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1 | Introduction

Modern biology has developed an increasing interest in mathematical modeling over the

recent decades. Emerging fields like systems biology, computational biology or quantitative

biology opened up new possibilities in the study of biochemical interactions of different

molecules, processes and pathways inside cells, tissues and even whole organisms. Research

in these areas has mainly focused on the study of gene regulatory networks and metabolic /

signaling pathways. Traditionally, such studies have been carried out in-vitro, but recently

they are increasingly performed in-silico. Some of the models used in computer simulations

originate from the mathematical description of population dynamics [Mur02]. Initially, the

main focus lied on modeling the earth population in order to predict future demographic

developments. Later on, other species were considered and the interaction of populations

or the spread of diseases were analysed. Recently, these models have been successfully

applied for simulating the biochemical processes mentioned above.

The research conducted in the last decades resulted in the development of a general frame-

work for a large class of these models: Reaction Networks.

A reaction network consists of several species that interact via reaction channels. These

networks allow us to represent the interactions between different species. The concept

of species in these networks is very abstract and can be interpreted as actual biological

species like plants or animals. Alternatively, they can represent individuals belonging to

some population that exhibit certain traits, like people infected with a disease that interact

with people that are not (yet) infected, or the species can be seen as molecules that interact

via chemical reactions.

Reaction networks∗ are very common in life sciences and can be found for example in ge-

netics [MA99], physiology [MPM10, SMF+13], biochemistry [BTS02], ecology [HDD+11,

Mur02], medicine [GGJ13] or even astrophysics [DP11]. However, they only give a qual-

itative representation of interactions, i.e. they answer the question how the reagents are

connected, but not how many particles exist. But as we pointed out, we are interested

in the time evolution of the quantities of the species. We want to answer questions like:

Given that we have 7 billions of people on earth now, how many will we have in 50 years?

How long will it take for a disease to reach its peak? Is a strategy (vaccination, quaran-

tine, drugs) capable of reducing the numbers of deaths? How fast does a virus spread in a

∗Throughout this work, a reaction network is to be understood as the connections between several species.
Quantitative values are calculated by models after a network has been compiled (see next pages).
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2 1. Introduction

tissue? How does the inhibition or activation of an enzyme affect a biochemical pathway?

How does a repressor or an enhancer control the outcome of a gene regulatory network?

The first model capable of simulating reaction networks was the deterministic Reaction

Rate equation (RRE), an N -dimensional system of coupled ordinary differential equations.

However, in the last decades it became obvious that many networks are highly stochastic

and that the RRE is not suitable for detecting such effects [MA99, McQ67]. The switching

of ion channels between open and closed states is just one example of stochastic effects

in biology [DKB10]. Also, networks with bi- or multi-modal probability density functions

cannot be accurately simulated with the RRE, which only outputs the expectation of the

network. An example of a network with a bi-modal behaviour is the infection of a bacterium

by a phage [SYSY02]. This network can evolve according to two different scenarios. Either

the virus cannot infect the cell and then becomes extinct or it can proliferate and the disease

spreads. Examples for networks with multi-modal probability distributions are stem cells,

which develop into a large variety of different types of tissues [MML09].

A thermodynamic interpretation of reaction networks as a gas phase system with freely

moving particles led to the derivation of a Markov jump process and the Chemical Master

equation (CME). Parallel to this development, models basing on stochastic differential

equations (Chemical Langevin equation (CLE)) and the Fokker-Planck equation (FPE)

were derived. The most important difference between these models is the observation that

the RRE, the FPE and the CLE have a continuous state space, while the CME and the

Markov jump process have a discrete state space.

In 1972, Thomas Kurtz proved convergence of the Markov jump process to the Reaction

Rate equation [Kur72], by introducing scaled reaction networks and presenting the “ther-

modynamic limit” technique. However, the convergence of the solution of the FPE to the

solution of the CME was intensively discussed in the last decades [Kam61, Gil80, Gil00,

Gar04].

In this thesis, we take Kurtz’s result as a motivation and analyse the behaviour of different

models. This analysis requires the comparison of models with discrete state space and

models with continuous state space. We physically interpret the discrete states as particle

numbers and the continuous states as concentrations. Based on this interpretation we

derive scaled reaction networks and scaled versions for the different models. Further, we

define a mapping that allows the comparison of probability density functions on discrete

state spaces with densities on continuous state spaces.

We show, as a first important results, that the FPE can be motivated as an approximation

of the CME by combining scaled reaction networks with a truncation of the so-called

Kramers-Moyal expansion [Kra40, Moy49]. Then, we prove the convergence of the solution

of the FPE to the solution of the CME, by showing an error bound depending on the first

derivative with respect to space of the solution of the Fokker-Planck equation (section 4.4).

In 2002, Haseltine and Rawlings proposed the combination of two different models to

new hybrid models [HR02]. Since then, interest in the usage and further development

of hybrid models has continued to grow. Hybrid models combine the advantages of the
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underlying sub-models. For example, a network where some species have large and some

species have very small particle numbers is hard to solve numerically. The species with

low copy numbers require the usage of the Markov Jump process (or the CME) to handle

stochastic effects. On the other hand, the species with large particle counts cause a high

numerical complexity and could be simulated by the RRE. A hybrid model combines these

two approaches and simulates the small particle numbers as a stochastic process and the

species with large particle numbers with the RRE. This procedure reduces the numerical

complexity and conserves stochastic effects.

In chapter 5 we derive a hybrid model combining the Liouville equation and the CME and

prove a convergence rate for the marginal distributions and conditional expectations of this

model to the chemical master equation. Although this hybrid model has been discussed

in literature for a while, no convergence rate has been proven so far.

In addition, we derive a second hybrid model combining the FPE and the CME (chapter 6).

The model has also been discussed in literature, but an analysis of the convergence prop-

erties is missing. Therefore, we derive the stochastic process and an equation of motion for

the probability distribution and discuss convergence properties. This analysis leads to a

theorem that shows convergence of the distribution of the hybrid model to the solution of

the CME and gives an error bound depending on the first space derivative of the solution

of the hybrid model.

Before we conclude this section, we have to point out the crucial difference between models

and methods. In the context of this thesis, a model is a stochastic process or a differential

equation that models the time evolution of the state of a reaction network or its distribu-

tion. A method is a numerical scheme that generates a numerical solution of a model. A

model is a particular description / interpretation of a reaction network, a method solves

a model.

This work is structured as follows: We define the notation and the different models in

chapter 2 and summarise numerical methods to solve them in chapter 3. Further, we dis-

cuss the connections between the different models (the Markov jump process, the Chem-

ical Langevin equation, the Reaction Rate equation, the Chemical Master equation, the

Fokker-Planck equation and the Liouville equation) by deriving all these models starting

from the Markov jump process. In chapter 4, we introduce the concepts of the thermody-

namic limit and of scaled reaction networks and we conclude the chapter giving a proof

for the convergence rate of the solution of the Fokker-Planck equation to the solution of

the Chemical Master equation.

In chapter 5 we introduce hybrid models. These models combine two models to a new

model that utilises the numerical advantages of the two sub models. Also we will show

an error bound for a hybrid model combined from the Chemical Master equation and the

Liouville equation. Further, we discuss an extension of this hybrid model obtained by

combining the Chemical Master equation with the Fokker-Planck equation in chapter 6.

And we will show an error bound for the probability density function of this hybrid model

in comparison to the solution of the CME.
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In chapter 7, these two hybrid models are applied to a gene-regulatory network composed

of 10 species, the famous lac operon, and compared with an approximated solution of the

Chemical Master equation. Finally, we will conclude this work with a summary of the

results and an outlook on future research topics.



2 | Mathematical Models for

Reaction Networks

In this chapter we will define and motivate the usage of reaction networks. Section 2.1 will

shortly review the physical background of the models before we define the mathematical

setup of reaction networks in section 2.2.

In section 2.3 we will introduce three different models for reaction networks that can be

found in literature. We will start with a Markov Jump process and the Chemical Master

equation that transports the density of this process (section 2.3.1). Then, we will describe

two models that approximate the first model: the Chemical Langevin equation and its

distribution transported by the Fokker-Planck equation (section 2.3.2) and the Reaction

Rate equation and its distribution transported by the Liouville equation (section 2.3.3).

After the definition of these three models, we discuss their connections in section 2.4, as

they can be found in recent publications. Furthermore, we present how the two other

models can be derived from the Markov jump process and the Chemical Master equation.

But we will also see that some very questionable approximations are needed to do these

derivations. These approximations will be motivated in chapter 4.

2.1 Physical Motivation

A reaction network is a qualitative description of the interactions between several (chem-

ical) substances. An example is the reaction of hydrogen with oxygen in the famous

“knallgas” (oxyhydrogen) reaction

2 H2 +O2 −−−−→ 2 H2O. (2.1)

We are now interested in the time evolution of this reaction: How many molecules of H2O

will be in the reaction volume at time t, if we start the reaction with n1 molecules of H2

and n2 molecules of O2? Or, from a stochastic point of view, how probable is it that we

have n1 molecules of H2, n2 molecules of O2 and n3 molecules of H2O at time t?

Although simple, this example allows us to introduce the basic nomenclature of reaction

networks. We denote the interacting molecules as species, e.g. H2, O2 and H2O. Further,

we denote a single reaction as reaction channel, e.g. we have a network with only one

reaction channel. However, most networks in this thesis are constructed from several

different reaction channels.

5



6 2. Mathematical Models for Reaction Networks

We assume that all reactions take place in a container with fixed volume Ω and constant

temperature. The network consists ofN ∈ N different species S1, . . . ,SN . At the beginning

of the experiment or simulation, the system contains a fixed particle number X(0) ∈ NN
0

and we are interested in X(t) ∈ NN
0 , the change of the particle numbers over time.

We are not interested in the position or speed of certain particles or which individual

particles interact. We are only interested in the quantities of the different species over

time. Therefore it is not necessary to use full atomistic models, like molecular dynamic

simulations.

Different authors, like Gillespie or McQuarrie, made several assumptions and modeled

reaction networks using a Markov jump process that simulates the quantities of the species

without the need to keep track of the positions of all atoms in the reaction volume [Gil76,

Gil92, McQ67]. In this model, each particle is seen as a sphere that moves freely in the“well

stirred” reaction volume, i.e. the particles are uniformly distributed. The molecules meet

at random and react with probability γ(X(t))∆t in a time interval [t, t+∆t] [Gil76, Gil92].

The function γ(X(t)) is called propensity function and is a measure of the reactivity of

the different reaction channels. The function depends on the purpose of the network and

can even be time dependent [SMF+13]. Further, the propensity function is proportional

to a rate constant cj , a constant that depends on the chemical properties of the reaction

channel.

The propensity function used in this work (cf. eq. (2.6)) arises from the idea that the

particles are uniformly distributed in the reaction volume and “meet” at random. This

motivates the usage of the binomial coefficient, which describes the drawing of objects out

of a well mixed box.

The network description is completed by the stoichiometric vector %j , which describes

the change of particle numbers via a reaction j and the quantities in the system can be

updated via X(t2) = X(t1) + %. In example (2.1) the stoichiometric vector is given by

%1 = (−2,−1, 2)T .

Although we are using a terminology inspired by chemistry, the species can be understood

in a very abstract way. For example, they can be proteins inside a cell but also individuals

at different stages of a disease.

We also have to understand the difference between particle numbers and concentrations.

Particle numbers are natural numbers that keep count of how many particles are present.

Concentrations on the other hand are non-negative real numbers that give a relative parti-

cle count. Throughout this thesis we will denote particle numbers with n ∈ NN
0 or m ∈ NN

0

and concentrations with x ∈ RN
+ or y ∈ RN

+ . In chemistry, these quantities are related by

the definition of the average concentration

x =
n

Ω

where Ω ∈ R+ is the reaction volume, Avogadro’s constant or the product of both [Gil00,

Gil92, BKPR06, Kur72, Wil06, KSM+12, chapter 6.1.2].
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A presentation of the thermodynamic principles or a detailed physical derivation of the

Markov jump process are out of the scope of this thesis, but we refer the reader to [Gil76,

McQ67, BKPR06, Gil92] and [Udr12]. However, the main idea is to assume that

cj∆t is the average probability (to first order in ∆t), (2.2)

that the jth reaction channel will fire in a small time interval [t, t+∆t] [Gil76].

This property is sometimes referred to as the “Fundamental Hypothesis of Chemical Ki-

netics” [Gil76].

It is further assumed that the particles behave like hard spheres which move in a “well

stirred” reaction volume, i.e. they are uniformly distributed. As Gillespie showed, it is

possible to estimate the probability that two particles collide, by using these assumptions

and thermodynamic arguments [Gil76, Gil92].

Historically, the interaction of species through reaction channels was modeled using ordi-

nary differential equations (ODEs), but increasing awareness in life sciences rendered these

type of models as inadequate for networks containing very small particle numbers or for

models that have stochastic effects [McQ67]. The reason is that small particle numbers

lead to highly stochastic behaviour, which can not be captured by a deterministic ODE.

Later on, several other types of reaction networks were discovered, where a deterministic

approach is not suitable, like cell fate decision networks which must be modeled using bi-

or even multimodal distributions [SYSY02, MML09]. Other examples for highly stochastic

networks can be found in neurology, where the toggling of ion channels between an open

and closed state turned out to be stochastic [DKB10]. Although the Markov jump process

was historically not the first model for reaction networks, it turned out to be the most

general one.

2.2 Reaction Networks

A reaction network contains several components that describe the interaction of N ∈ N
species Si. The interaction of these species is accomplished through R ∈ N reaction

channels. Each reaction channel Rj , j ∈ {1, · · · , R} consists of substrate species that

react to form product species:

Rj :
N∑
i=1

χin
j,iSi

cj−−−−−→
N∑
i=1

χout
j,i Si. (2.3)

The stoichiometric factors χin
j,i ∈ N0 and χout

j,i ∈ N0, with N0 := N∪{0}, define the number

of particles for a species Si that go in and come out of a reaction channel Rj , respectively.

The reaction rate cj ∈ R+, with R+ := {x ∈ R : x ≥ 0} is a constant that describes the

reactivity of channel j.
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The definition of the network is completed by the stoichiometric vectors,

%j =


χout
j,1 − χin

j,1
...

χout
j,N − χin

j,N

 , %j ∈ ZN , (2.4)

that characterise the quantitative change in the particle number via reaction channels, and

by the propensity functions

γj(n) : NN
0 → R+. (2.5)

We can find different definitions for the propensity functions in literature [Wil06, ch. 6.3].

However, in this work we use a very common propensity function that is motivated by

thermodynamic observations [Gil76, Kur72]:

γj(n) = cj

N∏
i=1

(
ni

χin
j,i

)
(2.6)

where (
n

k

)
:=

{
1
k!

∏k−1
j=0(n− j) if n > k − 1 and n ∈ N0, k ∈ N0

0 if n ≤ k − 1 and n ∈ N0, k ∈ N0

(2.7)

is the binomial coefficient.

The variable n = (n1, · · · , nN )T , nj ∈ N0 is interpreted as the particle number of the

different species.

Some models for reaction networks use a real state variable x = (x1, · · · , xN )T , xj ∈
R+. These models are not using the propensity function (2.6), but the slightly different

propensity function

γ̃j(x) : RN
0,+ → R+, (2.8)

γ̃j(x) = cj

N∏
i=1

x
χin
j,i

i

χin
j,i!

.

We will refer to the state variable n ∈ NN
0 as the discrete (state) variable and to the

propensity function γj(n) as the discrete propensity. Analogously, x ∈ RN
+ will be called

the continuous (state) variable and γ̃j(x) the continuous propensity.

The difference between these two quantities will be an important question in this work

and will be discussed in section 4.1.

Before we conclude this section, we define an important subtype of reactions.
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Definition 2.1 (Monomolecular Reaction Channels).

Reaction channels of the types

Rjk : Sj
cjk−−−−−−→ Sk conversion

R0k : ?
c0k−−−−−−→ Sk inflow

Rj0 : Sj
cj0−−−−−−→ ∅ outflow

are called monomolecular reactions [JH07].

After describing a complex biochemical process as a reaction network, the experimenter

is usually interested in the evolution of the species over time. We will discuss several

models for simulating the time evolution in section 2.3, after defining some mathematical

principles in the next section.

2.3 Mathematical Models for Reaction Networks

2.3.1 Kurtz Process and Chemical Master Equation

We discuss now a first model (and the physically most accurate model) for the reaction

network (2.3). We mentioned already that many reaction networks are highly stochas-

tic [McQ67, SYSY02, MML09, DKB10]. Therefore this model is a continuous time Markov

jump process on the state space NN
0 . The state space results from the need to represent

the particle numbers of N different species. We assume that a discrete number of particles

moves freely in a container with fixed volume and constant temperature. The particles

are “well stirred”, i.e. their positions are uniformly distributed at any time. We further

assume that all particles belong to exactly one of the N different species and particles

of the same species are undistinguishable [JK12]. We already mentioned that we are not

interested in the positions of the particles. Only the number of particles of each species

X(t) ∈ NN is modeled.

We discussed already that the state of a reaction network can be updated, if we know that

a reaction Rj has fired between two time points t1 < t2:

X(t2) = X(t1) + %j .

We generalise this and denote with the counting process Fj(t) the number of times a

reaction channel Rj has fired in the time interval [0, t]. It follows that the state of a

reaction network at time t is given by

X(t) = X(0) +

R∑
j=1

Fj(t)%j .

Gillespie discussed in detail that the probability that the reaction Rj fires in a time interval

[t, t+∆t] is given by γj(X(t))∆t+O
(
∆t2

)
(cf. [Gil76, Gil92]). Kurtz et al. and Anderson
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et al. pointed out [BKPR06, AK12, AH12],[EK05, ch. 6.4] that independent Poisson

processes are suitable to model

Fj(t) = Pj
(∫ t

0
γj (X(s)) ds

)
and we refer to this process as:

Definition 2.2 (Kurtz process).

The time continuous Markov jump process

X(t) = X(0) +

R∑
j=1

Pj
(∫ t

0
γj (X(s)) ds

)
%j

models the state of the reaction network (2.3) [AH12],[EK05, ch. 6.4]. As defined in

section 2.1 and 2.2, X(t) ∈ NN
0 denotes the state of the network at time t, X(0) denotes

the initial condition, R is the number of reaction channels, Pj are independent Poisson

processes, γj denotes the propensity function (2.6) and %j the stoichiometric vector (2.4).

This process has not been named in the literature so far. However, referring to it as

“the time continuous Markov jump process that models the reaction network” is tedious.

Therefore we name this process the “Kurtz process”. This naming is consistent with

Sunkara [Sun12] and was chosen to pay tribute to Thomas G. Kurtz, who was one of the

first that analysed these kind of processes [Kur72, Kur78, EK05, BKPR06]∗.

A general closed formula for the distribution of the Kurtz process is not known†, but

we can derive an equation of motion that gives the time evolution of the corresponding

probability distribution. This equation is known as the Chemical Master equation (CME).

Lemma 2.3 (Chemical Master Equation).

Let (S,A,P) be a probability space and let X(t) : S→ NN
0 be the Kurtz process as defined

in def 2.2, then the probability density function (PDF) p(t, n) = P (X(t) = n) is given by

the solution of the Chemical Master equation (CME)

p(t, n) :R+ × NN
0 → [0, 1]

∂tp(t, n) =

R∑
j=1

γj(n− %j)p(t, n− %j)− γj(n)p(t, n) (2.9)

p(0, n) = p0 = δX(0)(n) =

1, if X(0) = n,

0, otherwise,

with γj the propensity function defined by eq. (2.6) and p(t, n− %j) = 0 for n− %j 6∈ NN
0 .

∗Also we like to make sure that the process is not confused with the “Gillespie Algorithm” [Gil76].
†In lemma 2.4, we will state such a formula for monomolecular networks. However many important
networks are more complicated and for these networks no closed formula exists.
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Proof. By following the derivations made by Gillespie or Higham, we estimate the proba-

bility to reach a state X(t + ∆t) assuming state X(t) is given [Gil76, Gil92, Hig08]. We

denote with M (t+∆t, t) the number of reaction events that occurred in the time interval

[t, t+∆t].

Gillespie and Higham distinguish three cases:

(i) The two states are already equal. We denote the probability of this event by

P [M (t+∆t, t) = 0].

(ii) The probability that the state can be reached after one reaction has fired is denoted

by P [M (t+∆t, t) = 1].

(iii) And finally, we denote the probability that the state X(t+∆t) is reached after more

than one reaction event with P [M (t+∆t, t) > 1].

We follow Gillespie and assume that the probability for more than one reaction in the time

interval [t, t+∆t] is of order O
(
∆t2

)
[Gil76, Gil92].

We estimate the probability that one reaction fires in the time interval [t, t+∆t] with∑R
j=1 γj (X(t))∆t+O

(
∆t2

)
(cf. section 2.1 and beginning of section 2.3.1) and the prob-

ability that no reaction fires is 1−
∑R

j=1 γj (X(t))∆t+O
(
∆t2

)
. A general and rigorous

derivation of these transition probabilities can be found in [CM77, ch. 5.6] or [Sun12,

appendix B].

In summary, the transition probabilities are estimated by

(i) P [M (t+∆t, t) = 0] ≈ 1−
R∑

j=1

γj (X(t))∆t+O
(
∆t2

)
,

(ii) P [M (t+∆t, t) = 1] ≈
R∑

j=1

γj (X(t))∆t+O
(
∆t2

)
,

(iii) P [M (t+∆t, t) > 1] ≈ O
(
∆t2

)
.

These are combined to form the transition probability T∆t

(
n(2) | n(1)

)
for going from

state X(t) = n(1) to state X(t + ∆t) = n(2) in a fixed time interval [t, t + ∆t] with fixed

n(1), n(2) ∈ NN
0 :

T∆t

(
n(2) | n(1)

)
:=

1−
R∑

j=1

γj

(
n(1)

)
∆t


︸ ︷︷ ︸

(i)

δn(2),n(1) (2.10)

+
R∑

j=1

γj

(
n(1)

)
∆t︸ ︷︷ ︸

(ii)

δn(2),n(1)+%j
+O

(
∆t2

)︸ ︷︷ ︸
(iii)

,
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where δ is the Kronecker delta. We insert this into the Chapman-Kolmogorov equation

(CKE) (cf. [Gar04])

Tt+∆t(n
(2)|n(0)) =

∑
n(1)∈NN

0

T∆t

(
n(2)|n(1)

)
Tt

(
n(1)|n(0)

)

with n(i) ∈ NN
0 , i ∈ {0, 1, 2} and X(0) = n(0).

By insertion of the transition probability ((2.10)) into the CKE we obtain

Tt+∆t(n
(2)|n(0)) =

∑
n(1)∈NN

0

[1−
R∑

j=1

γj

(
n(1)

)
∆t

 δn(2),n(1)

+
R∑

j=1

γj

(
n(1)

)
∆tδn(2),n(1)+%j

+O
(
∆t2

) ]
Tt

(
n(1)|n(0)

)

= Tt

(
n(2)|n(0)

)
−

R∑
j=1

γj

(
n(2)

)
∆tTt

(
n(2)|n(0)

)

+
R∑

j=1

γj

(
n(2) − %j

)
∆tTt

(
n(2) − %j |n(0)

)
+O

(
∆t2

)
.

This can be rearranged by subtracting Tt

(
n(2)|n(0)

)
and dividing by ∆t:

Tt+∆t(n
(2)|n(0))− Tt

(
n(2)|n(0)

)
∆t

=
R∑

j=1

γj

(
n(2) − %j

)
Tt

(
n(2) − %j |n(0)

)

−
R∑

j=1

γj

(
n(2)

)
Tt

(
n(2)|n(0)

)
+O(∆t) .

Now we take the limit ∆t→∞ and obtain

∂tTt

(
n(2)|n(0)

)
=

R∑
j=1

γj

(
n(2) − %j

)
Tt

(
n(2) − %j |n(0)

)
− γj

(
n(2)

)
Tt

(
n(2)|n(0)

)
,

and by renaming Tt

(
n(2)|n(0)

)
to p(t, n) follows the assertion.

In 2007, Jahnke and Huisinga showed that the CME can be solved for monomolecular

reaction networks by a convolution of a product Poisson distribution with multinomial

distributions [JH07].

Lemma 2.4 (Solution of the CME for monomolecuar reaction networks).

The probability distribution for a monomolecular reaction network (cf. def. 2.1) (i.e. the

solution of the CME for this network) at time t > 0 is given by

p(t, ·) = P (·, λ(t)) ∗M
(
·, n̂1, p

(1)(t)
)
∗ · · · ∗M

(
·, n̂N , p(N)(t)

)
,
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for a initial value p(0, ·) = δn̂(·), n̂ ∈ NN
0 . The function P(·, ·) denotes a product Poisson

distribution (cf. def. A1) and M(·, ·, ·) denotes a multinomial distribution (cf. def. A3).

The vectors p(i)(t) ∈ [0, 1]N and λ(t) ∈ RN are the solutions of

d

dt
p(i)(t) = Ap(i)(t), p(i)(0) = εi,

d

dt
λ(t) = Aλ(t) + b, λ(0) = (0, . . . , 0)T ,

with

A = (ajk)j,k=0,...,N ,

ajk = ckj j 6= k ≥ 1,

akk = −
N∑
j=0

ckj ,

b = (c01, . . . , c0N )T ,

and εi the i-th column of the identity matrix. The constants ckj are the reaction rates

of the monomolecular network 2.1. The convolution of two PDFs P1, P2 : NN → R+ is

defined as

(P1 ∗ P2)(n) =
∑
z

P1(z)P2(n− z) =
∑
z

P1(n− z)P2(z)

with z ∈ NN
0 such that (n− z) ∈ NN

0 .

Remark: This statement holds also for time dependent reaction rates.

Proof. We refer the reader to the complete and detailed proof in the original work by

Jahnke and Huisinga [JH07] and denote only the basic idea of the proof. First of all,

the authors observed that the time evolution of each molecule in the reaction volume is

independent of the other molecules. This allowed them to sort the set of all molecules into

N + 1 different subsets, one for each species and the inflow reaction. The authors further

proved two properties of this network, namely that the solution of a reaction system stays a

Poisson distribution if the initial value was already a product Poisson distribution and that

the solution of a reaction systems stays multinomial if the initial value was a multinomial

distribution and no inflow reactions are present. Then, they used these properties to

analyze the time evolution of the N+1 different random variables that denote the number

of particles in the corresponding subsets and could show the assertion.

We have seen that the CME operates on the state space NN
0 . Numerically, this domain is

often approximated by a finite state space S ⊂ NN
0 on a bounded time interval. However,

the size of S still depends exponentially on the dimension N . This connection of the prob-

lem size with the dimension is called the “curse of dimensionality” in literature. Many well

known problems like the multi-dimensional Black-Scholes equation from financial math-
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ematics, the Schrödinger equation from quantum physics or the Fokker-Planck equation

suffer from this “curse” as well.

2.3.2 Chemical Langevin Equation and Fokker-Planck Equation

Definition 2.5 (Stochastic Differential Equation (SDE)).

The equation

dX(t) = a(X(t)) dt+ b(X(t))dW (t) (2.11)

X(0) = x0,

with X(t) ∈ RN , a(X(t)) = (a1(X(t), . . . , ad(X(t))) ∈ RN , b(X(t)) = (bij(X(t))i,j ∈
RN×M andN,M ∈ N, is called aN -dimensional Stochastic Differential Equation (SDE) [KP99,

ch. 3.3], [Øks07, ch. 5] and should be seen as an abbreviate way to write the Itō-integral

equation

X(t) = X(0) +

∫ t

0
a(X(s)) ds+

∫ t

0
b(X(s))dW (s). (2.12)

In this section and all following ones, W (t) denotes the (M -dimensional) Standard Wiener

Process.

Lemma 2.6 (Fokker-Planck equation).

Let a(x) ∈ C1(RN ), b(x) ∈ C2(RN ), x 7→ p(t, x) ∈ C2(RN ) and t 7→ p(t, x) ∈ C1(R+)

have continuous partial derivatives in space and time and let a(x) and b(x) and their first

derivatives be bounded.

If X(t) is the solution of the SDE (2.11), then the probability density function (PDF)

p(t, x), defined by ∫
S
p(t, x) dx = P (X(t) ∈ S) ,

for all measurable sets S ⊆ RN , solves the Fokker-Planck equation (FPE)

∂tp(t, x) = −
N∑
i=1

∂xi [a(x)p(t, x)] +
1

2

N∑
i,j=1

∂xi∂xj [Bij(x)p(t, x)]

p(0, x) = p0

with Bij(x) =
∑M

k=1 bik(x)bjk(x) and initial value p0.

Proof. Cf. [LM94, ch. 11.6] or [Gar04, ch. 4.3.4].

Because a further discussion of stochastic calculus is out of scope of this work, we refer

the reader to the standard literature on this topic [LM94, Øks07, KP99, Gar04].
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However, we note that the SDE (2.11) can be solved numerically using the Euler-Maruyama

method

X̂i+1 = X̂i + a(X̂i) · τ + b(X̂i)∆Wi, (2.13)

which approximates the SDE at the time points ti = i · τ ∈ [0, T ] with i = 1, · · · , n, τ = T
n

and ∆Wi = Wti+1 −Wti [Hig01, Hig11].

Definition 2.7 (Chemical Langevin Equation).

The SDE

dx(t) =

R∑
j=1

%j γ̃j (x(t)) dt+

R∑
j=1

%j

√
γ̃j (x(t)) dWj(t),

x(0) = x0.

is called the Chemical Langevin equation (CLE) in the literature [Gil00]. The CLE models

the time evolution of reaction network (2.3) using a continuous state variable x ∈ RN and

the continuous propensity function (2.8).

Remark: We will see the connection between the CLE and the Kurtz process and how the

CLE models a reaction network in the sections 2.4 and 4.

Lemma 2.8 (Fokker-Planck Equation).

If the solution x(t) of the CLE (cf. def 2.7) satisfies the assumptions of lemma 2.6, then

the PDF q(t, x), defined by
∫
S q(t, x) dx = P (x(t) ∈ S), for all measurable sets S ⊆ RN , is

given by the solution of

q(t, x) :R+ × RN → R+,

∂tq(t, x) = −
R∑

j=1

∇ (γ̃j(x)q(t, x))
T %j +

1

2

R∑
j=1

%Tj ∇2 (γ̃j(x)q(t, x)) %j , (2.14)

q(0, x) = q0(x),

with ∇
(
f(x)

)
:=

(
∂f(x)
∂xi

)
i=1,...,N

the gradient and ∇2
(
f(x)

)
:=

(
∂2f(x)
∂xi∂xj

)
i,j=1,...,N

the

Hessian matrix. This lemma is a special case of lemma 2.6. However, we will always refer

to eq. (2.14) if we speak of the Fokker-Planck equation (FPE) [Gil00].

Proof. The assertion follows directly from lemma 2.6.

