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Introduction

Abstract The work at hand is devoted to the numerical analysis of linear Maxwell’s
equations in time-domain and in a discontinuous Galerkin discretization with an
upwind flux. We mostly consider the continuous or semi-discrete setting, where the
time is not yet discretized. In especially we focus on Berenger’s perfectly matched
layer as an absorbing boundary layer and have a detailed look at construction, well-
posedness, numerical simulation, and error analysis for a layer in one direction. We
present an analytic solution to Maxwell’s system with a layer, that can be utilized
to efficiently determine optimal parameter values for the layer and state a way to
avoid an exponential growth in time of the semi-discrete error bound.

Organization of this work The chapters are organized as follows. In Chapter
we briefly discuss physical basics about Maxwell’s equations. In the next chapter,
Chapter [2| we present a well-posedness result based on Lumer-Phillips’ theorem,
the detailed construction of the discrete operator, and a standard discretization
error analysis result for Maxwell’s equations without any layer. The analytical
construction of the perfectly matched layer in the unsplit formulation is the topic of
Chapter [3] followed by a transfer of the well-posedness theory stated in the second
chapter and an upwind discretization in space. In Chapter |4 numerical tests are
performed. Here, we focus on the test setting itself, i.e. we present a quite flexible
exact solution to Maxwell’s system with a layer and afterwards use it to run basic
tests. The last chapter, Chapter [5 is dedicated to the long-time behaviour of the
perfectly matched layer. We are interested in the growth of the solution in time
and present a spatial discretization error estimate, which accounts for the analytical
long-time behaviour of the layer. It only works in a special two dimensional case,
though, since it is based on a dissipative functional introduced by Bécache and Joly,
that so far only works in two dimensions in space.

Keywords Maxwell’s equations, discontinuous Galerkin method, perfectly matched
layer, absorbing boundary condition, parameter determination, error analysis
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What | consider my own contribution to the topic There is already a large
amount of literature available under the topic of discontinuous Galerkin discretiza-
tions for hyperbolic problems, as well as for the perfectly matched layer. Up to and
including Chapter |3 the content of this work is mostly known nowadays, but serves
as a basis for the results in the later chapters. In Chapter [2] the calculation of the
upwind flux is done in detail and the upwind flux on boundary faces is explained.
Though the procedure to construct the upwind flux is well known, it is hard to find
any literature, where the calculations are actually performed. The error estimate
in Chapter [2 for the spatial discretization of Maxwell’s equations is not new, but
the inclusion of non-homogeneous boundary values I did not see so far. In Chapter
there is a discussion of the boundary conditions behind the layer. Here, some
problems occur with the unsplit layer formulation, that might be of importance in
order to understand the analytical behaviour of the layer. I did not find any lit-
erature, where this was mentioned. Finally, I consider the test setting in Chapter
[ including an exact solution to Maxwell’s equations with a layer and the error
estimate in Chapter [0, adjusted to the long-time behaviour of the layer to be my
main contributions to the topic.



1 A short introduction into
Maxwell’'s equations

Origin of this chapter This chapter is based on a literature research in [Jac06].

Maxwell’s equations are a linear first order PDE system that connects the elec-
tric and magnetic fields to the current- and charge density, which are considered

the sources of electromagnetic phenomena. In a vacuum Maxwell’s equations read
[Jac06l, Sec. 1.1]

1
—;@E +V x B = poJ, (Maxwell-Ampére’s law) (1.1a)
0B+V xE=0, (Faraday’s law of induction) (1.1b)
V-E= gﬁ, (Gauss’s law) (1.1¢c)
0
V-B=0. (Gauss’s magnetic law) (1.1d)

Here E denotes the electric field, B the magnetic induction, J the current density
and p the charge density. In the stationary case Maxwell-Ampére’s law states, that
a current induces a magnetic field. Maxwell added the time derivative of the electric
field to validate this law for time-dependent phenomena. It tells us, that also time-
dependent electric fields induce magnetic fields. Vice versa, we see from Faraday’s
law, that time-dependent magnetic fields induce electric fields. Gauss’s law states,
that charges are the sources of the electric field, whereas Gauss’s magnetic law
reveals the non-existence of magnetic monopoles. The physical constants 5 and pyg
are connected with the speed of light ¢ in vacuum via the equation ¢ = \/;)W In
practice the current- and charge density are assumed to be known and the system
is used to determine the fields E and B. A point charge ¢ with velocity v in

an electromagnetic field experiences the Lorentz force

F=¢E+v xB).



1 A short introduction into Maxwell’s equations

Plane waves in a vacuum Plane waves are special solutions to Maxwell’s equa-
tions in a vacuum. Consider the space R? without current- and charge density
(J =0, p = 0) and with the right-handed orthogonal basis (k, Eg, By), then a
special solution to the system is given by

E(x,t) = Egexp(ik - x — iwt), (1.2a)
B(x,t) = Bpexp(ik - x — iwt), (1.2b)

with the frequency w = c|k| and the relation on the amplitudes |Eq| = ¢|By|. The
plane wave (1.2)) travels with velocity ¢ in the direction of k.

Proof: To verify that (1.2)) solves (1.1]), we calculate the derivatives as follows

8tE = —ZCL)E,
8tB = —'LWB,
V xE=Vexp(ik - x —iwt) x Eg = ik x E = iwB,
VxB=ikxB=—=F,
c
V-E=Vexp(ik -x—iwt) - Ey=ik-E =0,
V-B=0.
This concludes the proof. n

In the presence of materials, where the electrons and protons contain a lot of charges,
the current- and charge density cannot be considered to be known any more. In
that case the effect of tied charges is approximated by their dipol moments. The
polarization and magnetization fields

_\N " Pi N\
PL_%:AV’ M AV

are the electric and magnetic dipol density, where p,; and m; are the electric and
magnetic dipol moments in the volume AV'. The testvolume AV is assumed to be
small from a macroscopic point of view, but still contains millions of atoms.



Magnetism The magnetic behaviour of materials can be devided into three groups.

e In a diamagnetic material, the magnetic dipols are generated by an external
magnetic induction field. They will act against the generating field and reduce
the total magnetic induction.

e In a paramagnetic material, there already exist uncorrelated magnetic dipols.
In the presence of an external magnetic induction field, the dipols will adjust
to the field and increase the total magnetic induction.

e In a ferromagnetic material, there exist correlated magnetic dipols. Here, even
without external fields there may be a magnetization.
Introducing the fields
1
D=¢E+P, H=—B-M,
Ho

Maxwell’s equations in the presence of materials now read [Jac06l Sec. 6.6]

—-0D+V xH=1J, (1.3a)
9B +V xE=0, (1.3b)
V.D=p, (1.3¢)
V-B=0. (1.3d)

Here, D is called electric displacement and H is called magnetic field. The charge
density p contains free charges as well as absolute molecule charges and J is the cor-
responding current density of free charges. The effect of tied charges is compressed
in the fields D and H. All fields in are averages in space over macroscopical
small volumes AV (for details on that averaging see [Jac06l, Sec. 6.6]).

Current- and charge density are connected by the equation of continuity
3,5/) +V-J= 0,

which expresses the conservation of charges and can be seen by application of V-
and 9; to equations (1.3a)) and ((1.3c). We split the fields into an external part, that
is applied to the system and assumed to be known, and an internal part

J= Jext + Jinta P = Pext + Pint-

On the internal current density, introducing the material dependent conductivity o,
we apply Ohm’s law



1 A short introduction into Maxwell’s equations

Constitutive relations We assume a linear isotropic dependence between polar-
ization (magnetization) and electric (magnetic) field

P = x.e0E, M = y,,H. (1.5a)
Therefore, with e, = 1+ x. and g, = 1 + X, we have
D =¢,5E = ¢E, B = u,uoH = pH. (1.5b)

The material parameters x. and y,, are called electric and magnetic susceptibility,
e and u denote the permittivity and permeability, whereas ¢, = ey ' and 1, = gy *
are the corresponding relative permittivity and permeability. The idea behind the
linear dependencies in is a Taylor expansion up to the first order. So these
constitutive relations are only reliable, as long as the electromagnetic fields are
’small’ (here we will not specify the meaning of small). The assumption on isotropy
states, that there is no special direction in the material. Therefore, the terms of
zero order have to vanish and the susceptibilities are scalar.

Paramagnetic materials are characterized by p, > 1 and diamagnetic materials by
i < 1. In most cases the relative permeability does not differ very much from one,
| — 1] < 107° [Jac06], Sec. 5.8]. Ferromagnetic materials cannot be described with

the linear relations (1.5b)).

Using (1.5b) and Ohm’s law (1.4) on a system, where all materials are at rest,
Maxwell’s equations ([1.3)) gain the form

eOE+0cE -V xH=—-J.,, (1.6a)
pH+V x E =0, (1.6b)

V- (€E) = peat + pint, (1.6¢)

V- (uH) = 0. (1.6d)

Here we already used the time-independence of the material parameters € and p. In
general these parameters depend on the frequency w of the electromagnetic waves.
To describe phenomena in a small frequency range, they can be considered inde-
pendent of the frequency, though. Furthermore we assume these parameters to be
piecewise constant throughout this work. This idealisation leads to jump conditions
for the electromagnetic fields on the interfaces between different materials.



Jump conditions on material interfaces Let n be a unit normal vector on the
interface between two materials, pointing from the first material to the second. Then
we have the following jump conditions [Jac06, Sec. L.5]

(Dy — D) -n = py, (1.7a)
(B, —Bp) -n=0, (1.7b)
nx (E;—E;) =0, (1.7¢)
nx (Hy—H;) =Jy, (1.7d)

where J¢ and p; are the surface current- and surface charge density.

Plane waves in a homogeneous medium Consider a homogeneous medium
(e # e(x), p # u(x)) with positive material parameters (e, > 0) in the space
R3 without current- and charge density (Jo.; = 0, 0 =0, p = 0). Let (k, Eg, Hp) be
a right-handed orthogonal basis of R?. Then a special solution to the system (1.6)
is given by

E(x,t) = Egexp(ik - x — iwt), (1.8a)
H(x,t) = Hyexp(ik - x — iwt), (1.8b)

with the frequency w = ¢,,|k|, the speed of light in a medium ¢, = (au)’% and the
relation on the amplitudes |Ey| = ¢,,u|Ho|. We see, that the medium changes the
speed of light.

Proof: Same as in the vacuum case (see page [4). O

Boundary conditions If we consider Maxwell’s equations on a bounded domain,
we need boundary conditions to obtain a well-posed problem. There a two boundary
conditions that are motivated by material interfaces. First consider a perfect electric
conductor (PEC) outside the boundary. The free charges in the conductor are
assumed to react instantly on incoming electromagnetic waves in the way, that
the electric field is compensated. Following jump condition ([1.7¢), we see that
n x E = 0 on the interface of a perfect electric conductor. On the interface of a
material of high permeability (1 = 00) the magnetic field will behave in an analogous
way, i.e. n x H = 0 [Jac00, Sec. 5.8 (in the end)|]. We will call such a material
perfect magnetic conductor (PMC). Both boundary conditions, PEC and PMC,
reflect the full incoming energy, but with a phase difference of 7 to each other. A
third boundary condition, that will be used in this work is the impedance boundary
condition n x H — Zn x (n x E) = 0, with the scalar impedance Z.



1 A short introduction into Maxwell’s equations

Reflections on a straight boundary Consider the half-space
Q={xeR®: 7, <0}

filled with a homogeneous material €, 1 > 0 and a plane wave (E™°(x,t), H"(x, t))
in the shape of . We denote n = e; the unit normal vector on 02, 71 a
tangential vector, such that k = k,n + k.71, k; > 0 and 79 = n x 7; another
tangential vector. Let the wave be incoming on the boundary, i.e. k£, > 0 and let
¢ be the angle of incidence, i.e. cosp = k,(k? + kz)_%. Now we seek an outgoing
plane wave (E*(x,t), H*(x,t)), so that certain boundary conditions hold true on
0f). We define the reflected wave vector by k* = —k,n + k,7; and the reflected
electromagnetic field by

E*(x,t) = Ej exp(ik™ - x — iwt),
H*(x,t) = Hj exp(ik* - x — iwt).

The total fields are thus E = E™ + E* and H = H™ + H*. The vectors E} and
Hj depend on the actual boundary condition, we want to realize. In case we set
n x E =0 on 012, we obtain

Ej = (Eo-n)n — (Eg - 71)71 — (Eo - T2) 72,
HS = —<H0 . n)n + (HO . ‘Tl)Tl —+ (HO . TQ)TQ.

In case of n x H = 0, we obtain
Eé = _(EO . Il)l’l + (E() . Tl)‘Tl + (EO . TQ)'TQ,
Hj = (Hp-n)n — (Hy - 71)71 — (Ho - 72) 72

For the impedance boundary condition n x H — Zn x (n x E) = 0 with a constant
impedance Z, we obtain

Ef=—ai1(Eg-nn+ o (Ey - 71)71 — aa(Eg - T2) 72,
HS = —a2<H0 . n)n + ag(Ho . 7'1)7'1 — Oél(HO ’ 7-2)7-27

with the coefficients
Ve

7 VI 7 _ NE %
o __lﬁ o __LCOS (1.9)
! 1—|—Z—\/ﬁcosg07 ? Z—I——ﬁcoscp' -
Ve Vi

Proof: We just want to check the impedance boundary condition. On the boundary
x € 0f) we can calculate the boundary values

nxH-ZnxnxE)=[nx (Hy+Hj)—Zn x (nx (Ey+ Ej))]
exp (ik - x — iwt)



For the first term on the right hand side we obtain
nx (Hoy+Hj) =1+a)(Hy-71)12— (1 —a1)(Hp - 72)71 (1.10)
and for the second term
Znx (nx (Eg+Ep))=-Z(1+o)(Eo-71)71 — Z(1 — a2)(Eg - T2)72.  (1.11)

With the orthogonality of k, Ey, Hy and with e, = ﬁ = cos ¢ n + sin p 71, we can
state that

cospEy-n+sinpEy- 711 =cospHy-n+sinpHy -7 =0. (1.12)
Since k, Ey and Hj form a right-handed system, we obtain the relation

€
HOI %ek X Eo

NG (1.13)
= —(sinp(Eq - 72)n — cos p(Eg - T72)T1
Vi
+ cos p(Eq - 71)T2 — sinp(Eq - H)Tg).
Equations (1.12)) and (1.13) lead to
Ey -1 = %COS@HO - To,
Hy -7 = ——gcosgoEO “To.
1
We use this in ([1.10]) and ([1.11]) and see that
nxH-7nx(nxE)=0.
]

Energy of the electromagnetic field The energy density of the electromagnetic
field is given by [Jac06l Sec. 6.7]

1 1

as well as the corresponding energy flux density by

S=E x H.






2 Maxwell’s linear time-dependent
system

Content of this chapter For Maxwell’s linear system we show well-posedness via
Lumer-Phillips’ theorem, calculate the upwind flux to discretize the system in space,
and calculate an error bound for the semi-discrete solution.

Origin of this chapter We consider the content of this chapter to be general
knowledge to a large extent. To gain access to the topic, I got supported by Christian
Wieners. My discrete thinking starts with the Riemann problem in Section [2.3.4]
The theory behind the Riemann problem is general knowledge, the elaboration of the
calculations is my contribution. The proof of Theorem is general knowledge as
well. The addition of inhomogeneous boundary values and an impedance boundary
is my contribution.

A related publication During the construction of this chapter, I contributed to
a publication [HPST14] regarding space discretization and upwind flux. There are
paralles to the work at hand in the basic theory. Based on that, the publication
advances in a different direction, as it focuses on time integration, whereas this work
focuses on the perfectly matched layer.

2.1 The continuous Problem

In this work we consider Maxwell’s linear system in the following form

e, E+0cE -V xH="fg in Qu, (2.1a)
woH+V x E =fy in Oy, (2.1b)

nx E=ggp on 00g o, (2.1c)

nxH=gy on 02y o, (2.1d)

11



2 Maxwell’s linear time-dependent system

nxH-7nx(nxE)=g; on 082 o, (2.1e)
E(-,0) =E, in Q, (2.1f)
H(-,0) = Hy in Q. (2.1g)

Here, 2 C R? is a bounded domain with piecewise linear boundary. The index oo
denotes the space-time cylinder, e.g. Q. = 2 x [0,00). The boundary 952 is decom-
posed into three parts 0Qg, 000y and 02y, which can be empty, but otherwise also
have relative piecewise linear boundaries. The outer unit normal on 0f2 is denoted
by n. The unknowns E,H : Q,, — R? denote the space- and time-dependent elec-
tric and magnetic field, respectively. The parameters €, : Q — (0, 00) denote the
electric permittivity and magnetic permeability of the material distribution in €2, as
well as o : Q — [0, 00) denotes the conductivity. The right-hand side fz : Qo — R?
is the outer current density fz = —jext, Whereas fz : Qo — R3 vanishes in
physics. The tangential boundary fields g : 0Qp. — R gy : 0y — R?
and gr : 0y o — R? are given boundary values. The initial values for E and H
are denoted by Eg,Hy : © — R3. The boundary parameter Z : 9Q; — (0,00) is
called impedance. All material parameters are considered to be independent of the
frequency w of the electromagnetic field.

The equations (2.1a) and (2.1b]) can be rewritten in the form

du + Au = f, (2.2)

with u = (E,H), f = (¢ 'f, u ') and the differential operator A defined by

—e IV x H e loE 1 :
An= < PV X E ) ' ( 0 ) =4 Zlaijju+A—1“- (2:3)
p

The matrices A; are given by

el 0 0 RT
p— [ — ‘7 .:

Ao (0 ,u]l)’ A, (Rj 0),f01"j 1,2,3, (2.4a)
00 0 0 01

Ri=(00 -1}, Ro=(0 00}, (2.4b)
01 0 -100
0 -1 0

R;=1|(1 0 0], A_; = 'odiag(1,1,1,0,0,0). (2.4c)
0 0 0

Note, that a multiplication with the matrix R, describes the crossproduct with the
J-th unit vector, i.e. R;E = e; x E. Some theory on system (2.2)) can be found for
example in [DPE12] under the name "Friedrichs’ Systems’.

12



2.1 The continuous Problem

Maxwell's two-dimensional system In case the geometry is homogeneous in x3-
direction one may consider solutions to that are homogeneous in x3-direction
as well. In this case we can set d,, = 0 and and decouple into two
systems in the variables (Hy, Ha, E3), called transversal magnetic (TM) mode, and
(E1, Es, H3), called transversal electric (TE) mode. In our numerical tests in chapter
we use the TM-mode. For Q C R? the corresponding PDE reads

€Oy + 03 — 0y Hy + 05, Hi = fE3 in Q, (2.5a)
wOHy + 04, Fs = fra in Q, (2.5b)

uOHy — 0y Es = fro in Q, (2.5¢)

(neEs, —m1E3) = (9p1, 982) on 0Qg , (2.5d)

niHy —noHy = g3 on 02 o, (2.5e)

niHy —noHy + ZE5 = gr3 on 082 «, (2.5f)

(Es, Hy, Hy)(-,0) = (Es0, H10, Hap) in Q. (2.5g)

2.1.1 Further assumptions and remarks on the system

Material parameters We assume the material parameters ¢, y, o and Z to be
piecewise constant, non-negative, and except for o non-zero, i.e.

e, iU, 0, Z piecewise constant, g, 1,0 € Loo(9), 7 € Lo (082)),
0 < const. < e, pu, 7, 0<o.

The domain €2 is decomposed into a finite number of maximal domains A;, where
all parameters are constant

Q= UAj, E’A]_ = const., ,u|Aj = const.,
J
oy, = const., Z|on 000, = const..

The domains A; are supposed to have a piecewise linear boundary as well. In case
of a function with broken regularity, e.g. u € H*(A;) for every j, we denote the
corresponding broken norm by

lallfa = llullia,.
J

With an index V we denote a weighted norm

lulfva = [VEEI , + IIVEH ,

13



2 Maxwell’s linear time-dependent system

Inhomogeneity The right-hand side f is supposed to be continuous in time through-
out this work

f € C([0,00),L2(2)%) . (2.6)

Boundary data We assume the boundary values g; to have an extension into the
space-time cylinder {2,,. Therefor we consider the linear space

H(curl, Q,09) = {u € H(curl, )’ : n x E € Ly(0Q)%, n x H € Ly(0Qy)°,
n x E € Ly(09)°, n x H—Zn x (n x E) € Ly(9Q;)°},

with norm

||u||12{(cur1,ﬂ,aﬂ) = ullfo+ (VX E,VxH)|[[§ o+ [In X E[f 5, + [0 x H|g 5,

+n x B[l g0, + [0 x H=Zn x (n x E)[[§ 50,
and assume for the boundary values

(gE,gH,g,-) e { (n X E[aﬂE,n X H|8QH ,nxH—Znx (nx E>|691) :

u e C'([0,00), Ly(€2)°) N C([0, 00), H(curl, 2, 00)) }. (2.7)

Hyperbolicity The system is called hyperbolic (see [Eva98, Sec. 7.3]), if the
matrix A;* Zj’:l n;A; is diagonizable with real eigenvalues for every x, ¢ and unit
vector n. The matrices in fulfill this hyperbolicity condition. We will state the
eigenvectors later on in ([2.18)).

Divergence equations In our PDE we neglected the two equations on the
divergence (1.6d)) and (1.6d)) of the fields E and H, respectively. The second equation
is fulfilled as long as V - (uHg) = 0 and V - £y = 0 (in especially for fy =
0), which can be seen by application of the divergence on equation (2.1p), since
V- (V x ) = 0. So this equation is a condition on the initial values Hy. The
corresponding divergence equation for the electric field does not yield a condition
on the initial values for the electric field, since we have the freedom to adjust the
internal charge density p;n, so that is fulfilled.

Conservation of energy An electromagnetic field contains energy. This energy £
can be expressed by a weighted inner product in Lo (€2)

8:%/9(»3E~E+MH.H)dx.
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2.1 The continuous Problem

The total energy in {2 can change by outer forces, by a conductivity or through the
boundary. Mathematically speaking, i.e.

QE(t) = / (=B() - B(0) + p () - 9H(1) ) dx
- /Q (E(t) (Ep(t) — oB(t) + V x H(t)) + H(t) - (£4(t) — V x E(t))) dx

- / (B £5(0) + Hl0) - £(t) ~ o[B(OF ) dx+ [ B(®)-mx H(t)da.

o0

For PEC and PMC boundary conditions and without conductivity and outer forces,
i.e. 0 =0 and (fg,fy) = 0, we have conservation of energy.

Finite speed of propagation The PDE describes the propagation of elec-
tromagnetic waves. These waves travel with a maximal speed ¢ = (eu)’%, which
can be found in special plane wave solutions , as well as in the system ({2.1)
in the following sense (see also [Evad8, Sec. 2.4.3]). For a time 0 < ¢t < -1 de-

Cmax

fine the ball B(t) = B(xg, R — cmaxt) C R? of decreasing radius R — cpaxt, Where

Cmax = supxeg(s(x)u(x))’%. Additionally define the cone C' to be the union of all
these balls

C={(x,t) e R* x [0, Re,L,) : x € B(t)}.

max

Lemma 2.1.1:

Let u(t) = (E(t),H(t)) be a solution to (2.1)), which is smooth in the cone C. If
u(0) = 0 on B(0), then u(t) = 0 on C, as long as there are no outer forces,

Proof: The electromagnetic energy inside the ball B(t) at time ¢ is given by

£() = /B (B ) P) o

Now we calculate the time derivative of the energy

DE(t) = at% /

o (FEQP + O ) dx

s=t

1 R—cmaxt ) )
+ 0= (E|E(s)| + u[H(s)| )dadr
2 0 OB(x0,r)

s=t

15



2 Maxwell’s linear time-dependent system

_ /B i (<B() - OF(r) + uHL(1) - OF(1)) dx

cmax
- [ (BOF + alHOF) do
OB(t)

- / (E(t) (Eu(t) — oB(t) + V x H(t)) + H(t) - (Ea(t) — V x E(t))> dx
B(t)

C
- == elE)* + u|H(t)[*) da
5 /., (EOF )

-/ (B0 + 1) £ () —oIBO) ax

+ /83@ E nx Hda—C“;" /aB(t) (s|E(vt)|2 + u|H(t)I2> da
</ , (B0 5(0) + HO) - £u0) — oIB(0)) ax

s oy (BVEFIHIEQ)] — cIBOP — pH(0)) da
-/ (B0 £50) 4 o) £4(0) o B

- [ (VEBO)] - VAIH()) da.

dB(t)

For (fg,fy) = 0, we see that 9,£(t) < 0. So £(0) =0 = &(t) =0Vt € [0, R, ]

max

and thereby the statement is proven. O

2.2 Existence and uniqueness of the solution to
Maxwell’s equations

We check the assumptions of Lumer-Phillips’ theorem to show existence and unique-
ness of the solution to (2.1). Details on semigroup theory and Lumer-Phillips’ theo-
rem can be found in [RR04, Chap. 12]. In 2011 Serge Nicaise had given two talks in
Karlsruhe about Maxwell’s equations including well-posedness. We gratefully like
to mention this.
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2.2 Existence and uniqueness of the solution to Maxwell’s equations

2.2.1 Homogeneous boundary conditions

Theorem 2.2.1 (Lumer-Phillips, [RR04, Theorem 12.22|):
Let H be a Hilbert space and let A be a linear operator in H satisfying the following
conditions:

1. D(A) is dense in H.
2. Re(z, Ax) < w(z,z) for every x € D(A).
3. There exists a \g > w such that A — \gI is onto.

Then A generates a quasicontraction semigroup and || exp(At)| < exp(wt).

We consider the Hilbert space V = Ly(2, R x R3) equipped with the inner product

(B H), (B, H)), = (E,E). + (H,H), :/ (5E-E+uH-ﬂ> dx .
Q

The indices V, ¢, and p refer to the weights in the inner products. For the operator
A:D(A) CV — V as previously defined in (2.3), we choose the domain

D(A) = {(E,H) € H(cwl,2)*: nxE=0o0n 8, nxH=0on 00y,
nxEe€Ly00)", nxH-Znx (nxE)=0on0dQ},

equipped with the norm

Ml = Tl + [[Aul + [0 x B2 50,

Lemma 2.2.2:
The operator —A : D(A) C V — V satisfies the assumptions of Theorem [2.2.1]

Proof: We have to check three assumptions.

First assumption D(A) is dense in V, since CF°(R) is dense in Ly ().

