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Abstract 
 

Wnt signalling is one of the key pathways regulating numerous important processes 

during development and adult tissue maintenance. Wnt proteins act as morphogens 

originating from a Wnt source forming a gradient in the responding tissues to allow pattern 

formation. The exact mechanism how Wnt proteins are distributed to form gradients is still 

poorly understood. Several specific components that are required for Wnt secretion have 

been identified in Drosophila. However, live imaging of Wnt spreading mechanisms is still 

missing and very little is known about the controlled secretion and transport of Wnt proteins 

in vertebrates. During my thesis, I analysed in detail how Wnts are distributed to form a 

gradient. On the one hand I focused on the establishment of an in vitro cell-communication 

chip, to study spreading of signalling Wnt molecules by diffusion. By the use of confocal laser 

scanning microscopy live imaging I showed that a fluorescently labelled Wnt8a was able to 

spread far away from the source and to activate the pathway in responding cells without the 

need of cell-cell-contact. On the other hand, I analysed another way of Wnt distribution as 

diffusion might not be the most appropriate way to form a Wnt gradient in a controlled way in 

a developing embryo. Recently, Sonic hedgehog (Shh) has been shown to be transported via 

cytonemes, thin actin positive membrane protrusions, in the chick limb bud. In zebrafish, long 

filopodia can be observed during gastrulation. However, the function of these protrusions is 

unknown. 

In my thesis I analysed in detail the transport of Wnt proteins via cellular protrusions 

in zebrafish embryos. My results demonstrate that Wnt transport via a filopodia-based 

system is essential during early zebrafish gastrulation. High-resolution analyses of zebrafish 

embryos at blastula stages showed thin cellular protrusions with Wnt8a localised on their tip. 

These Wnt8-positive filopodia were able to activate the Wnt pathway at the plasma 

membrane of the receiving cells. Furthermore, my results show that Cdc42 is a key regulator 

of these filopodia mediated Wnt8a transport. An alteration of filopodia formation, e.g. by 

addressing the function of Cdc42, affected Wnt signalling in the responding tissue and had 

drastic effects on Wnt gradient formation and tissue patterning in the developing zebrafish 

embryos. A numerical simulation, considering all required parameters of a filopodia based 

Wnt transport, was used to confirm that filopodia can indeed control Wnt gradient formation 

during gastrulation. Altogether my work shows that besides diffusion, Wnt proteins can be 

distributed via a Cdc42 dependent, filopodia based spreading mechanism. This contact-

mediated dispersion is necessary to direct Wnt8a propagation in the gastrulating zebrafish 

embryo. These Wnt8a positive filopodia are able to induce active ligand-receptor complexes 

- so-called signalosomes - in the receiving neighbouring cells, the first step in Wnt signalling 
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transduction. This mechanism of Wnt transport allows a fast and controlled exchange of 

positional information in a highly migratory pool of cells such as the gastrulating zebrafish 

embryo. 
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Summary 
 

The development of highly complex multicellular organisms originating from one 

single cell is one of the most fascinating events in biology. From this point of view, 

embryogenesis and more globally development involves numerous cellular, molecular and 

biochemical processes. Cells have to grow, divide, proliferate and differentiate to various cell 

types, which then have to be organised into specific tissues. Furthermore, tissues have to be 

arranged into organs, which by themselves are then part of organ systems that give rise to 

functional organisms.  

The first step in understanding embryonic development, and how complete organisms 

can derive from single cells was the discovery of inducing signals, which are necessary for 

cells to start the differentiation towards a certain fate (Harmon Lewis, 1904; Spemann and 

Mangold, 1924). The group of cells able to orchestrate the differentiation of the surrounding 

tissue, by inducing a specific fate, was defined by Spemann as organizer. The instructive 

cues that are released by the organizer are signalling molecules, called morphogens (Turing, 

1952). 

Morphogens are spreading from one cell and they can reach the receiving cells in 

autocrine, paracrine or endocrine ways. The reception of these morphogens by their 

corresponding receptors induces intracellular signalling cascades that finally change the 

gene expression profile and consequently control cell fate. Morphogens ensure accurate 

coordination of growth and specification of precursor cells during embryonic development, 

mainly by the formation of gradients. 

Therefore, it is important that specific morphogens reach the corresponding receiving 

cells in a concentration and time dependent manner to determine cell fate during 

embryogenesis. Hence, the release of these molecules and their signalling range has to be 

tightly regulated.  

The mechanisms of this regulation are still under investigation and a lot of open 

questions remain to be answered. One fundamental question is how morphogens can spread 

in a controlled way from one cell to the other. 

A major class of those morphogens are Wnt proteins. Wnt proteins are important for 

tissue patterning, regulation of cell adhesion and tissue differentiation (Clevers, 2006). A 

good example for its paracrine activity as a morphogen has been shown during early neural 

development such as the development of the thalamus (Hagemann and Scholpp, 2012; 

Mattes et al., 2012; Peukert et al., 2011). Thus, Wnts are essential for embryogenesis, tissue 

homeostasis and regeneration. A deregulation in their signalling pathway causes birth 

defects, severe degenerative diseases and cancer. Wnts are lipid-modified glycoproteins that 
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act as paracrine signals directing cell proliferation, cell polarity and cell fate determination 

and exhibit short- and long range signalling properties in a concentration gradient field. In 

order to propagate, Wnts need to spread several cell diameters away from their source of 

production. Due to their lipid modifications Wnts are highly hydrophobic, and there these 

proteins are in need of special trafficking mechanisms for their spreading. How Wnt is 

distributed in a vertebrate tissue to exert its functions over tenth of micrometers is unclear to 

date.  

In my thesis I investigated propagation mechanisms for Wnt in a vertebrate tissue. 

First, I established a cell communication chip to analyze paracrine signalling between two 

clearly separated cell populations (Efremov et al., 2013). I found that Wnt is able to signal 

over a distance of tenth of micrometers. High-resolution microscopy revealed that besides 

free Wnt, Wnt is localised to tips of cell protrusions in order to contact and activate the Wnt 

signalling cascade in neighbouring cells. To this end, I studied propagation mechanisms for 

Wnt in a vertebrate tissue, more specifically in the neural plate during zebrafish gastrulation. I 

showed that a filopodia based distribution mechanism is the main propagation mechanism 

for Wnt8a during neural plate patterning in zebrafish (Stanganello et al., 2015).
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1. Introduction 
 

1.1 Morphogens and Organizers 

1.1.1 General introduction  

During embryogenesis all multicellular organisms face the big challenge of 

developing from a single cell to a complex structure that characterise an adult. This is one of 

the most fascinating biological processes and scientists have made a big effort in trying to 

understand the mechanisms regulating the formation of the three dimensional structure of 

adult organisms. Important cellular processes like cell division, cell-cell communication, cell 

migration and cell differentiation are playing a fundamental role during embryogenesis. The 

fine-tuning of all this mechanisms is still under investigation and a lot of open questions 

remain to be answered. One of the most puzzling questions is how one cell can give rise to 

the all sets of different daughter cells each one with its different peculiarities. In this context 

morphogens, like Wnt proteins, are major players with their fundamental role in the 

coordination of growth and specification of precursor cells during embryonic growth. 

Morphogens are secreted by signalling centres and from there they spread in the 

surrounding tissue controlling cell fate. 

1.1.2 The concept of organizers 

One of the first steps during vertebrate development is the establishment of the 

embryonic body plan. This process has been investigated in depth and it has been shown to 

be dependent from organising centres. The morphogenetic and inductive properties of the 

organizers can establish the vertebrate body plan. The primary organising center in the 

embryo is established by the localisation of maternal determinants to the dorsal vegetal cells 

in the embryo and it has been named as Nieuwkoop centre (Rowning et al., 1997; Vincent et 

al., 1986). This centre is then inducing a second organizer known as Spemann organizer. 

Hans Spemann and Hilde Mangold found that transplanting the dorsal pole of a gastrula frog 

embryo to the ventral side of a host embryo leads to the formation of a second body axis 

(Spemann and Mangold, 1924). The Spemann organizer provides signals that dorsalise the 

mesoderm, induce convergent-extension movements in the ectoderm and the mesoderm 

and specify the neuroectoderm (Doniach et al., 1992; Keller et al., 1992; Smith and Slack, 

1983; Spemann and Mangold, 1924). For the discovery of the organizer effect in embryonic 

development Hans Spemann was awarded the Nobel Prize in 1935. After this discovery, 

organizers were identified in many other vertebrates, like chicken, zebrafish and mouse 
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suggesting that, despite important differences in the developmental process itself, the 

organizer is a conserved character of vertebrate development (reviewed in Joubin and Stern, 

2001). Already before Spemann, Hensen discovered a homologous structure in birds, which 

has been consequently named the Hensen’s Node. In 1932 Waddington could show that this 

node had the same properties of the Spemann organizer (Waddington, 1932). By performing 

transplantation experiments, a similar region was isolated also in mouse; here it was defined 

as the Node (Beddington, 1994). In zebrafish, the embryonic shield has been proposed to 

function as homologous organizer. Grafting experiments, where the embryonic shield was 

transplanted ectopically in other organisms, demonstrated that the shield induce the 

formation of an ectopic body axis, composed from both graft and host cells (Luther, 1937; 

Oppenheimer, 1936). Transplantation of cells from the dorsal germ ring to the ventral germ 

ring in zebrafish embryo has confirmed the inductive capacity of cells in the embryonic shield 

by inducing a Siamese twin embryo (Ho, 1992). The organisation of the embryo follows the 

inductive capacity of the organizer, which recruit and organise neighbouring cells, instructs 

their positional fate, anteroposterior (AP) and dorsoventral (DV), and control their 

differentiation (neural tissue, notochord and somites). The organizer was defined as a 

complex signalling centre with different parts expressing different genes, having different 

inductive capacities and giving rise to different structures. 

1.1.3 Local organizer during neural development 

During embryogenesis the primordial neuroepithelium subdivides into distinct regions: 

forebrain, midbrain and hindbrain. This compartmentalisation of the vertebrate central 

nervous system involves the activity of local signalling centres and such signalling centres 

have been identified as secondary or local organizers (Raible and Brand, 2004; Scholpp and 

Brand, 2003; Wilson and Houart, 2004). These organizers include the anterior neural ridge in 

the vertebrate forebrain (Houart et al., 1998; Shimamura and Rubenstein, 1997), the zona 

limitans intrathalamica (Kiecker and Lumsden, 2004; Scholpp et al., 2006) and the midbrain-

hindbrain-boundary (MHB) organizer also defined as isthmic organizer (IsO). The MHB 

organizer is located between the midbrain and the hindbrain and is necessary (Cowan and 

Finger, 1982; Nieuwkoop, 1989) and sufficient for the development of mesencephalic and 

metencephalic structures. Hereby, the MHB organizer induces and maintains positional cell 

identities in the mid- and hindbrain. The position of the MHB is set by Wnt8a activity (Rhinn 

et al., 2005). In several vertebrates, including zebrafish, the position of the future MHB in the 

neuro-ectoderm is marked by the interface between cells expressing vertebrate homologue 

of Drosophila orthodenticle homeobox (otx) and gastrulation brain homeobox (gbx) 

transcription factors (Broccoli et al., 1999; Millet et al., 1999; Rhinn et al., 2003; Wassarman 
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et al., 1997). In zebrafish, otx2 is expressed in the prospective fore- and midbrain and gbx1 

in the future hindbrain. Double knockout of otx1/gbx2 revealed that both markers are not 

required for setting the MHB but they sharpen it (Li and Joyner, 2001; Su et al., 2014).  

1.1.4 Morphogens  

 The discovery of organizers, suggested that morphogenesis results from the action of 

signals that are released from localised groups of cells (“organising centres”) to induce the 

differentiation of the cells around them (Robertis, 2006). Charles Manning Child proposed 

that these patterning “signals” represent metabolic gradients (Child, 1941), but the 

mechanisms of their formation, regulation, and translation into pattern remained elusive. In 

1952 Alan Turing defined the signal that emanates from a specific set of cells, forming a 

concentration gradient and thereby determining the fate of the cells along this gradient, as 

morphogen (Turing, 1952). Turing predicted the chemical mechanisms at the base of pattern 

formation in his reaction–diffusion model. With this model he showed that two or more 

morphogens with slightly different diffusion properties that react by auto- and cross-

catalysing or by inhibiting their production, can generate spatial patterns of morphogen 

concentrations (Wartlick et al., 2009). Even after Turing’s model the idea of how morphogens 

are released from localised sources (“organizers”) in order to form concentration gradients 

was still not fully understood. Lewis Wolpert complemented this idea with his model for 

generation of positional information (Wolpert, 1969). Wolpert proposed that a “positional 

value” is assigned to each cell within a field. This positional value is based on the different 

concentrations of inductive signals to which the cells are exposed and cells with different 

positional values adopt different fates. The Wolpert model became famous as the “French 

Flag model” where the cell identity, corresponding to each color of the French flag, was 

determined by a specific threshold of the morphogen gradient (see Fig. 1). The first 

biochemically identified morphogen was Bicoid, required for anterior specification in 

Drosophila (Driever and Nüsslein-Volhard, 1988; Nüsslein-Volhard and Wieschaus, 1980; 

Nüsslein-Volhard et al., 1987). For the discovery of the patterning genes Christiane Nüsslein-

Volhard together with Eric Wieschaus were awarded the Nobel Price in 1995. After this 

discovery, different other molecules have been identified to act as morphogens. Some 

examples of morphogens are members of the Fibroblast growth factor (Fgf), Hedgehog (Hh) 

and Wnt families of secreted proteins. Morphogens act on a micrometer scale from the 

source and the way they are distributed is still an open question and may vary between the 

organisms, stage of development and intrinsic characteristics of the morphogen itself. 
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Figure 1: French Flag Model 

Left) Movement of morphogen from the source cell (purple) to the surrounding cells. Morphogens influence cell 

differentiation in a concentration dependent manner. Each color of the French flag corresponds to a different cell 

fate. Right) Example of the influence of the morphogen gradient on the patterning of the zebrafish brain. A high 

Wnt concentration gives rise to the hindbrain (a), a medium concentration of Wnt to the midbrain (b) and a low 

concentration of Wnt to the forebrain (c). 

 

1.1.5 Gradient formation 

Although the concept of morphogen signalling, first formulated by Turing (Turing, 

1952), and modified by Wolpert (Wolpert, 1969), has pervaded the field of developmental 

biology, the mechanisms of spreading for each particular morphogen molecule is still under 

debate (Dubois et al., 2001; González-Gaitán, 2003). 

 According to the diffusion-reaction model of Turing morphogens spread at different 

diffusion rates, these rates are strictly related to the intrinsic characteristics of the molecules 

itself, like the molecular weight, the charge and the diffusion substrate and any physical 

barrier like, for example, the cell membrane (Turing, 1952). According to this model, the 

gradient shape would depend on the substance secretion and its diffusion rate. This model 

would lead at a certain point to a saturation of all the cells with the morphogen (Wolpert, 

1969). Thus, the simple diffusion model of secretion away from the source cannot explain the 

formation and maintenance of morphogen gradients (Erickson, 2011). 

 An explanation to overcome this problem was the action of an “inhibitor” opposite to 

an “activator” to shape the gradient. In this case and additional variable was controlling the 

gradient formation: the concentration of the inhibitor (Wolpert, 1969). Gierer and Meinhardt 

then implemented the theory of pattern formation by an activator-inhibitor interaction in 1972 

(Gierer and Meinhardt, 1972). They show that primary patterning formation is possible if a 

locally restricted self-enhancing reaction is coupled with an antagonistic reaction that acts on 
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a longer range (Meinhardt, 2008, 2009). Several mechanisms have been proposed to be 

involved in gradient formation and will be described in the following paragraph. 

1.1.6 Mechanism of gradient formation through transport of signalling 
molecules 

To understand pattern formation, several quantitative models have been developed 

(Müller et al., 2013; Wartlick et al., 2009). An early model, describing that morphogens are 

produced by source cells and degraded by “sink” cells at a distance, in order to produce a 

linear gradient during development was postulated by Francis Crick (Crick, 1970). In this 

model, morphogens are produced by a source; they traverse the target tissues and get then 

degraded. So the gradient can be defined by the changes in morphogen concentrations 

within a certain time and space. The point in which the gradient remains stable is defined as 

a steady state. However, this definition has been questioned by recent modeling experiments 

on decapentaplegic (Dpp) morphogen gradients, proposing that morphogen gradients are 

instable per se (Fried and Iber, 2014). These instable gradients are important to be adapted 

to altering environments such as growing tissues. Several cellular processes can participate 

in gradient formation, for example extracellular diffusion, receptor binding, internalisation, 

recycling and intra- and extra-cellular degradation of the morphogens. Each of this process 

can be involved in particular transport mechanisms that can vary for different morphogens 

and in different tissues. The simplest mechanism of patterning is the diffusion model; 

according to this model the morphogen spreads via random walk and the change in 

concentration depends on the concentration itself, the space and is proportional to the 

diffusion coefficient. Here, the morphogen is diluted as it spreads away from the source 

thereby forming a gradient. In this model there is no depletion of molecules, so the 

concentration in tissues constantly increases. However, in this way just temporary gradients 

can be formed (Coppey et al., 2007).  

In order to create a stable gradient, a steady state level of the morphogen 

concentration in the extracellular space needs to be reached. This requires degradation of 

the morphogens, also defined as clearance. One model considering that morphogens can be 

degraded in the extracellular space to shape a gradient was proposed by Gurdon (Gurdon et 

al., 1994). Unlike from the “sink” theory (see above), that describes a localised degradation 

of the morphogens; in the model of Gurdon morphogens are degraded everywhere in the 

extracellular space with a fix degradation rate. This kind of degradation is linear and 

therefore the model related to it is the diffusion and linear degradation model. In this model 

exponential steady state gradients are formed. Here the amplitude of the gradient, defined as 

the concentration at the source boundary, depends on the flux of molecules across the 

boundary, on the diffusion rate and on the degradation of the morphogens in the extracellular 
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space. The range of the gradient is defined as the position at which the morphogen 

concentration decreases below any detection level (Gregor et al., 2007; Kicheva et al., 

2007).  

However, in case regulatory feedback mechanisms exist, the morphogen degradation 

would depend on the morphogen concentration. In this case, the degradation would be 

nonlinear. The model explaining this scenario is called diffusion and non-linear degradation 

model, in which the degradation rate is directly proportional to the concentration (Dubois et 

al., 2001; Eldar et al., 2003).  

Since tissues are densely packed with cells, secreted morphogens might diffuse not 

just free in the extracellular space. The hindered diffusion model takes also into account that 

the extracellular diffusion of the morphogens might be limited by obstacles (tortuosity-

mediated hindrance) and by transient binding interactions (binding-mediated hindrance). Also 

in this context the morphogens move by random walks but here the random walks are 

restricted by the presence of cells and by extracellular interactions (Baeg et al., 2004; Thorne 

et al., 2008; Wang et al., 2008). In this model, the diffusion coefficient is much lower than in 

the free diffusion models. An example of hindered diffusion is the blocking receptors model 

that proposes that the morphogens spread extracellularly and their dispersal is restricted by 

the binding to their receptors at the plasma membrane of the receiving cells. The receptor is 

internalised and recycled and if this receptor uptake is blocked, the receptor accumulates at 

the plasma membrane, titrates out the moving of the morphogen and reduces its range of 

dispersal (González-Gaitán, 2003). A model combining the hindered diffusion with the 

diffusion degradation model is the restrictive clearance model; here the morphogen spreads 

by free diffusion and is partially taken up by cells. This cellular uptake ensures the access of 

the morphogen to the intracellular lysosomal degradative compartment, which restricts the 

range of the gradient (Scholpp and Brand, 2004). An extension of this mechanism is the 

facilitated diffusion and shuttling model where the morphogen movement is enhanced by 

interaction with positive regulators of the movement itself. Morphogens in this scenario are 

relatively immobile till they bind to a positive diffusion regulator that allows morphogens to 

move over a longer distance (Ben-Zvi et al., 2011; Sawala et al., 2012; Wang et al., 2008). In 

this case it is not possible to explain the gradient with a simple diffusion equation since it 

involves forces. Moreover, the relation between transported molecules and the time of 

transport is not linear and leads to the formation of an exponential gradient (Hornung et al., 

2005).  

Even though by definition morphogens are secreted molecules, it has been shown 

that morphogen gradients can be generated by cell growth and cell division (Dubrulle and 
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Pourquié, 2004). Here, the patterning is due to dilution of the morphogens by cell divisions 

and is known as cell lineage transport model (Baker and Maini, 2007). 

 

Figure 2: Five models of morphogen propagation.  

The morphogen (purple dots) can be distributed from the source cell (middle, purple) to outlying cells by diffusion; 

serial transfer (transcytosis); facilitated diffusion; via cytonemes or cell lineage transfer. 

 

Morphogens can also be transported by cell-based mechanisms, moving through 

cells (transcytosis) or along cellular extension (cytonemes). This transport would lead to the 

formation of either intracellular or extracellular gradients, that would provide a more 

controlled movement towards target cells. The transcytosis model implicates that 

morphogens bind to their receptors. Subsequently, they are taken up by endocytosis and 

later released again from cells by exocytosis (Bollenbach et al., 2007; Entchev et al., 2000; 

Gallet et al., 2008; Kicheva et al., 2012; Kruse et al., 2004). This model has also been 

defined as planar transcytosis, where the uptake and the release of the morphogen from the 

receiving cells allow the morphogen to move far away from the source by a controlled 

transport to the neighbouring cell (Entchev et al., 2000). In the cytoneme model, the 

morphogen is directly delivered to the responding tissues to form a concentration gradient. 

Morphogen transport from cell to cell has been first proposed by the Kornberg laboratory, 

reporting that morphogen-receiving cells can form long actin-based extensions, called 

cytonemes, which directly contact morphogen-secreting cells. Cytonemes are specialised 

filopodia involved in the transport of signalling molecules (Ramírez-Weber and Kornberg, 

1999, 2000). This new way of spreading has recently been defined as a flux-limited 
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spreading (Verbeni et al., 2013). An overview of the different transport models is shown in 

figure 2. How morphogens move through the field, whether they diffuse or they are actively 

transported, whether they travel in the extracellular space or from cell to cell and how they 

form a gradient in target tissues is still not clear. Several models have been proposed but 

each of them is valid in particular circumstances and not generally recognised. 

1.1.7 Examples of transport mechanisms for morphogens  

The creation of morphogen gradients is happening in three fundamental steps: the 

secretion, the transport and the endocytosis. 

1.1.7.1 Secretion and transport 

The secretion process differs for each morphogen and is depending on the nature of 

the molecule. Diffusion is a typical spreading mechanism for members of the Fgf protein 

family. It has been reported that Fgf8 acts as a classical freely diffusible morphogen 

contributing to the pattern of the anteroposterior axis in zebrafish embryos (Yu et al., 2009), 

as well as the neocortex in mice (Toyoda et al., 2010). A freely diffusible cholesterol modified 

form of Sonic Hedgehog (Shh) was found to multimerise with itself while remaining 

biologically active (Chen et al., 2004). By this, Shh was shown to form a gradient across the 

anterior-posterior axis of the chick limb (Zeng et al., 2001). Furthermore, it has been shown 

that the gradient of Dpp is created by free extracellular diffusion and not by transcytosis like it 

was previously reported (Zhou et al., 2012). Additionally, it was shown that the distribution of 

Fgfs can be positively or negatively regulated by Heparan Sulfate Proteoglycans (HSPGs) by 

either storing and enriching the Fgf proteins or by restricting their diffusion (Matsuo and 

Kimura-Yoshida, 2013). Furthermore, it was reported that extracellular proteins that bind to 

the morphogens are able to mediate their transport, functioning as a shuttling mechanisms. 

In Xenopus for example, the morphogen Bone morphogenetic protein (BMP) that is initially 

expressed both ventrally and dorsally in the embryo, forms a complex with its antagonist 

Chordin that is secreted on the dorsal site. In this case Chordin is not only inhibiting BMPs 

but also important for their transport, thereby reshaping the BMP gradient in the developing 

embryo (Ben-Zvi et al., 2011; Lewis, 2008). Another example of facilitated diffusion is the 

release on exosomes. The Notch ligand, Delta-like 4 (Dll4), was observed to be incorporated 

into exosomes, which shuttle to other endothelial cells in order to inhibit Notch signalling 

(Sheldon et al., 2010). A shuttle alternative for lipophilic morphogens might be represented 

by extracellular vesicles (defined also as EVs), which could be loaded with morphogens and 

act as shuttles to allow long-range distribution (Greco et al., 2001). EVs are a heterogeneous 

class of membrane-surrounded vesicles, which include exosomes, microvescicles and 

apoptotic bodies (György et al., 2011). Exosomes are small membrane vesicles secreted by 



 
9 

 

different cell types as a result of the fusion of multivesicular late endosomes or lysosomes 

with the plasma membrane of the producing cells (Denzer et al., 2000). They can have a 

broad range of function depending from their origin including the transport of signalling 

molecules.  

In the last period more and more evidences about the possibility of morphogens 

spreading through cell extension have been reported (Gradilla and Guerrero, 2013a; 

Kornberg and Roy, 2014). The first results indicating morphogen transport by cytonemes 

were obtained from studies in Drosophila. In the wing imaginal disc it was observed that the 

air sac precursor extend cytoneme-like filopodia towards the Fgf producing cells (Sato and 

Kornberg, 2002). Moreover, in the wing disc, apical cytonemes are known to be oriented 

towards the source of the bone morphogenetic protein Dpp (Hsiung et al., 2005). 

Furthermore, Delta promoted long-range lateral inhibition of pro-neural fate can be mediated 

by filopodia (De Joussineau et al., 2003). In addition, cytonemes expressing the EGF-

receptor have been reported to extend towards the EGF source in the eye disc (Roy et al., 

2011). More recently, cytonemes were reported as a new way to transport Hedgehog from 

the producing cells to the responding tissue in the limb bud of chicken embryos (Sanders et 

al., 2013). Furthermore, cytonemes have been shown to be required for the Hedgehog 

gradient formation in Drosophila epithelial cells (Bischoff et al., 2013). In the zebrafish 

embryo intercellular bridges join epiblast cells between each other, reaching several cell 

diameters in length and spanning across different regions of the developing embryos 

(Caneparo et al., 2011). Most of these intercellular bridges are formed in pre-gastrula stages 

and persist during gastrulation. They can mediate the transfer of proteins between distant 

cells opening new possibilities for cell-cell communication during gastrulation, with 

implications for modeling, cellular mechanics, and morphogenetic signalling. Other cell 

protrusions with a potential to transmit signalling factors were defined as tunnelling 

nanotubes which have been observed in many cell types in vitro and recently also in vivo in 

developing embryos. However, whether these structures have a function in morphogen 

spreading is not yet clear (Gerdes et al., 2013).  

1.1.7.2 Endocytosis 

In addition to the morphogen transport, the degradation of morphogens by 

internalisation is one of the most important steps during gradient formation. This process has 

been termed restrictive clearance and has been shown for various morphogens such as i.e. 

