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Kurzfassung

Die Berechnung der turbulenten Mischung in komplexen turbulenten Strömun-
gen ist eine anspruchsvolle Aufgabe. Der auf verschiedenen Längen- und Zeits-
kalen bis in den molekularen Bereich hinein ablaufende Mischungsprozess
hängt wesentlich von der Dynamik innerhalb des turbulenten Strömungsfeldes
ab. Der einfachste Fall der turbulenten Mischung findet sich zwischen passiven
Skalaren. Beispiele sind Mischungen von Flüssigkeiten mit der gleichen Dich-
te oder Fluide, welche mit nicht reagierenden Markierungssubstanzen beladen
sind. Es gibt jedoch auch Strömungen, bei denen die turbulente Mischung die
Fluideigenschaften selbst ändert. Dies ist der Fall, wenn die Strömung durch
zusätzlich ablaufende chemische Reaktionen überlagert wird, wie z. B. bei
Verbrennungprozessen.

Die turbulente Mischung ist ein dreistufiger Prozess der sich durch die Vorgän-
ge des Entrainments (grobskalige Einmischung durch kohärente Strukturen),
des Rührens (makroskopische Vermischung durch nahezu richtungsinvari-
ante Turbulenzwirbel) und der molekularen Diffusion zusammensetzt. Die
numerische Modellierung des turbulenten Mischungsprozesses muss diese
drei Phänomene berücksichtigen. Während das Rühren und die Diffusion in
der Regel durch Turbulenzmodelle erfasst werden, bleibt die Beschreibung des
Entrainments außerhalb Ihres Leistungsbereiches. Der Grund dafür ist, dass
das Entrainment in turbulenten Scherströmungen vor allem von den großen
kohärenten Strukturen geprägt wird. Diese sind jedoch nicht im ursprüng-
lichen Sinne turbulent und abhängig von der äußeren Strömungsgeometrie.
Für derartige Strömungen müssen instationäre Berechnungen unter Verwen-
dung von Reynolds gemittelten Navier-Stokes (RANS) oder der Large Eddy
Simulation (LES) Methoden verwendet werden, welche die zeitliche Entwick-
lung der kohärenten Strukturen direkt erfassen können, damit der Einfluss des
Entrainments prinzipiell berücksichtigt wird.

Zunächst wurde der in der Literatur gut dokumentierte Fall eines turbulenten
konzentrischen Freistrahles berechnet, um die verschiedenen numerischen
Werkzeuge und Simulationsmethoden zu testen und zu validieren. Sowohl
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Kurzfassung

instationäre als auch stationäre Simulationen konnten wichtige Merkmale
der Freistrahlkonfiguration mit guter Genauigkeit vorhersagen. Es zeigte sich
jedoch eine systematische Abweichung zwischen der unter Verwendung der
stationären RANS Simulation berechneten Mischung in der Scherschicht
und den entsprechenden Messergebnissen. Die in dieser Zone auftretenden
Wirbelringe, die durch die Kelvin-Helmholtz Instabilität entstehen, können
nur mit der Methode der LES vorhergesagt werden, was zu einer besseren
Übereinstimmung mit den Messungdaten führt.

Der Jet in Crossflow (JIC) ist eine weit komplexere Strömungskonfigura-
tion als der konzentrische Freistrahl. Es treten hierbei verschiedene Typen
von kohärenten Strukturen sowie Rezirkulationsgebiete auf. Die Qualität der
Übereinstimmung der Simulationsergebnisse mit den Messungen ist daher
stark an die Qualität der Beschreibung der kohärenten Strukturen gekoppelt.
Die Ergebnisse der LES Simulationen geben die diese Strukturen und deren
Auswirkungen viel detaillierter wieder als die Ergebnisse einer instationären
RANS Rechnung. Dagegen ist eine stationäre RANS Simulation nicht in der
Lage kohärente Strukturen abzubilden. Damit werden deren Auswirkungen
komplett vernachlässigt. Die Übereinstimmung der Ergebnisse der LES mit
den Messungswerten ist sehr gut. Die mittels instationären RANS Rechnungen
erzielten Ergebnisse zeigen dagegen eine schlechtere Übereinstimmung. Die
schlechtesten Ergebnisse liefern Rechnungen, die mit der Technik der statio-
nären RANS durchgeführt wurden. Während die Übereinstimmung der mittels
stationärer RANS berechneten Geschwindigkeitsfelder gegenüber den Mess-
werten noch relativ befriedigend ist, wird der turbulente Mischungsprozess
in Strömungsbereichen, die durch das Auftreten von kohärenten Strukturen
dominiert sind, stark unterschätzt. Dieser scheinbare Widerspruch konnte
durch die Verwendung des Konzeptes der Intermittenz geklärt werden, mit
welchem sich die unterschiedlichen Wirkungen der kohärenten Strukturen auf
Geschwindigkeits- und Skalarfelder beschreiben lassen.

Die numerischen Methoden, die für isotherme Strömungen angewendet wur-
den, wurden zur Simulation eines komplexen Verbrennungssystems erweitert
und angepasst, bei dem zwei wichtige Quellen zur Ausbildung von Instatio-
naritäten vorhanden sind: die Entwicklung von großen kohärenten Strukturen
und die sich im Injektor ausbildenden akustischen Resonanzen. Diese insta-
tionären Phänomene spielen eine tragende Rolle für die Charakteristik der
turbulenten Mischung und damit auch für die Flammengeometrie. Dies hat
wiederum Auswirkungen auf die Temperatur- und Speziesverteilungen und
beeinflusst unter anderem die Vorhersage der Schadstoffbildung. Beide instatio-
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nären Phänomene konnten mit den LES Simulationen wiedergegeben werden
und liefern insgesamt eine gute Übereinstimmung der Rechenergebnisse mit
den Messergebnissen. Die stationäre RANS Simulationen vernachlässigen
beide Quellen instationären Verhaltens und zeigen somit eine deutlich schlech-
tere Übereinstimmung mit der Messergebnisse. So wird unter anderem die
Flammengeometrie völlig unbefriedigend wiedergegeben. Die Schlussfolge-
rung ist, dass zeitaufgelöste Berechnungsmethoden wie die LES erforderlich
sind, um derart komplexe reagierende Strömungen mit guter Genauigkeit zu
modellieren.

Die Ergebnisse haben gezeigt, dass stationäre RANS Simulationen eine gu-
te quantitative und qualitative Übereinstimmung mit den experimentellen
Daten zeigen, wenn der Einfluss von großen kohärenten Strukturen auf die
mittlere Strömungsgeschwindigkeit vernachlässigbar ist. Wenn jedoch die
mittlere Strömungsgeschwindigkeit durch kohärente Strukturen oder andere
Quellen beeinflusst wird und zeitliche Schwankungen aufweist, so stimmen
die Reynolds-Mittelwerte nicht mit den Zeit-Mittelwerten überein. In diesem
Fall muss eine instationäre Berechnungsmethode verwendet werden. Wenn
jedoch die Strömung nicht statistisch stationär ist, d. h. mit ausgeprägten
Schwankungen in der mittleren Strömungsgeschwindigkeit durch große kohä-
rente Strukturen oder andere Quellen behaftet ist, so stimmen die Reynolds-
Mittelwerte nicht mit den Zeit-Mittelwerten überein. Da diese Schwankungen
ursprünglich nicht turbulenter Natur sind, wird deren Einfluss auf die mittlere
Strömung nicht von Turbulenzmodellen erfasst. Um aussagekräftige Ergeb-
nisse zu erzielen, sind in diesem Fall zeitaufgelöste Simulationen zwingend
notwendig. Die zu bevorzugende Methode ist die LES, welche die kohärenten
Strukturen weitaus detaillierter erfasst als eine instationäre RANS Rechnung.
Die vorgelegte Arbeit zeigt die Grenzen der Methode der stationären RANS
auf und dokumentiert die Notwendigkeit von instationären Rechnungen für
die untersuchten Strömungskonfigurationen. Die verantwortlichen Gründe und
Phänomene werden aufgezeigt, detailliert analysiert und deren Wirkungen
anschaulich dargestellt.
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Abstract

The analysis of turbulent mixing in complex turbulent flows is a challenging
task. The effective mixing of entrained fluids to a molecular level is a vital part
of the dynamics of turbulent flows, especially when combustion is involved.
The simplest case of turbulent mixing occurs between passive scalars. Exam-
ples are mixing of fluids with the same density or loaded with non-reacting
tracers. There are cases, however, in that the turbulent mixing changes the
fluid characteristics. Combustion phenomena are remarkable examples of such
systems with active scalars.

Turbulent mixing is a three-stage process of entrainment, stirring and diffusion.
The numerical simulation of turbulent mixing has to consider these three
different phenomena. While the stirring and the diffusion are usually modeled
together by turbulence models, the entrainment remains out of their scope.
The reason is that in turbulent free shear flows, the entrainment is promoted
mainly by the large-scale coherent structures typical for these flows. These
coherent structures are not turbulent in nature and highly geometry and time
dependent. In this situation, high-level simulation techniques such as unsteady
Reynolds-averaged Navier Stokes (RANS) or large eddy simulation (LES)
have to be used, which can resolve the temporal progress of coherent structures
directly, naturally accounting for the influence of the entrainment.

The free jet, a flow configuration extensively studied in the literature, has
been used to test and validate the numerical tools and the different simulation
methodologies. Both unsteady and steady state simulations have been able
to predict important features of the free jet with good accuracy. There is,
however, a systematic discrepancy between the steady state RANS results and
the measurements of the mixing near the jet edge. Only the LES could predict
the vortex rings originated by the Kelvin-Helmholtz instability present in this
region, resulting in a better agreement with the measurements.

The jet in crossflow (JIC) is a more complex flow configuration than the
free jet, with a series of large-scale coherent structures and recirculation
regions. In the JIC, the quality of the agreement of the simulation results with
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the measurements is strongly coupled with the description of the coherent
structures. The LES reproduced the coherent structures in much more detail
than the unsteady RANS, while the steady state RANS simulations do not
resolve the coherent structures at all, neglecting this important source of
unsteadiness. The agreement of the LES results with the measurements is very
good, with worse agreement using unsteady RANS and steady state RANS
simulations, in this order. The results of the RANS simulations have shown
less intense mixing in the flow regions dominated by coherent structures,
even though the agreement of the velocity fields with the measurements is
good. It was shown that this fact can be explained applying the concept of
the intermittency, which determines the different influence of the coherent
structures on the velocity and passive scalar fields.

The numerical tools used for isothermal flows were extended and adapted to the
simulation of a complex combustion system, in which two important sources
of unsteadiness are present: the development of large-scale coherent structures
and an acoustic resonance in the injector region. These time-dependent phe-
nomena play a major role in the turbulent mixing, affecting directly the flame
geometry and consequently the temperature and species distributions, with
severe consequences for the prediction of pollutant formation, for example.
The LES simulations predicted both time-dependent phenomena, producing
results that agreed well with the measurements. The steady state RANS simu-
lations neglected these important sources of unsteadiness, resulting in a far less
satisfactory agreement especially for the flame geometry. The conclusion is
that time-resolved computational methods are required to model such complex
reacting flows with good accuracy.

The results have shown that steady state RANS simulations provide good
quantitative and qualitative agreement with experimental data when the flow
is statistically stationary, i.e., when the influence of large-scale coherent struc-
tures or unsteadiness of the mean flow are negligible. However, in flows with
pronounced unsteadiness in the mean flow promoted by large-scale coher-
ent structures or other sources, Reynolds-averaged values do not converge
to their time-averages. As this unsteadiness is not turbulent in nature, its
influence on the mean flow is not modeled by the turbulence models. Hence,
to achieve high-fidelity results, time dependent simulations are mandatory,
which increases the computational cost substantially. The preferred method
is the LES, which resolved the coherent structures in much more detail than
the unsteady RANS. The work has shown the limitations of the steady-state
RANS simulations and acknowledged the need of applying unsteady methods
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for the calculation of the investigated flow configurations. The responsible
reasons and phenomena have been identified, analyzed in detail and their
impact clearly illustrated.
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Nomenclature

Roman units
a m/s speed of sound
bi - one-dimensional low-pass filter
Bu,Bc - constants of the free jet
Bi, j,k - three-dimensional low-pass filter
c - passive scalar, reaction progress variable
C - mean passive scalar
cp,i - specific heat capacity at constant pressure

of species i
d -, m variance of the reaction progress variable,

distance
D m2/s2,m thermal or molecular diffusivity, diameter
Dk kg/m·s2 equivalent diffusion coefficient of species k

into the mixture
f Hz, - characteristic frequency, mixture fraction
fk, j m2/s2 volume force acting on species k in

direction j
g - variance of the mixture fraction
G - filter function
h J/kg specific enthalpy
h0

k J/kg specific enthalpy of formation of species k
I - intermittency function
Ju m3/s3 diffusion flux of velocity
Jc m2/s2 diffusion flux of passive scalar

xv



Nomenclature

Roman units
k m2/s2,− turbulent kinetic energy per unit mass,

complex wave number
l, `, L m characteristic length
Li j m2/s2 Germano identity
n - local coordinate normal to the surface,

normalized length scale
N - number of realizations
p Pa pressure
P Pa, - mean pressure, probability
q j m/s subgrid scale flux vector
rα - random fields
R - jet-to-crossflow velocity ratio
RI,J,K - filtered fields
Ruu - autocorrelation function
Re - Reynolds number
si j 1/s strain rate tensor
Si j 1/s mean strain rate tensor
S 1/s, m2,− modulus of the mean strain rate tensor,

area, spreading rate
t s time
ti j kg/m·s2 viscous stress tensor
T s, K mean time, temperature
ui; u,v,w m/s velocity vector components
Ui; U,V,W m/s mean velocity vector components
Ub m/s characteristic speed
u′iu

′
j m2/s2 Reynolds stress tensor for incompressible

flows
ρ ũ′′i u′′j kg/m·s2 Reynolds stress tensor for compressible

flows
ρ ũ′′i Y ′′

k kg/m2·s Reynolds flux vector for mass transfer in
compressible flows

ρ ũ′′i h′′ kg/s3 Reynolds flux vector for heat transfer in
compressible flows
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Operator
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⟨φ⟩T time average
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Abbreviations
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URANS unsteady Reynolds-averaged Navier Stokes
USST unsteady RANS simulation with SST turbulence model
UV ultraviolet
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1 Introduction

The effective mixing of entrained fluids to a molecular level is a vital part of
the dynamics of turbulent flows, especially when combustion is involved. The
motions induced from the largest to the smallest eddies transport fluid in the
turbulent region, greatly enlarging the interfacial surface area between them,
which in turn enhances the overall mixing rate. Following the terminology of
Eckart [25], turbulent mixing can be viewed as a three-stage process of entrain-
ment, stirring, and diffusion. Entrainment is the movement of one fluid caused
by another, as in the engulfment of ambient fluid by a jet. Stirring is defined
as the mechanical process of distributing fluids more uniformly in a given
domain, increasing their interfacial area, while mixing is the diffusion process
of substances across interfacial surfaces. Mixing is a molecular process, de-
pending on material properties such as diffusivities, while entrainment and
stirring are purely kinematical processes that depend on flow parameters.

The simplest case of turbulent mixing occurs between passive scalars. Exam-
ples are mixing of fluids with the same density or loaded with non-reacting
tracers. In these systems, a correct description of the mixing is not required by
the flow dynamics as the mixing of these fluids has a negligible back effect on
the flow. There are cases, however, in that the turbulent mixing changes the
fluid characteristics, e.g., its composition, density or enthalpy, which can in
turn have a significant impact on the flow dynamics. Combustion phenomena
are remarkable examples of such systems with active scalars. In particular, the
buoyancy-driven flow that both sustain and is driven by a candle is a familiar
example.

Simulation of mixing in turbulent flows is of great importance from theoretical
and practical points of view. The even increasing computational resources
allow the simulation of larger, more complex systems in shorter timeframes.
The dissemination of this technology comes with new challenges, as the
increased pressure on the robustness, accuracy and predictive capabilities of
the models, which are faced with more complex systems and phenomena.
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1 Introduction

Turbulence models are one of the main building blocks of modern Com-
putational Fluid Dynamics (CFD). Nevertheless, the modeling of complex
turbulent flows requires much more than the simple modeling of the underlying
turbulence. Turbulent flows with a heavy presence of large-scale structures
have additional sources of unsteadiness than simpler turbulent flows, which
requires different strategies for their modeling.

One methodology to account for the influence of large-scale structures in
turbulent flows is the intermittency, which began with the pioneer work of
Townsend [112] in 1948 and was object of intense studies in the 1970s and
beginning of 1980s. The experimental apparatus of choice was the hot wire
anemometer, which could easily be coupled with a cold wire system to mea-
sure time-resolved, correlated velocity-temperature data in flows with a small
temperature difference. The focus on the intermittency decreased in the 1980s
with the popularization of Laser Doppler Anemometry (LDA) for velocity mea-
surements, which made the acquisition of correlated velocity-concentration
data more difficult. At almost the same time, steady state CFD simulation
using Reynolds-averaged Navier-Stokes (RANS) turbulence models became
popular, which are a good match to LDA measurements.

With the current advance in the measurement and simulation technique, the
study of turbulent mixing has gained new momentum. The newly developed
high-resolution measurements using simultaneous Particle Image Velocimetry
and Laser Induced Fluorescence of jets in crossflow realized at the Engler-
Bunte-Institute [67, 30, 31, 18], for example, show the new possibilities of
laser-based, non-intrusive measurement technique that is able to deliver high
quality correlated velocity-scalar data. On the other hand, unsteady simula-
tions using RANS or large eddy simulation (LES) techniques have become
increasingly popular with the advance in computing power. The new mea-
surements enabled the quantification of the known weaknesses of steady state
simulations in cases where large-scale structures dominate the flow.

Returning to the terminology discussed in the first paragraph, the simulation
of turbulent mixing has to consider three different phenomena: entrainment,
stirring and diffusion. In flows with heavy influence of large-scale structures,
the effects of the entrainment cannot be neglected, which increases the interest
in unsteady simulations. The intermittency proved itself an appropriate frame-
work to account for the influence of these phenomena on turbulent flows, and
was employed in the discussion of the measurements and simulations in this
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work. With this tool, much of the observed erratic behavior of the steady state
simulations of turbulent mixing of passive scalars can be explained.



1.1 Objectives

Turbulent mixing is a complex phenomenon itself, which becomes even more
complex in reacting flows. Most of the scalars in reacting flows are active,
with a two-way interaction between chemistry and turbulence. On one hand,
the active character of the scalars increases the need of a correct description of
the turbulent mixing. On the other hand, the presence of large-scale structures
complicates the description of the same turbulent mixing. To solve this riddle,
the tools developed for unsteady simulations of turbulent flows were applied
to turbulent combustion, significantly improving the description of turbulent
mixing in the presence of large-scale structures.

1.1 Objectives

The primary objective of this work is to develop simulation tools capable of
describing the turbulent mixing in complex turbulent flows with and without
combustion.

One of the main tasks is to comprehend the reason why some steady state
RANS simulations of passive scalar mixing produce results in good agreement
with the measurements, while some have a poor agreement using the same
framework. After careful analysis, it becomes clear that the description of the
turbulent mixing was the responsible for the inaccuracy of the steady state
RANS simulations.

In turbulent flows without combustion, the study of turbulent mixing is fa-
cilitated by the use of passive scalars. For some systems, like the free jet,
steady state RANS simulations are satisfactory even using very basic models
for the turbulent mixing. However, for other systems of relevance as the jet in
crossflow, while the velocity field is adequately represented, the inaccuracy of
the predicted mixing field is high.

A careful analysis pointed out that the problem lies in large-scale coherent
structures, which belong to almost all turbulent free shear flows. The influence
of coherent structures over the mean field is not modeled by RANS turbulence
models. The coherent structures are highly geometry dependent, which makes
the derivation of a general model of their effect a complex task. Fortunately,
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unsteady simulations using the RANS or LES frameworks can solve the coher-
ent structures directly, accounting for their influence over the time-averaged
field.



1 Introduction

Numerical tools capable of simulating mixing in turbulent flows with a high
level of accuracy have been developed. The tools and the methodology have
been tested and validated using a free jet configuration, which is a test case
extensively studied in the literature. The same tools and methodology were
then applied on the jet in crossflow configuration, exposing the similarities
and differences of the two flows.

The knowledge gained by the study of turbulent mixing is employed in the
simulation of a complex reacting system, in which the turbulent mixing plays
a major role in the flame geometry. The numerical tools developed for non-
reacting flows were adapted for turbulent combustion, and specific models
for the interaction between turbulence and chemical reactions were applied.
Steady state RANS simulations and unsteady LES were conducted, and the
results were compared to experimental data.

1.2 Outline

The thesis is divided into two main parts. The first part deals with the theories,
derivations and methodologies employed as part of the investigation, and
spans from Chapter 2 to 5. The second part focuses on the validation of
the simulation approaches using a series of test cases from Chapters 6 to 8.
Overviews of each chapter are presented below.

The theoretical background of turbulent flows and turbulent mixing is in-
troduced in Chapter 2, with a description of turbulence, its origin, nature
and statistical treatment. The theory behind turbulent reacting flows is also
developed in this chapter.

Chapter 3 is devoted to coherent structures, their origin and nature. The choice
of a new chapter dedicated to coherent structures is deliberate, to state clearly
the difference between them and other phenomena present in turbulent flows.

The knowledge of Chapters 2 and 3 flows into Chapter 4, which discusses
the phenomenon of intermittency and its consequences for the description of
turbulent flows.
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1.2 Outline

Closing the first part of the thesis, Chapter 5 introduces the numerical tools
used in the simulations. The turbulent models used in the simulations are
presented, along with details about the numerical methods. In addition, the
turbulent reaction models used in the simulation of combustion systems are
introduced.

The second part of the thesis begins with the free jet presented in Chapter
6, a flow configuration extensively studied in the literature, which has been
used to test and validate the numerical tools and the different simulation
methodologies. The chapter begins with a short review of the literature data
and continues with the numerical setup used in the simulations. The results of
the simulations are compared to experimental data and discussed.

In Chapter 7, the ideas and tools developed earlier are applied to the jet in
crossflow configuration. This flow configuration is of major theoretical and
practical importance. It is more complex than the free jet, with a series of
large-scale coherent structures and recirculation regions. As the previous
chapter, it begins with a review of the experimental investigations and follows
with the numerical setup used in the simulations. The simulations are carefully
compared with experimental data, supporting the discussion of the results
through the chapter.

The simulation tools developed and tested in the free jet (Chapter 6) and jet
in crossflow (Chapter 7) configurations have been applied to the High Strain
Burner, described in Chapter 8. In this chapter, these tools are employed in the
simulation of a complex combustion system, in which the turbulent mixing
plays a crucial role in the flame geometry and consequently in the whole
system. The results of different simulation methodologies are compared with
experimental data.

The thesis is concluded in Chapter 9.
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2 Turbulent Flows

This chapter contains a brief description of the fundamental physical processes
that govern turbulence and turbulent mixing in incompressible flows, along
with the mathematical equations that in turn govern them. In addition, the
statistical treatment of the governing equations, which is essential for the study
of turbulent flows, can be found in this chapter. The text continues with the
equations used to describe turbulent reacting flows.

2.1 Fundamental equations

An uncontroversial fact about turbulent flows is that they are the most complex
kind of flow. Despite their complexity, turbulent flows are still described
by the Navier-Stokes equations, which express the conservation of mass and
momentum1 for a flow of continuum, Newtonian fluid. Although the linear
relation between the viscous stresses and the rate of strain in Newtonian fluids
being the simplest applicable to this problem, it follows that the solution of
the equations for turbulent flows lead to a chaotic behavior, limiting the direct
solution of the equations to very specific cases.

As even the smallest turbulent eddies have a size much larger than the mean
free path of the gas molecules unless the Mach number (velocity of fluid to the
speed of sound in that medium) is extremely high, the continuum condition
of the Navier-Stokes equations is valid for turbulent flows [93]. Similarly,
the constitutive equations of the most common gases and liquids follows
the linear Newtonian viscous-stress law. The Navier-Stokes equations are
therefore adequate to study the low Mach number, turbulent gaseous flows in
this work.

1 In the modern literature, the Navier-Stokes equations refer to the system of equations encom-
passing the conservation of mass and momentum. In old textbooks the Navier-Stokes equation
referred only to the conservation of momentum.
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2 Turbulent Flows

The Navier-Stokes system of equations for conservation of mass and momen-
tum for an incompressible, Newtonian fluid can be written as

∂ui

∂xi
= 0 (2.1)

∂ui

∂ t
+

∂uiu j

∂x j
=− 1

ρ

∂ p
∂x j

+
∂

∂x j

(
ν

∂ui

∂x j

)
(2.2)

where xi and ui are the space and velocity vectors with i=(1,2,3), t is the time,
ρ is the density, p is the pressure and ν is the kinematic viscosity. Following
the Einstein summation convention, repeated indices mean summation over the
index. The derivation of these equations can be found in many fluid mechanics
textbooks [3, 4].

In order to study the mixing, the concept of a passive scalar is introduced.
The adjective passive means that the fluid elements carrying the scalar are
convected and diffused by molecular motion without altering the velocity field
in which they coexist. In contrast, if a flow exhibits large density differences
due to the mixing of fluids with different densities, for example, there is a
dynamic coupling between the velocity and scalar fields. The scalar is not
passive in this case.

The conservation equation of a passive scalar c is given by

∂c
∂ t

+
∂u jc
∂x j

=
∂

∂x j

(
D

∂c
∂x j

)
(2.3)

where D is the molecular diffusivity, considering that c represents the concen-
tration of a trace species.

An important characteristic of the passive scalar is its boundedness. If the
initial and boundary conditions of c lie within a given range

cmin ≤ c ≤ cmax (2.4)

then c must lie in this range in the whole domain for any given time: values
greater of cmax or less than cmin cannot occur.

The similarity between Equation (2.2) without the pressure gradient and Equa-
tion (2.3) form the base for the analogy between momentum and scalar (heat

8



2.2 The origin of turbulence

and mass) transfer. Unfortunately, along with the inherent differences between
the transport of vector and scalar quantities, the pressure gradient prevents an
exact analogy in turbulent flows, as pressure fluctuations always accompany
velocity fluctuations [7]. This fact will be used in the discussion about the
different effects of intermittency in velocity and mixing fields in Chapter 4.

2.2 The origin of turbulence

The Reynolds number, defined in Equation 2.9, represents the ratio of inertial
forces to viscous forces. In flows that are originally laminar, turbulence arises
from instabilities associated with large Reynolds numbers. Flows with a large
Reynolds number are dominated by inertial forces; the viscous forces are
not able to smooth out the flow instabilities. Laminar pipe flow becomes
turbulent at a Reynolds number of about 2300, based on the mean velocity
and diameter. Boundary layers without pressure gradient become unstable
at a Reynolds number of 600, based on the displacement thickness and the
free stream velocity. Free shear flows become unstable at very low Reynolds
numbers because of an inviscid instability mechanism that does not operate in
boundary layers and pipe flows [110].

On the other hand, as dictated by its dissipative nature, turbulence cannot
maintain itself but depends on the energy supply of the environment. A
common source of energy for the turbulence is shear in the mean flow, as
can be seen in Chapter 5, especially Equation (5.2). If turbulence arrives in
an environment where no shear or other maintenance mechanism is present,
it decays. The turbulent Reynolds number decreases and the flow tends to
become laminar again. The decay of the turbulence created in a uniform flow
that flows through a grid is a classic example of this phenomenon.

Turbulence is always related to high Reynolds number flows and originates
itself from the non-linear convective term of the Navier-Stokes equation. Using
the scaling parameters in Table 2.1, the variables of Equation (2.2) have been
nondimensionalized

t* = f t , x*i = xi/l , u*i = ui/Ub , p* =
p− p∞

p0 − p∞

,
∂

∂x*i
= l

∂

∂xi
. (2.5)
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2 Turbulent Flows

Substituting these variables in the Equation 2.2 and multiplying by l/U2
b results

in the following equation2

[
f l

Ub

]
∂u*i
∂ t*

+
∂u*i u*j
∂x*j

=−
[

p0 − p∞

ρU2
b

]
∂ p*

∂x*j
+

[
ν

Ubl

]
∂

∂x*j

(
ν

∂u*i
∂x*j

)
, (2.6)

where three non-dimensional numbers can be identified:

f l
Ub

= St (Strouhal number), (2.7)

p0 − p∞

ρU2
b

= Eu (Euler number), (2.8)

Ubl
ν

= Re (Reynolds number). (2.9)

In a flow with increasing Reynolds number, the relative importance of the
diffusion term decreases, as it scales with 1/Re. The non-linear convection
term becomes the dominant term of the equation, originating the turbulent
fluctuations when the stabilizing effect of the diffusion term decreases.

Scaling parameters Description Dimension
Ub Characteristic speed m/s
l Characteristic length m
f Characteristic frequency 1/s
p0 − p∞ Reference pressure difference kg/m·s2

Table 2.1: Scaling parameters.

2.3 The nature of turbulence

While an intuitive idea about the nature of turbulent flows is part of our
everyday life, it is however very difficult to define it precisely. Hinze [39]
defined turbulent fluid motion as "an irregular condition of the flow in which
the various quantities show a random variation with time and space coordinates,

2 Equation 2.6 is nondimensionalized, but not normalized. To be normalized, all nondimensional
variables have to span approximately between zero and unity, which depends heavily on the
choice of the scaling parameter.
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2.3 The nature of turbulence

so that statistically distinct averaged values can be discerned". Many textbooks
avoid giving turbulence a clear definition, which can be sometimes misleading.
Other authors as Tennekes and Lumley [110] and Libby [63], instead of a
definition, opted to cite some characteristics of turbulent flows. Some of these
characteristics are listed below.

As turbulent flows always show irregular or random variations, a deterministic
solution of turbulence problems is not possible; statistical methods are used
instead.

The increased rates of momentum, heat and mass transfer and the rapid mixing
associated with turbulent flows are caused by the increased diffusivity of
turbulence. This is the single most important feature as far as applications are
concerned. Examples span from the prevention of boundary layer separation
on airfoils at large angle-of-attack, to increased heat and mass transfer rates in
processes of all kinds, and to increased energy density of turbulent flames.

Turbulence always occurs at flow with high Reynolds number. Turbulence
often originates as an instability of laminar flows; these instabilities are related
to the interaction of viscous terms and nonlinear inertial terms in the governing
equations. This interaction is described by the Reynolds number, which can be
understood as the ratio of the nonlinear inertia terms and the viscous terms in
the governing equations. As seen in the previous section, when the Reynolds
number increases, the viscous terms lose their importance and the inertia terms
dominate, which in turn originates the irregular turbulent motion.

Turbulence is rotational and three dimensional. Flows that are essentially
two dimensional, such as cyclones in the atmosphere or vortex streets after
cylinders are not turbulent themselves, even though their characteristics may
be strongly influenced by small scale turbulence generated somewhere by
shear or buoyancy, which interacts with the larger flow.

Another characteristic of turbulent flows is that they are always dissipative.
The deformation work performed by the viscous shear stresses increases the
internal energy of the fluid at the expense of kinetic energy of the turbulence.
The dissipative nature of the turbulence dictates that it needs a continuous
supply of energy to compensate the viscous losses; without it the turbulence
decays rapidly.

The phenomenon of turbulence occurs in continuum fluids, governed by the
equations of fluid dynamics. Even the smallest scales of turbulence are far
larger than any molecular length scale.
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2 Turbulent Flows

Turbulence is not a feature of fluids, but of fluid flows: turbulent flows are
flows. The major characteristics of turbulent flows are not controlled by the
molecular properties of the fluid, what makes the dynamics of turbulence
the same for all fluids if the Reynolds number is large enough, even though
these characteristics depend on the environment. This dependency on the
environmental conditions prevents a general way to deal with all kinds and
types of turbulent flows. The theory concentrates on families of flows with
simple boundary conditions, like boundary layers, jets and wakes.

The fluctuations in turbulent flows always involve a wide range of scales, with
the large scales having a relative permanence and the small scales having
relatively short lifetimes. Indeed, turbulence is distinguished from unsteady
laminar flow in terms of the continuous spectrum of scales of the fluctuations
involved. The cascade process arises from this theory, in which the energy
from the large-scale fluctuation is transferred into the smaller scales that are
directly affected by the molecularity.

2.4 Statistical treatment of turbulent flows

The Navier-Stokes equations and the conservation equation of the passive
scalar, Equations (2.1) to (2.3), combined with suitable boundary conditions,
are sufficient for the simulation of laminar flows with the transport of a passive
scalar. The simulation of turbulent flows based only on these equations is
called direct numerical simulation (DNS), and no modeling3 is required. As
all scales of the flow have to be resolved, the DNS becomes increasingly
computationally expensive as the Reynolds number increases and the turbulent
time and length scales decrease. An example of the increasing prohibitive
computational resources required for a DNS is shown in Annex A.1.

Turbulent flows exhibit a random4 variation of its quantities [121, 93]. For-
tunately, virtually all engineering applications are not interested in the in-
stantaneous value of the different variables, but in their statistics like mean
values. A statistical treatment of turbulent flows can produce exactly this kind
of information, while avoiding the burden of a DNS.

3 Except the model for the molecular viscosity and diffusivity.
4 The meaning of a random variable is that it does not have a unique value - the same every time

the experiment is repeated under the same set of conditions. The Navier-Stokes equations remain
naturally valid.
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2.4 Statistical treatment of turbulent flows

O. Reynolds [99] introduced the procedure of expressing the turbulent quan-
tities as the sum of a mean and a fluctuating part. The decomposition of the
velocity ui(xi, t) in its mean Ui(xi, t) and fluctuating parts u′i(xi, t)

ui(xi, t) =Ui(xi, t)+u′i(xi, t) (2.10)

is referred to as Reynolds decomposition. The Reynolds average, in its more
general version, is represented by an overbar, i.e., the mean value of ui is
ui ≡Ui.