17



2 Maxwell’s linear time-dependent system

Second assumption To check the second assumption, for (E, H), (¢, ¢) € D(A)
we calculate

(AR H). (9.0)), = [ (-7 x H40B)- 9+ VX E- g
Q
:/UE-QZJ—H-VX'gb—f—E-chde
Q
+/ —nxH-¢¥v+nxE-pda
o0
— —(BH), A, 0)), +2 [ 0B
Q
+/ —nxH-¥v+nxE-pda
12197}
— ~(BH) A, 0)), +2 [ 0B
Q
—/ (Zmx (nxE)) -9+ ZE-(nx (nx1)))da
o0
——(BH) A, 0)), +2 [ 0B
Q

+2/ Znx E-nxyda
o9

= (A(E.H),(E.H)), = /

aE-EdX—i—/ Znx E-nxEda>0.
Q

o0y

With w = 0 we have the second assumption for the operator —A.

Third assumption We set \g = 1 and check the third assumption. For a given
F = (Fp,Fy) € V find (E, H) € D(A) with

AEH)+ (E,H)=F
or equivalently

e 'VxH+e'"oE+E=Fp, (2.8a)
p'VxE+H=Fy. (2.8b)

We take

eV ={EcH(cul,Q): nxE=0on0dQ, nxE¢cLy(d)%}

18



2.2 Existence and uniqueness of the solution to Maxwell’s equations

and test the second equation with V x )

/FH-Vx¢dx=/ﬂ—1vXE-vX¢+H-vx¢dx
Q Q

—/M1V><E-V><1/)+V><H-1pdx+ H -nxda.
Q 09

Insertion of the first equation (2.8a)) and the boundary conditions for (E, H) yield

/FH-V><1,b+5FE-1,bdX:/,u_1V><E-V><1,ZJ+(5—|—0)E-?,ZJC1X
“ ¢ (2.9)
—|—/ ZnxE-nxda.
09,

The space V equipped with the inner product

(E,'zp)f,:/,u_lvXE'VXQ/)—l—(a—i-U)En/)dX—i-/ Znx E-nxyda
Q o0Qr

is a Hilbert space, so Riesz grants a unique solution E € V of (2.9). Define H by
H=Fy— 'V xEe€Ly(Q)°"

Now, with the help of (2.9), we calculate the weak curl of H. For ¥ € CF(Q2), we
have

/H-Vx¢dx:/FH-VX'gb—u_leE-VX?,bdx
Q Q
—/—EFE'lb—l—(a—i—a)E'tde.
Q
So we have V x H = —eFp + cE + 0E € Ly(Q). Next we check the boundary
conditions to assure (E,H) € D(A). Again for ¢» € VN H(Q), we use (2.8a)) and
(2.9) to calculate
/H-VXQ/)dX:/VXH-d)dX—f— H -nxda
Q Q o9
:/—EFE-1/J+(5+J)E-¢dx+ H-n xda
Q o9
—/FH-wa—u_1V><E-V><1/)dX
Q
—/ ZnxE-nx4yda+ H -nxvda.
09,

o0N
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2 Maxwell’s linear time-dependent system

Due to the definition of H the volume integrals sum up to zero and we obtain

/ ZnxE-nxyda= H -nxyda+ H -nx1da
09 09 oy

and thereby the boundary conditions n xH—Znx(nxE) = 0on 0Q; andnxH =0
on 0g. So the third assumption of Lumer-Phillips’ theorem is fulfilled. m

We state an existence and uniqueness result for homogeneous boundary conditions.

Lemma 2.2.3 (Existence and uniqueness, [RR04, Sec. 12.1.3]):
Assume initial values vy = (Eq,Hy) € D(A), f € C([0,00),V) and either
f € Wh([0,00),V) or f € LL ([0,00),D(A)). Then the PDE du + Au = f has

a unique classical solution u € C'([0,00), V) N C([0,00), D(A)) given by

u(t) = exp(—At)ug + /0 exp (— A(t — 5))f(s) ds.

2.2.2 Non-homogeneous boundary conditions

In case of non-homogeneous boundary values (gg, gr,8r) # 0, we assume to have
an extension up € C'([0,00), V) N C([0, 00), H(curl, 2,99)) of the boundary values
into the space-time cylinder Q.. (see (2.7))) to state existence and uniqueness.

Lemma 2.2.4 (Existence and uniqueness, [RR04, Sec. 12.1.3]):

Assume initial values vy = (Eo, Hy) € H(curl,Q)?, which fit the boundary val-
ues, i.e. n X Eglyq = gr(+,0), nx Holy,, = gu(-0), n x Ey € L2(09Q5)3, and
n x Holyg, — Zn x (n X Eo)|yq, = g1(+,0). Further assume £ € C([0,00),V) and
cither £ — dup — Aup € Wii([0,00),V) or f — dup — Aup € LL ([0, 00), D(A)).

Then the PDE Oyu + Au = f with boundary values g;, j € {E, H,I} has a unique
classical solution u € C'([0,00), V) N C([0,00), H(curl, Q,09)) given by

u(t) = up(t) + nem(?),

o (£) = eXp(— A Unom o + /0 exp (— At — 5))(F — Oyup — Aug)(s) ds.
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2.3 A discretization in space

2.3 A discretization in space

2.3.1 The finite dimensional space of approximation

We decompose the domain € into a finite number of disjoint triangular (Q C R?)
or tetrahedral (2 C R?) cells K € T, with maximal diameter h = maxge7, diam K
and Q = U KeThF- For every cell K € T}, we assume the diameter hy = diam K to
be bounded, up to a constant, by the radius rx of the largest inner ball of K

hix < Cmesh Tk, T =sup{r e R: B(r,x¢) C K, x¢ € K}. (2.10)

By Fi we denote the set of faces f of the cell K, as well as by Fj the set of inner
faces and by F& = FE U FHE U FL the sets of boundary faces, where the indices E,
H and I correspond to the three kind of boundary conditions in ({2.1). Later on in

Chapter |5| we will also need a bound on jumps in the size of the cells

2K < (2.11)

where Ky denotes the next neighbour cell of K across the face f. In the absence
of hanging nodes, this bound is already implied by (2.10). On each cell K we
assume the material parameters €, 1, o and Z to be constant, i.e. K C A; for some
j. The inner products in Ly(K) and Ly(f) are denoted by (-,-)o.x, (-, -)o.s, and
weighted with the material parameters by (-, )y x. Our finite dimensional space for
the approximate solution and the test functions is the piecewise polynomial space

Vz:{uh eEV: uh|K G]P)g(K) VKGE},

with [P, the space of polynomial functions of degree less or equal p. In the literature
the expression 'Finite Volume’ refers to the case p = 0, where the approximate
solution is supposed to be piecewise constant. Generalized methods with higher
polynomial degrees are called 'Discontinuous Galerkin’ methods. The Ly-orthogonal
projection on V¥ is denoted by II}

IIY : V— V) u argmin ||u — w||y.
wevy

In case of a vector with other than six components, we denote the projection on

piecewise polynomial functions in the same way. The corresponding projection on
polynomials on a single cell K is denoted by IT%..
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2 Maxwell’s linear time-dependent system

2.3.2 Projection error estimates

In our convergence analysis we will need some estimates on projection errors.

Lemma 2.3.1:

Let K C RY, d = 2,3 be a triangle or tetrahedron with diameter hx = diam K
bounded as in and let s = 5§ — 5, § € N the rounded up integer part of s,
$€[0,1), p=5—1. Then there exist a constant cey, independent of K, such that

||U — H‘ZI)(UHO’K < Ceell hi(|u|s’K Yu € HS<K)

Lemma 2.3.2:

Let K C RY, d = 2 3 be a triangle or tetmhedron with diameter hg = diam K
bounded as in and let s =5—35>1 5, 8 € N the rounded up integer part of s,
s€l0,1),p=35— 1. Then there exist a constant Choundary, tndependent of K, such
that

_1
HU - H?{”HO,BK < Cboundary hj( : |u|s,K Vu € HS(K)

These results are standard finite element analysis. We omit the proofs and refer to
[Bra03, Sec. 2.6]. The tools for the estimates on fractional Sobolev spaces can be
found in [DS80, Sec. 6]. The corresponding fractional semi-norm is definded by

|0au(x) — Jau(y)[’
sK Z // |X— |d+2(1 3) dXdY7

where « is a multi-index. Another estimate on the trace of a polynomial function
will be used later on in Chapter [f

Lemma 2.3.3:
Let K C RY, d = 2,3 be a triangle or tetrahedron with diameter hx = diam K
bounded as in (2.10) and let p € Ny. Then there exist a constant Cipace, independent
of K, such that

1
luklloorx < Ctrace Ry |ukllox  Vur € Py(K).

Again, this is standard finite element analysis (see e.g. [DPE12, Lemma 1.46]).
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2.3 A discretization in space

2.3.3 Construction of the discrete operator A,

We want to approximate our problem ({2.1) with an ODE in the finite dimensional
space V7. Therefor we need to define an operator A, : VI — V7. So we test our
continuous operator A with argument u = (E, H) € H(curl, 2)? on a cell K with a
function (¢, ) € V) and integrate by parts

(A (IE{> , <¢h)) = —(VxH,¥p)ox + (VXE, on)ox + (0E, )0k
VK

Ph
=—H,Vxt¥p)ox + (E,V x@n)ox + (0E, ¥r)ox (2.12)

+ Y (FK (), Cﬁi))w |

The boundary term

3
-nx H
Figw) = Y= (0 ET) (213
j=1

is called flux. In the volume integrals we can replace the fields E and H by discrete
fields E;, and Hj, to define the discrete operator A, but in the boundary integral
we have to decide in what way to replace the flux Fi s(u) by a discrete version
F ;(uy). For hyperbolic PDEs the continuous flux can be replaced by a so called
upwind flux. How to obtain the upwind flux by consideration of a Riemann problem
will be explained next.

2.3.4 Upwind flux and Riemann problem

To construct the upwind flux, we have to solve a Riemann problem. Therefor we
consider a two dimensional subspace f of R3, so to say an infinitely extended face,
with unit normal n, i.e. f = {x € R3*: x-n =0}. On each half-space defined by f
we choose constant initial values and material parameters

u/, x-n<0o,
u’’, x-n>0,

(Mlagl)a X-n< 07

1V IV)

(1, €)(x) = { (WY

, x-n>0.

The piecewise constant initial values uy(x) correspond to the local behaviour near a
face of a piecewise constant approximate solution in a Finite Volume scheme. Now
we consider the time evolution of that initial values under Maxwell’s system

eOE—V xH=0 in R?® x [0, c0), (2.14a)
pOH+V xE=0 in R* x [0, 00). (2.14b)
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2 Maxwell’s linear time-dependent system

So to say, we neglect the right-hand side (fg,fy) and the terms of order zero,
i.e. 0 = 0, in the PDE (2.1)). Since we work on the whole of R?, we do not need any
boundary conditions. The described problem is called Riemann problem.

The classical formulation ({2.14) of the PDE is not appropriate to handle the jump
in the initial values, so in the usual way we multiply with a test function,
integrate over space and time, and then integrate by parts to obtain the weak for-
mulation of the problem.

Weak formulation Find u € L] (R? x [0,00))® such that V¢ € CZ(R3 x [0, 00))®

loc
/ / u - Aoat¢ +u- A()AQ,) dx dt +/ 110(X) . A0¢(X, 0) dx = 0. (215)
[0,00) JIR3 R3

Since the initial values are constant in two directions, we actually have a problem
in one space dimension. To understand the qualitative behaviour of such problems,
we refer to [LeV92]. Here, we will just state a solution of (2.15) and show that it

really is a solution. For our purposes this will be sufficient.

Our solution consists of four constant values and three travelling discontinuities

- (2.16)

Figure 2.1: Solution to the Riemann problem.
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2.3 A discretization in space

The domains of constant values Q7 C R? x [0, 00) are given by

QL ={(x,t) € R® x
QI = {(x,t) € R? x
QT = {(x,t) € R® x
QY = {(x,t) € R® x

x [0,
0,00) : X-n < Af,t},
0,00) : )\{72t<x-n<0}
0,00): 0<x-n <At}
0,00) : Afgt < x-n}.

Y

x|
x|
x |
x|

In order for u(x,t) to fulfill the weak formulation (2.15)), we have to impose jump
conditions on the discontinuities. They are known by the name Rankine-Hugoniot’s
jump conditions and read

Fiey(u —u’) = X, Al (u!’ — ),

Fy j(u'h —u'") =0, (2.17)

FK’f(uIV — oty = )\é}gAéV(uIV Y
The flux Fi s was defined in (2.13)), the matrix A, in (2.4a). Since Ay is material
dependent, the upper indices I, IV refer to the material parameters on the left-
and right-hand side of f, respectively. The jump conditions (2.17) are eigenvalue
equations for the matrix A 'p k,r- The eigenvalues denoted by )\f are also the
travelling speeds of the discontinuities of u(x,t). We have the following eigenvalues

and eigenvectors of Ay'F s(u) = (—e~'n x H, u'n x E) written in unit normal
and unit tangential vectors n, 71 and 75 on f, withn x 7y =79 and 71 - 79 =0

eigenvalue ‘eigenvector

N = 1 VAT

1 \/I—E \/_7.1

Ny = 1 VAT
2 = L JETs

3) (2.18)

>
&
|
)
<
w
I

_ 1 _(VET1
A= JE | W5 = 572)

_ 1 [ VET2
Ag viE | W6 (— 57'1>

Since the eigenvalues as well as the eigenvectors depend on the material parameters,
we again use the upper indices I and IV to distinguish between the two materials
divided by f. The upper index 0 denotes the material parameters e = p = 1.

Next, we show that the piecewise constant function u(x,t) given by (2.16]) with the
jump conditions (2.17)) is a solution to the weak formulation (2.15]).
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2 Maxwell’s linear time-dependent system

Lemma 2.3.4:
The piecewise constant function u(x,t) defined in (2.16)) solves the weak formulation

(2.15), as long as the jump conditions (2.17) are fulfilled.

Proof: We denote the boundaries of €/_ as follows

=00, NR* x {0}, Ty=0lnoql, I3 =0T noqll
Iy =00 noQll s =R* x {0} noQlY.

The unit normal in space-time will be denoted nz. Since we have to clarify the
direction of the normal, we introduce an upper index n’. for the outward unit normal
on Q7 . We obtain the following values for the unit normal vector

1

néﬂ r - (O _1) ’ né‘rz - 1’1¥|F2 - 1+ <>\{2>2 (n _>\i2) ’
1

ng‘rg - lrl"{FH|P3 - (n O) ) IH‘F - ngfv‘m NN (n _)‘g,‘g) ;

1+ (A8%)?

v
/ / u~A08t¢+u~A0A¢dth:Z/v u-Ag0ip +u- AgAgpdxdt.
0,00) JRR3 J=1 Y%

With an integration by parts we obtain

I

v

A
Z/ u- Ao dxdt = — ¢~Aéu1da+/ #gb'Aé(uH—uI)da
=1 /% I P2y 14 (M)

/ ¢ AIV( u[I[) da
14 ( AIV

¢ AlVu' da

I's
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2.3 A discretization in space

and also

1V

1
Z/ u~AoA¢dxdt:—/ — ¢ Fi (u’ —ul)da
j=1 7 T2 1"’(/\{,2)2

o / ¢ X FKyf(UIII - u[I) da
T

3
1
_/ 0 Fg(u'"V —u')da.
Ly /14 (AEY)?

Using the jump conditions (2.17)), we see that u(x,t) fulfills the weak formulation
@.15). 0

Now we want to calculate u!! and u//!. Therefore we define the two bases of R®

1 1 1 1
0 0 0 0
By = < Wi, —=Wo, W3, Wy, —=W;5, —=Wg

(@) 326 () 5 6) 2 (5)

_ \/ETQ \/ﬁTl n 0 pVry ptV Ty

- (V) (VE2)-(6)- () (V) ()
In the case of By we use the material parameters ¢ = 1 = 1, so we have an orthonor-
mal eigenbasis of the symmetric matrix F ;. Right now it is not quite clear that
also B is a basis of RS, but we will see this later on. If we now decompose the initial
jump u’Y — u! into the basis B

v I I I v v
U’ —u =W+ W, + asW3 + aqWy + asWs + Wy, (2.19)

we see that, in order to fulfill the jump conditions (2.17)), the intermediate values of
u(x, t) have to be

u'l =u’ + ayw] + aywh, (2.20a)
! =u'V — aswl — aswiY. (2.20b)

Since B is not orthonormal, we calculate the decomposition of u’V — u’ via projec-

tions on the basis By. To eventually exchange the basis to B, we need the following
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2 Maxwell’s linear time-dependent system

identities
)= (VB <
“) (é_— ) <F71)=62w£+65wév

( o (V) <
<

#(6) ) () it
<

IV £

T2 —VelT, VelVr,
w? — T2\ _ VT T ViV, — W +76WIV
0 —T1 Velr, —VelVry ! 6
with
. VeV
pr=p2= \/EIIUIV_‘_ \/EIVMI
Vel — Vot
Bs = Bs =

\/glulv 4 \/glvlul
— /v
Y1 =72 =
\/51MIV + \/51‘/#1
V5 =7 SR
5= Y6 =
\/éJ'uIV 4 \/EIVMI
From here on we know that B indeed is a basis of R, since we can decompose the
basisvectors of By into the vectors of B. The next step is to calculate the projections

of the initial jump u’” —u’ onto the basis B,. To shorten the notation we introduce
the jump [E] = E/Y — E’, so u!V — u! = ([E], [H]). The projections are

(] - s + [H] - 7) (T) |

T1

()i 1)) ( 72).
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2.3 A discretization in space

Now we can decompose the initial jump into the basis B

W ! = ([E] o+ [H] ) (Biw] + fawl)
i %([E] T — 73) (Bowh + BswiY)
+ ([E]- H)W3+( -m)w,
+ %([E] 71+ [H] - 72) (2ws + 5 w5)
T T—

For the intermediate values u’! and u’/! we obtain the expressions

u'l =u! + %([E] (B +m) + H] 11 (B —m))w
+ %([E] ~T1(ve + B2) + [H] - T2(72 — 52))“’27
!t =ulV — %([E] - 72(Bs + v6) + [H] - 71(Bs — 76)) W

— %([E] -T1(y5 + B5) + [H] - Ta(y5 — 55))WW

The numerical upwind flux is defined via the mean value of u/! and u’/!

7 1

. u-+u 111

Fro(u)=Fgi——— =
K, f( ) K.f 2 )

In comparison to the upwind flux the so called central flux is defined via the mean

value of the initial values Fg ; .ppq (1) = 1Fk s(u’ +u'V). We proceed with our

evaluation of the upwind flux and state that

AT
FK,fW{ = - ( \/6_7-2) )

_ //117.1
FKfWIV (V5IVT1>

VT,
as well as
2/ IV
Br—m = .
\/glulv + \/glvul
2./l
Bs —v6 = — K

\/glulv 4 \/glvlul

Fy pwl = — _\/8_17-1
K,fWo \/ETZ )

FKfWIV < VelVr, )

MIVTl

2/ elV

61 = \/EIMIV + \/&JVMI
el
Be + V6 =

\/gflulv + \/6IVMI
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2 Maxwell’s linear time-dependent system

To express the upwind flux in terms of the normal n, we also need the following
identities

nxE=(E 7)1, — (E-719)71, (2.21a)

n X (Il X E) = —(E . ’7'1)7'1 — (E . ’TQ)'TQ. (221b)

Finally, we obtain the result

v _ oyl

Fy ;(u) = Fepu' + FKJ—

1
+

2\/€I€—IVT2
1.1V v \/I v \/IV
\/5 —l—\/<€ € eVul) T

d(
+1 ( \/ﬁ+ 6”#1)72)
[

\/51 IV_|_ \/€IV 1 #Ile
_2,/5151\/7.1
/51 IV+ €IV )

<\/EIMIV _ \/EIVHJI> 7'1)

-2 ,LLI[LIVTQ

\/61 vV 4 \/€IV
1
T2 \/EIMIV + \/&JVMI
1 (\/efglvnx (n x [E]))
VeV + /el \y/ i iV (n x [HJ)

! VelptV Jlr VelVul C%ﬂ;{%ﬂ) '

We formulate this in a lemma.

N —

= FK,fu] +

Lemma 2.3.5:

Let K € Ty, be a cell with face f € Fx and material parameters ex and pyx and let
Ky € Ty be the next neighbour cell of K in direction of f with material parameters
ek, and pg,. Letuy, = (En,Hy) € V3 be a piecewise polynomial function. Then the
upwind fluz F (y) of uy, on the face f is given by

* —Og g X [Hh] K.f
Fr (uy) = Fg rug +
K,f( h) K,fUK < 3 Mgy ¥ [Eh] y (2 22)
+ (’anK,f X (g p X [Eh]K,f))

o p x (ng p x [Hyk f)
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2.3 A discretization in space

where

VEKMEK,

« - ) B J T
I VEKHEK; T \/EK ;K s VEKIK; + \/EK K
vf f=

- VERRE; + R K VERTER; + \ER K

Here, e.g. [Ex]ky = Ex, — Ex denotes the jump of Ey, on the face f and Ex and
Ex, denote the left- and right-hand side value of By on f, respectively. The flux
Fy 5 was defined in ([2.13]).

Proof: See calculations above. ]

The parameters o y and Bg ;s fulfill the properties

ak,r = Pk, f, akf+ag, =1, (2.23a)
ok, r = PK.f, Br,s + Br,p = 1. (2.23b)

In the special case of constant materials, i.e. ex = €x, and ux = pg,, we have
agr = Br = % In especially on boundary faces this is the case, as we will see
later on in Lemma [2.3.6] Although, we do not focus on the central flux, we like to
mention that we obtain the central flux from (2.22), if we set oy = Bx s = 3 and
s = 65 = 0. Later on in the error calculations we will divide by v and d; and
therefore take an advantage of the upwind flux over the central flux.

2.3.5 Upwind flux on the boundary

The previous lemma contains a formula for the upwind flux on inner faces. To
construct the discrete operator A;, we also need to make a choice for the discrete
flux on boundary faces f C 0. The idea behind that choice will be quite analogous
to the construction via Riemann problem on inner faces.

n x E = gg: First, we consider the boundary condition n x E = gg. We restrict
the solution u(x,t) in (2.16) to the region {(x,t) € R® x [0,00) : x-n < 0}, use the
same jump behaviour as before

ul =u +aywl + apw) (2.24)
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2 Maxwell’s linear time-dependent system

u! |nxET=gg

> X - 1N

Figure 2.2: Construction of bounary fluxes.

and enforce the condition
nx E” =gp (2.25)

to determine the parameters ;. Here, gg is an arbitrary tangential vector to the

subspace f. Equations (2.24) and ([2.25)) together yield
ge =nx E' — o/l 11 + as/pl 7.

A multiplication with the tangential vectors 71, 7o and the identity (2.21a}) lead to
1 1
\/_I(gE * T2 — EI : Tl)'

ay = ——=(gp - T1 +E'- 1), Qp =
For the value of u’’ and the discrete flux Fy ;(u) + G}, ((g5) = Fx gju'’ we obtain

/1l
I
Wl s nxlan nxgE
sanI ’

el I
Fj ;(u) = Fiepu’ — (\/ X (nx B >> : (2.26a)

n x E!

Gpy(gr) = <\/;n 8 gE) : (2.26D)

gE

Sometimes it is more convenient to work with the same definition of the upwind flux
for inner and for boundary faces. Introducing a virtual cell Ky next to the boundary
cell K, we can do this. With the definitions

HXEKf:—I’lXEK, l’lXHKfZI’lXHK,
6Kf = E€K, /’LKf = UK

on this virtual cell the inner upwind flux (2.22) and the boundary flux (2.26a)
will coincide. Note, that these virtual definitions are not unique. Other virtual
definitions might produce the same flux.
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2.3 A discretization in space

nxH = gy: We do the same construction for the boundary condition n xH = gy.
The parameters «; are determined by the two equations

II I I I II
U’ =u + oW + oWy, nx H" =gy,

where we obtain the explicit values

1 1
o = —— (g Ty — H - 71), g = —=(gy -1 +H' - 7y).

For the values of u'’ and the discrete flux Fj; ((u) + G, ;(g1) = Fi ju'’ we obtain

2l =+ <—\/’;—;an1> _|_< ’:—ng>’

n x (n x HY) —n x gy

n x H!

* — F I
i f(0) = Frepu’ + (_ [ x (o x H1)> )
G (en) —8H
gn) = )
H.f(8H [l n % g

as well as the virtual definitions

I’IXEKf:nXEK, HXHKf:—nXHK,

gKf:E:Ku /'I’Kf_:uK

nxH-Z7nx (nxE)=g;: For the impedance boundary condition we use the
two equations

u'! = u’ + aywl + aywl, nx H? — Zn x (n x E'Y) = g;

to obtain the explicit parameter values

1

= - - T
NERT N
1

ICETN

—HI"Tl—ZEI‘TQ),

aq

(6%) g['Tl+HI'T2—ZEI'Tl).
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2 Maxwell’s linear time-dependent system

They lead to the values of u’’ and the discrete flux Fj; ;(u) + G ;(g;) = Fk ju'
given by

Z—\/ﬁnx(anI) Vi HE

! —ul & Vel +2+/ul i _\/s7+z\/;7

ZVel I Vel I
@+Zﬁan \/?I+Z\/Enx(n><H>
Vi
4 NERYN /T
L V= B 7
Va8
ﬁif —n x (n x E') ﬁg n x H!
* & 154
Fiey(u) = Fie ' = 2V g |7 Nz an |
NEIY i ~ Uy X (nx HY
Vel g
Vel+7/ut &7

G?,f<g1) =

as well as the virtual definitions

| VIRZ ~ \FR _ VIRZ = Fx
NN 1T ViRZ + R

€K; = €K, MKy = HK-

HXEKf: IIXEK, IIXHK HXHK,

Again, we summarize these results in a lemma.

Lemma 2.3.6:

Let K € Ty, be a cell with boundary face f € Fx, f C 0Q and material parameters
£k, Wi, and optionally Zy. Let u, = (Ep,Hy) € V) be a piecewise polynomial
function and let g; € Lao(f), j € {E,H,1} be a tangential field on f. Then the
boundary upwind flur Fy ;(un) + G5 ((g;) of wy on the face f is given by
together with the definitions

ng s X EKf = —ngyr X EK, ng ¢ X HKf =Nng ;s X HK,
€Ky = €K, UK, = KK,
i 2y f X 8
GE,f<gE) = ( / gj;
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2.3 A discretization in space

in case of the boundary condition n X E =gg on f,

Ng s X EKf =g s X EK, Ng r X HKf = g5 X HK,

€Ky = €K, KKy = MK,

% _ —8H
H’f(gH) o (2(5]01’11(,]0 X gH)

m case of n x H=gpy, and

Ng ¢ X EKf = (Xf — Zfﬁf)l’l[gf X EK, Ng ¢ X HKf = (Zflif — Xf)an X HK,

€Ky = €K, KK, = HK,

Gise0 = ()

K f X 8r

in case of n x H—Zn x (n x E) = g, where

r = VEK jop — VHEK
PVER 2R R+ 2R

Later on, we also will use the notation h, for the diameter of a virtual cell Ky at the
boundary face f. This is to be understood in the natural way hg, = hx = diam K.