Fgf8 (Scholpp and Brand, 2004). Endocytosis is a process involving invagination of the 

plasma membrane, resulting in a pit-like or bud structure; this structure is pinched from the 

membrane to form an intracellular vesicle (Sever, 2002). Vesicle formation is dependent on 

protein coats such as clathrin, which are recruited to the plasma membrane and are 
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responsible for the deformation of the membrane to form a bud (Kural and Kirchhausen, 

2012). The budding of vesicles is dependent on dynamin (Hinshaw and Schmid, 1995). Once 

the vesicle is formed it is cycled to early endosome, where it will be sorted to lysosomes for 

degradation or to re-cycling endosomes for re-secretion. A family of small GTPase, the Ras-

related in brain (Rab) family of proteins, is controlling this sorting: Rab4/11 targets vesicles to 

the recycling pathway, Rab7 targets vesicles to the lysosome and Rab5 is controlling the 

movement to the early endosome (Zerial and McBride, 2001). By the use of fusion proteins 

or antibody staining it has been shown that morphogens localise not only in the extracellular 

space but also in intracellular vesicle and at the plasma membrane (Entchev et al., 2000; 

Lecuit and Cohen, 1998). Mutation at different step of the clathrin-mediated endocytosis 

suggested that this process is important for morphogen internalisation (Rives et al., 2006) 

and its deregulation can influence signalling range (Rengarajan et al., 2014). 

1.2 Wg/Wnt signalling 
The name 'Wnt' is a combination of 'wingless' and 'int-1' and reflects the discovery of 

the gene encoding the Wnt protein. In mouse the gene Int-1 was characterised as a proto-

oncogene responsible for virally induced mammary tumours (Nusse and Varmus, 1982) 

whereas in Drosophila wingless was identified as a segment polarity gene (Baker, 1987; 

Cabrera et al., 1987; Rijsewijk et al., 1987; Sharma and Chopra, 1976). The two genes were 

discovered to be homologous and categorised under the same gene family called Wnt (the 

Wg-type MMTV integration site) (Nusse et al., 1991). In the following years, in human 19 

different Wnt proteins have been described.  

The Wg/Wnt family of signalling proteins is involved in multiple developmental events 

during embryogenesis and adult tissue homeostasis in invertebrates and vertebrates. During 

embryonic development Wg/Wnt regulates body axis formation, tissue patterning as well as 

cell proliferation and migration (Logan and Nusse, 2004). In adult tissue Wg/Wnt signalling is 

important for tissue homeostasis and stem cell maintenance and differentiation. In all of 

these scenarios, Wnt proteins function as signalling molecules over a distance to induce 

cellular responses in a concentration dependent manner, therefore Wg/Wnt proteins belong 

to the class of morphogen proteins.  
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1.2.1 Wnt/β-catenin signalling in development  

A good example of the morphogenetic activity of Wnt is its function during neural 

development in vertebrates. The vertebrate central nervous system (CNS) is subdivided 

along the anteroposterior axis in forebrain, midbrain, hindbrain and spinal cord. These 

structures are originating from the embryonic neural plate. Wnt molecules are fundamental in 

the establishment of this regionalisation by suppressing anterior neural identity in a dose 

dependent manner (Kiecker and Niehrs, 2001; Nordström et al., 2002; Rhinn et al., 2005). 

Lots of studies report the importance of Wnt as a posteriorising factor; for example over-

expression of Wnt8a causes the loss of forebrain structures in Xenopus laevis embryos by 

respecifying anterior neural tissue as posterior (Fredieu et al., 1997). In zebrafish the A/P 

patterning is orchestrated by cells at the margin (Woo, 1997). These cells secrete Wnt8a, 

required for proper neural posteriorisation (Erter et al., 2001; Lekven et al., 2001). Injection of 

Wnt8a mRNA induces the posterior hindbrain marker, gbx1 and represses the anterior 

forebrain/midbrain marker otx2, in a dose dependent manner (Rhinn et al., 2005). A 

posteriorising role for Wnts has also been suggested from studies on transgenic mice 

expressing Wnt8a (Pöpperl et al., 1997). The function of Wnt within the neural plate is strictly 

correlated to the formation of a morphogenic gradient and the differences in ligand 

concentrations are then responsible of the compartimentalisation along the rostral-caudal 

axis (Bang et al., 1999; Dorsky et al., 2003). The inactivation of the Wnt repressors T-cell 

factor (TCF3, in the zebrafish headless) (Kim et al., 2000) and Axis inhibitor 1 (Axin1) in 

masterblind mutants, results in increased Wnt signalling in the mutants and leads to 

microcephalic embryos (Heisenberg et al., 2001).  

In the anterior ectoderm and in the anterior axial mesoderm of a developing embryo, 

Wnt activity is antagonised by different Wnt repressors (Glinka et al., 1997; Michiue et al., 

2004). For example the secreted Wnt inhibitor Dickkopf1 (Dkk1) in Xenopus (Kazanskaya et 

al., 2000) and in zebrafish is controlling the pattern of the anterior neural plate (Shinya et al., 

2000). Bozokok, a homeobox gene, limits posteriorisation of neuroectoderm in the late 

gastrula of zebrafish embryos, by negative regulation of Wnt signalling (Fekany-Lee et al., 

2000). Local antagonism of Wnt activity within the anterior ectoderm is required to establish 

the telencephalon, and it has been shown to be mediated by a secreted Frizzled-related 

protein, Tlc (Houart et al., 2002a).  

Wnt/β-catenin signalling is also implicated in mesoderm specification; its down-

regulation causes severe defects in the formation of the primitive streak and consequently 

loss of the mesoderm (Huelsken et al., 2000). The expression of a dominant negative Wnt 

blocks the normal expression of mesodermal genes (Hoppler et al., 1996). It has been shown 

that endogenous Wnt8a controls the response of lateral mesodermal cells to dorsalising 
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signals from the organizer, thus contributing to the graded nature of the final body pattern 

(Christian and Moon, 1993). Furthermore, Wnt signalling is involved in somite formation 

(Aulehla et al., 2003). Somites are bilaterally paired blocks of mesoderm that are formed 

along the anteroposterior axis in developing embryos.  

Besides its function in embryonic patterning Wnt is implicated in several other 

developmental processes, like tail bud- (Aulehla et al., 2003; Takada et al., 1994) and neural 

crest formation (Ikeya et al., 1997), as well as in limb development (Galceran et al., 1999). 

1.2.2 Wnt/β−catenin signalling in disease  

Wnt/β-catenin signalling is fundamental in embryonic development and tissue 

homeostasis when its activity occurs in a physiological range, at the right place and at the 

right time. However, misregulation of Wnt signalling causes a variety of abnormalities, 

degenerative and metabolic diseases and cancer (reviewed in Clever and Nusse, 2012; 

Logan and Nusse, 2004).  

Developmental disorders occur when various Wnt effectors are disregulated. For 

example, mutations causing the inactivation of Frizzled-9 (Fz-9), are found in patients with 

the Williams-syndrome, a neurodevelopmental disorder reflected in mental disability, 

developmental delay and heart defect (Wang et al., 1999). Mutations in Fz-receptors cause 

eye defects; loss of function of Fz-4 is implicated in familial exudative vitreoretinopathy, a 

genetic disorder affecting the growth and development of blood vessels in the retina 

(Robitaille et al., 2002; Toomes et al., 2004). The same vitreoretinopathy can be caused by a 

mutation in Low density lipoprotein receptor related proteins 5 (LRP5) gene (Drenser and 

Trese, 2007). Alteration of the Wnt signalling pathway gives also rise to a broad spectrum of 

degenerative disease. An example of this is the loss of function (LoF) mutation of LRP6 that 

can be linked to early coronary disease and osteoporosis (Mani et al., 2007). Down 

regulation of Wnt can furthermore cause metabolic disease; loss of function mutations of Wnt 

genes are linked to obesity (Wnt10b) (Christodoulides et al., 2006), the Fuhrmann syndrome 

(Wnt7a) (Al-Qattan et al., 2013) and type2 diabetes (Wnt5b) (Kanazawa et al., 2004). Also 

gain of function mutations of TCF4 were found to be implicated in type2 diabetes (Grant et 

al., 2006). Constitutive activation of the Wnt pathway lead to cancer, for example mutations 

in Axin2 confer a predisposition to colorectal cancer (Lammi et al., 2004). Also loss of 

function mutations in Axin1 have been found in hepatocellular carcinomas (Satoh et al., 

2000). Mutations in the adenomatous polyposis (APC) gene has been reported to be the 

main cause of familial adenomatous polyposis (FAP), an autosomal, dominantly inherited 

disease in which patients display elevated number of polyps in the colon and rectum (Kinzler 

et al., 1991; Nishisho et al., 1991). 
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1.2.3 Molecular aspects of Wnt signalling 

To exert all functions described above, Wnt proteins are palmitoylated secreted from 

localised sources and forming a gradient in the surrounding tissue. By this, they activate 

different signalling pathways that finally change the transcriptional output of the cell. To 

achieve this, they act as ligands and activate signalling cascades by binding to specific 

receptors on the cell surface of the receiving cells. Recently, the structure of Wnt together 

with its receptor Fz has been crystallised for the first time after 30 years of research on Wnt 

signalling (Janda et al., 2012). Wnt proteins are approximately 40 kDa in size and display a 

characteristic distribution of 22 cysteine residues. These cysteine residues form intracellular 

disulfide bonds, which are thought to be required for proper protein folding (Mason et al., 

1992; Tanaka et al., 2000). Other common features of Wnts are the secretion signal 

sequence, the highly charged amino acid (aa) residues and several potential glycosylation 

sites (Papkoff, 1994; Smolich et al., 1993). Due to their lipid modifications Wnts are 

hydrophobic molecules; the lipid modifications have been shown to be required for Wnt 

secretion and for an efficient signalling (Franch-Marro et al., 2008; Kurayoshi et al., 2007; 

Willert et al., 2003). For example, the palmitoylation of a conserved serine has been shown 

to be essential for the activity of Wnts (Schulte et al., 2005; Willert et al., 2003). The 

importance of the lipid modifications for signalling was strengthened by the discovery that 

one of the two domains of Wnt8a that interact with the main Wnt receptor Fz, contains a 

palmitoleic acid lipid, which projects into the binding pocket of the Fz-receptor (Janda et al., 

2012).  

Wnt signalling is evolutionarily conserved across species, present in all multicellular 

organisms, from hydra to human (Willert et al., 2003). During adulthood it is responsible for 

stem cell maintenance and in this way it regulates tissue homeostasis (reviewed in Roel 

Nusse, 2008). Furthermore, it is known that Wnt pathway deregulation correlates with cancer 

formation and diseases such as diabetes and neurodegeneration (reviewed in Clevers & 

Nusse, 2012). By binding to different receptors Wnt protein are activating different 

downstream pathways. For long time this pathways have been classified as either canonical 

(β-catenin dependent) or non-canonical (independent from β-catenin). However, it has been 

shown that depending on the cellular context Wnts, classified as canonical, can also induce 

non-canonical Wnt signalling and vice versa (reviewed in Mikels and Nusse 2006). For that 

reason Wnts cannot be rigorously subdivided according to the pathway they induce. 

However, it is shown that Wnt1, Wnt3a and Wnt8a are more commonly encountered in β-

catenin-dependent signalling, and Wnt5a and Wnt11 are predominantly involved in β-

catenin-independent signalling (reviewed in Niehrs, 2012). The hypothesis that Wnt 

signalling activity is dependent on the cellular context rather than on the Wnt protein 
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sequence is supported by the observations that a so-called non-canonical Wnt5a can act 

“canonically” by activating β-catenin signalling in a certain contexts dependent on the 

combination of Wnt receptors present on the cell (He et al., 1997).  

1.2.4 Wnt/β catenin signalling, the canonical pathway 

The first canonical Wnt protein identified was Wnt1. In the following years, other 

components of the Wnt signalling pathway were identified. These include the transmembrane 

receptor Fz (Bhanot et al., 1996) and its co-receptors LRP5/6 (Tamai et al., 2000; Wehrli et 

al., 2000) as well as the downstream effectors β-catenin (Drosophila Armadillo) (Peifer et al., 

1991), Dishevelled (Dvl, Drosophila Dsh) (Noordermeer et al., 1994; Sussman et al., 1994) 

and T cell factor/Lymphoid enhancer- binding factor (TCF/LEF, Drosophila Pangolin) 

(Behrens et al., 1996; Brunner et al., 1997; Molenaar et al., 1996). So far 10 different Fz-

receptors were identified in human; their size ranges from 500 – 700 aa and they show a 

sequence similarity of 50-75% (Huang and Klein, 2004). The N-terminal extracellular domain 

contains a cysteine rich domain (CRD) and a hydrophobic linker region (Wang et al., 1996). 

The CRD is necessary and sufficient to bind Wnt and consists of 125 aa with 10 conserved 

cysteine residues, that are forming disulfide bonds (Bhanot et al., 1996; Dann et al., 2001). 

Fz-receptors contain seven hydrophobic domains that are predicted to form transmembrane 

α-helices and an intracellular carboxyterminal domain of variable length. Notably, the 

intracellular domain varies among the Fz-family members (Wang et al., 1996). The only 

conserved motif within the intracellular domain is the KTXXXW-motif, separated from the 

seventh hydrophobic domain by two amino acids. Point mutations in any of these three 

conserved residues lead to alterations in the Wnt/β-catenin pathway. This suggest that this 

motif is essential for the activation of Wnt/β-catenin signalling (Umbhauer et al., 2000).  

1.2.5  Transduction of the Wnt/β-catenin pathway 

The β-catenin pathway exists in two states, the off state in the absence and the on 

state in the presence of Wnt ligands (Fig. 3). In the off state, the cytoplasmic level of the 

transcriptional regulator β-catenin is kept low in the cell due to a destruction complex that 

binds to β-catenin and triggers its proteasomal degradation. This complex contains the 

proteins glycogen synthase kinase-3 (GSK-3), Axin, adenomatous polyposis coli (APC), 

casein kinase-1γ (CK1γ) and Dvl. CK1γ phosphorylates β-catenin at a serine residue, which 

primes its subsequent phosphorylation through GSK-3 on N-terminal threonine and serine 

residues. The phosphorylation of β-catenin controls its ubiquitination via the F- box-

containing protein beta-Transducin repeat-Containing protein (β-TrCp), a component of the 

E3 ubiquitin ligase complex and this leads in turn to its degradation via the proteasome. In 
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the nucleus, transcription factors of the TCF/LEF family occupy Wnt target genes together 

with the transcriptional co-repressor groucho. By this the expression of Wnt target genes is 

inhibited.  

In the on state Wnt proteins are released from or presented on the producing cells and act on 

target cells by binding to the complex Fz/LRP. These receptors transduce an intracellular 

signal that leads to, the recruitment of component of the destruction complex to the 

membrane. In one model, Dvl is recruited to the activated Fz receptor and Axin associates 

with LRP6. In turn, β-TrCp dissociates from the destruction complex and β-catenin is no-

longer ubiquitinated (Li et al., 2012). Phosphorylated β-catenin is still bound to the complex 

and leads to an effective inactivation of the destruction complex by saturation. In a second 

model, dephosphorylation of Axin proteins leads to a conformational change of this scaffold 

protein, which leads then to an inactivation of GSK3 mediated phosphorylation of β-catenin 

(Kim et al., 2013). As a result of both models, newly synthesised cytosolic β-catenin is not 

degraded anymore and can accumulate in the cytoplasm. Subsequently, β-catenin 

translocates to the nucleus, replaces groucho from TCF/LEF transcription factors. Upon 

binding of β-catenin to TCF/LEFs other transcriptional co-activators are recruited, which 

activates the expression of Wnt target genes (Clevers and Nusse, 2012). Interestingly, Wnt 

signalling controls the expression of its own pathway components suggesting that feedback 

control is a key feature of this pathway. An example for this is Fz; in Drosophila it has been 

shown that Drosophila frizzled2 (Dfz2) is down regulated by Wingless (Wg); a process that 

may lead to limited level of Wnt signalling within the Dfz2 expressing cells and influence the 

signalling range by reducing the high-affinity receptor level. This mechanism may increase 

the diffusion of Wg (Cadigan et al., 1998). Another way by which Wnt signalling is controlling 

the Wg activity at the cell surface is by controlling the levels of LRP/Arrow and HSPG (Baeg 

et al., 2001; Wehrli et al., 2000). Another major Wnt target gene is Axin2 an important 

negative feedback regulator of Wnt signalling (Aulehla et al., 2003; Jho et al., 2002). As 

mentioned above one of the main functions of the Wnt pathway is to control cell proliferation. 

Thus, different Wnt knockout phenotypes can be mainly explained by loss of cell 

proliferation, like for example the defect in CNS expansion in Wnt1 mutants (Megason and 

McMahon, 2002). Consistently different cell cycle regulators have been found to be direct 

target of Wnt signalling; example of that are myc and cyclinD1 (He et al., 1998; Shtutman et 

al., 1999). 
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Figure 3: A simplified view of Wnt signalling.  

In the absence of Wnt, β-catenin is targeted for proteasomal degradation and TCF/LEF regulated gene 

transcription repressed by Groucho (left). Wnt binding to Fz-receptors together with LRP5/6 co-receptors prevents 

the degradation of β-catenin. Subsequently, β-catenin accumulates in the cytoplasm, translocates into the 

nucleus and activates TCF/LEF regulated gene transcription (right). 

 

1.2.6 Wnt β-catenin independent pathways 

Besides the canonical Wnt/β-catenin pathway, there are also other pathways known like the 

Wnt/JNK (c-Jun N-terminal kinase) or planar cell polarity (PCP) pathway and the 

Wnt/calcium pathway, which are also mediated by Fz-receptors (Adler, 2002; Veeman et al., 

2003). The exact mechanism of signal transduction mediated by Fz upon ligand binding is 

largely unknown, but there are increasing evidences that Fz can bind to heterotrimeric G-

proteins (Nichols et al., 2013) that mediate the downstream signalling (Liu et al., 2001, 1999, 

2005). These β-catenin independent pathways can be induced by “non-canonical” Wnts, 

such as Wnt5a and Wnt11 (Niehrs, 2012). The best-characterised non-canonical pathway is 

the PCP pathway, which regulates the polarity of epithelial cells within the plane of 

epithelium, for example the orientation of wing hairs and the organisation of ommatidia in the 

fly eye (Strutt, 2003). In PCP signalling, Fz receptors activate a cascade that involves small 

GTPases and Jun-N-terminal kinase. This pathway is also known as Wnt/JNK-signalling 

(Oishi et al., 2003). Wnt/JNK-signalling triggers the activation of the small phosphoprotein 

Dvl and downstream of this, the activation of rhoGTPases such as Ras homolog gene family 

A (RhoA), Ras-related C3 botulinum toxin substrate (Rac1) and Cell division control protein 

42 homolog (Cdc42). These GTPases induce mediators like rho kinase (ROK) or c-Jun N-

terminal kinase (JNK). JNK phosphorylates c-Jun and the activating transcription factor-2 

(ATF-2), which heterodimerise in order to stimulate cAMP response element (CRE) regulated 
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transcription (Kestler and Kühl, 2011). PCP signalling pathway regulates convergent 

extension movements during gastrulation (Yamanaka et al., 2002) as well as migration of 

neural crest cells (Mayor and Theveneau, 2014).  

The second β-catenin-independent pathway that has been described is the 

Wnt/calcium pathway. The activation of the Wnt/calcium pathway triggers the release of 

intracellular calcium thereby increasing the calcium level in the cytosol. This increase leads 

to the activation of different cytoplasmic calcium-sensitive enzymes, such as Protein kinase 

C (PKC), calcium/calmodulin dependent protein kinase 2 (CamK2) and the phosphatase 

calcineurin, which results in the activation of the transcription factor Nuclear factor of 

activated T-cells (NF-AT) (reviewed in Kestler and Kuhl, 2008). Wnt/calcium signalling is 

involved in dorsoventral patterning of early Xenopus and zebrafish embryos (Kühl et al., 

2000; Saneyoshi et al., 2002; Westfall et al., 2003a, 2003b), regulates epithelial-

mesenchymal transition (Garriock and Krieg, 2007) and is also implicated in tumour 

formation (Kremenevskaja et al., 2005; Weeraratna et al., 2002). Evidences of cross talk 

between the Wnt/calcium and the Wnt/β-catenin pathway have been described (Ishitani et 

al., 2003). 

1.2.7 Molecular mechanisms of Wnt as a morphogen: maturation and 
secretion  

Independently from the pathway they activate, all Wnt proteins follow the same 

process of maturation before to be transported to the plasma membrane and to be secreted. 

This process is quite complex and involves a broad number of proteins. Wnts are 

cotranslationally imported into the Endoplasmatic Reticulum (ER) lumen where Porcupine 

(Porcn) modifies them. Porcn is a conserved membrane bound O-acyl transferase (MBOAT) 

that mediates the palmitoylation and secretion of all Wnt proteins (Heuvell et al., 1993; 

Tanaka et al., 2000; Zhai et al., 2004). Porcn mediated lipidation of Wnts is essential for their 

secretion and localisation on membranes including protrusions in zebrafish (Luz et al., 2014). 

Furthermore, secretion of Wnt proteins depends on Eveness interrupted/Wntless (Evi/Wls), a 

dedicated multimembrane protein that shuttles all Wnts from the Golgi to the plasma 

membrane (Bänziger et al., 2006; Bartscherer et al., 2006; Goodman et al., 2006). 

Retrograde transport of Evi from the plasma membrane to the Golgi is required for 

continuous Wnt secretion. This transport is mediated by the retromer complex Vacuolar 

protein 35/Vacuolar protein 26 (VPS35/VPS26) (Belenkaya et al., 2008; Pan et al., 2008). 

After being localised to the plasma membrane Wnt molecules need to be delivered to the 

responding tissues in a gradient fashion. The process of gradient formation has been object 

of many scientific studies and is still under discussion. The lipid modifications of Wnts make 
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the elucidation of this process even more challenging since the simple diffusion model (see 

above) cannot easily explain the spreading of a hydrophobic molecule. 

1.2.8 Transport mechanisms for Wnt proteins 

After secretion, different transport mechanisms such as diffusion with the aid of 

carrier proteins or exovesicles and, more specifically, exosomes have been proposed to play 

a role in the passage of hydrophobic Wnt molecules through a tissue (Gross and Boutros, 

2013). The underlying data for this hypothesis were most often obtained from imaginal wing 

disc experiments in Drosophila. It has been shown that Wnt proteins can be transferred 

directly from cell to cell through free or lateral diffusion engaging cell surface molecules such 

as HSPGs (Han et al., 2005; Yan and Lin, 2009). For example, in Drosophila it was shown 

for Wg that the glypicans division abnormally delayed (Dally) and Dally-like (Dlp), are 

required to maintain normal levels of extracellular Wg at the tissue surface (Han et al., 2005). 

Furthermore, defects in HSPG synthesis impair the spreading of Wg (Takei et al., 2004). Wnt 

proteins might be transported through multi-protein complexes that mask the hydrophobic 

lipid modifications and thus increase Wnt solubility. These complexes could either be formed 

by Wnt proteins themselves, forming so-called micelles, or by other lipid-binding proteins 

which then serve as shuttles. The existence of lipid-binding proteins that facilitate the 

diffusion of Wnt was recently shown in Drosophila where Wg is bound by Secreted wingless-

interacting molecule (Swim), thereby facilitating its spreading (Mulligan et al., 2011). 

Furthermore, it was shown that Wnt can be transported by extracellular proteins belonging to 

the Secreted Frizzled-related protein family (SFRPs) (Mii and Taira, 2011).  

Remarkably, it has been reported that Wnts can be co-purified and co-localises with 

lipoprotein particles. These vesicles are named 'argosomes' and moved at the same speed 

that was previously observed for Wnt (Greco et al., 2001). In Drosophila similar particles are 

called lipophorins. The knockdown of lipophorin by RNAi led to a decrease in Wg long-range 

signalling and the same was shown for Hedgehog (Panáková et al., 2005). In vertebrates, 

lipoprotein particles are scaffolded by apolipoproteins and comprise a phospholipid 

monolayer that surrounds a core of cholesterol ester and triglycerides. Lipoprotein particles 

are spherical macromolecules of 10-1200 nm of diameter and can be categorised by their 

density into different classes including high-density (HDL), low-density (LDL) and very low-

density lipoproteins (VLDL) (Willnow et al., 2007). More recently, it was reported that Wnt3a, 

overexpressed in mouse fibroblasts, associated with high-density lipoprotein particles in the 

surrounding medium and remained active (Neumann et al., 2009). In Drosophila, Wg was 

found on vesicles that derived from basolateral membranes and thus contained a complete 

membrane bilayer. Furthermore, Wnts can be secreted via exosomes, small extracellular 

vesicles that originate from multivesicular bodies and measure between 40 and 100 (Beckett 
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et al., 2013; Gross et al., 2012). Recently it has been shown that Wnt can be secreted on 

exosomes where it is present on the vesicle surface and induces Wnt signalling in target 

cells (Gross et al., 2012). However, studies in Drosophila suggest that even if Wg is secreted 

on exosomes the morphogen gradient forms independently of exosomes, as a knockdown of 

the GTPase Rab11, important for exosome production did not influence Wg gradient 

formation (Beckett et al., 2013).  

The hypothesis that Wnt proteins have to be secreted from the membrane of the 

source cell to fulfill their morphogenetic activity has recently been challenged by the results 

showing that a membrane-tethered form of the Wnt ligand was able to rescue the Drosophila 

Wg mutant (Alexandre et al., 2014). For this reason there is still considerable debate with 

respect to the cellular mechanisms that ensures the controlled release and spreading of Wnt 

morphogens. Cellular protrusions have been suggested to mobilise signalling molecules in 

Drosophila (Ramírez-Weber and Kornberg, 1999) and recent evidence proposes also a 

signal transport function for filopodia in vetebrates (Sanders et al., 2013). Furthermore Wnt 

has been shown to localise on cell protrusions. It has been found in Xenopus cells that 

Wnt2b can be transported on the microtubule network in order to reach the plasma 

membrane and to be transferred to a Wnt receiving cell (Holzer et al., 2012). In zebrafish 

Wnt8a was found to localise on cellular protrusions (Luz et al., 2014). However, a detailed 

analysis of regulation and function of this process is lacking. 

1.3 Filopodia architecture and function  
Cellular protrusive structures can be divided in lamellopodia and filopodia. 

Lamellopodia are sheet-like protrusions that are filled with a branched network of actin. The 

elongation of these filaments pushes the leading edge of a cell forward, thereby promoting 

cell migration or extension (Chhabra and Higgs, 2007; Pollard et al., 2003). Filopodia are thin 

finger-like structures that are filled with tight parallel bundles of filamentous actin, which are 

often embedded in lamellopodia, or originate from it (Small and Celis, 1978; Svitkina et al., 

2003). Cells use filopodia as antennae to probe their environment. Filopodia have an 

important role in cell migration, neurite outgrowth and serve as precursors for dendritic 

spines in neurons. The initiation and elongation of filopodia depend on the precisely 

regulated polymerisation, convergence, crosslinking and depolymerisation of actin filaments. 

The increasing understanding of the functions of various actin-associated proteins during the 

initiation and elongation of filopodia has provided new information on the mechanisms of 

filopodia formation in distinct cell types (Mattila and Lappalainen, 2008). The coordinated 

polymerisation of actin filaments against cellular membranes provides the force for a number 

of processes, such as cell migration, morphogenesis, endocytosis and phagocytosis. 

Furthermore, filopodia are involved in several other cellular processes, including wound 
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healing, adhesion to the extracellular matrix, guidance towards chemoattractants, neuronal 

growth pathfinding and embryonic development (reviewed in Faix and Rottner, 2006; Gupton 

and Gertler, 2007). Moreover, as discussed in the previous chapter, there is increasing 

evidence that they have an additional role in signalling.  

Filopodia formation depends on a network of different proteins mainly involved in the 

regulation of actin filament assembly. Actin is a globular protein that forms microfilaments. It 

can be present as either a free monomer called G-actin (globular) or as part of polymer 

microfilaments called F-actin (filamentous) both of which are essential for such important 

cellular functions as the cell motility, cell contraction and cell division. 