Three forms of averaging are the most pertinent to the turbulence modeling:
time average, spatial average and ensemble average. The general term used to
describe these averaging processes is mean. The time average is appropriate
for statistically stationary turbulent flows, i.e., a turbulent flow whose averaged
quantities do not vary with time, as a fully developed pipe flow driven by a
constant pressure difference. The time average operation ⟨ ⟩T is defined by

Ui(xi) = ⟨ui(xi, t)⟩T = lim
T→∞

1
T

∫ t+T

t
ui(xi, t)dt. (2.11)

An illustration of this process can be seen in Figure 2.1. The solid line
represents the instantaneous values, while the dotted line represents the time
average.

Figure 2.1: Time averaging for a statistically stationary flow.
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2 Turbulent Flows

For homogeneous turbulence, which is on average uniform in all directions,
the spatial averaging is appropriate. All spatial coordinates are covered by a
volume integral, and the averaged ⟨ ⟩S is defined by

Ui(t) = ⟨ui(xi, t)⟩S = lim
V→∞

1
V

∫
V

ui(xi, t)dV. (2.12)

The most general form of Reynolds averaging is the ensemble average ⟨ ⟩E ,
which is suitable for flows that are neither statistically stationary nor homoge-
neous. For example, flows with decay in time or with large-scale structures. In
an idealized example, the ensemble average is defined in terms of N identical
realizations of the same experiment, with initial and boundary conditions that
differ only by random infinitesimal perturbations

Ui(xi, t) = ⟨ui(xi, t)⟩E = lim
N→∞

1
N

N

∑
n=1

ui(xi, t). (2.13)

Figure 2.2 illustrates this concept. The ensemble average is represented by the
dashed line. The instantaneous values and the time average are represented by
the solid and dotted lines, respectively.

Figure 2.2: Ensemble and time averaging for a statistically non-stationary flow.

At this point, it is essential to note the difference between the time and en-
semble averages. Considering a statistically stationary flow, the time averaged

14



2.4 Statistical treatment of turbulent flows

velocity is defined by Equation (2.11). The time average of the mean velocity
is again the same mean velocity, i.e.,

⟨Ui(xi)⟩T = lim
T→∞

1
T

∫ t+T

t
Ui(xi)dt =Ui(xi). (2.14)

Considering now a flow that is statistically non-stationary, the mean flow
contains slow variations in time that are not turbulent in nature. Flows with
large-scale structures caused by vortex shedding or a duct flow with an imposed
slowly varying periodic pressure gradient are good examples. The ensemble-
average is the appropriate averaging method in these cases, and the mean
velocity Ui(xi, t) can be time-dependent. It follows that a time average can still
be defined; however the time-average mean velocity is different from the mean
velocity

⟨Ui(xi, t)⟩T = lim
T→∞

1
T

∫ t+T

t
Ui(xi, t)dt =Ui(xi) ̸=Ui(xi, t). (2.15)

Figure 2.2 illustrates this difference. The values of the ensemble average and
the time average are indeed decidedly different. This finding leads to the
definition of the so called triple decomposition. In this case, the turbulent
fluctuations about the ensemble-average u′i(xi, t) and the unsteadiness of the
mean flow about the time-average u′′i (xi, t) = Ui(xi, t)−Ui(xi) are treated
separately

ui(xi, t) =Ui(xi)+u′i(xi, t)+u′′i (xi, t). (2.16)

The triple decomposition has little value in practice, as often the boundary
between the unsteadiness of the mean flow and the turbulent fluctuations is
not very distinct, making the evaluation of the term u′′i (xi, t) difficult or impos-
sible. The implications of time-averaging a statistically non-stationary flow
are, however, of great significance. When measuring instantaneous velocity
components in a statistically non-stationary flow and evaluating the time aver-
age applying Equation (2.11), the corresponding fluctuations about the mean
are the sum of the turbulent fluctuations about the ensemble-average u′i(xi, t)
and the unsteadiness of the mean flow about the time-average u′′i (xi, t).

It is important to note that despite the difficulty in separating the turbulent fluc-
tuations from the unsteadiness of the mean flow when analyzing experimental
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2 Turbulent Flows

data, the physical phenomena that originates these two fluctuations are quite
different. While the turbulent fluctuations are the result of the non-linearity of
the convection term of the equation of conservation of momentum (Equation
2.2) when the Reynolds number becomes large, the unsteadiness of the mean
flow can be originated from external influences as a varying pressure gradient,
or self-generated aero- or hydrodynamical phenomena as vortex streets, which
are present also in laminar flow.

2.4.1 Averaging the fundamental equations

The Navier-Stokes equations can be treated using the same Reynolds decompo-
sition and averaging technique. Substituting the instantaneous flow quantities
for the sum of mean and fluctuating components and taking the average yields
the so-called Reynolds averaged Navier-Stokes (RANS) equations. Being the
most general Reynolds average, the ensemble average is used. The equations
in Cartesian tensor form for incompressible, Newtonian fluid are

∂Ui

∂xi
= 0 (2.17)

∂Ui

∂ t
+

∂UiU j

∂x j
=− 1

ρ

∂P
∂xi

+
∂

∂x j

(
ν

∂Ui

∂x j

)
−

∂u′iu
′
j

∂x j
(2.18)

where the overbar is shorthand for the Reynolds average. The process of
averaging the equations is illustrated, for example, in references [121, 93].

They have the same general form as the instantaneous Navier-Stokes equations,
with the substitution of the instantaneous variables by the mean variables, and
the inclusion of the last term −∂u′iu

′
j/∂x j in the momentum equation. Re-

placing Equation (2.17) in Equation (2.1) reveals that the fluctuation velocity
u′i also has zero divergence. The quantity ρu′iu

′
j is known as Reynolds stress

tensor, so that u′iu
′
j is the specific Reynolds stress tensor which must be deter-

mined in order to solve Equation (2.18).
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2.5 Reacting flows

The Reynolds-averaged equation for the conservation of a passive scalar can
be derived in a similar way:

∂C
∂ t

+
∂U jC
∂x j

=
∂

∂x j

(
D

∂C
∂x j

)
−

∂u′ic′

∂x j
(2.19)

where the specific Reynolds flux vector u′ic′ must also be determined in order
to solve Equation (2.19).

The influence of the turbulence on the mean flow is contained in the Reynolds
stresses and fluxes. Conservation equations for them can be derived from the
fundamental equations, but they contain again more unknowns, which are a
consequence of the non-linearity of the Navier-Stokes equation: every time the
variables are decomposed and the equations are averaged, new unknowns are
created. This is called the closure problem. At the point of view of the physics
of the problem, it is not an unexpected result, as the Reynolds averaging does
not add any new physical principle to the system. As stated by Wilcox [121]

In essence, Reynolds averaging is a brutal simplification that loses
much of the information contained in the Navier-Stokes equation.

The role of the turbulence modeling (see Section 5.2) is to provide approxima-
tions for the Reynolds stresses and fluxes, derived in terms of known quantities,
in a way to close the system of equations.

2.5 Reacting flows

Poinsot and Veynante [91] highlight the three main differences between the
incompressible, non-reacting flow described in the last sections and a react-
ing flow:

∙ a reacting gas is a non-isothermal mixture of multiple species (hydro-
carbons, oxygen, water, carbon dioxide, etc.) which must be tracked
individually. Thermodynamic data are also more complex, changing
significantly with temperature and composition,

∙ species react chemically and the reaction rate requires specific
modeling,

∙ since the gas is a mixture, transport coefficients require specific
attention.
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2 Turbulent Flows

The exothermic reaction of a fuel and a oxidant is also called combustion.
Combustion can occur in either a flame or a nonflame mode, and flames,
in turn, are categorized as being either premixed flames or nonpremixed
(diffusion) flames [114]. A thin zone of intense chemical reaction is what
commonly characterizes a flame. If the reaction takes place simultaneously in
many locations within a volume, a nonflame combustion occurs, also named
flameless oxidation.

The two classes of flames (premixed and nonpremixed) are related to the
state of mixedness of the reactants. In a premixed flame, the fuel and the
oxidizer are mixed at the molecular level before any relevant reaction. The
spark-ignition engine works with premixed flames. On the other hand, in a
nonpremixed (diffusion) flame the reactants are initially separated and the
reaction occurs only at the interface between them. A candle is an example
of a diffusion flame. In practical devices, it is often difficult to classify the
flame as pure premixed or pure diffusion. The complex combustion system
which will be presented in Chapter 8 shares characteristics of both premixed
and diffusion flames.

To characterize the quality of a fuel-air mixture, the equivalence ratio φ can
be used. If exactly enough oxidizer is available to react completely with
the fuel, the ratio is known as the stoichiometric mixture. The equivalence
ratio is defined as the ratio of the fuel-to-oxidizer ratio to the stoichiometric
fuel-to-oxidizer ratio

φ =
Yf uel/Yoxid

(Yf uel/Yoxid)stoich
(2.20)

where Y represents the mass fraction and the suffix stoich stands for stoichio-
metric conditions.

2.5.1 Fundamental equations for reacting flows

The derivation of the fundamental equations for the transport of mass, species
and energy is found in textbooks as those by Williams [122] and Kuo [56].
This section concentrates on the forms used in the simulations presented in
Chapter 8.
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2.5 Reacting flows

Overall continuity is given by:

∂ρ

∂ t
+

∂ρui

∂xi
= 0. (2.21)

The mass conservation equation for the species k is written:

∂ρYk

∂ t
+

∂ρuiYk

∂xi
=−

∂Vk,iYk

∂xi
+ ω̇k, for k = 1,N. (2.22)

where Vk,i is the i-component of the diffusion velocity Vk of species k and ω̇k
is the reaction rate of species k. By definition:

N

∑
k=1

Vk,iYk = 0 and
N

∑
k=1

ω̇k = 0. (2.23)

The rigorous evaluation of Vk is difficult and costly. The Hirschfelder and
Curtis [40] approximation is used instead:

VkXk =−Dk
∂Xk

∂xi
with Dk =

1−Yk

∑ j ̸=k X j/D jk
. (2.24)

The coefficient Dk is not a binary diffusion but an equivalent diffusion coeffi-
cient of species k in the rest of the mixture. This approximation is convenient
because the diffusion coefficients Dk can be simply linked to the heat diffusivity
Dth in many flames, as the Lewis number of individual species Lek = Dth/Dk
usually varies by small amounts in flame fronts.

The equation of momentum is given by:

∂ρu j

∂ t
+

∂ρuiu j

∂xi
=− ∂ p

∂x j
+

∂

∂xi

(
µ

∂ui

∂x j

)
+ρ

N

∑
k=1

Yk fk, j, (2.25)

where fk, j is the volume force acting on species k in the direction j. Even
though no explicit reaction term is included in this equation, the flow is modi-
fied by combustion: the dynamic viscosity µ and the density ρ change strongly
because temperature also varies in a ratio from 1:8 to 1:10. The dilatation
through the flame front accelerates the flow in the same ratio. Consequently,
the Reynolds number varies, leading to very different flow behavior with or
without combustion.
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2 Turbulent Flows

The equation of energy requires attention because multiple forms exist. The
specific enthalpy h has the advantage of not being modified by chemical
reactions, simplifying the equation. The heat release due to chemical reaction
only transforms chemical energy into sensible heat.

Considering a mixture of ideal gases, h is evaluated from the specific enthalpies
of its components

h =
Ni

∑
i

Yihi. (2.26)

with hi given by

hi = h0
k(Tre f )+

∫ T

Tre f

cp,idT, (2.27)

where h0
k is the specific enthalpy of formation of species k at the reference

temperature Tre f and cp,i is the specific heat capacity at constant pressure of
species i.

The transport equation of h is

∂ρh
∂ t

+
∂ρuih

∂xi
=

∂

∂xi

(
λ

∂T
∂x j

)
+

Dp
Dt

+
∂ui

∂xi

(
µ

∂ui

∂x j

)
. (2.28)

The simplifying assumption of Lewis number equal to unity has been used in
the derivation of this equation.

In analogy with the mass conservation equation for species k, Equation (2.22),
a transport equation for a scalar c can be formulated using Fick’s law of
diffusion

∂ρc
∂ t

+
∂ρuic

∂xi
=

∂

∂xi

(
ρDc

∂c
∂xi

)
+ Ṡc (2.29)

where Dc is defined as in Equation (2.24) and Ṡc is the source or sink of the
scalar. In contrast to the passive scalar defined in Chapter 2, a reacting flow
exhibits large density differences due to the heat release, for example, leading
to a dynamic coupling between the velocity and scalar fields. The scalar is not
passive in this case.
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2.5 Reacting flows

2.5.2 Turbulent reacting flows

When the flow in a flame is turbulent, turbulence and combustion interact.
Turbulent combustion is found in most engineering applications, as rockets,
internal combustion engines, gas turbines, industrial boilers and furnaces.

In constant density flows, Reynolds averaging is used to derive equations
suitable for turbulent flows (see Section 2.4.1). Using this procedure in reacting
flows leads to unclosed quantities, for example the correlation between density
and velocity fluctuations ρ ′u′i. To avoid this difficulty, mass-weighted averages,
introduced by Favre [26], are preferred

f̃ =
ρ f
ρ

. (2.30)

Any quantity f can be split into mean and fluctuating components as

f = f̃ + f ′′ with f̃ ′′ = 0. (2.31)

Mass-weighted averaging suppresses the terms containing correlations involv-
ing density fluctuations. Using this formalism, averaged balance equations
formally identical to the Reynolds-averaged equations can be derived [91]:

Overall continuity

∂ρ

∂ t
+

∂ρ ũi

∂xi
= 0, (2.32)

Momentum

∂ρ ũ j

∂ t
+

∂ρ ũiũ j

∂xi
=− ∂ p

∂x j
+

∂

∂xi

(
µ

∂ ũi

∂x j

)
−

∂ρ ũ′′i u′′j
∂x j

+ρ

N

∑
k=1

Ỹk fk, j, (2.33)

Chemical species

∂ρỸk

∂ t
+

∂ρ ũiỸk

∂xi
=

∂

∂xi

(
ρDk

∂Ỹk

∂xi

)
−

∂ρ ũ′′i Y ′′
k

∂xi
+ ω̇k, for k = 1,N, (2.34)
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Enthalpy

∂ρ h̃
∂ t

+
∂ρ ũih̃

∂xi
=

∂

∂xi

(
λ

∂ T̃
∂x j

)
+

Dp
Dt

+
∂ui

∂xi

(
µ

∂ui

∂x j

)
−

∂ρ ũ′′i h′′

∂xi
. (2.35)

The unclosed terms ρ ũ′′i u′′j , ρ ũ′′i Y ′′
k and ρ ũ′′i h′′ in the equations above are closed

using turbulence models, which will be presented in Chapter 5.

The models used to calculate the source term ω̇k in Equation (2.34), which
is actually the main additional problem when dealing with turbulent reacting
flows, will also be presented in Chapter 5.
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3 Coherent Structures and Mixing
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This quotation from Hussain [43] summarizes the main point of this chapter:

In many cases, the coherent structures are highly dominant. That
is, in many cases they are not perturbations of the time-mean flow:
they are the flow.

The idea of coherent structures being small perturbations about the mean
flow is misleading. For many flows of interest, including the jet in crossflow,
coherent structures are so large and energetic that they cannot be considered
simply as fluctuations or perturbations.

This chapter begins with the definition of coherent structures. The text contin-
ues with a brief discussion about the occurrence of coherent structures in shear
flows, followed by the origin and nature of coherent structures. A discussion
about stirring and mixing and their relation to coherent structures closes this
chapter.

3.1 Definition of coherent structures

A clear definition of coherent structures is still a matter of debate [7, 42, 43].
Even the term coherent structure is not generally accepted; some authors
prefer orderly structures or inviscid instabilities.

For the purpose of this work, the term coherent structures will be used to
describe large-scale structures with distinct characteristics distinguishing them
from turbulence (definition see Chapter 2). For example, all structures that
are two-dimensional in nature are not turbulent, and are qualified as coherent
structures.



3 Coherent Structures and Mixing

3.2 Coherent structures in shear flows

This section is a short review of the evidence of large-scale, coherent structures
in shear flows. It begins with some findings in two-dimensional mixing layers,
jets and jets in crossflow. Figure 3.1 shows sketches of the three cases discussed
below.

Figure 3.1: Sketches of the mixing layer, jet and jet in crossflow configurations.

Mixing layers

Evidence of the existence of large-scale coherent structures in shear flows
has received significant attention over the years. Figure 3.2 shows one of the
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3.2 Coherent structures in shear flows

classic shadowgraph pictures of Brown and Roshko [11] of the plane mixing
layer formed between helium and nitrogen flows. Large two-dimensional
structures as well as the fine-scale structure, which exist throughout the mixing
region, are clearly visible. It is important to note that shadowgraphs are used
to make the scalar field visible, not the velocity field. The sharp edges in the
visualizations are consistent with the description of scalar fields in intermittent
flows, which will be discussed in detail in Chapter 4. The velocity field does
not feature such sharp edges, as noted by Broadwell and Mungal [10].

Figure 3.2: Shadowgraph of a high Reynolds number mixing layer. The helium stream
on top moves at a velocity of 10 m/s, and the nitrogen on the bottom at a
speed of 3.78 m/s. The whole test section is pressurized to 8 bar, giving
a Reynolds number based on downstream distance of the order of 106.
Reproduced from [11].

The classic Kelvin-Helmholtz instability explains the formation of these struc-
tures [3]. The Kelvin-Helmholtz instability is present in shear flows, where
small-scale perturbations are amplified, drawing kinetic energy of the main
flow [15]. This phenomenon is inherently irrotational and two-dimensional,
being described by the Euler equations. A more detailed introduction to the
concept of the Kelvin-Helmholtz instability can be found in the Annex A.2.

The occurrence of Kelvin-Helmholtz structures in mixing layers is reported
to exist from moderate Reynolds numbers of order 20.000 [11] up to high
Reynolds numbers exceeding 200.000 [10]. These facts provide compelling
evidence that the large-scale structures are essentially inviscid in nature, and
exist for all Reynolds numbers beyond some critical level.
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3 Coherent Structures and Mixing

Jets

As a consequence of the increased complexity of the jet in comparison to the
two-dimensional mixing layer, the evidence of organization in jets is much
less direct. However, modern diagnostics and visualization techniques have
revealed the underlying large-scale structures of the flow.

Older techniques as shadowgraphs or Schlieren images cannot reveal the
organization of the flow, as the structures are three-dimensional and one
structure is often nested within others. Laser light sheet techniques as the one
applied in Figure 3.3 are more adequate to visualize the large-scale structures
of the jet. The Kelvin-Helmholtz instabilities are clearly visible in this figure.
In addition, the use of movie sequences and chemical reactions to make
structures visible are successful.

Figure 3.3: The Kelvin-Helmholtz shear layer rollup in a round jet, LIF cross section.
Reproduced from [116].

Dahm and Dimotakis [19] used a pH-sensitive fluorescent dye and a movie
sequence to investigate turbulent water jets at a maximum Reynolds number of
10.000. They have found evidence for the presence of large-scale organization
of entrainment and mixing in the self-similar field of the jets. One particularly
interesting finding is depicted in Figure 3.4. In contrast to the mean concen-
tration profile, the composition of the mixed fluid is approximately uniform
within large regions extending one local jet diameter in both axial and radial
directions. Depending on which instant the concentration is sampled across
the jet, the profiles have either a top-hat profile, indicating fairly homogeneous
concentration across the jet, or a two-level profile, indicating that two distinct
regions with different concentrations can be discerned. These regions with
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3.2 Coherent structures in shear flows

fairly homogeneous concentration are the result of the Kelvin-Helmholtz struc-
tures, which are convected downstream. Another finding is that the "flame tip"
from the movie sequence, i.e. the location where the jet fluid fully reacted with
the ambient fluid, oscillated in a quasi-periodic fashion. Careful examination
of results indicates that this oscillation is a result of the large-scale structures
of the flow, which are convected downstream and react quasi-periodically at
the tip.

Figure 3.4: Idealized conceptual picture of the instantaneous concentration field of the
turbulent jet, showing schematically top-hat (upper) and two-level (lower)
profile shapes. Alternating flow structures have been colored gray and
white to help to differentiate them. Adapted from [19].

Mungal and Hollingsworth [78] have drawn the same conclusions about the
occurrence of large-scale organization in a gaseous jet flow, however using
a radically different setup. They analyzed a movie sequence of the exhaust
plume of a Titan IV rocket motor, with a Reynolds number of about 2·108.
They concluded that the large-scale organization is associated with inviscid
instability mechanisms that are Reynolds number independent.

Jets in crossflow

The jet in crossflow configuration is the result of the complex, three dimen-
sional interaction between the jet and crossflow streams.

Directly after exiting the nozzle the jet acts as a bluff body, creating a region of
high pressure, stagnated flow upstream, and a low pressure region downstream
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3 Coherent Structures and Mixing

of the jet. The jet quickly bends in the direction of the crossflow (see Figure
3.5). This deflection can be explained by two mechanisms: the pressure
gradient formed at the jet exit between the high pressure upstream and the low
pressure downstream regions, and the entrainment and mixing of crossflow
into the jet flow.

Figure 3.5: Scheme of the jet in crossflow phenomenology. Reproduced from [81].

The large-scale structures observed in the near field are either similar to
those originated from the Kelvin-Helmholtz instability in round jets, or to the
horseshoe vortices formed at a cylinder-wall junction. The roll-up process of
the shear layer happens at both upstream and downstream of the jet, giving
origin to the leading-edge vortices and lee-side vortices (lee side is the side
that is sheltered from the crossflow). The leading-edge vortices are far more
evident and occur over a larger time scale than the lee-side vortices. The
reason is that, on the lee side, the vortices break down quickly and the mixing
process occur within a short distance. This process can be visualized in Figure
3.6, where colored dye was added to the water flow to make the structures
visible. The horseshoe vortices, on the other hand, are very similar to that
formed around a cylinder-wall junction.
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3.2 Coherent structures in shear flows

Figure 3.6: Dye pattern of a jet in a crossflow issuing from an elliptical pipe with
aspect ratio = 0.3. The dye was released through a dye port located slightly
upstream of the jet exit. Velocity ratio R = 3 (left) R = 2 (right). Jet
Reynolds number from 900 to 5100. Reproduced from [65], boundary
conditions described in [81].

Investigations on the jet in crossflow, focusing on the mixing of chimney
plumes, started in the 1930’s [83, 68]. Since the pioneer work of Fric &
Roshko [28], that visualized the jet in crossflow using a smoke-wire technique,
the pseudo-wake that develops downstream of the jet has been another focus
of interest. Evidence that alternate vortices are shed in a similar way to
the Kármán vortex street formed behind solid bluff bodies is widespread
[28, 50, 77, 125]. These wake vortices, also described as upright or tornado-
like vortices, are shed to the leeward side of the jet and are connected to
the core jet flow, transporting vorticity from the boundary layer to the center
[28].

The counter-rotating vortex pair, the most prominent large-scale structure
develops further downstream. It is a feature of the mean flow that persists
in the far-field [9, 48] and appears even in steady and laminar numerical
simulations [16]. It seems that the counter rotating vortex pair will always
be present, independent of the velocity ratio, the Reynolds number and the
shape of the nozzle, because they are an essential feature of this flow [100].
Using a water channel, Camussi et al. [13] have observed the formation of the
counter-rotating vortex pair in a jet in crossflow of Reynolds number 100 (see
Figure 3.7). Even at this very low Re, the flow is dominated by large-scale
structures, as can be seen in the flow visualization depicted in Figure 3.8. Time-
resolved measurements and simulations [106, 125] have shown that, while
being symmetrical in average, the instantaneous structures that compose the
vortex pair are not symmetrical. Rather, the Kármán-like vortices present in
the pseudo-wake drive an intense fluctuation of the intensity of the two counter

29



3 Coherent Structures and Mixing

rotating vortices. The counter rotating vortex pair is strongly modulated by the
flow field of the coherent structures that, in fact, is as important as the mean
velocity field.

Figure 3.7: LIF visualization of the counter-rotating vortices forming within the jet
flow for different distances from the jet exit. The plane of the photograph
is perpendicular to the jet axis. Reproduced from [13].

Figure 3.8: LIF visualization obtained by placing the laser sheet parallel and very close
to the wall (x/D = 0.2, R = 2). Reproduced from [13].

The origin of several of these structures strongly depends on the high pressure
gradients developed in the jet exit region, both inside and outside the nozzle.
The fast recovery of the pressure field behind the jet is responsible for the vortex
breakdown that occur there, resulting in small-scale turbulence production.
This phenomenon is illustrated in Figure 3.9. The Kelvin-Helmholtz structures
are formed, and the part of these structures that is at the leading-edge side of
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3.2 Coherent structures in shear flows

the jet remain clearly discernible in the whole area of the picture. The part
of these structures on the lee side, on the other hand, is broken and mixed,
leading to the vortex breakdown.

Figure 3.9: Jet in a cross flow. Kelvin-Helmholtz instabilities form on the jet column.
Adapted from [65].

The wake or Kármán-like vortices are associated with the alternate shedding
in the downstream region of the jet due to the lateral separation of the wall
boundary layer, like in the classical von Kármán vortex street. In addition, the
deformation of the jet cross section, which yields the counter rotating vortex
pair, can be explained in terms of the pressure field around the jet, and the
initial acceleration that the jet fluid experiences in the direction of the crossflow
[16, 80]. Therefore, the pressure field around the jet exit plays a dominant role
in the formation of the large-scale structures of the jet in crossflow [100].
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3.3 The nature of coherent structures

The large-scale structures that are present in mixing layers and free jets are
attributed to the Kelvin-Helmholtz (KH) instability, illustrated in Figures 3.2
and 3.3. The KH instability is not turbulent itself, as turbulence is always
rotational and three-dimensional as discussed in Section 2.3. During its devel-
opment, the instability can naturally interact with the turbulence and influence
mixing phenomena. The interaction is, however, very complex and depends
heavily on the boundary conditions of the problem.

The jet in crossflow share characteristics from both free jets and flows around
bluff bodies, which is also evident in its large-scale structures. The similarity
of the cross sections of a jet in Figure 3.3 and a jet in crossflow in 3.10 is
evident, with the Kelvin-Helmholtz instabilities clearly recognizable. In Figure
3.10, the velocity ratio was approximately 4.6 and the jet Reynolds number
was about 1600. Kelso et al. [50] used flow visualization to study the jet in
crossflow in a water channel, with Reynolds numbers based on the jet diameter
and crossflow velocity in the range of 440 to 6200. The ring vortices in Figure
3.9 have their origin in the Kelvin-Helmholtz instability at the shear layer
between jet and crossflow, which is similar to the KH instability of a free jet
and is present even at the smallest Reynolds number. The initiation of the
counter rotating vortex pair was also visualized, as the shear layer of the jet
is seen to fold and roll up very near to the jet exit, leading to the vortex pair
formation. The pressure gradient at the jet exit is responsible for this behavior
and for the observed vortex breakdown directly downstream the jet exit.

Figure 3.10: Round jet in a crossflow, LIF cross section. Reproduced from [66].
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The pseudo-wake of a jet in crossflow is not a wake in the conventional sense,
since the absence of a solid wall prevents boundary layer separation and,
therefore, the pressure recovers in a short distance after the jet [100, 50]. The
resulting momentum deficit is negligible in comparison to the wake behind
a bluff body. Nevertheless, vortices of the classical von Kármán type are
formed. As the Kelvin-Helmholtz instability, the von Kármán vortices are
inherently irrotational and two-dimensional, interacting with turbulence as
they develop.

3.4 Coherent structures and mixing

Eckart [25] first introduced the view of the turbulent mixing as a three-stage
process of entrainment, stirring, and diffusion. Stirring is defined as the me-
chanical process of distributing fluids more uniformly in a given domain,
increasing their interfacial area, while mixing is the diffusion process of sub-
stances across interfacial surfaces. Mixing is a molecular process, depending
on diffusivities, while stirring is a purely kinematical process that depends on
flow parameters.

Following this terminology, large-scale coherent structures promote entrain-
ment in the flows they exist. The large-scale structures enhance the entrainment
of fresh fluid in the turbulent region. In addition to that, the induced motions
from the largest to the smallest eddies significantly enlarge the interfacial
surface area between the fluid regions, stirring them. Despite their decisive
contribution to the turbulent mixing, the coherent structures do not increase
the molecular mixing directly. This fact is easily understood considering that
it is possible to stir fluids that do not mix at all.

The turbulence, on the other hand, enhances the slow molecular diffusion. The
effective diffusivity from a turbulent flow can be orders of magnitude higher
than the molecular diffusivity, increasing the overall mixing rate.

Besides being different processes, entrainment, stirring and mixing are closely
coupled in turbulent flows. The entrainment is responsible for bringing fresh
fluid in the turbulent region, while stirring increases the interfacial area be-
tween them.

In the next chapter, the intermittency will be introduced to study the influence
of entrainment and stirring in turbulent flows.
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4 Intermittency

The previous chapters have presented two main features of turbulent free shear
flows: turbulence and coherent structures. In the following chapter the concept
of intermittency is introduced, a very powerful tool used to account for the
influence of large-scale structures in turbulent flows.

4.1 Intermittency and intermittency function

All statistical quantities discussed in Chapter 2 are related to unconditional av-
erages, i.e., not considering intermittency. However, one of the characteristics
of the flows in discussion in this work is that they have intermittent regions,
meaning that in these regions fluid with different characteristics (for example
turbulent and non-turbulent) can be found in an alternating matter.

Intermittency is present in all turbulent free shear flows [63]. All represen-
tations of flows that contain a mean "edge" between two fluid regions, like
boundary layers or free shear flows, refer actually to the mean position of the
interface between the two fluids. This phenomenon is illustrated in Figure
4.1, showing the time-resolved photograph of a liquid-phase turbulent jet
where the flow is traced by means of fluorescent medium made visible using
the laser-induced fluorescence technique. The surface that separates the two
fluids is highly convoluted, with the typical large-scale structures being clearly
visible. A fixed point toward the edge of the flow spends only a fraction of its
time in the turbulent jet flow; the flow is called intermittent in this region.

Taking the turbulent jet from Figure 4.1 as an example, the quantitative de-
scription of the intermittency is possible using the intermittency function
I(t,xi), which assumes value unity in the turbulent jet flow, and zero in the
non-turbulent flow. Libby [63] arguments that it is possible to determine I(xi, t)
experimentally from a careful interpretation of the output of one or more ve-
locity signals, but the discrimination strategy required to do so is complex and
subject to ambiguity because of velocity fluctuations within the non-turbulent
fluid. An alternative definition of the intermittency function I(xi, t) is possible
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Figure 4.1: Liquid-phase turbulent jet symmetry plane slice. Gray scale codes jet-fluid
mole fraction. Reynolds number approximately 104. Reproduced from
[22].
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in the case of the turbulent jet from Figure 4.1, as the turbulent flow can be
associated with fluid having finite values of tracer concentration, since it is
the jet flow that transports both momentum and tracer concentration in the
quiescent fluid. Using this definition, and defining also a threshold value for
the tracer selected to reflect the accuracy of the measurement or numerical
setup, an intermittency function I(xi, t) can be constructed, which assumes
value unity when the tracer value is higher than a small threshold value, and
zero otherwise. This definition has also the advantage of being able to quantify
the intermittency between two turbulent flows, as the jet in crossflow con-
figuration in Chapter 7. Figure 4.2 shows the evolution of the axial velocity
component and the mixture fraction at the outer border of a free jet, along
with the intermittency function I(xi, t). The values were taken from the LES
simulation described in Chapter 6, using the threshold value of 1%.

Figure 4.2: Evolution of passive scalar c, axial velocity component u and intermittency
function I at the outer edge of a free jet.

Separate values for all statistical characteristics of a variable can be identified,
simply by correlating it with the intermittency function. This process is called
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⟨c⟩t =Ct ≡
C · I

I
≡ lim

t→∞

1
γT

∫ t+T

t
c(xi, t)I(xi, t)dt. (4.1)

where the subscript t represents the turbulent conditional average, and the
intermittency factor γ(xi)≡ I represents the fraction of time a point is in the
turbulent fluid.

Figure 4.3 shows a sketch of a jet flow, with radial profiles of the unconditional
and conditional mean scalar and of the intermittency factor, variables C, Ct
and γ , respectively. According to the intermittency factor γ , the flow is always
turbulent at the jet axis, where it assumes the value unity, and never turbulent
in the outer part of the flow, where it goes to zero. For all turbulent shear
flows, experiments show that the profiles of γ are self-similar [1, 93]. The
instantaneous interface between the two flows is called superlayer and is
illustrated in Figure 4.3.

Figure 4.3: Sketch of a free jet flow, with the unconditional mean scalar C, the condi-
tional mean Ct and the intermittency factor γ , from the experimental data
of [2], and the instantaneous position of the superlayer from a snapshot of
the LES shown in Chapter 6.