Proof: See calculations above. ]

We note, that we have oy = Bk s = 3 on boundary faces, as well as

2x0y = Ky,
2657 = X (2.27)
X+ 2k =1

on faces f € 0Q; of the impedance boundary. The jumps of the discontinuous fields
E; and H), on 0€; can be calculated to be ng ; X [Ey]k,r = —2Z;kng ; X Eg and

ng s X [Hh]K,f = —2anK7f X HK.
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2 Maxwell’s linear time-dependent system

2.3.6 Construction of the discrete operator A; (continued)

Now, we are able to handle the boundary integrals in (2.12)) by the replacement
Frp(u) — Fg ((uy) (see Lemma [2.3.5) on inner faces and Fg y(u) — Fi ((un) +
G ¢(g;) (see Lemma [2.3.6) on boundary faces. For (Ej, Hy), (¢, n) € V) we
define

(Ah (I]?ID ’ <I£:)>V - Z —(Hp, V xp)ox + (En, V X 1)k

KeTn
+ (oxkEn, ¥n)ox

25 (e (),

KeTy, feEFK
= Y —(VxHy, ¥n)ox + (V X En, @n)ox
‘e, (2.28)

+ (0xEn, ¥n)o,x
S s ¢ il s

KeTy, feFk
+ Bry(nkr X [En]k.r. K)oy
+9r (s x (i % [Bilky), ¥x),
+0p(ngy x (ngy % Hilkg), ¢x),

and thereby the linear operator Ay, : Vi — V7. The boundary values are handled
in a vector G, € V7 defined by

(@ (), = 2 Z (e (3),,

KET,, feFE
Y
FX 3 (Gt (5)) |
I;Thfesz’ a8 | oy 0.f (2.29)
* ?j;K
I (m(3),
I;Thfezf{( RAAXC 0.f

With Aj and Gy, defined, we now can formulate the semi-discrete (discrete in space)
ODE for the approximate solution u,(t) = (Ex(t), Hx(?)).
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2.4 Convergence of the semi-discrete solution

The semi-discrete problem Find u, € C'([0,00), V%), such that

atllh(t> + Ahuh(t) = fh(t) — Gh(t), (230&)
uy,(0) = I uy. (2.30b)

Here 11} denotes the Ly(Q)-projection on the space V. The right-hand side term
£,,(t) = IME(t) is also defined via Lo(Q2)-projection.

The system (2.30) has a well known unique solution (see [RR04, Theorem 12.14],
[Wal86l, Kap. 111, §16, Satz III|)

uy,(t) = exp(—Apt)Iug + /0 exp (— Ap(t — 5)) (fu(s) — Ga(s)) ds. (2.31)

Note, that f,(t) and Gy(t) are continuous in time due to our assumptions on f and

g; in (2.6) and (2.7), respectively.

Remark 2.3.7:

Apart from the numerical tests in Chapter [4] we will not discretize the time variable.
In this matter we like to refer to Pazur’s doctoral thesis [Pazl3| devoted to time
integration of linear Maxwell’s equations.

2.4 Convergence of the semi-discrete solution

Under an additional regularity assumption on the solution to Maxwell’s system
(2.1), namely u(t)] A € H*(A;), s > 1, we will show convergence of the semi-
discrete solution to the continuous solution as the mesh parameter h tends to zero.

Our aim is the following result on a finite time interval (0,7).

Theorem 2.4.1:

Let u(t) be the solution to Mazwell’s system , with an additional regqularity
uly o € C([0,T],H*(A;)°) for every j and a s > 5 and let u,(t) be the approwi-
mate solution given by , where p =5—1 and § denotes the rounded up integer
part of s as in Lemma m Further assume on the regqularity of the right-hand side
£la, %07 € C([0, 7], H*"2(A;)%) for every j. Then we have the following estimate

la(t) = wn(®)llaorv) < Ch2.
The constant C' is independent of h and will be specified in (2.35)).
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2 Maxwell’s linear time-dependent system

In [VV03] Vila and Villedieu presented an error estimate for an explicit in time finite
volume scheme for first order symmetric systems without boundary conditions. We
used their approach as a basis for the following proof of Theorem [2.4.1]

Remark 2.4.2 (on the regularity assumption in Theorem :

Regarding the existence and uniqueness result in Lemma [2.2.4] we have a regularity
u € CY([0,0),V) N C([0, ), H(curl, 2, 9Q)) of the solution u to Maxwell’s system
(2.1). For the convergence analysis, we need traces u|f on faces f to be in Ly(f)°

and we need a positive power of h in the projection error estimate in Lemma [2.3.2]

Therefore, we need local H*-regularity of u(t) with s > % Here in this work, we

will not answer the question, under which assumptions the solution u actually has
the desired regularity. We refer to [Mon03, Sec. 3.8] as a possible starting point,
though.

Since the proof of Theorem is long and technical, we split it into several
lemmata, beginning with the following.

Lemma 2.4.3:
Under the assumptions of Theorem [2.4.1] we have the following error estimate

[u— uh”ig((O,T),V)

<4 /0 (@(0)+ Aun(t) = Au(),u(t) — w (@) de 0
+ 4/0 npONIE(E) — £4 () [I3 dt +27 [Jug — w13,

where the time-dependent function nr is defined by nr(t) =T —t.

Proof: A straight forward calculation yields

u— uh”%g((O,T),V)

_— / Ja(t) — un(6)|2 A (1) dt
- / Bul[u(t) — w(®) 2 (t) dt +Tu(0) — wy(0) 2

= 2/0 (@u(t) — Opup(t),u(t) — uh(t))vnT(t) dt +T'||ug — T3
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2.4 Convergence of the semi-discrete solution

= 2/0 (f(t) — fh(t) + Gh(t) + Ahuh(t) — Au(t), u(t) — uh(t))vnT(t) dt
+Tlug — I uo| [y

Now we use Cauchy-Schwarz’ inequality and

b2
2ab < ea® + — for a,b € R and € > 0 (2.33)
€

to obtain

= o <2 [ (G + Avn(t) = Au(e) u(t) = (1) (1)

2
+ Tug — I

. / u(t) - w,(6)[2 dt +2 / () [E(E) — Ex(D)] dt

Collecting the error on the left-hand side, the desired estimate (2.32)) is obtained. [

The last two summands in (2.32)) contain projection errors, which can be handled
with the projection error estimate stated in Lemma Applied to the terms in
(2.32) it yields

1£5) — £u(DI < Eah™ EDOF s o0 (2.34a)
o — Mg} < ogh® gy . (2:34b)

Next, we focus on the term (G (t) + Apun(t) — Au(t), u(t) — u,(t))
the discrete operator A, we have the following positivity result.

v o (2.32). For

Lemma 2.4.4:
The operator Ay, defined in (2.28)) is positive semi-definite, i.e. for all u, € V¥

(A, w)y = Y ok (En Epox
KeT,

Vs Oy
+> ) 5 Iy x [Enlxfll5; + 5 Iy x [Ha] i 15
KeTy, feFy,

+ 2 2 2l x Bl

KeTh feFk

+ ) 20 nk x Helf5

KeTy ferH

39



2 Maxwell’s linear time-dependent system

+ 3 Y Zyxglngy x Exllf ; + splng s x Hellf
KeTh ferFl

> 0.

In case we have no outer forces, i.e. f;, = 0, and homogeneous boundary conditions,
i.e. G, = 0, we have a discrete loss of energy for the solution of (2.30]), since

1
§3t||11h|\2v = (up, Qpup)y = —(up, Apup)y <0.

This loss of energy even exists for full reflecting boundary conditions and without a
conductivity o and is caused by the upwind specific parameters v, and dy.

Proof: We use the properties (2.23) of the parameters ay s and Sk s to calculate
the following identities on inner faces f € Fy

—ag (g x Hi,, Ex)os + Br,p(nr, p X Ex, Hg,)o s =0,
—ag, r(ng, ;X Hig, Eg,)os + B p(ngy X Ex;, Hi)op = 0,

(ks x (ngr X [Eplk ), Ex)os + (nk, ;X (0, ¢ X [Exlk; 1), Ex; oy

= Ink s % [Enlksll5

(ngr % (nx X Hylg r), Hi)os + 0k, p X (i, p X [Halr,, ), Hi, oy
= |lngs x [Hulgf1I5 -

Additionally, on every cell K we obtain with an integration by parts

—(V X thEh)D,K + (V X EhaHh)O,K = Z (l’lK’f X EK7HK)0,f'
feFK

Regarding the virtual definitions in Lemma [2.3.6] we now use straight forward cal-
culations to show our statement

(Ahllh, Uh)v = Z —(V x Hyp, Eh)o,K + (V x By, Hh)o,K + UK(Em Eh)o,K
KeTy

+ > —akpngy x [Hilk s Bx o
KeTy, feFKk
+ Br,r(k s X [Eplk r, Hi )o,s
+ (ke X (g p X [Enlrr), Ex)os
+0r(ngr X (ngp ¥ [Hilxr), Hi)o,s
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2.4 Convergence of the semi-discrete solution

= Z UK(Eh,Eh)o,K

KeT;,
o0 Ji
£33 Dl x Balicsly + Ll x Bl
KeTy, feFy
+ Z Z —ag f(ngy X Hg,, Er)o s + Br s p X Ex,, Hi oy
KeTn feF?.

+7p(ng s x (ng ;¥ [Eplk ), Bx oy
+dr(ng s x (ngy X [Hplkr), Hic oy

= Z ok (En, Ep)ox

KeTh

Vs Oy
+ ) 5 Iy X Balic 6, + % Imur > Halirlo,s
KET), feFS

+ 3> 2y¢llng s x Exllf

K€eTy feFE

+ Z Z 25anK,f X HKHg,f

KeTy feFH

+ 3> Zixglngy x Exll} 5 + sgllngp x Hlff
KeTh ferFl

> 0.

O

Due to the boundary values g; of u, the analogous term (Au, u)y for the continuous
operator does not need to be non-negative. With an integration by parts we get the
following result for all u € H(curl, Q)% with (n x E,n x H) € Ly(9Q)°

(Au,u)vz/—VxH-E+V><E-H+aE-de
Q

:/UE-EdX+/ nx E-Hda

Q oN
= O'K(E,E)()’K + Z Z (nK,f X E,H)OJ.

KeT, KeTh feFe

Now, we calculate the mixed terms, namely (Au,uy)y, and (Apuy, IIYu)y. We have
the following result.
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2 Maxwell’s linear time-dependent system

Lemma 2.4.5:
All u € H(curl,Q)?, with u|AJ_ € H%(Aj)G for all j and all v, € Vi fulfill the
following equation

(Au,up)v + (Apup, IMu)y

= Z O'K(EK,HZ;(E + E)O,K
KeTy,

+ > > —ak(ng s x [Hylgp, TRE - E)o
KeTy, feFy,

+ Bry(nrp ¥ [Eplx s I H — H)o s
+ (g s % (g g X [Eplxp), I E — E)o
+ (0w x (nxp X [Halr p), I H — H)o
+ Y ) (ngy x Ex, H)oy — (ng; x Hi, E)o s
KET), feFd.
—ag, (g X Hylw g, HEE)o g
+ B s (e p X [Epli g, I H)o s
+ 9Ky X (nx s X [Eplr ), i E)o s
+ 0wy X (nrp X [Halr p), e H)o g

Y

Proof: On inner faces f € Fj we have the identities
iy X (nry X [Enlx r), E)os + vk, s X (g, X [Enlx, 5), E)os =0,
Or(ngy x (ngp % [Hplrp), H)o s + 050k, p X (g, ¥ [Halx, ), H)oy =0,

— (ngy X Hg,E)oy — (ng, s X Hg,, E)o s
= ag j(ng s ¥ Hulk r, E)os + ax, (e, < Hulk, r, E)oy,

(g s X Ex, H)o s + (ng, s X Ex,, H)o s
= =B,k X [Eplrr, H)os — B, sk, 5 X [Eplk,.r, H)o s

and therefore

(Auw,uy)y = Y —(V x H,Eg)ox + (V x B Hg)ox + 0 (B, Ex)ox

KeT,
= Z —(H,V x Eg)ox + (E,V x Hx)ox + 0x(E, Ex)o x
KeTy
+ Z Z —(I'IKJ X H,EK)[)’f + (IIK,f X E,HK)OJ
KeTy, feFk
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2.4 Convergence of the semi-discrete solution

= Z —(H,V xEg)ox + (E,V xHg)ox + 0k (E,Ex)ox
KeTy,

=+ Z Z (HKJ X EK,H)O’f — (nK’f X HK,E)OJ
KeT, feFK

= Z —(H,V x Ex)ox + (E,V xHg)ox + 0k (E,Ex)ox
KeTy,

+ > > By X [Ealkp, H)o s + ax p(ng s X [Hylk g, Bo g
KeTy feFy,

— (ks X (g p X [Eplrr), Boy
—0p(ng,p x (ng,y x [Halk p), H)o

+ Z Z (nK,f X EK;H>0,f — (nK’f X HK;E)O,f-
KeTh feFe

Per definition of Ay, in (2.28)), the other term reads

(Apu, )y = Y —(V x Hg, IEE)ox + (V x B, T H)o ¢
KeTh
+ ox (Ex, T E)o i

+ Y > ok x Halws IR E)o
KeTy, feFk

+ Br.s(nk ;X [Ep]x g, T H)o s
+7p(ng ;< (ngp X [Eplk ), T E)o s
+0p(ng ;X (g p x [Hylx f), T H)o 5.

We sum up both terms and use the orthogonality relation
(VxHg,ILE-E)ox = (VXEg IIZH-H)ox =0

to obtain the desired result. O

The last term we need to calculate is the one related to Gy,. Per definition of Gy, in

(2.29) and with the boundary flux values in Lemma we obtain

(Gh, H],'fbu — uh>v

=y ¥ <G*E,f(gE)’ (gé(ll?l - EII;))M

KeTh feFE
. 2E-E
£ % (Gnten: (i we))
KeTy feFl K K770
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2 Maxwell’s linear time-dependent system

I’.E — Ex
Z X (e (nfa ),

K€eTh feFL

= Z Z 2v¢(ng s x g, g E — Eg)o s + (g, T H — Hg o

KeTn feFk

+ Z Z gH,H E — EK)0f+25f(l’leXgH,H H - HK)
KeTh fert

+ Z Z —xs(g8r, Tk E — Eg)os + kp(nk s x gr, I H — Hg)o
KeTh feFL

In total, we can formulate the following lemma for the desired term in (2.32]).

Lemma 2.4.6:
Let u € H(curl,Q)? with regularity u|Aj € H%(Aj)6 for all 5 and with boundary

values gg, gu, and gr as in (2.1) and let uy, € V§. Then we have the following
estimate

(Gr+ Apuy, — Auu —wy)y

1 ek 1k 9
+ Z Z —||E — I E||0f+_—/—"H_HII?<H||O,f'
KeT fe]-'a 1K

Proof: We just calculated the individual terms of (G, + Apu, — Au,u — uy)y.
Summed up, we obtain

(Gh —|— Ahuh — Au, u— uh)v
= Z ok (Ex, IINE —Exk)ox + ox(Ex — E,E)o x

KeTh

+ Z Z —OéK,f(ﬂK,f X [Hh]K,vaI;{E - E)va
KeTy, feFy

+ By p X [Bnlic g, T H — H)o g
+r (ks x (g g % [Enlr ), IGE - E)
+0p(ngy x (ngy x Hylkp), I H - H)

vy Of
- EHnK,f X [En)rsllo.s — EHHK,J‘ X [Hy kIl s
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2.4 Convergence of the semi-discrete solution

+ Z Z (I’IKJ X EK,H)OJ — (IIKJ X HK,E)OJ — (l’lK,f X E,H)OJ

KET), feFd
—ar p(ngs X [Hylx p, L E)o,
+ Br.p(nip X [Epli s, I H)o,
+r (ks % (g s % [Bikp), IRE),
+ 05 (ng s X (g < [Hylg,p), I )

+ Z Z 2v(ng ;X g, g E — Ek)o s + (85, H}D(H —Hg)os
KETy, feFE

f
f

— 2v¢lIng ;X Ex|§

+ Z Z gH,H E — EK) 0,f + 25f(IIK,f X gH,H;?(H — HK)O,f

KeTy, fer

— 26¢|ng s x Hgll3

+ > Y —xs(enTE = Ex)os + rp(ng p x g1, TRH — Hy)o s

KeTy feFl,

— Zixslng g x Exlly ; — slngy x Hellf

=Sk +S,+Sg+ Sy + S5

Here, we denoted by Sk the sum over the volume integrals, by S, the sum over inner
faces and by Sg, Sy, Sy the sums over boundary faces. Now, we look at the sums

individually.

Volume term The first term can be estimated as follows

Sk = Z ok (Ex, I E —Ex)ox + ox(Ex — E,E)ox

Inner faces

So=Y_

KeT,
=Y ok(Ex,IGE —E)ox — ox(E — Ex,E - Ex)ox
KeTy,
= — Z ok(E—Eg,E—Eg)ox
KeTy,
<0.

To estimate the sum over inner faces, we use Cauchy-Schwarz’ in-

equality and ([2.33)) to obtain

Z —ag (g ¥ [Hylgp, TEE — E)o s

KeTy, feFy,
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2 Maxwell’s linear time-dependent system

+ Br.r(mg,p X [Eplg s, T H — H)o
+r (g % (g % [Bnlr ), IGE —E)
+ 5f(nK,f X (IIK,f X [Hh]K,f)7 HZ;(H — H)O,f

Vs Of
- 3”11K,f X [Enl st — EHHK,f X [Halk s 1l6

<Y Y axglngs x Halk sllofITE — Ellos
KeTy feFy,

+ Br.fllng s X [En]r fllo,f [T H — Hl[o 5
+vflns s X [En]x fllof TEE — Ello s
+ 0yllng ¢ X [Hplre pllo.f [T H — Hl|o,

v )
= 5 I < [Balresls s = 5 Imes < Halic Il

5f a%(,f
<> > e < [Hao s[5, + . IKE ~ E|3
KETy, feFS !

2
o Bic.s
+ Iy X (Bl gllg s + 'Y_fHHI;(H —H|
ol;
+ g x [Enlx g s + v ITE - E|F
Of
+ 7 lng s % [Hix 15,5 + 04T H — H||F

or; Of
- 7HHK,f X [Enlkfll5 s — §||1’1Kf x [Hplkf1I3 s

52
Y T (—ﬂf) IEE - |2, + ( ot +6f) I H — |2,

KeTy feFy,

-3 Y YEmE-EBR, + VL‘KHHPH H|Z,.
KeT, © KK
thJ:

E-Boundary faces To handle the three kind of boundary faces, we recall that
ak,y = Brs = 3 on boundary faces, as well as the virtual definitions for the next
neighbour cell ng ¢ x Ex, = —ngy x Ex and ng ; X Hyg, = ngy x Hg on faces
f C 0Qg. We obtain

Sp = Z Z (s X Ex, H)o s _SHK,f X HK7E>0,Jj_(nK,f x E,H)o s

KeTn feFE )

= ax sy X Halk p, T B)o r +01 s (s g X [En]re p, i H)o s

~
0
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2.4 Convergence of the semi-discrete solution

+ (nK,f X (nK,f X [Eh]K,f),HI;(E)OJ
+6;(nxy x (ngp x Hylx ), I H)

-
0

O)f

+2v¢(ng s X gr, N E —Ex)o s+ (8r, I H)or — (85, Hi)o f
(%)
—2vi(ng s X Eg,ng s X Ex)o

= Z Z (I’IKJ X EK7H)0,f — (Il[gf X E,H)O’f
KGTth]:}?

— (HKJ X EK,HI;{H)OJ + (IIK,f X E,H%H)(),f
— Q’Yf(l’lK,f X (EK — E),I’IKJ X (EK — H%E))O,f

= Z Z (IIKJ X (EK_E)7H_HII){H)O,]‘

KeTn ferk
— 2y (nx s % (Bx — E),ngy x (E-ILE))
—2y;(ngs % (Bx — E),ngy x (BEx —E))
> 3 iy x (Br = B3+ o [H - IHS,
KeTh feFk
+ 7l x (Bx = E)|[5 ; + 77| E — TRE[[G ;
—2f[lnk s x (Ex —E)|5;

1
= > > oo IH - IRH|E, + B~ IE[S

IA

KeTh feFE
1/iK 1 vex
=2 3 G e H - IRHI + 5B IEEG .
KeTh feFE r -

H-Boundary faces The boundary terms on 0€2z can be handled analogously. For
faces f C 8QH we I‘GC&H, that IIK’fXEKf = IIK’fXEK and DKJXHKJ, = —l’lK,fXHK,
to obtain

SH = Z Z \(nK,f X EK,H)O{—(IIKJ X HK,E>0’f — (IIKJ X E,H)O’f
KeTy feFl (‘[)
— ax p(npp X Halip, T B)o p + Bre.p(nuc s X [Enlie r, e H)o p

-~

0

""Yf(nK,f X (nK,f X [Eh]K’f)’H%E)O,f

>

~
0
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2 Maxwell’s linear time-dependent system

+ 0 (i % (nrep % [Halip), IEH)
— (gu, I E)os + (8, Ex)o,s +20¢(ng ¢ X gu, [ H — Hg o ¢
(%)

— 2(5f(IIKf X HK,HKJ X HK)O,f
= > Y —(nks xHg,E)os + (ng; x Hg, I E)o s
KeTh ferFl

— (IIKJ X H, H%—E)OJC — (I’IKJ X E, H)o’f

— 25f(nK,f X (HK — H),I’IK,JC X (HK — HI[)(H))

= > Y (nkyx (H-Hg),E-TLE)

KeTy ferH

07f

— 2(5f(1’lK7f X (HK — H),I’IKJ X (H — HII){H))
— 25f(Ilef X (HK — H),I’IKJ X (HK — H))

07f
07f

1
<D D drllny x (He ~H)[G, + 7B~ TRE[G,

KeTy, ferH
+0fIng p x (Hix — H)|[5 - + 04|H — 5 H|Z
— 20¢|lng ; x (Hx — H)|[5 ;

1
=D D g5 IIE— B, + & |H — IEHG,

KeTh feFl
1 \/EK IRV,
= Z H — L E|5 ; + —TIIH 101%9 = ([
KeT fe]—'H

I-Boundary faces The last kind of boundary 0€2; will be treated in the same way,
though here, the terms are more complex. We use the parameter identities (2.27),
as well as the jumps for the discrete fields ng s X [Eplx,; = —2Zskng r X Ex and
ng s X [Hplk,r = —2xsnk s X Hg to obtain the estimate

= Z Z (HK’f X EK,H)OJ — (HKJ X HKaE)O,f — (nKyf X E,H)()’f
KeTh ferk

—ag (g X Hilwx g, W B)o s + Br,p(ip X [En]kr I H)o s
+7r(nx s x (g g % [Enlw ), IEE)

+0p(nrs % (ngy x Hyxp), IEH)

= Xs (80, I E — Ex)o s + ry(ng,r x g1, I H — Hg )o s
—Zixfngr x Ex,ngr x Eg)os —rrngr X Hr,ng r x Hi)o r
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2.4 Convergence of the semi-discrete solution

=2 2

KeTn fE]:II(

(g s x Ex,H)o s — (ngy X Hg,E)oy — (ng s x E,H)o

+xr(g s x Hg, IILE)o f — Zprp(ng p X Eg, IIEH)o
—2Zsrpyp (g x (ngy x Eg), IILE)

— 2xs0; (ng p X (ng p X HK),H];(H)OJ

—xf(ng s x HIILE — Eg)o ¢

+ Zfo(an X (ng s x E), IILE — EK)O,f

—{—/@f(nK,f x (ng s x H),II" H — HK)
+ Ziks(ngp x EJ IV H — Hg o ¢

— Zixs(ngr x Ex,ngr x Eg)os
—kr(ngr X H,ng p x Hg)o f

07f

= > > xp((ngy x Bx, H)op — (ng s x Hi, B)o s — (0 x B, H)o

KeTn feFk

+ (ng; x Hi, I E)o ; — (ng; x H,IIZE — Ex)o )
+ Zpxs (= (ngs x (g x Eg), LB — Eg)
+ (ng s % (ng s x E), IGE ~Eg), )
+p(— (ngy x (g x Hy), I H - Hy)
+ (g % (ngp x H), IEH — Hy), )
+ Zprg((ngy x (Bx — E),H)va — (ng, s x Hg,E)o s
— (0 x Ex, T H)o s + (g x B, 1T H — Hy)o ;)

= > > xs(ngy x (He —H),IGE-E)

KeTn feFk

<22

KEeTh feFL

+ Zsxs((ng s % (ng; x (E - Eg)), I E — E)()’f
— (nx s x (E—Ex) ngs x (E— EK))o,f)
+ k¢ ((ngy % (ngy x (H—Hg)), I H — H)o,f
— (ngy x (H—Hg),ngy x (H—Hg))
+ Zgprp(ng gy x (B - Eg), IEH-H)

0s)

2
Ky 2 Xr 2
Yl x (- HiOlR + 2L T B~ B,

Zixy Zyxs
+ THnK,f x (E—Eg)[§ ; + THH’;}E —E|;

— Zsxslnky x (E—Eg)|?
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2 Maxwell’s linear time-dependent system

K K
+ s < (H—Hy)| , + - H — HJj

— riglng,y x (H—Hg)|5

Zfo E E 2 Zf,i? Hp H H 2
+ =5 ks < (B = Ex)lo, + 0 [T H — H|5 ;
=Y > WIMRE - E|; + o, THH - H|[3

KeTh feFl

1 1./
_ VIR E - B2, + - YA H - =2,

2 /,L(/K K 07f 2 IEK K 07f
KEThfe]-'{{

This finishes the proof. O

Proof of Theorem [2.4.7k For the remaining part of the proof, we just have to

put the pieces together. With (2.32), (2.34]), Lemma|2.3.2) and Lemma we get

the desired estimate

T
Hu - uh”ig((o,T),V) < Zlclightcf)oundary]7’2871 /() |u<t)|§,V,A77T(t) dt

T
k[ ROIROE 2Tl

< 2clight02boundaryT2h’25_l max |u(t)|§,V,A

t€[0,T]
4 . s
+ gcgellTShz 15&3% |f(t)|§_%,v,1\ + 22y Th* IuOIZV,A,
(2.35)
where
1
Clight = Max (2.36)

KeTh \JEKPK
n

For the convergence proof to work, we just needed positivity and the identities (2.23))
and on the parameters o ¢, Bk, f, V¢, 0f, Xy, and k. From that point of view,
we have some freedom to alter the upwind flux obtained by the Riemann problem
and still maintain convergence. So a natural question to ask is about the specialty
of the upwind flux defined via the Riemann problem. Looking at plane waves in
a material , there is a factor /pue=! between the magnitudes of electric and
magnetic field, which is compensated by the weights in the norm || - [|y. Because of
the special parameters obtained via Riemann problem, the estimate in can
be formulated in weighted semi-norms in a natural way.
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3 The perfectly matched layer

Content of this chapter We recap the construction of the PML by complex
coordinate stretching, have a look at the boundary conditions at the outer end of
the layer, investigate well-posedness and afterwards discretize the PDE in a DG
upwind scheme.

