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Zusammenfassung
Während das Moore’sche Gesetz weiterhin zu einer höheren Integrationsdichte und
einer immer größeren Zahl an Transistoren auf einem Chip ührt, entsteht durch die
Verwendung von Architekturen mit immer höherer Parallelität eine Lücke zwischen
der genutzten sowie der tatsächlich vorhandenen Leistung eines Mikroprozessors. Der
Herausforderung, einerseits das Optimum an Leistung auf einem parallelen System her-
auszuholen, andererseits diese dem Entwickler und Nutzer möglichst transparent zur
Verügung zu stellen, widmet sich diese Arbeit.
Da sich viele Fragestellungen der Datenverarbeitung durch einen datenstromorien-

tierten Ansatz beantworten lassen, wollen wir uns in dieser Arbeit auf eben diesen
Anwendungsfall konzentrieren und Verbesserungen durch eine geeignete Sowarear-
chitektur sowie gezielten Optimierungen auf allen Ebenen erreichen. Als konkrete An-
wendung betrachten wir hierbei bildgebende Röntgenversuche an Synchrotronstrah-
lungsquellen, die sich durch einen hochenergetischen Strahl und damit weitaus höherer
räumlicher und zeitlicher Auflösung auszeichnen, als mit konventionellen Röntgenröh-
ren möglich wäre. Die hierbei entstehenden Datenraten erfordern gerade die Nutzung
hochparalleler Verarbeitungssysteme, sowie einer gezielten Optimierung der Datenak-
quisition und der Kontrollumgebung, um den Anforderungen aktueller Experimente zu
begegnen.
Um das Problem der Hochdurchsatzdatenverarbeitung zu lösen, wurden im Rahmen

dieser Arbeit Systemarchitekturen zur Aufnahme und Verarbeitung von Datenströmen
auf parallelen und insbesondere heterogenen Systemen entwickelt, modelliert und eva-
luiert. Es wurden Methoden entwickelt um eine allgemeine Aufgabenbeschreibung auf
einer heterogenen Rechenarchitektur abzubilden und diese optimal zu verarbeiten. Über-
dies wurden Ansätze aufgezeigt, die Aufgabenbeschreibung, unter Wahrung der Verar-
beitungsleistung, weiter zu vereinfachen und miels der gewonnenen Daten den Expe-
rimentauau in asynchroner Weise zu kontrollieren.
Im Ergebnis zeigt sich zum Einen, dass mit dem entwickelten Datenverarbeitungssys-

tem in weicher Echtzeit sowohl tomographische Daten akquiriert werden können als
auch auf einem heterogenen System aus  und  das Volumen zu rekonstruie-
ren. Der nötige Aufwand ür den Nutzer besteht dabei in der korrekten Formulierung
seines Problems. Mit den aufgezeigten Systemarchitekturen haben wir die Grundlage
ür Experimente geschaffen, die sowohl Einblicke während der Datenaufnahme zulas-
sen als auch einen intelligenten Experimentauau ermöglichen. Während bisherige
Experimente von einer statischen Umgebung abhängen, können wir nun überdies den
Experimentauau regeln.
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Abstract
Moore’s law stays the driving force behind higher chip integration density and an ever-
increasing number of transistors. However, the adoption ofmassively parallel hardware
architectures widens the gap between the potentially available microprocessor perfor-
mance and the performance a developer can make use of. is thesis tries to close this
gap by solving the problems that arise from the challenges of achieving optimal per-
formance on parallel compute systems, allowing developers and end-users to use this
compute performance in a transparent manner and using the compute performance to
enable data-driven processes.
A general solution cannot realistically achieve optimal operation which is why we

will focus on streamed data processing in this thesis. Data streams lend themselves
to describe high-throughput data processing tasks such as audio and video processing.
With this specific data stream use case, we can systematically improve the existing de-
signs and optimize the execution from the instruction-level parallelism up to node-level
task parallelism. In particular, we want to focus on X-ray imaging applications used at
synchrotron light sources. ese large-scale facilities provide an X-ray beam that en-
ables scanning samples at much higher spatial and temporal resolution compared to
conventional X-ray sources. e increased data rate inevitably requires highly parallel
processing systems as well as an optimized data acquisition and control environment.
To solve the problem of high-throughput streamed data processing we developed,

modelled and evaluated system architectures to acquire and process data streams on
parallel and heterogeneous compute systems. We developed a method to map general
task descriptions onto heterogeneous compute systems and execute them with opti-
mizations for local multi- machines and clusters of multi- compute nodes. We
also proposed an source-to-source translation system to simplify the development of
task descriptions.
We have shown that it is possible to acquire and compute tomographic reconstruc-

tions on a heterogeneous compute system consisting of  and  in so real-time.
e end-user’s only responsibility is to describe the problem correctly. With the pro-
posed system architectures, we paved the way for novel in-situ and in-vivo experiments
and a much smarter experiment setup in general. Where existing experiments depend
on a static environment and process sequence, we established the possibility to control
the experiment setup in a closed feedback loop.



vii

Acknowledgements
e last three and a half years have been a lasting experience with many ups and cer-
tainly some downs. is thesis is the culmination of this time and would have not been
possible without the help and support of so many kind people. First of all, I would
like to thank Prof. Achim Streit and Prof. Marc Weber for supervising and reviewing
my thesis. I would also like to thank my group leader Dr. Andreas Kopmann for set-
ting an interesting research topic and having countless fruitful discussions with. I am
grateful for the technical discussions I had with my colleagues Dr. Suren Chilingaryan,
Dr. Michele Caselle, Uroš Stevanović and Timo Dritschler from , Tomáš Faragó and
Tomy dos Santos Rolo from , with our Russian collaboration partners from St. Peters-
burg, Moscow and Tomsk as well as the Helmholtz groups from Hamburg and Dresden.
I also have to thank my students and student assistants Andrej and Roman Shkarin,
Timo Dörr, Yuemin Liang, Maria Matveeva and Sven Werchner for taking some of the
work off of my back. Last but not least, I have to thank Anne for puing up with me
for so long.





Contents

1 Introduction 1
. Problem statement and research questions . . . . . . . . . . . . . . . . 
. Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . 
. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 Preliminaries and related work 11
. Parallel computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Compute and communication models . . . . . . . . . . . . . . . 
.. Heterogeneous computing . . . . . . . . . . . . . . . . . . . . . 
.. Streamed computing . . . . . . . . . . . . . . . . . . . . . . . . 

. Parallel hardware architectures . . . . . . . . . . . . . . . . . . . . . . . 
.. Multi-threading on multi-core architectures . . . . . . . . . . . 
.. Many-core architectures . . . . . . . . . . . . . . . . . . . . . . 

.  computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. pen programming model . . . . . . . . . . . . . . . . . . . . 
.. Execution model . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Hardware implementation . . . . . . . . . . . . . . . . . . . . . 

. X-ray imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Radiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Laminography . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Synchrotron radiation-based micro  . . . . . . . . . . . . . . 

3 Streamed processing on heterogeneous architectures 39
. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Task model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



x Contents

.. Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Mapping algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Local scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Sub-graph duplication heuristic for multiple  . . . . . . . . 
.. Sub-graph fusion for remote execution . . . . . . . . . . . . . . 
.. Task graph replication with data partitioning . . . . . . . . . . 
.. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Graphs and nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Batched data transfer . . . . . . . . . . . . . . . . . . . . . . . . 
.. Kernel fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Buffer views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Data acquisition and process control 65
. High-speed data acquisition . . . . . . . . . . . . . . . . . . . . . . . . 

.. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Unified detector access . . . . . . . . . . . . . . . . . . . . . . . 
.. High-speed remote data transfer . . . . . . . . . . . . . . . . . 
.. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Experiment control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Low-level control . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Proposed system architecture . . . . . . . . . . . . . . . . . . . 
.. Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Data flow descriptions . . . . . . . . . . . . . . . . . . . . . . . 
.. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 GPU programming 91
. Just-in-time  code generation . . . . . . . . . . . . . . . . . . . . . 

.. System architecture . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Run-time optimization . . . . . . . . . . . . . . . . . . . . . . . 
.. Multi  execution . . . . . . . . . . . . . . . . . . . . . . . . 
.. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Kernel statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents xi

. Algorithmic optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Filtered backprojection . . . . . . . . . . . . . . . . . . . . . . . 
.. Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Projection transposition . . . . . . . . . . . . . . . . . . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 Performance evaluation 105
. Measurement method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Impact of command queue profiling . . . . . . . . . . . . . . . 
.. Concurrent kernel execution with pen . . . . . . . . . . . . 

. Performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Single  memory bandwidth . . . . . . . . . . . . . . . . . . 
.. Multi  memory bandwidth . . . . . . . . . . . . . . . . . . . 
.. InfiniBand performance of  and Zero . . . . . . . . . . . 

. Local data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Tomographic reconstruction . . . . . . . . . . . . . . . . . . . . 
.. Non-local means denoising . . . . . . . . . . . . . . . . . . . . 
.. Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Distributed data processing . . . . . . . . . . . . . . . . . . . . . . . . . 
. Just-in-time pen code generation . . . . . . . . . . . . . . . . . . . . 
. Evaluation of asynchronous control . . . . . . . . . . . . . . . . . . . . 

.. Low-level primitive overhead . . . . . . . . . . . . . . . . . . . 
.. Concurrent device access . . . . . . . . . . . . . . . . . . . . . 
.. Remote data acquisition . . . . . . . . . . . . . . . . . . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7 Discussion 133
. Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8 Conclusion 139

Bibliography 141

List of acronyms 154





List of Figures

. Performance trend of  figures . . . . . . . . . . . . . . . . . . . . . 

. Performance gap between   and Intel  . . . . . . . . . . 
. Work items arranged on a global grid . . . . . . . . . . . . . . . . . . . 
. Local work size on  platforms . . . . . . . . . . . . . . . . . . . 
. Data acquisition pipeline of an X-ray imaging experiment . . . . . . . . 
. Comparison of noise reduction filters . . . . . . . . . . . . . . . . . . . 
. Result of phase retrieval and reconstruction . . . . . . . . . . . . . . . 
. e Radon transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.  acquisition and reconstruction . . . . . . . . . . . . . . . . . . . . . 
. Sparse sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Result of ring artifact reduction . . . . . . . . . . . . . . . . . . . . . . 

. Example graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Example machine model . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Local duplication of tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Expansion of a graph with remote nodes . . . . . . . . . . . . . . . . . 
. Pipelined execution of three tasks . . . . . . . . . . . . . . . . . . . . . 
.  diagram of the system architecture . . . . . . . . . . . . . . . . . . 
. Double deque for asynchronous buffer sharing . . . . . . . . . . . . . . 
. Buffer state transition table . . . . . . . . . . . . . . . . . . . . . . . . . 
. Extension of figure . with remote capabilities . . . . . . . . . . . . . 

.  example architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 
.  class diagram of the  architecture . . . . . . . . . . . . . . . . 
. Preview  based on  showing a radiograph . . . . . . . . . . . . . 
. Simulated frame rate with / on b network . . . . . . . . . . . 
.  architectures for remote data transmission . . . . . . . . . . . . . . 
. Simulated frame rate with  InfiniBand . . . . . . . . . . . . . . . . 
. High-level control layer architecture . . . . . . . . . . . . . . . . . . . . 
.  class diagram of device composition . . . . . . . . . . . . . . . . . 



xiv List of Figures

.  class diagram with device specialization . . . . . . . . . . . . . . . 
. Task graph mapping to high-level workflows . . . . . . . . . . . . . . . 
. Example for yield semantics . . . . . . . . . . . . . . . . . . . . . . . . 
. Auxiliary coroutine for bridging producers and consumers . . . . . . . 

. Outline of translation process . . . . . . . . . . . . . . . . . . . . . . . 
. Translation of a scalar multiplication . . . . . . . . . . . . . . . . . . . 
. Comparison of Copperhead with our approach using  . . . . . . . 
. Distribution of kernel argument numbers and specifiers . . . . . . . . . 
. Distribution of  specific kernel metrics . . . . . . . . . . . . . . . . 

. Performance impact of command queue profiling . . . . . . . . . . . . 
. Speed up of concurrent kernel execution . . . . . . . . . . . . . . . . . 
. Memory bandwidth of single  . . . . . . . . . . . . . . . . . . . . . 
. Memory bandwidth on multiple  . . . . . . . . . . . . . . . . . . . 
. Bandwidth of Zero and  . . . . . . . . . . . . . . . . . . . . . . . 
. Reconstruction throughput . . . . . . . . . . . . . . . . . . . . . . . . . 
. Reconstruction throughput . . . . . . . . . . . . . . . . . . . . . . . . . 
. Speed up of  compared to  on a  . . . . . . . . . . . 
. Scalability on multi  systems . . . . . . . . . . . . . . . . . . . . . . 
. Overlapped execution on two  . . . . . . . . . . . . . . . . . . . . 
. Performance result of transposition operation . . . . . . . . . . . . . . 
. Speed up of  implementations . . . . . . . . . . . . . . . . . . . . . 
. Speed up of noise reduction . . . . . . . . . . . . . . . . . . . . . . . . 
. Speed up of batched transfers . . . . . . . . . . . . . . . . . . . . . . . 
. Performance result of kernel fusion . . . . . . . . . . . . . . . . . . . . 
. Performance results for remote execution . . . . . . . . . . . . . . . . . 
. Performance result for remote execution with  noise reduction . . 
. Reconstruction speed up of generated pen code . . . . . . . . . . . 
. Reconstruction speed of generated pen on multiple  . . . . . . 
. Speed up of micro optimizations . . . . . . . . . . . . . . . . . . . . . . 
. Efficiency of parallel device access . . . . . . . . . . . . . . . . . . . . . 
.  data transfer bandwidth . . . . . . . . . . . . . . . . . . . . . . . 



List of Tables

. Hardware features of  architectures . . . . . . . . . . . . . . . . 
. Performance figures of  and accelerators . . . . . . . . . . . . . . . 
. Memory hierarchy on  hardware . . . . . . . . . . . . . . . . . . 

. Performance figures of - and s . . . . . . . . . . . . . . . . . 
. Required memory copies of different acquisition modes . . . . . . . . . 

. Substition of expression by equivalent pen builtins . . . . . . . . . 

. Compute systems used for performance evaluation . . . . . . . . . . . 
. Hockney model parameters of  data transfers . . . . . . . . . . . . 
. Number of device operations per second . . . . . . . . . . . . . . . . . 





1 Introduction

Moore’s law accurately predicts a doubling of the number of microprocessor transistors
every one to two years []. For the first  years, the shrinking feature size and increas-
ing number of transistors allowed the manufacturers to raise the clock frequency, the
number of arithmetic floating point operations processed in a second and in total in-
crease the complexity of a processor core. For this time an increase of compute power
was solely technology-driven and allowed for an ever-increasing data throughput with-
out additional soware development efforts.
Since around , technical obstacles such as leakage current and increasing diffi-

culties to dissipate the heat stopped the trend for higher clock rates and faster Central
Processing Unit () cores. As illustrated in figure ., the stagnating clock frequency
had a direct impact on the results of the single-threaded  benchmarks []. As a
consequence, microprocessor engineers used the ongoing technology scaling – from
65 nm in  to 14 nm as of now – to develop multi-threaded and multi-core proces-
sor architectures. Besides multi-core , massively parallel accelerator architectures
such as Graphics Processing Units () and Field Programmable Gate Arrays ()
gained wide adoption in areas that require highly parallel data processing performance.
Compared to , accelerators perform faster with large scale parallel data tasks and
require less power for the same amount of work. However unlike general purpose 
they are limited to specific applications.
e focus on parallel compute architectures led to the “multi-core dilemma” that re-

quires re-writing programs in order to gain noticeable performance improvements or
even compensate for performance losses due to lower per-core clock frequencies. A
loss of technology-driven performance increases means that “the free lunch is over”
for programmers [] who now have to adopt parallel programming models and tech-
nologies to satisfy application demands. For high performance applications, however,
merely applying the parallel programming principles is not sufficient because any un-
used parallel potential has a direct impact on the performance according to Amdahl’s
law [].
Up to now, there is no technological solution that allows programmers with varying

parallel programming backgrounds to benefit from the performance of parallel accel-
erators and at the same time provide optimal performance on a wide range of parallel
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Figure 1.1  clock frequency, number of transistors and  benchmark floating
point performance trend, with a clear convergence of frequency and single-threaded
performance since .1

architectures. If the abstraction level of the employed technology is too low, the pro-
grammer must make an effort and posses considerable hardware knowledge to exhaust
the performance potential. If the technology level is too abstract, the overheads im-
posed by the abstractions will limit the maximum aainable performance. Because this
dilemma cannot be solved in a general way, we will put the focus in this thesis on the
specific class of streamed data processing on parallel architectures. Streamed process-
ing covers a wide range of applications and is particularly suited for so real-time data
processing of large data sets.
In this thesis, we will apply the streamed data processing to X-ray imaging applica-

tions at synchrotron radiation sources which have particularly large requirements con-
cerning image processing performance. Synchrotrons, such as ’s Ångströmquelle
Karlsruhe (), produce a powerful X-ray beam that is used for a wide range of analy-
sis and manufacturing tasks. For example, ’s imaging beamlines  []
and  use X-ray light to scan and analyse samples from life- [] and material sci-
ences [] using non-destructive imaging experiments such as radio- and tomography.
Unlike conventional video stream processing, X-ray imaging experiments have much
higher demands on the acquired data rate, the flexibility of the data processing and the
processed data throughput. With so real-time data analysis in place, novel on-line
experiments can use the experimental results to influence the experiment control itself.
An important use case is the adaptive acquisition of data in order to reduce the X-ray
dose applied to a sample to prolong the total scan time. Such experiments not only need

1 With data from the public  at http://cpudb.stanford.edu and official  and Intel
sources [].

http://cpudb.stanford.edu
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fast image processing but also a beamline control system that is able to supervise the
entire experiment chain and integrate all aspects of data acquisition and processing. To
support casual and expert operators, such a systemmust provide both a straightforward
user interface as well as programmatic access.
In this thesis, we will present a systematic approach to leverage the performance

potential of parallel, heterogeneous compute systems for experiment workflows with
high performance demands. To accommodate for the large variety of heterogeneous
environment parameters, we propose a generic and adaptive framework for optimized
data processing. We also develop a generic, high-throughput data acquisition system
and an asynchronous experiment control system to enable so real-time data analysis
and feedback-driven experiments using the high-performance compute system. A low-
latency, high-throughput experiment pipeline allows us to implement novel in-vivo X-
ray imaging experiments such as X-ray cinetomography []. In the remaining chapter,
we will outline the problem space in detail and raise specific questions that need to be
addressed in order to solve these problems.

1.1 Problem statement and research questions
X-ray imaging that uses a beam with an energy as high as at the  beamline and
current detector technology permits data acquisition at a high sampling rate and a high
spatial resolutions. On the one hand, this allows for the detection of small temporal
and spatial changes that occur in dynamic processes and on the other hand allows to
scan more samples per measurement phase than before. Current high-speed detectors
can read out, digitize and transmit a full frame in milliseconds using vendor-specific
Soware Development Kits () and a high-speed interconnect. However, there is no
detector abstraction available that is capable of streaming at that data rate and provides
a single abstract interface for all kinds of detectors. e laer is necessary to avoid
hard application dependencies on specific detector functionality which may change
with each new experiment setup.
Increasing the sample rate, spatial resolution and experiment throughput, requires

larger compute resources to process the enlarged amount of data. Conventional data
processing methods employed at synchrotron facilities do not utilize the available hard-
ware resources to their full extent. Because the amount of image data cannot be pro-
cessed during an experiment, acquisition and quality problems can only be revealed by
subsequent data analysis long aer the experiment has finished. Moreover, insufficient
data processing prevents novel experiment types based on event-triggered feedback se-
tups that depend directly on the data processing results.
Supporting fast, reactive experiments requires proper integration of high-throughput

data acquisition, data processing as well as fast asynchronous device access on the ex-
periment control level. None of the existing control systems provide the necessary
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integration nor the flexibility to model X-ray imaging experiments rapidly. Instead, ad-
hoc solutions and inflexible setups are used to control an experiment. is approach
prevents sophisticated experiment feedback loops and on-line monitoring of the data
quality.
e operators of current control systems are trained personnel but oen lack a so-

ware engineering background. us, to ease working with the experiment control sys-
tem, experiment sequences are pre-defined and rarely changed. However, especially
for X-ray tomography, a “rapid prototyping” approach is necessary to cope with un-
conventional experiment setups in a flexible way.
Based on these high-level problems, the three central questions that this thesis ad-

dresses are:

Which system architecture enables on-line data analysis and fast feedback
X-ray imaging experiments and which components are necessary for opti-
mal throughput and low latencies? Moreover, how can users and developers
rapidly set up new experiment and data processing workflows?

ese central questions lead to a series of related problems that we are going to high-
light in the remaining section. For each problem, we will pose specific research ques-
tions that need to be addressed in order to solve that particular problem.

Heterogeneous data processing

e majority of the parallel compute systems employed in the synchrotron context use
homogeneous hardware architectures in order to process large amounts of data. Multi-
threaded parallel computing on multi-core ,  and clusters of compute nodes
is the dominant compute model for these system architectures. Neglecting the het-
erogeneity of mixed hardware architectures using  and accelerators, however, pre-
ventsmaximum throughput required for on-linemonitoring and fast feedback purposes.
A large body of research has already shown how to leverage heterogeneous compute
systems for processing fixed-sized data or distribute a large number of processing tasks.
Streamed data processing on heterogeneous compute systems, as required for X-ray
imaging experiments on the other hand, has seen only minor investigations. us, to
provide a strong foundation for heterogeneous computing with streamed processing in
mind, we have to find appropriate architectural and compute models:

estion : How can we model the flow of data streams and processing for
use within a heterogeneous compute system?

e existing compute models cannot accurately estimate the run-time behaviour and
suggest optimal resource allocation plans. Although system parameters such as 
caches, slow data links and inter-processor affect the run-time and throughput of mod-
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ern heterogeneous compute systems they are oen not considered in large scale com-
pute architectures. Moreover, because  and accelerator architectures such as Intel
Xeon Phi are fundamentally different from  architectures, must be examined sepa-
rately, thus:

estion : How can we estimate system parameters and use them to im-
prove heterogeneous data processing? How does this affect the system
design itsel?

Having a near-optimal heterogeneous architecture does not yield an optimally per-
forming compute system that is required for an on-line imaging experiment. us,
based on the compute model and estimated system parameters, we have to find and op-
timize pre-processing, reconstruction and post-processing imaging algorithms to give
an answer to

estion : What are the best performing implementations of imaging al-
gorithms and technologies on existing and future compute architectures?

Generic, low-latency data acquisition

An X-ray imaging experiment requires a pixel detector with specific properties depend-
ing on the characteristics of the scanned sample or process. To cover a wide range
of use cases and applications, a beamline operator usually chooses between detectors
with high sensitivity and low frame rate or high frame rate and bad signal-to-noise ratio.
Moreover, pixel sizes and pitches between pixels determine the resolution of spatial in-
formation and the dynamics. Due to a lack of soware interface standards, each vendor
uses a different approach to access these parameters. us in practice, to use n detectors
with m client systems m× n different detector implementations are necessary.
Separating data acquisition and data processing on different machines improves the

reliability and maintainability of the entire control system. Such a physical separation
requires that the acquired detector data is streamed through the control system network.
Streaming the data through ’s  Gigabit Ethernet (b) Transmission Control
Protocol/Internet Protocol (/) network has two major drawbacks: First, the net
bandwidth of a 10Gbit s−1 connection does not suffice to transmit the data produced
by the fastest detector and thus cannot be used for on-line and fast feedback purposes.
Second, using the shared control network for full frame data transmission negatively
affects other control processes which in turn could miss so real-time requirements.
erefore we have to address

estion : What does a detector interface for fast, generic and remote data
acquisition look like?
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Experiment control

A beamline experiment setup consists of hardware devices such as motors, shuers
and detectors that are used to control beam parameters and acquire image data. To ac-
cess these devices from a central location, state-of-the art synchrotron control systems
model the entire beamline as a /-based distributed system of compute nodes, each
node accessing a particular piece of hardware. A client application sequences device
access by communicating with these nodes to perform experiment processes. Even
though a distributed system provides inherent asynchronous operation, the existing
higher level experiment control systems were not designed to operate multiple devices
in parallel. Such asynchronous device access, however, is mandatory to increase the
experiment throughput.
Apart from a lack of parallelization, existing low-level control systems do not model

devices in a semantically correct hierarchy of device families. erefore, client appli-
cations cannot rely on common soware interfaces to access different devices of the
same family in a generic way. is prevents the development of maintainable soware
components for rapid experiment prototyping.
Although existing low and high-level control system provide mechanisms for rudi-

mentary analysis of acquired system parameters and experiment data, none of them
integrate high-throughput data processing to enable so real-time on-line data analy-
sis. On-line processing is a necessary to implement fast feedback loops for experiments
that have to adapt to changes in the sample. Also, because the majority of data is pro-
cessed off-line, any problems related to the experiment setup go unnoticed for the time
of acquisition. To prevent these problems we need to address

estion : How can we design an experiment control system to support
experiments with high throughput demands and fast feedback loops?

Processing and control interfaces

Programming a heterogeneous compute system is a challenging task because different
parallel programming models and Application Programming Interfaces () are re-
quired to build efficient programs for different multi-core architectures, clusters and
 systems. To cover these platforms, a programmer must know about a low-level
multi-threading  such as pen for multi-core ,  for cluster communica-
tion and an accelerator  such as  or pen to program a . Considering the
integration of such a high-performance compute system within a flexible experiment
control system bears the following questions:

estion : What does a low-level interface for a heterogeneous compute
system look like and what is necessary to provide minimal interface for
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developers and machines alike? How does the integration with a control
system look like and how can a control system itself to ease the description
of complex workflows?

With the previous question answered, an operator can easily use the system but not
extend it. Especially the conceptual differences between a  and a  as well as
the low-level  required to program  prevent novice developers to modify and
extend -based algorithms. However, flexible experiment workflows also require
flexible imaging algorithms and derived  implementations, hence:

estion : How can we provide high-level to modern  hardware?

1.2 Objectives and contributions
e problem statements and research questions provide a framework that set the goals
for this thesis and limit its scope. In particular, we are going to present the results and
contributions of the following objectives:

. We will design and evaluate an open platform for parallel and distributed comput-
ing of data streams. e computing platform will target and scale with both locally
available parallel hardware such as multi-core , many-core  and small-scale
clusters of individual nodes, which comprises typical imaging beamline hardware.
We will also characterize system parameters for subsequent low- and high-level op-
timizations and provide a high-level integration for end-users.

e  compute framework implements the proposed system design []. It uses
novel mapping techniques to reduce the run-time by optimizing the utilization of
multiple accelerator devices and compute nodes. e system is in use at  and
evaluated at  for X-ray imaging tasks [, ]. Despite being designed originally
for X-ray imaging tasks, the system is currently being adopted for high-frequency
X-ray beam diagnostics analysis [] as well.

. We will evaluate and optimize efficient imaging algorithms to pre-process X-ray im-
ages, reconstruct tomographic volumes and post-processes data on  and 
for high throughputs as required by on-line experiments. e main objective is to
find algorithms and algorithmic implementations that are suitable for on-line usage.

Besides standard  optimizations for common pre- and post-processing tasks, we
also integrated optimized algebraic and Fourier-based reconstruction algorithms into
our heterogeneous compute framework [, ].
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. We will design a generic detector interface that uses low-level shared memory primi-
tives for high throughput, a property system for generic access and a plug-in mecha-
nism for modularity. It will be used to control arbitrary detectors and stream data at
high speeds. On top of the generic interface, we will devise an extension for remote
data acquisition.
We designed and implemented this generic system as part of the  data acquisition
framework. e remote extension uses a custom InfiniBand network component
for high-throughput remote data acquisition []. Apart from accessing a dozen
commercial detectors, it is used to control the  detector system [, ] and the
grating-based phase contrast detector characterized at ’s P beamline [].

. Based on modern asynchronous and concurrent programming paradigms, we will
design and evaluate a control system for parallel device access and high-throughput
data processing. e main objectives of this control system are on-line monitor-
ing, fast feedback loops and rapid definition of new experiment and data processing
workflows.
e Python-based Concert control system integrates the  compute framwork and
the Unified Camera Abstraction () acquistion system together with the low-level
control systems [, ].

. To aid developers writing -based programs, we will propose a high-level source-
to-source translation system that maps Python functions to functionally equivalent
pen kernels for execution on  and other parallel accelerators. e main ob-
jectives are the reduction of code complexity and first-level optimizations on the
functional description.
We proposed a source-level annotation system used for just-in-time code generation.
e system is used for quick prototyping of  code as well as fast execution of
numeric Python code on a local multi- machine.

e proposed system designs and subsequent results have also been presented at dif-
ferent workshops: e Concert control system was introduced at the th  Work-
shop  in Barcelona. e general architecture and implementation details of the data
processing framework were presented at the High Data Rate Initiative Workshop 
held at the German Synchrotron Radiation Source  and the ScienceD Workshop
 also held at . Details on the tomographic reconstruction pipeline and the
Python code generation were given in a talk for the Fast Data Processing Workshop 
held at the  Center For Excellence at Technical University Dresden.
e results and contributions of this thesis are part of the - and - 

research projects. Both projects are joint German-Russian collaborations between ’s
Institute for Data Processing and Electronics (), Institute for Photon Science and
Synchrotron Radiation (), Laboratory for Applications of Synchrotron Radiation ()
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and Institute of Experimental Nuclear Physics () as well as the Shubnikov Institute
of Crystallography in Moscow, the Saint-Petersburg State University for Civil Aviation
and Tomsk Polytechnic University. Besides the topics covered by this thesis, - and
- develop newX-ray imaging setups, detector systems, smart -based detectors
and novel scientific applications and experiment types.

1.3 Outline
Chapter 2 reviews current technologies and performance models in the context of het-
erogeneous compute systems consisting of  and  as well as related work for
streamed computing. We present X-ray imaging principles and algorithms giving back-
ground to the synchrotron use case that we evaluate in Chapter .

Chapter 3 describes the compute and hardware model for processing data streams
on heterogeneous systems. We present algorithms to map data processing tasks to
instruction-level parallelism, accelerator and multi-core  thread-level parallelism
as well as distributed task parallelism on clusters of distributed machines. We analyse
the system based on an analytical model and optimized streaming-specific aspectes to
improve the throughput on heterogeneous streaming systems.

Chapter 4 proposes a system architecture for fast data acquisition and the design of
a system architecture for parallel experiment control. e data acquisition system re-
duces the number of memory copies between different sub-systems for low latency and
high throughput. e control system uses the processing capabilities presented in chap-
ter  to realize novel experiment types and improve the throughput of existing beamline
processes. We use a tomography experiment as a case study for the full chain of data
acquisition, data processing and control using online feedback.

Chapter 5 shows ways to simplify  programming and optimize of algorithms for
current heterogeneous architectures. Wewill describe a compiler system that translates
Python code to  programs and allows for rapid prototyping of  code suited for
the system described in chapter . e compiler includes a run-time system which
makes it also possible to compute existing numeric Python code on a local multi-
system. In the second part, we will present specific  optimizations concerning the
reconstruction of tomographic data.

Chapter 6 presents quantitative results that characterize the proposed architectures
from chapters  to . For this, we evaluate system constraints and measure the perfor-
mance achieved with the data processing framework using real data. We also measure
the impact of the optimization strategies we presented in chapter . We will estimate
the improvements of an asynchronous control system by simulating experiment work-
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flows and determine performance improvements gained by using the code generation
tool.

Chapter 7 discusses the contributions and results from the preceding chapters in light
of the objectives posed in . and compared with other systems proposed in the liter-
ature. Based on the discussion, we will give an outlook on possible future work and
aspects that are not covered by this thesis.



