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Abstract
This paper presents the analysis of current harmonics in an inverter-driven interior permanent magnet
machine for different modulation methods. In contrast to other approaches, the influence of the saliency
(Ld 6= Lq) on the harmonics is being considered. By use of the rms-value of the currents, analytically
closed equations can be deduced and tedious Fourier analyses of single harmonics can be avoided.
The derivation of the analytic equations is described and the results are verified by numerical simulation
as well as by experimental results.

Introduction
The influence of the modulation method on the current waveform in converter systems with high pulse
rate has been investigated in different publications (e.g. [1] - [4]). There the calculation of the current
harmonics has been done with a three-phase symmetric load at the converter output, which is represented
by three equal inductances (fig. 1). However, in the case of magnetic anisotropic permanent magnet
synchronous machines the inductance in each of the three output phases differs from the others and
variates depending on the rotor position γ of the machine.
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Figure 1: Voltage source inverter with symmetric load

Additionally, the phase angle between the stator voltage of an interior permanent magnet synchronous
machine (IPMSM) and the rotor position γ depends on the stator current, which makes the values of the
inductances at the inverter output also dependent on the operation point of the machine.



This paper presents the estimation of the current harmonics in a drive system consisting of a voltage
source inverter (VSI, fig. 1) and an IPMSM depending on the modulation depth and the phase angle
ϕU of the stator voltage for different modulation methods. Verification of the developed formulas is
performed by numerical simulation of a drive system. Measurements on a machine test bench have also
been accomplished in order to validate the derived formulas.

Calculation of current harmonics
In order to estimate the current harmonics, first the machine model and the switching states of the inverter
are being described. Thereon, the current waveform within one half pulse period of the inverter will be
examined. Subsequently, the current harmonics related to one full period of the inverter output voltages
u1,u2,u3 will be evaluated.

Machine model
Since the inductances of the IPMSM are constant in the rotor oriented dq-reference frame (fig. 2a), this
frame will be used for the estimation of the current waveform. Thus the IPMSM can be described by the
stator voltage equations and the equations for the flux linkages:

ud = Rs · id +
dψd

dt
−ω ·ψq uq = Rs · iq +

dψq

dt
+ω ·ψd (1)

ψd = Ld · id +ψPM ψq = Lq · iq (2)

The functions for the current component waveforms can be obtained by solving eq. (1) and (2) for the
current derivatives. Assuming the inductances Ld and Lq and the speed ω as constant and neglecting the
stator resistance Rs, this results in a system of ordinary differential equations:

did
dt

=
ud +ω ·Lq · iq(t)

Ld

diq
dt

=
uq−ω · (Ld · id(t)+ψPM)

Lq
(3)

Solving this system of ordinary differential equations, the functions for the current components become

id(t) =

[
(Ld · id,0 +ψPM) ·ω−uq

]
· cos(ωt)

ω ·Ld
+

(
ω ·Lq · iq,0 +ud

)
sin(ωt)+uq−ω ·ψPM

ω ·Ld
(4)

iq(t) =

[
−(Ld · id,0 +ψPM) ·ω+uq

]
· sin(ωt)

ω ·Lq
+

(
ud +ω ·Lq · iq,0

)
· cos(ωt)−ud

ω ·Lq
(5)

with the initial values id(t = 0) = id,0 and iq(t = 0) = iq,0.
In case of a high pulse rate, the variation of the rotor position angle ∆γ = ∆ωt during one half pulse
period can also be neglected. Therefore the small-angle approximation sin(ωt) ≈ ωt and cos(ωt)≈ 1
can be used. This simplifies eq. (4) and (5) to

id(t) =
ud +ω ·Lq · iq,0

Ld
· t + id,0 iq(t) =

uq−ω · (Ld · id,0 +ψPM)

Lq
· t + iq,0 (6)

The voltage components ud and uq in eq. (6) depend on the discrete switching states of the inverter.

Switching states of the inverter
The converter voltage space vector is defined as

us =
2
3
·
(
u1 +a ·u2 +a2 ·u3

)
with a =−1

2
+ j ·
√

3
2

(7)

Assuming the location of the desired voltage space vector in sector I in fig. 2b, the discrete converter
voltage space vectors used during the pulse period are

u1 =
2
3
·Udc u2 =

2
3
·Udc ·

(
1
2
+ j

√
3

2

)
(8)
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Figure 2: (a): Stator voltage space vector in the rotary dq-frame and its location in the stationary αβ-frame.
(b): Switching states and possible output voltage of the inverter.
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Figure 3: Exemplary switching state sequence in sector I (a) and exemplary current waveform at γ = 0 (b).

