prevent too long
pseudocode (see Algorithms 5.6, 5.16, and 5.17).

Phase 1: Bidirectional Search. At first, we perform a bidirectional upward
search where the forward search is an EA interval search (see Algorithm 4.5)
starting from s, and the backward search is a backward TTP interval search (see
Section 4.3.2) starting from t. All candidate nodes (i.e., the nodes where both
searches meet) are stored in the candidate set X . Due to Lemma 4.31 and 4.36,
the union of cones

SX := PH↑(ps)(s,X)∪
�
PH�

↓ (pt)
(t,X)

��
⊆ H

contains an (s, t,τ0)-EA up-down-path. So, we could skip phase 2 and continue
directly with phase 3; that is with expanding all shortcuts in SX and then running a
time-dependent Dijkstra on the resulting corridor S ⊆ G. However, the backward
search is a relatively rough approximation. So, we expect that H�

↓ (pt) and X—
and thus SX and S—are larger than necessary, which means that phase 3 needs
more time than necessary. To remedy this, we perform the phase 2 to thin out SX .
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Algorithm 5.15. EA query using an ATCH H with relative error ε > 0. The sub-

procedure corridorDijkstra is either instantiated with corridorDijkstraExpandFully

(see Algorithm 5.18) or corridorDijkstraEoD (see Algorithm 5.19). Edge re-

laxations are done by the subprocedures eaIntervalRelax (see Algorithm 5.16),

ttpIntervalRelax (see Algorithm 5.6), and ldIntervalRelax (see Algorithm 5.17).

1 function atchEaQuery(s, t :V,τ0 :R) : Path
2 [qΔ[u],rΔ[u]] := [∞,∞], pΔ[u] := /0 for all u ∈V , Δ ∈ {s, t,down,up}
3 [qs[s],rs[s]] := [τ0,τ0], [qt [t],rt [t]] := [0,0]
4 X := Y := /0 : Set
5 procedure bidirectionalSearch()
6 Qs := {(s,τ0)}, Qt := {(t,0)} : PriorityQueue
7 B := ∞, Δ := t
8 while (Qs �= /0 or Qt �= /0) and min{Qs.min(), Qt .min()} ≤ B do
9 if Q¬Δ �= /0 then Δ := ¬Δ // with ¬s := t, ¬t := s
10 u := QΔ.deleteMin()
11 if B< ∞ and qs[u]+qt [u]≤ B then X := X ∪{u}
12 B := min{B, rs[u]+ rt [u]}

13 for u→( f , f ) v ∈ EΔ do // with Es := E↑, Et := E�↓
14 if Δ = s then eaIntervalRelax

�
u→( f , f ) v, qs,rs, ps,Qs

�

15 else ttpIntervalRelax
�
u→( f , f ) v, qt ,rt , pt ,Qt

�

16 procedure downwardSearch()
17 Q := /0 : PriorityQueue
18 foreach u ∈ X with rs[u]+ rt [u]≤ B do
19 [qdown[u],rdown[u]] := [qs[u],rs[u]], Q.insert(u,qdown[u])

20 while Q �= /0 do
21 u := Q.deleteMin()
22 for v ∈ pt [u] do eaIntervalRelax

�
u→( f , f ) v, qdown,rdown, pdown,Q

�

23 procedure upwardSearch()
24 [qup[t],rup[t]] := [qdown[t],rdown[t]]
25 Q := {(t,qup[t])} : MaxPriorityQueue
26 while Q �= /0 do
27 u := Q.deleteMax()
28 if rup[u]< ∞ then Y := Y ∪{u}
29 for v ∈ pdown[u] do
30 ldIntervalRelax(u→( f , f ) v, qup,rup, pup,Q,qdown,rdown)

31 bidirectionalSearch(), downwardSearch(), upwardSearch()
32 return corridorDijkstra(s, t,τ0, ps,Y, pup)
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Algorithm 5.16. Edge relaxation procedure as in EA interval search (see Algo-

rithm 4.5). The Reference parameters q,r, p,Q are necessary to provide context

information of the calling search algorithm.

1 procedure eaIntervalRelax(u→( f , f ) v : Edge, q,r, p,Q : Reference)

2 [qnew, rnew] :=
�
arr f (q[u]),arr f (r[u])

�

3 if qnew > r[v] then return
4 if rnew < q[v] then p[v] := /0
5 p[v] := {u}∪ p[v]
6 if qnew ≥ q[v] and rnew ≥ r[v] then return
7 [q[v],r[v]] :=

�
min{q[v],qnew}, min{r[v],rnew}

�

8 if v �∈ Q then Q.insert(v, q[v])
9 else Q.updateKey(v, q[v])

Algorithm 5.17. Edge relaxation procedure as in LD interval search (see Algo-

rithm 4.6). The Reference parameters q,r, p,Q are necessary to provide context

information of the calling search algorithm.

1 procedure ldIntervalRelax(u→( f , f ) v : Edge, q,r, p,Q,qdown,rdown : Reference)

2 [qnew,rnew] :=
�
mindep f (q[u]), maxdep f (r[u])

�

3 if rnew < qdown[v] or qnew > rdown[v] then return
4 [qnew,rnew] :=

�
max{qnew,qdown}, min{rnew,rdown}

�

// exploit arrival times computed by downward search
5 if rnew < q[v] then return
6 if qnew > r[v] then p[v] := /0
7 p[v] := {u}∪ p[v]
8 if qnew ≤ q[v] and rnew ≤ r[v] then return
9 [q[v],r[v]] :=

�
max{q[v],qnew}, max{r[v],rnew}

�

10 if v �∈ Q then Q.insert(v, q[v])
11 else Q.updateKey(v, q[v])
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Figure 5.9. How the ATCH-based EA query (see Algorithm 5.15) successively refines
subgraphs in H↓. The first subgraph is the transpose predecessor graph (H�

↓ (pt))
� ⊆ H↓

of the backward search, which is build during the first phase (i.e., during bidirectional
search). The second subgraph H↓(pdown) is the predecessor graph of the downward search,
which is performed at the beginning of the second phase (i.e., the thinning) starting from
the nodes in X and running in (H�

↓ (pt))
�. The third subgraph is the transpose predecessor

graph (H�
↓ (pup))

� of the upward search. The nodes in X that are also reached by the
upward search form the smaller candidate set Y ⊆ X . The first step of the third phase
performs a BFS in (H�

↓ (pup))
� that starts from the nodes in Y to compute the subgraph

(PH�
↓ (pup)

(t,Y ))�.

Phase 2: Thinning. Starting from the candidate nodes in X we perform a down-
ward search, which is an EA interval search on (H�

↓ (pt))
� ⊆ H↓. This yields an

arrival interval [qdown[t],rdown[t]] � EAG(s, t,τ0). Having done that, we use this
arrival interval to perform an upward search: an LD interval search starting from
t that runs on (H↓(pdown))

�. The upward search reaches nodes that have already
been reached by the forward search during the first phase. These meeting points
are again candidate nodes that we store in the set Y ⊆ X . Note that the down-
ward and the upward search have much more accurate information at hand than
the backward search had during the first phase. Also, the check in Line 3 of
Algorithm 5.17 should rule out several nodes. Line 4 exploits the arrival time
information computed by the downward search. The predecessor graph H�

↓ (pup)

should contain less edges than H�
↓ (pt) and the set Y should be smaller than X .

Thus,

SY := PH↑(ps)(s,Y )∪
�
PH�

↓ (pup)
(t,Y )

��
⊆ SX ⊆ H ,

which is a thinned out version of SX , should contain significantly less edges than
SX . Figure 5.9 shows the different subgraphs of H↓ that occur during the first
and the second phase of the ATCH-based EA query. Every of these successively
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obtained subgraphs is expected to be thinner than the previous one.

Phase 3: Corridor Dijkstra. Both versions of the third phase start with con-
structing the corridor SY ⊆ H (see Line 2 in Algorithm 5.18 and Line 2 in Algo-
rithm 5.19). This is actually the same process as extracting the cones S↑ and S↓
as in case of the TCH-based TTP query (see Algorithm 5.10): Starting from the
nodes in the candidate setY , we perform a BFS on (H↑(ps))

� and on (H�
↓ (pup))

�,

respectively, and copy all touched edges to SY ⊆ H. Figure 5.10 illustrates that
SY ⊆H is expected to be thinner than SX ⊆H, because Y is expected to be smaller
than X and (H�

↓ (pup))
� is expected to be thinner than (H�

↓ (pt))
�.

Now, we can recursively expand all shortcuts in SY to obtain a subgraph S⊆G
that does not contain any shortcuts. This is what happens in Algorithm 5.18. Of
course, all TTFs in S are exact, because all edges edges of S lie in G and only
edges in H \G have inexact TTFs. So, a time-dependent Dijkstra search in S is
enough to compute an (s, t,τ0)-EA path in G.

Although this works fast, we can still be a little faster: The idea is to perform
the time-dependent Dijkstra directly on SY and to expand shortcuts only on de-
mand. This is what happens in Algorithm 5.19. More precisely, whenever we
relax a shortcut edge

u→( f , f ) v ∈ EH \E ,

for which we do not have exact TTFs, we only expand this shortcut and only
for the departure time τ[u] (where τ[u] is the label of u with respect to the time-
dependent Dijkstra). The resulting original path �u = w1 → f1 · · · → fk−1

wk = v�
lies completely in G, so all TTFs are exact and we can update the label of v by
computing

τ[v] := min{τ[v],arr fk−1(. . .arr f2(arr f1(τ[u])) . . .)} .

Note that Algorithm 5.7 can be applied to expand shortcut edges in spite of the
fact that no exact TTF is available. The reason is that the expansion procedure
in Algorithm 5.7 requires the evaluation of TTFs only for original edges (see
Line 11 to 14 of Algorithm 5.7). Checking the condition arr f (q[u])> r[v] before
expanding a shortcut edge u→( f , f ) v prevents unnecessary edge expansions (see

Line 9 of Algorithm 5.19).

Theorem 5.15. Let H be an ATCH with relative error ε > 0. Then, with s, t ∈ V
and τ0 ∈R, Algorithm 5.15 returns an (s, t,τ0)-EA-path in G.

Proof. We show that SY ⊆ H contains an (s, t,τ0)-EA up-down-path in H, which
implies that the expanded version of SY contains an (s, t,τ0)-EA-path in G.
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Figure 5.10. If the second phase (i.e., the thinning) of the ATCH-based EA query (see
Algorithm 5.15) would be omitted, then the subgraph SX ⊆ H (top) would be extracted
from H instead of the smaller subgraph SY ⊆ H (bottom). In case of SX the extraction
would work by two BFSes that start from the candidate set X and that only process edges
touched by forward and backward search, respectively, during the first phase (i.e., during
bidirectional search). The second phase yields the supposedly smaller candidate set Y ⊆
X . So, the subgraph SY ⊆ SX ⊆ H contains supposedly less paths than SX . Moreover, one
of the downward BFSes that extract SY (namely, the one that yields SY ∩H↓) runs in the
thinned graph (H�

↓ (pup))
� ⊆ (H�

↓ (pt))
� ⊆ H↓. This reduces SY ∩H↓ even more. If the

subgraph SY is significantly smaller than the subgraph SX , then the third phase (i.e., the
corridor Dijkstra) runs significantly faster. Note that both SX and SY contain an (s, t,τ0)-
EA up-down-path P0, which enables the third phase to find an (s, t,τ0)-EA path in G.
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Algorithm 5.18. Instantiation of corridor Dijkstra, where time-dependent Dijkstra

is performed on the fully expanded version S ⊆ G of SY ⊆ H. The subprocedure

extractCone (see Algorithm 5.11) is used to extract SY from the candidate set Y and

the predecessor information ps and pup of forward and upward search respectively.

1 function corridorDijkstraExpandFully(s, t :V , τ0 :R, ps,Y, pup : Reference) : Path

2 SY := extractCone(s,Y, ps)∪
�
extractCone(t,Y, pup)

��

// computes SY = PH↑(ps)(s,Y )∪
�
PH�

↓ (pup)
(t,Y )

��

3 S := SY with all shortcuts expanded for all departure times
4 run time-dependent Dijkstra on graph S
5 return (s, t,τ0)-EA path computed by time-dependent Dijkstra

Algorithm 5.19. Instantiation of corridor Dijkstra, where time-dependent Dijkstra

is performed without expanding SY ⊆ H. Instead, shortcut edges u→ v ∈ EH \E

are expanded only when necessary (i.e., “on demand”). To do so, expandPath (see

Algorithm 5.7) is invoked as subprocedure. The subprocedure extractCone (see

Algorithm 5.11) is used to extract SY from the candidate set Y and the predecessor

information ps and pup respectively.

1 function corridorDijkstraEoD(s, t :V , τ0 :R, ps,Y, pup : Reference) : Path

2 SY := (VY ,EY ) := extractCone(s,Y, ps)∪
�
extractCone(t,Y, pup)

��

// computes SY = PH↑(ps)(s,Y )∪
�
PH�

↓ (pup)
(t,Y )

��

3 τ[u] := ∞ for all u ∈VY , τ[s] := τ0 // initial node labels
4 p[u] :=⊥ for all u ∈VY // initial predecessor information
5 Q := {(s,τ0)} : PriorityQueue
6 while Q �= /0 do
7 u := Q.deleteMin()
8 foreach u→( f , f ) v ∈ EY do

9 if arr f (q[u])> r[v] then continue

10 τnew := arr fP(τ[u]) with P := expandPath(u→( f , f ) v)

11 if τnew ≥ τ[v] then continue
12 τ[v] := τnew // update node label of v
13 p[v] := u // update predecessor information of v
14 if v �∈ Q then Q.insert(v, τ[v])
15 else Q.updateKey(v, τ[v]) // maintain PQ
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Theorem 5.5 ensures the existence of a prefix-optimal (s, t,τ0)-EA up-down-
path with top node x0 ∈ X in H. So, Lemma 4.31 and 4.36 imply that SX contains
an EA up-down-path whose upward part is prefix optimal and whose downward
part is an (x0, t,EAH(s, t,τ0))-EA-path contained in

SX↓ :=
�
PH�

↓ (pt)
(t,X)

��
= SX ∩H↓ .

We argue similarly as in case of Theorem 5.6 and consider the graph G0 consisting
of SX↓ , the node s, and edges s→ f x with f :≡ TTH↑(s,x,τ0) for all x ∈ X . Every

(s, t,τ0)-EA-path in G0 corresponds to an (s, t,τ0)-EA up-down path in H. As
lower and upper bound of each such TTF f we use f :≡ qs[x]− τ0 and f :≡
rs[x]− τ0 respectively. The first part of the second phase (i.e., the downward
search) is obviously equivalent to an EA interval search on G0, which implies

[qdown[t],rdown[t]] � EAG0
(s, t,τ0) = EASX↓

�
x0, t,EAH(s,x0,τ0)

�

= EAH(x0, t,EAH(s,x0,τ0))

and, w.l.o.g., that H↓(pdown) contains an (x0, t,EAH(s,x0,τ0))-EA-path according
to Lemma 4.31 (otherwise, an equivalent statement holds for another node x�0 ∈X).

The second part of the second phase (i.e., the upward search) is an LD interval
search on the predecessor graph of the downward search; that is, on H↓(pdown).
Lemma 4.43 ensures that the transpose predecessor graph of the upward search,

�
H�
↓ (pup)

��
⊆ H↓(pdown)⊆ SX↓ ⊆ H↓ ,

contains an (x0, t,τ)-EA-path for all τ ∈ LDH↓(pdown)(x0, t, [qdown[t],rdown[t]]). Be-
cause of

LDH↓(pdown)

�
x0, t, [qdown[t],rdown[t]]

�

⊇ LDH

�
x0, t,EAH

�
x0, t,EAH(s,x0,τ0)

��

= EA−1
H

�
x0, t,EAH

�
x0, t,EAH(s,x0,τ0)

��
� EAH(s,x0,τ0) ,

this includes an (x0, t,EAH(s,x0,τ0))-EA-path, which is also contained in
�
PH�

↓ (pup)
(t,Y )

��
= SY ∩H↓ .

So, SY contains the desired (s, t,τ0)-EA up-down-path.

Min-Max-TCHs. Note that Algorithm 5.15 also works with Min-Max-TCHs.
But in this case, the upward search does not have more information than the back-
ward search at hand. So, the extra work needed to perform downward and upward
Search does not pay off on this case. For this reason, we omit the second phase
and set SY := SX for Min-Max-TCHs.
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Stall-on-Demand. To make the ATCH-based EA query run even a little faster,
we apply stall-on-demand to its first phase. Regarding the backward search, which
is the backward version of TTP interval search, stalling and propagation work
exactly in the same way as in case of the backward search of the TCH-based EA
query (see Section 5.3.3). Regarding the forward search, which is an EA interval
search, stalling and propagation work in a way that mixes the methods applied
in case of time-dependent Dijkstra and TTP interval search. More precisely, by
stalling and propagation we try to find paths

Pwuv :=
�
w→( f , f ) u→(g1,g1) · · · →(gk,gk) v

�

with �u→(g1,g1) · · · →(gk,gk) v� ⊆ H↑(ps)⊆ H↑ and w→( f , f ) u ∈ E↓, such that

qs[v]> arrgk ◦ · · · ◦arrg1 ◦arr f (rs[w]) (5.20)

is fulfilled. The existence of such a path Pwuv implies that the current H↑(ps) does
not contain any path that is an (s,v,τ0)-EA path with respect H, which means that
the forward search can be pruned at v at that time. This is because Equation (5.20)
together with Lemma 4.26 implies

EAH↑(ps)(s,v,τ0)≥ qs[v]> arrgk ◦ · · · ◦arrg1 ◦arr f (rs[w])

≥ arr
�
gk ∗ · · · ∗g1 ∗ f ∗ f�s→···→w�

�
(τ0)

≥ EAH(s,v,τ0)

for some path �s→ ·· · → w� ⊆ H↑(ps) ⊆ H. To detect paths like Pwuv that fulfill
Equation (5.20) we maintain a value rs,stall[v] for all nodes v ∈ V and perform
stalling and propagation analogously to Section 5.3.3.

5.4.3 Travel Time Profile Queries

An ATCH structure H with relative error ε can also be used to compute TTG(s, t, ·)
exactly (see Algorithm 5.20). The method partly applies similar ideas as in case
of ATCH-based EA queries (see Section 5.4.2) and also runs in three phases. As
usual, the different edge relaxations have been factored out to prevent too long
pseudocode (see Algorithm 5.21 and Algorithm 5.22).

Phase 1: Bidirectional TTP Interval Search. In the first phase (see Lines 2
to 15), we perform a bidirectional TTP interval search to obtain an opening cone
SX↑ ⊆ H↑ and a closing cone SX↓ ⊆ H↓. In principle, this is the same as the ini-
tial step performed by the accelerated version of the TCH-based TTP query (see
Algorithm 5.10).
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Algorithm 5.20. TTP query using an ATCH with ε > 0. After building the cones

SX↑ ⊆ H↑ and SX↓ ⊆ H↓, we thin them out yielding SY ⊆ SX↑ ∪ SX↓ ⊆ H. Expand-

ing SY completely yields a corridor S ⊆ G containing an (s, t,τ)-EA-path in G for

all τ ∈ R. Contracting S yields TTG(s, t, ·). As subroutines extractCone (see Al-

gorithm 5.11), approxTtpIntervalRelax (see Algorithm 5.21), approxTtpRelax (see

Algorithm 5.22), and corridorContraction (see Algorithm 5.23) are invoked.

1 function atchTtpQuery(s, t :V,τ0 :R) : TTF
2 [qs[u],rs[u]] := [qt [u],rt [u]] := [∞,∞], ps[u] := pt [u] := /0 for all u ∈V
3 [qs[s],rs[s]] := [qt [t],rt [t]] := [0,0]
4 B := ∞
5 Qs := {(s,0)},Qt := {(t,0)} : PriorityQueue
6 X := /0, Δ := t
7 while (Qs �= /0 or Qt �= /0) and min{Qs.min(), Qt .min()} ≤ B do
8 if Q¬Δ �= /0 then Δ := ¬Δ // with ¬s := t and ¬t := s
9 u := QΔ.deleteMin()
10 if B< ∞ and qs[u]+qt [u]≤ B then X := X ∪{u}
11 B := min{B, rs[u]+ rt [u]}

12 for u→( f , f ) v ∈ EΔ do // with Es := E↑ and Et := E�↓
13 approxTtpIntervalRelax

�
u→( f , f ) v, qΔ,rΔ, pΔ,QΔ

�

14 if X = /0 then return ∞

15 (SX↑ ,S
X
↓ ) :=

�
extractCone(s,X , ps),

�
extractCone(t,X , pt)

���

// computes SX↑ = PH↑(ps)(s,X) and SX↓ :=
�
PH�

↓ (pt)
(t,X)

��

16 Fs[u] := Fs[u] := Ft [u] := Ft [u] := ∞, p�s[u] := p�t [u] := /0 for all u ∈V
17 Fs[s] := Fs[s] := Ft [t] := Ft [t] :≡ 0
18 Q�

s := {(s,0)},Q�
t := {(t,0)} : PriorityQueue

19 Y := /0, Δ := t
20 while (Q�

s �= /0 or Q�
t �= /0) and min{Q�

s.min(), Q�
t .min()} ≤ B do

21 if Q�
¬Δ �= /0 then Δ := ¬Δ // with s := ¬t, t := ¬s

22 u := Q�
Δ.deleteMin()

23 if minFs[u]+minFt [u]≤ B then X := X ∪{u}
24 B := min

�
B, maxFs[u]+maxFt [u]

�

25 for edge u→( f , f ) v in SXΔ do // with SXs := SX↑ and SXt := SX↓

26 if Δ = s then approxTtpRelax
�
u,v, f ∗Fs[u], f ∗Fs[u], Fs,Fs, p

�
s,Q

�
s

�

27 else approxTtpRelax
�
u,v, Ft [u]∗ f , Ft [u]∗ f , Ft ,Ft , p

�
t ,Q

�
t

�

28 SY := extractCone(s,Y, p�s)∪
�
extractCone(t,Y, p�t)

��

// computes SY = PH↑(p�s)
(s,Y )∪

�
PH�

↓ (p
�
t)
(t,Y )

��

29 S := SY with all shortcuts fully expanded for all departure times
30 return corridorContraction(s, t,S)
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Algorithm 5.21. Edge relaxation procedure as in TTP interval search (see Algo-

rithm 4.3) but with lower and upper bounds f and f , respectively, instead of an

exact TTF, which may not be available in an ATCH. The Reference parameters

q,r, p,Q are necessary to provide the context of the calling TTP interval search.

1 procedure approxTtpIntervalRelax(u→( f , f ) v : Edge, q,r, p,Q : Reference)

2 [qnew,rnew] :=
�
q[u]+min f , r[u]+max f

�

3 if qnew > r[v] then return
4 if rnew < q[v] then p[v] := /0
5 p[v] := {u}∪ p[v]
6 if qnew ≥ q[v] and rnew ≥ r[v] then return
7 [q[v],r[v]] :=

�
min{q[v],qnew}, min{r[v],rnew}

�

8 if v �∈ Q then Q.insert(v, q[v])
9 else Q.updateKey(v, q[v])

Algorithm 5.22. Edge relaxation procedure as in approximate TTP search (see Al-

gorithm 4.4). The Reference parameters q,r, p,Q are necessary to provide the con-

text of the calling approximate TTP search.

1 procedure approxTtpRelax(u,v :V , gnew,gnew : TTF , q,r, p,Q : Reference)

2 if gnew(τ)≥ F [v](τ) for all τ ∈R then return

3 if gnew(τ)< F [v](τ) for all τ ∈R then p[v] := /0
4 p[v] := {u}∪ p[v]
5 if gnew(τ)≥ F [v](τ)∧gnew(τ)≥ F [v](τ) for all τ ∈R then return

6
�
F [v],F [v]

�
:=

�
min

�
F [v], gnew

�
, min

�
F [v], gnew

��

7 if v �∈ Q then Q.insert(v, minF [v])
8 else Q.updateKey(v, minF [v])

Phase 2: Bidirectional Approximate TTP Search. In the second phase (see
Lines 16 to 28), we thin out the cones SX↑ and SX↓ by a bidirectional approximate
TTP search. The forward search is an approximate TTP search (see Section 4.2.4)
running on H↑, the backward search is the backward version of approximate TTP
search (see Section 4.3.3) running on H↓. The idea of thinning out cones has
already been applied in the context of the second phase of the ATCH-based EA
query. However, we not only thin out the cone build by the backward search but
also the cone build by the forward search here. This way, we obtain the subgraph
SY ⊆ SX↑ ∪SX↓ ⊆H, which contains an (s, t,τ)-EA up-down-path for all τ ∈R. The

subgraph SY is made up by the cones

SY↑ := PH↑(p�s)
(s,Y )⊆ SX↑ ⊆ H↑
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Algorithm 5.23. Given a subgraph S ⊆ G, where s, t are nodes in S, this algorithm

computes TTS(s, t, ·) by contracting all nodes in S except for s and t. After termi-

nation, the only remaining edge is s→ f t fulfilling f = TTS(s, t, ·). By contracting

“easier” nodes earlier, the algorithm tries to keep the running time small.

1 function corridorContraction(s, t :V , S : Graph) : TTF
2 Q := /0 : PriorityQueue
3 foreach node x in S with x �= s, t do
4 cx := ∑�u→ f x→gv� ⊆ S | f |+ |g| // estimate number of new bend points. . .

5 Q.insert(x,cx) // . . . and use the result as PQ key

6 while Q �= /0 do
7 x := Q.deleteMin() // contract the presumably easiest node next
8 foreach path �u→ f x→g v� ⊆ S do
9 remove edges u→ f x and x→g v from S
10 if no edge u→h v in S then add u→g∗ f v to S // insert or...
11 else replace u→h v by u→min(h,g∗ f ) v in S // ...merge edge

12 remove x from S

13 for all former neighbors y of x with y �= s, t do
14 cy := ∑�u→ f y→gv� ⊆ S | f |+ |g| // recompute PQ key of y

15 Q.updateKey(y,cy)

16 return f with S= �s→ f t� // at this point, S consists of only one edge

and
SY↓ :=

�
PH�

↓ (p�t)
(t,Y )

��
⊆ SX↓ ⊆ H↓ ,

which we extract from predecessor information p�s and p�t of the second phase by
simply running two BFSes starting from Y using Algorithm 5.11—just how the
cones SX↑ and SX↓ are extracted from ps and pt .