2 Preliminaries and related work

Parallel and heterogeneous computing are the key factors for high performance data
processing in the multi- and many-core era. In this chapter, we will review parallel
compute andmachinemodels and explore contemporary parallel hardware such as 
and   as well as the Intel Many Integrated Core () architecture. We will
also review the pen accelerator soware interface. In the second part, we will in-
troduce X-ray imaging principles and related technologies used in synchrotron X-ray
imaging applications. We will present the foundations of a typical data acquisition
chain, different reconstruction algorithms as well as filters and algorithms used in pre-
and post-processing stages.

2.1 Parallel computing
Since the emerge ofmicroprocessor-based compute systems in the early s, program-
mers took advantage of ever-increasing performance gainsmade possible by the increas-
ing clock frequency predicted by Moore’s law []. Around , technical problems
with  architectures such as difficult heat transfer and current leakage stopped the
development of higher clock frequencies and automatic performance increases. ese
problems caused a shi from complex uni-core microprocessor architectures to multi-
threaded and multi-core processor designs []. In hindsight, parallel computing be-
came an ubiquitous mainstream technology [].
e parallel computing paradigm enables potential compute performance improve-

ments by subdividing a large problem into smaller sub problems. By processing these
smaller problems simultaneously on multiple processors, the overall compute time is
reduced []. Task parallelism aains an execution speed up by decomposing a larger
task into multiple independent tasks that are distributed across multiple processors for
concurrent execution. Pipeline parallelism is a special form of task parallelism and
achieves compute speed ups by overlapping the concurrent execution of dependent
tasks that process a single data stream. Unlike task and pure pipeline parallelism, data
parallel algorithms split a single large data item into smaller sized data that can be pro-
cessed independently by the same task. is task is executed with a particular data
item on one of the multiple processors []. Data parallelism helps to improve the



12 2 Preliminaries and related work

latency for fixed-size data by reducing processing time and improve the throughput by
increasing the amount of data that can be processed at the same time.

2.1.1 Compute and communication models
e Parallel Random Access Machine () is a theoretical shared memory machine
model that extends the random access register machine with an arbitrarily large set of p
independent processors. Each processor can access the same memory instantaneously
but a concurrency protocol may restrict read or write accesses. Such a protocol postu-
lates which and if a processor has exclusive read or write access to a specific memory
location []. Unlike a distributed system, the  model does not model the time re-
quired to move data from one processor to another, thus assuming instantaneous access
to a memory location.
Because of the assumptions of an unlimited number of processors and instantaneous

access, the  model is insufficient to describe real world compute systems. A more
realistic compute model assumes a fixed number of processors p ∈ P, a defined execu-
tion time for a given task size on a single processor and a fixed communication time
required to move data between two processors []. More formally, each processor
Pi ∈ P = {P1, . . . , Pp} requires Ti time units to compute a single computational task
unit. For convenience, we define a function Ti(n) := n · Ti which denotes the total
amount of time required to compute n task units. e speed si of processor Pi arises
from the reciprocal of the computation time. e relative speed of each processors is
obtained by normalizing the set of processor speeds S = {s1, . . . , sp} by constraining
∑

p
i si = 1 [].
Given a problem of task size N, a task parallel strategy tries to find the best partition

n⃗ = (n1, . . . , np) where ∑
p
i=1 ni = N, to minimize the total execution time. Assuming

independent tasks and processors, the slowest processor bounds the total execution
time by

Tp (⃗n) = max
p

Ti(ni). (.)

Per definition, executing all tasks of a partition n⃗ on a single machine takes

T1(⃗n) =
p

∑
i

T1(ni) (.)

time units. Without loss of generality, we will use Tp and T1 to denote compute times
for tasks with fixed size parameter if the size is of no interest.
In parallel systems without shared memory, processors can exchange data only by

sending messages through a connection link. e time for preparation, sending, trans-
ferring and receiving data incurs a communication overhead of Ti,j time units between
processors Pi and Pj. is overhead, and therefore the total communication time, de-
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pends on the size of the message m given in Bytes (B) and the communication link
between Pi and Pj.

Scalability

e main purpose of parallel computing is the accelerated execution of a program. e
speed upmetric describes the improvement of a parallel implementation compared to its
sequential implementation. More generally, the speed up measures any improvement
that is the result of some optimization. In the parallel computing domain, we have to
distinguish between absolute and relative speed ups. e absolute speed up compares
the best sequential performance with the best parallel implementation on p processors.
e relative speed up compares the execution of the same parallel implementation on a
single and up to p processors. In general, the speed up S(p) for p processors is given
by

S(p) =
Tinitial

Toptimal
=

T1
Tp

(.)

In a homogeneous system, Ti = Tj for all i, j ∈ {1, . . . , p}. us the time to compute
a problem on p processors is given by

Tp =
T1
p

. (.)

In this case, a hypothetical perfect speed up S(p) = T1/Tp = T1/T1/p = p that
increases linearly can be obtained. e efficiency metric E(p) ∈ [0, 1] of a parallel
system characterizes the aained speed-up in terms of the hypothetical perfect speed
up by

E(p) =
S(p)

p
. (.)

Amdahl recognized that the sequential parts of a parallel program limits the speed up of
the entire program []. Let α ∈ [0, 1] denote the program fraction that can be executed
in parallel, then the time to compute a program is given by

Tp = (1− α)T1 + α
T1
p

. (.)

From that equation it follows that the speed up converges towards a limit

S(p) =
T1
Tp

=
T1

T1
(
(1− α) + α 1

p

) =
1

1+ α
(

1
p − 1

) p→∞
=

1
1− α

(.)
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that depends on the sequential fraction of a program. us, the larger the sequential
fraction of a program is, the smaller is the gain reached by adding more processors.
As we can see, the speed up is a measure to characterize the scalability of a parallel

algorithm, which means how much beer an algorithm performs if more processors
are added to the system. Strong scaling, to which Amdahl’s law applies, assumes that
all processing units process a fixed amount of data. us in a perfectly strong scaling
system, doubling the number of processors halves the execution time. On the other
hand, theweak scaling model assumes that the amount of data increases at the same rate
as the number of processors increases. us, a perfectly weak scaling system processes
twice the amount of data without increasing the execution time. For a weak scaling
system, Gustafson [] quantifies the speed up as follows:

S(p) =
(1− α) + pα

(1− α) + α
= (1− α) + pα (.)

Amdahl’s and Gustafson’s laws limit the algorithmic speed up for additional pro-
cessors to a theoretical upper bound. In practice, external factors such as scheduling
overheads, input/output (/) latencies and communication costs also limit the effective
speed up that can be obtained on real systems. us when designing a parallel compute
architecture, these factors have to be taken into account too.

2.1.2 Heterogeneous computing
A heterogeneous compute system consists of more than one type of processor that exe-
cutes a single application at a time [] in order to improve either latencies or through-
put. erefore, heterogeneous computing is a special case of parallel computing. An
older, more restricted definition, limits the definition of heterogeneous compute sys-
tems to networks of heterogeneous machines thus excluding contemporary -
machines []. In this thesis, we will concentrate on higher level heterogeneous sys-
tems which consist of a set of distinct processors that communicate locally via Periph-
eral Component Interconnect eXtended (e) or remotely via a communication net-
work, oen referred to as distributed computing. Compared to homogeneous compute
systems, heterogeneous systems can in principle designate the most appropriate pro-
cessing resources to a certain sub-task of a problem. For example,  may acquire
and pre-process raw data while subsequent  and  stages process massively par-
allel or branch-heavy problems. is requires that the problems can be partitioned
properly.
Compared to the simplistic models from .., we also have to take the time into

account that is required to transfer data between two processors. Two major models
estimate the transfer time Ti,j between two processors Pi and Pj, the Hockney and the
LogP model classes. Hockney’s peer-to-peer communication model assumes a linear
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relationship between message size m and the time required to send it []. Given a
startup latency Li,j and a maximum link bandwidth Bi,j between Pi and Pj, the total
time to transfer messages with a size of m bytes is

Ti,j(m) = Li,j +
m
Bi,j

. (.)

By sending messages of different sizes, the parameters Li,j and Bi,j can be found by
computing the linear regression of the bandwidth. For real distributed systems, the
assumption of a strong linear relationship between message size and transfer time is
not precise enough because the overhead of sending small messages compared to large
bulk transfers is not considered.
e second class is the LogP model family first introduced by Culler []. e basic

LogP model assumes an upper bound on latency L for small messages, an overhead o
required for a processor to transmit or receive a message during which it cannot do
anything else, the minimum gap interval g between two consecutive messages and the
number of processors P. In the original model, the transfer time between two proces-
sors is given by

Ti,j(m) = L + 2o. (.)

Alexandrov extended the LogPmodel by adding the gap per byte parameter G to capture
arbitrarily sized message transmissions []. In this model Ti,j is given by

Ti,j(m) = L + 2o + G(m− 1) (.)

Bandwidth and throughput

e performance of a communication channel between two processors Pi and Pj de-
pends on the physical frequency bandwidth of the communication link. In data net-
works as well as in the remainder of this thesis, the term bandwidth denotes the data
rate at which this communication link can transfer []. e achieved bandwidth not
only depends on the employed physical layer technology but also on the number of
bytes m that are transferred. Knowing this and the time required to transfer m bytes
from Pi to Pj using one of the data transfer models, the bandwidth B(m) is approxi-
mately

B(m) =
m

Ti,j(m)
. (.)

For large m, the bandwidth converges towards the channel’s maximum possible band-
width B. Contrary to the physically possible bandwidth, the throughput of a system
denotes the data rate perceived at the application level. is includes data transfer and
data processing rates. e laer metric is thus useful to determine the performance of
an algorithm’s implementation that cannot be analysed in terms of floating point oper-
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ations per second (FLOP s−1). In this case, the processing throughput Bi(n) = n
Ti(n)

is
a reliable metric for the performance of an algorithm. For certain algorithms we have
to distinguish between the inbound and the outbound processing bandwidth. Inbound
denotes the throughput measured in terms of processed input bytes, whereas outbound
denotes the throughput measured in terms of produced bytes.

2.1.3 Streamed computing

A streamed data processing system processes a potentially infinite stream of data items
using a fixed set of stages or filters arranged in an ordered pipeline structure. is model
is particularly useful for data processing tasks such as audio or video transcoding aswell
as flexible transformation of line-based data such as  pipes []. Except for the
immediate data input, filter stages are entirely independent of their adjacent neighbour
filters. is makes a pipeline ideal for task parallel execution of pipeline stages.

A pipeline that processes n < ∞ items with k filters requires

T1 = n · k (.)

time units to process the entire stream on a single processor. On a , it takes k
iterations to fill the pipeline, n− k steps until the first filter processes the last item and
k− 1 iterations until the last item is fully processed by all filters, hence for p = k the
parallel execution time is given by

Tp = k + n− 1. (.)

Applying (.), the speed up S(p) converges towards

S(p) =
T1
Tp

=
n · k

k + n− 1
n→∞
= k. (.)

is performance model assumes that all filter tasks require equal amount of time to
process their data items. In reality, however, the slowest filter will limit the pipeline
throughput. Moreover, this model only considers the task parallel part of pipeline par-
allelism where in fact stages can be replicated for internal data parallel execution. us
for a  with p = kn and n times replication of the pipeline, the entire stream can
be processed in k time steps with a theoretical speed up of n. We will investigate a
similar but weaker assumption in the next chapter to increase the overall parallelism
on heterogeneous compute systems.
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2.2 Parallel hardware architectures
Flynn’s classification of hardware architectures considers the number of instructions
that are processed simultaneously on a number of data items []. In total, four classes
can be distinguished: Single Instruction Single Data (), Single Instruction Multiple
Data (), Multiple Instruction Single Data () and Multiple Instruction Multiple
Data ().  architectures are classic uni-core architectures in which one instruc-
tion processes exactly one data item. A  machine executes a stream of single in-
structions on multiple data items in parallel. is is the vectorized compute model of
specialized instruction sets such as Intel’s Streaming  Extensions () in  pro-
cessors.  architectures execute multiple instructions on different streams of data.
is model is implemented in multi-core processors with  instructions, distributed
systems and Very Long Instruction Word () processors.
Flynn’s coarse taxonomy explains microprocessor features found across different ar-

chitectural levels. On the lowest level, Instruction-level Parallelism () describes the
potential parallelism within the instruction stream: In-order instruction pipelines allow
overlapping of executed instructions whereas out-of-order pipelines execute instruc-
tions truely parallel on superscalar execution units. Moreover, speculative execution
issues instructions of different conditional branches in parallel and discards the result
of the branch whose condition turned out to be false. e complexity of these execution
units and the difficulties of compilers to find parallelism for  processors within a
program limit the potential parallelism within a single  core; a problem that is oen
referred to as the  wall [].

2.2.1 Multi-threading onmulti-core architectures
Instead of using chip area to support more fine-grained , current microprocessor
technologies try to emphasize thread-level parallelism (). e  paradigm simpli-
fies the single  core by replicating the logic and resources as multiple  cores. is
moves the burden of parallelization from the compiler to the operating system and the
programmer. On the microprocessor level, a thread is an abstraction for the execution
of instructions and consists of its own register state; in particular its own copy of the
instruction and the stack pointer.
Simultaneous Multithreading () is a hardware multi-threading technique to ex-

ecute instructions of multiple threads in a single clock cycle using replicated control
and execution units and was first introduced with Intel’s NetBurst microarchitecture
in  []. Rather than true concurrency,  allows a thread to occupy execution
units if another thread is waiting on a resource. For example, if a thread must access the
slow Double Data Rate () memory in of a cache miss, another thread may execute
on the unused Arithmetic Logic Unit () of a core. e increased utilization of core
resources improves the overall run-time performance. On the other hand, if all threads
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are exclusively  or / bound, contention for shared resources will negatively impact
the run-time performance.
Replicating the whole processing core within the same chip, results in chip-level

multi-processing. ese multi-core architectures are the dominant  feature since
the introduction of the Intel Core Duo line of chips. Multi-core architectures are a spe-
cial case of Symmetric Multiprocessing (), in which separate chips share common
resources. On both multi-core and  systems, multiple threads run independently
from each other, with exclusive access to the resources provided by the core a thread
runs on. e difference is that classic  systems are built from multiple  dies
whereas a multi-core architecture is housed within the same die.

Parallel programming

Compared to the hardware definition of a thread, an operating system thread has spe-
cific properties that are visible only to the application programmer. A soware thread
is always part of a process and shares memory and other kernel resources with all other
threads of the same process. In the absence of hardware multi-threading, concurrent
execution can be emulated by cooperative or preemptive multi-threading. reads in
a cooperative operating system deliberately suspend their execution to yield for other
threads. A preemptive operating system rapidly switches between different threads
giving the illusion of concurrent execution.
On a real multi-threaded operating system, low-level soware abstractions such as

 threads (Pthreads) on  systems [] or the Win  provide access to the
operating system thread primitives. To prevent deadlock and race condition problems
that are typical for parallel programming [], operating systems and higher level 
allow programs to enforce separate memory spaces by communicating via message
passing [] and use synchronization primitives. e laer includes waiting for a con-
dition or the completion of a thread as well mutex or semaphore data structures to
lock access to a resource. Higher-level multi-threading models such as Open Multi-
Processing (pen) [] reduce these problems by moving multi-threading into the
language specification itself. e programmermarks appropriate sections of the code as
parallelizable, for which the compiler then generates code that is responsible for thread
management and data partitioning. Although these programming models cannot pre-
vent race conditions in all cases, the compiler can in principle warn about suspicious
code.

2.2.2 Many-core architectures
 are multi-threaded hardware architectures that consist of a large number of com-
pute cores, typically an order to two more than . Compared to  memory, 
cores can access their on-board memory with much a higher memory bandwidth. How-
ever, the data must be transferred first from  to  memory through a e con-
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Table 2.1 Development of  microarchitecture specifications from  until
.  denotes shared memory per .

Year Architecture  /  / /  754
2006 G80 16 8 2 — 16 1985
2010 GT200 16 15 2 — 16 1985
2011 Fermi 16 32 4 16/16 16–48 2008
2012 Kepler 15 192 32 32/32 16–48 2008

nection. Unlike  cores,  cores are simpler in design and focused on arithmetic
throughput rather than complex logic. e larger number of cores and the distinc-
tive memory address space require a specific programming model that is not compat-
ible with current  architectures and existing multi-threaded approaches. Rather
than programming separate multiple threads for each core, a programmer must write
 programs with  execution in mind. is requires that single instructions are
mapped to all cores at the same time.

NVIDIA architecture

e   architecture arranges Texture/Processor Clusters () in a processor
array. Each  consists of a texture unit for fast interpolated data access and a number
of Streaming Multiprocessor () units that are managed by an  controller. An 
consists of a number of single precision Streaming Processor () cores, each composed
of a -bit integer , a single and double precission Floating Point Units (), units
for loading and storing data (/), a Special Function Units () for fast computa-
tion of transcendental operations such as the exponential, logarithm and trigonometric
functions and a block of shared high-speed on-chip memory. Table . shows the de-
velopment of the  microarchitecture features and how Moore’s law had direct
impact on the number of cores and available cache memory.
An  follows the  execution principle that runs hundreds of threads of different

programs in parallel. An  executes a number of threads using their own execution
and register state and is therefore able to execute independent code paths []. To
efficiently schedule instructions, the  scheduler groups  threads into warps. Each
thread within a warp executes the same instruction in lock-step fashion with all the
other threads but using its own register state. Within a warp only threads that satisfy
a condition are executed at the same time while the rest is idle. is serialization of
branched instructions causes performance degradation of heavily branched  code.



20 2 Preliminaries and related work

AMD architecture

’s pre-Graphics Core Next () architecture was based on a  design. is de-
sign is well-suited for three-dimensional graphics operations but did not fully utilize the
 for typical compute workloads. is is due to the fact that a single  instruc-
tion encodes four operations at once but not all of them may be executed concurrently.
In compute-intensive workloads, stricter data dependency requirements can eventually
reduce the number of parallel instructions.
e  successor microarchitecture replaced the  architecture with a multi-

threaded approach focused on  operations similar to the microarchitectures.
A   features a number independent Compute Units (). Each  consists of
a single Scalar General Purpose Register (), four Vector General Purpose Registers
(), a L data cache and a 64 kB Local Data Storage (). A  is comprised of
 Processing Elements () and processes multiple data in  fashion whereas the
scalar unit is used for scalar instructions or memory fetch operations. Four  share
a 16 kB read-only L scalar cache and a 32 kB L instruction cache.

Intel MIC architecture

Intel’s  architecture originated from the former Larabee and Single-chip Cloud Com-
puter () research projects [, ]. e Larrabee architecture was intended as a 
replacement but is in fact a - hybrid. It featured two conventional  cores with
out-of-order instruction pipelines and ten Pentium cores with simple in-order pipelines.
To improve the performance of the older Pentium architecture, each core featured an
additional -bit wide vector engine for highly parallel  computation. e 
research prototype had  Pentium cores for conventional  tasks. e entire chip is
structured as a grid of 6×4 tiles, each tile covering two  cores. e cores communi-
cate through message passing primitives thus the whole chip architecture resembles a
cluster of single core machines with additional benefits from shared caches.
e Intel  architecture that originates from both projects shares features of these

architectures, mainly the large number of simple Pentium cores. Similar to the Larabee
processor, it features up to  Pentium cores, each with  -bit vector registers which
can in turn process up to  single precision operations per core per cycle. High-end
models achieve a memory bandwidth of up to 320GB s−1. e  architecture is cur-
rently available as Intel Xeon Phi accelerator cards that are connected to a host 
through a e connection.

Analysis

From table ., we can see that the heterogeneous accelerators outperform the Xeon
 and achieve a peak floating point performance that is in the same order of magni-
tude. e gap between peak memory bandwidth and peak performance, oen called
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Table 2.2 Number of cores, memory bandwidth and peak floating point performance
for a  and different accelerators. e last column compares the memory bandwidth
from the second column with the single and double precision performance measure.

GFLOP s−1 FLOPB−1

Device Cores GB s−1 Single Double Single Double
Xeon E5-2690  8 51 371 186 7.27 3.65
 580 512 192 1580 198 8.23 1.03
 680 1536 192 3090 128 16.03 0.66
  2688 288 4500 1312 15.63 4.56
Tesla K20x 2688 250 3950 1310 15.80 5.24
Firepro W9100 2816 320 5240 2620 16.38 8.19
Xeon Phi 5110P 60 320 2021 1010 6.32 3.16

the memory wall [], becomes even more apparent in these architectures. is leads
to the critical situation that the accelerators could process algorithms with large mem-
ory demands but cannot provide the data fast enough. is becomes a severe problem
for applications with large memory demands and low computational intensity on high-
performance accelerators. For example, a   must compute  floating point op-
erations for each byte that is transferred to  memory in order to saturate core peak
performance and memory bandwidth.

2.3 GPU computing

As seen in figure . and outlined in section .., a  performs an order of mag-
nitude more floating point operations per second than a conventional . Early ap-
plications leveraged the  performance potential by programming the pixel process-
ing pipelines directly to perform arithmetic operations on data encoded in pixel tex-
tures []. e pixel pipelines were designed specifically for graphics operations and
therefore adoption of  was limited to applications that mapped well to the graphics
paradigm. To ease usage and open up new application domains,  vendors extended
the microarchitectures for full programmability []. Early research projects such as
Cg [] and Brook [] abstracted the hardware details behind programming interfaces.
Eventually, the vendor-neutral industry standard Open Compute Language (pen)
and ’s proprietary Compute Unified Device Architecture ()  emerged
as two competing de facto standards. Unlike , which is limited to  ,
pen targets arbitrary accelerator devices [] such as multi-core  with 
processing units,  by all vendors, Intel’s Xeon Phi or  from Altera. Despite
its device-agnostic programming model, pen’s  follows the microarchitecture im-
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single () and double precision () floating point operations.

posed by  and resembles to a large degree .
Although  and pen currently account for themajority of -accelerated pro-

grams, the development of higher level languages indicates the need for a simpler and
less error-prone access to  performance. For example, pen [] and pen
 use the well-known pragma-based approach to shi the parallelization towards the
compiler and reduce the burden on the programmer. e adoption of pen for multi-
threaded programming has shown that this approach is a viable alternative to the lower
level libraries. Nevertheless, at the moment the higher-level solutions are not yet ma-
ture enough for production, which is why we will focus on pen in this thesis.

2.3.1 OpenCL programmingmodel
A heterogeneous pen system consists of the host, which is any regular C or C++
program accessing the pen  and one or more abstract platforms. Each platform
exposes devices that are aached to the host system and supported by a particular ven-
dor. Each device consists of one or more  and each  of one or more . e host
uses the pen C  to communicate with the pen run-time system and initiates
execution of device programswrien in pen C.Within a single platform, the applica-
tion programmer creates one or more contexts to group devices according to application
demands. Devices of the same context can share memory and event information. Mem-
ory buffers are not specific to a device but transferred transparently to the device that
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Figure 2.2 Work items on a global ×× grid, arranged in work groups of size ××.

wants to access it. To communicate with the aached devices, the programmer creates
one or more command queues per device. ese queues are used to address a device to
submit commands for transferring data and launching programs.
 programs consist of a number of kernel functions wrien in pen C, a subset of

standard  C []. At run-time, the pen C compiler compiles the kernel for a list
of devices into device-specific byte or native code. For example, on  platforms the
code is compiled into device-specific Parallel read Execution  () code whereas
the Intel compiler directly emits x machine code. e application programmer sets
the required kernel parameters and submits a kernel launch command to the command
queue of the device where the kernel should be executed.

2.3.2 Execution model
A  kernel is a function that describes a task in a data parallel, Single Program Mul-
tiple Data ()-like fashion. Although these functions are executed in lockstep by
the  their instruction paths may diverge due to branching. In this case, the hard-
ware schedulers execute subset of threads, hence the execution model is more strictly
classified between  and  []. Common algorithmic paerns that use this
massively parallel execution model include parallel scaer, gather, map and reduce op-
erations []. From these basic paerns, most data parallel algorithms can be derived
straightforwardly. For example, a sequential for loop that does not posses any data
dependencies can be replaced by a parallel map operation.
In pen,  programs are launched by submiing a kernel on a multi-dimensional

index space G⃗ = (Gx, Gy, Gz) ∈N3. Each grid point – or global  g⃗ ∈ Gx ×Gy×Gz
– uniquely identifies one of the Gx ·Gy ·Gz work items that execute the kernel function.
Using the global  and a global offset F⃗ ∈ N3, a work item addresses the task or data
item that it is working on. For example, in an image processing task each work item
may use the global  to adress the input and output pixel of an image. e global grid
is further sub-divided into work groups of size Lx × Ly× Lz that are addressed by their
work group  W⃗ ∈N3. Within a single work group, a work item is uniquely identified
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by a local  l⃗ ∈ Lx × Ly × Lz. e global  corresponds to a linear combination of
work group  and local  as shown in figure . and given by

g⃗ = w⃗⃗LT + l⃗ + F⃗. (.)

Aer submiing a kernel launch command to a command queue, the pen run-time
decides autonomously on which  a work group and on which  a work item is sched-
uled. Spliing functionality into concurrent work items and kernels, enables three lev-
els of parallelism: Coarse-grained task parallelism with multiple devices, fine-grained
task parallelism using concurrent kernel execution on the same device and fine-grained
data parallelism through massively parallel  execution of a single kernel.

2.3.3 Memory model
e memory model of pen distinguishes between host and device accessible mem-
ory and requires explicit data transfers between those address spaces. Because kernels
cannot return values on the call stack, the communication back to the host must happen
through shared global memory.
Similar to the  memory system, the device memory is arranged in a hierarchy of

memory levels. Each level is characterized by a different scope, access, size and access
latency as shown in table .. Generally, global memory is used to transfer data between
host and device using explicit memory copy operations or memory mapping. With
memory mapping, the pen run-time maps a memory buffer on behalf of the driver
to a user spacememory location. e host programwrites into this buffer and unmaps it
when done. Aer unmapping, the host cannot access the data cannot anymore and the
run-time transfers the data back to the device. Within the samework group, work items
can share data through local user managed on-chip memory, which is usually orders of
magnitude faster than global memory. Local variables are private to a work item and
stored in on-chip registers, which provide the highest memory bandwidth available.
A special type of global memory is an image object. is object represent two- or

thee-dimensional arrays of structured elements such as pixels with a specific color for-
mat. Looking up a pixel value from an image leverages  texture units to perform
fast hardware interpolation. However, pen images are created and accessed using
special function calls and therefore are not directly compatible with ordinary pen
memory buffers.

2.3.4 Synchronization
To prevent race conditions affecting the correctness of the code, pen provides mech-
anism to synchronize concurrent kernel and work item execution. e command queue
structure ensures consistency of submied commands by stipulating a policy on the or-
der of kernel execution: the result of a kernel operation k1 is visible to operation k2 if
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Table 2.3 Mapping of pen memory locations to specific  hardware fea-
tures [].

Memory Where Cached Access Scope Lifetime
Register on-chip – R/W work item work item
Local on-chip – R/W work group work group
Global off-chip no R/W all work items + host host allocated
Constant off-chip yes R all work items + host host allocated
Texture off-chip yes R all work items + host host allocated

and only if k1 was enqueued before k2. To ensure correct ordering of commands that
were submied ) on different queues of the same context, ) to an out-of-order queue
or ) to multiple queues accessing the same device, the application programmer can
specify the order by chaining events. An event is implicitly created by  calls that
enqueue a command such as kernel launches or data transfers on a queue. Event ob-
jects can then be passed to other enqueue commands which must wait until the passed
event object has finished. To synchronize multiple kernels with an external trigger,
user-defined events are marked as finished on purpose.
To ensure consistency between work items of the same work group, pen provides

barriers and memory fence mechanisms. Barriers guarantee that all work items reach a
certain point within the program flow before continuing the execution. Memory fences
ensure that reads or writes to specific memory locations have completed and that ev-
ery work item sees the most recent value. Due to the hardware architecture of most
, the pen standard does not ensure correct synchronization with barriers and
memory fences for work items located in different work groups. To permit synchroniza-
tion across work groups, current pen versions expose atomic arithmetic operations.
ey can be used to either implement synchronization primitives such as mutexes and
semaphores or avoid explicit synchronization altogether, for example by accumulating
scalar results.

2.3.5 Hardware implementation
pen originates from  accelerators, hence most concepts map directly to the hard-
ware features found on  and  cards. A  executing a work group maps its
work items to the same   or a  . A work group, however, is not neces-
sarily mapped to the corresponding . A single work item is executed by at least one
 which per specification is an abstract scalar processor, for example an  of a 
 or the  core of .
A work group is a set of work items that execute the same kernel on the same 

and share local memory and per-work-group barriers. Although the work items of a
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Figure 2.3 Local work size for a given global work size in x-dimension on 
platforms.

work group can be mapped exactly to a thread warp or wavefront, work groups are not
necessarily sized into groups of 32 or 64 elements. On  for example, the largest
possible work group size is 1024×1024×64. However, no maer which dimension is
chosen, the run-time only takes the first dimension into account. Depending on the
width of the global work size, the  platform chooses the total work group size
for a one-operation kernel according to the function shown in figure .. Up to 
elements, the local work size grows at the same rate as the global work size, aer that
it goes back until reaching a new power of two. Between  and  elements, the
local work size fluctuates for no apparent reason before it rises in linear fashion until
 elements.



2.4 X-ray imaging 27

2.4 X-ray imaging
X-ray imaging is an analysis technique to study the inner structure of an object that is
otherwise opaque to visible light. Unlike visible light which is obstructed by an object,
the intensity of an X-ray beam is merely aenuated. Depending on the atomic number
of the object’s material, X-ray photons penetrating the object are either absorbed, scat-
tered or pass through. Due to this effect, materials can be discriminated by measuring
and comparing intensities. is allows the non-destructive determination of the struc-
tural composition of an object. Immediately aer the discovery by Wilhelm Röntgen
in  [], the medical examination of patients was established as one of the first
X-ray imaging application that is still in wide-spread use today [].
X-ray light has a short wavelength ranging from 50 nm down to 1 pm. is allows

for a spatial imaging resolution at the micro and nano scale, which is not possible with
visible light. e fast deceleration of a high-velocity electron beam causes the electrons
to lose their kinetic energy in the form of X-ray photons. To produce an X-ray beam
for small-scale desktop applications, an X-ray tube accelerates electrons by a magnetic
force and stops it by hiing a metal target. At larger scale, synchrotron facilities such
as  accelerate the electrons until near the speed of light and keep them traveling
in a storage ring []. To keep the electron beam in a ring, large magnets or undulator
devices bend the beam using a magnetic force Due to this force, X-ray photons are
emied tangentially to the ring []. At , the storage ring keeps the initial stream of
electrons at an energy level of about 2.5 GeV. At the  beamline, this energy is
converted to an X-ray beam with an energy range of 6 keV to 40 keV. Monochromators
narrow the bandwidth of the raw white light and filters and aperture devices reshape
the monochromatic beam to achieve the desired beam properties. Aer leaving the
vacuumed beam tube, the X-ray beam is shaped by experiment-specific devices and
measured with an appropriate detector.

2.4.1 Radiography
In a radiography setup, the sample is placed in the direct line-of-sight of the X-ray
beam. It aenuates the beam to themeasured beam intensity I through different photon-
maer interaction effects. For an initial intensity I0, material thickness z and a material-
specific aenuation coefficient µ, the non-absorbed X-ray beam intensity I is given by

I = I0e−µz. (.)

Photon counting pixel detectors measure this intensity either directly or indirectly. De-
tectors such as the Medipix detector chip [] convert the X-ray light directly into digi-
tized photon counts while indirect converting techniques use a separate thin scintillator
screen to convert X-ray into visible light. is light is then captured by a conventional
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Figure 2.4 Overview of the data acquisition chain in an X-ray imaging experiment.

Charge-coupled Device () or Complementary Metal-oxide Semiconductor ()
photon detector. Figure . shows the basic data acquisition chain that is used in all
X-ray imaging applications.