Origin of this chapter Idea and construction of the perfectly matched layer are
general knowledge. The discussion of the boundary values behind the layer and
the transfer of the well-posedness theory in Chapter [2| to the situation with a layer
are my contributions. The approach to the error estimate in Section again is
general knowledge.

3.1 The idea behind the PML

In the previous chapter we considered Maxwell’s equations in a bounded domain with
appropriate boundary conditions. In practical situations there often is a bounded
domain of interest surrounded by a vast vacuum or a homogeneous medium. When
a wave hits the boundary of the domain of interest it is supposed to leave the domain
without reflections. The boundary conditions used in are not able to handle
such a situation (unless we know the exact values of g;, j = E, H, I - which we do
not). Therefore, a common technique to absorb outgoing waves is to introduce a
perfectly matched layer (PML) around the domain of interest, which damps down
outgoing waves. In 1994 Berenger [Ber94] introduced the PML with a split field
formulation. Another convenient way to introduce the layer is a method called
complex coordinate stretching. Some notes of Johnson [Johl0] explain this very
nicely. In the following we give a shortened explanation of this method.
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3 The perfectly matched layer

3.1.1 The PML by complex coordinate stretching

Consider a plane wave that solves Maxwell’s equations in a homogeneous
medium. We focus on the exponential part f(x,t) = exp(ik - x — iwt), where the
direction of k € R3 is the direction of propagation. We assume k; > 0. Since the
argument of the exponential is purely imaginary, we have an oscillating function.
Now we add an imaginary part to z;

8 O» 1 S 07
hi=n lwxl (371> {(90, x1 > 0,

where 0y > 0 in the simplest case is a positive constant. Meanwhile the other space
variables remain untouched, i.e. yo = 3, y3 = x3. Now the plane wave E(y,t) =
Eof(y,t), H(y,t) = Hof(y,t) as a function of (y,t) solves Maxwell’s equations,
whereas as a function of (x,t) is damped exponentially by the factor exp(—i—oklxl)
(see Fig. . Note that for k; < 0 we have an exponential amplification of the plane
wave towards x1 — o0o. If we add a reflecting boundary inside the layer, the reflected
wave therefore will be damped again travelling towards the layer free region.

Tm 1, Reexp(ikiyr)

\ A

1Tl
S

Figure 3.1: A plane wave under complex coordinate stretching.

In order to express Maxwell’s equations in the real space variables x, we have to
transform the derivatives in y; by the chain rule

N (R LN

That is, in our PDE we have to replace

1
1+i¢

w

a1'1 — a$1 (31)

to obtain a layer in x;-direction.
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3.1 The idea behind the PML

Remark 3.1.1:

The layer is called perfectly matched, because it does not produce any reflections at
the interface between layer and domain of interest. In Fig. [3.1]this is expressed in the
fact, that the plane wave in the region x; < 0 is not altered during the construction
of the PML.

3.1.2 Derivation of the PML PDE system

The geometric situation we want to handle now is displayed in Fig. We have a
layer Qppy, of thickness d in z;-direction next to a cuboidal (rectangular) domain of
interest €2,

Qc = (0,@1) X (0,(12) X (O,ag),
QPML = (al,al -+ d) X (O,CLQ) X (0,&3).

Our initial values are supported in €).. In the layer we assume to have no current
density and no conductivity, i.e.

fE|QPML - fH|QPML =0, U|QPML =0.

The PML parameter 6(x) vanishes in (2., is non-negative and bounded in Qpyy, and
only depends on x

H(X) = XQPML9<x1) > 07

where y denotes the characteristic function. The parameter § may vary inside the
layer.

o0, DO
k
90¢, _|
& 90 GQEIML
Qc aQIPML
7 T1
0 aQ? aq ay + d

Figure 3.2: Geometry of a PML.
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3 The perfectly matched layer

Remark 3.1.2:

The PML can be utilized with non-homogeneous materials, but in order to make
a reasonable use of the layer, the materials ¢ and p have to be homogeneous in
x1-direction for x; > a;. Otherwise they may produce reflections, which re-enter
the domain of interest €2.. These reflections will be damped by the layer, though
they are not supposed to. In [OZAJ08, Fig. 1] there are some pictures on that topic.

Remark 3.1.3:

Sometimes in applications the parameter 6 is chosen to be continuously increasing
from x1 = a1 to 1 = a; +d. The intention is to surpress reflections from parameter
jumps, that occur because the discretization scheme does not suit discontinuous
parameters. Discontinuous Galerkin methods, nevertheless, are supposed to handle
discontinuities in the parameters quite well, so we will only work with a piecewise
constant 6. In his doctoral thesis [Nie09), Sec. 5.5.3] Niegemann tested several shapes
of the parameter function 6 for a DG method with the result, that a piecewise
constant parameter performs the best. Though, it is still recommended to increase
the value of 6 towards the outer boundary (see Chapter [1.3.5).

First equation of the PDE To derive the PDE system for this situation, we start
with the first equation of ([2.1al)

EatEl + O'E1 812[-[3 -+ 8333]—[2 fE' 1- (32)
Now we do a Fourier transform in time, that reads for a function ¢(t)

~

w exp 1wt dt,

g \/ 21 / )

g(t) w) exp(—iwt) dw
\/ 2T / )

To transform ({3.2)) into frequency space we have to do the substitution 9, = —iw to
obtain

—iWSEl + JEl - 6x2ﬁ3 + 6903[:12 = fAEJ. (33)

Since there is no derivative in x;-direction, we can neglect the substitution (3.1,
but we redefine the first components of the electromagnetic field

E = ((1 + lg) El, Eg, Eg) 5 (348,)

H = ((1 + i%) Hy, H,, H5> . (3.4b)
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3.1 The idea behind the PML

Hereby the fields do not change in the domain of interest 2. and equation (3.3) after
a multiplication with the factor 1 + ifw~! reads

5 . . . 0 . 0 .
—iw5E1 + O'E1 — 85,;2]-[3 + 8m3H2 — 1—8I2H3 + i_6x3H2 = fE,l- (35)
W 0y

Note, since the right-hand side va1 vanishes in the layer, we have 6 va1 = 0. We
define an auxiliary function

8_1

gl = E(O’El — fE,l — (V X I:I)l) — El (36)
and do a reverse Fourier transform to obtain the equation in time domain
—e0i(&1 + Ey) = 0B — fea — (V xH),.

With (3.6)), the fact that 6 ]EE7]_ = 0 and fo = 0 and a transformation of (3.5)) into
time domain we finally obtain

8atE1 + O'E1 — (V X H)l — 6951 — 80E1 = fE,l; (37)
01 + 06 + 0E; = 0.

So the steps we did here were a Fourier transform in time, a substitution of the

x1-derivative (3.1)), a redefinition of the fields (3.4]), a definition of the auxiliary
function (3.6)) and finally a reverse Fourier transform

ufh o ER § B2 5 B3 (g BT (4 g).

Second equation of the PDE In the second equation of (2.1al)
€0 Fy + oy — 0 Hy + 0, H3 = fu 2

we have a derivative in xi-direction and therefore do the substitution (3.1]) after a
Fourier transform

~ ~ ~ 1 ~ ~
—lweFy + cFy — az3H1 —+ H—_eale?, = fE72.
1_

A multiplication with the denominator and the fact that the conductivity, as well
as the right-hand side vanish inside the layer lead to

—iWSEQ + SQEQ + O'EQ — ax3ﬁ[1 + 8;511:{3 = nyg. (38)

Here we do not need an auxiliary function, so we set & = 0 and do the reverse
Fourier transform

EfatEQ + €9E2 + O'EQ — (V X H)Q = fE,2~

%)



3 The perfectly matched layer

Third equation of the PDE The third equation of (2.1al)
€03 + o Fs — 0y Hy + 0y, H1 = f3
is similar to the second one. We obtain & = 0 and

SatEg + €9E3 + O'Eg — (V X H)g = fE,S-

Fourth to sixth equation of the PDE For the equations (2.1b)) the procedure
remains the same. Here, the auxiliary functions are defined as

& = L((V x E); — le) — M,

&6 = 0.

In total our system with a layer in x;-direction reads

O E+0E—-V xH+20 - 01)E+¢(0 —01)ép = fg, (3.9a)
pOH +V X E 4 1(20 — 01)H + (0 — 01)€y = £, (3.9b)
0€p+ (01 —0)€p + (/1 —O)E =0, (3.9¢)

Oy + (01 —O)¢y + (1 — ©)H = 0, (3.9d)

where we have € = (£g, €y), a unit matrix 1 and a diagonal Matrix © defined by
© = diag(0,0,0).

Equations (3.9a) and (3.9b)) describe Maxwell’s system with a perturbation of zeroth
order. For the auxiliary function we have an ordinary differential equation without
any spatial derivatives. The function lives inside the layer and though we only have
two non-vanishing components of £, we write it as a six component vector. It is not a
topic of this work, but for a layer in every space direction the additional components
are needed.

Remark 3.1.4:
The redefinition (3.4) of the Fourier fields does not look straightforward. Looking
at equation (3.8)), we can define another auxiliary function &3 = ie;i&ps H, and do
the reverse Fourier transform without the redefinition (3.4)) to obtain the equations
€atE2 + €9E2 + UE2 — (V X H)Q — €§Sh = fE72,
8@ 2nh = 98963[-[1.
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3.1 The idea behind the PML

Proceeding like this, we obtain the system

cO,E + cOE + oE -V x H — €' = fj,
pOH + pOH +V x E — pu& = £y,
0,63 — OV x H; =0,
1oL + OV x By = 0,

where H; = e ® eeH = (H;,0,0). This is a more intuitive way to define the
auxiliary function, but the resulting system is not hyperbolic, so we cannot define

an upwind flux here. For example Bonnet and Poupaud worked with such a system
in [BP97].

3.1.3 Initial values and boundary conditions

Initial values For the electromagnetic field we use initial values u(x,0) = ugy(x)
compactly supported in the domain of interest, i.e. suppuy CC €2, whereas for the
auxiliary function we use vanishing initial values, i.e. £(x,0) = 0. That way, the
auxiliary function evolves as the electromagnetic field penetrates the layer. Choosing
non-vanishing initial values inside the layer may produce unwanted non-physical
effects.

The dilemma with the boundary conditions In the construction of the PML
we used a redefinition of the electromagnetic field to obtain a hyperbolic PDE
system , but this advantage has some negative effect on the boundary condi-
tions. As a result of |3.4] the first components of E and H do not decay exponentially
in the layer any more. Let us denote the Fourier transform of E and H by Eexp and
H..,. These are actually the fields with exponential decay. Now we want to express
them in terms of u and &€. A transformation of the first equation in into time
domain leads to

EatEl = SatEeXp’l + SeEeXpJ.
Summed up with (3.3)) transformed back into time domain
5atEexp,1 + UEexp,l - (v X H)l = fE,l

and (3.7)), we obtain
€& + 0 = eOFE gy 1.

57



3 The perfectly matched layer

Here again, we used that o vanishes in the layer, therefore 0 Fy = 0 Fey, 1. In total
we obtain the following results

Eep = E + &5, (3.10a)
Hexp =H+ €H (310b)

for the fields of exponential decay.

Now, if we want to prescribe boundary conditions on the outer boundary of Qpyr,
we are supposed to do that in terms of Ecy, and Heyp,, €.g. n X Ecy, = 0 for a per-
fect electric conductor. With these sort of boundary conditions the well-posedness
theory based on Lumer-Phillips’ theorem does not work any more in the way it is
presented in Section |3.2] For that reason we will continue the theory with boundary
conditions e.g. n Xx E = 0. In some special cases we might not even notice any
difference. Since our boundary conditions are posed on the tangential components
of the electromagnetic field, we do not obtain any problems on the boundary I'yME
see Fig. , but only on TTPME and TEME. And in the generic test example on a

nxE=nxE.,
nxH=nxH

PML
F?

0 0.5 05+d

Figure 3.3: On the right boundary of the PML there are no problems with the boundary
conditions. On the upper and lower boundary of the layer, it is not obvious, which
boundary condition to use.

rectangular or cuboidal domain we automatically have n x E.,, = 0 in case we use
the boundary condtion n x E = 0. To understand that, we recall the first equation

of (59

0py +08p, +0FE, =0.
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3.1 The idea behind the PML

Using homogeneous initial values, an integral form of £z, can be calculated to be

Epa1(t) = — /Ot OF, (7)exp (0(r —t)) dr. (3.11)

So with n x E = 0 we can see that n x &g = 0 as well. This argument also works
fine for the magnetic field. It does not work, though, for the impedance boundary
condition, since different components of E and H are coupled in that condition. In
the numerical simulation we therefore observe reflections out of corner regions.

To show that, we use two-dimensional calculations with unknowns (Es, Hy, H) in
the TM mode in a quadratic domain € = (0,1) x (0,1). The domain is divided
into 8 - 45 = 32768 triangles with a cellwidth of h = 2-%. In space, we use a
first order polynomial approximation, with a second order explicit time stepping
scheme and a timestepwidth of 7 = 0.0005. On the boundary, we use an impedance
boundary condition. We start with non-vanishing initial values only for the electric
field E3 (see Fig. in shape of a hat function. As time evolves the electric

Pseudocolor Pseudocolor
Var: E_vac Var: E_vac
-— 1.975 -— 0.3206
—1.481 —0.1566
| 009875 | —0.007430

—0.4938 —0.1714

-0.3355
Max: 0.3206
Min: -0.3355

0.0000
Max: 1.975
Min: 0.0000

4

L,

z
L
X

(a) The initial values F3(0) of the electric field (b) As time evolves the electric field F3 stays

are a hat-shaped function. radially symmetric, as long as it does not hit the
boundary or a PML. Here, the time ¢t = 0.2 is
illustrated.

Figure 3.4: The pictures show the electric field E3 of our test example at times ¢t = 0
and t > 0.

field remains radial symmetric (Fig. |3.4(b)|), as long as it does not hit any obstacle.

In Fig. |3.5(a)| we see the effect of a layer with a constant parameter § = 200 in the
region 0.5 < z; < 0.5+ d, d = 64! on the electric field E3. We actually see that
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3 The perfectly matched layer

Pseudocolor Pseudocolor

.-0.007937

—0.1720

l-O.SSé]

Max: 0.3203
Min: -0.3361

Max: 4.136
Min: -4.136

- A

(a) Due to the layer, we see an exponential decay (b) The magnetic field H; in- and outside the
in the electric field F3. The right-side boundary layer is shown. We can see that H; does not
is programmed to be almost in the middle of the decay exponentially inside the layer.

picture. On the right-hand side of the graph the

field is set to zero.

Pseudocolor Pseudocolor
Var: H_xPlusPsi_x Var: Psi_x
-— 0.3706 -— 3.982
—0.1853 —1.991
. 0.0000 -— 0.0000
—0.1853 .:—1 991
l-0.3706 -3.982
Max: 0.3706 Max: 3.982
Min: -0.3706 Min: -3.982

(c) The field Hy + g1 is shown, where an ex- (d) Except for a sign, the field {1 shows the
ponential damping inside the layer can be seen. spikes inside the layer of Fig.[3.5(b)|

Figure 3.5: Here, we see the influence of a layer, that is positioned almost in the center
of the domain, on the fields F5 and H;.
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3.1 The idea behind the PML

the field is damped. For the magnetic field H; the situation is different. Since we
redefined the first components of the electromagnetic fields in (3.4]), we observe a
rather large magnetic field H, in the layer (Fig. [3.5(b)). In Fig. [3.5(c)| and [3.5(d)|
we see the fields Hy + {g1 and £y ;. The former shows an exponential damping
behaviour inside the layer, the latter only lives inside the layer and produces the
non-damping behaviour of H;. A discussion about the long-time growth of the

auxiliary function € can be found in Chapter [f] Regarding (3.9d) and (3.9d), we
already know & to be proportional to the parameter 6 at the layer vacuum interface.

Taking a look at the difference between the electric field that evolves freely in €2 and
the one with a PML, we see the reflections caused by the layer. In the left-hand
half of Fig. [3.6(a)| we see the reflections by the layer before the initial wave hits the
corners of the PML. There are hardly any reflections to see. After the wave hits the
corners of the layer, we notice reflections (see Fig. caused by the impedance
boundary condition n x H— Zn x (n x E) = 0 on the boundaries ' M and TPME.

Pseudocolor

Pseudocolor

Var: E_diff Var: E_diff
-—0.1988 -—0.1394
—0.08623 —0.05705
| —0.02631 | 002531
—0.1388 —0.1077
.—-0‘2514 -0.1900
Max: 0.1988 Max: 0.1394
Min: -0.2514 Min: -0.1900

L.

(a) In the left half of the graph the reflections
of the electric field by a PML with impedance
boundary condition at time ¢ = 0.35 are shown.
The right half shows (except for a minus) the
electric field as it evolves in free space.

(b) Due to the discrepancy between u and Uexp,
we obtain reflections out of corner regions, here
at time ¢ = 0.65, of a PML with an impedance
boundary condition.

Figure 3.6: We observe undesired reflections out of corner regions, if we use the
impedance boundary condition in the shape of (3.12d)) behind the layer.
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3 The perfectly matched layer

Boundary conditions for well-posedness theory In this work we utilize a well-
posedness theory based on Lumer-Phillips’ theorem. In order to obtain a well-posed
problem, our choice of boundary conditions is one of the following

nxE=0, (3.12a)
nxH=0, (3.12b)
nxH-Znx (nxE)=0. (3.12¢)

They can be combined, so that on several different parts of the boundary we use
different boundary conditions. They also can be inhomogeneous, but that is only
advisable in special cases, e.g. when we have exact knowledge of the electromagnetic
field. In the numerical tests in Chapter 4] this will be the case.

Boundary conditions for theoretical understanding of the PML In order to
fully understand the theoretical behaviour of the layer, we deem it necessary - as
explained above - to use the boundary conditions

n X (E+€E):O,
n x (H—i—fH):O,
nx (H+&y)—Znx (nx (E+£&g)) =0,

since they have a well-known reflection and absorption behaviour.

Boundary conditions for practical use In applications the absorbing boundary
condition

nxH-Znx(nxE)=-nx&y+7Znx (nxé&g),
with Z = ez ,u’%, seems to be the most useful. How to treat the right-hand side
in terms of the upwind flux was explained in Section [2.3.5] and will be continued in

Section |3.3.2] In Lemma we just have to choose g = —nx&€p+Znx (nx&xg).

3.1.4 Maxwell’'s system with a PML in z;-direction

Now we are able to state the PDE we are interested in. The boundary conditions
behind the layer will be chosen as in (3.12))

cOE+0E—-V XH+20-01)E+c(©—-01)fg=fr inQ, (3.13a)
pOH+V X E+pu(20 —01) H+ (0 —01)ég = in Q, (3.13b)
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3.2 Existence and Uniqueness for the PML setting

0+ (01 —0)p+ (1 —O)E=0 in Qu, (3.13¢)
Ok + (01 -0)g+ (1 -O)H=0 in Q, (3.13d)
nxE=gr onodlgs, (3.13¢)

nxH=gyg ondy., (3.13f)

nxH-Zn x (n X E) =g; ondQr., (3.13g)
E(,0)=E, inQ, (3.13h)

H(.,0)=H, in, (3.131)

€r(-,0)=0 in Q, (3.13j)

Ex(,0)=0  inQ. (3.13k)

Again, the index oo denotes e.g. Qo = 2 X [0,00). The domain €2 has a layer and a
non-layer part, i.e. Q = Q. U Qpyr.. The boundary parts are split in the same way
(9_95 U (9_QJF->ML = 8_Qj, j = F,H,I. The conductivity ¢ and the right-hand sides fg,
fy are supposed to vanish in Qpyy,. The Matrix © was defined by © = diag(0, 6, 6),
where 6 is the non-negative parameter of the layer, that vanishes in €2.. Therefore
we can see by and that the auxiliary function £ also vanishes in €2..
In the layer only the first and fourth component of £ are non-vanishing. The initial
values Ey and Hy are supposed to be supported in €2..

Remark 3.1.5:

The PML in the present hyperbolic formulation is often referred to as PML
in Zhao-Cangellaris’ formulation or unsplit PML compared to Berenger’s version,
who introduced the PML by a splitting of the electromagnetic fields.

3.2 Existence and Uniqueness for the PML setting

The next step will be to verify the assumptions of Lumer-Phillips’ theorem (Theorem
. Here again, we will work with homogeneous boudary values g; = 0 and
rewrite the system (3.13al) to (3.13d) in terms of v = (u,&). We consider the
Hilbert space Vpyr, = V X V equipped with the inner product

<V7 ‘N’)VPML = (u7 ﬁ>V + (57 E)V
Let the operator B : D(B) C Vpur, — Vpur be defined by

By — ((2@ —f1)u+ (© — I1)€ + Au) |

(01 — ©)(u + £) (3.14)
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3 The perfectly matched layer

with domain
D(B) :={(u,&) € H(curl, 2)* x V: n x E =0 on 9Qg,
nxH=0ond, nxEeL,(d9)°,
nxH-Znx (nxE)=0on0dQ},
corresponding norm
VD) = VIR, + 1BV Ry, + 0 X B2 50,

and A : D(A) C V — V defined in (2.3)). The 6 x 6-analogon of the 3 x 3-matrix ©
is denoted by © = diag(©, ©). The coefficient matrices in B are
20 — 01 = diag(—0,0,0,—-0,0,0),
© — 61 = diag(—6,0,0,—0,0,0).

We want to investigate the problem d,v + Bv = (f,0) and therefor check Lumer-
Phillip’s assumptions on the operator —B.

Lemma 3.2.1:
The operator —B : D(B) C Vpur — Vpmw satisfies the assumptions of Theorem
221

Proof: There are three assumptions to check.

First assumption D(B) is dense in Vpyy, with the same argument as before,
namely C3°(€2) is dense in Ly(€2).

Second assumption With an appropriate w and for v € D(B) we have to show
the estimate

!

(V’ BV)VPML > —w(v, V)VPML' (315)
Therefor we calculate

(v, BV)vpy = ((20 — 01)u, u)v + ((© — 01)¢, u)v + (Au,u)y
+ ((01 — ©)u, &), + ((01 — ©)¢,¢),,
= ((2© — 01)u, u)V + (Au,u)y + ((01 — @)E,E)V.
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3.2 Existence and Uniqueness for the PML setting

With an integration by parts we have

(Au,u)vz/ JE~EdX—/ E-nx Hda
Qe 2/}

:/ O'E-EdX—I—/ ZnxE-nxEda>0
c 10934

and as a result the desired estimate
<V7 BV)VPML > _HSUP (V, V)

Veme

We have w = g, = sSupyeq 0.

Third assumption For )\0 > Hsup and F = (Fu,Fg) = (FEaFH7F§E7F§H) € VpuL
we seek a v € D(B) such that

Bv+ M\v=F.

Rewritten in four equations i.e.

(20 —A1E + (0 —01)€p — e 'V x H+ ¢ '0E + 0E = Fyp, (3.16a)
(20 —01)H + (© — 01)éy + 'V x E+ \oH = Fy, (3.16b)

(01 — O)E + (01 — ©)€p + No€p = Fe,, (3.16¢)

(01 —O)H + (01 — )&y + Moy = Fe,,. (3.16d)

With the definition 7' = (6 + A\g)1 — © = diag(f + Ao, Ao, Ao) We can express & by
F; and u as follows

£ =T '(Fe, — (01 — O)E), (3.17a)
£y =T (Fe, — (01 — ©)H). (3.17b)

Now we replace € in (3.16al) and (3.16D)

(20 —1E+ (0 —01)*T'E— 'V xH+e¢ '0E + M E

=Fp+ (01 —O0)T 'Fe,,
(20 —A1)H + (0 — 01)’T'H + "'V x E + )\ H

=Fpy + (01 — ©)T'Fg,,.

(3.18a)

(3.18b)
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3 The perfectly matched layer

To shorten the notation, we define

Pr=(20—-01)+ (0 —01)’ T + (Ao +c o)1
2

. A _ _ _
= diag (0+0)\0+5 Yo 0+ Mg+ to,0+ XN+ ¢ 10),

2

Py = (20 —01) 4+ (6 — 01)°T " + X1 = diag <9iOA ,0+)\0,0+/\0> ,
0

Fp=Fp+ (01 —0)T'Fe,,
Fy=Fy+ (1 —0)T 'F,

and obtain

ePgE -V x H = eFp, (3.19a)
H+p 'P;'V x E= P;'Fy. (3.19b)

From here on the procedure will be the same as in the proof of Lemma [2.2.2] We
test (3.19b)) with V x 1), where

eV={EecH(curl,Q): nxE=0o0nd0g, nxE e Ly(d0;)%},

and do an integration by parts
/PH1FH~V><¢dx:/¢~V><H+,uIPH1V><E'V><1/)dX
Q Q
+/ n x ¢ -Hda.
oN

Now we insert (3.19a) and use the boundary conditions of E, H, and )

/P;FH-Vx¢+aFE~¢dx:/ePEE-¢dx
Q Q
+/u‘1P}}1V><E-V><¢dx (3.20)
Q

+/ Zn x Y- -nx Eda.
o9
The space V equipped with the inner product
(E, %)v pa, = / ePEE - ¢+ 'P;'V x E -V x 9 dx
Q

+/ Zn x ¢ -n x Eda
o9
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3.2 Existence and Uniqueness for the PML setting

is a Hilbert space, so Riesz grants a unique solution E € V of (3.20). We define the
corresponding magnetic field H by (3.19b)

H=P;'Fy — p 'P;'V x E € Ly(Q)°

and the auxiliary function & € Ly()® by (3.17). With the aid of ([3.20)), we calculate
the weak curl of H. Therefor let 1 € C(Q2)?