Phase 3: Corridor Contraction. In the third phase (see Lines 29 and 30), we
expand all the shortcuts in SY completely for all departure times (Line 29). This
yields the relatively thin corridor S ⊆ G, which contains an (s, t,τ)-EA-path for
all τ ∈ R. It would be possible to perform a TTP search on S, as all edges in S
have exact TTFs. However, this would still take its time, even on a very thin corri-
dor. Instead, we contract the whole corridor S (see Line 30 and Algorithm 5.23),
which is much faster. Contracting a corridor means to contract one node of the
corridor after another. More precisely, we remove one node of S after another
while inserting shortcuts. This is very similar to the construction phase during
TCH preprocessing (see Section 5.2.2), where we contract all the nodes of the
road network G one after another. However, the contraction of a corridor is per-
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formed online and not offline as in case of preprocessing. For this reason, we do
not have the time to check whether a shortcut is necessary or not. Instead, we
simply insert all shortcuts.

During corridor contraction we use a PQ to control the order in that the nodes
are contracted. As PQ key of a node x ∈V we use

cx := ∑
�u→ f x→gv� ⊆ S

| f |+ |g| .

As we expect that |g|+ | f | and |g ∗ f | are quite correlated (see Corollary 3.11),
we think cx is a good estimate of the total complexity of the TTFs created by
contracting x. But every bend point probably produces more bend points during
repeated link and minimum operations. So, we always contract a node x with
minimal cx next, because this helps to keep the number of bend points low and
this helps to reduce the running time of corridor contraction. This actually reveals
why TTP search is so slow: There, nodes are processed in an order that does
not pay attention to the number of newly created bend points, which is likely to
increase the total number of processed bend points, and thus the running time, a
lot.

Theorem 5.16. Let H be an ATCH with relative error ε > 0. Then, for all s, t ∈V
the ATCH-based TTP query (see Algorithm 5.20) returns TTG(s, t, ·).

Proof. We argue as in the correctness proof of the accelerated version of TCH-
based TTP query (see Algorithm 5.10 in Section 5.3.2) and obtain that SX↑ ∪ SX↓
contains an (s, t,τ)-EA up-down-path with top node xτ for all τ ∈R (see the proof
of Theorem 5.9, where S↑ and S↓ play the roles of SX↑ and SX↓ ). The upward and

the downward part of this up-down-path, respectively, lies completely in SX↑ and

SX↓ . So, both forward and backward search of the bidirectional approximate TTP

search on SX↑ ∪SX↓ reach xτ . This implies xτ ∈ X , and with Lemma 4.23 and 4.39

we find that H↑(p
�
s)∪ (H�

↓ (p
�
t))

� also contains an (s, t,τ)-EA up-down-path with
top node xτ , say Rτ = �s→ ·· · → xτ → ·· · → t�. So, Rτ is contained in SY . Thus,
S⊆G contains an (s, t,τ)-EA-path for all τ ∈R. So, corridorContraction returns
the sought-after TTP.

Min-Max-TCHs. In case of Min-Max-TCHs we omit the second phase; that is,
we do not thin out SX↑ and SX↓ . Instead, we expand SX↑ ∪SX↓ and perform the corridor
contraction directly after the first phase; that is, after the bidirectional TTP interval
search. This is because there is no information present in a Min-Max-TCH that
can be used to further reduce the size of SX↑ and SX↓ .
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Stall-on-Demand. Section 5.3.3 explains how stall-on-demand can be used to
further speed up the accelerated version of the TCH-based TTP query (see Algo-
rithm 5.10 in Section 5.3.2). There, stall-on-demand is only applied to the first
phase of the algorithm; that is, to the bidirectional TTP interval search. In the
same way, stall-on-demand can be applied to the first phase of the ATCH-based
TTP query, which is a bidirectional TTP interval search, too.

5.5 Inexact Space Efficient Querying

In practice, the accuracy of the input data may be arguable, or results with some
error may simply be good enough. In such cases, we can use an inexact TCH
structure (see Section 5.5.1). With inexact TCHs we can perform both inexact EA
and inexact TTP queries. However, inexact TTP queries (see Section 5.5.2) are
the kind of inexact queries we are actually interested in because ATCH-based EA
queries, which we describe in Section 5.4.2, are already a space efficient method
for fast and exact answering of EA queries. Inexact TTP queries, in contrast, pro-
vide an enormous further speedup compared to exact TTP queries. This justifies
the loss of accuracy. Yet, the benefit of inexact EA queries (see Section 5.5.3)
is that we can use the same hierarchical representation of the road network for
both EA and TTP queries; namely, an inexact TCH structure. Otherwise, we had
to keep both an ATCH structure and an inexact TCH structure in memory at the
same time. This might already cost too much space.

5.5.1 Inexact Time-Dependent Contraction Hierarchies

An inexact TCH structure with relative error ε > 0 is generated from an exact
TCH structure H by replacing every TTF f by an inexact TTF f̃ that fulfills

(1+ ε)−1 f (τ)≤ f̃ (τ)≤ (1+ ε) f (τ) (5.21)

for all τ ∈R. To compute f̃ from f we use Neubauer’s [66] implementation of the
Imai-Iri algorithm [52] and restore the FIFO property if necessary. This is similar
to the computation of approximate TTFs as they occur in the context of ATCHs
(see Section 5.4.1). Recall that the Imai-Iri algorithm computes an approximate
TTF of minimal possible complexity for a given relative error ε > 0. Note that we
not only replace the TTFs of the shortcut edges—as we do in case of ATCHs—but
also the TTFs of the original edges (i.e., of all edges in EH including E ⊆ EH).
Also, we annotate every edge u→ f̃ v in an inexact TCH with the conservative
bounds

min{min f ,min f̃} and max{max f ,max f̃} .
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Note that the conservative bounds are not needed in the context of ATCHs, be-
cause min f and max f , respectively, are already a lower and an upper bound of f .

For min f̃ and max f̃ , in contrast, this is not the case. Inexact TCHs have similar
memory usage as ATCHs and can be viewed as space efficient in compared to
exact TCHs hence.

It is also important to note that the relative error of the computed inexact re-
sults is not limited by ε . In theory, the relative error can even get quite large. As a
consequence, our correctness proofs for inexact EA and TTP querying (see The-
orem 5.17 and 5.19) only show that these algorithms return some path (or some
TTF respectively) if the destination is reachable from the start. But in our exper-
iments, we only observe small errors (see Section 5.6). Note that Geisberger and
Sanders [42] give an upper bound for the relative error depending on the maximum
slopes of TTFs. However, we do not exploit this error bound in this thesis.

5.5.2 Inexact Travel Time Profile Queries

With inexact TCHs, we only get an approximation of TTG(s, t, ·). But compared
to the ATCH-based TTP query (see Section 5.4.3), which is our fastest algorithm
for exact TTP queries, we get an enormous speedup (see Section 5.6). To achieve
this performance, we simply apply the accelerated version of the TCH-based TTP
query (see Algorithm 5.10 in Section 5.3.2) to inexact TCH structures. Only the
first phase (i.e., the bidirectional TTP interval search) and the stall-on-demand,
which is applied during this phase, require a small modification: In both cases
the conservative bounds must be used instead of the bounds min f̃ and max f̃ .
Otherwise, it can happen that stall-on-demand stalls so many nodes that forward
and backward search do not meet—even if t is reachable from s. Then, the query
would return ∞, which means that the algorithm did not find any path from s to t.

Theorem 5.17. The inexact TCH-based TTP query returns an inexact TTP other
than ∞ if, and only if, the destination node t is reachable from start node s.

Proof. Consider an inexact TCH structure H̃ with relative error ε > 0. If t is not
reachable from s in G, then H̃ does not contain a path from s to t, too. Otherwise,
H̃ contains one or more up-down-paths from s to t. This is due to the guaranteed
existence of prefix optimal EA up-down-paths in the corresponding exact TCH
structure H (see Theorem 5.5). This and the fact that we use a modified version of
Algorithm 5.10 that works in terms of the conservative bounds implies that S↑∪S↓
also contains an up-down-path from s to t after the bidirectional TTP interval
search is finished (see the proof of Lemma 5.9). But this means that the forward
and the backward search of Algorithm 5.8 invoked by Algorithm 5.10 surely meet
in one or more candidate nodes. The returned TTF is different from ∞ hence.
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Stall-on-Demand. Like in case of exact TTP queries, stall-on-demand can also
be used to make inexact TTP queries faster. As the query algorithm is actually Al-
gorithm 5.10, where the first phase uses the conservative bounds, stall-on-demand
works as described in Section 5.3.3 but with conservative bounds.

It is important to note, however, that stall-on-demand may change the com-
puted inexact TTP. An inexact TTP for traveling from s to t, which is computed
with stall-on-demand, may be different from an inexact TTP for traveling from
s to t computed without stall-on-demand. Note that stall-on-demand can only
increase the resulting inexact TTP. But whether a TTP computed with stall-on-
demand is less accurate than without is unclear. We can only guarantee that the
inexact TTP query computes some TTP different from ∞, both with or without
stall-on-demand.

Theorem 5.18. The inexact TCH-based TTP query returns an inexact TTP other
than ∞ if, and only if, the destination node t is reachable from the start node s,
even if stall-on-demand is applied (though the resulting TTP may be increased).

Proof. We only give a prove for the forward search. For the backward search one
can argue analogously.

Like in the proof of Theorem 5.17 we consider an inexact TCH structure H̃
with relative error ε > 0. Due Theorem 5.5 the corresponding exact TCH structure
H contains a prefix-optimal (s, t,τ)-EA up-down-path with top node xτ for all
τ ∈R if, and only if, t is reachable from s in the original road network G. Consider
stall-on-demand with respect to the forward search. That the search is pruned at a
node v implies that

qs[v]> rs[w]+max
�

max f , max f̃
�
+

k

∑
i=1

max
�

maxgi, max g̃i
�

is fulfilled with w→ f u ∈ E↓ and �u→g1 · · · →gk v� ⊆ H↑ at the time when the
node u is removed from the PQ. This means, that a path

Pswuv :=
�
s→ ·· · → w→ f u→g1 · · · →gk v

�

exists with �s→ ··· → w� ⊆ H↑(ps), w→ f u ∈ E↓, and �u→g1 · · · →gk v� ⊆ H↑,
such that

TTH↑(s,v,τ)≥ qs[v]

> rs[w]+max{max f , max f̃}+∑
k

i=1
max{maxgi, max g̃i}

≥ rs[w]+max f +maxg1+ · · ·+maxgk

≥ fPsuwv(τ)

≥ TTH(s,v,τ)
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holds for all τ ∈ R with respect to Lemma 4.19. This means that the current
H↑(ps) does not contain an (s, t,τ)-EA-path for any τ ∈ R and the search can
be pruned at v at that time. So, stall-on-demand based on conservative bounds
prevents no paths that are prefix-optimal EA paths in H↑ with respect to the exact
TCH structure H. But then, there is always an up-down-path left in S↑ ∪ S↓ and
the algorithm returns an inexact TTP different from ∞ hence.

5.5.3 Inexact Earliest Arrival Queries

For inexact EA queries, we perform Algorithm 5.24 on an inexact TCH structure.
It is actually a variant of the TCH-based EA query specified in Algorithm 5.4. The
difference regards the bidirectional phase, where not only the backward search but
also the forward search is a TTP interval search. However, the downward search
requires arrival times for the candidate nodes instead of travel time intervals. So,
we have to perform an additional time-dependent Dijkstra search on S↑ (i.e., an
upward search), before the downward search can be performed.

The inexact EA query algorithm specified in Algorithm 5.24 yields exact EA
times when applied to an exact TCH structure. For inexact TCH structures, it
returns an up-down-path from the start s to the destination t if, and only if, t is
reachable from s. Note that we perform stall-on-demand during the bidirectional
search, but only in terms of conservative bounds—just like in case of inexact TTP
queries (see Section 5.5.2). Otherwise, we may again stall too many nodes, and
no path from s to t may be found even if there is one. In fact, the only reason for
performing a bidirectional TTP search as first phase is to make stall-on-demand
applicable to EA queries in the presence of inexact data.

Theorem 5.19. The inexact TCH-based EA query computes a (not necessary op-
timal) up-down-path if, and only if, t is reachable from s in G. For ε = 0 (i.e., the
TCH is exact) it computes an (s, t,τ0)-EA up-down-path.

Proof. If t is not reachable from s, then there is no path from s to t in H̃. Other-
wise, we argue as in the proof of Theorem 5.17 and find S↑ ∪S↓, with

S↓ :=
�
PH�

↓ (pt)
(t,X)

��
⊆ H↓ ,

contains an up-down-path with top node x0. So, the candidate set Y is surely not
empty after the upward search, and the downward search reaches t hence. Thus,
an arrival time other than ∞ and an up-down-path from s to t is returned.

For ε = 0 we argue that x0 is reached by the upward search with final la-
bel EAG(s,x0,τ0), because H↑(ps) contains such a path due to Lemma 4.14. We
further argue as in the correctness proof of the TCH-based EA query (see Theo-
rem 5.6) that the downward search reaches t with final label EAG(s, t,τ0).
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Algorithm 5.24. A variant of TCH-based EA query (Algorithm 5.4) using similar

methods as Algorithm 5.10. For exact TCHs it returns the exact EA time as well

as a corresponding EA up-down-path. For inexact TCHs it yields an inexact EA

time as well as a not necessarily optimal up-down-path. As subroutines it invokes

tdRelax (see Algorithm 5.5) and ttpIntervalRelax (see Algorithm 5.6).

1 function tchConeEaQuery(s, t :V , τ0 :R) : Path
2 [qs[u],rs[u]] := [qt [u],rt [u]] := [∞,∞], ps[u] := pt [u] := /0 for all u ∈V
3 [qs[s],rs[s]] := [qt [t],rt [t]] := [0,0]
4 B := ∞
5 X := /0 : Set
6 Qs := {(s,0)},Qt := {(t,0)} : PriorityQueue
7 Δ := t
8 while (Qs �= /0 or Qt �= /0) and min{Qs.min(), Qt .min()} ≤ B do
9 if Q¬Δ �= /0 then Δ := ¬Δ // with ¬s := t and ¬t := s
10 u := QΔ.deleteMin()
11 if B< ∞ and qs[u]+qt [u]≤ B then X := X ∪{u}
12 B := min{B, rs[u]+ rt [u]}

13 for u→ f v ∈ EΔ do // with Es := E↑ and Et := E�↓
14 ttpIntervalRelax

�
u→ f v, qΔ,rΔ, pΔ,QΔ

�

15 S↑ := extractCone(s,X , ps) // computes S↑ = PH↑(ps)(s,X)

16 τup[u] := ∞, pup[u] :=⊥ for all u ∈V , τup[s] := τ0

17 Qup := {(s,τ0)} : PriorityQueue // upward search
18 Y := /0 : Set // candidate set
19 while Qup �= /0 do
20 u := Qup.deleteMin()
21 if τup[u]> B+ τ0 then break

// B is upper bound of travel time not of arrival time
22 if τup[u]+qt [u]≤ B+ τ0 then Y := Y ∪{u}
23 for u→ f v in S↑ do tdRelax(u→ f v,τup, pup,Qup)

24 τdown[u] := ∞ for all u ∈V
25 Qdown := /0 : PriorityQueue // PQ for downward search
26 foreach u ∈ Y do
27 if τ[u]+q[u]≤ B then
28 τdown[u] := τ[u], Qdown.insert(u,τ[u])

29 while Qdown �= /0 do
30 u := Qdown.deleteMin()
31 if u= t then return �s= ps[. . . ps[t] . . . ]→ ··· → ps[t]→ t�
32 for v ∈ pt [u] do tdRelax(u→ f v,τdown, ps,Qdown)
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5.6 Experimental Evaluation

All techniques described in this chapter are evaluated experimentally with respect
to preprocessing time, query time, memory usage, and relative error in case of
inexact techniques. The underlying test instances are road networks of Western
Europe and Germany (see Section 5.6.1). After explaining the experimental setup
(see Section 5.6.2) we present and discuss the observed results for preprocessing
and querying (see Section 5.6.3). Finally, we compare the results with the per-
formance of some goal-directed time-dependent route planning techniques (see
Section 5.6.4).

5.6.1 Input Road Networks

As inputs we use two road networks, of Germany and Western Europe, both pro-
vided by PTV AG [71] for scientific use (see Table 5.1). For Germany, which has
about 4.7 million nodes and about 10.8 million edges, we have five sets of time-
dependent edge weights (i.e., TTFs) collected from historical data: They reflect
the traffic of Monday, midweek (Tuesday till Thursday), Friday, Saturday, and
Sunday each and have different percentage of time-dependent (i.e., non-constant)
TTFs (see Table 5.2). For Saturday and Sunday, for example, there are fewer non-
constant TTFs with less bend points (i.e., lower complexity). This seems to be
natural as we expect less traffic at the weekend than during the week. We often
use the abbreviations Mon, mid, Fri, Sat, and Sun.

For (Western) Western Europe, which has about 18 million nodes and about
42.2 million edges, we have two sets of edge TTFs. In both sets all non-constant
TTFs are synthetically generated as described by Nannicini et al. [64]. The first
set reflects a medium (med) amount of traffic where motorways and national roads
can be congested; that is, only motorways and national roads have non-constant
TTFs. Urban streets, local streets, and rural roads are not time-dependent; that
is, they have constant TTFs assigned. The second set reflects a high amount of
traffic. There, not only motorways and national roads but also urban roads have
non-constant TTFs [20].

road network |V | |E| out-degree

Germany 4.7 mio 10.8 mio 2.30
Western Europe 18.0 mio 42.2 mio 2.34

Table 5.1. Number of nodes (“|V |”) and edges (“|E|”) of the German and the Western
European road network, which are the underlying test instances of the experiments. The
average out-degree, which equals |E|/|V |, is also reported.
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avg. relative delay complexity

TTF space non-const. including excluding avg. incl. avg. excl. max.
set [B/n] TTFs [%] const. [%] const. [%] const. [#] const. [#] [#]

Germany

Monday 96 7.0 2.5 36.1 2.1 16.8 52
midweek 95 7.2 2.6 36.0 2.1 16.3 51
Friday 88 6.3 2.2 34.9 1.9 15.8 53
Saturday 65 3.8 1.2 31.7 1.4 12.7 35
Sunday 55 2.4 0.7 29.1 1.3 11.8 37

Western Europe

high 76 6.2 7.7 124.0 1.6 11.2 14
medium 47 1.0 1.2 123.5 1.1 11.2 14

Table 5.2. Some properties of our input road networks and the available TTF sets: the
space usage in bytes per node (“B/n”), the percentage of time-dependent edge weights
(“non-const. TTFs”), as well as the average (“avg.”) relative delay and complexity of the
TTFs, both including (“incl.”) and excluding (“excl.”) the constant (“const.”) ones. The
maximum (“max.”) complexity that occurs in each TTF set is also reported.

Table 5.2 also reports the average relative delay of all sets of time-dependent
edge weights; that is, of all sets of TTFs. We define relative delay of a TTF f
as (max f −min f )/min f . Table 5.2 reports the average relative delay over the
TTFs of all edges, both including and excluding the constant ones. These are the
values

delayincl :=
1

|E|
· ∑
u→ f v∈E

max f −min f

min f

and

delayexcl :=
1

|Eexcl|
· ∑
u→ f v∈Eexcl

max f −min f

min f
,

respectively, where Eexcl is defined by Eexcl := {u→ f v∈E | f not constant}. Note
that Delling (e.g., see [21]) also reports an average relative delay, but over EA
paths, not over edges. We think the relative delay is a good indicator of how
well pruning in the context of TTP interval search works. Recall that TTP interval
search uses travel time intervals as node labels that are computed on basis of min f
and max f for TTFs f . So, larger delays result in wider intervals, which means
that intervals are more likely to overlap. As a consequence, predecessor sets are
less often emptied (see Line 10 of Algorithm 4.3).

Also, stall-on-demand (see Section 5.3.3) is more likely to fail for wider inter-
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vals when applied to TTP interval search. As all our query algorithms make use of
TTP interval search, their running time should increase with the relative delay of
the TTF sets. This also applies to the preprocessing, which utilizes TTP interval
search to speed up witness search (see Section 5.2.2 on page 193). Note that a
higher percentage of non-constant TTFs and a higher complexity of these TTFs
also influences the running times, especially when TTP search is involved. This
applies to the preprocessing as well as TTP queries. Our experiments show that a
higher relative delay together with a higher percentage of non-constant TTFs and
a higher complexity really increases the running times.

5.6.2 Setup

The experimental evaluation is done on a machine with two Core i7 Quad-Cores
clocked at 2.67 Ghz with 48 GiB of RAM. The preprocessing is evaluated un-
der SUSE Linux 11.1. with all programs compiled by GCC 4.3.2 at optimization
level 3. The query performance is evaluated on the same machine, but under
Ubuntu 12.04.2 with GCC 4.8.2, also at optimization level 3. To measure prepro-
cessing time, we simply use the system timer. To measure query times, we count
the number of CPU cycles passing by from the beginning to the end of every sin-
gle query, multiplying the result with the CPU clock rate. Query times are always
measured using one single thread if not stated otherwise.

All figures refer to the scenario that only the EA times and the TTPs have to be
determined, without expanding the up-down-paths and outputting complete route
descriptions. But when reporting memory consumption, we include the space
needed to allow up-down-path expansion. Memory usage is often given in terms
of the total space usage in average bytes per node. Table 5.2 reports the memory
usage of all input road networks as original road networks; that is, the memory
usage of the graph data structures used for time-dependent Dijkstra. For TCHs,
ATCHs, Min-Max-TCHs, and inexact TCHs we also report the memory overhead
compared to the original road network; sometimes as a growth factor and some-
times as an absolute value in bytes per node.

We measure the average running time of the different EA query algorithms
by performing a bulk of 1 000 queries each. Therein, all the triples (s, t,τ0) of
start node s, destination node t, and departure time τ0 are selected randomly from
V ×V × [0h,24h). For TTP queries a departure time is not necessary of course.
Note that we always execute such a bulk of 1 000 queries three times recording
every single query time separately. Afterwards, for each of the 1 000 queries, we
take the median of the three available query times and report the average of these
1 000 median running times as result. We do this to prevent accidental outliers
which we observed in the past. Occasional activities triggered by the operating
system during our experiments may be a possible source. For EA queries we
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not only report absolute average running times. We also report speedups with
respect to the average running time of the one-to-one-version of time-dependent
Dijkstra on the original road network. For TTP queries we are not able to report
speedups, because running a plain TTP with 1 000 randomly selected pairs of start
and destination nodes would be a matter of days or weeks.

To measure the errors, we use many more test cases: 1 000 000 random EA
queries and 10 000 random TTP queries, where the error of TTP queries is mea-
sured for 100 random departure times each. We always report the average and the
maximum relative error. Note that error is always determined with respect to the
result of a time-dependent Dijkstra search in the original road network.

We also measure the machine-independent behavior of our algorithms: In all
cases we count the number of PQ removals (i.e., invocations of deleteMin) and
of touched edges. For time-dependent Dijkstra the number of touched edges is
identical to the number of relaxed edges. For other query algorithms this also
includes the number of edges copied by BFSes, of expanded shortcuts, and of
edges processed during corridor contraction (as, e.g., in Algorithm 5.20). For EA
queries we additionally count how often non-constant TTFs are evaluated (includ-
ing similar operations like, e.g., computing maxdep f (r[u]) as in Algorithm 5.17
invoked by Algorithm 5.15). For TTP queries, in contrast, we count the number
of bend points of the TTFs processed by link and minimum operations. In case
of EA queries, we not only report the absolute numbers of PQ removals, touched
edges, and processed bend points, but also the corresponding speedups compared
to time-dependent Dijkstra.

5.6.3 Results

This section presents the results of our experimental evaluation of TCHs for the
case that edge costs are time-dependent travel times. This includes TCH prepro-
cessing (see below), EA and TTP queries (see page 253), as well as the reuse of
node orders for a different TTF set (see page 262).

Preprocessing. First in our experimental evaluation, we consider the perfor-
mance of the preprocessing; that is, of node ordering and TCH construction.
There, we not only report the running times for sequential and parallel execu-
tion. We also evaluate the optimized witness search to find out how much the
different optimizations reduce the running time. Moreover, we give some insight
how the preprocessing behaves during its execution.

Sequential and Parallel Preprocessing Times. Table 5.3 shows the running times
of node ordering (see Section 5.2.3) and TCH construction (see Section 5.2.2) for
both Germany and Western Europe, each with all available TTF sets. The node
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ordering takes considerably longer than the construction. This is not surprising
because the node ordering performs simulated contractions, which the TCH con-
struction does not. The preprocessing takes longer the more non-constant TTFs
are present in a TTF set, the higher the complexity of these TTFs is, and the larger
the average relative delay is. The former two slow down TTP search. The latter
makes it more likely that travel time intervals overlap during TTP interval search.
So, TTP interval search may more often fail to prove that a shortcut is not needed.

Table 5.3 not only reports sequential preprocessing times (1 thread), but also
parallel preprocessing times for shared memory (2, 4, and 8 threads). For both
node ordering and construction, the parallelization scales pretty well. For the
node ordering of Germany with TTFs reflecting Saturday traffic and 2 threads, we
even observe a superlinear speedup. That the machine used in our experiments has
a NUMA architecture is a plausible explanation. This means the data structures
may partly get located outside the local memory of the involved CPU cores—and

order construct order construct

road TTF time parl. time parl. time parl. time parl.
network set [h:m:s] spd. [h:m:s] spd. [h:m:s] spd. [h:m:s] spd.

