

KIT SCIENTIFIC WORKING PAPERS

On-line Recognition of Handwritten
Mathematical Symbols

Open Access at KIT

by Martin Thoma1, Kevin Kilgour1, Sebastian Stüker1, Alexander
Waibel1

32

1 Institute for Anthropomatics and Robotics

Impressum

Karlsruher Institut für Technologie (KIT)
www.kit.edu

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de

2015

ISSN: 2194-1629

Institut für Anthropomatik
Humanoids and Intelligence Systems Lab
Adenauerring 2
76131 Karlsruhe
https://his.anthropomatik.kit.edu/

1

On-line Recognition of Handwritten Mathematical
Symbols

Martin Thoma, Kevin Kilgour, Sebastian Stüker and Alexander
Waibel

Abstract—The automatic recognition of single handwritten symbols has
three main applications: Supporting users who know how a symbol looks
like, but not what its name is, providing the necessary commands for
professional publishing, or as a building block for formula recognition.

This paper presents a system which uses the pen trajectory to classify
handwritten symbols. Five preprocessing steps, one data multiplication
algorithm, five features and five variants for multilayer Perceptron
training were evaluated using 166,898 recordings. Those recordings were
made publicly available. The evaluation results of these 21 experiments
were used to create an optimized recognizer which has a top-1 error of
less than 17.5% and a top-3 error of 4.0%. This is a relative improvement
of 18.5% for the top-1 error and 29.7% for the top-3 error compared
to the baseline system. This improvement was achieved by supervised
layer-wise pretraining and adding new features. The improved classifier
can be used via write-math.com.

I. INTRODUCTION

On-line recognition makes use of the pen trajectory. One possible
representation of the data is given as groups of sequences of tuples
(x, y, t) ∈ R3, where each group represents a stroke, (x, y) is the
position of the pen on a canvas and t is the time.

[Kir10] describes a system called Detexify which uses time warping
to classify on-line handwritten symbols and reports a top-3 error of
less than 10% for a set of 100 symbols. He did also recently publish
his data on https://github.com/kirel/detexify-data, which was col-
lected by a crowdsourcing approach via http://detexify.kirelabs.org.
Those recordings as well as some recordings which were collected
by a similar approach via http://write-math.com were merged in
a single data set, the labels were semi-automatically checked for
correctness and used to train and evaluated different classifiers. A
more detailed description of all used software, data and experiments
is given in [Tho14].

In this paper we present a baseline system for the classification of
on-line handwriting into 369 classes of which some are very similar.
An optimized classifier was developed which has a 29.7% relative
improvement of the top-3 error. This was achieved by using better
features and supervised layer-wise pretraining (SLP). The absolute
improvements compared to the baseline of those changes will also
be shown.

In the following, we will give a general overview of the system
design, give information about the used data and implementation,
describe the algorithms we used to classify the data, report results of
our experiments and present the optimized recognizer we created.

II. GENERAL SYSTEM DESIGN

The following steps are used for symbol classification:

1) Preprocessing: Recorded data is never perfect. Devices have
errors and people make mistakes while using the devices. To
tackle these problems there are preprocessing algorithms to
clean the data. The preprocessing algorithms can also remove
unnecessary variations of the data that do not help in the
classification process, but hide what is important. Having

slightly different sizes of the same symbol is an example of
such a variation. Four preprocessing algorithms that clean or
normalize recordings are explained in section IV-A.

2) Data multiplication: Learning systems need lots of data to
learn internal parameters. If there is not enough data available,
domain knowledge can be considered to create new artificial
data from the original data. In the domain of on-line hand-
writing recognition, data can be multiplied by adding rotated
variants.

3) Feature extraction: A feature is high-level information derived
from the raw data after preprocessing. Some systems like
Detexify take the result of the preprocessing step, but many
compute new features. Those features can be designed by a
human engineer or learned. Non-raw data features have the ad-
vantage that less training data is needed since the developer uses
knowledge about handwriting to compute highly discriminative
features. Various features are explained in section IV-B.

After these steps, it is a classification task for which the classifier has
to learn internal parameters before it can classify new recordings.We
classified recordings by computing constant-sized feature vectors and
using multilayer perceptrons (MLPs). There are many ways to adjust
MLPs (number of neurons and layers, activation functions) and their
training (learning rate, momentum, error function). Some of them are
described in section IV-C and the evaluation results are presented in
section V.