Noise reduction

Pixel detectors inevitably add varying amounts of noise to the original signal during the
digitization of the physical photon count value. In low-light situations, the discrete and
Poisson-distributed nature of light leads to shot noise []. Increasing the photon counts
through higher gain and exposure time, the thermal and electric circuit noise cause the
image noise to approach a normal distribution. e amount and spatial distribution of
Gaussian noise can be estimated by acquiring a dark frame Id(x, y), an image that is
taken without any light source.
emanufacturing process of the detector chip and obstructions in the light path such

as dirt on the lens and chip cause reproducible, distinctive paerns or fixed paern noise
that is independent of the sample and electrical properties of the chip. In radiography
applications, the beam itself becomes visible as fixed paern noise because of its in-
homogeneous Gaussian-like shape. To remove this type of noise from an unprocessed
frame Ir(x, y) of size w× h, flat fields I f (x, y) are acquired. ese images are evenly
illuminated or have a known content such as the beam without a sample in the view.
Using the dark frame Id the corrected image Ic is obtained by

Ic(x, y) =
∑w

x=1 ∑h
y=1 |I f (x, y)− Id(x, y)|

w · h · Ir(x, y)− Id(x, y)
I f (x, y)− Id(x, y)

(.)

In second generation synchrotron facilities, the beam intensity decreases over time be-
cause photons get lost in the storage ring. For a beamline operator this results in series
of radiographs whose mean pixel value is not constant. In this case, function I f in (.)
can be replaced by a time-dependent interpolation of a flat field that is computed from
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(a)Original (b)Gaussian (c) Non-local means ()

Figure 2.5 alitative comparison of Gaussian and  noise reduction filters. e
Gaussian smoothing kernel reduces the noise but fine detail gets lost.  keeps edges
within the sample sharp.

flat fields that were acquired before the first and aer the last radiograph.
Depending on the intended quality and performance impacts, different noise reduc-

tion algorithms are used to remove Gaussian noise. e most basic but oen used meth-
ods reduce high frequent noise contributions by filtering the image with low-pass filter-
ing kernels such as a mean, median or Gaussian smoothing. As seen in figure .b, the
main disadvantage of these approaches is that they also remove fine detail such as high
gradients between different materials. To preserve the detail, computationally inten-
sive filters trying to identify structures such as the  filter (figure .c) are used [].
e  filter reconstructs a pixel Ic(x, y) using the weighted sum of all pixels

Ic(x, y) =
n

∑
i=−n

n

∑
j=−n

w
(
Nx,y, Nx−i,y−j

)
· Ir(x− i, y− j) (.)

in a neighbour region of 2n pixels. Nx,y denotes a patch of k× k pixels around Ir(x, y).
e Euclidean distance between the grey level vectors v⃗(Nx,y) defines the similarity
weight of two neighbourhoods

w
(
Nxi,yi ,Nxj,yj

)
=

1
Z(i)

exp

(
−
∥v⃗(Nxi,yi)− v⃗(Nxj,yj)∥22,a

h2

)
(.)

with Z(i) denoting a normalization factor

Z(i) = ∑
j

exp

(
−
∥v⃗(Nxi,yi)− v⃗(Nxi,yi)∥22,a

h2

)
. (.)

Because the denoising algorithms have adverse performance and quality properties, the
user must carefully choose the most appropriate algorithm. While an  denoising
step provides superior quality, its computational demands are too high to be used in a
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(a) Enhanced edges in a phase contrast image. (b)Aer phase retrieval and correction.

Figure 2.6 Result of phase retrieval and subsequent reconstruction. Image courtesy by
D. Haenschke, V. Weinhardt, L. Helfen and J. Moosmann and produced at  of ,
Grenoble.

so real-time context with the expected image dimensions.

Phase retrieval

An X-ray beam that penetrates an object that consists of different materials is not only
aenuated but has its phase shied by the different refractive indices of the materials.
Due to the wave propagation properties of an X-ray beam, the different phases become
visible as edge gradients. e larger the distance between the detector and the sample,
the stronger this effect is. is type of phase-contrast X-ray imaging allows discrimi-
nation of materials with similar low absorptivity []. Figure .a shows a sample with
bright edges around different features.
Using the exact known acquisition parameters, one can estimate a deconvolution ker-

nel and reconstruct the original image as shown in figure .b. Contrary, to regular
absorption-based radiography the retrieved phase gives additional information about
the composition of a sample.

2.4.2 Tomography
A tomography1 experiment extends the radiography experiment by a vertical rotation
axis along which the sample or the detector is rotated. Using the radiographic setup,
projections are acquired at discrete angular steps θ. e step between two successive an-
gles is small enough to avoid blurring caused by the rotational motion and large enough
to avoid redundant projections. Scanning the sample for angles θ between  and 
degrees accumulates enough spatial information to determine the inner structure using
a reconstruction algorithm. e result of these algorithms is a tomogram of volume data
containing the estimated densities within the object. Although medical applications for

1 From Greek τόμος (tomo), a section or slice. A single slice is the data at a fixed y coordinate within a
reconstructed tomogram.
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Computed Tomography () exist since the s, synchrotron radiation-based micro
 (µ) only recently became an important technique for the analysis of materials
and biological specimen [].
In medical applications, the X-ray source and the detector are rotated around the pa-

tient. Due to the mechanics and the hazardous dangers of the X-ray beam itself, the
total beam exposure is reduced, thus limiting the spatial and temporal resolution. In
a µ setup, however, the sample itself is rotated along θ and scanned with a high
intensity beam. To compare the acquired data of different tomography setups, the recon-
structed absorption grey values µ are normalized to the device-independent Hounsfield
scale [] given in Hounsfield units (HU)

H = 1000 · µ− µwater
µwater

. (.)

Using this scale, air has a value of roughly−1000 HU and water zero HU. Prior calibra-
tion helps to determine exactly of what a sample is composed of.

2.4.3 Laminography
A generalization of the tomography experiment is the laminography setup.2 Instead of
rotating the sample around a fixed axis that is aligned orthogonal to the detector plane,
a laminographic rotation axis can be tilted by an angle ψ thus allowing the sample to
swing in a non-linear motion []. is setup permits scanning flat objects such as
microelectronic devices more evenly and with higher beam transmission thus allowing
more efficient use of the beam. e intricate detection geometry, however, complicates
the reconstruction of a volume and makes it computationally much more demanding
than with a regular parallel beam geometry.

2.4.4 Synchrotron radiation-basedmicro CT
According to the Lambert-Beer-Law, the absorption of X-ray photons by an object
causes an aenuation of the X-ray beam. In a plane, such an object is described by a
two-dimensional function f : R×R→ R that relates the spatial locality to unknown
absorption coefficients. e beam intensity measured by a detector is a line integral that
penetrates the object plane at a rotation angle θ and an offset t as shown in figure ..
us a single (one-dimensional) projection Pθ(t) is given by

Pθ(t) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x cos θ + y sin θ − t) dx dy (.)

2 From Latin lamina that means to consist of something thin or being made of layers.
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Figure 2.7 e Radon transform relates the a projection Pθ(t) to the line integral of
the object function f (x, y) along the line (θ, t).

where δ denotes the Kronecker delta symbol. e discrete function P(t, θ) := Pθ(t)
is called the sinogram of a particular slice. Equation (.) is valid only for a parallel
beam, which is the typical beam geometry of synchrotron X-ray beams. For fan- and
cone-shaped beams that occur with point-shaped X-ray sources such as X-ray tubes, ad-
ditional parameters that relate the detector position to a fan angle must be incorporated.
For data acquired with a fan-beam geometry, the fan-beam projections can be sorted to
match a parallel beam geometry [, p. ]. For a fan-beam projection Rβ(γ) at angle
β and beam spread γ taken with an X-ray source at a distance D from the origin, it is

θ = β + γ t = D sin γ.

us using the beam geometry relation

Pβ+γ(D sin γ) = Rβ(γ) (.)

we can find a fast algorithm . to transform fan-beam projection data to parallel pro-
jection data.

Algorithm .: Re-arrangement of fan-beam data Rβ(γ) to parallel beam projections
Pθ(t).
for θ ∈ [0, π] do

for t ∈ [−w, w] do
γ′ ← arcsin

( t
D
)

β′ ← θ − γ′

Pθ(t) = R′β(γ
′)
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From (.) it also follows that

Pθ(t) = Pθ+π(−t) (.)

which tells us that it is enough to acquire projection data of a single half circle. is
property is used to find the reconstruction axis in case it is not perfectly aligned with
the middle column of the detector. In this case, a constant offset ∆ is added to the t
parameter for the entire tomographic scan. By determining the offset ∆, we can find the
correct axis of rotation which is crucial for the subsequent reconstruction. From (.)
it follows that

Pθ(t + ∆) = Pθ+π(−t + ∆). (.)

From this equation, we can see that a general algorithm would try to minimize the
difference between the two projections Pθ(t) and Pθ+π(t) for different ∆. A straight-
forward approach computes the convolution of both projections and uses the maximum
to determine the offset via

∆ = argmax
t

Pθ(t) ∗ Pθ+π(t) (.)

is matching algorithm is highly susceptible to noise and does not detect the center of
rotation for high speed acquisitions reliably. A reliable alternative to the direct deter-
mination of the axis is the iterative reconstruction-based detection []. is method
provides higher precision by scoring a quality metric such as the sum of absolute dif-
ferences or the entropy of the reconstructed volume instead of the similarity of original
and shied projection. On the downside, this approach requires multiple preliminary
reconstructions until the estimated axis converges towards a sub-pixel precise axis. Al-
though the performance of this method can be improved by selecting candidate axes
via a binary search, the overall reconstruction time will still increase.

Reconstruction

e Fourier-slice theorem is the theoretical foundation to reconstruct an approxima-
tion f̂ (x, y) from the acquired projections Pθ(t) of the real object plane f (x, y) [].
Given (.), the two-dimensional Fourier transform F of an object is

F(u, v) = F ( f )(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i2π(ux+vy) dx dy. (.)

Let (t, s) (
t
s

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
(.)
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Figure 2.8  acquisition and reconstruction process: a series of projections is first
transposed into sinograms to approximate the result of the Radon transform for a single
detector row. Reverting the transform with a reconstruction algorithm yields a two-
dimensional slice. Post-processing all slices reconstructs the final volume.

denote the rotated coordinate system of (x, y), then (.) can be re-wrien as

Pθ(t) =
∫ ∞

−∞
f (t, s) ds. (.)

Its Fourier transform Sθ(w) is given by

Sθ(w) =
∫ ∞

−∞
Pθ(t)e−2iπwt dt =

∫ ∞

−∞

∫ ∞

−∞
f (t, s) ds e−2iπwt dt (.)

and transforming the rotated coordinate system back yields

Sθ(w) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−2πw(x cos θ+y sin θ) dx dy. (.)

Replacing the right side with (.) and substituting u with cos θ and v with sin θ finally
relates the one-dimensional Fourier transform of a projection with the two-dimensional
Fourier transform of the object

Sθ(w) = F(w cos θ, w sin θ). (.)

With an infinite number of projections, the original object function f (x, y) can be re-
constructed by transforming F back to the spatial domain, therefore

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞
F(u, v)e2iπ(ux+vy) du dv. (.)

Interpolation

Because detectors can only resolve a finite number w of discrete pixels along the x-
axis, the reconstructed object function f̂ (x, y) is a finite grid of absorption coefficients.
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Figure 2.9 One-dimensional Fourier transforms placed on a Cartesian coordinate sys-
tem results in sparsity of higher frequencies.

Moreover, to keep acquisition time and X-ray dose low, at most nP projections are ac-
quired so that each pixel in a frame rotates no more than one pixel in a single rotation
step. e minimum rotation step for a frame width of w pixels is ∆θ = arctan 2/w,
hence the minimum number of projections nP is

nP = ⌈π/∆θ⌉. (.)

Trying to reconstruct from a finite number of projections using (.) results in inter-
polation errors in the higher frequencies as shown in figure ..

Direct Fourier Inversion

eDirect Fourier Inversion () algorithm reconstructs the object function f (x, y) by
direct application of the Fourier-slice theorem. Instead of back-projecting the filtered
projections back into the slice space, the one-dimensional Fourier transforms of the pro-
jections are arranged on the two-dimensional Fourier space of the object domain. e
two-dimensional reconstruction is then obtained by computing the two-dimensional
inverse Fourier transform of the Fourier representation according to (.).
For real-world applications, the number of acquired projections is limited to a finite

number. us, the main difficulty with this approach is to find an interpolation method
that maps a limited number of Fourier transformed projections in polar coordinates
onto the two-dimensional Cartesian coordinate system without introducing artifacts.
e main reason for these artifacts is, as one can see in figure ., the radial arrange-
ment which causes an uneven contribution of the data points with higher density on
lower frequencies and sparser density on higher frequencies. For any practical use, the
nearest neighbour and linear interpolation methods yield an error that is too large and
causes noticeable artifacts. To overcome the interpolation problems, Stark proposed the
convolution of the Fourier data in a neighbourhood with a truncated two-dimensional
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sinc filter []:

Fi(u, v) = ∑
(w,θ)∈Nu,v

Sθ(w) · sincD(x− u, y− v) (.)

where Nu,v denotes a neighbourhood of elements around (u, v).

Filtered backprojection

Replacing the rectangular coordinate system (u, v) in (.) with an equivalent polar
coordinate system (w, θ), such as u = w cos θ and v = w sin θ, yields the reconstruc-
tion

f (x, y) =
∫ 2π

0

∫ ∞

0
F(w, θ)e2iπw(x cos θ+y sin θ) w dw dθ. (.)

which by spliing in two halves and exploiting (.) can be rewrien to

f (x, y) =
∫ π

0

∫ ∞

−∞
F(w, θ)|w|e2iπw(x cos θ+y sin θ) dw dθ. (.)

Applying the Fourier-slice theorem from (.) results in

f (x, y) =
∫ π

0

[∫ ∞

−∞
Sθ(w)|w|e2iπw(x cos θ+y sin θ) dw

]
dθ (.)

which gives us a principal framework for a reconstruction using the Filtered backpro-
jection () approach as outlined by algorithm .. e term |w| corresponds to a con-
volution of Pθ(t) with the inverse Fourier transform of |w| which gives the algorithm
its filtered name.

Algorithm .: Steps of the  reconstruction
for each projection Pθ(t) do

Sθ(w) = F (Pθ(t))
S f

θ (w) = Sθ(w)|w|
P f

θ (t) = F
−1
(

S f
θ (w)

)
for each (x, y) do

f̂ (x, y) = 0
for each θ ∈ [0, π] do

t = x cos θ + y sin θ

f̂ (x, y) = f̂ (x, y) + P f
θ (t)

Using the Fast Fourier Transform () for the discrete Fourier transformation, the
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computation of the  algorithm requires O(n3) time steps, whereby each output pixel
requires the evaluation of all projections.

Algebraic reconstruction methods

e class of Algebraic Reconstruction Technique () reconstructs f̂ (x, y) by mod-
elling the detection process as a system of linear equations and solving for f⃗ (with
fi = fyw+x)

W f⃗ = p⃗ (.)

where p⃗ is the m-dimensional projection vector consisting of Pθ(t), M = nP × w, f⃗
the N = w × w-dimensional vector of unknowns and W the weight or system ma-
trix, where one row weighs the unknowns for one projection entry. Solving this linear
system directly becomes intractable for large w because the size of the system matrix
cannot fit into main memory. For example reconstructing × slices requires a
system matrix of 1 TB assuming one byte per entry. Compared to the Fourier-based
approaches  methods can incorporate additional information about the detector
system, assumptions about the expected materials [] and use appropriate solvers to
reconstruct f̂ with a limited number of projections which would otherwise violate the
Shannon-Nyquist sampling theorem.

Ring artifact reduction

Fixed paern noise such as spots with unusual aenuation or “hot pixels” manifests
themselves by Pθ(a) ≈ P0(a) for all θ, hence P(t = a, θ) = b for some constant
b. Reconstructing a slice from such a sinogram causes visible ring artifacts as seen
in figure .a. Because stripes in θ direction affect only the u components in the two-
dimensional Fourier transform, we can devise a filter H(u, v) with horizontal cut-off
frequency fc

H(u, v) =

{
0 u = 0∧ v ≥ fc

1 else
. (.)

Multiplying this filter with the spectrum of P(t, θ) and transforming back to the spatial
domain yields an improved sinogram. Slices reconstructed from such a sinogram exhibit
reduced ring artifacts as shown in figure .b. is requires two two-dimensional or
four one-dimensional Fourier transforms and O(N2) multiplications.
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(a) Reconstructed from original sinogram. (b) Reconstructed from filtered sinogram.

Figure 2.10 Reconstruction result with ring artifacts on the le. On the right hand side
removing the vertical stripes in the sinogram reduced the amount of artifacts.



3 Streamed processing on heterogeneous
architectures

ree main properties characterize streamed data processing: strict dependencies be-
tween adjacent filter stages, a lock-step style flow of data and a high variance of the
computational intensity of each task. Scheduling data processing pipelines on homo-
geneous compute systems does not satisfy the required performance demands because
a high task heterogeneity causes underutilized processors. Contrary to homogeneous
systems, heterogeneous compute systems consist of a variety of processors. is het-
erogeneity can reduce the performance problems by mapping each pipeline task to the
most appropriate processor []. In this chapter, we will present the theoretical and
practical foundations of a processing framework for streamed data. We will present
scheduling and mapping techniques that utilize the advantages of heterogeneous archi-
tectures to provide X-ray image processing for so real-time purposes.

3.1 Requirements
e main contents of this chapter is the analysis, design and implementation of an
image processing system for streamed data. e main requirement of this system is
the complete use of the parallel potential of arbitrary heterogeneous compute systems
composed of  and . Wewill use a set of abstract principles tomodel this system
and constrain it by system parameters to meet the following goals, which were derived
from the requirements stated in section .:

. e system should be designed as a flexible framework that is able to process streams
of multi-dimensional floating point data with at least single precision. In practice,
the expected data sets will be arrays of up to three dimensions containing gray value
pixel data.

. On a single machine node, the system must use all local  and  resources. e
performance of the system must scale adaptively with the number of available re-
sources. In a cluster environment consisting of multiple compute nodes, the system
should scale with the available communication bandwidth.
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. e performance of the system should allow for so real-time data processing, which
means that data produced at the beamline must be processed immediately without
significant on-disk buffering. is requirement is necessary for quick on-line assess-
ment of the data and conduction of fast feedback experiments. is includes the
partial tomographic reconstruction from all projections.

. e system must provide a straightforward low-level  that allows human end-
users to describe tasks and facilitate the system. e same  must allow other
compute system programmatic access in order to build end-user applications. Ideally,
the task description is independent of a particular platform and portable between
heterogeneous systems.

. e design should allow users and developers to customize the run-time behaviour
and extend the system with additional tasks. To simplify the deployment adding
additional processing tasks processing-related function should not require changes
to the core run-time system.

To validate the fulfillment of these requirements, we will first define a formal model
of the structure and the execution of our compute system. It will be based on a task and
architecture graph notion. Using this compute model, we will propose algorithms to
map specific tasks to specific processes. Aer modelling the system architecture using
, we will present implementation-related problems and solutions.

3.2 Systemmodel

e principles of heterogeneous compute system given in sections .. and .. are
the basis of our system and a performance model describing this system and which
we are going to present in this section. As we have seen, conventional heterogeneous
system models assume that a compute problem can be broken down into smaller pieces
and distributed among a set of p processors. In the context of streamed data processing
tasks, this model neglects the fact that the repeated task execution depends on the order
of their arrangement and the implied data flow described in section ... Mapping
these tasks using conventional scheduling heuristics will inevitably lead to suboptimal
execution.
In the remaining section, we will use a graph approach to describe heterogeneous

compute architectures as well as the algorithmic computation. Unlike linear pipelines,
graphs allow for compute configurationswithmultiple data inputs thus providing larger
expressiveness.
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Figure 3.1 Graph G = (V, E) with five vertices V = {v1, . . . , v5} and five edges
E = {(v1, v2), (v1, v3), (v1, v4), (v3, v4), (v3, v5)}.

3.2.1 Graphs
A graph G is a tuple (V, E) where V denotes a set of nodes or vertices and E ⊆ V ×V
a set of edges.1 Each edge e ∈ E is a tuple of elements from V that relates two adjacent
nodes. Nodes forming an edge are incident to that edge. If the direction of an edge does
not maer, which means (a, b) = (b, a), the graph G is called undirected. Otherwise,
the graph is directed and called a digraph. In this case, an edge (a, b) is called an arc with
b being the successor of a and a being the predecessor of b. A graphical representation
of a directed graph is given in figure .. e union and disjunction of two graphs G
and G′ are defined as G ∪ G′ := (V ∪ V′, E ∪ E′) and G ∩ G′ := (V ∩ V′, E ∩ E′)
respectively. If V′ ⊆ V and E′ ⊆ E, then G′ ⊆ G and G′ a subgraph of G.
e degree deg(v) of a node v denotes the number of edges incident to v. It is formally

defined as deg(v) = |{(x, y) ∈ E | x = v ∨ y = v}|. In directed graphs, deg−(v) and
deg+(v) denote the number of edges going in and out of v:

deg+(v) = |{(x, y) ∈ E | x = v}|
deg−(v) = |{(x, y) ∈ E | y = v}|.

A path P of a directed graph G is a sequence of edges

P = (e1, e2, . . . , en) =
(
(vs

1, vt
1), (v

s
2, vt

2), . . . , (vs
n, vt

n)
)

for which vt
i = vs

i+1 holds ∀i ∈ {1, . . . , n− 1}. In this case n denotes the length of the
path. If vt

n = vs
1 then the path is called a cycle. A directed graph that does not contain

a cycle is a Directed Acyclic Graph (). If for any two nodes of a graph G there is a
path P ⊆ G that connects both nodes, then G is called connected.

3.2.2 Machine model
Let GA = (VA, EA) denote a directed architecture graph that describes the commu-
nication between Pc ∈ N  and Pg ∈ N . VA corresponds to the set of
heterogeneous processors, hence |VA| = P = Pc + Pg. We further distinguish the
disjunct sets of  and  processors, i.e. VAc ∪ VAg = VA. An edge (Pi, Pj) exists

1 We only give brief overview on graph theory; for a thorough introduction refer to [].
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Figure 3.2 Machine model with two compute nodes, each consisting of one  and
two .

in EA ⊆ VA × VA, if Pi can send data to Pj. For each edge, we assign an edge weight
wA : EA → R that denotes the relative bandwidth between two processors. We do not
specify explicit values for this bandwidth butwill use existingmodels such asHockney’s
model or the LogPmodel family introduced in section .. when appropriate. Neverthe-
less, within this model we can safely assume that data that is present on a processor and
used on the same processors does not incur any costs, thus ∀Pi ∈ VA : wA(Pi, Pi) = 0.
Figure . shows an exemplary machine model of a heterogeneous compute system

that consist of two machines or compute nodes. Each machine is equipped with one
 and two . In the remaining thesis, we will consider  cores as individual
processors. is is a valid assumption, because in all modern  architectures, a 
core has exclusive access to its own resources and can executed code autonomously
from all other cores.

3.2.3 Task model
A streaming compute system consists of independent tasks, each processing input data
based on an internal state. A task receives input data uni-directionally from one or
more predecessor tasks and outputs data consumed by a single successor task. Receiving
data from multiple sources allows to model non-trivial systems, for example an adder
that accumulates received operands data. For this reason, we model the data flow and
execution of tasks by a task graph GT = (VT, ET). Each node v ∈ VT is an atomic
processing unit that receives data from a fixed number of tasks and sends data via a
fixed number of outputs. e number of input tasks corresponds to deg−(v), v ∈ VT
and the number of output tasks to deg+(v). Tasks v for which deg−(v) is zero are
called source tasks and tasks v for which deg+(v) is zero are called sink tasks. Because
nodes denote the tasks and edges the dependencies between nodes, it can be classified
as a task precedent graph model [].
An edge (ti, tj) ∈ ET ⊆ VT × VT denotes the flow of data from task ti to task tj. A

weight or argument map function w : ET → N+, maps an edge to the input position
or port of the target, i.e. ∀e = (ti, tj) ∈ ET : 1 ≤ w(e) ≤ deg−(tj). To model the time
required to finish processing an item, we use the function ct : VT ×VA×N→ R that
denotes the run-time a task requires for a certain size m on a given processor pi ∈ VA.
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If t ∈ VT cannot be executed on some p ∈ VA, for example because / operations
require execution on a , then ct(t, p) := ∞. Given a single task t, the variance
of run-times is an indicator that determines a machine’s heterogeneity []. It can be
estimated by

1
P− 1 ∑

p∈VA

(ct(t, p)− ct(t))2, (.)

where
ct(t) =

1
P ∑

p∈VA

ct(t, p). (.)

e task heterogeneity can be estimated similarly by determining the variance of run-
times using a single processor over all tasks. According to Braun et al. a heteroge-
neous system is consistent if ct(t1, p1) < ct(t2, p2) ⇒ ∀t ∈ VT : ct(t, p1) < ct(t, p2)
and inconsistent otherwise []. A partially consistent system has a subset of proces-
sors pi which by themselves classify as consistent. Due to the architectural differences
between  and , a heterogeneous system composed of these processor is inher-
ently inconsistent [].
As we pointed out in section .., the input data size does not necessarily match the

data size produced by a task. For example, a high quality  reconstruction requires
zero-padding and oversampling of the projection data. is increases the effective im-
age dimensions by up to four times. On the other hand, computing a metric such as the
mean value of an image reduces the data to a single point. To denote the data reduction
of a task, we use function ϕi : N → N, which returns the number of bytes produced
by task ti for a given input size.

3.2.4 Scheduling
e result of a general scheduling algorithm is an allocation of tasks to processors and
the subsequent execution of tasks in such a way that the precedence of the tasks is main-
tained. e main objective of a scheduling algorithm is to minimize the time for the last
task to finish by reducing the overall schedule length or so-called makespan. e NP-
completeness of the problem has been proven even in light of restricting assumptions
such as task scheduling on an arbitrary number of processors []. Hence, unless
P = NP, there is no algorithm that can compute a solution for the general scheduling
problem in polynomial time. Considering the intractability of the problem, the majority
of the research uses heuristics to sacrifice optimality in favor of efficient computability.
In this thesis, we will restrict the task graph generality in order to map tasks more

efficiently onto the processing resources and to match the intended application use
cases more closely. First of all, we only consider non-preemptive scheduling of tasks.
is means that task execution cannot be interrupted on one processor in the midst of
a computation, moved to another processor and resume execution. Second, we only
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consider task graphs that do not have conditional branches. ese are task graphs with
edges that followed only with a certain probability.

Streamed systems

Applying the general task graph based model on a streaming system means to schedule
the  independently for each iteration. is requires that the sink tasks of iteration
n finish before the source tasks of iteration n + 1 start.
ere are two approaches to use the existing task graph based scheduling algorithms

for streamed applications. First, we could construct a super task graph that contains the
same number of copies of the original task graph as there are iterations. To simulate
iterations through that graph, the sink task of task graph n would be connected to
the source tasks of task graph n + 1. Second, we could also schedule a single time
using the original task graph and then re-use the result for subsequent iterations. Both
approaches do not take into account that tasks which finished must be re-scheduled
immediately. is will yield low performance, especially on systems with low number
of tasks and high number of processors.
To describe our scheduling approach, we define a process iteration s ∈ N as a single

completed step. is step starts with the production of data from all source tasks and
ends with the completion of all sink tasks. Figure . shows five iterations required
to process three data items. For each iteration s, we have to find an optimal mapping
between the system’s architecture graph VA and the task graph VT , that means a sched-
ule that minimizes the total time required to execute one iteration. We denote this by
the iteration-dependent allocation function Ms : VT → VA. e inverse image of MS
that means M−1

s : VA → P(VT) denotes all tasks that are assigned to a particular
processor.

Actor model

Given our basic model of computation, we assume that data flows in lock step fashion
through the task graph. e reasons for this is that a node can only process another
data item as soon as it receives data from its preceding task nodes and as soon as the
succeeding node is ready to receive data. On a per task-level, it is therefore useful to
describe the computation stages as a finite state machine.
Over the course of multiple iterations, task nodes are not only characterized by the

time required to process an item but also by the number of data items they produce. is
depends on the number of items they receive and is denoted by function γi : N+ →
N+, which computes the total number of items produced by task ti given a number of
input data items. From the definition it follows that tasks with γi(n) = c produce a
new item at every s-th iteration, s = n

c .
Depending on the function γi, we can group tasks into three disjunct classes. Tasks

t ∈ VT for which γt(0) = k, k > 0 and γt(n) = 0, n > 0 produce a stream of k
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items without taking any input. We call these types of tasks source tasks or generators.
For example, readers loading data from files and inserting them into the stream are
classified as generators. Tasks for which γt(n) = n consume and produce an item
per iteration. ese tasks are called processors and represent typical processes such as
pixel or arithmetic stream operations. Any task with γt(n) = n

k and k < n is called a
reductor and produces an item every k-th iteration. Different averaging strategies fall
into this category: If k = n, hence γt(n) = 1, such a task averages across the whole
data stream. On the other hand, an averaging filter with k < n could be thought of as
a sliding window averaging process with window size k.

3.3 Mapping algorithms

To reduce the amount of data transfers and execute tasks on the most suitable processor,
finding the best mapping between task and processor is crucial for high throughput.
us, a per-iteration mapping resembles scheduling algorithms that minimize the total
length of computation and communication for a set of tasks. Fernandez et al. proved
that the problem of finding the optimal mapping is NP-complete []. Hence heuristics
are necessary to find a mapping that optimizes the makespan in polynomial time. In
this section, we will present three strategies to determine these mappings.

3.3.1 Local scheduling

Our firstmapping strategy assumes an actor executionmodel inwhich each task decides
autonomously on which  it will execute. For the scheduling decision, it uses only
locally available information. e processor node sets are placed into synchronized
First In First Out () queues which the tasks use to determine their next location.
Fetching the processors by the time they are finishing, implies an earliest-finish-time-
first scheduling policy of the task nodes.
Although this strategy is simple to implement it has serious drawbacks. e strategy

neglects any data transfer metrics, thus in the worst case data could be swapped un-
necessarily frequently between different processors. A technical disadvantage of this
approach is that data cannot be shared between tasks that work on different subsets of
the same memory block. is is a necessary mechanism for tasks where data does not
fit into the processors memory, for example when reconstructing larger volumes using
a laminographic geometry. We solved this problem by grouping all task nodes that exe-
cute the same task and have the same path length from the root of the task graph. e
scheduling policy for a single group then assigns an incoming data item to all nodes
within in the same group.
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Figure 3.3 Duplication of two tasks, effectively spliing the data stream in two sub
streams, each processing approximately one half of the original stream.

3.3.2 Sub-graph duplication heuristic for multiple GPUS
During the execution of a task graph, the structure of the graph itself does not change
and a fixed schedule can yield optimal run-time, if all resources are equally utilized.
On a multi- system, we can assume that wA(Pb, Pc) < wA(Pc, Pg) < wA(Pg, Ph)
where Pb, Pc ∈ VAc and Pg, Ph ∈ VAg are not identical.

Because wA(Pi, Pj) = ∞ for all Pi, Pj ∈ VAg , Pi ̸= Pj,  cannot communicate
directly with each other andmust share data via a  node. Using the general mapping
model requires that the work of a single iteration is distributed among all . is
is prohibitive because data would need to be transfered between the  with at least
two e transfers [].