In principle, we would expect that the initial condition q0 of the FPE would be defined by

q(0, x) = q0(x) = δx(0)(x) =

1, if x(0) = x,

0, otherwise.

However, this raises the question if the solution q(t, x) exists in such a case and how the

first and second derivative of a delta peak can be interpreted. To avoid these questions we

assume that q0 : RN
+ → R+ is a function with the properties
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• q0(x) = 0 if ‖x− x(0)‖∞ > ε,

•
∫
RN
+
q0(x) = 1,

• and E [q0] =
∫
RN
+
xq0(x) = x(0),

for a small constant 0 < ε� 1.

Further, we note that the multi-dimensional state space RN is no longer limited to positive

states. However, negative particle numbers or concentrations have no physical interpre-

tation. This means that trajectories that reach negative states should be avoided. In

numerical simulations, these “negative” trajectories often occur if the average solution of

the CLE is near zero. Often, the problem can be avoided on bounded time intervals [0, t]

if all state variables are xi(0) � 0. Higham and Gillespie demand these “large particle

numbers” as an initial condition for the CLE [Hig08, Gil00]. We will not formulate such a

strict assumption, but we note that any CLE solution that reaches a negative state in any

dimension or any FPE solution with non-zero probability for negative states on a bounded

time interval, cannot be used to model a reaction network. In these cases, other models

(like the Kurtz process and the CME) should be used.

2.3.3 Reaction Rate Equation and Liouville Equation

Definition 2.9 (Reaction Rate Equation).

The ODE

d

dt
x(t) =

R∑
j=1

γ̃j (x(t)) %j ,

x(0) = x0.

is called the Reaction Rate equation (RRE). The RRE models the time evolution of reac-

tion network (2.3) using a continuous state variable x ∈ RN
+ and the continuous propensity

function (2.8).

The RRE is heavily used in past and present literature [Wil06, ch. 6]. Because it is an

ODE it is much easier to solve, simulate or analyse than the Kurtz process or the CLE. For

simple networks it is possible to find closed analytical solution formulas. For complicated

networks, we can make use of the rich spectrum of numerical ODE solvers. We can analyse

the state space of the RRE or derive steady states. But we should always keep in mind

that the RRE is only an approximation of the Kurtz process that has lost all stochasticity.

We have to clarify why we state a PDF for an ODE. Historically, the Liouville Equation

(LVE) was used in statistical mechanics to simulate the evolution of an ensemble of different

states over time. This can be translated to the reaction network framework. We assume

that different initial states x(i)(0), i = 1, 2, . . . with given probabilities P
(
x(i)(0)

)
are of

interest. We define the PDF

u0(x) = P
(
x(i)(0) = x

)
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and use this function as initial condition for the LVE. Now, the solution u(t, x) of the LVE

describes the evolution of u0(x).

In the reaction network literature, especially in the more applied context, the LVE is not

used very often. However, we will see a very useful application of the LVE in chapter 5.

Lemma 2.10 (Liouville Equation).

If we interpret the RRE as a SDE with zero stochasticity and if x(t) is the solution of

the RRE (cf. def 2.9) and its PDF u(t, x) satisfies the assumptions of lemma 2.6, then it

holds

u(t, x) : R+ × RN → R+,

∂tu(t, x) = −
R∑

j=1

∇
(
γ̃j (x(t))u(t, x)

)T
%j ,

u(0, x) = u0(x).

We call this equation the Liouville equation (LVE).

Proof. We interpret the RRE as a SDE with b(x) ≡ 0, then lemma 2.6 proves the assertion.

2.4 Connections between the Different Models

As we have seen in the previous section, there exist several different models in the literature

that model the time evolution of a reaction network. In total we have the models∗:

Kurtz process ←→ Chemical Master equation

Chemical Langevin equation ←→ Fokker-Planck equation

Reaction Rate equation ←→ Liouville equation

In this section we review connections between the models and see which approximations

are needed to derive these connections. We will not discuss the motivation and legiti-

macy of these approximations in this chapter. But the goal of the following chapters is

to introduce methods to analyse and rigorously prove the errors introduced by different

approximations. Now we investigate the connection between the models found in the lit-

erature so far. To do this we have to slightly abuse notation from time to time and use

disputable approximations. However, their motivation will become clearer in the subse-

quent chapters.

We have already seen how the CME, the FPE and the LVE can be derived from the Kurtz

process, the CLE and the RRE, respectively. We discuss now the connection between the

Kurtz process and the CLE and the RRE and how the CME can be approximated to

derive the FPE and the LVE.

∗We denote with ←→ that the stochastic procces and the ODE (on the left side) have PDFs (right side)
and that these models should be seen as an unit, even if they have different equations.
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2.4.1 Derivation of the CLE and the RRE from the Kurtz process

We motivate the CLE as an approximation of the Kurtz process by following a scheme

that Gillespie introduced in 2000 [Gil00]. Similar derivations can be found in several other

publications. The following derivations are not rigorous.

Gillespie started with the Kurtz process (def. 2.2) and approximated it on bounded time

intervals [t, t+ τ ] [Gil00, Mac09]:

X(t+ τ) ≈ n̂0 +

R∑
j=1

Pj

(
τγj (X(t))

)
%j ,

where n̂0 is the state of the process at the beginning of the time interval.

Motivated by the law of large numbers, he approximated the Poisson process Pj (ξ) with
a normal distributed stochastic variable Nj

(
µ, σ2

)
with expectation µ = ξ and variance

σ2 = ξ [Mac09, Gil00, BTB04]. This yields a reasonable approximation if the expectation

of the Poisson process E [Pj (ξ)] = ξ � 1 [Gil00]. Gillespie also used that

Nj

(
µ, σ2

)
= µ+ σNj (0, 1) , (2.15)

which leads to

Pj (ξ) ≈ ξ +
√
ξNj (0, 1) .

We should be aware that this is an abuse of notation because the Poisson process is

operating on a discrete state space and the Itō process on a continuous one.

It follows that

X(t+ τ) ≈ n̂0 +

R∑
j=1

τγj (X(t)) %j +

R∑
j=1

√
τγj (X(t))%jNj (0, 1) . (2.16)

Simultaneously he changed the state vector from being discrete to being continuous. This

is done in two steps, first Gillespie approximated the discrete state variable X ∈ NN
0 by a

continuous state RN
+ 3 x̂(t) ≈ X(t) and second he replaced the discrete propensity function

γ by its continuous counterpart γ̃j (cf. eq. (2.6) and (2.8)). Unfortunately this step is not

that easy. For example, the quadratic propensity functions

γj(n) = cj

(
nk

2

)
=

cj
2
(n2

k − nk), γ̃j(x) = cj
x2k
2!

=
cj
2
x2k

result in an error (if we evaluate them both at the same continuous state xk ∈ R+)

|γj(x)− γ̃j(x)| =
cj
2

∣∣x2k − xk − x2k
∣∣ = cj

2
xk.

Gillespie tried to motivate this replacement of propensity functions by introducing a scaling

factor. Unfortunately, his approach is very vague and holds only up to linear propensity
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functions. We will introduce a similar scaling in the next chapter and will show the

resulting error rigorously.

For now, we follow the scheme of Gillespie and obtain

x̂(t+ τ) = x̂0 +

R∑
j=1

τ γ̃j (x̂(t)) %j +

R∑
j=1

√
τ γ̃j (x̂(t))%jNj (0, 1) . (2.17)

By taking the limit τ → ∞ (in principle, eq. (2.17) is a Euler-Maruyama discretization)

and as discussed in [BMP96, Gil00, BTB04, Hig08, Gar04] and [Mac09] we obtain the

Chemical Langevin equation (CLE):

dx(t) =

R∑
j=1

%j γ̃j (x(t)) dt+

R∑
j=1

%j

√
γ̃j (x(t)) dWj(t),

x(0) = x0.

We have seen that we need several approximations to derive the CLE. Therefore it is

obvious that the CLE can only be an approximation of the Kurtz process.

We have seen how the CLE can be derived from the Kurtz process by approximating the

discrete Poisson process by a continuous Itō process. Now, we approximate the Kurtz

process to derive the Reaction Rate equation (RRE).

This is usually done by taking the expectation of the Kurtz process (def. 2.2), assuming

that the expectation of the propensity function approximates the propensity function of

the expectation (E [γj (X(s))] ≈ γj (E [X(s)])), replacing the propensity functions on the

discrete state space by the ones on a continuous state and defining x̂(t) := E [X(t)]. This

leads to the approximation:

x̂(t) ≈ x̂0 +
R∑

j=1

∫ t

0
γ̃j (x̂(s)) ds%j

with initial condition x̂0 = x̂(0).

This is nothing else than the integral form of the RRE

d

dt
x(t) =

R∑
j=1

γ̃j (x(t)) %j ,

x(0) = x0.

2.4.2 Derivation of the FPE and the LVE from the CME

We have seen in the last section that the Kurtz process can be approximated by estimating

the Poisson process with an Itō process (CLE), or by approximating its expectation (RRE).

We have also seen that the PDFs of the two processes are given by the FPE and the LVE,

respectively.



20 2. Mathematical Models for Reaction Networks

In this section, we see that these equations can also be derived as an approximation of the

CME. We present the basic ideas of the approximations and see how the equations and

models are connected, but we will not discuss if these approximations converge or if they

are valid. In chapter 4, we will discuss the concept of the thermodynamical limit and show

how these models can be derived in this limit. This will help us to understand the error

behaviour of the different approximations.

The following steps were stated by Gillespie in 2000 [Gil00] and he assumed that the

parameter n ∈ NN
0 of the CME can be approximated by the continuous state variable x ∈

RN
+ and replaced the discrete propensity function by the continuous one (cf. chapter 2.4.1).

Further, he assumed that [
x 7→ γ̃j(x)q̂(·, x)

]
∈ C∞,

where q̂(t, x) : R+ × RN
+ → R+ is the approximation of the solution of the CME.

Then, Gillespie derived a Taylor expansion in space,

γ̃j(x− %j)q̂(t, x− %j) = γ̃j(x)q̂(t, x)−∇
(
γ̃j(x)q̂(t, x)

)T
%j +

1

2
%Tj ∇2

(
γ̃j(x)q̂(t, x)

)
%j +. . . .

Insertion of the Taylor expansion and the above approximations into the CME yields:

Definition 2.11 (The Kramers-Moyal Expansion).

The equation

∂tq̂(t, x) =

R∑
j=1

−∇(γ̃j(x)q̂(t, x))T%j + 1

2
%Tj ∇2

(
γ̃j(x)q̂(t, x)

)
%j +

∑
|k|≥0

1

k!
%kj∇k (γ̃j(x)q̂(t, x))

 .

is called the Kramers-Moyal expansion [Kra40, Moy49, Gil00, Gar04], with k a multi-index

(cf. def. B4). It is based on a Taylor expansion of the difference term in the CME (2.9).

Truncating the higher order terms of the Kramers-Moyal expansion up to the first deriva-

tive results in the Liouville equation:

∂tu(t, x) = −
R∑

j=1

∇
(
γ̃j(x)u(t, x)

)T
%j . (2.18)

Truncating the higher order terms up to the second derivative results in the Fokker-Planck

equation:

∂tq(t, x) =
R∑

j=1

(
−∇

(
γ̃j(x)q(t, x)

)T
%j +

1

2
%Tj ∇2

(
γ̃j(x)q(t, x)

)
%j

)
.
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2.5 Summary

We mentioned already that some of the steps we did in this chapter are highly disputable.

Why can we replace the discrete state variable n ∈ NN
0 by a continuous variable x ∈

RN
+? Why can we replace the propensity function γj by γ̃j? Why can we truncate the

Kramers-Moyal expansion?

A way to answer these questions (or to give at least some meaning to the procedure) is

to define a scaling based on the idea that the concentration is connected with the particle

number by

x ≈ n

Ω
.

Based on this observation we will define a set of scalings and transformations and then we

will take the limit n,Ω→∞. This ansatz is known as the “Thermodynamic Limit” in the

literature (cf. [Kur72, Kur78, Gil00, BKPR06, JK12]).

This leads to a set of useful tools that allows the derivation of the Kramers-Moyal expansion

in a scaled version. These scaled equations help to answer the question how the models

on continuous state spaces approximate the models on discrete state spaces and motivate

the truncation of the Kramers-Moyal expansion.

We conclude this chapter by summarizing the connection of the different models. Figure 2.1

displays this connection. The figure lists the processes and shows the basic idea that led to

the approximations. To avoid confusion, we point out explicitly that only the downward

facing arrows denote approximations, the horizontal arrows denote which PDE (on the

right) transports the PDF of the process on the left.

Kurtz process
lemma 2.3←−−−−−−−−−→ Chemical Master equation

P(ξ)≈N (ξ,ξ)

y
yKramers-Moyal expansion

Chemical Langevin equation
lemma 2.6←−−−−−−−−−→ Fokker Planck equation

E[X(t)]

y
yKramers-Moyal expansion

Reaction Rate equation
lemma 2.6←−−−−−−−−−→ Liouville equation

Figure 2.1: Relation between the different models. The column on the left lists the dif-
ferent stochastic processes. The Kurtz process is approximated by the CLE
by approximating the Poisson processes. The CLE is approximated by the
RRE by taking the expectation. The horizontal arrows list the lemmata that
connect the processes in the left column and the PDFs in the right column.
The downward facing arrows in the right column symbolise the approximation
of the CME by the FPE and the LVE using the Kramers-Moyal expansion.
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In this chapter we will discuss two numerical methods for simulating the Kurtz process and

for solving the CME, respectively. The first methods is the famous Stochastic Simulation

Algorithm, which generates trajectories of the Kurtz process. We will motivate this algo-

rithm in section 3.1 by reviewing Gillespies seminal work from 1976 [Gil76]. In section 3.2

we will state a method which approximates the solution of the CME, the Finite State

Projection Method. This method was originally published by Munsky and Khammash in

2006 and recently improved by Sunkara and Hegland [MK06, Sun12].

Because this thesis is about the analysis of models, we will not discuss any further methods,

but we will name a few important ones in section 3.3.

This chapter is concluded with three examples to gain a feeling how reaction networks

look like, how the different models can be applied and how the corresponding solutions

behave.

3.1 Stochastic Simulation Algorithm

In section 2.3.1, we introduced the Kurtz process (def. 2.2) as a model for the time evolution

of reaction networks (cf. section 2.2). The value of a stochastic process over time is called

trajectory, realisation, sample or path of a process. It is possible to calculate such paths

for a given Kurtz process. Several paths can be used to approximate characteristics of the

associated PDF. For example, the mean of several trajectories can be used to approximate

the expectation. It is also possible to use a histogram of realisations as an approximation

of the PDF. This means that many samples can be used to approximate the solution of

the CME.

In 1976 Daniel T. Gillespie published a seminal paper, where he derived an algorithm to

simulate reaction networks: the Stochastic Simulation Algorithm (SSA) [Gil76].

To derive the SSA, using assumption 2.2 and the CME (2.9), we define a so-called reaction

probability density function.

Definition 3.1 (Reaction Probability Density Function).

23
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P (τ, µ)dτ is the probability at time t that the next reaction

will take place in the time interval (t+ τ, t+ τ + dτ)

and that the firing reaction channel will be Rµ.

Further we define

γµ(n)dt is the probability up to O
(
dt2
)
that Rµ will fire in the next time interval dt.

We calculate the probability, that Rµ will fire in [t+ τ, t+ τ + dt],

P (τ, µ)dτ = P0(τ) · γµdτ (3.1)

using the probability P0(τ) that no reaction will occur in [t, t+τ ]. We state the probability

that more than one reaction occurs in the time interval with O
(
dt2
)
.

P0(τ) is derived by dividing the interval [t, t + τ ] into K small subintervals, multiplying

the probabilities for reactions occurring in these subintervals, and taking the converse

probability (cf. proof of lemma 2.3)

P0(τ) = lim
K→∞

1− 1

K

R∑
j=1

γjτ +O
(

1

K2

)K

= exp

− R∑
j=1

γjτ

 . (3.2)

So we get the reaction probability density function

P (τ, µ) = γµ exp

− R∑
j=1

γjτ

 . (3.3)

A longer and more detailed derivation of equation (3.3) can be found in [Gil76]. It is also

shown therein that P (τ, µ) is a PDF with mass 1.

Now, we simulate a reaction network by using a random number generator to create values

for τ and µ according to equation (3.3) [Gil76]. The actual time t has to be extended by

t + τ to find the beginning of the next interval and the actual state of the network is

changed by executing reaction channel Rµ, i.e. by adding %µ to the actual state vector of

the network. This approach is similar to the derivations of the Kurtz process and of the

CME in chapter 2.3.1. First we find the next time interval with a reaction event, then we

find the index of the reaction that fired. Algorithm 3.1 gives a possible implementation of

SSA.

However, this approach is still too slow for the needs of many experimenters that are in-

terested in analysing a large amount of trajectories for large reaction networks. Numerical

experiments show that networks with large particle numbers or reaction channels with

high fire frequencies often lead to slow SSA simulations. This results from an (expen-

sive) execution of the while loop in algorithm 3.1 for each reaction event. Therefore, we

briefly review some ideas published in recent years of ways to obtain faster simulations
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Algorithm 3.1 Stochastic Simulation Algorithm (SSA): direct method

Require: initial condition n0, time interval [t0, tfinal], stoichiometric vectors %1, . . . , %N ,
propensity functions γ1(n), . . . , γN (n)

1: t← t0
2: n← n0

3: while t < tfinal do
4: a←

∑N
j=1 γj(n)

5: r1, r2 ← rand_uniform(0, 1)

6: τ ← 1
a log

(
1
r1

)
7: t← t+ τ
8: choose µ such that

∑µ−1
j=1 γj(n) < ar2

∑N
j=µ γj(n)

9: n← n+ %µ
10: end while
11: return n

of the Kurtz process. Gibson and Bruck suggested a more efficient way to implement

the algorithm called the “Next Reaction Method” which needs only one random number

per reaction (due to a re-usage of random numbers), but this algorithm is often still too

slow [GB00].

Gillespie introduced a new simulation scheme called τ -leaping [Gil01]. The basic idea is to

predefine an equidistant time grid with step size τ and to estimate the number of reactions

fired in a predefined time interval [t, t+ τ ], instead of calculating the time interval to the

next reaction event. The method consists of two parts. First, Gillespie approximates the

integral in the Kurtz process by

X(t+∆t) ≈ X̂(t+∆t) = X̂(t) +

R∑
j=1

Pj
(
γj

(
X̂(t)

)
∆t
)
%j .

Second, the new process is sampled to create realisations of the stochastic reaction network.

The advantage of this method is that very frequent reactions are not simulated by many

small time steps with only one reaction in between. They are combined to a single time

step. A disadvantage of this method is the possibility to obtain negative particle numbers,

if the chosen time step is to big. Some other authors proposed further “leaping” methods

that are all based on similar ideas but introduce different approximations [TB04, BMT06,

MLB07].

3.2 The Finite State Projection Method

As we have seen in the previous chapter, a reaction network can either be analysed using the

Kurtz process or by inspecting the CME. A realisation of the process has a computational

advantage, since it is quite easy to calculate paths of the process. However, we have also

seen that we need several of these paths to approximate the moments or the underlying

PDF. A different approach is to solve the CME and to use this solution to calculate the

desired PDF directly (and then compute its moments, if needed). Unfortunately, no general
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analytic solution∗ for the CME is known so far. A way to circumnavigate this problem is

to consider the CME on a finite state space S only. We learned that the CME usually has

an infinite state space, but by considering the problem numerically we assume that the

CME starts with a finite inital condition that “grows” or “moves” around. However, this

truncation of the state space makes it necessary to define proper boundary conditions in

space. The approximation that the CME has a finite state space, i.e.

|S| <∞, (3.4)

transforms the CME problem into:

Definition 3.2 (Finite CME).

From assumption (3.4) follows the finite CME

p̂(t, n) :R+ × S→ [0, 1],

∂tp̂(t, n) = (ASp̂) (t, n) =
R∑

j=1

γ(n− %j)p̂(t, n− %j)− γ(n)p̂(t, n),

p̂(t, n) = 0, ∀n 6∈ S,

p̂(0, n) = p̂0(n),

with p̂0(n) the original initial condition p0 on the restricted domain S.

This reduces the size of the problem and turns the infinite differential equation system

into a finite systems of ODEs with unique solution [GY13]

p̂(t, n) = eAS·tp̂0(n),

with the operator eAS·t defined via the power series [LM94, ch. 7.8][EN00, chapter I, def. 2.2]

eAS·t =

∞∑
k=0

tk

k!
Ak

S.

We have seen in chapter 2.3.1 that the CME is suffering from the“curse of dimensionality”

and so even the reduced state space S could be too large to solve. However, reducing

the CME operator is the simplest known method to approximate solutions of the CME

numerically. But finding S is a challenging task itself. A very trivial way could be to run

several SSA simulations to estimate the size of the state space, but running these SSA

simulations could be a time-consuming task by itself. Furthermore, such a method would

not offer any possibility of error control [WGMH10].

Munsky and Khammash proposed the Finite State Projection (FSP) method [MK06] to

estimate the truncated state space S of the CME solution. They have shown that, under

∗Besides the one for monomolecular reaction networks given in lemma 2.4. However, most biological
interesting networks are not monomolecular
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certain conditions [MK06, Sun12], for any ε > 0 a reduced state space S can be found in

a way that the approximated solution p̂ε(t, n) on S has the properties

0 ≤ p̂(t, n) ≤ p̂ε(t, n) + ε, ∀n ∈ S, ∀t ∈ [0, tend] .

The idea of the FSP can be summarised in the following steps, for each time step. The

goal is to find a state space Sj such that the error of the solution of the CME on this state

space p̂j(t, n) is below a threshold ε > 0. In the following Âj denotes the CME operator

AS restricted to the state space Sj . First we have to check if the error of the approximation

is below a threshold value ε.

The calculation of this error is not obivous, because the solution of the CME is not known.

However, Munsky and Khammash showed that this error can be estimated by introducing

a so-called“sink state”. This state “collects” the probability that flows out of the truncated

state space. They showed that the absolute error of the actual iteration is bounded by the

probability in this sink state (cf. [MK06] and [Sun12, ch. 2.3]). This sink state replaces

the Dirichlet boundary conditions of the finite CME problem defined in def. 3.2.

If the error is too large, then we have to heuristically grow the actual state space Sj
(for example by using the N-step reachability algorithm proposed by Munsky and Kham-

mash [MK06]) to obtain a new space Sj+1. Now the solution p̂j+1 has to be derived. This

step is repeated until the error is below ε and it was shown that if Sj ⊂ Sj+1, then the

error is monotonically decreasing [MK06]. But because the state space is only growing,

it can occur that the new space Sj+1 is (especially after several time steps) larger than

needed to obtain a solution of error ε.

Sunkara and Hegland proposed an Optimal Finite State Projection (OFSP) [SH10, Sun12]

that estimates the optimal size of Sj . To achieve this, the FSP method is used to find

a subspace Sj on which p̂j has error ε
2 . Next, this space is reduced to the new space

Sj+1 by using an algorithm called N -term approximation. The idea of this algorithm is

to sort the values of the corresponding probabilities p̂j in descending order on the natural

numbers. Now the state space is truncated by removing corresponding probabilities until

they accumulate to mass ε
2 . Sunkara and Hegland showed in their work that this method

finds the best (i.e. the smallest) state space with the solution having error ε.

The OFSP method is implemented in the software package cmepy [HFC10] and was used

in this work to calculate several numerical examples.

3.3 Further Methods

We reviewed one numerical method for simulating the Kurtz process and one for solving the

CME. Of course there is a wider spectrum of numerical methods for the Kurtz process or

the CME. However, this thesis is about the connections, approximations and convergence

errors of different models, so the analysis of numerical methods is out of scope of this work.

However, for general references, we list a few further methods here to given an overview

of the wide spectrum of numerical methods for reaction networks:
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• Burrage et al. and Wolf et al. discussed further methods for state space trunca-

tion [BHMS06, WGMH10].

• MacNamara et al. discussed the application of quasi-steady-state assumptions and

splitting methods for the CME and the application of Krylov and splitting methods

on the FSP algorithm [MBBS08].

• Engblom used a spectral approximation to solve the CME [Eng09].

• Jahnke and Udrescu used wavelets to solve the CME [Jah10, JU10, Udr12].

• Hegland et al. discussed the application of sparse grids to solve the CME [HHL08].

• Dolgov and Khoromskij, Hegland and Garcke, Jahnke and Huisinga and Kazeev et

al. discussed tensor product approximations for reaction networks [DK12, HG11,

JH08, KKNS12, KS13].

• Anderson and Higham extended the multilevel Monte Carlo approach developed by

Giles to reaction networks [Gil08b, Gil08a, AH12].

• Deuflhard et al. discussed adaptive Galerkin methods for the CME [DHJW08].

• Several software tools exist that allow the modeling and simulation of reaction net-

works [HSG+06, BCMP11, LCPG08, WHK10].

• Several different hybrid methods [HR02, Jah11, MLSH12] will be discussed in chap-

ter 5 and 6.

We will also not discuss numerical methods for solving the other models given in this work.

We mentioned already the Euler-Maruyama scheme to solve the CLE, but there are further

methods for solving SDEs numerically [KP99]. The FPE can be solved using a method of

lines approach with difference quotients for the first and second derivative and a suitable

ODE solver for the resulting problem. Moreover, there is a large spectrum of numerical

methods for solving differential equations that include also methods that we can apply to

the RRE and the LVE.

3.4 Examples

We conclude this chapter by stating three example networks. This allows us to see how

the definitions given so far can be applied and offers an insight how the resulting solutions

look like.

3.4.1 Example 1: An Inflow Reaction

First we examine a simple inflow reaction with a constant rate c1

R1 : ?
c1−−−−−→ S1.

The stoichiometry of this network is given by

%1 = χout
1,1 − χin

1,1 = 1− 0 = 1
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Figure 3.1: Solutions of the six different models for reaction networks for example 1, with
c1 = 1 and ε = 1.

and the propensity function by

γ1(n) = c1.

The Kurtz process for this reaction is

X(t) = n0 + P1
(∫ t

0
c1 ds

)
(+1),

n0 = 0

As one would expect, the random (Poisson distributed) jumps depend only on the rate

constant and we observe that X(t) only grows. We see this behaviour in figure 3.1a. The

figure shows ten trajectories of the process and as one would expect, they evolve differently

but their values are only growing over time.
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The CME for this example is given by

∂tp(t, n) = c1p(t, n− 1)− c1p(t, n),

p(0, n) = δ0(n) =

1, if n = 0,

0, otherwise,

and figure 3.1b displays the solution at time t = 10. We see a discrete distribution with

expectation 10.

The CLE is given by

dx(t) = c1 dt+
√
c1 dW (t),

x(0) = 0

and the FPE by

∂tq(t, x) = −c1∂xq(t, x) +
c1
2
∂2
xq(t, x),

q(0, x) = N (0, ε).

Figure 3.1c and figure 3.1d show the solutions of these two models, respectively. In general

the CLE solution looks similar to the Kurtz process, but we see the important difference

between a discrete and a continuous model. We see the discrete jumps in the Kurtz

process, while the pattern in the CLE solution is dominated by the noisy behaviour of the

Wiener process. The FPE solution cannot be compared directly with the CME solution.

We noted already in chapter 2.3.2 that we cannot use the same initial conditions for the

CME and the FPE. The CME solution in figure 3.1b was started with a delta peak at

n = 0. However, the FPE in figure 3.1d was started with a Gaussian initial PDF with

expectation 0 and variance ε = 1. This reveals a further problem. Using a Gaussian

centered around the initial condition of the CME leads here to an initial distribution that

assigns a probability greater than zero for negative particle numbers. We discussed already

that such a distribution has no biological interpretation. However, we discuss this example

to call attention to these kind of problems. We will further discuss the comparability of

CME and FPE in chapter 4. This initial condition is plotted in green, while the solution of

the FPE at time t = 10 is plotted in blue. We note that the distribution moves to the right

(inflow) and has a expectation of E [q(t, x)] = 10. It is similar to the CME solution, but

we have to keep in mind that the solution of the CME is a PDF on a discrete state space,

while the solution of the FPE has a continuous state space. The FPE was solved using a

method of lines approach, combining difference quotients in space with the MatlabR© ode45

solver in time.

The RRE is given by

d

dt
x(t) = c1

x(0) = 0



3.4. Examples 31

and the LVE by

∂tu(t, x) = −c1∂xu(t, x),

u(0, x) = N (0, ε).

Figure 3.1e and figure 3.1f show the solutions of these two models, respectively. Now we

observe that all stochasticity is lost and all 10 solutions of the RRE are equal and follow

the same deterministic trajectory. We expected this behaviour, because the RRE is an

ODE. The LVE was started with the same initial condition as the FPE, a Gaussian with

expectation 0 and variance ε = 1. This allows us to understand the effect of the second

derivative term in the FPE. The first derivative term transports the solution (in this case

to the right), the second derivative term diffuses the solution. In this case the variance

increases.

3.4.2 Example 2: A Dimerisation Reaction
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Figure 3.2: Solutions of five different models for reaction networks for example 2, with
c1 = 0.01.
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Our second example also consists of only one reaction but we examine a slightly more

complicated propensity function

R1 : S1 + S1
c1−−−−−→ ∅.

The stoichiometry of this network is given by

%1 = χout
1,1 − χin

1,1 = 0− 2 = −2

and the propensity function by

γ1(n) = c1

(
n1

2

)
=

c1
2
n1(n1 − 1).

The Kurtz process for this reaction is

X(t) = n0 + P1
(∫ t

0
c1

(
X(s)

2

)
ds

)
(−2) = n0 + P1

(∫ t

0

c1
2
X(s)(X(s)− 1)ds

)
(−2),

n0 = 50

We see that the Poisson process is now depending quadratically on X(t) but the overall

trend is decreasing, because of the non-negativity of the Poisson process and the negative

stoichiometric vector. Again, the visualisation given in figure 3.2a supports this assertion.

The corresponding CME is given by

∂tp(t, n) = c1

(
n+ 2

2

)
p(t, n+ 2)− c1

(
n

2

)
p(t, n)

p(0, n) = δ50(n) =

1, if n = 50,

0, otherwise,

and figure 3.2b displays its solution. We can observe a very interesting discrete PDF in

this case. Because we start with a delta peak at n = 50 and the stoichiometry is −2 we

can only reach even numbers and therefore the probability for all odd states is zero.

The CLE is given by

dx(t) = −c1(x(t))2 dt− 2

√
c1
2
x(t) dW (t),

x(0) = 50

and the FPE by

∂tq(t, x) = c1∂x
(
x2q(t, x)

)
+ c1∂

2
x

(
x2q(t, x)

)
,

q(0, x) = N (50, 0.1)

Figure 3.2c and figure 3.2d show the solutions of these two models, respectively. Again the

global tendency of the CLE solution is similar to the Kurtz process, but the noise from the
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Wiener process dominates the pattern. The diffusion resulting from the Wiener process or

equivalently from the second derivative in the FPE is the reason why every real number

in the shown interval has a non zero probability. The FPE is not able to reproduce the

pattern observed in the CME: the different probability between odd and even states.