III. DATA AND IMPLEMENTATION

We used 369 symbol classes with a total of 166,898 labeled record-
ings. Each class has at least 50 labeled recordings, but over 200
symbols have more than 200 labeled recordings and over 100 symbols
have more than 500 labeled recordings. The data was collected by
two crowd-sourcing projects (Detexify and write-math.com) where
users wrote symbols, were then given a list ordered by an early
classification system and clicked on the symbol they wrote.

The data of Detexify and write-math.com was combined, filtered
semi-automatically and can be downloaded via write-math.com/data
as a compressed tar archive of CSV files.

All of the following preprocessing and feature computation algo-
rithms were implemented and are publicly available as open-source
software in the Python package hwrt.

IV. ALGORITHMS

A. Preprocessing

Preprocessing in symbol recognition is done to improve the quality
and expressive power of the data. It makes follow-up tasks like feature
extraction and classification easier, more effective or faster. It does so
by resolving errors in the input data, reducing duplicate information
and removing irrelevant information.

Preprocessing algorithms fall into two groups: Normalization and
noise reduction algorithms.

A very important normalization algorithm in single-symbol recog-
nition is scale-and-shift [Tho14]. It scales the recording so that
its bounding box fits into a unit square. As the aspect ratio of a
recording is almost never 1:1, only one dimension will fit exactly in
the unit square. For this paper, it was chosen to shift the recording
in the direction of its bigger dimension into the [0, 1] × [0, 1] unit

http://write-math.com/
https://github.com/kirel/detexify-data
http://detexify.kirelabs.org
http://write-math.com
http://write-math.com
http://write-math.com
http://write-math.com/data

2

square. After that, the recording is shifted in direction of its smaller
dimension such that its bounding box is centered around zero.

Another normalization preprocessing algorithm is resam-
pling [GAC+91], [JMRW01]. As the data points on the pen
trajectory are generated asynchronously and with different time-
resolutions depending on the used hardware and software, it is
desirable to resample the recordings to have points spread equally
in time for every recording. This was done by linear interpolation of
the (x, t) and (y, t) sequences and getting a fixed number of equally
spaced points per stroke.

Stroke connection is a noise reduction algorithm which is mentioned
in [TSW90]. It happens sometimes that the hardware detects that the
user lifted the pen where the user certainly didn’t do so. This can
be detected by measuring the Euclidean distance between the end of
one stroke and the beginning of the next stroke. If this distance is
below a threshold, then the strokes are connected.

Due to a limited resolution of the recording device and due to erratic
handwriting, the pen trajectory might not be smooth. One way to
smooth is calculating a weighted average and replacing points by the
weighted average of their coordinate and their neighbors coordinates.
Another way to do smoothing is to reduce the number of points with
the Douglas-Peucker algorithm to the points that are more relevant for
the overall shape of a stroke and then interpolate the stroke between
those points. The Douglas-Peucker stroke simplification algorithm is
usually used in cartography to simplify the shape of roads. It works
recursively to find a subset of points of a stroke that is simpler and
still similar to the original shape. The algorithm adds the first and
the last point p1 and pn of a stroke to the simplified set of points S.
Then it searches the point pi in between that has maximum distance
from the line p1pn. If this distance is above a threshold ε, the point
pi is added to S. Then the algorithm gets applied to p1pi and pipn
recursively. It is described as “Algorithm 1” in [VW90].

B. Features

Features can be global, that means calculated for the complete
recording or complete strokes. Other features are calculated for single
points on the pen trajectory and are called local.

Global features are the number of strokes in a recording, the aspect
ratio of a recordings bounding box or the ink being used for a
recording. The ink feature gets calculated by measuring the length
of all strokes combined. The re-curvature, which was introduced
in [HK06], is defined as

re-curvature(stroke) :=
height(stroke)
length(stroke)

and a stroke-global feature.

The simplest local feature is the coordinate of the point itself. Speed,
curvature and a local small-resolution bitmap around the point, which
was introduced by Manke, Finke and Waibel in [MFW95], are other
local features.

C. Multilayer Perceptrons

MLPs are explained in detail in [Mit97]. They can have different
numbers of hidden layers, the number of neurons per layer and
the activation functions can be varied. The learning algorithm is
parameterized by the learning rate η ∈ (0,∞), the momentum
α ∈ [0,∞) and the number of epochs.