 Actin participates in other important cellular processes including muscle contraction, 

cytokinesis, vesicles and organelles transport, cell signalling and the establishment and 

maintenance of cell junction and cell shape. In vertebrates, three main groups of actin have 

been identified. The alpha actins, found in muscle tissues, are a major constituent of the 

contractile apparatus. The beta and gamma actins coexist in most cell types as part of the 

cytoskeleton and mediator of cell motility.  

 Actin filaments are generated by polymerisation of actin-monomers, in a process that 

involves the hydrolysis of ATP. Fundamental steps in filopodia formation are the inhibition of 

capping proteins, normally preventing actin polymerisation and the recruitment and activation 

of proteins that mediate the nucleation of new actin filaments. To reach the sufficient stiffness 

able to deform the plasma membrane, actin filaments associate to form actin bundles 

(reviewed in Mogilner and Rubinstein, 2005). The bundling involves different proteins, such 

as Vasodilator-stimulated phosphoprotein (VASP) (Lebrand et al., 2004). These proteins are 

thought to be required for the initial transient association of actin filaments by antagonising 

directly or indirectly capping proteins (Breitsprecher et al., 2008). They prevent the capping 

of actin filament barbed ends (Barzik et al., 2005; Bear et al., 2002; Pasic et al., 2008), 

capture barbed ends (Pasic et al., 2008) and cross-link actin filament (Breitsprecher et al., 

2008; Pasic et al., 2008). In mammalian cells they localise to focal adhesion contacts, cell-

cell contacts, the leading edge of migrating cells and filopodia tips (Reinhard et al., 1992). 

Furthermore, they can act as processive filament elongators especially upon high-density 

clustering, at least in vitro (Breitsprecher et al., 2008, 2011; Hansen and Mullins, 2010). A 

member of this family is MENA, the mammalian enabled (Ena) orthologue (Lanier et al., 

1999). The formation of actin bundles involves also a class of proteins defined as filament-

bundling proteins, essential for the generation and maintenance of tight F-actin bundles of 

filopodia . Among these, one of the major proteins involved in filopodia growth is fascin 

(DeRosier and Edds, 1980). Fascins confer the sufficient stiffness to the actin bundless by 

crosslinking actin filaments (Vignjevic et al., 2006). Another protein involved in actin bundling 
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is Insulin Receptor tyrosine kinase Substrate of p53 (IRSp53), acting in a complex with 

Epidermal growth factor receptor kinase substrate 8 (Eps8) (Disanza et al., 2006). IRSp53 is 

a potent inducer of filopodia via its ability to bind actin filaments and deform the plasma 

membrane (PM) through its IRSp53 and MIM (IMD) domain (Abbott et al., 1999; Kim et al., 

2000; Okamumoho and Yamada, 1999; Scita et al., 2008). Individually, Eps8 and IRSp53 are 

both weak bundlers, but they can interact forming an Eps8:IRSp53 complex that displays 

increased actin bundling activity. The complex Eps8:IRSp53 favors bundling by binding to 

the side of actin filaments, thus generating a ‘‘filopodia initiation complex’’ (Vaggi et al., 

2011).  

Another protein family called Formins exerts an important role in filopodia formation. 

Formins are fundamental in the process of elongation and nucleation at the barbed end of 

the filopodia (reviewed in Goode and Eck, 2007). A main component of the filopodia tip 

complex is MyoX (reviewed in Berg and Cheney, 2002), an unconventional myosin that 

function as a plus-ended actin motor . With its ability in delivering cargo proteins to the 

periphery of the cell, MyoX is the molecular motor of filopodia formation (Bohil et al., 2006; 

Tokuo and Ikebe, 2004). This protein is also essential in the organisation of actin at the 

leading edge (Tokuo et al., 2007). Filopodia formation is a highly dynamic process and 

therefore tightly regulated. Two alternative models have been proposed for filopodia 

formation and which can take place in parallel or independently depending on the cellular 

context (reviewed in Mattila and Lappalainen, 2008). In the convergent elongation model, 

filopodia originate from lamellopodia by continuous extend of actin bundles from the root to 

the tip of the filopodia (Svitkina et al., 2003). The barbed end of actin related proteins 2/3 

(ARP2/3) nucleated actin filaments are clustered together by tip-complex proteins and this 

allows a rapid elongation of the filaments (Gupton and Gertler, 2007). The other model is 

also known as the de novo filament nucleation model in which the filopodia growth is 

depending on the formation and the activity of the initiation complex, mediating filopodia 

nucleation independently of the ARP2/3 complex (Steffen et al., 2006).  

1.3.1 Regulators of filopodia formation 

The morphology of the cells as well as the formation of cell protrusions is mainly 

regulated by proteins belonging to the Rho superfamily. The best characterised members of 

this family are Rac1, Cdc42 and RhoA (Ridley, 2006). They are GTPases that function in 

different context and are implicated in controlling the formation of different structures. More 

specifically, RhoA is mainly involved in the regulation of stress fibers and focal adhesion, 

Rac1 promotes lamellopodia (Ridley et al., 1992) and Cdc42 has a function in filopodia 

formation (Nobes and Hall, 1995). The role of Cdc42 is quite broad since this protein controls 

different cell functions including cell migration, cell morphology, endocytosis and cell cycle 
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progression. It has been initially discovered in yeast as a central protein in the regulation of 

cell polarity. In absence of Cdc42, cell growth is no longer polarised and can give rise to 

large round cells (Adams et al., 1990). In mammalian cells, one specific function of Cdc42 is 

to activate filopodia formation. Like all Rho GTPases, Cdc42 cycles between an active and 

inactive state. In the inactive state Cdc42 is bound to GDP. Upon activation through the 

exchange of GDP by GTP, Cdc42 signals to its effectors (reviewed in Etienne-Manneville 

and Hall, 2002). Cdc42-GTP levels can be positively regulated by guanine nucleotide 

exchange factors (GEFs), like Cdc24. Negative regulation occurs via the activation of the 

GTPase activity of Cdc42, mediated by the GTPase-activating proteins (GAPs) Rga1, Rga2, 

and Bem3 (Caviston et al., 2003; Smith et al., 2002; Stevenson et al., 1995; Zheng et al., 

1994). Cdc42 can also be maintained in an inactive state by binding to guanine nucleotide 

dissociation inhibitors (GDIs). Rho-GDIs extract their target Rho-GTPases from membranes 

and retain them in the cytosol. They block the dissociation of GDP necessary for the 

exchange of GDP for GTP and interfere with the association of the GTPase with its targets 

(reviewed in DerMardirossian and Bokoch, 2005). Cdc42-mediated filopodia formation is 

carried out by its interaction with a number of proteins including IRSp53, Mena, Eps8, and 

Neural Wiskott-Aldrich syndrome protein (N-Wasp).  

N-Wasp is a member of the Wasp/Wave (Wasp family Verprolin-homologous) family 

proteins that binds and regulates the Arp2/3 complex-mediated actin nucleation. N-Wasp-

Arp2/3 interaction is regulated by Cdc42, the transducer of Cdc42-dependent actin assembly 

(Toca-1), and phosphatidyl inositol4,5-biphosphate. Toca-1 is a Cdc42 effector first identified 

in an in vitro assay for actin polymerisation. The interaction of Cdc42 with Wasp and N-Wasp 

and the binding to the phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), induce a 

conformational change of Wasp proteins that leads to activation of the ARP2/3 complex 

(Stradal and Scita, 2006). Expression of the Cdc42/Rac- interactive binding (CRIB) domain 

of Wasp blocks the induction of filopodia by Cdc42, which suggests that Cdc42 might 

function through the Wasp– ARP2/3 signalling pathway (reviewed in Pellegrin and Mellor, 

2005). However, the evidence that fibroblasts lacking of N-Wasp and Wasp can produce 

filopodia upon Cdc42 stimulation (Lommel et al., 2001; Westerberg et al., 2001) indicate the 

possibility that multiple signalling pathways could regulate Cdc42 dependent filopodia 

formation. IRSp53 (Insulin Receptor Substrate of 53  kDa) (also called BAIAP2, brain 

angiogenic inhibitor interacting protein 2) (Abbott et al., 1999; Oda et al., 1999; Okamura-

Oho et al., 1999) represents a good candidate involved in the regulation of filopodia 

formation. IRSp53 possesses an inverted Bin�Amphiphysin�Rvs167 (I�BAR) domain that 

binds to PI(4,5)P2�rich lipid (Zhao et al., 2011). The Inverted Bin/amphiphysin/Rvs (I-BAR) 

domain of IRSp53 can localise the entire protein at the plasma membrane where it helps in 
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the induction and stabilisation of the negative curvature typical of filopodia initiation. 

Consistent with this finding, IRSp53 expression is sufficient to induce filopodia�like structures 

(Bockmann et al., 2002; Disanza et al., 2006; Yamagishi et al., 2004). Moreover, IRSp53 has 

been shown to bind activated Cdc42 and a number of actin regulatory proteins involved in 

filopodia protrusions (Ahmed et al., 2010). In vitro IRSp53 binds to MENA (Krugmann et al., 

2001) and to VASP. It is known that the interaction between VASP and IRSp53 enhances the 

bundling activity (Lim et al., 2008; Vaggi et al., 2011). However, it is not clear if IRSp53 

regulates other activities of MENA and VASP. One of the main functions of IRSp53 is to 

decreases barbed end growth. However upon binding to Cdc42 this inhibition is relieved and 

the IRSp53�dependent recruitment of VASP to the plasma membrane is induced. The 

clustering of VASP at the plasma membrane start the process of elongation of F-actin 

(Disanza et al., 2013). 

1.4 Zebrafish as a model organism 
The zebrafish (Danio rerio) has become an important model organism to study 

vertebrate development, physiology and disease. Zebrafish are small fresh water fish easy to 

breed. They have a large reproductive capacity and their transparent embryos develop 

rapidly ex utero, therefore they are suitable for experimental manipulations and microscopic 

observations. In combination with fluorescent reporter genes that can be assayed in living 

tissue, it is possible to visualise changes in gene expression and detailed morphogenetic 

movements as they occur in a living, developing embryo. 

Zebrafish have a short generation time of approximately three months and the 

embryonic development is completed within two days culminating in a free-swimming larva. 

While, rodents model more closely human physiology than fish, zebrafish are nevertheless 

vertebrate therefore might be more relevant to understand human biology than invertebrate 

models as Drosophila melanogaster and Caenorhabditis elegans. The genome of zebrafish 

is fully annotated. The zebrafish belongs to the lineage of the teleosts separated from human 

450 million years ago (Kumar and Hedges, 1998). Teleosts appear to have undergone an 

additional round of genome duplication since their separation from the tetrapod lineage 

followed by loss of many duplicated genes (Catchen et al., 2011). However, in most of the 

case, zebrafish genes can be identified as orthologous of human genes. This model 

organism is genetically versatile; a number of useful genetic techniques are possible (Hisano 

et al., 2014; Hwang et al., 2013; Schmid and Haass, 2013). Zebrafish eggs can be injected 

with sense mRNA to achieve transient overexpression; furthermore DNA can be transfected 

by electroporation (Buono and Linser; Müller et al., 2013); electroporation can be used to 

target particular tissue of the zebrafish embryo or to express the gene of interest in older 
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stages. Knockdown techniques have become available, by the use of morpholino antisense 

oligonucleotides designed to bind particular site in the transcript of the gene of interest. 

Binding of the morpholino can either block mRNA translation or interfere with correct splicing 

of exons (Berger et al., 2011; Draper et al., 2001). Transgenic zebrafish can be generated 

using the Tol2 transposase system to insert genes under the control of tissue specific 

promoters (Kawakami et al., 2000). Conditionally expressed transgenic lines can be 

generated by using the Cre/loxP (Hans et al., 2009) and GAL4UAS (Halpern et al., 2008) 

systems. The absence of technology to generate targeted mutation in zebrafish has been 

overcome by zinc finger nucleases (ZFNs), transcription activator-like effector nucleases 

(TALENS) and CRISPR/Cas (clustered regularly interspaced short palindromic 

repeats/CRISPR associated protein) system (Hwang et al., 2013; Schmid and Haass, 2013). 

In combination with fluorescent reporter genes that can be analysed in living tissue, it is 

possible to visualise changes in gene expression and detailed morphogenetic movements as 

they occur in a live, developing embryo.  

1.4.1 Zebrafish developmental stages 

 Zebrafish development is comparable with the development of other vertebrates like 

human. At the one-cell stage, an animal-vegetal axis can be defined; the animal pole 

corresponds to the cytoplasm-rich region and the vegetal pole to the yolk-rich region. When 

the cleavage period starts, rapid and synchronous divisions are taking place within the 

blastodisc. Cleavage is meroblastic as it involves only the animal pole region of the embryo. 

The first three cleavages are vertical, generating an eight-cell stage embryo, composed of 

two rows of four blastomeres, which remain connected to the yolk by cytoplasmic bridges. 

After three hours of development, cleavage gives rise to approximately one thousand cells 

(blastoderm). The blastoderm localises on top of the yolk and characterizes the blastula 

stage. During the mid-blastula transition, cell divisions lose their synchrony, the average cell 

cycle duration increases and zygotic transcription is activated. 

At about 4 hours post fertilisation (hpf), the blastoderm becomes thinner due to the 

intercalation of cells and starts to migrate over the yolk, this process is called epiboly. From 

this point the developmental stages are then defined as the percentage of epiboly, 

corresponding to the extent of yolk coverage. Gastrulation begins at 50% epiboly when the 

margin of the blastoderm starts to involute; this results in a thickening around the margin, the 

germ ring. At about 6 hpf, cells move from lateral and ventral regions of the blastoderm 

(convergence) and accumulate at the future dorsal side of the embryo, forming the 

embryonic shield. In addition, cells intercalate at the future midline leading to a lengthening of 

the anterior-posterior axis (extension). The gastrulation process gives rise to the three 

different germ layers of the embryo: ectoderm, mesoderm and endoderm. At the end of the 
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gastrulation period (tailbud stage, 10 hpf) the main body axes have been specified.  

After the tailbud stage, the segmentation period starts in which somitogenesis and 

neurulation are taking place. During somitogenesis, the paraxial mesoderm is progressively 

subdivided into blocks of tissue, the somites. Simultaneously, in the process of neurulation, 

the ectodermal neural plate is transformed into a neural tube. At the end of the segmentation 

period, at about 24 hpf, the embryo enters the pharyngula period; during this time most of the 

organ primordia becomes morphologically visible. A swimming larva hatches from the 

chorion at about 48 hpf. In figure 3 different stages of early zebrafish development, including 

the common nomenclature, are described (Kimmel et al., 1995). 

 

Figure 4: Developmental stages of zebrafish embryogenesis 

Different stages of zebrafish embryos with the common nomenclature according to Kimmel et al., 1995. The cell 

on top of the yolk divides synchronously, forming a mound of cells above the yolk called blastoderm (high stage). 

The blastoderm becomes thinner towards the animal pole. Epiboly is starting, spreading cells around the yolk 

(30% epiboly). At midgastrulation an embryonic shield is formed (shield stage). At this stage the cells start to 

invaginate. The neural plate is formed due to further epiboly and convergence and extension movements of the 

cells towards the dorsal side (bud stage). At 25 h post fertilisation, the tail and head are formed with first 

developed brain structures (prim-6) (h= hours post fertilisation). 
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1.5 Aims of this work 
Wnt proteins are molecules with fundamental functions in development and adult 

stem cell maintenance. Secreted from the organising boundary zones, Wnts form a 

concentration gradient in the receiving tissue responsible of embryo patterning. Several 

proteins involved in the maturation and secretion of Wnt have been discovered, however the 

precise mechanism of spreading is still under investigation. Moreover, most of the current 

knowledge about morphogen spreading is based on data derived from Drosophila studies, 

whereas quite little is known about the mechanism of Wnt morphogen spreading in 

vertebrates. 

The aim of my thesis was to study Wnt propagation and gradient formation in vitro 

and in vivo. In one part of my work, I analysed the cell-cell contact independent spreading of 

Wnt by diffusion. To this end I established an in vitro cell-communication chip, on which Wnt 

producing cells and Wnt receiving cells were separated by a hydrophobic border that does 

not allow any cell-contact mediated spreading of Wnt. This chip was used to study whether 

the Wnt producing cells can still activate Wnt signalling in the receiving cells, although there 

is no direct contact between both cell types and to develop a platform to mimic an organizer 

and the surrounding tissues in vitro. The second aim was to visualise and study the sub-

cellular localisation as well as the mechanism of distribution of Wnt morphogens, more 

specifically Wnt8a, in vivo in the developing zebrafish embryos. Furthermore, I analysed in 

detail whether a filopodia based spreading mechanism is responsible for a controlled Wnt 

distribution in the developing zebrafish embryo and whether such a mechanism is able to 

establish the Wnt gradients that are necessary for proper patterning of the central nervous 

system. 
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2. Materials and Methods 
 

2.1 Materials 
 Equipment and tools 2.1.1

Name Description 

Dissection forceps Fine Tip No.5 (Dumont) 

Glass needle 1.0mm outer diameter, 0.58mm inner diameter, 

with filament (TW100, WPI Inc.) 

Microinjector FemtoJet with integrated pressure supply 

(Eppendorf) 

Microloader tips  930001007 (Eppendorf) 

Micromanipulator  Manual, M3301R (WPI Inc.) 

Microscopes Olympus SZX10/ SZX16 

ZEISS Axiophot Trinocular 

Leica SP5 X confocal microscope 

Leica DMI6000 SD 

Needle holder Microelectrode holder (WPI Inc.) 

Needle puller P-97 Flaming/Brown Micropipette Puller (Sutter 

Instrument)  

Photometer NanoDrop (Thermo Scientific Inc.) 
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Tungsten needle TGW1510, diameter 0.38mm (WPI Inc) 

EnVision multilabel counter Perkin Elmer 

Rotilabo® -syringe filters 0.22 µm Carl Roth GmbH, Karlsruhe 

Omnifix®-F 0.01-1ml Syringe Braun, Melsungen AG, Germany 

ABI StepOnePlus Life Technologies GmbH, Darmstadt 

 Chemicals 2.1.2

Name Source 

2-Mercaptoethanol Roth, Karlsruhe, Germany 

2-Nitrophenyl β-D-galactopyranoside Sigma-Aldrich, Taufkirchen, Germany 

4',6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich, Taufkirchen, Germany 

Agarose Peqlab, Erlangen, Germany 

Ampicillin Roth, Karlsruhe, Germany 

Anti-Digoxigenin-Fab fragments Roche, Mannheim, Germany 

Bacto Agar Roth, Karlsruhe, Germany 

BCIP Roche Diagnostics, Mannheim 

Blocking reagent Roche, Mannheim, Germany 
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Bovine serum albumin (BSA) PAA, Coelbe, Germany 

Calcium acetate Roth, Karlsruhe, Germany 

Calciumchloride Sigma-Aldrich, Taufkirchen, Germany 

Chloroform Sigma-Aldrich, Taufkirchen, Germany 

Citric acid Carl Roth GmbH, Karlsruhe 

Dimethylsulfoxide (DMSO) Fluka, Neu-Ulm, Germany 

Dinatriumhydrogenphosphat Sigma-Aldrich, Taufkirchen, Germany 

Dithiothreitol (DTT) Carl Roth GmbH, Karlsruhe 

Dulbecco´s modified Eagle´s medium 

(DMEM) 

Invitrogen, Karlsruhe, Germany 

Ethanol (EtOH) Roth, Karlsruhe, Germany 

Ethidiumbromide Roth, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid (EDTA) Roth, Karlsruhe, Germany 

Fast Red Tablets Roche, Mannheim, Germany 

Fetal bovine serum (FBS) BIOCHROM AG, Berlin, Germany 

Formamide Carl Roth GmbH, Karlsruhe 

Glucose Roth, Karlsruhe, Germany 
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Glycerol Roth, Karlsruhe, Germany 

Glycine Roth, Karlsruhe, Germany 

Heparin Roth, Karlsruhe, Germany 

HEPES Roth, Karlsruhe, Germany 

Hydrochloric acid (HCl) Merck, Darmstadt, Germany 

Isopropanol Roth, Karlsruhe, Germany 

Kaliumchloride Sigma-Aldrich, Taufkirchen, Germany 

Kanamycin Sigma-Aldrich, Taufkirchen, Germany 

Leibovitz’s L-15 Gibco, Karlsruhe, Germany 

Low melting agarose Carl Roth GmbH, Karlsruhe 

Luciferin Biosynth AG, Staad, Schweiz 

Magnesium chloride hexahydrate Roth, Karlsruhe, Germany 

Magnesium sulphate (MgSO4) Sigma-Aldrich, Taufkirchen, Germany 

Methanol (MeOH) Roth, Karlsruhe, Germany 

NBT/BCIP stock solution Roche, Mannheim, Germany 

Paraformaldehyde Merck, Darmstadt, Germany 
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Penicilin/Streptomycin Invitrogen, Karlsruhe, Germany  

Phalloidin, Tetramethylrhodamine B 

isothiocyanate (TRITC)  

Sigma-Aldrich, Taufkirchen, Germany 

Phosphate buffered saline w/o CaCl2 and 

MgCl2 (PBS-/-) 

Invitrogen, Karlsruhe, Germany 

Pronase Carl Roth GmbH, Karlsruhe 

Proteinase K Sigma-Aldrich, Taufkirchen, Germany 

Sodium acetate (NaAc) Roth, Karlsruhe, Germany 

Sodium chloride (NaCl) Roth, Karlsruhe, Germany 

Sodium citrate tribasic dihydrate Sigma-Aldrich, Taufkirchen, Germany 

Sodium Fluoride (NaF) Roth, Karlsruhe, Germany 

Sodium hydrogen carbonate (NaHCO3)  Roth, Karlsruhe, Germany 

Sodium hydroxide (NaOH) Roth, Karlsruhe, Germany 

Sodiumdodecylsulphate (SDS) Roth, Karlsruhe, Germany 

Tris-base Roth, Karlsruhe, Germany 

Tris-HCl Roth, Karlsruhe, Germany 

Triton-X-100 Roth, Karlsruhe, Germany 
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Trypsin 0.25% (w/v)-EDTA Gibco/Invitrogen, Karlsruhe, Germany 

Tween 20 Roth, Karlsruhe, Germany 

Yeast extract Roth, Karlsruhe, Germany 

  Software 2.1.3

Name Description Source 

Imaris 7.1 Software for image processing Bitplane AG, Zurich, 

Switzerland 

Adobe 

Photoshop CS4 

Software for image editing Adobe systems, San Jose, 

CA, USA 

LAS AF Software for 

photodocumentation 

Leica, Wetzlar, Germany 

Cell A Software for 

photodocumentation 

Olympus, Rodgau, Germany 

 Enzymes 2.1.4

Name Source 

DNase I Ambion Ltd, Warrington, UK 

Restriction enzymes New England Biolabs, Ipswich 

Reverse transcriptase Promega, Mannheim 
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Sp6 RNA polymerase Life Technologies GmbH, Darmstadt 

T7 RNA polymerase Life Technologies GmbH, Darmstadt 

Taq-Polymerase Promega, Mannheim 

 Antibodies 2.1.5

 Primary Antibodies 2.1.5.1

Name Isotype/Clonality Reactivity Source 

Wnt8a antibody IgG /polyclonal Zebrafish One World Lab, San 

Diego, California 

 Secondary antibodies  2.1.5.2

Name Source 

Alexa Fluor® 488 Goat Anti-Rabbit Life technologies, Darmstadt, Germany  

Anti-Digoxigenin-AP, Sheep Fab 

fragments  

Roche, Mannheim, Germany 

 Marker 2.1.6

Name Source 

GeneRuler DNA ladder mix Fermentas, St.Leon-Rot, Germany 

 



 
34 

 

 Kits 2.1.7

Name Source 

DIG RNA Labeling Kit (SP6/T7) Roche, Mannheim, Germany 

mMESSAGE mMACHINE Transcription Kit Ambion, Darmstadt, Germany 

SYBR® green Life Technologies GmbH, Darmstadt 

Direct-zol RNA Mini Prep Kit  Zymo Research, Freiburg, Germany  

Nucleospin RNA L purification kit Macherey-Nagel, Düren, Germany 

peqGold Gel extraction kit Peqlab, Erlangen, Germany 

QIAGEN Plasmid Maxi purification kit Qiagen, Hilden, Germany 

 Overexpression constructs 2.1.8

The following plasmids were used for cloning, transfection in eukaryotic cells, and injections 

in zebrafish or as template for RNA probes used for in situ hybridisation. 

Name Description 

zfWnt8aORF1-GFP-

pCS2+ 

Sequence of zebrafish Wnt8a ORF1 cloned into pCS2+ 

(Rhinn et al., 2005) 

zfWnt8aORF1-

mCherry- pCS2+ 

Sequence of zebrafish Wnt8a ORF1 cloned into pCS2+ 

(Hagemann and Scholpp, 2012) 

pcDNA3-EGFP-

Cdc42WT 

Sequence of human Cdc42 cloned in pcDNA3 (Koizumi et 

al., 2012) (Addgene 12975) 

pcDNA3-EGFP-

Cdc42T17N 

Sequence of human dominant negative Cdc42 (Addgene 

12976) 



 
35 

 

Dvl2-mcherry in 

pCS2+ 

Sequence of zebrafish Dlv2 in pCS2+ generated from 

zebrafish cDNA library and tagged by Patrick Reeves (Tom 

Kirchhausen) and cloned into pCS2+ by Anja Heeren-

Hagemann (Hagemann and Scholpp, 2012) 

pCMV-hEvi-Cherry12 Sequence of human Evi in pCMV (Gross and Boutros, 

2013) 

pmKate2-f-mem  The vector encodes far-red fluorescence protein mkate2 

targeted to the plasma membrane by 20 aa farnesylation 

sequence from c-HA-RAS (Evrogen #FP186) 

mCherry in pCS2+ GPI anchored m-cherry in pCS2+ (Scholpp et al., 2009) 

CFP-GPI-PSP64TBX GPI anchored CFP (Hagemann and Scholpp, 2012) 

LRP6-GFP in pCS2+ Sequence of an eGFP-tagged version of human LRP6 

cloned into pCS2+. Gift from Gary Davidson (KIT, Karlsruhe, 

Germany)(Chen et al., 2014) 

DCK-GFP GFP-tagged microtubule associated protein, kindly provided 

by Marina Mione (KIT, Karlsruhe, Germany) (Vacaru et al., 

2014) 

N-Wasp-GFP (Lee et al., 2010)(Addgene 33019) 

GFP-wGBD (Benink and Bement, 2005) (Addgene 26734) 

EGFPC1-hMyoX (Bennett et al., 2007) (Addgene 47608) 

pLifeAct-mTurquoise2 (Goedhart et al., 2012) (Addgene 36201) 

IRSp53-(WT)-GFP WT sequence of IRSp53. Kind gift from Erez Raz. 

IRSp534K Dominant negative form of IRSp53. Kind gift from Erez Raz.  

Toca1 Sequence of Toca1 in pCS2+ Kind gift from Marc Kirschner 

pcDNA3-Cdc42WT https://www.addgene.org/12975/ (Nalbant et al., 2004) 

pcDNA3-Cdc42 T17N https://www.addgene.org/12976/ (Nalbant et al., 2004) 
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 Reporter constructs 2.1.9

Name Description 

Super8xTopFlash in pTA-Luc (STF) pTA-Luc vector with a luciferase gene under 

control of TCF/LEF-binding sites, was 

obtained from Addgene, Cambridge, 

Massachusetts, USA. (Veeman et al., 2003) 

pDEST(7xTCFXla.Siam:nlsmCherry) pDEST-nlsmCherry vector with mCherry gene 

under control of 7 TCF/LEF-binding sites 

(Moro et al., 2012) 

 Morpholino 2.1.10

The morpholino have been used with a concentration of 0.5mM (dissolved in water). 