The RRE is given by

d

dt
x(t) = −c1x(t)2,

x(0) = 50

and the LVE by

∂tu(t, x) = c1∂x
(
x2u(t, x)

)
,

u(0, x) = N (50, 0.1)

Figure 3.2e shows the solution of the RRE. Again we see a deterministic solution that

reflects the trajectory of the expectation of the process.

3.4.3 Example 3: A Protein Network
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Figure 3.3: Several trajectories of the Kurtz processes in examples 3, with c1 = c2 = c3 = 1.

The last network models a biological problem in a very simplified way: The generation

of a protein through a gene and the dimerisation of two proteins. S1 denotes a gene that



34 3. Numerical Methods

codes for a protein S3, S2 denotes the mRNA generated by the gene and S4 symbolises

the dimer. A network describing this behaviour may look like this:

R1 : S1
c1−−−−−→ S1 + S2

R2 : S2
c2−−−−−→ S2 + S3

R3 : S3 + S3
c3−−−−−→ S4

From the above definitions follow the stoichiometric vectors

%1 =


0

1

0

0

 %2 =


0

0

1

0

 %3 =


0

0

−2
1


and the propensity functions

γ1(n) = c1n1 γ2(n) = c2n2 γ3(n) = c3
n3 · (n3 − 1)

2
.

The Markov jump process (2.2) for this network is given by

X(t) = n0 + P1
(∫ t

0
c1X1(s)ds

)
0

1

0

0

+ P2
(∫ t

0
c2X2(s)ds

)
0

0

1

0



+ P3
(∫ t

0
c3
X3(s) · (X3(s)− 1)

2
ds

)
0

0

−2
1

 ,

n0 = (1, 0, 0, 0)T ,

where Xi(t) is the i-th entry of the vector X(t). We note that not all reactions depend

on all species. For example the first process only adds to the second species. Figure 3.3

shows the time evolution of the four different species in a single plot each. The gene is not

changing at all. This follows directly from the observation that there are no stoichiometric

vectors that change this species. The mRNA is growing over time. This could be changed,

by adding a degradation reaction for this species. The protein is created by R2 and

reduced by R3, therefore we see a raising and falling of the population values over time.

Last, the dimer is also growing over time. It is the end product of this network and has

no degradation reaction.

The CME for the network is given by

∂tp(t, n) = c1n1p (t, n− %1)− c1n1p(t, n)

+ c2n2p (t, n− %2)− c2n2p(t, n)
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Figure 3.4: Marginal distributions of the solution of the CME in example 3, with c1 =
c2 = c3 = 1.

+
c3
2

(
n3 + 2

2

)
p (t, n− %3)−

c3
2

(
n3

2

)
p(t, n),

p(0, n) = δn0(n)

and figure 3.4 displays its solution at time t = 10. Because it is not possible to display a

4-dimensional PDF in a 2-dimensional figure we displayed the marginal distributions for

each species. As we expected, the PDF for the first species is given by a probability of

one for state n1 = 1 and zero for all other states. The other PDFs express what we expect

from the Kurtz processes. The CME solution was approximated using a histogram of 105

SSA realisations.

The CLE for this network is

dx(t) = %1

[
c1x1(t) dt+

√
c1x1(t) dW1(t)

]

+ %2

[
c2x2(t) dt+

√
c2x2(t) dW2(t)

]

+ %3

[
c3
2
x23(t) dt+

√
c3
2
x23(t) dW3(t)

]
,

x(0) = (1, 0, 0, 0)T ,

and the FPE is

∂tq(t, x) = −c1∇

(
x1(t)q(t, x)

)T

%1 +
c1
2
%T1∇2

(
x1(t)q(t, x)

)
%1
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Figure 3.5: Solutions of the CLE in example 3, with c1 = c2 = c3 = 1.

− c2∇

(
x2(t)q(t, x)

)T

%2 +
c2
2
%T2∇2

(
x2(t)q(t, x)

)
%2

− c3∇

(
1

2
x23(t)q(t, x)

)T

%3 +
c3
2
%T3∇2

(
1

2
x23(t)q(t, x)

)
%3,

q(t, 0) = q0.

Figure 3.5 shows the solution of CLE. Both the FPE and CLE are no suitable models

for this reaction network. The CLE solution was generated using the suggestion to set

negative states to zero (cf. [Hig08]). However, these states are reached very often for

species S3 and the generated data has no biological interpretation. Either the state zero

would be over represented or the solutions would contain negative values.

The RRE and LVE are given by

d

dt
x(t) = c1%1x1(t) + c2%2x2(t) +

c3
2
%3x

2
3(t),

x(0) = (1, 0, 0, 0)T ,

and

∂tu(t, x) =− c1∇

(
x1(t)u(t, x)

)T

%1 − c2∇

(
x2(t)u(t, x)

)T

%2

− c3∇

(
1

2
x23(t)u(t, x)

)T

%3,

u(t, 0) = u0.
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Figure 3.6: Solutions of the RRE for example 3, with c1 = c2 = c3 = 1.

Figure 3.6 shows the solution of the RRE.





4 | The Thermodynamic Limit

and Convergence of

the Fokker-Planck Equation

We concluded chapter 2 with a survey how the three models, based on a Markov jump

process, a SDE and an ODE, respectively, are connected via different approximations. Fur-

ther, we noted that some approximations are very questionable. Especially the connection

between discrete and continuous state spaces, the change of propensity functions and the

truncation of the Kramers-Moyal expansion was not motivated in the setting of section 2.4.

We will discuss these questions in this chapter and motivate the connection of discrete and

continuous states in section 4.1. In that section we will also define scaled reaction networks

and prove the difference between the two propensity functions. These results will be used

in section 4.2 to motivate the truncation of the Kramers-Moyal expansion.

In section 4.3 we will see that the Kurtz process converges to the RRE. This seminal work

was originally published by Kurtz in 1972 and demonstrates how scaled reaction networks

can be used for the analysis of convergence properties. We will use these techniques to

prove the convergence of the FPE to the CME in section 4.4. This proof is concluded with

a numerical example (section 4.4.1) and a discussion of possible future research projects

(section 4.4.2).

4.1 Scaled Reaction Networks

The last chapter brought up the question, how the different models for reaction networks

can be compared. We have seen that the CME and the corresponding Kurtz process are

using natural vectors n ∈ NN
0 for the state variable modeling the species involved in the

reaction network. However, the approximations arising from the Kramers-Moyal expansion

– the LVE and the FPE – use real vectorsx ∈ RN for the state variables. This results in

the problem that we have to compare discrete with continuous state spaces. We do this

by physically interpreting x as a concentration

x =
n

Ω
, (4.1)

39
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which gives us the physical connection between particle amounts n ∈ NN
0 and concentra-

tions x ∈ RN . As we have seen (cf. chapter 2.1), the factor Ω is often interpreted as the

volume of the reaction network, but here we interpret it as an abstract scaling factor.

Before we introduce the thermodynamic limit and the resulting scaled networks, we have

to clarify some notation. The terms discrete model, state variable, PDF or propensity

function denote that the model uses a discrete state variable n ∈ NN
0 , therefore the term

discrete PDF means that we are speaking of a PDF on a discrete state space. Analogously

we denote with continuous model, state variable, PDF or propensity function the case

where the model uses a continuous state variable x ∈ RN , i.e. a continuous PDF is a PDF

on a continuous state space.

Thomas Kurtz introduced in 1972 a concept that became well known as the “Thermody-

namic Limit” in literature [Kur72, Kur78, BKPR06, Gil00, JK12]. The idea behind this

concept is to scale a reaction network and its models by Ω and study these scaled models

for

X(t)→∞, Ω→∞,
X(0)

Ω
= const. (4.2)

Before we return to the seminal paper of Kurtz later in this chapter, we have to define

scaled reaction networks and derive the scaled CME, LVE and FPE and their processes.

Definition 4.1 (Scaled Propensity Functions).

The scaled discrete and continuous propensity functions are defined by

βj(m) = cjΩ · Ω(−|χin
j |1)

N∏
j=1

(
mi

χin
j,i

)
,

β̃j(x) = cjΩ

N∏
j=1

x
χin
j,i

j

χin
j,i!

,

respectively, with |χin
j |1 =

∑N
i=1 χ

in
j,i. The discrete propensity function βj is used for

natural numbers m ∈ NN
0 , but the definition of the binomial coefficient in eq. (2.7) would

allow to use this function for real numbers, too.

Further, we assume:

Assumption 4.2 (Bound for the Stoichiometric Factor).

We assume that the stoichiometric factor of the substrate species is bounded by

N∑
i=1

χin
j,i ≤ 2.

Remark: This means that we are mostly interested in four types of reactions:

1. Inflow reactions of type:

χin
j,i = 0 ∀ i ∈ [1, . . . , N ] : R : ?

c−−−−→ . . .
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This type occurs for example, when new individuals join a population through birth

or immigration or when molecules enter the reaction volume through gating pro-

cesses.

2. Conversion of a single molecule into something else.

∃k : χin
j,k = 1 and χin

j,i = 0 ∀ i 6= k : R : Sk
c−−−−→ . . .

This often occurs in death processes, when a molecule decomposes into one or more

molecules or in birth processes.

3. Bimolecular reaction:

∃k, l : χin
j,k = χin

j,l = 1 and χin
j,i = 0 ∀ i 6= k, l : R : Sk + Sl

c−−−−→ . . .

Two different species react with each other. This may be the case when a protein

binds to a DNA or an enzyme catalyses a substrate.

4. Dimerisation:

∃k : χin
j,k = 2 and χin

j,i = 0 ∀ i 6= k : R : Sk + Sk
c−−−−→ . . .

This is a dimerisation reaction, where two molecules of the same species react with

each other. An example is the aggregation of proteins (like ion channels) consisting

of several alike subunits.

It is possible to think of reactions of higher order, like the process of translation, where

the two subunits of the ribosome, the mRNA and tRNAs combine. Another example is

the chain reaction inside an atomic bomb where a critical mass of uranium or plutonium

is needed to start the reaction. But these reactions could also be modeled in a network,

where the first two particles “meet”, form a new intermediary species and then “meet” the

next particle and so on [Gil00].

We are now able to derive the difference between the discrete and continuous propensity

function.

Lemma 4.3 (Difference between discrete and continuous propensity functions).

If m ∈ NN
0 and if there is a constant K such that mi ≤ KΩ ∀i ∈ {1, . . . , N} and if

assumption 4.2 holds, then a constant C ∈ R>0 can be found, such that∣∣∣βj(m)− β̃j

(m
Ω

)∣∣∣ ≤ C for max
i∈[1,...,N ]

(
χin
j,i

)
= 2,∣∣∣βj(m)− β̃j

(m
Ω

)∣∣∣ = 0 otherwise.

Remark: This statement has been similarly proven in [Kur72, JK12].

Proof. We have to distinguish four cases, by assumption 4.2:
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|χin
j |1 = 0

Therefore χin
j,i = 0 ∀ i ∈ {1, . . . , N} with the propensity functions

βj(m) = cjΩΩ
0

D∏
i=1

(
mi

0

)
= cjΩ,

β̃j

(m
Ω

)
= cjΩ

D∏
i=1

(
mi
Ω

)0
0!

= cjΩ,

and the error ∣∣∣βj(m)− β̃j

(m
Ω

)∣∣∣ = 0.

|χin
j |1 = 1

Therefore ∃k : χin
j,k = 1 and χin

j,i = 0 ∀ i 6= k. This results in the propensity functions

βj(m) = cjΩΩ
−1

(
mk

1

)
= cjΩ

mk

Ω
= cjmk,

β̃j

(m
Ω

)
= cjΩ

(
mk
Ω

)1
1!

= cjΩ
mk

Ω
= cjmk,

and the error ∣∣∣βj(m)− β̃j

(m
Ω

)∣∣∣ = 0.

|χin
j |1 = 2

This can be obtained in two ways:

∃k, l : χin
j,k = χin

j,l = 1 and χin
j,i = 0 ∀ i 6= k, l

This results in the propensity functions

βj(m) = cjΩΩ
−2

(
ml

1

)(
mk

1

)
= cjΩ

ml

Ω

mk

Ω
,

β̃j

(m
Ω

)
= cjΩ

(
ml
Ω

)1
1!

(
mk
Ω

)1
1!

= cjΩ
ml

Ω

mk

Ω
,

and the error ∣∣∣βj − β̃j

(m
Ω

)∣∣∣ = 0.

∃k : χin
j,k = 2 and χin

j,i = 0 ∀ i 6= k

This results in the propensity functions

βj(m) = cjΩΩ
−2

(
mk

2

)
= cjΩ

mk(mk − 1)

2Ω2
,

β̃j

(m
Ω

)
= cjΩ

(
mk
Ω

)2
2!

= cjΩ
m2

k

2Ω2
,



4.2. The Scaled Kramers-Moyal Expansion 43

and the error∣∣∣βj(m)− β̃j

(m
Ω

)∣∣∣ = ∣∣∣∣cjΩmk(mk − 1)

2Ω2
− cjΩ

m2
k

2Ω2

∣∣∣∣
=

∣∣∣∣Ωcj
2

(
m2

k −mk −m2
k

Ω2

)∣∣∣∣ = ∣∣∣Ωcj
2

mk

Ω2

∣∣∣
=
∣∣∣cj
2

mk

Ω

∣∣∣ ≤ C,

because mk
Ω ≤ K by assumption..

Remark: It is possible to extend this proof for polynomial propensity functions of higher

degree than 2. However, reactions with more than two substrate particles are unlikely.

Moreover, we use assumption 4.2 several times later on and it is more interesting to see

how to deal with it in proofs than to prove a statement that we do not “need”.

Motivated by equation (4.2) and definition 4.1 we obtain the scaled Kurtz process

X(t) = m0 +

R∑
j=1

Pj
(∫ t

0
βj (X(s)) ds

)
%j (4.3)

with m0 = n0Ω. Using concentrations is only useful if the underlying particle amounts are

very large..

From this point on, every model for stochastic networks will be scaled by Ω. Hence, we

will not point this out every time a new equation is derived and will refer to the CME,

the Kurtz process and not to the scaled CME or the scaled Kurtz process.

From lemma 2.3 follows the CME

∂tp(t,m) =

R∑
j=1

(βj(m− %j)p(t,m− %j)− βj(m)p(t,m)) . (4.4)

4.2 The Scaled Kramers-Moyal Expansion

Let q̂(t, x) : R+ × RN
+ → R be a PDF with the property

p(t,m) = P (X(t) = m) = P
(
X(t)

Ω
∈ Im

)
(4.5)

=:

∫
Im

q̂
(
t,
m

Ω

)
dx = q̂

(
t,
m

Ω

)∫
Im

dx = Ω−N q̂
(
t,
m

Ω

)
,

where Im denotes the volume

Im :=
m

Ω
+

[
0,

1

Ω

)N

=

[
m1

Ω
,
m1 + 1

Ω

)
× · · · ×

[
mN

Ω
,
mN + 1

Ω

)
(4.6)
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i.e. the hypercube that spans from point m
Ω with edge length 1

Ω . The integral over this

volume is therefor defined by

∫
Im

f(x) dx =

∫ m1+1
Ω

m1
Ω

· · ·
∫ mN+1

Ω

mN
Ω

f(x) dxN . . . dx1 (4.7)

for a fixed point m ∈ NN
0 with mi the ith entry of m and a function f : RN

0,+ → R.

We insert equation (4.4) in eq. (4.5), approximate the propensity function using lemma 4.3

and switch to concentrations using eq. (4.1). Furthermore, we assume that[
x 7→ β̃j (x) q̂ (t, x)

]
∈ C∞, (4.8)

and state the Kramers-Moyal expansion

β̃j

(
x− %j

Ω

)
q̂
(
t, x− %j

Ω

)
− β̃j (x) q̂ (t, x) =−

1

Ω
∇
(
β̃j(x)q̂(t, x)

)T
%j (4.9)

+
1

2Ω2
%Tj ∇2

(
β̃j(x)q̂(t, x)

)
%j

+ G?j,≥3,

where G?j,≥3 denotes the remainder term of order ≥ 3 of the Taylor expansion. Using the

multi-index notation defined in def. B4, we can express this remainder term as:

G?j,≥3 =
∑
|k|≥3

1

k!

(%j
Ω

)k
∇k
(
β̃j(x)q̂(t, x)

)
, (4.10)

with k using the multi-index notation stated in appendix B.

This leads to

∂tq̂ (t, x) ≈
R∑

j=1

(
β̃j

(
x− %j

Ω

)
q̂
(
t, x− %j

Ω

)
− β̃j (x) q̂ (t, x)

)

=
R∑

j=1

(
− 1

Ω
∇
(
β̃j(x)q̂(t, x)

)T
%j +

1

2Ω2
%Tj ∇2

(
β̃j(x)q̂(t, x)

)
%j + G?j,≥3

)
.

The legitimacy of these assumptions is not obvious, but we will see in the proof of theo-

rem 4.5 the impact of these approximations and that it is possible to state an error bound

for this derivation.

Truncating the Kramers-Moyal expansion after the first term yields the Liouville equation

∂tu(t, x) = −
R∑

j=1

1

Ω
∇
(
β̃j(x)u(t, x)

)T
%j , (4.11)

u(0, x) = u0
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and by following the steps in chapter 2.4.1 we obtain the RRE

d

dt
y(t) =

R∑
i=1

1

Ω
β̃j (y(t)) %j , (4.12)

y(0) = y0,

Truncating after the second term yields the Fokker-Planck equation

∂tq(t, x) =
R∑
i=1

(
− 1

Ω
∇
(
β̃j(x)q(t, x)

)T
%j +

1

2Ω2
%Tj ∇2

(
β̃j(x)q(t, x)

)
%j

)
, (4.13)

q(0, x) = q0

and by lemma 2.6 the CLE

dx(t) =

R∑
i=1

1

Ω
β̃j (x(t)) %jdt+

R∑
i=1

√
1

Ω2
β̃j (x(t))%jdW (t), (4.14)

x(0) = x0.

4.3 Convergence of the Kurtz process to the RRE

Kurtz showed in 1972 convergence between the Kurtz process and the RRE and cleared

with his seminal work the way for analysing the errors which are induced by the different

models for reaction networks. He assumed that the probability of molecules reacting

in a time interval is proportional to the volume of the reaction system [Kur72]. This

assumption allowed the definition of scaled propensity functions, a scaled Kurtz process

and a scaled RRE. Then, he analysed the behaviour of these models in the thermodynamic

limit (eq. (4.2)). Doing this, he generalised and proved the conjecture by Oppenheim et

al. that the Kurtz process converges to the RRE in the thermodynamic limit [OSW69].

The scaled Kurtz process X(t)
Ω converges in probability to the solution of the RRE y(t):

lim
Ω→∞

P
(
sup
s≤t

∣∣∣∣X(s)

Ω
− y(s)

∣∣∣∣ > ε

)
= 0,

for every time t and a small, but positive constant ε > 0, if

y(s) = y0 and lim
Ω→∞

X(0)

Ω
= y0. (4.15)
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4.4 Convergence of the FPE

“A careful inspection of our chemical Fokker-Planck equation reveals that

it is precisely the equation that would be obtained by simply truncating

the chemical Kramers-Moyal equation at n = 2. The temptation to make

that truncation has long been recognized, but the legitimacy of doing so

has been seriously doubted.[. . . ] Gardiner has observed that “a confused

history [has arisen] out of repeated attempts to find a limiting form of

the master equation in which a Fokker-Planck equation arises.”

quoted from [Gil00, Gar04, p. 246]

”This quote by Gillespie and Gardiner summarizes the (“confused”) history of the FPE

quite well. Although, Einstein was the first who mentioned the connection between the

Kramers-Moyal expansion and the FPE [Ein05], it was Kramers in 1940 and later Moyal

in 1949, who first analysed and discussed this expansion [Kra40, Moy49]. To motivate

the truncation, Van Kampen introduced the approach we used in the beginning of this

chapter and scaled the particle amount by the system volume to derive a model for the

concentration, although he used a slightly different scaling. This lead the way to the mo-

tivation of the truncation of the Kramers-Moyal expansion [Kam61]. Kubo et al. used a

scaling of the propensity functions to motivate the same result, but as Gillespie pointed

out, backed away from their own result [KMK73]. Gillespie contributed to the analysis

of the FPE with a study in 1980 and one in 2000. In his first paper, he analysed trun-

cations of the Kramers-Moyal expansion for reaction networks where species can only be

changed by one molecule per reaction, i.e.
∑N

i=1 %
in
j,i ≤ 1, ∀j = 1, · · · , R. He could show

that, by using higher order difference quotients, the FPE is only an approximation of the

CME and suggested that a cutoff of the Kramers-Moyal expansion after the fourth order

derivative would equal the CME. But he did not distinguish rigorously between particle

amounts and concentrations [Gil80]. In his second contribution, Gillespie derived the CLE

and the FPE from the CME using certain assumptions [Gil00]. But this work omits an

accurate discussion of the differences between propensity functions for particle amounts

and propensity functions for concentrations. However, we followed this scheme in chap-

ter 2.4.1, 4.1 and 4.2 to derive the CLE and the FPE, but added a proper handling of the

propensity functions and state variables.

Thomas Kurtz discussed that the solution of the CLE converges to a Markov jump process

on a scaled state space
{

k
Ω : k ∈ NN

0

}
with order O

(
log Ω
Ω

)
[Kur78].

Crispin Gardiner stated that a diffusion process, like the CLE, can be approximated by a

Markov jump process, like the Kurtz process, but not vice versa. He could show this result,

by using a different scaling scheme than the one used in this thesis. Gardiner introduced a

parameter δ that is proportional to the mean and variance of the jump probabilities of the

Poisson process. The factor δ becomes small if the jump probabilities increase. He took

the limit δ → 0 and used this to show the statement. Later he analysed the approaches
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by Kramers, Moyal and van Kampen and claimed that the FPE approximates the CME

with order O
(

1√
Ω

)
[Gar04, p. 251]. This result is consistent with the numerical example

at the end of this chapter, but the generality of Gardiner’s result is questionable. He did

not distinguish between a discrete and a continuous state variable. Further he assumed

equality for the change in propensity functions, while lemma 4.3 clearly shows an error for

polynomial propensity functions of degree two or higher.

Sjöberg et al. chose a completely different approach. They abstain from motivating the

cut off of the Kramers-Moyal expansion and take the FPE as given. To compare it with

the CME, they discretized the FPE numerically using a Finite Volume approach in space

and a backward differentiation formula of second order (BDF-2) in time. The discretized

FPE could be compared with the already discrete CME and based on this experiment

convergence was assumed [SLE09].

However, these studies have in common that none is combining a proper scaling, resulting

from correctly distinguishing between particle counts and concentrations, with a proper

handling of the propensity functions for discrete and continuous state variables. Also there

are nearly no studies that introduce a mapping that allows the comparison between results

obtained by the CME with results from the FPE.

In this thesis, we combine these three approaches to show convergence of the FPE to the

CME and give an error bound for the convergence.

After this review of the history of convergence proofs for the FPE we will analyse the

problem in the scaled setting defined at the beginning of this chapter.

First we have to define in what sense we like to see convergence. We want to compare the

solution of the CME with the solution of the FPE

p(t,m)
?←→ q(t, x).

But the CME maps

p : R+ × NN → R

while the FPE maps

q : R+ × RN → R.

Therefore, we must find a way to compare a discrete PDF with a continuous one.

Figure 4.1 visualises an example distribution for the CME solution (labeled p(t,m)) and

on for the FPE solution (labeled q(t, x)). As mentioned, the state spaces differ by two

main characteristics. The location of the essential supports and the discreteness of the

CME in contrast to the continuous space of the FPE. In fig. 4.1 we choose Ω = 100 and

assume that the essential support (cf. fig. 4.2)

esssuppε(p(t, ·)) = NN
0 \

{
m ∈ NN

0 : p(t,m) < ε
}
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0 50 100

p(t,m) q(t, x)

Φ (q)

0 10.5

m
Ω = x

Figure 4.1: Connection between the scaled CME (left) and the scaled FPE (right). The
transformation Φ maps the continuous values of q to a discrete state in p. We
have to notice that not only the state space is changed between discrete and
continuous, but also the position is changed by the relationship x = m

Ω .

of the CME solution p(t,m) is entirely located inside the interval [0,Ω]. From the relation

0
ε

p(t,m)

Figure 4.2: The essential support (green lines) of the solution p(t,m) of the CME (black).
The red line denotes the value of the thresholding parameter ε.

(cf. eq. (4.1))

x =
m

Ω

follows that the essential support of the FPE solution is located in the interval [0, 1] and

further

E [p(t, ·)]� E [q(t, ·)] . (4.16)
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However, we already motivated in the beginning of this chapter and in the last chapter

why we cannot compare particle numbers with concentrations.

As noted, the CME and the FPE somehow solve the same reaction network, but the results

cannot be compared directly. It is therefore impossible to derive a convergence rate based

on the relation

‖p(t,m)− q(t, x)‖ .

However, it is possible to define a transformation Φ that converts the solution of the FPE

into a discrete PDF that can be compared with the CME solution. Figure 4.1 visualises

the relation between the two PDFs and sketches the idea of the map Φ.

By using equation (4.5) and the interval Im (cf. eq. (4.6)) we define

Φ (q) (t,m) :=

∫
Im

q(t, x) dx. (4.17)

Further, we implicitly define the operators

∂tp(t,m) = (Ap) (t,m) =

R∑
j=1

(βj(m− %j)p(t,m− %j)− βj(m)p(t,m)) , (4.18)

∂tq(t, x) = (Bq) (t, x) =
R∑

j=1

(
− 1

Ω
∇
(
β̃j(x)q(t, x)

)T
%j (4.19)

+
1

2Ω2
%Tj ∇2

(
β̃j(x)q(t, x)

)
%j

)
,

and state

∂tv(t,m) = (Av) (t,m) +R(t,m), (4.20)

with v(t,m) := Φ (q) (t,m) and from eq. (4.18) and eq. (4.19) follows

R(t,m) =

∫
Im

(Bq) (t, x) dx− (Av) (t,m). (4.21)

Assumption 4.4 (Bound for remainder terms).

We assume that, on bounded time intervals [0, tend],

∥∥G?j,≥3

∥∥
L1

+
∥∥∥G†j,≥2

∥∥∥
L1

≤ C

Ω

with the Taylor series remainder terms (cf. def. B4, eq. (4.9), eq. (4.10))

G?j,≥3 := −
∑
|k|≥3

1

k!

(%j
Ω

)k
∇k
(
β̃j(x)q(t, x)

)
,

G†j,≥2 := −
∑
|k|≥2

1

k!

(%j
Ω

)k
∇k
(
q(t, x)

)
.
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Theorem 4.5 (Convergence of the FPE).

Let p be the solution of the CME (4.4) and q be the solution of the FPE (4.13), with non

zero variance for all t ∈ [0, tend]. Further, let v(t,m) := Φ (q) (t,m) be the transformed

FPE solution. Then it holds, on bounded time intervals [0, tend], for Ω > Ω0 and for Ω

independent constants C1, C2 > 0, that

‖p(t, ·)− v(t, ·)‖`1 ≤
C1

Ω

∥∥∥∇(q(t, ·))∥∥∥
L1

+
C2

Ω
,

under the conditions of eq. (4.2), eq. (4.8), eq. (4.16), lemma 4.3, assumption 4.2,

assumption 4.4 and assuming that

‖p(0, ·)− v(0, ·)‖`1 =

∥∥∥∥p(0, ·)− ∫
Im

q(0, ·) dx
∥∥∥∥
`1

= 0. (4.22)

The constant Ω0 depends on the conditions of eq. (4.2), lemma 4.3 and assumption 4.4.

Remark: We should be aware that q depends on Ω and therefore ‖∇ (q(t, ·))‖L1
changes if

Ω is changed.

Proof. We obtain, from eq. (4.20) and the variation of constants formula, that

‖p(t, ·)− v(t, ·)‖`1 ≤
∫ t

0

∥∥∥e(t−s)A
∥∥∥
`1
· ‖R(s, ·)‖`1 ds.

The definition and discussion of e(t−s)A for unbounded operators A can be found in [EN00,

chapter II, section 3.3]. From the structure of the operator A, it was shown that∥∥∥e(t−s)A
∥∥∥
`1
≤ 1,

cf. [Heg08, WGMH10, JA10, VK07, ch. V].

Hence the error only depends on R:

R(t,m) =

∫
Im

(Bq) (t, x) dx− (Av) (t,m)

=

R∑
j=1

∫
Im

(
− 1

Ω
∇
(
β̃j(x)q(t, x)

)T
%j +

1

2Ω2
%Tj ∇2

(
β̃j(x)q(t, x)

)
%j

)
dx

−
R∑

j=1

(βj(m− %j)v(t,m− %j)− βj(m)v(t,m))

=

R∑
j=1

∫
Im

(
− 1

Ω
∇
(
β̃j(x)q(t, x)

)T
%j +

1

2Ω2
%Tj ∇2

(
β̃j(x)q(t, x)

)
%j

)
dx

−
R∑

j=1

(
βj(m− %j)

∫
Im−%j

q(t, x) dx− βj(m)

∫
Im

q(t, x) dx

)
.
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Using integration by substitution, it holds that∫
Im−%j

q(t, x) dx =

∫
Im

q
(
t, x− %j

Ω

)
dx.

We use the Kramers-Moyal expansion to derive

− 1

Ω
∇
(
β̃j(x)q(t, x)

)T
%j +

1

2Ω2
%Tj ∇2

(
β̃j(x)q(t, x)

)
%j =β̃j

(
x− %j

Ω

)
q
(
t, x− %j

Ω

)
− β̃j (x) q (t, x) + G?j,≥3,

with remainder term G?j,≥3 (defined in assumption 4.4). This can be combined to

‖R(t, ·)‖`1 =
∑

m∈NN
0

∣∣∣∣∣
R∑

j=1

(∫
Im

− 1

Ω
∇
(
β̃j(x)q(t, x)

)T
%j +

1

2Ω2
%Tj ∇2

(
β̃j(x)q(t, x)

)
%j dx

− βj(m− %j)

∫
Im−%j

q(t, x) dx+ βj(m)

∫
Im

q(t, x) dx

)∣∣∣∣∣
=
∑

m∈NN
0

∣∣∣∣∣
R∑

j=1

(∫
Im

β̃j

(
x− %j

Ω

)
q
(
t, x− %j

Ω

)
− β̃j (x) q (t, x) + G?j,≥3 dx

− βj(m− %j)

∫
Im

q
(
t, x− %j

Ω

)
dx+ βj(m)

∫
Im

q(t, x) dx

)∣∣∣∣∣
≤

R∑
j=1

∑
m∈NN

0

∣∣∣∣∣
∫
Im

[
β̃j

(
x− %j

Ω

)
− βj(m− %j)

]
q
(
t, x− %j

Ω

)
dx (4.23)

−
∫
Im

[
β̃j (x)− βj(m)

]
q(t, x) dx+

∫
Im

G?j,≥3 dx

∣∣∣∣∣.
We represent the first term in [·]-brakets by the second one plus a remainder term Hj(m,x)[

β̃j

(
x− %j

Ω

)
− βj(m− %j)

]
=
[
β̃j (x)− βj(m)

]
+Hj(m,x).