1 thread 2 threads

Germany Mon 0:28:23 - 0:07:41 - 0:14:42 1.9 0:03:54 2.0
mid 0:29:21 - 0:07:33 - 0:14:57 2.0 0:03:57 1.9
Fri 0:24:37 - 0:06:19 - 0:12:21 2.0 0:03:16 1.9
Sat 0:15:09 - 0:03:45 - 0:07:23 2.1 0:02:00 1.9
Sun 0:12:30 - 0:03:10 - 0:06:08 2.0 0:01:41 1.9

Western high 3:52:49 - 0:51:58 - 1:56:44 2.0 0:26:33 2.0
Europe med 1:31:37 - 0:21:42 - 0:48:29 1.9 0:11:51 1.8

4 threads 8 threads

Germany Mon 0:07:53 3.6 0:02:06 3.7 0:04:50 5.9 0:01:16 6.1
mid 0:08:06 3.6 0:02:09 3.5 0:05:04 5.8 0:01:14 6.1
Fri 0:06:39 3.7 0:01:47 3.5 0:04:03 6.1 0:01:02 6.1
Sat 0:04:01 3.8 0:01:08 3.3 0:02:33 5.9 0:00:41 5.5
Sun 0:03:14 3.9 0:00:56 3.4 0:02:06 5.9 0:00:33 5.7

Western high 1:02:35 3.7 0:14:04 3.7 0:37:42 6.2 0:08:02 6.5
Europe med 0:27:42 3.3 0:06:14 3.5 0:17:49 5.1 0:03:40 5.9

Table 5.3. Running times of node ordering and TCH construction for all our road net-
works and TTF sets executed with 1, 2, 4, and 8 threads. For 2, 4, and 8 threads we also
report the speedups achieved by parallel execution (“parl. spd.”).
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this can be different for different runs of the preprocessing. This is likely to make
the preprocessing times measured on this machine a little unstable.

Optimized Witness Search. The reader may remember that preprocessing mainly
consists of many node contractions where we try to omit as many shortcuts as
possible (see Section 5.2). There, we use some techniques to optimize the running
time of the witness search, whose most basic form is an expensive TTP search.
These techniques are: (i) a preceding sample search, (ii) a preceding TTP interval
search with restricting the TTP search to a corridor in the predecessor graph of
the TTP interval search, (iii) a heuristic to further thin out this corridor, and (iv)
the caching of results of witness searches; with (i)–(iii) described in Section 5.2.2,
and (iv) described in Section 5.2.3. We demonstrate the impact of (i)–(iii) on the
running time of the node ordering by incrementally deactivating them. We do this
both with (iv) activated and deactivated, both for sequential (1 thread) and parallel
(8 threads) execution. Table 5.4 shows the resulting running times with a timeout
of twelve hours. The impact of (i) (i.e., of sample search) seems to be rather
small, though it can be noticed. The impact of (ii)–(iv) (i.e., TTP interval search
and restricting to a corridor, heuristically thinning out this corridor, and caching of
witnesses) is much larger. We can even say that all the techniques except sample
search are vital for feasible preprocessing.

We also tested how preprocessing works without the hop limit described in
Section 5.2.2. It turned out that the hop limit has little effect on the node ordering

configuration

sample search + - - -
heuristic thinning + + - -

TTP interval search + + + -

order time

# threads witness cache [h:m:s] [h:m:s] [h:m:s] [h:m:s]

1 + 0:29:21 0:35:25 4:36:34 ≥ 12 h
- 1:37:57 1:52:32 ≥ 12 h ≥ 12 h

8 + 0:05:04 0:05:45 1:16:19 ≥ 12 h
- 0:15:53 0:17:17 4:00:17 ≥ 12 h

Table 5.4. Running time of node ordering for Germany midweek when the different tech-
niques used to optimize the running time of the node ordering are successively deactivated
(“+” means activated and “-” means deactivated). We report the running times of the re-
sulting configurations for both sequential (1 thread) and parallel (8 threads) execution.
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for Germany midweek, but for Western Europe high the node ordering gets infea-
sible without hop limit. So, a hop limit of 16 is always active. In the past we also
used aggressive edge reduction [5]: During preprocessing, we periodically check
for unnecessary shortcuts u→ f v. In principle, we do this by a TTP search from
u to v. Of course, this can be accelerated in a similar way as the witness search.
However, in the current setting the edge reduction did not have much impact, so
it was omitted.

During Preprocessing. Figure 5.11 and 5.12 give some insight into the TCH con-
struction for the German road network with different sets of TTFs. It turns out
that, for TTF sets with more non-constant TTFs, the number of inserted shortcuts
does not increase too much. Still, we have a significantly higher complexity of
the TTFs of these shortcuts. The majority of the preprocessing time is needed
for the last 100 000 nodes. From around the last 1 000 nodes the construction
and the node ordering get faster again. The higher relative delay is likely to raise
the number of necessary TTP searches during witness search because the TTP
interval search may more often fail to prove that a shortcut is not needed. The
increased complexity of TTFs is also a probable source of longer running time
because more complex TTFs mean that TTP search has to process more bend
points, which makes TTP search slower. However, we have not examined that in
detail.

Querying. We not only evaluate the performance of preprocessing but also of
EA and TTP queries. TCH-based querying is, in contrast to the preprocessing,
not parallelized because it already runs very fast. To measure as stable running
times as possible, we force the CPU core that performs the query to put the data
structures into its local memory, getting rid of NUMA effects this way.

Table 5.5 shows the running times of exact EA queries using TCHs. Ta-
ble 5.6 shows the running times of exact EA and TTP queries using ATCHs with
ε = 2.5% (this value seems to be a good compromise between space usage and
running time). As expected, the TCH-based EA query (see Algorithm 5.4) is
faster than the ATCH-based EA query (see Algorithm 5.15), but the necessary
TCH structure needs much more space than the ATCH structure of course. The
running times of EA queries for Western Europe, which has much more nodes and
edges than Germany, suggest that these algorithms scale well with the size of the
road network. The ATCH-based TTP query (see Algorithm 5.20) performs quite
well as it shows running times considerably less than 0.1 sec for Germany. That
means TTP queries can be answered “instantaneously”, at least from the point of
view of a human user. For Western Europe we can not provide instantaneous TTP
queries, but the running times are still not bad. Altogether, it is not surprising that
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Figure 5.11. How average degree (top) and average TTF complexity (bottom) evolve
in the remaining graph during TCH construction for Germany midweek, Saturday, and
Sunday. As the x-axis shows the number of nodes not yet contracted, time “flows” from
right to left in the above charts.
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Figure 5.12. How the running time proceeds during node ordering (top) and TCH con-
struction (bottom) for Germany midweek, Saturday, and Sunday using one single thread
of execution. As the x-axis shows the number of nodes not yet contracted, time “flows”
from right to left in the above charts.
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TTP queries run faster the less time-dependency (i.e., less non-consntant TTFs,
less bend points, and less average relative delay) a graph has.

As explained in Section 5.3.1 we apply time-dependent bidirectional search
to make hierarchical routing run in the presence of time-dependent edge weights.
However, would it be not good enough to replace the backward search by a back-
ward BFS? Of course, we can apply stall-on-demand only to the forward search
then. Also, we can not stop forward and backward search based on an upper bound
B as in Line 19 of Algorithm 5.4. But then it is pointless to perform forward and
backward search in an alternating manner. So, we perform forward and back-
ward search separately. The resulting simplified query algorithm always takes at
least 3.1 times longer than the TCH-based EA query for Germany (see Table 5.6).
For Western Europe high the TCH-based EA query is only more than 2.2 times
faster. Supposedly, this is because of the larger relative delay which negatively
affects the backward search during the first phase of this algorithm (i.e., during
the bidirectional search). More precisely, the number of overlapping travel time
intervals during the backward TTP interval search may be so large that compara-
tively few predecessors are ruled out (see Lines 9 and 10 of Algorithm 4.3). Also,
stall-on-demand is likely to fail more often.

Tables 5.7 and 5.8 take a closer look at the behavior of EA and TTP queries
on TCHs, ATCHs, Min-Max-TCHs, and inexact TCHs. For ATCH-based EA
queries (see Section 5.4.2) the parameter ε provides a tradeoff between running
time and space usage. For ATCH-based TTP queries (see Section 5.4.3) we ob-
serve a minimum running time for ε near 1%. Our interpretation is that there
is a tradeoff between the running time of the thinning phase, which includes an
approximate TTP search, and of the rest of ATCH-based TTP query; that is, of
bidirectional TTP interval search, corridor expansion, and corridor contraction.
For greater ε the thinning phase needs less time because the processed approxi-
mate TTFs have lower complexity. But the effect of thinning, pruning and stall-
on-demand is smaller then. For smaller ε the thinning phase needs more time, but
thinning, pruning and stall-on-demand have greater effect. The observed numbers
of touched edges and bend points confirm this interpretation.

The running times of EA and TTP query using the Min-Max-TCH representa-
tion of Germany midweek are smaller than for the ATCH with ε = 10%. At first
glance this seems surprising. But note that Min-Max-TCHs use the lower and up-
per bounds min f and max f , respectively, of exact TTFs f . ATCHs, in contrast,
use the lower and upper bounds min f and max f . Also, with the relatively large
ε = 10% it is likely that the impact of thinning and stall-on-demand gets worse.
Storing the exact bounds min f and max f in the ATCH may lower the running
times of ATCH-based EA query, especially for larger values of ε . However, we
have not tried that. In contrast to Germany midweek, Min-Max-TCHs do not work
quite as well for Western Europe high: The EA query times are significantly worse
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space of TCH tchEaQuery backward BFS

road TTF total overhead avg. time speed avg. time speed
network set [B/n] [B/n] factor [ms] up [ms] up

Germany Mon 1 001 906 10.5 0.62 1 281 2.05 386
mid 995 899 10.4 0.62 1 286 1.98 401
Fri 833 745 9.5 0.57 1 378 1.81 433
Sat 401 337 6.2 0.44 1 725 1.49 513
Sun 265 210 4.8 0.41 1 847 1.34 563

Western high 599 523 7.9 1.47 1 826 3.36 797
Europe med 187 140 4.0 1.02 2 473 3.60 697

Table 5.5. How EA queries with TCHs performs in time and space. We measure running
time of the TCH-based EA query (tchEaQuery, see Algorithm 5.4) for Germany and
Western Europe for all our TTF sets. We also measure the running time of a modified EA
query, where the backward search (i.e., the TTP interval search during the bidirectional
phase of Algorithm 5.4) is replaced by BFS (“backward BFS”). Speedups are calculated
with respect to the one-to-one version of time-dependent Dijkstra (see Section 4.2.1). The
space usage of the underlying TCH structures is reported in terms of total space usage and
also in terms of space overhead (compared to the original road network). The overhead is
reported both as an absolute value and as a growth factor. By “B/n” we abbreviate bytes
per node.

space of ATCH atchEaQuery atchTtpQuery

road TTF total overhead avg. time speed avg. time speed
network set [B/n] [B/n] factor [ms] up [ms] up

Germany Mon 206 111 2.2 1.14 695 29.23 ?
mid 208 112 2.2 1.15 689 33.01 ?
Fri 188 100 2.1 1.06 742 24.56 ?
Sat 127 62 2.0 0.69 1 111 5.31 ?
Sun 100 45 1.8 0.61 1 231 3.99 ?

Western high 192 116 2.5 3.16 848 453.02 ?
Europe med 84 37 1.8 2.16 1 164 263.58 ?

Table 5.6. How EA and TTP queries with ATCHs (ε = 2.5%) perform in time and space.
We report the running times of ATCH-based EA query (atchEaQuery, see Algorithm 5.15)
and ATCH-based TTP query (atchTtpQuery, see Algorithm 5.20) for Germany and West-
ern Europe with all our TTF sets. Speedups can only be reported for EA queries. For
TTP queries speedups are unknown (“?”), because plain TTP search (see Section 4.2.2)
is very slow and does not terminate within any reasonable time for Germany and Western
Europe. The rest of the nomenclature is as in Table 5.5.
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space time deleteMin edges evals rel. error

structure, ε total growth avg. speed avg. speed avg. speed avg. speed max. avg.
algorithm [%] [B/n] factor [ms] up # up # up # up [%] [%]

Germany midweek

TCH, 5.4 - 995 10.4 0.62 1 288 520 4 612 5 820 950 1 271 162 0.00 0.00

inexact 0.0 995 10.4 0.59 1 339 639 3 755 7 101 779 76 2 686 0.00 0.00
TCH, 0.1 286 3.0 0.56 1 425 642 3 737 7 138 775 78 2 651 0.10 0.02

1.0 214 2.2 0.57 1 402 654 3 669 7 271 761 85 2 432 1.01 0.27
5.24 2.5 172 1.8 0.59 1 356 668 3 594 7 429 745 92 2 234 2.44 0.79

10.0 113 1.2 0.83 958 898 2 674 10 109 547 223 920 9.75 3.84

ATCH, 0.1 309 3.2 0.99 807 558 4 299 7 281 760 3 182 65 0.00 0.00
1.0 239 2.5 1.04 765 588 4 080 7 993 692 3 553 58 0.00 0.00

5.15 + 2.5 208 2.2 1.15 691 625 3 841 9 168 603 4 172 49 0.00 0.00
5.19 10.0 163 1.7 2.11 377 841 2 854 18 947 292 8 870 23 0.00 0.00

∞ 118 1.2 1.24 643 638 3 761 16 212 341 4 043 51 0.00 0.00

Western Europe high

TCH, 5.4 - 599 7.9 1.47 1 823 1 021 8 847 13 681 1 563 2 482 276 0.00 0.00

inexact 0.0 599 7.9 2.53 1 061 1 715 5 266 24 274 881 1 485 460 0.00 0.00
TCH, 0.1 239 3.1 2.32 1 155 1 722 5 245 24 389 877 1 498 456 0.15 0.02

1.0 195 2.6 2.40 1 118 1 782 5 069 25 361 843 1 624 421 1.50 0.20
5.24 2.5 175 2.3 2.57 1 043 1 875 4 817 26 948 794 1 836 372 3.37 0.48

10.0 144 1.9 2.40 1 115 1 801 5 016 25 692 832 1 681 407 16.21 2.88

ATCH, 0.1 258 3.4 2.20 1 216 1 142 7 907 16 693 1 281 6 420 107 0.00 0.00
1.0 208 2.7 2.51 1 068 1 223 7 384 20 336 1 052 7 819 87 0.00 0.00

5.15 + 2.5 192 2.5 3.16 848 1 351 6 684 27 583 775 10 500 65 0.00 0.00
5.19 10.0 165 2.2 6.85 391 1 850 4 882 74 315 288 26 911 25 0.00 0.00

∞ 100 1.3 14.35 187 1 690 5 344 207 099 103 51 023 13 0.00 0.00

Table 5.7. Behavior of EA queries with TCHs, ATCHs, and inexact TCHs as underlying
hierarchical structure. ATCHs and inexact TCHs are evaluated for different relative errors
ε . To denotes Min-Max-TCHs we write ε = ∞. Memory consumption is reported as total
space usage in bytes per node (“B/n”) and as growth factor compared to the original road
network. Speedups and relative (“rel.”) errors are reported with respect to the one-to-one
version of time-dependent Dijkstra. Maximum and average, respectively, are denoted by
“max.” and “avg.”. Exact EA queries with TCHs are performed using Algorithm 5.4.
Exact EA queries with ATCHs are performed using Algorithm 5.15, where shortcuts are
expanded on demand as specified in Algorithm 5.19 (“5.15 + 5.19”). Inexact EA queries
with inexact TCHs use Algorithm 5.24. An inexact TCH with ε = 0 is an exact TCH but
used with Algorithm 5.24, computing exact results in this case.

(though still not bad). But for TTP queries this variant is quite slow and we do not
report any results.

For inexact TTP queries (see Section 5.5.2) on Germany midweek we observe
the smallest running time for ε around 2.5%. A tradeoff between the quality
of the conservative bounds (i.e., min{min f ,min f̃} and max{max f ,max f̃}) and
the complexity of the inexact TTFs is a possible explanation: For smaller ε the
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space time deleteMin edges points rel. error

structure, ε total growth avg. avg. avg. avg. max. avg.
algorithm [%] [B/n] factor [ms] # # # [%] [%]

Germany midweek

TCH, 5.8 - 995 10.4 993.73 570 6 805 16 717 022 0.00 0.00

inexact 0.0 995 10.4 78.30 647 7 179 840 551 0.00 0.00
TCH, 0.1 286 3.0 5.54 650 7 218 50 812 0.10 0.02

1.0 214 2.2 2.61 662 7 358 20 928 1.03 0.27
5.10 2.5 172 1.8 1.79 677 7 524 12 580 2.44 0.79

10.0 113 1.2 2.17 924 10 374 12 759 9.69 3.84

ATCH, 0.1 309 3.2 32.83 651 27 563 466 251 0.00 0.00
1.0 239 2.5 29.99 675 29 950 449 012 0.00 0.00

5.20 2.5 208 2.2 33.00 701 34 008 498 837 0.00 0.00
10.0 163 1.7 97.27 889 86 127 1 434 780 0.00 0.00

∞ 118 1.2 70.90 579 55 214 1 050 447 0.00 0.00

Western Europe high

TCH, 5.8 - 599 7.9 4 077.67 1 132 18 176 54 617 858 0.00 0.00

inexact 0.0 599 7.9 1 956.93 1 866 26 879 17 704 460 0.00 0.00
TCH, 0.1 239 3.1 193.88 1 882 27 060 1 918 590 0.15 0.02

1.0 195 2.6 102.73 1 953 28 267 978 794 1.37 0.20
5.10 2.5 175 2.3 87.34 2 067 30 276 834 996 3.28 0.48

10.0 144 1.9 35.93 1 970 28 627 426 327 14.69 2.88

ATCH, 0.1 258 3.4 551.71 1 875 160 496 5 195 293 0.00 0.00
1.0 208 2.7 377.06 1 960 189 115 3 481 885 0.00 0.00

5.20 2.5 192 2.5 452.82 2 107 256 981 4 178 386 0.00 0.00
10.0 165 2.2 2 380.66 2 536 1 340 823 24 100 717 0.00 0.00

Table 5.8. Behavior of TTP queries with TCHs, ATCHs, and inexact TCHs as underlying
hierarchical structure. The nomenclature is as in Table 5.7 but reporting the number of
processed bend “points” and not of TTF evaluations. No speedups are reported, because
plain TTP search is so slow that no measurements could be performed in reasonable time.
Exact TTP queries with TCHs are performed using Algorithm 5.8, exact TTP queries
with ATCHs using Algorithm 5.20, and inexact TTP queries with inexact TCHs using
Algorithm 5.10. An inexact TCH with ε = 0 is an exact TCH but Algorithm 5.10 is used
computing exact results in this case.

conservative bounds are nearer to the exact bounds (i.e., min f and max f ) than
for larger ε . As a consequence, stall-on-demand and pruning have more effect
during the bidirectional TTP interval search. But for smaller ε the complexity of
the inexact TTFs increases. The number of edges and bend points touched during
the computation support this interpretation.

For inexact TTP queries on Western Europe high we see a clear correspon-
dence between space and running time. This seems to be natural, as the relative
delay is much larger there than for Germany midweek, and this makes the impact
of pruning based on conservative bounds less effective. As a result, the running
time is governed rather by the complexity of the inexact TTFs than by the quality
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of the conservative bounds. This interpretation is again supported by the number
of processed edges and bend points.

Obviously, decreased memory usage directly corresponds to decreased accu-
racy for inexact TTP queries. So, as space and running time are related, we get
a tradeoff between accuracy and running time for this kind of queries. For in-
exact EA queries (see Algorithm 5.24) on Germany, the running time changes
only slightly with the space usage, except for ε = 10%. A possible reason is that
inaccurate lower and upper bounds affect the quality of pruning considerably in
this case. On Western Europe high, an ε of 10% is less harmful with respect to
running time. The tradeoff between space usage and accuracy remains. Both on
Germany midweek and Western Europe high, the observed maximum errors are
small for small ε , and the average errors are even smaller. In theory, however, one
can easily construct inputs where errors could get much larger than ε .

In Section 5.4.2 we claim that ATCH-based EA query runs faster if we ex-
pand the shortcuts in SY only on demand (i.e., Algorithm 5.15 invoking Algo-
rithm 5.19) instead of fully expanding the whole corridor SY before we perform
time-dependent Dijkstra (i.e., Algorithm 5.15 invoking Algorithm 5.18). More-
over, in Section 5.4.3 we claim that corridor contraction (see Algorithm 5.23)
greatly accelerates TTP queries on ATCHs. Figure 5.13 shows that both are really
the case. It displays the distribution of running times of EA and TTP queries on
Germany midweek using a methodology by Sanders and Schultes (see Section 6.4
in their article [75]): For i= 5..22 we look at a bulk of 100 queries with the prop-
erty that the one-to-one version of Dijkstra’s algorithm settles the destination node
as the 2i-th node (2i is called the Dijkstra rank). In case of EA queries, “Dijkstra
rank” refers to time-dependent Dijkstra search, in case of TTP queries to Dijkstra
search with constant travel cost (i.e., the TTF f of an edge u→ f v is replaced by
min f ). Note that we repeat this experiment three times; again, to prevent acci-
dental outliers. Then, for every query, we use the median of the three available
measured running times as result.

For TTP queries on ATCHs, Figure 5.13 displays two different variants. In
the first variant, the corridor S⊆G constructed at the beginning of the third phase
is not contracted by invoking Algorithm 5.23, but the one-to-one version of plain
TTP search (see Section 4.2.2) is performed in S. In the second variant, the cor-
ridor S ⊆ G is contracted using Algorithm 5.23 as originally specified in Algo-
rithm 5.20. This demonstrates that contracting the corridor S is really faster. We
also display the distribution of running times for the one-to-one version of a plain
TTP search (see Section 4.2.2). As this runs very slow, we stop after the average
running time exceeds 10 sec. Figure 5.13 also shows the running time distribu-
tion for TCH-based EA queries (see Section 5.3.1) and inexact TTP queries using
inexact TCHs (see Section 5.5.2).
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Figure 5.13. Distribution of running times of EA queries (top) and TTP queries (bottom)
over Dijkstra rank measured for Germany midweek. For every rank a separate distribution
is represented as box plot each. Bottom and top of each box are the corresponding first
quartile Q1 and the third quartile Q3, respectively (i.e., each box contains half of the cor-
responding data points). The stripe inside each box is the corresponding median (i.e., the
second quartile Q2). Each upper/lower whisker is the corresponding maximum/minimum
data point not more than 3/2(Q3−Q1) away from the median. Every data point outside
the whiskers is considered as an outlier and plotted individually.
Top. EA queries based on ATCHs (ε = 2.5%) and TCHs using Algorithm 5.15 and 5.4,
respectively. We run Algorithm 5.15 (i.e., for ATCHs) in two different variants. First,
the corridor SY ⊆ H constructed at the beginning of the third phase is expanded fully and
then a time-dependent Dijkstra is performed in the resulting corridor S⊆H as specified in
Algorithm 5.18 (“expand fully”). Second, the shortcuts contained in SY ⊆H are expanded
just the moment they are relaxed as specified in Algorithm 5.19 (“expand on demand”).
Bottom. TTP query based on ATCHs and inexact TCHs with ε = 2.5% each. ATCHs
run with Algorithm 5.20 and inexact TCHs with Algorithm 5.10. The running time of
the one-to-one version of plain TTP search (see Section 4.2.2) is also reported. Algo-
rithm 5.20 (i.e., ATCH-based TTP query) runs in two different variants. First, corridor
contraction is replaced by a TTP search in the corridor S constructed at the beginning of
the third phase (“TTP search in corridor”). Second, the corridor is contracted as specified
in Algorithm 5.23 (“corridor contraction”).
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Reusing Node Orders. In Section 5.2.3 we claim that a node order, once com-
puted, can be reused to govern the construction of a TCH for the same graph but
with a different set of TTFs. Table 5.9 shows the resulting behavior of TCH con-
struction and several query algorithms. It turns out, that this “recycling” works
well for Germany. For Western Europe we have a clear increase of construction

TCH ATCH, ε = 2.5% inexact TCH, ε = 2.5%

constr. space EA space EA TTP space TTP

TTF ordered time total growth time total growth time time total growth time err. [%]
set for [h:m:s] [B/n] factor [ms] [B/n] factor [ms] [ms] [B/n] factor [ms] max.

Germany

mid Mon 0:07:44 1 004 10.5 0.65 208 2.2 1.20 32.90 173 1.8 1.80 2.43
mid 0:07:33 995 10.4 0.62 208 2.2 1.15 33.01 172 1.8 1.80 2.44
Fri 0:07:51 1 002 10.5 0.64 209 2.2 1.20 32.86 173 1.8 1.80 2.45
Sat 0:08:39 1 041 10.9 0.68 211 2.2 1.27 34.33 175 1.8 1.94 2.45
Sun 0:09:18 1 066 11.2 0.71 213 2.2 1.31 34.86 176 1.8 1.96 2.41
const 0:10:09 1 147 12.0 0.72 219 2.3 1.32 32.58 180 1.9 1.88 2.45

Sat Mon 0:03:53 422 6.5 0.45 129 2.0 0.69 5.25
mid 0:03:49 422 6.5 0.45 129 2.0 0.69 5.40
Fri 0:03:50 418 6.5 0.44 128 2.0 0.69 5.37
Sat 0:03:45 401 6.2 0.44 127 2.0 0.69 5.31
Sun 0:03:60 416 6.5 0.47 128 2.0 0.72 5.56
const 0:04:22 458 7.1 0.48 133 2.1 0.73 5.23

Sun Mon 0:03:10 282 5.1 0.40 102 1.9 0.61 3.80
mid 0:03:08 283 5.1 0.40 102 1.9 0.60 3.87
Fri 0:03:08 279 5.1 0.40 102 1.9 0.60 3.80
Sat 0:03:10 273 4.9 0.40 101 1.8 0.61 3.83
Sun 0:03:10 265 4.8 0.41 100 1.8 0.61 3.99
const 0:03:18 299 5.4 0.41 105 1.9 0.62 3.76

Western Europe

high high 0:51:58 599 7.9 1.47 192 2.5 3.16 453.02 175 2.3 87.27 3.28
med 1:28:22 723 9.5 1.94 208 2.7 3.93 597.10 189 2.5 120.09 3.19
const 2:06:06 842 11.1 2.71 214 2.8 5.24 676.69 194 2.5 176.28 2.82

med high 0:32:35 222 4.7 1.37 88 1.9 2.80 292.13
med 0:21:42 187 4.0 1.02 84 1.8 2.16 263.58
const 0:55:10 267 5.7 1.69 91 1.9 3.34 271.43

Table 5.9. Behavior of TCHs, ATCHs, and inexact TCHs when node orders are reused
to govern the TCH construction for a different set of TTFs. We report the average run-
ning time of TCH-based EA query (see Algorithm 5.4), ATCH-based EA query (see Al-
gorithm 5.15) with shortcut expansion on demand (see Algorithm 5.19), ATCH-based
TTP query (see Algorithm 5.20), and inexact TTP queries using inexact TCHs (see Al-
gorithm 5.10). We also report the time needed to construct (“constr.”) TCH structures
for the different reused orders. For inexact TTP queries we report the maximum relative
error (“err.”). We also report the space usage of all the TCH, ATCH, and inexact TCH
structures. By “const” we denote the node order derived from constant travel costs. The
rest of the nomenclature is as in Table 5.7.
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time, space usage, and query times, but it still works reasonable. It is, of course,
not surprising that this “recycling” of node orders works less well for Western
Europe because of its greater average relative delay, which suggests it is more
time-dependent.