The topology of MLPs will be denoted in the following by sepa-
rating the number of neurons per layer with colons. For example,
the notation 160:500:500:500:369 means that the input layer gets
160 features, there are three hidden layers with 500 neurons per layer
and one output layer with 369 neurons.

MLPs training can be executed in various different ways, for example
with supervised layer-wise pretraining (SLP). In case of a MLP with
the topology 160:500:500:500:369, SLP works as follows: At first
a MLP with one hidden layer (160:500:369) is trained. Then the
output layer is discarded, a new hidden layer and a new output layer
is added and it is trained again, resulting in a 160:500:500:369 MLP.
The output layer is discarded again, a new hidden layer is added and
a new output layer is added and the training is executed again.

Denoising auto-encoders are another way of pretraining. An auto-
encoder is a neural network that is trained to restore its input. This
means the number of input neurons is equal to the number of output
neurons. The weights define an encoding of the input that allows
restoring the input. As the neural network finds the encoding by itself,
it is called auto-encoder. If the hidden layer is smaller than the input
layer, it can be used for dimensionality reduction [Hin89]. If only one
hidden layer with linear activation functions is used, then the hidden
layer contains the principal components after training [DHS01].

Denoising auto-encoders are a variant introduced in [VLBM08] that
is more robust to partial corruption of the input features. It is trained
to get robust by adding noise to the input features.

There are multiple ways how noise can be added. Gaussian noise and
randomly masking elements with zero are two possibilities. [Deea]
describes how such a denoising auto-encoder with masking noise
can be implemented. The corruption κ ∈ [0, 1) is the probability of
a feature being masked.

V. OPTIMIZATION OF SYSTEM DESIGN

In order to evaluate the effect of different preprocessing algorithms,
features and adjustments in the MLP training and topology, the
following baseline system was used:

Scale the recording to fit into a unit square while keeping the aspect
ratio, shift it as described in section IV-A, resample it with linear
interpolation to get 20 points per stroke, spaced evenly in time. Take
the first 4 strokes with 20 points per stroke and 2 coordinates per point
as features, resulting in 160 features which is equal to the number of
input neurons. If a recording has less than 4 strokes, the remaining
features were filled with zeroes.

All experiments were evaluated with four baseline systems Bhl=i,
i ∈ { 1, 2, 3, 4 }, where i is the number of hidden layers as different
topologies could have a severe influence on the effect of new features
or preprocessing steps. Each hidden layer in all evaluated systems has
500 neurons.

Each MLP was trained with a learning rate of η = 0.1 and a
momentum of α = 0.1. The activation function of every neuron
in a hidden layer is the sigmoid function. The neurons in the output
layer use the softmax function. For every experiment, exactly one
part of the baseline systems was changed.

A. Random Weight Initialization

The neural networks in all experiments got initialized with a small
random weight

3

wi,j ∼ U(−4 ·
√

6

nl + nl+1
, 4 ·

√
6

nl + nl+1
)

where wi,j is the weight between the neurons i and j, l is the layer
of neuron i, and ni is the number of neurons in layer i. This random
initialization was suggested on [deeb] and is done to break symmetry.

This can lead to different error rates for the same systems just because
the initialization was different.

In order to get an impression of the magnitude of the influence on the
different topologies and error rates the baseline models were trained
5 times with random initializations. Table I shows a summary of the
results. The more hidden layers are used, the more do the results vary
between different random weight initializations.

System
Classification error

Top-1 Top-3
Min Max Mean Min Max Mean

Bhl=1 23.1% 23.4% 23.2% 6.7% 6.8% 6.7%
Bhl=2 21.4% 21.8% 21.6% 5.7% 5.8% 5.7%
Bhl=3 21.5% 22.3% 21.9% 5.5% 5.8% 5.7%
Bhl=4 23.2% 24.8% 23.9% 6.0% 6.4% 6.2%

TABLE I: The systems Bhl=1 – Bhl=4 were randomly initialized,
trained and evaluated 5 times to estimate the influence of random
weight initialization.

B. Stroke connection

In order to solve the problem of interrupted strokes, pairs of strokes
can be connected with stroke connection algorithm. The idea is that
for a pair of consecutively drawn strokes si, si+1 the last point si is
close to the first point of si+1 if a stroke was accidentally split into
two strokes.