Algorithm .: Expansion of a task graph by duplicating the longest path of 
nodes.
Function expand(VT , VA) // Algorithm modifies the original graph in-place

Vcand ← {v ∈ VT | ∃p ∈ VAg : ct(v, p) < ∞}
Ecand ← {(vi, vj) ∈ ET | vi ∈ Vcand ∧ vj ∈ Vcand}
P←longest_path (Vcand, Ecand)
n← |P|
vx ← v ∈ V : (v, P[0]) ∈ E
vy ← v ∈ V : (P[n], v) ∈ E
for each v ∈ VAg do

P′ ← duplicate of P
Add (vx, P′[0]) and (P′[n], vy) to E

In this case a data parallel approach, in which  process different items from the
stream is more efficient because it avoids any data transfers. is requires the stream
to be split in Pg sub-streams whose results are merged at the end accordingly. Path
duplication works because tasks are stateless and do not depend on any other task ex-
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cept for receiving input and sending output data from and to adjacent tasks. Hence
we can distribute data among a group of receivers. e advantage of duplicating paths
is that data buffers reside on the same  device as long as possible. erefore, our
main metric for determination of a good path is the length of the path itself. In general,
solving the longest path problem is NP-hard [, p. ], however our task graph is a
directed acyclic graph for which linear time algorithms for the longest path problem ex-
ist [, pp. –]. Conceptually this means duplicating a path of nodes in the task
graph and map nodes of the same path onto the same  as shown in figure .. In
our heuristic, we assume that it is only worth to duplicate the longest path of common
tasks as shown in algorithm ..

Algorithm .: Longest path determination used by algorithm ..
Function longest_path(V, E)

Initialize map L : V →N with {(v, 0) | ∀v ∈ V}
S← topo_sort(V, E)
for vc ∈ S do

if deg−(v) > 0 then
vp ← Predecessor v with maximum L(v)
L← L ∪ {(vc, L(vp) + 1)}

P← empty, ordered set
vc ← argmaxv∈V L(v)
while deg−(vc) > 0 do // Track back to find longest path

Prepend vc to R
vc ← v : (v, vc) ∈ E with maximum L(v)

return P

3.3.3 Sub-graph fusion for remote execution
ermal problems and construction restrictions limit the number of  that can be
used reliably in a single machine. us to increase the number of , introducing
additional machines with their own local  is the only way to increase the total
number of  in the system. In our machine model, we encode the entire heteroge-
neous system in a single architecture graph GA with edge weights denoting the transfer
time or mean bandwidth between processors. In a system that consists of a network of
machines, the edge weight of connections between processors in different machines is
higher than between processors or cores within the same machine. We can therefore
partition2 GA into smaller subgraphs GAi with i ∈ [1, nr] representing one of the nr

2 Which should not be confused with the general graph partitioning problem.
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Algorithm .: Topological sort algorithm used by algorithm ..
Function topo_sort(V, E) // Topological sort [64]

R← empty, ordered set
S← {v ∈ V | deg−(v) = 0}
while S ̸= ∅ do

Remove a vn ∈ S
Append vn at end of R
for e = (vn, vm) ∈ E do

Remove e from E
if ̸ ∃ vx ∈ V : (vx, vm) ∈ E then

S← S ∪ {vm}

return R

local machines. Algorithm . computes the partition set G for GA and a lower bound
tl of the transfer time between networked machines
In the system, a designated master compute node keeps the initial task graph descrip-

tion as well as a list of remote machines. Aer the master expands the graph locally,
the scheduler transforms the graph in a second pass as shown in figure .. For each
potential execution path, the scheduler inserts a remote task into the master graph and
sends a serialized description of the replaced sub-graph to the corresponding remote
compute node. In the local case, each task is processed in a dedicated thread. e in-
serted remote nodes in the task graph serve as proxies to a daemon process that runs
on a distant compute system.
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Figure 3.4 Two proxy nodes R1 and R2 are added to the original graph on the le,
mirroring the functionality of t2 and t3 on the remote compute nodes. On the right
side, data forwarding from the local R2 task to the remote is shown. On each remote,
the duplication heuristic is applied just like on the master.
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Algorithm .: Partitioning GA into remote sub-graphs.
Input: Architecture graph GA = (VA, EA), transfer bound tl
Output: Partition set G
C ← VA
G ← ∅
while ∃vc ∈ C do

Function visit (v, Ec)
for each (v, n) ∈ EA do

if n ∈ C ∧ w(v, n) < tl then
Vc ← Vc ∪ {v, n}
Ec ← Ec ∪ {(v, n)}

Vc ← ∅
Ec ← ∅
visit (vc, Ec)
G ← G ∪ {(Vc, Ec)}
for v ∈ VA ∩ C do

Remove v from C

3.3.4 Task graph replication with data partitioning
In .., we assume that data originates only from a single source – the machine node
which started the system and hosts themaster scheduler. is is a valid model for single-
source data and data that is produced on the fly such as frames streamed from a D
detector. Nevertheless, there are applications in which all data is available to all remotes
prior to the execution. For example, each remote node can read pre-recorded frames
independently if the files are stored in a network or distributed file system such as .
In this case, streaming the initial data from the master to all remotes is unnecessary
overhead and can be avoided by each remote node reading or generating its own subset
of the data.
In this executionmodel, the master scheduler replicates the entire task graph GT nr−

1 times. To avoid redundant work, the master sends a uniquely identifying tuple (i, nr)
that consists of the partition index and number of processed data items to all source
tasks of GAi . e source tasks then use this information to determine the partition of
data that they are going to produce. In the file reading example, source task i would
produce a stream of files numbered from (i− 1)n f /nr + 1 to in f /nr, where n f is the
total number of files. Apart from that, the general structured does not change and each
GAi maps the hardware to the tasks locally as presented in ... Because each node
reads its data locally, no further communication happens between remote nodes and
master node except for signaling the end of the data processing. In this mode, execution
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is similar to the MapReduce paern for cluster machines [].
In practice, the sink nodes must know how to partition the result data set. If the data

stream of the given example is wrien back to the network file system, already wrien
files will be overwrien nr − 1 times. Because this setup is fixed prior to execution,
γi(0) for all source vi ∈ VT is known. Hence, from the shortest path (i, xn−1, . . . , x1)
between source and task ti we can compute the number of expected items

νi = γi ◦ γxn−1 ◦ . . . ◦ γx2 ◦ γx1(0). (.)

Hence, each ti produces data with an index ranging from (i− 1)νi/nr + 1 to iνi/nr. In
the case of file writing, this index can be used to determine a valid filename.

Analysis

Contrary to a classic heterogeneous system, the data size sent between processors does
not only depend on the initial problem size but also on the transformation function ϕi
of each task. Without loss of generality, let ψi(m) denote the final data size sent from
task ti to a succeeding task given an initial data size m sent by the source

ψi(m) = ϕi ◦ ϕxn−1 ◦ . . . ◦ ϕx2 ◦ ϕx1(m) (.)

and (i, xn−1, . . . , x1) denoting the shortest path the item takes from source task tx1 to
ti. e number of processors P determines the total time for a single iteration. In case
|VT| ≤ P, the per-iteration run-time τ is bound by the longest time that a specific task
needs for receiving3 and computing an item as well as the overhead o of computing the
mapping

τ = max
t∈VT

(ct (t, Ms(t)) + ψt(m) · L) + o (.)

If, on the other hand, the task graph contains more nodes than processors, one or more
processors must execute more than one task in a sequential order. In this case, the
maximum per-iteration run-time is the longest execution time taken on a particular
processor. From this observation, it follows that the per-iteration run-time is bound by

τ = max
p ∑

t∈M−1
s (p)

ct(t, p) + o (.)

Using this equation, we can give a performance estimation based on the idea of the
processor pipeline model from section ... Let k = |VT| tasks and n data items, the
total execution time

Tp = τ · (k + n− 1) (.)

3 Accounting the receiving task for the data transfer is arbitrary but can be motivated by the fact that the
data processing finishes an iteration.
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Figure 3.5 Execution of three tasks, mapped to two processors processing three input
data items results in a global latency of two and total number of five iterations.

if P ≤ k. In this case, the speed up becomes

S =
T1
Ts

=
τ · nk

τ · (k + n− 1)
n→∞
= k (.)

otherwise
Ts = ∑

t∈VT

ct(t, Ms(t)) (.)

For static schedules, Ms+1 = Ms for all time steps, whereas Ms could change on each
iteration for dynamic schedules trying to minimize .

3.3.5 Discussion
Widespread static scheduling heuristics such as Minimum Execution Time, Minimum
Completion Time, Simulated Annealing, Genetic Algorithms and A* search assume a
set of independent tasks [] scheduled on a system of homogeneous or heterogeneous
nodes. is assumption conflicts with our data stream model, in which tasks can only
be scheduled as soon as all immediate predecessors have finished. Belkhale and Baner-
jee presented parallelizeable dependent task scheduling but for homogeneous compute
systems []. One problem that all task graph based scheduling algorithms have in com-
mon is the underutilization of processing resources. In case of short pipeline task graphs
and a high number of processors, the existing heuristics would leave processors unused.
With our duplication mechanisms and the streaming mode of operation, we can dupli-
cate as many times as there are processors thus utilize processing resources optimally.
Our sub-graph duplication heuristic has superficial similarity with Duplication Based
Scheduling () algorithms [, ]. However, the duplicated tasks in  serve the
purpose of executing sub-branches of the task graph in parallel with identical input data.
Considering the high data volume that originates from a single source,  algorithms
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will fail to speed up the execution because tasks require approximately equal time to
process the same data.

3.4 System architecture
Figure . shows a reduced Unified Modeling Language () model of our proposed
system architecture. It is based on three main abstractions that match the core elements
of the abstract model presented in the previous section: Graphs, tasks and schedulers,
which we will explain in detail in the remaining chapter. Based on this  model, we
devised a C library framework using the GObject toolkit as a basis for object-oriented
features such as classes, inheritance and interfaces and convenience abstractions such
as properties, closures and generic values [].

3.4.1 Graphs and nodes
e basic Graph class represents generic graphs and provides methods to add Node types
and connect them by Edges. e Node type is a real class that provides methods to copy
it and compare it with other nodes. Edges, on the other hand, are simple C structures
that contain a reference to their source and target nodes as well as a pointer to arbitrary
edge data. e Graph class provides graph operations such as retrieving the root and leaf
nodes as well as determining the predecessors and successors of a particular node. To
simplify the modification of task and architecture graphs, the Graph class also provides
methods to copy itself and determine paths based on filter predicates. Graph copies
can be either deep or shallow. Deep graph copies contain copies of the nodes from the
original graph while the shallow copies keep references to the original nodes.

Task graphs

TaskGraph’s derive from the basic Graph class but store only nodes of type TaskNode and
their derivatives. When connecting two nodes in a TaskGraph, the edge weight is either
set implicitly to zero to denote connection to the first input port or, if specified, to an
arbitrary, valid input port of the target node. Apart from that, a TaskGraph extends the
basic graph with operations for task expansion and serialization from and to JavaScript
Object Notation () format. While TaskNodes represent a task and associated data
within the task graph they do not provide methods to execute code by themselves.

To implement the code of a processing task, a Task derives from TaskNode and imple-
ments the TaskIface interface. is interface defines the call signatures to query task
specific properties and process a single data item. e properties characterize the task’s
role, i.e. if it is a processor, generator or reductor, the number of input ports and the
accepted data dimensionality on each input port. To define a task’s behaviour, a pro-
cessor must implement the process method, the generator the generate method and
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Listing 3.1  serialization of a reader-writer copy pipeline.
 {

 "edges" : [

 {"from": {"name": "reader"}, "to": {"name": "writer", "input": 2}}

 ],

 "nodes" : [

 {"plugin": "reader", "name": "reader",

 "properties" : { "path": "/home/user/data /*.tif", "count": 5 }},

 {"plugin": "writer", "name": "writer"}

 ],

 "version": "1.0"

 }

the reductor both. Additionally, all types must implement a method that returns the
output data size given the current inputs. e process method receives both input and
output, the generate method just an output buffer. Both methods signal the end of the
stream by returning false.
To exchange task graphs across platforms, a task graph is serialized in  format.

is serialization format allows the system to store task graphs on the disk, reconstruct
a TaskGraph object from it, exchange task graphs between different target languages and
transmit sub task graphs to remote compute nodes. e data format specifies a nodes

and an edges array (refer to lines  and  in listing .). e nodes array contains 
objects with a plugin, name and properties field. e plugin key has a string value that
references the task plugin, whereas the name key uniquely identifies the nodewithin this
graph. e properties key maps to a  object containing GObject property names
as keys and the corresponding values frozen at the time of serialization. e edges

array contains edge objects with from and to keys. e values are objects with at least
a name referring to the names found in the nodes array and optionally an input number
specifying the input port. To change the format in the future, we also add a version

key (line ) which specifies the serialization format.

Architecture graph

To represent GA, we use the non-modifiable ArchGraph class that derives from Graph

and contains nodes of type CpuNode and GpuNode. During construction, an ArchGraph

checks the local system for the available number of  cores using the -specific
get_nprocs function and the number of  using a Resources object to create a cor-
responding number of CpuNode and GpuNode objects. It associates a CpuNode with a
specific , by assigning the affinity mask of the corresponding  core using the
Linux-specific CPU_ZERO and CPU_SET macros. During execution, the scheduler pins a
task to a specific  with a call to the sched_setaffinity Linux system call and the
assigned affinity mask. To associate GpuNodes with a specific  device, the ArchGraph
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Figure 3.7 Double dequeue used for sharing data buffers.

assigns the command queue that is unique to the device.

3.4.2 Resources
All system resources are managed through a single Resources object. During the con-
struction, the Resources object, initializes the pen run-time and devices, and creates
contexts and command queues for a list of GpuNodes. Moreover, the Resources object
loads, compiles and caches pen kernels read from strings and files. During the ex-
ecution, the TaskNodes request buffers either implicitly by asking for the data of an
input or explicitly to store intermediate results. Given size and type constrains, the
Resources object returns a Buffer that encapsulates the location and data in order to
abstract from the data transfers between host and device. Besides accessing the data,
the user can copy, duplicate and resize Buffers as well as converting between different
image formats.

Data transfers

As outlined, Buffer objects manage the direct access of  data arrays and pen
cl_mem structures. Depending on the needs, a TaskNode queries for data in either for-
mat aer which the buffer will move the data transparently between devices or hosts.
Although the amount of inter-device data transfers is reduced by the sub-graph dupli-
cation heuristic presented in .., there is always the need for host-to-device transfers.
e throughput between host and device (less than 16GB s−1 for e . x), however,
is an order of magnitude lower than intra-device data accesses to the on-board 
memory (up to 320GB s−1 on a high-end ). To avoid unnecessary data transfers
between a  and a , we improve the data locality by restricting data accesses of
producer and consumer tasks. Because our execution model assumes lock-step pipelin-
ing, producers must be able to process a data item that is used by the consumer in the
next iteration. is is realized by using a double buffering scheme implemented by a
double deque data structure.
A regular double-ended queue (deque) is a queue data structure that exposes a 

policy: data is pushed into one end and popped off the other. is model does not
restrict the number and the way users access such a queue. us we semantically ex-
tended this data structure by two distinct users u1 and u2. From both perspectives, the
structure is accessed using normal queue semantics that means u1 and u2 push and pull
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data in a regular  manner. Unlike a regular queue, an item that was pushed by u1
must be pulled first by u2 and pushed back before u1 can pull it off the queue again. A
double ended queue is not sufficient to implement this behaviour. We can, however, use
two queues q1 and q2 and a protocol as shown in figure .: u1 always pulls from q2 and
always pushes to q1 whereas u2 always pulls from q1 and always pushes to q2. ere-
fore, u1 and u2 never directly communicate with each other through a single queue. We
apply this paern and restrict the access of the data depending whether u1 and u2 are
producers or consumers: in case of producers, data is only wrien and never read, in
case of consumers, data is only read and never wrien.
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Figure 3.8 e transition table of data locations within buffers.

To enforce buffer locality, we formalize a buffer’s location by a Finite State Machine
(). e  F = ({pH, pD, pF, cH, cD, cF}, {I, H, D}, I, δ, ∅) is a tuple where H
and D specify that the current data location is on the host or device, whereas I denotes
an invalid and unallocated location. p{H,D} represent the intention of a producer to
write data to host (H) or device (D) memory and c{H,D} represents the intention of
a consumer to read from these memory locations. pF and cF denote the action aer
producer and consumer finished writing and reading. e state transition table δ is
given implicitly by the graphical representation shown in figure .. Initially, neither
device nor host allocate memory for a buffer, thus the corresponding state is set to I.
When producers ask for output memory, the data is allocated and the state transitions
to either D or H. When a consumer requests a buffer for a location and the location
matches the current one the state is kept, otherwise the state transitions and the data
is transferred. When a consumer finishes using a buffer, the state is set to I but the
allocated memory location is kept intact. is has the net effect that we do not transfer
data to a location that will be overwrien by the producer anyway thus saving one
memory copy.

Filters

Although the compute system is designed for general streamed processing algorithms,
the majority of the filters are only useful in a X-ray imaging context. e available fil-
ters can be grouped into /, point- and region-based image processing, frequency and
reconstruction filters. e / filters allow to read and write  and  files as well
as to capture detector frames with the  framework (see .). e group of image
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processing filters includes image arithmetics, denoising and sub- and supersampling
processes. e last group contains projection and frequency filters to reconstruct vol-
umes from tomographic and laminographic data sets as well as the phase of of phase
images.

3.4.3 Scheduler
e BaseScheduler interface defines methods to execute a TaskGraph on a given Arch-

Graph and to configure itself for remote execution. Concrete implementations such as
LocalScheduler, GroupScheduler and StaticScheduler implement a processing loop in
the run method. Due to the streamed processing model, the loop follows the protocol
outlined in algorithm ..

Algorithm .: General scheduler loop protocol.
Input: TaskGraph GT , ArchGraph GA
for each task node t ∈ VT do

Call setup() on t
Read get_num_inputs

while not all t ∈ VT finished do
Pick unscheduled t ∈ VT
Determine predecessors of t
Fetch output data I of predecessors
Ask for t’s output data size requirements given I
Create or re-use a suitably sized output Buffer o
Call process(I, o) on t
Mark t as finished if process signals end of data
Mark t as processed

Because all p ∈ VA execute their tasks concurrently, the order of completion is non-
deterministic and the timely arrival of an item cannot be guaranteed. In a pipeline this is
not a problem because tasks receive input in-order and have to wait for their successors
to complete. In split graphs, this is not a problem, if the only common preceding task
forwards data to a single input port. For example, in a task graph that computes the
arithmetic addition of two independent streams, the addition task itself synchronizes
by fetching the operands appropriately. e split strategy from .., however, causes
problems if multiple tasks push their results to the same input port. is can cause a
wrong result order because the preceding tasks run concurrently and finish processing
their items in a non-deterministic order. To avoid a wrong ordering, each Buffer is
assigned a unique, monotonously increasing . e scheduler uses this  to sort input
buffers from multiple streams that join at the same input port.
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Figure 3.9 Remote extension of the  model given in figure ..

Remote execution

Figure . shows an extension of the fundamental  model from . for remote ex-
ecution. e RemoteTask class implements the TaskIface interface and represents a
proxy node in the local task graph. It uses a RemoteNode – which is part of an Arch-

Graph – to send messages within the process method and write the result from the
remote into its output buffer. A RemoteNode uses the Messenger interface to transmit
data via some communication link. At the moment, two messenger implementations
are available: the ZMQMessenger uses the low-latency /-based Zero [] mes-
saging library, while the MPIMessenger maps send and receive calls to corresponding
primitives defined in the Message Passing Interface () standard [].
On the remotemachine, the Daemon uses the Messenger interface to receive and handle

requests from RemoteNodes. Both Daemon and RemoteNode use a common protocol to
set up the computation and process data. Piggy-backing on the initial hand-shaking
request, themaster node queries each remote daemon for the number of locally aached
 devices. Using this information, the master updates its own architecture graph and
determines a suitable sub graph according to the heuristic defined in ... In case, the
user enables full replication the sub graph corresponds to the original task graph. e
master serializes the sub graph in the common  format and sends it to each remote
Daemon. e daemons receive this  description and deserializes it back into a local
TaskGraph. If the task graph is a real sub graph, the Daemon inserts dummy source and
sink tasks which it uses to insert buffer received from the master and read out the result.
Aer the setup phase, the Daemon starts a local Scheduler in a new thread and waits for
compute requests from the master node.
e master node begins execution as in the local case. As soon as the RemoteNode

receives data, it serializes it into a compact binary format, sends it to the remote Daemons
via the Messenger interface and waits for a response. e Daemons deserialize the data
back into a Buffer and forward it to the dummy source task of the local sub-graph. e
Daemon waits for the result of the dummy sink tasks and returns the serialized buffer
back that to the requesting RemoteNode. If the last compute result is empty because of a
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Listing 3.2 Low-level fair scheduling barrier.
int remote_barrier( volatile int* pending , int n_remotes)

{

int index = g_atomic_int_add(pending , 1);

while (g_atomic_int_get(pending) % n_remotes != 0)

g_thread_yield ();

return index % n_remotes;

}

finished data stream, it sends a corresponding message back and cleans up the existing
TaskGraph. Aer that, the Daemon handles new setup requests.
With full replication enabled, the remote Daemon uses the serialized  format to

set up a copy of the received TaskGraph that does not contain additional dummy tasks.
To assign local tasks the correct data partition, it uses the partition  that the master
node has sent. Aer the setup phase, the Daemon starts immediately with the execution
and responds back to the master as soon as the local computation has finished.

Fair remote scheduling

e network throughput is lower than the bandwidth of a e connection, thus it is
necessary to send multiple data items to remote nodes in large bursts. For this, the
local master uses input and output queues of varying lengths for each RemoteNode that
are limited by default to . To maximize the utilization of a remote node, the input
queues are filled during the computation. If the capacity of the output remote node
queue is reached further fetching from the input queue is stopped until the capacity of
the output queue falls below the output queue limit.
Because a daemon cannot bound its input and output queues, the capacity within the

proxy node is limited to nf elements and defaults to . A remote node will send up to
nf items at once to the daemon and immediately request results from the remote system.
If at that point the remote node’s output queue is empty, sending more items is blocked
until a finished item becomes available in the output queue. is is repeated until the
number of items fetched from the remote node equals the number of items previously
sent to it.
To avoid preference for a single remote node, fair access to the send operation by mul-

tiple remote nodes must be guaranteed. In that case, a remote node performs the send-
fetch-repeat loop before other threads would get a chance to send their data. is causes
an underutilization of the remote daemons’ resources. To ensure fairness amongst the
remote nodes and minimize the amount of time an input queue is empty a fair schedul-
ing scheme based on global busy-wait barrier is used (refer to listing .). Before send-
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ing, each proxy node must acquire a global lock. Aer nf items have been sent, the lock
is released and the remote_barrier function called. When all remote nodes reach the
barrier, each node has to sent up to nf work-items. e same combination of global mu-
tex and barrier is now used to fetch data from the remote daemon. An explicit barrier is
set aer every request to retrieve the results from the remote nodes in a balanced way
and keep their output queues at the same level.

3.4.4 Related work
StreamIt is a Domain Specific Language () with a C-like syntax that is designed to
express general streamed processing problems [, ]. It uses a compiler to turn
stream constructs such as splits and joins into valid C code. Depending on the back
end, the code is executed on a a multi-threaded run-time or in the case of Sponge on
 []. Sponge uses the StreamIt description to compile custom  code. By
using optimizations such as stage fusion and memory mapping according to the code’s
intensity, Sponge is 3.2 faster than a hand-wrien  implementation and 20 faster
than a  baseline implementation of benchmarks from the StreamIt suite. StreamIt
does not support multiple  which is crucial for maximum performance on a single
compute node.
Lime [] and GStream [] are library approaches to express computing pipelines

wrien in Java and C++. GStream is a thin framework around the  run-time and
requires the developer to write  kernels manually. Lime, on the other hand, is able
to generate pen kernels from the annotated Java sources. GStream allows multi 
task distribution via , which scales accordinglingy but has performance drawbacks
when usingmultiple  on the samemachine. Lime does not support task distribution
on multiple .
Neumeyer et al. investigate massively scaling streamed data processing with the S

system []. It is a Java-based distributed system and set out as an alternative to Hadoop
cluster applications. Contrary to the preceding systems, it is throughput-oriented tar-
geted towards high frequent data processing of small data items. e authors use the
processing of ad-related click events on Yahoo’s website as an example. At 20 000 events
per second the relative error increases to 4.2 per cent. Recent work has shown how em-
bedded systems-on-chips process streamed data [, ].
Reconstruction packages that cover the same µ use case as our intended system

are focused on usability rather than performance. is includes  which is wrien
in the proprietary scripting language  [] and TomoPy which is wrien in Python
and single-threaded C code []. Apart from these µ specific packages,  and
 are specific frameworks for accelerated tomographic reconstructions. e 
 tomography toolbox is a high-performance, domain-specific  that provides
,  and other iterative techniques [].  is a cone-beam reconstruction li-
brary for medical use and incorporates  and  reconstruction algorithms running
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on a Java/pen platform [].

3.5 Optimization
Providing a  kernel to process data does not suffices to meet the so real-time re-
quirements if data becomes larger and the data processing system is not optimized. In
the following sections, we will present methods and optimization strategies to use the
full potential of a -based heterogeneous compute system.

3.5.1 Batched data transfer
In a pipelined system, tasks may receive up to one data item per process iteration. In
case of adjacent  and  tasks, the data item must be transferred through the e
bus according to the protocol given in ... Generally, due to startup latencies and
transfer overheads of the e bus, transferring smaller blocks of data requires more
time per transferred byte than larger blocks of data. us by transferring single data
buffers, the available bandwidth capacity might not be utilized to its full extent. One
possible solution to improve the throughput, would be to enlarge the data size, however,
there are limitations given by the data source itself.
Instead of inflating the data size artificially, another solution to improve the through-

put involves queueing buffers and transferring multiple items in a single large batch.
On the scheduling level, this changes a processor task with γi(n) = n to a reductor
task with γi(n) = k, k < n. Integrating these data transfers requires changes in the
processing protocol of the scheduler and the data handling. First, the scheduler must
defer execution of the receiving task until it has collected the required number of input
buffers. is is obviously the case for an n for which the bandwidth B(nm) < nB(m).
Second, the original receiving task cannot use the transmied pen memory buffer
as it is because it is larger and contains more data than expected. Changing the task
to cope with larger buffers is not possible but one can create reduced views on pen
buffers using clCreateSubBuffer(). Calling this function and seing up the data struc-
tures is then conveniently hidden behind the general Buffer interface.

3.5.2 Kernel fusion
With a small number of available  and long paths P = (t1, . . . , tk), it is likely that
the same  executes the same tasks. If the tasks themselves exhibit only low computa-
tionally intensity, the overhead of launching each task’s kernel can mitigate the perfor-
mance gain of a . Moreover, a high memory-access-to-computation ratio caused by
the each kernel’s read and write to global memory reduces possible processing through-
put. To reduce the overhead of launching individual kernels and improve memory lo-
cality, we investigate the fusion of  kernels of t1, . . . , tk into a single combined
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kernel. is single kernel is used by a single task tnew with deg−(tnew) = deg−(t1)
and deg+(tnew) = deg+(tk).

For this approach, we can assume the following performance model. Each individ-
ual kernel needs time to read input from write back the results to global memory as
well as execute on a . For a set of n kernels, we can determine three sets of time
information for an input of m bytes: R = {Ri(m), . . . , Rn(m)} for reading data from
global memory, W = {W1(m), . . . , Wn(m)} for writing back to global memory and
E = {E1(m), . . . , En(m)} for the execution. Furthermore, the host needs time L to
start a kernel. We measured the startup latency and found no significant latency differ-
ence depending on the size of the kernel once the pen run-time caches the compiled
kernel object. We intentionally leave out the time for transferring the data from host
to device. With these three parameters, the time Ti to run kernel i is bound by

Ti(m) = L + Ri(m) + Wi(m) + Ei(m). (.)

e total time to run all kernels on a single  is thus T(m) = ∑n
i Ti(m). Fusing

all kernels into a single kernel reduces the number of kernel launches to one and the
number of global memory accesses to two. Instead of having each individual kernel
read and write once, the single kernel must only read what the first kernel in the chain
reads and write what the last kernel in the chain writes. us, the total time for the
fused kernel reduces to

TF(m) = L + R1(m) + Wn(m) + η
n

∑
i=1

Ei(m). (.)

η ∈ R describes the performance gain (or penalty) due to larger kernel. Given (.),
the speed up will be positive if

n

∑
i=1

TF(m) < Ti(m)⇔
n

∑
i=1

Ei(m)(η − 1) <
n

∑
i=2

Ri(m) +
n−1
∑
i=1

Wi(m) (.)

in other words, if the compute to data access ratio is low.

To implement kernel fusion in the system, we added a pre-processing step to the
scheduler. In this step, paths of TaskNodes that implement  code are analyzed
and the underlying kernel source extracted. e scheduler calls out to a Python mod-
ule that receives the kernel sources and parses it into a pycparser C Abstract Syntax
Tree () []. In order to parse the pen kernel code correctly, we modified pyc-
parser’s lexer and parser stages so that it is able to recognize pen data types and
address space qualifiers. In the next step, a merge algorithm matches the  of pro-
ducer and consumer kernels and rewrites read and wrien memory locations. Instead
of leing a producer write into its own output buffer, the write expression is modified
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such that it writes into the consumers input buffer. Aer analyzing memory access
paerns, barriers and memory fences are inserted in order to ensure consistency. In
the last step, the final  merged from all n kernels is used to generate pen code
that is used in a single pen task instead of the original  tasks.

3.5.3 Buffer views
Reconstruction algorithms for non-parallel-beam geometries such as cone-beam  and
laminography require access to large amounts of data. While a -based system with
large amount of main memory can compute these algorithms, it is still impossible to fit
all data on a ’s on-board memory.4 For these applications, the data must be split up
and processed iteratively in blocks containing a subset of the original data. To reduce
the amount of data copies, we use different strategies depending on the data location.
First, let an d-dimensional array A := N1 × N2 × · · · × Nd, Ni ∈ N be defined as

a block of ∏d
1 Ni elements laid out contiguously in memory in row-wise fashion. at

means that the linear memory address a of an element (n1, n2, . . . , nd), nk ∈ [0, Nk−1]
is given by

a = n1 + N1(n2 + N2(n3 + · · ·+ Nd−1nd)) =
d

∑
k=1

nk ·
k

∏
l=1

Nk (.)

A view v of a d-dimensional array A with size s⃗ = (s1, s2, . . . , sd), sk ≤ Nk and
origin o⃗ = (o1, o2, . . . , od), ok ≤ Nk − sk is a d-dimensional sub array of A, where for
each index (i1, . . . , id), ik ≤ sk v is defined by

v[i1, . . . , id] = A[o1 + i1, . . . , od + id] (.)

If ∃k : sk < Nk, v cannot be substituted but must be copied. e size difference Nk− sk,
however, causes a gap (also called stride or pitch) between consecutive rows of v, which
is why a simple memcpy over the total size of v is not possible. Instead of naively copying
all elements in d nested loops, we optimize for the common cases. From (.) we see
that smaller indices change faster, hence if ∃i ≤ d : s1 = N1 ∧ . . . ∧ si = Ni, then
we can use a ∏d

j=i+1 Nj memcpy operations to copy ∏i
j=1 Nj elements per operation on

the host or an equivalent number of clEnqueueWriteBuffer or clEnqueueReadBuffer
operations if data crosses devices. In case the data is already located on the , we
use the clEnqueueCopyBufferRect function which takes the origin o and pre-computed
pitches, to copy memory directly on the device.

4 Currently available high-end  provide a maximum of 16GB.
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3.6 Summary
In this chapter, we presented a compute model that maps streamed data processes onto
heterogeneous compute architectures. It uses task graphs to describe streaming algo-
rithms and task mapping heuristics to distribute work among the system’s processors.
We propose a mapping strategy that replicates task nodes and maps them statically to
the available processing resources. e proposed mapping heuristic guarantees data
locality and reduces unnecessary data transfers. By replicating proxy nodes instead of
sub-graphs, we can scale with cluster nodes. A  model completes the description of
the architecture.
Based on the proposed architecture, we presented optimization strategies to improve

the run-time and bandwidth usage: Grouping data transfers in batches improves uti-
lization of the e bus and a proposed kernel fusion approach eliminates data transfers
on subsequent kernel invocations.