As an extreme case we perform node ordering only with constant travel costs.
More precisely, we replace all TTFs of Germany midweek and of Western Europe
high by their minimum and perform node ordering for the resulting graphs. For
Germany this ordering took 6 min 59 sec and for Western Europe 27 min 37 sec.
As a result we observe further increased memory usage and query times. Again,
this effect seems to be stronger for Western Europe. In the past [5] we even used
constant cost CHs [43] for node ordering. For a higher percentage of non-constant
or stronger varying TTFs, recycling of node orders may not work well enough.

So, depending on the underlying road network and the available sets of TTFs
we could save a considerable amount of time by doing node ordering only for
the “easy” instances. For the hard instances we would recycle one of the easily
obtained orders to govern the TCH construction. Whether all this works well in a
specific application context must be found out experimentally by the user.

5.6.4 Comparison with Goal-Directed Techniques

To compare TCHs, ATCHs, and inexact TCHs with some goal-directed time-
dependent route planning techniques, look at Table 5.10. These goal directed
techniques are time-dependent core-based routing with ALT (TD-CALT [24], see
page 41) and time-dependent SHARC (TD-SHARC [21], see page 41), which
can also be combined with ALT (TD-L-SHARC). TD-CALT can only answer
EA queries, TD-SHARC can answer EA and TTP queries, though the running
times for TTP queries are much larger than in case of the different TCH-based
techniques. There are also inexact versions of these goal directed techniques;
namely, approximate TD-CALT, heuristic TD-SHARC, heuristic TD-L-SHARC,
and heuristic space efficient TD-SHARC [14] (see page 42).

For EA queries, we only compare speedups with respect to time-dependent
Dijkstra—absolute query times would be unreliable as different machines are
used. As plain TTP search takes too long, we are not able to report speedups
for TTP queries. Instead, we compare the running times of TTP queries with
time-dependent Dijkstra, too. The resulting “speedups”, which we call “relative
speed”, enable us to compare the running times of different TTP query algorithms
in a machine-independent way. Note that a larger relative speed means smaller
running times. As TCH preprocessing works in two stages (node ordering and
construction), we always report two preprocessing times in this case, for example,
“0:29 / 0:08” (29 minutes for node ordering and 8 minutes construction). Remem-
ber that the node ordering already yields a complete TCH structure. So, a separate
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Germany midweek Western Europe high

prepro- over- EA TTP rel. error prepro- over- EA TTP rel. error
ε cessing head speed rel. max. avg. cessing head speed rel. max. avg.

method [%] [h:m] [B/n] up speed [%] [%] [h:m] [B/n] up speed [%] [%]

exact queries

TCH - 0:29 / 0:08 899 1 288 10.16 0.00 0.00 3:53 / 0:52 523 1 823 1.37 0.00 0.00

ATCH 0.1 0:29 / 0:08 213 807 24.22 0.00 0.00 3:53 / 0:52 182 1 216 4.86 0.00 0.00
1.0 0:29 / 0:08 144 765 26.51 0.00 0.00 3:53 / 0:52 132 1 068 7.11 0.00 0.00
2.5 0:29 / 0:08 112 691 24.10 0.00 0.00 3:53 / 0:52 116 848 5.92 0.00 0.00

10.0 0:29 / 0:08 68 377 8.18 0.00 0.00 3:53 / 0:52 89 391 1.13 0.00 0.00
∞ 0:29 / 0:08 23 643 11.22 0.00 0.00 3:53 / 0:52 24 187 – 0.00 0.00

TD-CALT - 0:09 50 280 - 0.00 0.00 1:00 61 47 - 0.00 0.00

TD-SHARC - 1:16 155 60 0.02 0.00 0.00 6:44 134 70 - 0.00 0.00
TD-L-SHARC - 1:18 219 238 - 0.00 0.00 6:49 198 150 - 0.00 0.00

inexact queries

inexact TCH 0.1 0:29 / 0:08 191 1 425 143.48 0.10 0.02 3:53 / 0:52 163 1 155 13.82 0.15 0.02
1.0 0:29 / 0:08 119 1 402 304.81 1.03 0.27 3:53 / 0:52 119 1 118 26.09 1.50 0.20
2.5 0:29 / 0:08 77 1 356 445.42 2.44 0.79 3:53 / 0:52 98 1 043 30.68 3.37 0.48

10.0 0:29 / 0:08 18 958 367.01 9.75 3.84 3:53 / 0:52 68 1 115 74.58 16.21 2.88

approx. TD-CALT - 0:09 50 804 - 13.84 0.05 1:00 61 624 - 8.69 0.28

heur. TD-SHARC - 3:26 137 2 164 1.40 0.61 - 22:12 127 1 958 - 1.60 -
heur. TD-L-SHARC - 3:28 201 3 915 - 0.61 - 22:17 191 2 703 - 1.60 -
sp. eff. TD-SHARC - 3:48 68 1 177 - 0.61 - - - - - - -
sp. eff. TD-SHARC - 3:48 14 491 - 0.61 - - - - - - -

Table 5.10. Comparison of different TCH-based and goal-directed methods for exact and
inexact EA and TTP queries. Space usage is reported as overhead in byte/node (“B/n”),
error as maximum (“max.”) relative (“rel.”) error. Running times of EA queries have
been measured on different machines and are reported only in terms of speedup with
respect to time-dependent Dijkstra hence. Running times of TTP queries are reported
as relative speed (“rel. speed”), also with respect to time-dependent Dijkstra (greater
relative speed means smaller running times). Preprocessing of TCHs has two stages and
is reported as in the manner order time / construction time. “L”= combination with ALT,
“approx.”= approximate, “heur.”= heuristic, “sp. eff.”= space efficient. Results for goal-
directed techniques are taken from the literature [14, 21, 24].

construction phase is not necessary after the node ordering.

Exact Queries. For exact queries, ATCHs dominate TD-SHARC in all respects.
TD-CALT is also dominated except for the preprocessing time where TD-CALT
is much better. For Western Europe, the advantage of TCH-based techniques over
TD-CALT with respect to query time becomes much larger. This is an indication
that TCH combined with ALT will not scale well with the road network size.
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TCHs versus approximate TD-CALT. For inexact EA queries, approximate
TD-CALT has much better speedups than in the exact case. Inexact TCHs, in
contrast, have even better speedup but still worse preprocessing time. The memory
usage is mostly worse, too. The maximum error of approximate TD-CALT is
very large. Regarding that, inexact TCHs are much better, at least if ε is not too
large. But, to be fair, the average relative error of approximate TD-CALT is really
small. Exact EA queries with Min-Max-TCHs need less memory than the inexact
approximate TD-CALT, but the running times are worse. For large ε , inexact
TCHs have smaller or, as in case of Western Europe high, at least similar memory
usage. But the average relative error, and in case of Western Europe high also the
maximum relative error, is much worse then.

TCHs versus heuristic TD-SHARC. Heuristic TD-SHARC provides faster EA
queries than ATCHs with similar memory usage, but with inexact results. Inexact
TCHs and heuristic TD-SHARC are both very fast with similar memory usage,
although heuristic TD-SHARC has the fastest running times. Space efficient TD-
SHARC has the lowest memory usage but at the price of speed. All inexact vari-
ants of TD-SHARC have the same relative error for a given road network. The
relative error of inexact TCHs, in contrast, depends on ε and can be smaller than
in case of TD-SHARC, but the memory usage increases with the accuracy. With
respect to the preprocessing time, inexact TCHs are much better than the inexact
variants of TD-SHARC.

TTPQueries. Regarding TTP queries, TCH-based techniques are far better than
the goal-directed techniques. On Germany, ATCHs are up to 1 300 times faster
for exact TTP queries, and about 100 times faster for inexact TTP queries if the
maximum relative error is 0.1 %. For a maximum relative error of 1.03%, this
rises above 210 times. Note that the average relative error of inexact TCHs is
considerably smaller than the maximum relative error in both cases. On Western
Europe high, the goal directed techniques do not provide feasible TTP queries at
all. TCH-based techniques, in contrast, provide running times clearly below one
second, even in case of exact TTP queries (see Table 5.8).

5.7 References

The whole chapter is actually an extended version of Section 4 to 8 of a journal ar-
ticle published together with Geisberger, Sanders, and Vetter [8]. Many wordings
of this article have been used or rephrased, although several things are explained in
more detail. Two conference articles [5, 6] and a technical report [7] are indirectly
also included, because they form the basis of the journal article.
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It is important to note that Christian Vetter made very important contributions
to the TCH preprocessing described in Section 5.2, both regarding concepts and
implementation. During a student research project [82] he contributed the par-
allelization of the preprocessing (see Section 5.2.4), which includes the choice
of appropriate independent node sets (see Section 5.2.2 on page 190 and Sec-
tion 5.2.3 on page 198) as well as the definition and maintenance of cost terms
that are more suited to time-dependent road networks than the cost terms of the
original CHs [44] (see Section 5.2.3 on page 199 to 202).

As a student assistant he contributed the caching of the results of the simulated
contractions during node ordering (see Section 5.2.3 on page 202 and 203), the
sample search (see Section 5.2.2 on page 195), and the heuristic thinning of the
corridor during optimized witness search (see Section 5.2.2 on page 195 and 195).
He also adopted the hop limit (see Section 5.2.2 on page 196 and 196) from the
original CHs. The parallelization as well as the heuristic thinning of the corridor
and the caching of simulation results during optimized witness search are crucial
parts of the preprocessing reducing its running time a lot. Without them, the
preprocessing would take much more time. Vetter’s contributions are part of the
implementation we used in the experimental evaluation (see Section 5.6).

The implementation of the Imai-Iri Algorithm [52] has been provided by Sabi-
ne Neubauer, who prepared it during her student research project [66]. It is heavily
used by our implementation of ATCHs (see Section 5.4.1) and inexact TCHs (see
Section 5.5.1). Without Neubauer’s implementation, a lot more work would have
been necessary.
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Minimizing Time-Dependent

Travel Times with Additional Costs

This chapter adapts the TCHs described in Chapter 5 to work with road networks
that not only have time-dependent travel times but also additional time-invariant
costs. The resulting generalized TCHs, however, are heuristic in the sense that the
computed routes are not guaranteed to be optimal. This corresponds to the fact
that additional costs make everything much harder. Computing an MC path in this
setup is NP-hard and CPs can get more complex than TTPs (see Section 6.1).

The difficulty of computing MC paths also affects TCH preprocessing. So
far, we do not know an efficient preprocessing procedure that is able to provide
TCH structures with guaranteed existence of optimal up-down-paths. Instead,
we describe a generalized TCH preprocessing that is heuristic in the sense that
the resulting TCH structures are not exact. Before, we discuss the two main
problems that TCH preprocessing has in the presence of additional time-invariant
costs. Also, we discuss some preliminary ideas how exact preprocessing might be
achieved in the future (see Section 6.2).

Our algorithm for one-to-one MC queries can not guarantee to find optimal
routes, as it runs on heuristic TCH structures. It not even guarantees to find the
best present up-down-path. Given an exact TCH with guaranteed existence of
Pareto prefix-optimal MC up-down-paths, however, the algorithm would be exact.
So, exact time-dependent route planning with additional costs would be possible if
the preprocessing were able to to provide such a TCH structure (see Section 6.3).

Both, the heuristic preprocessing and the MC queries on the inexact heuris-
tic TCH structures are evaluated experimentally. It turns out that preprocessing
can be done in reasonable time and that MC queries can be answered fast with
negligible error in practice (see Section 6.4).



268 Chapter 6. Minimizing Time-Dependent Travel Times with Additional Costs

6.1 Complexity

The properties of time-dependent road networks with additional time-invariant
costs are discussed in Section 3.2. Additional time-invariant costs only seem to
be a slight generalization of time-dependent travel times on the first glance. This,
however, is not the case, as Section 3.2.1 already suggests. There, we show that
the existence of prefix-optimal MC path is not guaranteed in a time-dependent
road network G with additional time-invariant costs. More precisely, there may
be s, t ∈V,τ0 ∈R such that all (s, t,τ0)-MC-paths P in G have a prefix �s→ ·· ·→
u� ⊆ P that is not an (s,u,τ0)-MC-path. As a consequence, Dijkstra-like single-
label search cannot be applied to compute Cost(s, t,τ0) and a corresponding MC
path. The reason is that Dijkstra-like single-label searches throw non-optimal
intermediate results away. So, an (s, t,τ0)-MC-path with a prefix Pu := �s→·· ·→
u�, where

fPu(τ0)+ cPu > CostG(s,u,τ0)

holds, may get lost. This corresponds to the fact that one-to-one MC queries are
NP-hard. This follows from the NP-hardness of a special case of MC queries with
much more restricted additional time-invariant costs that has been considered by
Ahuja et al. [3]. We report a translation of their proof into the framework used in
this thesis (see Section 6.1.1)

One-to-one CP queries, in contrast to one-to-one MC queries, can be answered
using a Dijkstra-like single label search; namely, backward CP search (see Sec-
tion 4.3.5). This algorithm does not seem to be so different from TTP search
and some readers may expect similar running times hence. But this is wrong,
because a CP can have up to 2Ω(|V |) bend points, which is much more than the
K · |V |O(log |V |) bend points that a TTP can have [36], with K the total number of
bend points in G (see Section 6.1.2).

6.1.1 NP-Hardness of Minimum Cost Queries

We consider road networks with time-dependent travel times and additional time-
invariant costs; that is, every edge u→ f |c v has a pair f |c∈FΠ×R≥0 assigned as
edge weight. Ahuja et al. [3] already show the NP-hardness of the very restricted
special case that time-dependent edges u → f |c v have additional time-invariant
costs of the form

c=
α−β

β
min f

with α > β > 0 chosen globally (i.e., α and β are chosen for the whole graph).
This is equivalent to c= λ min f , where λ > 0 is the same for all edges in G (see
Section 1.3.2 on page 39 for a short summary).
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Figure 6.1. A time-dependent graph with additional time-invariant costs encoding an
instance b,a1, . . . ,ak of the number partitioning problem. All edges have constant TTFs
except for vk+1 → vk+2 which has the TTF f depicted on the right. That is, f is the only
TTF with more than one bend point.

In their proof, Ahuja et al. use a reduction of the NP-hard number partition-
ing problem (see subset sum problem in Garey and Johnson [38]). We report a
translation of their proof into the context of additional time-invariant costs that
can be chosen freely from R≥0. The number partitioning problem is defined as
follows: Given the numbers b,a1, . . . ,ak ∈N>0 we ask whether x1, . . . ,xk ∈ {0,1}
exist with

b= x1a1+ x2a2+ · · ·+ xkak .

So, the question is, whether b can be composed of a1, . . . ,ak, where each ai can
be used at most once.

Theorem 6.1. Answering one-to-one MC queries is NP-hard, even if there is only
a single non-constant TTF with O(1) bend points.

Proof. This proof is a translation of the proof by Ahuja et al. [3] (see proof of
Theorem 2 in their paper with α = 2 and β = 1) into the framework used in this
thesis.

Given an instance b,a1, . . . ,ak ∈N>0 of the number partitioning problem, we
construct a time-dependent road network G with additional time-invariant costs
as depicted in Figure 6.1. There are exactly 2k paths from v1 to vk+1. All these
paths have the same total travel cost 2a1 + · · ·+ 2ak, but their travel time is not
necessarily the same. The TTF of such a path P from v1 to vk+1 is the constant
function fP ≡ ∑i∈XP

ai+∑k
i=1 ai for some subset XP ⊆ {1, . . . ,k}. The subset XP

encodes the path P in the sense that i ∈ XP holds if, and only if, P takes the left
turn at the node vi.

In particular, there is a path from v1 to vk+1 of travel time b+∑k
i=1 ai if, and

only if, the underlying instance of number partitioning is answered yes. To under-
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stand that, consider the following equivalence:

there is x1, . . . ,xk ∈ {0,1} s.t. b = x1a1+ · · ·+ xkak
⇔ there is X ⊆ {1, . . . ,k} s.t. b+∑k

i=1 ai = ∑i∈X ai+∑k
i=1 ai

⇔ there is a path P from v1 to vk+1 s.t. b+∑k
i=1 ai ≡ fP

Hence, the answer is yes if, and only if, CostG(v1,vk+2,0) = 1+ 2a1 + · · ·+ 2ak
holds. This is because f (b+∑k

i=1 ai) = 1 is the only minimum of the TTF f . Note
that the period of the TTF f has to be chosen sufficiently large.

The construction of the road network from the given instance of the number
partitioning problem can be done in O(k) time. Setting up an adjacency array
takes O(k) time, setting up the sequence

��
b−1+∑

k

i=1
ai, 2

�
,
�
b+∑

k

i=1
ai, 1

�
,
�
b+1+∑

k

i=1
ai, 2

��

that represents f takes O(k) time, too.

The one or another reader may notice that our formulation of the proof is a little
simpler than the original; namely, in the sense that all TTFs are constant except
for the one of the edge vk+1 → vk+2. This is possible, because we can choose the
additional time-invariant costs independently from the TTFs. The formulation of
Ahuja et al. [3], in contrast, simulates this freedom of choice by inserting artificial
minima into the TTFs. Of course, this minima must be so far away from the
“time-horizon” of the computation that they do not distort the result of the MC
query.

Note that the artificial construction in Figure 6.1 may not be too far away
from practice. Routes in road networks may now and then have alternatives with
different travel times and different additional time-invariant costs.

6.1.2 Exponential Complexity of Cost Profiles

In the section before we show that one-to-one MC queries in time-dependent
road networks with additional time-invariant costs are NP-hard. This implies that
one-to-one CP queries are also NP-hard, because MC queries are included in CP
queries. About the complexity of CPs, however, a more specific statement is pos-
sible; namely, that the worst case complexity of CPs can even be exponential in
the size of the road network.

Theorem 6.2. In a time-dependent road network G= (V,E) with additional time-
invariant costs, CostG(s, t, ·) can have 2Ω(|V |) bend points, even if there is only a
single non-constant TTF with O(1) bend points in G.
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Proof. Let G be the time-dependent road network with additional time-invariant
costs depicted in Figure 6.1 with ai := 2i for 1≤ i≤ k. Every subset X ⊆{1, . . . ,k}
corresponds to a path PX from v1 to vk+1 and vice versa, as explained in the proof
of Theorem 6.1. Moreover, all paths PX have the same constant TCF CPX ≡ 22 +
23+ · · ·+2k+1. So, we have

CostG(v1,vk+2,τ) = min
X⊆{1,...,k}

�
f
�
arr fPX (τ)

�
+CPX (τ)

�

= min
X⊆{1,...,k}

�
f
�
τ +∑i∈X

2i+
k

∑
i=1

2i
�
+22+23+ · · ·+2k+1

�

= min
X⊆{1,...,k}

�
f
�
τ +∑i∈X

2i+2k+1−2
�
+2k+2−4

�
.

The graph of a TTF f (τ + p) with p ∈ R is simply the graph of f moved to the
left by p. So, Cost(v1,vk+2, ·) is the minimum of 2k functions that all have 1 as
their single global minimum at 2k different x-values. This means Cost(v1,vk+2, ·)
has at least 2k = 2|V |/2−1 = 2Ω(|V |) bend points.

Compared to CPs, TTPs are simpler. According to Foschini et al. [36], TTPs
have at most K · |V |O(log |V |) bend points with K being the total number of bend
points in G. This suggests that CPs are much harder to obtain than TTPs. It also
suggests that backward CP search (see Section 4.3.5) needs more running time
than forward and backward TTP search (see Section 4.2.2 and 4.3.1).

Note that the construction in our proof of Theorem 6.2 is very similar to the
one Hansen uses to show that bicriteria settings can raise exponentially many
Pareto optimal paths [48] (see Section 2.1.3 for a short summary). This already
suggests that the two problems are connected. That this is really the case, gets
apparent from the idea for an alternative proof of Theorem 6.1 as provided by
Sanders [73]. He directly reduces the NP-hard constrained shortest path problem
(also known as shortest weight constrained path problem, see Garey and John-
son [38]) to MC queries with time-invariant additional costs. This problem is
the decision variant of computing all Pareto-optimal paths in a graph with two-
dimensional edge costs and given start node s and destination node t. W.l.o.g., the
reduction considers the first component of the edge costs as constant TTFs and
the second component as time-invariant additional costs. Moreover, it adds a new
node t � and a new edge t → f |0 t

� with an appropriate TTF f .

6.2 Heuristic Preprocessing

With additional time-invariant costs, we are only able to generate inexact heuristic
TCH structures so far. The reason is that node contraction with additional costs
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is more difficult than without. This is because of two major obstacles (see Sec-
tion 6.2.1). The node contraction procedure that we use with additional costs is
heuristic in the sense that travel costs may change in the remaining graph after the
removal of the node to be contracted (see Section 6.2.2). The resulting heuristic
TCH structures are only guaranteed to contain some up-down-path, not necessary
an optimal one (see Section 6.2.3). TCH construction and node ordering work
very similar as without additional costs, though some minor adaptions are neces-
sary (see Section 6.2.4).

6.2.1 Obstacles of Node Contraction

A TCH structure H generated from a road network G as described in Chapter 5 is
guaranteed to contain an (s, t,τ0)-EA up-down-path for all s, t ∈V,τ0 ∈R. It can
thus be used for fast and exact one-to-one EA and TTP queries. This is possible,
because time-dependent road networks without additional costs fulfill some sort of
prefix-optimality; namely, the guaranteed existence of at least one prefix-optimal
EA path for every start and destination and all departure times (see Lemma 3.10).
This enables the preprocessing to decide whether a shortcut u→g∗ f v can be safely
omitted only by checking whether the corresponding path �u → f x →g v� is a
(u,v,τ)-EA-path for some τ ∈ R in the remaining graph after removal of x (see
Section 5.2). Merging a newly inserted shortcut u→g∗ f v with an already existing
edge u→h v is also no problem. We simply replace u→h v with u→min(h,g∗ f ) v.

With additional time-invariant costs, however, it is much more difficult to
guarantee the existence of an optimal up-down-path; that is, the existence of
an (s, t,τ0)-MC-path �s→ ·· · → y→ ·· · → t� for all s, t ∈ V,τ0 ∈ R, such that
�s→ ·· · → y� only goes upward and �y→ ·· · → t� only goes downward in the
hierarchy. In the following, we identify two major obstacles. The first one is how
to decide efficiently whether a shortcut can be safely omitted during node con-
traction or not. The second one is that parallel shortcut edges cannot be merged
as simply as without additional costs. But before, we define a generalized notion
of time-dependent overlay graphs mentioned in Section 5.2.1.

Time-Dependent Overlay Graphs with Additional Costs. Node contraction
is the basic operation of TCH preprocessing to obtain the next higher level of the
hierarchy each. Without additional time-invariant costs, the contraction of a node
x yields a time-dependent overlay graph G� = (V \{x},E �) of a graph G; that is,

∀s, t ∈V \{x},τ ∈R : EAG�(s, t,τ) = EAG(s, t,τ) (6.1)
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is fulfilled (see Section 5.2.1).1 With additional time-invariant costs, a generalized
time-dependent overlay graph G� would be defined analogously by the condition

∀s, t ∈V \{x},τ ∈R : CostG�(s, t,τ) = CostG(s, t,τ) . (6.2)

Let G := (V ,E) := (V \ {x}, {u→ f |c v ∈ E |u,v �= x}) be the graph that remains
after the removal of x and its adjacent edges. To obtain an overlay graph G�

we have to determine for which removed path �u→ f |c x→g|d v� a shortcut edge

u→g|d � f |c v must be added to E. Adding all such shortcuts is likely to produce
too dense TCH structures with too slow query times.

First Obstacle: Safely Omitting Shortcuts. With additional costs it is much
more difficult than without to decide whether a shortcut can be safely omitted
when a node x is contracted. The NP-hardness of one-to-one MC queries (see
Theorem 6.1) already suggests this. It also directly transfers to this decision prob-
lem.

Lemma 6.3. Consider the contraction of a node x in a road network with addi-
tional time-invariant costs. Deciding whether a shortcut u→g|d � f |c v representing
a path �u→ f |c x→g|d v� can be safely omitted, is NP-hard.

Proof. We extend the reduction of the number partitioning problem in the proof of
Theorem 6.1 in a straightforward manner. To do so we add a node x as well as two
edges v1→0|e x and x→h|0 vk+2 to the graph in Figure 6.1 with e := 2a1+ · · ·+2ak
and the piecewise linear TTF h ∈FΠ defined by the sequence

�
(0, 3/2), (1, 5/2), (Π−1, 5/2)

�
.

Note that h(0) = 3/2 is the only minimum of the TTF h. Assuming that the node
x is contracted we obtain the following equivalence:

shortcut v1 →h|e vk+2 can be safely omitted
⇔ CostG(v1,vk+2,0) = 1+ e
⇔ number partitioning answers yes ,

which holds because of C�v1→0|ex→h|0vk+2�(0) = 3/2+ e and CostG(v1,vk+2,0) ∈

{1+ e, 2+ e}.