Additionally, one or two of the freewheeling states 7 and 8 can be inserted in order to achieve the desired
mean value of the voltage space vector during the pulse period Tp. For sinusoidal phase modulation, the
switching state sequence in sector I is shown in fig. 3a.
The effect on the current components in the dq-frame can be obtained by transforming the discrete
voltage space vectors from the stationary to the rotating frame. The resulting voltage components are

ud,1 = ℜ
{

uαβ,1 ·e− j ·γ}= 2
3
·Udc · cosγ (9)

ud,2 = ℜ
{

uαβ,2 ·e− j ·γ}= 1
3
·Udc ·

(
cosγ+

√
3 · sinγ

)
(10)

ud,7 = ud,8 = 0 (11)

uq,1 = ℑ
{

uαβ,1 ·e− j ·γ}=−2
3
·Udc · sinγ (12)

uq,2 = ℑ
{

uαβ,2 ·e− j ·γ}= 1
3
·Udc ·

(√
3 · cosγ− sinγ

)
(13)

uq,7 = uq,8 = 0 (14)

Fig. 3b shows exemplary waveforms of id(t) and iq(t) within one pulse period assuming γ = 0.



Current harmonics during one half pulse period
During the following considerations, the mean value of the inverter output voltage within one half pulse
period will be assumed to be equal to the stator voltage of the machine. The inner voltage components

ed =−ω ·Lq · iq,0 eq = ω · (Ld · id,0 +ψPM) (15)

are approximately constant during Tp
2 for high pulse rates [1]. They can be expressed by use of the

modulation depth M, which is defined as (cf. [2])

M =
2 · |us|

Udc
(16)

For steady-state operation the stator voltage is equal to the inner voltage. The angle ϕU of the stator
voltage space vector in the dq-frame (fig. 2a) then depends on the inner voltage components:

|us|=
√

e2
d + e2

q ϕU = arctan
eq

ed
(17)

The components of the inner voltage can be expressed in terms of the modulation depth by

ed =
1
2
·M ·Udc · cosϕU eq =

1
2
·M ·Udc · sinϕU (18)

The current during each of the switching states x ∈ {1,2,7,8} in one half pulse period then is

id(t) =
ud,x− 1

2 ·M ·Udc · cosϕU

Ld
· t + id,k−1 iq(t) =

uq,x− 1
2 ·M ·Udc · sinϕU

Lq
· t + iq,k−1 (19)

with id/q,k−1 being the value of id/q at the moment of changing the switching state. To calculate the
current harmonics, the mean values of id and iq during one half pulse period are not of interest. Therefore
the initial current component values id,0 and iq,0 at t = 0 can be set to zero.
To get the square of the rms-value of the harmonic current during one half pulse period, the squares of
the two currents are integrated to:

∆i2s =
2
Tp

∫ Tp
2

0

i2d(t)+ i2q(t)
2

d t (20)

Since the voltage space vector applied to the machine needs to be equal to the stator voltage of the
machine us = ed + j eq, the turn-on times of the different switching states for sinusoidal pulse width
modulation (SPWM) can be estimated directly from the stator voltage (cf. fig. 3a):

t7
Tp/2

=
1
2
· [1−M · cos(ϕU + γ)] (21)

t1
Tp/2

=
1
2
·
[

1−M · cos
(

ϕU + γ− 2π

3

)]
− t7

Tp/2
(22)

t2
Tp/2

=
1
2
·
[

1−M · cos
(

ϕU + γ− 4π

3

)]
− t7

Tp/2
− t1

Tp/2
(23)

t8
Tp/2

= 1− t7
Tp/2

− t1
Tp/2

− t2
Tp/2

(24)

Eq. (21) to (24) are only valid for sector I of the voltage plane in fig. 2b, so the rotor position angle has
to be set to the corresponding interval

γ ∈
{
−ϕU . . .−ϕU +

π

3

}
(25)