/H-Vx¢dx:/P;1FH-vX¢—u1P§1VXE-Vx¢dX
Q Q
:/gPEE-q/)—gFE-t/JdX.
Q

By the definition of the weak curl we have V x H = ¢ PgE — cFp € Ly(Q)3. To
assure (E, H, &y, 1) € D(B) we still have to assure the correct boundary conditions.

Again for ¥ € VN H!(Q), using ([3.19a]) and (3.20) we have

/H~Vx¢dx:/VxH-t/;dx+ H nxda
Q Q [2)9]

:/—sFE-¢+ePEE-¢dx+ H n x¢da
Q oN

—/PHlf‘H-Vx1p—u1PH1V><E-V><¢dX
Q

—/ Zn x Y- -nx Eda+ H-n x4da.
o9 o9

With the definition of the magnetic field H by (3.19b|), the volume integrals sum up

to zero

/ Z/nx E-nxyda= H -n xv¢da
691 89I

+ H -n xyda
0y

and this yields the boundary conditions nxH—Znx (nxE) = 0 on 0Q; and nxH =
0 on 0Ny. So the third assumption of Lumer-Phillips’ theorem is fulfilled. m

In the situation with a layer, we have w > 0 in . This allows for an exponential
growth of the solution in time, compared to the situation of Lemma where
we have w = 0. In case of homogeneous boundary conditions we now can state
existence and uniqueness.
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3 The perfectly matched layer

Lemma 3.2.2 (Existence and uniqueness, [RR04, Sec. 12.1.3]):
Assume vy = (Eg, Hy,0,0) € D(B), with support suppuy C ., f € C([0,00),V)
and either f € WrL([0,00),V) or (£,0) € LL ([0,00),D(B)). Then there eists a

unique classical solution v € C([0,00), Vpyr,) N C([0, 00), D(B)) of the PDE dyv +
Bv = (f,0), with initial values vo given by

v(t) = exp(—Bt) (‘(1)0) + /Ot exp (— B(t — s)) (f(ds)) ds.

In case of non-homogeneous boundary values (gg, gn,gr) # 0, we again assume to
have an extension ug € C'(]0,00), V) N C([0, 00), H(curl, Q,09)) (see (2.7)) of the
boundary values into the space-time cylinder 2.

Lemma 3.2.3 (Existence and uniqueness, [RR04, Sec. 12.1.3]):

Assume initial values vo = (Eg, Hy, 0,0) € H(curl, Q)% x V, which fit the boundary
values, i.e. n X Eolyq = gp(-,0), nxHgly,, = gu(-,0), n x By € Ly(99;)?,
and (n x Hy — Zn x (n x Eo))|yq, = 81(+,0). Further assume the regularity of the
right-hand side £ € C([0,00),V) and either f — dup — Aug € W(]0,00),V)

loc

or (£,0) — 0,(up,0) — B(ug,0) € LL ([0,00),D(B)). Then there exists a unique
(7) ) Y ) ) q

loc

classical solution v € C*(]0, 00), Vpnr,) N C([0, 00), H(curl, 2, 9Q) x V) of the system
Ov + Bv = (f,0), with boundary values g;, j = E, H, I given by

v(t) = (“Bo(t>) + Viom(D),

Vhom(t) = exp(—Bt) (uhamﬂ)

[t =) (3)-5() o

3.3 A discretization in space with a PML

3.3.1 The finite dimensional space of approximation

There are a lot of similarities to the situation without a layer. Therefore the notation
can remain quite similar, despite of some indices B or PML to meet the higher space
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3.3 A discretization in space with a PML

dimension due to the auxiliary function. For the setting with a layer we use the
piecewise polynomial space of approximation

VQ,PML ={vih € Vpumr : Vilg € IP’;Q(K) VK € Th},
together with the Ls-orthogonal projection on VZPML

P . P :
I, : Vemn — Vi, pys V> arg}r}nm |v — W||VPML )
WEV) puL

3.3.2 Upwind flux with a PML

Since the system 0,v + Bv = (f,0) is hyperbolic (see page |14 for the definition),
we already know the procedure to calculate the corresponding upwind flux and
to discretize the system in an upwind scheme. We already did detailed calculations
regarding Riemann problem and upwind flux in Sections[2.3.4and [2.3.5] for Maxwell’s
equations without a PML. Here, we will transfer these results to the problem with
a layer. The operator B can be rewritten similarly to (2.3)) as

3
Bv=DB;"'> 0,,Bv+B_v. (3.21)

j=1
Expressed in terms of A; (see (2.4])), the matrices B; are given by

_ (Ao O (40 .
B“_(o 1)7 Bj—<0 ),fory—1,2,3, (3.22a)

(20-01+A, ©-01
B_1_< - e 9]1—@)‘ (3.22b)

Analogously to (2.13)), we define the flux FjZ ; through a face f for the operator B

3
FEv=Y nBjv= Fi.s(u) 3.23
KfV = n;b;v = 0 (3.23)
j=1

and lead our interest to an eigendecomposition of the linear mapping

3 -1
By'FE v =Bty nBv = (AO ngf(“)) .

=1
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3 The perfectly matched layer

Since we already know the eigendecomposition of Aj'Fg ;(u) (see (2.18))), we can
identify the desired eigendecomposition to be

eigenvalue ‘ eigenvector eigenvalue ‘ eigenvector
B_ __1 B_ (W1 B _ p_ (0
B_ __1 B _ (W2 B _ B_ (0
B _ B_ (W3 B _ p_ (0
A3 =0 Wy = (0 Ag =0 Wy = (e5) (3.24)
w 0
A =0 wf:(04 A =0 wﬁ):(%)
0 w
0 w
A =0 wg—(eg) A = L Wﬁ—((f).

6)(x) =
vV, x-n >0, (1 €)(x) ., x-n>0

{v[, x-n <0, {(,ul,sl), x-n <0,

in the Riemann problem to determine the upwind flux. As time evolves, the initial
discontinuity will split into three discontinuities

We do a decomposition of the initial jump similar to (2.19))

10

v I B,I B,I B B,IV B,IV
Vi =V =W oW, + g QWi + oWy + Q1aWiy
Jj=3
and obtain for the intermediate values
II I B,I B,I
v =vi +aw] +aew,
II1 v B,IV B,IV
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3.3 A discretization in space with a PML

In the variable u this is completely analogous to (2.20]), so we can skip the calcula-
tions and state the upwind flux for the system with a PML

1 uII+uIII *
=gy () = (T < () e

We formulate this result in a Lemma.

Lemma 3.3.1:

Let K € Ty, be a cell with face f € Fix and material parameters ex and pyx and let
Ky € Ty be the next neighbour cell of K in direction of f with material parameters
er; and pig,. Let v = (up,&r) = (En,Hp, &€un,&un) € VZ,PML be a piecewise
polynomial function. Then the upwind fluz F}?}Vh of vy, on the face f is given by

. Fr (u
Fyvy, = ( K’{)( h)), (3.26)

where Iy ;(uy,) was defined in (2.22).

In other words, to define the discrete operator By, : VZPML — VZ,PML in an upwind
scheme, we have to do the same substitution Fg ;(u) — Fg ;(uy), that we already
did to define the operator A,. On the boundary this is not any different, but
we have to remember, that we need an extra term in case of non-homogeneous
boundary values. Here, we do the substitution Fi f(u) — Fj ;(un)+Gj ((g;), where
a definition of G (g;), j = F, H, I and the virtual definitions used in Fy ,(uy,) can
be found in Lemma 2.3.61

3.3.3 The discrete operator B,

Since for the system with and without PML the upwind fluxes are quite similar, see
(3.26)), the discretization of the operator B defined in (3.14)) is straightforward. We
define the operator By, : V}, pyr, — Vi par, by

Byvy — ((2@) —01)uy, + (@ — 01)&), + Ahuh) | (3.27)

(01 — ©)(uy + &)

With the vector G, € V) given by (2.29)), we investigate the semi-discrete problem
described by the following ordinary differential equation.
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3 The perfectly matched layer

The semi-discrete problem  Find v;, € C'([0,00), V] py\yp,), such that

Ova(t) + Byva(t) = (fhét)) - (G’;)(t)) , (3.28a)

v (0) = IT? (”(‘)0) . (3.28b)

The right-hand side term £,(t) = IIV£(t) again is defined via La(Q)-projection.

3.3.4 A first rough error estimate

Now that we have a solution v to the continuous problem and a solution vy,
to the semi-discrete problem in the shape of , we would like to show
an error estimate similar to Theorem [2.4.T] for the present situation with a PML in
x1-direction. Since the terms of zeroth order in the PDE (3.13a)) to (3.13d) allow for
an exponential growth of the solution in time, we can reproduce the error estimate
in Theorem [2.4.1], if we handle this exponential growth appropriately and repeat the
calculations of Lemma [2.4.3] The presented approach is quite standard and can be
found e.g. in [VV03|. Nevertheless, the resulting error estimate is very rough. In
the context of this work, it serves as a motivation to find another approach to the
problem. So we will not perform the calculations in every detail

[l exp( = Osupt) (V = Vi) lIT (0.7 Viur)
- " exp(— 2B DIV(E) — V(O Oenr (1) d
= 20 [ 2BV V0 0 B TIYO) V0 O,
v " exp(—2Brup)H[V(1) — V(1) (1) d
=2 " exp(— 2BtV (1) — VD)2 1 (0) AL AT Vo — ol

T

+2 | exp(—205pt) (Opv(t) — Opvi(t), v(t) — vi(t))

S~

VeMmL

= _QGSHP eXp( 285upt) ”V(t) — Vi (t) ”%/YPML nr (t) dt +T||VO - HZVOH%/PML

T

+2 [ exp(—205pt) (Brvi(t) — Bv(t), v(t) — vi(t)) nr(t) dt

VemL

/OT
o

exp 265up ( ( ) — fh(t) + Gh(t), u(t) - uh(t))vnT(t) dt
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3.3 A discretization in space with a PML

T
= _29511[)/ eXp(_298upt) HV(t) - Vh(t) H%/}DMLT]T(t) dt +THV0 - HfLVOH%pML
0

_9 /0 ' exp(~20.pt) ((20 = 01) (u(t) = wi(1)) + (O — 1) (£(1) — &n(1)),
u(t) = (1)) mr(t)dt
9 /O ! exp(—20,ut) ((9]1 — @) (ult) — un(t) + £(t) — & (1)),
§(1) — €n(1)) nr(t)dt
+ 2 /OT exp(—20supt) (£(t) — £4,(t) + Gu(t) + Apuy(t) — Au(?),
u(t) —uy(t)) mr(t) dt.
Here, the first, third and fourth summand are bounded from above by zero

T
02 =200y [ exp(-20)[V(0) = (DR, 200
0

2 / exp(—20uupt) ((20 — 1) (u(t) — un(1)) + (© — O1) (£(1) — &(1)),

u(t) — uh(t)>VnT(t) dt

9 / ex(~2aupt) (61 — ©) (u(t) — up(r) + E(1) — £n(1)),

£(t) = €n(1) _nr(t)dt.
With (2.33) we obtain the estimate

| exp(—bsupt) (v — Vh)||%2((o,T),vaL)
T
< 2/ exp(—20supt) (F(t) — £,(1) + Gu(t) + Apun(t) — Au(t),
0

u(t) —up(t)) mr(t) dt
+ T||VO - HflVOH%[pNIL

<2 / exp(—205upt) (Gr(t) + Apuy(t) — Au(t), u(t) — un(t))  ne(t) dt
1 / exp(—2aupt) [£(t) — Eu (]I 03(1) dt

1 T
o / exp(— 20t |[u(t) — uy (£ |2 dt
0

+ T||V0 - HZVOH%/PML.
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3 The perfectly matched layer

Now, we substract the third summand on the right-hand side to obtain an inequality
similar to the one of Lemma [2.4.3]

H exp(—é’supt) (V - Vh) ||i2((0,T)1VPML)

<4 /O exp(—205upt) (Gr(t) + Apuy(t) — Au(t), u(t) — un(t))  nr(t) dt

T
+ 4/ exp(—20aupt) [ £(2) — £a (D) [Km7 (1) At +2T [[vo — T Vo[, -
0

Proceeding with Lemma [2.3.1] and [2.3.2] and the estimates in (2.34) and Lemma
[2.4.6l we obtain the estimate

H exp(—@supt) (V - Vh)”]g—*Q((OvT)uVPML)

T
T / exp(— 2B t) ()2 v ar(8) dlt
0

T
A [ expl 2B (0 dt
0

+ 2T h** Vol vpyp
where ¢jight, Was given in . The reason why we consider this estimate to rough is
the exponential term on the left-hand side. Brought to the right-hand side it turns
into a factor exp(fs,p1"). For a typical calculation over a time 7" = 1 this factor
reaches values of exp(100) and more. Since in simulations the PML performs much
better, there is the desire to find a better error bound. We will come back to that
issue in chapter [5
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4 Numerical tests

Content of this chapter To investigate the properties of the PML in numerical
calculations, we tested it with M+, a library programmed and used at our institute.
The main focus in this chapter is on an exact solution to the PML system, which
has a sharp angle of incidence into the layer. One advantage is the exact knowledge
of the angle dependent damping behaviour of the layer. Another one is the existence
of real non-reflecting boundary conditions for that sharp angle of incidence. That
way, we can choose the parameters of the layer appropriately, so that the errors
from the layer are of the same order as the overall discretization errors. Our exact
solution will be presented in Section |4.1) and for the rest of this chapter we use it as
a numerical test setting.

Origin of this chapter Except for the idea, the presented exact solution to the
system with a layer is my contribution. The C++ code to simulate the problem
without a layer was mainly written by Ekkachai Thawinan and Christian Wieners.
My contribution was the addition of the layer.

4.1 An exact solution in a half-space with a PML

In Section we already introduced initial values in form of a hat function, that
we use for testing. The hat function spreads in every direction and therefore does
not hit the layer in a sharp angle. Since the damping of the layer depends on the
angle of incidence, we like to introduce another test setting, where we only have one
direction of propagation and knowledge of the exact solution. This exact solution
will be defined on the half-space Qyg = ﬁ;suﬁggﬂ, where the corresponding subsets
are definded by Q4 = {x e R®: 2y < a;}and QR = {x e R®: a; < 21 < a;+d}.
The space-time cylinder will be denoted by Qpus o = Qus x (0, 00).

The setting is supposed to be two-dimensional, i.e. the fields are homogeneous in
x3-direction. On the boundary behind the layer we use PEC- as well as impedance
boundary conditions.
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4 Numerical tests

Exact solution with PEC boundary In our test setting we set e = u =1, 0 =0,
and fp = fy = 0. The parameter function #(x;) is a bounded, non-negative,

piecewise continuous function of x1, that vanishes outside of the layer, i.e.

0 < 0(x1) < Ogup, 0(z1) piecewise continuous, 9|Q%s =0

We seek a solution to the system

OE -V xH+ (20— 01)E + (0 — 01 )€ =

0

OH+VXE+ (20 -01)H+ (0 —01)é5 =0

0i€p + (01 —0)ép + (01 — O)E =
0y + (01 —O0)¢py + (01 —O)H =
nxE=

E(-,0) =
H(-,0) =

€e(,0) =
€u(-,0) =

0
0
0

Ho
e

=&Ho

n QHS,ooa

n QHS,oo;

iIl QHS,oo;

n QHS,ooa
on (09Hs)sos
in QHS;

in QHS)

in QHS,

in QHS-

(4.1a)
(4.1b)
(4.1¢c)
(4.1d)

(4.1e)
(4.1f)
(4.1g)
(4.1h)
(4.1i)

To specify the initial values we decompose Qug into seven parts (see Fig. m

Therefor we fix a point xy € dQdys and choose the direction of propagation

ex = (Cosgo sin O)

for the incoming wavefront, where ¢ € (—3m,0)
propagate in the direction

* .
e, = (— cos sing

0).

U (0, 3m). The reflected wave will

The thickness of the wave will be denoted by d, > 2d. We define our decomposition

of Qug as follows

Qo ={x€Ns: (x—x¢) ex>0}

U{x€eQfs: (x—x%¢) ex < —ds, (x—X) € >0}

U{x € Qfs: (x—x0) e < —ds}
U{x e Ot (x—x0) - ex >0},

M ={xeNfs: —ds < (x—%0) ex <0, (x—x%¢)- e >0},
={x€eg: —ds < (x—%¢) -ex <0, —ds < (x—x0) € <0},

Qs ={xe€Qfg: (x—x%¢) ex < —d;, —ds < (x —xp) - e, <0},

Qu={xec Oy’ —ds < (x—x%0) e <0, (x—x%)-e} >0},

Qs = {x € Ut —dy < (x—x%0) e <0, —d, < (x —xg) - ef <0},

Qs = {x € U™ (x—x¢)-ex < —ds, —ds < (x —Xg) - e} <0},

Q7 = {X € QPML . (X — Xo) . el*( < —ds}
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4.1 An exact solution in a half-space with a PML

perfect
electric
conductor

07
2

Z1

aq Cll-‘r-d

Figure 4.1: Decomposition of Qg to specify initial values.

The lower bound dg > 2d ensures 25 to be non-empty. Since our PML-parameter

only is piecewise continuous, we decompose the sets €24 to {2; again into a finite

number of sets Qf, j = 4,...,7 in a way, that 6(z1)|q is continuos. To define
J

the initial values for our test setting, we first specify - up to some factor - the
electromagnetic field of the incoming wave in ;. Let Eyx and Hy be defined by

Ex=(0 0 1), Hy = (sing —cosg 0). (4.3)

So ey, Ex and Hy form a right-handed orthonormal system. Also note, that Ej
and Hy form an eigenvector (3.24)) of the flux operator (3.23)) with eigenvalue \Z =
ML =1

(Ek Hy 0 O) € span (Wﬁ,wg) ,
if we take n = ey to be the normal vector. For the reflected wave we define
Ei=(0 0 —1)=-Ex, Hy=(—sing —cose 0)=(—Hy1 Hyz Hgs),

so that ey, Ej and Hj, also form a right-handed orthonormal system. The damping
factors induced by the layer will be expressed by the functions

D(z) = exp (— / "0y dxy cos go) , D*(z) = D(ay + d)2D(z) "

ai
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4 Numerical tests

for the incident and the reflected wave, respectively. A scalar function
s € CY([—d,,0])

will describe the shape of the incident wave. To shorten notation we define the
integral

and the coordinates
y(x) = (x — %) - ex, y*(x) = (x — %) - e
and now are able to define our initial values uy = (Eo, Hy) and &, = (€g.0,&m0)-

Before doing so, we like to explain the idea behind our test setting in more detail.
The system in (4.1)) outside of the layer coincides with the one we discussed in
the context of the Riemann problem in Section 2.3.4 In the vacuum region we
therefore know about the travelling behaviour of a discontinuity in one direction
with homogeneity in the other two directions. Instead of a discontinuity we can
choose any shape s to travel through Qf;q. This shape will be placed in 2; and form
the incoming wave. A cross section of €y is shown in Fig. The shape of the

—dg M

Figure 4.2: In the domain €27 we place initial values with an amplitude in the shape of
s. As time evolves, these initial values will travel in the direction of ey.

incoming wave is supposed to be homogeneous in the directions orthogonal to ey.
Our choice of Ex and Hy in (4.3)) will ensure, that the incoming wave travels in the
direction of ex. Since we prescribe the angle of incidence ¢, we also know the effect
of the layer on that incoming wave. It will induce a damping with the factor D(z).
The reflections on the boundary behind the layer were already discussed in Chapter

M page [
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4.1 An exact solution in a half-space with a PML

Finally, we state our initial values as follows

(0 in Q,
s(y(x) @‘;) in Q.
s(w00) () + s ) DG+ a7 () mon
s(y*(x)) D{ay + d)* (1]5{]1;) in Q.
s(w6) Do) (e in 0,
(6N Do) () + 50760 (o) () i

D) () in O,

0 in 97.

(uo + &o)(x) = (4.42)

\

The corresponding auxiliary function & can be calculated with (4.1c) and (4.1d))

(0 in Q,
0 in 9,
0 in 2o,
0 in 3,
0(21)D(1) Hiot S (3()) <£> in QL
€o(x) = ! . (4.4b)
0(x1) [D (1) He1 S (y(x)) + D*(x1) Hy; S (y*(x))] <91> in QL,
0(z1) [D($1)Hk,15(—ds> + D*(xl)H;JS(y*(X))} (eol> n Qé,
| 000) (D) it (=) + D" () H (=) (é’l) in QL.

Since 6 is allowed to be discontinuous, we obtain discontinuities in the auxiliary
function &p. Other discontinuities may appear on the edges of the incoming and
reflected wave, when the shape function s does not connect continuously to zero.
For simulations, though, it is not advisable to have discontinuities crossing some cell

K. In Q3 we can identify the damping factor DEEC for the electromagnetic field by

ai1+d
DFEC = D(ay + d)? = exp (—2/ (1) dx; cos go) . (4.5)

ai
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4 Numerical tests

As time evolves these initial values will travel with a speed 0y = ﬁ in xo-direction,
though this is not to be confused with the physical travelling direction of the wave.
Physically, the stripe {2y travels in the direction of ey and (23 in the direction of e},

both with a velocity of AP = \E, = 1.

Lemma 4.1.1:
With the initial values in (4.4) a weak solution to the system (4.1)) is given by

v(x,t) = vo(x — Dot eq). (4.6)

To refer to this exact solution, we use the notation vEC (x,¢). Though we already

explained the construction of our exact solution, we do detailed calculations in the
proof.

Proof: To transform (4.1) into a weak formulation, we multiply (4.1a) to (4.1d)
with a test function ¢ = (¢pu, @¢) = (P, Pu, ey, bey) € CF(Qus % [0, 00))2 with

constraint n X ¢g = 0 on (0Qys)«, integrate over space and time and integrate by
parts to obtain

—/ / V-@ttbdxdt—/ v0-¢(x,0)dx+/ / v-B*'¢dxdt =0. (4.7)
0 QHS QHS 0 QHS

The operator B* is defined by

. (20 —01)u+ (01 — ©)¢ — Au
BV‘( (01 - ©)(€ — ) )

We seek solutions v € L} (Qus x [0,00))'? and intend to show that vLEC (x, 1), as

given in (4.6) is such a solution. Let us define a decomposition of Qus - by
Q]}OO:{(X7t)€QHS,oo: X_’[)QteQer}, ]:0,,7

The sets Qé-’oo, j =4,...,7 are defined in the same way. Note, that the index oo
in this context does describe a sheared space-time cylinder. Now we calculate the
pointwise derivatives of v(x,?) inside these ;. and Qéoo Therefor we define the

shifted coordinates

*

Y (x) = y(x — Datey), Y; (x) = " (x — Datey)
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4.1 An exact solution in a half-space with a PML

and with the derivative s’ of s obtain the time derivatives

~ () (g2 n 9o
= (n0) () — Dlas + 25 (00) (1)

E*
. 2/ * k .
Hyu(x, 1) B D(ay + d)*s ( 1t(x)) (Hl*() in Q3 ,
+0E(x ) E .
! ) — D(z1)s' (y:(x)) (Hl;) n o,
Ey « . E; .
- D(%)S,(yt(x)) (Hk) - D (x1>3,(yt (X)) (Hll»f() in 5 o,
* / * Ei’; .
— D*(x1)s' (y; (x)) = in Q6 0,
k
L 0 in Q?,ooa
(0 in Qo oo,
0 in 91,007
0 in Q27oo>
0 in 937007
0 !
nein = )~ Oe0De)Hs () (o) in 0.
* * * 0 .
= ) [P Hias (1) + D" () 2500 (o) in 9
* * * 0 .
- e D* (o) s (7)) () n O
\ 0 in Ql7 o
and the curl of the electric field
0 in QO’OO,
s’(yt(x))ek x Ex in Q1,00,
s’ (ye(x))ex x Ex + s’ (y; (x)) D(a1 + d)ej. x Ej; in Qo o,
s'(y; (x))D(a1 + d)’ej;, x Ef; in Q3 0,
V x E(x,t) = ' (y(x))D(21)ex x Ex — s(y(x))0(x1) cosp D(z1)er x Ex in Qim,
s’(yt(x))D(xl)ek x Eyx — s(yt X )9 x1) cosp D(x1)e; x Ex 0Ol
+ s’(y:(x))D*(xl ep x Ep + s(y;‘(x ) x1)cos D*(x1)e; x Ey 5,007
s’ yf(x))D*(:rl)ek x Ep + s(yt (x))@ x1)cos D*(x1)e; x Ej, in Q% o
0 in Q7 0.
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4 Numerical tests

Except for the additional auxiliary function, we obtain the same curl for the magnetic
field, but have to exchange E by H

V X (H(X7 t) +&u(x, t)) = V x E(x, t)‘Ek:Hk, E;=H; ’

where the curl of the auxiliary function is given by

¢

0 in Q0 o0,
0 in Q1 0,
0 in Q2 o,
0 in 93,
Vx€n(xt) = 9(:61)Hk,1D(a:1)s(yt(x))ek X e in Qi’oo,
0(x1) [Hk,lD(xl)s(yt(x))ek + H,’;ID*(a:l)s(yf(x))ei] X e] in Qé’oo,
0(x1)Hy D (x1)s (yf (x)) ef x €1 in Qép@,
0 in leoo.