In the following we discuss three possible conditions for safely omitting a
shortcut. On the one hand, they are differently strong in the sense of how many

1time-dependent overlay graphs generalize the notion of overlay graphs that has been estab-
lished in the context of constant travel costs [51].
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unnecessary shortcuts are not omitted but added to the TCH structure. On the
other hand, they are differently difficult to check. All three conditions are con-
servative; that is, necessary shortcut are always added to the TCH. So far it is not
clear, however, whether one of these conditions can be used as a basis to provide
sufficiently fast exact preprocessing and MC queries.

A Strong, but Hard to Check Condition. From a more practical point of view, the
difficulty of safely omitting a shortcut comes from the fact that prefix-optimality
is in general not provided in time-dependent road networks with additional costs.
When a node x is contracted, this is can result in the situation that �u→ f |c x→g|d

v� is no (u,v,τ)-MC-path for any τ ∈ R but nevertheless subpath of the only
present (s, t,τ0)-MC-path in G for some s, t ∈ V,τ0 ∈ R. To decide whether the
shortcut u →g|d � f |c v can be safely omitted, it is hence not enough to examine
whether the corresponding path �u→ f |c x→g|d v� is a (u,v,τ)-MC-path for some
τ ∈ R. At least, the suffix-optimality of MC path liberates us from considering
all (s, t,τ)-MC-paths in G for all s, t ∈ V,τ ∈ R. Instead, it is enough to consider
paths starting at u.

Lemma 6.4. Consider the removal of x and all its adjacent edges from G when a
node x is contracted. Then, the following two statements are equivalent:

1. For all s, t ∈V \{x}, τ ∈R we have CostG(s, t,τ) = CostG(s, t,τ).

2. For all u→ x ∈ E, t ∈V \{x}, τ ∈R we have CostG(u, t,τ) = CostG(u, t,τ).

Proof. The first statement trivially implies the second one. To show that the sec-
ond statement implies the first one, assume CostG(s, t,τ)>CostG(s, t,τ) for some
nodes s, t �= x and some τ ∈ R. But only MC paths running via node x have
changed. So, an (s, t,τ)-MC-path

P := �s→ ··· → u→ x→ v→ ·· · → t�

must be present in G, which implies that its suffix path R := �u→ x→ v→···→ t�
is an (u, t,arr f�s→···→u�(τ))-MC-path in G (see Lemma 3.16). But this means that

a path R= �u→ ·· · → t� with

CR

�
arr f�s→···→u�(τ)

�
= CostG

�
u, t,arr f�s→···→u�(τ)

�

= CostG
�
u, t,arr f�s→···→u�(τ)

�

=CR

�
arr f�s→···→u�(τ)

�

is present in G. So, replacing R by R in P yields a path P⊆ G with

CostG(s, t,τ)≤CP(τ) =CP(τ) = CostG(s, t,τ)< CostG(s, t,τ) ,

which is a contradiction.
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Corollary 6.5. Consider the contraction of a node x. A shortcut edge u→g|d � f |c v
representing a path �u→ f |c x→g|d v� can be safely omitted, if no (u, t,τ)-MC-path
of the form �u→ f |c x→g|d v→ ·· · → t� exists in G for some τ ∈R.

So, checking all (u, t,τ)-MC-paths is enough for all u→ x ∈ E, t ∈V, τ ∈R,
which is less difficult than checking all (s, t,τ)-MC-paths in G with arbitrary s ∈
V . Unfortunately, we don’t know any better way to check this than answering a
one-to-all CP query, which we expect to be very time-consuming.

A Weak Local Condition. To overcome this problem, one could try to establish a
condition that is weaker in the sense that less shortcuts can be omitted, but that is
easier to check. A relatively obvious weaker and easy to check condition emerges
from the observation that a dominated path (see Section 2.1.3) cannot be prefix of
an MC path. The two-dimensional costs, where dominance refers to, are pairs of
travel time and additional travel costs in this case.

Lemma 6.6. Consider two paths P := �s→ ·· · → u�, R := �s→ ·· · → u� with

fR(τ0)< fP(τ0) and cR < cP

for some τ0 ∈R; that is, R strictly dominates P. Then, P cannot be prefix path of
any (s, t,τ0)-MC-path.

Proof. Assume an (s, t,τ0)-MC-path M with prefix P; that is, M = PU . Replacing
P in M by R yields another path M� = RU from s to t. Utilizing Equation (3.13)
we then calculate

CostG(s, t,τ0) =CM(τ0) = fU ∗ fP(τ0)+ cU + cP

> fU ∗ fR(τ0)+ cU + cR =CM�(τ0)≥ CostG(s, t,τ0) ,

a contradiction.

Instantiating the path R with an appropriate MC path for every possible departure
time, we obtain a much weaker statement.

Lemma 6.7. A path P := �u→ ·· · → v� fulfilling both

• MCTTG(u,v,τ)< fP(τ) and

• CostG(u,v,τ)−MCTTG(u,v,τ)< cP

for all τ ∈R cannot be subpath of any MC path in a road network G.

Proof. For all τ ∈ R consider the certainly existing (u,v,τ)-MC-path Rτ that ad-
ditionally fulfills fRτ (τ) = MCTTG(u,v,τ) (see Section 3.2.1). We then have
cRτ = CostG(u,v,τ)−MCTTG(u,v,τ) and applying Lemma 6.6 we obtain that
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P cannot be prefix path of an (u, t,τ)-MC-path for any τ ∈R. But then, it can also
not be subpath of any (s, t,τ)-MC-path SPS�, because PS� had to be MC path and
P a prefix of an MC path hence.

This directly yields a relatively weak but relatively easy to check condition for
safely omitting shortcuts.

Corollary 6.8. Consider the contraction of a node x. A shortcut edge u→g|d � f |c v
representing a path �u→ f |c x→g|d v� can be safely omitted, if

MCTTG(u,v,τ)< g∗ f (τ) and CostG(u,v,τ)−MCTTG(u,v,τ)< d+ c

are fulfilled for all τ ∈R.

Both CostG(u,v, ·) and MCTTG(u,v, ·) can be computed by a variant of backward
CP search (see Section 4.3.5), which yields CostG(u,v, ·)−MCTTG(u,v, ·). It
is possible, however, that this condition is too weak in the sense that too many
shortcuts are added during preprocessing. Then, the resulting TCH structures
contain too many edges and preprocessing as well as MC queries get too slow.
Whether this is the case in practice, must be found out experimentally.

A Stronger Local Condition. To obtain the relatively weak condition in Corol-
lary 6.8 we specialized the statement of Lemma 6.6 by instantiating P with the
path �u → f |c x →g|d v� and R with an (u,v,τ)-MC-path Rτ fulfilling frτ (τ) =
MCTTG(u,v,τ) for each τ ∈ R. But, in general, there are many more possible
paths to instantiate R. These are, in fact, all the Pareto optimal paths from u to v.
The resulting condition (see Corollary 6.9) is considerably stronger than Corol-
lary 6.8 but also more difficult to check.

Corollary 6.9. Consider the contraction of a node x. A shortcut edge u→g|d � f |c v
representing a path �u→ f |c x→g|d v� can be safely omitted, if a path Rτ exists
with

fRτ (τ)< g∗ f (τ) and cRτ < d+ c

for all τ ∈R.

A method to check this condition could compute a map W : R→℘(FΠ×R≥0)
where f |c ∈W (τ) implies2

• that a path P= �u→ ·· · → v� ⊆ G exists with f = fP and c= cP, and

• that no path R= �u→ ·· · → v� ⊆ G exists with fR(τ)≤ fP(τ), cR ≤ cP, and
fR(τ)+ cR < fP(τ)+ cP.

2With ℘(FΠ×R≥0) we denote the power set of FΠ×R≥0.
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In other words, the setW (τ) contains all pairs fP|cP ∈FΠ×R≥0 where P is a non-
dominated path from u to v for every departure time τ ∈R. So, we have to answer
some kind of one-to-one “Pareto CP query”, which seems to be more difficult than
computing CostG(u,v, ·) and MCTTG(u,v, ·) as in case of Corollary 6.8.

Second Obstacle: Merging of Parallel Edges. Deciding whether a shortcut
can be safely omitted or not is not the only problem that the contraction of a
node x has in the presence of additional costs. Merging an already present edge
u→h|e v ∈ E with a newly inserted shortcut u→g|d � f |c v representing a removed
path �u→ f |c x→g|d v� ⊆ G is also a problem. More precisely, G� may no longer
be an overlay graph of G in the sense of Equation (6.2) if G� simply contains a
merged shortcut edge u→min(h|e,g|d � f |c) v. This is because the minimum operation
on F ��

Π×XΠ only preserves information about cheaper paths—although a more
expensive path may be part of an MC path whose information is then lost.

So, the one or another MC up-down-path may be missing in the resulting TCH
structure. This would be the case even if we had an efficient procedure to safely
omit shortcut edges, which we do not so far. Assume, for example, u→h|e v is a
(u,v,τ)-MC-path in G for all τ ∈ R. Also, assume that �u→ f |c x→g|d v�, which
is removed from G when x is contracted, is no MC path itself but subpath of the
only (s, t,τ0)-MC path M in G; that is,

M = �s→ ·· · → u→ x→ v→ ·· · → t� .

Then, we have CostG�(s, t,τ0)>CostG(s, t,τ0), because the prefix �s→···→ u→
x→ v� of the unique MC path M is lost; although the shortcut u→g|d � f |c v is not
omitted.

To overcome this, one could allow parallel edges, making G� a multigraph3.
In this case, we would simply add u →g|d � f |c v to E �, which already contains
u→h|e v and maybe other edges from u to v. This, however, is likely to result
in quite dense TCH structures, especially because parallel edges may raise even
more parallel edges during subsequent node contractions. If, for example, a node
x with k incoming parallel edges

u→ f1|c1
x, . . . ,u→ fk|ck x

and � outgoing parallel edges

x→g1|d1
v, . . . ,x→g�|d� v

3A multigraph G= (V,E) is a directed graph with parallel edges. More precisely, E can contain
multiple edge e1, . . . ,ek from u to v. This means, E can no longer be a subset of V ×V . Instead,
edges must be first class citizens. Source and target nodes of edges can be encoded with two maps
src : E →V and tgt : E →V respectively.
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is contracted, then k · � new parallel shortcut edges of the form u →gi|di � f j|c j
v

may emerge in the worst case. This is likely to slow down preprocessing and
MC queries too much. Also, the memory usage of TCH structures may increase
considerably.

Storing multiple pairs of TTFs and addtional costs with every merged shortcut
edge—that is, something like

u→�h1|e1,...,hn|en� v

with h1|e1, . . . ,hn|en ∈FΠ×R≥0—does not really help, because it is only a dif-
ferent representation of the same information. However, several of the pairs hi|ei
may contribute to an MC path only on a few small departure time intervals, or even
never. One could hence store h1, . . . ,hn as partial real functions. More precisely,
if u→hi|ei v is part of an MC path only if the departure time at u lies in Ai ⊆ R,
then we only store the relevant bend points of hi. Depending on the shortest path
structure of the road network this could save a lot of memory. Note that another
parallel edge u→h j|e j

v may exist that is part of an MC path for departure times
in Aj with Ai∩Aj �= /0; that is, the domains of the partial functions may overlap.

To determine the intervals where a pair hi|ei ∈ FΠ×R≥0 contributes to any
MC path, however, we need to find out which non-optimal paths are part of opti-
mal ones. This is actually the same problem as to safely omit shortcut edges. Like
in case of safely omitting shortcuts, a sufficiently strong but efficient conservative
condition would be helpful.

Observation 6.10. We do not know a sufficiently strong and feasible conserva-
tive method to determine the departure time intervals, where a shortcut edge
u→g|d � f |c v contributes to any MC path.

Here, “conservative” means that the determined intervals contain all departure
times where u→g|d � f |c v is part of any MC path. If the determined intervals only
contain little more, then the method is “sufficiently strong”.

6.2.2 Heuristic Node Contraction

Section 6.2.1 discusses the difficulties of safely omitting a shortcut and of merging
parallel edges when a node is contracted. These two important problems that
occur during time-dependent preprocessing in the presence of additional time-
invariant costs are so far unsolved. As a consequence, we only describe a heuristic
version of node contraction in this case. The resulting graph G� = (V \ {x},E)
after the contraction of a node x does not guarantee Equation (6.2) and is not an
overlay graph hence. Instead, G� is only a heuristic overlay graph, which means
the condition

∀s, t ∈V,τ ∈R :
�
CostG�(s, t,τ)< ∞ ⇐⇒ CostG(s, t,τ)< ∞

�
(6.3)
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is fulfilled. Of course, this condition is very weak compared to Equation (6.2).
Our experiments show, however, that the error produced by the resulting heuristic
TCH structures stays small in practice (see Section 6.4).

Our heuristic contraction procedure inserts a new shortcut u→g|d � f |c v for a
removed path �u→ f |c x→g|d v� if

∃τ ∈R : CostG(u,v,τ) = (g∗ f +d ∗ f c)(τ) (6.4)

is fulfilled. Although this condition is the straightforward generalization of the
condition in Equation (5.1) to include additional costs, some necessary shortcuts
may get lost. That is, CostG�(s, t,τ) > CostG(s, t,τ) may hold for the one or an-
other combination (s, t,τ) ∈V 2×R (for details see Section 6.2.1). The shortcuts
we insert into E to obtain E � are collected in the set

Ex :=
�
u→g|d � f |c v

�
� �u→ f |c x→g|d v� ⊆ G and

∃τ ∈R : (g∗ f +d ∗ f c)(τ) = CostG(u,v,τ)
�
,

(6.5)

which is analogous to the set Ex as defined in Equation (5.2).
The merging of a newly inserted shortcut u→g|d � f |c v ∈ Ex and an already

present edge u→h|e v ∈ E is also heuristic and uses the minimum operation on
F ��

Π×XΠ; that is, u→h|e v is replaced with the merged edge u→min(h|e,g|d � f |c) v.
So, contracting the node x yields the graph G� = (V \{x},E �) with

E � :=
�
u→h|e v ∈ E

�
� u→ v �∈ Ex

�
∪

�
u→g|d � f |c v ∈ Ex

�
� u→ v �∈ E

�
∪

�
u→min(h|e, g|d � f |c) v

�
� u→h|e v ∈ E and u→g|d � f |c v ∈ Ex

�
.

(6.6)

This is analogous to Equation (5.3). It remains to show that G� is really a heuristic
overlay graph.

Lemma 6.11. Contracting the node x in a time-dependent road network with ad-
ditional costs preserves the connectivity between the remaining nodes; that is,
Equation (6.3) holds true.

Proof. Consider a path P = �s → ·· · → t� in G with s, t �= x. We either have
P ⊆ G� or P contains a subpath �u→ f |c x→g|d v�. If an edge u→ v exists in G�,
then we simply replace �u→ f |c x→g|d v� with u→ v in P. Otherwise, we know
that (g∗ f +d ∗ f c)(τ)>CostG(u,v,τ) holds for all τ ∈R. In this case, we choose
some τ0 ∈R and replace �u→ f |c x→g|d v� in P by a surely existing (u,v,τ0)-MC-
path R0 ⊆G. If R0 goes via the node x—that is, via a path �u� → f �|c� x→g�|d� v

��—
we surely know

(g� ∗ f �+d� ∗ f � c
�)
�
arr f�u→···→u��(τ0)

�
= CostG

�
u�,v�,arr f�u→···→u��(τ0)

�
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because of the suffix-optimality of MC paths. But this means that an edge u� → v�

is present in G�. So, replacing �u� → f �|c� x→g�|d� v
�� by the edge u� → v� in R0, we

end up with a path lying completely in G�.
Consider a path P� ⊆ G�. Each edge of P� is either already contained in G or a

shortcut u→ v that emerges from a path �u→ x→ v�. Replacing all such edges
u→ v by �u→ x→ v� in P yields a path in G.

Time-Dependent Additional Costs. Merging of shortcuts involves the mini-
mum operation on pairs h|e and g|d � f |c (see Equation (6.6)). There, it is quite
probable that min(h|e, g|d � f |c) no longer lies in FΠ ×R but in F ��

Π ×XΠ,
even if f |c, g|d � f |c ∈ FΠ ×R≥0 holds (for details see Section 3.2.2). So, to
create a heuristic TCH structure, which is actually a hierarchy of heuristic over-
lay graphs, we need a node contraction procedure that is able to deal with edge
weights taken from F ��

Π×XΠ and not only from FΠ×R≥0—although all original
edges u→ f |c v ∈ E fulfill f |c ∈FΠ×R≥0.

For the heuristic node contraction as characterized by Equation (6.6) this is no
problem. In fact, we already formulate Equation (6.4), (6.5) and (6.6) as well as
the proof of Lemma 6.11 general enough to deal with this situation. Otherwise,
we could write them more special. In case of Equation (6.4), for example, it would
be

∃τ ∈R : CostG(u,v,τ) = g∗ f (τ)+d+ c .

It must be noted that we have not proven so far that CostG(u,v,τ), as used in
Equation (6.4) and (6.5) as well as in Lemma 6.11, really exist in the presence
of time-dependent additional costs—although we conjecture that this is the case
as already said (see Section 3.2.4). Anyway, Lemma 3.23 saves us because the
condition formulated in this lemma is most likely fulfilled by time-dependent road
networks in practice. So, we require the road network G to fulfill Cmin > 0 with

Cmin := min
�

inf f +minc
�
� u→ f |c v ∈ E

�
(6.7)

in the rest of this chapter. This ensures that an (s, t,τ)-MC-path exists in G for all
s, t ∈V,τ ∈R and that CostG(s, t,τ) as well as MCTTG(s, t,τ) are well defined.

Shortcut Descriptors. Like in case of road network without additional costs,
we annotate all edges with shortcut descriptors (see Section 5.2.1 on page 185)
to enable the expansion of shortcuts u→g|d � f |c v to the paths �u→ f |c x→g|d v�
they represent for a given departure time. A formal difference is that the maximal
interval where a middle node is valid is no longer closed but left-open in general.
To understand that, consider the heuristic merging of two parallel edges u→ f |c

v and u →g|d v with f |c, g|d ∈ F ��
Π ×XΠ, which means there can be points of

discontinuity. Assume f +c has positive discontinuity τ0 where g|d is continuous
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with f + c(τ0) < g+d(τ0) but f + c(τ0) > g+d(τ0) for all τ ∈ (τ0,τ
�
0] (this can

really occur in heuristic TCH structures as explained in Section 6.3.2). Then, a
middle node that is valid for u →g|d v on (τ0,τ

�
0] is not necessary valid for the

merged edge on τ0. So, the shortcut descriptors of u→ f |c v and u→g|d v are of
the form

��
(a0,a1],x1

�
, . . . ,

�
(ak−1,ak],xk

��

and
��
(b0,b1],y1

�
, . . . ,

�
(b�−1,b�],y�

��

respectively. Analogous to Equation (5.5), we compute a minimum length se-
quence

��
(c0,c1],h1|e1

�
,
�
(c1,c2],h2|e2

�
, . . . ,

�
(cn−1,cn],hn|en

��
(6.8)

with 0 = c0 < c1 < · · ·< cn = Π and h1|e1, . . . ,hn|en ∈ { f |c, g|d}, such that

• hi|ei = f |c implies ( f + c)(τ) ≤ (g+ d)(τ) but f (τ) ≤ g(τ) if ( f + c)(τ) =
(g+d)(τ), and

• hi|ei = g|d implies (g+ d)(τ) ≤ ( f + c)(τ) but g(τ) ≤ f (τ) if ( f + c)(τ) =
(g+d)(τ)

for all τ ∈ (ci−1,ci]. Again, we refine the partition (c0,c1],(c1,c2], . . . ,(cn−1,cn]
by overlaying each interval (ci−1,ci] with one of the two shortcut descriptors de-
pending on hi|ei. So, for all i ∈ {1, . . . ,n}, we compute the sequence

S
( f |c)
i :=

��
(ci−1,a ji ],x ji

�
,
�
(a ji ,a ji+1],x ji+1

�
, . . . ,

�
(a ji+ni−1,ci],x ji+ni

��

with a ji−1 ≤ ci−1 < a ji and a ji+ni−1 < ci ≤ a ji+ni if hi|ei = f |c, and the sequence

S
(g|d)
i :=

��
(ci−1,bki ],y ji

�
,
�
(bki ,bki+1],yki+1

�
, . . . ,

�
(bki+mi−1,ci],yki+mi

��

with bki−1≤ ci−1 < bki and bki+mi−1 < ci≤ bki+mi
if hi|ei = g|d. The concatenation

S := S
(h1|e1)
1 S

(h2|e2)
2 · · ·S

(hn|en)
n

is then a valid shortcut descriptor for the merged edge u→min( f |c,g|d) v. Again, the
merged shortcut descriptor S may contain consecutive pairs with the same middle
node; that is,

S=
�
. . . ,

�
(a,b],x

�
,
�
(b,c],x

�
, . . .

�

is transformed to S = �. . . ,((a,c],x), . . .�. Again, merged shortcut descriptors are
not unique, because f |c and g|d may be equal for some departure intervals.
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6.2.3 Heuristic TCH Structures

A heuristic TCH structure is constructed from a time-dependent road network
with additional time-invariant costs by performing a sequence of heuristic node
contractions in the order given by “≺”. Again, “≺” orders the nodes of the road
network G by “importance” for routing, with the rough idea that a more important
nodes lies on more MC paths. The result is a hierarchy of heuristic overlay graphs

G1 = (V1,E1),G2 = (V2,E2), . . . ,G|V | = (V|V |,E|V |)

with G1 = G, Vi+1 = V \{xi}, and x1 ≺ ·· · ≺ x|V |. Like without additional costs,
this hierarchy is never stored explicitly of course. Instead we store the graph
H = (V,EH) with

EH :=
�
u→ f |c v

�
�
� there are k, � with 0 < k ≤ � < |V | such that

∀i ∈ {k, . . . , �} : u→ fi|ci v ∈ Ei, but u→ v �∈ Ek−1∪E�+1,

and f |c= min( fk|ck, . . . ,min( f�−1|c�−1, f�|c�) . . .)
�

(6.9)

and E0 = /0. The graph H together with the information whether an edge u→ f |c v
leads upward (i.e., u ≺ v) or downward (i.e., v ≺ u) in the hierarchy is actually
what we call a heuristic TCH structure. Again, we define the upward graph H↑
and the downward graph H↓ by

H↑ := (V,E↑) := (V,{u→ f |c v ∈ EH | u≺ v})

H↓ := (V,E↓) := (V,{u→ f |c v ∈ EH | v≺ u})
, (6.10)

which fulfill E↑ ∩E↓ = /0.

Lemma 6.12. Let H be a heuristic TCH constructed from G and s, t,∈ V. Then,
we have G⊆H, and t is reachable from s in H if, and only if, this is the case in G.

Proof. The statement G⊆ H holds because of G1 = G. Also, heuristic node con-
traction does not introduce any path between to nodes s, t if t is not reachable from
s in G, because of Lemma 6.11.

Theorem 6.13. Let H be a heuristic TCH constructed from G and s, t ∈V. There
is an up-down-path from s to t in H if, and only if, t is reachable from s in G.

Proof. If there is no path from s to t in G, then also not in H; especially, not an
up-down-path (see Lemma 6.12). Otherwise, consider a local minimum of a path
P= �s= u1→·· ·→ uk = t� in G; that is, a node ui with ui≺ ui−1,ui+1 but ui �= s, t.
Lemma 6.11 tells us that the connectivity was preserved when ui was contracted
during preprocessing. This means H contains a path �ui−1 = v1 → v2 → ·· · →
v� = ui+1� whose nodes lie all above ui. So, repeatedly replacing local minima of
P yields an up-down-path in H.
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This proof is a simplified version of the typical correctness proof of CHs as pro-
vided by Geisberger et al. [44]. It is so simple, because only connectivity is con-
sidered instead of travel costs.

6.2.4 TCH Construction and Node Ordering

TCH construction and node ordering with additional travel costs are similar than
without additional travel costs. Algorithm 6.1 shows pseudocode for node order-
ing. For the case that a node order is already given, we omit the pseudocode. The
main differences of node ordering with and without additional costs are

• that edge costs are taken from the set F ��
Π×XΠ instead of FΠ and

• that Enew is computed with respect to Equation (6.5) instead of (5.2).

To obtain a node order and a corresponding heuristic TCH structure, we per-
form a number of iterations. Every iteration consists of choosing an independent
set I ⊆VR of nodes in the current remaining graph R= (VR,ER) (see Line 9). Af-
terwards, all nodes x ∈ I are contracted (see Line 11 to 23). To determine which
nodes are contracted next or, in other words, which nodes are put in the indepen-
dent set I, we proceed as in case of node ordering without additional costs (see
Section 5.2.3). More precisely, we assign a non-negative cost value u.cost to ev-
ery node u ∈V . Whenever a node x is really contracted, we update the cost values
y.costs of all its neighbors y ∈ N1

R(x) by performing a simulated contraction of y
(see Line 24). The new cost value is calculated using the same linear combination
of cost terms as without additional costs (see Equation (5.17)).

Contracting the nodes x ∈ I includes the computation of the set Enew of short-
cuts that we want to insert (see Line 11). To compute Enew, we proceed as
suggested by Equation (6.5). That means, we iterate over all paths of the form
�u→ f |c x→g|d v� ⊆ R for all x ∈ I, check whether Equation (6.4) is fulfilled, and
add u→g|d � f |c v to Enew if we fail to prove the opposite. To check Equation (6.4)
we could directly perform the one-to-one version of backward CP search in R to
compute CostR(u,v, ·). This is, of course, far too slow to be practical. Instead,
we utilize optimizations analogous to the ones we use to construct TCHs without
additional costs (see Section 5.2.2). Of course, there are some small differences,
which we explain in the following.

Optimized Witness Search. The main difference of optimized witness search
with and without additional costs is that a backward CP interval search (see Sec-
tion 4.3.6) and a backward CP search (see Section 4.3.5) are performed instead
of a TTP interval search and a TTP search. Note that no forward versions of
CP interval search and CP search are available, because MC paths lack prefix-
optimality in general (see Section 3.2.1) and Dijkstra-like single-label searches
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Algorithm 6.1. Computes a node order and a corresponding heuristic TCH structure

for a given time-dependent road network G= (V,E) with additional time-invariant

costs.