4 Data acquisition and process control

Modern synchrotron X-ray imaging experiments provide flexible setups to acquire data
for a wide range of applications. is requires a coordinated effort to manage high-
speed data acquisition, data processing and device access and guarantee a continuous
and sustained data flow. Most experiment workflows, however, are defined in an ad hoc
fashion and do not focus on the integration aspect thus missing important optimization
potential. In this chapter, we will present the core components for data acquisition and
experiment control. e  architecture is a generic, low-latency and high-throughput
data acquisition interface used for contemporary high-speed detectors. e Concert ex-
periment control system spans a bridge between low-level device access and high-level
experiment workflows. By exposing asynchronous device access, the data processing
framework presented in  and the  architecture through a simple user interface,
beamline operators are able to define arbitrary experiment workflows.

4.1 High-speed data acquisition
X-ray imaging applications have specific detector requirements concerning maximum
frame rate, spatial and temporal resolutions, dynamic range and noise behaviour. 
detectors provide the best signal-to-noise ratio for slow sample scans, while  and
hybrid s detectors perform best for high-speed recordings of dynamic processes.
Table . lists commercial and research detectors as well as their technical specifications.
For high-speed data streaming, commercial vendors implement the CameraLink ()

industry standard that specifies an electrical  connection [] between the detector
and a e frame grabber connected to the acquisition machine []. ’s full configu-
ration profile specifies the transmission of 64 bit of pixel data at a clock speed of 85MHz
resulting in a total a bandwidth of about 5.44Gbit s−1. Besides the electrical protocol,
connector and cable specification,  stipulates a low-level serial communication proto-
col between frame grabber and detector. Although the  standard foresees the serial
protocol as a means to control the detector firmware, the standard does not prescribe
specific application semantics. Hence, all vendors define their own application-specific
protocol. ese protocols are oen proprietary and incompatible with the detectors of
other vendors.
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Table 4.1 - and s-based detectors used for fast X-ray imaging. e third
column denotes the frame rate achieved at the maximum resolution, higher frame rates
are possible with a reduced field of view. e data rate is the maximum possible transfer
rate from detector to machine.

Detector Resolution Frames/s Bit/pixel MB/s Interface
 2048× 1088 330 12 1402.5 direct e
pco.edge 2560× 2160 100 14 1054.7  + e
pco.dimax 2016× 2016 1279 12 250.0  + e
Andor Neo 2560× 2160 30 16 316.4  + e
 2 1280× 1024 488 8 610.0  + e

In contrast to the frame grabber approach, ’s hardware group for embedded sys-
tems developed a Xilinx Virtex  -based pixel detector (codenamed ). is sys-
tem combines a custom sensor readout logic with a direct e cable connection for high-
speed data transmission []. With the on-board Direct Memory Access () logic and
an eight lane e . configuration, the detector can stream the data from the sensor
directly into the user memory at up to 12Gbit s−1. Although, modern frame grabber
cards use on-board  modules for basic pre-processing, a custom -based read-
out electronic allows for internal feedback loops taking the sensor into account [].
To parameterize these feedback loops and configure the data acquisition, the  
defines a register-based hardware model.
Both, the insufficiently specified  serial communication protocol and the register-

based hardware model of the  detector prohibit a common access interface. Such an
interface, however, is necessary to build data acquisition systems that are independent
of detector-specific details. erefore, we have to devise an adapter layer between the
control application and the hardware interface to provide a generic interface. Figure .
outlines the core  architecture.

4.1.1 Requirements
To satisfy the demands of X-ray imaging experiments embedded in a fast and flexible
control system, the adapter layer must fulfill the following list of requirements:

. e adapter must providemechanisms to start an acquisition and read out frame data
consisting of a pixel arrays with bit depths between  and  bits. e exposure of the
sensor may be triggered by a soware stimulus of the adapter layer, automatically by
the detector according to a set frame rate or by an external hardware signal. To cover
all use cases, it must be possible to read the data from the detector using blocking,
synchronous calls or asynchronous callbacks.
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Figure 4.1 For the  detector platform,  maps the register model to a list of
properties and accesses control functionality via the driver’s event structure. For other
cameras,  wraps the vendor-specific libraries.

. It must be possible to add arbitrary detector-specific parameters without changing
the core adapter interface. e parameter can be primitives such as characters and
numbers but also structured data like arrays and strings. Minimum meta data about
the parameters must include the data type, a range or list of possible values, units
and a description.

. e adapter must support reading data from streaming and buffering detectors using
a single access interface. Buffering detectors, such as the pco.dimax, are used for
the highest frame rates, in which case it is not feasible to transmit the data at the
maximum frame rate using the employed data link. us, the adapter must be able to
separate the acquisition phase from the readout1 phase. Streaming detectors combine
both phases and transmit the data on-the-fly. Mixed operation must be possible for
detectors that use streaming for a live preview.

. To enable high throughput and low latencies, the adapter must not limit the band-
width provided by the low-level detector library or vendor . In particular, it must
be possible to let the frame grabber or low-level driver write directly into a supplied
usermemory bufferwithout requiring additionalmemory copies, i.e. allow zero-copy
data transfer.

. In order to meet security and stability demands, it must be possible to acquire data
on a remote machine. Only the network bandwidth or the detector frame rate it-
self should limit the effective data throughput between acquisition and processing

1 With readout we mean the transmission of data from the detector to the host machine and not the trans-
mission of pixel data from the sensor to the detector readout logic. Initiating the transmission sensor
readout is caused by triggering an exposure.
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Figure 4.2  class diagram of the  architecture with concrete implementations
of a  and the  detector.

machine. Moreover, existing control system interfaces should control the remote
detector as far as possible. Ideally, a remote detector can be used transparently as a
drop-in replacement for a local detector.

4.1.2 Unified detector access
e core abstractions of the  architecture are based on the basic  class hierarchy
shown in figure .. All vendor-specific detectors implement the BaseCamera interface.
is interface provides generic methods to initialize a detector, start an acquisition,
do a soware trigger and initiate a data readout. ese methods call private virtual
methods that are overwrien by the derived detector classes which in turn dispatch
to the corresponding vendor-specific library or driver. In the example, the PcoCamera

class is an implementation of the BaseCamera providing functionality to control the pco
detectors listed in table .. In order to control the application behavior, each public
method checks the current state against an implied . In case of an invalid state
transition, for example when the user tries to stop an acquisition before starting it, the
call is aborted. If the state transitions succeed, the call is dispatched to the private
method.
Although, all detectors follow the general interface defined by the BaseCamera in-

terface, detectors also have additional device-specific options and parameters such as
sensor gain or temperature values. A property system maps these parameters to unique
identifiers that are accessed by the user via single get and set methods. Each property
consists of a name, a type, value ranges and a string describing the parameter. e de-
tector class implements the access to a property, by overriding the get and setmethods
and handle the supplied property . In addition to the standard property meta data, we
associate optional units with a property to describe its physical representation. Units
can be real  units such as second andmeter or descriptivemeta data such as the ordinal-
ity, for example the number of recorded frames. e advantages of a flexible property
system compared to simple object aributes are programmatic enumeration and the
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Listing 4.1 Creating a new detector object for a pco detector and seing exposure time
to . seconds and reducing the frame width to  pixels.
UcaCamera *detector = uca_plugin_manager_get_camera("pco");
g_object_set(detector , "exposure -time", 1.2, "roi - width ", 1024, NULL);

assert(uca_camera_get_unit(detector , "exposure -time") == UCA_UNIT_SECOND );

possibility to register property change handlers. e laer allows a front end user in-
terface to implement the model-view-controller paern in order to update a graphical
or textual representation whenever a property value changes.
e core and the detector-specific code are separated on the binary level in order to

increase modularity, permit independent development of new detectors and simplify
the deployment of compiled code. is is achieved by linking derived detector imple-
mentations into separate shared libraries. However, this also means that applications
using the adapter cannot directly instantiate a new detector. Instead, an application
uses an instance of Factory class to load the shared library at run-time and instantiate
the contained detector object using a plug-in mechanism. During its construction, the
Factory object determines the available plug-ins by checking known and configurable
locations for shared libraries. e Factory then assigns a unique identifier string de-
rived from the filename to each library. For example libpcocamera.1.2.so becomes
the plugin name pco that the client application passes to the Factory. e Factory pro-
vides an enumeration function to list the available detector identifiers. Listing . gives
an example how to set up a new detector, change properties such as exposure time and
region of interest and assert that the unit of exposure time is seconds.

Memory management

To cover different application use cases, detector and frame grabber implementations
typically support a mixture of synchronous and asynchronous calling behaviour as well
as blocking and non-blocking data readout modes. While synchronous reads block the
caller until data is ready and returned, asynchronous readouts call a previously regis-
tered callback functionwhenever data is ready to be processed. Non-blocking or buffered
readout refers to the capability of a detector to trigger and read out the data without
user intervention. For high-speed recordings, the connection bandwidth oen does not
suffice to transmit the data in real-time. Hence, high-speed detectors that support this
mode posses a large in-camera memory storage to buffer frames2 for the acquisition
time. Aer the acquisition completed, the frame grabber transmits the frames to the
caller either frame by frame or as a sequence. Unbuffered or blocking data readout are
the main readout modes to provide live streaming of data. To provide a unified inter-

2 e pco.dimax is able to record thousands of frames per second with an internal memory capacity of
36GB



70 4 Data acquisition and process control

Table 4.2 Minimum and maximum number of  memory copies required for all
acquisition modes combinations.

Synchronous Blocking nmin nmax

yes yes 0 1
no yes 0 1
yes no 2 3
no no 1 2

face to all detector types, the  core implementation uses soware fall backs for all
modes that are not implemented directly in hardware.
A soware-side ring buffer that stores the most recent frames provides non-blocking

behaviour on the client side. is allows us to separate the acquisition of data from the
detector and the transmission of data to the client as per the third requirement. With
this mode enabled, an acquisition thread reads out data continuously from the detector
to fill the ring buffer. e user of the detector either reads out the data synchronously or
registers a callback that is notified asynchronously when a frame is ready. Synchronous
readout requires an additional memory copy for the user supplied buffer which can be
avoided in the asynchronous callback handler if the buffer is used as is. If the detector
vendor allows writing directly into the ring buffer, a single memory copy from the
ring buffer to the client memory suffices. In synchronous, blocking mode, the client
initiates the data transfer and supplies a suitably sized memory buffer. In this case, the
vendor can write directly into the client memory without an additional  memory
copy. If the hardware or driver does not support a direct copy, the  has to perform
an intermediate memory copy.
Table . summarizes the calling behaviour and readout modes as well as the required

minimum and maximum number of memory copies that the  must perform. Due
to the intermediate buffering, non-blocking readout guarantees a consistent readout
rate, at the cost of increased latency, as long as the ring buffer is not filled completely.
Synchronous blocking guarantees lowest possible latencies and potential zero-copy be-
haviour as long as the client can process the data fast enough and the vendor supports
writing into the supplied buffers.

Implementation details

e  interface is implemented as a C library called libuca. Like the  compute
framework, it is based on the GObject framework from which it uses the type, class and
property system. e GObject introspection mechanism allows for integration with
scripting and high-level languages such as a Python. Because Python code cannot ac-
cess raw pointers cannot directly, we provide a small module that converts the raw C
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Figure 4.3 Basic preview  using libuca with a pco.dimax acquiring X-ray projec-
tions of a liquid.

data array to a NumPy array.3
Up to now, the  framework provides access to all detectors given in table .,

slower X-ray detectors fromDexela and Basler aswell as direct X-ray convertingMedipix
and Timepix boards developed at  []. In the case of the  detector platform, we
use the zero-copy transfer mechanism to decode and decompress the frame data on-
the-fly and directly into the user’s memory. By using a custom data format based on
the -bit dynamics of the sensor and vectorized  instructions, we can decode three
-bit pixels simultaneously into three -bit words, giving a speed up of up to three
compared to the naïve conversion that uses manual bit shis.
Due to the flexible and generic approach, a wide range of tools uses the  imple-

mentation for different use cases. Command-line programs aid in the diagnostics and
profiling of specific detectors or generate off-line documentation of detector properties.
For quick previews, simple acquisition purposes and basic data assessments, beamline
operators use the generic Graphical User Interface () shown in .. For slow data
acquisition purposes, a Taco Next Generation Objects () device server4 allows re-
mote access to the frame data and parameters. Figure .a shows the core architecture
of this setup.

4.1.3 High-speed remote data transfer
To ensure stable control and reliable data transfer at the beamline, the data is acquired
and processed on separate machines. Although, we can cover this scenario using the
aforementioned  server, high latencies and low data throughput inhibits so

3 NumPy is the de facto Python matrix and array library for scientific computation.
4  is a beamline control system that we will introduce in more detail in the next section.
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Figure 4.4 eoretical frame rate achieved with / on a b network for frame
sizes between 5122 and 25602. Each detector requires more bandwidth than is available
for sustained streaming.

real-time process control. ese latencies and throughputs are caused by the /-
based Common Object Request Broker Architecture () [] implementation that
is used for remote method calls. e b network technology limits the maximum
aainable bandwidth to 10Gbit s−1. e protocol overheads and processing demands
of the network interfaces limit the b net peak bandwidth between 4.1 Gbit s−1 and
7.6 Gbit s−1 [, ]. However, not only the network technology but also  itself
limits the aainable bandwidth.  communication is susceptible to congestion if
the number of concurrently communicating peers increases []. In an X-ray imag-
ing experiment, this communication cannot be avoided because the experiment control
system controls motors and shuers the entire scan time.
Assuming the reported worst case throughput of 4.1 Gbit s−1 and neglecting the im-

pact of  congestion, a b network has a throughput of about M := 488MBs−1.
Given typical detector data streams with 8 to 16 bit per pixel, we can estimate the aain-
able frame rate f (n) for a given number of pixels n by f (n) = M/αn, where α ∈ [1, 2]
denotes the number of bytes per pixel. Figure . shows simulated results of f (n) for
frame sizes between 5122 and 25602 pixels. e data points in figure ., indicate the
required bandwidth of the fastest detectors given in table .. As we can see from the
figure, b is not sufficient to stream the data at full frame rate and frame size for any
of those detectors. Not only are we unable to stream frames at rate the detector outputs
the data but we also saturate the communication network and negatively affect other
services that share the same network.
To solve the throughput problem, we use a secondary data channel for exclusive trans-

mission of frame data to the recipient machine []. e / connection is used
solely for transferring handshaking, configuration and control messages thus reducing
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the overall load on this channel. As we have shown, the bandwidth restrictions of a
b ethernet connection prevent transmission of data acquired by the fastest stream-
ing detectors. Consequently, we use InfiniBand interconnect that provides a higher link
bandwidth and can scale more easily by aggregating multiple links []. Moreover, In-
finiBand Remote Direct Memory Access () allows an InfiniBand Host Channel
Adapter () to circumvent the  and read from and write directly into the memory
buffers, thus reducing the load on the sender and receiver .
Figure .b shows the extension of the existing data acquisition architecture neces-

sary for remote acquisition. e original  server uses the  interface solely to
acquire data from a detector. A Kserver  server replaces the original  server
to handle regular  requests and accept InfiniBand connection requests for data
transmission. e Kserver maps the detector parameters by mapping  aributes
programmatically to the  parameter infrastructure to provide remote control of the
detector. On the receiving end, a  plug-in uses the existing  connection to
negotiate connection details for the data transmission and provide end-user control of
detector parameters. Aer configuring the detector, the  Kclient plug-in connects to
the Kserver component and receives the data stream via . e data is wrien either
directly into the client buffer or into the ring buffer described in the previous section.
By providing a wrapper  plugin that contains both the InfiniBand and  clients,
the user can access the remote detector transparently and indistinguishably from a local
detector. If the detector supports writing into the supplied memory buffers, transmit-
ting data from the remote detector to the client memory via  requires only a single
explicit memory copy.
As before, we can estimate the maximum possible frame rate but for an InfiniBand

network. At , an InfiniBand x ad Data Rate () network provides a theoret-
ical peak bandwidth of 40Gbit s−1 according to the specifications of the vendor. e
nominal bandwidth of the network is 32Gbit s−1 as per the encoding of  bit data in 
transmied bits. Profiling using the provided InfiniBand benchmark tools has shown
that the maximum bandwidth saturates at about 31Gbit s−1. Protocol and operating
system overheads cause this performance impact. Assuming a bandwidth of 31Gbit s−1,
the maximum frame rate that can be aained is shown in figure .. It shows that each
detector can stream its projected maximum frame rate by a safe margin. In particular,
the network bandwidth exceeds the detector throughput of the Photon Focus , the
 detector and the pco.edge by factors of 29.6, 2.6 and 3.5.

4.1.4 Related work
Similar to the  architecture, the Library for Image Acquisition (), developed
at , unifies the specific detector interfaces. Unlike ,  integrated additional
functionality such as data processing and storage in different formats []. e mono-
lithic architecture consists of a detector hardware interface that corresponds to the base
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Figure 4.5 Comparison of state-of-the-art acquisition using  for both control
and data transfer via a b interconnect and improved throughput with an InfiniBand
data channel. On the detector side,  communicates with the hardware, on the client
side, a  client plug-in provides transparent access to the remote detector.
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Figure 4.6 Simulated frame rate using  InfiniBand model parameters and frame
sizes between 5122 and 25602. e bandwidth suffices to stream the data directly from
the detector to the acquisition machine.
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interface of the  architecture as well as a control layer and data processing modules
built on top of the lower layers. Contrary to our proposed minimal interface, ’s
hardware and control interface uses fixed methods to provide detector-specific capabil-
ities. Because these must be known at compile time, the generality and straightforward
extensibility as stated by the second requirement suffers. Although, each detector is
linked into its own shared library,  does not provide a mechanism to enumerate
and instantiate detectors dynamically at run-time. Instead, one must compile and link
directly against the specific detector library. Due to the static nature of , it is im-
possible to write generic and dynamic client applications. Instead, the authors decided
to provide flexibility at the process level and deploy a  server for each detector.
Unlike ,  deliberately avoids data processing and storage on the acquisition

level. is enforces a strong separation of concerns and increases modularity. We also
argue that specialized tools and libraries are faster for processing and storing data and
easier to maintain than a single, monolithic library. To support this model, we promote
a low-latency data transfer mechanism which is on par with the performance provided
by the monolithic model. However, because  is a generic detector interface, we
were able to integrate a  detector within .

4.2 Experiment control
As outlined by question , an X-ray imaging experiment control system must provide
enough flexibility to adapt quickly to an evolving experiment environment and per-
form fast enough in order to manage hundreds of hardware devices, is required to
model all experiment types conducted at an X-ray imaging beamline. To enable feed-
back processes it is necessary to integrate both data acquisition and data processing.
In this section, we propose a generic control framework to describe experiment pro-
cesses and workflows. It integrates our high-throughput data acquisition and the high-
performance compute frameworks to enable quick data assessment and fast feedback
processes for µ experiments. Compared to existing solutions, data is kept in fast
main memory at all times and only relevant results are wrien out to disk. is allows
us to keep up with the high data rate produced by the detector [].

4.2.1 Requirements
To meet the objectives stated in . and answer question , we state the following re-
quirements for a high-level experiment control system:

. e control system must provide a standardized, generic high-level device hierarchy
and an  that is independent of the underlying hardware and suitable for the rapid
development of automation processes. e main focus lies on calibration and ad-
justment tasks as well as the acquisition and processing of radio- and tomographic
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images for µ experiments.

. Asynchronous device control is mandatory to reduce the time spent on synchroniza-
tion and therefore increase the throughput of processes and experiments. Accessing
the devices in an asynchronous manner should be transparent to the user.

. Existing technologies should be re-used wherever possible to reduce development
time and increase interoperability. If new developments are necessary, the intended
architecture must provide open interfaces for additional extension.

4.2.2 Low-level control
e low-level control of a beamline is split into safety-critical (for example door locks)
and experiment-related device access. For safety-critical applications, Siemens 
  is used in most installations [] whereas beam- and experiment-related hardware
control is developed and provided by the accelerator communities. Here,  [],
the Experimental Physics and Industrial Control System () [] and the Distributed
Object-Oriented Control System () [] are the main low-level control systems.
e experiment control systems distribute access across a network of machines to in-
crease scalability and improve fail safety. Each machine accesses a particular device
with a device-specific protocol and exposes data and control through control-system-
specific and device-agnostic network protocol.  and  represent data by
remote object aributes and control via Remote Procedure Calls () communication
primitives.  uses a custom C++  implementation, whereas  relies on the
open  standard [].  uses process variables exclusively to abstract device
access. To expose these process variables on a remote machine,  distributes the
data using a custom messaging protocol. Although both  and  are used at
, we will focus on  for the remainder of this section because it is the de facto
standard low-level experiment control system in use, whereas  is used to control
the machine operating the beam storage ring.
As indicated in ..,  is a thin abstraction layer between the hardware devices

and the application. Each device is controlled and represented by a device server that
client applications connect to in order to gain remote access []. A central -based
device server keeps a list of known hardware device servers and resolves requested
server names from a hierarchical namespace to negotiate a connection request from
the client to the server. Due to the variety of devices, the  server model provides
a generic access interface consisting of commands and aributes. Commands initiate
an action on the device; aributes represent device-specific parameters or process vari-
ables. Although, each device is part of a device class,  does not provide nor
enforce a strict semantic device class hierarchy. In practice, each concrete device im-
plementation inherits directly from the root device class which impedes type polymor-
phism between devices of the same “family”. is leads to the situation that 
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Figure 4.7 e control layer integrates the low level data acquisition, process and con-
trol interfaces and provides device and process abstractions. On top of that generic shell
or graphical user interfaces are built.

applications are wrien for specific use cases. As a result, this makes it impractical
to describe flexible experiment types in a generic manner and requires large efforts to
implement tomographic scans. In these circumstances, the experiment setup changes
depending on the sample and required experiment condition.

4.2.3 Proposed system architecture
Because  is widely adopted by a large number of synchrotrons, a full replacement
of it is neither desirable nor realistic. us, we designed a high-level control system
layer, called Concert that negotiates between the lower-level control systems such as
 or  and the user or control applications as shown in figure .. By abstract-
ing from the low-level access details, we can structure devices in a semantically strict
hierarchy and provide common data processing capabilities. Moreover, we can define
device-independent processes working with a large class of device types to reduce code
redundancies. e top-most representation layer uses Concert to provide either pro-
grammatic user access or a user interface such as a command-line shell or a . By
abstracting the differences of the low-level control systems, end-users and application
developers can use a beamline and the employed devices in a common way.
e central idea of a control system is to map physical hardware devices to soware

components. An operator uses these soware entities either manually or as part of a
program to describe process sequences used for an experiment. In the most general
sense, the control system abstractions expose parameters representing hardware values
that can always be read and may be wrien, as well as methods to change the state of
a device. Although methods could be represented by a protocol of parameter changes,
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separating method policies from access mechanisms helps hiding low-level details from
the user and simplifies development of different, co-existing policies [].

Parameters

Figure . illustrates the core architecture as a model. e foundation of the system
is the separation of Parameter classes from the device itself. A Parameter encapsulate
access to a single parameter, whereas devices expose auxiliary methods based on those
parameters. e Parameter classes have mandatory geer methods to read values from
a device and optional seer methods to write them. A documentation string describes
the purpose of that parameter and how it relates to the device itself. To enforce the
generality of the parameter concept, Parameter objects are not restricted to specific use
cases and instead represent arbitrary device values.
To encapsulate digitized analog data that corresponds to a physical quantity as mea-

sured by a device, we use the Quantity class. is class derives from a Parameter

and adds an associated unit to the Parameter’s value that is converted internally to
a hardware-specific target value. Potentially wrong or malicious user input is checked
for unit compatibility, e.g. seing seconds on a motor position throws an error. If this
test passes, the Quantity value is converted to the device’s base unit and checked if it
falls into the user-defined so limit range. If the second check turns out positive, the
converted value is set on the device using native hardware access or by writing the
corresponding  aribute. e Parameterizable class groups Parameter objects
and provides auxiliary methods to lock writing of parameters or save all current values
on a stack for later resets. e laer is used to preserve a certain device state across
seemingly idempotent processes. For example, aer adjusting the focus of an objective
lens, other devices that were involved in the process of adjusting the lens, should not
be affected by the process.

Devices

Device objects are derived from the Parameterizable class and add additional locking
mechanisms to prevent changing a device during operation. Device objects also enforce
correct operation sequences by an implicitly defined . e  is based on a hidden
per-device state that is associated with one or more state transitions. A transition is
either specified by annotating state-changing methods using a @transition decorator
or by passing Transition objects to the constructor of a Parameter object. Listing .
shows how possible states are assigned to the position Quantity property of a linear
stepper motor and how arbitrary methods can trigger a state change. e construction
arguments to the Transition is a list of valid entry states and a target state. Contrary
to a formal , a transition allows to change a Parameter to an intermediate state
during the execution of a method or set operation. Aer successful completion of the
operation, the Parameter is set to its final target state.
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Figure 4.8 Simplified class hierarchy. Parameter and Device classes form the basis to
build device types.

Listing 4.2 Implied state annotation for Parameters and methods.
class Motor(Device ):

position = Quantity(q.meter ,

transition=transition(source =['moving ', 'halt '],
target =['moving ', 'halt ']))

@transition(source =['halt '], target='moving ')
def move(self , delta):

self.position += delta
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................................
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+ move()
+ stop()
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LinearMotor
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+ position(unit=rad)
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Figure 4.9 Motor classes and mixins to provide a common interface for lateral and
angular stepper and continous motors.

To avoid the weak inheritance tree of the  device classes, every class represent-
ing a hardware device must derive from a specific device class class. A device class5 is
a group of devices with common functionality. At the moment, the device class hierar-
chy specifies base classes for detectors, detector systems composed of detectors, motors,
controllers, / cards, light sources, monochromators, positioners, pumps, scales, shut-
ters and storage rings. From these device classes, hardware-specific classes are derived.
For example, a concrete  motor derives from the Motor device class and imple-
ments the imposed interface. e net effect is that client applications can rely on the
polymorphism of types and use a  motor in the same way as a native motor. e
base class functionality is chosen to cover behaviour expected from a derived class. For
more complex cases, deeper base hierarchies are provided as shown in figure .. For
example, both linear and rotational stepper motors inherit the PositionMixin interface
which itself inherits from Device and uses the common position aribute to provide
high-level functionality such as moving. On the second inheritance level, continuous
motors add velocity properties to describe continuous motion.

Asynchronous operation

In any synchrotron experiment, multiple devices must be manipulated in the correct
order to achieve a desired process sequence. However, manipulating the devices se-
quentially is a slow process due to high startup latencies and slow motor movements.
Similar to parallel data processing, parallelizing the device access can decrease the over-
all process time and in turn improve the experiment throughput. e pre-scan phase of
an X-ray tomography experiment illustrates the potential gains: Aer taking flat field
images for noise reduction, a shuer is closed to obstruct the beam, while at the same
time the sample can be moved into the field of view and the rotary stage is spun up.

5 Which is not identical to a Device class.
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Listing 4.3 Difference between synchronous and asynchronous parameter access.
# Synchronous access

motor.position = 1 * q.mm

# Asynchronous access returns a future

future = motor.set_position (1 * q.mm)

future.wait()

As with parallel computing, correct synchronization is crucial and necessary to avoid
devastating effects such as physical device crashes.
To enable parallel, asynchronous device access, parameter accesses and device meth-

ods are encapsulated within future objects. A future represents a value that is produced
by an asynchronous operation and becomes available at some arbitrary point in the
future []. Asking for the result of a future either returns the value immediately or
blocks as long as it is not yet ready. Apart from that basic requirement, a future also
provides methods to query if it is running, cancelled or done computing. A user can
also aach a callback to a future and be notified asynchronously about the completion.
Futures are created by submiing a regular function to an executor which uses any

mechanism to implement asynchronous execution of the function. Within our architec-
ture, we use Python’s default ThreadPoolExecutor to run tasks asynchronously. As the
name suggests, the ThreadPoolExecutor manages a limited pool of threads to process
a submied task. Additionally, we built a custom executor based on the gevent6 event
loop system that uses single-threaded kernel-level polling to provide asynchronous /.
Because it can be difficult to identify problems and errors during asynchronous execu-
tion of code, we also provide a NoFuture implementation which executes the submied
tasks sequentially one by one. e user can set a run-time switch to choose between
any of the three executor and future implementations.
By decoupling the parameter access from de-referencing the value, we can access

multiple devices at the same time. e future objects themselves can then be used to
synchronize with other asynchronous operations by chaining callbacks or waiting ex-
plicitly for a future to finish. As shown in listing ., aribute-like parameter access is
always executed synchronously because seing the parameter cannot return a future.
Similar to parameter accesses, methods can be executed asynchronously. To denote
methods for asynchronous execution, an @async decorator is placed before the method
definition. e decorator wraps the low-level call and provides the same asynchronous
interface as parameter accesses. is has the positive effect that device developers do
not need to care about how parallelism is implemented but merely specify which meth-
ods should be executed asynchronously as shown in listing ..
With concurrent operations, there is always the danger that two independent code

6 http://gevent.org

http://gevent.org
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Listing 4.4 Annotation of asynchronous methods.
# Partial class definition of Motor

class Motor(Device ):

@async

def move(self , delta):

self.position += delta

# Moving the motor asynchronously

f = motor.move(-2 * q.mm)

f.wait()

Listing 4.5 Locking of two related devices using the with statement.
with motor , detector:

# Other processes cannot access neither motor nor detector

motor.move(1 * q.mm)

data = detector.grab (). result ()

paths access the same device asynchronously. is can lead to race conditions between
device accesses with potentially dangerous outcome. To prevent such situations, each
device has a lock that is activated manually or by accessing the device within a with

block as shown in listing .. Because the with statement is executed atomically from
Python’s point of view, deadlocks with two devices and two processes are not possible.

Data acquisition

To integrate the data acquisition framework presented in ., we derived a custom -
based detector class. e constructor of this class receives the unique identifier string
which is used to instantiate a low-level detector object shown previously in listing ..
During the instantiation, all properties are enumerated and wrapped in corresponding
Parameter and Quantity objects. For the laer, we map  units to control system
units. e real low-level  access object is hidden and only accessed by interface
methods of the detector. In case of the frame grabbing method, we use the Python
module described in .. to return a NumPy data array that is used for image analysis
and calibration purposes.
In certain cases, we have to specialize the general  detector class. For example,

the  detector provides temporal frame compression that is controlled by a set of
parameters []. Determining the correct parameter values is non-trivial, hence we
provide additional functionality in the detector class to set the correct parameters aer a
calibration run. For this we use the fact that the detector can control itself. Since we use
the  interface we immediately profit from low local latencies and high throughput
from a remote detector.
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Listing 4.6 A tomographic scan that changes the rotation axis and acquires frames at
each set position.
def acquire ():

return detector.grab()

scan = Scanner(stage['angle '], acquire)

future = scan.run()

positions , frames = future.result ()

4.2.4 Process Control

e basic device and parameter abstractions can be used to control devices manually.
Although these mechanisms could be used to write simple scripts to perform certain
experiment tasks, the tasks oen provide similar functionality and oen differ only
in some parameters. Hence, we devices a high-level process control module contain-
ing abstract process skeletons derived from the decomposition of recurrent logic from
hardware-specific operations.
A common procedure is a scan of a device parameter along a range of values and the

evaluation of a measure at each scan point. For example, while moving a motor the
pressure of a pump is measured or while changing the exposure time of a detector, the
image response is evaluated. Using the Parameter objects of a device, the Scanner object
from the process module can provide this in an abstract way. By passing Parameter

objects instead of Devices, we can model every type of scan, for example a tomographic
scan as shown in listing .. Although scanning allows processing the measured data,
it is not suitable for feedback-based control because the feedback loop itself is missing.
Feedback-based control is necessary for beamline tasks that need to evaluate a mea-

sure and react on the outcome of the result. In tomographic environments, the control
algorithms oen require an image-based feedback, for example when focusing objec-
tive lenses or aligning samples. is logic can be decoupled into image-based metrics,
control algorithms and feedback mechanisms. We can find different metrics for diverse
problems, for example gradient- or variance-based metrics to determine the sharpness
during a focusing process. Data assessment based on such a metric is used by a control
algorithm which manipulates parameters to optimize the measured metric. e com-
puted parameters are then set on the hardware by a high-level device , which closes
the feedback loop. For example, a simple focusing process is just the optimization of a
Parameter object with respect to a measured value such as the sharpness of the current
detector frame. A sample procedure is shown in listing ..
Because of the asynchronous approach, we are able to use the feedback loops in a

continuousmode. is preventswaiting for the process steps to finish and instead allows
us to sequence device accesses in parallel.
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Listing 4.7 Finding the optimal focus position by maximizing the standard deviation
of the current detector frame.
def measure ():

return np.std(detector.grab ())

def on_finish ()

detector.stop_recording ()

maximizer = Maximizer(motor['position '], measure , bfgs)

detector.start_recording ()

f = maximizer.run()

f.add_done_callback(on_finish)

4.2.5 Data flow descriptions
As shown in the previous chapter, a data flow oriented processing model is necessary
to describe and schedule streams on heterogeneous system architectures. So far, we
used task graphs composed of connected nodes to specify the data flow. is model is
sufficient for programmatic access but becomes burdensome for experiment workflows.
As stated in the first requirement, we need high-level abstractions to integrate data pro-
cessing within the experiment. In this section, we present two approaches to describe
the work flow in two different ways.