We also specify the terms of zeroth-order

0 n QO,ooa

0 in Ql,ooa

0 in ngoo,

0 in 93,007

(20 —00)u(x,t) | 6(x1)D(x1)s(y:(x)) (flk> in Q) .,
Kk

+ (@ —01)E(x,t)

o) | Dlen)s() () + D70l 0) ()| in 96
00D (e2)s(07 ) (1) in O
0 in Ql7,00’
0 in Qo,oov
0 in Ql,ooa
0 in Q2 o,
0 in Q3 o,
(01 — O)u(x,t) _ 0(z1)D(z1)s(ye(x)) singp (eol> in Qim,
+ (01 — ©)&(x,t) 0
b sin e [Dln)s (1) — D" (en)s(ui ()] () in O
_ Q(xl)D*(xl)s(yf(x)) sin ¢ (i) in Qévoo,
0 in Ql?,oo
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4.1 An exact solution in a half-space with a PML

and use the relations

81XEk:—eg, 61XET{262, 61XH1(:—COSQD€3, elef(:—Cosgpeg,,
ex X Ek = Hk, ex X Hk = —Ek, ey X e = —Sil’l@eg,
* * _ TT* * x * * _ .

to confirm, that equations to are fulfilled pointwise in each €; o
and Qé-po, respectively. Next, we calculate the jumps on the interfaces to confirm
Rankine-Hugoniot’s jump conditions (see also (2.17))). On each interface we have to
confirm the jump [v] to be an eigenvector of the flux operator FZ ;(-) (see (3.24)
for the eigendecomposition). The corresponding eigenvalue has to be the travelling

speed of the discontinuity, e.g. we have to confirm

on 08y o, N8 . To calculate the jumps on the interfaces, we need an orientation.
Here, with k£ > j we use the convention that [v](x,t) = V|Qmo (x,8) = vlg, _ (x,1) on
O 0o NN and as well [v](x,t) = V|Q§~,+olo (x,t) — Vlgé,oo (x,t) on 0L NOQYL .
By 0(z1+) and 6(xz1—) we denote the right- and left-hand side limit of 6 at xy,
respectively, as well as the jump by [6](x;) = 6(z1+) — 0(x;—). For v we obtain the
jumps

( E
S(yt(X)> (Ht) on an,oo N aQO,OOa
5(0)D(ay + d)? (le) on 082 o N 08 o,
k
s(y;(x))D(ar + d)* <I]:311:) on €3 o N 020,00,
k
— s(—d,) (Ek) on 023 oo N 082 oo,
Hy ’ ’
[u](x,t) = ¢ s(0)D(zy) (I]?Ik on 99 . NI e,
k
0
- ‘9($1+)Hk,15(yt(x)) (91 on 084 o0 N O o,
0
- (Bl D) HaS ) (5)  on o0 nook.
0
— O(z1+)Hy 1 S (1 (x)) (91
0 on 895700 N 392,00,
|~ 0 Dlan + a7, 50 ) ()
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4 Numerical tests

;

5(0)D*(zy) (Ek> on 99 ., N O

* ~
Hy

— [07(x1) D(21) Hi 1 S (ye(x) ) (3)

1

— [0)(1) D* (1) Hy 1S (7 (%)) (eﬂl)
— O(w1+) Hy 1S (—dy) (0>

€1

on 8Ql5+olo N 0%

5,007

on 96 00 M 823 o,

5,007

— s(—dy)D(z1) <Ek> on 9% ., N O

[u](x,t) = { — [0](2z1)D(21) Hy,1S(—ds) <£>
on 8(2&10 N oY

6,00

€

= 6](x) D" (@) Hi, S (7 (x) (O)
— O(z14) Hi 1 S(—dy) (31) Oz 50 MO0
On 032700 M 08 00,

— O(x14)D(ay + d)*Hj; S(—ds) (2)

B 5(—dS)D* (xl) (IEE) on 8917,00 N aQé,ooa

— [0](z1) D (1) Hy, 1 S(—ds) (‘g)
on 89l7+010 N o%;

7,007

- bl D )54 )

on 0 5 N 09 oo,
on Qs o N O oo,
on 03 5 N 0 oo,
on 0823 o N 02 o,
on 89200 N 02,00,
0(3:1+)Hk715(yt(x)) <0) on 9y oo NN o,

€1

\

© oo oo

€l(x, 1) =

[0](21) D (1) Hye,1 S (e (x)) ( 0) on O0GTL N oYY .,

€
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4.1 An exact solution in a half-space with a PML

(

0(21+) Hion S (3 (x)) (3)

1

0 on 085 o N 082 o,
+ 0(2z14+)D(ay + d)*H;; 1 S (y; (x)) ( )

€1

0 on 89%700 N 893700,
10)(e) D) i S () (0)

€1

on 89?“010 N oL

5,007

+[0)(21) D" (1) Hy S (y; (%)) <O>
0(21+)Hy 1 S(—ds) <0>

€1

0 on 08 o N 0823 ,
(1) Dlar + d)H; S (3 (%)) ( )

[€l(x,t) =< 0 on 0 ., N O

(0] (1) D (1) Hy 1S (—d) (O) 5,007

€1

on 89%110 N oL

6,007

+ [6)(1) D" () Hi 1S (47 (x) <O>

O(21+) Hy 1 S(—dy) <0> )

€1
on 0827 o N 02 0,

€1

0 on 8917700 N oL

10](21) D (1) Hyo1 S(—d,) (0) 600

€1

+ 0(214)D(ay + d)*Hj; 1 S(—d,) <0>

I+1 !
on 9Q7 L N oY, .

\ €1

+ [0)(@1) D" (1) Hy 1 S(~dy) <O>

Now we can check the jump conditions on every interface and see, that they are
fulfilled. To verify the weak formulation (4.7)), we use the following integration by
parts formula (the index [ is optional)

1
v B*¢dxdt = Bv - ¢pdxdt — ——FB v.¢pda.
/Qz-,oo P /Q;-,m P /afz;,m Vsl

Considering the space-time boundary 0(€2; ) or 8(92700) as a travelling boundary
only in space, i.e. e.g. the time-dependent set I';(t) = {x € Qus : (x,t) € I(Qj0)},
A denotes the local traveling speed of that boundary in normal direction. We have
to set A = 0o on 9(Q00) N{(x,t) € R*: t =0} for the formula to be correct. Note,
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4 Numerical tests

that the normal vector in the definition of Fg (1) is only the spatial normal vector.
The space-time normal vector again is denoted by

np= ———(n -\,
iTw

with the special case nr = (0, —1) for A = co. We start with the left-hand side of

4.7
—/ v~8t¢dxdt—/ v0-¢(x,0)dx+/ v - B*¢dxdt
QHS,oo QHS

el

Q

Vo plx.0)dx— [

Q

v - B¢ dx dt]

L L L
72,00 J 7,00

@v-cﬁdxdt—/

o, .

nrav - ¢ da —/ vo - ¢(x,0) dx

Q! Q

3,00 J

1
Bv - ¢dxdt — ——FEB .v.¢d
wf, megaa [ ooy a]
|
= 0.

Regarding 0;v + Bv = 0 in each 2, o, and Qé’,w the Rankine-Hugoniot jump condi-
tions, and the initial and boundary values, we see that the weak formulation (4.7
is fulfilled. m

Exact solution with impedance boundary Again, we set ¢ = =1, 0 = 0,
fr = fy = 0 and use a bounded, non-negative, piecewise continuous parameter
function 6(x;), that vanishes outside of the layer. We seek a solution to the system

OE—-VxH+ (20 -01)E+ (0 —-01)é =0 in QxS oo, (4.8a)
OH+VXE+(20-01)H+ (0 —01)éy =0 in Qns o, (4.8b)
Okp+ (01 —O)¢p+ (01 —O)E=0 in Qus oo, (4.8¢)

0k + (01— )+ (01 —O)H=0 in Qus oo, (4.8d)
nxH-nxnxE)= on (992ns)cos (4.8e)

E(-,0) = Eg in Qps, (4.8f)

H(-,0) = Hy in Qps, (4.8g)

€p(-,0)=€po  in Qus, (4.8h)

€n(-,0)=¢&yo  in Ops. (4.81)

Compared to system (4.1)) we only changed the boundary condition (4.1€). But we
will use altered initial values as well. The reflected wave obtains an additional factor
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4.1 An exact solution in a half-space with a PML

() defined in ([£.10). With the same decomposition of Qus (see (4.2)) and Fig. [1.1)),
we can formulate our initial values for the electromagnetic field

( 0 in Qo,
E .
(06 (1) in 1,
s(y(x)) Gii) + oz(go)s(y*(x))D(al + d)2 <H>:l:{> in Qo,
a(p)s(y*(x))D(ar + d)? (flik‘) in Qs,
(ug + &o)(x) = B, k | (4.9a)
s(y(x))D(z1) (Hk> in Qy,
s(06) D) () + aleds( () D) (g5 ) in 0.
a()s(y ) D" (o) (5 ) in €,
0 n Q7
and for the auxiliary function
(0 in Qo,
0 in Ql,
0 in Qs,
0 in Qg,
0(21)D (1) Hy 1S (y(x)) <£1> in QL
§o(x) = . (4.9b)
B [Dle) Hia$(0) + o)D" () HLS ()] () in 0
B [Dlen) Hia () + (o)D" (e iy ()] () i
| 0(01) (=) [D(@1) Hiy +al¢) D" (21 Hi (2) in QL.
The function a(yp) is given by (see (1.9))
_ l—cosyp
alp) = 14 cosy (4.10)

and plotted in Figure £.3] Again, in Q3 we can identify the damping factor for
the electromagnetic field. This time it also contains the function a(p). The total
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ary (FAB) without any layer. This can be done with an impedance boundary and a
choice of Z = cos(p) (see (1.9)). We call the corresponding exact solution v

4 Numerical tests

[y

> 0

ol 1

Figure 4.3: The damping factor a(yp) shows the damping by the impedance boundary
and depends on the angle of incidence.

damping factor now is given by

DImp edance

]__
fmpedance _ () D(ay + d)? = ———F ¢

ai1+d
Ttcosp P (_2/al 0(x1) dxq cos go) . (4.11)
before.

In regard of a weak solution to the system (4.8), we can state the same lemma as
Lemma 4.1.2:
With the initial values in (4.9) a weak solution to the system (4.8) is given by

v(x,t) = vo(x — Ugt €3).
Here again, the initial values travel with a speed vy =

(4.12)
m To-direction.
To refer to this exact solution, we use the notation vIi2eee (x ¢).
Proof: The proof is analogous to the one of Lemma[4.1.1] so we skip the details. [

The exact solution we use here can also be adjusted to have a fully absorbing bound-

FAB

exact (X7 t) .



4.2 Numerical test setting

4.2 Numerical test setting

In our numerical tests, the PML parameter 6(z;) is supposed to be piecewise
constant, in especially constant on every cell K. To perform these tests, we re-
strict the exact solutions and to a rectangle Q. = (0,1 — d) x (0,0.5),
Qpmr, = (1 —d, 1) x (0,0.5) in the z1zo-plane (see Fig.[4.4). On the outer boundary

L2
A
0.5 LS L
. PEC or
ds impedance
s ek Q. boundary
I 2,
2
g t=0 rpML
x
0 I'¢ !
o)
A re
3
0.5
PEC or
2 impedance
ey & Q, boundary
rs T~ ¥
O
4]
§ t=t ML
x
0 re !

Figure 4.4: To perform numerical tests on the layer, we use an incoming initial wave
with precise angle of incidence . The initial wave will travel towards the layer, where
it will be damped and reflected at the boundary. To measure the reflections of the layer,
we stop the test, when the reflected wave is still contained in €.

of the PML, we use either homogeneous PEC or impedance boundary conditions,
ie.

nxE=0 or nxH-7nx(nxE)=0 on THME,
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4 Numerical tests

We use Z = 1 to test the PML. In case we want to test an optimal absorbing
boundary (that only works for our special test setting), we use Z = cos(¢). On all

the other parts of the boundary, we use the exact inhomogeneous PEC boundary
condition with values taken from the exact solutions (4.6)) and (4.12)), i.e.

nx E=nx E’

exact

on T U ITMLyTEMEUTS U TS,

j € {PEC,Impedance, FAB}. Here we only use a PEC boundary, because the
impedance boundary absorbs energy and therefore as well reflections from the layer.
We also like to mention, that in this context the expression ’exact’ is not fully correct,
since in our code we use quadrature rules to evaluate integrals like in the definition
of G, in . So instead of the exact values we use polynomial interpolations of
the exact values. The same holds true for the initial values. Instead of the Ly(2)-
projection of the continuous initial values, we use as well an interpolation, but we
will not go into any more details on that topic. We take our initial values from
the exact solutions and choose the parameter xq, which shifts the initial values in
xo-direction, in a way that we only have an incoming initial wave. In terms of the
second component of xq, we use
1 cosp —ds

To2 = 7 — :
2 sin ¢

The simulation stops, when the reflected wave is still contained in €2., though the
corresponding time ¢; depends on the angle of incidence . Here, we set t;(15°) =
1.2, t1(30°) = 1.1, #1(45°) = 0.75 and are interested in the values of the relative
reflections of layer and boundary in the Lo-norm

R — \|uh(t1(90))||2,ﬂc. (4.13)

[, (0)]]2,0.

With a perfect absorbing layer and without discretization errors the reflections R,
would vanish, whereas for a fully reflecting boundary we would obtain R, = 1. As
shape s of the initial wave, we use a squared sine profile, that connects continuously
to zero

with d; = 0.3 the width of the initial wave. Our triangular mesh is illustrated in
the non-refined state (black) and after one step of refinement (grey) in Fig. [4.5 In
each step of refinement the faces of a cell K are bisected and the middle points are
connected. So we have a mesh parameter of h; = 271-3 = 27 hg, where [ is the level
of refinement.
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4.2 Numerical test setting

0.5

0 1

Figure 4.5: We use a triangular mesh, that is shown in the coarsest version in black
and after one step of refinement in grey.

As long as not mentioned otherwise, the time integration will be done with explicit
Runge-Kutta methods with time step size 7 and of order r, e.g. 7, = 1 denotes the
explicit Euler method. In general our choice of the order in time will be r, = p + 1
and we assume, that we can neglect the error from time discretization over the error
from space discretization. The number of layer cells in x;-direction is denoted by
Ne, so that d = 27""2n,. An illustration of our exact PML solution can be found in

Fig. [l 7}, and

Pseudocolor Pseudocolor

Var: E_z Var: E_z
' 0.9976 -— 1.009
—0.7482 —0.7520
| 04988 | 04945
—0.2494 -:0.2371
l 0.0000 -0.02039
Max: 0.9976 ng: 1.009
Min: 0.0000 Min: -0.02039

Z
‘y_
X

(a) The picture shows the sin®-profile of E3 at (b) At time ¢ = 0.35 the initial wave has already

time t = 0. reached the layer. On the right-hand side we see
the exponential damping behaviour. On the left-
hand side of the wave, we see errors with origin
at the boundary.

Figure 4.6: The pictures show the F3-field at several times ¢ as it behaves, when it hits
a layer with parameter 6§ = 50 over a thickness of eight cells. We used a mesh of level
I =5, a polynomial degree p = 1, an angle of incidence ¢ = 45°, and a PEC boundary.
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4 Numerical tests

Pseudocolor Pseudocolor
Var. E_z Var. E_z
0.008806 -— 0.01136
—0.002570 —0.004450
-0.003666 -0.002459
.:»0,009901 —0.009369
-0.01614 l—0.01628
Max: 0.008806 Max: 0.01136
Min: -0.01614 Min: -0.01628

z

-

(a) After a time t = 0.75, we see the left trav-
elling reflected wave on the left-hand side. The
disturbances on the right-hand side are leftovers

from the boundary errors.

Pseudocolor
Var: H_x

0.7054

—0.5291

' 0.3527

—0.1764

l 0.0000

Max: 0.7054
Min: 0.0000

|«

z

-

(b) At time ¢ = 0.95 the boundary errors almost
dissappeared in the layer, but the reflected wave
also starts to leave the domain.

Pseudocolor

Max: 5.187
Min: -0.01630

J

(c) The profile of H; at time ¢t = 0 is similar to (d) Since the auxiliary function is included in

FEs3, but with a factor 273, Hy, at time t = 0.35 we can compare the magni-
tudes of auxiliary function and electromagnetic
field.

Figure 4.7: The first two illustrations show the Fs-field, the latter two the Hi-field at
several times t.

92



4.3 Numerical results

Pseudocolor Pseudocolor
Var: H_x Var: H_x
5.194

[ Py 2
—3.893 —3.890
—2.591 —2.589
—1.290 —1.289

-—»0‘01136 l—0.01121

Max: 5.194 Max: 5.190

Min: -0.01136 Min: -0.01121

(a) As soon as the initial wave has fully crossed (b) Until the time ¢ = 0.95 and later on the

the layer, the auxiliary function g1 only de- auxiliary function will not change any more.
pends on z1. Here, we see the time t = 0.75.

Figure 4.8: We see the Hi-field for larger times ¢, which is dominated by the auxiliary
function.

4.3 Numerical results

4.3.1 Goals of the numerical tests

We test the behaviour of the PML for several values of 6, several angles of incident,
several mesh sizes and up to a third order spatial approximation. We compare the
behaviour of the impedance boundary to the often used PEC boundary, have a
look at the improvement achieved by a non-constant parameter 6(x1) compared to
a constant one and test the implicit midpoint rule as a representative for implicit
time integration schemes. We do not test any order of convergence. Our goal is a
basic understanding of the layers behaviour.

4.3.2 First order approximation in space

We compare the reflections (4.13)) for several different parameter settings. In Table
[4.1] we tested with a first order approximation in space for several one-valued layer
parameters ¢ and several angles of incident ¢. Looking at the first angle ¢ = 15°,
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4 Numerical tests

Ry - 107 ‘ =50 75 100 125 150 175 200 225
=15 | 22.17 10.44 4964 2511 1.632 1.520 1.650 1.822
©=30°| 25.95 13.21 6.766 3.589 2.208 1.846 1.922 2.115
©=45°| 33.27 19.17 11.09 6.511 4.035 2.909 2.635 2.785

Table 4.1: Parameters: [ =5, p=1, 7, =2, 7 = 0.001, n, = 2, d = 6471, PEC.

we see decreasing reflections as the layer parameter increases up to ¢ = 175, since
the analytical damping behaviour of the layer is improved. With further increasing
layer parameter, the reflections will increase again, due to increasing discretization
errors. Here are two kinds of reflections involved. The first kind already exists in
the continuous model. The layer damps incoming waves, but does not absorb them
completely. For a reduction of these reflections we desire a large parameter . The
values for the analytical reflections can be calculated with and and are
presented in Table . These are the values of R, in (4.13]), if the approximate
solution uy, is replaced by the analytical solution u. The second kind of reflection

DPEC.10% | =50 75 100 125 150 175 200 225
©=15° [ 2211 10.39 4.887 2.298 1.080 0.5080 0.2389 0.1123
©=30° | 25.84 13.14 6.678 3.395 1.726 0.8773 0.4460 0.2267
@ =45° | 33.13 19.07 10.97 6.316 3.635 2.092 1.204 0.6930

Table 4.2: Parameters: d = 64=%, PEC.

is due to the numerical discretization and expected to increase with increasing 6.
Therefore the value of 6 has to be choosen carefully to get an equal effect of both
kinds of reflections. In order to make a good choice, we have to consider e.g. the
order of discretization, the level of mesh refinement, and the thickness of the layer.
As mentioned on page in our testsetting we can use non-reflecting boundary
conditions to obtain values for the discretization error that is not related to the
layer. Here, for a first order approximation with mesh level [ = 5 we obtain

REAB(15°) = 0.2277 - 1072, RIMPB(30°) = 0.2972-107%, R™B(45°) = 0.7552 - 1072

rel rel rel

The latter value is larger than the other two, since at time ¢ = 0.75 the errors arising
at the boundary I'§ are still contained in 2. (see Fig. 4.7(a)]). To compare the PEC-
with the impedance boundary, we did the same calculations as before in Table [4.3]
Here, we see a more significant dependence of the optimal parameter 6 from the
angle of incidence . The smaller the angle ¢, the smaller the optimal #, since
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4.3 Numerical results

Ryer - 102 ‘ 0 =50 75 100 125 150 175 200 225

@ =15° | 0.4693 0.4186 0.5579 0.7597 0.9766 1.191 1.395 1.586
=230°11905 1.054 0.7767 0.8549 1.077 1.347 1.629 1.904
@ =45° | 5.772 3408  2.135 1.571 1485 1.674 2.002 2.399

Table 4.3: Parameters: [ = 5, p = 1, r, = 2, 7 = 0.001, n, = 2, d = 6471,
Impedance.

the analytical reflection is more and more reduced by the impedance boundary (see
Fig. for the corresponding extra damping factor). In applications there is no
reason to throw away the absorbing effect of the impedance boundary, since there is
no additional computational cost in comparison with a PEC boundary. Of course,
for applicational purposes there is no use to distinguish between different angles of
incidence, since the distribution in ¢ is in general not known. But depending on
the geometry of the application, angles around ¢ ~ 90° are unlikely to appear and
waves of normal incidence are completely absorbed by the impedance boundary, so
one might focus to optimize 6 for an angle around ¢ ~ 45°. In case of a larger layer
we obtain the values shown in Table[d.4] Compared to Table [4.1] the optimal values

Ry - 107 ‘ =25 50 75 100 125 150 175 200
@ =15°| 4913 0.3447 0.3438 0.5259 0.7575 1.006 1.252 1.487
p=230°| 6.719 0.5427 0.3735 0.5487 0.8015 1.092 1.392 1.684
=45 |11.05 1.396 0.7166 0.7838 0.9699 1.255 1.627 2.053

Table 4.4: Parameters: [ =5, p=1, 7, =2, 7 = 0.001, n. = 8, d = 167!, PEC.

for # decreased. This is quite expected, since the analytical reflections decrease,
whereas the numerical reflections stay almost the same for a fixed 6. Inside the layer
we have an exponential decay in the fields, so the numerical reflections basically arise
from the vacuum layer interface and the first layer cells.

4.3.3 h-dependence

There is one interesting effect to mention, when looking at different mesh sizes.
Comparing Table with Tables and for finer meshes, we almost see the
same values in case we double the parameter 6 in each mesh refinement. For small
0 we expect that behaviour, since we have almost only analytical reflections and for
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4 Numerical tests

R.q - 102 ‘ 0 =100 150 200 250 300 350 400 450
p =15 2212 1041 4936 2493 1.623 1.513 1.640 1.813
p=30°| 2587 13.16 6.726 3.560 2.193 1.845 1.931 2.129
p=45°] 33.16 19.09 11.01 6.418 3.918 2.767 2.495 2.664

Table 4.5: Parameters: [ =6, p =1, 1, = 2, 7 = 0.0005, n. = 2, d = 128!, PEC.

Ry - 107 ‘ 6 =200 300 400 500 600 700 800 900
p=15°| 22.10 10.39 4.926 2488 1.625 1.518 1.644 1.816
p=230°1| 25.84 13.14 6.713 3.552 2.194 1.854 1.945 2.144
p =45 33.13 19.06 10.99 6.396 3.892 2.740 2.472 2.649

Table 4.6: Parameters: [ =7, p =1, r, = 2, 7 = 0.00025, n. = 2, d = 256!, PEC.

half the thickness of the layer, we need to double the value of # to obtain the same
damping. But also the numerical reflections seem to only depend on the product 6h.
In our calculations this effect was noticed for different orders of approximation in
space, though we also have seen some deviation. A possible explanation is, that in
our values R, the discretization error from the vacuum region ). is still included.
It can be removed by substraction of the approximate solution with non-reflecting
boundary in the numerator of . The 6h-dependence has already been noticed
for a different kind of discretization. In [CM98| (we relied on the interpretation in
[JoI12, Sec. 2.2]) a 6?h*-dependence of the numerical reflections was calculated for
some finite difference scheme.

4.3.4 Approximation with different orders in space

To investigate the PML under different spatial orders of approximation, we varied
the polynomial degree from zero to three. Starting with a finite volume discretiza-
tion, we have a look at Tables and [4.8. Again, we notice the optimal parameter
0 for the finer mesh to be twice as large as for the coarser mesh. The values for the
non-reflecting boundary are as follows

FAB _ -2 FAB _ -2
Ri®| g ogoe = 19411072, Ria®|_y g = 1.143- 1072,
FAB _ -2 FAB _ -2
Ria®| g psse = 6.861-1072, Ria®| ;i = 4.266- 1072,

so even with a small layer extended over two cells, we obtain a reflection behaviour,
that is quite close to the fully absorbing boundary. One reason for that is the dissi-
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4.3 Numerical results

Ryer - 102 ‘ 0 =50 100 150 200 250 300 350 400
¢ =30°| 4.001 3.038 3.862 5.109 6.243 7.241 8.105 8.807
p =45° | 11.69 8867 8.030 8&8.417 9.289 10.12 10.75 11.18

Table 4.7: Parameters: { = 6, p = 0, r, = 1, 7 = 0.0005, n. = 2, d = 12871,
Impedance.

Ry - 102 ‘ 6 =100 200 300 400 500 600 700 800
p = 30° 3.852 2907 3.833 5.146 6.342 7.422 8380 9.178
p =45° | 10.66 7.425 6.553 7.314 8.626 9.820 10.74 11.42

Table 4.8: Parameters: | = 7, p = 0, r, = 1, 7 = 0.00025, n, = 2, d = 25671,
Impedance.

pative behaviour of finite volume discretizations. Since we use the exact boundary
values for the incoming wave, they do not fit the discretized wave very well and
therefore produce relatively large discretization errors.

We tested as well with a third order spatial approximation in Tables and [4.10]

Ry - 107 ‘ =50 100 150 200 250 300 350
=45 | 1.884 0.2177 0.1064 0.2311 0.4881 0.8649 1.324

Table 4.9: Parameters: | = 4, p = 3, 1, = 4, 7 = 0.002, n, = 2, d = 3271,
Impedance.

Req - 102 ‘ 6 =100 200 300 400 200 600 700
p=45°| 1883 0.2086 0.08672 0.2123 0.4551 0.8210 1.280

Table 4.10: Parameters: [ = 5 p = 3, 1, = 4, 7 = 0.001, n. = 2, d = 6471,
Impedance.

With a non-reflecting boundary, we obtain the values

FAB
Rrel ‘ =4

= 0.06854 - 1072, REAB|I  =0.01517-1072. (4.14)

rel ‘125
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4 Numerical tests

Here, the layer parameter has to be doubled again for the finer mesh. Comparing
Table [4.10] with Table[4.3] we also note, that the optimal 6 for the third order approx-
imation is larger than the first order one. The reason is the interplay of analytical
and numerical reflections. If # is fixed and the order of discretization is increased,
the numerical reflections will decrease, whereas the analytical reflections will remain
unchanged. An increase in 6 can compensate for that smaller discretization error.

4.3.5 Non-constant layer parameter

For an optimal use of the PML, it is not recommended to use a constant parameter
0, but to use an increasing parameter towards the outer boundary. An explanation
for this can be found in [Jol12, Sec. 2.2|. For a constant 6, the numerical reflections
mainly originate in the layer vacuum interface and in the inner layer cells. When 6
increases inside the layer, more of the numerical reflections rise inside the layer and
therefore suffer the damping effect of the inner layer cells. Of course, this will harden
the task to find the optimal layer parameters. Here, we show with two examples the
improvement, that can be achieved with a varying layer parameter. At first, we use
a second order approximation in space and a PEC boundary in Table [d.11} With a

Rrel'102‘0:50 5 100 125 150 175 200 225
e =45°| 10.97 3.636 1.207 0.4096 0.1829 0.1915 0.2744 0.3910

R -10% |6, =260 270 280
6, =100 | 0.07206 0.07089 0.07118
61 =110 | 0.06910 0.06853 0.06896
6, =120 | 0.07031 0.07020 0.07076

Table 4.11: Parameters: [ =5, p=2, 1, =3, 7 = 0.001, n, = 4, d = 327!, PEC.

two-valued 6 we obtained optimal values #; = 110 and 6, = 270. Here, 6; denotes
the value closer to .. We have an optimal absorbtion value of

RFAB — 0.04714 - 1072,

rel

The second example is a third order spatial approximation with impedance bound-
ary in Table . The optimal absorption for this case was already stated in .
In this second example, the improvement of a varying 6 is not as large as in the first
one, but since we are much closer to the optimal absorbing boundary, this does not
surprise us.
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Rpa - 102 ‘ 6 =100 150 200 250 300 350
@ =45 1| 0.2071 0.02747 0.02350 0.04516 0.08244 0.1378

R - 10% [0, =270 280 290
6y =120 | 0.01489 0.01486 0.01489
6y =130 | 0.01485 0.01483 0.01485
6y =140 | 0.01501  0.01500 0.01502

Table 4.12: Parameters: | = 5, p = 3, r, = 4, 7 = 0.001, n, = 4, d = 327!,
Impedance.