59% of all stroke pair distances in the collected data are between
30 px and 150 px. Hence the stroke connection algorithm was eval-
uated with 5 px, 10 px and 20 px. All models top-3 error improved
with a threshold of θ = 10px by at least 0.2 percentage points,
except Bhl=4 which did not notably improve.

C. Douglas-Peucker Smoothing

The Douglas-Peucker algorithm was applied with a threshold of
ε = 0.05, ε = 0.1 and ε = 0.2 after scaling and shifting, but
before resampling. The interpolation in the resampling step was done
linearly and with cubic splines in two experiments. The recording was
scaled and shifted again after the interpolation because the bounding
box might have changed.

The result of the application of the Douglas-Peucker smoothing with
ε > 0.05 was a high rise of the top-1 and top-3 error for all models
Bhl=i. This means that the simplification process removes some
relevant information and does not—as it was expected—remove only
noise. For ε = 0.05 with linear interpolation some models top-1
error improved, but the changes were small. It could be an effect
of random weight initialization. However, cubic spline interpolation
made all systems perform more than 1.7 percentage points worse for
top-1 and top-3 error.

The lower the value of ε, the less does the recording change after
this preprocessing step. As it was applied after scaling the recording
such that the biggest dimension of the recording (width or height) is

System Classification error

Top-1 Change Top-3 Change

Bhl=1 23.2% - 6.7% -
Bhl=2,SLP 19.9% −1.7% 4.7% −1.0%
Bhl=3,SLP 19.4% −2.5% 4.6% −1.1%
Bhl=4,SLP 19.6% −4.3% 4.6% −1.6%

TABLE II: Systems with 1–4 hidden layers which used supervised
layer-wise pretraining (SLP) compared to the mean of systems
Bhl=1–Bhl=4 displayed in Table I which used pure gradient descent.
The SLP systems clearly performed worse.

1, a value of ε = 0.05 means that a point has to move at least 5%
of the biggest dimension.

D. Global Features

Single global features were added one at a time to the baseline
systems. Those features were re-curvature re-curvature(stroke) =
height(stroke)
length(stroke) as described in [HK06], the ink feature which is the
summed length of all strokes, the stroke count, the aspect ratio and
the stroke center points for the first four strokes. The stroke center
point feature improved the system Bhl=1 by 0.3 percentage points for
the top-3 error and system Bhl=3 for the top-1 error by 0.7 percentage
points, but all other systems and error measures either got worse or
did not improve much.

The other global features did improve the systems Bhl=1 – Bhl=3,
but not Bhl=4. The highest improvement was achieved with the re-
curvature feature. It improved the systems Bhl=1 – Bhl=4 by more
than 0.6 percentage points top-1 error.

E. Data Multiplication

Data multiplication can be used to make the model invariant to
transformations. However, this idea seems not to work well in the
domain of on-line handwritten mathematical symbols. We tripled the
data by adding a version that is rotated 3 degrees to the left and
another one that is rotated 3 degrees to the right around the center
of mass. This data multiplication made all classifiers for most error
measures perform worse by more than 2 percentage points for the
top-1 error.

The same experiment was executed by rotating by 6 degrees and in
another experiment by 9 degrees, but those performed even worse.

Also multiplying the data by a factor of 5 by adding two 3-degree
rotated variants and two 6-degree rotated variant made the classifier
perform worse by more than 2 percentage points.

F. Pretraining

Pretraining is a technique used to improve the training of MLPs with
multiple hidden layers.

Table II shows that SLP improves the classification performance by
1.6 percentage points for the top-1 error and 1.0 percentage points
for the top-3 error. As one can see in Figure 1, this is not only the
case because of the longer training as the test error is relatively stable
after 1000 epochs of training. This was confirmed by an experiment
where the baseline systems where trained for 10,000 epochs and did
not perform notably different.

4

200 400 600 800

0.2

0.25

0.3

0.35

0.4

epoch

error

1 hidden layer 2 hidden layers
2 hidden layers with pretraining

Fig. 1: Training- and test error by number of trained epochs for
different topologies with supervised layer-wise pretraining (SLP). The
plot shows that all pretrained systems performed much better than the
systems without pretraining. All plotted systems did not improve with
more epochs of training.