Functional description

Each task ti processes an arbitrary number of inputs to produce a task-specific output.
us, we can give a task function fti : In → I, where n = deg−(ti) denotes the arity of
the function and I describes an abstract data type covering possible input and output
types. An arc that describes the data flow from one task to the numbered input of
another task is thus the composition of the associated functions. us for a task ti, the
data flow is defined by the function application fti( fx1 , fx2 , . . . , fxn), where (xk, ti) ∈
VT . is property is symmetric, which is why we can derive the graph structure from
function applications. In that case, the task graph is effectively the static call graph of
all involved task functions [].
e lower-level TaskNode objects represent nodes in a task graph (see ..). To ab-

stract from these graph-based tasks, we introduce the higher-level Concert Task objects
which represent a task’s function. During the construction of a Task object, the name
and construction arguments of the corresponding TaskNode are associatedwith the Task.
Moreover, all Task objects hold a reference to a global Environment and a common, ini-
tially empty TaskGraph object.
To derive the task graph structure from the call chain, we override the __call__

method of the Task object. is method is called whenever an object is accessed with
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............
Environment

.+ graph.

+ reset()

.
Task

..
+ __call()__
+ run()

.
TaskNode

......

Figure 4.10 Relationship between high-level Task and low-level TaskNode. e Task

is created with an implicit Environment object which it uses to connect itself to its
__call__ arguments.

Listing 4.8 Set up and execution of a pipeline implementing the  algorithm.
write(backproject(ifft(ramp(fft(read ()))))). run(). join()

parenthesis syntax, i.e. Task.__call__(object, x, y) is called when object(x, y) is
used. During such a call, we instantiate a new internal TaskNode using the arguments
that were saved from the construction of the Task. We require that each argument to
the __call__ is either a Task object itself, hence we can associate the position of an ar-
gument with the input port, or a terminating iterable that is inserted into the task graph.
For example, calling z(x, y) maps x to input port  and y to input port  of z. To allow
nested composition of function calls connections, the __call__ method always returns
the object itself.
e Task object exposes a run() method that creates a new Scheduler object with

which it executes the current state of task graph. erefore, to start the entire pipeline,
the run()method must be called on the outermost function which at that point guaran-
tees that the task graph is complete. To allow for parallel control and computation, the
Scheduler’s main loop is started in a different Python thread. To control the execution
the Task object exposes a join() method that blocks execution until the computation
has finished. Listing . shows how a linear reconstruction pipeline is constructed us-
ing nested function calls and how the last returned object is used to start the execution
and wait for its completion.

Coroutines and generators

Coroutines offer an elegant approach to describe data flow oriented processing such as
pipelines by generalizing the concept of a subroutine. A subroutine is defined as a pro-
gram function that enters at the first instruction of the subroutine body and exits once
at a return statement or at the end of the body. us, by themselves subroutines can
not hold any state across multiple invocations. Contrary to subroutines, coroutines can
exit prematurely by suspending the execution and yielding to another coroutine. By
subsequent yields of other coroutines, they can resume execution where the coroutine
le before []. Hence, unlike subroutines, coroutines are able to persist the execution
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def numbers ():

i = 0

while True:

yield i

i += 1

def show(producer ):

for number in producer ():

print(number)

show(numbers ())

(a) numbers produces items

def numbers(consumer ):

i = 0

while True:

consumer.send(i)

i += 1

def show ():

while True:

number = yield

print yield

numbers(show ())

(b) printer consumes items

Figure 4.11 Yielding on the le side of a generator suspends the execution to the caller,
whereas yielding on the right side suspends until a new value is pushed into the gener-
ator.

state across multiple invocations. e difference between passing control to another
coroutine and merely calling it, lies in the symmetry and cooperative relationship be-
tween two coroutines. Generators are asymmetric or semi coroutines which return a
value and suspend to the caller without explicitly specifying a target coroutine [].
Because items are produced on-demand and piece by piece, coroutines are the ideal
approach to build light-weight iterators.
Per default, any occurrence of the yield statement in a Python function declares

it automatically as a generator of data items and forbids further return statements.
Figure .a shows an example of a generator that yields a monotonically increasing
number sequence as well as an iterator that prints the sequence ad infinitum. In this
case, the coroutine itself does not know who will receive the yielded numbers, hence it
is a typical asymmetrical coroutine. Values can also be sent into a generator by using
the yield statement on the right side of an expression. Figure .b illustrates how the
roles of producer and consumer from the previous example are swapped: e numbers

function is an ordinary function that produces a stream of items and sends each item to
some consumer. e consumer suspends execution as long as no item is sent into it. As
seen in the examples, both generator coroutine types can describe linear data processing
pipelines. For producing generators, the data flows from the inside producers to the
outer consumers whereas consumer generators push data into the arguments. Because
producers can only yield data to a single caller, we cannot describe complex data flows
such as branching and diversion. A consuming coroutine, however, allows arbitrary
arguments and thus enables us to explicitly specify the flow from sources to destinations.
Taskswhich are already present as regular producing generators can be converted to the
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def inject(producer , consumer ):

for item in producer:

consumer.send(item)

(a) Injecting items from a generator

def broadcast(consumers ):

while True:

item = yield

for c in consumers:

c.send(item)

(b) Forwarding items to multiple consumers

Figure 4.12 Auxiliary coroutines to bridge producing and consuming coroutines
shown on the le and forward a single item to a list of consumers on the right.

Listing 4.9 Spliing the reconstructed data stream for writing and viewing at the same
time using the broadcasting mechanism from figure .b.
acquire(sinograms(backproject(broadcast(write(), view ())))

send-style coroutines by an intermediate injection coroutine as shown in figure .a.
Due to the flexible arrangement of coroutines we use them to map high-speed data

processing graph execution from chapter  to the control workflows. A data processing
task graph is wrapped in a Concert specific InjectProcess object. is object keeps a
reference to a TaskGraph that was defined manually or constructed through the Task

mechanism described in the previous section. If the TaskGraph has an input task with
deg− larger than zero we insert an appropriate dummy source task as described in ...
To insert data into the stream, the user calls injectmethod with the desired input data.
If deg+ of TaskGraph’s source task is larger than zero, we append an output task to read
the result from the data processing. In order to receive a result data item, the user must
call the result method explicitly.
To integrate the InjectProcess into the coroutine-based workflow system, we used

the inject and result primitives to implement the iterator protocol. For this, we over-
ride the __call__ method and yield to receive an item, process the data item by insert-
ing it into the TaskGraph and forwarding the result to the consumers. Because the task
graph is synchronized implicitly by the data queues, the execution is suspended for the
time the Task yields to the caller.
Integrating data processing as a coroutine allows us to re-arrange data processing

and control structures in a flexible way. For example, using the broadcasting coroutine
shown in figure .b, we can display the slices that were reconstructed on the hetero-
geneous system during the reconstruction process and at the same time write them to
disk using the coroutine pipeline shown in listing .. Although, the coroutine-based ap-
proach allows for flexible data flow arrangements, they have to be wrien for the same
applications over and over again. erefore, we wrap common coroutine pipelines in
classes and function. Additionally, classes include the necessary logic to restart the
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wrapped coroutine without flaening the generator results into a list. is is necessary
because Python generators produce data only once until exhaustion.

4.2.6 Related work
Generic beamline control

 is a commercial X-ray diffraction control system extended for X-ray imaging appli-
cations and  interfacing and comes with a custom scripting language. u is
European Synchrotron Radiation Facility ()’s -based control system for X-ray
crystallography []. Another recent development is Sardana,7 a distributed, Python-
and -based general purpose experiment control system. Although all control sys-
tem front ends are capable of flexible device control, we argue that these systems are
either too rigid or too slow due to the emphasis on distributed acquisition, control and
processing and thus cannot withstand the continuous data stream required for fast and
feedback-driven experiment control.

High-throughput tomographic reconstruction

At the - beamline of the Advanced Photon Source (), Wang et al. measured acqui-
sition times of about an hour for  projections using a  detector with a resolution
of 1024×1024 and a reconstruction time of about  minutes on a  Origin  using
 out of  compute nodes at the - beamline at  []. In a follow-up article,
De Carlo and Tieman replaced the  machine with a -node compute cluster made
of off-the-shelf hardware and reduced the acquisition and reconstruction of  projec-
tions at 1024×1024 down to about five minutes []. At the  and  beam-
lines of the SPring- synchrotron, Uesugi et al. use a Hamamatsu  detector with a
resolution of 4000×2624. With a 2×2 binning readout it takes  minutes to acquire 
projections at 2000×1311 pixels in a continuous mode []. Using multi-threading, it
takes about ten seconds to reconstruct a single slice of 2000×2000 pixels from the 
projections on a Core-Duo machine. A fully automated soware-controlled experi-
ment setup for high-throughput sample scanning is used at the  beamline at
the Swiss Light Source []. Based on  and Python, it automatically exchanges
samples, computes the sample position and angular offset, corrects the alignment and
acquires the data.

4.3 Summary
In this chapter, we proposed the designs of components required for feedback-driven
experiments. We proposed a low-latency and high-throughput data acquisition system

7 http://sardana-controls.org

http://sardana-controls.org
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architecture that provides a minimal, generic interface to control detectors and read out
image data. Using optimized zero-copy memory transfers, we are able to reduce over-
heads by the system itself. We also proposed a novel remote data acquisition scheme
based on InfiniBand that decouples the detector from the control machine. On the one
hand, this scheme reduces load on the low-level control system and on the other hand
allows us to stream the data from the fastest available detectors.
Our proposed control system concept uses the data acquisition interface to give quick

access to the raw X-ray images but also to forward the incoming data stream to the het-
erogeneous compute system presented in chapter . Wrapping device accesses in future
objects enables hardware parallelism that improves the experiment throughput. To im-
prove the accessibility for end-users, the control system maps data stream processing
to coroutines. ese help to define arbitrary workflows and easily exchange built-in
or external data processing components at run-time. e system provides high-level
feedback processes that use the processed imaging data to calibrate, align and adapt
the experiment setup on the fly.
is approach provides a flexibility that allows for rapid prototyping of experiments

which is crucial in X-ray tomography setups that must adapt to the requirements of the
sample environment.





5 GPU programming

In the previous chapters, we investigated the basic foundation for streamed data pro-
cessing on arbitrary heterogeneous compute systems and howwe can incorporate those
into an experiment control system. e heterogeneity of the compute system allows us
to use arbitrary compute resources, however, in order to maximize the throughput of
these resources we need optimized low-level accelerator code. Writing this code is
error-prone and burdensome. To reduce the burden on the beamline operator and in-
crease his productivity, we will present a source-to-source translation system that aids
writing high-performance  code without having knowledge about the underlying
hardware. In the second part, we will investigate architecture-dependent optimizations
of processing stages found in high-throughput reconstruction pipeline.

5.1 Just-in-time GPU code generation
e compute system that we presented in  reduces the amount of work that is neces-
sary to set up and use a heterogeneous multi  compute system. To achieve optimal
performance requires that a  implementation of the employed tasks exists. Because
the run-time does not write the  code, a developer still has to translate existing
 code to  kernels by hand. is is a tedious task that requires a considerable
amount of low-level hardware knowledge and source code that is wrien in compiled
error-prone languages such as C.
Contrary to a compiled language, a  can hide the low-level hardware details us-

ing a concise, abstract syntax that is designed for a specific application domain [].
A  compiler transforms this language either into an intermediate language or di-
rectly to the target execution platform. e declarative properties of  increase the
productivity of programmers, reduce failure rates and may increase the performance
potential by imposing restrictions on the programming constructs. Well-known real-
world examples include the Make dependency system, the TEX document typeseing
system or Structured ery Languages () for uniform data base access. However,
the time required to develop and maintain a new  as well as the additional effort
that is needed to integrate such a language into the host program or framework can be
disadvantageous [].
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..Python function.

Python 
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Pycparser 

. Environment.

pen kernel

.

Execution

Figure 5.1 Outline of the translation process from Python to pen code

As an alternative to real , -like languages can be devised in dynamic, general
purpose host languages such as Python, Ruby or the Lisp family. Expressive naming
and domain-specific semantics allow such languages to feel like a  and provide ex-
pressiveness to implement systems such as Rake, a Make-like language wrien in Ruby.
Because only features available in the host language can be used, the expressiveness is
still limited to that of the host language.
In case of  computing, the target language is not the host language itself but a

lower-level language such as pen or . is means that we have to translate a
piece of code in a source language such as a  or a dynamic language to the lower-level
kernel. Because Python has a comprehensive  representation of itself and integrates
well with external C libraries, such as our heterogeneous compute framework, we will
use it for source-to-source translation of Python functions to pen kernels. In the
remaining section, we will present the translation architecture, optimization methods
and a run-time system that complements our heterogeneous architecture for standalone
computation.

5.1.1 System architecture
Translating Python code to an pen kernel is the main requirement of our source-
to-source translation system which is made possible for two reasons. First, the pen
standard requires that kernel code can be compiled at run-time1 and not restricted to
the time the host program is built [, p.], thus avoiding any complicated just in
time () compilation techniques. Second, Python is capable to modify code before
this code is seen by the Python lexer. is allows us to parse source code at run-time,
generate corresponding low-level code and provide wrapper code that calls this code
instead of the wrapped code.
e three blocks on the le side of figure . outline the source-to-source translation.

In the first phase, the textual source code of a live function is extracted using the get-

source function of the standard inspectmodule. e  representation of the function
is derived by parsing the code with the standard Python astmodule. For the code gener-

1 Implementations are free to cache intermediate binary results as long as the kernel source does not
change.
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Listing 5.1 Decoration of an addition function with the @jit decorator.
@jit

def add(x, y):

return x + y

ation, we translate the Python  into the C  structure of pycparser []. In this step,
an emier visitor walks the Python  and emits corresponding C  nodes. Python-
specific syntax is translated into corresponding valid C expressions (for example the
Python expression x**2 is translated into a C call to pow(x, 2)) and type information
associated with variables. In .., we will go into detail how certain Python constructs
are translated. In case of dynamic translation, we incorporate run-time information
such as input data types and the current hardware environment into the translation
process. Eventually, the system uses a modified pycparser generator function to emit
valid C pen code from the C .

User annotations

From the user perspective, a function is translated by annotating it with a decorator as
shown in listing .. A decorator is a function that receives a function as its argument
and returns a new function that is assigned to the name of the original function. In our
system, the decorator function starts the translation process on the wrapped function
and returns a kernel string or a kernel object that can be called. e string is returned
with the @static decorator that is called on import time. Because of this, it cannot
incorporate information about the environment or arguments in the translation process.
Calling a function decorated with @static returns an pen kernel string that can be
used directly within other compute systems.
e @jit decorator, as the name implies, delays the transformation of the passed

function into an  until the decorated function is called. During the call, the supplied
input data as well as the hardware environment is analyzed and suitable kernel code
generated. e run-time system then executes the kernel on the available hardware
instead of calling the original function. Compiling for the target device at run-time has
two advantages compared to the usual case of fixing the kernel code at run-time. First,
the translation system can generate code that is best suited for the target architecture
present at run-time. is is necessary because pen provides source but not perfor-
mance portability []. For example, pen  code performs best when using vector
types to exploit  instructions such as . Applying this policy to  negatively
impacts the performance and a scalar approach generally performs beer. Second, we
can analyse the input data and improve memory access times using optimal memory
allocations.
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Listing 5.2 Parameterized decorator for one scalar and two vector arguments.
@jit(float , np.double , np.double)

def multiply_accumulate(a, x, y):

return a * x + y

Semantic translation

To avoid breaking assumptions about the semantics of the host language, the syntactic
elements must be mapped closely to the target language. In case of Python, the execu-
tion model is a sequential virtual , whereas pen, as we have seen before, employs
a massively parallel  machine (see ..). Because these execution models do not
match, we employ a middle ground inspired by NumPy. Similarly to , NumPy
auto-vectorizes scalar operations if the arguments are array or matrix types []. at
means if a and b are array types, the c = a + b will compute the point-wise addition
in a fast C loop. We assume that Python programmers are familiar with this semantic
difference to the original Python operators.
Python is a dynamically typed language, which means that a programmer does not

need to explicitly annotate variables with type information but instead is inferred dur-
ing assignment and usage. On the other hand, pen kernels – just like any other
compiled language – require type information that must be known at compile time.
Moreover, array arguments of pen kernels require an address space qualifier that
denote their location and implicitly specify their run-time behaviour. Moreover, the
qualifiers may optionally restrict access to the contained data. e  translation sys-
tem uses a “best effort” approach which assumes that data is always stored as floating
point arrays. In case this assumption is not valid, types and qualifiers can be specified
by parameterizing the decorators. Each decorator argument is a type that corresponds
to the argument of the decorated function. Listing . shows type annotation of three
arguments, two of which are vector types and one which is scalar.
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@static(int , np.int32)

def scale(s, x):

return s * x

(a) Scalar multiplication

kernel void
scale(int s, global int *x, global int *y)

{

int idx = get_global_id (0);

y[idx] = s * x[idx];

}

(b) Resulting kernel code

Figure 5.2 Translation of a simple scalar multiplication expression to the correspond-
ing kernel.

Return statements

Contrary to functions, kernels behave like procedures and cannot return data due to
the missing call stack, thus the return statement cannot be used inside an pen ker-
nel. Instead, all outgoing data must be passed through an explicit output buffer that is
transferred back to the host.
When translating Python functions, an additional out parameter is inserted  sub-

tree representing the argument list of the function’s signature. Although it is not visible
in the signature of the Python function itself, users of the @static decorator must pro-
vide a suitable pen buffer and call the translated kernel accordingly. In case of a
@jit decorated function, this parameter is handled transparently by the run-time sys-
tem. During the call the run-time allocates a suitably sized output buffer and passes
it to the kernel function. Aer completion the run-time transfers the buffer from the
device back to the host and returns that as a NumPy array to the caller.

Array indexing

We motivated the use of implied vector accesses by the familiar syntax and concise
expressiveness. In the standard case, this means that accessing an array translates to an
access of a single element of that array by exactly one work item. Figure . illustrates
the access translation for the function in figure .a that scales an input array x by
a scalar s to the kernel in figure .b. is syntax is sufficient to implement point-
based image processing functionality but does not allow threads to access neighbouring
elements which is crucial for spatial filters.
Python’s default array indexing semantic uses the index as an offset from the zeroth

element. is means, for example, that x[1] refers to the second element and x[−1] to
the last element of x. To simplify writing filter code, we allow the user to specify relative
indices by prepending + or − to the constant index. us on a one-dimensional array,
accessing x[−1] refers to the le neighbour of the current element and x[+1] to the
right neighbour. Generally, this transformation is applied to all dimensions, therefore
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x[−1,+1] refers to the top-le element. One will notice that negative indexing does
not yield the same result as the default Python behaviour which is a trade-off we had
to make.
Out-of-bounds accesses, such as the first work item accessing its le neighbour el-

ement, must be handled correctly in order to preserve predictable results. By default,
the translator zeroes any access that cross borders, i.e. x[i] = 0 ∀i < 0. By passing
parameters to the decorator, the behaviour can be customized for the required appli-
cation. For example, the border element may be extended (x[−i] = x[0]) or mirrored
(x[i] = x[−i]).

Loop transformation

In Python a for loop always iterates over an iterable object. An object is iterable if it
has a __iter__method that returns an iterator. Iterators are objects that return an item
when their next methods are called. In principle, all data structures that behave like
collections (lists, sets and so on) implement the iterator protocol. e range(start,

stop, step) iterator is a built-in iterator that returns a step-wise sequence of numbers
between start and stop. Rather than constructing manual for loops, idiomatic Python
iterates over an iterator object. e translator detects these situations and emits C for
loops as follows: For each range iterator, a corresponding for loop is generated. In case
of iterations over objects, the translator tries to identify the dimensions of the object
and construct a suitable loop. is requires that the object itself has a length, iterating
using arbitrary iterators such as generators is not possible.

5.1.2 Run-time optimization
As mentioned before, functions decorated with the @jit decorator are translated prior
to execution at run-time. e run-time system itself is transparent to the user and at
the time of this writing uses PyOpenCL by as backend for interacting with the pen
platform []. Both, the current environment as well as the provided data is taken
into account when generating the corresponding kernels. For each input and output
array, one pen buffer is created and cached using the dimension and type of the
array as its hash key. is is necessary optimization to avoid excessive re-allocations
of pen buffer resources that happens when a decorated function is called in a tight
loop. Besides this basic optimization, we added optimization strategies that work on
the  level.

Constant memory

By default, any input array is classified as both readable and writeable global memory.
For data that is read only, it may be beneficial to place it in the constant memory address
space to improve access latencies. ere are two restrictions to the placement of kernel
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arguments into constant memory: the constant memory address space is limited – it
can be as small as 64 kB – and kernels may only support as low as eight constant kernel
arguments [, p.].
Our constant memory optimization strategy consists of two steps: First, the transla-

tion system determines suitable candidate arrays and second it allocates them to the
available constant memory. In the first pass, we mark any array as constant that never
occur on the le side of an assignment. Unless excluded by the restrict keyword
pointer aliasing2 of an array can hide the fact that a memory location was modified.
us, we remove any candidate array that aliases with a variable that is modified in the
body of the function. In the second pass, the system determines the maximum number
bytes nconst available in the constant memory of the smallest device to prevent over-
allocations. e translation system also determines the maximum number constant
arguments nargs that can be submied to a kernel at once. When calling the Python
function, we determine the number of bytes ni used by each of the N arguments. With
this information we would need to solve a linear program for x⃗ ∈ {0, 1}N , for which(

n1 n2 · · · nN
1 1 · · · 1

)
· x ≤

(
nconst
nargs

)
(.)

maximizes ∑N
0 xi. For each xi that equals to , the corresponding parameter is assigned

the constant qualifier. Solving the binary integer problem is one of Karp’s original 
NP-complete problems []. Hence we cannot find an optimal solution in polynomial
time. To find a solution that is good enough in most situations, we use the greedy
pack algorithm .. is works well, except for pathological cases. Alternatively, one
could use a dynamic programming approach to yield an optimal solution in pseudo-
polynomial time, however, as we have noted the simple algorithm suffices for all our
problems.

Algorithm .: Greedy constant memory allocation scheme.
size← 0, args← 0, i← 0
s← parameters sorted by size, smallest first
while size < nconst∧ args < nargs do

apply constant qualifier to s[i]
size← size +ni
args← args +1

2 Pointers referring to the same memory location.
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Table 5.1 Overview of expression substitution by equivalent pen builtins.

Expression Substitution
sin/cos/tan(πx) sinpi/cospi/tanpi(x)
asin/acos/atan(x) · π−1 asinpi/acospi/atanpi(x)
a× b + c mad(a, b, c)
a× b− c mad(a, b,−c)

Substitution of mathematical expressions

pen provides functions which are faster to compute at the expense of accuracy as
well as functions which combine multiple operations in a single operation. e arith-
metical structure is directly encoded in the , hence we can substitute known expres-
sions by an equivalent function call. One type of substitution replaces function calls
like cos(xπ), where x can be an arbitrary expression, by the equivalent pen built in
function cospi(x). is is an optimization step that would have to be implemented by
the user because the pen standard lacks an abstraction for the π constant. Another
common mathematical expression oen used in the field of digital signal processing is
the multiply-accumulate operation a · b + c. pen offers a function mad(a, b, c) that
provides an approximation of that expression in a single clock cycle. An overview of
all substitutions is given in table ..
e optimization pass walks the  in breadth-first searchmanner and tries to match

the target expressions shown in the table. If it finds a match, it stops walking that
branch and replaces the expression node by a new node with the corresponding to the
substitution, i.e. a call to the function in question.

5.1.3 Multi GPU execution
Typical image filters and point-based algorithms are suitable for execution on multiple
 because no or only a small amount of communication is necessary between indi-
vidual work items. us, when executing a @jit decorated function we leverage the
performance of multiple available devices by spliing the input data into smaller items
and scaer the small items among the .
For multi-dimensional data sets it is necessary to split and partition the data along an

axis that reduces irregular data accesses by the kernels. To use only linear data accesses,
we use a heuristic that splits the input data along the shortest axis. e idea is that for
most input data the shortest axis also changes the slowest. For example the shortest
axis of a reconstructed volume is in most cases the z-axis of the slice stack, hence we
distribute slices in z direction. is ensure that the elements are accessed along the
fastest changing x and y axes thus exhibiting beer cache behaviour. e new data size
is then used to create multiple smaller input and output buffers and to determine the
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@cu

saxpy_copperhead(a, x, y):

return [a * xi + yi

for xi , yi in zip(x, y)]

(a) Copperhead

@jit

def saxpy(a, x, y):

return a * x + y

(b)Our approach

Figure 5.3 Comparing the implementation of the  kernel with our approach and
with Copperhead.

appropriate global work sizes and offsets for each kernel.
To avoid run-time decisions and branching in tight loops, we generate and compile

one kernel with fixed data addressing for each . Aer compilation, we run the
kernels in parallel on the devices and wait for the kernels to finish. In the order of
finishing kernels, we transfer the result on the device back to a single host buffer. is
allows us to overlap on-going computation with data transfers. e final result array
is then returned to the user for further processing. Depending on the pen vendor,
frequent resource allocation leads to performance degradation. us, for each  and
decorated function we cache allocated buffers using the argument index and dimension
as the hash key.

5.1.4 Related work
Membarth et al. describe a  pseudo- that transforms a C++ description of ker-
nels and execution using Clang/ into  and pen kernels []. e execution
model does not foresee multiple .
Like our system, Copperhead is Python-based system that uses decorators to annotate

functions for execution on parallel system architectures. Instead of pen Copperhead
targets , pen and Intel’s reading Building Blocks [] for general purpose
high-performance computing, whereas our systemhas a clear focus on high-throughput
image processing. e result is that Copperhead uses a functional style (see the com-
parison in figure .) with manipulations that must be free of side effects, whereas our
system explicitly allows changing data in place. Moreover, Copperhead does not auto-
matically distribute data and computation among multiple  but requires the user
to specify where kernels should be launched.

5.2 Kernel statistics
e characteristics of typical  compute kernels gives an insight into high-perfor-
mance compute application paerns and environment requirements. Using static ker-
nel information, we can optimize our heterogeneous compute system for the common
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Figure 5.4 Relative number of kernel argument qualifiers grouped into access restric-
tions, address space and type qualifiers. e image type includes both image2d_t and
image3d_t.

case.
A kernel is characterized by its  that consists of function declaration and type

annotations as well as run-time parameters that determine how the kernel is executed.
e laer depends on the hardware device for which the kernel is compiled and can be
estimated with off-line compilers provided by the  vendors. To get a comprehensive
overview, we collected pen kernels from our own projects as well as from projects
publicly accessible via the collaborative development platform GitHub.3 In total, we
collected  kernel files with close to  kernels, covering applications from image
processing, cryptography and large-scale physics simulations.
For each kernel, we analyzed the function declaration and determined the number

of arguments. For each kernel argument, we determined access, address space and
C type qualifiers of each argument. Access qualifiers specify if an argument can be
read or wrien from the kernel, whereas address space qualifiers restrict the memory
locality (see ..). e C type qualifiers denote pointers that do not alias (restrict)
and may inhibit optimizations by the compiler, that cannot be wrien (const) and that
can be changed even without intervention of the program (volatile). Using the 
CodeAnalyzer, we also compiled each kernel to the  Tahiti microarchitecture and
determined the number of used  and  per kernel (see ..).
As shown in figure ., of all kernel arguments 53.07 % are scalar arguments, which

means there is no specific memory buffer associated and the argument is transfered by
value to the  kernel. 36.73 % of the remaining arguments reference global memory
and 10.53 % designate either pen image types or constant memory. Of all pointer
typed arguments, 18.46 % are read-only and 10.8 % write-only. Moreover, none of the
pointer arguments is limited to non-aliasing pointers by the restrict type qualifier.
Figure . shows the relative number of kernels,  and  for a given number

3 https://github.com

https://github.com
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Figure 5.5 Histograms of ,  and number of kernel metrics measured for 
kernels.

of arguments. As we can see, 37.42 % of all kernels use six kernel arguments, whereas
kernels with two to five arguments have a similar share of about 12 %. e distribution
among the number of allocated  and  indicates a slight tendency towards
scalar code.

5.3 Algorithmic optimization
We have presented a heterogeneous compute system and a supervising control system
to integrate tomographic reconstruction and other X-ray imaging related processes into
experiment workflows. Nonetheless, to enable so real-time performance we have to
optimize individual components and algorithms. For non-iterative image processing
tasks computing the result of a single output pixel does not depend on the result of
other output pixels. Hence per-pixel operations can be executed straightforwardly in
a data-parallel fashion and are particularly suitable for execution on . However,
with the exception of simple point operations such as global thresholding and point-
wise image arithmetics, an operation requires multiple input pixels that may also be
shared with other output pixels.
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5.3.1 Filtered backprojection

e  algorithm ., consists of a one-dimensional Fourier transform of the projection
data, filtering in the frequency domain, subsequent inverse Fourier transform and the
back-projection in the slice space. e performance of the Fourier transforms largely
depends on the employed   libraries (see ..), but can be improved by trans-
forming the whole sinogram in a batch process instead of single one dimensional pro-
jections. Because the image data is always represented as real numbers, it is possible
to compute two real  using a single complex  []. However, this is currently
only possible with ’s cu library. e frequency filtering is a single point-wise
multiplication with frequency coefficients. emain optimization measures are the pre-
computation of the coefficients and subsequent storage in constant memory as well as
work group size optimization to maximize the  memory throughput.

Instead of back-projecting each projection P f
θ (t) along the ray path, computing f̂ (x, y)

for each (x, y) allows for massive parallelism suited for . Since for each (x, y),
cos θ and sin θ will be computed for all θ ∈ [0, π], we can reduce the number of
trigonometric operations from O(nP · N2) to O(nP) by pre-computing these values.
From table ., we know that current detectors have a maximum horizontal resolution
of  pixels. Using (.), the estimated worst case number of projections is bound
by ⌈π/(arctan 2/2560)⌉ ≈ 3220. As per the standard at least 64 kB of constant mem-
ory must be available on all devices [, p. ], thus we can easily store the required
3220× 2× 4 B in the faster constant memory space.
For each projection we must access element P f

θ (t), t ∈ R. Because P f
θ is a finite,

discrete grid, we have to interpolate the final value using t. Because  are optimized
for fast interpolated texture access, we use the pen image type for projections and
use the hardware interpolation units of the  to do the nearest, linear or bilinear data
lookup. e kernel given in algorithm . computes the pixel value of a slice from a
filtered sinogram.