1 function orderNodesHeuristicTCH((V,E) : Graph) : (Graph, NodeOrder)
2 EH := E // G is subgraph of H
3 (VR,ER) := (V,E) // the “remaining graph” R= (VR,ER)
4 ≺ := �� // the node order represented as sequence of nodes
5 set up random bijective function noTie :V →{1, . . . , |V |}
6 annotate all edges in EH with shortcut descriptor �([,Π],⊥)�
7 foreach u ∈V do simulate contraction of u and initialize u.cost
8 while ER �= /0 do
9 I :=

�
x ∈VR

�
�∀u ∈ N2

(VR,ER)
(x)\{x} :

�
x.cost < u.cost or

�
x.cost = u.cost and noTie(x)< noTie(u)

���

10 append all x ∈ I to ≺
11 Enew :=

�
x∈I Ex with Ex as in Equation (6.5)

12 for all x ∈ I mark all u→ x ∈ EH as downward edge in EH

13 for all x ∈ I mark all x→ v ∈ EH as upward edge in EH

14 for all x ∈ I remove x and all its incident edges from (VR,ER)
15 foreach u→g|d � f |c v ∈ Enew do

16 if there is u→h|e v ∈ ER then

17 D := shortcut descriptor of u→h|e v

18 S := merge shortcut descriptors D and �([0,Π],x)�
19 replace u→h|e v by u→min(h|e,g|d � f |c) v in EH and ER

20 annotate u→min(h|e,g|d � f |c) v with merged shortcut descriptor S

21 else
22 add u→g|d � f |c v to EH and ER

23 annotate u→g|d � f |c v with shortcut descriptor �([0,Π],x)�

24 simulate contraction of all y ∈ N1
VR,ER

(I) and update y.cost each

25 return ((V, EH),≺)

do not work hence. However, suffix-optimality of MC-paths is still provided (see
Lemma 3.16). So, Dijkstra-like single-label searches can be used if they run in
backward direction. More precisely, to show that CostR(u,v,τ)< g∗ f +d ∗ f c(τ)
holds for all τ ∈ R, a costly backward CP search is performed after a preceding
faster backward CP interval search.

Just like without additional travel costs, witness search can be further ac-
celerated by restricting the backward CP search to a corridor. As corridor we
use the transpose predecessor graph of the backward CP interval search; that is,
S := (R�(p))� ⊆ R with p being the predecessor information maintained by the
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backward CP interval search. The heuristic thinning of the corridor S ⊆ R is also
applied analogously. Note that that the resulting thinner corridor S� ⊆ S may not
contain the one or another (u,v,τ)-MC-path in R with τ ∈ R. So, like without
additional costs, some more shortcuts may be added. But this time, this may
even improve the quality of the query result. This is the case because additional
shortcuts may bring back subpaths of MC paths that would be lost because of the
heuristic nature of our node contraction procedure.

Just like without additional costs, we also use a hop limit of 16 when the pre-
ceding backward CP interval search runs (see Section 5.2.2 on page 196). Also,
we cache the results of all witness searches to avoid multiple simulations of the
same node contractions (see Section 5.2.3 on page 202). Sample search (see Sec-
tion 5.2.2 on page 195), which does not have much impact on the preprocessing
without additional costs, is omitted.

More Fine-Grained Parallel Preprocessing. As described in Section 5.2.4, we
parallelize witness search in shared memory by assigning nodes we want to con-
tract to threads. This approach also works in the presence of additional travel
costs. So, if x is assigned to a thread T , then T computes the set Ex as character-
ized by Equation (5.2) or (6.5) respectively. In other words, the thread T decides
for every path �u→ x→ v� ⊆ R, whether a shortcut u→ v is inserted or not. If
the contraction of the last few nodes takes very long, however, then more and
more threads may finish their work while everyone is waiting for a few threads
processing the remaining nodes (or even one single thread processing one single
node). Such a situation is not unlikely during TCH preprocessing, even without
additional costs, because the complexity of TTFs tends to increase a lot as the pre-
processing goes on (see Figure 5.11 in Section 5.6.3). In the presence of additional
costs it can be worse because the computation of CPs is even more expensive than
the computation of TTPs.

To avoid such situations, we make the parallelization more fine-grained if the
number of nodes to be contracted gets small; that is, if the number falls below a
certain threshold. This means we no longer assign nodes x but paths �u→ x→ v�
to threads. This can be realized by putting all paths �u→ x→ v� into a job queue.
The computation of the set Ex can then distributed over more than one thread. Note
that we have not evaluated systematically how much this improves the running
time of the preprocessing in practice.

6.3 Minimum Cost Queries

This section describes how heuristic TCH structures can be used to answer one-
to-one MC queries. The heuristic nature of the TCH structures implies, however,



286 Chapter 6. Minimizing Time-Dependent Travel Times with Additional Costs

that our query technique only yields inexact results. Note that the algorithm would
return exact results if the underlying TCH structure were exact with guaranteed
existence of Pareto prefix-optimal MC up-down-paths. Anyway, our experiments
show that the error of the query results is negligible in practice.

First, we explain our basic MC query procedure. It is similar to the TCH-
based EA query, but with the difference that upward and downward search are
time-dependent multi-label searches here (see Section 6.3.1). Then, we proof the
correctness of the MC query procedure, including its exactness for the mentioned
exact TCH structures—although we are not able to create such TCH structures so
far (see Section 6.3.2). Just like like in case of EA queries, MC queries can be an-
swered faster using stall-on-demand, though it is adapted to work correctly with
multi-label searches. Note that stall-on-demand may worsen the quality of the
computed paths, at least for heuristic TCH structures (see Section 6.3.3). How-
ever, the error stays small in practice, as the experimental evaluation in Section 6.4
shows.

6.3.1 Basic MC Querying

Consider a heuristic TCH structure H that has been created from a time-dependent
road network G with additional time-invariant costs by the preprocessing proce-
dure described in Section 6.2. Using H, we answer one-to-one MC queries as
follows: For a start node s, a destination node t, and a departure time τ0, we run
Algorithm 6.2 on H to obtain an up-down-path with—as we hope—nearly mini-
mal travel cost. Then we invoke Algorithm 5.7 (see Section 5.3.1) to recursively
expand the up-down-path to obtain a path in G. Note that Algorithm 5.7 can be
applied without any modification, because the expansion of shortcut edges only
depends on the departure time and not on the additional travel cost. Together,
the computation of the up-down-path and its expansion form a quite fast query
procedure.

The computation of the up-down-path (Algorithm 6.2) is the more time-con-
suming part of this query procedure. Expanding the up-down-path afterwards
should only take little time. Algorithm 6.2 generalizes Algorithm 5.4, which com-
putes EA-up-down paths (see Section 5.3.1). Both algorithms have quite similar
structure, which means that Algorithm 6.2 also runs in two phases. Again, the
first phase is a bidirectional search that only goes upward (see Line 20 to 32), and
the second phase goes downward only relaxing edges touched by the backward
search of the first phase (see Line 7 to 19). The main differences of Algorithm 6.2
compared to Algorithm 5.4 are

• that the forward search of the bidirectional first phase and the downward
search of the second phase are time-dependent multi-label searches (see Al-
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Algorithm 6.2. Finds an up-down-path from s to t in a heuristic TCH structure

H that has not necessarily minimum cost for departure time τ0 (though the er-

ror is hoped to be small). If a Pareto prefix-optimal (s, t,τ0)-MC up-down-path

is present in H, then such an up-down-path is surely found. As subroutines

tdMultiLabelRelax (see Algorithm 6.3), cpIntervalRelax (see Algorithm 6.4), and

extractPathFromLabelId (see Algorithm 2.3) are invoked.

1 function tchMcQuery(s, t :V, τ0 :R) : Path
2 Ls[u] := /0 for all u ∈V , Ls[s] := (0,s,τ0|0,⊥)
3 [qt [u],rt [u]] := [∞,∞] for all u ∈V , [qt [t],rt [t]] := [0,0]
4 pt [u] := /0 for all u ∈V
5 B := ∞, X := /0 // upper bound and candidate set
6 Qs :=

��
(0,s,τ0|0,⊥), 0

��
, Qt := {(t,0)} : PriorityQueue

7 function downwardSearch() : Path
8 Ldown[u] := /0 for all u ∈V
9 Qdown := /0 : PriorityQueue // PQ for downward search
10 foreach u ∈ X do
11 foreach (i,u,τ|γ, i�) ∈ Ls[u] do
12 if τ + γ +qt [u]≤ B then
13 Qdown.insert

�
(i,u,τ|γ, i�),τ + γ

�

14 add (i,u,τ|γ, i�) to Ldown[u]

15 while Qdown �= /0 do
16 (i,u,τ|γ, i�) := Qdown.deleteMin()
17 if u= t then return extractPathFromLabelId(i)
18 for v ∈ pt [u] do
19 tdMultiLabelRelax

�
u→ f |c v, (i,u,τ|γ, i

�), inext, Ldown, Qdown

�

20 Δ := t, inext := 1 // search direction and next unused label id
21 while (Qs �= /0 or Qt �= /0) and min{Qs.min(),Qt .min()} ≤ B do
22 if Q¬Δ �= /0 then Δ := ¬Δ // change of direction: ¬s := t and ¬t := s
23 if Δ = s then
24 (i,u,τ|γ, i�) := Qs.deleteMin()

25 else
26 u := Qt .deleteMin()

27 Mu := min
�

σ +δ
�
�( j,u,σ |δ , j�) ∈ Ls[u]

�
∪{∞}

28 if B< ∞ and qt [u]+Mu ≤ B then X := X ∪{u}
29 B := min{B, rt [u]+Mu}
30 for u→ f |c v ∈ EΔ do

31 if Δ = s then tdMultiLabelRelax
�
u→ f |c v, (i,u,τ|γ , i

�), inext, Ls, Qs

�

32 else cpIntervalRelax(u→ f |c v, qt ,rt , pt ,Qt)

33 if B= ∞ then return �� else return downwardSearch()
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Algorithm 6.3. Edge relaxation procedure as in time-dependent multi-label search

(see Algorithm 4.10). Note that the edge weights are taken from the set F ��
Π ×

XΠ in the context heuristic TCHs. So, c is a p.w.c. real function. The Reference

parameters inext,L,Q are necessary to provide context information of the calling

time-dependent multi-label search. These are the next unused label id, the label

lists associated with the nodes, and the PQ.

1 procedure tdMultiLabelRelax(u→ f |c v : Edge, � : Label, inext,L,Q : Reference)

2 (i,u,τ|γ, ·) := �
3 �new := (inext, arr f (τ)|γ + c(τ), i)
4 if � is not dominated by any label in L[v] then
5 Q.insert(�new, arr f (τ)+ γ + c)
6 remove all labels dominated by �new from L[v] and Q
7 add �new to L[v]
8 inext := inext+1

gorithm 4.10 in Section 4.4.1) instead of a time-dependent Dijkstra, and

• that the backward search of the bidirectional first phase is a backward CP
interval search (see Algorithm 4.8 in Section 4.3.6) instead of a backward
TTP interval search.

Remember that Dijkstra-like single label searches can be applied in the presence
of additional costs, but in backward direction. This is because suffix-optimality is
provided, though prefix optimality is not.

To improve the readability of Algorithm 6.2, the downward search is encap-
sulated in a nested procedure, just like in case of Algorithm 5.4. To prevent that
the pseudocode gets too long, edge relaxations are factored out. The respective
pseudocode can be found in Algorithm 6.3 and 6.4.

Phase 1: Bidirectional Upward Search. The forward search is a time-depend-
ent multi-label search running in H↑ and starting from s. The backward search is
a backward CP interval search running in H↓ starting from t. So, the backward
search is an approximative algorithm (in contrast to the forward search, which
is exact). This is necessary, because the arrival time is part of what we want to
compute. A backward search that requires a given arrival time cannot be applied
hence, just like in case of TCH-based EA queries. Forward and backward search,
respectively, only go upward and run in H↑ and H�

↓ (note that backward searches
always run in the transpose graph).

The bidirectional search maintains some data during computation. With re-
spect to the forward search this is the PQ Qs as well as a label set Ls[u] for every
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Algorithm 6.4. Edge relaxation procedure as in backward CP interval search (see

Algorithm 4.8). The Reference parameters q,r, p,Q are necessary to provide con-

text information of the calling backward CP interval search. These are the node

labels, the predecessor information, and the PQ. The procedure is very similar to

ttpIntervalRelax (see Algorithm 5.6). Only Line 2 is different.

1 procedure cpIntervalRelax(u→ f |c v : Edge, q,r, p,Q : Reference)

2 [qnew, rnew] :=
�
q[u]+min( f + c), r[u]+max( f + c)

�

3 if qnew > r[v] then return
4 if rnew < q[v] then p[v] := /0
5 p[v] := {u}∪ p[v]
6 if qnew ≥ q[v] and rnew ≥ r[v] then return
7 [q[v],r[v]] :=

�
min{q[v],qnew}, min{r[v],rnew}

�

8 if v �∈ Q then Q.insert(v, q[v])
9 else Q.updateKey(v, q[v])

node u ∈V . Additional predecessor information is not needed, because a node la-
bel (i,u,τ|γu, i

�)∈ Ls[u] already contains the id i� of the preceding label on the path
from s to u represented by the label. Note that Qs can contain multiple labels of
the same node. Also note that Ls[u] not only contains the unsettled labels (i.e., the
labels still in Qs) but also the settled labels (i.e., the labels already removed from
Qs) of a node u. With respect to the backward search, the bidirectional search
maintains the PQ Qt and for every node u ∈V a node label [qt [u],rt [u]] as well as
a predecessor information pt [u].

Forward and backward search are, like in case of Algorithm 5.4, performed in
an alternating manner. This is controlled by the variable Δ that stores the current
search direction (s means forward, t means backward, see Line 22). There is also
the cost bound B, which is an upper bound of the travel cost of the cheapest up-
down path found so far. It can be updated whenever a nodes label or a node is
removed from the PQ, respectively, where the node is reached both by forward
and backward search (see Line 29). The candidate node set X stores all nodes
where forward and backward search meet. The cost bound B can be used to rule
out the one or another candidate node; namely, candidate nodes that are top nodes
of up-down-paths that are more expensive than the best up-down path processed
so far (see Line 28). The tentative minimum travel cost Mu of a node u is used to
rule out candidate nodes and to maintain the cost bound B.

The cost bound B is also used to stop the bidirectional search earlier than
Qs and Qt running empty. The condition of the while loop interrupts the loop
when neither forward nor backward search can contribute to a better up-down-
path (see Line 21). After the bidirectional search terminates, we can be sure that
the predecessor graphs of forward and backward search together contain one or
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more up-down-paths from s to t; that is, one or more up-down-paths

�s→ ·· · → x→ ·· · → t� ⊆ H↑(Ls)∪
�
H�
↓ (pt)

��

with x being the top node. Extracting such an up-down-path is what the second
phase does.

Phase 2: Downward Search. The second phase, which we call downward
search, is a time-dependent multi-label search running on (H�

↓ (pt))
� ⊆H↓; that is,

on the transpose predecessor graph of the backward search. The PQ of the down-
ward search is Qdown and a label set Ldown[u] is assigned to every node u ∈V . The
search starts from the candidate nodes in X , which means the PQ Qdown is initial-
ized with the labels in

�
u∈X Ls[u]. The search stops as soon as the first label of

the node t is removed from the Q.down. So, the downward search works like the
one-to-one version of multi-label search, although it starts from multiple nodes
(namely, from candidate nodes in X). Again, some labels may be ruled out using
the cost bound B (Line 10 to 14).

6.3.2 Correctness

Lacking the guaranteed existence of MC up-down-paths in heuristic TCHs, we
cannot guarantee that the computed route is an (s, t,τ0)-MC-path for given start
node s, destination node t, and departure time τ0. We can also not guarantee
that Algorithm 6.2 computes the cheapest present up-down-path from s to t for
departure time τ0. The reason is that the TCF h+ e of a shortcut edge u→h|e v in
a heuristic TCH is in general only piecewise continuous (i.e., TCFs of shortcuts
can have points of discontinuity). As a result, the Pareto prefix-optimality (see
Section 4.4.1) of the original road network G is lost in the heuristic TCH. But
without Pareto prefix-optimality, forward and downward search are not able to find
the cheapest present upward and downward paths respectively. Still, if someone
finds a preprocessing procedure creating exact TCH structures that guarantee the
existence of Pareto prefix-optimal MC up-down-paths, then we can be sure that
the computed up-down-paths represent MC paths in the original road network G.
All this is explained in more detail in the rest of this section.

Discontinuity in Heuristic TCH structures. To understand, how heuristic con-
traction introduces TCFs with discontinuities in spite of the fact that the original
road network G only has continuous TTFs and constant additional travel costs,
consider the situation depicted in Figure 6.2. A shortcut edge u→ f �|c� � f |c v repre-
senting a path �u→ f |c x→ f �|c� v� with continuous TTFs and time-invariant addi-
tional costs (i.e., f |c, f �|c� ∈FΠ×R≥0) is added during contraction of a node x.
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f |c f �|c�

g|d := min
�
gold|dold, f

�|c� � f |c
�

g�|d�

wu

x

v

Figure 6.2. How heuristic contraction of nodes introduces piecewise continuous TCFs
into a heuristic TCH structure. Contracting the node x, we insert a new shortcut
edge u→ f �|c� � f |c v that represents the removed path �u→ f |c x→ f �|c� v� (drawn dotted).
The new shortcut is merged with the already present edge u →gold|dold

v. Even with
f |c, f �|c�, g�|d�, gold|dold ∈FΠ×R≥0, it is quite likely that the TTF g has points of dis-
continuity. So, h+e with h|e := g�|d� � g|d very probably has points of discontinuity, too.
This means contracting v after x is likely to introduce a TCF with one or more points of
discontinuity.

Obviously, the shortcut has the continuous TTF f � ∗ f and the constant additional
cost c�+ c. Merging the shortcut with an already present edge u→gold|dold

v yields
an edge u→g|d v with g|d :=min(gold|dold, f

�|c� � f |c). In general, the TTF g and
the ACF d have points of discontinuity (i.e., g|d ∈F ��

Π×XΠ), though g+d is still
guaranteed to be continuous if this is the case for gold + dold. An example is the
situation depicted in Figure 3.7, where the minimum of continuous TCFs results
in a continuous TCF, but the corresponding TTF is only piecewise continuous.

Returning to Figure 6.2 assume the node v is contracted and a shortcut is in-
serted for the path �u→g|d v→g�|d� w�. The TCF h+ e of the shortcut u→h|e w
with h|e := g�|d� � g|d is no longer guaranteed to be continuous then. To under-
stand that, consider

h+ e= g� ∗g+d� ∗g d = g� ◦arrg+g+d� ◦arrg+d

= (g�+d�)◦arrg+g+d .

Although g�+ d� and g+ d are continuous, this is not the case for the TTF g in
general. So, (g�+d�)◦arrg is also not continuous in general and the same holds
true for the TCF h+ e = (g�+ d�) ◦ arrg+ g+ d. In other words, the linking
h|e := g�|d� � g|d can induce points of discontinuity in h+ e, because g probably
has points of discontinuity. Figure 6.3 shows an example of such a situation where
linking results in a TCF with points of discontinuity, although the operands of the
link operation represent fully continuous TCFs.

Loss of Pareto Prefix-Optimality. We just explained how piecewise continuous
TCFs arise in a heuristic TCH structure H. Now we discuss how these TCFs de-
stroy the Pareto prefix-optimality of H. The actual problem is that discontinuities
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Figure 6.3. How linking g|d � f |c provokes points of discontinuity in the represented
TCF. Consider f |c ∈F ��

Π×XΠ (bottom left), with f ,c discontinuous at 3 and 6, but f +c
continuous. Also consider g|d with continuous g (top left) and d≡ 1. The TCF g∗ f +d∗ f

c = g ∗ f + d+ c (bottom right), which is represented by g|d � f |c, is discontinuous at 3
and 6, too. The discontinuity of f at 3 and 6 is inherited by arr f and thus by arrg◦arr f ,
g ∗ f , as well as by g ∗ f + c+ d. Note that g ∗ f is visualized in the style of Figure 3.5
with the difference that TTFs have points of discontinuity here.
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arr fP(τ0) arr fR(τ0)

τ1

CS

Figure 6.4. How a TCF with a negative discontinuity destroys Pareto prefix optimal-
ity. The negative discontinuity of CS at τ1 violates the FIFO property and the difference
CS(arr fP(τ0))−CS(arr fR(τ0)) can get so large, such that CS(arr fR(τ0)) +CR(τ0) =
CRS(τ0) < CPS(τ0) = CS(arr fP(τ0)) +CP(τ0) can hold, even if fP(τ0) < fR(τ0) and
cP(τ0)< cR(τ0) implying CP(τ0)<CR(τ0) holds.

of TCFs may be negative (see Section 2.1.1). This obviously violates the FIFO
property, which is formally fulfilled by all TCFs in the original road network G.

To understand that, consider the situation depicted in Figure 6.4. There are
two paths P,R running from s to u as well as a path S running from u to t. Assume
fP(τ0) < fR(τ0) and cP(τ0) < cR(τ0) are fulfilled; that is, P strictly dominates
R. Further assume CS = fS + cS has a negative discontinuity for departure time
τ1 ∈ [arr fP(τ0), arr fR(τ0)]. Then, it can happen that

CPS(τ0) =CS

�
arr fP(τ0)

�
+CP(τ0)>CS

�
arr fR(τ0)

�
+CR(τ0) =CRS(τ0)

holds in spite of the fact that P dominates R for departure time τ0. This is the case
if

CS

�
arr fP(τ0)

�
−CS

�
arr fR(τ0)

�
>CR(τ0)−CP(τ0)

holds; that is, if the jump of the negative discontinuity in CS is wide enough.

What the Basic MCQuery Computes. For the heuristic TCH structures gener-
ated by our heuristic preprocessing described in Section 6.2, we can only guaran-
tee that some up-down-path is found by our MC query procedure. This up-down-
path is not necessary an (s, t,τ0)-MC up-down-path.

Lemma 6.14. Given a TCH structure H generated from G and s, t ∈ V,τ0 ∈ R.
Then, Algorithm 6.2 returns an up-down-path from s to t in H.

Proof. That an up-down-path �s→ ·· · → x0 → ·· · → t� with top node x0 exists
in H is guaranteed by Theorem 6.13. So, x0 is surely reached by the forward
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search and Ls[x0] contains at least one label �0. Also, x0 is reached by the back-
ward search. So, t is reachable from x0 in (H�

↓ (pt))
� ⊆ H↓. Now, consider the

“artificial” graph Ĥ formed by

• the transpose predecessor graph of the backward search (H�
↓ (pt))

�,

• the start node s, and

• an “artificial” node y� and an “artificial” path �s→τ�−τ0|γ� y�→0|0 x� for every
�= (·,x,τ�|γ�, ·) ∈ Ls[x] with x ∈ X .

Obviously, t is reachable from s in Ĥ. So, running a time-dependent multi-label
search in Ĥ with start node s and departure time τ0 surely returns some path from s
to t. But such a search is equivalent to the downward search in (H�

↓ (pt))
� starting

from the nodes in X .

As already said, our MC query procedure is optimal in the sense that Pareto
prefix-optimal MC up-down-paths are found if present.

Theorem 6.15. Given a TCH structure H generated from G and s, t ∈ V,τ0 ∈ R.
If H contains an (s, t,τ0)-MC up-down-path P0 = �s→ ·· · → x0 → ·· · → t�, such
that �s→ ·· · → x� ⊆ H↑ is Pareto prefix-optimal in H↑ and �x→ ·· · → t� ⊆ H↓ is
Pareto prefix-optimal in H↓, then Algorithm 6.2 returns such an up-down-path.

Proof. Let R0 be the upward part of P0. Surely, x0 is reached by the forward
search and Ls[x0] contains a label �0 = (·, x0, arr fR0(τ0)|cR0(τ0), ·) represent-
ing a corresponding Pareto prefix-optimal path from s to x0 in H↑ (see Corol-
lary 4.68). Also, x0 is reached by the backward search. There is a Pareto prefix-
optimal (x0, t,arr fR0(τ0))-MC-path S0 in (H�

↓ (pt))
� ⊆ H↓. To understand that,

consider backward CP interval search as a special case of backward approximate
CP search (see Algorithm 4.9 in Section 4.3.7) and apply Lemma 4.55, while tak-
ing into account that the condition in Line 3 of Algorithm 6.4 is slightly stronger
than the analogous condition in Line 14 of Algorithm 4.9. This way we obtain
that (H�

↓ (pt)) contains all (x0, t,τ)-MC-paths with respect to H↓, which includes
Pareto prefix-optimal ones. That also means

CR0S0
(τ0) =CR0(τ0)+CS0

(arr fR0(τ0)) =CP0(τ0) = CostG(s, t,τ0) .

Again, consider the “artificial” graph defined in the proof of Lemma 6.14. Obvi-
ously, Ĥ contains a path Ŝ0 := �s→ fR0

(τ0)|cR0
(τ0) y�0 →0|0 x0�S0 with

CŜ0
(τ0) =CS0

(arr fR0(τ0))+CR0(τ0) = CostG(s, t,τ0)

and there is no cheaper Pareto prefix-optimal path in Ĥ for departure time τ0. The
one-to-one version of a time-dependent multi-label search in Ĥ returns the path
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Ŝ0 or another path with travel cost CostG(s, t,τ0) hence (see Corollary 4.69). This
search is equivalent to the downward search. So, the up-down-path returned by
the downward search has travel cost CostG(s, t,τ0) for departure time τ0.

6.3.3 Stall-on-Demand

The basic query algorithm explained above can be further improved by the pruning
technique stall-on-demand, just like without additional costs (see Section 5.3.3).
Stall-on-demand has originally been developed in the context of highway node
routing [74] and is also used with constant travel cost CHs [44]. Just like in case
of EA and TTP queries, stall-on-demand is applied to the first phase of the query
algorithm; namely, to the bidirectional phase (see Section 5.3.3). In case of the
backward search, which is a backward CP interval search here, stall-on-demand
works as in case of backward search of the TCH-based EA query, which is a
backward TTP interval search. In case of the forward search, stall-on-demand
has to be adapted to work with two-dimensional instead of one-dimensional travel
costs.