We rearrange and obtain

‖R(t, ·)‖`1 ≤
R∑

j=1

∑
m∈NN

0

∣∣∣∣∣
∫
Im

[
β̃j (x)− βj(m)

]
q
(
t, x− %j

Ω

)
dx

−
∫
Im

[
β̃j (x)− βj(m)

]
q(t, x) dx

+

∫
Im

Hj(m,x)q
(
t, x− %j

Ω

)
dx+

∫
Im

G?j,≥3 dx

∣∣∣∣∣
≤

R∑
j=1

∑
m∈NN

0

∣∣∣∣∣
∫
Im

[
β̃j (x)− βj(m)

] [
q
(
t, x− %j

Ω

)
− q(t, x)

]
dx

∣∣∣∣∣
+

R∑
j=1

∑
m∈NN

0

∣∣∣∣∣
∫
Im

Hj(m,x)q
(
t, x− %j

Ω

)
dx

∣∣∣∣∣
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+
R∑

j=1

∑
m∈NN

0

∣∣∣∣∣
∫
Im

G?j,≥3 dx

∣∣∣∣∣.
We choose for each of the three part the reaction channel with the biggest impact on the

error. Therefor, we choose j1 such that

∑
m∈NN

0

∣∣∣∣∫
Im

[
β̃j1 (x)− βj1(m)

] [
q
(
t, x− %j1

Ω

)
− q(t, x)

]
dx

∣∣∣∣
≥
∑

m∈NN
0

∣∣∣∣∫
Im

[
β̃j (x)− βj(m)

] [
q
(
t, x− %j

Ω

)
− q(t, x)

]
dx

∣∣∣∣
and j2 such that

∑
m∈NN

0

∣∣∣∣∫
Im

Hj2(m,x)q
(
t, x− %j2

Ω

)
dx

∣∣∣∣ ≥ ∑
m∈NN

0

∣∣∣∣∫
Im

Hj(m,x)q
(
t, x− %j

Ω

)
dx

∣∣∣∣
and j3 such that

∑
m∈NN

0

∣∣∣∣∫
Im

G?j3,≥3 dx

∣∣∣∣ ≥ ∑
m∈NN

0

∣∣∣∣∫
Im

G?j,≥3 dx

∣∣∣∣
for all j = 1, . . . , R. Then there exist constants C1, C2 and C3 such that

‖R(t, ·)‖`1 ≤ C1

∑
m∈NN

0

∣∣∣∣∣
∫
Im

[
β̃j1 (x)− βj1(m)

] [
q
(
t, x− %j1

Ω

)
− q(t, x)

]
dx

∣∣∣∣∣
+C2

∑
m∈NN

0

∣∣∣∣∣
∫
Im

Hj2(m,x)q
(
t, x− %j2

Ω

)
dx

∣∣∣∣∣
+C3

∑
m∈NN

0

∣∣∣∣∣
∫
Im

G?j3,≥3 dx

∣∣∣∣∣.
Motivated by Hölders inequality we estimate∣∣∣∣∫

Im

f(m,x)g(x) dx

∣∣∣∣ ≤ ∫
Im

|f(m,x)| · |g(x)| dx ≤ sup
x∈Im

|f(m,x)|
∫
Im

|g(x)| dx,

for

f(m,x) =
[
β̃j1 (x)− βj1(m)

]
and g(x) = q

(
t, x− %j1

Ω

)
− q(t, x)

or f(m,x) = Hj2(m,x) and g(x) = q
(
t, x− %j2

Ω

)
.

Further we note∑
m∈NN

0

∣∣∣∣∫
Im

a(x) dx

∣∣∣∣ ≤ ∑
m∈NN

0

∫
Im

|a(x)| dx =

∫
R0,+

|a(x)| dx = ‖a(·)‖L1
,
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for a function a(x).

We combine these results and estimate

‖R(t, ·)‖`1 ≤C1

∑
m∈NN

0

∣∣∣∣∫
Im

[
β̃j1 (x)− βj1(m)

] (
q
(
t, x− %j1

Ω

)
− q(t, x)

)
dx

∣∣∣∣
+ C2

∑
m∈NN

0

∣∣∣∣∫
Im

Hj2(m,x)q
(
t, x− %j2

Ω

)
dx

∣∣∣∣+ C3

∑
m∈NN

0

∣∣∣∣∫
Im

G?j3,≥3 dx

∣∣∣∣
≤C1

∑
m∈NN

0

sup
x∈Im

∣∣∣β̃j1 (x)− βj1(m)
∣∣∣ ∫

Im

∣∣∣q (t, x− %j1
Ω

)
− q(t, x)

∣∣∣ dx (4.24)

+ C2

∑
m∈NN

0

sup
x∈Im

|Hj2 (m,x)|
∫
Im

∣∣∣q (t, x− %j2
Ω

)∣∣∣ dx
+ C3

∥∥G?j3,≥3

∥∥
L1

.

We estimate

sup
x∈Im

∣∣∣β̃j1 (x)− βj1(m)
∣∣∣ ≤ C4,

sup
x∈Im

|Hj2 (m,x)| ≤ C5

Ω
.

These estimates are not obvious, but we postpone them to the lemmata C5 and C6, because

we do not want to interrupt the actual line of thought.

We insert the estimates into equation (4.24) and get

‖R(t, ·)‖`1 ≤C6

∑
m∈NN

0

∫
Im

∣∣∣q (t, x− %j1
Ω

)
− q(t, x)

∣∣∣ dx
+

C7

Ω

∑
m∈NN

0

∫
Im

∣∣∣q (t, x− %j2
Ω

)∣∣∣ dx
︸ ︷︷ ︸

=1

+C3

∥∥G?j3,≥3

∥∥
L1

≤C6

∑
m∈NN

0

∫
Im

∣∣∣q (t, x− %j1
Ω

)
− q(t, x)

∣∣∣ dx+
C7

Ω
+ C3

∥∥G?j3,≥3

∥∥
L1

. (4.25)

We derive by Taylor expansion

q
(
t, x− %j1

Ω

)
− q(t, x) =

1

Ω
∇
(
q(t, x)

)T
%j1 + G

†
j1,≥2,

with remainder term G†j1,≥2 (defined in assumption 4.4).

This results in

‖R(t, ·)‖`1 ≤
C8

Ω

∥∥∥∇(q(t, ·))∥∥∥
L1

+
C7

Ω
+ C3

∥∥G?j3,≥3

∥∥
L1

+
∥∥∥G†j1,≥2

∥∥∥
L1

≤ C8

Ω

∥∥∥∇(q(t, ·))∥∥∥
L1

+
C9

Ω
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The two terms G†j1,≥2 and G?j3,≥3 are bounded by assumption 4.4, which is motivated using

the same argument that justified the truncation of the Kramers-Moyal expansion: The

Taylor series are scaled by a factor 1
Ωk , which renders higher order terms negligible, if the

derivatives are smooth.

These derivations result in the estimate

‖p(t, ·)− v(t, ·)‖`1 ≤
∫ t

0

[
C8

Ω

∥∥∥∇(q(s, ·))∥∥∥
L1

+
C9

Ω

]
ds

=

∫ t

0

C8

Ω

∥∥∥∇(q(s, ·))∥∥∥
L1

ds+

∫ t

0

C9

Ω
ds

≤ C10

Ω

∥∥∥∇(q(t, ·))∥∥∥
L1

+
C11

Ω
,

with C10, C11 constants. These constants can be found because the time interval as well

as the L1 norm are bounded. Obviously they depend on the chosen time point t.

4.4.1 A Numerical Example

Table 4.1: A one dimensional reaction network, consisting of four reaction channels and
one species.

Reaction Channel Propensity Stoichiometry Rate constant

Rj βj(m) β̃j(x) χin
j %j cj

R1 : ?
c1−−−−−→ S Ω Ω 0 +1 0.01

R2 : S c2−−−−−→ ∅ m Ωx 1 −1 0.01

R3 : S + S c3−−−−−→ S m(m−1)
2Ω Ωx2

2 2 −1 0.8

R4 : S c4−−−−−→ S + S m Ωx 1 +1 0.005

Table 4.1 lists a reaction network consisting of four reaction channels and only one species.

The network was designed to analyse the convergence of the FPE to the CME and has

no biological interpretation. The first and second reaction channels are an inflow reaction

and an outflow reaction, creating and decomposing particles of species S, respectively.

The third channel models a dimerisation reaction, where two particles of S react to only

one particle. The last channel models the reverse reaction of the dimerisation. This

network represents all possible reactions that are allowed by assumption 4.2 and exhibits

polynomial propensity functions of zero, first and second order. Table 4.1 also displays

the two propensity functions βj and β̃j , the stoichiometric values χin
j and %j and the rate

constant cj for each reaction.

The CME and the FPE for this network were derived and numerically solved for different

values of Ω. Then, the mapping Φ was used to compute v(t,m) from q(t, x). Using these

three functions it is possible to calculate the error in theorem 4.5 numerically.
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To solve the CME, the network was constructed such that the essential support of the PDF

always lies inside the interval [0,Ω]. For this cases, the operator A can be approximated

by a (Ω + 1) × (Ω + 1) matrix. This matrix was implemented in a MatlabR© program

and the resulting ODE was solved using the Matlab R© ODE integrator ode45. The initial

conditions where calculated transforming the continuous Gaussian q0 = N (0.5, 0.05) on

the unit interval to the support of the CME using p0 = Φ(q0).

Similarly, the FPE with initial condition q0 and zero Dirichlet boundary conditions was

solved by limiting the essential support to the unit interval [0, 1] and discretising this

interval with a small mesh size ∆x. Similar to the previous case, the operator B can

be approximated by a finite matrix. The derivatives were approximated using second

order difference quotients. Again the resulting system was integrated over time using the

Matlab R© ODE routine ode45.

The integrals in the transformation Φ and in the L1 norm were approximated by the

Simpson rule for numerical quadrature.

The size of the computation intervals, the space step size ∆x and the time step size of

the ode45 method where chosen such that the resulting numerical error εnum < 1
Ω . The

resulting loss of probability mass was less than 10−6 � 10−3 = 1
Ωmax

. The maximal value

of Ω in this example is Ωmax = 103.
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Figure 4.3: Numerical solutions of the CME (top, blue), the FPE (bottom, blue) and the
transformed FPE solution v (top, green) for different values of Ω at time t = 50.

Figure 4.3 visualises the numerical solutions of these three quantities for different values

of Ω. The FPE solution stays nearly constant, while the CME solution “moves” to the

right for larger values of Ω. An interesting observation that may deserve future research,

is that the transformed FPE solution always stays slightly left of the CME solution. The

reaction network has the property that the PDF moves from its initial condition to the

left. It seems that the FPE is a little faster in this movement than the CME solution. It is
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possible that this is a property of the difference term βj(m−%j)p(t,m−%j)−βj(m)p(t,m)

in the CME in contrast to the derivatives in the FPE.

101 102 103
10−2

10−1

100

Ω

ε e
x

√
Ω
−1∥∥p[Ω](t, ·)− v(t, ·)

∥∥
`1

1
Ω

∥∥∇ (q[Ω](t, ·)
)∥∥

L1

Figure 4.4: Convergence of the terms in theorem 4.5 using the solutions of the CME and
the FPE for the reaction network given in table 4.1 at time point t = 50.

Figure 4.4 visualises the term εex = ‖p(t, ·)− v(t, ·)‖`1 (blue) for different values of Ω

plotted over Ω. The derivative term 1
Ω ‖∇ (q(t, ·))‖L1

(green) is also plotted over Ω. As we

expected from theorem 4.1 these terms are of same order, i.e. they lie parallel in a double

logarithmic plot. Interestingly, these terms are of order O
(

1√
Ω

)
, which results from the

observation that ‖∇q‖L1
= O

(√
Ω
)
.

Another interesting observation is that the order of the error changes over time. So far, we

discussed the error at the end of the time interval [0, 50]. But the error at the beginning of

this time interval is of order O
(
1
Ω

)
. We observe a gradual change of this order from O

(
1
Ω

)
to O

(
1√
Ω

)
over time. This change is plotted in figure 4.5, accompanied by the scaled

derivative of the FPE solution 1
Ω ‖∇ (q(t, ·))‖L1

. However, this behaviour could also result

from a change of the constant Ω0 (cf. theorem 4.5) or from the numerical scheme used to

compute this example.

4.4.2 Future Research

So far we have seen that there exist several models to simulate the time evolution of reaction

networks. For a systems-biologist or any other user of these models is it important to know

under which circumstances he can use each model. For example, it may be known that

the measured data involved in creating the reaction network (e.g. the rate constants or

initial values) have an error of order O(εbio). Now the experimenter can decide to use the

FPE, if

εbio ≥
C1

Ω

∥∥∥∇(q(t, ·))∥∥∥
L1

+
C2

Ω
.
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Figure 4.5: Evolution of the error of the FPE against the CME over time (left), in com-
parison to the evolution of the scaled derivative 1

Ω ‖∇ (q(t, ·))‖L1
(right). The

different time points are colour coded: t = 0.5 (blue), t = 1 (green), t = 3
(red), t = 5 (cyan), t = 7.5 (purple) and t = 10 (ochre). The black dashed
lines plot the values of 1√

Ω
and 1

Ω in logarithmic scaling.

In order to take the correct decision, one must know the order of the first space derivative of

the FPE solution. A future research topic is therefore the analysis of the space derivatives

of the FPE. In the numerical examples in the previous chapter, the derivative term changed

between order O
(√

Ω
)
and O(1). It should be reviewed, why and under which constraints

and assumptions this result occurs and if other convergence orders can be observed for

different reaction networks. Further, the values of the two constants C1 and C2 should

be estimated. It would also be valuable to estimate the order of the convergence error a

priori.
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Figure 4.6: Convergence of the left hand side term ε in theorem 4.5 using the solutions of
the CME and the FPE for the reaction network given in table 4.1. This term
is compared with the order of the standard deviation of the FPE solution.
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An interesting observation made for the numerical experiment in section 4.4.1 is that the

standard deviation behaves with the same order as the convergence order of the FPE.

Figure 4.6 plots the convergence error ε of the FPE with respect to Ω. Then the standard

deviation
√
Cov [q(t, x)] was calculated for different values of Ω. These two terms are

both, for this network, of order O
(√

Ω
)
. This poses immediately the question, whether

the convergence error and the standard deviation are related. Future research should

therefore include the question if it is possible to prove

‖p(t, ·)− v(t, ·)‖`1
?
≤ C

∥∥∥√Cov [q(t, ·)]
∥∥∥
L1

?



5 | A Hybrid Model Combining

the Kurtz process

and the RRE

The goal of this chapter is the motivation, derivation and analysis of a hybrid model. We

will start with a short introduction and a historical overview in section 5.1. We will then

derive and analyse the hybrid model with the help of an example in section 5.2. The

notation used in the remainder of this chapter will then be introduced in section 5.3.

In section 5.4 we will present a general derivation of the hybrid model. This section is

divided into three sub-sections. First, we will derive the hybrid process from the Kurtz

process. Secondly, we will obtain the hybrid model (called Liouville master equation) from

the CME. Concluding, we discuss the connection between the hybrid process and PDF.

The following sketch visualises this procedure:

Kurtz process Chemical Master equation

section 5.4.1

y
ysection 5.4.2

hybrid process
section 5.4.3←−−−−−−−−−−−→ Liouville master equation

We will use some approximations in the derivation of the hybrid model. To verify the

validity of this model, we will show convergence and prove an error bound in section 5.6.

The hybrid model does not converge for the full distributions, but only for the marginal

distributions and conditional expectations. These will be introduced in section 5.5.

5.1 Motivation

We have seen so far that simulating a reaction network is a complex problem, and we have

discussed several models used for this task. We also derived error bounds for different

models and showed the connection between them. These preliminary studies allow us

to address an important class of models that were designed to reduce the simulation

complexity of reaction networks that have a scale difference in the particle amounts of the

different species. These models are combinations of two different models and we refer to

them as hybrid models.

59
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The Kurtz process converges to the RRE in the thermodynamic limit. This observation

lends legitimacy to the usage of the RRE for reaction networks where all species have

large particle numbers. On the other hand, reaction networks with small particle numbers

are highly stochastic and the usage of the Kurtz process is crucial. Otherwise, important

features of the underlying distribution could be missed. But if a reaction network contains

some species with small particle numbers and some species with large particle numbers,

we still have to choose the Kurtz process to simulate the network. However, simulating a

network with large particle numbers is a time-consuming problem. High particle numbers

lead to high values in the (linear or quadratic) propensity functions. This leads to short

waiting times between the jumps of the process. We have seen this also in our discussion

of the SSA, large particle numbers often result in an increased fire frequency of several

reaction channels. Haseltine and Rawlings came up with the following idea to reduce the

computational complexity of networks containing a scale difference in the species [HR02].

They recommended splitting the network into species with small particle numbers and

species with large particle numbers. Now the sub-network with small amounts is simulated

using the Kurtz process, hence stochastic effects are conserved. The sub-network with large

particle numbers is simulated using the RRE. In this way, one can take advantage of the

fast computational time of the RRE simulations to reduce the overall computation time.

Based on this initial idea, several authors discussed different hybrid schemes and their

implementation. For example, Alfonsi et al. stated a hybrid method which adaptively

partitions a network based on the firing frequency of reaction channels [ACT+05]. Their

approach differs from the setting in this chapter. The authors split the network by re-

actions. Reaction channels with small fire frequencies are simulated stochastically, while

reactions with high fire frequencies are simulated using an ODE. In this thesis, we parti-

tion reaction networks based on the particle numbers of species. The species that are only

present in small copy numbers are simulated stochastically, while species with large parti-

cle amounts are handled deterministically. However, the authors state that their approach

leads to a CME coupled to a LVE (unfortunately without deriving this equation). We will

see in section 5.4.2 that our hybrid model leads also to an equation, which combines the

CME with the LVE. Therefore, we may assume that the error bounds proven in section 5.6

may also apply to the “reaction splitting”model. Furthermore, the approach by Alfonsi et

al. is using an adaptive partitioning, i.e. changes in the fire frequencies of reaction chan-

nels result in a re-partitioning of the network. We partition the network a priori and keep

the partitioning constant over the complete simulation time. They conclude their work

by discussing three possible algorithms that solve this model and testing the speedup by

means of several examples. They observe that hybrid simulations can be up to 100 times

faster then fully stochastic simulations.

Kiehl and Mattheyses used the same approach and discussed possible implementations

of their algorithm [KMS04]. Griffith et al. discussed a dynamic splitting strategy for

reaction networks and implemented a Kurtz process / RRE algorithm to demonstrate

their ideas [GCPS06]. Higham et al. combined the Kurtz process with the CLE and

analysed the resulting hybrid algorithm [HIMS11]. Salis and Kaznessis analysed a sim-
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ilar approach [SK05]. Takahashi et al. discussed the implementation details of a Kurtz

process / SDE hybrid algorithm and Salis et al. presented a software tool that contains

such a method [TKHT04, SSK06]. Recently, Lachor et al. compared several simulation

techniques, including a hybrid method, for reaction networks and analysed their perfor-

mance [LPP11]. A detailed review of hybrid algorithms can be found in [Pah09].

Henzinger et al. derived the same hybrid model analysed in this work and stated an equa-

tion of motion of its distribution [HMMW10]. Furthermore, they discussed a simulation

algorithm to solve this equation. However, the convergence properties of the model were

not analysed.

Several other hybrid models can be found in literature, but differ from the approach

analysed here. For example, Hellander et al. used a splitting scheme to reduce the complex-

ity of the CME [HHL08, HL07] and Jahnke showed an error bound for this model [Jah11].

Du and Parise combined the RRE with a moment approximation of the CME to create a

hybrid algorithm [DP11]. Kaznessis combined the Kurtz process with a space continuous

Markov process [Kaz06]. Chen et al. used a Taylor expansion of the CME to develop a

hybrid piecewise deterministic Markov process [CWA09]. Hasenauer et al. and Menz et

al. derived and analysed a hybrid model known as “model reduction based on conditional

expectations” (MRCE), which uses the product of marginal distributions with conditional

expectations (cf. section 5.5) [HWKT14, MLSH12]. Sunkara stated a further numeri-

cal method to solve the MRCE and showed an error bound for the model [Sun13]. This

proof was extended for networks with a scale difference between the species by Jahnke

and Sunkara [JS13]. The MRCE model splits the CME p(t, n,m) in a marginal distribu-

tion p1(t, n) and a conditional distribution p2(t,m|n), where n denotes the state of the

“stochastic / discrete species” and m the state of the “deterministic / continuous species”:

p(t, n,m) = p1(t, n)p2(t,m|n).

The conditional distribution is turned into a continuous density on the discrete sub-space

of the low copy number species. The two distributions p1 and p2 are then solved in a

hybrid setting. For example Menz et al. use a CME to solve the marginal distributions p1

and a differential algebraic equation for each state n to approximate the first moments of

p2 [MLSH12].

Hybrid methods suffer from different kinds of errors. Each of the numerical solvers used

to simulate the two sub-networks, produces errors. For example, a histogram of several

SSA realisations is an approximation of the CME solution or a numerical ODE integrator

only approximates the RRE. Both approximations contain errors. As we will see, the

hybrid model is often simulated using splitting methods (e.g. Trotter or Strang splitting

scheme), i.e. two (or more [JA10]) components are decoupled, solved individually and

then recoupled. In this work we use the Strang splitting scheme. Of course, such a scheme

produces a numerical error. Finally there is the model error. This error results from the

initial decision to separate the network into two different sub-networks and to use different

models for each one. In this chapter, only the modelling error is analysed and we give an
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error bound for a hybrid model combining the Kurtz process for species with small particle

amounts with the RRE for species with large particle amounts. The analysis is done for

the PDFs, therefore we call the model the Liouville master equation (LME), because the

model combines the CME with the LVE. A derivation of this equation can be found in the

work of Henzinger et al. [HMMW10] and in section 5.4.

Despite the large number of publications on hybrid models that indicate a high interest,

only a few studies on the error behaviour can be found. Vasudeva and Bhalloa analysed

the error of a Kurtz process / RRE hybrid algorithm numerically with respect to the size of

the time step [VB04]. Crudu et al. and Riedler analysed hybrid methods from a stochastic

process point of view [CDMR12, Rie10] and showed convergence of the distribution of the

hybrid process against the solution of the CME, but the authors did not give a convergence

rate.

To show an error bound and a convergence rate, we derive the LME, an equation of motion

for the hybrid model, and extend the thermodynamic limit and the scaling concept from the

last chapter to hybrid models. We introduce the definition of the partial thermodynamic

limit. Next, we discuss in which sense convergence can be expected and give a numerical

example. Finally, we prove an error bound and discuss the corresponding convergence

rate.

The results of this chapter have already been published in [JK12].

5.2 An Example

Consider the reaction network

R1 : S1
c1−−−−−→ S1 + S3

R2 : S1 + S3
c2−−−−−→ S2

R3 : S2
c3−−−−−→ S1 + S3

R4 : S3 + S3
c4−−−−−→ ∅.

(5.1)

This network represents a simple self-regulating genetic network. We interpret S1 as a

gene that generates a protein S3 via reaction R1. Reaction R2 describes the inhibition

of the gene via the protein. The inhibited gene is named S2. The reverse reaction of the

inhibition is represented by reaction R3 and finally we have a dimerisation reaction. To

keep the network simple the dimer is not explicitly stated as a species S4. The outcome

of R4 is simply decomposed.

For the network (5.1), the Kurtz process with initial condition X(0) = X0 = (10, 0,Ω)T is

given as

X(t) = X0 + P1
(∫ t

0
c1X1(s)ds

)0

0

1

 (5.2)

+ P2
(∫ t

0
c2

1

Ω
X1(s)X3(s)ds

)−11
−1


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+ P3
(∫ t

0
c3X2(s)ds

) 1

−1
1



+ P4
(∫ t

0

c4
2Ω

X3(s) (X3(s)− 1) ds

) 0

0

−2

 .

We notice that on bounded time intervals

X1(t) +X2(t) = 10� E [X3(t)] = O(Ω) for Ω→∞

holds. This scale difference makes the simulation of such reaction networks difficult∗, but

the application of Haseltine’s and Rawlings’s idea reduces the numerical complexity. We

split the process into two sub-processes (note that the first and 4th reaction R1 and R4

only depend on the third species S3):(
X1(t)

X2(t)

)
=

(
10

0

)
+ P2

(∫ t

0
c2X1(s)

X3(s)

Ω
ds

)(
−1
1

)
+ P3

(∫ t

0
c3X2(s)ds

)(
1

−1

)
,

X3(t) = Ω + P1
(∫ t

0
c1X1(s)ds

)
− P2

(∫ t

0
c2X1(s)

X3(s)

Ω
ds

)
+ P3

(∫ t

0
c3X2(s)ds

)
− 2P4

(∫ t

0

c4
2Ω

X3(s) (X3(s)− 1) ds

)
.

The first two species, S1 and S2, should be handled using the Kurtz process, while S3 with

its large copy numbers will be simulated using the RRE.

We find a small time interval [t1, t2] where the parametersX1 andX2 of the first sub-process

are given by the constants x1, x2 ∈ N0. The next step is motivated by the derivation of

the RRE from the expectation of the Kurtz process (cf. section 2.4.1), the law of large

numbers and from Kurtz famous “thermodynamic limit theorem” (cf. section 4.3).

We scale X3 by Ω, assume

y(s) ≈ X3(s)

Ω
≈ X3(s)− 1

Ω

and approximate the second sub-process on this time interval by the corresponding RRE

(cf. section 2.4.1)

d

dt
y(t) =

c1x1
Ω
− c2x1

Ω
y(t) +

c3x2
Ω
− c4y

2(t),

y(0) = 1.

∗Obviously, this reaction network is very small and the simulation is not that difficult, but we use this
network only as an example. We would also like to point out that the cost of simulating only slightly
more complex networks quickly grows, e.g. [SYSY02].
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In summary, our hybrid process is given by

Z(t) =

(
10

0

)
+ P2

(∫ t

0
c2Z1(s)y(s)ds

)(
−1
1

)
+ P3

(∫ t

0
c3Z2(s)ds

)(
1

−1

)
, (5.3)

y(t) = 1 +

∫ t

0

c1
Ω
Z1(s)ds−

∫ t

0

c2
Ω
Z1(s)y(s)ds+

∫ t

0

c3
Ω
Z2(s)ds−

∫ t

0
c4y

2(s)ds, (5.4)

with Zi ≈ Xi for i = 1, 2.

We are now able to compare the two processes (5.2) and (5.3) / (5.4) numerically. We

will give a detailed algorithm for the hybrid simulation scheme after the general derivation

of the model (cf. algorithm 5.1). Because X1(t) + X2(t) = 10 by construction of the

network, we can reduce the three-dimensional network to a two-dimensional one, where

one of the species is is handled using the Kurtz process and the other one by the RRE.

Figure 5.1 visualizes the solutions of the CME and of the PDF of the hybrid process. The

plot on the left displays the solution of the CME while the right plot shows a histogram

of several realisations of the hybrid process for our example. We see that the solution is

“compressed” in x direction and does not span the same “width” as the CME solution.

This example clearly shows that we cannot expect convergence for the hybrid PDF to the

full CME solution.

However, we can expect convergence of the marginal distributions of S1 and S2 and of the

conditional expectation times the marginal distribution for S3. These quantities will be

defined in chapter 5.5.
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Figure 5.1: Solution of the CME (left) and PDF of the hybrid model (right) for exam-
ple (5.1) for Ω = 50 and t = 0.5.

Figure 5.2 visualises the marginal distributions of species S1 for the CME and of the PDF

of the hybrid process for two different values of Ω. We observe that the difference of the

two histograms becomes smaller as Ω becomes larger.

Motivated by these considerations we compute the difference of the marginal disitributions

in the `1-norm for different values of Ω. Figure 5.3 visualises this experiment together with

the error in conditional expectations. We see that both errors converge with order O
(
1
Ω

)
.

We will prove this result in chapter 5.6 after a general derivation of the hybrid model and

the definition of the different quantities used in this section.
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Figure 5.2: Marginal distribution of S1 of the CME (blue) and of the hybrid PDF (green)
for example (5.1) for Ω = 10 (left) and Ω = 100 (right) at time t = 0.5.
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Figure 5.3: Convergence error of the marginal distribution (blue) and conditional expec-
tation (green) for the reaction network in example (5.1) at time t = 0.5.

5.3 Notation and Definitions

We examine a reaction network consisting of N = d + D, d,D ∈ N species and R ∈ N
reactions:

Rj :
d∑

i=1

κinj,i Si +
D∑
i=1

λin
j,i Si+d

cj−−−−−→
d∑

i=1

κoutj,i Si +
D∑
i=1

λout
j,i Si+d j = 1, . . . , R,

(5.5)

with the stoichiometric factors κinj,i, κ
out
j,i , λ

in
j,i, λ

out
j,i ∈ N0.

We name the species S1 to Sd stochastic or discrete species and represent them by n ∈ Nd
0.

The species Sd+1 to SD are deterministic species and their particle counts are stored in

m ∈ ND
0 . Later, the deterministic species are supposed to be represented by continuous

variables x ∈ RD
0,+ and will be referred to as continuous species.
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We define the stoichiometric vectors

νj =


κoutj,1 − κinj,1

...

κoutj,d − κinj,d

 ∈ Zd, µj =


λout
j,1 − λin

j,1
...

λout
j,D − λin

j,D

 ∈ ZD. (5.6)

We define two index sets

J0 =
{
j ∈ {1, . . . , R} : νj = (0, . . . , 0)T

}
, (5.7)

J1 = {1, . . . , R} \ J0, (5.8)

and the indicator function

γ(j) =

0, if j ∈ J0

1, if j ∈ J1
(5.9)

to distinguish if a reaction Rj changes the stochastic species. We note that the case j ∈ J0

does not mean that the reaction is independent of n. These species could still act as a

catalyst, but their quantities are not changed.

The propensity function for each reaction channel Rj is of the form α(n)β(m), with α, β

defined as follows:

Definition 5.1 (Hybrid Propensity Function).

The propensity functions of a hybrid reaction network are

αj : Nd
0 → R0,+, αj(n) := cj

d∏
i=1

(
ni

κinj,i

)
,

βj : ND
0 → R0,+, βj(m) := Ω(1−γ(j))Ω

−
∣∣∣λin

j

∣∣∣
1

D∏
i=1

(
mi

λin
j,i

)
,

β̃j : RD
0,+ → R0,+, β̃j(x) := Ω(1−γ(j))

D∏
i=1

x
λin
j,i

i

λin
j,i!