Algorithm .: Backprojection kernel
Input: Filtered M× N sinogram matrix, position (x, y) ∈N2.
Output: Reconstructed pixel value s at (x, y)
s← 0
for θ ∈ [0, π] do

r ← x cos(θ) + y sin(θ)
p← fetch value via  interpolation at S[r, θ]
s← s + p
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5.3.2 Noise reduction
Gaussian smoothing on a  is a common operation and involves a convolution of
the input image with a two-dimensional kernel approximating the impulse response of
a Gaussian function. For arbitrarily large kernel sizes, just like the filtering stage of
, both input and kernel can be multiplied in the Fourier domain and transformed
back. For smaller kernels typically used in noise reduction applications, the smoothing
is implemented in the spatial domain. To reduce the number of required operations, the
Gaussian separability property is used to convolve the input with two one-dimensional
kernels in x- and y-direction instead of convolving with a single two-dimensional ker-
nel. Implementing this within a single  kernel is challenging, because work items
can only synchronize within a single work group but the data required by boundary
work items crosses the work groups. Hence, we use one  kernel for each direction.
To reduce the number of repeated evaluations of the exponential function, the one-
dimensional kernel weight vector is pre-computed and stored in the constant address
space.
To reduce the noise with  algorithm, we use a  implementation that computes

equation (.) for each denoised output pixel. e main kernel iterates over the search
window and computes the weighted pixel value. To reduce the number of global mem-
ory accesses, the work items of a single work group pre-load the image data into shared,
local memory.

5.3.3 Projection transposition
In a µ scan, each projection at angle θ is a two-dimensional image of size w× h.
e Radon transform Pθ(t), however, is the projection of a single slice along all angles
θ. us, to reconstruct from a representation used by the reconstruction algorithms,
we must first transpose all np projections of size w× h to h sinograms of size w× np.
If all projections fit entirely into system memory,4 we can use a task as outlined in al-
gorithm . to produce a stream of sinograms from a stream of projections. As we can
see, the algorithm is bound entirely by memory throughput. Instead of copying w pro-
jection items from Pi to S in the inner k for loop, we can use a single memcpy operation.
In our tests, these showed a much beer copy throughput because of vectorized move
instructions. Moreover, we can see that the i and j indices cause exclusive read and
write accesses, thus loop iterations are independent of each other. Hence, by executing
them in parallel, we can hide memory access latencies caused by cache miss stalls.
A disadvantage of sinogram pre-processing is that a task that implements that be-

haviour effectively degenerates to a deferred reductor. is property has the negative
side effect that all subsequent reconstruction stages have to wait until the last projec-

4 As a rough estimate, just the  projections at × pixels require about 34GB memory at 16 bit
per pixel.
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Algorithm .: Transposing a stream of projections into a stream of sinograms
Input: nP projections Pi of size w× h
Output: Linearized sinogram S of size h× w× np
for i ∈ [0, nP − 1] do

index = i · w;
offset = w · nP;
for each sinogram j ∈ [0, h− 1] do

for k ∈ [0, w− 1] do copy projection row
S[index+ j · offset+ k] = Pi[j · w + k];

tion is processed and the sinogram volume filled completely. Only then can the first
sinogram be pushed to the filter stage. By reconstructing directly from the acquired
projections, one can avoid this pre-processing latency. However, this means that all
projections must be distributed among all reconstruction tasks and that each recon-
struction task must keep the entire reconstructed volume in memory. With current
 resources, this becomes excessively large and prohibitive except for toy examples.

5.4 Summary
In this chapter, we presented a source-to-source translator to provide beamline oper-
ators a straightforward interface to high-throughput  accelerators. e translator
parses ordinary Python functions and emits pen code, which is either inserted into
the streamed system described in chapter  or used on the fly with an optimizing run-
time system. e functions are wrien in a vectorized stencil-fashion that is compatible
with NumPy and allows beamline operators to re-use existing code.

In the second part, we gave an insight on how to optimize the transposition of projec-
tions as well as the  and  algorithms, which are parts of a real-time tomographic
reconstruction setup. ese optimizations are necessary to keep latencies low and en-
able feedback-driven experiments with the system introduced in chapter .
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In this chapter, we will evaluate the proposed system architectures that we introduced
in the preceding chapters. We will conduct throughput and speed up experiments on
different heterogeneous compute systems to validate if we were able to meet the given
requirements from chapter . We will also characterize the systems in terms of band-
width, throughput and profiling performance to evaluate how the system parameters
affect the acquisition, processing and control stages. In the last part, we will investigate
the remote data acquisition performance and study simulated control results.

6.1 Measurement method
To compare different compute systems and processing architectures, we use the speed
up and bandwidth metrics defined in .. and ... To determine these metrics, we
measure the time to execute entire application processes as well as specific code paths.
e  time tool returns the wall clock, system clock and user clock time that elapsed
during the execution of an application process. We estimate the elapsed process time Tp
by thewall clock time which in fact represents the duration that the user perceives. e
cumulative user clock time that a process executes on all cores corresponds to T1. For
precise in-process measurements, we use the GTimer1 facility from the cross-platform
GLib library. On our Linux systems, these timers depend on the  clock_gettime

call which use the best available timer source such as  time stamp counters or a
dedicated high performance event timer. To measure the run-time of pen kernels,
we profile kernel launch commands via the command queue profiling facilities. We will
investigate pitfalls of using the profiling mechanism in the following section.
To reduce the measurement noise from external factors such as the Linux scheduler,

we execute an experiment for each parameter combination a fixed number of runs nruns.
For each run, the time was measured using one of the aforementioned methods and the
average run-time Tp/nruns determined. In case of large run-time variances, we also
determined the standard deviation to estimate the measurement error.
We conducted all experiments presented in the remaining chapter on different hetero-

1 https://git.gnome.org/browse/glib/tree/glib/gtimer.h

https://git.gnome.org/browse/glib/tree/glib/gtimer.h
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Table 6.1 Single machine and multi-node compute systems used for performance eval-
uations. e performance numbers in the last column are rough estimates from accu-
mulating  and  single precision figures of that system.

Name  ncores  GFLOP s−1

desktop Core i7-950 1 × 4 2×  580 1776
ufosrv Xeon X5650 2 × 6 6×  580 9735
compute1 Xeon E5540 2 × 4 4×  590 + 1×  680 13204
compute2 Xeon E5-2640 2 × 6 2×   + 2× Tesla 17380
compute3 Xeon X5650 1 × 6 4× R9 290 19655
cluster1 Xeon X5650 4 × 2 × 6 4 × 2×  580 13660
cluster2 Core i5-4670 6 × 1 × 4 6 × 1×   28305

geneous systems with mixed  and  configurations, ranging from single compute
nodes with multiple  to small-scale InfiniBand clusters (see table .). For the data
processing tests we used the performance metrics introduced in section ...

6.1.1 Impact of command queue profiling
Multi- scheduling decisions rely on run-time information gathered during the exe-
cution of a  kernel. Although, the overall run-time of a  kernel corresponds to
the wall clock time measured by the surrounding host code, the asynchronous execu-
tion of the  kernel prevents accurate timings of the kernel itself. Hence, we cannot
infer any conclusions about the execution time, including any overheads incurred by
the pen run-time.
To measure exactly when a kernel starts and finishes, we query profiling informa-

tion from the associated kernel launch command. For this, the command queue on
which the kernel was launched must be switched to profiling mode. If enabled, the en-
queue functions return an event with four associated time stamps [, p.]: queued
and submied timestamps which denote when the event was placed on the command
queue and when it was submied on the host, as well as started and finished times-
tamps which denote the beginning and the end of the command execution. According
to the specification, the event time stamp precision is given in nanoseconds, whereas
the measured accuracy depends on the specific hardware platform. On our systems, the
accuracy ranges from 1 ns resolution for  Radeon R-  and Intel Xeon 
up to 1 µs for   and Intel Xeon Phi.2
We hypothesize that system profiling during the execution affects the overall perfor-

mance caused by additional overheads within the pen run-time system. Significant
2 e accuracy can be determined by calling clGetDeviceInfo() with the CL_DEVICE_PROFILING_TIMER_

RESOLUTION parameter on each device.
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Figure 6.1 Relative performance impact of execution with command queue profiling
enabled for two simple and one complex backprojection kernel.

influences on the performance would prohibit any measurements of run-time perfor-
mance data. To measure this overhead, we executed three kernels, each simulating a
different application paern. Two kernels performed basic arithmetic operations thus
exhibiting low computational intensity. e third kernel computed the tomographic
backprojection step which is an order of magnitude more compute intense. To estimate
the profiling overhead, we measured the host wall clock time that elapsed between
launching the kernel and the clFinish() call that ensures that the command has fin-
ished on the specified queue. We measured time T0 that denotes the elapsed time with
command queue profiling disabled and T1 with profiling enabled.
Figure . shows the relative performance impact I = 1− T0/T1 for data sizes be-

tween 256×256 and 3840×3840 pixels. e higher the value, the more time is lost spent
on profiling. For the smallest data sets, the performance impact for all three kernels
ranges from 11% to 24 % for 256×256 pixels and 4% to 10 % for 512×512 pixels. For
larger input data, the overhead varies between −2% to 2 % and lies within the noise
floor of the measurement itself. Although we have significant performance impacts for
data sizes less than 512×512 pixels, these effects are negligible because the projections
in typical µ experiments are an order of magnitude larger. Hence, we can profile
applications the entire time and monitor the system for re-scheduling decisions.

6.1.2 Concurrent kernel execution with OpenCL
According to .., the pen execution model foresees three levels of parallelism:
Coarse-grained parallelism using multiple accelerators, fine-grained  parallelism
on the kernel level and concurrent kernel execution somewhere in-between. While
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pen implementations are free to support concurrent execution on different  of
the same device, the standard itself does not define how multiple kernels can be started
concurrently. e pen standard merely guarantees that two subsequent calls to
clEnqueueNDRangeKernel on a single in-order command queue cause the first kernel to
finish before the second kernel has started [, ., p.]. On the other hand, the
pen standard does not specify the execution behaviour ofmultiple command queues
per device. Depending on the implementation of the vendor, accessing the same device
using different queues may allow concurrent kernel execution.
To determine if concurrent execution is possible, we measured the efficiency of the

speed up for work group sizes between 2 and 128. We let 2 ≤ nk ≤ 7 identical ker-
nels execute a piece of code that updates its own global memory in a tight loop. To
avoid overlapping kernel execution with kernel launches, we enqueue all nk kernels
without starting them immediately. A user event is passed as a prerequisite to each
kernel and set to completed as soon as all kernels are properly set up. We used three
enqueue approaches to determine under which circumstances a device executes ker-
nels concurrently. e reference approach uses a single in-order queue and should not
be any faster. e second approach uses a single out-of-order queue, which means
that the run-time can decide how to schedule the kernels. e third approach creates
one queue for each enqueued kernel. Via command queue profiling, we determined
the start and finish timestamps si and ei for each kernel. Using the earliest timestamp
sm = min2≤i≤7 si we computed the normalized start and end timestamps s′i = si − sm
and e′i = ei− sm. e run-time for kernel i is given by ∆i = e′i − s′i. e latest end time
stamp Tnk = max1≤i≤nk ei must necessarily denote the total run-time of all nk kernels.
If the sum of the per-kernel run-times is smaller than Tnk , the kernels must have exe-
cuted in parallel. In this case, the parallel speed is given by S(nk) = Tnk / ∑i ∆i. If the
sum is larger than Tnk , the overhead of scheduling multiple kernels exceeds the time
required for execution.
Figure . shows the average speed up using all three queueing approaches for work

sizes between 2 and 1024 and nruns = 1000. Except for the  Radeon R cards, in-
order queues do not affect the run-time when scheduling multiple kernels. Although
all devices listed in table . reported support for out-of-order queues,3 we can see that
none of the devices shows a noticeable speed up S(nk) > 1 using out-of-order queues.
A significant speed up is measured using multiple command queues on   and
the   implementation on the Xeon X although with large variances. e
speed up on the  architecture can be explained by the ’s grid management
unit that provides dynamic parallelism. Although one may assume that S(nk) ≈ 1
for devices that do not support concurrent kernel execution, it is in fact considerably
lower on  Radeon R cards. is behaviour is caused by a high ratio of dead time
between two kernels and the total execution time ∑6

i=2 e′i+1 − s′i/ ∑i ∆i. On this par-

3 is was verified by checking the CL_DEVICE_QUEUE_PROPERTIES property with clGetDeviceInfo.
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Figure 6.2 Speed up measured for two to seven kernels and three different queueing
approaches. e speed up is taken as an average over all work group sizes, error bars
show the deviation.

ticular architecture, the ratio ranges between 2.6 and 14.1. e overhead of scheduling
is also the reason why the speed up is not exactly 1 for the in-order queueing strat-
egy. e exact reasons for this ratio on  platforms is not known up to now but it
is likely caused by an insufficient implementation of either the pen run-time or the
 driver.
Due to the extreme variance in performance gain – and loss in some cases –, the

performance of concurrent kernel execution is not portable across architectures. For
this reason, higher run-time management requirements and due to the fact that the
majority of our kernels saturate the , we conclude that concurrent kernel execution
is not a viable performance optimization step that must be considered at the time of
this writing.

6.2 Performance figures
Using the methodology described in the previous section, we will characterize the het-
erogeneous compute systems according to their memory and communication band-
width in this section.

6.2.1 Single GPUmemory bandwidth
As shown in .., the data transfer between  and  has a significant impact on
the overall performance depending on the application paern. e main reason for this
is the asymmetrical memory bandwidth of e . and . transfers between  and
 (8GB s−1 to 16GB s−1) and on-board  memory accesses (up to 320GB s−1 as per
table .). In a streamed data processing system with short pipelines or pipelines with
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diverse heterogeneity, this bandwidth asymmetry becomes a boleneck for the overall
throughput.
In order to optimize the data flow, we quantify the edge weights wa between  and

 nodes. e pen programming model provides two mechanisms to transfer data
between host and device (see ..). To initiate explicit data transfers between host
and device, the clEnqueueWriteBuffer and clEnqueueReadBuffer  calls are used.
To initiate implicit data transfers, the pages of a memory buffer are blended into the
user’s address space using clEnqueueMapBuffer and read and wrien. Aer usage, the
pages must be unmapped via clEnqueueUnmapBuffer. To determine the bandwidth of
the link between the  and a single , we measured the up- and downlink memory
bandwidth using both methods for data sizes between 256 kB and 128MB on compute,
compute and compute as well as on the Xeon Phi system.
Figure . shows themeasured up- () and downlink () bandwidth for explicit () and

mapped () transfer of 256 kB, 1MB, 4MB and 16MB. From 16MB on the bandwidth
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Table 6.2 Hockney model parameters T and L in seconds for upload data transfers to
the  and downloads to the  for data shown in figure ..

Upload Download
Type T L T L

 580 2.76 · 10−10 2.11 · 10−4 5.51 · 10−10 2.91 · 10−4

 590 5.45 · 10−10 4.71 · 10−4 1.10 · 10−9 5.55 · 10−4

 680 5.31 · 10−10 4.91 · 10−4 1.09 · 10−9 6.69 · 10−5

Tesla K20Xm 2.86 · 10−10 −6.99 · 10−5 7.83 · 10−10 −1.30 · 10−4

 2.86 · 10−10 −1.90 · 10−4 6.46 · 10−10 −8.84 · 10−5

Radeon R9-290 4.54 · 10−10 −1.13 · 10−3 9.54 · 10−11 9.79 · 10−5

Xeon Phi 8.53 · 10−10 −7.99 · 10−3 4.13 · 10−10 4.95 · 10−3

stabilized and did not change for larger data sizes. From 256 kB to 16MB, mapped
and explicit up- and downlink bandwidths increase on all  platforms. However,
mapped transfers are consistently lower than explicit transfers and stabilize between
4 and 16MB. On the Xeon Phi,  and  drop from 2400MB s−1 and 5790MB s−1 to
1470MB s−1 and 2090MB s−1 for data sizes larger than 12MB while the data rate keeps
increasing for  and . e Xeon E-   bandwidth drops right aer 4MB
to a value that is lower than the possible  memory bandwidth. e  bandwidth
was measured with the  benchmark.4 We tested the data transfer for one to
three-dimensional data structures but could not measure any differences. It is likely
that data is transfered as one-dimensional linearized arrays.
Single - system are simple heterogeneous compute systems and as such can

be described by their Hockney model parameters (see (.) in section ..). We fied
the data transfer times to the model parameters with the results shown in table .. e
model parameters agree with a mean squared error smaller than 10−4 from the true
data across all architectures. Similar measurements and model fiings were performed
by Boyer et al. using the  system solely for   and then used to estimate
the run-time of single kernels [].

6.2.2 Multi GPUmemory bandwidth
Multiple  are the core components of a single compute node of a heterogeneous
compute system. Although they scale perfectly in terms of compute power, the limited
number of e lanes that are physically available on a  and supported by the e
switch reduce the aainable memory bandwidth of a single . us, to get a com-
plete picture of the system parameters, we have to determine the aggregate memory
bandwidth of all .

4 http://www.cs.virginia.edu/stream

http://www.cs.virginia.edu/stream
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Wemeasured the memory bandwidth on the compute system which consists of a sin-
gle    and four   . Each   consists of two independent
 cores with their own separate memory. e pen run-time detects each core as
a single device. Although, all cards are connected via e gen x, only the  
aains the full transfer speed of 5GT s−1. Two   cards are connected via the
same e bridge, thus both cards have to share e lanes. In these cases, the transfer
speed is reduced to 2.5 GT s−1.5 We split data between 256 kB and 16MB according to
the number of chosen  and measured the total aggregate memory bandwidth.
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data sizes.

Figure . shows thememory bandwidth achievedwithmultiple  at four different
data sizes. For data sizes smaller than 1MB, the memory bandwidth from device to
host is almost always higher than from host to device independently of the number and
combinations of  used. For any larger data size, the situation reverses and memory
bandwidth from host to device is higher. Across all data sizes, the memory bandwidth
reduces with an increasing number of . is can be aributed to the fact that more
 share a limited number of e lanes. As with a single , transferring larger data
utilizes the full memory bandwidth of the e bus up to a saturation point of 16MB
per transfer. e Hockney model is too simple to capture the performance decrease of
multiple , instead we can use a modified LogP model such as

T(m) = L + P · o + m− 1
P
· G + L + o. (.)

5 e figures were collected from the output of the Linux lspci e analysis tool.
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Figure 6.5 Bandwidth on cluster using Zero and . e theoretical bandwidth of
the system is 40Gbit s−1.

Van Werkhofen [] used the LogP family models to estimate the performance of data
transfers using  on three different .

6.2.3 InfiniBand performance of MPI and ZeroMQ
e performance of the network interconnect plays a crucial role when scaling the
number of compute nodes in a heterogeneous compute system because the aggregate
bandwidth of a star topology is even worse than on a single machine. Moreover, differ-
ent higher-level soware layers have a performance impact to a varying degree.
e cluster system is a small cluster located directly at ’s  beamline. It

consists of four  nodes connected via a Mellanox ConnectX e .  to an Infini-
Band switch. cluster is a small research cluster located at the  and consists of six 
nodes. e nodes are each equipped with a Mellanox ConnectX  e . host channel
adapters and connected to a Mellanox IS InfiniBand switch. For this measurement,
we used the vendor benchmark tools of  and Zero. Zero is a high-throughput
socket abstraction to implement communication paerns besides the basic server-client
model.
Figure . shows the achieved network bandwidth of cluster for an increasing mes-

sage size. At 1MB,  saturates the maximum possible link bandwidth of 24.9 Gbit s−1
provided by the InfiniBand interconnect. Zero, however, is limited by the InfiniBand-
over- overhead to a maximum bandwidth of 3.16Gbit s−1 which is about 10 % of the
net bandwidth. For high volume data processing, there is no alternative to  or direct
programming of the InfiniBand . Although Zero provides a conceptually fiing
communication model, the performance is too low for any so real-time reconstruc-
tions at the beamline.
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6.3 Local data processing
In this section we are going to present performance results of X-ray imaging processes
gathered on a single compute node.

6.3.1 Tomographic reconstruction
e tomographic reconstruction of pre-processed input projections (see ..) is the
most compute-intensive X-ray imaging task of an on-line experiment workflow. To
react quickly on changes within a sample low processing latencies and to process the
expected data volumes in a reasonable amount of time, high throughput is required. In
this section, we will evaluate suitability of the heterogeneous compute framework for
so real-time on-line reconstructions by estimating data throughputs and comparing
them to the expected experiment data rates.
To evaluate the throughput of the  algorithm, we constructed a pipeline consisting

of six filter stages: a sinogram generator, the forward , the one-dimensional ramp
filter,6 the inverse , the backprojection and an output filter stage. To remedy the
influence of / delays, the input stage merely returns sinograms without writing any
data and the output stage immediately discards any received input data. Using this
pipeline, we processed 128 to 3968 sinograms increasing in steps of 128 on ufosrv. e
sinogram dimensions ranged from 128×128 to 1920×1920 pixels in increments of 128
pixels. For each parameter configuration, we estimated the in-bound reconstruction
throughput – the data rate in terms of processed number of sinogram bytes – instead
of the produced number of slice pixels or bytes.
Figure . shows the throughput for a subset of sinogram widths and heights: e

plot on the le side shows the throughput for fixed widths, the plot on the right side
for fixed heights. As expected, the overall throughput is dominated by the width of the
sinogram because the sinogramwidth has direct impact on the final width and height of
the reconstructed slice. e height of sinogram, on the other hand, merely determines
the number of reconstructed slices. us, increasing the width of the sinograms reduces
the amount of reconstructed slices.
Despite the general trend, we can also see partial performance increases for widths

from 384 to 512, 640 to 1024 and 1152 to 2048 pixels. is effect is caused by the padding
of the input to the next power of two required for the . e larger the difference to
the next power of two, Moreover, we notice that the work group utilization on the 
increases for sizes that approach a power of two. In general, the bandwidth ranges from
220MB s−1 for 1152×896 pixels down to 2840MB s−1 for 128×1920 pixels. We can also
see, that the sinogram height has a minor effect on the overall reconstruction perfor-
mance. Although for a width of 128 pixels the performance increases from 1250MB s−1

6 e filter aenuates the frequencies on all one-dimensional projections or rows of the Fourier transform
of the sinogram.
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Figure 6.6 In-bound reconstruction throughput on ufosrv for different numbers of pro-
jections projected onto width and height axis.

to 2840MB s−1, the standard deviation drops quickly from σ = 422.3 to 240.1 for 256 pix-
els and down to 3.9 for 1536 pixels. us we can conclude, that the number of acquired
projections is not the boleneck of the reconstruction.

Influence of hardware architecture

e previous experiments have shown the throughput and scalability of the hetero-
geneous run-time system on a single hardware platform. To find the best platform
for high-throughput reconstruction required for feedback-based experiments, we mea-
sured the throughput for the  and  algorithms which need only a single pass and
thus can reconstruct with lowest possible latencies.
Figure . shows the in-bound throughput for a fix-sized dataset of real data. e

dataset consists of 1700 projections each with a size of 1778×2000 pixels. erefore,
instead of reconstructing from sinograms we can simulate the on-line reconstruction
chain by reconstructing directly from the projections. is requires an additional step
to transpose the projections into sinograms (see ). Aer this step, the regular  and
 algorithms algorithms reconstructed the slices. e reconstructions were carried on
  and    of compute, on the   and Tesla KXm of compute
as well as on a single  R  of compute. As expected,  outperforms  by a
factor of two across all platforms and has a maximum throughput of 1654MB s−1 on a
 .
From this number we can conclude that we are able to provide so real-time data

processing for the data rates expected from the detectors.



116 6 Performance evaluation

... ..
 590

.
 680

.
Tesla K20x

.
 

.
R9 290

.0 .

500

.

1000

.

1500

.

M
B
s−

1

.

roughput

.

. ..-opt

. ..

. ..-opt

. ..
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 running on different single .

ART comparison with ASTRA

 is a -accelerated -based toolbox [] for tomographic reconstruction
that we introduced in ... Although it was not designed for integration into µ
experiment workflows and control systems, it is a mature tool. Hence, we use 
as a baseline to compare the performance of our heterogeneous compute system for
qualitatively advanced reconstruction methods. We measured the time to reconstruct
slices of size 512×512 pixels using the  method of the   framework and our
heterogeneous pipeline system on a  . From the measured times we computed
the speed up of our system against  for four different iteration seings. 
did not scale in the same way as our framework for low number of iterations which is
caused by / problems on behalf of . To get a clear picture on the influence of
/ operations, we measured the speed up once with and once without taking / into
account.
From figure . we can see, that our platform provides positive speed ups across all

iteration seings. Without /, the speed up ranges from 1.6 for one iteration and con-
verges towards 2.8 for more than one hundred  iterations. A beer filesystem cache
utilization caused by the pipeline is the most likely explanation for an improvement of
11.6 % and 14.9 % beer speed up achieved when taking / into account.

Scalability with multiple GPUS

e preceding experiments used a single  to compute the steps of a tomographic
reconstruction. To evaluate the performance on multiple , we measured the run-
time taken by the same ,  and  reconstruction pipelines on an increasing
number of . e pipelines were executed unmodified in order to determine the
effect of the subgraph duplication strategy (see ..) on the scalability. e single 
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case was measured with a single    of the ufosrv machine. For each data
size, we increased the number of  with a maximum number of to six  
. We measured the run-time and computed the relative speed up compared to the
single .
Figure . shows the speed up for the three reconstruction methods and a bar that

scales linearly with the number of . e data shows that all three reconstruction
methods scale almost linearly. On average  has a parallel efficiency of 89.9 % (with
standard deviation σ = 0.050),  90.2 % (σ = 0.059) and  92.9 % (σ = 0.045).
e slightly beer scalability of  stems from the fact that  is considerably more
compute-intensive and less susceptible to the data transfer limits that we observed ear-
lier. e data proves that our sub-graph duplication heuristic provides scalable recon-
struction performance on a local machine. Figure . shows a short excerpt of an
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Figure 6.10 Overlapped execution of an  pipeline on two .

execution trace recorded for the  reconstruction on two   . As be-
fore, the subgraph duplication strategy distributed the work among both . From
the figure we can see that this allows a tight overlapping of duplicate tasks that run on
distinct .

Sinogram transposition

Section .. introduced measures to improve the throughput of the sinogram trans-
position operation. To validate the individual approaches, we generated one thousand
projections with a size of w×1024 pixels. e projection width w ranged from 512 to
2560 pixels. Wemeasured the time to transpose the synthetic projections on the desktop
machine and estimated the throughput given in number of sinogram bytes produced in
a second. e default baseline implementation uses a for loop to write each row of a
projection to the corresponding sinogram volume location. e  implementation re-
placed this inner loop with a memcpy. e  implementation uses pen to run the
outer loop in parallel and distribute partitions to different threads. e+ approach
combines both  and .
Figure . shows the relative transposition throughput of the three optimization ap-

proaches. e baseline performs worst and peaks at about 1.05GB s−1 across all pro-
jection sizes. Copying inner rows with memcpy improves this performance by a factor
of up to 2.54 and peaks at 2.94GB s−1 for the largest size of 2560×1024 pixels. e 
approach exhibits a speed up compared to the baseline of up to 3.77 and reaches its peak
throughput of 4.06GB s−1 at 2048×1024 pixels. Combining both approaches results in
the highest transposition performance for the largest data sizes of 7.25GB s−1 which is
5.9 times faster than the baseline implementation. On this system we measured a peak
memory bandwidth of 9.64GB s−1 using the  benchmark. Hence, the +
approach has a minimum memory bandwidth impact of about 25 %.
From these results we can estimate if we can reliably transpose streamed projections.

From table . we see that the fastest streaming detector produces  frames per second.
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Figure 6.11 Transposition performance using combinations of memcpy () and multi-
threading () optimizations. e height and number of projections was fixed to 1024
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Each full frame has a resolution of 2048×1088 pixels at 16 bit per pixel. At the maximum
frame size and rate, data is streamedwith a throughput of 2048 · 1088 · 2 · 330/10242B s−1
or 1.37GB s−1. At 2048×1024 pixels, the respective transposition throughputs for base-
line, ,  and + are 1.04GB s−1, 2.40 GB s−1, 4.00 GB s−1 and 5.20GB s−1. us
with ,  and +, we can transpose the projections at 57 %, 34 % and 26% of the
peak transposition bandwidth.

Fast Fourier transforms on GPUS

e Fourier transform is an integral part of the  and  reconstruction algorithms
(see ..). To compute the Fourier transform as fast as possible, we pad the arbitrarily
sized input data with zeros to a size equal to the next power of two and use the 
algorithm with O(n log n) complexity. Due to the regular data access paerns and
basic arithmetic operations used in the algorithm, computing the  for large data is
particularly suited for .
At the time of this writing, two mature and freely available pen  implemen-

tations by Apple7 and 8 are available. Both libraries generate the kernel code at
run-time for the target architecture and the intended input data size. In order to deter-
mine the most suitable implementation for our reconstruction purposes, we measured
the time to compute the  for a varying number of dimensions, including the time to
transfer the data between device and host. We measure the speed up compared to the
 library [], which claims to be the fastest  implementation available.

7 https://developer.apple.com/library/mac/samplecode/OpenCL_FFT/Introduction/Intro.html
8 https://github.com/clMathLibraries

https://developer.apple.com/library/mac/samplecode/OpenCL_FFT/Introduction/Intro.html
https://github.com/clMathLibraries
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Figure 6.12 Speed up for -, - and -dimensional  implementations by  and
Apple compared to  and measured on compute and compute.

Figure . shows the speed up measured on compute and compute. For small non-
batched one-dimensional data sets, transferring the data and computing the  on the
 is always slower than the -based . One exception is the transform of 4096
elements using the Apple  on compute that has a nominal speed up of 1.3. e low
performance for the smaller data sizes is caused by the inherent overhead of transfer-
ring the data from host to device and back and relatively lile computations required
by the one-dimensional . For two- and three-dimensional data, this overhead is
mitigated by the amount of necessary arithmetic operations. Here, the  implemen-
tations perform much beer. For larger data sizes the speed ups of both libraries peak
at 300. On the given -based systems, the Apple  performs always beer than
the  . For the three-dimensional data set of size 256×256×256, the Apple 
is more than twice as fast as the  . We suppose that the difference stems from
one-sided optimizations towards  hardware.

6.3.2 Non-local means denoising
We outlined a -based algorithm to compute the  noise reduction algorithm
in ... We implemented this algorithm as part of our compute framework and esti-
mated the performance improvements compared to the reference implementation by
Buades []. is baseline implementation uses pen multi-threading to compute
partitions of denoised pixels in parallel. We measured the time required to execute the
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reference as well as our  implementation on the desktop for input images ranging
from sizes between 256×256 and 2048×2048 pixels using identical denoising parameters
σ = 10, patch size k = 20 and window size w = 2.
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Figure 6.13 Speed up of our implementation compared to Buades’ baseline implemen-
tation on the le and absolute throughput for both implementations on the right.

On the le of figure ., we can see the nominal speed up of our -based imple-
mentation against the run-time of the reference implementation which utilized 100 %
of all  cores. For smaller data, the data transfer between host and device inhibits
larger speed ups. For larger data sizes, the speed up increases from initially 2.8 until it
peaks with a speed up of 21.1 at 2048×2048 pixels. On the right side of figure ., we
can see the absolute throughput achieved with both implementations. e reference
implementation has an average throughput of 0.43GB s−1 and peaks with 0.46GB s−1 at
1024×1024 pixels. e throughput of the  implementation varies between 1.1 GB s−1
at 256×256 pixels and 8.7 GB s−1 at 2048×2048 pixels.
e  algorithm is suited for execution on both multi-core  and many-core

. Nevertheless, the performance on a  is an order of magnitude beer on a .
Considering the data rates produced by contemporary detectors, we can conclude that
 is only applicable for so real-time applications using .