Stall-on-Demand Forward. The forward search is a time-dependent multi-label
search in H↑ starting from s and settles labels instead of nodes. Correspondingly,
stall-on-demand does not stall nodes but labels. Whenever a label �u = (i,u,τ|γ, i�)
of a node u is taken out of the PQ, we iterate over all incoming edges w→g|d u of
u in H↓ and over all labels ( j,w,σ |δ , j�) ∈ Ls[w] to check whether the condition

∃ w→g|d u ∈ E↓ and ( j,w,σ |δ , j�) ∈ Ls[w] :

arrg(σ)< τ and δ +d(τ)< γ

is fulfilled. We check, in other words, whether a path of the form

Pswu := �s→ ·· · → w�� → w� → w→g|d u�

with �s→ ·· ·→w� ⊆H↑ and w→g|d u∈ E↓ exists that strictly dominates the path

Psu := �s→ ·· · → u�� → u� → u� ⊆ H↑

represented by the label �u (see Figure 6.5). If it does, the label �u is stalled,
meaning that no edge u→ f |c v is relaxed for this label.

Stall-on-demand as just described, rules out the one or another path that is not
Pareto prefix-optimal in H, even if it is Pareto prefix-optimal in H↑. This, however,
means that stall-on-demand may alter the result of the TCH-based MC query. The
reason is that heuristic TCH structures lack Pareto prefix-optimality, as explained
in Section 6.3.2. However, there is always a path that is not stalled; that is, some
path is always found in the end as the following lemma tells us.



296 Chapter 6. Minimizing Time-Dependent Travel Times with Additional Costs

im
po

rt
an

ce

(i�,u�,τ �|γ �, i��)

(i��,u��,τ ��|γ ��, i���)

(i,u,τ|γ, i�)

( j,w,σ |δ , j�)

( j��,w��,σ ��|δ ��, j���)

( j�,w�,σ �|δ �, j��)

(0,s,τ0|0,⊥)

g|d

Pswu

Psu

Pux

x

Figure 6.5. Stalling of a label (i,u,τ |γ, i�) of a node u. When (i,u,τ|γ, i�) is taken out of
the PQ, we consider all labels ( j,w,σ |δ , j�) ∈ Ls[w] with w→g|d u ∈ E↓ and stall the label
(i,u,τ|γ, i�) if arrg(σ)< τ and δ +d(σ)< γ is fulfilled. Then, the path Psu ⊆ H↑ (drawn
dotted) is ruled out, because it is strictly dominated by the path Pswu ⊆H (drawn dashed).
But, if the underlying TCH structure lacks Pareto prefix-optimality, then Psu may still be
prefix path of a path PsuPux that is cheaper than PswuPux; that is, CPsuPux(τ0)<CPswuPux(τ0).

Lemma 6.16. Stalling a label with respect to the forward search, never prevents
the TCH-based MC query from finding an up-down-path from s to t.

Proof. Assume the prefix path Psu := �s→ ·· · → u� ⊆ H↑ of an up-down-path

�s→ ·· · → u→ ·· · → x→ ·· · → t�

with top node x is pruned by finding a path Pswu�s→ ·· · → w→g|d u� with �s→
·· · → w� ⊆ H↑ and w→g|d u ∈ E↓. Obviously, x is reachable from w in H, and
thus in G. This implies that an up-down-path from w to x is present in H because
of Theorem 6.13. Also, w is reachable from s in H↑. So, H contains an up-down-
path from s to t that does not contain an edge u→ v ∈ E↑, and Algorithm 6.2 is
still able to find such an up-down-path.

Note that the above proof would not work if the stalling were propagated to
nodes higher up in the TCH structure (as we do it in case of EA queries, see
Section 5.3.3). Again, this is because of the lack of Pareto prefix-optimality
that we have in heuristic TCH structures. As a consequence, the propagation
of stalling can prevent that an up-down-path from s to t is found. To repair this
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it is not enough that an MC up-down-path exists whose upward part is Pareto
prefix-optimal with respect to H↑ and whose downward part with respect to H↓.
Instead, we need an MC up-down-path that is Pareto prefix-optimal with respect
to H, which is a stronger condition.

Stall-on-Demand Backward. We already said that stall-on-demand with re-
spect to the backward search, which is a backward CP interval search, works
in the same way as in case of the backward search of the TCH-based EA query.
This means, a node u is stalled if an edge u →g|d w ∈ E↑ exists with qt [u] >
rt [w]+max(g+d). That stalling a node with respect to the backward search does
not prevent us from finding some up-down-path from s to t, follows with an anal-
ogous argument as in case of the forward search. Note that we do not propagate
the stalling to further nodes, just like in case of the forward search.

6.4 Experimental Evaluation

This section reports an experimental evaluation of inexact MC querying with
heuristic TCHs as described in this chapter. The underlying test instances (see
Section 6.4.1) all relay on a road network instance of Germany with TTFs re-
flecting midweek high traffic and utilize different sets of additional time-invariant
travel costs. After explaining the basic experimental setup (see Section 6.4.2), we
present the observed results for preprocessing and querying. The main outcome
is that inexact MC queries are fast enough with negligible error; at least, for the
considered test instances (see Section 6.4.3).

6.4.1 Input Instances

We use six input instances that consist of the same time-dependent road net-
work instance of Germany, each combined with one of six different sets of time-
invariant additional costs.

Time-Dependent Road Network. The underlying time-dependent road network
instance of Germany is provided by PTV AG [71] for scientific use. It has about
4.7 million nodes, 10.8 million edges, and TTFs reflecting midweek (i.e., Tuesday
till Thursday) traffic collected from historical data; that is, a high traffic scenario
with about 7.2 % non-constant TTFs. Table 6.1 summarizes this information and
reports the average relative delay including and excluding constant TTFs (for a
definition of average relative delay see Section 5.6.1 on page 248). For each edge
not only a TTF is available but also the driving distance. We use the driving
distance as a basis to form the additional constant travel costs as explained below.
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Germany midweek

avg. relative delay complexity

|V | |E| space non-const. including excluding avg. incl. avg. excl. max.
[mio] [mio] [B/n] TTFs [%] const. [%] const. [%] const. [#] const. [#] [#]

4.7 10.8 131 7.2 2.6 36.1 2.1 16.3 51

Table 6.1. Some properties of our input road network: number of nodes (“|V |”) and edges
(“|E|”), space usage in byte per node (“B/n”), percentage of time-dependent edge weights
(i.e., “non-const. TTFs”), as well as the average (“avg.”) relative delay and complexity of
the TTFs, both including (“incl.”) and excluding (“excl.”) the constant (“const.”) ones.
The maximum (“max.”) occuring complexity of a TTF is also reported.

This road network instance is in principle the same as the instance Germany
midweek used in the experimental evaluation of TCHs without additional costs
(see Section 5.6). Both versions of Germany midweek are extracted from the
same raw data provided by PTV AG [71]. The version used in Section 5.6 has
been completely provided by Delling. The version used here has been extracted
utilizing program code provided by Delling. Any differences should be small.

Table 6.1 reports the total space usage of the input road network when used
as underlying graph for time-dependent multi-label A* search. The reader may
already have noticed that the space usage is considerably greater than the space
usage of Germany midweek reported in Table 5.1. This is mainly because the
graph data structure used here allows forward and backward search. More pre-
cisely, each edge is represented by two data objects instead of a single one; one to
enable relaxation in forward direction and one in backward direction. Storing the
driving distance of each edge also increases the space usage a little, but much less
than storing each edge twice.

Time-Invariant Additional Costs. We use a very simple approximation of en-
ergy costs to provide input instances for our experimental evaluation of heuristic
TCHs. The idea is that the additional time-invariant travel cost of an edge esti-
mates the energy cost raised by traveling along that edge. With typical gasoline
prices we assume that driving 1 km costs 0.1e. To fix a proportion between en-
ergy costs and time spent driving, we must fix a prize for travel time, too. We use
different rates of 5e, 10e, and 20e per hour. Using 0.1 sec as unit of time and
1 m as unit of distance we obtain time-dependent total costs of

time+λ ·distance (6.11)

where λ has the values 0.72, 0.36, and 0.18 respectively.
To understand how an hourly rate of 5e corresponds to λ = 0.72, for exam-

ple, consider how the cost for traveling a distance of d · 1m in time τ · 0.1sec is
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Germany midweek, energy cost = 0.1e/km

motorway tolls hourly rate λdefault λmotorway

none 5e/h 0.72 0.72
10e/h 0.36 0.32
20e/h 0.18 0.18

0.1e/km 5e/h 0.72 1.44
10e/h 0.36 0.72
20e/h 0.18 0.36

Table 6.2. Six input instances derived from Germany midweek that all have energy cost
of 0.1e/km, but different hourly rates of 5e/h, 10e/h, or 20e/h, each with or without
motorway tolls (i.e., an extra price of 0.1e/km on motorways). The two-dimensional
travel cost of an edge u→ f v with driving distance d is f |λd ∈ FΠ ×R≥0; with λ =
λmotorway if the edge belongs to a motorway and λ = λdefault otherwise.

calculated. The travel cost amounts to

cost =
5e

h
·0.1sec · τ +

0.1e

km
·1m ·d =

5e

36000
· τ +

1e

10000
·d

in this case. It is important to note that MC paths do not change if all travel costs
in a graph are scaled by the same factor. It is hence equivalent to deal with any
travel cost proportional to cost. We choose

cost ∼ τ +
36000e

5e ·10000
·d = τ +0.72 ·d ,

which has the great advantage that travel time and additional time-invariant cost
are separated cleanly, just like in Equation (6.11).

Accordingly, the additional constant travel costs are simply the driving dis-
tance scaled by the respective value of λ . This yields three input instances of Ger-
many midweek, one for each λ ∈ {0.72, 0.36, 0.18}. An edge u→ fuv v ∈ E with
driving distance duv gets the two-dimensional edge weight fuv|λduv ∈FΠ×R≥0;
that is,

u→ fuv|λduv v ∈ E .

We also consider the effect of motorway tolls. To do so, we fix an extra price
of 0.1e/km on motorways. This means that edges belonging to motorways have
double additional constant edge costs of 0.2e/km. This can be expressed by
using two different values of λ ; namely, λmotorway := 2λ for edges belonging
to a motorway and λdefault := λ for all other edges. This yields three further
instances of Germany midweek. Altogether, we have six instances of Germany
midweek: two instances for every hourly rate of 5e, 10e, or 20e, with and
without motorway tolls each. Table 6.2 summarizes all six instances.
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6.4.2 Setup

The experimental evaluation is done on a machine with two Core i7 Quad-Cores
clocked at 2.67 Ghz with 48 GiB of RAM with Ubuntu 12.04.5 using GCC 4.6.4
with optimization level 3. It is the same machine as used to evaluate TCHs with
travel times as travel costs (see Section 5.6.2) but with different versions of Linux
and GCC. Running times are always measured using one single thread except of
the preprocessing where 8 threads are used. Note that we use the system timer
to measure running times. This is different to the experiments described in Sec-
tion 5.6.3, where we count CPU cycles to measure query times. To avoid unstable
query times caused by NUMA effects, we force the CPU core to solely use its
local memory. In case of the preprocessing, which runs in parallel, this is not
possible. So, the preprocessing times may vary a little.

The performance of the algorithms is evaluated in terms of running time, mem-
ory usage, and how often deleteMin is invoked. Note that TCH-based MC queries
(see Section 6.3) are inexact because of the heuristic nature of the underlying TCH
structures (see Section 6.2). For this reason, maximum and average relative error
are also reported. To compute the exact results, we use time-dependent multi-
label A* search (see Section 4.4.2). To measure the average running time of MC
queries we use 10 000 randomly selected start and destination pairs, together with
a departure time randomly selected from [0h,24h) each. Note that we measure
the running time of the 10 000 MC queries only once. This is different from the
experiments in Section 5.6.3 where we measure the running times of 1 000 queries
three times reporting the average of the median running times as result.

To measure maximum and average relative error as well as the average number
of invocations of deleteMin, we also run MC queries with randomly selected start,
destination, and departure time, but 100 000 instead of 10 000. The memory usage
is given in terms of the average total space usage of a node (not the overhead) in
byte per node. For TCH-based techniques, all figures refer to the scenario that not
only the time-dependent travel costs but also the routes have to be determined.

Besides the bunches of 10 000 and 100 000 random queries just described, we
also perform rank queries; that is, for each i ∈ {6,8, . . . ,22} we look at a bulk
of 1 000 queries with the property that the one-to-one version of time-depend-
ent Dijkstra settles the destination node as the 2i-th node (2i is called the time-
dependent Dijkstra rank). Note that we already use this methodology by Sanders
and Schultes (see Section 6.4 in their article [75]) to plot the distribution of EA
query times over (time-dependent) Dijkstra rank (see Section 5.6.3 on page 260).
Here, we use it to plot the distribution of relative errors over time-dependent Di-
jkstra rank.
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6.4.3 Results

First, we report the results obtained by performing random queries. There, we
are not able to report relative errors for the input distances with motorway tolls,
as multi-label A* search does not terminate in reasonable time there. For this
reason, we perform rank queries to report relative errors for Dijkstra ranks up to
220. There, multi-label A* search is feasible even with motorway tolls.

Random Queries. Table 6.3 shows the behavior of inexact TCH-based MC
queries (see Algorithm 6.2) running on heuristic TCH structures that are created
by the preprocessing described in Section 6.2. The underlying inputs are the six
input instances derived from Germany midweek summarized in Table 6.2. The
behavior of two other algorithmic techniques is also shown. These are

• time-dependent multi-label A* search (see Section 4.4.2), which we use as a
reference method to obtain exact minimum travel costs, as well as

• inexact TCH-based MC query (see Algorithm 6.2) running on a travel time
TCH; that is, on a TCH structure created by the preprocessing described in
Section 5.2.

Note that the travel time TCHs could be used for exact EA querying with Algo-
rithm 5.4. Also note that the travel time TCHs are not created with the implemen-
tation used in Section 5.6. Instead, we use the implementation of heuristic TCH
preprocessing with some adaptions. Running the MC query procedure on travel
time TCHs is interesting, because we want to know, whether heuristic TCHs ac-
tually bring a benefit. Our results show that this definitely the case, as discussed
below.

Considering Table 6.3, one sees that motorway tolls make the answering of
MC queries much harder, because the observed space usages and running times
are much larger than without motorway tolls. Without motorway tolls we get the
hardest instance at an hourly rate of 5e, which corresponds to λ = 0.72. For
higher hourly rates (i.e., for smaller values of λ ), things seem to be easier. This
is not surprising because smaller values of λ mean that travel time and travel cost
are more correlated. With motorway tolls, in contrast, we get the hardest instance
at an hourly rate of 10e (i.e., λdefault = 0.36 and λmotorway = 0.72). A possible
explanation is that motorway tolls are negatively correlated to travel time.

Without motorway tolls, multi-label A* has running times similar to Dijk-
stra’s algorithm, as its running time is mainly governed by the running time of
the Dijkstra-like backward CP interval search in this case. This follows from the
relatively few invocations of deleteMin (the invocations raised by the backward
CP interval search are not included in Table 6.3). Note that this low number of
invocations implies that a more efficient choice of the heuristic function πt would
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Germany midweek

space order query rel. error percentage of rel. error ≥

method or hourly total time delMin time max. avg. 1% 0.1% 0.01% 0.001%
structure rate [B/n] [h:m] [#] [ms] [%] [%] [%] [%] [%] [%]

energy cost = 0.1e/km, no motorway toll

multi-label A*
5e/h

131 – 271 536 2 155.26 – – – – – –
heuristic TCH 1 478 0:35 2 127 3.92 0.11 0.00 0.00 0.00 0.28 1.02
travel time TCH 1 063 0:27 1 207 1.89 14.82 0.68 22.15 63.03 76.76 80.82

multi-label A*
10e/h

131 – 188 036 2 090.19 – – – – – –
heuristic TCH 1 315 0:29 1 774 3.04 0.08 0.00 0.00 0.00 0.05 0.27
travel time TCH 1 063 0:27 1 198 1.89 9.41 0.26 7.69 33.94 49.17 55.53

multi-label A*
20e/h

131 – 155 489 2 086.46 – – – – – –
heuristic TCH 1 209 0:29 1 480 2.48 0.27 0.00 0.00 0.01 0.04 0.13
travel time TCH 1 063 0:26 1 182 1.88 7.38 0.09 2.19 15.31 26.56 32.31

energy cost = 0.1e/km, motorway toll = 0.1e/km

heuristic TCH
5e/h

1 859 1:10 4 853 12.92
travel time TCH 1 063 0:25 2 681 3.76

heuristic TCH
10e/h

2 033 1:23 10 483 34.03
travel time TCH 1 063 0:25 2 692 3.66

heuristic TCH
20e/h

1 648 0:53 7 161 22.10
travel time TCH 1 063 0:25 2 534 3.59

Table 6.3. Behavior of time-dependent MC queries for different hourly rates 5e/h,
10e/h, and 20e/h. With energy costs of 0.1e/km this corresponds to the λ values 0.72,
0.36, and 0.18 respectively. Results are reported both with additional motorway tolls of
0.1e/km and without tolls. The reported node order time always refer to parallel ordering
with 8 threads in shared memory. Query performance is reported in terms of average run-
ning time and average number of removals from the PQ (“delMin”, without PQ removals
of interval search in case of multi-label A*). Relative (“rel.”) error of the query result is
reported maximum (“max.”) and average (“avg.”) relative error. Also, the percentage of
routes with a relative error greater or equal 1%, 0.1%, 0.01%, and 0.001% respectively
(“percentage of rel. error ≥”). With motorway tolls we cannot report any relative errors
or error ratios, because multi-label A* runs too slow to provide exact results in reasonable
time in this case.

turn time-dependent multi-label A* search into a pretty fast algorithm (at least
without motorway tolls). Hub-labeling [1] may be an appropriate candidate (for
a short summary see Section 1.3.1 on page 32). However, with motorway tolls
multi-label A* is no longer efficient. Accordingly, Table 6.3 omits the respective
errors and error rates as we do not have the exact results in this case.

With less than 4 msec and 35msec, inexact MC queries on heuristic TCHs
have much faster query time than multi-label A* search. Though being inexact
in theory, the method is practically exact for the kind of costs examined here,
as there are nearly no inexact MC paths with a relative error significantly away
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from 0 %. The few outliers are not serious. However, the memory consumption
is quite large. But similar techniques as used for ATCHs (see Section 5.4) may
reduce the memory consumption considerably.

Please note that the implementation of the heuristic preprocessing (i.e., node
ordering) is partly prototypical and considerably slower than the implementation
of the TCH node ordering used in Section 5.6. Considering the node ordering time
of the travel time TCHs, where the same implementation is used as for the node
ordering of the heuristic TCHs, makes this obvious: There, the preprocessing
does in principle the same work as the implementation used in Section 5.5 but
takes more than five times longer (see Table 5.3 for comparison). It may hence
be possible to do the heuristic preprocessing faster; for example, with a more
cache efficient implementation of edges weights f |c ∈F ��

Π×XΠ. Nevertheless,
ordering time and space usage are greater in case of heuristic TCHs than in case
of travel time TCHs; especially, with motorway tolls. A possible explanation
is that CPs have greater complexity than TTPs in theory; namely, up to 2Ω(|V |)

bend points compared to at most K · |V |O(log |V |) bend points in case of TTPs, if
G=(V,E) hasK bend points in total (see Section 6.1.2). But we have not analyzed
this further.

An important result is that simply using travel time TCHs with the MC query
procedure (see Algorithm 6.2) instead of the EA query procedure (see Algo-
rithm 5.4) is not a good alternative to heuristic TCHs. Though without motorway
tolls the average error is tolerable according to Table 6.3, there are several serious
outliers that spoil the result. But in practice, even a few serious outliers may an-
noy some users, and this may already lead to a bad publicity. This can affect the
success of a product or service. So, inexact MC queries with travel time TCHs are
inappropriate. With motorway tolls, it is even worse as we see below.

Rank queries. Figure 6.6 and 6.7 show the distribution of the relative error
over time-dependent Dijkstra rank for different kinds of heuristically obtained
paths compared to exact MC paths computed with time-dependent multi-label A*
search. Especially, Figure 6.7 is interesting. It shows, amongst others, the relative
error of inexact MC queries on heuristic TCHs with enabled motorway tolls for
time-dependent Dijkstra ranks up to 220; an information we have to omit in Ta-
ble 6.3 because multi-label A* search does not terminate in reasonable time for
random pairs of start and destination node with motorway tolls. It turns out that
the error of heuristic MC queries is larger with motorway tolls than without, but
still small enough to consider it as negligible from the practical point of view.

The error of inexact MC queries on travel time TCHs is also shown. Without
motorway tolls there are serious outliers but the average error may be considered
as tolerable. With motorway tolls it is different. With an hourly rate of 5e/h, the
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Figure 6.6. Relative error of different kinds of heuristically obtained paths compared to
the minimum possible (i.e., optimal) travel cost for Germany midweek without motorway
tolls, all plotted over time-dependent Dijkstra rank. Kinds of heuristic paths are minimum
distance paths (green), EA paths (red), paths computed by inexact MC queries on travel
time TCHs (blue), as well as by inexact MC queries on heuristic TCHs (yellow).
The number of paths is 1 000 per rank for each kind of heuristic paths. For every rank a
separate distribution is represented as a box plot like in Figure 5.13. Less than 25 % of
the paths computed by heuristic TCHs have relative error > 0.0001%. So, all boxes and
whiskers degenerate to a small bar at the bottom in this case. Only a few outliers can be
seen.
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Figure 6.7. Relative error of different kinds of heuristically obtained paths compared to
the minimum possible (i.e., optimal) travel cost for Germany midweek with motorway
tolls of 0.1e/km, all plotted over time-dependent Dijkstra rank. For rank 222, we do not
report any relative errors because the exact algorithm (i.e., multi-label A* search) is not
feasible there. The rest is as in Figure 6.6.
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half of the routes has an error of about 1 % or more for time-dependent Dijkstra
rank 214. For rank 216, more than 75 % of the routes have an error clearly above
1 %. This goes up to a median above 13% in case of rank 220. For hourly rates
of 10e/h and 20e/h the errors are smaller but still relatively large. It is obvious
that inexact MC queries on travel time TCHs are not suited as heuristic method to
compute MC paths.

Figure 6.6 and 6.7 also report the relative error of minimum distance paths
and EA paths compared to MC paths. Note that EA paths are different from
the paths computed by the MC query applied to travel time TCHs.4 Obviously,
the quality gets worse with increasing time-dependent Dijkstra rank. Without
motorway tolls, the error of EA paths is barely tolerable with serious outliers. The
quality of minimum distance paths is very bad. With motorway tolls, EA paths
have bad quality, too. The quality of minimum distance paths is partly better and
partly worse than of EA paths in this setup, but can never be considered as good.
The interesting thing about EA paths and minimum distance paths, respectively,
is that their error provides information of how correlated the travel cost is with
the travel time and the travel distance for different problem instances. But neither
minimum distance nor EA paths are suited as heuristic MC paths in the context of
time-dependent road networks with additional time-invariant costs.

6.5 References

This chapter is heavily based on a conference article published together with
Sanders [9]. Many wordings of this articles have been used or rephrased, although
everything is explained in much more detail. New are the discussion why node
contraction with additional costs is problematic as well as the discussion of pos-
sible conditions for exact node contraction (see Section 6.2.1). Also new are the
discussion of the correctness of the minimum cost (MC) query (see Section 6.3.2)
as well as the discussion of stall-on-demand in the context of heuristic TCHs (see
Section 6.3.3).

4EA paths can be computed by EA query (see Algorithm 5.4) applied to travel time TCHs or
by time-dependent Dijkstra (see Algorithm 4.1) applied to the original road network.
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Discussion

7.1 Conclusion

This thesis generalizes contraction hierarchies (CHs) [44] to work with time-
dependent travel costs. We consider two kinds of time-dependent travel costs
in this thesis: time dependent travel times as well as time-dependent travel times
with additional time-invariant costs.

Travel Time Only. We demonstrate that time-dependent route planning compu-
tations without additional time-invariant costs can be performed efficiently in time
and space (see Chapter 5). For earliest arrival (EA) and travel time profile (TTP)
queries, we provide fast, exact, and space efficient methods. On continental size
road networks, exact EA queries take a few milliseconds, and exact TTP queries
less than half a second. On an instance of the German road network this reduces
to less than 35msec. The underlying representation of the German road network
instance, an approximate TCH (ATCH) in this case, needs less than 1 GiB space.
All this is mainly achieved by the careful use of approximation that improves the
efficiency without loosing exactness.

With running times bewtween 0.38 sec and 0.55 sec (depending on the mem-
ory usage of the underlying ATCH structure), TTP queries on continental size
road networks are surely practical but cannot be regarded as instantaneous. So, it
may be worthwhile to sacrifice some exactness to gain further speedup. Accept-
ing errors below 1.4%, we obtain an average running time of 0.1 sec. Note that
no other algorithmic framework except TCH-based techniques is able to provide
feasible answering of TTP queries on continental size road networks so far.

An important lesson learned is that route planning with time-dependent travel
times is far from being a straightforward extension of route planning with con-
stant travel costs. Several nontrivial algorithmic ingredients are necessary to make
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TCHs efficient in time and space. Moreover, the most basic ingredients—namely,
the linking and the minimum operation on TTFs—are relatively difficult to im-
plement. This is due to possible rounding problems that usually not occur in the
lower levels of a hierarchy; that is, they usually occur when the preprocessing is
already running for a while. This makes debugging a rather time-consuming task.

With Additional Time-Invariant Costs. Route planning with additional time-
invariant costs (see Chapter 6) only seems to be a slight extension of time-de-
pendent travel times on the first glance. This, however, is not the case. Instead,
minimum cost (MC) queries are NP-hard1 and cost profiles (CPs) are significantly
more complex than travel time profiles (TTPs) in the worst case. It is hence not
surprising that our method for MC queries is only inexact; although our exper-
iments show negligible errors. The time needed to compute an MC path is—
with less than 35 msec for the hardest test instance based on our German road
network—clearly good enough for practical applications. The preprocessing is
feasible but takes relatively long—1hour and 23 minutes with 8 parallel threads
in shared memory. It must be noted, however, that our implementation of the
heuristic preprocessing is partly prototypical.