,

with
∣∣∣λin

j

∣∣∣
1
=
∑D

i=1 λ
in
j,i.

Definition 5.2 (Spaces and Norms for Hybrid Systems).

Let

`1K =

u : NK
0 −→ RN

∣∣∣∣∣∣
∑
n∈NK

0

‖u(n)‖ <∞

 , ‖u‖`1K =
∑
n∈NK

0

‖u(n)‖

be the multivariate and vector-valued version of the `1 space, with K ∈ N and ‖·‖ an

arbitrary norm on RN .

Further, we define the spaces

X i+1
d,D =

{
u ∈ X i

d,D

∣∣(n,m) 7→ mku(n,m) ∈ X i
d,D for all k ∈ {1, . . . , D}

}
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via recursion, with i ∈ N0 and X 0
d,D = `1d+D, Analogously, for functions on a discrete-

continuous state space we define the spaces

Y0
d,D =

u : Nd
0 × RD

+ −→ RN

∣∣∣∣∣∣∣
∑
n∈Nd

0

∫
RD
+

‖u(n, x)‖ dx <∞

 ,

Y i+1
d,D =

{
u ∈ Y i

d,D

∣∣ (n, x) 7→ xku(n, x) ∈ Y i
d,D for all k ∈ {1, . . . , D}

}
.

After these definitions, we derive now the process and PDF of the hybrid model. We start

by defining a scaled and partitioned Kurtz process:

Definition 5.3 (Scaled and Partitioned Kurtz process and CME).

The Kurtz process for the scaled and partitioned reaction network 5.5 is given by(
X(t)

Y (t)

)
=

(
n0

Ωm0

)
+

R∑
j=1

Pj
(∫ t

0
αj(X(s))βj(Y (s))ds

)(
νj

µj

)
,

with initial conditions n0 ∈ Nd
0 and m0 ∈ ND

0 . This Kurtz process has the PDF

p(t, n,m) = P (X(t) = n, Y (t) = m | X(0) = n0, Y (0) = Ωm0)

which is the solution of the scaled and partitioned CME

∂tp(t, n,m) =
R∑

j=1

(αj(n− νj)βj(m− µj)p(t, n− νj ,m− µj)− αj(n)βj(m)p(t, n,m)) ,

(5.10)

p(0, n,m) = δn0(n)δΩm0(m) =

1, if n = n0 and m = Ωm0,

0, otherwise.
,

with the convention that

αj(n− νj)βj(m− µj)p(t, n− νj ,m− µj) = 0, if n− νj /∈ Nd
0 or m− µj /∈ ND

0 .

To abbreviate the notation and make the forthcoming proofs more readable and compact,

we define the shift operators:

Definition 5.4 (Shift Operators).

We define the shift operators

∆νu(n,m) =

u(n− ν,m) if n− ν ∈ Nd
0,

0 otherwise,

∆µu(n,m) =

u(n,m− µ) if m− µ ∈ ND
0 ,

0 otherwise,

with ν ∈ Zd and µ ∈ ZD. They have the following properties
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• commutativity, i.e.

∆ν∆µu(n,m) = ∆µ∆νu(n,m) =

u(n− ν,m− µ) if n− ν ∈ Nd
0,m− µ ∈ ND

0

0 else.

• (∆νuv) (n,m) = (∆ν(uv)) (n,m) = u(n− ν,m)v(n− ν,m) = (∆νu) (∆νv) (n,m).

Lemma 5.5 (Properties of the Shift Operators).

Let u ∈ `1d+D be a function with

u : Nd
0 × ND

0 → R,

and u(n,m) = 0 for the cases n+ ν 6∈ Nd
0 or m+ µ 6∈ ND

0 , with ν ∈ Zd and µ ∈ ZD.

Then it holds that:

(i)
∑
n∈Nd

0

((∆ν − 1)u) (n,m) = 0

(ii)
∑

m∈ND
0

((∆µ − 1)u) (n,m) = 0

(iii)
∑
n∈Nd

0

∑
m∈ND

0

((∆ν∆µ − 1)u) (n,m) = 0.

Further, if u is scalar-valued and u ∈ X 1
d,D, it holds that

(iv)
∑

m∈ND
0

m ((∆µ − 1)u) (n,m) = µ
∑

m∈ND
0

u(n,m).

Remark: The two operators allow a reformulation of the CME:

∂tp =
R∑

j=1

(∆νj∆µj − 1)αjβjp.

Proof. A rigorous proof of this lemma can be found in [Eng09, Jah10], but we summarise

the main idea here:

(i) Let ñ = n− ν, then∑
n∈Nd

((∆ν − 1)u) (n,m) =
∑
n∈Nd

u(n− ν,m)−
∑
n∈Nd

u(n,m)

=
∑

ñ+ν∈Nd

u(ñ,m)−
∑
n∈Nd

u(n,m) = 0.

(ii) The second statement can be shown by using the same argument as in (i).

(iii) Rearrangement and applying of (i) and (ii) gives∑
n∈Nd

0

∑
m∈ND

0

(∆ν∆µ − 1)u =
∑
n∈Nd

0

∆ν

∑
m∈ND

0

(∆µ − 1)u

︸ ︷︷ ︸
=0 by (ii)

+
∑

m∈ND
0

∑
n∈Nd

0

(∆ν − 1)u

︸ ︷︷ ︸
=0 by (i)



5.4. Derivation of the Hybrid Model 69

(iv) Let m̃ = m− µ:∑
m∈ND

0

m ((∆µ − 1)u) (n,m) =
∑

m∈ND
0

mu(n,m− µ)−
∑

m∈ND
0

mu(n,m)

=
∑

m̃+µ∈ND
0

(m̃+ µ)u(n, m̃)−
∑

m∈ND
0

mu(n,m)

= µ
∑

m∈ND
0

u(n,m).

Lemma 5.6 (The solution of the partitioned CME is a PDF).

If αjβjp ∈ `1d+D it follows that the solution p(t, n,m) of the partitioned CME is a PDF at

any time t > 0.

Proof.

∑
n∈Nd

0

∑
m∈ND

0

p(t, n,m) =
∑
n∈Nd

0

∑
m∈ND

0

p(0, n,m) +
∑
n∈Nd

0

∑
m∈ND

0

∫ t

0
∂tp(s, n,m)ds

= 1 +

∫ t

0

R∑
j=1

∑
n∈Nd

0

∑
m∈ND

0

(
(∆νj∆µj − 1)αjβjp

)
(s, n,m)ds

= 1.

It can then be shown that p(t, n,m) ≥ 0 [Jah11, ch. 2.4].

5.4 Derivation of the Hybrid Model

5.4.1 Derivation of the Hybrid Process

To derive the hybrid process we start by motivating two approximations

Z(t) ≈ X(t) Ŷ (t) ≈ E [Y (t)] .

These steps are inspired by our derivation of the RRE (cf. section 2.4.1 and cf. section 4.3)

and are similar to the example in section 5.2. The process (cf. def 5.3) will be scaled by
1
Ω and the second sub-process is, addionaly, approximated by the RRE.

We assume

y(t) ≈ Ŷ (t)

Ω
,

and approximate the propensity function β by its continuous counterpart β̃:

βj

(
Ŷ (t)

)
≈ β̃j

(
Ŷ (t)

Ω

)
≈ β̃j (y(t)) .
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We apply these two assumptions to the original process and end up with the Kurtz / RRE

hybrid process:

Z(t) = n0 +
R∑

j=1

Pj
(∫ t

0
αj (Z(s)) β̃j (y(s)) ds

)
νj , (5.11)

y(t) = m0 +
1

Ω

R∑
j=1

(∫ t

0
αj(Z(s))β̃j(y(s))ds

)
µj . (5.12)

5.4.2 Derivation of the Liouville master equation

It is also possible to derive the LME as an approximation of the CME by performing

a partial Kramers-Moyal expansion on the partitioned CME with respect to the correct

scaling.

The density q (t, n, x) is the solution of the LME, if∫
S
q (t, n, x) dx = P (Z(t) = n, y(t) ∈ S | Z(0) = n0, y(0) = m0) (5.13)

for all measurable sets S ⊆ RD
+ .

To derive the LME we start with the partitioned and scaled CME, scale by Ω and integrate

over the D-dimensional unit cube W(0) = [0, 1)D, to transform the argument m ∈ ND

into a real valued variable x ∈ RD
0,+ and the PDF p(t, n,m) into q(t, n, x). At this point of

the derivation we will not really get a real vector x ∈ RD but a rational number m
Ω ∈ QD.

Later, this will be approximated as a real vector.

We apply the previously discussed strategy to equation 5.13 and get

p(t, n,m) = P
(
X(t) = n,

Y (t)

Ω
=

m

Ω

∣∣∣∣ X(0) = n0, Y (0) = m0

)
= P

(
X [Ω](t) = n,

Y [Ω](t)

Ω
∈ m+W(0)

Ω

∣∣∣∣∣ X [Ω](0) = n0, Y
[Ω](0) = m0

)

=:

∫
m+W(0)

Ω

q̃ (t, n, x) dx =

∫
m+W(0)

Ω

q̃
(
t, n,

m

Ω

)
dx = Ω−D · q̃

(
t, n,

m

Ω

)
where the new probability density function should be understood as

q̃
(
t, n,

m

Ω

)
: R0,+ × Nd

0 ×
ND
0

Ω
→ R0,+.

We apply the newly derived connection ΩD · p(t, n,m) = q̃
(
t, n, mΩ

)
to the partitioned and

scaled CME

∂tq̃
(
t, n,

m

Ω

)
= ΩD∂tp(t, n,m)

=
R∑

j=1

(
αj(n− νj)βj(m− µj)Ω

Dp(t, n− νj ,m− µj)



5.4. Derivation of the Hybrid Model 71

− αj(n)βj(m)ΩDp(t, n,m)
)

=

R∑
j=1

(
αj(n− νj)βj(m− µj)q̃

(
t, n− νj ,

m− µj

Ω

)
− αj(n)βj(m)q̃

(
t, n,

m

Ω

))
,

and replace the propensity function β by its continuous counterpart

∂tq̃
(
t, n,

m

Ω

)
≈

R∑
j=1

(
αj(n− νj)β̃j

(
m− µj

Ω

)
q̃

(
t, n− νj ,

m− µj

Ω

)
− αj(n)β̃j

(m
Ω

)
q̃
(
t, n,

m

Ω

))
.

Now we move to the real numbers and assume

x ≈ m

Ω
,

to obtain

∂tq̃ (t, n, x) ≈
R∑

j=1

(
αj(n− νj)β̃j

(
x− µj

Ω

)
q̃
(
t, n− νj , x−

µj

Ω

)
− αj(n)β̃j (x) q̃ (t, n, x)

)
.

Next, we expand by adding terms that sum up to zero

∂tq̃ (t, n, x) ≈
R∑

j=1

(
+ αj(n− νj)β̃j

(
x− µj

Ω

)
q̃
(
t, n− νj , x−

µj

Ω

)
− αj(n)β̃j

(
x− µj

Ω

)
q̃
(
t, n, x− µj

Ω

)
+ αj(n)β̃j

(
x− µj

Ω

)
q̃
(
t, n, x− µj

Ω

)
− αj(n)β̃j(x)q̃ (t, n, x)

)
.

We note that the first two lines in the sum are a CME scaled by β̃j
(
x− µj

Ω

)
and we trans-

form the second part of the sum into a LVE by performing a Kramers-Moyal expansion.

First, we assume [
x 7→ β̃j(x)q̃(t, n, x)

]
∈ C∞

and perform the Kramers-Moyal expansion

β̃j

(
x− µj

Ω

)
q̃
(
t, ·, x− µj

Ω

)
− β̃j(x)q̃(t, ·, x) = −

1

Ω
∇
(
β̃j(x)q̃(t, ·, x)

)T
µj + . . . .

We insert the result (note that some terms vanish due to different signs),

∂tq̃ (t, n, x) ≈
R∑

j=1

(
αj(n− νj)β̃j

(
x− µj

Ω

)
q̃
(
t, n− νj , x−

µj

Ω

)
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− αj(n)β̃j

(
x− µj

Ω

)
q̃
(
t, n, x− µj

Ω

)
− αj(n)

1

Ω
∇
(
β̃j(x)q̃(t, n, x)

)T
µj

)
.

We now assume that

x− µj

Ω
≈ x,

in order to get rid of the shift term in the CME part of the LME. This assumption is

motivated by the observation that xi ≈ mi
Ω �

µji

Ω because mi � µji for all i ∈ {1, . . . , D}
and j ∈ {1, . . . , R}. This shift term arises from the two additional terms that sum up to

zero and that were used to perform the Kramers-Moyal expansion. We could do this in

another way but then the LVE part would be scaled by αj(n− νj) instead of αj(n). It is

more convenient to assume that the shift in the continuous variable can be neglected than

to do the same in the discrete variable.

In a last step we rearrange the equation and note that the CME part becomes zero if

j ∈ J0 and motivated by these derivations we define:

Definition 5.7 (Liouville master equation).

The PDF q (t, n, x) is transported by the Liouville master equation (LME)

∂tq (t, n, x) =
∑
j∈J1

β̃j(x)
(
αj(n− νj)q (t, n− νj , x)− αj(n)q (t, n, x)

)

− 1

Ω

R∑
j=1

αj(n)∇x

(
β̃j(x)q (t, n, x)

)T
µj

q(0, n, x) = δn0(n)q0(x),

with propensity functions αj , β̃j defined by def. 5.1, n ∈ Nd
0, x ∈ RD

0,+, t ≥ 0 and initial

condition q0(x) defined by def. 5.8.

The initial condition of the LME deserves a discussion. Equation 5.13 implies that the

initial condition is a Dirac delta peak located at (n0,m0). To avoid the question if a

solution exists in this case and to circumnavigate numerical and analytical difficulties, we

define the initial condition of the LME as a smooth function with the properties:

Definition 5.8 (Initial Condition of the LME).

Let

q0 :RD
0,+ → R0,+

be the initial condition of the LME, with the properties

• q0(x) = 0 if ‖x−m0‖∞ > ε,

•
∫
RD
+
q0(x) = 1,

• and
∫
RD
+
xq0(x) = m0,
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and a small constant ε ∈ R+ with the property ε� 1.

We used and discussed a similar initial condition in section 2.3.2, after the introduction of

the Fokker-Planck equation.

5.4.3 Connection of Hybrid Process and LME

So far, we have seen that the hybrid process (5.11) / (5.12) can be derived from the Kurtz

process and that the LME can be derived from the CME.

We discuss now if the solution of the LME is the PDF of the hybrid process. From

lemma 2.3 follows that the PDF of the first sub-process Z(t) is characterised by

∂tq
(1)(t, n, x) =

(
A(1)q(1)

)
(t, n, x)

=
∑
j∈J1

β̃j(x)
(
αj(n− νj)q

(1) (t, n− νj , x)− αj(n)q
(1) (t, n, x)

)
and from lemma 2.6 follows that the PDF of the second sub-process y(t) is specified by

∂tq
(2)(t, n, x) =

(
A(2)q(2)

)
(t, n, x)

= − 1

Ω

R∑
j=1

αj(n)∇x

(
β̃j(x)q

(2) (t, n, x)
)T

µj .

We examine now a Lie-Trotter splitting scheme for the hybrid process:(
Z(t0)

y(t0)

)
∆t−−−−−→

(
Z(t1)

y(t0)

)
∆t−−−−−→

(
Z(t1)

y(t1)

)
.

The sub-process Z(t) is simulated first on the time interval [t0, t1 = t0 +∆t], while y(t0)

is held constant. Then, the value of Z(t1) is understood as a constant for the process y(t)

which is now simulated on the same time interval. We examine now the PDF q̂ of our

hybrid model at three time points:

• t00 is the time at the beginning of the interval,

• t10 is the time when the first process Z was simulated but y was not,

• t11 is the end of the interval:

q̂ (t00, ·, ·)
∆t−−−−−→ q̂ (t10, ·, ·)

∆t−−−−−→ q̂ (t11, ·, ·) .

We use the two operators A(1) and A(2) to calculate the solutions at these three time

points

q̂ (t10, ·, ·) = e∆tA(1)
q̂ (t00, ·, ·) ,

q̂ (t11, ·, ·) = e∆tA(2)
q̂ (t10, ·, ·) ,

⇒ q̂ (t11, ·, ·) = e∆tA(2)
e∆tA(1)

q̂ (t00, ·, ·) .
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Finally, we choose a fixed t, define ∆t = t
M and take the limits M → ∞ and ∆t → 0.

Now, we use the Trotter product formula to derive,

q̂ (t, ·, ·) =
(
e∆tA(2)

e∆tA(1)
)M

q̂ (t00, ·, ·) −−−−→
M→∞

e∆t
(
A(2)+A(1)

)
q̂ (t00, ·, ·)

These steps should be understood as a motivation why the two operators of the two

sub-processes can be added to the LME

∂tq (t, n, x) =
∑
j∈J1

β̃j(x)
(
αj(n− νj)q (t, n− νj , x)− αj(n)q (t, n, x)

)

− 1

Ω

R∑
j=1

αj(n)∇x

(
β̃j(x)q (t, n, x)

)T
µj

q(0, n, x) = δn0(n)q0(x).

The Trotter product formula is discussed in detail in [EN00, chapter III, Corollary 5.8].

This reference lists also all prerequisites for the usage of the formula (especially regularity

assumptions).

We have now seen how to construct a stochastic / deterministic hybrid model from the

Kurtz process. Also we have seen how the LME can be derived from this process and how

it is associated with the CME.

We conclude this section by specifying algorithm 5.1, which simulates the hybrid pro-

cess (5.11) / (5.12) and returns one trajectory of the process. The algorithm is based on

the Strang splitting scheme that splits the problem into two sub-problems, solves them

on small time intervals and combines the results. The two sub-problems are our two sub-

processes. We propose the usage of SSA to solve the Kurtz sub-process but the usage

of other solvers (e.g. τ -leaping) is possible. The function ODE_INTEGRATOR denotes any

suitable numerical ODE integrator for this problem. We like to point out that this scheme

returns only an approximation of the hybrid process (5.11) / (5.12) at certain time points.

And we remember that the total error of any simulation performed using the methods

proposed in this chapter depends not only on the model error, for which we will give an

error bound in chapter 5.6, but also on the numerical error induced by algorithm 5.1. The

analysis of the numerical error is out of the scope of this work, but a discussion can be

found in [JA10]

5.5 Marginal Distributions and Conditional Expectations

We expected in our analysis of the example in chapter 5.2 convergence in the marginal

distributions and conditional expectations of the LME to the CME. However, we did not

define these terms so far.

The marginal distribution of the discrete species is defined as

p1(t, n) =
∑

m∈ND
0

p(t, n,m),
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Algorithm 5.1 A Sampling Algorithm for the Hybrid process

Require: initial condition n0 and m0, time interval [t0, tfinal], stoichiometric vectors
νj , µj , j = 1, . . . , R, propensity functions αj(n), β̃j(x) j = 1, . . . , R, number of time
steps K ∈ N, scaling parameter Ω

1: ∆t = tfinal−t0
K

2: Z(0)← n0

3: y(0)← m0

4: for i← 0, . . . ,K do
5: ti ← t0 + i ·∆t
6: ŷ ← y(ti)

7: ẑ ← SSA

[
Z(ti) +

∑R
j=1 Pj

(∫ ti+
∆t
2

ti
αj (Z(s)) β̃j (ŷ) ds

)
νj

]
8: ŷ ← ODE_INTEGRATOR

[
y(ti) +

1
Ω

∑R
j=1

(∫ ti+∆t
ti

αj(ẑ)β̃j(y(s))ds
)
µj

]
9: ẑ ← SSA

[
ẑ +

∑R
j=1 Pj

(∫ ti+∆t

ti+
∆t
2

αj (Z(s)) β̃j (ŷ) ds
)
νj

]
10: Z(ti+1) = ẑ
11: y(ti+1) = ŷ
12: end for
13: return Z(ti), y(ti) for ti = t0 + i ·∆t, i = 0, . . . ,K

with p the solution of the CME. The corresponding marginal distribution of the LME

solution q is given by

q1(t, n) =

∫
RD
0,+

q(t, n, x) dx.

Further, we define the conditional probability of state m given state n, for the CME

solution

p2(t,m|n) =


p(t,n,m)
p1(t,n)

, if p1(t, n) > 0,

0, otherwise

and for the LME solution

q2(t, x|n) =


q(t,n,x)
q1(t,n)

, if q1(t, n) > 0

0, else,

respectively. Based on these definitions we define the conditional expectations

η(t, n) =
∑

m∈ND
0

mp2(t,m|n),

θ(t, n) =

∫
RD
0,+

xq2(t, x|n) dx,

and the conditional covariance matrices

σ(t, n) =
∑

m∈ND
0

(m− η(t, n)) (m− η(t, n))T p2(t,m|n),
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ς(t, n) =

∫
RD
0,+

(x− θ(t, n)) (x− θ(t, n))T q2(t, x|n) dx.

5.6 An Error Bound

Before we give the main theorem of this chapter, we have to make a few assumptions and

show two lemmata that are needed in the proof.

Assumption 5.9 (Bound of the Stoichiometric Factor).

We assume that

∣∣λin
j

∣∣
1
≤ 2, ∀j = 1, . . . , R.

Assumption 5.10 (Scale Difference of a Reaction Network).

We assume a scale difference between the particle amounts of the first d and the last D

species, such that for Ω→∞

E [Xi(t)] ≈ E [Zi(t)] = O(1) , ∀i ∈ [1, . . . , d] ,

E [Yj(t)] ≈ ΩE [yj(t)] = O(Ω) , ∀j ∈ [d+ 1, . . . , D] ,

E [Xi(t)]� E [Yj(t)] .

Assumption 5.11 (Solution of CME and LME).

We assume that the CME 5.3 has a unique classical solution p(t, ·, ·) ∈ X 3
d,D for t ∈ [0, tend]

and that

(n,m) 7→ αj(n)p(t, n,m) ∈ X 3
d,D ∀j ∈ {1, . . . , r}.

Further, we assume that the LME (cf. def. 5.7) with initial condition given by def. 5.8 has

a unique classical solution q(t, ·, ·) ∈ Y3
d,D for t ∈ [0, tend] and that

(n, x) 7→ αj(n)q(t, n, x) ∈ Y3
d,D ∀j ∈ {1, . . . , r}.

Remark: This assumption guarantees the existence of η(t, n), σ(t, n), θ(t, n), and ς(t, n)

for all n ∈ Nd
0 and t ∈ [0, tend].

Assumption 5.12 (Bound for the Conditional Moments).

There is a constant C > 0 such that

‖η(t, n)‖ ≤ C · Ω, ‖θ(t, n)‖ ≤ C, ∀t ∈ [0, tend], n ∈ Nd
0

and

‖σ(t, n)‖ ≤ C · Ω, ‖ς(t, n)‖ ≤ C

Ω
, ∀t ∈ [0, tend], n ∈ Nd

0.

Further, we assume that all third moments are bounded by

∥∥E [p32(t, ·|n)]∥∥ ≤ C · Ω2,
∥∥E [q32(t, ·|n)]∥∥ ≤ C

Ω
, ∀t ∈ [0, tend], n ∈ Nd

0.
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Remark: From def. 5.3, def 5.7, and def. 5.8 follows that

η(0, n) = O(Ω) , θ(0, n) = O(1) , σ(0, n) = 0, ς(0, n) = O
(
ε2
)
, for Ω→∞.

We find for each Ω a time point t
[Ω]
end > 0 such that the bounds in assumption 5.12 hold

for every t ∈ [0, t
[Ω]
end]. But assumption 5.12 is stronger, because we assume that tend is not

depending on Ω.

Assumption 5.13 (Bound for the Propensity Function).

We assume that a constant C > 0 exists, so that

‖αj(·)u(t, ·)‖`1d ≤ C ‖u(t, ·)‖`1d

holds for t ∈ [0, tend], j ∈ {1, . . . , R} and

u(t, n) =
(
βj(η)p1 − β̃j(θ)q1

)
(t, n)

or u(t, n) =
(
Ω−1βj(η)ηp1 − β̃j(θ)θq1

)
(t, n).

Remark:

• By assumption 5.11 it follows that αj(·)u(t, ·) ∈ `1n for the two possible cases of u.

• This assumption holds, if u goes fast enough to zero for n→∞. This is, for example,

the case for the network in chapter 5.2, because the state space is bounded by 10 in

n-direction.

Lemma 5.14 (Difference of the Propensity Functions).

If x ∈ RD
0,+ and xk ≥ 1

Ω ∀k = 1, . . . , D and the assumptions 5.9 and 5.10 hold, then there

exists a constant C > 0 such that∣∣∣βj(Ωx)− β̃j(x)
∣∣∣ ≤ CΩ−γ(j).

If λin
jk ≤ 1 ∀k = 1, . . . , D,

βj(Ωx) = β̃j(x)

holds.

Remarks:

• This lemma is similar to lemma 4.3, C5 and C6. The proof is stated in appendix C7.

• The propensity functions βj and β̃j are polynomials of degree two or less, due to

assumption 5.9. Therefore, the Hessians ∇2βj and ∇2β̃j are both constant.

Lemma 5.15 (A Bound for Propensity Functions).

Let

y : Nd → Rd, z : Nd → Rd
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with upper bounds

max
n∈Nd

‖y(n)‖ ≤ C · Ω, max
n∈Nd

‖z(n)‖ ≤ C.

Further, let u ∈ `1d and v ∈ `1d. Then there is a a constant C > 0 for all j = 1, · · · , R such

that

∥∥∥βj(y)u− β̃j(z)v
∥∥∥
`1d

≤ CΩ1−γ(j)

(∥∥∥∥ 1Ωyu− zv

∥∥∥∥
`1d

+ ‖u− v‖`1d

)
+ CΩ−γ(j) ‖u‖`1d .

It follows that

1

Ω
yu− zv ∈ `1d.

Proof. We investigate, as in the proof of lemma 5.14, the three different cases resulting

from assumption 5.9:

|λin
j |1 = 0

We have the propensity functions

βj(y) = Ω1−γ(j),

β̃j(y) = Ω1−γ(j)

and ∥∥∥βj(y)u− β̃j(z)v
∥∥∥
`1d

= Ω1−γ(j) ‖u− v‖`1d .

|λin
j |1 = 1

In this case exists a k ∈ {1, . . . , d} with

βj(y) = Ω−γ(j)yk,

β̃j(y) = Ω1−γ(j)yk

and ∥∥∥βj(y)u− β̃j(z)v
∥∥∥
`1d

= Ω1−γ(j)

∥∥∥∥ 1Ωyku− zkv

∥∥∥∥
`1d

≤ Ω1−γ(j)

∥∥∥∥ 1Ωyu− zv

∥∥∥∥
`1d

.

|λin
j |1 = 2

In this case exists k, l ∈ {1, . . . , d} with

β̃j(y) = ĉjΩ
1−γ(j)ykyl with ĉj =

cj if k 6= l

1
2cj if k = l
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Using the assumption

max
n∈Nd

‖y(n)‖ ≤ C · Ω, max
n∈Nd

‖z(n)‖ ≤ C,

and applying lemma 5.14, gives us∥∥∥βj(y)u− β̃j

( y
Ω

)
u
∥∥∥
`1d

≤ CΩ−γ(j) ‖u‖`1d . (5.14)

Then, we derive

β̃j

( y
Ω

)
u− β̃j(z)v = ĉjΩ

−γ(j)

(
1

Ω2
ykylu− zkzlv

)
= ĉjΩ

−γ(j)

(
1

Ω
yk

(
1

Ω
ylu− zlv

)
+ zl

(
1

Ω
yku− zkv

)

− 1

Ω
ykzl(u− v)

)
.

The assumption of the lemma gives us∣∣∣∣yk(n)Ω

∣∣∣∣ ≤ C and |zl(n)| ≤ C.

Then, it follows that

∥∥∥β̃j ( y
Ω

)
u− β̃j(z)v

∥∥∥
`1d

≤ CΩ1−γ(j)

(∥∥∥∥ 1Ωyu− zv

∥∥∥∥
`1d

+ ‖u− v‖`1d

)
.

Finally, applying eq. (5.14) proves the assertion.

Theorem 5.16 (An Error Bound for the LME).

Let p(t, n,m) be the solution of the partitioned CME (cf. def. 5.3) and let q(t, n, x) be

the solution of the LME (cf. def 5.7) with initial condition given in def. 5.8. If the

assumptions 5.9, 5.10, 5.11, 5.12 and 5.13 hold, there exists a constant C > 0 such that

the errors in marginal distributions and conditional expectations are bounded by

‖p1(t, ·)− q1(t, ·)‖`1d ≤
C

Ω
, (5.15)∥∥∥∥ 1Ωη(t, ·)p1(t, ·)− θ(t, ·)q1(t, ·)

∥∥∥∥
`1d

≤ C

Ω
, (5.16)

for all t ∈ [0, tend].

Proof. The main idea of this proof is the application of Gronwall’s lemma. We postpone

the estimate of

E(t) = ‖p1(t, ·)− q1(t, ·)‖`1d +
∥∥∥∥ 1Ωη(t, ·)p1(t, ·)− θ(t, ·)q1(t, ·)

∥∥∥∥
`1d
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to lemma 5.17 and lemma 5.18. These lemmata show the Gronwall inequality

E(t) ≤ C1

Ω
+ C2

∫ t

0
E(τ)dτ

for constants C1, C2 > 0. The Gronwall lemma states that

E(t) ≤ C1

Ω
eC2t

and therefore proves the assertion.

Remark:

• We note that the parameter ε (cf. def 5.8) influences the constants and the time

interval, but not the convergence rate.

• The constant C depends on the assumptions 5.12 and 5.13 and on the size of tend.

Lemma 5.17 (A Bound for the Marginal Distributions).

Under the same conditions as in theorem 5.16, there exists a constant C > 0, for all

t ∈ [0, tend], such that,

‖p1(t, ·)− q1(t, ·)‖`1d ≤
C

Ω
+ C

∫ t

0
‖(p1 − q1) (τ, ·)‖`1d dτ

+ C

∫ t

0

∥∥∥∥( 1

Ω
ηp1 − θq1

)
(τ, ·)

∥∥∥∥
`1d

dτ.

Proof.

Step 1: By the definition of the marginal distribution of the partitioned CME it follows

that

∂tp1 =
∑
j∈J0

∑
m∈ND

0

(∆νj∆µj − 1)αjβjp+
∑
j∈J1

∑
m∈ND

0

(∆νj∆µj − 1)αjβjp.

We find that the first sum equals zero, because ∆νj = I ∀j ∈ J0 and because

lemma 5.5 shows that ∑
m∈ND

0

(∆µj − 1)αjβjp = 0.