With the estimation of the turn-on times of the switching states, the square of the harmonic current rms
value ∆i2s within one half pulse period is determined.
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Figure 4: (a): Current harmonics for SPWM. (b): Current harmonics for magnetic isotropic machines for use of
different modulation methods

RMS value of harmonic currents related to one full period of the fundamental
Calculation of the mean value of the particular harmonic currents related to the pulse periods within
sector I leads to the square of the resulting harmonic current rms value:

∆I2 =
1
m
·∑

m
∆i2s (26)

Due to the symmetries of the output characteristics of the inverter, this is equivalent to the mean value
for an entire fundamental [2]. Assuming high pulse rate in relation to the fundamental, eq. (26) can be
approximated by integration:

∆I2 ≈ 3
π
·
∫ −ϕU+π/3

−ϕU

∆i2s dγ (27)

Evaluating ∆I2 leads to the result for sinusoidal modulation (SPWM):

∆I2
SPWM =

(
TP

2

)2

·
(

Udc

l Ld

)2

·M2 ·
[

1
128

(
1+
(
l2−1

)
(cos(ϕU))

2
)
·M2−

√
3
(

12(cos(ϕU))
2 (l2−1

)
+11− l2

)
360 π

·M+
1
96

(
1+
(
l2−1

)
(cos(ϕU))

2
) (28)

with the saliency factor

l =
Lq

Ld
(29)

The result for IB = ∆ISPWM/
(

TP
2 ·

Udc
l Ld

)
for a machine with Ld = 0.3 mH and Lq = 1.5 mH is shown in

fig. 4a. In eq. (28) as well as in fig. 4a the dependency of ∆I on the angle ϕU of the stator voltage can
clearly be seen. The minimum of the current harmonics for constant modulation depth appears at ϕU = π

2
and ϕU = 3π

2 , which corresponds to the direction of Lq. The highest value of the current harmonics occur
at ϕU = 0 and ϕU = π, as the voltage space vector is located in the direction of the smaller inductance
Ld. However, at modulation depths near M ≈ 1 the current harmonics become higher for ϕU = π

2 and
ϕU = 3π

2 than for ϕU = 0 and ϕU = π.
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Figure 5: Reference functions. (a): 3rdPWM. (b): SYPWM. (c): DPWM1. (d): DPWM2.

In case of a magnetic isotropic PMSM, we have Ld = Lq and therefore l = 1. Eq. (28) then simplifies to

∆I2
SPWM =

(
TP

2

)2

·
(

Udc

Ld

)2

·M2 ·
(

1
128
·M2−

√
3

36 π
·M+

1
96

)
(30)

This corresponds to the red line in fig. 4b. There is no dependency of the current harmonics on the
angle ϕU for machines with Ld = Lq. Fig. 4b also shows the values of the current harmonics for other
modulation methods, which will be discussed in the next section. In case of Ld = Lq they do not depend
on the angle ϕU either.

Utilization of different modulation methods
The described method of estimating current harmonics can easily be applied to different modulation
methods. As the duration of the two active switching states t2 and t3 needs to be the same for each
modulation method, only the turn-on times of the freewheeling states need to be adjusted.
For magnetic isotropic machines, the optimal modulation method in order to reduce the harmonic current
rms value is realized by adding a third harmonic (3rdPWM) with an amplitude of M3

M1
= 1

4 [2]. The
resulting waveforms of the reference functions can be seen in fig. 5a.
The turn-on times of the freewheeling-states for this modulation method result to

t7,3rdPWM

Tp/2
=

1
2

[
1−M · cos(ϕU + γ)+

M
4
· cos(3 ·ϕU + γ)

]
(31)

t8,3rdPWM

Tp/2
= 1− t7,3rdPWM

Tp/2
− t1

Tp/2
− t2

Tp/2
(32)

Applying these turn-on times to eq. (20) and solving eq. (27) yields the solution for 3rdPWM:

∆I2
3rdPWM =

(
TP

2

)2

·
(

Udc

l Ld

)2

·M2 ·

 7
1024

(
1+
(
l2−1

)
(cos(ϕU))

2
)(
−3
√

3
4 +π

)
π

·M2−

√
3
(

12(cos(ϕU))
2 (l2−1

)
+11− l2

)
360 π

·M+
1
96

(
1+
(
l2−1

)
(cos(ϕU))

2
) (33)
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Figure 6: Current harmonics IB = ∆I/
(

TP
2

Udc
l Lq

)
for SYPWM (a) and DPWM2 (b).