Experimental data of Antonia et al. [2] for a turbulent heated jet in a co-
flowing stream can be seen in Figures 4.4 to 4.6. The radial distance r was
normalized with its half-radius value, resulting in the variable r/r1/2, while
the axial velocity component U and the temperature T were normalized with
their centerline values, resulting in the variables U/Uc and T/Tc. Using
the intermittency function, the conditional averages in the turbulent, jet flow
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(subscript t) and in the non-turbulent, ambient fluid flow (subscript n) were
calculated.
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Figure 4.4 shows the radial variation of unconditioned mean axial velocity
U/Uc and temperature T/Tc, along with the intermittency factor γ . It should
be noted that the profiles are not symmetric as they should be, indicating some
level of inaccuracy in the measurements. Nevertheless, while the velocity and
temperature profiles are approximately similar, with a peak value at the axis
that steadily decreases toward their edge values, γ is almost constant from the
center of the jet until the jet half-radius (r/r1/2=1), decreasing rapidly towards
zero at the jet edge. The region of influence of the intermittency is restricted
to this outer region.

Figure 4.4: Normalized mean axial velocity U/Uc, temperature T/Tc and intermittency
function γ across the jet, from the experimental data of [2].
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The radial variations of the unconditioned mean temperature T/Tc, the mean
temperature conditioned to the turbulent jet flow Tt/Tc and to the non-turbulent
ambient fluid Tn/Tc and the intermittency factor γ are shown in Figure 4.5. The
positive value of Tn/Tc towards the jet center, approaching 0.1 at r/r1/2 = 0.6, is
certainly related to some inaccuracy in the measurements. The value of Tn/Tc
should be zero by definition, as the ambient fluid maintains its temperature
even after being entrained by the jet, otherwise it should be considered jet
fluid.
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Figure 4.5: Unconditional mean temperature T/Tc, the conditioned turbulent Tt/Tc and
non-turbulent Tn/Tc mean temperature and the intermittency factor γ , from
the experimental data of [2].

The value of Tt/Tc is considerably higher than the local mean temperature
in the outer region. This result indicates that the diminishing value of the
unconditional mean scalar when approaching the jet edge is a consequence
of the diminishing fraction of time that fluid with an almost constant value
of scalar spends in this region. This fact has great importance for mixing-
sensitive systems. The conditioned mean temperature tends to a value of about
0.4 in the outer, intermittent region of the jet, while the unconditioned mean
temperature tends to zero. The conditioned mean axial velocity in Figure
4.6, on the other hand, tends to zero when the outer region is approached,
as does the unconditioned mean velocity. It is evident that the difference
between conditioned and unconditioned values is considerably higher in the
temperature field (Figure 4.5) than in the corresponding axial velocity field
(Figure 4.6).

The different behavior of velocity and passive scalar fields when confronted to
intermittent flows is the key to understand the otherwise paradoxical results
of the steady-state simulations of the jet in crossflow, in which velocity fields
showed good agreement with the measurements while the passive scalar field
presented significant deviations. These results will be discussed in more detail
in Chapters 6 and 7.
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Figure 4.6: Unconditional mean axial velocity U/Uc, conditional mean axial velocity
Ut/Uc and ambient fluid mean axial velocity Un/Uc, from the experimental
data of [2].
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5 Simulation Theory

In Chapters 2 to 4, the fundamental physics of turbulent flows with and without
reaction have been presented.

This chapter introduces the numerical tools used in the simulations. It begins
with an overview of turbulence modeling and simulation, followed by the
models used in Reynolds-averaged context and in large eddy simulations. The
chapter proceeds describing the reaction models used in the simulation of
combustion systems, along with a brief introduction about the presumed JPDF
model. The final section highlights the details of the flow solver used in the
simulations.

5.1 Turbulence modeling and simulation

In order to study turbulent flows numerically, the turbulence can be simulated
or modeled. In the simulation of turbulent flows, a time-dependent set of
equations is solved, representing an approximation of one realization of the
turbulent flow. In contrast, in a turbulence model, equations for mean quanti-
ties, for example U , k and ε , are solved. The influence of the turbulence on
the mean quantities is modeled.

Examples of turbulence simulation are direct numerical simulation (DNS)
and large eddy simulation (LES). In DNS, one realization of the flow is fully
simulated, including all length and time scales. These requirements make DNS
extremely computationally intensive and inappropriate for the high turbulence
level of the flows studied in this work. Annex A.1 shows an example of the
prohibitive computational resources required for a DNS. In LES, equations
of the filtered velocity field are solved, representing the large-scale turbulent
flow. The influence of the small-scale motions is modeled, making the whole
simulation much more affordable than DNS, but the stochastic nature of
turbulent solutions of the Navier-Stokes equations is retained.
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In the case of Reynolds-averaged Navier-Stokes (RANS), the whole turbu-
lence is modeled. In the two-equation models used in this work, the Reynolds
stresses, which describe the influence of the turbulence on the mean velocity,
are obtained using a turbulent viscosity approach. RANS turbulence mod-
els can be used in both steady-state and unsteady simulations. Despite the
time dependence and the ability of solving large-scale structures, unsteady
RANS (URANS) does not simulate the turbulence directly, only modeling its
statistics.

In flows that are statistically stationary, the solution of the RANS equations
does not depend on time, and both steady-state and unsteady simulations lead
to the same results. In contrast, for statistically non-stationary flows, the mean
values fluctuate with time, and only the unsteady simulation is appropriate.
The turbulence remains fully modeled; the velocity fluctuations are associated
with large-scale coherent structures that are not turbulent in nature. These
simulations are generally called unsteady RANS or URANS simulations.

Various hybrid approaches have been proposed, combining RANS and LES:
Travin et al. [113] proposed the detached eddy simulation (DES), and Menter
and Egorov [74] proposed the scale-adaptive simulation (SAS). The two
models work limiting the value of the turbulent viscosity in some areas of
the flow (for example away from walls), promoting the development of large-
scale structures there. They should not be confused with URANS, as the
turbulence is not fully modeled in this case. The main criticism raised against
the hybrid approaches is that in the process of limiting the turbulent viscosity,
a fraction of the turbulent kinetic energy gets lost. In the RANS part of
the flow, there are no velocity fluctuations due to turbulence, as they are
fully modeled. In the transition to the LES part of the flow, the turbulent
viscosity is numerically reduced, however without the introduction of the
corresponding velocity fluctuations. In some applications this inconsistency is
negligible. In the case of the jet in crossflow, however, this inconsistency had
an adverse effect on the transition of the jet flow issuing from the pipe, leading
to erroneous prediction of the jet penetration depth.

In face of the impossibility of using DNS and the issues of DES/SAS simu-
lations, three simulation strategies have been used in this work: steady-state
and unsteady RANS simulations, described in Sections 5.2 and 5.3, and LES,
described in Section 5.4.
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5.2 RANS turbulence models

This section presents the RANS turbulence models for incompressible flows.
The differences introduced by compressible flows are detailed in the next
section.

The averaging procedure of the Reynolds-averaged Navier-Stokes (RANS)
equations (see Section 2.4.1) introduces additional unknowns so that the
resulting system of equations is not closed. Various methods can be used to
overcome this difficulty, the so-called eddy viscosity models being the most
widespread of them.

The eddy viscosity νt was first postulated by Prandtl [94]. In direct analogy
to the laminar viscosity, it is the product of a turbulent velocity scale ut and a
turbulent length scale `t

νt = constant ·ut · `t . (5.1)

As the basis of the turbulent velocity scale, Prandtl chose the kinetic energy
(per unit mass) of the turbulent fluctuations

k =
1
2

u′iu
′
i =

1
2
(u′u′+ v′v′+w′w′). (5.2)

Using dimensional arguments, the characteristic velocity scale is defined as

ut =

√
2
3

k. (5.3)

The Boussinesq approximation relates the Reynolds stress tensor to the mean
strain rate tensor, employing the eddy viscosity [121]

−u′iu
′
j = 2νtSi j −

2
3

kδi j (5.4)

where δi j is the Kronecker delta and Si j is the mean strain rate tensor, defined as

Si j =
1
2

(
∂Ui

∂x j
+

∂U j

∂xi

)
. (5.5)
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A transport equation for the turbulent kinetic energy k can be derived multiply-
ing the instantaneous Navier-Stokes equations (2.1 and 2.2) by the fluctuating
velocity u′i, averaging the resulting equations and doing some algebra exercises

∂k
∂ t

+U j
∂k
∂x j

=−u′iu
′
j
∂Ui

∂x j
− ε +

∂

∂x j

[
ν

∂k
∂x j

− 1
2

u′iu
′
iu

′
j −

1
ρ

p′u′j

]
(5.6)

where ε , the dissipation rate per unit mass, is defined as

ε = ν
∂u′i
∂xk

∂u′i
∂xk

. (5.7)

Following the analysis of Wilcox [121], the various terms in equation (5.6)
represent different physical processes. The sum of the unsteady term and the
convection, both on the left-hand side of the equation, represent the substantial
derivative of k. The first term on the right-hand side represents the rate at
which kinetic energy is transferred from the mean flow to the turbulence, and
it is known as production. The next term is the dissipation, and represents
the rate at which turbulent kinetic energy is converted into internal energy.
The first term in the square brackets is the molecular diffusion of turbulent
kinetic energy. The triple correlation of velocity fluctuations is known as
turbulent transport and represents the rate at which the turbulence energy is
transported by turbulent fluctuations. The last term is called pressure diffusion
and represents the turbulent transport via the correlation of pressure and
velocity fluctuations.

Production, dissipation, turbulent transport and pressure diffusion add un-
known correlations and have to be modeled, while the unsteady term, convec-
tion and molecular diffusion can be solved directly. To close the equation the
Reynolds stress tensor, turbulent transport, pressure diffusion and dissipation
have to be modeled.

The Reynolds stress tensor is modeled using the Boussinesq approximation,
Equation (5.4), closing the production term. The turbulent transport and the
pressure diffusion are generally modeled together, using a gradient-diffusion
approach

1
2

u′iu
′
iu

′
j +

1
ρ

p′u′j =
νt

σk

∂k
∂x j

, (5.8)
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The manner in which the dissipation ε is modeled is not unique amongst
the different turbulence models. It is sufficient at this point to note that it is
proportional to the turbulent length scale

ε ≈ k3/2/`t . (5.9)

Hence, the turbulent length scale has to be prescribed in order to close the
system. The different approaches used to model the turbulent length scale lead
to different turbulence models.

Combining equations (5.6) and (5.8) results in the modeled version of the
turbulent kinetic energy equation

∂k
∂ t

+U j
∂k
∂x j

=−u′iu
′
j
∂Ui

∂x j
− ε +

∂

∂x j

[(
ν +

νt

σk

)
∂k
∂x j

]
(5.10)

5.2.1 The k-ε model

The standard k-ε model [47, 59] was by far the most popular two-equation
model until the last decade of the twentieth century. In the derivation of the
model, the assumption is that the flow is fully turbulent and that the effects of
molecular viscosity are negligible. The standard k-ε model is therefore valid
only for fully turbulent, high Reynolds number flows.

The turbulent kinetic energy k is solved using equation (5.10), while its dissi-
pation rate, ε , is solved using the following transport equation:

∂ε

∂ t
+Ui

∂ε

∂xi
=

∂

∂x j

[(
ν +

νt

σε

)
∂ε

∂x j

]
−C1ε

ε

k
u′iu

′
j
∂Ui

∂x j
−C2ε

ε2

k
(5.11)

where C1ε and C2ε are constants and σε is the turbulent Prandtl number for ε .
The various terms in equation (5.11) represent, from left to right: Unsteady
Term, Convection, Diffusion, Production and Destruction.

To evaluate the turbulent production in a manner consistent with the Boussinesq
hypothesis, it is calculated as

−u′iu
′
j
∂Ui

∂x j
= νtS2 (5.12)
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where S is the modulus of the mean strain rate tensor, defined as

S ≡
√

2Si jSi j. (5.13)

The turbulent length scale is defined as

`t =Cµ

k3/2

ε
, (5.14)

resulting in the turbulent viscosity νt , introduced in Equation (5.1)

νt =Cµ

k2

ε
(5.15)

where Cµ is a constant.

The most used values for the constants C1ε ,C2ε ,Cµ ,σk, and σε are [59]

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3

5.2.2 The Shear-Stress-Transport (SST) model

The length scale needed to define the eddy viscosity can be derived not only
from the dissipation rate ε , but also from other quantities. The k-ω model is an
empirical model based on model transport equations for the turbulent kinetic
energy k and the dissipation per unit turbulent kinetic energy ω , which can
also be thought of as the ratio of ε to k [121]. The reciprocal of ω is the time
scale on which dissipation of turbulent energy occurs. The major advantage
over the standard k-ε model is that it can be integrated to the wall without the
need of damping functions. However the k-ω model is highly sensitive to the
free stream boundary conditions, which limits its application.

The shear-stress transport (SST) k-ω model was developed by Menter [73].
The objective was to unite the advantages of two models: the robustness
and accuracy of the k-ω model in the near-wall region and the free-stream
independence of the k-ε model in the far field. The SST model was developed
converting the k-ε model into a k-ω formulation and multiplying both k-ω
and k-ε by a blending function. The blending function is designed to be one
in the near-wall region, activating the k-ω model, and zero in the free-stream,
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activating the transformed k-ε model. The definition of the turbulent viscosity
is also modified to account for the transport of the turbulent shear stress.

Due to the enhancements introduced by Menter [73], the SST k-ω model
is potentially more accurate and reliable than the standard k-ω model. The
high-Reynolds version of the model was used in this work.

The k equation is

∂k
∂ t

+Ui
∂k
∂xi

=
∂

∂x j

[(
ν +

νt

σk

)
∂k
∂x j

]
+Gk −β

*kω (5.16)

and the ω equation is

∂ω

∂ t
+Ui

∂

∂xi
=

∂

∂x j

[(
ν +

νt

σω

)
∂ω

∂x j

]
+Gω −βω

2 +Dω . (5.17)

In these equations, Gk represents the production of turbulent kinetic energy
due to mean velocity gradients

Gk = min(−u′iu
′
j
∂Ui

∂x j
,10 ·β *kω), (5.18)

and Gω represents the production of ω

Gω =−ρu′iu
′
j
∂Ui

∂x j

α

νt
. (5.19)

Dω represents the cross-diffusion term

Dω = 2(1−F1)σω,2
1
ω

∂k
∂x j

∂ω

∂x j
, (5.20)

where σk and σω are the turbulent Prandtl numbers for k and ω , given by

σk =
1

F1/σk,1 +(1−F1)/σk,2
(5.21)

σω =
1

F1/σω,1 +(1−F1)/σω,2
. (5.22)
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The turbulent viscosity νt is computed as

νt =
k
ω

1

max
[

1
α* ,

SF2
a1ω

] , (5.23)

where S is the strain rate magnitude and α* is a constant. The blending
functions, F1 and F2, are given by

F1 = tanh
(
Φ

4
1
)

(5.24)

Φ1 = min

[
max

( √
k

0.09ωy
,

500ν

y2ω

)
,

4k
σω,2D+

ω y2

]
(5.25)

D+
ω = max

[
2

1
σω,2

1
ω

∂k
∂x j

∂ω

∂x j
,10−10

]
(5.26)

F2 = tanh
(
Φ

2
2
)

(5.27)

Φ2 = max

[
2

√
k

0.09ωy
,

500µ

ρy2ω

]
(5.28)

where y is the distance to the next surface and D+
ω is the positive portion of the

cross-diffusion term (Equation 5.20).

The model constants are:

σk,1 = 1.176, σk,2 = 1.0, σω,1 = 2.0, σω,2 = 1.168
a1 = 0.31, βi,1 = 0.075, βi,2 = 0.0828, α

* = 1

5.2.3 Turbulent mixing model

The Reynolds-averaged equation of a passive scalar, Equation (2.19), also
needs to be closed.
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By analogy to the Boussinesq approximation (Equation 5.4), the turbulent
transport of a scalar is assumed to be proportional to the mean scalar gradient

−u′ic′ = Dt
∂C
∂xi

(5.29)

where Dt is the scalar turbulent diffusivity.
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One option to evaluate Dt is to consider that the mechanisms of turbulent
transport of a passive scalar and of momentum are essentially the same, i.e.,
enhanced mixing due to the turbulent motions. The value of Dt is expected
to be close to νt . The ratio between νt and Dt leads to the definition of the
turbulent Schmidt or Prandtl number

σt =
νt

Dt
(5.30)

which is constant and equal to 0.9, when not otherwise noted.

5.2.4 Wall treatment

The physics of turbulence in the vicinity of walls is considerably different
from free shear flows. It is therefore necessary to use appropriate turbulence
models in the near-wall region. For the most general and detailed treatment,
low-Reynolds versions of the turbulence models should be used, which are
able to predict the flow down to the viscous sublayer. However, in order to
resolve correctly all the near-wall details, the computational grid needs to be
extremely fine in this region, which increases the computational cost of the
whole simulation.

It is possible to approximate the effects of the wall without explicitly resolving
the near-wall region using the so called wall-functions. Wall-functions are
a simplified model of turbulence, which predict the near-wall profiles of the
velocity, k and ε (or ω) variables. It is used to bridge the regions of high
gradients near the wall with the high-Re turbulence model in the rest of the
domain.

The law of the wall for mean velocity yields [121]

U+ =
U
uτ

=
1
κ

ln(Ey+) (5.31)
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where the friction velocity uτ and the dimensionless wall distance y+ are
defined as

uτ =

√
τW

ρ
; y+ =

uτ yP

ν
, (5.32)
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where τW is the wall shear stress, yP is the distance from point P to the wall, ν

is the kinematic viscosity of the fluid, κ= 0.4187 is the von Kármán constant
and E=9 is an empirical constant.

Figure 5.1: Mean velocity profile of a boundary layer in wall units. Dashed line,
Equation (5.33); dash-dot line, Equation (5.31); solid line, boundary layer
DNS of Spalart [107].

The logarithmic law is known to be valid for y+ values higher than 30. In
the region where y+ is smaller than 5, called viscous sublayer, the linear
relationship is valid

U+ = y+. (5.33)

The region between 5< y+ <30 is known as buffer layer. Figure 5.1 shows the
viscous sublayer, the buffer layer and the log layer, along with the boundary
layer DNS of Spalart [107] for Reθ = 1441 (Reθ is the Reynolds number
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defined with the momentum thickness θ ). The logarithmic and the linear
profiles intersect at y+=11.63, however placing the first point of the grid in
the buffer region 5< y+ <30 should be avoided, as the deviation between the
logarithmic and linear profiles and the correct value of U+ becomes large.
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Although not clearly defined, the form of the law of the wall in the buffer layer
can be approximated. In Section 5.4.3, the Spalding’s law of the wall [108] is
presented, which is a fit of the viscous, buffer and logarithmic regions in one
equation and is used in the LES.

There are different methods of implementing the law of the wall. For the
RANS simulations, an implementation based on the proposal of Launder and
Spalding [59] has been used, in which the k equation is solved in the whole
domain including the wall-adjacent cells. The boundary condition for k at the
walls is

∂k
∂n

= 0 (5.34)

where n is the local coordinate normal to the wall.

The production of turbulent kinetic energy k and its dissipation rate ε at the
cells at the walls, which are the source terms in the k equation, are computed
assuming the local equilibrium hypothesis, i.e., that the production of k and ε

balance in the control volumes at the walls. The production of k is defined as

u′iu
′
j
∂Ui

∂x j
≈ τw

∂U
∂y

= τw
uτ

κyP
(5.35)

using Equation (5.31) to calculate the derivative. Approximating uτ with
the relation C1/4

µ k1/2, as proposed by Launder and Spalding [59], yields the
production of k as

u′iu
′
j
∂Ui

∂x j
≈ τw

C1/4
µ k1/2

κyP
, (5.36)

which is the function implemented in the CFD code. The dissipation rate ε is
computed as

εP =
C3/4

µ k3/2
P

κyP
, (5.37)
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where the subscript P represents the value of the variable at the point P. The
ε equation is not solved at the wall-adjacent cells, but instead the value is
deduced applying equation (5.37).
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In this work, all scalars were computed under the assumption of impermeable
walls. In this case the boundary condition at the wall is

∂C
∂n

= 0, (5.38)

here n is the local coordinate normal to the wall.

5.2.5 Steady state and unsteady RANS simulation

It is important to note that, as already expressed in Section 2.4.1, being the
most general Reynolds average, the ensemble average was used to derive all
averaged equations so far.

In the case of a turbulent flow that is statistically stationary, the ensemble
average commutes to the time average, and the time derivative of all transport
equation are equal to zero. This fact has implications for the numerical
solution of the equation system, as the time dependence can be dropped.
Such simulations are generally called steady state RANS or only RANS
simulations.

In the case of statistically unsteady flow, the transport equations retain their
time derivatives. The numerical solution in this case iterates in time. These
simulations are generally called unsteady RANS or URANS simulations.

5.3 RANS models for compressible flows

By definition, a compressible flow is one in which significant density changes
occur, even when pressure changes are small [121]. It includes low speed
flows with large heat transfer rates, as the reacting flows in this work.

The equations for compressible flows, derived using Favre averaging (see Sec-
tion 2.5.2), are formally identical to the classical Reynolds-averaged equations
for incompressible flows (see Section 2.4.1). Favre averaging simplifies the
transport equations, avoiding the need to model most of the correlations involv-
ing density fluctuations. Some correlations, however, still require modeling.
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Differently from the definition used for incompressible flows, the viscous
stress tensor for a compressible flow is

ti j = 2µsi j −
2
3

µ
∂uk

∂xk
δi j, (5.39)

where si j is the instantaneous strain rate tensor and δi j is the Kronecker delta.
The difference lies in the last term, which is zero in incompressible flows
due to continuity. The transport equation of the turbulent kinetic energy k for
compressible flows is [121]

ρ
∂k
∂ t

+ρ ũ j
∂k
∂x j

=−ρ ũ′′i u′′j
∂ ũi

∂x j
+

∂

∂x j

[
ti ju′′i −

1
2

ρu′′i u′′i u′′j − p′u′′j

]
−ρε −u′′i

∂P
∂xi

+ p′
∂u′′i
∂xi

(5.40)

where ρε , the Favre-averaged dissipation rate, is defined as

ρε =
1
2

ti j
∂u′′i
∂xk

∂u′′i
∂xk

. (5.41)

Equation (5.40) is very similar to the equation for incompressible flows, Equa-
tion (5.6), except the last two terms: the pressure work u′′i ∂P/∂xi and pressure
dilatation p′∂u′′i /∂xi terms. In incompressible flows, the pressure work term
vanishes because the time average of u′′i is zero when density fluctuations are
zero, and the pressure dilatation vanishes because the fluctuating field has zero
divergence.

5.3.1 The compressible k-ε model

The RANS simulations of compressible flows in this work have used the
standard k-ε model. Efforts can be found in the literature to close the pressure
work and pressure dilatation terms of the k equation, as shown in the textbook
of Wilcox [121]. He states, however, that all these terms appear to be negligible
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for the Reynolds numbers of practical interest. The modeled equation for k
turns to be very similar to the equation for incompressible flows
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ρ
∂k
∂ t

+ρ ũ j
∂k
∂x j

=−ρ ũ′′i u′′j
∂ ũi

∂x j
−ρε +

∂

∂x j

[(
µ +

µt

σk

)
∂k
∂x j

]
(5.42)

where σk is the turbulent Schmidt number for k.

The equation for the dissipation rate ρε is also similar to its counterpart for
incompressible flows

ρ
∂ε

∂ t
+ρ ũ j

∂ε

∂xi
=

∂

∂x j

[(
µ +

µt

σε

)
∂ε

∂x j

]
−C1ε

ε
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ρu′iu

′
j
∂ ũi

∂x j

−C2ε ρ
ε2

k
(5.43)

with the same constants as the incompressible model shown in Section 5.2.
The turbulent viscosity µt is defined as

µt = ρCµ

k2

ε
(5.44)

5.3.2 Reynolds stress and fluxes

The unclosed terms in the Favre-averaged equations (2.32) to (2.35) are mod-
eled in the following way

Reynolds stress tensor

As for incompressible flows, the Boussinesq approximation is used, with µt
denoting the turbulent viscosity

−ρ ũ′′i u′′j = 2µtSi j −
1
3

∂ ũk

∂xk
δi j −

2
3

ρkδi j (5.45)
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Reynolds flux vector

By analogy to the Boussinesq approximation, the Reynolds flux vector for
mass transfer is modeled as

−ρ ũ′′i Y ′′
c =

µt

σt

∂ c̃
∂xi

(5.46)

and for heat transfer as

−ρ ũ′′i h′′ =
µt

σt

∂ h̃
∂xi

(5.47)

where σt is the turbulent Schmidt/Prandtl number. As in the case of the
incompressible model, σt is constant and equal to 0.9, when not otherwise
noted.

5.4 Large Eddy Simulation

Large eddy simulation (LES) is a popular technique for simulating turbulent
flows. It was first proposed by Kolmogorov [54], using the fact that large
eddies of the flow are geometry-dependent while the smaller scales more
universal. The LES approach is a compromise between DNS and RANS;
direct simulation being applied to the large-scales, while the small scales have
their effect modeled. The idea behind LES is that the large eddies contain
most of the energy and do most of the transport of conserved properties. The
large eddies are more dependent on the geometry and boundary conditions,
while small eddies tend to be more isotropic, independent of the geometry and
are consequently more universal. The modeling is thus simplified when only
the small eddies are considered, and the errors introduced by their modeling
should be small.

Filtering is essentially a mathematical manipulation of the exact Navier-Stokes
equations, in which the eddies smaller than the filter size are filtered out. The
filter size is usually the mesh size when spatial filtering is employed. Like
the Reynolds averaging introduced in Chapter 2, the filtering process creates
additional unknown terms that must be modeled. The statistics of the time
varying flow field such as time averages and root-mean-square values can be
calculated during the time-dependent simulation.
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The LES models for incompressible flows are derived in detail in the following
section. Section 5.4.4 shows the extension to compressible flows.

5.4.1 Volume averaging

Volume averaging corresponds to a filtering operation, with the scales larger
than the filter being solved directly and the smaller scales being averaged.
Leonard [61] defines a generalized filter as a convolution integral

ui(xi, t) =
∫

G(xi − x′i)ui(x′i, t)dx′i, (5.48)

where ui denotes the filtered velocity, and the filter function G satisfies the
normalization condition∫

G(xi − x′i)dx′i = 1. (5.49)

Defining the residual field by

u′i(xi, t)≡ ui(xi, t)−ui(xi, t) (5.50)

results in a decomposition very similar to the Reynolds decomposition

ui(xi, t) = ui(xi, t)+u′i(xi, t). (5.51)

One important difference is that the filtered residual is not zero in general

u′i(xi, t) ̸= 0. (5.52)

The overbar represents the filtering operation in the above equations.

The transport equations employed for LES are derived by filtering the instanta-
neous Navier-Stokes equations, Equations 2.1 and 2.2. The filtering process
effectively filters out eddies whose scales are smaller than the filter width. The
resulting equations thus govern the dynamics of large eddies. Filtering the
Navier-Stokes equations, one obtains for the continuity

∂ui

∂xi
= 0 (5.53)
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and for the momentum

∂ui

∂ t
+

∂uiu j

∂x j
=− 1

ρ

∂ p
∂xi

+
∂

∂x j

(
ν

∂ui

∂x j

)
. (5.54)

Since the convective flux uiu j is not equal to uiu j, a modeling approximation
has to be introduced

uiu j = uiu j + τi j (5.55)

where the subgrid scale stress tensor τi j is defined as

τi j = uiu j −uiu j

Li j

+u′iu j +uiu′j
Ci j

+u′iu
′
j

Ri j

. (5.56)

The tensors Li j, Ci j and Ri j are known as the Leonard stress, cross-term stress
and the subgrid scale (SGS) stress, respectively. While the SGS stress as a
whole is Galilean invariant (independent of inertial frame), the cross-term and
Leonard stresses are not. It follows that the correlations used to model these
stresses are approximations, which contain errors that cannot be eliminated.
For these reasons, in the modern literature all terms are modeled together,
instead of decomposing the SGS stresses [20].

The conservation equation for a passive scalar can be derived in a similar way
resulting in

∂c
∂ t

+
∂u jc
∂x j

=
∂

∂x j

(
D

∂c
∂x j

)
. (5.57)

The convective flux u jc has also to be modeled

u jc = u jc+q j, (5.58)

where the subgrid scale flux vector q j is modeled as a whole, in the same
fashion as the τi j in the momentum equation.

As in the Reynolds-averaged equations, the subgrid contributions cannot be
represented directly by the filtered velocity and scalar fields and have to be
modeled. The subgrid scale models used to close the equations are discussed
in the following section.
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5.4.2 SGS modeling

The first model for the subgrid scale stresses was developed by Smagorinsky
[104]. The model employs the Boussinesq approximation (Equation 5.4)
as in the RANS models, which assumes that the SGS stresses τi j follow a
gradient-diffusion process. Consequently, τi j is given by

τi j −
1
3

τkkδi j =−2νtSi j (5.59)

where νt is the subgrid scale turbulent viscosity. Only the anisotropic part
of the subgrid scale stresses τi j are resolved by the subgrid scale model; the
isotropic part is modeled together with the static pressure term. Si j is the strain
rate tensor for the resolved scale defined by

Si j ≡
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (5.60)

The subgrid scale turbulent flux of a passive scalar c (see Equation (5.58)) is
modeled using a subgrid scale turbulent Schmidt number σt

q j =− νt

σt

∂c
∂x j

, (5.61)

where q j is the subgrid scale flux. A dynamic procedure can be used to
determine σt , as the one described in the next section. In this work it is set to
σt = 1, if not otherwise noted. In Section 6.3.1 the effect of the value of σt on
the mean passive scalar is discussed in more detail.

The SGS turbulent viscosity νt is defined as

νt = (CS∆)2|S| (5.62)

where CS is the Smagorinsky coefficient, ∆ is the filter width and |S| =√
2Si jSi j. For complex flows as the ones in this work, the most common

value for the CS constant is CS = 0.1 [27].
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Dynamic Smagorinsky model

Germano et al. [36] first proposed the procedure of dynamic SGS models. It
can be implemented in any SGS model, and in this work it was used together
with the Smagorinsky model.

Applying this procedure, the coefficient CS of the Smagorinsky model is
computed dynamically as the calculation progresses rather than having its
values fixed a priori. The procedure is based on an algebraic identity between
the SGS stresses at two different filtered levels and the resolved turbulent
stresses, assuming that the behavior of the smallest resolved scales is very
similar to the subgrid scales. The smallest resolved scales are sampled, and this
information is used to model the subgrid scales. It is accomplished filtering
again the filtered results ui using a new test filter .̂ with a wilder filter length
(∆̂ > ∆), leading to a different SGS stress tensor

Ti j = ûiu j − ûiû j. (5.63)

The SGS stress tensors in Equations (5.55) and (5.63) are related by the
Germano identity [36]

Li j = Ti j − τ̂i j (5.64)

= (ûiu j − ûiû j)− ( ̂uiu j −uiu j) (5.65)

= ûiu j − ûiû j. (5.66)

Applying the definitions of the Smagorinsky model in the Equations (5.59)
and (5.62) in (5.64) results in

Li j =−2C2
S

(
∆̂

2|Ŝ|Ŝi j −∆
2 ̂|S|Si j

)
=−2C2

SMi j. (5.67)

The terms ûiu j − ûiû j and Mi j = ∆
2|S|Si j −

̂
∆̂2|S|Si j can be evaluated from the

solution of the flow field, and the model coefficient CS can be computed as

C2
S =

1
2

Li jŜi j

Mi jŜi j
. (5.68)
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This definition, however, leads to numerical instabilities. Lilly [64] proposed
a least squares procedure to evaluate CS, which is more stable and is used in
this work

C2
S =

1
2

Li jMi j

Mi jMi j
. (5.69)

The coefficient CS evaluated using this equation is then applied in Equation
(5.62) to calculate the SGS turbulent viscosity; this model is called dynamic
Smagorinsky in the following chapters.

In the simulations presented in this work, the dynamic Smagorinsky model
proved to be unstable, leading often to divergence of the whole simulation.
Comparisons between the results using the standard and the dynamic versions
of the Smagorinsky model can be seen in Section 6.3.1 for the free jet and in
Section 7.2 for the jet in crossflow configuration.

5.4.3 Wall treatment

Applying LES to high Reynolds number flows makes the treatment of the wall
region of critical importance. The requirement of placing the first grid point
well within the viscous sub-layer (y+ < 1) leads to computational requirements
similar to DNS calculations in the same region, which increases the compu-
tational costs enormously. As an alternative, a model can be used to supply
approximate statistics to the outer flow at a position away from the wall. One
of the most widely known universal velocity profiles is Spalding’s law of the
wall [108], which satisfies the following conditions:

∙ passes through the point y+ = 0, u+ = 0;

∙ is tangential at this point to Equation (5.33) u+ = y+;

∙ is asymptotic at large y+ to the logarithmic law, Equation (5.31) u+ =
(1/κ) ln(Ey+);

∙ fits the experimental points at intermediate y+ values,

where κ = 0.4187 and E = 9 are constants, y+ = yuτ/ν is the dimensionless
wall distance and u+ = u/uτ is the dimensionless velocity. The equation is
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essentially a fit of the laminar, buffer and logarithmic regions of an equilibrium
boundary layer

y+ = u++
1
E

[
eκu+ −1−κu+− 1

2
(κu+)2 − 1

6
(κu+)3

]
. (5.70)

By substituting the known values of y and u next to the wall, a nonlinear
equation for uτ can be derived, which provide the wall shear. The resulting
equation can be easily solved using an iterative procedure. Using such a
universal velocity profile has the significant advantage of allowing the first
grid point to be placed in the buffer or viscous regions (y+ < 30) without the
loss of accuracy usually associated with the limited validity of logarithmic
profiles as the ones used in the RANS simulations. Provided the rest of the
boundary layer and wall parallel directions are also adequately resolved, the
simulation should recover a DNS boundary layer solution as the near-wall cell
size tends toward zero, as noted by de Villiers [20].