Further, lemma 5.5 also shows us that∑
j∈J1

∑
m∈ND

0

∆νj (∆µj − 1)αjβjp = 0

and together with

∆νj∆µj − 1 = ∆νj (∆µj − 1) + (∆νj − 1)



5.6. An Error Bound 81

we have that

∂tp1 =
∑
j∈J1

∑
m∈ND

0

(∆νj − 1)αjβjp =
∑
j∈J1

(∆νj − 1)αj

∑
m∈ND

0

βjp2p1 (5.17)

holds. We derive a Taylor series of βj at η ∈ RD
0,+ [Eng06]:

βj(m) = βj(η) +∇βj(η)T (m− η) +
1

2
(m− η)T

(
∇2βj

)
(m− η). (5.18)

Higher order terms are equal to zero, because of assumption 5.9. Furthermore, if we

consider η to be the conditional expectation of p2, we have∑
m∈ND

0

βj(m)p2(t,m|n) = βj(η) + trace
(
σ(t, n)∇2βj

)
(5.19)

because of
∑

m∈ND
0
p2(t,m|n) = 1 and

∑
m∈ND

0
(m − η(t, n))p2(t,m|n) = 0. By defi-

nition, we have that

∇2βj =

0 if |λin
j |1 < 2

Ω−1−γ(j) if |λin
j |1 = 2.

(5.20)

Further, because γ(j) = 1 ∀j ∈ J1 and σ = O(Ω) by assumption (5.12), it follows

that σ∇2βj = O
(
Ω−1

)
. Inserting in eq. (5.19) yields∑

m∈ND
0

βj(m)p2(t,m|n) = βj(η) +O
(
Ω−1

)
. (5.21)

Combining eq. (5.21) and eq. (5.17) results in an equation of motion for the marginal

distribution of the CME

∂tp1 =
∑
j∈J1

(∆νj − 1)αjβj(η)p1 +O
(
Ω−1

)
. (5.22)

Step 2: We perform the same steps to derive an equation of motion for the marginal

distribution of the LME. By definition and due to the boundary conditions of the

LME it holds that

∂tq1 =
∑
j∈J1

∫
RD
0,+

(∆νj − 1)αj β̃jq dx−
1

Ω

r∑
j=1

αj

∫
RD
0,+

∇
(
β̃jq
)T

µj dx

=
∑
j∈J1

(∆νj − 1)αj

∫
RD
0,+

β̃jq dx

We derive a Taylor series for β̃j (again higher terms vanish due to assumption 5.9):

β̃j(x) = β̃j(θ) +∇β̃j(θ)T (x− θ) +
1

2
(x− θ)T

(
∇2β̃j

)
(x− θ), (5.23)
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which gives us ∫
RD
0,+

β̃j(x)q2(t, x|n) dx = β̃j(θ) + trace
(
ς∇2β̃j

)
. (5.24)

Because assumption 5.12 gives us ς∇2β̃j = O
(
Ω−1

)
, we obtain

∂tq1 =
∑
j∈J1

(∆νj − 1)αj β̃j(θ)q1 +O
(
Ω−1

)
. (5.25)

Step 3: After deriving the two equations of motions eq. (5.22) and eq. (5.25), we combine

them to estimate

‖p1(t, ·)− q1(t, ·)‖`1d ≤ 2

t∫
0

∑
j∈J1

∥∥∥αj

(
βj(η)p1 − β̃j(θ)q1

)
(τ, ·)

∥∥∥
`1d

dτ +O
(
Ω−1

)

≤ C

t∫
0

∑
j∈J1

∥∥∥(βj(η)p1 − β̃j(θ)q1

)
(τ, ·)

∥∥∥
`1d

dτ +O
(
Ω−1

)
.

This holds because

p1(0) = q1(0),
∥∥(∆νj − 1)

∥∥
`1d
≤ 2,

and by applying assumption 5.13. Finally, we apply lemma 5.15 and the assertion

follows, because Ω1−γ(j) = 1 ∀j ∈ J1.

Lemma 5.18 (A Bound for the Conditional Expectations).

Underthe same conditions as in theorem 5.16, there exists a constant C > 0, for all

t ∈ [0, tend], such that,

∥∥Ω−1ηp1 − θq1
∥∥
`1d
≤ C

Ω
+ C

∫ t

0
‖(p1 − q1) (τ, ·)‖`1d dτ

+ C

∫ t

0

∥∥∥∥( 1

Ω
ηp1 − θq1

)
(τ, ·)

∥∥∥∥
`1d

dτ.

Proof.

Step 1: By definition we have that

∂t (ηp1) (t, n) =
∑

m∈ND
0

m∂tp(t, n,m)

=
R∑

j=1

∑
m∈ND

0

m
(
(∆νj∆µj − 1)αjβjp

)
(t, n,m)

=

R∑
j=1

∑
m∈ND

0

m
(
∆νj (∆µj − 1)αjβjp

)
(t, n,m)
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+
R∑

j=1

∑
m∈ND

0

m
(
(∆νj − 1)αjβjp

)
(t, n,m)

=
R∑

j=1

µj

∑
m∈ND

0

(
∆νjαjβjp

)
(t, n,m) (5.26)

+
∑
j∈J1

∑
m∈ND

0

m
(
(∆νj − 1)αjβjp

)
(t, n,m). (5.27)

As in the last proof we apply lemma 5.5 and ∆νj − 1 = 0 ∀j ∈ J0 to derive the

statement. By using eq. (5.19), which was derived in the last proof and resulted from

the Taylor expansion of the propensity function, we obtain for the first sum (5.26)

R∑
j=1

µj

∑
m∈ND

0

(
∆νjαjβjp

)
(t, n,m) =

R∑
j=1

µj

(
∆νjαj

[
βj(η) + trace

(
σ∇2βj

)]
p1
)
(t, n,m)

=
R∑

j=1

µj

(
∆νjαjβj(η)p1

)
(t, n,m) +O(1) (5.28)

since eq. (5.20) and assumption 5.12 show that for all t ∈ [0, tend] and n ∈ Nd
0∥∥trace (σ(t, n)∇2βj

)∥∥ ≤ CΩ−γ(j) ≤ C.

The similar trace term (5.21) in the proof of lemma 5.17 caused there an error of

O
(
Ω−1

)
, because j ∈ J1 which results in γ(j) = 1. However, here we have the case

j ∈ J0 ∪ J1 = {1, . . . , R} and γ(j) can also be zero.

Insertion of the Taylor series (5.18) in the second term (5.27) yields∑
m∈ND

0

mβj(m)p(t, n,m) = (βj(η)η +R1(t, n)) p1(t, n) (5.29)

with η = η(t, n) and

R1(t, n) =
∑

m∈ND
0

m

(
∇βj(η)T (m− η) +

1

2
(m− η)T

(
∇2βj

)
(m− η)

)
p2(t,m|n)

= σ∇βj(η) +
1

2
η trace

(
σ)∇2βj

)
+

1

2

∑
m∈ND

0

(m− η)

(
(m− η)T

(
∇2βj

)
(m− η)

)
p2(t,m|n).

The last sum is the third moment of p2(t, ·|n) and by assumption 5.12 the term

vanishes, because

∇βj(η) = O
(
Ω−1

)
, ∇2βj = O

(
Ω−2

)
,
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and thus obtain

‖R1(t, n)‖ ≤ C ∀n ∈ Nd and t ∈ [0, tend]. (5.30)

By combining eq. (5.28) and eq. (5.30) and substitution into eq. (5.26) we obtain the

equation of motion,

∂t (ηp1) (t, n) =

r∑
j=1

µj

(
∆νjαjβj(η)p1

)
(t, n) (5.31)

+
∑
j∈J1

(
(∆νj − 1)αjβj(η)ηp1

)
(t, n) +O(1) .

Later, this equation will be scaled by Ω−1 which reduces the error term O(1) to

O
(
Ω−1

)
.

Step 2: We derive now an equation of motion for

∂t (θq1) =

∫
RD
0,+

x∂tq dx

=
∑
j∈J1

∫
RD
0,+

xβ̃j(∆νj − 1)αjq dx−
1

Ω

R∑
j=1

∫
RD
0,+

xαj∇
(
β̃jq
)T

µj dx,

with β̃j = β̃j(x) and q = q(t, n, x). Integration by parts gives us∫
RD
0,+

x∇
(
β̃jq
)T

µj dx = −µj

∫
RD
0,+

β̃jq dx

due to the boundary conditions of the LME. Further, it holds that

lim
x→∞

β̃j(x)q(t, n, x) = 0,

because by assumption 5.11 q(t, n, ·) ∈ Y3
d,D.

These considerations result in

∂t (θq1) =
∑
j∈J1

(∆νj − 1)αj

∫
RD
0,+

xβ̃jq dx (5.32)

+
1

Ω

r∑
j=1

µj

∫
RD
0,+

αj β̃jq dx. (5.33)

Insertion of the Taylor series (5.23) into the first sum (5.32) yields∫
RD
0,+

xβ̃jq dx =
(
β̃j(θ)θ +R2(t, n)

)
q1(t, n)

with θ = θ(t, n) and

R2(t, n) =

∫
RD
0,+

x

(
∇β̃j(θ)T (x− θ) +

1

2
(x− θ)T

(
∇2β̃j

)
(x− θ)

)
q2 dx
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= ς(t, n)∇β̃j(θ) +
1

2
θ trace

(
ς(t, n)∇2β̃j

)
+

1

2

∫
RD
0,+

(x− θ)(x− θ)T
(
∇2β̃j

)
(x− θ)q2 dx.

We can estimate the remainder term in a similar way to the procedure used in step

1 of the proof:

‖R2(t, n)‖ ≤
C

Ω
∀n ∈ Nd

0 and t ∈ [0, tend],

because j ∈ J1 and because assumption 5.12 bounds the derivatives and the third

moment.

Now, we have a look at term (5.33). The Taylor series (5.23) gives

1

Ω

R∑
j=1

µj

∫
RD
0,+

αj β̃jq dx =
1

Ω

R∑
j=1

µjαj

[
β̃j(θ) + trace

(
ς∇2β̃j

)]
q1

=
1

Ω

R∑
j=1

µjαj β̃j(θ)q1 +O
(
Ω−1

)
(5.34)

by assumption 5.12 ∥∥∥trace(ς(t, n)∇2β̃j

)∥∥∥ ≤ CΩ−γ(j) ≤ C (5.35)

for all t ∈ [0, tend] and n ∈ Nd
0.

Substitution of eq. (5.34) and eq. (5.35) into eq. (5.32) gives,

∂t (θq1) =
∑
j∈J1

(∆νj − 1)αj β̃j(θ)θq1 +
1

Ω

R∑
j=1

µj

(
αj β̃j(θ)q1

)
+O

(
Ω−1

)
. (5.36)

Step 3: We combine the equations of motion, by scaling (5.31) with Ω−1 and subtracting

(5.36):

∥∥Ω−1ηp1 − θq1
∥∥
`1d
≤ C

Ω
+

C

Ω

∫ t

0

R∑
j=1

∥∥∥αj

[
βj(η)p1 − β̃j(θ)q1

]
(τ, ·)

∥∥∥
`1d

dτ

+ C

∫ t

0

∑
j∈J1

∥∥∥αj

[
Ω−1βj(η)ηp1 − β̃j(θ)θq1

]
(τ, ·)

∥∥∥
`1d

dτ

≤ C

Ω
+

C

Ω

t∫
0

R∑
j=1

∥∥∥[βj(η)p1 − β̃j(θ)q1

]
(τ, ·)

∥∥∥
`1d

dτ

+ C

∫ t

0

∑
j∈J1

∥∥∥[Ω−1βj(η)ηp1 − β̃j(θ)θq1

]
(τ, ·)

∥∥∥
`1d

dτ, (5.37)
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because
∥∥(∆νj − 1)

∥∥
`1d
≤ 2 and as a result of applying assumption 5.13. From

Lemma 5.15 follows

1

Ω

∥∥∥[βj(η)p1 − β̃j(θ)q1

]
(τ, ·)

∥∥∥
`1d

≤ C
∥∥[Ω−1ηp1 − θq1

]
(τ, ·)

∥∥
`1d
+ C ‖[p1 − q1] (τ, ·)‖`1d +

C

Ω
.

To construct a bound for eq. (5.37), we consider the following algebraic expansion

Ω−1βj(η)ηp1 − β̃j(θ)θq1 = βj(η) ·
[
Ω−1ηp1 − θq1

]
+ βj(η)θ [q1 − p1]

+ θ
[
βj(η)p1 − β̃j(θ)q1

]
.

We take the `1-norm on both sides, use the triangle inequality and apply

max
τ∈[0,tend]

max
n∈Nd

0

∣∣βj(η(τ, n))∣∣ ≤ C ∀j ∈ J1,

max
τ∈[0,tend]

max
n∈Nd

0

|θ(τ, n)| ≤ C

(cf. assumption 5.12).

Finally we use lemma 5.15 and note that j ∈ J1, to show∥∥∥[Ω−1βj(η)ηp1 − β̃j(θ)θq1

]
(τ, ·)

∥∥∥
`1d

≤ C

Ω
+ C

∥∥[Ω−1ηp1 − θq1
]
(τ, ·)

∥∥
`1d

(5.38)

+ C ‖p1(τ, ·)− q1(τ, ·)‖`1d

for all τ ∈ [0, tend].

In summary, we have shown that

∥∥Ω−1ηp1 − θq1
∥∥
`1d
≤ C

Ω
+ C

∥∥[Ω−1ηp1 − θq1
]
(τ, ·)

∥∥
`1d

+ C ‖p1(τ, ·)− q1(τ, ·)‖`1d .

5.7 Summary and Discussion

We have seen that it is possible to combine the CME and the LME to model networks with

a scale difference between the species. The advantage of this model lies in the reduced

complexity of the numerical simulation. A model with small and large particle amounts

is hard to solve, because high particle numbers reduce the simulation speed dramatically

and result in large state spaces. On the other hand, the usage of the RRE would result

in wrong results, because the RRE is not capable of dealing with the stochasticity of the

species with small particle amounts. However, by combining the two models, we obtain

the advantages of both models. The large species are handled using RRE and the small

species are handled using the Kurtz process. Therefore the simulation time is reduced,

but the stochasticity of the small species is still captured.
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These considerations can be found in literature for several years, now. However, nearly no

analysis of the hybrid model has been performed so far and no convergence rate for this

model has been shown.

We have seen how the hybrid model can be derived in terms of a stochastic process and

its PDF. Finally, we have shown the error bound

‖p1(t, ·)− q1(t, ·)‖`1d ≤
C

Ω
,∥∥∥∥ 1Ωη(t, ·)p1(t, ·)− θ(t, ·)q1(t, ·)

∥∥∥∥
`1d

≤ C

Ω
,

given in theorem 5.16. .
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In this chapter we will expand the hybrid model from the last chapter. In section 6.1, we

will shortly motivate the usage of the FPE and the CLE to replace the continuous part of

the hybrid model presented in the previous chapter. We will then derive the new hybrid

process (section 6.2) and its PDF (section 6.3).

We will examine an example network in section 6.4 and analyse what convergence prop-

erties we can expect from the new hybrid model. These properties are then proven in

section 6.5.

6.1 Motivation

In the previous chapter, we discussed the properties of a hybrid model composed of the

Kurtz process and the RRE. We have seen that the two models converge only in the

marginal distributions and conditional expectations in the sense of theorem 5.16. Figure 5.1

indicated that we cannot expect convergence in the full distributions.

However, we showed that the FPE converges against the CME in distribution. Motivated

by this observation we combine the CME with the FPE to a new hybrid model named

Fokker-Planck master equation (FPME).

We like to point out that several other authors combined these two models [Pah09], but

these publications mostly state hybrid algorithms or implementations. We are not aware

of any publication that states an equation of motion for the PDF of the hybrid model.

6.2 A general derivation of the scaled Hybrid Process

This derivation can also be done in a general way. We examine the scaled and partitioned

Markov Jump process(
X(t)

Y (t)

)
=

(
n0

Ωm0

)
+

R∑
j=1

Pj
(∫ t

0
αj (X(s))βj (Y (s)) ds

)(
νj

µj

)

89
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and first discuss the continuous subprocess.

By following the derivations introduced by Gillespie and MacNamara [Gil00, Mac09], we

examine the process on bounded time intervals [t, t+ τ ] (cf. ch. 2.4):

Y (t+ τ) ≈ Ŷ (t+ τ) = Ωm̂0 +

R∑
j=1

Pj

(
ταj (Z(t))βj

(
Ŷ (t)

))
µj ,

where m̂0 is the state of the subprocess at the beginning of the time interval.

As motivated in [Mac09, Gil00, BTB04], we approximate the Poisson process via

Pj (ξ) ≈ Nj (ξ, ξ) = ξ +
√
ξNj (0, 1) .

It follows that

Ŷ (t+ τ) ≈ Ωm̂0 +

R∑
j=1

ταj (Z(t))βj

(
Ŷ (t)

)
µj

+

R∑
j=1

√
ταj (Z(t))βj

(
Ŷ (t)

)
µjNj (0, 1) .

Now we scale the process by 1
Ω , assume

ỹ(t) ≈ Ŷ (t)

Ω
,

and use lemma 5.14

βj

(
Ŷ (t)

)
≈ β̃j

(
Ŷ (t)

Ω

)
≈ β̃j (ỹ(t))

to obtain

ỹ(t+ τ) = m̂0 +
R∑

j=1

τ
1

Ω
αj (Z(t)) β̃j (ỹ(t))µj (6.1)

+

R∑
j=1

√
τ
1

Ω2
αj (Z(t)) β̃j (ỹ(t))µjNj (0, 1) .

By taking the limit τ → 0 (in principle, eq. 6.1 is a Euler-Maruyama discretization) we

obtain the CLE [BMP96, Gil00, BTB04, Hig08, Gar04, Mac09]:

dy(t) =

R∑
j=1

µj
1

Ω
αj(n)β̃j (y(t)) dt+

R∑
j=1

µj

√
1

Ω2
αj(n)β̃j (y(t)) dWj(t),

y(0) = m0.
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Finally, we have to apply the assumptions

y(t) ≈ Ŷ (t)

Ω

βj

(
Ŷ (t)

)
≈ β̃j (y(t))

to the first subprocess and we end up with the stochastic process for the scaled hybrid

process:

Definition 6.1 (Kurtz / CLE Hybrid Process).

Z(t) = n0+

R∑
j=1

Pj
(∫ t

0
αj (Z(s)) β̃j (y(s)) ds

)
νj

y(t) = m0+

R∑
j=1

(∫ t

0

1

Ω
αj (Z(s)) β̃j (y(s)) ds

)
µj

+
R∑

j=1

(∫ t

0

√
1

Ω2
αj (Z(s)) β̃j (y(s))dWj(s)

)
µj .

Algorithm 6.1 A Sampling Algorithm for the Hybrid process in def. 6.1

Require: initial condition n0 and m0, time interval [t0, tfinal], stoichiometric vectors
νj , µj , j = 1, . . . , R, propensity functions αj(n), β̃j(x) j = 1, . . . , R, number of time
steps K ∈ N, scaling parameter Ω

1: ∆t = tfinal−t0
K

2: Z(0)← n0

3: y(0)← m0

4: for i← 0, . . . ,K do
5: ti ← t0 + i ·∆t
6: ŷ ← y(ti)

7: ẑ ← SSA

[
Z(ti) +

∑R
j=1 Pj

(∫ ti+
∆t
2

ti
αj (Z(s)) β̃j (ŷ) ds

)
νj

]
8: ŷ ← SDE_INTEGRATOR

[
y(ti) +

1
Ω

∑R
j=1

(∫ ti+∆t
ti

αj (ẑ) β̃j (y(s)) ds
)
µj

9: + 1
Ω

∑R
j=1

(∫ ti+∆t
ti

√
αj (ẑ) β̃j (y(s))dWj(s)

)
µj

]
10: ẑ ← SSA

[
ẑ +

∑R
j=1 Pj

(∫ ti+∆t

ti+
∆t
2

αj (Z(s)) β̃j (ŷ) ds
)
νj

]
11: Z(ti+1) = ẑ
12: y(ti+1) = ŷ
13: end for
14: return Z(ti), y(ti) for ti = t0 + i ·∆t, i = 0, . . . ,K

This process can be simulated using the hybrid algorithm 6.1 which follows the same

ideas as algorithm 5.1, but instead of the RRE now the CLE has to be solved. The

resulting realisations sample the probability distribution that is implicitly defined by the

Fokker-Planck master equation (FPME). We will discuss this in the next section.
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6.3 Derivation of the Fokker-Planck master equation

It is also possible to derive the FPME as an approximation of the CME by performing

a partial Kramers-Moyal expansion on a partitioned CME with respect to the correct

scaling.

The steps required for this derivation are mostly the same steps used in the derivation

of the LME (cf. section 5.4.2). The difference is that we use one more term in the

Kramers-Moyal expansion

β̃j

(
x− µj

Ω

)
q̂
(
t, ·, x− µj

Ω

)
− β̃j(x)q̂(t, ·, x) = −

1

Ω
∇
(
β̃j(x)q̂(t, ·, x)

)T
µj

+
1

2Ω2
µT
j ∇2

(
β̃j(x)q̂(t, ·, x)

)
µj

+ . . . .

In the end these derivations result in the FPME:

∂tq (t, n, x) =
∑
j∈J1

β̃j(x)
(
αj(n− νj)q (t, n− νj , x)− αj(n)q (t, n, x)

)
(6.2)

− 1

Ω

R∑
j=1

αj(n)∇
(
β̃j(x)q (t, n, x)

)T
µj

+
1

2Ω2

R∑
j=1

αj(n)µ
T
j ∇2

(
β̃j(x)q (t, n, x)

)
µj ,

where the density q (t, n, x) is the solution of the FPME and∫
S
q (t, n, x) dx = P

(
Z(t) = n, y(t) ∈ S

∣∣∣Z(0) = n0, y(0) = m0

)
.

We have seen so far how the new hybrid model can be constructed by splitting the Kurtz

process and transforming one sub-process into a CLE. We also discussed how the FPME

can be derived from the CME. The connection between the hybrid process and the FPME

can now be motivated by following the same arguments as in section 5.4.3. In principle

only the definition of the operator A(2) must be expanded by the diffusion term of the

FPE:

∂tq
(2)(t, n, x) =

(
A(2)q(2)

)
(t, n, x)

= − 1

Ω

R∑
j=1

αj(n)∇x

(
β̃j(x)q

(2) (t, n, x)
)T

µj

+
1

2Ω2

R∑
j=1

αj(n)µ
T
j ∇2

(
β̃j(x)q

(2) (t, n, x)
)
µj .

Summarizing, we have shown in this section how the new hybrid model is connected with

the Kurtz process and the CME:



6.4. A Numerical Example 93

Kurtz process Chemical Master equation

section 6.2

y
ysection 6.3

hybrid process
section 5.4.3←−−−−−−−−−−−→ Fokker-Planck master equation

6.4 A Numerical Example

Table 6.1: A reaction network that can be interpreted as the translation of a protein that
inhibits its own gene. In this example, we have d = 2, D = 1, R = 4, J0 = {1, 4},
J1 = {2, 3}.

Reaction Channel Propensity Stoichiometry

Rj αj(n) βj(m) β̃j(x) νj µj γ(j)

R1 : S1
c1=0.5−−−−−−−−→ S1 + S3 c1 · n1 Ω Ω

(
0
0

)
1 0

R2 : S1 + S3
c2=3−−−−−−−→ S2 c2 · n1

m1
Ω x1

(
−1
1

)
−1 1

R3 : S2
c3=1−−−−−−−→ S1 + S3 c3 · n2 1 1

(
1
−1

)
1 1

R4 : S3 + S3
c4=5−−−−−−−→ ∅ c4

m1(m1−1)
2Ω

Ωx2
1

2

(
0
0

)
−2 0

At the beginning of this chapter, we claimed that we will construct a hybrid model with

better convergence properties than the model in the previous chapter. To corroborate this

claim we perform a numerical experiment and solve the CME and the FPME numerically

for the example in table 6.1 (cf. section 5.2). Again we reduce the dimension of the problem

by using that n1 + n2 = 10. The resulting network is 2-dimensional: one discrete and one

continuous dimension. The CME is solved using the OFSP method (cf. 3.2) implemented

in the software package cmepy [HFC10] on the time interval [0, 0.5]. The FPME is solved by

generating 50 million realisations of the hybrid process with algorithm 6.1. We generate

a histogram from the resulting trajectories for the time point t = 0.5. Based on these

approximations for p(t, n,m) and q(t, n,m), we compute the quantities p1(t, n), q1(t, n),

η(t, n) and θ(t, n).

First of all, we reproduce the result from theorem 5.16 and compute the terms

ε1 = ‖p1(t, ·)− q1(t, ·)‖`1d , ε2 =

∥∥∥∥ 1Ωη(t, ·)p1(t, ·)− θ(t, ·)q1(t, ·)
∥∥∥∥
`1d

,

for different values of Ω. We expect both terms to be of order O
(
1
Ω

)
. This experiment is

visualised in figure 6.1. The figure supports our expectation that the error rate of the first

hybrid model is conserved by our new model.

Corollary 6.2 (An Error Bound for the FPME).

Let p(t, n,m) be the solution of the partitioned CME (5.10) and let q(t, n, x) be the solution

of the FPME (6.2). Under the same assumptions as in theorem 5.16, there exists a constant
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101 102
10−2

10−1

100

Ω

Ω−1

‖p1(t, ·)− q1(t, ·)‖`1d∥∥Ω−1(p1η)(t, ·)− (q1θ)(t, ·)
∥∥
`1d

Figure 6.1: Convergence of the marginal distributions (blue) and conditional expectations
(green) of the FPME against the CME. The black line plots the function Ω 7→
Ω−1. Both error terms are of order O

(
1
Ω

)
, i.e. they are parallel to the black

line.

C > 0 such that the errors in marginal distributions and conditional expectations are

bounded by

‖p1(t, ·)− q1(t, ·)‖`1d ≤
C

Ω
,∥∥∥∥ 1Ωη(t, ·)p1(t, ·)− θ(t, ·)q1(t, ·)

∥∥∥∥
`1d

≤ C

Ω
,

for all t ∈ [0, tend].

Proof. The new term 1
2Ω2

∑R
j=1 αj(n)µ

T
j ∇2

(
β̃j(x)q (t, n, x)

)
µj is of order O

(
Ω−2

)
. Then

the statement follows directly from the proof of theorem 5.16.

However, we further expect that the full distributions of the two models converge. We

compare therefore the solutions of the CME and the FPME. Figure 6.2 visualises these

two solutions for Ω = 100 and t = 0.5. We observe that the shape of the two distributions

is very similar, but we also see that a direct comparison of the PDFs is not possible. The

domain of the CME is R0,+×Nd
0×ND

0 while the FPMEmaps from R0,+×Nd
0×RD

0,+. Further,

the essential support of the CME is located in the interval [0,Ω] for the m parameter, while

for the FPME the essential support of x is located in the interval [0, 1].
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40 60 80 100
0

2

4

6

8

m

n

0.4 0.6 0.8 1
0

2

4

6

8

x

n

Figure 6.2: Solution of the CME (left) and the FPME (right) for the network in table 6.1
at time t = 0.5 and Ω = 100.

We have seen this problem in chapter 4.4 before. There, we compared the FPE with the

CME and defined a mapping (cf. eq. (4.17)) that integrates piecewise over the hypercubes

between the points m
Ω and m+1

Ω . Motivated by this, we define

Ψ (q) (t, n,m) :=

∫
Im

q(t, n, x) dx (6.3)

We derive Ψ for our example network and compare it with the CME solution p for different

values of Ω. These results are visualized in figure 6.3. We observe that for increasing values

0 5 10 15
0

2

4

6

8

m

n

60 80
m

600 800
m

Figure 6.3: Solution of the CME p(t, n,m) (blue) and of the transformed FPME
Ψ(q) (t, n,m) (green) for the network in table 6.1 at time t = 0.5 for Ω = 10
(left), Ω = 100 (center) and Ω = 1000 (right).

of Ω the two solutions become more and more similar and for Ω = 1000 they are nearly

indistinguishable. These results motivate us to define the error

εFPME :=
∑
n∈Nd

0

∑
m∈ND

0

|p(t, n,m)−Ψ(q) (t, n,m)| . (6.4)

We solve the network from table 6.1 with algorithm 6.1 on the time interval [0, 0.5] for

different values of Ω. For each Ω we construct a histogram out of 50 · 106 realisations

to approximate the FPME at time t = 0.5. As a reference solution, the CME (5.10)

is solved using the OFSP implementation cmepy [HFC10] for the same values of Ω and
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t = 0.5. The result is visualised in figure 6.4 and we observe that the transformed FPME

solution Ψ converges to the CME solution p with order O
(
1
Ω

)
, at least for this network.

Motivated from the convergence rate of the FPE we also compute the derivative term
1
Ω ‖∇ (q(t, ·, ·))‖1, with the norm defined later in equation (6.9), which converges with

order O
(

1√
Ω

)
.

101 102
10−3

10−2

10−1

100

Ω

Ω
−1/2

Ω−1

‖p(t, ·, ·)−Ψ(q) (t, ·, ·)‖`1
1
Ω ‖∇q(t, ·, ·)‖1

Figure 6.4: Convergence of εFPME for different values of Ω (blue). The black, dashed
lines denotes the function Ω 7→ Ω

−1/2 , the black, dash-pointed line the func-
tion Ω 7→ Ω−1. The green line shows the convergence of the first derivative
1
Ω ‖∇ (q(t, ·, ·))‖1.

6.5 An Error Bound for the FPME

.

As in the numerical example (cf. eq. (6.3)), we compare the CME with the FPME

‖p(t, ·, ·)− v(t, ·, ·)‖`1 ,

with v(t, n,m) := Ψ (q) (t, n,m) =
∫
Im

q(t, n, x) dx, in the norm

‖f(t, ·, ·)‖`1 :=
∑
n∈Nd

0

∑
m∈ND

0

|f(t, n,m)| .

We define the CME operator

∂tp(t, n,m) = (Ap) (t, n,m) =

R∑
j=1

(
αj(n− νj)βj(m− µj)p(t, n− νj ,m− µj)

− αj(n)βj(m)p(t, n,m)
)



6.5. An Error Bound for the FPME 97

=
R∑

j=1

(
αj(n− νj)βj(m− µj)p(t, n− νj ,m− µj)

− αj(n)βj(m− µj)p(t, n,m− µj)

+ αj(n)βj(m− µj)p(t, n,m− µj)

− αj(n)βj(m)p(t, n,m)
)

=
∑
j∈J1

(
∆µj

(
∆νj − 1

)
αjβjp

)
+

R∑
j=1

((
∆µj − 1

)
αjβjp

)
. (6.5)

The last equality holds because
(
∆νj − 1

)
αjβjp = 0 ∀j ∈ J0. We use the same shift

operators and index sets as defined in chapter 5.3 (cf. def. 5.4 and eq. (5.7)).