System Classification error

Top-1 Change Top-3 Change

Bhl=1,AEP 23.8% 0.6% 7.2% 0.5%
Bhl=2,AEP 22.8% 1.2% 6.4% 0.7%
Bhl=3,AEP 23.1% 1.2% 6.1% 0.4%
Bhl=4,AEP 25.6% 1.7% 7.0% 0.8%

TABLE III: Systems with denoising auto-encoder pretraining (AEP)
compared to pure gradient descent. The auto-encoder pretraining
(AEP) systems performed worse.

Pretraining with denoising auto-encoder lead to the much worse
results listed in Table III. The first layer used a tanh activation
function. Every layer was trained for 1000 epochs and the mean
squared error (MSE) loss function. A learning-rate of η = 0.001,
a corruption of κ = 0.3 and a L2 regularization of λ = 10−4

were chosen. This pretraining setup made all systems with all error
measures perform much worse.

VI. SUMMARY

Four baseline recognition systems were adjusted in many experiments
and their recognition capabilities were compared in order to build a
recognition system that can recognize 396 mathematical symbols with
low error rates as well as to evaluate which preprocessing steps and
features help to improve the recognition rate.

All recognition systems were trained and evaluated with 166,898
recordings for 369 symbols. These recordings were collected by two
crowdsourcing projects (Detexify and write-math.com) and created
with various devices. While some recordings were created with
standard touch devices such as tablets and smartphones, others were
created with the mouse.

MLPs were used for the classification task. Four baseline systems
with different numbers of hidden layers were used, as the number of
hidden layer influences the capabilities and problems of MLPs.

All baseline systems used the same preprocessing queue. The record-
ings were scaled and shifted as described in IV-A, resampled with
linear interpolation so that every stroke had exactly 20 points which
are spread equidistant in time. The 80 (x, y) coordinates of the first
4 strokes were used to get exactly 160 input features for every
recording. The baseline system Bhl=2 has a top-3 error of 5.7%.

Adding two slightly rotated variants for each recording and hence
tripling the training set made the systems Bhl=3 and Bhl=4 perform
much worse, but improved the performance of the smaller systems.

The global features re-curvature, ink, stoke count and aspect ratio
improved the systems Bhl=1–Bhl=3, whereas the stroke center point
feature made Bhl=2 perform worse.

Denoising auto-encoders were evaluated as one way to use pretrain-
ing, but by this the error rate increased notably. However, supervised
layer-wise pretraining improved the performance decidedly.

The stroke connection algorithm was added to the preprocessing steps
of the baseline system as well as the re-curvature feature, the ink
feature, the number of strokes and the aspect ratio. The training
setup of the baseline system was changed to supervised layer-wise
pretraining and the resulting model was trained with a lower learning
rate again. This optimized recognizer B′

hl=2,c had a top-3 error of
4.0%. This means that the top-3 error dropped by over 1.7 percentage
points in comparison to the baseline system Bhl=2.

A top-3 error of 4.0% makes the system usable for symbol lookup.
It could also be used as a starting point for the development of a
multiple-symbol classifier.

The aim of this work was to develop a symbol recognition system
which is easy to use, fast and has high recognition rates as well
as evaluating ideas for single symbol classifiers. Some of those
goals were reached. The recognition system B′

hl=2,c evaluates new
recordings in a fraction of a second and has acceptable recognition
rates.

VII. OPTIMIZED RECOGNIZER

All preprocessing steps and features that were useful were combined
to create a recognizer that performs best.

All models were much better than everything that was tried before.
The results of this experiment show that single-symbol recognition
with 369 classes and usual touch devices and the mouse can be done
with a top-1 error rate of 18.6% and a top-3 error of 4.1%. This
was achieved by a MLP with a 167:500:500:369 topology.

It used the stroke connection algorithm to connect of which the ends
were less than 10 px away, scaled each recording to a unit square
and shifted as described in IV-A. After that, a linear resampling step
was applied to the first 4 strokes to resample them to 20 points each.
All other strokes were discarded.

The 167 features were

• the first 4 strokes with 20 points per stroke resulting in 160
features,

• the re-curvature for the first 4 strokes,
• the ink,
• the number of strokes and
• the aspect ratio of the bounding box

SLP was applied with 1000 epochs per layer, a learning rate of η =
0.1 and a momentum of α = 0.1. After that, the complete model

http://detexify.kirelabs.org/classify.html
write-math.com

5

was trained again for 1000 epochs with standard mini-batch gradient
descent resulting in systems B′

hl=1,c – B′
hl=4,c.