6.3.3 Optimizations
In ., we proposed low-level optimizations to improve the throughput and bandwidth
of the heterogeneous compute architecture. In this section, we will evaluate the impact
of these optimizations on the run-time and present possible speed ups.

Batched transfer

In section .., we proposed a batched memory buffer method to reduce the overhead
of small data transfers between host and device. To evaluate the method, we measured
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Figure 6.14 Sub-sampled data points of relative speed up for batched transfers versus
single transfers as a function of the number of buffers.

the time required to transfer a single fixed size data buffer and its equivalent split into
into 2 to 256 smaller buffers as well as the time needed to execute a compute-intensive
kernel. In the case of the single buffer, we initiated the same number of kernel launches
as in the case of the multiple buffers. Both single and multiple buffers were transferred
explicitly using clEnqueueWriteBuffer (copy) and implicitly using clEnqueueMapBuffer
(pinned) as explained in ... We ran this experiment on the desktop consisting of two
  Fermi cards and a machine equipped with a   Kepler card. From the
measured time we computed the relative speed up of time required to transfer the large
buffer against the time required to transfer the smaller buffers.
Figure . shows the trend of the relative speed up for partitions of up to 256 buffers.

Although the figures are related to the bandwidth presented in .., we have to con-
sider the overheads of managing multiple smaller buffers and sending data repeatedly
to the . As expected, manually transferring a single buffer with a copy is faster than
sending multiple smaller buffers for both cards. e speed up on the  , however,
decreases for a larger number of buffers and drops below 1 at 30 buffers. e speed up
of the   remains above one until  buffers are reached. e reduced speed up
can be aributed to the smaller work group sizes that can be scheduled on the 
and cause beer cache and memory access behaviour for smaller data buffers. In case
of pinned data transfers, single large data transfers perform worse on both cards but
gradually improve. For the  , mapping smaller buffers becomes beneficial at a
number of 212 buffers. e results indicate an increased run-time performance of up to
32 % using explicit data transfers compared to regular data transfers. Although, this is a
significant speed up, the latency introduced by grouping the buffers has a considerable
impact on the subsequent on-line control.
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Figure 6.15 Computation time for multiple kernels against a fused kernel of all five
kernels.

Kernel fusion

In section .., we motivated the principal benefits of reduced kernel launches and
separated data buffers by fusing groups of subsequent kernels into a single kernel.
To evaluate the effect of the kernel fusion optimization, we first built an image pro-
cessing pipeline consisting of five imaging tasks with similar computational intensity.
We executed the pipeline on compute with image sizes between 1024×1024 and up to
6144×6144 pixels. We measured the time required for each pipeline stage as well as the
fusion and execution time for the functionally equivalent single kernel.
In figure . the run-times evaluated at four different image sizes is given for the

separate and fused kernel represented by by the gray and white bars. For all image sizes,
fusing and executing the single kernel is faster than executing individual kernels. e
relative speed up of the fused kernel depends on the input size and ranges from 7.04 for
1024×1024 pixels sized input data down to 1.59 for the largest image size of 6144×6144
pixels. e decrease in speed up is in agreement with the performance model discussed
in section ..: For smaller data sizes, the overhead of launching five kernels instead
of one outweighs the time required for computing the individual tasks. For larger data
sizes, the time required for computing individual or combined tasks dominates the total
execution time, thus diminishing any gains.
We see that kernel fusion can reduce the run-time of pipelined operations signifi-

cantly. However, there are two reasons not to enable this optimization for all appli-
cations. First, pipelines that consist of a mixed set of  and  tasks or tasks that
use external third-party libraries to use  cause multiple fusion steps and fused ker-
nels. In this case, the benefit of potentially shorter run-times is mitigated by the time
needed to fuse the kernels. Second, in pipelines with strict data dependencies, which
means each kernel has to wait for its predecessor to complete, and compute-intensive
smaller kernels, the fused kernel performs worse than their individual counterparts. In
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Figure 6.16 Le: Run-time split into network communication and compute for the 
algorithm on up to six nodes of cluster. Right: corresponding speed up compared to
one master node.

this case, the synchronization between the task must happen within the fused kernels,
hence blocking the entire task on a single data item. If the kernels were not fused, a pre-
decessor can already start working on the next data item and overlap execution with
its successor. is became a problem for the  pipeline with a very long-running
backprojection step that blocks during the filtering stages.

6.4 Distributed data processing
In .., we outlined the extension of the heterogeneous compute system for small-scale
clusters which we will evaluate on cluster.
Figure . illustrates the run-time and the relative speed up of a tomographic re-

construction. e topmost bar denotes execution using a single local node without
network or  involvement. e remaining bars show the execution time with regard
to the number of remote nodes used in the process. e light part of each bar depicts the
fraction of the run-time that is spent performing network operations, while the darker
shaded parts of the execution time spans the parallel computation of the program.
From the data we can tell that the time spent for computation equals the time required

to process the data locally, using only a single remote node. is is expected behavior as
the two nodes are identical in terms of hardware and therefore computation of the same
input data takes the same amount of time on both machines. When using remote com-
puting nodes instead of local computation, the required time for sending and receiving
the data is added to the total runtime.
Because the amount of transferred data remains the same, one would expect the net-

work time to remain constant when increasing the number of remote nodes. Instead,
it can be observed that the network time increases with the number of remote nodes.
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Figure 6.17 Le: Run-time for noise reduction using  and subsequent  recon-
struction. Right: Corresponding speed up.

Even though the source of this increase can not be identified for certain, it is most likely
aributed to the naive busy-waiting implementation of the thread barrier described
in section ... e more remote nodes participate in the process, the more threads
invoke the barrier function and busy wait on resources. Although the threads yield
thus preventing starvation of other threads, the permanent cyclic yielding of threads
increases  utilization. is assumption is supported by two additional observations.
First of all, the increase of network time becomes prominent when using four or more
remote nodes. As the central node in the evaluation system uses a  with four cores,
the increase may be a result of  over-subscription. When using four remote nodes,
at least three threads busy wait on a single dedicated core, while the last core is used
for other activities. When using five remote nodes, all four idle proxy threads use a
single core and the problem worsens. Second, the increase of network time could not
be reproduced on cluster when using a six-core  and four remote computing nodes.
e network time contributes to the serial amount 1 − α of the program runtime.

Using (.), we can deduct a lower bound for the execution time of at least 5.32 s. Local
execution time of 11.20 s can be halved to 5.6 s by adding a second  device of the
same type. e lower bound predicted is then just 0.3 s faster. For this application, such
low advantage may not be worth the effort to utilize a cluster system and leads to the
conclusion that local processing should be favored for fast reconstruction purposes.
We evaluated the remote executionwith a computationallymore intensive processing

pipeline that prepends an  denoising stage before the reconstruction stage, hence
increasing the compute-to-transfer ratio. e results depicted in figure . are struc-
tured the same way as figure .. Compared to the previous evaluation, the amount
of data that is sent through the network link of the central node remains the same,
but the time to process a work item becomes significantly higher. Overall processing
time is now in the range of minutes when using a single node. e negative impact of
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Figure 6.18 Reconstruction speed up for  across different hardware architectures
compared to optimized NumPy code.

increased networking time is negligible, as the computing time is two orders of magni-
tude higher than the amount of network time. e actual processing time when using
multiple nodes comes close to the predicted processing time when assuming an ideal
speed up.

6.5 Just-in-time OpenCL code generation
e system presented in . translates Python functions into pen kernels that are
either passed to our heterogeneous run-time system or executed using its own run-time
system on the fly. is enables programmers to benefit from the performance of 
without having deep knowledge about the hardware peculiarities.

We used three experiments to measure different aspects of the run-time system. e
first experiment compares the execution time of the translated function – including the
time required for translation – using all optimizations to the unmodified function. In
particular, we use the fairly compute-intensive backprojection step of the  algorithm
in this experiment. e unmodified function uses optimized NumPy code paths that em-
ploy C code rather than interpreted Python. We measured the time to backproject data
into slices of size 64×64 up to 512×512 pixels and computed the speed up of accelerated
execution.
In ., the speed ups are shown for five different hardware platforms. Two pen

 implementations by  and Intel running on a Xeon E-, an Intel implemen-
tation executed on a Xeon Phi and two   platforms. Across all platforms, we
achieve one to three orders of magnitude in speed up. e  implementation ranges
between 33 and 202, whereas the Intel  achieves speed ups between 32 and 451 on
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Figure 6.19 Mean relative speed up and standard deviations for the  algorithmwith
image sizes ranging from 4096×1024 up to 4096×4096 in steps of 256 run on up to eight
  cores.

the same hardware. e Xeon Phi  architecture has comparatively moderate speed
ups between 40 and 763. e speed ups of the  cards range from 40 and 75 for
the smallest data size up to 1954 and 2026 for the largest slices.
As outlined in .., the run-time system of the translator is able to partition the input

data, generate appropriate kernels and distribute the partitions to the corresponding
. Aer all  finished computing the run-time collects the results and recon-
structs the final result buffer on the host side. To estimate the effectiveness of the run-
time, we used the backproject function from the previous experiment and executed it
on up to eight    cores of compute for input data sizes between four and
sixteen million pixels.9
Because the speed ups did not change significantly between different sizes, figure .

shows the average scalability together with the standard deviation for all data sizes. As
we can see, the system scales super-linearly but with a larger variance for a higher num-
ber of . We suspect that improved caching causes this behaviour. Contrary to the
streaming system, the multi  implementation of the code generation system splits
input data into smaller pieces to provide data parallelism on a multi  system. Since
each  has to process smaller items, it is more likely to fetch data already present in
the ’s cache.
In .., we introduced low-level micro optimizations that transform and replace

entire sub-trees of the translated function’s  with instructions that are built into
pen. us, the programmer can freely describe an algorithm without having to care
too much about optimization. To evaluate the effect of the optimizations, we compared
the times for microbenchmarking cos xπ and arccos xπ substitutions for input data
sizes between 512×512 and 4096×512 pixels on a single    from compute.

9 In this experiment we are not limited by the slow backproject time of the native NumPy code paths and
could increase the data sizes significantly.
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Figure 6.20 Speed up with and without substitution of cos and arccos by their opti-
mized counter parts.

As we can see from figure . the influence of the micro optimizations on the run-
time is marginal at best but in general does not improve the run-time significantly.
ese results have two causes. First, we include the time for the optimization phase
which mitigates any potential performance increases. Second, the operations them-
selves do not execute in one clock cycle on the  but perform the same instruc-
tions as if they were wrien by hand. We investigated the binary compiler output of
the clBuildProgram  call which on  platforms is intermediate  assembly
code []. e specialized instructions were broken down into simpler instructions that
are computed by the   units instead of the  units also available.

6.6 Evaluation of asynchronous control

6.6.1 Low-level primitive overhead
In section .., we presented the future concept to wrap asynchronous device access.
With Python ., futures became part of the standard library.10 e standard future im-
plementation provides both thread- and process-based executors to submit tasks. Our
target platform is the de facto standard CPython, which is a single-threaded implemen-
tation of Python. Hence, any non-/ operations will not profit from the parallel execu-
tion. In our case, we cannot use the process-based executor because tasks submied to
a process executor must be serializable in the default Python format and cannot share
state.
Although CPython’s thread implementation is based on real system threads managed

10Backports to earlier versions of Python are available, hence we can assume that they are available in
virtually all Python version.
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Table 6.3 Number of operations per second given for the dummy and the realistic
random soware motor. η is the relative performance compared to the baseline.

Dummy Random
Primitive Baseline Future η Baseline Future η

thread 716.78 286.44 0.397 199.3 161.36 0.81
gevent 718.36 668.38 0.93 146.3 144.1 0.985

by the operating system, only one thread can execute at the same time. is is caused
by Python’s Global Interpreter Lock () which ensures a consistent state within the
interpreter. is means that a parallel program that uses threads has no advantage over
a sequential implementation except for an easier parallel programming model such as
mapping device communication to a thread. On the contrary, the run-timemay increase
due to context switches and thread management. To overcome these limitations, we
implemented the future interface using the gevent11 event loop system which uses a
single thread and kernel-level polling for fast / dispatching.
In order to determine the amount of overhead of futures based on threads and event

loops, we measured the time to set random positions xk ∼ N (5, 32) on two linear so-
ware motors. e dummy motor compares the set position with the limits and stores
the value if this is the case. e random motor approximates the dead time by wait-
ing |xn − xn−1| · z seconds, where z ∼ N (0.25, 0.012). For n = 1000 positions and
three runs, we measured the number of set operations per second on desktop using syn-
chronous operations and asynchronous futures. e thread primitive uses a pool of 
threads – the default value of our production system.
From table ., we can see that the pathological motor – which does nothing – per-

forms 60% worse than the sequential version using threads but only 7 % worse using
the event loop. With the realistic motor model, the thread-based futures exhibit a per-
formance impact of nearly 20 % whereas the event loop system performs close to 99 %
of the baseline performance.

6.6.2 Concurrent device access
Figure . shows the efficiency of parallel device access according to (.). e chart
shows the efficiency for two to eight independent processes, each consisting of up to
nine sequentially ordered device accesses. Device accesses were simulated as explained
in the previous section and were executed five times. In general, the efficiency is higher
than 90 % (0.002 ≤ σ ≤ 0.258) in all cases except for one device access per eight inde-
pendent processes.

11http://gevent.org

http://gevent.org
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Figure 6.21 Efficiency of parallel device access for two, four, six and eight processes.

Although the results prove that the control system exhibits only low parallel execu-
tion overhead one has to take a real experiment into account. As with parallel pro-
grams, the amount of effective parallelism is bound by Amdahl’s law. For complex
motor motions, it is always necessary to synchronize motors to avoid catastrophic ac-
cidents causes by unintended crashes.

6.6.3 Remote data acquisition
In .., we proposed an extension to the  framework that allows for transparent
remote data acquisition through a secondary data channel. is channel is based on an
InfiniBand connection to allow for independent data transfer at technologically highest
possible throughputs. In this section, we want to evaluate if this extension allows us to
stream the data using our fastest detectors.
We validated the performance impact of the remote data acquisition by transferring

blocks of data with a size of up to 1GB. For each data size, a dummy camera streams
1000 frames from the server machine to the host which controls the detector. We use a
dummy camera to avoid accounting for overheads induced by the camera  of the
vendors by streaming directly from memory.
Figure . shows the measured bandwidth for data sizes from 1MB to 1GB. e In-

finiBand  are connected via InfiniBand  x , delivering a theoretical bandwidth
of 40Gbit s−1 or an effective bandwidth of 32Gbit s−1 caused by the 8 bit/10 bit encod-
ing used on the link layer. As we can see, we achieve a net bandwidth efficiency from
82.5 % to 92.2 %. From these numbers, we conclude that we are able to stream data of
the fastest contemporary detectors without disturbing the remaining control network.
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6.7 Summary
In this chapter, we analyzed the performance capability of the compute systems listed
in table . that are used within the  projects. We have shown how the e bus
limits the data transfer bandwidth between host and devices, with severe performance
drops in multi- systems aached via an external box. Across all architectures, ex-
plicit memory transfers utilized the e bus best. e Xeon Phi, however, suffers from
a performance drop with data larger than 12MB. For multi  setups, the same ob-
servations of single  data transfers hold, however, the bandwidth drops with more
 used. Enabling profiled queues is not harmful on the system performance as long
as the data is sufficiently large and any overheads mitigated by the processing time. On
the other hand, running multiple kernels concurrently can in the best case scale linearly
with the number of kernels. We can also conclude that using multiple in-order queues
is the only way to enforce concurrent kernel behaviour.
In the second part, we evaluated our proposed heterogeneous compute framework

introduced in chapter  on the characterized hardware platforms. On a single , the
pipelining enables an  reconstruction throughput between 220MB s−1 to 2840MB s−1
of sinogram data. Despite the performance impacts encountered on multi- systems,
using the subgraph duplication heuristics introduced in .. allow near linear scalabil-
ity with scalability efficiencies of 90 % for ,  and  reconstructions. A direct
comparison with the -based  framework has shown, that we can reconstruct
up to 2.8 times faster for  reconstructions. A small study has shown that the free
Apple  library provides enough bandwidth for on-line reconstruction. e proposed
transposition techniques from .. yield a speed up of 3.8 compared to the original strat-
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egy and peaks at a throughput of 5.20GB s−1. On  we achieve amaximum peak
throughput of 8.7 GB s−1, which is a speed up of 21.1 compared to the multi-threaded
reference implementation. e batched data transfer presented in yields a potential
speed up of 1.32 compared to regular single data transfers. e kernel fusion technique
provides a speed up between 1.6 and 7. All together the proposed processing framework
and optimization techniques permit so real-time data processing required for on-line
evaluation experiment purposes.
e final section contains evaluations concerning the experiment control and data

acquisition purposes. e data acquisition framework has a minimal overhead of …per-
cent compared to raw memory copies, hence on a local machine we are limited only by
the vendor . We have also shown that our abstraction can efficiently utilize Infini-
Band interconnects at up to 96.9 % and provide transparent remote access to all of our
high-speed detectors.



7 Discussion

Our core research question is concerned with the design of a system architecture for on-
line analysis of X-ray imaging data and the construction of fast feedback experiments.
is requires a generic, low-level data acquisition framework to acquire data that is
fed into a parallel computing framework that processes high-volume data streams on
arbitrary heterogeneous compute systems. In the preceding chapters, we presented
specific approaches how such a system can look like and how it affects the processing
and experiment tasks. In the remaining chapter, we will discuss the results in light of
the problem statement and research questions asked in chapter  and give an outlook
of future work.

7.1 Impacts

High-performance streamed data processing
estion  asked for a processing model that is equally suitable to describe the flow of
data streams and is easilymapped on heterogeneous system architectures, whereas ques-
tion  more specifically asks how we can use architectural parameters to improve the
performance of the overall system. Using the core framework for heterogeneous com-
puting we can find the most appropriate algorithms suitable for X-ray image processing
for µ to answer question 
In this thesis, we proposed a systemmodel and an architecture based on arbitrary het-

erogeneous compute systems consisting of  and  to process large data streams.
e system uses a graph of filter nodes to describe the data flow and map individual
tasks at run-time to the available hardware resources. We fulfilled the objectives for
a data streaming architecture given in section .. In particular, we were able to scale
the performance with increasing processing resources such as additional  and com-
pute nodes and achieved speed ups on local systems that were at most 15 % lower than
a perfect speed up. We are also able to reconstruct tomographic data fast enough to
provide instant feedback to the user and influence the control decisions.
Assuming that Moore’s law will be valid for the foreseeable future, we can scale with

upcoming hardware without changing the underlying soware components. Moreover,
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using our system model we can adjust parameters and choose specific system config-
urations according to the demands of an X-ray imaging experiment. We designed the
system using generic abstractions, which allows us to apply both the model and the
implementation to streamed data processing outside the field of X-ray imaging. Initial
efforts have led to prototype applications for beammonitoring and high energy physics
trigger systems.
Because the foundation of our compute model is a , data must flow from a source

to a sink and cannot follow loops. Feedback-controlled experiments, however, require
that the processing result flows back to one of the processing nodes. We argue that
this is not a general problem that can be solved on only one of the two levels. On the
lower level, we can always model feedback by encapsulating the loop inside a single
task. We use this approach to provide iterative  methods which repeatedly update
the tomographic volume until a certain quality criteria is reached. At this point, the next
filter stage receives the reconstructed volume. On a higher control level, we can model
feedback by either restarting the data flow once the result reaches a sink or inserting the
processed results using an appropriate input filter stage. is is the primary approach
that we use for the feedback-based workflows.
e library and wrapper approach that we chose to expose the functionality favors

composition of small modules. is architecture follows the principles of the  op-
erating system [] but may not use the entire optimization potential. As always,
abstractions lead to overheads and specific solutions may yield beer performance. In
particular, a data streaming  with a restricted language scope may offer beer opti-
mization opportunities. On the other hand, we can always use our proposed system as
a backend to a .

Data acquisition
estion  asked how a detector interface must be designed to enable generic and fast
access to locally and remotely aached D pixel detectors. In section ., we presented
a generic concept to acquire streams of two-dimensional detector data with both low
latencies and a high throughput. We are able to achieve all objectives, specifically we
provide a generic interface that covers a dozen different detectors, allows zero-copy data
transfers if supported by the vendor and is able to stream data from a remote detector
machine to a local acquisition and processing machine.
We discussed the advantages and disadvantages of themonolithic approach chosen by

’s detector system . Instead of ’s “kitchen sink” approach that allows for
comprehensive image manipulation and data storage, we exclusively focus on data ac-
quisition and the detector properties. e processing and control aspects weremoved to
other sub systems that were also subject of this thesis. e strict separation of concerns
lets us optimize the data acquisition process, improves the modularization of soware
components and ensures beer maintenance.
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From a purely functional point of view both approaches are nearly identical. Al-
though there are superficial similarities, the integration of new detectors and detec-
tor functionality accounts for the majority of the work rather than new functionality
in ’s and ’s core. Adapter layers that bridge between  and  can help
library users to benefit from both projects. Moreover, a  server interface that
exposes detectors with a common interface can be a viable alternative to adapter layers
and does not require deep  changes.

Control system
estion  asked for a control system architecture that supports X-ray imaging exper-
iments that allow for high-throughput and fast feedback loops. e Concert control
system introduced in section ., is the glue component that integrates the acquisition
and processing sub-systems in high-level workflow-oriented experiments. Using this
systems, we could fulfill all objectives concerned with on-line and feedback-based con-
trol experiments. In particular, asynchronous device access allows for high throughput
experiment automation and a coroutine-based workflow description eases development
of tight feedback loops.
e field of experiment control systems is diverse and integration of data processing

has been achieved to a reasonable degrees []. Nonetheless, we integrated heteroge-
neous high-performance compute systems for the first time into an experiment control
system and enabled so real-time data processing of experiment data which was no
possible before. As with the data acquisition framework, our experiment control sys-
tem superficially resembles ’s Sardana. Python integration and a strong focus on
ease-of-use are the only similarities between Sardana and Concert. Unlike our system,
Sardana itself is a distributed experiment control systems that maps the interaction of
devices on the  communication model. is approach prevents quick feedback
and the design of on-line systems. On the contrary, our modular, asynchronous ap-
proach is a major step towards fast and flexible experiment control that enables novel
experiment types.

High-level rapid prototyping
estion  asked how the interfaces between the low-level heterogeneous compute
system and the higher-level control system look like. More specifically, in question 
we asked how we can support users and operators who may not have deep  pro-
gramming knowledge but still want to benefit from the available hardware resources.
In chapter , we introduced a high-level translation system that simplifies the acces-
sibility of heterogeneous compute systems. e system translates Python functions
following stencil-type semantics into valid pen kernel code and either returns that
for further use in our heterogeneous compute system or executes it on the fly.
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Using this translation system, the scientist can explore and rapidly prototype solu-
tions applicable to the image processing tasks encountered at the beamline. Instead of
using a we use high-level Python decorators to annotate translatable functions. is
eases integration with the other acquisition and processing components and allows the
beamline operator to stay within a common development platform. Although the run-
time system is not optimized for processing large data streams and only incorporates
execution on multiple , we aain a significant speed up of up to three orders of
magnitude compared to the native execution in Python. is allows the users to benefit
from the hardware resources available at the beamline without having to use lower-
level programming languages and . Because we focused on the needs of beamline
scientists and operators we had to make compromises concerning the generality. Es-
pecially the stencil computation semantics of the translation step cannot cover all data
processing needs.

7.2 Future work
Although, we made significant advances towards a fully parallel on-line X-ray imaging
setup, we had to leave out post-processing steps for the sake of the scope of this thesis.
In particular, we concentrated on the “front-end” parts of the parallel imaging pipeline
including data acquisition, data processing and experiment control, yet storage and
meta data handling as well as unusual hardware architectures are equally important.
e insights and results gathered in this thesis pave the way for high-level extensions

such as the  follow-up project .1 e Arthropod Structure revealed by ultra-
fast Tomography and Online Reconstruction () project will continue with the
segmentation of the reconstructed volumes in a zoological context, clarify long-term
storage options and develop end-user management and visualization concepts.

Storage
Towrite the raw data stream onto disks, we currently use a hierarchy of storage systems.
e first level consists of large main memory with up to 512GB of storage capacity.
Aer the user decides which data is stored, the system moves it from the volatile main
memory to a - system of four s. e s provide a combined write throughput
of up to 1.3 GB s−1 but have only a limited capacity of 250GB. We use a - array
of regular hard disks with a total capacity of 20 TB to store data sequences of the same
experiment data. e final level of the storage hierarchy is data archival at the Large
Scale Data Facility () [].

1  is the Verbundprojekt for Arthropod Structure revealed by ultra-fast Tomography and Online Recon-
struction.
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Given our current acquisition and reconstruction system, the write performance suf-
fices to store the raw and reconstructed data of an on-line tomography experiment.
Multiple output streams, however, exceed the available data storage throughput which
is not unlikely if any intermediate data must be stored alongside the final result. Hence,
more work towards streaming-aware file systems or file system layers is necessary to
replace our naïve storage solution.
Our current data storage approach writes flat files in pre-determined directory hier-

archies or as grouped data in Hierarchical Data Format  () files according to the
NeXus specification []. We are able to store setup-related meta data alongside the
acquired data but miss the integration of user-related meta data and do not follow a
specified structure. is means that the beamline operator has to associate user and
pre-acquired sample meta data (for example sample species or material) with the ac-
quired and processed data in a separate, manual step. Moreover, he is responsible to
move data by hand from the local disk storage to long-term storage systems such as
the . For future systems, we need full integration with meta data providers and
automatic archival for long-term storage.

Visualization
Besides writing results to disk, giving the beamline operator immediate feedback on
the qualitative results has been one of this thesis’ objectives. Using our data processing
framework, the user can preview the reconstructed D slices and a static D projec-
tion of the whole volume. e D visualization method additively reprojects the vol-
ume [], an algorithm implemented on  still lacks the performance for real-time
analysis. Furthermore, the visualization does not provide segmentation necessary for
a comprehensive assessment and analysis. For full in-depth analysis, the user employs
professional post-processing D analysis tools such as Amira2 that still require manual
copying of the reconstructed slices.
In the future, we will integrate D real-time graphics  such as pen as part of

the experiment control system to interact with the reconstructed volume on the fly.
Additionally, we will continuously update the volumetric representation during the ac-
quisition and reconstruction to give the user a three-dimensional impression of the
acquired data. Real-time segmentation tasks to discriminate background from the sam-
ple and partitioning surfaces [] will also be a part of this topic. e  project
will provide a virtualized analysis architecture to ease transition and visualization of
data. e remotely accessible system will multiplex soware licenses and visualization
hardware to multiple users who do not have to have physical access to a high powered
workstation. e main benefits of this approach will be in reduced costs for the users
and beer utilization of available soware licenses and hardware resources.

2 http://www.vsg3d.com/amira

http://www.vsg3d.com/amira
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Architectural heterogeneity
Although, we designed the system architecture for general heterogeneous compute sys-
tems, we validated its characteristics solely on current  and  architectures. Due
to the emerge of a large mobile market however, high-powered embedded system-on-
chip  architectures such as ’s recent Mali  architecture Midgard appeared.
While not as powerful as desktop or server , mobile processors require less power
and provide new architectural features such as shared memory caches between  and
. Shared caches are the first steps towards a unified address space and change the
way a high-performance heterogeneous compute system can be implemented.

Sustainability
We have proven that the processing and control concepts work as we envisioned them.
Nevertheless, user operation at the  beamline has not started yet and we cannot
estimate the long-term effects and benefits for the entire operation. Continuous re-
evaluations and adaptations of the experiment workflows are and will be necessary to
cope with the demands of different experiment environments. As of now, only basic
feedback-controlled experiments were conducted and part of the  project will
be extensive use and research of experiment methodologies that make use of our fast
experiment feedback loops.
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Massively parallel multi-core architectures are the predominant features of current pro-
cessors and accelerators. ese architectures permit to scale the compute performance
despite the clock frequency stagnation of single-core architectures. e parallel com-
pute paradigm is the backend for the X-ray imaging experiment pipeline developed in
this thesis. is pipeline consists of data acquisition, data processing and control phases.
A tight integration of the low-level components in workflow-oriented pipelines helped
to ensure low latencies and high throughput and for the first time permits the devel-
opment of flexible, so real-time on-line experiments. e core contributions of this
thesis are the design and evaluation of the low-level components leveraging arbitrary
heterogeneous compute and control systems.

High-throughput data acquisition

Any X-ray imaging experiment starts with the acquisition of large volumes of image
data. For this task, we designed the flexible low-level  detector interface for high
throughput purposes. We use a zero-copy approach to keep latencies low and retain
the native bandwidth provided by the detector. Our generic detector model supports
different kinds of synchronous and blocking readout modes and emulates a mode in
soware if it is not applicable to the hardware device. On top of the interface we built
a generic InfiniBand-based  server that allows us to stream frames to a remote
acquisition machine at up to 29Gbit s−1 and covering the data rates of contemporary
streaming detectors. We wrapped the  remote client behind the generic  inter-
face, thus a user can control a remotely aached detector in the same way as a locally
available one.

Heterogeneous computing

Aer the acquisition, the data is pre-processed and reconstructed on-the-fly. e re-
constructed data can give both the beamline operator as well as the experiment control
system itself input how to influence the experiment. To cover all aspects of X-ray imag-
ing on parallel compute architectures, we modelled and developed a heterogeneous
system architecture for streaming data. Although, the system is designed to support ar-
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bitrary heterogeneous system topologies, we focused on single and multi  systems
as well as clusters with multi  nodes. e main scientific contribution is a flexi-
ble scheduling and mapping approach that adaptively duplicates and assigns tasks to
the available hardware infrastructure. We carried out optimization strategies from low-
level inter-node data transfers to high-level algorithmic adaptations and kernel fusion
techniques. We used an holistic parallel processing approach and exploited parallelism
from the instruction to the cluster level. is approach enables lowest possible latencies
and highest acquisition, processing and experiment throughputs.

High-performance reconstruction

Although, the base system architecture is designed for data stream processing, it does
not enforce particular applications. Nevertheless, our main goal in this thesis is the
integration of fast X-ray image processing such as tomography and laminography for
fast feedback experiments. us, we implemented the major reconstruction algorithms
such as ,  and  derivatives to give the user the possibility to choose between
fast or high quality reconstructions. Using the optimized system enables tomographic
reconstruction throughputs between 200MB s−1 and 3GB s−1 depending on the desired
reconstruction quality.

Experiment control system

e user can store the resulting data of the processing as it is or designate it for use
as a control variable in the on-going experiment loop. Using the experiment results
for control decisions is necessary for novel dynamic experiment types that adapt the
acquisition or the experiment setup but also to provide feedback about the data qual-
ity to the operator. To use the processed results in an efficient and user-friendly way,
we designed a new high-level experiment control system. e main novelty is its com-
plete asynchronous control model wrapped by a high-level coroutine abstraction. ese
mechanisms enable parallel control to improve the experiment throughput and use of
the processing systems.

Rapid prototyping

We designed each aforementioned component that do one thing only and connected
these sub systems together on a higher level. From a developer perspective this simpli-
fies usage, extensibility and integration within existing tools and allows for re-usability.
To ease the burden of writing  code for the end user, we designed a source-to-source
translator that parses ordinary Python functions and emits pen kernel code. To test
the algorithms, we provide a  compilation facility that translates the code on the
fly and executes it transparently on the . Our results have shown linear scalability
using multiple  as well as a speed up of three orders of magnitude using a tomo-
graphic reconstruction task and compared to the native NumPy implementation.
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