5.4.4 LES of compressible flows

In compressible flows with variable density ρ , a mass-weighted Favre filtering
is introduced according to

ρ ũi(xi, t) =
∫

G(xi − x′i)ρui(x′i, t)dx′i, (5.71)

where G is the filter function. The Favre filtered variables retain the properties
of the filtered variables in incompressible flows, i.e., the filtered residual is not
zero in general

ũ′i(xi, t) ̸= 0. (5.72)

Using the Favre filtering, the governing equations employed for compressible
LES are derived [91]:

Overall continuity

∂ρ

∂ t
+

∂ρ ũi

∂xi
= 0, (5.73)
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Momentum

∂ρ ũ j

∂ t
+

∂ρ ũiũ j

∂xi
=− ∂ p

∂x j
+

∂

∂xi
(ti j −∂ρ(ũiu j − ũiũ j)) , (5.74)

Chemical species

∂ρỸk

∂ t
+

∂ρ ũiỸk

∂xi
=

∂

∂xi

(
ρDk

∂Ỹk

∂xi

)
− ∂ρ(ũiYk − ũiỸk)

∂xi

+ ω̇k, for k = 1,N, (5.75)

Enthalpy

∂ρ h̃
∂ t

+
∂ρ ũih̃

∂xi
=

∂

∂xi

(
λ

∂ T̃
∂x j

)
+

Dp
Dt

+
∂ui

∂xi

(
µ

∂ui

∂x j

)

− ∂ρ(ũih− ũih̃k)

∂xi
. (5.76)

where ti j is the constitutive relation between stress and strain rate for com-
pressible flows, defined in Equation (5.39). The unclosed terms were modeled
using the Smagorinsky SGS model [104], adapted to compressible flows. The
unsolved SGS stresses ρ(ũiu j − ũiũ j) = ρτi j for variable density flows must
be adapted using Favre filtered quantities, incorporating the trace of the strain
rate tensor to the SGS stresses:

ρ

(
τi j −

1
3

τkkδi j

)
=−2µt

(
S̃i j −

1
3

S̃kkδi j

)
(5.77)

where µt is the subgrid scale turbulent viscosity and S̃i j is the strain rate
tensor for the resolved scale. As in the incompressible formulation, only the
anisotropic part of the subgrid scale stresses τi j are resolved by the subgrid
scale model; the isotropic part is modeled together with the static pressure
term. The SGS turbulent viscosity µt is defined as

µt = ρ(CS∆)2|S̃| (5.78)

where ∆ is the filter width and |S̃|=
√

2S̃i jS̃i j. The Smagorinsky coefficient
CS assumes the same value of 0.1 used in the incompressible formulation.
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The subgrid scale turbulent fluxes are modeled using a subgrid scale turbulent
Schmidt/Prandtl number σt

ρ(ũiYk − ũiỸk) =−µt

σt

∂Ỹk

∂x j
, (5.79)

ρ(ũih− ũih̃) =−µt

σt

∂ h̃
∂x j

, (5.80)

where σt is equal to one, if not otherwise noted.

5.5 Turbulent combustion modeling

Combustion, as other chemical reactions, depend on the mixing at the molecu-
lar level of the reactants. After this condition is fulfilled, the chemical reaction
can be initiated. In laminar flows, the molecular species diffusion is responsi-
ble for this mixing. If the flow is turbulent, on the other hand, fluid elements
are convected by the turbulent fluctuations, which increases the mixing in
comparison with a laminar flow.

One of the main challenges in modeling complex combustion systems is
the description of the interaction between turbulent mixing and chemical
reaction. In the literature, some different modeling approaches are known.
The most frequently used reaction schemes can be divided into the following
categories:

∙ PDF models
These models are based on the probability density function (PDF) of the
main variables of the chemical reaction. It is assumed that the time and
length scales of mixing and reaction process are fully reflected in the
shape of the PDF, i.e., no restrictive assumptions regarding the chemical
kinetics and the turbulent transport are made a priori.

∙ Scalar dissipation rate
The scalar dissipation rate describes the relaxation of fluctuations due to
molecular mixing. Models of this category are based on the assumption
that the time scale of the reaction is always much smaller than the time
scale of the turbulent mixing. It is assumed that the reaction rate depends
only on the time scale controlled by the molecular mixture, which in
turn is controlled by the turbulent length scale. Since the reaction rate is
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proportional to the velocity in which the reactants come in contact in
the flame front, the scalar dissipation rate appears directly or indirectly
in the reaction source term.

∙ Flame geometry
This modeling approach describes the kinematics of the flame front. It is
assumed that the actual reaction front is thin compared with the integral
length scale. To describe the topology of the reaction progress variable,
there are different methods: equations for isosurfaces of the reaction
progress (e.g. G-equation), balance equations for the flame front density
and balance equations for the flame front curvature.

∙ Turbulent burning velocity
Models based on correlations for the turbulent burning velocity describe
the turbulence-reaction interaction based asymptotic time and length
scales. Often the same restrictions used in the laminar case are used,
with only one time scale for the heat release and the diffusive transport.

The sophisticated presumed Joint Probability Density Function (JPDF) has a
long tradition in the Engler-Bunte-Institute, Division of Combustion Technol-
ogy (EBI-VBT) and was the model of choice for the simulations in this work.
The next session will present the details of this model.

5.6 Presumed JPDF

The presumed shape Joint Probability Density Function model (presumed
JPDF or simply JPDF) [5, 69] has been developed in the Engler-Bunte-Institute,
Division of Combustion Technology (EBI-VBT) by many colleagues [41, 38,
12, 120, 52, 33, 96, 34]. The implementation of the JPDF model in the
OpenFOAM framework is due to Matthias Kern.

The basic idea of the JPDF model is that the interaction between turbulence
and chemical reactions can be described by the probability density function
of characteristic variables of the combustion system. The state of the mixing
is determined using the mixing fraction f and the progress of the reaction
using a reaction progress variable c. With this formalism, it is possible to
simulate non-premixed, partially premixed and premixed flames using the
same model.
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The mixture fraction f is a passive scalar, and is defined as follows assuming
hydrocarbon as fuel

f =
(ZC +ZH)− (ZC +ZH)Ox

(ZC +ZH)F − (ZC +ZH)Ox
(5.81)

where ZC and ZH represent the local mass fraction of carbon and hydrogen
atoms, respectively, and the indices Ox and F represent pure oxidizer and pure
fuel streams. The mixture fraction of the pure oxidant has a value of zero,
while it has a value of unity in the pure fuel stream.

In this work, the reaction progress variable is defined using O2 as characteristic
variable:

c =
YO2,local −YO2,unburned

YO2,burned −YO2,unburned
. (5.82)

where YO2,local , YO2,unburned and YO2,burned represent the local mass fraction of
O2, the mass fraction in the unburned and in the completely burned states,
respectively. The reaction progress variable is defined to assume a value of
zero in the unburned mixture and unity in the completely burned mixture. It is
a non-passive scalar, which is altered by the combustion progress.

The chemical reactions describing the combustion can be solved using several
idealized systems, including flamelets, premixed laminar flames, non-premixed
laminar flames and plug flow reactors. In this work, the plug flow reactor
(PFR) was employed. The popular flamelet generated manifolds (FGM) model
[117, 119] is very similar to the JPDF model using flamelets or premixed
laminar flames to solve the chemical reactions.

A detailed chemical mechanism was used to model the combustion. The fuel
used in this work is methane, and the chemical reactions have been described
with the 53 species and 325 reactions of the GRI 3.0 mechanism [105].

For the range of mixture fractions being studied, mixtures of oxidizer and
fuels streams are defined as educt of plug flow reactors and computed using
the Cantera software [37]. For each mixture fraction f , the mass fraction of
the different species change along the reactor due to the reaction between fuel
and oxidizer. The independent variable of the PFR is the time, which can be
transformed using the reaction progress variable c defined in Equation (5.82);
this process is depicted in Figure 5.2. The line plots on the top show the time
evolution of temperature and mass fractions of O2 and CH4. The reaction
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Figure 5.2: Line plots of the same results of a plug flow reactor using time (top) and re-
action progress variable c (bottom) as independent variables. Temperature,
solid line; mass fraction of O2, dashed line; mass fraction of CH4, dash-dot
line.
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zone is clearly determined by the steep temperature rise with simultaneous
consumption of fuel (CH4) and oxidizer (O2). In this example, the oxidizer is
vitiated air and the fuel is CH4 diluted in air. The mixture is stoichiometric,
so all O2 is consumed by the reaction with CH4. Applying the definition of
the reaction progress variable c and using this variable as independent variable
leads to the line plots shown in the bottom of Figure 5.2. The O2 mass fraction
now varies linearly, which is a consequence of using O2 as the characteristic
variable in the definition of c. The variations of the temperature and the mass
fraction of CH4 become also smoother.

The next step is to use the mixture fraction f and the reaction progress variable
c as independent variables to tabulate all other variables of interest: mixture
density, mass fractions of all species of interest, reaction rate of c (ω̇c), mixture
viscosity, mixture heat and mass diffusivity, among others. The result is a
two-dimensional table, depicted in Figure 5.3, showing the reaction rate of the
reaction progress variable ω̇c as a function of f and c. The interested reader
can find the detailed boundary conditions in Table 8.2 with equivalence ratio
1.02.

Figure 5.3: Example of distribution of reaction rate of c (ω̇c) with mixture fraction f
and reaction progress variable c as independent variables.

The results in the two-dimensional table are still laminar, without the influence
of turbulence. To consider the turbulence, PDFs of each independent variable
are computed. The β probability density function is widely used in turbulent
combustion to define scalar distributions [91]; it depends on two moments
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only, the mean value and the variance. Using the mixture fraction f as an
example, the β PDF assumes the form

P( f ) =
Γ(α +β )

Γ(α)Γ(β )
f α−1(1− f )β−1, (5.83)

where P is the probability, Γ is the gamma function, and the parameters α and
β are related through

α = f̃ γ (5.84)

β =(1− f̃ )γ (5.85)

where f̃ is the mean value of f and γ is defined as

γ =
f̃ (1− f̃ )

f̃ ′′2
−1 (5.86)

where f̃ ′′2 is the variance of f .

Statistical independence of the mixture fraction f and the reaction progress
variable c is assumed, and the joint probability is calculated multiplying the
marginal PDFs [93, 91]

P( f ,c) = P( f )P(c). (5.87)

Unfortunately, it is very difficult to confirm this assumption in practice. The
statistical independence of f and c is weak, because the mixture fraction
and the reaction progress variable are clearly linked in flames. Nevertheless,
the joint PDF calculated this way has been extensively used in the litera-
ture [91, 119, 23, 76] and in previous works published by the Engler-Bunte-
Institute, Division of Combustion Technology (EBI-VBT) [120, 52], with
good results.

Applying this formalism, a lookup table with values including the influence of
the turbulence can be calculated. The four independent values of this table are
the mean values and variances of f and c. Employing the β PDF, the marginal
PDFs of f and c are calculated, and using Equation (5.87) the joint probability
is defined. The lookup table is then populated with the mean values of various
variables, including density, species mass fraction and reaction rates, which
are calculated using their laminar values and the joint probability.
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The next step is to calculate the mean values and the variances of f and c in
the CFD code, defining the progress of the mixing and of the reaction in every
point of the simulation. The mean values of other variables can then be read
from the lookup table, for example the mean density ρ , mean reaction rate of
c ω̇c, mean source term of d ω̇ ′

cd′, and other variables of interest.

In this version, the JPDF model does not account for heat losses, which are
present in the combustion system presented in Chapter 8. Heat losses can
affect the flame geometry significantly, influencing the agreement between the
measurements and the simulations. An extension of the JPDF that considers
heat losses has been already developed [120] and should be used in future
simulations.

The proper transport equations for the mixture fraction f , the reaction progress
variable c and their variances depend on the type of simulation being conducted.
For simulations using RANS (Reynolds-averaged Navier Stokes) turbulence
models, the transport equations are described in the next section. Transport
equations for large eddy simulations (LES), in which the equations are not
averaged but filtered, are described in Section 5.6.2.

5.6.1 RANS equations

For simulations using RANS turbulence models, the transport equations for
the mean mixture fraction f̃ and its variance g̃ = f̃ ′′2 are the following:

∂ρ f̃
∂ t

+
∂ρ ũi f̃

∂xi
− ∂

∂xi

(
ρDEff

∂ f̃
∂xi

)
= 0 (5.88)

∂ρ g̃
∂ t

+
∂ρ ũig̃

∂xi
− ∂

∂xi

(
ρDEff

∂ g̃
∂xi

)
=Cg,1ρDEff

∣∣∣∣∣ ∂ f̃
∂xi

∣∣∣∣∣
2

−Cg,2ρ
ε

k
g̃

(5.89)

where DEff is the effective diffusion coefficient, including the effect of the
turbulence, Cg,1 = 2.8 and Cg,2 = 2.
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The mean reaction progress variable c̃ is a non-passive scalar, and its transport
equation includes a reaction source term. The same applies to its variance
d̃ = c̃′′2:

∂ρ c̃
∂ t

+
∂ρ ũic̃

∂xi
− ∂

∂xi

(
DEff

∂ c̃
∂xi

)
= ω̇c (5.90)

∂ρ d̃
∂ t

+
∂ρ ũid̃

∂xi
− ∂

∂xi

(
ρDEff

∂ d̃
∂xi

)
=Cd,1ρDEff

∣∣∣∣ ∂ c̃
∂xi

∣∣∣∣2
−Cd,2ρ

ε

k
d̃ +2 · ω̇ ′

cd′

(5.91)

where Cd,1 = 2.8 and Cd,2 = 2. The source terms are defined as:

ω̇c =ρ

∫ 0

1

ω̇

ρ
P( f ,c)dcd f (5.92)

ω̇ ′
cd′ =ρ

∫ 0

1

(ω̇ − ω̇)(c− c̃)
ρ

P( f ,c)dcd f (5.93)

where P( f ,c) is the joint probability of f and c defined in Equation (5.87).

5.6.2 LES equations

The transport equations for the LES framework are derived using the mass-
weighted Favre filtering operation, defined in Equation (5.71). The transport
equation for the filtered mixture fraction f̃ is:

∂ρ f̃
∂ t

+
∂ρ ũi f̃

∂xi
− ∂ρ(ũi f − ũi f̃ )

∂xi
= 0 (5.94)

As in the RANS equation, the transport equation for the filtered reaction
progress variable c̃ includes a reaction source term:

∂ρ c̃
∂ t

+
∂ρ ũic̃

∂xi
− ∂ρ(ũic− ũic̃)

∂xi
= ω̇c (5.95)

72



5.7 Flow Solver

where the source term is defined as:

ω̇c = ρ

∫ 0

1

ω̇

ρ
P( f ,c)dcd f (5.96)

where P( f ,c) is the joint probability of f and c as defined in Equation (5.87).
The unsolved subgrid scale stresses ρ(ũi f − ũi f̃ ) and ρ(ũic− ũic̃) are modeled
by subgrid scale models already described in Section 5.4.

In LES the variances of f̃ and c̃ can be calculated using algebraic relations, i.e.,
without solving transport equations. The algebraic relations are also described
in Section 5.4.

Subgrid scale variance

The presumed JPDF model requires the evaluation of the variances of selected
variables. In RANS context, transport equations are solved for these variances.
In LES, the variances can be calculated using an algebraic relation, an approach
comparable to that employed by Smagorinsky to approximate the subgrid scale
turbulent kinetic energy. The SGS variance of the mixture fraction f and the
reaction progress variable c are given by

f̃ ′′2 =C f ∆
2
(

∂ f̃
∂xi

)2

(5.97)

c̃′′2 =Cc∆
2
(

∂ c̃
∂xi

)2

(5.98)

where the constants C f and Cc assume the value 0.01. Similar procedures have
been employed by Branley and Jones [8], Vreman et al. [119] and Olbricht et
al. [82], with good results.

5.7 Flow Solver

The conservation equation, turbulence models and wall treatments presented
in the preceding sections constitute the basis of CFD; however, they are a com-
paratively small part of a functional CFD solution method. The methodology
includes the discretization of the governing equations, the pressure-velocity
coupling, and the numerical solution of the resultant matrices along with many
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additional functionalities. Fortunately, most of these methodologies have been
extensively covered in various other publications, so that only the portions that
relate directly to this work are reproduced here for completeness.

The simulations were performed using the open-source CFD toolbox Open-
FOAM version 2.0 [85]. The monographs of Jasak [46], one of the early
developers, and de Villiers [20], focused on LES methods, contain much
information about the implementation of the different methodologies in Open-
FOAM and serve as the foundation for the next sections.

5.7.1 Discretization of the computational domain

The purpose of the discretization is to transform the differential equations into a
corresponding system of algebraic equations, which can be numerically solved.
The discretization of the computational domain can be subdivided into spatial
and temporal discretization. Spatial discretization defines the solution domain
as a collection of well-defined control volumes that fill and bound the space
(or region of space) of interest. The centroid of each control volume defines
a computational point. OpenFOAM uses the Finite Volume method (FVM)
of spatial discretization. It is based on the integral form of the governing
equations discretized over each control volume. The basic quantities, such
as mass and momentum, are therefore conserved at the discrete level. The
software accepts unstructured grids with control volumes of any polyhedral
shape, with any number of neighbors. The variable arrangement is collocated,
in which all dependent variables share the same control volumes, in contrast to
a staggered arrangement, in which the scalar variables (pressure, density, etc.)
are stored in the cell centers, whereas the velocity is located at the cell faces.
The equations are solved one at a time, in a segregated way, with explicit
inter-equation coupling.

For transient simulations, the time interval is divided into a finite number
of time steps. The solution is obtained by marching forward from an initial
condition, with a specified time step size ∆t.

A typical control volume is shown in Figure 5.4. The computational point P is
located at the centroid of the control volume, such that∫

VP

(xi − xi,P)dV = 0. (5.99)
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The control volume is bounded by a set of flat faces and each face is shared with
only one neighboring control volume. OpenFOAM accepts control volumes
of any topology, including tetrahedra, prisms and hexahedra.

Figure 5.4: Control volume. Reproduced from [46].

Convection term

The discretization of the convection term is the most difficult to solve. It
determines the value of a variable φ on the face of the finite volume elements
from the values in the cell centers.

Assuming that φ varies linearly between P and N, as shown in Figure 5.5, the
face centered value can be found from a simple interpolation between the cell
values

φ f = fxφP +(1− fx)φN , (5.100)

where the interpolation factor fx is defined as the ratio of distances f N and PN:

fx =
f N
PN

. (5.101)

This practice is commonly known as Central Differencing (CD) and is second
order accurate on unstructured meshes. This scheme has some disadvantages,
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as its tendency to produce unphysical oscillations in the solution when the
convection term strongly dominates the rest of the system [87], thus violating
the boundedness of the solution.

Figure 5.5: Face interpolation. Reproduced from [46].

An alternative discretization scheme that guarantees boundedness is the Up-
wind Differencing (UD), in which the face value is determined according to
the flow direction

φ f =

{
φ f = φP for F ≥ 0
φ f = φN for F < 0, (5.102)

where F = ρu represent the convective mass flux per unit area. The bounded-
ness of the solution is guaranteed at the expense of the accuracy, by implicitly
introducing numerical diffusion into the system. It is only first order accurate,
thus violating the order of accuracy of the discretization.

In an attempt to preserve both boundedness and accuracy of the solution,
Blended Differencing is introduced. It is a linear combination of UD, Equation
(5.102) and CD, Equation (5.100)

φ f = (1− γ)( fx)UD + γ( fx)CD, (5.103)

where the blending factor γ , 0 ≤ γ ≤ 1, determines how much numerical
diffusion will be introduced. There are many attempts in finding an acceptable
compromise between accuracy and boundedness, as "‘streamwise-upwind
schemes"’ [97, 98], higher-order upwind schemes (e.g. QUICK [62]) and
flux-limited schemes (e.g. [6]). Flux limiting creates differencing schemes
that are higher than first-order accurate, but without the spurious oscillations
associated with the classical second-order schemes.
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violated, the model prescribes Upwind Differencing (UD) in order to guarantee
boundedness. To avoid perturbations from the switching between the schemes,
a smooth blending between UD and CD is introduced.

The blending between UD and CD is based on the normalized variable φ̃C,
using the nodal values of φ at points U , C and D (see Figure 5.6). It is
defined as

φ̃C =
φC −φU

φD −φU
. (5.104)

The blending is smooth over the interval 0 < φ̃C < βm, where βm is a constant

γ =
φ̃C

βm
. (5.105)

The limit behavior of the function is such that

φ̃C = 0 ⇒ γ = 0 (Upwind Differencing)
φ̃C = βm ⇒ γ = 1 (Central Differencing).

(5.106)

Figure 5.6: Variation of φ around the face f . The values of φ using central differencing
(CD) and upwind differencing (UD) are indicated. Reproduced from [46].
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The larger the value of βm, the more blending will be introduced. For better
resolution of the numerical scheme, the value of βm should be kept as low as
possible. The useful range of βm is

0.1 < βm < 0.5. (5.107)

For the steady state RANS simulations, the value of βm was kept to 0.5 to
improve the convergence of the calculations, as recommended by Jasak [46].

The numerical diffusion is particularly problematic in LES context, since
the contribution of the modeled turbulent diffusivity is typically very small,
so that even modest numerical diffusion can induce large inaccuracies. For
that purpose, the Filtered Linear scheme was developed by Henry Weller for
OpenFOAM [85]. It is a low dissipation second order scheme based on Central
Differencing, in which the filtering removes the staggering caused by pressure-
velocity decoupling by introducing small amounts of Upwind Differencing.
It addresses the problem of staggering without adversely affecting the LES
statistics.

Although appropriate for the discretization of the velocity in LES context, the
Filtered Linear scheme remains unbounded, which can have severe effects on
strictly bounded variables as the passive scalar. For that reason, the Gamma
scheme, being bounded and stable, was employed for the passive scalar in this
work. The blending factor was kept to the minimum value of 0.1 proposed by
Jasak [46], limiting the adverse effects of the added numerical diffusion.

Diffusion and source terms

The discretization of the diffusion and source terms is less complex than the
discretization of the convection term described above. The only problem
faced while discretizing the diffusion term is the non-orthogonality of the grid,
whose effects have to be modeled. Following the assumption of linear variation
of φ and using the divergence theorem, the integration of the diffusion term
(e.g. from Equation (2.3)) can be represented as the sum of fluxes across the
faces of the control volume∫

VP

∂

∂x j

(
D

∂φ

∂x j

)
dV = ∑

f

~S ·
(

D
∂φ

∂x j

)
f
. (5.108)
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where ~S is the surface vector of the face f . Figure 5.7 shows schematically a
computational cell, with the face f between the points P and N. If the mesh
is orthogonal, the distance vectors ~d and ~S are parallel, and the following
expression is valid

~S ·
(

∂φ

∂x j

)
f
= |~S|φN −φP

|~d|
. (5.109)

Figure 5.7: Vectors ~d and ~S in a non-orthogonal mesh. Reproduced from [46].

Unfortunately, in practice orthogonal meshes are more an exception than a
rule. To account for the non-orthogonality, the product of the surface vector
with the gradient of φ is split into two parts

~S ·
(

∂φ

∂x j

)
f
=~∆ ·

(
∂φ

∂x j

)
f
+~k ·

(
∂φ

∂x j

)
f
. (5.110)

where the first term in the right-hand side represents the contribution consider-
ing orthogonal mesh and the second term the non-orthogonal correction. The
two vectors introduced in Equation (5.110), ~∆ and~k, are related to ~S in the
following matter

~S =~∆+~k. (5.111)

Many different approaches can be employed for the decomposition. In the
minimum correction approach (see Figure 5.8), the non-orthogonal correction
is kept to a minimum, by making~∆ and~k orthogonal

~∆ =
~d ·~S
~d · ~d

· ~d, (5.112)
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with~k calculated using Equation (5.111). As the non-orthogonality increases,
the contribution from φP and φN decreases.

Figure 5.8: Non-orthogonality treatment in the minimum correction approach. Repro-
duced from [46].

To keep the contribution of φP and φN the same irrespective of the non-orthogo-
nality, the orthogonal correction approach can be employed (see Figure 5.9),
where~∆ is defined as

~∆ =
~d

|~d|
· |~S|. (5.113)

Figure 5.9: Non-orthogonality treatment in the orthogonal correction approach. Repro-
duced from [46].

In the over-relaxed approach (see Figure 5.10), the contribution of φP and φN
increases with an increase in non-orthogonality

~∆ =
~d

~d ·~S
· |~S|2. (5.114)
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The final form of the discretized diffusion term is the same for all three
approaches. Taking in advantage that ~d and~∆ are parallel, the orthogonal part
of Equation (5.110) is discretized as

~∆ ·
(

∂φ

∂x j

)
f
= |~∆|φN −φP

|~d|
. (5.115)

and Equation (5.110) can be written as

~S ·
(

∂φ

∂x j

)
f
= |~∆|φN −φP

|~d|
+~k ·

(
∂φ

∂x j

)
f
. (5.116)

Figure 5.10: Non-orthogonality treatment in the over-relaxed approach. Reproduced
from [46].

Jasak [46] draws the conclusion that the over-relaxed approach is the most
robust, convergent and computationally efficient. This approach was used in
all simulations in this work.

All terms of a transport equation that cannot be written as convection, diffusion
or temporal contributions are loosely classified as source terms [46]. Before
the discretization, the functions acting as source terms (Sφ ) are linearized

Sφ (φ) = Su +Spφ . (5.117)

where Su and Sp can also depend on φ . The source terms are subsequently
integrated∫

VP

Sφ (φ)dV = SuVP +SpVPφP. (5.118)

More details about the treatment of source terms can be found in Jasak [46]
and Patankar [87].

81



5 Simulation Theory

Temporal discretization

Steady-state problems have a solution that is not a function of time. Steady-
state RANS simulations are of this type. If solving a single steady-state
equation, the solution can be obtained in a single step. However, as fluid flow
problems are a non-linear system of coupled equations, it is necessary to solve
the system in an iterative manner. In order to speed up the convergence, an
implicit formulation is preferred. The convergence of the iterative procedure
can be improved through under-relaxation, which is applied to each equation
individually.

The different temporal discretization schemes implemented in OpenFOAM
are described extensively in the monographs of Jasak [46] and de Villiers
[20]. The most common methods of temporal discretization are summarized
below.

For unsteady simulations as LES and URANS, the temporal discretization
involves the integration of every term in the differential equations over a time
step ∆t.

The most simple temporal discretization method implemented in OpenFOAM
is the Euler Implicit. This method expresses the face values in terms of the
new time-level cell values

φ f = fxφ
n
P +(1− fx)φ

n
N , (5.119)

and is unconditionally stable. It guarantees boundedness of the solution;
however, it is only first order accurate.

The Crank-Nicholson method is second order accurate, but does not guarantee
boundedness of the solution. The time derivative is calculated as

(
∂φ

∂ t

)
=

φ n −φ n−1

∆t
, (5.120)

The Crank-Nicholson method is unconditionally stable; however, it requires
inner-iterations during each time step. Coupled with the memory overhead
due to the large number of stored variables, this means it is more expensive
compared to the Backward Differencing scheme described below.
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Backward Differencing is second-order accurate in time and still neglects the
temporal variation of the face values. In order to achieve this, the Backward
Differencing in time uses three time levels, n− 2 = t −∆t, n− 1 = t and
n = t +∆t. The temporal derivative at the time n is calculated as(

∂φ

∂ t

)n

=
3
2 φ n −2φ n−1 + 1

2 φ n−2

∆t
, (5.121)

Again, the boundedness of the solution is not guaranteed. This is the method
used in this work for the unsteady simulations.

5.7.2 Pressure-Velocity coupling

The SIMPLE pressure-velocity coupling procedure by Patankar and Spalding
[88] was used for the steady-state simulations. For unsteady simulations, the
PISO procedure proposed by Issa [45] was used for pressure-velocity coupling.
Both schemes use an equation for pressure correction that is derived from the
continuity equation and solved instead of it.

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algo-
rithm is formulated to take advantage of the fact that it is not necessary to fully
resolve the linear pressure-velocity coupling if the simulation is in steady state,
as the changes between consecutive iterations are no longer small. Since the
effective time step is much larger, the non-linearity of the system becomes
more important. The algorithm follows these steps:

1. The momentum equations are solved, resulting in an approximation of
the velocity field. The pressure gradient term is calculated using the
pressure from the previous iteration. The equation is under-relaxed with
the under-relaxation factor αu.

2. The mass flux at the cell faces is computed.

3. The pressure correction equation is solved in order to obtain the new
pressure distribution. The equation is under-relaxed with the under-
relaxation factor αp.

4. The mass flux at the cell faces is corrected.

5. On the basis of the new pressure field, the velocities are corrected.
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In the SIMPLE algorithm, the pressure and the momentum are under-relaxed.
The recommended values of under-relaxation factors are 0.2 for αp and 0.8
for αu [46].

The PISO (Pressure-Implicit with Splitting of Operators) pressure-velocity
coupling scheme consists of an implicit momentum predictor followed by
a series of pressure correction solutions and explicit velocity corrections.
The loop is repeated until a pre-determined tolerance is reached. The main
differences from the SIMPLE algorithm are that no under-relaxation is applied
and that the momentum corrector step is performed more than once. The
algorithm follows these steps:

1. The momentum equations are solved, resulting in an approximation of
the velocity field. The pressure gradient term is calculated using the
pressure from the previous iteration.

2. The mass flux at the cell faces is computed.

3. The pressure correction equation is solved in order to obtain the new
pressure distribution. The equation is under-relaxed with the under-
relaxation factor αp.

4. The mass flux at the cell faces is corrected.

5. On the basis of the new pressure field, the velocities are corrected.

6. The algorithm is repeated from item 2 for the prescribed number
of times.

7. The time step is increased and the algorithm is repeated from item 1.

The major restriction of the PISO scheme is that the Courant number of each
cell has to be smaller than one

Courant number =
u ·∆t
∆x

≤ 1 (5.122)

This is a really limiting constraint. For the flows of interest in this work, it
limits the effective ∆t to values of microseconds.
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5.7.3 Boundary conditions

Boundary conditions are one of the most critical parameters of CFD simula-
tions and should not be underestimated. The quality of the simulation results
is directly coupled with the quality of the boundary conditions.

The physical boundary conditions of the problem have to be translated into a
numerical boundary condition for the simulation. There are two basic types
of numerical boundary conditions. The Dirichlet (or fixed value) boundary
condition prescribes the value of the variable on the boundary. The von
Neumann boundary condition, on the other hand, prescribes the gradient of
the variable normal to the boundary.

Examples of physical boundary conditions are walls, inlet and outlet conditions
for fluid flow problems, and adiabatic or fixed temperature boundaries for heat
transfer problems, among others. Each of these conditions is associated with a
set of numerical boundary conditions on each of the variables that are being
calculated.

The prescription of turbulence properties at the boundaries can be especially
complex. Within the classical RANS-approach, mean velocities and the trans-
ported turbulence quantities such as turbulent kinetic energy k and its rate of
dissipation ε have to be set. These quantities can be determined with moderate
experimental effort or may be estimated.

In LES context, on the other hand, the turbulent fluctuation is no longer
described by simple, steady, transported quantities. Instead, the turbulent
fluctuations are an integral part of the transient, fluctuating velocity field. It
creates a problem at the inflow, where these fluctuations must be prescribed.
This leads to a vicious circle, since the transient flow-field on the inflow must
be known prior to the simulation. To solve this problem, a boundary condition
based on the work of Klein et al. [53] was implemented in OpenFOAM and is
described below.

Simulations of compressible flows using LES suffer from pressure wave reflec-
tions from the computational domain boundaries. Steady state simulations are
not interested in the unsteady behavior of the flow or of the boundaries as long
as the final steady state is reached. In these simulations, acoustic waves are
eliminated by the numerical dissipation of the interpolation schemes employed.
LES uses interpolation schemes with less numerical dissipation in order to
describe the turbulence and all unsteady flow structures with higher accuracy,
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with the side effect of not damping acoustic waves. Non-reflecting boundary
condition is used to control the acoustic waves in the computational domain
and is described below.

Turbulent inlet boundary condition for LES

The simplest way to generate turbulent inflow data for a LES is to take a mean
velocity profile and superimposed random fluctuations. Klein et al. [53] shows
that this is not a very good method. Due to a lack of energy in the low wave
number range, the fluctuations are almost immediately damped to zero, and
the flow becomes laminar right after the inflow.

The algorithm proposed by Klein et al. [53] generates synthetic turbulent
fluctuations from random noise. The first step is to create a velocity field with
homogeneous, isotropic turbulence with prescribed integral length scale and
energy spectra, which is described below. If cross-correlations between the
different velocity components are desired, the method proposed by Lund et
al. [70] can be used.

An equidistant structured grid of mesh spacing ∆ is defined with logical
coordinates i, j,k in the x,y,z directions, respectively. The coordinate x is
aligned with the direction of the bulk velocity Ub, and can be replaced by the
time using Taylor’s hypothesis (t = x/Ub).