Name Description Source 

Cdc42a 

Morpholino 

5’- AACGACGCACTTGATCGTCTGCATA -3’  Gene Tools, 

Philomath, 

USA 

Cdc42b 

Morpholino 

5’-CACCACACACTTTATGGTCTGCATC-3’ Gene Tools, 

Philomath, 

USA 

Wnt8a-ORF1 

Morpholino 

5’-ACGCAAAAATCTGGCAAGGGTTCAT-3’ Gene Tools, 

Philomath, 

USA 

Wnt8a-ORF2 

Morpholino 

5’-GCCCAACGGAAGAAGTAAGCCATTA-3’ Gene Tools, 

Philomath, 

USA 
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  Primer  2.1.11

The following primers were designed with the help of the Primer3 program (Rozen and 

Skaletsky, 2000) and were order at Metabion GmbH, Planegg/Steinkirchen, Germany. 

Name Description 

β-Actin  Forward: CCTTCCTTCCTGGGTATGG 

Reverse: GGTCCTTACGGATGTCCAC 

Axin2 Forward: CAATGGACGAAAGGAAAGATCC  

Reverse: AGAAGTACGTGACTACCGTC 

Lef1 Forward: CAGACATTCCCAATTTCTATCC  

Reverse: TGTGATGTGAGAACCAACC 

Cdc42 Forward: AACCCATCACTCCAGAGAC 

Reverse: CATTCTTCAGACCTCGCTG 

Wnt8a Forward: CTATATGCTGTCACATACTGTCG  

Reverse: ATGCGAGATAAGCCTTTGGT 

 In situ probes  2.1.12

Name Source 

axin2 (Carl et al., 2007) 

otx2 (Mercier et al., 1995) 

pax6a (Macdonald et al., 1994) 



 
38 

 

fez2 (Hashimoto et al., 2000) 

 Transfection reagents 2.1.13

Name Source 

FuGENE® HD Transfection Reagent Promega, Mennheim, Germany 

 Cell lines 2.1.14

Cell line  Description Culture medium Source 

HEK293T 

(CRL-1573) 

Human embryonic 

kidney cells 

DMEM + 10% FBS American tissue 

culture collection, 

ATCC, Wesel, 

Germany 

NIH-3T3 cells 

(CRL-1658) 

Mouse embryonic 

fibroblast  

DMEM + 10% FBS American tissue 

culture collection, 

ATCC, Wesel, 

Germany 

Pac-2 Zebrafish fibroblasts  L15 + 15% FBS Foulkes Laboratory 

 Bacterial strain 2.1.15

Name Description 

E.coli, Nova Blue® 

 

Chemical competent cells (Invitrogen) 

Genotype: K-12 strain 
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2.2 Methods 
 Cell culture methods 2.2.1

All cells were cultured under sterile and in a cell culture incubator and where 

passaged at least every third day or when they reached 90% confluency. The cells were 

grown in sterile Cellstar® cell culture dishes (Greiner Bio-One) of different sizes according to 

the experimental setup. All cell culture experiments were performed in a sterile clean bench. 

 Maintenance of Pac-2 Cells 2.2.1.1

Zebrafish Pac-2 fibroblast cells were cultivated in Leibovitz's L-15 medium (with 15% 

FBS, 1% Pen/Strep and 0.1% Gentamicin) at 28°C and without additional CO2 supply. For 

passaging the cells were washed with PBS -/- and detached with 0.25% trypsin- EDTA.  

 Maintenance of HEK 293T Cells 2.2.1.2

Human Embryonic Kidney 293T (HEK 293T) cells were cultivated in DMEM (with 10% 

FBS and 1% Pen/Strep) at 37°C and with 5% CO2 supply.  

 Maintenance of NIH/3T3 Cells 2.2.1.3

NIH/3T3 cells were cultivated in DMEM (with 10% FBS and 1% Pen/Strep) at 37°C 

and with 5% CO2 supply.  

  Passaging cells 2.2.1.4

To passage cells, the medium was removed by aspiration, cells were washed once 

with PBS and Trypsin-solution (0.25% Trypsin) was added to the cells. Cells were incubated 

at 37°C until they started to detach from the wells. Trypsination was stopped by addition of 

medium containing serum. Cells were collected by centrifugation. After re-suspending the 

cells in new growth medium cells were seeded in new tissue culture plates. 

 Seeding cells 2.2.1.5

Cells were trypsinised as described above, collected by centrifugation and re-

suspended in new growth medium. To obtain the number of cells per ml, 10 µl of cell 

suspension was transferred into a Neubauer counting chamber and counted by using a 

bright field microscope. After adjustment of the designated cell concentration by mixing cell 

suspension with culture medium, cells were distributed in tissue culture plates for the 

experiment. 
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 Freezing cells 2.2.1.6

Cells were trypsinised as described above and collected by centrifugation. After re-

suspending the cell pellet in freezing medium (10% DMSO in FBS), cells were transferred 

into cryostatic vials. Vials were slowly frozen in an Isopropanol containing box at -80°C and 

transferred to liquid nitrogen. 

 Thawing cells 2.2.1.7

Cells stored in liquid nitrogen were thawed at 37°C in a waterbath and immediately 

mixed with pre-heated growth medium. To remove freezing medium, cells were collected by 

centrifugation, re-suspended in growth medium and transferred into tissue culture plates. 

Growth medium was replaced with fresh medium after 24 hours. 

 Transient Transfection of Cells with FuGENE HD 2.2.1.8

For the transfection of a 30 mm dish of 80% confluent cells with FuGENE HD 

Transfection Reagent, 100µl growth medium without serum and antibiotics, 1 µg plasmid 

DNA and 4 µl FuGENE HD reagent were combined, vortexed shortly and spun down. The 

plasmids used are described in the results part. In the co-transfection experiment, 0.5 µg of 

each plasmid have been used. The mixture was incubated for 20 minutes at room 

temperature. In the meanwhile the cells were washed once with PBS and the growth medium 

was replaced with growth medium without antibiotics but with 10% serum. Afterwards the 

transfection mixture was added dropwise to the dish and the cells were cultivated as 

described above for 24 hours prior to further analysis. 

 Primary cell culture  2.2.1.9

 Primary cell cultures were derived from blastula embryo by explanting cell from the 

marginal and the animal pole to a petri dish. To obtain embryos for or primary cell cultures, 

male and female zebrafish were placed in tanks separated by inlays overnight. The next 

morning the females were transferred to the male and around 15 minutes later the eggs were 

collected. Then the eggs were treated with 10mg/ml pronase to release the embryos from 

their chorion and washed immediately 3 times with fishwater in a beaker. De-chorionated 

embryos were washed with Ethanol 70% for 1 min, rinsed in sterile E3 medium and placed in 

calcium free Ringer’s solution. Cells were transplanted by connecting a transplantation 

needle to a vacuum syringe and placed in a cell culture petri dish, and cultivated for 24 h in 

Leibovitz’s L-15 medium with 15% FBS, 1% Pen/Strep and 0.1% Gentamicin at 28 °C and 

without additional CO2 supply, similar to Pac-2 fibroblast.  
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Transplantation capillaries  

Capillaries for transplantation were pulled on the Flaming-Brown puller with the following 

parameters: 

Pull-Heat (H)    253 

Pull-force (P)    40 

Pull-velocity (V)   70 

Pull duration (T)   35 

Medium for breading and manipulation of zebrafish embryos: 

E3 medium:   0.1% NaCl,  

0.003% KCl,  

0.004% CaCl2 x 2H2O 

0.016% MgSO4 x 7H2O 

0.0001% Methylene blue 

Calcium free Ringer solution:   55 mM NaCl 

      1.8 mM KCl 

      1.25 mM NaHCO3 

 Chemical treatment of cells 2.2.1.10

For the chemical treatment, cells were washed in PBS and treated with Cytochalasin 

D 5 mM (Enzo Life Science) Latrunculin B 25 nM (Enzo Life Sci- ence), Cdc42/Rac1 GTPase 

Inhibitor, ML141 10 mM (Merck Millipore) for 2 hours before analysis. In the experiment with 

the supernatant the conditioned medium was collected after an O.N. exposure to the 

chemicals.  

 Cell patterning 2.2.1.11

Cells were patterned, on the cell-communication chip, by placing the cell suspension 

on the hydrophilic patterns. Appropriate volume of cell suspension was pipetted onto each 

hydrophilic area to fill the pattern’s contour. The total volume of cell suspension plus medium 

was of 15 µl. The initial cell seeding density was 50 x 103 cells/cm2. Cells were cultivated 
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inside of separated reservoirs at 29 °C for 18 h. The glass plate was then washed with PBS 

in order to remove non-adherent cells, and placed in fresh cell culture medium.  

 RNA methods 2.2.2

 RNA isolation and cDNA synthesis 2.2.2.1

To investigate expression of a specific in gene in cells by qRT-PCR, RNA of these 

cells has to be isolated and transcribed into cDNA by reverse transcription. For each real-

time quantitative PCR (RT-qPCR), 50 embryos were lysed in 300µl TriZol (Sigma) and total 

RNA was prepared using Direct-zol RNA Mini Prep Kit from Zymo Research. cDNA was 

prepared using MMLV reverse transcriptase from Promega. 

RNA concentration and purity were measured with a NanoDrop photometer. For 

denaturation, 0.5 µg RNA was diluted in 10 µl RNase free water and incubated at 70°C for 3 

min, then quickly cooled down in ice water. RNA was then subjected to reverse transcription, 

which was performed with 20 U of AMV reverse transcriptase in 80 µl reactions containing 80 

U RNase in, 400 ng of oligo d(T) primer and nucleotides. Following incubation for 45 min at 

41°C reverse transcriptase was inactivated by heating at 70°C for 15 min. cDNA was stored 

at -80°C.  

 Real time qPCR 2.2.2.2

For qRT-PCR analysis 4µl of 1:20 dilution cDNA were pipetted in each of well of a 96-

well plate together with the SYBR green-Primer-Master Mix (Promega). qRT-PCR was 

performed in an ABI StepOnePlus Real-Time PCR system (Applied Biosystems) with a 

standard temperature cycle programme, according to the manufacturer’s conditions. The 

relative levels of each mRNA were calculated by 2-ΔΔCT methods (where CT indicates the 

cycle number at which the signal reaches the threshold of detection). Relative expression 

levels were normalised using zebrafish β-actin mRNA. 

 Preparing antisense RNA probes for in situ hybridisation 2.2.2.3

At first 5 µg of the plasmids containing the desired DNA fragment were linearised. 

Then the restriction enzyme was heat inactivated for 20 minutes at 85°C. Then 5 µl (~1 µg) 

of the linearised plasmid was mixed with 4 µl 5x transcription buffer, 2 µl 10x DIG RNA 

labeling mix, 1 µl RNase in Plus RNase inhibitor, 2 µl RNA polymerase and nuclease free 

water up to 20 µl. The reaction was incubated for 3-4 hours at 37°C and subsequently 

stopped by adding 2 µl 0.2 M EDTA pH 8.0 and 28 µl nuclease free water. A G50 column 

was prepared by vortexing, opening and spinning down for 2 minutes at 6,000 rpm. Then the 
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reaction was put on top of the gel on the column, incubated for 1 minute at RT and spun 

down for 1 minute at 6,000 rpm at RT. The probe was then diluted with 300 µl HYB+ solution. 

Solution: 

SSC (20X):  3 M NaCl 

300 mM Na3citrate 

pH 6.0  

HYB+:  50% Formamide 

5 x SSC (pH 6) 

0.1% Tween-20  

0.5 mg/ml Torula (yeast) RNA 

50 µg/ml Heparin  

 In vivo experiment 2.2.3

 Injection of Zebrafish Eggs 2.2.3.1

All zebrafish husbandry and experimental procedures were performed in accordance 

to the German law on Animal Protection and were approved by Local Animal-Protection 

Committee (Regierungspräsidium Karlsruhe, Az.35-9185.64) and the Karlsruhe Institute of 

Technology (KIT). Breeding zebrafish (Danio rerio) were maintained at 28 °C on a 14 h 

light/10 h dark cycle. To prevent pigment formation, embryos were raised in 0.2 mM 1-

phenyl-2-thiourea (PTU, Sigma, St Louis, MO 63103 USA) after 24 hpf. The data I present in 

this study were acquired from analysis of KIT wild type zebrafish AB2O2 and Tg(7xTCF-

XLa.Siam:mCherry-NLS)ia4 (Moro et al., 2012). 

To obtain embryos for the injection, male and female zebrafish were placed in tanks 

separated by inlays overnight. The next morning the females were transferred to the male 

and around 15 minutes later the eggs were collected. Then the eggs were treated with 

10mg/ml pronase to release the embryos from their chorion and washed immediately 3 times 

with fishwater in a beaker. Afterwards RNA or morpholinos were injected into the eggs in the 

1- to 2-cell stage using micro-needles, or at 16-cell stage for the clonal injection. The eggs 

were then kept at 28°C if needed for fixation at 26 hpf (Kimmel et al., 1995) or at 33°C for 

confocal images at blastula stage in 1% agarose plates in E3 medium. Zebrafish embryos 

were treated with 0.25 nM Latrunculin B (1%DMSO v/v) from 30 to 70% epiboly stages. 



 
44 

 

Injection capillaries  

Capillaries for injection were pulled on the Flaming-Brown puller with the following 

parameters: 

Pull-Heat (H)    253 

Pull-force (P)    40 

Pull-velocity (V)   70 

Pull duration (T)   35 

Medium for breading and manipulation of zebrafish embryos: 

MESAB:  400 mg Tricaine powder (SIGMA) 

   2.1 ml 1 M TRIS (pH 9.0) 

  to 100 ml with H20 

  adjust to pH 7.0 and store at 4°C 

PTU  0.0003% 1-phenyl-2-thiourea in 1x PBS 

 In situ hybridisation 2.2.3.2

Embryos were dechorionated in 1x PBST with forceps or pronase and fixed in 4% 

PFA at -4°C overnight. Then the fixed embryos were washed twice for 5 minutes in PBST, 

incubated twice for 5 minutes in 100% MeOH and stored in fresh MeOH at -20°C. 

For the in situ hybridisation the embryos were rehydrated twice for 5 minutes in 

PBST, then they were fixed again in 4% PFA for 30 minutes at RT and washed twice for 5 

minutes in PBST. 24 hpf embryos were digested with proteinase K to permeabilise them to 

facilitate the entry of the probe inside the embryo. This is not necessary for younger 

embryos. For the proteinase K digestion the embryos were treated with 25 µg/µl for 1-2 

minutes and then washed twice in glycine (2 mg/µl). Afterwards, the embryos were washed 

with PBST and then fixed again with 4% PFA for 30 minutes at RT. Then they were washed 

again three times for 5 minutes in PBST. Then the embryos were incubated in HYB+ for 0.5- 

6 hours at 69°C. Afterwards, the HYB+ was replaced with pre-warmed HYB+ containing the 

antisense probes and incubated overnight at 69°C. The next day the probe was removed and 

the embryos were washed for 5 minutes in HYB-, three times for 10 min in 25% HYB-, 5 min 

in 2x SSCT and twice for 30 minutes in 0.2x SSCT at 69°C. After that they were washed 5 

minutes in 50% 0.2 x SSCT/50% MABT, 5 minutes in MABT and then the unspecific binding 
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sites were blocked by incubation with 2% DIG-block for at least 1 hour. The blocking solution 

was replaced with a pre-absorbed DIG-antibody in a 1:4000 dilution in blocking solution and 

incubated overnight at 4°C. The next day the embryos were washed five times for 15 minutes 

in MABT and 5-15 minutes in NTMT. The staining solution consisted of NCP-BCIP that was 

diluted 1:200 in NTMT and was added to the embryos in a 12 well-plate. When the staining 

was strong enough the staining reaction was stopped by washing twice in PBST and the 

embryos were fixed again in 4% PFA for 30 minutes at RT. After washing again twice for 5 

minutes in PBST the embryos were stored in 70% glycerol at 4°C.  

Solution: 

PBST:    1 x PBS 

0.1% Tween20 

HYB-:   50% Formamide 

5 x SSC (pH6) 

0.1% Tween20  

MAB:  100 mM maleic acid 

150 mM NaCl 

pH 7.5 

MABT:   MAB  

0.1% Tween20 

2% DIG-block: 2% blocking reagent in MABT 

NTMT:   100 mM NaCl 

100 mM Tris 

1% Tween20  

 Protein Methods 2.2.4

 Phalloidin/DAPI Staining of Cells 2.2.4.1

Cells were fixed at RT for 20 min in PFA 4%, washed in PBS and permeabilised with 

0.05% TritonX-100 solution in PBS for 15 min. To block unspecific binding of antibodies cells 
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were incubated with 1% BSA in PBS O.N at 4 °C. The primary antibody against Wnt8a was 

added in a dilution of 1:100 3%BSA/PBS for 2hrs at RT. Cells were washed in PBS and 

incubated with the secondary antibody for 60 min at RT. 

A phalloidin/DAPI staining was performed to visualise the nuclei and the cytoskeleton 

of the cells. The growth medium was removed from the cell culture dish and the cells were 

washed once with PBS +/+ for 10 minutes. The cells were fixed with a 4% PFA solution for 

30 minutes on ice and afterwards washed twice with PBS for 10 minutes. Subsequently the 

cells were washed twice with PBS +/+ for 10 minutes and afterwards stained with a solution 

of 1.7 µg/ml labeled phalloidin in PBS at room temperature for one and a half hours in the 

dark. Next cells were washed twice with PBS +/+ and the nuclei were stained with 0.5 µg/ml 

DAPI for 5 minutes at room temperature. After washing twice with PBS +/+ the cells were 

examined at the confocal microscope or stored in PBS +/+ at 4°C. 

  Reporter Gene Assay 2.2.4.2

 The Super TopFlash (STF) reporter gene assay uses the expression of the enzyme 

luciferase driven by a 7xTCF responsive element (Veeman et al., 2003) to measure Wnt 

signalling activity. The luciferase activity was monitored using the in vivo luminometer 

(Envision, Perkin Elmer). HEK293T cells were transfected with 1 µg of empty plasmid, or 

Wnt8a, Wnt8a plus Cdc42WT, or Cdc42T17N, or IRSp534k or transfected with Wnt8a and 

treated with Latrunculin B as described before. The day after the cells were trypsinised with 

300 µl trypsin until they detached and 4.5 ml of media plus serum were added to stop the 

reaction. Cells were then transferred to a 96 multi-well plate; in the case of co-culture 

experiments 75 µl of STF-reporter cells were mixed with 75 µl of the Wnt8a transfected cells 

before seeding. In the experiments were the cells were induced with the Wnt8a-supernatant 

from Wnt transfected cells, 150 µl of reporter cells were seeded. After transferring the cells to 

the 96 well-plate 100 µl of fresh medium were added, and the cells were incubated under 

standard condition overnight.  

To measure the STF reporter activity, Luciferin was added to the medium in a 

concentration of 0.5mM. Cells were washed in PBS and 200 µl of the medium containing the 

Luciferin was added. The plate was loaded in the luminomiter and the light intensity that 

reflects the STF reporter activity was monitored for 24 hours. 

The STF-reporter activities in the different experimental set-ups were analysed as 

follows. The supernatant of HEK293T cells transfected with an empty vector, Wnt8a, Wnt8a 

plus Cdc42WT, or Cdc42T17N, or IRSp534k or cells transfected with Wnt8a and treated with 

Latrunculin B were filtered through a 0.22-mm filter. After 1 h of exposure of STF reporter 

transfected HEK293T to the supernatant, the reporter activity was monitored for 6 h. All cell 

culture experiments were carried out in triplicates. 
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 Image Acquisition 2.2.4.3

For phenotype analysis the embryos were anesthetised with Mesab and for ISH 

analysis the embryos were embedded in 70% glycerol/PBS. Pictures were taken with an 

Olympus SZX16 microscope equipped with a DP71 digital camera by using Cell A imaging 

software.  

For the confocal analysis, living embryos were embedded in 0.7% low melting 

agarose in 1x E3. Pictures were obtained using a Leica TCS SP5 X confocal laser-scanning 

microscope with a 63x dip-in objective. The images were processed using Imaris 7.1 

software. The bright field images of the cells were taken with a Leica DMI6000 SD inverted 

microscope. The confocal images were obtained using a Leica TCS SP5 X confocal laser-

scanning microscope. Varying z-stack sizes with 1 µm step size were obtained for 

Phalloidin/DAPI stained cells and for the 3D Wnt diffusion assay 100 µm z-stacks with 2 µm 

step size were obtained. 

 Image Processing 2.2.4.4

The Phalloidin/DAPI z-stack data recorded at the Leica SP5 confocal microscope was 

processed using the Leica Application Suite Advanced Fluorescence (LAS AF) 3D 

Deconvolution feature whereby four iterations of Blind method with auto generated point 

spread function were used. Background and signal intensity were not altered. 

 Quantification of Fluorescence Intensity 2.2.4.5

For the fluorescence intensity quantification of the TOPFLASH-mCherry nuclei 

clusters, the imaging software Imaris 7.1 (Bitplane AG, Switzerland) was used. For this 

purpose surfaces were generated excluding total fluorescence lower than 10 and surfaces 

smaller than 1,000 voxels. The intensity mean values of the surfaces were documented in 

frequency charts. 

 Statistical analysis 2.2.5

The double-sided student´s t-test was used for comparison of two samples. 

Calculation of the mean averages and standard deviation was performed using at least three 

biological replicas. P values < 0.05 were considered significant. Error bars indicate standard 

error (SD). 
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3. Results 
Wnts are essential for developmental processes, tissue regeneration and stem cell 

regulation, and a deregulation in their pathway is also a major cause of diseases such as 

cancer. Therefore, it is necessary that Wnt ligands are present at the right place, in the right 

concentration and at the right time. However, the mechanism controlling Wnt transport and 

gradient formation after it is localised to the membrane is not yet understood. The suggested 

propagation mechanisms can be grouped into two categories: Wnt molecules are detached 

from cells and propagated independently in the extracellular space of a tissue or they are 

transported directly from the producing to the receiving cell, which requires direct cell-cell 

contact (Port and Basler, 2010). To investigate the extracellular space transport I used a cell 

culture device in which the Wnt producing cells and the receiving cells are separated by a 

hydrophobic border that did not allow any direct cell-cell contact between the two cell 

populations. Furthermore, I investigate the spread of Wnt in an in vitro in cell culture as well 

as in the living embryo. I focused on Wnt8a as the main Wnt/β-catenin signal during early 

zebrafish gastrulation and neural plate patterning (Kelly et al., 1995). 

3.1 Extracellular propagation of Wnt signalling molecules 
In order to address whether Wnt ligands can diffuse away from the producing cells to 

activate the Wnt pathway in the receiving cell without cell-cell-contact, a so called cell-

communication chip was used (Efremov et al., 2013). In this chip, cells grow in separated 

microreservoirs on a fine nanoporous polymer film that is produced by UV-initiated surface 

grafting (Fig. 5). The geometry of the microreservoirs is confined to highly hydrophilic 

surfaces (HH) on which cells can adhere (HH), surrounded by superhydrophobic borders 

(SH) that do not allow any attachment of cells. The SH/HH patterns are created in two steps. 

First, a 12.5 mm-thin HH nanoporous film of poly (2- hydroxyethyl methacrylate)-co-(ethylene 

dimethacrylate) (HEMA- EDMA) is synthesised on a glass substrate. For this synthesis, free-

radical UV-initiated polymerisation of a mixture of 2-hydroxyethyl methacrylate (24 wt. %) 

and ethylene dimethacrylate (16 wt. %) in the presence of the porogens 1-decanol (12 wt. %) 

and cyclohexanol (48 wt. %) and 2,2-dimethoxy-2-phenylacetophenone as an initiator was 

used. In the second step, the SH barriers on the HH polymer film are produced by UV-

initiated surface grafting of poly (2,2,3,3,3-pentafluoropropyl methacrylate) (PFPMA) through 

a quartz photomask. The grafting reaction only takes place on the surface exposed to the 

UV-light. By this, the regions that are covered by the photomask stay HH, whereas the 

regions exposed to the UV-light turn SH. Thus, the HH regions on which the cells can grow 

are defined by the photomask. These reservoirs can be employed for simultaneous 

cultivation of different cell types on the modified glass slide. For my experiments, the SH 
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borders had a diameter of 50 µm which is comparable to the size of a single cell, therefore 

impeding any kind of cell mixing between the seeded populations. However, the two 

compartments can be connected via culture medium, thereby allowing cell-cell 

communication via molecules that can diffuse in the media. 

In order to visualise the activation of the canonical Wnt pathway, I made use of a Wnt 

reporter gene construct, called 7xTCF-Xla.Siam:nlsmCherry (designated TCFsiam) (Moro et 

al., 2012). In this construct, the expression monomeric Cherry protein (mCherry) is under the 

control of seven multimerised TCF responsive elements upstream of the minimal promoter of 

the Xenopus direct β-catenin target gene siamois (Brannon et al., 1997; Maretto et al., 2003). 

This reporter gene construct was transfected in zebrafish fibroblast Pac-2 cells. These cells 

are easy to cultivate, they are robust and do not need additional CO2 supply. This offers a big 

advantage for the cell handling during the cultivation on the cell-communication chip, as the 

petri dish in which the chip was positioned can be properly sealed to avoid medium 

evaporation. This is important, especially as the cell populations are seeded as a drop, thus 

in a rather small volume that is easy to air dry. As the Pac-2 cells are not dependent on CO2, 

the sealing and the resulting lack of CO2 had no effect on these cells, making Pac-2 cells 

most suitable for the experimental set-up. 

Pac-2 cells transfected with the reporter construct were seeded in one compartment 

of the cell-communication chip, reflecting the Wnt receiving cells. Activation of the Wnt 

pathway in these cells results in the expression of fluorescent mCherry. The Wnt producing 

Pac-2 cells, transfected with bioactive Wnt8a-GFP (Hagemann et al., 2014) were seeded in 

the adjacent compartment. The super-hydrophobic border hindered the mixing between the 

Wnt producing and the Wnt receiving cells (Fig. 5a). 
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Figure 5: Wnt8a can activate the Wnt pathway in the receiving cells independent of cell-cell contact 
between the Wnt producing and –receiving cells 

 a) A scheme describing the experimental set up of the cell-cell communication chip. Wnt producing cells, 

transfected with Wnt8a-GFP were seeded in one compartment of the chip. Wnt receiving cells transfected with a 

Wnt reporter plasmid in which mCherry expression is driven by a TCF promoter were seeded in an adjacent 

compartment. The two compartments were separated by a hydrophobic border. After overnight cultivation the two 

compartments were connected by addition of media to the petri dish. b) Zebrafish Pac-2 fibroblasts transfected 

with the Wnt reporter construct showed a basic activation after 24 hpc (upper lane; inset 1 shows a higher 

magnification picture). When the compartment of the Wnt8-GFP transfected cells was connected to the reporter 

compartment, the reporter activity in the receiving cells increased (lower lane, inset 2 shows a higher 

magnification picture), simultaneously to the internalisation of Wnt8-GFP molecules in the receiving cells (inset 3, 

arrows). c) Graphs show the quantification of the experiments performed in b). Wnt8a-GFP induced a significant 

increase in the number of Wnt stimulated reporter cells (left) and an increase in the fluorescence signal within the 

nuclei of the receiving cells (right) after normalisation to the cell number. Data represent an average from 4 

independent experiments performed in triplicates with the indicated standard deviations (*p< 0.05, statistical 

significance was determined by using the student´s t-test). 