4.3.6 Long-time error

Since we are also interested in the long-time error evolution, we performed tests over
a time 7' = 31.5 in Table [4.13] [4.14] and [4.15] In our tests the reflections stay small

Rie-10% [ t; =4.5 9 135 18 22.5 27 31.5
6 =150 | 0.1353 0.09559 0.09518 0.09518 0.09518 0.09518  0.09518
6 =400 | 11.77 1523 2248 3358 5125  80.56  127.6

Table 4.13: Parameters: | = 6, p = 0, r, = 1, 7 = 0.0005, n, = 2, d = 12871,
@ = 45°, Impedance.

R -10%[t; =45 9 13.5 18 22.5 27 31.5
6 =200 05345 0.2721 0.2255 02106  0.2049  0.2029  0.2020
0 =400 | 3.307  3.035 2876 2922  3.038  3.165 3.329

6 =800 | 14.69 29.67  63.39 143.9 329.9 762.3 1773

Table 4.14: Parameters: [ =5, p=1,r, =2, 7 = 0.001, n. = 2, d = 6471, ¢ = 45°,
PEC.

up to a time t; = 31.5, as long as we choose the paramter # around the optimal
value. For a larger 0 the layer may emit to much energy to produce useful results. In
case of the first order approximation and 6 = 400, we already see slightly increasing
reflections towards larger times. For 6 = 800 the layer is already useless in the long
run.
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R -10% |t =45 9 13.5 18 22.5 27 31.5
fL= 370 003091 002575 0.01573 0.01499 0.01998 0.01639 0.01282
01 =21 004231 003468 0.02655 0.01930 002022 0.01397 0.01661
0L = 1080 | 7182000 at i = 0.75 calculation stops at t = 0.796

Table 4.15: Parameters: [ =5, p =2, r, =3, 7 = 0.001, n, = 4, d = 3271, ¢ = 45°,
PEC.

4.3.7 Implicit midpoint rule

As we already mentioned, time integration is not the focus of this work. Nevertheless,
we wanted to test, whether or not we can expect difficulties with implicit time
integration. So we decided to try the implicit midpoint rule in combination with the
trapezoidal rule. As the most important advantage of an implicit time integrator,
there is no bound on the time step size 7. We can still run calculations for large
time step sizes without any blow up in the solution. Of course a large time step size
has its negative influences on the discretization errors.

For the nodes ¢, and t,., = t, + 7 in time, we use the notation u}} = u(t,) € V¥
and approximate the semi-discrete system m by

i (up™ —uf) + %Bﬁu (wp +up) + iB (&t + &) = Z*% -G (4150)
% (& — &) + ;Bsu( )+ ;Bss( W& = (4.15b)
The four operators correlated to B are
B! u}' = (20 — 01)u} + A,ul, Bl&r = (0 — 01)&r,
Biup = (61 — ©)uy, Bi&p = (01 — ©)¢}.
We choose a basis B}, = (bl)?mllv of VI, where every basis vector by is located on

some cell K, i.e. suppb; = K, and in one component j, i.e. (b;)y|, =0 for m # j.
The coordinates of a vector u} in that basis are denoted with an underline

dim Vp

Z up)ibr.

100
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After a decomposition in the basis B} and a multiplication with the basis vector b;,

equations (4.15) read

1 1 1
M un-i—l —um +—Bh un+1+un —|——Bh <€n+1_{_€n
P ) B (7 ) B ()
n+s n+s
:ﬁ(ih Z_Qh 2):
1 n+1 n 1 h n+1 n 1 h n+1 n
SM (g - g) + 5BL, () + 5Bl (67 6) =0 (116b)
with the matrices
(M)j4 = (bj,br)y  (mass matrix), (B");1 = (bj, Blby)v.

We can multiply (4.16b)) by M ~! so that there are only diagonal matrices left in

that equation. Then we can solve for _ZH and obtain
n n 1 n n n
§h+1 =&, = §£(@h+1 +up) + K& (4.17)

Here, the matrix K is a diagonal matrix with diagonal entries

276
(é)”: 2+ 70

0, otherwise.

, if (b)), =0 for m € {2,3,5,6},

supp by

Using (4.17)) in (4.162)) and solving for u}*', we obtain

1 1
w7 (200 - B - MG M -Gh). )

The matrix E is given by

E,=> (bj, (EK+gAh)bl> ,

KeT;, V,K
) 2 2+70 2+ 70 2 24+70 2+ 70
EK:dlag ) 9 ) ) )
2+ 716 2 2 2+ 716 2 2

and invertible, since Aj, is positive semi-definite (see Lemma [2.4.4). We can use

equation (£.18) to calculate u;*' out of u} and &, and afterwards equation (4.17)

n+1

to calculate § .

We tested the preceeding implicit midpoint rule for a level [ = 6 mesh, where we took
an eight cell layer with impedance boundary and a first order spatial approximation,
together with an explicit second order time integrator for comparison. Still with
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4 Numerical tests

R.q - 102 ‘ 0 =50 100 150 200 250 300 350 400
=45 | 1.896 0.2883 0.2683 0.4303 0.6812 1.013 1.415 1.867

Table 4.16: Parameters: | = 6, p = 1, r, = 2, 7 = 0.0005, n, = 8, d = 327!,
Impedance.

explicit time integration, we determined the optimal layer parameter for this setting
in Table [4.16] For the value §# = 150 we calculated again with a larger time step
71 = 0.001, since the former choice for 7 was not optimal. In case of a larger
79 = 0.0015 the calculation stops at t = 0.078, because of a CFL-condition. With
the step size 7 the calculation up to a time 7' = 1.2 took 1:28 minutes on 24
CPUs, with a reflection value Ri;phdt = 0.2669 almost as in Table m Time
integration with the implicit midpoint rule on the other hand took us 1:18 minutes
with a comparable value for the reflections of R™P'“" = (0.2704. Here, we chose the
time step size 73 = 0.00125 quite close to the explicit one. For the calculations we
changed some of the parameters in the code. For smoother and preconditioner we
used Gauss-Seidel and linear epsilon and reduction were set to 107°.

4.3.8 Conclusions

There are two kinds of reflections to observe from the layer - an analytical one,
that already exists in the continuous model and can be reduced by an increase of
the paramter 6, and a numerical one, which arises from discretization errors and
therefore demands a small parameter . In Fig. the qualitative behaviour is
shown. In order to obtain a usefull behaviour of the layer, 6§ has to be chosen
wisely, so that neither of the reflections dominates the other one. A too large 6
can even render the layer useless, as shown in Section [£.3.6] The layer can be
improved by an impedance boundary behind it and by a multivalued 6 (see Section
, that increases towards the outer boundary. To control the choice in 6 one
may perform a-priori calculations in a simple setting, e.g. the one we presented in
this chapter, before starting a costly calculation. As pointed out in Section [4.3.3]
these calculations can be done on a coarse grid and the optimal parameter can be
estimated by Ognehsine = OcoarsePcoarse: Lhe layer also works fine with implicit time
integration, as tested in Section [£.3.7]
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Reflections
A

analytical and numerical

numerical analytical

i >0

eoptimal

Figure 4.9: The layer produces two kinds of reflections. One of them already exists in
the analytical model, since the damping of the layer is not perfect, the other one arises
from discretization errors. The task is to find the optimal parameter 6, that minimizes
the total reflections.
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5 On the long-time behaviour of
the PML

Content of this chapter In this chapter we have a closer look at the time depen-
dence of the solution to Maxwell’s equations with a PML in one direction. The first
section is devoted to the expected long-time behaviour, though we were not able
to prove one important aspect, namely the dissipativity in (5.3), in the discussion.
To overcome this problem, in the second section we use an energy estimate, that is
already available in the literature and so far works in two dimensions for a constant
parameter € # 0(x;). Based on that energy estimate, we derive an error estimate
for the spatially discretized PDE of the kind

HV - VhHLz((O,T),VPML) < Ch572’

where the constant C' does not explicitly show any exponential behaviour in time.

The detailed constant and the assumptions on the regularity of the solution v can
be found in Theorem [5.2.12]

Origin of this chapter The presented proof in Section is a major modification
of the proof of Theorem [2.4.1] and my contribution.

5.1 The expected long-time behaviour of the PML

At the moment, the long-time behaviour of the PML system is, to the best of
our knowledge, not fully understood. Regarding the application of Lumer-Phillips’
theorem in Section [3.2] we have at most an exponential growth in time

HV(t) ||VPML < eXp(esupt) ”VO ”VPML

of the solution v to the PML system, as long as we have no outer forces, i.e. f =0
and no boundary input, i.e. g; = 0. Though, by construction of the layer in Section
3.1, we expect a damping and therefore dissipative behaviour in the variable u + &.
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In that construction, we considered plane waves with k; > 0. In case of a negative
k1, the exponential damping behaviour becomes an exponential amplification. So in
the geometry of Figure the question is, if any part of the initial values ug with
negative k; can reach the layer. Since the sign of k; determines the x;-direction of
propagation of a plane wave, one may assume that such a wave will never reach the
layer. But that is not true for every material. In [BEJ03| Bécache, Fauqueux, and
Joly described an exponential blow up of the analytical solution to a PML system
in an anisotropic medium. They spoke of backward propagating waves, where group
velocity and phase velocity are in opposite directions.

We did not focus on that phenomenon, since we are interested in inhomogeneous,
but isotropic media. So we assume that these backward propagating waves do not
occur in our system ([3.13]). There also is another reason to assume, an exponential
growth is not possible in this system. Regarding the second assumption in the proof
of Lemma [3.2.1] we see where the possibility of an exponential growth originates.

We have a look at the ODE
Ou — Yu = 0, u(0) = ug (5.1)

for ¥ € R, ¥ >0, and u : [0,00) — R. In the first equations of (3.13a)) and (3.13b),
our PDE system contains such a structure. The solution of @ is

u(t) = exp(It)ug

and therefore exponentially growing in time. Including the contribution of the aux-
iliary function & in (3.13)) to the ODE, we obtain the system

Oyu — Yu — V€ = 0, u(0) = wy, (5.2a)
O& + Ju + Y€ =0, £(0) = &, (5.2b)

for u,£ : [0,00) — R. Here, we have the solution

u(t) = up + t(ug + o),
£(t) = &o — t9(uo + &o)

and therefore a linear growth in time of u(¢) and £(¢) and inespecially a sum u(t)+&(¢)
independent of ¢, which is related to the expected dissipative behaviour of u+&. A
similar discussion can be found in [AGH02, Section 4.1|. The remaining problem in
that context is the effect of the differential operator A. So one may try to calculate
the dissipative behaviour in u + & directly. Therefor we consider everything to be
as simple as possible, ie.e =pu=1,0=0,fg=fg =0, g =gy =gy = 0, and
the initial wave has not yet reached the boundary. In this setting, we have a look
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5.1 The expected long-time behaviour of the PML

at the time derivative of the Ly(Q2)-energy

1
Ogllu+Ellie = (u+§ a(ut§))q = —(u+§ Au+ Oujog
= - (U, AU)O,Q - (11, @11)0,9 —(57 Au)O,Q - (5; @U-)o,Q .
Q RN 5 . ,

=0 >0 =0

Here we see, that in case of arbitrary initial conditions on u and &, we do not have
dissipative behaviour. Since in application we choose uy = &y = 0 inside the layer,
the initial conditions are not that arbitrary and the question remains, whether or
not we have an energy decay. In this work, we will not answer this question, but for
a moment let us assume, we have this decay, solenoidal initial values, i.e.

1
at§||Ul +&ll6.0 <0, V- Ey=V-H,=0, (5.3)

and the vacuum region is simply connected. Now, we have a look at what this
assumption implies in terms of long-time behaviour. First we point out, that we
can apply a time derivative on system to see that 0;v solves the same system
and therefore shows the same behaviour as v. In other words, we have boundedness
in Ly(Q) of u+ ¢ and dyu + 9;€. The boundedness of 9;€ follows from and
and leads to boundedness of d;u. So we have at most a linear growth in our
field v.

Due to the solenoidal condition ([5.3)), we can find vector potentials
EOZVXI:IQ, H():—VX:EO7

which also vanish inside the layer (see [Mon03, Sec. 3.7]). So for the solution v to
(13) with initial values Ey and Hy we have boundedness of 9, = £ and 8,2 = u.
Once we have boundedness of the solution v, the goal is to use it for an error estimate
without exponential terms. Since we were not able to show the energy decay in ((5.3),
we will base our error estimate in the next section on a result, which at least works

in a limited geometry.

Remark 5.1.1:

In the literature [BPG04|, [AGH02| there are several ideas to avoid a long-time linear
growth of the solution to a PML system. At the moment we do not see a necessity
in this, since we expect boundedness of the solution, as we already explained in the
preceding discussion. To say it in non-strict words: A wave that enters the layer
will cause a growth in the auxiliary function, but since the wave will be damped,
the growth will not last forever.
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5 On the long-time behaviour of the PML

5.2 A restricted error estimate for the
DG-discretization with a PML

As already described, there are still some unanswered theoretical questions about the
long-time behaviour of the PML. Nevertheless, in a special case there is an answer to
that questions, which can be found in a work by Bécache and Joly [BJ02, Sec. 2.3].
They state an energy-like functional, probably non-physical, for the PML and give
a proof, that it decays over time. This decay only works in two dimensions and only
for a constant parameter § = const. > 0. So in this section, we consider a polygon {2
completely belonging to the layer and with a homogeneous PEC boundary condition,
but non-homogeneous initial values. In contrast to the situation of Figure 3.2 where
the initial values are supported outside of the layer and the auxiliary function &
evolves, as the wave enters the layer, here the initial values of the electromagnetic
field u and the auxiliary function £ are independent. The interface in between layer
and vacuum will not be covered in this chapter. Further on, we have no conductivity,
i.e. 0 = 0 and no outer force, i.e. f = 0. The medium e(x), x(x) is supposed to be
piecewise homogeneous and as well homogeneous in every cell K. Our calculations
in this chapter work for piecewise constant materials, though the solution to the
PDE may not fulfill the desired regularity assumptions (see Remark
and the material distribution may not be useful in applications (see Remark .
Nevertheless, we will not address the regularity topic here.

nxE=0

0<6+#0(x),
c=0,f=0

Figure 5.1: In this section we use a different geometrical setting.

Since our code works in TE-mode, we will restrict our considerations to the electro-
magnetic variables F3, Hy, and Hy and still call them u. Together with the auxiliary
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5.2 A restricted error estimate for the DG-discretization with a PML

function &1 we call the fields v. So we investigate the equations

O B3 — e "0, Hy + e "0, H) + 0E3 =0 in Q, (5.4a)
O Hy + 0, B3 — O0H, — 061 =0 in Q, (5.4b)
OHy — 1170y B3 + 0Hy = 0 in Q, (5.4c)

01 +0H, + 051 =0 in O, (5.4d)

E;=0 on (09w, (5.4e)

)

(Es, Hy, Hy, €l 1) (-, 0) = (Es0, Hi0, Hap,{mr1)  in S

Again, Q. = Q x [0, 00) denotes the space-time cylinder and (0£2) = 9§ x [0, 00)
the corresponding spatial boundary. The differential operator A in this two dimen-
sional case reads

(Au)3 —5_18371[{2 + 8_18m2H1
Au = (All)4 = u*18x2E3 . (55)
(Au)s —u 10, Fy

The functional introduced by Bécache and Joly is given by
Bpwmr(u, ) = <(atH1a 3tﬁ1)u + (0, Hy, atf{Q)u + (0H,, 91{12)#
+ (0 +0)Es, (0, + 9)E3)E>,
Epmr(u) = §BPML(U7 u).

We recall that the indices € and p denote weighted inner products in Ly(€2). The
proof of the functionals decay is a straight forward calculation. Since 6 will be
exchanged with spatial derivatives, the parameter needs to be constant in space.

Lemma 5.2.1 (|[BJ02], Lemma 2.2):
For a solution v of (b.4]) with additional regularity of the electromagnetic field
u € C%([0,00), Ly(22)*) N CY([0, 00), H(curl, Q)?), we have an energy-like decay

atgpML(U.) = —29||8tH2||Z S 0.

Proof: For the single terms of the functional we calculate the time derivatives

1
at§||athl||;21 = (8:Hy,0}Hy),, = —(0,Hy, (8; + 0)0:, E3)o.0,

1
05 (10|l + 10Hslly) = (9Ha, 07 Ho)y + (0Ha, 60, Hs),
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5 On the long-time behaviour of the PML

- (atH27 atazlE3>0,Q - (atHQ, eatHQ),u,
+ (0y, E5,00,Hs)0 0 — (0,Hs,00,H,),,
= _2<atH27 eatHQ)u + (atH27 (at + 9>ax1E3)07Q7
1
(9t§||(8t +0)Es|? = ((@, + 0)E3, 0,(0; + 9)E3)6
- ((6t + 0)E37 at(a:mHQ - a:vQHl))QQ'
With (5.5)), an integration by parts, and a PEC boundary, we see that

atgpML<U) = —(atu, A@tu)v — 2(6tH2, 98,5H2)M

0 E
- (at (H) ,A&u)v - (9 (0) ,Aatu>v
— —2(3tH2, 6’31;]:72)“.
O

The preceeding energy-like decay result shows boundedness in time of 0, H;, Hy and
E5. The latter one is not obvious, but was mentioned in [BPG04, Sec. II.A.] and can
be seen later on with Lemma [5.2.101 The first one is in accordance with the earlier
considerations about the ODE system ([5.2)). Now, we have a look at the discrete
system

O Enz + (Apun)s + 0E,3 =0 in Qy, (5.6a)

O Hp1 + (Apup)s —0Hp 1 — 061 =0 in Q., (5.6b)
OrHp o+ (Apup)s +0Hpo =0 in Q, (5.6¢)

O&rny +O0Hp1 + 08 p1 =0 in O, (5.6d)

(Eng, Hny, Hy g, €mn1) (5, 0) = 105 (Es 0, Hio, Ha, Ep10) 10, (5.6e)

where the operator A, is the two dimensional analogon of . The goal of this
chapter is to obtain an error estimate for the discretized solution. To a certain
extent our approach is analogous to the procedure in Section 2.4, We start with
calculations similar to the ones in Lemma 2.4.3

Lemma 5.2.2:
For u,u;, € C([0,T],L2(Q)3) the error in the functional Epy, can be reformulated
in the following expression

/0 EPML(U— — uh) dt = /0 8t (EPML(U) + EPML(uh) — BPML(U, uh))nT(t) dt
+ TSPML(U — uh)(O)

(5.7)
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5.2 A restricted error estimate for the DG-discretization with a PML

The function nr(t) = T — t was already defined in Lemma [2.4.3

Proof:

/OT EpvL(u —uy) dt = — /OT Epmr(u — up) O (t) dt
— /0 Oy (5PML(11 — uh))UT(t) dt +TEpair,(u — ) (0)

= /0 8t (SPML(u) + gpML(llh) — BPML(ua uh))nT(t) dt +T8PML(u — uh)(O)

Next, we have a look at the discrete functional and formulate a result similar to

Lemma (£.2.11

Lemma 5.2.3:
For the discrete solution v, of (5.6)), the discrete functional follows the equation

0lpmr(uy) = —(Opup, ApOpuy)v — 2(0,Hp2,00:Hp 2),
0 o (5.8)
(2 (w,) o) - (0 (5) o)

Proof: We do the same procedure as in the continuous case

1
at§H8tHh,1Hi = (0 Hp1, 0 Hp1)y = —(0:Hp 1, (0 + 0)(Apup)a) s

05 (102 + 10H ) = (Hon, 57 Hi o), + (0B 0,00, Hy0),
= —(OHn2. 0. Anun)s) , — (OH . 00,Hy ),
— ((Ann)s. 00, Hio) , — (0, Hy o, 00, H,2),
= (0, Hy2, 00, Hy2), — (OuHne, (9, + 0)(Aywn)s)
03101+ O) Bl = (01 +0)Fis, (0, + 6) ),
— (8 + 0) Enz, 0u(Apup)s).

to obtain a similar result. In contrast to the continuous case, none of the terms will
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5 On the long-time behaviour of the PML

vanish

Oépmn(uy) = — (O, ApOpay)v — 2(0pHp2, 00:Hp 2),,

0 E
— (0 ( ) ,A,ﬂuh) - (9 ( h) ,Ahﬁ uh) .
( "\H, % 0 t \%

The first summand on the right-hand side is handled in Lemma [2.4.4] though here
we have no conductivity and only a PEC boundary. The second summand is similar
to the continuous case and will be unproblematic in the proof of Lemma later
on. So we will have a look at the two remaining summands.

Lemma 5.2.4:
For a discrete function u, € C([0,T],VV) and the latter two summands of (5.8,
we have the result

(08 ) (0 (5) ) Y

T
1 1
=0 [ 30 32 Gy x Bl + sl % (Bl

KeTy, feEFK

1 1
+O0T > > 70rlnrs % [Fn ol r.¢1l6,r + sl g [Enolr.¢1l6,s-
KeTy, feFK

We obtain an initial term, as well as a non-positive term, which contains the jumps
of the discrete electromagnetic field on the faces.

Proof: First, we like to mention that for a sum over inner faces of a cell and face
dependent function gg ¢, we can switch the cell to the next neighbour cell

Z Z 9K.f = Z Z 9K, f>

KeT, feFy KeT, feFy,
since every face f appears twice in the sum. On boundary faces, we usually can do

the same for the terms to appear in our calculations, but we have to justify it with
the virtual definitions in Lemma [2.3.6] Using integration by parts and (2.23)), the
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5.2 A restricted error estimate for the DG-discretization with a PML

following term vanishes

> (VX Ep, 0Hy)ox — (V x 0y, Ep)oxc

KeTy

+ Z Z Br. sk, X [Eplk,p, OHk)o s — ax p(ng s X [0 Hp]k 5, Bx)o, s
KeT, feFk

= > > Brrngy x By, 0Hg)o s — axp(ng s x 0Hg, Ex)o
KeT, feFk

= 0.

With the definition of the discrete operator A, in (2.28)), we obtain

(o() ).~ (5) ),

= —9[ Z (V x Ep, atHh)o,K - (V x OHyp, Eh)o,K
KeTy,

+ Z Z Br,p(nry X [Eplx r, OHr )oy — ak p(ng,y X [0 Hilk p, Ex)os
KeT, feFK

+ 07 (ks X (g s X [Hh]K,f),ﬁtHK)OJ

—|—’yf(nK7f X (ng g x [&fEh]K,f)aEK)o,f

=03 D dr(mey x (e x Filicy) OFK),

KeTy, feFK

+9r (ks % (g s X [atEh]K,f)aEK)OJ

Next, we integrate this term over time against the function nr(¢). An integration
by parts concludes the proof

—0 Z Z 5f Ng X (an X {Hh]}(f) 8tHK)

0 KeT, feFx

:_9/0

9 (ns % (s X [0Fl i), i), () e

1)
(Ef(nK,f X [Hplr, 0 p X [0 H] Kk 1)o.f
KeT, feFk

+ g(nw X [0Enp]r r, 0k p X [Eh]K,f)o,f) nr(t) dt

_ _9/0 at—unm x [Haks|I2

KeTy, feFk (
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5 On the long-time behaviour of the PML

1
+ Loy sy x Bl I )rr(o)

T
J y
= —9/0 Z Z ZanK,f X [Hp] ks lI5 f + Zf\an,f X [Ep]k.fll5 s dt

KeTy, feFKk

Oy vy
+OT Y > - Iy (ol s M55 + 4 Iy X [Enol k7 l15.s-
KeTy, feFK

Now, we have a look at the term —0,Bpymr(u, uy).

Lemma 5.2.5:

For a solution v of the continuous problem with additional reqularity of the
electromagnetic field u € C2([0,00),L(Q)%) N C([0, 00), H(curl, 2)?), as well as
H € Cl([O,oo),H%(Aj)Q), E € C([O,oo),H%(Aj)) for every j and a solution vy of
the discrete problem (5.6)), the bilinear form Bpa,(u, uy) fulfills

—8thML(u, uh) = ((‘9tu, Ahﬁtuh)v -+ (8,511}“ Aatll)v -+ 4(8tH2, HﬁtHh,g)“

+ Z Z —OéKJ(l’lKJ X [@Hh]K,f,Hﬁ’(GE—@E)O,f
KeTy, feFK

+ BK’f(nKJ X [QEh]KJ, H%&tH — 8tH)07f
+ "}/f<1’lK,f X (nK’f X [8tEh]K,f)7 HI[)(QE — 6E)O,f
+ (Sf(nKJ X (Ilva X [eHh]va), H%&tH — atH)O,f.

The first and second summand on the right-hand side can be treated as in

Lemma 2.4.5

Proof: Again, we calculate the single terms of —0;Bpyr,(u, uy,)

— 01(0:Hy1, 0;Hp1),
= —(07Hy,0:Hp 1), — (0.Hy, 07 Hp ),
= ((815 —+ 9)8932E3, atHh,l)(m + (8tH1, (ﬁt + 9) (Ahuh)4)

w

— 0 ((0:Hz, O Hp ),y + (0Ho, 0H2),.)