The algorithm creates and stores three independent fields of random numbers
rα , representing each component of the flow velocity (α = [u,v,w]). The
cross-section of the created fields is larger than the inflow area, in order to
accommodate the filter width at the borders. The streamwise extension of the
fields should be larger than Ub∆t, where ∆t is the time step of the simulation.
The low-pass filter Bi, j,k is applied to the random fields rα for every grid point
[I,J,K], resulting in the filtered fields Rα

I,J,K

Rα
I,J,K =

N

∑
i=−N

N

∑
j=−N

N

∑
k=−N

Bi, j,krα
I+i,J+ j,K+k. (5.123)

It is the low-pass filter Bi, j,k that is responsible for the recovery of the integral
length scale L by filtering the random noise. In the case of fully developed,
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Ruu = exp
(
−πr2

4L2

)
(5.124)

where r is the radius. Using a normalized length scale n = L/∆, the function
can be written in discretized form

Ruu(i, j,k) = exp
(
−π(i2 + j2 + k2)

4n2

)
with ∆

2(i2+ j2+k2) = r2 (5.125)

By the convolution of three one-dimensional filters, the three-dimensional
filter Bi, j,k can be obtained

Bi, j,k = bib jbk (5.126)

where the one-dimensional filters are determined as

bk ≈ b̃k/

(
N

∑
j=−N

b̃2
j

) 1
2

; b̃k = exp
(
−πs2

2n2

)
(5.127)

The filtered fields are then scaled with the mean velocity and the fluctuation
scale to generate the velocity fields uα .

One drawback of the algorithm as proposed by Klein et al. [53] is the spurious
pressure fluctuations generated at the inlet. The main source of the fluctuations
is that the turbulent velocity field generated by the Klein’s method leads to
small fluctuations of the mass flow. The solution is to apply a correction to the
velocity field in every time step, to ensure that the mass flow remains constant.
With this procedure, the amplitude of the pressure fluctuation is significantly
attenuated. The remaining pressure fluctuations are related to the fact that the
turbulent velocity field generated by the Klein’s method is not divergence free,
i.e., it does not satisfy continuity. This fraction of the pressure fluctuations has
its origin in the effort of the flow solver in forcing the velocity field to follow
the continuity. Nevertheless, the amplitude of these pressure fluctuations is
small and they are dissipated in a short distance, having a limited effect in the
simulation as a whole.
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Non-reflecting outlet for LES

In LES of compressible flows, acoustic waves can propagate through the
numerical domain. If the discretization and the numerical method are chosen
adequately, the acoustic waves are not significantly damped. In turbulent flows,
the turbulence itself can generate noise. In combustion systems the flame
can also act as a source of noise. This noise radiates away from the source,
dissipating the acoustic energy through the domain. The boundary conditions
typically used in CFD simulations (fixed value and fixed gradient) have the
property of reflecting acoustic waves. Thus, acoustic energy cannot leave the
simulation domain and accumulates in a non-physical manner. This issue can
be addressed by using non-reflecting boundary conditions.

The non-reflective pressure boundary condition implemented in OpenFOAM
is a simplification of that proposed by Poinsot and Lele [92] and is described
by Kärrholm [55]. The model needs two constants, p∞ and l∞, representing the
pressure at infinity and a relaxation length scale, respectively. The relaxation
length scale is the parameter that governs how reflective the outlet will be;
a low value will give a more reflective outlet than a high value. The model
begins by calculating the velocity of the outgoing pressure wave ω:

ω =Ui ·~n+
√

1/ψ (5.128)

where~n is the normal vector at the outlet and ψ is the compressibility of the
media. The pressure wave velocity is used to calculate the pressure wave
coefficient α and the relaxation coefficient b:

α =ω
∆t
δ

(5.129)

b =ω
∆t
l∞

(5.130)

where δ is the cell-face distance coefficient. The value of the pressure is
calculated using these properties:

ptrans =
p0 +bp∞

1+b
(5.131)

ξ =
1+b

1+α +b
(5.132)
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where p0 refers to the pressure at the outlet in the previous time step. The
pressure at the outlet is not set directly to ptrans, instead it is relaxed using the
pressure in the cell pcell closest to the outlet

poutlet = ξ ptrans +(1−ξ )pcell . (5.133)

where ξ is the relaxation factor.

5.7.4 Domain decomposition and parallel computing

Despite the even increasing performance of the computers available for CFD
simulations, even a modest LES can take months to complete on a single com-
puter. To shorten this time, the numerical domain is divided into a collection of
subdomains, which are solved simultaneously in several computers connected
in parallel.

The METIS algorithm [49] was used as decomposition strategy. METIS
uses graph partitioning techniques to split the computational domain into
subdomains, firstly converting the finite volume mesh into a graph, and then
partitioning it in an optimal way. The partitioning ensures that the number
of elements assigned to each processor is roughly the same and that the
number of elements in the interface between different processors is minimized.
The goal of the first condition is to achieve efficient load balancing for the
computations among the processors. The second condition ensures that the
required information exchange between different processors is minimized.

The information exchange between the partitions uses the software library
OpenMPI [29] as message passing interface (MPI). MPI is an industry standard,
typically used for parallel and distributed computing. OpenMPI is an open
source, freely available implementation of the MPI standard.
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Jets are the most commonly studied turbulent free shear flows, along with
wakes and mixing layers. The name free implies that these flows are remote
from walls, with the turbulence originating from differences of the mean
velocity field. Even if the jet seems as a simplified flow configuration with
limited practical importance, its analysis is a first step towards understanding
and predicting more complex flows in which recirculation and curvature effects
are present. In particular, the free jet has been used to test and validate the
different numerical tools and the different simulation methodologies applied
for the jet in crossflow, which will be described in the next chapter.

This chapter begins with a short review of different experimental setups found
in the literature about the free jet. The text continues with the numerical setup
used for the simulations, and finally the results of the simulations are compared
with experimental data and discussed.

6.1 Experimental setup

The free jet has been already introduced in Chapters 3 and 4 (see Figures 3.3,
3.4 and 4.1).

Axisymmetric jets have been studied since the 1940s, with Corrsin [17] being
responsible for one of the pioneer works in this field. Several works involv-
ing experimental data, mathematical analysis and computational modeling
have followed, as the reviews by Hinze [39] and Rodi [101]. A modern ref-
erence about the theory of the turbulent axisymmetric jet is the textbook of
Pope [93].

There are two main configurations used in experimental studies, which differ
in the way the jet is produced. Smoothly contracting nozzles produce a
plug-flow velocity profile with low turbulence level at the nozzle exit, in
contrast to long straight pipes, which produce a fully developed, turbulent
pipe flow. Experiments using the smoothly contracting nozzle have been
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selected in this work. The experimental configuration and the coordinate
system are shown schematically in Figure 6.1. A Newtonian fluid steadily
flows through a nozzle of diameter D, producing an approximately plug-flow
velocity profile with mean velocity Ujet . The jet from the nozzle flows into a
quiescent ambient of the same fluid. In the ideal case, the flow is completely
defined by D, Ujet and the kinematic viscosity ν , and the only non-dimensional
parameter is the Reynolds number defined by Re=UjetD/ν . However, in real
configurations the details of the flow at the nozzle and the surroundings can
affect the development of the jet [44].

Figure 6.1: Sketch of the experimental configuration with a smoothly contracting nozzle
and the cylindrical coordinate system employed.

The free jet is considered fully turbulent if the Reynolds number exceeds 104

[93]. The experiments of Panchapakesan and Lumley [86] and Hussein et
al. [44] fit well in this region, using air as flow medium and with Reynolds
numbers of 11 000 and 95 500, respectively. The meticulous work of Hussein
et al. has employed three different methods for the measurements: station-
ary hot-wire anemometry, flying hot-wire anemometry and laser-Doppler
anemometry (LDA). Their discussion about the limits and the validity of
hot-wire anemometry data is especially interesting. The LDA results, being
potentially more reliable, will be used as a benchmark in the comparison with
the present simulations.

Experimental data about the mixing of a passive scalar is scarcer in the liter-
ature than velocity data. Mi et al. [75] have summarized some of the most
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important experimental investigations of the scalar field of axisymmetric tur-
bulent jets. The experimental data of Dowling and Dimotakis [24] follow
closely the numerical setup proposed in this work, with a Reynolds number of
16 000, and will be used as a benchmark. The measurements were made using
a non-intrusive laser-Rayleigh scattering technique.

6.2 Numerical setup

As the results will be compared to various experiments, the computational
domain was designed as general as possible. Figure 6.2 shows a sketch of
the computational domain and the cylindrical coordinate system along with
their respective velocity components. The jet discharges from a pipe with 10
mm diameter and 30 mm length into a domain with 800 mm diameter and
1000 mm length. The computational grid consists of 3.6 million hexahedral
elements, with the jet inlet having a resolution of 32 grid elements along its
diameter. The central part of the grid is depicted in Figure 6.2. A coarser grid
consisting of 500 000 elements was also employed for some tests of the LES
and for the RANS simulations.

Figure 6.2: Overview of the computational domain with dimensions, left side. The
central part of the grid in a plane perpendicular to the symmetry axis, right
side. The thick circle line represents the jet inlet.

The jet inlet velocity was set to 100 m/s, resulting in a Reynolds number
based on the pipe diameter and the mean velocity of about 73 000. In order to
preserve the plug-flow velocity profile imposed at the jet inlet, the pipe walls
were modeled as frictionless, which prevented the development of a boundary
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layer. The turbulence intensity was set to 1%, following approximately the
value from Hussein et al. [44]. For the LES, the synthetic turbulence generated
by the boundary condition described in Section 5.7.3 was employed. The
values of k and ε or ω in the RANS simulations were calculated to represent
the 1% turbulence intensity and a turbulent length scale of `t = 1/7D.

Instead of a pure quiescent surrounding, the jet was introduced into a very
weak coflow imposed at the bottom side of the domain, with 0.1 m/s mean
velocity, without fluctuations. This strategy was employed in order to improve
the stability of the simulations, especially the LES, as a pure free-stream
boundary condition near the jet inlet affected negatively the numerical stability.
Free-stream boundary conditions were used in the lateral and top boundaries.

For the LES, the time step was 1 microsecond long for the coarse grid and
0.5 microsecond long for the fine grid, yielding a maximum CFL number
of approximately 0.3. A total of 0.9 seconds was simulated, resulting in
5 residence times calculated using the mean axial velocity at the end the
computational domain and the domain length

τ =
`

U
=

1000mm
6m/s

= 0.1667s. (6.1)

The simulation time corresponds to 900 000 time steps for the coarse grid and
1.8 million time steps for the fine grid. The LES with the fine grid used for
28 days 128 processors of the HP XC4000 supercomputer of the Steinbuch
Centre for Computing of the Karlsruhe Institute of Technology (KIT).

Turbulence modeling

Two subgrid scale turbulence models were available for the LES: the standard
Smagorinsky model with fixed model parameters, and a dynamic version
in which the model parameters are calculated from the smallest scales (see
Section 5.4).

For the RANS simulations, two different models were used, the standard k-ε
and the SST models (see Section 5.2). Unsteady RANS simulations have been
attempted; however, the flow remained in steady state with virtually the same
results as the steady state RANS simulations, so only the results of the latter
simulations are presented in the following sections.
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6.3 Results and discussion

6.3.1 Preliminary LES tests

The performance of two subgrid scale turbulence models of the LES, namely
the standard and dynamic Smagorinsky models, was assessed using the coarse
grid in order to select the most appropriate model for the LES using the
fine grid.

For a self-similar jet, the mean centerline velocity Uc(x) is given by

Uc(x)
U jet

=
Bu

(x− x0)/D
, (6.2)

where U jet is the mean jet axial velocity at the inlet, Bu is an empirical constant,
x0 represents a virtual origin and D is the pipe diameter [93].

Figure 6.3 shows the inverse of the centerline velocity, specifically U jet/Uc,
plotted against (x− x0)/D. The points represent the result of Equation (6.2)
using Bu = 5.8 and x0 = 4.0 D, as suggested by Hussein et al. [44]. The LES
using the standard Smagorinsky model agrees better with the measurements
of Hussein et al. than the dynamic version. The meaning of the curve slope
will be discussed in more detail using the results of the Figure 6.7; it suffices
here to state that the smaller curve slope of the dynamic version means that
the jet is less diffusive than the measurements.

Another characteristic variable of the free jet is the half-width r1/2, which is
defined as the radial position where the mean axial velocity is one-half of its
centerline value. Employing the half-width r1/2, the spreading rate S can be
calculated as

S =
dr1/2(x)

dr
. (6.3)

In the self-similar region of turbulent jets, the jet spreads linearly and S is a
constant, and an empirical law for r1/2 can be derived

r1/2(x) = S(x− x0). (6.4)
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The cross-stream similarity variable in free jets can be taken to be either r/r1/2
or r/(x− x0). Using the facts that S is a constant S = 0.0094 and that the
virtual origin x0 = 0, the two variables are related by r/x−= S(r/r1/2).

Figure 6.3: Line plots of the inverse of the centerline velocity Ujet/Uc with distance
from jet from the LES using the standard and dynamic versions of the
Smagorinsky subgrid scale turbulence model, with the coarse grid.

Figure 6.4 shows the radial velocity profiles using both cross-stream similarity
variables. The profiles have the same behavior seen in Figure 6.3, where
the LES with the dynamic version is less diffusive than both measurements
and the LES with the standard Smagorinsky. As the standard version of the
Smagorinsky model showed a better performance, it was used in the simulation
using the fine grid presented in the next sections.

The value of the turbulent Schmidt number σt used to model the subgrid scale
flux vector (see Section 5.4) varies significantly in the literature. Values of
σt from 0.7 [8, 21], to 0.9 [23] and 1.0 [103, 124] have been proposed. The
influence of σt has been assessed using simulations with the coarse grid and
the standard Smagorinsky model, comparing the mean passive scalar when
using σt = 1.0 and 0.7.
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Figure 6.4: Radial profiles of axial velocity normalized by the centerline velocity U/Uc
from the LES using the standard and dynamic versions of the Smagorinsky
subgrid scale turbulence model, with the coarse grid.

For the passive scalar, the mean centerline value Cc(x) is given by

Cc(x)
Cjet

=
Bc

(x− x0)/D
, (6.5)

where Cjet is the value of the mean passive scalar at the inlet and Bc is an
empirical constant, different from the constant Bu used for the centerline
velocity [93].

The quantity Cjet/Cc is plotted versus (x−x0)/D in Figure 6.5. Equation (6.5)
is represented by the points, using the constants Bc = 4.73 and x0 = 0.0 as
suggested by Dowling and Dimotakis [24]. The agreement of the simulations
with Equation (6.5) is worse than the agreement of the mean velocity, which
is probably a consequence of the grid being too coarse. The agreement is,
however, good enough for the parameter variation study being proposed. The
difference between the two simulations is very small, which indicates a limited
influence of the subgrid scale on the mean values.
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Figure 6.5: Line plots of the inverse of the passive scalar at the centerline Cjet/Cc with
distance from jet from the LES using the standard Smagorinsky model and
turbulent Schmidt numbers σt of 0.7 and 1.0, with the coarse grid.

Figure 6.6: Radial profiles of the mean passive scalar normalized by its centerline value
C/Cc from the LES using the standard Smagorinsky model and turbulent
Schmidt numbers σt of 0.7 and 1.0, with the coarse grid.
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Figure 6.6 shows the mean passive scalar normalized by its centerline value,
C/Cc, along r/x. The points represent the measurements of Dowling and
Dimotakis [24], and the agreement is better than with the axial values. The
difference between the two simulations is again very small.

As the simulations have shown almost no sensitivity to the value of σt , the
value of 1.0 has been used in the following simulations.

6.3.2 Axial profiles

Figure 6.7 shows the centerline velocity of the LES using the standard
Smagorinsky model and the fine grid, and the RANS simulations with the k-ε
and the SST models. The points again represent the result of Equation (6.2)
using Bu = 5.8 and x0 = 4.0 D. The virtual origin x0 is a geometry-dependent
value, and its value in the simulations is approximately zero. The expected
1/x decay rate is represented as a straight line on the plot. The greater the
slope of the line, the smaller the value of B and the higher the decay rate of
the centerline velocity. The curve slope of the LES is slightly smaller than
the experiments. The slope using the k-ε model is slightly greater than the
measurements, however still inside the scatter of experimental values. The
simulation with the SST turbulence model has an even greater slope, resulting
in a too diffusive jet.

Figure 6.8 shows C jet/Cc plotted versus (x− x0)/D. Equation (6.5) is repre-
sented by the points, using the constants Bc = 4.73 and x0 = 0.0 as suggested
by Dowling and Dimotakis [24]. The LES shows a slightly smaller slope
compared to the measurements, indicating that not enough diffusion has been
modeled. The RANS simulations of the passive scalar have an extra parameter,
the turbulent Schmidt number σt , which is the quotient between the turbulent
viscosity and diffusivity (see Equation (5.30)). The smaller the σt , the greater
the Reynolds flux and consequently the turbulent diffusion. The recommended
value for this constant varies between 0.7 for free shear flows and 0.9 for
boundary layers. Using the k-ε model and σt = 0.7, the centerline value of
the passive scalar has a very good agreement with the measurement. When
using σt = 0.9, however, the curve slope is smaller than the measurement,
which means that not enough diffusion was present. The tendency of smaller
diffusive transport with increasing value of σt is the same using the SST model,
but the slope using σt = 0.7 is too great, and using σt = 0.9 it compares well
with the measurement.
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Figure 6.7: Line plots of the inverse of the centerline velocity Ujet/Uc with distance
from jet.

Figure 6.9 shows the fluctuation of the axial velocity component u′ along the
jet axis. The quantity u′/Uc in the LES tends asymptotically to a value close to
0.24 after the development region, which agrees well with the measurements
of Panchapakesan and Lumley [86] and Hussein et al. [44], which indicate
values of 0.24 and 0.27, respectively. In order to show the amount of the axial
velocity fluctuation being resolved by the large-scale structures of the LES,
u′/Uc without the subgrid scale (SGS) fraction is also plotted in Figure 6.9.
The modeled fraction of u′ is of the order of 3% of the total value, which is
an indication of the good resolution of the LES. The RANS simulations show
a slightly more intense turbulence at the axis, with asymptotic values of 0.27
and 0.295 using the k-ε and SST models, respectively.

The normalized root-mean-square (rms) of the passive scalar fluctuation
crms/Cc along the centerline is shown in Figure 6.10. Only the result of
the LES is shown, as the RANS simulations do not evaluate crms directly; a
transport equation needs to the resolved if the value of crms is of relevance.
Interestingly, the normalized fluctuation crms/Cc reported by Dowling and
Dimotakis [24] tends asymptotically to a value between 0.23 and 0.24, which
is close to the value of 0.25 for the velocity fluctuation. The result of the LES
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tends to a smaller value around 0.21, i.e., the diffusion level in the simulation
is lower than in the measurements.



Figure 6.8: Line plots of the inverse of the passive scalar at the centerline Cjet/Cc with
distance from jet.

Figure 6.9: Line plots of axial velocity fluctuation u′/Uc with distance from jet.

6.3 Results and discussion
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Figure 6.10: Line plots of passive scalar rms crms/Cc with distance from jet.

6.3.3 Radial profiles

Plotted against the cross-stream similarity variable r/x, the normalized radial
mean velocity U/Uc profiles of the LES for different axial positions approx-
imately collapse, as can be seen in Figure 6.11, indicating that the profiles
are self-similar. The measurements of Hussein et al. [44] also collapse after
a distance of 30 diameters, reaching the self-similar region. The normalized
velocity profiles U/Uc of the measurements and the simulations are plotted in
Figure 6.12, where the LES velocity profile was averaged over the various axial
positions seen in Figure 6.11. As in the case of the velocity along the axis, the
radial profiles of the LES are in very good agreement with the measurements.
The profiles of the RANS simulation are broader, an indication of too much
diffusion, with the SST model being more diffusive than the k-ε model. The
jet half-width (r/x)1/2 has the value 0.094 in the measurements. The LES has
approximately the same half-width as the measurements, while the values of
the RANS simulations are larger, with values of 0.103 and 0.119 for the k-ε
and SST models, respectively.
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Figure 6.11: Radial profiles of axial velocity normalized by the centerline velocity
U/Uc for various axial positions of the LES.

Figure 6.12: Radial profiles of axial velocity normalized by the centerline velocity
U/Uc.
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The mean passive scalar normalized by its centerline value, C/Cc, along r/x
are shown in Figure 6.13. The points represent the measurements of Dowling
and Dimotakis [24]. The measurements show a half-radius value of 0.114. The
agreement of the LES results with the measurements is very good. The RANS
simulation with k-ε shows good agreement using σt = 0.9, but is too diffusive
with σt = 0.7, with half-radius values of 0.110 and 0.126, respectively. The
simulations with the SST model are too diffusive using both values of σt , with
half-radius values of 0.145 for σt = 0.7 and 0.127 for σt = 0.9.

Figure 6.13: Radial profiles of the mean passive scalar normalized by its centerline
value C/Cc.

The evolution of the specific Reynolds stress components u′u′, v′v′, w′w′ and
u′v′ non-dimensionalized by the square of the centerline velocity can be seen
in Figure 6.14. To improve the readability of the diagram, only the LES and
the RANS simulation with k-ε are shown. The Reynolds stress components of
the steady state RANS simulations have been calculated using the Boussinesq
hypothesis [121]. The u′u′/U2

c is the most intense component, with a value at
the axis of 0.075 in the measurements of Hussein et al. [44]. The axisymmetry
of the flow requires v′v′ and w′w′ to be equal, a condition nearly satisfied
by the measurements and by the simulations. The shear stress u′v′ is the
only component that is zero at the axis. While u′v′ is predicted well by both
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simulations, the normal stresses show more discrepancies. The LES is able to
reproduce the large difference between u′u′ and the other normal stresses near
the axis, as shown by the measurements. The k-ε model is too simplistic to
fully capture this effect, and the levels remain very close to each other.

Figure 6.14: Radial profiles of the specific Reynolds stresses components u′u′/U2
c ,

v′v′/U2
c , w′w′/U2

c and u′v′/U2
c .

The passive scalar rms value crms along r/x is illustrated in Figure 6.15. The
value of crms was non-dimensionalized using the centerline value of the mean
passive scalar Cc. The agreement of the LES results with the measurements
is good; however, the overall fluctuation level is underpredicted. The RANS
simulations do not evaluate crms directly; a transport equation needs to be
solved if the value of crms is of relevance. In the present RANS simulations
this equation has not been solved, so no results for crms are shown.

The correlation between momentum and passive scalar turbulent diffusivity
within the RANS context is modeled by the turbulent Schmidt number σt
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introduced in Section 5.2. The same information can be determined from the
LES and compared to the value used in the RANS simulations. In the case of
the free jet, the mean passive scalar flux is effective only in the radial direction.
This fact significantly simplifies the analysis, as only one pair of Reynolds
stress and Reynolds flux components has to be taken into account. The same
analysis for the jet in crossflow configuration is more complex, as will be
discussed in the next chapter. The turbulent Schmidt number from the LES
can be calculated using the following equation

u′v′/u′c′ = σt
2Si j

∂C/∂y
. (6.6)

Figure 6.15: Radial profiles of passive scalar fluctuation crms/Cc.

Figure 6.16 shows the radial profile of σt obtained from the LES. It should
be noticed that the turbulent Schmidt number is difficult to extract from the
simulations, as it is derived from mean fluctuation values and gradients of the
mean variables, both very sensitive to the run time of the LES. As the averaging
process is more effective in regions with higher velocity, the mean values are
smoother in the region near the jet inlet, especially the mean fluctuation values
u′v′ and u′c′. The profiles of σt could be calculated with good accuracy up
to a distance x/D=30. Another point that should be noticed is that at the jet
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at the axis; the values of σt at these positions were blanked. The mean value
of σt is 0.75, which compares well with the suggested value of 0.72 from
Hinze [39] and the value of 0.7 from the experimental observations of Yimer
et al. [123]. The good agreement is a further indication of the high quality of
the LES results.

Figure 6.16: Radial profile of σt for the LES.

6.3.5 Coherent structures and intermittency

The present LES data allow the investigation of the formation and evolution of
coherent structures. For this purpose, the isosurface of the pressure fluctuation
p− p is employed in Figure 6.17. The constant value for obtaining the
isosurface is close to zero, and was chosen to enhance the presentation of
the structures. Shortly downstream of the jet inlet, vortex rings due to the
Kelvin-Helmholtz instability can be observed. Although the visualization
technique differs, there is a similarity between these structures and the Kelvin-
Helmholtz instabilities in the LIF cross section shown in Figure 3.3. In
addition, the finding of large-scale organization of entrainment and mixing in
the self-similar field of the jets by Dahm and Dimotakis [19], which resulted
in the conceptual picture in Figure 3.4, correlate well with the current results.
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Figure 6.17: Isosurface of pressure fluctuation.
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The large-scale structures seen in the LES form the regions with fairly uniform
composition proposed by Dahm and Dimotakis and depicted in Figure 3.4.
Further downstream the vortex rings can no longer be discerned, giving place
to larger coherent structures.

The flow is intermittent, as can be expected from the very evident coherent
structures. The intermittency function, Equation (4.1), was used to calculate
conditional averages. The mean values conditioned with the turbulent jet
flow have been assigned with the subscript t, while the values conditioned
with the ambient fluid flow have been assigned with the subscript n. The
threshold value of 1% of the passive scalar has been used for calculating the
intermittency function, as suggested by Libby [63]. The radial evolution of the
intermittency factor γ along with the mean, turbulent jet mean and ambient
fluid mean values of the axial velocity and passive scalar is shown in Figures
6.18 and 6.19, respectively. The measurements of Antonia et al. [2] for a
turbulent heated jet in a co-flowing stream, presented in Chapter 4, show a
similar trend although the setups are quite different.

Figure 6.18: Radial profiles of intermittency factor γ , mean axial velocity U/Uc, tur-
bulent mean axial velocity Ut/Uc and non-turbulent mean axial velocity
Un/Uc for the LES.
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Figure 6.19: Radial profiles of intermittency factor γ , mean passive scalar C/Cc, tur-
bulent mean passive scalar Ct/Cc and non-turbulent mean passive scalar
Cn/Cc for the LES.

The analysis of the γ profiles shows that the flow is always turbulent near the
jet axis until r/x≈ 0.15, where the function has the value unity. Between this
point and the jet edge, the fraction of the time that each position remains in
the turbulent flow decreases until reaching zero, followed by the γ function.
The influence of the intermittency is restricted to this region.

The mean velocity profiles are shown in Figure 6.18. The difference between
the mean value U and the jet fluid mean value Ut of the velocity is not very evi-
dent, even in the highly intermittent area. On the other hand, the mean velocity
Un of the ambient fluid found in the intermittent region has higher values than
the quiescent surrounding, approaching 10% of the centerline value.

The profiles of the passive scalar in Figure 6.19 show a different behavior
than the velocity profiles, revealing some interesting features of the jet. The
value of the mean passive scalar Ct of the jet fluid is considerably higher than
the mean value C in the intermittent region. It indicates that the mean value
diminishes when approaching the jet edge as a consequence of the diminishing
fraction of time that the jet fluid spends in this region, however the passive
scalar value inside the jet remains more constant toward the jet edge.
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Figure 6.20: Symmetry plane of one realization of the LES. The solid line represents
the boundary between jet flow and the ambient fluid. The detail shows
also arrows representing the local velocity vector.

The different behavior of the turbulent mean velocity in comparison to the
turbulent mean passive scalar is attributed to velocity fluctuations within
the ambient fluid entrained by the jet flow. These fluctuations, that are not
turbulent in nature, are induced by the pressure fluctuations associated with
the turbulence [63]. This effect is illustrated in Figure 6.20, in which the
symmetry plane of the LES is depicted. The boundary between the jet flow
and the ambient fluid is marked by an isocontour of 1% passive scalar. As
expected, this boundary is highly convoluted, a result of the high intermittency.
A small region where entrainment of ambient fluid is taking place is shown
in more detail, with arrows representing the local velocity vector. It clearly
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than at the surroundings. This finding corroborates with the theory [1, 93]
and the experiments of Antonia et al. [2] in Figure 4.6, which dictates that
the turbulent jet fluid has a higher streamwise velocity than both the ambient
fluid that is entrained and the velocity of the surrounding fluid. Ambient fluid
is entrained mainly at locations involving significant intermittency, and its
velocity is higher than the value of the surrounding fluid. It follows that the
velocity variation across the superlayer is smaller than the variation of the
passive scalar, which accounts for the apparent greater width of the scalar
profile relative to the velocity profile. In Figure 6.20, for example, the non-
turbulent mean velocity of the fluid at locations with high intermittency is
higher than the value of the ambient fluid.

Analyzing the diffusion across the superlayer helps to understand the discrep-
ancy between the velocity and passive scalar fields. In the classic Fick’s law of
diffusion, the driving force of diffusion is the gradient of the variable being an-
alyzed. To be able to compare the gradients directly, the u velocity component
was divided by the mean value at the inlet, creating the dimensionless velocity
u/U jet that spans from zero to one as the passive scalar does. Following this
idea, the diffusion flux of velocity Ju and passive scalar Jc across the superlayer
can be defined as the dot product of the gradients and the normal vector~n

Ju = ν
∂ (u/U jet)

∂xi
·~n (6.7)

Jc = D
∂c
∂xi

·~n (6.8)

where ν is the kinematic viscosity, D is the scalar diffusivity, and ~n is the
normal area vector of the superlayer. In these definitions, the subgrid scale
viscosity νt and diffusivity Dt have been neglected.

To apply this formalism to the LES, the superlayer was approximated by the
surface determined by the isosurface of 1% passive scalar, which is the same
used to define the intermittency function. Integrating over the whole isosurface
of a snapshot of the LES resulted in a dimensionless velocity flow rate of
8.24·10−6 m3/s and a passive scalar flow rate of 40.25·10−6 m3/s, which
indicates that the passive scalar gradient is greater than the velocity gradient
across the superlayer. In the LES, the turbulent Schmidt number is equal to
one σ

t
= 1, i.e., the diffusivity of momentum and of the passive scalar are the
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same in the subgrid scale. The higher mean diffusivity of the scalar correlated
with the higher diffusion flux Jc can only be explained by the effect of the
large-scale structures.

The finding that the passive scalar flow rate across the superlayer is greater
than the velocity flow rate also corroborates with the fact that the spreading
rate of the passive scalar is larger than the spreading rate of the velocity.

6.4 Concluding thoughts

Despite of the complexity arising from the coherent structures of the flow,
steady state RANS are able to predict important features of the free jet with
good accuracy. The condition for a good simulation is the right choice of tur-
bulence model and constants. The best overall results with RANS simulations
have been obtained using the k-ε turbulence model and a turbulent Schmidt
number σt of 0.7.

It was shown that the LES can reproduce the coherent structures of the jet
flow, which translates into improved results in comparison to the RANS
simulations. The LES results agree well with all measurements of the free jet.
The anisotropy of the turbulence, for example, is good reproduced by the LES,
while the RANS turbulence models are too simplistic in this particular area
and cannot reproduce it in its full extension.

There is, however, a systematic discrepancy between the RANS results and
the measurements in the high intermittent region, which is more evident in
the profiles for passive scalar. Figure 6.21 shows the radial profiles of axial
velocity and passive scalar side by side for the LES and the RANS simulation
with k-ε model and σt = 0.9 and the measurements of Hussein et al. [44]
and Dowling and Dimotakis [24]. While for the axial velocity the difference
between the measurement and both simulations is small, the profiles of passive
scalar show more discrepancy when approaching the jet edge. The scale of the
diagram makes the difference appear small, but in fact it can be as high as 50%
when approaching the jet edge. This discrepancy is related to the coherent
structures and the intermittency, as their influence is different for the velocity
and passive scalar fields. While the coherent structures and the intermittency
are not resolved by the RANS simulations, leading to the observed discrepancy,
the LES is able to reproduce them in this region, resulting in a better agreement
with the measurements.
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Figure 6.21: Radial profiles of axial velocity and passive scalar for simulations using
LES and k-ε models.
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The jet in crossflow (JIC) is a flow configuration of major theoretical and
practical importance. It is more complex than the free jet, with a series of large-
scale coherent structures and recirculation regions. This flow configuration is
frequently found in many technical devices like mixers in the process industry,
plumes from chimneys, engine exhaust gas pipes and cooling towers. Due to
its good air-fuel mixing capability over a small distance, JIC is also favored by
gas turbine manufacturers that use it in their lean premix burner technology,
where the fuel and combustion air streams are premixed before the reaction
zone.

This chapter begins with a review of the experimental investigations about the
JIC. It is followed by the numerical setup used in the simulations. The chapter
ends with the comparison of the results of the simulations with experimental
data and the discussion of these results.

7.1 Experimental setup

In the discussion about coherent structures in Chapter 3, the various structures
associated with the jet in crossflow (JIC) have been illustrated in Figure 3.5,
which is plotted again in Figure 7.1 for convenience. The interaction between
the two streams is associated with the formation of various turbulent vortices
and complex coherent structures.

Numerous investigations of the JIC configuration have been performed espe-
cially focusing on the complex system of vortices and their contribution to
the stability of the flow field. This is excellently summarized by Margason
[72] who reviewed the investigations in the 1980s and at the beginning of the
1990s. Laser diagnostic tools have made tremendous progress in recent years,
also benefiting studies about the JIC.

The turbulent mixing within the JIC under highly turbulent conditions has been
investigated in the Engler-Bunte-Institute, Division of Combustion Technology
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(EBI-VBT) by Georg Donnert, Camilo Cárdenas and Julia Sedlmaier, and the
results are summarized on references [67, 30, 31, 18]. The experiments have
been designed to provide unambiguous boundary conditions along with high
quality local validation data.

Figure 7.1: Scheme of the jet in crossflow phenomenology. Reproduced from [81].