 

To address now whether Wnt8a-GFP can activate the Wnt pathway in the receiving 

cells by diffusion and without cell-cell-contact, the two compartments were connected via 

addition of culture medium. As a control cells transfected with the TCFsiam construct were 

seeded in the two adjacent compartments. To observe the effective signalling of Wnt8a-GFP 

cells transfected with the Wnt ligand were seeded in one compartment and the cells 
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transfected with the reporter system in the other compartment. The control cells showed a 

background activation of the reporter construct (Fig. 5b); already after 1 h post connection 

(hpc), an increase in the activation of the reporter expression was observed, suggesting that 

Wnt8a-GFP is acting as a morphogen also in vitro (data not shown). After 24 hpc a 1.66 fold 

increase in the activation of the reporter was observed when compared to the control (Fig 5b 

and c). Besides, an accumulation of Wnt8a-GFP, in most likely endosomes, within the 

receiving cells was detectable (Fig. 5b, inset 3, arrows). In order to determine if the increase 

in the number of mCherry positive cells was also due to the increase of the total number of 

cells, the cells were counterstained with the nuclear dye DAPI. The number of mCherry 

positive cells was normalised on the total number of cells patterned on the surface (Fig. 5c). 

Although the total number of cells was increased compared to the control an additional 

increase of cells positive for the TCF reporter could be observed. According to these results 

the increase in reporter fluorescence was due to a combination of an increase of proliferation 

as well as an increase in activation of the reporter gene expression. This highly suggests that 

Wnt8a can spread without cell-cell contact in a long-range fashion. 

3.2 Localisation of Wnt on cell protrusion 
However, the main interest of my thesis was to study the spreading mechanism of 

Wnt. In order to visualise secretion of Wnt8a from the producing cells, I used high-resolution 

microscopy of single Wnt8a positive cells. Cells were transfected with Wnt8a-GFP to 

visualise the ligand and Evi-mcherry marking the cell membrane, and scanned at the 

confocal microscope Evi/Wls is a seven trans-membrane protein essential for the secretion 

of Wnt proteins (Bänziger et al., 2006; Bartscherer et al., 2006) and was overexpressed to 

increase the amount of overexpressed Wnt8a-GFP at the plasma membrane. 

 

Figure 6: Wnt8a-GFP is localised on cellular protrusions 

a) Live images of Pac-2 cells transfected with Wnt8a-GFP and Evi-mCherry showing Wnt8a -positive cell 

protrusions with lengths up to 70 µm in vitro in a cell culture dish. The pictures show two representative results out 

of at least 3 independent experiments (Scale bars = 20 µm).  
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I found Wnt8a on the tip of cellular extensions characterised by a maximum length up 

to 70 µm were observed in cultured Pac-2 cells transfected with Evi-mCherry and Wnt8-GFP 

(Fig. 6a) in vitro. To validate if the observed localisation was characteristic of this cells and 

due to in vitro culturing, I repeated these experiments in a tissue in vivo. 

To this end, I made use of the zebrafish model organism since the big dimension of 

its cells and the transparency of the embryo makes it a really suitable system for imaging. To 

distinguish Wnt producing cells from all other cells, a clonal injection of mRNA in one cell of 

16-cell stage embryo was performed. This results, at the 50% epiboly stage (6 hours post-

fertilisation, hpf), in a small clone of cells originating from the cells that express the injected 

mRNA. These cells mimic local Wnt sources in the neural plate of zebrafish embryos. Wnt8a 

(described above) was used, as it is the main Wnt/β-catenin signal during early zebrafish 

gastrulation and neural plate patterning (Kelly et al., 1995). In order to visualise the structure 

of Wnt8a-GFP injected cells membrane-tethered fluorescent mCherry-GPI mRNA was co-

injected. This injection marks individual epiblast cells within the neural plate in a mosaic 

fashion. To obtain an optimal overview of the distribution and localisation of the injected 

Wnt8a Z-stack images of the neural plate were acquired using confocal microscopy. In this 

way I observed a dynamic network of thin cellular protrusion, spanning approximately 10-50 

µm, reflecting several cell diameters, and oriented in many directions from the cell body 

along the anteroposterior and dorsoventral axis of the living embryo. Intriguingly, 

fluorescently labelled Wnt8a localised to the distal tips of these cell protrusions was observed 

similar to the in vitro observations (Fig. 7a). 

To visualise the dynamic of cellular protrusions and to possibly observe their 

formation and the mechanism by which Wnt was exchanged from the producing to the 

receiving cell high-speed in vivo confocal time-lapse analysis of Pac-2 fibroblasts was 

performed. To this end, Pac-2 cells were transfected with Evi-mCherry and Wnt8a-GFP. 

Wnt8a-positive protrusions were characterised by a high dynamic. Time lapses movies 

showed that the transport of Wnt from the source cell to a neighbouring cell, negative for 

Wnt, was happening through formation and elongation of a cell protrusion. The cell extension 

was starting from the accumulation point of Wnt at the plasma membrane (Fig. 7b).  
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Figure 7: Wnt8a is transported on cellular protrusions within the zebrafish neural plate and Pac-2 
fibroblasts 

a) Live cell images of a 15 µm stack of Wnt8a-GFP and memCherry expressing single epiblast cells of a zebrafish 

embryo at 50% epiboly. The embryos were injected with 0.1 ng of mRNA of Wnt8a-GFP and membrane-bound 

mCherry in one blastomere of a 16 cell stage. Wnt8a-GFP is localised at the tip of a cellular protrusion (arrow, left 

picture). The high magnification pictures of single channels show Wnt8a-GFP localisation to the distal tip of the 

protrusion (right picture). b) Series of representative time-lapse images showing Pac-2 zebrafish fibroblasts 

transfected with Wnt8a-GFP and Evi-mCherry containing multiple cellular protrusions with Wnt8a present at the 

distal end (arrow) forming cell-cell contact with a neighbouring Pac-2 fibroblast by filopodia. The pictures in a) and 

b) show one representative result out of at least 3 independent experiments.  

 

After contact formation with the neighbouring cell, these cell protrusions were 

stabilised for 10 min, then the extension was pruned off (Fig. 8a, blue arrow) and the Wnt8a-

positive tip was forming an extracellular vesicles that remained attached to neighbouring 

cells (Fig. 8a, yellow arrow).  

Zebrafish epiblast cells possessed several cellular protrusions containing Wnt8a. I 

quantified the lengths of the Wnt positive cell extensions by fragmenting the 3D scan into 

single epiblast cells with the program Imaris, a software from Bitplane for scientific 
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microscopy imaging. A representative surface was created around the blastomere and this 

allowed the detection of cell protrusions with a maximum diameter of 1.5 µm (Fig. 8b) 

recognised from the software. The program then automatically calculated the length of these 

protrusions. Wnt positive filopodia with an average length of 16.6 +/- 0.6 µm (Fig. 8c) were 

found. Time-lapse movies were performed and the velocity of formation of the protrusions 

was calculated. This was obtained by dividing the total length of the extension by the time 

required till the process of transport of Wnt from the producing to the receiving cell was 

completed. The formation of the extensions displayed an average velocity of 0.11 +/- 0.01 

µm/sec (Fig. 8d), and this process was taking place in less than 10 minutes. This time was 

consistent with biophysical measurements for actin-based filopodia (Mogilner and 

Rubinstein, 2005). 
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Figure 8: Process of Wnt8a delivery from the producing to the receiving cells and measurement of length 

and formation speed of Wnt8a transporting cellular protrusions. 

a) Pac-2 cells were transfected with Wnt8a-GFP and Evi-mCherry and analysed for the Wnt transport 24 h post 

transfection. After the contact between the Wnt8a-containing cellular protrusion and the receiving cell the cellular 

protrusion was pruned off. One part of the protrusion is retracted (blue arrows) and the other part shrinks and 

forms a Wnt8a-positive vesicle at the membrane of the contacted cell (yellow arrow). The pictures in a show one 

representative result out of at least 3 independent experiments (Scale bars as indicated; Time in min:sec.). b) 

Zebrafish embryos were injected with a membrane marker and Wnt8a-GFP in one blastomere at the 8 cell-stage 

for analysis of the length of cell protrusions. At 50% epiboly, embryos were subjected to high-resolution laser-

scanning confocal microscopy. After scanning, 3D stacks were acquired to analyse morphology of single epiblast 

cells. Image post-processing included a representative 3D surface rendering. Cell protrusions were identified 

automatically by using the FILAMENT TRACER module of Imaris 7.1. To identify filopodia, the following criteria 

were chosen: starting point (largest diameter, e.g., base of filament) 1.5 µm; seed point (thinnest diameter, e.g., 

dendrite ending) 0.4 µm; distance for connection (shortest distance from distance map) 3.2 µm. All cellular 

protrusions were manually validated. c) The graph illustrates the distribution of the filopodia lengths of 391 

protrusions in percent, quantified from 4 independent experiments. Error bars show S.E.M., and a fifth degree 

polynomial line is displayed. d) The formation speed of 26 individual protrusions measured in 4 different 

experiments is shown with a minimum speed of 0.03 µm/sec up to a maximum of 0.24 µm/sec. The line illustrates 

an average speed of 0.11 µm/sec. 

 

To verify whether overexpression of the tagged Wnt8a protein reflects the localisation 

of the endogenous protein I performed immunofluorescence experiments, using antibodies 

detecting the zebrafish Wnt8a. Since antibody staining of secreted ligands in embryos are 

technically challenging, an alternative way to localise Wnt8a on a subcellular level was used. 

I generated primary cell culture from the embryo at gastrula stage. At this stage the Wnt 

source is localised at the margin of the embryo; therefore cells derived from the margin 

constitute a good source to analyse the endogenous distribution of Wnt, since they are 

known to be positive for Wnt. These cells were then compared to cells from the animal pole, 

which are known to be Wnt negative and therefore used as negative control. Primary cell 

cultures were stained with phalloidin to visualise the cell structure, DAPI to mark the nuclei 

and a polyclonal zebrafish Wnt8a-antibody to localise endogenous Wnt. Indeed, endogenous 

Wnt8a proteins were detected in cells derived from the marginal zone in intracellular 

compartments and at the most distal end of cell protrusions (Fig. 9a, yellow arrow). In 

contrast to this, no anti-Wnt8a immunoreactivity could be detected in control cells. This result 

suggests that the localisation of Wnt on cell protrusion was bona fide reflecting the 

endogenous localisation. 
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Figure 9: In vivo analysis of endogenous Wnt8a localisation in primary zebrafish blastula cells.  

a) Wnt8a antibody staining of primary cell cultures from marginal cells or from animal cells of zebrafish embryos 

at the 50% epiboly stage. Endogenous Wnt8a protein can be detected in fixed marginal cells at the tips of cell 

protrusions (arrow), whereas animal pole cells are Wnt8a-negative. The high magnification pictures show the 

distal tips of a control cell (upper picture) and of a Wnt8a producing cell (lower picture). The pictures in a) show 

one representative result out of at least 3 independent experiments (scale bar = 10 µm). 

 

Recently, it was shown, that palmitoylation is essential for the membrane association 

of Wnt8a in zebrafish (Luz et al., 2014). In order to analyse whether the Wnt distribution on 

filopodia was not due to its modification, I examined the subcellular localisation of various 

lipid-modified GFPs. I performed clonal injections in embryo at 16-cell stage of a 

palmitoylated GFP (Palm-GFP) and a GFP with a general GPI anchor (GPI-GFP). At 50% 

epiboly the injected embryos were scanned at the confocal to obtain z-stack pictures. Palm-

GFP and membrane-tethered fluorescent proteins showed ubiquitous localisation to the 

membrane (Fig. 10a and b), suggesting that lipid modifications such as palmitoylation are not 

responsible for the localisation of Wnt8a to the filopodia tips (Fig. 10c). To test if also non-

lipid modified morphogens were localising in a unspecific way on the tip of cellular protrusion 

I injected a Fgf8a-GFP (Rengarajan et al., 2014; Yu et al., 2009) at 16-cell stage. By 

scanning the injected embryo by confocal microscopy Fgf8a could not be detected at the 

membrane. However, it could be observed in the extracellular space (Fig. 10d). In summary, 

these results indicate that the localisation observed for Wnt8a on cell protrusion is indeed 

specific for Wnt8a. 
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Figure 10: The localisation on cellular protrusions is specific for Wnt8a.  

a-d) Live imaging of clones of epiblast cells expressing palmitoylated GFP (Palm-GFP), GPI-anchored GFP (GPI-

GFP), Wnt8a-GFP and Fgf8-GFP in zebrafish at 50% epiboly. Wnt8a-GFP strongly associated with membranes 

of the producing cells (c, arrows) in zebrafish embryos whereas GPI-GFP (a), Palm-GFP (c) andFgf8a-GFP (d) 

were not detected on cellular protrusions. Pictures show one representative result out of at least 3 independent 

experiments (scale bar = 10 µm). 

 

3.3 Characterisation of Wnt positive cellular protrusion  
In order to characterise the cellular protrusion carrying Wnt8a on their tip more in 

detail, the localisation of specific cytoskeletal structures like F-actin or microtubules were 

analysed. To this aim, Wnt8a-mcherry plus the cytoskeletal markers were injected in one cell 

of a 16-cell stage embryo and the expression was analysed by confocal microscopy. Wnt 

positive cytoplasmic extensions were composed by actin along the entire process, as shown 

by the expression of a highly specific marker LifeAct (Goedhart et al., 2012) (Fig. 11a). To 

visualise tubulin-based structures, the microtubule-associated protein Deoxycytidine kinase-

GFP (DCK-GFP) (Vacaru et al., 2014) was co-injected with Wnt8a-mcherry. After 

overexpression DCK could be detected only at the proximal base of the protrusions, 

suggesting that Wnt positive extensions contain actin bundles but do not contain 

microtubules (Fig. 11b). As especially filopodia are cell protrusions enriched in filamentous 

actin and negative for microtubules, these results suggest that the cell protrusions 
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transporting Wnt observed in this work are most likely filopodia. 

 To determine the mechanism regulating the formation of the Wnt8a-containing actin-

positive extensions, I focused on proteins involved in cytoskeletal rearrangements and 

filopodia formation like e.g. the N-Wasp (Miki et al., 1998), the small Rho GTPase Cdc42 

(Nobes and Hall, 1995), the Rho family GTPase effector Insulin Receptor tyrosine kinase 

Substrate p53 (IRSp53)(Yeh et al., 1996) and the transducer of Cdc42-dependent actin 

assembly 1 (Toca1) (Ho et al., 2004). Co-injection of N-Wasp-GFP together with a 

membrane-CFP and Wnt8a-mcherry revealed that the ectopically expressed N-Wasp is 

present in discontinuous domains along Wnt8a-positive protrusions (Fig. 11c). Like N-Wasp-

GFP, also an injected Cdc42-binding domain of N-Wasp (nGBD-GFP), which labels domains 

where Cdc42 is active (Miki et al., 1998), was found in Wnt8a-positive protrusions (Fig. 11d). 

Next, I analysed the localisation of the ubiquitously expressed multidomain scaffold protein 

IRSp53, which binds active Cdc42 and N-Wasp to promote filopodia formation (Disanza et 

al., 2013; Kast et al., 2014). Remarkably, also IRSp53was found in the same micro domains 

on the Wnt8a containing protrusions (Fig. 11e). The evolutionarily conserved PCH protein 

Toca1 is one of the earliest localisation markers of outgrowing filopodia at the plasma 

membrane and it is a core member of the Cdc42/N-Wasp nucleation complex (Lee et al., 

2010). Upon co-injection of Toca1-GFP together with Wnt8a-mCherry, both ectopically 

expressed proteins co-localised at the plasma membrane prior to protrusion formation and 

were maintained at the proximal part of the filopodium (Fig. 11f). These findings highly 

indicate that the Wnt8a containing protrusions are indeed filopodia, as the formation is 

regulated by Cdc42/N-Wasp and involves proteins belonging to the f-actin nucleation 

complex, like Toca1. 
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Figure 11: Wnt8a is localised on N-Wasp/Cdc42-positive filopodia in epiblast cells of the developing 

neural plate. 

a-f) At the 8–16-cell stage, single blastomeres of zebrafish embryos were microinjected with 0.1 ng of mRNA of 

indicated constructs to generate focal cell clones. Live cell imaging of 15-µm stacks was performed on triple-

labelled single epiblast fish cells of embryos at 50% epiboly using confocal microscopy analysis. a) Zebrafish 

embryos were injected with Wnt8-mCherry, the actin marker LifeAct and a membrane marker (mCFP). The 

picture shows Wnt8a at the tip of actin positive filopodia. b) Zebrafish embryos were injected with Wnt8-mCherry, 

the microtubule marker DCK and mCFP. The picture shows that Wnt8a containing cell protrusions are negative 

for the microtubule marker. c) Zebrafish embryos were injected with Wnt8-mCherry, the N-WaspGFP and mCFP. 

The picture shows that Wnt8a-positive filopodia contain N-Wasp in interrupted domains (arrows) along their 

length. d) Zebrafish embryos were injected with Wnt8-mCherry, wGBD-GFP (the active domain of Cdc42) and 

mCFP. The picture shows that Wnt8a-positive filopodia contain also active Cdc42 in interrupted domains (arrows) 

along the filopodia length. e) Zebrafish embryos were injected with Wnt8-mCherry, IRSp53-GFP and mCFP. The 

picture shows that Wnt8a-positive filopodia are also positive IRSp53. f) Zebrafish embryos were injected with 

Wnt8-mCherry, Toca-1-GFP and mCFP. The picture shows that Toca-1 is located at the initiation point of Wnt8a-

positive filopodia. Pictures show one representative result out of at least 3 independent experiments (scale bar = 

10 µm). Black and white (B/W) pictures show higher magnification of Wnt8a-positive filopodia with the indicated 

markers (scale bar = 5 µm).  
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 It has been recently shown that other morphogens, i.e. Shh can be transported via 

filopodia (Sanders et al., 2013). However in this study the transport occurs through 

movement of vesicles along the filopodia structures. However, according to my observations 

(Fig. 7b), Wnt seems to move towards the receiving cells on the tip of the filopodia and 

through filopodia growth. To investigate the mechanism by which Wnt was loaded on a 

filopodia tip and transported to the neighbouring cell, the localisation of a plus-end-directed 

actin motor, the unconventional Myosin X (MyoX), was analysed. This protein, which is a 

member of the filopodia tip complex (Bohil et al., 2006), is normally involved in the transport 

of cargo protein to the filopodia tip. MyoX-GFP was co-injected with Wnt8a-mcherry and its 

localisation was monitored by confocal microscopy. MyoX accumulated and co-localised with 

Wnt8a-mCherry at the filopodia tip (Fig. 12a). Furthermore, the localisation of Evi/Wls was 

observed, Evi/Wls is known to bind to Wnts through their palmitate moiety and to transfers 

them to the plasma membrane. Similar to MyoX, Evi-mCherry co-localised with Wnt8a-GFP 

at these tips (Fig. 12b). In zebrafish embryos, Wnt8a localised predominately to the distal tips 

of these protrusions during the contact-formation process, as shown by the continuous co-

localisation of Wnt8a with the filopodia tip marker Myosin X and the formation of stable 

connections with neighbouring cells (Fig. 12c). These results suggest that Wnt8a is localised 

to Cdc42/N-Wasp-positive filopodia and that the growth of this cell extensions determines the 

transport of the ligand, loaded on the filopodia tip through MyoX. 
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Figure 12: Live cell imaging of Wnt8a transport within the zebrafish neural plate. 

a) At 16-cell stage, zebrafish embryos were microinjected in one blastomere with 0.1 ng of mRNA of Wnt8a-

cherry and membrane-bound CFP and MyoX-GFP. Live cell imaging of a 15 µm stack of CFP expressed in single 

epiblast cells in a zebrafish embryo at 50% epiboly, show the co-localisation of Wnt8a and MyoX at the tip of 

filopodia. b) The experiment was performed as in a) injecting Evi-mCherry instead of MyoX. The picture shows 

the co-localisation of Wnt8a and Evi. c) Time laps images of triple labelled MyoX-GFP/Wnt8a-mCherry/mCFP 

positive epiblast cells show continuous co-localisation of MyoX-GFP with Wnt8a (arrow) during filopodia extension 

in a zebrafish embryo at 50% epiboly. Pictures in a-c) show one representative result out of at least 3 

independent experiments (scale bar as indicated). Black and white (B/W) pictures show higher magnification of 

Wnt8a-positive filopodia with the indicated markers. 

 

3.4 Wnt positive filopodia activate the signalling cascade in the 
receiving cell  

 In order to find out whether filopodia act just as transport vehicles or whether they are 

able to directly activate signalling in the neighbouring cells, I analysed the activation of the 

Wnt pathway in the Wnt receiving cells. Standard in vivo assays for Wnt activity, such as the 

expression of fluorescent proteins driven by multiple repeats of TCF-responsive elements or 

the translocation of fluorescently labelled β-catenin into the nucleus, offer a low temporal 
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resolution and are measurable only hours after activation of cells. Therefore these assays 

are not suitable for showing a quick filopodia-mediated process triggering the activation of a 

signalling cascade that could operate on the scale of minutes. Furthermore, these methods 

lack of cellular resolution, making it impossible to determine the activation of the Wnt 

pathway in specific cells or to visualise any kind of cellular structures involved in this 

activation. However, one of the first steps in the activation of the canonical Wnt pathway is 

the clustering of Wnt ligands with their transmembrane receptors Fz and Lrp5/6 at the 

plasma membrane of the receiving cell. These clusters then recruit intracellular Wnt 

transducers, such as Dvl2 and Axin1, in a complex defined as Lrp6-signalosome in vitro (Bilic 

et al., 2007) and in vivo (Hagemann et al., 2014). These initiating steps of the Wnt signalling 

cascade occur within minutes upon Wnt induction and can be visualised by overexpressing 

fluorescently tagged versions of the proteins mentioned above. Hence, in order to address 

whether Wnt8a-positive filopodia can directly trigger the Wnt cascade in the receiving cells, I 

injected fluorescently labelled Wnt8a in a clone of producing cells (P) and fluorescently 

tagged Lrp6, Dvl2 or Axin1 in an adjacent responding cell clone (R) of gastrula zebrafish 

embryos (Fig. 13a). Remarkably, Wnt8a positive filopodia where able to cluster Lrp6, Dvl2 

and Axin1 at the plasma membranes of the receiving cells as shown by confocal 

microscopical acquisition and subsequent analysis of the Z-stack images of the injected 

embryos (Fig. 13b). Wnt negative filopodia, however, were unable to cluster these effectors. 

This suggests that filopodia-based spreading directs Wnt8a signal propagation in the 

gastrulating zebrafish embryo and that these Wnt8a-positive filopodia are able to induce 

active Lrp6-signalosomes in the neighbouring cells, the first step in Wnt signalling 

transduction. To confirm that Wnt positive filopodia are able to activate the Wnt pathway in 

neighbouring cells with an additional in vitro assay, Pac-2 cells were transfected either with 

Wnt8a-GFP or with Dvl-mCherry. The two populations of cells were then co-cultured and 

subsequently analysed by confocal microscopy in order to visualise whether the contact of a 

Wnt8a-GFP filopodia of the Wnt producing cell with a Wnt receiving cell can recruit Dvl to the 

plasma membrane of the receiving cell. This was indeed the case (Fig. 13c), suggesting that 

the mechanism of transport of Wnt through filopodia represents a general mechanism for 

distributing Wnt proteins rather than a cell- or developmental stage-specific phenomenon.  
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Figure 13: Wnt8a transported on filopodia activates Wnt signalling in responding cells. 

a) Schematic representation of the generation of ligand-producing cell clones (P) in close vicinity to responding 

cell clones (R). At 16-cell stage, zebrafish embryos were microinjected twice - in one blastomere with 0.1 ng 

Wnt8a-GFP or Wnt8a-mCherry together with a membrane marker and in the neighbouring blastomere with 0.1 ng 

of mRNA of each of the indicated constructs. b) Representative image stacks of live embryos with fluorescently 

tagged Wnt8a-producing cells (P) that contact the cell body of responding cells (R) expressing either Lrp6-GFP; 

Dvl2-mCherry; and axin1-GFP in a zebrafish embryo at 50% epiboly stage. Yellow arrows show clustering of 

Lrp6, Dvl2 or Axin1 by Wnt positive filopodia. Wnt negative filopodia do not cluster components of the 

signalosome (blue arrows) c) Pac-2 cells transfected with Wnt8a-GFP were co-cultivated with Pac-2 cells 

transfected with Dvl2-mCherry. Wnt8a located on filopodia tips can recruit Dvl2 to the membrane. Inset shows 

high magnification pictures before (upper picture) and after (lower picture) 3D surface rendering. Pictures show 

one representative result out of at least 3 independent experiments (scale bar as indicated). 

 

In order to confirm whether the Wnt positive protrusions are indeed filopodia, I 

analysed whether interference with filopodia formation alters the number and /or length of 

Wnt positive cell protrusions. To this aim, I tested several different well-known inhibitors of 

filopodia formation. Indeed, blockage of actin assembly by Cytochalasin D (Casella et al., 

1981) and Latrunculin B (Morton et al., 2000) led to a strong reduction of Wnt positive 

filopodia in producing cells (Fig. 14a). Consistently, treatment with the Cdc42 GTPase 

inhibitor ML141 (Surviladze et al., 2010) resulted in a strong reduction in the number of 

protrusions formed by Pac-2 fibroblasts (Fig. 14a). 
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Furthermore, I investigated whether these inhibitors of filopodia formation have any 

effect on the activation of the canonical Wnt cascade. To this aim, I made use of Wnt 

sensitive TCF/LEF reporter gene assay in HEK293T cells, a commonly used and sensitive 

method to study Wnt/β-catenin signalling (Molenaar et al., 1996). This method is based on a 

reporter construct, SuperTopFlash, STF (Veeman et al., 2003) (TCF/LEF optimal promoter), 

which consist of a firefly-luciferase reporter gene under the control of a minimal CMV 

promoter and multiple TCF/LEF binding sites. Activation of the Wnt pathway leads to the 

expression of TCF/LEF regulated genes and consequently to the expression of the luciferase 

reporter gene. Luciferase is an enzyme that oxidises its substrate luciferin in a measurable 

chemoluminescent reaction. The light intensity measured in this reaction correlates with the 

amount of luciferase therefore reflecting the activation level of the pathway. Thus, increases 

on Wnt signalling are reported as an increase in the luciferase activity and vice versa.  

 In order to address a paracrine function of Wnt, Wnt8a-secreting cells, I transfected 

HEK293T cells either with Wnt8a or with the STF-reporter and co-cultured these cells after 

transfection. In comparison to empty vector transfected cells, Wnt 8a transfected cells were 

able to increase the activation of the STF reporter up to 17.1-fold in the co-cultured STF 

reporter transfected cells (Fig. 14b). This activation is consistent with other co-cultivation 

studies of Wnt transfected HEK293T cells (Voloshanenko et al., 2013). The STF reporter 

gene assay was then used to address whether inhibition of filopodia formation is able to 

block the paracrine activation of Wnt8a signalling in co-cultured HEK293T cells. To this end, 

co-cultured Wnt8a and STF reporter transfected cells were treated with Cytochalasin D and 

Latrunculin B. Both actin polymerisation inhibitors were able to significantly block the 

activation of the STF in the receiving cells was reduced (Fig. 14b). The same effect was seen 

when the co-cultured cells were treated with the Cdc42 the inhibitor ML141 (Fig. 14b). 