Further, we define the FPME operator

∂tq(t, n, x) = (Dq) (t, n, x) =
∑
j∈J1

β̃j(x)
(
αj(n− νj)q (t, n− νj , x)− αj(n)q (t, n, x)

)

− 1

Ω

R∑
j=1

αj(n)∇
(
β̃j(x)q (t, n, x)

)T
µj

+
1

2Ω2

R∑
j=1

αj(n)µ
T
j ∇2

(
β̃j(x)q (t, n, x)

)
µj

=
∑
j∈J1

β̃j(x)
(
αj(n− νj)q (t, n− νj , x)− αj(n)q (t, n, x)

)

+
R∑

j=1

αj(n)

(
β̃j

(
x− µj

Ω

)
q
(
t, n, x− µj

Ω

)

− β̃j (x) q (t, n, x)

)
+ G?≥3

=
∑
j∈J1

((
∆νj − 1

)
αj β̃jq

)
+

R∑
j=1

((
∆̃µj − 1

)
αj β̃jq

)
+ G?≥3,

(6.6)

with remainder term

G?≥3 :=
R∑

j=1

αj(n)

−∑
|k|≥3

1

k!

(
−µj

Ω

)k
∇k
(
β̃j(x)q(t, n, x)

) , (6.7)

and shift operator

∆̃µu(n, x) =

u
(
n, x− µ

Ω

)
, if x− µ

Ω ∈ RD
0,+,

0, otherwise.

We represent ∂tv by

∂tv(t, n,m) = (Av) (t, n,m) +R(t, n,m) (6.8)



98 6. A Hybrid Model Combining the Kurtz process and the CLE

and it follows that

R(t, n,m) =

∫
Im

(Dq) (t, n, x) dx− (Av) (t, n,m).

Further, we state the norm

‖f(t, ·, ·)‖1 =
∑
n∈Nd

0

∫
x∈RD

0,+

|f(t, n, x)| dx, (6.9)

and assume:

Assumption 6.3 (Bound for the Propensity Function in J1).

We assume that a constant C > 0 exists, so that∥∥∥∥∫
Im

β̃j(x)
(
q
(
t, n, x− µj

Ω

)
− q(t, n, x)

)
dx

∥∥∥∥
`1

≤ C

∥∥∥∥∫
Im

q
(
t, n, x− µj

Ω

)
− q(t, n, x)dx

∥∥∥∥
`1

,

holds for t ∈ [0, tend] and j ∈ J1.

Remark: This assumption is motivated by the observation that the propensity function β̃j

reduces, for j ∈ J1 and therefore γ(j) = 1, to

β̃j(x) =
D∏
i=1

x
λin
j,i

i

λin
j,i!

.

Assumption 6.4 (Bound for remainder terms).

We assume that, on bounded time intervals [0, tend],

∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

G?≥3 dx

∣∣∣∣+ ∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

G†j,≥2 dx

∣∣∣∣ ≤ C

Ω

with the Taylor series remainder terms (cf. def. B4 (page 125), eq. (6.7), eq. (6.10))

G?≥3 :=

R∑
j=1

αj(n)

−∑
|k|≥3

1

k!

(
−µj

Ω

)k
∇k
(
β̃j(x)q(t, n, x)

) ,

G†j,≥2 := −
∑
|k|≥2

1

k!

(
−µj

Ω

)k
∇k
(
q(t, n, x)

)
.

Remark: The remainder terms G?≥3 and G†j,≥2 arise from Taylor expansions in different

parts of the proof in this section and the assumption is similar to assumption 4.4 used in

the proof of the FPE convergence theorem (cf. section 4.4). This assumption is motivated

by the observation that the remainder terms are dominated by the term 1
Ω3 , for those cases

where the derivatives of β̃q or q, respectively, are smooth. So the bound could even be

“stronger” but we only “need” order O
(
Ω−1

)
here.
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Theorem 6.5 (Convergence of the FPME).

Let p be the solution of the CME (5.10) and q be the solution of the FPME (6.2). Then it

holds, on bounded time intervals [0, tend] and for Ω > Ω0 independent constants C1, C2 > 0,

that ∥∥∥∥p(t, ·, ·)− ∫
Im

q(t, ·, x) dx
∥∥∥∥
`1

≤ C1

Ω

∥∥∥∇(q(t, ·, ·))∥∥∥
1
+

C2

Ω

under the conditions of eq. (4.2), eq. (4.8), eq. (6.8), lemma 4.3, assumption 4.2,

assumption 5.13, assumption 6.3, assumption 6.4, assumption 5.10, and assuming that

‖p(0, ·, ·)− v(0, ·, ·)‖`1 =

∥∥∥∥p(0, ·)− ∫
Im

q(0, ·, ·) dx
∥∥∥∥
`1

= 0,

with v(t, n,m) = Ψ (q) (t, n,m) and Ω0 depending on eq. (4.2), lemma 4.3, assumption 6.4

and assumption 5.10.

Remark:

• We should be aware that q depends on Ω and therefore
∥∥∥∇(q(t, ·, ·))∥∥∥

1
changes if Ω

is changed.

• For the example in table 6.1 the term 1
Ω

∥∥∥∇(q(t, ·, ·))∥∥∥
1
is of order O

(
Ω−1/2

)
.

• This proof is similarly structured and uses the same techniques as the proof of the-

orem 4.5, but extends it by an estimate of the “CME part” of the FPME.

Proof. From the variation of constants formula follows that

‖p(t, ·, ·)− v(t, ·, ·)‖`1 ≤
∫ t

0

∥∥∥e(t−s)A
∥∥∥
`1
· ‖R(s, ·, ·)‖`1 ds.

From the structure of the operator A, it was shown that [Heg08, WGMH10, JA10, VK07,

ch. V], ∥∥∥e(t−s)A
∥∥∥
`1
≤ 1.

Hence, the error only depends on R:

‖R(s, ·, ·)‖`1 =
∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

(Dq) (t, n, x) dx− (Av) (t, n,m)

∣∣∣∣
=
∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∣
∫
Im

∑
j∈J1

((
∆νj − 1

)
αj β̃jq

)
+

R∑
j=1

((
∆̃µj − 1

)
αj β̃jq

)
+ G?≥3

 dx

−

∑
j∈J1

(
∆µj

(
∆νj − 1

)
αjβjv

)
+

R∑
j=1

((
∆µj − 1

)
αjβjv

) ∣∣∣∣∣
≤
∑
n∈Nd

0

∑
m∈ND

0

∑
j∈J1

∣∣∣∣(∆νj − 1
)
αj

(∫
Im

β̃jq dx−∆µjβjv

)∣∣∣∣︸ ︷︷ ︸
=:Ψ1
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+
∑
n∈Nd

0

∑
m∈ND

0

R∑
j=1

∣∣∣∣αj

(∫
Im

(
∆̃µj − 1

)
β̃jq dx−

(
∆µj − 1

)
βjv

)∣∣∣∣︸ ︷︷ ︸
=:Ψ2

+
∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

G?≥3 dx

∣∣∣∣ .

In the first term Ψ1, we estimate the shift operator by ‖(∆ν − 1)‖`1 ≤ 2. Further, we

extend assumption 5.13 to this case, insert the definition of v and using integration by

substitution we obtain that

Ψ1 =
∑
n∈Nd

0

∑
m∈ND

0

∑
j∈J1

∣∣∣∣(∆νj − 1
)
αj

(∫
Im

β̃jq dx−∆µjβjv

)∣∣∣∣
≤ C1

∑
n∈Nd

0

∑
m∈ND

0

∑
j∈J1

∣∣∣∣∫
Im

β̃j(x)q(t, n, x)− βj(m− µj)q
(
t, n, x− µj

Ω

)
dx

∣∣∣∣
holds. Rearranging, similarly to the technique used in the proof of theorem 4.5, and obtain

that

Ψ1 ≤ C1

∑
n∈Nd

0

∑
m∈ND

0

∑
j∈J1

∣∣∣∣∫
Im

β̃j(x)q(t, n, x)− βj(m− µj)q
(
t, n, x− µj

Ω

)
dx

∣∣∣∣
= C1

∑
n∈Nd

0

∑
m∈ND

0

∑
j∈J1

∣∣∣∣∣−
∫
Im

β̃j(x)
(
q
(
t, n, x− µj

Ω

)
− q(t, n, x)

)
dx

+

∫
Im

(
β̃j(x)− βj(m− µj)

)
q
(
t, n, x− µj

Ω

)
dx

∣∣∣∣∣
≤ C1

∑
n∈Nd

0

∑
m∈ND

0

∑
j∈J1

∣∣∣∣∫
Im

β̃j(x)
(
q
(
t, n, x− µj

Ω

)
− q(t, n, x)

)
dx

∣∣∣∣
+ C1

∑
n∈Nd

0

∑
m∈ND

0

∑
j∈J1

∣∣∣∣∫
Im

(
β̃j(x)− βj(m− µj)

)
q
(
t, n, x− µj

Ω

)
dx

∣∣∣∣ .
The first term is estimated with the help of assumption 6.3, because all reaction channels

Rj are in j ∈ J1:∥∥∥∥∫
Im

β̃j(x)
(
q
(
t, n, x− µj

Ω

)
− q(t, n, x)

)
dx

∥∥∥∥
`1

≤ C

∥∥∥∥∫
Im

q
(
t, n, x− µj

Ω

)
− q(t, n, x)dx

∥∥∥∥
`1

.

The second term can be estimated by∣∣∣∣∫
Im

(
β̃j(x)− βj(m− µj)

)
q
(
t, n, x− µj

Ω

)
dx

∣∣∣∣ ≤∫
Im

∣∣∣β̃j(x)− βj(m− µj)
∣∣∣ ∣∣∣q (t, n, x− µj

Ω

)∣∣∣ dx ≤
sup
x∈Im

∣∣∣β̃j(x)− βj(m− µj)
∣∣∣ ∫

Im

∣∣∣q (t, n, x− µj

Ω

)∣∣∣ dx
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The estimate of the last term in the above expression is postponed to lemma C8, because

it uses similar arguments as in the lemmata C5 and C6 and we do not want to interrupt

the exposition ot the actual line of thought. Further, as in the proof of theorem 4.5 we

assume that reaction channel Rj1 is the dominant one in the sum over all j.

Because
∥∥∥∫Im |q(t, ·, ·)| dx∥∥∥`1 = 1, we finally obtain

Ψ1 ≤ C2

∑
n∈Nd

0

∑
m∈ND

0

∫
Im

∣∣∣q (t, n, x− µj1

Ω

)
− q(t, n, x)

∣∣∣ dx+
C3

Ω

The estimation of the term Ψ2 uses the same argument as in the proof of theorem 4.5, by

extending assumption 5.13 to this case and by integration by substitution:

Ψ2 =
∑
n∈Nd

0

∑
m∈ND

0

R∑
j=1

∣∣∣∣α(∫
Im

(
∆̃µ − 1

)
β̃q dx− (∆µ − 1)βv

)∣∣∣∣
≤ C4

∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣(∫
Im

(
∆̃µ − 1

)
β̃q dx− (∆µ − 1)βv

)∣∣∣∣
= C4

∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∣
∫
Im

β̃j1

(
x− µj1

Ω

)
q
(
t, n, x− µj1

Ω

)
− β̃j1 (x) q (t, n, x)

− βj1 (m− µj1) q
(
t, n, x− µj1

Ω

)
+ βj1 (m) q (t, n, x) dx

∣∣∣∣∣
= C4

∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∣
∫
Im

[
β̃j1

(
x− µj1

Ω

)
− βj1 (m− µj1)

]
q
(
t, n, x− µj1

Ω

)
dx

−
∫
Im

[
β̃j1 (x)− βj1 (m)

]
q (t, n, x) dx

∣∣∣∣∣
We represent the first term in [·]-brakets by[

β̃j1

(
x− µj1

Ω

)
− βj1(m− µj1)

]
=
[
β̃j1 (x)− βj1(m)

]
+Hj1(m,x).

We rearrange and obtain

Ψ2 ≤ C4

∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

[
β̃j1 (x)− βj1 (m)

] (
q
(
t, n, x− µj1

Ω

)
− q (t, n, x)

)
dx

∣∣∣∣
+ C4

∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

Hj1(m,x)q
(
t, n, x− µj1

Ω

)
dx

∣∣∣∣ .
Then, analogously to the proof of theorem 4.5, we apply Hölders inequality. Further, we

have already estimated

sup
x∈Im

∣∣∣β̃j1 (x)− βj1(m)
∣∣∣ ≤ C5, sup

x∈Im
|Hj1 (m,x)| ≤ C6

Ω
,
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in the lemmata C5 and C6, respectively. We apply these considerations and get

Ψ2 ≤ C7

∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

q
(
t, n, x− µj1

Ω

)
− q (t, n, x) dx

∣∣∣∣+ C8

Ω
.

We derive by Taylor expansion that

q
(
t, n, x− µj1

Ω

)
− q(t, x) =

1

Ω
∇
(
q(t, n, x)

)T
µj1 + G

†
j1,≥2,

with remainder term given by

G†j1,≥2 := −
∑
|k|≥2

1

k!

(
−µj1

Ω

)k
∇k
(
q(t, n, x)

)
. (6.10)

Putting now all the pieces together, we obtain

‖R(s, ·, ·)‖`1 ≤
∑
n∈Nd

0

∑
m∈ND

0

∑
j∈J1

∣∣∣∣(∆ν − 1)α

(∫
Im

β̃q dx−∆µβv

)∣∣∣∣︸ ︷︷ ︸
=:Ψ1

+
∑
n∈Nd

0

∑
m∈ND

0

R∑
j=1

∣∣∣∣α(∫
Im

(
∆̃µ − 1

)
β̃q dx− (∆µ − 1)βv

)∣∣∣∣︸ ︷︷ ︸
=:Ψ2

+
∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

G?≥3 dx

∣∣∣∣
≤ C9

Ω

∑
n∈Nd

0

∑
m∈ND

0

∫
Im

∣∣∣∇(q(t, n, x))∣∣∣ dx
+
∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

G?≥3 dx

∣∣∣∣+ ∑
n∈Nd

0

∑
m∈ND

0

∣∣∣∣∫
Im

G†j1,≥2 dx

∣∣∣∣+ C10

Ω
.

We note that, the remainder terms G?≥3 and G†j1,≥2 are estimated using assumption 6.4.

Finally, by applying the definition of the ‖ · ‖1-norm in eq. (6.9) and by taking the bound-

edness of the time interval into account we prove the assertion:∥∥∥∥p(t, ·, ·)− ∫
Im

q(t, ·, x) dx
∥∥∥∥
`1

≤
∫ t

0

[
C9

Ω

∥∥∥∇(q(s, ·, ·))∥∥∥
1
+

C11

Ω

]
ds

≤ C12

Ω

∥∥∥∇(q(t, ·, ·))∥∥∥
1
+

C13

Ω
,

with C12, C13 constants. These constants can be found because the time interval as well

as the norm are bounded. Obviously they depend on the chosen time point t.

6.6 Summary and Discussion

We started this chapter with the goal to derive a hybrid method with “better” convergence

properties than the Liouville master equation (LME) analysed in chapter 5. To achieve
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this goal we combined the CME with the FPE and derived the Fokker-Planck master

equation (FPME)

∂tq (t, n, x) =
∑
j∈J1

β̃j(x)
(
αj(n− νj)q (t, n− νj , x)− αj(n)q (t, n, x)

)

− 1

Ω

R∑
j=1

αj(n)∇
(
β̃j(x)q (t, n, x)

)T
µj

+
1

2Ω2

R∑
j=1

αj(n)µ
T
j ∇2

(
β̃j(x)q (t, n, x)

)
µj .

This equation extends the LME by adding a diffusion term. The construction of the hybrid

model was completed by the derivation of the hybrid process in def. 6.1.

We have already seen in section 4.4 that the solution of the FPE converges to the solution of

the CME and therefore we analysed an example and found that the solution of the FPME

converged to the solution of the CME. This result motivated us to use the techniques

developed in the preliminarily discussion of the FPE (cf. theorem 4.5) to prove convergence

of the FPME to the CME:∥∥∥∥p(t, ·, ·)− ∫
Im

q(t, ·, x) dx
∥∥∥∥
`1

≤ C1

Ω

∥∥∥∇(q(t, ·, ·))∥∥∥
1
+

C2

Ω
.

However, the observation in the example in table 6.1 that the derivation term is of order

C1

Ω

∥∥∥∇(q(t, ·, ·))∥∥∥
1
∼ O

(
Ω−1/2

)
should be analysed in future studies.





7 | The Lac Operon -

A 10-Dimensional Numerical

Example

7.1 The Lac Operon Network

François Jacob and Jacques Monod published in 1961 a seminal paper with their discoveries

on genetic regulatory principles in bacteria [JM61]. In 1965 they were awarded the Nobel

prize for their work [Nob65]. Jacob and Monod developed a gene regulatory network for

the so-called lac operon. The network describes the up and down regulation of a Lactose

exploting pathway in Escherichia coli (E. coli).

The bacterium E. coli lives in the intestine of mammals. Normally, E. coli feeds on the

monosaccharide glucose, but it can also progress the disaccharide lactose, if present.

The bacterium transports lactose inside the cell using the membrane-protein β-galactoside

permease, then it reduces the disaccharide lactose to the monosaccharides galactose and

glucose using the enzyme β-galactosidase. These sugars are then processed in further

metabolic pathways. The enzyme is also capable of turning lactose into allolactose. How-

ever, the proteins β-galactoside permease and β-galactosidase are only in the presence

of lactose produced in high copy numbers, otherwise the genes are down regulated by a

repressor protein.

The lac operon is structured as follows. On the 5’ end of the operon lies the promotor,

the binding site of the RNA polymerase protein. The promotor is followed downstream

by three operators. These are directly followed by the genes lacZ, which codes for the

β-galactosidase, lacY, which codes for the β-galactoside permease, and lacA, which encodes

the enzyme β-galactoside transacetylase. This enzyme seems not to be important for

the lactose metabolism of E. coli. However, there are some hints that the protein is

decomposing some potential poisoning side products of the metabolism. The operon is

closed with a terminator on the 3’ end.

Upstream of the lac operon the gene lacI, together with its promotor and terminator region,

is located. This gene codes for the repressor protein of the lac operon. The repressor binds

on the operator of the lac operon and blocks the RNA-polymerase.

105
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S1:Idna S4:Op lacZ

(a) The simplified structure of the lac operon with operator (S4:Op) and structure gene lacZ. The
gene lacI (S1:Idna) is located upstream of the operon.

S1:Idna
S10:IOp

lacZ

c12

c1

c2

c5 c6

c13

∅

∅
S2:Irna S6:Rna

S7

S3:I

S5

c8c7

(b) The lac operon network with no lactose present.
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cell
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(c) The lac operon network with lactose (yellow) present.

Figure 7.1: Visualisation of the lac operon network

If E. coli enters a medium containing lactose, some of the molecules are transported

inside the cell through the β-galactoside permease symporter, and some are transformed

into allolactose by β-galactosidase. These two enzymes are always present in low copy

numbers, because the repressor protein is detaching the operator from time to time. The

allolactose is inhibiting the repressor protein. Therefor the probability for the lac operon

being repressed goes down by a factor of order 103. The structural genes lacZ, lacY and

lacA are now no longer down regulated and their proteins are produced in high copy

numbers.



7.1. The Lac Operon Network 107

When all lactose is processed, allolactose cannot be produced any longer and the repressor

proteins are no longer inhibited. Therefor the repressor binds again to the operator and

the operon is down regulated again.

In a second inhibiting process, glucose inhibits the transport of lactose through β-galactoside

permease.

In summary, these processes make sure that the cell only produces the proteins encoded by

the lac operon if lactose is present and if no glucose is present. The enzyme β-galactosidase

is also capable of processing other galactosides. These occur, for example, when animals

regenerate the cell layers in their intestine. It seems that these galactosides are also

inhibiting the repressor protein [BTS02].

Table 7.1: Species names, symbols and initial conditions for the lac operon network.

network model initial
species description symbol symbol condition

lacI DNA of the lacI gene S1:Idna n1 1
Irna RNA transcribed from lacI S2:Irna n2 0
I repressor protein S3:I n3 50
Op operator of the lac operon S4:Op n4 1
Rnap RNA polymerase S5:Rnap n5 100
Rna RNA transcribed from lacZ S6:Rna n6 0
Z β-galactosidase S7:Z n7 0
Lactose lactose S8:Lactose m8, x8 Ω
ILactose lactose inhibiting I S9:ILactose n9 0
IOp I repressing the operator S10:IOp n10 0
RnapOp RNA polymerase bound to the operator S11:RnapOp n11 0

In this work, we simulate a simplified version of the lac operon network published by

Wilkinson [Wil06]. The gene regulatory network consists of 11 species and 16 reactions.

The names and symbols of the different species are listed in table 7.1. The reactions,

together with the propensity functions and rate constants, are listed in table 7.3. In this

network, the lac operon is reduced to the gene lacZ and one operator site (S4:Op). The

gene lacI (S1:Idna) is still located upstream of the lac operon. The gene lacY is removed

from the network, because we are not interested in spatial phenomenons and therefor we

will not simulate transporter proteins. The gene lacA is removed because of the unknown

role of the protein β-galactoside transacetylase. The DNA is visualised in figure 7.1a.

In the absence of lactose (fig. 7.1b) the gene lacI (S1:Idna) is translated via the reactions

R1 and R2 and the repressor protein (S3:I) binds on the operator via reaction R5. The

resulting species is named S10:IOp. This bound is reversible (R6). As a result the RNA

polymerase cannot longer transcribe lacZ and no β-galactosidase is translated.

If lactose is present (fig. 7.1b), the repressor protein can also react with lactose (R3) and

becomes inhibited (S9:ILactose). Now, the RNA-Polymerase binds on the operator and

β-galactosidase (S7:Z) is translated (R9 and R10). The binding of the RNA-polymerase
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Table 7.3: The lactose operon network.

Reaction Channel Propensity Rate

Rj αj(n) βj(m) β̃j(x) cj

R1 : S1:Idna
c1−−−−−→ S1:Idna + S2:Irna c1n1 1 1 0.02

R2 : S2:Irna
c2−−−−−→ S2:Irna + S3:I c2n2 1 1 0.1

R3 : S3:I + S8:Lactose
c3−−−−−→ S9:ILactose c3n3

m8/Ω x8 0.005

R4 : S9:ILactose
c4−−−−−→ S8:Lactose + S3:I c4n9 1 1 0.1

R5 : S3:I + S4:Op
c5−−−−−→ S10:IOp c5n3n4 1 1 1.0

R6 : S10:IOp
c6−−−−−→ S3:I + S4:Op c6n10 1 1 0.01

R7 : S4:Op + S5:Rnap
c7−−−−−→ S11:RnapOp c7n4n5 1 1 0.1

R8 : S11:RnapOp
c8−−−−−→ S5:Rnap + S4:Op c8n11 1 1 0.01

R9 : S11:RnapOp
c9−−−−−→ S4:Op + S5:Rnap + S6:Rna c9n11 1 1 0.03

R10 : S6:Rna
c10−−−−−−→ S6:Rna + S7:Z c10n6 1 1 0.1

R11 : S8:Lactose + S7:Z
c11−−−−−−→ S7:Z c11n7 m8 Ωx8 10−5

R12 : S2:Irna
c12−−−−−−→ ∅ c12n2 1 1 0.01

R13 : S3:I
c13−−−−−−→ ∅ c13n3 1 1 0.002

R14 : S9:ILactose
c14−−−−−−→ S8:Lactose c14n9 1 1 0.002

R15 : S6:Rna
c15−−−−−−→ ∅ c15n6 1 1 0.01

R16 : S7:Z
c16−−−−−−→ ∅ c16n7 1 1 0.001

is modeled in a simplified way, because the operator and promoter are combined to a

single species S4:Op. The transcription process is also simplified to a single reaction R9.

In this reaction the combined RNA-polymerase / operator species S11:RnapOp is producing

the RNA for the translation of β-galactosidase and the combined species separates into

its components. The enzyme S7:Z splits lactose (S8:Lactose) up (R11) and the resulting

monosaccharides are delivered to further pathways in the cell metabolism. However, we

are not interested in these pathways, therefor reaction R11 is modeled as a death process

that decomposes lactose using the enzyme S7:Z as a catalyst. The network is completed by

several reverse reactions and decomposing reactions for the RNA molecules and proteins.

Although the network consists of 11 species, we consider the network as 10-dimensional.

Species S1:Idna should be interpreted as a parameter, because only one copy of the gene is

present and there are no reaction channels that change the value of X1(t). Therefor the

number does not change and only one particle is present over the whole time interval:

X1(t) = X1(0) = 1.

Thus, we will not visualise this species in any of the following plots.
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7.2 Numerical Simulation of the Lac Operon Network with

SSA and the two Hybrid Models

We simulate the reaction network in table 7.3 on the time interval

t ∈
[
0, 103

]
with initial conditions given in table 7.1. We choose a scaling parameter

Ω = 104.

This is also the initial number of lactose molecules present.

The network is partitioned into the two sets

S1 = {S1:Idna, . . . ,S7:Z, S9:ILactose, . . . ,S11:RnapOp} ,

S2 = {S8:Lactose} .

The species in set S1 are modeled as discrete state variables, the species in set S2 as

continuous state variables.

The network is sampled using three different methods:

1. SSA (cf. algorithm 3.1) to approximate a solution of the partitioned CME (cf.

eq. (5.10)),

2. Strang splitting for the first hybrid model (cf. algorithm 5.1) to approximate a

solution of the LME (cf. def 5.7).

3. Strang splitting for the second hybrid model (cf. algorithm 6.1) to approximate a

solution of the FPME (6.2).

For each method several trajectories are generated and averaged to approximate the ex-

pectation over time for each species. Furthermore the values of the trajectories at the end

of the time interval are used to generate histograms to approximate the marginal distri-

butions of each species. A full PDF of the solution is not approximated, because it is not

possible to visualise a 10-dimensional PDF in a 2-dimensional figure.

We simulate the network in the state immediately after a large amount of lactose was

added. It would also be interesting to “see” a simulation of the network with an initial

number of zero lactose molecules and to see the response of the network if this value is

increased after a certain time point. However, we like to simulate the network using the

two hybrid models derived in the chapters 5 and 6. Therefor we need a scale difference

between the species and so cannot simulate the network with a low copy number of lactose.
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Figure 7.2: Average trajectory of the 10 species of the lac operon reaction network defined
in table 7.3. For each species the results of the SSA (red), the Kurtz process /
RRE hybrid model (green) and the Kurtz process / CLE hybrid model (blue)
are plotted. The averaged trajectory for species S8:Lactose was scaled with Ω for
the hybrid models. This allows a direct visual comparison of the results. The
average was taken over 3.2 · 106 realisations for the SSA, 3.2 · 106 realisations
for the Kurtz process / RRE hybrid model and 1.5 · 106 realisations for the
Kurtz process / CLE hybrid model. This figure is continued in figure 7.3.

7.3 Results and Discussion of the Numerical Simulations

We generate, for the lac operon network in table 7.3, 3.2 · 106 realisations with the SSA,

3.2 · 106 realisations with the Kurtz / RRE hybrid method and 1.5 · 106 realisations∗ with

the Kurtz / CLE hybrid method for the time interval
[
0, 103

]
. The hybrid methods are

simulated using a time step of ∆t = 1 for the Strang Splitting scheme and a time step of

τ = 0.1 for the ODE and SDE integrator, respectively.

∗Due to technical difficulties (the computer broke down irreversibly), we generated less trajectories for
the second hybrid model.
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Figure 7.3: Continuation of figure 7.2.

Figure 7.2 shows the averaged trajectories of these simulations. As we can see the trajec-

tories are visually not distinguishable for all three models. The histograms for each species

can be found in the figure 7.4 for the SSA and the two hybrid models.

The average trajectory of species S2:Irna grows from its initial value 0 to a value of 2

particles and plateaus there. However, the histograms show that also higher values are

reached. This behaviour result completely from the reaction channels R1 and R12. The

first reaction models the transcription of the RNA while the second reaction models its

decomposition. Species S3:I is the repressor protein and is produced via the translation

reaction R2. The protein can then block the operator of the lacZ gene via R5. This

reaction is reversed in channel R6. Alternatively, the repressor can be inhibited by lactose

via R3 (with reverse reaction R4). Finally, the repressor protein is decomposed in reaction

channel R13. In the averaged trajectory (cf. fig. 7.2b), we observe that the initial amount

of 50 molecules is reduced at first due to the high lactose number in the reaction volume.

When the amount of lactose is decreasing the particle number of S3:I molecules increases.

This is due to the unregulated transcription and translation of its DNA (species S1:Idna)
and because the number of molecules it can interact with (the number of lactose plus one

operator side) is decreasing. The histogram of S3:I shows that this species reaches a wide

spectrum of states. The operator species S4:Op interacts via the reactions R5 and R6 with

the repressor protein. Further, it reacts via the channels R7, R8 and R9 with the RNA

polymerase. The averaged trajectory of the operator (cf. fig. 7.2c) drops immediately

from the initial value 1 to zero. The operator is, in average, bound to the repressor protein

or the RNA polymerase over the whole time interval. The histogram also reflects this
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Figure 7.4: Histograms of the marginal distributions of the 10 species of the lac operon re-
action network defined in table 7.3. The underlying trajectories were generated
using 3.2 · 106 realisations of the SSA (left column, red), 3.2 · 106 realisations
of the Kurtz / RRE hybrid algorithm (middle column, green) and 1.5 · 106
realisations of the Kurtz / CLE hybrid algorithm (right column, blue). This
figure is continued in figure 7.5.

behaviour and shows a probability of nearly one for the operator bound at the end of the

time interval.

The number of RNA polymerase molecules (species S5:Rnap) drops off at the beginning of

the time interval. This species only interacts with the operator side via the reaction chan-

nels R7, R8 and R9 and has no birth or death reactions. The repressor protein is inhibited
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Figure 7.5: Continuation of figure 7.4.

by Lactose, therefor RNA polymerase binds to the operator and lacZ is transcribed. The

probability of the repressor protein inhibition through lactose sinks with declining lactose

numbers and it becomes more likely that the operator is blocked by the repressor protein.

As a result the level of “free” RNA polymerase molecules rises. The histogram shows that

most of the RNA polymerase molecules are unbound at the end of the time interval. The

inhibition of the repressor protein results also in an increase of the lacZ RNA (species

S6:Rna, cf. fig 7.2e). The amount of S6:Rna declines later in the time interval, due to the

decompositon of lactose. The lacZ gene is no longer transcribed (cf. reaction R9), because

the docking of RNA polymerase to the operator side is inhibited by the repressor protein.
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Figure 7.6: Error ε
(i)
1 (n) of the Kurtz / RRE hybrid model at time t = 103. The model

was solved using 3.2 · 106 realisations of algorithm 5.1 to approximate the
marginal distributions. Histograms from 3.2 · 106 SSA realisations were used
as a reference solutions. This figure is continued in figure 7.7.

The influence of the decomposition reaction R15 takes over and the averaged amount of

species S6:Rna is falling. The amount of β-galactosidase (species S7:Z) increases over the

whole time interval. The protein is translated via reaction R10 and decomposed via R16.