(a) (b)

Figure 7: Current harmonics IB = ∆I/
(

TP
2

Udc
l Lq

)
for use of different modulation methods. (a): ϕU = π. (b): ϕU = π

2 .

In case of distributing the remaining time Tp
2 − t1− t2 symmetrical at the beginning and at the end of the

half pulse period (SYPWM, fig. 5b), which represents a suboptimal approximation for 3rdPWM [2], the
duration of the two freewheeling-states resolves to

t7,SYPWM

Tp/2
=

t8,SYPWM

Tp/2
=

1
2
·
(

1− t1
Tp/2

− t2
Tp/2

)
(34)

Applying the turn-on times in eq. (34) to ∆is leads to the result for SYPWM:

∆I2
SYPWM =

(
TP

2

)2

·
(

Udc

l Ld

)2

·M2 ·

 3
256

(
1+
(
l2−1

)
(cos(ϕU))

2
)(
−3
√

3
4 +π

)
π

·M2−

√
3
(

12(cos(ϕU))
2 (l2−1

)
+11− l2

)
360 π

·M+
1
96

(
1+
(
l2−1

)
(cos(ϕU))

2
) (35)

Fig. 6a shows IB = ∆ISYPWM/
(

TP
2 ·

Udc
l Ld

)
with Ld = 0.3 mH and Lq = 1.5 mH. The results for ∆I3rdPWM

do not differ significantly from those of ∆ISYPWM.
For discontinuous modulation methods (DPWM), different distributions of the freewheeling states are
commonly used [5]. The reference functions for two of them are shown in fig. 5c and 5d.



Because of a distinction of cases in the turn-on times for DPWM1 within sector I and the resulting length
in the expression for the current harmonics, DPWM1 will not be further investigated within this paper.
In the case of DPWM2 the relative turn-on times are

t7,DPWM2

Tp/2
= 0

t8,DPWM2

Tp/2
= 1− t1

Tp/2
− t2

Tp/2
(36)

These lead to the result for the current harmonics for DPWM2:

∆I2
DPWM =

(
TP

2

)2(Udc

l Ld

)2

M2 ·3
(

1+
(
l2−1

)
(cos(ϕU))

2
)(

3
√

3+8π
)

1024 π
− 27(l2−1)cos(ϕU)sin(ϕU)

1024 π

M2−

√3
(

183(cos(ϕU))
2 (l2−1

)
+179−4l2

)
1440 π

+
45
(
l2−1

)
cos(ϕU)sin(ϕU)

1440 π

M+

1
24

(
1+
(
l2−1

)
(cos(ϕU))

2
)]

(37)

The corresponding surface can be seen in fig. 6b.
Fig. 7 shows the results of the calculated current harmonics for SPWM, SYPWM and DPWM2 for stator
voltage angles ϕU = π and ϕU = π

2 . Since the pulse period Tp for each of the three modulation methods
has been considered as constant, for discontinuous modulation there are less switching operations within
one pulse period. At an angle ϕU = π this causes higher current harmonics for DPWM, especially at
lower modulation depths. With higher modulation depths, the difference becomes smaller.
As can be seen in fig. 7b, the impact of less switching operations within one pulse period decreases as
ϕU changes towards the direction of the d-axis. For ϕU = π

2 the resulting current harmonics for all three
investigated modulation methods are almost equal.

Correlation to the operating point of the IPMSM
The inner voltage components of the machine are dependent on the operation point of the machine.
They correspond to the speed of the machine and the current reference values i∗d = id,0 and i∗q = iq,0 of
the torque control. For IPMSM, i∗d and i∗q can be determined with look-up-tables of the trajectory of
maximum torque per ampere (MTPA) for lower speeds and along the voltage constraint for the field-
weakening area [6]. By use of eq. (18) the modulation depth M and the voltage phase angle ϕU can be
determined for every operation point.

Simulation results
Simulations have been made in Matlab/Simulink for a high-saliency IPMSM with constant inductances
Ld and Lq. Simulation parameters are shown in table I.