Altogether, these results highly indicate that filopodia formation has an essential function for 

a proper activation of the Wnt/β-catenin signalling pathway. 
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Figure 14: Blocking filopodia formation in Wnt8a producing cells inhibits the activation of the Wnt 

pathway in Wnt receiving cells.  

a) Live imaging of Pac-2 cells transfected with Wnt8a-GFP and Evi-mCherry treated with the indicated inhibitors. 

Cytochalasin D and Latrunculin B (actin inhibitors) as well as ML141 (Cdc42/Rac1 inhibitor) were used to block 

filopodia formation. Arrows mark Wnt8a-positive filopodia of the control cells. Pictures show one representative 

result out of at least 3 independent experiments (scale bar = 15 µm). b) TCF/Wnt reporter activation of Lrp6 

transfected cells co-cultured with Evi-positive, Wnt8a-producing cells after treatment with DMSO (Ctr) or the 

indicated inhibitors. LRP6 was co-transfected with the TCF/Wnt reporter to sensitise the response in the Wnt 

receiving cells. Bars represent fold activation of the TCF/Wnt reporter. Data represent an average from 3 

independent experiments performed in triplicates with the indicated standard deviations (***p< 0.005, statistical 

significance was determined by using the student´s t-test). 

 

 However, the treatment with these inhibitors of filopodia formation targets the Wnt 

receiving as well as the Wnt producing cells, which makes it difficult to interpret the data. In 

order to specifically address the requirement of filopodia for the distribution of Wnt by the 

Wnt producing cell, I performed additional experiments in which I blocked filopodia formation 

only in Wnt8a-producing cells. One way to suppress filopodia formation is to interfere with 

the activity of Cdc42 (Allen et al., 1997). In a first instance, I tested in different cell types 

whether indeed Cdc42 influences filopodia formation. To this aim, Pac-2 fibroblast were co-

transfected with Wnt8a-mcherry, the membrane marker Gap43-GFP and either Cdc42wt or 

Cdc42 T17N. Cdc42T17N is a dominant negative form of Cdc42 constantly bound to the GDP 

and therefore inactive (Erickson et al., 1997). The overexpression of Cdc42wt was leading to 

an increase in the number of filopodia (Fig. 15a) demonstrating that increased Cdc42 activity 

can increase filopodia formation. In contrast, the dominant negative form of Cdc42 led to a 

reduction in the number and length of cell extension (Fig. 15a), suggesting that down-
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regulation of Cdc42 interferes with filopodia growth. 

Also in NIH3T3 cells, transfected with the membrane marker pmKate, a co-

transfection of Cdc42wt increased the number of filopodia (Fig. 15b). Concordantly and 

similar to the results obtained in HEK293T cells, cotransfection of Cdc42 T17N decreased the 

number of filopodia (Fig. 15b) 

 

Figure 15: Overexpression of Cdc42 increases generation of filopodia whereas blocking of Cdc42 inhibits 

filopodia formation. 

a) Confocal images of Pac-2 zebrafish fibroblasts transfected with Wnt8a-mCherry and the membrane marker 

Gap43:GFP together with an empty vector or Cdc42WT or the dominant-negative Cdc42T17N. Fibroblasts 

transfected with wild type Cdc42 displayed a 2.0 +/- 0.5-fold increase in the number of filopodia per cell compared 

to control (n=15). Consistently, transfection with the dominant-negative Cdc42T17N showed a 3.3 +/- 0.2-fold 

reduction in the number of filopodia (n=15) b) Confocal images of mouse 3T3 fibroblasts transfected with an 

empty vector or Cdc42WT or the dominant-negative Cdc42T17N together with the membrane marker pmKate2. 

Ectopically expressed wild type Cdc42 increased the number of filopodia whereas the dominant-negative 

Cdc42T17N decreased the filopodia number when compared to empty vector transfected control cells. Pictures 

show one representative result out of at least 3 independent experiments (scale bars as indicated). Insets show 

parts of the cell membrane at higher magnification. 
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Also in HEK293T cells, ectopic expression of Cdc42wt increased whereas 

overexpression of Cdc42 T17N decreased the number of filopodia compared to empty vector-

transfected cells (Fig. 16a). In order to verify the essential role of Cdc42 in filopodia 

formation, the effect of an ectopically expressed mutated form of the Cdc42 effector IRSp53 

on filopodia outgrowth was tested. In this IRSp534K mutant, four lysine residues were 

mutated to glutamic acid in the actin-binding sites, blocking its actin-bundling function in 

filopodia (Millard et al., 2005). Like the overexpression of Cdc42 T17N, the transfected 

IRSp534K mutant was able to decrease the number and length of filopodia in HEK293T cells 

(Fig. 16a). Next, I investigated whether an increase of the number of filopodia of the Wnt 

producing cells has any effect on the activation of Wnt signalling in the receiving cell. To this 

aim, HEK293T cells were either transfected with Wnt8a alone or co-transfected with Wnt8a 

and Cdc42. Subsequently, these cells were co-cultured with HEK293T cells expressing the 

STF-reporter. Indeed, the positive effect of overexpressed Cdc42 on filopodia formation also 

results in an increase of Wnt activity in the Wnt receiving cell. This is demonstrated by the 

result that co-expression of CDC42 and Wnt8a in the Wnt producing cell significantly 

increased the STF-reporter activity of the co-cultured cells when compared to STF reporter 

transfected cells that were co-cultured with cells transfected with Wnt8a alone (Fig. 16b). 

Consistently, a reduction of filopodia number also inhibited the ability of Wnt8a-transfected 

cells to activate the Wnt pathway in the Wnt receiving cells. The co-transfection of Cdc42T17N 

or IRSp534k with Wnt8a, as well as the treatment with the inhibitor Latrunculin B significantly 

reduced the activation of the STF reporter transfected cells in the co-culture (Fig. 16b). In 

summary, these data suggest that Cdc42 facilitates filopodia formation, which in turn 

enhances non-cell-autonomous Wnt/β-catenin signalling activity. However, as Wnt ligands 

might also be distributed via secretion into the surrounding medium, it is possible that in 

addition to its contribution to the distribution of Wnt signalling via filopodia, Cdc42 may also 

have the capacity to enhance Wnt spreading by increasing the secretion of Wnt proteins. 

Therefore, I analysed whether altered filopodia formation changes the effective signalling 

capacity of the supernatant of Wnt8a-transfected cells. To this aim, I exposed STF 

transfected cells to the supernatant derived from cells transfected with Wnt8a-GFP or co-

transfected with Wnt8a-GFP and Cdc42WT, Cdc42T17N or IRSp534k and from Wnt8a-

producing cells treated with the actin inhibitor Latrunculin B. To avoid any contamination with 

cells, the supernatant was microfiltered before its application to the STF reporter transfected 

cells. In a first instance, I compared the supernatant derived from Wnt8a overexpressing 

cells with the supernatant of empty vector transfected cells for their ability to activate the 

reporter expression in the Wnt receiving cells. Indeed, treatment with the supernatant of 

Wnt8a transfected cells activated the reporter more than two fold compared to the 
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supernatant of empty vector transfected cells (Fig. 16c). Next, I compared the activity of the 

supernatants derived from cells co-transfected with Wnt8a-GFP and Cdc42WT, Cdc42T17N or 

IRSp534k and from Wnt8a-producing cells treated with the inhibitor Latrunculin B with the 

supernatant of cells that were transfected only with Wnt8a-GFP. No significant differences 

among the Wnt signalling activities of these supernatants could be detected (Fig. 16c), 

suggesting that Cdc42 and actin has no effect on Wnt8a secretion but rather regulate the 

filopodia mediated transport of Wnt8a-GFP.  

 

Figure 16: The activation of the Wnt pathway in Wnt receiving cells is controlled by Cdc42 dependent 
filopodia formation in the Wnt producing cells. 

a) Transfection of HEK293T cells with Wnt8a-mCherry and wild type Cdc42 displayed 26.8 +/- 3.0 filopodia per 

cell with a length of 7.1 +/- 0.5 µm. Wnt8a-mCherry transfected fibroblasts showed 14.1 +/- 4.1 filopodia with a 

length of 5.6 +/- 1.0 µm. Cells transfected with Wnt8a and dominant-negative Cdc42T17N formed 10.0 +/- 2.3 

filopodia with a length of 4.1 +/- 0.2 µm and cells transfected with Wnt8a and the dominant negative IRSp534K 

produced 12.0 +/- 2.9 filopodia with a length of 3.1 +/- 0.2 µm (for each experiments n=15). Pictures show one 

representative result out of at least 3 independent experiments (scale bar = 15 µm, arrows show Wnt8a positive 

filopodia). Inset shows high magnification of Wnt8a-positive filopodium. b) HEK293T cells transfected with Lrp6 

together with the TCF/Wnt reporter were co-cultivated with cells transfected with Wnt8a together with an empty 

vector, wild type Cdc42, Cdc42T17N or IRSp534K or Wnt8a transfected cells treated with Latrunculin B. Whereas 

wild type Cdc42 increased the activation of the Wnt pathway in the Wnt receiving cells, Cdc42T17N as well as 

IRSp534K and Latrunculin B inhibited the activation in concordance with the effect on filopodia formation. c) The 

supernatant of HEK293T cells treated as in b), was used to activate the Wnt pathway in TCF/Wnt reporter 

transfected cells co-transfected with Lrp6. No significant difference in the activity of the Wnt8a-containing 

supernatants derived from the cells treated as in b) was detected. Data represent an average from 3 independent 

experiments performed in triplicates with the indicated standard deviations (*** p < 0.005, ** P < 0.01, * p < 0.05, 

n.s.= not significant; statistical significance was determined by using the student´s t-test).  
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Based on these in vitro experiments, I addressed whether Cdc42 can also influence 

Wnt8a spreading in the living embryo. Therefore, fluorescently tagged Wnt8a and Cdc42 

were co-expressed in a clone of neural plate cells. The embryos were scanned using 

confocal microscopy and the length of Wnt positive cell extensions was determined for 5 

individual clones at 6 hpf, using Imaris as imaging processing program. In this setup, 

activation of Cdc42 in the Wnt producing cells led to an increase in Wnt8a-positive filopodia 

length and frequency (Fig. 17b and c). Furthermore, when Cdc42 was overexpressed, Wnt 

positive filopodia were often branched and displayed Wnt8a at several of their distal tips (Fig. 

17a). To block Cdc42 function in vivo, a morpholino oligomer-based double knockdown 

approach was performed for both Cdc42 homologues, Cdc42a and Cdc42c, which are 

expressed early in the Wnt producing cells in zebrafish embryos (Salas-Vidal et al., 2005). 

Cdc42 double morphant cells displayed a dramatically reduced average length of Wnt8a-

positive filopodia (Fig. 17a and b). In zebrafish, low concentrations of Latrunculin B have 

been proven to specifically block filopodia formation, leaving the intracellular actin cortex 

largely intact (Phng et al., 2013). Indeed, the filopodia lengths in clones blocked for Cdc42 

function were comparable to the length of filopodia after treatment with a low concentration of 

Latrunculin B (Fig. 17b). To validate the Morpholino-based knockdown approach, we 

reduced Cdc42-dependent filopodia formation also by overexpression of IRSp534k. Similar to 

the Cdc42a/c double knockdown, I found that the formation of Wnt8a-positive filopodia in 

zebrafish was decreased upon expression of IRSp534K and their average length was 

significantly reduced (Fig. 17a and b). Although the length of the filopodia was significantly 

decreased, the frequency of filopodia formation was only slightly affected in the latter 

treatments (Fig. 17c). 
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Figure 17: The activation of the Wnt pathway in Wnt receiving cells is controlled by Cdc42 dependent 

filopodia formation in the Wnt producing cells in zebrafish embryos.  

a) At 16-cell stage, zebrafish embryos were microinjected in one blastomere with Wnt8a-GFP and a membrane 

marker (memCherry) together with either Cdc42 mRNA, Cdc42 morpholinos or IRSp534K or treated with 

Latrunculin B. Wild type Cdc42 increased filopodia formation the knockdown of Cdc42 as well as IRSp534K and 

Latrunculin decreased filopodia formation. Pictures show one representative result out of at least 3 independent 

experiments (scale bar = 5 µm). b) Quantification of the filopodia length of the experiments performed in a). c) 

Quantification of the formation frequency of filopodia per cell in 10 min of the experiments described in a). Data of 

b) and c) represent an average of 5 independent experiments with the indicated standard deviations (*** p < 

0.005, ** P < 0.01, * p < 0.05, statistical significance was determined by using the student´s t-test). 

 

3.5 The Wnt signalling range is dependent on the length and 
number of filopodia 

Next, I analysed whether the range of Wnt signalling might be influenced by filopodia. 

To this end, I performed a double clonal injection in which Wnt8a and a membrane marker 

were injected in one blastomere of a 16-cell stage embryo and a fluorescently tagged Lrp6 

that was injected in an adjacent blastomere at the same cell stage (Fig. 18a). In the double 

injected embryos, I measured then the range at which Lrp6/Wnt8a clusters could be 

identified around the source clone (Fig. 18b). The co-localisation of Lrp6 and Wnt8a is shown 

in yellow and represents LRP6 signalosomes, respectively cells in which the Wnt pathway is 

activated. Formation of ligand-receptor complexes was observed as a halo surrounding the 

Wnt positive clone. The signalling range was increased when Cdc42 was overexpressed, 

thus the distance at which the ligand-receptor clusters could be detected was extended (Fig. 

18b). Consistently, double knockdown of Cdc42a/c, inhibition of actin polymerisation by 
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Latrunculin treatment, and suppression of Cdc42-dependent filopodia formation by Irsp534K 

led to reductions of the signalling range (Fig. 18b). Additionally, the Mander’s co-localisation 

coefficients for Lrp6 with Wnt8a (Mander’s 1) and Wnt8a with Lrp6 (Mander’s 2) were 

calculated (Fig. 18c). The Mander’s coefficient is proportional to the amount of fluorescence 

of the colocalising objects in each component, and depends on the intensity of the signals 

(Manders et al., 1993). When the clones co-expressed Wnt8a and Cdc42, an increase in the 

Mander’s co-localisation coefficient could be observed (Fig. 18c). Consequently, the 

Mander’s co-localisation was reduced by a Cdc42a/c knockdown, the inhibition of actin 

polymerisation by Latrunculin and the expression of the IRSp534K mutant (Fig. 18c). 

Altogether, these results show that filopodia influence the signalling range of Wnt 

morphogens. 
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Figure 18: The Wnt8a signalling range is controlled by filopodia. 

a) At 16-cell stage, zebrafish embryos were microinjected in one blastomere with Wnt8a-mCherry, a membrane 

marker (mCFP) and either together with Cdc42 mRNA, Cdc42 morpholinos or IRSp534K and in another 

blastomere with Lrp6-GFP. In addition, zebrafish embryos injected in one blastomere with Wnt8a-mCherry and a 

membrane marker (mCFP) and in another blastomere with Lrp6 were treated with Latrunculin B. Wnt pathway 

activation in the Wnt responding cells was visualised by confocal microscopy analysis of zebrafish embryos at 

50% epiboly stage using Wnt8a-mCherry/Lrp6-GFP colocalisation (yellow) as a read-out. Whereas wild type 

Cdc42 increased the range of Wnt pathway activation in the zebrafish embryo, the knockdown of Cdc42 as well 

as IRSp534K and Latrunculin B decreased the range. Pictures show one representative result out of at least 3 

independent experiments (scale bar = 10 µm). b) Quantification of distances of Lrp6/Wnt8a clusters to the source 

cells of the experiments performed in a). c) Mander´s co-localisation coefficient for Lrp6/Wnt8a was calculated for 

5 clones of each independent experiment performed in a). Coefficient of 1 = full co-localisation, 0 = random 

localisation. Data of b) and c) represent an average of at least 3 independent experiments with the indicated 

standard deviations (*** p < 0.005, ** P < 0.01, * p < 0.05, statistical significance was determined by using the 

student´s t-test). 
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In order to prove the effect of filopodia formation on the Wnt signalling range, I 

performed additional experiments in which I injected Wnt8a mRNA in one bastomere of 16-

cell stage embryos expressing nuclear mCherry under the control of the β-catenin/TCF 

responsive elements, Tg(7xTCF-XLa.Siam:mCherry-NLS)ia4 (Moro et al., 2012). Hence, in 

every cell were the Wnt pathway is activated the mCherry reporter is expressed. 

First, I quantified the fluorescence intensity of cell nuclei of the 7xTCF-

XLa.Siam:mCherry-NLS where a Wnt8a-positive clone was present compared to the control 

(Fig. 19a). The intensity of the Wnt reporter was measured automatically with Imaris and a 

colour code was assigned to the fluorescent nuclei, making in red the most intense and in 

violet the less intense.  

Next, I analysed whether an increase of the filopodia number by overexpression of 

Cdc42 in the Wnt8a-secreting clones has any effect on the activation of the Wnt pathway 

measured by the mCherry reporter. Indeed, ectopic expression of Cdc42 led to an increase 

of the median intensity of the measured cell nuclei over basic activation by Wnt8a alone (Fig. 

19a and b). However, when filopodia formation was impaired in the Wnt8a secreting clones, 

either by knockdown of Cdc42, treatment with Latrunculin B or blockage of IRSp53 function, 

the expression of the Wnt reporter in the host cells was reduced, shown by a significant 

decrease in the fluorescence intensity (Fig. 19a and b). 
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Figure 19: Analysis of Cdc42 function during Wnt8a signalling in cell culture and in zebrafish.  

a) At 16-cell stage, zebrafish embryos of the transgenic (7xTCF-XLa.Siam:mCherry-NLS)ia4 line were 

microinjected in one blastomere with Wnt8a-mCherry, a membrane marker (mCFP) and either together with 

Cdc42 mRNA, Cdc42 morpholinos or IRSp534K. In addition embryos injected in one blastomere with Wnt8a-

mCherry and a membrane marker (mCFP) were treated with Latrunculin B. Wnt pathway activation was 

visualised by confocal microscopy analysis of zebrafish embryos at 50% epiboly stage using the fluorescence 

intensity of the Wnt reporter as a read-out. mCherry positive nuclei were pseudo-coloured according to their mean 

fluorescent intensity (0= blue, 50=red). Whereas wild type Cdc42 increased the activation of the Wnt pathway, the 

knockdown of Cdc42 as well as IRSp534K and Latrunculin B inhibited the activation of the pathway. The pictures 

show one representative result out of at least 3 independent experiments (scale bar = 30 µm) b) Quantification of 

intensity means of nuclei in 5 different embryos of each independent experiment performed in a). Mean of 

fluorescence of control nuclei is marked by a line. Data of b) represent an average of at least 3 independent 

experiments with the indicated standard deviations (*** p < 0.005, ** P < 0.01, * p < 0.05, statistical significance 

was determined by using the student´s t-test). 

 

Taken together, these results highly suggest that Wnt8a-positive filopodia have 

strong impact on the effective Wnt signalling range in neighbouring cells and are strictly 

dependent on Cdc42 function. This supports a unique function of filopodia in growth factor 

delivery and an essential role of filopodia for the proper activation of Wnt signalling.  
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3.6 Filopodia control the Wnt gradient during neural plate 
patterning 

In the following experiments I analysed whether such transport of signalling 

molecules can promote the morphogenetic activity of the hydrophobic Wnt proteins in larger 

tissues during vertebrate development. Wnt ligands are expressed at the margin of the 

posterior neural plate in vertebrates and it has been proposed that graded Wnt activity is 

required for patterning of the anteroposterior axis of the forebrain, midbrain, and hindbrain 

(Kiecker and Niehrs, 2001; Rhinn et al., 2005). According to this model, the Wnt source at 

the margin controls the fate of cells within the neural plate. These cells are located several 

tens of micrometres away from the cells producing the signalling molecule. To analyse the 

dynamics of Wnt distribution in early embryogenesis, I performed a clonal injection in which 

clones of approximately 10-15 cells were generated; the clones were expressing 

fluorescently tagged Wnt8a in the presumptive neural plate (Fig. 20a). At the 50% epiboly 

stage, I segmented the receiving tissue of approximately 15 clones into 5 µm3 cubes and 

measured the total fluorescence signal within each cube. A halo of fluorescence could be 

observed at a distance of 10 – 20 µm away from the clone (Fig. 20a, arrows). I found 41.0 +/-

7.0% of the detected total fluorescence of the receiving tissue within this range (Fig. 20a). 

Next, I quantified the directionality as well as the length of the filopodia of Wnt8a-expressing 

marginal cells (examined for 15 cells). The length was measured with the imaging software 

Imaris 7.1. Cells located in the marginal zone extended long filopodia, with a bias towards 

the animal pole of the embryo (Fig. 20b). In addition, filopodia pointing towards the animal 

sector appeared longer when compared with filopodia directed to the vegetal pole (Fig. 20c). 
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Figure 20: Filopodia-based transport of Wnt8a follows the directionality of the Wnt gradient in the 
zebrafish embryo.  

a) Zebrafish embryos at 16 cell-stage were injected with Wnt8a-mCherry and a membrane marker (mCFP) and 

the distribution of fluorescently tagged Wnt8a around the Wnt8a-mCherry secreting clones in the zebrafish neural 

plate at 50% epiboly was analysed. The highest fluorescence intensity was detected in a halo around the clone 

(arrows). The graph shows the quantification of the distribution of total fluorescence in cubes of 5 µm3 of receiving 

tissue. For each of the three independent experiments 5 individual clones were analysed. The fluorescence 

intensity was correlated to the distance from the source clone. The highest intensity was measured between 10 

and 20 µm away from the Wnt secreting clone. Error bars represent the S.E.M. b) By analysing 15 isolated 

marginal cells from three independent experiments, the directionality of filopodia (n=153) was compared to the 

directionality of filopodia from cells isolated from the animal pole (n=96) and displayed in a wind rose plot. Here, 

36.7% of filopodia analysed are directed towards the animal pole within a sector of +/- 30° (from 330° to 30°) 

compared to 23.2% that are directed towards the margin (150° to 210°). c) Lengths of the same filopodia 

analysed in b) were measured, and the average lengths per segment were plotted according to their orientation. 

Filopodia directed towards the animal pole displayed an average length of 16.6 +/- 3.5 µm. Filopodia in the 

vegetal sector had an average length of 9.4 +/- 2.4 µm. Cells located at the animal pole had a random 

directionality distribution of 9.0 +/-0.4% per segment and an average length of 11.7 +/- 1.8 µm of cell extensions. 

In the wind rose plot, 0° represents the animal pole, and 180° the vegetal pole.  
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These results suggest that Wnt8a producing cells at the margin extend specialised 

filopodia into the Wnt signalling field. Remarkably, the width of the detected belt of 

fluorescence around a Wnt8a clone corresponds to the average length of the measured 

filopodia (Fig. 8c), as 49.8% of filopodia are pointing to the animal pole project into an area of 

10 – 20 µm from the source (Fig. 20b). 

 It has already been shown that filopodia formation can be initiated in response to 

morphogens, e.g. Fgf (Koizumi et al., 2012). Considering that Wnt8a co-localises with Toca-1 

at the cell membrane at filopodia nucleation points (Fig. 21a) and furthermore that Wnt8a 

clusters can be observed at the plasma membrane prior to the initiation of filopodia extension 

(Fig. 7b), it might be possible that Wnt proteins are not only transported via filopodia but also 

control the formation of this cellular extension. 

 

 

Figure 21: Wnt8a is present in filopodia nucleation points prior to filopodia formation. 

a) Zebrafish embryos at 16 cell-stage were injected in one blastomere with Wnt8a-mCherry, Toca1-GFP and a 

membrane marker (mCFP) and analysed by confocal microscopy at 50% epiboly. Wnt8a-mCherry can be found 

together with Toca1-GFP at filopodia nucleation points (arrow). The pictures show one representative result out of 

at least 3 independent experiments (scale bar = 10 µm). 

 

To investigate whether Wnt signalling can induce filopodia formation, I injected 

Wnt8a-GFP mRNA or Wnt8a morpholinos in one cell of a 16 cell-stage zebrafish embryo 

together with a membrane marker (memCherry). As control, I used embryos where only the 

memCherry mRNA was injected. Previous to this clonal injection I injected the embryos with 

another membrane marker (memCFP) at one cell-stage, in order to counterstain all the cells 

within the developing embryo. Indeed, an increase in the number and length of filopodia was 

observed in cells overexpressing Wnt8a-GFP/memCherry when compared to the cells that 

just express memCherry (Fig. 22a-c). Consistently, a knockdown of Wnt8a expression by 

means of morpholino oligomer injection led to a reduction in the number and length of the 
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filopodia (Fig. 22a-c).  

It might be possible that Wnt8a acts on filopodia formation by regulating the 

expression of Cdc42. Therefore, I performed qRT-PCR experiments on Wnt8a mRNA 

injected embryos to reveal whether the ectopic expression of Wnt8a alters the expression of 

Cdc42 at the transcriptional level. As control, I used un-injected embryos. However, the 

ectopic expression of Wnt8a had no effect on the mRNA level of Cdc42 when compared to 

the un-injected control. These results indicate that Wnt8a does not induce filopodia formation 

via transcriptional regulation of Cdc42 (Fig. 22d). In a developing zebrafish embryo the Wnt 

source is located at the margin, forming a gradient from posterior to anterior in the neural 

plate (Kiecker and Lumsden, 2004; Nordström et al., 2002; Rhinn et al., 2005). If filopodia 

are involved in this gradient formation, Wnt8a positive filopodia of marginal cells should grow 

in the direction of the animal pole. In order to verify this hypothesis, I injected Wnt8a-GFP 

mRNA together with mCherry in one blastomere of a 16-cell stage embryo. Subsequently, I 

compared the growth direction of Wnt8a-GFP positive filopodia of marginal cells with the 

growth direction of Wnt8a-GFP negative filopodia. Indeed, Wnt8a-GFP positive filopodia 

where mainly directed towards the animal pole whereas filopodia negative for Wnt8a showed 

no directed growth (Fig. 22e). This result is an indication that filopodia might contribute, or 

might even be essential, for the formation of the Wnt gradient, originating from the margin 

and pointing towards the animal pole in the developing zebrafish embryo.  
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Figure 22: Wnt8a influences the formation and the growth directionality of filopodia in zebrafish embryos. 

a) At one cell-stage the zebrafish embryos were injected with memCFP to visualise all cells within the embryo. At 

16 cell-stage the embryos were additionally injected in one blastomere with Wnt8a-GFP or Wnt8a morpholino 

oligomers together with memCherry or memCherry alone as control to visualise the injected cells. The embryos 

were analysed by confocal microscopy at 50% epiboly. The pictures show 15-µm stacks of one representative 

result out of at least 3 independent experiments. The arrows mark the filopodia. b) Quantification of the filopodia 

number of 5 individual cells of each independent experiment performed in a) c) Quantification of the filopodia 

length of 5 individual cells of each independent experiment performed in a). d) At one cell stage zebrafish 

embryos were injected with either an empty vector or with Wnt8a. At 24 hpf the embryos were analysed for Cdc42 

expression by qRT-PCR. e) Quantification of Wnt8a-positive filopodia in Wnt8a-GFP injected embryos according 

to their projection direction in the embryo. In the wind rose plot, 0° represents the animal pole, and 180° the 

vegetal pole. Data of b-d) represent an average of at least 3 independent experiments with the indicated standard 

deviations (* p < 0.05, n.s.= not significant; statistical significance was determined by using the student´s t-test). 
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 In the next experiments I addressed whether any effect on filopodia formation is 

correlating with endogenous Wnt signalling activity or signalling range during early 

gastrulation stages. In a first experimental set up, I quantified Wnt activity in zebrafish 

embryos at 50% epiboly by analysing the relative expression levels of the target genes axin2 

and lef1 by qRT-PCR. In order to analyse the effect of increased filopodia formation I injected 

one-cell stage embryos with Cdc42 mRNA. To suppress filopodia formation, I blocked Cdc42 

function by a Morpholino based knockdown or overexpression of a dominant negative form of 

IRSp534K, respectively I treated the embryos with Latrunculin B. The expression levels of 

both target genes were not significantly changed when filopodia formation was altered by 

Cdc42 overexpression, Cdc42 knockdown, Latrunculin B treatment, or overexpression of the 

IRSp534K mutant (Fig. 23a). Furthermore, also the expression of Wnt8a itself is similarly 

unchanged under these conditions (Fig. 23b), showing that these treatments had no effect on 

the expression of Wnt8a.  