What prevents us from exact MC querying is that we are not able to provide a
feasible exact preprocessing procedure so far. With the heuristic TCH structures
produced by our heuristic preprocessing, an optimal route may not be found. One
main obstacle is to decide whether a shortcut edge can be omitted or not during
node contraction. But even if we were able to decide this efficiently, we still
would have to deal with the fact that parallel edges cannot be merged as simply
as without additional costs. All these problems come from the fact that MC paths
lack prefix-optimality in the presence of additional time-invariant costs.

Generalized Additional Costs. Time-dependent travel times with additional
time-invariant costs (see Section 3.2) are modeled as pairs f |c∈FΠ×R≥0 where
FΠ is essentially the set of continuous travel time functions (TTFs). It turns
out that FΠ×R≥0 is not closed under concatenation and merging of the corre-
sponding routes in the road network. There is, however, a superset F ��

Π×XΠ ⊇
FΠ×R≥0 that is closed under these operations. There, F ��

Π is essentially the set
of TTFs with points of discontinuity, and XΠ the set of piecewise constant func-
tions. More precisely, TTFs are now allowed to jump, and additional costs are now
time-dependent (but can only change by jumping). It is interesting that heuristic
TCH structures (see Chapter 6) unavoidably contain edge weights from F ��

Π×XΠ,
even if the underlying road network only has edge weights from FΠ×R≥0. This
means, heuristic TCHs have to deal with edge weights from F ��

Π×XΠ anyway.

1This follows from the NP-hardness of a very restricted special case (see Ahuja et al. [3]).
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This suggests that heuristic TCHs may also be suited to work with more general
time-dependent road networks that originally come with discontinuous TTFs and
time-dependent (i.e., piecewise constant) additional costs. We further discuss that
in Section 7.2.

Correctness and Algorithmic Ingredients. We not only perform experimental
evaluations but also provide proofs of correctness for all TCH-based query algo-
rithms in this thesis. All the query algorithms are assembled of several Dijkstra-
like algorithms. We proof the correctness of the Dijkstra-like algorithms, too (see
Chapter 4). There, it turns out that all these Dijkstra-like algorithms have similar
structure, though they differ in some typical characteristics. So, several proofs
of correctness follow similar patterns. Moreover, some of the Dijkstra-like algo-
rithms are even special cases of others.

7.2 Future Work

Many aspects of time-dependent route planning are still unconsidered. Here, we
discuss some questions that emerge naturally from the work described in this the-
sis. We discuss them separately for time-dependent route planning with and with-
out additional costs.

Travel Time Only. Section 4.3.7 discusses the running time of approximate
TTP search. There, we argue that the approximation of the bounds F [u] and F [u]
should save more running time than the approximation of the travel time functions
(TTFs) stored in the edges. This could be utilized to further speed up travel time
profile (TTP) queries, both with ATCHs (see Section 5.4.3) and inexact TCHs (see
Section 5.5.2). In case of inexact TCHs, one could also replace the conservative
bounds by the minimum and maximum of the original TTFs to allow better prun-
ing. For ATCHs it is similar. That means, additionally to the bounds f and f that
replace the TTF f of an edge u→ f v, edges could be annotated with min f and
max f . The improved pruning could not only speed up TTP queries but also EA
queries, for both inexact TCHs and ATCHs.

Approximation may also help to make the preprocessing faster by further ac-
celerating the witness search (see Section 5.2.2). Performing an approximate TTP
search after the TTP interval search may prevent several expensive TTP searches
during node contraction. Moreover, exact TTP search could be replaced by the
much faster corridor contraction. Approximation could also be used to make the
preprocessing more space efficient and more robust against rounding problems.
The latter applies especially to the higher levels of the hierarchy. There, the bend
points are the result of several linking and minimum operations and necessary
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shortcuts may mistakenly be omitted because of rounding problems. To over-
come this, we could transfer the central idea of ATCHs to TCH preprocessing.
That means, we no longer store exact TTFs in the shortcut edges but lower and
an upper bounds. Only original edges have exact TTFs during this modified ver-
sion of preprocessing. The gap between the lower and upper bounds makes it
less likely that a necessary shortcut is omitted because of rounding errors. Of
course, this may also reduce the running time and the space consumption of the
preprocessing.

The cost term configuration of the node ordering (see Section 5.2.3) has never
been explored systematically. It may be the case that better configurations exist
than the one found by Vetter. Faster or more space efficient preprocessing may be
possible this way. Sample search, which turns out to be not very effective in our
experiments, might also be improved by using multiple departure times.

As suggested by Foschini et al. [36], one could restrict the slopes of TTFs
to ∞, 0, and −1. Additionally, time could be restricted to Z instead of R. The
resulting very special TTFs are closed under linking and minimum. They could
be used to model time-dependent road restrictions, which may be interesting for
practitioners. Using ideas from pixel-based line drawing, one could even use this
setup to represent complicated TTFs with a lossless compression efficiently.

Some time ago Delling et al. came up with customizable route planning [23]
(for a short summary see Section 1.3.1 on page 33). This is most interesting for
practice, because edge weights can be changed arbitrarily without running a new
preprocessing. An update only takes moderate running time and the latest traf-
fic data can be taken into account easily hence. So, a time-dependent version of
customizable route planning would surely be interesting. The techniques devel-
oped in the context of ATCHs (see Section 5.4) may help to keep the memory
consumption and update times moderate. This may also be the case for a time-
dependent version of the recent customizable CHs [31] (for a short summary also
see Section 1.3.1 on page 33).

Two problems that are also interesting from the application point of view are
mobile time-dependent route planning and time-dependent turn costs. With re-
spect to mobile time-dependent route planning, there are promising preliminary
results provided by Kaufmann [53] in a bachelor thesis. Simulating a mobile de-
vice that computes nearly exact earliest arrival (EA) routes for the German road
network, Kaufmann finds that 102 blocks of size 4 KiB are loaded from flash
memory on average. This means query times below 0.15 sec should be possible if
we assume that loading 4KiB from flash memory takes 1.3 msec. Dividing the pe-
riodic time domain [0,Π) into a number of intervals and then storing the TTFs as
small sections grouped by these intervals may also reduce block loads and query
time.
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With Additional Costs. The two main obstacles of node contraction in the pres-
ence of additional costs (see Section 6.2.1) are

• to decide, whether a shortcut can be safely omitted or not, and

• to merge parallel shortcuts without loosing subpaths of minimum cost (MC)
paths.

Regarding the first obstacle, this thesis discusses three conditions that are differ-
ently strong and presumably differently difficult to check. Designing practical
procedures on basis of these conditions and evaluating their performance experi-
mentally would be very interesting. Regarding the second obstacle, the underlying
problem is to decide on which departure intervals a shortcut contributes to an MC
path. So, similar ideas as regarding the first obstacle may be helpful. Then, merg-
ing of parallel shortcuts may be possible without annotating the shortcuts with
too much overlapping partial TTFs (see Section 6.2.1 on page 278). This way,
time-dependent route planning with additional time-invariant costs may become
exact. That our heuristic TCHs show very small errors in our experiments (see
Section 6.4), raises the hope that real-life instances may be manageable.

Regarding the question whether a shortcut can be safely omitted or not, it is
an interesting option that the omitting of shortcuts may become obsolete in the
not so far future. This is due to customizable CHs [31] mentioned before in this
section. This variant of CHs has the great advantage that full CH structures are
used; that is, no shortcut is omitted during node contraction. That the hierarchy
does not get too dense, is because a completely different node order is used than in
case of original CHs [44]. Of course, this does not solve the problem how parallel
shortcut edges can be merged without, on the one hand, loosing subpaths of MC
paths and, on the other hand, without generating too much overlapping partial
TTFs.

In Section 7.1 we suggest that heuristic TCHs may be able to deal with the
more general case that TTFs have points of discontinuity and that additional costs
are piecewise constant (i.e., time-dependent). If an efficient exact node contrac-
tion procedure can be found, then this may even end up in a more general frame-
work for exact time-dependent route planning with piecewise constant additional
costs. There, it must be noted that points of discontinuity in time-dependent travel
costs change the shortest path structure; that is, waiting or cycles (if waiting is
forbidden) may become beneficial (see Section 3.2.4). The latter would require
us to handle “loops” in the context of TCHs.2 It must further be noted that TTFs
violating the FIFO property make the shortest path structure of the original road
network so inconvenient that the existence of Pareto prefix-optimal MC paths is

2Geisberger and Vetter [46] also deal with loops within a variant of constant travel cost CHs
that supports turn costs.
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no longer guaranteed. This even makes multi-label search (see Section 4.4.1) in-
applicable to compute exact solutions.

However, if all TTFs fulfill the FIFO property (i.e., only positive discontinu-
ities are allowed) and if waiting is allowed at the source nodes of edges with piece-
wise constant additional costs, then a heuristic (or even exact) TCH that is suited
for time-invariant additional costs may also work with time-dependent additional
costs. There, waiting can be simulated by TTFs with line segments of slope −1
(as suggested by Orda and Rom [69]). Note that the techniques developed in the
context of ATCHs may be applicable to such TCHs, both in case of time-invariant
and time-dependent additional costs. This way a lot of memory may be saved. An
obvious application of piecewise constant (i.e., time-dependent) additional costs
are time-dependent road charges. Or, time-dependent penalties could be intro-
duced to keep the traffic away from hospitals or residential areas at night. But
remember that piecewise constant additional costs introduce waiting or cycles to
a time-dependent shortest path problem. This may be avoided by even more gen-
eral additional time-dependent costs, beyond piecewise constant functions.

Another interesting issue are cost profile (CP) queries. Similar techniques as
in case of ATCHs (see Section 5.4.3) could be used to obtain a small corridor
where the expensive backward CP search is performed. However, the ideas of
corridor contraction (see page 240) may not be fully applicable because MC paths
lack prefix optimality, which makes merging of parallel shortcuts problematic. A
possible solution may be to contract only nodes with exactly one incoming and
one outgoing edge. Backward CP search is performed afterwards on the resulting
contracted corridor.

7.3 Outlook

Route planning techniques that take changing traffic situations into account (i.e,
time-dependent as well as dynamic techniques) all have the problem, that a critical
number of users can change the traffic situation. Assume, for example, that several
people use the same time-dependent route guidance system. If all these people are
similarly rerouted to avoid the same regular congestion, then another congestion
may arise on the suggested route. So, what we actually need, is a centralized time-
dependent route guidance system that performs traffic simulation based on the
current traffic situation every few minutes. The resulting time-dependent routes
can not only take the current traffic situation into account, but also the effect on
the future traffic situation of the time-dependent route guidance system itself.

To make the latest simulation results available for the route computation, a
quickly updatable time-dependent route planning technique must be used. This
could be a time-dependent version of customizable route planning [23] or of cus-
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tomizable CHs [31] for example. Both techniques only deal with constant travel
costs so far. This emphasizes that time-dependent customizable route planning
and customizable time-dependent CHs are an interesting topic. Time-dependent
route planning with additional costs is also an issue in this context. For example,
to keep users of centralized time-dependent route guidance systems away from
residential areas or to penalize inconvenient roads.
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�

Deutsche Zusammenfassung

Die rechnergestützte Routenplanung hat in den letzten zehn Jahren zunehmend an
Relevanz gewonnen (siehe Überblicksartikel [4, 25, 28, 83]). Vor allem im Hin-
blick auf Straßennetze ist dieses Thema zu einer echten Erfolgsgeschichte gewor-
den. Die schnellsten aktuellen Algorithmen sind sogar in der Lage, eine optimale
Route im europäischen Straßennetz innerhalb von Mikrosekunden zu berechnen.
Dijkstra’s Algorithmus [33], vor ungefähr zehn Jahren noch das Standardverfah-
ren zur Routenberechnung, würde dafür einige Sekunden benötigen. Durch diesen
Fortschritt ist die rechnergestützte Routenplanung inzwischen zu einem selbstver-
ständlichen Teil unseres Alltagslebens geworden. Populäre Webanwendungen wie
Bing Maps, Google Maps oder HERE sind nur drei Beispiele.

Zeitabhängige Routenplanung. Die meisten Arbeiten im Bereich der rechner-
gestützten Routenplanung für Straßennetze modellieren Reisekosten nur auf sehr
einfache Weise als konstante nummerische nicht-negative Werte, die typischer-
weise stark mit der Reisezeit korreliert sind. Manche praktische Aspekte werden
so jedoch außer Acht gelassen. Dabei handelt es sich um periodisch wiederkeh-
rende Phänomene wie Stoßzeiten oder regelmäßige Staus. In dieser Arbeit wer-
den zwei Arten von zeitabhängigen Reisekosten betrachtet: zeitabhängige Reise-
zeiten und zeitabhängige Reisezeiten mit zusätzlichen zeitunabhängigen Kosten.
Die Reisezeitinformationen müssen dabei die bekannte FIFO Eigenschaft erfül-
len, was bedeutet, dass ein späterer Reisebeginn nie eine frühere Ankunft zur Fol-
ge hat.

Eine typische Anwendung für Routenplanung mit zeitabhängigen Reisezei-
ten ist das Vermeiden der bereits erwähnten Stoßzeiten und regelmäßig wieder-
kehrenden Staus (die zugrunde liegenden Reisezeitinformationen werden norma-
lerweise aus statistischen Daten gewonnen). Die zusätzlichen zeitunabhängigen
Kosten scheinen auf den ersten Blick nur eine leichte Erweiterung darzustellen.
Tatsächlich wird die Routenberechnung durch diese aber deutlich erschwert. Das
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Finden einer optimalen Route für eine gegebene Abfahrtszeit wird so nämlich zu
einem NP-schweren Problem.3

Aus Anwendungssicht können die zusätzlichen zeitunabhängigen Kosten zum
penalisieren ungünstiger Straßenabschnitte verwendet werden, etwa wenn Straßen
sehr eng, reich an engen Kurven oder zu steil sind, oder wenn sie Gefahrenstel-
len mit erhöhtem Risiko für Glatteis oder Steinschlag aufweisen. Eine weitere
Anwendungsmöglichkeit sind Reisekosten, die in Form von Geldbeträgen anfal-
len und sich aus einem zeitabhängigen und einem zeitunabhängigen Anteil zu-
sammensetzen, wobei der zeitabhängige Anteil proportional zur Reisedauer sein
muss. Ein Beispiel hierfür wären etwa Reisekosten, die einerseits durch den Stun-
denlohn eines LKW-Fahrers und andererseits durch zusätzliche Mautkosten auf
Autobahnen entstehen.

Zeitabhängige Contraction Hierarchies. Ziel dieser Arbeit ist es, Contraction
Hierarchies (CHs) [44] – eine erfolgreiche algorithmische Technik für schnelles
und exaktes Berechnen von Routen in Straßennetzen – derartig zu verallgemei-
nern, dass sie auch mit zeitabhängigen Reisekosten funktionieren. Wie die meis-
ten anderen Techniken im Bereich der Routenplanung auch, ermöglichen CHs
ein sehr schnelles Beantworten von Nutzeranfragen, erfordern aber eine zeitauf-
wändige Vorverarbeitung.

Für den Fall, dass keine zusätzlichen zeitabhängigen Kosten vorliegen, sind
die in dieser Arbeit behandelten Verfahren tatsächlich in der Lage, eine schnel-
le und exakte Berechnung von Routen zu gewährleisten (siehe Kapitel 5). Die
zugrunde liegenden time-dependent Contraction Hierarchies (TCHs) – sowie de-
ren Varianten approximative TCHs (ATCHs) und nicht-exakte TCHs (engl. inexact
TCHs) – sind jedoch weit mehr als eine offensichtliche Erweiterung der ursprüng-
lichen CHs. Stattdessen kommen ausgeklügelte algorithmische Techniken zum
Einsatz. Das wichtigste Konzept ist dabei der geschickte Einsatz von approxima-
tiven Berechnungen, um kleine Teilgraphen des Straßennetzes zu extrahieren, die
alle für die Berechnung relevanten Knoten und Kanten enthalten. Diese einfache
aber effektive Idee ermöglicht es,

• exakte aber langsame Algorithmen schneller durchzuführen, ohne das Ergeb-
nis der Berechnung zu verfälschen, und

• optimale Routen zu berechnen, obwohl ein erheblicher Teil der vorhanden
Reisezeitinformationen lediglich approximiert vorliegt.

Der zweite Punkt ermöglicht zudem eine deutlich erhöhte Speichereffizienz. Für
eine Instanz des deutschen Straßennetzes kann die minimal mögliche Reisezeit

3Dass die Routenberechnung mit zusätzlichen zeitabhängigen Kosten NP-schwer ist, ergibt
sich daraus, dass bereits ein stark eingeschränkter Spezialfall dieses Problems NP-schwer ist [3].



Deutsche Zusammenfassung 331

für eine gegebene Abfahrtszeit z.B. in weniger als 1.2 msec berechnet werden.
Ein sogenanntes Reisezeitprofil – also eine Funktion, die zu einer Abfahrtszeit die
minimal mögliche Reisezeit liefert – kann in weniger als 35 msec berechnet wer-
den. Gibt man sich dabei mit einen Fehler von ungefähr 1% zufrieden, sinkt die
Rechenzeit sogar auf 2.6msec. Die zugrunde liegenden ATCHs und nicht-exakten
TCHs, die in diesem Fall das Straßennetz repräsentieren, benötigen dabei weni-
ger als 1 GiB Hauptspeicher. Die Vorberechnung zur Erzeugung dieser Strukturen
benötigt etwa 30 Minuten. Mit 8 parallelen Verarbeitungsfäden und gemeinsamen
Hauptspeicher verringert sich die Vorberechnungszeit auf ca. 5Minuten.

Sind zusätzliche zeitunabhängige Kosten vorhanden, gelingt mit den Verfah-
ren, die in dieser Arbeit vorgestellt werden, leider nur eine nicht-exakte Routenbe-
rechnung (siehe Kapitel 6). Die zugrunde liegenden heuristischen TCHs sind näm-
lich nicht in der Lage, für jede mögliche Kombination aus Start, Ziel und Abfahrts-
zeit das Finden einer optimalen Route zu ermöglichen. In unseren Experimenten
bleibt der Fehler jedoch vernachlässigbar klein. Das finden einer möglichst kos-
tengünstigen Route dauert für unsere schwierigste Testinstanz durchschnittlich
unter 35 msec. Dabei handelt es sich wieder um das deutsche Straßennetz, wobei
folgendes Kostenmodell zugrunde gelegt wird: Reisekosten fallen in Form von
Geldbeträgen an. Der zeitabhängige Anteil ergibt sich dabei aus einem festge-
legten Stundensatz (z.B. dem Stundenlohn eines Fahrers). Der zeitunabhängige
Anteil setzt sich aus einer sehr einfachen Abschätzung von Energiekosten und ei-
ner Autobahnmaut zusammen. Sowohl Energiekosten als auch Maut werden als
proportional zur gefahrenen Stecke angenommen, im Fall der Maut werden aber
nur Autobahnkilometer gezählt.

Mit diesem Kostenmodell dauert die Vorberechnung 1 Stunde und 23Minuten,
bei 8 parallelen Verarbeitungsfäden in gemeinsamem Speicher. Dies ist deutlich
länger als die 5 Minuten, die ohne zeitunabhängige Zusatzkosten benötigt wer-
den. Allerdings wird für die Vorberechnung mit zeitunabhängigen Zusatzkosten
eine prototypische Implementierung verwendet. Womöglich kann diese Laufzeit
also noch verringert werden. Allerdings ist auch dann noch eine deutlich höhere
Rechenzeit als ohne zeitunabhängige Zusatzkosten zu erwarten. Der Speicherbe-
darf der heuristischen TCH ist mit 9 GiB etwa doppelt so hoch wie ohne Zu-
satzkosten. Man beachte dabei, dass sich der weiter vorne angegebene Speicher-
bedarf von unter 1 GiB auf ATCHs bezieht, einer Variante von TCHs die durch
Verwendung approximierter Reisezeitdaten eine erhebliche Speicherersparnis er-
reicht. Womöglich können solche Techniken auch mit zusätzlichen zeitunabhän-
gigen Kosten verwendet werden, was bisher jedoch nicht ausprobiert worden ist.
Das Hauptergebnis der Experimente mit zusätzlichen zeitunabhängigen Kosten
ist, dass heuristische TCHs nahezu exakte Routenberechnung erlauben, bei prak-
tikablen Laufzeiten bzgl. Vorberechnung und Routenberechnung.

Die Berechnung von Reisekostenprofilen wird in dieser Arbeit lediglich im
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Rahmen der Vorberechnung betrachtet. Allerdings können wir zeigen, dass zeit-
unabhängige Zusatzkosten die Komplexität von Reisekostenprofile deutlich erhö-
hen (siehe Abschnitt 6.1.2). Demnach können Reisekostenprofile, dargestellt als
stückweise lineare Funktionen, aus bis zu 2Ω(n) Liniensegmenten bestehen; dabei
sei n die Anzahl der Knoten im Straßennetz. Dagegen können Reisezeitprofile –
nach Foschini et al. [36] – höchstens K ·nO(logn) Liniensegmente enthalten; K sei
dabei die Gesamtzahl der Liniensegmente aller Reisezeitfunktionen im Straßen-
netz.

Verallgemeinerte zusätzliche Kosten. Zeitabhängige Reisezeiten mit zusätz-
lichen zeitunabhängigen Kosten werden üblicherweise als Paare f |c ∈FΠ×R≥0

dargestellt, wobei FΠ die Menge der stückweise linearen stetigen Reisezeitfunk-
tionen ist. Wie sich herausstellt, ist FΠ×R≥0 nicht abgeschlossen unter Konkate-
nation und Mischen der zugehörigen Routen. Allerdings existiert eine Obermenge
F ��

Π×XΠ ⊇FΠ×R≥0 auf die dies zutrifft. Dabei ist F ��
Π die Menge der stück-

weise linearen Reisezeitfunktionen mit Unstetigkeitsstellen und XΠ die Menge
der stückweise konstanten Funktionen. Genauer gesagt, können Reisezeitfunktio-
nen nun Sprungstellen enthalten, und aus zeitunabhängigen zusätzlichen Kosten
werden zeitabhängige zusätzliche Kosten, die ihren Wert jedoch nicht stetig son-
dern ausschließlich an Sprungstellen verändern. Interessant ist hierbei, dass die
Kantengewichte heuristischer TCHs zwangsläufig aus F ��

Π ×XΠ stammen, und
zwar auch dann, wenn das ursprüngliche Straßennetz nur stetige Reisezeitfunk-
tionen und zeitunabhängige Zusatzkosten aufweist (siehe Kapitel 6). Womöglich
bedeutet dies, dass heuristische TCHs auch für Straßennetze mit zeitabhängigen
(d.h. stückweise konstanten) Zusatzkosten geeignet sind. Zeitabhängige Mautkos-
ten oder zeitabhängige Penalisierung von Straßenabschnitten wären mögliche An-
wendungsfälle. Letzteres könnte z.B. helfen, nächtlichen Verkehr von Wohngebie-
ten und Krankenhäusern fernzuhalten.

Korrektheitsbeweise. Für alle Algorithmen zur Routenberechnung, die in die-
ser Arbeit beschrieben werden, erfolgt auch ein Beweis ihrer Korrektheit. All
diese Algorithmen sind weitgehend aus “Dijkstra-ähnlichen” Grundalgorithmen
aufgebaut. In Kapitel 4 erfolgt eine eingehende Betrachtung all dieser Grundalgo-
rithmen, wobei auch deren Korrektheit bewiesen wird. Zu beachten ist dabei, dass
alle diese Grundalgorithmen eine ähnliche Grundstruktur aufweisen. Zudem sind
manche dieser Grundalgorithmen auch Spezialfälle von anderen Grundalgorith-
men. Aus diesem Grund werden einige der Korrektheitsbeweise nicht im Detail
dargestellt. Stattdessen wird auf einen analogen Beweis oder einen jeweils allge-
meineren Grundalgorithmus verwiesen.
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Referenzen. Viele der Ergebnisse, die in dieser Arbeit beschrieben werden, sind
bereits veröffentlicht; zum einen auf Konferenzen [5, 6, 9], zum anderen in einer
Fachzeitschrift [8]. Außerdem gibt es einen frühen technischen Bericht [7]. Die
Veröffentlichungen erfolgten zusammen mit Daniel Delling, Robert Geisberger,
Sabine Neubauer, Peter Sanders, und Christian Vetter, in jeweils in unterschiedli-
chen Kombinationen. Aus den genannten Artikel wurden viele Formulierungen in
diese Arbeit übernommen und dabei z.T. verändert.

An dieser Stelle ist es auch wichtig zu bemerken, dass Christian Vetter wich-
tige Beiträge zu den, in dieser Arbeit dargestellten, TCHs geleistet hat. Dabei
ist ausschließlich die Vorberechnung betroffen. Zum einen hat Vetter im Rahmen
seiner Studienarbeit [82] die Vorberechnung parallelisiert, zum anderen hat er als
studentische Hilfskraft weitere Arbeiten an der Vorberechnung durchgeführt. Auf
diese Weise hat er sehr stark zur Reduzierung der Vorberechnungszeit beigetragen.
Insgesamt hat Vetter wesentlichen Anteil an den Ideen und der Implementierung
der Vorberechnung (für Details siehe Abschnitt 5.7), weswegen er auch Mitautor
zweier Artikel [5, 8] ist.

Dank gilt auch Sabine Neubauer, die uns ihre Implementierung des Imai-Iri-
Algorithmus zum Approximieren von stückweise linearen Funktionen [52] zur
Verfügung gestellt hat. Diese wurde von ihr im Rahmen ihrer Studienarbeit an-
gefertigt [66]. Ohne diese Implementierung hätten ATCHs, nicht-exakte TCHs,
sowie die schnelle Berechnung von Reisezeitprofilen nur mit zusätzlichem Ar-
beitsaufwand umgesetzt werden können.