In contrast to the literature data which employs mostly laminar or weakly
turbulent flows to study the JIC, the experiments have been conducted under
highly turbulent conditions with the crossflow Reynolds number spanning
between 11.16 ·104 and 3.99 ·104 while the jet flow Reynolds number spans
between 1.81 ·104 and 1.92 ·104, as can be seen in Table 7.1. The Reynolds
numbers have been calculated using the channel cross section length and the
jet inlet diameter as length parameters, respectively. The experimental facility
is thoroughly described in references [14, 67]. It consists of a channel with
square cross section (108 x 108 mm) in which a round jet (inner diameter D
= 8 mm) is mounted flush to the wall. The pipe used to feed the jet is long
enough to ensure a fully developed velocity profile. The center of the jet is
placed 328 mm downstream of the beginning of the channel, where a plug flow
velocity profile is generated by a specially built contraction nozzle. Optical
access to the channel is given by four fused quartz windows placed at each
side of the test section.

The main parameter that characterizes a jet in crossflow is the jet-to-crossflow
velocity ratio, R. It is defined as the square root of the momentum ratio:
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R = (ρ jetU2
jet/ρcrossU2

cross)
1/2, where U jet represents the bulk jet velocity and

Ucross represents the bulk crossflow velocity. When the jet and crossflow
densities are equal (ρ jet = ρcross ), the velocity ratio can be simplified to
R =U jet/Ucross. The experimental conditions for the four cases investigated
in this study are described in Table 7.1. The turbulence intensity of the jet flow
is 7% and of the crossflow is 1.5% for all cases.

Case A Case B Case C Case D
Jet Bulk velocity 37.72 m/s

Re 1.96·104

Crossflow Bulk velocity 9.08 m/s 15.95 m/s 8.40 m/s 5.70 m/s
Re 6.36·104 11.16·104 5.88·104 3.99·104

Velocity ratio 4.15 2.36 4.49 6.62

Table 7.1: Boundary conditions.

The measurement technique is illustrated in Figure 7.2. It consisted of a
combination of two laser diagnostic methods: Particle Image Velocimetry
(PIV) and Laser Induced Fluorescence (LIF). The main measurements have
been conducted by Georg Donnert, with additional measurements by Camilo
Cárdenas and Julia Sedlmaier; the results for Case A have been published
by Galeazzo et al. [31], and combine PIV measurements at the symmetry
plane with simultaneous PIV and LIF measurements at horizontal planes. For
Cases B to D, simultaneous PIV and LIF measurements at the symmetry plane
have been measured for different velocity ratios.

A frequency doubled Nd:YAG laser with an excited wavelength of 532 nm
is used as light source. A Galilean telescope fans out the laser light beam,
which is then guided it through the test section. This light sheet provides two
different signals in the mixing region in the JIC arrangement. The scattered
light (PIV) comes from aerosol particles added to both flows at a wavelength
of 532 nm, while the fluorescence signal (LIF) is generated by excited NO2
molecules added only to the jet flow at a range of wavelengths between 550
nm and 690 nm (Gulati et al. 1994). These two signals are spectrally separated
and acquired by two different cameras. A CCD-camera (Dantec R○ 80C60
HiSense PIV- Camera, 1280 x 1024 pixels ) is used for the scattered light
while an intensified CCD-camera (Roper Scientific R○ 512 x 512 pixels) is used
for the fluorescence light. A commercial program (Dantec FlowManager R○
Version 1.10) was used to post-process the PIV signals. The LIF signals
were post-processed using an program developed in-house. Both signals were
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acquired simultaneously, allowing spatial measurements of the instantaneous
velocity and concentration fields and their correlation.

Figure 7.2: Overview of the 2D-PIV/LIF measurement technique.

An imaging area of 27.3 x 27.3 mm was used to completely resolve the flow
phenomena including the high velocity gradients. An interrogation area of
32 x 32 pixels with an overlap of 50% was used for the PIV evaluation. The
statistics were evaluated from a total of 6200 samples per measuring area.

7.2 Numerical setup

The computational domain was chosen in a way to save computational time,
while capturing all important phenomena of the JIC. The coordinate system
was centered at the center of the jet inlet into the crossflow channel. The
domain for the large eddy simulation (LES) extended 100 mm in the upstream
crossflow direction and 200 mm in the downstream direction, as depicted
in Figure 7.3. A pipe with a diameter of 8 mm and a length of 40 mm was
included in the domain.

Two grids have been used for the simulations, employing hexahedral-shaped
elements. The coarse grid is composed of 1.5 million elements, with a resolu-
tion of 27 elements along the jet inlet diameter, while the fine grid is composed
of 7.5 million elements, with an increased jet inlet resolution of 39 elements.

118



7.2 Numerical setup

Figure 7.3: Overview of the computational domain with dimensions and the coordinate
system employed, top. The grid at the symmetry plane near the jet inlet,
bottom.
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The typical y+ value at the crossflow walls is 15 for the coarse and 12 for the
fine grid, and at the pipe walls is 12 for the two grids.

For the unsteady simulations the time step was 2 microseconds long for the
coarse grid and 1 microsecond long for the fine grid, yielding a maximum CFL
number of approximately 0.3 for all simulations. An averaging time of at least
170 characteristic time units D/Ucross was employed for all simulations.

The grid dependence of the results was also explored. Figure 7.4 shows line
plots of the mean velocity component U at the symmetry plane (y/D = 0)
for LES simulations with the standard Smagorinsky model using the coarse
and fine grids, compared to measurements for Case A. The effect of the grid
resolution on the mean flow is very limited. Only the coarse grid shows
some deviation at x/D = 2, which should be attributed to the coarser overall
resolution than any near-wall flow effect.

The grid dependence of the results of the RANS simulations has been also
investigated. The results using the coarse and fine grids were nearly identical,
so the coarse grid was used for the RANS simulations.

Figure 7.4: Line plots of the mean velocity component U/Ucross at the symmetry plane,
y/D = 0, Case A.

Turbulence modeling

For the LES, two versions of the Smagorinsky subgrid scale turbulence model
were available: the standard version with fixed model parameters and a dy-
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namic version in which the model parameters are calculated from the smallest
scales (see Section 5.4). To assess the performance of these two model ver-
sions, simulations with the boundary conditions of Case A and using the fine
grid were performed. Line plots of the mean velocity component U/Ucross
and normalized specific Reynolds stresses u′u′/U2

cross at the symmetry plane
(y/D = 0) for LES using the two models can be seen in Figure 7.5. The
velocity profiles almost collapse, being difficult to distinguish between them.
The results for u′u′ are also very close, with the standard version predicting
a slightly higher turbulence level. The very limited difference between the
results of the two models is an indication that the role of the subgrid scale
modeling is not decisive in this jet in crossflow configuration. The standard
Smagorinsky model has the advantage of being less computationally intensive
than the dynamic version, so this version was used in the simulations presented
in the next sections.

Two models have been used for the RANS simulations, the standard k-ε and
the SST models (see Section 5.2). For the unsteady RANS simulations, the
SST model was preferred, as it produced the best results in the steady-state
RANS simulations.

Boundary conditions

The description of turbulence at the inlet boundary conditions for LES is a
known challenge [53, 51]. The first attempts using steady boundary conditions
failed to predict the jet penetration correctly. To solve this problem, a turbulent
boundary condition based on the work of Klein et al. [53], described in Section
5.7.3 was used. The mean velocity profiles from the RANS simulation have
been applied to the inflow boundaries of the LES with superimposed turbulence
fluctuations. The results show that this solution was very satisfactory, with
good agreement between the LES and the measurements.

As already pointed out in the literature [79], the jet trajectory is influenced
by both the jet velocity profile and the crossflow boundary layer. When the
channel is small in comparison to the JIC, as in this work, the development of
the crossflow boundary layer is even more important to the description of the
boundary conditions since the velocity in the middle of the channel increases
as the flow develops.
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7 Jet in Crossflow

Figure 7.5: Line plots of mean velocity components U/Ucross and the specific Reynolds
stress component u′u′/U2

cross at the symmetry plane, y/D = 0, Case A.

To exemplify the sensitivity of the simulations to the crossflow and jet velocity
boundary conditions, Figure 7.6 shows the comparison of the mean velocity
U for two RANS simulations with the SST turbulence model: one with the
correct velocity profiles, and one with the same bulk velocity but block profiles
at the crossflow and jet inlets. The difference in the jet penetration is evident.
Comparing the results with the measurements for Case A shows that the
simulation with the correct velocity profiles has a better agreement than using
the block profiles, as expected.
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Figure 7.6: Line plots of the mean velocity component U/Ucross at the symmetry plane,
y/D = 0, Case A.

Figure 7.7: Developing velocity U/Ucross along the x direction, z/D = 6.75, y/D = 0,
Case A.

In face of the sensitivity of the simulations to the boundary conditions, special
attention was dedicated to them to allow the best level of agreement between
the experimental data and the simulation. The crossflow boundary layer
thickness could not be resolved using laser diagnostics because the reflections
of the laser light caused by the walls interfered with the measurements. An
alternative method was applied using the fact that the developing velocity
profile of the crossflow depends on the growth of the boundary layer. Figure 7.7

123



7 Jet in Crossflow

shows measurements using laser Doppler anemometry (LDA) at the center of
the channel along the x direction of the velocity component U of the crossflow
alone without the jet compared to the RANS simulations. The curves are
in good agreement with the measurements indicating that the growth of the
boundary layer has been correctly simulated. Furthermore, the grid sensitivity
of the developing velocity profile was checked. The grid resolution was enough
to assure grid independent results.

Figure 7.8 shows the comparison between the measured and simulated velocity
and turbulence profiles taken one diameter above the jet inlet (z/D = 1) and
varying +/-1D along the x-direction. It can be seen that the measurements are
very consistent; the peaks from the Reynolds stress components correspond to
the regions of large mean velocity gradients for the two directions considered.
The simulated velocity profiles in the x and z directions show good agreement
with the measurements.

Figure 7.8: Profiles of velocity components, U/Ucross and W/Ucross, and specific
Reynolds stresses, u′u′/U2

cross and w′w′/U2
cross, one diameter above the

jet inlet, z/D = 1, y/D = 0, Case A.

7.3 Results and discussion

7.3.1 Coherent structures

The ability of the different simulation strategies in predicting the formation and
evolution of coherent structures is depicted in Figure 7.9, showing isosurface
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Figure 7.9: Isosurface of passive scalar, Case A. From top to bottom: LES, USST and
SST simulations.
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of 1% passive scalar for a snapshot of the LES and the unsteady SST (USST)
simulation and for the steady-state result of the SST simulation, all for Case A.
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The isosurface of the LES is very contorted, indicating a high turbulence level.
However, it is difficult to discern any specific coherent structure in this picture.
Large-scale structures have also been predicted by the USST, resulting in the
sinuous isosurface observed in Figure 7.9. It is evident, however, that the
fluctuation level is much lower in comparison to the LES. The steady state
SST simulation does not predict coherent structures at all, which results in a
smooth passive scalar distribution.

It is difficult to discern any specific coherent structure from the LES in Figure
7.9. To this purpose, the isosurface of the pressure fluctuation p− p was
used in the preceding chapter to highlight the formation of Kelvin-Helmholtz
instabilities in a free jet (see Figure 6.17), and reveal the same structures
in the jet in crossflow, as depicted in Figure 7.10. A constant value for the
pressure fluctuation close to zero was used, which was chosen to enhance the
presentation of the structures. Vortex rings can be observed just downstream
of the jet inlet, which are due to the Kelvin-Helmholtz instability. The KH
structures are not as dominant as in the case of the free jet, which can be
attributed to two causes. Both jet and crossflow streams are turbulent, which
makes the visualization of the structures more difficult. In addition, the
bending of the jet in the crossflow direction acts as a destabilizing effect over
the structures. Nevertheless, these structures are very similar to the structures
found in the LIF cross section in Figure 3.10, although the huge difference in
Reynolds number. The jet in Figure 3.10 is laminar, with a Reynolds number
of 1 600, while the jet Reynolds number of the LES is 19 200.

Further structures can be analyzed using streamtraces. Figures 7.11 and 7.12
show two views of the same streamtraces originated at the jet inlet, following
the instantaneous velocity field. The Figure 7.12 shows a view of the channel
from the outlet towards the inlet. It is especially interesting to see how the
counter-rotating vortex pair is clearly visible. Figure 7.13 show streamtraces
at the symmetry plane near the jet inlet. Directly upstream of the jet, the
location where the streamtraces flow together is the horseshoe vortex. This
structure is remarkably similar to the horseshoe vortex formed at a cylinder-
wall junction.
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Figure 7.10: Isosurface of pressure fluctuation, LES of Case A.

Figure 7.11: Streamtraces originated at the jet inlet, LES of Case A.
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Figure 7.12: Streamtraces originated at the jet inlet, view from the outlet towards the
inlet, LES of Case A.

Figure 7.13: Streamtraces at the symmetry plane, y/D = 0, LES of Case A.

As in the case of the free jet, analyzing the diffusion across the superlayer can
help to understand the discrepancy between the velocity and passive scalar
fields. In order to calculate the diffusion from the LES, the superlayer was
approximated by the surface determined by the isosurface of 1% passive scalar,
which is the same used to define the intermittency function (see Figure 7.9, top).
To allow a direct comparison, the velocity component w non-dimensioned
by the bulk jet velocity U jet is employed along the passive scalar c, as both
are transported into the crossflow by the jet and span between zero and one.
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scalar Jc have been defined by Equations (6.7) and (6.8), reproduced here for
convenience

Jw = ν
∂ (w/U jet)

∂xi
·~n (7.1)

Jc = D
∂c
∂xi

·~n (7.2)

Integrating over the whole isosurface of a snapshot of the LES of Case A
resulted in a dimensionless velocity flow rate of 2.64·10−6 m3/s and a passive
scalar flow rate of 26.59·10−6 m3/s, indicating that the passive scalar gradient
is greater than the velocity gradient across the superlayer. As in the case of the
free jet, the greater passive scalar flow rate across the superlayer corroborates
with the fact that the spreading rate of the passive scalar is larger than the
spreading rate of the velocity.

7.3.2 Wake shedding frequency

The flow at the lee side of the jet in crossflow (lee side is the side that is
sheltered from the crossflow) produces alternate vortices shed in a similar way
to the Kármán vortex street formed behind solid bluff bodies, with has been
observed by many authors [28, 50, 77, 125]. The fluid at the boundary layer is
channeled out from the boundary through the so-called wake vortices. These
vortices do not form a real wake, however, as there is no detachment of the
flow [77].

Fric and Roshko [28] have characterized the jet wake using the wake Strouhal
number, St, which is a dimensionless number describing the oscillation fre-
quency of the flow. It is known that the Kármán vortex street has a characteris-
tic Strouhal number of about 0.2 in the same range of Reynolds numbers as they
used in this work. The Strouhal number as defined by Fric and Roshko reads

St =
f D

Ucross
, (7.3)
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The diffusion flux across the superlayer of velocity Jw and of the passive

where f is the frequency of vortex shedding, D is the jet diameter and Ucross is
the bulk crossflow velocity. Figure 7.14 shows values of St measured by Fric
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Figure 7.14: Measurements of Fric and Roshko [28] of the wake Strouhal number St
(Stw). Degree of repeatability of the measurements (a); data for several
combinations of Rec f and velocity ratios VR, measured at x/D = 3.5,
y/D = 1.5 and z/D = 0.5. Reproduced from [28].
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and Roshko. The repeatability of the measurements (Figure 7.14.a) is good at
a velocity ratio of 4; however, it shows a broad spectrum at a velocity ratio of 3.
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For a range of Reynolds numbers defined as Rec f =UcrossD/ν from 3 800 to
11 400 and velocity ratios between 3 and 4, the Strouhal number measured by
Fric and Roshko [28] lies between 0.12 and 0.16, being systematically higher
for the experiments with lower Reynolds numbers.

An analysis of the wake frequency has been done for the LES from Case A.
The Reynolds number defined as above is 4 650, and the velocity ratio is
4.15, which is a good match to the results of Fric and Roshko [28]. Figure
7.15 shows the collection of monitor points that have been placed in the
computational domain; they are located on only one half of the computational
domain, taking advantage of the symmetry of the geometry. The time evolution
of the passive scalar of each monitor point was analyzed using fast Fourier
transforms; the monitor point with the cleanest signal was located at x/D = 8,
y/D = 3 and z/D = 1 and is also indicated in Figure 7.15. Figure 7.16 shows
the time evolution of the passive scalar for the selected monitor point. The
result of the fast Fourier transform is depicted in Figure 7.17. The analysis
found a vortex shedding frequency of 224 Hz, leading to a Strouhal number of
0.197. The value is slightly higher than the experimental results of Fric and
Roshko; nevertheless the agreement is good considering the differences in the
experimental setup and boundary conditions. This is another good indication
that the large-scale structures of the flow have been resolved correctly by the
LES.

Figure 7.15: Overview of the computational domain with the monitor points. The
monitor point with the cleanest signal is indicated with gray color.
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Figure 7.16: Time evolution of the passive scalar of the monitor point located at x/D = 8,
y/D = 3 and z/D = 1.

Figure 7.17: Fast Fourier transform of the passive scalar signal of the monitor point
located at x/D = 8, y/D = 3 and z/D = 1.

7.3.3 Probability Density Function at intermittent regions

Pope [93] examined one-point Probability Density Functions (PDFs) measured
in shear flows, with the conclusion that, in homogeneous shear flow with a
uniform mean scalar gradient, the joint PDF of velocity and the scalar is
joint normal; whereas in free shear flows the PDFs are not Gaussian. Figure
7.18, reproduced from [93], shows the standardized marginal PDFs of the
velocity components u,v,w and the passive scalar φ in a homogeneous shear
flow. The profiles follow closely the Gaussian profile. Pope also shows that
velocity-velocity and velocity-scalar joint PDFs of the same flow are accurately
described by joint-normal distributions. Analyzing free shear flows Pope found
a quite different behavior. Figure 7.19, reproduced from [93], shows the scalar
PDFs fφ (ψ,ξ ) in a mixing layer, where ψ and ξ are the sample space variables
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= 1. As the passive scalar is a bounded variable (see Equation (2.4)), φ(xi, t)
must lie everywhere between zero and unity; consequently the probability fφ

if zero for any value that is not in this interval.

Figure 7.18: Standardized PDFs of (a) u, (b) v, (c) w and (d) φ in homogeneous shear
flow. Dashed lines are standardized Gaussians. Reproduced from [93],
values from measurements by [109].

As may be seen in Figure 7.19, in the center of the layer the PDF is broad and
roughly bell-shaped, spanning the entire range of values. As the measurement
location moves toward the high-speed stream, the PDF moves to higher values
of ψ and develops a spike of increasing magnitude at the upper bound ψ = 1,
assuming a clearly non-Gaussian shape.

The following analysis shows that the LES is able to reproduce the non-
Gaussian behavior in the JIC. The simulation of Case A has been analyzed.

Figure 7.20 shows PDFs of passive scalar c and the velocity components u,
v and w, calculated at Point A, which is situated in the recirculation region
on the lee side of the jet (x/D = 1, y/D = 0 and z/D = 2, see Figure 7.21),
where the influence of the intermittency is expected to be small. A total of
130 000 time steps were processed and analyzed. Apart from small deviations,
the PDFs in Figure 7.20 are roughly bell-shaped.
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Figure 7.19: PDFs of a conserved passive scalar in the self-similar temporal mixing
layer at various lateral positions. Reproduced from [93], values from
direct numerical simulations by [102].

Figure 7.20: PDFs of passive scalar c and the velocity components u/Ucross, v/Ucross
and w/Ucross at Point A. The dashed lines represent the mean values.
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Figure 7.21: Two dimensional map of mean passive scalar C along with the position of
Points A and B used in PDF analysis.

Analyzing now the results for the Point B placed at the intermittent region
of the jet leads to different results. Point B is placed at x/D = 2, y/D = 0
and z/D = 5, close to the region with strong formation of coherent structures
(see Figure 7.21). The statistics of u and v in Figure 7.22 remain roughly
bell-shaped, while the distributions of c and w depart clearly from the bell
shape, with a much broader distribution. The PDF of c exhibits a double-peak
distribution, which agrees with similar PDFs of jets shown, e.g., by Dahm and
Dimotakis [19].

Figure 7.22: PDFs of passive scalar c and the velocity components u/Ucross, v/Ucross
and w/Ucross at Point B. The dashed lines represent the mean values.
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For the Point A, Figure 7.23 shows a three-dimensional representation of the
joint PDF of the velocity components u and v. The joint PDF is bell-shaped, as
the marginal PDF of u and v in Figure 7.20. A two-dimensional representation
of the same joint PDF can be seen in Figure 7.24, along with joint PDFs of
other variable pairs. There is no strong departure of the bell shape for any
variable pair.

Figure 7.23: Three-dimensional representation of the joint PDF of the velocity compo-
nents u and v at Point A.

The joint PDFs at Point B are depicted in Figure 7.25. While the joint PDFs
of the velocity pair are bell-shaped, the velocity-scalar joint PDFs show a
significant departure of the bell shape. The u/c and v/c pairs show a double-
peak distribution which agrees well with the marginal PDF of c in Figure 7.22.
The joint PDF of w and c has a double peak distribution, with an elongated
shape with an angle of approximately 45 degrees. It means that w and c are
strongly correlated at this point; the joint PDF of perfectly correlated variables
would be a straight line with an angle of 45 degrees, in a two-dimensional
representation with the same scale for both variables. The strong correlation
between w and c can be explained by the fact that both passive scalar c and
the w velocity component are characteristics of the jet, which are transported
to this location mainly by the large-scale coherent structures. Quantities
transported by turbulence typically do not exhibit such strong correlation, as
seen in Figure 7.20, where the influence of coherent structures is limited and
the turbulent transport prevails. It is interesting to note here that neither the
double-peak distributions nor the strong correlation between w and c can be
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simulated by RANS turbulence models, which implicitly assume joint-normal
distributions for velocity-velocity and velocity-scalar joint PDFs.

Figure 7.24: Contour plots of joint PDFs of u and c, v and c, w and c, u and v, u and w,
v and w at Point A. Contour values are 0.02, 0.015, 0.01 and 0.005.

Figure 7.25: Contour plots of joint PDFs of u and c, v and c, w and c, u and v, u and w,
v and w at Point B. Contour values are 0.02, 0.015, 0.01 and 0.005.

7.3.4 Flow, turbulence and mixing

In this section the results of the simulations will be compared to the measure-
ments of Case A, described in reference [31]. Figure 7.26 shows the position
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of the symmetry plane (y/D = 0) and the horizontal plane (z/D = 1.5) used in
the measurements. The results of the following simulations are presented: a
large eddy simulation (LES) using the fine grid and the standard Smagorinsky
subgrid-scale model; an unsteady RANS simulation using the SST turbulence
model (USST) and steady state RANS simulations using the SST and k-ε
turbulence models. The coarse grid was used in all RANS simulations.

Figure 7.26: Overview of jet in crossflow setup showing the symmetry plane (y/D = 0)
and the horizontal plane (z/D = 1.5) used in the measurements.

It will be seen that the results of the LES have the best agreement with the
measurements. However, the good agreement comes with a high computational
cost. This cost can be reduced applying unsteady RANS (URANS) simulations
instead of LES. In the URANS approach, the whole spectrum of turbulence is
modeled, and only the unsteadiness that comes from the coherent structures
is resolved directly. It will be shown that the steady state simulations with
the SST turbulence model are superior to that with k-ε . The SST turbulence
model was consequently used in the unsteady simulations. The use of steady
state simulations using RANS turbulence models instead of the unsteady LES
or URANS simulations reduce the computational cost even more. In this
approach, the whole spectrum of turbulence is modeled, and the unsteadiness
originated from the coherent structures is ignored. The performance of two
turbulence models, k-ε and SST, was assessed. Annex A.3 shows a detailed
comparison of the computational cost for the different simulations.
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Prior to the discussion about the quality of the simulation of mixing, the veloc-
ity field and the overall flow features must be considered, as they constitute a
prerequisite for the correct description of the mixing phenomena.

The profiles in Figure 7.8 are a good indication of the quality of the boundary
conditions used in the simulations. Both mean velocity components U and
W predicted by the LES agree well with the measurements. The agreement
of the steady state RANS is also good in the jet core, however is degraded
starting at x/D = 0.5, the location where the pipe ends. Comparing the
specific Reynolds stress components u′u′ and w′w′ from the steady state RANS
simulations, while presenting good qualitative agreement, they show an overall
underestimated turbulence level. The LES predictions are in better to the
experimental data. Between the RANS simulations, the SST model yields a
better match to the data than the k-ε model.

The two dimensional plots in Figure 7.27 are a good starting point for the
discussion of the results. In this Figure, PIV measurements and the results of
the simulations for the mean velocity component U and the specific Reynolds
stress component u′u′ at the symmetry plane (y/D = 0) are shown. The jet
is mounted in the z direction, so the jet fluid that enters in the channel has a
significant W velocity component and a nearly zero U velocity component.
As the jet flows into the crossflow, it is bent in the crossflow direction and
U increases, creating the region of high U situated at x/D = 1 and z/D = 4.
With the development of the jet, crossflow fluid is entrained, and U decreases
continuously. In the lee side of the jet, a recirculation zone takes place. This
region has negative U values, which is represented by the blue color in the
contours. The recirculation region is an essential part of the structure of the jet
in crossflow, however it is difficult to measure and simulate adequately. It is
interesting to note that the recirculation region and the region with maximum
U are very close to each other. The velocity gradient in this region is therefore
very high, and very high production of turbulence is expected. The contour of
u′u′ confirms the expectation, with the locus of maximum u′u′ situated in the
region of high velocity gradient.

Comparing the results of the simulations with the measurements in Figure
7.27, the LES has clearly the better agreement. Both velocity and turbulence
fields are very well reproduced, having the field maxima at the same position
and having almost the same intensity as the measurements. Although the
position of the jet is also good reproduced by the other simulations, the
maximum values of U are slightly underpredicted. The predictions of u′u′,
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Figure 7.27: Two dimensional maps of mean velocity components U/Ucross specific
Reynolds stress component u′u′/U2

cross at the symmetry plane, y/D = 0,
Case A. From top to bottom: PIV measurements, LES, unsteady SST,
steady state SST and steady state k-ε simulations.
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on the other hand, differ substantially from the measurements. The Reynolds
stress components of the steady state RANS simulations have been calculated
using the Boussinesq hypothesis, Equation (5.4). For the unsteady SST (USST)
simulation, the Reynolds stress components have been calculated summing up
the contributions of the turbulence modeling, using the Boussinesq hypothesis,
and the root mean square of the velocity fluctuation about the mean calculated
directly during the simulation:

−u′iu
′
j︸ ︷︷ ︸

total, URANS

= 2νtSi j −
2
3

kδi j︸ ︷︷ ︸
Boussinesq

− u′iu
′
j︸︷︷︸

resolved

. (7.4)

While the measurements show a maximum value of u′u′/U2
cross at the symmetry

plane of 1.89, the prediction of the LES is 1.60, of the USST is 1.07, of the
SST simulation is 0.90 and of the k-ε simulation is only 0.68. This fact
can be explained by the presence of large-scale coherent structures in the
jet in crossflow, which induce a statistically non-stationary behavior (see
Section 2.4 for more details). The measurements were evaluated using simple
time averages, so the Reynolds stress tensor represents the whole velocity
fluctuation about the time averaged mean velocity field. This implies that these
fluctuations contain the contribution of two different phenomena: the turbulent
fluctuations and the unsteadiness of the mean flow about the time-average
created by the coherent structures. It has been shown in the preceding section
that the LES was able to resolve the major coherent structures of the jet in
crossflow; it is confirmed by the very good agreement of the fluctuation level
of the LES with the measurements. It is argued that the reason for the low u′u′
levels predicted by the USST simulation is the insufficient description of the
coherent structures. This simulation could resolve a fraction of the unsteady
character of the flow; however, a significant fraction remained unresolved.
This unresolved fraction of the fluctuation level contributes to the low levels
predicted by the USST simulation in comparison with the measurements. As
the coherent structures are not resolved at all by steady state RANS simulations,
their fluctuation level contains only the contribution of the turbulence and is
consequently lower than both unsteady simulations and measurements.

Line plots allow the quantitative comparison between measurements and sim-
ulations. Figures 7.28 and 7.29 show the comparison of the mean velocity
components U and W , and the specific Reynolds stress components u′u′ and
w′w′ between values extracted from the PIV measurements at the symmetry
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Figure 7.28: Line plots of mean velocity components U/Ucross and W/Ucross, and the
specific Reynolds stress component u′u′/U2

cross at the symmetry plane,
y/D = 0, Case A.
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plane (y/D = 0) and the simulations. One of the most critical parameters of
the jet in crossflow for engineering applications is the jet penetration, which is
defined in this work as the locus of maximum mean velocity component U .
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The profiles of U nearly collapse, indicating that the jet penetration is well
represented by all simulations except the RANS simulation with the k-ε turbu-
lence model, which results deviate from the measurements from x/D = 4.0 and
further downstream. Comparing the profiles for U and W in more detail, the
LES shows very good agreement in all positions, even near the bottom wall, a
region known to be difficult to simulate accurately due to the recirculating flow
present there. The three RANS simulations show similar results, with velocity
magnitudes that are slightly lower than the measurements in the region where
the jet is located. The agreement of the LES results with the measurements
for the specific Reynolds stress components u′u′ and w′w′ is very good in
both magnitude and location, with only a slightly overpredicted u′u′ level at
x/D = 0. As seen in Figure 7.27, the USST simulation shows values that are
consistently lower than both measurements and LES for u′u′ and w′w′, and the
results of steady state RANS simulations are even lower. Following the results
obtained with the free jet, the turbulence level predicted by the k-ε model is
consistently lower than the one predicted by the SST model.

Figure 7.29: Line plots of the specific Reynolds stress component w′w′/U2
cross at the

symmetry plane, y/D = 0, Case A.

The results of the horizontal planes corroborate the results obtained for the
symmetry plane. Figure 7.30 shows two dimensional plots of the PIV mea-
surements at a plane located 1.5 D above the jet inlet (z/D = 1.5) compared

143

with the simulations for the mean velocity component U and the specific
Reynolds stress components u′u′ and v′v′. All simulations agree well with U ,
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Figure 7.30: Two dimensional maps of mean velocity components U/Ucross and
V/Ucross and specific Reynolds stress components u′u′/U2

cross, v′v′/U2
cross

and u′v′/U2
cross, z/D = 1.5, Case A. From top to bottom: PIV measure-

ments, LES, unsteady SST, steady state SST and steady state k-ε simula-
tions.
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however with a slightly underpredicted length of the recirculation zone. The
experiments show u′u′ and v′v′ with a distinct character as two peak values can
be observed on the sides of the jet; in the case of u′u′ directly on the jet side,
and in the case of v′v′ just downstream of the jet. The LES predicts u′u′ in very
good agreement with the measurements; both the pattern and the levels agree
well. The agreement is also good with v′v′; the location of the peaks is slightly
moved in the upstream direction and the peak values are not so pronounced as
in the experiments. The measurements show maximum values of u′u′/U2

cross
and v′v′/U2

cross of 1.03 and 1.15, respectively, while the LES predicted 0.92
and 0.85. The agreement of the unsteady SST simulation is not so good, as
the two peak values on the sides of the jet for u′u′ were not predicted by the
simulations. The same applies to v′v′, with inferior quantitative and quantita-
tive agreement. The overall fluctuation level is lower than the measurements;
the unsteady SST simulation predicted peak values of 0.62 for u′u′/U2

cross
and 0.61 for v′v′/U2

cross. The steady state RANS simulations predicted peak
values of u′u′ directly upstream and downstream the jet, while v′v′ shows only
one peak region at the upstream portion of the jet, which do not agree with
the measurements. In addition, the predicted values are significantly lower
than the measurements. For example, the peak values predicted by the SST
simulation and the k-ε simulation are 0.75 and 0.39, respectively.

A more detailed comparison of the mean velocity component U and the specific
Reynolds stress component u′u′ at the symmetry plane (y/D = 0) can be seen
in Figure 7.31 for three different z/D positions (1.5, 3 and 4.5). The results
confirm the very good agreement of the LES with the measurements for both
U and u′u′. The mean velocity U of the unsteady SST simulation shows good
agreement with the measurements at x/D = 1.5 and 3.0, however the position
of the jet at x/D = 4.5 is slightly shifted downstream. The fluctuation level
shows good qualitative agreement, however the predicted levels are clearly
lower than the experimental results, especially at x/D = 3.0. The steady
state SST simulation shows a good agreement with the measurements for
U , while the simulation using the k-ε model predicted the jet to be narrower
than in the measurements. Following the results seen before, the SST and k-ε
simulations show consistently lower u′u′ levels than in the measurements. Only
at z/D = 1.5, which is close to the jet inlet into the crossflow, the u′u′ levels
agree better with the measurements. In this region the coherent structures have
not evolved sufficiently and could affect only marginally the results, which
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can explain the good agreement. In regions where the coherent structures have
already developed, the agreement is significantly degraded.
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Figure 7.31: Line plots of velocity component U/Ucross and specific Reynolds stress
component u′u′/U2

cross at the symmetry plane, y/D = 0, Case A.