After the models Bhl=1,c – Bhl=4,c were trained the first 1000
epochs, they were trained again for 1000 epochs with a learning
rate of η = 0.05. Table IV shows that this improved the classifiers
again.

System Classification error

Top-1 Change Top-3 Change

Bhl=1,c 21.0% −2.2% 5.2% −1.5%
Bhl=2,c 18.3% −3.3% 4.1% −1.6%
Bhl=3,c 18.2% −3.7% 4.1% −1.6%
Bhl=4,c 18.6% −5.3% 4.3% −1.9%

B′
hl=1,c 19.3% −3.9% 4.8% −1.9%

B′
hl=2,c 17.5% −4.1% 4.0% −1.7%

B′
hl=3,c 17.7% −4.2% 4.1% −1.6%

B′
hl=4,c 17.8% −6.1% 4.3% −1.9%

TABLE IV: Error rates of the optimized recognizer systems. The
systems B′

hl=i,c were trained another 1000 epochs with a learning
rate of η = 0.05.

VIII. EVALUATION

The optimized classifier was evaluated on three publicly available
data sets: MfrDB_Symbols_v1.0 [SBPH12], CROHME 2011
[MVGK+11], and CROHME 2012 [MVGK+12].

MfrDB_Symbols_v1.0 contains recordings for 105 symbols, but
for 11 symbols less than 50 recordings were available. For this reason,
the optimized classifier was evaluated on 94 of the 105 symbols.

The evaluation results are given in Table V.

Dataset Symbols Classification error

Top-1 Top-3

MfrDB 94 8.4% 1.3%
CROHME 2011 56 10.2% 3.7%
CROHME 2012 75 12.2% 4.1%

TABLE V: Error rates of the optimized recognizer systems. The
systems output layer was adjusted to the number of symbols it should
recognize and trained with the combined data from write-math and
the training given by the datasets.

REFERENCES

[Deea] “Denoising autoencoders (da).” [Online]. Available: http:
//deeplearning.net/tutorial/dA.html

[deeb] “Going from logistic regression to MLP.” [On-
line]. Available: http://www.deeplearning.net/tutorial/mlp.
html#going-from-logistic-regression-to-mlp

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.
John Wiley & Sons, 2001.

[GAC+91] I. Guyon, P. Albrecht, Y. L. Cun, J. Denker, and W. Hubbard,
“Design of a neural network character recognizer for a touch
terminal,” Pattern Recognition, vol. 24, no. 2, pp. 105 –
119, 1991. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/003132039190081F

[Hin89] G. E. Hinton, “Connectionist learning procedures,” Artif.
Intell., vol. 40, no. 1-3, pp. 185–234, Sep. 1989. [Online].
Available: http://dx.doi.org/10.1016/0004-3702(89)90049-0

[HK06] B. Huang and M.-T. Kechadi, “An HMM-SNN method
for online handwriting symbol recognition,” in Image
Analysis and Recognition, ser. Lecture Notes in Computer
Science, A. Campilho and M. Kamel, Eds. Springer Berlin
Heidelberg, 2006, vol. 4142, pp. 897–905. [Online]. Available:
http://dx.doi.org/10.1007/11867661 81

[JMRW01] S. Jaeger, S. Manke, J. Reichert, and A. Waibel, “Online hand-
writing recognition: the NPen++ recognizer,” in International
Journal on Document Analysis and Recognition, 2001, pp.
169–180.

[Kir10] D. Kirsch, “Detexify: Erkennung handgemalter LaTeX-
symbole,” Diploma thesis, Westflische Wilhelms-Universitt
Mnster, 10 2010. [Online]. Available: http://danielkirs.ch/
thesis.pdf

[MFW95] S. Manke, M. Finke, and A. Waibel, “NPen++: A writer
independent, large vocabulary on-line cursive handwriting
recognition system,” in Proceedings of the Third International
Conference on Document Analysis and Recognition, vol. 1,
Aug 1995, pp. 403–408 vol.1. [Online]. Available: http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=599023&tag=1

[Mit97] T. M. Mitchell, Machine learning, ser. McGraw Hill series in
computer science. McGraw-Hill, 1997.