= _(8tatH27 atHh,2>u - (8tH2, 81;2[-[;%2)“ — (eatHg, QHh,g)H — (HHQ, eatth)u

= _(ataﬂh E37 8t[_[h,Q)O,Q + (9815[_[27 8tHh72>/,L + (@HQ, Gt(Ahuh)5)u + (atH27 eatHhQ)ﬂ
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+ (Qatﬂz, (Ahuh)5)u + (00:H2, 0 Hp,2)y — (O, B3, 00 Hp 2)0.0 + (0¢Ha, 00, Hp, 2)
= 4(0;Hy, 00, Hp) i + (0:Ha, (0 + 0)(Anun)s) , — (s + )0z, By, O, Hy,2)

0,2’

— 8,((8: + 0)Es, (0 + 0) Ens) .
= —(81&(81‘, + 0)FEs5, (0r + H)Eh,?,)s - ((at + 0)Es, 0,(0; + Q)Eh,3)€
= —(00(0p, Hy — 0y, Hy), (01 + 9>Eh,3>079 + ((0r + ) Es, 0:(Apuy)s3)

-
Adding up the three terms, we obtain the expression

_atBPML(u> uh)

() o) = (o (5) ) (2 () 4o,

+ (9 (](5))> 7Ahatuh) + (atu, Ahatuh)v + (atum Aatu)\/ + 4(atH2’ eatHh’2>“'
A\

We have a look at the first four summands. With an integration by parts, (2.23)),
and since I} is an orthogonal projector, we obtain the identity

Z (atHh, 0V x E)QK — (V X ﬁtH, QEh)QK
KeTy,

+ (QV X Eh, H];(atH)o,K — (V X (‘9tHh, H%QE)QK
= ) (V x 0H,,, 0B)o i — (OH, 0V x Ep)ox

KeTy

+ (HV X Eh; Hg{étH)O,K — (V X atHh, Hz[)(‘gE)O,K

+ Z Z (3tHK,9nK’f X E)()’f — (HKJ X 8tH,0EK)0,f
KeTy, fEFK

=Y Y axs(nis x [0 ks, 0B)o s — Bicr(nuc s X [0En] ks, 0H)o s

KeT, feFK

and use the definition of Aj in (2.28) to conclude the proof
0 | D78 0
(2 ), (5) ) -(4(2) o),
+ (9 <E> ,Ahatuh>
0 v

= Z (8tHh, oV x E)O,K — (V X 8tH, eEh)()’K
KeﬁL
+ (9V X Eh, H’;((?tH)[)’K — (V X 8tHh, H%HE)[)’K

+ 3> By X [0Bw k5, 0 H)o f — a0k X [0k 5, TIOE)o 4
KeTy, feFK
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+ 0 (ngy x (ngp X [HHh}K,f%H?(atH)o,f
+7f(nK,f X (nK,f X [atEh]K,f>>HII)(9E)O,f

= Z Z BK’f(nKJ X [OEh]KJ,Hi’(&tH — (9tH)0,f

KeTy, feEFK
— ag f(ng,r X [0Hp]k 5, T50E — 0E)
+ 0 (ngy x (ngp x [0H]x 5), 15.0,H — 8,5H)07f
+ 7y (ngp x (ng s % [OEp]k,f), I 0E — HE)OJ

With the preceding lemmata, it is straight forward to estimate the time integral on
the right-hand side of (5.7)).

Lemma 5.2.6:
For a solution v of the continuous problem (5.4) with additional regularity of the
electromagnetic ﬁeld u € C?([0,00),La(22)%) N C([0, 00), H(curl, 2)?), as well as

u € C(]0, c0), H2(A )3) for every j and a solution vy, of the discrete problem (5.6)),
we have the following estimate

/ O (5PML( )+ Epmr(up) — Bpaw(u, Uh))ﬁT(t) dt

S

SVEK I 0 E — 0,2,

0 KeTp, feFx 2K
+ <; + enT(t)) %HHQ}@H — OH|5 ; (5.9)
+ 5 LR IE Bl e (1)
0T Y Y 15f||nf<,f X [Hpolierllo. + ;lWHnKJ % [Bnolx.llo.s-

KeTy, fEFK

The projection errors on the faces can be treated with Lemma [2.3.2 How to treat
the initial term will be shown in Lemma [5.2.8| later on.
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5.2 A restricted error estimate for the DG-discretization with a PML

Proof: We use Lemma [2.4.4}[2.4.5]5.2.1} |5.2.3} [5.2.4] and|5.2.5] (2.33)), and Cauchy-
Schwarz’ inequality. This yields

/0 Oy (Epmr (1) + Epmr(uy) — Bpur(w, up))nr(t) dt

T
/ ( — 2(0,H,00,H>),, — 2(0yHp 2,00,H},2),, + 4(0,Ho, 00, Hp 2),,
0
— (Opup, ApOyuy)v + (Opu, Apoyay)y + (Oyuy, Adu)y

+ Z Z —OéKyf(IlKj X [8tHh]K7f,H’,’(9E — GE)OJ

KeTy, feFKk
+ ﬁKJ(IlKJ X [GEh]Kyf, H%@tH — 8,5H)07f

+9r (ks x (g % [0En]kf), I OE — OE)o s
+ §f (1’1]{7f X (I’IKJ X [OHh]K,f)7 H’;{@tH — 8tH)07f) 77T(t) dt

T
1 1
=0 [ 37 G0l x Bali gl + 3l x (Ealucslf de

0 KeT, feFx

1 1
+0T > Y 207Inrp % [Hp o] ¢ 116, + 7¢I g [Enolrsll5 ¢

KeT, feFk

T
= / ( —20(0,Hy — O, Hp 2,0, Hy — Oy Hp 2),
0

v 0
-y > ?anK,f x (0B ks[5 + éHnK,f x [0 ]k ¢ 1l5. s
KeTy, feFK
+ 37N —ak(nry x [0 H ks, T50E — 0B)o

KeTy, feFK
+ B, (g s X [OER] k¢, 5.0 H — 0,H) ¢

—+ ’}/f(IIK,f X (nK’f X [atEh]K,f), H%@tE — atE)O,f
—+ (Sf (HKJ X (IIK,f X [8tHh]K,f)a Hf(atH — 8tH)07f

+ Z Z —CYKyf(l’lKj X [8tHh]K7f,H%9E—9E)O7f

KeTy, feFK
+ ﬁKJ(IlKJ X [eEh]KJc, H’;(OtH — 8,5H)07f

+7f(1’lK7f X (HKJ X [8tEh]K7f),HI;<9E — HE)O,f

+ 5f (nKVf X (IIKJ X [QHh]KJC), H’%@tH — 8tH)07f) 7’]T(t) dt

T
1 1
- 9/ > 0l X Hulie g6, + sl s x Bl sl dt

0 KeT, feFx
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1 1
+0T > Y 707l g [FLy 0] e, ¢ 116, + LR [Enol k¢ 1l6,s-
KeTy, fEFK

For a face f of a cell K at time ¢ € (0,7") we can utilize

—agp(ng,y ¥ [0Hp]k 5, IO E — O,E)o

2
<0 OH e 2 4 2K 1 5 — 0,2
< Ul OBl sl + 5 I T5008 — OB,

Br.r(nk,r X [0:Ep]k,r, 5.0 H — 0,H)o
ol 306%.
< gf\lnz«,f X [0k flI5 ;s + WK;HH%&:H - oH|3;,
’}/f(IlKj X (HKJ X [8tEh]Kf) I @tE — 8tE)
3
< Hings x OBk s, + S ITRAE - GBI .
5f(nK7f X (nK,f X [8tHh] K, f ),H%@tH — at )O,f
) 30
< gl < Ok |5+ =57 T OH — OH]L .
— CYK,f(nK’f X [GtHh]K,f, H%QE — HE)OJ

2 2
<% B - B
5 K 0,f»

4]
< EanKf X [0 ]k 5 5 +

Br.r(nk,r X [0E] k., r, 1150 H — 0,H), ¢

50
47]T(t
Yr(ngp % (g X [0Ep]k f), I 0E — QE)O,f

ﬁ%{ fe'f?T(t)

= ) I < B fllo - + 150, H — . H[5 4,

3’)/f92

g
<l < [OBn]se sl + =5 IURE — BIIS .
5f(l’lK7f X (Ilef X [HHh]Kf) H%@tH — 8tH)0

< 0s0
~ dnr(t)

to obtain the desired result

ok < Hilx |5 + 0,600 (1) |[1T50H — S,HI|G

/ O (5PML( ) + Epnr(ug) — Bpww (u, Uh))UT(t) dt

>

30 3%”

KeTy, fE.FK

+ =+

+(35%<,f 36, B mr(t)o
27y 2 Yy

+mﬁﬁﬁ)ﬁ@&ﬂ—&H%J
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3 2 92 2
( o5 e nr(t) dt

) HpE—E2
™+ ) B - B

1 1
+0T > Y 707l g [ELy o] e, ¢ 116, + LR [Enol k¢ 1l6,s-
KeTy, fEFK

The arising material coefficients can be simplified to

oﬁgf by = VEK BKf 46, = VHE
df VIK' ofi VEK
and already appeared in the error estimate without PML in Lemma [2.4.6, O

To conclude the estimate, we need to have a look at the initial terms. There is one
initial term on the right-hand side of (5.7)) and another one on the right-hand side
of (5.9). To handle them, we need an estimate on the term [|A,II}u — I} Aul|y.

Lemma 5.2.7:
Let u € H(curl,Q)? with regularity u € H%(Aj)?’ for all 7 and boundary values

n x E|,, = 0. Then we obtain the following commutation error estimate for A and
I,

| ALIT;w — 117 Aulf5

2 2 2 2
e a ) o
2 va K:f f f
S E : § :4Ctrace h ! +h ! h +h
KeTy ferx KEK K€Ky KHK KiMK,

fof fof oF oF
+4 trace ( Kf’f + Kf’f + ! + ! ||HZI)(E - E||(2),f

h s hKf,qu hixex hKfEKf

> T H — H3 ;

Proof: For (¢, ) € V) we use integration by parts

> —(Vx (HH = H),9) , + (V x (ILE —E), 1),

KeTy,

— Z — (I H —H),V x ) o + (TZE —E), V x ¢3) 1

KeTy,

+ Y (g x (I WH—H),%x), ; + (nxs x (IE - E), k), ,
KeTy, feFK

= > > —(ngy x (IGH - H),¢x), , + (nxs x (LE - E), k), ,

KeT, feFK
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5 On the long-time behaviour of the PML

and also (2.23)), (2.33)), and Cauchy-Schwarz’ inequality to calculate

Y
(AhHhu — 11} Au, (‘P:))v

=Y —(Vx (IH - H), ), + (V x (IEE —E), 01),

KeTy

+ > Y —ak (ks x [Hk 5, % K)o s + Bicr (i X [TE]k 1, @1 )o s
KeTy, feFKk

+ (e p < (e y < [5Elkp), i),
+ 0y (an X (ng,r x ITH]k ), SoK)O,f

Z Z (ng s x (Il H — H), ’va) + (ng s X (H%E_E)"PK)OJ

KeTy, feFk
—ag s(npy x IEH —Hlk r, ¥r)os
+ Brr(gp x [IGE — Elk r, K)oy
+9r (ks % (nx g x [IGE - Elx ), ¥x),
+0p(nrs x (ngy > IH —Hlk f). k),

=3 > —ag,s(ngy x (I H — H), k), |

KeTy, feFk
+ Bryp (nrp < (IIRE — E) k),
14
— aK7f(nK,f X (HKfH — H), /l’Z;K)O,f
+ B (nxp x (g, E — E), k),

—|—7f<nK7f X \ Nk f >< prE— E)),'J,DK)Of

(
—7f<nK7f X (IIKf X Hp E—E)),’QbK)Of

+5f(nK’fX (anX Hp H H)),(PK)Of
_(5f<anX(Ile>< HpH—H)),(PK>Of
2CtraceOéK f thK
Z Z — [Ing; x (ITEH — H)H%f 2 H¢K“§,f
KeT, feFk trace
203 B% h
race f P 2 KUK
_ x (IILE — E
R ey x (B = B, + 2L il

2 2
2Ctl“a(:eCkK,f

hiker
o e sy x (I H = B + S5 ol

trace
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5.2 A restricted error estimate for the DG-discretization with a PML

2c%raceﬁg( f hK,uK
P g < (T B = B) R+ G lowlis
trace
QCfrace’Y? hKeK
T x (W B=B), + g Iowld
trace
2C$race’7]2” D 2 hier 2
o ey x (5B~ B + S5 abic
trace
2Ctrace§]2‘ hK/JJK
s x (T H = H)IE + 5 loxl
trace
2¢; (5]2‘ hi px
e s x (I H-H 2
— g s x Mo+ 8%race||‘PK||0,f

Now, we proceed with Lemma [2.3.3

I T 0 )
<Y e [ | H - H
KeT,, ferx KEK K€K, KKK KiHK;
/612< f B%( f ’72 ’72
+22 e [ 2+ L 2.E — E|?
’ <hK,UK hi i, hxex  hi ek, I lo.s

1 2 1 2
Sl + 5 len2

Here, we used ng ; x E| K, and ng ; x Hj K, On boundary faces f. This is defined
via the usual virtual deﬁmtlons stated in Lemma 2.3.6], where we also mentioned
that hx, = hg for boundary faces. With the choice (¢, on) = AxIlju—1IIj Au, the
desired result is finally obtained. O]

It is mentionable, that terms like é ||H’I’<H—HH(2)7 ; appear in the preceding Lemma,

which contain values of both cells belonging to a face f. The projection error can
be estimated with Lemma to obtain powers of hg. For cells of equal size, one
power cancels down, but in case of hx, << hx we have to expect a negative effect
on the discrete solution. This may happen if e.g. two meshes of different fineness
are matched together with hanging nodes. In the error calculations without layer in
Chapter [2| we did not come across such terms.

Now, the initial terms can be estimated by projection errors.
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5 On the long-time behaviour of the PML

Lemma 5.2.8:

Let u € C([0,T],H(curl, Q)?), with u € Cl([O,T],H%(Aj)?’) for all j and let
uy, : [0,7] — V% be solutions to PDE and ODE (B.€)), respectively. Let also
Emao € La(Q). Then the initial terms can be estimated as follows

0 ol
7Y Zf||nK,f X [Hnol s ¢ 16,7 + 7 Iy x [Enol ¢ 1l6.¢
KeTy, feEFK

<OT Y > By — Eoll? ; + 6|5y — H|f2 .,

KeTy, feFK

TEPML (11 — uh) (O)

2 : } : 2 a%(fvf a%ff»f 512‘ 612” p 2
S T 4Ctrace h + h + h + h HHKHO - HOHO,f
KeT, feFs KEK K€Ky KHK KKy

+ 4Ctrace + + + HHKEO - EOHO,f
hrpk — hipk,  hrex  hiek,

5
+ 3THA110 - HZAUQH% + §T92||H270 - H:;JLHZOH;%

+ 3T02HH1’0 — HZHLOHZ + 3T62||£H,1,0 - Hng,l,OHi-

Proof: We start with the first term and use (a + b)? < 2(a® + b?) and later on also
(a+b+c)? <3(a*+b*+c?) fora,b,ceR

g Vs
o> ZfHHK,f X [H ol fll5, 7 + - s % [Enolx sl

KeT, feFK
= i T2 H, — Holx /]2 + L 2 Ey — ok s
=> > 3 Ins < (I Ho — Holrllo, + - lInw.s x (I Eo — Eolxslo,s
KeT, feFK
<SS G H — Hg|2 ) + v [T By — o2 .
KeT, feFK

Next, we have a look at the energy-like term
SpML(u—uh)(O)
1 1
= §||8t(H1 — Hh,l)(O)”i + §\|at(H2 — Hh,2)(0)HZ

1 1
+ 5”‘9(}[2,0 — Hpa0)|l2 + 5”(&: +0)(E3 — Ey3)(0)]2

1
= 5” — ((Au)so — (Apup)ap) + 0(Hio — Hpao) + 0(Emio — §H,h,1,o)Hi

2

+ %H — ((Au)sp — (Apun)so) — 0(Hzo — Hapo) |,
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2
€

1 1
+ 5”9(]'-’2,0 - Hh,2,0)||i + 5” ((Au)3,o — (Ahllh):s,o) H
< [T Aug — ApTT w3, + 3] Aug — T} Aug |

5
+ §||9(H2,0 — I Ha) |12 + 3||0(Hyo — HZHl,o)Hi
2
+ 3||‘9(€H,1,0 — HZfH,l,o)HH-
Lemma concludes the proof. ]

The functional Epy, contains time derivatives. To obtain an error estimate in the
weighted Lo (€2)-norm, we utilize Jensen’s inequality and another lemma, which leads
to the shifted time derivative 0, + 6 contained in the functional Epyyr,(u).

Lemma 5.2.9 (Jensen’s inequality, [Wal04, Section 11.18]):
Lety : [a,b] CR — [c,d] C R € L'(a,b) and let f € C([c,d],R) be a convex function,
with f oy € LY(a,b). Then f commutes with the integral mean as follows

(55 [ va) < 5 [ )

Lemma 5.2.10:
Let uw € CH([0,t],Lo(2)) be a scalar function and ¥ € R. Then u can be rewritten as

u(x,t) = exp(—vt)u(x,0) + /0 exp (V(1 — 1)) (0r + Du(x, 7)dr.

Proof: We start with one term on the right-hand side

/Ot exp (J(r —t))du(x, 1) dr = /Ot 3T<6Xp (9(1 — t)))u(x, ) dr

= —/0 exp ((7 — 1)) dru(x, 7)dr
+ u(x,t) — exp(—9t)u(x,0).

A rearrangement of the terms concludes the proof. m
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5 On the long-time behaviour of the PML

Lemma 5.2.11:

Let v € C'([0,T], Vemw) N C([0, T), H(curl, Q)* x V) and vy, : [0,T] — V} pyy, be
solutions to PDFE and ODE , respectively. Then the error in the weighted
Ly (Q)-norm can be estimated as follows

T
/ |Hy — Hp |2 + |[Hy — Hppll2, + |1 Bs — Ensll2 + €m0 — €l db
0

< 8T\ €m0 — Mh€uaolly + 14T || Hyp — I, Hy o[ 4 2T || Hao — 11 Hao 12

T ot
+2T||E5 0 — HiEg,ng + 10/ t/ |o-(Hy — Hh,l)Hi drdt
0 0

T t T t
+2/ t/ HaT(HQ_Hh,Q)HngdHQ/ t/ 1(0s + 0)(Es — Eys)|2drdt.
0 0 0 0

Proof: We start with the first term and use Jensen’s inequality

T T
/ ||H1—Hh,1\|5dt:/
0 0
2

T t
S 2T||H1,O_Hh,1,OHi+2/ (/ H@T(Hl —Hh71)|’MdT> dt
0 0

2

dt

I

¢
Hio— Hpap +/ O0-(Hy — Hpp)dr
0

T t
32T||H1,O—H§LHLO||Z+2/ t/ 10, (Hy — Hy)|2 drdt.
0 0

The same holds true for Hy. The third term has to be treated differently. We use
Lemma

T
/ | B3 — B3] dt
0

:/OT

T
<9 / exp(—208) dt || Eso — Ensol?
0

2

dt

)

exp(—@t) (Egj() — Eh,370) + /Ot exp (9(7‘ — t))(@T + 9)(E3 — Ehjg) dr

2

T t
v2 [ ([ w60 - 0)1.+0)E - Biallar) a
0 0
T t
< 2T||Eso — I Es 02 + 2/ t/ exp (20(1 — t))[/(0- + 0)(E3 — Ej3)||Z dr dt
0 0

T t
§2THE370—H],';E370||§+2/ t/ 1(0s + 0)(Es — Ey)|2drdt.
0 0
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For the last term we start similar to the third term, but use equations ([5.4d|) and
(15.6d)

T
/ € — Exmnal2
0

T t 2
= / exp(—@t)(ﬁH,Lo — €H,h,1,0) — / exp (9(7’ — t))9(H1 — Hh,l) dr dt
0 0 I
T t 2
= / eXp(—Qt)(fHJ’() — fH,h,l,O) — / aT(GXp (9(7‘ — t))) (Hl — Hh,l) d7’ dt
0 0 o
T t
= / exp(—&t) (§H71’0 — §H,h,1,0) + / exp (9(7’ — t))E)T(Hl — HhJ) dT
0 0

2

dt

I

T
< / (8 exp(—20t) €10 — Emnolly + 8 exp(=201)| Hio — Hy ol
0

— (Hy — Hp1) + exp(—0t)(Hio — Hp10)

2

t
+ 4(/ exp (0(r — 1))]|0-(H, — Hh,l)HudT)
0
< 8T||€m1,0 — €m0l + 8T || Hyp — I Hy ||

T t T
+4/ t/ \\8T(H1—Hh71)]|id7dt+2/ HHl—HmHidt.
0 0 0

+ 2||H, — HMHi) dt

This concludes the proof. [

Finally, we can state the desired error estimate. Because we have a loss of space
regularity in Aug and Oy;u, due to the space derivatives in A, we decreased the
polynomial degree p by one compared to Theorem [2.4.1] and only estimate by semi-
norms | - [5_1.

Theorem 5.2.12:

Let the relative diameter of next neighbour cells be bounded as in . Further
on let v be the solution to Mazwell’s system with additional reqularity of the
electromagnetic fieldu € C'([0, T, H(curl, Q)?)NC?([0, 71, V), u € C([0,T], H5(A;)?)
for every j and a s > 2 and with reqularity of the auziliary function & € C([0,T],V),
€ C([O, T}, Hs_l(Aj)) for every j, let p = 5§ —2, with § the rounded up integer part
of s, and let vy, be the solution of the ODE ((5.6|). Then the error between continuous
and discrete solution can be estimated as follows
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5 On the long-time behaviour of the PML

2 3 2 2s5—3 2
||V - VhHLQ((O,T),VpML) <7 907 5Cb0undaryh |u0|s 1,V,A
3 2s—4 2
+ 27T Ctracecaauach Cboundaryh |u0|s—1,V,A
3.2 25—2
+207"¢ cellh’ |Au0‘s 1,V,A

(14T + 20T392) Cellhf2s 2|V0|s 1,Vpmr,A

h2s 3

+ 4T Clightcboundary max |atu|s 1,V,A

t€[0,T

hQS 3

402 2
+ 4770 Clightcboundary max |E|s 1,e,A

te[0,7]

5 2 25—3
+ 2T 6)clightcboundaryh trenél“% |8tH|s 1u,A

The constant cjign; was defined in (2.36]). Further on, we used the constants

_ Vs %
0,775 — Imax max —_— max —_— s
KeThfeFk € KETh.J€FK [l

o2 (52 a? o2
:m{ I N (Kfu ),

KeThfeFk Exfik M EK MK MK MUK
B oF B oF
max —&f +Tf‘|—0h & + U )
KeTnfeFrk UKEK €k MK EK €K EK

Proof: We start with a utilization of Lemma [5.2.11]

T
IV = Vil o) = / Iv = vall2. dt
T t
§ 14THVQ — HZ;LVQH%PML + 20/0 t/o SPML(u — uh) drdt.

The latter summand can be estimated with Lemma [5.2.2] [5.2.6, and [5.2.8

t
/ EPML(u — uh) dr

/0 > lgﬁuaE 1.8, E|2,

KeTy, feFK

3 17
# (5 +on) VEE 101 - w0

3 VEK
~—0*|E - IIE|f5 ;

SN ne(7)dr
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+06 Y > ylBo — TREo|§ 5 + 0 Ho — TR H,|[f
KeT, feFk

Kf f O‘%(fﬁf §J2‘ 5?” 2
+1 E E 4¢3 o + + + Ho — II%Hollg,
f

fer fere hrerx  hxerx,  hrpx  hipx
5?( f 5%( f ’72 72

T I e el S E, — [ E, |2

“ (hKMK hi b,  hxex  hi ek, 1Eo Eollos

+ 3t||A110 — HI;LAUQH% + 3t92||V0 — HI;LVO”%/pML'

The projection errors can be estimated with Lemma [2.3.1| and [2.3.2

t t
/ EPML(U — U.h) dr S /
0 0

3
25—3
2 Chghtcboundaryh ’a E’s 1,e,A

3
+ (5 + 977t<7'>> Cllghtcboundaryh2s 3|8 H|s 1,u,A

3
+ ‘9 Cllghtcboundaryh2s 3|:E|s l,e A] TIt(T) dr

2 2s5—3 2
+ tec%lscboundaryh |u0|sfl,V,A
2 2 25—4 2
+ 4tctracec~’57#70h Cboundaryh’ |l,10 ’s—l,V,A
25—2 2
+ 3tccellh |Au0 |s 1,V,A

2 25—2
+ 3t0°c Cellh ‘Vo‘s 1,Vpumr,A®

In total, we obtain the error estimate

”V - Vh||12-42((0,T)’VPML) < 7T3067 5C%°undaryh2s_3|u0|§ LV.A
+ 27T?’Ctracec~€ HsCh CboundarthS 4|110 |s 1L,V,A
+207°¢2 3 2 Aug 2y
+ (14T + 20T392) cellhzs 2‘V0|8 1,Vpmr,A

25—3
+ 4T Chghtcboundaryh tgg? ’atu|s 1,V,A

402 2 25—3
+ 4170 i eniC h max |E
1ight“*poundary t€[0,T] I |s l,e,A
5 2 25—3
+ 2T gclightcboundaryh tg%(?% |atH|s 1,u,A
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5 On the long-time behaviour of the PML

Remark 5.2.13 (Comparison of the error analysis with and without PML):

Since the approach to the presented error estimate is in several parts analogous
to the error estimate without PML in Chapter [2| we would like to point out the
main differences. The most apparent difference is the utilization of a dissipative
functional Epyp(u), which contains time derivatives. Since we are interested in
an error estimate in a weighted Ly(€2)-norm, we had to fill the gap with Lemma
Though some of the terms are similar in both estimates and only differ
in the absence or presence of time derivatives, we had to find a non-positive term
analogous to —(0yuy, Apduy)y, but without time derivatives. Thii was done in

Lemma|5.2.4] Another difference we like to mention is the bound on s which was

used in Theorem [5.2.12] Generating a mesh, one usually avoids large jumps in the
cellsize. In the error analysis with PML we actually see the effect of those jumps,
in the analysis without PML this problem did not occur. Regarding the increased
regularity assumption s > 2 in Theorem [5.2.12] we like to point out, that we expect
an assumption s > %, since the time derivative d,u appears in the error bound. The
stronger assumption s > 2 is only needed in one term of the bound and may be
improved by a closer look at the details.

Remark 5.2.14 (What is missing/How to proceed):

At the moment the most important question is about the long-time behaviour of the
analytic PML solution. The task is to find an analog of the functional Epyi,(u), that
is dissipative in three dimensions and also with jumps in the parameter #. With
that functional one may check, if any additional difficulties in the error estimate
occur. We assume that everything will work quite similar to the error estimate we
presented here. Another approach to the problem can be to show the dissipative
behaviour in the Ly(€2)-energy 3|ju+£||3 , in case of initial values supported outside
of the layer. Since in that approach we have some restriction on the initial values,
we expect more difficulties in the error estimate.
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