Altogether, these results indicate that the overall endogenous Wnt activity is not 

dependent on filopodia formation. However, it is possible that the missing effect of filopodia 

formation is due to the limited amount of endogenous Wnt ligands in the developing embryo.  

 

Figure 23: Cdc42 does not directly control Wnt target gene expression. 

a, b) Quantification of the expression levels of Wnt target genes and Wnt8a by qRT-PCR. At one cell stage 

embryos were injected as indicated (Cdc42 mRNA, 0,6 ng; Wnt8a mRNA, 0,2 ng, IRSp534K mRNA, 1,2 ng; 

Morpholino oligomers targeting Cdc42a and Cdc42c 4 ng each). Alternatively, embryos were treated with 25 nM 

Latrunculin B from 30% epiboly until 50% epiboly. Total mRNA was isolated from 50 embryos at 50% epiboly. 

Experiments were conducted in triplicates. a) Relative axin2 and lef1 expression levels and b) wnt8a expression 

levels are displayed relative to those in wild type embryos (set to 1.0). All data represent an average of at least 3 

independent experiments with the indicated standard deviations (** P < 0.01, * p < 0.05, n.s.=not significant; 

statistical significance was determined by using the student´s t-test). 
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 Thus, I analysed whether an increase of filopodia formation has a stronger effect on 

Wnt target gene expression in case more Wnt ligands are available. To this aim, I 

overexpressed Wnt8a by injecting Wnt8a mRNA alone or together with Cdc42 mRNA in one-

cell stage zebrafish embryos. Subsequently, I tested whether Cdc42 might synergise with 

overexpressed Wnt8a to activate Wnt target gene transcription. Indeed, this was the case. 

Ectopically expressed Wnt8a resulted in increased expression of axin2 and lef1 and this 

increase was even further augmented by the overexpression of Cdc42 (Fig. 23a). 

Furthermore, I analysed the distribution of Wnt target gene expression within the embryo. To 

this aim an in situ hybridisation for axin2 was performed and the embryos were subsequently 

sorted according to their expression pattern into four phenotypic classes: normal (class A), 

expanded (class B), severely expanded (class C), and reduced (Fig. 24a). Moreover, I 

analysed the expression of the neural patterning gene otx2, a marker of the forebrain and the 

midbrain anlage in the neural plate at early gastrulation stages that is directly suppressed by 

Wnt/β-catenin signalling (Rhinn et al., 2005). Based on the otx2 expression pattern of the in 

situ hybridisation, the embryos were grouped into 4 categories: A, normal, B, reduced; C, 

severely reduced; D, expanded (Fig. 24a). 

Increasing the length of filopodia by overexpression of Cdc42 resulted in an 

expansion of the axin2 expression domain as seen by an increase in class B embryos (Fig. 

24b and d). A similar expansion was detected upon expression of 50 ng of Wnt8a mRNA. 

Co-expression of Cdc42 and Wnt8a mRNA led to a synergistic effect and significant 

enhancement of class C embryos. Knockdown of Cdc42 led to a reduced axin2 expression 

area and an enhanced number of class D embryos, which could be rescued by co-

expression of Cdc42 mRNA. Inhibiting the formation of filopodia by treatment with Latrunculin 

B or overexpression of IRSp534k also led to a reduced area of axin2 expression (Fig. 24b and 

d). 

In summary, I found that the levels of the ligand and target gene production were not altered 

by filopodia formation. The range of Wnt/β-catenin signalling, however, correlated with the 

length and number of functional filopodia. Thus, Inhibiting or enhancing the formation of 

filopodia led to a shorter signalling range with a steeper signal gradient or to a longer 

signalling range with a shallower slope of Wnt distribution, respectively.  

 Moreover, in the in situ for otx2 I showed that the expression of this marker was 

reduced after the overexpression of Cdc42 or Wnt8a, thereby increasing the numbers of 

embryos displaying the class B and class C phenotypes (Fig. 24c and e). Furthermore, a 

synergistic effect could be observed when the two mRNAs were combined. Functional 

blockage of Cdc42a/c led to an expansion of the otx2 expression domain that could be 
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rescued by co-expression of Cdc42 mRNA in double morphant embryos. Latrunculin B 

treatment or overexpression of IRSp534k led to an expansion of otx2 expression (Fig. 24c 

and e). 

 

Figure 24: Filopodia regulate the expression of the Wnt target gene axin2 and the forebrain/midbrain 

marker gene otx2. 

a) Classification of zebrafish phenotypes according to the in situ hybridisation staining of axin2 and otx2 b-c) 

Zebrafish embryos were injected with the indicated constructs at one cell stage or treated with Latrunculin B from 

30-50% epiboly and subjected to axin2 (b) or otx2 (c) in situ hybridisation at 75% epiboly. The pictures show the 

most frequently observed phenotypes of each treatment. d-e) The embryos of b and c were classified according 

to the phenotypes described in a). The graphs represent the percentage of each observed phenotype for each 

condition. d) Axin2 phenotypes: Overexpression of 0.6 ng of Cdc42 mRNA (Class A:18; Class C:30; Class D:5) 

overexpression of 0.2 ng of Wnt8a mRNA (C:37; D:20); co-expression of Cdc42 and Wnt8a mRNA (C:28; D:33); 

knockdown of Cdc42a/c (A:4; B:24), rescue of knockdown by co-expression of Cdc42 mRNA (A:13; C:38; D:8); 

treatment with Latrunculin B (A:3; B:22), and overexpression of 1.2ng of IRSp534K (A:2, B:50). e) Otx2 

phenotypes: Overexpression of Cdc42 (A:6; B:19; C:11); Wnt8a (A:1; B:15; C:42); co-expression of Cdc42 and 

Wnt8a (B:3; C:57); knockdown of Cdc42a/c (A:34; B:6; C14), rescue of knockdown by co-expression of Cdc42 

mRNA (A:14; B:16; C:4); Latrunculin B treatment (A:8; B:2; D:10); and overexpression of IRSp534K (A:2, D:50). 
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Altogether, these results suggest that alterations in the properties of the filopodia 

affect the distribution of Wnt8a, thereby altering the patterning of the neural plate. 

 To examine this hypothesis quantitatively, we developed a simulation mimicking the 

spreading of Wnt8a within the neural plate patterning in collaboration with a group of 

biophysicists. The simulation takes into account the ligand transport by filopodia, ligand 

decay and the migration of epiblast cells using a Monte-Carlo simulation approach 

(Metropolis and Ulam, 1949). 

 This simulation employed filopodia as the exclusive transport mechanism from the 

producing layer to the epiblast layer and considered the migration of cells during the epiboly 

stages as well as the migration of the Wnt8a source. The considered parameters were based 

on measured experimental parameters (Fig. 25a). The simulation revealed that Wnt8a could 

be distributed in a graded fashion over the entire neural plate (Fig. 25b) in a similar 

distribution to the one found in vivo (Fig. 20a). In fact, the simulated concentration of the 

ligand had a pick at 50 µm from the body of the producing cells, forming a corona around the 

source tissue and this was consistent with the previous observations of Wnt8a-mCherry 

distribution (as shown in Fig. 20a).  

 

 

Figure 25: Simulation of ligand concentration in a morphogenetic field based on a filopodia-based 

distribution mechanism. 

a) Complete list of implemented parameters used during the simulation. b) Graph obtained after simulation. 
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Next, the effect of filopodia lengths and frequencies on the Wnt gradient was 

investigated. Also in this case the simulation parameters were based on the in vivo 

measurements (Fig. 17). Ligand concentration within the entire morphogenetic field was 

found to be dependent on the length of the filopodia (Fig. 26a). Also the contact frequencies 

with the epiblast cells were taken into account and a low contact frequency in a reduced 

Wnt8a distribution (Fig. 26b). Assuming that all filopodia hit a target cell in the epiblast cell 

layer with a 100% success rate, there were only minimal differences in the concentration of 

the ligand within the morphogenetic field for different filopodia lengths because different 

filopodia lengths simply shift the gradient by the length difference. 

 The results of the expression analysis of neural plate markers (Fig. 24) and of the 

simulation (Fig. 25a) suggest that filopodia length and formation frequency affect the 

distribution of the ligands and hence also the anteroposterior patterning of the neural plate. In 

order to confirm this assumption, I analysed the effect of altered filopodia on the patterning of 

the neural plate. Therefore I measured the position of a landmark that is easy to identify 

experimentally, the MHB. To determine the position of the MHB within the neural plate, I 

measured the distance of the axin2 expression from the margin to the anterior limit of the 

expression domain (from the experiments shown in Fig. 24), which specifies the position of 

the MHB. When Cdc42 was ectopically expressed, I found that the axin2 expression border 

at the MHB was shifted anteriorly by 27% (Fig. 26c). Consistently, I found a 33% posterior 

shift of the axin2 expression border at the MHB in embryos with inhibited Cdc42a/c function. 

These observations could be verified by quantifying the position of the MHB based on 

expression of the forebrain/midbrain marker otx2 (Fig. 24), which was determined by the 

distance of the anterior neural border of the neural plate to the posterior border of the otx2 

expression domain and subtracted from the length of the entire neural plate. The position of 

the WT MHB was observed to shift anteriorly by 39% when Cdc42 was overexpressed and 

posteriorly by 53% when Cdc42 function was inhibited (Fig. 26c).  

To verify the simulation (Fig. 25), I then analysed the effect of Cdc42-mediated 

filopodia formation on early neural plate patterning based on the experimentally measured 

position of the MHB in WT embryos (Fig. 26c). I furthermore calculated the relative position 

of the MHB in the simulation when the filopodia length and formation frequency was 

increased or decreased. Remarkably, I found a similar scenario in our mathematical 

simulation: a 25% anterior shift of the position of the MHB when the filopodia length was 

increased and a 39% posterior shift when the filopodia length was decreased (Fig. 26a and 

c). Remarkably, the increase in the length of the filopodia led to a wider distribution (shift on 

the x-axis), whereas an increase in the frequency of filopodia formation increased the 

ejection of the ligand and primarily affected the nearest neighbouring cells (shift on the y-



 
86 

 

axis) and only subsequently affected the range of the distribution (Fig 26a and b).  

 

 

Figure 26: Cdc42 dependent filopodia regulate the Wnt gradient formation and neural plate patterning in 

zebrafish embryos. 

a, b) A Monte-Carlo based simulation displaying the hypothetical distribution of a ligand such as Wnt8a from 

source cells with indicated filopodia lengths and formation frequency in a morphogenetic field of 600 µm after 3.4 

h of development. For the neural plate, a box of size 5000x1000 µm² with 17490 discrete cell positions and a cell 

diameter of 16 µm were used. The simulation started at 4.6 hpf (30% epiboly), when Wnt8a expression is first 

detected. The Wnt8a-positive marginal zone was set to a 40-µm broad layer containing 650 ligand-producing cells 

and the receiving tissue – the neural plate anlage – was set to a 50-µm broad layer containing 888 epiblast cells. 

At 8 hpf (75% epiboly stage), the simulation was stopped when the neural plate was extended to 600 µm and the 

anteroposterior patterning could be determined by marker gene expression. During the simulation, the producing 

marginal cell population was kept constant. c) Validation of the simulation by in vivo experiments. The position of 

the midbrain-hindbrain boundary (MHB) was measured in 15 representative embryos from wt, Cdc42 mRNA-

injected and Cdc42-knockdown groups analysed in Fig. 20 b and c, and the distance from the margin to the MHB 

is displayed. These data were compared to values calculated by the simulation. 

 

 



 
87 

 

These results validated the simulation model, and it suggests that filopodia length is 

an important parameter for determining ligand concentration within the entire morphogenetic 

field and that Wnt transport on filopodia provides an important mechanism for anteroposterior 

patterning in the neural plate.  

 If Cdc42 facilitates the distribution of Wnt signals in early embryogenesis, altered 

Cdc42 function should have severe consequences on the development of the central 

nervous system at later embryonic stages. To test this hypothesis, the primordia of the 

anterior forebrain was marked with fezf2 and the anlage of the posterior forebrain and the 

hindbrain with pax6a (Scholpp and Brand, 2003) (Fig. 27a). The expression of these genes 

was analysed by in situ hybridisation at 26hpf. Overexpression of Cdc42 mRNA led to a 

reduction in the size of the fezf2-positive presumptive anterior forebrain compared to control 

embryos, suggesting that Cdc42-mediated formation of the filopodia facilitates Wnt/β-catenin 

signalling during neural plate patterning (Fig. 27a and b). Indeed, a similar reduction in the 

size of anterior brain structures was observed in embryos injected with a low dose of Wnt8a 

mRNA (50 ng), and co-expression of Cdc42 and Wnt8a produced a synergistic anterior 

truncation of the neural tube and the absence of the pax6a-positive forebrain and the pax6a-

negative midbrain (Fig. 27a and b). Next, the formation of filopodia was impaired by 

overexpression of the Irsp534K mutant. In this case, the embryos displayed posterior 

expansion of the anterior brain structures and consequently the fezf2 and pax6 expression 

domains were expanded in these embryos (Fig. 27a and b), similar to a phenotype displayed 

when Wnt antagonists, such as dickkopf-1, are activated (Glinka et al., 1998). By providing a 

low concentration of Wnt8a mRNA (50 ng), the phenotype of the IRSp534K mutant could be 

partially rescued (Fig. 27a and b), suggesting that the filopodia play a major role in 

distributing Wnt ligands in early development.  
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Figure 27: Cdc42-induced filopodia control CNS development. 

a) Embryos were microinjected with mRNA for the indicated constructs (Cdc42, 0,6 ng; Wnt8a, 0,2 ng; IRSp534k, 

1,2 ng) at one-cell stage. Embryos were fixed at 26 hpf and subjected to in situ hybridisation with probes for fezf2 

and pax6a. Pictures show one representative result out of at least 3 independent experiments. b) Embryos 

analysed in a) were classified according to the presence of the 3 anlagen of major brain parts: FB, forebrain; MB, 

midbrain; and HB, hindbrain (exp.= expanded; red. = reduced)  

 

In summary, I showed that the transport of Wnt/β-catenin on filopodia is important for 

establishing positional information of the developing central nervous system in vertebrates. 
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This study describes the transport of Wnt8a on the tips of specialised actin-based, 

Cdc42/N-Wasp dependent filopodia of Wnt producing cells. During this process, Wnt8a 

accumulates on the plasma membrane of Wnt producing cells. Subsequently, this 

accumulation recruits proteins of the filopodia nucleation complex like Toca1. This in turn 

induces Cdc42 dependent filopodia formation, as I could show that N-Wasp as well as the 

active domain of Cdc42 is expressed along the length of the Wnt containing filopodia. The 

co-localisation of Wnt8a and MyoX indicates that the Wnt transport occurs at the filopodia tip 

and is furthermore strictly dependent on the elongation of the filopodia. Indeed, my thesis 

suggests that this filopodia-based transport is essential for the presentation of Wnt8a to the 

receiving tissues in vitro and in vivo. The Wnt/β-catenin signalling pathway is activated at the 

contact point of the filopodia, as here at the cell body of the neighbouring cell the formation of 

a Wnt signalosome is induced. After this contact, the filopodia is pruned off and a Wnt 

containing exovesicle remains on the receiving cell. This mechanism of spreading is required 

for activation of the pathway in the receiving cell and is influencing the signalling range. In 

fact, the number and the distance of the signalosome from the source cell correlate with the 

length and number of the filopodia, suggesting their importance in the distribution of the 

morphogen. The short Cdc42/N-Wasp positive filopodia have been shown to be able to form 

a morphogenetic field by a computational simulation. This model was then verified by in vivo 

experiments in developing zebrafish embryos. The alteration of filopodia formation led to 

severe consequences in the CNS patterning. In earlier stages this was reflected by a shift of 

the MHB, as visualised by in situ hybridisation for Wnt target and neural plate marker genes. 

Later on, this shift is translated into defects in the formation of the corresponding brain 

regions. In particular the upshift of the MHB, visualised in the case of Cdc42 overexpression, 

caused a complete loss of the forebrain, comparable to the overexpression of Wnt8a. 

Altogether, these results demonstrate the importance of cytonemes in the establishment and 

maintenance of the morphogenetic field during vertebrate tissue patterning.  
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4. Discussion 
 

How can morphogens form a gradient? 

Differentiation and growth are cellular mechanisms controlled by signalling proteins. 

Developing tissues activate different nuclear programs that instruct the cells within the tissue 

which fate to acquire. In this context, the communication between cells has fundamental 

importance. The process of cell fate specification can be correlated to the formation of 

gradients of signalling molecules that influence the genetic program of cells in a 

concentration dependent manner. Consequently the transport and distribution of signalling 

molecules dramatically influence embryonic tissue patterning. How the morphogens are 

distributed and how they can form gradients in tissues is still not clearly understood and 

different mechanisms have been suggested. The most characterised ways of morphogen 

transport are free diffusion (Yu et al., 2009). Here the morphogens are released and diffuse 

passively in the extracellular space. In addition there are two special modes for diffusion, 

which have a strong influence on the gradient range. Hindered diffusion describes the 

interaction of the ligand with the extracellular matrix and leads to reduce spreading (Müller et 

al., 2013). On the other hand facilitated diffusion describes the interaction with extracellular 

binding proteins, which increase spreading and thus signalling range (Müller et al., 2012). A 

further transport model is planar transcytosis in which the signalling molecules are 

transported through the cells by repeated rounds of internalisation and re-secretion (Entchev 

et al., 2000). Another way how morphogens spread is via the formation of exovesicle, which 

serve as shuttles for the signalling molecules e.g. argosomes (Greco et al., 2001), 

lipoproteins (Panáková et al., 2005b) or exosomes (Gross and Boutros, 2013; Korkut et al., 

2009). Regarding these mechanisms, the formation of a gradient would be based on 

parameters such as the released ligand concentration, the interaction between the ligand 

and the extracellular matrix (ECM), or ligand receptors on cells, as well as the diffusion rate 

of the ligand. Since spreading of morphogens and the creation of gradients are complex 

processes, they are not easy to dissect in vivo in order to study all the molecular 

mechanisms involved.  

Wnts can signal long-range 

 Most of the studies on morphogen spreading mechanisms have been carried out in 

Drosophila by immunohistochemical staining, thus the gradients are detected on fixed 

tissues only at one specific time point. However, this does not allow a real time visualisation 

of gradient formation. For this reason in vitro studies are required, as simplified tools to focus 
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on these processes and to then transfer the acquired knowledge to an in vivo system. 

Furthermore, an in vitro system would permit live imaging of morphogen spreading. With the 

classical cell culture methods it is however not possible to study the complex process of 

gradient formation. For that reason several experimental approaches have been developed 

to generate/mimic morphogen gradients in vitro. All of them are based on microfluidic 

devices in which soluble molecules are forming an artificial gradient within the device 

(Cimetta et al., 2010, 2013; Kim et al., 2012; Wong et al., 2008). Most recently sophisticated 

micro bioreactors providing sequences of space resolved gradient have been developed; in 

this system three dimensional embryoid bodies, obtained from human embryonic- and 

induced pluripotent stem cells were exposed to concentration gradient of Wnt3a, Activin A, 

BMPs and their inhibitors (Cimetta et al., 2013). Even though this platform allowed a detailed 

study of the response of cells to different combinations of factors and furthermore to analyse 

further differentiation of the embryod bodies into tissues of interest, it is not suitable for a 

detailed study of morphogen spreading mechanisms. In fact, in these systems most often 

purified proteins are directly applied to the device, thus they mainly address how cells 

respond to different concentrations of the morphogen and how different amounts of 

morphogens alter the behavior of the cells once the morphogens are already released. 

Nevertheless, in these systems not all the aspects of gradient formation can be covered. 

Notably, these experimental approaches do not address other important steps of morphogen 

signalling, like the release of the mophogens from morphogen producing cells and 

furthermore the distribution of the morphogens from these source cells. However, one of the 

main difficulties in understanding the mechanisms of gradient formation is how exactly cells 

are able to deliver morphogens over many cell diameters within tissues. Therefore, the 

limitation of these systems is in observing how the spreading of the morphogen from a 

localised source to the surrounding areas occurs. In vivo the presence of boundaries is 

fundamental in the formation of gradients. Instructive cell populations, known as “local 

organizers”, are often located at prominent morphological boundaries. These signalling 

organizers may secrete morphogens. Beside their instructive role in signalling, the definition 

of an organizer includes the prevention of cell mixing between the organizer compartment 

and the surrounding tissues. Boundaries stabilise the composition and location of the 

organizer population and ensure the stability of the morphogen producing tissue (Scholpp 

and Lumsden, 2010). To mimic such borders and to analyze whether cells can transport 

morphogens from the producing cell to the receiving cell without any cell-cell contact a cell-

communication chip was used (Fig. 5). Two cellular compartments are characterising this 

device. On the one hand, a secreting compartment, containing cells that produce the 

morphogen Wnt8a, and on the other hand the receiving compartment, in which cells that 
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respond to the morphogens via a genetic Wnt sensitive reporter system are cultivated. The 

two compartments are separated by a 50 µm hydrophobic border that does not allow 

signalling via direct cell-cell contact, thus it was analysed whether cells are able to activate 

receiving cells just by extracellular space transport (Fig. 5). The gradient formation involves 

different steps: the secretion of the morphogen, its transport and its uptake by the receiving 

cell. The main advantage of the cell-communication chip is that all of these steps of gradient 

formation can be analysed bypassing the in vivo limitation, like the reduced accessibility of 

the tissue. Spreading of Wnt8a could be monitored indirectly through the activation of the 

reporter system. Subsequently, the accumulation of Wnt in the receiving compartment could 

be detected. The results obtained by these experiments suggested that Wnt is able to spread 

from the source cell to activate the Wnt signalling pathway in the receiving cell without 

requirement of cell-cell contact (Fig. 5). Moreover, by using a tagged version of Wnt, Wnt8a-

GFP, I detected accumulation of Wnt positive endosomes in the receiving cells. Wnt8a-GFP 

was able to induce the Wnt reporter system similar to the untagged variant (data not shown). 

This suggests that Wnt8a-GFP has a similar activity as endogenous Wnt8a.  

 An important aspect of the production of the cell-communication chip is that the 

geometry of the micro reservoirs on the chip, as well as the diameter of the borders between 

the two compartments, can be changed by using a different mask (Efremov et al., 2013). 

Therefore, it can be easily adapted to the parameter that better resemble the tissue of 

interest. Multiple cellular compartments can be generated, containing morphogen producing 

cells, responding cells and cells producing a specific morphogen antagonist, respectively. 

Based on that, the cell-communication chip can be used to address agonist/antagonist 

interactions in morphogen gradient formation. This might even more resemble the in vivo 

situation, as it has been shown that antagonists of morphogen molecules are essential for 

tissue patterning (Gierer and Meinhardt, 1972). Furthermore, cells can be cultured on the 

chip in 3-D by using hydrogel instead of medium to connect the microreservoirs (Ueda et al., 

2012). The hydrogel is mimicking extracellular matrix (ECM). In vivo, cells are densely 

packed and surrounded by ECM, which constitute a further support to the cells and the 

substrate on which they can grow and migrate. Furthermore, the stiffness of the substrate 

can influence cell behavior and signalling, as cells perceive their microenvironment not only 

by sensing soluble factors but also through physical and mechanical cues, like the ECM 

(Dupont et al., 2011). Thus, the introduction of hydrogel in the pattern would allow the cell-

communication chip to get even a step closer to the in vivo situation. 

 Indeed, the results obtained by the experiments with the cell-communication chip 

suggest that Wnt morphogens can diffuse in the extracellular space and that Wnt transport is 

possible without any direct cell-cell contact.  
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How can morphogen spreading and gradient formation be controlled?  

It is difficult to imagine that a diffusion based spreading mechanism might be the 

basis of controlled morphogen gradient formations and, as consequence, of tissue patterning 

in an entire organism.  One of the central questions in biology is how secreted morphogens 

can induce different cellular responses in a concentration-dependent manner. The formation 

of a concentration gradient depends on multiple factors like the identity of the morphogen, its 

molecular nature, its absolute concentration as well as the gradient maintenance at various 

position (Kicheva et al., 2012). Moreover the gradient can be shaped and maintained by 

external factors at different levels. First, it can be influenced in its spreading by component of 

the ECM, like for example HSPGs (Han et al., 2005). Furthermore, the degradation of the 

ligands provides further control and it has been shown to be necessary for the formation of 

stable gradients (Eldar et al., 2003; Entchev et al., 2000). Additionally, antagonist molecules 

play a role in the regulation of morphogen signalling range, as mentioned above (Houart et 

al., 2002; Wang et al., 1997). Nonetheless, the release has to be tightly regulated to ensure 

an appropriate tissue pattern. During diffusion, the producing cells have no influence on the 

target cell, therefore it is difficult to imagine as such a mechanism can lead to a proper 

development of the embryo. Also from a mathematical point of view, most of the models 

described so far employ linear diffusion as spreading mechanism (Wartlick et al., 2009). This 

type of spreading is associated with Brownian processes and it implies instantaneous 

distribution of the morphogen that are not accurate.  

 However, mechanisms of direct transport of signalling molecules exist (Gradilla and 

Guerrero, 2013; Kornberg and Roy, 2014; Sanders et al., 2013). Signalling molecules can be 

delivered directly to the receiving cells via specialised cell protrusions termed cytonemes 

(Ramírez-Weber and Kornberg, 1999). This way of spreading offers a more controlled 

alternative of morphogen transport and therefore might be more suitable for the creation of 

an in vivo gradient during early development. At this stage morphogenetic movements are 

characterising the embryo. These movements would indeed hinder any controlled gradient 

formation by extracellular diffusion of signalling molecules, as the distribution of the freely 

diffusing signalling molecules in the extracellular space would be affected by cell migration. 

Also from a mathematical point of view this model has been described and defined as 

Flux-limited spreading (FLS) (Verbeni et al., 2013). The FLS implies that morphogen move 

with a restricted velocity and by a non-linear mechanism of transport. The spreading 

restrictions considered by this model are related to the extracellular binding partners and the 

limited velocity associated with the transport along the cell protrusion. A transport of 

morphogens along cell protrusions would not require Brownian movement for ligand 

diffusion, as well as it would avoid the interference of cell migration on morphogen 
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distribution, permitting a space- and time controlled deliver of ligand to the target cells. 

Cytonemes as Wnt transport mechanism 

 In the classic view, cytonemes are protrusions originating from a cell to contact ligand-

producing cells and they are known to mediate the transport of the ligand towards the 

cytoneme-projecting cell. However, recently a revised definition of the cytoneme model 

places no distinction on length or on the distribution of ligand within or on them (reviewed in 

Kornberg and Roy, 2014). In the latest view, cytonemes have been defined as specialised 

filopodia. Filopodia are thin actin-based protrusions extended from cells. These structures 

have been named in different ways and they have been described to have a broad range of 

functions (reviewed in Kornberg and Roy, 2014). However, already in 1961, filopodia were 

visualised in the live embryo at blastula stage of the sea urchin and their behavior let the 

author suspect that they could have a function as sensors of patterning information (Wolpert 

and Gustafson, 1961). Although the detection of cytonemes is challenging, since their 

structure is not conserved after fixation (reviewed in Kornberg and Roy, 2014). In recent 

years, the evidences for the transport of signalling proteins on cytonemes such as Hh 

(Bischoff et al., 2013) or Dpp (Roy et al., 2011) have increased and indeed, ligand-producing 

cells have been suggested to form cytonemes that are able to contact responding cells over 

a certain distance (reviewed in Kornberg and Roy, 2014). 