[MVGK+11] H. Mouchere, C. Viard-Gaudin, D. H. Kim, J. H.
Kim, and U. Garain, “Crohme2011: Competition on
recognition of online handwritten mathematical expressions,”
in International Conference on Document Analysis and
Recognition (ICDAR), 2011, Sept 2011, pp. 1497–1500.
[Online]. Available: http://hal.archives-ouvertes.fr/docs/00/61/
52/16/PDF/CROHME CRC511.pdf

[MVGK+12] H. Mouchere, C. Viard-Gaudin, D. Kim, J. Kim, and
U. Garain, “Icfhr 2012 competition on recognition of
on-line mathematical expressions (crohme 2012),” in
International Conference on Frontiers in Handwriting
Recognition (ICFHR), 2012, Sept 2012, pp. 811–816.
[Online]. Available: http://hal.archives-ouvertes.fr/docs/00/71/
78/50/PDF/Mouchere2012 CROHME.pdf

[SBPH12] J. Stria, M. Bresler, D. Prusa, and V. Hlavac, “Mfrdb: Database
of annotated on-line mathematical formulae,” in Proceedings of
the 2012 International Conference on Frontiers in Handwriting
Recognition, ser. ICFHR ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 542–547. [Online]. Available:
http://dx.doi.org/10.1109/ICFHR.2012.231

[Tho14] M. Thoma, “On-line recognition of handwritten mathematical
symbols,” Karlsruhe, Germany, Nov. 2014. [Online]. Available:
http://martin-thoma.com/write-math

[TSW90] C. C. Tappert, C. Y. Suen, and T. Wakahara, “The state of the
art in online handwriting recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 12, no. 8, pp. 787–808, 8 1990.
[Online]. Available: http://dx.doi.org/10.1109/34.57669

[VLBM08] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,
“Extracting and composing robust features with denoising
autoencoders,” in Proceedings of the 25th International
Conference on Machine Learning, ser. ICML ’08. New York,
NY, USA: ACM, 2008, pp. 1096–1103. [Online]. Available:
http://doi.acm.org/10.1145/1390156.1390294

[VW90] M. Visvalingam and J. D. Whyatt, “The Douglas-Peucker
algorithm for line simplification: Re-evaluation through
visualization,” in Computer Graphics Forum, vol. 9,
no. 3. Wiley Online Library, 1990, pp. 213–225.
[Online]. Available: http://www.bowdoin.edu/∼ltoma/teaching/
cs350/spring06/Lecture-Handouts/hershberger92speeding.pdf

http://deeplearning.net/tutorial/dA.html
http://deeplearning.net/tutorial/dA.html
http://www.deeplearning.net/tutorial/mlp.html#going-from-logistic-regression-to-mlp
http://www.deeplearning.net/tutorial/mlp.html#going-from-logistic-regression-to-mlp
http://www.sciencedirect.com/science/article/pii/003132039190081F
http://www.sciencedirect.com/science/article/pii/003132039190081F
http://dx.doi.org/10.1016/0004-3702(89)90049-0
http://dx.doi.org/10.1007/11867661_81
http://danielkirs.ch/thesis.pdf
http://danielkirs.ch/thesis.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=599023&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=599023&tag=1
http://hal.archives-ouvertes.fr/docs/00/61/52/16/PDF/CROHME_CRC511.pdf
http://hal.archives-ouvertes.fr/docs/00/61/52/16/PDF/CROHME_CRC511.pdf
http://hal.archives-ouvertes.fr/docs/00/71/78/50/PDF/Mouchere2012_CROHME.pdf
http://hal.archives-ouvertes.fr/docs/00/71/78/50/PDF/Mouchere2012_CROHME.pdf
http://dx.doi.org/10.1109/ICFHR.2012.231
http://martin-thoma.com/write-math
http://dx.doi.org/10.1109/34.57669
http://doi.acm.org/10.1145/1390156.1390294
http://www.bowdoin.edu/~ltoma/teaching/cs350/spring06/Lecture-Handouts/hershberger92speeding.pdf
http://www.bowdoin.edu/~ltoma/teaching/cs350/spring06/Lecture-Handouts/hershberger92speeding.pdf

KIT Scientific Working Papers
ISSN 2194-1629

www.kit.edu
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

	Introduction
	General System Design
	Data and Implementation
	Algorithms
	Preprocessing
	Features
	Multilayer Perceptrons

	Optimization of System Design
	Random Weight Initialization
	Stroke connection
	Douglas-Peucker Smoothing
	Global Features
	Data Multiplication
	Pretraining

	Summary
	Optimized Recognizer
	Evaluation
	References