DC link Udc 300 V Flux linkage ΨPM 0.065 Vs
Pulse period Tp 100 µs Inductance Ld 0.35 mH

pole pairs p 3 Inductance Lq 1.5 mH

Table I: Simulation parameters

The desired torque value of T = 80 Nm has been generated with the current reference values shown in fig.
8a. They correspond to the MTPA-curve for lower speeds, whereas at higher speed the current reference
values have been chosen for operation at maximum modulation depth. The corresponding modulation
depth M and voltage angle ϕU can be seen in fig. 8b. During MTPA-operation ϕU stays constant, while
M increases proportional to the speed of the machine. As the maximum modulation depth is reached, M
stays constant, while ϕU increases towards values > π.
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Figure 8: Current components (a) and modulation depth and voltage angle (b) for a torque of T = 80 Nm.
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Figure 9: Simulation and analytic results of ∆I/I1 for two different modulation methods.

Fig. 9 shows the results of the simulation for SYPWM and DPWM2. The effect of Ld 6= Lq on the
current harmonics can clearly be seen: In the field weakening area, with constant modulation depth M,
the current harmonics do not stay constant. They vary with increasing speed because of the shift of ϕU.
The rms values of the current harmonics have also been calculated with the derived formulas. As can
be seen, the analytic values comply very well to the harmonics in simulation. Therefore, the derived
formulas for the current harmonics apply to machines assuming constant inductance values Ld and Lq.

Experimental results
Measurements of current harmonics have been made with an IPMSM with parameters similar to those
in tab. I. The current distortions have been measured with a Norma D6000. During measurements,
the angle of the voltage space vector has been constant, while the modulation depth has been varied by
increasing the speed of the machine. With current components id = −100 A, iq = 50 A for ϕU ≈ π and
id = −100 A, iq = 10 A for ϕU ≈ π

2 the desired angles of the voltage space vector were realized. The
results for the total harmonic distortion, which is being defined as

T HD =

√
I2
rms− I2

1

I1
(38)

can be seen in fig. 10, together with a 4th order polynomial interpolation through the setpoints. The
dashed lines in fig. 10 show the results of eq. (35) and (37).
There is a significant offset between the analytic and the experimental results in the THD-value for both
modulation methods. This is due to the following cases:

• The IPMSM cannot be driven in an open-loop control. Therefore closed-loop current control is
being used, which itself causes additional harmonics in the phase currents.

• Saturation effects of the inductances might have a significant impact on the current distortion.
Although the evaluation of eq. (35) and (37) has been done with inductance values which have
been derived from parameter measurements of the machine, their values still might differ from
those that are essential for the current harmonics.
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Figure 10: Measured harmonic distortion for use of different modulation methods. (a): ϕU ≈ π. (b): ϕU ≈ π

2 .

• During measurements, the voltage vector angle ϕU might slightly differ from the desired one,
which also influences the current distortion. This could be the reason for the measured THD
values decreasing at higher modulation depths at ϕU ≈ π

2 , although the calculated estimated values
are monotonously increasing with the modulation depth.

A closer investigation of these issues will be carried out in future work.
However, the shape of the measured THD values with constant ϕU and varying modulation depth and
especially the relative comparison between the two illustrated modulation methods clearly corresponds
to the shape of the calculated values for the rms value of the harmonic currents. At ϕU ≈ π, the difference
between the distortion with use of SYPWM and DPWM is significantly large, especially at modulation
depths M < 0.8. As the modulation depth becomes larger, the difference decreases. For ϕU ≈ π

2 , the
measured current distortions for both SYPWM and DPWM are almost equal, although the number of
switching operations within one pulse period at DPWM is reduced by 1

3 compared to SYPWM.

Conclusion and future work
Analysation of the current distortion in interior permanent magnet synchronous machines for different
modulation methods has been presented in this paper. Analytic equations for estimation of harmonics
have been derived and verified by numerical simulation. The results might be used to optimize the drive
system by choosing the optimal modulation method and using the ideal switching frequency with respect
to the operation point in order to minimize the total losses.
Measurements on a machine test bench have shown that the qualitative results for the current distortions
can be used for a comparison of different modulation methods regarding the resulting current harmonics.
The absolute values do not comply to the experimental results. The reasons for these discrepancies will
be subject to further investigations.
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