Figure 7.32 shows line plots of the mean passive scalar C and the intermittency
function γ at the symmetry plane for the simulations. The intermittency func-
tion γ has been defined in Section 4.1 using the passive scalar; the classical
definition using the turbulence is not appropriate for the JIC, as both flows
are turbulent, making the definition with turbulence ambiguous. Unfortu-
nately there are no measurements of C at the symmetry plane for Case A;
the comparison of the simulations with experimental data at the horizontal
plane will be shown in the following Figures 7.33 and 7.34. The C profiles
show more pronounced differences between the different simulations than the
mean velocity components U and W in the same locations in Figure 7.28. The
LES profiles of C show a broader distribution than the profiles of the USST,
SST and k-ε simulations, in this order, which can be more clearly seen in the
profiles at x/D = 0.5, 1.0 and 2.0. This behavior agrees well with what can
be learned from the profiles of intermittency factor γ . The γ function repre-
sents the fraction of time in which each point remains in the jet fluid, and its
distribution is closely related to the amount of large-scale coherent structures
that have been resolved by the simulation. Steady state RANS simulations
do not resolve coherent structures at all, and the γ profiles assume the shape
of a step function, because in this case the intermittency factor γ is equal to
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the intermittency function I, assuming the value zero when C is smaller than
0.01 and the value unity otherwise (for more detail see Section 4.1). In all x/D
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positions, the regions where γ = 1 for the k-ε simulation are narrower than the
SST simulation, which is a consequence of the narrower C profiles predicted
using the k-ε model. Moving to the unsteady simulations, the γ distribution of
the LES has less steep gradients than of the USST simulation, especially at
the jet borders. It indicates that the LES is able to resolve a greater fraction of
the large-scale coherent structures than the USST, as the steep gradients are
typical for the steady state simulations.

Figure 7.32: Line plots of mean passive scalar C and intermittency factor γ at the
symmetry plane, y/D = 0, Case A.

Figure 7.33 shows two dimensional plots of the passive scalar C and the
intermittency factor γ for the measurements and simulations at a horizontal
plane, z/D = 1.5. Unfortunately experimental data about the intermittency
factor γ is not available. The agreement of C predicted by the LES is very
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Figure 7.33: Two dimensional maps of mean passive scalar C and intermittency factor
γ , z/D = 1.5, Case A. From top to bottom: LIF measurements, LES,
unsteady SST, steady state SST and steady state k-ε simulations.
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good, in both shape and level. The inner side of the kidney shape fits very
well to the experimental data. Considering the unsteady SST simulation, the
gradients of the scalar are steeper than in the LES, which makes the agreement
with the measurements slightly worse. The kidney shape of the jet agrees well
with the experimental data. One part of the differences in the prediction of
C can be explained by the contours of γ . The LES is able to resolve a larger
fraction of the large-scale coherent structures than the USST, which results in
γ contours that are distributed over a larger area than the contours of the USST
simulation; in other words, the LES predicts less steep gradients of γ than the
USST, which could also be seen in the profiles in Figure 7.32. The agreement
between the predictions of the LES and the USST is worse exactly in the
regions with poor agreement of γ . For the steady state RANS simulations, the
agreement of the predicted-to-measured scalar field C is not as favorable as
was shown for the velocity fields. The core flow is reasonably well predicted
by both simulations, however with a more elongated kidney shape. The RANS
simulations have more difficulty predicting the borders of the jet, with the lips
downstream being more elongated. This difficulty is expected, as the steady
state RANS simulations do not resolve coherent structures and the influence of
the intermittency is more pronounced in this region. In contrast to the results
of the LES and USST, the RANS simulations predict γ contours with a sharp
change between the jet and the ambient fluid.

The turbulent mixing can be analyzed in more detail using the line plots at
the symmetry plane (y/D = 0) of the mean passive scalar C, the intermittency
factor γ , the root mean square (rms) value of the passive scalar crms and the
u′c′ component of the specific Reynolds flux vector depicted in Figure 7.34
for three different z/D positions (1.5, 3 and 4.5). The C profiles show more
pronounced differences than the mean velocity depicted in Figure 7.31 for
the same locations. The LES simulation shows good agreement with the
measurements, with slightly underpredicted peak scalar values at z/D = 3 and
4.5. The C profiles of the USST simulation have a good agreement, although
not as good as the agreement of the mean velocity in Figure 7.31. The position
of the jet agrees well, however the profiles of the simulations are slightly
narrower than the measurements. The LES shows less steep gradients of γ

than the USST, which is particularly evident at z/D = 4.5. Comparing the γ and
C profiles, it can be seen that the broader C distribution in the case of the LES
correlates very well with the also broader γ distribution. Comparing the steady
state RANS simulations, the C profiles predicted by the SST simulation show
good agreement with the measurements at z/D = 1.5, while at z/D = 3 and 4.5
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Figure 7.34: Line plots of mean passive scalar C, intermittency factor γ , passive scalar
rms crms and specific Reynolds flux component u′c′/Ucross at the symme-
try plane, y/D = 0, Case A.
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it had problems predicting the jet borders correctly. Following the previous
results, the simulation using the k-ε model has predicted an even narrower jet
in all positions, which is expected, as the k-ε model is known to underpredict
the mixing. The LES predicts crms in good agreement especially at z/D = 1.5,
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with the two peaks at the jet boundaries being clearly discerned. However,
the overall level is lower than in the measurements, despite the fact that the
Reynolds stresses and fluxes are well represented. The crms levels of the USST
simulation are clearly too low. The reason is that for the evaluation of crms
only the unsteadiness of the flow was considered, as the RANS turbulence
models do not predict crms directly. The RANS turbulence models do not
predict crms directly, so no results are shown. The LES slightly overpredicts
u′c′ at z/D = 1.5, while for the other two locations the agreement is good. For
the other simulations the agreement of u′c′ is good, however the location of the
peaks at z/D = 3 and 4.5 are slightly moved in the downstream direction in the
steady state simulations. It should be noted that the measurements under these
high turbulent conditions are particularly challenging, and always contain a
certain amount of uncertainty. The evaluation of cross-correlations like u′c′ is
particularly sensitive, since they are an ensemble of various variables, which
make the uncertainties being even more pronounced.

The comparison with the experimental data has shown that while the mean
velocity is predicted well by all simulations, the prediction of the mean passive
scalar C depends heavily on the level of complexity of the simulation. The
results show that the agreement of C is very good using the LES, and degrades
significantly when moving to USST, SST and k-ε simulations, in this order.
This different behavior is attributed to the different way that the velocity and the
passive scalar react to the presence of the jet. When portions of ambient fluid
are entrained in the jet flow, they are accelerated before effectively meeting
the jet flow, leading to velocity fluctuations. These fluctuations, that are not
turbulent in nature, are induced by the pressure fluctuations associated with
the turbulence [63].

Figure 7.35 shows a planar cut along the symmetry plane of a single time
step of the LES of the Case A. The jet flow region is marked with gray color,
while the color of the ambient fluid is white. The boundary between the
jet flow and the ambient fluid is marked by the isocontour of C = 0.01, the
same definition used to calculate the intermittency function. The boundary
is highly convoluted, which is a result of the various coherent structures of
the flow. A small region is shown in more detail, with arrows representing
the local velocity vector. In the top right hand corner of the detail, a region of
ambient fluid (white) is being entrained by the jet flow (gray). The entrained
region is characterized by the velocity vectors, which have a component in
the vertical direction. In contrast, in other areas away from the entrained
region, the velocity vectors of the ambient fluid have components mainly in
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the horizontal direction. Although the difference in the velocity magnitude is
not very pronounced, the velocity vectors of the ambient fluid in the entrained
region show that the fluid has been accelerated in the vertical direction.

Figure 7.35: Symmetry plane (y/D = 0) of one realization of the LES of Case A. The
solid line represents the boundary between jet flow and the ambient fluid.
The detail shows also arrows representing the local velocity vector.

It corroborates with the theory [1, 93] and results for the free jet (see Section
6.3.5). As the fluid is accelerated before being effectively entrained, the
velocity variation across the superlayer is smaller than the variation of the
scalar. The analysis in Section 7.3.1 support this result, showing that the
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passive scalar flow rate across the superlayer is greater than the dimensionless
velocity flow rate, which indicates that the passive scalar gradient is greater
than the velocity gradient across the superlayer.

The conditional averages calculated with the LES can be used to analyze further
the different behavior of the velocity and scalar fields. Figure 7.36 shows the
profiles of the passive scalar C along with the mean values conditioned on the
jet flow C j and on the crossflow Cc. The intermittency factor γ is also plotted.
As C = 0 in the crossflow, the value of Cc is zero in all profiles. In the jet core
region, where γ = 1, the value of C is equal to C j. In the lee side of the jet, even
with decreasing value of γ , the values of C and C j remain almost identical.
This correlation is the same found in steady state simulations, and indicates
a limited influence of the coherent structures in this region. On the upstream
side of the jet the difference between C and C j becomes evident, with the
values of C j reaching values around 0.1 and then suddenly dropping to zero.
This indicates that, in this region, the mean passive scalar value diminishes
as a consequence of the diminishing fraction of time that jet fluid flows there,
however the value of the passive scalar inside the jet remains more constant
toward the jet edge than the mean profiles suggest. This effect is caused by the
large-scale coherent structures present in the flow, as suggested by Dahm and
Dimotakis [19]. The turbulence inside large-scale structures is high, which
leads to fairly homogeneous passive scalar value inside them. The value of C j
at the jet borders reflects this fairly homogeneous distribution.

Figure 7.37 shows line plots of the mean velocity component U along with the
mean values conditioned on the jet flow U j and on the crossflow Uc and the
intermittency factor γ . In the lee side of the jet the three mean values U , U j and
Uc are closely correlated, with negligible influence of coherent structures. The
value of Uc is different from the expected value for the crossflow (Uc/Ucross ≈
1), indicating a strong influence of the jet flow in this region. In the upstream
side, U and Uc tend to the expected value of unity as γ tends to zero. The value
of U j deviates only slightly from the mean value U until dropping suddenly to
zero. For the passive scalar, the discrepancy between C j and C is much more
evident in the region 0<γ<1, where the influence of the intermittency is more
relevant.
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Figure 7.36: Line plots of mean passive scalar C, mean passive scalar conditioned on
the jet flow C j, conditioned on the crossflow Cc and the intermittency
factor γ at the symmetry plane, y/D = 0, LES of Case A.

Figure 7.37: Line plots of mean velocity component U/Ucross, mean velocity compo-
nent conditioned on the jet flow U j/Ucross, conditioned on the crossflow
Uc/Ucross and the intermittency factor γ at the symmetry plane, y/D = 0,
LES of Case A.

In contrast, the discrepancy between U j and U is less evident and limited to
the jet edges where γ is close to zero. It is interesting to note that, in some
regions of the jet core (γ = 1), the velocity conditioned on the crossflow Uc
assumes higher values than in the pure crossflow at x/D = 1. It is argued
that the reason for that phenomenon is the acceleration experienced by the
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ambient fluid that is entrained by the jet flow. This acceleration is induced by
the pressure fluctuations associated with the jet flow [63].

It can be learned from Figures 7.36 and 7.37 that the intermittency has different
effects on the velocity and scalar fields. It corroborates with the comparison
of the measurements and the results of the simulations, which indicated good
agreement of the mean velocity using all simulations, while for the passive
scalar only the results of the LES and the USST, that are able to resolve the
intermittency, had good agreement with the measurements.

7.3.5 Impact of different velocity ratios

After the extensive comparison of the simulations with the measurements
of Case A, in this section the results of the simulations are compared to
measurements of Cases B, C and D. The major difference between them is the
velocity ratio, which increases from R=2.36 for Case B to R=4.49 for Case C
and R=6.62 for Case D. Figure 7.38 show isosurfaces of passive scalar C =
0.01 for the LES of the three cases; the strong influence of the velocity ratio
over the jet penetration depth can be clearly seen. As the measurements of
Case A, these were also performed in the Engler-Bunte-Institute, Division
of Combustion Technology (EBI-VBT) using the simultaneous PIV and LIF
technique. All measurements are at the symmetry plane (y/D = 0), allowing
the comparison of mean velocity and passive scalar and their fluctuations.

The results of the following simulations for each boundary condition are
presented: a large eddy simulation (LES) with the standard Smagorinsky
subgrid-scale model; an unsteady RANS simulation using the SST turbulence
model (USST) and steady state RANS simulations using the SST turbulence
model. The coarse grid was used in all simulations, in contrast to the previous
section where the LES used the fine grid. It was shown in Section 7.2, espe-
cially Figure 7.4, that the effect of the grid resolution on the mean velocity
was very limited. Although the effect on the turbulence is not negligible, the
following analysis has shown that the results show the same trends and lead to
the same conclusions as the simulations using the fine grid.
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Case B

The velocity ratio of Case B is 2.36, which generates a jet that develops close
to the bottom wall of the channel (see Figure 7.38). Figures 7.39 and 7.40
show line plots of mean velocity components U and W , specific Reynolds
stress components u′u′ and w′w′, mean passive scalar C and passive scalar
rms crms at the symmetry plane (y/D = 0). The penetration depth is predicted
well by all simulations; the U profiles almost collapse. The same can be said
from the W profiles, with a small deviation between the measurements and
the simulations at x/D = 0 in the region below z/D = 1. As the W velocity
component has its maximum at the core region of pipe flow, it is expected to
decrease with increasing z/D as the pipe flow enters the channel, as has been
seen in the measurements of Case A and is also predicted by the simulations.
The measurements show a different behavior, with the jet velocity increasing
when flowing into the domain until z/D = 0.9 and then decreasing. It is argued
that it is due to some inconsistency in the measurements.

Following the trend in Case A, the u′u′ and w′w′ fields are substantially dif-
ferent between the simulations. The LES has a good agreement with the
measurements, in both shape and level, excluding the region at x/D = 0 and
below z/D = 1 discussed above. The USST simulation predicted lower levels
of both Reynolds stress components, and the levels of the SST simulation are
even lower. This deviation agrees well with the different level of description
of the large-scale coherent structures by the different simulations: while the
LES is able to resolve a large fraction of the coherent structures, the USST
can resolve only a limited fraction of them and the SST resolve no coherent
structures at all. A more detailed discussion can be seen in the results of
Case A in Figure 7.27, and are also valid for the Case B in question.

The differences of the profiles of mean passive scalar C are more pronounced
than the profiles of the mean velocity. The agreement of the LES is very good.
Both RANS simulations, on the other hand, have predicted a distribution that
is narrower as the measurements show. The passive scalar rms crms simulated
by the LES is in good agreement with the measurements, with a slightly
underpredicted peak value from x/D = 1, which can be related to use of the
coarse grid. The USST predictions of crms consider only the unsteadiness of
the flow, because the RANS models do not calculate crms directly. The results
of the USST show levels of crms that are much lower than the measurements.
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Figure 7.38: Isosurface of passive scalar for Cases B, C and D.
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Figure 7.39: Line plots of mean velocity components U/Ucross and W/Ucross and the
specific Reynolds stress component u′u′/U2

cross at the symmetry plane,
y/D = 0, Case B.
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Figure 7.40: Line plots of specific Reynolds stress component w′w′/U2
cross, passive

scalar C, passive scalar rms crms at the symmetry plane, y/D = 0, Case B.
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Case C

The Case C has a velocity ratio of 4.49, which is close to the value of 4.15 from
Case A. The jet flows approximately in the middle of the channel, which allow
the undisturbed development of large-scale coherent structures (see Figure
7.38).

Figures 7.41 and 7.42 show line plots of the same variables as in Figures 7.39
and 7.40. As for Cases A and B, all simulations show good agreement with the
measurements for the mean velocity components U and W . The penetration
depth is also in good agreement, especially the LES.

The predictions of u′u′ and w′w′ follow the same trend seen in Cases A and B,
with the LES having an overall higher fluctuation level than the USST and SST
simulations. The agreement of u′u′ predicted by the LES is not as good as seen
in Case A, which can be attributed to the coarser grid used in the simulation
of Case C. For w′w′ the agreement of the LES with the measurements is
better, with only a region at x/D = 0.5 and below z/D = 2 with a significant
deviation. The fluctuation level of the USST and SST simulations is lower
than the measurements and the LES. As discussed previously, this deviation is
attributed to the different level of description of the coherent structures by the
different simulations.

The mean passive scalar C of the LES shows a very good agreement with the
measurements. Following the trend of Cases A and B, the RANS simulations
have predicted a narrower distribution than the measurements show. The
agreement of crms simulated by the LES is good, with a slightly underpredicted
level in the region below z/D = 4 downstream of x/D = 0.5. As the USST
predictions of crms consider only the unsteadiness of the flow, the profiles show
much lower levels than the measurements.
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Figure 7.41: Line plots of mean velocity components U/Ucross and W/Ucross and the
specific Reynolds stress component u′u′/U2

cross at the symmetry plane,
y/D = 0, Case C.
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Figure 7.42: Line plots of specific Reynolds stress component w′w′/U2
cross, passive

scalar C, passive scalar rms crms at the symmetry plane, y/D = 0, Case C.
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Case D

The velocity ratio of Case D is the highest in this study with the value R=6.62,
which leads the jet to reach the upper wall of the channel at a point near
x/D = 10 (see Figure 7.38). This fact has only a limited influence at the results
presented below, that span between x/D = -0.5 and 6. It has, however, an
adverse impact on the development of large-scale coherent structures, that are
deformed and eventually destroyed when reaching the upper wall.

Line plots of the same variables as in Figures 7.39 and 7.40 can be seen in
Figures 7.43 and 7.44. The agreement of the mean velocity components U and
W is good for all simulations, including the penetration depth. The deviation is
slightly more pronounced only in the region at x/D = 0.5 and below z/D = 4,
which is characterized by an intense recirculating flow. The recirculation
region poses a challenge to both measurements and simulations.

The comparison of u′u′ and w′w′ shows a different behavior as the results
for Cases A, B and C. The three simulations predicted levels of u′u′ in good
agreement with each other and to the measurements. The difference between
the simulations became more visible for w′w′, however the agreement is still
good. Only the LES had more problems in the region at x/D = 0.5 and below
z/D = 4 discussed above. As the higher velocity ratio of Case D leads the
jet to reach the upper wall of the channel, the development of the large-scale
coherent structures of the flow is adversely affected. The influence of the
coherent structures is consequently less pronounced, which leads in turn to a
less pronounced difference between the unsteady and steady state simulations.
It should also be noted that the coarse grid has been used for the LES, which
is not able to fully resolve the steep gradients of the flow, which can affect
negatively the agreement with the measurements.

The turbulent mixing, represented by the mean passive scalar C, follow the
trend seen for the other velocity ratios and show a clear difference between
the simulations. The LES has a good agreement, while both RANS sim-
ulations have predicted a narrower distribution as the measurements show.
The agreement of the LES profiles of passive scalar rms crms is satisfactory,
with larger deviations between x/D = -0.5 and 0.5. The USST predictions of
crms are much lower than the measurements, which is a consequence of only
considering the unsteadiness of the flow to evaluate crms.
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Figure 7.43: Line plots of mean velocity components U/Ucross and W/Ucross and the
specific Reynolds stress component u′u′/U2

cross at the symmetry plane,
y/D = 0, Case D.
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Figure 7.44: Line plots of specific Reynolds stress component w′w′/U2
cross, passive

scalar C, passive scalar rms crms at the symmetry plane, y/D = 0, Case D.

An inconsistency should be noted in the measurements of crms. In the regions
where the mean concentration C is zero there should be no concentration
fluctuation and consequently crms should be zero; it is a consequence of
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measurements show a positive value of crms around 0.04 in the regions where
C = 0.

7.3.6 Correlation between momentum and passive
scalar turbulent diffusivity

Within the RANS framework introduced in Section 5.2, there are two quan-
tities that describe the turbulent diffusivity of momentum and passive scalar:
the eddy viscosity νt and the turbulent diffusivity Dt , respectively. The eddy
viscosity is the factor of proportionality between the specific Reynolds stress
tensor and the mean strain rate tensor Si j through the Boussinesq approxima-
tion, Equation (5.4), repeated here for convenience

−u′iu
′
j = 2νtSi j −

2
3

ρkδi j. (7.5)

In the same way, the turbulent diffusivity is the factor of proportionality
between the specific Reynolds flux vector and the mean scalar gradient through
Equation (5.29), also repeated here

−u′ic′ = Dt
∂C
∂xi

. (7.6)

The ratio between the two diffusivities is called turbulent Schmidt number
σt = νt/Dt .

Figure 7.45: Two dimensional maps of mean passive scalar C, z/D = 1.5, Case A,
for simulations using the SST turbulence model and turbulent Schmidt
numbers σt of 0.3, 0.5 and 0.7.
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One approach often used to enhance the mixing simulation is to decrease the
standard value of the turbulent Schmidt number σt from 0.9 and consequently
scale the Reynolds flux vector with it. In Figure 7.45 the results from three
simulations using the SST turbulence model can be seen, with σt of 0.3, 0.5
and 0.7. The passive scalar field of the simulation using σt = 0.3 does not have
the steep gradients of the standard simulation using σt = 0.9; this is consistent
with the increased turbulent mixing. The above changes to σt affected the
whole field simultaneously. The mixing in the jet core is well represented
using the value of 0.9 while the borders appear to be better predicted using
a lower value. This finding is consistent with the fact that the intermittency
is higher at the jet borders; the deviations are expected to be higher in this
region.

It is tempting to apply the definitions of Equations (7.5) and (7.6) to the
experimental data and to the LES simulation and calculate σt , as both evaluate
the Reynolds stresses and fluxes along with the gradients of the mean quantities.
However, the application of these definitions is not straightforward. Within the
RANS framework the eddy viscosity is a scalar quantity, which depends on the
turbulent kinetic energy k and a length scale based either on the dissipation rate
ε or on the specific dissipation ω . The turbulent diffusivity and the turbulent
Schmidt number are also scalar quantities. On the other hand, when evaluating
the results of the measurements, it becomes clear that the eddy viscosity has
a different value for each component of the Reynolds stress tensor, being in
fact a tensor quantity. The same applies to the turbulent diffusivity and to the
turbulent Schmidt number, which are in fact vector quantities. The comparison
of these tensor and vector quantities with the scalar results of RANS models
demands great care.

Despite the shortcomings, much can be learned when analyzing the results
of the measurements and the LES. The two-dimensional experimental data
allows the calculation of one pair of eddy viscosity and turbulent diffusivity.
For example, at the symmetry plane (y/D = 0) the Reynolds stress component
u′w′ and the Reynolds flux component u′c′, together with the gradients of the
mean quantities, can be evaluated. Figure 7.46 shows, for the measurements
and for the LES of Case A at the symmetry plane, two-dimensional maps of
the component of turbulent Schmidt number in the x-direction σt,x, together
with the axial evolution at three vertical positions of u′w′, u′c′ and σt,x. To
improve the readability of the picture, the plots were limited to regions with
values of C between 0.05 and 0.95 and with absolute values of ∂C/∂x above
0.04.
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Figure 7.46: Two dimensional maps of turbulent Schmidt number σt,x and line plots of
the Reynolds stress component u′w′, the Reynolds flux component u′c′

and σt,x at the symmetry plane, y/D = 0, for the measurements (top) and
LES of Case A (bottom).

The major difficulty in comparing the turbulent Schmidt numbers from the
measurements or the LES with the definition of the RANS framework is
actually the fact that the turbulence is not the only source of fluctuation in the
jet in crossflow. Equations (7.5) and (7.6) are derived assuming that turbulence
is the only source of fluctuation in the flow, as all equations in RANS context.
This is clearly not the case in the jet in crossflow, especially in regions where
the coherent structures have already developed. The experimental results
support this argument. At the jet root, near the nozzle, the coherent structures
have not evolved sufficiently to affect the flow. In this region σt,x assumes
values between 0.3 and 1.3, which agrees well with the values recommended
in the literature. Further downstream the influence of the coherent structures
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high and very low values, which is clearly indicated by the sudden appearance
of red and blue regions in the contour plots from z/D = 3 and downstream.
This finding leads to the conclusion that, in the presence of coherent structures,
Equations (7.5) and (7.6) do not adequately represent the phenomena present
there.

7.4 Concluding thoughts

The results of different simulations have been compared to high quality experi-
mental data, for a series of boundary conditions. The LES has successfully
predicted the various coherent structures of the flow, including the counter-
rotating vortex pair (see Figure 7.12), the horseshoe vortex (see Figure 7.13)
and the wake vortices, which shedding frequency has been analyzed in Section
7.3.2.

The agreement of the LES results with the measurements is very good for
both the mean variables and the fluctuations. The unsteady SST simulation
shows very good agreement with the mean variables. On the other hand, the
fluctuation levels are systematically lower than the measurements, which can
be attributed to the fraction of coherent structures that could not be resolved by
the unsteady SST simulation. The agreement of the mean variables predicted
by the steady state RANS simulations with the measurements is good, with
the agreement of the mean velocity being systematically better than the mean
passive scalar. The fluctuation levels predicted by the steady state simulations
are significantly lower than the measurements, the reason being that these sim-
ulations do not resolve the coherent structures at all, neglecting an important
source of unsteadiness.

A detailed analysis has shown that, in the flow regions dominated by coherent
structures, the turbulent Schmidt number σt does not adequately represent the
mixing phenomena present there.
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8 High Strain Burner

Tools for simulating turbulent mixing with a high level of accuracy have been
developed and tested in free jet (Chapter 6) and jet in crossflow (Chapter 7
configurations. In this chapter, these tools are employed in the simulation of a
complex combustion system, in which the turbulent mixing plays a major role
in the flame geometry and consequently in the whole system.

This chapter begins with a review of a short introduction about the combus-
tion system being studied. It is followed by the experimental setup and the
measurements. The chapter proceeds with the numerical setup and the results
of the simulations. The comparison of the results of the simulations with the
measurements closes this chapter.

8.1 Introduction

The focus of this study, which was financially supported by the Ministry of
Research of Baden-Württemberg, Germany together with Siemens AG Ger-
many within the special research initiative "Kraftwerke des 21. Jahrhunderts"
("Power Plants of the 21th Century"), is on the combustion zone generated
by a combustible mixture injected into the crossflow stream of vitiated air
in a two staged combustion system. The combustible mixture is composed
of methane and air at different proportions, while the vitiated air stream is
composed of exhaust gases containing a reduced percentage of oxygen com-
pared to air. Figure 8.1 shows the layout of the experimental setup, which will
be explained in more detail in the next section. The experiments have been
conducted by Dr. Prathap Chockalingam, and the results have been partially
published by Galeazzo et al. [35]. This system was given the name High Strain
Burner, as the combustible mixture is injected with high velocities (and conse-
quently high strain) into the vitiated air stream, causing the flame to burn lifted.
In many practical burners in gas turbine combustors, lifted turbulent flames
are employed. Significant efforts had been invested by many researchers to
understand the stabilization of lifted non-premixed flames [90, 93, 71, 60].
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Lifted turbulent flames generate significantly lower pollutant emissions than
burner attached flames because of the mixing of the fuel with the surrounding
oxidizer in the lift-off regime. A detailed review on stabilization and blow
out mechanisms of turbulent jet flames was given by Pitts [90]. Peters [89]
quoted that theory based on partial premixing predicts the lift-off height of
a turbulent jet flame that matches closely with the experimental data. Lyons
[71] in his review mentioned that theories based on partial premixing and edge
flames are the foremost approaches considered for the determination of lift-off
height of the diffusion flame. In a recent review, Lawn [60] had discussed the
effect of coflow fluid on the stabilization of turbulent jet flames. The above
mentioned reviews mainly discussed the stabilization mechanisms and the
determination or estimation of lift-off height of the turbulent jet flames with or
without coflow studied at atmospheric condition.

Results obtained with a similar system were already published by Prathap et
al. [95, 96], with emphasis on the NOX formation. An axially staged combus-
tion system at elevated pressure conditions was studied experimentally and
numerically. Pure methane was injected into the crossflow stream of vitiated
air, and its effect on the NOX formation in the secondary stage was measured.
They reported that the mole fraction of NOX formed in the secondary stage
was lesser than 15 ppm for the investigated operating conditions. Although the
steady state RANS simulations reported in references [95, 96] could reproduce
qualitatively the non-similarity of the penetration depth with the pressure,
which was observed experimentally, the agreement of the flame position was
not quite satisfactory.

The main objective of the present study was to analyze a turbulent lifted
premixed flame anchored in a crossflow of vitiated air in the second stage of a
two staged combustor at elevated pressure conditions, in which the turbulent
mixing plays a major role in the flame geometry. The chemiluminescence
technique was used to image the secondary combustion zone experimentally.
Unsteady large eddy simulations (LES) and steady state RANS simulations
using the presumed JPDF turbulent reaction model were used to simulate the
combustion in the secondary combustor.

8.2 Experiments

The layout of the experimental setup can be seen in Figure 8.1. The experi-
mental setup has two stages. The first stage comprised a pulsation damper (not
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shown in the picture) and a primary combustor. The pulsation damper was
used to ensure a uniform flow rate of combustion air in the air blast nozzle by
eliminating the fluctuations in the incoming compressed air. The primary com-
bustor was equipped with a low swirl air blast nozzle operating with kerosene,
generating the vitiated air for the second stage.

Figure 8.1: Layout of the experimental setup with dimensions. The flow direction is
from left to right.

Then the secondary combustor followed the primary combustor as shown
in Figure 8.1. The secondary combustor possessed optical access. It was
quadratic in shape with inner dimensions of 45 x 45 mm. The size of the
optical windows of the secondary combustor was 45 x 100 mm (41 x 90 mm
after counting the wall interference effects). The secondary stage injector was
a tubular burner with an inner diameter of 20 mm and a length of 327 mm.
It was equipped with a ceramic porous disc mounted after the gas and air
inlets in the injector to mix the air and methane flows. The injector was flush
mounted in the secondary stage combustor. The distance between the axis
of the injector and the leading edge of the optical windows was 38 mm. The
optical rig could be operated up to 5 bar and with vitiated air temperatures up
to 1800 K.

Monitoring the flame front itself is a difficult task. The OH radical is one
important intermediate species in the oxidation of hydrocarbon fuels, being
used as a marker for the flame front. In the chemiluminescence technique, a
camera records the light emitted by the chemically excited OH, denoted OH*.
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Unlike the OH molecule, which exists as an equilibrium product in regions
of high temperature, the chemically excited OH* is short-lived and results
from chemical reactions in regions with high heat release. Chemiluminescence
imaging technique equipped with an ICCD (intensified charge-coupled device)
camera was used to image the OH* emissions of the secondary stage flame.
More details concerning the experimental setup can be found in Galeazzo et
al. [35].

8.2.1 Operation procedure

The operating conditions of the experiments are summarized in Table 8.1.
The air required for primary combustion was preheated up to 700 K and then
supplied to the pulsation damper. The kerosene fuel was injected directly into
the axis of the air blast nozzle using a hollow cone injector. To approach the
desired operating conditions, the equivalence ratio of the primary combustor
was close to 0.44. The temperature of the vitiated air was monitored using
three thermocouples located at the bottom flange of the primary combustor.
The pressure drop across the air blast nozzle and the absolute pressure in the
combustion chamber was monitored using absolute pressure transducers. The
mass flow rates of air and methane to the secondary stage tubular burner were
measured using digital mass flow meters.

Initial temperature of primary combustion air 700 K
Pressure of primary combustor 2 bar
Adiabatic flame temperature in the primary stage 1820 K
Equivalence ratio of primary stage combustible mixture about 0.44
Initial temperature of secondary stage mixture 300 K
Equivalence ratio of secondary stage combustible mixture 0.55 to 1.02

Table 8.1: Operating conditions.

To image the secondary combustion zone, chemiluminescence technique was
used. It comprised of an ICCD camera mounted with a UV objective. The
camera chip has a maximal resolution of 512 x 512 pixels, with a sampling
rate of 3.5 Hz. The camera was positioned perpendicular to the injector. The
light emitted by the OH* radicals has a maximum wavelength around 306.4
nm [58].
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Once the desired operating conditions of the vitiated air in the secondary
optical combustor were achieved, the premixed methane and air mixture was
injected into the secondary combustor using the secondary stage injector. Then,
the secondary stage combustion zone stabilized in the secondary combustor
was imaged using the ICCD camera. The same procedure was repeated for all
the investigated operating conditions.

8.2.2 Experimental results

Figure 8.2 shows the mean value of chemiluminescence intensity emitted by
OH* radicals produced in the secondary stage combustion zone. The mean
value was calculated from 200 images using a MATLAB code. As mentioned
earlier, an ICCD camera was used for imaging the chemiluminescence emis-
sions from OH* radicals. The resolution of the ICCD camera was 512 x 512
pixels, which corresponds to a physical distance of 120.3 x 120.3 mm. The
field of optical access after subtracting the regions under the influence of wall
effects (i.e., 41 x 90 mm) is shown in Figure 8.2. At φ = 0.55, the secondary
stage combustion zone stabilized well away from the injector in the crossflow
of vitiated air. With further increase in the equivalence ratio of the secondary
stage combustible mixture to 0.77, the secondary stage combustion zone moves
upstream. At stoichiometric condition, it stabilizes very close to the injector
and the flame base is not visible in the figure as it is located in the non-optical
access zone. The reason for this behavior is the turbulent burning velocity,
defined as the speed at which the flame would propagate through a quiescent
mixture of unburned reactants, which depends on the stoichiometry of the
reactants, properties of the flow and turbulence. As the flow field remains the
same for all conditions, the reason for the different stabilization points lies in
the stoichiometry. The increase in the equivalence ratio from φ = 0.55 to 1.02
corresponds to an increase in the burning velocity, as the equivalence ratio
approaches the stoichiometric value. The flame stabilizes in a region where
the turbulent burning velocity is able to sustain the incoming flow velocity,
leading to flame stabilization [91]. The increased burning velocity leads the
flame to stabilize in regions with higher flow velocity, which are closer to the
injection point.