The results obtained during my PhD thesis show that the paracrine transport of 

morphogens belonging to the Wnt family of proteins, specifically Wnt8a, is facilitated during 

zebrafish neural plate patterning by specialised filopodia. However, the filopodia-mediated 

transport of Wnt8a in my studies differs from recently reported cytoneme-mediated transport 

of other morphogens. For example, in the chicken limb bud, it has been shown that filopodia 

of the producing cell span several cell diameter to contact the receiving tissues; SHH travel 

along this extension to reach the tip of the cytonemes where it contact the filopodia of a 

receiving cell. Thus, in this case the filopodia serve as tracks for the morphogen transport 

and the contact happens between ligand containing cytonemes and those containing the co-

receptors over a long range (Sanders et al., 2013). Furthermore, these filopodia appear to be 

independent of Cdc42.  

In my study, Wnt8a is found on the tip of the elongating filopodia that originates from 

the Wnt8a producing cell and that contacts the Wnt receiving cell (Fig. 7b). Hence, in the 

case of the Wnt8a transport, the filopodia are actively mediating the transport of Wnt8a and 

serve more as a kind of Wnt shuttle. In contrast to the Shh transporting filopodia, Wnt8a 

positive filopodia have a much shorter average length and they are strictly dependent on 

Cdc42 (Fig. 17). It cannot be excluded that single molecules of Wnt are transported along the 
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filopodia to accumulate at the tip, as these single molecules might be below the detection 

limits of the used imaging techniques. However, the co-localisation of Wnt8a with MyoX, 

during the process of filopodia elongation (Fig. 12), would at least suggest that the first 

contact of the Wnt8a to its receptor is mediated by filopodia growth and not by the 

intracellular transport of Wnt molecules. Recently it has been shown that exosome are the 

carriers of Hh during cytonemes mediated transport (Gradilla et al., 2014), thus it would be 

interesting to analyze whether the same might be true for Wnts and to investigate if Wnt can 

also co-localise with exosomal markers.  

 Altogether, this shows that cellular protrusions like cytonemes can have different 

modalities of morphogen transport. This might be dependent on the different nature of the 

morphogen or on the different cellular or molecular context. In the case of Shh, for example, 

the morphogen receiving cell plays an active role, as the cytonemes projected by this cell 

needs to contact the Shh transporting-cytonemes to get in contact to the morphogen. 

Furthermore, Shh is transported along the filopodia length to reach its tip and to contact the 

Shh receiving cell. Thus, the amount of morphogen that is reaching the receiving cell is 

highly dependent on the speed by which the ligand is carried on the cytoskeleton network 

characterising the cytoneme and on the time of the contact. In contrast to this, Wnt8a is 

loaded and transported on the filopodia tip that hands over the morphogen to the receiving 

cell and after the contact the filopodia is pruned off (Fig. 8 and 28). In this case, the amount 

of morphogen received by the responding cell is rather dependent on the rate of filopodia 

growth, on the morphogen concentration at the filopodia tip and on the frequency of the 

contact between the Wnt8a-containg filopodia and the receiving cell. A morphogen transport 

mechanism as described for Wnt8a with short filopodia might be more suitable for 

morphogen distribution during gastrulation, where a lot of morphogenic movements occur. 

Here, thin and long cytonemes as described for the transport of Shh during limb development 

(Sanders et al., 2013) might not be stable enough to deliver the morphogen in a controlled 

way.  

Thus, it might be possible that cytoneme mediated transport mechanisms differ from 

each other, depending on the embryonic stage, the tissue or the nature of the morphogen 

itself. Thus, it would be interesting to analyze the influence of the context on the 

characteristic of the cytonemes and the mechanisms of transport. Based on the new 

definition of cytonemes as signalling filopodia (Kornberg and Roy, 2014), I propose that 

Wnt8a is transported on cytonemes through tissues.  
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Figure 28: Schematic representation of Wnt transport on filopodia. 

a) Three main steps of Wnt transport: initiation, extension and signalling. Initiation: Filopodia growth is triggered at 

the point where Wnt accumulates. Extension: The filopodia elongates until it reaches the receiving cell. Signalling: 

The filopodia delivers Wnt to the receiving cell to activate the signalling cascade. 

  

Cytonemes control the Wnt signalling range 

 Another question is how much impact has the cytoneme-based morphogen transport 

on the establishment of morphogen gradients within a tissue. Data obtained from studies on 

Drosophila show that Wnts can form a gradient in the wing imaginal disc by diffusion 

(reviewed in Strigini and Cohen, 2000). However, recently it was shown that a membrane 

tethered mutant form of Wg that is not able to diffuse away from the membrane was able to 

rescue a Wg knockout. Although the researchers did not observe Wnt transport on filopodia, 

this result demonstrates that Wg does not need to detach from the membrane and to diffuse 

to fulfill its function (Alexandre et al., 2014). 

Evidence that filopodia are the main spreading mechanism of Wnts, at least during 

gastrulation and that cytonemes are indeed controlling the signalling range of morphogens 

come from my own results. In my experiments, I could show that altering filopodia length by 

either overexpression or inhibition of Cdc42, a main regulator of cytonemes formation, had 

drastic effects on the signalling range of Wnt8a (Fig. 18). Overexpression of Cdc42 

increased the number and the length of cytonemes in Wnt8a overexpressing cells (Fig. 17) 

and this increase in turn enhanced the distance at which Wnt8a was able to activate the Wnt 

pathway in the receiving cells. This corresponded to the distance at which Wnt8a was able to 

activate LRP6 signalosomes in the receiving tissue of the developing embryo (Fig. 18). 

Consequently, an inhibition of Cdc42 function by morpholino oligomers resulted in a reduced 

number and length of filopodia and concordantly shortened the signalling range of Wnt8a 
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(Fig. 17). Notably, the ectopic expression of Cdc42 or the interference with Cdc42 function 

did not alter the expression of Wnt8a as shown by qRT-PCR (Fig. 22d), suggesting that the 

effect seen on the signalling range is not due to increased or decreased levels of Wnt8a in 

the medium but rather dependent on the number and length of filopodia. Furthermore, in 

order to test whether interference with the function of Cdc42 might have any effect on Wnt8a 

diffusion and consequently might influence the Wnt8a concentration in the medium, the 

supernatants, harvested either from Cdc42 overexpressing cells or from cells in which Cdc42 

function was inhibited, were compared with the supernatant from control cells in the ability to 

activate the Wnt pathway in Wnt responding cells. However, no difference could be detected 

since all supernatants were able to activate the Wnt pathway in the responding cells to the 

same extend (Fig. 16c). Altogether, these data indicate that Cdc42 can regulate the Wnt8a 

signalling range by influencing the number and length of filopodia without having any effect 

on Wnt8a diffusion or expression.  

Patterning of the developing zebrafish brain primordium is highly dependent on the 

Wnt gradient within the neuroectoderm that gives rise to the CNS (Rhinn et al., 2005). During 

neural plate formation the concentration of Wnt correlates with the formation of the different 

brain structures (Kiecker and Niehrs, 2001; Nordström et al., 2002). The region close to the 

margin of the embryo, exposed to high concentrations of Wnt, gives rise to the hindbrain and 

the midbrain. In contrast, the region localised further away from the Wnt source gives rise to 

the forebrain. It has been shown that the activation of the Wnt signalling pathway is sufficient 

to induce a loss of anterior brain structures like the forebrain (Heisenberg et al., 2001; 

Niehrs, 1999); whereas the inhibition of the Wnt pathway led to an expansion of the forebrain 

territory (Glinka et al., 1998).  

The regions of Wnt activity in the neuroectoderm of the developing embryo can be 

visualised by in situ hybridisation for Wnt target genes like axin2. An in situ hybridisation for 

axin2 on whole zebrafish embryos at 75% epiboly stage showed that an increase or 

decrease of filopodia number and length by several methods indeed expanded or shortened 

the area of Wnt activity within the neuroectoderm (Fig. 24b). Consequently, enhanced 

filopodia number and length led to an anterior shift of the position of the MHB, whereas 

reduced filopodia formation posteriorised the MHB, as shown by whole mount in situ 

hybridisation for the MHB marker otx2 (Fig. 24c). Importantly, later on in development this 

mispatterning of the CNS, resulting from the alteration of the filopodia number and length, 

had drastic consequences on the main brain structures. An increase of filopodia formation 

led to a complete loss of the forebrain, comparable to the Wnt overexpression phenotype, 

whereas a decrease of filopodia formation expanded the forebrain (Fig. 27). Blockage of 

Cdc42 or inhibition of actin polymerisation may lead to alterations in cell migratory events 
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such as epiboly, gastrulation, and convergent extension at the same time (Choi and Han, 

2002). However, blocking of filopodia formation with the dominant negative form of IRSp53, 

showed a specific phenotype of Wnt inhibition (Fig. 27). The embryos displayed an 

expansion of anterior brain structures, similar to a phenotype displayed when Wnt 

antagonists, such as Dkk1, are activated (Glinka et al., 1998). 

Moreover, a rescue experiment showed that the Wnt overexpression phenotype, 

resulting in the lack of the forebrain region, could be partially rescued by the dominant 

negative IRSp53, excluding a connection to altered migratory behavior of the cells (Fig. 27). 

Altogether, these results demonstrate that filopodia are the main regulators of the Wnt 

signalling range in the developing zebrafish embryo and furthermore that the filopodia based 

Wnt transport and Wnt gradient formation plays an essential role in the patterning of the 

zebrafish CNS.  

Even though it cannot be excluded that other spreading mechanisms, e.g. exovesicle 

transport, contribute to the distribution of Wnt and to Wnt gradient formation, the results 

obtained from my work propose that the cytoneme-based transport is indeed the main 

spreading mechanism for Wnt8a during gastrulation and CNS patterning in zebrafish. In 

addition to filopodia number and length, also the ligand concentration on the transporting 

cytonemes as well as the contact frequency of morphogen containing filopodia with the 

receiving cell might be important factors that can influence the establishment of a filopodia 

based morphogen gradients. Whereas a regulation of the ligand concentration on filopodia 

has so far not been reported; a contribution of contact frequency has recently been shown for 

Hh gradient formation (Gradilla and Guerrero, 2013). 

 How can a short-range filopodia-based morphogen transport be able to form a 
long-range signalling gradient?  

Several mechanisms of long-range Wnt gradient formation have been proposed so 

far. The ‘gradient by inheritance’ mechanism is one possible mechanism that was described 

during mouse and chick axis formation during embryogenesis. Here, cells originating from 

the Wnt source move away from the source and in correlation with the distance and the time 

of this movement they show a decay in the Wnt protein concentration. By this, a long range 

Wnt gradient with a peak at the Wnt source can be generated (Aulehla et al., 2003). 

Another mechanism how a long-range Wnt gradient might be formed was described 

during neural crest development in chicken embryos. Here it has been shown that Wnt is not 

secreted but rather loaded on neural crest cells originating from the Wnt source. These cells 

then migrate away to form a Wnt signalling gradient that patterns the somites at a distance 

from its source (Capdevila et al., 1998; Fan, et al., 1997; Marcelle et al., 1997; Munsterberg 
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et al., 1995; reviewed in Serralbo & Marcelle, 2014). In both of these models, the ligand- 

producing cells leave the region of the Wnt source and activate the pathway in the 

responding tissue distant from the source. 

However, it is unlikely that these mechanisms are responsible for the long range Wnt 

gradient during neural plate development. In fact, Wnt8a is not expressed in the neural 

ectoderm in vertebrates (Christian and Moon, 1993). The only Wnt8-ligand producing cells 

are the Brachyury/Ntl-positive mesendodermal progenitors at the margin (Martin and 

Kimelman, 2008). Indeed, tracking of all cells during zebrafish gastrulation showed that the 

marginal mesendodermal progenitors are strictly separated from the anterior-located 

neuralectoderm (Keller et al., 2008). Thus, it is not possible that any marginal cell derived 

from the Wnt source is distributing the ligand by migration to form a gradient. 

In my work, I could show that during zebrafish gastrulation Wnt8a is mainly distributed 

via filopodia from the producing to the receiving cell. The question arises how such a 

filopodia based transport mechanism would be able to create a long-range Wnt8a gradient 

during gastrulation and CNS patterning. Wnt8a expression at the margin starts at 4 hpf (Fig. 

29a) (Kelly et al., 1995). Here, the Wnt receiving neural ectodermal cells are close to the 

marginal Wnt8a-producing cells, so that they can be contacted by the Wnt8a containing 

filopodia, projected from the marginal cells. 

At this stage the elongation of the neural ectoderm in anteroposterior direction starts. 

This elongation results from a mix of epiboly movements and an orthogonal intercalation of 

neuroectodermal cells (Keller et al., 2008). The intercalation exposes new neuroectodermal 

cells to the margin where they can be contacted by Wnt8a containing filopodia. These cells 

then displace and shift up the neuralectodermal cells that were previously in contact to the 

margin. This mechanism might contribute to the formation of the Wnt gradient since the cells 

that were first activated by the Wnt positive cytonemes of the source cells are shifted further 

and further away from it (Fig. 29b and c). 
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Figure 29: Simulation of ligand concentration in a morphogenetic field based on a filopodia mediated 
distribution mechanism. 

a) Schematic drawing of the expansion of the neural plate in zebrafish from 50 µm at 4.6 hpf to 640 µm at 8 hpf. 

Lateral (upper pictures) view of the entire embryo and dorsal (lower pictures) view of the neural plate, with lengths 

indicated. b) Schematic representation of neural plate expansion by intercalation. During epiboly movement, 

neural plate cells (pink) intercalate (red arrows) leading to an expansion (green arrows) of the neural plate (left). 

Wnt8a-positive source cells (blue) stay at the posterior end of the plate and do not intermingle with neural plate 

cells. (Right) During each intercalation step cells migrate into the neural plate. This leads to a displacement of 

neighbouring cells until a free field (empty ring) is reached. Effectively, the shortest path between these two points 

is taken. The Wnt8a activity status of each cell on this path is then translated in a cascade from the starting point 

(red) to the final empty cell field (purple). The migrated cell is marked by an x. c) Snapshot of two simulation steps 

showing Wnt8a-producing cells (blue) and Wnt8a-receiving cells: Wnt8a high (dark red), Wnt8a low (light red) and 

empty cell fields (light blue rings) at consecutive time points. 

 

Upon contact the Wnt pathway activation in the receiving cells starts after 30 minutes 

and reaches its peak after 2 hours (Li et al., 2012). The signalling cascade might then be 

resolved again by the activation of the β-catenin destruction complex through GSK3-

mediated phosphorylation of Axin1 (Kim et al., 2013).  

The activation and deactivation dynamics of this process would therefore fit with a 
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prolonged signalling activity in cells until 75% epiboly, when the Wnt mediated patterning of 

the neural plate is set. Thus, the filopodia based Wnt transport might be able to form a long 

range Wnt gradient within the neural plate. Indeed, I found that the width of the expression 

area of the direct Wnt target gene axin2 continuously broadened within the neural plate 

between 4 hpf and 8 hpf (75% epiboly) (Fig. 29a), showing that the Wnt signalling range 

continuously expands during this time. 

A numerical simulation - validated by in vivo experiments (Fig. 26) - taking into 

account all the relevant parameters like filopodia length, their number, the dimension and 

position of the Wnt source as well as the dimension of the responding tissue, could indeed 

confirm that a filopodia based Wnt transport would be able to form the required Wnt gradient 

within the neural plate (Fig. 29). I could furthermore show that an alteration of filopodia length 

and number shifts the Wnt gradient in a similar way to the prediction obtained by the 

simulation (Fig. 26). 

Altogether, this data suggest that a distribution of Wnt morphogens, mediated by a 

cytoneme-based transport might constitute the most convenient mechanism to form a Wnt 

gradient during gastrulation. 

Wnt8a might induce filopodia formation and regulate its own distribution 

 Remarkably, the formation of Wnt8a-transporting cellular protrusions seems to be 

influenced by the concentration of the ligand itself, since the number of filopodia can be 

increased by the ectopic expression of Wnt8a (Fig. 22). Thus, it seems that Wnt8a itself 

might give the signal for the formation of Wnt transporting filopodia, thereby regulating its 

own distribution. As the formation of filopodia is dependent on Cdc42 and as it has been 

shown that Cdc42 overexpression can enhance filopodia formation (Fig. 17), it is possible 

that Wnt8a triggers the formation of filopodia by increasing the expression of Cdc42. 

However, the data obtained from my work show that ectopic expression of Wnt8a, resulting 

in increased number of filopodia, has no effect on the Cdc42 mRNA levels (Fig. 22d). This 

result excludes that Wnt8a induces filopodia by the regulation of Cdc42 transcription. 

Consequently, as Wnt8a induced filopodia are dependent on Cdc42, Wnt8a might either 

stabilise Cdc42 protein levels or regulate the activity of Cdc42. A way by which Wnt8a might 

regulate Cdc42 activity is via β-catenin independent or non-canonical Wnt signalling. Indeed, 

it has been shown that there is cross-talk between the canonical and the non-canonical 

pathway and that Wnt proteins, previously considered to be non-canonical, can also activate 

the canonical pathway and vice versa (He et al. 1997; reviewed in Mikels and Nusse 2006). 

Notably, one downstream effector of the non-canonical pathway is Cdc42 (Schambony and 

Wedlich, 2007), the main regulator of Wnt8a induced filopodia formation, as shown in my 
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thesis. As there is crosstalk between canonical and non-canonical Wnt signalling it is 

possible that Wnt8a might regulate the activity of Cdc42 via its ability to activate the 

canonical pathway with indirect effects on non-canonical Wnt signalling. Nevertheless, the 

regulation of the cross-talk between β-catenin dependent and independent pathway is still 

unclear. Wnt8a might have a dual effect at a cellular level and it is possible that Wnt8a is 

able to activate both pathways, canonical and non-canonical Wnt signalling. However, 

experimental evidence for this hypothesis is missing so far. For example, in Wnt producing 

cells, where the Wnt concentration is rather high, Wnt8a might activate the non-canonical 

pathway and rather induce filopodia formation. Further experiments, showing that inhibition 

of non-canonical Wnt signalling can indeed affects Wnt8a induced filopodia formation would 

be necessary to confirm this assumption. 

In contrast to the producing cells, in the receiving cells the Wnt8a concentration is 

lower, probably resulting in an activation of the canonical Wnt pathway and rather triggering 

cell proliferation and differentiation (reviewed in Logan and Nusse, 2004). The proof that 

Wnt8a on filopodia can indeed activate the canonical pathway in the receiving cell is shown 

by the result that Wnt8a containing filopodia can induce LRP6-signalosome formation at the 

membrane of the responding cells (Fig. 13). 

Indeed, Wnt8a accumulates in clusters at the plasma membrane of the producing 

cells prior to the formation of the filopodia and the filopodia are then formed at these 

accumulation points mediating the transport of the accumulated ligand (Fig. 7b). It has been 

shown that porcupine dependent lipidation is necessary for the localisation of Wnt 1 in lipid 

rafts (Zhai et al., 2004). Also Wnt8a can be found in lipid rafts (data not shown). Lipid rafts 

are specialised, glycolipoprotein rich membrane microdomains that serve as organising 

centres within the membrane by assembling signalling molecules (reviewed in Sonnino and 

Prinetti, 2013). It has been shown that the negative membrane curvature, essential for 

filopodia formation, occurs in this lipid rafts and its stabilisation involves I-BAR domain 

containing proteins like IRSp53 (Zhao et al, 2011). 

As the Wnt8a transporting filopodia contain IRSp53 (Fig. 11), it is possible that Wnt8a 

might contribute to the membrane deformation by recruitment of IRSp53 to the lipid rafts. 

Furthermore, in my work I could show that Wnt8a co-localises with Toca-1 (Fig. 21), a 

component of the actin nucleation complex that together with the N-Wasp/Arp2/3 machinery 

and Cdc42 mediates the nucleation and elongation of actin filaments (Ho et al., 2004). This 

might give another explanation how Wnt can regulate the initiation and elongation of 

filopodia. 
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Wnt transporting filopodia grow in the direction of the Wnt gradient 

 Another intriguing point of this work is the discovery that Wnt8a containing filopodia on 

Wnt producing cells in the developing embryo do not grow randomly (Fig. 20). Most notably, 

these filopodia show strong tendency in the growth directionality and elongate mainly 

towards the already known AP Wnt gradient in the embryo (Kiecker and Niehrs, 2001). 

An important question to answer is how it might be possible the Wnt producing cells 

send their Wnt8a containing filopodia mainly in the direction of the gradient? 

Migration of cells is directed by chemoattractant gradient, with lamellopodia formation 

prior filopodia genesis (Roussos et al., 2011). This process involves the activation of Rho 

GTPase family members, Rac1 and Cdc42 (Nobes and Hall, 1995). A mechanism similar to 

the chemotaxis might be involved in the formation of the gradient, controlling the direction of 

filopodia instead of the direction of cell motility. Even though, in the experiment I conducted I 

did not observe any formation of lamellopodia in the time-lapse movie, it has been shown 

that filopodia can have a role in controlling the dynamics and detection of environmental 

cues, including both the ECM and the surfaces of neighbouring cells (Albrecht-Buehler, 

1976; reviewed in Heckman & Plummer, 2013; O’Connor et al., 1990). The direct recruitment 

of f-actin nucleation components that trigger filopodia formation at the accumulation point of 

Wnt (Fig. 21) could bypass the prior formation of lamellopodia. In this case the direction of 

filopodia formation would be random and the definition of the directionality would be linked 

more to mechanism of stabilisation of previously formed filopodia. This would mean that the 

frequency by which Wnt8a positive cytonemes are generated might be the same in all the 

direction but the filopodia are stabilised just in one direction. The stabilisation of cytonemes 

might be linked to the receptor occupancy in a similar mechanism to the chemotaxis 

(reviewed in Shi and Iglesias, 2013). Here, the availability of the receptor is at the base of 

directional decision and this depends on the gradient of concentration. Wnt8a positive 

cytonemes start from the margin of the zebrafish embryo where the Wnt levels are high and 

therefore the receptor is occupied, consequently these filopodia are more dynamic. The 

filopodia directed to the animal pole, where the receptors are not jet saturated by the ligand, 

are stabilised when they reach the responding cells. This might increase the possibility to 

observe Wnt positive filopodia that project towards the anterior part of the embryo and would 

explain the high number of Wnt8a containing filopodia directed towards the animal pole. 

 Another mechanism that might have a common point with the establishment of filopodia 

directionality is the axonal pathfinding. This process is fundamental in synaptogenesis (Kwon 

et al., 2012), formation of a functional neural network during development (Singer et al., 
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1979) and in adulthood (Hand and Polleux, 2011) and therefore tightly regulated. 

Interestingly, recent evidences suggested the possibility that Wnt signalling plays important 

roles in different aspects of synaptic development and plasticity. Wnt proteins regulate axon 

guidance, dendritic morphogenesis and synapse formation and contribute to the formation of 

neural connectivity (Park and Shen, 2012). Wnt3a has been suggested to act as opposing 

factor to the Ephrin-family proteins and to control axon guidance in a concentration-

dependent manner. Wnt3 repulsion has been shown to be mediated by Related to receptor 

tyrosine kinase (Ryk) receptor tyrosine kinases, whereas attraction at lower Wnt3 

concentrations seems to be mediated by Fz (Schmitt et al., 2006). 

SFRP1, classically known as Wnt inhibitor, has been shown to play a role in the 

control of ganglion cell axons growth of chick and Xenopus laevis retinal. This activity does 

not require Wnt inhibition and has been suggested to be modulated by extracellular matrix 

molecules (Rodriguez et al., 2005). The literature on Wnt and the axon guidance might help 

to bridge the knowledge on the mechanism at the base of axonal path finding to the 

observation obtained during my thesis and to learn more about the control of filopodia 

directionality. However, the possibility of an involvement of Wnt or proteins involved in the 

Wnt pathway like SFRP1 in the regulation of filopodia orientation remain to be further 

investigated.  

The formation of cytonome based morphogen gradient 

 Furthermore, it has been suggested that if filopodia get in contact to a certain 

substratum, the actin filament assembly required for filopodia formation is impaired, leading 

to changes that promote retraction and collapse of the filopodia (Bastmeyer and Stuermer, 

1993). Indeed, the outgrowth of Wnt positive filopodia, observed during my thesis, did not 

guarantee the dispersal of the ligand. The filopodia observed were highly dynamic and in 

many cases they were projected and immediately retracted from the cells without a release 

of Wnt8a. The retraction of the filopodia might be connected to the fact that the correct target 

cell was not found and the mechanisms of filopodia assembly were blocked. This observation 

became relevant for the generation of the morphogenetic field in the numerical simulation. 

When the simulation considered that all filopodia deliver the ligand to any neighbouring cells 

with a full success rate, only minimal differences in the concentration of the ligand within the 

morphogenetic field were observed, although the filopodia lengths were doubled (Fig. 30). 
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Figure 30: Simulation of ligand concentration in a morphogenetic field based on a filopodia mediated 
distribution mechanism. 

Results of the simulation considering identical contact frequency for filopodia with different lengths 11.9 +/- 2.9 

µm, (WT control) and 23.8 +/- 10.6 µm (Cdc42 overexpression). No difference in the anteroposterior position of 

the midbrain-hindbrain boundary (MHB) between the two models was observed. 

 

This result led to the conclusion that for the generation of a cytoneme-dependent 

gradient, it is essential to retract the filopodium if the correct target cell is not reached, 

instead of delivering the factor to a random next-door neighbour. The net change in the flux 

of Wnt8a from producing to receiving tissue controls the range of the gradient and is directly 

proportional to the filopodia length. 
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Figure 31: Comparison between the diffusion model and the direct contact model of morphogen 

spreading. 

a) Cartoon of the gradient formation by diffusion (left) and filopodia mediated direct contact (right). b) The main 

parameters influencing gradient formation by diffusion (left).and direct contact (right). 

 

 Taken together these results suggest that a filopodia-based distribution mechanism for 

Wnt8a is essential for the patterning of the neural plate during early zebrafish development. 

In fact, an alteration in the filopodia parameters drastically influences the proper development 

of brain structures. The data of my thesis suggest a new mechanism of gradient formation 

mediated by cytonemes.  

In the classic spreading mechanism the distribution of the morphogen and 

consequently the formation of the gradient are dependent on a diffusion coefficient, the 

diffusion speed and the ligand concentration in the ECM (Fig. 31).  

However in the cytoneme-mediated spreading - a direct-contact model - the formation 

of the gradient depends from parameters associated to the cytonemes structure, such as 

cytoneme length and speed of cytoneme formation. Furthermore, it might be controlled by 

contact frequency to the receiving cells and the duration of signalosome maintenance. Also 

the ligand concentrations on these extensions can influence the properties of the 

morphogenetic gradient. 
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The length of the filopodia, their contact frequency, as well as the duration of the 

signalosome are controlling the pattern of the neural plate, as it has been shown in the in situ 

results and the simulation (Fig. 26). However, the impact of the ligand concentration on the 

filopodia tip and of the duration of the signalosome maintenance need to be further 

investigated. It will be interesting to study if filopodia based propagation mechanism for Wnts 

are also important in other contexts or at different developmental stages.  
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