The molecule numbers are not declining, because the decomposition reaction has a very

small rate (c16 = 0.001). The histogram shows some variability in the distribution of

species S7:Z.

The derivations in the chapters 5 and 6 teach us that

E
[
Y (Kurtz)(t)

]
≈ ΩE

[
y(Kurtz / RRE)(t)

]
≈ ΩE

[
y(Kurtz / CLE)(t)

]
.

Motivated by this observation, we shift the averaged trajectories resulting from the two

hybrid models by Ω for species S8:Lactose in figure 7.3a. This allows a direct visual com-

parison of the three models. We see that the initial amount of lactose is falling over the

complete time interval. The slope is not very large at the beginning but increases over
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Figure 7.7: Continuation of figure 7.6.

time. This can be interpreted as a small time interval that is needed by the reaction

network to “adapt” to the new ressource. The lactose molecules are mostly reduced by

β-galactosidase via R11. The enzyme splits the disaccharide into glucose and galactose.

For simplicity, these two monosaccharides are not modeled in this network. We display

also the histograms for the marginal distribution of species S8:Lactose (cf. fig. 7.5d, fig. 7.5e
and fig. 7.5f). In chapters 5.6, we have only shown convergence of the marginal distribu-

tions for the discrete species of the Kurtz / RRE hybrid model. However, we observe that

for this network the shape of the distributions is conserved, but we have to keep in mind

that figure 7.5d shows a histogram on a discrete state space with essential support located

around Ω, while the corresponding plots for the hybrid models show histograms that ap-

proximate a PDF on a continuous state space with essential support located between zero

and one (cf. fig. 7.5e and 7.5f).

The average trajectory for species S9:ILactose jumps, from its initial value zero, to a value of

2 very quickly and then grows to a value of 4 more slowly. The species models the inhibited

repressor protein and is created via reaction R3 and decomposed via the channels R4 and

R14. The histogram shows, that the support at the end of the time interval covers a wider

spectrum of states. The species S10:IOp increases very fast, in the first few time steps,

and then slowly grows to a value shortly less than 1. This species models the operator

blocked by the repressor protein. Because only one operator side is present, the species

can not grow larger than 1. The operator is blocked via reaction R5 and released via

R6. The last species S11:RnapOp models the species resulting from the binding of the RNA

polymerase to the operator side. The polymerase bind via reaction R7 and releases via

R8. In reaction channel R9, the polymerase transcribes the lacZ gene and creates one

copy of the β-galactosidase RNA. The averaged trajectory increases very quickly at the

beginning of the time interval which correlates with the increased production of the RNA
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Figure 7.8: Error ε
(i)
2 (n) of the Kurtz / CLE hybrid model at time t = 103. The model was

solved using 1.5 · 106 realisations of algorithm 6.1 to approximate the marginal
distributions. Histograms from 3.2 ·106 SSA realisations were used as reference
solutions. This figure is continued in figure 7.9.

at the beginng of the interval. After a few time steps the values decrease quickly and

then decline slowly. It is very interesting to observe that this short burst of increased

β-galactosidase RNA transcriptions is sufficient to start the lactose metabolism.

Figure 7.6 visualises the errors of the different marginal distributions by plotting the

function

ε
(i)
1 (n) =

∣∣∣p(i)1 (t, n)− q
(i)
1 (t, n)

∣∣∣ ,
for each species Si. The functions p

(i)
1 (t, n) and q

(i)
1 (t, n) denote the marginal distribution

corresponding to species Si, i ∈ {2, . . . , 7, 9, . . . , 11}. The function p
(i)
1 (t, n) is derived

from the solution of the CME and the function q
(i)
1 (t, n) from the solution of the LME.

The CME solution is approximated by generating 3.2 · 106 realisation of the Kurtz process

using SSA on the time interval
[
0, 103

]
. Then histograms for the marginal distributions

are computed for the last time point t = 103 in the time interval. Analogously, the
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Figure 7.9: Continuation of figure 7.8.

LME solution is computed from 3.2 · 106 realisations of the hybrid process generated by

algorithm 5.1.

We also compute the analogue error terms for the second hybrid model. Unfortunately, it

is not possible to visualise the error in the full 10-dimensional distribution here. Therefor

we concentrate on the errors of the marginal distributions of the discrete species again and

define the function

ε
(i)
2 (n) =

∣∣∣p(i)1 (t, n)− q
(i)
1 (t, n)

∣∣∣ ,
for each species Si. The functions p(i)1 (t, n) and q

(i)
1 (t, n) denote the marginal distributions

of the CME solution and the FPME solution, respectively. The functions p
(i)
1 and q

(i)
1 are

approximated by histograms from 3.2 ·106 SSA realisations and 1.5 ·106 realisations of the

hybrid algorithm 6.1. The error functions ε
(i)
2 (n) are plotted in figure 7.8. We observe

an error of zero for the species S4:Op. The species S2:Irna, S3:I, S6:Rna, S7:Z and S9:ILactose
have errors of scale 10−4 and the remaining species S5:Rnap, S10:IOp and S11:RnapOp show

errors of scale 10−5.

In the numerical examples in chapter 5 and 6 we computed the errors

ε1(Ω) = ‖p1(t, ·)− q1(t, ·)‖`1d ,

ε2(Ω) =

∥∥∥∥ 1Ωη(t, ·)p1(t, ·)− θ(t, ·)q1(t, ·)
∥∥∥∥
`1d

,

ε3(Ω) =

∥∥∥∥p(t, ·, ·)− ∫
Im

q(t, ·, x) dx
∥∥∥∥
`1

.

for different values of Ω (cf. fig 5.3 and 6.4) and plotted the convergence of these errors.

This helped us to predict the result of the theorems 5.16 and 6.5. Unfortunatly, we cannot
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do this here because it is not possible to solve the CME for 10-dimensions and ca. 1.6 ·1012

(for a value of Ω = 104) states numerically. Therefor, we cannot compute a proper reference

solution to compare the solutions of the hybrid models with. We determined in previous

numerical experiments (data not shown) that the approximation of CME solutions with

SSA is not suitable for this task. The sampling error is usually too high.

In summary, we learned in this chapter how a high dimensional and biological relevant

reaction network is structured. Further, we saw that the connection of gene regulatory

networks and metabolic networks lead to networks which allow the application of hybrid

models. In this case we modeled the species S8:Lactose as a continuous species and the other

species as discrete. This partition is motivated by the observation that lactose is present

in very high particle numbers in the system, while the other species exist in significant

smaller copy numbers.

We have also seen, that it is possible to simulate this network with both hybrid models

and that all features of the network are conserved. It is possible to interpret the complete

simulation results and to understand how the network works.
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Reaction networks are an often used framework that describe the interactions of different

species connected via reaction channels. We have seen that three different models have

been brought up in literature over the recent decades. The Kurtz process (a Markov jump

process) and the Chemical Master equation (CME) are very accurate models that are

derived by thermodynamical arguments. However, the computation of paths of the Kurtz

process can be quite time consuming, especially for networks with many dimensions or

species with high particle counts. The solution of the high dimensional CME is also a

challenging task. To reduce this complexity, the Chemical Langevin equation (a stochastic

differential equation) can be derived from the Kurtz process by replacing the Poisson

process and the discrete propensity function. Also the Fokker-Planck equation (FPE) can

be derived by truncating the Kramers-Moyal expansion. The models can even be more

simplified by taking the expectation of the Kurtz process to derive the Reaction Rate

equation (RRE) or by truncating the Kramers-Moyal expansion further.

We have seen that the validity of these simplifications is widely discussed in the literature.

We followed the approaches from Kurtz and van Kampen and interpreted the discrete

states n ∈ NN
0 of the Kurtz process and the CME as particle numbers and the continuous

states x ∈ RN
+ as concentrations. This resulted in the derivation of scaled versions of the

three different models.

The first important result was to see that the truncation of the Kramers-Moyal expansion

can be motivated by scaling the CME with Ω. Furthermore, the convergence of the FPE

to the CME is an important question, which was often discussed in the literature in the

last decades (cf. section 4.4 or [Gil00]). We derived an answer, proposing that∥∥∥∥p(t, ·)− ∫
Im

q(t, x) dx

∥∥∥∥
`1

≤ C1

Ω
‖∇ (q(t, ·))‖L1

+
C2

Ω
,

with p(t,m) the solution of the scaled CME and q(t, x) the solution of the scaled FPE.

In section 4.4.2 we discussed that for our example network it is possible to compute the

error also if the covariance of the FPE is known. We stated that this observation should

be discussed in future studies.

Motivated by these preliminary results we turned our focus on the derivation and analysis

of hybrid models. These models combine two other models to a new one, taking the

advantages of both. Since the initial idea was published by Haseltine and Rawlings, several

119
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hybrid models have been stated in literature, but nearly no analysis was done for these

models.

The frequent usage and the good achievements made with hybrid models raised the im-

portant question if these models converge to the CME. Furthermore, if hybrid models

converge, can an error bound be stated?

To answer these questions, we analysed two hybrid models. First, we constructed a hybrid

model combining the Kurtz process with the RRE, or on the level of the PDFs the CME

with the LVE. Section 5.4 resulted in the derivation of the Liouville master equation (LME)

∂tq (t, n, x) =
∑
j∈J1

β̃j(x)
(
αj(n− νj)q (t, n− νj , x)− αj(n)q (t, n, x)

)

− 1

Ω

R∑
j=1

αj(n)∇x

(
β̃j(x)q (t, n, x)

)T
µj ,

q(0, n, x) = δn0(n)q0(x).

Often, hybrid models are only stated in terms of algorithms that solve the models. The

knowledge what these models actually look like is needed to allow a rigorous analysis of

them. Therefore, our derivation of the LME allowed a rigorous analysis of the hybrid

model and we proved convergence for

‖p1(t, ·)− q1(t, ·)‖`1d ≤
C

Ω
,∥∥∥∥ 1Ωη(t, ·)p1(t, ·)− θ(t, ·)q1(t, ·)

∥∥∥∥
`1d

≤ C

Ω
,

with p1 and η the marginal distribution and conditional expectation of the CME solution

and q1 and θ the marginal distribution and conditional expectation of the LME, respec-

tively.

After these very important results, the question came up if it is possible to construct a

hybrid model whose full distribution converges to the solution of the CME. We answered

this question in chapter 6. We combined the CME with the FPE (or the Kurtz process

with the CLE) and derived a differential equation for this model:

∂tq (t, n, x) =
∑
j∈J1

β̃j(x)
(
αj(n− νj)q (t, n− νj , x)− αj(n)q (t, n, x)

)

− 1

Ω

R∑
j=1

αj(n)∇
(
β̃j(x)q (t, n, x)

)T
µj

+
1

2Ω2

R∑
j=1

αj(n)µ
T
j ∇2

(
β̃j(x)q (t, n, x)

)
µj ,

q(0, n, x) = δn0(n)q0(x).
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We called this model Fokker-Planck master equation (FPME). We used the same tech-

niques as in the convergence proof of the FPE to show∥∥∥∥p(t, ·, ·)− ∫
Im

q(t, ·, x) dx
∥∥∥∥
`1

≤ C1

Ω

∥∥∥∇(q(t, ·, ·))∥∥∥
1
+

C2

Ω
.

We saw that for this hybrid model the full solution of the FPME converges to the solution

of the CME and therefore shows significant better convergence properties than the first

hybrid model which converges only for the marginal distributions and the conditional

expectations. An interesting future research topic is the observation that the FPME for

the network in section 6.4 converges with order O
(
1
Ω

)
while the derivative term is of

order 1
Ω

∥∥∥∇(q(t, ·, ·))∥∥∥
1
= O

(
1√
Ω

)
. Future studies should therefore analyse under which

conditions this improved convergence rate can be found or if the result is even general.

Finally, we have seen in chapter 7 how a 10-dimensional reaction network can be simulated

using the two hybrid algorithms and that the simulation results are comparable with an

approximation generated with the SSA. Furthermore, we found the error to be of the

expected order. We have also seen that the results can be fully biological interpreted and

that the simulation of such a high dimensional system provides insight in the biochemical

functionality of the network.

We already mentioned two topics that should be analysed in future studies. The con-

nection of the convergence of FPE in dependence of the covariance and the question if

the convergence rate of the FPME can be further improved. Another interesting research

topic is the question if it is possible to construct hybrid models with rates higher than

one, i.e. models for that the solutions converge with order O
(

1
Ω2

)
or better to the CME

solution. Maybe it is possible to construct models that combine adaptively the three

different models CME, FPE and LVE or even further models or exact solutions. This

model could be a combination of the adaptive partitioning approach discussed by Alfonsi

et al. and the splitting method for several different sub-problems discussed by Jahnke and

Altıntan [ACT+05, JA10].
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A Probability Distributions

Definition A1 (Poisson Distribution).
The PDF of a Poisson distributed random variable X ∈ N with parameter λ ∈ R+ is given
by

p(x) =
λx

x!
e−λ.

The expectation and variance are given by

E [X] = λ and V [X] = λ.

Such a variable is often denoted as

X ∼ P (λ) .

The high dimensional generalisation of the Poisson PDF is given by the product Poisson
distribution

P(x, λ) =

{
e−‖λ‖1∏N

i=1
λ
xi
i
xi!

x ∈ NN
0 ,

0 x 6∈ NN
0 ,

with x ∈ NN and λ ∈ RN
+ [JH07, Wil06, ch. 3.6.4].
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Definition A2 (Normal Distribution).
The PDF of a Gauß distributed random variable Xx ∈ R with parameters µ, σ ∈ R is
given by

p(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 .

The expectation and variance are given by

E [X] = µ and V [X] = σ2.

Such a variable is often denoted as

X ∼ N
(
µ, σ2

)
.

The high dimensional generalisation of the Gauß PDF is given by

p(x) =
1√

(2π)N det(σ)
exp

{
−1

2
(x− µ)Tσ−1(x− µ)

}
,

with x ∈ RN , expectation µ = E [X] and covariance matrix σ = Cov [X].

Definition A3 (Multinomial Distribution).
A multinomial PDF is given by

M (x, n, r) =

{
n! (1−‖r‖1)(n−‖x‖1)

(n−‖x‖1)!
∏N

k=1
r
xk
k
xk!

if ‖x‖1 ≤ n and x ∈ NN

0 otherwise,

with x ∈ NN and the parameters n and r ∈ [0, 1]N , ‖r‖1 ≤ 1 [JH07]. This PDF can be
interpreted as a high dimensional generalisation of the binomial distribution. This models
the probability that in an event the combination X1 = x1, . . . , XN = xN occurs.
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B Multi-Index Notation

Definition B4 (Multi-index notation).
A tuple

k = (k1, k2, . . . , kN ) , ki ∈ N0 ∀i = 1, . . . , N

is called a N -dimensional multi-index. We define

xk :=

N∏
i=1

xkii , k! :=

N∏
i=1

ki!,

|k| :=
N∑
i=1

ki, ∇kf(x) :=
∂|k|

∂xk11 . . . ∂xkNN
f(x),

with x ∈ RN and f : RN → R, f ∈ C∞. This allows the definition of the high-dimensional
Taylor series

f(x+ h) =
∑
|k|≥0

1

k!
∇k (f(x)) (h)k ,

where |k| ≥ 0 denotes all multi-indices with |·|-norm greater or equal to 0 and h ∈ RN
+ .
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C Bounds for Propensity Functions

Lemma C5 (Difference between propensity functions for shifted parameters).
Under the conditions of theorem 4.5, there exists a constant C ∈ R+ such that

sup
x∈Im

∣∣∣β̃j (x)− βj(m)
∣∣∣ ≤ C,

for all Ω > 0.

Proof. We find for every interval Im a constant δ ∈ [0, 1)N such that

sup
x∈Im

∣∣∣β̃j (x)− βj(m)
∣∣∣ = sup

δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m)

∣∣∣∣
and by assumption 4.2, we distinguish the four cases:

|χin
j |1 = 0

Therefore χin
j,i = 0 ∀ i ∈ [1, . . . , N ]. This results in the propensity functions

β̃j

(
m+ δ

Ω

)
= cjΩ, βj(m) = cjΩ

and we can estimate

sup
δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m)

∣∣∣∣ = 0.

|χin
j |1 = 1

Therefore ∃k : χin
j,k = 1 and χin

j,i = 0 ∀ i 6= k. This effects the propensity functions

β̃j

(
m+ δ

Ω

)
= cjΩ

mk + δk
Ω

= cj(mk + δk), βj(m) = cjΩ
mk

Ω
= cjmk

which leads to

sup
δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m)

∣∣∣∣ = sup
δ∈[0,1)N

|cj(mk + δk −mk)| = sup
δ∈[0,1)N

(cjδk) ≤ C.

|χin
j |1 = 2

This can be obtained in two ways:

∃k, l : χin
j,k = χin

j,l = 1 and χin
j,i = 0 ∀ i 6= k, l

This results in the propensity functions

β̃j

(
m+ δ

Ω

)
= cjΩ

mk + δk
Ω

ml + δl
Ω

βj(m) = cjΩ
mk

Ω

ml

Ω

which leads to

sup
δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m)

∣∣∣∣ = sup
δ∈[0,1)N

cj
Ω

∣∣∣(mk + δk)(ml + δl)−mkml

∣∣∣
= sup

δ∈[0,1)N

cj
Ω

∣∣∣mkδl +mlδk + δkδl

∣∣∣
≤ C.
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The last estimate holds, because mk,ml = O(Ω).
∃k : χin

j,k = 2 and χin
j,i = 0 ∀ i 6= k

This effects the propensity functions

β̃j

(
m+ δ

Ω

)
=

cj
2Ω

(mk + δk)
2 , βj(m) =

cj
2Ω

(
m2

k −mk

)
.

Thus we obtain

sup
δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m)

∣∣∣∣ = sup
δ∈[0,1)N

cj
2Ω

∣∣∣(2δk + 1)mk + δ2k

∣∣∣
≤ C.

The last estimate holds, because mk = O(Ω).

Lemma C6 (A Bound for the Remainder Term).
Under the conditions of theorem 4.5, there exists a constant C ∈ R+ such that

sup
x∈Im

|Hj (m,x)| ≤ C

Ω
,

with

Hj(m,x) =
[
β̃j

(
x− %j

Ω

)
− βj(m− %j)

]
−
[
β̃j (x)− βj(m)

]
= β̃j

(
x− %j

Ω

)
− βj(m− %j)− β̃j (x) + βj(m).

Proof. We find for every interval Im a vector δ ∈ [0, 1)N such that

sup
x∈Im

|Hj (m,x)| = sup
δ∈[0,1)N

∣∣∣∣Hj

(
m,

m+ δ

Ω

)∣∣∣∣
and by assumption 4.2, we distinguish the four cases:

|χin
j |1 = 0

Therefore χin
j,i = 0 ∀ i ∈ [1, . . . , N ]. This results in the propensity functions

β̃j

(
m+ δ − %j

Ω

)
= cjΩ, βj(m− %j) = cjΩ, β̃j

(
m+ δ

Ω

)
= cjΩ, βj(m) = cjΩ,

and we find that

sup
δ∈[0,1)N

∣∣∣∣Hj

(
m,

m+ δ

Ω

)∣∣∣∣ = 0.

|χin
j |1 = 1

Therefore ∃k : χin
j,k = 1 and χin

j,i = 0 ∀ i 6= k. This effects the propensity functions

β̃j

(
m+ δ − %j

Ω

)
= cjΩ

mk + δk − %jk
Ω

= cj(mk + δk − %jk),

βj(m− %j) = cjΩΩ
−1(mk − %jk) = cj(mk − %jk),

β̃j

(
m+ δ

Ω

)
= cjΩ

mk + δk
Ω

= cj(mk + δk),
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βj(m) = cjΩΩ
−1mk = cjmk.

Thus we obtain

sup
δ∈[0,1)N

∣∣∣∣Hj

(
m,

m+ δ

Ω

)∣∣∣∣ = 0.

|χin
j |1 = 2

This can be obtained in two ways:

∃k, l : χin
j,k = χin

j,l = 1 and χin
j,i = 0 ∀ i 6= k, l

This results in the propensity functions

β̃j

(
m+ δ − %j

Ω

)
= cjΩ

mk + δk − %jk
Ω

ml + δl − %jl
Ω

,

βj(m− %j) = cjΩΩ
−2(mk − %jk)(ml − %jl),

β̃j

(
m+ δ

Ω

)
= cjΩ

mk + δk
Ω

ml + δl
Ω

,

βj(m) = cjΩΩ
−2mkml

and we find that

sup
δ∈[0,1)N

∣∣∣∣Hj

(
m,

m+ δ

Ω

)∣∣∣∣ = sup
δ∈[0,1)N

cj
Ω
|δkδl − δk%jl − δl%jk| ≤

C

Ω
.

∃k : χin
j,k = 2 and χin

j,i = 0 ∀ i 6= k
This effects the propensity functions

β̃j

(
m+ δ − %j

Ω

)
= cjΩ

1

2

(
mk + δk − %jk

Ω

)2

,

βj(m− %j) = cjΩΩ
−2 1

2
(mk − %jk)(mk − %jk − 1),

β̃j

(
m+ δ

Ω

)
= cjΩ

1

2

(
mk + δk

Ω

)2

,

βj(m) = cjΩΩ
−2 1

2
mk(mk − 1)

and we find that

sup
δ∈[0,1)N

∣∣∣∣Hj

(
m,

m+ δ

Ω

)∣∣∣∣ = sup
δ∈[0,1)N

cj
2Ω

∣∣−2δk%jk − %jk − δ2k
∣∣ ≤ C

Ω
.

Lemma C7 (Difference of the Propensity Functions).
If x ∈ RD

0,+ and xk ≥ 1
Ω ∀k = 1, . . . , D and the assumptions 5.9 and 5.10 hold, then there

exists a constant C > 0 such that∣∣∣βj(Ωx)− β̃j(x)
∣∣∣ ≤ CΩ−γ(j).

If λin
jk ≤ 1 ∀k = 1, . . . , D,

βj(Ωx) = β̃j(x)
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holds.

Proof. We have to distinguish four cases, by assumption 5.9:

|λin
j |1 = 0

Therefore λin
j,i = 0 ∀ i ∈ [1, . . . , D] with the propensity functions

βj(Ωx) = Ω(1−γ(j))Ω0
D∏
i=1

(
Ωxi
0

)
= Ω(1−γ(j)),

β̃j (x) = Ω(1−γ(j))
D∏
i=1

x0i
0!

= Ω(1−γ(j))

and the error ∣∣∣βj(Ωx)− β̃j (x)
∣∣∣ = 0.

|λin
j |1 = 1

Therefore ∃k : λin
j,k = 1 and λin

j,i = 0 ∀ i 6= k. This results in the propensity functions

βj(Ωx) = Ω(1−γ(j))Ω−1
D∏
i=1

(
Ωxk
1

)
= Ω(1−γ(j))xk,

β̃j (x) = Ω(1−γ(j))
D∏
i=1

x1k
1!

= Ω(1−γ(j))xk

and the error ∣∣∣βj(Ωx)− β̃j (x)
∣∣∣ = 0.

|λin
j |1 = 2

This can be obtained in two ways:

∃k, l : λin
j,k = λin

j,l = 1 and λin
j,i = 0 ∀ i 6= k, l

This effects the propensity functions

βj(Ωx) = Ω(1−γ(j))Ω−2

(
Ωxk
1

)(
Ωxl
1

)
= Ω(1−γ(j))xkxl,

β̃j (x) = Ω(1−γ(j))x
1
k

1!

x1l
1!

= Ω(1−γ(j))xkxl

and the error ∣∣∣βj(Ωx)− β̃j (x)
∣∣∣ = 0.

∃k : λin
j,k = 2 and λin

j,i = 0 ∀ i 6= k
This results in the propensity functions

βj(Ωx) = Ω(1−γ(j))Ω−2

(
Ωxk
2

)
= Ω(1−γ(j))Ω−2 1

2
Ωxk(Ωxk − 1)

= Ω(1−γ(j)) 1

2
(x2k − Ω−1xk),
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β̃j (x) = Ω(1−γ(j))x
2
k

2!
= Ω(1−γ(j)) 1

2
x2k

and the error ∣∣∣βj(Ωx)− β̃j (x)
∣∣∣ = Ω(1−γ(j)) 1

2

∣∣x2k − Ω−1xk − x2k
∣∣

= Ω(1−γ(j)) 1

2

∣∣−Ω−1xk
∣∣

= Ω(−γ(j)) 1

2
xkΩ

(−γ(j))

≤ CΩ(−γ(j)).

Lemma C8 (Difference between propensity functions with shifted parameters).
Under the conditions of theorem 6.5 and for j ∈ J1 exists a constant C ∈ R+ such that

sup
x∈Im

∣∣∣β̃j(x)− βj(m− µj)
∣∣∣ ≤ C

Ω
.

Proof. We find for every interval Im a constant δ ∈ [0, 1)N such that

sup
x∈Im

∣∣∣β̃j (x)− βj(m− µj)
∣∣∣ = sup

δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m− µj)

∣∣∣∣
and by assumption 4.2, we distinguish four cases:

|λin
j |1 = 0

Therefore λin
j,i = 0 ∀ i ∈ [1, . . . , N ]. This effects the propensity functions

β̃j

(
m+ δ

Ω

)
= 1 βj(m− µj) = 1

and we find

sup
δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m− µj)

∣∣∣∣ = 0.

|λin
j |1 = 1

Therefore ∃k : λin
j,k = 1 and λin

j,i = 0 ∀ i 6= k. This results in the propensity functions

β̃j

(
m+ δ

Ω

)
=

mk + δk
Ω

, βj(m− µj) =
mk − µjk

Ω
,

which results in

sup
δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m− µj)

∣∣∣∣ = sup
δ∈[0,1)N

∣∣∣∣mk + δk
Ω

−
mk − µjk

Ω

∣∣∣∣
= sup

δ∈[0,1)N

∣∣∣∣δk + µjk

Ω

∣∣∣∣ ≤ C

Ω
.

|λin
j |1 = 2

This can be obtained in two ways:
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∃k, l : λin
j,k = λin

j,l = 1 and λin
j,i = 0 ∀ i 6= k, l

This effects the propensity functions

β̃j

(
m+ δ

Ω

)
=

mk + δk
Ω

ml + δl
Ω

βj(m− µj) =
mk − µjk

Ω

ml − µjl

Ω

which results in

sup
δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m− µj)

∣∣∣∣ ≤ C

Ω
.

∃k : λin
j,k = 2 and λin

j,i = 0 ∀ i 6= k
This results in the propensity functions

β̃j

(
m+ δ

Ω

)
=

1

2Ω2
(mk + δk)

2 =
1

2Ω2

(
m2

k + 2mkδk + δk
)

βj(m− µj) =
1

2Ω2

(
(mk − µjk)

2 − (mk − µjk)
)

=
1

2Ω2

(
m2

k − 2mkµjk + µ2
jk −mk + µjk

)
which results in

sup
δ∈[0,1)N

∣∣∣∣β̃j (m+ δ

Ω

)
− βj(m− µj)

∣∣∣∣ ≤ C

Ω
.





Bibliography

[ACT+05] A. Alfonsi, E. Cancès, G. Turinici, B. Di Ventura, and W. Huisinga. Adap-
tive simulation of hybrid stochastic and deterministic models for biochemical
systems. ESAIM: Proceedings, 14:1–13, 2005.

[AH12] D. F. Anderson and D. J. Higham. Multilevel Monte Carlo for continuous
time Markov chains, with applications in biochemical kinetics. Multiscale
Model. Simul., 10(1):146–179, 2012.

[AK12] D. F. Anderson and M. Koyama. Weak error analysis of numerical methods
for stochastic models of population processes. SIAM Multiscale Modeling and
Simulation, 10(4):1493–1524, 2012.

[BCMP11] D. Besozzi, P. Cazzaniga, G. Mauri, and D. Pescini. BioSimWare: A software
for the modeling, simulation and analysis of biological systems. Lecture Notes
in Computer Science, 6501:119–143, 2011.

[BHMS06] K. Burrage, M. Hegland, S. MacNamara, and R.B. Sidje. A Krylov-based
finite state projection algorithm for solving the chemical master equation
arising in the discrete modelling of biological systems. In A.N.Langville,
W.J.Stewart (eds.) Markov Anniversary Meeting: Aninternational conference
to celebrate the 150th anniversary of the birth of A.A. Markov, Boson Books,
pages 21–38, 2006.

[BKPR06] K. Ball, T. G. Kurtz, L. Popovic, and G. Rempala. Asymptotic analysis of
multiscale approximations to reaction networks. Annals of Applied Probabil-
ity, 16(4):1925–1961, 2006.

[BMP96] F. Baras, M. Malek Mansour, and J. E. Pearson. Microscopic simulation
of chemical bistability in homogeneous systems. The Journal of Chemical
Physics, 105(18):8257–8261, 1996.

[BMT06] K. Burrage, S. Mac, and T. H. Tian. Accelerated leap methods for simu-
lating discrete stochastic chemical kinetics. Positive Systems, Proceedings,
341:359–366, 2006.

[BTB04] K. Burrage, T. H. Tian, and P. Burrage. A multi-scaled approach for simulat-
ing chemical reaction systems. Progress In Biophysics & Molecular Biology,
85(2-3):217–234, 2004.

[BTS02] J.M. Berg, J.L. Tymoczko, and L. Stryer. Biochemistry. W.H. Freeman, New
York, 2002.

[CDMR12] A. Crudu, A. Debussche, A. Muller, and O. Radulescu. Convergence of
stochastic gene networks to hybrid piecewise deterministic processes. An-
nals of Applied Probability, 22(5):1745–2164, 2012.

[CM77] D. R. Cox and H. D. Miller. The Theory of Stochastic Processes. Chapman
& Hall Ltd/CRC, Boca Raton, 1977.

133



134 Bibliography

[CWA09] L. N. Chen, R. Q. Wang, and K. Aihara. Stochastic hybrid system for chemi-
cal master equation. Optimization and Systems Biology Book Series: Lecture
Notes in Operations Research Volume: 11 Pages: 475-481 Published: 2009
Conference: 3rd International Symposium on Optimization and Systems Bi-
ology, 2009.

[DHJW08] P. Deuflhard, W. Huisinga, T. Jahnke, and M. Wulkow. Adaptive discrete
Galerkin methods applied to the chemical master equation. SIAM Journal
on Scientific Computing, 30(6):2990–3011, 2008.

[DK12] S.V. Dolgov and B.N. Khoromskij. Tensor-product approach to global time-
space-parametric discretization of chemical master equation. Technical re-
port, Max-Planck-Institut für Mathematik in den Naturwissenschaften, 2012.

[DKB10] C.E. Dangerfield, D. Kay, and K. Burrage. Stochastic models and simulation
of ion channel dynamics. Procedia Computer Science, 1(1):1587–1596, 2010.

[DP11] F. Du and B. Parise. A hybrid moment equation approach to gas-grain
chemical modeling. Astronomy & Astrophysics, 530:A131, 2011.

[Ein05] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme
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