To estimate the approximate location of the secondary stage combustion zone
of these images with respect to the axis of the injector, the first occurrence of
maximum intensity of the corresponding operating condition was used. Fol-
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lowing the mentioned procedure, the estimated axial locations of the secondary
stage combustion zone were for φ = 0.55 at 112.5 mm, for φ = 0.77 at 74.3
mm and for φ = 1.02 at 61.8 mm.

Figure 8.2: Mean (200 images) OH* chemiluminescence images of secondary stage
combustion zone for the following equivalence ratios in the secondary stage:
from top to bottom, (1) φ = 0.55, (2) φ = 0.77 and (3) φ = 1.02.
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8.3 Numerical setup

The effect of the change in the equivalence ratio of the secondary stage pre-
mixed methane-air mixture injected into the crossflow stream of vitiated air
on the secondary stage combustion zone has been numerically studied. Figure
8.1 shows the investigated computational domain. It comprised of the primary
and secondary combustors, with the same dimensions than the experimental
rig. As the present focus was mainly on the flame stabilized in the secondary
combustor and also to reduce the complexity of the simulation, the primary
combustor was not modeled in detail. The vitiated air was introduced through
the nozzle mounted in the primary combustor. The values of inlet conditions
of the vitiated air were obtained from the measurements.

Now in the secondary combustor, the secondary stage premixed methane-air
mixture was injected into the crossflow stream of vitiated air from the primary
combustor, which leads to a stabilization of secondary stage flame. This
configuration resembles a typical jet in crossflow, a flow configuration known
by its features like large-scale coherent structures and recirculation regions,
as seen in Chapter 7 and in the literature, i.e. [72, 31]. Galeazzo et al. [31]
reported that large eddy simulation (LES) predicts the flow configuration in
a jet in crossflow with very high accuracy. In order to investigate this flow,
which resembles a jet in crossflow configuration with additional chemical
reactions, LES and steady state RANS simulations were used.

A solver developed using the CFD software package OpenFOAM [84] was
used for the simulations. For the LES, the subgrid scale turbulence was
modeled employing the Smagorinsky model, with the Smagorinsky constant
set to 0.1. The turbulence in the RANS simulations was modeled using the
k-ε model.

The turbulent fluctuations in the LES were generated at the inlets using a
boundary condition based on the work of Klein et al. [53], described in
Section 5.7.3. The flow through the primary combustor was modeled with 5%
turbulent intensity and a length scale of 5 mm, approximately 1/6 of the nozzle
diameter.

The non-reflecting boundary condition, described in Section 5.7.3, was used
in the outlet, allowing the pressure waves to flow out of the computational
domain.
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The numerical grid used in the simulations is three-dimensional, as required
by LES, with more than 2 million hexahedral elements. Figure 8.3 shows the
numerical grid at the symmetry plane in the region near the methane injector.
The time step was 0.5 microseconds long, resulting in a CFL number of about
0.3. Approximately 115 characteristic time steps, calculated using the injector
nozzle diameter and the bulk velocity of the vitiated air in the secondary
combustor D/Uvitiated air, were simulated. It means that the vitiated air has
flown over 115 times through the nozzle diameter during the averaging time,
which corresponds to 0.04 seconds and 80,000 time steps.

Figure 8.3: Numerical grid at the symmetry plane near the injector.

The description of the interaction between turbulent mixing and chemical
reaction is a main challenge in the simulation of complex combustion sys-
tems. Prathap et al. [95, 96], analyzing a very similar system, compared the
performance of two different modeling approaches: a combination of the
eddy dissipation and the finite rate chemistry models and the presumed joint
probability density function (JPDF) model. The results showed that the simu-
lations were in closer agreement with the measurements when employing the
presumed JPDF model. Consequently, the presumed JPDF model was used in
the present simulations. The model is presented in detail in Section 5.6.

Two operating conditions, corresponding to the maximum and minimum
equivalence ratios at 2 bar operating pressure were simulated. The boundary
conditions are shown in Table 8.2.
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Simulation 1 2
Absolute pressure (bar) 2 2
Equivalence ratio of secondary
stage combustible mixture 0.55 1.02
Vitiated air temperature (K) 1696 1696
Mass flow of the vitiated air (kg/h) 169.5 171.5
Mass flow of combustible mixture (kg/h) 72.2 75.2
Mass composition of the vitiated air
YO2 0.1110 0.1119
YCO2 0.1030 0.1028
YH2O 0.0405 0.0403
YN2 0.7455 0.7450

Table 8.2: Boundary conditions for the simulations.

8.4 Results and discussion

One of the characteristics observed in the LES is an acoustic resonance de-
tected in the methane injector of the two staged combustion system under
consideration. This effect, being essentially time-dependent, is not present in
the steady state RANS simulations. New measurements have been planned to
confirm the presence of this resonance effect in the methane injector, as the
current measurements are not conclusive about it. Nevertheless, the resonance
effect observed in the unsteady simulations was analyzed in detail using a
computational domain that included only the secondary combustion chamber
and the methane injector (see Figure 8.4). The equivalence ratio was set to
1.02 and a plug flow profile was applied to the vitiated air inlet. The other
boundary conditions followed the values in Table 8.2.

In the injector, the methane-air mixture flows through a ceramic porous disc
in order to enhance the mixing of the components, which has the side effect
of damping the turbulence of the flow. A LES that could fully resolve the
interaction of the ceramic porous disc with the pressure waves generated by
resonance would require a computational grid describing each pore of the
porous body, which is out of the scope of this study. Two different boundary
conditions for the pressure were studied instead: fully reflecting and non-
reflecting boundary conditions (BC), which represents the porous body as a
solid wall and as an open inlet, respectively. The development of the pressure
inside the methane injector is shown in Figure 8.5. The starting solution is
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the same, and after 0.04 s the solutions start to diverge from each other. The
amplitude of the pressure waves is slightly higher using the fully reflecting BC
than using the non-reflecting BC, which is a consequence of the pressure waves
being reflected into the computational domain when using it. The frequency
of the pressure waves, on the other hand, remains practically unaffected by
the choice of BC. The average time between the pressure waves is 0.00137 s,
resulting in a frequency of approximately 730 Hz.

Figure 8.4: Computational domain for the study of the resonance in the methane injec-
tor, including only the secondary combustor and the methane injector.

Figure 8.5: Pressure inside the methane injector over time. LES with fully reflecting
and non-reflecting boundary conditions.

180



8.4 Results and discussion

The resonance frequency of a closed tube can be approximated using the
following equation:

f =
na

4(L+0.4 d)
(8.1)

where n here is an odd number (1, 3, 5...), a is the speed of sound, L the
length of the tube and d the diameter of the tube. Substituting the values for
the present case and using n = 3, the resonance frequency is estimated to be
774 Hz, in very good agreement with the value of 730 Hz predicted by the
simulations.

The effect of the resonance on the flow can be visualized in Figure 8.6, where
the time evolution of the contours of mixture fraction makes the injector flow
visible. The time elapsed between the frames is 0.002 s. The pressure waves
promote a pulsation of the flow inside the methane injector, with considerable
consequences to the mixing of the jet with the vitiated air flow. The choice
of boundary conditions has a small impact in the mean mixture fraction, as
depicted in Figure 8.7. The mean mixture fraction is almost the same using
the fully reflecting or the non-reflecting boundary conditions. The impact of
using RANS or LES on the mixing will be discussed in more detail using the
results for the whole system in Figures 8.9 and 8.10.

Figure 8.6: Snapshots of mixture fraction f , frames a to f . LES using fully reflecting
boundary condition.
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Figure 8.7: Contours of mean mixture fraction f . LES using the fully reflecting and
the non-reflecting boundary conditions.

Figure 8.8: Snapshots of isosurface of c = 0.5 for equivalence ratios φ = 0.55 and
φ = 1.02.

Now the focus will be shifted to the simulation of the whole system, with
primary and secondary combustors (see Figure 8.1). The development of flame
is described by the reaction progress variable c. Figure 8.8 shows snapshots
of c = 0.5, which indicates the location of the flame front, for the LES with
equivalence ratios 0.55 and 1.02. The flame fronts are highly distorted due to
high turbulent intensities and large-scale coherent structures imparted by the
jet in crossflow configuration. Figure 8.8 indicates that the flame at φ = 1.02
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burns lifted and stabilized in the immediate vicinity of the injector in the flow
direction of vitiated air. However, at φ = 0.55 the combustion zone stabilized
further downstream and well away from the injector, which corroborates with
the measurements (see Figure 8.2).

Figure 8.9 shows the contours of mean mixture fraction f , mean reaction
progress variable c and mean temperature in the symmetry plane (y = 0) of the
secondary combustor for the steady state RANS and LES simulations with
φ = 0.55. There is a very pronounced difference between the results of the
RANS and the LES. While in the RANS simulations the jet develops closer to
the bottom wall, in the LES the jet touches the upper wall in a short distance.
The mixing is more intense in the LES, which can be seen observing the more
homogeneous color distribution of mixture fraction. The cause of the large
deviation between the RANS and the LES is the same as discussed in Chapter
7 for the jet in crossflow: the RANS simulations neglect an important source
of unsteadiness, which has a direct impact in the description of the mixing. In
the case of the jet in crossflow, the unsteadiness was caused by the coherent
structures. In the combustion system being analyzed, besides neglecting the
coherent structures, also the resonance effect in the methane injector cannot be
reproduced by the steady state RANS simulations, with severe consequences
for the mixing and consequently for the whole combustion system.

The large deviation between the RANS and the LES can also be seen in
the contours of temperature, while the mean flame position, denoted by the
reaction progress variable, do not deviate as much as the mixture fraction.

Figure 8.10 shows the same results as Figure 8.9, however with φ = 1.02.
Analyzing the mean mixture fraction f , the contours of lean and stoichio-
metric conditions should be nearly the same due to the presence of identical
boundary conditions until x = 30 mm. For stoichiometric condition, at x = 30
mm, the combustion started in the secondary stage and the contours of mean
mixture fraction between the stoichiometric and lean conditions start to de-
viate. Comparing the contour of f of the RANS simulations with φ = 0.55
and φ = 1.02 shows a very good agreement; the same can be said about the
LES. On the other hand, when comparing the RANS and the LES for the same
stoichiometry, the agreement is worse. One of the reasons is that the RANS
simulations are not able to solve the coherent structures and the resonance ef-
fects on the flow. For example, there is a large deviation between the secondary
combustion zone between the RANS and LES simulations for φ = 1.02. While
the combustion zone predicted by the LES starts near the injector, the RANS
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predicted a flame front with a very different shape. The flame with φ = 0.55
stabilized further downstream, as expected, and its maximum temperature is
lower than the maximum temperature obtained for φ = 1.02.

Figure 8.9: Contour of mean mixture fraction f ; mean reaction progress variable c
and mean temperature T at the symmetry plane, y = 0, for RANS and LES
simulations with equivalence ratio φ = 0.55.

It is important to mention here that the flame is not as thick as suggested
by the contours of the time-mean reaction progress variable. In the case of
stoichiometric condition, the value of reaction progress takes between 50 and
110 mm to develop from the unburned (c = 0) to the fully burned state (c = 1).
This represents only the average position of the flame front; the time-resolved
flame thickness is much smaller. The large flame thickness is related to the
significant variation in the position of the flame caused by the turbulent flow.
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Figure 8.10: Contour of mean mixture fraction f ; mean reaction progress variable c
and mean temperature T at the symmetry plane, y = 0, for RANS and LES
simulations with equivalence ratio φ = 1.02.

The comparison of the measurements with the simulations needs to be done
with caution. The chemiluminescence emitted by OH* radicals cannot be
directly compared to the absolute concentration of OH, as it would require the
knowledge of the detailed chemistry of the system involving OH* along with
the local temperature. However, the measured OH* chemiluminescence pro-
vided qualitative information about the shape of the combustion zone, which
is compared to the results computed by the simulations. In the measurement
depicted in Figure 8.2 it is shown that at φ = 1.02, the combustion zone sta-
bilizes at some point upstream of the optical window and the reaction front
closes at x = 130 mm.
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To analyze the mean flame front position in the simulations depicted in Figures
8.11 and 8.12, the gradient of the mean reaction progress variable in the axial
direction dc/dx is used to represent the flame front. The chemiluminescence
measurements already shown in Figure 8.2 are also included in Figure 8.11
and 8.12 to facilitate the comparison with the simulations. It should be noted
that the measurements acquired the chemiluminescence over the whole flame
volume, while only the cross section of the simulations is being displayed;
however, a qualitative comparison is still valid. The measurements show
that for the lean mixture (φ = 0.55), the flame is stabilized in the region
upstream of the optical window and the flame front does not close within
the optical window. Both RANS and LES show a similar behavior, with the
flame stabilizing slightly downstream of the methane injector and spanning
the whole region seen in the picture. For the stoichiometric mixture (φ = 1.02)
the measurement shows that the flame stabilizes near the methane injector and
the flame front closes at x = 120 mm. The simulations show very different
behaviors. While the LES agrees qualitatively with the measurements, with the
flame front closing at x = 110 mm, the RANS simulation shows a flame front
with a radically different shape. These results corroborate with the analysis of
Figures 8.9 and 8.10.

8.5 Concluding thoughts

The experiments have shown that a variation in the equivalence ratio signifi-
cantly affected the location of the secondary stage combustion zone. For lean
mixture conditions, the secondary stage combustion zone stabilized well away
from the position of the injector, while at stoichiometric conditions it was
located closer to the injector.

The flame was embedded in a strong turbulent flow where auto-ignition and
quenching are important, which poses a significant challenge for the reaction
modeling. The presumed JPDF turbulent reaction model, which has been
proven to be a reliable model for these challenging conditions, was successfully
coupled with the simulations.

The experimental rig was numerically modeled using steady state RANS and
unsteady LES simulations. The predictions of the location of the secondary
stage combustion zone by the LES showed good qualitative agreement with
the measurements, while the agreement of the RANS simulations was less
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Figure 8.11: Comparison of the measured mean OH* chemiluminescence with the
gradient of mean reaction progress variable dc/dx (bottom) of RANS and
LES simulations for equivalence ratio φ = 0.55.
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satisfactory, especially the simulation with stoichiometric mixture (equivalence
ratio φ = 1.02).

The causes of the large deviation between the steady state RANS and the
LES were studied. The RANS simulations neglect two important sources
of unsteadiness, which have a direct impact in the description of the mixing.
Besides neglecting the development of large-scale coherent structures, also
the acoustic resonance in the methane injector could not be reproduced by the
RANS simulations, with severe consequences for the mixing and consequently
for the simulation of the whole combustion system. The analysis has shown
that time-resolved computational methods like LES are required to model such
complex reacting flows.
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Figure 8.12: Comparison of the measured mean OH* chemiluminescence with the
gradient of mean reaction progress variable dc/dx of RANS and LES
simulations for equivalence ratio φ = 1.02.
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The analysis of turbulent mixing in complex turbulent flows is a challenging
task. Following the terminology of Eckart [25], turbulent mixing is a three-
stage process of entrainment, stirring, and diffusion. While the stirring and the
diffusion are usually modeled together by turbulence models, the entrainment
remains out of their range. The reason is that in turbulent free shear flows,
the entrainment is promoted mainly by the large-scale coherent structures
typical for these flows. These coherent structures, defined in Chapter 3, are not
turbulent in nature and highly geometry dependent. The derivation of a general
model of the effect of coherent structures is a very complex task. Fortunately,
unsteady simulations using the Reynolds-averaged Navier Stokes (RANS) or
the large eddy simulation (LES) frameworks can resolve the coherent structures
directly, accounting for their influence over the time-averaged field.

The intermittency and the conditional averaging techniques proved themselves
to be an appropriate framework to account for the influence of large-scale
structures on turbulent flows. These tools could quantify successfully quantify
the different influence of the coherent structures on the velocity and on the
passive scalar fields.

The free jet, a flow configuration extensively studied in the literature, has
been used to test and validate the numerical tools and the different simulation
methodologies. The LES has successfully predicted the vortex rings originated
by the Kelvin-Helmholtz instability, which are the most important coherent
structures of the jet flow. The results of the LES agreed well with the major
characteristics of the free jet, including the decay of the centerline velocity
and of the passive scalar, the jet half-width and the turbulence profiles. The
conditional averages of the velocity and the passive scalar have shown the same
trends as the measurements of Antonia et al. [2] for a similar configuration,
with the influence of the intermittency being more pronounced for the passive
scalar than for the velocity.

Despite the complexity arising from the coherent structures of the flow, steady
state RANS simulations have been able to predict important features of the
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free jet with good accuracy. The condition for a good simulation is the right
choice of turbulence model and constants. The best overall results with RANS
simulations have been obtained using the k-ε turbulence model and a turbulent
Schmidt number σt of 0.7. There is, however, a systematic discrepancy
between the RANS results and the measurements in the high intermittent
region, which is more evident in the profiles for passive scalar and can be as
high as 50% when approaching the jet edge. This discrepancy is related to
the fact that steady state RANS simulations do not resolve coherent structures,
and consequently could not reproduce the different influence of the coherent
structures on the velocity and passive scalar fields.

The jet in crossflow (JIC) is a more complex flow configuration than the free
jet, with a series of large-scale coherent structures and recirculation regions.
The quality of the agreement of the simulation results with the measurements
is strongly coupled with the description of the coherent structures. The LES
has successfully predicted the various coherent structures of the flow, including
the counter-rotating vortex pair, the horseshoe vortex and the wake vortices.
The agreement of the LES results with the measurements is very good for both
mean variables and fluctuation values. The unsteady RANS simulation using
the SST turbulence model (USST) could resolve only a fraction of the coherent
structures. The resulting fluctuation levels are systematically lower than the
measurements, even though the agreement of the mean variables is good. The
analysis of the results shows that the agreement of the LES results is better
than the USST results not only because the turbulence is better reproduced, but
also because the LES simulated the coherent structures in much more detail.
The steady state RANS simulations do not resolve the coherent structures at all,
neglecting this important source of unsteadiness. It follows that the fluctuation
levels predicted by the steady state simulations are significantly lower than
the measurements. In the steady state simulations, the agreement of the mean
velocity is better than the mean passive scalar. This fact could be explained
analyzing the conditional averages of the velocity and the passive scalar. The
same trend as in the free jet has been found, with a more pronounced influence
of the intermittency on the velocity than in the passive scalar. A detailed
analysis has shown that, in the flow regions dominated by coherent structures,
the turbulent Schmidt number σt does not adequately represent the mixing
phenomena present there. Different values of σt are needed to represent well
the mixing in the jet core and along the jet borders, which is consistent with
the fact that the intermittency is higher at the borders.
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The tools used for the simulation of mixing in turbulent flows with a high level
of accuracy have been developed and tested in free jet and jet in crossflow
configurations. These tools were adapted to the simulation of a complex com-
bustion system, in which the turbulent mixing plays a major role in the flame
geometry and consequently in the whole system. This system is named High
Strain Burner, as the combustible mixture is injected with high velocity (and
consequently high strain) into the vitiated air stream. The experiments have
shown that the fuel amount in the combustible mixture significantly affected
the location of the combustion zone. Steady state RANS and unsteady LES
simulations of this combustion system were performed. The predictions of
the location of the combustion zone by the LES agreed well with the measure-
ments, while the agreement of the RANS simulations was less satisfactory.
The causes of the large deviation between the steady state RANS and the
LES were analyzed. The RANS simulations neglect two important sources
of unsteadiness, which have a direct impact in the description of the mixing.
Besides neglecting the development of large-scale coherent structures, also
the acoustic resonance in the methane injector could not be reproduced by the
RANS simulations, with severe consequences for the mixing and consequently
for the simulation of the whole combustion system. The conclusion is that
time-resolved computational methods like LES are required to model such
complex reacting flows with good accuracy.

The results have shown that steady state RANS simulations provide good
quantitative and qualitative agreement with experimental data when the flow
is statistically stationary, i.e., when the influence of large-scale coherent struc-
tures or unsteadiness of the mean flow are negligible. However, when the
flow is not statistically stationary, with pronounced unsteadiness in the mean
flow promoted by large-scale coherent structures or other sources, Reynolds-
averaged values do not converge to their time-averages. As this unsteadiness is
not turbulent in nature, its influence on the mean flow is not modeled by the tur-
bulence models. Hence, to achieve high-fidelity results for all variables, time
dependent simulations are mandatory, which increases the computational cost
substantially. The preferred method is the LES, which resolved the coherent
structures in much more detail than the unsteady RANS. The work has shown
the limitations of the steady-state RANS simulations and acknowledged the
need of applying unsteady methods for the calculation of the investigated flow
configurations. The responsible reasons and phenomena have been identified,
analyzed in detail and their impact clearly illustrated.
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A Annex

A.1 Computational resources of a DNS

The simulation of a turbulent flow with direct numerical simulation (DNS)
requires all turbulent scales (spatial and temporal) to be resolved, which makes
the simulation of technically relevant flows out of scope. An example of how
small these scales can be follows.

The smallest scale of a turbulent flow is the Kolmogorov length scale (lK), that
can be estimated [114] using the equation

l0
lK

= Re3/4
l0

(A.1)

where l0 is the integral scale, and the Reynolds number calculated using the
integral scale Rel0 is defined as

Rel0 =
ρurmsl0

µ
(A.2)

where urms is the root-mean-square of the velocity fluctuation u′.

An example of the magnitude of the Kolmogorov length scale can be obtained
from the pipe flow that originate the jet. The integral scale l0 is smaller but
has the same magnitude as the pipe diameter, assumed to be 0.1D. The urms is
set to 5% of the bulk jet velocity U jet . Using a typical condition of our study
where ρ = 1.185 kg/m3, U jet = 37.84 m/s, D = 8 mm and µ = 1.831 · 10−5

kg/ms one can obtain the integral scale Reynolds number

Rel0 =
1.185(1.892)(0.0008)

1.831 ·10−5 = 97.96

and the Kolmogorov length scale

lK = l0Re−3/4
l0

= 2.5 ·10−5m.
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The grid element size has to be smaller than the Kolmogorov length scale, to be
able to capture all the physics of the problem. Assuming that an element size
of 1 ·10−5 m is sufficient, the simulation of only 1 cm of pipe flow needs 50
million hexahedral elements, which clearly exceeds the computational infras-
tructure at disposal, not to mention the simulation of the whole computational
domain.

A.2 Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability occurs in flows with shear layers, in which
the flow has at least a turning point. The free shear layer formed by flow
separation, for example after a nozzle or behind a bluff body, has such one
or more turning points. An unstable shear layer can also be formed between
two immiscible, stratified fluids with different speeds. The Kelvin-Helmholtz
instability describes the spatial and temporal evolution of a perturbation in the
shear layer. The instability of the shear layer is solely due to the flow profile
and is practically independent of the viscosity, in contrast to the Tollmien-
Schlichting instability, which can arise only through the viscosity-induced
temporal variation of the flow profile at a wall.

The Kelvin-Helmholtz instability was first described in 1868, proposed by
Hermann von Helmholtz [118]. W. Thomson (Lord Kelvin) [111] formulated
and solved in 1871 the problem of instability. Analytical solutions of the
Kelvin-Helmholtz instability have been compiled, for example, by Batchelor
[3] and Chandrasekhar [15]. The figures used in this section have been adapted
from [57].

The objective of this section is to introduce the concept of the Kelvin-
Helmholtz instability. More details about the derivation of the equations
and their analytical solution can be found in references [3], [15] and [57].

A.2.1 Introduction

Two incompressible, viscosity free fluids flowing in parallel planes with dif-
ferent velocities U1 and U2 will be considered in the following section. Such
a flow arises for example behind a splitter plate (Figure A.1). After the de-
tachment of the boundary layer a free shear layer is formed between the two
flows, which is characterized by a large mean velocity gradient dU/dy. The
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Kelvin-Helmholtz instability describes the development of this shear layer
under an external perturbation. Considering a reference system moving with
Um = (U1 +U2)/2 and the idealization that the shear layer is infinitely thin
(Figure A.2) leads to the thought experiment shown in Figure A.3, in which
the shear layer is redirected stationary upward. Due to the faster flow in the
upper area, the Bernoulli equation

1
2

ρU2 + pstat = ptotal = cte. (A.3)

predicts a static underpressure in the upper area, and overpressure in the lower
area. In this stationary view, a destabilizing force acts upwards on the shear
layer as a whole. In addition, the asymmetry of the flow velocity above and
below the shear layer transports it to the right, which leads to a steepening.

Figure A.1: Development of a free shear flow, adapted from [57].

Figure A.2: Coordinate system and idealization of the shear flow, adapted from [57].
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Figure A.3: Potential flow around a perturbation in a shear flow, adapted from [57].

Figure A.4: Roll-up of the shear layer with a finite amplitude, adapted from [57].

If the free shear layer, again in a thought experiment, suffers a sinusoidal
deflection (Figure A.4), the amplitude grows in time due to the destabilizing
pressure field, and the neighboring strong curved hills and valleys run toward
each other, which results in the roll-up of the shear layer. The effect of
pressure drop across the shear layer, which leads to its acceleration, has been
neglected in this consideration using the steady Bernoulli equation. The
transient problem can be completely described by vortex dynamics [3].

The propagation velocity of an infinitesimal, spatially and temporally perturba-
tion is Um = (U1 +U2)/2 because of symmetry. In a reference frame in which
U1 is equal to −U2, the perturbation just grows over time and remain at the
same location, characterizing an absolute instability. In a reference frame that
moves with U2, the instability flows away from the point of perturbation and
is amplified spatially; after a certain time, the instability disappears from the
point of perturbation. This is called a convective instability (Figure A.5).
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Figure A.5: Spatial and temporal development of a perturbation, adapted from [57].

The concept of the Kelvin-Helmholtz instability can be broadened if one con-
siders various fluids with different densities and surface tensions and involve
also the effects of gravity. In principle, this changes only the relationship of the
lateral velocity and pressure at the interface between the two fluids. The sur-
face tension and the weight have a stabilizing effect on the Kelvin-Helmholtz
instability.

A.2.2 Characteristics and functions

If a laminar flow with the main flow velocity U(y) suffers a sinusoidal per-
turbation with frequency ωs and this perturbation is infinitesimal, in terms of
classical stability theory, each flow variable φ can be represented as a sum of
a time-averaged part φ and a perturbing wave with the wavelength 2π/ℜ{k}
and an excitation ℑ{k}:

φ(x,y, t) = φ(y)+ φ̃ · ei(kx−ωst). (A.4)

From the momentum equation for incompressible flows the amplitude of the
transverse velocity can be derived linearizing the Rayleigh equation:

d2ṽ(y)
dy2 =

k2 +

d2u(y)
dy2

u(y)− ωs
k

 · ṽ(y), (A.5)
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where ṽ(y) should vanish for y →±∞. The eigenvalues of this equation result
in complex relations between the introduced perturbation frequency ωs and
the complex wave number k. It is also possible to find the time amplification
and the oscillation period ω for a given spatial wave number ks, which will
not be considered here.

In Figure A.6, the spatial amplification and wavelength (complex wave number
k) as a function of the real interference frequency ωs is shown. As dimension-
less excitation frequency the Strouhal number is used

Sr =
ωsδ/2

|U1 −U2|
, (A.6)

where δ is the characteristic thickness of the shear layer. For shear layers of
finite thickness, there is a window in which the amplification (−ℑ{k} > 0)
takes place.

Figure A.6: Relation of dispersion of different flow configurations. The lines with point
at their ends are calculated for U1 = 3/2Um and U2 = 1/2Um, the lines
without points are valid for U1 = 2Um and U2 = 0, adapted from [57].

The flow profile of a free jet leads to two dispersion relations (modes) as shown
in Figure A.7.
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Figure A.7: Pendular and pulsating modes for a free jet with velocity profile
∆U/cosh(y/∂ )2, adapted from [57].

A.2.3 Applications

The Kelvin-Helmholtz instability can be observed in the sky when temperature
inversions occur, resulting in the typical Kelvin-Helmholtz clouds (Figure
A.8). The so-called CAT (clear air turbulence), which is also formed by the
Kelvin-Helmholtz instability, can be very dangerous for aircrafts due to the
strong vertical velocities generated.

The excitation of water waves by wind, can also be described in part by the
Kelvin-Helmholtz instability.

If the splitter plate configuration in Figure A.1 is perturbed by an oscil-
lating pressure field (here by means of two membranes, which move in
phase), Kelvin-Helmholtz waves are formed, as the ones shown in Figure
A.9, made visible using ink. The same can be seen for a free jet in Figure A.10
(a) and (b).

The flow profile of the wake behind a cylinder in cross flow is absolutely
unstable. This results in the Kármán vortex street.
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Figure A.8: Kelvin-Helmholtz clouds, adapted from [57].

Figure A.9: Artificial excitation of the Kelvin-Helmholtz instability in water at the
edge of a plate, adapted from [57].
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The Kelvin-Helmholtz instability generates sound when a Kelvin-Helmholtz
wave encounters an obstacle. In Figure A.10 (c) a self-excited free jet is seen,
with the flow oscillations made visible with ink. The tone produced in this
way is used in organ pipes and flutes, in which an oscillator is coupled; the res-
onance frequency of the oscillator determines the oscillation frequency of the
Kelvin-Helmholtz instability. The noise generation is sometimes undesirable,
for example the rumble of an open train or car window.

When injecting a mixture through a nozzle into a space filled with a medium
that can mix well with this jet mixture, the energy of the turbulent mixing
can be increased by an artificial excitation of the Kelvin-Helmholtz instability,
which can speed up the mixing.

Figure A.10: Convective instability of a free jet with ∆U = 5cm/s: (a) and (b) with
artificial excitation ωs =1Hz (a) and 2Hz (b), self-excited oscillation of
the jet-edge system, adapted from [57].

A.3 Computational resources used for the simulations

Two systems were available to conduct the simulations: the in-house Linux
cluster of the Engler-Bunte-Institute, Division of Combustion Technology
(EBI-VBT), and the HP XC4000 high performance computer [115] of the
federal state Baden-Württemberg, available through the Steinbuch Centre for
Computing of the Karlsruher Institute of Technology (KIT).

201



A Annex

The parallel performance of the computational systems was assessed by LES
simulations using coarse and fine grids. The coarse grid was relatively small,
and fitted well into the in-house cluster, while the fine grid was better suited
for the HP XC4000 system. The parallel performance of both systems was
very good [32].

The in-house cluster consists of various subsystems:

∙ 1 12-core node with two Intel Xeon X7460 processors at 2.663 GHz.

∙ 19 4-core nodes with Intel Core2 Q9550 processors at 2.83 GHz.

∙ 22 4-core nodes with Intel i7 860 processors at 2.8 GHz.

The 12-core node was used to generate the grids, mainly because of the
available 32 GB of memory. The simulations have been conducted in the
4-core Intel i7 860 nodes.

Table A.1 shows a comparison of the main aspects of the two systems.

in-house cluster HP XC4000
Processors Intel i7 860, 2.8 GHz AMD Opteron, 2.6 GHz
Cores per node 1 x 4 cores 2 x 2 cores
Memory per node 8GB 16GB
Interconnect Gigabit Ethernet InfiniBand 4X
MPI version OpenMPI HPMPI

Table A.1: Comparison of the cluster systems.

The main bottleneck of the in-house cluster is the Gigabit Ethernet interconnect,
which limits the scalability of the simulations. The scalability is above 90%
until 4 nodes, being significantly degraded when using more nodes. In contrast,
the HP XC4000 system showed good scalability, with over 90% efficiency, up
to 64 nodes (256 processors), the maximum number of nodes tested.

Table A.2 shows an overview of the computational time for different simula-
tions of the jet in crossflow using the in-house cluster. The performance of the
HP XC4000 system is in general 25% worse per core, which is a consequence
of the older AMD Opteron processors. The steady state RANS simulation was
simulated until convergence; the unsteady simulations have been simulated for
a total time of 0.15 seconds. The difference in computing time is huge. The
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the time needed decreases to slightly more than 4 hours. The URANS and
the LES have almost the same performance using the same grid, demanding
slightly more than one year computational time on a single core. The fine grid
used for the last LES is 5 times larger than the coarse one, and also uses a time
step that is one half of the time step used with the coarser grid, demanding
approximately ten times more computational time than the LES using the
coarse grid. One processor would take more than ten years to compute this
simulation. Fortunately, using 256 parallel nodes in the HP XC4000 system
reduced the computing time to around two weeks.

Simulation Grid size (elements) computational time (days/core)
Steady state RANS 1.5 million 1.5
Unsteady RANS 1.5 million 394
LES 1.5 million 377
LES 7.5 million 3 712

Table A.2: Overview of the computational time for different simulations of the jet in
crossflow.

It should be noted that there is room for reduction of the computational time
of the unsteady RANS simulations. The current simulations have employed
the PISO time discretization technique, which limits the Courant number of
the simulation to values smaller than unity and consequently limits the time
step size. As the LES formalism already restricts the acceptable Courant
number, this restriction is not decisive. The unsteady RANS, on the other
hand, could use larger time steps without compromising the accuracy when
using alternative time discretization techniques.
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The analysis of turbulent mixing in complex turbulent 

flows is a challenging task. The e� ective mixing of 

entrained fluids to a molecular level is a vital part 

of the dynamics of turbulent flows, especially when 

combustion is involved. Three flow configurations 

have been studied: the free jet, the jet in crossflow 

(JIC) and a complex combustion system, in which 

two important sources of unsteadiness are present: 

the development of large-scale coherent structures 

and an acoustic resonance in the injector region. 

The work has shown the limitations of the steady-

state simulations and acknowledged the need of 

applying high-fidelity unsteady methods for the 

calculation of flows with pronounced unsteadiness 

in the mean flow promoted by large-scale coherent 

structures or other sources. The responsible reasons 

and phenomena have been identified, analyzed in 

detail and their impact clearly illustrated.
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